
HAL Id: pastel-00780446
https://pastel.hal.science/pastel-00780446

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalized algebraic numbers: construction and
first-order theory.

Cyril Cohen

To cite this version:
Cyril Cohen. Formalized algebraic numbers: construction and first-order theory.. Logic in Computer
Science [cs.LO]. Ecole Polytechnique X, 2012. English. �NNT : �. �pastel-00780446�

https://pastel.hal.science/pastel-00780446
https://hal.archives-ouvertes.fr


ÉCOLE POLYTECHNIQUE

École Doctorale de l’École Polytechnique

Laboratoire d’Informatique de l’École Polytechnique

Inria Saclay – Île-de-France

Inria – Microsoft Research

THÈSE DE DOCTORAT

par Cyril Cohen

soutenue le 20 novembre 2012

Pour obtenir le grade de Docteur de l’École Polytechnique

Discipline : Informatique

Formalized algebraic numbers:
construction and first-order theory

Président du Jury
M. Barthe Gilles Researcher, IMDEA

Directeurs de thèse
Mme Mahboubi Assia Chargée de Recherche, Inria
M. Werner Benjamin Directeur de Recherche, Inria

Rapporteurs
M. Avigad Jeremy Professor, Carnegie Mellon University
M. Filliâtre Jean-Christophe Chargé de Recherche, CNRS
Mme Roy Marie Françoise Professeur, Université Rennes 1

Examinateurs
M. Gonthier Georges Principal Researcher, Microsoft Research
M. Spitters Bas Researcher, University of Nijmegen





À Cécilia et à mes parents,





Je ne pourrais pas commencer cette thèse sans remercier infiniment ma directrice
de thèse, Assia, de m’avoir encadré pendant plus de trois ans. Merci pour ton
inconditionnel soutien, tes conseils, tes nombreuses relectures, ta gentillesse et ta
patience.
Je remercie aussi Georges de m’avoir si souvent guidé dans mon travail et donné

des retours éclairés sur mes travaux. Merci aussi pour ta persévérance à expliquer
et ré-expliquer gentiment toutes ces choses qui te semblent si triviale.
Je souhaite remercier Benjamin d’avoir avoir pris la responsabilité de m’encadrer

officiellement, mais aussi pour les TDs de SSReflect que j’ai eu l’occasion d’enseigner
à tes côtés à l’X.
Je remercie Jean-Christophe Filliâtre et Marie-Françoise Roy d’avoir accepté de

rapporter ma thèse, et je vous remercie aussi pour vos retours sur ma thèse, qui
m’ont aidé à l’améliorer.
Thank you Jeremy Avigad for accepting to review my thesis, and for your com-

ments that helped me improving it.
Je remercie Gilles Barthe d’avoir accepté de faire partie de mon jury.
Thank you Bas Spitters for having accepted to be in my jury, and also for the

nice stay in Nijmegen.
Merci Thierry Coquand, pour ton accueil à Göteborg et les intéressantes discus-

sions que nous avons eu.

Je remercie tous mes collègues et camarades de Mathematical Components, de
Typical et de Marelle : Enrico, Bruno, Stéphane, Arnaud et Chantal ainsi que
Laurence, Laurent, Yves, Loïc, Ioana et Guillaume pour la bonne ambiance que
vous avez su maintenir et alimenter à tout instant. Je souhaite remercier plus
particulièrement mes nombreux co-bureaux de quelques semaines ou de plusieurs
années avec qui j’ai eu l’occasion de troller ou discuter au quotidien et qui ont dû
supporter mes quarts d’heures de folie : François, Denis, Mathieu, Bruno, Vincent,
Maxime, Russell, Thomas et Victor.
Je remercie également les collègues du labo commun Inria-MSR pour avoir main-

tenu une vie de laboratoire chaleureuse et des discussions de café et de repas animées :
Jean-Jacques, Frédéric, Bruno, Alin, Damien, Marc, Alexandre, Elie, Pierre-Yves,
Iro et Jeremy. Une mention spéciale à Pierre : dans tes tentatives sans cesse renou-
velées à vouloir trivialiser mon travail de thèse, tu m’as déniché un papier dont je
rêvais [34].
Merci aux collègues de Proval (Christine, Guillaume, Sylvie et Catherine) pour

votre accueil au LRI puis au PCRI, et de πr2 (Matthieu, Hugo, Pierre, Pierre,
Stéphane, Mathias et Alexis) pour votre accueil à Place d’Italie.
Thank you Swedish people for your repeted welcome in Chalmers : Anders, Guil-

hem, Simon, Bassel, Ana, Peter and Jonna.
Merci aux collègues du DIX avec qui j’ai eu le plaisir d’enseigner : Olivier, Domi-

nique, Kartik, David, Jonathan, Christophe et Baptiste.
Merci beaucoup à Lydie puis à Valérie ainsi qu’à Martine pour avoir toujours su

m’accueillir avec le sourire, malgré tout ce que j’ai eu à vous demander, et pour
avoir réglé tous mes problèmes avec une efficacité remarquable.



Je n’en serais pas là sans ceux dont les enseignements ont marqué ma vie.
Merci à Nicolas Tosel, pour m’avoir initié à l’algèbre.
Merci à Hubert Comon, pour m’avoir aidé à faire les bons choix d’orientation et

aussi pour m’avoir initié à la logique.
Merci à Jean Goubault-Larrecq, pour m’avoir initié à la sémantique.
Merci à Paul-André Méliès, pour m’avoir orienté vers un sujet de stage de M2 et

de thèse qui m’a profondément inspiré.

Durant cette thèse, j’aurais pu me perdre si je n’avais pas eu l’appui d’amis for-
midables, que je souhaite remercier. Je pense notamment à Ouardane, avec qui j’ai
réalisé ou échoué tant de projets, mais toujours dans la bonne humeur. Je pense
aussi à mes amis Cachanais, syndiqués, informaticiens, magiciens et improvisateurs
avec qui j’ai partagé tellement de choses ces dernières années : merci (dans un or-
dre plus ou moins arbitraire) Claire, Florence, Drébon, S., Ayman, Ryo, Romain,
Sasso, François, Marianne, Michel, Picpic, Zerty, FloFlo, Anne, Carlos, Marie, Seb,
Pauline, Minipouce, Théa, Antony, Sam, Fanny, Nico, Justine, Pat, Gaëtan, Moubi,
CPA, S’, Antony, Barry, Olivier, Eudes, Mathilde et Aline.
Merci aussi à tous les gens qui mériteraient d’être sur cette page mais que j’ai

honteusement oubliés. Je vous présente mes excuses les plus sincères.

Merci, cher lecteur, ça fait plaisir d’être lu.
Dear reader, thank you for reading this thesis.

Merci à ma famille, notamment à mes parents, vous ne m’avez pas beaucoup vu
ces dernières années, mais c’est grâce à vous que j’en suis là et je ne l’oublie pas.
Last but not least, merci Cécilia, pour avoir supporté non sans douleur ma vie de

doctorant désorganisé, et tant d’autres choses.

vi



Contents

I Infrastructure 9

1 Booleans in Coq logic 11
1.1 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Excluded middle and proof irrelevance . . . . . . . . . . . . . . . . . 14
1.3 Interaction between bool and other types . . . . . . . . . . . . . . . 15

2 Algebraic Hierarchy 17
2.1 On the meaning of axiom . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Choice of interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Structure inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Polynomials 25
3.1 Polynomial arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Resultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II Construction of numbers 29

4 Numeric rings 31
4.1 Extending the hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 The Numeric Hierarchy . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Discussion on the interfaces and their names . . . . . . . . . 34

4.2 Signs, case analysis based on comparisons for reals . . . . . . . . . . 35
4.3 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Structure of integers and rational numbers . . . . . . . . . . . . . . . 44

4.4.1 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Rational numbers . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



Contents

5 Cauchy reals, algebraics 47
5.1 Cauchy reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Cauchy sequences . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Equality on Cauchy reals . . . . . . . . . . . . . . . . . . . . 49
5.1.3 Arithmetic operations and bounding . . . . . . . . . . . . . . 51
5.1.4 Reasoning with big enough values . . . . . . . . . . . . . . . 53
5.1.5 Comparison with other implementations of reals . . . . . . . 56

5.2 Algebraic reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Decidability of comparison . . . . . . . . . . . . . . . . . . . 56
5.2.2 Arithmetic operations . . . . . . . . . . . . . . . . . . . . . . 57

6 Quotient types in Coq 61
6.1 Quotients in mathematics . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 An interface for quotients . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Quotient by an equivalence relation . . . . . . . . . . . . . . . . . . . 68

6.3.1 Quotient of a choice structure . . . . . . . . . . . . . . . . . . 69
6.3.2 Quotient of type with an explicit encoding to a choice structure 71

6.4 Related work on quotient types . . . . . . . . . . . . . . . . . . . . . 72

7 Construction of the real closure as a type 75
7.1 Algebraic numbers have an explicit encoding to a choice type . . . . 75

7.1.1 Decoding to algebraic Cauchy reals . . . . . . . . . . . . . . . 76
7.1.2 Encoding of algebraic Cauchy reals . . . . . . . . . . . . . . . 77

7.2 A quotient type for algebraic numbers . . . . . . . . . . . . . . . . . 77
7.2.1 Construction of the quotient type . . . . . . . . . . . . . . . . 77
7.2.2 Real algebraic numbers form a real closed field . . . . . . . . 79

8 Discussion on the algebraic closure 81
8.1 Equivalent definitions for real closed fields . . . . . . . . . . . . . . . 81
8.2 Direct construction and other methods . . . . . . . . . . . . . . . . . 89

III Theory of real and algebraically closed fields 91

9 Elementary polynomial analysis 93
9.1 Direct consequences of the intermediate value theorem . . . . . . . . 93
9.2 Root isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3 Root neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.4 About existential formulas . . . . . . . . . . . . . . . . . . . . . . . . 99

10 Syntax, semantics and decidability 101
10.1 First-order logic, the usual presentation . . . . . . . . . . . . . . . . 101
10.2 Formalizing first-order logic in Coq . . . . . . . . . . . . . . . . . . 103
10.3 Quantifier elimination by projection . . . . . . . . . . . . . . . . . . 107
10.4 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11 Solving polynomial systems of equations (in one variable) 111
11.1 Reduction of the system . . . . . . . . . . . . . . . . . . . . . . . . . 112

11.1.1 For discrete algebraically closed fields . . . . . . . . . . . . . 112

viii



Contents

11.1.2 For discrete real closed fields . . . . . . . . . . . . . . . . . . 114
11.2 Root counting using Tarski queries . . . . . . . . . . . . . . . . . . . 115
11.3 Cauchy index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.4 Algebraic formula characterizing the existence of a root . . . . . . . 123

12 Programming and certifying the quantifier elimination 125
12.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.2 Algorithm transformation and projection . . . . . . . . . . . . . . . . 128
12.3 Direct transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.4 Continuation passing style transformation . . . . . . . . . . . . . . . 131

IV Conclusion and perspectives 135

Lists of Figures 143

Bibliography 145

Index 151

ix





Introduction

The formalization of mathematics is the action of explaining definitions, theorems
and proofs of those theorems to a software, called a proof assistant. A proof assistant
behave like a calculator: the user writes an expression (a formula, a definition, . . .)
in the language of the assistant and it computes a result, which tells whether the
expression is valid. In order to understand the level of confidence we can expect
from this system, it is worth mentioning there is a small piece of code, called the
kernel which sole task is to check a fully detailed proof. If this short piece of code is
bug-free (and if the compiler that compiles it, is bug-free too) then any proof that
passes its checks is guaranteed to be correct. We call this piece of code the trusted
base, because it is the only part one needs to trust in order to trust everything
else. It is essential that the trusted base should be readable by a human being and
should be kept as small as possible, in order to avoid the probability of error. In
particular its size must be negligible in front of the size of all the formalizations
that are made on top of it. On top of the kernel many tools are built which do not
need to be bug-free since anything that has to be check is sent to the kernel in the
end. These tools may include a proof mode which provides tactics to help the user
build a proof. For assistants based on type theory, there would be a type inference
mechanism, which task is to reconstruct the types of the object the user gives, in
order to let him be more concise. There could also be a notation system to help the
user provide a mathematical look and feel to its formalization. A proof assistant
requires a formal proof for any simple fact, even those for which a human would
believe without questioning (sometimes wrongly).
The idea of computing on proofs in the same way as on numbers is not new: indeed,

Gottfried Wilhelm Leibniz (1646 — 1716) imagined the “calculus ratiocinator”, a
machine that could mechanize logic. However, we had to wait until Friedrich Ludwig
Gottlob Frege’s 1879 Begriffsschrift for logic to be written in a way that could
actually be mechanized. Automath, devised by Nicolaas Govert de Bruijn in 1967,
was the first logical framework to be implemented in practice. Since then, the world
of logical framework and proof assistants flourished [88], and several major results in
standard mathematics were formalized, among them we can cite the Prime Number
Theorem [3] in Isabelle/HOL, the Fundamental Theorem of Algebra [40] and the
Fundamental Theorem of Calculus [32] in Coq, and the Four Colour theorem [41]

1



Contents

in Coq/SSReflect.
The proof assistant we use in this thesis work is Coq [85, 84]. In Coq, there

is a proof mode: the user can visualize the current state of the proof, i.e. what
remains to be proved, and progress using tactics. A state in this proof mode is
called a goal, which is composed of a context – a set of known facts, such as the
hypotheses of the fact we are proving – and a conclusion which is what we have to
show using the context. Each tactic can either make the current goal progress, by
adding new data or new facts to the context or changing the conclusion, or it can
split the current goal in several subgoals. Coq logic is based on an extension of the
Calculus of Constructions (CoC) [29] (designed in 1986): the Calculus of Inductive
Constructions (CIC) [72] with Universes. Unlike the classical logic that most math-
ematicians use, Coq logic is constructive, which means that the law of excluded
middle is not valid. An interpretation is that not all propositions are either provable
or have a provable negation (as Gödel first incompleteness theorem shows). An-
other consequence of constructivity is that proving an existential statement ∃x, P x
amounts to providing an explicit witness x0 such that P x0 holds. For a statement
of the form ∀y, ∃x, P x y, it amounts to writing a program that given y as an
argument, outputs an x such that P x y holds. This illustrates a piece of the corres-
pondence between proofs and programs, known as Curry-Howard correspondence.
This correspondence is a key feature of Coq logic, making the language for writing
expressions in Coq both suitable for expressing logic formulas and for programming.
As a programming language, Coq is a typed language, with a strong type system
where types can depend on arbitrary expressions. Those types are called dependent
types, and it makes possible to define the type of matrices of size n.
Whereas such a constructive system can be seen as restrictive, it is in fact more

expressive than a classical system. Indeed, any proposition that can be proved
classically can at least be proved in Coq under classical axioms. Moreover, providing
a constructive proof for a theorem is even stronger than providing a classical one,
since it requires to write the program that solves a problem, and it can provide
more insight to the author and to the reader. Additionally, a programming language
brings computation to the system, and a strong type system brings type inference.
Indeed, typed languages may rely on type inference in order to help the user to be
concise. Without type inference, a user would have to write systematically the type
of any object he uses, which we absolutely want to avoid as mathematicians. Indeed,
mathematical objects often come with a huge quantity of implicit information which
would become unreadable if made explicit. For example, when we say “let R be
a field” in the language of mathematics, we implicitly consider the field operators
and the properties of field, but we do not write all the details. With computation,
one can write a Coq program that calculates on arithmetic or symbolic expression,
just like any other programming language. It can even compute on fragments of
its own logic, by a process we call reflection. The notion of reflection could already
be found in the work of Pfenning and Paulin-Mohring [72] as a deep embedding
of a calculus (F2 to be precise) inside Coq, but its applications as a tool to build
formal proof producing decision procedures for mathematical theories had to wait
until a work by Boutin [17]; we call this methodology large scale reflection. In this
thesis, we use intensively the small scale reflection [44, 46]. It was developed for
the proof of the Four Colour theorem [41] and further use of this methodology led
to the creation and the development of the SSReflect extension for Coq, leaving

2



Contents

its core and logic intact, but extending the tactic language and providing a library
of mathematical results formulated in a reusable way. More recently, SSReflect
was used to formalize a complete proof of Feit-Thompson Theorem [42]; this thesis
contributed to this achievement.
Any formalization about mathematics in Coq has to take all of these into account:

the drawbacks and advantages of constructiveness and of a strong type system.
Hence, as of today, formalizing mathematics is a work that requires the knowledge
of the type theory which constitutes the logic, skills in programming and to be at
ease with the mathematics that are at stake. In my experience, a difficulty with this
last point is that paper proofs often have gaps in them, like something non trivial
which is not even mentioned, or even something which is locally wrong. Another
frequent problem is to find constructive alternatives, which are often not widespread.
A good knowledge of the type theory is mandatory to know which formulas are
typable and which are not, which is the first stage of the coding of a theory: even
before trying to prove something, its statement has to be accepted by the system
as well-formed. Programming, and more specifically the organization of the code,
the refactoring of the code, the design of correct algorithms, the completeness and
the documentation of libraries is the biggest task of all in my point of view: it is
the most difficult, important and time consuming. Not only does it require to have
both a good understanding of the type theory and of the underlying (constructive)
mathematics of what is formalized, but also to have a good idea of how people —
apart from I and my coworkers — may want to use what is formalized.
John Harrison [51] made the following observation: “There isn’t a perfect match

between what humans find easy and what proof assistants find easy, so it’s pos-
sible that a proof that a human would regard as more difficult is actually easier to
formalize, even setting aside a comparison of the amount of knowledge assumed.”
Surprisingly, very simple and old mathematical results can require more effort than
recent results, just because they are used more extensively and in so many different
context. The part of my work I spent the most time on would be the most simple
thing from a mathematician’s point of view. Indeed, I developed, reorganized, refac-
torized the development of the numeric hierarchy (see Chapter 4) for at least a year,
and I revised the development about quotient types at least five times over three
years (see Chapter 6) while some developments about more complicated mathemat-
ics only took me a few days, weeks or months (e.g. a few weeks for the construction
of real algebraic numbers). The mathematical results we formalized are not very
advanced, they can be partially or fully taught to undergraduate students, up to
the constructiveness of the proofs. Hence we provide two little contributions to con-
structive mathematics which are two important contributions to the formalization
of mathematics, not only for their final result, but also for the methodologies and
tools that we created to reach those.

On the mathematical content of this thesis
The mathematics used in this thesis are mainly about discrete real and algebraically
closed fields, from the construction of such fields to the study of one of their most
fundamental property: the decidability of their first-order theory [83]. Indeed, the
two main contributions of this thesis are the full constructive formalization in the
Coq proof assistant of the real closure of a discrete Archimedean field, and the

3



Contents

certification of a quantifier elimination procedure for the theories of algebraically
and real closed fields.
The real closure of the discrete Archimedean field of rational numbers is the

field of real algebraic numbers, and so my first contribution is essentially about
algebraic numbers and the study of their properties. Algebraic numbers (respectively
real algebraic numbers) are part of the mathematical folklore, and there is not
much to say about their classical construction: they are the complex (respectively
real) numbers that are roots of a polynomial with rational coefficients. However,
their intuitionistic construction is more intricate and, up to our knowledge, was
never formalized in a constructive proof assistant. Algebraic numbers also have
very interesting properties: they form a countable subset of complex numbers and
can be substituted for usual complex numbers in developments that require only
their first-order properties, such as in the formalized proof of the Feit-Thompson
Theorem for example. Finally, algebraic numbers also form a discrete algebraically
closed field, and real algebraic numbers a discrete real closed field, which makes the
second contribution a study of the theory of algebraic numbers and real algebraic
numbers. Part II (and more precisely Chapter 5 and 7) is devoted to the construction
of algebraic numbers and to the proof they form a real closed field.
The construction we detail and their properties are described in many standard

references on constructive mathematics [63] or in computer algebra [15]. However,
the constructive proofs we used are difficult to find in the literature because classical
mathematics books tend to provide classical proofs, and even constructive mathem-
atics books sometimes rely on classical arguments. Thus, the implementation of
these results in a proof assistant requires various changes in their presentation to
make them constructive. Hence, our development is not a literate translation of
a well-chosen reference, but is rather a synthesis of poorly known results from the
mathematical folklore. Then, we study the relation between real algebraic numbers
and their algebraic closure and the construction of complex algebraic numbers from
real algebraic numbers, in Chapter 8. The latter construction involves a generalized
version of the fundamental theorem of algebra, for which we give several algebraic
constructive proofs, and formalized one.
The second contribution, formalizing quantifier elimination, is seen as a con-

sequence from basic results in real algebraic geometry. Real algebraic geometry
is the study of sets of roots of multivariate polynomials in real closed fields. We
formalize a proof of quantifier elimination for the first-order theory of real closed
fields, which in turn entails the decidability of the first-order theory of real closed
fields. Since the original work of Tarski [83] who first established this decidability
result, many versions of a quantifier elimination algorithm have been described in
the literature. Shortly after Tarski published his proof, Seidenberg published an-
other proof [78]. An elementary, algebraic proof is the one described by Hörmander
following an idea of Paul Cohen [27, 56, 14]. However, the first algorithm with a
“reasonable” upper bound (doubly exponential in the number of quantifiers) for de-
ciding the theory of real closed field was obtained by Collins [28], using Collins’s
Cylindrical Algebraic Decomposition algorithm. At the time we write this thesis, it
is the implemented algorithm which has the best complexity. However, Gregor’ev
and Vrobjov introduced a breakthrough by solving the existential problem of de-
cision for the theory of real closed fields, with a complexity of a simple exponential
in the number of quantifiers [50]. This led Grigor’ev to solve the general decision

4



Contents

problem in doubly exponential complexity [49], where the second exponent is the
number of alternations of quantifiers. Heintz, Roy and Solernó [53] and Renegar [75]
improved independently the latter result.
All the algebraic proofs rely on the same central idea of the existence of a pro-

jection: starting from a family P ⊂ R[X1, . . . , Xn+1], compute a new family Q ⊂
R[X1, . . . , Xn], where the variable Xn+1 has been eliminated. The recursive use
of this projection leads to a quantifier elimination procedure. The computational
efficiency of this projection dominates and hence governs the complexity of the quan-
tifier elimination. In the case of the algorithm of Cohen-Hörmander, the projection is
rather naive and only uses repeated Euclidean divisions and simple derivatives. The
breakthrough introduced by the Collins’ algorithm is due to a clever use of better a
better way to compute Cauchy indexes (defined in Section 11.3), namely subresult-
ant polynomials, and of partial derivatives in order to improve the complexity of the
projection. The quantifier elimination algorithm we describe in Part III (and more
precisely in Chapters 11 and 12) has a naive complexity (a tower of exponentials in
the number of quantifiers).
We follow the presentation given in the second chapter of [5], based on the original

method of Tarski [83]. This algorithm is more intricate than the one of Hörmander,
and closer to Collins’ one with respect to the objects it involves. Objects like signs at
a neighborhood of a root, pseudo-remainder sequences or Cauchy bounds are indeed
crucial to both algorithms and hence part of the present formalization. Moreover,
we give a simple quantifier elimination procedure for algebraically closed field, the
explanation of which is given in Section 11.1.1, also following a presentation given
in [5]. Thanks to this, first-order formulas on real algebraic numbers and complex
algebraic numbers are proven decidable in Coq.

The libraries, tools and methodologies we used

Those two mathematical contributions both relied on and involved the development
and achievement of several tools, abstractions, and theories. The most important of
these are:

• The extension of the theory of divisibility on polynomials, as we briefly explain
in Section 3.1.

• The construction of a new hierarchy of discrete numeric algebraic structures,
including ordered, Archimedean and real closed fields. This new hierarchy
comes with its theory and facilities to use it. This library, presented in
Chapter 4, is currently used in the character theoretic part of the proof of
the Feit-Thompson Theorem. We also instantiated these structures with in-
tegers and rational numbers.

• The formalization of a weak form of quotients (see Chapter 6), which helped
us construct algebraic numbers. It was also used by other contributors to the
SSReflect library, in order to formalize Galois Theory or the construction
of the algebraic closure of countable field.1

1both of which are not published yet

5



Contents

• The development of a methodology to deal with “big enough numbers” in
analytic reasoning and the construction of a small and simple representation
of constructive real numbers using Cauchy sequences, described in Chapter 5.

• The development of the elementary theory of real closed fields, which is ba-
sically a limited form of polynomial analysis, treated in a constructive way, in
Chapter 9.

• A style for programming and certifying algorithm written in continuation
passing style, in Chapter 12.4.

On Coq and SSReflect

Coq is a proof assistant based on the Calculus of Inductive Constructions with
Universes. The Vernacular language gives a set of commands to organize the con-
tents of a file, like declaring a definition, a lemma, an inductive type and various
hints for tools that are not in the kernel. The Gallina language is the language
of Coq expressions. It is used to write programs and their types. Following the
Curry-Howard correspondence, types are statements of theorems and their proofs
are programs whose type is the statement. Writing a proof is in fact writing a pro-
gram. We call these programs proof terms. The tactic language is used to build
proofs without writing proof terms by hand.
The SSReflect extension of Coq brings both an alternative set of tactics and

a library. The two of them are quite independent, but the library is designed to
be used with the SSReflect tactics. The library is not only constituted of defin-
itions, lemmas and theorems but also uses advanced features of the Coq system,
such as notations, implicit arguments, hints, coercions and canonical structures.
The SSReflect tactic language and library were initially designed to prove the
Four Colour theorem [41]. But since then, the language and the library have been
improved in order to tackle the Feit-Thompson Theorem (also known as Odd Order
Theorem) [42]. The library has been extended with group theory [45], but also al-
gebraic structures [36], polynomials and matrices [43, 11, 67], representation theory
[12] and character theory, which are the prerequisites to formalize the two books
[6, 70] that regroup and summarize the proof of the Feit-Thompson Theorem. One
of the choices made in the SSReflect library is never to rely on Coq axioms,
which are statements that are admitted. Indeed, it is not uncommon to add the
excluded middle to Coq like this, and in a past version of Coq this could lead to
inconsistency [20, 73]. We stay faithful to this choice of not having Coq axioms and
we never rely on them.
In this thesis, we do not provide an introduction to Coq. For that purpose, we

recommend the reader to look at the appropriate references. For an introduction to
Coq, he may read [7]. For a description of the Coq features that are mainly used
in SSReflect, we recommend the reading of [37]. Instead, we will only introduce
the SSReflect tools, methodologies, tactics and definitions which are needed to
understand this work.

6



Contents

Organization of the thesis
The thesis is organized in three parts. I made only minor contributions to the
formalizations described in the first part (only small corrections, documentation
and a few results about polynomial division and bivariate polynomials). The second
part and the third part are entirely original contributions, except for Chapter 10.

Part I introduces the material on top of which this thesis was build.
Chapter 1 explains the central use of Booleans in the SSReflect library and

hence in our work. Although it is one of the simplest datatypes one can find, their
interpretation as truth values leads to a completely different way of carrying out
proofs in Coq.
Chapter 2 and Chapter 3 describe respectively the SSReflect algebraic hierarchy

and the polynomial library, which remained essentially the same since the beginning
of this thesis’ work. For the sake of readability, we only detail what is necessary
to understand this thesis. A more complete description of those can be found by
reading the generated coqdoc of the SSReflect libraries.

Part II describes the construction of algebraic numbers and all the tools and defin-
itions that we had to formalize in order to ease this construction and to integrate it
smoothly in the SSReflect library. Earlier versions of the work presented in this
part have been published [23, 22, 21, 24].
Chapter 4 introduces an extension of the algebraic hierarchy with order relation

and norm operators, which must be compatible with the ring or field operations: the
numeric hierarchy. We details some of the tools we designed to reuse the theory we
developed about this hierarchy. We also provide the integers and rational numbers
as instantiation of the theory of numeric domains and numeric fields.
Chapter 5 both describes a small and self-contained formalization of real numbers

using Cauchy sequences and the subtype of reals that are algebraic. In particular,
we developed a tool for reasoning with “big enough numbers” that eased a lot the
proofs in these theories.
Chapter 6 explains the methodology we follow when dealing with quotient types,

and the construction of a quotient using an equivalence relation or an ideal.
Chapter 7 combines all the results from the two previous chapters to build the

type of real algebraic numbers. This type is then used to formalize the complex
algebraic numbers in Chapter 8, as needed in the formalization of Feit-Thompson
Theorem.

Part III studies the theory of real and algebraically closed fields, it only depends
on the previous part through Chapter 4. Indeed, the theory of those structure
is independent from their implantation. The main intention for this part is to
describe the quantifier elimination procedure on real closed fields and explain the
formalization of its proof. Earlier versions of the work presented in this part have
been published [25, 26].
Chapter 9 explores the consequences of the axioms of real closed fields, by building

a root isolation procedure and studying the notion of neighborhood of a number.
Chapter 10 describes the objects on which the quantifier elimination procedure

operates, thereby introducing basic notions about first-order logic and model theory.

7



Contents

Chapter 11 details a way to solve a system of equations and inequations. State-
ments and proofs are inspired from our main reference on the subject [5].
Finally, Chapter 12 combines all the results from the previous chapters into the

programming and certification of a quantifier elimination procedure for real closed
fields.

The sources of the formalization
Some of the sources of the formalization presented in this thesis have been integrated
to the 1.4 release of SSReflect (which is the latest release at the time we wrote this
thesis). The rest of the source code is in the private repository of the Mathematical
Components team [74], but I made my files available on my personal web page, at
the following url: http://perso.crans.org/cohen/phd/.
At the time we wrote this, the source code related to this thesis contained more

than 15000 lines of code, including 584 Definitions and 1951 Lemmas, Facts and
Theorems.
Let us describe the correspondence between the chapters and the source code files.
Chapter 4 describes the files ssrnum.v, ssrint.v and rat.v of the 1.4 release of

SSReflect, and the interval theory (Section 4.3), which is in the non released file
interval.v.
Chapter 5 and Chapter 7 describe non released code, which can be found in

cauchyreals.v for the construction of Cauchy reals (Section 5.1), bigenough.v for
reasoning with big enough numbers (Section 5.1.4), and realalg.v for the rest.
Chapter 6 corresponds to the file generic_quotient.v in the 1.4 release of SS-

Reflect.
Chapter 8 is mostly describing proofs that have not been formalized. The file

complex.v contains a construction of the complex algebraic numbers, using a proof
of the Fundamental Theorem of Algebra relying on linear algebra (Section 8.2).
Chapter 9 describes the unreleased files closed_field.v (for quantifier elimina-

tion on algebraically closed fields), polyorder.v and polyrcf.v (for polynomial
analysis on real closed fields), Chapter 11 the unreleased file qe_rcf_th.v and
Chapter 12 the unreleased file qe_rcf.v.

8

http://perso.crans.org/cohen/phd/


Part I

Infrastructure

9





1
Booleans in Coq logic

In this chapter, we explain the foundations on which our work lies. We explain
what small scale reflection is, and we illustrate its practical use in Coq through the
basic definitions from the SSReflect library. The SSReflect library was initially
developed to build a formal proof of the Four Colour Theorem [41], and has been
progressively extended in order to formalize the Feit-Thompson Theorem [42].
The main ingredient is the type bool of Booleans, which is defined as an non

recursive inductive type:

Inductive bool : Type := true | false.

It has two constructors with no arguments, and is hence inhabited by exactly two
elements: true and false.
In Section 1.1, we recall what Boolean reflection is and give an intuitive inter-

pretation for it. Section 1.2 explains what we get by phrasing a Boolean statement
rather than a propositional one. In Section 1.3 we give example of practical use of
the Boolean reflection in our development.

1.1 Reflection

In the Coq proof assistant, Reflection is a methodology that consists in replacing
multiple deductive steps (i.e. applications of deduction rules of the Calculus of
Construction) by computational steps.
Reflection needs a type of reified objects to compute on, we call this type the

reflected type or the reified type. Usually this latter type is an inductive which
constructors represent the construction we want to reflect. For example, if we want
to reflect arithmetic, there could be a constructor for zero, a constructor for one, a
constructor for the addition and a constructor for the multiplication. We also need
an interpretation function for evaluating elements of the reflected type into the initial
type. For example, the reified multiplication constructor of reified natural arithmetic
should be mapped to the Coq function that multiplies two natural numbers.

11



1 Booleans in Coq logic

Large Scale Reflection

This methodology was introduced by [17] as a way to build efficient decision proced-
ures. The most famous examples of application of this methodology are the ring
tactic [17, 48], which implements a reflexive decision procedure for ring expressions,
the micromega tactic [10] for linear arithmetic and the tactic for rewriting modulo
AAC [86]. We call this large scale reflection because it replaces several deduction
steps by a single conversion rule.
Usually, large scale reflection is performed in two steps, as shown in Figure 1.1:

the first step is reification, in order to transform a term into its reified syntactic tree
(which interpretation reduces to the initial term). The second step is the application
of the reflexive procedure on this tree, which when interpreted reduces to a provably
equal term. However, the user only witnesses the progression of the initial type.

Goal n Goal n + 1

Goal n Goal n + 1

reification
big computation

interpretation

reflexive tactic

Initial
Reified

Figure 1.1: Large scale reflection

Let us give an example for the ring tactic. Let R be a ring, which we call is the
initial type. Now, for ring, there are two reified types, one for uninterpreted ring
expressions (PolExpr) and one for normalized uninterpreted ring expressions (Pol).
We show in Figure 1.2 that the expression (x * 1) is reified into the uninterpreted
ring expression corresponding to the polynomial X1 · 1, where the indeterminate X1
is associated to the value x. It is then normalized to the (normalized) uninterpreted
ring expression X1 and reinterpreted as x.

(x * 1) x

PEmul (PEX
1) (PEc 1)

(PX (Pc 0)
1 0 (Pc 0)

reification

normalization

interpretation

reflexive tactic

Initial
Reified

Figure 1.2: The ring tactic

Small scale reflection

The need for an initial type and a reified type is also true for small scale reflection,
but instead of having a big and atomic computational reduction of the reified ex-
pression, we do manual rewriting or small reduction steps. In this design, the user

12



1.1 Reflection

controls the progression of the proof goal by interleaving these small transformations
with deductive steps, as shown in Figure 1.3

Goal n Goal n + 1 Goal n + 2

Goal n Goal n + 1 Goal n + 2
computation

or rewrite

tactic

(deductive step)

Initial
Reified

Figure 1.3: Small scale reflection

Boolean reflection (see Figure 1.4) is the process by which we reflect a propositional
statement into an equivalent Boolean statement. It is a particular case of small scale
reflection where the interpretation function is is_true.
Definition is_true (b : bool) : Prop := (b = true).

This function interprets Booleans as propositions by comparing them to true.

P1 P2 P3

is_true b1 is_true b2 is_true b3

reflection
lemma reflect
P1 b1

computation

or rewrite

reflection
lemma reflect
P2 b2

tactic

(deductive step)

reflection
lemma reflect
P3 b3

Initial
Reified

Figure 1.4: Boolean reflection

For example, the standard library distributed with the Coq system defines the
comparison of natural numbers as an inductive binary relation:
Inductive le (n:nat) : nat -> Prop :=

| le_n : le n n
| le_S : forall m : nat, le n m -> le n (S m)

where the type nat of natural numbers is itself an inductive type with two con-
structors:
Inductive nat : Set := O : nat | S : nat -> nat

The proof of (le 2 2) is (le_n 2) and the proof of (le 2 4) is (le_S (le_S
(le_n 2))). With this definition of the le predicate, a proof of (le n m) actually
necessarily boils down to applying a number of le_S constructors to a proof of the
reflexive case obtained by le_n. The number of piled le_S constructors is exactly
the difference between the two natural numbers that are compared.
In the SSReflect library on natural numbers, the reflected counterpart of this

definition is a Boolean test:
Definition leq (m n : nat) := is_true (m - n == 0).

where (_ == _) is a Boolean equality test and (_ - _) is the usual subtraction
on natural numbers. Note that when n is greater than m, the difference (m - n)

13



1 Booleans in Coq logic

is zero. In this setting, both a proof of (is_true (leq 2 2)) and a proof of
(is_true (leq 2 4)) consist in evaluating this comparison function and check
that the output value is the Boolean true: the actual proof term is in both cases
(refl_equal true) where refl_equal is the Coq constructor of proofs by reflexiv-
ity. However, the principal motivation for small scale reflection is not the reduction
of the size of proof terms. Small scale reflection consists in designing the objects of
the formalization so that proofs benefit from computation and therefore relieve the
user from part of the otherwise explicit reasoning steps.

Remark
In fact, is_true is declared as a coercion. This means that there is no need to
put it in by hand. The system will apply it automatically whenever the type
constraints inferred a element of type Prop was required but got a Boolean
instead.

The way Boolean reflection is achieved in SSReflect is through the use of the
reflect predicate.

Inductive reflect (P : Prop) : bool -> Set :=
| ReflectT of P : reflect P true
| ReflectF of ~ P : reflect P false.

Technical remark
In SSReflect the “of P” syntax is a shorthand for “(_ : P)”.

The inductive type reflect is a two constructor inductive that relates the prov-
ability of a proposition with true and the provability of its negation with false.
In order to inhabit such an inductive, one has to decide whether the proposition P
is true or false.
In the previous example, the reflection lemma is stated like this:

Lemma leP m n : reflect (le m n) (leq m n).

It can be read (and it is logically equivalent to) the equivalence:

(le m n) <-> (leq m n)

Remark
Although this reflection lemma leP is defined in the ssrnat.v file of the SS-
Reflect library, it is almost never used. Indeed, there is no advantage of
using le instead of leq.
However, this is not true anymore for equality, where both forms are useful.
We will detail this in Section 1.3.

1.2 Excluded middle and proof irrelevance
In the constructive type theory implemented by the Coq system, the excluded
middle principle does not hold in general for any statement expressed in the Prop
sort. It corresponds to the fact that a proposition might be provable, that its
negation might be provable or that neither are provable. An advantage of Boolean
statement is that they enjoy excluded middle (a Boolean is either true of false).

