

Les régulateurs transcriptionnels Rgg. Confirmation de leur implication dans des phénomènes de quorum-sensing et identification de leurs cibles.

Betty Fleuchot

► To cite this version:

Betty Fleuchot. Les régulateurs transcriptionnels Rgg. Confirmation de leur implication dans des phénomènes de quorum-sensing et identification de leurs cibles.. Sciences agricoles. AgroParisTech, 2011. Français. NNT: 2011AGPT0072 . pastel-00782705

HAL Id: pastel-00782705 https://pastel.hal.science/pastel-00782705

Submitted on 30 Jan 2013 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Doctorat ParisTech

THÈSE

pour obtenir le grade de docteur délivré par

L'Institut des Sciences et Industries du Vivant et de l'Environnement

(AgroParisTech)

Spécialité : Microbiologie

présentée et soutenue publiquement par

Betty FLEUCHOT

le 6 décembre 2011

- Les régulateurs transcriptionnels Rgg -

Confirmation de leur implication dans des phénomènes de quorum-sensing et identification de leurs cibles

Jury : M. Ivan MIJAKOVIC, Professeur, INRA, AgroParisTech M. Jean-Pierre CLAVERYS, Directeur de Recherche, CNRS M. Tarek MSADEK, Chef de laboratoire, Institut Pasteur M. Jean GUZZO, Professeur, Université de Bourgogne M. Didier LERECLUS, Directeur de Recherche, INRA, AgroParisTech Mme Véronique MONNET, Directeur de Recherche, INRA, AgroParisTech Mme Rozenn GARDAN, Chargé de Recherche, INRA, AgroParisTech

Président Rapporteur Rapporteur Examinateur Directrice de thèse irectrice des travaux

AgroParisTech INRA UMR1319 Micalis, Equipe Peptides et Communication Bactérienne Domaine de Vilvert, Bat. 526 - 78352 Jouy-en-Josas

Remerciements

Mes remerciements s'adressent en premier lieu aux membres de mon jury de thèse et en particulier à **Ivan Mijakovic** qui a bien voulu accepter de présider le jury de cette thèse, **Jean-Pierre Claverys** et **Tarek Msadek** qui ont si gentiment consenti à juger ce travail en qualité de rapporteurs, ainsi que **Jean Guzzo** et **Didier Lereclus** qui m'ont donné leur aval avec autant de plaisir pour leur rôle d'examinateur. Je les remercie grandement pour le temps qu'ils ont consacré à l'évaluation de mon travail de thèse.

Je remercie également les membres de mon comité de suivi de thèse, **Nathalie Leblond-Bourget** et **Didier Lereclus** pour m'avoir permis d'avoir des comités si enrichissants et stimulants ! Merci à vous pour la pertinence de vos remarques, pour vos conseils, pour votre gentillesse et vos encouragements qui auront pleinement contribué à l'avancée de mes travaux.

Parce qu'une thèse, c'est être encadrée...

Je tiens à remercier **Véronique Monnet** pour m'avoir accueillie au sein de l'équipe « Peptides et Communication Bactérienne » ; tout particulièrement pour son attention et sa disponibilité tout au long de cette thèse. Véronique, merci de m'avoir permis d'évoluer dans de bonnes conditions grâce à ton regard critique, la confiance que tu m'as témoignée et parce que tu m'as tant transmis de ton expérience ! Merci aussi pour le soutien et la présence que tu m'as apportés lors de la dernière ligne droite.

Je tiens également à remercier **Rozenn Gardan** qui m'a encadrée et accompagnée durant mes trois ans de thèse. Merci, Rozenn, pour m'avoir formée au métier de chercheur et appris tant de choses... Merci pour ta patience, ta disponibilité et tes conseils avisés qui m'auront fait grandir d'un point de vue scientifique et également guidée dans le monde professionnel. Merci de m'avoir accordé ta confiance comme tu l'as fait et pour la liberté que tu as su me donner dans mon travail de thèse. Je garderai en mémoire nos discussions scientifiques si enrichissantes et stimulantes... parfois même accompagnées d'une petite pause « chocolat » surprise (c'était toujours très bon !). Merci aussi pour cette oreille attentive – si appréciable – et pour toutes tes petites attentions...

Parce qu'une thèse, c'est aussi des collaborations...

Je remercie vivement **Pierre Nicolas** pour son implication dans mon travail de thèse et pour sa collaboration que j'ai tant appréciée. Merci Pierre pour ce regard « extérieur » si constructif que tu as su apporter à mon travail de thèse. Merci aussi pour ta disponibilité, ton écoute et ta patience concernant le « re-moulinage » des données et pour m'avoir permis d'analyser autant de scans !

Je remercie également **Jasmina Vidic** pour m'avoir initiée à la SPR. Merci à toi, Jasmina, pour ta bonne humeur et cet enthousiasme constant qui auront rendu mes passages à la VIM bien agréables ! Un grand merci aussi pour ton adaptabilité et ta disponibilité lors de l'attente des peptides... et les re-planifications de manips !

Je remercie également la Nancy's team et en particulier **Emmanuelle** qui m'a accueillie lors de mon passage à Nancy et transmis la technique du gel shift. Un clin d'œil aux autres PhD (Romain, Nico, Sarah et Aurore) pour leur accueil, leur gentillesse et pour m'avoir fait découvrir « the » restaurant de fondues !

Parce qu'une thèse, c'est aussi faire partie d'une équipe...

J'adresse un immense merci aux membres de l'équipe ComBac et de la plateforme PAPPSO ! Les pauses café du matin resteront un bon souvenir de ce bâtiment...

Un merci tout particulier à **Colette Besset** dont je suis reconnaissante pour tous les bons conseils qu'elle m'a apportés. Sans toi Colette les transformations, les étalements, les PCR,... n'auraient pas été aussi sympas à faire ! J'ai été très heureuse de partager mes 3 ans de thèse avec toi. Merci aussi à **Alain Guillot** avec qui j'ai pu découvrir la LC-MS/MS. Merci pour ton expérience Alain, pour tes réflexions pertinentes et enrichissantes qui auront fait avancer l'histoire des SHP ! Un grand merci aussi à **Christophe Gitton** pour son aide et sa contribution dans l'avancement de ma thèse. Merci à toi, Christophe, pour ta disponibilité et ta générosité que ce soit pour les manips, pour des problèmes informatiques ou techniques... ton aide aura été bien appréciable ! Un grand merci également à **Emilie Chambellon.** J'ai été très heureuse de partager le même labo que toi suite au déménagement. Merci beaucoup Emilie pour ton implication, ton aide et tes conseils... et aussi parce que la fin de cette thèse n'aurait pas été pareille sans toi !

Je tiens également à remercier **Françoise Rul** pour son accueil, sa bonne humeur, ses conseils et pour tous ces bons moments de discussions scientifiques ou autres partagés ensemble. Merci aussi, Françoise, pour avoir contribué à l'obtention de ma bourse de thèse en ayant assisté à mes répètes lors de ma préparation au labo. Je remercie également **Vincent Juillard** pour son écoute, sa bienveillance et ses relectures critiques de ce manuscrit. Je garde un très bon souvenir de nos conversations, source de conseils et de recommandations. Et puis un clin d'œil particulier à vous deux, Françoise et Vincent pour vos encouragements... (si précieux en Italie... dans le hall pendant une certaine session poster...).

Une pensée à **Mireille Yvon**, partie à la retraite pendant ma thèse, que j'ai eu plaisir à connaître et dont je garderai en mémoire la bonne humeur communicative. Je la remercie pour l'intérêt qu'elle a su porter à mon travail de thèse et pour ses conseils d'un point de vue personnel et professionnel. Merci aussi à **Didier Chevret** pour sa bonne humeur et ses « dérapages » constants ainsi qu'à **Céline Henry** pour les échanges que nous avons eus ensemble.

Un clin d'œil aux autres thésards qui, comme moi, ont vadrouillé dans les couloirs du bâtiment 526 : **Benoit**, pour avoir partagé nos quotidiens de thèse pendant trois ans. Je te remercie pour tous les bons moments scientifiques et autres passés ensemble ! **Leila**, pour avoir partagé notre quotidien de fin de thèse (et ce n'est pas rien...). **Sybille**, pour tes conseils et les discussions que nous pouvions avoir lors de nos petites pauses l'après-midi... **Luz**, pour ton amitié et tous les bons moments de franche rigolade passés ensemble. Je vous souhaite à tous une très belle continuation... déjà bien entamée pour certains !

Enfin, merci aux post-docs (plus ou moins récents au labo), **Sandeep** et **David**, pour nos échanges en anglais... pas toujours faciles !

Et puis, merci aux personnes qui, de près ou de loin, ont fait partie de mon entourage de thèse – en particulier Lucy, Isabelle, Niriaina, Mylène, Sandrine, Landa, Virginie, l'équipe **Paroi** et l'équipe **Flec** – pour les bons moments passés ensemble.

Merci enfin à mon stagiaire, **Vincent**. J'ai été très heureuse de découvrir l'expérience de l'encadrement à ses côtés !

Parce qu'une thèse à l'INRA, c'est aussi Doc'J...

Merci à **Bérénice**, **Aude**, **Poupoune**, et aux **Romain** x2 pour ces bons moments partagés ensemble à Doc'J. J'ai été très heureuse d'écrire une page de l'association à vos côtés !

Parce qu'une thèse à l'INRA, c'est aussi le théâtre à l'ADAS...

Une pensée bien particulière aux théâtreux de l'ADAS avec qui j'ai pu partager 3 belles années et m'aérer l'esprit... Un merci tout particulier à **Annie**, **Aline**, **Emmanuelle**, **Olivier**, **Elodie**, **Martine** et bien d'autres pour ces moments de délire et de stress partagés avant les représentations ! Merci aussi à **Romaric** et **Jean-Marc** de nous avoir menés !

Et enfin, parce qu'une thèse, c'est aussi...

... le souvenir de 2 ans ½ de colocation, merci à toi **Marie** (sans oublier ta famille et Nico) pour ton accueil si chaleureux à mon arrivée à Versailles, pour ton écoute et toutes les opportunités... gastronomiques et autres partagées ! Je te souhaite plein de bonnes choses pour la suite.

... le plaisir de se retrouver entre amis... et d'en profiter ! Je me dois de citer Ludi, Jerem, Adrien, Milie, Mika, Vivi, Cat, Max et Cyril.

... être soutenue et encouragée par sa famille : merci à mes **parents** (les 4 !), à mes **frère** et **sœurs** et aux **mamies** !

... remercier sa Maman pour avoir lu et corrigé autant de fois que je lui ai demandé mes écrits (malgré son incompréhension de mon vocabulaire scientifique). On aura bien ri !

... pour l'anecdote, se faire charrier par ses frère et sœurs quand on mange du fromage ou du yaourt à la maison... « Hummm ! Il est bon Thermophilus ?!!!!! »...

... être reconnaissante envers ses parents et les remercier d'avoir cru en mes choix ; de m'avoir « accompagnée » tout au long de mon parcours de Clermont-Ferrand à Jouy-en-Josas en passant par Aurillac, Marseille et Dijon ; et de m'avoir permis de grandir dans le monde de la microbiologie. Toutes ces expériences si enrichissantes, je les ai construites grâce à vous...

Et enfin, parce qu'une thèse c'est aussi le bonheur de t'avoir rencontré... merci à toi, **Aurélien**, pour ta patience, ton soutien, ta compréhension... d'être là.

Sommaire

Introduction générale	1
Introduction bibliographique	4
Chapitre 1 : Les streptocoques 1. Une appartenance au groupe des bactéries lactiques	5 5
2. Streptococcus thermophilus et les streptocoques	6
2.1 Classification et relations taxonomiques	6
2.2 Les streptocoques pathogènes stricts et opportunistes	6
2.3 Streptococcus thermophilus	9
2.3.1 S. thermophilus, un streptocoque d'intérêt industriel	9
2.3.2 Taxonomie et identification de S. thermophilus	10
2.3.3 Histoire évolutive de S. thermophilus	11
2.3.4 Le transfert de l'information génétique chez S. thermophilus	13
Chapitre 2 : La communication cellulaire de type quorum-sensing	17
1. Concepts généraux	17
2. Le QS chez les bactéries à Gram positif	18
2.1 Détection extracellulaire des peptides autoinducteurs	18
2.1.1 Les systèmes à deux composants	18
2.1.2 La virulence chez Staphylococcus aureus : le système agrBDCA	19
2.1.3 La compétence chez Streptococcus pneumoniae : le système comCDE	21
2.2 Détection intracellulaire des peptides autoinducteurs	25
2.2.1 Les transporteurs d'oligopeptides	25
2.2.2 Les effecteurs de la famille RNPP	26
2.2.3 Le système PapR/PlcR chez Bacillus cereus : virulence	27
2.2.4 Le système peptides phéromones / PrgX chez Enterococcus fa	ecalis:
conjugaison	31
3. Le QS chez les bactéries à Gram négatif	37
3.1 Biosynthèse des <i>N</i> -AHL : les enzymes de la famille LuxI et LuxM	37
3.2 Caractéristiques des protéines de la famille LuxI	38
3.3 Sécrétion des <i>N</i> -AHL	38
3.4 Détection des <i>N</i> -AHL	39
3.4.1 Les systèmes <i>luxIR</i> :	39
3.4.2 Les systèmes <i>luxMN</i> :	40
4. La communication inter-espèces	40
5. Autres molécules de signalisation connues chez les bactéries	42
6. Conclusion	43
6.1 La complexité des réseaux de communication cellulaire	43
6.2 Le QS et les notions de diffusion et efficiency-sensing	44
Chapitre 3 : Les régulateurs transcriptionnels de la famille des Rog	45
1. Présentation des protéines régulatrices Rog	
2. Les protéines Rog « stand-alone »	
2.1 Les protéines Rag : production de ducosyltransférases	45
22 Les protéines RopB et RovS : régulation de la virulence	
2 2 1 Le facteur de virulence SpeB chez Streptococcus progenes	<u>+</u> 7 47
2.2.2 L'adhérence aux cellules épithéliales chez Streptococcus agalactiae	

2.3 Les protéines RggC et GadR : résistance au stress	50
2.3.1 La résistance au stress oxydatif chez Streptococcus thermophilus	50
2.3.2 Le système antiport glutamate/GABA chez Lactococcus lactis	51
2.4 Les protéines MutR et LasX : production de bactériocines	52
2.4.1 La mutacine I, II et III chez Streptococcus mutans	52
2.4.2 La lactocine S chez Lactobacillus sakei	54
2.5 Conclusion	54
3. Les protéines Rgg associées à de petits peptides hydrophobes	55
3.1 Détection de petits gènes dans l'environnement proche de gènes rgg	56
3.2 Un transporteur d'oligopeptides impliqué dans la réimportation de	peptides
phéromones chez les streptocoques	
3.2.1 Hypothèse d'un nouveau mécanisme de QS : les systèmes SHP/Rgg	57
3.2.2 Le contrôle de la compétence au sein du groupe salivarius	58
3.2.3 Le contrôle de la compétence chez les streptocoques du groupe pyo	aenes et
bovis : les systèmes XIP/ComR	60
3.3 Conclusion	61
	-
Objectifs du travail de thèse	62
•	
Résultats	65
Chapitre 1 : Implication des protéines Rgg dans des phénomènes de QS	5 66
1. Introduction et résultats préliminaires	66
2. Article 1	68
3. Conclusion	69
4. Résultats non publiés	70
4.1 Introduction	70
4.2 Matériel et méthode	70
4.3 Résultats principaux	71
4.4 Discussion	73
Chapitre 2 : Etude de l'interaction SHP/Rgg	75
1. Introduction	75
2. Matériel et méthode	76
3. Résultats	81
4. Discussion	86
Chapitre 3 : Prédiction des régulons SHP/Rgg	90
1. Contexte	90
2. Définitions	90
3. Matériel et méthode	91
4. Résultats	92
5. Discussion	97
	_
Discussion générale et perspectives	102
References bibliographiques	116
	4.00

Table des figures

Figure 1	Relations phylogénétiques liant les genres bactériens majeurs appartenant aux bactéries lactiques (adapté de Stiles and Holzapfel, 1997) p 5
Figure 2	Relations phylogénétiques, basées sur l'ARN 16S, liant 33 espèces appartenant au genre <i>Streptococcus</i> (adapté de Kawamura <i>et al.</i> , 1995a) p 6
Figure 3	Ramifications au sein du groupe salivarius établies par inférence phylogénétique sur la séquence concaténée de l'ARNr 16S et des gènes <i>recA</i> , <i>secA</i> et <i>secY</i> (Pombert <i>et al.</i> , 2009)
Figure 4	Dendrogramme représentant les évènements évolutifs au sein de l'ordre des Lactobacillales (Makarova et al., 2006) p 11
Figure 5	Diagrammes de Venn représentant le pourcentage de gènes partagés au niveau de différentes espèces ou au sein d'une même espèce de streptocoques (Lefébure and Stanhope, 2007)
Figure 6	Composition du pan-génome de Streptococcus thermophilus (Rasmussen et al., 2008) p 12
Figure 7	Les mécanismes de transfert horizontal chez les bactéries p 13
Figure 8	Représentation schématique du déclenchement d'un système de quorum-sensing (d'après Keller and Surette, 2006) p 17
Figure 9	Représentation schématique d'un système à deux composants p 18
Figure 10	Représentation schématique du système <i>agrBCDA</i> chez <i>Staphylococcus aureus</i> (inspiré de Novick and Geisinger, 2008 ; Thoendel and Horswill, 2009) p 20
Figure 11	Représentation schématique du système comCDE chez Streptococcus pneumoniae. p 22
Figure 12	Organisation génétique des systèmes Com et Blp chez Streptococcus pneumoniae et Streptococcus mutans (d'après Martin et al., 2006) p 24
Figure 13	Voie de biosynthèse des lipoprotéines chez les bactéries à Gram positif (d'après Hutchings <i>et al.</i> , 2008) p 26
Figure 14	Arbre phylogénétique des protéines OppA chez différents Firmicutes (d'après Nepomuceno <i>et al.</i> , 2007) p 26
Figure 15	Relations évolutives des protéines de la famille RNPP (Thèse L. Bouillaut, 2007). p 27
Figure 16	Représentation schématique du système PapR/PIcR chez Bacillus cereus p 29
Figure 17	Représentation schématique de l'organisation du domaine HTH du régulateur PIcR en présence ou absence du peptide PapR (Declerck <i>et al.</i> , 2007) p 30
Figure 18	Arbre phylogénétique des protéines PIcR et des peptides PapR apparentés (Slamti and Lereclus, 2005) p 31
Figure 19	Représentation schématique du transfert conjugatif pCF10 chez Enterococcus faecalis
Figure 20	Influence de l'oligomérisation du régulateur transcriptionnel PrgX sur l'expression des gènes de conjugaison (adapté de Dunny, 2007) p 34
Figure 21	Contrôle post-transcriptionnel de l'expression des gènes de conjugaison (adapté de Dunny and Johnson, 2011 et Bae <i>et al.</i> , 2002) p 34
Figure 22	Biosynthèse de la sex-phéromone cCF10 à partir du produit du gène <i>ccfA</i> chez <i>Enterococcus faecalis</i> (d'après Antiporta and Dunny, 2002 ; Chandler <i>et al.</i> , 2008).p 35
Figure 23	Exemple d'une voie de biosynthèse des <i>N</i> -acyl homoserines lactones par les enzymes Luxl (Bassler, 2002) p 37

Figure 24	Représentation schématique des N-acyl synthétases de la famille LuxI (adapté de Fuqua and Greenberg, 2002) p 38
Figure 25	Représentation schématique du système <i>luxIR</i> contrôlant la bioluminescence chez <i>Vibrio fischeri</i> (inspiré de Miller and Bassler, 2001) p 39
Figure 26	Représentation schématique des systèmes de quorum-sensing contrôlant la bioluminescence chez Vibrio harveyi (adapté de Ng and Bassler, 2009)
Figure 27	Voie de biosynthèse de l'autoinducteur 2 (Rezzonico and Duffy, 2008) p 41
Figure 28	Paramètres influençant le déclenchement d'une réponse physiologique coordonnée, de type quorum-sensing, chez les bactéries (d'après Hense <i>et al.</i> , 2007) p 44
Figure 29	Organisation génétique du locus <i>gtfG</i> chez <i>Streptococcus gordonii</i> (adapté Vickerman <i>et al.</i> , 2001) p 46
Figure 30	Présentation des régions promotrices des gènes rgg et gtfG de Streptococcus gordonii
Figure 31	Représentation schématique de la région intergénique <i>ropB/speB</i> chez <i>Streptococcus pyogenes</i> (adapté de Neely <i>et al.</i> , 2003) p 47
Figure 32	Contrôle du régulon RopB au cours de la croissance de Streptococcus pyogenes (inspiré de McIver, 2009) p 48
Figure 33	Organisation génétique des loci codant les voies de biosynthèse de la mutacine II, I et III chez Streptococcus mutans (d'après Qi et al., 1999ab ; 2000) p 52
Figure 34	Représentation schématique des régions promotrices des gènes <i>mutA</i> et <i>mutR</i> impliqués dans la voie de biosynthèse de la mutacine II chez <i>Streptococcus mutans</i> (d'après Qi <i>et al.</i> , 1999b) p 53
Figure 35	Modèle proposé pour le contrôle de l'expression de la mutacine I par LuxS chez <i>Streptococcus mutans</i> (d'après Merritt <i>et al.</i> , 2005) p 53
Figure 36	Le locus de la lactocine S chez <i>Lactobacilles sakei</i> (d'après Skaugen <i>et al.</i> , 2002 et Rawlinson <i>et al.</i> , 2002) p 54
Figure 37	Alignement des régions promotrices de plusieurs gènes cibles de régulateurs Rgg (adapté de Rawlinson <i>et al.</i> , 2005) p 55
Figure 38	Arbre phylogénétique des protéines Rgg chez les streptocoques (Ibrahim <i>et al.</i> , 2007b) p 56
Figure 39	Relations phylogénétiques basées sur l'ARN 16S et distribution du système ComCDE (et de ses paralogues) chez les streptocoques (adapté de Martin <i>et al.</i> , 2006) p 58
Figure 40	Représentation schématique des systèmes SHP/Rgg et XIP/ComR chez Streptococcus thermophilus LMD-9 p 61
Figure 41	Représentation schématique des différentes étapes intervenant dans un mécanisme de quorum-sensing p 66
Figure 42	Comparaison du niveau d'expression des promoteurs des gènes <i>shp1358</i> et <i>ster_1357</i> p 67
Figure 43	Nombre de protéines Rgg et Rgg-like, associées ou non à des spCDS, chez les bactéries à Gram positif à bas GC% appartenant au taxon Rgg p 70
Figure 44	Nombre de protéines Rgg et Rgg-like, associées ou non à des spCDS, au sein des différents genres bactériens appartenant au taxon Rgg p 70
Figure 45	Nombre de protéines Rgg et Rgg-like, associées à des spCDS, au sein du genre Streptococcus
Figure 46	Représentation schématique des plasmides pGICB004 et pGICB004::aphA3 p 78
Figure 47	Fusions transcriptionnelles construites pour l'étude de la fonctionnalité des systèmes SHP/Rgg p 78

Figure 48	Croissance et activité luciférase de souches présentant une fusion P <i>shp::luxAB</i> dans leur génome et dans différentes conditions de cultures				
Figure 49	Croissance et activité luciférase de différentes souches de <i>Streptococcus thermophilus</i> LMG18311 présentant une fusion P _{shp0182} :: <i>luxAB</i> dans leur génome. p 84				
Figure 50	Spectres de fragmentation des ions m/z (799,5 et 872,5) permettant la validation des séquences des phéromones SHP issues des loci shp/gbs1555 de Streptococcus agalactiae NEM316 et shp/smu.1509 de Streptococcus mutans UA159 p 85				
Figure 51	SDS-PAGE des fractions protéiques issues des cultures d' <i>Escherichia coli</i> permettant la surproduction de protéines Rgg recombinantes.				
Figure 52	Arbre de classification reflétant la divergence des sites synonymes au sein des protéines Rgg p 91				
Figure 53	Comparaison des motifs ADN identifiés dans les régions promotrices des gènes cibles du locus <i>shp/rgg1358</i> de <i>Streptococcus thermophilus</i> LMD-9 p 92				

Liste des tableaux

Tableau 1	Histoire de la classification des bactéries et des Archaea (Schleifer, 2009) p 5
Tableau 2	Caractéristiques générales de l'ensemble des génomes séquencés appartenant à l'espèce <i>Streptococcus thermophilus</i> p 11
Tableau 3	Peptides autoinducteurs AgrD connus chez Staphylococcus aureus p 21
Tableau 4	Le peptide CSP de Streptococcus pneumoniae p 23
Tableau 5	Le peptide PapR7 de Bacillus cereus p 29
Tableau 6	Les deux principaux plasmides conjugatifs décrits chez Enterococcus faecalis p 32
Tableau 7	Précurseurs des sex-phéromones (adapté de Clewell et al., 2000) p 35
Tableau 8	Précurseurs des anti-phéromones (adapté de Clewell et al., 2000) p 35
Tableau 9	Caractéristiques des principales molécules de signalisation appartenant à la famille des <i>N</i> -AHL chez les bactéries à Gram négatif p 37
Tableau 10	Les principaux régulateurs transcriptionnels Rgg caractérisés et leur gène cible proximal associé chez les bactéries à Gram positif p 45
Tableau 11	Prévalence du gène <i>fbsA</i> et de ses régulateurs au sein des principaux complexes clonaux de <i>Streptococcus agalactiae</i> (adapté de Al Safadi <i>et al.</i> , 2011) p 50
Tableau 12	Caractéristiques des peptides « phéromones » SHP et XIP p 71
Tableau 13	Familles de peptides _{SHOW} identifiées dans le groupe mitis et le genre Listeria p 72
Tableau 14	Peptides _{SHOW} « souche spécifique » présentant des caractéristiques intéressantes p 73
Tableau 15	Identification d'une famille de peptides « sans » critère au sein de l'espèce <i>Streptococcus pneumoniae</i> p 73
Tableau 16	Description des souches utilisées dans cette étude p 76
Tableau 17	Oligonucléotides utilisés dans cette étude p 77
Tableau 18	Plasmides utilisés dans cette étude p 77
Tableau 19	Loci shp/rgg sélectionnés dans cette étude p 82
Tableau 20	Pourcentage d'identité des protéines affines AmiA chez Streptococcus thermophilus LMD-9 et CNRZ1066 p 88
Tableau 21	Récapitulatif des trois groupes de systèmes SHP/Rgg décrit dans l'article 1 p 90
Tableau 22	Alignements MEME et MUSCLE des références des groupes I, II et III p 92-93
Tableau 23	Squelettes ADN des motifs putatifs de fixation des régulateurs Rgg à l'ADN identifiés dans les régions promotrices des gènes <i>shp</i> p 92-93
Tableau 24	Environnement génétique des loci shp/rgg associés au groupe I p 94
Tableau 25	Environnement génétique des loci shp/rgg associés au groupe II p 95
Tableau 26	Environnement génétique des loci shp/rgg associés au groupe III p 96
Tableau 27	Environnement génétique des gènes cibles distaux présentant une distance « motif / codon start » conservée p 97
Tableau 28	Cibles putatives sélectionnées pour validation in vitro p 101

Introduction générale

De par la diversité des niches écologiques qu'elles colonisent, les bactéries possèdent de nombreux mécanismes de réponse leur permettant de s'adapter aux fluctuations environnementales, en particulier en régulant l'expression de gènes spécifiques. A titre d'exemples, la capacité des bactéries à détecter et traduire divers signaux physicochimiques de l'environnement leur permet de contrôler des fonctions en lien avec le chimiotastisme, le transport du phosphate ou encore de s'adapter à un changement d'osmolarité. Au cours des dernières décennies, il a été admis que les bactéries sont également capables de répondre à des signaux qu'elles synthétisent et sécrètent. Ces petites molécules de signalisation ont été appelées autoinducteurs ou phéromones. Cette découverte de l'existence d'interactions au sein du monde des procaryotes, qui a profondément bouleversé la notion que les bactéries fonctionnent de manière autonome, confère à une population bactérienne la capacité d'initier un comportement collectif en réponse à leur environnement (Atkinson and Williams, 2009).

Les molécules de signalisation sont utilisées dans un processus appelé « quorumsensing » (QS) et l'une des préoccupations des microbiologistes est de mieux comprendre ce langage, permettant aux bactéries de contrôler différentes fonctions physiologiques telles que la virulence, la formation de biofilms, la production de métabolites secondaires, le transfert horizontal d'ADN, la bioluminescence ou encore la motilité (Di Cagno et al., 2011; Winans, 2006). Aussi, le terme de molécule de signalisation désigne une molécule produite qui induit in fine une réponse permettant de coordonner les activités entre des bactéries émettrices du « signal » et des bactéries receveuses ; ces dernières pouvant être à la fois les bactéries émettrices ou provenant d'une autre population bactérienne (Platt and Fuqua, 2010). Dans ce dernier cas, l'effet de la molécule de signalisation peut être positif ou négatif sur la population en question. Aussi, une molécule de signalisation se définit par quatre critères : (i) une production spécifique à un moment donné au cours de la croissance des bactéries et sous certaines conditions physiologiques, (ii) une accumulation dans le milieu extracellulaire et une reconnaissance via un senseur spécifique, (iii) la mise en place d'une réponse concertée dès lors qu'une concentration seuil en molécule de signalisation a été atteinte et (iv) un changement physiologique propre à la molécule de signalisation s'étendant au delà des changements physiologiques requis pour métaboliser ou détoxifier la molécule de signalisation en question (Winzer et al., 2002). Aujourd'hui, ce mécanisme de régulation semble effectif dans la plupart des bactéries.

Malgré leur importance et les enjeux économiques qu'elles représentent, les bactéries industrielles, telles que les bactéries lactiques, n'ont encore été que faiblement étudiées dans le domaine de la communication cellulaire, contrairement aux bactéries pathogènes.

Chez *Streptococcus thermophilus*, par exemple, une seule étude concernant la production de bactériocines est décrite dans la littérature. La généralisation de ces systèmes de QS suggérant l'existence de plusieurs mécanismes de QS au sein des espèces bactériennes, la recherche et la caractérisation de nouveaux systèmes de QS chez *S. thermophilus* a été entreprise au laboratoire. Mon travail de thèse s'est inscrit dans cette thématique et a consisté à définir un nouveau mécanisme de QS spécifique du groupe des streptocoques. Aussi, pour la première fois, l'implication de régulateurs transcriptionnels appartenant à la famille des Rgg a été démontrée dans de tels phénomènes.

*** *** ***

Une introduction bibliographique présentera dans un premier temps, les différentes notions scientifiques en lien avec mon sujet de thèse. Un premier chapitre sera consacré à la famille des streptocoques et plus particulièrement à *S. thermophilus*, bactérie modèle dans cette étude. Un second chapitre sera ensuite consacré à la communication cellulaire de type QS et détaillera les principaux systèmes décrits actuellement dans la littérature. Enfin, une troisième partie présentera les données connues sur les protéines régulatrices de la famille Rgg.

Les résultats seront ensuite présentés au sein de trois chapitres. Le premier fait l'objet d'un article publié et regroupe l'ensemble des résultats ayant permis la validation du nouveau système de QS *via* l'étude d'un locus génétique de *S. thermophilus*. Une analyse *in silico* présente, par ailleurs, la distribution de ce système au sein des bactéries à bas GC% et souligne leur spécificité au groupe des streptocoques. Les chapitres suivants présentent, quant à eux, des résultats qui seront prochainement soumis. Aussi, dans un second chapitre, la fonctionnalité de ce nouveau système de QS a été évaluée au sein d'autres espèces de streptocoques. Ce travail ayant permis d'élargir la fonctionnalité de ce mécanisme de QS à des streptocoques pouvant être pathogènes pour l'Homme et les animaux, l'étude de l'existence de phénomènes de cross-talk ou de communication croisée entre des streptocoques pathogènes et/ou non-pathogènes est actuellement en cours au laboratoire. Dans un troisième chapitre sont présentés les résultats d'une approche *in-silico*, développée dans le but de définir les cibles de ces systèmes de QS et de mieux appréhender les fonctions physiologiques qu'ils contrôlent.

Enfin, une discussion générale soulignera l'apport de ce travail pour la communauté scientifique et proposera les perspectives envisageables à ce travail de thèse.

3

Introduction bibliographique

Tableau 1 – Histoire de la classification des bactéries et des Archaea (Schleifer, 2	009).
Classification basée principalement sur	

Fin du 19 ^{ème} siècle	Morphologie, Besoin spécifique de croissance, Potentiel pathogène
1900 à 1960	Morphologie, Physiologie, Biochimie
1960 à 1980	Chimiotaxonomie, Taxonomie numérique, Hybridation ADN-ADN
1980 à aujourd'hui	Analyses génotypiques, MLSA ¹ , ANI ² , Analyse du génome

¹ MLSA *Multilocus* Sequence Analyses ; ² ANI Average Nucleotide Identity.

Figure 1 – Relations phylogénétiques liant les genres bactériens majeurs appartenant aux bactéries lactiques (adapté de Stiles and Holzapfel, 1997).

1. Une appartenance au groupe des bactéries lactiques

L'appartenance des streptocoques au groupe des bactéries lactiques a été définie par Orla-Jensen, en 1919 (Stiles and Holzapfel, 1997), sur la base de critères phénotypiques. Depuis cette période, de nombreuses techniques (Tableau 1) sont venues bouleverser la classification au sein du groupe des bactéries lactiques et l'appartenance de certains genres bactériens à ce groupe taxonomique a été fortement discutée. En 1996, Vandamme et ses collaborateurs définissent un groupe hétérogène de bactéries composé de 11 genres bactériens : *Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus* et *Weissella* (Figure 1). Cette large diversité – regroupant des bactéries d'intérêt industriel, pathogènes stricts ou encore opportunistes – contribue à la présence des bactéries lactiques dans de nombreuses niches écologiques allant de la matrice alimentaire (lait, viande, légume, vin) aux muqueuses de l'Homme (cavité orale, vagin et tractus gastro-intestinal) (Pfeiler and Klaenhammer, 2007). A l'heure actuelle, ce groupe taxonomique est composé d'environ 400 espèces et une controverse demeure concernant les espèces du genre *Lactobacillus, Pediococcus, Oenococcus* et *Leuconostoc* (Zhang *et al.*, 2011).

D'un point de vue phylogénétique, les bactéries lactiques sont des bactéries à Gram positif (coques ou bacilles), anaérobies aérotolérantes, dépourvues de catalase, immobiles, asporulées et possédant un bas pourcentage en bases G+C (inférieur à 55%) (Stiles and Holzapfel, 1997). En dehors de ces caractères communs, l'appartenance au groupe des bactéries lactiques porte en réalité sur leur capacité à fermenter les glucides en produisant de l'acide lactique. Aussi, la fermentation est dite « homolactique » quand l'acide lactique est le principal produit formé et « hétérolactique » lorsque d'autres composés tels que l'acide acétique, l'éthanol ou le dioxyde de carbone (CO₂) sont également produits (Liu, 2003).

De par l'importance économique de certaines souches en tant que ferments, l'utilisation du terme « bactéries lactiques » a tendance à être restreint aux bactéries d'intérêt industriel. Dans ce cas, la voie métabolique de l'utilisation des oses est à la base de leur intérêt en assurant la fermentation de nombreux produits alimentaires (laitiers, carnés, céréaliers) et favorisant *in fine* le bon développement des produits d'un point de vue conservation ou organoleptique (arômes, textures). *Sensu largo*, un bon nombre de souches restent, quant à

Figure 2 – Relations phylogénétiques, basées sur l'ARN 16S, liant 33 espèces appartenant au genre *Streptococcus* (adapté de Kawamura *et al.*, 1995a).

elles, impliquées dans de nombreux cas de maladies humaines. Le genre *Streptococcus* – regroupant une bactérie d'intérêt industriel *Streptococcus thermophilus* et de nombreux pathogènes – étant un bon exemple, le chapitre suivant lui sera consacré.

2. Streptococcus thermophilus et les streptocoques

2.1 Classification et relations taxonomiques

Depuis le début du 20^{ème} siècle, la classification des streptocoques n'a cessé d'évoluer et les changements dans la nomenclature et la taxonomie ont été nombreux et variés. Le pouvoir hémolytique (1903) puis antigénique (Lancefield, 1933) des souches, ont d'abord permis de différencier les streptocoques β -hémolytiques (tels que S. pyogenes, S. agalactiae, S. dysgalactiae, S. equi, S. canis, S. anginosus) des streptocoques non βhémolytiques (tels que S. pneumoniae, S. bovis, S. suis, S. mutans, S. salivrius, S. mitis) puis de sous diviser les streptocoques hémolytiques en fonction de la nature de leur antigène polysaccharidique de paroi. En 1937, sur la base de caractères phénotypiques complémentaires, les streptocoques ont ensuite été regroupés en 4 catégories (Sherman, 1937) incluant les groupes « entérocoque » et « lactique », considérés par la suite en tant que genre à part entière et reclassés respectivement sous le terme « Enterococcus » et « Lactococcus ». Avec l'arrivée du séquençage, l'analyse comparative de l'ARN ribosomal (ARNr) 16S a ensuite permis d'organiser les relations au sein du genre Streptococcus en définissant 6 taxons de taille variable. Ainsi, ont été définis les groupes anginosus, bovis, mitis, mutans, pyogénique et salivarius (Figure 2) (Kawamura et al., 1995a). Depuis, bien que de nombreuses souches ou espèces (en particulier non β -hémolytiques) aient enrichi et été associées aux différents groupes existants (Facklam, 2002), aucune étude n'a remis en cause cette classification.

2.2 Les streptocoques pathogènes stricts et opportunistes

Groupe hétérogène de bactéries, les streptocoques constituent une famille ubiquitaire regroupant de nombreuses espèces, isolées des plantes ou de l'environnement, capables de coloniser la peau et les muqueuses de l'homme et de certains animaux. Malgré la présence de pathogènes stricts au sein de ce groupe, de nombreux streptocoques sont importants sur le plan écologique et participent au bon équilibre de la flore microbienne des Hommes et des animaux. Ce n'est qu'au travers d'un déséquilibre immunitaire ou de la flore indigène de l'hôte que ces streptocoques deviendront des pathogènes opportunistes déployant ainsi des mécanismes spécifiques pour coloniser leur environnement.

Parmi les principales espèces pathogènes de l'homme, on retrouve :

- *S. pyogenes*, à l'origine d'infections « aigues » provoquant pharyngites, impétigos, scarlatine mais également « systémiques » contribuant au choc toxique streptococcique associé à de forts taux de morbidité et mortalité (Cunningham, 2000, 2008),

- S. pneumoniae, responsable de pneumonies et de méningites (Mitchell and Mitchell, 2010),

- S. agalactiae, agent causal de septicémies néonatales (Mullaney, 2001).

De manière générale, les déterminants impliqués dans le pouvoir pathogène d'une souche confèrent aux bactéries la capacité de se fixer à l'hôte, de le coloniser et d'échapper aux mécanismes de défenses de ce dernier.

La capacité d'adhérence aux tissus de l'hôte constitue l'étape clé à l'infection du pathogène. De nombreuses protéines de surfaces ou sécrétées, nécessaires à l'accomplissement de cette étape, sont par conséquent produites par la bactérie. Parmi celles-ci, les adhésines jouent un rôle primordial et leur spécificité confère aux streptocoques la capacité de coloniser l'hôte à divers endroits. Aussi, les glycoprotéines permettront l'adhésion des streptocoques oraux (principalement) aux cellules épithéliales, plaquettes et glycoprotéines salivaires par interaction directe avec l'acide sialique présent ou associé à ces dernières ; et les protéines de liaison à la fibronectine produites chez tous les streptocoques pathogènes favoriseront l'association du pathogène à la matrice extracellulaire de l'hôte (Nobbs et al., 2009). Par ailleurs, chez S. pyogenes, le rôle de la protéine de surface M dans l'adhésion de la bactérie aux cellules épithéliales a été largement caractérisé et résulterait d'une interaction de la protéine avec la fibronectine présente au niveau des cellules épithéliales. Néanmoins, d'autres fonctions telles que la protection contre la phagocytose et un rôle dans le maintien de l'homéostasie de la bactérie ont été attribuées à ce facteur de virulence décrit comme multifactoriel (Oehmcke et al., 2010). Plus récemment, les pili ont également été identifiés comme une nouvelle classe d'adhésines bactériennes chez les bactéries pathogènes à Gram positif (Kreikemeyer et al., 2011). Jusqu'à maintenant, 3 pili ont été mis en évidence chez S. agalactiae (Lauer et al., 2005; Rosini et al., 2006), 2 chez S. pneumoniae (Bagnoli et al., 2008; Barocchi et al., 2006) et 9 chez S. pyogenes (Falugi et al., 2008; Mora et al., 2005) en ce qui concerne les trois pathogènes majeurs de l'Homme.

La capacité des pathogènes à former des biofilms joue également un rôle non négligeable dans leur pathogénicité en leur permettant de se protéger des agressions extérieures. Les streptocoques de la cavité buccale sont principalement associés à ce phénomène, leur permettant de mieux résister aux attaques physico-chimiques et frictions mécaniques provoquées par le brossage des dents (Nicolas and Lavoie, 2011). Ce phénomène, largement étudié chez *S. mutans*, responsable des caries dentaires (Keyes, 1960), est

clairement favorisé par le régime alimentaire de l'Homme. En effet, le saccharose ingéré par l'hôte favorise la formation de glucanes insolubles par la bactérie. L'acide généré *via* la voie de biosynthèse de ces polysaccharides déminéralise l'émail des dents et rend la bactérie plus compétitive au sein de l'écosystème buccal lui permettant ainsi de coloniser la plaque dentaire à travers la formation d'un biofilm. La différenciation phénotypique des bactéries présentes dans le biofilm engendre, par ailleurs, des changements d'expression et de régulation de plusieurs gènes contribuant à la formation d'une matrice extracellulaire solide liant les cellules à la surface dentaire (Nicolas and Lavoie, 2011). La communication cellulaire qui s'établit entre les espèces au sein d'un biofilm participe, par ailleurs, à son bon développement et favorise l'échange d'informations génétiques au sein d'une ou entre plusieurs populations.

La présence d'une capsule contribue également à la colonisation des streptocoques pathogènes en empêchant l'interaction des immunoglobulines (présentes à la surface des cellules bactériennes) avec les récepteurs des cellules phagocytaires, en protégeant les bactéries de l'action des antibiotiques et en limitant leur autolyse (Mitchell and Mitchell, 2010). La capsule polysaccharidique présente à la surface de *S. pneumoniae* est considérée comme le facteur de virulence le plus important chez cette bactérie et actuellement 91 sérotypes sont décrits dans la littérature (Park *et al.*, 2007). Par ailleurs, deux vaccins présentant des anticorps dirigés contre les polysaccharides capsulaires sont actuellement disponibles pour prévenir des infections à ce streptocoque (Pneumovax ® et Prevnar ®) (Kreikemeyer *et al.*, 2011).

Enfin, des déterminants plus spécifiques tels que la production de toxines peuvent également contribuer à la virulence d'une espèce (Mitchell and Mitchell, 2010; Nobbs *et al.*, 2009; Rajagopal, 2009). Ces toxines pouvant également être libérées suite à l'autolyse de la bactérie, ceci souligne l'importance du choix des traitements utilisés lors des infections. A titre d'exemple, la pneumolysine, toxine produite par *S. pneumoniae*, contribue à la formation de pores au niveau des cellules bronchiques et alvéolaires de l'hôte favorisant ainsi la dissémination de la bactérie dans le sang (Mitchell and Mitchell, 2010). D'autres protéines dites de « dégradation » sont également caractérisées. Parmi celles-ci l'énolase (enzyme glycolytique présente dans un bon nombre de streptocoques) contribue à la dégradation de la matrice extracellulaire de l'hôte facilitant ainsi l'invasion bactérienne et leur diffusion à travers la barrière épithéliale (Nobbs *et al.*, 2009).

L'utilisation des antibiotiques pour le traitement des infections liées aux streptocoques est couramment préconisée. Néanmoins, l'apparition de souches résistantes oriente actuellement les recherches sur ces pathogènes vers le développement de nouvelles techniques thérapeutiques. Aussi, de par leurs forts niveaux d'expression au cours des

infections à streptocoques et la présence de caractéristiques antigéniques intéressantes, les pili constitueraient des cibles prometteuses pour la production de vaccins (Kreikemeyer *et al.*, 2011; Mora *et al.*, 2005). Cependant, la grande variabilité des antigènes présents sur les pili des streptocoques présage qu'une protection optimale vis-à-vis d'un sérotype donné sera difficile (Falugi *et al.*, 2008).

Parmi les espèces commensales et pathogènes du genre *Streptococcus*, *S. thermophilus* est le seul streptocoque reconnu comme GRAS (**G**enerally **R**ecognized **A**s **S**afe) et dont les capacités homofermentaires sont utilisées dans l'industrie agro-alimentaire. En tant que bactérie modèle pour mes travaux de thèse, la suite de ce chapitre lui sera plus particulièrement consacrée. Son rôle en tant que ferment industriel sera tout d'abord abordé avant de se focaliser sur les caractéristiques évolutives et génétiques de l'espèce.

2.3 Streptococcus thermophilus

2.3.1 <u>S. thermophilus, un streptocoque d'intérêt industriel</u>

Isolé du lait, *S. thermophilus* se présente sous la forme de coques ovoïdes allant de 0,7 à 0,9 μm. Cette espèce thermotolérante présente une température optimale de croissance de 42-43°C et est capable de se multiplier sur une échelle de température allant de 15 à 52°C. Par ailleurs, *S. thermophilus* survit à un chauffage de 30 min à 65°C, se développe jusqu'à une concentration de 4% en NaCl mais ne se multiplie pas en milieu basique (pH > 9,6) (Moschetti *et al.*, 1998; Sherman, 1937; Stiles and Holzapfel, 1997).

Ces caractéristiques générales confèrent à *S. thermophilus* de bonnes propriétés en tant que ferment dans la fabrication de produits laitiers tels que le yaourt ou certains fromages où elle se retrouve associée à *Lactobacillus bulgaricus* et *Lactococcus lactis*. Au cours de la fermentation, *S. thermophilus* acidifie le lait par production d'acide lactique et contribue à la formation d'un gel appelé caillé. *S. thermophilus* joue également un rôle dans la production d'arômes et le développement de saveurs caractéristiques en favorisant la synthèse de composés aromatiques tels que l'acétaldéhyde, des cétones, du diacétyle et de l'acétoine. La bactérie agit également sur la consistance et la texture du produit fini *via* la production de métabolites tels que les exopolysaccharides (De Vuyst and Degeest, 1999) mais aussi sur leur conservation *via* la production de bactériocines, inhibant la croissance d'espèces phylogénétiquement proches et indésirables telles que les listeria ou les entérobactéries (Villani *et al.*, 1995).

Figure 3 – Ramifications au sein du groupe salivarius établies par inférence phylogénétique sur la séquence concaténée de l'ARNr 16S et des gènes *recA*, *secA* et *secY* (Pombert *et al.*, 2009).

En plus de contribuer à une bonne fermentation des produits laitiers, *S. thermophilus* confère un intérêt santé à l'hôte consommateur en stimulant ses défenses immunitaires et améliorant la digestion du lactose (Guarner *et al.*, 2005) mais aussi en participant à l'équilibre de la flore intestinale (Menard *et al.*, 2004). Enfin, *S. thermophilus* étant retrouvée vivante après passage dans le tube digestif, son rôle éventuel en tant que probiotique a également été soulevé (Elli *et al.*, 2006).

2.3.2 Taxonomie et identification de S. thermophilus

S. thermophilus appartient au groupe des streptocoques oraux regroupant les groupes anginosus, mitis, mutans et salivarius (Farrow and Collins, 1984). Bien que la cavité orale soit l'environnement naturel (principal) de ces streptocoques, *S. thermophilus* ne fait que transiter au sein de celle-ci. De par son appartenance au groupe salivarius, *S. thermophilus* se retrouve associée phylogénétiquement à *S. vestibularis* et *S. salivarius* dont l'implication dans des cas d'endocardites et de méningites a été démontrée (Conte *et al.*, 2006; Doyuk *et al.*, 2002; Idigoras *et al.*, 2001; Partridge, 2000). Plusieurs analyses phylogénétiques appuient les relations liant ces trois espèces et décrivent une divergence de l'espèce *salivarius* à la base du clade (Figure 3) (Kawamura *et al.*, 1995b; Pombert *et al.*, 2009; Poyart *et al.*, 1998).

Aussi, malgré la (ré-)habilitation officielle de *S. thermophilus* au rang d'espèce en 1994 (Bergey's manual of determinative bacteriology, Williams et Wilkins, 1994) et son statut reconnu comme GRAS, la proximité de cette espèce avec des pathogènes couplée à son importance technologique a nécessité le développement de techniques pour sa détection et son identification. Les techniques d'hybridation, utilisant des sondes oligonucléotidiques spécifiques à une région de l'ARNr 16S, 23S mais aussi de la partie 5' du gène *lacZ* codant la β-galactosidase, ont tout d'abord été développées (Ehrmann *et al.*, 1994; Lick *et al.*, 1996). Les techniques d'amplification de l'ADN telle que la PCR (Polymerase Chain Reaction) ont ensuite permis d'identifier rapidement les souches de *S. thermophilus* par amplification d'un fragment localisé dans le gène *sodA* codant une superoxide dismutase (Poyart *et al.*, 1998). L'utilisation des méthodes de typage PFGE (Pulsed-Field Gel Electrophoresis) et RAPD-PCR (Random Amplified Polymorphic DNA-PCR) a ensuite permis d'explorer la diversité microbienne au sein de l'espèce et de distinguer (de manière quasi-exhaustive) les souches de *S. thermophilus* les unes des autres (Giraffa, 2001; Mora, 2002; Moschetti *et al.*, 1998; O'Sullivan and Fitzgerald, 1998).

La diversité génétique au sein du groupe salivarius a également été étudiée par MLST (**M**ultilocus **S**equence **T**yping) sur la base de 7 gènes constitutifs (*ilvC*, *pepO*, *pyrE*, *glcK*,

	CNRZ1066	LMG18311	LMD-9	ND03	JIM8232
Taille	1,796 Mb	1,797 Mb	1,856 Mb	1,832 Mb	1,930 Mb
G+C%	39	39	35	39	39
CDS	1915	1890	1709	1919	2145
Plasmide	Absence	Absence	pSTER1 (4449 pb) pSTER2 (3361 pb)	Absence	Absence
Provenance	Yaourt français	Yaourt anglais	Yaourt ou fromage	Lait de Yak, Chine	Lait
Référence	Bolotin <i>et al.</i> , 2004	Bolotin <i>et al.</i> , 2004	Makarova <i>et al.</i> , 2006	Sun <i>et al.</i> , 2011	Delorme <i>et al.</i> , 2011

Tableau 2 – Caractéristiques générales de l'ensemble des génomes séquencés appartenant à l'espèce *Streptococcus thermophilus*.

Figure 4 – Dendrogramme représentant les évènements évolutifs au sein de l'ordre des *Lactobacillales* (Makarova *et al.*, 2006).

Au niveau de chaque évènement évolutif le nombre de gènes orthologues « LaCOGs » présents (noir), gagnés (rouge) ou perdus (bleu) pour la branche menant au nœud est indiqué.

ddlA, *thrS* et *dnaK*). L'analyse des profils alléliques des 3 espèces présentes dans ce taxon, a révélé un faible polymorphisme (0,19%) au sein de l'espèce *thermophilus* en comparaison avec ceux des espèces *salivarius* et *vestibularis*, respectivement de 6,6 et de 3,6% (Delorme *et al.*, 2007; Delorme, 2008). Cette faible variabilité génétique de *S. thermophilus* a permis aux auteurs de suggérer une récente émergence de l'espèce de nature clonale. Par ailleurs, le polymorphisme génétique intra-spécifique a fortement été étudié pour l'intérêt industriel qu'il pouvait susciter dans la sélection et le choix des ferments lactiques.

2.3.3 <u>Histoire évolutive de S. thermophilus</u>

Cinq génomes sont actuellement séquencés au sein de l'espèce *S. thermophilus.* Les caractéristiques générales de ces génomes sont présentées dans le Tableau 2.

La reconstruction d'un arbre phylogénétique utilisant le principe de parcimonie, et par conséquent conçu de manière à impliquer le minimum d'évènements évolutifs, a permis de restituer l'évolution des *Lactobacillales*, et par conséquent celle de *S. thermophilus*, à partir de l'ancêtre commun des *Bacilli*¹ (Figure 4) (Makarova *et al.*, 2006). Aussi, l'émergence des *Lactobacillales* résulterait d'une perte génétique de 25 à 30% du génome ancestral – associée principalement à la fonction de sporulation et au stress oxydant – et relaterait d'une adaptation anticipée de ces bactéries aux environnements riches en nutriments. D'un point de vue évolutif, la perte de gènes joue également un rôle majeur et prépondérant chez les *Lactobacillales* et en particulier pour l'émergence de l'espèce *S. thermophilus* où elle s'élève à 546 gènes. De manière originale, l'émergence de l'espèce *L. lactis* résulterait majoritairement d'un gain de gènes et serait le seul cas d'évolution positive au sein de cet ordre bactérien.

Bien que *S. thermophilus* et les streptocoques pathogènes partagent une partie non négligeable de leur physiologie et métabolisme global (Figure 5A), l'analyse comparative des génomes des souches séquencées de *S. thermophilus* CNRZ1066, LMG18311 et LMD-9 relate environ 200 gènes non fonctionnels (dû au frameshift, mutations non-sens, délétion et troncation) au sein de cette espèce décrivant ainsi la plus forte proportion de pseudogènes (10%) au sein du genre *Streptococcus* (Bolotin *et al.*, 2004; Makarova *et al.*, 2006). L'innocuité de *S. thermophilus* en serait la principale résultante de par la perte ou l'inactivation de la majorité des déterminants reconnus importants dans le pouvoir pathogène de certains streptocoques (Bolotin *et al.*, 2004). A titre d'exemple, la majorité des 28

¹ La classe des *Bacilli* regroupe l'ordre des *Lactobacillales* et celui des *Bacillales, comprenant les genres Listeria, Bacillus, Staphylococcus.*

Figure 5 – Diagrammes de Venn représentant le pourcentage de gènes partagés au niveau de différentes espèces (A) ou au sein d'une même espèce (B) de streptocoques (Lefébure and Stanhope, 2007).

Figure 6 – Composition du pan-génome de Streptococcus thermophilus (Rasmussen et al., 2008).

Le pan-génome de l'espèce *thermophilus* présente 58% de gène commun à tous les individus de l'espèce auquel 14% de gènes conservés sont associés malgré leur absence (ou leur perte) dans un nombre restreint de souches. Huit pourcents constituent un pool de gènes récemment acquis présents dans un petit nombre de souches. Enfin 20% du pan-génome correspond aux gènes dits variables présents et représentés dans la majorité des souches.

déterminants de surface importants dans la virulence de *S. pneumoniae* (sortases, adhésines, protéases, etc.) sont absents ou inactivés chez *S. thermophilus* (Bolotin *et al.*, 2004). Néanmoins, certaines souches de *S. thermophilus* auraient conservé certains gènes similaires à des gènes de virulence (protéase de paroi PrtS, gènes impliqués dans la biosynthèse des exopolysaccharides et opéron uréase) (Hols *et al.*, 2005). Cependant, la fonction de ces derniers aurait évolué avec le temps et participerait à l'adaptation de *S. thermophilus* à l'environnement laitier. Par ailleurs, le phénomène de perte de gènes touche également certains transporteurs, des protéines impliquées dans le métabolisme énergétique et les éléments génétiques mobiles (phages, transposons, séquences d'insertion).

Malgré une dégénérescence évidente du génome de S. thermophilus et un faible polymorphisme au sein de l'espèce, de nombreux îlots génomiques seraient, quant à eux, acquis par transfert horizontal (Hols et al., 2005). L'ensemble des gènes présents chez tous les streptocoques ou « core-génome » a été évalué à 611 et représente environ 25% du génome d'un streptocoque (Figure 5A) alors qu'au niveau de l'espèce il est en moyenne de 70-75% (Figure 5B) (Lefébure and Stanhope, 2007). Sur la base de 47 isolats, Rasmussen et ses collaborateurs ont défini un core-génome équivalent à 1271 séquences codantes pour l'espèce thermophilus. L'analyse approfondie du génome « dispensable » (gènes non représentés dans l'ensemble de la population), représentant 42% du pan-génome de l'espèce (Figure 6), a ensuite permis d'identifier 431 gènes dits « variables » pouvant résulter d'une acquisition par transfert horizontal au vu de leur représentation aléatoire au sein des génomes de la population (Rasmussen et al., 2008). Les analyses in silico basées sur des biais de composition du génome permettent également de générer des pools de gènes potentiellement acquis par transfert horizontal et appelés « atypiques ». Une première étude, basée sur les génomes séquencés de S. thermophilus a ainsi révélé 197 gènes potentiellement acquis par transfert horizontal parmi lesquels 60% sont associés à des gènes impliqués dans des mécanismes de transfert codant des transposases, bactériophages et l'ARN de transfert (ARNt) (Liu et al., 2009). Dans une seconde étude, le pool de gènes « atypiques » fut défini sur la base des 47 isolats utilisés lors de l'étude de Rasmussen et al., et comparé aux 431 gènes « variables » identifiés dans cette même étude. Un total de 54 gènes dits « atypiques et variables », localisés dans de nombreux îlots génomigues, a alors été décrit comme acquis par transfert horizontal (Eng et al., 2011). Bien que la majorité des protéines codées par ces gènes soient associées à des fonctions hypothétiques (41%) ou tronquées (13%), les produits des gènes annotés interviennent quant à eux dans des voies de biosynthèse d'exopolysaccharides (9) ou de bactériocines (1), dans des systèmes de transport (5) ou de restriction/modification (2), dans le

Figure 7 – Les mécanismes de transfert horizontal chez les bactéries.

métabolisme des sucres (3) ou codent également des régulateurs transcriptionnels appartenant à la famille des Rgg (**R**egulator **G**ene of **G**lucosyltransferase). Enfin, trois gènes coderaient pour des protéines d'origine phagique.

La perte de gènes ou leur dégénérescence jouent un rôle majeur dans l'adaptation de *S. thermophilus* à son environnement mais l'évolution de son génome résulte également d'une acquisition de gènes par transfert horizontal. Les trois mécanismes de transfert connus pour être les phénomènes clés de l'évolution bactérienne – conjugaison, transduction et transformation – sont par ailleurs effectifs chez ce streptocoque et contribuent sûrement de manière coordonnée aux flux de gènes de cette espèce. Ils seront donc abordés dans la partie suivante.

2.3.4 Le transfert de l'information génétique chez S. thermophilus

Par opposition au transfert vertical, le transfert horizontal de gènes permet aux bactéries d'échanger du matériel génétique provenant d'un autre organisme sans en être le descendant. Trois mécanismes de transfert horizontal sont distingués chez les bactéries : la transduction, la conjugaison et la transformation (Figure 7). A l'heure actuelle, 1,6 à 32,6% des génomes microbiens auraient été acquis par transfert horizontal (Koonin *et al.*, 2001).

La transduction :

Le phénomène de transduction permet le transfert d'un fragment d'ADN d'une bactérie donneuse à une bactérie receveuse par l'intermédiaire d'un phage. Deux voies de transduction sont décrites : la transduction généralisée et la transduction spécialisée. La transduction généralisée est liée à une erreur de spécificité de l'encapsidation résultant en l'intégration d'ADN bactérien au sein de la particule phagique. Aussi, au cours du cycle d'infection suivant, cette séquence d'ADN sera transférée au sein d'une autre bactérie et pourra être recombinée au niveau de son génome. Dans le cas de la transduction spécialisée, l'excision impropre du prophage, intégré dans le chromosome bactérien, résulte en l'export de l'ADN bactérien contigu au site d'intégration. Lors du cycle d'infection suivant, l'intégration du génome du phage dans le chromosome bactérien aboutira à l'apport de gène(s) modifiant ainsi le patrimoine génétique de la cellule (Sørensen *et al.*, 2005). Chez *S. thermophilus*, bien que le rôle des phages dans le transfert de gènes au sein de l'espèce ait été décrit en 1988 (Mercenier *et al.*, 1988), ce n'est que récemment que l'infection de phages entre deux ferments lactiques a été mise en évidence. Aussi, l'évolution et

l'acquisition de modules génétiques entre *S. thermophilus* et *L. lactis* seraient en partie médiées par les phages (Ammann *et al.*, 2008).

La conjugaison :

Mis en évidence chez Escherichia coli par Lederberg et Tatum en 1946, le transfert par conjugaison de l'ADN nécessite un contact physique entre une cellule « donneuse » et une cellule « receveuse » et se traduit généralement par l'acquisition d'un plasmide conjugatif possédant l'information génétique lui permettant de se transférer entre bactéries et de se répliquer de manière autonome (Thomas and Nielsen, 2005). L'acquisition de ces plasmides apporte aux bactéries des caractères adaptatifs avantageux tels que la résistance aux antibiotiques ou la capacité à utiliser de nouvelles sources de carbones (Sørensen et al., 2005). Le transfert entre les organismes donneur et accepteur se fait en plusieurs étapes et nécessite en premier lieu une étape de reconnaissance qui s'établit soit par la présence de pili chez les bactéries à Gram négatif ou soit à travers la production de protéines d'agrégation chez les bactéries à Gram positif (Sørensen et al., 2005). Chez les bactéries lactiques, cette méthode de transfert d'ADN a été largement observée (Teuber et al., 1999; Toomey et al., 2009). Chez les entérocoques, le transfert par conjugaison répond à un mécanisme de communication cellulaire. Aussi la production de molécules de signalisation par les cellules receveuses va induire une réponse chez les cellules donneuses, déclenchant la synthèse de protéines membranaires favorisant l'agrégation des cellules donneuses et receveuses entre elles (Dunny et al., 2001; Thomas and Nielsen, 2005) (Chapitre 2, § 2.2.4). Des éléments chromosomiques pouvant être excisés et transférés à une autre cellule ont également été identifiés et constituent un groupe d'éléments mobiles appelé ICE (Integrative and Conjugative Element). Ces éléments intégratifs et conjugatifs font appel à un système de recombinaison site-spécifique codant les éléments nécessaires à leur excision, à leur transfert et à leur intégration au niveau de deux sites, l'un chromosomique et l'autre présent dans l'élément (Wozniak and Waldor, 2010). Ce processus de conjugaison a par ailleurs été décrit chez S. thermophilus (Burrus et al., 2002).

La transformation :

Le phénomène de transformation naturelle a été découvert *chez S. pneumoniae* (Avery *et al.*, 1944; Griffith, 1928), et est aujourd'hui caractérisé dans plusieurs phyla bactériens – tels que les firmicutes, les protéobactéries, les cyanobactéries et les archaea (Johnsborg *et al.*, 2007). Pour qu'une bactérie soit naturellement transformable, elle doit être dans un état physiologique appelé « compétence » qu'elle acquiert via l'expression d'un pool de gènes dit « précoces », en réponse à la détection de signaux environnementaux (Claverys *et al.*,

2009). Cet état physiologique contrôle par ailleurs l'expression de gènes dit « tardifs » codant la machinerie de compétence nécessaire à l'internalisation et à la recombinaison homologue de l'ADN dans le chromosome bactérien (Johnsborg *et al.*, 2007; Johnsborg and Håvarstein, 2009; Tortosa and Dubnau, 1999). Aussi, la transformation génétique est définie comme l'acquisition d'un fragment d'ADN exogène dans une cellule, entrainant éventuellement une modification phénotypique de l'organisme receveur. Ce phénomène est décrit comme transitoire dans la plupart des espèces bactériennes naturellement transformables (Johnsborg *et al.*, 2007).

Bien que les mécanismes d'acquisition de la compétence soient spécifiques à chaque espèce (e.g. Chapitre 2 § 2.1.3; Chapitre 3 § 3.2.2 et 3.2.3), la machinerie d'absorption de l'ADN forme, quant à elle, un complexe protéique conservé entre les espèces et appelé le transformasome (Claverys et al., 2009). De manière simplifiée, les protéines ComGA-F constituent un pseudo-pilus nécessaire à la liaison de l'ADN double brin (ADNdb) à la surface des cellules compétentes et assurent la formation d'un pore d'entrée permettant la reconnaissance de l'ADNdb par un récepteur membranaire appelé ComEA. Ce récepteur fixe par ailleurs l'ADNdb sans spécificité de séquence. L'ADNdb est ensuite dégradé en ADN simple brin (ADNsb) par une endonucléase (EndA ou NucA). L'ADNsb formé est alors internalisé à travers un canal de translocation appelé ComEC. Enfin, une protéine de liaison de l'ATP, ComFA, apporte l'énergie nécessaire au transport de l'ADNsb (Chen and Dubnau, 2004; Claverys et al., 2009). Une fois internalisé, l'ADNsb est ensuite inclus au sein d'un complexe protéique, composé des protéines SSB (Single Strand Binding), RecA et DprA, appelé complexe d'éclipse assurant la protection de ce dernier et sa restauration en ADNdb (Claverys et al., 2009). La recombinaison de l'ADN exogène est ensuite prise en charge par la protéine RecA et, la formation d'un hétéroduplex entre l'ADNsb exogène et chromosomique induit la substitution du brin donneur au brin receveur (Claverys et al., 2009). Cette étape d'intégration de l'ADN monocaténaire est effective en présence d'un degré d'homologie suffisant entre l'ADN exogène et chromosomique et peut soit résulter en l'apport de nouvelles fonctions physiologiques ou soit éventuellement en l'inactivation de certains gènes par insertion ou délétion (Thomas and Nielsen, 2005).

De nombreux streptocoques, comme *S. thermophilus*, ont longtemps été considérés comme « non naturellement compétents ». Des techniques, permettant de perforer les enveloppes bactériennes des bactéries non compétentes ont alors été développées afin de permettre leur manipulation génétique. Chez *S. thermophilus*, l'électroporation – consistant à soumettre les bactéries à des impulsions électriques ayant pour but de créer des pores dans les enveloppes bactériennes – a longtemps été utilisée comme moyen le plus efficace pour transformer les cellules (Marciset and Mollet, 1994; Somkuti and Steinberg, 1988) avant que le phénomène de compétence naturelle ne soit décrit au sein de cette espèce (Blomqvist *et*

15

al., 2006a; Fontaine *et al.*, 2010a; Gardan *et al.*, 2009) (Chapitre 3 § 3.2.2). Récemment, la mise en évidence de transfert de fragments d'ADN entre différentes souches de *S. thermophilus* par transformation naturelle, a ouvert des perspectives intéressantes concernant l'échange d'informations génétiques au sein de l'espèce et l'acquisition de nouvelles fonctions (*e.g.* résistance aux phages) pertinentes pour les industries agro-alimentaires (Fontaine *et al.*, 2010b).

Bien que ces mécanismes soient fréquents chez les bactéries, l'ADN transféré aux bactéries par transfert horizontal doit procurer un avantage sélectif afin d'être acquis de manière durable (Thomas and Nielsen, 2005). Par ailleurs, les éléments génétiques mobiles, tels que les séquences d'insertions, transposons, intégrons et îlots génomiques, échangés entre les bactéries contribuent également à la plasticité des génomes bactériens. Enfin, le transfert horizontal n'est pas restreint aux bactéries. Il est également décrit au sein d'autres domaines et possible entre archées et bactéries mais aussi entre eucaryotes et bactéries (Boto, 2010).

Figure 8 - Représentation schématique du déclenchement d'un système de quorum-sensing (d'après Keller and Surette, 2006).

Chapitre 2 : La communication cellulaire de type quorum-sensing

1. Concepts généraux

Mise en évidence par les travaux de Tomasz sur la compétence *chez S. pneumoniae* (Tomasz, 1965) et Hasting chez les deux bactéries marines luminescentes *Vibrio fischeri* et *Vibrio harveyi* (Nealson and Hasting, 1970 et 1979), la communication cellulaire de type quorum-sensing (QS), procurant aux bactéries une meilleure résistance, survie ou adaptation à leur environnement, se définit comme un mécanisme de régulation de l'expression des gènes en réponse à l'augmentation de la densité cellulaire (Figure 8). Ceci se traduit par la capacité des bactéries à percevoir leurs congénères à travers la production, la sécrétion puis la détection de molécules de signalisation propres à chaque espèce bactérienne. A cette notion de détection appelée « sensing », s'ajoute une notion de seuil ou « quorum » amenant les bactéries à percevoir les molécules de signalisation émises dans le milieu environnant, lorsque ces dernières atteignent une certaine concentration critique. Aussi, la mise en évidence de l'action simultanée de ces deux notions de « détection » et de « seuil » conduit l'ensemble d'une population bactérienne à modifier de manière coordonnée l'expression de gènes lui conférant ainsi de nouvelles propriétés.

Au cours des dernières décennies, il a été admis que les bactéries sont capables de répondre à des signaux qu'elles synthétisent et sécrètent. Ces petites molécules de signalisation ont été appelées autoinducteurs (AI) ou phéromones. Cette découverte de l'existence d'interactions au sein du monde des procaryotes, a profondément bouleversé la notion qu'on en avait. En effet, les bactéries ne fonctionnaient plus de manière autonome mais, avaient la capacité d'initier un comportement collectif en réponse à leur environnement (Atkinson and Williams, 2009).

Bien que le mécanisme général de fonctionnement des systèmes de communication de type QS réponde à un schéma précis, leur spécificité rend compte de la nature de la molécule de signalisation utilisée. En effet, alors que chez les bactéries à Gram négatif, les *N*-acyl homoserine lactones constituent la famille de molécules de signalisation la mieux caractérisée, les bactéries à Gram positif utilisent quant à elles des peptides autoinducteurs issus du clivage d'une molécule « précurseur » subissant, dans certains cas, des

Figure 9 – Représentation schématique d'un système à deux composants.

modifications post-traductionnelles (Dunny and Leonard, 1997). Aussi, en fonction de la nature chimique de la molécule de signalisation mise en œuvre, les bactéries utilisent différentes voies de signalisation pour assurer leur détection.

En lien avec mes travaux de thèse, ce chapitre sera consacré aux systèmes de QS chez les bactéries. Dans une première partie seront présentés les principaux systèmes de QS chez les bactéries à Gram positif. Puis, dans une deuxième et troisième partie seront décrits, de manière plus succincte, le QS chez les bactéries à Gram négatif et au niveau interespèces.

2. Le QS chez les bactéries à Gram positif

Chez les bactéries à Gram positif, les molécules de signalisation impliquées dans des phénomènes de QS correspondent à des peptides autoinducteurs (AIP, Autoinducing **p**eptide) pouvant présenter ou non des modifications. Deux voies de signalisation de ces peptides sont décrites dans la littérature. Alors que la première assure la reconnaissance puis la transduction du signal *via* l'utilisation d'un système à deux composants ; la deuxième nécessite dans un premier temps la réimportation de la molécule de signalisation dans le cytoplasme de la cellule *via* un transporteur d'oligopeptides puis dans un second temps son interaction avec un effecteur intracellulaire appartenant à la famille des RNPP (**R**ap, **N**prR, **P**IcR, **P**rgX) (Miller and Bassler, 2001; Rocha-Estrada *et al.*, 2010).

Sur ces observations générales, une première partie sera consacrée aux systèmes impliquant une détection extracellulaire des AIP, c'est-à-dire utilisant un système à deux composants et une seconde partie présentera les systèmes de QS en lien avec mes travaux de thèse et nécessitant un système de transport d'oligopeptides pour l'import des phéromones dans le cytoplasme.

2.1 Détection extracellulaire des peptides autoinducteurs

2.1.1 Les systèmes à deux composants

Les systèmes à deux composants (TCS, **T**wo **C**omponent **S**ystems) sont largement utilisés par les bactéries pour répondre à différents signaux et stimuli de l'environnement (Hoch, 2000). Ces systèmes sont composés d'une histidine kinase et d'un régulateur de réponse (Figure 9) (Casino *et al.*, 2010).

La plupart des histidines kinases contiennent un domaine transmembranaire couplé à un domaine autokinase. Aussi, la détection du signal au niveau du domaine transmembranaire

provoque l'activation du domaine autokinase, *via* la phosphorylation d'un résidu histidine. Le groupe phosphoryl est ensuite transféré sur un résidu aspartate localisé dans le domaine receveur du régulateur de réponse apparenté, entraînant *in fine* une modulation du domaine effecteur de ce dernier. Cette modulation, provoquant un changement conformationnel du régulateur de réponse, module l'activité du domaine effecteur, représentant dans 63% des cas un domaine de liaison à l'ADN. Le régulateur transcriptionnel peut alors se fixer sur les régions promotrices des gènes cibles et induire la réponse physiologique apparentée (Casino *et al.*, 2010; Gao and Stock, 2009). Le régulateur de réponse représente généralement le dernier composant de la cascade de phosphorylation et peut être soit phosphorylé (comme décrit ci-dessus), soit déphosphorylé par l'histidine kinase jouant alors le rôle d'une phosphatase (Casino *et al.*, 2010).

De nombreuses fonctions biologiques sont régulées par des TCS chez les bactéries. Parmi les TCS impliqués dans des mécanismes de QS, les systèmes *agrBDCA* de *Staphylococcus aureus* et *comCDE* de *S. pneumoniae* ont été particulièrement étudiés. Ils seront présentés ci-dessous.

2.1.2 La virulence chez Staphylococcus aureus : le système agrBDCA

S. aureus est une bactérie pathogène opportuniste responsable de nombreuses infections, telle que l'endocardite, liées en partie à l'invasion des tissus de l'hôte. Pour contrôler l'expression de la majorité des déterminants impliqués dans son pouvoir pathogène, *S. aureus* utilise un mécanisme de communication cellulaire connu sous le nom de système *agr* (accessory gene regulator). Aussi, à forte densité cellulaire, l'expression des protéines de surface (adhésine, protéine A, coagulase, etc.) assurant l'adhésion et la colonisation de la bactérie sera inhibée en faveur de facteurs de virulence (exotoxines, hémolysines, enzymes dégradatives, etc.) nécessaires à la dégradation des tissus et à la dissémination de la bactérie dans l'hôte (Novick, 2003).

Le locus *agr* consiste en deux unités de transcription divergentes, RNAII (3500 nt) et RNAIII (514 nt), placées sous le contrôle de deux promoteurs appelés respectivement P2 et P3 (Figure 10). L'opéron P2, RNAII ou *agrBDCA*, code quatre protéines requises pour la synthèse de l'AIP, sa détection et la transduction du signal généré par ce dernier. Les gènes *agrD* et *agrB* codent respectivement un propeptide autoinducteur et une endopeptidase transmembranaire requise pour la maturation de l'AIP. En effet, AgrD est codé sous la forme d'un précurseur de 45 acides aminés contenant une séquence signale en N-terminal lui assurant un adressage à la membrane. La protéine AgrB intervient ensuite dans la

19

Figure 10 – Représentation schématique du système agrBDCA chez Staphylococcus aureus (inspiré de Novick and Geisinger, 2008 ; Thoendel and Horswill, 2009).

La phéromone codée par le gène *agrD* est maturée et modifiée, par une endopeptidase membranaire AgrB et une signal peptidase SpsB, au cours de son export. En début de phase stationnaire, AgrD est détecté par son récepteur membranaire AgrC. Cette reconnaissance assure l'autophosphorylation de AgrC et le transfert du phosphate formé au régulateur de réponse AgrA. AgrA~P assure alors l'expression de l'opéron *agrBDCA* et d'un ARN régulateur RNAIII – contrôlant positivement l'expression de facteurs de virulence et négativement l'expression de protéines de surfaces – en se fixant au niveau des régions promotrices P2 et P3.

maturation du peptide en assurant un clivage côté C-terminal et la formation d'une liaison thioesther entre une cystéine conservée et le groupement carboxyle de la partie C-terminale du peptide. Cette structure une fois obtenue représente la signature du peptide et est essentielle à son activité (Novick and Geisinger, 2008). Plus récemment, le rôle d'une signal peptidase, appelée SpsB, a également été démontré dans la maturation du peptide. Elle assure le relargage du peptide mature dans le milieu extracellulaire suite au clivage de sa séquence signale en N-terminal (Figure 10) (Thoendel and Horswill, 2009). Les gènes agrA et agrC forment quant à eux un système à deux composants où AgrC représente l'histidine kinase et AgrA, le régulateur de réponse. Aussi, à forte densité cellulaire, la liaison du peptide AgrD mature à son récepteur AgrC déclenchera l'autophosphorylation de ce dernier (Mayville 1999). Le phosphate ainsi formé est ensuite transféré au régulateur de réponse AgrA, modulant in fine son état d'oligomérisation. Cette étape requise pour l'activation des promoteurs P2 et P3 assurera la fixation de AgrA dans leur région promotrice sur des régions répétées directes (consensus [TA][AC][CA]GTTN[AG][TG] séparées par une région de 12 à 13 pb) (Koenig et al., 2004; Novick and Geisinger, 2008). L'opéron agrBDCA assure donc son auto-induction tout en régulant positivement l'activité du promoteur P3 codant l'effecteur de réponse du système agr, une molécule d'ARN appelée RNAIII, responsable de la répression des protéines de surfaces et de l'induction des facteurs de virulence (Figure 10) (Novick, 2003). Cet ARN régulateur présente une structure secondaire complexe composée de 14 motifs tige boucle et interfère sur l'efficacité de traduction des protéines cibles (α -hémolysine, protéine A, etc.); soit en modifiant la stabilité de leur ARN messager (ARNm), soit en libérant ou masquant les séquences de Shine-Dalgarno et par conséquent le site de fixation des ribosomes. RNAIII agit également sur le régulon Rot (Repressor of toxins) en contrôlant négativement la transcription de ce facteur (Thoendel et al., 2011). Néanmoins, bien que RNAIII soit l'effecteur central du système agr, certains gènes décrits comme importants dans la pathogénicité de la bactérie sont régulés positivement et de manière directe par AgrA. Ces gènes, connus sous le nom de psm (phenol-soluble modulins), codent de petits peptides amphipathiques présentant des propriétés proinflammatoires, leucocytolytiques ou encore chimiotactiques (Thoendel et al., 2011). Aussi, la mise en place de la boucle rétro-positive de l'opéron agrBDCA assure et induit le passage de la population à un état de virulence. Son rôle dans la formation de biofilm a également été décrit (Novick and Geisinger, 2008). Enfin, le niveau de transcription de RNAIII est également contrôlé par d'autres régulateurs (tel que SarA) ou par des TCS en réponse à des signaux environnementaux (tels que ArIRS, SrrAB) (Yarwood and Schlievert, 2003).

L'analyse des différents systèmes *agr* chez les staphylocoques a révélé une variation allélique de la région *agrBDC* (Figure 10). Ce polymorphisme a conduit à l'identification de

Tableau 3 – Peptides autoinducteurs AgrD connus chez *Staphylococcus aureus*.

AgrD-1	AgrD-2	AgrD-3	AgrD-4
YSTCDFIM	GVNACSSLF	YINCDFLL	YSTCYFIM
s−c=₀		s−c≈o	s−c=o

trois groupes (I/IV, II et III) de systèmes *agr* chez *S. aureus* et assure, pour un groupe donné, une spécificité de séquence du peptide AgrD et sa reconnaissance par son récepteur apparenté. A l'exemple des peptides AgrD produits par *S. aureus* (Tableau 3), les peptides AgrD sont relativement hydrophobes, composés de 7 à 9 résidus et présentent des caractéristiques structurales conservées (liaison thioester). Un phénomène de crossinhibition a par ailleurs été décrit entre ces peptides au niveau intra ou inter-espèces. Aussi, chaque peptide bien qu'activateur des systèmes *agr* du groupe auquel il appartient, inhibe de manière compétitive les autres systèmes *agr*. Ce phénomène a été décrit entre les différents peptides AgrD de *S. aureus* (Wright *et al.*, 2005) et également entre différentes espèces de staphylocoques tels que *S. epidermidis* et *S. aureus* (Otto, 2009). Ce phénomène assure par conséquent un avantage compétitif lors de l'infection et la colonisation de l'hôte aux bactéries possédant le même allèle et ayant atteint les premières leur densité critique de population nécessaire au déclenchement de leur système *agr*. Très récemment, un dipeptide cyclique produit par *Lactobacillus reuteri* a été décrit comme inhibiteur des systèmes *agr* chez *S. aureus* (Li *et al.*, 2011).

Enfin, même s'ils ne seront pas développés, des systèmes orthologues au système agr du genre *Staphylococcus* ont été décrits chez *E. faecalis* (système *fsr*), *Lactobacillus plantarum* (système *lam*) et *Listeria monocytogenes* (système *agr*). Bien que ces systèmes interviennent tous dans la formation de biofilm, le système *fsr* et *lam* ont également été décrits comme impliqués, respectivement, dans la virulence de la bactérie *via* la production de facteurs de virulence tels que la gélatinase GelE et l'adhérence de la bactérie aux surfaces (Thoendel and Horswill, 2010). Par ailleurs, des analyses de Psi-Blast ont permit d'identifier des systèmes homologues au sein du genre *Clostridium* et chez quelques espèces appartenant au genre *Bacillus* (Wuster and Babu, 2008).

2.1.3 La compétence chez Streptococcus pneumoniae : le système comCDE

La régulation de la compétence pour la transformation génétique, chez les streptocoques du groupe mitis et anginosus, implique un système de communication cellulaire, résumé dans la Figure 11. Ce système, étudié en détails chez *S. pneumoniae*, requiert la production d'un peptide phéromone appelé CSP (**C**ompetence-**S**timulating **P**eptide). CSP est codé sous la forme d'un précurseur de 41 acides aminés par le gène *comC* et possède dans sa partie N-terminale une séquence signale lui conférant un adressage à la membrane et contenant un motif double glycine (GG) (Håvarstein *et al.*, 1995). La maturation et la sécrétion de CSP sont prises en charge par un ABC-transporteur, appelé ComAB, décrit comme essentiel pour

Figure 11 – Représentation schématique du système comCDE chez Streptococcus pneumoniae.

La phéromone CSP est codée par le gène *comC* et maturée au cours de son export par ComAB. Sa reconnaissance par le senseur membranaire ComD (histidine kinase d'un système à deux composants) assure la phosphorylation du régulateur de réponse ComE qui, en se fixant sur un motif appelé « comE box », assurera la transcription des gènes de compétences précoces. Aussi, l'expression de ComX, régulateur central de la compétence, permettra la transcription des gènes tardifs de compétence et d'allolyse, en se fixant sur un motif appelé « cin box » localisé dans la région promotrice de ces derniers.

BCAA, Branched Chain Amino Acids, Acides aminés à chaîne ramifiée.

le développement de la compétence (Hui et al., 1995). Par ailleurs, ComA, possèdant un domaine protéolytique conservé identifié pour le clivage des peptides contenant un motif GG, assure la maturation de CSP et ComB sa sécrétion (Håvarstein et al., 1995). Aussi CSP correspond à un heptadecapeptide non modifié et présente une charge globale positive (Tableau 4) (Håvarstein et al., 1995). La détection de CSP est réalisée par une histidine kinase d'un système à deux composants, ComD, dont la partie N-terminale, variable sur 80 résidus, est proposée pour la reconnaissance et la liaison de CSP (Håvarstein et al., 1996). La liaison de CSP à son récepteur membranaire ComD provoquerait l'autophosphorylation de ce dernier puis le transfert du phosphate produit au régulateur de réponse ComE (Martin et al., 2010; Pestova et al., 1996b). Une fois phosphorylé, ComE active la transcription des gènes de compétence précoces en se fixant au niveau de deux séquences répétées directes de 9 pb, localisées dans la région promotrice des gènes cibles (Ween et al., 1999). Aussi, ComE induit l'expression des opérons comAB et comCDE dans un mécanisme de rétrocontrôle positif. ComE est également requis pour l'expression du gène comX (facteur sigma alternatif) décrit comme régulateur central de la compétence et nécessaire à l'activation des gènes de compétence tardifs (Lee and Morrison, 1999). ComE contrôle également l'expression du gène comW, dont le produit intervient dans la stabilisation (prévention contre la protéolyse) et l'activation de ComX (Luo et al., 2004; Sung and Morrison, 2005). Cette protéine est donc requise, au même titre que ComX, pour l'expression des gènes tardifs de compétence. Par ailleurs, ComX régule l'expression de ses gènes cibles en se fixant sur une séquence régulatrice conservée, appelée cin box (competence induiced, ou com box), localisée en position -10 (Figure 11) (Campbell et al., 1998). Le déclenchement de la compétence est un phénomène en deux temps où l'expression de comCDE se fait en amont des gènes tardifs (régulon « cin »). Ceci provoque une induction décalée des gènes « cin » 5 min après l'expression du régulon ComE (Alloing et al., 1998). La compétence est par ailleurs décrite comme un phénomène transitoire qui se déclenche en début de phase exponentielle de croissance et s'arrête 20 min après son induction (Alloing et al., 1998). Des analyses de Northern blot ont suggéré la présence d'un/de mécanisme(s) impliqué(s) dans l'arrêt de la compétence. En effet, il a été montré que la transcription de comCDE et des gènes « cin » était diminuée malgré la présence de CSP (Alloing et al., 1998). Ce(s) mécanisme(s) reste(nt) à ce jour inconnu(s) bien que le système à deux composants CiaRH ait été décrit comme jouant un rôle dans l'arrêt de la compétence en impactant de manière indirecte (et probablement via HtrA) l'expression de l'opéron comCDE (Figure 11) (Johnsborg and Håvarstein, 2009). Enfin, la compétence semble également être modulée par le transporteur d'oligopeptides AmiCDEF. En effet, il a été montré qu'un mutant des 3 protéines affines (AmiA, AliA et AliB) associées à ce transporteur altère le profil d'induction de la compétence (Alloing et al., 1994; Alloing et al.,

Précurseur			Forme mature		
Codé par	Nom	Taille	Séquence	Taille	
comC	Pré-CSP	41 aa	EMRLSKFFRDFILQRKK	17 aa	

Tableau 4 – Le peptide CSP de Streptococcus pneumoniae.

1996). De plus, une déficience complète de la transformation est observée avec un mutant simple du gène *aliB* (Alloing *et al.*, 1996). Aussi, bien que le transporteur Ami ne soit pas requis pour l'induction de la compétence, la détection de signaux environnementaux *via* celui-ci semble néanmoins pouvoir influencer l'expression de l'opéron *comCDE* (Figure 11).

En parallèle de la régulation des gènes reguis pour la transformation génétique, ComX contrôle également un phénomène d'allolyse (Figure 11), également appelé « pneumococcal fratricide », provoquant une lyse des cellules non-compétentes par les cellules compétentes d'une même souche (Claverys and Håvarstein, 2007). Ce phénomène aboutissant à la libération d'ADN dans le milieu extracellulaire serait à l'origine d'un meilleur échange génétique et pourrait asservir un phénomène de compétition intra-souches. Il n'est, par ailleurs, pas exclu que le relargage de facteurs de virulence lors de l'allolyse contribue à la pathogénicité des souches (Claverys and Håvarstein, 2007). Plusieurs gènes et un opéron ont été décrits comme impliqués dans ce phénomène et impliquent un système codant des bactériocines (cibABC) et trois gènes codant des hydrolases de paroi (lytA, cbpD et lytC codant respectivement une autolysine, une muréine hydrolase et du lysozyme) (Guiral et al., 2005; Kausmally et al., 2005). Les bactériocines CibAB ont été décrites comme étant le facteur déclenchant de l'allolyse en s'intégrant dans la membrane des cellules noncompétentes, les rendant alors plus sensibles et vulnérables à l'action des différentes hydrolases (Guiral et al., 2005). L'expression de ces gènes de lyse (mis à part lytC) est par ailleurs contrôlée par ComX. Deux gènes codant des facteurs d'immunité, cibC et comM. protègent les cellules compétentes des « killing » facteurs qu'elles produisent (Guiral et al., 2005; Håvarstein et al., 2006). Bien que cibC soit régulé par ComX, l'expression de comM est quant à elle dépendante de ComE et assure par conséquent en amont, une protection des cellules compétentes contre les « killing » facteurs (Claverys et al., 2006). Enfin, l'induction d'une troisième classe de gènes dits « retardés » et impliquant 14 gènes de réponses au stress suggère que la compétence induirait un stress temporaire aux cellules bactériennes (Claverys et al., 2006). Aussi, l'induction de la compétence pouvant être générée par l'utilisation d'antibiotiques connus pour engendrer une réponse de type SOS chez les bactéries (telles que E. coli), il a été proposé que CSP ne soit pas un effecteur du QS à proprement parler mais une alarmone transmettant un stimulus de stress aux cellules bactériennes (Claverys et al., 2006; Prudhomme et al., 2006).

L'état physiologique transitoire des cellules où s'entremêle l'expression des gènes de compétence, d'allolyse et de réponse au stress a été appelé le « X-state » (Claverys *et al.*, 2006).

Figure 12 – Organisation génétique des systèmes Com et Blp chez Streptococcus pneumoniae et Streptococcus mutans (d'après Martin *et al.*, 2006).

<u>Aparté :</u>

En 2006, la distribution phylogénétique des gènes de compétences a souligné la conservation universelle de *comX* chez les streptocoques et les Lactobacillales et une distribution limitée du système *comCDE* (décrit ci-dessus) aux streptocoques du groupe mitis et anginosus (Martin *et al.*, 2006). De plus, les gènes *com* décrits comme contrôlant la compétence chez *S. mutans* ont constitué une deuxième classe de systèmes de compétence paralogues à *comABCDE* chez *S. pneumoniae* (Figure 12) (Martin *et al.*, 2006). En effet, Martin et ses collaborateurs ont montré que le système *com* décrit chez *S. mutans* présente une plus forte homologie et une organisation génétique similaire à celle d'un locus impliqué dans la biosynthèse d'une bactériocine chez *S. pneumoniae* (locus *blp*) (Figure 12).

Bien que de nombreuses études proposent que la compétence soit contrôlée via le système com chez S. mutans, l'analyse des résultats proposés et la caractérisation de certains éléments de régulation suggèrent a contrario l'existence d'un autre mécanisme de régulation pour ce phénomène. En effet, les gènes comCDE de S. mutans décrits comme impliqués dans le phénomène de compétence chez cette bactérie, ne semblent néanmoins pas essentiels à l'établissement de ce phénomène. En effet, seulement une diminution du nombre de transformants a été obtenue dans des mutants simples des gènes comC, comD et comE (Li et al., 2001; Petersen et al., 2005). De plus, l'identification d'un motif com box dans la région promotrice des gènes tardifs de compétence révèle une régulation de ces gènes via ComX (Li et al., 2001). Néanmoins, l'absence d'un motif ComE box dans la région promotrice de ComX renforce l'hypothèse d'un autre mécanisme nécessaire à l'activation de ce facteur de transcription (Van der Ploeg, 2005). Enfin, alors que l'induction des gènes tardifs de compétence chez S. pneumoniae est rapide, celle des gènes de S. mutans nécessite un délai de 2h malgré l'ajout de CSP dans les surnageants de culture (Kreth et al., 2005). Aussi, l'ensemble de ces résultats souligne premièrement que la phéromone CSP n'est pas le signal requis au déclenchement du phénomène et deuxièmement l'absence de lien direct entre ComE et ComX. Par ailleurs, aucun homologue de comW n'a été détecté chez S. mutans (Martin et al., 2006). Aussi, la transcription de comX est en faveur d'un autre mécanisme de régulation, lequel sera mis en évidence en 2011 par Federle et ses collaborateurs. Ce mécanisme impliquant un régulateur transcriptionnel appartenant à la famille des Rgg est décrit dans le chapitre 3 de cette introduction bibliographique. Aussi, le mécanisme de QS décrit par CSP chez S. mutans serait principalement impliqué dans la production de bactériocines, la formation de biofilm et la tolérance au stress acide (Li et al., 2002; Van der Ploeg, 2005).

2.2 Détection intracellulaire des peptides autoinducteurs

La détection intracellulaire des AIP nécessite la présence de deux partenaires : un transporteur d'oligopeptides impliqué dans l'import de l'AIP à l'intérieur de la cellule et un effecteur cytoplasmique interagissant de manière directe avec l'AIP. Après une présentation rapide de ces deux partenaires, deux mécanismes seront détaillés : le système PapR/PlcR décrit chez *Bacillus cereus* et le système peptides phéromones/PrgX chez *E. faecalis*.

2.2.1 Les transporteurs d'oligopeptides

2.2.1.1 Une appartenance à la famille des ABC-transporteurs

Les transporteurs d'oligopeptides (Opp, **O**ligo**p**eptide **p**ermease) appartiennent à la famille des ABC-transporteurs (**A**TP-**b**inding **c**assette). Par conséquent, ils utilisent l'hydrolyse d'un ATP comme source d'énergie pour le transport de molécules à travers la membrane plasmique (Higgins, 2007). L'organisation structurale de ces systèmes est définie par quatre protéines principales : deux protéines transmembranaires, formant le site de liaison et de translocation du substrat et deux protéines cytoplasmiques, couplant l'énergie de la catalyse de l'ATP au transport (Linton and Higgins, 2007).

2.2.1.2 Des transporteurs à protéines affines

A la différence des cellules eucaryotes qui sont capables de transporter leurs substrats du cytoplasme à l'extérieur de la cellule ou à l'intérieur d'une organelle, les bactéries ont acquit une protéine additionnelle extracellulaire, appelée SBP (**S**ubstrate **B**inding **P**rotein), leur permettant l'importation de substrats à partir du milieu extérieur (Saurin *et al.*, 1999). Les SBP associées aux Opp sont capables de fixer un ou généralement plusieurs substrats avec une grande affinité avant de le présenter au complexe ABC. Les substrats sont soit des diou tri-peptides ou soit, des oligopeptides pouvant présenter une grande variété de peptides dont certains ont la particularité d'être très hydrophobes (Garault *et al.*, 2002; Higgins, 2001).

Les SBP sont des lipoprotéines associées à la membrane cytoplasmique par une liaison thioesther entre un résidu cystéine en N-terminal et un diacylglycérol chez les bactéries à Gram positif (Monnet, 2003). Ces lipoprotéines sont par ailleurs synthétisées sous la forme d'un précurseur dans le cytoplasme et transloquées à travers la membrane *via* la machinerie de sécrétion Sec ou Tat (Hutchings *et al.*, 2009). La présence d'un motif lipobox (L-[A/S/T]-[G/A]-C) dans leur partie C-terminale leur assure un adressage vers la machinerie de

25

Figure 13 – Voie de biosynthèse des lipoprotéines chez les bactéries à Gram positif (d'après Hutchings *et al.*, 2009).

Figure 14 – Arbre phylogénétique des protéines affines OppA chez différents Firmicutes (d'après Nepomuceno *et al.*, 2007).

Les branches diffèrent lorsque la divergence entre les séquences atteint 10%. Les protéines TraC et PrgZ chez *E. faecalis* sont spécifiques des molécules de signalisation.

biogénèse des lipoprotéines. Chez les bactéries à Gram positif, une modification lipidique par une pro-lipoprotéine diacylglycéryl transférase (Lgt) puis le clivage de la séquence signale (lipobox) par une lipoprotéine signal peptidase (Lsp) sont les étapes assurant la biosynthèse des lipoprotéines (Figure 13) (Hutchings *et al.*, 2009). D'autres peptidases, telles que Eep (Enhanced expression of pheromone), participent également à la production de certaines lipoprotéines (An *et al.*, 1999; Denham *et al.*, 2008).

Chez les bactéries à Gram positif, les systèmes Opp sont généralement codés en opéron et plusieurs lipoprotéines peuvent être associées à un même ABC-transporteur (Monnet, 2003). Les lipoprotéines présentent par ailleurs des niveaux d'identités différents et variables entre les espèces, suggérant ainsi une évolution en terme de spécificité de substrats pour une espèce donnée (Figure 14). Aussi, chaque lipoprotéine présentant des affinités de substrats différentes, leur accumulation procure un avantage nutritionnel et physiologique aux bactéries (Garault et al., 2002; Juille et al., 2005). S. thermophilus représenterait alors le streptocoque ayant le plus exploité cet avantage. En effet, ce dernier possède trois SBP capables de réimporter des peptides contenant de 2 à 23 résidus (Garault et al., 2002). Le nombre de lipoprotéines peut cependant s'avérer variable entre deux souches d'une même espèce. Ceci a également été décrit chez S. thermophilus où bien que certaines souches contiennent jusqu'à 3 lipoprotéines (Garault et al., 2002), d'autres en revanche n'en n'auraient accumulé que deux (Bolotin et al., 2004; Juille et al., 2005). Enfin, la présence de transposases dans l'environnement génétique proche des opérons opp dans la quasi-totalité des génomes des streptocoques, suggère que ces derniers auraient été acquis par transfert horizontal (Nepomuceno et al., 2007).

2.2.2 Les effecteurs de la famille RNPP

Une fois réimportés par les systèmes Opp, la reconnaissance de l'AIP à son effecteur intracellulaire est requise pour assurer la régulation des gènes cibles des systèmes de QS. Deux types d'effecteurs sont décrits dans la littérature, les phosphatases et les régulateurs transcriptionnels. En 2007, des analyses phylogénétiques ont suggéré que ces effecteurs dérivent d'un ancêtre commun ; ils ont alors été rassemblés au sein d'une famille dénommée RNPP, pour Rap, NprR, PlcR et PrgX (Declerck *et al.*, 2007). En effet, par une analyse de type Psi-Blast, les auteurs ont montré que ces quatre effecteurs partageaient des caractéristiques communes, telles que :

 Leur appartenance au phylum des Firmicutes et plus précisément aux classes des Bacilli et Clostridia,

Figure 15 – Relations évolutives des protéines de la famille RNPP (Thèse L. Bouillaut, 2007).

- (ii) Leur interaction avec une molécule de signalisation, importée dans le cytoplasme par un système Opp, dont la forme mature est issue du clivage d'un précurseur,
- (iii) La présence d'un domaine régulateur en C-terminal caractérisé par un nombre variable de domaines TPR (tetratricopeptide repeat). Ces domaines ont été décrits comme impliqués dans les interactions protéine/protéine ou peptide/protéines (Goebl and Yanagida, 1991).

Aussi, sur la base de leur séquence, du nombre de domaines TPR et la présence d'un domaine hélice-tour-hélice (HTH) appartenant à la famille des XRE (Xenobiotic Regulatory Element, PFAM01381) dans leur partie N-terminale, les relations évolutives liant ces effecteurs ont été proposées (Figure 15). La phosphatase Rap des *Bacilli*, décrite plus proche du régulateur transcriptionnel NprR mais ne contenant pas de domaine HTH, a alors été proposée comme effecteur le plus ancestral. S'en suit, le régulateur transcriptionnel NprR présentant le même nombre de domaines TPR que les phosphatases Rap (équivalent à 9) mais ayant acquis un domaine HTH au cours de l'évolution. Arrive ensuite le régulateur transcriptionnel PICR possédant 5 domaines TPR et, le régulateur transcriptionnel PrgX structuralement très proche de PICR (Declerck *et al.*, 2007).

