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Abstract

My thesis fits into the domain of theoretical spectroscopy. This term describes
a set of theoretical approaches that go hand-in-hand with several experimental
techniques such as optical absorption and reflectivity, inelastic X-ray scattering
(IXS), electron energy-loss spectroscopy (EELS) and photoelectron (or photoe-
mission) spectroscopy. This set of ab-initio theories is used to simulate, study,
predict and understand what is and will be seen in experiment. These spectro-
scopies are all connected to the dielectric function ε(ω) of an electronic system
which is, in fact, a fundamental quantity in many modern electronic structure
theories. In particular I focused my research on photoemission spectroscopy,
where the dielectric function enters as the screening of the hole due to the sys-
tem. During my thesis I have worked on the development of new theoretical
approaches, the aim of my project being to go beyond state-of-the-art meth-
ods used in electronic structure calculations. These methods stem mainly from
two larger theoretical frameworks: Time-Dependent Density-Functional The-
ory (TDDFT) and Green’s function theory — also known as Many-Body Pertur-
bation Theory (MBPT). I carried on the theoretical development in parallel with
numerical simulations on real materials and with experimental measurements,
performed to verify the reliability of theory. Thus, the thesis is organized in
three main parts.

Theoretical part In the first part of my thesis the theoretical development fo-
cused on the GW approximation. This is a method derived from MBPT and it
is the current state of the art for the first-principle description of the photoe-
mission process and the calculation of photoemission band gaps. The method
is based on the one-particle Green’s function or propagator G and the dynam-
ical screening of the system W = ε−1v. Here v is the bare Coulomb interac-
tion. In GW the screening is calculated within the Random-Phase Approxima-
tion (RPA). The product of G and W gives a many-body dynamical exchange-
correlation potential called the self-energy Σ = iGW. The self-energy is usually
treated as a perturbation with respect to an effective non-interacting system. I
have explored a number of ways to overcome the limits of this approach us-
ing partially self-consistent calculations. While getting an improvement over
the simpler version, the use of self-consistency has its own limits that make
apparent the need to find new methods beyond the GW approximation.

The first attempt to go beyond GW has been to look for better approxima-
tions for Σ and W or, technically speaking, to look for vertex corrections. This
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viii ABSTRACT

is a complicated task, which has been carried out in a simplified way. This
simplified way uses TDDFT to reduce the number of degrees of freedom and
reformulate the problem as an optimized calculation of the inverse dielectric
function ε−1. I have tried different possible approximations for vertices de-
rived from TDDFT. I have studied how different approximations affect the
self-energy by calculating the value of the band-gap. This is a path already
explored in literature that has given limited improvement with respect to GW
and limited physical insight in the case of some real materials, but in fact lit-
erature lacked an actual extensive study. In particular, the case of d-electron
systems seemed interesting since GW suffers a strong self-screening problem
in this kind of systems and it appears that a correct vertex correction could
fix this particular pathology (see [P. Romaniello, S. Guyot, and L. Reining, J.
Chem. Phys., 131, 154111 (2009)]). I extended the study of this simpler type of
vertex correction by comparing several approximations and analysing possible
pathologies. I explored different possible ways of applying vertex corrections
and their influence on the self energy and on the band gap. It turns out that
vertex corrections derived from TDDFT can have relatively little effect with re-
spect to a standard GW self energy, mainly because of cancellations between
effects in the screening W and the self energy Σ.

A second way to go beyond GW involves the study of spectral properties
like satellites, which in GW are often poorly described. The new approach I
have developed relies on an exponential expression for the one-particle Green’s
function that, with an optimal inclusion of the neutral excitations of the system
via W, couples them to the primary photo-induced excitations. The analytical
derivation yields a final expression for the one-particle Green’s function G that
reads

G(t1t2) = GH(τ)e
−i
∫ t2

t1
dt′
∫ t2

t′ dt′′W(t′t′′), (1)

where τ = t1 − t2, W is a diagonal matrix element of the screened interaction
and GH is the Hartree Green’s function. This solution is obtained directly from
the exact equation of motion of the fully interacting Green’s function by ap-
plying a series of approximations. The final expression for G is obtained solv-
ing exactly the approximate equation of motion, as shown in [Matteo Guzzo
et al., Phys. Rev. Lett. 107, 166401 (2011)]. The equations leading to this ap-
proximation are based on the PhD work by G. Lani and published in [Lani,
G., Romaniello, P., & Reining, L., New Journal of Physics, 2012, 14, 013056].
A similar expression for the Green’s function, commonly known as the Cumu-
lant Expansion, was derived making an ansatz on the exponential form of G [F.
Aryasetiawan, L. Hedin, and K. Karlsson, Phys. Rev. Lett. 77, 2268 (1996)] or
as the solution of a model Hamiltonian where electrons are coupled to bosons
[D.C. Langreth, Phys. Rev. B 1, 471 (1970)]. This approach gives a far better
description of the coupling between quasiparticle (QP) and neutral excitations
than nowadays state-of-the-art methods (e.g. GW) and is able to describe satel-
lite peaks of photoemission spectra in the prototype case of Silicon with excel-
lent agreement with experiment. In fact this approximation is able to describe
multiple excitations of plasmons that give rise to a series of satellites, greatly
improving with respect to GW (See Figure 1, taken from [Matteo Guzzo et al.,
Phys. Rev. Lett. 107, 166401 (2011)]). In particular, my approach gets rid of a
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spurious peak that in GW gives a wrong satellite shape; this peak is known
as a plasmaron, after [L. Hedin, B.I. Lundqvist and S. Lundqvist, Solid State
Comm. 5, pp. 237–239, 1967 and L. Hedin, Solid State Comm. 5, pp. 451–454,
1967]. This excellent result could also be achieved by the additional inclusion
of several effects which are inherent to the experiment — i.e. not removable
from the experimental data — such as matrix elements and secondary electron
background. An important aspect of the work has been the collaboration with
theoreticians and experimentalists from other groups: the inclusion of extrinsic
losses effect is the result of a collaboration with Prof. John Rehr and Dr. Josh
J. Kas from the University of Washington at Seattle WA, USA; the new experi-
mental data on bulk silicon were provided by Dr. Fausto Sirotti and Dr. Math-
ieu G. Silly of the TEMPO beamline at the Soleil synchrotron facility in France.
Additional results of this collaboration are to appear on the European Physi-
cal Journal B topical issue on “Challenges and solutions in GW calculations”,
focusing on the photon energy dependence of the photoemission spectra.
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Figure 1: Experimental XPS spectrum of Si at 800 eV photon energy (blue crosses),
compared to the theoretical intrinsic A(ω) calculated from G0W0 (red dashed),
and from Eq. (1) (green dot-dashed). On top of the latter the black solid line also
includes extrinsic and interference e�ects. All spectra contain photo-absorption
cross sections, a calculated secondary electron background and 0.4 eV Gaussian
broadening to account for �nite k-point sampling and experimental resolution. The
Fermi energy is set to 0 eV. From [Matteo Guzzo et al., Phys. Rev. Lett. 107,
166401 (2011)]).

Computational part Part of my thesis work was also to evaluate the effective-
ness of the theoretical development by numerical calculation on real systems
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and comparison with existing methods. The calculations were mainly carried
out with two software packages, i.e. dp and abinit. Both codes are written in
the Fortran90 programming language. Implementations and modifications in
the software were needed to perform the calculations. One type of calculation
gives photoemission addition and removal energies (QP energies) calculating
the self-energy Σ. The most computationally demanding calculations produce
the spectral function A(ω) = ImG(ω), which is a quantity that gives a much
more complete description of the photoemission spectrum than just the band
structure. I calculated QP energies for a simple semiconductor like Si and for
a transition metal oxide like NiO to eventually calculate band-gaps and den-
sities of states and evaluate the effects of vertex corrections. Silicon was again
a good test case for the calculation of the spectral function. I also calculated
A(ω) for others semiconductors such as graphite and for the peculiar case of
graphene. I studied the effect of self consistency on the QP energies and on the
spectral function of these materials. Partial self consistency can be achieved
in different manners: via iteration on the QP energies in G only or in both G
and W or including also the QP wavefunctions, which is the heaviest task of
the three. Depending on the system a different degree of self consistency can
be needed. While the iteration over QP energies only in G is preferred in most
cases — usually it is enough in all sp semiconductors — for more complex sys-
tems (like NiO) it becomes apparent that the Kohn-Sham LDA wavefunctions
used as a starting point are too poor and need to be recalculated. This often
goes hand-in-hand with d-electron systems. The GW spectral function is the
starting point for the calculation of the exponential approximation of G in Eq.
(1). Since this part of the development was completely analytical (i.e. it did not
need any numerical technique to solve the equations), it was sufficient to build
a post-processing tool using the Python scripting language.

Experimental part Another important part of my thesis involved measuring
photoemission spectra of real materials. This has been crucial to obtain data
that could provide a solid reference for theory. In fact, the necessary data to
perform an exhaustive comparison between theory and experiment were not
available in literature and probably never measured. I submitted a proposal
at the Soleil synchrotron facility that was accepted and I could benefit from a
week-long shift in July 2011, during which I had the opportunity to perform
experimental measurements on graphite. These measurements helped to test
and verify the theory I have developed (paper in preparation). Graphite was
a good test for theory and a less trivial case than silicon, since the appearance
of intrinsic satellites in this system was questioned in literature. Our mea-
surements allowed to confirm that intrinsic satellites in graphite are indeed
present and that our theoretical description can handle anisotropic systems
of this kind. A second proposal was accepted at the last 2011 call and, con-
sequently, another week of measurements was performed in February 2012.
During this beamtime our team measured graphene, another allotrope of car-
bon. The comparison with graphite will shed some light on the peculiarities
of this two-dimensional system. The aim is to highlight similarities and differ-
ences of the two systems and to have another test for my theoretical method. In
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fact graphene can be seen as an extreme case of graphite, where the inter-plane
distance has gone to infinity. The data are undergoing analysis, but the critical
points will be the interaction between graphene and its substrate (SiC) and the
ability to separate the two contributions.
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1 | Introduction

An electronic system, as one can deduce from the Schrödinger equation, is de-
scribed by a multi-dimensional differential equation. This equation is solvable
analitically for a number of particles N ≤ 2, but any higher number of elec-
trons requires some approximated approach to obtain the solution to the prob-
lem. This is what is called the N- or many-body problem. The many-electron
problem can be reformulated in terms of Green’s functions; however, one still
ends up with a set of coupled equations with virtually no solution for an actual
electronic system. The concept of correlation is closely connected to the math-
ematical intricacy of the problem: one may think of removing all interactions
between particles from the Hamiltonian: in this case the problem becomes sep-
arable and a solution can be calculated, analytically or numerically. In this case
one speaks of an independent-particle system, where correlation is neglected.
A winning strategy in solid-state physics has been to use pseudo-independent-
particle (also called single-particle or mean-field) Hamiltonians embedding an
effective local potential, to include the effect of the interaction between elec-
trons without increasing the complexity of the equations.

Correlation in solids is, in practice, a quite different matter than correlat-
ion in atoms and molecules. The most apparent difference between these two
worlds is, generally speaking, the magnitude of the correlation energy. In fact
in finite system the correlation energy is a fraction of the exchange energy and
hence requires, for a number of cases, little adjustments with respect to the
non-interacting (Hartree-Fock) description. This is an easy way to understand
why the Hartree-Fock theory, where correlation is totally absent, is able to give
a decent description of atoms and molecules, while the description of solids is
in general quite poor.

In this manuscript I will focus on correlation effects in solids, notably in
the field of photoelectron spectroscopy. To illustrate the practical challenge the
physicist faces, I show the valence-band photoemission spectrum of bulk sili-
con in Figure 1.1 as an example. This is a measurement of photoelectrons close
to the Fermi energy (set here at 0 eV) and integrated over the full Brillouin zone.
The experimental spectrum is here compared with the density of states of the
Kohn-Sham system, that is possibly the most popular among single-particle
methods used by physicists. The picture shows how the single-particle density
of states matches decently with a limited part of the spectrum, even though the
relative weights of the peaks are wrong. This is the part of the spectrum which
corresponds to the valence bands of silicon. The problem here is that there are

1
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Figure 1.1: Valence-band photoemission spectrum of bulk silicon, measured at the
TEMPO beamline [1�3] using 800 eV photons. The Fermi energy is at 0 eV. The
spectrum is the result of an integration over the Brillouin zone. The experimental
curve shows multiple structures over a range of 60 eV: the �rst group of peaks
on the right, between 0 and -15 eV, can be identi�ed as corresponding to the
single-particle band structure of silicon; two other structures � centered at -23
and -40 eV, respectively � can be identi�ed in the experimental curve below -15
eV. The spectrum is compared with a density of states (DOS) calculated using the
eigenvalues of the Kohn-Sham system. While this single-particle approach can give
a decent qualitative description of the spectrum down to �12 eV, it does not predict
any structure below that energy. A gaussian broadening of 0.4 has been added to
the theoretical curve to take into account �nite k-point sampling and experimental
resolution.
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a number of structures in the spectrum that are not found in the theory. These
are called satellites and are a pure signature of correlation. For core-level pho-
toemission spectra, satellites are a known phenomenon and have been studied
in several solid-state systems. In valence-band spectra though, they are still
poorly discussed. This is because the valence states are often more “messy”
than core-level states, which are quite isolated and more easily tractable. This
implies additional complexity in experiment and in theory as well. In exper-
iment, valence-band satellites are less obvious to detect than core-level ones
as in the same energy range spurious peaks from surface defects and contami-
nants can arise (Oxygen above all). They therefore require very clean samples.
Moreover, as they are supposedly due to excitations coming from all the va-
lence electrons, this produces a noisier spectrum and less sharp features. In
theory, one has to deal with the interactions of the numerous valence electrons
that are a challenge per se. One then would also like to model the collective
behavior of electrons beyond the single-particle picture. This is not an easy
task.

h�

W(�)

W(�)

W(�)

W(�)

SURFACE

Electron-Hole
interaction

Figure 1.2: Sketch of the photoemission process. A photon of energy hν creates
a hole (+) ejecting an electron (�) out of the system. The system reacts to the
creation of the hole screening the positive charge. W(ω) is the dynamical screened
Coulomb interaction, containing excitations such as excitons and plasmons. Beside
that, the outgoing electron is itself interacting with the hole and it is also screened
by the system via W(ω). Furthermore, the photoelectron has to travel to the vac-
uum through the surface before getting to the detector. The number of additional
processes (beyond the propagation of the hole) described here shows the intricacies
inherent to the photo-excitation process.

To elucidate the complexity of the problem, I have sketched in Figure 1.2
a scheme of the photemission process. It starts with a photon, penetrating in
the bulk. This photon has a probability of giving its energy to the system,
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that will react expelling an electron that carries most of the original energy of
the photon. This is the basic principle of the photoelectric effect. Now, the
photoelectron leaves a depletion positive charge (+) called a hole. The creation
of the hole is equivalent to a perturbation to the system, that reacts dynamically
to the new excited state. This is represented by the dynamic screening W(ω),
that contains all possible excitations of the system, notably creation of electron-
hole pairs or collective excitations as plasmons. The hole can interact with the
outgoing photoelectron, increasing the complexity of the problem.1 On the
other hand, the photoelectron is also interacting with the system through W(ω)
before it gets out through the surface. The surface itself has an influence on the
propagation of the hole and of the electron. All these factors can modify the
kinetic energy of the electron that is detected.

While many theoretical approaches focus on the propagation of the hole
as the main process that affects the photoemission spectrum, other methods
consider the system as a whole, including all elements listed above in the treat-
ment. This is certainly more correct than the former, but it has several short-
comings because of its complexity. I will discuss in this manuscript the the-
oretical description of the photemission process and the legitimacy of several
possible approximations. I will show how all these effects have to be consid-
ered when one wants to describe the photoemission spectrum in its entirety,
including both quasiparticles and satellites. For this purpose, a discussion of
the experimental techniques involved is included.

A quantity that describes properly the propagation of the hole is the single-
particle Green’s function G. This object contains a fair amount of information,
also beyond what is related to the photoemission spectrum, and its equation
of motion is an exact reformulation of Schrödinger equation, restricted to one-
particle properties. One popular way to calculate G is by means of an effective
non-local energy-dependent potential Σ, the self-energy, that is in principle able
to include all many-body effects. This is a major increase in complexity with
respect to single-particle approaches, where potentials are usually static and
local.2 In this framework, quasiparticles are the remnants of single-particle exci-
tations, damped and shifted by many-body effects. Then satellites also arise as
additional excitations contained in the Green’s function and due to pure collec-
tive excitations. For quasiparticles the GW approximation for the self-energy
has proven to be a success, but the results for satellites have been contradictory,
to say the least. I will discuss here whether it is possible to assess precisely the

1This view of the photoemission process that focuses on the hole as the main actor of the pro-
cess is absolutely arbitrary. Within this picture, the hole is effectively interacting with a “cloud”
of electron-hole pairs through W(ω). This originates from the fact that, although having a (cou-
pled) quantum system, one has to separate the problem to be able to find a solution. In general
terms however, one can think that, once the photoelectron is removed, the main actors are one
hole and an electron-hole pair. Once this is known, the description of this three-body system can
be achieved using different techniques, that lead to different approximations. While i.e. GW cor-
relates the electron-hole pair and propagates the hole as just depicted, one can correlate the two
holes and propagate the electron, obtaining what is called the particle-particle T-matrix [4]. A more
sophisticated approach is the so-called three-body scattering, that takes full account of the quantum
nature of all particles [5].

2A notable exception is Hartree-Fock where a non-local — yet static — potential describes non-
interacting fermions.
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description of satellites given by GW or not. In parallel, I will explore sev-
eral ways to improve the description of photoemission spectra and compare
them with GW. This will be achieved following either the route of so-called
vertex corrections to the self-energy or a direct way to a better formulation for
the single-particle Green’s function G. The theoretical development will be
followed by experimental measurements. The close comparison with experi-
mental spectra and the evaluation of all the components of the photoemission
process will be key to a final comprehensive discussion and understanding
about satellites in photoemission spectra.
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2 | Electron spectroscopies

A spectroscopy experiment in general involves (i) the use of a probe to perturb
the system under study and (ii) the measurement of an output signal that car-
ries the information about the interaction between the probe and the sample. In
spectroscopy one eventually collects the data changing one of the parameters
of the experimental setup. A spectrum is the graph resulting from the collected
data. As an example, a beam of white light refracted through a glass prism
projects the visible light spectrum which shows how white light is composed by
photons of different wavelengths that one can see as different colors.

Probe and output signal can consist, in practical terms, of any kind of par-
ticles, but I will refer here mainly to photons and electrons. There are sev-
eral types of spectroscopy, but one can distinguish two main families: neutral
and charged excitation spectroscopies. Neutral excitations are connected with
electron-hole excitations or electron-density fluctuations. The quantity describ-
ing these excitations is the macroscopic dielectric function εM. Plasmon exci-
tations, which are of great interest in the scope of this manuscript, are due to
density fluctuations. Plasmon excitations can be measured by means of elec-
tron energy-loss spectroscopy (EELS) or inelastic X-ray scattering (IXS). In fact
the two techniques yield proportional spectra. In EELS, an electron is sent
through the sample and measured at the exit, thus measuring its losses.EELS
is given by the imaginary part of the inverse dielectric function or

EELS = − Im
[

ε−1
M

]

. (2.1)

Charged excitations are connected to a sudden change in the number of par-
ticles of the system, caused by an additional particle in the system or by an
ejected particle. The quantity describing these excitations is the one-particle
Green’s function G. The one-particle spectral function is the imaginary part of
the Green’s function. Under suitable assumptions, one can measure the spec-
tral function by means of photoemission spectroscopy and obtain information
on charged excitations in the system. In photoemission spectroscopy one sends
a photon beam on the system under study, exciting electrons that are ejected
from the system. The spectral function can be written using Fermi’s golden
rule as [6]

A(ω) ∝ ∑
m

δ(ω − EN±1
m + EN

i ). (2.2)

Here EN
i is the energy of the initial N-particle state and EN±1

m are the energies
of the final N ± 1-particle states, depending whether an electron is added or

7
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removed, respectively. Charged excitation can produce additional neutral ex-
citations in the system, that influence the resulting photoemission spectra. This
connection between charged and neutral excitations will be clarified in the fol-
lowing chapters.

2.1 Electron energy-loss spectroscopy

This thesis will focus mainly on photoelectron spectroscopy, but there is a
close link between that and electron energy-loss spectroscopy. Therefore I
will briefly introduce this technique here. Electron energy-loss spectroscopy
or EELS is a powerful experimental technique that uses electrons as a probe
to study the properties of materials. This is done usually with a tunneling
electron microscope (TEM). In a TEM a beam of high-energy electrons (several
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Figure 2.1: Scheme representing a generic transmission electron microscope. Most
of the vertical space of the apparatus is taken by the system of electro-magnetic
lenses used to focus the inpinging and escaping electron beams. The system is kept
under ultra high vacuum (< 10−9 Pa). Image taken from the Wikimedia Commons
[7].

hundreds keV of kinetic energy) illuminates the sample and electrons are scat-
tered all around after interacting with it. The electrons transmitted behind the
sample are then collected and analyzed quite like the way photons would be
treated in an absorption experiment. In fact TEMs are equipped with electro-
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magnetic lenses which are used to focus the electron beam in the microscope.
Measuring kinetic energy and momentum of the transmitted electrons one is
able to study structural as well as electronic properties of materials with a high
resolution. In particular EELS gives access to the neutral excitations of the sys-
tem from both core and valence losses. The same kind of excitations can also
be probed in inelastic X-ray scattering measurements (IXS), where high-energy
photons take the place of electrons.

2.1.1 Connection with photoemission

The EELS and IXS spectra are directly proportional to the imaginary part of the
macroscopic inverse dielectric function ε−1

M (q, ω). This quantity is fundamen-
tal also for the physics of photoelectron spectroscopy where its microscopic
version ε−1 enters in the dynamical screening W = ε−1v, v being the Coulomb
potential. In photoelectron spectroscopy the screening of the hole produces
renormalization and lifetimes of excitations, and non-trivial spectral features
like satellites. Hence a correct description of the screening is of utmost impor-
tance for a correct description of photoemission. Notably, approximations de-
rived making use of Green’s function theory and explicitly including ε−1(q, ω)
— as e.g. the GW approximation for the self-energy — exploit this link in a
direct way. The link between EELS and PES and the importance of combining
the two approaches have been highlighted by e.g. Kohiki and others [8]. In this
manuscript I will show how one can improve the description of photoemission
spectra by improving the approximations used for the calculation of ε−1(q, ω).
For a deeper insight on electron energy-loss spectroscopy and ab-initio calcu-
lations see [9, 10].

2.2 Photoelectron spectroscopy

X-ray photoelectron or photoemission spectroscopy (PES or XPS) is a term that
refers to all types of experimental techniques based on the photoelectric effect
[11, 12].1 The general description of this effect is that when a photon of (suffi-
ciently high) energy collides on a sample, an electron can absorb that photon
and leave the sample. This is called a photoelectron. A sketch of the photoe-
mission process is shown in Figure 1.2. Photoemission spectroscopy is nowa-
days an established tool for the analysis of the electronic structure of solids and
molecules [15]. Its increasing capability in energy-resolution and flexibility has
made more urgent, in the last twenty years, the need for advanced theoreti-
cal approaches able to cope with the huge range of systems being measured
and with the high precision needed to match the experiment [6]. The great im-
provement of the experimental capabilities have been possible mainly because
of third-generation synchrotron radiation facilities [16], such as SOLEIL [17],
and the developement of the Scienta electron spectrometers [18, 19]. The for-
mer has made possible to obtain higher photon fluxes and the latter is respon-
sible for increasing angular and energy resolution. Photoelectron spectroscopy

1While the acronym PES is general, XPS is preferred when speaking of photon energies above
100 eV. There can also be ultra-violet PES (UVPES) and angle-resolved PES (ARPES).



10 CHAPTER 2. ELECTRON SPECTROSCOPIES

Figure 2.2: Sketch of a generic beamline for photoelectron spectroscopy equipped
with a plane grating monochromator and a Scienta electron spectrometer. The
ondulator magnet produces a beam of photons from the electron beam in the syn-
chrotron. The photons are then focused on the sample using a set of mirrors and
monocromators. The photoelectrons escaping from the sample are then collected
and focused by a system of electro-magnetic lenses into the Scienta analyzer to the
detector. From [6].

is an extremely accurate technique for chemical analysis. In fact in a PES exper-
iment it is possible to obtain the concentration of different elements in a solid
with accuracies of less than a part per million and it is possible to obtain infor-
mation on the chemical environment (bonding) surrounding an atom. A good
example of this feature is given in Figure 2.3. Each peak of the spectrum iden-
tifies an electronic state of the substrate, included any substance present on the
surface. It is the case for this piece of iron that has evidently not been cleaned.
This example shows the great chemical sensitivity of PES and demonstrates
how important is to have clean samples if one is to measure bulk properties. In
fact one can say that in photoemission one is always surface sensitive. In order
to measure bulk properties, the only thing that one can do is trying to minimize
the contribution of the surface to the final spectrum, by varying the experimen-
tal parameters, such as the photon energy or the sample orientation. For the
same reason PES is always performed in chambers under ultra-high vacuum.
Most of the information reported in this section can be found in [6, 16, 20],
that give a broad and extensive overview of photoemission spectroscopy, its
applications and evolution over the past thirty years.

2.2.1 A bit of theory

An independent-particle description is a good start for the understanding of
the photoemission process. In this framework one assumes that the incoming
photon gives all its energy 2πν to an electron in the bulk, that is then ejected out
of the sample with a certain kinetic energy. The maximum kinetic energy Ekin
of the electron outside the sample will be 2πν − Φ, with Φ the work function
of the material. Using this basic principle, photoemission spectroscopy allows
one to access the properties of electrons in the bulk. Using an electron analyzer
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Figure 2.3: Photoemission spectrum of a piece of iron (Fe). The spectrum has been
taken at a photon energy hν = 700 eV. In this large overview there are a lot of
peaks showing up in the spectrum. The bulk electronic levels of iron can be spotted
in the �rst 100 eV below the Fermi energy (�xed at 0 eV). The 3d (valence), 3s and
3p (semi-core) shells are all clearly visible. The sample has been exposed to air,
hence there are contaminants on the surface that are very easily detected in XPS:
the core-level 1s peaks of oxygen (O), nitrogen (N) and carbon (C) all show up in
the spectrum, as well as their Auger peaks. Such data could be used to calculate
with a high precision the concentration of these contaminants on the surface. This
is a clear example of the high sensitivity of XPS for chemical analysis. It shows as
well the importance of having clean surfaces in order to avoid spurious structures
in the spectra. From [13].
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Figure 2.4: Photoemission spectra (dots) of metallic compounds with a d1 con�g-
uration. From top to bottom the value of U/W increases and correlation e�ects
become more important. Here (and only here) W is the bandwidth and is not to be
confused with the dynamical screening discussed in this manuscript. The quasipar-
ticle peak � marked as coherent � next to the Fermi energy (0 eV) gets weaker
and disappears while the satellite structure at −1.5 eV becomes more and more pro-
nounced. The data are compared to independent-particle calculations. The image
is taken from [14].
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one can then collect the photoelectrons and measure their kinetic energy. Keep-
ing in mind that this is strictly possible only in a independent-particle descrip-
tion of the problem, one can define a binding energy EB and a crystal momen-
tum k for an electron in the solid. Using energy- and momentum-conservation
laws, one can connect, respectively, the binding energy to the kinetic energy
and the crystal momentum to the polar emission angle θ of the photoelectron,
that can be selected changing the orientation of the analyzer with respect to the
surface:

Ekin = 2πν − Φ − EB (2.3)

k|| =
√

2Ekin · sin θ. (2.4)

Here k|| is the parallel-to-the-surface component of the crystal momentum k.
Information on the perpendicular component of k is in general non-trivial to
obtain at θ 6= 0 (i.e. not at normal emission) because of the breaking of transla-
tional symmetry along the surface normal. When an angle-resolved measure-
ment is performed, one speaks of angle-resolved photoelectron spectroscopy
or ARPES.

2.2.2 The spectral function and the sudden approximation

A theoretical quantity that is appropriate to compare to XPS experiments is the
one-particle spectral function A(ω). The simplest version of this quantity can
be written, in the single-particle case, as

A(ω) = ∑
j

δ(ω − ǫj). (2.5)

Here one assumes to have a system of independent-particle states, as e.g. in
Hartree-Fock. In this case the excitations of the system are delta peaks cen-
tered at the excitation energies of the system. They therefore have an infinite
lifetime. In an interacting system, the spectral function can be written in terms
of many-body states using the one-particle Green’s function. The current of
photoelectrons J(ω) can be written using Fermi’s golden rule as

J(ω) ∝ ∑
m

∣

∣Mm,i
∣

∣

2
δ(ω − EN±1

m + EN
i ), (2.6)

with Am(ω) = δ(ω − EN±1
m + EN

i ) is the spectral function written using many-
body states total energies. Here EN

i is the energy of the initial N-particle state
and EN±1

m are the energies of the final N ± 1-particle states, depending whether
an electron is added or removed, respectively. The matrix elements Mm,i con-
tain additional effects due to the energy and polarization of the photon and to
the overlap of many-body N ± 1 states with the initial state. The main features
of the interacting spectral function A(ω) are quasiparticle peaks with finite
lifetime. The interacting spectral function usually shows additional structures
that are called satellites (See Figure 2.5). These cannot be described by single-
particle approaches. In sp semiconductors these satellites are mainly due to
the excitation of plasmons (both surface and bulk). However the nature of
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Figure 2.5: General picture of the one-particle spectral function for the independent-
particle case (Hartree-Fock) and the interacting case The non-interacting Hartree-
Fock (HF) spectral function is a delta peak centered on the HF energy EHF. Its
in�nitesimal width yields an in�nite lifetime. The quasiparticle (QP) spectral func-
tion has a very di�erent shape. The main structure is the QP peak, centered on the
QP energy EQP, which is shifted with respect to EHF. This peak has a lorentzian
shape with a �nite width, hence �nite lifetime. There is an additional structure at
ESAT that is called a satellite. This structure comes from collective excitations (e.g.
plasmons) that can be accessed using a many-body formalism. The quasiparticle
spectral function maintains its center of mass at the non-interacting energy EHF.
This is a property guaranteed by the �rst-moment sum rule (3.48).
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satellites in many systems is still heavily debated and begs for a clear explana-
tion. Satellites in photoemission spectroscopy have been extensively studied
for core-level spectra [21–23], while for valence-band spectroscopy there has
been much less effort [24–26]. Still, valence-band satellites have been mea-
sured in a number of systems and are at the center of the debate around some
highly interesting systems like e.g. transition metal oxides [14]. Valence-band
satellites have been interpreted as a signature of strong correlation effects in
terms of the Hubbard model, where the electrons interact by an “ultra-local”
Coulomb term called U. The spectral function of this model exhibits, in gen-
eral, a QP peak at the Fermi level and satellite peaks at lower energies, called
Hubbard band. For increasing values of U, the QP peak disappears and only the
Hubbard band is left (See Figure 2.4). One then speaks of a strongly-correlated
system. While initially dismissed as an effect of the energy-loss of the photo-
electron, satellites have proved to be able to give information about excitations
of the system that can be triggered by the creation of the hole.

When making comparisons between theory and experiment, it is worth not-
ing that there is not a complete coincidence between the spectral function A(ω)
and the PES spectrum. This is because A(ω) only describes the propagation
of the hole created by the incoming photon, while completely neglecting the
losses of the photoelectron before it leaves the system and possible interactions
between photoelectron and hole. The use of A(ω), within these limits, to de-
scribe PES is known as the sudden approximation.

2.2.3 The three-step model

While the sudden approximation simplifies the description of PES, there is
a number of factors that suggest that this assumption is never actually true.
In fact it turns out that the average effective losses of the photoelectrons are
roughly the same at all photon energies. There are two competing quantities
that contribute to maintain extrinsic losses non-negligible:

1. the mean free path of the electron as a function of its kinetic energy (for
high enough photon energy, the inelastic scattering electron cross section
decreases as the photon energy, and hence the kinetic energy of photo-
electrons, increases); and

2. the maximum depth of a hole for which the corresponding photoelectron
is fast enough to reach the surface and be detected (for high enough en-
ergy, the value of the mean free-path of electrons increases as their kinetic
energy increases).

Once this is established, one must know that the effect of extrinsic losses on the
QP part of the spectrum is often only an overall renormalization of the peaks,
that transfers some spectral weight from the quasiparticle to the satellite part.
This explains the success of the sudden approximation for the description of
QP band structures. However, an appropriate calculation and interpretation
of satellite structures in photoemission spectra requires one to go beyond the
sudden approximation. A more complete, yet simplistic way of modeling the
photoemission process is to divide it in three independent sequential steps:
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1. Optical excitation of the electron in the bulk.

2. Travel of the excited electron to the surface.

3. Escape of the photoelectron into vacuum.

This is known as the three-step model, as first proposed by Berglund and Spicer
[27]. The total photoemission intensity is then given by the product of the prob-
abilities of the three different processes. The first step is described by the one-
particle spectral function A(ω). Losses included in A(ω) are called intrinsic
and A is therefore called the intrinsic spectral function. Step two is described
by the electron energy-loss spectrum of the system and, along with step three,
is considered part of the extrinsic losses. At this point, to get the total intensity,
it would be sufficient to convolute A(ω) with the energy-loss spectrum; this is
called the sudden limit. However, this condition is met only at very high pho-
ton energies that are rarely accessed in usual PES conditions. There is, in fact,
quantum-mechanical interference between intrinsic and extrinsic losses, which
is due to the interaction between the outgoing photoelectron and the hole it has
left behind. The changes occurring in the photoemission spectrum following
this kind of process, are referred to as interference effects. To describe this kind of
processes one should in principle make use of a two-particle propagator [28],
but it is possible to treat this effect in an approximate way retaining at the same
time a good amount of physical insight [21]. At low photon energies interfer-
ence effects are supposed to dominate and the three-step model is no longer
valid; this is called the adiabatic limit. The sudden approximation and the three-
step model may look oversimplistic, but their application allows one an easy
treatment of the separate steps and an intuitive understanding of the otherwise
very complex photoemission process. A more rigorous approach to photoe-
mission describes the process as a whole in a single calculation. This is a more
complex approach that includes bulk, surface and vacuum in the Hamiltonian
of the system; it is called the one-step model (see e.g. [29]). The simpler three-
step model and the sudden approximation are however more widely used, as
they have proved that they can be very successful in describing photoelectron
spectroscopy. I will report in this manuscript a technique that can effectively
include interference effects in the framework of the three-step-model and help
to give quantitative information on satellites in photoemission spectra [21].



3 | Theoretical Background

In this chapter I will review the theoretical basis essential to the accomplish-
ment of my thesis. I will first describe how the ground-state problem is treated.
The theoretical tool of choice for ground-state properties is density-functional
theory (DFT). Then I will concentrate on excited-state properties. Time-dependent
density-functional theory (TDDFT) and Green’s function theory are the tools
that I have used to treat neutral and charged excitations, respectively. At the
end of this chapter I will discuss the connection between theory and experi-
mental spectra.