14



1.3 Interaction between bool and other types

Propositions that can be reflected to Booleans are exactly the decidable proposi-
tions. Hence, Boolean reflection is a great tool to ease case analysis, since a case
on a Boolean-reflected proposition creates two subgoals according to the possible
truth values of this Boolean. The SSReflect library provides more elaborated
constructs, especially to take advantage of both the Boolean and the predicate it
reflects. We give examples of this in Section 1.3.
In Coq, two proofs of the same statement have no reason to be equal. Indeed,

equality is intentional, which means it distinguishes two programs that compute the
same value (i.e. that are extensionally equal), but that are not written in the same
way. A traditional example would be that although the bubble sort and the quick
sort both sort lists, they are not equal. However, all the proofs of equality of two
given Booleans are the same.

Lemma bool_irrelevance (x y : bool) (E E’ : x = y) : E = E’.

In the SSReflect library, this is presented as a consequence of a more general
fact: proofs of equality are all equal on types on which equality is decidable.

Theorem eq_irrelevance (T : eqType) x y :
forall e1 e2 : x = y :> T, e1 = e2.

This property is called proof irrelevance, [52] we only showed it applies to proof
of equalities in an eqType, i.e. a type on which equality is decidable. The structure
of eqType is described in Section 2.2. This implies there is exactly zero or one proof
of such equality statements: either the two elements are equal, and there is exactly
one proof of equality, or they are not, and there is no proof of equality.
In particular, this implies a strong property on the Σ-type sT := {x : T | P x}

of elements of a type T that satisfy a Boolean property P: two elements of sT are
equal if and only if their first projection (i.e. the projection projT1 : sT -> T) are
equal. This is not true in general where two elements of the Σ-type originating from
the same element in the type T can be different because their proof of membership
are. We call subtypes the Σ-types for which this property holds.

1.3 Interaction between bool and other types

Discrete types

The most used Boolean operator in the library is the equality operator on types
with decidable equality (also called discrete types) eqType. Indeed, it reflects Coq
intentional equality to a Boolean predicate eq_op, which is denoted using the nota-
tion (_ == _). Chapter 2 explains how eqType is defined and integrated in a larger
context.
One of the most simple datatypes on which such a decidable operator can be

defined is bool. But equality is also decidable on nat, the type of Coq natural
numbers. This leads to the definition of the eqn equality operator on nat.

Fixpoint eqn m n {struct m} :=
match m, n with
| 0, 0 => true
| m’.+1, n’.+1 => eqn m’ n’
| _, _ => false

15



1 Booleans in Coq logic

end.

This operator reflects the intentional equality in the sense the lemma eqnP is prov-
able:

Lemma eqnP : forall x y : nat, reflect (x = y) (eqn x y).

Inductive families
There are multiple specific inductive types that play a role similar to reflect, in
which they associate the provability of a proposition or a list of propositions, with
another datatype. One of the most used is the leq_xor_gtn inductive family.

Inductive leq_xor_gtn m n : bool -> bool -> Set :=
| LeqNotGtn of m <= n : leq_xor_gtn m n true false
| GtnNotLeq of n < m : leq_xor_gtn m n false true.

And it is used through its only instantiation:

Lemma leqP m n : leq_xor_gtn m n (m <= n) (n < m).

When we make a case analysis on a proof of (leqP m n), it generates two sub-
goals, one for each constructor. We explain how this works in Section 4.2, as we
reuse this concept and extend it.

Container datatypes
The SSReflect library also provides support for the theory of container data-
types. Those are types equipped with Boolean characteristic functions, and modeled
by the structure of predType. Any inhabitant of a type equipped with a struc-
ture of (predType T) should be associated with a total Boolean unary operator
of type (T -> bool). This Boolean operator benefits from a generic (_ \in _)
infix notation: it is a membership test. For instance, if T is a type with decid-
able equality, the type (seq T) of finite sequences of elements in T has a structure
of (predType T), whose membership operator is the usual membership test for se-
quences. For any sequence (s : seq T), the Boolean expression (x \in s) tests
whether x belongs to the elements of the sequence s. A predType structure however
does not imply the effectiveness of the comparison between its elements: the sub-
set relation between (a : T) and (b : T), denoted by {subset a <= b}, is not a
Boolean test, even if T is an instance of predType, as there is a priori no effective
way to test this inclusion.
For a further introduction to small scale reflection and to the support provided

by the SSReflect tactic language and libraries, one may refer to [44].

16



2
Algebraic Hierarchy

When doing mathematics, the objects we handle may share some structure, for
example we can recognize many examples of groups, rings and fields in the literature.
In fact, there is a huge number of different structures which one can identify and
which all have their own theory. When formalizing mathematics, it is very important
to implement the sharing of mathematical structure, because we do not want to keep
repeating the same proofs all over the developments. In programming languages,
sharing is often achieved by abstraction: we derive all we need from basic facts, and
then we specialize to our situation. Moreover, several mathematical structures may
share more or less properties, which means the code has to be modular. For example,
rings inherit all the properties of commutative groups, so rings should share some
theory with commutative groups, which we do not want to duplicate. The purpose
of an algebraic hierarchy is to organize mathematical structures and their theories
in order to maximize sharing.
In this Chapter, we describe the constitution of the SSReflect algebraic hier-

archy, essentially as it was made and described in [36]. A huge part of our work (cf
Chapter 4) is based on this hierarchy, and reuses the same methodology to achieve
the task of building an extension of this hierarchy.
We introduce a lot of important vocabulary in this chapter. In Section 2.1 we

explain what we mean by axiom. Section 2.2 explains the different structures the
SSReflect library contains and what choices of operators, relations and axioms
have been made. Section 2.3 gives a short insight on how the structure information
is retrieved when needed.

2.1 On the meaning of axiom
One very important thing is to clarify first the use of the word axiom. In model
theory and logic (as in [54, 30]), the axioms are the formulas from which we derive a
theory using the rules of the logic (we describe this more formally in Section 10.1). In
Coq, the word axiom can refer to the vernacular command Axiom, which is used to
add an axiom to Coq itself. However, we use the word axiom to describe a property
of an interface. Unlike for Coq axioms, we can and we must provide a proof of
the axiom when we define a structure. For example, in Section 1.3 we provide a
proof eqnP of the axiom eqP of the interface for discrete types, which is described

17



2 Algebraic Hierarchy

in Section 2.2 and represented in Figure 2.1.

Remark
When used inside a module type, the key word Axiom takes a different meaning
and becomes a statement that has to be satisfied to implement the module,
which is relatively close to our use.

In our work, we never make use of Coq axioms. Hence, from now on, the word
“axiom” always refers to properties of structures.

2.2 Choice of interfaces
In SSReflect various algebraic structures are represented by records, i.e. elements
of record types. In Coq record types are implemented using an inductive type with
one constructor. The arguments of this constructor are named the fields of the record
and the projections are the functions that returns the fields of a record. Their type
is hence: “record type”→ “type of the field”.
In the specific case where the record type characterizes an algebraic structure, we

call this record type an interface, and the elements of an interface the corresponding
structures. This differs a little bit from Coq terminology where the vernacular
command Structure is a synonym for Record: we use it only for records that have
an algebraic meaning.
In the SSReflect library, structures have two fields: the carrier , whose type

is Type and the class of the structure. The class is a record which must contain
both the instantiation of the signature and proofs of the axioms of a class. The
signature is the name and type of the operators and relations, and the axioms are
formulas that explain the properties of the operators and characterizes the relations
between them. The inheritance of interfaces is implemented by dividing the class
in two parts: the first part is the class from the super-interface, while the second
part, called mixin, is a record that contains the new operators and relations and
the proofs of the new axioms. A complete description of the packaging of algebraic
structure is given in [37, 36].
We give an example with the four first layers of the algebraic hierarchy in Fig-

ure 2.1. The Figure 2.2 zooms out and gives a snapshot of the principal structures
we use from the algebraic hierarchy. We then regroup in Figure 2.3 the signature
that each new mixin adds to the previous ones, together with some useful definitions.
All the instances of these structures are discrete, i.e. based on a type with

decidable equality. The operator for the equality decision procedure is denoted
by (_ == _), and satisfies the following property:

Lemma eqP : forall (T : eqType) (x y : T), reflect (x = y) (x == y).

This axiom asserts that given two terms of type T, the equality decision procedure
outputs true if and only if the two terms are equal (for the – so called – Leibniz
equality, also known as propositional equality).
They are also equipped with a choice operator xchoose of type:

Definition xchoose : forall (T : choiceType) (P : T -> bool),
(exists x, P x) -> T.

which satisfies the two following properties:

18



2.2 Choice of interfaces

Lemma xchooseP : forall (T : choiceType) (P : T -> bool)
(xP : exists x, P x), P (xchoose T P xP).

Lemma eq_xchoose : forall (T : choiceType) (P Q : T -> bool)
(xP : exists x, P x) (xQ : exists x, Q x),
(forall x, P x = Q x) -> xchoose T P xP = xchoose T Q xQ.

These properties respectively ensure the correctness and uniqueness of the chosen
element with respect to the predicate P.
For instance, in Coq, any countable type can be provably equipped with such a

structure. This means we can take T to be the type Q of rational numbers.
The choice structure is fundamental to formalize both the comparison of Cauchy

reals in Section 5 and the construction of the effective quotient type in Section 7.
However it is not crucial for quantifier elimination (Part III).
The zmodType structure of commutative groups comes with a number of nota-

tions related to the additive notation of a commutative law, including those for
iterated additions. The term x *+ n denotes (x + ... + x) with n occurrences
of x. Non constant iterations benefit from an infrastructure devoted to iterated
operators (see [8]) and from a LATEX-style notation allowing various flavors of in-
dexing: (\sum_(i <- r) F i) sums the values of F by iterating on the list r,
while (\sum_(i \in A) F i) sums the values of F belonging to a finite set A, or
(\sum_(n < i <= m | P i) F i) the values of F in the range ]n, m] which moreover
satisfy the Boolean predicate P, etc. . . This infrastructure also provides a corpus of
lemmas to manipulate these sums and split them, reindex them, etc.
The ringType structure of nonzero rings inherits from the one of commutat-

ive group (and of its notations). In addition, it introduces notations for the mul-
tiplicative law, including those for iterated products. The term x ^+ n denotes
(x * ... * x) the exponentiation of x by the natural number n. Again, we benefit
here from the infrastructure for iterated operators: (\prod_(i <- r) F i) is the
product of the values taken by the function F on the list r, etc. The infrastructure
provides the theory of distributivity of an iterated product over an iterated sum.
Finally, a ring structure defines a notation for the canonical embedding of natural
numbers in any ring: n%:R denotes (1 + ... + 1).
The ringType structure has variants respectively for commutative rings, rings

with units (i.e. where it is decidable for an element to be invertible), commutative
rings with units and integral domains. A field is a commutative ring with units in
which every nonzero element is a unit.
Finally, scaling operations are available in module structures: a left module

provides a left scaling operation denoted by (_ *: _) and a left algebra struc-
ture defines an embedding of its ring of scalars into its carrier: (fun k => k *: 1).
The algType (resp. unitAlgType) structure of algebra equips rings (reps. rings
with units) with scaling that associates both left and right.
The decFieldType structure equips fields with a decidable first-order equational

theory by requiring a satisfiability decision operator for first-order formulas on the
language of rings.
The closedFieldType structure equips algebraically closed fields. It inherits from

the decFieldType structure: a structure of algebraically closed field has to be built
on a decidable field. This may disturb at first glance since the first-order theory
of algebraically closed field enjoys quantifier elimination and is hence decidable.

19



2 Algebraic Hierarchy

This design choice in fact allows the user to specify explicitly the preferred decision
procedure, which might not be quantifier elimination, for example in the case of
finite fields.

2.3 Structure inference
In SSReflect

When we consider elements of an algebraic structure, we implicitly refer to the
elements of the carrier of the structure. For example, given a ring (R : ringType),
taking an element (x : R) is in fact taking (x : Ring.sort R), where Ring.sort
is the projection from the record to the carrier and is inserted implicitly by the
coercion mechanism.
So for example, writing forall x y : R, x * y = y * x is typable and the

result is expanded to the following form, when removing notations and showing
implicit arguments.

forall x y : Ring.sort R, @mul R x y = @mul R y x

because the multiplication operator has the following signature:

Definition mul : forall R : ringType, R -> R -> R

So far, there is no need for structure inference. Problems come when one does
not use directly the appropriate structure. For example integers, as defined in Sec-
tion 4.4.1, have a ring structure. We should be able to write forall x y : int,
x * y = y * x, but int has type Type, not ringType (the ring structure of int

was named int_Ring). Coq provide a mechanism to help the unification to find a
solution. It is called canonical structure [77]. Indeed, the Coq system has to type:

forall x y : int, @mul ?ringType x y = @mul ?ringType y x

In this term, ?ringType is a meta-variable which is inserted automatically (through
the implicit arguments and notation mechanism) and which has to be resolved by
the unification algorithm of Coq.
Since x and y should have type (Ring.sort ?ringType) but have type int, this

triggers a unification problem of the form:

Ring.sort ?ringType ≡ int

The structure int_Ring is the solution to this problem. By registering this canon-
ical solution using the Canonical vernacular command, the unification algorithm
will look for an entry corresponding to the pair (Ring.sort, int) in the canonical
structure table and will find the entry int_Ring.
The command to print the canonical structure table in Coq is

Print Canonical Projections and outputs results in the form:

key <- projection ( canonical structure )

So for our example with int being canonically a ringType, this gives:

int <- Ring.sort ( int_Ring )

The same problem occurs with inheritance. For example, addition has the follow-
ing signature:

20



2.3 Structure inference

Definition add : forall Z : zmodType, Z -> Z -> Z

If we want to write (forall x y : R, x + y = y + x) where R still has type
ringType, the system should reject the statement, because it should not be typ-
able. When we remove the notations and put question marks in places where the
system should be able to fill in the information through type inference, we get

forall x y : Ring.sort R, @add ?zmodType x y = @add ?zmodType y x.

Here, the unification algorithm encounters the unification problem:

Zmodule.sort ?zmodType ≡ Ring.sort R

But each zmodType has been declared has canonically a ringType, using the canon-
ical structure Ring.zmodType. So the pair (Zmodule.sort, Ring.sort) was added
to the canonical structure table and corresponds to the line

Ring.sort <- Zmodule.sort ( Ring.zmodType )

when using the command Print Canonical Projections.
The search for the appropriate structure is done at the core of the unification

algorithm, which makes it very fast.

Comparison with other libraries tools and systems
The math classes development by van der Weegen, Spitters and Krebbers [81, 87]
also builds a hierarchy of interfaces. There are two fundamental differences between
it and the SSReflect one. The first difference is that it is defined in category
theory and does not give much importance to the decidability of predicates such as
equality or comparison, and it does require a choice operator, as the SSReflect
algebraic hierarchy does.
The other difference is that the inference mechanism is based on type classes

[80] rather than canonical structures [77]. In Coq, type classes where designed
to solve the same kind of problems as canonical structures. Structure definition
and inference using type classes is more flexible than with canonical structures in
that they allow for multiple possible instances and backtracking. They use proof
automation instead of being hard-wired into the unification algorithm, as described
in [80], which is probably what makes it less efficient in practice.
In Matita [1], unification hints [2] is also a mechanism to manually help the uni-

fication to find solutions in case of failure, but in a more fine-grained way than
canonical structures. They are even more flexible than type classes, in the way
they let the user list the problems and their solution by hand. Combined with a
good meta-language, they could be used to encode both type classes and canonical
structures.

21



2 Algebraic Hierarchy

Equality.type (eqType)

.sort :> Type

class = mixin
mixin
signature
(_ == _)

axioms
eqP

Choice.type (choiceType)

.sort :> Type

class
base

parent class
mixin
signature

xchoose
axioms

correctness and
uniqueness of the
chosen element

Zmodule.type (zmodType)

.sort :> Type

class
base

parent class
mixin
signature

0 (_ + _) (- _)
(_ *+ _)

axioms
axioms of com-
mutative groups

Ring.type (ringType)

.sort :> Type

class
base

parent class
mixin
signature

1 (_ * _)
axioms

axioms of rings

Figure 2.1: Packaging of mathematical structures

22



2.3 Structure inference

eqType

choiceType

zmodType

ringType

unitRingType comRingType

comUnitRingType

idomainType

fieldType

decFieldType

closedFieldType

lmodType

lalgType

algType

unitAlgType

Figure 2.2: The algebraic hierarchy

23



2 Algebraic Hierarchy

Name of the
structure Description Signature additions NotationUseful definitions
eqType Type with de-

cidable equal-
ity

Boolean equality test of x and y x == y

choiceType Type with
choice

choice operator xchoose

zmodType
Commutative
group

additive identity 0
addition of x and y x + y
n times x, with n in nat x *+ n
opposite (additive inverse) of x - x
difference of x and y x - y
opposite of x *+ n x *- n
iterated sum \sum_<range> e
i-th element of the sequence l
with default value 0

l‘_i

ringType Ring

multiplicative identity 1
ring product of x and y x * y
ring image of n, with n in nat n%:R
iterated product \prod_<range> e
x to the n-th power with n in
nat

x ^+ n

unitRingType Ring with
units

test of invertibility of x x \in GRing.unit
ring inverse of x, if x is a unit,
else x

x^-1

x divided by y, i.e. x * y^-1 x / y
inverse of x ^+ n x ^- n

lmodType R Left module
on the scalar
ring R

v scaled by a an element of the
scalar ring

a *: v

lalgType R Left algebra
on the scalar
ring R

image of the scalar k in a left
algebra

k%:A

Figure 2.3: Signatures of SSReflect algebraic structures

24



3
Polynomials

This chapter is devoted to the description of polynomials in the SSReflect lib-
rary. Polynomials are one of the major ingredients in almost all our developments:
algebraic numbers are roots of polynomials, real and algebraically closed field are
defined in terms of polynomials and quantifier elimination on their theory is based
on polynomial root counting.
Section 3.1 describes the representation of polynomials and a few operation on

them: ring operations, euclidean division, greatest common divisors and relative
primality. It also describes the concept of pseudo-division [5]. In Section 3.2, we
recall what a resultant is, and we exhibit the properties we need from it. We also
explain how to build and handle bivariate polynomials from univariate polynomials.
Although the idea seems natural, their manipulation ends to be quite disturbing.

3.1 Polynomial arithmetic
Representation and operations
SSReflect represents univariate polynomials as lists of coefficients with lowest
degree coefficients in head position. Hence, the coefficient of Xi of a polynomial is
the ith element of the list (starting from 0). We require polynomials to be in normal
form, in the sense that the last element of the list is never zero. Hence the type
{poly T} of polynomials with coefficients in the type T is a Σ-type, which packages
a list and a proof that its last element is nonzero. The zero polynomial is therefore
represented by the empty list.
It is convenient and standard to define the degree of a univariate monomial as

its exponent, except for the zero constant, whose degree is set at −∞. Then the
degree of a polynomial is the maximum of the degree of its monomials. To avoid
introducing option types, we simply work here with the size of a polynomial, which
is the size of its list. This lifts the usual codomain of degree from {−∞} ∪ N to N
since in our case:

size(P ) =
{

0 , if and only if P = 0
deg(P ) + 1 , otherwise.

The advantage of using the size instead of the degree is that we only use natural

25



3 Polynomials

number operations and the library on natural numbers is quite complete. However,
we lose the fact that the degree was a semi-ring morphism, which makes lemmas
stated using size quite unnatural.
For example, let us take the function size_proper_mul, defined as follows

Lemma size_proper_mul P Q : lead_coef P * lead_coef Q != 0 ->
size (P * Q) = (size P + size Q).-1.

where .-1 is a unary operator for the predecessor function on natural numbers, with
the convention that 0.-1 reduces to 0.
There is a .-1 in the conclusion and a side condition on P and Q. In our experience,

these side conditions introduce quite a lot of overhead and maybe the theory of
polynomial degree would gain by using a proper degree function together with a
type for {−∞} ∪ N.
Polynomials are equipped with a ring structure, taking advantage from all the

definitions and all the theory of rings. If the base type has more structure, the
polynomial ring might also have more structure: for example, polynomials over a
commutative ring are commutative and polynomials over an integral domain also
form an integral domain.
The SSReflect library also defines an evaluation method for polynomial, using

Horner’s algorithm. The evaluation of the polynomial P in an element x is denoted
P.[x]. Roots of polynomials are characterized using the predicate root defined as
follows.

Definition root (R : ringType) (P : {poly R}) (x : R) := (P.[x] == 0).

Pseudo division and greatest common divisor

When R is an integral domain, it is no longer possible in general to program the
Euclidean division algorithm on R[X] as it would be if R was a field. The usual
polynomial Euclidean division actually involves exact divisions between coefficients
of the arguments, which might not be tractable inside R. However it might still
remain doable if the dividend is multiplied by a sufficient power of the leading coef-
ficient of the divisor. For instance one cannot perform Euclidean division of 2X2 +3
by 2X+1 in Z[X], but one can divide 4X2 +6 by 2X+1 inside Z[X]. In the context
of integral domains, Euclidean division should be replaced by pseudo-division.

Definition: Pseudo-division
Let R be an integral domain. Let P and Q be elements of R[X]. A pseudo-
division of P by Q is an Euclidean division of αP by Q, where α is an element
of R such that Euclidean division can be performed inside R[X].

Note that α always exists and can be chosen to be a sufficient power of the
leading coefficient of Q. We implement a pseudo-division algorithm, which given
two polynomials P and Q, computes three results: a natural number (rscalp P Q)
such that (lead_coef Q ^+ (rscalp P Q)) is a sufficient α, a polynomial (rdivp
P Q), the corresponding pseudo-quotient, and a polynomial (rmodp P Q), the

corresponding pseudo-remainder. They satisfy the following specification:

Lemma rdivp_eq P Q :
(lead_coef Q ^+ (rscalp P Q)) *: P = (rdivp P Q) * Q + (rmodp P Q).

26



3.2 Resultant

Each possible value of α leads to different values for the pseudo-quotient (resp.
pseudo-remainder) of two polynomials, but they are always associated. We say
that P pseudo-divides Q, denoted (P %| Q) if the pseudo-remainder of P by Q is zero.
We recover some standard lemmas about divisibility like:
Lemma dvdp_mul : forall D1 D2 M1 M2 : {poly R},

D1 %| M1 -> D2 %| M2 -> D1 * D2 %| M1 * M2.

The pseudo greatest common divisor rgcdp is obtained by replacing division by
pseudo-division in the Euclidean algorithm. This is not the optimal algorithm to
compute such a greatest common divisor, which is a non trivial problem. We choose
here a naive implementation, since at this point, we are not concerned with efficiency.
However we recover standard properties of the greatest common divisor, like:
Lemma root_rgcd : forall P Q x,
root (rgcdp P Q) x = root P x && root Q x.

We denote by gcdpni=1Pi the iteration of the rgcdp function on the list (Pi)i=1...n
(with at least two elements). The polynomial gcdpni=1Pi has a root at x if and only
if x is a common root of the (Pi)i=1...n.

3.2 Resultant
The resultant of two polynomials P =

∑m
i=0 piX

i et Q =
∑n
i=0 qiX

i is usually defined
as the determinant of the Sylvester matrix, which is a square (m+ n) matrix.

ResX(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pm pm−1 ··· pj+1 pj ··· p1 p0 0 ··· 0

0
. . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . 0
0 0 pm pm−1 ··· pj+1 pj ··· p1 p0
qn qn−1 ··· q1 q0 0 ··· ··· ··· ··· 0

0
. . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . 0
0 ··· ··· ··· ··· 0 qn qn−1 ··· q1 q0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The notion of resultant is well described and studied in numerous books, we invite the
reader to look in one of them, for instance in [60]. If the polynomials are univariate
the resultant is a scalar, if they are bivariate, it is a univariate polynomial in the
remaining variable.
We chose to represent bivariate polynomials by iterating twice the construction

of polynomials, i.e. using the type {poly {poly R}}. The swapXY function is used
to swap the variables and sizeY to get the size using the second variable.
In our development we use only the following two properties of the resultant

ResX(P (X,Y ), Q(X,Y )) ∈ R[Y ]

of polynomials P,Q ∈ R[X,Y ] where F is a field:
∃U, V ∈ R[X,Y ], ResX(P,Q) = UP + V Q

and
ResX(P,Q) = 0 ⇔ P and Q are not coprime as polynomials in X

27



3 Polynomials

which respectively express that the resultant of P and Q is in the ideal generated
by P and Q, and is zero if and only if P and Q are not coprime as polynomials in X
with coefficients in R[Y ], i.e. they have no common factor in (R[Y ])[X].
Moreover we use the following corollary to Bézout theorem: if P and Q are not

coprime as polynomials inX with coefficients inR[Y ], there exist U and V inR[X,Y ]
such that U is nonzero, degX(U) < deg(Q) and

U(X,Y )P (X,Y ) = V (X,Y )Q(X,Y ).

Remark
It is very important to note that those results about bivariate polynomials are
seen as univariate polynomials with coefficients in R[Y ]. In particular if P
and Q in R[X,Y ] are coprime relatively to X, Bezout theorem states that
there are three polynomials U, V,W ∈ R[Y ] such that

UP + V Q = W

which means that P and Q may not be coprime for instantiations of Y which
are roots of W .

28



Part II

Construction of numbers

29





4
Numeric rings

The algebraic structures presented in Chapter 2 provide a Boolean operator to test
the equality between elements, but none of the interfaces presented include an order
relation in its signature. Our goal here is neither to allow for the most general frame-
work nor to study the abstract theory of ordered domains. We focus on modeling
algebraic structures to capture the order properties of integer, rational, real algebraic
and algebraic numbers. We thus build a hierarchy of interfaces with an order and
a norm operator which are compatible with the algebraic laws of the structure. We
call such structures and interfaces Numeric as they deal with numbers, and because
of the analogy with the Haskell terminology [71, 57]. This chapter is devoted to
the description of low-level design choices for the construction of these interfaces
and their theories, which were mainly driven by the developments contained in this
thesis, but also by requirements from the proof of Feit-Thompson Theorem.

4.1 Extending the hierarchy
4.1.1 The Numeric Hierarchy
We extend the algebraic hierarchy described in Section 2.2 and displayed on Fig-
ure 2.2 by introducing normed and ordered versions of the discrete integral do-
main and discrete field structures. This amounts to duplicating the corresponding
branches as displayed on Figure 4.1.
We call this extension the numeric hierarchy. It is divided in two parts:

• Numeric interfaces are extensions of the interfaces from the algebraic hier-
archy using a mixin with three operators: two Boolean comparison functions
(_ <= _) and (_ < _) and a norm operator ‘|_|, which are compatible with
the ring operations. More precisely, the Numeric mixin contains the three
operators above and the axioms listed in Figure 4.2. They model respectively
Numeric domains and Numeric fields

• We define a real predicate characterizing a number as real when it is compar-
able to zero. Thus, what we call Real interfaces in Figure 4.1 are extensions
of Numeric interfaces using the axiom which states that any number is real:

Definition real_axiom : Prop := forall x : R, x \is real.

31



4 Numeric rings

eqType

choiceType

zmodType

ringType

unitRingType comRingType

comUnitRingType

idomainType

fieldType

decFieldType

closedFieldType

numDomainType

numFieldType

numClosedFieldType

realDomainType

realFieldType

archiFieldType

rcfType
Numeric interfaces

Real interfaces

Numeric Hierarchy

Figure 4.1: Extension of the hierarchy with Numeric and Real interfaces

They model respectively Real domains and Real fields.

In addition, we provide two extensions of real fields:

– The Archimedean (archiFieldType) interface adds the Archimedean ax-
iom, which states that any number can be bounded by a natural number:

Definition archimedean_axiom : Prop :=
forall x : R, exists ub : nat, ‘|x| < ub%:R.

– The real closed field (rcfType) interface adds the real closed field ax-
iom, which states the intermediate value theorem for polynomials with
coefficients in the field:

Definition real_closed_axiom : Prop :=
forall (p : {poly R}) (a b : R), a <= b ->
p.[a] <= 0 <= p.[b] -> exists2 x, a <= x <= b & root p x.

32



4.1 Extending the hierarchy

(∗ Triangle inequality ∗)
forall x y, ‘|x + y| <= ‘|x| + ‘|y|

(∗ A sum of positives is positive ∗)
forall x y, 0 < x -> 0 < y -> 0 < x + y

(∗ An element of norm zero is zero ∗)
forall x, ‘|x| = 0 -> x = 0

(∗ Positive numbers are comparable ∗)
forall x y, 0 <= x -> 0 <= y -> (x <= y) || (y <= x)

(∗ The norm is a morphism for the product ∗)
forall x y, ‘|x * y| = ‘|x| * ‘|y|

(∗ Characterization of <= it terms of the norm ∗)
forall x y, (x <= y) = (‘|y - x| == y - x)

(∗ Characterization of < it terms of <= ∗)
forall x y, (x < y) = (y != x) && (x <= y)

Figure 4.2: Axiom of the Numeric mixin

The choice for this particular axiom is further debated in Section 8.1 as
we had the choice between four possibilities.

The properties stated in Figure 4.3 are part of the theory of Real domains. But the
combination of the Numeric mixin with the real_axiom can also be deduced from
these properties. As a courtesy, we provide a function that takes those properties
and produce both an instance of the Numeric mixin and a proof of real_axiom.

(∗ A sum of positives is positive . ∗)
forall x y, 0 <= x -> 0 <= y -> 0 <= x + y

(∗ A product of positives is positive . ∗)
forall x y, 0 <= x -> 0 <= y -> 0 <= x * y

(∗ An element which is both positive and negative is zero. ∗)
forall x, 0 <= x -> x <= 0 -> x = 0

(∗ Characterization of <= it terms of positive numbers ∗)
forall x y, (0 <= y - x) = (x <= y)

(∗ Any number is comparable to zero ∗)
forall x, (0 <= x) || (x <= 0)

(∗ The norm is invariant by negation ∗)
forall x, ‘|- x| = ‘|x|

(∗ Positive numbers are identical to their norm ∗)
forall x, 0 <= x -> ‘|x| = x

(∗ Characterization of < it terms of <=. ∗)
forall x y, (x < y) = (y != x) && (x <= y)

Figure 4.3: Axioms to produce directly a Real structure

The primitive operation in the signature of the numeric mixin happens to be the
norm. Indeed, the order operators can be deduced from it. It is only by commodity
that we include the three of them in the signature, as we let the user implement

33



4 Numeric rings

them as he wishes as long as they satisfy the two last properties of the numeric
mixin. Moreover it makes it possible to easily express axioms like the triangular
inequality, while if only the norm was available at this stage, it would look like:

forall x y, ‘|‘|x| + ‘|y| - ‘|x + y|| = ‘|x| + ‘|y| - ‘|x + y|.

However, in the real numeric mixin, any of the three operators would be sufficient
to define the others, but we still include the three of them in the signature for the
same reasons as above.
We now exhibit some data types that we prove are equipped with structures from

the numeric hierarchy:

• The data type int of integers described in Section 4.4 is equipped with a
realDomainType structure.

• The data type rat of rationals described in Section 4.4 is equipped with an
archiFieldType structure.

• The data type (alg rat) of real algebraic numbers described in Section 7 is
equipped with both a realDomainType structure and archiFieldType struc-
ture. So would real algebraic extensions of the rationals be.

• The type (complex (alg rat)) of algebraic numbers discussed in Section 8.1
is equipped with a structure of numClosedFieldType. So would algebraic
extensions of the rationals be.

Of course, any data type equipped with a structure is systematically equipped with
all the structures located above in the hierarchy. We notice that we do not witness
any inhabitant of the numDomainType interface which is not also an inhabitant of
a higher interface. However, it is still useful to keep this interface, as its theory
factorizes the theory of the interfaces depending on it: two thirds of the file dealing
with the numeric hierarchy are devoted to the theory of the numDomainType interface
alone.
Let us remind that our numeric structures integrate a Boolean comparison and

a Boolean equality operators. This gives us facilities to carry out our proofs, as
described in Section 4.2.

4.1.2 Discussion on the interfaces and their names
In the traditional mathematical terminology, a formally real field is a field where
(−1) is not a sum of squares. The signature of formally real fields do not contain
more symbols that the one of fields. In particular there is no order or norm symbol.
Our interface of real field however has an order and a norm in its signature, and its
theory shows that squares are positives and that (−1) is negative, so it is no sum
of squares. Therefore, any structure of real field in our sense would be a particular
instance of a formally real field, by forgetting the extra operators.
Classically, any formally real field can be equipped with a total order which may

not be uniquely determined. Such a field equipped with a total order compatible
with the algebraic laws of field is usually called a totally ordered field. But from a
constructive point of view, it is not possible to decide whether an element should
be classified as positive or negative. This is the reason why our interface includes a
comparison operator that sets once and for all an order on the elements of the field.

34



4.2 Signs, case analysis based on comparisons for reals

We have not created a full-fledged infrastructure for binary relations. Instead we
selected precisely the interfaces that abstracted the structures of the data types we
used. In other words, we only created interfaces for which we were interested into
at least two instances, or interfaces which factored out others. Their main purpose
was to work in a unified setting, in which we could put together a common basis of
notations and a common battery of lemmas. The choices of abstraction we made in
our hierarchy are debatable, but were sufficient to carry out the results we wished
for. Moreover, this work did not intend to serve as a classification of the possible
axiomatizations containing order and algebraic operations.
For the latter purpose, we refer to the development of math classes [81, 87] which

establishes a full classification of algebraic structures (with and without order) in a
very modular way and expressed in the language of categories. This library has been
used in a C-CoRN development for modeling efficient computation on constructive
real numbers [59] in order to generalize a previous work [66].
Despite the existence of such an apparently complete classification, we chose not

to depend on it, mainly because conventions and choices of design differed irre-
trievably from the ones that are made in SSReflect. Indeed, the math classes
classification and inference mechanism is intensively based on type classes, whereas
the SSReflect algebraic hierarchy relies on canonical structures. At the time we
conducted our experiments, those two mechanism were not fully compatible yet.
Moreover, the math classes library do not take into account the potential de-

cidability of predicates such as equality, ordering or unit, nor do they include the
possibility to have a choice function as the SSReflect hierarchy does. In our devel-
opments, those features are nonetheless essential. The price we would pay by adding
them to the math classes library would give birth to a whole new classification about
the algorithmic of those decidable predicates, and add a lot of theory because of this
stronger axiomatic.
In addition to those incompatibilities, the theory of individual structures is not as

well developed as we need it to be for our concrete developments. In order to carry
out our proofs easily, we need that individual theories provide numerous surgery
lemmas so that we do not have to prove well known facts in the middle of a proof
of a more elaborated statement.

4.2 Signs, case analysis based on comparisons for reals
The elementary theory of numeric and real domains essentially consists of numerous
surgery lemmas describing how ring operations and constants combine with the or-
der relation. We also define for numeric domains the binary operations of minimum,
maximum and the unary operations of sign, which make sense only when applied
to real numbers. All these definitions are quite standard and do not deserve much
comment, except for the sign operation. Indeed, there are several possible choices
for its type. One can for instance design a specific inductive type with three con-
structors to describe the sign of the argument, like the comparison type present in
the standard library of Coq. However, when we look at the traditional abuses of
notations with regard to sign, we observe that it is both used as a element from
the numeric domain we are considering or as an integer, and that sometimes the
sign of zero is zero and some times it is one. A single sign function is not sufficient
to reflect all these behaviours, which is why we define two different sign functions

35



4 Numeric rings

and provide support for an alternative form for it. The two functions we define for
(R : numDomainType) are:

Definition sgr : R -> R
Definition sgz : R -> int

which are zero when their argument is zero. And the alternative form is:

(-1) ^+ (x < 0)

which can be interpreted as an integer or a element of R depending on the context.
We also provide lemmas establishing the relations between these forms.

Lemma sgr_def x : sgr x = (-1) ^+ (x < 0) *+ (x != 0).
Lemma sgz_def x : sgz x = (-1) ^+ (x < 0) *+ (x != 0).
Lemma sgrEz x : sgr x = (sgz x)%:~R.

For instance, one can prove the following result:

Lemma sgp_right_scale : forall (c : R) (p : {poly R}) (x : R),
sgp_right (c *: p) x = sgr c * sgp_right p x.

where R is a real domain, p a polynomial with coefficients in R, and (sgp_right p x)
the sign of the polynomial p on the right neighborhood of x (see Section 9.2).
A common pattern in proofs involving order is a case analysis on the order between

two elements, or on the sign of an expression. Such a case analysis could have two
of three branches depending on whether we should consider the case of equality
in a specific sub-goal. This pattern is so common that it is important to provide a
convenient tool for the user to generate three subgoals whose context are augmented
with the sign hypothesis corresponding to each branch of the case analysis. In our
context where comparison statements are Booleans, it is always possible to perform
a case analysis on the Boolean value of terms of the form (x <= y).
As shown in Figure 4.4, this is not a good option. It indeed generates two subgoals,

one with a new hypothesis of type (x <= y) and the other with a new hypothesis
of type (x <= y)= false, whereas in the second case we would have like to get an
hypothesis of the form (y < x). Moreover, this style does not allow for a three way
case analysis.
This issue can be solved by working with disjunctive statements, even with a

sumbool type, expressing the possible results of a comparison. This approach needs
a little bit of generalization to handle the three way case analysis. Indeed we could
define a three constructor inductive type treeway to extend sumbool to three cases,
as shown in Figure 4.5.
However, as shown in Figure 4.6, a case analysis using threewayP not replace oc-

currences of (x <= y) by true or false whereas the naive case analysis on (x <= y)
did. And it certainly does not replace (y < x), (y <= x) and (x == y) by the ap-
propriate Booleans, although their values can already be determined.
In the vein of the reflect inductive (seen in Section 1.1), or the leq_xor_gtn

inductive (mentioned in Section 1.3), we define a specific inductive family modeling
the specification of a three way case analysis. A slightly simpler variant of this
solution had already been proposed by G. Gonthier in the SSReflect library ded-
icated to natural numbers (which we first directly applied as such [26]). The idea
is to relate propositional specifications to Boolean values by an inductive predicate
with one constructor per branch of the specification. We relate the simultaneous

36



4.2 Signs, case analysis based on comparisons for reals

Example

R : realDomainType
x y : R
P : R -> R -> bool -> bool -> bool -> bool -> R -> Type
============================
P x y (x <= y) (y < x) (y <= x) (x == y) ‘|x - y|

R : realDomainType
x y : R
P : R -> R -> bool -> bool -> bool -> bool -> R -> Type
Hxy : (x <= y) = true
============================
P x y true (y < x) (y <= x) (x == y) ‘|x - y|

(∗ subgoal 2 is : ∗)
Hxy : (x <= y) = false
============================
P x y false (y < x) (y <= x) (x == y) ‘|x - y|

case Hxy: (x <= y)

Figure 4.4: Naive case analysis on an order statement

values of several Booleans with a specification. For example, for the three way case
analysis, we define in Figure 4.7 the predicate comparer and the lemma ltrgtP.