Par ailleurs, ces analyses de type Psi-Blast ont également fait ressortir une homologie entre PlcR et PrgX et d'autres régulateurs transcriptionnels de la famille des Firmicutes. Ces régulateurs sont composés d'un domaine HTH en N-terminal et d'un domaine TPR-like (11 hélices) prédit comme plus proche de celui de PrgX (Declerck *et al.*, 2007). Parmi ces régulateurs, on retrouve les protéines Rgg (Chapitre 3). Aussi, cette partie de mon introduction bibliographique se concentrera sur les systèmes de QS impliquant les régulateurs PlcR et PrgX.

2.2.3 Le système PapR/PIcR chez Bacillus cereus : virulence

Les espèces de *Bacillus* produisent une grande quantité d'enzymes dégradatives et de toxines en fin de phase exponentielle ou en début de phase stationnaire de croissance. En 1996, l'expression du gène *plcA*, codant la phospholipase C, a été décrite sous le contrôle d'un régulateur transcriptionnel nommé PlcR (**P**hospholipase **C** regulator) (Lereclus *et al.*, 1996). Depuis, plusieurs études ont décrit de nombreux gènes cibles de ce régulateur définissant aujourd'hui un régulon composé de plus de 100 gènes, aléatoirement distribués sur le chromosome. Ce régulon, composé de gènes et d'opérons, est constitué majoritairement de facteurs de virulences (enzymes dégradatives, protéines de surfaces,

toxines, etc.) mais également de senseurs et de transporteurs (Agaisse *et al.*, 1999; Gohar *et al.*, 2002; Gohar *et al.*, 2008; Ivanova *et al.*, 2003; Økstad *et al.*, 1999).

2.2.3.1 L'histoire d'un motif de fixation

Le régulateur transcriptionnel PIcR est un régulateur pléiotrope spécifique du groupe cereus regroupant B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis et B. wiehenstephanensis (Agaisse et al., 1999). En 1999, l'analyse des régions promotrices des 14 gènes connus régulés par PIcR a permis d'identifier une séquence palindromique conservée (TATGNA-N₄-TNCATA). Cette séquence, dénommée PIcR box, a été proposée comme site putatif de fixation du régulateur à l'ADN (Agaisse et al., 1999). Ce palindrome permet, par ailleurs, la transcription de deux gènes transcrits de manière divergente, lorsqu'il est localisé dans la région intergénique de ces derniers (Agaisse et al., 1999; Økstad et al., 1999). En outre, la distance entre le motif et la région -10 du promoteur du gène cible est variable et peut aller de 20 à plus de 200 pb (Agaisse et al., 1999; Slamti and Lereclus, 2002). Plus récemment, une étude a permis de discriminer les gènes réellement régulés par PlcR dans un pool de gènes contenant la PlcR box dans leur région promotrice (Gohar et al., 2008). L'analyse des régions promotrices des gènes régulés par PICR a démontré que les séquences en amont et en aval du motif étaient significativement plus riches en AT, suggérant un rôle non négligeable de cet environnement génétique dans la liaison de PIcR à l'ADN et/ou sur l'activité transcriptionnelle du promoteur (Gohar et al., 2008).

2.2.3.2 L'expression de PIcR est contrôlée par un mécanisme de QS

L'utilisation de fusions transcriptionnelles *lacZ* en système hétérologue chez *B. subtilis*, a permis de suggérer que l'expression du gène *plcA*, régulé par PlcR était également dépendante du produit codé par le gène localisé en aval de *plcR* et nommé *orf2* (Lereclus *et al.*, 1996). L'identification de la PlcR box en amont du gène *orf2* a alors suggéré que ce dernier soit sous le contrôle de PlcR. De plus, la présence d'une séquence signale dans la partie N-terminale du produit du gène *orf2* suggère la sécrétion de ce dernier (Agaisse *et al.*, 1999). Une collection de mutants obtenue par mutagénèse aléatoire a ensuite conduit à l'identification d'un transporteur d'oligopeptides essentiel à l'expression du régulon PlcR (Gominet *et al.*, 2001). Le rôle du transporteur d'oligopeptides a par ailleurs été caractérisé de manière indépendante à l'effet répresseur de SpoA~P (Lereclus *et al.*, 2000). L'ensemble de ces travaux a alors suggéré que la régulation de PlcR pouvait être contrôlée par un mécanisme de QS.

Précurseur			Forme mature	
Codé par	Nom	Taille	Séquence	Taille
papR	Pré-PapR	48 aa	ADLPFEF	7 aa

Tableau 5 – Le peptide PapR7 de Bacillus cereus.

Figure 16 – Représentation schématique du système PapR/PIcR chez Bacillus cereus.

Le peptide PapR7, codé par le gène *papR*, est maturé et sécréte dans le milieu extracellulaire avant d'être détectée (en début de phase stationnaire) et importé dans la cellule par le système de transport d'oligopeptides OppBCDF. Dans le cytoplasme, l'interaction de PapR7 avec le régulateur transcriptionnel PlcR induit *in fine* la liaison de ce dernier à l'ADN sur un motif appelé « PlcR box », localisé dans la région promotrice de ces gènes cibles. Le régulateur de réponse SpoA~P réprime quant à lui la transcription du gène *plcR* en se fixant sur ses séquences cibles localisées dans la région promotrice de ce dernier.

Aussi, en 2002, la caractérisation du produit codé par le gène *orf2* a été entreprise sur l'expression du régulon PlcR, qui s'est avérée être abolie dans un mutant $\Delta orf2$ (Slamti and Lereclus, 2002). Le produit du gène *orf2* présentant des caractéristiques d'export, des complémentations ont alors été réalisées avec des surnageants de culture. Seulement les surnageants de la souche wt (vs $\Delta orf2$) étant capable de restaurer l'expression du régulon PlcR, les auteurs ont conclu que le produit du gène *orf2* était d'une part sécrété et d'autre part essentiel à l'activation de PlcR. Sur la base de ces résultats, le gène *orf2* a été nommé *papR* pour **P**lcR **a**ctivating **p**eptide (Slamti and Lereclus, 2002). Le gène *papR* code un peptide de 48 acides aminés, dont la forme active est probablement libérée suite à un clivage du précurseur lors de son export. En 2009, le rôle de la protéase de paroi NprB dans la maturation de PapR sera démontré (Pomerantsev *et al.*, 2009).

Par l'utilisation de peptides synthétiques, les auteurs ont montré que l'extrémité C-terminale du peptide est nécessaire à l'activité du régulon PIcR et que des tailles variables du peptide, composées de 5, 7 ou 9 acides aminés induisaient de manière équivalente le régulon PIcR (Slamti and Lereclus, 2002). En 2008, Bouillaut et ses collaborateurs identifient l'heptapeptide, PapR7, comme étant la forme physiologique majoritaire de ce peptide (Tableau 5) (Bouillaut *et al.*, 2008).

Afin d'étudier le rôle du transporteur d'oligopeptides Opp et de mettre en évidence la réimportation de PapR à l'intérieur de la cellule via ce système de transport, Slamti et Lereclus ont introduit un plasmide inductible surproduisant PapR5 dans une souche présentant un contexte génétique délété du gène oppB. En comparaison avec la souche sauvage, ils ont étudié l'activité hémolytique du mutant et montré que celle-ci était restaurée dans le mutant $\triangle oppB$ seulement lors de l'induction du plasmide surproducteur. De même, l'activité de la fusion transcriptionnelle plcA::lacZ a été restaurée dans un mutant $\Delta papR$ lors de l'induction de ce même plasmide surproducteur. Aussi, l'activation du régulon PlcR a été décrite comme effective par la présence de PapR dans le cytoplasme de la bactérie (Slamti and Lereclus, 2002). Pour définir plus précisément le rôle de PapR, un plasmide inductible surproduisant PIcR a ensuite été introduit dans deux souches présentant la fusion transcriptionnelle plcA::lacZ dans un contexte génétique sauvage et délété du gène papR. Les auteurs travaillant dans un milieu ne permettant pas l'expression du régulon PIcR, l'induction du plasmide surproduisant PICR est alors nécessaire pour en assurer son expression. Aussi, une complémentation étant visible dans la souche sauvage seulement après induction du plasmide, les auteurs ont montré que PlcR requiert la présence de PapR pour être fonctionnel et jouer son rôle d'activateur (Slamti and Lereclus, 2002). Enfin, des expériences d'empreinte à la DNase ont démontré une fixation de PIcR sur la région promotrice du gène plcA PapR-dépendante (Slamti and Lereclus, 2002). L'ensemble de ces résultats a alors conduit au modèle suivant, présenté dans la Figure 16. Le gène papR est

Figure 17 – Représentation schématique de l'organisation du domaine HTH du régulateur PIcR en présence (A) ou absence (B) du peptide PapR (Declerck *et al.*, 2007).

exprimé à un niveau basal en phase exponentielle. La forme précurseur du peptide phéromone est ensuite sécrétée puis maturée par NprB. En fin de phase exponentielle / début de phase stationnaire, PapR atteint sa concentration seuil induisant sa détection puis sa réimportation à l'intérieur de la cellule par le transporteur d'oligopeptides Opp. L'expression des gènes du régulon PIcR est alors assurée par la formation d'un complexe PIcR/PapR, permettant la fixation de l'activateur PIcR dans la région promotrice des gènes cibles.

2.2.3.3 Structure et interaction PapR/PlcR

PlcR est composé d'un domaine N-terminal de liaison à l'ADN et d'un domaine Cterminal comprenant 5 domaines TPR. La structure de ce régulateur a été déterminée en présence ou en absence du peptide PapR5 (Declerck *et al.*, 2007). Dans les deux cas, PlcR présente une structure dimérique et un réarrangement du domaine HTH est visible en présence du peptide. Ce changement structural nécessaire à l'activation du régulateur a été à la base d'un modèle où la liaison de PapR aux domaines TPR de PlcR entrainerait l'ouverture des hélices du domaine HTH (Figure 17). En fonction de la concentration en phéromone, le complexe PapR/PlcR aurait, par ailleurs, tendance à s'oligomériser (Declerck *et al.*, 2007). Bien qu'une région (résidus 95 à 144) ait été décrite comme impliquée dans la multimérisation de PlcR, aucune substitution au sein de celle-ci n'a encore clairement été démontrée comme impliquée dans ce phénomène (Bouillaut *et al.*, 2008).

La comparaison des séquences de 29 protéines PIcR a souligné que seul l'acide aminé en position 278 différait de manière spécifique selon les groupes (Bouillaut *et al.*, 2008). La construction de protéines chimères à partir de ce résidu a ensuite montré que l'extrémité Cterminale des protéines PIcR est nécessaire à l'activation du régulon PIcR et interfère sur le niveau d'expression de ce dernier (Bouillaut *et al.*, 2008).

2.2.3.4 PapR/PlcR : un système de régulation souche-spécifique

La comparaison de la séquence peptidique de PapR parmi 15 souches de *Bacillus* a mis en évidence, contrairement à la partie N-terminale hautement conservée, une divergence de la partie C-terminale contenant la forme mature du peptide (Slamti and Lereclus, 2002). Des tests de complémentation sur milieu gélosé ont montré que le premier acide aminé des pentapeptides (leucine, méthionine ou valine) joue un rôle dans la spécificité de réponse. Des expériences d'empreintes à la DNase ont par ailleurs spécifié le rôle de cet acide aminé

Figure 18 – Arbre phylogénétique des protéines PIcR et des peptides PapR apparentés (Slamti and Lereclus, 2005).

dans l'interaction PIcR/PapR (Slamti and Lereclus, 2002). En 2005, l'alignement de 29 séquences de PapR couplé à des tests de complémentation a par ailleurs rendu compte que cette spécificité était également due au dernier acide aminé du pentapeptide. Ces résultats ont alors permis de définir quatre groupes de peptides phéromones. La construction d'un arbre phylogénétique des protéines PIcR a ensuite souligné une coévolution des protéines PlcR et des formes matures pentapeptidiques identifiées (Figure 18) (Slamti and Lereclus, 2005). Aussi, en 2008, suite à l'identification de la forme physiologique majoritaire du peptide PapR (correspondant à l'heptapeptide, PapR7), la comparaison de l'activité des formes penta et heptapeptidiques a tout d'abord été entreprise. A l'exception du groupe II où l'heptapeptide est 6,5 fois plus actif, les penta et heptapeptides présentent un niveau d'activité similaire (Bouillaut et al., 2008). Afin d'étudier la spécificité des systèmes PapR/PlcR, une souche de chaque groupe, contenant une fusion transcriptionnelle plcA::lacZ dans son génome, a alors été complémentée avec les quatre heptapeptides considérés au sein des groupes identifiés. Bien que chaque paire légitime PapR/PlcR se soit avérée être plus spécifique, la présence d'un cross-talk plus ou moins important entre les groupes I, II et III a pu être démontré. Néanmoins, les niveaux d'activité de deux peptides activant les régulons PIcR des groupes apparentés ne sont pas forcément identiques. A titre d'exemple, bien que le peptide PapRI active le régulon PlcR du groupe III, le peptide PapRII en revanche n'induit que faiblement le régulon PICR du groupe I. Par ailleurs, aucune crossactivation n'a été décrite pour le groupe IV, phylogénétiquement plus éloigné (Bouillaut et al., 2008).

2.2.3.5 Un régulon impliqué dans la virulence

L'implication du régulon PIcR dans la virulence de *B. cereus* ou *B. thuringiensis* a été démontrée *in vivo*. En effet, une mutation dans le gène *pIcR* conduit à une forte diminution de la virulence de ces deux bactéries chez l'insecte ou des mammifères tels que le lapin ou la souris (Callegan *et al.*, 2003; Salamitou *et al.*, 2000). Par ailleurs, la virulence de la bactérie chez l'insecte est également diminuée dans des mutants des gènes *papR* et *oppB* (Gominet *et al.*, 2001; Slamti and Lereclus, 2002).

2.2.4 <u>Le système peptides phéromones / PrgX chez Enterococcus faecalis:</u> <u>conjugaison</u>

Bactéries communément impliquées dans les infections nosocomiales, les entérocoques sont largement connus pour leurs propriétés de conjugaison leur permettant d'acquérir et de

	pCF10	pAD1
Taille du plasmide	54 kb	60 kb
Sex-phéromone	cCF10	cAD1
Anti-phéromone	iCF10	iAD1
Effecteur intracellulaire	PrgX	TraA
Protéine affine	PrgZ	TraC
Résistances	Tétracycline	Hémolysine
		Bactériocine
		Résistance aux UV

 Tableau 6 – Les deux principaux plasmides conjugatifs décrits chez Enterococcus faecalis.

disséminer de nombreux déterminants impliqués dans la virulence et la résistance aux antibiotiques. Ce phénomène, répondant à un mécanisme de communication cellulaire, diffère néanmoins de ceux précédemment décrits où la molécule de signalisation produite est détectée par l'organisme émetteur. En effet, dans le cas de la conjugaison, l'information initiée par la molécule de signalisation traduit la présence de deux populations bactériennes ; la première dite donneuse et possédant le plasmide conjugatif, la seconde dite receveuse et produisant la molécule de signalisation requise au déclenchement du processus de conjugaison par les cellules donneuses.

Il a été montré que les souches d'*E. faecalis* ne possédant pas de plasmide conjugatif secrètent de multiples sex-phéromones, chacune spécifique d'un groupe de plasmides conjugatifs (Clewell *et al.*, 2000). De plus, après acquisition par la cellule receveuse d'un plasmide conjugatif donné, la production de la sex-phéromone apparentée est arrêtée et / ou masquée par la production d'un peptide inhibiteur compétiteur (anti-phéromone) empêchant les cellules donneuses d'être (auto-)induites par la production de phéromones endogènes (Clewell *et al.*, 2000).

De nombreux plasmides conjugatifs sont décrits dans la littérature (Tableau 6) et les gènes de conjugaison les composant présentent de fortes similarités (Dunny and Leonard, 1997). Dans le cadre de cette introduction bibliographique, ce processus sera détaillé pour l'exemple le plus documenté : le plasmide pCF10 conférant aux cellules receveuses une résistance à la tétracycline.

2.2.4.1 Le mécanisme de transfert conjugatif

L'induction du transfert conjugatif est basée sur la détection puis la réimportation de sexphéromones exogènes dans le cytoplasme de cellules donneuses. Aussi, dans le but d'acquérir de nouveaux plasmides conjugatifs, tel que pCF10, les cellules receveuses sécrètent dans le milieu extracellulaire la sex-phéromone apparentée, dans ce cas cCF10. Les gènes de conjugaison codés par le plasmide pCF10 sont appelés *prg* pour **p**heromone **r**esponsive **g**ene. Le mécanisme décrit dans cette partie est illustré par la Figure 19.

De manière simplifiée, la détection de la sex-phéromone cCF10 par les cellules donneuses est assurée par la protéine affine PrgZ. Cette reconnaissance est effective à de faible concentration en sex-phéromone (2.10⁻¹¹ M) dans le milieu extracellulaire (Dunny and Leonard, 1997; Leonard *et al.*, 1996) et initie un mécanisme de signalisation qui résulte en l'activation de l'expression des fonctions de conjugaison. En effet, une fois réimportée à

Figure 19 – Représentation schématique du transfert conjugatif pCF10 chez Enterococcus faecalis.

(A) La sex-phéromone cCF10 est exprimée par les cellules donneuses et receveuses. L'anti-phéromone iCF10 produite par les cellules donneuses est sécrétée et prévient leur auto-induction. (B) La présence d'une cellule receveuse à proximité d'une cellule donneuse, modifie le ratio iCF10/cCF10 et permet la détection de cCF10 par la protéine affine PrgZ. Une fois importée dans le cytoplasme par le transporteur d'oligopeptides OppBCDF, cCF10 induit l'expression des gènes de transfert, comprenant le gène *prgB* codant une adhésine de surface médiant l'agrégation des cellules donneuse et receveuse. La formation d'un canal dit de conjugaison permet ensuite le transfert, sous forme simple brin, du plasmide pCF10 à la cellule receveuse.

l'intérieur de la cellule *via* le système de transport d'oligopeptides OppBCDF (Dunny and Leonard, 1997; Leonard *et al.*, 1996), cCF10 interagit avec son effecteur intracellulaire, le régulateur transcriptionnel PrgX (Bae *et al.*, 2000). Cette interaction abolissant la fonction répresseur de ce dernier permet alors la transcription de nombreux déterminants impliqués dans le transfert conjugatif (Dunny *et al.*, 2001). En premier lieu, ceci induit la production d'une adhésine de surface Asc10 codée par le gène *prgB*. L'expression de cette adhésine à la surface de la cellule donneuse facilite l'attachement des cellules donneuses induites à une substance de liaison appelée EBS (<u>e</u>nterococcal <u>b</u>inding <u>s</u>ubstance). L'agrégation formée par l'association adhésine-EBS génère un canal dit de conjugaison qui permettra le transfert du plasmide conjugatif à la cellule receveuse (Dunny and Leonard, 1997). Par ailleurs, le plasmide est transféré sous la forme d'ADNsb avant d'être recircularisé et de servir de matrice pour la synthèse du brin complémentaire (Dunny *et al.*, 2001).

Il a été montré que les cellules donneuses et receveuses produisent une quantité similaire de sex-phéromones, résultant de l'expression d'un gène chromosomique, ccfA (Chandler and Dunny, 2004). Néanmoins, afin d'assurer le transfert du plasmide conjugatif à travers un apport exogène de phéromones (cellules receveuses), les cellules donneuses ont développé une stratégie assurant la non détection des phéromones endogènes. Aussi, une fois acquis par les cellules initialement receveuses, le plasmide conjugatif pCF10 code deux déterminants génétiques impliqués dans un mécanisme de contrôle d'auto-induction des sex-phéromones endogènes (Dunny and Leonard, 1997). La protéine membranaire PrgY a été décrite comme impliquée dans ce phénomène et affecte la production des sexphéromones endogènes par les cellules donneuses, sans modifier le niveau de cCF10 exogènes produites par les cellules receveuses. En effet, bien que ce mécanisme ne soit pas encore élucidé, PrgY jouerait un rôle au niveau de la paroi des cellules donneuses en séquestrant ou dégradant les sex-phéromones endogènes et par conséquent, induirait une diminution de leur quantité associée à la paroi des cellules donneuses (Buttaro et al., 2000). Le second déterminant correspond à un peptide inhibiteur (anti-phéromone) secrété dans le milieu extracellulaire et qui neutraliserait les sex-phéromones endogènes excrétées par les cellules donneuses et qui échappent au contrôle de PrgY (Chandler and Dunny, 2004; Dunny et al., 2001). Ce peptide, codé par le gène prgQ, est appelé iCF10. Ces peptides inhibiteurs sont également proposés comme peptides compétitifs à la liaison des sexphéromones endogènes à la protéine affine PrgZ (Bensing et al., 1997; Chandler and Dunny, 2004). Aussi, l'induction des cellules donneuses résulte d'une régulation fine leur permettant d'être extrêmement sensibles aux apports exogènes en cCF10 modifiant ainsi le ratio extracellulaire iCF10/cCF10 (Figure 19) (Kozlowicz et al., 2006a) (Dunny and Johnson, 2011).

Figure 20 – Influence de l'oligomérisation du régulateur transcriptionnel PrgX sur l'expression des gènes de conjugaison (adapté de Dunny, 2007).

Figure 21 – Contrôle post-transcriptionnel de l'expression des gènes de conjugaison (adapté de Dunny and Johnson, 2011 et Bae *et al.*, 2002).

2.2.4.2 Le régulateur transcriptionnel PrgX : mode d'action

Le mécanisme de régulation de la conjugaison est un phénomène extrêmement complexe impliquant de nombreux contrôles au niveau transcriptionnel et traductionnel (Dunny *et al.*, 2001).

PrgX est le régulateur central de ce mécanisme et des études structurales ont montré que son activité est modifiée en fonction du peptide phéromone auguel il se lie, i.e. la sexphéromone cCF10 ou l'anti-phéromone iCF10. Néanmoins, quelque soit le peptide phéromone qu'il lie, PrgX est toujours lié à l'ADN au niveau de deux séquences localisées dans la région intergénique prgX-Q (Figure 20) (Bae et al., 2002). En absence d'induction, PrgX interagit avec l'anti-phéromone iCF10 internalisée. Cette interaction assurant la répression de la machinerie de conjugaison est corrélée à une structure tétramérique du régulateur impliquant la formation d'une boucle au niveau de l'ADN (Kozlowicz et al., 2006b; Shi et al., 2005). L'affinité de PrgX à iCF10 étant plus faible que celle de la sex-phéromone cCF10 (ration 80 :1), l'induction des cellules donneuses par cette dernière entraine la liaison de PrgX à cCF10. Aussi, l'interaction de PrgX avec la sex-phéromone provoque un changement d'oligomérisation du régulateur, ce dernier passant alors d'une forme tétramérique à une forme dimérique. Ce changement de structure rompt la boucle d'ADN formée en présence du tétramère et par conséquent entraine une levée de la répression de PrgX et l'activation du promoteur P_Q (gène prgQ) (Figure 20) (Kozlowicz et al., 2006b; Shi et al., 2005).

Lors de l'induction des cellules donneuses, le taux de transcrits de plusieurs ARN régulateurs est également modifié (Figure 21) (Kozlowicz *et al.*, 2006a). En effet, en plus de coder l'anti-phéromone iCF10, différents transcrits sont produits à partir du promoteur P_Q :

- un transcrit Q_S , de 430 nt, essentiel à l'activation des gènes impliqués dans la machinerie de transfert et,

- un transcrit Q_L, de 100 nt, stabilisant la transcription du gène *prgB*.

Par ailleurs, l'augmentation de la transcription du gène prgQ diminue l'effet répresseur d'un ARN antisens Qa, transcrit de manière divergente à partir de l'extrémité 5' de l'ARNm du gène prgX (promoteur P_X) (Figure 21) (Johnsborg and Håvarstein, 2009). Cet effet répresseur est à la base de l'augmentation du taux de transcrits de prgX et assure ainsi l'auto-induction du régulateur et par conséquent l'activation de la machinerie de transfert (Kozlowicz *et al.*, 2006a). Enfin, en absence de sex-phéromone cCF10, l'interaction entre l'ARN antisens Qa et le transcrit Qs prévient l'initiation des transcrits au niveau du promoteur P_Q , ces deux transcrits étant complémentaires. Aussi, la présence de l'ARN régulateur Qa

Figure 22 – Biosynthèse de la sex-phéromone cCF10 à partir du produit du gène ccfA chez *Enterococcus faecalis* (d'après Antiporta and Dunny, 2002 ; Chandler *et al.*, 2008).

Tableau 7 – Précurseurs des sex-phéromones (adapté de Clewell, 2000).

	Précurseur	Sex- phéromone	Séquence ^a	Taille ^b
pCF10	pCF10p	cCF10	VKKYKRLLLMAG <u>LVTLVFV</u> LSACGTAPVS	275 aa
pAD1	pAD1p	cAD1	MKVNKFVKGFAAIALFSLV L AG C GADKK	143 aa
pPD1	pPD1p	cPD1	MRKLNRWLYGSGLL <u>FLVMFLSG</u> CVKTGA	234 aa

 ^a La forme mature des sex-phéromones est soulignée.
 ^b La taille indiquée en acides aminés (aa) représente la taille globale de la séquence du précurseur, seulement la partie contenant la forme mature des sex-phéromones étant représentée.

Tableau 8 – Précurseurs	des anti-phéromones	(adapté de Clewell, 2	000).
-------------------------	---------------------	-----------------------	-------

	Précurseur	Anti-phéromone	Séquence
pCF10	pCF10p	iCF10	MKTTLKKLSRYIAVVI <u>AITLIFI</u>
pAD1	pAD1p	iAD1	MSKRAMKKIIPLIT <u>LFVVTLVG</u>
pPD1	pPD1p	iPD1	MKQQKKHIAALLF <u>ALILTLVS</u>

bloque l'expression des gènes de conjugaison contrôlés par PrgX et transcrits à partir du promoteur P_Q , mais ne diminue que partiellement l'expression de *prgQ* et par conséquent la production des anti-phéromones iCF10 (Chandler and Dunny, 2004; Kozlowicz *et al.*, 2006a).

2.2.4.3 Maturation des peptides phéromones

Les sex-phéromones :

La voie de biosynthèse des sex-phéromones se distingue de celle des autres molécules de signalisation. En effet, les formes matures des sex-phéromones ont la particularité d'être des fragments de séquences signales de précurseurs de lipoprotéines (Clewell *et al.*, 2000). Aussi, pour acquérir leur forme mature, les sex-phéromones subissent trois clivages : un premier en C-terminal au niveau d'un motif lipobox (chapitre 2 § 2.2.1.2), un deuxième en N-terminal, réalisé dans la majorité des cas par le déterminant chromosomique Eep et, un troisième clivage par une exopeptidase non identifiée au niveau de trois résidus localisés en C-terminal (Figure 22) (Thoendel and Horswill, 2010). En effet, il a été montré qu'un mutant du gène *eep* entraine une diminution de la production de nombreuses sex-phéromones (An *et al.*, 1999). Les caractéristiques structurelles de la protéine Eep suggèrent qu'elle joue un rôle de protéase membranaire. En outre, le rôle des lipoprotéines à partir desquelles les sex-phéromones sont produites, telle que CcFA, n'est pas encore élucidé et ne semble pas être en lien avec la conjugaison (Chandler and Dunny, 2004).

A l'exemple des plasmides conjugatifs les plus connus, les sex-phéromones correspondent à des hepta ou octapeptides et ont la particularité d'être très hydrophobes (Tableau 7). L'extrémité N-terminale des sex-phéromones a été décrite comme essentielle à leur activité. En effet, des peptides analogues à cCF10 modifiés en N-terminal (VATLVFV et LATLVFV) ne présentent pas d'activités biologiques lorsqu'ils sont présents à des concentrations physiologiques (Dunny *et al.*, 2001). Des expériences similaires ont été décrites pour les sex-phéromones cPD1 et cAD1 (Dunny *et al.*, 2001). De plus, des études portant sur la construction de sex-phéromones hybrides associant l'extrémité N-terminale d'une phéromone à l'extrémité C-terminale d'une autre phéromone, ont montré que seulement le plasmide conjugatif apparenté aux résidus côté N-terminal était induit (Dunny *et al.*, 2001). Aussi, la partie N-terminale des sex-phéromones est décrite comme intervenant dans l'interaction peptide / régulateur alors que leur partie C-terminale jouerait probablement un rôle dans la stabilisation de cette interaction (Dunny *et al.*, 2001).

Les anti-phéromones :

Les anti-phéromones sont issues de peptides codés par des petits gènes, présentant des caractéristiques de séquences signales, et sont maturées suite à un clivage côté C-terminal par la protéase membranaire Eep (Thoendel and Horswill, 2010). La sécrétion et la maturation des anti-phéromones se produiraient de manière simultanée au cours de leur export (Chandler and Dunny, 2004). Néanmoins, ce mécanisme n'est pas connu à ce jour.

Les anti-phéromones correspondent également à des hepta ou octapeptides hydrophobes, présentant de fortes homologies entre elles (Tableau 8), avec les sex-phéromones et en particulier avec celle du plasmide apparenté (Dunny *et al.*, 2001). Aussi, les anti-phéromones étant des antagonistes des sex-phéromones, les résidus composant leur séquence semblent jouer un rôle crucial à leur activité biologique (Chandler and Dunny, 2008).

2.2.4.4 Spécificité des plasmides conjugatifs

Comme vu dans la partie précédente, les sex- et anti-phéromones présentent de fortes similarités au niveau de leur séquence peptidique. De plus, les différents gènes codant les protéines et les régulateurs nécessaires au transfert des différents plasmides conjugatifs caractérisés présentent également de fortes homologies. Aussi, l'absence de crossactivation entre ces différents éléments conjugatifs souligne une grande spécificité de réponse de chaque système avec ses partenaires apparentés (Dunny et al., 2001). En effet, il a été montré qu'une cellule donneuse, contenant les plasmides conjugatifs pCF10 et pPD1, répond de manière identique à la présence de cCF10 et ceci bien qu'elle soit présentée seule ou en mélange avec la sex-phéromone cPD1. Des résultats identiques ont également été démontrés entre les plasmides pAD1 et pPD1 (Dunny et al., 2001). Aussi, malgré leur similarité, les cellules induisent spécifiquement les plasmides conjugatifs apparentés et toute possibilité de cross-activation semble être abolie. Cette spécificité semble être effective (i) dans le milieu extracellulaire au niveau de la reconnaissance et de la détection de la sexphéromone par sa protéine affine et, (ii) de manière intracellulaire avec le régulateur transcriptionnel. De manière complémentaire, les mécanismes de contrôle de l'autoinduction des cellules donneuses par les phéromones endogènes seraient également très spécifiquement contrôlés (Dunny et al., 2001).

	Nom	Structure	Synthèse	Senseur	Fonction régulée
Vibrio fischeri	N-(3-oxohexanoyl)-HSL		Luxl	LuxR	Bioluminescence
Agrobacterium tumefaciens	N-(3-oxooctanoyl)-HSL		Tral	TraR	Transfert conjugatif
Pseudomonas aeruginosa	N-(3-oxododecanoyl)-HSL		Lasl	LasR	Virulence Formation de biofilm
	<i>N</i> -butyryl-HSL		Rhll	RhIR	
Erwinia stewartii	N-(3-oxohexanoyl)-HSL		Esal	EsaR	Virulence et biosynthèse de la capsule polysaccharidique
Vibrio harveyi	N-(3-hydroxybutanoyl)-HSL		LuxM	LuxN	Bioluminescence

Tableau 9 – Caractéristiques des principales molécules de signalisation appartenant à la famille des N-AHL chez les bactéries à Gram négatif.

Figure 23 – Exemple d'une voie de biosynthèse des *N***-acyl homoserines lactones par les enzymes Luxl** (Bassler, 2002). SAM, S-adenosylmethionine; AHL, acyl homoserines lactones; MTA, méthylthioadenosine; MTR, méthylthioribose.

3. Le QS chez les bactéries à Gram négatif

Les *N*-acyl homosérine lactones (*N*-AHL) – ou autoinducteur 1 – représentent la classe majeure d'autoinducteurs utilisés dans les mécanismes de QS chez les bactéries à Gram négatif. Une variété considérable de *N*-AHL est produite par les bactéries ; et bien que certaines bactéries ne soient capables de produire qu'un seul type de *N*-AHL, d'autres possèdent en revanche la capacité d'en produire plusieurs types différents (Tableau 9). Bien que la structure de base de ces molécules de signalisation soit conservée, les *N*-AHL différent par la taille de leur chaine latérale *N*-liée (comprise entre 4 et 16 carbones), par la nature de la substitution à la position carbone C3 et par la présence d'un ou plusieurs ponts insaturés au niveau de leurs chaines latérales (Fuqua and Greenberg, 2002; Ng and Bassler, 2009).

3.1 Biosynthèse des N-AHL : les enzymes de la famille LuxI et LuxM

Les *N*-AHL peuvent être issues de deux voies de biosynthèse et les *N*-acyl synthétases catalysent leur production. Parmi celles-ci, les protéines de la famille LuxI sont le plus couramment utilisées.

Les N-AHL dérivent des S-adenosylmethionines (SAM) par acylation et lactonisation de ces dernières. Plus précisément, l'enzyme LuxI couple le groupement acyl d'un acyl-ACP (Acyl carrier protein) sur le groupement méthionine de la SAM. La lactonisation de l'intermédiaire formé résulte ensuite en la production d'une N-AHL et de méthylthioadenosine (MTA), molécule toxique pour les cellules. Aussi, une nucléotidase, appelée Pfs, assurera par la suite le clivage de la MTA en deux molécules non toxiques : de l'adénine et du méthylthioribose (MTR) dont le devenir n'est pas connu à ce jour (Figure 23) (Ng and Bassler, 2009). De manière simplifiée, la partie « acyl » dérive d'un acide gras précurseur conjugué à une acyl-ACP alors que la partie « homosérine lactone » provient quant à elle d'une SAM. Ce métabolite étant un précurseur commun reconnu par l'ensemble des protéines de la famille LuxI, la diversité des N-AHL synthétisées est alors assurée par la reconnaissance d'un acyl-ACP spécifique apportant un groupe acyl caractéristique qui sera transféré lors de l'étape d'acylation de la SAM. Ce mécanisme biochimique est démontré pour plusieurs protéines LuxI-like provenant de différentes bactéries telles que LuxI de V. fischeri, Tral de Agrobacterium tumefaciens et Rhll de Pseudomonas aeruginosa (Fugua and Greenberg, 2002).

Figure 24 – Représentation schématique des *N*-acyl synthétases de la famille LuxI (adapté de Fuqua and Greenberg, 2002).

Les résidus conservés au sein de toutes les protéines LuxI sont indiquées sur la figure. En bleu est représentée le domaine catalytique, en rouge le domaine de spécificité de liaison au substrat. Les positions indiquées correspondent à celles identifiées sur la séquence de la protéine LuxI.

Enfin, bien qu'elles catalysent les mêmes réactions, certaines bactéries à Gram négatif possèdent des *N*-AHL synthétases ne présentant pas d'homologie avec LuxI. Parmi cellesci, LuxM de *V. harveyi*, AinS de *V. fischeri* et HdtS de *Pseudomonas fluorescens* ont été identifiées. L'étude de la voie de biosynthèse des *N*-AHL par l'enzyme AinS a alors montré que ces *N*-AHL synthétases utilisent également la SAM et l'acyl-CoA ou acyl-ACP comme substrat à la production des *N*-AHL (Hanzelka *et al.*, 1999).

3.2 Caractéristiques des protéines de la famille LuxI

De nombreuses protéines LuxI sont identifiées à ce jour. Ces protéines présentent une taille comprise de 190 à 230 acides aminés et partagent 30 à 35% d'identité (Fuqua and Greenberg, 2002). Alors que la partie C-terminale de ces protéines semble être impliquée dans la spécificité de liaison au substrat, leur partie N-terminale représente leur domaine catalytique. L'alignement de 16 séquences de protéines LuxI-like a révélé la présence de 10 acides aminés conservés localisés au niveau du site actif (Figure 24). Des études de mutagénèse dirigée sur la protéine RhII chez *P. aeruginosa*, ont par ailleurs indiqué que 7 des 10 acides aminés conservés étaient essentiels à la catalyse de la réaction, les 3 restants affectant seulement son efficacité (Fuqua and Greenberg, 2002).

Malgré l'absence de corrélation entre le niveau d'identité des protéines LuxI et la nature des *N*-AHL produites, les protéines LuxI catalysant la synthèse d'une même *N*-AHL peuvent néanmoins présenter des similarités. Aussi, un résidu thréonine conservé en position 143 et localisé dans le domaine de liaison au substrat, a été identifié chez toutes les protéines LuxI-like synthétisant le 3-oxo-acyI-HSL (Fuqua and Greenberg, 2002). Des études cristallographiques ont par ailleurs permis de définir la structure de deux *N*-acyI synthétases complexées à leur substrat : Esal de *Pantoea stewarii* et LasI de *P. aeruginosa* (Fuqua and Greenberg, 2002). Deux configurations différentes ont alors été observées au niveau des poches de liaison du substrat, l'une présentant une cavité fermée (Esal), l'autre un tunnel allongé (LasI). Ces caractéristiques structurelles semblent alors conférer aux protéines LuxI une spécificité liée à l'encombrement stérique des substrats qu'elles peuvent lier ; Esal ne pouvant accueillir des substrats présentant une chaine latérale *N*-liée relativement courte.

3.3 Sécrétion des N-AHL

A la suite de leur synthèse, les *N*-AHL diffusent librement à travers la membrane, c'est-àdire vers l'intérieur et vers l'extérieur de la cellule. Néanmoins, certains efflux transporteurs

Figure 25 – Représentation schématique du système *luxIR* contrôlant la bioluminescence chez *Vibrio fischeri* (inspiré de Miller and Bassler, 2001).

La protéine LuxI est responsable de la synthèse de la *N*-AHL capable de diffuser librement à travers la membrane plasmique. Une fois sa concentration seuil critique atteinte, la *N*-AHL est détecté par la protéine régulatrice LuxR. Aussi, la fixation du complexe LuxR / *N*-AHL à l'ADN sur un motif appelé « Lux box » activera la transcription de l'opéron *luxICDABE*, responsable de la production de lumière et réprimera la transcription du gène *luxR*. Ce contrôle négatif compense la boucle positive de régulation mis en place au niveau du promoteur de l'opéron *luxICDABE*.

pourraient être impliqués dans le transport de certaines *N*-AHL à travers la membrane et en particulier, lorsque ces dernières présentent une longue chaine latérale *N*-liée pouvant freiner leur diffusion à travers la bicouche lipidique (Fuqua and Greenberg, 2002).

3.4 Détection des N-AHL

3.4.1 Les systèmes luxIR :

Mécanisme de QS largement représenté au sein des bactéries à Gram négatif (70 analogues identifiés), les systèmes luxIR ont été caractérisés en détails chez plusieurs bactéries telles que V. fischeri, P. aeruginosa, A. tumefaciens ou encore P. stewartii. Ces systèmes assurent la régulation de nombreuses fonctions telles que la bioluminescence, le transfert conjugatif, la formation de biofilm ou encore la production de facteurs de virulence pour les pathogènes des plantes et des animaux (Miller and Bassler, 2001). Bien que leur rôle physiologique soit différent, tous ces systèmes fonctionnent néanmoins de la même manière et la molécule de signalisation générée par une N-AHL synthétase de la famille LuxI est perçue par un N-AHL récepteur appartenant à la famille LuxR (régulateur transcriptionnel) (Figure 25). En effet, suite à leur production, les N-AHL diffusent librement à travers la membrane. Cette caractéristique assure un équilibre entre leur concentration extracellulaire et intracellulaire. Aussi, dès lors que la molécule de signalisation atteint un seuil de concentration critique, proportionnel à la densité cellulaire de la population, elle sera liée par son récepteur localisé dans le cytoplasme. La liaison de l'autoinducteur à son régulateur contrôle son activité transcriptionnelle et résulte in fine en la régulation de gènes cibles via la fixation de LuxR dans la région promotrice de ces derniers. Par ailleurs, les gènes cibles incluent généralement le gène luxI, assurant ainsi une boucle de régulation positive de la synthèse des N-AHL et le passage de l'ensemble de la population bactérienne concernée à la production d'une fonction physiologique donnée (Miller and Bassler, 2001).

A l'heure actuelle, le système *luxIR* de *V. fischeri* est considéré comme LE modèle pour l'étude des systèmes de QS chez les bactéries à Gram négatif. Aussi, une fois lié à sa molécule de signalisation, LuxR induira la production de lumière *via* l'activation de l'opéron luciférase *luxICDABE* (Figure 25) (Ng and Bassler, 2009).

A l'instar de *V. fischeri*, certaines bactéries à Gram négatif ont la particularité d'accumuler plusieurs systèmes homologues de type LuxIR dans leur génome. Tel est le cas chez *P. aeruginosa* où deux systèmes appelés LasIR et RhIIR ont été caractérisés et contrôlent la production de plusieurs facteurs de virulence et la formation de biofilm (Tableau 9) (Waters

Figure 26 – Représentation schématique des systèmes de quorum-sensing contrôlant la bioluminescence chez Vibrio harveyi (adapté de Ng and Bassler, 2009).

(A) Faible densité cellulaire. La phosphorylation de LuxO suite au transfert du groupe phosphoryle de LuxU apporté par les histidines kinases LuxN, LuxPQ et CqsS traduit la répression de LuxR et l'absence de transcription de l'opéron *luxCDABE*. (B) Haute densité cellulaire. La détection des molécules de signalisation par les senseurs histidine kinase (LuxN, LuxPQ et CqsS), provoque la déphosphorylation de LuxU et par conséquent, le retour du groupe phosphoryle de LuxO. Ceci entraîne une levée de la répression sur LuxR et ainsi la transcription de l'opéron *luxCDABE* et la production de lumière.

and Bassler, 2005). Ces deux systèmes fonctionnent en tandem ; le système LasIR étant nécessaire à l'activation du second.

3.4.2 Les systèmes *luxMN* :

V. harveyi, au même titre que *V. fischeri*, possède un système de QS lui permettant de produire de la lumière et médié par une *N*-AHL. Néanmoins, la synthèse de cette dernière est dirigée par une *N*-AHL synthétase appartenant à la famille LuxM. Aussi, bien que cette molécule de signalisation diffuse librement à travers la membrane, sa perception implique l'intervention d'un récepteur de type kinase localisé dans la membrane et appelé LuxN (Figure 26). LuxN appartient à la classe des systèmes à deux composants hybrides et est composé d'un domaine senseur et d'un domaine régulateur de réponse.

A faible densité cellulaire, l'autophosphorylation de LuxN déclenche une cascade de phosphorylation assurant *in fine* le transfert d'un phosphate à un régulateur de réponse appelé LuxO. Ce dernier est alors responsable de la répression des gènes de l'opéron *luxCDABE*. En revanche, à forte densité cellulaire, l'interaction de la molécule de signalisation avec LuxN entraine un reflux du phosphate aboutissant à la déphosphorylation et à l'inactivation de LuxO. Aussi, un activateur transcriptionnel appelé LuxR (non similaire aux protéines des systèmes *luxIR*) induit la transcription des gènes *luxCDABE* et par conséquent la production de lumière par la bactérie (Miller and Bassler, 2001; Waters and Bassler, 2005).

Un système homologue à LuxMN est également retrouvé chez *V. fischeri*. Ce dernier, appelé AinS/AinR, fonctionnerait en tandem avec le système LuxIR précédemment décrit. De la même manière que pour le système de *V. harveyi*, l'interaction de AinR avec sa molécule de signalisation inactive LuxO permettant ainsi à un activateur, cette fois ci LitR, d'induire l'expression de plusieurs gènes cibles tels que *ropS* ou des gènes en lien avec la mobilité de la bactérie et également d'assurer le déclenchement du deuxième système de QS régulant le gène *luxI* (Studer *et al.*, 2008).

4. La communication inter-espèces

L'autoinducteur 2 (AI-2) ou furanosyl borate diester est la troisième grande famille de molécules de signalisation répandue dans le monde bactérien. De par le caractère généralisé de l'AI-2 et de l'enzyme assurant sa synthèse (LuxS) chez les bactéries à Gram positif et à Gram négatif, l'AI-2 a été proposé comme molécule de signalisation inter-espèces

Figure 27 – Voie de biosynthèse de l'autoinducteur 2 (Rezzonico and Duffy, 2008).

SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; SRH, S-ribosylhomocysteine; DPD, 4,5-dihydroxy-2,3 pentanedione. En fonction de la présence ou non de borate, l'Al-2 correspond soit à du (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate (S-THMF-borate), soit à du (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (*R*-THMF).

chez les bactéries (Schauder and Bassler, 2001). A l'heure actuelle, l'Al-2 est la seule molécule de signalisation commune entre les bactéries à Gram positif et à Gram négatif.

De manière similaire aux N-AHL, l'AI-2 est produit à partir des SAM et dérive d'un précurseur commun appelé le 4,5-dihydroxy-2,3 pentanedione (DPD), produit par l'enzyme LuxS. Plus précisément, le DPD est produit à partir de la SAM suite à l'action de 3 enzymes (Figure 27). Une méthyltransférase catalyse le transfert du groupe méthyle de la SAM induisant la formation de SAH, toxique pour les cellules. Aussi, dans un second temps, l'action de la nucléotidase Pfs permettra le clivage de ce composé en adénine et SRH (Sribosylhomocystéine). Enfin, l'hydrolyse de la SRH par LuxS assurera la formation de DPD par le relargage d'une molécule d'homocystéine, précurseur de méthionine pour la cellule et assurant in fine la régénération de la SAM (Figure 27) (Ryan and Dow, 2008). Le DPD ainsi produit (molécule instable) serait alors converti de manière spontanée en différents composés (Schauder and Bassler, 2001). Il subit une cyclisation et différents réarrangements pour acquérir la forme active de l'AI-2 d'une espèce bactérienne en question (Waters and Bassler, 2005). Aussi, en présence de borate, comme dans les environnements marins, le DPD formera du S-THMF² correspondant aux molécules d'AI-2 produites par V. harveyi et Vibrio cholerae. A contrario, sur l'environnement terrestre où le bore est limité, le DPD formera du *R*-THMF³ correspondant aux molécules d'Al-2 produites par *E. coli* ou Salmonella. Aussi, de par l'instabilité du DPD et son interaction possible avec une large variété de composés pouvant interagir avec du borate ou d'autres espèces réactives, le DPD pourrait induire la formation de molécules de signalisation de structures différentes pouvant être à la base (au même titre que les N-AHL ou que les peptides autoinducteurs) d'une réelle famille de molécules de signalisation de type AI-2 (Waters and Bassler, 2005). Néanmoins, le rôle de l'AI-2 dans la communication inter-espèce est contreversé depuis l'appartion des travaux chez E. coli et Salmonella qui présentent, cette molécule, comme un métabolite intervenant la détoxification de la SAH, plutôt qu'une molécules de signalisation à proprement parler (Winzer et al., 2002; Walters et Sperandio, 2006).

Bien que de nombreuses bactéries possèdent un gène homologue à *luxS*, permettant la synthèse de l'Al-2, seulement deux systèmes sont caractérisés en détails et concernent *V. harveyi* (Figure 26) et *V. cholerae*. Chez ces deux espèces, la détection de l'Al-2 requiert une protéine périplasmique appelée LuxP. Le complexe ainsi formé interagit ensuite avec LuxQ, protéine kinase nécessaire à la transduction du signal. L'information est alors

² (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate (S-THMF)

³ (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (*R*-THMF)

transférée, de la même manière que le système LuxMN, à une phosphotransférase (LuxU) qui transmet *in fine* le signal au régulateur de réponse LuxO (Miller and Bassler, 2001; Waters and Bassler, 2005). De manière intéressante, ce système contrôle également l'opéron *luxCDABE* nécessaire à la production de la lumière chez *V. harveyi*. En revanche, chez *V. cholerae*, il contrôle positivement la production d'une protéase (Hap) et négativement des gènes impliqués dans la formation de biofilm et la production de facteur de virulence (Ng and Bassler, 2009).

Enfin, bien qu'il ne soit pas détaillé, *V. harveyi* possède également un troisième système de QS contrôlant la bioluminescence chez cette bactérie. Ce système, fonctionnant de manière identique aux systèmes LuxMN et LuxSPQ, fait intervenir une molécule de signalisation CAI-1, de nature inconnue, qui une fois détectée par son récepteur membranaire CqsS, induira la réponse physiologique de la cellule (Figure 26) (Ng *et al.*, 2011).

5. Autres molécules de signalisation connues chez les bactéries

Bien que les principales molécules de signalisation aient été décrites dans cette partie, d'autres molécules enrichissent cette classification (Ryan and Dow, 2008).

A titre d'exemple, chez les Streptomycètes (bactéries à Gram positif), les molécules de signalisation appartiennent à la famille des γ -butyrolactones et contrôlent la différenciation (formation des hyphes) et la production d'antibiotiques, tel que la streptomycine. Les γ -butyrolactones sont des analogues structuraux aux *N*-AHL, cependant, aucune cross-activation entre ces molécules de signalisation n'a encore été démontrée (Bassler and Losick, 2006).

La molécule d'Al-3, composé aromatique de structure inconnue (Pacheco and Sperandio, 2009), est produite par la flore intestinale des individus sains, par les bactéries commensales *E. coli*, *Klebsiella pneumoniae* et *Enterobacter cloacae* et par de nombreux pathogènes *E. coli* O157 :H7, *Shigella* spp. et *Salmonella* spp. (Walters and Sperandio, 2006). Chez *E. coli* O157:H7, il a été montré que l'Al-3 active l'expression de la transcription des gènes de l'îlot de pathogénicité LEE (Locus of enterocyte effacement) et du régulon flagella (Hughes and Sperandio, 2008). Par ailleurs, les protéines Qse (senseurs de l'Al-3) et les composants de la cascade de signalisation sont présents dans de nombreuses bactéries suggérant que cette molécule de signalisation peut être impliquée dans des mécanismes de signalisation inter-espèces parmi les bactéries intestinales. Il a par ailleurs été montré que

deux hormones eucaryotes (épinéphrine et norépinéphrine) se fixent également sur le senseur Qse et que les antagonistes de ces hormones bloquent la voie de transduction du signal et par conséquent l'expression des gènes cibles. Aussi, l'Al-3 a été proposée comme molécule de signalisation inter-règne (Pacheco and Sperandio, 2009).

L'indole et les dérivés d'indole, tels que les quinolones, ont également été décrits comme intervenants dans la communication cellulaire de type QS (Lee and Lee, 2010). Chez *P. aeruginosa*, un troisième système de QS a été décrit utilisant la molécule de signalisation PQS pour **P**seudomonas **q**uinolone **s**ignal (Venturi, 2006).

Enfin, d'autres molécules telles que les di-peptides cycliques chez les bactéries à Gram négatif, les dérivés d'acides gras et les antibiotiques sont également décrits comme intervenant dans les mécanismes de communication cellulaire de type QS (Ryan and Dow, 2008).

6. Conclusion

La possibilité pour les bactéries de communiquer entre elles *via* des mécanismes de QS leur permet de coordonner leur comportement à l'échelle d'une population. Dans ce chapitre, nous avons pu voir que cette capacité de communiquer au sein d'une espèce ou entre espèces est capitale pour la survie bactérienne et / ou leurs interactions dans leurs habitats naturels.

6.1 La complexité des réseaux de communication cellulaire

Les avancées dans le domaine montrent que la plupart des bactéries communiquent probablement en utilisant des molécules de signalisation pour coordonner leur comportement à l'échelle d'un groupe. Les continuelles apparitions et mises en évidence de nouvelles molécules de signalisation augmentent la complexité des systèmes de QS décrits dans la littérature. A l'heure actuelle, les *N*-AHL et les AIP représentent les deux principales classes de molécules de signalisation (caractérisées respectivement chez les bactéries à Gram négatif et à Gram positif) et la communication cellulaire *via* ces autoinducteurs suscite des réponses spécifiques et limitées dans la plupart des cas à une espèce bactérienne. A l'inverse, le langage universel décrit sur la base de l'AI-2 peut être détecté indifféremment par une bactérie et ce, que l'AI-2 produit soit de nature endogène ou exogène. De manière originale, il a été montré que certaines bactéries, telle que *P. aeruginosa*, ne possédant pas d'enzyme LuxS et par conséquent ne pouvant produire de l'AI-2, étaient néanmoins aptes à

Figure 28 – Paramètres influençant le déclenchement d'une réponse physiologique coordonnée, de type quorum-sensing, chez les bactéries (d'après Hense *et al.*, 2007).

La densité cellulaire critique (A), un espace confiné (B) et une distribution spatiale agrégée des cellules (C) conduit à une réponse physiologique des cellules concernées. Un fond rouge ou jaune indique, respectivement, une concentration faible ou élevée en autoinducteur. Les bactéries non induites sont de couleur bleue et les bactéries induites sont en rouge.

y répondre (Duan *et al.*, 2003; Rickard *et al.*, 2006). Aussi, les bactéries semblent être capables de percevoir, d'intégrer et de répondre de manière appropriée à un pool de signaux présents dans leur environnement. Ceci est d'autant plus vrai que le langage universel décrit sur la base de l'Al-2 est généralement identifié en parallèle d'un système de QS modulé par les *N*-AHL ou les AIP et, que plusieurs systèmes de QS modulés par des *N*-AHL ou des AIP peuvent s'accumuler au sein d'une bactérie.

6.2 Le QS et les notions de diffusion et efficiency-sensing

Comme vu dans ce chapitre, les bactéries possèdent divers mécanismes leur permettant de coordonner leur physiologie à l'échelle d'une population via la production de molécules de signalisation. Aussi, alors que le terme de « quorum-sensing » réfère à la quantité de bactéries présentes dans leur environnement, ce dernier ne décrit pas de manière adéquate l'ensemble des situations où les bactéries emploient des molécules de signalisation diffusibles. Aussi, à l'heure actuelle, cette notion est discutée et de nouvelles expressions, telles que « diffusion-sensing » (Redfield, 2002) ou encore « efficiency-sensing » (Hense et al., 2007) voient le jour. Alors que la première expression s'illustre par la notion de transfert de masse (Figure 28), la seconde attribue le « sensing » d'une molécule de signalisation à l'association d'au minimum deux composantes parmi la densité cellulaire, le transfert de masse et la distribution spatiale de la population (Figure 28). Aussi, bien que la résultante de tous ces phénomènes soit un comportement coordonné de la population bactérienne, différents paramètres semblent être nécessaires à prendre en compte dans la définition ou l'utilisation de la notion de « quorum-sensing ». En 2010, les travaux de Yang et al. ont montré l'impact de la viscosité du milieu sur la diffusion de la molécule de signalisation CSP chez S. pneumoniae (Yang et al., 2010).

	Régulateur	Gènes régulés*		Fonctions contrôlées
Streptococcus gordonii	Rgg	gtfG	+	Glucosyltransferase
Streptococcus oralis	Rgg	gtfF	+	Glucosyltransferase
Streptococcus pyogenes	RopB	speB	+	Synthèse de l'exotoxine B
Streptococcus agalactiae	RovS	fbsA	-	Adhésion aux cellules épithéliales
Streptococcus thermophilus	RggC	(orf2)	?	Réponse au stress oxydatif
Lactococcus lactis	GadR	gadCB	+	Antiport glutamate/GABA
Streptococcus mutans	MutR	mutA-G	+	Biosynthèse des mutacines I, II et III
Lactobacillus sakei	LasX	lasA-W	+	Biosynthèse de la lactocine S

Tableau 10 – Les principaux régulateurs transcriptionnels Rgg caractérisés et leur gène cible proximal associé chez les bactéries à Gram positif.

-

* Les signes « + » et « - » indiquent respectivement que l'expression du gène est positivement ou négativement contrôlée par la protéine régulatrice Rgg.

Chapitre 3 : Les régulateurs transcriptionnels de la famille des Rgg

1. Présentation des protéines régulatrices Rgg

Les protéines Rgg (**R**egulator **g**ene of **g**lucosyltransferase) constituent une famille de régulateurs transcriptionnels identifiés jusqu'à ce jour chez les bactéries à Gram positif à bas GC% (*Listeria, Lactobacillus, Lactococcus* et *Streptococcus*). La première protéine découverte qui a donné naissance à cette famille de régulateurs transcriptionnels a été mise en évidence chez *Streptococcus gordonii* où elle a été décrite comme contrôlant l'expression d'un gène codant une glucosyltransférase (Sulavik *et al.*, 1992). Sur la base de similarité de séquence, ce nom a ensuite été élargi à toute une famille de protéines contrôlant l'expression de gène(s) cible(s) impliqué(s) dans différentes fonctions physiologiques (Tableau 10).

Ces protéines sont caractérisées par la présence d'un motif HTH appartenant à la famille XRE. Ce motif, localisé dans leur domaine N-terminal, leur assure une fonction de liaison à l'ADN. Par ailleurs, les protéines Rgg présentent un domaine C-terminal conservé (Rgg-Cterm, TIGR01716).

Cette partie reporte les données connues sur ces régulateurs. Dans un premier temps seront traitées les protéines Rgg dites « stand-alones » reconnues comme des régulateurs transcriptionnels autonomes contrôlant l'expression d'un ou plusieurs gènes cibles. Dans un deuxième temps seront exposées les données récentes concernant l'association de protéines Rgg à de petits peptides hydrophobes, décrits comme nécessaires à l'activation de ces dernières.

2. Les protéines Rgg « stand-alone »

2.1 Les protéines Rgg : production de glucosyltransférases

Habitant non-cariogène de la plaque dentaire, *S. gordonii* partage avec d'autres streptocoques (tels que *S. mutans*, *S. pyogenes*, *S. pneumoniae* et *S. salivarius*) la capacité de produire une enzyme extracellulaire, la glucosyltransférase (GTF), qui hydrolyse le saccharose et les résidus glucosylés pour la synthèse de polysaccharides insolubles tel

Streptococcus gordonii

Figure 29 – Organisation génétique du locus *gtfG* chez *Streptococcus gordonii* (adapté de Vickerman *et al.*, 2001).

Figure 30 - Présentation des régions promotrices des gènes rgg et gtfG de Streptococcus gordonii.

Les régions répétées inversées identifiées (IR-1 et IR-2) sont indiquées par des flèches. L'utilisation de couleur rouge fait référence au gène *rgg* et la couleur verte, au gène *gtfG*. La totalité de région intergénique *rgg/gtfG* représente la sonde oligonucléotidique utilisée pour l'analyse SPR.

Α

que le glucane. A la différence des autres streptocoques cités ci-dessus, l'espèce commensale *S. gordonii* ne possède qu'une seule enzyme GTF codée par le gène *gtfG* dont l'expression est contrôlée positivement par le produit du gène *rgg*, localisé en amont (Figure 29) (Sulavik *et al.*, 1992). Ce mécanisme de régulation, décrit comme complexe, n'est aujourd'hui toujours pas totalement élucidé.

Trois transcrits ont été associés au locus rgg/gtfG : un transcrit rgg (1,1 kb), un transcrit gtfG (5,5 kb) et un transcrit polycistronique rgg/gtfG (6,5 kb) (Sulavik and Clewell, 1996). Le produit du gène rgg n'affectant que le transcrit gtfG. L'étude des régions promotrices des gènes rgg et gtfG a révélé la présence de deux régions répétées inversées (Figure 30) (Sulavik et al., 1992). La première région répétée inversée (IR-1), localisée entre la région -10 du promoteur et le site de fixation du ribosome (RBS, Ribosome Binding Site) du gène rgg, présage l'action d'un répresseur transcriptionnel bloquant l'initiation de la transcription de ce dernier. La seconde région répétée inversée (IR-2) serait quant à elle à l'origine d'une structure tige-boucle localisée dans la région intergénique rgg/gtfG. Cette structure – incluant le codon STOP du gène rgg et la région promotrice du gène gtfG – influencerait de manière directe l'efficacité de l'expression du gène gtfG, en modulant l'accessibilité du RBS aux ribosomes lors d'un couplage traductionnel entre les deux gènes (Sulavik and Clewell, 1996; Vickerman and Minick, 2002). L'étude du mécanisme de régulation de la protéine Rgg sur l'activité GTF a ensuite souligné l'existence d'une région de 36 pb essentielle à une bonne activité GTF. Cette région, localisée en 3' du gène rgg (Figure 30), pourrait être impliquée soit directement comme site de fixation du Rgg, soit indirectement comme jouant un rôle dans la structure secondaire et dans l'interaction de la protéine Rgg avec le promoteur du gène gtfG (Vickerman and Minick, 2002). Aussi, la régulation de l'expression du gène gtfG est contrôlée à deux niveaux : à partir de son propre promoteur ou à partir du promoteur du gène rgg.

L'analyse de la séquence nucléotidique d'une souche exprimant 25% d'activité GTF en moins a mis en évidence une mutation près de l'extrémité 3' du gène *rgg* (Vickerman *et al.*, 1997). Par l'utilisation de fusions transcriptionnelles *gftG::lacZ* en système hétérologue, la même équipe a ensuite démontré que cette mutation influence de manière directe l'expression du gène *gtfG* (Vickerman *et al.*, 2003). Enfin, par résonnance plasmonique de surface (SPR, **s**urface **p**lasmon **r**esonnance), les auteurs ont ensuite mesuré, en comparaison avec une protéine Rgg « native », l'affinité de liaison de cette protéine tronquée (RggC₁) à l'ADN. De manière surprenante, le complexe Rgg/ADN (Vickerman *et al.*, 2003). Enfin, bien que l'interaction directe de la protéine Rgg au niveau de la région promotrice du

Figure 31 - Représentation schématique de la région intergénique ropB/speB chez Streptococcus pyogenes (adapté de Neely et al., 2003).

Les régions répétées inversées identifiées (IR-1 et IR-2) sont indiquées par les flèches et les terminateurs Rho-independants par des points. La sonde ADN utilisée lors des analyses de retard sur gel est indiquée par les flèches bleues. L'utilisation de la couleur rouge fait référence au gène *ropB*, le vert au gène *speB*.

gène *gtfG* ait été démontrée par cette expérience, l'utilisation d'une sonde de 107 pb (englobant à la fois la région de 36 pb et la séquence répétée inversée IR-2) n'a pas permis de définir précisément le motif de fixation du régulateur à l'ADN (Vickerman *et al.*, 2003).

Par ailleurs, l'étude détaillée de la région aval du locus *gtfG* a révélé la présence d'un deuxième gène codant un régulateur de la famille Rgg et appelé *rggD* (Figure 29). Néanmoins, l'activité GTF n'étant pas affectée dans un mutant $\Delta rggD$ et la quantité de transcrits des gènes adjacents *ylbN* et *dsg* ne semblant pas être modifiée dans ce même mutant, RggD a été proposé comme régulateur de gènes distaux chez *S. gordonii* (Vickerman *et al.*, 2001).

La séquence nucléotidique et des analyses de Southern blot ont permis d'identifier des déterminants *rgg*-like chez *Streptococcus oralis* (Fujiwara *et al.*, 2000) et *Streptococcus sanguinis* (Vickerman *et al.*, 1995), lesquels apparaissent – au même titre que *S. gordonii* – avoir une seule enzyme GTF. L'organisation génétique des loci *gtf* est par ailleurs conservée et l'inactivation du gène *rgg* chez *S. oralis* montre clairement une diminution de l'activité GTF (gène *gtfR*) chez cette bactérie (Fujiwara *et al.*, 2000). Ceci suggère que le produit du gène *rgg* régulerait également positivement la transcription du gène *gtfR* chez *S. oralis*. Néanmoins, l'analyse de la région intergénique *rgg/gtfR*, indique des différences dans la structure secondaire et suggère que les mécanismes de régulation des gènes *gtf* chez ces deux espèces (*S. oralis* et *S. gordonii*) seraient différents. Enfin, le gène *rgg* de *S. oralis* a été proposé comme marqueur pour l'identification rapide de cette espèce et sa différenciation vis-à-vis d'autres streptocoques du groupe viridans et principalement de *S. pneumoniae* (Park *et al.*, 2010).

2.2 Les protéines RopB et RovS : régulation de la virulence

2.2.1 Le facteur de virulence SpeB chez Streptococcus pyogenes

Un régulateur transcriptionnel appartenant à la famille des Rgg a été caractérisé chez *S. pyogenes*. Ce régulateur, appelé RopB (**R**egulator **of p**roteinase), régule positivement l'expression du gène *speB* codant une exotoxine dont l'activité protéolytique contribue largement à la pathogénicité de la bactérie (Chaussee *et al.*, 1999; Lyon *et al.*, 1998). Les gènes *ropB* et *speB* sont adjacents et transcrits de manière divergente (Figure 31). Deux démarrages de transcription (appelés P1 et P2) ont été mis en évidence pour le gène *speB* et deux séquences répétées inversées ont été identifiées en amont de ces deux +1 de transcription. De plus, la séquence répétée inversée identifiée en amont du promoteur P1 a
Biomasse

Figure 32 – Contrôle du régulon RopB au cours de la croissance de Streptococcus pyogenes (inspiré de McIver, 2009).

Les flèches vertes et rouges indiquent respectivement que l'expression des gènes est activée ou réprimée par RopB.

également été retrouvée dans la région promotrice du gène *ropB* (Figure 31). L'interaction directe de RopB avec la région localisée en amont du promoteur P1 a ensuite été démontrée *in vitro* et l'étude de l'activité des promoteurs P_{speB} et P_{ropB} a révélé que cette région était essentielle à la transcription des deux gènes et pourrait être à la base d'une structure secondaire au niveau de l'ARN impliquée dans le contrôle de l'expression de la protéase SpeB (Figure 31) (Neely *et al.*, 2003).

RopB influence également l'expression de nombreux autres gènes, en phase exponentielle ou stationnaire de croissance (Figure 32). A titre d'exemple, ce régulateur est impliqué dans (i) le contrôle de l'activité catabolique de certaines enzymes impliquées dans le métabolisme de l'arginine (arcABC), de l'histidine (hutl) et de la sérine (sdhA), (ii) la résistance au stress oxydatif et thermique et, (iii) l'utilisation de sources carbonées alternatives telles que le fructose, mannose et sucrose (Chaussee et al., 2004; Chaussee et al., 2003; Dmitriev et al., 2006; Pulliainen et al., 2008). Il contrôle également l'expression de gènes codant des protéines secrétées ou localisées dans la membrane, telles que la protéine M, Mac, SagA et la streptolysine O (Kreikemeyer et al., 2003). Enfin, RopB est également connu pour contrôler négativement le régulon Mga et positivement l'expression de plusieurs systèmes à deux composants tels que covRS, fasBCAX et ihk/irr, tous clairement impliqués dans la virulence et la pathogénicité de la bactérie (Chaussee et al., 2001; Chaussee et al., 2002). Aussi, ce régulateur transcriptionnel est décrit comme un régulateur global chez S. pyogenes. Cette fonction est probablement importante pour l'adaptation de ce pathogène à des fluctuations de disponibilités en substrats métaboliques en permettant la coordination entre facteurs de virulence et catabolisme. Néanmoins, le rôle direct ou indirect de RopB avec les cibles citées ci-dessus reste encore à démontrer. Très récemment, l'identification des sites de fixation de RopB a été entreprise par ChIP-chip (Chromatin ImmunoPrecipitation on Chip) dans le but de définir le régulon de ce régulateur (Anbalagan et al., 2011). Il a été montré que RopB lie l'ADN au niveau de 65 régions localisées aléatoirement dans le chromosome et dans plus de la moitié des cas, les sites de liaison sont situés dans des régions codantes. L'analyse de ces régions indigue que RopB ne semble pas se fixer en amont de régulateurs globaux mais serait plutôt spécifique de gènes impliqués dans le métabolisme. De manière intéressante, les auteurs ont également montré que RopB se lie de manière directe à l'ADN de prophages. Enfin, dans le cadre de l'étude de la régulation de SpeB, Loughman et Caparon ont mis en évidence une enzyme LacD.1 qui en séquestrant Rgg, empêcherait ce dernier d'aller contrôler l'expression des gènes cibles. LacD.1 codant une tagatose 1,6 biphosphate aldolase, impliqué dans le métabolisme du lactose, permettrait un couplage entre transcription et nutrition (Loughman and Caparon, 2006, 2007a).

L'étude de la variabilité des gènes ropB-like a permis l'identification de 19 allèles au sein des souches de S. pyogenes appartenant au sérotype M3. A l'exception du groupe majoritaire (ropB1, 58%), chaque allèle a été décrit spécifique à une lignée clonale. Seulement trois groupes (ropB1, ropB2 et ropB4) seraient capables de produire de l'exotoxine SpeB active (Carroll and Musser, 2011). Aussi le polymorphisme observé sur les protéines RopB impacte directement l'expression du gène speB et par conséquent la virulence de la bactérie (Carroll and Musser, 2011; Hollands et al., 2008; Ikebe et al., 2010). En 2009, il a par ailleurs été démontré, in vitro, que l'absence de production d'exotoxine SpeB dans un variant, était lié à la présence d'une proline en position 103 inhibant l'affinité de liaison de la protéine Rgg à l'ADN dans la région promotrice du gène speB (Kappeler et al., 2009). De plus, le polymorphisme observé influence l'ensemble du régulon RopB. Ceci a été démontré pour des souches appartenant au sérotype M1, M49 (Dmitriev et al., 2008) et M3 (Carroll et al., 2011). Le polymorphisme de RopB est principalement localisé dans la partie C-terminale des protéines, laquelle est prédite pour être impliquée dans la formation d'homodimères (Carroll and Musser, 2011). La prédiction structurale et la modélisation de RopB, apparentée à celle du régulateur PICR de la famille des RNPP, indiguent par ailleurs que RopB fonctionnerait sous la forme d'un homodimère, présentant en N-terminal un domaine de liaison à l'ADN et en C-terminal un domaine intervenant dans la liaison des sous-unités entre elles (Carroll and Musser, 2011; Declerck et al., 2007).

Plus récemment, un régulateur transcriptionnel Rgg a été caractérisé chez *S. suis*. En lien avec RopB, ce régulateur contribue à la virulence de la bactérie (mutant Δrgg est moins pathogène *in vivo*). Il est également impliqué dans le métabolisme de l'arginine et nécessaire à l'utilisation de source carbonée alternative au glucose (Zheng *et al.*, 2011).

2.2.2 L'adhérence aux cellules épithéliales chez Streptococcus agalactiae

S. agalactiae est capable de coloniser différentes parties du corps humain grâce à un réseau de régulation contrôlant l'expression de facteurs de virulence. Au sein de ce réseau un régulateur transcriptionnel appartenant à la famille des Rgg a été caractérisé et désigné RovS pour <u>R</u>egulator <u>of v</u>irulence in <u>S</u>. agalactiae.

Bien qu'influençant positivement l'expression de plusieurs gènes tels que *gbs0230*, *sodA*, *rogB* et l'opéron *cyl*; RovS est principalement décrit comme régulant négativement l'expression du gène *fbsA* codant un récepteur au fibrinogène impliqué dans l'adhérence de la bactérie aux cellules épithéliales (Samen *et al.*, 2006). Ceci a été confirmé par des expériences de fixation au fibrinogène et a permis de démontrer un rôle prédominant de

	CC17 N° (%)	CC19 N° (%)	CC23 N° (%)	CC1 N° (%)	CC10 N° (%)
	n = 38	n = 21	n = 20	n = 29	n = 26
fbsA	38 (100)	5 (24)	20 (100)	24 (83)	24 (92)
rovS	38 (100)	21 (100)	20 (100)	29 (100.0)	26 (100)
rogB	8 (21)	21 (100)	20 (100)	29 (100.0)	26 (100)
rgf	38 (100)	3 (14.3)	5 (25)	27 (93)	26 (100)

Tableau 11 – Prévalence du gène *fbsA* et de ses régulateurs au sein des principaux complexes clonaux (CC) de *Streptococcus agalactiae* (adapté de Al Safadi *et al.*, 2011).

RovS dans la pathogénicité de la bactérie. Aussi, RovS contrecarre l'effet d'un autre régulateur RogB, activateur du gène fbsA et régulé positivement mais de manière indirecte par RovS (Gutekunst et al., 2003; Samen et al., 2006). L'étude du gène rovS et de son produit ont par ailleurs montré que la protéine RovS jouait son rôle d'activateur et de répresseur en se fixant spécifiquement au niveau d'une séquence palindromique (AWAAWVHTDAW-N_{6/7}-WTKWWAMDWAK) située dans la région promotrice de ses différents gènes cibles (Samen et al., 2006). En 2004, Samen et ses collaborateurs ont également démontré, par l'utilisation de fusion rapportrice fbsA::lacZ, qu'une mutation dans le gène oppB du système de transport d'oligopeptides OppBCDF entrainait une diminution de 35% de l'expression du gène fbsA (Samen et al., 2004). Les auteurs ont alors proposé que l'expression du gène fbsA pourrait être dépendante d'une régulation de type QS, via l'implication de molécules de signalisation réimportées par le transporteur d'oligopeptides Opp. Plus récemment, un système à deux composants, appelé rgfBDAC, a également été décrit comme jouant un rôle sur l'expression du gène fbsA. La quantité de transcrits de rovS n'étant pas altérée dans un mutant ∆rgfAC, RovS et RgfBDAC semblent réguler de manière indépendante l'expression du gène fbsA (Al Safadi et al., 2011).

L'ensemble de ces études démontre la complexité d'un réseau de régulation bactérien où des activateurs (RogB, RftBDAC) et des répresseurs (RovS) sont finement impliqués dans le contrôle d'un facteur de pathogénicité. Néanmoins, la prévalence du gène *rovS* dans les divers complexes clonaux de *S. agalactiae* laisse présager un rôle majoritaire voir essentiel de ce régulateur au sein de ce réseau (Tableau 11).

2.3 Les protéines RggC et GadR : résistance au stress

2.3.1 La résistance au stress oxydatif chez Streptococcus thermophilus

Pour se défendre contre les dommages causés par le stress oxydatif, les streptocoques possèdent différentes enzymes telles que les superoxydes dismutases (Sod), les NADH oxydases, les peroxydases et les glutathions réductases. *S. thermophilus* est une bactérie anaérobie aérotolérante capable de se développer en présence d'oxygène et de survivre à de faibles concentrations en espèces réactives à l'oxygène (ROS, **r**eactive **o**xygen **s**pecies). Aussi, l'absence de peroxydase ou de catalase chez cette bactérie a suggéré l'existence d'un autre système de défense contre les effets délétères des ROS.

Afin de mieux appréhender le système de défense mis en place chez *S. thermophilus*, une collection de mutants obtenus par mutagénèse aléatoire (Thibessard *et al.*, 2002) a été

criblée vis-à-vis de leur sensibilité ou résistance au stress oxydatif (utilisant la ménadione comme agent oxydant). Ce criblage a permis de sélectionner 18 loci impliqués dans le comportement de *S. thermophilus* au stress oxydatif (Fernandez *et al.*, 2004; Thibessard *et al.*, 2004). Parmi les 8 loci présentant un phénotype de résistance, appelé *osr* (**O**xidative **s**tress **r**esistance), le gène *rggC*, codant un régulateur transcriptionnel de la famille des Rgg, a été caractérisé (Fernandez *et al.*, 2006) et son implication dans la résistance au stress oxydatif élargie à d'autres molécules oxydantes telles que le peroxyde d'hydrogène et le paraquat (Fernandez *et al.*, 2004). Aussi, RggC réprimerait l'expression des gènes impliqués dans le mécanisme de défense de la bactérie contre le stress oxydatif.

De manière plus précise, le gène rggC est composé de deux cadres ouverts de lecture $(rggC_1 \text{ et } rggC_2)$, tous deux ayant été décrits séparément comme impliqués dans la réponse au stress oxydatif (Fernandez *et al.*, 2006). Cependant, l'absence de RBS en amont de $rggC_2$ suggère que l'expression d'une protéine RggC pourrait être conditionnée par un mécanisme de « frameshift » programmé, impliquant un glissement du cadre de lecture généré par l'ARN polymérase au niveau d'un nonamère de thymine connu pour être instable (Fernandez *et al.*, 2006). Bien que cette étude décrive pour la première fois l'implication d'une protéine régulatrice Rgg dans la réponse au stress oxydatif, les cibles physiologiques contrôlées demeurent inconnues.

Plus récemment, l'implication de régulateurs transcriptionnels appartenant à la famille des Rgg a également été mise en évidence dans la réponse au stress oxydatif chez *S. pneumoniae* ainsi que dans la formation de biofilms et la virulence chez cette bactérie (Bortoni *et al.*, 2009). En effet, un mutant du gène *rgg* a été décrit comme plus sensible à l'oxygène et au paraquat et présente une capacité réduite à former des biofilms. De plus, les animaux infectés par ce mutant développent une septicémie plus tardivement que ceux infectés avec la souche sauvage.

2.3.2 Le système antiport glutamate/GABA chez Lactococcus lactis

L. lactis, microorganisme reconnu comme GRAS, est largement utilisé en industrie laitière pour ses capacités fermentaires conduisant à la production d'acide lactique et par conséquent à l'acidification de son environnement. Aussi, pour contrecarrer la baisse du pH et maintenir son pH intracellulaire, *L. lactis* met en œuvre différents système antiports couplant la décarboxylation d'un acide aminé (ou composé acide) à une consommation de protons présents dans le cytosol. Parmi ces systèmes, contribuant à l'homéostasie cellulaire, est décrite la décarboxylation du glutamate en GABA (Gamma-Aminobutiric acid, Acide gamma-aminobutyrique). Ce système antiport est codé sous la forme d'un opéron, *gadCB*,

Figure 33 – Organisation génétique des loci codant les voies de biosynthèse de la mutacine II, I et III chez *Streptococcus mutans* (d'après Qi *et al.*, 1999ab ; 2000).

Les couleurs utilisées indiquent les fonctions dans lesquelles les gènes sont impliqués : régulation, pre-pro-mutacine, modifications post-traductionnelles, processing, transport, immunité.

dont l'expression est dépendante de la quantité de glutamate et fonction du pH. Des analyses de Northern blot à partir d'une sonde localisée dans la partie 5' de *gadC*, ont néanmoins indiqué que le produit du gène *gadR*, localisé en amont de l'opéron *gadCB* et codant un régulateur de la famille des Rgg, était essentiel à l'expression des gènes *gadC* et *gadB*. De plus, l'expression de *gadR* a été démontrée, *via* l'utilisation de fusions transcriptionnelles, comme étant constitutive, c'est-à-dire non influencée par la quantité de glutamate présente dans le milieu et le pH de ce dernier. Enfin, l'identification d'une séquence répétée inversée de 21 pb dans la région promotrice de l'opéron *gadCB* a été suggérée comme site de liaison du régulateur à l'ADN (Sanders *et al.*, 1998).

2.4 Les protéines MutR et LasX : production de bactériocines

Les régulateurs Rgg ont été décrits comme intervenant dans la production de peptides antimicrobiens appelés bactériocines. Ces molécules, de par leur large spectre d'action, sont utilisées comme agents conservateurs dans les aliments inhibant ainsi le développement de bactéries indésirables.

2.4.1 La mutacine I, II et III chez Streptococcus mutans

Chez *S. mutans*, la production de bactériocines appelées « mutacines » est un facteur de virulence facilitant la dominance de cette espèce au sein de la plaque dentaire. Plusieurs mutacines, appartenant au groupe des lantibiotiques, ont été caractérisées chez cette bactérie ; on retrouve ainsi les mutacines I, II et III, synthétisées sous la forme de précurseurs subissant ensuite diverses maturations et/ou modifications post-traductionnelles. A titre d'exemple, la mutacine II est issue d'un précurseur de 53 acides aminés incluant une séquence signale contenant un motif double glycine reconnu lors du processus de maturation (Woodruff *et al.*, 1998).

L'étude des voies de biosynthèse de ces bactériocines a été entreprise par l'équipe de W. Caufield et F. Qi. De premiers travaux ont tout d'abord montré que la synthèse de la mutacine II était sous le contrôle d'un cluster de gènes composés de 7 cadres ouverts de lecture *mutRAMTFEG* (Figure 33). L'analyse de la séquence a par ailleurs révélé la présence de deux régions promotrices putatives en amont des gènes *mutR* et *mutA* et d'un terminateur de transcription entre ces deux gènes. Aucune région promotrice n'a été identifiée entre les autres gènes du locus dont les cadres ouverts de lecture se chevauchent (Chen *et al.*, 1999). Deux unités de transcription (opéron *mutR* et opéron *mutAMTFEG*) ont

Figure 34 – Représentation schématique des régions promotrices des gènes *mutA* et *mutR* impliqués dans la voie de biosynthèse de la mutacine II chez Streptococcus mutans (d'après Qi et al., 1999b).

Les régions répétées inversées identifiées (IR-1, IR-2 et IR-3) sont indiquées par les flèches et les régions répétées directes (DR I, DR II et DR III) par des encadrés.

Figure 35 – Modèle proposé pour le contrôle de l'expression de la mutacine I par LuxS chez *Streptococcus mutans* (Merritt *et al.*, 2005).

Les étapes du modèle validées expérimentalement apparaissent en noir.

ensuite été identifiées au sein du cluster (Qi *et al.*, 1999a). Le gène *mutR* étant un homologue du gène *rgg* chez *S. gordonii*, la protéine MutR a alors été proposé comme régulateur de l'opéron permettant la synthèse de la mutacine II. Cette hypothèse a ensuite été démontrée par extension d'amorces en analysant le taux de transcrits du gène *mutA* dans la souche sauvage et son mutant isogénique $\Delta mutR$ (Qi *et al.*, 1999a). Trois régions répétées inversées ont par ailleurs été identifiées dans la région promotrice du gène *mutA*. En revanche, aucune région répétée inversée ou répétée directe n'a été observée dans le cas de la région promotrice du gène *mutR*. Aussi, par la présence d'une région -10 étendue et l'absence de région -35, les auteurs ont suggéré une expression constitutive de ce dernier (Figure 34) (Qi *et al.*, 1999a).

D'autres études, portant cette fois-ci sur les voix de biosynthèse des mutacines I et III, ont montré la présence de clusters composés respectivement de 11 et 8 cadres ouverts de lectures (*mutRAA'BCDPTFEG* et *mutRAA'BCDPT*) (Figure 33). La comparaison des voix de biosynthèse de la mutacine I et III a révélé : (i) 99% de similitude au niveau de la séquence ADN comprenant la séquence du gène *mutR* et la région intergénique *mutR/mutA* (Qi *et al.*, 2000) et, (ii) 62% d'identité et 79% de similarité entre les protéines MutR des mutacines II et III (Qi *et al.*, 1999b). Ainsi, de par ces similarités de séquence et d'organisation génétique, MutR des mutacines I et III assurerait la même fonction que MutR de la mutacine II. Ceci a été validé *via* l'utilisation d'un système rapporteur pour la biosynthèse de la mutacine I (Kreth *et al.*, 2004). En effet, les auteurs ont montré que l'expression de la fusion *mutA::gusA* était abolie dans un mutant du gène *mutR* en comparaison à la souche sauvage. Enfin, MutR n'étant pas similaire aux autres régulateurs (de bactériocines) connus, il a été suggéré que les gènes de biosynthèse des mutacines aient été acquis par transfert horizontal à partir d'une autre espèce et que seulement le gène *rgg* pourrait avoir évolué au sein de l'espèce *S. mutans* (Qi *et al.*, 1999b).

Plus récemment, un mécanisme de régulation de type QS, décrit sur le locus de la mutacine I, a été mis en évidence suite à l'observation de l'induction du gène *mutA* à haute densité cellulaire. Ce système fait intervenir la protéine LuxS (impliquée dans la biosynthèse de l'autoinducteur 2) qui contrôle négativement l'expression d'un régulateur appelé lvrA (Inducible **r**epressor of **v**irulence), lui-même répresseur de MutR (Figure 35) (Merritt *et al.*, 2005). Ceci serait la deuxième démonstration d'une régulation de type QS contrôlant la synthèse d'une bactériocine chez *S. mutans*; la première contrôlant la synthèse de la mutacine IV (appartenant au groupe des non-lantibiotiques) *via* le système à deux composants ComCDE chez cette bactérie (Kreth *et al.*, 2005).

Figure 36 – Le locus de la lactocine S chez Lactobacilles sakei (d'après Skaugen et al., 2002 et Rawlinson et al., 2002).

(A) Organisation génétique de la voie de biosynthèse de la lactocine S. Les couleurs utilisées indiquent les fonctions dans lesquelles les gènes sont impliqués : régulation, pre-pro-mutacine, modifications post-traductionnelles, processing, transport, immunité, inconnue.

(B) Représentation schématique des régions promotrices des gènes *lasX* et *lasA*. Les régions répétées directes (DR I, DR II et DR III) et la séquence de 19 pb, nécessaire à la fixation du régulateur à l'ADN sont respectivement identifiées par des encadrés gris et rouge. L'utilisation de la couleur rouge fait référence au gène *lasX*, le bleu au gène *lasA*.

2.4.2 La lactocine S chez Lactobacillus sakei

Chez Lactobacillus sakei, la production de la lactocine S, peptide antimicrobien appartenant au groupe des lantibiotiques, a également été décrite dépendante d'un régulateur de la famille des Rgg dont la voie de biosynthèse, opéron lasA-W, est présentée dans la Figure 36A. A la différence des voies de biosynthèse décrites pour les lantibiotiques produits par S. mutans, l'opéron lasXY - nécessaire à la production de la lactocine S et localisé en amont de l'opéron lasA-W – est transcrit de manière divergente (Figure 36A). Aussi, des analyses de Northern blot n'ayant pas permis de révéler des transcrits lasA dans un mutant du gène lasX en comparaison à la souche sauvage, le produit du gène lasX (rgglike) a été décrit comme nécessaire à l'expression de l'opéron lasA-W (Skaugen et al., 2002). L'identification des démarrages de transcription a par ailleurs mis en évidence un chevauchement des régions promotrices des gènes lasX et lasA, et l'analyse de la région intergénique a révélé la présence de 3 séquences répétées directes heptanucléotidiques (Figure 36B) (Skaugen et al., 2002). Aussi, LasX pourrait être une protéine bifonctionnelle, activant la transcription de l'opéron lasA-W et réprimant la transcription de l'opéron lasXY. Cette hypothèse fut confirmée, en système hétérologue, par l'utilisation de fusions transcriptionnelles couplant les promoteurs P_{lasA-W} ou P_{lasXY} au gène gusA, codant une βglucuronidase chez Escherichia coli (Rawlinson et al., 2002). LasX fut alors le premier régulateur Rgg décrit comme réprimant l'expression de son propre gène. Enfin, des analyses de retards sur gel ont permis de déterminer une séquence de 19 pb considérée comme minimale pour la fixation du régulateur LasX à l'ADN. Cette séguence comprenant la deuxième séquence répétée directe souligne que cette dernière est requise pour l'activation de l'opéron lasA-W (Figure 36B) (Rawlinson et al., 2005).

2.5 Conclusion

Les protéines Rgg constituent une famille de régulateurs transcriptionnels contrôlant des fonctions biologiques variées chez les bactéries à Gram positif à bas GC%. Bien que la majorité des protéines Rgg semble être associée à un seul gène cible ou opéron proximal, certaines études indiquent qu'elles seraient également impliquées dans de grands réseaux de régulation et joueraient un rôle global chez plusieurs organismes. Ceci a été décrit pour RopB de *S. pyogenes* (Chaussee *et al.*, 2002), RovS de *S. agalactiae* (Samen *et al.*, 2006), Rgg de *S. suis* (Zheng *et al.*, 2011).

		* * *
lasA	109nt	TTTATCCCCCCTAAAATTTAATATATATCCCCTTTGCACTCAATATTAACATATAAATTTACCCTTAAAGTCAT
gtfG	30nt	$\underline{G} A A T T \underline{C} A A \underline{C} \underline{C} A \underline{C} A \underline{C} \underline{C} \underline{C} A \underline{C} \underline{C} \underline{C} A \underline{C} $
mutAII	52nt	GAAAAAATTTTAAAAAATTTCCGAATTTCTTAAAGTGGTAAAAGAGGTGGTAAACTGGTAAACTGGTAAACTGGTAAAAGAGAGAGGGTGGGTAAAAGAGGGGGGTAAAAGAGGGGGGGGGG
gadCB	65nt	GCTGTTGAGCTGTTGCTT T AAAGC A ACAG C TCAAAAGAGATTTTCTTTATTCTAGAGCA <u>TATACT</u> AGAGGGTGA
speB	695nt	$\underline{ATACGTTACGTGTGTGCCT} \underline{AATAC} \underline{A}CTAA \underline{C} \underline{A}AATAATGGGTTAGCAAAATAAGCAGC \underline{TATGAT} \underline{ATAGCC} \underline{A}TAA$
		-10 +1

Figure 37 – Alignement des régions promotrices de plusieurs gènes cibles de régulateurs Rgg (adapté de Rawlinson *et al.*, 2005).

Alignement des régions promotrices des gènes *lasA* de *Lactobacillus sakei*, *gtfG* de *Streptococcus gordonii*, *mutA* de *Streptococcus mutans*, de *gadCB* de *Lactococcus lactis* et de *speB* de *Streptococcus pyogenes*.

Les résidus conservés sont indiqués en rouge. En bleu sont soulignées les régions proposées ou décrites comme essentielles à l'activation des différents gènes cibles. La distance entre le +1 de transcription et l'ATG du gène est indiquée en amont de la séquence.

Les protéines Rgg présentent 32%⁴ d'homologie et partagent trois résidus conservés dans leur séquence : une glycine et une arginine localisées dans leur partie N-terminale et un tryptophane dans leur partie C-terminale. Ces trois résidus ont par ailleurs été décrits comme essentiels à l'activité régulatrice de la protéine RopB chez *S. pyogenes* (Loughman and Caparon, 2007b). Aussi, bien que le rôle de la glycine soit encore inconnu, les résidus arginine et tryptophane seraient respectivement impliqués dans la stabilité du complexe ADN/protéine et dans l'interaction protéines/protéines.

De par la présence de leur domaine HTH, les protéines Rgg sont capables de se lier à l'ADN. Leur capacité à fixer les régions promotrices de leurs gènes cibles a clairement été démontrée *in vitro* pour RopB, RovS et LasX. Cependant, aucun site de fixation de ces régulateurs n'est encore précisément identifié. Toutefois, l'alignement des régions promotrices des gènes cibles de plusieurs régulateurs Rgg a souligné l'existence d'un motif dégénéré (ayant probablement évolué au sein des différentes espèces) recoupant les différentes régions proposées ou décrites comme essentielles à l'activation de ces différents gènes cibles (Figure 37). Enfin, des structures secondaires au niveau de l'ARN semblent également jouer un rôle non négligeable à l'activation de certains gènes cibles.

Malgré un vaste répertoire couvrant plusieurs genres bactériens, les études les plus détaillées se limitent essentiellement aux streptocoques (pathogènes). Aussi, l'étude de ces protéines dans d'autres genres bactériens, tels que Listeria, pourrait contribuer à élargir et compléter les connaissances actuelles sur ces protéines. En effet, malgré quelques informations concernant les signaux environnementaux ou métaboliques auxquels répondent ces protéines, aucune voie de transduction du signal n'est à ce jour clairement définie. De plus, le mécanisme de régulation de la transcription des gènes par les régulateurs Rgg « stand-alones » semble être un phénomène complexe et variable entre les espèces. Aussi, l'identification de ces éléments de régulation permettrait potentiellement de révéler l'implication de ces régulateurs dans de nouvelles fonctions physiologiques.

3. Les protéines Rgg associées à de petits peptides hydrophobes

Bien que les protéines Rgg soient principalement étudiées en tant que régulateurs « stand-alones », l'analyse des génomes de streptocoques a récemment fait ressortir deux sous-familles de protéines Rgg associées à de petits peptides hydrophobes. Ces deux familles connues sous le nom de systèmes « SHP/Rgg » et « XIP/ComR » sont présentées dans cette partie.

⁴ Médiane calculée sur l'homologie de 13 paires de Rgg.

Figure 38 – Arbre phylogénétique des protéines Rgg chez les streptocoques (Ibrahim *et al.*, 2007b).

Les travaux portant sur les systèmes SHP/Rgg ont été réalisés au sein de l'équipe ComBac et les résultats qui en ont découlé ont été à la base de mon travail de thèse. Par ailleurs, ces travaux représentaient l'ensemble des données disponibles dans la littérature au démarrage de ma thèse. Les travaux caractérisant la famille de systèmes XIP/ComR ont quand à eux été publiés durant la première moitié de ma thèse.

3.1 Détection de petits gènes dans l'environnement proche de gènes rgg

L'identification et l'annotation des petits gènes est un problème récurant en bioinformatique. Aussi, de par l'importance de leur rôle dans différentes fonctions, une étude portant principalement sur les génomes des streptocoques séquencés a été conduite au laboratoire afin d'identifier de nouveaux petits gènes pouvant potentiellement coder des peptides impliqués dans un mécanisme de communication de type QS (Ibrahim *et al.*, 2007b). Sur la base de critères intrinsèques (composition nucléotidique de la séquence et présence d'un RBS) et extrinsèques (conservation de la séquence étudiée et/ou de l'environnement génétique), une liste de petits gènes putatifs (spCDS, **s**hort **p**utative **C**oding **D**NA **S**equence) a été définie. En moyenne, 39 spCDS ont été détectés par génome de streptocoques et l'expression de sept d'entre eux, chez *S. thermophilus*, confirmée par RT-PCR (Ibrahim *et al.*, 2007b).

En parallèle à ces résultats, l'analyse des contextes génétiques de ces spCDS a fait ressortir une famille de spCDS localisés en amont de gènes codant des régulateurs transcriptionnels Rgg et transcrits de manière divergente. Cette famille de spCDS transversale au genre des streptocoques code des petits peptides hydrophobes, appelés SHP (Short Hydrophobic Peptide), présentant une taille conservée allant de 20 à 23 acides aminés et caractérisés par une ou plusieurs charges positives en N-terminal (lysine), un domaine central hydrophobe présentant un glutamate (E) ou un aspartate (D) conservé et la présence d'une glycine en C-terminal. La construction d'un arbre phylogénétique des protéines Rgg chez les streptocoques a alors été entreprise afin de mieux définir les relations associant un gène *rgg* à une spCDS codant un SHP (Figure 38). Aussi, bien que tous les gènes *rgg* ne soient pas automatiquement associés à un gène *shp*, une coévolution des protéines Rgg avec ces petits peptides hydrophobes a pu être mise en évidence révélant ainsi l'existence de deux groupes de systèmes SHP/Rgg (Figure 38) (Ibrahim *et al.*, 2007b).

L'ensemble de ces résultats, couplé à la similarité des peptides SHP avec les antiphéromones de *E. faecalis* (chapitre 2, § 2.2.4), ont suggéré un rôle éventuel des protéines Rgg associées à ces petits peptides dans des phénomènes de type QS.

3.2 Un transporteur d'oligopeptides impliqué dans la réimportation de peptides phéromones chez les streptocoques

3.2.1 Hypothèse d'un nouveau mécanisme de QS : les systèmes SHP/Rgg

Dans la littérature, un seul mécanisme de QS contrôlant la production d'une bactériocine via un système à deux composants est décrit chez S. thermophilus (Fontaine et al., 2007). Aussi, en parallèle de l'approche bio-informatique et afin de mettre en évidence de nouveaux mécanismes de communication cellulaire de type QS chez S. thermophilus, la recherche de peptides phéromones dans les surnageants de cultures de cette bactérie a été entreprise au laboratoire. Les surnageants des souches LMD-9, CNRZ1066 et LMG18311 ont tout d'abord été analysés par RP-HPLC (Reverse-Phase High Performance Liquid Chromatography). Parmi les peptides identifiés, un seul spécifique de la souche LMD-9 et codé par le gène ster 1357 a été caractérisé (Ibrahim et al., 2007a). Ce peptide, nommé Pep1357C, est issu d'un clivage de son précurseur et présente une modification post-traductionnelle résultant d'une cyclisation entre une lysine et un tryptophane. L'analyse de l'environnement génétique sur le génome de S. thermophilus LMD-9 a révélé que le gène ster 1357 était localisé en aval d'un gène rgg (ster 1358) associé à une spCDS appartenant à la famille des SHP décrite précédemment. Aussi, (i) les régulateurs Rgg étant principalement décrits comme contrôlant l'expression de gènes cibles adjacents et, (ii) les peptides SHP présentant des caractéristiques avec les anti-phéromones de E. faecalis dont l'importation dans les cellules bactériennes nécessite l'intervention d'un transporteur d'oligopeptides (Opp); les surnageants de S. thermophilus LMD-9 wt et des mutants du système de transport d'oligopeptides (Δami), du gène rgg ($\Delta ster 1358$) et du gène shp (Δshp) ont été analysés par RP-HPLC (Ibrahim et al., 2007a). Le produit du gène ster_1357 ne fut pas détecté dans les surnageants de ces différents mutants (Ibrahim et al., 2007a). Ces résultats confirmés par RT-PCR ont alors permis de suggérer un nouveau mécanisme de communication cellulaire de type QS impliquant (i) le produit du gène shp jouant le rôle de phéromone, (ii) le transporteur d'oligopeptides Ami assurant le réimport de la phéromone à l'intérieur de la cellule et (iii) un régulateur transcriptionnel Rgg contrôlant l'expression de gène(s) cible(s), dans ce cas l'expression du gène ster 1357.

Figure 39 – Relations phylogénétiques basées sur l'ARN 16S et distribution du système ComCDE (et de ses paralogues) chez les streptocoques (adapté de Martin *et al.*, 2006). Les groupes phylogénétiques sont indiqués par l'attribution d'une couleur respective, le symbole « + » indique respectivement la transformabilité des espèces et la présence d'un système ComCDE dans le

génome des streptocoques, les cercles indiquent la présence de génomes séquencés « \bullet » ou en cours de séquençage « \bigcirc », le nombre de losanges indique le nombre de copies du gène *comX* identifié dans les génomes.

3.2.2 Le contrôle de la compétence au sein du groupe salivarius

Comme vu dans le chapitre 2 (§ 2.1.3) de cette introduction bibliographique, les streptocoques du groupe mitis et anginosus contrôlent l'expression d'un facteur sigma alternatif, ComX, nécessaire à l'expression des gènes tardifs de compétence, *via* le système à deux composants ComCDE. Ce système a par ailleurs été décrit comme absent des génomes de streptocoques séquencés issus des groupes salivarius, pyogenes et bovis, bien que le régulon ComX soit présent chez ces derniers (Figure 39) (Martin *et al.*, 2006).

En 2006, la surexpression de ComX chez *S. thermophilus* a permis de restaurer la compétence chez cette bactérie (Blomqvist *et al.*, 2006b). Ces résultats ont alors suggéré que la régulation de la compétence, sous-entendue du gène *comX*, avait été perdue chez cette bactérie ou plus probablement que celle-ci était dépendante d'un autre système de régulation. Aussi, qu'en était-il du/des éventuel(s) système(s) qui régule(nt) la compétence au sein des différents groupes de streptocoques (salivarius, pyogenes et bovis) décrits comme non naturellement compétents ?