3.1 The many-body problem in solid-state physics

The general many-body problem of quantum mechanics has found in solid-
state physics one of its most successful fields of application. All information
about the quantum state of a system is contained in its wavefunction Ψ. The
stationary Schrödinger equation for a many-electron system can be written as1

HΨ = EΨ. (3.1)

This is an eigenvalue problem where the unknown are E and Ψ. The Hamilto-
nian operator H is

H =
N

∑
i

hi +
1
2

N

∑
i 6=j

vij. (3.2)

Here hi are single-particle Hamiltonians, containing the kinetic energies and
the external local potential. In this formulation, the ions are fixed (according
to the Born-Oppenheimer approximation [30]) and implicitly included in the
external potential. N is the number of particles in the system. The interesting
term in Equation (3.2) is the two-particle Coulomb interaction term vij which
reads:

vij =
1

|ri − rj|
, (3.3)

where rj is the position of the j-th particle. This term includes in the Hamilto-
nian the electron-electron interaction and makes virtually impossible to solve
the Schrödinger equation for a real system (where N ∼ 1023, i.e. Avogadro’s

1 Throughout the text, the use of atomic units is understood, i.e. h̄ = m = e2 = 1. Also,
relativistic effects are neglected.
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number).2 Beside that, the wavefunction of the system Ψ depends on the po-
sition and spin of the N particles in the system, i.e. Ψ = Ψ(x1, . . . , xN). Just
to store this information in a digital memory, one would need more than sev-
eral thousands of billions of TB of space. This is to say that in practice, to
approach the many-body problem, one is obliged to make use of some approx-
imations and/or to find different ways than the straightforward solution of
the Schrödinger equation. In the following discussion spin is neglected, if not
otherwise stated.

3.1.1 Independent particles: the Hartree approximation

The easiest way to make the many-body problem tractable is to ignore com-
pletely the electron-electron interaction, choosing what is called an independent
particle approximation. In this case the potential Vext(r) acting on the electrons
is only due to the static charge of the ions. This kind of approximation is obvi-
ously quite gross. However it turns out that several properties of solids can be
decently described by such model once Vext is replaced by some clever guess
Veff. This substitution adds to the external potential a correction Vel that takes
into account the effect of the surrounding electrons on the independent elec-
tron i considered, so that Veff = Vel + Vext. The effective potential could (or
not) be function of the single-particle wavefunctions φi(r). A general form of
the Schrödinger equation for an independent-particle Hamiltonian would then
be the following:

Hindφi(r) =

[

−∇2

2
+ Veff(r)

]

φi(r) = εiφi(r). (3.4)

The above is a set of equations, one for each particle in the system. The eigen-
values εi are called independent-particle energies. When this kind of Hamiltonian
is used to describe a many-electron system one refers to it as a mean-field or
single-particle approach. One possible choice for Vel takes into account the po-
tential due to the static electron charge density ρ(r):

VH(r) =
∫

dr′
ρ(r′)
|r − r′| . (3.5)

This approximation is called the Hartree approximation and VH is the Hartree
potential. The density ρ(r) is here defined as

ρ(r) =
N

∑
i

|φi(r)|2. (3.6)

In this case the interaction between the electrons is taken into account by the
Hartree term which makes a sort of average over the electrostatic potential of
the electrons. A straightforward issue of this approximation is that the Hartree
potential acting on the j-th electron is due to the total density calculated us-
ing also the electron itself. This is called the self-interaction problem. A clear

2The only case where an analytic solution can be calculated is with N ≤ 2, e.g. the hydrogen
atom or a two-electron system with a classical external potential. Numerical solutions can be
obtained with quantum montecarlo techniques for systems with a limited number of particles.
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advantage of this kind of single-particle approaches is that the computational
cost needed to solve this set of equations is very limited (and feasible) with re-
spect to other approaches (say Hartree-Fock) where the potential is more com-
plicated (e.g. non-local or energy-dependent).

3.1.2 The Hartree-Fock approximation

Another way of simplifying the electronic problem can be to approximate Ψ

instead of H. In the Hartree-Fock approximation electrons are considered as
non-interacting fermions. Direct consequence of this fact is that the many-body
wavefunction Ψ is, in this case, an antisymmetrized product (Slater determi-
nant) of eigenfunctions φi of a single-particle Hamiltonian:

Ψ(r1, . . . , rN) = (N!)−1/2 det{φi(rj)}. (3.7)

Assuming that the single-particle eigenfunctions φi form an orthonormal basis,
i.e.

∫

dr φ∗
i (r)φj(r) = δij, (3.8)

one can minimize the total energy (using the full Hamiltonian)

E = 〈Ψ|H|Ψ〉, (3.9)

obtaining the Hartree-Fock (HF) equations:
∫

dr′
[(

hi + VH
)

δ(r − r′) + Vx(r, r′)
]

φi(r
′) = εiφi(r), (3.10)

where the exchange potential Vx is

Vx(r, r′) = −
N

∑
j

φj(r)φ
∗
j (r

′)
1

|r − r′| . (3.11)

These equations markedly differ from (3.4) in that they contain a non-local op-
erator Vx which includes a sum over the one-particle states in the system. The
exchange potential Vx is also called the Fock operator. The quantity

ρ(r, r′) =
N

∑
j

φj(r)φ
∗
j (r

′) (3.12)

is the density matrix. An important consequence of the Hartree-Fock approx-
imation is that the exchange potential corrects the self-interaction problem of
the Hartree approximation. In fact when in the sum in (3.11) one has that j = i
— the eigenfunction index in (3.10) — the exchange term cancels exactly the
Hartree potential.

Koopmans’ theorem, exchange and correlation

Koopmans proved that the eigenvalues εi of the Hartree-Fock equations (3.10)
can be interpreted as energies for addition and removal of electrons in the sys-
tem [31], i.e. as differences of total energies. This is true provided that, once a
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particle has been added/removed, the other particles in the system do not un-
dergo any change. Another way of saying this would be that in Hartree-Fock
the screening is neglected, i.e. there is no reaction to a sudden change in the
system.

Historically, Hartree-Fock was the first approximation giving a reasonable
description of ionization potentials and electronic affinities. The Hartree-Fock
approximation is also crucial in solid-state physics as it defines correlation as
opposed to exchange. In Hartree-Fock exchange is exactly taken into account
by construction because the wavefunction Ψ is built to respect the Pauli prin-
ciple. On the other hand electrons are non-interacting and in this sense there is
no correlation. The formal definition of correlation is exactly this: correlation
is whatever goes beyond the HF approximation, including additional terms
accounting for electron-electron interaction.

3.2 Ground state

The ground state is defined as an equilibrium state of a system described by a
stationary Hamiltonian, with the lowest possible total energy. The total energy
of an electronic system is defined by (3.9). In this sense, Hartree-Fock appropri-
ately describes the ground-state as it minimizes the total energy of the system
for a particular class of wavefunctions. However HF has turned out to be quite
bad for total energies of solids. The most successful ground-state theory in the
last 40 years is without any doubt density-functional theory.

3.2.1 Density-functional theory

Density-functional theory (DFT) is a ground-state theory in which the empha-
sis is on the charge density as the relevant physical quantity [32]. DFT has
proved to be highly successful in describing structural and electronic proper-
ties of a vast class of materials, ranging from atoms and molecules to simple
crystals to complex extended systems (including glasses and liquids). Fur-
thermore DFT is computationally simpler than wavefunction-based methods
like Hartree-Fock or MP2 and MP3 (very popular techniques among quantum
chemists, but with applicability mostly limited to finite systems) [33]. DFT
is computationally cheap because its standard application implies the diag-
onalization of an independent-particle-type Hamiltonian where the potential
is local and density-dependent. For these reasons DFT has become a common
tool in first-principles calculations aimed at describing — or even predicting —
properties of molecular and condensed-matter systems. DFT is based on the
Hohenberg-Kohn theorem [32]. This theorem states that (i) there is a one-to-
one mapping between a ground-state observable of an electronic system (e.g.
the total energy) and the total electronic density via a universal functional and
(ii) the ground-state density minimizes the total energy. If one knew the exact
functional of the density, one would be able to calculate every observable for a
given density. Thus there would be no need to calculate the many-body wave-
function, which is much more complicated to compute than the density and
carries much more information, of which only a small part is actually needed
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to calculate the ground-state observables. The energy density functional is so
defined:

E[ρ] = 〈Ψ[ρ]|H|Ψ[ρ]〉, (3.13)

where Ψ[ρ0] is the ground-state Ψ0 in a given external potential. H is the
Hamiltonian of the system (3.2). The total energy can be expressed as a func-
tional of the density:

E[ρ] =
∫

dr ρ(r)Vext(r) + F[ρ] (3.14)

and it is minimal with respect to ρ with minimum ρ0 (the ground-state electron
density):

E0 = E[ρ0] < E[ρ], ρ(r) 6= ρ0(r). (3.15)

F[ρ] is a universal functional of the density as it does not depend on the exter-
nal potential. Density-functional theory is then an exact reformulation of the
many-electron problem that relies on the ground-state total energy and density
as fundamental quantities. An important remark is that the Hohenberg-Kohn
theorem gives a solid theoretical justification to the theory, but it does not pro-
vide any practical tool that could allow an actual application of the theory. In
fact everything relies on the unknown universal functional of the density F[ρ],
which one needs to know to solve the problem.

3.2.2 The Kohn-Sham system

A practical application of DFT is possible thanks to the so-called Kohn-Sham
scheme [34]. Kohn and Sham stated that it is possible to define a non-interacting
electronic system with an effective potential that has exactly the same density
as the interacting one. This system is usually referred to as the Kohn-Sham
system. The density is thus defined as:

ρ(r) =
N

∑
i=1

|φi(r)|2 (3.16)

where φi(r) are the single-particle wavefunctions and are called the Kohn-
Sham orbitals. To obtain the density one has then to solve the non-interacting
equations. The Kohn-Sham equations are the following:

[

−∇2

2
+ VKS(r)− ǫi

]

φi(r) = 0, (3.17)

where ǫi are Lagrange multipliers. The effective potential (called the Kohn-
Sham potential) is composed by three different parts:

VKS(r) = Vext(r) +
∫

dr′
ρ(r′)
|r − r′| + Vxc(r), (3.18)

where one can recognize the Hartree potential as the second term on the right-
hand side. The exchange-correlation potential Vxc(r) contains all the remaining
interactions and it is defined as

Vxc(r) =
δExc

δρ

∣

∣

∣

∣

ρ=ρ(r)

, (3.19)
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where Exc is the exchange-correlation energy functional. This functional is
linked to the Hohenberg-Kohn energy functional in (3.14) via the following
formula:

E[ρ] = T′[ρ] +
∫

dr Vext(r)ρ(r) +
1
2

∫

drdr′
ρ(r)ρ(r′)
|r − r′| + Exc[ρ], (3.20)

where T′[ρ] is the total kinetic energy of the Kohn-Sham system (i.e. sum of
the single-particle kinetic energies). The second and third term are the exter-
nal field interaction energy and the electrostatic classical energy (Hartree) re-
spectively. The Kohn-Sham formulation has the advantage to have removed
the kinetic energy and Hartree contribution from the density functional in the
Hohenberg-Kohn original formula (3.14), having left the unknown part of the
problem in the smaller Exc. At this point all the effects due to complicated
many-body interactions are still hidden in the exchange-correlation functional.
The exact dependence of Exc on ρ is a functional dependence, i.e. in general the
energy per particle in a point does not only depend on the value of the density
in that point, but in fact it depends on the value of the density in all points
(i.e. it is non-local). Moreover, the exact functional form of Exc is not known and
there is no prescription on how to obtain it. The eventual difficulty of the Kohn-
Sham approach still remains to find a sensible approximation for the density
functional. This has been (and continues to be) an extremely active field of re-
search and the number of different approximations proposed throughout the
years is countless. The first and still one of the most popular approximations
proposed is called the local density approximation.

The local density approximation

The local density approximation (LDA) consists in neglecting the non-local
dependence of the functional on the density ρ(r) re-defining the exchange-
correlation functional Exc as the following:

ELDA
xc =

∫

dr ǫ
ρ
xc(r)ρ(r), (3.21)

where ǫ
ρ
xc is the exchange-correlation energy per electron of a homogeneous

electron gas with density ρ(r). The LDA removes a big problem with a very
simple assumption, making the calculation cheaper at the same time. In fact
the energy has in principle a functional dependence on the total density ρ, for
all values of r. Now to calculate the energy one needs to know the energy
density ǫ

ρ
xc(r) only in a given point and not over the whole space. The Kohn-

Sham equations are solved self-consistently, minimizing the total energy of the
system, and the form of the Kohn-Sham potential, which is local in space and
depends on the density only in that single point, allows one to reach the mini-
mum in a much quicker way than e.g. the Hartree-Fock equations. In the latter
case the calculation of the exchange operator, which is non-local, is the major
computational drawback, while the effective Kohn-Sham potential is local. The
other major advantage of DFT-LDA over say HF is that it gives the possibility
to calculate total energies including both exchange and correlation. In that, the
LDA has proven to give better total energies than HF, notably for solids.
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3.3 Excited States

An electronic system jumps into an excited state following a variation of the
external potential. This is what happens in spectroscopy, where an external
field (the probe) is used to perturb the system and measure its response. That
is why the description of excited states is crucial to a theoretical description of
spectroscopies. One can draw two main types of excitated states looking at the
variation in number of particles:

Neutral excitations In this case the number of particles does not change, and
one usually refers to an excited N-particle state as |N, s〉 as opposed to
the ground state |N〉. The key quantity here is the polarizability χ which
determines the variation of the density as a response to an external per-
turbation.

Charged excitations This kind of excitations involve changing number of par-
ticles. One refers to the excited state as |N ± 1, s〉, if a particle has been
added or removed, respectively. The so-called one-particle propagator
G is the key quantity for this kind of excitation. G is the one-particle
Green’s function of the system and describes the probability amplitude
for the propagation of an electron/hole.

3.3.1 Time-dependent density-functional theory

Time-dependent density-functional theory (TDDFT) can be simply seen as the
time-dependent extension of DFT. In fact in TDDFT there is an equivalent of
the Hohenberg-Kohn theorem of DFT which is called the Runge-Gross the-
orem. Runge and Gross have proved that, given an initial state, there is a
one-to-one mapping between the time-dependent external potential Vext(r, t)
and the time-dependent density ρ(r, t) [35]. This is true up to a purely time-
dependent function. The exact time-dependent density can be reproduced by
a non-interacting system, which is a generalized version of the Kohn-Sham
system:

[

−∇2

2
+ VKS(r, t)

]

φi(r, t) = i
∂

∂t
φi(r, t) (3.22)

and one can calculate the exact time-dependent density using the single-particle
wavefunctions:

ρ(r, t) =
N

∑
i=1

|φi(r, t)|2. (3.23)

As in the static case, all the complicated effects lie inside the effective Kohn-
Sham potential VKS(r, t) which reads:

VKS(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t), (3.24)

where Vext includes the external time-dependent perturbation and VH(r, t) is
the usual Hartree potential but for a time-dependent density. The time-dependent
exchange-correlation functional Vxc is defined as

Vxc(r, t) =
δAxc[ρ]

δρ

∣

∣

∣

∣

ρ=ρ(r,t)
, (3.25)
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where Axc is the exchange-correlation action and it is a functional of the time-
dependent density. Axc is defined through the action functional of the Kohn-
Sham system AKS:

VKS(r, t) =
δAKS[ρ]

δρ

∣

∣

∣

∣

ρ=ρ(r,t)
(3.26)

and the exact action of the system A[ρ] as follows:

A[ρ] = AKS[ρ]−
1
2

∫

C
dτ t̄(τ)

∫

drdr′
ρ(r, τ)ρ(r′, τ)

|r − r′| − Axc[ρ], (3.27)

where the second term is related to the Hartree potential and involves an in-
tegration on the Keldish contour. The physical time t̄ is parametrized by the
parameter τ — called pseudotime — that runs over a contour C in the complex
plane [36, 37].3 The exact action is stationary with respect to the exact density,
i.e.

δA[ρ]

δρ

∣

∣

∣

∣

ρ=ρ(r,t)
= Vext(r, t) (3.28)

and thus establishes the connection between density and external potential.

Adiabatic local density approximation

The practical challenge of TDDFT is to find a suitable approximation for the
exchange-correlation functional Vxc(r, t). Following the parallel with static
DFT, the simplest approximation proposed is the adiabatic local density ap-
proximation (ALDA) [36]:

VALDA
xc (r, t) = VLDA

xc
(

ρ(r, t)
)

, (3.29)

i.e. the value of Vxc at each space-time point (r, t) is given by the value of the
LDA exchange-correlation potential in the same point and at the same time
and it is not anymore a functional of the density, in that it does not depend on
the density in all positions in space and all times in history.

3.3.2 Linear response in TDDFT

If the variation of the external potential is small, one can make use of linear-
response theory. The focus here is on the variation of the density with respect
to the external potential. If the potential is weak, one can expand and linearize
the density variation δρ in terms of the external potential Vext:

δρ(r, t) =
∫

dr′dt′ χ(r, t, r′, t′)δVext(r
′, t′). (3.30)

χ(r, t, r′, t′) is the linear density-response function (polarizability), defined as

χ(r, t, r′, t′) =
δρ(r, t)

δVext(r′, t′)

∣

∣

∣

∣

Vext(r′ ,t′)=Vext(r′ ,t0)

, (3.31)

3This is done in order to respect the causality condition (See [37]).
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where Vext(r2, t0) is the static external potential, i.e. before the perturbation
starts to vary after t0. This χ is a retarded response function, as it respects the
causality condition: χ(r, r′, t − t′) = 0 for t < t′. The calculation of the density-
response function χ is key for the study of neutral excitations. It is also crucial
in Green’s function theory, as it enters in the screened Coulomb interaction W.4

The density variation is also linked to the variation of the Kohn-Sham potential
via the Kohn-Sham polarizability χKS:

δρ(r, t) =
∫

dr′dt′ χKS(r, t, r′, t′)δVKS(r
′, t′), (3.32)

χKS being defined as

χKS(r, t, r′, t′) =
δρ(r, t)

δVKS(r′, t′)

∣

∣

∣

∣

VKS(r′ ,t′)=VKS(r′ ,t0)

. (3.33)

One can calculate δVKS/δVext using (3.24) and Schwinger chain rule for func-
tional derivatives:

δVKS(r, t)

δVext(r′, t′)
= δ(r, t, r′, t′) +

δVH(r, t)

δVext(r′, t′)
+

δVxc(r, t)

δVext(r′, t′)
, (3.34)

obtaining the Dyson equation in linear-response TDDFT for the polarizability:

χ(r, t, r′, t′) = χKS(r, t, r′, t′) +
∫

dr′′dt′′dr′′′dt′′′ χKS(r, t, r′′, t′′)

×
[

v(r′′ − r′′′)δ(t′′ − t′′′) + fxc(r
′′, t′′, r′′′, t′′′)

]

χ(r′′′, t′′′, r′, t′). (3.35)

Here fxc is the exchange-correlation kernel, defined as

fxc(r, t, r′, t′) =
δVxc(r, t)

δρ(r′, t′)
. (3.36)

The ALDA for the exchange-correlation kernel (also know as time-dependent
LDA or TDLDA) reads:

f ALDA
xc (r, r′, t, t′) = δ(r − r′)δ(t − t′)

dVLDA
xc

dρ

∣

∣

∣

∣

ρ=ρ(r,t)
. (3.37)

The ALDA simplifies remarkably the structure of the kernel. In this approxi-
mation all non-locality (space and time) is neglected, as Vxc depends only on
the local value of ρ(r, t), in an equivalent way to the static case of LDA in KS-
DFT. The ALDA brings also a computational advantage in that it halves the
number of integrals that have to be calculated in (3.35).

4There is an important distinction between response functions in TDDFT and in Green’s func-
tion theory: the former follow the causality condition and are then called retarded; the latter obey a
time-symmetry condition, as they are meant to describe particles and anti-particles (i.e. electrons
and holes), and are called time-ordered. This distinction does not change the general definition of
the objects, which is equivalent in the two frameworks; however, is very important when these
quantities have to be integrated in the complex plane.
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3.3.3 Green’s Function Theory

Green’s functions are used in all fields of physics and there defined in different
ways.5 The many-body one-particle Green’s function is here defined as the
propagator of a hole (electron) from space-time point 2 to space-time point 1
(from 1 to 2). G is time-ordered and defined at zero temperature:6

iG(1, 2) = 〈N|T
[

ψ̂(1)ψ̂†(2)
]

|N〉 =







〈N|ψ̂(1)ψ̂†(2)|N〉 t1 > t2

−〈N|ψ̂(2)†ψ̂(1)|N〉 t1 < t2

(3.38)

where ψ̂†(1) and ψ̂(1) are the second-quantization field operators in the Heisen-
berg representation, for creation and annihilation, respectively. T is Wick’s
time-ordering operator. |N〉 stands for Ψ(r1, σ1, . . . , rN , σN , t), the ground-state
N-particle many-body wavefunction. The one-particle Green’s function carries
all the information about one-particle properties of the system. One can there-
fore use it to calculate the expectation value of any single-particle operator of
a given system, e.g.:

• the ground-state density;

• the ground-state total energy;7

• the single-particle excitation spectrum (i.e. the photoemission spectrum).

As an example, one can write the ground-state density as:

ρ(1) = −iG(1, 1+) (3.39)

i.e. the ground-state density is in fact the Green’s function’s diagonal in space
and time. Extra care must be taken when taking time limits: 1+ stands here for
limη→0 r1, t1 + η with η > 0 ∧ η ∋ R. This simple equality is the link between
DFT and Green’s function theory.

3.3.4 Lehmann representation and the spectral function

After one has properly defined G, the problem is how to extract information
from it. First, one has to introduce N + 1 and N − 1 many-body eigenstates.
Using the closure relations of the |N ± 1, i〉 in Fock space, inserting them be-
tween the field operators in (3.38) and writing τ = t1 − t2 one can derive

G(r1, r2, τ) = −i ∑
i

fi(r1) f ∗i (r2)

[

θ(τ)θ(ǫi −µ)− θ(−τ)θ(µ− ǫi)

]

e−iǫiτ . (3.40)

The Heaviside step functions remind the reader that µ is the upper bound for
hole states (removal energies) and the lower bound for electron (addition ener-
gies). This is the Lehmann representation of one-particle Green’s function [44].

5To have a complete overview on Green’s functions theory, see [38–42].
6(1, 2, . . .) is a shorthand notation for time, space and spin variables (r1, t1, ξ1; r2, t2, ξ2; . . .).
7The total energy is not a single-particle operator, but it has been shown that it can be calculated

once G is known (See e.g. [43]).
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Lehmann amplitudes fi(r) are defined in Fock space as:

fi(r) =







〈N|ψ(r)|N + 1, i〉, ǫi = EN+1,i − EN for ǫi > µ

〈N − 1, i|ψ(r)|N〉, ǫi = EN − EN−1,i for ǫi < µ

(3.41)

where ǫi are the one-particle excitation energies, defined here as differences of
total energies of an excited |N ± 1, i〉 state and the ground state |N〉. One can
transform this equation in Fourier space, using (B.4) for the step function and
obtain

G(r1, r2, ω) = ∑
i

fi(r1) f ∗i (r2)

ω − ǫi − iη sgn(µ − ǫi)
(3.42)

where the term iη sgn(ǫi − µ) (with η → 0 real and positive) is introduced to
allow convergence of integrals in the Fourier transform. The form (3.42) of the
Green’s function highlights its connection with excitation energies and exper-
iment. In fact G(r1, r2, ω) is the sum over the i possible configurations of an
N + 1 state (N − 1 in case of holes) and its poles, which are the excitation en-
ergies, are weighted by Lehmann’s amplitudes. The ǫi are electron addition
and removal energies, i.e. the energies that are measured in direct and inverse
photoemission experiments. This shows how the Green’s function is the ap-
propriate tool to calculate the photoemission spectrum of a system.

A key quantity in Green’s function theory and essential for the connection
with experiment is the spectral weight function A(r1, r2, ω). It is also called spec-
tral density function or simply spectral function (when it is unambiguous). The
spectral function A is defined as

A(r1, r2, ω) = ∑
i

fi(r1) f ∗i (r2)δ(ω − ǫi) (3.43)

The spectral function is real-valued and it is closely related to the imaginary
part of G. This reduces to (2.5) in the case of a system of independent parti-
cles, once one has integrated over space to obtain the total spectral function.
Knowing that limη→0+

1
x+iη = P 1

x − iπδ(x) and applying it to (3.42) one can
derive

ImG(r1, r2, ω) = π sgn(µ − ǫi)∑
i

fi(r1) f ∗i (r2)δ(ω − ǫi). (3.44)

One can then write a positive-definite expression for A that connects A and G:

A(r1, r2, ω) =
1
π

∣

∣ ImG(r1, r2, ω)
∣

∣ (3.45)

A is a real and positive function of ω, which is a numerical advantage with
respect to a complex function. It carries the same amount of information as
the Green’s function, since real and imaginary part of G are connected via
Kramers-Kronig relations [45]. The spectral function follows sum rules, that
can be derived from (3.43):

∫ +∞

−∞
dω A(r1, r2, ω) = δ(r1 − r2), (3.46a)

∫ µ

−∞
dω A(r1, r1, ω) = ρ(r1), (3.46b)
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where ρ(r1) is the ground-state density. Both A and G are in practice used
as matrices in space with the use of some suitable orthonormal set of single-
particle states φj. One then obtains for G and A

Gij(ω) =
∫

drdr′ φ∗
i (r)G(r, r′, ω)φj(r

′),

Aij(ω) =
∫

drdr′ φ∗
i (r)A(r, r′, ω)φj(r

′)
(3.47)

and all the properties and relations between the two remain unchanged. Now
Aii(ω) is what is calculated when one wants to compare it with ARPES spectra.
To calculate the total spectral function one has instead to calculate the trace of
Aij(ω). Another important sum rule for A, provided that it can be diagonalized
over some orthonormal basis, is

∫ +∞

−∞
dω ωAii(ω) = ǫHF

ii , (3.48)

which puts the center of mass of the spectral function of a given state i at the
Hartree-Fock energy ǫHF

ii [46]. At this point one only needs a method to calcu-
late the Green’s function. This will be the subject of the next part.

3.3.5 Equation of motion for G and the self-energy

The properties of the one-particle Green’s function and of the spectral func-
tion are now defined. Still, to calculate G one needs to know the many-body
states |N〉 and use one of the definitions in the previous paragraph. This does
not make much sense though, as having |N〉 means having already solved the
many-body problem. One needs an alternative approach. The field operators
ψ̂(1) used to define G in (3.38) satisfy an equation of motion that one can use
to derive a hierarchy of equations of motion for the Green’s function. The one-
particle Green’s function will depend on the two-particle one:

[

i
∂

∂t1
− h(r1)

]

G(1, 2) + i
∫

d3 v(1, 3)G2(1, 3+; 2, 3++) = δ(1, 2), (3.49)

the two-particle one on the three-particle one, and so on. h(r1) is the indepen-
dent particle hamiltonian, which contains the external potential and v(1, 3) =
δ(t1 − t3)/|r1 − r3| is the Coulomb interaction. This set of N-particle Green’s
function equations retains the complexity of the initial many-body problem.
The above is called the equation of motion for the one-particle Green’s func-
tion. The two-particle Green’s function is defined as

i2G2(1, 2; 1′, 2′) = 〈N|T
[

ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)
]

|N〉 (3.50)

and it is clearly a more complicated quantity than the one-particle G, as it de-
pends on 4 space-time points. Equation (3.49) shows that the propagation of
a particle in a solid is mediated by the Coulomb interaction, which is a two-
particle interaction. One can think of the hole/electron as a field that polar-
izes the system, creating electron-hole pairs. This is a simple explanation of
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why the two-particle Green’s function, which describes the propagation of two
particles, appears in the formula. Now, the fundamental idea of many-body
perturbation theory is that if one is mainly interested in one-particle proper-
ties, the only quantity needed is the one-particle Green’s function. Therefore it
would seem legit to try and write higher-order Green’s functions in an approx-
imate way. As an example, it would be ideal to find good approximations to
rewrite the two-particle Green’s function in terms of one-particle ones. In the
following I will show how it is possible to reformulate the two-particle Green’s
function in terms of the one-particle G and of an operator Σ (which operates on
the one-particle Green’s function) called self-energy that accounts for all many-
body effects. Σxc is defined by the following relation:

i
∫

d3 v(1, 3)G2(1, 3+; 2, 3++) = i
∫

d3 v(1, 3)G(3, 3+)G(1, 2)+

−
∫

d3 Σxc(1, 3)G(3, 2), (3.51)

where the first term on the right-hand side is the Hartree term, as the electronic
density ρ(r3) is equal to −iG(3, 3+). The Hartree term can be either included
in Σ or treated separately, depending on the case. The self-energy Σ is defined
by Σ = VH + Σxc.

The Dyson equation

The expression (3.51) for G2 can be put in (3.49) to obtain the Dyson equation for
the one-particle G:

[

i
∂

∂t1
− hH(r1)

]

G(1, 2)−
∫

d3 Σxc(1, 3)G(3, 2) = δ(1, 2), (3.52)

where the Hartree term is now included in hH(r1). The purpose of many-body
perturbation theory is then to find suitable approximations for the operator Σ

to reformulate it as a functional of one-particle Green’s function only. It is pos-
sible to define a non-interacting Green’s function of a non-interacting particle
in the common way used in many fields of physics, as the functional inverse of
the non-interacting Hamiltonian:

[

i
∂

∂t1
− h(r1)

]

G0(1, 2) = δ(1, 2), (3.53)

where h is the single-particle Hamiltonian without the Hartree potential. This
shows that we can write the non-interacting Hamiltonian in the Dyson equa-
tion (3.52) as G−1

0 , multiplying everything by G−1, and re-write

G−1
0 (1, 3)− G−1(1, 2) = Σ(1, 2). (3.54)

The definition of G0 can be used to work out (3.52) and obtain the Dyson equa-
tion for G (indices and integrals are here dropped for simplicity):

G = G0 + G0ΣG. (3.55)
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These formulas show how Σ carries all information about many-body interac-
tions and connects the interacting system with the non-interacting one. The
problem of finding the exact Green’s function has been mapped into the prob-
lem of finding the self-energy. The self-energy remains here an unknown oper-
ator, but, once it is determined, one is able to calculate the one-particle Green’s
function. In this sense, the self-energy plays here the same role played by the
Kohn-Sham potential in KS-DFT. It is an unknown exchange-correlation poten-
tial containing all the complicated physics of the system. In the next subsection
I will describe Hedin’s approach to this problem. This approach introduces a
prescription to calculate Σ and gives some physical insight on the problem.

The quasiparticle equation

It would be convenient to have an effective Schrödinger equation from which
one can calculate eigenvalues and eigenfunctions for the many-body system.
The quasiparticle equation serves exactly this purpose. The Fourier transform
of the Dyson equation (3.52) gives

[ω − hH(r1)] G(r1, r2, ω)−
∫

dr3 Σxc(r1, r3, ω)G(r3, r2, ω) = δ(r1 − r2). (3.56)

To overcome the complexity of the equation due to the energy dependence of
both G and Σ, it is necessary to analytically continue G in the complex plane.
One then assumes that the dominant contribution to G comes in the proximity
of some complex energies Ei. At the same time one assumes that Σ is slowly-
varying in the same neighborhood. This is the quasiparticle approximation. Writ-
ing G on a set of single-particle wavefunctions and then taking ω at the domi-
nant energies Ei gives

∫

dr3 [hH(r3)δ(r1 − r3) + Σxc(r1, r3, Ei)] φi(r3) = Eiφi(r1), (3.57)

This is called the quasiparticle equation. In this equation the self-energy acts as
a complex, non-local and energy-dependent potential which includes all many-
body interactions of the system. The wavefunctions φ are called quasiparticle
wavefunctions. The Ei are called quasiparticle excitation energies. The real part of
Ei represents the photoemission excitation energies of the system. The imagi-
nary part is proportional to the inverse of the lifetime of the excitation.

3.3.6 Spectral function from a self-energy

The quantity one usually compares with photoemission experiments is the
spectral function, that can be calculated using the imaginary part of the one-
particle Green’s function (3.43) [24, 25, 39, 47–51]. In Hedin’s framework one
focuses on the self-energy as the key quantity of the problem, but once the self-
energy is known one can use it to calculate the one-particle G using the Dyson
equation:

G−1 = G−1
0 − VH − Σxc, (3.58)

where I have explicitly written the Hartree potential VH — contained before in
Σ — and ditched space indices for clarity. Now G, G0 and Σ are not in general
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diagonal on the same basis set. However, in practical applications one assumes
these three operators to be diagonal on a common basis and writes

G =
1

ω − ǫH − Σxc , (3.59)

so that the calculation of the imaginary part of G is straightforward and

A(ω) =
1
π

| ImΣxc(ω)|
[ω − ǫH − ReΣxc(ω)]2 + [ ImΣxc(ω)]2

. (3.60)

This expression for the spectral function makes it possible to give a straightfor-
ward analysis of its structure and relate it to the case of independent particles.
In the independent-particle case (say Hartree) the self-energy is purely real.
Therefore the spectral function is a sum of delta functions centered on the en-
ergies ǫH. This is the case for any static self-energy. When the self-energy is
energy-dependent and we talk about quasiparticle energies, the spectral func-
tion has the more complex general structure reported above. In this case the
spectral function exhibits peaks at the zeros of ω − ǫH − ReΣ(ω) with a width
which is equal to | ImΣ(ω)| in the neighboring area. These are in general
called quasiparticle peaks and are interpreted as a renormalized version of the
independent-particle peaks. A can have additional structures, beside quasi-
particle peaks. These structures are called satellites and form the incoherent part
of the spectrum, as opposed to the coherent part, formed by the quasiparticle
peaks. Satellites can arise when the real part of sigma is slowly-varying and
comparable to the imaginary part, that must have a local maximum to produce
a visible structure in the self-energy.

3.3.7 Energy shift in the G0W0 spectral function

When one calculates the self-energy starting from a non-interacting Green’s
function, the relative shift of the bands can be small with respect to the abso-
lute energy shift, that can be quite significant. This results in a shift ∆E of the
Fermi energy that, if not taken into account, can affect the shape of the spec-
tral function. This problem comes from the non-self-consistent nature of the
eigenvalues used to construct the Green’s function and is automatically solved
if self-consistency in G is imposed. According to Hedin [25], one should add a
correction term ∆E, imposing self-consistency at the Fermi level, i.e.