The type comparer is an inductive family with indexes which are both Booleans
and elements of the real domain R, parameterized by two elements of R. Each
constructor corresponds to a propositional specification: ComparerLt corresponds
to the specification of the proposition (x < y), ComparerGt to the one of (y < x)
and ComparerEq to the one of (x == y). As shown in Figure 4.8, case analysis on
an element from the inductive family comparer, such as ltrgtP, always generates
three goals, one by constructor, and adds an extra hypothesis to each goal: the
proposition to which the constructor corresponds.

Moreover, the destruction of (ltrgtP x y) replaces in each sub-goal all the occur-
rences of the indexes by the values given in the specification (see Figure 4.8 again).
This is of special interest in the case the initial goal P contains (if ... then ...
else) expressions as favored by a Boolean reflection methodology. Of course this

solution applies to the two case disjunction by defining a two constructor inductive,
respectively specified by (x <= y) and (y < x).

37



4 Numeric rings

Example

Inductive threeway (A B C : Prop) : Type :=
| CaseA of A | CaseB of B | CaseC of C.

And then prove:

Lemma threewayP x y: threeway (x < y) (y < x) (x == y).

Figure 4.5: A three constructor inductive instead of sumbool

Example

R : realDomainType
x y : R
P : R -> R -> bool -> bool -> bool -> bool -> R -> Type
============================
P x y (x <= y) (y <= x) (x < y) (x == y) ‘|x - y|

R : realDomainType
x y : R
P : R -> R -> bool -> bool -> bool -> bool -> R -> Type
===========================
x < y -> P x y (x <= y) (y < x) (y <= x) (x == y) ‘|x - y|

(∗ subgoal 2 is ∗)
y < x -> P x y (x <= y) (y < x) (y <= x) (x == y) ‘|x - y|

(∗ subgoal 3 is ∗)
x == y -> P x y (x <= y) (y < x) (y <= x) (x == y) ‘|x - y|

case: (threewayP x y)

Figure 4.6: Three way case analysis with a simple inductive

38



4.2 Signs, case analysis based on comparisons for reals

Inductive comparer x y : R -> R ->
bool -> bool -> bool -> bool -> bool -> bool -> Set :=

| ComparerLt of x < y : comparer x y (y - x) (y - x)
false false true false true false

| ComparerGt of x > y : comparer x y (x - y) (x - y)
false false false true false true

| ComparerEq of x = y : comparer x y 0 0
true true true true false false.

Lemma ltrgtP x y : comparer x y ‘|x - y| ‘|y - x|
(y == x) (x == y) (x <= y) (y <= x) (x < y) (x > y) .

Figure 4.7: Definition of ltrgtP

Example

R : realDomainType
x y : R
P : R -> R -> bool -> bool -> bool -> bool -> R -> Type
============================
P x y (x <= y) (y <= x) (x < y) (x == y) ‘|x - y|

R : realDomainType
x y : R
P : R -> R -> bool -> bool -> bool -> bool -> R -> Type
============================
x < y -> P x y true false false false (y - x)

(∗ subgoal 2 is ∗)
y < x -> P x y false true true false (x - y)

(∗ subgoal 3 is ∗)
x = y -> P x y true false true true 0

case: (ltrgtP x y)

Figure 4.8: Three way case analysis using an inductive family

39



4 Numeric rings

4.3 Intervals

As soon as we start working with continuous functions (if only polynomials), intervals
become pervasive objects in the statements we have to prove or the hypotheses
present in the goal context. Intervals can be seen as sets defined by one or two linear
order constraints, and interval membership as a conjunction of such constraints.
Breaking down interval membership into such atomic constraints allows for the use
of decision procedures for linear arithmetic to collect and solve the side conditions
of interval membership. This approach however presents the unpleasant drawback
of an explosion of the size of the context. Consider for instance the following trivial
fact:

∀a b c d x, c ∈ [a, b] ∧ d ∈ [a, b] ∧ x ∈ [c, d]⇒ x ∈ [a, b]

With the unbundled approach, proving this fact would lead to a Coq goal of the
form we give in Figure 4.9.

Example

a b c d x : R
had : a <= d
hdb : d <= b
hac : a <= c
hcb : c <= b
hcx : c <= x
hxd : x <= d
========================
a <= x && x <= b

Figure 4.9: A non structured interval membership goal

Considering that on the way to prove a non trivial theorem, side conditions solved
by this kind of easy facts are numerous and involve not only five but maybe much
more values, this approach eventually requires the use of a decision procedure for
linear arithmetic. A user may soon be overwhelmed by the number of constraints
and unable to chain by hand the uninteresting steps of transitivity required to reach
the desired inequality. One could argue this is not a serious problem since the decid-
ability of this linear fragment and the implementation of the corresponding proof-
producing decision procedures inside proof assistants is now folklore [10]. However,
our experience is that the uncontrolled growth of the context and its lack of read-
ability is an issue. We propose here a short infrastructure development which helps
dealing with such interval conditions and helps improving the readability of the con-
text by re-packing intervals and restoring the infix membership notation, with no
extra effort from the user.
An interval bound is either a constant or infinity. We formalize interval bounds

as a two cases inductive type parameterized by a type T, which does not need to be
a real domain yet:

Inductive itv_bound (T : Type) : Type := BClose of bool & T | BInfty.

40



4.3 Intervals

The constructor BClose builds a constant bound, which packages two pieces of
information: the value of the bound, and a Boolean which indicates whether the
extremity of the interval is open or closed. The constructor BInfty builds an in-
finite bound. Since the right or left position of the infinity symbol determines its
interpretation as +∞ or −∞, this constructor does not need to package any extra
information. Now, we formalize an interval as a pair of bounds, using an inductive
type:
Inductive interval (T : Type) :=

Interval of itv_bound T & itv_bound T.

with a single constructor Interval packaging two (itv_bound T) which are re-
spectively the left bound and the right bound of the interval. We then define a
bunch of notations ‘]a, b[, ‘[a, b], ‘[a, +oo[ and all their variants with open
or closed bounds as particular cases of these intervals. For example, the term:
Interval (BClose true a) (BClose false b)

is denoted by ‘[a, b[. The second step of the infrastructure is to attach to any
interval a predicate representing its actual characteristic function. For instance, the
interval ‘[a, b[ is interpreted as [pred x | a <= x < b], where a, b and x now
need to be elements from a real domain R. At this stage, we can already rephrase
the statement of our first example as the Coq goal in Figure 4.10.

Example

a b c d x : R
hd : d \in ‘[a, b]
hc : c \in ‘[a, b]
hx : x \in ‘[c, d]
========================
x \in ‘[a, b]

Figure 4.10: An interval membership goal.

The last step of our infrastructure is to provide generic tools to help the elementary
proofs based on interval inclusion and membership. We start by converting a proof of
interval membership into the list of constraints one can derive from this membership.
We hence define a function (itv_rewrite i x) as in Figure 4.11, which performs
a case analysis on its interval argument i and computes a conjunction of frequently
used equalities that one can obtain as consequences of (x \in i). The lemma itvP
ensures that the interval membership (x \in i) implies this conjunction of rules.
For instance, (itv_rewrite ‘[a, b] x) evaluates to the conjunction of: (a <= x),
(x < a = false), (x <= b), (b < x = false), (a <= b) and (b < a = false).
The enhanced version of the rewrite tactic we use [46] can take conjunctions

(lists in fact) of rewriting rules as input: in that case, it rewrites with the first
rule of the list which matches a sub-term of the current goal. Combined with the
iteration switches of this same rewrite tactic, this feature helps creating on the fly a
terminating rewrite system which can solve side conditions. The only purpose of the
itv_rewrite function is to generate an appropriate rewrite system, by gathering a
set of the constraints we can infer from an interval membership hypothesis.

41



4 Numeric rings

Definition itv_rewrite (i : interval R) (x : R) : Prop :=
let: Interval l u := i in

(match l with
| BClose true a => (a <= x) * (x < a = false)
| BClose false a => (a <= x) * (a < x) * (x <= a = false)
| BInfty => forall x : R, x == x

end *
match u with

| BClose true b => (x <= b) * (b < x = false)
| BClose false b => (x <= b) * (x < b) * (b <= x = false)
| BInfty => forall x : R, x == x

end *
match l, u with

| BClose true a, BClose true b =>
(a <= b) * (b < a = false) * (a \in ‘[a, b]) * (b \in ‘[a, b])

| BClose true a, BClose false b =>
(a <= b) * (a < b) * (b <= a = false) * (a \in ‘[a, b])

* (a \in ‘[a, b[) * (b \in ‘[a, b]) * (b \in ‘]a, b])
| BClose false a, BClose true b =>

(a <= b) * (a < b) * (b <= a = false) * (a \in ‘[a, b])
* (a \in ‘[a, b[) * (b \in ‘[a, b]) * (b \in ‘]a, b])

| BClose false a, BClose false b =>
(a <= b) * (a < b) * (b <= a = false) * (a \in ‘[a, b])

* (a \in ‘[a, b[) * (b \in ‘[a, b]) * (b \in ‘]a, b])
| _, _ => forall x : R, x == x

end)%type.

Lemma itvP (x : R) (i : interval R) : (x \in i) -> itv_rewrite i x.

Figure 4.11: Generating rewrite rules for intervals

We also provide tools to ease proofs of interval inclusion by programming a
Boolean predicate (subitv i1 i2), as defined in Figure 4.12, which reduces to
an ordering constraint on the bounds of the intervals i1 and i2. For instance the
expression (subitv ’[c, d[ ’]a, b[) evaluates to ((a < c) && (d <= b)).
The lemma subitvP from Figure 4.12, expresses that to show interval inclusion

of i1 into i2, it suffices that (subitv i1 i2) is true. We recall that, as presented
in section 1.1, {subset i1 <= i2} is a notation for (forall i, i \in i1 -> i
\in i2).
Now our running example in Figure 4.10 can be solved using these facilities by

the single line following command:

by apply: (subitvP _ hx); rewrite /= (itvP hc) (itvP hd).

The instantiation (subitvP _ hx) evaluates to this specialized statement of the
theorem:

(subivt ‘[c, d] ‘[a, b]) -> {subset ‘[c, d] <= ‘[a, b]}

42



4.3 Intervals

Definition le_boundl b1 b2 :=
match b1, b2 with

| BClose b1 x1, BClose b2 x2 => x1 < x2 ?<= if (b2 ==> b1)
| BClose _ _, BInfty => false
| _, _ => true

end.

Definition le_boundr b1 b2 :=
match b1, b2 with

| BClose b1 x1, BClose b2 x2 => x1 < x2 ?<= if (b1 ==> b2)
| BInfty, BClose _ _ => false
| _, _ => true

end.

Definition subitv (i1 i2 : interval R) : bool :=
match i1, i2 with

| Interval a1 b1, Interval a2 b2 => le_boundl a2 a1 && le_boundr
b1 b2

end.

Lemma subitvP : forall (i2 i1 : interval R),
(subitv i1 i2) -> {subset i1 <= i2}.

Figure 4.12: Subinterval decision procedure

the application of which transforms the goal into (subivt ‘[c, d] ‘[a, b]). This
goal in turn evaluates to ((a <= c) && (d <= b)) by computation thanks to the /=
simplification switch. Finally, this latter goal is solved by rewriting the constraints
related to the interval membership hypotheses on c and d.
This toolbox also contains facilities for interval splitting, in order to address the

dichotomy processes commonly involved in root counting algorithms and proofs. We
indeed provide a lemma itv_splitU

Lemma itv_splitU (xc : R) bc a b : xc \in Interval a b ->
forall y, y \in Interval a b =

(y \in Interval a (BClose bc xc))
|| (y \in Interval (BClose (~~bc) xc) b).

which partitions an interval [a, b] into either the two disjoint intervals [a, c[ and [c, b]
or the two disjoint intervals [a, c] and ]c, b], provided that c is in [a, b].
For example, given elements (a b c : R) and a proof c_ab of the proposition

(c \in ‘[a b]), the lemma (itv_splitU true c_ab) rewrites a term of the form
(y \in ‘[a, b]) into (y \in ‘[a, c])|| (y \in ‘]c, b]).

Comparison to existing interval theories

We can compare our work with Ioana Pasca’s work on interval matrices in Coq [69],
which aims at computing approximation errors on numbers. The latter formalization

43



4 Numeric rings

is not a systematic study of interval arithmetic with open, closed or infinite bounds
like ours, but a study specific of error intervals and computation on them.
The closest work to ours we could find is the one by Tobias Nipkow, Clemens

Ballarin, Jeremy Avigad in Isabelle/HOL [64].

4.4 Structure of integers and rational numbers
We define data types for integers and rational numbers so that they are equipped
with the appropriate real structures.

4.4.1 Integers
The source file for integers is ssrint.v. We define integers by joining two copies of
natural numbers:

Inductive int : Set := Posz of nat | Negz of nat.

The Posz constructor is the natural injection of nat into int, but (Negz n) means
−(n+ 1), so that (Negz 0) is −1. Hence, each element of int represents a different
integer. By declaring Posz as an implicit coercion, operations on integers can take
natural arguments with no extra work.
We build stage by stage for int the decidable equality structure, choice structure,

Z-module structure, ring structure, commutative ring structure with decidable units,
integral domain structure, numeric and real domain structures. We also show the
canonical injection (_%:R) of nat into int coincides with Posz, and that it is a
morphism for addition, multiplication, the order and norm.
We also define a special alternative to the numeric domain norm: the integer

absolute value which has type (int -> nat). For this operation, we use the same
notation ‘|_| but within the nat_scope (delimited using %N), where the notation
for the norm was in the ring_scope (delimited using %R). As expected, it satisfies
the following property:

Lemma abszE (m : int) : ‘|m|%N = ‘|m|%R :> int.

4.4.2 Rational numbers
The source file for rational numbers is rat.v. We define rational numbers as a pair
of an integer nominator and an integer denominator in a reduced form, which is such
that the nominator and the denominator are coprime.

Record rat : Set := Rat {
valq : int * int ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The operator coprime has type (nat -> nat -> nat): it acts on natural num-
bers. In order to apply it to integers, we first cast them to natural numbers using
the integer absolute value defined in Section 4.4.1.
We build stage by stage for rat the decidable equality structure, choice struc-

ture, Z-module structure, ring structure, commutative ring structure with decidable
units, integral domain structure, field structure, numeric and real domain structures,

44



4.4 Structure of integers and rational numbers

numeric and field structures and Archimedean field structure. We provide tools to
write a rational number as the division of an integer by a positive natural, such that
these two numbers are coprime. We also build the morphism ratr : rat -> R
mapping rationals to any ring with decidable units and we show this is the only
morphism from rat to R.

45





5
Cauchy reals, algebraics

This chapter is devoted to the construction of algebraic numbers, seen as a restric-
tion of constructive real numbers. We first describe a construction of real numbers
modeled by Cauchy sequences and we build the operations on those real numbers.
We then take the subtype of reals that are roots of some monic polynomial (i.e.
with a leading coefficient equal to 1) and transfer all the arithmetic of real numbers
on this restriction, which involves polynomial arithmetic.

From now on, we denote by F an Archimedean field equipped with a decid-
able equality structure and with a choice structure. All the constructions are done
over F , but one can think of F as being the Archimedean field of rational num-
bers Q. Although it is necessary for this construction, we do not detail the use of
the Archimedean property for the sake of readability.

F

algcreal F

creal F

Figure 5.1: The construction of algebraic Cauchy reals

47



5 Cauchy reals, algebraics

5.1 Cauchy reals

5.1.1 Cauchy sequences

We define a Cauchy sequence x as a sequence (xn)n∈N in FN, together with a conver-
gence modulus mx : F → N such that from the index mx(ε), the distance between
any two elements is smaller than ε. We call this property the Cauchy property and
it can be expressed by the formula

∀ε ∀i ∀j , mx(ε) ≤ i ∧ mx(ε) ≤ j ⇒ |xi − xj | < ε.

We will denote by x both the sequence and the sequence together with its conver-
gence modulus and Cauchy property. We represent sequences of elements of F as
functions from natural numbers to F . Hence, we formalize Cauchy reals by pack-
aging together the representation of a sequence (xn)n, a modulusmx and the Cauchy
property:

Definition creal_axiom (x : nat -> F) :=
{ m : F -> nat
| forall ε i j, m ε <= i -> m ε <= j -> ‘|x i - x j| < ε}.

Inductive creal := CReal
{cauchyseq :> nat -> F;

_ : creal_axiom cauchyseq}.

Technical remark
We draw the reader attention to the fact that cauchyseq is declared as
an implicit coercion from creal to (nat -> F), so that any Cauchy real x
can be used like a sequence through the automatic insertion of the projec-
tion cauchyseq if needed. Hence the confusion between Cauchy sequences and
simple sequences can be made in Coq as well.

We also remind that {m : F -> nat | ...} denotes a Σ-type and can be read
“there exist a function (m : F -> nat) such that . . . ”. In addition, this convergence
modulus mx of a Cauchy real x is then formalized as a function (cauchymod x) of
type (F -> nat).

Technical remark
A Coq user will remark that such a function is definable because the existential
modulus in the definition of the Cauchy sequence is in Type. By definition of
Cauchy sequences, it satisfies the following property:

Lemma cauchymodP (x : creal) (ε : F) (i j : nat) :
cauchymod x ε <= i -> cauchymod x ε <= j -> ‘|x i - x j| < ε

It is important to note that when we apply this lemma, we produce a sub-goal,
which we call side condition, of the form f(ε) ≤ i, where f is (cauchymod x) in the
latter instance. This is a general scheme in our development: during a proof we may
generate a finite number n of side conditions fk(ε) ≤ i for k ∈ {1, . . . , n}. Indeed, if
all constraints on i are formulated like this, it suffices to take i to be the maximum
of all the fk(ε), in order to satisfy all the side conditions on i. We have designed, as
detailed in Section 5.1.4, an automated procedure to solve this kind of constraints

48



5.1 Cauchy reals

using the Ltac language [33] available in Coq, so that many proofs begin with a
command meaning “let i be a big enough natural number”.
From cauchymod we can define a function ubound to bound above the values of

elements of a Cauchy sequence. It then satisfies the following property:

Lemma uboundP : forall (x : creal) (i : nat), ‘|x i| <= ubound x.

In the rest of the development, this function is used to compute the convergence
moduli of numerous Cauchy sequences. We use the notation dxe for the upper
bound (ubound x). The lower bound bxc is a positive number which bounds bellow
the sequence (|xn|)n. It cannot yet be defined since it exists only if the real is not
zero: this is the problematic of Section 5.1.2.

5.1.2 Equality on Cauchy reals
Although Cauchy reals are represented by sequences, which are in turn formalized
as functions, the notion of equality on Cauchy reals is not intentional equality on
function nor point-wise equality on functions, but equality up to convergence. In-
deed, two Cauchy sequences x and y may have no index n such that xn = yn, but
could still represent the same real number as long as (xn)n and (yn)n converge to
the same real number, in a classical sense. The equivalence defined by x ≡ y if and
only if limn→∞(xn − yn) = 0, identifies Cauchy sequences up to convergence, and
hence models the equality on Cauchy reals.
The Coq system provides a mechanism called setoid [4]. A setoid is a type T with

an equivalence relation R on it. We call setoid equality this equivalence relation.
Operations on a setoid are defined on its base type T, with the constraint that
they must be compatible with the setoid equality. An operation is compatible with
the setoid equality if given two sets of arguments which are pairwise identified by
the setoid equality, the operation computes values that are identified by the setoid
equality:

forall (x x’ y y’ : T), R x x’ -> R y y’ -> R (op x y) (op x’ y’).

Moreover, Coq provides tools to declare setoids and functions that are compatible
with the setoid equality. It extends the rewrite tactic in order it to work not only
with standard equality (_ = _) but also with the setoid equality R of any declared
setoid. Of course, this extension of rewrite changes a term (P x) into a term (P y)
when (R x y) and only if the context P is compatible with the setoid equality R.
Given two Cauchy reals x and y, if there exists a quantity δ and a rank k such

that δ ≤ |xi − yi| for all i greater than k, then the two sequences cannot converge
to the same value. Conversely, if two Cauchy sequences do not converge to the
same value, i.e. limn→∞ xn − yn 6= 0, then there must exist a δ and a rank k such
that δ ≤ |xi − yi| for all i greater than k, which means that a program could find
the δ. Thus, the comparison of Cauchy reals is semi-decidable. However it is not
decidable (see [13] for example).
The primitive notion for comparison is not equality but apartness, which con-

tains additional information: a witness for the non-negative lower bound of the gap
separating the two sequences. We now write x 6= y for apartness and x ≡ y for
its negation. The notion of non apartness coincides with the notion of equivalence
stated above and is declared as the setoid equality on Cauchy reals. From a proof
of apartness x 6= y we must be able to extract a rank k and a positive witness δ

49



5 Cauchy reals, algebraics

which bounds below the sequence (|xn − yn|)n from the rank k. This lower bound
is needed to define the inverse as described in Section 5.1.3.
We define apartness as follows, and we pose the notation (_ != _) on this defin-

ition:

Definition neq_creal (x y : creal) : Prop :=
exists δ, (0 < δ)

&& (3 * δ <= ‘|x (cauchymod x δ) - y (cauchymod y δ)|).
Notation "x != y" := (neq_creal x y).
Notation "x == y" := (~ (x != y)).

And now, we need to extract a lower bound for (|xn− yn|)n, from of proof of x 6= y.
In order to do that, we use the xchoose operator seen in Section 2.2 to extract a
positive witness δ as a function from the apartness predicate to F :

Definition lbound x y (neq_xy : x != y) : F := xchoose F _ neq_xy.

Now, let us prove that this δ is indeed the lower bound we are looking for. Given
two Cauchy reals x and y which are provably apart from each other, let δ be their
positive witness of separation as defined above. From xchooseP we get that 3δ ≤∣∣∣xmx(δ) − ymy(δ)

∣∣∣. Thus using the triangular inequality, we get

∀i, 3δ ≤
∣∣∣xmx(δ) − xi

∣∣∣+ |xi − yi|+ ∣∣∣yi − ymy(δ)

∣∣∣ .
Thanks to the Cauchy property, we know that

∣∣∣xmx(δ) − xi
∣∣∣ < δ as soon as i is bigger

than mx(δ) and that
∣∣∣yi − ymy(δ)

∣∣∣ < δ when i is bigger than mx(δ). Putting this
together, if i is bigger than max(mx(δ),my(δ)) we get that

∀ i ≥ max(mx(δ),my(δ)), δ ≤ |xi − yi|.

Now, by formalizing this reasoning in Coq, we get the lemma

Lemma lboundP (x y : creal) (neq_xy : x != y) (i : nat) :
cauchymod x (lbound neq_xy) <= i ->
cauchymod y (lbound neq_xy) <= i -> lbound neq_xy <= ‘|x i - y i|.

Which means that the lbound function is indeed a lower bound of separation of any
two elements xi and yi of the sequences, for big enough indexes i.
From this, we also derive a particular case:

Lemma lbound0P (x : creal) (x_neq0 : x != 0) (i : nat) :
cauchymod x (lbound x_neq0) <= i ->
cauchymod 0 (lbound x_neq0) <= i -> lbound x_neq0 <= ‘|x i|.

50



5.1 Cauchy reals

Technical remark
We could have defined apartness as follows:

Definition apart_creal x y : Type := {δ : F | 0 < δ &
forall i, cauchymod x δ <= i ->

cauchymod y δ <= i -> δ <= ‘|x i - y i|}.

This definition apart_creal is using a witness in Type to make it directly
available. In order to be fully compatible with the setoid mechanism, the
apartness must be in Prop, not in Type. But if it were in Prop we could not
make a function that extract the witness, nor could we use xchoose to turn
the existential in Prop into an existential in Type. Indeed the predicate on
which the existential applies is not decidable.

We also build a function eq_mod which takes a proof equality of two cauchy reals x
and y and a positive number ε, and returns a rank from which the distance between x
and y is upper bounded by ε.

Definition eq_mod (x y : creal) : (x == y) -> F -> nat.
Lemma eq_modP (x y : creal) (eq_xy : x == y) (ε : F) (i : nat) :

0 < ε -> (eq_mod eq_xy ε <= i) -> ‘|x i - y i| < ε.

Order relation

The order relation is handled the same way as apartness. The primitive notion is
the strict ordering, the negation of which defines the non-strict ordering.

Definition lt_creal (x y : creal) : Prop := exists ε, (0 < ε) &&
(x (cauchymod x ε) + ε * 3 <= y (cauchymod y ε)).

Notation "x < y" := (lt_creal x y) : creal_scope.
Notation "x <= y" := (~ (y < x)).

A remarkable fact is that ordering is derivable from a proof of apartness:

Lemma neq_ltVgt (x y : creal) : x != y -> {x < y} + {y < x}.

where the operator (_ + _) is the disjunction in Type.
We also build diff and le_mod to be the equivalent of respectively lbound and

eq_mod, which satisfy the following specifications:

Lemma diffP (x y : creal) (lt_xy : (x < y)) i :
cauchymod x (diff lt_xy) <= i ->
cauchymod y (diff lt_xy) <= i -> x i + diff lt_xy <= y i.

Lemma le_modP (x y : creal) (le_xy : (x <= y)) ε i :
0 < ε -> le_mod le_xy ε <= i -> x i < y i + ε.

5.1.3 Arithmetic operations and bounding
We build negation, addition and multiplication on Cauchy reals and prove their
output are Cauchy sequences in a systematic way: we perform the appropriate
operation on each element of the sequence and we forge a convergence modulus for
each operation.

51



5 Cauchy reals, algebraics

Negation, addition and multiplication. We exhibit the convergence moduli of neg-
ation, addition and multiplication of Cauchy reals. Given the convergence modulimx

of x andmy of y, we prove the convergence moduli of (−xn)n, (xn+yn)n and (xnyn)n
are respectively:mx, ε 7→ max

(
mx

(
ε
2
)
,my

(
ε
2
))

and ε 7→ max
(
mx

(
ε

2dye

)
,my

(
ε

2dxe

))
.

Inverse. We need to know a non-negative lower bound δ for the sequence (|xn|)n
of absolute values from some arbitrary rank, and use it to prove that the sequence
of point-wise inverses ( 1

xn
)n is a Cauchy sequence. According to Section 5.1.2, such

a positive lower bound δ is given by (lbound x_neq0) when given a proof (x_neq0
: x != 0) that x is apart from 0 (in the sense of Cauchy sequences). This value δ

is such that ∀i > mx(δ), δ ≤ |xi|.
If i and j are greater than mx(εδ2), we have |xi−xj | < εδ2. By definition of δ and

if i and j are greater thanmx(δ), we get δ ≤ |xi| and δ ≤ |xj |, thus |xi−xj | < ε|xixj |.
And finally: ∣∣∣∣∣ 1

xi
− 1
xj

∣∣∣∣∣ < ε

Thus, a convergence modulus is ε 7→ max
(
mx(εδ2),mx(δ)

)
.

Morphism property of arithmetic operations. We can check that all arithmetic
operations are compatible with the equality for Cauchy sequences, using a simple
point-wise study. The order relation is also compatible. However, there is no need
to systematically study the compatibility with apartness.

Bounds and evaluation for polynomials

We now introduce several bounds on polynomials which are useful when doing ana-
lysis. We define them using the Taylor expansion of polynomial P .

B0(P, c, r) = 1 +
n∑
i=0
|pi|(|c|+ |r|)i

B1(P, c, r) = max(1, 2r)n
(

1 +
n∑
i=1

B0(P (i), c, r)
i!

)

B2(P, c, r) = max(1, 2r)n−1
(

1 +
n∑
i=2

B0(P (i), c, r)
i!

)

where P (i) is the ith derivative of the polynomial P . These bounds satisfy the
following properties, for all x and y in [c− r, c+ r]:

|P (x)| ≤ B0(P, c, r)
|P (y)− P (x)| ≤ |y − x|B1(P, c, r)∣∣∣∣P (y)− P (x)

y − x
− P ′(x)

∣∣∣∣ ≤ |y − x|B2(P, c, r)

These bounds are constructive witnesses for well-known classical mathematical
results on continuous and derivable functions, specialized to univariate polynomials.
The bound B0 is only an intermediate step to bounds B1 and B2. The bound B2

52



5.1 Cauchy reals

is used in Section 7.1.2 to prove that polynomials whose derivative does not change
sign on an interval are monotone on this interval.
The bound B1 is used to show that polynomial evaluation preserves the Cauchy

property for sequences. Indeed, we build polynomial evaluation of a polynomial P ∈
F [X] in a Cauchy real as the point-wise operation, and in order to prove that
the result is a Cauchy sequence, we bound |P (x) − P (y)| when |x − y| is small
enough. The convergence modulus is given by ε 7→ mx

(
ε

B1(P,0,dxe)

)
. We then prove

that P (x) 6= P (y) ⇒ x 6= y, which implies that x ≡ y ⇒ P (x) ≡ P (y). Hence
the evaluation of a polynomial at a Cauchy real is compatible with the equality of
Cauchy reals.

5.1.4 Reasoning with big enough values

In analysis, we use the idiom “for big enough values of i . . . ”. Using this presentation,
mathematicians do not always write on the paper the values that this “big” i could
take.
To illustrate this, we show two examples. First, a very basic fact about Cauchy

reals, which we claimed true in the end of Section 5.1.3.

Example
Lemma 5.1 (multiplication of Cauchy reals is a morphism for ≡). Given four
Cauchy reals x, x′ and y, y′, if x ≡ x′ and y ≡ y′ then xy ≡ x′y′.

Proof. It suffices to show that for all positive ε in F , there exists i, such that
if n is bigger than i, we have |xnyn − x′ny′n| < ε.
So let ε be a positive number in F and let i be a big enough natural number
and n bigger than i. It suffices to show that{

|xn − x′n||yn| < e
2

|x′n||yn − y′n| < e
2 .

Which is equivalent to |xn − x
′
n| < e

2dye
|yn − y′n| < e

2dx′e .

Now, since x ≡ x′ and y ≡ y′, by taking i big enough, we can satisfy those
two conditions.

This second example is a key lemma in the development of algebraic Cauchy reals,
which we use in the proof of decidability of the comparison in Section 5.2.1.

Example
Lemma 5.2. Given two coprime polynomials P and Q with coefficients in F ,
and given a Cauchy real x such that PQ(x) is zero (i.e. is equivalent to zero, as
a Cauchy real), we can decide which of P or Q is the one which annihilates x.

53



5 Cauchy reals, algebraics

Example (continued)
Proof. First, since P is coprime with Q, using Bézout lemma we get two poly-
nomials U and V in F [X] such that UP +V Q = 1. Let i be a natural number.

If (UP )(xi) > 1
2 , then let us show Q(x) is zero. Let us suppose that Q(x) is

nonzero and find a contradiction (this is constructive since equivalence is non
apartness). By hypothesis, PQ(x) is zero so it suffices to show that P (x) is
nonzero to find a contradiction (it is very easy to show that if two Cauchy reals
are nonzero, then their product also is). So it suffices to show that (UP )(x) is
nonzero. But if i was chosen big enough, then for all n bigger than i, (UP )(xn)
is close enough to (UP )(xi), which is greater than 1

2 . Thus ((UP )(xn))n cannot
converge to zero, which means (UP )(x) is not equal to zero (as a Cauchy real).

If (UP )(xi) ≤ 1
2 , let us show that P (x) is zero. The beginning is the same:

it suffices to show that V Q(x) is not zero. But since (UP )(xi) + V Q(xi) = 1
and (UP )(xi) ≤ 1

2 , we get that (V Q)(xi) ≥ 1
2 . But if i is big enough, for

all n bigger than i, (V Q)(xn) is close enough to (V Q)(xi), which is greater
than 1

2 . Thus ((V Q)(xn))n cannot converge to zero, which means (V Q)(x) is
nonzero.

When written as such, it is not obvious to a human reader that i can be
chosen to be big enough for both cases simultaneously. Moreover, it is not
rigorous to introduce a variable (implicitly quantifier universally) and impose
some conditions on it on the middle of a proof. However, we managed to make
Coq accept the proof in this exact proof style, hence providing a formal proof
using a seemingly fuzzy reasoning.

An very common error, which is difficult to detect, is that in some case we may
want i to be bigger than a quantity which already depends on i, which is can be
unsound. To be rigorous, one has to say beforehand how big i should be, thus
writing by hand arbitrarily complicated lower bounds on i before beginning the
proof. However, the proof is usually independent from the actual value of i and
relies only on its existence.
Of course, Coq must be provided the lower bounds for i anyway, and the user

could manually enter a values himself. The success in entering values guarantees the
non circularity of dependencies in i, and the success in completing the proof with
them shows that i is big enough indeed. A very important remark is that we can often
make these bounds appear naturally during the proof, by stating theorems about
asymptotic facts in a special way. In fact, in Section 5.1.1 we have carefully stated
lemmas in the appropriate way. Indeed, cauchymodP, lboundP, eq_modP, diffP
and le_modP all have the same form: their hypotheses are all of the form f(ε) ≤ i
for some f . This means that when we apply (or rewrite with) one of these lemma,
we generate a sub-goal of the form f(ε) ≤ i for some f . The only constraints that
appear on the i involved in those expressions are that it must be bigger than a finite
number of expressions of the form f(ε). Thus by taking i to be the maximum of
all those value, i satisfies these preconditions. We call such a i a big enough natural
number.
We designed a Coq tactic that creates a big enough number by setting it as the

54



5.1 Cauchy reals

maximum of an unknown list (existential variables). And we also created a tactic
which solves any goal of the form f(ε) ≤ i by adding f(ε) to the list. With this
methodology, it is not necessary to provide lower bound for i beforehand, because
we can progressively extend the list of numbers i should be bigger than. In other
words, our tactics helps the user to reason like in paper mathematics by letting him
pose an arbitrary big value and explain later why it can be big enough. This can
be seen as a form of proof irrelevance, but for some proper data. Indeed the i is a
number which is not relevant and which we make opaque so that other functions and
lemmas cannot rely on its value. Using these, we completed the two proofs given in
example using the same proof style we used on the paper.

The strong points of these tactics is that they hide the use of existential variables,
which can be dangerous to let a final user handle. They handle well the case where
the lower bound f(ε) is a local definition, as long as it does not depend from the big
enough number. Moreover, these tactics work on integers, but it might be interesting
to generalize it to “small enough” element, even though in an Archimedian domain
it could be simulated by 1

i for a big enough i. We could also generalize this for any
lattice or for classes of predicates which cannot get empty by intersecting them with
each other a finite number of time.

We believe this methodology has applications in many developments on the form-
alization of mathematics, in analysis and in algebra. We already started to use it
(successfully) for a construction of multivariate polynomials (polynomials with an
arbitrary number of indeterminates). And we believe that by extending big enough
to thin enough intervals, it could ease the management of neighborhoods in Sec-
tion 9.3. Moreover we believe a wide range of problems in analysis can benefit from
this: the formalization of limits, equivalents, delimited developments of univariate
and multivariate functions.

Technical remark
We implemented the tactic in Ltac. It relies on SSReflect pattern selection
mechanism [47] to ensure the robustness of our tactic: we select sequentially
all subterms of the form f(ε) < n, and try to apply our tactic to each of them.
There is still work to do to improve error messages and make these tactics
more ergonomic.
For example, for now, the user has to provide the empty sequence by hand
to close the existential variable when he has finished using his big enough
number i = max[f1(ε), f2(ε), . . . , ?]. Before Coq version 8.4, we even had
to create artificially a fake goal, just to provide the opportunity to the user
to close the sequence using the empty sequence. From Coq version 8.4, the
system provides a command Grab Existential Variables which make this
trick less useful but the user still has to input nil by hand, requiring a line of
script saying nothing useful. A solution we find ergonomic would be to provide
a potential default value at the creation of some existential variables and use
it only if necessary at Qed time.
Another refinement we have developed (only for v8.4 so far) overloads the
SSReflect // switch. This switch is used to discharge automatically all
the trivial subgoals a rewrite can generate, and we believe sub-goals of the
form f(ε) < i belong to this category.