Afin d'identifier par une approche globale des cibles des systèmes de QS qui sont contrôlés par des peptides réimportés, une approche protéomique (couplant gel 1D et LC-MS/MS) permettant de comparer le protéome d'une souche sauvage et mutée au niveau du système de transport d'oligopeptides (*Aami*) a été entreprise chez S. thermophilus LMD-9, à partir de cultures réalisées en milieu chimiquement défini (MCD) sans peptide (Gardan et al., 2009). Parmi le pool de données, sept protéines (dont ComX) décrites comme essentielles pour le déclanchement de la compétence n'ont pas été détectées dans les protéomes issus du mutant du système de transport. Ces résultats validés par RT-PCR sur certains gènes de compétence sélectionnés (comX, recA, dprA et comGA) ont clairement démontré l'implication du transporteur d'oligopeptides dans le déclenchement de ce phénomène (Gardan et al., 2009). Par ailleurs, les auteurs ont étudié le déclenchement de la compétence en MCD dépourvu de peptide. La souche sauvage de S. thermophilus s'est révélée être naturellement compétente dans ces conditions de croissance, en comparaison de son mutant isogénique ∆ami. Au même titre que S. pneumoniae, la compétence s'est également avérée être un phénomène transitoire chez S. thermophilus, se produisant en début de phase exponentielle de croissance (Gardan et al., 2009). L'ensemble de ces résultats a alors suggéré que le déclenchement de la compétence chez S. thermophilus pouvait être assuré par un mécanisme de réimport de peptides via le système de transport d'oligopeptides Ami.

Peu de temps après et à partir des résultats d'une approche transcriptomique, le régulateur contrôlant l'expression de ComX chez *S. thermophilus* a été identifié. Ce

régulateur codé par le gène *ster_0316* a été décrit comme appartenant à la famille des Rgg (Fontaine *et al.*, 2010a). Aussi, sur la base des résultats décrits chez Ibrahim *et al.* (2007a,b), associant un régulateur Rgg à un petit peptide hydrophobe SHP, la présence d'une spCDS a été recherchée dans l'environnement proche du gène *ster_0316*. Une petite ORF localisée en aval, codant un petit peptide de 24 acides aminés, a alors été identifiée. Afin de démontrer le rôle de ces deux partenaires (régulateur Rgg et petit peptide) dans le déclenchement des gènes précoces de compétence, des fusions transcriptionnelles couplant le promoteur du gène *comX* à un système rapporteur (*luxAB*) ont été construites et leur activité mesurée dans différents mutants de *S. thermophilus* délétés du gène *rgg* (*ster_0316*), de la petite ORF ou du système de transport Ami (témoin négatif). L'absence d'activité du promoteur P_{comX} dans ces trois mutants a alors démontré l'essentialité du gène *rgg* et de la petite ORF (en plus du transporteur d'oligopeptides, précédemment décrit) pour le déclenchement de la compétence chez *S. thermophilus* (Fontaine *et al.*, 2010a).

L'identification de la forme mature du petit peptide de 24 acides aminés fut ensuite entreprise afin de savoir si celui-ci correspondait à la molécule de signalisation induisant le déclenchement de la compétence. En effet, si tel est le cas, ce peptide est supposé être maturé, sécrété et réimporté dans la cellule. Aussi, l'extrémité C-terminal du peptide fut synthétisée (7 à 10 aa). L'ajout des peptides synthétiques dans les surnageants de culture du mutant de la petite ORF contenant la fusion transcriptionnelle P_{comX}::luxAB dans son génome a alors permis de restaurer l'activité du promoteur P_{comX}, bien que celle-ci reste inférieure au niveau sauvage (Fontaine et al., 2010a). En revanche, aucune complémentation n'a été observée avec le mutant du système de transport Ami. L'utilisation d'une banque de peptides synthétiques dérivant d'un précurseur a par ailleurs permis de définir une taille minimale nécessaire à l'activité du peptide et correspondant à un heptapeptide. De plus, la présence des deux résidus côté C-terminal du précurseur a été décrite comme essentielle à l'activité du peptide (Fontaine et al., 2010a). Sur la base de ces résultats, les gènes codant le régulateur rgg et la petite ORF ont respectivement été appelés comR pour « Competence regulator » et comS pour « Competence signal » (Fontaine et al., 2010a). Enfin, l'analyse des régions promotrices des gènes précoces identifiés par transcriptomique a fait ressortir une région répétée inversée conservée appelée Ecombox (5'-TAGTGACATNTATGTCACTA-3'). Cette région a également été identifiée dans la région promotrice des gènes comS et comX (Fontaine et al., 2010a). L'ensemble de ces résultats a alors permis de proposer un système de QS, similaire a celui exposé pour les systèmes SHP/Rgg, où la phéromone ComS est importée à l'intérieur de la cellule par le système Ami où elle interagirait avec le régulateur ComR (Rgg-like) pour la régulation des gènes cibles impliqués dans le contrôle de la compétence. La fonctionnalité de ce système semble par

ailleurs effective chez *S. salivarius* où un locus orthologue a pu être identifié (Fontaine *et al.*, 2010a). Aussi qu'en était-il des groupes pyogenes et bovis ?

3.2.3 <u>Le contrôle de la compétence chez les streptocoques du groupe pyogenes et bovis :</u> les systèmes XIP/ComR

A partir de l'analyse des régions promotrices des gènes *comX* (ou *sigX*), présents au sein des groupes pyogénique et bovis, Mashburn-Warren et ses collaborateurs ont pu mettre en évidence un motif conservé (5'-AACATGGACAN₄TGTCACTGTT-3') différent de celui décrit au sein du groupe salivarius (EcomBox). Aussi, afin d'identifier d'autres cibles putatives pouvant contribuer au déclenchement de la compétence (gènes précoces), la recherche de ce motif dans les génomes des streptocoques (tout groupe confondu) a été entreprise. Les résultats ont alors indiqué la présence de ce motif dans les génomes des streptocoques des groupes pyogénique et bovis ainsi que chez *S. mutans*, au niveau de la région promotrice d'un gène homologue au gène *comR* caractérisé chez *S. thermophilus*. Ces résultats ont alors suggéré que le système ComRS décrit chez *S. thermophilus* et impliquant un transporteur d'oligopeptides pouvait également être fonctionnel au sein d'autres groupes de streptocoques – ne présentant pas de système ComCDE dans leur génome – tels que pyogenes et bovis. De plus, ils ont également souligné une possible accumulation des deux systèmes impliqués dans le contrôle des gènes précoces de compétence – ComCDE et ComRS – chez *S. mutans* (Mashburn-Warren *et al.*, 2010).

Afin de conforter leurs hypothèses, les auteurs ont alors recherché la présence de spCDS dans l'environnement aval des gènes codant une protéine homologue à ComR. Ils ont ainsi identifié une nouvelle famille de petits peptides hydrophobes qu'ils ont caractérisé par la présence d'une charge globale positive et d'un motif double tryptophane en C-terminal (Mashburn-Warren *et al.*, 2010). Ensuite, en utilisant la même stratégie que celle développée par Fontaine *et al.* (fusions transcriptionnelles, complémentation et calcul du nombre de transformants dans différents mutants), les auteurs ont étudié la fonctionnalité de ces systèmes chez *S. mutans*, seul streptocoque pour lequel les conditions de croissance nécessaires au déclenchement de la compétence sont connues. Ils ont ainsi (i) démontré l'essentialité du produit du gène homologue à *comR*, du petit peptide codé par la petite ORF et du système de transport Opp pour l'expression du gène *comX*, (ii) démontré le rôle du petit peptide en tant que molécule de signalisation et (iii) proposé, à l'aide de peptides synthétiques, une forme mature possible de ce dernier (correspondant à un heptapeptide) pouvant être généré suite à un clivage côté C-terminal du précurseur et présentant le motif double tryptophane dans sa séquence (Mashburn-Warren *et al.*, 2010). Ils ont alors nommé

Figure 40 – Représentation schématique des systèmes SHP/Rgg et XIP/ComR chez *Streptococcus thermophilus* LMD-9.

Les étapes validées dans ce modèle sont indiquées par la présence de flèches noires. Les mécanismes sont détaillés dans le texte.

la forme mature du peptide codé par le gène *comS* « XIP » pour *sigX*-inducing **p**eptide. Par ailleurs, les auteurs ont également décrit un rôle central de ce système pour le déclenchement de la compétence chez cette bactérie qui contient également le système ComCDE dans son génome. Enfin, ils ont démontré que ces deux systèmes fonctionneraient en tandem ; le système ComCDE agissant en amont de ComRS. Néanmoins, les éléments de régulation liant ces deux systèmes restent à ce jour inconnus (Mashburn-Warren *et al.*, 2010).

3.3 Conclusion

Sur la base de ces études et en regard des protéines Rgg « stand-alones », certaines protéines Rgg semblent être capables de répondre à des molécules de signalisation et ainsi participer à la mise en place de mécanismes de QS chez les streptocoques. L'ensemble des résultats présenté dans cette partie est résumé dans la Figure 40.

Les systèmes ComRS ou XIP/ComR ont clairement été décrits comme impliqués dans la compétence de certains groupes de streptocoques considérés jusqu'alors comme non transformables. Néanmoins, il n'en reste pas moins vrai que les conditions de transformation naturelle restent inconnues pour les groupes pyogenes et bovis. Par ailleurs, bien que les petits peptides hydrophobes ComS/XIP aient été décrits comme étant les phéromones nécessaires à l'activation de ces systèmes, l'utilisation de peptides synthétiques n'a pas permis de définir précisément la forme mature de ces phéromones. De plus, bien que ces phéromones semblent influencer l'état d'activation du régulateur ComR, leur interaction directe reste cependant à démontrer. Il en est de même concernant la régulation du gène *comX* par ComR *via* la fixation de ce dernier sur le motif ADN identifié. Enfin, l'identification de motifs de fixation différents de ceux décrits pour les protéines Rgg « stand-alones », présume d'une évolution de ces systèmes au sein de la famille des Rgg. La formation de structures secondaires au niveau de l'ARN semble cependant être un caractère conservé.

Objectifs du travail de thèse

Chez les bactéries à Gram positif, les études portant sur la communication cellulaire de type QS ont longtemps été focalisées sur les bactéries modèles (*e.g. B. subtilis*) ou pathogènes (*e.g. S. aureus*) dû à l'implication de ce mécanisme dans le contrôle de l'expression de gènes liés à la virulence. *A contrario*, peu d'études sur des bactéries d'intérêt industriel, telles que les bactéries lactiques, sont disponibles dans la littérature. Aussi, au laboratoire, une thématique s'est développée autour de l'étude des interactions bactériennes de type QS chez *S. thermophilus*.

Dans ce contexte de recherche, les travaux de thèse de P. Garault ont tout d'abord montré que le système de transport d'oligopeptides (Opp), appelé Ami chez S. thermophilus, ne semblait pas être impliqué uniquement dans la nutrition azotée. En effet, une différence de croissance entre la souche sauvage et un mutant du système de transport Δopp a pu être observée en milieu MCD sans peptide (Garault et al., 2002). Par spectrométrie de masse, il a ensuite été montré que le système de transport Opp intervient dans la réimportation de peptides allant de 3 à 23 résidus et pouvant présenter la particularité d'être hydrophobes (Garault et al., 2002). Ces résultats ont alors suggéré un rôle de ce transporteur dans des phénomènes de signalisation de type QS chez S. thermophilus. Dans un deuxième temps, les travaux de thèse de M. Ibrahim, ont alors consisté à mettre en évidence et identifier des peptides « phéromones » chez S. thermophilus. Pour ceci, deux approches complémentaires ont été développées : une analyse in silico, permettant de détecter la présence de petits gènes dans les génomes des streptocoques et une analyse biochimique, consistant à analyser le pool de peptides présents dans les surnageants de culture de S. thermophilus en MCD. Alors que la première approche a permis - via la détection d'une nouvelle famille de petits gènes - d'identifier une nouvelle organisation génétique codant un petit peptide hydrophobe SHP (short hydrophobic peptide) et un régulateur transcriptionnel appartenant à la famille des Rgg ; la seconde a quant-à-elle mis en évidence la production d'un peptide cyclique secrété appelé Pep1357C sous la dépendance d'un système SHP/Rgg et du système de transport Ami.

L'ensemble de ces résultats a alors permis de suggérer un nouveau mécanisme de communication cellulaire de type QS impliquant (i) le produit du gène *shp* jouant le rôle de phéromone, (ii) le transporteur d'oligopeptides Ami assurant l'import de la phéromone à l'intérieur de la cellule et (iii) un régulateur transcriptionnel Rgg contrôlant l'expression d'un gène cible, *ster_1357*.

Mes objectifs de thèse consistaient alors :

- 1) A valider le modèle de QS proposé sur le locus *shp/ster_1358* de *S. thermophilus* LMD-9.
- A étudier de manière globale les systèmes SHP/Rgg présents dans la quasi-totalité des streptocoques.
- A identifier les cibles des systèmes SHP/Rgg afin de mieux appréhender les fonctions qu'ils contrôlent.

Résultats

Figure 41 – Représentation schématique des différentes étapes intervenant dans un mécanisme de quorum-sensing.

(1) Sécrétion de la phéromone ; (2) Détection de la phéromone à une concentration seuil ; (3) Réimportation de la phéromone par le transporteur d'oligopeptides ; (4) Interaction de la phéromone avec le régulateur transcriptionnel ; (5) Fixation du régulateur transcriptionnel à l'ADN.

Chapitre 1 : Implication des protéines Rgg dans des phénomènes de quorum-sensing

Article I : « Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism is streptococci. »

1. Introduction et résultats préliminaires

En 1992, Sulavik et ses collaborateurs ont montré que l'expression du gène *gtfG*, codant une glucosyltransférase chez *S. gordonii*, était contrôlée positivement par le produit du gène adjacent et localisé en amont. En référence à la fonction du gène contrôlé, cet activateur a été appelé Rgg pour **R**egulator **g**ene of **g**lucosyltransferase (Sulavik *et al.*, 1992). Depuis, de nombreuses protéines similaires ont été identifiées et constituent aujourd'hui une famille de protéines régulatrices à part entière contrôlant l'expression de gène(s), proximaux et/ou distaux, impliqués dans un grand nombre de fonctions biologiques chez les bactéries à Gram positif (Bortoni *et al.*, 2009; Chaussee *et al.*, 2003; Dmitriev *et al.*, 2006; Fernandez *et al.*, 2006; Lyon *et al.*, 1998; Pulliainen *et al.*, 2008; Rawlinson *et al.*, 2002; Samen *et al.*, 2006; Sulavik *et al.*, 1992; Zheng *et al.*, 2011). A ce jour, les protéines Rgg sont principalement étudiées chez les streptocoques et malgré la connaissance de certains stimuli environnementaux nécessaires à l'expression de leurs cibles (pH, source de carbone par exemple), les mécanismes de transduction de ces signaux restent indéfinis.

En 2007, l'identification au laboratoire d'une nouvelle organisation génétique – spécifique des streptocoques – codant un petit peptide hydrophobe SHP et un régulateur transcriptionnel appartenant à la famille des Rgg a permis de suggérer un rôle de ces régulateurs dans des phénomènes de QS (Ibrahim *et al.*, 2007a; Ibrahim *et al.*, 2007b). A mon arrivée au laboratoire, l'objectif était de démontrer l'implication de ces régulateurs dans un nouveau mécanisme de QS où le gène *shp* coderait un peptide phéromone qui serait maturé, sécrété puis réimporté dans la cellule (*via* un système de transport d'oligopeptides Ami) où il interagirait avec le régulateur Rgg permettant ainsi la régulation de gène(s) cible(s). Des travaux permettant de conclure sur la fonctionnalité des systèmes SHP/Rgg dans des phénomènes de QS chez les streptocoques ont alors été entrepris sur la base du locus *shp/rgg1358* de *S. thermophilus* LMD-9, locus contrôlant l'expression d'un gène cible *ster 1357* codant un peptide cyclique secrété appelé Pep1357C (Ibrahim *et al.*,

Figure 42 – Comparaison du niveau d'expression des promoteurs des gènes *shp1358* et *ster_1357*.

Bioluminescence (RLU/DO₆₀₀, Relative Light Unit) émise par les fusions *blp*::P*shp1358-luxAB* (A) et *blp*::P*ster_1357-luxAB* (B) dans un contexte sauvage (—) et mutant (Δ *shp*) (\blacktriangle) de *Streptococcus thermophilus* LMD-9.

2007a). La stratégie utilisée a consisté en la caractérisation de l'ensemble des étapes décrivant un mécanisme de QS, à savoir : la sécrétion, la détection à une concentration seuil et la réimportation de la phéromone à l'intérieur de la cellule par le transporteur d'oligopeptides AmiCDEF, son interaction avec la protéine régulatrice Rgg et enfin la fixation de cette dernière à l'ADN (Figure 41).

Afin de valider les quatre premières étapes du mécanisme (Figure 41), une approche génétique a tout d'abord été développée. Cette approche met en œuvre l'utilisation de fusions transcriptionnelles couplant le promoteur d'un gène d'intérêt (cible du système) au système rapporteur *luxAB* d'une bactérie luminescente. Ces fusions sont intégrées par double recombinaison homologue au locus *blp* de différents mutants de *S. thermophilus* LMD-9 grâce à l'utilisation d'un plasmide à origine de réplication thermosensible (pGICB004). Elles permettent de suivre par bioluminescence l'activité d'un promoteur sous des conditions précises.

Aussi, l'étude de la régulation de l'expression du gène *shp* du locus *shp/rgg1358* de *S. thermophilus* LMD-9 ayant permis d'identifier ce dernier en tant que cible du système, deux gènes cibles étaient alors disponibles pour cette étude (*shp1358* et *ster_1357*). Le choix du promoteur d'intérêt à utiliser a donc été soulevé. L'activité des promoteurs des gènes *shp1358* et *ster_1357* a alors été mesurée dans un contexte sauvage et mutant (Δshp) (Figure 42). Les résultats obtenus ont tout d'abord confirmé que l'activité des deux promoteurs était abolie dans un mutant Δshp . De plus, l'activité de la fusion avec le promoteur P_{*shp1358*} présentait un niveau de bioluminescence trois fois plus important que celui détecté avec le promoteur P_{*ster_1357*}. Nous avons donc choisi d'utiliser la fusion avec le promoteur P_{*shp1358*} pour valider le système de régulation décrit sur le locus *shp/rgg1358* de *S. thermophilus* LMD-9.

Dans un second temps, les techniques de SPR et de retard sur gel ont été utilisées afin d'étudier les deux dernières étapes du mécanisme.

En parallèle à ce travail expérimental, un arbre phylogénétique des protéines Rgg et Rgg-like chez les bactéries à Gram positif, a également été construit dans le but (i) de mettre à jour la liste des loci *shp/rgg* présents dans les génomes séquencés (en octobre 2010), (ii) de conforter leur spécificité au groupe des streptocoques et, (iii) de différencier deux systèmes de QS décrit chez les streptocoques (SHP/Rgg et XIP/ComR) impliquant des petits peptides hydrophobes associés à des protéines régulatrices Rgg ou Rgg-like.

L'ensemble des résultats a fait l'objet d'une publication et est présenté dans l'article 1.

67

2. Article 1

<u>Title:</u> Rgg proteins associated with internalized small hydrophobic peptides: a new quorumsensing mechanism in streptococci.

Running title: SHP/Rgg quorum-sensing mechanism in streptococci.

Fleuchot B.^{1,2}, Gitton C.^{1,2}, Guillot A.^{1,2}, Vidic J.³, Nicolas P.⁴, Besset C.^{1,2}, Fontaine L.⁵, Hols P.⁵, Leblond-Bourget N.⁶, Monnet V.^{1,2}, Gardan R.^{1,2*}

¹INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France.

²AgroParistech, UMR MICALIS, F-78352 Jouy en Josas, France.

³INRA, UR892 Virologie Immunologie Moléculaire, F-78352 Jouy en Josas, France.

⁴INRA, UR1077 Mathématique, Informatique et Génome, F-78352 Jouy en Josas, France.
 ⁵Université catholique de Louvain, Unité de Génétique, B-1348 Louvain-la-Neuve, Belgium.
 ⁶INRA, UMR1128, IFR110, Nancy-Université, Laboratoire de Génétique et Microbiologie, BP239, 54506 Vandœuvre-lès-Nancy, France.

* Corresponding author:

E-mail: rozenn.gardan@jouy.inra.fr / Tel: 33-1-34-65-27-70 / Fax: 33-1-34-65-21-63.

<u>Key words:</u> streptococci, quorum-sensing, RNPP family, Rgg, ComR, hydrophobic peptide, oligopeptide transporter.

Supplementary data:

Annexe 1: Table S1 - Rgg-like proteins associated or not with SHP or XIP hydrophobic peptides in Gram positive bacteria.

Annexe 2: Fig. S1 – The triggering of the expression of the shp gene is a consequence of the presence of the SHP1358₍₁₅₋₂₃₎ pheromone in the culture medium and not of the transition from the exponential growth phase to the stationary phase.

Article publié dans Molecular Microbiology en 2011, volume 80, pages 1102-1119.

Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci

B. Fleuchot,^{1,2} C. Gitton,^{1,2} A. Guillot,^{1,2} J. Vidic,³ P. Nicolas,⁴ C. Besset,^{1,2} L. Fontaine,⁵ P. Hols,⁵ N. Leblond-Bourget,⁶ V. Monnet^{1,2} and R. Gardan^{1,2*} ¹INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France. ²AgroParistech, UMR MICALIS, F-78352 Jouy en Josas, France ³INRA, UR892 Virologie Immunologie Moléculaire, F-78352 Jouy en Josas, France. ⁴INRA, UR1077 Mathématique, Informatique et Génome, F-78352 Jouy en Josas, France. ⁵Université catholique de Louvain, Unité de Biochimie et Génétique Moléculaire Bactérienne, B-1348 Louvain-la-Neuve, Belaium, ⁶INRA, UMR1128, IFR110, Nancy-Université, Laboratoire de Génétique et Microbiologie, BP239,

54506 Vandœuvre-lès-Nancy, France.

Summary

We identified a genetic context encoding a transcriptional regulator of the Rgg family and a small hydrophobic peptide (SHP) in nearly all streptococci and suggested that it may be involved in a new quorumsensing mechanism, with SHP playing the role of a pheromone. Here, we provide further support for this hypothesis by constructing a phylogenetic tree of the Rgg and Rgg-like proteins from Gram-positive bacteria and by studying the shp/rgg1358 locus of Streptococcus thermophilus LMD-9. We identified the shp1358 gene as a target of Rgg1358, and used it to confirm the existence of the steps of a guorumsensing mechanism including secretion, maturation and reimportation of the pheromone into the cell. We used surface plasmon resonance to demonstrate interaction between the pheromone and the regulatory protein and performed electrophoretic mobility shift assays to assess binding of the transcriptional regulator to the promoter regions of its target genes. The active form of the pheromone was identified by mass spectrometry. Our findings demonstrate that the shp/rgg1358 locus encodes two components of a

Accepted 10 March, 2011. *For correspondence. E-mail rozenn. gardan@jouy.inra.fr; Tel. (+33) 1 34 65 27 70; Fax (+33) 1 34 65 21 63.

© 2011 Blackwell Publishing Ltd

novel quorum-sensing mechanism involving a transcriptional regulator of the Rgg family and a SHP pheromone that is detected and reimported into the cell by the Ami oligopeptide transporter.

Introduction

Quorum-sensing (QS) is a cell–cell communication mechanism in bacteria that controls gene expression via secreted signalling molecules, also called autoinducers or pheromones. Despite differences in the chemical nature of the signalling molecules between Gram-positive and Gram-negative bacteria (Bassler, 2002; Waters and Bassler, 2005; Antunes *et al.*, 2010), QS is triggered by a similar circuit in the two groups. First, the signalling molecule is released into the extracellular environment by active or passive transport; it accumulates in the extracellular environment and once at a threshold concentration is detected by a sensor protein. This sensing leads cells to modulate gene expression in a co-ordinated manner in the bacterial population.

There are two general activation pathways for Grampositive QS (Williams et al., 2007). The signal molecule, which is a peptide, can be sensed outside the cell by the histidine kinase of a two component system. Detection of the peptide leads to phosphorylation or dephosphorylation of the histidine kinase and then of a specific cytoplasmic transcriptional regulator. This phosphorylation state modifies the ability of the response regulator to bind DNA, modulating its ability to activate or repress the transcription of its target gene(s). This mechanism has been described in detail for many systems, including triggering of competence for natural transformation in Streptococcus pneumoniae and Bacillus subtilis (for reviews see Claverys and Håvarstein, 2002; Claverys et al., 2006) and control of the agr locus in Staphylococcus aureus inducing the regulation of accessory virulence genes (Novick and Geisinger, 2008). The second activation pathway involves sensing the signalling molecule inside the cell after its internalization by an oligopeptide permease transport system called Opp or Ami, member of the ubiguitous ATP-binding cassette superfamily (ABC transporters) (Linton and Higgins, 2007). Once internalized, the pheromone interacts with a transcriptional regulator or a Rap protein, both belonging to the RNPP family (for Rap,

NprR, PlcR and PrgX), thereby modifying their activity and consequently the expression of their target gene(s) (Declerck *et al.*, 2007; Rocha-Estrada *et al.*, 2010). Three groups of relevant peptides have been described in detail: (i) Rap-associated Phr peptides in *B. subtilis* involved in the control of sporulation, competence, and production of degradative enzymes and antibiotics (Pottathil and Lazazzera, 2003), (ii) peptides involved in the control of plasmid transfer in *Enterococcus faecalis* that interact with PrgX or PrgX-like proteins (Dunny, 2007) and (iii) PlcR-associated PapR peptides involved in triggering virulence of *cereus* group bacteria (Slamti and Lereclus, 2002; Bouillaut *et al.*, 2008).

Rgg proteins are described as stand-alone transcriptional regulators in low-GC Gram-positive bacteria. They are composed of a N-terminal Helix-Turn-Helix DNAbinding domain belonging to the xenobiotic regulatory element family (PFAM01381) and a conserved C-terminal domain (Rgg-Cterm, TIGR01716). They are involved in several physiological functions such as: (i) expression of glucosyltransferases in Streptococcus gordonii (Sulavik et al., 1992; Vickerman and Minick, 2002) and in Streptococcus oralis (Fujiwara et al., 2000), (ii) regulation of the gene encoding the secreted cysteine proteinase virulence factor (SpeB) in Streptococcus pyogenes (Lyon et al., 1998; Chaussee et al., 1999; Neely et al., 2003; Dmitriev et al., 2006; Loughman and Caparon, 2007), (iii) the stress response in Lactococcus lactis (Sanders et al., 1998), Streptococcus thermophilus (Fernandez et al., 2006), S. pyogenes (Pulliainen et al., 2008) or S. pneumoniae (Bortoni et al., 2009), (iv) bacteriocin production in Streptococcus mutans (Qi et al., 1999) and Lactobacillus sakei (Rawlinson et al., 2002; Skaugen et al., 2002) and (v) regulation of genes involved in the pathogenicity of Streptococcus agalactiae (Chaussee et al., 2002; 2003; Samen et al., 2006). Although some Rgg proteins seem to be associated with a single target gene, they may also serve as global regulators in some organisms (Chaussee et al., 2002; Samen et al., 2006; Zheng et al., 2011). In general, the regulatory mechanisms of gene transcription by stand-alone Rgg proteins are complex. Although the environmental stimuli for the expression of some targets of Rgg regulators are known, the signal transduction processes have still to be discovered. Furthermore, most of the Rgg proteins annotated in genomes have not been studied.

We previously identified, by *in silico* analyses, a subcluster of Rgg regulators defined by the association of pairs of genes transcribed divergently. These pairs of genes, widespread only in the *Streptococcus* genus, combine a gene encoding a transcriptional regulator of the Rgg family with another gene encoding a small hydrophobic peptide called *shp*. One or two copies of such genetic contexts have been found in nearly all streptococci genomes, including S. pneumoniae, S. pyogenes and S. agalactiae, and up to seven copies have been found in S. thermophilus (Ibrahim et al., 2007a). We have studied one of these shp/rgg loci, named shp/rgg1358, in S. thermophilus LMD-9 and identified one target gene of the encoded Rgg regulator. This target gene, called ster_1357, encodes a secreted cyclic peptide and its expression is positively controlled by Rgg1358 and indirectly by SHP1358 and the Ami oligopeptide transporter (Ibrahim et al., 2007b). These findings led us to investigate whether the Rgg protein and a small hydrophobic peptide (SHP) reimported pheromone are components of a novel QS regulatory system. Recently, another group of signalling peptides, associated with Rgg-like proteins named ComR, has been identified. These peptides are named ComS or XIP and are involved in triggering competence for transformation in S. thermophilus, S. salivarius and S. mutans and probably in other streptococci belonging to the pyogenic and bovis group (Gardan et al., 2009; Fontaine et al., 2010; Mashburn-Warren et al., 2010).

In this study, we started by constructing a phylogenetic tree of the Rgg and Rgg-like proteins found in Grampositive bacteria to compare the respective distributions of SHP-associated Rgg with the XIP-associated ComR regulators. Then, we tested the function of the shp/rgg subcluster as a QS mechanism by studying the shp/ rgg1358 locus of S. thermophilus LMD-9. We identified another Rgg1358 target gene (shp1358) and used it to confirm the existence of the first steps of a QS mechanism: (i) secretion of the putative SHP pheromone, (ii) maturation of the pheromone, (iii) detection of the pheromone at a cell density threshold and (iv) reimportation of the pheromone into the cell by the Ami oligopeptide transporter. Surface plasmon resonance (SPR) analyses demonstrated that the pheromone interacts with the transcriptional regulator Rgg1358. Electrophoretic mobility shift assays (EMSA) revealed that the Rgg1358 binds to the promoter regions of target genes. Thus, this comprehensive survey of SHP-associated regulators combined with the study of the *shp/rgg1358* locus of *S. thermophilus* LMD-9 provides evidence of a novel QS mechanism: it involves a Rgg transcriptional regulator associated with a SHP pheromone detected and reimported into the cell by the Ami oligopeptide transporter.

Results

SHP-associated Rgg are phylogenetically distinct from the XIP-associated ComR regulators

Using genome sequences for 19 streptococci, we previously identified the SHP-associated Rgg as a subfamily of Rgg regulators (Ibrahim *et al.*, 2007a). Since then,

Fig. 1. Distribution of SHP/Rgg and XIP/ComR systems in the repertoire of Rgg and Rgg-like proteins. The evolutionary relationships between the protein sequences of Rgg and Rgg-like proteins are summarized in the phylogenetic tree shown at the centre of the figure. Each leaf corresponds to a Rgg or Rgg-like protein and the presence of SHP (\Box) and XIP (\bigcirc) peptides at the corresponding locus is indicated. Internal branches supported by at least 80% of the bootstrap replicates are represented in black, other branches are shown in gray. Genera in which the loci are found are indicated using a different colour and a different radius length for each genus according to the correspondence code reported in the figure. The asterisk and the arrow indicate the first locus and the direction ordering all the loci in Table S1, where details are provided.

numerous genomes have been deposited in the databases. Moreover, another subfamily of Rgg-like regulators, ComR, also working with a peptide, ComS or XIP, imported by an oligopeptide transporter has been discovered (Fontaine *et al.*, 2010; Mashburn-Warren *et al.*, 2010). We therefore updated our list of SHP-associated Rgg and investigated their place in the repertoire of the Rgg and Rgg-like proteins. In particular we compared them with the XIP-associated ComR proteins.

Rgg proteins are only found in the order of *Lactobacillales* and the family *Listeriaceae* for which 90 complete genome sequences are available. We identified 484 sequences corresponding to Rgg proteins *sensu largo*, including all XIP-associated ComR proteins previously identified (Fontaine *et al.*, 2010; Mashburn-Warren *et al.*, 2010). Rgg regulators were found in all the genomes considered except the two *Lactobacillus salivarius* isolates. To map SHP and XIP peptides, the GenBank CDS annotation was complemented by predicting short CDSs with our software SHOW as described by Ibrahim *et al.* (2007a). Putative CDSs with length between 10 and 50 aa and adjacent to the 484 *rgg* genes were retrieved and screened manually to identify exhaustively all SHP and XIP peptides. The sequence of the 12 SHP (Ibrahim *et al.*, 2007a) and 10 XIP (Mashburn-Warren *et al.*, 2010) identified in complete genome sequences and already published were used to define the selection criteria as described in the *Experimental procedures* section. We recovered 61 SHP and 27 XIP. As a result of some redundancy between strains, only 22 and 12 unique amino acid sequences of SHP and XIP, respectively, were identified; they included 10 new SHP sequences and two new XIP.

The 484 sequences were further used to construct a phylogenetic tree in which SHP-associated Rgg and XIP-associated ComR were highlighted (Fig. 1). The complete list of Rgg and Rgg-like proteins and the sequences and

positions of the SHP and XIP peptides is provided in Table S1. This analysis confirmed that both SHPassociated Rgg and XIP-associated ComR are specific to the streptococci family. Although they share similarities, they form two different branches of the phylogenetic tree indicating that they correspond to two distinct subfamilies of Rgg regulators. Furthermore, the tree distinguished between the two groups of SHP-associated Rgg previously identified, i.e. groups I and II, which again correlated well with the presence of a conserved aspartate or glutamate respectively (Ibrahim et al., 2007a). We found no exception in group I and only one SHP (in six strains of Streptococcus suis) with a conserved aspartate associated with a Rgg belonging to group II. In this new phylogenetic tree, the two SHP previously described as unclassified because of the absence of conserved aspartate or glutamate residue clustered with group I Rgg proteins. Finally, detailed examination of the Rgg proteins in close vicinity to the SHP-associated Rgg revealed another group (group III) of seven peptides with amino acid sequences that fulfil the SHP definition but that are encoded by genes overlapping the end of the rgg genes in a convergent orientation. One is in S. thermophilus strain LMD-9 and the others are from six (of nine studied) strains of S. pneumoniae.

To confirm the function of the *shp/rgg* subcluster as a component of a QS mechanism, we investigated the *shp/rgg1358* locus of *S. thermophilus* LMD-9.

The expression of the shp1358 *gene is controlled by Rgg1358, SHP1358 and, AmiCDEF in* S. thermophilus *LMD-9*

The shp/rgg1358 locus of S. thermophilus LMD-9 is composed of *shp1358* and *rgg1358*, two genes divergently transcribed with overlapping putative promoters. We studied the expression of the shp1358 gene suspected to encode a pheromone (Ibrahim et al., 2007b). The production of most such pheromones is auto-regulated, so we constructed a P_{shp1358}-luxAB transcriptional fusion and used it to transform the LMD-9 strain and several mutants deleted for the rgg1358, shp1358 or ami genes. The luciferase activity of the P_{shp1358}-luxAB fusion was 80 RLU/OD₆₀₀ in the LMD-9 strain but only 6 and 3 RLU/OD₆₀₀ in the $\Delta rgg1358$ and $\Delta shp1358$ mutants respectively; no activity was detected in the amiCDE::spec mutant (Fig. 2A). Therefore, the shp1358 gene is a target of the Rgg1358 regulator, and the shp1358 gene product is implicated in its own transcription. The Ami transporter is also involved in the positive control of the transcription of the shp1358 gene, most probably by an indirect mechanism. The P_{shp1358}-luxAB fusion was then used to investigate all steps of the QS mechanism involving SHP1358 and Rgg1358.

The small hydrophobic peptide SHP1358 is the precursor of a secreted pheromone of nine amino acids

In our QS model, SHP1358 is proposed to be the precursor of the pheromone. We tested whether, like other pheromones in these systems, SHP1358 is secreted. Supernatants from cultures of strains producing or not producing the SHP1358 peptide (strain LMD-9 and its △shp1358 mutant, respectively) were mixed with pellets of cells of a strain containing a P_{shp1358}-luxAB fusion and deleted for the shp1358 gene (TIL 1200, named the 'reporter strain' hereafter). The expression of the shp1358 promoter was then tested (Fig. 2B). The expression of the shp1358 promoter in the reporter strain was not activated by the supernatant from the $\Delta shp1358$ mutant, whereas the supernatant from strain LMD-9 induced its activity (55 RLU/OD₆₀₀). This demonstrates functional complementation of the cells of the reporter strain by the supernatant of the LMD-9 strain possibly through secretion of the product of the shp1358 gene.

To determine the amino acid sequence of the active form of the secreted pheromone, the supernatant from strain LMD-9 was analysed by mass spectrometry (LC-MS/MS) and compared with that from strain $\Delta shp1358$ (data not shown). Only one mass, not detected in the supernatant of strain $\Delta shp1358$, was identical to the mass of a fragment of SHP1358. This mass corresponds to a highly hydrophobic nonapeptide with the amino acid sequence EGIIVIVVG. This form is the putative product of a C-terminal cleavage of the 23 amino acid peptide precursor. This sequence was validated by fragmentation followed by an analysis on the LTQ orbitrap (Fig. 3).

A synthetic peptide corresponding to this nine amino acid sequence was produced and added at different concentrations to cultures of the reporter strain. Functional complementation by the synthetic peptide was observed and was correlated with its concentration in the medium (Fig. 2C). These results demonstrate and identify one active secreted peptide, hereafter called SHP1358₍₁₅₋₂₃₎, derived from the SHP1358 precursor.

A critical biomass is required to activate the expression of the shp1358 gene

Quorum-sensing mechanisms involve signalling molecules reaching a threshold concentration to trigger the expression of their target gene(s) (Winzer *et al.*, 2002; Podbielski and Kreikemeyer, 2004; Siehnel *et al.*, 2010), and signalling molecule concentration correlates with cell density. To check whether this applies to the SHP/ Rgg1358 system, the expression of the *shp1358* promoter was measured in cultures of strain LMD-9 containing the $P_{shp1358}$ -*luxAB* fusion inoculated at different concentrations (Fig. 2D). In all cultures, irrespective of

Fig. 2. Growth and luciferase activities of strains containing a $P_{shp1356}$ -luxAB fusion in various genetic background and growth conditions. Growth curves (OD₆₀₀) are presented in gray and luciferase activities (RLU/OD₆₀₀) in black. Growth and luciferase activity of strains containing the *shp1358*-luxAB gene fusion: A, in the LMD-9 (\bullet), $\Delta shp1358$ (\blacktriangle), $\Delta rgg1358$ (\ast) and amiCDE::spec (\diamond) genetic background; B, in the $\Delta shp1358$ genetic background after adding the supernatant from cultures of strain LMD-9 at OD₆₀₀ 0.6 (\bullet) or the $\Delta shp1358$ mutant (\blacktriangle); C, in the $\Delta shp1358$ genetic background after adding the supernatant from cultures of strain LMD-9 at OD₆₀₀ 0.6 (\bullet) or the $\Delta shp1358$ mutant (\bigstar); C, in the $\Delta shp1358$ genetic background after adding the synthetic SHP1358₍₁₅₋₂₃₎ pheromone at various concentrations: 25 ng ml⁻¹ (-), 250 ng ml⁻¹ (\bullet) and 2500 ng ml⁻¹ (\bigstar); D, in the LMD-9 background inoculated at various concentrations: OD₆₀₀ 0.012 (-), OD₆₀₀ 0.025 (\blacksquare), $\Delta miA1 \Delta shp1358$ (\bigstar), *amiA3::erm* $\Delta shp1358$ (\bullet) and $\Delta amiA1 amiA3::erm$ $\Delta shp1358$ (\bigstar) genetic background after adding the supernatant from cultures of strains concentrations: OD₆₀₀ 0.012 (-), OD₆₀₀ 0.055 (\bigstar) genetic background and in cocultures with strain LMD-9 serving as a SHP1358 supplier; F, in the $\Delta shp1358$ (\bigstar) mutant. Data shown are representative of three independent experiments.

initial cell density, a similar maximum of luciferase activity was observed (approximately 80 RLU/OD₆₀₀). However, the higher the initial cell density, the earlier the expression of the luciferase activity was triggered and its maximum reached.

To check that this effect was the result of the presence of the SHP1358 $_{(15-23)}$ pheromone at a sufficient concen-

tration, and not of the transition from exponential growth to stationary phase, we inoculated media with strain LMD-9 containing the $P_{shp1356}$ -luxAB fusion at a low cell density and added or did not add synthetic SHP1358₍₁₅₋₂₃₎ at the beginning of the exponential phase. The addition of SHP1358₍₁₅₋₂₃₎ was sufficient to trigger the expression of the *shp1358* gene, independent of the growth phase of

Fig. 3. The product of the *shp1358* gene is the precursor of a 9 amino acid secreted peptide. Fragmentation spectrum of the ion m/z 898.56, leading to the validation of the sequence of the putative mature form of the SHP1358 pheromone detected in the LMD-9 supernatant.

the culture (Fig. S1). These findings are consistent with a QS mechanism.

The lipoprotein AmiA3 detects the SHP1358₍₁₅₋₂₃₎ pheromone before its reimportation by the oligopeptide transporter, AmiCDEF

Oligopeptide permease transporters can be divided in two functional entities: a detection entity composed of oligopeptide binding proteins allowing the capture of the target substrate (AmiA1 and AmiA3 in the strain LMD-9) and a transport entity allowing the import of the substrate into the cell (AmiCDEF in the strain LMD-9). The expression of the shp1358 gene is abolished in an amiCDE::spec mutant and also in a *AamiA1 amiA3::erm* mutant (data not shown). Therefore, it is plausible that the Ami transporter is involved in the reimportation of the SHP1358(15-23) pheromone into the cell. To confirm this, we introduced the Pshp1358-luxAB transcriptional fusion into various Aami mutants, also deleted for the shp1358 gene: *AamiA1* amiA3::erm Ashp1358 blp::P_{shp1358}-luxAB to confirm the role of the Ami transporter in the reimportation of the pheromone, *AamiA1 Ashp1358 blp*::P_{shp1358}-luxAB and amiA3::erm Ashp1358 blp::Pshp1358-luxAB to study, respectively, the activity of the AmiA3 and AmiA1 oligopeptide binding proteins. The reporter strain, TIL 1200, was also used as a positive control of luciferase activity. These four strains were then cocultivated with strain LMD-9, providing SHP1358(15-23) to the medium, and luciferase activity was followed (Fig. 2E). The luciferase activity of the positive coculture control increased to 28 RLU/OD₆₀₀ whereas there was no detectable activity in the LMD-9/∆amiA1 amiA3::erm \Deltashp1358 blp::Pshp1358-luxAB coculture. Therefore, the SHP1358(15-23) pheromone provided by the LMD-9 strain was not sensed or imported by the cells lacking the oligopeptide binding proteins of the Ami transport system, but was by the *ami* wild type. Two different levels of luciferase activity were obtained for the cocultures of LMD-9 with single oligopeptide binding protein mutants. The luciferase activity of the LMD-9/ Δ *amiA1* Δ *shp1358 blp*::P_{*shp1358-luxAB* coculture was similar to that of the LMD-9/*amiA3::erm* Δ *shp1358 blp*::P_{*shp1358-luxAB* coculture was half that of the positive control coculture. Therefore, detection of the SHP1358₍₁₅₋₂₃₎ pheromone mainly requires the AmiA3 oligopeptide binding protein.}}

The membrane peptidase Eep is involved in the SHP1358 maturation process

The Eep protease plays a key role in the maturation of various pheromones and anti-pheromones of E. faecalis (An et al., 1999) and S. gordonii (Vickerman et al., 2010). The presence of an *eep*-like gene in the *S. thermophilus* LMD-9 genome and some similarities between the antipheromone of E. faecalis and the SHP1358 pheromone (sequences of approximately 23 amino acids, presence of lysine in the N-terminal part and high hydrophobicity) led us to investigate the involvement of this protease in the SHP1358 maturation process. Eep proteases also contribute to the cleavage of the peptide signal of some lipoproteins (An and Clewell, 2002; Denham et al., 2008). As the oligopeptide binding proteins of the Ami transporter are lipoproteins, we hypothesized that they may be matured by the Eep protease and therefore tested their functionality in a *deep* mutant. The toxicity of the aminopterin peptide for the *deep* strain was compared with that for the wild-type strain and the $\Delta amiCDE$ strain. The tox-

Fig. 4. Interaction profile between the His-tagged Rgg1358 protein and the SHP1358₍₁₅₋₂₃₎ pheromone. Sensorgram of immobilized SHP1358₍₁₅₋₂₃₎ pheromone and the regulatory protein Rgg1358 (signal 1) obtained after injection of 5 μ M of the purified His-tagged Rgg1358 protein over 2 min, at a flow of 25 μ I min⁻¹ in 20 mM HBS. Two controls were performed in the same conditions to test the interaction of the purified His-tagged Rgg1358 protein with immobilized ComS peptide of *S. thermophilus* (signal 2), and the interaction of bovine serum albumin with the immobilized SHP1358₍₁₅₋₂₃₎ pheromone (signal 3). The sensorgrams observed were corrected by subtracting the results with the reference surface (ethanolamine).

icity of the aminopterin peptide for the Δeep strain was intermediate between that for strain LMD-9 (sensitive) and the ami mutant (resistant) (data not shown), suggesting that the functionality of the Ami transporter is probably partially impaired in the *deep* mutant. Consequently, a $\Delta amiCDE$ mutant, rather than the wild-type strain, was used as a positive control for the following experiment. A replicative plasmid containing the shp1358 gene under the control of a constitutive promoter was introduced into the *Deep* and *DamiCDE* strains, leading to strains TIL 1206 and TIL 1213 respectively. The effects of culture supernatants from both these strains were then tested on reporter strain (TIL 1200) cell pellets (Fig. 2F). The luciferase activity of the reporter strain was tenfold lower with supernatant from TIL 1206 than with supernatant from TIL 1213, indicating that the extracellular concentration of the pheromone is lower in TIL 1206 cultures than in TIL 1213 cultures. The endopeptidase Eep is therefore involved in the SHP1358 maturation process.

The SHP1358₍₁₅₋₂₃₎ pheromone interacts with the Rgg1358 regulatory protein

We used SPR analyses to investigate whether the SHP1358₍₁₅₋₂₃₎ pheromone binds the regulatory protein Rgg1358. The interaction between chip-immobilized SHP1358₍₁₅₋₂₃₎ (898 Da) and purified His-tagged Rgg1358 protein (at 5 μ M) gave a high SPR signal response corresponding to approximately 3700 RU (Fig. 4, signal 1), under the flow condition tested. Moreover, very little dissociation was observed, suggesting a high affinity between these two partners. In contrast, when purified

Rgg1358 protein was injected over another immobilized small hydrophobic peptide (IAILPYFAGCL, ComS of *S. thermophilus* LMD-9) in similar conditions, no signal response was obtained (Fig. 4, signal 2). The specificity of the binding was confirmed by replacing the regulatory protein Rgg1358 by BSA (Fig. 4, signal 3). These SPR analyses demonstrate that SHP1358₍₁₅₋₂₃₎ and Rgg1358 specifically interact with each other.

Rgg1358 binds the promoter regions of shp1358 and ster_1357 genes

Electrophoretic mobility shift assays were carried out to test for interactions between the Rgg1358 regulatory protein and DNA fragments of promoter regions of the two known target genes, shp1358 and ster_1357. To design relevant DNA probes, we mapped the transcriptional start site of both genes and identified putative -10 promoter sequences (Fig. 5A). A conserved motif - GCA-WATATGGGAATA - of 15 nt was found 25 nt upstream from the -10 motif of the shp1358 and ster_1357 genes. This motif differs from that described for PIcR, PrgX and ComR regulators (Fig. 5B). DNA probes centred on the conserved motif were amplified by PCR. Nine pg of each labelled probe was mixed with purified recombinant His-tagged Rgg1358 protein and analysed by EMSA. The recombinant Rgg1358 protein bound specifically to the shp1358 and ster_1357 probes and the intensity of the shift increased with increasing concentration of the Rgg1358 (data not shown). In parallel, the binding to these two probes of the Rgg1358 protein mixed with the SHP1358(15-23) pheromone was also tested. In this case,

Fig. 5. Comparison of the DNA-binding site of the RNPP and RNPP-like proteins.

A, Nucleotide sequences of promoter regions of the genes *shp1358* and *ster_1357* of *S. thermophilus* strain LMD-9. Transcriptional start sites are indicated with \forall symbol and the start codon with >>>. The putative binding site for the Rgg1358 protein is boxed and putative –10 sequences are underlined. B, DNA-binding sites for PICR (Lereclus *et al.*, 1996; Agaisse *et al.*, 1999), PrgX (Bae *et al.*, 2002) and ComR (Mashburn-Warren *et al.*, 2010) transcriptional regulators.

to prevent peptide-dependent binding being missed because of a possible excess of Rgg1358 protein, an intermediate Rgg1358 protein concentration (at 70 nM) was used; this concentration did not allow a complete shift of the shp1358 and ster 1357 probes (Fig. 6A, lanes 1 and 2). The experiments were performed as described above in the presence of 27.8 nM, 278 nM and 2.78 µM, of the synthetic SHP1358(15-23) pheromone (corresponding to 25, 250 and 2500 ng ml⁻¹, respectively). DNA shifts were observed for the shp1358 and ster_1357 probes (Fig. 6A, lanes 3 to 5) but the presence of the pheromone did not appear to influence the binding of the Rgg1358 protein to DNA. For all experiments, the *ldh* probe was used as negative control (Fig. 6A, lanes 6 and 7). These experiments show that Rgg1358 binds sequences found in the shp1358 and ster_1357 gene promoters and that the presence of the pheromone does not seem to be required for binding. To confirm this novel result, a Prgg1358-luxAB fusion was constructed and used to transform strain LMD-9 and mutants deleted for the rgg1358 or shp1358 genes. The maximal expression of the rgg1358 promoter was the same in the wild-type strain background and the △shp1358 mutant (70 RLU/OD₆₀₀) but was twofold higher in the $\Delta rgg1358$ mutant (130 RLU/OD₆₀₀) (Fig. 6B). This indicates that the Rgg1358 protein is a repressor for the transcription of its own gene with or without the SHP1358(15-23) pheromone. This repressor effect is most probably direct. Indeed, the DNA-binding motif recognized by the Rgg1358 protein in the promoter region of the shp1358 gene is located 16 nt upstream from the ATG of the rgg1358 gene and consequently in its promoter region. These findings are in good agreement with the EMSA results and suggest that the Rgg1358 protein does not require the presence of pheromone to bind DNA.

Discussion

Here, we demonstrate the existence of, and describe, a QS mechanism involving a Rgg transcriptional regulator encoded by the rgg1358 gene and a small hydrophobic peptide called SHP1358 (summarized in Fig. 7). We show that the triggering of the mechanism is biomassdependent and relies on the presence, in the extracellular medium, of the mature form of the shp1358 gene product, SHP1358(15-23), which is released by a C-terminal cleavage of the SHP1358 precursor. SHP1358(15-23) is most probably the pheromone of this QS mechanism. However, we can not completely exclude the possibility that it is an intermediate precursor to a more active species, or that there are other minor derivatives involved. The maturation of the SHP1358 precursor involves the transmembrane endopeptidase Eep. The capture of the pheromone from the extracellular medium appears to be performed mainly by one of the two oligopeptide binding proteins of the AmiCDEF oligopeptide transporter, AmiA3. Following the reimportation of SHP1358(15-23), it interacts with the regulatory protein Rgg1358. This interaction probably changes the Rgg1358 protein to an activated state, resulting in, at least, upregulation of the expression of the genes shp1358 and ster_1357. The effect of the interaction remains unclear, but we suggest that it may involve a change of either conformation or oligomerization. At a low cell density, the Rgg1358 regulator may already be bound to its recognition sequences upstream from the promoters of the genes shp1358 and ster_1357 but in an inactive form.

Further study of two steps of this mechanism would be particularly interesting. First, the secretion mechanism responsible for the export of SHP pheromones is unknown. As the SHP sequences are similar to signal sequences, it is difficult to predict whether or not they use

Fig. 6. Analysis of the Rgg1358 binding to DNA. A. DNA binding of the His-tagged Rgg1358 protein to promoter regions of the two target genes of the SHP/Rgg1358 system, *ster_1357* and *shp1358*, with or without the addition of the synthetic SHP1358₍₁₅₋₂₃₎ pheromone. The *ldh* probe is an *ldh* promoter fragment used as a negative control. B. Growth and luciferase activity of strains containing the *rgg1358-luxAB* gene fusion in the LMD-9 (•), $\Delta shp1358$ (**▲**) and $\Delta rgg1358$ (*****) genetic backgrounds. Growth curves (OD₆₀₀) are presented in gray and luciferase activities (RLU/OD₆₀₀) in black. Data shown are representative of three independent experiments.

the Sec machinery, need specific transporter(s) or insert into the cytoplasmic membrane to be exported. Second, the details of the roles of the two oligopeptide binding proteins are unclear. The oligopeptide binding protein AmiA3 is also the major actor for the capture and the sensing of the signalling peptide ComS (Gardan *et al.*, 2009; Fontaine *et al.*, 2010). The *amiA1* gene is the first gene of the *ami* operon whereas the *amiA3* gene is transcribed independently, and is separated from the *ami* operon by an insertion sequence. It would be of interest to determine if AmiA1 is more dedicated to nutritional function and if AmiA3 is largely responsible for the transport of pheromones into the cell as a result of a higher affinity for these hydrophobic peptides; alternatively, the presence of larger amounts of AmiA3 may be responsible for its dominant role.

This QS mechanism, involving a signalling peptide that is detected in the intracellular medium and imported by an oligopeptide transporter, has similarities with those described for the peptide-associated transcriptional requlators of the RNPP family. This family includes the PapR/ PlcR and the NprX/NprR activators and the cCF10-iCF10/ PrgX repressor (Declerck et al., 2007). Only the QS mechanisms involving PIcR and PrgX have been studied in detail: the role of the peptide in the control of the activation state of their cognate regulator has been revealed by structural studies (Shi et al., 2005; Declerck et al., 2007). PSI-BLAST analyses indicate amino acid sequence similarities between various Rgg proteins (MutR of S. mutans and RggD of S. gordonii) and the transcriptional regulators PIcR and PrgX, throughout the protein (Declerck et al., 2007). Like PlcR and PrgX, Rgg proteins have a Helix-Turn-Helix domain of the xenobiotic regulatory element family, which allows their binding to DNA (Neely et al., 2003; Vickerman et al., 2003; Rawlinson et al., 2005; Samen et al., 2006). We demonstrate such binding in this study. Rgg-associated peptides, like the anti-pheromone peptides from E. faecalis, resemble signal sequences and, like the pheromone and antipheromones, SHP1358 is matured by the endopeptidase Eep (An et al., 1999; An and Clewell, 2002). Rggassociated peptides are not similar to the PapR peptide, which is longer and in which the presence of a pro-peptide leader upstream from the mature form of the peptide indicates that it is probably exported and matured by the Sec machinery. A common feature of the RNPP regulators is the presence of tetratricopeptide repeat (TPRs) domains in their C-terminal part that are involved in protein/protein or protein/peptide interactions (Goebl and Yanagida, 1991). TPRpred software (Karpenahalli et al., 2007) failed to identify such domains in the Rgg proteins. However, the TPR domains of the PrgX repressor were only discovered after structural analysis (Shi et al., 2005). Consequently, structural analyses, involving for example crystallography experiments, are required to determine whether or not the Rgg regulatory proteins contain TPR domains. We therefore propose that the SHP-associated Rgg are new members of the RNPP family. Indeed, SHP/ Rgg systems have also some specific features. By searching the complete genome sequences of streptococci, we retrieved 68 SHP representing 28 different amino acid sequences. Among the various peptides asso-

Fig. 7. Schematic representation of the SHP/Rgg1358 quorum-sensing mechanism of *S. thermophilus* LMD-9. The quorum-sensing signal is encoded by the *shp1358* gene. The pheromone, a small hydrophobic peptide called SHP1358₍₁₅₋₂₃₎ (EGIIVIVVG), is produced by C-terminal cleavage of a 23 amino acid peptide precursor, a process that involves the endopeptidase Eep localized in the membrane. At high cell density, the secreted SHP1358₍₁₅₋₂₃₎ is sensed by the lipoprotein AmiA3 and reimported into the cell by the AmiCDEF transporter. Intracellular SHP1358₍₁₅₋₂₃₎ then interacts with the regulatory protein Rgg1358. The effect of the interaction is unknown but binding of the SHP1358₍₁₅₋₂₃₎/Rgg1358 complex to the promoter region of the two target genes, *shp1358* and *ster_1357*, leads to the activation of their transcription. At low cell density, we hypothesize that the SHP1358₍₁₅₋₂₃₎ is present in a negligible amount and the Rgg1358 protein is bound alone to the promoter region of *shp1358* and *ster_1357* in an inactivated state that does not allow their transcription.

ciated with regulators of the RNPP family, SHPs constitute the largest group. They have one conserved aspartate or glutamate residue in their C-terminal part, possibly important for the maturation step and nearly always a conserved glycine residue at the end of their sequence. The DNA recognition sequence also seems to be specific with no similarities to the inverted repeat sequences recognized by PICR or PrgX (Fig. 5B). Similar sequences have been found upstream from 80 % of *shp* genes belonging in *S. thermophilus* and other streptococci (e.g. B. Fleuchot, unpublished) and has the particularity of not being palindromic. Finally, our *in vitro* and genetic experiments demonstrate that SHP1358₍₁₅₋₂₃₎ interacts with the transcriptional regulator Rgg1358 but that it is probably not necessary for the binding of the Rgg1358 protein to DNA. In *B. cereus*, PapR pheromone binding to the PIcR activator leads to its multimerization, which is essential for its binding to the PIcR box and therefore for the regulation of the PIcR regulon (Slamti and Lereclus, 2002; Declerck *et al.*, 2007). In *E. faecalis*, the situation is more complex. Indeed, although PrgX is able to bind DNA without the absence of its associated pheromones (Bae *et al.*, 2002), their interaction is essential to regulate the expression of the target genes. The binding of the cCF10 sex pheromone to the PrgX repressor modifies its tetrameric conformation to become two dimers with less affinity for DNA, leading to the opening of a DNA loop and allowing access of the RNA polymerase to the target *prgQ* promoter. In contrast, the binding of iCF10 neutralizes the cCF10 pheromone activity and favours the return to the tetrameric form of PrgX (Shi *et al.*, 2005; Dunny, 2007). Further experiments are needed to determine if the SHP1358₍₁₅₋₂₃₎ pheromone influences the oligomerization state of the Rgg1358 protein, and if this is the cause of the activation of the Rgg1358 regulator, independently of its binding capacity. However, these results indicate that this QS mechanism involving Rgg regulators differs from those described for PIcR and PrgX.

The regulation of competence in S. thermophilus LMD-9 is controlled by a Rgg-like protein (ComR) associated with a hydrophobic pheromone (ComS) reimported into the cell by the Ami oligopeptide transporter (Gardan et al., 2009; Fontaine et al., 2010). Mashburn-Warren et al. (2010) showed that comS/comR orthologues are also present in the genomes of S. mutans and in pyogenic and bovis streptococci. Moreover, they found results in S. mutans similar to those in S. thermophilus: (i) a deletion of comR, comS or of subunits of the oligopeptide transporter abolish transformability, (ii) ComR controls the transcription of the gene encoding the alternative sigma factor, SigX, itself involved in the control of the transcription of the genes encoding the DNA uptake and recombination machinery and (iii) extracellular addition of a synthetic peptide derived from the ComS precursor induces development of competence. The comS orthologues encode peptides, named XIP, which are 17 to 32 amino acids long and contain a conserved double-tryptophan in their C-terminal part (except in the case of S. thermophilus). The ComR regulators have similarity with both Rgg and PlcR proteins, and their predicted structures have similarities with the crystal structure of PlcR. These various observations led the authors to propose that XIP-associated ComR regulators are new members of the RNPP family. Although we agree with this, we think that SHP/Rgg and XIP/ ComR pairs are distinct branches of the RNPP family for the following reasons: first, our phylogenetic analysis of the Rgg and Rgg-like proteins clearly shows that SHPassociated Rgg and XIP-associated ComR cluster in different parts of the tree and that the two families of SHP and XIP peptides differ in terms of their amino acid sequences and their conserved amino acids; second, their predicted DNA recognition sequences are not similar; and finally, the shp and rgg genes are in all cases transcribed in opposite directions whereas the comS genes all map downstream from the comR genes and in the same orientation. This last point has an incidence on the SHP/Rgg mechanism. Where the shp gene is located upstream from the rgg gene and divergently transcribed. Rgg can simultaneously be the repressor of its own gene and the activator of the shp gene. This potentially prevents the system from becoming over-active or overexpressed. For the new SHP/Rgg group described in this study (group III, in which the *shp* gene is downstream from the *rgg* gene and convergently transcribed), the 3' ends of the two genes always overlap. This genetic configuration may also have consequences for the regulation of the system.

To facilitate discrimination between these small ComS/ XIP hydrophobic peptides and the SHP we describe herein, we propose to restrict the use of the acronym SHP to small hydrophobic peptides with a conserved aspartate or glutamate residue about nine amino acids before the C-ter end of the sequence, encoded by a gene that is not transcribed in the same orientation as the *rgg* gene.

Another important issue is the range of physiological functions controlled by these systems. The discovery of 68 SHP/Rgg systems suggests a QS mechanism that is widespread in the streptococci family. Unlike XIP/ComR systems that all seem to control the transcription of at least the *sigX* gene and consequently the triggering of the competence state in different species of streptococci, the targets controlled by the SHP/Rgg systems are not obvious. For the SHP/Rgg1358 QS mechanism described here, one target, ster_1357, encoding a cyclic secreted peptide called Pep1357C was identified. This gene, mapping downstream from the rgg1358 gene, is followed by two genes encoding a protein belonging to the S-adenosylmethionine radical enzyme family and an efflux transporter; it has been suggested that the proteins encoded by these two genes are responsible for the maturation and the secretion of Pep1357C outside the cell (Ibrahim et al., 2007b). A nearly identical locus including the shp/rgg genes has been found in a recently sequenced Streptococcus mitis strain (SK564). We found a small number of homologous genes i.e. encoding a peptide, a S-adenosylmethionine radical enzyme and an exporter downstream from SHP-associated Rgg, in various streptococci species. Four similar genetic structures in B. subtilis and more recently in Bacillus thuringiensis have been studied. None of them are close to genes encoding Rgg proteins (Zheng et al., 2000; Brede et al., 2004; Butcher et al., 2007; Rea et al., 2010). All these loci encode modified peptides with antimicrobial activities. We therefore tested Pep1357C for bactericidal and bacteriostatic activity against several strains and species but no bacterial growth inhibition or killing effects were detected in the conditions tested.

Finally, it would also be interesting to explore other pathways linked to this QS mechanism. For example, *shp/rgg* loci are present in multicopy in streptococci, so it would be interesting to test for cross-activation within cells, or between strains or species. Any such interspecies interaction would be highly relevant to the study of various natural ecosystems, particularly for example the human oral microbiome where several species of streptococci live together (Dewhirst *et al.*, 2010). Another level of complexity is brought by the presence of other RNPP systems in the same strain. Elucidating how the bacteria manage this plethoric repertoire of peptides and how it could be manipulated would be potentially valuable.

Experimental procedures

Phylogenetic analysis of the Rgg family

A preliminary PSI-BLAST search, against the non-redundant NCBI database, detected protein sequences with statistically significant similarity to Rgg regulators only in the order of Lactobacillales and the family Listeriaceae. We thus conducted a comparative analysis of the Rgg and Rgg-like repertoire in the genomes belonging to these two taxonomic groups. The analysis included a total of 90 complete genome sequences corresponding to all the sequenced isolates available in Genome Reviews release 125 (05-OCT-2010). This list includes representatives of eight genera: Streptococcus (48 genome sequences), Lactobacillus (22), Listeria (9), Lactococcus (5), Leuconostoc (3), Enterococcus (1), Oenococcus (1) and Pediococcus (1). Three prev representative of the three types of SHP/Rgg systems described in Ibrahim et al. (2007a) (stu.0182 in S. thermophilus LMG18311, smu.1509 in S. mutans UA159 and gbs1555 in S. agalactiae NEM316) were used to retrieve an exhaustive list of Rgg and Rgg-like proteins. Hits accounting for a least 80% of the length of one prey were collected after three iterations with PSI-BLAST (*E*-value \leq 0.001). The sequences were aligned with muscle (default parameters) and a maximum-likelihood phylogenetic tree was constructed with phyml (JTT model of protein evolution, gamma distributed rate of evolution, 4 discrete categories of sites). The statistical support for each branch was quantified by analysing 200 bootstrap replicates. The tree was drawn in R using the library 'ape' (Paradis et al., 2004). Rgg-associated SHP or XIP peptides were recovered as follows. First, all hydrophobic peptides with basic residues (lysine and more rarely arginine) at the N-terminus were selected. Then, peptides with a glutamate or an aspartate at their C-terminus and encoded by a gene upstream from the rgg gene and divergently transcribed were considered to be SHP. Peptides with a double tryptophan motif and encoded by a gene downstream from the rgg gene and in the same orientation were considered to be XIP.

Bacterial strains and growth conditions

The bacterial strains used in this study are listed in Table 1. *S. thermophilus* strains were grown at 28°C or 42°C in M17 medium (Difco) supplemented with 10 g l⁻¹ lactose (M17lac) or in a chemically defined medium (CDM) without shaking, under atmospheric air and with a ratio of air space to liquid of approximately 90% (Letort and Juillard, 2001). *Escherichia coli* strains were grown at 30°C or 37°C in Luria–Bertani (LB) broth with shaking (Sambrook & Russell, 2001). Agar (1.5%) was added to the media as appropriate. When required, antibiotics were added to the media at the following final

concentrations: erythromycin, 200 μ g ml⁻¹ for *E. coli* or 5 μ g ml⁻¹ for *S. thermophilus*, kanamycin, 30 μ g ml⁻¹ for *E. coli* or 1 mg ml⁻¹ for *S. thermophilus* and spectinomycin, 100 μ g ml⁻¹ for *S. thermophilus*. The optical density at 600 nm of the cultures was measured with a Uvikon 931 spectrophotometer (Kontron).

DNA manipulation and sequencing

Standard methods were used for DNA purification, restriction digestion, PCR, ligation and sequencing. *E. coli* TG1 or TG1 $repA^+$ strains were used as hosts for cloning experiments. The oligonucleotides used for PCR are listed in Table 2. *S. thermophilus* was transformed using natural competent cells or electrocompetent cells (Ibrahim *et al.*, 2007b). The 5' tag-RACE method described by Fouquier d'Hérouel *et al.* (2011) was used to determine the transcriptional start site of the genes *ster_1357* and *shp1358* with oligonucleotides shp1358-tag and ster_1357-tag.

Plasmid and strain constructions

The plasmids used are listed in Table 3. Plasmid pGICB004, which allows the integration of transcriptional fusions to the *luxAB* reporter genes at the *blp* locus in *S. thermophilus*, was constructed in two steps. First, a 0.95 kb fragment including the *blpR* promoter sequence, the *blpR* ORF and the first 96 bp of blpH was amplified by PCR with primers UPINSLUX1 and UPINSLUX2, digested with PshAI and SpeI, and ligated upstream from luxAB into similarly digested pJIM4900. Next, a 1.05 kb fragment located downstream from blpX was amplified by PCR with primers DNINSLUX1 and DNINSLUX2, digested with Sall and Pvull, and inserted downstream from *luxAB* between the Sall and Pvull sites of the plasmid obtained in the first step. Plasmid pGICB004::Psho1358 and pGICB004::Prag1358 were constructed as follows. The shp1358 and rgg1358 promoter were amplified by PCR with oligonucleotides Pshp1358-EcoRI/Pshp1358-Spel and Prgg1358-EcoRI/Prgg1358-Spel, respectively, digested with restriction enzymes Spel/EcoRI and ligated between the same restriction sites of pGICB004. Integration and excision of these plasmids in strains LMD-9, TIL 778 (Ashp1358), TIL 775 (Argg1358) and TIL 1198 (∆amiA1) (Garault et al., 2000 for experimental procedure) led to the construction of strains TIL 1165 (blp::Pshp1358-luxAB) and TIL 1164 (blp::Prag1358-luxAB), TIL 1200 (Δshp1358 blp::P_{shp1358}-luxAB) and TIL 1208 (Δshp1358 blp::Prag1358-luxAB), TIL 1169 (∆rgg1358 blp::Pshp1358-luxAB) and TIL 1168 (∆rgg1358 blp::Prgg1358-luxAB) and TIL 1204 (AamiA1 blp::Pshp1358-luxAB). Competent cells of strain TIL 1204 were transformed with pG⁺host9::updown.shp1358. Integration and excision of the plasmid gave strain TIL 1303 (AamiA1 Ashp1358 blp::P_{shp1358}-luxAB). The SHP1358 peptide was overproduced by inserting the shp1358 gene into pBV5030 downstream from the P32 promoter. The shp1358 gene was amplified by PCR with oligonucleotides shp1358-Ncol and shp1358-Pstl. The resulting fragment was digested with restriction enzymes Ncol/Pstl and inserted into pBV5030::P₃₂-ster 1357 digested with the same enzymes. The resulting plasmid pBV5030::P₃₂-shp1358 allowed the overproduction of a modified SHP1358 peptide containing a

Table 1. Bacterial strains used in this study.

Bacterial strain and genotypes		Resistance ^a	Description ^b	Source or reference	
Streptococcus	thermophilus				
LMD-9	Wild type			Makarova et al. (2006)	
TIL 773	∆eep		pG⁺host9::updown. <i>eep</i> → LMD-9	This study	
TIL 775	∆rgg1358			Ibrahim et al. (2007b)	
TIL 778	$\Delta shp1358$			Ibrahim <i>et al.</i> (2007b)	
TIL 883	∆amiCDE			Ibrahim <i>et al.</i> (2007b)	
TIL 1164	blp::Praa1358-luxAB		pGICB004::P _{rag1358} \rightarrow LMD-9	This study	
TIL 1165	blp::P _{shp1358} -luxAB		pGICB004::P _{shp1358} \rightarrow LMD-9	This study	
TIL 1168	∆rgg1358 blp::Prgg1358-luxAB		pGICB004::P _{rgg1358} → TIL 775	This study	
TIL 1169	∆rgg1358 blp::P _{shp1358} -luxAB		pGICB004::P _{shp1358} → TIL 775	This study	
TIL 1197	amiA3::erm	Erm		Gardan et al. (2009)	
TIL 1198	∆amiA1			Gardan et al. (2009)	
TIL 1199	∆amiA1 amiA3::erm	Erm		Gardan et al. (2009)	
TIL 1200	∆shp1358 blp::P _{shp1358} -luxAB		pGICB004::P _{shp1358} → TIL 778	This study	
TIL 1202	amiCDE::spec	Spec	PCR fragment amiCDE::spec → LMD-9	This study	
TIL 1203	amiCDE::spec blp::P _{shp1358} -luxAB	Spec	TIL 1202 DNA \rightarrow TIL 1165	This study	
TIL 1204	∆amiA1 blp::P _{shp1358} -luxAB		pGICB004::P _{shp1358} → TIL 1198	This study	
TIL 1206	<i>∆eep</i> pBV5030::P32- <i>shp1358</i>	Erm	pBV5030::P32- <i>shp1358</i> → TIL 773	This study	
TIL 1208	∆ <i>shp1358 blp</i> ::P _{rgg1358} -luxAB		pGICB004::P _{rgg1358} → TIL 778	This study	
TIL 1213	∆ <i>amiCDE</i> pBV5030::P32- <i>shp1358</i>	Erm	pBV5030::P32- <i>shp1358</i> → TIL 883	This study	
TIL 1303	∆amiA1 ∆shp1358 blp::P _{shp1358} -luxAB		pG⁺host9::updown. <i>shp1358</i> → TIL 1204	This study	
TIL 1304	amiA3::erm \Deltashp1358 blp::P _{shp1358} -luxAB	Erm	TIL 1197 DNA \rightarrow TIL 1200	This study	
TIL 1305	∆amiA1 amiA3::erm ∆shp1358 blp::P _{shp1358} -luxAB	Erm	TIL 1199 DNA \rightarrow TIL 1200	This study	
Escherichia co	li				
TG1			supE hsd∆5 thi ∆(lac-proAB) F'[traD36 proAB⁺ laclª lacZ∆M15]	Gasson, 1983	
TG1 <i>repA</i> ⁺		Km	TG1 derivative with <i>repA</i> gene integrated into the chromosome	Pierre Renault ^c	
Rosetta		Cm	F^- ompT hsd $S_B(r_B^- m_B^-)$ gal dcm pRARE	Novagen	
TIL 1318	Rosetta pET28a::Rgg1358	Km	pET28a::Rgg1358 → Rosetta	This study	

a. Erm, Spec, Km, Cm indicate resistance to erythromycin, spectinomycin, kanamycin and chloramphenicol respectively.

b. Arrows indicate construction by natural transformation or electroportation with chromosomal DNA or plasmid; 'updown' followed by the name of a gene indicates that the fragments upstream and downstream from the gene were inserted into pG⁺host9 to construct in frame deletions of the gene by double cross-over event (Garault *et al.*, 2000).

c. INRA, Jouy-en-Josas, France.

glycine residue between the methionine at position 1 and lysine at position 2 of the wild-type sequence. Strain TIL 1202 (amiCDE::spec) was constructed using the overlapping PCR method. Briefly, the spectinomycin cassette (spec) was amplified by PCR with oligonucleotides Spec-R and Spec-F2 and the pAT28 as the template (Trieu-Cuot et al., 1990); it was fused by PCR to the beginning of the amiC gene (upstream fragment) and the end of the amiE gene and the amiF gene (downstream fragment). Oligonucleotides used for the amplification of the upstream fragment were amiCDE up-F and amiCDE_up-R and for the downstream fragment amiCDE_down-F and amiCDE_down-R. The resulting 3 kb fragment was used to transform LMD-9 cells. Strains TIL 1304 (amiA3::erm \triangle shp1358 blp::P_{shp1358}-luxAB) and TIL 1305 (∆amiA1 amiA3::erm ∆shp1358 blp::P_{shp1358}-luxAB) were constructed as follows. Cells of strain TIL 1200 were transformed with chromosomal DNA from strains TIL 1197 (amiA3::erm) and TIL 1199 (AamiA1 amiA3::erm) respectively. A similar procedure was used to construct strain TIL 1203 (amiCDE::spec blp::P_{shp1358}-luxAB): TIL 1165 was transformed with chromosomal DNA from strain TIL 1202. Strain TIL 773 (Δeep) was constructed by deleting an internal fragment of the gene by a double cross-over event using pG⁺host9. Briefly,

oligonucleotides eep-Xhol with eep-EcoRIA and eep-EcoRIB with eep-Spel were used to amplify upstream and downstream fragments of the eep gene. These two fragments were double digested with restriction enzymes XhoI with EcoRI and EcoRI with Spel, respectively, and ligated between the Xhol and Spel restriction sites of pG⁺host9. The resulting plasmid was used to transform electrocompetent cells of strain LMD-9. Integration and excision of the plasmid led to the in-frame deletion of the eep gene. Strains TIL 1206 (Aeep pBV5030::P₃₂-shp1358) and TIL 1213 (AamiCDE pBV5030::P32-shp1358) were constructed by electrotransformation of strains TIL 773 and TIL 883, respectively, with pBV5030::P₃₂-shp1358. Plasmid pET28a::Rgg1358 was constructed to allow the expression and the purification of the N-terminus His-tagged Rgg1358 protein in E. coli as follows. The rgg1358 gene was amplified by PCR with oligonucleotides Rgg1358-Ndel and Rgg1358-Xhol. The resulting 882 bp fragment was digested with restriction enzymes Ndel/XhoI and ligated into in the expression vector pET28a digested with the same restriction enzymes. The resulting plasmid was used to transform E. coli strain Rosetta to obtain TIL 1318 (E. coli Rosetta pET28a::Rgg1358). All constructions were verified by PCR and validated by sequencing.

Table 2. Primers used in this study.

Primer	Sequence $(5' \rightarrow 3')^{a,b}$				
Mutants and plasmids constructions					
UPINSLUX1	AAGACCACAGTCCAGACGAATCTTCTGTCCCA				
UPINSLUX2	CGACTAGTGTATCCAGTCTCTAAAATTCAG				
DNINSLUX1	AAGTCGACTTCCACTGTCTTGGCTATATC				
DNINSLUX2	AACAGCTGCGTGTCAAAGCTACTGTAGTC				
Pshp1358-EcoRI	GAAGAATTCTGCTTTTTCATGTGATAAT				
Pshp1358-Spel	AAC <u>TACTAG</u> TAGACGTTGATATACCAGC				
Prgg1358-EcoRI	GAA <u>GAATTC</u> AATTTTTTCATACTACACCTCC				
Prgg1358-Spel	ACCTACTAGTCGACGATAACGATAATGCC				
shp1358-Ncol	CCA <u>CCATGG</u> GTAAAAAGCAAATTTTACTAAC				
shp1358-Pstl	CCTG <u>CTGCAG</u> AATACAGAACTAAATCC				
Spec-R	GAAAAATTCTATAGAAACTTCTCTCAATTAGGCT				
Spec-F2	TACAGATTAATAATTATTCTTTATTATACAGATC				
amiCDE_up-F	CGGCTTTGACCTACACG				
amiCDE_up-R	GAAAAATTCTATAGAAACTTCTCTCAATTAGGCTAAGGCGATGGTTGGT				
amiCDE_down-F	TACAGATTAATAATTATTCTTTATTATACAGATCTGAGGAAAAAGCACCAC				
amiCDE_ down-R	AAGTGACCTGGGCGTAC				
eep-Xhol	GAA <u>GAATTC</u> TTAAAAAAGTCCTAGTAAGTGC				
eep-EcoRIA	CTC <u>CTCGAG</u> TACCTTTATCGTGATCC				
eep-EcoRIB	GAAGAATTCTTAGAAACAAAGAAATGAAAGG				
eep-spel	AACTACTAGTTTGAGTCACAACCTTAG				
Rgg1358-Ndel	CCACCACATATGAAAAAATTTGGAG				
Rgg1358-Xhol	CCG <u>CTCGAG</u> CTACTAACTACTAGCTAAAA				
5' tag-RACE					
shp1358-tag	ACGATAACGATAATGCCTTCAAATACGA				
ster_1357-tag	ATCACTCCCAGCCGTCACCTTTTGCCATC				
FMSA					
EMSA-shpE	CTTTATTGTATGATATGATG				
EMSA-shpR	CTCTCGATTCTCGAAAC				
EMSA-ster 1357F	CTTATGAAGGACATTTAG				
EMSA-ster 1357R	TGATACTGTGATTATATTTC				
EMSA-ldhF	ACGCTTTCACTTAATAATTC				
EMSA-ldhR	TGGTCTAAACATCTCCTTA				

a. Restriction enzyme recognition sequences are underlined.b. Complementary sequences of the spectinomycin cassette are underlined with dashes.

Plasmid	Description ^a	Source or reference
pG ⁺ host9::updown. <i>shp1358</i>	Erm, Ts plasmid for <i>shp1358</i> gene replacement by double cross-over integration.	Ibrahim <i>et al</i> . (2007b)
pJIM4900	Erm, Ts derivative of pG⁺host9 containing the <i>luxAB</i> genes of <i>Photorhabdus luminescens</i> and a transcriptional terminator.	E. Guédon ^₅ (e.g. unpublished)
pGICB004	Erm, pJIM4900 with a 0.95 kb insert containing two fragments upstream and downstream respectively from the <i>luxAB</i> gene and allowing the integration of the plasmid by double cross-over event at the <i>blp</i> locus of <i>S. thermophilus</i> .	This study
pGICB004::P _{shp1358}	Erm, Derivative of pGICB004 used to introduce a P _{shp1356} -luxAB transcriptional fusion at the <i>blp</i> locus.	This study
pGICB004::P _{rgg1358}	Erm, Derivative of pGICB004 used to introduce a P _{rgg1356} -luxAB transcriptional fusion at the <i>blp</i> locus.	This study
pBV5030	Erm, Replicative plasmid in <i>E. coli</i> and Gram positive bacteria.	Bojovic <i>et al</i> . (1991)
pBV5030::P ₃₂ -ster_1357	Erm, Derivative of pBV5030 allowing the overexpression of the <i>ster_1357</i> gene of <i>S. thermophilus</i> LMD-9.	Gardan (e.g. unpublished)
pBV5030::P ₃₂ - <i>shp1358</i>	Erm, Derivative of pBV5030::P ₃₂ -ster_1357 allowing the overexpression of the <i>shp1358</i> gene of <i>S. thermophilus</i> LMD-9.	This study
pET28a	Km, vector for production of His tagged proteins	Novagen
pET28a::Rgg1358	A derivative of pET28a used to overproduce Rgg1358	This study

Table 3. Plasmids used in this study.

a. Erm and Km indicate resistance to erythromycin and kanamycin respectively; Ts indicates that the plasmid encodes a thermosensitive RepA protein.

b. INRA, Jouy-en-Josas, France.

Luciferase assays

Cells were grown overnight at 42°C in CDM. These cultures were then diluted in 50 ml of CDM to a final OD₆₀₀ of 0.05 and incubated at 42°C, except for the experiments reported in Fig. 2D where cultures were diluted to a final OD₆₀₀ of 0.012, 0.025, 0.05 or 0.1. Aliguots of 1 ml of the culture were sampled at regular intervals until the culture reached stationary phase and analysed as follows: OD₆₀₀ was measured, then 10 µl of a 0.1% nonyl-aldehyde solution was added and the luminescence was measured with a Luminoskan TL (Labsystems). Results are reported in Relative Luminescent Units divided by the OD_{600} (RLU/OD₆₀₀). For cocultures, each culture was diluted to an OD_{600} of 0.025 and results are expressed as luminescence divided by the total OD₆₀₀. For experiments involving mixing supernatants of one strain with cell pellets of another strain containing a luxAB reporter fusion, both supernatants and pellets were harvested by centrifugation (5000 g for 10 min at RT) of equal volumes of cultures at OD₆₀₀ 0.6. Finally, the synthetic peptide EGIIVIVVG, stored in lyophilized form and freshly prepared in DMSO, was added to cultures with an OD₆₀₀ of 0.5.

LC-MS/MS

Supernatants from cultures of strains LMD-9 and TIL 778 were recovered by centrifugation. Aliguots of 10 µl of ultrafiltered supernatant (0.22 µM, Millipore) were loaded on a Pepmap C18 column (length 150 mm, 75 µm ID, 100 Å; Dionex, Voisin-le-Bretonneux) and analysed on-line by mass spectrometry on a LTQ-Orbitrap Discovery apparatus (Thermo Fischer, San Jose). First, only ion current of m/z corresponding to all possible C-terminal amino acid sequences produced by the cleavage of the SHP1358 sequence were sought in the supernatant of strain LMD-9. Next, we checked that these masses, detected in the LMD-9 supernatant, were not present in the supernatant of the *Ashp1358* mutant and that they were eluted from the Pepmap C18 column with a retention time compatible with the hydrophobicity of the putative amino acid sequence. Then, the ion with mass that fulfilled these conditions was fragmented and analysed on the Orbitrap mass analyser, to identify accurately the sequence of the corresponding peptide. Finally, the absence of the mature form of this peptide from the Ashp1358 supernatant was confirmed after fragmentation on LTQ by monitoring the current of the b7 ions daughter (724.46 m/z) in the Orbitrap mass analyser.

Production and purification of Rgg1358

A preculture of TIL 1318 was diluted in 500 ml of LB with kanamycin to an OD₆₀₀ of 0.05 and incubated at 37°C with shaking. At OD₆₀₀ 0.5, recombinant protein production was induced by adding IPTG at a final concentration of 1 mM and the incubation continued for 4 h at 30°C. Cells were harvested by centrifugation (5000 *g* for 10 min at 4°C), rinsed and resuspended in disrupter buffer (20 mM Tris HCl pH 8.0, 250 mM NaCl, 0.1% Tween 20, 10% v/v glycerol and 10 mM

Imidazole) to obtain a OD₆₀₀ of 100 ml⁻¹. Cells were disrupted at 2.0 kbars with a Basic Z Cell Disruption System (Constant Systems). The soluble fraction was collected by centrifugation (5000 *g* for 20 min at 4°C) and production of the recombinant His-tagged Rgg1358 protein checked by SDS-PAGE. The product was then purified with the QIAexpressionist kit (Qiagen), according to the manufacturer's instructions with the following modification: elution was carried out with an imidazole concentration gradient from 100 mM to 250 mM.

SPR analysis

Real-time binding kinetics experiments were conducted on a BIAcore 3000 apparatus (GE Healthcare Europe). The synthetic peptide EGIIVIVVG was immobilized on a CM5 sensor chip using amine-coupling chemistry. For this, the surface of the chip was activated for 7 min with a mixture of 0.05 M NHS and 0.2 M EDC (Amine coupling kit, Biacore, GE Healthcare). The synthetic pheromone (37 µM, in sodium acetate buffer, pH 5.0) was then covalently linked to the surface giving up to 2000 resonance units (RU). Ethanolamine (1 M, pH 8.5) was injected for 7 min to block the remaining activated groups. The purified Rgg1358 protein (5 µM) was injected over 2 min, at flow of 25 µl min⁻¹ in 20 mM HBS (pH 7.4) to allow binding to the immobilized SHP1358(15-23) pheromone; dissociation was recorded for 12 min after the end of injections. The surface was regenerated by injecting glycine buffer (pH 2.0) for 2 min. The sensorgram observed in a cell immobilizing pheromone was corrected by subtracting the response observed in a cell immobilizing only ethanolamine (reference surface). Two sets of control experiments were performed to check the specificity of binding: (i) BSA was injected over the immobilized SHP1358(15-23), and (ii) Rgg1358 was injected over a chip surface with the control peptide, IAILPYFAGCL, covalently immobilized (purchased from eurogentec). All measurements were performed at 25°C. Sensorgrams were analysed using BIAevaluation Software.

EMSA

DNA probes of approximately 110 bp of the shp1358 and ster_1357 promoter regions were amplified by PCR with oligonucleotides EMSA-shpF with EMSA-shpR and EMSAster_1357F with EMSA-ster_1357R respectively. The Idh promoter region was amplified with oligonucleotides EMSA-IdhF and EMSA-IdhR as a control. DNA probes were 3' end labelled and gel shift reactions carried out by using the DIG GEL Shift Kit. 2nd Generation (Roche), according to the manufacturer's instructions. The DNA binding reactions, coupling probes to the Rgg1358 protein with or without the svnthetic peptide EGIIVIVVG (purchased from eurogentec). involved incubation for 30 min at 42°C. Samples were then loaded on a 4-16% native polyacrylamide gels (nativePAGE 4-16% Bis-Tris Gel, Invitrogen) and subjected to 70 V for approximately 2 h in 1 × TBE buffer. The labelled probe/ protein complexes were transferred to a positively charged nylon membrane (GE Healthcare Amersham Hybond – N⁺) by electro-blotting for 30 min in a Mini Trans-Blot Cell (Biorad) in $0.5 \times \text{TBE}$ buffer. DNA complexes were detected by chemiluminescence on X-ray film (Amersham Hyperfilm ECL) according to the manufacturer's instructions.

Acknowledgements

This study was supported by the Institut National de la Recherche Agronomique (INRA) and the Ministère de l'Education Nationale de la Recherche et de la Technologie (MENRT). The 'Plateforme d'Analyse Protéomique Paris Sud-Ouest' (PAPPSO, Alain Guillot) received the financial support from the lle de France regional council and from CEMAGREF. Work in the group of P. Hols was financially supported by FNRS. L. Fontaine is postdoctoral researcher at FNRS. P. Hols is research associate at FNRS. We thank L. Topisirovic for plasmid pBV5030. We thank F. Rul, V. Juillard and P. Serror for their critical reading of the manuscript, E. Chambellon and M. Cote for their technical assistance, and E. Bruneau for her technical advice. Finally, we are grateful to F. Repoila for helpful advice concerning his 5' tag-RACE method.

References

- Agaisse, H., Gominet, M., Okstad, O.A., Kolsto, A.B., and Lereclus, D. (1999) PICR is a pleiotropic regulator of extracellular virulence factor gene expression in *Bacillus thuringiensis*. *Mol Microbiol* **32**: 1043–1053.
- An, F.Y., and Clewell, D.B. (2002) Identification of the cAD1 sex pheromone precursor in *Enterococcus faecalis*. *J Bacteriol* **184**: 1880–1887.
- An, F.Y., Sulavik, M.C., and Clewell, D.B. (1999) Identification and characterization of a determinant (*eep*) on the *Enterococcus faecalis* chromosome that is involved in production of the peptide sex pheromone cAD1. *J Bacteriol* **181**: 5915–5921.
- Antunes, L.C., Ferreira, R.B., Buckner, M.M., and Finlay, B.B. (2010) Quorum sensing in bacterial virulence. *Microbiology* **156**: 2271–2282.
- Bae, T., Kozlowicz, B., and Dunny, G.M. (2002) Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromoneinducible conjugation. *J Mol Biol* **315**: 995–1007.
- Bassler, B.L. (2002) Small talk: Cell-to-cell communication in bacteria. *Cell* **109:** 421–424.
- Bojovic, B., Djordjevic, G., and Topisirovic, L. (1991) Improved vector for promoter screening in lactococci. *Appl Environ Microbiol* **57:** 385–388.
- Bortoni, M.E., Terra, V.S., Hinds, J., Andrew, P.W., and Yesilkaya, H. (2009) The pneumococcal response to oxidative stress includes a role for Rgg. *Microbiology* 155: 4123–4134.
- Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., *et al.* (2008) Molecular basis for group-specific activation of the virulence regulator PIcR by PapR heptapeptides. *Nucleic Acids Res* **36**: 3791–3801.
- Brede, D.A., Faye, T., Johnsborg, O., Ødegård, I., Nes, I.F., and Holo, H. (2004) Molecular and genetic characterization of propionicin F, a bacteriocin from *Propionibacterium freudenreichii. Appl Environ Microbiol* **70**: 7303–7310.
- Butcher, B.G., Lin, Y.P., and Helmann, J.D. (2007) The *yyd-FGHIJ* operon of *Bacillus subtilis* encodes a peptide that induces the LiaRS two-component system. *J Bacteriol* **189**: 8616–8625.
- Chaussee, M.S., Ajdic, D., and Ferretti, J.J. (1999) The rgg

gene of *Streptococcus pyogenes* NZ131 positively influences extracellular SPE B production. *Infect Immun* **67**: 1715–1722.

- Chaussee, M.S., Sylva, G.L., Sturdevant, D.E., Smoot, L.M., Graham, M.R., Watson, R.O., and Musser, J.M. (2002) Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in *Streptococcus pyogenes*. *Infect Immun* **70**: 762–770.
- Chaussee, M.S., Somerville, G.A., Reitzer, L., and Musser, J.M. (2003) Rgg coordinates virulence factor synthesis and metabolism in *Streptococcus pyogenes*. *J Bacteriol* **185**: 6016–6024.
- Claverys, J.P., and Håvarstein, L.S. (2002) Extracellularpeptide control of competence for genetic transformation in *Streptococcus pneumoniae. Front Biosci* **7**: 1798–1814.
- Claverys, J.P., Prudhomme, M., and Martin, B. (2006) Induction of competence regulons as a general response to stress in gram-positive bacteria. *Annu Rev Microbiol* **60**: 451–475.
- Declerck, N., Bouillaut, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., *et al.* (2007) Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Grampositive bacteria. *Proc Natl Acad Sci USA* **104**: 18490– 18495.
- Denham, E.L., Ward, P.N., and Leigh, J.A. (2008) Lipoprotein signal peptides are processed by Lsp and Eep of *Strepto-coccus uberis. J Bacteriol* **190**: 4641–4647.
- Dewhirst, F.E., Chen, T., Izard, J., Paster, B.J., Tanner, A.C., Yu, W.H., *et al.* (2010) The human oral microbiome. *J Bacteriol* **192:** 5002–5017.
- Dmitriev, A.V., McDowell, E.J., Kappeler, K.V., Chaussee, M.A., Rieck, L.D., and Chaussee, M.S. (2006) The Rgg regulator of *Streptococcus pyogenes* influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. *J Bacteriol* **188**: 7230–7241.
- Dunny, G.M. (2007) The peptide pheromone-inducible conjugation system of *Enterococcus faecalis* plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. *Philos Trans R Soc Lond B Biol Sci* **362**: 1185–1193.
- Fernandez, A., Borges, F., Gintz, B., Decaris, B., and Leblond-Bourget, N. (2006) The *rggC* locus, with a frameshift mutation, is involved in oxidative stress response by *Streptococcus thermophilus. Arch Microbiol* **186**: 161– 169.
- Fontaine, L., Boutry, C., Henry de Frahan, M., Delplace, B., Fremaux, C., Horvath, P., *et al.* (2010) A novel pheromone quorum-sensing system controls the development of natural competence in *Streptococcus thermophilus* and *Streptococcus salivarius. J Bacteriol* **192:** 1444–1454.
- Fouquier d'Hérouel, A., Wessner, F., Halpern, D., Ly-Vu, J., Kennedy, S.P., Serror, P., *et al.* (2011) A simple and efficient method to search for selected primary transcripts: non-coding and antisense RNAs in the human pathogen Enterococcus faecalis. *Nucleic Acids Res* (in press).
- Fujiwara, T., Hoshino, T., Ooshima, T., Sobue, S., and Hamada, S. (2000) Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from *Streptococcus oralis*. *Infect Immun* 68: 2475– 2483.
- Garault, P., Letort, C., Juillard, V., and Monnet, V. (2000)
- © 2011 Blackwell Publishing Ltd, Molecular Microbiology, 80, 1102-1119

1118 B. Fleuchot et al.

Branched-chain amino acid biosynthesis is essential for optimal growth of *Streptococcus thermophilus* in milk. *Appl Environ Microbiol* **66**: 5128–5133.

- Gardan, R., Besset, C., Guillot, A., Gitton, C., and Monnet, V. (2009) The oligopeptide transport system is essential for the development of natural competence in *Streptococcus thermophilus* strain LMD-9. *J Bacteriol* **191**: 4647–4655.
- Gasson, M.J. (1983) Plasmid complements of *Streptococcus lactis* NCDO 712 and other lactic streptococci after protoplast-induced curing. *J Bacteriol* **154:** 1–9.
- Goebl, M., and Yanagida, M. (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. *Trends Biochem Sci* **16**: 173–177.
- Ibrahim, M., Nicolas, P., Bessières, P., Bolotin, A., Monnet, V., and Gardan, R. (2007a) A genome-wide survey of short coding sequences in streptococci. *Microbiology* 153: 3631–3644.
- Ibrahim, M., Guillot, A., Wessner, F., Algaron, F., Besset, C., Courtin, P., *et al.* (2007b) Control of the transcription of a short gene encoding a cyclic peptide in *Streptococcus thermophilus*: a new quorum-sensing system? *J Bacteriol* 189: 8844–8854.
- Karpenahalli, M.R., Lupas, A.N., and Söding, J. (2007) TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. *BMC Bioinformatics* 8: 2.
- Lereclus, D., Agaisse, H., Gominet, M., Salamitou, S., and Sanchis, V. (1996) Identification of a *Bacillus thuringiensis* gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. *J Bacteriol* **178:** 2749–2756.
- Letort, C., and Juillard, V. (2001) Development of a minimal chemically-defined medium for the exponential growth of *Streptococcus thermophilus*. *J Appl Microbiol* **91**: 1023–1029.
- Linton, K.J., and Higgins, C.F. (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. *Pflugers Arch* **453**: 555–567.
- Loughman, J.A., and Caparon, M.G. (2007) Contribution of invariant residues to the function of Rgg family transcription regulators. *J Bacteriol* **189:** 650–655.
- Lyon, W.R., Gibson, C.M., and Caparon, M.G. (1998) A role for trigger factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of *Streptococcus pyogenes. EMBO J* **17:** 6263–6275.
- Makarova, K., Slevarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., *et al.* (2006) Comparative genomics of the lactic acid bacteria. *Proc Natl Acad Sci USA* **103**: 15611– 15616.
- Mashburn-Warren, L., Morrison, D.A., and Federle, M.J. (2010) A novel double-tryptophan peptide pheromone controls competence in *Streptococcus* spp. via an Rgg regulator. *Mol Microbiol* **78**: 589–606.
- Neely, M.N., Lyon, W.R., Runft, D.L., and Caparon, M. (2003) Role of RopB in growth phase expression of the SpeB cysteine protease of *Streptococcus pyogenes*. J Bacteriol 185: 5166–5174.
- Novick, R.P., and Geisinger, E. (2008) Quorum sensing in staphylococci. *Annu Rev Genet* **42:** 541–564.
- Paradis, E., Claude, J., and Strimmer, K. (2004) APE: Analyses of Phylogenetics and Evolution in R language. *Bioinformatics* 20: 289–290.

- Podbielski, A., and Kreikemeyer, B. (2004) Cell density dependent regulation: basic principles and effects on the virulence of Gram-positive cocci. *Int J Infect Dis* **8:** 81– 95.
- Pottathil, M., and Lazazzera, B.A. (2003) The extracellular Phr peptide-Rap phosphatase signaling circuit of *Bacillus subtilis. Front Biosci* **8:** 32–45.
- Pulliainen, A.T., Hytönen, J., Haataja, S., and Finne, J. (2008) Deficiency of the Rgg regulator promotes H₂O₂ resistance, AhpCF-mediated H₂O₂ decomposition, and virulence in *Streptococcus pyogenes. J Bacteriol* **190**: 3225–3235.
- Qi, F., Chen, P., and Caufield, P.W. (1999) Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in *Streptococcus mutans. Appl Environ Microbiol* **65:** 652–658.
- Rawlinson, E.L., Nes, I.F., and Skaugen, M. (2002) LasX, a transcriptional regulator of the lactocin S biosynthetic genes in *Lactobacillus sakei* L45, acts both as an activator and a repressor. *Biochimie* 84: 559–567.
- Rawlinson, E.L., Nes, I.F., and Skaugen, M. (2005) Identification of the DNA-binding site of the Rgg-like regulator LasX within the lactocin S promoter region. *Microbiology* **151:** 813–823.
- Rea, M.C., Sit, C.S., Clayton, E., O'Connor, P.M., Whittal, R.M., Zheng, J., *et al.* (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against *Clostridium difficile. Proc Natl Acad Sci* USA **107**: 9352–9357.
- Rocha-Estrada, J., Aceves-Diez, A.E., Guarneros, G., and de la Torre, M. (2010) The RNPP family of quorum-sensing proteins in Gram-positive bacteria. *Appl Microbiol Biotechnol* 87: 913–923.
- Sambrook, J., and Russell, D.W. (2001) Molecular cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Samen, U.M., Eikmanns, B.J., and Reinscheid, D.J. (2006) The transcriptional regulator RovS controls the attachment of *Streptococcus agalactiae* to human epithelial cells and the expression of virulence genes. *Infect Immun* 74: 5625– 5635.
- Sanders, J.W., Leenhouts, K., Burghoorn, J., Brands, J.R., Venema, G., and Kok, J. (1998) A chloride-inducible acid resistance mechanism in *Lactococcus lactis* and its regulation. *Mol Microbiol* 27: 299–310.
- Shi, K., Brown, C.K., Gu, Z.Y., Kozlowicz, B.K., Dunny, G.M., Ohlendorf, D.H., and Earhart, C.A. (2005) Structure of peptide sex pheromone receptor PrgX and PrgX/ pheromone complexes and regulation of conjugation in *Enterococcus faecalis. Proc Natl Acad Sci USA* **102**: 18596–18601.
- Siehnel, R., Traxler, B., An, D.D., Parsek, M.R., Schaefer, A.L., and Singh, P.K. (2010) A unique regulator controls the activation threshold of quorum-regulated genes in *Pseudomonas aeruginosa. Proc Natl Acad Sci USA* **107**: 7916–7921.
- Skaugen, M., Andersen, E.L., Christie, V.H., and Nes, I.F. (2002) Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in *Lactobacillus sakei* L45. *Appl Environ Microbiol* 68: 720–727.
- Slamti, L., and Lereclus, D. (2002) A cell-cell signaling

peptide activates the PIcR virulence regulon in bacteria of the *Bacillus cereus* group. *EMBO J* **21:** 4550–4559.