εtop-valence + ∆E = EQP
top-valence (3.61)

and shift all energies by this value. After a change of variables, the spectral
function can then be written as

Ai(ω) =
1
π

∣

∣ImΣxc
i (ω)

∣

∣

[

ω − εi + ∆E − ReΣxc
i (ω)

]2
+
[

ImΣxc
i (ω)

]2 . (3.62)

The effect of the correction is of course proportional to the shift. One can take
the example of bulk silicon (See Figure 3.1). Here the shift is of the order of
0.1 eV and the effect on the total spectral function is very small. The visible
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trend is that the QP peaks are enhanced and there is a slight reduction of the
satellite weight. The greatest effect appears to be close to the fermi energy.
This example is of course not representative of a general case. The effect of the
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Figure 3.1: GW spectral function for bulk silicon with (solid red) and without (solid
blue) the ∆E correction. The Fermi energy is at 0 eV. Both curves include a gaussian
broadening with σ = 0.4 eV.

correction will strongly depend on the magnitude of the shift and on the shape
of the self-energy. An example of this is VO2, where the energy shift is crucial
to correct the position of satellites close to the Fermi energy [52].

3.4 Hedin’s equations and GW

At this point the problem of calculating G has been transferred to the problem
of calculating Σ, a complex energy-dependent non-local potential. Yet, there
is no prescription on what the self-energy should be (apart from a function of
the utterly complicated G2) or how to find reliable approximations. Hedin’s
approach aims exactly at giving an easier tool than the bare Dyson equation to
find approximations for the self-energy, with a particular accent on the dynam-
ical screening W that leads to the GW approximation.

Schwinger [53] proved that, in the presence of a small perturbing potential
ϕ, it is possible to formally eliminate the dependence on G2 using functional
derivatives. Thanks to Schwinger’s technique, it can be shown that:

δG(1, 2)
δϕ(3)

= G(1, 2)G(3, 3+)− G2(1, 3, 2, 3+). (3.63)

With this equation it is possible to write the two-particle Green’s function in
terms of one-particle ones. The external perturbation ϕ is put to 0 at the end
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of the derivation. One can use this relation to substitute G2 in the equation of
motion of the one-particle Green’s function (3.49) to obtain

[

i
∂

∂t1
− hH(r1)

]

G(1, 2)− i
∫

d3 v(1+, 3)
δG(1, 2)

δϕ(3)

∣

∣

∣

∣

ϕ=0
= δ(1, 2). (3.64)

Now one has to calculate G solving (3.64) to obtain the solution of the one-
particle problem. This would imply the solution of a multi-dimensional func-
tional differential equation for G, a problem that is nearly as difficult as the
many-body problem (See Section 3.6), since one has to know the explicit de-
pendence of G with respect to ϕ. As an alternative, one can try to iterate the
equation for G making in practice an expansion in the Coulomb potential v us-
ing perturbation theory. This kind of approach has been tried and the series is
known to diverge after a few orders.

The problem can be reformulated in terms of a self-energy, finding two
equivalent expressions8 for Σ:

Σ(1, 2) = −i
∫

d345 G(1, 4)
δG−1(4, 2)

δϕ(3)
v(1+, 3) (3.65a)

= i
∫

d345 G−1(4, 2)
δG(1, 4)

δϕ(3)
v(1+, 3). (3.65b)

These two can also serve as an alternative definition of the self-energy, once
the Schwinger relation is known. On the path to obtain Σ and G, Hedin [38, 39]
introduces at first the local classical potential V(1):

V(1) = ϕ(1)− i
∫

d2 v(1, 2)G(2, 2+), (3.66)

which is the sum of the external perturbation ϕ and the Hartree potential
VH(1) = −i

∫

d2 v(1, 2)G(2, 2+). Using the functional derivative’s chain rule
by Schwinger9 one can reformulate equation (3.65a) as

Σ(1, 2) = −i
∫

d345 G(1, 4)
δG−1(4, 2)

δV(5)
δV(5)
δϕ(3)

v(1, 3+). (3.67)

One then introduces the time-ordered inverse dielectric function:

ε−1(1, 2) =
δV(1)
δϕ(2)

, (3.68)

and the irreducible vertex function:

Γ̃(1, 2; 3) = − δG−1(1, 2)
δV(3)

; (3.69)

the term “irreducible” means that the functional derivative is performed with
respect to the classical total potential V and not only with respect to the exter-
nal potential ϕ. For each irreducible quantity, is possible to define a reducible

8For two generic functionals G(1, 2) and ϕ(1), δG(1,2)
δϕ(3) = −

∫

d45 G(1, 4) δG−1(4,5)
δϕ(3) G(5, 2)

9For three generic functionals A,B and C with A = A[B[C]], δA[B[C]](1)
δC(2) =

∫

d3 δA[B](1)
δB(3)

δB[C](3)
δC(2)



34 CHAPTER 3. THEORETICAL BACKGROUND

function differentiating with respect to ϕ. The dynamical screened Coulomb
interaction, a fundamental quantity in Hedin’s framework, is then introduced:

W(1, 2) =
∫

d3 v(1, 3)ε−1(3, 2). (3.70)

Now one can rewrite the self-energy as

Σ(1, 2) = i
∫

d34G(1, 4)W(3, 1+)Γ̃(4, 2; 3). (3.71)

One still has to provide some tractable expressions for Γ̃ and ε−1. Using the
Dyson equation G−1 = G−1

0 − V − Σ, equation (3.68) is worked out with some
functional analysis to give

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫

d4567
δΣ(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ̃(6, 7; 3). (3.72)

For ε−1 one can use the definition of V in (3.66) and write:

ε−1(1, 2) = δ(1, 2) +
∫

d3v(1, 3)χ(3, 2), (3.73)

where

χ(1, 2) = −i
δG(1, 1+)

δϕ(2)
(3.74)

is the time-ordered reducible polarizability of the system. One can introduce
the irreducible polarizability as

χ̃(1, 2) = −i
δG(1, 1+)

δV(2)
(3.75)

which is related to χ by

χ(1, 2) = χ̃(1, 2) +
∫

d34 χ̃(1, 3)v(3, 4)χ(4, 2). (3.76)

Finally, χ̃(1, 2) can be written as a function of G and Σ:

χ̃(1, 2) = −i
∫

d34 G(1, 3)G(4, 1)Γ̃(3, 4; 2). (3.77)

One can finally write Hedin’s set of five equations in five unknown quantities
[38, 39]:

G(1, 2) = G0(1, 2) +
∫

d34 G0(1, 3)Σ(3, 4)G(4, 2) (3.78a)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫

d4567
δΣ(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ̃(6, 7; 3) (3.78b)

χ̃(1, 2) = −i
∫

d34 G(2, 3)G(4, 2)Γ̃(3, 4; 1) (3.78c)

W(1, 2) = v(1, 2) +
∫

d34 v(1, 3)χ̃(3, 4)W(4, 2) (3.78d)

Σ(1, 2) = i
∫

d34 G(1, 4)W(3, 1+)Γ̃(4, 2; 3) (3.78e)
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where W is written as a function of χ̃ to avoid introducing the intermediate
quantities ε−1 and χ. In his original paper [38], Hedin mentioned that these
equations can be viewed as a starting point for an iterative solution of the
many-body problem, but he stressed that they would be interesting if only
very few iterations were actually needed (because of the increasing difficulty
of the calculation). For a practical use of Hedin’s equations, the calculation
starts with some hypothesis on Σ and G; then Γ̃ and χ̃ are evaluated. At this
point W and then Σ can be calculated. Now one knows an improved Green’s
function G and can start again the same procedure, with the new Σ and G. This
procedure can be represented by the pentagon in figure 3.2, where each corner
represents an unknown variable and each edge one of the five Hedin’s equa-
tions. The exact solution can be in principle obtained upon completion of sev-
eral cycles of the pentagon, once convergence is reached. This is an in principle

Figure 3.2: Hedin's pentagon, representing the calculation cycle of Σ. Every corner
represents a quantity and one of the �ve equations. The GW approximation is
represented by a single cycle of the pentagon where one starts with Σ = 0.

exact procedure and will be in practice unfeasible because of the complexity of
the quantities involved. The difference with the previous reformulations of the
many-body problem is that now one has a framework where physical quan-
tities — namely W — are recognizable. This point is important in that it can
help finding approximation for the self-energy. The most successful example
of this is probably the GW approximation. Hedin proposed also the COHSEX
approximation (a static version of GW), that contains physical insight and yet
it is static, hence computationally cheaper.
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3.4.1 The GW approximation

One of the advantages of Hedin’s equations is that they use the screened inter-
action W instead of the Coulomb interaction v. Using W instead of v as basic
interaction is motivated by the hope that the perturbation theory will converge
faster with respect to powers of W, than with respect to the powers of v. Hav-
ing this hope in mind, Hedin proposed to retain only first-order contributions
in W. This principle yields the so-called GW approximation that consists in
initiating the iterative scheme with Σ = 0 in the vertex equation:

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3). (3.79)

The resulting self-energy becomes then

Σ(1, 2) = iG(1, 2)W(2, 1+). (3.80)

This form for the self-energy gives the name to the approximation. The corre-
sponding irreducible polarizability reads

χ̃(1, 2) = −iG(1, 2)G(2, 1) (3.81)

which is the definition of the independent-particle (or RPA) polarizability.

One-shot GW

The standard approach that is used to calculate photoemission excitation ener-
gies within the GW approximation starts with a close comparison of the quasi-
particle equation (3.57) and the Kohn-Sham equation (3.17). The exchange-
correlation potential and the self-energy act both as a potential in a pseudo-
Schrödinger equation, with Σ being much more complicated than VKS

xc . If one
assumes that the Kohn-Sham orbitals are a decent approximation of quasi-
particles — which in principle they are not — it is reasonable to consider
Σ − VKS

xc as a first-order perturbation to the Kohn-Sham Hamiltonian. This a
priori meaningless comparison — the Kohn-Sham orbitals are fictitious wave-
functions constructed to give the exact total density and the eigenvalues ǫKS

i
are Lagrange multipliers — has proven to be reasonable for a large class of ma-
terials, especially sp semiconductors [54]. GW energies are hence most often
calculated as first-order corrections to the Kohn-Sham energies, for a quasipar-
ticle state i, as

ǫGW
i = ǫKS

i + Z〈φi|Σ(ǫKS
i )− VKS

xc |φi〉, (3.82)

where Σ has been linearized in the vicinity of ǫKS
i , so that the problem of its

dependence on ǫGW
i is solved. The Z factor comes from the linearization:

Z =
1

1 − ∂Σ
∂ǫ

∣

∣

∣

ǫKS
i

. (3.83)

The self-energy is constructed with Kohn-Sham LDA wavefunctions and ener-
gies via the Green’s function G and the RPA screening W. This procedure is
known as one-shot GW, G0W0 or perturbative GW, and has proven to be very
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successful in predicting photoemission gaps of various compounds. The per-
turbative approach is valid as long as the electronic structure of the starting
point is considered reasonable. This is known not to be the case for LDA in
several systems, most notably in transition metal oxides. In these systems the
KS orbitals have shown to give a very different electronic structure with re-
spect to quasiparticles. Several methods have been developed to improve the
description of the electronic structure in difficult cases like these and there is
still a lot of activity in the field. The typical solution is to use an improved
VKS

xc to correct this problem, but there are also simple approximations of the
self-energy that can be used instead [55, 56]. The lasting issue of perturbative
GW is that it relies on the quality of the starting point. The only way to re-
move this dependence is to adopt a partial or full self-consistent scheme for
the calculation of the self-energy.

3.4.2 Hartree-Fock self-energy

Using the quasiparticle equation and selected approximations for the self en-
ergy, one can trace a path from the simpler to the more complex approxima-
tions and understand better the concept of correlation. While the Hartree ap-
proximation can be retrieved putting Σ = 0, the Hartree-Fock approximation
can be recovered writing the self-energy as

Σx(1, 2) = i v(1+, 2)G(1, 2)

=− v(r1, r2)ρ(r1, r2) = −∑
occ

φi(r1)φ
∗
i (r2)v(r1, r2).

(3.84)

Σx(1, 2) is the Fock exchange operator, or Hartree-Fock self-energy. ρ(r1, r2) is
the density matrix. The Fock operator can be derived from GW self-energy,
assuming that ε−1 = 1. The direct consequence is that the dynamical screened
Coulomb interaction W is replaced by the bare static Coulomb interaction v.
The physical meaning is that within this approximation the system is not al-
lowed to relax after the addition or removal of an electron, as it is stated by
Koopmans’ theorem [31]. This procedure is the proof that Fock exchange is
contained in GW — as it can be retrieved simplifying the GW self-energy —
and thus correlation effects are included in GW. The concept of correlation is
linked here to the response of the many-electron system after a perturbation
(e.g. a change in number of particles). In general it is always possible to sep-
arate the self-energy in an exchange part Σx and a correlation part Σc just by
defining Σc = Σ − Σx. In the case of GW this yields to a Σc that reads

Σc = iGWp (3.85)

where one has written the screening W as W = v +Wp, where Wp = vχ̃v is the
polarization part of the screening.

3.4.3 COHSEX self-energy

The COHSEX approximation for the self-energy, first proposed by Hedin as
an affordable approximation of GW [38], produces an hermitian self-energy
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which is static and requires only a sum over the occupied states. This makes
the COHSEX approximation much more affordable than GW, where the self-
energy is dynamical. The COHSEX self-energy is the sum of two terms. The
first term is

ΣSEX(r1, r2) = −∑
i

θ(µ − ǫi)φi(r1)φ
∗
i (r2)W(r1, r2, ω = 0) (3.86)

which is called the screened exchange part (SEX). This formula is almost identi-
cal to equation (3.84), except that here the static screened Coulomb interaction
has taken the place of the bare Coulomb interaction v. This term takes into
account correctly the fermionic nature of electrons, including exchange. At the
same time it includes the fact of being in a polarizable medium and it damps
the exchange interaction. The sum over occupied states ensures a limited com-
putational effort, whereas in the GW self-energy one has to sum over all the
empty states as well. The calculation of W requires to calculate ε−1 at ω = 0,
which is less effort than in GW. The second term of the COHSEX self-energy is

ΣCOH(r1, r2) =
1
2

δ(r1 − r2)Wp(r1, r2, ω = 0), (3.87)

where Wp = W − v is again the polarization part of W. This second term is
called the Coulomb-hole (COH) contribution to the self-energy. It is static and lo-
cal in space. This latter term represents the energy shift due to the istantaneous
polarization of the system induced by an added hole or electron, represented
by a classical point charge. Then ΣCOHSEX = ΣSEX + ΣCOH. The COHSEX ap-
proximation for the self-energy gives an immediate physical insight. One can
easily understand what effects are included in the self-energy (exchange and
polarization) and what are missing (dynamical correlation, e.g. satellites). Fur-
thermore COHSEX has a distinct computational advantage over GW. This ap-
proximation is known to be a reliable approach for self-consistent calculations,
purpose of which is to calculate new wavefunctions [55, 57, 58]. In fact the GW
self-energy is in general non-hermitian. Using COHSEX one can diagonalize
the self-energy and solve the quasiparticle equation (3.57). The dynamical ef-
fects neglected in ΣCOHSEX are normally included in the calculation by a last
perturbative GW step on top of the converged COHSEX band structure.

3.4.4 Plasmon-pole model

The calculation of the self-energy in GW involves a convolution of G and W in
the frequency domain (dropping space indices):

Σ(ω) =
i

2π

∫

dω′ eiω′ηG(ω + ω′)W(ω′). (3.88)

This part of the calculation is very time-consuming. To calculate W, the matrix
ε−1

GG′(q, ω) must be calculated for different values of q in the Brillouin zone,
for all values of ω.10 When one is interested only in the value of the integral

10The inverse dielectric function is defined here in reciprocal space on the G vectors of the plane
wave basis and in frequency space.
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it is acceptable to approximate the integrand to a simple form. It has been
proposed to model the dependence on ω of the matrix ε−1

GG′(q, ω) by a single
plasmon-pole model [48, 49, 59–62]:

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − (ω̃(q)− iη)2 (3.89)

where Ω2
GG′(q) and ω̃(q) are the two parameters of the model. The inverse

dielectric function is here approximated as a single-peak structure. This model
allows one to evaluate ε−1 everywhere in the complex plane, once the two
parameters are set. To fit the parameters two constraints are needed. As an ex-
ample, the ABINIT GW code [63] chooses two frequencies where the RPA ε−1

is computed: ω = 0 and ω = iωp. It is convenient to take an imaginary value
for the second frequency because ε−1 is always well-behaved on the imaginary
axis. The frequency ωp is usually the classical plasmon frequency which is cal-
culated using the average value of the electronic density. However, as long as
the model is close to the actual function, any value of ωp is in principle correct
as it just acts as a fitting parameter. Using a plasmon-pole model reduces the
effort for the calculation of ε−1(ω) as only two frequencies are required. More-
over the use of such model permits an analytic calculation of the integral in
(3.88) which also increases computational speed.

3.5 Self-energy beyond GW: vertex corrections

Approximations that include more effects than GW are said to include vertex
corrections. The vertex Γ is a three-point quantity defined in Hedin’s frame-
work. The exact expression for the irreducible vertex (3.78b), one of of Hedin
equations, is repeated here for clarity:

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫

d4567
δΣ(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ̃(6, 7; 3). (3.90)

The vertex enters both in the screening (3.78d) and in the self-energy (3.78e).
To obtain the GW approximation the vertex function is taken as δ(4, 2)δ(4, 3).
This is equivalent to taking Σ0 = 0 at the beginning of a single cycle of Hedin’s
equations. In this case one says that vertex corrections are neglected. This may
seem like a quite drastic approximation, but it has proven to behave very well
in practical applications for the calculation of band gaps [54, 64]. The origi-
nal reason for neglecting the vertex was very practical: the vertex function is
a three-point quantity that has to be integrated with G and W to calculate the
self-energy. This becomes easily quite demanding in a numerical computa-
tion. Approximating the vertex to a product of two delta functions simplifies
the double integral (which is in fact a multi-dimensional integral over space,
time and spin) in the exact self-energy (3.78e) to a simple product of G and W.
The quest for effective and yet affordable vertex corrections is a path already
walked in literature [28, 65–67] and discussed in early applications of the GW
approximation on real materials [59, 68, 69], but the actual usefulness of such
endeavor is still under debate and a systematic way of finding effective vertex
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corrections with application to real systems is yet to be discovered. Possible
vertex corrections derived from the connection between Green’s function the-
ory and TDDFT are discussed in References [57, 58].

3.5.1 A two-point vertex

Assuming to have an appropriate orthonormal basis, one would be tempted to
write

Γ̃(1, 2; 3) = ∑
ijkl

φj(x1)φ
∗
l (x3)Γil jk(t1 − t3, t2 − t3)φi(x3)φ

∗
k (x2)

= ∑
ik

Γik(1̄, 2̄)φi(x3)φ
∗
k (x2)

≃ ∑
k

Γk(1̄, 2̄)φk(x3)φ
∗
k (x2)

≃ Γ(1̄, 2̄)∑
k

φk(x3)φ
∗
k (x2), (3.91)

which exploits time homogeneity, making the vertex dependent on two time
differences, i.e. effectively dependent on two time variables and three space
variables. This somewhat shows that one can think of the vertex as if it was
composed by a different two-point Γk for each state k in the system.11 If now
one assumes that this state dependence of Γk(1, 2) is weak — i.e. the vertex is
about the same for all states in the system — it seems fair to extract it from the
summation and approximate the three-point vertex to a simpler two-point one
[66], formally

Γ̃(1, 2; 3) = Γ(1, 2)δ(x2 − x3). (3.92)

Formally, once the vertex is approximated to a two-point object, the self-energy
can be written as

Σ(1, 2) = iG(1, 2)W(3, 1)Γ(2, 3) = iG(1, 2)W̃(1, 2), (3.93)

with W̃ = WΓ. In practice, one then calculates W̃ and Σ = GW̃ in an equivalent
way to W and Σ = GW, with the new W̃ that has to be specified. A good
example of this kind of approach to vertex corrections can be derived from
TDDFT.

3.5.2 Vertex corrections from TDDFT

A cheap way to derive vertex corrections for the self-energy is to use a con-
nection to TDDFT via the inverse dielectric function ε−1(q, ω). This procedure
was suggested by Hybertsen and Louie [59] and studied by Del Sole et al. [65]
in the case of the ALDA approximation. One can think of GW as a single cycle
of Hedin’s equations started with Σ0 = 0. It can be shown that, using a dif-
ferent ansatz for Σ0, one can derive a modified self-energy whithout worsening

11As I show above, the exact vertex is actually more complicated than this: the basis transforma-
tion would imply additional off-diagonal jk elements to enter in the game. The matrix element Γjk

is here approximated as Γjk = Γkδjk .
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the computational complexity with respect to GW. In [65] the authors start
the calculation approximating Σ with the LDA exchange-correlation potential
VLDA

xc (r). However, this procedure is valid for any local and static approxima-
tion of Vxc. The starting self-energy then becomes

Σ0(1, 2) = δ(1, 2)Vxc(1). (3.94)

This starting point produces, in the first iteration of Hedin’s equations, a self-
energy of the form Σ = iGW̃, where W̃ is an effective dynamical screened
Coulomb interaction of the form

W̃ =
[

1 − (v + fxc)χ
0
]−1

v (3.95)

where χ0 is the independent-particle polarizability and fxc = δVxc/δρ [70].
The difference between W and W̃ is that the in the latter case the screening is
described by the so-called test-electron dielectric function. W̃ also includes a
TDDFT polarizability χTDDFT that goes beyond the RPA polarizability χ. To be
more precise, one can define W̃ as the test-electron screening using the time-
ordered test-electron inverse dielectric function ε−1

TE and re-write (3.95) as

WTE = ε−1
TEv =

{

1 + (v + fxc)
[

1 − χ0(v + fxc)
]−1

χ0
}

v (3.96)

While the RPA inverse dielectric function used in GW describes the classical
screening between two classical charges, in this case ε−1

TE describes the effect
of an additional charge on the potential felt by an electron. The essential dif-
ference is that in W, the induced charge generates only a Coulomb potential,
while in WTE the induced charge also generates an exchange-correlation poten-
tial. To be precise, this type of screening is due to a test-charge–test-electron (TE)
dielectric function. Using this expression for W̃, the polarizability χ, recognis-
able in the right-hand side of (3.96), is modified in that it includes Kohn-Sham
electron-hole interaction through the TDDFT kernel fxc:

χTDDFT = χ0 + χ0(v + fxc)χ
TDDFT. (3.97)

This goes beyond the RPA polarizability that is used in GW. Quantum me-
chanical effects are in this way included in the screening and in the self-energy.
The true W defined in Hedin’s equations is of the test-charge–test-particle (TP)
type, i.e. it describes the screening of a cloud of classical charges felt by a clas-
sical particle. One can choose to opt for such kind of screening while retaining
the improved polarizability and define

WTP = ε−1
TPv =

(

1 + vχTDDFT
)

v (3.98)

where ε−1
TP is the time-ordered inverse dielectric function already defined in

Hedin’s equations. Within this framework one is able to control vertex correc-
tions in the screening and in the self-energy in a well-defined way. Both GWTP

and GWTE go back to RPA putting fxc = 0. The vertex in the screening is also
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called internal while the vertex in the self-energy is called external. The ap-
proach has the advantage to go beyond the GW approximation while retaining
the same computational cost. 12

3.6 The Kadanoff-Baym equation

Instead of defining a self-energy, one can use Schwinger’s technique to write a
differential equation for the one-particle Green’s function that depends only on
the external perturbation. In this case G0 is defined as the inverse of the non-
interacting hamiltonian, i.e. including only the external static potential, and the
Hartree potential is explicitly treated. Using (3.64) and this definition of G0, it
is possible to write a generalized form of the equation, connecting G and G0:

G(1, 2)[ϕ] = G0(1, 2) +
∫

d3 G0(1, 3)VH(3)[ϕ]G(3, 2)[ϕ]

+
∫

d3 G0(1, 3)ϕ(3)G(3, 2)[ϕ]

+
∫

d34 G0(1, 3)v(3+, 4)
δG(3, 2)[ϕ]

δϕ(4)
,

(3.99)

where the Hartree potential is VH(1) = −i
∫

d2 v(1, 2)G(2, 2+). This equa-
tion was first derived by Baym and Kadanoff [71, 72]. It is a set of coupled
non-linear functional differential equations. The non-linearity comes from the
Hartree term, that contains itself a Green’s function. Using the self-energy as a
first-order perturbation with respect to a suitable starting point one can obtain
a solution for G. The interest of using a self-energy instead of this is to avoid
the complexity of such equation, which is exact but virtually unsolvable.

3.6.1 Linearized equation of motion for G

Recently G. Lani et al. [73, 74] have studied the Kadanoff-Baym equation and
tried to solve it directly without the use of a self-energy. One of the paths they
explored to find a solution involves the linearization of the Hartree potential.
The Hartree potential depends on the external perturbation through the den-
sity. Assuming that the perturbation ϕ is small, one can Taylor-expand the
density around ϕ = 0 and write

VH(1)[ϕ] =− i
∫

d2 v(1, 2)G(2, 2+)[ϕ]
∣

∣

ϕ=0+

− i
∫

d23 v(1, 2)
δG(2, 2+)[ϕ]

δϕ(3)

∣

∣

∣

∣

ϕ=0
ϕ(3) + o(ϕ2).

(3.100)

One can then truncate at first order and define a G0
H so that

G0
H(1, 2) = G0(1, 2) +

∫

d2 G0(1, 3)V0
H(3)G

0
H(3, 2) (3.101)

12This statement holds provided that the computational effort required to calculate fxc (which
depends on the chosen approximation) is negligible with respect to the one required by χ. This
does not hold for any TDDFT exchange-correlation kernel.
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where V0
H(3) = −i

∫

d2 v(3, 2)G(2, 2+)[ϕ]
∣

∣

ϕ=0 is the ground-state Hartree po-
tential. Here the time-ordered inverse dielectric function is

ε−1(1, 2) = δ(1, 2)− i
∫

d2 v(1, 2)
δG(2, 2+)[ϕ]

δϕ(3)

∣

∣

∣

∣

ϕ=0
. (3.102)

At this point one introduces a screened perturbing potential ϕ̄:

ϕ̄(1) =
∫

d2 ε−1(1, 2)ϕ(2). (3.103)

One is then able to rewrite (3.99) as

G(1, 2)[ϕ] = G0
H(1, 2) +

∫

d3 G0
H(1, 3)ϕ̄(3)G(3, 2)[ϕ̄]

+
∫

d34 G0
H(1, 3)W(3+, 4)

δG(3, 2)[ϕ̄]
δϕ̄(4)

, (3.104)

where W is the screened Coulomb interaction at ϕ = 0. One has that W = ε−1v
with ε−1 as defined above. Hedin’s GW approximation (See following sections)
can be retrieved in a straightforward way with the substitution

δG(3, 2)[ϕ̄]
δϕ̄(4)

= G(3, 2)G(2, 4). (3.105)

3.7 The quasi-boson model

D.C. Langreth [75], taking up the work of Nozières and De Dominicis [76],
studied a model Hamiltonian where deep core electrons were coupled to boson
excitations. This Hamiltonian was earlier used by B.I. Lundqvist to study the
GW approximation [77] and it reads

H = ǫcc†c + cc† ∑
q

gq(aq + a†
q) + ∑

q

ωqa†
q aq (3.106)

where c† is the second-quantization creation operator and c is the annihilation
operator for a core electron of energy ǫc and a† and a are the creation and an-
nihilation operators for a plasmon of energy ωq. gq is the coupling constant.
Plasmon dispersion can be included using a model dispersion for ωq. Lan-
greth, generalizing the result by Nozières and De Dominicis, gave the exact
solution of the electron-boson Hamiltonian. The resulting spectral function of
the model has an exponential form and yields a spectrum containing a quasi-
particle peak and a series of satellites, all represented by differently normalized
delta peaks (See Figure 3.3), decaying as a Poissonian distribution. This model
has proved its validity for the photoemission spectrum of core electrons. This
result is also a major improvement with respect to GW (See Figure 3.3), where
the incoherent part of the spectrum is just one broad peak centered around
ǫ − 2ωp. This structure has been accounted for as an average of the exact so-
lution, consequence of the approximate self-energy and was initially called a
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Figure 3.3: (Left panel) GW core-hole spectral function (here labeled with N+(ω))
vs (Right panel) exact solution, both obtained using (3.106). Here ωp is the plasmon
frequency and ∆ǫ the quasiparticle shift from the non-interacting energy in B to the
quasiparticle energy in A. Plasmon dispersion is neglected in the right panel. From
[75].

plasmaron [77, 78].13 The correct description of core-level satellites by this po-
laronic Hamiltonian was later acknowledged and summarized by several au-
thors [22, 24, 79]. Hedin has proposed to use the same expression for G also in
the valence-electron case and proved it adequate in certain regimes [80]. Even-
tually, summarizing all the previous work, he showed that one could employ a
more general Hamiltonian, applicable both to core and valence electrons [25]:

H = ∑
k

ǫkc†
k ck + ∑

s

ωsa†
s as + ∑

skk′
Vs

kk′(as + a†
s )ckc†

k′ . (3.107)

This generalized version of the original electron-boson Hamiltonian is also
known under the name of quasi-boson model. Here the fermions are allowed
to have a momentum dispersion (k,k′) and the energy of the boson is ωs. The
coupling constants are the so-called fluctuation potentials that contain the effects
of polarization. If recoil (i.e. k dispersion) is neglected, the model is reduced to
Langreth’s. The exact core-hole Green’s function reads then

Gc(ω) = −i
∫ 0

−∞
dt ei(ω−ǫc−∆E)t exp

{

∑
q

g2
q

ω2
q

eiωqt − 1
}

(3.108)

13More on that in Chapter 6.
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Defining Z = exp{−∑q g2
q/ω2

q} and Ec = ǫc + ∆E one can proceed Taylor
expanding (3.108) and obtaining

Gc(ω) = Z

{

1
ω − Ec

+ ∑
q

g2
q

ω2
q

1
ω − Ec + ωq

∑
q

g4
q

ω4
q

1
ω − Ec + 2ωq

+ · · ·
}

.

(3.109)
This Green’s function yields in the spectral function an infinite sum of delta
functions. The first peak is at the quasiparticle energy Ec and it is followed by
a Poisson-decaying series of satellite terms, which are centered at multiples of
ωq, as one can see in Figure 3.3.

The solution of the quasi-boson model is not the only way to obtain the
exponential expression for G. Notably, this expression for G has become com-
monly known as the cumulant expansion, after several authors had derived it
inspired by an idea originally used in statistics [50, 81]. Another alternative
derivation was proposed by Almbladh and Hedin [24] who manipulated the
Dyson equation for G to obtain the same result.

The cumulant expansion

The cumulant formalism is part of the domain of statistics and it is an equiva-
lent alternative to the moments formulation. This formalism can be expressed
in the form of a cumulant-generating function that can be expanded as an
infinite summation, where the cumulants are the coefficients of the terms of
this summation [82]. Drawing a parallel with statistics, some authors found
an alternative derivation for the exponential expression of the one-particle G
[50, 81]. Starting from an ansatz for G of the form

Gk(t) = iθ(−t)e−iǫkt+C(k,t), (3.110)

with G0
k (t) = iθ(−t)e−iǫkt, the authors take the value for the cumulant C(k, t)

from the first order of the expansion of G in Σ, the self-energy being expanded
to first order in W (i.e. using a G0W0 self-energy). The expansion of the ex-
ponential in G yields then an infinite series of diagrams in powers of W. It is
done in the following way: one can Taylor expand the exponential in terms
of C as G = G0(1 + C + 1/2C2 + . . .); then one expands the Dyson equation,
G = G0 + G0ΣG0 + G0ΣG0ΣG0 + . . .. To first order in the correction to G0,
comparison suggests C = ΣG0. The resulting expression for G is equivalent
to the solution of the polaron model, containing the same exact diagrams. At
the same time, it takes advantage of the GW quasiparticle energies and does
not require any external parameter. While it can be considered a convenient
derivation with built-in GW corrections, this approach to the exponential ex-
pression of G is not as intuitive as the polaron model and — even though it
might be considered more ab-initio — lacks physical motivation. I will show in
Chapter 5 how one can derive an equivalent expression for the Green’s func-
tion using an approximate equation of motion and retaining physical insight.
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3.8 Theory of the Photoemission Process

In this chapter I have put much attention on the one-particle Green’s function
and its spectral function A(ω) as the fundamental ingredients to obtain the
photoemission spectrum of solid-state systems. However, the spectral func-
tion alone is not, in general, immediately comparable with experimental spec-
tra, as I already discussed in Chapter 2. The photoemission intensity J(ω) that
is measured in experiment is connected to A(ω), but a number of additional
effects — that can modulate what is contained in the spectral function — have
to be taken into account to perform a correct comparison of theory and exper-
iment. I will give here a concise review with the fundamental points. For a
more complete overview of the theory of photoelectron spectroscopy, please
refer to [6, 24, 25]. Here the removal of an electron is considered — i.e. the case
of direct photoemission — but the treatment is equivalent for inverse photoe-
mission. To develop a formal description of the photoemission process, one has
to calculate the transition probability w f i for an optical excitation between the
N-electron ground state ‖N〉 and one of the possible final states |N, f 〉, where
the photoelectron has left the system, but it is still considered as part of the
many-body system. This can be written using Fermi’s golden rule:

w = 2π
∣

∣〈N, f |Hint|N〉
∣

∣

2
δ(EN

f − EN − 2πν) (3.111)

where EN = EN−1 − Ek
B and EN

f = EN−1
f + Ekin are the initial- and final-state

energies of the N-particle system (Ek
B is the binding energy of the photoelectron

with kinetic energy Ekin and momentum k). The interaction with the photon is
treated as a classical perturbation given by

Hint = −1
2
(A · p + p · A) ≃ −A · p, (3.112)

where p is the electronic momentum operator and A is the electromagnetic
vector potential. Within the sudden approximation, one can think that the elec-
tron travels outside the system to the detector without any interaction with the
system. In this case one can write the many-body wavefunction as an anti-
symmetrized product of a single-particle wavefunction and an N − 1-particle
many-body wavefunction. For the initial state one has to use single-particle
creation operators to include the fact that the electron does not leave the rest
of the system in an eigenstate of the N − 1-particle Hamiltonian. Taken the
above into account, the transition probability wk(A) for a final state where the
photoelectron has a momentum k is then

wk(A) = 2π|Mk
i (A)|2 ∑

m

|cm,i|2δ(Ekin + EN−1
m − EN − 2πν) (3.113)

where Mk
i = 〈φk

f |Hint|φk
i 〉 is the one-electron dipole matrix element. It contains

cross-section effects and selection rules defining the parity of the final state. φk
f

and φk
i are single-particle wavefunctions for the initial and the final state. The

coefficients |cm,i|2 are the probability that the removal of an electron from state
i will leave the N − 1-particle system in the excited eigenstate m [6]. In the case
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where the N − 1-particle system is exactly described by an eigenstate, there
will be only one c left and it will be equal to unity. The peaks in the spectral
function — provided that Mi 6= 0 — will be then delta functions centered at the
Hartree-Fock energies of the system. In general these states are not eigenstates
and produce many delta peaks in the spectrum that will cause (i) broadening
of the main peak and (ii) arising of satellite peaks according to the number of
m excited states.