55



5 Cauchy reals, algebraics

5.1.5 Comparison with other implementations of reals

It remains unclear whether an axiomatization of Cauchy reals as described in [39]
would fit our needs. At some point of the development, given a Cauchy real x, we
need to be able to find an approximation in F of x with an arbitrary precision ε.
And it seems that the latter axiomatization does not capture approximation in the
base field.
The C-CoRN library also provides an interface for Cauchy reals in [39] and a

construction of Cauchy reals by Russell O’Connor’s [66], which is used to instantiate
the interface. Although their definition is close enough to ours, we redefine and re-
implement Cauchy reals from scratch, mainly because our algebraic structures are
incompatible and because we depend on an arbitrary discrete Archimedean base
field F . We use this as an opportunity to restate the definitions in a way which is
more compatible with our proof style. Moreover our implementation is shorter and
more direct, but less efficient, when compared with Russell O’Connor’s [66].
Robbert Krebbers and Bas Spitters [59] already encountered in C-CoRN the

problem which led us to define neq_creal instead of apart_creal back in Sec-
tion 5.1.2. Like us they did chose a definition in Prop and they extracted the witness
with some effort, using the “constructive indefinite description” theorem, which is
provable for decidable properties whose domain is nat. In fact, our solution uses a
variant of this theorem — the xchoose function defined in Section 2.2 — to get the
witness almost directly.

5.2 Algebraic reals

Now, we formalize real algebraic numbers on top of Cauchy reals.

Inductive algcreal := AlgCReal {
creal_of_alg : creal;
annul_algcreal : {poly F};
_ : monic annul_algcreal;
_ : annul_algcreal.[creal_of_alg] == 0

}.

Here, an algebraic Cauchy real (AlgCReal x P monic_P root_P_x) represents
an algebraic number as a Cauchy real x and a polynomial P with a proof monic_P
that P is monic and a proof root_P_x that x is a root of P. We recall that he
notation p.[x] stands for polynomial evaluation in the source code. In mathematical
notations, we will represent algebraic Cauchy reals by pairs (x, P ) of a Cauchy real
an a polynomial in F [X] which annihilates it (i.e. P (x) is zero).
First we prove that Cauchy reals setoid equality is decidable on algebraic Cauchy

reals. Then we build arithmetic operations.

5.2.1 Decidability of comparison

Whereas the comparison on Cauchy reals is only semi-decidable, the comparison on
algebraic Cauchy reals is decidable. We call eq_algcreal this decision procedure. It
uses the additional data given by the annihilating polynomials. In fact, we only need
to decide if some algebraic Cauchy real is zero, because we can test whether x = y

56



5.2 Algebraic reals

by comparing x− y to zero. Hence, we have to define subtraction first, but for the
sake of readability, we only define it in Section 5.2.2.
Before explaining how to compare a Cauchy real to zero, we have to explain a few

prerequisites.

Theorem 5.3. Given two polynomials P and Q with coefficients in F , and given a
Cauchy real x such that PQ(x) is zero, we can decide which of P or Q is the one
which annihilates x.

This theorem is stronger than Lemma 5.2 because it does not need the polynomials
to be coprime. The idea of the proof is to decompose P and Q into factors that are
coprime with each other and to apply Lemma 5.2 to them. Thanks to this theorem
we can prove the following lemma:

Lemma 5.4. Let x be a Cauchy real and P be a monic polynomial annihilating x. If
there exists a polynomial Q that does not divide P but which is not coprime with Q,
then there exists a monic polynomial R of degree smaller than P , such that R also
annihilates x.

This lemma expresses that given an algebraic Cauchy real (x, P ) we can find an
equivalent algebraic Cauchy real (x,R) where the degree of R is smaller than the
degree of P , provided that there exists a polynomial Q which shares a factor with P
without being a multiple of P .
Now, let (x, P ) be an algebraic Cauchy real we wish to compare to zero, so P is

the monic annihilating polynomial of the Cauchy real x. We reason by induction on
the degree of P . The base case is trivial since P cannot be zero, because it is monic.
For the induction step, there are two possibilities.

Either the indeterminate X is coprime with P , then zero is not a root of P , thus
x 6= 0.

Or X and P are not coprime, in which case, if P = X then x ≡ 0. So let us
suppose P is not X, and since they are not monic and not coprime, it means that
X is a proper divisor of P , hence P do not divide X. By Lemma 5.4, there exists
a polynomial R of degree strictly smaller than P , such that (x,R) represents the
same algebraic Cauchy real. We apply the induction hypothesis to (x,R), and we
are done.

5.2.2 Arithmetic operations
We build arithmetic operations (negation, addition, multiplication, inverse) from
the constants 0 and 1 and using the subtraction and the division. The embedding of
the constants c ∈ F is obtained from the pair (c,X− c) (here c is a constant Cauchy
sequence).
In the remainder of this section we consider two algebraic Cauchy reals x and y,

whose respective Cauchy sequences are x and y, and whose respective annihilating
monic polynomials are P and Q.
Let us recall (Section 5.1.3) that the subtraction x−y (resp. division x

y ) is obtained
as the point-wise subtraction (resp. division) of elements of the sequence. Let us
find a polynomial whose root is this new sequence.

57



5 Cauchy reals, algebraics

Subtraction

Our candidate is the following resultant (see Section 3.2 for the definition of result-
ants bi-variate polynomials):

R(Y ) = ResX (P (X + Y ), Q(X)) .

There are two essential properties to prove about this resultant: it is nonzero and
it annihilates the subtraction.

R is nonzero. Let us suppose that R is zero and find a contradiction. Since R is
zero, P (X + Y ) and Q(X) are not coprime.
Thanks to the corollary to Bézout theorem described in Section 3.1, and applied

to polynomials in the indeterminate Y with coefficients in F [X] we know there
exist U, V ∈ F [X,Y ] such that U and V are nonzero, degX(U) < deg(Q) and

U(X,Y )P (X + Y ) = V (X,Y )Q(X).

Let the polynomials u and v in F [X] be the respective Y -leading coefficients of U
and V . Let p in F be the leading coefficient of P . By taking the Y -leading coefficient
in the previous formula, we get

u(X)p = v(X)Q(X).

This equation gives that deg(Q) ≤ deg(u), but deg(u) ≤ degX(U) < deg(Q). This
is a contradiction.

R annihilates the subtraction. Let us prove that R annihilates the Cauchy se-
quence x− y. Since R is in the ideal generated by P (X + Y ) and Q(X), there exist
U and V such that

R(Y ) = U(X,Y )P (X + Y ) + V (X,Y )Q(X).

Hence, for all natural number n, by evaluation at X = yn and Y = (xn − yn), we
get

R(xn − yn) = U(yn, xn − yn)P (xn) + V (yn, xn − yn)Q(yn).

But P (x) ≡ 0 and Q(y) ≡ 0. As xn and yn are bounded (respectively by dxe and dye)
and U is bounded on a bounded domain (cf Section 5.1.3) we have that R(x−y) ≡ 0.
Remark that now the subtraction is defined, we can decide the equality of two

arbitrary values by comparing their subtraction to zero, using the result from Sec-
tion 5.2.1.

Division

When the algebraic Cauchy real y is zero, an annihilating polynomial is X. When y
is nonzero, we can find a new Q annihilating y such that Q(0) 6= 0. The resultant

R(Y ) = ResX (P (XY ), Q(X))

is a candidate for being an annihilating polynomial of xy .

58



5.2 Algebraic reals

R is nonzero. Let us suppose that R is zero and let us find a contradiction. Since R
is zero, P (XY ) and Q(X) are not coprime.
Thanks to the corollary to Bézout theorem described in Section 3.1, we know

there exist U, V ∈ F [X,Y ] such that U and V are nonzero, degX(U) < deg(Q) and

U(X,Y )P (XY ) = V (X,Y )Q(X).

By evaluation at Y = 0 we get:

U(X, 0)P (0) = V (X, 0)Q(X).

We reason by induction on the degree of V . The base case is trivial as V cannot be
null.
If no member cancels, this equation gives deg(Q) ≤ deg(U(X, 0)). But we also

had deg(U(X, 0)) ≤ degX(U) < deg(Q), which brings a contradiction.
Let us suppose that one of the member cancels, so both of them do. This means

that both V (X, 0)Q(X) and U(X, 0)P (0) are zero. But as F [Y ] is an integral
domain and Q is nonzero (by hypothesis), we get that V (X, 0) is zero and that
either U(X, 0) = 0 or P (0) = 0. Since V (X, 0) = 0 we know that Y |V (X,Y ). Now
let us discuss on the two possibilities for the first member.

• If U(X, 0) is zero, then Y |U(X,Y ). Hence, by dividing both members of the
equation by Y , there exists U ′(X,Y ) and V ′(X,Y ), whose degrees in Y are
strictly smaller than the ones of U and V , and such that

U ′(X,Y )P (XY ) = V ′(X,Y )Q(X).

• If P (0) is zero, then X|P (X). This implies that XY |P (XY ). But also know
that

U(0, Y )P (0) = V (0, Y )Q(0).

And sinceQ(0) 6= 0, we necessarily have V (0, Y ) = 0. It follows thatX|V (X,Y )
and as we knew that Y |V (X,Y ), we find that XY |V (X,Y ). Thus, there
exist P ′ and V ′ whose degrees are strictly smaller than those of P and V
respectively, such that

U(X,Y )P ′(XY ) = V ′(X,Y )Q(X).

In both cases, we get an equation of the previous form, where V has a smaller degree.

R annihilates the division. In the same way we did for subtraction, we show
that R(xy ) ≡ 0.

59





6
Quotient types in Coq

Given some base set S and an equivalence ≡, one may see the quotient (S / ≡) as
the partition {π(x) | x ∈ S} of S into the sets π(x) =̂ {y ∈ S | x ≡ y}, which are
called the equivalence classes of x.
In this chapter, we focus on the specification, the theory and the construction

of quotient types themselves, as explained in Section 6.1. We first describe our
definition of a quotient interface in Section 6.2. We show in which way it captures the
desired properties of quotients and how we instrumented type inference to help the
user to be concise. Surprisingly, this interface does not rely on an equivalence relation
in its axiomatization, so we explain how we recover quotients by an equivalence
relation from it. We conclude in Section 6.4 by comparing our approach to related
work.

6.1 Quotients in mathematics
We call base set (respectively setoid and type) the set (respectively setoid and type)
we quotient, and the result is called the quotient set (respectively quotient setoid
and quotient type).
We distinguish several uses of quotients in the literature. On the one hand, we

have structuring quotients, where the quotient can often be equipped with more
structure than the base set. For instance, the quotient of pairs of integer to get
rational numbers can be equipped with a structure of field. Similarly, the quotient
of the free algebra of terms generated by constants, variables, sum and products
gives multivariate polynomials (i.e. polynomials with arbitrarily many variables).
This kind of quotient is often left implicit in mathematical papers.
On the other hand, we have algebraic quotients, for which we can transfer the

structure from the base set to the quotient. For instance, the quotient of a group
by a normal subgroup or the quotient of a ring by an ideal belong to this category.
For those quotients, the structure on the base set and on the quotient set matters
and the canonical surjection onto the quotient is a morphism for this structure.
In type theory, there are two known options to represent the notion of quotient.

The first option is to consider quotients of setoids. A setoid is a type with an
equivalence relation called setoid equality (as we already described and used in
Section 5.1.2). Now, quotienting a setoid (the base setoid) amounts to changing the

61



6 Quotient types in Coq

setoid equality to a broader one. However, we still consider elements from the base
type, i.e. the type underlying both the base setoid and the quotient setoid. This
point of view is more the study of equivalence relation than the study of quotients.
Moreover, although rewriting with setoid equality is supported by the system [79],
it is still not as practical nor efficient as rewriting with Leibniz equality.
The second option is to forge a quotient type, i.e. a type where each elements

represent one and only one equivalence class of the base type. This point of view
leads to study the quotient as a new type, on which equality is the standard (Leibniz)
equality of the system. In this framework, the equivalence that led to the quotient
type is not a primitive notion.

6.2 An interface for quotients

We define a quotient of a base type T, to be any type qT which can be characterized
by a canonical surjection function pi which associates to elements of the type T
their corresponding element in qT, and a representative function repr which selects
a unique representant in T for each element in qT. The composition of the repres-
entative function with the canonical function must be the identity of the quotient
type: the representant of any class must be sent to the initial class by the canonical
surjection. This is the axiom of quotient types, and we call it reprK1 and it states
that forall x, pi (repr x)= x (see Figure 6.2).

A small interface

The interface for quotients must have a field for the quotient type, a field for the
representative function repr, a field for the canonical surjection pi and a field for the
quotient axiom, which says the representative function is a section of the canonical
surjection. An instance of the quotient interface is called a quotient structure.
As we show in Figure 6.2, we build the interface following the same layout that

the algebraic hierarchy has (see Chapter 2). Indeed we package the operators pi
and repr and the axiom reprK in the class record, which the interface includes.
More precisely, the definition of the quotient interface is the following.

Structure quotType (T : Type) := QuotType {
quot_sort :> Type;
quot_class : quot_class_of quot_sort

}.

Record quot_class_of (T Q : Type) := QuotClass {
repr : Q -> T;
pi : T -> Q;
reprK : forall x, pi (repr x) = x

}.

1The name reprK comes from a standard convention in the SSReflect library to use the suffix
“K” for cancellation lemmas.

62



6.2 An interface for quotients

x1

x2

xn

y1

ym

Base Type

x

y

Quotient Type

canonical surjection (pi) to x

canonical surjection to y

representative of x

representative of y

Figure 6.1: Quotients without equivalence relation

quotType

quot_sort :>
Type

class = mixin
mixin
signature
repr, pi

axioms
reprK

Figure 6.2: Quotient interface

Example
Let us define the datatype int of integers as the quotient of pairs of natural
numbers by the diagonal. In other words, integers are the quotient of N × N
by the equivalence relation

((n1, n2) ≡ (m1,m2)) =̂ (n1 +m2 = m1 + n2).

Now, we explicitly define the type of canonical represents: pairs of natural
numbers such that one of them is zero. For example, the integer zero is rep-
resented by (0, 0), one by (1, 0) and minus one by (0, 1).

Definition int_axiom (z : nat * nat) := (z.1 == 0) || (z.2 == 0).
Definition int := {z | int_axiom z}.

63



6 Quotient types in Coq

Example (continued)
We then define the particular instances reprZ of repr and piZ of pi and we
show that reprZ is indeed a section of piZ:

Definition reprZ : int -> nat * nat := @projT1 _ _.

Lemma sub_int_axiom x y : int_axiom (x - y, y - x).

Definition piZ (x : nat * nat) : int :=
@exist _ _ (x.1 - x.2, x.2 - x.1) (sub_int_axiom _ _).

Lemma reprZK x : piZ (reprZ x) = x.

Now, we pack together reprZ, piZ and reprZK into the quotient class, and the
in the quotient structure int_quotType.

Definition int_quotClass := QuotClass reprZK.
Definition int_quotType := @QuotType int int_quotClass.

We created a data type int which is the candidate for being a quotient, and
a structure int_quotType which packs int together with the evidence that it
is a quotient.

Remark
Please note that this is not the way we formalized the type int of integers for
the SSReflect library, as seen in Section 4.4.1.

Recovering an equivalence and lifting properties

The existence of a quotient type Q with its quotient structure qT over the base
type T induces a natural equivalence over T: two elements (x y : T) are equivalent
if (pi qT x = pi qT y). We mimic the notation of the SSReflect library for
equivalence in modular arithmetic on natural numbers, which gives us the following
notation for equivalence of x and y of type T modulo the quotient type qT:

x = y %[mod qT]

We say an operator on T (i.e. a function which takes its arguments in T and outputs
an element of T) is compatible with quotienting if given two lists of arguments which
are pairwise equivalent, the two outputs are also equivalent. In other words, an
operator is compatible with quotienting if it is constant on each equivalence class,
up to equivalence.
When an operator op on T is compatible with quotienting, it has a lifting, which

means there exists an operator Op on the quotient type Q such that following diagram
commutes:

(T ∗ . . . ∗ T)
op
��

pi //

	

(Q ∗ . . . ∗ Q)
Op
��

T
pi

// Q

.

The canonical surjection is a morphism for this operator.

64



6.2 An interface for quotients

For example, a binary operator (Op : Q -> Q -> Q) is a lifting for the binary
operator (op : T -> T -> T) with regard to the quotient structure qT as soon as
the canonical surjection (pi qT : T -> Q) is a morphism for this operator:

forall x y, pi qT (op x y) = Op (pi qT x) (pi qT y) :> Q

which can be re-expressed in a standardized form for morphisms in SSReflect:

{morph (pi qT) : x y / op x y >-> Op x y}

Example
Let us define the add operation on int as the lifting of the point-wise addition
on pairs of natural numbers.

Definition add x y := (x.1 + y.1, x.2 + y.2).
Definition addz X Y := \pi_int (add (repr X) (repr X)).
Lemma addz_compat : {morph \pi_int : x y / add x y >-> addz x y}.

We recall that the statement of addz_compat can be read as follows:

forall x y, \pi_int (add x y) = addz (\pi_int x) (\pi_int y)

Similarly, given an arbitrary type R, we say that a function with values in R is
compatible with quotienting if it is constant on each equivalence class. When a
function f with arguments in T and values in R is compatible with quotienting, it
has a lifting, which means there exists an operator F with arguments in the quotient
type Q and values in R such that the following diagram commutes:

(T ∗ . . . ∗ T)

f
++

pi //

	

(Q ∗ . . . ∗ Q)

F
��
R

The canonical surjection is a morphism for this function.
For example, a binary function (F : Q -> Q -> R) is a lifting of a binary function

(f : T -> T -> R) if:

forall x y, (f x y) = F (pi qT x) (pi qT y) :> R

which can be re-expressed in a standardized form for morphisms in SSReflect:

{mono (pi qT) : x y / f x y >-> F x y}

Remark
It is interesting to remark for further generalization that the compatibility
and lifting of operators is a particular case of the compatibility and lifting of
functions, where we set f = pi ◦ op.

Inference of quotient structures
Given a base type T, we say Q is a quotient type for T if there is a quotient structure qT
which Q is the quot_sort field of, which means (quot_sort qT) evaluates to Q. In
practice, given x, in Q we want to be able to write (repr x), but such a statement
would be ill-typed.

65



6 Quotient types in Coq

Technical remark
This impossibility comes from the fact repr has an implicit argument which
must have type quotType. The expanded form for (repr x) is (@repr
?quotType x), where x must have type (quot_sort ?quotType). But if x has
type Q, the type inference algorithm encounters the unification problem

(quot_sort ?quotType) ≡ Q

which it cannot solve without an hint, although we known the solution is qT.

However, it is possible to make the system type this statement anyway, by provid-
ing the information that qT is a canonical structure for Q.

Example (continued)
We make int_quotType the canonical quotient structure for the quotient type
int for by using the following Coq vernacular command:

Canonical int_quotType.

Now, given x of type int, the system typechecks (repr x) as an element of
(nat * nat), as expected.

Since a quotient structure is canonically attached to every quotient type, we may
also simplify the use of pi. Indeed, for now, pi has the following type.

forall (T : Type) (qT : quotType T), T -> quot_sort qT

Hence, (@pi _ qT) has type T -> Q, but it is not possible to use (@pi _ Q) to refer
to this function. To circumvent this problem we provide a notation \pi_Q which
gives exactly (@pi _ qT) where qT is the canonical quotient structure attached to Q
if it exists (otherwise, the notation fails). This notation uses a standard trick from
the SSReflect library to let the system infer qT automatically.

Technical remark
To achieve this, we define an alternative version for pi we call pi_of.

Definition pi_of T (qT : quotType T)
(_ : phant (quot_sort qT)) : quot_sort qT := @pi T qT.

Notation "\pi_ Q" := (@pi_of _ _ (Phant Q)) : quotient_scope.

This alternative version of pi uses phantom types from SSReflect library,
which is a simple inductive with one constructor, no argument and one type
parameter.

Inductive phant (T : Type) := Phant.

The essential property of phantoms is that (Phant Q) has type (phant Q).
Hence, writing (\pi_Q) triggers the unification problem

phant (quot_sort ?quotType) ≡ phant Q

on the type of third argument of pi_of. As a consequence, if Q has a canon-
ical quotient structure qT, then \pi_Q resolves to (@pi_of T qT (Phant Q))
which is convertible to (@pi T qT).

66



6.2 An interface for quotients

Example
\pi_int has type (nat * nat -> int) and is in fact (@pi int_quotType)

We also adapted the notation for equivalence modulo quotient, so that we can
provide Q instead of qT, as follows:

x = y %[mod Q]

This is a notation for (\pi_Q x = \pi_Q y).

Exploiting compatibility with quotients

Technical remark
All this section is quite technical.

When an operation (or a function) is compatible with quotienting, we can forge
the lifting by hand by composing the initial operation with pi and repr. In this
case the canonical surjection is indeed a morphism for the operator.
Then we want to show elementary properties on the lifting, and those can often

be derived from the properties of the initial operation. Thanks to the compatibility
lemma, it is easy to go back and forth between the operation and its lifting by
making pi and the operation commute.

Example
We show that zero is a neutral element on the right for addition:

Definition zeroz := \pi_int (0, 0).
Lemma add0z x : addz zero x = x.

Then, by using reprK, the statement of add0z is equivalent to:

addz (\pi_int (0, 0)) (\pi_int (repr x)) = (\pi_int (repr x))

which can be solved using addz_compat.

However, it becomes more complicated to control where rewriting must happen
when faced with more complex expressions involving lifted operators.

Example

Lemma addzA x y z : addz x (addz y z) = addz (addz x y) z.

By using reprK, the left hand side is equivalent to:

addz (\pi_int (repr x)) (\pi_int (add (repr (\pi_int x)) (repr
(\pi_int z))))

But now, the right hand side of addz_compat has an invisible instance.

In order to save the user from the need to use a chain of rewriting rules of the form
op_compat, we introduce an automated mechanism to globally turn an expression
on the quotient into an expression on the base type. For this, an operation Op
(respectively a function F) which is a lifting has to be recognized automatically. We
must register in some way that the value associated with it is (\pi_Q (op x y))
(respectively (f x y)). For this purpose, we define a structure pi_morph:

Record pi_morph Q (u : Q) := PiMorph {pi_op : Q ; _ : u = pi_op}.

67



6 Quotient types in Coq

Lemma piE (Q : Type) (u : Q) (m : pi_morph u) : pi_op m = u.
Proof. by case: m. Qed.

The type parameter u of the structure should be the data to be inferred (i.e. (\
pi_Q (op x y)) for a binary operator) while the content of the field pi_op should
be the information present in the goal (i.e. (Op (\pi_Q x)(\pi_Q)) for a binary
operator), such that rewriting using piE would cause the canonical surjections \pi_Q
to go from the leafs to the root of the syntactic tree.
We declare an instance for op:

Canonical op_pi_morph (x y : T) (qT : quotType T)
(X : pi_morph (\pi_qT x)) (Y : pi_morph (\pi_qT y)) :
pi_morph (\pi_qT (op x y)) := @PiMorph (Op X Y) proof_it_works

Now, we must declare that any term of the form (\pi_Q x) has a trivial pi_morph
structure (where both u and pi_op are (\pi_Q x)):

Canonical pi_morph_pi T (qT : quotType T) (x : T) :=
@PiMorph _ (\pi_qT x) (\pi x) (erefl _).

Example

Lemma addz_pi (x y : T)
(X : pi_morph (\pi_Q x)) (Y : pi_morph (\pi_Q y)) :

\pi_int (add x y) = addz X Y.

Canonical addz_pi_morph (x y : T)
(X : pi_morph (\pi_Q x)) (Y : pi_morph (\pi_Q y)) :

pi_morph (\pi_Q (op x y)) := @PiMorph (Op X Y) (addz_pi X Y).

By declaring addz_pi_morph as canonical, we can now use piE to rewrite
an expression of the form (addz x̃ ỹ)) into (\pi_int (add x y)), where x̃
and ỹ are arbitrarily complicated expression that can be canonically recognized
as being equal to respectively (\pi_int x) and (\pi_int y).

In the examples above, we had to define the quotient by hand. We could expect
a generic construction of a quotient by a given equivalence relation. We now deal
with this deficiency.

6.3 Quotient by an equivalence relation
Until now we have shown a quotient interface with no equivalence in its signature,
and a notion of equivalence which is defined from the quotient. Now, we explain
how to instantiate the quotient interface by quotienting a type by an equivalence
relation. Given a type T and an equivalence relation equiv, we have to find a data
type representing the quotient i.e. such that each element is an equivalence class.
A natural candidate to represent equivalence classes is the Σ-type of predicates

that characterize a class. The elements of a given equivalence class are characterized
by a predicate P that satisfies the following is_class property :

Definition is_class (P : T -> Prop) :=
(forall x y, P x -> (P y <-> equiv x y)) /\ (exists x, P x).

68



6.3 Quotient by an equivalence relation

Thus, we could define the quotient as follows.

Definition quotient := {P : T -> Prop | is_class P}.

However, because Coq equality is intentional, two predicates which are extensionally
equal (i.e. equal on every input) may be different, and if that was not enough, the
proof that a given predicate is a class is not unique either.

Remark
We can notice that equivalence classes are all an (equiv x) for some x (up to
equivalence), indeed:

Lemma class_is_equiv P : is_class P <->
exists x, (forall y, P y <-> equiv x y).

Things are different when the equivalence is decidable (with return type bool).
In this case, there is only one proof of (equiv x y) for each x and y, because of
Boolean proof irrelevance, as explained in Section 1.2. However, there are many
possible (equiv y) for elements y such that (equiv x y). This is not enough to
make quotient a quotient type.

6.3.1 Quotient of a choice structure

Given a base type T equipped with a choice structure (in the sense of Chapter 2) and
a decidable equivalence relation (equiv : T -> T -> bool), it becomes possible
to build a quotient type. The construction is slightly more complicated that the one
above.
For each class we can choose an element x in a canonical fashion, using the fol-

lowing canon function:

Lemma equiv_exists (x : T) : exists y, (equiv x) y.
Proof. by exists x; apply: equiv_refl. Qed.

Definition canon (x : T) := xchoose (equiv_exists x).

We recall that xchoose takes a proof of existence of an element satisfying a pre-
dicate (here the predicate (equiv x)) and returns a witness which is unique, in
the sense that two extensionally equal predicates lead to the same witness. This
happens for example with the two predicates (equiv x) and (equiv y) when x
and y are equivalent: the choice function will return the same element z which will
be equivalent both to x and y. Such a canonical element is a unique representative
for its class.
Hence, the type formed with canonical elements can represent the quotient.

Record equiv_quot := EquivQuot {
erepr : T;
erepr_canon : canon erepr == erepr

}.

The representative function is trivial as it is exactly the projection erepr on the
first field of the Σ-type equiv_quot. However, a little more effort is needed to build
the canonical surjection. Indeed we first need to prove that canon is idempotent.

69



6 Quotient types in Coq

Lemma canon_id (x : T) : canon (canon x) == canon x.
Definition epi (x : T) := @EquivQuot (canon x) (canon_id x).

Finally, we need to prove that the canonical surjection epi cancels the represent-
ative erepr:

Lemma ereprK (u : equiv_quot T) : epi (erepr u) = u.

The proof of ereprK relies on the proof irrelevance of Boolean predicates.

Proof. Two elements of equiv_quot are equal if and only if their first projection
erepr are equal, because the second field erepr_canon of equiv_quot is a Boolean
equality, and has only one proof. Thanks to this (epi (erepr u)) and u are equal
if and only if (erepr (epi (erepr u)) is equal to (erepr u). But by definition
of epi, (erepr (epi (erepr u)) is equal to (canon (erepr u)), and thanks to
the property (erepr_canon u), we get that (canon (erepr u)) is equal to (erepr
u), which concludes the proof.

We then package everything into a quotient structure:

Definition equiv_quotClass := QuotClass ereprK
Canonical equiv_quotType := @QuotType equiv_quot equiv_quotClass.

We declare this structure as canonical, so that any quotient by an equivalence rela-
tion can be recognized as a canonical construction of quotient type.
However, we omitted to mention that the proof of canon_id and hence the code

of epi requires a proof that equiv is indeed an equivalence relation. In order to
avoid adding unbundled side conditions ensuring equiv is an equivalence relation,
we define an interface for equivalence relations which coerces to binary relations:

Structure equiv_rel := EquivRelPack {
equiv_fun :> rel T;

_ : reflexive equiv
_ : symmetric equiv
_ : transitive equiv

}.

The whole development about equiv_quot takes (equiv : equiv_rel T) as a
parameter.

Technical remark
Given an equivalence relation equiv on a choice type T, we made a nota-
tion {eq_quot equiv} to create a quotient by inferring both the equivalence
structure of equiv and the choice structure of T and applying the latter con-
struction.

We recall that we defined the equivalence induced by the quotient by saying x
and y are equivalent if (\pi_Q x = \pi_Q y), where Q is the quotient type. We
refine the former notation for equivalence modulo Q to specialize it to quotients by
equivalence, as follows.

x = y %[mod_eq equiv]

In the present situation, it seems natural that this induced equivalence coincides
with the equivalence by which we quotiented.

70



6.3 Quotient by an equivalence relation

Lemma eqmodP x y : reflect (x = y %[mod_eq equiv]) (equiv x y).

Example
Let us redefine once again int as the quotient of N × N by the equivalence
relation ((n1, n2) ≡ (m1,m2)) defined by (n1 +m2 = m1 + n2).
In this second version, we directly perform the quotient by the relation, so we
first define the equivalence relation.

Definition equivnn (x y : nat * nat) := x.1 + y.2 == y.1 + x.2.

Lemma equivnn_refl : reflexive equivnn.
Lemma equivnn_sym : symmetric equivnn.
Lemma equivnn_trans : transitive equivnn.

Definition equivnn_rel :=
EquivRel equivnn_refl equivnn_sym equivnn_trans.

Then int is just the quotient by this equivalence relation.

Definition int := equiv_quot equivnn_rel.

This type can be equipped with a quotient structure by repackaging the quo-
tient class of equiv_quotType equivnn_rel together with int.

6.3.2 Quotient of type with an explicit encoding to a choice structure
We will need in Section 7 to quotient, by a decidable equivalence, a type which is
not a choice type.
We say a type T with a equivalence relation equivT is explicitly encodable to a

type C if there exists two functions (T2C : T -> C) and (C2T : C -> T) such that
the following coding property holds:

forall (x : T), equivT (C2T (T2C x)) x.

Remark
Here T can be seen as a setoid, and the coding property can be interpreted as:
C2T cancels T2C in the setoid T.

The function (T2C : T -> C) is called the encoding function because it codes an
element of T into C. Conversely, the function (C2T : C -> T) is called the decoding
function. The coding property expresses that encoded elements can be decoded
properly.
There is no notion of equivalence on the coding type C yet, but we can provide one

using the equivalence induced by T. Thus, we define equivC by composing equivT
with C2T.

Definition equivC x y := eT (C2T x) (C2T y).

When equivT is Boolean, equivC is. Since C is a choice type and equivC is a decid-
able equivalence on this choice type, we can reproduce the exact same construction
of quotient as in Section 6.3.1, so that we get ereprC : equiv_quot -> C, epiC:
C -> equiv_quot and a proof of cancellation ereprCK. Now we can compose these
operators with T2C and C2T.

71



6 Quotient types in Coq

Definition ereprT (x : equiv_quotient) : T := C2T (ereprC x).
Definition epiT (x : T) : equiv_quotient := epiC (T2C x).

And we can prove the cancellation lemma ereprTK using ereprCK and the coding
property.

Lemma ereprTK (x : equiv_quotient) : epiT (ereprT x) = x.

Finally, we have everything we need to create a quotient type, like in Section 6.3.1.

6.4 Related work on quotient types
Given a base type (T : Type) and an equivalence (equiv : T -> T -> Prop), the
Coq interface below is due to Laurent Chicli, Loïc Pottier and Carlos Simpson [20],
following studies from Martin Hofmann [55]. It sums up the desired properties of a
the quotient type: its existence, a surjection from the base type T to it, and a way
to lift to the quotient functions that are compatible with the equivalence equiv.

Record type_quotient (T : Type) (equiv : T -> T -> Prop)
(Hequiv : equivalence equiv) := {
quo :> Type;
class :> T -> quo;

quo_comp : forall (x y : T), equiv x y -> class x = class y;
quo_comp_rev : forall (x y : T), class x = class y -> equiv x y;
quo_lift : forall (R : Type) (f : T -> R),

compatible equiv f -> quo -> R;
quo_lift_prop :

forall (R : Type) (f : T -> R) (Hf : compatible equiv f),
forall (x : T), (quot_lift Hf \o class) x = f x;

quo_surj : forall (c : quo), exists x : T, c = class x
}.

where \o is the infix notation for functional composition and where equivalence
and compatible are predicate meaning respectively that a relation is an equival-
ence (reflexive, symmetric and transitive) and that a function is constant on each
equivalence class. We believe2 they are defined as below:

Definition equivalence (T : Type) (equiv : T -> T -> Prop) :=
reflexive equiv /\ symmetric equiv /\ transitive equiv.

Definition compatible (T R : Type) (equiv : T -> T -> Prop)
(f : T -> R) := forall x y : T, equiv x y -> f x = f y.

Once this type_quotient defined, they [20] add the existence of the quotient as
an axiom.

Axiom quotient : forall (T : Type) (equiv : T -> T -> Prop)
(p:equivalence R), (type_quotient p).

Although this axiom is not provable in the type theory of Coq, its consistency in the
Calculus of Construction has been proved in [55]. The construction of this interface

2No definitions for equivalence or compatible are explicitly given in [20].

72



6.4 Related work on quotient types

was made in order to study the type theory of Coq augmented with quotienting.
This is not our objective at all. First, we want to keep the theory of Coq without
modification, so quotient types do not exist in general. Second, we create an interface
to provide practical tools to handle quotients types that do exist.
The reader may notice that here quo plays the role of our quot_sort and class

the role of pi of our interface. The combination of repr and reprK is a skolemized
version of quo_surj.

Technical remark
This is not exactly the case, because quot_surj is a Prop existential, which
unlike existentials in Type cannot be extracted to a function repr which has the
property reprK. This was already observed [20] in the study of the consistency
of Coq with variants of type_quotient.

However, the parameters about equiv and properties about the lifting of morph-
ism disappear completely in our interface, because they can all be encoded as ex-
plained in Section 6.2.

Example
For example, quo_lift can be encoded like this:

Definition new_quo_lift (T R : Type) (qT : quotType T)
(f : T -> R) (x : Q) := f (repr x)

Note that the precondition (compatible equiv f) was not needed to define
the lifting new_quo_lift. Only the property quo_lift_prop still needs the
precondition.

Our approach can also be compared to Normalized Types [31]. The function pi
can be seen as a user defined normalization function inside Coq.

73





7
Construction of the real closure

as a type

While in Chapter 5.2 we constructed the algebraic Cauchy reals, we now focus on
the construction of a datatype for algebraic numbers, where each element represents
a distinct algebraic number.
In this chapter we show that the algebraic Cauchy reals satisfy the requirements

for building a quotient type as described in Section 6.3.2. For that purpose we
explain in Section 7.1.1 the decoding and the encoding in Section 7.1.2. Finally, in
Section 7.2 we form the quotient type (alg F) of algebraic numbers over F, and
we show that the operator (alg : archiFieldType -> Type), which canonically
outputs an archiFieldType is involutive (in the sense that applying twice gives a
field which is isomorphic to the single application) and is hence a closure operator.
From this last fact we derive the real closed field axiom for (alg F), making this
field a real closed field.

7.1 Algebraic numbers have an explicit encoding to a choice
type

In order to get the type of real algebraic numbers, we should quotient the type of
algebraic Cauchy reals by the setoid equality. In order to apply the construction
we detail in Section 6.3.2, we explicit an encoding from algebraic Cauchy reals to
a choice type, which we name algdom and call real algebraic domain. The type
algdom not only serves as an encoding of algcreal in order to forge the quotient,
but also as finite descriptions for real algebraics.

Record algdom := AlgRealDom {
annul_algdom : {poly F};
center_alg : F;
radius_alg : F;
_ : monic annul_algdom;
_ : annul_algdom.[center_alg - radius_alg]

* annul_algdom.[center_alg + radius_alg] <= 0
}.

75



7 Construction of the real closure as a type

An element (AlgRealDom P c r monic_P chg_sign_P) of algdom represents one
of the roots of the polynomial P in the interval [c - r, c + r], with a proof
monic_P that P is monic and a proof chg_sign_P that P changes sign on the interval.
Note that the unicity of the root this representation designates is not guaranteed by
the axioms of this record. However, the decoding procedure given in Section 7.1.1 is
a (deterministic) function from algdom to algebraic Cauchy reals. Only one root can
be selected by this procedure, and this is how the ambiguity vanishes. Naturally,
changing the polynomial or the interval of an element from the algebraic domain
may change the root it designates, but it does not matter for our purpose.
This datatype is only using elements of F – the list of coefficients of the polynomial,

together with the center and the radius of the interval – and two proofs. Thanks
to the proof irrelevance of Boolean propositions (seen in Section 1.2), we can build
a bijection between algdom and the type of sequences of elements of F . Hence,
algdom inherits the choiceType structure of (seq F). We also notice that algdom
is countable as soon as F is. This fact was not obvious for the setoid of algebraic
Cauchy reals. The quotient type will also inherit the choiceType structure and will
be countable if F is.
This representation gives a finite description of algebraic numbers. For example,

we could represent
√

2 as the pair (X2 − 2, [0, 2]), and more generally
√
x as the

pair (X2 − x, [0, x]).
We now show that algdom is an explicit encoding of algebraic Cauchy reals. In

order to do so, we build an encoding and a decoding function as shown in Figure 7.1.

F

algcreal F

creal F

F

aldgom F

to_algdom

(encoding)

to_algcreal

(decoding)

Figure 7.1: Encoding algebraic numbers as a choice structure

7.1.1 Decoding to algebraic Cauchy reals

We build the decoding function.

Definition to_algcreal : algdom -> algcreal.

An element from the real algebraic domain is given by a monic polynomial P , a
center c and a radius r such that P (c− r)P (c+ r) ≤ 0. The root we wish to select
is in the interval I = [c− r, c+ r].