- Sulavik, M.C., Tardif, G., and Clewell, D.B. (1992) Identification of a gene, *rgg*, which regulates expression of glucosyltransferase and influences the Spp phenotype of *Streptococcus gordonii* Challis. *J Bacteriol* **174:** 3577– 3586.
- Trieu-Cuot, P., Carlier, C., Poyart-Salmeron, C., and Courvalin, P. (1990) A pair of mobilizable shuttle vectors conferring resistance to spectinomycin for molecular cloning in *Escherichia coli* and in gram-positive bacteria. *Nucleic Acids Res* **18**: 4296.
- Vickerman, M.M., and Minick, P.E. (2002) Genetic analysis of the *rgg-gtfG* junctional region and its role in *Streptococcus gordonii* glucosyltransferase activity. *Infect Immun* **70**: 1703–1714.
- Vickerman, M.M., Wang, M., and Baker, L.J. (2003) An amino acid change near the carboxyl terminus of the *Streptococcus gordonii* regulatory protein Rgg affects its abilities to bind DNA and influence expression of the glucosyltransferase gene *gtfG. Microbiology* **149**: 399–406.
- Vickerman, M.M., Flannagan, S.E., Jesionowski, A.M., Brossard, K.A., Clewell, D.B., and Sedgley, C.M. (2010) A genetic determinant in *Streptococcus gordonii* Challis encodes a peptide with activity similar to that of enterococcal sex pheromone cAM373, which facilitates intergeneric DNA transfer. *J Bacteriol* **192**: 2535–2545.

Waters, C.M., and Bassler, B.L. (2005) Quorum sensing:

cell-to-cell communication in bacteria. *Annu Rev Cell Dev Biol* **21:** 319–346.

- Williams, P., Winzer, K., Chan, W.C., and Cámara, M. (2007) Look who's talking: communication and quorum sensing in the bacterial world. *Philos Trans R Soc Lond B Biol Sci* 362: 1119–1134.
- Winzer, K., Hardie, K.R., and Williams, P. (2002) Bacterial cell-to-cell communication: sorry, can't talk now – gone to lunch! *Curr Opin Microbiol* 5: 216–222.
- Zheng, G., Hehn, R., and Zuber, P. (2000) Mutational analysis of the *sbo-alb* locus of *Bacillus subtilis*: identification of genes required for subtilosin production and immunity. *J Bacteriol* **182**: 3266–3273.
- Zheng, F., Ji, H., Cao, M., Wang, C., Feng, Y., Li, M., *et al.* (2011) Contribution of the Rgg transcription regulator to metabolism and virulence of *Streptococcus suis* serotype 2. *Infect Immun* **79**: 1319–1328.

Supporting information

Additional supporting information may be found in the online version of this article.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

3. Conclusion

Le travail présenté dans l'article 1 a permis de décrire, sur la base du locus *shp/rgg1358* de *S. thermophilus* LMD-9, un nouveau mécanisme de QS impliquant deux gènes transcrits de manière divergente et codant un petit peptide hydrophobe jouant le rôle de phéromone (SHP) et un régulateur transcriptionnel appartenant à la famille des Rgg.

Pour valider ce mécanisme de QS, une approche génétique a tout d'abord été mise en œuvre afin de mesurer l'activité du promoteur $P_{shp1358}$ dans différentes conditions de croissance (cultures, co-cultures, etc.). L'ensemble des résultats obtenus a permis de valider les trois premières étapes de ce nouveau mécanisme de régulation par QS à savoir : la sécrétion, la détection et la réimportation de la phéromone SHP1358. La forme mature de la phéromone a également été identifiée par LC-MS/MS et confirmée par complémentation fonctionnelle du mutant Δshp . De plus, un rôle indirect de la metalloprotéase Eep dans la maturation et/ou la sécrétion de la phéromone a également été démontré.

La spécificité de l'interaction de la phéromone SHP1358 avec la protéine régulatrice Rgg1358 a été démontrée par SPR. Enfin, la technique de retard sur gel a permis d'étudier la fixation de la protéine régulatrice Rgg1358 au niveau des régions promotrices des gènes cibles du système (*shp1358* et *ster_1357*), présentant un motif ADN conservé. Les +1 de transcription des deux gènes cibles du système étudié ont par ailleurs été déterminés en utilisant la technique de 5'tag-RACE. L'ensemble des résultats valide l'existence d'un nouveau système de communication de type QS chez les streptocoques. Néanmoins, bien que la présence des deux partenaires (phéromone et protéine régulatrice) soit nécessaire à l'activation des gènes cibles connus du système, les résultats obtenus indiquent que la présence de la phéromone SHP1358 n'influence pas la fixation de la protéine régulatrice Rgg1358 à l'ADN dans les conditions testées. Aussi, l'hypothèse d'un changement de conformation et/ou la modification de l'état d'activation de la protéine régulatrice Rgg1358 en présence de la phéromone a été soulevée dans cet article.

Enfin, la construction d'un arbre phylogénétique des protéines Rgg et Rgg-like a permis de distinguer les systèmes SHP/Rgg et XIP/ComR. Aussi, ces résultats vont dans le sens de deux familles de systèmes de QS différentes. Par ailleurs, l'analyse des peptides issus des données *in silico* a révélé l'existence d'un troisième groupe de système SHP/Rgg.

Figure 43 – Nombre de protéines Rgg et Rgg-like, associées ou non à des spCDS, chez les bactéries à Gram positif à bas GC% appartenant au taxon Rgg.

Figure 44 – Nombre de protéines Rgg et Rgg-like, associées ou non à des spCDS, au sein des différents genres bactériens appartenant au taxon Rgg.

Entre parenthèses est précisé le nombre de souches séquencées disponibles au moment de l'analyse dans le genre considéré. La barre verticale indique respectivement le nombre minimal et maximal de protéines Rgg-like identifiées au sein des souches d'un genre.

Figure 45 – Nombre de protéines Rgg et Rgg-like, associées à des spCDS, au sein du genre *Streptococcus*.

4. Résultats non publiés

4.1 Introduction

Afin de répondre aux objectifs liés à la construction de l'arbre phylogénétique, et comme décrit dans l'article 1, un taxon Rgg a tout d'abord été défini. Au sein de ce taxon, composé de l'ordre des Lactobacillales et de la famille des Listeriaceae, 484 protéines Rgg-like ont été identifiées (Figure 43). La répartition de ces dernières au sein des différents genres bactériens composant le taxon s'est révélée être relativement homogène (Figure 44) et représentative de la quantité de génomes séquencés. Ceci est représenté pour le genre Streptococcus sur la Figure 43 : en effet, 52% des protéines Rgg et Rgg-like proviennent des 48 génomes de streptocoques, représentant 53% du nombre total des génomes disponibles pour l'analyse. Néanmoins, une hétérogénéité inter-souche peut être soulignée dans certains cas et notamment au sein du genre Lactobacillus regroupant des souches pouvant contenir de 2 à 18 protéines Rgg-like dans leur génome (Figure 44). A partir du taxon identifié, une recherche des petites phases ouvertes de lecture putatives (spCDS) dans l'environnement proche des protéines Rgg ou Rgg-like a été mise en place et 363 protéines se sont avérées être associées à une ou plusieurs spCDS (Figure 43). Aussi, l'association d'une protéine Rgg-like avec une ou plusieurs spCDS s'avère être plus fréquente au sein des streptocoques (89%) que dans le reste du taxon (60%). Parmi ces spCDS et sur la base des critères définis dans le Tableau 12, 68 ont été considérées comme codant un peptide SHP et 27 comme codant un peptide XIP. La Figure 45 représente le nombre de peptides SHP et XIP répertoriés pour chaque espèce de streptocoques. Les résultats soulignent l'accumulation des systèmes SHP/Rgg au sein de l'espèce S. thermophilus et l'absence des systèmes XIP/ComR au sein des streptocoques du groupe mitis (S. pneumoniae, S. mitis, S. sanguinis) possédant le système à deux composants ComDE pour le déclenchement de la compétence. Enfin, sur l'ensemble du taxon Rgg, 74% des peptides codés par des spCDS localisées dans l'environnement proche de protéines Rgg-like n'ont pas été décrits dans l'article 1 (Figure 43). Une analyse complémentaire centrée sur ces peptides est présentée dans cette partie.

4.2 Matériel et méthode

A partir du répertoire des protéines Rgg et Rgg-like obtenues lors de l'analyse *in silico* décrite dans l'article 1, une recherche de nouvelles familles de peptides associés aux protéines régulatrices Rgg et Rgg-like a été réalisée. Dans cette analyse, seulement les peptides n'ayant pas été décrits comme SHP ou XIP ont été pris en compte. Afin de mettre

Tableau 12 – Caractéristiques des peptides « phéromones » SHP et XIP.

	SHP (Ibrahim <i>et al.</i> , 2007b)	XIP (Mashburn-Warren <i>et al.</i> , 2010)
Séquence des peptides « phéromones »	» publiés	
	MKKINKALLFTLIMDILIIVGG	MKTLKIFVLFSLLIAILPYFAGCL
	MKK VNKALLFTLIMDILIIVGG	MTLVIKLVGTLLTMGWWGL
	MKKISKFLPILILAMDIIIIVGGEVT	MFKVFFTVMTGVF wwg
	MKKISKFLPILILAMDIIIIVGG	MFSILTSILMGLDWWSL
	MKK ISKFLPILFLVMDIIIIVGG	ML KK YKYYFIFAALLSFKVVQELSAVD ww RL
	MEKVSKILPILILVMDIIIIVGG	ML KK VKPFLLLAAVVAFKVARVMHEFD WW NL <mark>G</mark>
	MKKQKLLLLVVLVCEGIIVILVG	MFKKYQYYLFLAALFLLHSAQLLSDIDWWRV <mark>G</mark>
	MNKESFLAILLLIFESIIVIAVG	MFKRYHYYFILTAMLAFKAAQMISQVDWWRL
	MKKQILLILLVVFEGIIVIVVG	MLNIFSIVITGWWGL
	MENELFETTULETILLIGGG	MFKKIHFYVTTFSFLAVALITFLSEKDWWHIG
	MKIIKIIVIICIIIIVGGV	
Organisation génétique		
Localisation du gène codant le peptide	. En amont du gène <i>rgg</i>	. En aval du gène <i>rgg</i>
Brin portant le gène codant le peptide	. Région codante sur le brin opposé	. Région codante sur le même brin
Orientation des gènes	. Transcrits de manière divergente	. Transcrits de manière convergente
Séquence peptidique		
Taille en aa	. Taille homogène 20 à 26	. Taille hétérogène 15 à 32
Hydrophobicité (Gravy)	. Compris entre 1.355 à 2.205 (moy 1.70)	. XIP (31/32 aa) moy = 0.4932, XIP (15 à 24aa) moy = 1.4538
Charge globale	. Une charge nette positive	. Une charge nette positive
Partie N-ter	. Présence de 2 résidus basiques*	. Présence de 2 résidus basiques*
Partie centrale	. Asp (D) ou Glu (E) au milieu d'un stretch hydrophobe composé de lle (I), Leu (L), Val (V) et Met (M)	
Partie C-ter		. Motif double Trp (WW) conservé
	Présence de Gly (G)	Présence de Gly (G)

* en général des lysines (K) ; en noir sont indiqués les critères retenus pour la sélection ; « moy » signifie moyenne.

en évidence d'autres familles de peptides potentiellement secrétés ou « phéromones », une analyse basée sur des critères définis a été mise en place. En effet, la comparaison des peptides SHP et XIP (Tableau 12) a souligné que ces deux familles de peptides – malgré leurs différences – partagent certaines similarités probablement en lien avec leur mécanisme de maturation, d'export, de sécrétion ou de réimportation. Aussi, les critères communs et spécifiques de ces deux familles de peptides (présence de lysine en N-ter, hydrophobicité dans la partie centrale, présence d'acides aminés conservés – aromatiques, aspartate, glutamate – en C-ter) ont servi de critères de sélection pour la détection et l'élaboration de nouvelles familles.

4.3 Résultats principaux

Identification de deux nouvelles familles au sein du groupe mitis

La recherche de nouvelles familles sur la base de critères connus et définis dans le Tableau 12 a fait ressortir deux familles putatives de peptides détectés au sein de deux espèces de streptocoques appartenant au groupe mitis, *S. pneumoniae* et *S. mitis*.

Les peptides appartenant à la première famille appelée « mitis 1 » sont retrouvés dans 8 des 12 souches séquencées de S. pneumoniae ainsi que dans l'unique souche séquencée de S. mitis disponible au moment de l'analyse. Les caractéristiques générales de ces peptides, nommés peptides_{SHOW_mitis1}, sont présentées dans le Tableau 13. Ces derniers présentent plusieurs critères communs à ceux décrits pour les familles SHP et XIP. Leur principale particularité, au même titre que les peptides SHP, est la présence d'un aspartate ou d'un glutamate conservé dans la partie C-terminale. De manière intéressante, la nature de l'acide aminé conservé semble être corrélée à l'espèce de streptocoque possédant le peptide. Aussi, tous les peptides_{SHOW mitis1} issus de l'espèce pneumoniae contiennent un glutamate et le peptide_{SHOW mitis1} issu de l'espèce mitis, un aspartate. Enfin, une mauvaise identification des démarrages de traduction de ces peptides peut également être soulevée. En effet, au regard des séquences peptidiques détectées, un deuxième démarrage de traduction peut être envisagé au niveau des acides aminés MKK (Tableau 13). Si tel est le cas, les peptides_{SHOW_mitis1} partageraient de très fortes similarités de séquence avec les peptides SHP connus tout en préservant une organisation génétique différente de celles déjà décrites pour les groupes I, II et III (cf. article 1). En effet, les spCDS codant ces peptides sont localisées en amont et transcrites dans le même sens que le gène rgg-like. Enfin, la stricte conservation des séquences peptidiques appartenant à l'espèce pneumoniae indique une absence d'évolution des spCDS codant ces derniers pouvant être due à des contraintes fonctionnelles précises ou à une acquisition récente de ces petits gènes au sein de l'espèce.

		Gène <i>rgg-</i> like ^ª		Peptide détecté par le logiciel SHOW			
			Lo	calisation ^b	Distance ^c	Séquence	
Famille mitis 1 ^d	Streptococcus pneumoniae D39	SPD_1952	1	amont	С	MINILYFLIILTIWQVFDEFSEKYDKMKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae JJA	SPJ_2147*	1	amont		MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae Taiwan19F-14	SPT_2134*	1	amont		MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae G54	SPG_2060	1	amont	С	MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae CGSP14	SPCG_2091	1	amont	С	MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae TCH8431/19A	HMPREF0837_10124	1	amont	С	MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae 70585	SP70585_2248*	1	amont		MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus pneumoniae Hungary19A-6	SPH_2314	1	amont	С	MINILYFLIILTIWQVFDEFSEKYDK MKKIRNQGEVYGADWKSL	
	Streptococcus mitis B6	smi_0116	1	amont	С	MINILYFLIILTIWQVFDEFSEKYDK MKKILNQGDAYGADWKSL	
	Streptococcus pneumoniae R6	spr0104*	-1	amont	(183 pb)	MNKKIFCILVCIILLISLAIIFPWGWPI	
	Streptococcus pneumoniae D39	SPD_0112	-1	amont	183 pb	MNKKIFCILVCIILLISLAIIFPWGWPI	
is 2	Streptococcus pneumoniae JJA	SPJ_0139	-1	amont	183 pb	MNKKIFCILVCIISLISLAIIFPWGWPI	
mit	Streptococcus pneumoniae Taiwan19F-14	SPT_0150	-1	amont	183 pb	MNKKIFCILVCIISLISLAII <u>F</u> PWGWSI	
ille	Streptococcus pneumoniae CGSP14	SPCG_0110*	-1	amont	(183 pb)	MNKKIFCILVCIISLISLAIIFPWGWPI	
Fam	Streptococcus pneumoniae TCH8431/19A	HMPREF0837_10406	-1	amont	183 pb	MNKKIFCILVCIISLISLAIIFPWGWSI	
	Streptococcus pneumoniae 70585	SP70585_0179	-1	amont	183 pb	MNKKIFCILVCIISLISLAII <u>F</u> PWGWSI	
	Streptococcus mitis B6	smi_1977	-1	amont	184 pb	MNKKVFRFLVVLAFLFSIATVFPWGWPI	
	Listeria innocua Clip11262	lin2541	-1	amont	76 pb	(MKKEGED)MLTLFKSIN₩LF	
ß	Listeria seeligeri serovar 1/2b str. SLCC3954	lse_2346	-1	amont	76 pb	(lkk egkn) MLTFLTSINWIF	
teri	Listeria monocytogenes EGD-e	lmo2447	-1	amont	76 pb	(MKKEGED) MLTLLKSINWLF	
ille List	Listeria monocytogenes serotype 4b str. F2365	LMOf2365_2420	-1	amont	76 pb	(MKKEGED) MLTLLKSINWLF	
	Listeria monocytogenes serotype 4b str. CLIP 80459	Lm4b_02416	-1	amont	76 pb	(MKKEGED) MLTLLKSINWLF	
am	Listeria monocytogenes HCC23	LMHCC_0153	-1	amont	76 pb	(MKKEGED) MLTFLTSVNWLF	
ш	Listeria monocytogenes 08-5923	LM5923_2592	-1	amont	76 pb	(MKKEGED) MLTLLKSINWLF	
	Listeria monocytogenes 08-5578	I M5578 2643	-1	amont	76 pb	(MKKEGED) MLTLLKSINWLF	

Tableau 13 – Familles de peptides_{SHOW} identifiées dans le groupe mitis et le genre *Listeria*.

^a Les annotations sont issues de la base de données GenBank ; ^b Les termes « -1 » et « 1 » indiquent respectivement une localisation amont ou avale de la spCDS codant le peptide détecté par rapport au gène *rgg* de référence ; ^c Distance nucléotidique entre les ATG de la spCDS et le gène *rgg* de référence, donnée précisée uniquement quand les gènes sont divergents ; ^d La majorité des peptides de cette famille sont annotés dans GenBank. L'astérisque indique une annotation du démarrage de transcription du *rgg* différente de celle identifiée pour la majorité des gènes *rgg* du groupe. La lettre « C » indique que les parties 3' de la spCDS et 5' du gène *rgg* se chevauchent.

Les peptides appartenant à la seconde famille appelée « mitis 2 » sont quant à eux retrouvés dans 7 des 12 souches séquencées de *S. pneumoniae* ainsi que dans l'unique souche séquencée de *S. mitis* disponible au moment de l'analyse. Les caractéristiques générales de ces peptides, nommés peptides_{SHOW_mitis2}, sont présentées dans le Tableau 13. Cette famille de peptides présente différentes caractéristiques telles que la présence de résidus basiques en N-terminal, d'un stretch hydrophobe au niveau de leur partie centrale et d'acides aminés aromatiques (une phénylalanine et deux tryptophanes) en C-terminal.

> Identification d'une nouvelle famille de peptides spécifique du genre Listeria.

Sur la base des similarités de séquences des peptides codés par les spCDS, une famille de peptides a pu être distinguée à l'échelle du genre bactérien. Ces peptides, identifiés au sein du genre *Listeria*, sont représentés dans 8 des 9 souches séquencées disponibles au moment de l'analyse et présents à la fois dans les génomes des souches pathogènes et non pathogènes. Les caractéristiques générales de ces peptides, nommés peptides_{SHOW_listeria}, sont présentées dans le Tableau 13. De manière inattendue, l'analyse de ces loci a révélé une possible erreur d'annotation des démarrages de traduction de ces peptides. En effet, une séquence peptidique conservée en N-terminal, correspondant à MKKEGED, attribuerait à ces peptides de nouveaux critères ; telle qu'une sécrétion potentielle du à la présence de lysines et la présence d'un aspartate conservé (Tableau 13).

> Identification de peptides « souche spécifique »

Dans cette étude, ont été considérés comme peptides « souche specifique » tous les peptides présentant des caractéristiques intéressantes (Tableau 12) mais détectés dans moins de la moitié des souches séquencées d'une espèce considérée ou dans toute espèce ne présentant qu'une souche séquencée au moment de l'analyse. Les caractéristiques générales de ces peptides sont présentées dans le Tableau 14.

Les peptides « souche specifique » ont été identifiés au sein de 4 espèces appartenant au groupe des streptocoques (*pneumoniae*, *mutans*, *sanguinis* et *equi*). Tous possèdent des lysines dans la partie N-terminale de leur séquence peptidique. Le peptide retrouvé chez *S. pneumoniae* à la particularité d'être riche en acides aminés aromatiques et plus particulièrement en tryptophane. Le peptide identifié chez *S. sanguinis* présente également cette particularité mais de manière plus localisée dans sa partie C-terminale. Les spCDS codant ces peptides isolés sont localisées en amont de la protéine régulatrice Rgg alors que celles codant les peptides isolés identifiés chez *S. mutans* et *S. equi* sont en aval du régulateur. Les séquences peptidiques de ces deux derniers peptides sont quant à elles Tableau 14 – Peptides_{SHOW} « souche spécifique » présentant des caractéristiques intéressantes.

	Peptide détecté par le logiciel SHOW				
	Localisation ^b Séquence				
Streptococcus pneumoniae 4 souches séquencées sur 12	-1	amont	MGF KK YLKNLPKNSG F LIWSWIQLIWFETWFWG		
Streptococcus sanguinis SK36 1 souche séquencée	-1	amont	MKKIVYNLILLAVTSIVTTSVFPWWWLWW		
Streptococcus mutans NN2025 1 souche séquencée sur 2	1	aval	MKLRKLLIAIVTFWFIO <mark>GG</mark> C		
Streptococcus equi subsp. zooepidemicus MGCS10565 1 souche séquencée sur 3	1	aval	MKLLHLLKIAAVVFLLIPPIIF		

Tableau 15 – Identification d'une famille de peptides « sans » critère au sein de l'espèce *Streptococcus pneumoniae*.

	Peptide détecté par le logiciel SHOW		
	Localisation ^b		Séquence
R6	1	amont	MSRKDVTVTIF
D39	1	amont	MSRKDVTVTIF
TIGR4	1	amont	MSRKDVAVTIF
JJA	1	amont	MSRKDVAVTIF
Taiwan19F-14	1	amont	MSRKDVAVTIF
G54	1	amont	MSRKDVTVTIF
CGSP14	1	amont	MSRKDVAVTIF
ATCC 700669	1	amont	MSRKDVAVTIF
TCH8431/19A	1	amont	MSRKDVAVTIF
70585	1	amont	MSRKDVAVTIF
Hungary19A-6	1	amont	MSRKDVTVTIF
P1031	1	amont	MSRKDVAVTIF

riches en acides aminés hydrophobes et trois acides aminés aromatiques sont présents dans la partie C-terminale du peptide de *S. mutans*.

La localisation sur l'arbre phylogénétique des protéines Rgg et Rgg-like de l'ensemble des familles ou peptides « souche specifique » décrits dans cette partie est présentée en Annexe 3.

4.4 Discussion

L'identification de nouvelles familles de peptides est rendue difficile par la complexité du traitement des données, basé dans notre cas sur certains critères tels que la similarité de séquence ou la présence de caractères communs.

La première contrainte résulte en la bonne annotation des démarrages de traduction. En effet, il n'est pas impossible, au vu de la famille détectée au sein du groupe mitis 1 ou du genre *Listeria*, d'être passé à côté de familles présentant des critères d'intérêt. De manière générale, l'annotation des démarrages de traduction est un problème récurrent de l'annotation de gène. Dans le cadre de cette analyse *in silico*, cela avait auparavant déjà été constaté concernant le XIP de *Streptococcus uberis*. Dans ce cas, une séquence peptidique (allongeant la séquence finale du peptide) avait été ajoutée à la séquence connue et publiée (Mashburn-Warren *et al.*, 2010). Aussi, le traitement des données issues de systèmes automatisés requiert une certaine prudence et justifie la nécessité de confirmer à « l'œil » et de manière méthodique l'ensemble des données fournies. Il est important de préciser, par ailleurs, que d'autres familles de peptides – ne présentant pas de critère défini sur la base des SHP et XIP – ont été détectées lors de cette analyse. Un exemple est présenté dans le Tableau 15.

Une deuxième contrainte à prendre en compte est la notion de seuil très nettement mise en évidence au cours de l'analyse des peptides SHP et XIP. Aussi, malgré la détection de la majorité des peptides SHP et XIP connus à des seuils « stringents », l'application de seuils moins sélectifs est nécessaire à la détection de l'ensemble de ces peptides. Aussi, la complexité du répertoire de données augmente significativement, résultant en un nombre important de protéines Rgg-like bornées par une ou plusieurs spCDS pouvant être localisées à la fois en amont et en aval (cf. exemples présentés en Annexe 4). La difficulté consiste alors à savoir si toutes les spCDS détectées sont premièrement transcrites (notion de fauxpositifs) et deuxièment codent des peptides possédant de réelles fonctions physiologiques. Aussi, la définition *in silico* de familles de peptides sans critère défini au préalable s'avère être un travail audacieux.

Enfin, la pertinence dans le choix des peptides à étudier et la validation expérimentale de la production et du rôle de ces peptides reste indispensable à la réelle définition d'une nouvelle famille de peptides.

Dans le cadre de cette analyse, seulement des critères communs et spécifiques aux familles SHP et XIP ont été utilisés. Néanmoins, afin d'être le plus exhaustif possible dans la recherche de peptides potentiellement sécrétés ou « phéromones », d'autres critères décrits dans la littérature aurait pu être pris en compte. En particulier, la recherche de signaux d'exportation (Chandler and Dunny, 2008; Lanigan-Gerdes *et al.*, 2007; Vickerman *et al.*, 2010), la présence d'un motif double glycine (Annexe 5) (Håvarstein *et al.*, 1994; Håvarstein *et al.*, 1996) ou encore la recherche dans les séquences signales de protéines secrétées.

Aucun peptide transversal à l'ensemble du taxon n'ayant été identifié, chaque partenaire peptide/protéine régulatrice semble s'associer de manière spécifique, ceci soit au niveau d'un genre comme décrit pour les SHP et XIP chez les streptocoques ou pour les peptides_{SHOW_listeria}, soit au niveau de l'espèce. Au sein de cette dernière configuration *S. pneumoniae* semble être la bactérie ayant accumulé le plus grand nombre de systèmes impliquant des protéines Rgg-like au cours de son l'évolution. Néanmoins, le nombre de souches séquencées n'étant pas homogène entre les différentes espèces de streptocoques, cette observation sera probablement remise en cause à plus ou moins long terme.

Une dernière interrogation serait de savoir si le terme « Rgg » est utilisé dans cette étude à bon escient. La proximité des protéines Rgg avec les régulateurs de la famille RNPP et de la famille ComR (Rgg-like), laisse présager de nombreuses difficultés d'annotation et d'identification. En effet, il est intéressant de relever que les protéines « Rgg-like » associées à la famille de peptides, présentée dans le Tableau 15, sont annotées PIcR. De plus, les antiphéromones d'*E. faecalis* associées au régulateur PrgX ont également été détectées par cette analyse. Ceci pause alors clairement la question : comment définir et classer précisément les régulateurs Rgg, ComR et de la famille RNPP ? Des solutions seront proposées dans la discussion générale.
Fleuchot B.^{1,2}, Besset C.^{1,2}, Bruneau E.³, Vidic J.⁴, Gitton C.^{1,2}, Guillot A.^{1,2}, Monnet V.^{1,2}, Gardan R.^{1,2}

¹INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France.

²AgroParistech, UMR MICALIS, F-78352 Jouy en Josas, France.

³INRA, UMR1128, IFR110, Nancy-Université, Laboratoire de Génétique et Microbiologie, BP239, 54506 Vandœuvre-lès-Nancy, France.

⁴INRA, UR892 Virologie Immunologie Moléculaire, F-78352 Jouy en Josas, France.

1. Introduction

La construction d'un arbre phylogénétique des protéines Rgg et Rgg-like a fait ressortir l'existence de trois groupes de systèmes SHP/Rgg. Dans cette étude, nous nous sommes attachés, dans un premier temps, à démontrer que d'autres loci (appartenant aux groupes I et II) fonctionnent selon le même mécanisme de QS que celui décrit sur le locus *shp/rgg1358* de *S. thermophilus* LMD-9. Aussi, la fonctionnalité de trois nouveaux systèmes appartenant à des espèces de streptocoques pathogènes (*S. agalactiae* NEM316 et *S. mutans* UA159) et GRAS (*S. thermophilus* LMG18311) a été analysée dans un système hétérologue. Pour ceci, des fusions transcriptionnelles couplant le promoteur du gène *shp* de chaque locus à un système rapporteur *luxAB* ont été construites et intégrées dans le chromosome de *S. thermophilus* LMD-9, exprimant ou non de manière endogène les gènes *shp* et *rgg* du locus apparenté. L'activité des promoteurs *shp* a ensuite été mesurée dans un contexte sauvage et délété du système de transport AmiCDEF (contrôle négatif). La détermination des formes matures des phéromones SHP de ces trois systèmes a par ailleurs été entreprise par LC-MS/MS.

L'arbre phylogénétique des protéines Rgg-like, présenté dans l'article 1, a mis en évidence une coévolution des protéines régulatrices Rgg et des phéromones SHP. Aussi, la similarité des séquences en acides aminés, des protéines Rgg et des phéromones SHP associées, soulève la question de phénomènes de cross-talk ou de cross-inhibition entre les streptocoques. Ces phénomènes ont déjà été décrits pour d'autres genres bactériens, tels que *Bacillus* (Bouillaut *et al.*, 2008 ; Slamti et Lereclus, 2005) ou *Staphylococcus* (Wright *et al.*, 2005). Dans ces études, l'analyse des séguences des phéromones et régulateurs

Tableau 16 –	Description	des souches	utilisées	dans	cette	étude.
--------------	-------------	-------------	-----------	------	-------	--------

	Souches et génotypes	Résistance ^a	Description ^b	Références
Streptococcu	s thermophilus LMD-9 et dérivés			
LMD-9	Wild-type			Makarova <i>et al.</i> , 2006
TIL1345	LMD-9 blp::Pshp::wt_agalactiae::aphA3	Km	pGICB004:: <i>aphA3</i> ::P <i>shp::</i> wt_ <i>agalactiae</i> → LMD-9	Cette étude
TIL1380	LMD-9 <i>blp</i> ::Pshp::∆rgg_agalactiae::aphA3	Km	pGICB004:: <i>aphA3</i> ::P <i>shp::∆rgg_agalactiae →</i> LMD-9	Cette étude
TIL1381	amiCDE::erm blp::Pshp::wt_agalactiae::aphA3	Km/Erm	TIL1389 DNA → TIL1345	Cette étude
TIL1382	LMD-9 blp::Pshp::∆shp_agalactiae::aphA3	Km	pGICB004:: <i>aphA3</i> ::Ps <i>hp::</i> ∆s <i>hp_agalactiae →</i> LMD-9	Cette étude
TIL1383	LMD-9 blp::Pshp::wt_mutans::aphA3	Km	pGICB004:: <i>aphA3</i> ::Ps <i>hp::</i> wt_ <i>mutans</i> → LMD-9	Cette étude
TIL1384	LMD-9 <i>blp</i> ::Pshp::∆shp_mutans::aphA3	Km	pGICB004:: <i>aphA3</i> ::Ps <i>hp::</i> ∆s <i>hp_mutans</i> → LMD-9	Cette étude
TIL1385	amiCDE::erm blp::Pshp::wt_mutans::aphA3	Km/Erm	TIL1389 DNA → TIL1383	Cette étude
TIL1386	LMD-9 <i>blp</i> ::Pshp::∆rgg_mutans::aphA3	Km	pGICB004:: <i>aphA3</i> ::P <i>shp::∆rgg_mutans →</i> LMD-9	Cette étude
TIL1389	amiCDE::erm	Erm	PCR fragment amiCDE::erm → LMD-9	Cette étude
TILA	LMD-9 blp::Pshp::wt_thermophilusLMG::aphA3	Km	pGICB004::aphA3::Pshp::wt_thermophilusLMG \rightarrow LMD-9	Cette etude
TILB	LMD-9 blp::Pshp::\drgg_thermophilusLMG::aphA3	Km	pGICB004::aphA3::Pshp:: Δ rgg_thermophilusLMG \rightarrow LMD-9	Cette etude
	LMD-9 blp::Pshp::\Deltashp_thermophilusLMG::aphA3	Km	pGICB004::aphA3::Pshp::wt_thermophilusLMG \rightarrow LMD-9	Cette etude
TILD	amiCDE::erm bip::Psnp::wt_thermophilusLMG::aphA3	Km/Erm	TIL1389 DNA → TILA	Cette etude
Streptococcu	s thermophilus LMG18311 et dérivés			
LMG18311	Wild-type			BCCM LMG ^c
TIL1320	∆rgg0182			Henry <i>et al.</i> , 2011
TIL1322	LMG18311 blp::Pshp0182			Henry <i>et al.</i> , 2011
TIL1324	∆rgg0182 blp::Pshp0182			Henry <i>et al.</i> , 2011
Streptococcu	s mutans UA159			
UA159	Wild-type ATCC 700610			ATCC
Streptococcu	s agalactiae NEM316			
NEM316	Wild-type			Gaillot <i>et al.</i> , 1997
Escherichia c	oli			
TG1			supE hsd Δ 5 thi Δ (lac-proAB) F'[traD36 proAB ⁺ lacl ^q lacZ Δ M15]	Gasson, 1983
Rosetta		Cm	F^{-} ompT hsdS _B (r_{B}^{-} m _B ⁻) gal dcm pRARE	Novagen
TIL1318	Rosetta pET28a::Rgg1358	Km, Cm		Article 1
TIL1387	Rosetta pET28a::Gbs1555	Km, Cm	pET28a::Rgg1358 → Rosetta	Cette etude
TIL1388	Rosetta pET28a::Smu.1509	Km, Cm	pET28a::Rgg1358 → Rosetta	Cette étude
C41DE3			Souche dérivée de E coli BL 21(DE3)	Miroux et Walker 1006
UTIDLU			E_{-} ompT hsdSB (rB-mB) gal dcm met (DE3)	
TII 1035	C41DE3 pET155".Rgg0182	Amp	$nFT15h$ Rad0182 \rightarrow C41DF3	Henry et al 2011
		,b		

a. Km, Erm et Cm indiquent respectivement une résistance à la kanamycine, l'érythromycine et le chloramphénicol.

b. Les flèches indiquent des constructions réalisées par transformation naturelle en présence d'ADN chromosomique ou plasmidique.

c. BCCM Belgian Coordinated Collections of Microorganisms, LMG Laboratory of Microbiology and Genetics, Université de Gent.

associés dans différentes souches révèle une diversité qui permet la définition de phérotypes. Aussi, au sein d'un même phérotype, les systèmes sont compatibles alors qu'ils ne le sont pas ou sont inhibiteurs entre phérotypes. Le deuxième enjeu de ce travail est alors d'explorer la spécificité des systèmes SHP/Rgg en évaluant, par SPR, l'affinité de différentes paires SHP/Rgg. Aussi, dans un premier temps, l'affinité de quatre paires SHP/Rgg légitimes (*S. thermophilus* (2), *S. agalactiae* (1) et *S. mutans* (1)) est mesurée afin d'être comparée, dans un second temps, aux affinités de paires illégitimes, associant le Rgg d'un locus avec le SHP d'un autre locus. En parallèle, une validation *in vivo* est entreprise, pour chaque locus *shp/rgg* considéré, par ajout des formes matures synthétiques des peptides phéromones légitimes et illégitimes dans des cultures de souches possédant une fusion rapportrice mais ne produisant pas de SHP.

Dans cette étude, une contrainte non négligeable a concerné la difficulté de synthèse des différentes formes matures des peptides phéromones SHP. En effet, en regard des expériences à réaliser, un niveau de pureté minimum (90%), nous paraissait nécessaire. L'ensemble des entreprises contactées pour la synthèse des peptides a, de manière systématique, rencontré une réelle difficulté de purification de ces derniers. Aussi, les dernières formes matures synthétiques de ces peptides venant d'être réceptionnées, après 7 mois d'attente, les résultats concernant le deuxième objectif de ce travail ne pourront être présentés dans cette partie. Les expériences devraient néanmoins être réalisées d'ici la date de soutenance.

2. Matériel et méthode

Souches bactériennes et conditions de croissance

Les souches utilisées dans cette étude sont listées dans le Tableau 16. Pour chacun des quatre loci *shp/rgg* étudiés, quatre souches ont été construites, permettant de suivre l'expression des promoteurs P_{shp} dans un contexte sauvage, délété du gène *shp*, *rgg* ou de l'opéron *ami*. Les souches de *S. thermophilus* ont été cultivées à 30, 37 ou 42°C et celles de *S. agalactiae* et *S. mutans* à 30°C, en milieu M17 complémenté avec 10 g.L⁻¹ de lactose (M17lac) ou en MCD sans peptide (Letort and Juillard, 2001). Les souches de *E. coli* ont été cultivées à 30 ou 37°C en milieu Luria-Bertani (LB) sous agitation. De l'agar à 1,5% a été ajouté aux différents milieux quand nécessaire. De même, lorsque cela a été requis, les cultures ont été supplémentées en antibiotiques aux concentrations suivantes : kanamycine, 30 µg/mL pour *E. coli* et 1000 µg/mL pour *S. thermophilus* ; érythromycine, 5 µg/mL pour *S. thermophilus*. Le suivi de croissance a été réalisé par mesure de la densité optique des

1 a b c a u = 0 a c c c c c c c c c c c c c c c c c c

Oligonucléotides	Séquence (5' → 3') ^{a,b}
AphA3-F	CCAGCGAACCATTTGAG
AphA3-R	GTTGCGGATGTACTTCAG
Erm-F	GGGACCTCTTTAGCTCCTTGG
Erm-R	GGAGATAAGACGGTTCGTGTTCG
BF1	CGGCTTTGACCTACACG
BF4	AAGTGACCTGGGCGTAC
BF21	GCATCAATCAGTTTATCTC
BF22	GAGACGGTCAGATTTTT
BF25-EcoRI	GAA <u>GAATTC</u> TTATCCACCAACGATAAT
BF26-Spel	AACT <u>ACTAGT</u> GCACTCATTAGCATTCTT
BF30-Spel	AACT <u>ACTAGT</u> ATCTTCTTAGTGTTTTTCCT
BF31-EcoRI	GAA <u>GAATTC</u> ATTTTTTCATGACTATCTCCT
BF32-EcoRI	GAA <u>GAATTC</u> CTACCCACCGCCGATA
BF33-Spel	AACT <u>ACTAGT</u> AAGAGAGAGATTTTTATCCC
BF34-EcoRI	GAA <u>GAATTC</u> TTATTTCTCATGTTTTTCTC
BF35-Spel	AACT <u>ACTAGT</u> CCTTCATTTTTTAGACCGC
BF36-Ndel	CCACCA <u>CATATG</u> GAAAAGAATTAG
BF37-Xhol	CCGCTCGAGCTATTAGCATTCTTTATTAT
BF38-Ndel	CCACCA <u>CATATG</u> ACTGAATATGGAA
BF39-Xhol	CCG <u>CTCGAG</u> CTATTATCCTTCTAAAATTT
BF40	<u>CTACTGACAGCTTCCAAGGAGCTAAAGAGGTCCC</u> AAGGCGATGGTTGGTAGTG
BF41	GCAAGTCAGCACGAACACGAACCGTCTTATCTCC
EB01-EcoRI	GAA <u>GAATTCC</u> ATAAACGGGATTAACCT
EB02-EcoRI	GAA <u>GAATTC</u> ATATGCAACCTTCTTTTAAA
EB03-EcoRI	GAA <u>GAATTC</u> AACAATTTCATATGATTTCC
EB04-EcoRI	GAA <u>GAATTC</u> TTAGACACCACCAACTAT

a. Les sites de restrictions des enzymes sont soulignés.

b. Les séquences complémentaires à la cassette kanamycine sont soulignées en pointillés.

Plasmide	Description ^a	Références
pGICB004	Erm, Plasmide à origine de réplication thermosensible permettant l'intégration de fusions transcriptionnelles <i>luxAB</i> par double recombinaison homologue au locus <i>blp</i> de <i>S. thermophilus</i> .	Article 1
pGICB004:: <i>aphA3</i>	Erm, Km, Plasmide pGICB004 contenant un insert conférant une résistance à la Km en aval des gènes luxAB et permettant l'intégration par transformation naturelle de fusions transcriptionnelles <i>luxAB</i> par double recombinaison homologue au locus <i>blp</i> de <i>S. thermophilus</i> .	Cette étude
pET28a	Km, Vecteur permettant la production de protéines recombinante présentant une queue 6-histidine.	Novagen
pET28a::Rgg1358	Dérivé du plasmide pET28 permettant la surproduction de la protéine Rgg1358 de <i>S. thermophilus</i> LMD-9	Article 1
pET28a::Gbs1555	Dérivé du plasmide pET28 permettant la surproduction de la protéine Gbs1555 de <i>S. agalactiae</i> NEM316	Cette étude
pET28a::Smu.1509	Dérivé du plasmide pET28 permettant la surproduction de la protéine Smu.1509 de S. <i>mutans</i> UA159	Cette étude
pET15b	Amp, Vecteur permettant la production de protéines recombinantes présentant une queue 6-histidine.	Novagen
pET15b::Rgg.0182	Dérivé du plasmide pET15b permettant la surproduction de la protéine Rgg.0182 de <i>S. thermophilus</i> LMG18311	Henry <i>et al.</i> , 2011

Tableau 18 – Plasmides utilisés dans cette étude.

a. Km, Erm et Amp indiquent respectivement une résistance à la kanamycine, à l'érythromycine et à l'ampicilline.

cultures à 600 nm (DO₆₀₀) grâce à un spectrophotomètre Uvikon 931 (Kontron Instruments, UK).

Manipulation de l'ADN et séquençage

Les enzymes de restriction, la T4 DNA ligase, la T4 DNA polymérase (New England Biolabs), la Taq DNA polymérase (Qbiogen) et la Phusion High-Fidelity DNA polymérase (Finnzyme) ont été utilisées selon les instructions du fournisseur. La souche *E. coli* TG1 a été utilisée comme souche hôte pour la réalisation des clonages. Les oligonucléotides nécessaires aux différentes amplifications PCR sont présentés dans le Tableau 17. Les cellules naturellement compétentes de *S. thermophilus* ont été transformées suivant le protocole décrit dans l'article 1. L'ADN chromosomique de *S. thermophilus* a été extrait par précipitation selon le protocole décrit par Gardan *et al.* en 2009.

Construction de souches et plasmides

Les plasmides utilisés dans cette étude sont présentés dans le Tableau 18. Le plasmide pGICB004 permet l'introduction de fusions transcriptionnelles *luxAB* au locus *blp* de *S. thermophilus* LMD-9 par simple recombinaison homologue. Dans cette étude, un dérivé de ce plasmide contenant une cassette de résistance à la kanamycine (pGICB004::*aphA3*), a été construit dans le but d'intégrer des fusions transcriptionnelles par double recombinaison homologue au locus *blp* de *S. thermophilus* LMD-9. Les cellules de *S. thermophilus* LMD-9 naturellement compétentes ont été transformées suite à la linéarisation des plasmides pGICB004::*P*_{intérét}::*aphA3* par l'enzyme de restriction *Scal*. Pour ceci, la cassette *aphA3* a été amplifiée par PCR à l'aide des oligonucléotides AphA3-F et AphA3-R et intégrée au pGICB004 au niveau du site de restriction *Smal* (Figure 46).

Les plasmides pET28a::Gbs1555 et pET28a::Smu.1509 ont été construits dans le but de surproduire puis de purifier les protéines Rgg recombinantes des systèmes de *S. agalactiae* NEM316 (Gbs1555) et *S. mutans* UA159 (Smu.1509) en présence d'une queue 6-histidine en N-terminal. Les gènes *rgg, gbs1555* et *smu.1509*, ont respectivement été amplifiés par PCR à l'aide des oligonucléotides BF36-*Ndel /* BF37-*Xhol* et BF38-*Ndel /* BF39-*Xhol*. Les fragments obtenus ont ensuite été digérés par les enzymes de restriction *Ndel* et *Xhol* et clonés dans le plasmide pET28a préalablement digéré par ces mêmes enzymes de restriction. Le produit de ligation a alors servi à transformer la souche d'*E. coli* Rosetta résultant en la construction des souches TIL1387 (*E. coli* Rosetta pET28a::Gbs1555) et TIL1388 (*E. coli* Rosetta pET28a::Smu.1509).

Figure 46 – Représentation schématique des plasmides pGICB004 (A) et pGICB004::aphA3 (B).

Figure 47 – Fusions transcriptionnelles construites pour l'étude de la fonctionnalité des systèmes SHP/Rgg.

La souche TIL1389 (*amiCDE::erm*) a été construite par PCR chevauchante à trois fragments. La cassette érythromycine a été amplifiée par PCR à partir du pG⁺host9 en utilisant les oligonucléotides Erm-F / Erm-R et les fragments amont et aval du locus *amiCDEF* à partir des oligonucléotides BF1 / BF40 et BF41 / BF4. Une PCR trois fragments a ensuite été réalisée à l'aide des oligonucléotides BF1 / BF4. Le produit de PCR a alors servi à transformer des cellules de *S. thermophilus* LMD-9 naturellement compétentes.

Afin d'étudier la fonctionnalité des systèmes SHP/Rgg de S. agalactiae NEM316 (SHP/Gbs1555), S. mutans UA159 (SHP/Smu.1509) et S. thermophilus LMG18311 (SHP/Rgg.0182), trois fusions transcriptionnelles couplant le promoteur du gène shp à un système rapporteur luxAB et exprimant ou non de manière endogène les gènes shp et rgg du locus apparenté ont été construites. Ces fusions transcriptionnelles, appelées A (P_{shp}::wt), B ($P_{shp}::\Delta rgg$), et C ($P_{shp}::\Delta shp$), sont présentées dans la Figure 47. La construction des plasmides pGICB004::aphA3::agalactiae a été réalisée comme suit. Les différents fragments du promoteur shp ont été amplifiés par PCR à l'aide des oligonucléotides BF26-Spel / BF25-EcoRI (A), BF30-Spel / BF25-EcoRI (B) et BF26-Spel / BF31-EcoRI (C), digérés par les enzymes de restriction EcoRI et Spel et clonés dans le plasmide pGICB004::aphA3 préalablement digéré par ces mêmes enzymes de restriction. L'intégration de ces plasmides dans la souche de S. thermophilus LMD-9 a conduit à l'obtention des souches TIL1345 (LMD-9 *blp*::Pshp::wt_agalactiae::aphA3), TIL1380 (LMD-9 *blp*::Pshp::∆rgg_agalactiae:: aphA3) et TIL1382 (LMD-9 blp::Pshp:::\Data shp_agalactiae::aphA3). La souche TIL1381 (amiCDE::erm blp::Pshp::wt agalactiae::aphA3) a, quant à elle, été obtenue par transformation de la souche TIL1345 avec de l'ADN chromosomique de la souche TIL1389. Les plasmides pGICB004::aphA3::mutans ont été construits selon la même procédure. La présence d'un site EcoRI dans le gène rgg a néanmoins nécessité une étape supplémentaire de clonage. Aussi, un premier fragment a tout d'abord été amplifié par PCR à l'aide des oligonucléotides BF33-Spel / BF22, digéré par les enzymes de restriction EcoRI et Spel puis cloné dans le plasmide pGICB004::aphA3. Les différents fragments du promoteur shp ont ensuite été amplifiés par PCR à l'aide des oligonucléotides BF21 / BF32-EcoRI (A), BF35 / BF32-EcoRI (B) et BF21 / BF34-EcoRI (C), digérés et clonés soit dans le pGICB004::aphA3 (B), soit dans le plasmide pGICB004::aphA3 contenant le fragment 1 préalablement intégré (A et C). L'intégration de ces plasmides dans la souche de S. thermophilus LMD-9 a conduit à l'obtention des souches TIL1383 (LMD-9 blp::Pshp::wt mutans::aphA3), TIL1386 (LMD-9 *blp::Pshp::*\Drgg mutans::aphA3) et TIL1384 (LMD-9 *blp::Pshp::*\Drdshp mutans::aphA3). La souche TIL1385 (amiCDE::erm blp::Pshp::wt_mutans::aphA3) a ensuite été obtenue par transformation de la souche TIL1383 avec de l'ADN chromosomique de la souche TIL1389. La construction des plasmides pGICB004::aphA3::thermophilusLMG a également été réalisée selon la même procédure. La présence d'un site Spel dans le gène rgg, nous a

néanmoins conduit à entreprendre l'intégration de ces fusions transcriptionnelles au niveau du site *Eco*RI. Aussi, les différents fragments du promoteur *shp* ont été amplifiés par PCR à l'aide des oligonucléotides EB01-*Eco*RI / EB04-*Eco*RI (A), EB02-*Eco*RI / EB04-*Eco*RI (B) et EB01-*Eco*RI / EB03-*Eco*RI (C), digérés par l'enzymes de restriction *Eco*RI et clonés dans le plasmide pGICB004::*aphA3* préalablement digéré par l'enzyme de restriction *Eco*RI. L'intégration de ces plasmides dans la souche *S. thermophilus* LMD-9 a conduit à l'obtention des souches TILA (LMD-9 *blp*::*Pshp*::wt_*thermophilus*LMG::*aphA3*), TILB (LMD-9 *blp*::*Pshp*::*Δshp_thermophilus*LMG::*aphA3*) et TILC (LMD-9 *blp*::*Pshp*::*Δshp_thermophilus*LMG::*aphA3*) a, quant à elle, été obtenue par transformation de la souche TILA avec de l'ADN chromosomique de la souche TIL1389.

L'ensemble des constructions a été vérifié par PCR et validé par séquençage.

> Mesure de l'activité luciférase

A partir d'une colonie isolée sur boite, une pré-culture sur la journée a été ensemencée dans 5 mL de milieu M17Iac avec ou sans antibiotique et incubée à 42°C. Un repiquage à 2% a ensuite été effectué dans 5 mL de milieu MCD sans antibiotique et incubé sur la nuit à 42°C. Cette deuxième préculture a ensuite été utilisée pour ensemencer, à t=0, une culture de 50 mL de MCD à DO_{600nm} = 0,05 incubée à 42, 37 ou 30°C. A partir de t=1h, des aliquotes de 1 mL ont été prélevés à intervalle de temps régulier jusqu'en phase stationnaire de croissance et analysés selon le protocole décrit dans l'article 1. La bioluminescence émise est exprimée en unité relative de luminescence (RLU, **R**elative **L**ight **U**nit) et les résultats sont rapportés à la DO_{600nm} (RLU/DO_{600nm}).

Lorsque nécessaire, les peptides synthétiques (solubilisés dans du DMSO 100% dilué ensuite à 5% dans du tampon HBS 20 mM pH 7,4) ont été ajoutés aux cultures, à t=0, à une concentration finale de 1 µM. Dans ce cas, l'activité luciférase a été mesurée en système automatisé Synergy HT multimode reader (Bioteck, Winooski, VT) en microplaque PS blanche 96 puits à fond plat transparent (VWR). Une solution de nonylaldéhyde à 0,01% est alors préparée extemporanément dans de l'huile de paraffine. 50 µL de cette solution sont déposés au niveau des zones inter-puits et l'analyse est réalisée sur des cultures de 250 µL.

Analyse nanoLC-MS/MS

Afin de déterminer les formes matures des phéromones SHP des systèmes de *S. mutans* et *S. agalactiae*, une première analyse en système hétérologue chez *S. thermophilus* LMD-9

a été entreprise. Dans un deuxième temps, la présence des peptides identifiés en système hétérologue a été recherchée dans les surnageants de culture des souches sauvages *S. mutans* UA159 et *S. agalactiae* NEM316.

Locus shp/gbs1555 de S. agalactiae NEM316 : Les surnageants de cultures des souches TIL1345 (dérivé de S. thermophilus LMD-9 produisant la phéromone d'intérêt) et LMD-9 ont été récupérés par centrifugation et analysés selon le protocole décrit dans l'article 1. A partir de 5 µL de surnageant de culture, les peptides natifs maturés par hydrolyse à partir de la séquence du précurseur MKKINKALLFTLIMDILIIVGG ont été recherchés. Les peptides du surnageant ont été séparés par nanoHPLC et analysés en ligne par spectrométrie de masse sur LTQ-Orbitrap. L'analyse des données de spectrométrie de masse a été réalisée manuellement par extraction du signal de masse (XIC) correspondant aux séquences en acides aminés possédant la glycine C-terminale du précurseur et allant de l'hexapeptide LIIVGG au tridecapeptide FTLIMDILIIVGG. La validation manuelle de la présence de(s) peptide(s) a été réalisée en se reférant à trois critères principaux ; les peptides détectés au sein du surnageant de culture de la souche TIL1345 devaient (i) posséder un temps de rétention chromatographique compatible avec l'indice GRAVY d'hydrophobicité du peptide, (ii) être absents du surnageant de culture de la souche LMD-9 et (iii) générer après fragmentation en CID (Colision Induce Dissociation) des ions fils compatibles avec la séquence.

Locus shp/smu.1509 de S. mutans UA159 : Les surnageants de cultures des souches TIL1383 (dérivé de S. thermophilus LMD-9 produisant la phéromone d'intérêt), LMD-9 et UA159 (S. mutans) ont été récupérés par centrifugation et analysés selon le protocole décrit dans l'article 1, à partir de 5 µL de surnageant de cuture. Une analyse par spectrométrie de masse (identique à celle décrite précédemment) a été entreprise afin d'identifier la/les forme(s) mature(s) issue(s) du précurseur MRNKIFMTLIVVLETIIIIGGG, en recherchant au sein des surnageants TIL1383 et LMD9 la présence de peptides allant de l'hexapeptide IIIGGG au tridecapeptide IVVLETIIIIGGG. Dans ces conditions d'analyse aucun signal de masse compatible avec les séquences testées n'a été mise en évidence. Dans un deuxième temps, une seconde approche d'identification ciblée et plus sensible a été mise en place pour valider par spectrométrie de masse au sein des différents surnageants la présence du peptide ETIIIIGGG en recherchant la transition m/z>b7 (739 > 741) en condition d'acquisition de type SRM (Single Reaction Monitoring) sur LTQ-Orbitrap. La transition m/z > ions fils b7 aété choisie sur la base du comportement à la fragmentation sur LTQ-Orbitrap CID de la phéromone SHP1358 qui génére un ion fils N-terminal dominant correspondant à un clivage au niveau de la liaison peptidique résultant de la perte de 2 acides aminés coté C-terminal (article 1).

Production et purification des protéines Rgg

La production et la purification des protéines Rgg1358, Gbs1555, Smu.1509 et Rgg.0182, ont été réalisées selon le protocole décrit dans l'article 1, à partir de cultures des souches TIL1318, TIL1387, TIL1388 et TIL1035 respectivement.

3. Résultats

Sélection des loci shp/rgg

Afin d'élargir, à d'autres loci, le mécanisme de QS décrit sur le locus shp/rgg1358 de S. thermophilus LMD-9 et d'étudier la spécificité des systèmes SHP/Rgg, des loci modèles ont tout d'abord été choisis. Bien que la construction d'un arbre phylogénétique des protéines Rgg ait fait ressortir trois groupes de systèmes SHP/Rgg (article 1), nous nous sommes focalisés dans cette étude sur les systèmes appartenant aux groupes I et II, présentant de plus fortes similarités en termes de séquences protéigues et d'organisation génétique. Afin d'évaluer la spécificité des systèmes SHP/Rgg et de définir si cette dernière est souche-spécifique, espèce-spécifique ou groupe-spécifique : deux systèmes SHP/Rag ont été sélectionnés au sein de chaque groupe. L'analyse des différents loci appartenant au groupe I (dont l'environnement génétique est généralement peu conservé) a souligné la présence d'un système shp/rgg présentant un environnement génétique identique entre trois streptocoques pathogènes : S. agalactiae, S. dysgalactiae et S. pyogenes (cf. résultats chapitre 3). En effet, pour ces trois loci, l'environnement génétique est composé d'une glycosylase (Fpg), d'une CoaE-kinase et d'un transporteur. Aussi, afin d'étudier ce locus, nous avons choisi de travailler sur le locus shp/gbs1555 de S. agalactiae NEM316, seul locus shp/rgg détecté au sein de l'espèce. Dans un second temps, le système shp/rgg.0182 de S. thermophilus LMG18311 présentant une particularité au niveau de la séquence peptidique de la phéromone SHP a été sélectionné (parmi les 5 loci présents au sein de cette souche). En effet, alors que la majorité des peptides SHP appartenant au groupe I, présente un résidu aspartate conservé dans leur séquence, ce peptide SHP possède un résidu cystéine (article 1, cf. résultats chapitre 3). Au sein du groupe II, l'environnement génétique des loci shp/rgg étant conservé et composé principalement d'une spCDS, d'une enzyme à radical SAM et d'un transporteur (cf. résultats chapitre 3), le choix s'est alors porté sur la proximité des bactéries entre elles et leur possibilité de se retrouver dans un même écosystème. Aussi, le locus shp/smu.1509 de S. mutans UA159 a été sélectionné en regard du locus shp/rgg1358 de S. thermophilus LMD-9 déjà étudié (article 1) et sélectionné comme deuxième locus au sein de ce groupe de systèmes SHP/Rgg. En effet, ces deux

Tableau 19 – Loci *shp/rgg* sélectionnés dans cette étude.

a. Les formes matures des phéromones déterminées par LC-MS/MS sont indiquées en couleur sur les séquences des précurseurs.

streptocoques font partie de la flore buccale de l'Homme et des animaux, le premier étant résidant, le second ne faisant que transiter au sein de celle-ci. Le locus *shp/rgg* de *S. mutans* est le seul locus *shp/rgg* détecté au sein de l'espèce. *A contrario*, *S. thermophilus* LMD-9 possède également 3 autres loci dans son génome. Le Tableau 19 récapitule les différents loci sélectionnés.

Etude de la fonctionnalité des systèmes SHP/Rgg : stratégie

L'étude du locus shp/rgg1358 de S. thermophilus LMD-9 a révélé que le gène shp code une phéromone dont l'expression auto-induite nécessite la présence du régulateur transcriptionnel Rgg1358 et d'un transporteur d'oligopeptides AmiCDEF (article 1). Nous émettons l'hypothèse que dans tout système SHP/Rgg, l'expression du gène shp est contrôlée de la même manière. Aussi, afin d'étudier la fonctionnalité de systèmes SHP/Rgg de streptocoques pathogènes (S. agalactiae NEM316 et S. mutans UA159) et GRAS (S. thermophilus LMG18311), différentes fusions transcriptionnelles P_{shp}::/uxAB ont été construites (Figure 47). Ces fusions couplent le promoteur du gène shp de chaque locus à un système rapporteur luxAB et, expriment ou non de manière endogène les gènes shp et rgg du locus apparenté. Ces fusions, introduites dans le chromosome de S. thermophilus LMD-9 au locus *blp*, ont été dénommées : P_{shp}::*wt_strepto*, lorsque les gènes *shp* et *rgg* sont exprimés de manière endogène et, P_{shp}:: \(\Delta\rgg_strepto et P_{shp}:: \(\Delta\shp_strepto, lorsque \) seulement le gène shp ou rgg, respectivement, est exprimé de manière endogène (Figure 47). Le terme « strepto » étant remplacé par « mutans », « agalactiae » ou « thermophilusLMG » en fonction du locus étudié. Le rôle du système de transport AmiCDEF ayant été démontré dans la réimportation de la phéromone SHP1358 du locus shp/rgg1358 de S. thermophilus LMD-9 (article 1), la fusion transcriptionnelle P_{shp}::wt_strepto a également été étudiée dans un contexte génétique Δami. Cette fusion a été nommée P_{shp}::∆ami_strepto.

Aussi, si la fonctionnalité des systèmes *shp/rgg* de *S. mutans* UA159, *S. agalactiae* NEM16 et *S. thermophilus* LMG18311 est identique à celle du système *shp/rgg1358* de *S. thermophilus* LMD-9, l'activité des promoteurs P_{shp} doit être dépendante des trois partenaires, c'est-à-dire de la phéromone SHP, du régulateur transcriptionnel Rgg et du système de transport d'oligopeptides AmiCDEF.

Influence de la température sur l'activité des systèmes SHP/Rgg

Récemment, les travaux de Henry et al. ont montré l'influence de la température sur l'expression du gène shp0182 du locus shp/rgg0182 de S. thermophilus LMG18311 (Henry

Les courbes de croissance sont de couleur grise et les activités luciférases en noires. Les données présentées sont représentatives de trois expériences indépendantes.

A et **B**, Influence de la température sur la fusion transcriptionnelle P_{shp} ::wt_strepto. Les températures de croissances sont indiquées par le style de trait utilisé : 30°C (---), 37°C (---) et 42°C (---).

C et **D**, Etude de l'activité des P_{shp} dans différents contextes génétiques à 30°C. Les fusions transcriptionnelles utilisées sont indiquées de la manière suivante : P_{shp} ::*wt_strepto* (\bullet), P_{shp} ::*Δrgg_strepto* (\blacksquare), P_{shp} ::*Δshp_strepto* (\blacktriangle) et P_{shp} ::*Δami_strepto* (\times).

et al., 2011). L'activité de la fusion $P_{shp0182}$::*luxAB* introduite au locus *blp* de *S. thermophilus* LMG18311 s'est révélée 6 fois plus importante à 30°C versus 42°C en MCD. 42°C représentant la température optimale de croissance de *S. thermophilus*, le système SHP/Rgg0182 a alors été proposé comme intervenant dans la réponse au stress thermique chez *S. thermophilus* LMG18311 (Henry *et al.*, 2011). Aussi, afin de définir si la température est une condition modulant l'activité d'autres systèmes SHP/Rgg, l'expression des fusions transcriptionnelles P_{shp} ::*wt_strepto* des loci de *S. agalactiae* et *S. mutans* a tout d'abord été testée à ces deux températures. Par ailleurs, ce travail étant réalisé en système hétérologue, il nous a semblé opportun d'étudier également l'expression de ces fusions transcriptionnelles à la température optimale de croissance de ces deux bactéries, c'est-à-dire 37°C.

Quelque soit la fusion testée – P_{shp} ::wt_mutans ou P_{shp} ::wt_agalactiae –, un profil similaire d'activité des promoteurs P_{shp} a été observé (Figure 48A, B). En effet, bien qu'une activité luciférase ait été détectée pour chaque température testée, le niveau d'expression de ces dernières est d'autant plus élevé que la température est faible. Ainsi, à 30°C, une activité luciférase équivalente à 120 RLU/DO_{600nm} ou à 1600 RLU/DO_{600nm} a été obtenue avec les fusions P_{shp} ::wt_strepto de *S. mutans* et *S. agalactiae*, respectivement. Ces activités luciférases sont respectivement 6 ou 2,6 fois plus importantes en comparaison avec les profils d'activité des promoteurs P_{shp} à 37°C. Ceci suggère un effet température sur l'expression de ces deux systèmes SHP/Rgg et éventuellement leur implication dans l'adaptation de la bactérie à un stress froid. En effet, à 30°C, le taux de croissance de *S. thermophilus* LMD-9 est deux fois plus faible ($G_{30^{\circ}C} = 69 \min / G_{37/42^{\circ}C} = 33 \min$) et la biomasse finale obtenue moins importante. Enfin, quelque soit la température testée, les niveaux d'activité luciférase des fusions P_{shp} ::wt_strepto atteignent leur optimum toujours en fin de phase exponentielle / début de phase stationnaire de croissance (Figure 48A, B).

Sur la base de ces résultats, l'étude de la fonctionnalité des systèmes SHP/Rgg de *S. agalactiae* NEM316, *S. mutans* UA159 et *S. thermophilus* LMG18311 a été entreprise à 30°C.

<u>L'activité des promoteurs P_{shp} est contrôlée par SHP, Rgg et AmiCDEF chez</u> <u>S. agalactiae et S. mutans</u>

Afin de définir si les produits des gènes *shp* et *rgg* sont nécessaires à l'activation des promoteurs P*shp*, la comparaison de la fusion transcriptionnelle P_{shp} ::*wt_strepto* avec les fusions transcriptionnelles P_{shp} :: $\Delta rgg_strepto$ et P_{shp} :: $\Delta shp_strepto$ a tout d'abord été entreprise. Une activité luciférase, similaire à celles obtenues lors des essais température

Figure 49 – Croissance et activité luciférase de différentes souches de *Streptococcus thermophilus* LMG18311 présentant une fusion $P_{shp0182}$::*luxAB* dans leur génome.

Les courbes de croissance sont de couleur grise et les activités luciférases en noires. L'utilisation des symboles rond et carré fait respectivement référence aux souches TIL1322 (LMG18311 *blp::Pshp0182*) et TIL1324 (*\(\Deltargg0182 blp::Pshp0182*)\). Lorsque du peptide synthétique CIYIIVGGV a été ajouté aux cultures, l'intérieur des symboles est de couleur blanche. Les données présentées sont représentatives de trois expériences indépendantes.

(Figure 48A, B), a bien été mesurée avec les fusions P_{shp}::wt_strepto de S. mutans et S. agalactiae (Figure 48C, D). En revanche, aucune activité luciférase (ou une activité luciférase considérée comme non significative) n'a été détectée avec les fusions transcriptionnelles n'exprimant pas de manière endogène le gène shp ou rgg. Aussi, les partenaires SHP et Rgg de chaque locus apparenté (shp/smu.1509 ou shp/gbs1555) sont essentiels à la fonctionnalité de ces deux systèmes SHP/Rgg ; les protéines régulatrices Rgg contrôlant l'expression de leur gène shp apparenté et le produit du gène shp impliqué dans sa propre transcription. Dans un second temps, et afin d'étudier le rôle du transporteur d'oligopeptides sur la transcription des gènes *shp*, la fusion transcriptionnelle P_{shp}::wt_strepto a été comparée avec la fusion P_{shp}:: <u>Aami_strepto</u>. Dans le cadre du locus de S. mutans, aucune activité du promoteur P_{shp} n'a été détectée en présence d'un contexte génétique délété du système de transport AmiCDEF (Figure 48C). Aussi, ce dernier est également impliqué dans le contrôle positif de la transcription du gène shp appartenant au locus shp/smu.1509 de S. mutans. Dans le cadre du locus de S. agalactiae, un niveau d'activité luciférase de 200 RLU/DO_{600nm} a été détecté en présence de la fusion P_{shp}:: \[\Delta ami_agalactiae] (Figure 48D). Ce niveau d'activité est néanmoins 7,3 fois plus faible que celui obtenu dans un contexte sauvage. Aussi, la différence d'activité significative du promoteur P_{shp} dans un contexte génétique délété du système de transport Ami en comparaison au contexte sauvage, nous permet de conclure quant à l'implication de ce transporteur dans la boucle de rétrocontrôle positif modulant la transcription du gène shp du locus de S. agalactiae. Néanmoins, il est possible que la transcription du gène shp de ce locus implique un autre élément de régulation.

Enfin, aucune activité luciférase n'a été détectée avec les fusions transcriptionnelles du locus *shp/rgg.0182* de *S. thermophilus* LMG18311 (données non présentées).

L'activation du promoteur P_{shp0182} est fonctionnelle en système homologue

L'absence d'activité luciférase du promoteur $P_{shp0182}$ du locus *shp/rgg.0182* de *S. thermophilus* LMG18311 à 30°C et en système hétérologue, nous a conduit, dans un second temps, à tester la fonctionnalité de ce système en système homologue. Aussi, sur la base des séquences des phéromones SHP connues, le nonapeptide CIYIIVGGV, correspondant à la partie C-terminale de la séquence précurseur (Tableau 19), a été synthétisé dans le but de complémenter des cultures des souches TIL1322 (LMG18311 *blp::*P_{*shp0182*}) et TIL1324 ($\Delta rgg0182 \ blp::P_{shp0182}$) (Figure 49). L'ajout de la phéromone synthétique dans le surnageant de la souche sauvage augmente d'un facteur 1,5 l'activité luciférase de la fusion avec le promoteur P_{*shp0182*}. Par ailleurs, l'ajout du peptide synthétique

dès le début de la culture impacte le déclenchement de l'activation du promoteur qui se produit 2h plus tôt. En revanche, dans un contexte génétique délété du gène rgg0182, une activité similaire du promoteur $P_{shp0182}$ est observée quelque soit la condition testée (en absence ou en présence de la phéromone synthétique) (Figure 49). Aussi, ces résultats soulignent l'implication du régulateur transcriptionnel Rgg.0182 sur la transcription du gène shp0182 (Henry *et al.*, 2011) et démontrent que le nonapeptide contenant une cystéine est une forme mature capable d'activer l'expression du système shp/rgg.0182 de *S. thermophilus* LMG18311.

Les formes matures des phéromones SHP sont générées à partir du résidu conservé au sein de leur séquence

Identification de la phéromone du système SHP/Gbs1555 de S. agalactiae NEM316 : La comparaison des surnageants de cultures issus des souches TIL1345 et LMD-9 a permis de mettre en évidence un peptide (non présent dans le surnageant de la souche LMD-9) de masse m/z = 799,4329 et présentant un profil d'hydrophobicité compatible avec la séquence peptidique putative de la phéromone. Cette masse, une fois fragmentée et analysée sur LTQ-Orbitrap, a permis d'identifier un octapeptide de séguence DILIIVGG, correspondant aux 8 acides aminés issus d'un clivage côté C-terminal de la séquence précurseur de la phéromone SHP. La masse de ce peptide a ensuite été recherchée dans le surnageant de culture de la souche sauvage S. agalactiae NEM316. En parallèle, et afin de s'affranchir de la présence d'éventuels produits de dégradation pouvant générer un fragment compatible avec les masses identifiées, la séquence de l'octapeptide a été recherchée dans la base de données « non-redundant protein sequences » de GenBank. Un fragment heptapeptidique de séquence ILIIVGG localisé dans la partie N-terminale d'une protéine membranaire putative, codée par le gène gbs0830, a été identifié. Bien que similaire, ce fragment étant plus court que celui correspondant à la masse observée, ne pouvait influencer la détection de l'octapeptide identifié. Aussi, la détection de la masse de l'octapeptide dans le surnageant de culture de la souche sauvage et sa validation par fragmentation a permis de confirmer la forme mature de la phéromone du locus shp/gbs1555 de S. agalactiae NEM316 (Figure 50A ; Tableau 19).

<u>Identification de la phéromone du système SHP/Smu.1509 de S. mutans UA159</u>: L'analyse manuelle des signaux de masse de type SRM a permis de mettre en évidence 6 zones chromatographiques pouvant correspondre à la transition recherchée (et correspondant à un peptide de séquence ETIIIIGGG) en condition de production hétérologue chez *S. thermophilus* LMD-9. Une analyse manuelle des spectres de fragmentation moyens

Figure 51 – SDS-PAGE des fractions protéiques issues des cultures d'*Escherichia coli* permettant la surproduction de protéines Rgg recombinantes.

Les souches TIL1318, TIL1387, TIL1388 et TIL1035 permettent respectivement la surproduction des protéines Rgg1358 (34,1 KDa), Gbs1555 (33,9 KDa), Smu.1509 (33,1 KDa) et Rgg.0182 (34,1 KDa) indiquées par des flèches rouges.

associés a permis de vérifier que ce peptide est bien produit et relargué dans le surnageant en condition de production hétérologue mais également chez la souche sauvage *S. mutans* UA159 (Figure 50B ; Tableau 19). Aucun fragment compatible avec une séquence protéique chez *S. mutans* n'a, par ailleurs, été détecté suite à la réalisation d'un Blastp dans la base de données « non-redundant protein sequences » de GenBank.

Surproduction des protéines Rgg

La surproduction des protéines Rgg (Rgg1358, Gbs1555, Smu.1509, Rgg.0182) et leur purification sont nécessaires à l'étude *in vitro* des affinités des couples SHP/Rgg par SPR. Aussi, après construction des plasmides, la surproduction des protéines Rgg recombinantes chez *E. coli* a été vérifiée sur gel SDS-PAGE (Figure 51). L'induction à l'IPTG, conduisant à la surexpression des quatre protéines Rgg, est visible dans les pistes 2, 4, 6 et 8. Aussi, les différentes constructions étant validées, les derniers peptides synthétiques correspondant aux formes matures des différentes phéromones SHP identifiées dans cette étude reçus et le protocole de purification des protéines mis au point (article 1), les expériences de SPR ont pu être planifiées pour fin octobre.

4. Discussion

La fonctionnalité de systèmes SHP/Rgg appartenant aux groupes I et II a été évaluée au sein de plusieurs espèces de streptocoques. L'étude des loci shp/gbs1555 de S. agalactiae NEM316 et shp/smu.1509 de S. mutans UA159, en système hétérologue chez S. thermophilus LMD-9, a tout d'abord permis d'élargir la fonctionnalité du mécanisme SHP/Rgg (décrit initialement sur le locus shp/rgg1358 de S. thermophilus LMD-9) à deux streptocoques pathogènes. En effet, au même titre que le locus shp/rgg1358 de S. thermophilus LMD-9, l'activité des promoteurs P_{shp} de ces deux systèmes a été décrite comme contrôlée par SHP, Rgg et AmiCDEF. Ces résultats, soulignant l'auto-induction de la transcription des gènes shp de ces deux systèmes, confortent le phénomène d'autoinduction des phéromones largement décrit dans des mécanismes de QS (article1, Chang et al., 2011; Fontaine et al., 2010a; Mashburn-Warren et al., 2010; Novick, 2003; Pestova et al., 1996a). L'identification des formes matures des phéromones SHP de ces deux systèmes a également été entreprise. Aussi, un nonapeptide de séquence ETIIIIGGG et un octapeptide de séquence DILIIVGG ont été identifiés comme correspondant aux formes matures des systèmes de S. mutans et S. agalactiae, respectivement. Dans tous les cas, et en particulier pour S. mutans où une recherche ciblée d'une séquence prédite comme fonctionnelle a été réalisée, on ne peut exclure que d'autres formes matures actives existent. En outre, de

récentes études soulignant le rôle essentiel des résidus conservés – aspartate ou glutamate – identifiés au sein des séquences des phéromones SHP, corroborent le fait que ces résidus soient inclus dans les séquences matures des phéromones SHP (article 1) car nécessaire à leur activité (Chang *et al.*, 2011). Il est alors envisageable que les formes matures des phéromones SHP soient, dans leur ensemble, générées suite à un clivage côté C-terminal de la forme précurseur effectué à partir du résidu conservé au sein de leur séquence. L'identification de ces formes matures ayant été réalisée à partir de surnageants de culture par LC-MS/MS, ceci indique que les phéromones SHP des systèmes SHP/Rgg de *S. mutans* et *S. agalactiae*, au même titre que la phéromone SHP1358 de *S. thermophilus* LMD-9, sont libérées – au moins en partie – dans le milieu extracellulaire au cours de la croissance. Récemment, l'étude de deux loci *shp/rgg* chez *S. pyogenes* a également démontré ce phénomène (Chang *et al.*, 2011).

Le rôle de la peptidase membranaise Eep a été démontré dans la maturation de diverses phéromones, telles que les phéromones SHP (article 1, Chang *et al.*, 2011) ou encore les anti- et sex-phéromones chez *E. faecalis* (Thoendel et Horswill, 2010). Néanmoins, les séquences peptidiques de ces différentes molécules de signalisation ne permettent pas la reconnaissance d'un ou de plusieurs site(s) protéolytique(s) de clivage. Aussi, il est possible que la spécificité des protéines Eep ait évoluée au sein des différentes genres bactériens ou que les protéines Eep présentent une large spécificité de substrat.

Dans cette étude, nous avons montré que la température est un paramètre influençant l'expression des systèmes SHP/Rgg de S. agalactiae et S. mutans. Aussi, un niveau maximal d'activité luciférase ayant été obtenu lors de cultures réalisées à 30°C, l'application de conditions non optimales de croissance semble favoriser l'expression de ces systèmes. Néanmoins, nous ne pouvons affirmer pour le moment que ces systèmes répondent de manière spécifique à un stress froid. En effet, les conditions de culture utilisées dans cette étude ne correspondent pas à l'application d'un stress à proprement parler. Aussi, l'application d'un saut de température passant de 42 à 30°C permettrait de définir précisément le lien entre ces systèmes SHP/Rgg et la réponse au stress thermique. Néanmoins, quelque soit la température utilisée lors des expériences, un niveau maximal d'activité a été observé au moment de la transition phase exponentielle / phase stationnaire de croissance. Ce changement physiologique correspondant à un état de stress pour les bactéries (carence en nutriments, pH acide, etc.), l'action combinée de différents facteurs de « stress » pourrait alors expliquer l'augmentation brutale de l'activité des promoteurs P_{shp}::wt_mutans ou P_{shp}::wt_agalactiae dans ces conditions drastiques de croissance pour S. thermophilus LMD-9. Aussi, ces deux systèmes SHP/Rgg pourraient jouer un rôle dans la

Séquence 1	Séquence 2	Identité
LMD-9_AmiA1	LMG18311_AmiA2	99 %
	LMG18311_AmiA3	86 %
LMD-9_AmiA3	LMG18311_AmiA2	86 %
	LMG18311_AmiA3	98 %

Tableau 20 – Pourcentage d'identité des protéines affines AmiA chezStreptococcus thermophilus LMD-9 et CNRZ1066.

Les alignements ont été réalisés sous ClustalW2, paramètres standards.

réponse au stress des bactéries et répondre de manière additionnelle et relative à la quantité de stress générés sur les cellules. Enfin, l'effet visible de la température sur l'activité des promoteurs P_{shp} de *S. mutans* et *S. agalactiae*, nous a conduit à tester l'activité du $P_{shp1358}$ du locus *shp/rgg1358* de *S. thermophilus* LMD-9 à 30 et 37°C, celui-ci ayant auparavant été étudié à 42°C seulement (article 1). Dans ces conditions, un niveau d'activité luciférase inférieur à celui obtenu à 42°C a été observé (R. Gardan, communication personnelle). Aussi, l'impact d'un changement de température semble être propre à un nombre spécifique de systèmes SHP/Rgg et par conséquent, cette variation ne conditionne pas nécessairement une forte expression de la totalité de ces systèmes.

De manière inattendue, l'étude du locus shp/rgg.0182 de S. thermophilus LMG18311 (en système hétérologue chez S. thermophilus LMD-9) n'a révélé aucune activité du promoteur P_{shp0182} dans les conditions testées. Les souches LMD-9 et LMG18311, bien que possédant toutes deux la protéine affine AmiA3, se différencient au niveau de leur seconde protéine affine présente dans leur génome ; AmiA2 pour S. thermophilus LMG18311 et AmiA1 pour S. thermophilus LMD-9. Aussi, il est envisageable que l'import de la phéromone SHP du système shp/rgg.0182, présentant la particularité de posséder un résidu cystéine dans sa séquence, soit spécifique de la protéine affine AmiA2. L'alignement de la séquence protéigue de la protéine affine AmiA2 avec celles de S. thermophilus LMD-9 souligne de forts pourcentages d'identité pouvant aller jusqu'à 99% (Tableau 20). Aussi, les résidus les différenciant seraient hautement spécifiques des peptides réimportés. De manière intéressante, la souche S. thermophilus CNRZ1066, présentant dans son génome un système shp/rgg paralogue au système shp/rgg.0182 de S. thermophilus LMG18311, possède également la protéine affine AmiA2. Par ailleurs, dans la littérature, aucun lien n'est encore clairement établi entre la présence de certains résidus dans une séquence protéique de protéine affine et leur spécificité vis-à-vis de peptides donnés. Aussi, deux protéines affines présentant un fort pourcentage d'identité, peuvent ne pas partager exactement la même spécificité de substrat (Picon et al., 2005). Des études de transport ou d'activité du promoteur P_{shp0182} dans la souche sauvage et dans un mutant nul des protéines affines complémenté par un plasmide permettant la surproduction de chacune d'entre elles (AmiA1, AmiA2 et AmiA3) permettraient d'évaluer cette hypothèse. Le rôle éventuel de certains résidus dans la spécificité de liaison du substrat pourrait ensuite être étudié par mutagénèse dirigée. Par ailleurs, l'hypothèse d'une éventuelle différence de spécificité de la protéase membranaire Eep, dans ces différentes souches de streptocoques contenant le locus shp/rgg.0182 (LMG18311 et CNRZ1066), a également été soulevée. Néanmoins, l'absence d'activité du promoteur P_{shp0182} en système hétérologue, après ajout de peptide synthétique (CIYIIVGGV) dans les surnageants de cultures (données non présentées), ne permet pas de

88

valider cette hypothèse. Enfin, il est envisageable que différents systèmes SHP/Rgg ne soient pas compatibles au sein d'une même souche et que, par conséquent, un phénomène d'inhibition du système SHP/Rgg.0182 de *S. thermophilus* LMG18311 par un autre système SHP/Rgg de *S. thermophilus* LMD-9 se produise dans la cellule.

Tableau 21 – Récapitulatif des trois groupes de systèmes SHP/Rgg décrit dans l'article 1.

* Le terme « sans redondance » se réfère à la séquence peptidique des phéromones SHP.

** Séquences des phéromones SHP appartenant aux clusters 11 et 12.

Chapitre 3 : Prédiction des régulons SHP/Rgg

Fleuchot B.^{1,2}, Nicolas P.³, Chambellon E.^{1,2}, Monnet V.^{1,2}, Gardan R.^{1,2}

¹INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France.
²AgroParistech, UMR MICALIS, F-78352 Jouy en Josas, France.
³INRA, UR1077 Mathématique, Informatique et Génome, F-78352 Jouy en Josas, France.

1. Contexte

Soixante huit systèmes SHP/Rgg ont été identifiés dans les génomes de streptocoques et classés en trois groupes selon deux principaux critères : la coévolution des protéines Rgg et des phéromones SHP ainsi que l'organisation génétique des gènes *shp* et *rgg* (Tableau 21) (article 1). Alors que le mécanisme de régulation de ces systèmes a été étudié sur différents loci *shp/rgg* (article 1 ; (Chang *et al.*, 2011), peu d'informations concernant les fonctions physiologiques qu'ils contrôlent sont encore disponibles dans la littérature. En effet, seulement les systèmes SHP/Rgg chez *S. pyogenes* ont été décrits, très récemment, comme impliqués dans la formation de biofilms (Chang *et al.*, 2011). Par conséquent, la prédiction des régulons des systèmes SHP/Rgg est un enjeu important que l'on a voulu aborder à travers cette étude. Pour ceci, une analyse *in silico* a été menée afin de définir un motif de fixation des protéines Rgg à l'ADN et de rechercher sa présence dans le génome des streptocoques séquencés. En parallèle, une analyse des environnements génétiques des loci *shp/rgg* a été réalisée. Actuellement, la validation de cibles prédites, *in vitro*, sur certains loci de streptocoques pathogènes ou GRAS est en cours au laboratoire.

2. Définitions

Pour faciliter la compréhension du vocabulaire utilisé dans ce chapitre, nous précisons ici le sens que nous donnons à quelques termes. On désigne par « squelette ADN » le motif consensus identifié dans les régions promotrices des gènes *shp* en ne prenant en compte que les nucléotides strictement conservés entre les différents motifs identifiés. Le terme « motif », quant à lui, fait référence à la séquence ADN présente dans les régions promotrices des gènes *shp* (et cibles putatives) prenant aussi en compte les nucléotides spécifiques du système SHP/Rgg auquel il se rapporte.

Figure 52 – Arbre de classification reflétant la divergence des sites synonymes au sein des protéines Rgg.

Les références arbitraires sont indiquées par un rond bleu ou vert, indiquant respectivement l'appartenance de la référence au groupe I ou II. Seulement deux clusters étant disponible au sein du groupe III, l'ensemble des régions inter-géniques a été utilisé lors des alignements ; par conséquent aucune référence n'a été désignée dans ce groupe de système SHP/Rgg. La ligne pointillée indique le seuil sélectionné.

Le nombre de « mismatches » correspond au nombre de différences, aux positions non déterminées par le squelette, entre l'occurrence du motif dans la région promotrice du gène *shp* et l'occurrence en amont d'un gène cible putatif.

3. Matériel et méthode

Identification de « squelettes » pour les motif(s) de fixation des protéines Rgg à <u>l'ADN</u>

Afin d'éliminer les redondances entre les 68 systèmes SHP/Rgg identifiés dans l'article 1, susceptibles de perturber la recherche de motifs dans les séquences promotrices, une classification des systèmes SHP/Rgg en fonction de leur proximité évolutive a tout d'abord été construite. Il s'agit en effet d'éviter autant que possible les ressemblances en dehors des régions fonctionnelles soumises à pression de sélection (telles que les sites de fixations de facteurs de transcription). Pour contourner la difficulté de mesurer la distance évolutive directement entre les séquences intergéniques, dont l'alignement est difficile et pour lesquelles on ne connait pas la proportion de sites non soumis à sélection, nous avons utilisé une estimation du nombre de substitutions synonymes par site synonyme au sein des séquences nucléotidiques des protéines Rgg comme mesure de divergence (Yang and Nielsen, 2000). Finalement, 17 clusters de protéines Rgg, tels que le taux estimé de mutations synonymes par site soit au minimum de 1 entre deux clusters, ont été définis et une référence au sein de chaque cluster a été désignée de manière arbitraire pour l'analyse (Figure 52). Un alignement local des 17 régions promotrices des gènes shp associés aux références a alors été entrepris avec MEME (Bailey and Elkan, 1994) et comparés à un alignement global avec MUSCLE (Edgar, 2004) présenté au format ClustalW2. L'ensemble des références a tout d'abord été traité simultanément puis de manière séparée, c'est-à-dire en fonction de leur groupe SHP/Rgg d'appartenance. Les résultats obtenus ont permis de définir un squelette des motifs de site de fixation sous la forme d'un consensus « IUPAC » pour chacun des trois grand groupes de systèmes SHP/Rgg (I, II et III).

Recherche de sites de fixation des protéines Rgg à l'ADN dans les génomes

La recherche de motifs a été entreprise sur la totalité des génomes des streptocoques séquencés et disponibles dans « Genome Reviews » à la date du 05.10.2010. Afin d'identifier les sites de fixation putatifs des protéines régulatrices Rgg à l'ADN, un script dédié en langage Perl a été écrit. Les consensus (squelettes) identifiés avec MEME et MUSCLE ont alors été recherchés sur une distance de 300 pb à partir de l'ATG des

	Séquence		
Motif shp1358	GCATATATGGGAATA		
Motif ster_1357	GCAAATATGGGAATA		

Figure 53 – Comparaison des motifs ADN identifiés dans les régions promotrices des gènes cibles du locus *shp/rgg1358* de *Streptococcus thermophilus* LMD-9. Le squelette ADN défini pour les motifs des systèmes SHP/Rgg du groupe II apparait en vert. différentes ORFs présentes dans chaque génome séquencé, ainsi que sur les deux brins d'ADN et dans les deux sens. La distance de 300 pb établie dans cette étude, recouvre à la fois des régions non codantes et codantes. De plus, l'utilisation du logiciel bactgeneSHOW a permis de mettre en évidence les spCDS (short putative Coding DNA Sequence) présentes dans les régions du chromosome analysées.

Les systèmes SHP/Rgg d'un même groupe pouvant être présents en multi-copies dans une souche de streptocoque, plusieurs critères ont été pris en compte afin de pouvoir affiner la détection des cibles et être capable d'attribuer une cible putative identifiée à un système SHP/Rgg donné. Lors de l'étude du locus shp/rgg1358 de S. thermophilus LMD-9 (article 1), la fixation de la protéine Rgg1358 sur les régions promotrices des deux gènes cibles du système, shp1358 et ster_1357, a été démontrée sur des sondes ADN contenant un motif conservé correspondant au squelette ADN identifié dans cette étude pour les systèmes SHP/Rgg du groupe II (Figure 53). Bien qu'un squelette de 12 nucléotides ait été détecté pour ce groupe (voir ci-dessous), il est intéressant de souligner qu'une similitude de séquence plus longue peut être identifiée entre le motif d'un gène shp de référence et celui d'un gène cible associé. De plus, les séquences identifiées dans les régions promotrices des gènes shp1358 et ster 1357 ne diffèrent qu'au niveau d'un nucléotide (en position 4), alors que le squelette défini pour le groupe II autorise 4 différences. Cette faible variabilité entre les motifs est probablement en lien avec une spécificité de liaison du Rgg d'un système sur le motif ADN du gène cible du même système. C'est pourquoi, plutôt que de simplement identifier les séquences conforment aux squelettes, nous avons pour chaque système SHP/Rgg recherché de manière spécifique des occurrences du squelette ressemblant à celle trouvée dans la région promotrice du gène shp correspondant. Pour ceci, la première étape a consisté en une recherche de similitudes entre les régions amont des gènes shp et le reste du génome (300 pb à partir de l'ATG des différentes ORFs) avec une fenêtre glissante en autorisant un nombre de mismatches limité : 2 mismatches pour fenêtre de taille 12 (groupe II), 3 mismatches pour fenêtre de taille 14 (groupe I). Les données ont ensuite été filtrées pour ne garder que les séquences qui satisfont les contraintes « IUPAC » définies par le squelette (Figure 53). Pour la recherche de cibles putatives apparentées aux systèmes SHP/Rgg du groupe III, seul le squelette a été utilisé.

4. Résultats

Identification de trois motifs putatifs de fixation des protéines Rgg à l'ADN

Les gènes *shp* codent les phéromones nécessaires à l'activation des systèmes de QS SHP/Rgg. La caractérisation de plusieurs de ces systèmes (article1, résultats chapitre 2,
Tableau 22 – Alignements MEME et MUSCLE des références des groupes I, II et III.

	MEME	MUSCLE	
Groupe I	10 nt communs	RggI_11 RggI_12 RggI_13 RggI_14 RggI_16 RggI_15 RggI_17	AAGAAATAGAAATTCCTTTTTCTTCCCGCATTTTTCTATAGGTTTCACC ATAGAAATCCCCTTTTCTTCTCTTTATTTTCCTATAAGTTTCACC
		RggI_11 RggI_12 RggI_13 RggI_14 RggI_16 RggI_15 RggI_17	TAAGATCATAGATTATCTCCGTT-TGTAGTTAAAAGTGGAAAGCGT TAAAATCATACTTATCTCCGATT-TACCATAAACAATCATAAGAAAATGT AAAAATCAAATCAAATGTTATCCTATGTAACAAACTAAGTTGGAGGAAATCA AAAAATTAACTTATTTCTTATTTATTGTACAATAAATAAAAAATGAAAGGAAGTCA AAAAATTCAAATCCGTCAAATCCATTATATAATACAAGTACAAAATAGAAAATCA AATTTAAAAGACCCTTTAAATCCATTATATAATACAAGTACAAAATAGAAAATCA AAAAATTAAAATCTGCTAAATCCATTATATAATACAAGTACAAAATAGAAAATCA AAAAATTAAAATCTGCTAAATCCATTATATATAATACAAGTACAAAATAGAAAATCA AAAAATTAAAATCTGCTAAATCCATTATATATAATACAAGTACAAAATAGAAAATCA
		RggI_11 RggI_12 RggI_13 RggI_14 RggI_16 RggI_15 RggI_17	GACAA GACCGATT GAGT GAAAGGAAGCTGTC GAAAGGAGATAGTC GAAAGGAGACAGTC
Groupe II		RggII_5 RggII_4 RggII_3 RggII_10 RggII_6 RggII_8 RggII_7 RggII_9	TATTCAGTCATCAATAGTACCTCAATT <mark>G</mark> TCT <mark>ATATGGGA</mark> TTTATATTCAGTT CCATAATCTTTCATAAAAAGCACCTCTTTT <mark>G</mark> CATATACGAGAATTTCCCAGA-TAAACTT AATGGTTCAAAACTACCACCTCACTT <mark>G</mark> TATATAAGGGATTTGTTTAAAGCATAACT CCAAATTCTTTCATGG-AAGCCCCCAGTTT <mark>GCATATATGGGA</mark> AAGACTTGTATTT AATTTTTCATATCACACCTCAATCAGGCATATATGGGAATATTTTTTGATT AATTTTTCATTTCACCCCCCAGTCACGCATATATGGGAATAATTTTAAATT AATTTTTCATTTTAAACCTCCTATCACGCATATATGGGAATAAATTTAAATT ATTTTTCATATCACACCTCCATCACGCATATATGGGAATAATTTTCATTT ATTTTTCATACTACCACCTCCATCACGCATATATGGGAATAATTTTCATTT
		RggII_5 RggII_4 RggII_3 RggII_10 RggII_6 RggII_8 RggII_7 RggII_9	AATTGCAATTTATTATAACATATAAGAAAAGTGAGTGAGGAGAAAA AAAAGTATTATATCATATAGTGAGAATAGGA TTATAGATGTTATCATGATTTTAAATAAATATTATCTATATTCAACAATGGGGAATATC AGTTCTATCATAACATACACTATAGAAAAACAGAAGTGAGGATTATC TTTTGTATCTTAACATAAAATACAGTAAAACAAAAGTGAGGTAATTC TTTAACATTTTAGCATAAAATAGAAAAAATAAAAGTGAGGTATTC AACTTCATAATAGCATACAATATGAAAAAATAAAAGTGAGGATTATC GCTTTCATCATAATACCAATATGAAAAATAAAAGTGAGGATTATC GCTTTCATCATAATACCAATATGAAAAAACAAAAGTGAGGATTATC * ** ** ** * * * * * * * * * * * *
		RggII_5 RggII_4 RggII_3 RggII_10 RggII_6 RggII_8 RggII_7 RggII_9	AC- TCT A AC- AC- AC- AC- AC- AC-

Tableau 22 (suite) – Alignements MEME et MUSCLE des références des groupes I, II et III.

	MEME	MUSCLE	
Groupe III		RggIII_1 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2	CACATATGCAAAAATTAAGAAAAAGTGGTAATAGCTATATACCTCTTTTTCTTGTTC TTCCCAAATTCCCCTCCATAAACTGTCTCCAACTCAGCTTCTGTCAATTCCATTGTTT TATTCCCAAATTCCCCTCCATAAACTGTCTCCAACTCAGCTTCTGTCAATTCCATTGTTT TATTCCCCAAATTCCCCTCCATAAACTATCTCCAACTCAGCTTCTGTCAATTCCATTGTTT TATTCCCAAATTCCCCTCCATAAACTATCTCCAACTCAGCTTCTGTCAATTCCATTGTTT AATTTACGAGGTTGCCTCCTCTAACATCTTGCAACTCAGCTTCTGTCAATTCCATTGTTT AATTTACGAGGTTGCCTCCTCTAACATCTTGCAACTCAGCTTCTGTCAATTCCATTGTTT * * * * * * * * * * * * *
		RggIII_1 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2	TTAGATTAACAAGCAATAAAGCAACCGCCATTACATACTTGTTCTTCTA CAGTCACATCAAGTTCCAATGAAAATTCTGTATTTTCCATAATAAACGATTCCTC CTGCAAATTGTAAATTTAACATCTTTTACACTC CTGCAAATTGTAAATTTAACATCTTTTACACTC CTGCAAATTGTAAATTTAACATCTTTTACACTC CTGCAAATTGTAAATTTAACATCTTTTACACTC CTGCAAATTGTAAATTTAACATCTTTTACACTC CTGCAAATTGTAAATTTAACATCTTTTACACTC CTGCAAATTGTAA
		RggIII_1 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2	CTTCGA-TATCTTCGATAAACATATGCCTGTTCTCCTTTCGTTATGATATCCCAA CTCCAATTATTTTTACTTATAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG CTTCAATTATCTTCATTTATAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG CTTCAATTATCTTCATTTGTAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG CTTCAATTATCTTCATTTGTAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG CTTCAATTATCTTCATTTGTAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG CTTCAATTATCTTCATTTGTAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG CTTCAATTATCTTCATTTGTAAACCACTTCTGCGACCTAGGATTTGCTTCAAGTG
		RggIII_1 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2	TTATAACTTATTTATGTCACAAAATTAA <mark>AAAATTGAAGATATGAAAT</mark> CTTTATAAGTACAGTATAACACGAAAATTGGCTTATTTTAGAAAATCGCATATTTGATAT CTTTACAAGTACAGTATAACACGAAAATTGGCTTATTTTAAAAAATCGCATATTTGATAT CTTTACAAGTACAGTATAACACGAAAATTGGCTTATTTTAGAAAATCGCATATTTGATAT CTTTACAAGTACAGTATAACACGAAAATTGGCTTATTTTAGAAAATCGCATATTTGATAT TTTTACAAGTACAGTATAACACGAAAATTGGCTTATTTTAGAAAATCGCATATTTGATAT TTTTACAAGGACAGTATAACACGGAAATTGGCTTATTTTAGAAAATCGCATATTTGATAT CTTTACAAGGACAGTATAACACGGAAATTGGCTTATTTTAGAAAATCGCATATTTGATAT CTTTACAAGTACAGTATAACACGGAACTTGGCTTATTTTAGAAAATCGCATATTTGATAT CTTTACAAGTACAGTATAACACGGAACATTGGCTTATTTTAGAAAATCGCATATTTGATAT
		RggIII_1 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2	TTTTTAATAAATTTI <mark>ATTTCATATCTTCAATTTT6</mark> GCTGAA-TTGATAAATTTTATGTTAGT TTTTTCTTATAAAAATTTCACATTTGCGATTTTAGTAGATTTGATCATTTCCCTGGT TTTTTCTTATAGAAATTTCCTTATTTGCGATTTTGATAGATTTGATTATTTCCCCGGT TTTTTCTTATAGAAATTTCAGATTTGCGATTTTGGTGAATTTGATTACTTCCTCGGT TTTTTCTTATAGAAATTTCAGATTTGCGATTTTGGTGAATTTGATTACTTCCTCTGGT TTTTTCTTATAGAAATTTCAGATTTGCGATTTTGGTGAATTTGATTACTTCCTCGGT TTTTTCTTATAGAAATTTCAGATTTGCGATTTTGGTAGATTTGATTATTTCCCCTGGT TTTTTCTTATAGAAATTTCAGATTTGCGATTTTGGTAGATTTGATTACTTCCTCGGT
		RggIII_1 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2 RggIII_2	ATAACAGTCAAACTATTGATTAGGAGGATACAGC ATAATAAAGTTATTACTAATGAGGAGGGAGTGGAAGTCAT ATAATAAAGTTACTACTAACAAGGAGG-AATATAAATAG ATAATAAAGTTACTACTAATGAGGAGT-GGAGAAAT ATAATAAAGTTACTACTAATGAGGAGT-GGAGAAAT ATAATAAAGTTACTACTAATGAGGAGG-GAAGTAAT

Tableau 23 – Squelettes ADN des motifs putatifs de fixation des régulateurs Rgg à l'ADN identifiés dans les régions promotrices des gènes *shp*.