In this same formula one can retrieve the one-particle excitation energies
ǫm = EN − EN−1

m defined earlier with the Lehmann representation for the one-
particle Green’s function. After a substitution using ω = Ekin − 2πν, one can
rewrite the photoemission intensity using the spectral function as

Jk(ω, A) ∝ ∑
j

|Mk
j (A)|2 A(ω − ǫj) (3.114)

where the dependence on light polarization and cross sections is contained in
the coefficients Mj. These coefficients have an important role when it comes
to comparison between theory and experiment as the can make the signal dis-
appear under certain conditions, even though the spectral function is not 0.
One can use the commutator relations of the momentum and position opera-

Figure 3.4: (a) Sketch of a photoemission experiment. The �gure shows how
polarization and wavefunction parity are connected with the experimental setup. In
this example a d-type orbital of even parity is sketched. (b) Schematic example of
an optical transition between atomic orbitals with di�erent momenta. (c) Example
of photo-ionization cross sections for Cu 3d and O 2p atomic orbitals [83]. Image
taken from [6].
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tors to show that |Mk
j |2 ∝ |〈φk

f |ε̂ · x|φk
i 〉|2, where ε̂ is a versor in the direction

of the vector potential A. This formula sets a selection rule for the symmetry
of the states that can be detected. If the integrand is an odd function with re-
spect to parity, the integral will be zero and no signal will be detected. Thus
the integrand must have an even parity in order to detect a photocurrent. The
symmetry of the integrand is the result of the combination of three terms: the
final state, the polarization vector and the initial state. Given that the final state
is fixed by the geometry of the experimental setup (See Figure 3.4), the remain-
ing term ε̂ · x|φk

i 〉 has to have the same parity in order to obtain a total even
parity. In a practical example one usually has a vertical (i.e. parallel to the nor-
mal to the surface) plane that contains both the incoming photon beam and the
outgoing photoelectrons and the detector (See Figure 3.4). In this case the final
state has to have the parity of the experiment, which is even with respect to
the mirror vertical plane. This means that the total symmetry of the other two
terms must be even as well. Now it gets interesting because if one is able to
change the direction of the polarization vector — hence its parity — this selects
automatically the parity of the initial state with respect to the mirror plane.
One calls P polarization the one with even parity and S polarization the one
with odd parity. The coefficient Mk

j contains also the photoabsorption cross
sections (See Figure 3.4) that determine a dependence of the spectrum on the
photon energy in a not trivial way. In fact this dependence is strictly related to
the symmetry of the initial state and to the atomic species. Tables of calculated
values have been published for most of the atomic species [83, 84]. It becomes
now clear that there are effects (e.g. parity effects) that are not removable from
the experiment and that have to be accounted for when comparing with the-
ory. I will show in Chapter 6 and 7 how the inclusion of some of these effects
can improve the quality of the spectra and allow one to make a better compari-
son with experiment, understanding what is actually the contribution from the
spectral function and what is due to secondary effects such as those described
in this section.



4 | Exploring vertex correc-

tions from TDDFT

The point of this chapter is to show how it is possible to use time-dependent
density-functional theory to derive approximations for vertex corrections. There-
fore, the aim here is to go beyond the GW approximation to calculate an im-
proved the self-energy, for QP energies and for the spectral function through
the Dyson equation. These approximations are limited in that the vertex func-
tions that can be derived within this framework are two-point quantities. In
the general case, the vertex function as defined in Hedin’s equations is a three-
point object. On the other hand, the fact that with this procedure the vertex is
contracted to a two-point object is obviously a computational advantage as it
is an easier quantity to deal with. In fact in many cases these vertex corrections
do not add any substantial computational weight to the calculation of the self-
energy with respect to GW. A way to connect TDDFT kernels and three point
vertex corrections was proposed e.g. by A. Marini and R. Del Sole [66], but that
in general implies a larger computational effort.

The dependence on the momentum q of the kernel in TDDFT has been
shown to be important. Notably, a kernel for q = 0 was derived from Green’s
function theory and proved to be successful for the absorption spectra of semi-
conductors [85, 86]. There are systems (e.g. NiO) that display interesting fea-
tures in spectra at finite q. I will show how exact conditions in the homo-
geneous electron gas can be used to derive a q-dependent approximation for
the exchange-correlation kernel and, subsequently, vertex corrections. I will
explore finite-q approximations and show how they compare to other approx-
imations such as the ALDA.

4.1 Exact relations for the TDDFT kernel in the elec-

tron gas

The simplest of the approximations for DFT comes from the homogeneous
electron gas (HEG) with a very simple constrain: the local density. This is
the LDA and it has shown to perform well for a large class of materials. The
TDDFT equivalent, the ALDA, does not seem to perform as well as its “lit-
tle brother”. There is quite a number of exact asymptotic conditions for the
TDDFT kernel in the HEG. One would like to see if using some of them it is pos-

49
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sible to derive useful approximations, following the example of the LDA. In the
homogeneous electron gas some exact relations for the exchange-correlation
kernel fxc must hold. In particular one has the following relations [87]:

1. the compressibility sum rule,

lim
q→0

fxc(q, ω = 0) =
d2ρǫxc(ρ)

dρ2 (4.1)

where ǫxc(ρ) denotes the exchange-correlation energy per particle at a
given density ρ;

2. the third frequency moment sum rule:

lim
q→0

fxc(q, ω = ∞) = −4
5

ρ2/3 dǫxc(ρ)/ρ2/3

dρ
+ 6ρ1/3 dǫxc(ρ)/ρ1/3

dρ
; (4.2)

3. the static short-wavelength (q → ∞) behaviour:1

lim
q→∞

fxc(q, ω = 0) ∝ c − (b/q2) [1 − g(0)] (4.3)

and frequency-dependent short-wavelength (q → ∞) behavior:

lim
q→∞

fxc(q, ω 6= 0) = −8π

3
1
q2 [1 − g(0)] , (4.4)

where g(0) is the pair-correlation function evaluated at zero distance;2

4. the following relations are satisfied in the high-frequency limit by the real
and imaginary parts of fxc for q < ∞:

lim
ω→∞

Re fxc(q, ω) = fxc(0, ∞) +
c

ω3/2 (4.5)

lim
ω→∞

Im fxc(q, ω) = − c

ω3/2 (4.6)

with c=23π/15 in the high-density limit evaluation of the irreducible po-
larizaton propagator χ̃.

4.1.1 Static response and local field factor of the electron gas

Moroni et al. proposed a method to compute fxc at zero temperature for the
electron gas from the static density-density linear response function using Monte
Carlo (MC) methods [88]. In their paper, fxc is written as

fxc(q) = −v(q)G(q), (4.7)

1 The correct values of the constants b and c can be found in Moroni et al. [88]. In fact the values
originally used by Gross and Kohn are not correct [89].

2The term [1 − g(0)] can be taken equal to 1 for rs > 1, which is a representative range for most
semiconductors [90].
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where v(q) = 4π/q2 is the Coulomb interaction and G(q) is the local field factor.
They focus on the calculation of G. As q → 0, to dominant order,

G(q) = A(q/kF)
2 (4.8)

with

A(rs) =
1
4
+

−dµc/dn0

4πe2/q2
F

(4.9)

where kF = (3π2ρ)1/3 is the Fermi wave vector and µc the correlation contri-
bution to the chemical potential in the HEG. The density ρ with respect to the
Wigner-Seitz radius rs in the HEG is ρ = 1/(4πr3

s a3
B/3), where aB is Bohr’s

radius. Following Moroni et al., for q → ∞,

G(q) = C(q/kF)
2 + B (4.10)

This expression is equivalent to eq. (4.3) for fxc. C is related to the fractional
change of kinetic energy, δ2: C(rs) = (π/2e2kF)[−d(rsεc)/drs] with εc the cor-
relation energy per particle. B(rs) is calculated fitting DMC (diffusion Monte
Carlo) calculation for different values of rs, thanks also to the known result
B(0) = 1/3. The extended behaviour is then fitted by the following polyno-
mial expression:

B(rs) =
1 + a1x + a2x3

3 + b1x + b2x3 (4.11)

where x =
√

rs and a1 = 2.15, a2 = 0.435, b1 = 1.57, b2 = 0.409.

4.1.2 Analytic expression for the exchange-correlation kernel

Corradini et al. presented an expression of the local-field factor G(q) based
on the MC calculations by Moroni et al. [91]. This result is obtained fitting
the MC results with an analytical expression. This expression is also Fourier-
transformable, which is an advantage in numerical applications on real sys-
tems. The formula is based on Lorentzian and Gaussian functions and it reads

G(q) = CQ2 +
BQ2

g + Q2 + αQ4e−βQ2
(4.12)

where Q = q/kF and g = B/(A − C) and A, B and C are the same as in (4.9)
and (4.10). They report the best results are obtained by taking

α =
1.5

r1/4
s

A

Bg
, (4.13)

β =
1.2
Bg

. (4.14)

They obtain the expression of the exchange-correlation kernel fxc in real space
with its Fourier transform

fxc(q) =
∫

d3re−iq·r fxc(r) = −v(q)G(q) (4.15)
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that, applied to (4.12) yields

fxc(r) = −4πe2C

k2
F

δ3(r) +
αkF

4π2β

(

π

β

)3/2
[

k2
Fr2

2β
− 3

]

e−k2
Fr2/4β − B

e−
√

gkFr

r
.

(4.16)
This expression for the exchange-correlation kernel has been tested against sev-
eral others by Cazzaniga et al. yielding good performances with respect to say
ALDA [92]. The kernels were compared evaluating the dynamic structure fac-
tor S(q, ω), directly proportional to the imaginary part of the inverse dielectric
function ε−1, at finite values of the momentum q.

4.2 Asymptotic behavior of some kernels

I will here discuss the asymptotic behavior of a few selected approximations
for fxc and compare it to the exact limits in the homogeneous electron gas. No-
tably, the ALDA shows a systematic breakdown for q → ∞. I will discuss the
effects of different approximations on the calculation of the dielectric function
ε(ω) and its inverse ε−1(ω) in both the Test-particle (TP) and Test-electron (TE)
cases.

4.2.1 The ALDA kernel

The ALDA kernel shows to be pathologic at several levels. If one looks at the
TE dielectric function this reads

εTE = 1 − (v + f ALDA
xc )χ0. (4.17)

Here in the v + fxc term v = 4π/q2, while fxc = c(ρ) where c is a constant
determined by the local density, since in ALDA fxc is not dependent on ω nor
q. Notably, fxc has opposite sign with respect to v. For q → 0 the contribution
of f ALDA

xc becomes negligible. Instead the trend for q → ∞ is quite different: v
approaches 0; the ALDA kernel is constant and negative. Thus there is some
value of q for which v ≃ fxc. At this point the term v + fxc will change sign
and produce a negative spectrum for Im(ε). This effect will affect also calcu-
lations of the polarizability χ including local fields, only in a less predictable
way because of the matrix inversions involved. It is a completely unphysical
effect. Figure 4.1 shows very clearly how the ALDA kernel produces this effect
beyond a certain value of q and the v + fxc term becomes negative. This effect
is an unphysical artifact due to the local approximation of the kernel.

The exact behaviour for fxc in the homogeneous electron gas is given by
eq. (4.4). This equation shows how the term v + fxc does not change sign in
the case of huge momentum transfer. In fact in the exact case v + fxc behaves
like 4/3π/q2 as q approaches infinity, as fxc → −8/3π/q2 in that limit. Thus
the kernel goes smoothly to 0. In the ALDA case as, q → ∞, one has instead
v + f ALDA

xc → f ALDA
xc , which does not depend on q and thus produces the

anomaly. This problem has been reported by several authors, e.g. [93, 94].
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Figure 4.1: Trend of v + fxc for q → ∞. The adiabatic local density approximation
(ALDA) in bulk silicon and a kernel following the exact large-q behavior in the
homogeneous electron gas (HEG) from (4.4) are compared. At |q| ∼ 1.5 atomic
units the pathologic ALDA kernel causes sign inversion in the v + fxc term, which
leads to unphysical negative spectra.
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4.2.2 The Corradini kernel

The Corradini kernel can be written as

f Corr
xc =

4π

k2
F

(

C +
B

g + Q2 + αQ2e−βQ2
)

(4.18)

and one can show that, as q approaches infinity, this kernel will go asymptoti-
cally as f Corr

xc → (4π/kF)C, which does not depend on q. In fact the value of C
is

C(rs) =
π

2kF

[

−d(rsεc)

drs

]

(4.19)

with εc the correlation energy per particle in the electron gas. As already
pointed out, there is no dependency on q. Hence, this kernel should suffer
from the same pathology as the ALDA one. This kernel is derived from the
static limit in the HEG and it is therefore static, as the ALDA kernel. The per-
formance of the Corradini kernel has been tested by Cazzaniga et al. yielding
good results at small non-zero momenta [92] for the calculation of the dynamic
structure factor.

4.2.3 The Hubbard kernel

The Hubbard kernel was originally proposed by Hubbard as an approximation
for the local field factor G(q) to go beyond the RPA [95]. It can be considered
the first attempt of vertex correction or kernel, even though at that time TDDFT
was yet to be thought. The corresponding kernel reads

f H
xc = − 4π

q2 + k2
F

. (4.20)

Now, for q → 0 this kernel approaches a constant, i.e. fxc → −4π/k2
F. The

asymptotic behavior for q → ∞ instead, is f H
xc → 0 . It is clear then that the

Hubbard kernel is a well-behaved kernel, in the sense that it does not suffer
from a pathology similar as the ALDA or the Corradini kernel. Nevertheless,
it does not follow the exact theoretical limit for q → ∞ in the electron gas. The
Hubbard kernel was also tested for the calculation of the dynamic structure
factor by Cazzaniga et al. [92]. It produced good results even though limited to
small finite valuse of q.

Tunability of the Hubbard kernel

It is worth noting that kF = (3π2ρ)1/3, where ρ is the average density of the
system or the exact density in the homogeneous electron gas. Writing fxc ex-
plicitely one has

f H
xc = − 4π

q2 + (3π2ρ)2/3 . (4.21)

Interestingly, the Hubbard kernel can be tuned using kF or ρ as a parameter. It
is understood that in general one is considering a TE screening. To analyse the
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effect of this tuning one has to observe the v + fxc term that one can write as
(keeping kF to have a more compact notation)

v + f H
xc =

4π

q4/k2
F + q2

(4.22)

Now, as a function of ρ, this term has the following asymptotic limits:

• as ρ reaches zero, fxc → −v, i.e. the kernel tends to compensate exactly
the Coulomb term. It follows that

εTE = 1 + (v + fxc)χ = ε−1 = 1. (4.23)

This means that if one were to use the tuned Hubbard kernel in this limit
as a vertex correction to calculate the self-energy, the resulting Σ would
be equal to the Fock operator. In other words, this limit eliminates the
screening.

• For ρ going to infinity one can see that fxc → 0. As a consequence, the
polarizability becomes

χ = [1 − χ0v]χ0 = χRPA (4.24)

and the dielectric function can be written as

εTE = 1 + vχ = εRPA, (4.25)

i.e. the RPA inverse dielectric function is recovered. This is the dielectric
function that is used to calculate the self-energy within the GW approxi-
mation, which is a high-density approximation [96].

4.3 Results for the exact large-q kernel on Si

In this part I show the performance of a kernel built to match the exact fxc in
the HEG for the limit of large values of q, as reported in (4.4). I will refer to
this kernel as “HEG-bigq” kernel. Following the exact condition in (4.4), such
kernel reads

fxc = −8
3

π

q2 ≈ −8.38
1
q2 (4.26)

The correct dependence on q will assure no anomalies for increasing q as in the
case of the ALDA. It can be interesting to see its performance at small values of
q. For this purpose it is useful to compare it with the long-range contribution
(LRC) kernel [36, 85, 86, 97]. This kernel reads fxc = −α/q2 and it is meant
to describe excitonic effects in optical absorption as it was derived to describe
the correct behavior of the exchange-correlation kernel at q → 0. In fact typical
values of α for semiconductors are of the order of 0.2. At this point, considering
the difference of the coefficients in the two cases, one can expect the large-q
kernel not to behave well for small values of q. Moreover, the LRC kernel have
shown to need a prior calculation of quasiparticle energies to be effective [86].
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4.3.1 Macroscopic dielectric function at finite q

In this part I show how the exact HEG-bigq kernel performs on bulk silicon for
the calculation of the dielectric function εM. This approximation is compared
with several others, in the test-particle and in the test-electron cases. Namely
I compare it with the ALDA kernel, the Hubbard kernel and the RPA. The
spectra are calculated over a range of 25 eV for increasing finite momenta with
qx = qy = qz. As expected, there are no negative spectra for the HEG-bigq
kernel, while the ALDA exhibits its pathology at q = (1.75, 1.75, 1.75) (See
Figure 4.5). Also the Hubbard kernel behaves well at large q.

At q = (0.25, 0.25, 0.25) and q = (0.5, 0.5, 0.5) the TP-Hubbard kernel over-
screens considerably with respect to RPA and to the rest of the lot. In Figure 4.2
and 4.3 one can see that ε1(ω = 0) is larger than for the other approximations
while ε2 has a larger onset. TP-ALDA is the only slightly different case from
the others, screening a little more than the rest.

At q = (0.75, 0.75, 0.75) (See Figure 4.4) the TP-big-q kernel is the one to
stand out as it over-screens considerably with respect to RPA and to the rest
of the lot. The TP-Hubbard is weaker than th HEG kernel, but ε1(0) has the
second greatest value and ε2 has still a larger onset with respect to the other
approximations, that give all a very similar result. Also, the TE dielectric func-
tion tend to under-screen with respect to RPA.

At q = (1.75, 1.75, 1.75) the TP dielectric functions are quite on a par and
slightly over-screen with respect to RPA. As one can see in Figure 4.5, TE-
Hubbard and TE-big-q visibly under-screen with respect to RPA ant TP cases.
TE-ALDA is at this point giving an unphysical result, produced by the sign in-
version in the v+ fxc term: while ε1 gives values smaller than 1, ε2 has negative
values.

The largest calculated value for q is q = (3.5, 3.5, 3.5) and the results are
reported in Figure 4.6. For this comparatively large value of q one can see that
there is almost no signal, as χ0 is approaching 0. In fact ε1 = 1 for almost all
approximations and values of ω and ε2 is very small. While the TP dielectric
functions are substantially identical to RPA, one can spot some differencies
for the TE cases: TE-Hubbard and TE-big-q visibly under-screen with respect
to RPA ant TP cases; instead TE-ALDA is in complete breakdown and gives
smaller-than-one values for ε1 and all-negative values for ε2, that in fact does
not appear in the graph.

This analysis shows some trends of a set of exchange-correlation kernels,
but a definite answer on which are an actual improvement with respect to e.g.
ALDA can only come from the application of these approximations as vertex
corrections to the self-energy.
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Figure 4.2: Real (Eps1) and imaginary (Eps2) parts of the dielectric function ε(q, ω)
at q = (0.25, 0.25, 0.25) for a number of di�erent approximations for fxc. The
dielectric function is shown for the test-particle and the test-electron case. The
TP-Hubbard kernel stands out here as it over-screens considerably with respect to
RPA and to the rest of the lot.
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Figure 4.3: Real (Eps1) and imaginary (Eps2) parts of the dielectric function ε(q, ω)
at q = (0.5, 0.5, 0.5) for a number of di�erent approximations for fxc. The dielectric
function is shown for the TP and the TE case. Again, the TP-Hubbard kernel stands
out here as it over-screens considerably with respect to RPA and to the rest of the
lot.
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Figure 4.4: Real (Eps1) and imaginary (Eps2) parts of the dielectric function ε(q, ω)
at q = (0.75, 0.75, 0.75) for a number of di�erent approximations for fxc. The
dielectric function is shown for the TP and TE case. The TP-big-q kernel is the
one to stand out here as it over-screens considerably with respect to RPA and to
the rest of the lot. The TP-Hubbard is weaker than th HEG kernel, but ε1(0) has
the second greatest value and ε2 has still a larger onset with respect to the other
approximations, that give all a very similar result. Visibly the TE dielectric function
tend to under-screen with respect to RPA.
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Figure 4.5: Real (Eps1) and imaginary (Eps2) parts of the TP and TE dielectric
function ε(q, ω) at q = (1.75, 1.75, 1.75) for a number of di�erent approximations
for fxc. Here the TP dielectric functions are quite on a par and slightly over-screen
with respect to RPA. TE-Hubbard and TE-big-q visibly under-screen with respect to
RPA ant TP cases. TE-ALDA is at this point giving an unphysical result, produced
by the sign inversion in the v + fxc term: while ε1 gives values smaller than 1, ε2
has negative values and almost disappears from the graph.
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Figure 4.6: Real (Eps1) and imaginary (Eps2) parts of the TP ad TE dielectric
function ε(q, ω) at q = (3.5, 3.5, 3.5) for a number of di�erent approximations for

fxc. For this high value of q one can see that χ0 is approaching 0. In fact ε1 = 1
for almost all approximations and values of ω and ε2 is very small. While the TP
dielectric functions are substantially identical to RPA, one can spot some di�erencies
for the TE cases: TE-Hubbard and TE-big-q visibly under-screen with respect to
RPA ant TP cases; instead TE-ALDA is in complete breakdown and gives smaller-
than-one values for ε1 and all-negative values for ε2, that does not appear in the
graph.
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4.3.2 Inverse dielectric function at finite q

In this part I show how the exact large-q kernel performs on bulk silicon for
the calculation of the imaginary part of the inverse dielectric function Im

[

ε−1
M

]

.
This approximation is compared with ALDA, in the test-particle and in the test-
electron cases, and RPA. As expected, there are no negative spectra for the exact
kernel, while the ALDA exibits its pathology above q == (1.75, 1.75, 1.75). The
spectra are calculated using

EELS = − Im
[

ε−1
M

]

=
1
π

ε2

ε2
1 + ε2

2
. (4.27)

The inverse dielectric function is a fundamental quantity in GW, as it enters in
the screening W = vε−1.

At q = (0.25, 0.25, 0.25) and q = (0.5, 0.5, 0.5) the spectra do not differ sub-
stantially from RPA (See Figure 4.7 and 4.8). TE-big-q is the only slightly differ-
ent case from the others, showing a slightly sharper peak at q = (0.25, 0.25, 0.25).
All the spectra have a slight offset to smaller energies with respect to RPA at
q = (0.5, 0.5, 0.5).

At q = (0.75, 0.75, 0.75) the TP-big-q case shows a prominent onset with
respect to RPA and ALDA while the TE-big-q one has quite low intensity with
respect to RPA and ALDA (See Figure 4.9). One can show with a little algebra
(See appendix A) that in the large-q limit one has

ε−1
TE =

1
3

ε−1
TP. (4.28)

This relation is confirmed by the spectra calculated with the HEG-bigq kernel.
At q = (1.75, 1.75, 1.75) (See Figure 4.10), both ALDA and big-q TP dielec-

tric functions are quite similar to RPA, with a slightly higher intensity. TE-big-q
visibly under-screens with respect to RPA. TE-ALDA gives at this point an un-
physical result, producing a spectrum that almost disappears from the graph,
as the plots of the dielectric function have already shown.

The largest calculated value of q is q = (3.5, 3.5, 3.5) (See Figure 4.11). For
this value of q the intensity is very low. TE-ALDA is in complete breakdown
and gives negative values; it has therefore disappeared from the graph. While
the TP dielectric functions are substantially identical to RPA, one can spot some
differences for the TE cases: TE-big-q visibly under-screens with respect to RPA
ant TP cases. This can be ascribed to the TE spectrum systematically being one
third of the TP one and to the TP spectrum approaching the RPA result as
q → ∞.

In general, RPA is know to give a decent description of the inverse dielectric
function. The results presented here for the dielectric function are not a per se
indication of the good behavior of certain approximations in the perspective of
vertex corrections. The way ε−1 enters in the self-energy is far from obvious
and only analyzing how vertex corrections influence the quality of the self-
energy one is allowed to draw conclusions.
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Figure 4.7: Imaginary part of the inverse dielectric function for Si (EELS). ε−1(q, ω)
at q = (0.25, 0.25, 0.25) for a number of di�erent approximations for fxc. The
dielectric function is shown for the Test-Particle and the Test-Electron case. The
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Figure 4.9: Imaginary part of the inverse dielectric function for Si (EELS). ε−1(q, ω)
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Figure 4.10: Imaginary part of the inverse dielectric function for Si (EELS).

ε−1(q, ω) at q = (1.75, 1.75, 1.75) for a number of di�erent approximations for
fxc. The dielectric function is shown for the Test-Particle and the Test-Electron
case. Here both ALDA and big-q TP dielectric functions are quite similar to RPA,
with a slightly higher intensity. TE-big-q visibly under-screens with respect to RPA.
TE-ALDA gives at this point an unphysical result, producing a spectrum that al-
most disappears from the graph, as the plots of the dielectric function have already
shown.
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Figure 4.11: Imaginary part of the inverse dielectric function for Si (EELS).

ε−1(q, ω) at q = (3.5, 3.5, 3.5) for a number of di�erent approximations for fxc.
The dielectric function is shown for the Test-Particle and the Test-Electron case.
For this high value of q the intensity is very low. TE-ALDA is in complete break-
down and gives negative values; it has therefore disappeared from the graph. While
the TP dielectric functions are substantially identical to RPA, one can spot some
di�erencies for the TE cases: TE-big-q visibly under-screens with respect to RPA
ant TP cases.
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4.4 Quasiparticle energies

In this part I apply vertex corrections derived from TDDFT using the approxi-
mations studied in the previous section. I will focus on the way vertex correc-
tions affect band-gaps and quasiparticle energies with respect to the reference
case of GW. Quasiparticle energies Ei are calculated using

Ei = ǫLDA
i + Z〈φi|Σ(ǫLDA

i )− Vxc|φi〉 (4.29)

where Σ can contain an RPA W, a test-particle or a test-electron one, depending
what kind of correction one is applying. The test-electron dielectric function
is εTE = 1 − (v + fxc)χ0. Quasiparticle energies and energy-gap values are
reported for the case of RPA W, test-particle W or test-electron W.

ALDA Several authors have already calculated quasiparticle energies using
vertex corrections from ALDA in silicon [59, 65]. While the two publications
basically agree on the values of the band-gap, there is some discrepancy in the
values of the quasiparticle energies. This issue has been recently discussed
and clarified by et al. [98]: the type of plasmon-pole model used in [59] can
give correct band-gaps, but there is a convergence problem on the quasiparticle
energies in that the number of empty states needed to converge is extremely
high. There are also issues with d-electrons systems [98]. On the other hand,
the Godby-Needs plasmon-pole model [60] used by Del Sole et al. and also used
for the presented calculations is not affected by such problems. In fact I retrieve
in my calculations the values found by Del Sole et al. [65]. A full-integration
(no plasmon pole) calculation of quasiparticle energies with vertex corrections
can be found in [51]. For ALDA, the value of the band-gap is about the same in
GW and GWTE (See Figure 4.12). In the TP case there is a slight difference and
the band-gap is smaller. On the other hand there is almost a rigid shift between
GW and GWTE.

Exact large-q kernel (in HEG) The kernel derived from the exact condition in
the HEG is here compared to GW (See Figure 4.13). While the trend of the TE
calculation is similar to the TE-ALDA one, the value of the band-gap shift in
GWTE is larger by ∼ 0.1 eV. The TP case is quite similar to the TE case and the
gap becomes even larger. This is very different from the TP-ALDA corrections
and it is related to the small-q behavior of the TDDFT kernel.

Hubbard kernel The Hubbard kernel is here compared to GW (See Figure
4.14). The trend of the TE calculation is similar to the TE-ALDA one: the band-
gap shift is slightly larger. The TP case is quite different from ALDA and from
the HEG kernel, in that both valence and conduction have a negative quasipar-
ticle correction. This is very different from the TP-ALDA corrections and it is
related to the small-q behavior of the TDDFT kernel.

The results for the different approximations (ALDA, Hubbard and big-q)
are summarized in Figure 4.15. The TE band-gap shifts are not very different
from the GW reference, with the big-q kernel giving a larger final gap. The most
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Figure 4.12: Quasiparticle correction at the Γ point (0.0; 0.0; 0.0) in bulk Si for top-
valence and bottom-conduction bands within the GW approximation and adding
the ALDA-derived vertex in both the polarization and the self-energy (TE) or in the
polarization only (TP). The value of the band-gap shift is about the same in GW
and GWTE. In the TP case there is a slight di�erence and the band-gap is smaller.
On the other hand there is almost a rigid shift between GW and GWTE.
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Figure 4.13: Quasiparticle correction at the Γ point (0.0; 0.0; 0.0) in bulk Si for top
valence and bottom conduction. GW and large-q HEG vertex are compared. While
the trend of the TE calculation is similar to the TE-ALDA one, the value of the
band-gap shift in GWTE is larger by ∼ 0.1 eV. The TP case is quite similar to the
TE case and the gap becomes even larger.

noticeable changes are for the TP calculations: while ALDA gives a slightly
smaller band-gap, the Hubbard kernel yields a correction a half the size of
GW; the big-q kernel gives instead a larger gap than GW.

One can consider that the behavior of the Hubbard kernel is correct, as I
have shown above that it is free from the pathologies that affect the ALDA. On
the other hand the kernel derived from the large-q condition in the HEG is not
very reliable if used for all ranges of q. If one thinks of it as an LRC kernel with
a too-large value of α, it is sensible to say that one can expect unphysical results
at q → 0. This has been shown also by F. Sottile [70]. Once this is clear, one can
consider that the main effect of using a test-particle screening in the self-energy
is to increase the screening and reduce the self-energy correction to the Kohn-
Sham energy gap with respect to GW. This is equivalent to applying the vertex
correction only to the polarizability. The results for the test-electron screening
show, in all cases, that the difference with the GW reference is compensated,
whether the TP case had a stronger or weaker correction. This would suggest
that applying vertex corrections to both the self-energy and the polarizability
brings to a result that is not far from that of the GW self-energy. This sort of
cancellation effects would be at the origin of the good performances of the GW
approximation. However, it is not clear whether a more complex approxima-
tion for the vertex (three- or four-point) would yield different outcomes.

Morris et al. have studied the effect of vertex corrections derived from the
ALDA TDDFT kernel on atoms and on the homogeneous electron gas. Their
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Figure 4.14: Quasiparticle correction at the Γ point (0.0; 0.0; 0.0) in bulk Si for top
valence and bottom conduction. GW and Hubbard are compared. The trend of the
TE calculation is similar to the TE-ALDA one: the band-gap shift is slightly larger.
The TP case is quite di�erent from ALDA and from the large-q HEG kernel, in that
both valence and conduction have a negative quasiparticle correction.

conclusions are similar to mine in that they find that appreciable improvements
appear only using a GWTP self-energy. However, comparison between a solid
and finite systems is always difficult, as they are very different systems. In
fact, the authors do not look at band gaps, but only at absolute values of quasi-
particle energies. Notably, what they find for the first ionization potential is
comparable to the the results presented here for the top-valence band of silicon
and they agree fairly well.
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Figure 4.15: Gap correction at the Γ point (0.0; 0.0; 0.0) in bulk Si for several
approximations. The results for the di�erent approximations (ALDA, Hubbard and
big-q) are here summarized. The TE band-gap shifts are not very di�erent from the
GW reference, with the big-q kernel giving a larger �nal gap. The most noticeable
changes are for the TP calculations: while ALDA gives a slightly smaller band-gap,
the Hubbard kernel yields a correction a half the size of GW; the big-q kernel gives
instead a larger gap than GW.
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4.4.1 Static screening at finite q

One can try to obtain more insight on the approximations used and on their
effects on the self-energy, focusing on their q-dependence and using the static
limit of ε−1. In fact one can show that

Egap ∝ 1/ε∞, (4.30)

where ε∞ = limω→0 ε(ω).3 Now one has to remember that the self-energy
contains a sum over all possible q vectors. If one plots 1/ε∞ for a range of q
vectors, different kernels will give different line shapes. One can compare in
Figure 4.16 the ALDA values of 1/ε∞ with the RPA values. It is immediately
clear that TP values are always smaller than RPA, while TE values are always
larger. Moreover, for small values of q, the TE curve is much closer to RPA
than the TP curve. This is exactly what is found for the band-gap correction
in the previous section. Small-q values have a larger weight in the self-energy
integral and this plot is a confirmation of this characteristic feature of the self-
energy in silicon. The anomalous point caused by the ALDA pathology is at
this point non-influent on the value of the band-gap. In Figure 4.17, where RPA
and Hubbard are compared, the general picture is similar, but somewhat more
pronounced. There is no anomalous point, of course. Instead, for the same
range of small |q|, TP values of 1/ε∞ are more different than RPA with respect
to TP-ALDA. As a consequence, the expected (and verified) behavior of band-
gap corrections is to have a smaller correction using a TP screening. At this
point the study of the large-q limit is clearly not going to bring revolutionizing
results in this system: the self-energy of silicon is apparently sensitive to small
values of q and by consequence a correction to the large-q limit is not going
to change much at the quasiparticle level. This is probably the reason why
the clear pathology of the ALDA kernel for large values of q has never been a
problem for the calculation of vertex corrections: although — using an ALDA
vertex correction — anomalous points enter in the self-energy, their weight is
too small to make a difference.

Still, vertex corrections could possibly make a difference for spectral prop-
erties such as quasiparticle lifetimes and satellites. To analyse this kind of
features one has to calculate the one-particle spectral function as discussed in
Chapter 3.

3The dependence of quasiparticle energies and band gaps on ε∞ with application on hybrid
DFT functionals has been discussed e.g. in a paper by Marques et al. [99].
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4.5 Spectral properties

To study spectral features such as quasiparticle lifetimes and satellites one has
to calculate the one-particle spectral function for a single quasiparticle state, as
reported in (3.60):

A(ω) =
1
π

| ImΣ(ω)|
[ω − ǫH − ReΣ(ω)]2 + ImΣ(ω)2 . (4.31)

The total spectral function is then obtained summing over all the states of the
system. To obtain the spectral function is thus necessary to obtain the full en-
ergy dependence of the self-energy. This is more cumbersome than obtaining
QP energies with a plasmon-pole model, as it is extensively described in [57].
I report in Figure 4.18 the spectral function of silicon for the bottom valence,
as a representative example. This is also where the changes are most apparent
among the states in the BZ, as in e.g. the top-valence states the differences are
even less pronounced. Sharp peaks in the spectral function rise from zeros in
ω − ǫH − ReΣ(ω): the peak at -12.5 eV is the quasiparticle peak and the other
peak at 24 eV below is a satellite. The most apparent changes with respect to
RPA are: (i) in the test-particle spectral function there is a transfer of weight
from the quasiparticle to the satellite, which is enhanced due to a higher in-
tensity and slight blue shift of ImΣ; (ii) in the test-electron spectral function
the quasiparticle peak is almost identical to RPA, while there is a slight blue
shift of the satellite peak due to a change in the real part of the self-energy. The
changes with respect to the GW spectral function (RPA) are very slight. The
effects of these vertex correction are negligible in the total spectral function ob-
tained integrating over the full Brillouin zone. The theoretical implication of
the GW satellites in silicon are much broader than this and will be extensively
discussed in Chapter 6.