76



7.2 A quotient type for algebraic numbers

We decode an element from the real algebraic domain into an algebraic Cauchy
real by dichotomy. We form the Cauchy sequence x = (xn)n, such that all the xn
are in the interval I and such that P (x) ≡ 0.
We proceed by induction on n to define the sequence x. It should satisfy the

following invariant, which expresses that P must change sign on the interval of
radius 2−nr and centered in xn:

Hn = P (xn − 2−nr)P (xn + 2−nr) ≤ 0

The base case is trivial, it suffices to choose x0 to be c. In the induction step, we
pick either xn − 2−(n+1)r or xn + 2−(n+1)r to satisfy the invariant Hn+1.

7.1.2 Encoding of algebraic Cauchy reals
Now, we construct the encoding function, which is more difficult.
Definition to_algdom : algcreal -> algdom

It must satisfy the coding property as mentioned in Section 6.3.2:
Lemma to_algdomK x : to_algcreal (to_algdom x) == x.

Given an algebraic Cauchy real (x, P ), we try to find a rational interval containing
only one root, in order to be sure that the decoding procedure returns exactly the
element equivalent to x. Moreover, the polynomial has to change sign between the
bounds of the interval we are looking for. In order to ensure all that, we look for an
interval on which P is monotone.
We reason by induction on the degree of P . The base case is trivial as P cannot

be zero because it is monic. We start the inductive step by a discussion on the
coprimality of P and its derivative P ′.

Either P and its derivative P ′ are coprime, so there exist U and V such that UP+
V P ′ = 1. Since P (x) converges to 0, by taking i big enough, we get P ′(xi) ≥ 1

2dV (x)e .
By taking a small enough interval [a, b] containing xn, we get that P is monotone
on [a, b] (thanks to the B2 bound of Section 5.1.3).
Without loss of generality, we can suppose that P is increasing. Then we get P (a) ≤

P (xi) ≤ P (b) for all i ≥ n. But P (xi) converges to 0, so P (a) ≤ 0 ≤ P (b). Hence,
the interval [a, b] satisfies the requirements.

Or P and P ′ are not coprime, and since P cannot divide P ′ (because of their
degrees), using Lemma 5.4, we can find a monic polynomial R which annihilates x
but which degree is smaller than the one of P . We fall back to the study of (x,R),
where the degree of R is strictly smaller that the one of R. The induction hypothesis
applies and gives an interval which satisfies the requirements.

7.2 A quotient type for algebraic numbers
7.2.1 Construction of the quotient type
Let F be a discrete Archimedean field. Because algcreal is encodable to a choice
structure, and because eq_algcreal is a decidable equivalence relation (see Sec-
tion 5.2.1), we are exactly in the context of Section 6.3.2. Hence we can forge the

77



7 Construction of the real closure as a type

F

algcreal F

creal F

F

alg F

\pi_(alg F)

(canonical surjection)

repr

(representative)

through algdom

to_alg(↑ ·)

Figure 7.2: The construction of real algebraic numbers

type alg of real algebraic numbers by quotienting algebraic Cauchy reals by its
setoid equality.

Definition alg := {quot_eq eq_algcreal}.

This type alg is the type of real algebraics over the base field F. When there is an
ambiguity on the base field, we write (alg F). We use the mathematical notation
AlgF to denote the type of real algebraics over F .

Remark
If F is countable, then algdom is also countable. Because we implemented
quotienting using subtyping, alg is a subtype of algdom and is hence countable
when F is.

We prove that arithmetic operations and the order relation are compatible with
the quotient. This is a direct consequence of the morphism property of operations
with regard to setoid equality, which we dealt with in Section 5.2.2. Thanks to
this, we have liftings to algebraics for every arithmetic operation, and for the order
relation. Moreover we can show that AlgF has an Archimedean field structure. This
means Alg can be seen as an operator from Archimedean fields to Archimedean
fields.
We also build a function (to_alg: F -> alg F) which embeds any element c

of F into AlgF , by mapping c to the canonical surjection of the element (c, (X − c))
of algcreal. We then prove it is a field morphism and that this morphism is
also compatible with comparison. Hence, it is a numeric field morphism. The
mathematical notation for this function is ↑, because it goes up in Figure 7.2. This
morphism can also be applied to a polynomial (by applying it to each coefficient).
We remark that by construction of algdom, the following property holds:

Lemma 7.1 (Weak intermediate value theorem for AlgF ). Given a polynomial P
in F [X] and two points a < b in F such that P (a) ≤ 0 ≤ P (b), there exists c in AlgF
such that c is in [↑ a, ↑ b] and (↑ P )(c) is zero.

78



7.2 A quotient type for algebraic numbers

7.2.2 Real algebraic numbers form a real closed field

We already know that AlgF is an Archimedean field. The difficulty in proving AlgF
is a real closed field is to prove the intermediate value theorem for polynomials in
AlgF [X]. Let us recall the statement of this property.

Definition: Intermediate value property for polynomials
Let R be a real field, we say the intermediate value property holds for polyno-
mials in R[X] if given a polynomial P in R[X] and two points a < b in R such
that P (a) ≤ 0 ≤ P (b), there exists c in R such that c is in [a, b] and P (c) is
zero.

Now, let P be a polynomial in AlgF [X] and a and b two elements of AlgF such
that a < b and P (a) ≤ 0 ≤ P (b). Let us show that there exist an real algebraic
number c in AlgF such that c ∈ [a, b] and P (c) = 0.

Iteration of Alg.

Because Alg can be seen as a function from Archimedean fields to Archimedean
fields, we can consider AlgAlgF

. The weak intermediate value theorem for AlgAlgF

applied to P , a and b gives the existence of γ in AlgAlgF
such that γ is in [↑ a, ↑ b]

and (↑ P )(γ) is zero. It suffices we find c in AlgF such that ↑ c = γ to conclude.
Indeed, such a c would satisfy ↑ c ∈ [↑ a, ↑ b] and (↑ P )(↑ c) = 0, and because (↑ ·)
is a numeric field morphism, we would get c ∈ [a, b] and P (c) = 0.
For this, it suffices we find function ↓: AlgAlgF

→ AlgF (see Figure), such that

∀ξ ∈ AlgAlgF
, ↑ (↓ ξ) = ξ,

because then, we would simply have to pose c =↓ γ. In Coq, we call this func-
tion from_alg. The existence of such a function means that Alg is in fact a closure
operator.

F

AlgF

AlgAlgF

(↑ ·)

(↑ ·) (↓ ·)

Figure 7.3: Alg is the real algebraic closure

79



7 Construction of the real closure as a type

Let ξ be in AlgAlgF
, and let us build (↓ ξ). By transforming ξ in an algebraic

Cauchy real we get a Cauchy sequence x in AlgNF , and a polynomial P ∈ AlgF [X],
such that

ξ = πAlgAlgF
(x, P ).

For all n in N, each element xn is an algebraic of AlgF and there exists a Cauchy
sequence (an,k)k∈N in FN and a polynomial An in F [X] such that

xn = πAlgF
(an, An).

In fact we can even chose x such that |xn+1 − xn| < 2−(n+1) in AlgF . Now, the
sequence y = (an,n)n is a Cauchy sequence such that ↑ y = ξ. Hence, the Cauchy
real underlying (↓ ξ) is y. It suffices to find a polynomial that cancels y to conclude.

Polynomial annihilating the algebraic Cauchy real y.

We must find a polynomial R ∈ F [X] which annihilates y. The coefficients pi
of P form a finite set of values in the field extension AlgF of F , so we can apply
the primitive element theorem to find an element β ∈ AlgF , whose annihilating
polynomial is Q of degree q+ 1 such that for all i, pi is in the simple extension F [β].
We can then re-factorize P as

P =
q∑
l=0

βlPl.

Let us consider the resultant

R(Y ) = ResX

( q∑
l=0

X lPl(Y ), Q(X)
)
.

We now show that it is nonzero and that it annihilates x.

R is nonzero. Let us suppose R is zero and find a contradiction. The property of
Bézout gives U, V ∈ F [X] such that U is nonzero, degX(U) < deg(Q) and

U(X,Y )
q∑
l=0

X lPl(Y ) = V (X,Y )Q(X).

Then by embedding in AlgF and evaluating at X = β we get U(β, Y )P (Y ) = 0.
But P 6= 0, thus U(β, Y ) = 0. Then by taking the Y -leading coefficient u(X)
of U(X,Y ) we get

u(β) = 0 and u ∈ F [X] and u 6= 0 and deg(u) < deg(Q).

This gives a polynomial u annihilating β of degree smaller than the one of Q, and
we can proceed by induction on the degree of Q.

R annihilates y. We have

R(an,n) = U(βm, an,n)
( q∑
l=0

βlmPl(an,n)
)

+ V (βm, an,n)Q(βm).

and we notice that the right hand side converges to zero when m and n grow.

80



8
Discussion on the algebraic

closure

The final step in the construction of algebraic numbers is the construction of the
algebraically closed field of complex algebraic numbers. We chose to construct the
algebraic closure of an arbitrary closed field R, which we define simply as C = R[i] =
R[X]/(X2 +1) and which can be represented by R2 with the appropriate operations.
The main difficulty is to prove that the C we obtain is indeed algebraically closed
(i.e. every polynomial of C[X] has a root in C), which is a generalization of the
well-known fundamental theorem of algebra (FTA, also known as d’Alembert-Gauss
theorem). In Section 8.1 we study the alternative definitions of real closed fields,
which include a proof of the fundamental theorem of algebra. We present a snapshot
of the work that had to be done prior to a Coq formalization, although it is not the
proof that has been retained for the formalization. In Section 8.2 we describe the
alternative path we took to formalize the fundamental theorem of algebra in Coq
and we also mention other alternatives and other paths we could have taken, using
other parts of our work.

8.1 Equivalent definitions for real closed fields
Let R be a real field, according to Theorem 2.11 from [5], the following assertions
are equivalent.

(a) (1) Any polynomial of R[X] of odd degree has a root in R
(2) For all x ≥ 0, there exists some y such that y2 = x

(b) The field R[i] is algebraically closed (where i is a root of X2 + 1)

(c) the intermediate value theorem holds for polynomials in R[X]

(d) R has no non-trivial real algebraic extension, that is there is no real field R1
that is algebraic over R and different from R.

Figure 8.1 represents the implications proved in [5]. Note that not all the proofs
given in this book are constructive. Let us first discuss what we need in this equi-
valence, then we will provide a constructive proof for what we need.

81



8 Discussion on the algebraic closure

(a)

(b) (c)(d)

FTA

easy

easy

Figure 8.1: Equivalent definitions for real closed fields

The statement (a) is the original definition of real closed fields by Tarski [83],
while (c) was introduced as an alternative definition in [5] because the proofs of
quantifier elimination they use strongly rely on the intermediate value property for
polynomials. Because our notion of real field is different from the one in [5] (see
Section 4.1.2 for the comparison and the reason for this choice), we will not discuss
the implications involving (d) which are independent from the (a) – (b) – (c) loop
anyway.
The definition we took for real closed fields back in Section 4.1 was definition (c),

because it was the only choice that did not involve proving the fundamental the-
orem of algebra for proving quantifier elimination and for constructing real algebraic
numbers. Indeed, while constructing real algebraic numbers we could have provided
a proof of either (a) or (c) without using the fundamental theorem of algebra. And
quantifier elimination could have relied either on (c) or on (b) without using the
fundamental theorem of algebra.
The construction of algebraic numbers requires (b), hence we need to prove

(c) ⇒ (b), which can be obtained by composing (c) ⇒ (a) with (a) ⇒ (b). The
implications (b) ⇒ (c) and (c) ⇒ (a) are easy and constructive. However, the im-
plication (a) ⇒ (b) as shown in [5] uses the existence of the algebraic closure of R.
In fact, as far as we know, it only requires a splitting field for a polynomial in R[X],
but the existence of a splitting field is not valid constructively in general. Actually,
(a) ⇒ (b) is showing that C is a splitting field for any polynomial in R[X], but we
cannot use it in its own proof. With no algebraic closure, another way to construct
a splitting field extension for a polynomial p is by forging a sequence K1, . . . ,Kn of
extensions of K such that K1 = R and Kj+1 is obtained by quotienting Kj [X] by a
non trivial irreducible factor of p seen as a polynomial of Kj [X] and repeating this
operation until p splits in Kn. Although there are algorithms to do this when R is
the field of real algebraic numbers (see Section 8.2), there is in general no algorithm
that factors a polynomial or tells whether it is irreducible.
There are not many constructive algebraic proofs of the fundamental theorem of

algebra in the literature, even in constructive algebra books (such as [62]). Surpris-
ingly, one of the few we could find before we wrote ours [24] (with Thierry Coquand)
was the second proof by Gauss [38], who was actually criticizing Laplace [61] about
his proof relying on the existence of a splitting field, which holds classically but
the proof of which was only made possible a few years later, after Abel and Galois
explicitly introduced the notion of irreducible polynomial.
We now present a classical proof and two constructive modifications of this proof

in prevision of the Coq formalization. The first constructive proof is elementary

82



8.1 Equivalent definitions for real closed fields

and relies only on symmetric polynomials. The second one uses the universal de-
composition algebra. These proofs detail in a “Coq ready style” what can be found
in [24].

Classical proof

We want to show (a)⇒ (b). LetR be a real closed field and C = R[i] where i2+1 = 0.
If p is in C[X], then pp̄ is in R[X], and if pp̄ has a root x ∈ C, then either p(x)
or p̄(x) is zero, i.e. x or x̄ is a root of p. So it suffices to show that any polynomial p
of R[X] has a root in C. It is also easy to show that without loss of generality we
can suppose that p is monic.
Let p = Xm + am−1X

m−1 + . . . + a1X + a0 be a monic polynomial of degree m
in R[X]. We show by induction on v2(m) (the multiplicity of 2 as a factor of m)
that p has a root in C.

The base case: v2(m) = 0 means that m is odd, so using (a.1), the polynomial p
has a root in R, and hence in C.

The induction step: Let L be a splitting field of p (this is the non constructive
argument). The polynomial p factors over L and let us call x1, . . . , xn its roots in L,
so that p =

∏
i∈m(X − xi). The key ingredient, introduced by Laplace [61] is to

define, for u in R,

qu =
∏
i1<i2

(X − xi1 − xi2 − uxi1xi2) ∈ L[X].

Its degree is m′ = m(m−1)
2 , so that v2(m′) = v2(m) − 1. Moreover, it is symmetric

in the roots x1, . . . , xm, so that in fact qu is in R[X]. Now, by induction hypothesis
we get a root yu ∈ C of qu for each u ∈ R, thus there exists a pair i1 < i2 such
that yu = xi1 + xi2 + uxi1xi2 .
If we consider m′ + 1 distinct values of u, by the pigeonhole principle we know

there exists a pair u 6= v corresponding to the same pair i1 < i2. In other words, we
have both: {

yu = xi1 + xi2 + uxi1xi2
yv = xi1 + xi2 + vxi1xi2 .

By inverting the system, we get both s = xi1 + xi2 and p = xi1xi2 . Since (a.2) gives
us square roots of positives in R, it also gives us square roots of elements of C1

Thanks to this, we can put the polynomial X2 − sX + p in canonical form and get

{xi1 , xi2} =
{
−s±

√
∆

2

}
with ∆ = s2 − 4p ∈ C

Hence xi1 and xi2 are in C and are roots of p, which concludes the induction step.
1Indeed, let a and b be in R, let ρ be

√
a2 + b2 and ε be the sign of b, then

a+ ib =

(√
ρ+ a

2 + iε

√
ρ− a

2

)2

83



8 Discussion on the algebraic closure

Constructive proof, using symmetric polynomials
Since we cannot invoke the existence of a splitting field for p, we replace this argu-
ment by the study of a formal multivariate polynomial. Let us take over the proof
directly in the inductive case.
We recall that p = Xm + am−1X

m−1 + . . . + a1X + a0 is a monic polynomial of
degree m in R[X]. Let MR = R[X1, . . . , Xm] (resp. MC = C[X1, . . . , Xn]) be the
ring of multivariate polynomials with m indeterminates and coefficients in R (resp.
in C). For all u in R, we define

Qu =
∏
i∈I

(X −Xi1 −Xi2 − uXi1Xi2) ∈MR[X].

where I is the set of pairs i = (i1, i2) such that 0 ≤ i1 < i2 ≤ m.
Let Σ1, . . . ,Σm be a new set of indeterminates. Since Qu is symmetric in the

indeterminates, we know by the fundamental theorem of symmetric polynomials
(see [63] for example), that there exists a polynomial Q̃u in R[Σ1, . . . ,Σm] we call
the lifting of Qu, i.e.

Q̃u(σ1, . . . , σm) = Qu(X1, . . . , Xn),

where σi ∈MR is the ith elementary symmetric function of the X1, . . . , Xm.
Now, for u in R, we define qu by

qu = Q̃u
(
−am−1, am−2, . . . , (−1)m−1a1, (−1)ma0

)
∈ R[X].

It is a univariate polynomial in X with coefficients in R, and its degree is m′ =
m(m−1)

2 so by induction hypothesis it has a root yu in C. Unlike in the classical
proof, yu (which is in R) cannot be identified to some Xi +Xj + uXiXj .
However, for u and v in R, the system{

α+ uβ = yu

α+ vβ = yv

can be inverted to get a solution (αu,v, βu,v) in C2 expressed in function of u, v, yu
and yv. Then, following the same method as in the classical proof (which used
a.2), we can find two elements ru,v and su,v in C such that ru,v + su,v = αu,v and
ru,vsu,v = βu,v. Hence,

ru,v + su,v + uru,vsu,v = yu and ru,v + su,v + vru,vsu,v = yv.

Remark
In the classical setting, the latter qu (the one in this proof) is equal to our
former qu (from the classical proof) and the latter yu is equal to our former xi1 +
xi2 +uxi1xi2 for some i1 < i2. So if we take u and v in a set of size at leastm′+1,
there should exist u and v such that ru,v is a root of p in C.

We now pick a set U of m′ + 1 distinct elements of R and we define z as follows.

z =
∏

u,v∈U/u<v
p(ru,v) ∈ C

84



8.1 Equivalent definitions for real closed fields

We claim that z = 0, which would mean that there exists u < v such that ru,v is a
root of p. We show that z is zero by first defining

Z =
∏

u,v∈U/u<v
P (ru,v) ∈MC where P =

∏
l∈{1,...,m}

(X −Xl) ∈MR[X].

We remark that both P and Z are symmetric, and the lifting Z̃ of Z evaluates to z
when instantiated in

(
−am−1, am−2, . . . , (−1)m−1a1, (−1)ma0

)
.

Now the key fact to prove is that a power of Z is in the ideal generated by
the multivariate symmetric polynomial family (Qu(yu))u∈U . More precisely, we will
show that

Z#|U→I| ∈ 〈Qu(yu)〉u∈U , (8.1)

which means there exists a family (Zu)u∈U of polynomials of MC such that

Z#|U→I| =
∑
u∈U

ZuQu(yu).

Next, by averaging on all the permutations of the X1, . . . , Xm we can suppose
without loss of generality that Zu is symmetric for all u ∈ U , so that there ex-
ists a lifting Z̃u ∈ C[Σ1, . . . ,Σn] of Zu for all u ∈ U . Then, by the fundamental
theorem of symmetric polynomials, that the lifting is unique, and hence

Z̃#|U→I| =
∑
u∈U

Z̃uQ̃u(yu).

By evaluating this relation in
(
−am−1, am−2, . . . , (−1)m−1a1, (−1)ma0

)
, we get that

z#|U→I| =
∑
u∈U

Z̃u
(
−am−1, am−2, . . . , (−1)m−1a1, (−1)ma0

)
qu(yu).

Finally, since each yu is a root of qu, we have z#|U→I| = 0, which means that z is
zero.

We prove Formula (8.1) in two steps. We recall that I is the set of pairs i = (i1, i2)
such that 0 ≤ i1 < i2 ≤ m, and that U is a finite subset of R containing m′ + 1
distinct elements. We define the family (Ti,u)i∈I,u∈U as the factors of Qu(yu). More
precisely, for all i in I and u in U , we define

Ti,u = yu −Xi1 −Xi2 − uXi1Xi2 ∈MC so that ∀u ∈ U, Qu(yu) =
∏
i∈I

Ti,u.

Now the two steps we prove are

∀f ∈ U → I, Z ∈
〈
Tf(u),u

〉
u∈U

(8.2)

and ∏
f∈U→I

〈
Tf(u),u

〉
u∈U

⊂
〈∏
i∈I

Ti,u

〉
u∈U

. (8.3)

By putting the two steps (8.2) and (8.3) together, we get back

Z#|U→I| ∈
∏

f∈U→I

〈
Tf(u),u

〉
u∈U

⊂
〈∏
i∈I

Ti,u

〉
u∈U

= 〈Qu(yu)〉u∈U . (8.1)

85



8 Discussion on the algebraic closure

First step : we prove (8.2). Let us take f ∈ U → I. We want to prove that:

Z =
∏
u<v

P (ru,v) ∈
〈
Tf(u),u

〉
u∈U

Since #|U | = m′ + 1 > m′ = #|I| the function f ∈ U → I is non injective, so there
exists u and v that have the same image i = (i1, i2) by f (this is the pigeon hole
principle). Hence both Ti,u and Ti,v are in

〈
Tf(u),u

〉
u∈U

. But, we have:

{
Ti,u = (ru,v + su,v −Xi1 −Xi2) + u(Xi1Xi2 − ru,vsu,v)
Ti,v = (ru,v + su,v −Xi1 −Xi2) + v(Xi1Xi2 − ru,vsu,v)

by definition of Ti,u and Ti,v, and because

yu = ru,v + su,v + uru,vsu,v and yv = ru,v + su,v + vru,vsu,v.

By inverting this relation, we can get that ru,v + su,v −Xi1 −Xi2 and ru,vsu,v −
Xi1Xi2 are in the ideal

〈
Tf(u),u

〉
u∈U

:

ru,v + su,v −Xi1 −Xi2 = vTi,u−uTi,v

v−u ∈
〈
Tf(u),u

〉
u∈U

ru,vsu,v −Xi1Xi2 = Ti,u−Ti,v

u−v ∈
〈
Tf(u),u

〉
u∈U

.

Now,

(ru,v −Xi1)(ru,v −Xi2) = r2
u,v − (Xi1 +Xi2)ru,v +Xi1Xi2

= (ru,v + ru,v −Xi1 −Xi2)ru,v − (ru,vru,v −Xi1Xi2)

∈
〈
Tf(u),u

〉
u∈U

So that finally P (ru,v) ∈
〈
Tf(u),u

〉
u∈U

, and we can conclude:

∏
u<v

P (ru,v) ∈
〈
Tf(u),u

〉
u∈U

.

Second step: we prove (8.3). This inclusion is completely independent from the
definition of Ti,u and from the commutative ring MC it belongs to.

Lemma 8.1. Given two finite sets I and U , an arbitrary commutative ring A and
an arbitrary family Ti,u of elements of A, the following inclusion holds:

∏
f∈U→I

〈
Tf(u),u

〉
u∈U

⊂
〈∏
i∈I

Ti,u

〉
u∈U

(8.3)

Remark
This Lemma and its proof are actually the only part of this section we form-
alized in Coq so far.

86



8.1 Equivalent definitions for real closed fields

Proof. Let (cf,u)f∈U→I,u∈U be a family of coefficients in A. We have to prove that

∏
f∈U→I

∑
u∈U

cf,uTf(u),u ∈
〈∏
i∈I

Ti,u

〉
u∈U

,

which is equivalent to:

∑
F∈(U→I)→U

 ∏
f∈U→I

cf,F (f)
∏

f∈U→I
Tf(F (f)),F (f)

 ∈
〈∏
i∈I

Ti,u

〉
u∈U

.

So, it suffices to prove that for all F ∈ (U → I)→ U , there exists u ∈ U such that

∏
f∈U→I

Tf(F (f)),F (f) ∈
〈∏
i∈I

Ti,u

〉
u∈U

.

For this, it suffices to prove that for all F in (U → I)→ U ,

∃u ∈ U, ∀i ∈ I, (∃f ∈ U → I, i = f(F (f)) ∧ u = F (f)) (8.4)

Now, we apply a lemma which is the dual of skolemization and which is valid
constructively when stated as follows. We do not give here the proof of this lemma,
but we formalized it in a very few lines of SSReflect code.

Lemma 8.2. Let I and U be two finite sets and let P (i, u) be a decidable property
on the elements of these set, then

∃u ∈ U, ∀i ∈ I, P (i, u) ⇔ ∀g ∈ U → I, ∃u ∈ U, P (g(u), u)

Using this lemma on the formula (8.4), we get an equivalent formula : for all F
in (U → I)→ U ,

∀g ∈ U → I, ∃u ∈ U, (∃f ∈ U → I, g(u) = f(F (f)) ∧ u = F (f))

which has a solution by taking u = F (f) and f = g.
Finally, by putting the two steps (8.2) and (8.3) (with A = MC) together, we get

back (8.1) and the proof is complete.

The idea of this proof is largely inspired by Gauss’s proof [38]: we establish an
identity between symmetric polynomials that we lift and instantiate in the coeffi-
cients of the initial polynomial. However, the identity Gauss established is much
more complicated than

Z#|U→I| =
∑
u∈U

ZuQu(yu)

The outline of this proof is in fact closer to Laplace proof [61].

87



8 Discussion on the algebraic closure

Constructive proof, using the Universal Decomposition Algebra

It is possible to add an abstraction layer to the previous proof, using the universal
decomposition algebra of p = Xm+am−1X

m−1 + . . .+a1X+a0 over C. It is defined
in [62] as the quotient algebra AC,p = C[x1, . . . , xn] of MC = C[X1, . . . , Xn] by the
ideal Ip generated by symmetric relations.

Ip =
〈
σ1 + am−1, σ2 − am−2, . . . , σm−1 − (−1)m−1a1, σm − (−1)ma0

〉
.

A = AC,p is a C-vector space of dimension m!. An important fact is that if u is
in C and is zero in A, then it is also zero in C. Also, if u ∈ C is nilpotent in A, it is
zero in C. Now, let us take over the proof at the same point as in Section 8.1, but
using the universal decomposition algebra A.
This time, for all u in U , we define

qu =
∏
i1<i2

(X − xi1 − xi2 − uxi1xi2) ∈ A[X].

It is symmetric in x1, . . . , xm, and thus belongs to R[X], so there exists a root yu ∈ C
of qu. But because A is not an integral domain, we do not have necessarily yu =
xi1 + xi2 + uxi1xi2 .
So for all pairs u, v ∈ U we define again ru,v and su,v such that

ru,v + su,v + uru,vsu,v = yu and ru,v + su,v + vru,vsu,v = yv,

thanks to hypothesis (a.2).
Once again, we pose z =

∏
u<v p(ru,v) ∈ C, and this time we use ti,u = yu − xi1 −

xi2 − uxi1xi2 ∈ A. Now, we show that z#|U→I| = 0 in A because

∀f ∈ U → I, z ∈
〈
tf(u),u

〉
u∈U

,

which proof is exactly the same as the one of (8.2), and

∏
f∈U→I

〈
tf(u),u

〉
u∈U

⊂
〈∏
i∈I

ti,u

〉
u∈U

= 〈qu(yu)〉u∈U = 0

by direct application of Lemma 8.1.
Thus z is also zero in C, and these exist u, v ∈ U such that ru,v is a root of p

in C.
The universal decomposition algebra plays the role of the splitting field, except it

is not an integral domain so that the elements we believe are the roots cannot be
directly identified to the proper roots in the universal decomposition algebra.

Abstraction layers and Coq proof

Now is the time to decide at which abstraction level we start the formalization.
The very first argument of the induction step of each proof above starts with an
argument about the existence of a lifting for symmetric polynomials, so we have
to formalize symmetric polynomials and the fundamental theorem of symmetric
polynomials anyway.

88



8.2 Direct construction and other methods

The second proof would require the formalization of the universal decomposition
algebra and its properties as vector space and as an algebra. In the proof of the
fundamental theorem of algebra, it abstracts out some uses of the fundamental
theorem of symmetric polynomials (mainly the part that uses the uniqueness of the
lifting). The formalization of the universal decomposition algebra and its properties
could also be useful for other purposes, since it is an object of interest in computer
algebra.
However, the use of the universal decomposition algebra does not shorten the proof

very much, since only one use of the fundamental theorem of symmetric polynomials
would vanish. So we could try to formalize both proofs, beginning with the first one
because it requires less prerequisite, and doing the second one afterwards to test the
use of the universal decomposition algebra.

Remark
There is another additional abstraction layer we could try to add. We could
abstract out the membership of z in the radical ideal√

〈qu(yu)〉u∈U

using Zariski lattices as described in [24]. However, it is unclear how easy it
will be to define Zariski lattices and their properties inside Coq.

8.2 Direct construction and other methods

There are other ways to prove that C = R[i] is algebraically closed, some require
specific hypotheses, like R being countable starting from (c) instead of (a) and
using the decidability of the first-order theory of real closed fields. Let us detail
these alternative.

In the same context: the proof we formalized

Another constructive algebraic proof we became aware of after we studied the one
presented in Section 8.1 is the one by Derksen [34]. The proof he shows does not rely
on an algebraic closure or a splitting field beforehand, it is completely constructive
and does not involve symmetric polynomials. It involves a lot of standard results
on linear algebra, for which the SSReflect library is adapted. We formalized this
proof with no particular difficulty.

When R is countable

It is possible to do a direct construction of the algebraic closure for any countable
field. However this does not mean we can isolate its real sub-field and order it
(which is a consequence of finding its real part), which is equivalent to constructing
a norm operator or a conjugation operator. Since the norm is essential for many
developments using complex algebraic numbers, as for example in the proof of the
Feit-Thompson Theorem, we still need to work to get it back.
As a consequence it is still useful to define C as R[i] because it is immediately a

numeric field, which contains a real sub-field, and for which we can easily define a

89



8 Discussion on the algebraic closure

norm operator and a conjugation operator. Thus, we still need to prove that R[i] is
algebraically closed, but this times the roots can be found in the algebraic closure
of C, which make the classical proof constructive in this context.

Remark
When R is the real closure of Q, i.e. when R is the field of real algeb-
raic numbers, any polynomial p ∈ R[X] can be re-expressed as a polyno-
mial p ∈ Q[α][X], using the primitive element theorem. But thanks to
Kronecker theorem (as described in [63]), we have a factorization algorithm
on Q[α][X] and we can build a splitting field for p step by step.

Using the decidability of the first-order theory of real closed fields
In Part III we show that the theory of real closed fields defined by (c) enjoys quanti-
fier elimination, which entails the decidability of the first-order theory or real closed
fields (cf Section 10.4). But the decidability of first-order formulas on R implies the
decidability of first-order formulas on C, by a simple encoding of formulas on C to
formulas on R (where terms on C are encoded as pairs of two terms on R). Since
the formula:

∃x, xm + am−1x
m−1 + . . .+ a1x+ a0

is first order, we can instead suppose

¬
(
∃x, xm + am−1x

m−1 + . . .+ a1x+ a0
)

and try to prove ⊥. When we try to prove false, we can use the excluded middle,
because it is constructively provable that ((A∨¬A)⇒ ⊥)⇒ ⊥. Using this we could
get a splitting field L of p over R, and go on with the classical proof.
Nevertheless, this would prove (c) ⇒ (b), which does not fit in the proof of equi-

valence of (c)⇔ (a)⇔ (b), and thereby would not provide the implication (a)⇒ (c),
which we do not know how to show directly (without going through (b)).

Remark
Both this strategy and the one using Kronecker theorem lead to the construc-
tion of a splitting field with an explicit basis, which fits in the framework of
the Galois theory developed in SSReflect for the Feit-Thompson Theorem.
We could try to formalize a very short proof of the fundamental theorem of
algebra which uses Galois theory and the existence of a splitting field with an
explicit basis.

90



Part III

Theory of real and algebraically
closed fields

91





9
Elementary polynomial analysis

This chapter presents the formalization of the elementary theory of roots of poly-
nomials with coefficients in a real closed field. We follow the presentation found in
Chapter 2 of [5]. We show however that a formal verification of this chapter imposes
some refactoring and reordering. The main issue raised by the formalization of this
theory is the formal definition capturing the informal notion of neighborhood. We
describe here the solution we have adopted and the alternative proofs we had to
design. Of course we do not pretend here to improve the presentation given in [5]
which is designed for a human reader. Our version of the proofs might even seem
less intuitive or elegant than their paper counterpart. The aim of our description is
however to give an insight into the difficulties, or even sometimes the impossibility,
of a literal transcription of this chapter of [5] in a machine checked version.

9.1 Direct consequences of the intermediate value theorem

An important consequence of the intermediate value theorem is Rolle’s theorem:

Lemma rolle : forall a b P, a < b ->
P.[a] = P.[b] -> {c | c \in ‘]a, b[ & ((P^‘()).[c] = 0)}.

where P^‘() denotes the formal derivative of a polynomial. The proof presented
in [5] only describes the case when a and b are “consecutive roots”, i.e. when P
does not vanish on the interval ]a, b[, and asserts without further comment that
this reduction is sufficient to obtain Rolle’s theorem. A naive interpretation of this
argument would lead to try to establish first that one can obtain the exhaustive
list of ordered roots of P and to study the derivative of P between two consecutive
points in this list.
Unfortunately, the computation of the list of roots of a polynomial crucially relies

on the mean value theorem which in turn is obtained from Rolle’s theorem. Basing
the proof of Rolle’s theorem on the existence of this exhaustive list of roots leads to
a circular dependency between Rolle and the mean value theorem. We found out
that this untimely use of the exhaustive list of roots can be replaced by a proof by
induction. We describe here the sketch of this alternative proof we have formalized.

Alternative proof for Rolle’s theorem. We first follow closely the proof in [5] (not

93



9 Elementary polynomial analysis

using any induction), but conclude with a weaker statement: at this stage we only
show that there is either a root of the derivative or a root of the polynomial itself
in the interval, as formalized by:

Lemma rolle_weak : forall a b P, a < b -> P.[a] = 0 -> P.[b] = 0 ->
{c | c \in ‘]a, b[ & ((P^‘()).[c] = 0) || (P.[c] == 0)}.

Now we prove Rolle’s theorem from this lemma. Let P ∈ R[X] be a univariate
polynomial, and a, b ∈ R such that a < b and P (a) = P (b). Without loss of
generality, we can assume that P (a) = P (b) = 0. We reason by induction on the
maximal number of roots for the polynomial P in the studied interval. The induction
hypothesis is hence:

∀P ∈ R[X],∀ab, a < b ∧ P (a) = P (b) ∧ ]{x | x ∈]a, b[ ∧ P (x) = 0} < n

⇒ ∃c ∈]a, b[, P ′(x) = 0

for a fixed natural number n. Note that the induction hypothesis applies to any
interval, and not only to the one we started with. The base case (for n = 0) is trivial
because of the strict bound on the number of roots. In the inductive case, we apply
the rolle_weak lemma to P on the interval ]a, b[. The conclusion is straightforward
in the case the lemma directly provides a root of the derivative. In the other case,
the lemma provides a point c ∈]a, b[ which is not a root of the derivative P ′ but
is a root of the polynomial P . We conclude using the induction hypothesis on the
interval ]a, c[, which contains one root less for P than the initial interval ]a, b[.

Once Rolle’s theorem is at hand, one can establish the mean value theorem for
polynomial functions:

Lemma mvt : forall a b P, a < b ->
{c | c \in ‘]a, b[ & P.[b] - P.[a] = (P^‘()).[c] * (b - a)}.

which in turn provides the correspondence between the monotonicity of a polynomial
function and the sign of its derivative.
Finally, we recall an important property of polynomials with coefficients in an

numeric field. Given an arbitrary non constant polynomial we define its Cauchy
bound as follows.

Definition cauchy_bound (P : {poly R}) :=
‘|lead_coef P|^-1 * \sum_(i < size P) ‘|P‘_i|.

which is the sum of the absolute values of the coefficients of the polynomial, divided
by the absolute value of its leading coefficient. If a polynomial is nonzero, the
absolute value of its roots are bounded by its Cauchy bound:

Lemma cauchy_boundP : forall (P : {poly R}) x,
P != 0 -> P.[x] = 0 -> ‘| x | <= cauchy_bound P.

This result had already been formalized in a previous work [9], following the paper
proof presented in [5].

94



9.2 Root isolation

9.2 Root isolation

In our main reference [5], one of the first properties proved in the theory of real
closed fields states that if a polynomial does not vanish on an interval, then it
has a constant sign on this interval. This is actually a trivial consequence of the
intermediate value theorem. The remark following the proof of this property is more
problematic: “This proposition shows that it makes sense to talk about the sign of a
polynomial to the right (resp. to the left) of any a ∈ R” and this notion of “sign to
the right” is used at several places in the sequel of the chapter. Though this makes
perfect sense, a constructive formalization of this notion of imposes the computation
of the “next root to the right”. This definition is left implicit on paper description:
readability demands to stay rather vague on the actual value of the bounds of the
intervals meeting the requirements the author has in mind. The previously cited
remark actually comes as a justification of the lemma explaining the correspondence
between the sign of a polynomial P to the right of a point a and the sign of the
first derivative of P not vanishing at a. We show in this section that a more precise
definition is required in order to prove this lemma, and we describe the solution we
have adopted, based on the preliminary formalization of a root isolation process.
Once formalized the results presented in Section 9.1, we can implement and certify

the computation of the exhaustive list of ordered roots of a non-zero polynomial P
with coefficients in a real closed field.
We fix an arbitrary real closed field R and start by defining the following (non

Boolean) predicate:

Definition roots_on (P : {poly R}) (i : predType R) (s : seq R) :=
forall x, (x \in i) && (root P x) = (x \in s).