	Groupe I	Groupe II	Groupe III
Séquence (5'→ 3')	CCCA nnTnnnCAAC	GnnnATAnGGGA	AAAATnGnAnATnnGAnAT

(Chang *et al.*, 2011) a souligné l'existence d'une boucle de régulation positive de ces gènes nécessaire à la fonctionnalité du mécanisme décrit sur certains systèmes SHP/Rgg. Nous avons alors émis l'hypothèse que le gène *shp* était une cible de chaque système SHP/Rgg. Aussi, dans le but de définir un motif de fixation des protéines Rgg à l'ADN, un alignement des 17 régions promotrices des gènes *shp* (références) a été entrepris en utilisant MEME et MUSCLE.

L'alignement des 17 régions promotrices de référence n'a pas permis d'identifier un motif de fixation putatif, des protéines Rgg à l'ADN, commun aux trois groupes de systèmes SHP/Rgg (données non présentées). Cette observation laissant présager des spécificités dans les régions promotrices des gènes shp, une deuxième analyse des régions promotrices des gènes shp a alors été réalisée en fonction du groupe d'appartenance des références : groupe I (7 références), groupe II (8) et groupe III (Figure 52). La complémentarité des alignements réalisés sous MEME et MUSCLE a rapidement permis d'identifier un motif ADN conservé dans les régions promotrices des gènes shp du groupe II (Tableau 22), dont le squelette ADN est présenté dans le Tableau 23. L'alignement des régions promotrices des gènes shp de référence du groupe I, sous MEME et MUSCLE, a fait ressortir deux séquences ADN partageant en commun 10 nt (Tableau 22). L'alignement sous MUSCLE a, par ailleurs, fait ressortir une divergence des séquences ADN des références 11 et 12 par rapport aux autres références du groupe. Ces séquences étant similaires entre elles, il nous a semblé opportun, pour la suite de l'analyse, de les traiter séparément des autres références du groupe et de ne pas les prendre en compte dans la définition du squelette ADN apparenté à ce groupe de systèmes SHP/Rgg. Par ailleurs, les séquences des phéromones SHP associées à ces systèmes présentent une extrémité C-terminale atypique (Tableau 21). Aussi, seulement le squelette ADN majoritairement identifié au sein des régions promotrices des références du groupe I est présenté dans le Tableau 23. Enfin, le groupe III ne contenant que deux références, les alignements ont été effectués sur l'ensemble des séquences appartenant à ce groupe et s'élevant au nombre de sept. L'analyse des alignements réalisés sous MEME a fait ressortir un motif ADN conservé au sein de l'ensemble des séquences (Tableau 22). Le report de ces motifs sur les alignements de MUSCLE a alors fait ressortir un deuxième motif strictement conservé pour la référence Rgg 1 ou se différenciant au niveau de 2 ou 3 nucléotides pour les références appartenant au cluster Rgg 2. L'alignement sous MUSCLE souligne également que le motif ADN, dont le squelette ADN est présenté dans le Tableau 23, est conservé sur 19 nucléotides.

L'ensemble de ces résultats a permis de déterminer un squelette ADN spécifique au sein de chaque groupe SHP/Rgg (Tableau 23). Quelque soit le groupe étudié, une tendance à la

Espèce	Nb ^a	Souche ^b	Gène <i>rgg</i>	Séquence SHP	Environnement génétique
S. thermophilus	2/3*	LMG18311	stu1044	MEKVSKILPILILVMDIIIIVGG	stu1036 stu1041 stu1042 stu1043 shp rgg stu1045
	2/3	LMG18311 CNRZ1066	stu0182 str0182	MKLLKIIVLLTCIYIIVGGV MKLLKIIVLLTCIYTIVGGV	shp rgg spCDS stu0183 stu0182
S. agalactiae	3/3	NEM316	gbs1555	MKKINKALLFTLIMDILIIVGG	
S. dysgalactiae	1/1	subsp. equisimilis GGS_124	sdeg_0529	MKKINKALLLTLIMDILIIVGG	shp rgg gbs1554 gbs1553 gbs1552 gbs1551 gbs1550
S. pyogenes	13/13	M1GAS	spy_0496	MKKVNKALLFTLIMDILIIVGG	
	13/13	M1GAS	spy_0533	MKKISKFLPILILAMDIIIIVGGEVT	shp rgg spCDS spy_0532 spy_0531
S. pneumoniae	3/9	R6 G54	spr0960 spg_0976	MKKISKFLPILILAMDIIIIVGG MKKISKFFPILMLVMDIIIIVGG	spr0963 spr0962 spr0961 shp rgg cm spr0959 / spr0955
	2/9	JJA	spj_0996	MKKISKFLPILVLVMDIIII	spj_1000 spj_0999 spj_0998 spj_0997 shp rgg spj_0995 spj_0993 spg_0992/91
	1/9	G54	spg_1268	MKKYYQIFLLLF D IIIIIGLYQ	spg_1267 spg_1269 spg_1270
S. equi	2/3	subsp. zooepidemicus MGCS10565	sez_0050	MRKSYKLLKLILDIIIIIGLCQ	sez_0054 sez_0053 sez_0052 sez_0051 shp rgg sez_0049 sez_0048 sez_0047

Tableau 24 – Environnement génétique des loci shp/rgg associés au groupe I. .

a. Nb représente le nombre de souche(s) possédant le locus représenté sur l'ensemble des souches séquencées appartenant à l'espèce apparenté.

b. Lorsque plusieurs souches présentent le même environnement génétique, celui-ci est présenté sur un locus choisi de manière arbitraire.

Le locus est tronqué dans la LMD-9 (DIIIGG). *

conservation de ces différents motifs en amont du promoteur des gènes *shp*, au niveau des boites -10 et -35, a été observée. Par ailleurs, l'analyse approfondie des motifs des groupes I et II laissent entrevoir une structure de base inversée commune de type « CCC-n₇-C » pour le groupe I et « G-n₇-GGG » pour le groupe II (Tableau 23). Aussi, bien que l'organisation génétique des systèmes SHP/Rgg diffère entre les groupes I/II et III, leur mécanisme de régulation semble au minimum présenter un caractère conservé.

Les systèmes SHP/Rgg semblent être impliqués dans la régulation de cibles distales et proximales

L'analyse des données issues de la recherche de cibles a fait ressortir deux grandes catégories de cibles putatives associées aux systèmes SHP/Rgg : (i) des cibles proximales, correspondant au gène localisé en aval du gène *rgg* pour les systèmes du groupe I ou II ou en amont du gène *shp* pour les systèmes du groupe III et/ou (ii) des cibles distales ont pu être détectées. L'ensemble des gènes cibles putatifs des systèmes SHP/Rgg des groupes I, II et III sont respectivement présentés en Annexe 6A, B et C. II convient par ailleurs de préciser, que bien qu'ils aient été systématiquement détectés lors de l'analyse, les gènes *shp* et *rgg* du locus étudié ont été retirés de la liste des cibles putatives.

Un premier constat de cette analyse concerne la classification de ces deux catégories de cibles au sein des différents groupes de systèmes SHP/Rgg. Alors que des cibles distales ont été détectées pour les systèmes du groupe I et II (voir ci-dessous), la régulation de cibles proximales semble être, quant à elle, spécifique aux systèmes des groupes II et III. Quelques exceptions sont cependant observées. En effet, pour deux loci paralogues (stu0182 et str0182) chez S. thermophilus appartenant au groupe I (Tableau 24), un motif a été identifié en amont de la spCDS détectée par le logiciel BactgeneSHOW. Ces deux systèmes sont associés à une phéromone SHP atypique possédant un résidu cystéine à la place du résidu aspartate conservé. Une deuxième exception, concerne le locus ster 0934 (groupe II) de S. thermophilus LMD-9 (et ses paralogues au sein des autres souches de l'espèce) où aucun motif n'a été détecté dans la région promotrice du gène proximal (Tableau 25). Cette exception peut néanmoins s'expliquer par la présence d'une région intergénique « gène rgg / gène aval proximal » plus courte que celle identifiée pour les autres systèmes SHP/Rgg du groupe II chez S. thermophilus LMD-9 (59 pb vs 82, 83, 84 et 116 pb). Bien qu'un motif ne soit pas été détecté en amont du gène ster 0934, une co-transcription du gène ster 0934 avec le gène rgg peut néanmoins être envisagée. L'analyse de l'environnement génétique des loci shp/rgg – des systèmes appartenant aux groupes II et III – souligne, par ailleurs, une homogénéité des environnements génétiques au sein de ces deux groupes (Tableaux 25 et

Espèce	Nb ^a	Souche ^b	Gène <i>rgg</i>	Séquence SHP	Environnement génétique			
S. thermophilus	1/3	LMD-9	ster_1358	MKKQILLTLLLVVFEGIIVIVV <mark>G</mark>	shp rgg ster_1357 ster_1356 ster_1355			
	2/3	LMG18311	stu1950	MNKKALFSLLFVILEGIIVIGV <mark>G</mark>	shp rgg spCDS stu1951 stu1952			
	3/3	LMD-9	ster_0934	MNKESFLAILLLIFESIIVIAVG	rgg ster_0935 ster_0936 ster_0937 ster_0938 ster_0939			
	3/3	LMD-9	ster_1530	MKKQKLLLLVVLVCEGIIVILV <mark>G</mark>	shp rgg ster_1531			
S. mutans	2/2	UA159	smu.1509	MRNKIFMTLIVVLETIIIIGGG	shp rgg spCDS smu.1508c smu.1507c smu.1506c			
S. dysgalactiae	1/1	subsp. equisimilis GGS_124	sdeg_1013	MKKHGLLTLLIILESIIVIGI <mark>G</mark>	shp rgg sdeg_1012			
S. equi	1/3	subsp. zooepidemicus MGCS10565	sez_0716	MNKRHFLMLLLMVLE E IIVIVV <mark>G</mark> YL	shp rgg sez_0717 sez_0718 sez_0719			
	1/3	subsp. zooepidemicus	szo_12400	MNKRHFLMLLLMVLEEIIVIGVGYL	shp rgg spCDS szo_12390 szo_12380 szo_12370 szo_12360			
	1/3	subsp. zooepidemicus	szo_17730	MKKQKLLPILFLLFEGIIIIVVG	shp rgg spCDS szo_17710 szo_17700 szo_17690			
S. suis	6/6	P1/7	ssu1789	MKQNYLIANITIVLILLISILKDIPPIIVIK	shp rgg spCDS ssu1788 ssu1787			

Tableau 25 – Environnement génétique des loci *shp/rgg* associés au groupe II.

a. Nb représente le nombre de souche(s) possédant le locus représenté sur l'ensemble des souches séquencées appartenant à l'espèce apparenté.b. Lorsque plusieurs souches présentent le même environnement génétique, celui-ci est présenté sur un locus choisi de manière arbitraire.

Motif	SHP	Enzyme à radical SAM	SpCDS	Arginase / SpeB
	Rgg	Transporteur	Protéine hypothétique	Isomérase

26). La présence de cibles proximales putatives est corrélée à la présence d'un environnement génétique conservé. En effet, la comparaison de ces environnements génétiques met en évidence l'association de spCDS ou de petits gènes avec des métalloenzymes impliquées dans des modifications post-traductionnelles (enzymes à radical SAM (Fontecave *et al.*, 2004), CAAX (Pei and Grishin, 2001), oligoendopeptidase F et des transporteurs (perméases ou ABC-transporteurs). Enfin, la comparaison des environnements génétiques (Tableau 25) et des séquences peptidiques des peptides codés par les spCDS (Annexe 6B) souligne, que les loci *smu.1509* de *S. mutans* UA159 (et son paralogue) et *sez_17730* de *S. equi* subps. *zooepidemicus* (et son paralogue) seraient orthologues.

Une autre particularité au sein de ces différents systèmes contrôlant la transcription de gènes cibles proximaux putatifs est la présence d'une distance relativement conservée « motif / codon start du gène shp » et « motif / codon start du gène cible proximal putatif » (\approx 77 pb) (Annexe 6B et C). Cette distance s'avère également conservée pour certains gènes cibles distaux, en particulier chez S. thermophilus et dans une moindre mesure chez S. equi (Annexe 6B). Aussi, il est envisageable que les systèmes acquis au sein des souches, aient évolué dans le but de contrôler d'autres fonctions. L'environnement génétique de ces cibles distales est représenté dans le Tableau 27. De manière intéressante, le locus ster_1923 de S. thermophilus LMD-9 (et ses paralogues) présente un environnement génétique similaire à celui décrit pour la présence de cibles proximales, c'est-à-dire composé de gènes codant un peptide, une métallo-enzyme et un transporteur. Les environnements génétiques correspondant aux deux autres cibles distales de S. thermophilus sont composés (i) d'une protéine de liaison des acides nucléiques, d'un régulateur de réponse et d'un pseudogène correspond à une histidine kinase et (ii) de gènes codant des déoxy et ribonucléases formant probablement une voie de dégradation de l'ADN et de l'ARN. De plus, en amont du gène ster_0353, un environnement génétique composé également d'une métallo-enzyme et d'un transporteur est visible (Tableau 27). Au sein de l'espèce equi, les environnements génétiques des cibles distales impliquent tous deux, au vu des annotations dans GenBank, un régulateur transcriptionnel de la famille RNPP ou apparenté. En effet, ce régulateur appartient soit à la famille des Rgg (MutR) et est suivi de deux gènes codant un transporteur (locus sez 0631), soit à la famille des PICR (locus sez 0517). Dans ce dernier cas, une spCDS en amont du gène plcR a été détectée. De plus, des gènes codant des protéines impliquées dans la maturation et la sécrétion d'un peptide phéromone de compétence chez certains streptocoques constituent l'environnement aval du gène codant PlcR. Aussi, ce locus pourrait représenter une voix de régulation de la compétence où le gène annoté plcR serait activé par le peptide en amont afin de contrôler l'expression de la phéromone, nécessaire au déclenchement de la compétence chez S. equi.

Espèce	Nb ^a	Souche ^b	Gène <i>rgg</i>	Séquence SHP	Environnement génétique
S. thermophilus	1/3	LMD-9	ster_1299	MKKVIAIFLFIQTVVVI d IIIFPPF <mark>G</mark>	rgg shp spcds ster_1297 ster_1296
S. pneumoniae	3/9	ATCC700669	spn23f_01510	MKKQILTLLKIVAEIIIILPFLTNR MKKRKIQLILLLISEWVIVIPFLTNL	rgg shp spn23f_01530 spn23f_01540
	2/9	TIGR4	sp_0141	MKKQVLTLLTIVADIIIFFPFLTNR MKKQILTLLKIVAEIIIILPFLTNL	rgg shp sp_0142 sp_0143 sp_0144 sp_0145
	1/9	CGSP14	spcg_0143	MKKQVLTLLTIVAEIIIFFPFLTNR	rgg shp spcg_0144 spcg_0145 spcg_0146 spcg_0147

Tableau 26 – Environnement génétique des loci *shp/rgg* associés au groupe III.

a. Nb représente le nombre de souche(s) possédant le locus représenté sur l'ensemble des souches séquencées appartenant à l'espèce apparenté.

b. Lorsque plusieurs souches présentent le même environnement génétique, celui-ci est présenté sur un locus choisi de manière arbitraire.

De manière transversale aux groupes de systèmes SHP/Rgg I et II, des cibles distales, où la distance « motif / codon start du gène cible putatif » n'est pas conservée avec celle « motif / codon start du gène *shp* » et varie de 3 à 288 pb, ont été détectées (Annexe 6A et B). Les gènes cibles putatifs sont décrits comme codant des protéines sécrétées ou de surface (pouvant correspondre à des facteurs de virulence), des régulateurs transcriptionnels, des protéines impliquées dans la division cellulaire, la maintenance cellulaire ou la biosynthèse du peptidoglycane, des composants de la machinerie de traduction, des enzymes impliquées dans différentes voies métaboliques (glucidiques, lipidiques et acides aminés), des composants de systèmes de transport ou des éléments de transposition (transposases, phages). De nombreuses méthyltransférases, différentes des enzymes à radical SAM précédemment décrites, semblent également être contrôlées. Enfin, un grand nombre de protéines de fonctions inconnues a aussi été détecté.

Par ailleurs, aucune cible n'a pu être détectée au sein des clusters 11 et 12, dont les références utilisées lors de la recherche de motifs ADN présentaient une variabilité nucléotidique au niveau de la région promotrice des gènes *shp*. D'autres motifs, spécifiques aux régions promotrices des gènes *shp* de ces deux références, ont par ailleurs été testés mais se sont également avérés sans résultats (données non présentées).

Certains streptocoques présentent la particularité d'accumuler plusieurs systèmes SHP/Rgg dans leur génome. Il est intéressant de relever que lorsque plusieurs systèmes SHP/Rgg sont présents au sein d'une même souche, les gènes shp et les cibles proximales des autres systèmes sont en partie également détectés. En effet, les exceptions s'expliquent par un nombre de mismatches supérieur à celui fixé pour l'analyse. Ce phénomène, visible en particulier au sein de l'espèce thermophilus (espèce ayant accumulée le plus grand nombre de systèmes SHP/Rgg), souligne une forte conservation des motifs au sein d'une souche. De plus, bien que plusieurs espèces (thermophilus, dysgalactiae et equi) possèdent des systèmes SHP/Rgg appartenant aux groupes I et II, la détection d'un système SHP/Rgg du groupe I par un motif du groupe II est seulement visible au sein de l'espèce thermophilus. Ceci est explicable, pour l'espèce equi, par la non-détection de cible lors de l'analyse des systèmes SHP/Rgg du groupe I au sein de cette espèce. Bien que ce résultat était envisageable étant donné les paramètres de l'analyse (autorisant la recherche de motifs sur les deux brins et dans les deux sens), le fait qu'un motif du groupe I ait pu être détecté via une recherche à partir d'un motif du groupe II chez S. thermophilus suggère l'évolution des motifs I et II à partir d'un motif « ancestral ». Par conséquent, la structure de base inversée de type « CCC-n₇-C » pour le groupe I et « G-n₇-GGG » pour le groupe II, et donc l'orientation du motif, pourrait intervenir dans la régulation des gènes cibles.

Tableau 27 – Environnement génétique des gènes cibles distaux présentant une distance « motif / codon start » conservée.

Espèce	Géne rgg	Environnement génétique
S. thermophilus	ster0353 stu0316 str0316	ster_0350 ster_0351 gidB ster_0353 ster_0354 ster_0355 transporteur transporteur SAM-dependant protéine de liaison à RR HK méthyltransferase de liaison à l'ADN/ARN
	ster_1774 stu1801 str1801	ster_1776 Diméthyladénosine transferase Ster_1775 Ster_1774 Ster_1773 Pseudogène Pseudogène
	ster_1923 stu1951 str1951	ster_1922 ster_1923 ster_1924 ster_1925 Rgg Hyp. Enzyme à Transporteur Pseudogène protéine radical SAM
S. equi	sez_0631 szo_13060	sez_0629 sez_0630 sez_0631 Transporteur Transporteur MutR (Rgg)
	sez_0517 szo_14750	sez_0517 sez_0518-20 comA comB Pep PicR « Competence stimulating peptide »

Localisation des motifs de fixation des protéines Rgg à l'ADN dans des régions codantes

La détection des motifs au sein des trois groupes de systèmes SHP/Rgg a également mis en évidence une localisation de ces derniers au sein de nombreuses régions codantes (Annexe 7A, B, C). En effet, les motifs ont été recherchés sur une distance de 300 pb en amont des démarrages de traduction et dans certains cas, ils ont pu être localisés dans l'ORF localisé en amont du gène en question. De manière intéressante, la majorité des gènes dans lesquels un motif a été détecté codent des fonctions similaires à celles identifiées pour les gènes dont les motifs ont été détectés dans les régions promotrices ou intergéniques, qui seront à présents appelées non-codantes. A titre d'exemple, le gène *upp* impliqué dans la synthèse du peptidoglycane est détecté chez *S. thermophilus* (vs *S. pneumoniae* pour région non-codante) et des gènes impliqués dans la division cellulaire *fts* et l'opéron *lac* ont été détectés chez *S. pyogenes* et *S. pneumoniae* (vs *S. suis*). De plus, de nombreuses méthyltransférases et éléments de transposition ont pu être détectés. Enfin, des gènes dont les produits sont impliqués dans la machinerie d'internalisation de l'ADN, dans la réponse au stress et dans un composant de systèmes de transport (d'oligopeptides, ATPases) ont également été détectés lors de l'analyse.

5. Discussion

Ce travail a été entrepris dans le but de définir un motif de fixation, des protéines régulatrices Rgg associées à des phéromones SHP, à l'ADN et d'identifier le régulon de chacun des systèmes SHP/Rgg.

Motifs de fixation des protéines Rgg à l'ADN

L'alignement des régions promotrices des gènes *shp* a conduit, dans un premier temps, à l'identification de trois motifs putatifs de fixation des protéines Rgg à l'ADN pour lesquels, un squelette de base spécifique à chaque groupe de systèmes SHP/Rgg a été défini (Tableau 23). La difficulté de faire ressortir un motif conservé, au sein de chaque groupe, présage d'une évolution de ces derniers au sein des streptocoques. Aussi, il est probable que les nucléotides strictement conservés au sein de ces motifs soient requis et essentiels à la fixation du Rgg à l'ADN alors que, la variabilité de certaines positions joue un rôle dans la spécificité et l'affinité de la liaison Rgg/ADN. Des expériences de mutagénèse dirigée couplée à de la SPR – afin de mesurer les affinités de fixation des protéines Rgg à l'ADN (complexées ou non à leur phéromone SHP) – permettraient de confirmer cette hypothèse.

Au premier abord, une étroite spécificité de fixation d'un Rgg sur son motif ADN, empêchant possiblement tout phénomène de cross-activation entre deux Rgg d'un même groupe présent au sein d'une même souche peut être suggérée. En effet, toujours sur la base du locus *shp/rgg1358* de *S. thermophilus* LMD-9 (article 1), l'absence d'activité du promoteur P_{shp1358} dans des mutants respectifs des gènes *shp1358* et *rgg1358* ne présage d'aucune cross-activation *via* un autre système au sein de cette souche. Aussi, bien que les cibles d'un système SHP/Rgg peuvent être détectées *via* le motif d'un autre système SHP/Rgg, la similarité de deux motifs ADN ne semble pas être suffisante à l'expression des cibles. Ceci est d'autant plus vrai que le motif du locus *shp/rgg1358* est identique à celui du locus *shp/ster_1530* chez *S. thermophilus* LMD-9 (Annexe 6B). Cette observation suggère alors (au minimum pour *S. thermophilus* LMD-9) que la spécificité de liaison de la phéromone SHP avec son régulateur Rgg apparenté est essentielle à l'activation du régulon associé. Néanmoins, on ne peut exclure que l'expression de ces systèmes, dans le temps, ne soit pas coordonnée et ne puisse par conséquent permettre une éventuelle cross-activation ou cross-inhibition.

Il conviendrait alors, dans un premier temps, de construire une fusion transcriptionnelle au promoteur $P_{shp1530}$ afin de mesurer son activité au cours du temps et de la comparer à celle du promoteur $P_{shp1358}$. Dans un deuxième temps, et en fonction des résultats, il pourrait être intéressant de complémenter les mutants respectifs des gènes *rgg* de ces deux loci, présentant une fusion transcriptionnelle au promoteur P_{shp} apparenté, avec un plasmide surproducteur de chaque protéine Rgg (Rgg1358 et Rgg1530). Par ailleurs, un motif du groupe I (CCC-n₇-C) pouvant être détecté par un motif du groupe II (G-n₇-GGG) chez *S. thermophilus* LMD-9, il serait également intéressant d'étudier l'activation des promoteurs en inversant le sens des différents motifs ADN.

La distance « motif / ATG du gène cible putatif » souligne une étroite régulation des gènes cibles proximaux, présentant une distance équivalente à celle de la distance « motif / ATG du gène *shp* apparenté ». Néanmoins, la régulation de cibles putatives ne semblent pas corréler, dans tous les cas, à une distance « motif / ATG » conservée. Dans cette étude, la recherche de motifs étant limitée à une distance de 300 pb à partir des démarrages de traduction, des distances comprises entre 3 à 288 pb ont pu être mises en évidence. Le régulon PIcR est composé de 138 gènes dont les distances « motif / ATG » ont été décrites comme pouvant aller de 35 à 700 pb (Agaisse *et al.*, 1999; Gohar *et al.*, 2008; Økstad *et al.*, 1999). Aussi, il serait intéressant d'allonger cette distance afin de voir si d'autres cibles des systèmes SHP/Rgg pourraient être identifiées. De plus, l'étude de Gohar *et al.* (2008) a permis de corréler la détection de faux-positifs à un environnement amont/aval de la PIcR box moins riche en AT. Il serait intéressant de voir dans notre cas, si cet environnement peut

également influencer la fixation des protéines régulatrices Rgg à l'ADN. Enfin, le motif pouvant être localisé entre la région promotrice et le RBS des gènes cibles putatifs, un rôle répresseur des protéines régulatrices Rgg (associées aux phéromones SHP) peut être proposé dans certains cas.

Prédiction des régulons SHP/Rgg

L'analyse des données concernant la recherche de cibles putatives indique que les régulateurs Rgg des groupes I et II pourraient être pléiotropes. En effet, les cibles détectées sont susceptibles d'être impliquées dans de nombreuses fonctions physiologiques dont certaines sont vitales pour la cellule (e.g. division cellulaire). En revanche, les régulateurs Rgg appartenant au groupe III semblent être plus spécifiques, aucune cible distale (motif dans région non-codante) n'ayant été détectée. Chang et al. (2011) ont démontré que les deux systèmes SHP/Rgg chez S. pyogenes sont impliqués de manière antagoniste dans la formation de biofilms chez cette espèce. Aussi, il était envisageable que les cibles de ces deux systèmes soient identiques. Dans cette étude, et bien que certaines cibles putatives soient communes aux deux systèmes SHP/Rgg, d'autres en revanche semblent être spécifiques d'un seul des deux systèmes. Par conséquent, ces deux systèmes, bien qu'antagonistes pour certaines fonctions ou phénotypes, pourraient réguler de manière spécifique et indépendante un certain nombre de cibles. Par ailleurs, le régulon putatif identifié au sein de chaque souche d'une même espèce semble présenter des particularités intra-souches. Cette variabilité du régulon, plus facilement visible chez S. pyogenes au vu des nombreuses souches séquencées au sein de cette espèce, peut s'expliquer par le nombre important d'éléments de transposition et de protéines phagiques qui seraient contrôlés par ces systèmes (Annexes 6 et 7) (Anbalagan et al., 2011). Cette variabilité du régulon a déjà été décrite pour RopB (Rgg stand-alone) chez S. pyogenes (Anbalagan et al., 2011; Dmitriev et al., 2008). Cependant, on ne peut exclure, dans cette étude, l'influence du seuil sur la détection des cibles. Enfin, il est important de souligner, qu'aucune relation entre l'étude réalisée sur la protéine régulatrice « RovS » (Samen et al., 2006) et notre analyse ne peut être établie. En effet, Samen et ses collaborateurs ont montré la fixation de RovS sur les régions promotrices de plusieurs gènes cibles présentant un motif ADN conservé différant de celui décrit dans notre étude (Introduction bibliographique Chapitre 3, § 2.2.2). De plus, bien que les données actuelles associent une phéromone SHP à ce régulateur Rgg, ce dernier avait, par conséquent, été étudié en temps que « stand-alone ». Bien que notre étude ne remette pas en cause les résultats de cet article, elle souligne néanmoins la possibilité que des régulateurs Rgg se fixent sur différents motifs. En effet, les régulateurs Rgg pourraient être capables de se fixer à un premier motif en absence de leur phéromone

SHP et d'en fixer un second en présence de ces dernières. Cette constatation est concordante avec les résultats de l'analyse ChIP-Chip effectuée sur le Rgg stand-alone « RopB » de *S. pyogenes*, n'ayant pas permis de définir *in fine* un motif consensus de fixation de ce Rgg à l'ADN (Anbalagan *et al.*, 2011).

L'analyse des environnements génétiques des loci appartenant aux groupes II et III a fait ressortir une homogénéité au sein de ces derniers composés de spCDS ou petites ORF, métallo-enzymes (enzymes à radical SAM, CAAX, endopeptidases F) et transporteurs. La présence de cet environnement conservé avait déjà été souligné, sur les loci connus en 2007 au sein du groupe II, lors de la découverte des systèmes SHP/Rgg par les travaux de Ibrahim et al., (2007b). Aussi, ce travail élargit cette tendance aux nouveaux loci appartenant au groupe II mais également à ceux du groupe III détectés par l'analyse in silico présentée dans l'article 1. La présence de gènes codant des enzymes à radical SAM et CAAX - au sein d'opérons impliqués dans des voies de biosynthèse de bactériocines - a par ailleurs déjà été décrite dans la littérature (Pei. 2001 ; Diep 1996 ; Rea 2011) et s'illustre, dans cette étude, par un système SHP/Rgg appartenant au groupe III (locus spcg 0143 de S. pneumoniae CGSP14) (Tableau 26). Aussi, la détection de spCDS ou la présence de gènes codant des protéines hypothétiques en amont des gènes codant des métallo-enzymes et transporteurs suggère que ces systèmes contrôlent l'expression de gènes dont les produits, après modification, seraient destinés à l'export et à un devenir extracellulaire. Le locus shp/rgg1358 de S. thermophilus LMD-9 a, par ailleurs, déjà été décrit comme régulant le gène ster 1357, dont le produit - un peptide cyclique appelé Pep1357C - est présent dans les surnageants de culture (Ibrahim et al., 2007a). En outre, la synthèse d'une nouvelle classe de phéromones dont la maturation requiert une enzyme CAAX a également été démontrée chez les champignons (Schmoll et al., 2010).

Alors que des gènes cibles proximaux et/ou distaux ont été détectés pour la majorité des systèmes SHP/Rgg (tous groupes confondus), trois systèmes restent quant à eux sans cible associée. Pour deux d'entre eux (*shp/spg_1268* de *S. pneumoniae* G54 et *shp/sez_0050* de *S. equi* subsp. *zooepidemicus* MGCS10565), ceci coïncide avec une absence d'identification d'un motif conservé (références Rgg_11 et Rgg_12). De plus, les phéromones SHP associées à ces systèmes présentent une particularité au niveau de leur séquence au C-terminale de type « GLYQ » ou « GLCQ » (Tableau 24). En revanche, le troisième locus, *shp/gbs1555* de *S. agalactiae* (et ses paralogues), ne présente pas de particularité au niveau de la séquence de la phéromone SHP. Aussi, le développement d'approches globales semble être nécessaire à l'identification des régulons de ces différents systèmes. Une

Tableau 28 – Cibles putatives sélectionnées pour validation *in vitro*.

	Protéine Rgg	Cible P	Cible D	Motif NC	Motif C
S. thermophilus LMD-9	Rgg1358		shp_1530 amiE	×	×
S. thermophilus LMG18311	Rgg0182		stu1251 stu0665	×	×
S. mutans UA159	Smu.1509	smu_1508	smu_1031 smu_1711	× ×	×
			smu_1879		×
S. agalactiae NEM316	Gbs1555		gbs1125		×

Cible P, cible proximale ; Cible D, cible distale ; Motif NC, motif dans région non codante ; Motif C, motif dans région codante.

analyse protéomique est en cours au laboratoire concernant le locus *shp/gbs1555* de *S. agalactiae* NEM316.

Enfin, de nombreux motifs de fixation des protéines Rgg, associées à une phéromone SHP, ont été détectés au niveau de régions codantes. Bien que ce phénomène soit de plus en plus décrit dans la littérature par l'utilisation d'approches de type ChIP-Chip et Chip-Seq, le rôle de la fixation de régulateurs transcriptionnels au sein de régions codantes n'est pas encore bien compris et diverses spéculations sont proposées concernant ce phénomène (MacQuarrie *et al.*, 2011). Néanmoins, au regard de l'analyse ChIP-Chip réalisée sur le Rgg stand-alone « RopB » de *S. pyogenes*, qui décrit la fixation de ce régulateur au niveau de 65 régions incluant pour plus de la moitié des régions codantes (>55%) (Anbalagan *et al.*, 2011), le fort pourcentage (variable suivant les systèmes SHP/Rgg) dans cette étude de motifs identifiés dans des régions codantes ne peut être considéré comme négligeable.

Actuellement, la validation *in vitro* de cibles putatives détectées dans cette étude est en cours au laboratoire. Cette validation, concernant à la fois l'étude des motifs au sein des régions codantes et non-codantes, devrait permettre de confirmer certaines hypothèses émises dans cette discussion concernant (i) les systèmes *shp/rgg1358* et *shp/ster_1530* chez *S. thermophilus*, (ii) la fixation des protéines Rgg dans les régions codantes et (iii) la régulation de gènes codant des transposases, un système PTS et une protéine de ségrégation (Tableau 28).

Discussion générale et perspectives

Mon travail de thèse a, d'une part, permis d'identifier une nouvelle famille de régulateurs associés à des peptides hydrophobes chez les streptocoques, et, d'autre part, a ouvert de nombreuses autres perspectives de travail dans le domaine du quorum-sensing (QS) et des petits gènes codants chez les bactéries. Ce sont ces deux aspects que je discuterai ici en abordant sept points qui me paraissent importants.

1. <u>Détection de petits gènes codant potentiellement des peptides et identification</u> <u>de familles de petits gènes dans les génomes bactériens.</u>

L'annotation des petits gènes (définis généralement par une taille inférieure à 50 codons) codant potentiellement des peptides a été largement sous estimée et réalisée de manière inégale lors de l'annotation classique des génomes. Ces petites protéines ou peptides font cependant l'objet d'un intérêt croissant du fait de leurs rôles potentiels (Boekhorst *et al.*, 2011; outil BactSHOW, (Ibrahim *et al.*, 2007b); outil BAGEL, (De Jong *et al.*, 2006). En effet, les peptides peuvent (i) être toxiques et être impliqués dans des mécanismes de mort cellulaire, (ii) jouer un rôle d'adaptateur ou de régulateur en favorisant la dégradation, la stabilisation ou l'activation de certaines protéines et, (iii) être impliqués dans des phénomènes de signalisation et par conséquent dans la régulation de gènes *via* les phénomènes de type QS (Alix and Blanc-Potard, 2009; Zuber, 2001). Chez *E. coli*, il a par ailleurs été observé que de nombreuses petites protéines s'accumulaient en réponse à des conditions spécifiques ou en réponse à un stress (Hemm *et al.*, 2010).

Si les protéines ribosomales et les bactériocines sont connues depuis longtemps, les recherches systématiques récentes de ces phases ouvertes de lectures courtes (ORFs pour Open Reading Frames) ont permis d'identifier des peptides hydrophobes régulateurs membranaires chez les bactéries à Gram négatif (Alix and Blanc-Potard, 2009) et des phéromones impliquées dans le QS chez les bactéries à Gram positif (Ibrahim *et al.*, 2007b). Mieux appréhender leur nombre et leur rôle chez les bactéries, rend le développement d'approches permettant leur détection de manière la plus exhaustive possible nécessaire.

Dans ce travail de thèse, la mise à jour (par rapport au travail de Ibrahim *et al.*, 2007b) des données concernant les systèmes SHP/Rgg dans les nouveaux génomes de streptocoques séquencés, a généré un important jeu de données de petits gènes concernant plusieurs genres de bactéries à Gram positif (ordre des *Lactobacillales* et famille des *Listeriaceae*). En effet, afin de définir si les systèmes SHP/Rgg étaient bien spécifiques des streptocoques, une analyse de type Psi-Blast a tout d'abord été entreprise afin de déterminer

un taxon Rgg, au sein duquel, la recherche de petites ORFs a été effectuée. Bien que l'analyse des données ait permis de confirmer l'appartenance des systèmes SHP/Rgg aux streptocoques, un nombre important d'autres petites ORFs associées à des gènes codant des régulateurs transcriptionnels Rgg-like a été détecté lors de cette analyse. Nous avons cherché à partir de ce jeu de données, jusqu'alors partie invisible de l'iceberg, à définir de nouvelles familles de peptides phéromones. La première contrainte consiste à prévenir, lors de l'analyse, la prédiction de faux-positifs, c'est-à-dire de petites ORFs ne codant pas de protéines. Au sein des génomes bactériens à bas GC%, la fréquence élevée des codons STOP prévient considérablement ce phénomène (Boekhorst et al., 2011). Néanmoins, alors que le risque de détection des faux-positifs reste limité pour des gènes codant des protéines supérieures à 50 acides aminés, il augmente lorsque la taille des gènes recherchés diminue. Ces prédictions doivent donc être considérées avec prudence pour des petites ORFs dont la taille est comprise entre ou inférieure à 20/25 acides aminés, comme c'est le cas pour les phéromones SHP, d'autres peptides identifiés (résultats chapitre 1) et données non présentées. La question de la taille minimale raisonnable des ORFs à prendre en compte est donc posée. Pour limiter (au moins en partie) le risque de détection de faux-positifs, un deuxième critère à prendre à compte concerne la conservation d'une petite ORF au sein de plusieurs espèces. Aussi, une famille de petites ORFs détectées au sein de différentes espèces présente, a posteriori, une probabilité plus grande d'être codante. A ces critères généraux d'analyse s'ajoute la difficulté liée à des erreurs d'annotation des démarrages de traduction, qui au vu de certaines familles de peptides (mitis1 et Listeria) identifiées au cours de ce travail alourdit considérablement la recherche et l'identification des familles dans la base de données générées. Aussi, l'amélioration des algorithmes semble nécessaire dans le but de pouvoir rechercher de manière automatisée et plus fiable des ORFs sous certains critères établis au préalable. Pour autant, la validation expérimentale des prédictions n'en reste pas moins nécessaire. L'expression des petits gènes n'est pas facile via des approches de puces classiques ou de PCR quantitatives. Les peptides et petites protéines sont également plus difficiles à détecter et à identifier que les protéines de taille plus importante. Des approches globales telles que le « Tiling array » constituent actuellement le moyen le plus efficace pour la validation des prédictions. L'utilisation du « Tiling array » pourrait s'avérer intéressante dans le cadre des systèmes SHP/Rgg. En effet, le rôle physiologique de ces systèmes n'étant pas connu, l'expression de ces systèmes sous différentes conditions pourrait alors renseigner et orienter les recherches vers des conditions optimales d'expression et par conséquent de caractérisation de ces différents systèmes. Néanmoins, des approches ciblées utilisant des techniques moins couteuses, telles que des fusions transcriptionnelles pour la mise en évidence de l'expression de petits gènes ou l'HPLC pour la recherche des peptides codés par les petites ORFs dans les surnageants de cultures,

peuvent également confirmer, à plus petite échelle, la prédiction de petits gènes codant des peptides. Nous avons utilisé avec succès ces approches dans le cadre de l'étude du locus *shp/rgg1358* de *S. thermophilus* LMD-9.

2. <u>Mécanistique des systèmes de QS « SHP/Rgg » et comparaison avec d'autres</u> <u>systèmes de QS</u>

2.1. Le peptide

Nous avons montré que les systèmes SHP/Rgg répondent à un mécanisme de QS. La régulation de tels phénomènes, bien que dépendante d'un ratio molécules de signalisation / biomasse bactérienne, est également décrite comme répondant à divers facteurs pouvant être intrinsèques ou extrinsèques. En effet, la production des molécules de signalisation est généralement décrite comme auto-induite et dépendante d'une boucle de rétrocontrôle positive, mettant en jeu l'effecteur central (le régulateur transcriptionnel) assurant la modulation de l'expression des gènes cibles (Fontaine et al., 2010a; Mashburn-Warren et al., 2010; Novick, 2003; Pestova et al., 1996a). Nous avons également montré l'existence d'un tel phénomène dans la mécanistique des systèmes SHP/Rgg. Par ailleurs, certains critères extrinsèques ont également été décrits comme contrôlant le déclenchement d'un mécanisme de QS. Tel est le cas, à titre d'exemple, pour le mécanisme de la compétence chez S. thermophilus qui ne se déclenche que dans un milieu dépourvu de peptide (MCD) (Gardan et al., 2009). De manière similaire, l'absence d'activité de la fusion P_{shp1358}::luxAB en milieu M17lac dans un contexte sauvage (données non publiées), indique également que pour le système SHP/Rgg1358 de S. thermophilus LMD-9, la présence de peptides inhibe le phénomène. Aussi, une compétition avec les peptides nutritionnels, réimportés par le transporteur d'oligopeptides Ami, semble avoir lieu.

Afin d'être détectées à partir du milieu extracellulaire, les molécules de signalisation y sont au préalable exportées. Aussi, la présence de signaux d'exportations dans la partie N-terminale des séquences peptidiques des précurseurs a été décrite dans de nombreux cas (Agaisse *et al.*, 1999; Håvarstein *et al.*, 1995; Lazazzera, 2001; Zhang *et al.*, 2004). Bien que des transporteurs aient été identifiés comme nécessaires à l'export de peptides phéromones associés à des systèmes à deux composants (Hui *et al.*, 1995; Novick and Geisinger, 2008), pour de nombreux autres, le mécanisme par lequel ils sont exportés reste inconnu. C'est le cas des peptides participant aux systèmes de QS impliquant un effecteur de la famille RNPP. Aussi, bien que l'export de PapR (*B. cereus*) (Agaisse *et al.*, 1999) et des peptides Phr (*B. subtilis*) (Lazazzera, 2001) *via* la voie de sécrétion Sec ait été proposé, l'essentialité de cette voie dans la survie des bactéries rend difficile la vérification de cette hypothèse.

Celle-ci est cependant très probable dans notre cas, puisque les séquences des précurseurs des phéromones SHP ressemblent, dans leur intégralité, à une séquence signale dépendante de la voie de sécrétion Sec (Hutchings et al., 2009; Palmer et al., 2005). De plus, la présence d'une glycine ou d'un motif double glycine en C-terminal, décrit comme site spécifique de clivage des séquences signales de certaines protéines ou lors de la maturation de phéromones (Håvarstein et al., 1995; Michiels et al., 2001) conforte l'hypothèse que les phéromones SHP (sous entendu leur forme mature) sont partie intégrante d'une séquence signale. Ce phénomène peut également être proposé pour les phéromones ComS chez les streptocoques, présentant généralement une glycine en C-terminal (Mashburn-Warren et al., 2010). Aussi, il est possible de spéculer sur l'évolution des gènes codant ces peptides. En effet, ces derniers pourraient avoir évolué à partir de formes plus longues de manière à ne conserver que la partie strictement essentielle à l'activité du mécanisme de QS. Une observation faite chez E. faecalis conforte cette hypothèse. Chez cette bactérie, les sexphéromones, impliquées dans les mécanismes de conjugaison et dont les séguences sont similaires à celles des phéromones SHP, sont des fragments de peptides signaux de précurseurs de lipoprotéines (Clewell et al., 2000). Enfin, si la voie de sécrétion Sec n'était pas responsable de l'export des phéromones SHP, il serait possible d'envisager que, vu leur forte hydrophobicité, elles soient « passivement » transloquées à travers la membrane cytoplasmique.

La localisation des phéromones hors des bactéries n'est pas toujours très claire. Dans quelques cas, comme celui de cCF10 chez *E. faecalis* (Buttaro *et al.*, 2000), la sex-phéromone est décrite comme associée aux parois mais la plupart du temps, elles ont été isolées de surnageants de culture. Dans le cas des SHP, au moins une partie des phéromones est présente sous forme soluble dans le milieu extracellulaire mais on ne peut exclure, en particulier à cause de leur forte hydrophobicité, qu'une partie reste localisée au niveau de la paroi.

Au cours de leur export, les molécules de signalisation subissent une étape de maturation (impliquant une ou plusieurs coupures par des enzymes protéolytiques spécifiques ou pas et parfois, une modification post-traductionnelle du peptide) permettant *in fine* la libération de la forme mature (ou dite « active ») de la phéromone dans le milieu extracellulaire. La similarité des phéromones SHP et des anti-phéromones chez *E. faecalis*, nous a conduits à étudier le rôle, dans la maturation des phéromones SHP, de la protéase membranaire Eep impliquée dans la maturation des anti-phéromones d'entérocoques. Aussi, l'absence d'activation du promoteur $P_{shp1358}$ après ajout d'un surnageant de culture du mutant Δeep contenant un plasmide surproducteur de la phéromone SHP1358, nous a permis de démontrer un rôle direct ou indirect de cette protéase dans la maturation d'une phéromone

SHP appartenant au groupe II. Au cours des travaux de Chang *et al.* (2011), la complémentation fonctionnelle d'un mutant $\triangle eep$ chez *S. pyogenes* a alors permis d'élargir ce phénomène à une phéromone SHP du groupe I. Aussi, afin de montrer de manière directe le rôle de la protéase membranaire Eep dans la maturation des phéromones SHP (et éventuellement d'autres protéases), le développement d'outils tels que l'utilisation d'un système acellulaire de type liposome peut-être entrepris. Par ailleurs, l'utilisation d'un système hétérologue pour l'étude de la fonctionnalité d'autres systèmes SHP/Rgg, suggère la maturation des phéromones SHP, de *S. agalactiae* NEM316 et *S. mutans* UA159, par la protéase membranaire Eep présente chez *S. thermophilus* LMD-9. Les protéases de *S. agalactiae* et *S. mutans* présentant respectivement 68 et 67% d'identité avec celle de *S. thermophilus* LMD-9, un lien évolutif entre les protéines Eep et les séquences des phéromones SHP semblent alors avoir été conservé. Si la protéase Eep de *S. thermophilus* est effectivement directement impliquée dans cette coupure, elle serait spécifique de résidus acides, alors que chez *Enterococcus*, Eep reconnait plutôt des acides aminés hydrophobes. Aussi, ces enzymes présenteraient une spécificité différente.

A nos connaissances, seulement des phéromones associées à des systèmes à deux composants ont été décrites comme ayant subi des modifications post-traductionnelles (Ji *et al.*, 1995; Ji *et al.*, 1997). La recherche et l'identification de plusieurs formes matures de phéromones SHP, à partir de surnageants de culture, permet actuellement de définir les phéromones SHP comme étant des peptides linéaires, issus d'un clivage côté C-terminal au niveau d'un résidu acide conservé (aspartate ou glutamate) au sein de leur séquence.

D'une manière générale, très peu de données concernant la stabilité des peptides phéromones (linéaires ou modifiés), à l'extérieur ou l'intérieur de la bactérie, sont disponibles dans la littérature. A nos connaissances, seulement un rôle de prévention contre la protéolyse est attribué aux modifications structurales de certaines phéromones (Chan *et al.*, 2004). Lors de la recherche des formes actives des phéromones SHP, certaines formes plus courtes dégradées à partir de l'extrémité N-terminale ont également pu être détectées par spectrométrie de masse (A. Guillot, communication personnelle), ce qui suggère que ces phéromones sont des substrats pour des enzymes protéolytiques extracellulaires ou membranaires. Chez *S. thermophilus* LMD-9, les candidates extracellulaires sont assez peu nombreuses : la protéase de paroi PrtS, la protéase de ménage HtrA et les protéases membranaires très mal connues. Cette protéolyse extracellulaire joue sans aucun doute un rôle important dans la régulation du QS. Bien qu'un rôle biologique puisse être attribué à différentes formes de phéromones par exemple pour les peptides PapR5 et 7 chez *B. cereus* (Bouillaut *et al.*, 2008; Slamti and Lereclus, 2005) ou encore ComS chez *S. thermophilus* (Fontaine *et al.*, 2010a) ; Chang *et al.* (2011), ont démontré l'importance, chez *S. pyogenes*,

de la taille d'une forme active de la phéromone SHP3 et du rôle du résidu acide conservé sur le déclenchement du mécanisme de QS. L'analyse *in silico* nous a permis de mettre en évidence des séquences atypiques de certaines phéromones SHP. En effet, certaines présentent un résidu cystéine (à la place de l'aspartate ou du glutamate conservé) ou une extrémité C-terminale variable. Il serait alors intéressant de définir si ces résidus jouent également un rôle sur l'expression des systèmes SHP/Rgg auxquels ils sont apparentés.

Pour permettre la détection des molécules de signalisation via leur senseur membranaire ou leur(s) protéine(s) affine(s) apparentés, les molécules de signalisation doivent atteindre une concentration critique dans le milieu extracellulaire. A l'heure actuelle, très peu de données sont disponibles dans la littérature concernant les concentrations requises au déclenchement des mécanismes de QS, en conditions de laboratoire (Declerck et al., 2007; Dunny and Leonard, 1997). Chez S. pneumoniae, la concentration de la phéromone CSP nécessaire au déclenchement de la compétence a été évaluée à 10 ng/ml (Håvarstein et al., 1995). Aussi, des travaux sont en cours afin de définir, sur le locus shp/rgg1358 de S. thermophilus LMD-9, la concentration en phéromone SHP1358 requise au déclenchement du mécanisme. Pour ceci, un peptide lourd a été synthétisé et permettra de doser, par spectrométrie de masse, la quantité de phéromone SHP1358 dans les surnageants de culture au cours de la croissance de S. thermophilus LMD-9. Néanmoins, bien que les phéromones SHP soient présentes dans les surnageants de culture, on ne peut exclure qu'une partie non-négligeable reste associée à la membrane des bactéries. En effet, ce phénomène a été observé pour la phéromone ComS de S. thermophilus LMD-9 (R. Gardan, communication personnelle).

Dans nos travaux, la détection de la phéromone SHP1358 a été montrée comme effective par les deux protéines affines associées au transporteur d'oligopeptides AmiCDEF. Bien que la protéine affine AmiA3 semble jouer un rôle majoritaire dans la détection de cette phéromone, nous n'en avons pas encore identifié la raison : soit la protéine AmiA3 présente une affinité plus forte pour les SHP, soit la protéine AmiA3 est plus abondante que la protéine AmiA1. Aussi, la surproduction de ces deux protéines dans un mutant nul des protéines affines a été entreprise au laboratoire afin d'étudier le rôle dans la spécificité d'import des phéromones SHP mais aussi ComS, également majoritairement importée dans la cellule par la protéine AmiA3 (Gardan *et al.*, 2009), chez *S. thermophilus* LMD-9.

1.2. Le régulateur

L'interaction d'un couple phéromone SHP / régulateur transcriptionnel Rgg a été démontrée par SPR lors de l'étude du système SHP/Rgg1358 de *S. thermophilus* LMD-9.

L'élargissement de la fonctionnalité du mécanisme de QS décrit sur le locus *shp/rgg1358* de *S. thermophilus* LMD-9 à d'autres streptocoques, incluant des espèces pathogènes, nous amène actuellement à l'étude de l'existence de phénomène de cross-activation ou cross-inhibition de ces différents systèmes, à l'échelle inter-espèces ou inter-souches. En effet, la similarité des séquences des phéromones SHP peut être à la base de l'existence de phérotypes, comme déjà décrits pour plusieurs systèmes de QS (Bouillaut *et al.*, 2008; Slamti and Lereclus, 2005; Wright *et al.*, 2005). Aussi, la mesure de l'affinité de couples SHP/Rgg légitimes et illégitimes sont prévues, par SPR, et devrait permettre de définir ou non l'existence de phérotypes au sein de cette famille de phéromones.

La fixation du régulateur Rgg à l'ADN mérite d'être discutée. En effet, nous avons montré que la liaison de la protéine Rgg1358 à l'ADN n'est pas dépendante de la phéromone SHP, bien que la présence des deux partenaires soit nécessaire à l'activation des gènes cibles connus du système. Cette constatation diffère de ce qui a été observé lors de l'étude du système PapR/PlcR chez B. cereus par Slamti et Lereclus (2005) qui ont montré que la présence de la phéromone PapR est essentielle à la liaison du régulateur PlcR à l'ADN et par conséquent à l'activation du régulon. A contrario, les études portant sur le plasmide conjugatif pCF10 de *E. faecalis* ont montré que le régulateur PrgX est toujours lié à l'ADN et que la liaison de la sex-phéromone à PrgX traduit une levée de la répression par ce régulateur en provoquant un changement d'oligomérisation de ce dernier (Kozlowicz et al., 2006b; Shi et al., 2005). Bien que nous ne remettions pas en cause les résultats que nous avons publiés, nous ne pouvons exclure l'influence de la queue 6-His (localisée en Nterminale de la séquence de la protéine Rgg) sur la liaison de la protéine Rgg1358 à l'ADN ou, alors, qu'une seconde maturation de la phéromone SHP dans le cytoplasme soit noncaractérisée. Aussi, nous émettons l'hypothèse que le contrôle des gènes cibles des systèmes SHP/Rgg soit issu d'une régulation à l'interface de ces deux mécanismes. En effet, nous avons montré que la protéine Rgg1358 est un répresseur de son propre gène. Les analyses de retard sur gel confortent cette hypothèse et par conséquent le fait que Rgg1358 soit lié à l'ADN en absence de sa phéromone SHP apparentée. Aussi, nous proposons que la présence de la phéromone SHP induise un changement conformationnel de la protéine régulatrice Rgg1358 et/ou la modification de son état d'activation. Si tel est le cas, ce mode d'action phéromone / protéine régulatrice serait inédit et différent de ceux décrits dans la littérature pour les systèmes de QS PapR/PlcR et cCF10-iCF10/PrgX appartenant à la famille RNPP. Aussi, une étude cristallographique est actuellement entreprise afin de définir la structure de la protéine Rgg1358 complexée à l'ADN et liant ou non la phéromone SHP.

Une particularité des systèmes SHP/Rgg réside en leur possible accumulation au sein des souches de streptocoques. Dans ce travail, l'identification de motifs putatifs de fixation des protéines Rgg (associées à des phéromones SHP) à l'ADN, spécifique de chaque
groupe de systèmes SHP/Rgg, souligne l'évolution de ces systèmes entre ces différents groupes mais également à l'échelle intra-groupe. L'étude de ces motifs et l'identification des nucléotides impliqués dans la liaison des protéines Rgg à l'ADN ou dans l'affinité de liaison du régulateur à l'ADN permettrait certainement, à l'avenir, de mieux comprendre ces interactions et le rôle des phéromones SHP dans l'activation des régulons putatifs identifiés.

3. <u>Les systèmes SHP/Rgg : transfert horizontal, évolution et fonction</u> <u>physiologique.</u>

L'analyse des environnements génétiques des systèmes SHP/Rgg chez les streptocoques a révélé la présence de nombreuses transposases dans l'environnement proche de ces systèmes, en particulier pour les systèmes appartenant au groupe I. En effet, seulement deux transposases sont présentes dans l'environnement proche du système SHP/Rgg1358 chez *S. thermophilus* LMD-9, appartenant au groupe II. Aussi, il semblerait que les systèmes SHP/Rgg aient été acquis par transfert horizontal. De plus, l'étude de Eng *et al.* (2011), souligne le transfert horizontal de nombreux îlots génomiques chez *S. thermophilus* au sein desquels des régulateurs transcriptionnels de la famille Rgg ont été identifiés.

De manière intéressante, il semblerait, au vu des systèmes SHP/Rgg orthologues identifiés, que ces échanges aient pu se produire entre différentes espèces plus ou moins proches phylogénétiquement. *S. pyogenes, S. dysgalactiae* et *S. agalactiae* appartenant au groupe pyogenic, possèdent un système SHP/Rgg orthologue présentant 77% d'identité mais n'ayant pas évolué au sein des différentes espèces. Ces différents systèmes présentent 99% (*S. pyogenes*) ou 100% (*S. agalactiae*) d'identité à l'échelle de l'espèce. Néanmoins, *S. mutans* et *S. equi*, n'appartenant pas au même groupe phylogénétique et ne partageant pas le même habitat naturel, présentent également un système orthologue (67% d'identité) dans leur génome. De la même manière que pour le système orthologue précédemment décrit, une forte identité de ce système entre les différentes souches séquencées de *S. mutans* peut être observée (99%). Aussi, la stricte ou forte conservation de ces systèmes au sein d'une espèce apparentée.

Les régulateurs Rgg sont similaires aux régulateurs de prophages Cro/CI (Anbalagan *et al.*, 2011; McDonnell *et al.*, 1994). Ces derniers pourraient donc dériver d'un ancêtre commun ayant permis le transfert de ces systèmes. Bien que *S. thermophilus* présente une forte perte de gènes, c'est en revanche, l'espèce de streptocoque qui a accumulé le plus

grand nombre de systèmes SHP/Rgg dans son génome. Aussi, pourquoi *S. thermophilus* possède-t-il un nombre supérieur de systèmes SHP/Rgg en regard des autres streptocoques ? Et, pourquoi, une telle variabilité du nombre de ces systèmes est visible au niveau inter-espèces et parfois inter-souches ? Le fait que le rôle de ces différents systèmes ne soit pas encore connu, ne permet malheureusement pas de répondre, à l'heure actuelle, à ces interrogations.

4. Les systèmes « SHP/Rgg » versus « XIP/ComR ».

Au cours de mes travaux de thèse, le rôle des protéines ComR dans un phénomène de régulation impliquant un peptide et un régulateur transcriptionnel contrôlant le déclenchement de la compétence pour la transformation naturelle, a été démontré (Fontaine *et al.*, 2010a; Mashburn-Warren *et al.*, 2010). Les travaux de Fontaine *et al.* (2010) ont décrits les protéines ComR comme appartenant à la famille des régulateurs transcriptionnels Rgg, terme ensuite repris lors des travaux de Mashburn-Warren. Cette classification a alors été à la base d'avis divergents au sein de la communauté scientifique : d'un côté les « pro-XIP/ComR », définissant les protéines ComR comme étant des protéines Rgg ; et de l'autre côté, les « pro-SHP/Rgg », relatant que les protéines ComR et Rgg sont distinctes et par conséquent, à l'origine de deux systèmes de régulation différents.

A l'heure actuelle, l'arbre phylogénétique que nous avons réalisé (article 1) relate la proximité de ces deux systèmes par leur appartenance à un même genre bactérien, celui des streptocoques mais montre également qu'il s'agit bien de deux systèmes distincts. Ces deux systèmes SHP/Rgg et XIP/ComR fonctionnent tous deux sur la base de phéromones exportées, réimportées par AmiA3 chez *S. thermophilus* LMD-9 pour ensuite interagir avec un régulateur transcriptionnel. Dans mon travail de thèse, démontrer l'originalité des systèmes SHP/Rgg par rapport aux systèmes XIP/ComR (encore appelé ComRS) s'est alors avéré être un paramètre nécessaire à leur valorisation. Les différences suivantes entre les deux systèmes ont été identifiées :

Quorum-sensing versus Timing-sensing

Bien que certaines étapes restent à valider pour les systèmes XIP/ComR (interaction phéromone / régulateur transcriptionnel et fixation du régulateur à l'ADN), les systèmes SHP/Rgg et XIP/ComR fonctionnent de manière différente. En effet, le système SHP/Rgg est clairement apparenté à du QS. Il s'allume en réponse à une certaine densité cellulaire, comme nous l'avons montré en utilisant des cultures ensemencées à différents niveaux qui fonctionnaient toutes à la même densité cellulaire. Le système XIP/ComR ne répond pas à la densité cellulaire mais s'apparente plutôt à ce que j'appellerai du « Timing Sensing ».

Quelque soit la densité cellulaire, le système s'allume après un temps défini ce qui correspond plus à un état physiologique des bactéries.

Organisation génétique des loci

Les deux systèmes se distinguent par l'organisation génétique des gènes codant la phéromone et le régulateur apparenté. En effet, alors que le gène comS (codant la phéromone) est localisé en amont de son régulateur ComR et transcrit dans le même sens ; les gènes shp – bien que pouvant être localisés en amont ou en aval du gène rgg – sont toujours transcrits de manière divergente à ce dernier.

Structure des régulateurs et fixation à l'ADN

Bien que l'annotation des génomes soit à prendre avec précaution, les protéines, actuellement désignées ComR, ne sont pas présentées comme possédant un domaine C-terminal Rgg-Cterm (TIGR01716, Genbank) identifié pour les protéines Rgg « stand-alone » ou associées aux phéromones SHP. Le fait que cette observation soit applicable à l'ensemble des protéines ComR – décrites dans la littérature (Fontaine *et al.*, 2010a; Mashburn-Warren *et al.*, 2010) – renforce l'idée que ces régulateurs bien que similaires présentent clairement des spécificités. De plus, leur annotation dans Genbank fait référence aux gènes *plcR*-like ce qui n'est pas le cas des Rgg. L'étude des régions promotrices des gènes codant les phéromones de ces systèmes a révélé l'existence de différents motifs de fixation 'putatifs' des protéines régulatrices à l'ADN. En effet, alors qu'une séquence ADN conservée (ne présentant pas de motif particulier) a été identifiée au sein de chaque groupe de systèmes SHP/Rgg.

Séquence des phéromones

La séquence des phéromones associées à ces systèmes présente également des spécificités non négligeables. Premièrement alors que la taille des peptides ComS est variable, celle des peptides SHP est conservée. Deuxièmement, les formes matures des phéromones de ces systèmes ont été caractérisées par la présence de résidus conservés : un motif double tryptophane pour les phéromones XIP et un acide aminé acide (aspartate ou glutamate) pour les phéromones SHP. Enfin, et comme précédemment décrit dans cette discussion, le comportement des phéromones dans le milieu extracellulaire (en MCD) est différent : les phéromones XIP n'étant pas libérée dans le milieu extracellulaire (R. Gardan, communication personnelle).

Aussi, au vu de ces premiers éléments justifiant l'étude parallèle de ces deux systèmes, il semblerait que les systèmes SHP/Rgg et XIP/ComR ne présentent finalement en commun, que le fait d'impliquer des peptides et des régulateurs transcriptionnels comme précédemment décrit au sein de la famille RNPP.

5. Les protéines régulatrices Rgg appartiennent-elles à la famille RNPP ?

De manière objective, aucune donnée ne permet actuellement de démontrer l'appartenance des protéines ComR à la famille Rgg et plus généralement de définir l'appartenance des protéines ComR et Rgg à la famille RNPP. Les effecteurs intracellulaires composants la famille RNPP (Rap, NprR, PlcR et PrgX) constituent une famille comprenant des domaines TPR (impliqués dans l'interaction protéine / protéine ou protéine / peptide) et un domaine hélice-tour-hélice de liaison à l'ADN appartenant à la famille XRE (Declerck et al., 2007). Bien que la prédiction de la structure des protéines Rgg identifie certaines hélices alpha alignées à celles composant le domaine TPR de liaison de la molécule de signalisation des régulateurs PIcR et PrgX (Carroll et al., 2011; Chang et al., 2011; Declerck et al., 2007; Shi et al., 2005), aucun domaine TPR n'a été (à proprement parler) détecté lors de l'utilisation de certains logiciels (TPR-pred, Karpenahalli et al., 2007) spécialisés dans la prédiction de ces domaines. Aussi, pour (i) établir le lien évolutif des protéines Rgg, ComR et RNPP et (ii) définir l'appartenance de ces deux régulateurs à la famille RNPP, une approche structurale est actuellement entreprise au laboratoire en collaboration avec une équipe de cristallographes. Par ailleurs, si l'appartenance des protéines Rgg à la famille RNPP est révélée, la dénomination RNPPR (Rap, NprR, PlcR, PrgX, Rgg) sera probablement plus adaptée (car respectant l'évolution des effecteurs de cette famille) que celle proposée par Federle et ses collaborateurs : RRNPP.

6. <u>Les protéines régulatrices Rgg associées aux phéromones : une sous-famille</u> <u>des protéines Rgg « stand-alones » ?</u>

Une question sous-jacente à l'étude des régulateurs transcriptionnels Rgg concerne la capacité de ces protéines à s'associer à différents signaux ou métabolites (Loughman and Caparon, 2006, 2007a); article 1). Aussi, les protéines Rgg associées à des phéromones SHP ne formeraient-elles pas une sous-famille de régulateurs transcriptionnels associant une certaine catégorie de signal ? La comparaison des structures d'un Rgg dit « standalone » c'est-à-dire non associé génétiquement à un petit peptide, à celle d'un Rgg associant une phéromone SHP permettrait de définir la conformation des poches (putatives) de liaison du substrat. Aussi, il pourrait être envisageable que les effecteurs de la famille RNPP et apparentés (Rgg et ComR) aient évolué au sein des différents genres bactériens (*Bacillus*,

Enterococcus et *Streptococcus*) et que au sein de ces différents genres, chaque régulateur associé ait évolué dans le but de répondre à une diversité de signaux.

7. Rôle des systèmes SHP/Rgg dans l'environnement naturel des streptocoques.

A contrario des molécules de signalisation AgrD, CSP et XIP qui sont décrites comme impliquées dans le contrôle d'une seule fonction physiologique (la virulence ou la compétence), l'accumulation des systèmes SHP/Rgg suggère la régulation d'un nombre varié de fonctions physiologiques. L'analyse des environnements génétiques des systèmes SHP/Rgg appartenant aux groupes II et III a suggéré que ces systèmes contrôlent l'expression de petits gènes codant des protéines / peptides destinés à un devenir extracellulaire et pouvant jouer le rôle de bactériocine (Diep et al., 1996; Pei and Grishin, 2001; Rea et al., 2010) ou encore de phéromones (Schmoll et al., 2010). Au laboratoire, l'étude de la fonction d'un de ces peptides, le peptide cyclique Pep1357C de S. thermophilus LMD-9, est entreprise. Bien que ce peptide cyclique ne ressemble pas à des bactériocines connues, des tests antimicrobiens (portant sur l'activité bactéricide ou bactériostatique de ce peptide) sur différents micro-organismes, en particulier utilisés ou indésirables au cours des procédés de fabrication dans lesquels S. thermophilus participe, ont été réalisés. Néanmoins, aucun effet sur la croissance des micro-organismes testés n'a été détecté. Des tests à plus grande échelle sur un nombre plus important de micro-organismes seraient sans doute nécessaires pour écarter complètement cette hypothèse. L'étude du rôle du peptide Pep1357C dans la formation de biofilm n'a, par ailleurs, révélé aucune implication du peptide dans cette fonction (R. Briandet, R. Gardan, communication personnelle). Des analyses protéomiques d'un mutant du gène ster_1357 (codant Pep1357C) sont en cours au laboratoire pour identifier d'autres pistes.

Le rôle des systèmes SHP/Rgg se pose de manière différente selon que le streptocoque est pathogène ou pas. Pour les pathogènes, les cibles évidentes sont les facteurs de virulence. La grande majorité des travaux menés dans le domaine du QS est d'ailleurs directement liée à la régulation de l'expression de facteurs de virulence. La prédiction des régulons Rgg a, par ailleurs, permis d'identifier des cibles putatives impliquées dans la virulence chez les streptocoques. Au laboratoire, nous explorons actuellement cette piste chez *S. agalactiae.* Chez *S. thermophilus* qui a accumulé ces systèmes et dont la seule niche écologique connue est le lait et les produits laitiers, la question est plus ouverte. Nous observons que ces systèmes ne se sont pas répandus chez d'autres espèces de bactéries lactiques comme *Lactococcus lactis* ou *Lactobacillus bulgaricus* qui cohabitent avec *S. thermophilus* laitiers. Pour identifier le rôle de ces systèmes, il faudra

donc sans doute croiser les spécificités métaboliques de *S. thermophilus* et son environnement.

Les conditions dans lesquelles les systèmes SHP/Rgg sont fonctionnels c'est-à-dire dans des cultures planctoniques en MCD restent bien sûr très artificielles mais ont permis leur étude mécanistique. Aussi, qu'en est-il des communications qui s'établissent au sein d'écosystèmes (biofilms, micro-colonies) plus complexes, où les concentrations en bactéries et phéromones sont différentes ? Est-ce que les systèmes SHP/Rgg sont exprimés dans de telles conditions ? Le développement d'outils, au laboratoire, permettant de suivre l'expression de différents systèmes SHP/Rgg par fluorescence pourrait alors être entrepris. Cette technique permettrait, par ailleurs, d'avancer sur l'expression de différents systèmes SHP/Rgg au sein de tels environnements ? Jouent-ils une action inhibitrice sur d'autres systèmes de QS dans d'autres genres bactériens ? Ces questions ouvertes constituent actuellement l'enjeu de nombreuses perspectives auxquelles la communication scientifique « QS » s'attèle à répondre.

Références bibliographiques

- Agaisse, H., Gominet, M., Okstad, O.A., Kolsto, A.B., and Lereclus, D. (1999) PIcR is a pleiotropic regulator of extracellular virulence factor gene expression in *Bacillus thuringiensis*. *Mol Microbiol* 32: 1043-1053.
- Al Safadi, R., Mereghetti, L., Salloum, M., Lartigue, M.F., Virlogeux-Payant, I., Quentin, R., and Rosenau, A. (2011) Two-component system RgfA/C activates the *fbsB* gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B *Streptococcus. PLoS One* 6: e14658.
- Alix, E., and Blanc-Potard, A.B. (2009) Hydrophobic peptides: novel regulators within bacterial membrane. *Mol Microbiol* **72**: 5-11.
- Alloing, G., de Philip, P., and Claverys, J.P. (1994) Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive *Streptococcus pneumoniae*. *J Mol Biol* **241**: 44-58.
- Alloing, G., Granadel, C., Morrison, D.A., and Claverys, J.P. (1996) Competence pheromone, oligopeptide permease, and induction of competence in *Streptococcus pneumoniae*. *Mol Microbiol* **21**: 471-478.
- Alloing, G., Martin, B., Granadel, C., and Claverys, J.P. (1998) Development of competence in Streptococcus pneumonaie: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol Microbiol 29: 75-83.
- Ammann, A., Neve, H., Geis, A., and Heller, K.J. (2008) Plasmid transfer via transduction from *Streptococcus thermophilus* to *Lactococcus lactis*. *J Bacteriol* **190**: 3083-3087.
- An, F.Y., Sulavik, M.C., and Clewell, D.B. (1999) Identification and characterization of a determinant (*eep*) on the *Enterococcus faecalis* chromosome that is involved in production of the peptide sex pheromone cAD1. J Bacteriol 181: 5915-5921.
- Anbalagan, S., McShan, W.M., Dunman, P.M., and Chaussee, M.S. (2011) Identification of Rgg Binding Sites in the *Streptococcus pyogenes* Chromosome. *J Bacteriol* **193**: 4933-4942.
- Antiporta, M.H., and Dunny, G.M. (2002) *ccfA*, the genetic determinant for the cCF10 peptide pheromone in *Enterococcus faecalis* OG1RF. *J Bacteriol* **184**: 1155-1162.
- Atkinson, S., and Williams, P. (2009) Quorum sensing and social networking in the microbial world. *J R S Interface* **6**: 959-978.
- Avery, O.T., MacLeod, C.M., and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. *J Exp Med* **79**: 137.158.
- Bae, T., Clerc-Bardin, S., and Dunny, G.M. (2000) Analysis of expression of *prgX*, a key negative regulator of the transfer of the *Enterococcus faecalis* pheromone-inducible plasmid pCF10. *J Mol Biol* **297**: 861-875.
- Bae, T., Kozlowicz, B., and Dunny, G.M. (2002) Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. *J Mol Biol* **315**: 995-1007.
- Bagnoli, F., Moschioni, M., Donati, C., Dimitrovska, V., Ferlenghi, I., Facciotti, C., Muzzi, A., Giusti, F., Emolo, C., Sinisi, A., Hilleringmann, M., Pansegrau, W., Censini, S., Rappuoli, R., Covacci, A., Masignani, V., and Barocchi, M.A. (2008) A second pilus type in *Streptococcus pneumoniae* is prevalent in emerging serotypes and mediates adhesion to host cells. *J Bacteriol* **190**: 5480-5492.
- Bailey, T., and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. *Proc Int Conf Intell Syst Mol Biol* **2**: 28-36.
- Barocchi, M.A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A., Dahlberg, S., Fernebro, J., Moschioni, M., Masignani, V., Hultenby, K., Taddei, A.R., Beiter, K., Wartha, F., von Euler, A., Covacci, A., Holden, D.W., Normark, S., Rappuoli, R., and Henriques-Normark, B. (2006) A pneumococcal pilus influences virulence and host inflammatory responses. *Proc Natl Acad Sci* U S A 103: 2857-2862.
- Bassler, B.L. (2002) Small talk: Cell-to-cell communication in bacteria. Cell 109: 421-424.

Bassler, B.L., and Losick, R. (2006) Bacterially speaking. Cell 125: 237-246.

- Bensing, B.A., Manias, D.A., and Dunny, G.M. (1997) Pheromone cCF10 and plasmid pCF10encoded regulatory molecules act post-transcriptionally to activate expression of downstream conjugation functions. *Mol Microbiol* **24**: 285-294.
- Blomqvist, T., Steinmoen, H., and Håvarstein, L.S. (2006a) Natural genetic transformation: A novel tool for efficient genetic engineering of the dairy bacterium *Streptococcus thermophilus*. *Appl Environ Microbiol* **72**: 6751-6756.
- Blomqvist, T., Steinmoen, H., and Håvarstein, L.S. (2006b) Pheromone-induced expression of recombinant proteins in *Streptococcus thermophilus*. *Arch Microbiol* **186**: 465-473.

Boekhorst, J., Wilson, G., Siezen, R. J. (2011) Searching in microbial genomes for encoded small proteins. *Microbial biotechnol* **4**: 308-313.

Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M., Pusch, G.D., Fonstein, M., Overbeek, R., Kyprides, N., Purnelle, B., Prozzi, D., Ngui, K., Masuy, D., Hancy, F., Burteau, S., Boutry, M., Delcour, J., Goffeau, A., and Hols, P. (2004) Complete sequence and comparative genome analysis of the dairy bacterium *Streptococcus thermophilus. Nat Biotechnol* 22: 1554-1558.

Bortoni, M.E., Terra, V.S., Hinds, J., Andrew, P.W., and Yesilkaya, H. (2009) The pneumococcal response to oxidative stress includes a role for Rgg. *Microbiology* **155**: 4123–4134.

Boto, L. (2010) Horizontal gene transfer in evolution: facts and challenges. Proc Biol Sci 277: 819-827.

- Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., Gohar, M., Declerck, N., and Lereclus, D. (2008) Molecular basis for group-specific activation of the virulence regulator PIcR by PapR heptapeptides. *Nucleic Acids Res* 36: 3791-3801.
- Bouillaut L. Bases moléculaires d'un système de communication cellulaire chez *Bacillus cereus*. Sous la direction de D. Lereclus. AgroParisTech. (2007) Thèse.
- Burrus, V., Pavlovic, G., Decaris, B., and Guedon, G. (2002) The ICESt1 element of *Streptococcus thermophilus* belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. *Plasmid* **48**: 77-97.
- Buttaro, B.A., Antiporta, M.H., and Dunny, G.M. (2000) Cell-associated pheromone peptide (cCF10) production and pheromone inhibition in *Enterococcus faecalis*. *J Bacteriol* **182**: 4926-4933.
- Callegan, M.C., Kane, S.T., Cochran, D.C., Gilmore, M.S., Gominet, M., and Lereclus, D. (2003) Relationship of *plcR*-Regulated Factors to *Bacillus* Endophthalmitis Virulence. *Infect Immun* **71**: 3116-3124.
- Campbell, E.A., Choi, S.Y., and Masure, H.R. (1998) A competence regulon in *Streptococcus* pneumoniae revealed by genomic analysis. *Mol Microbiol* **27**: 929-939.
- Carroll, R.K., and Musser, J.M. (2011) From transcription to activation: how group A streptococcus, the flesh-eating pathogen, regulates SpeB cysteine protease production. *Mol Microbiol* **81**: 588-601.
- Carroll, R.K., Shelburne, S.A., Olsen, R.J., Suber, B., Sahasrabhojane, P., Kumaraswami, M., Beres, S.B., Shea, P.R., Flores, A.R., and Musser, J.M. (2011) Naturally occurring single amino acid replacements in a regulatory protein alter streptococcal gene expression and virulence in mice. *J Clin Invest* **121**: 1956-1968.
- Casino, P., Rubio, V., and Marina, A. (2010) The mechanism of signal transduction by two-component systems. *Curr Opin Struct Biol* **20**: 763-771.
- Chan, W.C., Coyle, B.J., and Williams, P. (2004) Virulence Regulation and Quorum Sensing in Staphylococcal Infections: Competitive AgrC Antagonists as Quorum Sensing Inhibitors. J Med Chem **47**: 4633-4641.
- Chandler, J.R., and Dunny, G.M. (2004) Enterococcal peptide sex pheromones: synthesis and control of biological activity. *Peptides* **25**: 1377-1388.
- Chandler, J.R., and Dunny, G.M. (2008) Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. *J Bacteriol* **190**: 1172-1183.
- Chang, J.C., LaSarre, B., Jimenez, J.C., Aggarwal, C., and Federle, M.J. (2011) Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development. *PLoS Pathog* **7**: e1002190.
- Chaussee, M.A., Callegari, E.A., and Chaussee, M.S. (2004) Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in *Streptococcus pyogenes*. *J Bacteriol* **186**: 7091-7099.
- Chaussee, M.S., Ajdic, D., and Ferretti, J.J. (1999) The *rgg* gene of *Streptococcus pyogenes* NZ131 positively influences extracellular SPE B production. *Infect Immun* **67**: 1715-1722.
- Chaussee, M.S., Watson, R.O., Smoot, J.C., and Musser, J.M. (2001) Identification of Rgg-Regulated Exoproteins of *Streptococcus pyogenes. Infect Immun* **69**: 822-831.
- Chaussee, M.S., Sylva, G.L., Sturdevant, D.E., Smoot, L.M., Graham, M.R., Watson, R.O., and Musser, J.M. (2002) Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in *Streptococcus pyogenes*. *Infect Immun* **70**: 762-770.
- Chaussee, M.S., Somerville, G.A., Reitzer, L., and Musser, J.M. (2003) Rgg coordinates virulence factor synthesis and metabolism in *Streptococcus pyogenes*. *J Bacteriol* **185**: 6016-6024.
- Chen, I., and Dubnau, D. (2004) DNA uptake during bacterial transformation. *Nat Rev Microbiol* **2**: 241-249.

- Chen, P., Qi, F., Novak, J., and Caufield, P.W. (1999) The specific genes for lantibiotic mutacin II biosynthesis in *Streptococcus mutans* T8 are clustered and can be transferred en bloc. *Appl Environ Microbiol* **65**: 1356-1360.
- Claverys, J.P., Prudhomme, M., and Martin, B. (2006) Induction of competence regulons as a general response to stress in gram-positive bacteria. *Annu Rev Microbiol* **60**: 451-475.
- Claverys, J.P., and Håvarstein, L.S. (2007) Cannibalism and fratricide: mechanisms and raisons d'etre. *Nat Rev Microbiol* **5**: 219-229.
- Claverys, J.P., Martin, B., and Polard, P. (2009) The genetic transformation machinery: composition, localization, and mechanism. *FEMS Microbiol Rev* **33**: 643-656.
- Clewell, D.B., An, F.Y., Flannagan, S.E., Antiporta, M., and Dunny, G.M. (2000) Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. *Mol Microbiol* **35**: 246-247.
- Conte, A., Chinello, P., Civljak, R., Bellussi, A., Noto, P., and Petrosillo, N. (2006) *Streptococcus salivarius* meningitis and sphenoid sinus mucocele. Case report and literature review. *J Infect* **52**: 27-30.
- Cunningham, M.W. (2000) Pathogenesis of group A streptococcal infections. *Clin Microbiol Rev* **13**: 470-511.
- Cunningham, M.W. (2008) Pathogenesis of group A streptococcal infections and their sequelae. *Adv Exp Med Biol* **609**: 29-42.
- De Jong, A., van Hijum, S.A.F.T., Bijlsma, J.J.E., Kok, J., and Kuipers, O.P. (2006) BAGEL: a webbased bacteriocin genome mining tool. *Nucleic Acids Res* **34**: W273-W279.
- De Vuyst, L., and Degeest, B. (1999) Heteropolysaccharides from lactic acid bacteria. *FEMS Microbiol Rev* 23: 153-177.
- Declerck, N., Bouillaut, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., Lereclus, D., and Arold, S.T. (2007) Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. *Proc Natl Acad Sci U S A* **104**: 18490-18495.
- Delorme, C., Poyart, C., Ehrlich, S.D., and Renault, P. (2007) Extent of horizontal gene transfer in evolution of *Streptococci* of the salivarius group. *J Bacteriol* **189**: 1330-1341.
- Delorme, C. (2008) Safety assessment of dairy microorganisms: *Streptococcus thermophilus*. *Int J Food Microbiol* **126**: 274-277.
- Delorme, C., Bartholini, C., Luraschi, M., Pons, N., Loux, V., Almeida, M., Guedon, E., Gibrat, J.F., and Renault, P. (2011) Complete Genome Sequence of the Pigmented Streptococcus thermophilus Strain JIM8232. J. Bacteriol. 193: 5581-5582.
- Denham, E.L., Ward, P.N., and Leigh, J.A. (2008) Lipoprotein signal peptides are processed by Lsp and Eep of *Streptococcus uberis*. *J Bacteriol* **190**: 4641-4647.
- Di Cagno, R., De Angelis, M., Calasso, M., and Gobbetti, M. (2011) Proteomics of the bacterial crosstalk by quorum sensing. *J Proteomics* **74**: 19-34.
- Diep, D., Håvarstein, L., and Nes, I. (1996) Characterization of the locus responsible for the bacteriocin production in *Lactobacillus plantarum* C11. *J Bacteriol* **178**: 4472-4483.
- Dmitriev, A.V., McDowell, E.J., Kappeler, K.V., Chaussee, M.A., Rieck, L.D., and Chaussee, M.S. (2006) The Rgg regulator of *Streptococcus pyogenes* influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. *J Bacteriol* **188**: 7230-7241.
- Dmitriev, A.V., McDowell, E.J., and Chaussee, M.S. (2008) Inter- and intraserotypic variation in the *Streptococcus pyogenes* Rgg regulon. *FEMS Microbiol Lett* **284**: 43-51.
- Doyuk, E., Ormerod, O.J., and Bowler, I.C. (2002) Native valve endocarditis due to *Streptococcus* vestibularis and *Streptococcus* oralis. J Infect **45**: 39-41.
- Duan, K., Dammel, C., Stein, J., Rabin, H., and Surette, M.G. (2003) Modulation of *Pseudomonas* aeruginosa gene expression by host microflora through interspecies communication. *Mol Microbiol* **50**: 1477-1491.
- Dunny, G.M., and Leonard, B.A. (1997) Cell-cell communication in gram-positive bacteria. *Annu Rev Microbiol* **51**: 527-564.
- Dunny, G.M., Antiporta, M.H., and Hirt, H. (2001) Peptide pheromone-induced transfer of plasmid pCF10 in *Enterococcus faecalis*: probing the genetic and molecular basis for specificity of the pheromone response. *Peptides* **22**: 1529-1539.
- Dunny, G.M. (2007) The peptide pheromone-inducible conjugation system of *Enterococcus faecalis* plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. *Philos Trans R Soc Lond B Biol Sci* **362**: 1185-1193.
- Dunny, G.M., and Johnson, C.M. (2011) Regulatory circuits controlling enterococcal conjugation: lessons for functional genomics. *Curr Opin Microbiol Cell regulation* **14**: 174-180.

- Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* **32**: 1792-1797.
- Ehrmann, M., Ludwig, W., and Schleifer, K.H. (1994) Reverse dot blot hybridization: a useful method for the direct identification of lactic acid bacteria in fermented food. *FEMS Microbiol Lett* **117**: 143-149.
- Elli, M., Callegari, M.L., Ferrari, S., Bessi, E., Cattivelli, D., Soldi, S., Morelli, L., Goupil Feuillerat, N., and Antoine, J.M. (2006) Survival of yogurt bacteria in the human gut. *Appl Environ Microbiol* **72**: 5113-5117.
- Eng, C., Thibessard, A., Danielsen, M., Rasmussen, T.B., Mari, J.F., and Leblond, P. (2011) In silico prediction of horizontal gene transfer in *Streptococcus thermophilus*. Arch Microbiol **193**: 287-297.
- Facklam, R. (2002) What happened to the *streptococci*: overview of taxonomic and nomenclature changes. *Clin Microbiol Rev* **15**: 613-630.
- Falugi, F., Žingaretti, C., Pinto, V., Mariani, M., Amodeo, L., Manetti, A.G., Capo, S., Musser, J.M., Orefici, G., Margarit, I., Telford, J.L., Grandi, G., and Mora, M. (2008) Sequence variation in group A *Streptococcus* pili and association of pilus backbone types with lancefield T serotypes. *J Infect Dis* **198**: 1834-1841.
- Farrow, J.A., and Collins, M.D. (1984) DNA base composition, DNA-DNA homology and long-chain fatty acid studies on *Streptococcus thermophilus* and *Streptococcus salivarius*. J Gen Microbiol 130: 357-362.
- Fernandez, A., Thibessard, A., Borges, F., Gintz, B., Decaris, B., and Leblond-Bourget, N. (2004) Characterization of oxidative stress-resistant mutants of *Streptococcus thermophilus* CNRZ368. *Arch Microbiol* **182**: 364-372.
- Fernandez, A., Borges, F., Gintz, B., Decaris, B., and Leblond-Bourget, N. (2006) The *rggC* locus, with a frameshift mutation, is involved in oxidative stress response by *Streptococcus thermophilus*. *Arch Microbiol* **186**: 161-169.
- Fontaine, L., Boutry, C., Guedon, E., Guillot, A., Ibrahim, M., Grossiord, B., and Hols, P. (2007) Quorum-sensing regulation of the production of Blp bacteriocins in *Streptococcus thermophilus*. *J Bacteriol* 189: 7195-7205.
- Fontaine, L., Boutry, C., Henry de Frahan, M., Delplace, B., Fremaux, C., Horvath, P., Boyaval, P., and Hols, P. (2010a) A novel pheromone quorum-sensing system controls the development of natural competence in *Streptococcus thermophilus* and *Streptococcus salivarius*. *J Bacteriol* **192**: 1444-1454.
- Fontaine, L., Dandoy, D., Boutry, C., Delplace, B., de Frahan, M.H., Fremaux, C., Horvath, P., Boyaval, P., and Hols, P. (2010b) Development of a versatile procedure based on natural transformation for marker-free targeted genetic modification in *Streptococcus thermophilus*. *Appl Environ Microbiol* **76**: 7870-7877.
- Fontecave, M., Atta, M., and Mulliez, E. (2004) S-adenosylmethionine: nothing goes to waste. *Trends in Biochemical Sciences* **29**: 243-249.
- Fujiwara, T., Hoshino, T., Ooshima, T., Sobue, S., and Hamada, S. (2000) Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from *Streptococcus oralis. Infect Immun* 68: 2475-2483.
- Fuqua, C., and Greenberg, E.P. (2002) Listening in on bacteria: acyl-homoserine lactone signalling. *Nat Rev Mol Cell Biol* **3**: 685-695.
- Gaillot, O., Poyart, C., Berche, P., and Trieu-Cuot, P. (1997) Molecular characterization and expression analysis of the superoxide dismutase gene from *Streptococcus agalactiae*. *Gene* **204**: 213-218.
- Gao, R., and Stock, A.M. (2009) Biological Insights from Structures of Two-Component Proteins. *Ann Rev Microbiol* **63**: 133-154.
- Garault, P., Le Bars, D., Besset, C., and Monnet, V. (2002) Three oligopeptide-binding proteins are involved in the oligopeptide transport of *Streptococcus thermophilus*. *J Biol Chem* **277**: 32-39.
- Gardan, R., Besset, C., Guillot, A., Gitton, C., and Monnet, V. (2009) The oligopeptide transport system is essential for the development of natural competence in *Streptococcus thermophilus* strain LMD-9. *J Bacteriol* **191**: 4647-4655.
- Giraffa, G., Paris, A., Valcavi, L., Gatti, M., Neviani, E. (2001) Genotypic and phenotypic heterogeneity of *Streptococcus thermophilus* strains isolated from dairy products. *J Appl Microbiol* **91**: 937-943.
- Goebl, M., and Yanagida, M. (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. *Trends Biochem Sci* **16**: 173-177.

- Gohar, M., Økstad, O.A., Gilois, N., Sanchis, V., Kolsto, A.B., and Lereclus, D. (2002) Twodimensional electrophoresis analysis of the extracellular proteome of *Bacillus cereus* reveals the importance of the PIcR regulon. *Proteomics* **2**: 784-791.
- Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O.A., Gominet, M., Kolstø, A.B., and Lereclus, D. (2008) The PIcR virulence regulon of *Bacillus cereus*. *PLoS ONE* **3**: e2793.
- Gominet, M., Slamti, L., Gilois, N., Rose, M., and Lereclus, D. (2001) Oligopeptide permease is required for expression of the *Bacillus thuringiensis plcR* regulon and for virulence. *Mol Microbiol* **40**: 963-975.
- Griffith, F. (1928) The Significance of Pneumococcal Types. J Hyg (Lond) 27: 113-159.
- Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., and Morelli, L. (2005) Should yoghurt cultures be considered probiotic? *Br J Nutr* **93**: 783-786.
- Guiral, S., Mitchell, T.J., Martin, B., and Claverys, J.-P. (2005) Competence-programmed predation of noncompetent cells in the human pathogen *Streptococcus pneumoniae*: Genetic requirements. *Proc Natl Acad Sci USA* **102**: 8710-8715.
- Gutekunst, H., Eikmanns, B.J., and Reinscheid, D.J. (2003) Analysis of RogB-controlled virulence mechanisms and gene repression in *Streptococcus agalactiae*. *Infect Immun* **71**: 5056-5064.
- Hanzelka, B.L., Parsek, M.R., Val, D.L., Dunlap, P.V., Cronan, J.E., Jr., and Greenberg, E.P. (1999) Acylhomoserine lactone synthase activity of the *Vibrio fischeri* AinS protein. *J Bacteriol* **181**: 5766-5770.
- Håvarstein, L.S., Holo, H., and Nes, I.F. (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. *Microbiology* **140** (**Pt 9**): 2383-2389.
- Håvarstein, L.S., Gaustad, P., Nes, I.F., and Morrison, D.A. (1996) Identification of the streptococcal competence-pheromone receptor. *Mol Microbiol* **21**: 863-869.
- Håvarstein, L.S., Coomaraswamy, G., and Morrison, D.A. (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in *Streptococcus pneumoniae*. *Proc Natl Acad Sci U S A* **92**: 11140-11144.
- Håvarstein, L.S., Gaustad, P., Nes, I.F., and Morrison, D.A. (1996) Identification of the streptococcal competence-pheromone receptor. *Mol Microbiol* **21**: 863-869.
- Håvarstein, L.S., Martin, B., Johnsborg, O., Granadel, C., and Claverys, J.-P. (2006) New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. *Mol Microbiol* **59**: 1297-1037.
- Hemm, M.R., Paul, B.J., Miranda-Rios, J., Zhang, A., Soltanzad, N., and Storz, G. (2010) Small Stress Response Proteins in *Escherichia coli*: Proteins Missed by Classical Proteomic Studies. J Bacteriol **192**: 46-58.
- Henry, R., Bruneau, E., Gardan, R., Bertin, S., Fleuchot, B., Decaris, B., and Leblond-Bourget, N. (2011) The *rgg0182* gene encodes a transcriptional regulator required for the full *Streptococcus thermophilus* LMG18311 thermal adaptation. *BMC Microbiol* **11**: 223.
- Hense, B.A., Kuttler, C., Muller, J., Rothballer, M., Hartmann, A., and Kreft, J.-U. (2007) Does efficiency sensing unify diffusion and quorum sensing? **5**: 230-239.
- Higgins, C.F. (2001) ABC transporters: physiology, structure and mechanism--an overview. *Res Microbiol* **152**: 205-210.
- Higgins, C.F. (2007) Multiple molecular mechanisms for multidrug resistance transporters. *Nature* **446**: 749-757.
- Hoch, J.A. (2000) Two-component and phosphorelay signal transduction. *Current Opinion in Microbiology* **3**: 165-170.
- Hollands, A., Aziz, R.K., Kansal, R., Kotb, M., Nizet, V., and Walker, M.J. (2008) A Naturally Occurring Mutation in *ropB* Suppresses SpeB Expression and Reduces M1T1 Group A Streptococcal Systemic Virulence. *PLoS ONE* **3**: e4102.
- Hols, P., Hancy, F., Fontaine, L., Grossiord, B., Prozzi, D., Leblond-Bourget, N., Decaris, B., Bolotin, A., Delorme, C., Dusko Ehrlich, S., Guédon, E., Monnet, V., Renault, P., and Kleerebezem, M. (2005) New insights in the molecular biology and physiology of *Streptococcus thermophilus* revealed by comparative genomics. *FEMS Microbiol Rev* 29: 435-463.
- Hughes, D.T., and Sperandio, V. (2008) Inter-kingdom signalling: communication between bacteria and their hosts. *Nature Rev* **6**: 111-120.
- Hui, F.M., Zhou, L., and Morrison, D.A. (1995) Competence for genetic transformation in *Streptococcus pneumoniae*: organization of a regulatory locus with homology to two lactococcin A secretion genes. *Gene* **153**: 25-31.

- Hutchings, M.I., Palmer, T., Harrington, D.J., and Sutcliffe, I.C. (2009) Lipoprotein biogenesis in Grampositive bacteria: knowing when to hold them, knowing when to fold them. *Trends Microbiol* **17**: 13-21.
- Ibrahim, M., Guillot, A., Wessner, F., Algaron, F., Besset, C., Courtin, P., Gardan, R., and Monnet, V. (2007a) Control of the transcription of a short gene encoding a cyclic peptide in *Streptococcus thermophilus*: a new quorum-sensing system? *J Bacteriol* 189: 8844-8854.
- Ibrahim, M., Nicolas, P., Bessières, P., Bolotin, A., Monnet, V., and Gardan, R. (2007b) A genomewide survey of short coding sequences in *streptococci. Microbiology* **153**: 3631-3644.
- Idigoras, P., Valiente, A., Iglesias, L., Trieu-Cout, P., and Poyart, C. (2001) Meningitis due to *Streptococcus salivarius. J Clin Microbiol* **39**: 3017.
- Ikebe, T., Ato, M., Matsumura, T., Hasegawa, H., Sata, T., Kobayashi, K., and Watanabe, H. (2010) Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates. *PLoS Pathog* 6: e1000832.
- Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., Bhattacharyya, A., Reznik, G., Mikhailova, N., Lapidus, A., Chu, L., Mazur, M., Goltsman, E., Larsen, N., D'Souza, M., Walunas, T., Grechkin, Y., Pusch, G., Haselkorn, R., Fonstein, M., Dusko Ehrlich, S., Overbeek, R., and Kyrpides, N. (2003) Genome sequence of *Bacillus cereus* and comparative analysis with *Bacillus anthracis*. *Nature* **423**: 87-91.
- Ji, G., Beavis, R.C., and Novick, R.P. (1995) Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. *Proc. Natl. Acad. Sci. U S A* **92**: 12055-12059.
- Ji, G., Beavis, R., and Novick, R.P. (1997) Bacterial interference caused by autoinducing peptide variants. *Science* **276**: 2027-2030.
- Johnsborg, O., Eldholm, V., and Håvarstein, L.S. (2007) Natural genetic transformation: prevalence, mechanisms and function. *Res Microbiol* **158**: 767-778.
- Johnsborg, O., and Håvarstein, L.S. (2009) Regulation of natural genetic transformation and acquisition of transforming DNA in *Streptococcus pneumoniae*. *FEMS Microbiol Rev* **33**: 627-642.
- Juille, O., Le Bars, D., and Juillard, V. (2005) The specificity of oligopeptide transport by *Streptococcus thermophilus* resembles that of *Lactococcus lactis* and not that of pathogenic *streptococci. Microbiology* **151**: 1987-1994.
- Kappeler, K.V., Anbalagan, S., Dmitriev, A.V., McDowell, E.J., Neely, M.N., and Chaussee, M.S. (2009) A naturally occurring Rgg variant in serotype M3 *Streptococcus pyogenes* does not activate *speB* expression due to altered specificity of DNA binding. *Infect Immun* 77: 5411-5417
- Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E., and Håvarstein, L.S. (2005) Choline-Binding Protein D (CbpD) in *Streptococcus pneumoniae* Is Essential for Competence-Induced Cell Lysis. *J Bacterio*. **187**: 4338-4345.
- Kawamura, Y., Hou, X.G., Sultana, F., Liu, S., Yamamoto, H., and Ezaki, T. (1995a) Transfer of *Streptococcus adjacens* and *Streptococcus defectivus* to *Abiotrophia* gen. nov. as *Abiotrophia adjacens* comb. nov. and *Abiotrophia defectiva* comb. nov., respectively. *Int J Syst Bacteriol* 45: 798-803.
- Kawamura, Y., Hou, X.G., Sultana, F., Miura, H., and Ezaki, T. (1995b) Determination of 16S rRNA sequences of *Streptococcus mitis* and *Streptococcus gordonii* and phylogenetic relationships among members of the genus *Streptococcus*. *Int J Syst Bacteriol* **45**: 406-408.
- Keller, L., and Surette, M.G. (2006) Communication in bacteria: an ecological and evolutionary perspective. *Nat Rev Microbiol* **4**: 249-258.
- Keyes, P.H. (1960) The infectious and transmissible nature of experimental dental caries. Findings and implications. *Arch Oral Biol* **1**: 304-320.
- Koenig, R.L., Ray, J.L., Maleki, S.J., Smeltzer, M.S., and Hurlburt, B.K. (2004) *Staphylococcus aureus* AgrA Binding to the RNAIII-agr Regulatory Region. *J Bacteriol* **186**: 7549-7555.
- Koonin, E.V., Makarova, K.S., and Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification. *Annu Rev Microbiol* **55**: 709-742.
- Kozlowicz, B.K., Dworkin, M., and Dunny, G.M. (2006a) Pheromone-inducible conjugation in *Enterococcus faecalis*: a model for the evolution of biological complexity? *Int J Med Microbiol* 296: 141-147.
- Kozlowicz, B.K., Shi, K., Gu, Z.Y., Ohlendorf, D.H., Earhart, C.A., and Dunny, G.M. (2006b) Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. *Mol Microbiol* **62**: 958-969.
- Kreikemeyer, B., McIver, K.S., and Podbielski, A. (2003) Virulence factor regulation and regulatory networks in *Streptococcus pyogenes* and their impact on pathogen-host interactions. *Trends Microbiol* **11**: 224-232.