While the results of this chapter suggest that two-point vertices are too lim-
ited to improve spectral properties, there might be space left for improvement
in the calculation of QP energies. The link between QP corrections and q de-
pendence of the dielectric function has been clarified. Nevertheless my results
confirm that the use of two-point vertex corrections both in the self-energy and
in the polarizability is subject to mutual cancellations that limit the effects on
the value of the quasiparticle band gap. This also suggests that the GW ap-
proximation is solid and has been successful also thanks to this kind of error
cancellation between polarization and self-energy effects.

Vertex corrections could in principle help to solve the so-called self-screening
problem in GW. This problem arises because in GW the screening to which a
hole is subjected is the same as the one that screens an electron; this is not cor-
rect, as the former is screened by an |N − 1, s〉 state, while the latter is screened
by |N, s〉. In this sense the hole is “self-screened” also by the photoelectron.
A cheap solution to the self-screening problem of GW using two-point vertex
corrections has been proposed by Romaniello et al. [67]. A poor-man solu-
tion to the self-screening problem would be to put both vertices for occupied
states and use only the internal one (i.e. in the polarizability) for the empty
states. One would then use a test-electron screening in the self-energy of oc-
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Figure 4.18: (a) Real and imaginary part of the self-energy of the bottom-

conduction band of bulk silicon for GWRPA, GWTP and GWTE with the ALDA
kernel. (b) Intrinsic spectral function Aj(ω) of the bottom-conduction band of bulk

silicon calculated as in (3.60) using the GWRPA, GWTP and GWTE self-energies.
Sharp peaks in the spectral function rise from zeros in ω − ǫH − ReΣ(ω): the
peak at -12.5 eV is the quasiparticle peak and the other peak at 24 eV below is a
satellite. The most apparent changes with respect to RPA are: in TP there is a
transfer of weight from the QP to the satellite, which is enhanced due to a higher
intensity and slight blue shift of ImΣ; in TE the QP peak is almost identical to
RPA, while there is a slight blue shift of the satellite peak due to a change in ReΣ.
The changes with respect to the GW spectral function (RPA) are very slight and
negligible in the total spectral function obtained integrating over the full BZ. See
Chapter 6 for a deeper discussion of the spectral function of silicon.
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cupied states and a test-particle screening in the self-energy of empty states.
The effectiveness of this approach has yet to be investigated and it is an inter-
esting outlook. I calculated preliminary results on NiO that suggest that this
kind of vertex corrections could give an improvement with respect to a GW
self-energy, notably in systems such as this, where electrons are localised and
there is a more “atomic-like” physics, as it has been suggested by Romaniello
et al. [67]. In the particular case of NiO these effects are interwoven with self-
consistency effects, that make the analysis more difficult. For now, this kind
of vertex corrections appear to affect just the quasiparticle energies, as it is the
case in silicon.

Vertex corrections are just one way of improving the calculation of the spec-
tral function beyond the GW approximation. In the Chapter 5 I will show how
it is possible to derive new approximations for the one-particle Green’s func-
tion that can improve the properties of the spectral function A(ω), on the path
of what already done by G. Lani et al. [73, 74]. In Chapter 6 and 7 I will explore
the performance of an alternative approximation for the one-particle Green’s
function that is able to improve the description of satellites. I will also show
how it is important to take into account additional effects inherent to the exper-
iment in order to obtain a correct comparison between theory and experiment.
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5 | Dynamical effects beyond

GW in Green’s function

theory

In this chapter I will show how one can use an approximate equation of motion
for the single-particle Green’s function to derive an exact solution that goes be-
yond GW, including dynamical effects, and retains a fair amount of physical
insight. This result derives from the general idea of restricting the configu-
ration space of the problem in order to simplify and solve it. The linearized
equation of motion for G showed in 3.6.1 is the product of exactly this idea. I
will show that one can solve the linearized equation obtaining an exponential
expression for G that is practically identical to the Green’s function solution
of an electron-boson model Hamiltonian.1 This model has been re-named by
Lars Hedin, in his last generalized revision, the quasi-boson model [25]. The
advantage over the latter of the derivation presented in this chapter is that this
is the result of systematic approximations on fundamental equations, that can
be retraced and, in principle, relaxed at will.

In the first part of the chapter I will show how one can derive an exponen-
tial representation for G through approximations on the equation of motion
that lead to an exact solution. I will then show how this can be improved and
connected to GW in order to use the latter as an improved quasiparticle start-
ing point on top of which one adds dynamical effects. The Green’s function
obtained with this approach includes dynamical effects and can be in princi-
ple used to derive vertex corrections; in the second part of the chapter I will
show how one can use the exponential form of the Green’s function to calcu-
late vertex corrections and how the use of the exponential representation of G
can suggest alternative routes for the calculation of the vertex and of the self-
energy.

1 This model was initially used to study core electrons coupled to plasmons [75–77, 79] and was
later generalized for valence electrons [25, 50, 80] and for the coupling with phonons [81].

77
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5.1 The linearized equation

The derivation starts from (3.104), the linearized equation of motion for G (in-
tegrals are for now omitted):

G(12) = G0
H(12) + G0

H(13)ϕ̄(3)G(32) + iG0
H(13)W(34)

δG(32)
δϕ̄(4)

(5.1)

where ϕ̄ is the screened external perturbation to the system. W is the screened
Coulomb interaction. The main interest is the coupling between a single state
(electron or hole) to a plasmon. Using the shorthand notation t12 = t1 − t2. and
introducing an auxiliary Green’s function Gϕ defined via a Dyson equation
Gϕ = G0

H + G0
H ϕ̄Gϕ one can translate the linearized equation of motion in the

following set of equations defined on a discrete basis:2

G
ϕ
ij (t12) = GH

i (t12)δij +
∫

dt3 GH
i (t13)∑

k

ϕ̄ik(t3)G
ϕ
kj(t32) (5.2)

Gij(t12) = G
ϕ
ij (t12) +

∫

dt3dt4 ∑
klmn

G
ϕ
ik(t13)Wklmn(t34)

δGnj(t32)

δϕ̄lm(t4)
, (5.3)

where the equations have been written on a basis where GH is diagonal,

Wijkl(t34) =
∫

drdr′φ∗
i (r)φ

∗
j (r

′)W(r, r′, t3, t4)φk(r
′)φl(r) (5.4)

is a matrix element of the screened Coulomb interaction W and

ϕ̄ik(t3) =
∫

drφ∗
i (r)ϕ̄(r, t3)φk(r) (5.5)

is a matrix element of the screened external perturbation ϕ̄. GH is the lin-
earized Hartree Green’s function (in the limit ϕ̄ → 0) and G is the full interact-
ing Green’s function.

5.2 Diagonal equation

I here introduce a very drastic assumption: G and GH are both diagonal on
the same basis (Gϕ follows). This is a rough hypothesis but in the following I
will show that it can be refined improving the non-interacting starting point. I
also put ϕ̄ij → ϕij to speed up the notation. The equation at this point can be
rewritten as

Gl(t1t2) = GH
l (t1t2) + GH

l (t1t3)ϕll(t3)Gl(t3t2)

+ iGH
l (t1t3)∑

ij

Wijll(t3t4)
δGl(t3t2)

δϕij(t4)
. (5.6)

2 This double set of equations can be written in a completely equivalent way as a single integro-
differential equation, without introducing Gϕ. This representation is here preferred because it is
clearer. It is worth noting that for ϕ → 0 one has Gϕ → GH .
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It is possible to simplify further the equation. When one starts to iterate the
equation it becomes clear that Gl will only depend on diagonal terms ϕll of the
external perturbation. Moreover the l component of G will only depend on ϕll .
As a consequence, the derivative δGl/δϕij will be 0 for any i 6= j 6= l. Thus
only diagonal terms are retained throughout the equation, which becomes a
set of scalar equations, one for each single state l. The index can therefore be
dropped and one can rewrite the diagonal equation in a compact form as

G(t1t2) = GH(t1t2) + GH(t1t3)ϕ(t3)G(t3t2) + iGH(t1t3)W(t3t4)
δG(t3t2)

δϕ(t4)
,

(5.7)
where one implicitly integrates over all repeated time indices. This version of
the equation neglects mixing between states. The interaction of the particle
with the system is effectively contained in W(t3t4). The scalar equation can be
written as a set of two equations using the auxiliary Green’s function Gϕ as

Gϕ(t12) = GH(t12) +
∫

dt3 GH(t13)ϕ(t3)G
ϕ(t32); (5.8)

G(t12) = Gϕ(t12) +
∫

dt3dt4 Gϕ(t13)W(t34)
δG(t32)

δϕ̄(t4)
. (5.9)

As it will be clear in the following, this form of the equations is convenient for
the calculation of the solution.

5.2.1 Solution for an occupied state

In this particular case one assumes that the level considered in the equation is
occupied, but a completely equivalent procedure can be done for the case of
an empty state. One can write down the following expressions for the Green’s
functions, with an explicit time ordering:

GH(t1t2) = iθ(t2 − t1)e
−iε(t1−t2) (5.10a)

Gϕ(t1t2) = iθ(t2 − t1)ỹϕ(t1t2) (5.10b)

G(t1t2) = iθ(t2 − t1)ỹ(t1t2) (5.10c)

where ε is the Hartree energy of the state one is considering. Using these defi-
nitions in (5.8), defining

ỹϕ(t1t2)e
iε(t1−t2) = yϕ(t1t2) (5.11)

ỹ(t1t2)e
iε(t1−t2) = y(t1t2) (5.12)

and with explicit integration over t3, one can write

yϕ(t1t2) = 1 + i
∫ t2

t1

dt3 ϕ(t3)yϕ(t3t2). (5.13)

The solution of this equation is

yϕ(t1t2) = exp
{

i
∫ t2

t1

dt′ϕ(t′)
}

(5.14)
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as one can verify with a substitution in the original equation. Now, the func-
tional yϕ(t1t2) has two interesting properties, as one can verify using (5.14).
The first property is

δyϕ(t3t2)

δϕ(t4)
= iθ(t2 − t4)θ(t4 − t3)yϕ(t3t2). (5.15)

and second property is

yϕ(t1t3)yϕ(t3t2) = e
i
∫ t3

t1
dt′ϕ(t′)+i

∫ t2
t3

dt′ϕ(t′)
= yϕ(t1t2). (5.16)

Consider now (5.9) and substitute (5.10a), (5.10b) and (5.10c) in it. One gets

y(t1t2) = yϕ(t1t2) + i2yϕ(t1t3)W(t3t4)
δy(t3t2)

δϕ(t4)
, (5.17)

where t1 < t3 < t2. Now if one iterates (5.17) one can use the properties listed
above to demonstrate that the solution will have the form

y(t1t2) = yϕ(t1t2) · F (t1t2) (5.18)

where F is some functional that does not depend on ϕ. From (5.17), the func-
tional F is solution of the following equation:

F (t1t2) = 1 + i3
∫ t2

t1

dt3

∫ t2

t3

dt4 W(t3t4)F (t3t2). (5.19)

The solution of this equation is

F (t1t2) = exp
{

−i
∫ t2

t1

dt′
∫ t2

t′
dt′′ W(t′t′′)

}

(5.20)

as it can be verified by a substitution in the original equation. At this point the
solution for y is straightforward and reads

y(t1t2) = exp
{

i
∫ t2

t1

dt′ϕ(t′)− i
∫ t2

t1

dt′
∫ t2

t′
dt′′W(t′t′′)

}

. (5.21)

This implies that the solution for the full Green’s function G — according to the
definition in (5.10c) — now reads

G(t1t2) = iθ(t2 − t1)e
−iε(t1−t2)e

−i
∫ t2

t1
dt′
∫ t2

t′ dt′′W(t′t′′)
e

i
∫ t2

t1
dt′ϕ(t′). (5.22)

This is an exact solution to the scalar equation that has an explicit functional
dependence on W and ϕ. The two approximations that were made with respect
to the full equation of motion for G to reach this point are:

• the linearization of the Hartree potential: this yields the linearized equa-
tion of motion in (5.1);

• the diagonal approximation for G: one assumes that the full G and the
Hartree GH are diagonal on the same basis. This approximation yields
the separation of the set of matrix equations into a set of decoupled scalar
equation, with one equation for each state of the system.
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Notably, the diagonal approximation appears here quite crude: in the presence
of ϕ only, the exact Green’s functions are already not diagonal and this is en-
hanced further by the addition of electron-electron interaction.

A very important feature of this solution is that it depends explicitely on ϕ.
This is crucial if one is interested in the calculation of vertex corrections. In fact
the vertex is defined as Γ = δG−1/δϕ. If one has the explicit dependence of
G on ϕ it is in principle possible to calculate directly this quantity. I will show
further in the manuscript how one can try and calculate vertex corrections us-
ing the properties of this solution for G. At this point one can put the external
field ϕ to 0 and write, in a compact way, the solution to the diagonal equation:

G(t1t2) = GH(t1t2)e
−i
∫ t2

t1
dt′
∫ t2

t′ dt′′ W(t′t′′). (5.23)

Looking at this equation it becomes clear that any exchange and correlation ef-
fect beyond Hartree (e.g. quasiparticle corrections, satellites) must be contained
in the exponent containing W. As an example, the Hartree-Fock solution can
be obtained by putting

W(t′t′′) = vδ(t′ − t′′). (5.24)

One obtains then for G:

G(t1t2) = iθ(t2 − t1)e
−i(ε−v)(t1−t2) (5.25)

where ε − v is the Hartree-Fock energy.
The linearized equation contains the GW approximation, so its exact solu-

tion is expected to describe effects beyond that. However it remains to be seen
what are the effects of the diagonal approximation. In the following I will ana-
lyze the structure of G and of the spectral function A for a model W and then
show how the results can be generalized for an arbitrary screened interaction.

5.2.2 Comparison with the electron-boson solution

One can realize how striking the result for G is when it is compared to what
has been previously obtained for the polaron model shown in Section 3.7. It is
possible to rewrite the expression for G, making use of Fourier tranforms, as

G(τ) = GH(τ) exp
{

i

2π

∫

dω W(ω)

[

eiωτ − iωτ − 1
ω2

]}

, (5.26)

where τ = t1 − t2 and

W(ω) =
∫

dτ eiωτW(τ) (5.27)

is the Fourier transform of W. This has the same form as the exact solution for
the Green’s function of the electron-boson model studied by many authors, e.g.
[25, 75]. This expression for G is useful in that one can already recognize three
terms — getting hints from the work on the model — that will give, through
W, quasiparticle correction, renormalization and satellite contribution. In the
following this will become clearer. One can take a plasmon-pole model for W
of the form:

W(t1 − t2) = −iλ
[

e−iωp(t1−t2)θ(t1 − t2) + eiωp(t1−t2)θ(t2 − t1)
]

. (5.28)
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Here λ is the intensity of the plasmon and ωp is the plasmon frequency. This
model represents a screening with a sharp peak in the imaginary part centered
at ωp, as it is the case in simple semiconductors. Substituting this in the ex-
pression for G one obtains

G(τ) = GH(τ) exp

{

λ

ω2
p

[

eiωpτ − iωpτ − 1
]

}

(5.29)

where GH(τ) = iθ(−τ) exp(−iετ) is the Hartree (non-interacting) Green’s func-
tion for the hole. This is identical to the one-particle Green’s function calculated
by Langreth for a core level [75]. The Green’s function can be written as

G(τ) = iθ(−τ) exp

{

− λ

ω2
p

}

exp
{

−iEQPτ
}

exp

{

λ

ω2
p

eiωpτ

}

(5.30)

where EQP = ε + λ
ωp

is the quasiparticle energy. After the expansion of the

last term on the right-hand side of the equation, one can calculate A(ω) =
1
π | ImG(ω)| and obtain

A(ω) =
1
π

e
− λ

ω2
p

[

δ(ω − EQP) +
λ

ω2
p

δ(ω − EQP + ωp)

+
1
2

(

λ

ω2
p

)2

δ(ω − EQP + 2ωp)

+
1
6

(

λ

ω2
p

)3

δ(ω − EQP + 3ωp) + . . .

]

. (5.31)

The spectral function displays a main quasiparticle delta-peak at the quasipar-
ticle energy EQP. This is followed by an infinite series of satellite delta-peaks
that decays following a Poisson distribution. At order n, the satellite peak is
located at ω − EQP + nωp and its strength is (λ/ω2

p)
n. The whole spectrum is

renormalized by a factor Z = exp{−λ/ω2
p}. Again, this result for the spectral

function is identical to the one found by Langreth using the polaron model for
a core level [75]. This result can be generalized taking into account plasmon
dispersion adding a model dispersion in ωp. In practice, this means that the
diagonal approximation for the linearized equation is exactly equivalent to the
electron-boson Hamiltonian for core levels when a plasmon-pole model is ap-
plied and it is generally equivalent to the quasi-boson model by Hedin. The
advantage here is that in principle one could use the solution for G and cal-
culate it using a numerical integration for W. Moreover, the direct link to the
fundamental differential equations stresses which are the underlying approxi-
mations, and how one might try to go beyond.

5.2.3 Starting from non-interacting quasiparticles

To consolidate the assumption that the non-interacting Green’s function and
the interacting G are diagonal on the same basis, one would like to use a dif-
ferent starting point than Hartree’s GH . One of the best that one can think of
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is certainly GGW , but for a matter of generality one can think to have a generic
self-energy ΣQP that gives a good quasiparticle description of the system. One
can define then the following set of equations

GQP = GH + GHΣQPGQP (5.32)

G = GQP + GQPΣ̃G (5.33)

where Σ̃ = Σ−ΣQP. Assuming the GW approximation as the best available for
QP energies, one can use ΣQP = ΣGW(E), with E the quasiparticle GW energy.
The task of ΣQP is then to correct the Hartree energies to quasiparticle energies
and obtain GQP. If one approximates the Green’s functions to be diagonal as in
the present problem it is possible to write the equation as

G(t1t2) = GQP(τ)ei∆QPτe
−i
∫ t2

t1
dt′
∫ t2

t′ dt′′W(t′t′′), (5.34)

where
GQP(τ) = iθ(−τ)e−iEτ (5.35)

is the quasiparticle Green’s function, containing the complex quasiparticle en-
ergy E = ǫ + iγ and

∆QP = ΣGW(E) = − i

2π

∫

dω
W(ω)

ω
(5.36)

is the GW self-energy calculated at the QP energy E using for GQP and W the
current approximations used to derive the diagonal equation (5.7). One can
use Fourier transform to rewrite (5.34) as

G(τ) = GQP(τ) exp
{

i

2π

∫

dω W(ω)

[

eiωτ − 1
ω2

]}

. (5.37)

The key difference between this equation and (5.26) is in a missing iωτ term in
the nominator at the exponent and in the fact that here one has the QP Green’s
function instead of the Hartree one. This difference is easily explained in that
the missing term is exactly what produces the QP shift to give the correct QP
energy. This result was found also in the model treatment by Hedin and by
Langreth [25, 75]. Using the plasmon-pole model (5.28) already applied in the
previous section, one can obtain more insight and calculate the Green’s func-
tion in this particular case. One obtains the same expression as (5.30) but with a
fundamental difference: the real-valued EQP is replaced by the complex quasi-
particle GW energy E. One can then calculate the spectral function that reads

A(ω) =
γ

π
e
− λ

ω2
p

[

1
(ω − ǫ)2 + γ2 +

λ

ω2
p

1
(ω − ǫ + ωp)2 + γ2

+
1
2

(

λ

ω2
p

)2 1
(ω − ǫ + 2ωp)2 + γ2

+
1
6

(

λ

ω2
p

)3 1
(ω − ǫ + 3ωp)2 + γ2 + . . .

]

. (5.38)
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This version of the spectral function is similar to (5.31), but it has key difference
in that the QP peak is at the GW quasiparticle energy and it has a finite lifetime,
which is the quasiparticle lifetime calculated in GW. In this sense this spectral
function reproduces exactly the QP part of the GW self-energy and it adds the
ability to reproduce plasmon satellites at all orders. This in contrast to the GW
approximations, that is able to reproduce just one satellite in its standard appli-
cation. This is in practice the same result that is found in the so-called ab-initio
cumulant expansion, that relies on an ad-hoc diagrammatic expansion that uses
the GW self-energy as an input [50]. This formulation can be connected even
better to GW: using the plasmon-pole model and the current diagonal approx-
imation in the GW self-energy, one can write some relations for the parameters
of the plasmon-pole model as functions of Σ:

ImΣ(ω) = πλ δ(ω − ǫ + ωp) (5.39)

and, integrating both sides,

λ =
1
π

∫

dω ImΣ(ω) (5.40)

which is very reasonable in the sense that notoriously the imaginary part of W
is proportional to the imaginary part of the self-energy [54]. Interestingly, if
one evaluates the real part of Σ at the QP energy ǫ the result is

ReΣ(ǫ) =
λ

ωp
(5.41)

which is what is found as the QP shift when one starts from the Hartree Green’s
function. This demonstrates how the effect of the GW self-energy is included
in the Green’s function calculated in (5.23).

At this point, one has a prescription to calculate the spectral function start-
ing from a GW calculation. The real part of the self-energy will then give the
value for the QP energy ǫ and the imaginary part of Σ will be used to fit the
parameters of the plasmon-pole model. In the next chapter I will study how
this approach can improve the study of the photoemission spectrum of bulk
silicon, which can be considered as a paradigmatic case. In this particular case
the exponential expression for G will be crucial to obtain a correct description
of the incoherent spectrum, where the GW approximation is problematic.

5.2.4 Solution for a generalized W

A very interesting extension of the result in 5.38 can be applied in an easy way
using a generalized model for the screening W. This improvement has some
interesting consequences on the form of the spectral function. One assumes
that W is a sum of Np poles ω̃j with strength λj:

W(τ) =
Np

∑
j

λj

[

eiω̃jτθ(−τ) + e−iω̃jτθ(τ)
]

, (5.42)

which is an exact representation for Np → ∞. This model for W is quite general
and was e.g. used to model the inverse dielectric function by J.J. Kas et al. [100].
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Following the same steps as those shown in the previous sections, one can
calculate the spectral function A(ω) = 1

π | ImG(ω)|. After defining

aj =
λj

ω̃2
j

(5.43)

one obtains, using (5.37) as shown before,

A(ω) =
γ

π
e
−∑

Np
j aj

[

1
(ω − ǫ)2 + γ2 +

Np

∑
j

aj
1

(ω − ǫ + ω̃j)2 + γ2 +

+
1
2

Np

∑
jk

ajak
1

(ω − ǫ + ω̃j + ω̃k)2 + γ2 +

+
1
6

Np

∑
jkl

ajakal
1

(ω − ǫ + ω̃j + ω̃k + ω̃l)2 + γ2 +

+
1
24

Np

∑
jklm

ajakalam
1

(ω − ǫ + ω̃j + ω̃k + ω̃l + ω̃m)2 + γ2 + . . .

]

. (5.44)

In this expression for the spectral function, W is included in full detail, pro-
vided that the given multipole representation is correctly fitted. This means
that this general formulation includes also lifetime of plasmons and plasmon
dispersion, along with the full frequency dependence of W. The parameters
entering the spectral function can be calculated from the results of a GW cal-
culation with a prescription equivalent to the one of the previous section. This
expression has interesting consequences for systems where W can have strong
poles at very different energies. This is the case in anisotropic systems like
graphite or graphene, or in systems where surface effects are important. As an
example, one can think of such W as characterized by two main plasmon fre-
quencies ω1 and ω2. If one was to use the plasmon-pole model for this system
— in the single-pole version presented in the last section — one would have to
choose either one of the two values, or an average, say ω̄, between ω1 and ω2.
Either way, the resulting spectral function would have, as expected, a single
series of satellite peaks, decaying as a Poisson distribution and centered at ω̄.
Instead, using both frequencies in a two-pole model, one will have, according
to (5.44):

1. a decaying series of satellites centered at multiples of ω1 with an intensity
proportional to a1;

2. a decaying series of satellites centered at multiples of ω2 with an intensity
proportional to a2;

3. a new series of satellites centered at other frequencies, results of the sum
of multiples of ω1 and ω2, with the smallest being ω1 + ω2; the intensity
of this first peak will be proportional to a1a2. One can assume, without
loss of generality, that ω1 < ω2. In this case the peak will be clearly vis-
ible and centered between 2ω1 and 2ω2 and will be more intense than
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the smaller second-order peak of the two. In fact, assuming the general
case where a1 < a2, it is straightforward that a2

1 < a1a2 < a2
2. Higher or-

ders become less trivial to track, but they will in general form additional
structures centered at nω1 + mω2 and intensity na1ma2.

This simple example illustrates how the generalization of the plasmon-pole
model can bring interesting features in the spectral function. As a general con-
clusion, helped by this simple two-frequency model, one can expect that in-
cluding the full frequency dependence of W in the spectral function will cause
the incoherent part of the spectrum to broad considerably. At the same time,
this allows the model to describe the effect of complex features that can arise
in W and are not described by a single plasmon-pole model. An effective ex-
ample of how complex features in W can affect the photoemission spectrum is
described in Chapter 7. The example of bulk graphite will test the exponential
expression for G in this generalized formulation, proving its validity and great
ability in giving an interpretation of experimental spectra.

5.3 Vertex corrections

The following section will try to answer the fundamental question: Is it possible
to use the exponential expression for G to derive an expression for the vertex?The first
part of this chapter has been dedicated to the derivation of an exact solution
to an approximate differential equation for the single-particle Green’s function
G. The GW self-energy is, on the other hand, an approximation of an exact
expression that can in principle be used to calculate the full G. Having access
to the full one-particle Green’s function is in principle equivalent to having
access to the exact self-energy, in fact the Dyson equation reads

G = G0 + G0ΣG (5.45)

and the non-interacting G0 is known. Usually what would be done is to use
an approximate self-energy to calculate G through the inversion of the Dyson
equation as G−1 = G−1

0 − Σ. In the case of the exponential expression for G,
the situation is the opposite. In fact one has obtained a solution for G without
recurring to the Dyson equation and to the self-energy. This means that if G
is already known, one is in principle able to use the Dyson equation to calcu-
late the equivalent self-energy that would give that G starting from G0. This is
notably interesting here for two reasons: (i) I have shown that the exponential
G includes the GW approximation and would then yield to a self-energy more
advanced than ΣGW ; (ii) a vertex correction in the form of a self-energy can be
easily implemented in any software package that already includes the calcula-
tion of the GW self-energy, needing a little effort with respect to a ground-up
implementation.

On the other hand, having an analytic expression for the full interacting
Green’s function opens the way to another possibility: one can use the defini-
tion of the vertex

Γ(1, 2; 3) = − δG−1(1, 2)
δϕ(3)

(5.46)
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and try to calculate directly the functional derivative. In this case it is ideal
because the exponential G has an explicit dependence on ϕ.

Figure 5.1: Feynman diagram of the exact self-energy. The solid line with an arrow
is a Green's function, the wiggly line is W and the triangle is the vertex Γ. The
self-energy reads Σ(1, 2) = G(1, 3)W(1, 4)Γ(3, 2, 4), as reported in (3.78e).

In the next part I will try to use the knowledge obtained in the previous part
of this chapter, i.e. the exact solution for the diagonal equation of motion and
the use of the diagonal approximation. Hence I will in the following neglect
the spatial dependence of all the quantities involved. This is an idea that was
developed in the framework of the thesis work of G. Lani and has proved to
be valuable when it comes to: (i) understand the dynamical structure of the
equation in a simplified framework and (ii) find exact solutions for the simpli-
fied equations that can later be expanded to the larger and more complicated
problem. Therefore in the following I will:

• analyze the structure of the self-energy using a plasmon-pole model for
W and a non-interacting Green’s function — mimicking what done earlier
in the chapter — and compare the result with the self-energy calculated
using the solution of the diagonal equation, to gain some insight on the
structure of the vertex and try to get an explicit solution;

• tackle directly the vertex in its definition as a functional derivative of the
Green’s function and use the acquired knowledge from the approach to
the diagonal equation to look for an analytic solution to the problem.

5.3.1 The mimical way

In this section I will derive an expression for the exact self-energy and one
for the self-energy derived using the solution of the diagonal equation for G.
The comparison of the two will single out the vertex function and possibly an
explicit analytic solution for it.

The exact self-energy

I will here neglect diagonal terms and thus retain only the time dependence
of all quantities. The definition of Σ by Hedin, repeated here for clarity from
(3.78e), is

Σ(1, 2) = iG(1, 3)W(1+, 4)Γ(3, 2; 4). (5.47)
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Neglecting the space dependence (i.e. assuming all the objects diagonal) and
making use of Fourier transform one can rewrite the equation for Σ(ω) as

Σ(ω) =
i

2π

∫

dω′G(ω′)W(ω − ω′)Γ(ω′, ω − ω′) (5.48)

If one substitutes here G and W with a non-interacting GQP and a single plasmon-
pole W one gets

Σ(ω) =
λ

2π

∫

dω′ Γ(ω
′, ω − ω′)

ω′ − E

(

1
ω − ω′ − ωp + iη

− 1
ω − ω′ + ωp − iη

)

.

(5.49)
which is already a quite complicated expression. To simplify the structure and
create a connection to GW, it is a very good idea to write

Γ(ω, ω′) = 1 + ∆Γ(ω, ω′) (5.50)

Which is the way the vertex is written also in Hedin’s equations in (3.78). Now,
in the case of

∆Γ(ω, ω′) = 0, (5.51)

which means that the vertex is now a delta function in time and one has re-
stored the GW approximation, Σ becomes

ΣGW(ω) =
λ

ω − E + ωp
(5.52)

which is clearly a self-energy coming from a single plasmon-pole model, as one
can see comparing with (5.39). This is a simplified version of the result for the
self-energy ΣGW found by L. Hedin in [25]. If one includes here the rest of the
vertex, restoring Γ = 1 + ∆Γ, the self-energy reads

Σ(ω) =
λ

ω − E + ωp

+
λ

2π

∫

dω′ ∆Γ(ω′, ω − ω′)
ω′ − E

(

1
ω − ω′ − ωp + iη

− 1
ω − ω′ + ωp − iη

)

,

(5.53)

where the first terms on the right-hand side of the equation is the GW part
of the self-energy, while the second term contains all the effects beyond GW,
which are described by the unknown quantity ∆Γ. It is helpful to define this
quantity X(ω):

X(ω) =
λ

2π

∫

dω′ ∆Γ(ω′, ω − ω′)
ω′ − E

(

1
ω − ω′ − ωp + iη

− 1
ω − ω′ + ωp − iη

)

,

(5.54)
which, again, contains all vertex corrections and is put to 0 to recover the GW
approximation.
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Self-energy from the exponential solution

At this point one would like to have a frequency-dependent expression of Σ

derived from the solution of the diagonal equation to compare with the one
above and obtain an expression for ∆Γ and the whole vertex. To calculate the
self-energy one can write the Dyson equation (3.52) as

Σ = G−1
0 − G−1. (5.55)

Using this expression the self-energy can be calculated using the exact G and
then compared to the exact expression above. Now G0 is

G−1
0 (ω) = ω − E, (5.56)

with E the quasiparticle energy. Now the full G−1 from the diagonal equation
is, with a = −λ/ω2

p:

G−1(ω) =

[

e−a
∞

∑
n=0

an

n!
1

ω − E + nωp

]−1

, (5.57)

i.e. it is the inversion of an infinite summation of terms. The full G generates
the following self-energy:

Σ(ω) = ω − E −
[

e−a
∞

∑
n=0

an

n!
1

ω − E + nωp

]−1

. (5.58)

This is the self-energy that would give exactly the same spectral function as the
exponential representation of G, containing QP corrections and satellite peaks
at all orders. At this point one can equalize the two self-energies (5.53) and
(5.58) and obtain

Σ(ω) =
λ

ω − E + ωp
+ X(ω) = ω − E −

[

∞

∑
m=0

(−a)m

m!

∞

∑
n=0

an

n!
1

ω − E + nωp

]−1

.

(5.59)
One can then single out X(ω), using (5.52) as ΣGW and evaluate the expression
containing all vertex corrections:

X(ω) = ω − E − ΣGW −
[

∞

∑
m=0

(−a)m

m!

∞

∑
n=0

an

n!
1

ω − E + nωp

]−1

. (5.60)

This term is in principle equivalent to the exact self-energy or, more precisely,
contains all vertex corrections beyond GW. In symbols:

X = Σ − ΣGW . (5.61)

In fact one can find in the expression for X, respectively:

• the G−1
0 term, i.e. ω − E;

• minus the GW self-energy (−ΣGW); this term is there to avoid a “double
counting” of the GW self-energy;
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• the actual G−1 coming from the exponential solution; this expression con-
tains all self-energy effects, i.e. quasiparticle corrections and satellites; it
consists of the inversion of an infinite sum of terms.

The derivation in this section shows how the actual calculation of vertex cor-
rections using this self-energy would imply a complicated calculation as the
inversion of an infinite sum of terms. This is not a practical path. However,
it is very instructive: it shows how complex the dynamical dependence of the
self-energy can be, even for a simple case as this, where a plasmon-pole model
is used for W and a non-interacting G is used. Moreover, the space depen-
dence of all quantities has been completely neglected. This validates the kind
of approach used to obtain the exponential expression for G with the direct so-
lution of a differential equation that is shown in the first part of this chapter.
In fact, if the space dependence of the quantities involved had been retained,
the equivalent expression for X would have been much more complicated. The
diagonal approach leads to a simpler expression that can help to understand
the problem. Of course in an actual calculation for a real system one would
not be allowed to apply it. Apparently then, trying to reverse-engineer the
self-energy starting from a known full Green’s function G can be a dead end,
if done as shown above. The problem lies in the inversion of the full G, which
gives a cumbersome term here and would be unfeasible if done numerically.
Avoiding to use the self-energy might be an advantage in this case.

To summarize, the outcome of this section is that trying to calculate vertex
corrections inverting a known G is not the way to go. In the next part I will
show an alternative way to the vertex: I will use directly the definition of the
vertex function to calculate it using the functional derivative of the Green’s
function. I will also propose a way to circumvent the problem of the inversion
of G that will still hinder the calculation of the vertex Γ.

5.3.2 Direct calculation of the vertex

The vertex is an explicit functional of the interacting Green’s function G for any
value of ϕ. Therefore, once the explicit dependence of G on ϕ is known, one is
able to calculate Γ using the definition. The vertex Γ is defined as

Γ(1, 2; 3) = − δG−1(1, 2)
δϕ(3)

=
∫

d4d5G−1(1, 4)
δG(4, 5)

δϕ(3)
G−1(5, 2)

(5.62)

where ϕ is the external perturbation potential. The second equivalence can be
proved using the functional derivative of G−1G (the identity) with respect to ϕ,
using Schwinger’s chain rule technique [53]. In the following I will make clear
why the latter formula for the vertex is more convenient than the former. From
a very practical point of view, one would prefer not to calculate the functional
derivative of the inverse, since the calculation of G−1 can already be a problem,
as seen in the previous section. However, if one has an explicit expression for
G depending on ϕ, the calculation of δG/δϕ is straightforward. The problem
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of the calculation of G−1 can be worked out using algebra and approximations,
as I will show in the following.