The predicate specifies the sequences of elements of R which contain all the roots of
the polynomial p included in the arbitrary subset i of the real closed field R. It has
a small number of useful properties when the set i is arbitrary, but we are able to
prove a little more results when the set is an interval. For instance one can explain
how to concatenate sequences of roots on intervals sharing a bound. Of course
the zero polynomial cannot be associated to such a finite sequence on a non-empty
interval: hence we show that for any polynomial P and any points a and b, there
exists an ordered sequence s such that either P is zero and the sequence is empty,
or the sequence contains all the roots of P in the interval ]a, b[.

Existence of the exhaustive sequence of roots. We fix P ∈ R[X] be a polynomial
and a, b ∈ R. We reason by strong induction on the size of the polynomial P .
If b ≤ a or if the size (see Section 3.1) of P is zero (which implies that P is zero),
then the empty sequence satisfies the requirements. In the inductive case, if the de-
rivative P ′ is zero, then P is constant and the sequence should be empty. If P ′ 6= 0,
the induction hypothesis can be applied to P ′ and provides the exhaustive sequence
of roots of the polynomial P ′ on the interval ]a, b[, in order. The rest of the proof
consists in studying the interleaving of the roots of P and the roots of P ′: a root of P ′
can be a root of P as well, and between two consecutive roots of P ′, by definition P ′
has a constant sign, hence P is monotonic and has at most one root. This case study
is performed by a nested induction on the sequence of roots of P ′ obtained from the
main induction.

95



9 Elementary polynomial analysis

The algorithm finding the exhaustive list of roots of a polynomial P in the inter-
val ]a, b[ is formalized by the operator:

Definition roots (P : {poly R}) (a b : R) : seq R := ...

which satisfies the following properties:

Lemma roots0 : forall a b, roots 0 a b = [::].

Lemma roots_on_roots : forall P a b, P != 0 ->
roots_on p ‘]a, b[ (roots P a b).

Lemma sorted_roots : forall a b P, sorted <%R (roots P a b).

Lemma root_is_roots : forall (P : {poly R}) (a b : R), p != 0 ->
forall x, x \in ‘]a, b[ -> (root P) = (x \in roots P a b).

In fact, we first build simultaneously the algorithm computing the root isolation and
the proof of its specification using a Σ-type.

Lemma roots_subproof P a b := {s : seq R | roots_on P ‘]a, b[ s}.

Then the roots operator is obtained by projecting this Σ-type on the first, computa-
tional component. The atomic specifications above are obtained from the projection
of the pair on the second component. The last important property of this ordered
sequence of roots is its uniqueness:

Lemma roots_on_uniq : forall P a b s1 s2,
sorted <%R s1 -> sorted <%R s2 ->
roots_on P ‘]a, b[ s1 -> roots_on P ‘]a, b[ s2 -> s1 = s2.

Finally, note that to obtain the exhaustive sequence of roots of a polynomial P ,
it is sufficient to compute this sequence on a sufficiently large interval, for in-
stance ]C(P )−1, C(P )+1[ where C(P ) is the Cauchy bound of the polynomial P (see
Section 9.1). We call rootsR the function that computes the exhaustive sequence of
the roots of a polynomial.

Definition rootsR P := roots P (- cauchy_bound P) (cauchy_bound P).

9.3 Root neighborhoods

We can now address the formalization of the sign of a polynomial at the right (resp.
left) of a given point. This rather informal notion is captured by the sequence of roots
we have just defined: the sequence of roots of the derivative of a polynomial gives a
precise description of the behavior of a polynomial on an interval since it provides
the intervals on which these polynomials have a constant sign. An appropriate and
effective definition of neighborhood was actually rather delicate to craft. We start
by defining what is the next root of a polynomial after a point x and before a point
b:

Definition next_root (P : {poly R}) (x b : R) :=
if P == 0 then x else head (maxr b x) (roots P x b).

96



9.3 Root neighborhoods

where the Boolean expression (P == 0) tests whether P is the zero polynomial, maxr
is the binary maximum of two values in the real closed field R, and head is the head
value of a list (with a default value as first argument). The point (next_root P x
b) is hence equal to:

• x if and only if P is the zero polynomial or (b <= x)

• b if P has no root in the interval ]x, b[

• the smallest root of P in the interval ]x, b[ otherwise

It might seem surprising to localize this definition with a right bound: using again
the Cauchy bound of the argument P, it would be possible to give an absolute
definition of the next root for all the points x smaller than the biggest root of P,
and for instance return the Cauchy bound itself for all the points x greater that
the greatest root of P. Another possible default value would be x itself in the case
of a point on the right of the largest root. But these alternative definitions are in
fact soon impractical. Neighborhoods are often used for the study of combinations
of polynomials which in general do not share the same Cauchy bound, resulting in
unnecessary painful case analysis. More importantly, these two alternative choices
introduce spurious side conditions to the algebraic properties we have to establish,
like for instance:

Lemma next_root_mul : forall (a b : R) (P Q : {poly R}),
next_root (P * Q) a b = minr (next_root P a b) (next_root Q a b).

which expresses that the next root of a product is the minimum of the next roots of
each factor. Another possible solution would have been to use an option type but
our experience is that the definition we adopted was comfortable enough to spare
the burden of handling options. Finally, we define:

Definition neighpr (P : {poly R}) (a b : R) := ‘]a, (next_root P a b)
[.

the neighborhood on the right of the point a, on which the polynomial P does not
change its sign, relatively to the interval ]a, b[. Similar definitions and properties
for left neighborhoods are implemented respectively as prev_root, prev_root_mul
and neighpl. These properties of the next (resp. previous) root of a polynomial at
a point combine to show that the neighborhood of a product is the intersection of
neighborhoods:

Lemma neighpl_mul : forall (a b : R) (P Q : {poly R}),
(neighpl (P * Q) a b) =i [predI (neighpl P a b) & (neighpl Q a b)].

where (_ =i _) stands for the point-wise equality of the characteristic functions
of the intervals and [predI U & V] for the intersection of two sets U and V. Some
proofs involving neighborhoods require being able to pick a witness point in the
interval they define. This is actually possible in the non degenerate cases:

Lemma neighpr_wit : forall (P : {poly R}) (x b : R),
x < b -> P != 0 -> {y | y \in neighpr P x b}.

We now have all the necessary ingredients to formalize the correspondence between
the sign of a polynomial p at a point x and the sign at x of the first successive
derivative of p which does not cancel:

97



9 Elementary polynomial analysis

Lemma sgr_neighpr : forall b P x,
{in neighpr P x b, forall y, sgr P.[y] = sgp_right P x}.

This lemma states that on the right neighborhood of a point x, the sign of P is
uniformly given by (sgp_right P x), which computes recursively the first nonzero
sign of the derivatives of P at x, including the 0-th derivative which is P itself. It is
hence zero only if x cancels all the successive derivatives of P.
The description of the proof of this property in [5] is a one line remark which

recalls that a polynomial P with a root x can be factored by (X−x)µ(x) where µ(x)
is the multiplicity of x. Although we have defined the multiplicity and proved that
this factorization holds, we found that an induction on the size of the polynomial
leads to a much more direct proof.

Sign of a polynomial at the right of a point. Let p ∈ R[X] and x ∈ R. The proof
goes by induction on the size of the polynomial P. The base case of a zero polynomial
is trivial. In the inductive case, if x is not a root of P the result is again immediate.
Now if x is a root of P, we denote by s the value of (sgp_right P x), which is by
definition the sign at x of the first successive derivative of P which does not cancel
at x. Remark that since x is a root of P, s is also equal to the value of (sgp_right
P^‘() x), where again P^‘() is the (first) derivative of P.
Consider an arbitrary point y in the right neighborhood of x for P. We want to

prove that the sign of P.[y] is s. Let I be the neighborhood of x bounded by b for
the product of the polynomial P by its derivative and m be a witness in I. Using
the characterization of neighborhood for products of polynomials, we know that m
belongs to the neighborhood of x bounded by b for both P and its derivative.
Since y and m are in the same neighborhood for P, P.[y] and P.[m] have the same

sign: it is sufficient to prove that the sign of P.[m] is s, i.e. that the sign of P.[m]
is (sgp_right P^‘() x).
The left bound of the interval I is x, the common left bound of the two intersected

neighborhoods. Moreover, by definition of neighborhoods, P^‘() has no root in this
interval and has hence a constant sign on I. Since x is a root of P, P keeps a constant
sign on I, which coincides with the (constant) sign of its first derivative. Hence,
since m belongs to I, the sign of P.[m] and the sign of P^‘().[m] are the same. But
by induction hypothesis combined with our initial remark, the sign of P^‘() on the
neighborhood of x bounded by b for P^‘() is equal to s. Since m belongs to I, which
is itself included in this neighborhood, the sign of P^‘().[m] is equal to s.

The formalization of intervals we described in Section 4.3 plays an important
role here to come up with an easy formalization of the easy steps of this proof.
The manipulation of neighborhoods and intervals cannot be avoided when proving
this lemma formally, whatever version of the proof is chosen. The most pedestrian
part of such proofs remains to adjust a neighborhood to make it appropriate for
several polynomials. This version of the proof is more friendly than the one based
on multiplicities because it limits the number of such explicit computations.
At the time we formalized this, we did not have the “big enough” methodology

yet (from Section 5.1.4). We believe that the integration of a variant of this method-
ology would improve the organization of the code and drastically simplify the proofs
involving neighbourhoods.

98



9.4 About existential formulas

9.4 About existential formulas
The function roots gives the solution to the existential problem:

∃x, (a < x < b) ∧ (P (x) = 0)

under the condition that P changes sign between a and b. Thus, the quantifier-
free formula P (a)P (b) < 0 implies the previous formula. The process of finding
a quantifier-free formula equivalent to some quantified formula is called quantifier
elimination. This small example constitutes the basis of quantifier elimination.
We provide more details in Section 10.3, where we show any problem reduces to

the elimination of a single existential quantifier from a formula of the form

∃x,
∧
i

Pi(x) = 0 ∧
∧
j

Qj(x) > 0,

where P and Q are two finite families of polynomials. Then, this formula can be
re-expressed in an equivalent formula, without quantifier and depending only on the
coefficients of the Qi and Pj . We will exhibit such an expression in Section 11.4.

99





10
Syntax, semantics and

decidability

The first section of this chapter recalls some standard material, essentially following
the presentation by W. Hodges [54]. The second section explains the formalization
choice we made to represent this standard material within Coq. These are necessary
prerequisites for expressing a quantifier elimination function inside Coq.

10.1 First-order logic, the usual presentation

Syntax: Signature, Terms, Formulas

In all what follows, we consider signatures of the form: Σ = C ∪ F ∪R, formed of a
finite set C of constant symbols, a finite set F of function symbols with arity, and a
finite set R of relation symbols with arity. Given such a signature Σ and a countable
set of variables V, terms are inductively defined as: variables in V and constants in
C are terms, other terms being of the form f(t1, . . . , tn) where f ∈ F is a function
with arity n and t1 . . . tn are terms. A term is closed if no variable occur in it. We
write T (Σ,V) for terms, and T (Σ) for closed terms.
The atomic formulas of a signature Σ are of the form t1 = t2 where t1, t2 are any

terms, and R(t1, . . . , tn) where R ∈ R is a relation with arity n. The first-order
language of Σ is the set of all first-order formulas with these atoms. First-order
formulas of Σ are recursively defined by: atomic formulas are first-order formulas,
other formulas being of the form ¬f , f1∧f2, f1∨f2, (∃x, f), (∀x, f), f1 ⇒ f2, where
f, f1, f2 are formulas.
A formula is closed if no variable occurs in it. We write F(Σ,V) for formulas, and
F(Σ) for closed formulas.
Any subset of F(Σ) is called a theory over Σ. A theory can contain a small set of

basic formula which cannot be derived from each other, or an arbitrarily large set
of formulas that could all be derived from a smaller set. In this thesis, we call the
basic formulas the axioms, that the reader must not confuse with Coq axioms, as
already noted in Section 2.1.
We use the ` predicate to denote provability: T ` ψ means that ψ is a first-order

consequence from formulas in T . The notation ~x will denote a finite list of variables

101



10 Syntax, semantics and decidability

x1, . . . , xk for some k ∈ N.
A theory T admits quantifier elimination if, for every φ(~x) ∈ F(Σ,V), there exists

ψ(~x) ∈ F(Σ,V) such that ψ is quantifier-free and

T ` ∀~x, ((φ(~x)⇒ ψ(~x)) ∧ (ψ(~x)⇒ φ(~x)))

Semantics: Σ-structures, Models

For any signature Σ = C∪F∪R, a Σ-structure is a pair of a set E called the domain,
and an interpretation function I assigning an element of E to each constant symbol
in C, a function En → E to each function symbol in F with arity n, and an n-ary
relation on E (i.e. a subset of En) to each relation symbol in R with arity n.
For any Σ-structure A, any term t(~x), and any list e of values in the domain of A

at least as long as the list of variables ~x, we define inductively [[~t(~x)]]A,e as

• if ~t(~x) is xi, then [[~t(~x)]]A,e = ei

• if ~t(~x) is c for some c ∈ C, then [[~t(~x)]]A,e = I(c)

• if ~t(~x) is f(~s(~x)) where f ∈ F , and where ~s are terms with variables ~x, then
[[~t(~x)]]A,e = I(f)([[~s(~x)]]A,e)

For any Σ-structure A, any atomic formula φ(~x) = R(~t(~x)) where R ∈ R, and
where ~t are terms with variables ~x, and any list e of values in the domain of A at
least as long as ~x, if [[~t(~x)]](A,e) is in I(R), we say that A is a model of φ, denoted by
A, e |= φ. This definition is extended to any first-order formula φ by induction on
the structure of φ. We say that a Σ-structure A is a model of a theory T , denoted
A |= T , if and only if ∀φ ∈ T,A |= φ.
We say that two formulas φ, ψ ∈ F(Σ,V) are T -equisatisfiable if in any model M

of T , and for any context e, (M, e |= φ if and only if M, e |= ψ).
We say that a theory T admits semantic quantifier elimination, if for every φ ∈
F(Σ), there exists ψ ∈ F(Σ) such that ψ is quantifier free and for any model M of
T , and for any list e of values, M, e |= φ iff M, e |= ψ. In this work, we formalize
the property of semantic quantifier elimination for the theory of algebraically closed
fields.

The theory of algebraically closed fields

The signature of algebraically closed fields is the signature of fields (see Figure 2.3,
Section 2.2) ΣFields = {0, 1} ∪ {−, +, ∗ ·−1} ∪ {unit}. We will also use ΣRings =
{0, 1}∪{−, +, ∗}∪∅. We call axioms of algebraically closed field, the set TClosedFields
of axioms of fields plus an axiom schema (An)n∈N where An states the existence of
a root for any monic polynomial of degree n:

An := ∀a0, . . . an−1, ∃x, xn + an−1x
n−1 · · ·+ a1x+ a0 = 0

Theorem 10.1. TClosedFields admits quantifier elimination.

This result is folklore but it is usually attributed to Tarski [83]. The corresponding
geometrical formulation of this result, stating that projections of constructible sets
are constructible sets is known as Chevalley’s Constructibility theorem [19].

102



10.2 Formalizing first-order logic in Coq

The theory of real closed fields
The signature of real closed fields is the signature of numeric fields (see Section 4.1)
ΣRealFields = {0, 1} ∪ {−, +, ∗ ·−1} ∪ {≤, <,unit}. We will also use ΣRealDomains =
{0, 1} ∪ {−, +, ∗} ∪ ∅.

Technical remark
Note that there is no norm | · | symbol in these signature. It is not necessary
because it can be encoded by a single (finite) formula using only the symbols
from ΣRealDomains and no quantifiers.

We call axioms of real closed field, the set TRCF of axioms of numeric fields plus an
axiom schema (IVTn)n∈N where IVTn states the existence of a root for any monic
polynomial of degree n that changes sign between two values. Indeed, given a natural
number n, we define

IVTn := ∀Pn,∀x,∀y, x ≤ y ∧ P (x) ≤ 0 ≤ P (y) ⇒ ∃z, x ≤ z ≤ y ∧ P (z) = 0,

where ∀Pn is an abbreviation for ∀a0, . . . , an−1 and P (x) for an−1x
n−1 · · ·+a1x+a0,

so that for a given natural number n, the formula IVTn is first order.

Theorem 10.2. TRCF admits quantifier elimination.

This has been established by Tarski [83] in 1948. This theorem is sometimes also
associated with the name of Seidenberg who gave another proof if this result [78]
in 1954. The corresponding geometrical formulation of this result is that projections
of semi-algebraic sets are semi-algebraic sets [5].

10.2 Formalizing first-order logic in Coq
Our formalization of terms, formulas, models and interpretation is very specific to
our context. Although it could be generalized with a model theoretic approach [65],
it seems not necessary to treat the specific results of this part. We first present our
formalization of models, since it is surprisingly independent from the formalization
of terms and formulas. Then we exhibit the encoding of terms and formulas and
how they get interpreted into the models.

Models as structures
In our context, we do not formalize model theory. Instead of defining a notion of
Σ-structure and model, we prefer to reuse the algebraic hierarchy (see Figure 2.2 and
Section 2.2) and the numeric hierarchy (see Figure 4.1 and Section 4.1) as hierarchies
of models. Note that the structures that inhabit the interfaces from those hierarchies
are always models of the theory described by the signature and the axioms contained
in the class of the structure. The theory underling each model is expressed using
Coq formulas, and could thus be more expressive than first-order logic. However,
one can check that all the axioms that the algebraic and numeric hierarchies contain,
are first-order formulas or schemata of first-order formulas.
To highlight the link between models and structures, let us take the example of

the zmodType, which we recall represents a commutative group. If we flattened
the actual content of the Z-module interface (from Section 2.2) we would have the
following fields.

103



10 Syntax, semantics and decidability

Structure zmodType := ZmodType{
M : Type;
zero : M;
opp : M -> M;
add : M -> M -> M;
_ : associative add;
_ : commutative add;
_ : left_id zero add;
_ : left_inverse zero opp add}.

The zmodType interface can be seen as the definition of a signature ΣZmodules =
{0} ∪ {−,+} ∪ ∅, together with some axioms TZmodules, expressed in Coq logic. In
this case the axioms are those of the theory of commutative groups, formalized in the
interface as unnamed fields. Populating such an interface, i.e. building a structure (
Z : zmodType) is providing a carrier (a type M) and interpretations for the symbols,
together with a proof that it satisfies the set of axioms TZmodules, i.e. Z is a Σ-
structure which satisfies Z |= TZmodules. So the inhabitants of the interface zmodType
represent models of TZmodules. One can see similar correspondences for more complex
algebraic interfaces like ringType, unitRingType, idomainType, fieldType and
other algebraic and numeric interfaces.
We recall that in our setting, the interface closedFieldType of algebraically

closed field (seen in Section 4.1) is formally defined by packing a structure of field
with the following extra axiom schema:
Definition closed_field_axiom (R : ringType) : Prop :=

forall n P, n > 0 ->
exists x : R, x ^+ n = \sum_(i < n)(P i) * (x ^+ i).

where the notation (x ^+ n) stands for xn, and the right hand side of the equation
is an iterated sum [8] forming the polynomial expression whose coefficients are given
by the (P : nat -> R) function.
Similarly, we recall (see Section 4.1.1) that the structure rcfType of real closed

field is formally defined by packing a structure of field with the following extra axiom
schema:
Definition real_closed_axiom (R : numDomainType) : Prop :=

forall (p : {poly R}) (a b : R), a <= b ->
p.[a] <= 0 <= p.[b] -> exists2 x, a <= x <= b & root p x.

We recall that in our context, we restrict our study to the case of discrete struc-
tures, in particular discrete fields. This means that we assume that there is a Boolean
equality test exactly reflecting Coq equality on the terms. For instance a classical
formalization of complex numbers could fit this framework through the assumption
of a Boolean equality test, and so could a constructive formalization of algebraic
numbers.

Terms as inductive types
We reason about first-order logic in Coq, which means we write functions that use
terms and formulas as their input or output. To be able to write such functions, we
need a deep embedding of first-order formulas in Coq. There are several ways to
do so. We describe here the formulation we used.

104



10.2 Formalizing first-order logic in Coq

Terms in T (ΣFields,N) are formally described as the inhabitants of the following
inductive type:

Variable T : Type.
Inductive term : Type :=
| Var of nat (∗ variables ∗)
| Const of R (∗ constants ∗)
| Add of term & term (∗ addition ∗)
| Opp of term (∗ opposite ∗)
| Mul of term & term (∗ product ∗)
| Inv of term (∗ inverse ∗)

where we reflect division by the product by an inverse. Similarly, first-order formulas
in F(ΣFields,N) are defined by:

Inductive formula : Type :=
| Bool of bool
| Unit of term
| Equal of term & term
| And of formula & formula
| Or of formula & formula
| Implies of formula & formula
| Not of formula
| Exists of nat & formula
| Forall of nat & formula.

where quantifiers explicitly take as argument the natural number representing the
name of the variable they bind. And F(ΣRealFields,N) is defined by

Inductive oformula : Type :=
| Bool of bool
| Unit of term
| Equal of term & term
| Le of term & term
| Lt of term & term
| And of formula & formula
| Or of formula & formula
| Implies of formula & formula
| Not of formula
| Exists of nat & formula
| Forall of nat & formula.

Remark
There could be multiple ways to factor formula and oformula, but we could
not decide which one would be the best. In this thesis, we decided to write
down the current state of the implementation, despite the redundancy.

We also define notations so that terms and formula are written in a more readable
way. For example, the formula:

Forall 0 (Exists 1 (Equal (Var 0) (Mul (Var 1) (Var 1))))

can be written and displayed:

105



10 Syntax, semantics and decidability

’forall ’X_0, ’exists ’X_1, ’X_0 == ’X_1 * ’X_1

in the appropriate scope.
We now define a Coq predicate

Definition holds (F : fieldType) : seq F -> formula F -> Prop.
Definition holds_real (F : realFieldType) : seq F -> oformula F -> Prop.

such that (holds F e f) and (holds_real F e f) are both F, e |= f (depending
on the signature and the model we use). This requires the definition of the function:

Definition eval (F : fieldType), seq F -> term F -> F

interpreting terms as elements in the model with respect to a context, such that
(eval F e t) formalizes [[t]]F,e. For instance, the interpretation of the abstract
formula:

’forall ’X_0, ’forall ’X_1, ’forall ’X_2, ’exists ’X_3,
’X_0 * ’X_3 * ’X_3 + ’X_1 * ’X_3 + ’X_2 == 0 : formula F,

in the environment [:: a; b; c; x] is the Coq proposition:

forall a b c, exists x, a * x * x + b * x + c = 0 : Prop.

For any (T : Type), it is straightforward to test if a formula (f : formula T) or
(g : oformula T) is quantifier-free: we just recursively test that t does not feature
any Exists or Forall constructor. This results in two Boolean tests:

Definition qf_form (T : Type) : formula T -> bool.
Definition qf_form_real (T : Type) : oformula T -> bool.

And when a formula is quantifier-free, it is possible to assign a truth value to it,
given a sequence of instantiation for the free variables:

Definition qf_eval (F : fieldType), seq F -> formula F -> bool.
Definition qf_eval_real (F : realFieldType), seq F -> oformula F -> bool.

Now, the Coq theorems we prove is that there exist two transformations:

Definition q_elim_acf (F : closedFieldType) : formula F -> formula F.
Definition q_elim_rcf (F : rcfType) : oformula F -> oformula F.

such that:

Lemma q_elim_acf_wf (F : closedFieldType) (f : formula F) :
qf_form (q_elim_acf f).

Lemma q_elim_acfP (F : closedFieldType) (f : formula F) (e : seq F) :
reflect (holds e f) (qf_eval e (q_elim_rcf f))

and

Lemma q_elim_rcf_wf (F : rcfType) (f : formula F) :
qf_form_real (q_elim_rcf f).

Lemma q_elim_rcfP (F : rcfType) (f : formula F) (e : seq F) :
reflect (holds_real e f) (qf_eval_real e (q_elim_rcf f))

These latter theorems are formalizations of the semantic quantifier elimination, re-
spectively on discrete algebraically closed fields and discrete real closed fields, as-
suming that the shallow formalization of models encompasses all models of a given
structure.

106



10.3 Quantifier elimination by projection

10.3 Quantifier elimination by projection
For the discrete structures we are interested in, and more generally for first-order
theories with decidable atoms, the elimination of a single existential quantifier entails
full quantifier elimination. We give here a formal account of this reduction, for the
special case of the theory of discrete rings. We show also the case of discrete numeric
fields but we do not detail.

For the theory of rings, we first show that this problem is general enough by
describing a transformation to_rformula of any formula f ∈ F(ΣFields,N) into a
formula f ′ ∈ F(ΣRings,N) such that f and f ′ are TFields-equisatisfiable. We describe
the transformation for atoms of F(ΣFields,N)

• right-hand sides are set at 0 by transforming (t1 = t2) into (t1 − t2 = 0);

• divisions in the left-hand sides are recursively removed by introducing extra
quantifications over fresh variables: C[t−1] = 0 is transformed into:

∀x, (x ∗ t− 1 = 0 ∧ t ∗ x− 1 = 0)
∨ (x = t ∧ ¬ (∃x, (x ∗ t− 1 = 0 ∧ t ∗ x− 1 = 0)))

=⇒ (C[x] = 0) .

• tests of invertibility are removed using the same kind of technique we used for
eliminating the inverse. C[unit t] is transformed into:

((∃x, x ∗ t− 1 = 0 ∧ t ∗ x− 1 = 0) ∧ C[>])
∨ (¬ (∃x, x ∗ t− 1 = 0 ∧ t ∗ x− 1 = 0) ∧ C[⊥])

This transformation is trivially recursively lifted to any non atomic formula.
For sake of convenience, we introduce a special data-structure for normalized

quantifier-free formulas. They can be represented in disjunctive normal form as:

∨
l∈L

∧
i∈Il

ti = 0 ∧
∧
j∈Jl

¬(tj = 0)


and hence encoded by a list (of sub-formulas in the disjunction), of pairs (one for
positive and one for negated atoms) of lists of terms (the left hand sides):

seq ((seq term R) * (seq (term R))

We consider a discrete field F, equipped with an operator:
Variable proj : nat -> seq (term F) * seq (term F) -> formula F.

whose first integer argument represents the name of a variable, second argument is
a quantifier-free conjunctive formula, and which computes a new abstract formula.
This operator is meant to eliminate a quantifier from any formula of the form:

∃xn,
∧
i∈I

ti = 0 ∧
∧
j∈J
¬(tj = 0).

We hence require that on a formula on the ring signature, this operator always
computes a quantifier-free formula on the ring signature, which we guarantee using
the following predicate.

107



10 Syntax, semantics and decidability

Definition wf_proj_axiom := forall i bc,
dnf_rterm bc -> qf_form (proj i bc) && rformula (proj i bc).

We also require this operator must compute a formula equivalent to its input.

Definition holds_proj_axiom :=
forall n bc e,
let (ex_n_bc := (’exists ’X_n, dnf_to_form [:: bc])%T in
reflect (holds e ex_n_bc) (qf_eval e (proj n bc)).

where dnf_to_form converts back the convenient representation we introduced for
disjunctive normal form (DNF) quantifier-free formulas to an inhabitant of the type
formula F.
Under the assumptions that the proj operator satisfies the latter two properties

wf_proj_axiom and holds_proj_axiom, we can now prove that the discrete field
F enjoys full quantifier elimination, meaning that we can implement the q_elim
function of section 10.3. This quantifier elimination procedure proceeds by recursion
on the structure of the formula, eliminating the inner-most quantifier:

• if the formula has the form ∃xnF , where F is quantifier-free, it converts F into
DNF. Then since ∃x,

∨
(
∧
pi ∧

∧
¬qj) is equivalent to

∨
(∃x, (

∧
pi ∧

∧
¬qj)),

it returns
∨

(proj n (pi) (qj)).

• if the formula has the form ∀xnF , where F is quantifier-free, it is equivalent to
¬∃¬F since the decidability of atoms implies that the full theory is classical.
The formula ¬F being quantifier free, the first case method applies to eliminate
the quantifier from ∃¬F , and hence from ¬∃¬F .

The sequential representation of quantifier-free formulas eases the DNF conversions,
and their combination with negations in the case of universal quantifiers.
Finally, we obtain a full formal proof that if a discrete field is equipped with a proj

operator, with a proof of the two wf_proj_axiom and holds_proj_axiom properties,
then we can derive a correct quantifier elimination procedure q_elim : formula F
-> formula F, which transforms any first-order formula into a quantifier-free one,

and such that the input and the output of the quantifier elimination are equisatis-
fiable in any model of a ring with units.

Remark
For our specific application, proj will be implemented using ProjTermAcf in
Chapter 12.4.

For the theory of numeric domains, all this works exactly the same way, except
quantifier-free formulas on ΣRealFields can be represented in disjunctive normal form
as: ∨

l∈L

∧
i∈I

ti = 0 ∧
∧
j∈J

tj > 0


Thus, let us suppose we have a discrete numeric field equipped with a proj_real
operator with the following type.

Variable proj_real : nat -> seq (term F) * seq (term F) -> oformula F.

108



10.4 Decidability

And let us suppose that this operator satisfies the following two properties.

Definition wf_proj_real_axiom := forall i bc, dnf_rterm bc ->
qf_form_real (proj_real i bc) && orformula (proj_real i bc).

Definition holds_proj_real_axiom :=
forall n bc e,
let (ex_n_bc := (’exists ’X_n, dnf_to_oform [:: bc])%oT in
reflect (holds_real e ex_n_bc) (qf_eval_real e (proj_real n bc)).

where orformula and dnf_to_oform are the equivalent of respectively rformula
and dnf_to_form but for numeric domains.
Then we can derive a correct quantifier elimination procedure q_elim_real

: oformula F -> oformula F, which transforms any first order formula into a
quantifier-free one, and such that the input and the output of the quantifier elimin-
ation are equisatisfiable in any model of a numeric domains with units.

Remark
For our specific application, proj_real will be implemented using
ProjTermRcf in Chapter 12.4.

10.4 Decidability
The first-order theory of a field is decidable if one can construct a Boolean operator
s : seq R -> formula R -> bool, which reflects the satisfiability of any formula,
i.e. satisfies the following property:

Definition DecidableField.axiom (s : seq F -> formula F -> bool):=
forall e f, (holds e f) <-> (s e f = true).

This provides a computational characterization of decidability since s can be seen
as a decision procedure for the first-order theory of F.
Of course not all fields have a decidable first-order theory: for instance the field

theory of rational numbers is undecidable [76]. However quantifier elimination entails
decidability for any first-order theory with decidable atoms. It is hence straightfor-
ward to construct by structural recursion a Boolean test qf_eval which correctly
reflects the validity of such a quantifier-free abstract formula (and remains unspe-
cified on quantified formulas). The correctness of this Boolean test is expressed by
the lemma:

Lemma qf_evalP : forall (e : seq R) (f : formula R),
qf_form f -> (holds e f) <-> (qf_eval e f = true).

where qf_form tests that an abstract formula does not contain any quantifier. The
function

Definition proj_sat e f := qf_eval e (q_elim f).

takes a formula, eliminates its quantifiers, and applies the Boolean satisfiability
test qf_eval on the result. It is a correct decision procedure as shown by the formal
proof that it satisfies the DecidableField.axiom specification.
All this works exactly the same way for a decidable first-order theory of numeric

fields.

109





11
Solving polynomial systems of

equations (in one variable)

In this chapter we show how to decide whether a system of equations has a solution
on a discrete algebraically closed field, and whether a system of inequations has a
solution on a discrete real closed field.
More precisely, let C be a discrete algebraically closed field and P and Q be two

families of polynomials of C[X], respectively indexed by I and J , two finite subsets
of N. We try to tell whether the system of equations∧

i∈I
Pi(x) = 0 ∧

∧
j∈J

Qj(x) 6= 0 with x ∈ C (11.1)

has a solution or not. We answer this question in Section 11.1.
A more complicated problem is to tell, R being a discrete real closed field and P

and Q two families of polynomials of R[X], respectively indexed by I and J , two
finite subsets of N, whether the system of inequations∧

i∈I
Pi(x) = 0 ∧

∧
j∈J

Qj(x) > 0 with x ∈ R (11.2)

has a solution or not.
We find the number of solutions of the latter two systems by programming two

counting functions count_acf and count_rcf which respectively compute the num-
ber of solution of the systems (11.1) and (11.2), (respectively with and without
multiplicity).
Then, we define two decision procedures proj_acf and proj_rcf respectively for

system (11.1) and system (11.2). Those procedures are obtained by respectively com-
paring the output of count_acf and count_rcf to zero. Indeed they return true
if the corresponding system has at least one solution, and false otherwise. As
the counting procedures do not take some degenerate cases into account (empty
sequences or zero polynomials), each decision procedure is not directly the compar-
ison to zero, but reduces the degenerate problem to a non degenerate one and then
compares the count to zero. The procedure proj_acf is detailed in Section 11.1.1,
while proj_rcf is given in Section 11.4.

111



11 Solving polynomial systems of equations (in one variable)

In Section 11.1, we reduce the problem of deciding whether any of the two systems
has solutions to counting the number of roots of a polynomial that satisfy a (possibly
empty) list of conditions. We also fully solve the problem for discrete algebraically
closed fields (system (11.1)) at this stage, so the following sections only deal with the
problem for discrete real closed fields (system (11.2)), which is much more complex.
Then, in Section 11.2 we show that the number of roots of a polynomial satisfying

a list of conditions is related to a quantity named Tarski query of two polynomials.
In Section 11.3, we relate the Tarski query to another quantity named Cauchy index
of a pair of polynomials and we give an algorithm to compute the Cauchy index
using coefficients of the polynomials.
This whole part is essentially a reformulation of [5], but reorganized in the way

which helped us to formalize it in Coq.

11.1 Reduction of the system
11.1.1 For discrete algebraically closed fields
We want to find the number of solutions (with multplicity) for the system (11.1):∧

i∈I
Pi(x) = 0 ∧

∧
j∈J

Qj(x) 6= 0 with x ∈ C (11.1)

where C is a discrete algebraically closed field. The problem amounts to finding the
number of common roots of the Pi that are not roots of the Qj . The common roots
of the Pi are exactly the roots of P = gcd({Pi, i ∈ I}), the greatest common divisor
of the Pi. This first step reduces the problem to finding the roots x of P that satisfy
the condition that all the Qi(x) must be nonzero.
We can go further and form Q =

∏
j∈J Qj which is nonzero exactly where all

the Qj are nonzero. This second step reduces the problem to finding the roots of P
that are not roots of Q.
Given two polynomials U and V , we specify gdcoU (V ) to be the greatest polyno-

mial which is coprime with U and a divisor of V . Hence, the roots of S = gdcoQ(P )
are exactly the roots of P that are not roots of Q. Indeed:

1. none of the roots of S are roots of Q, because S is coprime with Q

2. all the roots of S are also roots of P , because S divides P

3. all the roots of P that are not roots of Q are roots of S, because if there
exists x such that P (x) = 0, Q(x) 6= 0 and S(x) 6= 0, then (X − x)S would
still divide P and be coprime with Q. This is absurd because S was supposed
to be maximal.

The computational definition of the gdco is obtained by posing V0 = V and com-
puting Vn+1 = Vn

gcd(Vn,U) , the gdco is Vm for the smallest m such that Vm is coprime
with U . Or in Coq:

Fixpoint rgdcop_rec U V n :=
if n is m.+1 then

if rcoprimep U V then V
else rgdcop_rec V (rdivp U (rgcdp V U)) m

112



11.1 Reduction of the system

else (U == 0)%:R.

Definition rgdcop U V := rgdcop_rec U V (size V).

We prove (lemma rgdcopP in the source code) that this definition corresponds to
the specification above.

Technical remark
This algorithm uses a common trick for programming fixpoints when there is
no obvious structurally decreasing data. We introduce artificially a natural
number n which will be the structurally decreasing argument of the fixpoint
and the proof of correction is stated with the invariant hypothesis that n is
greater than the size of the second polynomial.

Now, the initial system has as many solutions as S = gdcoQ(P ) has roots. Be-
cause C is algebraically closed, the number of roots of S, counted with multiplicity,
is given by its degree. So we can pose:

Definition count_acf (Ps Qs : seq {poly C}) : nat :=
let P := \big[@rgcdp _/0]_(p <- Ps) p in (∗ polynomial P ∗)
let Q := \prod_(q <- Qs) q in (∗ polynomial Q ∗)
size (rgdcop P Q) - 1 (∗ degree of polynomial S, or 0 if S is zero ∗).

which would give the appropriate result provided that at least one polynomial of
the sequence Ps is non zero. Indeed, if all the polynomials of the sequence Ps are
zero (or if the sequence is empty), then S is zero and its size is zero which does not
correspond to the number of roots of S.

Remark
The gdco is designed such that in the degenerate cases, its specification would
still hold.

• gdco0(P ) = 1 because there can be no roots of an arbitrary polynomial P
that would not be roots of 0.

• When Q 6= 0, gdcoQ(0) = 0, because there are only finitely many ele-
ments of C that are not roots Q.

Finally, the decision procedure (proj_acf : seq C -> seq C -> bool) that de-
termines the satisfiability of the system (11.1) can be defined using count_acf by
making a particular case when all the Ps are zero (because then the result would be
true).

Definition proj_acf (Ps Qs : seq {poly C}) : bool :=
if all nil Ps then true else count_acf Ps Qs > 0.

113



11 Solving polynomial systems of equations (in one variable)

Remark
In practice, we prefer to redefine it directly in terms of size. Indeed (11.1)
has a solution if and only S is zero or non constant, which means its size is
different from 1.