- Kreikemeyer, B., Gamez, G., Margarit, I., Giard, J.C., Hammerschmidt, S., Hartke, A., and Podbielski, A. (2011) Genomic organization, structure, regulation and pathogenic role of pilus constituents in major pathogenic *Streptococci* and *Enterococci*. *Int J Med Microbiol* **301**: 240-251.
- Kreth, J., Merritt, J., Bordador, C., Shi, W., and Qi, F. (2004) Transcriptional analysis of mutacin I (*mutA*) gene expression in planktonic and biofilm cells of *Streptococcus mutans* using fluorescent protein and glucuronidase reporters. *Oral Microbiol Immunol* **19**: 252-256.
- Kreth, J., Merritt, J., Shi, W., and Qi, F. (2005) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. *Mol Microbiol* 57: 392-404.

Lancefield, R.C. (1933) A Serological Differentiation of Human and Other Groups of Hemolytic *Streptococci. J Exp Med* **57**: 571-595.

- Lanigan-Gerdes, S., Dooley, A.N., Faull, K.F., and Lazazzera, B.A. (2007) Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of *Bacillus subtilis. Mol Microbiol* **65**: 1321-1333.
- Lauer, P., Rinaudo, C.D., Soriani, M., Margarit, I., Maione, D., Rosini, R., Taddei, A.R., Mora, M., Rappuoli, R., Grandi, G., and Telford, J.L. (2005) Genome analysis reveals pili in Group B *Streptococcus. Science* **309**: 105.

Lazazzera, B.A. (2001) The intracellular function of extracellular signaling peptides. *Peptides* 22: 1519-1527.

- Ledenberg, J., and Tatum, E.L. (1946) Gene recombination in Escherichia coli. Nature 19: 458-558
- Lee, J.-H., and Lee, J. (2010) Indole as an intercellular signal in microbial communities. *FEMS Microbiol Rev* 34: 426-444.
- Lee, M.S., and Morrison, D.A. (1999) Identification of a New Regulator in *Streptococcus pneumoniae* Linking Quorum Sensing to Competence for Genetic Transformation. *J Bacteriol* **181**: 5004-5016.
- Lefébure, T., and Stanhope, M.J. (2007) Evolution of the core and pan-genome of *Streptococcus*: positive selection, recombination, and genome composition. *Genome Biol* **8**: R71.
- Leonard, B.A., Podbielski, A., Hedberg, P.J., and Dunny, G.M. (1996) *Enterococcus faecalis* pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. *Proc Natl Acad Sci U S A* **93**: 260-264.
- Lereclus, D., Agaisse, H., Gominet, M., Salamitou, S., and Sanchis, V. (1996) Identification of a *Bacillus thuringiensis* gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. *J Bacteriol* **178**: 2749-2756.
- Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S., and Gominet, M. (2000) Regulation of toxin and virulence gene transcription in *Bacillus thuringiensis*. *Int J Med Microbiol* **290**: 295-299.
- Letort, C., and Juillard, V. (2001) Development of a minimal chemically-defined medium for the exponential growth of *Streptococcus thermophilus*. *J Appl Microbiol* **91**: 1023-1029.
- Li, J., Wang, W., Xu, S.X., Magarvey, N.A., and McCormick, J.K. (2011) *Lactobacillus reuteri*-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. *Proc Natl Acad Sci USA* **108**: 3360-3365.
- Li, Y.H., Lau, P.C.Y., Lee, J.H., Ellen, R.P., and Cvitkovitch, D.G. (2001) Natural Genetic Transformation of *Streptococcus mutans* Growing in Biofilms. *J Bacteriol* **183**: 897-908.
- Li, Y.H., Tang, N., Aspiras, M.B., Lau, P.C.Y., Lee, J.H., Ellen, R.P., and Cvitkovitch, D.G. (2002) A Quorum-Sensing Signaling System Essential for Genetic Competence in *Streptococcus mutans* Is Involved in Biofilm Formation. *J Bacteriol* **184**: 2699-2708.
- Lick, S., Keller, M., Bockelmann, W., and Heller, K.J. (1996) Rapid identification of *Streptococcus thermophilus* by primer-specific PCR amplification based on its *lacZ* gene. *Syst Appl Microbiol* **19**: 74-77.
- Linton, K.J., and Higgins, C.F. (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. *Pflugers Arch* **453**: 555-567.
- Liu, M., Siezen, R.J., and Nauta, A. (2009) *In silico* prediction of horizontal gene transfer events in *Lactobacillus bulgaricus* and *Streptococcus thermophilus* reveals protocooperation in yogurt manufacturing. *Appl Environ Microbiol* **75**: 4120-4129.
- Liu, S.Q. (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. *Int J Food Microbiol* **83**: 115-131.
- Loughman, J.A., and Caparon, M.G. (2006) A novel adaptation of aldolase regulates virulence in *Streptococcus pyogenes. Embo J* **25**: 5414-5422.
- Loughman, J.A., and Caparon, M.G. (2007a) Comparative functional analysis of the *lac* operons in *Streptococcus pyogenes. Mol Microbiol* **64**: 269-280.

- Loughman, J.A., and Caparon, M.G. (2007b) Contribution of invariant residues to the function of Rgg family transcription regulators. *J Bacteriol* **189**: 650-655.
- Luo, P., Li, H., and Morrison, D.A. (2004) Identification of ComW as a new component in the regulation of genetic transformation in *Streptococcus pneumoniae*. *Mol Microbiol* **54**: 172-183.
- Lyon, W.R., Gibson, C.M., and Caparon, M.G. (1998) A role for trigger factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of *Streptococcus pyogenes*. *Embo J* **17**: 6263-6275.

MacQuarrie, K.L., Fong, A.P., Morse, R.H., and Tapscott, S.J. (2011) Genome-wide transcription factor binding: beyond direct target regulation. *Trends in Genetics* **27**: 141-148.

- Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D.M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J.H., Diaz-Muniz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O'Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B., and Mills, D. (2006) Comparative genomics of the lactic acid bacteria. *Proc Natl Acad Sci USA* 103: 15611-15616.
- Marciset, O., and Mollet, B. (1994) Multifactorial experimental design for optimizing transformation: Electroporation of *Streptococcus thermophilus*. *Biotechnol Bioeng* **43**: 490-496.
- Martin, B., Quentin, Y., Fichant, G., and Claverys, J.P. (2006) Independent evolution of competence regulatory cascades in *streptococci? Trends Microbiol* **14**: 339-345.
- Martin, B., Granadel, C., Campo, N., Hénard, V., Prudhomme, M., and Claverys, J.P. (2010) Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of *Streptococcus pneumoniae*. *Mol Microbiol* **75**: 1513-1528.
- Mashburn-Warren, L., Morrison, D.A., and Federle, M.J. (2010) A novel double-tryptophan peptide pheromone controls competence in *Streptococcus* spp. via an Rgg regulator. *Mol Microbiol* **78**: 589-606.
- McDonnell, G.E., Wood, H., Devine, K.M., and McConnell, D.J. (1994) Genetic control of bacterial suicide: regulation of the induction of PBSX in *Bacillus subtilis*. *J Bacteriol* **176**: 5820-5830.
- McIver, K.S. (2009) Stand-alone response regulators controlling global virulence networks in *streptococcus pyogenes. Contrib Microbiol* **16**: 103-119.
- Menard, S., Candalh, C., Bambou, J.C., Terpend, K., Cerf-Bensussan, N., and Heyman, M. (2004) Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. *Gut* 53: 821-828.
- Mercenier, A., Slos, P., Faelen, M., and Lecocq, J.P. (1988) Plasmid transduction in *Streptococcus thermophilus*. *Mol Gen Genet* **212**: 386-389.
- Merritt, J., Kreth, J., Shi, W., and Qi, F. (2005) LuxS controls bacteriocin production in *Streptococcus mutans* through a novel regulatory component. *Mol Microbiol* **57**: 960-969.
- Michiels, J., Dirix, G., Vanderleyden, J., and Xi, C. (2001) Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. *Trends Microbiol* **9**: 164-168.
- Miller, M.B., and Bassler, B.L. (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165-199.
- Mitchell, A.M., and Mitchell, T.J. (2010) *Streptococcus pneumoniae*: virulence factors and variation. *Clin Microbiol Infect* **16**: 411-418.
- Monnet, V. (2003) Bacterial oligopeptide-binding proteins. Cell Mol Life Sci 60: 2100-2114.
- Mora, D., Fortina, M. G., Parini, C., Ricci, G., Gatti, M., Giraffa, G., and Manachini, P.L. (2002) Genetic diversity and technological properties of *Streptococcus thermophilus* strains isolated from dairy products. *J Appl Microbiol* **93**: 278-287.
- Mora, M., Bensi, G., Capo, S., Falugi, F., Zingaretti, C., Manetti, A.G., Maggi, T., Taddei, A.R., Grandi, G., and Telford, J.L. (2005) Group A *Streptococcus* produce pilus-like structures containing protective antigens and Lancefield T antigens. *Proc Natl Acad Sci U S A* **102**: 15641-15646.
- Moschetti, G., Blaiotta, G., Aponte, M., Catzeddu, P., Villani, F., Deiana, P., and Coppola, S. (1998) Random amplified polymorphic DNA and amplified ribosomal DNA spacer polymorphism: powerful methods to differentiate *Streptococcus thermophilus* strains. *J Appl Microbiol* **85**: 25-36.
- Mullaney, D.M. (2001) Group B streptococcal infections in newborns. *J Obstet Gynecol Neonatal Nurs* **30**: 649-658.
- Nealson, K. H., Platt, T., and Hastings, J.W. (1970) Cellular control of the synthesis and activity of the bacterial biolumionescent system. *J Bacteriol* **104**: 313-322.
- Nealson, K.H., Hastings, J.W. (1979) Bacterial bioluminescence: its control and ecological significance. *Microbiol Rev* **43**:496-518.

- Neely, M.N., Lyon, W.R., Runft, D.L., and Caparon, M. (2003) Role of RopB in growth phase expression of the SpeB cysteine protease of *Streptococcus pyogenes*. *J Bacteriol* **185**: 5166-5174.
- Nepomuceno, R.S., Tavares, M.B., Lemos, J.A., Griswold, A.R., Ribeiro, J.L., Balan, A., Guimarães, K.S., Cai, S., Burne, R.A., Ferreira, L.C., and Ferreira, R.C. (2007) The oligopeptide (*opp*) gene cluster of *Streptococcus mutans*: identification, prevalence, and characterization. *Oral Microbiol Immunol* 22: 277-284.
- Ng, W.L., and Bassler, B.L. (2009) Bacterial quorum-sensing network architectures. *Annu Rev Genet* **43**: 197-222.
- Ng, W.L., Perez, L.J., Wei, Y., Kraml, C., Semmelhack, M.F., and Bassler, B.L. (2011) Signal production and detection specificity in *Vibrio* CqsA/CqsS quorum-sensing systems. *Mol Microbiol* **79**: 1407-1417.
- Nicolas, G.G., and Lavoie, M.C. (2011) *Streptococcus mutans* et les streptocoques buccaux dans la plaque dentaire. *Can J Microbiol* **57**: 1-20.
- Nobbs, A.H., Lamont, R.J., and Jenkinson, H.F. (2009) *Streptococcus* adherence and colonization. *Microbiol Mol Biol Rev* **73**: 407-450.
- Novick, R.P. (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. *Mol Microbiol* **48**: 1429-1449.
- Novick, R.P., and Geisinger, E. (2008) Quorum sensing in *staphylococci. Annu Rev Genet* **42**: 541-564.
- Oehmcke, S., Shannon, O., Morgelin, M., and Herwald, H. (2010) Streptococcal M proteins and their role as virulence determinants. *Clin Chim Acta* **411**: 1172-1180.
- Økstad, O.A., Gominet, M., Purnelle, B., Rose, M., Lereclus, D., and Kolsto, A.B. (1999) Sequence analysis of three *Bacillus cereus* loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. *Microbiology* **145**: 3129-3138.
- O'Sullivan, T.F., and Fitzgerald, G.F. (1998) Comparison of *Streptococcus thermophillus* strains by pulse field gel electrophoresis of genomic DNA. *FEMS Microbiol Lett* **168**: 213-219.
- Otto, M. (2009) Staphylococcus epidermidis the 'accidental' pathogen. Nat Rev Microbiol 7: 555-567.
- Pacheco, A.R., and Sperandio, V. (2009) Inter-kingdom signaling: chemical language between bacteria and host. *Curr Opin Microbiol Cell Regulation* **12**: 192-198.
- Palmer, T., Sargent, F., and Berks, B.C. (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. *Trends Microbiol* **13**: 175-180.
- Park, H.K., Lee, H.J., Jeong, E.G., Shin, H.S., and Kim, W. (2010) The *rgg* gene is a specific marker for *Streptococcus oralis*. *J Dent Res* **89**: 1299-1303.
- Park, I.H., Pritchard, D.G., Cartee, R., Brandao, A., Brandileone, M.C., and Nahm, M.H. (2007) Discovery of a new capsular serotype (6C) within serogroup 6 of *Streptococcus pneumoniae*. *J Clin Microbiol* **45**: 1225-1233.
- Partridge, S.M. (2000) Prosthetic valve endocarditis due to *Streptococcus vestibularis*. *J Infect* **41**: 284-285.
- Pei, J., and Grishin, N.V. (2001) Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. *Trends in Biochemical Sciences* **26**: 275-277.
- Pestova, E.V., Håvarstein, L.S., and Morrison, D.A. (1996) Regulation of competence for genetic transformation in *Streptococcus pneumoniae* by an auto-induced peptide pheromone and a twocomponent regulatory system. *Mol Microbiol* 21: 853-862.
- Petersen, F.C., Tao, L., and Scheie, A.A. (2005) DNA Binding-Uptake System: a Link between Cell-to-Cell Communication and Biofilm Formation. *J Bacteriol* **187**: 4392-4400.
- Pfeiler, E.A., and Klaenhammer, T.R. (2007) The genomics of lactic acid bacteria. *Trends Microbiol* **15**: 546-553.
- Picon, A., de Torres, B., Gaya, P., and Nuñez, M. (2005) Cheesemaking with a Lactococcus lactis strain expressing a mutant oligopeptide binding protein as starter results in a different peptide profile. Int J Food Microbiol 104: 299-307.
- Platt, T.G., and Fuqua, C. (2010) What's in a name? The semantics of quorum sensing. *Trends Microbiol* **18**: 383-387.
- Pombert, J.F., Sistek, V., Boissinot, M., and Frenette, M. (2009) Evolutionary relationships among salivarius *streptococci* as inferred from multilocus phylogenies based on 16S rRNA-encoding, *recA*, *secA*, and *secY* gene sequences. *BMC Microbiol* **9**: 232.
- Pomerantsev, A.P., Pomerantseva, O.M., Camp, A.S., Mukkamala, R., Goldman, S., and Leppla, S.H. (2009) PapR peptide maturation: role of the NprB protease in *Bacillus cereus* 569 PlcR/PapR global gene regulation. *FEMS Immunol Med Microbiol* 55: 361-377.

- Poyart, C., Quesne, G., Coulon, S., Berche, P., and Trieu-Cuot, P. (1998) Identification of *streptococci* to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. *J Clin Microbiol* **36**: 41-47.
- Prudhomme, M., Attaiech, L., Sanchez, G., Martin, B., and Claverys, J.-P. (2006) Antibiotic Stress Induces Genetic Transformability in the Human Pathogen *Streptococcus pneumoniae*. *Science* **313**: 89-92.
- Pulliainen, A.T., Hytönen, J., Haataja, S., and Finne, J. (2008) Deficiency of the Rgg regulator promotes H2O2 resistance, AhpCF-mediated H2O2 decomposition, and virulence in *Streptococcus pyogenes. J Bacteriol* **190**: 3225-3235.
- Qi, F., Chen, P., and Caufield, P.W. (1999a) Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in *Streptococcus mutans*. *Appl Environ Microbiol* **65**: 652-658.
- Qi, F., Chen, P., and Caufield, P.W. (1999b) Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65: 3880-3887.
- Qi, F., Chen, P., and Caufield, P.W. (2000) Purification and biochemical characterization of mutacin I from the group I strain of *Streptococcus mutans*, CH43, and genetic analysis of mutacin I biosynthesis genes. *Appl Environ Microbiol* 66: 3221-3229.
- Rajagopal, L. (2009) Understanding the regulation of Group B Streptococcal virulence factors. *Future Microbiol* **4**: 201-221.
- Rasmussen, T.B., Danielsen, M., Valina, O., Garrigues, C., Johansen, E., and Pedersen, M.B. (2008) *Streptococcus thermophilus* core genome: comparative genome hybridization study of 47 strains. *Appl Environ Microbiol* **74**: 4703-4710.
- Rawlinson, E.L., Nes, I.F., and Skaugen, M. (2002) LasX, a transcriptional regulator of the lactocin S biosynthetic genes in *Lactobacillus sakei* L45, acts both as an activator and a repressor. *Biochimie* 84: 559-567.
- Rawlinson, E.L., Nes, I.F., and Skaugen, M. (2005) Identification of the DNA-binding site of the Rgglike regulator LasX within the lactocin S promoter region. *Microbiology* **151**: 813-823.
- Rea, M.C., Sit, C.S., Clayton, E., O'Connor, P.M., Whittal, R.M., Zheng, J., Vederas, J.C., Ross, R.P., and Hill, C. (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against *Clostridium difficile*. *Proc Natl Acad Sci U S A* **107**: 9352-9357.
- Redfield, R.J. (2002) Is quorum sensing a side effect of diffusion sensing? *Trends in Microbiology* **10**: 365-370.
- Rezzonico, F., and Duffy, B. (2008) Lack of genomic evidence of AI-2 receptors suggests a nonquorum sensing role for luxS in most bacteria. *BMC Microbiol* **8**: 154.
- Rickard, A.H., Palmer, R.J., Jr., Blehert, D.S., Campagna, S.R., Semmelhack, M.F., Egland, P.G., Bassler, B.L., and Kolenbrander, P.E. (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. *Mol Microbiol* **60**: 1446-1456.
- Rocha-Estrada, J., Aceves-Diez, A.E., Guarneros, G., and de la Torre, M. (2010) The RNPP family of quorum-sensing proteins in Gram-positive bacteria. *Appl Microbiol Biotechnol* **87**: 913-923.
- Rosini, R., Rinaudo, C.D., Soriani, M., Lauer, P., Mora, M., Maione, D., Taddei, A., Santi, I., Ghezzo, C., Brettoni, C., Buccato, S., Margarit, I., Grandi, G., and Telford, J.L. (2006) Identification of novel genomic islands coding for antigenic pilus-like structures in *Streptococcus agalactiae*. *Mol Microbiol* **61**: 126-141.
- Ryan, R.P., and Dow, J.M. (2008) Diffusible signals and interspecies communication in bacteria. *Microbiology* **154**: 1845-1858.
- Salamitou, S., Ramisse, F.o., Brehélin, M., Bourguet, D., Gilois, N., Gominet, M., Hernandez, E., and Lereclus, D. (2000) The *plcR* regulon is involved in the opportunistic properties of *Bacillus thuringiensis* and *Bacillus cereus* in mice and insects. *Microbiology* **146**: 2825-2832.
- Samen, U., Gottschalk, B., Eikmanns, B.J., and Reinscheid, D.J. (2004) Relevance of peptide uptake systems to the physiology and virulence of *Streptococcus agalactiae*. *J Bacteriol* **186**: 1398-1408.
- Samen, U.M., Eikmanns, B.J., and Reinscheid, D.J. (2006) The transcriptional regulator RovS controls the attachment of *Streptococcus agalactiae* to human epithelial cells and the expression of virulence genes. *Infect Immun* **74**: 5625-5635.
- Sanders, J.W., Leenhouts, K., Burghoorn, J., Brands, J.R., Venema, G., and Kok, J. (1998) A chlorideinducible acid resistance mechanism in *Lactococcus lactis* and its regulation. *Mol Microbiol* 27: 299-310.
- Saurin, W., Hofnung, M., and Dassa, E. (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. *J Mol Evol* **48**: 22-41.

Schauder, S., and Bassler, B.L. (2001) The languages of bacteria. Genes Dev 15: 1468-1480.

Schleifer, K.H. (2009) Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol **32**: 533-542.

Schmoll, M., Seibel, C., Tisch, D., Dorrer, M., and Kubicek, C.P. (2010) A novel class of peptide pheromone precursors in ascomycetous fungi. *Mol Microbiol* **77**: 1483-1501.

Shi, K., Brown, C.K., Gu, Z.Y., Kozlowicz, B.K., Dunny, G.M., Ohlendorf, D.H., and Earhart, C.A. (2005) Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in *Enterococcus faecalis*. *Proc Natl Acad Sci U S A* **102**: 18596-18601.

Skaugen, M., Andersen, E.L., Christie, V.H., and Nes, I.F. (2002) Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in *Lactobacillus sakei* L45. *Appl Environ Microbiol* **68**: 720-727.

Slamti, L., and Lereclus, D. (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the *Bacillus cereus* group. *Embo J* **21**: 4550-4559.

Slamti, L., and Lereclus, D. (2005) Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the *Bacillus cereus* group. *J Bacteriol* **187**: 1182-1187.

- Somkuti, G.A., and Steinberg, D.H. (1988) Genetic transformation of *Streptococcus thermophilus* by electroporation. *Biochimie* **70**: 579-585.
- Sørensen, S.J., Bailey, M., Hansen, L.H., Kroer, N., and Wuertz, S. (2005) Studying plasmid horizontal transfer in situ: a critical review. *Nat Rev Microbiol* **3**: 700-710.
- Stiles, M.E., and Holzapfel, W.H. (1997) Lactic acid bacteria of foods and their current taxonomy. *Int J* Food Microbiol **36**: 1-29.
- Studer, S.V., Mandel, M.J., and Ruby, E.G. (2008) AinS Quorum Sensing Regulates the Vibrio fischeri Acetate Switch. *J Bacteriol* **190**: 5915-5923.
- Sulavik, M.C., Tardif, G., and Clewell, D.B. (1992) Identification of a gene, *rgg*, which regulates expression of glucosyltransferase and influences the Spp phenotype of *Streptococcus gordonii* Challis. *J Bacteriol* **174**: 3577-3586.
- Sulavik, M.C., and Clewell, D.B. (1996) Rgg is a positive transcriptional regulator of the *Streptococcus gordonii gtfG* gene. *J Bacteriol* **178**: 5826-5830.
- Sun, Z., Chen, X., Wang, J., Zhao, W., Shao, Y., Wu, L., Zhou, Z., Sun, T., Wang, L., Meng, H., Zhang, H., and Chen, W. (2011) Complete genome sequence of *Streptococcus thermophilus* strain ND03. *J Bacteriol* **193**: 793-794.
- Sung, C.K., and Morrison, D.A. (2005) Two Distinct Functions of ComW in Stabilization and Activation of the Alternative Sigma Factor ComX in *Streptococcus pneumoniae*. *J Bacteriol* **187**: 3052-3061.
- Teuber, M., Meile, L., and Schwarz, F. (1999) Acquired antibiotic resistance in lactic acid bacteria from food. *Antonie van Leeuwenhoek* **76**: 115-137.
- Thibessard, A., Fernandez, A., Gintz, B., Decaris, B., and Leblond-Bourget, N. (2002) Transposition of pGh9:ISS1 is random and efficient in *Streptococcus thermophilus* CNRZ368. *Can J Microbiol* **48**: 473-478.
- Thibessard, A., Borges, F., Fernandez, A., Gintz, B., Decaris, B., and Leblond-Bourget, N. (2004) Identification of *Streptococcus thermophilus* CNRZ368 genes involved in defense against superoxide stress. *Appl Environ Microbiol* **70**: 2220-2229.
- Thoendel, M., and Horswill, A.R. (2009) Identification of *Staphylococcus aureus* AgrD residues required for autoinducing peptide biosynthesis. *J Biol Chem* **284**: 21828-21838.
- Thoendel, M., and Horswill, A.R. (2010) Biosynthesis of peptide signals in gram-positive bacteria. *Adv Appl Microbiol* **71**: 91-112.
- Thoendel, M., Kavanaugh, J.S., Flack, C.E., and Horswill, A.R. (2011) Peptide signaling in the *staphylococci. Chem Rev* **111**: 117-151.
- Thomas, C.M., and Nielsen, K.M. (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. *Nat Rev Microbiol* **3**: 711-721.
- Tomasz, A. (1965) Control of the competent state in *pneumococcus* by a hormone-like cell product -an example of a new type of regulatory mechanism in bacteria. *Nature* **208**: 155-159.
- Toomey, N., Monaghan, A., Fanning, S., and Bolton, D. (2009) Transfer of Antibiotic Resistance Marker Genes between Lactic Acid Bacteria in Model Rumen and Plant Environments. *Appl Environ Microbiol* **75**: 3146-3152.
- Tortosa, P., and Dubnau, D. (1999) Competence for transformation: a matter of taste. *Curr Opin Microbiol* **2**: 588-592.

Sherman, J.M. (1937) The Streptococci. Bacteriol Rev 1: 3-97.
- Van der Ploeg, J.R. (2005) Regulation of Bacteriocin Production in *Streptococcus mutans* by the Quorum-Sensing System Required for Development of Genetic Competence. *J Bacteriol* **187**: 3980-3989.
- Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K., and Swings, J. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. *Microbiol Rev* **60**: 407-438.

Venturi, V. (2006) Regulation of quorum sensing in *Pseudomonas*. FEMS Microbiol Rev 30: 274-291.

- Vickerman, M.M., Sulavik, M.C., and Clewell, D.B. (1995) Oral streptococci with genetic determinants similar to the glucosyltransferase regulatory gene, rgg. Infect Immun 63: 4524-4527.
- Vickerman, M.M., Jones, G.W., and Clewell, D.B. (1997) Molecular analysis of representative *Streptococcus gordonii* Spp phase variants reveals no differences in the glucosyltransferase structural gene, gtfG. *Oral Microbiol Immunol* **12**: 82-90.
- Vickerman, M.M., Minick, P.E., and Mather, N.M. (2001) Characterization of the *Streptococcus* gordonii chromosomal region immediately downstream of the glucosyltransferase gene. *Microbiology* **147**: 3061-3070.
- Vickerman, M.M., and Minick, P.E. (2002) Genetic analysis of the *rgg-gtfG* junctional region and its role in *Streptococcus gordonii* glucosyltransferase activity. *Infect Immun* **70**: 1703-1714.
- Vickerman, M.M., Wang, M., and Baker, L.J. (2003) An amino acid change near the carboxyl terminus of the *Streptococcus gordonii* regulatory protein Rgg affects its abilities to bind DNA and influence expression of the glucosyltransferase gene *gtfG*. *Microbiology* **149**: 399-406.
- Vickerman, M.M., Flannagan, S.E., Jesionowski, A.M., Brossard, K.A., Clewell, D.B., and Sedgley, C.M. (2010) A genetic determinant in *Streptococcus gordonii* Challis encodes a peptide with activity similar to that of enterococcal sex pheromone cAM373, which facilitates intergeneric DNA transfer. *J Bacteriol* **192**: 2535-2545.
- Villani, F., Pepe, O., Mauriello, G., Salzano, G., Moschetti, G., and Coppola, S. (1995) Antilisterial activity of thermophilin 347, a bacteriocin produced by *Streptococcus thermophilus*. *Int J Food Microbiol* **25**: 179-190.
- Walters, M., and Sperandio, V. (2006) Quorum sensing in *Escherichia coli* and *Salmonella*. *Int J Med Microbiol* **296**: 125-131.
- Waters, C.M., and Bassler, B.L. (2005) Quorum sensing: cell-to-cell communication in bacteria. *Annu Rev Cell Dev Biol* **21**: 319-346.
- Ween, O., Gaustad, P., and Håvarstein, L.S. (1999) Identification of DNA binding sites for ComE, a key regulator of natural competence in *Streptococcus pneumoniae*. *Mol Microbiol* **33**: 817-827.
- Winans, S.C. (2006) Bacterial evolution by intelligent design. ACS Chem Biol 1: 429-431.
- Winzer, K., Hardie, K.R., and Williams, P. (2002) Bacterial cell-to-cell communication: sorry, can't talk now gone to lunch! *Curr Opin Microbiol* **5**: 216-222.
- Woodruff, W.A., Novak, J., and Caufield, P.W. (1998) Sequence analysis of *mutA* and *mutM* genes involved in the biosynthesis of the lantibiotic mutacin II in *Streptococcus mutans*. *Gene* **206**: 37-43.
- Wozniak, R.A., and Waldor, M.K. (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. *Nat Rev Microbiol* **8**: 552-563.
- Wright, J.S., III, Traber, K.E., Corrigan, R., Benson, S.A., Musser, J.M., and Novick, R.P. (2005) The agr Radiation: an Early Event in the Evolution of Staphylococci. J Bacteriol **187**: 5585-5594.
- Wuster, A., and Babu, M.M. (2008) Conservation and Evolutionary Dynamics of the *agr* Cell-to-Cell Communication System across Firmicutes. *J Bacteriol* **190**: 743-746.
- Yang, J., Evans, B.A., and Rozen, D.E. (2010) Signal diffusion and the mitigation of social exploitation in pneumococcal competence signalling. *P R S Biological Sciences* **277**: 2991-2999.
- Yang, Z., and Nielsen, R. (2000) Estimating Synonymous and Nonsynonymous Substitution Rates Under Realistic Evolutionary Models. *Mol Biol Evol* **17**: 32-43.
- Yarwood, J.M., and Schlievert, P.M. (2003) Quorum sensing in *Staphylococcus* infections. *J Clin Invest* **112**: 1620-1625.
- Zhang, L., Lin, J., and Ji, G. (2004) Membrane anchoring of the AgrD N-terminal amphipathic region is required for its processing to produce a quorum-sensing pheromone in *Staphylococcus aureus*. *J. Biol. Chem.* **279**: 19448-19456.
- Zhang, Z.G., Ye, Z.Q., Yu, L., and Shi, P. (2011) Phylogenomic reconstruction of lactic acid bacteria: an update. *BMC Evol Biol* **11**: 1.
- Zheng, F., Ji, H., Cao, M., Wang, C., Feng, Y., Li, M., Pan, X., Wang, J., Qin, Y., Hu, F., and Tang, J. (2011) Contribution of the Rgg transcription regulator to metabolism and virulence of *Streptococcus suis* serotype 2. *Infect Immun* **79**: 1319-1328
- Zuber, P. (2001) A peptide profile of the Bacillus subtilis genome. Peptides 22: 1555-1577.

Fig. S1

Fig. S1 – The triggering of the expression of the *shp* gene is a competence of the presence of the SHP1358(15-23) pheromone in the culture medium and not of the transition from the exponential growth phase to the stationary phase

Growth and luciferase activity of the strain LMD-9 containing a Pshp₁₃₅₈-luxAB fusion after adding (\blacktriangle) or not adding (\blacklozenge) the synthetic SHP1358₍₁₅₋₂₃₎ pheromone at 2500 ng/ml 30 min following the inoculation of the culture at OD₆₀₀ 0.025. Growth curves (OD₆₀₀) are presented in gray and luciferase activities (RLU / OD₆₀₀) in black. Data shown are representative of three independent experiments.

Table S1

Supplementary Table S1. Rgg-like proteins associated or not with SHP or XIP hydrophobic peptides in Gram positive bacteria.

Notes:

a. Location of the gene on the sequence as given in the GenBank file, "complement" indicates that the ORF is encoded on the reverse strand.

b. This number indicates the position of the locus in the tree presented in Fig. 1 by providing the angle in degree computed counter-clockwise. The * symbol in Fig.1 marks the first locus in the table (0°).

c. Type (SHP/Rgg or XIP/ComR) indicates if a SHP or XIP peptide encoding gene has been identified upstream or downstream from the rgg-like gene according to the criteria described in note d. Three groups of SHP/Rgg loci have been delineated (see main text and Fig. 1) and the group number is also reported in this column in brackets.

d. The following criteria have been used for entry of a peptide in these columns: 1) a high hydrophobicity, 2) the presence of basic residues (lys and/or arg) at the N-terminal part 3) the presence of a glu or an asp residue at their C-terminal part (SHP type) or a double tryp motif (XIP type). The XIP peptides that do not follow strictly these criteria but that were described by Mashburn-Warren et al (2010) were added to the list.

e. This number indicates whether the gene encoding the hydrophobic peptide is transcribed in the same orientation as the rgg or comR gene (1) or in the opposite orientation (-1).

Organism		Rgg-like proteins		SHP/Rgg and 3	KIP/ComR proteins	U	pstream p	oeptide ^d		Downstream peptide ^d	
Strains	GenBank id	Location ^a	Position in tree ^b	Турес	Genbank id	Location ^a	Strand ^e	Sequence	Location ^a	Strand ^e	Sequence
Lactobacillus plantarum JDM1	CP001617	25066952507606	0								
Lactobacillus plantarum WCFS1	AL935263	25957202596631	0,767590618								
Lactobacillus brevis ATCC 367	CP000416	complement(460040460924)	1,535181237								
Leuconostoc kimchii IMSNU 11154	CP001758	complement(11601081161007)	2,302771855								
Enterococcus faecalis V583	AE016830	complement(25995762600499)	3,070362473								
Leuconostoc citreum KM20	DQ489736	complement(16992691700183)	3,837953092								
Enterococcus faecalis V583	AE016833	complement(39804939)	4,60554371								
Enterococcus laecalis V583	AE016630	20000000000000000000000000000000000000	5,373134326								
Lastobasillus belysticus DBC 4571	CP000517	809259 810068	6 009215565								
Lactobacillus reispatus ST1	EN692037	790550 791374	7 675906183								
Lactobacillus johnsonii NCC 533	AF017198	complement(1225918, 1226733)	8 443496802								
Lactobacillus crispatus ST1	FN692037	complement(19232861924077)	9.21108742								
Lactobacillus johnsonii NCC 533	AE017198	504477505115	9,978678038								
Lactobacillus helveticus DPC 4571	CP000517	812746813546	10,74626866								
Lactobacillus crispatus ST1	FN692037	786878787687	11,51385928								
Lactobacillus helveticus DPC 4571	CP000517	810313811098	12,28144989								
Lactobacillus rhamnosus GG	AP011548	complement(523075523911)	13,04904051								
Lactobacillus rhamnosus GG	FM179322	complement(524051524887)	13,04904051								
Lactobacillus johnsonii FI9785	FN298497	complement(3530036109)	13,81663113								
Lactobacillus johnsonii NCC 533	AE017198	complement(3283733646)	14,58422175								
Lactobacillus crispatus ST1	FIN692037	complement(4218442996)	15,35181237								
Lactobacillus gasseri ATCC 33323	CP000413	complement(10645471065365)	16,11940299								
Lactobacillus johnsonii NCC 555	CP000413	493315494133	17,65459422								
Lactobacilius gasseri ATGC 33323	EN602037	111137 111061	19 42217494								
Lactobacillus acidonbilus NCEM	CP000033	complement(1870586_1871404)	19 18976546								
Lactobacillus acidophilus NCEM	CP000033	87843.88658	19,95735608								
Lactobacillus acidophilus NCEM	CP000033	119982120791	20,7249467								
Lactobacillus crispatus ST1	FN692037	complement(19277991928632)	21,49253731								
Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365	CP000412	1963420371	22,26012793								
Lactobacillus johnsonii FI9785	FN357112	43615203	23,02771855								
Lactobacillus crispatus ST1	FN692037	complement(4684647664)	23,79530917								
Lactobacillus helveticus DPC 4571	CP000517	8768688504	24,56289979								
Lactobacillus johnsonii NCC 533	AE017198	465795466616	25,33049041								
Lactobacillus gasseri ATCC 33323	CP000413	15164901517296	26,09808102								
Lactobacillus johnsonii NCC 533	AE01/198	16146271615433	26,86567164								
Lactobacilius crispatus ST1	CR000022	044040040400	27,03320220								
Lactobacillus iobreonii NCC 533	AE017198	complement(24563, 25363)	20,40005200								
Lactobacillus johnsonii NCC 533	AE017198	39672, 40538	29 93603412								
Lactobacillus gasseri ATCC 33323	CP000413	complement(18668751867741)	30,70362473								
Lactobacillus gasseri ATCC 33323	CP000413	complement(18815081882374)	31,47121535								
Lactobacillus helveticus DPC 4571	CP000517	18826181883487	32,23880597								
Lactobacillus crispatus ST1	FN692037	787684788433	33,00639659								
Leuconostoc kimchii IMSNU 11154	CP001758	complement(16882461688890)	33,77398721								
Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293	CP000414	complement(845830846657)	34,54157783								
Leuconostoc kimchii IMSNU 11154	CP001758	complement(19613771962021)	35,30916844								
Leuconostoc citreum KM20	DQ489736	complement(797352798179)	36,07675906								
Oenococcus oeni PSU-1	CP000411	525885526682	36,84434968								
Lactobacilius casel BL23	CD001094	29911202992143	37,6119403								
Lactobacilius casei str. Zhang	CP001064	21031992104210	38,37953092								
Lactobacillus mannosus GG	AP011548	2897502 2898521	39,14712134								
Lactobacillus rhamnosus GG	FM179322	2902532, 2903551	39 91471215								
Leuconostoc kimchii IMSNU 11154	CP001758	complement(633573634526)	40,68230277								
Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293	CP000414	complement(18846681885615)	41,44989339								
Lactobacillus casei BL23	FM177140	complement(803088804044)	42,21748401								
Lactobacillus casei str. Zhang	CP001084	complement(691468692424)	42,98507463								
Lactobacillus rhamnosus Lc 705	FM179323	complement(733490734464)	43,75266525								
Lactobacillus rhamnosus GG	AP011548	complement(737241738215)	44,52025586								
Lactobacillus rhamnosus GG	FM179322	complement(739800740774)	44,52025586								
Leuconostoc kimchii IMSNU 11154	CP001758	complement(631351632283)	45,28784648								
Lactobacillus casel BL23	CR001084	complement(5230953184)	40,05543/1						1		
Lactobacillus casel stil. Zitatig	EM170322	2745677 2746543	+0,02302772		1						
Lactobacillus casei ATCC 334	CP000423	185807186700	48 35820896						1		
Lactobacillus casei str. Zhang	CP001084	204324205217	49.12579957						1		
Lactobacillus rhamnosus GG	AP011548	223456224361	49,89339019						1		
Lactobacillus rhamnosus GG	FM179322	223557224462	49,89339019								
Streptococcus pneumoniae CGSP14	CP001033	12466181247538	50,66098081		1						
Streptococcus gallolyticus UCN34	FN597254	11161561117019	51,42857143			1	1				

Streptococcus gallolyticus UCN34	FN597254	11102881111178	52,19616205							
Streptococcus gordonii str. Challis substr. CH1	CP000725	536544537437	52,96375267							
Streptococcus sanguinis SK36	CP000387	601036601917	53,73134328							
Lactococcus lactis subsp. cremoris MG1363	AM406671	complement(23899752390832)	54,4989339							
Lactococcus lactis subsp. cremoris NZ9000	CP002094	complement(23907912391648)	55,26652452							
Lactococcus lactis subsp. lactis KF147	CP001834	complement(24593762460233)	56,03411514							
Lactococcus lactis subsp. lactis II1403	AE005176	complement(22365122237369)	56,80170576							
Lactococcus lactis subsp. lactis II1403	AE005176	11800441180904	57,56929638							
Lactococcus lactis subsp. lactis KF147	CP001834	complement(358123358950)	58,33688699							
Streptococcus pneumoniae JJA	CP000919	155069155932	59,10447761	SHP/Rgg (group III)	SPJ_0171			complement(155922155999)	-1	MKKQILTLLKIVAEIIIILPFLTNR
Streptococcus pneumoniae ATCC 700669	FM211187	145157146020	59,87206823	SHP/Rgg (group III)	SPN23F_01510			complement(146010146087)	-1	MKKQILTLLKIVAEIIIILPFLTNR
Streptococcus pneumoniae TCH8431/19A	CP001993	410520411407	60,63965885							
Streptococcus pneumoniae TIGR4	AE005672	139839140702	61,40724947	SHP/Rgg (group III)	SP_0141			complement(140692140769)	-1	MKKQILTLLKIVAEIIIILPFLTNL
Streptococcus pneumoniae Taiwan19F-14	CP000921	166632167495	62,17484009		-			,		
Streptococcus pneumoniae R6	AE007317	149499150362	62,9424307							
Streptococcus pneumoniae D39	CP000410	149499150362	63,71002132							
Streptococcus pneumoniae G54	CP001015	146138147001	64,47761194							
Streptococcus pneumoniae 70585	CP000918	190183191046	65,24520256							
Streptococcus pneumoniae Hungary 19A-6	CP000936	222533 223396	66.01279318	SHP/Rag (group III)	SPH 0253			complement(223386, 223466)	-1	MKKRKIQI II I I ISEWVIVIPEI TNI
Streptococcus mitis B6	EN568063	complement(2004676_2005539)	66 7803838	55 (5 - 1 - 7						
Streptococcus pneumoniae CGSP14	CP001033	142954 143841	67 54797441	SHP/Rag (group III)	SPCG 0143			complement(143831_143908)	-1	MKKOVI TI I TIVAEIIJEEPEI TNR
Streptococcus pneumoniae P1031	CP000920	175981 176844	68 31556503	SHP/Rag (group III)	SPP 0211			complement(176834_176911)	-1	
Streptococcus thermonbilus I MD-9	CP000419	complement/1207191_1208066)	69 08315565	SHP/Rag (group III)	eter 1200			1207133 1207213	-1	
Streptococcus mutane LIA150	AE014133	complement(110824_111684)	60 95074627	orn mgg (group in)	3101_1233			1207 1001207210	- 1	
Streptococcus mutans 0A103	AP010655	complement(117701_118492)	70 61922690							
Streptococcus mutans NN2025	ENE07254	complement(2250207_2251072)	71,29502751							
Streptococcus gallolyticus UCN34	EN507254	132007 133764	72 15251912							
Stroptococcus galloritics 2602\//P	AE000049	244411 245271	72,10001012					1		
Streptococcus agalactiae 2003V/R	CP000114	253708 254658	73 68960026							
Stroptococcus agalactiae NEM216	AL 700650	245921 246691	74 45620000							
Streptococcus agaiactiae INEN/316	AL/ 32050	243021240001	74,40028998							
Streptococcus gallolyticus OCN34	CD000207	770661 790524	75,2238800							
Streptococcus sanguinis SK3b	0000387	020722 020506	75,99147122							
Sureprococcus gordonii str. Unallis substr. UH1	CP000725	920/23.929580 1092924 1092607	76,75906183							
Streptococcus pneumoniae /U585	CP000918	1002834108309/	//,52665245					1		
Streptococcus pneumoniae P1031	CP000920	10235251024388	78,29424307							
Streptococcus pneumoniae JJA	CP000919	998108998971	79,06183369							
Streptococcus pneumoniae ATCC 700669	FM211187	995330996193	79,82942431							
Streptococcus pneumoniae TIGR4	AE005672	10447041045567	80,59701493							
Streptococcus pneumoniae D39	CP000410	10088031009666	81,36460554							
Streptococcus pneumoniae G54	CP001015	989826990689	82,13219616							
Streptococcus pneumoniae R6	AE007317	10012421002135	82,89978678							
Streptococcus pneumoniae Taiwan19F-14	CP000921	10909101091773	83,6673774							
Streptococcus pneumoniae TCH8431/19A	CP001993	complement(12700711270934)	84,43496802							
Streptococcus pneumoniae Hungary19A-6	CP000936	11045551105418	85,20255864							
Streptococcus mitis B6	FN568063	complement(11650941165957)	85,97014925							
Streptococcus mitis B6	FN568063	446982447839	86,73773987							
Streptococcus equi subsp. zooepidemicus	FM204884	15317961532689	87,50533049							
Streptococcus equi subsp. equi 4047	FM204883	complement(635147636040)	88,27292111							
Observations and such as a solid such as MOOOAOFOF	CD001120	complement(652760_653653)	80 04051173							
Streptococcus equi subsp. zooepidemicus MGCS10565	CF001129	·····p······(···=· ······)	03,04031173							
Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus dysgalactiae subsp. equisimilis GGS_124	AP010935	14297531430625	89,80810235							
Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus dysgalactiae subsp. equisimilis GGS_124 Streptococcus suis 05ZYH33	AP010935 CP000407	14297531430625 complement(19078071908670)	89,80810235 90,57569296	SHP/Rgg (group II)	SSU05_1997	19087781908873	-1 MKQNYLIANITIVLILLISILKDIPPIIVIK			
Streptococcus dysgalactiae subsp. acoepidemicus MGCS 10505 Streptococcus dysgalactiae subsp. equisimilis GGS_124 Streptococcus suis 05ZVH33 Streptococcus suis 98HAH33	AP010935 CP000407 CP000408	14297531430625 complement(19078071908670) complement(19071811908044)	89,80810235 90,57569296 91,34328358	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002	19087781908873 19081521908247	-1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK			
Streptococcus equi subsp. zodepidemicus MiGCS lubob Streptococcus dysglatedite subsp. equisimilis GGS_124 Streptococcus suis 05ZYH33 Streptococcus suis 98HAH33 Streptococcus suis 98HAH33	AP010935 CP000407 CP000408 AM946016	14297531430625 complement(19078071908670) complement(19071811908044) complement(18190131819876)	89,80810235 90,57569296 91,34328358 92,1108742	SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789	19087781908873 19081521908247 18199841820079	-1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK			
Streptococcus edui subs): zodeptemicus MGCS10565 Streptococcus suis 052YH33 Streptococcus suis 052YH33 Streptococcus suis 98HAH33 Streptococcus suis 91/17 Streptococcus suis 92H4	AP010935 CP000407 CP000408 AM946016 EM252031	14297531430625 complement(19078071908670) complement(1907181.1908044) complement(18190131819876) complement(1907421908285)	89,80810235 90,57569296 91,34328358 92,1108742	SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811	19087781908873 19081521908247 18199841820079 1908393	-1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK			
Streptococcus equi subsp. zodepidemicus MicUS 10565 Streptococcus dysgalacitae subsp. equisimilis GGS_124 Streptococcus suis 0627H33 Streptococcus suis 99HAH33 Streptococcus suis 91/7 Streptococcus suis 9247	AP010935 CP000407 CP000408 AM946016 FM252031	1429753.1430625 complement(1907807.1908670) complement(1907181.1908044) complement(1819013.1819876) complement(1907422.1908285)	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482	SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811	19087781908873 19081521908247 18199841820079 19083931908488	-1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK -1 MKQNYLIANITIVLILLISILKDIPPIIVIK			
Streptococcus equi subsp. zodepidemicus MGCS 10565 Streptococcus dysgalacitae subsp. equisimilis GGS_124 Streptococcus suis 05ZYH33 Streptococcus suis 08HAH33 Streptococcus suis 91/7 Streptococcus suis SC4 Streptococcus suis SM407	AP010935 CP000407 CP000407 CP000408 AM946016 FM252031 FM252032	14297531430625 complement(19078071908670) complement(19071811908044) complement(1819013.1819876) complement(19074221908285) complement(1957673.1958536)	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544	SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859	19087781908873 19081521908247 18198841820079 19083931908488 19586441958739	 MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK 			
Streptococcus equi subsp. zeogramicus MiCLS 10965 Streptococcus dysgalactice subsp. equisimilis GGS_124 Streptococcus suis 08C2YH33 Streptococcus suis 98HAH33 Streptococcus suis 98HAH33 Streptococcus suis 92C84 Streptococcus suis 8C84 Streptococcus suis 6C84 Streptococcus suis 6C4	AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837	14297531430625 complement(19078071908670) complement(1907811908044) complement(18190131819876) complement(1957631968536) complement(1957631968536) complement(18521121852975)	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 94,41364606	SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSGZ1_1813	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958844.1958739 1853083.1853178	-1 MKONYLIANITIVLILLISILKDIPPIIVIK -1 MKONYLIANITIVLILLISILKDIPPIIVIK -1 MKONYLIANITIVLILISILKDIPPIIVIK -1 MKONYLIANITIVLILISILKDIPPIIVIK -1 MKONYLIANITIVLILISILKDIPPIIVIK			
Streptococcus equi subsp. zodepidemicus MGCS 10565 Streptococcus dysgalactice subsp. equisimilis GGS_124 Streptococcus suis 052YH33 Streptococcus suis 091AH33 Streptococcus suis 077 Streptococcus suis M407 Streptococcus suis M407 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus suis GZ1	AP010935 CP000407 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000419	14297531430625 complement(1907801908670) complement(1907811908044) complement(18190131819876) complement(18190131819876) complement(1857131958536) complement(18521121852975) 865021865878	89,80410235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 94,41364606 95,18123667	SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSGZ1_1813 ster_0934	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 1853083.1853178 complement(864863864934)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKESFLAILLIFESIIVIAVG			
Streptococcus equi subsp. 200epidemicus MiCLS 10965 Streptococcus dysgalacities subsp. equisimilis GGS_124 Streptococcus suis 802YH33 Streptococcus suis 82HAH33 Streptococcus suis 82HA Streptococcus suis 82K4 Streptococcus suis 82K4 Streptococcus suis 82K4 Streptococcus suis 62C4 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9	AP010235 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000419 CP00023	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(195723.1968536) complement(1852112.1852975) 856021.865078 834855.835721	89,80410235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 94,41364606 95,18123667 95,94882729	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 ster_0934 stu0917	19087781908873 19081521908247 18199841820079 19083931908488 19586441958739 18530831853178 complement(864863864934) complement(834706834777)	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKKONYLIANITIVLILISILKDIPPIIVIK MKKONYLIANITIVLIKIK			
Streptococcus equi subsp. zeogramicus MiCLS 10965 Streptococcus suis 0527H33 Streptococcus suis 0527H33 Streptococcus suis 08HAH33 Streptococcus suis 08HAH33 Streptococcus suis 0264 Streptococcus suis 0264 Streptococcus suis 027 Streptococcus suis 027 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-19 Streptococcus thermophilus LMD-19 Streptococcus thermophilus LMD-19 Streptococcus thermophilus LMD-19 Streptococcus thermophilus LMD-19	AP010335 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000419 CP00023 CP00024	1429753.1430625 complement(1907807.1908670) complement(1907807.1908044) complement(1819013.1819876) complement(190742.1908285) complement(1957673.1988536) complement(1857673.1988536) domplement(18521121852975) 865021.865878 834855.83721 840642.841508	89,80810235 90,57569296 91,34328358 92,1108742 93,87846482 93,64605544 94,41364606 95,18123667 95,94882729 96,71641791	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG27_1813 ster_0934 stu0917 str0917	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 185308.1853178 complement(864863.864934) complement(840493.840564) complement(840493.840564)	 MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIVIK 			
Streptococcus equi subsp. zodepidemicus MiGCS 10565 Streptococcus dysgalactice subsp. equisimilis GGS_124 Streptococcus suis 052YH33 Streptococcus suis 9HAH33 Streptococcus suis P1/7 Streptococcus suis RM407 Streptococcus suis GZ1 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-9 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9	AP010935 CP000407 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP00023 CP00023 CP00024 CP00024	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(1907812.1908044) complement(1819013.1819876) complement(1907422.1908285) complement(1852112.1852975) 856021.865078 834855.335721 830462.2811508 1434985.1435558	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 94,41364606 95,18123667 95,94882729 96,71641791 97,48400853	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 ster_0934 stu0917 str0917 ster_1530	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 198644.1986739 1853083.1853178 complement(864863.864934) complement(844953.864934) complement(14345471434608)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIVIK MKKGSFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKQKLILLIVVLVCEGIIVILVG			
Streptococcus equi subsp. zeogramicus MiCLS 10965 Streptococcus subsp. equisimilis GGS_124 Streptococcus suis 981AH33 Streptococcus suis 981AH33 Streptococcus suis SC84 Streptococcus suis GZ4 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9	AP010935 CP000407 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000419 CP00024 CP00024 CP00024	1429753.1430625 complement(19078071908670) complement(19078071908044) complement(18190131819876) complement(19074221908285) complement(19576731968536) complement(18521121852975) 865021865878 8434855365721 840642841508 133470381337901	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 94,41364606 95,18123667 95,94882729 96,71641791 97,48400853 98,25159915	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU5C84_1811 SSUBK07_1859 SSG21_1813 stcp0934 stc0917 stc9177 stc91530 stc917 stc91530 stc917	19087781908873 19081521908247 18199841820079 19083931908488 19586441958739 18530831853178 complement(864863864934) complement(840493840564) complement(1434537.1434608) complement(13968801396951)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKRGSFLAILLIFESIIVIAVG MKKSFLAILLIFESIIVIAVG MKKGKLLLLVVLVGEGIVIVLVG MKKGKLLLLVVLVGEGIVIVLVG			
Streptococcus edu subsp. zodepidemicus MiGUS 10965 Streptococcus edu subsp. equisimilis GGS_124 Streptococcus suis 052YH33 Streptococcus suis 091/7 Streptococcus suis 80407 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMC 18311	CP001129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252031 CP000419 CP000023 CP000419 CP000024 CP000024 CP000024 CP000024	1429753.1430625 complement(190780.1908670) complement(190781.1908044) complement(1819013.1819876) complement(1907422.1908285) complement(1907422.1908285) complement(1852112.1852975) 865021.865878 834855.835721 840642.841508 1434695.1435588 133695.1435588 1336952.1397091 1389392.1390255	89,80810235 90,57569296 91,34328358 92,1108742 93,64605544 94,41364006 95,18123667 95,94882729 96,71641791 97,48400853 98,25159915 99,01918977	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG2T_1813 stc_0934 stu0917 str0917 str0917 str_1530 str1572 stu1572	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 185308.1853178 complement(84493.864934) complement(84493.840564) complement(1434537.1434608) complement(139680.1396951) complement(139680.396951)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKKSFLAILLIIFESIIVIAVG MNKESFLAILLIIFESIIVIAVG MKKQKLLLLVVLVGEGIIVILVG MKKQKLLLLVVLVGEGIIVILVG MKKQKLLLLVVLVGEGIIVILVG			
Streptococcus equi subsp. 200epidemicus MiCLS 10965 Streptococcus subsp. equisimilis GGS_124 Streptococcus suis 9274133 Streptococcus suis 9214 Streptococcus suis SC24 Streptococcus suis SC24 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMD-9	CP000123 CP000407 CP000407 CP000408 FM252031 FM252031 CP000837 CP00023 CP000024 CP000024 CP000024 CP000023 CP000023 CP000023 CP000023 CP000023	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1957673.1958536) complement(1852112.1852975) 856021.865878 834855.835721 840642.841508 1337038.1337901 1383922.1342558 13397038.1337901	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 94,41364606 95,18123667 95,9482729 96,71641791 97,48400853 98,25159915 99,01918977 99,78678038	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUBC84_1811 SSUBM407_1859 SSG21_1813 strc_0934 str0917 strc_1530 str1572 str1572 str1572	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(864683.854934) complement(840493.840564) complement(134537.1434508) complement(134537.1434508) complement(1389234.1389305) 1282898.1282760	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITVLILISILKDIPPIIVIK MKKONYLIANITVULLISILKDIPPIIVIK MMKESFLAILLIFESIIVIAVG MMKESFLAILLIFESIIVIAVG MKKQKLLLLVVLOEGIIVILVG MKKQKLLLLVVLOEGIIVILVG MKKQILLILVVEGIVIVUG			
Streptococcus dysgalacitae subsp. equisimilis GGS_124 Streptococcus suis 052YH33 Streptococcus suis 052YH33 Streptococcus suis 081AH33 Streptococcus suis 081AH33 Streptococcus suis C64 Streptococcus suis 624 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-9 Streptococcus dysgalacitae subsp. equisimilis GGS_124	CP000129 AP010935 CP000407 CP000407 CP000408 FM252031 FM252032 CP000837 CP00013 CP000023 CP000024 CP0000408 CP0000408 CP0000408 CP0000408 CP0000408 CP0000408 CP00048 CP0048 CP00048 CP00048 CP00048 CP00	1429753.1430625 complement(1907807.1908670) complement(1907807.1908044) complement(1819013.1819876) complement(190742.1908285) complement(1957673.1958536) complement(1852112.1852975) 865021.865678 834855.835721 840642.841508 1434695.1435558 139708.1397091 1383932.1390255 complement(1261738.1262598) complement(12812162.1928656)	89,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64005544 94,41364006 95,18123667 95,94882729 96,71641791 99,748400853 98,25159915 99,748400853 99,7878038 100,554371	SHP/Rgg (group II) SHP/Rgg (group II)	SU05_1997 SSU98_2002 SSU789 SSUSC84_1811 SUBM407_1639 SSG21_1813 strc_0334 str0917 str0917 str0917 str0917 str0172 str1572 stu1572 str1558 SDEC_1013 S70_0000	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 1853083.1858739 1853083.1853178 complement(84708.384777) complement(84708.384777) complement(134706.384777) complement(134924.134537.1434608) complement(138924.1389305) 1262689.1262760 995759.995830	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIVIK MKKQNLIANITIVLILLISILKDIPPIVIK MKKQKLLLLVVLVCGIVILVG			
Streptococcus dy sigualcite subsp. equisimilis GGS_124 Streptococcus suis 052YH33 Streptococcus suis 052YH33 Streptococcus suis 054H33 Streptococcus suis 054H Streptococcus suis 054 Streptococcus thermophilus LMD-9 Streptococcus dyseglacities subsp. equisimilis GGS_124 Streptococcus equi subsp. zooepidemicus	CP000123 AP010935 CP000407 CP000408 CP000408 FM252031 FM252032 CP000837 CP000419 CP000024 CP000024 CP000024 CP000023 CP000025 FM20488 AP01935 FM204884	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1957673.1958536) complement(1852112.1852975) 856021.865678 834855.835721 840642.841508 1434695.143558 1397038.1397001 1389392.1390255 complement(1261738.1262598) complement(1381816.1382685)	89,80810235 99,80810235 91,34328358 92,1108742 92,87846462 93,6460554 93,6460554 93,6460554 93,6460554 93,6460554 95,94882729 95,71847091 97,78400853 96,718471791 97,78678038 99,01918977 99,78678038 100,5554371 101,32219616	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SSC2T_1813 strc_9034 str0917 strc_1530 str1572 str1572 str1572 str_1358 SDE6_1013 SZO_12400	19087781908873 19081521908247 18199841820079 19083931908488 19586441958739 18530831853178 complement(864863864934) complement(1834706834777) complement(1434571434608) complement(13892341389551) complement(13892341389305) 12826891282760 995759956530 13827671382844	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKKSFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKSFLAILLIFESIIVIAVG MKKGKLILLVVLVGEGIVILVG MKKQLLLLVVLVGEGIVILVG MKKQLLLLVVLVGEGIVILVG MKKQLLLLVVLVGEGIVIVG MKKQLLLLVVLEGIVIVG MKKQLLLLVVLEGIVIVG MKKQLLLLVVLEGIVIVG MKKQLLLLVVEGIVIVG MKKQLLLLVVEGIVG			
Streptococcus equi subsp. zeoepidemicus MiCLS 10965 Streptococcus suis BDS27H33 Streptococcus suis D527H33 Streptococcus suis P1/7 Streptococcus suis SC84 Streptococcus suis G21 Streptococcus suis G21 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9 Streptococcus thermophilus CNR21066 Streptococcus stemophilus CNR21066 Streptococcus degui subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus Streptococcus Stemophilus CNR21066	CP000125 CP000407 CP000407 CP000408 AM946016 FM252031 FM252031 CP000837 CP000837 CP000023 CP000023 CP000024 CP000024 CP000024 CP000024 CP000024 CP000024 CP000025 FM204884 CP0001129 CP00129 CP00129 CP00129 CP00129 CP00129 CP00129 CP00129 CP00129 CP0	1429753.1430625 complement(1907807.1908670) complement(1907807.1908044) complement(1819013.1819876) complement(190742.1908285) complement(1957673.196856) complement(1852112.1852975) 885021.265878 843655.365721 840642.841508 13347038.1337001 1389392.1390255 complement(194781.29568) complement(194781.95668) complement(1381816.1382685) 744995.745801	89,80810235 99,80810235 90,57569296 91,34228358 92,1108742 92,87846482 93,6460554 95,94882729 96,71641791 99,716470953 99,25159915 99,78878038 100,554371 101,3219616 102,0995522	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU5C84_1811 SSUBK07_1859 SSG21_1813 str0934 str0917 str0917 str0917 str1572 str1572 str1572 str1575 str1575 str1575 str1575 str1575 str1558 SDEC_1013 SZO_12400 SZC_0716	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 1853083.1853178 complement(864683864934) complement(840493840564) complement(134537.143468) complement(134537.143468) complement(1382241389305) 12626881262760 995759995830 1382767.138244 complement(74473744850)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKKOSFLIALLIFESIIVIAVG MKKGSFLAILLIFESIIVIAVG MKKQKLLLLVVCCEGIVILVG MKKQKLLLLVVCEGIVILVG MKKQKLLLLVVCEGIVILVG MKKQKLLLLVVCEGIVILVG MKKQKLLLLVVCEGIVIVVG MKKQKLLLLVVCEGIVVVG			
Streptococcus dy subsp. 200 subsp. equisimilis GGS_124 Streptococcus dy sgalacities subsp. equisimilis GGS_124 Streptococcus suis 802YH33 Streptococcus suis 804H33 Streptococcus suis 804H33 Streptococcus suis 80407 Streptococcus suis 624 Streptococcus thermophilus LMD-9 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus	CP000125 CP000407 CP000408 AM946016 FM252032 CP000408 CP00023 CP000023 CP000024 CP000023 CP000024 CP000023 CP000023 CP000024 CP000023 CP000024 CP000024 CP000024 CP000024 CP000024 CP000024 CP000024 CP000025 CP000027 CP000024 CP000027 CP000024 CP000027 CP000027 CP000027 CP0000408 CP000408 CP00107 CP000408 CP00107 CP000408 CP00107 CP000408 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000847 CP000024 CP00004 CP000024 CP000024 CP000024 CP000024 CP000024 CP00024 CP00024 CP000024 CP00024 CP00024 CP00024 CP00024 CP00024 CP00024 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00000 CP00 CP	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(185972.1908285) complement(1852112.1852975) 856021.865078 834855.383721 8340422.841508 1434695.1435558 1397038.1397901 1383392.1390255 complement(194781.95668) complement(194781.95668) complement(194781.95668) complement(1968518.1865971)	89,80810235 99,80810235 90,57569296 91,34328358 92,1108742 93,64605544 93,64605544 93,64605544 93,64605544 93,64605542 96,71641791 97,48400855 99,01918977 99,78678038 100,554371 101,3219616 102,0895522 102,8871429	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SSC21_1813 ster_0334 st0917 strg_1530 str1572 stu1572 stu1572 stu1572 stu1572 stu572 SDEC_1013 SZC_12400 Sez_0716 SZC_11720	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 198644.1986739 1853083.1853178 complement(864863.864934) complement(844053.864934) complement(14345371434608) complement(1398234.139854) 1262689.1262760 995759.956300 1382767.1382844 complement(74473.744850) 1382767.1382844	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKKOSLILLIVESIIVAVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLESIVGUG MKKOKLILLIVVLESIVGUG MKKOKLILLIVVLESIVGUG MKKOKLILLIVVLESIVGUG			
Streptococcus equi subsp. 200epidemicus MiCLS 10965 Streptococcus suis B052/YH33 Streptococcus suis 081AH33 Streptococcus suis 081AH33 Streptococcus suis SC84 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus demonphilus LMD-9 Streptococcus demonphilus LMD-9 Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus	CP000129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000837 CP000837 CP000023 CP000023 CP000023 CP0000419 CP000024 CP0000419 AP010935 FM204884 CP000129 FM204884 AE014133 AD014707	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1907812.1908285) complement(1957673.1958536) complement(1957673.1958536) complement(1852112.1852975) 865021.86587112.1852975) 865021.86587112.1852975) 864024.2841508 1337038.1397901 1338392.1390255 complement(1261738.1262598) complement(1965108.1965971) complement(1965108.1965971) complement(1434153.1435010)	89,80810235 99,80810235 90,57569296 91,34228358 92,1108742 92,87846482 93,644005544 94,41346006 95,1482729 96,71641791 90,71641791 90,71641791 90,71647038 100,554371 101,3219616 102,8085522 103,66247335	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 str0974 str0917 str0917 str0917 str0917 str0917 str0917 str0917 str0172 str1572 str1572 str1572 str1572 str1358 SDEG_1013 S2O_12400 Se2_0716 S2O_17730 smu.1509	1908778.1908873 1908152.1908247 1819984.1820079 1908393.190848 195864.1958739 1853083.1853178 complement(834706.834777) complement(134353.1434508) complement(134353.1434508) complement(1389234.1389305) 1262689.1262760 995759.995830 1382767.138244 complement(744773.74450) 196602.1966133 1435100.1435188	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITVLILISILKDIPPIIVIK MKQNYLIANITVULLISILKDIPPIIVIK MKKOSHLILIFESIIVIAVG MNKESFLAILLIFESIIVIAVG MKKQKLLLIVLVCCEGIIVILVG MKKQKLLLIVLVCCEGIIVILVG MKKQKLLLLIVLVCEGIIVILVG MKKQKLLLILVVLVGEGIIVILVG MKKQKLLLILVVLVGEGIVIVUG MKKQKLLILLIVEEEIVIVVGYL MKKQKLIPILLIESIIVIVGGI MNKRHFLMLLLMVLEEIVIVVGYL MKKQKLIPILLEEIVISUGS MNKRHFLWLLEMVEEGIVIVVG MNKRHFLWLLEMVEGIVVVG			
Streptococcus dysgalacitae subsp. equisimilis GGS_124 Streptococcus suis B052YH33 Streptococcus suis 98HAH33 Streptococcus suis 98HAH33 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus suis GZ4 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-9 Streptococcus demognilus LMD-9 Streptococcus demognilus LMD-9 Streptococcus demognilus LMD-9 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans UN459 Streptococcus mutans UN459 Streptococcus mutans VA159	CP000129 AP010935 CP000407 AM946016 FM252032 CP000408 CP0008419 CP000023 CP000024 CP000023 CP000024 CP000023 CP000023 CP000023 CP000029 CP0000408 CP00107 CP000408 CP00107 CP000408 CP00107 CP000408 CP000408 CP000408 CP00107 CP000408 CP000408 CP000409 CP000408 CP000409 CP000409 CP000409 CP000409 CP000409 CP000409 CP000409 CP000409 CP000409 CP000409 CP000849 CP000409 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000849 CP000024 CP000849 CP000024 CP000040 CP000040 CP000040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP0040 CP00400 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00040 CP00000 CP000000 CP000000 CP000000 C	1429753.1430625 complement(190781.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(185973.1958536) complement(1852112.1852975) 856021.865878 834855.385721 8340642.841508 14340695.1435558 1397038.1397901 1383392.1390255 complement(194781.935668) complement(194781.935668) complement(1987108.1965971) complement(198108.1945701) 827656.262515	80,3810,235 90,57569296 91,34228358 92,1108742 92,87846482 93,64605544 94,41364606 95,18123667 95,9482729 96,71641791 90,78678038 90,01816977 99,78678038 100,554371 101,3216616 102,0895522 102,8871429 103,6247335 104,3822241	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU789 SSU5C84_1811 SSUBM407_1859 SS057_1813 ster_034 ster_034 ster_1350 str1572 stu1572 stu1572 stu1572 stu7572	19087781908873 19081521908247 18199841820079 19083931908488 19586441598739 18530831853178 complement(864853864934) complement(844033846934) complement(1349264033846564) complement(1398234139505) 12826891282760 95759956530 13827671382844 complement(1399234139305) 12827691382844 complement(1395234139305) 12827691382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 13827671382845 138276138285 138276138285 1382761382855 1382761382855 1382761385555 13827613855	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKKONYLIANITIVLILLISILKDIPPIIVIK MKKOSFLAILLIPESIIVAVG MKKOSFLAILLIPESIIVAVG MKKOKLILLIVVLCEGIIVILVG MKKOKLILLIVVLCEGIIVILVG MKKOKLILLIVVLCEGIIVILVG MKKOKLILLIVVLCEGIIVIVG MKKOKLILLIVVLCEGIIVIVG MKKOKLILLIVVLCEGIIVIVG MKKOKLILLIVVLCEGIIVIVG MKKOKLILLIVVLCEGIIVIVGG MKKOKLILLIVVLEEIVIVVGVL MKKOKLILLIVVLEEVIVVGVL MKKOKLILLIVVLEEVIVVGVL MKKIFHTIVLLISIVGG MKKOKLIMLIVVLEEVIVVGVL MKKOKLIMI			
Streptococcus equi subsp. 200epidemicus MiCLS 10965 Streptococcus signal Status subsp. equisimilis GGS_124 Streptococcus suis 8274133 Streptococcus suis 8274133 Streptococcus suis 8274 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-18311 Streptococcus subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus mutans VN159 Streptococcus mutans NN2025 Streptococcus galolyticus UCN34	CP000125 AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000439 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000025 FM204884 AP010935 FM204884 AP010955 FM204884 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 AP010555 FM204854 FM20454 FM20454 FM20454 FM20454 FM20454 FM20454 FM20455 FM20454 FM20455 FM2055 FM20455 FM20455 FM20455 FM20455 FM20455 FM2055 FM2055 FM20455 FM20455 FM20455 FM20455 FM2055 FM	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1907422.1908285) complement(1957673.1958536) complement(1957673.1958536) s65021.865078 834855.835721 840642.841508 1337038.1337901 1383392.1302655 complement(1261738.1262598) complement(1261738.1262598) complement(138186.1382685) 744995.745801 complement(138186.1382685) 744995.745801 complement(138186.1382685) 745768.628815	89,80810235 99,80810235 99,80810235 99,37569296 92,8784642 92,8784642 93,64005544 94,41364006 95,18123667 95,9482729 96,71641791 99,01918977 99,01918977 99,01918977 99,01918977 99,01918977 101,3219616 102,8085522 103,554371 101,3219616 102,8085522 104,3923241 104,3923241	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 strc_0934 str0917 strc_1530 str1572 str157	19087781908873 19081521908247 18199841820079 19083931908488 19586441958739 18530831853178 complement(864863864934) complement(864863864934) complement(1434571434571434508) complement(1434571434508) 12626891262760 995759995830 13827671382244 complement(744773744550) 19660621966133 14351001435168 complement(627500627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITVLILISILKDIPPIIVIK MKKONYLIANITVULLISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MMKESFLAILLIFESIIVIAVG MKKQKLLLLVU-VCEGIIVILVG MKKQKLLLLVU-VCEGIIVILVG MKKQHLLLLVV-VCEGIIVILVG MKKQHLLLLIVV-VEGIIVIVGG MKRHFLMLLLMVLEEIIVIVGYL MMKRHFLMLLLMVLEEIIVVVGYL MKRHFLMLLLMVLEEIIVIVVGGI MMRRHFLMLLLMVLEEIIVIVVGGI MMRRHFLMLLLMVLEEIIVIVVGGI MRRHFMTLIVVLETIIIGGG MRNKIFMTLIVVLETIIIGGG			
Streptococcus dysgalacitae subsp. equisimilis GGS_124 Streptococcus suis 052YH33 Streptococcus suis 052YH33 Streptococcus suis 081AH33 Streptococcus suis 081AH33 Streptococcus suis C64 Streptococcus suis C64 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-9 Streptococcus dysgalactiae subsp. equisimilis GGS_124 Streptococcus equi subsp. zocepidemicus Streptococcus equi subsp. zocepidemicus Streptococcus equi subsp. zocepidemicus Streptococcus mutans UA159 Streptococcus mutans VA159 Streptococcus mutans VA159 Streptococcus equi subsp. zocepidemicus Streptococcus mutans VA159 Streptococcus mutans VA159 Streptococcus mutans VA159 Streptococcus qui subsp. zocepidemicus MGCS10565	CP000129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252031 CP000837 CP000837 CP000023 CP000023 CP000024 CP0000419 AP010935 FM204884 CP001129 FM204884 AE014133 AP010655 FN597254 CP001129	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(1819013.1819876) complement(1819013.1819876) complement(1852112.1852975) 856021.865878 834855.835721 830462.341508 1434695.1435588 1397038.1397031 1383922.1390255 complement(194781.395668) complement(194781.395668) complement(194781.395668) complement(1943153.1435010) 627658.628515 767436.768308 1661133.1662053	89,80810235 99,80810235 90,57569296 91,34328358 92,1108742 92,87846482 93,64605544 95,94882729 96,71641791 97,48400853 99,78678038 100,554371 101,3219616 102,6895522 102,8871429 103,6247335 104,3923241 105,19291553	SHP/Rgg (group II) SHP/Rgg (group II)	SU05_1997 SSU98_2002 SSU5C84_1811 SSUBSC84_1811 SSUBM07_1859 SSG21_1813 str0917 str0917 str152 str0917 str152 str1572 str1572 str1572 str1572 str1572 str1573 SDEC_1013 SZO_12400 Sez_0716 S2O_17730 smuNN2025_0595	19087781908873 19981521908247 18199841820079 1908393.1908488 19586441558739 18530831658739 18530831658178 complement(848633864934) complement(844933846934) complement(14245371434608) complement(13962801396951) 12626891262760 958759956830 13827671382844 complement(13892341389305) 12626891262760 958759956830 13827671382844 complement(142473714450) 19660621966133	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKNCSFLAILLIFESIIVIAVG MKNESFLAILLIFESIIVIAVG MKNGKLLLLVVLVCEGIVILVG MKKQKLLLLVVLVCEGIVILVG MKKQKLLLLVVLVEGIVIVVG MKKQKLLLLVVLVEGIVIVVG MKKQKLLLLVVLVEGIVIVVG MKKQKLLLLVVLVEGIVIVVG MKKQKLLLLVVLVGEGIVIVVG MKKQKLLLLVVLVGEGIVIVVG MKKQKLLLLVVLVGEGIVIVVG MKKQKLLTLLVVEGIVVVG MKKQKLLFLLVVLEGIVVVGYL MKKQKLFMLIVVLETIIIGGG MRNKIFMTLVVLETIIIGGG MRNKIFMTLVVLETIIIGGG			
Streptococcus equi subsp. 200epidemicus MiCLS 10965 Streptococcus subsp. equisimilis GGS_124 Streptococcus suis 9274133 Streptococcus suis 9214133 Streptococcus suis 9214133 Streptococcus suis 9217 Streptococcus suis 6241 Streptococcus suis 621 Streptococcus thermophilus LMD-9 Streptococcus subternophilus LMD-9 Streptococcus sequi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans NN2025 Streptococcus mutans NN2025 Streptococcus gali subsp. zooepidemicus Streptococcus gali subsp. zooepidemicus Streptococcus mutans NN2025 Streptococcus gali subsp. zooepidemicus Streptococcus gali subsp. zooepidemicus MGCS10565 Streptococcus gali subsp. zooepidemicus MGCS10565 Streptococcus gali subsp. zooepidemicus MGCS10565 Streptococcus gali subsp. zooepidemicus MGCS10565	CP001129 AP010935 CP000407 CP000408 AM946016 FM252032 CP000408 CP000419 CP000023 CP000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP0000418 CP000129 FM204884 AE014133 AP010655 FN597254 CP001129 FM204884 AE014133 CP001129 FM204884 FM20484 FM204884 FM20484 FM2	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1907422.1908285) complement(1852112.1852975) 856021.865878 834855.835721 840642.841508 11397038.1337901 1338392.1390255 complement(1261738.1262598) complement(1381816.1382685) 744957.745001 complement(1965108.1965971) complement(1965108.1965971) complement(1434153.1435010) 627658.628151 767436.768308 1861193.1882053	00,5768229 91,34228358 92,1108742 92,87846482 92,87846482 92,87846482 93,64605544 94,41364606 95,18123667 95,18123667 95,18123667 99,01918977 99,78678038 90,01918977 99,78678038 100,554371 101,3219616 102,88771429 103,6247335 104,39223241 105,1959147 105,9275053 105,9275053	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC4_1811 SSUBM407_1859 SSU57_1813 str0917 str0917 str0917 str0917 str1572 str	19087781908873 19081521908247 18199841820079 19083931908488 19586441958739 18530831853178 complement(84863864934) complement(1834706834777) complement(14345371434608) complement(14382341398951) complement(13892341398305) 12828891282760 995759995630 13827671382844 complement(744773744850) 19660621966133 14351001435168 complement(827500627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKGSLLLLUVLVGEGIIVILVG MKKQLLLLVULVGEGIIVILVG MKKQLLLLUVLVGEGIVIVIG MKKQLLLLUVLVGEGIVIVG MKKQLLTLLUVPEGIIVIVVG MKKQLLTLLUVPEGIVIVVG MKKQLLTLLUVFEGIVIVVG MKKQLLPLLLESIVGG MKRHFLMLLLMVLEEIVIGVGG MKRHFLMLLLVVLEEIVIGVGG MRKKIFMTLIVVLETIIIIGGG MRNKIFMTLIVVLETIIIIGGG			
Streptococcus equi subsp. zequeisimilis GGS_124 Streptococcus suis B052YH33 Streptococcus suis 98HAH33 Streptococcus suis 98HAH33 Streptococcus suis SC84 Streptococcus suis GZ4 Streptococcus suis GZ4 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-9 Streptococcus thermophilus LMG-18311 Streptococcus thermophilus LMG-9 Streptococcus thermophilus LMG-18311 Streptococcus thermophilus LMG-18311 Streptococcus thermophilus LMG-18311 Streptococcus thermophilus LMG-9 Streptococcus thermophilus LMG-18311 Streptococcus thermophilus LMG-9 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans UA159 Streptococcus mutans VA159 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. Zooepidemicus MGCS10565 Streptococcus equi subsp. Zooepidemi	CP000129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252031 CP000438 CP000023 CP000023 CP000024 CP0000419 CP000024 CP0000419 CP000024 CP0000419 AP010935 FM204884 AE014133 AP010655 FM204884 CP001129 FM204883 CP000129 FM204883 CP000129 FM204883 CP000397	1429753.1430625 complement(1907807.1908670) complement(1907807.1908044) complement(1907812.1908044) complement(1819013.1819876) complement(195763.1958536) complement(195763.1958536) complement(1852112.1852975) 865021.865878 843656.385721 840642.841508 1387038.1397901 1389392.1390255 complement(194781.995668) complement(194781.995668) complement(194781.995668) complement(1438116.138265) 744995.745801 complement(1438116.138265) 744995.745801 complement(1438116.138265) 744935.745801 complement(1438115.13435010) 627688.628515 767436.768308 1861133.1862053 2105808.2106668 complement(060416.609285)	89,80810235 99,80810235 99,37569296 91,34228358 92,1108742 92,87846482 93,6440554 93,6440554 95,94882729 96,71641791 97,48400853 99,26870833 100,554371 101,3216616 102,0895522 102,8571429 103,6247335 104,3923241 105,1599147 105,1599147 105,1599147 105,4275053 106,6950959	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU5C84_1811 SSUBK07_1859 SSG21_1813 strc_0934 str0917 strc_1530 str1572 str1572 str1558 SDEC_1013 SZO_17400 Sez_0716 SZO_17400 Sez_0716 SZO_17730 smuNN2025_0595	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(84883.864934) complement(1840493.840564) complement(134537.1434608) complement(134537.1434608) complement(1389234.1389305) 1262689.1262760 995759.995630 1382767.1382444 complement(744773.744850) 1966062.1966133 1435100.1435168 complement(627500.627568)	 MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKKQNYLIANITIVLILISILKDIPPIIVIK MKKGSFLAILLIFESIIVIAVG MKKGKLLLLVVCCGIIVILVG MKKQLLLLVVLVCGIIVILVG MKKQLLLLVVLVCGIIVILVG MKKQLLLLUVLVCEGIIVILVG MKKQLLLLLVVLVCGIIVILVG MKKQLLLLLVVLVGGIIVILVG MKKQLLLLLVLVEGIIVILVG MKKQLLLLLVLVEGIIVIVG MKKQLLLLLVLVEGIIVIVVG MKKQLLTLLLIVEGIIVIVVG MKKQLLFILLIFESIIVAVG MKKRHELMLLLMVLEEIVIVVGVL MKKQLLPULFLIFGIIIVVG MKKRHETMLLLVVLETIIIIGGG MRKKIFMTLIVVLETIIIIGGG 			
Streptococcus dy sigalactice subp. equisimilis GGS_124 Streptococcus suis B27YH33 Streptococcus suis B27H33 Streptococcus suis B2HAH33 Streptococcus suis B2HAH33 Streptococcus suis B4H07 Streptococcus suis B4M07 Streptococcus suis G21 Streptococcus thermophilus LMD-9 Streptococcus subsernophilus LMD-9 Streptococcus subsernophilus LMD-9 Streptococcus sequi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans NX2025 Streptococcus and subsp. equi 4047 Streptococcus equi subsp. equi 4047 Streptococcus equi subsp. equi 4047 Streptococcus equi subsp. Cooepidemicus MGCS10565 Streptococcus equi subsp. equi 4047 Streptococcus equi subsp. equi 4047	CP000125 AP010935 CP000407 CP000408 AM946016 FM252032 CP000408 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000025 FM204884 AE014133 AP010655 FN597254 CP000129 FM204884 AE014133 CP000129 FM204884 AE014133 CP000129 FM204884 AE014133 CP000129 FM204884 AE01413 CP000129 FM204884 AE01413 CP000129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000029 FM20484 CP000029 FM20484 CP000029 FM20484 CP000029 FM20484 CP000029 FM20484 CP000029 FM20484 CP000029 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000021 CP000021 CP000021 CP00049 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000129 FM204884 CP000029 CP000029 FM204884 CP000020 CP000029 FM204884 CP000029 CP000029 FM204884 CP000029 CP000029 CP000029 FM204884 CP000029 CP0000029 CP000000 CP000000 CP000000000000000000	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(185972.1908285) complement(185212.1852975) 865021.865678 834855.383721 840642.841508 11397038.1397901 138392.130255 complement(1904781.995668) complement(1904781.995668) complement(1904781.995668) complement(198718.1452598) complement(198718.145571) complement(198718.145571) complement(198718.145571) complement(198718.145571) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(198218.145251) 2105808.2106688 complement(1982485) complement(1982485)	80,80310235 90,57569296 91,34228358 92,1108742 92,87846482 92,87846482 93,64005544 94,41364006 95,18123667 95,94882729 96,71641791 99,01918977 99,78678038 100,554371 101,3219616 102,895522 103,6247335 106,5247335 106,5275053 106,6950959 107,4626866 108,2302772	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SS021_1813 strc_034 str0917 strc_1530 str1572	1908778.1908873 1998152.1908247 1819984.1820079 1908393.1908488 198684.198739 1853083.1853178 complement(68483.864934) complement(84853.840584) complement(143425.1434608) complement(1398234.1398305) 128288.1282760 995759.958530 1382767.1382844 complement(74773.744850) 1382677.158214 complement(627500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNLILLIVLVCGIVILVG MKKQKLILLIVVLCGIVILVG MKKQKLILLIVVLCGIVILVG MKKQKLILLIVVLCGIVILVG MKKQKLILLIVVLCGIVILVG MKKQKLILLIVVLGGIVILVG MKKQKLILLIVVLGGIVILVG MKKQKLILLIVVLGGIVIVG MKKQKLILILVVLGGIVIVG MKKQKLILILVVLGGIVIVG MKKQKLILILVVLGGIVIVG MKKQKLILILVVLGGIVIVG MKKQKLIPLIFLILFGIIVVG MKKQKLIPIFLILLIFGIIVVG MKKQKLIPIFLIFEGIIVVQ MKKQKLIPIFLIFEGIIVVG MKKQKLIPIFLIFEGIIVVG MKKQKLIPIFLIFEGIIVVG MKKQKLIPIFLIFEGIIVVG			
Streptococcus equi subsp. 200epidemicus MiGCS 10965 Streptococcus subsp. equisimilis GGS_124 Streptococcus suis 981AH33 Streptococcus suis 981AH33 Streptococcus suis SC84 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus diversion Streptococcus diversion Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus mutans UA159 Streptococcus mutans NA2025 Streptococcus equi subsp. 200epidemicus MGCS10565 Streptococcus equi subsp. 200epidemicus MGCS10565	CP000129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000837 CP000837 CP00023 CP000419 CP000023 CP0000419 CP000023 CP000419 AP010935 FM204884 AE014133 AP010655 FN597254 CP000129 FM204888 AE014133 AP010655 FN597254 CP000129 FM204888 CP000387 CP000408 CP000387 CP000387 CP000387 CP000408 CP000387 CP000387 CP000387 CP000387 CP000387 CP000419 CP000400040 CP00047 CP0004000000000000000000000000000000000	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(185212.1908285) complement(185212.1852975) 865021.865878 84855.835721 840642.841508 1337038.1397901 1338392.1390255 complement(1261738.1262598) complement(1261738.1262598) complement(1965108.1965971) complement(1965108.1965971) complement(1434153.1435010) 827658.628515 105432.206668 complement(608416.609285) complement(608416.609285) complement(608416.609285) complement(608416.609285) complement(608416.609285) complement(608416.609285)	89,80810235 99,80810235 90,57569296 91,34228358 92,1108742 92,87846482 93,644005544 94,41364606 95,1482729 96,71641791 90,71847791 90,91947791 90,9194	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 str0917 str0917 str0917 str0917 str1572 str1572 str1572 str1572 str1572 str1572 str2100 SSDEG_1013 SSDEG_1013 SSD_12400 Sez_0716 SZO_17730 smu1NV2025_0595	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(84863.864934) complement(1834706.834777) complement(143453.143453.143468) complement(1398284.1389305) 1262689.1262760 995759.995830 1382767.1382244 complement(744773.74450) 196602.1966133 1435100.1435168 complement(627500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITVLILISILKDIPPIIVIK MKQNYLIANITVLILISILKDIPPIIVIK MKKQNYLIANITVULLISILKDIPPIIVIK MNKESFLAILLIFESIIVIAVG MNKESFLAILLIFESIIVIAVG MKKQKLLLILVEVCEGIIVILVG MKKQKLLLIVLVCEGIIVILVG MKKQKLLLILVUZGEGIVIVUG MKKQKLLLILVVZGEGIVIVUG MKKQKLLILLIVEEIVIVGGI MKKQKLLILLIVEEGIVIVVG MKKQKLILTLLIVEEGIVIVVG MKKQKLIPUFLEEVIVVGVL MKKQKLIPIFLEEMIEEWIVVGYL MKKQKLIPIFLEEGIIVVVG MNKRHFLMLLMVLEEIVIVVGYL MKKQKLIPIFLEEGIIVVVG MNKRHFLMLLMVLEEIVIVGG MNRKHFMTLIVVLETIIIIGGG MNRKIFMTLIVVLETIIIIGGG			
Streptococcus dy sigalactice subsp. equisimilis GGS_124 Streptococcus suis B27YH33 Streptococcus suis B27H33 Streptococcus suis B2HAH33 Streptococcus suis SC84 Streptococcus suis CC4 Streptococcus suis CC4 Streptococcus thermophilus LMD-9 Streptococcus stemophilus LMD-9 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. equi 4047 Streptococcus equi subsp. equi 4047 Streptococcus equi subsp. Streptococcus equi	CP000129 AP010935 CP000407 CP000408 AM946016 FM252032 CP000837 CP000419 CP00023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000129 FM204884 AE014133 AP010655 FNS97254 CP000129 FM204883 AP010655 FNS97254 CP000129 FM204883 AP010655 FNS97254 CP000129 FM204883 AP010655 FNS97254 CP000129 FM204883 AP010655 FNS97254 CP000129 FM204883 AP010655 FNS97254 CP000129 FM204883 AP010655 FNS97254 CP000129 FM204883 CP000387 CP0002129 FM204883 CP000387 CP0002129 FM204883 CP000387 CP0002129 FM204883 CP0000387 CP000129 FM204883 CP000387 CP000129 FM204883 CP000129 FM204883 CP000129 CP000129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM20488 CP000129 CP00021 CP0021 CP0	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1819013.1819876) complement(185212.1852975) 856221.865878 834855.383721 8340452.841508 11340495.1435558 1397038.1397901 1383392.1390255 complement(1261738.1262598) complement(1381816.1382685) 744995.745801 complement(1381816.1382685) 744995.745801 complement(1434153.1435010) 827658.62815 767436.768308 1861133.1862053 2105508.2106668 complement(20816.609285) complement(20816.609285) complement(208178.2082825)	0.03011235 99.80810235 90.57569296 91.34228358 92.1108742 92.87846482 93.64605544 94.41364606 95.18123667 95.94882729 96.71641791 97.48400853 98.25159915 99.0191697 99.0191697 99.0191697 102.68514371 101.3216616 102.0895522 102.8571429 103.6247335 106.6850959 107.4628666 108.2302772 108.997878	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SSC21_1813 ster_0334 st0917 strj530 str1572 s	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 198684.1986739 1853083.1853178 complement(864863.864934) complement(844053.864934) complement(14345371434608) complement(1398234.1398305) 1282689.1282760 995759.995830 1382767.1382844 complement(74473.74450) 1966062.1966133 1435100.1435168 complement(627500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNLILIVLVCEGIIVILVG MKKQKLLLLVVLVCEGIIVILVG MKKQKLLLLVVLVCEGIIVILVG MKKQKLLLLVVLVCEGIIVILVG MKKQKLLLLVVLVCEGIIVILVG MKKQKLLLLVVLVCEGIIVILVG MKKQKLLLVLVVCEGIIVILVG MKKQKLLLPILFUFGIIVIVGY MKKQKLLPILFLFEGIIVXVG MKKQKLLPILFLFEGIIVVGY MKKQKLPILFLLFEGIIVVG MKRQKLPILFLLFEGIIVVG MKRQKLPILFLLFEGIIVVG			
Streptococcus dysgalacitae subsp. equisimilis GGS_124 Streptococcus suis 8052YH33 Streptococcus suis 8052YH33 Streptococcus suis 804AH33 Streptococcus suis 804AH33 Streptococcus suis 62A Streptococcus suis 62A Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG-8 Streptococcus thermophilus LMG-8 Streptococcus gui subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans VN159 Streptococcus aguilyticus UCN34 Streptococcus pneumoniae CGSP14 Streptococcus pneumoniae UA	CP000125 CP000407 CP000408 AM946016 FM252032 CP000847 CP000408 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000129 FM204884 AE014133 AP010655 FN597254 CP000387 CP00387 CP003	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(190781.1908044) complement(1907422.1908285) complement(195773.1958536) complement(195212.1852975) 856021.865878 834855.835721 840642.241508 13347038.1397001 1338392.1302055 complement(1261738.1262598) complement(1261738.1262598) complement(1381816.1362685) 744995.745801 complement(1381816.1362685) 744995.745801 complement(1381816.1362685) 767436.768308 1861139.18622053 2105808.2106668 complement(068416.609285) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(205783.2058600) complement(206174.202825) complement(205783.2058600) complement(2	89,80810235 99,80810235 99,80810235 99,37569296 92,8784642 92,8784642 93,64005544 94,41364006 95,18123667 95,18123667 95,18123667 95,18123667 99,01918977 99,7847803 100,554371 101,3219616 102,8095522 103,6247335 104,3922341 105,1599147 105,69959 107,4828866 108,2302772 108,9978678 109,7654584 110,533049	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 stre_0034 str0917 stre_1530 str1572 str157	19087781908873 19081521908247 18199841820079 19083931908488 19586441958739 18530831853178 complement(88498384034) complement(84698384054) complement(1434571434608) complement(1434571434608) complement(13982841386305) 12826891282760 995759995830 13827671382644 complement(744773744550) 19660621966133 14351001435168 complement(627500627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITVLILISILKDIPPIIVIK MKKONYLIANITVULLISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MMKESFLAILLIFESIIVIAVG MKKQKLLLLVVLVGEGIIVILVG MKKQKLLLLVVLVGEGIIVILVG MKKQHLLLLVVLVGEGIVIVUGG MKRHFLMLLLMVLEEIIVIGVGYL MKRHFLMLLLMVLEEIIVIVVGYL MKRHFLMLLLMVLEEIIVIVVGGI MKRHFLMLLLMVLEEIIVIVVGGI MKRHFLMLLLMVLEEIIVIVVGGI MKRHFLMLLMVLEEIIVIVGGG MRNKFMTLIVVLETIIIIGGG MRNKFMTLIVVLETIIIIGGG			
Streptococcus equi subsp. zequisimilis GGS_124 Streptococcus suis DSCYH33 Streptococcus suis DSCYH33 Streptococcus suis P1/7 Streptococcus suis SC84 Streptococcus suis GZ4 Streptococcus suis GZ4 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9 Streptococcus thermophilus CNR21066 Streptococcus subernophilus CNR21066 Streptococcus subernophilus CNR21066 Streptococcus agui subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans UA159 Streptococcus mutans UA159 Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus pneumoniae JA Streptococcus pneumoniae JA Streptococcus pneumoniae JA	CP001129 AP010935 CP000407 AM946016 FM252032 CP000408 CP000847 CP000419 CP000023 CP000024 CP000023 CP000024 CP000023 CP000023 CP0000129 FM20484 AP014033 AP014655 FNS97254 AP014133 AP014655 FNS97254 CP000129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204884 CP001129 FM204883 CP000387 CP000919 CP001993	1429753.1430625 complement(190781.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1819013.1819876) complement(19573.195836) complement(19573.195836) complement(1852112.1852975) 854052.1.865878 834855.385721 8340642.841508 1434069.143558 1397038.1397091 138332.1390255 complement(194781.995668) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1434153.1435010) 827658.628515 767436.768308 1861133.1862053 2105808.2106668 complement(2057339.2058600) complement(2057339.2058600) complement(2057339.2058600) complement(2057339.2058600) complement(19210.120061)	80,3610235 90,57569296 91,34228358 92,1108742 92,87846482 92,87846482 93,64605544 94,41364006 95,18123667 95,9482729 96,71641791 99,78678038 90,01918977 99,78678038 100,554371 101,3219616 102,0895522 102,8871429 103,6247335 106,8950959 107,4626866 108,2302772 108,8978678 109,7654584 111,3008397 111,3008397	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU789 SSU5C84_1811 SSUBM407_1859 SSC2T_1813 ster_034 ster_1530 str1572 stu1572 stu1572 stu1572 stu7572 stu1572 stu7572	1908778.1908873 1998152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 1853083.1853178 complement(84863.864934) complement(84493.864934) complement(1424453.71434608) complement(1398284.1398305) 1262689.1262760 995759.995630 1382767.1382844 complement(138224.139305) 1262680.1262760 1382767.1382844 complement(138254.139305) 1382767.1382844 complement(138254.139305) 1966062.1966133 1435100.1435168 complement(627500.627568)	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKKONYLIANITIVLILISILKDIPPIIVIK MKKOSFLAILLIPESIIVAVG MKKOSFLAILLIPESIIVAVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVIVVG MKKOKLILLIVVEGIVIVVG MKKOKLILLIVVLEEIVIVVGVL MKKRIFTULLIVVEEIVIVVGVL MKKOKLITULUMPEEIVIVVGVL MKKOKLITULIIGSIVGG MKKIFMTLIVVLETIIIGGG			
Streptococcus gui subsp. 200epidemicus MiCLS 10065 Streptococcus gui subsp. 200epidemicus MiCLS 10065 Streptococcus suis B274133 Streptococcus suis B214133 Streptococcus suis B214133 Streptococcus suis B414133 Streptococcus suis B407 Streptococcus suis B407 Streptococcus suis B407 Streptococcus suis B407 Streptococcus thermophilus LMD-9 Streptococcus sufermophilus LMD-9 Streptococcus sufermophilus LMD-9 Streptococcus sequi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus mutans NN2025 Streptococcus gui subsp. 200epidemicus Streptococcus andus subsp. 200epidemicus Streptococcus gui subsp. 200epidemicus Streptococcus gui subsp. 200epidemicus Streptococcus gui subsp. 200epidemicus Streptococcus gui subsp. 200epidemicus MGCS10565 Streptococcus gui subsp. 200epidemicus M	CP000129 AP010935 CP000407 CP000408 AM946016 FM252032 CP000408 CP000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000023 CP0000419 CP000025 FM204884 AE014133 AP010655 FN597254 CP0001129 FM204883 CP000387 CP000387 CP000387 CP000129 CP000387 CP000133 CP000133 CP000133 CP000133 CP000193 CP000103 CP000103 CP000103 CP000103 CP000103 CP000103 CP000103 CP000103 CP000103 CP000021 CP0	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(190781.1908044) complement(1907422.1908285) complement(195773.1958536) complement(1852112.1852975) 856021.865878 834855.835721 840642.841508 11347038.1337901 1338392.1302055 complement(1261738.1262598) complement(195708.196568) complement(195108.1965971) complement(1955108.1965971) complement(1955108.1965971) complement(1955108.1965971) complement(1955108.1965971) complement(1434153.1435010) 627658.62815 767436.768308 1861193.1862053 2105808.2106668 complement(608416.609285) complement(608476.2082825) complement(1981598.19276.1966098)	89,80810235 99,80810235 99,80810235 99,17869296 91,34328358 92,1108742 92,87846482 92,87846482 93,64605544 94,41364006 95,18123667 95,94882729 96,71641791 101,3219616 102,8571429 103,6247335 104,3923241 105,1959147 105,9275053 104,3923241 105,1959147 105,9275053 107,4628866 107,4628866 107,4628666 107,4628666 107,4628666 107,4628666 107,4628666 107,4628666 107,53049 111,3006397 112,0682303	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC4_1811 SSUBM407_1859 SSU57_1813 str0917 str0917 str0177 str_1530 str1572 st	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 1853083.1853178 complement(84863.84034) complement(143470.84034) complement(143457.1434608) complement(143827.1434608) complement(1438234.1389305) 1282689.1282760 995759.995630 1382767.1382844 complement(744773.744850) 1966062.1966133 1435100.1435168 complement(827500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKESFLAILLIVEVCEGIVIUVG MKKQLLLLVVLVCEGIVIUVG MKKQLLLLUVEVCEGIVIVUG MKKQLLLLUVEGEIVIGG MKKQLLTLLUVFEGIIVVVG MKKQLLTLLUVFEGIVIVVG MKKQLLPLLLESIVGG MKKRHFLMLLLMVLEEIVIGVG MKKQLPLFLEFEGIIVVVG MKKQLLPLLLEFUGIGG MRNKIFMTLIVVLETIIIIGGG MRNKIFMTLIVVLETIIIIGGG			
Streptococcus equi subsp. zodepidemicus MiGCS 10965 Streptococcus suis B052/YH33 Streptococcus suis 981AH33 Streptococcus suis 981AH33 Streptococcus suis SC84 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus differentia LMD-9 Streptococcus differentia LMD-9 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans UA159 Streptococcus and subsp. zooepidemicus MGCS10565 Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus and subsp. zooepidemicus MGCS10565 Streptococcus and Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus and Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus and subsp. zooepidemicus MGCS10565 Streptococcus pneumoniae T0585 Streptococcus pneumoniae T0585 Streptococcus pneumoniae GSP14 Streptococcus pneumoniae T0545 Streptococcus pneumoniae T0545 Streptococus	CP000129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000837 CP00023 CP000023 CP000023 CP0000419 CP000024 CP000419 AP010935 FM204884 AE014133 AP010655 FM204884 AE014133 AP010655 FM57254 CP000129 FM204883 CP000387 CP000725 CP000918 CP000918 CP000919 CP000919 CP000919 CP000921 CP00	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(190781.1908044) complement(1907812.1908285) complement(195773.1958536) complement(195773.1958536) complement(195773.1958536) complement(1852112.1852975) 865021.86878 84054.2841508 1397038.1397901 1393922.1390255 complement(1261738.1262598) complement(194781.395685) complement(1945108.1955971) complement(195108.1955971) complement(195108.1955971) complement(195108.1955971) complement(195108.1955971) complement(195108.1955971) complement(195108.1955971) complement(195108.1955971) complement(205193.2056600) complement(205193.2056600) complement(2051934.2058600) complement(1965337.196808) complement(1965337.196808) complement(1965337.196808) complement(195337.196808) complement(195337.196808)	89,80810235 99,80810235 99,80810235 99,80810235 92,8786482 92,87846482 92,87846482 93,64005544 94,41364606 95,148123667 95,94882729 96,71641791 99,76870038 100,554371 101,3219616 102,0895522 103,6247335 104,3923421 103,6247335 104,5393142 105,1599147 105,1599147 105,56939 107,4628666 108,2302772 108,9978678 109,7654584 111,3306397 112,0682303 1112,058229	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM07_1859 SSG21_1813 strog974 str0917 str0917 str1572 str1572 str1572 str1572 str1572 str1572 str1573 SDEC_1013 SZO_1730 SZO_17730 smuNN2025_0595	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(84863.864934) complement(134373.143458) complement(134353.143468) complement(1389234.1389305) 1262689.1262760 995759.995830 1382767.1382844 complement(744773.74450) 1966062.1966133 1435100.1435168 complement(627500.627568)	 MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITVULLISILKDIPPIIVIK MKONYLIANITVULLISILKDIPPIIVIK MKKONYLIANITVULLISILKDIPPIIVIK MNKESFLAILLIFESIIVIAVG MNKESFLAILLIFESIIVIAVG MNKKSKLLLIVLVCCEGIIVILVG MKKQILLLIVLVCEGIIVILVG MKKQILLILLIVLVEGIIVILVG MKKQILLILLIVLVEGIIVILVG MKKQILLILLIVLVEGIIVILVG MKKQILLILLIVEEGIIVILVG MKKQILLILLIVEEGIIVIVG MKKQILLILLIVEEGIIVIVG MKKQILTILLIVEEGIIVIVVG MKKQILTILLIVEEGIIVIVVG MKKQILTILLIVEEGIIVIVVG MKKQILTILLIVEEGIIVIVVG MKKQILTILLIVEEGIIVIVVG MKKQILTILLIVEEGIIVIVG MKKQILTILLIVEEGIIVIVG MKKQILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKGILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKQILTILLIVEGIIVIVG MKKIFFTLIVVLETIIIGGG MKKIFTIIVVLETIIIGGG 			
Streptococcus qui subsp. 200epidemicus MiCLS 10965 Streptococcus qui subsp. equisimilis GGS_124 Streptococcus suis B274133 Streptococcus suis B214133 Streptococcus suis B214 Streptococcus suis B414133 Streptococcus suis B407 Streptococcus suis G21 Streptococcus suis G21 Streptococcus thermophilus LMD-9 Streptococcus sequi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus mutans NM2025 Streptococcus aqui subsp. 200epidemicus Streptococcus aqui subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus MGCS10565 Streptococcus equi subsp. 200epidemicus MGCS10565 Streptococ	CP000125 AP010935 CP000407 CP000408 AM946016 FM252032 CP000408 CP00023 CP000419 CP00023 CP00023 CP00023 CP00023 CP00023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000129 FM204884 AE014133 AP010655 FN597254 CP000129 FM204883 CP000129 FM204883 CP000129 CP000931 CP000931 CP000931	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1897422.1908285) complement(185212.1852975) 865021.865678 834855.835721 840462.841508 11397038.1337901 1389392.1390255 complement(194781.95668) complement(194781.95668) complement(194781.95668) complement(194781.95668) complement(194781.95668) complement(194781.95668) complement(196718.1435010) 627658.628515 767436.768308 1861193.1862053 2105808.2106668 complement(163416.609285) complement(19210.1200825) complement(19210.120081) complement(19210.120081) complement(19210.120081) complement(19210.120081) complement(191475.1915326)	89,80810235 99,80810235 99,80810235 99,17428358 92,1108742 92,87846482 92,87846482 92,87846482 93,64605544 94,41364006 95,18123667 95,94882729 96,71641791 99,748400853 98,25159915 99,01918977 99,78678038 100,554371 101,3219616 102,88771429 103,6247335 106,6950959 107,4628866 105,9276553 106,6950959 107,4628866 108,2302772 108,9978678 109,7654584 110,533049 111,20682303 112,685203 113,6034115	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SSC21_1813 strc_034 str0917 strc_1530 str1572	19087781908873 19081521908247 18199841820079 19083931908488 19586441988739 18530831853178 complement(864863864934) complement(834706834777) complement(14345771434608) complement(14382341389305) 12826881282760 995759956530 13827671382844 complement(744773744850) 19860821966133 14351001435168 complement(827500627568)	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKKSFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKSFLAILLIFESIIVIAVG MKKGKLILLVVLVCEGIIVILVG MKKOLLLLVVLVCEGIIVILVG MKKGILTLILLISITVGIG MKKRHFLMLLLWVLEEIIVIGVGYL MKKRHFLMLLLWVLEEIIVIGVGYL MKKRHFLMLLLWVLEEIIVIGVGG MKKKLIFIVTLESIVVGG MKKRHFLMLLLWVLEEIIVIGGG MKKKIFMTLIVVLETIIIIGGG			
Streptococcus qui subsp. 200epidemicus MiCLS 10965 Streptococcus sui SUS2YH33 Streptococcus suis 981AH33 Streptococcus suis 981AH33 Streptococcus suis SC84 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus suis GZ4 Streptococcus thermophilus LMD-9 Streptococcus dermophilus LMD-9 Streptococcus qui subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans UA159 Streptococcus mutans NA225 Streptococcus agliotyticus UCN34 Streptococcus agliotyticus UCN34 Streptococcus agliotyticus UCN34 Streptococcus agliotyticus UCN34 Streptococcus gendium SK36 Streptococcus pneumoniae 70885 Streptococcus pneumoniae Teiwan19F-14 Streptococcus pneumoniae Teiwan19F-14 Streptococcus pneumoniae B3	CP000125 AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000837 CP000837 CP00023 CP000419 CP000023 CP000419 AP010935 FM204884 CP000023 CP000419 AP010935 FM204884 AE014133 AP010655 FM204884 AE014133 AP010655 CP000125 CP000125 CP000918 CP000387 CP000918 CP000918 CP000918 CP000918 CP000918 CP000931 CP00033 CP000931 CP00033 CP000931 CP00033 CP000931 CP00033 CP000931 CP00033 CP00033 CP00033 CP00033 CP00033 CP00033 CP00033 CP00033 CP00033 CP00033 CP	1429753.1430625 complement(1907807.1908670) complement(1907807.1908074) complement(190781.1908044) complement(190781.1908044) complement(1907422.1908285) complement(1957673.1958536) complement(1957673.1958536) complement(1852112.1852975) 865021.865878 84055.835721 840642.841508 1337038.1397901 1338932.1390255 complement(1261738.1282585) complement(1381816.1382685) 744995.745801 complement(1381816.1382685) 744995.745801 complement(1434153.1435010) 827658.628515 757436.768308 1861133.1862053 2105808.2106668 complement(068416.609285) complement(196203.196605) complement(192173.2058600) complement(196503.196808) complement(198533.7196808) complement(198533.7196808) complement(192107.120071) complement(1922007.1922858)	89,80810235 99,80810235 99,80810235 99,80810235 92,8786482 92,8784682 92,8784682 92,8784682 93,64005544 94,41364006 95,94882729 96,71641791 90,7184789 90,7184789 90,7184789 90,7184789 90,7184789 90,78678038 100,554371 101,3219616 102,8875429 103,6247335 104,3923241 105,1599147 105,1599147 105,69059 107,4628666 108,2302772 108,9976678 108,978678 109,7654584 110,53049 111,3003415 112,0682303 112,8358209 113,003415	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 str0917 str0917 str0917 str0917 str1572 str1572 str1572 str1572 str1572 str1572 str1572 str1358 SDEG_1013 S2O_17400 Sez_0716 S2O_17730 smu1NV2025_0595	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(84683.84034) complement(1834706.834777) complement(143453.1434808) complement(134537.1434368) complement(1389234.1389305) 1262689.1262760 995759.995830 1382767.1382844 complement(744773.74450) 1966062.1966133 1435100.1435168 complement(627500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKONYLIANITVLILISILKDIPPIIVIK MKONYLIANITVULLISILKDIPPIIVIK MKKONYLIANITVULLISILKDIPPIIVIK MKKSFLAILLIIFESIIVIAVG MKKESFLAILLIIFESIIVIAVG MKKGKLLLIVLVCCEGIIVILVG MKKQKLLLIVLVCCEGIIVILVG MKKQKLLLILVLVCEGIIVILVG MKKQKLLLILVLVCEGIIVIVGG MKKQKLLTLLIVVEGIIVIVGG MKKRHFLMLLLMVLEEIVIVVGYL MKKRLPIKLEEWIVVGYL MKKRLPIKLEEWIVVGG MRKHFMTLIVVLETIIIIGGG MRNKFMTLIVVLETIIIIGGG			
Streptococcus qui subsp. acquisimilis GGS_124 Streptococcus suis BC2YH33 Streptococcus suis BC2YH33 Streptococcus suis BC4 Streptococcus suis BC4 Streptococcus suis BC4 Streptococcus suis BC4 Streptococcus suis GC4 Streptococcus thermophilus LMD-9 Streptococcus subsp. rouge/idemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus andura NX2025 Streptococcus andura NX2025 Streptococcus gui subsp. cooepidemicus MGCS10565 Streptococcus qui subsp. equi 4047 Streptococcus qui subsp. Cooepidemicus MGCS10565 Streptococcus gneumoniae 70585 Streptococcus gneumoniae 70585 Streptococcus pneumoniae 70585 Streptococcus gneumoniae T0585 Streptococcus gneumoniae T0585 Streptococcu	CP000125 AP010935 CP000407 CP000408 AM446016 FM252032 CP000408 CP00023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000129 FM20484 AE014133 AP010655 FN597254 CP0001129 FM204884 AE014133 CP000129 CP0009129 CP0009129 CP000938 CP000938 CP000931 CP000930 CP000936 CP000931 CP000932 CP000410 CP000931 CP000931 CP000931 CP00032 CP00033 CP0033 CP003	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(181907422.1908285) complement(185212.1852975) 856221.865878 834855.835721 830462,241508 1434695.1435558 1397038.1397001 1383392.1392055 complement(194781.995668) complement(194781.995668) complement(194781.995668) complement(196718.1262598) complement(194781.995668) complement(196718.195671) complement(195108.1965971) complement(195108.1965971) complement(10434153.1435010) 627658.628515 767436.768308 1861133.1862053 2105808.2106668 complement(1041674.002825) complement(1041974.002825) complement(1921021.20028.2121179) complement(1912032.1212179) complement(192028.193288)	80,80310235 90,57569296 91,34228358 92,1108742 92,87846482 92,87846482 92,87846482 93,64005544 94,41364006 95,18123667 95,94882729 96,71641791 99,748400853 98,25159915 99,01918977 99,78678038 100,554371 101,3219616 102,895522 103,6247335 106,6805959 107,4826866 108,2302772 108,9978678 108,2302772 108,9978678 113,6034115 114,3710021 115,1385928	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SSG21_1813 strc_034 str0917 strc_1530 str1572	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 198684.1986739 1853083.1853178 complement(864863.864934) complement(834706.834777) complement(1340493.840564) complement(1389234.1389254) 1262689.1282760 95759.956530 1382767.1382844 complement(738244.138234 complement(74773.744850) 1366062.1966133 1435100.1435168 complement(627500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKKQKLILLIVLVCEGIVILVG MKKQKLILLIVVLVCEGIVILVG MKKQKLILLIVVLCEGIVIVUGG MKKQKLILLIVVLEGIVIVGG MKKQKLIPIIFLIESIVGGG MNKRHFLMLLIMVLEEIVIVGVGYL MKKQKLIPIIFLIFEGIIIVVG MRKQKIPIITLIVVLETIIIGGG MRNKIFMTLIVVLETIIIGGG			
Streptococcus glusipa, zados usbp. equisimilis GGS_124 Streptococcus suis 8052YH33 Streptococcus suis 8052YH33 Streptococcus suis 804AH33 Streptococcus suis 814AH33 Streptococcus suis 624 Streptococcus suis 624 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus glus ubsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus aguis ubsp. zooepidemicus Streptococcus preumoniae CGSP14 Streptococcus pneumoniae UA Streptococcus pneumoniae Bi Streptococcus pneumoniae Bi Streptococcus pneumoniae Bi Streptococcus pneumoniae Bi Streptococcus pneumoniae Bi Streptococcus pneumoniae Bi Streptococcus pneumoniae CI Streptococcus pneumoniae CI Strept	CP000125 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000419 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00023 CP00025 CP000129 FM204884 AE014133 AP010655 FN597254 CP000387 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 CP000475 C	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(190781.1908044) complement(1907422.1908285) complement(195703.1958536) complement(195212.1852975) 856021.865878 834855.835721 840642.841508 1334038.1397001 1338392.1302055 complement(1261738.1262598) complement(1261738.1262598) complement(1381816.1352085) 744995.745801 complement(1381816.1352085) 744995.745801 complement(1381816.1352085) 767436.768208 1861193.1862053 2105508.2106668 complement(1985108.1965971) complement(1261743.20585) 767436.7682081 267658.628515 767436.768208 1861193.1862053 2105508.2106668 complement(198513.1456098) complement(198533.196698) complement(198533.196698) complement(194745.191536) complement(194475.1915366) complement(194475.1915366) complement(1941475.1915366) complement(1949193.1950044)	89,80810235 99,80810235 99,80810235 99,30810235 92,87846422 92,87846422 92,87846422 92,87846422 92,87846422 93,64005544 94,41364006 95,18123667 95,18123667 99,01918977 99,78678038 100,554371 101,3219616 102,8095522 103,8247335 104,39023241 105,1599147 105,69959 107,4828866 108,2302772 108,9978678 109,7654584 110,53049 111,3006397 113,6034115 114,3710021 115,9061834	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 stre_0834 stu0917 stre_1530 str1572 stu157	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(864683.84034) complement(844693.84054) complement(143457.1434608) complement(143457.1434608) complement(1398284.1389205) 1282689.1282760 995759995830 1382767.1382844 complement(744773.744850) 1966062.1966133 1435100.1435168 complement(627500.627568)	 MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKCSFLAILLIFESIIVIAVG MINKESFLAILLIFESIIVIAVG MINKESFLAILLIFESIIVIAVG MKKOLLLILVUZGEGIIVILVG MKKOLLLILVUZGEGIIVILVG MKKOLLLILLIVEGIIVIVG MKKRHLLLIVVZEGIIVIVG MKKRHLLLIVVZEGIVIVGG MKRHFLMLLLMVLEEIIVIVGYL MKRHFLMLLLMVLEEIIVIVGG MINRHFLMLLLMVLEEIIVIVGG MRNKIFMTLIVVLETIIIGGG MRNKIFMTLIVVLETIIIGGG 			
Streptococcus glusips, zodepidemicus MicLS10965 Streptococcus glusips, equisimilis GGS_124 Streptococcus suis B274133 Streptococcus suis S0241 Streptococcus suis S024 Streptococcus suis S024 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus subser, and the streptococcus stremophilus LMD-9 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus gui subsp. zooepidemicus Streptococcus angui subsp. zooepidemicus Streptococcus angui subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus angui subsp. Zooepidemicus Streptococcus pneumoniae 7085 Streptococcus pneumoniae 7085 Streptococ	CP001129 AP010935 CP000407 AM946016 FM252032 CP000408 AM946016 FM252032 CP0000419 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000129 FM204884 AE014133 AP010655 FN597254 CP000129 FM204883 AP010655 FN597254 CP000129 FM204883 AP010655 FN597254 CP000129 FM204883 CP000725 CP000725 CP000919 CP000930 CP000931 CP000931 CP000931 CP000931 CP000930 CP000931 CP	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1819013.1819876) complement(1819013.1819876) complement(1852112.1852975) 856521.865878 834855.383721 8340642.841508 11340642.841508 11397038.1397901 1383392.1390255 complement(194781.995668) complement(194781.995668) complement(194781.995668) complement(1381816.1382685) 744995.745801 complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.2055) complement(20815.7839.2058600) complement(208178.202825) complement(208178.202825) complement(198174.202825) complement(198174.2028221179) complement(198174.202825) complement(192007.1922868) complement(192007.1922085) complement(194178.195326)	0.03774 0.03774 0.03774 0.03774 0.03774 0.03774 0.037774 0.037774 0.03774 0.057462 0.05774 0.05774 0.05774 0.057462 0.05774	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU789 SSU5C84_1811 SSU5M407_1859 SS021_1813 str0917 str0917 str1530 str1572 str	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1985644.1958739 1853083.1853178 complement(864853.864934) complement(844053.864934) complement(1434537.1434608) complement(1396284.1395305) 1262689.1262760 995759.995830 1382767.1382844 complement(74473.74450) 1986062.1966133 1435100.1435168 complement(627500.627568)	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKONYLIANITIVLILISILKDIPPIIVIK MKKONYLIANITIVLILISILKDIPPIIVIK MKONLILLIVVLCEGIIVILVG MKKOKLLLLIVVLCEGIIVILVG MKKOKLLLLIVVLCEGIIVILVG MKKOKLLLLIVVLCEGIIVILVG MKKOKLLLLIVVLCEGIIVILVG MKKOKLLLILVVLCEGIIVILVG MKKOKLLLILVVLCEGIIVILVG MKKOKLLLILVVLCEGIIVILVG MKKOKLLIPILFUVGUGG MKKOKLLPILFLIFEGIIIVVG MKKOKLLPILFLIFEGIIVVGY MKKOKLLPILFLIFEGIIVVGG MKROKLIPILFLIFEGIIVVGG MKROKLIPILFLIFEGIIVVGG MKROKLIPILFLIFEGIIVVGG			
Streptococcus glusipa, zadepidemicus MicLS 10965 Streptococcus glusipa, zadepidemicus MicLS 10965 Streptococcus suis BC2YH33 Streptococcus suis BC4 Streptococcus suis SC44 Streptococcus suis SC44 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus durphilus LMD-9 Streptococcus durphilus LMD-9 Streptococcus anterna VA159 Streptococcus anterna VA159 Streptococcus mutans NVA2025 Streptococcus mutans NVA2025 Streptococcus and Streptococcus pneumoniae TCH8431/19A Streptococcus pneumoniae TCH8431/19A Streptococcus pneumoniae R6 Streptococcus pneumoniae R6 Streptococcus pneumoniae R6 Streptococcus pneumoniae R6 Streptococcus pneumoniae S54 Streptococcus pneumoniae S54 Streptococcus pneumoniae S74 Streptococcus pneumoniae S	CP001129 AP010935 CP000407 CP000408 AM946016 FM252032 CP000837 CP000419 CP00023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000125 FM204884 CP001129 FM204884 CP001129 CP001933 CP000910 CP000931 CP000331 CP00331 CP00331 CP00331 CP00331 CP00331 CP00331 CP00331 CP	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(190781.1908044) complement(1907422.1908285) complement(1907422.1908285) complement(1852112.1852975) 856021.865878 834855.835721 840642.841508 11337038.1337001 1338392.1302055 complement(1261738.1262598) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1434153.1435010) 627658.628151 767436.768308 1861193.1862053 2105808.2106668 complement(1608416.609285) complement(198192.2082825) complement(198137.1986098) complement(198137.1986098) complement(198208.192042) complement(198208.1917420) complement(198208.1917420) complement(198208.1917420) complement(198208.1917420) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.192689) complement(198208.19275	20,933/112 99,80810235 90,57569296 91,34328358 92,1108742 92,87846482 92,87846482 93,64605544 94,41364006 95,18123667 95,94882729 96,71641791 101,3219616 102,0895522 103,6247335 100,554371 101,3219616 102,88771429 103,6247335 104,3922341 105,9275053 107,4826866 107,482686 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,4826866 107,482686 107,4826866 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,482686 107,48268 107,482686 107,48268 107,482686	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSC21_1813 str0917 str0917 str0172 str1572 st	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1958739 1853083.1853178 complement(84863.846434) complement(143470.840564) complement(143457.1434608) complement(143827.1434608) complement(1438234.1398305) 1282889.1282760 995759.995630 1382767.1382844 complement(744773.744850) 1966062.1966133 1435100.1435168 complement(827500.627568)	MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKKONYLIANITIVLILISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKGKLLLLVVLVGEGIVIVLVG MKKQLLLLVVLVGEGIVIVLVG MKKQLLLLVVLVGEGIVIVLVG MKKQLLLLUVLVGEGIVIVVG MKKQLLLLUVLVEGIVVVG MKKQLLTLLUVFEGIVVVG MKKQLLTLLVVEGGIVVUG MKRHFLMLLLMVLEEIVIGVGYL MKRHFLMLLLMVLEEIVIGVGG MKKQLPIFLFEGIIVVVG MKRHFLMLLMVLEFIIVIGGG MRNKIFMTLVVLETIIIIGGG			
Streptococcus qui subsp. zodepidemicus MiCLS 10965 Streptococcus sui SUS2YH33 Streptococcus suis 981AH33 Streptococcus suis 981AH33 Streptococcus suis SC84 Streptococcus suis SC84 Streptococcus suis SC84 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus dysgalactiae subsp. equisimilis GGS_124 Streptococcus qui subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans UA159 Streptococcus agliolyticus UCN44 Streptococcus agliolyticus UCN44 Streptococcus pneumoniae T0856 Streptococcus pneum	CP001129 AP010935 CP000407 AM946016 FM252032 CP000408 AM946016 FM252032 CP000419 CP00023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000023 CP000129 FM204884 AE014033 AP010655 FNS97254 CP00133 CP000918 CP000129 FM204884 CP001129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000129 FM20488 CP000918 CP000918 CP000918 CP000918 CP000921 CP00022 CP000022 CP00023 CP0025 CP0025 CP0025 CP00025 CP00025 CP0025 CP0025 CP0025 CP00025 CP00025 CP00025 CP00025 CP0025 CP0025 CP0025 CP0025 CP0025 CP0025 CP0025 CP0025 CP0025 CP0025 CP00	1429753.1430625 complement(190781.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(18907422.1908285) complement(19573.195836) complement(1852112.1852975) 854052.1.865878 834855.385721 8340642.841508 1434069.143558 1337038.1397001 138392.1390255 complement(194781.995668) complement(194781.995668) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1965108.1965971) complement(1028783.205860) 27658.628515 777436.768308 1861133.1862053 2105808.2106668 complement(10287839.2058600) complement(10287839.2058600) complement(10287839.2058600) complement(19207839.2058600) complement(19207839.2058600) complement(19207839.2058600) complement(192020.192285) complement(192200.192285) complement(1941478.1915326) complement(1941478.1915326) complement(1941478.1915326) complement(1941478.1915426) complement(1941478.195044) complement(1941478.2095329) 122124.122975	0.5431 0.57562296 0.57562296 0.57562296 0.57562296 0.57562296 0.518123667 0.5,18123667 0.5,9482729 0.5,71841791 0.54470853 0.6,25159915 0.0,554371 0.0,35247 1.0,322567 0.3,6247335 1.0,3825241 1.0,322441 1.0,59275053 1.0,6850959 1.0,6850959 1.1,3005397 1.1,0082307 1.1,0082307 1.1,0082397 1.1,0082397 1.1,0082397 1.1,0082397 1.1,0082397 1.1,3005415 1.1,330499 1.1,3005415 1.1,3385229 1.1,3385229 1.1,30034115 1.1,3385229 1.1,30034115 1.1,3385229 1.1,30034115 1.1,3385229 1.1,3003415 1.1,3385229 1.1,30034115 1.1,3385209 1.1,305347 1.1,3385209 1.1,305347 1.1,3385229 1.1,305347 1.1,3385229 1.1,305347 1.1,3385229 1.1,305347 1.1,3385229 1.1,305347 1.1,3385229 1.1,305347 1.1,3385229 1.1,305347 1.1,3385229 1.1,3385229 1.1,3385229 1.1,3385229 1.1,3385229 1.1,3385229 1.1,338529 1.1,33	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU789 SSU5C84_1811 SSUBM407_1859 SS021_1813 ster_0034 ster_1530 str1572 stu1572 stu1572 stu1572 stu1572 st0_12400 SSDC_1013 SZO_12400 SZO_11730 smu.1509 SmuNN2025_0595	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1558739 1853083.1853178 complement(84863.864934) complement(844043.840564) complement(1398284.13980851) complement(1398284.13980851) 1262689.1262760 95759.956300 1382767.1382844 complement(142473.74450) 1966062.1966133 1435100.1435168 complement(627500.627568)	MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKKONYLIANITIVLILISILKDIPPIIVIK MKKOSFLAILLIPESIIVAVG MKKOSFLAILLIPESIIVAVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVLOEGIVILVG MKKOKLILLIVVEGIVIVVGVL MKKOKLILLIVVEGUVGVL MKKOKLILLIVVEGUVGVG MKKOKLILLIVVEEVIVVGVI MKKOKLITIULIGSIVVGG MKKIFMTLIVVLETIIIGGG MKKIFMTLIVVLETIIIGGG			
Streptococcus gui subsp. 200epidemicus MiCLS 10065 Streptococcus gui subsp. 200epidemicus MiCLS 10065 Streptococcus suis B274133 Streptococcus suis B214133 Streptococcus suis B214133 Streptococcus suis B217 Streptococcus suis B217 Streptococcus suis B217 Streptococcus suis B217 Streptococcus suis B217 Streptococcus thermophilus LMD-9 Streptococcus sufersoftilus LMD-9 Streptococcus sufersoftilus LMG 18311 Streptococcus sufersoftilus LMG 18311 Streptococcus sequi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus mutans NN2025 Streptococcus gui subsp. zooepidemicus Streptococcus gali subsp. cooepidemicus Streptococcus gali subsp. cooepidemicus Streptococcus equi subsp. 200epidemicus Streptococcus equi subsp. 200epidemicus Streptococcus gali subsp. 200epidemicus MGCS10565 Streptococcus gali subsp. 200epidemicus Streptococcus gali subsp. 200epidemicus Streptococus gali subsp. 200epidemicus Streptococcus gali subsp.	CP001129 AP010935 CP000407 CP000408 AM946016 FM252032 CP000408 CP000408 CP000419 CP00023 CP000419 CP00023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000129 FM204884 AE014133 CP000129 CP000387 CP000410 CP000387 CP000	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(18907422.1908285) complement(185212.1852975) 856021.865678 834855.835721 840462.841508 11397038.1337901 1389392.1390255 complement(1261738.1262598) complement(1949781.995668) complement(1381816.1382685) 744995.745801 complement(1381816.1382685) 74495.745801 complement(1381816.1382685) 74495.745801 complement(1261738.1435010) 627658.628515 767436.768308 1861193.1862053 2105808.2106668 complement(1643415.1435010) 627658.628515 767436.768308 1861193.1862053 2105808.2106668 complement(163980.544829) complement(1920874.196285) complement(192102.102611) complement(1914210.120061) complement(1914208.2121179) complement(192019.19526) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19478.191536) complement(19	89,80810235 99,80810235 99,80810235 99,134228358 92,1108742 92,87846482 92,87846482 92,87846482 92,87846482 95,94882729 96,71641791 99,748400853 98,25159915 99,01918977 99,78678038 99,01918977 99,78678038 100,554371 101,3219616 102,0895522 103,6247335 104,3922241 105,5275053 106,6950959 107,4628666 106,6950959 107,4628666 105,632045 112,0682303 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,083523 112,063374 113,6034115 114,3710021 114,413646 118,9766458	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSU5M407_1859 SS021_1813 strc_034 str0917 strc_1530 str1572	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.198739 1853083.1853178 complement(864863.864934) complement(834706.834777) complement(143457.1434608) complement(1438274.1384056) complement(1438234.138305) 1282689.1282760 995759.956530 1382767.1382844 complement(744773.744850) 1966062.1966133 1435100.1435168 complement(827500.627568)	 MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKKONYLIANITIVLILLISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MKKESFLAILLIFESIIVIAVG MKKGKLLLLVVLVGEGIIVILVG MKKOLLLLVVLVGEGIIVILVG MKKGILLLLVVLVGEGIVIVVG MKKGILTLLLIFSIVGG MKKRHFLMLLLWVLEEIIVIGVG MKKRHFLMLLLWVLEEIIVIGGG MKKKILFITLIVVLETIIIGGG MRKKIFMTLIVVLETIIIGGG 			
Streptococcus glusipa. Zadepidemicus MicLS 10965 Streptococcus suis BC2YH33 Streptococcus suis BC2YH33 Streptococcus suis BC2YH33 Streptococcus suis SC44 Streptococcus suis SC44 Streptococcus suis SC44 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 38311 Streptococcus thermophilus LMD-9 Streptococcus equi subsp. zooepidemicus Streptococcus glaibyfizus UCN34 Streptococcus pneumoniae 70585 Streptococcus pneumoniae 70585 Streptococcus pneumoniae GSP14 Streptococcus pneumoniae GSP14 Streptococcus pneumoniae GS9 Streptococcus pneumoniae G34 Streptococcus gneumoniae G35 Streptococcus gneumoniae G34 Streptococcus gneumoniae G34 Streptoc	CP000129 AP010935 CP000407 CP000408 AM946016 FM252031 FM252032 CP000837 CP000837 CP000837 CP00023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 AP010935 FM204884 AE014133 AP010655 CP000129 FM204883 CP000387 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP00023 CP000419 CP00023 CP000419 CP00023 CP000419 CP00023 CP000419 CP00023 CP000419 CP00023 CP000419 CP00023 CP000419 CP00024 CP000419 CP00024 CP000419 CP00024 CP000419 CP00024 CP000419 CP00024 CP000129 CP00025 CP000419 CP00025 CP000419 CP00025 CP000419 CP00025 CP000419 CP00025 CP000419 CP00025 CP000419 CP00025 CP000419 CP00025 CP000419 CP000387 CP000419 CP000387 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000419 CP000410 CP0004	1429753.1430625 complement(190781.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1819013.1819876) complement(1852112.1852975) 856221.865878 834855.835721 830462.341508 1434695.1435588 139308.1397091 1383922.1390255 complement(1281738.1262598) complement(194781.995668) complement(194781.995668) complement(194718.195568) complement(1434153.1435010) 627658.628515 767436.768308 1661193.1682053 2105608.2106668 2000plement(108416.609285) complement(1086783.205860) complement(1086783.2058600) complement(1087633.2058600) complement(1087633.2058600) complement(1087633.2058600) complement(108659.1987420) complement(108659.1987420) complement(1086783.1986098) complement(1082783.2058600) complement(108207.192205.1922858) complement(1922007.1922858) complement(194193.195044) complement(194193.195044) complement(194193.195044) complement(194153.205229) complement(1941532.192205)	89,80810235 99,80810235 90,57569296 91,34328358 92,1108742 92,8784642 92,8784642 92,8784642 93,64005544 94,41364006 95,18123667 95,94882729 96,71641791 90,718470853 98,25159915 90,78678038 100,554371 103,219616 102,885522 103,9978678 109,7654584 110,503049 111,3003397 112,0682303 112,085525 113,61034115 115,5061834 116,673774 115,5061834 116,673774 115,9061834 116,673774 115,9061834 116,673774 116,73764 116,73774 116,73764 116,73774 117,413646 118,208552 118,9764558 118,9764558 118,976458 118,976	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 strc_0934 str0917 strc_1530 str1572 str157	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 1958644.1558739 1853083.1853178 complement(84863.864934) complement(844053.864934) complement(1340493.840564) complement(1396880.1396951) 1262689.1262760 95759.95630 1382767.1382844 complement(1349234.139305) 1262689.1262760 95759.95630 1382767.1382844 complement(42473.74450) 1966062.1966133 13425100.1245168 complement(627500.627568)	 MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKONYLIANITVLILISILKDIPPIIVIK MKONYLIANITVULLISILKDIPPIIVIK MKESFLAILLIFESIIVIAVG MNKESFLAILLIFESIIVIAVG MKKQKLLLLVU-VCEGIVIVLVG MKKQKLLLLVU-VCEGIVIVLVG MKKQKLLLLVU-VCEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLVU-VEGIVIVVG MKKQKLLLLLVFEGIVVVG MKKQLLPIULFEGIVVVG MKKQKLLPIU-LEEVIVVGG MKKFMTLIVVLETIIIGGG MRNKIFMTLIVVLETIIIGGG 			
Streptococcus gui subsp. 200epidemicus MiCLS 10065 Streptococcus suis B052YH33 Streptococcus suis B2YH33 Streptococcus suis B2HAH33 Streptococcus suis B2HAH33 Streptococcus suis B4H07 Streptococcus suis B4M07 Streptococcus suis B4M07 Streptococcus suis B4M07 Streptococcus suis B1M07 Streptococcus suis B1M07 Streptococcus thermophilus LMD-9 Streptococcus subsp. equisimilis GGS_124 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. cooepidemicus Streptococcus equi subsp. cooepidemicus Streptococcus equi subsp. equi 4047 Streptococcus pneumoniae 70585 Streptococcus pneumoniae 70585 Streptococcus pneumoniae CGSP14 Streptococcus pneumoniae CGSP14 Streptococcus pneumoniae TCH843119A Streptococcus pneumoniae F1041 Streptococcus pneumoniae F1045 Streptococcus pneumoniae F1045 Streptococcus pneumoniae F1055 Streptococcus pneumoniae F1055 Streptococcus pneumoniae F1055 Streptococcus pneumoniae F1055 Streptococcus pneumoniae F1055 Streptococcus pneumoniae S4 Streptococcus pneumoniae S4 Streptococcus pneumoniae S4 Streptococcus pneumoniae S6 Streptococcus pneumoniae S6 Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus Streptococcus equi subsp. zooepidemicus MGCS10565 Streptococcus equi subsp. zooepidemicus MGCS10565	CP001129 AP010935 CP000407 CP000408 AM946016 FM252032 CP000408 CP000408 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000129 FM204884 AE014133 AP010655 FN597254 CP000129 FM204884 CP000133 CP000919 CP0009129 CP0009129 CP0009129 CP000913 CP0009129 CP000920 CP000915 CP000913 CP000920 CP000921 CP00921 CP000921 CP000921 CP000921 CP000921 CP000921 CP000021	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(1819013.1819876) complement(1819013.1819876) complement(1819013.1819876) complement(1852112.1852975) 856021.865678 834855.383721 834685.1435558 11397038.1397901 1383392.130255 complement(1949781.995668) complement(1949781.995668) complement(1949781.995668) complement(194781.995668) complement(1831816.1382685) 744995.745901 complement(195108.1965971) complement(195108.1965971) complement(1945108.1965971) complement(1945108.1965971) complement(1945108.1965971) complement(1945108.1965971) complement(1945108.1965971) complement(194210.2002825) complement(1921021.002825) complement(1921021.002825) complement(1921021.002825) complement(1941621.192026.1992265) complement(194174.2015732.1986098) complement(194174.2015732.1950098) complement(194174.2015732) complement(194203.195024) complement(194203.195024) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(194175.192053) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(194175.1915326) complement(193203.193257) complement(132007.132987)	89,80810235 99,80810235 90,57569296 91,34228358 92,1108742 92,87846482 92,87846482 93,64005544 94,41364006 95,18123667 95,94882729 96,71641791 99,01918977 99,78478038 98,25159915 100,554371 101,3219616 102,8085522 103,6247335 106,630959 107,4626866 108,2302772 108,9976878 113,606397 112,682503 114,3710021 113,53049 113,60634115 114,3710021 115,1385928 115,5061834 116,673774 117,4413846 118,2089552 118,9766458 118,9766458 119,7441385 118,9766458 119,7441385 119,7441385 119,7441385 119,7441385 119,7441385 110,5117271 120,5117271	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSU5C84_1811 SSUBM407_1859 SS0521_1813 strc_034 str0917 strc_1530 str1572 str157	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 198684.198739 1853083.1853178 complement(84683.84034) complement(834706.834777) complement(143437.1434608) complement(1398234.139305) 1282889.1282760 995759.956300 1382767.1382844 complement(74473.744850) 1396762.1966133 1435100.1435168 complement(627500.627568)	 MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKONYLIANITIVLILLISILKDIPPIIVIK MKORSFLAILLIFESIIVAVG MKKESFLAILLIFESIIVAVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLOEGIIVILVG MKKOKLILLIVVLEGIIVIVGG MKKOKLILLIVVLEGIIVIVGG MKKOKLILLIVVLEGIIVIVGG MKKOKLILLIVVLEGIIVIVGG MKKOKLILLIVVLEGIIVIGGG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVIVGGG MKKOKLIPIIFLIFEGIIVIVG MKKOKLIPIIFLIFEGIIVIVG MKKOKLIPIIFLIFEGIIVIVG MKKOKLIPIIFLIFEGIIVIVG MKKOKLIPIIFLIFEGIIVIVG MKKOKLIPIIFLIFLEGIIVIVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKKOKLIPIIFLIFEGIIVVG MKOKLIPIIFLIFLIFEGIIVVG MKOKLIPIIFLIFEGIIVVG MKOKLIPIIFLIFEGIIVVG MKOKLIPIIFLIFEGIIVVG MKOKIFMTLIVVLETIIIGGG MRNKIFMTLIVVLETIIIGGG 			
Streptococcus glusipa, zados subsp. equisimilis GGS_124 Streptococcus suis 8052YH33 Streptococcus suis 8052YH33 Streptococcus suis 804AH33 Streptococcus suis 814AH33 Streptococcus suis 624 Streptococcus suis 624 Streptococcus suis GZ1 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus LMG 18311 Streptococcus glus ubsp. zooepidemicus Streptococcus quis ubsp. zooepidemicus Streptococcus glus ubsp. zooepidemicus Streptococcus pneumoniae CGSP14 Streptococcus pneumoniae GSP14 Streptococcus pneumoniae GS4 Streptococcus pneumoniae GS4 Streptococcus glus ubsp. zooepidemicus Streptococcus glus ubsp. zooepidemicus MGCS10565 Streptococcus glus ubsp. zooepidemicus	CP001129 AP010935 CP000407 CP000408 AM946016 FM252031 CP000408 CP000408 CP000419 CP00023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000023 CP000419 CP000419 AP010935 FM204884 CP001129 FM204883 CP000133 CP000919 CP000133 CP000919 CP000133 CP000911 CP000913 CP000910 CP000133 CP000911 CP000913 CP000911 CP000921 CP00015 FM211187 FN58254 CP00115 FM211187 FN58254 CP00115 FM211187 FN58254 CP00115 CP00115 FM21187 CP00115 FM21187 CP00115 FM21187 CP00115 CP00115 FM21187 CP00115 CP000115 CP00015 CP000	1429753.1430625 complement(1907807.1908670) complement(190781.1908044) complement(190781.1908044) complement(190781.1908044) complement(190782.1908285) complement(1957673.1958536) complement(1852112.1852975) 856021.865878 834855.835721 840642.841508 11347038.1397001 1383932.1392055 complement(1281738.1262598) complement(198781.995668) complement(198781.995668) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985108.1965971) complement(1985138.145505) 2105508.2105668 complement(1985138.1262595) complement(1986198.190825) complement(1985337.1986098) complement(1941975.197536) complement(1941975.197536) complement(1941475.1915326) complement(1941475.1915326) complement(1941475.1915326) complement(1941478.1915326) complement(1941478.1915326) complement(1941478.1915326) complement(1941478.1915326) complement(1941478.1915326) complement(1941478.1915326) complement(194208.1922858) complement(1941478.1915326) complement(1941478.1	89,80810235 99,80810235 90,57569296 91,34328358 92,1108742 92,87846482 92,87846482 93,64005544 94,41364006 95,18123667 95,94882729 96,71641791 101,3219616 102,0895522 103,8247335 104,3922341 105,1599147 105,827305 104,3922341 105,82978678 104,3922341 105,82978678 106,6850959 107,4628686 109,7654584 110,533049 111,3006397 113,805458 111,4318646 115,5961834 115,5961834 115,5961834 115,673774 115,1385928 113,673774 115,1385928 113,673774 115,1385928 113,673774 115,1385928 113,673774 115,1385928 113,673774 115,1385928 113,673774 115,1365458 119,74413656 120,5117271 121,2739177	SHP/Rgg (group II) SHP/Rgg (group II)	SSU05_1997 SSU98_2002 SSU1789 SSUSC84_1811 SSUBM407_1859 SSG21_1813 stre_0034 stu0917 stre_1530 str1572 str157	1908778.1908873 1908152.1908247 1819984.1820079 1908393.1908488 195864.1958739 1853083.1853178 complement(84683.846434) complement(143457.1434608) complement(143457.1434608) complement(1398234.1398305) 1262689.1262760 996759.905830 1382767.1382844 complement(744773.74450) 1966062.1966133 1435100.1435168 complement(627500.627568)	 MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILLISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKQNYLIANITIVLILISILKDIPPIIVIK MKONYLIANITVULLISILKDIPPIIVIK MKKESFLAILLIFESIIVIAVG MKRESFLAILLIFESIIVIAVG MKKGKLLLLVVLVCEGIVIVLVG MKKOLLLLVVLVCEGIVIVLVG MKKRHLLLVVLVCEGIVIVLVG MKKHGLLTLLUVFEGIVVVG MKRHFLMLLLMVLEEIVIVGYL MKRHFLMLLLMVLEEIVIVGG MKRHFLMLLLMVLEEIVIVGG MKRHFLMLLLMVLEEIVIVGG MKRHFLMLLMVLEEIVIGGG MRKHFMTLVVLETIIIGGG MRNKFFMTLVVLETIIIGGG 			