I will retain only the time dependence of the vertex and G, as done with all
quantities in the previous section. One can define a useful quantity D as

D(t4 − t3, t5 − t3) =
δG(t4, t5)

δϕ(t3)
. (5.63)

The vertex can then be written, in frequency space, as

Γ(ω, ω′) = G−1(ω′′)D(ω,−ω′)G−1(−ω′). (5.64)

It is possible to recover the GW approximation at this point, by imposing

D(ω,−ω′) = G(ω′′)G(−ω′), (5.65)

which implies Γ(ω, ω′) = 1. To understand how this quantity can be conve-
nient, one can analyze the structure of the self-energy. Using D instead of Γ

one can write the exact self-energy as

Σ(ω) =
i

2π

∫

dω′e−i(ω−ω′)ηW(ω − ω′)D(ω′, ω)G−1(ω), (5.66)

with η → 0. One can write an expression for the full G using this self-energy.
One can work out the self-energy using the Dyson equation and a little algebra

Σ(ω) = G−1
0 (ω)− G−1(ω)

= G−1
0 (ω) [G(ω)− G0(ω)] G−1(ω)

(5.67)

and combining the two expressions obtain

G(ω) = G0(ω)

[

1 +
1

2π
e−iωδ

∫

dω′eiω′δW(ω − ω′)D(ω′, ω)

]

. (5.68)

The latter can actually be regarded as another way of writing the equation of
motion for G. This writing is very convenient in that it does not contain G−1.
Thus, the problem of having the inverse of G is now solved. Interestingly, this
happened because we effectively removed the intermediate step of the calcu-
lation of Σ, that was problematic in the previous section.

Now one only needs to calculate D to have the solution for G. Of course,
if this was done explicitly with the exponential expression one would retrieve
the same expression for G. Here instead we use that solution to derive an
expression for D (and therefore Γ) as a function of G. Using the expression
for G in (5.22) and deriving with respect to ϕ one can show that, in the time
domain,

D(τ, τ′) = θ(−τ)θ(τ′)G(τ − τ′), (5.69)

which is true for any non-interacting Green’s function one decides to use as a
starting point (i.e. with or without quasiparticle energy shift). This is a very
interesting feature of the diagonal solution for G as it is a very compact ex-
pression for the vertex. Referring to the exponential representation for G, one
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can see that δG/δϕ contains in this form an infinite series of satellites, i.e. the
contribution “beyond GW” to the self-energy. The Fourier transform of D is
then

D(ω, ω′) =
∫

dω1

2π

G(ω1)

(ω − ω1 − iη)(ω′ + ω1 + iη)
. (5.70)

This expression can then be inserted in (5.64) and (5.66) to obtain an explicit
form for Σ and Γ as a function of G and W. The vertex function reads then

Γ(ω, ω′) = G−1(ω)
∫

dω1

2π

G(ω1)G
−1(−ω′)

(ω − ω1 − iη)(ω1 − ω′ + iη)
(5.71)

and the full self-energy reads

Σ(ω) =
∫

dω1

2π

G(ω1)

(ω + ω1 + iη)

∫

dω′

2π

eiω′ηW(ω − ω′)
(ω′ − ω1 − iη)

G−1(ω). (5.72)

These expressions include again inverse Green’s functions G−1. On the other
hand, they already contain the effect of D in the analytic structure. In other
words one can say that the self-energy in (5.72) contains vertex correction (by
construction). At this point, the simplest thing one could do is to use non-
interacting Green’s function instead of the full G and then work out the pole
structure. This derivations strongly suggests to try the latter, as it is in princi-
ple quite straightforward. Moreover, this part highlights the link between the
vertex and the two-particle correlation function L, of which the quantity D is
a contracted version. This is possibly a better quantity to work with, if one is
interested in dynamics, but it is arguably more complicated.

5.4 Summary

In the first part of this chapter I have discussed the solution of an approximate
equation of motion that can be solved exactly. The solution of this equation is
a Green’s function containing dynamical effects beyond GW, that is therefore
included in this treatment. I have shown how the Green’s function obtained
with this method connects to previously used models Hamiltonians, coupling
electron with bosons, notably plasmons. I have shown how this approach can
be improved and connected to GW in order to use the latter as an improved
quasiparticle starting point on top of which one adds dynamical effects. The
spectral function calculated using this G displays a quasiparticle peak at the
GW quasiparticle energy, and a series of satellite peaks that behave depending
on the structure of the screening W. In the simplest case of a plasmon-pole
model, the satellites peaks are stemming at multiples of the plasmon frequency
and decaying as a Poisson distribution to infinite order.

This approach can be in principle used to derive vertex corrections as it
includes effects beyond GW; in the second part of the chapter I have focused
the discussion on vertex corrections. I have shown how one can calculate the
effective self-energy corresponding to a known interacting G. The calculation
of the vertex and Σ through the inversion of the Dyson equation reveals itself
as a not trivial task, due to the required inversion of the full Green’s function.
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The last part of the chapter clearly illustrates the difficulty of modeling the
vertex Γ in order to treat dynamical effects. In fact, a calculation of the vertex
using the exponential G through the inversion of the Dyson equation leads
to a complicated expression including the inversion of an infinite summation,
which is the consequence of the term containing G−1. This fact suggests rather
to concentrate on modeling D = δG/δϕ , where the various contributions of
satellites are simply summed, and hence to search for a self-energy of the form
Σ = iWDG−1 instead of the traditional Σ = iGWΓ.

In the remaining chapters of this manuscript I will show how the exponen-
tial representation for G can be applied to calculate the spectral function of real
materials (notably silicon, graphite and graphene) and how it can yield great
physical insight to the interpretation of experimental spectra.
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6 | Valence-band satellites in

semiconductors

In this chapter I will discuss the spectral properties of semiconductors in valence-
band XPS, using bulk silicon as a paradigmatic example. I will focus on the
study of intrinsic satellite structures in the photoemission spectrum, using newly
measured spectra from the TEMPO beamline at the SOLEIL synchrotron facil-
ity. The unprecedented energy range and high resolution of these data allow
one to make a close comparison with theory that brings up a number of inter-
esting conclusions. Comparing with previous works in literature, I will analyze
the performance of the GW approximation in the calculation of the spectral
function and discuss the so-called plasmaron excitation, that has been now de-
bated for more than four decades. I will show that this is a spurious excitation
produced by the G0W0 approximation that can be considered a total break-
down of the approximation. The analysis of the data allows one to elucidate
the failure of GW in describing the satellites. I will then study the performance
of the exponential representation for G in the way it is derived in Chapter 5
and compare its performance with GW. The exponential representation for G
produces a spectral function that has an excellent agreement with experiment.
The new photoemission data yield a deeper understanding of intrinsic satel-
lites from plasmon excitations and give an excellent benchmark to evaluate the
performance of theory. An additional effort is necessary to describe correctly
secondary effects such as the background of secondary electrons, matrix ele-
ment effects and dependence on the photon energy. Moreover, the inclusion
of a correction for extrinsic and interference effects, as proposed in [21], gives
an added value to the final result. I will show how all these elements can be
included in the calculation and how they yield a better description and inter-
pretation of the experimental data.

6.1 Photoemission spectrum of bulk silicon

The valence-band photoemission spectrum of bulk silicon has been first mea-
sured by Ley et al. in 1972 [101]. While it is one of the most studied materi-
als of the history of solid-state physics because of its massive implication in
integrated devices technology, silicon still has something to reveal. In fact
the incoherent part of the PES spectrum, i.e. where satellites are found, has

95



96 CHAPTER 6. VALENCE-BAND SATELLITES IN SEMICONDUCTORS

been studied only once for the valence states [26]. In fact satellites were at
first considered mainly as an effect of extrinsic losses, i.e. due to scattering of
the outgoing photoelectron. However several authors have pointed out that,
while the extrinsic losses certainly have a contribution, a non-negligible part
of the spectrum has an intrinsic origin and can be studied and discerned in
photoemission theory by different means [21, 25, 27]. The intrinsic origin of
photemission satellites has been also confirmed by Fuggle et al. using Auger
spectra [102]. Recently, Offi et al. performed a comparative study on the origin
of intrinsic satellites in core-level spectra of silicon, using reflection electron
energy-loss measurements to evaluate the relative amount of extrinsic losses
in their photoemission spectra [23]. One of the outcomes of their study is
that there is a consistent and measurable amount of intrinsic satellites while
the extrinsic contribution appears to increase with increasing photon energies.
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Figure 6.1: Calculated Mean
free-path of electron in bulk sil-
icon in the 5�10000 eV kinetic-
energy range. (Solid line) in-
elastic mean free path (IMFP,
λi); (Dotted line) elastic mean
free path (EMFP, λe); dashed
line, transport mean free path
(TrMFP, λtr). From [23].

I have obtained valence band photoemission
data at high photon energy (XPS) that con-
stitute a reliable and well-resolved bench-
mark, thanks to a collaboration with M.G.
Silly and F. Sirotti from the TEMPO beam-
line at SOLEIL who measured a clean sample
of bulk silicon with a photon energy of 800
eV [2, 3]. Details on the experimental setup
at TEMPO will be given in the next chapter.
The advantage of measuring at this photon
energy is that surface and interference effects
are reduced with respect to energies nor-
mally used for band-structure measurements
(10-100 eV) and satellites should be en-
hanced [21]. This happens because for higher
kinetic energies the inelastic mean-free path
of photoelectrons increases (See Figure 6.1),
thus allowing electrons from holes deeper in
the bulk to be able to escape and be detected.
Therefore increasing the photon energy one
increases the bulk/surface ratio in the sig-
nal, reducing surface effects. The experimen-
tal data (dots), already shown in Figure 1.1,
are reported here in Figure 6.2. One can dis-
tinguish the quasiparticle peaks between the
Fermi level at zero and the bottom valence at
–15 eV, followed by two prominent satellite structures, each at a mutual dis-
tance of about 17 eV, as well as a more weakly visible third satellite between
–52 and –60 eV. These structures are obviously related to the 17 eV silicon bulk
plasmon [101, 103].

The band structure of silicon is possibly the most calculated band structure
in ab-initio methods and it is used as the prototype for semiconductors in sev-
eral solid-state books, e.g. [104]. However these calculation rarely go beyond
the independent-particle picture. There is a number of GW quasiparticle cal-
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culations [59] that can give a correct description of the quasiparticle part of the
spectrum. However, to obtain a complete information on the photoemission
spectrum, satellites included, one has to calculate the spectral function. The
GW spectral function of bulk silicon has been already calculated by several
authors [26, 51, 105]. In all but one case, there was not a direct comparison
with experiment; the authors just reported the spectrum to overestimate the
position of plasmon satellites, which was reported as a known problem of GW:
Kheifets et al. compared theoretical calculations with experiment for the first
time and they found a serious discrepancy between the two [26]. However
they were focused more on the QP part of the spectrum and they did not have
enough energy resolution in the satellite region to draw definite conclusions.
In fact, as I will discuss in a few lines, there is a serious problem in the incoher-
ent part of the GW spectral function that produces a completely wrong peak in
the spectrum.

-60 -50 -40 -30 -20 -10  0

ω (eV)

800 eV XPS
GW

Figure 6.2: GW spectral function of bulk silicon (solid line) compared with XPS
data at 800 eV photon energy. The Fermi energy is at 0 eV. The spectra are
measured/calculated integrating over the full BZ. In the coherent part (0-15 eV)
of the spectrum, the quasiparticle peaks of GW keep up with the experimental
spectrum (neglecting the e�ect of the background). However the incoherent part
� i.e. satellites � markedly di�ers: in GW there is a broad structure with a width
of almost 30 eV, while the experiment displays a series of structures of about 10�15
eV FWHM, separated by ωp=17 eV. While one-shot GW cannot give more than
one satellite, this graph shows how the �ctitious plasmaron peak dominates at �36
eV, destroying most of the (correct) plasmon peak at �25 eV.
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6.2 The GW spectral function
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Figure 6.3: GW spectral function (solid line) of bulk silicon at the Γ point for (b)
the top-valence band and (a) the bottom-valence band. The Fermi energy is at 0
eV. The real (dotted line) and imaginary (dashed line) parts of the corresponding
self-energy are also shown. The arrows show, respectively, the position with respect
to the QP peak of the maximum of the imaginary part and of the main satellite
peak. The �ideal� picture is in panel (b), where the QP peak stems from a zero in
the real-part term in the denominator of the spectral function; a plasmon satellite
rises at a slightly overestimated energy (The experimental plasmon frequency being
≈ 17 eV) and it is the consequence of a structure in ImΣ, due to the main loss
peak in ImW. In (a) the spectral function displays a main QP peak, more damped
with respect to top-valence because of a larger value of ImΣ(EQP), and a strong
satellite peak at a much overestimated energy. This is in fact a plasmaron satellite,
as it stems from a zero in ω − ǫH − ReΣ(ω).

While the capabilities of GW for the calculation of quasiparticle energies are
well established, the ability to describe and predict incoherent spectral features
like satellites has been studied for a few cases and the results vary from case
to case. In general one knows — by the way one calculates the spectral func-
tion from a self-energy — how it should look with respect to the independent-
particle case. The expression (3.60) for the spectral function as a function of the
self-energy is repeated here for clarity:

A(ω) =
1
π

| ImΣ(ω)|
[ω − ǫH − ReΣ(ω)]2 + ImΣ(ω)2 . (6.1)

Analyzing the analytic structure, one can already predict what will be the gen-



6.2. THE GW SPECTRAL FUNCTION 99

eral behaviour of a curve obtained using this formula: the spectral function
exibits a renormalized peak, centered on the real part of the quasiparticle en-
ergy and a width proportional to the imaginary part of Σ(EQP); this is the co-
herent part and QP peaks rise at zeros in ω − ǫH − ReΣ(ω). The incoherent
part should instead contain structures that are due to the imaginary part of the
self-energy, therefore to the imaginary part of the screening W. When the term
containin ReΣ is comparable with ImΣ and slowly varying, one can expect to
observe peaks in the spectral function corresponding to structures in the imag-
inary part of Σ. I will now show how GW can deviate substantially from this
picture and discuss the related implications.

In Figure 6.3 one can see the spectral function of silicon at the Γ point,
along with real and imaginary parts of the self-energy, for (a) bottom- and
(b) top-valence bands. This is a GW0 calculation, i.e. it is the result of a self-
consistent loop where the quasiparticle energies in the Green’s function are
updated while the screening W is kept fixed as calculated from step zero. This
avoids any inconsistency in the energy scales of the input Green’s functions
with respect to the spectral function. The top-valence band — panel (b) — is
a prototypical case that behaves as depicted at the beginning of the section:
the QP peak stems from a zero in the real-part term in the denominator of the
spectral function; a plasmon satellite rises at a slightly overestimated binding
energy and it is the consequence of a structure in ImΣ, due to the main loss
peak in ImW. The small shift is due to the fact that the real part is not constant
in that range of energy. In fact, the experimental main peak of the loss spec-
trum of silicon is approximately 17 eV [101, 103]. In the bottom-valence case
— panel (a) — the features are different: the spectral function displays a main
QP peak, more damped with respect to top-valence because of a larger value of
ImΣ(EQP), which is somewhat expected, based on what is seen in the homo-
geneous electron gas and real systems [24, 25, 39]; differently with respect to
top valence, here a sharp satellite peak appears at a much overestimated bind-
ing energy. This is not a plasmon satellite, as it stems from an additional zero
in ω − ǫH − ReΣ(ω) — and not directly from a structure from the imaginary
part — in much the same way as a quasiparticle peak. This structure has been
observed in the GW spectral function of several models and real systems and
discussed for the last four decades; it is called a plasmaron. There is a third zero
in the real-part term — at about –30 eV — that could be assimilated to another
plasmaron, but that does not give rise to any peak in the spectral function.
This happens because the intensity of the imaginary part of the self-energy at
that point is relatively high and it damps this other possible structure, which
anyway would have a negligible lifetime. This zero is always present in the
self-energy as soon as a plasmaron is there, because ω − ǫH − ReΣ(ω), after it
has changed sign the first time to produce the plasmaron, it has to change sign
again to be able to give rise to the QP peak, where it changes sign again. Since
this singularity goes with the plasmaron, but its influence on the spectrum is
none, I will just discuss the plasmaron, as it has been done in literature prob-
ably for the exact same reason. One can notice that between the plasmaron
peak and the quasiparticle peak the spectral function is still non-zero. This
can be regarded as the “‘true” plasmon contribution to the satellite, as it is due
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to the large peak in ImΣ and to ReΣ being comparably small. It is of course
wiped out by the much stronger plasmaron. As noted by Fleszar and Hanke,
it is striking how much the GW spectral function of silicon resembles to the
one of the jellium: the two panels in Figure 6.3 could be assimilated, with the
appropriate value of the Wigner radius, to the plots of A(ω) at (a) small and
(b) large momentum k in the homogenous electron gas ([51] and references
therein, [49]).

It is very important to note that the plasmaron is not a universal feature of
GW and in several system it does not appear at all. Thus, there is no systematic
way of knowing if a system will have this problem before actually calculating
the self-energy. Nevertheless, GW satellites have been pointed out to be weak
and to overestimate their distance with respect to the QP peaks. I will discuss
in the next section whether these can be considered reasonable statements and
how these findings connect to the plasmaron problem.

The one-shot GW spectral function of bulk silicon has been already calcu-
lated by several authors [26, 51, 105] and their findings confirm the existence
of the plasmaron, but they do not always discuss it as such. The problem of
the plasmaron has already been addressed — both for model and real systems
— and several solutions have been proposed to eliminate it or, at least, im-
prove the performance of the GW spectral function. In the next section I will
overview the proposed solutions to the plasmaron problem and discuss how
and when they can be appropriate or not.

6.3 The plasmaron: problems and solutions

Found for the first time by Hedin et al. in the GW spectrum of the homogeneous
electron gas, the plasmaron was, in the span of five years, first brought up as
a new many-body excitation and eventually ditched as a spurious product of
the GW approximation [77, 106–108]. However, it has somewhat survived in a
limbo for several decades and risen again in recent times. In the next section
I try to trace an exhaustive chronological summary of its story, with all the
literature involved. In fact it seems that several points made more than 40
years ago have been somewhat lost, therefore a recap of all the sources in a
single place has become necessary. In this section I report and analyze the
main points that determined the plasmaron to be recognized as a fake product
of GW. Also, I discuss the different attempts of correcting the problem, notably
with energy shifts or with the use of self-consistency.

After it was found in the homogeneous electron gas, the plasmaron was
also found in the GW spectrum of core electrons [77, 106]. The spectra looked
very much like the bottom valence of bulk silicon at the Γ point, and in fact —
for the HEG — the plasmaron was found at momentum k ≈ 0. The interpreta-
tion given by the authors was that this excitation was the result of the coupling
between a hole and a bulk plasmon, that could bind under certain conditions.
“Free” plasmon excitation could co-exist at different momenta and were quite
well-separated, as they were located at the plasmon frequency ωp, while the
plasmaron was found at about 1.5–2× ωp. The homogeneous electron gas was
the theoretical reference for metals and still today is considered the best model
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for the so-called simple metals like Na and Al. For core levels, however, the ref-
erence model consisted of a model Hamiltonian where dispersionless electrons
could couple to plasmons. This electron-boson (or polaron) model is considered
the best model for core-level spectra including purely electronic excitations and
has proven to be an almost exact representation of the physics of photoemis-
sion spectra in this case. It has proved its validity also for the description of
electron-phonon coupling. D.C. Langreth, just a few months after the plas-
maron was found in core-electron GW spectra, published the exact solution for
the electron-boson model [75]. The difference with GW was striking: the exact
solution displayed an infinite series of satellites at multiples of ωp. A couple
of years later, Blomberg and Bergersen published a study of the plasmaron,
using a widely applicable model for the screening W, and proved that it was a
spurious excitation created by the GW approximation that could be fixed using
instead an expansion of the spectral function in terms of the Green’s function,
practically very close to the exponential representation for G derived in Chap-
ter 5 [107, 108]. At that point it was clear that the plasmaron was not a physical
feature of the photoemission spectrum of GW. However, there was a number
of reasons because of which GW was still preferred over other approaches. On
one hand, people were mostly interested in QP energies and the experimental
information available on satellites was still very poor at the time; hence it re-
mained merely a debate between theoreticians. Also, GW was really (and still
is) the many-body tool with the best trade-off between accuracy and afford-
ability and it is possibly the best tool to calculate QP energies. On the other
hand, GW calculations on real materials would not have been done for another
fifteen years after the discussion had taken place, as it was still too an expen-
sive task for computers of that time; even then, another handful of years would
have been necessary for someone to dare calculating the GW spectral function
of a real material, as that was a much heavier task then just the calculation of
QP energies. After that, people have found that the GW spectral function does
not always display a plasmaron in the spectral function. There are several ex-
amples, especially in transition metals (e.g. Nickel [109]) and transition metal
oxides (e.g. NiO, VO2 [52]) that are free from the problem.1 Also sp semicon-
ductors can be without the plasmaron, as I will show in the next chapter with
the example of graphite. There are however also simple metals that do suffer
from the plasmaron problem, such as Na and Al [50, 110]. For these reasons,
several authors focused on the spectral properties of GW and, knowing the
built-in limitation of the approximation, tried to solve the problems and im-
prove it. There have been two main solutions proposed to improve/correct
the description of satellites in GW: the use of energy shifts and the use of self
consistency.

Energy shift This issue has already been addressed in 3.3.7 and it has to do
with a different alignment of the chemical potential that one can have in the

1 These are more complex systems than sp semiconductors as here satellites can arise from other
phenomena than plasmon excitations, namely hole-hole interaction as in the case of Nickel. This
particular case, even in the absence of a plasmaron peak, hinders the ability of GW to fully describe
the spectral properties [109].
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non-interacting and the interacting Green’s function. The problem is origi-
nated by the way GW is usually used to calculate the self-energy: a standard
one-shot GW calculation would in general cause a shift in the Fermi energy,
due to a shift of the topmost valence band.

Figure 6.4: The spectral function
A(k, ω) from the full GW calculation in
HEG (solid) is compared to the corre-
sponding quantity from the partially self-
consistent GW0 calculation (dashed) [46].
In (a), the comparison is made at the
Fermi surface, |k| = kF , and (b) shows
the same comparison at the bottom of the
band, |k| = 0. In both cases the sharp
overestimated satellite peaks become a
broad plasmon satellite at the correct en-
ergy. Here rs = 4, which is representative
of bulk Na. From [111].

This would result in using, in the
calculation of the spectral function,
a self-energy that is shifted by ∆E,
with ∆E defined as the quasiparticle
shift of the Fermi level. Hedin pro-
posed to fix this problem imposing
self-consistency at the Fermi energy,
i.e. by effectively adding a ∆E shift
in the self-energy used to calculate
the spectral function [25, 38]. An-
other way of saying this is that the
energy shift is already added to the
energies of the non-interacting G. A
GW0 calculation is therefore immune
from this problem. The general ef-
fect of the energy shift is that the QP
peaks are enhanced (i.e. sharpened)
while satellites are slightly damped.
However, the amount of this effect
depends strongly on the magnitude
of the shift, which is, unfortunately,
system-dependent. Some authors
suggested that this energy shift could
fix the plasmaron problem [105, 112].
While it is true that in silicon, look-
ing at a single k point, one can
see that the plasmaron tends to be-
come weaker, my GW0 calculations
show how the problematic structure
persists even with the shift applied.
GW0 calculations on the HEG have
shown that the plasmaron peak ap-
pears to damp and to move a bit
closer to the QP peak, but it does
not disappear [46].2 Now, the shift
should be in general applied, as dis-
cussed by several authors, to avoid
problems with too high values of ∆E
that can destroy the spectrum [25,
112]. It is also true that, in principle, ∆E would be able to make the plasmaron
disappear, as it acts as an effective downward shift of ω − ǫH − ReΣ(ω). The

2In most publications e.g. on the HEG there is no mention of the plasmaron (even though it is
there) and therefore the problem is not even discussed.
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problem is that there is no guarantee that ∆E will be large enough to make it,
as it varies from case to case. The claim by Pollehn et al. that the shift improves
spectral features is certainly true for their special case of a Hubbard chain and
in general for quasiparticle peaks, but it cannot be taken as a general way to
improve satellite features (i.e. remove the plasmaron) [112]. On the other hand,
the shift can indeed improve the shape of plasmon satellites, as in the case of
VO2. However, in that case there is no plasmaron to start with [52].

Self consistency The effects of self consistency on spectral features within
the GW approximation have been discussed mainly for the model case of the
homogeneous electron gas or for finite systems [113–115]. There exist no fully
self-consistent GW calculations for a real solid, due to the numerical challenge
that this would imply.3 The self-consistency issue partly connects with the
energy-shift issue, as including the shift in the calculation can be considered a
poor man’s way of applying self-consistent GW0, although the latter is compu-
tationally more expensive. I have already discussed the effect of GW0, where
self-consistency lies only in the energies of the Green’s function; I shall discuss
here GW, where all the quantities are included in the loop and one actually
solves the Dyson equation self-consistently. The only fully self-consistent GW
result for extended systems was published for the HEG by Holm and von Barth
[113], who had previously discussed also GW0 [46]. Their results are summa-
rized in Figure 6.4, where one can see the spectral function A(k, ω) of GW0
and GW compared. Holm and von Barth seem to dismiss the plasmaron issue
as not relevant; in fact, while they acknowledge the work by Lundqvist on the
HEG, they report G0W0 as just overestimating the position of plasmon satel-
lites and reckon that using the exponential representation for G (the cumulant
expansion) is the way to go to fix the problem. In their full GW calculation,
they observe that satellites are markedly damped with respect to GW0, but
also undergo a repositioning at the correct plasmon frequency. However, the
authors consider that the weight of such satellites is too weak and that fully
self-consistent GW actually worsens the spectral function! They therefore see
this as a clear sign for the need of vertex corrections to GW that would “cor-
rect” the failure of fully self-consistent GW.

I argue here that, considering that (i) the plasmaron appears completely re-
moved from the spectrum, (ii) the newly obtained satellites are at the correct
position and (iii) they can thus be considered as “true” plasmon satellites, the
fully self-consistent GW result is actually much better than any previous par-
tial self-consistent attempt, at least considering just the incoherent part of the
spectrum. The quasiparticle spectrum is anyway not very different from G0W0
or GW0. Holm and von Barth do not recognize this for the following reasons:

1. they consider as a reference for satellites the result by Holm and Aryase-
tiawan on the self-consistent cumulant expansion applied on the HEG,
that gives much sharper satellite peaks than GW; however, that calcu-
lation is not self-consistent with respect to W, that is kept fixed at the
RPA level. It is also not clear at what level plasmon lifetime effects are

3Approximated variant of fully self-consistent GW have been attempted, e.g. [116, 117]
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included. If one takes e.g. the cumulant-expansion spectral function cal-
culated for silicon at the Γ point in [26], the similarity with the full GW
result of Holm and von Barth is striking as satellites are as broad as in
the HEG case. The full frequency dependence of W is there taken into
account. In fact, a small satellite weight should not a priori be a problem:
extrinsic effects can improve substantially the intensity of satellites, that
in the intrinsic case do not have to be very strong, as the results presented
in this manuscript demonstrate.

2. They consider that the enlargement of the bandwith, seen in the full GW
case, goes in the wrong direction with respect to partially self-consistent
approaches. This conclusion is based on results extrapolated from bulk
sodium, considered as the real-world equivalent to the electron gas. How-
ever, the electron gas remains a model, and the exact bandwith of a sys-
tem is difficult to measure in photoemission, due to several effects such
as the background of secondary electrons and satellite peaks. Thus, one
can consider this justification for the failure of fully self-consistent GW
doubtful, to say the least. Moreover, there is no exact solution for the
quasiparticle spectrum of the homogeneous electron gas; this would be
a necessary benchmark to draw definite conclusions about the perfor-
mance of an approximation on the model.

3. They observe that self-consistency changes the properties of the screen-
ing W, which is no more a good response function, as it violates sum
rules. This is a fair objection; at the same time it can be seen as an effect
of the GW approximation, that could be corrected using vertex correc-
tions. A direct link between this error and a “bad” spectral function is
not obvious.

Fully self-consistent GW calculations remain today an almost unexplored path
for real materials. For atoms and molecules, fully self-consistent GW produces
accurate total energy differences, although per se the self-consistent total ener-
gies differ significantly from the exact values. Hence it can be said that self-
consistent GW gives poor total energies for atoms and molecules. The ion-
ization potentials obtained from self-consistent GW and calculated from the
Extended Koopmans Theorem, are in very good agreement with experimental
results. Moreover, the self-consistent ionization potentials are often better than
the non-self-consistent G0W0 values [114]. Another general implementation is
being developed, but it is not clear how satellites are described in finite sys-
tems [115]. There are no attempts yet for periodic systems. It is therefore quite
hard to fully discuss the issue. Overall, the perspective offered by this para-
graph suggests that the conclusions on the performance of self-consistent GW
on HEG should be reconsidered for satellites. The results presented here and
in the next chapter will bring up additional reasons to support this view.

Alternative solutions The GW self-energy can be seen as the first-order term
of an exact infinite expansion of Σ in terms of the screening W. While the cal-
culation of additional terms of the self-energy have been already suggested, it
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has almost never been explored, because of the much greater computational ef-
fort needed with respect to the first-order term [24, 38, 39]. Hedin showed that,
expanding the self-energy to higher orders in W greatly corrects the plasmaron
peak giving a spectral shape that approaches the exact one, with a satellite peak
at Esat = ǫQP − ωp [25, 118]. This test was performed on a model system; the
actual feasibility of such endeavor for real systems is not clear as this approach
has not been attempted yet. However, if the findings of Hedin were confirmed
on real system, this would put a clear link between the first-order approxima-
tion of Σ and the presence of the plasmaron. Results by Ness et al. [119] on the
HEG also suggest that higher-order terms in the self-energy can improve the
shape of satellites in the spectral function.

6.4 The plasmaron: a historical view

In the late 1960s there has been a great improvement in the study of X-ray
spectra of metals. A number of authors gave important contributions to the
field and developed the theory, often surpassing what could be achieved in
experiments by far. The first attempts were all based on model Hamiltoni-
ans or applied to model system such as the homogeneous electron gas, but
the results of those years have important consequences still today. In many-
body theory, people were focused on the calculation of the Green’s function
using e.g. the Dyson equation. In this case they were eventually looking at
how to approximate the self-energy. A first-order perturbation expansion of
the self-energy in the screened interaction was proposed by Lars Hedin [38].
That approximation has become widely known as the GW approximation. At
that time people were mostly interested in quasiparticle properties, but mod-
els allowed authors to explore the features of the Green’s function and of the
spectral function A(ω), giving a deeper insight about the physics contained in
the theoretical approaches.

6.4.1 The swedish electron gas

The performances of GW in the HEG were explored in 1967-1969 by Bengt I.
Lundqvist, in a series of papers [47–49, 120] that was focused on the physics of
the homogeneous electron gas, intended to model valence electrons in metals.
There he discussed extensively the GW approximation and showed that the
GW spectral function featured a sharp peak at the QP energy ǫ and a satellite
structure, more damped, at energies lower than ǫ − ωp, ωp being the plas-
mon frequency of the system. This second structure had been announced —
quite enthusiastically — in 1967 by Lars Hedin, Bengt I. Lundqvist and Stig
Lundqvist (HLL hereafter) [106] and further discussed by Hedin for X-ray
emission spectra [121] before the deeper analysis by B.I. Lundqvist in his HEG
papers. They called it the plasmaron excitation, ascribing it to a bound state in-
volving a quasiparticle and a plasmon and being logically located at a deeper
energy than the bare plasmon frequency (which would imply a “free” plas-
mon is excited). A serious attempt to find the plasmaron was tried in 1968
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by Cuthill et al. [122]. They measured the L edge of aluminum, but could not
detect anything within their error bar.

B.I. Lundqvist continued to study the spectral properties of the GW approx-
imation in another paper in 1969 [77] where he focused on the spectrum of core
electrons using a model Hamiltonian. In this model the core electrons are cou-
pled to a boson field representing plasmon excitations from valence electrons.
He found that the results for core electrons did not differ much from what he
had found before in the HEG for valence electrons and the GW spectral func-
tion was similar both in the quasiparticle and in the satellite region. The spec-
tral function of the core electron displayed a plasmaron satellite, just the same
way it was found in the electron gas. At that time there were no experimen-
tal data available that could disprove or confirm what HLL had found. HLL
reviewed their results on the GW self-energy in 1970 [78]. By that time, they
were less keen to stress the existence of the plasmaron, as there was no clue
whether it was a physical feature of the spectrum or not, and they acknowl-
edged the need for reliable experimental data. Also, the work done by D.C.
Langreth to solve the polaron model [75] was calling for a more cautious view
on the incoherent part of the spectral function. HLL acknowledged the work
of Langreth and reckoned that the satellite shape of the GW spectral function
was, however, a good estimate of the series of satellites found in the exact solu-
tion of the polaron model: the fact of having a single satellite peak was due to
the first-order nature of GW — and to the way it was calculated, as a first-order
perturbation — and thus considered as a built-in limitation of the approach.4

6.4.2 Exact solution vs GW for core electrons

D.C. Langreth, following the work of Nozières and De Dominicis in 1969 [76],
studied the same electron-boson Hamiltonian used by B.I. Lundqvist to ana-
lyze the GW self-energy for the core-electron case. In 1970 Langreth calculated
an exact solution for the Hamiltonian and showed that it yields substantially
different results from GW in the satellite part [75]. The exact solution of the po-
laron Hamiltonian has an exponential form and the resulting spectral function
contains a series of poles beside the quasiparticle peak. The series of satellites
— each one appearing at exact multiples of ωp — decays as a Poisson distri-
bution. This model for core electron is faithful to the real situation and can
be considered the best result available for the one-particle green’s function in-
cluding plasmons. In fact in literature it is often referred to as the exact solution
for core electrons. A couple of years later, C. Blomberg and B. Bergersen [107]
in one paper and again with F.W. Kus [108] in a second paper, discussed in
great detail the plasmaron issue. They argued that the plasmaron is a spuri-
ous effect due to the GW approximation presenting a model with known exact
results (similarly to what Langreth had found earlier). They showed that a di-
rect expansion of the Green’s function — including QP shifts — could solve
the problem, removing the spurious excitation. In the end, they did not give a

4The results produced by HLL would be later become famous among colleagues as the
“Swedish Electron Gas” also thanks to the book by Hedin and S. Lundqvist (Chapter VII) [39]
that quickly became a reference in the field.
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general mathematical proof of the unphysical character of the plasmaron, but
they added a number of valid arguments — sensible also for a general case —
supporting this idea. This, together with what Langreth had found and with-
out any experimental evidence, was quite enough to be more than suspicious
about the plasmaron.

6.4.3 Connection with experiment

It is important to understand that all these studies were purely theoretical and,
for anything related to satellites, they were not backed by any experimental
investigation. This was a natural consequence of early-stage experimental XPS
techniques available and scarse interest in anything going beyond the QP part
of the spectrum. There were issues with sample preparation (surface effects
and contaminants) and effective resolution of the experimental setups that did
not favor the study of satellites. In fact in many cases it would have been hard
to detect satellite structures because of the low resolution available and the
high levels of noise in the spectrometers. Satellite structures in photoelectron
spectroscopy would be observed and studied in XPS spectra just a few years
later (see e.g. [123, 124]). Notably, Baer and Busch observed in 1973 satellites
replicas in core-level spectra of Al [123], citing the works of Lundqvist [77] and
Langreth [75]. They reckoned that Langreth’s exact solution to the electron-
boson model would explain their result. A striking example of multiple plas-
mon satellites in core-level spectra of metals can be found in [125].