Definition proj_acf (Ps Qs : seq {poly C}) : bool :=
let P := \big[@rgcdp _/0]_(p <- Ps) p in (∗ polynomial P ∗)
let Q := \prod_(q <- Qs) q in (∗ polynomial Q ∗)
size (rgdcop P Q) != 1 (∗ polynomial S is non constant or is zero ∗)

11.1.2 For discrete real closed fields
We want to find the number of solutions (without multiplicity) for the system (11.2):∧

i∈I
Pi(x) = 0 ∧

∧
j∈J

Qj(x) > 0 with x ∈ R (11.2)

where R is a discrete real closed field.

Degenerate case : no Pi

When the list (Pi)i contains only zero polynomials or is empty, it is not possible to
deal as simply as before with the case where all the Pi are zero. Indeed, we can’t
rely anymore on the zeros of the Pi to provide a finite set for which we could count
the number of elements satisfying of the positivity conditions on the Qj . In order
to recover a finite set, we forge the polynomial bounding_poly.

Definition: Bounding polynomial
We define the bounding polynomial of a sequence of polynomials (Qj)j∈J as:

(
∏
j∈J

Qj)′.

If P is the bounding polynomial of the family (Qj)j∈J , we are sure that the signs
of the Qj are all witnessed by +∞, −∞ and the roots of P : between any two sign
changes of one of the Qj there is a root of P . In other words

Lemma 11.1. If P is the bounding polynomial of the family (Qj)j∈J , then

∃x,
∧
j∈J

Qj(x) > 0 ⇔


∧
j∈J Qj(+∞) > 0

∨
∧
j∈J Qj(−∞) > 0

∨ ∃x, P (x) = 0 ∧
∧
j∈J Qj(x) > 0.

Now we are back to the study of the non degenerate case, using the singleton
family P (the bounding polynomial) and the family (Qj)j∈J .

Reduction to one Pi and Qi

The very first reduction of Section 11.1.1 could be performed the same way. Indeed,
when at least one of the Pi is nonzero, the roots x of the Pi such that ∀j ∈ J,Qj(x) >
0 are exactly the roots y of P = gcd({Pi, i ∈ I}) such that ∀j ∈ J,Qj(y) > 0.

114



11.2 Root counting using Tarski queries

However, the second reduction of Section 11.1.1, cannot be performed: it is not
possible to reduce the system with (P, (Qj)j∈J) to an equivalent system with only
one pair P,Q. Nevertheless, count_rcf can be computed using several pairs of
polynomials (P,Qα), where the family (Qα)α∈A, can be computed using the Qj . In
Section 11.2, we details the relation between the family (Qα)α∈A and the family
(Qj)j∈J and we exhibits A.

11.2 Root counting using Tarski queries
For the sake of readability, let us first explain the methodology in the case where
the family (Qj)j∈J is a singleton (Q1), and let us pose Q = Q1.

Case of one Q

The counting algorithm count_rcf should compute the number of roots of P on
which Q is positive, or in other words:∑

x∈roots(P )
[sign(Q(x)) = 1] where [false] = 0 and [true] = 1.

Remark
The mathematical notation [·] symbolizes the nat_of_bool coercion, which
definition is given in Section 1.3. While it is inserted automatically in the
Coq code (and not shown it Coq code snippets), we decided to print it out
in the mathematical formulas of this thesis for the sake of readability.

Let us generalize this quantity and pose

Definition constraints1 (r: seq R) (Q: {poly R}) (s_Q : int) : nat :=
\sum_(x <- r) (sgr Q.[x] == s_Q).

which counts the number of points x from an arbitrary sequence r such that Q(x)
has sign sQ ∈ {−1, 0, 1}: ∑

x∈r
[sign(Q(x)) = sQ] .

This quantity generalizes
∑
x∈roots(P )[sign(Q(x)) = 1] in two ways: the sign 1 was ab-

stracted by an arbitrary sign sQ and the list of roots of P by an arbitrary sequence r.
So that in the end, computing (count_rcf P [::Q]) amounts to computing the
value of (constraints1 (roots P) Q 1).

Definition: Tarski query
The Tarski query of a polynomial Q at a sequence of points r is the sum of
the signs taken by Q on the sequence. In other words:∑

x∈r
sign(Q(x)).

or in Coq code:

Definition taq (r : seq R) (Q : {poly R}) : int :=
\sum_(x <- r) (sgr Q.[x]).

115



11 Solving polynomial systems of equations (in one variable)

This Tarski query of Q over r is the sum, when x ranges over the sequence of
values r, of 1 when Q(x) > 0, of 0 when Q(x) = 0 and of −1 when Q(x) < 0. The
signed integer (taq r Q) hence gives the number of times Q(x) is positive when x
ranges over r, minus the number of time Q(x) is negative when x ranges over this
same sequence:

taq r Q = \sum_(x <- r) (Q.[x] > 0)
- \sum_(x <- r) (Q.[x] < 0).

This can be rephrased using the definitions we have introduced as:

taq r Q = constraints1 r Q 1
- constraints1 r Q (-1).

Moreover, applying the Tarski query to Q2 and 1, we get more relations between
Tarski queries and (constraints1 r Q sigma):

taq r (Q ^ 2) = constraints1 r Q 1
+ constraints1 r Q (-1)

taq r 1 = constraints1 r Q 1
+ constraints1 r Q (-1)
+ constraints1 r Q 0.

We denote by (tvec1 r Q) the row vector gathering the three signed integers (taq
r Q), (taq r (Q ^ 2)) and (taq r 1). We denote by (cvec1 r Q) the row vector
gathering the three natural numbers (constraints1 r Q 1), (constraints1 r Q
(-1)) and (constraints1 r Q 0). The relations we have stated define a 3 × 3

linear system:

Lemma tvec_cvec1 : forall r Q, tvec1 r Q = cvec1 r Q *m ctmat1.

where the 3× 3 square matrix ctmat1 is defined as 1 1 1
−1 1 1
0 0 1

 .
The determinant of the matrix ctmat1 is equal to 2, hence we can use its in-
verse to express (cvec1 r Q) in terms of (tvec1 r Q). In particular, the output
of (constraints1 r Q 1), which is the first element of the row vector (cvec1 r
Q), can be expressed as a linear relation of the Tarski queries of Q, Q2 and 1. The
first column of the inverse of ctmat1 gives the coefficients of this relation.

Case of multiple Qj

For the sake of simplicity, let us suppose that the index set J of the (Qj)j∈J fam-
ily is {1, . . . , n}. In order to generalize to the case where Qs has more than one
element, we first generalize the previous constraints1 operator. We build the gen-
eralized version constraints of constraints1 which counts the number of elements
of r such that every polynomial in the sequence Qs satisfies the corresponding sign
constraint in a sequence of sign constraints σ = (σ1, . . . , σn).

Definition constraints
(r : seq R) (Qs : seq {poly R}) (sigma : seq int) : nat :=
\sum_(x <- r) \prod_(i < size Qs) (sgz (Qs‘_i).[x] == sigma‘_i).

116



11.2 Root counting using Tarski queries

Or mathematically: ∑
x∈r

∏
j∈J

[sign(Qj(x)) = σj ].

Let us define A = {0, 1, 2}n and S = {−1, 0, 1}n. An element α ∈ A has the form
(α1, . . . , αn) and an element σ ∈ S has the form (σ1, . . . , σn). Moreover, given α ∈ A
we define

Qα =
∏
j∈J

Q
αj

j .

The case n = 1 studied above gives a linear relation between the Tarski queries
of a sequence r and the family (Qα)α∈{0,1,2} (which is exactly (Qα)α∈{0,1,2}) and
the number of elements x of r that satisfy the constraint sign(Q(x)) = σ for each
σ ∈ {−1, 0, 1}.
We generalize the result for any n by establishing a linear relation between:

• the family (taq r Qα) indexed by α ∈ A, where the taq operator remains the
same as before but is now applied to products of polynomials,

• the family (constraints r [::Q1; Q2;. . .; Qn] [::σ1;σ2;. . .;σn]) indexed
by σ = (σ1, . . . , σn) ∈ S.

There are 3n possible Tarski query expressions, because there is a choice for αk
in three element set of exponents {0, 1, 2} for each k in the n element set {1, . . . , n}.
There are also 3n for Cauchy index expressions for the exact same reason, except
this time it is σk that belongs to the three element set of signs {1,−1, 0}.
Hence, we define (tvec r Qs), the row vector of all possible Tarski query expres-

sions with r and polynomials from Qs and (cvec r Qs) the row vector of all possible
Cauchy index expressions. If we order them properly as shown in [5], we can show
that there is a linear system relating the two vectors. More precisely we show that

∀ Qs, ∀ r, (tvec r Qs) = (cvec r Qs) ·
(
ctmat1⊗(size Qs)

)
where ctmat1 is the 3 × 3 square matrix seen above, ·⊗n is the iterated tensor
product n times, and (size Qs) is the number of elements of r. Note that ctmat1⊗n

is still invertible for all n, since the tensor product of two invertible matrices is still
invertible. The proof is done by induction over Qs.
Yet how to obtain this linear relation is left to the reader in [5] and was a non

trivial part of our development. Let us show the outline of this proof.

Proof sketch.

• When Qs is the empty sequence [::], the iterated tensor product is the 1× 1
square identity matrix and both (cvec r [::]) and (tvec r [::]) evaluate
to the number of elements of r.

• Otherwise, we prove that

∀ r, (tvec r (Q :: Qs)) = (cvec r (Q :: Qs)) ·
(
ctmat1⊗(size Qs).+1

)
assuming that

∀ r, (tvec r Qs) = (cvec r Qs) ·
(
ctmat1⊗(size Qs)

)
.

117



11 Solving polynomial systems of equations (in one variable)

The proofs is done by expressing (tvec r (Q :: Qs)) using (tvec r1 Qs),
(tvec r2 Qs) and (tvec r0 Qs), and also (cvec r (Q :: Qs)) using (cvec
r1 Qs), (cvec r2 Qs) and (cvec r0 Qs) where
– r1 is the sub-sequence of r where we kept only elements x such that

Q(x) > 0;
– r2 is the sub-sequence of r where we kept only elements x such that

Q(x) < 0;
– r0 is the sub-sequence of r where we kept only elements x such that

Q(x) = 0.
Now we can apply the induction hypothesis on those sequences r1, r2 and r0.

Remark
The induction hypothesis applies because we strengthened the induction
hypothesis by generalizing it over r. The Proposition 2.68 in Chapter 2
of [5] has a slightly different statement since the Tarski query was not
parametrized by a set of elements r but directly by the polynomial P and
this makes the generalization over r impossible to do as such. Neverthe-
less, in the same reference, in Chapter 10, the Proposition 10.62 states
the same kind of lemma but with an appropriate definition of Tarski
query, with an explicit remark it has been generalized over r (which is
named Z in the reference).

We do not detail further the formalization of this proof, to the exception of two
issues we faced:

• First, we had to take great care about the order in which the coefficients of
the tvec and cvec vectors are given. Fortunately, this task is greatly eased
by the system: once programmed an appropriate enumeration of the elements
of the vector, the system provides support for the routine bookkeeping.

• The second aspect is the manipulation of matrices defined as dependent types.
In the statements above, we have omitted some necessary explicit type casts.
Indeed, we compute a row block matrix by gluing three matrices of size 3^n
and we need to get one of size 3^n.+1. Since 3^n + 3^n + 3^n and 3^n.+1 are
not convertible, the matrix types ’M_(3^n + 3^n + 3^n) and ’M_(3^n.+1)
are distinct. Therefore, we cannot avoid the use of explicit casts, performed
by the following cast operator:

Definition castmx : forall (R : Type) (m n m’ n’ : nat),
(m = m’) * (n = n’) -> ’M_(m, n) -> ’M_(m’, n’) := ...

provided by the SSReflect library.
These casts are pervasive in the proofs of the general case, resulting in a con-
siderable amount of uninteresting technical steps in the proofs. On the other
hand the design choice for the definition of matrices in the SSReflect library
proved very efficient for building a solid corpus of mathematical results. We
hope that further evolution of the Coq system, like for instance the “Coq

118



11.3 Cauchy index

Modulo Theory” approach [82], will allow for improvement in the manipula-
tions of such datatypes.

Remark

Please remark that we used a 3n-matrix where the 2n-matrix
(

1 1
−1 1

)⊗n
would have worked. Our main reference on the topic [5] actually needs the 3n-
matrix to refine the relation between the number of roots and the Tarski query.
Moreover, it would not have made proofs much shorter nor much simpler to
go from a 3n-matrix to a 2n.

11.3 Cauchy index

We now define the notion of Cauchy index [18] of the rational fraction Q
P on an

interval ]a, b[. The Cauchy index of the rational fraction Q
P at the point x is defined

by:

• −1 if x is a pole and lim
u→x−

Q
P = +∞ and lim

u→x+

Q
P = −∞

• 1 if x is a pole and lim
u→x−

Q
P = −∞ and lim

u→x+

Q
P = +∞

• 0 otherwise, including when x is not a pole.

Since the Cauchy index of a rational fraction is zero at points which are not poles,
this definition can be naturally extended to intervals. The Cauchy index of a rational
fraction on an interval ]a, b[ when a and b are not poles is the sum of the respective
Cauchy indexes of the fraction at the poles contained in ]a, b[, as illustrated on
Figure 11.1. The definition also extends to the Cauchy index of a rational fraction
on the complete real line ]−∞,+∞[ since the fraction has a finite number of poles.
The Cauchy index of a rational fraction at a pole is also called a jump. Jumps can

+1 +1 -1

Figure 11.1: Cauchy index on a bounded interval

119



11 Solving polynomial systems of equations (in one variable)

be defined by replacing the use of limits of rational fractions by considerations on
multiplicities. We denote by µx(P ) the multiplicity of the point x as root of the
polynomial P , this multiplicity is zero if x is not a root of P . Now, QP = (X−x)−kF
where F is a polynomial fraction that has neither a root nor a pole at x and where
k = µx(P )− µx(Q). It is easy to see that Q

P has a zero jump at x if and only if Q is
zero or µx(P )−µx(Q) is negative (which means x is not really a pole) or even (which
means that the fraction does not change sign during the jump). If QP has zero jump
at x, the sign of the jump is given by the sign of Q

P at the right of x, which is also
the sign of QP at the right of x. These remarks lead to the formalization of jump
as:

Definition jump Q P x: int :=
let non_null := (Q != 0) && odd (\mu_x P - \mu_x Q) in
let sign := sgp_right (Q * P) x < 0 in
((-1)^+ sign) *+ non_null.

which relies again on the coercion nat_of_bool (seen in Section 1.3) which interprets
non_null as the natural number 1 when it is true and as 0 if it is false. We also
benefit from the definition of the sign at the right of a polynomial formalized in
Section 9.3. The Cauchy index of a rational fraction Q

P is formalized by summing
the values taken by jump on the sequence of roots of the denominator P :

Definition cindex (a b : R) (Q P : {poly R}) : int :=
\sum_(x <- roots P a b) jump Q P x.

In Figure 11.1, a positive jump is represented by a bottom-up arrow and a negative
jump by a top-down arrow.
The key remark is that the value of the jump of Q·P ′

P at x is exactly the sign
of Q(x), provided that P is nonzero and x is a root of P . But the Cauchy index on
a bounded interval sums the jumps of a rational fraction on the sequence of roots
of its denominator. So, if we apply cindex to Q·P ′

P , we get:

cindex a b (Q * P^‘()) P
= \sum_(x <- roots P a b) (jump (Q * P^‘()) P x)
= \sum_(x <- roots P a b) (sgr Q.[x])

Now, we remark that the right hand side is equal to the Tarski query of Q on the
sequence of roots of P . This leads to the fact that the Cauchy index of Q·P

′

P computes
the Tarski query of Q on the roots of P in the bounded interval ]a, b[:

Lemma taq_cindex (a b : R) (P Q : {poly R}) :
taq (roots P a b) Q = cindex a b (P^‘() * Q) P.

Since we are interested in all the roots of P , we pose:

Definition cindexR Q P := \sum_(x <- rootsR P) jump Q P x.

We recall that the list (rootsR p) gathers all the roots of P , since there are
no roots outside of ‘](- cauchy_bound P), (cauchy_bound P)[, according to the
properties of the Cauchy bounds. We also defined a version of the Cauchy index to
take every pole of the fraction into account.
Now the Cauchy index on R can be expressed in term of variation of signs of

pseudo remainder sequences, which is a purely algebraic expression involving the
coefficients of P and Q. The pseudo remainder sequence of two polynomials is defined

120



11.3 Cauchy index

as the sequence whose first two elements are the polynomials given as arguments and
recursively defined by appending the pseudo-remainder of the last two polynomials
of the sequence.

Definition next_mod P Q := -(lead_coef Q ^+ rscalp P Q) *: rmodp P Q.

Definition mods P Q :=
let fix aux P Q n :=

if n is m.+1
then if P == 0 then [::] else P :: (aux Q (next_mod P Q) m)
else [::] in aux P Q (maxn (size P) (size Q).+1).

When we count the number of sign changes of the sequence (mods P Q) evaluated
at a point a and we subtract the number of sign changes of (mods P Q) evaluated
at a point b, we get back (cindex a b Q P). Let us detail this.
More formally, the number of sign changes of a list of values can be defined using

the changes function.

Fixpoint changes (s : seq R) : nat :=
if s is x :: Q then (x * head 0 Q < 0) + changes Q else 0.

Example
For example, changes [1,−1] is 1, changes [1,−1, 1] is 2 and changes
[1,−1, 1, 1] is 2

Remark
We do not give examples using zero because the sign zero will never be con-
tained in a sequence we give to changes, throughout this work.

Then we define a function changes_horner to evaluate an arbitrary list of poly-
nomials sP in a point x and take the sign changes of this list.

Definition changes_horner (sP : seq {poly R}) x :=
changes (map (fun P => P.[x]) sP).

And we subtract two number of changes in two different points, using

Definition changes_itv_poly a b (sP : seq {poly R}) :=
changes_horner sP a - changes_horner sP b.

And we can prove formally that for two polynomials P and Q, as soon as a and b
are not roots of any polynomial occurring in (mods P Q), the Cauchy index of Q/P
on ]a, b[ coincides with the difference of number of sign changes between a and b in
their pseudo remainder sequence, i.e. that

changes_itv_mods a b P Q = cindex a b Q P.

However, we are interested in the sign changes between −∞ and +∞ instead of
between a and b, and rather than using the Cauchy bounds of all the polynomials in
(mods P Q), it is easier to find the sign of a polynomial in infinite points by looking
at its leading coefficient:

Definition sgp_pinfty P := sgr (lead_coef P).
Definition sgp_minfty P := sgr ((-1) ^+ (size P).-1 * (lead_coef P)).

121



11 Solving polynomial systems of equations (in one variable)

And we can define the sign changes of an arbitrary sequence of polynomials sP
in infinite points, subtract them and apply the algorithm to the pseudo-remainder
sequence (mods P Q).

Definition changes_pinfty sP := changes (map lead_coef sP).
Definition changes_minfty sP :=

changes (map (fun P => (-1) ^+ (~~ odd (size P)) * lead_coef P) sP).

Definition changes_poly (sP : seq {poly R}) :=
changes_minfty sP - changes_pinfty sP.

Definition changes_mods P Q := changes_poly (mods P Q).

And similarly we can prove formally that given two polynomials P and Q, the
Cauchy index of Q/P on ]−∞,+∞[ is exactly the difference of the number of sign
changes of their pseudo-remainder sequence between −∞ and +∞:

Lemma changes_mods_cindex P Q : changes_mods P Q = cindexR Q P.

Following the presentation of [5], the proof of this lemma goes by induction on
the length of the sequence of pseudo-remainders, relying on the fact that cindexR
and changes_mod satisfy the same recursion relation:

Lemma cindexR_rec P Q :
cindexR Q P = crossR (P * Q) + cindexR (next_mod P Q) Q.

Lemma changes_mods_rec P Q :
changes_mods P Q = crossR (P * Q) + changes_mods Q (next_mod P Q).

where (crossR P) is defined as 1 if P is non-positive in −∞ and non-negative
in +∞, -1 if it is non-negative in −∞ and non-positive in +∞ and 0 otherwise.
More formally, we define a couple of very simple notions:

Definition variation (x y : R) : int := (sgz y) * (x * y < 0).
Definition crossR P := variation (sgp_minfty P) (sgp_pinfty P).
Definition cross P a b := variation P.[a] P.[b].

The function variation applied in two numbers x and y gives 1 if none of them are
zero and if x < y, it gives −1 if none of them are zero and if y < x, and it gives 0
otherwise. Now, the function crossR gives the variation of a polynomial between
−∞ and +∞ and cross between two arbitrary numbers. These very simple notions
help to break down the definitions of jumps and sign changes of a polynomial into
smaller pieces.

Detailing why the relation cindexR_rec holds was however far more technical to
conduct than suggested by the reference [5]. As described in the reference, it is done
in two steps.

122



11.4 Algebraic formula characterizing the existence of a root

(∗ first step ∗)
Lemma cindex_mod a b P Q : cindex a b P Q =

(sgz (lead_coef Q) ^+ rscalp P Q) * cindex a b (rmodp P Q) Q.

(∗ second step ∗)
Lemma cindex_inv a b : a < b -> forall P Q,

~~ root (P * Q) a -> ~~ root (P * Q) b ->
cindex a b Q P + cindex a b P Q = cross (P * Q) a b.

The first step is quite easy to show. However, the second step is non trivial
and involves a proof about summing crosses along a sequence. Indeed, the sum
of (cindex a b Q P) and (cindex a b P Q) is the sum of contiguous jumps, which
is equal to the sum of crosses between each next number of the sequence beginning
with a, ending with b and containing in between the ordered sequence of mid points
of (roots a b (P * Q). Now, the sum of variations along a sequence is the vari-
ation between the first and the last point of the sequence, which means that the
sum of all the crosses of PQ can only be the cross of PQ between −∞ and +∞.

Remark
In the end, what was non trivial was to find the appropriate notions
(variation, cross, sgp_right and neighborhoods). In the last iteration of
the proof, this lemma was not difficult to prove at all. Indeed, as soon as we in-
troduced the simple concepts of variation and cross, despite their simplicity,
it caused a major refactoring in the proof, diminishing its size by approxim-
ately one half. Moreover, before the refactoring, there was a difficult equality
to prove, involving ring additions and multiplications. It was done (painfully)
by hand, as the decision procedure for ring expressions equality was not com-
patible with SSReflect rings, (a good interfacing with the ring tactic would
have solved the equality). However, the introduction of variation and cross
caused this equation to vanish, as it was certainly abstracting it out in terms
of a combination of elementary properties of variation and cross. This was
very surprising and satisfactory.

11.4 Algebraic formula characterizing the existence of a
root

The number of roots of the Pi which makes the Qj positive is given by the function
count_rcf defined by the following algebraic expression.

 ∑
α∈{0,1,2}n

λα ·

var_mods_infty P

P ′ · ∏
k∈{1,...,n}

Qαk
k


provided that P is nonzero.
This expression is obtained by replacing constraints by the corresponding ex-

pression in terms of taq, then the taq by the appropriate cindex (given by the
lemma taq_cindex) and finally replacing cindex by changes_mods (given by the
lemma changes_mods_cindex).

123



11 Solving polynomial systems of equations (in one variable)

Now we take into account the study of the degenerate case (when all the Pi are
null) described in Section 11.1.2. Hence, the procedure proj_rcf tests if gcd((Pi)i) is
zero, if it is not zero then it uses directly count_rcf, otherwise it uses the equivalent
formula provided by Lemma 11.1 and eliminates using count_rcf the existential
quantifier in the third member of the disjunction.
The procedure proj_rcf is defined by:

Definition proj_rcf (sP sQ : seq {poly R}) :=
let P := \big[rgcdp/0]_(P <- sP) P in
if P != 0

then (∗ non degenerate case −> direct use of count_rcf ∗)
0 < count_rcf P sQ

else (∗ degenerate case, left hand side of Lemma 11.1 ∗)
let P := bounding_poly sQ in
[|| \big[andb/true]_(Q <- sQ) (sgp_pinfty Q > 0)

, \big[andb/true]_(Q <- sQ) (sgp_minfty Q > 0)
| 0 < count_rcf P sQ].

The procedure proj_rcf only involves comparisons between polynomial expres-
sions in the coefficients of the polynomials featured by the atoms of the initial
formula. Though this final expression may be unreadable by human eyes as such,
programming this combination of all the elementary steps presented in this section
raises no particular difficulty.

124



12
Programming and certifying the

quantifier elimination

We now describe how the results of the previous chapters provide a full quantifier
elimination algorithm. Until now, we formalized the theory of Coq univariate poly-
nomials with coefficients in the model. What we need to do is to treat the theory of
formal multivariate polynomials. We need to transform some programs that manipu-
late Coq polynomials into programs that deal with formal multivariate polynomials.
While studying the theory of real closed fields and while the proof of correction of
proj_rcf was quite long, only a small part describes the computational content
required: the functions that were used to code proj_rcf. And only this part of the
code may be reprogrammed and proved correct for formal multivariate polynomials.
We first show the expected behaviour of our code on a simple example.

12.1 An example

Let us eliminate quantifiers on the formula

∃x, (ax2 + bx+ c = 0) ∧ (x > 0),

where x is the variable to eliminate and a, b and c are parameters: free variables
which the resulting formula may mention.
In the proj_rcf procedure described in Section 11.4, we perform pseudo-divisions,

and thus we have to test whether some coefficients are null or not. Moreover, when
we compute the number of sign changes of the pseudo remainder sequence, we test
the sign of some coefficients. In the formal multivariate case, those coefficients may
contain formal variables. The result depends on the possible instantiation of those
variables.
For example, let us pose P (x) = ax2 + bx + c and Q(x) = x. According

to proj_rcf, we first compute P ′Q = 2ax2 + bx. Then we study the pseudo re-
mainder sequence of P by P ′Q, which is ax2 + bx + c, 2ax2 + bx, −2a2bx − 4a2c
and 32a8b2c(b2 − 4ac), provided that none of the leading coefficients of those poly-
nomials are zero.

125



12 Programming and certifying the quantifier elimination

If a = 0, the sequence becomes: bx + c, bx, −b2c, provided that b and c are
nonzero. If moreover b = 0, the sequence is c and if c is also zero, the sequence is
empty.
Let us go back to the case where a 6= 0. Maybe 2a2b = 0, in which case the

sequence would be: ax2 + c, 2ax2 and 4a2c. And if 4a2c = 0, then it would be: ax2

and 2ax2.
Finally, if a 6= 0 and 2a2b 6= 0, maybe 32a8b2c(b2 − 4ac) = 0 and the sequence

would be: ax2 + bx+ c, 2ax2 + bx, −2a2bx− 4a2c
In fact, taking the pseudo-remainder sequences of polynomials with parameter

makes no sense if the values of the parameters are discarded. To take them into
account, we must include the possible conditions along with the result in each branch.

ax2 + bx + c

C1

b = 0

bx

C2

−b2c = 0

−b2c

C3

−b2c 6= 0

b 6= 0

2a = 0

2ax2+bx

C4

−4a2c = 0

−4a2c

C5

−4a2c 6= 0

−2a2b = 0

−2a2bx − 4a2c

C6

δ = 0

32a8b2c(b2 − 4ac)

C7

δ 6= 0

−2a2b 6= 0

2a 6= 0

where δ = 32a8b2c(b2 − 4ac)

Figure 12.1: Pseudo remainder tree

The figure 12.1 represents the tree of possible pseudo-remainder sequences for
our example. The branching is based on the nullity or non nullity of the leading
coefficients of the next polynomial in the sequence. The right-most branch of this
tree is the pseudo-remainder sequence we obtain in the non degenerate case, while
each left-branching corresponds to a degeneration.
Each leaf can be labelled with the conjunction Ci of all the conditions one can

find along the branch. For example,

C5 = (2a 6= 0) ∧ (−2a2b = 0) ∧ (−4a2c 6= 0)

These conjunctive formulas represent the equations of regions of the space of para-
meters on which the pseudo-remainder sequence described by the branch is valid.
We call such regions cells. For example, on the region described by C5, the pseudo
remainder sequence of P = ax2 + bx+ c and P ′Q = 2ax2 + bx is[

ax2 + bx+ c, 2ax2 + bx, −4a2c
]

126



12.1 An example

C7

0, 0

1, 0

1, 0

2

σ3 < 0

0, 0

1

σ3 = 0

0, 1

0

σ3 > 0

σ2 < 0

1 0 −1

σ2 = 0

0, 1

1, 0

0

σ3 < 0

0, 0

−1

σ3 = 0

0, 1

−2

σ3 > 0

σ2 > 0

σ1 ≥ 0

. . .

σ1 < 0

where σ1 = a ∗ 2a, σ2 = 2a ∗ −2a2b and σ3 = −2a2b ∗ δ

Figure 12.2: Differences of sign changes on C7

Then, we have to compute the sign changes of the possible pseudo remainder
sequences in −∞ and +∞. Again, the result depends on the values of the parameters
a, b and c, but this time, it triggers ordering conditions on the parameters.
Figure 12.2 shows the possible outcomes in the computation of the Tarski query

of P and Q, depending on sign tests on the coefficients of the polynomials involved
in the sequence, which themselves depend on the cell we are in (in this example C7).
The labels on the edges correspond to the signs we have to test for, the node labels
of the form i, j correspond respectively to the number of sign changes in −∞ and
in +∞, and the numbers at the leafs is the difference between the sum of the sign
changes in −∞ and in +∞.
In order to get the quantifier-free formula equivalent to

∃x, ax2 + bx+ c = 0 ∧ x > 0

we would also have to perform the same tasks we did but with P,Q2 and P, 1
instead of P,Q. With the values of the Tarski queries of both P,Q and P,Q2, we
can compute (count_alg [::P] [::Q]), the number of roots of P that make Q
positive, for each cell. Then, the resulting quantifier-free formula is the disjunction
over all the cells C of the conjunction of the formula that state that the count is
positive on C the and the formula characterizing the cell C.
In other words, if C is the set of all the formulas characterizing the cells that were

found in the process of the computation of (count_alg [::P] [::Q]), and if FC
for each C ∈ C is the formula that states (count_alg [::P] [::Q] > 0) on C, the
resulting quantifier-free formula is ∨

C∈C
(C ∧ FC).

127



12 Programming and certifying the quantifier elimination

If we computed, factorized and simplified a bit this formula, we would get a
formula like:

a = 0 ∧ (b = 0 ∧ c = 0)
∨ (b 6= 0 ∧ bc < 0)

∨ a 6= 0 ∧ (∆ > 0 ∧ b3 > a2b∆)

where ∆ = b2 − 4ac.

Remark
We remark that conditions on the discriminant b2− 4ac naturally appeared in
the process, which were indeed the necessary condition to decide whether an
arbitrary second degree polynomial has a real root or not.

Remark
In order to keep this example to reasonable size, we simplified the formulas
and branching to the extreme. The procedure we implemented fails way before
providing the pseudo remainder tree given in Figure 12.1. The is due not
only to the natural complexity of the procedure, but also to our use of naive
algorithms and structures. Indeed, we did not even try to factorize the uses of
equality or sign tests.

12.2 Algorithm transformation and projection

For the sake of readability, we now confuse formula and oformula and always write
formula. We let the reader interpret correctly which formula it is, depending on
the context: for field formulas it is formula and for numeric field formulas it is
oformula. Often, we will also drop the argument F of term and formula when
there is no ambiguity.
Instead of building a tree like in Section 12.1 or like in our main reference on

this subject [5], we show how to systematically transform functions operating on
the type F, {poly F} and bool to functions operating on their respective reifica-
tions (term F), polyF and formula F, where polyF is the type of polynomials of
terms, simply defined as sequences of terms:

Definition polyF := seq (term F).

We also define the evaluation function eval_poly on reified polynomials by a simple
mapping of eval on each coefficient of the reified polynomial.
On one hand we call F, {poly F} and bool reifiable types and on the other hand

we call (term F), polyF and (formula F) their reified counterparts.
In Section 12.4, we lift proj_acf and proj_rcf to their reified form, which lead

to the following functions.

Definition ProjAcf : seq polyF -> seq polyF -> formula.
Definition ProjRcf : seq polyF -> seq polyF -> formula.

128



12.3 Direct transformation

Those functions are such that the following diagrams commute.

(polyF

eval_poly
��

* (seq polyF))

(map eval_poly)
��

ProjAcf //

	

formula

qf_eval
��

({poly R} * (seq {poly R}))
proj_acf

// bool

The arguments of the functions ProjAcf and proj_acf are on the left hand side of
the diagram. We represent them in a non-curried style on the diagrams.

(polyF

eval_poly
��

* (seq polyF))

(map eval_poly)
��

ProjRcf //

	

formula

qf_eval
��

({poly R} * (seq {poly R}))
proj_rcf

// bool

The arguments of the functions ProjRcf and proj_rcf are on the left hand side of
the diagram. We represented them in a non-curried style on the diagrams.
Now, quantifier elimination by projection (cf Section 10.3) expects the following

functions.

Definition ProjTermAcf :
nat -> seq (term F) * seq (term F) -> formula F.

Definition ProjTermRcf :
nat -> seq (term F) * seq (term F) -> formula F.

Those functions can be defined from ProjAcf and ProjRcf by first abstracting the
two sequence of terms to two sequences of polynomials, according to the variable
number given to the function. This is done through the function abstrX.

Definition abstrX (i : nat) (tf : term F) : polyF.

12.3 Direct transformation

Given a function g with inputs and outputs in reifiable types (i.e F, {poly F} and
bool), we call it a DT-function if we can find a function G, with the same signature
except all the types are replaced by their reified counterpart.

129



12 Programming and certifying the quantifier elimination

Definition: DT-function and direct counterpart
Given n+ 1 types A1, . . . , An, B and their formal counterparts A′1, . . . , A′n, B′,
a function g : A1 → . . . An → B is a DT-function (Directly Transformable
function) if we can program its reified counterpart

G : A′1 → . . .→ A′n → B′

such that the following evaluation/interpretation diagram commutes:

(A′1 ∗ . . . ∗A′n)

eval
��

G //

	

B′

eval
��

(A1 ∗ . . . ∗An) g
// B

Moreover, G is called the direct (reified) counterpart of g.

Remark
Now, the goal of this section amounts to prove that both proj_acf and
proj_rcf are DT-functions.

Technical remark
The definitions and theorems we give in this section have not been formalized in
Coq: they are meta-theorems which gave us guidelines for this formalization.
However, we believe that with some effort, it is possible to formalize them
in Coq, anyway. This would involve the deep embedding of a programming
language in Coq in order to generate both functions acting on F, {poly F}
and bool, and functions acting on their reified counterparts.

Examples of DT-functions are arithmetic operations on terms (Add, Opp, Mul, . . .)
and on polynomials (AddPoly, OppPoly, MulPoly, . . .). Since the method to get the
direct counterpart of a DT-function is generic, we here show it on some examples of
DT-functions for the sake of simplicity.
To turn a DT-function operating on values in the real closed field and on poly-

nomials into its reified counterpart, we examine its code and turn each instruction
into its formal counterpart. For example, the function (fun x : R => x * x) that
computes the square of an element of R is turned into (fun x : term => Mul x x),
which returns a term. The function (fun x : R => x < 1) that tests whether an
element of R is greater that 1 is turned into (fun x : term => Lt x 1) which re-
turns a formula. Indeed, their evaluation/interpretation diagrams commute trivially.
All but one of the transformations are straightforward. Let us consider for example

the function lead_coef that returns the leading coefficient of a polynomial:

Fixpoint lead_coef (p : {poly R}) : R :=
match p with
| [::] => 0
| a :: q => if q == 0 then a else lead_coef q
end.

Now let us try to turn it into its formal counterpart LeadCoef. The destruct con-
struction (match _ with _ end) is the same in both procedures (because of the

130



12.4 Continuation passing style transformation

encoding of both polynomials representation are the same). However the condi-
tional (if q == 0 then _ else _) cannot be translated directly. Indeed one can-
not know whether a formal value is null without knowing the values taken by the
free variables. As a consequence we cannot determine which branch of the condi-
tional to take: the formula has to collect all cases and link the values taken by the
conditional expression with the conditions discriminating the different branches.
We can see the if construction as a function taking three arguments — a con-

dition an two expressions of some type — and returning a value of the same type.
Because evaluation functions take environments (i.e. values to give to the free vari-
ables) as arguments, there is no way to find a function If such that the following
evaluation/interpretation diagram commutes:

(formula

qf_eval
��

* term

eval
��

* term)

eval
��

If //

	

term

eval
��

(bool * R * R)
if

// R.

As a consequence, we could not find a formal counterpart of lead_coef with type
polyF -> term. This means that we could not prove if and lead_coef were DT-
functions. More generally, there is no direct way to find a formal counterpart to the
code of an arbitrary function g that uses non DT-functions. However, it is important
to notice that even if the code of a function g cannot be translated directly, it might
still be a DT-function. In particular, proj_acf and proj_rcf cannot avoid using
conditional statements, but in the end we will still show they are DT-functions.

12.4 Continuation passing style transformation
To find some reified counterparts to non DT-functions, we introduce a different
reified formal counterpart to the if construct. We call it its cps-counterpart, for
continuation passing style counterpart.
The cps-counterpart to the if is defined as :

Definition If (cond th el : formula) : formula :=
Or (And cond th) (And (Not cond) el).

This formula requires th to be satisfied when cond is and el to be satisfied when
cond is not.
With this definition, If does not take an arbitrary type for its arguments anymore,

but only formulas. Hence any function which uses a conditional statement must then
output a formula, which is fair in our setting since we are ultimately interested in
building the ProjRcf and ProjAcf functions, which outputs a formula.
We propose the following cps-transformation for the function lead_coef:

Fixpoint LeadCoef (P : polyF) (k : term -> formula) : formula :=
match p with
| [::] => k 0
| a :: q => If (q == 0) (k a) (LeadCoef q k)
end.

where the additional argument k is called a continuation.