Stroptosocius proumonico P6	AE007217	complomont/040787_041641)	122 0144000	SHP/Pag (group I)	00000	041722 041702	1	
Streptococcus pneumoniae No	CP000919	complement(946934_947788)	122,0144909	SHP/Rgg (group I)	SPI 0006	047969 047020		
Streptococcus pneumoniae 33A	EM211197	complement(044150_045010)	123,3020090	SLID/Dag (group I)	SPN22E 00700	045000 045450		
Streptococcus pheumoniae ATCC 700009	CR000022	022090 022042	124,3490002	SHP/Rgg (group I)	SPIN23F_09790	945090945152 complement(022026_022007)	- 1	
Streptococcus thermophilus LWG 16511	CP000023	933009933943	125,1172706	SHP/Rgg (group I)	Stu1044	complement(032936933007)	-	
Streptococcus thermophilus CNR2 1066	CF000024	535005535543	125,0040014	SHP/Rgg (group I)	SU 1044	complement(936936939007)	-	MERVSKIEPILILVMDIIIVGG
Streptococcus prieumoniae G54	CP001015	complement(937570938421)	120,052452	SHP/Rgg (group I)	SPG_0976	930503930574	-	
Streptococcus pyogenes MGAS2096	CP000261	complement(441098441970)	127,4200426	SHP/Rgg (group I)	MGAS2096_Spy0459	442029442100	-1	MKKISKFLPILILAMDIIIIVGG
Streptococcus pyogenes MGAS9429	CP000259	complement(439188440060)	128,1876333	SHP/Rgg (group I)	MGAS9429_Spy0439	440119440190	-1	MKKISKFLPILILAMDIIIIVGG
Streptococcus pyogenes MGAS6180	CP000056	complement(438698439570)	128,9552239	SHP/Rgg (group I)	M28_Spy0428	439629439700	-1	MKKISKFLPILILAMDIIIIVGG
Streptococcus pyogenes MGAS10750	CP000262	complement(450882451754)	129,7228145	SHP/Rgg (group I)	MGAS10750_Spy0460	451813451884	-1	MKKISKFLPILILAMDIIIIVGG
Streptococcus pyogenes NZ131	CP000829	complement(448963449814)	130,4904051	SHP/Rgg (group I)	Spy49_0449c	449894449965	-1	MKKISKFLPILILAMDIIIIVGG
Streptococcus pyogenes M1 GAS	AE004092	complement(434181435032)	131,2579957	SHP/Rgg (group I)	Spy0533	435112435192	-1	MKKISKFLPILILAMDIIIIVGGEVT
Streptococcus pyogenes MGAS5005	CP000017	complement(436109.,436960)	131,2579957	SHP/Rag (group I)	M5005 Spy 0440	437040437111	-1	MKKISKFLPILILAMDIIIIVGG
Streptococcus pyogenes SSI-1	BA000034	14746641475515	132 0255864	SHP/Rag (group I)	Sps1476	complement(1474511_1474582)	-1	MKKISKELPILILAMDIIIIVGG
Streptococcus pyogenes MGAS315	AF014074	complement(421228, 422079)	132 0255864	SHP/Rag (group I)	SpyM3_0377	422160 422231	-1	MKKISKELPILILAMDIIIIVGG
Streptococcus pyogenes MGAS8232	AE009949	complement(482726_483577)	132 793177	SHP/Rag (group I)	SpvM18_0599	483658 483729	-1	MKKISKELPILILAMDIIIIVGG
Stroptococcus pyogenes atr. Manfrede	AM295007	1404577 1405428	122 5607676	SHP/Pag (group I)	SpyM10_0000	complement(1404425_1404406)		MKKISKEL PILILAMDIIIIVGG
Streptococcus pyogenes St. Mainiedo	CR000002	complement(469700_469695)	133,3007070	SHP/Rgg (group I)	SpyW51424	460640, 460714		
Streptococcus pyogenes MGAS10394	CP000003	complement(428202, 420121)	134,3203302	SHP/Rgg (group I)	MCA 610270 Spy04/4	409040409711	-	
Streptococcus pyogenes MGAS 10270	CP000260	complement(456202439131)	135,0959466	SHP/Rgg (group I)	MGAS10270_Spy0441	439134439205	-	MKKISKFLPILILAWDIIIVGG
Streptococcus agaiactiae 2603V/R	AE009946	complement(15105271511375)	135,8635394	SHP/Rgg (group I)	SAG1490	15114631511531	-1	MKKINKALLFTLIMDILIIVGG
Streptococcus agalactiae NEM316	AL732656	complement(1621/2816225/6)	136,6311301	SHP/Rgg (group I)	gbs1555	16226641622732	-1	MKKINKALLFTLIMDILIIVGG
Streptococcus agalactiae A909	CP000114	complement(15166731517521)	137,3987207	SHP/Rgg (group I)	SAK_1520	15176091517677	-1	MKKINKALLFTLIMDILIIVGG
Streptococcus pyogenes MGAS10750	CP000262	410175411056	138,1663113	SHP/Rgg (group I)	MGAS10750_Spy0420	complement(410033410101)	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus pyogenes MGAS10394	CP000003	428012428893	138,9339019	SHP/Rgg (group I)	M6_Spy0433	complement(427870427938)	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus pyogenes MGAS10270	CP000260	401924402805	139,7014925	SHP/Rgg (group I)	MGAS10270_Spy0408	complement(401782401850)	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus pyogenes str. Manfredo	AM295007	complement(14452551446121)	140,4690832	SHP/Rgg (group I)	SpyM51462	14462101446278	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus pyogenes NZ131	CP000829	412673413539	141,2366738	SHP/Rag (group I)	Spv49_0415	complement(412516, 412584)	-1	MKKVNKALLETLIMDILIIVGG
Streptococcus pyogenes MGAS2096	CP000261	404919 405800	142 0042644	SHP/Rag (group I)	MGAS2096 Spy0426	complement(404777_404845)	.1	MKKVNKALLETLIMDILIIVGG
Streptococcus pyogenes MGAS0420	CP000250	403009 403890	142 771855	SHP/Rag (group I)	MGAS9429 Shundae	complement(402867_402035)	- 1	MKKVNKALLETUMDILIIVGC
Strentococcus pyogenes MG&S0000	AF000040	439869 440735	143 5204456	SHP/Rac (group I)	SpiM19_0654	complement/430712_420790)	-	MKKVNKALLETUMDILIIVGG
Streptococcus pyogenes MCA00202	CB000050	402517 402209	143,0094450	SUP/Rgg (group I)	Spyin 10_0004	complement(403275_400440)	-1	
Sureptococcus pyogenes MGAS6180	CP000056	402017.403390	144,30/0362	SHP/Rgg (group I)	M28_Spy0395	complement(4023/5402443)	-1	WIRK VINKALLET MOULIIVGG
Streptococcus pyogenes SSI-1	BA000034	complement(15109451511811)	145,0746269	SHP/Rgg (group I)	Sps1508	15119001511968	-1	MKKVNKALLFILIMDILIIVGG
Streptococcus pyogenes MGAS315	AE014074	384935385801	145,0746269	SHP/Rgg (group I)	SpyM3_0346	complement(384778384846)	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus pyogenes M1 GAS	AE004092	397890398756	145,8422175	SHP/Rgg (group I)	Spy0496	complement(397733397801)	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus pyogenes MGAS5005	CP000017	399818400684	145,8422175	SHP/Rgg (group I)	MutR	complement(399661399729)	-1	MKKVNKALLFTLIMDILIIVGG
Streptococcus dysgalactiae subsp. equisimilis GGS_124	AP010935	498944499798	146,6098081	SHP/Rgg (group I)	SDEG_0529	complement(498786498854)	-1	MKKINKALLLTLIMDILIIVGG
Streptococcus equi subsp. equi 4047	FM204883	complement(6365964522)	147.3773987	SHP/Rag (group I)	SEQ 0051	6456564636	-1	MMRKSYKLLKLILDIIIIIGLCQ
Streptococcus equi subsp. zooepidemicus MGCS10565	CP001129	complement(6358564448)	148,1449893	SHP/Rag (group I)	Sez 0050	6449164562	-1	MMRKSYKLLKLILDIIIIIGLCQ
Streptococcus pneumoniae G54	CP001015	1228560 1229423	148 91258	SHP/Rag (group I)	SPG 1268	complement(1228444_1228512)	-1	MKKYYOIELLI EDIIIIIGI YO
Streptococcus thermonhilus CNRZ1066	CP000024	188916 189779	149 6801706	SHP/Rag (group I)	str0182	complement(188782_188844)	-1	MKLLKIIVLLTCIYTIVGGV
Streptococcus thermophilus LMG 19211	CP000023	189057 189773	150 4477612	SHP/Pag (group I)	ctu0182	complement(199776_199929)		MKLLKINULTCIXINGGV
Lestesessus lectis suber, gremeris NZ0000	CP002004	complement(1796219, 1797066)	150,4477012	SHE/Kgg (gloup I)	5100102	complement(100770100030)		MIREERIIVEETCITIIVGGV
Laciococcus lactis subsp. cremons N29000	CF002034	complement(17052181787000)	151,2153516					
Lactococcus lactis subsp. cremoris MG1363	AM406671	complement(17853821786230)	151,9829424					
Lactococcus lactis subsp. lactis II1403	AE005176	762819763631	152,750533					
Lactococcus lactis subsp. lactis KF147	CP001834	794284795132	153,5181237					
Lactococcus lactis subsp. lactis II1403	AE005176	complement(22874022288286)	154,2857143					
Lactococcus lactis subsp. lactis KF147	CP001834	complement(25263862527270)	155,0533049					
Lactococcus lactis subsp. cremoris MG1363	AM406671	complement(21822962183456)	155,8208955					
Lactococcus lactis subsp. lactis II1403	AE005176	complement(20440022045162)	156,5884861					
Lactococcus lactis subsp. cremoris NZ9000	CP002094	complement(21831132184273)	157.3560768					
Lactococcus lactis subsp. cremoris SK11	CP000425	complement(2089188, 2090249)	158 1236674					
Lactococcus lactis subsp. lactis II1403	AE005176	1077643 1078500	158 801258					
Lactococcus lactis subsp. lactis KE147	CP001834	1104556 1105413	150,6588486					
Lactococcus lactis subsp. acomeris SK11	CP000425	complement(1326302_1327282)	160 4264202					
Lactococcus lactis subsp. cremons SKTT	CF000423	1114571 1145401	100,4204392					
Lactococcus lactis subsp. cremoris MG1363	AIVI40007 1	11445711145401	161,1940299					
Lactococcus lactis subsp. cremoris NZ9000	CP002094	11454051146235	161,9616205					
Lactococcus lactis subsp. lactis II1403	AE005176	complement(13269111327741)	162,7292111					
Lactococcus lactis subsp. lactis KF147	CP001834	complement(14167721417602)	163,4968017					
Lactococcus lactis subsp. lactis KF147	CP001834	complement(5846159294)	164,2643923					
Lactococcus lactis subsp. cremoris MG1363	AM406671	743605744438	165,0319829		1	1	[1
Lactococcus lactis subsp. cremoris NZ9000	CP002094	744437745270	165,7995736					
Lactococcus lactis subsp. cremoris SK11	CP000425	complement(17277281728561)	166,5671642		1	1		1
Lactococcus lactis subsp. lactis KF147	CP001834	complement(18861331886966)	167,3347548		1	1		1
Lactococcus lactis subsp. lactis II1403	AE005176	complement(17170071717840)	168,1023454		1	1		1
Streptococcus thermophilus LMG 18311	CP000023	17208721721765	168 869936		1	1		1
Streptococcus thermophilus CNR71066	CP000024	1722744 1723637	169 6375267		1	1		1
Streptococcus thermophilus LMD-9	CP000419	1780410, 1781282	170 4051172		1	1	[1
Lactococcus lactis suben, cramoria MC1262	AM406671	63015 63896	171 1727070		1	1	[1
Lactococcus lactis subsp. cremeria N70000	CD002004	62015 62006	171.0402095					
Lactococcus lactis subsp. cremons NZ9000	CP002094	complement/2204256_2205405	171,9402985					
Laciococcus lactis subsp. cremoris SK11	CP000425	complement(23043502385195)	1/2,/0/8891		1	1		1
Lactobacillus rhamnosus Lc 705	FM179323	complement(/12413714233)	173,4754797		1	1	[1
Streptococcus mitis B6	FN568063	17854241786353	174,2430704		1	1	[1
Streptococcus mitis B6	FN568063	14789431479848	175,010661		1	1		1
Lactobacillus casei ATCC 334	CP000423	complement(28166392817487)	175,7782516		1	1		1
Lactobacillus casei str. Zhang	CP001084	complement(27843852785233)	176,5458422		1	1	[1
Lactobacillus casei BL23	FM177140	complement(29923122993160)	177,3134328					
Lactobacillus rhamnosus L c 705	FM179323	complement(2873724.,2874572)	178 0810235		1	1		1
Lactobacillus rhamnosus GG	AP011549	complement(2898699_2899547)	178 8486141		1	1	[1
Lactobacillus mannosus GG	EM170222	complement/2003720_2004577)	178 8/961/4		1	1	[1
	EM170222	2272125 2274024	170,0400141		1	1		1
Laciobacilius mamnosus Lc 705	FIVI 1/9323	2313133.2374031	1/9,0162047		1	1	[1
Lactobacillus casei BL23	FW17/140	24003222400218	180,3837953		1	1	[1
Lactobacillus rhamnosus GG	AP011548	complement(23951642396039)	181,1513859		1	1	[1
Lactobacillus rhamnosus GG	FM179322	complement(24000982400973)	181,1513859					
Lactobacillus casei str. Zhang	CP001084	457025457897	181,9189765		1	1		1
Lactobacillus casei ATCC 334	CP000423	429742430614	182,6865672		1	1		1
Lactobacillus rhamnosus Lc 705	FM179323	510155511027	183,4541578		1	1	[1
Lactobacillus rhamnosus Lc 705	FM179323	107054107935	184,2217484		1	1	[1
Lactobacillus rhamnosus Lc 705	FM179323	23500762350960	184,989339		1	1		1
Lactobacillus rhamnosus GG	AP011548	23847592385643	185 7569296		1	1		1
Lactobacillus rhamnosus GG	FM179322	2389693 2390577	185 7569296		1	1		1
Strentococcus equi subsp. equi 4047	FM204882	1604986 1605837	186 5245202		1	1	[1
Stroptosocius equi subsp. equi 4047	EM204003	complement/622177_624038	197 2024 203		1	1	[1
Sueptococcus equi subsp. 200eptaemicus	rw∠04884	complement(055177034028)	107,2921109	I	1	1	1	1

Streptosessus thermorphilus CND71066	CD000024	acmalament/1220715_1220570)	199 0507015		1	l I	1	1	1
Streptococcus thermophilus CNR2 1066	CP000024	complement(13367151339576)	100,0597015						
Streptococcus triennophilus Livio 16511	CP000023	1401286 1402240	100,0272921						
Streptococcus gordonii str. Challis substr. CH1	CP000725	1022201 102220	189,5948827						
Lactobacillus crispatus ST1	FN692037	19323011933239	190,3624733						
Lactobacilius crispatus STT	CR000517	414200413220	101 0076546						
Lactobacilius neivelicus DPC 4371	CP064252	complement(121220, 122179)	102 6652452						
Lactobacillus delbrueckii subsp. bulgaricus ATCC PAA 265	CP000412	complement(126461_127303)	102 / 229259						
Lactobacillus deibideckii subsp. bulgancus ATGC BAA-303	EN602037	complement(469378, 470232)	104 2004264						
Lactobacillus crispatus STT	CR000412	1916967 1917742	194,2004204						
Lactobacillus gassell ATGC 33323	CF000413	1696110 1696070	105 7256077						
Lactobacillus johnsonii NCC 522	AE017108	1913791 1914654	106 5021092						
Lactobacilius joinisonii NGC 555	EN602027	1001220 1002100	190,5031963						
Lactobacillus crispatus 311	CR000517	2020727 2040584	109 0292705						
Lactobacillus neivelicus DFC 4371	CP000317	1946226 1947074	100 0050701						
Lactobacillus actooprillus NGF M	CP001084	complement/2785230_2786105)	100 5725609						
Lactobacillus casei BL23	EM177140	complement/2003157_2004032)	200 3411514						
Lactobacillus casoi ATCC 224	CP000423	complement/2817484_2818350)	200,3411314						
Lactobacillus casel ATCC 334	CF000423	complement(207/404.2010555)	201,106742						
Lactobacilius mamnosus CC	AD011649	complement(2800544, 2000410)	201,6703320						
Lactobacillus mannosus GG	EM170222	complement(2004574_2005440)	202,0439232						
Careconau cani DOLLA	CR000411	104442 195211	202,0439232						
Charlesson a presence MCA \$2006	CF000411	1722500 1724422	203,4115139						
Streptococcus pyogenes MGA32096	CP000261	1/235901/24432	204,1791045						
Streptococcus pyogenes MGA39429	CF000239	1746205 1747467	204,9400951						
Streptococcus pyogenes MGAS10394	CP000003	17403251747107	205,7142857						
Streptococcus pyogenes MGAS10750	CP000262	17903191791161	206,4818763						
Sueplococcus pyogenes MGAS6180	CP000056	1757001 1750100	201,249467						
Sueplococcus pyogenes SSI-1	DAUUUUU34	1690020 1600794	208,01/05/6						
Streptococcus pyogenes str. Manfredo	AM295007	10039391090/81	208,7846482						
Streptococcus pyogenes MGAS8232	AEU09949	1/202481/5/090	209,5522388						
Streptococcus pyogenes NZ131	CP000829	10//44110/8283	210,3198294						
Streptococcus pyogenes MGAS315	AE014074	1/03030.1/643//	211,08742						
Streptococcus pyogenes MGAS5005	CP000017	10990851699927	211,8550107						
Streptococcus pyogenes M1 GAS	AE004092	1700/981701640	212,6226013						
Streptococcus pyogenes MGAS10270	CP000260	17617561762598	213,3901919						
Lactobacillus fermentum IFO 3956	AP008937	12172361218177	214,1577825						
Lactobacillus fermentum CECT 5716	CP002033	12181801219121	214,9253731						
Pediococcus pentosaceus ATCC 25745	CP000422	complement(10450331045878)	215,6929638						
Lactobacillus plantarum JDM1	CP001617	complement(405879406769)	216,4605544						
Listeria monocytogenes serotype 4b str. CLIP 80459	FM242711	complement(702455703351)	217,228145						
Listeria monocytogenes serotype 4b str. F2365	AE017262	complement(708463709359)	217,9957356						
Listeria monocytogenes HCC23	CP001175	19503471951243	218,7633262						
Listeria innocua Clip11262	AL592022	complement(692972693868)	219,5309168						
Listeria monocytogenes EGD-e	AL591824	complement(699410700306)	220,2985075						
Listeria monocytogenes 08-5923	CP001604	complement(703636704532)	221,0660981						
Listeria monocytogenes 08-5578	CP001602	complement(736932737828)	221,8336887						
Listeria monocytogenes 08-5578	CP001602	367490368392	222,6012793						
Listeria monocytogenes 08-5923	CP001604	367511368413	223,3688699						
Listeria monocytogenes EGD-e	AL591824	349326350228	224,1364606						
Listeria monocytogenes serotype 4b str. F2365	AE017262	362491363393	224,9040512						
Listeria monocytogenes HCC23	CP001175	complement(22833562284258)	225,6716418						
Listeria innocua Clip11262	AL592022	363055363957	226,4392324						
Listeria monocytogenes serotype 4b str. CLIP 80459	FM242711	347725348627	227,206823						
Listeria monocytogenes EGD-e	AL591824	863798864688	227,9744136						
Listeria monocytogenes 08-5923	CP001604	866480867370	228,7420043						
Listeria monocytogenes 08-5578	CP001602	899776900666	229,5095949						
Listeria monocytogenes serotype 4b str. F2365	AE017262	863820864710	230,2771855						
Listeria monocytogenes serotype 4b str. CLIP 80459	FM242711	864232865122	231,0447761						
Listeria monocytogenes HCC23	CP001175	complement(17884951789385)	231,8123667						
Listeria monocytogenes HCC23	CP001175	complement(22823212283193)	232,5799574						
Listeria monocytogenes serotype 4b str. CLIP 80459	FM242711	348791349663	233.347548						
Listeria monocytogenes 08-5578	CP001602	368556369428	234,1151386						
Listeria monocytogenes 08-5923	CP001604	368577369449	234,8827292						
Listeria monocytogenes serotype 4b str. F2365	AE017262	363557364429	235,6503198						
Listeria monocytogenes EGD-e	AL591824	350392351264	236,4179104						
Listeria innocua Clip11262	AL592022	364120364959	237,1855011						
Lactobacillus plantarum WCFS1	AL935263	complement(430926431795)	237,9530917						
Lactobacillus rhamnosus Lc 705	FM179323	696264697835	238,7206823						
Streptococcus agalactiae 2603V/R	AE009948	complement(20116472012723)	239,4882729						
Streptococcus agalactiae NEM316	AL732656	complement(20583332059409)	240,2558635						
Streptococcus agalactiae A909	CP000114	complement(19644001965476)	241,0234542						
Listeria monocytogenes serotype 4b str. F2365	AE017262	28512102852040	241,7910448						
Streptococcus pneumoniae JJA	CP000919	4721948112	242,5586354						
Streptococcus pneumoniae 70585	CP000918	7841979312	243,326226						
Streptococcus pneumoniae Hundary 19A-6	CP000936	115263116156	244,0938166						
Streptococcus equi subsp. zooepidemicus MGCS10565	CP001129	540941541834	244,8614072						
Streptococcus equi subsp. zooepidemicus	FM204884	complement(1651177_1652070)	245.6289979						
Streptococcus gordonii str. Challis substr. CH1	CP000725	complement(2144235, 2145155)	246.3965885	XIP/ComR	SGO 2080			complement(2143991, 2144041)	1 MLFATTLLSAFYWWFY
Streptococcus pneumoniae JJA	CP000919	complement(18547281855627)	247,1641791						
Streptococcus pneumoniae R6	AE007317	complement(1774530_1775429)	247,9317697						
Streptococcus pneumoniae P1031	CP000920	complement(1849810_1850700)	248 6993603						
Strentococcus pneumoniae TCH8/31/104	CP001993	complement(2066591_2067490)	249 466051						
Strentococcus pneumoniae TIGP4	AE005672	complement(1892864_1803762)	243,400901						
Streptococcus pneumoniae ATCC 700660	FM211107	complement(10520041093/03)	250,2345416						
Strentococcus pneumoniae D30	CP000410	complement(1782062_1782061)	251,0021322						
Stroptococcus pricumoniae Dod	CP000020	complement/1065022.1702501)	201,1081220						
Streptococcus pneumoniae nungary19A-6	CP000930	complement(1909321900031)	252,5573134						
Streptococcus pneumoniae 70585	CP000918	complement(1803602_1804502)	253,3049041						
Streptococcus pneumoniae G54	CP001015	complement(1026660_1027550)	204,0724947						
Streptococcus pneumoniae CGSP14	CP000024	complement(1843002_1937359)	204,0400803						
Strantococcus gallolutious LICN24	EN507254	40780 50688	256 375266F	YIP/ComP	GALLO 0029			50765 50812	
Strentococcus analactiae NEM216	AI 732656	64256 65158	250,5752005	XIF/COULIR XIP/ComP	dbe0049			65230 65289	
On optocoulous agaiacliae INENIO 10	AE014122	61631 62545	201,1420071	VID/Comp	9050040			62612 62666	
Stroptopopour mutane LIA 150									

Streptococcus mutans NN2025	AP010655	5996960883	258,6780384	XIP/ComR	SmuNN2025_0050
Streptococcus equi subsp. zooepidemicus MGCS10565	CP001129	4794048854	259,445629	XIP/ComR	Sez_0036
Streptococcus equi subsp. zooepidemicus	FM204884	4923650150	260,2132196	XIP/ComR	SZO_00390
Streptococcus pyogenes M1 GAS	AE004092	5270653617	260,9808102	XIP/ComR	Spy0037
Streptococcus pyogenes MGAS5005	CP000017	5329454205	260,9808102	XIP/ComR	M5005_Spy_0034
Streptococcus pyogenes MGAS10394	CP000003	9413195042	261,7484009	XIP/ComR	M6_Spy0083
Streptococcus pyogenes MGAS9429	CP000259	5307453985	262,5159915	XIP/ComR	MGAS9429_Spy0035
Streptococcus pyogenes MGAS10750	CP000262	5455055461	263,2835821	XIP/ComR	MGAS10750_Spy0036
Streptococcus pyogenes MGAS6180	CP000056	5275453665	264,0511727	XIP/ComR	M28_Spy0034
Streptococcus pyogenes MGAS2096	CP000261	5304853959	264,8187633	XIP/ComR	MGAS2096_Spy0036
Streptococcus pyogenes NZ131	CP000829	5347154391	265,5863539	XIP/ComR	Spy49_0032
Streptococcus pyogenes MGAS8232	AE009949	5335954270	266,3539446	XIP/ComR	spyM18_0038
Streptococcus dysgalactiae subsp. equisimilis GGS_124	AP010935	4995150862	267,1215352	XIP/ComR	SDEG_0056
Streptococcus pyogenes MGAS10270	CP000260	5345254363	267,8891258	XIP/ComR	MGAS10270_Spy0035
Streptococcus pyogenes str. Manfredo	AM295007	5293053841	268,6567164	XIP/ComR	SpyM50034
Streptococcus pyogenes SSI-1	BA000034	4747348384	269,424307	XIP/ComR	SPs0032
Streptococcus pyogenes MGAS315	AE014074	5347454385	269,424307	XIP/ComR	SpyM3_0031
Streptococcus uberis 0140J	AM946015	6201462949	270,1918977	XIP/ComR	SUB0057
Streptococcus agalactiae 2603V/R	AE009948	6402364934	270,9594883	XIP/ComR	SAG0048
Streptococcus agalactiae A909	CP000114	6383364741	271,7270789	XIP/ComR	SAK_0081
Streptococcus suis GZ1	CP000837	5473655650	272,4946695		
Streptococcus suis SC84	FM252031	5541456313	273,2622601		
Streptococcus suis BM407	FM252032	5541856323	274,0298507		
Streptococcus suis 98HAH33	CP000408	5539556207	274,7974414		
Streptococcus suis 05ZYH33	CP000407	5540056314	275,565032		
Streptococcus suis P1/7	AM946016	5542056319	276,3326226		
Streptococcus gordonii str. Challis substr. CH1	CP000725	complement(18714931872410)	277,1002132		
Streptococcus gordonii str. Challis substr. CH1	CP000725	complement(18257001826623)	277,8678038		
Streptococcus thermophilus CNRZ1066	CP000024	270119271018	278,6353945	XIP/ComR	str0270
Streptococcus thermophilus LMD-9	CP000419	272013272912	279,4029851	XIP/ComR	ster_0316
Streptococcus thermophilus LMG 18311	CP000023	270090270989	280,1705757	XIP/ComR	stu0270
Streptococcus mutans UA159	AE014133	complement(359781360683)	280,9381663		
Streptococcus mutans NN2025	AP010655	complement(17590031759899)	281,7057569		
Lactobacillus casei ATCC 334	CP000423	complement(15297741530604)	282,4733475		
Lactobacillus casei BL23	FM177140	complement(16924361693266)	283,2409382		
Pediococcus pentosaceus ATCC 25745	CP000422	complement(309719310543)	284,0085288		
Leuconostoc kimchii IMSNU 11154	CP001758	857108857947	284,7761194		
Enterococcus faecalis V583	AE016830	12836011284428	285,54371		
Lactobacillus plantarum WCFS1	AL935263	complement(21175172118413)	286,3113006		
Lactobacillus plantarum JDM1	CP001617	complement(20840032084899)	287,0788913		
Lactobacillus casei str. Zhang	CP001084	11436961144583	287,8464819		
Lactobacillus casei BL23	FM177140	13459001346787	288,6140725		
Lactobacillus casei ATCC 334	CP000423	11716861172573	289,3816631		
Lactobacillus rhamnosus Lc 705	FM179323	12098751210762	290,1492537		
Lactobacillus rhamnosus GG	AP011548	11958531196740	290,9168443		
Lactobacillus rhamnosus GG	FM179322	11991421200029	290,9168443		
Lactobacillus sakei subsp. sakei 23K	CR936503	822516823370	291,684435		
Lactobacillus reuteri F275	CP000705	531685532530	292,4520256		
Lactobacillus reuteri F275	AP007281	539987540832	293,2196162		
Lactobacillus fermentum CECT 5716	CP002033	532440533285	293,9872068		
Lactobacillus fermentum IFO 3956	AP008937	531868532758	294,7547974		
Lactobacillus brevis ATCC 367	CP000416	complement(12401721241056)	295,5223881		
Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365	CP000412	16016621602522	296,2899787		
Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842	CR954253	15843491585209	297,0575693		
Lactobacillus crispatus ST1	FN692037	16867161687576	297,8251599		
Lactobacillus acidophilus NCFM	CP000033	16385521639409	298,5927505		
Lactobacillus johnsonii NCC 533	AE017198	16899201690762	299,3603412		
Lactobacillus johnsonii FI9785	FN298497	14997601500602	300,1279318		
Lactobacillus plantarum JDM1	CP001617	13373701338248	300,8955224		
Lactobacillus plantarum WCFS1	AL935263	13575061358384	301,663113		
Lactobacillus fermentum IFO 3956	AP008937	complement(12480021248889)	302,4307036		
Lactobacillus termentum CECT 5716	CP002033	complement(12489701249857)	303,1982942		
Lactobacillus reuteri F2/5	APUU/281	901094.902084	303,9658849		
Lactobacillus reuteri F275	CP000705	952334953224	304,7334755		
Lactobacillus plantarum JDM1	02F262	complement(199144199986)	305,5010661		
Lactobacillus plantarum WCFS1	CB000446	complement(1992F75_4994420)	JU0,2086567		
Eactobacillus Drevis A I CC 367	AE016920	1101552 1102426	307 00202		
Enterococcus raecans vooo	CP001750	1369495 1370355	301,003838		
Leuconostoc kimchii IMSNU 11154	CP001750	012862 013728	200,2714280		
Leuconostoc Kimenii IMSNU 11154	DO490726	512002313/20 221056 221022	309,3390192		
Enterococcus facealia V/592	DQ409730 AE016920	complement(1552222 1552069)	210,1000098		
Enteroucceus ratecaiis vooo	CP001120	complement(105022231553000)	310,0742004		
Streptococcus equi subsp. zooepidemicus MGCS10565	CP001129	complement(2244220, 2245080)	311,641791		
Streptococcus gallolyticus UCIN34	EM252024	220211 221069	312,409381/		
Streptococcus suis 30.04	EM252031	230211231000	212 0445620		
Streptococcus suis DM407	CP000927	231770 232648	313,9445029		
Streptococcus suis B1/7	AM046016	230403 231260	314,7121535		
Streptococcus suis P 1/7	CP001015	1200724 1210597	315,4797441		
Streptococcus preumoniae Hungon/10A 6	CP000036	complement(1929197_1930060)	317 0140254		
Streptococcus pneumoniae G54	CP001016	complement(1766052_1767015)	317 792516		
Strentococcus mitis B6	EN568063	13521011352964	318 5501066		
Streptococcus pneumoniae Taiwan10E-14	CP000921	complement(1783870_1784733)	319 3176072		
Streptococcus pneumoniae 70585	CP000018	complement(1861020_1862702)	320 0852879		
Streptococcus pneumoniae P1031	CP000970	complement(1811004 1812767)	320,00020705		
Streptococcus pneumoniae ATCC 700660	FM211187	complement(1906673_1907536)	321 6204604		
Streptococcus prieumoniae D39	CP000410	complement(1738226_1720000)	322 3800507		
Streptococcus preumoniae TCH9421/10A	CP001003	complement(2003708_2004571)	323 1556502		
Streptococcus preumoniae CGSP14	CP001033	complement(1900165_1001028)	323,1000003		
Streptococcus pneumoniae UIA	CP000010	complement(1810300_1811253)	324 6908316		
Streptococcus pneumoniae TIGR4	AF005672	complement(1849030_1840002)	325 4584222		
Streptococcus preumoniae P6	AE003072	complement(1730704_1731567)	326 2260120		
Streptococcus preumoniae no	AP010035	1287230 1288102	326 0026024		
on optococcus uysyalactiae subsp. equisitinis 663_124	1 4 0 10900	1201 200 1200 102	020,9900004		ı I

6095261005 48937.49035 5023350331 53270155796 5428954384 5428954384 5445954384 5554556640 5374953844 5404354138 5447554570 5435554450 5094951044 5445454552 5393254030 4847548573 5447654574 6500365101 6482364873	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MFSILTSILMGLDWW MFKRYQYYLFLAL MFKRYQYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYYFFAALL MLKYYKYFFFAALL MLKYKKPFLLAAV MLKYKKPFLLAAV MKKYKFFLLAAV MFKKIHFYVTTSSL MIKKYKFLLAAV
271107271181 273000273074 271077271151	1 1 1	MKTLKIFVLFSLLIAIL MKTLKIFVLFSLLIAIL MKTLKIFVLFSLLIAIL

WWSL ALFLLHSAQLLSDIDWWRVG ALFLLHSAQLLSDIDWWRVG LLSFKVVQELSAVDWWRL ULSFKVVQELSAVDWWRL WAFKVARVMHEFDWWNLG VVAFKVARVMHEFDWWNLG SVAFKVARVMHEFDWWNLG SNLGSFDLFLGMGWWNMG FLWAULTFLSEKDWWHG WWG

NLPYFAGCL NLPYFAGCL NLPYFAGCL

Strentococcus pneumoniae ATCC 700669	EM211187 1243602 1244462	327 761194	1	1		i -	
Streptococcus pricemoniae Arioe 700003	EN568063 complement(1263076_1263942)	328 5287846					
Streptococcus thermophilus LMD 0	CP000410 1582830 1583708	220, 2062752					
Streptococcus pneumoniae TIGR4	AE005672 003054 004820	330.0639659					
Streptococcus pneumoniae TIGR4	AE005672 159192 160058	330 8315565					
	CP000411 743290 744138	221 5001471					
Listeria seeligeri serovar 1/2b str. SI CC3054	EN557490 complement/2127778 2129070)	332 3667377					
Listeria welchimeri serovar 6b str. SI CC5334	AM263198 complement(2137380_2138660)	333 1343284					
Listeria monocutorenes HCC23	CP001175 474380 475651	333 001010					
Listeria monocytogenes 08-5578	CP001602 complement/2281292 2282563)	334 6695096					
Listeria monocytogenes serotyne 4h str. CLIP 80459	EM242711 complement(2163741 2165012)	335 4371002					
Listeria monocytogenes serotype 4b str. 62365	AE017262 complement(2152623 2153894)	336 2046008					
Listeria monocytogenes SCIDipe	Al 591824 complement(2164106, 2165377)	336 9722814					
Listeria monocytogenes 08-5923	CP001604 complement(2248023_2249294)	337 7398721					
Listeria innocua Clin11262	Al 592022 complement(2208964, 2210244)	338 5074627					
Lactobacillus sakei subsp. sakei 23K	CR936503 complement(597576, 598355)	339 2750533					
Listeria monocytogenes serotype 4b str. CLIP 80459	FM242711 2491502 2492410	340.0426439					
Listeria monocytogenes serotype 4b str. E2365	AE017262 24737022474610	340 8102345					
Listeria innocua Clip11262	AL592022 25662322567140	341.5778252					
Listeria monocytogenes 08-5578	CP001602 26313272632235	342.3454158					
Listeria monocytogenes 08-5923	CP001604 25983752599283	343.1130064					
Listeria monocytogenes EGD-e	AL591824 25189712519879	343.880597					
Listeria monocytogenes HCC23	CP001175 complement(150296151204)	344,6481876					
Listeria seeligeri serovar 1/2b str. SLCC3954	FN557490 24128552413766	345,4157783					
Listeria welshimeri serovar 6b str. SLCC5334	AM263198 12518441252740	346,1833689					
Listeria innocua Clip11262	AL592022 complement(899647900486)	346,9509595					
Streptococcus pneumoniae JJA	CP000919 15257151526566	347,7185501					
Streptococcus pneumoniae R6	AE007317 15321701533021	348,4861407					
Streptococcus pneumoniae D39	CP000410 15397011540552	349,2537313					
Streptococcus pneumoniae ATCC 700669	FM211187 16505041651355	350,021322					
Streptococcus pneumoniae R6	AE007317 complement(112225113124)	350,7889126					
Streptococcus pneumoniae JJA	CP000919 complement(123880124743)	351,5565032					
Streptococcus pneumoniae 70585	CP000918 complement(154216155079)	352,3240938					
Streptococcus pneumoniae TCH8431/19A	CP001993 complement(378205379068)	353,0916844					
Streptococcus pneumoniae Taiwan19F-14	CP000921 complement(134293135156)	353,8592751					
Streptococcus pneumoniae CGSP14	CP001033 complement(110309111208)	354,6268657					
Streptococcus pneumoniae D39	CP000410 complement(112225113088)	355,3944563]	
Streptococcus pneumoniae Hungary19A-6	CP000936 complement(182199183062)	356,1620469]	
Streptococcus mitis B6	FN568063 20299862030849	356,9296375]	
Streptococcus mitis B6	FN568063 complement(5557056445)	357,6972281]	
Streptococcus gallolyticus UCN34	FN597254 22808422281696	358,4648188]	
Streptococcus sanguinis SK36	CP000387 22472092248057	359,2324094		I		I	

Arbre phylogénétique des protéines Rgg et Rgg-like.

Localisation des familles ou peptides « souche spécifique » présentés dans le chapitre 1 des résultats.

Tableau non exhaustif de spCDS bornant des protéines régulatrices Rgg et Rgg-like.

Tableau non exhaustif de spCDS bornant des protéines régulatrices Rgg et Rgg-like.

Chaque ligne au niveau des souches est représentative d'une protéine Rgg / Rgg-like. Aussi, dans le cas de *Streptococcus agalactiae* NEM316, la même protéine Rgg-like est bornée par 7 peptides amont et 1 peptide aval.

	Рер	tides SHOW amont	Pep	otides SHOW aval
Streptococc	us th	ermophilus		
LMD-9	1	MIIQILNSLPSDSFEFKDRLRITIYS		
	1	MTTQNLNKLPGTIAVPMDKIRITIYCPSF		
LMG 18311	1	MIIQILNSLPSDSFEFKDRLRITIYS		
	1	MTTQNLNKLPGTIAVPMDKIRITIYCPSF		
CNRZ1066	1	MIIQILNSLPSDSFEFKDRLRITIYS		
	1	MTTQNLNKLPGTIAVPMDKIRITIYCPSF		
Streptococc	us ag			
NEM316	1	MILQIKENDYISAHILVKVGKYKLLKLPHKFTNEITVRKEY	1	MGFFNISPFGLL
	1	MVSTQYMKVTLREKFPDKLTYVDLEELVI		
	-1	MTLGQFLNITQKTPHGVNHEVLPIADI		
	1	MKDNKVYYLHFGKAIDKNEAKNDKYLNQIINN		
	1	MTKLDEMILF		
	1	MLRKLTILIVIIDMKIIKLD		
	1	MNYKRAFLKGSFIIHYFSMTNISEVNFYLTIVIINAVLPLINQRKSFF		
2603V/R	1	MILQIKENDYISAHILVKVGKYKLLKLPHKFTNEITVRKEY	1	MGFFNISPFGLL
	1	MEEFCMVSTQYMKVTLREKFPDKLTYVDLEELVI		
	-1	MTLGQFLNITQKTPHGVNHEVLPIADI		
	1	MKDNKVYYLHFGKAIDKNEAKNDKYLNQIINN		
	1	MLRKLTILIVIIDMKIIKLD		
	1	MNYKRAFLKGSFIIHYFSMTNISEVNFYLTIVIINAVLPLINQRKSFF		
A909	1	MILQIKEKDYISAHILVKVGKYKLLKLPHKFTNEITVRKEY	1	MGFFNISPFGLL
	1	MEEFCMVSTQYMKVTLREKFPDKLTYVDLEELVI		
	-1	MTLGQFLNITQKTPHGVNHEVLPIADI		
	1	MKDNKVYYLHFGKAIDKNEAKNDKYLNQIINN		
	1	MTKLDEMILF		
	1	MLRKLTILIVIIDMKIIKLD		
	1	MNYKKAFLKGSFIIHYFSMTNISEVNFYLTIVIINAVLPLINQRKSFF		

Tableau exhaustif des protéines régulatrices Rgg et Rgg-like associées à des peptides présentant un motif GG.

Tableau exhaustif des protéines régulatrices Rgg et Rgg-like associées à des peptides présentant un motif GG (page 1/2).

Ce tableau est complémentaire des résultats présentés dans le chapitre 1, le peptide de *Streptococcus mutans* n'est donc pas représenté.

	Рер	otides SHOW amont	Pe	otides SHOW aval
Streptococcus pneumoniae				
R6			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLTFQKNYNVKIN MKIRQT <mark>GG</mark> CFVSHLTERDGLRVT
D39			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLTFQKNYNVKIN MKIROT <mark>GG</mark> CFVSHLTERDGLRVT
TIGR4			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLTFQKNYNVKIN MKIROT <mark>GG</mark> CFVSHLTERDGLRVT
			1	MRSLFRKIVALLVIGLILLGTAGGTQVHKMARGIDPGPANGIYR
JJA			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLTFQKNYNVKIN MKIRQT <mark>GG</mark> CFVSHLTERDGLRVT
G54			-1 -1	MSRTSRSETDSESHNDKADSINLTISLTGYLTFQKNYNVKIN MKIRQT <mark>GG</mark> CFVSHLTERDGLRVT
CGSP14			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLMFK MKIROT <mark>GG</mark> CFVSHLTERDGLRVT
ATCC 700669			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLTFQKNYNVKIN MKIROTCCFVSHLTERDGLRVT
70585			1	MGGTLFVLLSIGIWFYL
			-1 -1	MSRTSRSETDSESHNYKADSINLTISLTGYLMFK MKIRQT <mark>GG</mark> CFVSHLTERDGLRVT
Hungary19A-6			1	M <mark>GG</mark> TLFVLLSIGIWFYL
			-1 -1	MSRTSRSETDSESHNDKADSINLTISLTGYLTFQKNYNVKIN MKIRQT <mark>GG</mark> CFVSHLTERDGLRVT
Streptococcus equi				
subsp. zooepidemicus	-1	MVVQEIREHDFDQELDLTFKNLVC <mark>GG</mark> NDWCMRMFRLYFPRERYI		
subsp. equi 4047	-1	MVVQEIREHDFDQELDLTFKNLVC <mark>GG</mark> NDWCMRMFRLYFPRERYI		
Streptococcus suis				
05ZYH33	1	MKT <mark>GG</mark> LYTSYKLFLSSDV	1	MFNYLKFFGRL <mark>GG</mark> NWGTWVEE MKNNIIKKGAGKTSMMAPPSPTE
98HAH33	1	MKT <mark>GG</mark> LYTSYKLFLSSDV	1	MFNYLKFFGRL <mark>GG</mark> NWGTWVEE MKNNIIKKGAGKTSMMAPPSPTE
P1/7	1	MKT <mark>GG</mark> LYTSYKLFLSSDV	1 1	
GZ1	1	MKT <mark>GG</mark> LYTSYKLFLSSDV	1 1	MENNIIKKGAGKISMMAFFSFIL MFNYLKFFGRL <mark>GG</mark> NWGTWVEE MKNNIIKKGAGKTSMMAPPSPTE

Tableau exhaustif des protéines régulatrices Rgg et Rgg-like associées à des peptides présentant un motif GG (page 2/2).

Streptococcus suis (suite) SC84 1 MKTGGLYTSYKLFLSSDV 1 MFNYLKFFGRLGGNWGTWVEE BM407 1 MKTGGLYTSYKLFLSSDV 1 MFNYLKFFGRLGGNWGTWVEE	
SC84 1 MKTGGLYTSYKLFLSSDV 1 MFNYLKFFGRLGGNWGTWVEE BM407 1 MKTGGLYTSYKLFLSSDV 1 MKNNIIKKGAGKTSMMAPPSPTE	
BM407 1 MKTGGLYTSYKLFLSSDV 1 MFNYLKFGRLGGNWGTWVEE	
BM407 1 MKTGGLYTSYKLFLSSDV 1 MFNYLKFFGRLGGNWGTWVEE	
1 MKNNIIKKGAGKTSMMAPPSPTE	
Streptococcus sanguinis	
SK26 -1 MKKIVYNLILLAVTSIVTTSVFPWWWLWW	
-1 MYFHGGGYGGKVNRIGKGRVQWGR	
Listeria	
welshimeri serovar 6b str. SLCC5334 -1 MISMISLFSGLLGVSVRVGG	
Lactobacillus	
rhamnosus Lc 705 -1 MMMTVLLSILVPLGGRVIAGG	

Tableaux des gènes cibles putatifs des systèmes SHP/Rgg, identifiés par analyse *in silico*.

Tableaux des gènes cibles putatifs des systèmes SHP/Rgg, identifiés par analyse in silico

- **Tableau A :** Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe I.
- **Tableau B**: Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe II.
- > **Tableau C**: Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe III.

La colonne « nM » indique nombre de mismatches détectés entre le motif recherché et celui de la cible.

Dans la colonne brin, « c » indique que le motif est situé sur le brin complémentaire et « w » sur le brin codant.

La colonne « Dir » indique la direction du motif, c'est-à-dire soit dans la même direction que le motif recherché « S » (<u>s</u>ame) ou soit dans la direction opposée « O » (<u>o</u>pposite).

La colonne « dATG » indique la distance en nucléotides entre le codon start du gène cible « locus_tag » (ou de la spCDS quand détectée) et le motif. Lorsque cette dernière est mise en gras, ceci indique que le gène cible est considéré comme proximal.

Les colonnes « Gène » et « Fonction » indiquent respectivement l'annonation GenBank du gène et sa fonction.

Dans la colonne localisation, « C » signifie « complément » et indique que la spCDS est codée sur le brin inverse.

La séquence du motif recherché est indiquée en couleur, pour chaque locus, en haut de la colonne. La distance « motif / codon start du gène shp » est indiquée dans la colonne dATG. Les couleurs bleu, vert et rouge font respectivement référence au groupe I, II et III.

NA indique des erreurs lors de la production de données n'ayant pas pu être vérifiées pour l'écriture de ce manuscrit.

Légende :

Biosynthèse d'ADN et d'ARN	Régulateurs transcriptionnels
Biosynthèse du mevalonate	Réplication / Recombinaison / Réparation de l'ADN / Maintenance cellulaire
Biosynthèse du peptidoglycane / paroi cellulaire	Traduction
Division cellulaire / ségrégation du chromosome	Transporteurs / Permeases
Métabolisme des acides aminés	Transport des métaux, vitamines et ions
Métabolisme glucidique	Transport des sucres
Métabolisme lipidique	Transposition
Methyltransférase	Hyp. protein
Protéines secrétées et surface / facteurs de virulence / pathogénicité	Autres

Annexe 6 - Tableau A : Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe I.

		Cible	es							spCDS identifiées dan	s bactgeneSHOW
Strains	Gène rgg	nM E	Brin N	lotif cible	Dir	dATG	Locus_tag	Gène	Fonction	Localisation	Séquence
S. thermophilu	IS										
			C	CCATTTCCCCAAC		75					
LMG18311	stu1044	2 0	c C	CCATTTtCtCAAC	0	35	stu0091	-	Hyp. Protein		
		3 0	c C	CCATTTttCaAAC	0	187	stu0416	-	Hyp. Protein		
		3 v	w	CCATCTtCaCAAC	S	58	stu0537	rpIL	50S ribosomal protein		
CNRZ1066	str1044	2 0	c C	CCATTTtCtCAAC	0	9	str0091	-	Hyp. Protein	9965199725	MGKVIPMLKCSLKLVNTLESQLMT
		3 v	w	CCATCTtCaCAAC	S	58	str0537	rpIL	50S ribosomal protein		
		3 v	w	CCATaTtCCCAAg	0	93	str0652	mip	Macrophage infectivity potentiator-related	C(625421625795)	MYSYLNLESTKTSFSGGKDSGVLYSYLNLESTKTIFSKTFSIPKLYSYLNLESTK
									protein	,	TYVEDNQLDVVLYSYLNLESTKTYIVGCVPYNLLYSYLNLESTKTKVERYRKEIK
											LYSYLNLESTKTGS
						70					
		-	C C	CCATATATGCAAC	_	/6					
LMG18311	stu0182	2 v	w	CCGTTTATGCAAC	S	148	stu0183	-	Hyp. Protein	189923189964	MLFTHDQLNALKS
		3 v	w	CCAcATAaGaAAC	S	282	stu0656	-	Hyp. Protein	622957623043	MVPPYDGVHLYANAYLKVYEALEPYLLD
		3 V	w c	CaATATgTtCAAC	0	127	stu1251	glmM	Phosphoglucosamine mutase		
		1 v	w C	CCATATATGCAAa	0	74	stu1570	shp		C(13892341389305)	MKKQKLLLLVVLVCEGIIVILVG
CNRZ1066	str0182	2 v	w c	CCGTTTATGCAAC	S	148	str0183	-	Hyp. Protein	189874189963	MKNFQALLKVTKSSGVKSDAFYARSIKCP
		3 v	w c	CaATATgTtCAAC	0	126	str1251	glmM	Phosphoglucosamine mutase		
		1 v	w C	CCATATATGCAAa	0	74	str1570	shp		C(13968801396951)	MKKQKLLLLVVLVCEGIIVILVG
S. agalactiae											
			C	CCACTTTCACAAC		85					
A909	sak1520	3 v	w c	CaACTTcCtCAAC	0	263	sak_0510	-	Cupin domain protein	C(454032454613)	MATGYHAAVTAEVKEGDTVVVMGDGAVGLCGVIAAKMLGANCIIAMSRHKDRQEL
											ALTFGATDIVEERGDEAVKRVLDLTNQAGADAILECVGTEQSVDTATQIARPGAV
											IGRVGIPQNPDMNTNNLFWKNIGLRGGIASVTTFDKSVLLDAVLTHKINPGLVFT
											KSFVLDDIQKAYEAMDKRDAIKSLVIVD
S. dvsgalactia	9										
			c	CCACTTTCACAAC		85					
subsn	sdea 0529	3 (c C	CatCTTTtACAAC	0	224	sdea 0303	_	Hyp. Protein	272678 273544	MLGRDNAKVSWIRNFEYPDKWDIELLOSENNLPKLMLTEILGSSKPLLFCEGDDK
oquisimilis	0009_0020	0 0	•		Ŭ		0009_0000			212010210011	SSLDYHIYKSLFGEKYTIIPSAGHKOVVNNVRAVKQIENIQDAYGIIDLDSLTED
GGS 124											EKNKFENERVKVLEFNEIEMLFFEEHVMIEVMRNIYSVEYEEKIKIFKLKLHDII
000_124											RNKSEKIALAYVKKRVENYLMNEKIQDYSNLEQITDGLKGISNYDISTQYEEKKK
											QIKTIIDDNAYPELLKVCNLKTEISKGLANRYLDNNYIEKAKQKILTDIELREYL
											VKKYFSFLGEVQV
		2 1		CCctTTTCACAAd	0	21	sdea 1173	_	Hup Protoin		
		2 0	••••••	CC++TTTCACAAC	ŝ	76	sdeg_7776	_	Hyp. Protein	C(1050140 1050214)	MOFRETEVCAATEVNICIVSK
S nyogonos		2 (3	70	30eg_2024	-	Tiyp. Floteni	C(19591491959214)	
3. pyogenes						94					
				CCACITICACAAC	~	04		- 6-11		405440 405400	
M1 GAS	spy_0496	1 1	w		5	/4	spy_0534	snp		435112435192	
		3 0	c	CUTUTITUTUAAG	0	95	spy_1053	lep	Elongation factor (GTP-binding protein)	861369861566	MEQTFFMIKFIGVKQGEVVGEVLKWIEKLKFTFKKFELKQASSKILAKHDEALVI
					~						NTTTTTTT
		1 V	w c	CCACTTTCcCAAC	0	19	NA				
str. Manfredo	spyM51462	3 0	c C	CCATTTTAACAcC	S	161	spym50103	rotA	RALP-type regulators		
		3 0	c C	CCATTTT'AACACC	0	226	spym50104	-	Putative surface-anchored protein	119308119382	MIDQKKILSIFSLEGGRGYIAKEG
		3 v	w	CCCCTTTTCACAAg	0	21	spym51096	-	Hyp. Protein		
		3 v	w C	CaACTTTCAaAAa	0	138	spym51370	-	Hyp. Protein		
		1 c	c C	CCACTTTCCCAAC	S	74	spym51423	shp		C(14044251404496)	MKKISKFLPILILAMDIIIIVGG
		3 v	w C	CCtCTTTCtCAAg	0	92	NA				
MGAS8232	spyM18_0554	3 0	c C	CCATTTTAACAcC	S	161	spym18_0125	nra	RALP-type regulators		
		3 0	c C	CCATTTTAACAcC	0	282	spym18_0126	cbp	Putative collagen binding protein		
		3 0	c C	CCCCATTTAACAAC	0	8	spym18_0370	-	Hyp. phage protein		
		1 v	w C	CCACTTTCcCAAC	S	74	spym18_0600	shp		483658483729	MKKISKFLPILILAMDIIIIVGG
		3 0	c (CCAACTTTCAAAAA	0	138	spym18_0661	-	Hyp. Protein		
SSI-1	sps1508	3 0	c C	CCAtTTTaACAcC	S	161	sps0099	nra	RALP-type regulators		
		3 0	c C	CCAtTTTaACAcC	0	283	sps0100	cbp	Putative collagen binding protein		
		3 0	c C	CCCtCTTTCtCAAg	0	288	sps0938	lep	Elongation factor (GTP-binding protein)	919861919905	MTSGPVLIGTLLGD
		<u> </u>	c (CCACTTTCcCAAC	S	76	sps1475	shp		C(14745111474582)	MKKISKFLPILILAMDIIIIVGG
MGAS315	spyM3_0346	3 0	c C	CCAtTTTaACAcC	S	161	spyM3_0097	nra	RALP-type regulators		
		3 0	c C	CCAtTTTaACAcC	0	282	spyM3_0098	cbp	Putative collagen binding protein		
		1 v	w c	CCACTTTCcCAAC	S	75	spyM3_0378	shp		422160422231	MKKISKFLPILILAMDIIIIVGG

		3	С	CCCcaTTTaACAAC (8 C	spyM3_0711	-	Hyp. Protein		
		3	с	CCCtCTTTCtCAAg (D 288	spyM3_0737	lep	GTP-binding protein	788973789017	MTSGPVLIGTLLGD
		3	w	CCaACaTTaACAAC (O 27	spyM3_0865	-	Putative sugar ABC transporter		
MGAS10394	M6 spv0433	3	С	CCCtCTTTCtCAAq (O 95	M6 spv0794	-	Nucleoside diphosphate kinase	799344799397	MEQTFFMIKPDGVKRGG
MGAS5005	mutR	1	w	CCCACTTTCcCAAC	S 74	M5005 spv0441	shp		437040437111	MKKISKFLPILILAMDIIIIVGG
		3	c	CCCtCTTTCtCAAg	5 33	M5005_spv0773	-	Hyp Protein		
		3	c	CCCtCTTTCtCAAg (0 113	M5005_spv0774	_	Nucleoside diphosphate kinase		
MGAS6180	M28 spv0395	3	0	CCCtCTTTCtCAAg	122	M28 spv0752	_	Transposase		
MGAS9429	MGA \$9429 spy0406	3	<u>с</u>	CCCtCTTTCtCAAg	0 113	MGA \$9429 spy0889		Nucleoside dinhosphate kinase		
MGAS10270	MGAS10270 spy0408	3	<u> </u>	CCCctTTTCACAAq (0 110 0 3	MGAS10270 spy0770		Hyp. Protein		
MOADIOLIO	MGA010210_3py0400	3	ĉ	CCCtCTTTCtCAAq (0 0 0 160	MGAS10270_spy0770		Nucleoside dinhosphate kinase		
MGAS2096	MGAS2096 spy0426	3	<u> </u>	CCCtCTTTagCAAC	S 31	MGAS2096 spy0151		Hyp. Protein		
MOADEUSU	MGA02000_3py0420	3	ĉ	CCCtCTTTCtCAAa (0 01 0 113	MGAS2000_Spy0101		Nucleoside dinhosphate kinase		
MGAS10750	MGAS10750 spy0420	3	<u> </u>	CCC+CTTTC+CAAd (0 161	MGAS10750 spy0025		Nucleoside diphosphate kinase		
N7131	snv49_0415	3	с С	CCCAtTTTaACAcC	S 161	spy49_0111	nra	RAL P-type regulators		
112101	30340_0410	3	ĉ	CCCAtTTTaACAcC (spy49_0112	chn	Putative collagen binding protein	118812 118850	MGKKLNEFSTRIATO
		1	w	CCCACTTTCCCAAC	5 5 S 74	spy49_0450	shn	r dialive conagen binding protein	110012110039	MKKISKFLPILILAMDIIIIVGG
		2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CCCAtTTTCAAAAA		spy49_0501	Shp	Hup Protoin	402085 402162	MSHKKSEKKTIESTIISISIDEEET
		5	U	ooonorronanna (0 01	30001		Tiyp: T Totelli	492003492102	
				CCCACTTTCCCAAC	74					
M1 GAS	spy_0533	1	С	CCCACTTTCaCAAC	S 84	spy_0492	shp		C(397733397801)	MKKVNKALLFTLIMDILIIVGG
		3	С	CCCtCTTTCtCAAg (O 95	spy_1053	lep	Elongation factor (GTP-binding protein)	861369861566	MEQTFFMIKPYGVKQGEVVGEVLRWIERLRFTFKRFELRQASSKYLAKHDEALVI
										NLLILNLKLT
str. Manfredo	spyM51424	1	w	CCCACTTTCaCAAC	S 84	spym51463	shp		14462101446278	MKKVNKALLFTLIMDILIIVGG
		3	w	CCCtCTTTCtCAAg (O 92	spym50990	lep	Pseudogène		
MGAS8232	spyM18_0599	1	С	CCCACTTTCaCAAC	S 84	spym18_0550	shp		C(439712439780)	MKKVNKALLFTLIMDILIIVGG
		3	w	CCCgCTTcCCCAAg (D 168	spym18_1418	-	AGP acyltransferase		
		3	w	CCCgCTTcCCCAAg	S 35	spym18_1419	-	Hyp. Protein		
SSI-1	sps1476	3	С	CCCtCTTTCtCAAg (D 288	sps0938	lep	Elongation factor (GTP-binding protein)	919861919905	MTSGPVLIGTLLGD
		1	w	CCCACTTTCaCAAC	S 84	sps1509	shp		15119001511968	MKKVNKALLFTLIMDILIIVGG
MGAS315	spyM3_0377	1	С	CCCACTTTCaCAAC	S 84	spyM3_0345	shp		C(384778384846)	MKKVNKALLFTLIMDILIIVGG
		3	С	CCCtCTTTCtCAAg (D 288	spyM3_0737	lep	Elongation factor (GTP-binding protein)	788973789017	MTSGPVLIGTLLGD
MGAS10394	M6_spy0474	3	С	CCCACTTTCaCAAC (D 226	M6_spy0701	mvaK2	Phosphomevalote kise		
		3	С	CCCtCTTTCtCAAg (D 285	M6_spy0992	-	Phage infection protein		
MGAS5005	M5005_spy_0440	1	С	CCCACTTTCaCAAC	S 84	M5005_spy0406	shp		C(399661399729)	MKKVNKALLFTLIMDILIIVGG
		3	С	CCCtCTTTCtCAAg	S 33	M5005_spy0773	-	Hyp. Protein		
		3	С	CCCtCTTTCtCAAg (D 113	M5005_spy0774	-	Nucleoside diphosphate kinase		
MGAS6180	M28_spy0428	1	С	CCCACTTTCaCAAC	S 84	M28_spy0394	shp		C(402375402443)	MKKVNKALLFTLIMDILIIVGG
		3	С	CCCtCTTTCtCAAg (D 122	M28_spy0752	-	Transposase		
MGAS9429	MGAS9429_spy0439	1	С	CCCACTTTCaCAAC	S 84	MGAS9429_spy0405	shp		C(402867402935)	MKKVNKALLFTLIMDILIIVGG
		3	с	CCCtCTTTCtCAAg (O 113	MGAS9429_spy0889	-	Nucleoside diphosphate kinase		
MGAS10270	MGAS10270_spy0441	1	С	CCCACTTTCaCAAC	S 84	MGAS10270_spy0407	shp		C(401782401850)	MKKVNKALLFTLIMDILIIVGG
		3	С	CCCtCTTTCtCAAg (D 160	MGAS10270_spy0890	-	Nucleoside diphosphate kinase		
MGAS2096	MGAS2096 spy0459	3	С	CCCtCTTTagCAAC	S 31	MGAS2096 spy0151	-	Hyp. Protein		
		1	с	CCCACTTTCaCAAC	S 84	MGAS2096 spy0425	shp		C(404777404845)	MKKVNKALLFTLIMDILIIVGG
		3	с	CCCtCTTTCtCAAg (D 113	MGAS2096 spy0847	-	Nucleoside diphosphate kinase	, , , , , , , , , , , , , , , , , , ,	
MGAS10750	MGAS10750 spy0460	1	С	CCCACTTTCaCAAC	S 84	MGAS10750 spy0419	shp		C(410033410101)	MKKVNKALLFTLIMDILIIVGG
		3	с	CCCtCTTTCtCAAg (D 161	MGAS10750 spy0925	-	Nucleoside diphosphate kinase	. ,	
NZ131	spy49 0449c	1	С	CCCACTTTCaCAAC	S 84	spy49 0414c	shp		C(412516412584)	MKKVNKALLFTLIMDILIIVGG
S. pneumoniae	· · -								x	
				CCCATTTTCCCAAC	74					
R6	spr0960	3	с	CCCATTTTtCaAAa	O 105	spr0240	Saau	Undecaprenyl pyrophosphate synthase		
D39	spd 0939	3	c	CCCATTTTCtaAAa (0 150	spd 0114	-	Hvp. Protein		
		3	c	CCCATTTcCtCAAg	0 730	spd 0222	_	Phosphoglycerate mutase family protein	211891212223	MIAAVQNGSLNLEKLEAMTAICSVGLDMIAIPEDTPAETIAAMIADEAAIGVINM
		Ũ	Ũ			0,00_0000				KTTAVRIIPKGREGDMIEFGGLLGTAPVMKVNGASSVDFISRGGQIPAPIHSFKN
		3	c	CCCATTTTtCaAAa (0 105	spd 0243	unnS	Indecaprenyl pyrophosphate synthese		
.LIA	sni 0996	3	<u> </u>	CCCATTTTatCAAa	S 31	spi 0031	-	Integrase		
	<u></u> 0000	3	ĉ	CCCATTTTtCaAAa	0 105	spj_0007	unns	Indecanrenvl pyrophosphate synthese		
ATCC 700669	spn23f 09790	3	<u> </u>	CCCATTTTatCAAa	S 31	NA	uppo	encedapienty pyrophosphate synthase		
A100 100009	301201_03130	3	c	CCCATTTTtCaAAa	0 10F	snn23f 02/00	unns	Indecanrenyl pyrophosphate synthese		
		3	c	CCCTTTTTaaCAAC	5 32	spn23f 15280	upp3	Hyp. phage protein		
		3	С \//	CCCATTTTatCAAa	S 32	spn23f 15800	-	Phage integrase		
		5	٧V		5 01	301201_10000	-	r nago intogrado		

Annexe 6 - Tableau B : Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe II.