The problem of the description of satellites in core-electron spectra was later
summarized in a review by F. Bechstedt [22, 79]. He reported the limitation of
GW satellites and cited the exponential expression of Langreth as the solution
to the problem.

6.4.4 The valence spectrum

While for core electrons the issue seemed to be eventually settled, for valence
electrons the plasmaron problem of GW was never pointed out clearly; this
happened partly because of the absence of GW calculation for real materials
before the late 1980s and partly because of the low interest of the community
— both theoretical and experimental — in photoemission satellites of valence
electrons. So the plasmaron was thought more of an effective average of the
correct solution than a total breakdown of GW, which is what it really is. Sys-
tematic experimental studies on series of valence-band satellites in metals were
published in the late 1970s by Höchst and others [126, 127]. Even though ini-
tially they dismissed the satellite peaks as pure energy-loss peaks of the pho-
toelectron, they later realised that the considerable weight of these structures
could not be ascribed just to extrinsic losses. However, the intrinsic origin of
satellites was never completely acknowledged by the experimental commu-
nity. In 1980 Hedin proposed to use a modified polaron Hamiltonian and its
exact exponential solution (very close to Langreth’s) for valence-bands satel-
lites [80]. It was not before the 1990s that GW calculations on real systems could
be performed also including the calculation of the one-particle spectral func-
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tion.5 Hedin gave a further contribution in 1991, studying on a model system
the effect of higher orders terms of the expansion in W of the self-energy — GW
being the first-order term — and found that the satellite shape was closer to the
exact solution than GW and could apparently make the plasmaron disappear
[118]. The GW spectral function of silicon was analyzed in 1994 by Bechstedt
and others [105]. They presented an extended study, also including the expo-
nential expression for G through a so-called “satellite generator”, of which GW
would be the linearized version (see also [79]). This is similar to what was ear-
lier proposed by Hedin [80] and Almbladh and Hedin [24]. Instead of using
the exponential expression for G though, Bechstedt et al. pointed out that the
inclusion of the QP shift in the non-interacting Green’s function used to calcu-
late the self-energy would allow them to avoid the plasmaron problem. While
this is technically possible, it is not guaranteed that the QP shift removes the
plasmaron in all cases, as the results of this thesis also demonstrate (see further
discussion) [1]. In 1996, the exponential expression for G was used, using a
GW starting point, to describe series of satellites in metals, giving a much bet-
ter result than just GW; in fact, the latter was plagued by the plasmaron prob-
lem [50]. This way of deriving the exponential representation of G was called
ab-initio cumulant expansion [81], in reference to an approach used in statistics
with similar mathematical formulation. Strangely, the authors did not mention
the plasmaron, not showing the details of the self-energy and dismissing GW
as merely overestimating the plasmon satellite. However, the results by Caz-
zaniga [110] show how the GW spectral functions of Al and Na both display
the characteristic plasmaron peak, just as HLL had found in the HEG in 1967
[47–49, 106]. Kheifets and others measured the spectral function of silicon in
2003 and compared it to GW and the cumulant expansion [26, 51]. Their data
are not conclusive for the satellite part due to low energy resolution, but show
clearly that the exponential solution for G is, for satellites, a great improvement
with respect to GW. In fact the GW spectral function of silicon also suffers from
the plasmaron. The spurious nature of the plasmaron in Si was confirmed by
my work in 2011 and it is presented in this chapter [1]. New photomission
data help to give a clearer picture of the physics of plasmon satellites in bulk
silicon (see further discussion). At this point the plasmaron is officially a fake
product of the GW approximation, due to the way the self-energy integrates
the screened interaction W, i.e. simply to first order. This holds without a defi-
nite general mathematical proof, but with many examples in real systems and
rigorous mathematical proofs in reliable model systems.

6.4.5 Rebirth in 2D systems

The plasmaron was “re-discovered” in 1992 by von Allmen [128]. He found
that the GW spectral function of a 2D electron gas showed a satellite structure
that was identical to the one found in the three-dimensional case by HLL. The
author refers to HLL but he never uses the name “GW”, speaking instead of
RPA self-energy. As a consequence, the plasmaron has become since a possi-

5Until then GW calculations focused on QP energies as calculating the spectral function is a
much heavier task [57].
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ble many-body excitation in 2D systems and been the subject of a few articles.
The possibility of it being a spurious peak produced by the GW approximation
was not considered and apparently the long discussion that went on for the
3D case was not known in that scientific community. With all probability this
happened because of the complete orthogonality between that community and
the “traditional” (i.e. gravitating around Lars Hedin) GW community. Tediosi
and others reported the detection of plasmarons in reflectivity measurements
of Bismuth together with “normal” plasmon excitations [129]. No theoretical
calculation supported these measurements. A plasmaron peak was found in
the spectral function of doped graphene independently by two groups in 2008
[130, 131]. The authors studied a GW spectral function calculated for a 2D
linear-dispersion model for doped graphene. This spectral function displays,
not surprisingly, sharp plasmaron peaks close to the special point K of the Bril-
louin zone of graphene. An important paper came out in 2010, reporting of
plasmaron satellites being measured in quasi-freestanding graphene [132]. The
experiment was compared to the GW spectral function calculated for the 2D
model of graphene, as in Polini et al. [130]. The main difference between the
experiment and the model calculation is that in the experiment the QP peak
seems to disappear for increasing momentum k and at that point the spectrum
consists only of the plasmaron peak, while in the model spectral function the
two structures exist always together. The paper has raised quite a debate as it
would be the first observation of a plasmaron excitation in a real system con-
firmed by theory. Recent ab-initio results by Currey et al. have confirmed the
presence of a plasmaron peak around the special point of graphene when one
uses GW to calculate the spectral function [133]. These calculations also show
that the plasmaron fades away as one goes away from the special point K. This
is in clear contrast to what found by Bostwick et al. and promotes further de-
bate. Also, the uncertainty on the experimental spectra does leave space for
objections. Such spectra could be the result of an un-even graphene surface or
local double-layer or stair effects. More simply put, the new structure could
be an effect of a low-energy plasmon excitation present in the doped system,
hence being a plasmon satellite. There is no reason to believe that in 2D sys-
tems the plasmaron would be a physical feature of the spectrum. This can be
deduced by its mathematical nature as it was originally discussed by Blomberg
and Bergersen in 1972 [107]; their arguments hold also in the two-dimensional
case.

6.5 Exponential spectral function

I now present new results on the spectral function of silicon. I used the expo-
nential representation for G as described in Chapter 5. I used (5.38) for each
state in the BZ, using the self-energy to fit the parameters of the plasmon-pole
model; I calculated the total spectral function A(ω) as a sum over occupied
states in the BZ. A number of additional effects, such as the effect of photon
cross section and the background of secondary electrons, have been included in
the calculation to improve the interpretation of the spectra; they will be briefly
discussed in the next paragraph. The results presented here on the photoemis-
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Figure 6.5: The intrinsic exponential spectral function of silicon (black line), calcu-
lated as in (5.38), is here compared with the GW spectral function (blue line) at
the Γ point, bottom valence band. Real and imaginary part of the self-energy are
reported here for clarity. The exponential solution for G displays a strong peak at
the quasiparticle energy, slightly damped with respect to GW. The satellite shape
of the spectral function is greatly improved with respect to GW: a peak of about
the same intensity as the plasmaron peak appears at about 16.7 eV, which is ex-
actly the plasmon frequency of silicon. A second weaker satellite appears at about
�45 eV. The arrows indicate the distance of the center of mass of ImΣ and of the
plasmaron peak with respect to the QP peak, respectively.
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sion spectrum of bulk silicon have been published in [1, 134].
In Figure 6.5 the spectral functions calculated using the exponential repre-

sentation for G and GW for silicon at the Γ point are compared. The exponen-
tial solution for G displays a strong peak at the quasiparticle energy, slightly
damped with respect to GW. The satellite shape of the spectral function is
greatly improved with respect to GW: a peak of about the same intensity as
the plasmaron peak appears at about 16.7 eV from the QP energy, which is
exactly the plasmon frequency of silicon. There are no lifetime effects due to
plasmons, as this is a plasmon-pole model calculation.
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Figure 6.6: Experimental XPS spectrum of Si at 800 eV photon energy (blue
crosses), compared to the theoretical intrinsic A(ω) calculated from G0W0 (red
dashed), and from Eq. (5.38) (green dot-dashed). On top of the latter the black
solid line also includes extrinsic and interference e�ects. All spectra contain photo-
absorption cross sections, a calculated secondary electron background and 0.4 eV
Gaussian broadening to account for �nite k-point sampling and experimental reso-
lution. The Fermi energy is set to 0 eV. This result has been published in [1].

The results for the total spectral function are summarized in Figure 6.6. The
green dot-dashed line gives the result of the exponential expression for G to-
gether with the cross sections and the secondary electron background. The
shapes of the QP peaks change little with respect to GW, but now the full series
of satellites is present. The internal structure of the satellites which originate
from the multiple valence bands, is also reproduced. This validates the decou-
pling approximation in the dense valence band region where, contrary to the
case of an isolated core level, its success is a priori far from obvious. In fact,
the major effect of recoil appears to be in the normalization of the quasiparti-
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cle peaks, while satellites seem not to be very affected. Thus, the plasmaron
problem appears to be completely solved by using the exponential represen-
tation of G. However, the intensity of the observed satellites is significantly
underestimated. This discrepancy is similar to that found for the ab-initio cu-
mulant expansion in simple metals, where extrinsic losses were suggested as a
likely cause [50]. These might also be reduced by interference effects [21, 25].
To estimate the contribution of extrinsic losses and interference effects to the
spectrum, I included a correction to the weights a in the spectral function, cal-
culated in collaboration with J.J. Kas and J.J. Rehr. The total spectrum thus
obtained (black line in Figure 6.6) is in unprecedented agreement with exper-
iment. The change in the quasiparticle region is minimal, as the effect of the
correction is only to reduce the overall intensity, transferring it to the incoher-
ent part of the spectrum. The major change is in the satellite part: the intensity
is increased and the lineshape is improved due to the inclusion of lifetimes.
This final curve highlights the importance of extrinsic losses in the incoherent
part of the photoemission spectrum, which are crucial as they give a substantial
contribution to the intensity of plasmon satellites.

6.5.1 Correction for Extrinsic Losses and Interference Effects

Josh J. Kas and John J. Rehr, in the framework of a collaboration with our group,
have calculated the extrinsic and interference contributions to the PES spec-
trum of bulk silicon based on the theoretical formalism of Hedin, Michiels, and
Inglefield [21] and on my ab-initio results. The theory accounts for satellites in
the PES spectrum in terms of a spectral function Aik(ω) of exponential form.
This allows one to connect this formalism to the exponential representation
of the single-particle Green’s function, to calculate corrections to the spectral
function for extrinsic and interference effects.

In order to evaluate the relative weights of various contributions to the PES
signal, one uses the Inglesfield fluctuation potential inside the solid (contribu-
tions outside being negligible).6 One then calculates the weight of the extrinsic
and interference aextin f (ν0) contributions to the PES due to plasmons of energy
ωp = 16.7 eV, at a given photon energy 2πν0. These contributions are incorpo-
rated in the total spectral function correcting the intrinsic contribution of (5.38)
with the addition of aextin f (ν0), i.e.

āi = aint
i + aextin f (ν0), (6.2)

where i denotes the valence state, aint
i is the intrinsic weight of the pole as it

appears in (5.38). One can also calculate the width of the extrinsic+interference
satellites and account for this by replacing the widths γ in the denominator of
Eq. (5.38) with γ̄:

γ̄ = γ + n w(ν0), (6.3)

w being the width (directly proportional to the inverse lifetime) of the extrinsic
plasmon at a given photon energy 2πν0 and n the number of plasmon exci-
tations involved, i.e. the order of the expansion in Eq. (5.38). Values of 2πν0,

6Inglesfield fluctuation potentials are an alternative way to express the polarizable part of the
screening W using density fluctuation potentials. See [21, 25] for a more detailed description.
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aextin f and w are listed in Table 6.1. The effect of the photon energy on photoe-
mission spectra and their satellites are discussed in [134].

2πν0(eV) aextin f w

200 0.432 2.882
480 0.479 1.085
800 0.530 0.570

1200 0.568 0.341
2000 0.609 0.178
5000 0.669 0.066

10000 0.703 0.027

Table 6.1: Values of the correction term aextin f including extrinsic losses and inter-
ference e�ects and relative width (inverse lifetime) w for a set of photon energies
2πν0. From [134].

6.5.2 Additional effects

I list here a number of processes that have an effect on the photoemission spec-
trum and cannot be systematically removed from the data. In fact, the only
way to properly evaluate these effects is to calculate them using the electronic
structure and the spectral function of the system, using the best estimate one
can afford.

Lifetime of Intrinsic Plasmons

One must include a correction for the finite lifetime of intrinsic plasmons, which
is infinite in (5.38) because of the plasmon-pole model used to calculate the in-
trinsic spectrum. Therefore, an additional width of 1.5 eV, taken from ab-initio
calculations [135], is effectively added to the width of extrinsic plasmons w.

Photon Cross Sections

Matrix elements due to photon cross sections effects are calculated using the-
oretical values taken from tables in [83, 84]. For each element, the tables give
the relative photon cross section of the atomic orbitals, calculated within the
Hartree-Fock approximation. One then has to use the atomic data for bulk
silicon; since it is a solid, the atomic character can be considered as mixed.
The four valence bands of silicon contain two s electrons and two p electrons.
The character of each band is calculated by projecting the wavefunctions onto
spherical harmonics inside a sphere centered on the Si ion. The s and p charac-
ter of each band sum up to one. One has then the following values:

Band #1 #2 #3 #4
s-type 0.95 0.75 0.25 0.05
p-type 0.05 0.25 0.75 0.95
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In this description, the relative weight of a photoemission peak will be the
consequence of the sk and/or pk character of the corresponding state k. To
include this effect in the spectral function, one can define an auxiliary Ã so that

Ã(ω) = ∑
k

(skσs + pkσp)Ak(ω), (6.4)

where Ak is the spectral function of a single state k and σs and σp are the photon
cross sections for s and p electrons, tabulated in [83, 84] and shown in Figure
6.7 up to 1500 eV. The inclusion of cross-section effects is very important to re-
produce the relative weight of s and p peaks in the photoemission spectrum
(which can differ by an order of magnitude) and the respective changes at dif-
ferent photon energies.
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Figure 6.7: Photon cross sections, from [83]. Red solid line shows the values for
the 3s electrons, while the blue dashed line shows the 3p electrons cross sections
as a function of the photon energy.

Secondary Electrons

Photoelectrons can undergo a number of scattering processes beside the main
plasmon losses — e.g. with lattice vibrations — before being detected. This
produces a characteristic shape of the background that goes approximately as√

µ − ω. The background of secondary electrons is calculated using the in-
trinsic spectral function Ã(ω), assuming that each peak in the intrinsic spec-
trum produces a constant flux of secondary electrons (i.e. a step function) at all
binding energies greater than the quasiparticle energy ǫ. This means that one
assumes that every hole excitation produces an equal number of random scat-
tering processes. This way of calculating the background is due to D.C. Shirley



6.6. COMPUTATIONAL DETAILS 115

[101, 136]. The calculation of the background is achieved by the following in-
tegration of Ã(ω):

B(ω) =
∫ µ

ω
dω′ Ã(ω′), (6.5)

where B is the background of secondary electrons and µ is the chemical poten-
tial. The final quantity that has to be compared with experimental data is given
by the photocurrent J(ω) defined as:

J(ω) = αÃ(ω) + βB(ω), (6.6)

where α and β are two parameters that must be fixed to match the signal/background
ratio in the experimental data. β is to be determined using the high binding-
energy limit (where Ã(ω) ∼ 0) and then α is fixed so as to match the QP peak
intensity. This formulation shows how the background cannot in principle be
subtracted from the experiment without a prior knowledge of the pure signal
underneath. However, many authors have used this technique to remove the
background from experimental data, approximating Ã in (6.5) with J. This
allows one to close Equation (6.6), but it is not correct. It can however approx-
imately work for the QP part of the spectrum — as long as one assumes no
dependence of extrinsic losses on the binding energy — but it cannot work if
one wants to analyze the incoherent part. Instead, the calculated background
could be — legitimately — subtracted from the experimental curves using the
correct formula, in case one wanted to evaluate certain quantities such as the
intensity of satellites. This approach has been used in [134], where all the ad-
ditional effects reported here are discussed so as to single out and analyze the
incoherent part of the photoemission spectrum in bulk silicon.

6.6 Computational details

The Brillouin zone (BZ) was sampled using a 4 × 4 × 4 Monkhorst-Pack grid
centered at the Γ point, obtaining 256 points in the full BZ [137]. I have used
Troullier-Martins norm-conserving pseudopotentials [138]. The plane-wave
cutoff for the LDA ground-state calculation was fixed at 8 Ha. I used the abinit
code for all ground-state and GW calculations [63], using the experimental val-
ues for lattice constants. The full frequency dependence of the self-energy for
the 4 valence bands was calculated using a contour-deformation technique, ap-
plying partial self consistency on the quasiparticle energies in the Green’s func-
tion (GW0 calculations). W was calculated including 25 bands and using 169
plane waves for the wavefunctions (6 Ha cutoff). The dielectric matrix was cal-
culated using 169 G vectors (6 Ha cutoff), 10 frequencies on the imaginary axis
and 50 frequencies on the real axis, with a maximum value fixed at 2 Ha. The
self-energy was calculated using 100 bands, 169 plane waves for the wavefunc-
tions and 169 G vectors (6 Ha cutoff). It was calculated for 100 frequencies/Ha
for a range of 90 eV below the Fermi energy.
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6.7 Summary

In this chapter I have discussed the spectral properties of valence-band XPS
spectra is silicon, used as a paradigmatic example for semiconductors. Com-
paring with previous works in literature, I have analyzed the performance of
the GW approximation for the calculation of the spectral function and dis-
cussed the so-called plasmaron excitation, that has been now debated for more
than four decades. This is a spurious excitation produced by the GW approx-
imation that, when it appears, can be considered a total breakdown of the ap-
proximation. I have discussed the possible ways of correcting the plasmaron
problem, using the available literature. I have traced a history of how the plas-
maron was discovered and discussed more than forty years ago and of how
it has been rediscovered in two-dimensional systems, more than twenty years
later and again recently. I have shown how the exponential representation for
G is an excellent way to overcome the plasmaron problem in GW and brings a
much better description of the spectra, including full series of satellites. I have
pointed out a number of simple but necessary corrections needed to have a
sensible comparison with experiment. The use of new experimental data and
additional inclusion of corrections for extrinsic losses and interference effects
yield a striking agreement with experiment.



7 | Satellites in layered ma-

terials: theory and exper-

iment

The exponential representation has given a great performance in the case of
bulk silicon, as seen in the previous chapter, validating the decoupling approx-
imation used to derive G in the case of a bulk system. In this chapter I will
study bulk graphite as a prototypical example for layered materials, in order
to evaluate the performance and adaptability of the method in a more complex
(anisotropic) system as such. As for silicon, fresh photoemission data were
required to explore the valence-band satellites, that were quite ignored in the
past. I have personally taken care of the photoemission measurements at the
TEMPO beamline in the SOLEIL synchrotron facility, in collaboration with the
local group of experimentalists. Satellite structures in graphite are markedly
different than in silicon. I will show what is the performance of the GW ap-
proximation in this case and discuss how the exponential G performs, includ-
ing a complete treatment of the full frequency dependence of W. I take full
account of symmetry effects due to the experimental geometry. The outcome
of this work is going to be published in [139].

I will discuss a brief outlook on the study of graphene grown on top of
bulk 4H-SiC and present preliminary results. Major challenges in this study
are related to the ability to single out graphene from the substrate. The role of
the inverse dielectric function appears crucial also in this case.

7.1 Previous studies

There is a significant number of studies on the photoemission spectrum of bulk
graphite. Valence bands have been studied repeatedly, even though the spec-
tra are mostly low-energy (Ultra-violet) ARPES. Available ab-initio many-body
calculations are limited to quasiparticle energies and lifetimes [140], while there
is only one calculation of a GW spectral function based on the LMTO formal-
ism, that I shall discuss shortly. McFeely et al. have studied by means of XPS
different allotropes of carbon, namely diamond, glassy carbon and graphite
[141]. They study the valence-band spectrum, without including satellite struc-
tures. Interestingly, they also measure the 1s core-level spectra and analyze the

117



118 CHAPTER 7. SATELLITES IN LAYERED MATERIALS

satellite structures down to ≈ −60 eV from the quasiparticle peak. They at-
tribute a purely extrinsic character to these features and use them as a mean to
evaluate the energy-loss spectra in the different carbon-based systems. These
feature have surely an intrinsic contribution and the discussion of the authors
is useful to understand better the results of this chapter. Vos et al. have stud-
ied the valence band of graphite by means of momentum spectroscopy, which
gives a spectrum equivalent to direct photoemission [142]. Their measure-
ments actually included satellite structures and they compared the data with
results obtained by means of GW and ab-initio cumulant expansion. They
claim not to have found any intrinsic contribution to satellites, however their
data have a quite low energy resolution (about 2 eV) and they have undergone
some heavy treatment (read: removal of the background) before being com-
pared to theory. As I have already discussed in the previous chapter, removing
the experimental background is correct only when one has the exact knowl-
edge of the signal lying underneath, hence it is not in general correct and can
be very wrong if one is to study satellite structures. The data by Vos et al. are
therefore not reliable to give a solid conclusion on satellites. The original data
are published in [143]. In this paper, the authors show the raw data and explain
the background-removal procedure as a justified deconvolution with energy-
loss data. The raw data of graphite show, in the range between 0 and 60 eV
below the Fermi energy, prominent satellite structures, that are then removed
with the aforementioned procedure. In the end, the low energy resolution of
the experiment does not allow one to give any conclusion on the nature of
satellites in graphite.

The lack of other experimental data have pushed me to try and obtain the
photoemission data, applying for beamtime at the TEMPO beamline in the
Soleil synchrotron facility. This way I have obtained high-resolution data for a
wide range of energy. These data are essential to perform a reliable compara-
tive study of graphite and verify the conclusions by Vos et al..

7.2 Measurements at TEMPO

I could benefit from a week-long shift of measurements at TEMPO in July 2011,
during which I had the opportunity to perform experimental measurements on
graphite. While TEMPO is mainly focused on time-dependent photoemission
measurements, it can cover a fairly wide range of photon energies with a high
flux of photons, getting in its upper bound to the low end of hard x rays (about
1500 eV). It is therefore an optimal station where to study satellites, with a suf-
ficiently high photon energy. At the same time, it is flexible enough to allow
one for changes in photon energy, light polarization and geometry of the setup,
that are useful to fully characterize the sample and to study satellites in differ-
ent configurations. In Figure 7.1 I reported the photon flux characteristics as
a function of the photon energy, for the two ondulators of TEMPO, HU44 and
HU80. One can see here how 800 eV is an optimal value for the photon energy,
because one gets the highest photon flux in the upper range of photon energies.
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Figure 7.1: Photon �ux characteristics as a function of the photon energy, for the
two ondulators of TEMPO, HU44 and HU80. One can see here how at 800 eV
there is a �sweet spot�, in that one gets the highest photon �ux at a comparably
high photon energy. Courtesy of F. Sirotti.

7.2.1 The TEMPO beamline

TEMPO is a soft x-rays beamline attached onto an insertion device source of the
Soleil synchrotron facility, adapted to the dynamic studies of the electronic and
magnetic properties of materials. The project gathers various spectroscopic
studies around its specificity, i.e. taking into account the temporal variable.
This regards more specifically:

• the determination of the kinetics of chemical reactions at interface and
surface by rapid photo-emission in the millisecond range. The high flux
coupled to the high energy resolution of the electron energy analyser and
of the beamline will allow the user to study the evolution of the chemi-
cal environment (surface coordination, chemical bonding with different
elements) of selected chemical atoms at the surface using spectroscopic
signatures in the electronic states. Physisorption kinetics, chemisorption
or dissociation of molecules on a substrate, interface formation and inter-
diffusion. The understanding of these processes is the key point to build
new magnetic materials or to control chemical reactivity and catalytic
properties.

• the dynamics of magnetisation reversal in nanostructures, using the tem-
poral characteristics of Soleil at the scale of dozens of picoseconds , a
problem of major significance for the magnetic storage of information
at ultra-high density. These experiments will be performed using dif-
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ferent techniques with different probing depths: X-ray magnetic circular
dichroism, Magnetic dichroism in photoemission.

• carrying out pump-probe experiments with two photons (laser+synchrotron
radiation) for the study of excited states using synchrotron impulses in
the temporal range of a picosecond.

As one can see in Figure 7.2, the TEMPO beamline covers the photon energy
range between 50 eV and 1500 eV. This energy range is particularly well suited
for magnetic materials studies and for chemistry applications. On one hand,
ultra-violet (valence-band) photoemission is feasible at hν=50 eV. On the other
hand, the whole range of K edges (C, O, N, F 1s) of organic molecules, the
4th period L (2p) edges of transition metals (with applications to metal-organic
molecules and metal surfaces), and M edges of rare earths are covered [2, 13].

7.2.2 Experimental setup

The sample consists of a crystal of highly-oriented pyrolytic graphite (HOPG),
that is one of the purest and most ordered versions of graphite, with a low
percentage of imperfections. The advantage of graphite is that it is very poorly
chemically reactive (i.e. it does not get contaminants on the surface very easily)
and it can be therefore effectively cleaned in air by cleavage, i.e. mechanically
removing a few layers on the top of the sample, usually using adhesive tape.
This can be done thanks to its layered structure: the in-layer bonding forces
are much stronger than the Van Der Waals forces between layers, that can be
peeled away quite easily. In practice it is enough to peel away bits of layers a
few times, until a new clean layer is completely uncovered. Then the sample
must be readily put under vacuum to perform the measurements.

Angular-resolved valence photoemission (ARPES) measurements were per-
formed at the UHV photoemission experimental station of the TEMPO beam
line at the SOLEIL synchrotron radiation source. Linearly polarized photons
from the Apple II type Insertion Device (HU44) were selected in energy us-
ing a high resolution plane grating monochromator with a resolving power
E/∆E=5000. The end-station chamber (base pressure 10−10 mbar) is equipped
with a modified SCIENTA-200 electron analyzer with a delay-line 2D detector
which optimizes the detection linearity and signal/background ratio [2, 13].
The overall energy resolution was better than 200 meV. The photon beam im-
pinges on the sample at an angle of 43◦, and photoelectrons were detected
around the sample surface normal with an angular acceptance of ±6◦. At 800
eV kinetic energy the Brillouin zone is observed with an emission angle slightly
smaller than 5◦. The measured photoemission map is integrated over the spec-
tral intensity originated approximately by one Brillouin zone. The Fermi level
was obtained by measuring a clean Au(111) surface.

7.3 Experimental and theoretical spectrum

The experimental XPS data for graphite are summarized (red crosses) in Figure
7.3. The Fermi energy is at 0 eV and the measurements were performed at a
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photon energy of 800 eV over a range of 100 eV. There is a main structure be-
tween 0 and –30 eV that, comparing with previous literature, can be identified
as spectral weight due to the quasiparticle peaks of the valence bands [141].
There is then a visible second structure, between –30 and –65 eV. The distance
between QP peaks and this structure is around 30 eV. A third weak structure
is found between –65 and –100 eV. These two are, by definition, satellite peaks
and they appear to be part of a decaying series, just like it is observed in bulk
silicon. However, these features are broader and only two are clearly visible.
Theory will now help to analyze the origin of these structures and to elucidate
the differences between graphite and silicon.

A Kohn-Sham LDA calculation allows one to assign the main QP peak at
–20 eV to s-type bands and the smaller peak (about –10 eV) to p-type orbitals.
This is fully taken into account in the calculation of matrix elements, as de-
scribed in the previous chapter. The experimental spectrum can readily be
compared to the spectral function calculated in the GW0 approximation (pur-
ple dot-dashed). This is a partially self-consistent calculation, where one up-
dates the energies in the Green’s function and keeps fixed W at the LDA level.
Therefore there is no problem with the energy shift of the chemical potential.
One can see that the quasiparticle part of the spectrum is well reproduced.
The presence of a fairly smooth slope in the experimental spectrum instead of
a sharp p peak as in the theoretical curve is probably due to the presence of
different orientation domains in the HOPG sample, while the calculation sim-
ulates a perfect single crystal. This seems to be confirmed by other measure-
ments and calculations [141, 144, 145]. This discrepancy could also be an effect
of differences in the integration on the BZ between theory and experiment.

The incoherent part of the spectrum is less trivial to understand than the
case of silicon: in GW it shows a complex shape formed by two main broad
features. The first peak is at about –30 eV and could be identified with a
tail in the experimental spectrum at that energy. This tail is not described by
independent-particle calculations and has been dismissed as an “artificial tail-
ing” produced by experimental background [141]. The second structure visible
in GW is also very broad and corresponds approximately to the first large satel-
lite structure in experiment. The GW spectral function goes to zero at lower
energies. The weight of the large satellite is largely underestimated; while this
is not surprising — as GW has shown to underestimate plasmon satellites such
as these [52] — it is important to notice that here there are no plasmarons in the
spectral function. Also, GW is used only to calculate the intrinsic spectral func-
tion, whereas a full account of extrinsic losses could add the missing weight,
as seen in Chapter 6 for bulk silicon. As the spectral function is here free from
spurious peaks, GW should, in this case, give an approximate good description
of the first satellite.

As in the case of silicon, one can apply (5.38) to calculate the spectral func-
tion using the exponential representation of G and a plasmon-pole model for
W, starting from a GW calculation. This spectral function is plotted in Figure
7.3 (blue dotted) and it gives additional understanding of the spectrum. The
quasiparticle peaks are almost identical to GW. The first visible difference is in
the shoulder at –30 eV. The plasmon-pole G does not show any spectral weight
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here and it goes rapidly to 0, just before the onset of the first satellite peak.
The first satellite peak appears in good agreement with the first structure in
experiment, considered that no plasmon lifetime effects are included in this
calculation. There is a second smaller peak in the spectral function that could
correspond to the second broad feature in experiment. The curve has overall
good agreement in that it reproduces the main series of satellites and goes be-
yond GW, but it remains otherwise an incomplete description of the satellite
spectrum. Moreover, in the region close to the quasiparticle peaks, GW ap-
pears to give a better description of the spectrum, even though it is unable to
reproduce satellite series. The analysis of these curves already gives an idea of
the complex structure of satellites in graphite. To completely elucidate the role
of W in this, it is necessary to include the full frequency dependence of W in
the spectral function of the exponential G.
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Figure 7.3: XPS spectrum of HOPG graphite at 800 eV photon energy. The data
collected at normal emission (red crosses) are compared to the spectral function
A(ω) calculated using several approximations: GW0 (purple dot-dashed), plasmon-
pole model for W as in (5.38) (blue dotted) and generalized model as in (5.44)
(green dashed). On top of the latter the black solid line also includes extrinsic and
interference e�ects. The calculated background of secondary electrons (black thin
dashed) is also shown. All curves are scaled to match the intensity of the s QP
peak at −20 eV. All spectra contain photoabsorption cross sections, a calculated
secondary electron background and 0.4 eV Gaussian broadening to account for �nite
k-point sampling and experimental resolution. This result will be published in [139].
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7.4 A full frequency-dependent W

I have shown, in the previous chapter, how the structure of photoemission
satellites in silicon is due to the main plasmon loss at 16.7 eV, that can be mea-
sured in EELS experiments. It is now important to remember that, as already
discussed in Chapter 5, Im[ΣGW ] ∝ Im[W], which is proportional to Im[ε−1].
The structure of W = ε−1v enters in the exponential expression for G and de-
termines how satellites appear in the spectral function. However, the precise
behaviour of satellites as a function of the screening is far from obvious. In the
case of silicon, the EELS spectrum has one main sharp peak at 16.7 eV [23] and
this justifies the use of a plasmon-pole model for W. This is also the reason
why plasmon satellites are so strong in silicon. In graphite though, the inverse
dielectric function has a more complex shape, due to the anisotropic geome-
try of the system [146–148]. In Figure 7.4 one can see the imaginary part of
the inverse dielectric function ε−1(q, ω) of graphite, calculated at |q| = 0 with
the dp code.1 The spectrum is in agreement with measurements and previous
calculations [147, 149]. The main peak is centered around 28 eV and it is due
to long-range bulk contributions; it is called σ + π plasmon, as it is originated
by the collective excitation of the valence bands.2 The peculiarity of the EELS
spectrum of graphite lies in the smaller sharp peak at about 7 eV. This peak is
mostly due to in-layer transitions involving the π bands; it is therefore called
a π plasmon. It becomes clear now that a single plasmon-pole model is sys-
tematically going to miss the complex structure of the screening in graphite.

While the numerical implementation of GW0 — used here for all systems
under study — takes full account of the energy dependence of W, one has to go
beyond the simple plasmon-pole model to include the full W in the exponential
representation.3 This can be done as described in 5.2.4, where one generalizes
the treatment to a W that is written on a basis of Np poles. For a sufficiently
high number of poles, the approach is exact. At the same time, it allows one to
keep an analytic treatment, avoiding to switch to a numerical implementation
of the problem. The many-pole model used here for W is very general and it
is equivalent to the one used by J.J. Kas et al. for the inverse dielectric function
[100].

Using the full frequency dependence of W one can calculate the exponen-
tial G in the same way it is done for the plasmon-pole model. The correspond-
ing spectral function is shown in Figure 7.3 (green dashed). The quasiparticle
peaks show a little difference with respect to the other approaches. Instead, the
satellite peaks show now remarkable differences with respect to the plasmon-
pole calculation: the tail at –30 eV is present and follows closely the slope of
the experimental data; between –30 and –65 eV the spectral function displays
a broad structure that closely matches in width the first satellite peak in ex-

1http://www.dp-code.org
2 In a tight-binding model, the valence bands of graphite can be divided in σ bands, formed by

the hybridized sp2 electrons, and π bands, formed by the pz electrons. See e.g. [150]
3The ABINIT code implements a contour deformation technique for the calculation of the full

frequency-dependence of the GW self-energy on the real axis. This includes the calculation of W
on a range of frequencies without a plasmon-pole model [57, 63].
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periment, even though heavily underestimating it; there is then little remain-
ing spectral weight below –65 eV. The difference with the single plasmon-pole,
apart from the absence of lifetimes, is clearly in the low-energy tail at –30 eV. In
fact this tail can be ascribed to the π plasmon at 7 eV in the energy-loss spec-
trum of graphite. Instead, the broad feature around –50 eV can be assigned to
the main π + σ plasmon around 28 eV, which in fact is about the distance be-
tween the satellite and the main quasiparticle peak. An attempt with a simple
two-pole model for W (not shown) shows that the main effect of the additional
pole is the appearance of spectral weight under the tail at the bottom of the
quasiparticle peaks. However, the inclusion of the full frequency-dependence
is necessary to obtain the correct slope.