131



12 Programming and certifying the quantifier elimination

The correctness of LeadCoef with regard to lead_coef is expressed by the fol-
lowing lemma.

Lemma LeadCoefP : forall (k : term -> formula) (k̄ : R -> bool),
(forall x e, qf_eval e (k x) = k̄ (eval e x))) ->
forall P e, qf_eval e (LeadCoef P k) = k̄ (lead_coef (eval_poly e P)).

where (k̄ : R -> bool) is the interpretation of (k : term -> formula). This
lemma expresses that executing LeadCoef on a polynomial P with continuation k
and interpreting the result in environment e leads to the same result as executing
lead_coef on the interpretation of the polynomial P and then applying the continu-
ation. The hypothesis of this lemma says that the continuation must commute with
evaluation.
This can be expressed by the following implication of the evaluation/interpretation

diagram, which correspond to composition of lead_coef and k.

term

eval
��

k //

	

formula

qf_eval
��

⇒

polyF

eval_poly
��

(lead_coef_cps _ k)//

	

formula

qf_eval
��

R
k̄

// bool {poly R}
(k̄ (lead_coef _))

// bool.

More generally, we have the following theorem.

Theorem 12.1 (meta-theorem on cps-counterpart). Given n+1 types A1, . . . , An, B
and their formal counterparts A′1, . . . , A′n, B′, any function

g : A1 → . . . An → B

that is coded using only DT-functions and functions that have a cps-counterpart
(including if) has a cps-counterpart

f_cps : A′1 → . . .→ A′n → (B′ → formula)→ formula

such that the following evaluation/interpretation diagram commutes:

B′

eval
��

k //

	

formula

qf_eval
��

⇒

(A′1 ∗ . . . ∗A′n)

eval
��

(G _ ... _ k) //

	

formula

qf_eval
��

B
k̄

// bool (A1 ∗ . . . ∗An)
(k̄ (g _ ... _))

// bool.

This means we can successively provide a cps-counterpart to any function used to
program proj_acf and prof_rcf, including non DT-functions. Since the correctness
lemma of the direct counterpart of a DT-function is much shorter and easier to
use than the one of its cps-counterpart, we use cps-counterparts only for non DT-
functions and we keep using direct counterparts for DT-functions. A consequence
of this is that proj_acf and prof_rcf have cps-counterparts.

132



12.4 Continuation passing style transformation

Example
Let us study the example of the test function that tests whether the leading
coefficient of a polynomial is greater that 0:

Definition test (p : {poly R}) : bool := 0 < lead_coef p.

We now build the formal counterpart testF of test. It suffices to call LeadCoef
on p and give as a continuation the function that tests if a term is greater than
0.

Definition Test (p : polyF) : formula :=
LeadCoef p (fun x => Lt (Const 0) x).

Let us remark that although test uses non DT-functions in its code, since
its return type is bool, it remains a DT-function. This is a general fact: any
function returning a Boolean is a DT-function which direct counterpart returns
a formula.

Now, the following meta-theorem suffices to conclude that proj_rcf and proj_acf
are DT-functions.

Theorem 12.2. If a function g with return value in bool has a cps-counterpart,
then it is a DT-function, which means it also has a direct counterpart.

Proof. If g has type
A1 → . . . An → bool,

its cps-counterpart G has type

A′1 → . . .→ A′n → (formula→ formula)→ formula.

Now, we pose (D a1 . . . an := G a1 . . . an id). The function D has type

A′1 → . . .→ A′n → formula

and we can prove it is the direct counterpart. Indeed it suffices to replace k and k̄
by id in the diagram of commutation of the cps-counterpart, and the left hand side
becomes true.

formula

qf_eval
��

id //

	

formula

qf_eval
��

⇒

(A′1 ∗ . . . ∗A′n)

eval
��

D //

	

formula

qf_eval
��

bool
id

// bool (A1 ∗ . . . ∗An)
(g _ ... _)

// bool.

133





Part IV

Conclusion and perspectives

135





Conclusion and perspectives

On Coq and SSReflect

It has been a real pleasure to work using Coq and SSReflect. Indeed, the latter
was a wonderful toolbox, able to help me solve numerous problems, not only by
providing the appropriate database of lemmas, but also by suggesting a methodology,
and providing a concise and powerful tactic language and a great search functionality.
Formalizing mathematics taught me a lot of mathematics I thought I understood,

but which I rediscovered under a new angle, the one where you cannot possibly miss
any detail. It helped me rethink the notion of what I believed was a proof and it
definitely taught me never to trust anymore the capacity of humans to check the
validity of proof: I now only trust them for their intuition. However, I also learned
that you should think very hard before trying to prove something, because with
Coq, there is no “almost truth”: if your statement is not provable, you can lose a
lot of time before noticing it. Moreover, if a lemma is not stated in the way you will
use it, then you will also lose a lot of time restating it correctly and doing the proof
again. Despite this, Coq has also been a great tool to toy with and discover what
was the right statement.

Notations and implicit data

There is a balance to keep between conciseness, expressiveness and readability. While
the user might gladly forget that he is handling algebraic structures and may only
want to see the carrier and some of the algebraic operations when he needs to,
the system must keep track of all the information. This kind of situation makes
mandatory to hide some information from the system to the user, which is what
implicit arguments and notations are for. However, hiding too much information
can also affects the readability by a human. The constraints on readability are
different from the ones that occur for programming (without proofs) and depends
also on the context. For programming, overloading can very convenient, but for
proving it can be essential to be able to tell apart two terms that look the same but
are not.

137



Proof engineering

During the three last years, I have been formalizing various results in Coq, either
to toy with them or to achieve a greater result. I pushed those results to various
stages of development, which I would classify into three categories.

1. The first stage is the one of unfinished developments, that I aborted because I
had seen enough of, or because I did not believe it could work out in the end,
or simply because I did not have enough time.

2. The stage of those which could be considered as finished, because I reached
the result I wanted to prove, but that are not reusable by others, not even me
sometimes, not as such. This could happen either because there is no docu-
mentation, or just because it probably does not contain yet what is necessary
to prove a different result than the one it was designed for.

3. Accordingly to the latter drawback, the final stage is to make the development
usable by other users, and this is in my opinion both the most difficult, essential
and interesting work. It not only consists in providing enough lemmas, but
also in finding the most appropriate form for their statement, finding a better
abstraction, and often writing better and shorter proofs. However, I learned
that reaching that stage does not mean that the development is over.

Unsurprisingly, reaching each next step for each development always gave me a lot
of satisfaction, but the last one was the most thrilling.
The parts of development I pushed to the last stage so far are the numeric hierarchy

(Chapter 4) and the tool for quotienting (Chapter 6). Quotients are only used once in
my thesis work but they are used by other persons and in some of my own unfinished
developments. As for the numeric hierarchy, it was necessary to reach the final stage
because it is used in (almost) everything we formalized, but also in the proof of the
Feit-Thompson Theorem. It took us a year to reach a stable version: choosing the
right interfaces, their organization, the amount of theory to provide, and the naming
convention. Also, since integers and rationals are implementations of interfaces from
the numeric hierarchy they can also be considered as in final state. Note that the
development on polynomial division (end of Section 3.1) also reached this final stage,
but not from my hand. Because they reached this stage, all of the developments
cited in this paragraph got included in the latest release of SSReflect (v1.4).
Note that the contributions of creating real and algebraic numbers and program-

ming a quantifier elimination procedure can also be seen as the implementation of
given interfaces. Indeed, real and algebraic numbers respectively implement discrete
real and algebraically closed field interfaces, and the quantifier elimination procedure
can be seen as an achievement to implement an interface for fields with decidable
first order theory. In this sense, they could also be considered as finished. However,
the material we used to write those implementations is often not specific to them,
and other formalizations could benefit from their further development.
To conclude with this classification, nothing we presented here is at the unfinished

stage. Indeed, the rest of this thesis work can be classified in the second category,
which leads us to describe developments that could extend or use the work from this
thesis.

138



Possible applications and extensions

We noticed that by extending the big enough tactic to handle intersections of pre-
dicates, we could handle “small enough” neighborhoods. This could simplify lots of
proofs in the development about polynomial analysis in discrete real closed fields
(Chapter 9). We also think it could help to formalize a theory about limits of func-
tions and the study of equivalence, of “little o” and “big O” notations and of limited
developments. Indeed, the theory of the asymptotic behaviour of functions relies on
reasoning of the form that “big/small enough” handles. We also hope it may also
be used to implement non standard analysis, or at least provide a tool to reason
like in non standard analysis but in a certified framework, not prone to human er-
ror. A development of asymptotic reasoning (using delimited developments or non
standard analysis) would also simplify further some definitions and proofs in the
polynomial analysis on real closed fields, like for example the notions of jump or
of sign on the right of a polynomial, which could be formalized more directly and
would have properties deriving directly from the theory of asymptotic reasoning.
As another extension, we may want to formalize one of the proofs of the funda-

mental theorem of algebra from Section 8.1. Even if we already used a constructive
proof for this theorem, it could be useful to prove it using symmetric polynomials
or the universal decomposition algebra, which are two interesting object for other
formalizations of mathematics and in computer algebra.
Currently, the quantifier elimination procedure is written twice: on mathematical

objects and on reified terms. Moreover the proof that the former objects are the
interpretation of the latter involve writing pieces of code on mathematical objects
each time a recursive function is involved. This leads to a large amount of duplic-
ated code which Coq is unable to infer automatically for now, so that the user
(me) had to enter it by hand. A solution for this would be to reify the quantifier
elimination program itself and from it generate both the Coq function operating on
mathematical objects and the Coq function operating on reified terms. This would
considerably shorten the size of the code and ease its maintenance, since there would
be only one code to maintain.
The proof of quantifier elimination we made is semantic: we prove that the output

formula – which is quantifier-free – has the same interpretation as the input formula.
However, we did not prove that the equivalence is provable in a natural deduction
or sequent calculus system (for example). Since we did not do a deep formalization
of model theory, we consider that models of real closed fields are instances of the
interface of real closed field from the numeric hierarchy (described in Chapter II).
But this interface is the one of discrete real closed fields, which means equality and
comparison are decidable. This makes sense, since without the decidability of the
atoms of the theory (here equality and comparison), quantifier elimination does not
imply the decidability of the first-order theory. What is more debatable is the fact
that the equality cannot be a setoid equality in our framework, which excludes the
Cauchy reals as a discrete real closed field. At least we know that real algebraics
form an instance of the discrete real closed field interface, which means that this
quantifier elimination proof is not groundless: we can eliminate quantifiers from a
first-order formula with variables that are real algebraic numbers.
However, we hope that a formalization of Gödel completeness theorem (if it is

possible to prove it constructively) would provide a syntactic quantifier elimination

139



proof. Indeed, we proved semantic quantifier elimination is valid in any discrete
model of real closed fields. This is classically equivalent to being valid in any model
of real closed fields. In particular, we hope that it is possible to do the construction
of a syntactic model (à la Herbrand or Henkin) using the existence of real algebraic
number, and to derive the provability of the equivalence between a first-order formula
and its quantifier free counterpart. From such a proof it may be easy to derive
semantic quantifier elimination on any model, discrete or not.

On automation

In our work we did not use any decision procedure, although we studied objects for
which decision procedures exist: the theory of rings expressions [17, 48] and of linear
arithmetic [10]. One of the first reason is purely technical: rings and natural number
expressions in SSReflect are not expressed in a way that the implementation of
the decision procedure could handle. However, the main reason — which is also a
reason why we did not take much time to try to fix the previous problem — is that
we did not need decision procedures to complete our proofs. Most of the problems
we encountered that belonged to these decidable theories were often so simple a
single line of tactics could solve them. As already mentioned in Section 4.3 and
Section 11, most of the problems that seemed to require the use of one of those two
decision procedures could be solved by adding a simple abstraction layer (such as
intervals for Section 4.3, and variations for Section 11). If those abstraction layers
were only designed to avoid the use of decision procedures, it would not have been a
very good reason for their introduction. However, those abstraction also made the
code more readable, and the proofs smaller and more robust (even those which did
not need decision procedures at all).
Nevertheless, decisions procedures can be useful and we think a natural improve-

ment of the current state of the SSReflect library, and more particularly the
algebraic and numeric hierarchies, is to provide a connection with Coq decision
procedures. The current development on numeric domains — which does not rely
on decision procedures — could even be used to bootstrap the certification of another
linear arithmetic decision procedure, if one wants to re-implement one.

On effective computation

In this thesis we show how we constructed the real algebraic closure and the complex
algebraic closure of any discrete Archimedean real closed field. There were many
different choices for this formalization, we made the choices we believed would be
faster to implement, given the current state of the art in formalization of mathem-
atics. The datatypes we used are naive and the arithmetic operations and decidable
predicates and relations we implemented are not efficient. For example, integers
have been defined as the disjoint sum of positive and negative unary natural num-
bers. Because of this, computation on integers and rationals only work for small
examples. Moreover, in the SSReflect library, some operations are locked, which
means that a piece of code has been made opaque in order to stop Coq from com-
puting it. One of the reason why we want Coq not to compute is because proofs are
often made at some level of abstraction, and letting Coq reduce a term could break

140



the abstraction. For example, when using the ring addition on integers, if we let
the system reduce the ring addition to the specific addition of integer, we lose the
information it is a ring operator and thus we lose the possibility to use ring theory to
solve our specific problem. Another reason for locking is that some problems make
the current kernel of Coq diverge. We do not know precisely whether the reason for
locking is fundamental or only necessary because of Coq current implementation.
Anyway, in our experience, naive structures and naive algorithms are easier to

study than their efficient counterparts. Because of this, it is not necessarily a prob-
lem for naive structures to be locked, but it calls for a systematic methodology
for translating naive structures and operations into their efficient counterparts, run
them and get back to naive structures. This looks very much like a form of large
scale reflection. This approach has been investigated recently [35], and seems very
promising.
We hope that a generalization of this approach may help forging and certifying a

computable structure for real algebraic numbers. The latter approach gives a generic
solution for switching to a “computation mode” in Coq, yet the implementation of
the computable structures and efficient algorithms remain specific to the problem,
here algebraic numbers. For real algebraic numbers we think that one may use a
fast implementation of real numbers which could be based on

• dyadic numbers [59] if possible, in order to compute approximations;

• a better theory of interval arithmetic, to get more precise bounds for polyno-
mials, with possible inspiration from [69];

• potentially Newton’s method instead of dichotomy for approximating roots.
Newton’s method has already been formalized and proved correct in Coq
[68, 58];

• Newton sums to compute the specific resultant that occur in the computation
of arithmetic operations on algebraic Cauchy reals, as described in graduate
courses [16].

The quantifier elimination procedure we presented can be seen as a naive ver-
sion of Collins’ Cylindrical Algebraic Decomposition (cf [28]), except Cylindrical
Algebraic decomposition algorithms do not only output finite sets of cells, but also
(multidimensional) algebraic points from each cell. By evaluating the polynomials
in each point we can reconstruct the quantifier-free formula if we want to. However,
they share the same ideas of computing the Cauchy index in an algebraic way, and
the linear transformation of Tarski queries with different algorithms relying on more
advanced mathematical object. Anyway, they share a strong common ground on the
theory of polynomials on real closed fields. The computation of the Cauchy index
uses subresultants instead of pseudo remainder sequences. And the computation of
the number of root satisfying some constraint uses an adapted matrix of smaller
dimension in the number of polynomials instead of a 3n-square matrix, as detailed
in our reference on the subject [5]. Moreover, expressing the algebraic points in
each cell could might be done using algebraic numbers: using the current naive
implementation for the theory and the efficient one in the Cylindrical Algebraic
Decomposition procedure.

141



Applications using effective computation
In the context of the proof of the Feit-Thompson Theorem by the mathematical
components team [74], Russell O’Connor formalized Galois theory constructively in
SSReflect.1 We hope that efficient algebraic numbers could lead to the effective
computation of Galois groups of polynomials.
The quantifier elimination procedure as described in Section 12.4 is programmed

in continuation passing style. In each function, the continuation is executed on the
sub-cells that are created. Each sub-cell is stored as an incomplete formula in the
call stack of the function. Instead of letting the stack store this result, we could
store it manually using a well-defined monad. This cell-monad would hold a finite
set of cells and accumulate constraints to refine this set. It could even be optimized
to avoid the duplication of identical constraints.

1This is not published.

142



List of Figures

1.1 Large scale reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 The ring tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Small scale reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Boolean reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Packaging of mathematical structures . . . . . . . . . . . . . . . . . 22
2.2 The algebraic hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Signatures of SSReflect algebraic structures . . . . . . . . . . . . 24

4.1 Extension of the hierarchy with Numeric and Real interfaces . . . . 32
4.2 Axiom of the Numeric mixin . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Axioms to produce directly a Real structure . . . . . . . . . . . . . . 33
4.4 Naive case analysis on an order statement . . . . . . . . . . . . . . . 37
4.5 A three constructor inductive instead of sumbool . . . . . . . . . . . 38
4.6 Three way case analysis with a simple inductive . . . . . . . . . . . . 38
4.7 Definition of ltrgtP . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Three way case analysis using an inductive family . . . . . . . . . . . 39
4.9 A non structured interval membership goal . . . . . . . . . . . . . . 40
4.10 An interval membership goal. . . . . . . . . . . . . . . . . . . . . . . 41
4.11 Generating rewrite rules for intervals . . . . . . . . . . . . . . . . . . 42
4.12 Subinterval decision procedure . . . . . . . . . . . . . . . . . . . . . 43

5.1 The construction of algebraic Cauchy reals . . . . . . . . . . . . . . . 47

6.1 Quotients without equivalence relation . . . . . . . . . . . . . . . . . 63
6.2 Quotient interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Encoding algebraic numbers as a choice structure . . . . . . . . . . . 76
7.2 The construction of real algebraic numbers . . . . . . . . . . . . . . 78
7.3 Alg is the real algebraic closure . . . . . . . . . . . . . . . . . . . . . 79

8.1 Equivalent definitions for real closed fields . . . . . . . . . . . . . . . 82

143



List of Figures

11.1 Cauchy index on a bounded interval . . . . . . . . . . . . . . . . . . 119

12.1 Pseudo remainder tree . . . . . . . . . . . . . . . . . . . . . . . . . . 126
12.2 Differences of sign changes on C7 . . . . . . . . . . . . . . . . . . . . 127

144



Bibliography

[1] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.
The Matita interactive theorem prover. In Proceedings of the 23rd international
conference on Automated deduction, CADE’11, pages 64–69, Berlin, Heidelberg,
2011. Springer-Verlag.

[2] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.
Hints in Unification. In Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, TPHOLs ’09, pages 84–98, Berlin,
Heidelberg, 2009. Springer-Verlag.

[3] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally verified
proof of the prime number theorem. ACM Transactions on Computational
Logic, 2006.

[4] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory.
Journal of Functional Programming, 13(2):261–293, 2003. Special Issue on Lo-
gical Frameworks and Metalanguages.

[5] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real
Algebraic Geometry (Algorithms and Computation in Mathematics), volume 10
of Algorithms and Computation in Mathematics. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[6] Helmut Bender and Georges Glauberman. Local analysis for the Odd Order
Theorem. Number 188 in London Mathematical Society Lecture Note Series.
Cambridge University Press, 1994.

[7] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment, Coq’Art: the Calculus of Inductive Constructions. Springer-Verlag,
2004.

[8] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big
operators. In Theorem Proving in Higher-Order Logics, volume 5170 of LNCS,
pages 86–101, 2008.

145



Bibliography

[9] Yves Bertot, Fréderique Guilhot, and Assia Mahboubi. A formal study of Bern-
stein and coefficients polynomials. Mathematical Structures in Computer Sci-
ences, 2011.

[10] Frédéric Besson. Fast reflexive arithmetic tactics the linear case and beyond.
In Types for Proofs and Programs (TYPES 06), Lecture Notes in Computer
Science, pages 48–62. Springer-Verlag, 2006.

[11] Sidi Ould Biha. Formalisation des mathématiques : une preuve du théorème de
Cayley-Hamilton. In Journées Francophones des Langages Applicatifs, January
2008.

[12] Sidi Ould Biha. Finite groups representation theory with Coq. In Mathematical
Knowledge Management, 2009.

[13] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.

[14] Jack Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geo-
metry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer-Verlag, 1998.

[15] Alin Bostan. Algorithmique efficace pour des opérations de base en Calcul
formel. PhD thesis, École polytechnique, 2003.

[16] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Bruno Salvy,
and Éric Schost. Algorithmes efficaces en calcul formel, january 2012. En cours
de rédaction, Notes de cours 2-22 du MPRI, année 2010-2011 http://algo.
inria.fr/chyzak/mpri/poly-20120112.pdf.

[17] Samuel Boutin. Using reflection to build efficient and certified decision pro-
cedures. In Martín Abadi and Takayasu Ito, editors, Theoretical Aspects of
Computer Software, volume 1281 of Lecture Notes in Computer Science, pages
515–529. Springer Berlin / Heidelberg, 1997. 10.1007/BFb0014565.

[18] Auguste Cauchy. Calcul des indices des fonctions. Journal de l’École polytech-
nique, 15(25):176–229, 1832.

[19] Claude Chevalley and Henri Cartan. Schémas normaux; morphismes; ensembles
constructibles. In Séminaire Henri Cartan, volume 8, pages 1–10. Numdam,
1955-1956. http://www.numdam.org/item?id=SHC_1955-1956__8__A7_0.

[20] Laurent Chicli, Loïc Pottier, and Carlos Simpson. Mathematical quotients and
quotient types in Coq. In H. Geuvers and F. Wiedijk, editors, Types for Proofs
and Programs, number 2646 in LNCS, pages 95–107. Springer, 2003.

[21] Cyril Cohen. Types quotients en Coq. In Hermann, editor, Actes des 21ème
journées francophones des langages applicatifs (JFLA 2010), Vieux-Port La
Ciotat, France, January 2010. INRIA.

[22] Cyril Cohen. Construction des nombres algébriques en Coq. In Proceedings
of JFLA2012, 2012. http://perso.crans.org/cohen/work/realalg/ (to ap-
pear).

146

http://algo.inria.fr/chyzak/mpri/poly-20120112.pdf
http://algo.inria.fr/chyzak/mpri/poly-20120112.pdf
http://www.numdam.org/item?id=SHC_1955-1956__8__A7_0
http://perso.crans.org/cohen/work/realalg/


Bibliography

[23] Cyril Cohen. Construction of real algebraic numbers in Coq. In Lennart
Beringer and Amy Felty, editors, ITP - 3rd International Conference on Inter-
active Theorem Proving - 2012, Princeton, États-Unis, August 2012. Springer.

[24] Cyril Cohen and Thierry Coquand. A constructive version of Laplace’s proof
on the existence of complex roots. http://hal.inria.fr/inria-00592284/
PDF/laplace.pdf.

[25] Cyril Cohen and Assia Mahboubi. A formal quantifier elimination for algebraic-
ally closed fields. In Symposium on the Integration of Symbolic Computation and
Mechanised Reasoning, Calculemus Intelligent Computer Mathematics, volume
6167 of Computer Science, pages 189–203, Paris France, 06 2010. Springer. The
final publication is available at www.springerlink.com.

[26] Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic geometry:
from ordered fields to quantifier elimination. Logical Methods in Computer
Science, 8(1:02):1–40, February 2012.

[27] Paul J. Cohen. Decision procedures for real and p-adic fields. Communications
on Pure and Applied Mathematics, 22(2):131–151, 1969.

[28] George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition–preliminary report. SIGSAM Bull., 8:80–90, August
1974.

[29] Thierry Coquand and Gérard Huet. The calculus of constructions. Technical
Report RR-0530, INRIA, May 1986.

[30] René Cori and Daniel Lascar. Logique mathématique 1 - Calcul propositionnel ;
algèbre de Boole ; calcul des prédicats. Dunod, Paris, 2003. réédition (avec
corrections) de l’édition Masson 1993.

[31] Pierre Courtieu. Normalized types. In Proceedings of CSL2001, volume 2142
of Lecture Notes in Computer Science, 2001.

[32] Luis Cruz-Filipe. A constructive formalization of the fundamental theorem of
calculus. In H. Geuvers and F. Wiedijk, editors, Types for Proofs and Programs,
volume 2646 of LNCS, pages 108–126. Springer–Verlag, 2003.

[33] David Delahaye. A Tactic Language for the System Coq. In Michel Parigot and
Andrei Voronkov, editors, Logic for Programming and Automated Reasoning
(LPAR), volume 1955 of Lecture Notes in Computer Science (LNCS)/Lecture
Notes in Artificial Intelligence (LNAI), pages 85–95, Reunion Island (France),
November 2000. Springer.

[34] Harm Derksen. The Fundamental Theorem of Algebra and Linear Algebra.
American Mathematical Monthly, 110(7):620–623, August/September 2003.

[35] Maxime Dénès, Anders Mörtberg, and Vincent Siles. A refinement-based ap-
proach to computational algebra in Coq. In Lennart Beringer and Amy Felty,
editors, Interactive Theorem Proving, volume 7406 of Lecture Notes in Com-
puter Science, pages 83–98. Springer Berlin Heidelberg, 2012.

147

http://hal.inria.fr/inria-00592284/PDF/laplace.pdf
http://hal.inria.fr/inria-00592284/PDF/laplace.pdf


Bibliography

[36] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau.
Packaging Mathematical Structures. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher
Order Logics, TPHOLs 2009 proceedings, volume 5674 of Lecture Notes in Com-
puter Science, pages 327–342. Springer, 2009.

[37] François Garillot. Generic Proof Tools And Finite Group Theory. Phd thesis,
École polytechnique X, December 2011.

[38] Carl Friedrich Gauss. Another new proof of the theorem that every integral
rational algebraic funcion of one variable can be resolved into real factors of the
first or second degree. 1815, translated by P. Taylor and B. Leak (1983).

[39] Herman Geuvers and Milad Niqui. Constructive Reals in Coq: Axioms and
Categoricity. In Selected papers from the International Workshop on Types for
Proofs and Programs, TYPES ’00, pages 79–95, London, UK, 2002. Springer-
Verlag.

[40] Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. A Constructive Proof
of the Fundamental Theorem of Algebra without Using the Rationals. In Paul
Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack, editors, TYPES,
volume 2277 of Lecture Notes in Computer Science, pages 96–111. Springer,
2000.

[41] Georges Gonthier. The four Colour Theorem: Engineering of a Formal Proof.
In Deepak Kapur, editor, ASCM, volume 5081 of Lecture Notes in Computer
Science, page 333. Springer, 2007.

[42] Georges Gonthier. Advances in the Formalization of the Odd Order Theorem.
In Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek
Wiedijk, editors, ITP, volume 6898 of Lecture Notes in Computer Science,
page 2. Springer, 2011.

[43] Georges Gonthier. Point-free, set-free concrete linear algebra. In Interactive
Theorem Proving, ITP 2011 Proceedings, Lecture Notes in Computer Sciences.
Springer, 2011.

[44] Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection
in Coq. Journal of Formalized Reasoning, 3:95–152, 2010.

[45] Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and
Laurent Théry. A Modular Formalisation of Finite Group Theory. Rapport
de recherche RR-6156, INRIA, 2007.

[46] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflection
extension for the Coq system. INRIA Technical report, http://hal.inria.fr/
inria-00258384.

[47] Georges Gonthier and Enrico Tassi. A Language of Patterns for Subterm Selec-
tion. In Lennart Beringer and Amy Felty, editors, Interactive Theorem Proving,
volume 7406 of Lecture Notes in Computer Science, pages 361–376. Springer
Berlin Heidelberg, 2012.

148

http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00258384


Bibliography

[48] Benjamin Gregoire and Assia Mahboubi. Proving Equalities in a Commutative
Ring Done Right in Coq. In Theorem Proving in Higher Order Logics (TPHOLs
2005), LNCS 3603, pages 98–113. Springer, 2005.

[49] D. Yu Grigor’ev. Complexity of deciding tarski algebra. Journal of Symbolic
Computation, 5(1-2):65–108, February 1988.

[50] D. Yu. Grigor’ev and N. N. Vorobjov, Jr. Solving systems of polynomial inequal-
ities in subexponential time. Journal of Symbolic Computation, 5(1-2):37–64,
February 1988.

[51] John Harrison. Formalizing an analytic proof of the Prime Number Theorem
(dedicated to Mike Gordon on the occasion of his 60th birthday). Journal of
Automated Reasoning, 43:243–261, 2009.

[52] Michael Hedberg. A coherence theorem for martin-löf’s type theory. Journal
of Functional Programming, pages 4–8, 1998.

[53] Joos Heintz, Marie-Françoise Roy, and Pablo Solernó. Sur la complexité du
principe de tarski-seidenberg. Bulletin de la Société Mathématique de France,
118(1):101–126, 1990.

[54] Wilfried Hodges. A shorter model theory. Cambridge University Press, 1997.

[55] Martin Hofmann. Extensional concepts in intensional type theory. Phd thesis,
University of Edinburgh, 1995.

[56] Lars Hörmander. The analysis of linear partial differential operators, volume 2.
Springer-Verlag, Berlin etc., 1983.

[57] Paul Hudak, John Peterson, and Joseph Fasel. Gentle introduction to haskell,
version 98, June 2000. http://www.haskell.org/tutorial/.

[58] Nicolas Julien and Ioana Pasca. Formal Verification of Exact Computations
Using Newton’s Method. In TPHOLs 2009, volume 5674 of LNCS, pages 408–
423, 2009.

[59] Robbert Krebbers and Bas Spitters. Computer certified efficient exact reals in
Coq. In Conference on Intelligent Computer Mathematics, CICM 2011 Pro-
ceedings, Lecture Notes in Artifical Intelligence. Springer, 2011.

[60] Serge Lang. Algebra. Graduate texts in mathematics. Springer, 2002.

[61] Pierre-Simon Laplace. Leçons de mathématiques données à l’École normale en
1795. In Oeuvres complètes de Lapalace. Tome XIV, pages 10–177. Gauthier-
Villars (Paris), 1878–1912.

[62] Henri Lombardi and Claude Quitté. Algèbre commutative, Méthodes construct-
ives. Calvage et Mounet, 2011.

[63] Ray Mines, Fred Richman, and Wim Ruitenburg. A course in constructive
algebra. Universitext (1979). Springer-Verlag, 1988.

149

http://www.haskell.org/tutorial/


Bibliography

[64] Tobias Nipkow, Clemens Ballarin, and Jeremy Avigad. Isabelle/HOL: The-
ory SetInterval. http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/
library/HOL/SetInterval.html.

[65] Russel O’Connor. Incompleteness & Completeness, Formalizing Logic and Ana-
lysis in Type Theory. PhD thesis, Radboud University Nijmegen, Netherlands,
2009.

[66] Russell O’Connor. Certified exact transcendental real number computation in
Coq. In Otmane Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem
Proving in Higher Order Logics, volume 5170 of Lecture Notes in Computer
Science, pages 246–261. Springer Berlin / Heidelberg, 2008.

[67] Sidi Ould Biha. Composants mathématiques pour la théorie des groupes. PhD
thesis, Ecole doctorale STIC, Université de Nice Sophia-Antipolis, February
2010.

[68] Ioana Pasca. Formal Proofs for Theoretical Properties of Newton’s Method,
2010. INRIA Research Report RR-7228.

[69] Ioana Pasca. Formally verified conditions for regularity of interval matrices.
In 17th Symposium on the Integration of Symbolic Computation and Mechan-
ised Reasoning, Calculemus 2010, volume 6167 of Lecture Notes in Artificial
Intelligence, pages 219 – 233. Springer, 2010.

[70] Thomas Peterfalvi. Character Theory for the Odd Order Theorem. Number 272
in London Mathematical Society Lecture Note Series. Cambridge University
Press, 2000.

[71] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003. http:
//www.haskell.org/definition/.

[72] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the Calculus
of Constructions. In Proceedings of Mathematical Foundations of Programmi ng
Semantics, volume 442 of Lecture Notes in Computer Science. Springer-Verlag,
1990. technical report CMU-CS-89-209.

[73] Loïc Pottier. Quotients dans le CCI. Report RR-4053, INRIA, November 2000.

[74] The Mathematical Components Project. SSReflect extension and librar-
ies. http://www.msr-inria.inria.fr/Projects/math-components/index_
html.

[75] James Renegar. On the computational complexity and geometry of the first-
order theory of the reals. part i-iii. 13(3):255 – 352, 1992.

[76] Julia Robinson. Definability and decision problems in arithmetic. Journal of
Symbolic Logic, 14:98–114, 1949.

[77] Amokrane Saibi. Typing algorithm in type theory with inheritance. In Prin-
ciples of Programming Languages, POPL 1997 proceedings, pages 292–301,
1997.

150

http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/SetInterval.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/SetInterval.html
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.msr-inria.inria.fr/Projects/math-components/index_html
http://www.msr-inria.inria.fr/Projects/math-components/index_html


Bibliography

[78] A. Seidenberg. A new decision method for elementary algebra. Annals of
Mathematics, 60(2):pp. 365–374, 1954.

[79] Matthieu Sozeau. A New Look at Generalized Rewriting in Type Theory.
Journal of Formalized Reasoning, 2(1):41–62, December 2009.

[80] Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Otmane Aït
Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in
Higher Order Logics, TPHOLs 2008 proceedings, volume 5170 of Lecture Notes
in Computer Science, pages 278–293. Springer, 2008.

[81] Bas Spitters and Eelis van der Weegen. Type Classes for Mathematics in Type
Theory. MSCS, special issue on ‘Interactive theorem proving and the formaliz-
ation of mathematics’, 21:1–31, 2011.

[82] Pierre-Yves Strub. Coq Modulo Theory. In Anuj Dawar and Helmut Veith,
editors, 19th EACSL Annual Conference on Computer Science Logic Computer
Science Logic, CSL 2010, 19th Annual Conference of the EACSL, volume 6247
of Lecture Notes in Computer Science, pages 529–543, Brno Czech Republic,
2010. Springer.

[83] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Ma-
nuscript. Santa Monica, CA: RAND Corp., 1948. Republished as A Decision
Method for Elementary Algebra and Geometry, 2nd ed. Berkeley, CA: Univer-
sity of California Press, 1951.

[84] The Coq Development Team. The Coq Proof Assistant, Reference Manual.
http://coq.inria.fr.

[85] Laurent Théry, Pierre Letouzey, and Georges Gonthier. Coq. In Wiedijk [88],
pages 28–35.

[86] Thomas Braibant and Damien Pous. Deciding Kleene Algebras in Coq. Logical
Methods in Computer Science, 8(1), 2012.

[87] Eelis van der Weegen, Bas Spitters, and Robbert Krebbers. Math classes.
http://math-classes.org.

[88] Freek Wiedijk, editor. The Seventeen Provers of the World, Foreword by Dana
S. Scott, volume 3600 of Lecture Notes in Computer Science. Springer, 2006.

151

http://coq.inria.fr
http://math-classes.org




Index

Axiom, 17
P.[x], 26
ProjTermAcf, 108
ProjTermRcf, 109
archiFieldType, 32
bool, 11
bounding_poly, 114
cauchy_bound, 94
cauchy_boundP, 94
cauchymodP, 48
changes, 121
changes_horner, 121
closedFieldType, 104
constraints, 116
constraints1, 115
count_acf, 113
count_rcf, 123
diffP, 51
eqType, 15
eq_op, 15
eqn, 15
eqnP, 16
false, 11
(_ \in _), 16
is_true, 13
itv_splitU, 43
jump, 120
lboundP, 50
le_modP, 51
leq_xor_gtn, 16
mods, 121
mvt, 94

nat, 13, 15
nat_of_bool, 120
predType, 16
projT1, 15
proj_acf, 111, 114
proj_rcf, 111, 124
proj_real, 107, 109
rcfType, 32
rdivp, 26
reflect, 14
rgcdp, 27
rgdcop, 113
rmodp, 26
rolle, 93
rolle_weak, 94
root, 26
roots, 96
rscalp, 26
seq, 16
sizeY, 27
{subset A <= B}, 16
swapXY, 27
taq, 116
true, 11, 13
uboundP, 49
xchoose, 18, 50, 51, 56

Axiom
Coq, 17
Mathematical, 17

Base Type, 72

153



Index

Big Enough, 54
Bounding Polynomial, 114

Canonical, 20
Structure, 20
Surjection, 62

Canonically, 75
Carrier, 18
Cauchy

Bounds, 120
Index, 119

Cauchy Bound, 94
Cell, 126
Class, 18, 62
Coding Property, 71, 77
Coercion, 20
Commutative Group, 19

Decidable
Equality, 15

Discrete, 18
Domain

Integral, 19
Numeric, 31
Real, 32

Existential
Variable, 55

Field, 19
Decidable, 19
Algebraically Closed, 19, 102
Archimedean, 32
Formally Real, 34
Numeric, 31
Real, 32
Real Closed, 32, 103

Field, record, 18
Fundamental Theorem of

Algebra, 81
Symmetric Polynomials, 84, 85

Greatest Common Divisior (Pseudo),
27

Greatest divisor coprime to, 112

Hierarchy
Algebraic, 31
Numeric, 31

Horner’s Algorithm, 26

Inductive
Family, 16, 36

Integers, 20
Interface, 18

Jump, 119

Lifting
Quotient, 64

Ltac, 55

Mean Value Theorem, 94
Mixin, 18
Module, 19

Projection, 18
Proof Irrelevance, 15, 76
Prop, 13
Pseudo-remainder, 27

Sequence, 120

Quotient
Structure, 62
Type, 62

Record, 18
Type, 18

Reflection, 11
Boolean, 13
Large Scale, 12
Small Scale, 12, 13

Representative, 62
Resultant, 27
Ring, 19
Rolle’s Theorem, 93
Root

Predicate, 26
Sequence, 96

Setoid, 49, 61
Signature, 18
Structure, 18
Subtype, 15

Tarski Query, 116
Tarski query, 115
Type Class, 21

Unification, 20

154