		Cibles						spCDS identifiées da	ns bactgeneSHOW
Strains	Gène rgg	nM Brin	Target_motif	Dir dAT	G Locus_tag	Gène	Fonction	Localisation	Séquence
S. thermophilus									
			GCATATATGGGA	75					
LMD-9	ster_1358	2 w	GaATATAgGGGA	O 237	ster_0352	rsmG	Ribosomal RNA small subunit methyltransferase G		
		2 w	GaATATAgGGGA	S 71	ster_0353	-	Hyp. Protein		
		2 C	GCATATAGGTGA	0 159	ster_0708	-	Hyp. Protein		
		2 C	GCATATACGAGA	S 70	snp_0933	snp	D 10570		
			Ct ATATATCOCA	0 222	ster_1357	- coh/P	Clutamata avataina ligana		
		2 0	GCATATATGGGA	S 71	ster_1379 shp1530	shn	Giulaniale-Cysleine ligase		
		0 C	GCATATATGGGA	S 113	ster 1531	snp -	Major facilitator superfamily permease		
		2 0	GaATATATGcGA	S 77	ster_1774	_	Deoxyribonuclease, putative		
		2 c	GCtTATAaGGGA	0 31	ster 1923	-	Hvp. Protein	17858541786048	MKYGKIFKKFRESRGLSLKNVAKSGLSSSHLSRFENDEADLTISNFF
									SVRCNTYAYRRICLRCT
			GCATATATGGGA	72					
LMD-9	ster 1530	2 w	GaATATAqGGGA	0 237	ster 0352	rsmG	Ribosomal RNA small subunit methyltransferase G		
		2 w	GaATATAgGGGA	S 71	ster 0353	-	Hvp. Protein		
		2 c	GCATATAgGtGA	O 159	ster 0708	-	Hyp. Protein		
		2 c	GCATATAcGaGA	S 70	shp_0933	shp	51 51		
		1 c	GCAaATATGGGA	S 77	ster_1357	-	Pep1357C		
		0 w	GCATATATGGGA	S 74	shp1358	shp			
		0 w	GCATATATGGGA	S 113	ster_1531	-	Major facilitator superfamily permease		
		2 c	GaATATATGcGA	S 77	ster_1774	-	Deoxyribonuclease, putative		
		2 c	GtATATATGaGA	0 222	ster_1379	gshAB	Glutamate-cysteine ligase		
		2 w	GCgTATAaGGGA	S 74	ster_1923	-	Hyp. Protein		
		2 c	GCtTATAaGGGA	O 31	ster_1923	-	Hyp. Protein	17858541786048	MKYGKIFKKFRESRGLSLKNVAKSGLSSSHLSRFENDEADLTISNFF
									SVIEWITAINKICENCI
LMG18311	stu1572	0 w	GCATATATGGGA	0 77	shp0182	shp			
		2 w	GCATATAgGtGA	S 139	stu0234	-	Hyp. Protein		
		2 w	GaATATAgGGGA	0 237	stu0315	rsmG	Ribosomal RNA small subunit methyltransferase G		
		2 w	GAATATAGGGGA	S 65	stu0316	-	Hyp. Protein Measurease infectivity notantiates related protein	C(C)2711 (C)20(C)	
		2 0	GCATATAGGUGA	5 125	\$100652	mip	Macrophage mectivity potentiator-related protein	C(022711022800)	DDLI
		2 c	GCATATAgGtGA	O 159	stu0656	-	Hyp. Protein		
		2 c	GCATATAcGaGA	S 70	shp0917	shp			
		2 c	GtATATATGaGA	O 223	stu1413	gshAB	Glutamate-cysteine ligase		
		0 w	GCATATATGGGA	S 113	stu1573	-	Major facilitator superfamily permease		
		2 w	GCgTATAaGGGA	S 74	stu1951	-	Hyp. Protein	17272771727384	MEKLQVIDLEELLEFDQGYVINASCGPSHSCGGGR
CNRZ1066	str1572	0 w	GCATATATGGGA	0 77	shp0182	shp			
		2 w	GCATATAgGtGA	S 139	str0234	-	Hyp. Protein		
		2 w	GaATATAgGGGA	0 237	str0315	rsmG	Ribosomal RNA small subunit methyltransferase G		
		2 w	GaATATAgGGGA	S 65	str0316	-	Hyp. Protein		
		2 C	GCATATACGAGA	S 70	shp0917	shp			
		0 w	GCATATATGGGA	S 113	str15/3	-	Major facilitator superfamily permease		
		2 0	GCATATARCCGA	5 11 5 74	Str 1601		Leoxynbonuclease, pulalive	1720146 1720252	MEKI OVI DI FEI I FEDOCYVINA SCOPSHSCOCCP
		2 W	GCYTATAGGGA	5 14	511931	-	Hýp. Ploteili	17291401729255	MEKEQVIDEBELLE DØGIVINKOCCI SUSCOGOK
			GCATATACGAGA	70					
LMD-9	ster_0934	2 C	GCATATAGGtGA	O 159	ster_0708	-	Hyp. Protein	0/000040 000044	
		2 W	GAATATAGGAGA	0 248	ster_0883	-	Iransposase	C(826216826311)	MEWASGLLISLNFFFLITLYQILSKLDEENK
		2 W	GAAAATACGAGA	0 11	ster_1048	-	Hyp. Protein	0(973737974555)	MAAINIEFLVILSHIEMFLNLAKEINGWINKKIIGFIENYVKTVFKK YKDKVKYWLTFNEVNSVLHAPFMLGGIAAPMEGLSKOFLYOAVHHEL
									VGSASITKIGHEIKPEFKIGCMVLAMPAYGMTATPLDOLAVPEFENO
									NYLFSDIHARGKYPNYIKYYFKDNGIEIQFSPGDDEILKNTVNFISF
									SFAMSEATAHNPEDYKVVKGNILGGVENPYLEKSEWGWAIDPIGLRL
									VLDDFYDRYQLPLFIVENGPDGPTVEDDYRMITFKNT

2wGCATATAtGgGAS74shp1358shp2cGtATATAtGAGAO222ster_1379gshABGlutamate-cysteine ligase
		2	с	GCATATAtGgGA S	71	shp1530	shp			
		2	w	GCATATAtGgGA S	113	ster 1531	-	Major facilitator superfamily permease		
		2	w	GGCTATACGAGA O	97		_	Hvp. Protein		
I MG18311	stu0017	2	\A/	GCATATAtGaGA O	77	shp0182	shn			
ENGIGIN	3100317	2	~~	CCATATAGETCA S	120	shp0102	Shp	Hun Drotain		
		2	vv	CCATAINGGUGA 3	139	5100234	-	Hyp. Proteini Maananka na infantisita antantistan nalata di antain	0(000711,000000)	
		2	С	GCATATAGGEGA 5	125	stu0652	тір	Macrophage infectivity potentiator-related protein	C(622711622866)	MEDAFIRIQIIDASIIDDIVDISIPSAFIAGAALAEKGDNEEALPLD
										1700
		2	С	GCATATAgGtGA O	159	stu0656	-	Hyp. Protein		
		2	С	GtATATAtGAGA O	223	stu1413	gshAB	Glutamate-cysteine ligase		
		2	w	GqcTATACGAGA O	97	stu1422	-	Predicted membrane protein		
		2	 C	GCATATAtGaGA S	71	shn1572	shn			
		2		CCATATA+CGCA S	112	stu1572	Shp	Major facilitator superfamily permason		
01074000	-4-0047	2	w	GCATATALGYGA 5	113	Slu1073	-	major facilitator superfamily permease		
CNRZ1066	StrU917	2	w	GCATATATGGGA O	11	snp0182	snp			
		2	w	GCATATAgGtGA S	139	str0234	-	Hyp. Protein		
		2	w	GgcTATACGAGA O	97	str1422	-	Hyp. Protein		
		2	С	GCATATAtGgGA S	71	shp1572	shp			
		2	w	GCATATAtGgGA S	113	str1573	-	Major facilitator superfamily permease		
S. mutans										
				GTCTATATGGGA	74					
114450		~			470			Dutative C famoultateshoulesfalate availa linear		
UA159	smu.1509	2	w	GIAIAIAIGAGA S	176	smu_320	-	Putative 5-formyltetranydrofolate cyclo-ligase		
		2	w	GatTATATGGGA S	6	smu_952	mmuM	Putative methyltransferase		
		2	w	GGCTATATGaGA S	97	smu_1031	-	Transposase		
		1	С	GTGTATATGGGA S	74	smu_1508c	-	Putative coenzyme PQQ synthesis protein	C(14340041434069)	MLTKKEFSVPKTTKVNCWGKH
NN2025	smunn2025 0595	1	w	GTqTATATGGGA S	74	smunn2025 0596	-	Putative coenzyme PQQ synthesis protein	628599628664	MLTKKEFSVPKTTKVNCWGKH
	· · · · -	2	w	GTCaATATAGGA S	41	smunn2025_0804	_	Hyp. Protein	839780 840004	MKLKTLKASFTOKEINEDDLOILROAIVEDDGTRISHREVFKKFGTK
		-		• • • •	••				000100010001	VSNSFNLCNIKCLTRWFIGRPYLLLGN
		2			170			Dutativa 5 farmultatrahudrafalata avala lisaaa		
		2	С	GIAIAIAIGAGA 5	1/9	Smunn2025_1629	-	Putative 5-iormytetranydroiolate cyclo-ligase		
		2	С	GTATATATGAGA O	106	smunn2025_1630	-	N-acetyl-gamma-glutamyl-phosphate reductase		
		2	w	GTCTATAaaGGA O	17	NA				
S. dysgalactiae										
				GCATATATGGGA	75					
subsp. equisimilis	sdea 1013	2	C	GCAaATcTGGGA O	59	sdea 0255	-	PTS system_mannitol		
CCS 124	000 <u>9</u> /070	1	ĉ	GCATATACGGGA S	80	sdeg_0200	_	transporter, major facilitator family protein		
<u>5 ogui</u>		<u> </u>	0	0	00	500 <u>9</u> 1012	_	transporter, major racintator ranny protein		
S. equi										
				GTACATACGGGA	75					
MGCS10565	sez_0716	2	w	GagCATACGGGA S	83	sez_0517	-	Transcriptional regulator PIcR	540523540561	MIKKKEMDMRIK
		1	С	GCACATACGGGA S	64	sez_0631	-	Positive transcriptional regulator MutR family		
		3		GcAgATAtGGGA S	75	sez 0717	-	Radical SAM protein		
subsp. zooepidemicus	szo 12400	3		GCAGATAtGGGA S	75	szo 12390	-	Radical SAM protein	C(1381625_1381735)	MONDSOKESESLDLSINKIDLSSVILLYESSKSHGH
	010_11100	2	14/	GCATATACGGGA S	64	szo 13660	_	Positive transcriptional regulator MutP family	0(100102011001100)	
		2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GagCATACGGGA S	07	320_13000			C(1652450 1652499)	MIKKKEWDWDIK
		2	C	Gageninesson 3	03	\$20_14750	-	Transcriptional regulator FICR	C(10324301032488)	HIRRENDERIK
				GCATATATGGGA	75					
subsp zooepidemicus	szo 17730	2	w	GCtTATATGaGA S	6	szo 05150	-	Hyp. Protein	596052 596156	MRTFKRCSRFLFSGGKAKYRRTIITTHRGVLSYG
		1	 C	GCAGATATGGGA S	75	szo 12390	_	Padical SAM protein	C(1381625_1381735)	MONDSOKESESLDLSINKIDLSSVILLYESSKSHGH
		4		CCATATACCCCA S	64	SZO_12660		Regitive transcriptional regulator MutD family	0(13010231301733)	
		1	vv	GCATATACGGGA 3	04	320_13000	-		0/4004005 4005000	
		2	С	GCAGATATAGGA S	/4	szo_17710	-	Radical SAM protein	C(19649651965030)	MSPKKEFNAPKTTKVNSWGKH
S. suis										
				GTATATAAGGGA	92					
SC84	ssusc84 1811	2	с	GTAaATAAGcGA S	199	ssusc84 0805	trmFO	Methyltransferase trmFO		
	-	1	w	GTATATAAGaGA O	124	ssusc84_0936	lacG	6-phospho-beta-galactosidase		
		2		GGAAATAAGGGA	122	ssusc84 1213	-	Cation transport ATPase		
		2		GalalTalegel O	106	0000094 1210	n fC	Dentide chain release factor 2		
		2	vv	GUARTIAGUUA (120	SSUSC04_1212	pric			
		2	С	GIAdAIAAGAGA S	115	SSUSC04_12/1	πs⊨	Cell division protein		
		2	С	GCGTATAAGGGA S	91	ssusc84_1810	-	Radical SAM superfamily protein	C(19072121907325)	MSVIEFKKLSSKLLKVSKIETLSGCGTKRTQQTKGWY
GZ1	ssgz1_1813	2	С	GTTTATAAGTGA O	68	ssgz1_0583	-	Transposase		
		2	с	GTAaATAAGcGA S	199	ssgz1_0868	trmFO	Methyltransferase trmFO		
		1	w	GTATATAAGaGA O	103	ssaz1 0915	lacG	6-phospho-beta-galactosidase		
				0		J				
		2	\M/	GGAAATAAGGGA 🤉	122	ssaz1 1198	-	Cation transport ATPase		
		2	W	GGAAATAAGGGA S	122	ssgz1_1198	- nrfC	Cation transport ATPase		
		2 2 2	w w	GGAAATAAGGGA S GGAAATAAGGGA O	122 126	ssgz1_1198 ssgz1_1197	- prfC	Cation transport ATPase Peptide chain release factor 3		
		2 2 2	w w c	GGAAATAAGGGA S GGAAATAAGGGA O GTAAATAAGAGA S	122 126 61	ssgz1_1198 ssgz1_1197 ssgz1_1254	- prfC ftsE	Cation transport ATPase Peptide chain release factor 3 Cell division protein		
		2 2 2 2	w w c c	GGAAATAAGGGA S GGAAATAAGGGA O GTAAATAAGAGA S GTggATAAGGGA S	122 126 61 178	ssgz1_1198 ssgz1_1197 ssgz1_1254 ssgz1_1264	- prfC ftsE -	Cation transport ATPase Peptide chain release factor 3 Cell division protein Transposase		

P1/7	ssu1789	2	С	GTAaATAAGcGA S	199	ssu0843	trmFO	Methyltransferase trmFO		
		1	w	GTATATAAGaGA O	124	ssu0891	lacG	6-phospho-beta-galactosidase		
		2	W	GgAaATAAGGGA ${\sf S}$	122	ssu1180	-	Cation transport ATPase		
		2	W	GgAaATAAGGGA O	126	ssu1179	prfC	Peptide chain release factor 3		
		2	С	GTAaATAAGaGA S	115	ssu1239	ftsE	Cell division protein		
		2	С	GcgTATAAGGGA S	91	ssu1788	-	Radical SAM superfamily protein	C(18188031818916)	MSVIEFKKLSSKLLKVSKIETLSGCGTKRTQQTKGWY
98HAH33	ssu98_2002	2	w	GCATATAAGCGA S	34	ssu98_0873	-	Hyp. Protein		
		2	С	GTAaATAAGcGA S	199	ssu98_0906	trmFO	Methyltransferase trmFO		
		1	w	GTATATAAGaGA O	103	ssu98_1048	lacG	6-phospho-beta-galactosidase		
		2	w	GgAaATAAGGGA ${\sf S}$	122	ssu98_1363	-	Cation transport ATPase		
		2	w	GgAaATAAGGGA O	126	ssu98_1362	prfC	Peptide chain release factor 3		
		2	С	GTggATAAGGGA O	40	ssu98_1436	-	Transposase		
		2	С	GTggATAAGGGA S	202	NA			C(13697301370032)	MMPDHVHMLVLISPKLSISDFMGYLKSKSALMIFDKHANLKYKYGNR
										KFWARGYYVSTVGLNEKTVAKYIREQEKNDIALDKLSVKEYEDSFSD
										SSFRTR
05ZYH33	ssu05_1997	2	С	GTAaATAAGcGA S	199	ssu05_0901	trmFO	Methyltransferase trmFO		
		1	W	GTATATAAGaGA O	103	ssu05_1036	lacG	6-phospho-beta-galactosidase		
		2	W	GgAaATAAGGGA S	122	ssu05_1348	-	Cation transport ATPase		
		2	W	GgAaATAAGGGA O	126	ssu05_1347	prfC	Peptide chain release factor 3		
		2	С	GTggATAAGGGA S	202	ssu05_1420	-	Hyp. Protein	C(13703011370603)	MMPDHVHMLVLISPKLSISDFMGYLKSKSALMIFDKHANLKYKYGNR
										KFWARGYYVSTVGLNEKTVAKYIREQEKNDIALDKLSVKEYEDSFSD
										SSFRTR
		2	С	GTggATAAGGGA O	40	ssu05_1423	-	Transposase		
		2	С	GcgTATAAGGGA S	91	ssu05_1996	-	Radical SAM superfamily protein	C(19075971907710)	MSVIEFKKLSSKLLKVSKIETLSGCGTKRTQQTKGWY
BM407	ssubm407_1859	2	w	GTAaATAAGaGA S	115	ssubM407_0551	ftsE	Cell division protein		
		2	С	GgAaATAAGGGA S	122	ssubM407_0609	-	Cation transport ATPase		
		2	С	GgAaATAAGGGA O	126	ssubM407_0610	prfC	Peptide chain release factor 3		
		1	С	GTATATAAGaGA O	124	ssubM407_0888	lacG	6-phospho-beta-galactosidase		
		2	w	GTATATcAaGGA S	262	ssubM407_0979	-	Transposase		
		2	С	GCGTATAAGGGA S	91	ssubm407_1858	-	Radical SAM superfamily protein	C(19574631957576)	MSVIEFKKLSSKLLKVSKIETLSGCGTKRTQQTKGWY

Annexe 6 - Tableau C : Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe III.

		Cibl	es							spCDS identifiées dans b	oactgeneSHOW
Strains	Gène rgg	nM	Brin	Target_motif	Dir	dATG	Locus_tag	Gène	Fonction	Localisation	Séquence
S. thermophilus											
				ATnTCnnATnTnCnATTTT		75					
LMD-9	ster_1299	0	w	ATTTCATATCTTCAATTTT	S	78	ster_1297	pepF	Oligoendopeptidase F	C(12068951206960)	MFIEDIEVEEQVCNGGCFIAC
S. pneumoniae											
				ATnTCnnATnTnCnATTTT		77					
ATCC 700669	spn23f_01510	0	С	ATATCAAATATGCGATTTT	S	127	spn23f01520		Hyp. Protein		
JJA	spj_0171	0	С	ATATCAAATATGCGATTTT	S	127	spj_0172		Hyp. Protein		
Hungary19A-6	sph_0253	0	С	ATATCAAATATGCGATTTT	S	127	sph_0254		Hyp. Protein		
TIGR4	sp_0141	0	С	ATATCAAATATGCGATTTT	S	127	sp_0142		Hyp. Protein		
P1031	spp_0211	0	С	ATATCAAATATGCGATTTT	S	127	spp_0212		Hyp. Protein		
CGSP14	spcg 0143	0	С	ATATCAAATATGCGATTTT	S	110	spca 0144		Hvp. Protein		

Annexe 7

Tableaux des gènes cibles putatifs contenant un motif ADN dans leur séquence codante.

Tableaux des gènes cibles putatifs contenant un motif ADN dans leur séquence codante

- > **Tableau A :** Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe I.
- > **Tableau B**: Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe II.
- > **Tableau C**: Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe III.

Se référer à l'Annexe 6 sauf pour les deux points ci-dessous :

La colonne « dATG » indique la distance en nucléotides motif / codon start du gène (ou de la spCDS quand détectée) en amont duquel le motif a été identifié. Ce gène est appelé « locus_tag ».

La colonne « Gène » et « Fonction » indiquent respectivement le gène dans lequel le motif a été identifié et la fonction de ce dernier.

NA indique des erreurs lors de la production de données n'ayant pas pu être vérifiées pour l'écriture de ce manuscrit.

Légende :

Biosynthèse d'ADN et d'ARN	Synthèse ATP
Biosynthèse du mevalonate	Traduction
Biosynthèse du peptidoglycane / paroi cellulaire	Transcription
Division cellulaire / ségrégation du chromosome	Transfert de groupe phosphoryle
Machinerie d'internalisation de l'ADN	Transporteur d'oligopeptides
Métabolisme des acides aminés	Transporteurs / Permeases
Métabolisme glucidique	Transport des acides aminés
Métabolisme lipidique	Transport des métaux, vitamines et ions
Methyltransferase	Transport des sucres
Protéines de stress	Transposition
Protéines secrétées et surface / facteurs de virulence / pathogénicité	Hyp. protein
Régulateurs transcriptionnels	Autres
Réplication / Recombinaison / DNA repair / cell maintenance	

Annexe 7 - Tableau A : Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe I.

		Cik	oles							spCDS identifiées da	ins bactgeneSHOW
Strains	Gène rgg	nM	Brir	n Target_motif	Dir	dATG	Locus_tag	Gène_tag	Fonction	Localisation	Séquence
S. thermophilus											
				CCCATTTCCCCAAC		75					
LMG18311	stu1044	2	С	CCCAcTTCCaCAAC	S	246	stu0080	pnpA	Polynucleotide		
									phosphorylase/polyadenylase		
		3	w	CCCATCTCatCAAC	0	294	stu0159	uppP	Undecaprenyl pyrophosphate phosphatas	e	
					-						
		3	W	CCCtTTTCgtCAAC	0	43	stu0789	dfp2	Phosphopantothenatecysteine ligase		
					-						
		3	W	CCCgTaTCCCCAAa	0	39	NA				
CNRZ1066	str1044	2	С	CCCACTTCCaCAAC	S	246	str0080	pnpA	Polynucleotide		
				00038-80-+0330	•	~ ~ ^		-	phosphorylase/polyadenylase		
		3	w	CCCATCICALCAAC	0	294	str0159	uppP	Undecaprenyi pyropnospnate phospnatase	9	
		2			~	107	otr0116	otr0/165	Live Drotein		
		3	С	CCCATITUCCAAAC	0	187	Str0410	StrU4165	Hyp. Protein		
		3	w	CCCLIIICGCCAAC	0	43	Str0789	ατρ2	Phosphopantothenatecystelne ligase		
				CCCATATATGCAAC		76					
LMG18311	stu0182	3	С	CCCATgTtTGCAgC	0	278	stu0665	stu0664	Metallopeptidase, SprT family		
CNRZ1066	str0182	3	С	CCCATgTtTGCAgC	0	278	str0665	str0664	Metallopeptidase, SprT family		
S. agalactiae											
				CCCACTTTCACAAC		85					
NEM316	gbs.1555	3	С	CCCAaTTTCAaAAa	S	108	gbs1124	gbs1125	Hyp. Protein		
2603V/R	sag1490	3	w	CCCttTTTCcCAAC	0	40	sag0545	NA	PepSHOW	C(559910560053)	MEERLRQNKKAPRSNFVQGEREANSSIVKTCFLGGVFTIPIL
											TENEV
S. dysgalactiae											
				CCCACTTTCACAAC		85					
subsp.	sdeg_0529	3	С	CCaAtTTTCAaAAC	0	158	sdeg_0370	sdeg_0369	RNA-binding protein		
equisimilis		3	W	CCCAaTTTgACAAg	0	252	sdeg_1008	smf	DNA processing protein		
GGS_124		3	w	CCatCTTTgACAAC	0	188	sdeg_1308	dltA	D-alaninepoly(phosphoribitol) ligase		
									subunit 1		
		2	w	CCCAgTTTCgCAAC	S	209	sdeg_1635	sdeg_1634	Phage protein		
-		3	W	CCaACTTCtACAAC	0	47	sdeg_1940	purR	Purine operon repressor		
S. pyogenes				000300000030330							
				CCCACTTTCACAAC	-	84			_	((000000)	
M1 GAS	spy_0496	3	w	CCCATTTCAAAgc	0	126	spy_0131	spy_0133	Iransposase	C(123789123827)	MISILLMAFLQV
		3	С	CCAACTTCEACAAC	0	47	spy_0269	purR	Purine operon repressor	NA	
		3	С	CCAATTITCAAAAC	0	158	spy_0308	spy_0307	RNA-binding protein, YNDY family	NA	
		3	w	CCAACTTAGACAAC	S	275	spy_0696	spy_0695	Phage protein		
		3	С	CCCAATTTGACAAG	0	252	spy_1164	smt	DNA processing protein		
		3	С	CCCCCTTTCAaAgc	S	142	spy_1310	dltB	Putative integral membrane protein	NA	
		3	w	CCATCTTTGACAAC	0	188	spy_1312	altA	D-alaninepoly(phosphoribitol) ligase	NA	
		0	-	CCC+ CMMM- 3 C3 ~C	0	475	any 1500	ala E	Subunit 1	N1.4	
		3	С	CCCCCCITIAACAGC	0	175	spy_1509	CIPE	Putative ATP-dependent protease	NA	
		3	С	LUCCCTCLALAAL	S	202	spy_2018	mga	M protein trans-acting positive regulator	NA	
str Manfrada	spy///51/62	3	~	CCalCTTCtlCll	0	47	spy///50208	nurP	Puring operan repressor		
Su. Mainteuu	Spy10151402	3		CCalCTTaglCllC	6	41 275	spy1050200	spyM50518	Phage protein		
		3	w	CCC+CTTTaACAcC	0	475	SPYM50519	spyw50518	Pliage protein Dutative ATD dependent protector		
		3	w	CCatCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0	1/0	SPYM50011		Putative integral membrane protein		
		3	C	CCCtCTTTCAaAcC	6	100	spy1050795		D cloping, poly(phoenboribital) ligged		
		3	w	CCCCCIIICAAAGC	3	142	SPY1100794	UILA	D-alaminepoly(priosphonibilor) ligase		
		0		CCCARTTGACAAG	0	251	spvM50905	smf	DNA processing protein		
		ა ა	w	CCalCTTTC+Clas	0	∠01 274	spy100303	siiii mvoD	Movelenate diphosphate decarbovyless		
		3	w	CCARCIIICCCAAd	0	214	SPYIVIO I 124	IIIvaD	mevaloriate dipriospriate decarboxylase		
		2	\M/	CCCAtTTcCACAAC	\cap	253	sovM51206	snvM51207	Hyp. Protein		
		2	W M/	CCaAtTTTCAaAAC	0	158	spy101230	spy101297	RNA-binding protein VbbV family		
MG458232	snvM18_0554	ວ ເ	vv	CCaACTTCTACAAC	0	47	spy101091	nurR	Purine operon repressor		
MGROULUL	3031110_0004	3 3	c	CCaAtTTTCAaAAC	0	158	spyM18_0200	snvM18 03043	RNA-binding protein VbbV family		
		0	~		0			000000	. and only protons, this truthing		

		2	w	CCCACgTTCACAAa	S 274	spyM18_0361	spyM18_0360	Hyp. phage protein		
		3	w	CCCACcTTCAaAAa	O 257	spyM18_0577	spyM18_0579	ABC transporter ATP-binding protein		
		3	с	CCaACTTTCtCAAa	O 274	spyM18_0939	mvaD	Mevalonate diphosphate decarboxylase		
								· · · · · · · · · · · · · · · · · · ·		
		3	с	CCCAaTTTqACAAq	0 252	spvM18_1124	smf	DNA processing protein		
		3	c	CCCtCTTTCAaAqC	S 142	spyM18_1322	dltB	Putative integral membrane protein		
		3	w	CCatCTTTGACAAC	0 188	spyM18_1323	ditA	D-alaninepoly(phosphoribitol) ligase		
		5	vv	coutorrightenno	0 100	3091010_1323	uita	aubunit 1		
		•	_	CCC+CMMM-1C1~C	0 475	an 1110 1500	alaE	Suburit 1		
		3	С	CCCCCTITIACAGC	0 175	spy1/176_1526	CIPE	Putative ATP-dependent protease		
		3	С	ССААСТТАДАСААС	<u>S 275</u>	spyM18_1764	spyM18_1765	Phage protein		
SSI-1	sps1508	3	С	CCAACTTCtACAAC	0 47	sps0202	purR	Purine operon repressor		
		3	w	CCaACTTagACAAC	S 275	sps0643	sps0642	Phage protein		
		3	w	CCCtCTTTaACAgC	0 175	sps0698	clpE	Putative ATP-dependent protease		
		3	с	CCatCTTTgACAAC	O 188	sps0865	dltA	D-alaninepoly(phosphoribitol) ligase		
								subunit 1		
		2	с	CCCATTTcCACAAC	O 253	sps0905	sps0904	Hvp. Protein		
		3	c	CCCAaTTTGACAAg	0 251	sps1021	smf	DNA processing protein		
		3		CCCCATTTAACAAC	0 8	sns1141	sns1141	Phage protein		
		5	vv	CCCACATTCACAAA	0 0	sp31141	Sp31141	Priage protein		
		2	С	CCCACATICACAAA	5 231	sps1150	spsiisi	Putative infinunity repressor protein -		
		_					_	phage associated		
		3	w	CCaACTTTCtCAAa	0 274	sps1256	mvaD	Mevalonate diphosphate decarboxylase		
		3	w	CCaAtTTTCAaAAC	O 158	sps1634	sps16345	RNA-binding protein, YhbY family		
MGAS315	spyM3_0346	3	С	CCaACTTctACAAC	0 47	spyM3_0197	purR	Purine operon repressor		
		3	с	CCaAtTTTCAaAAC	O 158	spyM3_0226	spyM3_0225	RNA-binding protein, YhbY family		
		3	с	CCaACTTTCtCAAa	O 274	spyM3_0597	mvaD	Mevalonate diphosphate decarboxylase		
		2	w	CCCACaTTCACAAa	S 273	spvM3_0702	spvM3_0701	Putative immunity repressor protein -		
		-			0 2.0	00000	000	nhare associated		
		3	~		0 251	SDVM2 0820	emf	DNA processing protein		
		5	C	CCo+CTTTYACAAG	0 201	spyM3_0020		Diversing protein		
		3	w	CCALCITIGACAAC	0 188	spym3_0993	allA	D-alaninepoly(phosphoribitol) ligase		
								subunit 1		
		2	w	CCCATTTcCACAAC	O 253	spyM3_0951	spyM3_0952	Hyp. Protein		
		3	С	CCCtCTTTaACAgC	0 175	spyM3_1164	clpE	Putative ATP-dependent protease		
		3	с	CCaACTTagACAAC	S 275	spyM3_1218	spyM3_1219	Phage protein		
MGAS10394	M6_spy0433	3	С	CCaACTTctACAAC	O 29	M6_spy0261	purR	Purine operon repressor		
		3	с	CCaAtTTTCAaAAC	O 158	M6 spy0291	M6 spy0290	RNA-binding protein, YhbY family		
		1	w	CCCACTTTCcCAAC	S 73	M6 spv0475	shp		469640469711	MKKISKFLPILILAMDIIIIVGG
		3	c	CCaACTTTCAaAAa	0 138	M6 spv0515	M6 spv05154	Hvp. Protein		
		3	ĉ	CCAACTTTCtCAAa	0 226	$M6_{spy0701}$	mvaD	Mevalonate dinhosphate decarboxylase		
		5	C	oodiioiiioooniid	0 220	Wo_spyoror	IIIVaD	mevalonate diphosphate decarboxylase		
		2		CCCASTTERANCANA	0 252	M6 001/0891	omf	DNA processing protein		
		3	С	CCCHAITIGACAAG	0 252	M6_SPy0881	-1110	DNA processing protein		
		3	С	CULTUTITUAAAGU	S 142	M6_spy1041	aitB	Putative integral membrane protein		
		3	w	CCatCTTTgACAAC	O 188	M6_spy1042	dltA	D-alaninepoly(phosphoribitol) ligase		
								subunit 1		
		2	С	CCCACTTTCAaAAg	S 86	M6_spy1139	M6_spy1140	Phage protein		
		3	С	CCCtCTTTaACAgC	O 175	M6_spy1262	clpE	Putative ATP-dependent protease		
		3	с	CCaACTTagACAAC	S 275	M6 spy1352	M6 spy1353	Phage protein		
		3	с	CCCcCcTcCACAAC	S 201	M6 spy1719	mga	M protein trans-acting positive regulator		
							-			
MGAS5005	mutR	3	w	CCCAtTTTCAaAqC	O 126	M5005 spv 0112	M5005 spv 0113	Transposase	C(124345124383)	MISIELMAFLQV
		3	с	CCaACTTctACAAC	0 47	M5005 spy 0228	purR	Purine operon repressor		
		3	ĉ	CCaAtTTTCAaAAC	0 158	M5005 spy 0263	M5005 spy 02632	RNA-binding protein VbbV family		
		3	ĉ	CCAACTTTCtCAAa	0 274	$M5005 \text{ spy}_0228$	mvaD	Mevalonate diphosphate decarboxylase		
		5	C	councilioconna	0 214	W3003_spy_0228	IIIVaD	wevaloriate diprospirate decarboxylase		
		2	•	CCC3 - TTT ~ 3 C 3 3	0 050	ME005 any 0884	omf	DNA processing protein		
		3	U -	CCCHAIIIGACAAG	0 202	W5005_SPY_0664	-1110	Diversing protein		
		3	С	CULTUTTTCAAAgC	5 142	NOUU5_SPY_10/1	altB	Putative integral membrane protein		
		3	W	CCatCTTTgACAAC	O 188	M5005_spy_1073	dltA	D-alaninepoly(phosphoribitol) ligase		
								subunit 1		
		3	С	CCCtCTTTaACAgC	O 175	M5005_spy_1240	clpE	Putative ATP-dependent protease		
		3	С	CCCcCcTcCACAAC	S 202	M5005_spy_1719	mga	M protein trans-acting positive regulator		
MGAS6180	M28_spy0395	3	С	CCaACTTctACAAC	O 29	M28_spy0223	purR	Purine operon repressor		

		3	с	CCaAtTTTCAaAAC	O 158	M28_spy0255	M28_spy0254	RNA-binding protein, YhbY family		
		1	w	CCCACTTTCcCAAC	S 74	M28_spy0429	shp		439629439700	MKKISKFLPILILAMDIIIIVGG
		3	С	CCaACTTTCtCAAa	O 226	M28_spy0664	mvaD	Mevalonate diphosphate decarboxylase		
		3	С	CCCAaTTTgACAAg	O 252	M28_spy0859	smf	DNA processing protein		
		3	С	CCCtCTTTCAaAgC	S 142	M28_spy1052	dltB	Putative integral membrane protein		
		3	w	CCatCTTTgACAAC	O 188	M28_spy1053	dltA	D-alaninepoly(phosphoribitol) ligase		
		2	~	CCCtCTTTaACAdC	0 175	M28 spy1180	cloE	Butative ATP dependent protector		
		2	C	CCalCTTagACAAC	0 175	M28_apy1227		Phage protein		
		2		CCCAtTTTCARAA	0 106	M28_apy1207	M28_opv1230	Filage protein		
MCA80420	MCA \$9429 apv0406	2		CCARCTTCTACAAC	0 190	MCA \$0420 ppv0221	Wi26_Spy1306	Hyp. Flotelli		
WIGA39429	MGA39429_Spy0400	3	C	CCANETTECACAAC	0 29	MGA39429_spy0231		Pullie operation VebV family		
		3	C	CCCACITICAGAAC	0 158	MGAS9429_spy0262	MGA59429_Spy0261	RINA-binding protein, thus family	440440 440400	MERICET DIT TI AMDITITUCC
		1	w	CCCACITICCCAAC	5 74	MGAS9429_spy0440	snp		440119440190	MARISAFLFILILAMDIIIIVGG
		3	С	CCAACIIICCCAAA	0 226	MGAS9429_spy0739	mvaD	Mevalonate dipnosphate decarboxylase		
		3	с	CCCAaTTTqACAAq	O 199	MGAS9429 spv1003	smf	DNA processing protein	959057959179	MGYYAISFKQTVIGSVSNWEQKLQLSQKRVLKSPPLKRNQ
		3	c	CCCtCTTTCAaAqC	S 142	MGAS9429 spv1113	dltB	Putative integral membrane protein		
		3	w	CCatCTTTGACAAC	0 188	MGAS9429 spv1114	dltA	D-alaninepoly(phosphoribitol) ligase		
		Ũ		, , , , , , , , , , , , , , , , , , ,	0 100			subunit 1		
		3	С	CCCtCTTTaACAgC	O 175	MGAS9429_spy1236	clpE	Putative ATP-dependent protease		
		3	С	CCCACgTcaACAAC	O 82	MGAS9429_spy1341	atoD1	Acetate CoA-transferase alpha subunit		
MGAS10270	MGAS10270_spy0408	3	С	CCaACTTctACAAC	O 29	MGAS10270_spy0229	purR	Purine operon repressor		
		3	с	CCaAtTTTCAaAAC	O 158	MGAS10270_spy0260	MGAS10270_spy0259	RNA-binding protein, YhbY family		
		1	w	CCCACTTTCcCAAC	S 74	MGAS10270_spy0442	shp		439134439205	MKKISKFLPILILAMDIIIIVGG
		3	с	CCaACTTTCtCAAa	O 226	MGAS10270_spy0742	mvaD	Mevalonate diphosphate decarboxylase		
		3	С	CCCAaTTTgACAAg	O 253	MGAS10270_spy0999	smf	DNA processing protein		
		3	С	CCCtCTTTCAaAgC	S 142	MGAS10270_spy1127	dltB	Putative integral membrane protein		
		3	w	CCatCTTTgACAAC	O 188	MGAS10270_spy1128	dItA	D-alaninepoly(phosphoribitol) ligase		
		~		000+0000-101-0	o 475	1404040070 4057		subunit 1		
		3	С	CCCECTTTAACAGC	0 175	MGAS10270_spy1257	clpE	Putative ATP-dependent protease		
		3	С	CCAACTTAGACAAC	S 275	MGAS10270_spy1314	MGAS10270_spy1315	Phage protein		
		3	W	CCCAtTTTCAaAAa	0 196	MGAS10270_spy1382	MGAS10270_spy1383	Hyp. Protein		
MGAS2096	MGAS2096_spy0426	3	С	CCaACTTctACAAC	0 29	MGAS2096_spy0247	purR	Purine operon repressor		
		3	С	CCaAtTTTCAaAAC	0 158	MGAS2096_spy0281	MGAS2096_spy0280	RNA-binding protein, YhbY family		
		1	W	CCCACTTTCcCAAC	S 74	MGAS2096_spy0460	shp		442029442100	MKKISKFLPILILAMDIIIIVGG
		3	w	CCaACTTagACAAC	S 275	MGAS2096_spy0589	MGAS2096_spy0588	Phage protein		
		3	С	CCaACTTTCtCAAa	O 226	MGAS2096_spy0755	mvaD	Mevalonate diphosphate decarboxylase		
		3	с	CCCAaTTTgACAAg	O 252	MGAS2096_spy0959	smf	DNA processing protein		
		3	С	CCCtCTTTCAaAgC	S 142	MGAS2096_spy1070	dltB	Putative integral membrane protein		
		3	w	CCatCTTTgACAAC	O 188	MGAS2096_spy1071	dltA	D-alaninepoly(phosphoribitol) ligase		
								subunit 1		
		3	С	CCCtCTTTaACAgC	O 175	MGAS2096_spy1259	clpE	Putative ATP-dependent protease		
		3	С	CCCACgTcaACAAC	O 82	MGAS2096_spy1367	atoD1	Acetate CoA-transferase alpha subunit		
MGAS10750	MGAS10750_spy0420	3	С	CCaACTTctACAAC	O 29	MGAS10750_spy0224	purR	Purine operon repressor		
		3	С	CCaAtTTTCAaAAC	O 158	MGAS10750_spy0257	MGAS10750_spy0256	RNA-binding protein, YhbY family		
		1	w	CCCACTTTCcCAAC	S 74	MGAS10750_spy0461	shp		451813451884	MKKISKFLPILILAMDIIIIVGG
		3	С	CCaACTTTCtCAAa	O 226	MGAS10750_spy0776	mvaD	Mevalonate diphosphate decarboxylase		
		3	0	οσουπατά	0 252	MCAS10750 ppv1024	smf	DNA processing protein		
		3	C C	CCC+CTTTCAaAqC	C 202	MGAS10750_spy1034	ditp	DNA processing protein		
		2		CCatCTTTTTTACAAC	0 100	MGAS10750_spy1104		Putative integral membrane protein		
		5	vv		0 100	wight 10100_spy1100		subunit 1		
		3	с	CCCtCTTTaACAgC	O 175	MGAS10750_spy1348	clpE	Putative ATP-dependent protease		
NZ131	spy49_0415	3	С	CCaACTTctACAAC	0 47	spy49_0229	purR	Purine operon repressor		
		3	с	CCaAtTTTCAaAAC	O 158	spy49 0260	spy49 0259	RNA-binding protein, YhbY family		
		3	c	CCaACTTTCtCAAa	0 274	spy49_0692	mvaD	Mevalonate diphosphate decarboxvlase		
		-								
		3	с	CCCAaTTTgACAAg	O 252	spy49 0915	smf	DNA processing protein		
		3	с	CCCtCTTTCAaAgC	S 142	spy49_1035c	dltB	Putative integral membrane protein		
				-						

		3	w	CCatCTTTgACAAC O 18	88	spy49_1036c	dltA	D-alaninepoly(phosphoribitol) ligase		
		2	0		,	cnv/0_1270	atoD1	subunit 1		
		5	U		<u> </u>	3py+9_1210	81001			
MACAS	cnv 0522	2	•	CCALTTTCCCAAC /2	4 74	cpv 0877	muaD	Mavalanata dinbaanhata dagarbayyyaga		
WIT GAS	spy_0000	3	C	CCARCIFICCERRA U ZI	/4	spy_0077	IIIVaD	Mevaloriate dipriospirate decarboxylase		
		3	с	CCCAaTTTaCCAAg O 19	99	spv 0894	deoD	Purine nucleoside phosphorylase		
		3	w	CCCgCTTcCCCAAg O 16	68	spy 1410	spy 1411	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O 14	47	spy 1519	ftsZ	Cell division protein		
		3	w	CCCATTTTTCCAAa O 20	01	spy 1704	lacC1	Tagatose-6-phosphate kinase	C(14149691415232)	MATGFSGGKLGDFIIHQLQEQGISNQFFKIKGETRNCIAVLH
										EGMQTKILEAGPYSDVDEAEVSLSHMSTIAKPFDVLTSQAVC
str. Manfrodo	snvM51424	3	<u> </u>		17	spvM50604	#s7	Cell division protein		101
Str. Marmeuo	30911131424	3	c		16	spyM50004	spyM50709	Methyltransferase		
		3	c	CCCtCTTTCCaAgC S 13	31	spyM50902	spyM50903			
		3	w	CCCAaTTTaCCAAg O 19	99	spyM50002	deoD	Purine nucleoside phosphorylase		
		3	w	CCaACTTTCtCAAa O 27	74	spvM51124	mvaD	Mevalonate diphosphate decarboxylase		
		-						······································		
		3	w	CCCAtTTcCaCAAC O 25	53	spyM51296	spyM51297	Hyp. Protein		
MGAS8232	spyM18_0599	3	W	CCCACgTTCaCAAa S 27	74	spyM18_0361	spyM18_0360	Hyp. phage protein		
		3	С	CCCcgTTTtCCAAC O 28	85	spyM18_0386	hylP	phage hyaluronidase		
		3	С	CCaACTTTCtCAAa O 27	74	spyM18_0939	mvaD	Mevalonate diphosphate decarboxylase		
		З	c	CCCAATTTACCAAG O 10	22	spvM18_0956	deoD	Purine nucleoside phosphorylase		
		3	w	CCCAaTTTCCaAAa O 14	47	spvM18_1536	fts7	Cell division protein		
		3	w	CCCAqTTTaCCAcC O 26	69	spvM18_1714	lacC1	Tagatose-6-phosphate kinase	C(14278981427975)	MTMATFKQLYQQLQVREVSHDNHSK
		3	w	CCCcqTTTtCCAAC O 28	87	spvM18_1756	hvlP	Phage hvaluronidase	-()	
SSI-1	sps1476	3	С	CCCAaTTTCCaAAa O 14	47	sps0691	ftsZ	Cell division protein		
		3	с	CCCgCTTcCCCAAg O 16	68	sps0788	sps0787	Methyltransferase		
		3	с	CCCAtTTcCaCAAC O 25	53	sps0905	sps0904	Hyp. Protein		
		3	с	CCCtCTTTCtCAAg O 28	88	sps0938	NA	pepSHOW	919861919905	MTSGPVLIGTLLGD
		3	С	CCCACaTTCaCAAa S 23	37	sps1150	sps1151	Putative immunity repressor protein -		
		2			00	0001240	deeD	phage associated		
		3	w	CCAACTTTCtCAAa O 27	99 74	sps1240	aeoD muaD	Pullite flucteoside phosphorylase		
		5	vv		/4	5051200	IIIVaD	inevaloriale diprospriate decarboxylase		
MGAS315	spyM3_0377	3	С	CCaACTTTCtCAAa O 27	74	spyM3_0597	mvaD	Mevalonate diphosphate decarboxylase		
		3	w	CCCACaTTCaCAAa S 27	73	spyM3_0702	spyM3_0701	Putative immunity repressor protein -		
								phage associated		
		3	w	CCCATTTCCaCAAC O 25	53	spyM3_0951	spyM3_0952	Hyp. Protein		
		3	w	CCCgCTTCCCCAAg 0 22	46	spyM3_1075	spyM3_1076	Methyltransferase		
	140 0.474	3	W		47	spyM3_1171	ftsZ	Cell division protein	0(407070 407000)	
MGA510394	Mo_spy0474	1	w	CCALIFICECAAC S 82	4	M6_spy0432	snp	Duvine puelesside pheepheruless	C(42/8/042/938)	MKKVNKALLFILIMDILIIVGG
		3	C		93	M6_spy0717	NA		700244 700207	MEGTEEMIKDDGUKDGG
		3			5	M_{0} spy0734 M_{0} spy1120	M6 cpv1140	Phage protein	199344199391	
		3	c vv	CCCACTTTCaaAAg O 16	58 88	$M6_{spy1177}$	M6_spy1176	Methyltransferase		
		3	w	CCCgCTTcCCCAAg O 14	47	M6_spy1177 M6_spy1269	fts7	Cell division protein		
		3	w	CCCAaTTTCCaAAa O 28	87	M6_spy1200 M6_spy1347	M6_spv13478	Phage hyaluronidase		
		3	w	CCCcqTTTtCCAAC O 26	69	M6_spy1444	lacC1	Tagatose-6-phosphate kinase	C(1441948 1442025)	MTMATFKOLYOOLOVREVSHDNHSK
MGAS5005	M5005_spy_0440	3	c	CCaACTTTCtCAAa O 27	74	M5005_spy_0684	mvaD	Mevalonate diphosphate decarboxylase	0(111101011112020)	
		3	С	CCCAaTTTaCCAAg O 19	99	M5005_spy_0700	deoD	Purine nucleoside phosphorylase		
		3	w	CCCgCTTcCCCAAg O 24	46	M5005_spy_1149	M5005_spy_1150	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O 14	47	M5005_spy_1248	ftsZ	Cell division protein		
		3	W	CCCATTTTCCAAa O 46	6	M5005_spy_1396	lacC1	Tagatose-6-phosphate kinase		
MGAS6180	M28_spy0428	3	С	CCAACTTTCtCAAa O 22	26	M28_spy0664	mvaD	Mevalonate diphosphate decarboxylase		
		3	с	CCCAaTTTaCCAAg O 19	93	M28 spy0680	deoD	Purine nucleoside phosphorylase		
		3	w	CCCgCTTcCCCAAg O 16	68	M28_spy1145	M28_spy1144	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O 14	47	M28_spy1187	ftsZ	Cell division protein		
		3	w	CCCAgTTTaCCAcC O 26	69	M28_spy1438	lacC1	Tagatose-6-phosphate kinase	C(14394851439562)	MTMATFKQLYQQLQVREVSHDNHSK

		3	w	CCCATTTTTCCAAa O	201	M28_spy1439	lacB1	Galactose-6-phosphate isomerase		
MGAS9429	MGAS9429_spy0439	3	с	CCaACTTTCtCAAa O	226	MGAS9429_spy0739	mvaD	Mevalonate diphosphate decarboxylase		
		3	с	CCCAaTTTaCCAAg O	193	MGAS9429 spy0756	deoD	Purine nucleoside phosphorylase		
		3	w	CCCgCTTcCCCAAg O	168	MGAS9429_spy1197	MGAS9429_spy1196	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O	147	MGAS9429_spy1243	ftsZ	Cell division protein		
		3	w	CCCAgTTTaCCAcC O	269	MGAS9429_spy1397	lacC1	Tagatose-6-phosphate kinase	C(13643781364455)	MTMATFKQLYQQLQVREVSHDNHSK
MGAS10270	MGAS10270_spy0441	3	с	CCaACTTTCtCAAa O	226	MGAS10270_spy0742	mvaD	Mevalonate diphosphate decarboxylase		
		3	с	CCCAaTTTaCCAAg O	193	MGAS10270 spy0758	deoD	Purine nucleoside phosphorylase		
		3	w	CCCgCTTcCCCAAg O	168	MGAS10270 spy1221	MGAS10270 spy1220	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O	147	MGAS10270 spy1264	ftsZ	Cell division protein		
		3	w	CCCAgTTTaCCAcC O	269	MGAS10270 spy1516	lacC1	Tagatose-6-phosphate kinase	C(14634031463480)	MTMATFKQLYQQLQVREVSHDNHSK
		3	w	CCCATTTTTCCAAa O	201	MGAS10270 spy1517	lacB1	Galactose-6-phosphate isomerase		
MGAS2096	MGAS2096 spy0459	3	с	CCCATTTTTCaAAC S	172	MGAS2096 spy0266	MGAS2096 spy0267	D-alanyl-D-alanine carboxypeptidase		
	_ , ,	3	с	CCaACTTTCtCAAa O	226	MGAS2096 spy0755	mvaD	Mevalonate diphosphate decarboxylase		
						= / 2				
		3	c	CCCAaTTTaCCAAg O	193	MGAS2096 spv0772	deoD	Purine nucleoside phosphorylase		
		3	w		168	MGAS2096 spv1217	MGAS2096 spv1216	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O	147	MGAS2096_spv1266	fts7	Cell division protein		
MGAS10750	MGAS10750 spv0460	3	c.	CCaACTTTCtCAAa O	226	MGAS10750_spv0776	mvaD	Mevalonate diphosphate decarboxylase		
MONO I UNO		0	0	•••••••••••••••••••••••••••••••••••••••	220					
		3	c	CCCAaTTTaCCAAg O	193	MGAS10750 spv0792	deoD	Purine nucleoside phosphorylase		
		3	w		168	MGAS10750 spy1257	MGAS10750 spv1256	Methyltransferase		
		3	w	CCCAaTTTCCaAAa O	147	MGAS10750 spy1355	fts7	Cell division protein		
N7131	snv49 0449c	3	<u> </u>	CCAACTTTCtCAAa O	274	spy49_0692	mvaD	Mevalonate diphosphate decarboxylase		
112101	opy /o_0 / /oo	U	0	3	27.1	00002	intab			
		з	c	CCCAaTTTaCCAAg	199	spv49_0709	deoD	Purine nucleoside phosphorylase		
		3	w		246	spy49_1127c	spv49 1128	Methyltransferase		
		3	VV \A/	CCCAATTTCCAAAA O	1/7	spy49_1172c	#s7	Cell division protein		
		3	VV \\\	CCCATTTTCCAAa O	46	spy49_11720	132 lacC1	Tagatose-6-phosphate kinase		
S nneumoniae		0	**		40	30343_13240	10001	ragatose o prospilate kinase		
o. pricamoniac				CCCATTTTCCCAAC	74					
P6	spr0960	3	<u> </u>	CCCATTTTCCCAAC	74 150	spr0107	spr0106	Transporter-truncation		
R6	spr0960	3	c	CCCATTTTCCCAAC CCCATTTTCtaAAa O	74 150 97	spr0107	spr0106	Transporter-truncation		
R6	spr0960	3 3	c c	CCCATTTTCCCAAC CCCATTTTCCtaAAa O CCCtTTTTaCCCAAa O CCCtTTTTTaCCCAAa S	74 150 97 165	spr0107 spr0425 spr048	spr0106 lacG NA	Transporter-truncation 6-phospho-beta-galactosidase	C(505454 505546)	MPKTPI.GALTRGTIRFHI.TSOTFISKSMRK
R6	spr0960	3 3 3	c c c	CCCATTTTCCCAAC CCCATTTTCtaAAa O CCCTTTTaCCCAAa O CCCTTTTTaCCAAg S CCCtaTTTTCCAAAC S	74 150 97 165	spr0107 spr0425 spr0498 spr0622	spr0106 lacG NA dnP	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3	с с с	CCCATTTTCCCAAC CCCATTTTCtaAAa O CCCtTTTaCCCAAa O CCCtTTTTaCCAAg S CCCtaTTTCCAAAC S CCCCaTTTCCAAAC O	74 150 97 165 49 116	spr0107 spr0425 spr0498 spr0622 spr0824	spr0106 lacG NA glnP pro4	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3	с с с с	CCCATTTTCCCAACCCCATTTTCtaAAaOCCCtTTTaCCCAAaOCCCtTTTTaCCAAgSCCCtaTTTCCAAACSCCCcaTTTCaCAACO	74 150 97 165 49 116	spr0107 spr0425 spr0498 spr0622 spr0834	spr0106 lacG NA gInP proA	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3	C C C C	CCCATTTTCCCAAC CCCATTTTCtaAAa O CCCtTTTaCCCAAa O CCCtTTTTaCCAAg S CCCtaTTTCaAAAC S CCCcaTTTCaCAAC O	74 150 97 165 49 116	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045	spr0106 lacG NA gInP proA	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3	c c c c w	CCCATTTTCCCAAC CCCATTTTCCCAAA O CCCLTTTACCCAAA O CCCLTTTTACCAAG S CCCLATTTCCAAAC S CCCCATTTCACAAAC O CCCATTTCACAAAC S CCCATTTCACAAAC S CCCATTTCACAAAC S CCCATTTCACAAAC S	74 150 97 165 49 116 258 23	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083	spr0106 lacG NA ginP proA rmhB recN	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3	c c c c c w w	CCCATTTCCCAAC CCCATTTCCAAAA O CCCCTTTACCCAAA O CCCCTTTTACCAAG S CCCCATTTCCAAAC S CCCCATTTCACAAC O CCCATTTCCACAAC S CCCCATTTCCCAAC S	74 150 97 165 49 116 258 23 76	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr107	spr0106 lacG NA glnP proA mhB recN mutY	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3	c c c c c w w c w	CCCATTTTCCCAAC CCCATTTTCCCAAA O CCCLTTTACCCAAA O CCCLTTTTACCAAAG S CCCLATTTCCAAAC S CCCCATTTCACAAAC O CCCATTTCACAAAC S CCCATTTCACAAAC S CCCATTTCACAAAC S CCCATTTCCCAAAC S CCCATTGCCAAAC S CCCATTTCCCAAAC S CCCATTGCCAAAC S CCCATTTTLCCAAAC S	74 150 97 165 49 116 258 23 76 31	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1107 spr1359	spr0106 lacG NA glnP proA mhB recN mutY atrD	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase E0E1 ATP synthese subunit beta	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3 3 3 3	c c c c c c w w c w	CCCATTTCCCAAC CCCATTTCCAAAA O CCCTTTACCCAAA O CCCTTTTACCAAA S CCCTATTTCCAAAC S CCCCATTTCCACAAC O CCCATTTCCACAAC S CCCCACTTGCCAAAC S CCCCACTTGCCAAAC S CCCACTTGCCAAAC S CCCACTTGCCAAAC S	74 150 97 165 49 116 258 23 76 31 10	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369	spr0106 lacG NA glnP proA mhB recN mutY atpD creA	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3 3 3 3 3		CCCATTTCCCAAC CCCATTTCCAAAA O CCCTTTTCCCAAA O CCCTTTTCCCAAA O CCCTTTTCCCAAAC S CCCCATTTCCAAAC O CCCATTTCCAAAC O CCCACTTGCCAAAC S CCCACTTGCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O	74 150 97 165 49 116 258 23 76 31 10 62	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1369	spr0106 lacG NA glnP proA mhB recN mutY atpD greA fts7	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	c c c c c c w w c w w c w w c w	CCCATTTTCCCAAC CCCATTTTCtaAAa O CCCtTTTaCCAAa O CCCtTTTaCCAAA S CCCtaTTTCCAAAC S CCCcaTTTCaCAAC O CCCATTTCaCAAAC O CCCACTTGCCAAAC S CCCATTTCtCAAC O CCCATTTTCtCAAC O CCCATTTTCtCAAC O CCCAATTTCACAAA S CCCAATTTCCCAAC O	74 150 97 165 49 116 258 23 76 31 10 62 293	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1509	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase family IIIA	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3 3 3 3 3 2		CCCATTTCCCAAC CCCATTTCCAAAA O CCCCTTTACCAAA O CCCTTTTACCAAA S CCCCATTTCACAAC S CCCCATTTCACAAC O CCCATTTCACAAC O CCCACTTGCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC S CCCAATTCCCAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1594 spr1594 spr1881	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 poi	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucosa-6-phosphate isomerase	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3 3 3 3 2 2	с с с с с с с с w w с w w с w с w с w	CCCATTTCCCAAC CCCATTTCCCAAA O CCCCTTTACCCAAA O CCCCTTTTACCAAA S CCCCATTTCCAAAC S CCCCATTTCCAAAC S CCCCATTTCCAAAC O CCCACTTGCCAAAC S CCCACTTGCCAAAC S CCCATTTTCCCAAC O CCCATTTTCCCAAC O CCCAATTTCCCAAC S CCCATTTCCCAAC S CCCATTTCCCAAC S CCCATTTCCCAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1594 spr1594 spr1881 spr165	spr0106 lacG NA gInP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1066	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha_1 furopidase (F-tyne lecting)	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960	3 3 3 3 3 3 3 3 3 3 3 3 2 2 2		CCCATTTCCCAAC CCCATTTCCAAAA O CCCTTTACCCAAA O CCCTTTACCCAAA O CCCTTTTACCAAA S CCCCATTTCCAAAC S CCCCATTTCACAAAC O CCCACTTGCCAAAC O CCCACTTGCCAAAC O CCCACTTTCCACAO O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTGCCAAC S CCCATTTCCCAAC O CCCATTTGCCAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr1083 spr1359 spr1359 spr1509 spr1509 spr1594 spr1881 spr1965	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho beta galactosidase	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3		CCCATTTCCCAAC CCCATTTCCAAAA O CCCTTTTACCAAA O CCCTTTTACCAAA O CCCTTTTACCAAA S CCCCATTTCACAAC S CCCCATTTCACAAC O CCCATTTCCAAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCACAAA S CCCATTTCCCAAC O CCCATTTGACCAAC S CCCATTTCCCAAG O CCCATTTACCCAAA S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 358 97 8082	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1594 spr1594 spr1881 spr1965 spd_0428 spr0_0428 spr1049	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase penSHOW	C(505454505546)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spr090	3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3	ссссс wwcwwcwcw	CCCATTTCCCAAC CCCATTTCCAAAA O CCCTTTTCCCAAA O CCCTTTTCCCAAA O CCCTTTTCCCAAA S CCCCATTTCCAAAC S CCCCATTTCCAAAC O CCCATTTCCCAAC O CCCACTTGCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCCTTTCCCAAA O CCCCTTTCCCAAA S CCCCTTTCCCAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0499 spr0_0416	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase peSHOW Clutaming ABC transporter permease	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3	сссс с w w с w w с w с с с с	CCCATTTCCCAAC CCCATTTCCCAAA O CCCTTTACCAAA O CCCTTTACCAAA S CCCTTTTACCAAA S CCCCATTTCCAAAC S CCCCATTTCCAAAC O CCCATTTCCCAAC O CCCACTTGCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC S CCCATTTCCCAAC S CCCATTTCCCAAA O CCCCTTTACCCAAA O CCCCTTTCCCAAC S CCCCATTCCCAAC S CCCCATTCCCAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116	spr0107 spr0425 spr0425 spr0622 spr0834 spr1045 spr1083 spr1359 spr1359 spr1369 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0499 spd_0616 spd_0624	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutarnine ABC transporter permease Camma dutamyl phosphate reductase	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	с с с с с с с w w с w c w с w с с с с с	CCCATTTTCCCAAC CCCATTTTCCAAAA O CCCTTTTACCAAA O CCCTTTTACCAAA S CCCTTTTACCAAA S CCCCATTTCCAAAC S CCCCATTTCACAAAC O CCCATTTCCCAAAC O CCCACTTGCCAAAC S CCCATTTTCCCAAC O CCCATTTTCCCAAC O CCCATTTCCCAAA O CCCATTTACCAAA O CCCATTTTCCCAAA O CCCTTTTACCAAA S CCCATTTTCCAAAC S CCCATTTCCCAAA O	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116	spr0107 spr0425 spr0425 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0499 spd_0616 spd_0824	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	сссс wwcwwcwcccc w	CCCATTTCCCAAC CCCATTTCCCAAA O CCCTTTTACCAAA O CCCTTTTACCAAA S CCCTTTTACCAAA S CCCATTTCACAAC S CCCATTTCACAAC O CCCATTTCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCTTTTACCAAA O CCCTTTTACCAAA S CCCATTTCCAAAC S CCCATTTCACAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116 273	spr0107 spr0425 spr0425 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0499 spd_0616 spd_0824 spd_0824	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	сссс wwcwwcwcccc ww	CCCATTTCCCAAC CCCATTTCCCAAA O CCCTTTTACCAAA O CCCTTTTACCAAA S CCCTTTTCCAAAC S CCCCATTTCCAAAC S CCCATTTCCAAAC O CCCACTTGCCAAAC S CCCACTTGCCAAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC S CCCATTTCCCAAC S CCCATTTCCAAAC S CCCCATTTCCCAAC O CCCCATTTCCCAAC S CCCCATTTCCCAAC O	74 150 97 165 49 116 258 23 76 31 10 62 293 229 97 8082 49 116 273 23	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr107 spr1359 spr1369 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0428 spd_0616 spd_0824 spd_1021 spd_1061	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA recN	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII PacN	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс wwcwwcwccc wwc	CCCATTTCCCAAC CCCATTTCCCAAA O CCCTTTTACCAAA O CCCTTTTACCAAA O CCCTTTTACCAAA S CCCCATTTCACAAC S CCCATTTCACAAC O CCCATTTCCAAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCACAAC S CCCATTTCACAAC S CCCATTTCACAAC S CCCATTTCCCAAG O CCCTTTTACCAAA S CCCATTTCCAAAC S CCCATTTCCAAAC S CCCATTTCACAAC S CCCATTTCACAAC S CCCATTTCACAAC S CCCATTTCACAAC S CCCATTTCACAAC S	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116 273 23 127	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1594 spr1594 spr1965 spd_0428 spd_0428 spd_0428 spd_0429 spd_0616 spd_0824 spd_1021 spd_1061 spd_1085	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA rmhB recN mutY	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс wwcwwcwcccc wwcw	CCCATTTCCCAAC CCCATTTCCCAAA O CCCTTTTCCCAAA O CCCTTTTCCCAAA O CCCTTTTCCCAAA S CCCCATTTCCAAAC S CCCCATTTCCAAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC S CCCATTTCCCAAC O	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 80822 49 116 273 23 127 31	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1599 spr1594 spr1594 spr1965 spd_0428 spd_0429 spd_0616 spd_0824 spd_1021 spd_1085 spd_1035 spd_1035	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA rnhB recN mutY atpD	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatese, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ccccc wwcwwcwcccc wwcww	CCCATTTCCCAAC CCCATTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCAAAC CCCTTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCACTTGCCAAAC CCCACTTGCCAAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCTTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCTTCCCAAC CCCCCCCC	74 150 97 165 49 116 258 23 76 62 293 229 158 97 8082 49 116 273 23 127 31	spr0107 spr0425 spr0425 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0499 spd_0616 spd_0824 spd_1021 spd_1061 spd_1085 spd_1334 spd_1334	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA rnhB recN mutY atpD greA	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс wwcwwcwcccc wwcwwc	CCCATTTCCCAAC CCCATTTCCCAAA CCCTTTACCAAA CCCTTTACCAAA CCCTTTTACCAAA CCCTTTTACCAAA CCCTTTCCAAAC CCCATTTCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAC CCCATTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAA CCCCTTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCATTTCCCAAAC CCCCATTTCCCAAAC CCCATTTCCCAAAC	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116 273 23 127 31 10 62	spr0107 spr0425 spr0425 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1369 spr1509 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0499 spd_0616 spd_0824 spd_1021 spd_1061 spd_1085 spd_1334 spd_1345 spd_1345 spd_1478	spr0106 lacG NA glnP proA mhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA mhB recN mutY atpD greA ftsZ	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс wwcwwcwcccc wwcwwcw	CCCATTTCCCAAC CCCATTTCCCAAA O CCCTTTACCAAA O CCCTTTACCAAA S CCCTTTTACCAAA S CCCTTTTACCAAAC S CCCCATTTCCAAAC S CCCATTTCCCAAAC O CCCACTTGCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC S CCCATTTCCCAAA O CCCTTTTACCAAA S CCCATTTCCCAAAC S CCCATTTCCCAAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC S CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O CCCATTTCCCAAC O	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116 273 23 127 31 10 62 273 23 127 31	spr0107 spr0425 spr0428 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1509 spr1594 spr1594 spr1881 spr1965 spd_0428 spd_0428 spd_0428 spd_0428 spd_0616 spd_0824 spd_1021 spd_1061 spd_1085 spd_1334 spd_1345 spd_1478 spd_1478	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spD 1560	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс wwcwwcwcgcccc wwcwwcwc	CCCATTTCCCAAC CCCATTTCCCAAA CCCTTTACCCAAA CCCTTTACCCAAA CCCTTTTACCAAAC CCCTTTCCAAAC CCCATTTCACAAAC CCCATTTCACAAAC CCCACTTGCCAAAC CCCATTTCCCACC CCCATTTCCCACC CCCATTCCCACC CCCATTCCCACC CCCATTCCCACC CCCATTCCCACC CCCCATTCCCACC CCCATTCCCACC CCCACCCCCCCCCC	74 150 97 165 49 116 258 23 76 62 293 229 158 97 8082 49 116 273 23 127 31 10 62 293 229 23 229 229	spr0107 spr0425 spr0428 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1509 spr1509 spr1594 spr1881 spr1965 spd_0428 spd_0428 spd_0428 spd_0616 spd_0824 spd_1021 spd_1061 spd_1085 spd_1334 spd_1478 spd_1559 spd_1559 spd_1559 spd_1559 spd_186	spr0106 lacG NA glnP proA rnhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA recN mutY atpD greA ftsZ spD_1560 pci	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6 D39	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс wwcwwcwcgcccc wwcwcwcw	CCCATTTCCCAAC CCCATTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAA CCCTTTTCCCAAAC CCCCATTTCCCAAAC CCCCATTTCCCAAAC CCCCATTTCCCAAC CCCATTTCCCAAC	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 8082 49 116 273 23 117 31 10 62 293 229 158	spr0107 spr0425 spr0498 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1509 spr1594 spr1965 spd_0428 spd_0429 spd_0616 spd_0824 spd_1021 spd_1085 spd_1085 spd_1334 spd_1345 spd_1478 spd_1896 spd_1896 spd_1896 spd_1896 spd_1896	spr0106 lacG NA glnP proA rnhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA rnhB recN mutY atpD greA ftsZ spD_1560 pgi spD_1988	Transporter-truncation 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase <i>pepSHOW</i> Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphote isomerase A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha_l_furpsidase (F-type lectins)	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK
R6	spr0960 spd_0939	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ссссс » » с » » с » с » с с с с » » с » с » с » с » с	CCCATTTCCCAAC CCCATTTCCCAAA CCCTTTACCCAAA CCCTTTACCCAAA CCCTTTTACCAAA CCCTTTTCCAAAC CCCTTTCCAAAC CCCATTTCACAAC CCCATTTCCAAAC CCCATTTCCCAAC	74 150 97 165 49 116 258 23 76 31 10 62 293 229 158 97 80822 49 116 273 23 117 27 31 10 62 293 229 158	spr0107 spr0425 spr0428 spr0622 spr0834 spr1045 spr1083 spr1107 spr1359 spr1594 spr1594 spr1594 spr1965 spd_0428 spd_0429 spd_0428 spd_0499 spd_0616 spd_0824 spd_1021 spd_1061 spd_1085 spd_1034 spd_1334 spd_1345 spd_1478 spd_1896 spd_1987 spi_0141	spr0106 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spr1595 pgi spr1966 lacG NA glnP proA rmhB recN mutY atpD greA ftsZ spD_1560 pgi spD_1988 spi.0140	Transporter-truncation 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) 6-phospho-beta-galactosidase pepSHOW Glutamine ABC transporter permease Gamma-glutamyl phosphate reductase Ribonuclease HII RecN A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase A/G-specific adenine glycosylase F0F1 ATP synthase subunit beta Elongation factor Cell division protein HAD phosphatase, family IIIA Glucose-6-phosphate isomerase Alpha-L-fucosidase (F-type lectins) LarD protein <th>C(505454505546) C(512984513076)</th> <th>MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK</th>	C(505454505546) C(512984513076)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK MPKTPLGALTRGTIRFHLTSQTFISKSMRK

		3	с	CCCtTTTTaCCAAg	S 166	spj_0520	NA	pepSHOW	C(507176507268)	MPKTPLGALTRGTIRFYLTSQTFISKSMRK
		3	с	CCCtaTTTCCaAAC	S 49	spj_0649	gInP	Glutamine ABC transporter permease		
		3	С	CCCcaTTTCaCAAC (D 116	spj_0873	proA	Gamma-glutamyl phosphate reductase		
		3	w	CCCATTTcaCaAAC	S 273	spj_1077	rnhB	Ribonuclease HII		
		3	W	CCCtgTTTCtCAAC (D 23	spj_1119	recN	RecN		
		3	С	CCCAcTTgCCaAAC	S 127	spj_1141	mutY	A/G-specific adenine glycosylase		
		3	w	CCCATTTTttCAgC (O 31	spj_1409	atpD	F0F1 ATP synthase subunit beta		
		3	w	CCatTTTTCtCAAC (D 10	spj_1419	greA	Elongation factor		
		3	С	CCCAaTTTCaCAAg	S 62	spj_1560	ftsZ	Cell division protein		
		3	w	CCaAaTTTCtCAAC (O 293	spj_1645	spJ_1646	HAD phosphatase, family IIIA		
		3	w	CCCATTTTggaAAC (O 89	spj_1880	spJ_1881	SSB single-strand binding protein family		
		2	С	CCCATTTgaCCAAC	S 229	spj_2091	pgi	Glucose-6-phosphate isomerase		
		2	w	CCCATTTTtCCAAg (D 158	spj_2185	spJ_2186	Alpha-L-fucosidase (F-type lectins)		
ATCC 700669	spn23f09790	3	С	CCCtTTTTaCCAAg	S 165	NA	NA	pepSHOW	C(504144504236)	MPKTPLGALTRGTIRFHLTSQTFISKSMRK
		3	С	CCCtaTTTCCaAAC	S 49	spn23f_06340	gInP	Glutamine ABC transporter permease		
		3	С	CCCcaTTTCaCAAC (D 116	spn23f_08560	proA	Gamma-glutamyl phosphate reductase		
		3	W	CCCATTTCaCaAAC	S 273	spn23f_10620	rnhB	Ribonuclease HII		
		3	W	CCCtgTTTCtCAAC (D 23	spn23f_11010	recN	RecN		
		3	С	CCCAcTTgCCaAAC	S 127	spn23f_11230	mutY	A/G-specific adenine glycosylase		
		3	w	CCCATTTTttCAgC (O 31	spn23f_14710	atpD	F0F1 ATP synthase subunit beta		
		3	w	CCatTTTTCtCAAC (O 10	spn23f_14810	greA	Elongation factor		
		3	С	CCCAaTTTCaCAAg	S 62	spn23f_16660	ftsZ	Cell division protein		
		3	w	CCaAaTTTCtCAAC (O 293	spn23f_17560	spN23F_17570	HAD phosphatase, family IIIA		
		3	С	CCaAaTTTtCCAAC	S 220	spn23f_17900	spN23F_17910	Hyp. Protein		
		2	С	CCCATTTgaCCAAC	S 229	spn23f_20940	pgi	Glucose-6-phosphate isomerase		
		2	w	CCCATTTTtCCAAg (D 158	spn23f_21910	spN23F_21920	Alpha-L-fucosidase (F-type lectins)		

Annexe 7 - Tableau B : Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe II.

		Cibles						spCDS identifiées d	ans bactgeneSHOW
Strains	Gène rgg	nM Brir	n Target_motif	Dir dATO	G Locus_tag	Gène_tag	Fonction	Localisation	Séquence
S. thermophilus									
			GCATATATGGGA	75					
LMD-9	ster_1358	2 c	GCcaATATGGGA	S 43	ster_1405	amiE			
		2 w	GgcTATATGGGA	O 40	ster_1811	ster_1812	5-formyltetrahydrofolate cyclo-ligase		
			GCATATATGGGA	72					
LMD-9	ster 1530	2 c	GCcaATATGGGA	S 43	ster 1405	amiE			
	-	2 w	GgcTATATGGGA	O 40	ster_1811	ster_1812	5-formyltetrahydrofolate cyclo-ligase		
LMG18311	stu1572	2 c	GCtgATATGGGA	O 232	stu0048	argS	Arginyl-tRNA synthetase		
		2 w	GCcTATAgGGGA	S 93	stu0137	stu0136	MutT/nudix family protein		
		2 c	GCcaATATGGGA	S 28	stu1438	amiE			
		2 c	GaATATATGcGA	S 77	stu1801	stu1802	CoA binding domain protein		
CNRZ1066	str1572	2 c	GCcaATATGGGA	S 28	str1438	amiE			
		2 c	GaATATATGcGA	S 77	str1801	str1802	CoA binding domain protein		
			GCATATACGAGA	70					
	ster 0934	2 w	GCCAATACGAGA	S 138	ster 0586	ster 0586	Molybdopterin/thiamine biosynthesis family protein		
LIND-5	3101_0004	2 w	GCAcATAaGAGA	0 165	ster_1715	ster_1716	Late competence protein		
LMG18311	stu0917	2 w	GCcaATACGAGA	S 103	stu0546	stu0545	Molybdopterin biosynthesis protein		
	0100077	2 w	GCAcATAaGAGA	0 165	stu1740	comEB	Late competence protein		
		2 w	GaATATAqGAGA	0 250	NA			C(786469 786564)	MPWASGLLISLNLFFLITLYOILSKLDEENK
CNRZ1066	str0917	2 w	GCcaATACGAGA	S 103	str0546	str0545	Molybdopterin biosynthesis protein		
		2 w	GCAcATAaGAGA	O 165	str1740	comEB	Late competence protein		
		2 w	GaATATAgGAGA	O 255	NA		the second se	C(792889792978)	MGTGLLISLNLFFLITLYQILSKLDEENK
S. mutans									
			GTCTATATGGGA	74					
UA159	smu.1509	2 c	GTCTATAaGGGc	S 152	smu 1085	kitH	Thymidine kinase		
		2 w	GgCaATATGGGA	O 232	smu 1210	smu 1211	Putative glycerol-3-phosphate acyltransferase PIsY		
		2 c	GTCTATCTaGGA	0 123	smu 1579	birA	Biotin operon repressor		
		2 c	GatTATATGGGA	S 130	smu 1711	smu 1712c	Segregation and condensation protein B		
		2 c	GTgTATcTGGGA	O 175	smu 1879	ptnC	PTS system, mannose		
		2 c	GTCTATAaaGGA	O 16	NA -	,		-	
nn2025	smunn2025 0595	2 w	GTgTATcTGGGA	0 175	smunn2025 0263	ptnC	PTS system, mannose		
	-	2 w	GatTATATGGGA	S 130	smunn2025_0410	scpB	Segregation and condensation protein B		
		2 w	GTCTATcTaGGA	O 123	smunn2025_0520	NA		C(552648552848)	MAKLVFLLGSRQDGFGKLADNISLTQTAKEQNPPKTSPKELTFKN
					_				RIIKKNSFSHSRYQHDNEVLF
		2 c	GgCaATATGGGA	O 232	smunn2025_0843	smunn2025_0842	Putative glycerol-3-phosphate acyltransferase PlsY		
		2 w	GTCTATAaGGGc	S 152	smunn2025_0951	kitH	Thymidine kinase		
		2 c	GatTATATGGGA	S 6	smunn2025_1077	NA			
		2 c	GTCTATAaaGGA	O 16	NA				
S. dysgalactiae									
			GCATATATGGGA	75					
subsp. equisimilis	sdeg_1013	2 w	GCATATAaaGGA	S 191	sdeg_0357	оррА			
GGS_124		2 w	GatTATATGGGA	S 213	sdeg_0420	scpB	Segregation and condensation protein B		
		2 w	GCtgATATGGGA	O 294	sdeg_1451	sdeg_1452	Methyltransferase		
		2 c	GaAaATATGGGA	S 298	sdeg_1462	ddl	D-alanylalanine synthetase		
		2 w	GCATATAaGaGA	O 96	sdeg_1491	feoB	Ferrous ion transport protein B		
		2 c	GCgTATcTGGGA	S 251	sdeg_1832	sdeg_1833	Phosphoglycerate mutase	_	
		2 C	GaAaATATGGGA	S 6	sdeg_1870	scrA	PTS system, sucrose		
S. equi									
			GTACATACGGGA	75					
MGCS10565	sez_0716	2 c	GCCCATACGGGA	S 265	sez_0290	Sez_0291	NAD(FAD)-utilizing dehydrogenase		
		2 w	GTACATAgGtGA	O 279	sez_1630	ypaA	Riboflavin transporter YpaA-like		
subsp.	szo_12400	2 C	GTACATAgGtGA	O 255	szo_03430				
zooepidemicus						szo_03420	Riboflavin transporter YpaA-like		
		2 w	GTAaATAgGGGA	O 48	szo_19190	cbiO	Cobalt transporter ATP-binding subunit		
			GCATATATGGGA	75					
subsp.	szo 17730	2 w	GCAgATAaGGGA	S 193	szo 00100	NA			
zooepidemicus	-				-				

		1	с	GCATATAaGGGA O	176	szo_03430	szo_03420	Riboflavin transporter YpaA-like		
		2	w	GGATATATGAGA ${\sf S}$	262	szo_08560	szo_08550	Resolvase		
		2	с	GacTATATGGGA S	131	szo_11170	szo_11180	Rhamnan synthesis protein F family protein		
		2	С	GCcaATATGGGA S	297	szo_12560	szo_12570	Pseudogène		
S. suis										
				GTATATAAGGGA	92					
SC84	ssusc84_1811	2	с	GCAGATAAGGGA S	263	ssusc84_1491	ssuSC84_1492	Arginine repressor		
		2	С	GCCTATAAGGGA S	275	ssusc84_1553	ssuSC84_1554	Histone acetyltransferase		
GZ1	ssgz1_1813	2	С	GcAgATAAGGGA S	254	ssgz1_1482	ssgz1_1483	Arginine repressor		
		2	с	GCCTATAAGGGA S	275	ssgz1_1547	ssgz1_1548	Histone acetyltransferase		
P1/7	ssu1789	2	С	GcAgATAAGGGA S	263	ssu1462	ssu1463	Arginine repressor		
		2	с	GCCTATAAGGGA S	275	ssu1527	ssu1528	Histone acetyltransferase		
98HAH33	ssu98_2002	2	С	GTATATAcaGGA O	263	ssu98_0667	ssu98_0666	Histone GNAT family acetyltransferase	647435647512	MKTTVGYSEIINEIKKEKAAAIPPF
		2	С	GcAgATAAGGGA S	254	ssu98_1661	ssu98_1662	Arginine repressor		
		2	С	GCCTATAAGGGA S	275	ssu98_1730	ssu98_1731	Histone acetyltransferase		
05ZYH33	ssu05_1997	2	С	GTcaATAAGGGA O	7	ssu05_0386	ssu05_0385	Hyp. Protein		
		2	w	GaATATAAGcGA S	287	ssu05_0871	ssu05_0870	Hyp. Protein		
		2	С	GcAgATAAGGGA S	254	ssu05_1651	ssu05_1652	Arginine repressor		
		2	С	GCCTATAAGGGA S	275	ssu05_1718	ssu05_1719	Histone acetyltransferase		
BM407	ssubm407_1859	2	w	GTAaATAAGcGA S	199	ssubm407_1005	ssubm407_1004	HAD superfamily hydrolase		
		2	С	GcAgATAAGGGA S	263	ssubm407_1538	ssubm407_1539	Arginine repressor		
		2	С	GCCTATAAGGGA S	275	ssubm407_1601	ssubm407_1602	Histone acetyltransferase		

Annexe 7 - Tableau C : Gènes cibles putatifs des systèmes SHP/Rgg appartenant au groupe III.

		Cible	s						spCDS identifiées dans bactgeneSHOW		
Strains	Gène rgg	nM	Brin	Target_motif	Dir	dATG	Locus_tag	Gène	Fonction	Localisation	Séquence
S. thermophilus											
				ATnTCnnATnTnCnATTTT		75					
LMD-9											
S. pneumoniae											
				ATnTCnnATnTnCnATTTT		77					
ATCC 700669	spn23f_01510	0	С	ATGTCCAATATGCAATTTT	S	266	spn23f22630		ABC transporter		
JJA	spj_0171	0	С	ATGTCCAATATGCAATTTT	S	266	spj_2256		ABC transporter		
Hungary19A-6	sph_0253	0	С	ATGTCCAATATGCAATTTT	S	266	sph_2425		ABC transporter		
TIGR4	sp_0141	0	С	ATGTCCAATATGCAATTTT	S	266	sp_2230		ABC transporter		
P1031	spp_0211	0	С	ATGTCCAATATGCAATTTT	S	266	spp_2282		ABC transporter		
CGSP14	spcg_0143	0	С	ATGTCCAATATGCAATTTT	S	266	spcg_2196		ABC transporter		

Annexe 8

Valorisation du travail de thèse.

Publication scientifique

B. Fleuchot, C. Gitton, A. Guillot, J. Vidic, P. Nicolas, C. Besset, L. Fontaine, P. Hols, V. Monnet and R. Gardan (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. *Mol Microbiol* 80: 1102-1119.

Communications orales

 6th International Conference on Gram-Positive Microorganisms, juin 2011
 « Rgg-associated small hydrophobic peptides: a new family of pheromones involved in quorumsensing in streptococci. » B. Fleuchot, C. Gitton, A. Guillot, J. Vidic, P. Nicolas, C. Besset, L. Fontaine, P. Hols, V. Monnet, **R. Gardan***.

17^{ème} colloque du Club des Bactéries Lactiques, octobre 2010
« Molecular basis for a new quorum-sensing mechanism in streptococci. » B. Fleuchot*, C. Gitton, A. Guillot, C. Besset, V. Monnet, R. Gardan.

Séminaires de présentation des travaux de recherche

INRA La Minière, équipe de D. Lereclus, février 2010
 « Bases moléculaires d'un nouveau mécanisme de quorum-sensing chez les streptocoques. »
 B. Fleuchot*, R. Gardan.

Posters

10th Symposium on Lactic acid bacteria, août-septembre 2011
 « Rgg-associated small hydrophobic peptides: a new family of pheromones involved in quorum-sensing in streptococci. » B. Fleuchot, C. Gitton, A. Guillot, J. Vidic, P. Nicolas, C. Besset, L. Fontaine, P. Hols, V. Monnet*, R. Gardan.

4th Congress of European Microbiologists, FEMS, juin 2011

« Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. » **B. Fleuchot***, C. Gitton, A. Guillot, J. Vidic, C. Besset, L. Fontaine, P. Hols, N. Leblond-Bourget, V. Monnet, R. Gardan.

« Do the multiple rgg/shp pairs found in streptococci genomes allow a crosstalk between different species? » **B. Fleuchot***, P. Nicolas, A. Guillot, V. Monnet, R. Gardan.

6th International Conference on Gram-Positive Microorganisms, juin 2011 « Do the SHP pheromones allow cell-cell communication between different streptococci species? » **B. Fleuchot***, P. Nicolas, A. Guillot, V. Monnet, R. Gardan.

17^{ème} colloque du Club des Bactéries Lactiques, octobre 2010

« Global analysis of the *shp/rgg* quorum sensing mechanisms. » **B. Fleuchot***, V. Monnet, R. Gardan.

Jacques Monod Meeting, Institut Pasteur, mai 2010

« Molecular basis for a new quorum-sensing mechanism in streptococci. » **B. Fleuchot***, C. Gitton, A. Guillot, C. Besset, V. Monnet, R. Gardan.

Journées des Microbiologistes de l'INRA, mai 2010

« Bases moléculaires d'un nouveau mécanisme de quorum-sensing chez les streptocoques. » **B. Fleuchot***, C. Gitton, A. Guillot, C. Besset, V. Monnet, R. Gardan.

16^{ème} colloque du Club des Bactéries Lactiques, mai 2009

« Un nouveau mécanisme de régulation par quorum sensing chez *Streptococcus thermophilus*. » **B. Fleuchot***, C. Gitton, C. Besset, L. Fontaine, P. Hols, V. Monnet, R. Gardan.

Annexe 9

Formations.

Formations de l'école doctorale ABIES

- Anglais scientifique « White Right », 21h, mai 2009.
- Préparation à l'insertion professionnelle : la thèse, au service de mon projet professionnel et personnel, 21h, novembre 2009.
- Communiquer sur sa thèse : l'exposé oral efficace, 14h, novembre 2009.
- Anglais scientifique « Poster power », 21h, avril 2010.
- Préparation à l'insertion professionnelle : objectif premier emploi, 21h, janvier 2011.

Formations INRA

- Maîtriser l'information scientifique et technique en recherche, 7h, mars 2009.
- Séminaire réflexive, 35h, mars 2009.
- Sauveteur secouriste du travail, 14h, juin 2009, 2010
- Savoir manipuler les extincteurs, 2h, juin 2009.

Abstract

The discovery of a genetic context – encoding a <u>small hydrophobic peptide</u> (SHP) and a transcriptional regulator belonging to the Rgg family (in nearly all streptococcal genomes) –, following by the study of one of this loci in *S. thermophilus* LMD-9, led to the hypothesis that the regulatory proteins Rgg in association with a putative pheromone SHP could define a novel quorum-sensing (QS) regulatory mechanism in Gram-positive bacteria.

The first part of my PhD consisted to validate this hypothesis. For this purpose, we analyzed the SHP/Rgg system in all the steps that are commonly involved in QS mechanisms: (i) secretion of the putative pheromone, (ii) maturation of the pheromone, (iii) capture of the pheromone from the external environment at a threshold concentration, (iv) importation of the pheromone inside the cell and (v) interaction of the transcriptional regulator to the promoter regions of targeted genes. Experimentally, we focused on the socalled shp/rgg1358 locus of S. thermophilus LMD-9, which is the streptococcal species containing the largest number of shp/rgg pairs in its genome. By using genetic and biochemistry approaches, we uncovered a new QS mechanism that involves the pheromone SHP, the oligopeptide transporter AmiCDEF for the uptake of the pheromone and the transcriptional regulator Rgg for the control of target gene expression. Furthermore, we showed that the membrane protease Eep participates in the production of the mature pheromone, which has been identified by mass spectrometry. Once characterized, the second part of my PhD was to explore the functionality of this new QS system in other streptococcal strain or species, in order to determine if crossreactivity phenomenon between streptococci can occur. By using heterologous expression in S. thermophilus LMD-9, we extended the functionality of the SHP/Rgg system to two pathogenic streptococcal species, *i.e.* S. agalactiae and S. mutans. The last part of my PhD consisted in identifying the regulon of all SHP/Rgg systems. Following the construction of a phylogenetic tree of the Rgg-like proteins in low GC Gram-positive bacteria, we identified 68 SHP/Rgg systems that we classified in three groups. Analyzing the promoter regions of all shp genes led to the identification of a putative Rgg DNA binding site specific to each SHP/Rgg group. An in silico approach was also used to scan all sequenced streptococcal genomes for the three identified patterns. Whereas proximal target genes were detected for groups II and III, distal target genes were found in groups I and II. In addition, we uncovered that putative Rgg DNA binding sites can be localized in coding or non-coding region. Currently, validations are in progress.

To sum-up, my PhD studies provided evidences that the Rgg proteins in association with small peptide pheromones define a new QS mechanism that seems to regulate the expression of distal and proximal genes in a species-dependent manner. Important insights should be obtained concerning a putative crosstalk among streptococci that involves the SHP/Rgg QS system. My studies may constitute a basis for the development of small peptides to optimize the use of *S. thermophilus* in dairy factories and reduce the virulence of pathogenic streptococci.

Key words : Quorum-sensing, streptococci, Short Hydrophobic Peptide, Rgg, Oligopeptides transporter Opp.

Résumé

La découverte d'un contexte génétique chez les streptocoques – codant un petit peptide hydrophobe (SHP) et un régulateur transcriptionnel appartenant à la famille Rgg –, suivi de l'étude d'un de ces loci chez *S. thermophilus* LMD-9, a conduit à l'hypothèse que les protéines régulatrices Rgg en association avec une phéromone putative SHP pourraient intervenir dans un mécanisme de type quorum-sensing (QS) chez les bactéries à Gram positif.

La première partie de ma thèse a consisté à confirmer cette hypothèse sur le locus *shp/rgg1358* de *S. thermophilus* LMD-9, espèce contenant le plus grand nombre de systèmes SHP/Rgg dans son génome. Pour ceci, les étapes impliquées dans un mécanisme de QS ont été étudiées : la sécrétion, la maturation et la détection à une concentration seuil de la phéromone, sa réimportation à l'intérieur de la cellule, son interaction avec un régulateur transcriptionnel et enfin l'interaction de la protéine régulatrice à l'ADN. Par l'utilisation d'approches génétiques et biochimiques, nous avons démontré l'existence d'un nouveau mécanisme de QS impliquant pour la première fois un régulateur transcriptionnel Rgg et une phéromone SHP, importée à l'intérieur de la cellule par le transporteur d'oligopeptides AmiCDEF. Le rôle de la protéase membranaire, Eep, a également été démontré dans la maturation de la phéromone, dont la forme mature a été déterminée par spectrométrie de masse et validée *in vivo*.

Dans un second temps, nous avons exploré la fonctionnalité de ce nouveau mécanisme sur d'autres loci *shp/rgg*, dans le but d'étudier l'existence d'éventuels phénomènes de cross-talk entre les bactéries. L'étude de nouveaux loci, en système hétérologue chez *S. thermophilus* LMD-9, a permis d'étendre la fonctionnalité du mécanisme à deux systèmes SHP/Rgg de streptocoques pathogènes, à savoir *S. agalactiae* et *S. mutans*. En parallèle à ce travail de caractérisation, l'identification des régulons des systèmes SHP/Rgg a été entreprise. La construction d'un arbre phylogénétique des protéines Rgg-like a permis d'identifier 68 systèmes SHP/Rgg, que nous avons classés en trois groupes. L'analyse des régions promotrices des gènes *shp* a conduit à l'identification d'un site putatif de liaison des protéines Rgg à l'ADN spécifiques de chaque groupe SHP/Rgg. Une approche *in silico* a ensuite été menée afin de rechercher, dans les génomes séquencés de streptocoques, les gènes cibles putatifs. Alors que des cibles proximales ont été détectées pour les groupes II et III, des cibles distales ont été identifiées dans les groupes I et II. Actuellement, la validation de certaines cibles est en cours au laboratoire.

A l'avenir, ce travail pourrait permettre le développement de petits peptides permettant d'optimiser l'utilisation de *S. thermophilus* en industries laitières et de réduire la virulence des streptocoques pathogènes.

Discipline : Microbiologie.

Mots clés : Quorum-sensing, streptocoques, petit peptide hydrophobe SHP, Rgg, Transporteur d'oligopeptides Opp,