This result is in very good agreement with experiment, considered that
there are no corrections for extrinsic losses and interference effects applied.
If one compares this result with the intrinsic spectral function of silicon — con-
sidering the added full account of intrinsic plasmon lifetimes — the relative
weight of the intrinsic satellites with respect to experiment is of the same order
of magnitude. In fact, the coefficients aj are of the order of 0.3/Np, as in the case
of silicon. One can now re-discuss the conclusions by Vos et al. [142]: it is clear
now that with the low energy-resolution they had in the experimental data, it
was virtually impossible to affirm the existence of intrinsic satellite structures;
moreover, the technique used to remove the background from the raw data
hinders any further investigation [143]. Using the exponential representation
of G with the generalized treatment of W, one can conclude that intrinsic satel-
lites are indeed present, even though the low intensity makes them hard to be
detected.

The performance of the (energy-only) GW0 calculation can now be better
understood: while it can only hope to describe the first order of satellites, it
contains the full dynamic structure of W; therefore, it can in principle seize the
two-plasmon structure of W in graphite. In practice, considering now what
one observes in the exponential spectral function, GW behaves decently: if one
considers the “first satellite” as the tail (for the π plasmon) plus the first dis-
tinct satellite (for the π + σ), one can see that the GW spectral function in Figure
7.3 displays a structure for each one of this features of the experimental spec-
trum. As GW does not incorporate the effect of extrinsic losses or interference
effects, it is reasonable that satellites are underestimated. To summarize, the
description of GW0 satellites in the case of graphite appears to be correct, no-
tably much better than in bulk silicon, where plasmon satellites are completely
destroyed by a spurious plasmaron peak.

The advantage of using the exponential representation for the one-particle
Green’s function is that the spectral function can be connected to the formalism
by Hedin et al. to include corrections for extrinsic losses and interference effects
[21]. These have been calculated and provided by J.J. Kas, using my ab-initio

input, and consist of complex a
extin f
j that is added to the aj contained in (5.44),

providing for intensity and lifetime from extrinsic losses and a correction for in-
terference effects. The final spectrum (See Figure 7.3) is in very good agreement
with experiment: the quasiparticle peaks have the same good agreement as the
intrinsic spectrum; great improvement is obtained in the incoherent part of the
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spectrum: the missing weight of the satellite at –50 eV is restored and now also
the second satellite structure at -75 eV is visible. It is important to note that
these corrections effectively produce only an increased intensity of the intrin-
sic satellites, which must be composed of the correct structures beforehand. In
this sense, the excellent agreement of the total spectrum with experiment val-
idates the performance of the decoupling approximation for the calculation of
the one-particle Green’s functions and of the intrinsic spectral function.

7.5 An outlook to graphene

In a theoretical calculation, graphite can be stretched in the z directions, i.e. the
direction normal to the hexagonal layers. When the distance between layers
reaches infinity, one has obtained graphene. Graphene is an extremely promis-
ing two-dimensional system, that has gathered the attention of the scientific
community as a material with possible applications in a myriad of fields, from
microelectronics to photovoltaics or gas sensing, just to name a few (See e.g.
[151, 152]).

While the special properties of graphene are mostly connected with the
highly-symmetric points K and K′ in the Brillouin zone, I will here focus on the
differences and similarities between graphite and graphene in the total spectral
function A(ω) or, more in general, in the photoemission spectrum integrated
over the full BZ.

In the perspective of the discussion on plasmarons in graphene it will be in-
teresting to see if there are any in this case. The main differences between this
study and [130, 131] are (i) the ab-initio approach (as opposed to parametrized
model calculations) and (ii) the fact that here graphene is not doped (as op-
posed to n-doped graphene).

7.5.1 Exponential spectral function

As a part of an ongoing project, I have calculated the exponential spectral func-
tion for graphene. It is reported in Figure 7.5. In this figure, the intrinsic spec-
tral functions of graphite and graphene, calculated using (5.44), are compared.
The curves include cross section effects (at 800 eV), to keep the correct ratio
between π and σ orbitals, and a 0.1 Gaussian broadening, to compensate for fi-
nite k-point sampling of the BZ. The main differences of graphene with respect
to graphite are the following:

• the quasiparticle bandwidth appears to be slightly reduced (the main
peak appears to be shifted by 1-2 eV), while the proportion between π
and σ band does not appreciably change;

• the structure of satellites changes dramatically: there is a long tail be-
tween –30 and –50 eV, but the main satellite peak at –50 eV has disap-
peared.

There are no plasmaron peaks found in the GW0 spectral function (not shown),
but the k-point sampling did not include explicitly the special points K and K′,
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where they might possibly be found. Unpublished results confirm the pres-
ence of plasmaron peaks in the GW spectral function at the special points of
doped graphene [133], confirming what has been found in model calculations
[130, 131]: low-energy plasmarons appear (around 0.3 eV from the quasiparti-
cle peak) that however should not change the shape of the total spectral func-
tion. Moreover, ours is a calculation for undoped graphene and there are no
reports of plasmaron peaks in undoped graphene. The great difference in the
region of intrinsic satellites between graphite and graphene is to be ascribed to
the differences between the screening of the two systems, as I will show in the
following. The analysis of the loss function will give a clear interpretation of
these difference.

In fact, as noted by several authors [146, 147, 153], there is a dramatic change
in the energy-loss spectra when one goes from graphene to graphite and inter-
layer interactions are restored. Experimentally, this can be achieved by measur-
ing single and multi-layer graphene foils. In fact, for more than some tens of
layers, it appears not to be any difference with bulk graphite [153]. The exper-
imental results have confirmed the theoretical calculations by Marinopoulos et
al. [146, 147]. As shown in Figure 7.6, the energy-loss spectrum of single-layer
graphene displays a π plasmon around 5 eV. There is then a small peak at 15
eV: this is what remains of the π + σ plasmon of graphite. One can see that,
increasing the number of layers, there are two main effects on the spectrum:

• the π plasmon is slightly shifted by about 2 eV and tends to become iden-
tical to the π peak in graphite at 7 eV;

• the π + σ plasmon shifts toward larger energies (around 25 eV) and gains
significant intensity.

One can see that, at ten graphene layers or more, the spectrum has become very
close to the calculated energy-loss spectrum of graphite (Figure 7.4). One can
now understand what changes the shape of the incoherent part of the spectral
function of graphene: the extremely low intensity (and red shift) of the π + σ
plasmon leave in the spectral function only a long fading tail.

7.5.2 Experimental spectra

I have performed additional measurements at TEMPO in 2012 which have al-
lowed me to study the photoemission spectrum of graphene. Graphene sheets
were grown on a SiC bulk substrate with a 4H hexagonal structure — simi-
larly to the technique shown in [154] — and studied by means of XPS with a
similar setup to the one used for graphite. These data will hopefully confirm
what is found in the theoretical spectrum and shed further light on the physics
of graphene. The analysis of data is still ongoing, and the main challenge will
be to be able to separate the signal coming from the substrate from the signal
coming from the graphene at the top, hoping that the influence of the inter-
face buffer layer will be negligible or at least controllable. This will be possible
only in conjunction with the theoretical calculations on the substrate and on
graphene.
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Figure 7.6: Electron energy-loss spectrum of single- and multi-layer graphene. The
greatest change in the transition from single- to multi-layer graphene can be seen
in the π + σ plasmon, that goes from an energy of 14 eV to around 25 eV, gaining
intensity by at least an order of magnitude. From [153].
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Figure 7.7: Raw XPS spectrum of bulk SiC-4H with single-layer graphene grown on
top. The photoelectrons are detected at normal emission and the signal is integrated
over an angle of about 6◦. The Fermi energy is at 800 eV. With this con�guration
and at this photon energy, the spectrum is virtually indistinguishable from bulk SiC.
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I present in Figure 7.7 preliminary raw data taken at TEMPO in February
2012. The spectrum is taken at normal emission and the signal is integrated
over an angle of about 6◦. With this configuration one is probing several lay-
ers below the surface, that give the greatest contribution to the signal, totally
overwhelming the signal from the surface. In fact, this spectrum could well be
considered as if it was obtained with simple bulk SiC. To obtain information on
the surface, one has to probe the minimum possible depth on the sample. This
can be achieved by detecting the electrons at a very low angle α (5-10 degrees)
above the surface: being determined by their kinetic energy, the inelastic mean
free path of the electrons — proportional to the probing depth as sin α — will
allow them to escape in that direction only for small depths. This has been done
in conjunction with measurements of the carbon 1s core-level spectra, the po-
sition of which is very sensitive to the chemical environment and can be used
to understand if one is probing bulk, interface or surface [155]. The analysis of
these spectra (not shown) is still ongoing and will be crucial to understand the
full picture in conjunction with the theoretical results.

SiC-4H energy-loss spectrum

4H is only one of the four polytypes of SiC. Quasiparticle band structure have
already been studied for all polytypes [156, 157]. My preliminary calculations
for the energy-loss spectrum (See Figure 7.8) agree with previous theoretical re-
sults [158]. The main plasmon peak is located at about 23 eV. With this knowl-
edge, one can now see that the satellites in Figure 7.7 are with all probability
due to the excitation of plasmons in bulk SiC, as they are separated by a 23 eV
distance.

Further analysis of experimental data is ongoing along with theoretical cal-
culations to obtain the spectral functions of graphene and of bulk SiC. Eventu-
ally this collective effort will elucidate the physics of satellites in graphene and
hopefully tell a bit more about the role of the interface. The long-range nature
of plasmon excitations already suggests that the correct description of the full
system will be crucial for a complete understanding.

7.6 Computational details

The Brillouin zone (BZ) of graphite was sampled using a 9 × 9 × 2 Monkhorst-
Pack grid, obtaining 162 points in the full BZ [137]. I have used Troullier-
Martins norm-conserving pseudopotentials [138]. The plane-wave cutoff for
the LDA ground-state calculation was fixed at 30 Ha. I used the abinit code
for all ground-state and GW calculations [63], using the experimental values
for lattice constants. The full frequency dependence of the self-energy for the
8 valence bands was calculated using a contour-deformation technique, apply-
ing partial self consistency on the quasiparticle energies in the Green’s function
(GW0 calculations). W was calculated including 160 bands and using 997 plane
waves for the wavefunctions. The dielectric matrix was calculated using 287
G vectors, 4 frequencies on the imaginary axis and 60 frequencies on the real
axis, with a maximum value fixed at 2 Ha. The self-energy was calculated us-
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Figure 7.8: Energy-loss spectrum − Imε−1(q, ω) of bulk 4H-SiC at |q| = 0. The
main plasmon peak is around 23 eV. A Gaussian broadening of 0.2 eV has been
added to compensate �nite k-point sampling.

ing 250 bands, 1385 plane waves for the wavefunctions, 287 G vectors for the
dielectric matrix and 585 plane waves for the exchange term. The self-energy
of graphite was calculated for 50 frequencies/Ha for a range of 65 eV below
the Fermi energy.

The Brillouin zone (BZ) of graphene was sampled using a 10× 10× 1 Monkhorst-
Pack grid, obtaining 100 points in the full BZ [137]. I have used Troullier-
Martins norm-conserving pseudopotentials [138]. The plane-wave cutoff for
the LDA ground-state calculation was fixed at 31 Ha. I used the abinit code
for all ground-state and GW calculations [63], using the experimental values
for lattice constants. The distance between the graphene planes in the su-
percell lattice is equivalent to 6 times the inter-plane distance in graphite, in
order to avoid interaction between the graphene planes. The full frequency
dependence of the self-energy for the 8 valence bands was calculated using a
contour-deformation technique, applying partial self consistency on the quasi-
particle energies in the Green’s function (GW0 calculations). W was calculated
including 150 bands and using 715 plane waves for the wavefunctions. The di-
electric matrix was calculated using 169 G vectors, 5 frequencies on the imagi-
nary axis and 200 frequencies on the real axis, with a maximum value fixed at
2 Ha. The self-energy was calculated using 200 bands, 715 plane waves for the
wavefunctions, 169 G vectors for the dielectric matrix and 715 plane waves for
the exchange term. The self-energy of graphene was calculated for 67 frequen-
cies/Ha for a range of 55 eV below the Fermi energy.
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7.7 Summary

The exponential representation of G can give an excellent description and un-
derstanding of the satellite structures in the photoemission spectrum of graphite.
This is possible thanks to a complete treatment of the full frequency depen-
dence of W and accounting for symmetry effects due to the experimental geom-
etry (as described in Chapter 6). The use of new experimental data has made
possible to observe that the shape of satellites in graphite is strictly connected
to the electron energy-loss spectrum. I appears that the tail next to the quasi-
particle peaks is a satellite feature and it is due to the π plasmon at 7 eV. The
main (two) visible satellite peaks are instead due to the 28 eV π + σ plasmon
peak. The complex structure of ε−1 causes a general broadening of satellites,
that are less sharp than in silicon. Thus the intrinsic origin of satellites is clari-
fied. However, to obtain the correct intensity, one has to include corrections for
extrinsic losses and interference effects. These produce a spectrum in excellent
agreement with experiment.

The results obtained in the study of graphite are very promising for the
study of graphene. Preliminary results indicate, in agreement with literature,
that satellites in graphene are stricly connected to the change in the inverse di-
electric function with respect to graphene. Theory allows us to trace the tran-
sition from graphite to graphene and, in conjunction with new experimental
data, will shed new light on the physics of graphene.
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8 | Conclusion

“Fu vera gloria? Ai posteri
l’ardua sentenza”

— Alessandro Manzoni,
Il cinque maggio (1832), vv 31-32

I have discussed and clarified in this manuscript the connection between pho-
toelectron spectroscopy (PES) and electron energy-loss spectroscopy (EELS)
through the inverse dielectric function, and the role of plasmon losses in the
photoemission spectrum. Notably, I have focused my attention on correlat-
ion effects in PES. While this can be a very large domain, I have restricted
my search to the smaller subset of satellite excitations. In fact satellites can be
considered as a signature of correlation. They cannot be described by single-
particle approaches and therefore need more sophisticated techniques to be
understood. They appear in theoretical approaches that are able to describe, to
some extent, the collective behavior of electrons and for this reason satellites
are rightfully considered as effects of pure many-body excitations.

I have presented the photocurrent as the most correct quantity to compare
with photoemission experiments and discussed its connection with the one-
particle spectral function A(ω), which is a crucial quantity to calculate in the-
ory. In Green’s function theory, it is straightforward to calculate the spectral
function, once the single-particle Green’s function G is known. For this rea-
son, several theoretical methods focus on the calculation of the latter, which
also gives access to several key observables beside the spectral function. The
GW method is a very successful approximation for the self-energy, that gives
access to the Green’s function through the Dyson equation. The success of GW
is mainly due to its use for the calculation of quasiparticle energies. Its perfor-
mance for the actual calculation of the full energy dependence of the spectral
function is largely unexplored and still under debate, and it is one of the main
topics of this thesis.

Throughout this manuscript, I have discussed the limits of GW for the de-
scription of the spectral function, focusing in particular on the description of
satellites. I have then developed and discussed a number of methods to go
beyond the GW approximation; these methods can be gathered in two main
families:

135
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• Vertex corrections: these are improvements made to the self-energy in the
framework of Hedin’s equations;

• Approximations for G: in this case one focuses on the Green’s function
directly, avoiding to use a self-energy.

To be precise, all discussed results are calculated in the GW0 approximation,
which understands partial self-consistency in the Green’s function G; the screen-
ing W0 is instead kept at the RPA level and not updated.

General knowledge about GW is that the energies of plasmon satellites are
overestimated — i.e. they are too far from the QP peaks — and they tend to
be quite weak with respect to experiment. I have discussed this quite vague
statement and given several examples that allow one to assess more precisely
the performance of GW for the calculation of spectral properties, notably of
satellites.

One cheap way of applying vertex corrections is to derive approximate ver-
tices using TDDFT exchange-correlation kernels. This results in an effective
GW calculation where one uses an improved screened interaction W, calcu-
lated with a test-particle (TP) or test-electron (TE) inverse dielectric function
ε−1(q, ω). This is equivalent to applying vertex corrections only in the po-
larization part (W) or both in that and in the self-energy, respectively. I have
explored this path in Chapter 4, using exact relations in the homogeneous elec-
tron gas to study the q-dependence of several TDDFT kernels. Bulk silicon was
used as a test system. While the LDA shows a pathologic behavior for large
values of q, that has also been found in older works, the general finding is that
only small values of q in ε−1(q, ω) contribute to quasiparticle corrections in
the self-energy. It appears that the greatest effects on the relative shift of quasi-
particle energies — and therefore on the band gap — happens when a WTP is
used. When both vertices are applied, there is a compensation that brings the
value of the band gap back, quite close to the GW result. The effect of these
vertex corrections on the spectral function of silicon are minimal: there is a
slight renormalization of the quasiparticle peaks, accompanied by a very small
shift of the satellite part that can be appreciated only looking at single states
in the Brillouin zone. The effect on the structure of the total spectral function,
integrated over the full BZ, is negligible. This result does not exclude the the-
oretical possibility to find effective vertex corrections, but shows the difficulty
of finding one using the connection with TDDFT.

A more complicated tool than TDDFT is Green’s function theory. While
authors have often opted for the use of a self-energy Σ to simplify the way
to the single-particle Green’s function, as in GW, it is in principle possible to
derive a G without recurring to Σ. I have shown in Chapter 5 how to obtain
an expression for the Green’s function that includes dynamical effects beyond
GW from the exact solution of an approximate equation of motion for G. This
Green’s function and its spectral function have an exponential form and are
able to describe quasiparticle excitations and infinite series of satellites. I have
shown how this approach can be effectively connected to GW to exploit the
good description of QP energies in the latter. This expression for G effectively
includes vertex corrections beyond GW. It appears at first quite difficult to
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derive, from this result, a vertex correction that can be used to improve GW,
as it involves the inversion of an infinite summation; this somewhat suggests
that the direct approach to G and a calculation of an improved self-energy are
two exclusive paths. Nevertheless, the knowledge of the explicit dependence
of G on the external perturbation ϕ can be used to derive a class of vertex
corrections, but the validity of such has yet to be proved and tested.

The exponential expression for G is tested in Chapter 6 for the calculation
of the spectral function of silicon against GW, where silicon is a representative
example of semiconductors. New high-quality photoemission data show that
the spectrum of silicon exhibits a decaying series of satellites beside the QP
peaks. The main effect in the shape of satellites appears to come from the main
plasmon peak of silicon at about 17 eV. In this chapter I extensively discuss
the shortcomings of GW in the description of satellites: this approximation ex-
hibits in silicon a spurious peak, that has been debated for quite some time,
the plasmaron. The plasmaron has been observed in the GW spectral function
of the HEG and of other systems and presented at first as a bound state of
quasiparticles and plasmons. Later, it was pointed out that it is with all proba-
bility an artificial product of GW and in fact it was never found in experiment.
I extensively discuss the related literature: the big picture is quite eloquent
and suggests how the recent excitement about plasmaron excitations in doped
quasi-freestanding graphene is quite questionable and needs further investi-
gation: the plasmaron cannot be considered just as a poor description of plas-
mon satellites; one can infer its qualitative difference with plasmon satellites
by analysis of the spectral function and comparison with experiment.

Several options to improve the GW spectral function and free it from the
plasmaron are analyzed and discussed. While self consistency appears to be a
possible way to correct the problem, there is not a failsafe prescription for this.
The results of this thesis promote further debate on the role of self consistency
in the GW approximation. The exponential spectral function has a very good
agreement with experiment and is free from the plasmaron problem, that ru-
ins the GW satellites. I discuss a number of effects that have to be included
in the spectral function to correctly compare theory and experiment, such as
dipole matrix elements and secondary electron background. This result for the
intrinsic spectral function shows that satellites appear to be weaker than in ex-
periment. Including a correction for extrinsic losses and interference effects
as suggested by Hedin et al. [21], the theoretical spectrum is in almost perfect
agreement with experiment. This results highlights the importance of going
beyond the sudden approximation when comparing quantitatively theory and
experiment in photoemission.

To further assess the quality of the method, I have measured new photoe-
mission data for bulk graphite, to measure the performance of the approach
on a more complex material as such. I have performed the measurements at
the TEMPO x-ray beamline in the Soleil synchrotron facility in France. The
description of this system has needed an improved description of W, with a
generalized model, to seize the complex structure of the energy-loss spectrum
of this layered material. The satellite photoemission spectrum of graphite is
more complex than in silicon and I find that this is directly connected with
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the double structure of the EELS spectrum of graphite. Apart from a decay-
ing series of visible peaks, due to the π + σ plasmon at about 28 eV, there is a
significant tail beside the quasiparticle peaks, that is due to the low energy π
plasmon, at about 8 eV. The exponential spectral function is in good agreement
with experiment, but also in this case corrections for extrinsic losses and inter-
ference effects are crucial to obtain excellent agreement. The comparison with
the GW result is in this case revealing: in graphite the GW0 spectral function
appears free from the plasmaron problem and actually gives a correct descrip-
tion of the overall shape of satellites. This is to be ascribed to the shape of the
loss function, that ultimately enters in the self-energy: a sharp peak in the loss
function will cause a sudden variation in the real part of the self-energy that
will probably produce a plasmaron, as it happens in silicon; a more complex
loss function — hence broader on average — will cause smoother variations of
the self-energy and will be less likely to produce a plasmaron. This qualitative
explanation still calls for a rigorous formal proof.

An additional challenge for the theory is presented at the end of Chapter 7,
as I have performed additional measurements at TEMPO on quasi-freestanding
graphene. The ongoing project will help to improve the implementation of the
exponential expression for G and will hopefully give further insight about the
physics of graphene. For now, results show that differences between graphite
and graphene are minimal in the QP region. Satellites should display signif-
icantly different behavior because of the markedly different energy-loss spec-
trum of the two systems.

To summarize, the exponential expression has proven to be a great exam-
ple of an approximation for G that is derived using systematic and controlled
approximations on the exact equation of motion for G. The great success of
it comes from the automatic inclusion of dynamic vertex corrections that give
rise to series of satellites in the photoemission spectrum. I have shown how to
obtain the same result using vertex corrections to GW is a virtually impossi-
ble task. Moreover, the exponential expression for G allows one to assess the
description of satellites in GW: while the exponential G can remove the plas-
maron problem, it shows that GW is able to give a correct description when the
plasmaron is absent, a fact that is confirmed by other authors.

Overall, this work shows how a great improvement in theory has to go
hand-in-hand with the knowledge of experimental techniques. The brute com-
parison of the spectral function with a photoemission spectrum is never a good
idea, especially if one is not aware of the experimental conditions. It can be
a futile exercise trying to blindly improve the theory: one has before to take
into full account all the effects that concur to what is eventually detected in
an experimental measurement. Only then a reasonable assessment of the ap-
proximations used can be done. The account of additional effects that modify
what is contained in the spectral function is key to a complete understanding
of photoemission spectra. This, once again, demonstrates that the collabora-
tion between theoreticians and experimentalists is crucial to obtain real insight
about a problem in solid-state physics.



A | Exact relations for xc ker-

nels in TDDFT

In this appendix I explore the relations between TP and TE dielectric function,
with the final hope to sort out systematic behaviors, at least in the case of se-
lected approximations. When possible, a general fxc is treated.

A.1 Connection between test-particle and test-electron

dielectric function

Within the HEG-α kernel

The inverse dielectric function ε−1 can be written for the two cases:

ε−1
TP = 1 + vχ (A.1)

ε−1
TE = 1 + (v + fxc)χ. (A.2)

Being still quite general, I will point out that if fxc = α/q2 = (α/4π)v it follows
that ε−1

TE = 1+ (1+ α
4π )vχ. In this particular case (α = −8π/3, exact HEG limit

for q → ∞) one has
ε−1

TE = 1 + (1/3)vχ. (A.3)

It follows that:

Im[ε−1
TE] =

1
3

Im[ε−1
TP] (A.4)

Re[ε−1
TP] = 3 Re[ε−1

TE]− 2. (A.5)

NB: Im[ε−1] = loss function. These equations allow one to establish several
expressions that relate εTP

M e εTE
M . Using eq. (A.4) and (A.5) and substituting in

the definition ε2 = Im[1/ε−1] one gets

εTP
2 = − Im[ε−1

TP]

Re[ε−1
TP]

2 + Im[ε−1
TP]

2
(A.6)

= − 3 Im[ε−1
TE]

{1 + 3 Re[ε−1
TE − 1]}2 + 9 Im[ε−1

TE]
2

(A.7)

= −1
3

Im[ε−1
TE]

{Re[ε−1
TE]− 2

3}2 + Im[ε−1
TE]

2
(A.8)
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and for the real part:

εTP
1 =

Re[ε−1
TP]

Re[ε−1
TP]

2 + Im[ε−1
TP]

2
(A.9)

=
3 Re[ε−1

TE]− 2

{1 + 3 Re[ε−1
TE − 1]}2 + 9 Im[ε−1

TE]
2

(A.10)

=
1
9

3 Re[ε−1
TE]− 2

{Re[ε−1
TE]− 2

3}2 + Im[ε−1
TE]

2
(A.11)

Connection between RPA and the HEG-α kernel

TE-RPA connection For this case, one just needs to recall that

εRPA = 1 − vχ0 (A.12)

εTE = 1 − (v + fxc)χ
0 (A.13)

then one should evaluate Im[ε], aka ε2, knowing that at q → ∞ in the HEG
fxc = −8π/(3q2) = −2v/3:

εRPA
2 = − Im[vχ0] (A.14)

εHEG−TE
2 = − Im[(v + fxc)χ

0] = − Im[
v

3
χ0] (A.15)

= −1
3

Im[vχ0] =
1
3

εRPA
2 (A.16)

that is

εHEG−TE
2 =

1
3

εRPA
2 . (A.17)

This result can be generalised to an fxc of the form α/q2. Following the same
steps as above, one can find

εα−TE
2 =

(

1 +
α

4π

)

εRPA
2 . (A.18)

Concerning the real part ε1, some expressions can be derived in an equivalent
way:

εHEG−TE
1 = 1 +

1
3

(

εRPA
1 − 1

)

. (A.19)

εα−TE
1 = 1 +

(

1 +
α

4π

) (

εRPA
1 − 1

)

. (A.20)

It is possible to play around ε−1 as well. In fact:

ε−1
RPA = 1 + vχ = 1 + v

[

1 − χ0
]−1

(A.21)

ε−1
TE = 1 + (v + fxc)χ (A.22)
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TP-RPA connection To analyse the behaviour of εHEG−TP with respect to
εRPA, one can work around eq. (A.8):

εHEG−TP
2 = −1

3
Im[ε−1

TE]

{Re[ε−1
TE]− 2

3}2 + Im[ε−1
TE]

2
(A.23)

and first focus on Im[ε−1
TE] and Re[ε−1

TE]. Using previously derived expressions
(A.17) and (A.19) one gets:

Im[ε−1
TE] = − εTE

2
(

εTE
1

)2
+
(

εTE
2

)2 (A.24)

= −
1
3 εRPA

2
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1 + 1
3 (ε

RPA
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]2
+
(

1
3 εRPA

2

)2 (A.25)

= −3
εRPA

2
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1 + 2
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(

εRPA
2

)2 (A.26)

and for the real part:

Re[ε−1
TE] =

εTE
1
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εTE
1
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+
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εTE
2

)2 (A.27)
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One notices also that (εTE
1 )2 + (εTE

2 )2 = |εTE|2. Hence ε2 becomes:

εHEG−TP
2 =

1
3 εRPA

2 /|εTE|2

3
[

εTE
1 /|εTE|2 − 2
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+ 3
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]2 (A.29)

=
1
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=
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3εTE
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2 /3

]2 (A.31)
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A.1.1 Remarks on q-dependent behaviour of ALDA-TP/TE with
respect to RPA

Let us start with a brief recap on RPA:

χRPA =
[

1 − χ0v
]−1

χ0 (A.32)

εRPA = 1 − vχ0 (A.33)

ε−1
RPA = 1 + vχ = 1 + v

[

1 − χ0v
]−1

χ0 (A.34)

and then on ALDA:

χALDA =
[

1 − χ0(v + fxc)
]−1

χ0 (A.35)

εTP
ALDA = 1 − vχ̃

= 1 − v
[

1 − χ0 f ALDA
xc

]−1
χ0

(A.36)

ε−1
TP = 1 + vχ (A.37)

εTE
ALDA = 1 − (v + f ALDA

xc )χ0 (A.38)
[

εTE
ALDA

]−1
= 1 + (v + fxc)χALDA

= 1 + (v + fxc)
[

1 − χ0(v + fxc)
]−1

χ0

= 1 +
[

(v + fxc)
−1 − χ0

]−1
χ0

= 1 + v
[

(v + fxc)
−1v − χ0v

]−1
χ0

= 1 + v
[

(1 + v−1 fxc)
−1 − χ0v

]−1
χ0

(A.39)

NB: χ̃ = χ0 + χ0 fxcχ̃.
Two trends can be described comparing eq. (A.33) with eq. (A.36) and eq.

(A.34) with eq. (A.39). In fact, is it apparent that

if χ0 fxc ≪ 1 then εTP → εRPA. (A.40)

and that
if v−1 fxc ≪ 1 then ε−1

TE → ε−1
RPA. (A.41)

Hence, there are two different situations where ALDA can recover RPA, whether
in Test-Particle or in Test-Electron. One should now point out several things:

• for q → 0, v ∼ 1/q2 and χ0 ∼ q2. This means that for q ∼ 0 both
conditions are satisfied;

• a zeroth-order estimation of how εTP and ε−1
TE behave with respect to their

RPA counterparts can be given from calculations on silicon;

• knowing that εRPA = 1 − vχ0 one can have a rough estimation of the vχ0

term in the case of silicon. Looking at the RPA spectra for small values of
q, one could tell that vχ0 ∼ 6;
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• it is known that, for q → ∞, εM → 1, which means that vχ0 → 0. In
general χ0 → 0 as q → ∞, hence condition (A.40) holds also in this latter
case.

The inverse dielectric unction

Remaining in the ALDA framework, there is something to say about ε−1, i.e.
the inverse dielectric function. This is the function that enters in the energy-loss
spectrum, by the formula

EELS = − Im
{

1
εM

}

= − Im
{

ε−1
00

}

. (A.42)

Just to point out its relevance, ε−1 enters also in Hedin’s equations for the cal-
culation of the self-energy. Now, keeping in mind Eq. (A.35) and (A.37) one
can write

ε−1
TP = 1 + v

[

1 − χ0(v + fxc)
]−1

χ0 (A.43)

and equivalently

ε−1
TE = 1 + (v + fxc)

[

1 − χ0(v + fxc)
]−1

χ0 (A.44)

= 1 + v
[

1 − χ0(v + fxc)
]−1

χ0 + fxc

[

1 − χ0(v + fxc)
]−1

χ0 (A.45)

= ε−1
TP +

[

f−1
xc − χ0(v + fxc) f−1

xc

]−1
χ0 (A.46)

= ε−1
TP +

[

(

fxcχ0
)−1

− v f−1
xc − 1

]−1

(A.47)

= ε−1
TP +

[

(

fxcχ0
)−1

− 4π f−1
xc

q2 − 1
]−1

. (A.48)

Hence one can write

ε−1
TE − ε−1

TP =

[

(

fxcχ0
)−1

− 4π f−1
xc

q2 − 1
]−1

. (A.49)

This is a very general formula which holds for any TDDFT kernel, in fact no ap-
proximations have been made on the kernel till now. At this point however, it
is possible to analyze the asymptotic limits within a chosen approximation. Let
us first take the ALDA. One can write (still with no particular approximation)

ε−1
TE − ε−1

TP =
1

1
fxcχ0 − 4π

fxcq2 − 1
(A.50)
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Now, for ALDA, it follows that ( fxc is treated as a constant as it is not q-
dependent)

if q → 0 then ε−1
TE − ε−1

TP ∼ 1
c

fxcq2 − 4π

fxcq2 − 1
→ 0 (A.51)

if q → ∞ then ε−1
TE − ε−1

TP ∼ 1
1

fxcχ0 − 1
→ 0, (A.52)

where χ0 → c/q2 for q → 0. Hence, TE-ALDA should recover TP-ALDA
both at small and large q. It is worth to point out that in the case of increasing
wavevector, εALDA

TE has already proven to be pathologic and hence meaning-
less. Hence in this case the TE-ALDA dielectric function should not even be
taken into account.



B | Spectral resolutions

This is a general description of some properties of time-ordered response func-
tions. Examples of this are the one-particle Green’s function or notably the
plasmon-pole models used for the derivation of G in Chapter 5. See also Ap-
pendix C in [39] from where this part is taken. For a given time-ordered func-
tion R(r, r′; τ) one can write:

R(r, r′; τ) = −i ∑
s

[

ρs(r)ρ
∗
s (r

′)e−iǫsτθ(τ) + ρs(r
′)ρ∗s (r)e

iǫsτθ(−τ)
]

(B.1)

where ρs are in general oscillator strengths and ǫs the poles of the response
function. This, in the case of a plasmon-pole-model screening, becomes

W(t1 − t2) = −iλ
{

eiωp(t1−t2)θ(t2 − t1) + e−iωp(t1−t2)θ(t1 − t2)
}

(B.2)

with ωp > 0. So its Fourier transfom is

W(ω) =− i
λ

2π

∫ ∞

−∞
dτeiωτ

[

eiωpτθ(−τ) + e−iωpτθ(τ)
]

η→0+
= − i

λ

2π

∫ ∞

−∞
dτeiωτ

[

eiωpτ

(

− 1
2πi

∫ ∞

−∞
dω′ eiω′τ

ω′ + iη

)

+ e−iωpτ

(

− 1
2πi

∫ ∞

−∞
dω′′ e−iω′′τ

ω′′ + iη

)]

=
λ

2π

∫ ∞

−∞
dω′

{

1
ω′ + iη

∫ ∞

−∞
dτ
[

ei(ω+ωp+ω′)τ + ei(ω−ωp−ω′)τ
]

}

=
λ

2π

∫ ∞

−∞
dω′

{

2π

ω′ + iη

[

δ(ω + ωp + ω′) + δ(ω − ωp − ω′)
]

}

=λ

(

1
ω − ωp + iη

− 1
ω + ωp − iη

)

=λ

[

P
(

1
ω − ωp

− 1
ω + ωp

)]

− iπλ
[

δ(ω − ωp) + δ(ω + ωp)
]

(B.3)

where we have used the integral representation of the Heaviside step function:

θ(τ) = − 1
2πi

lim
η→0+

∫ ∞

−∞
dω

e−iωτ

ω + iη
=

1
2πi

lim
η→0+

∫ ∞

−∞
dω

eiωτ

ω − iη

θ(−τ) = − 1
2πi

lim
η→0+

∫ ∞

−∞
dω

eiωτ

ω + iη
=

1
2πi

lim
η→0+

∫ ∞

−∞
dω

e−iωτ

ω − iη
.

(B.4)
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Now one must remember that

lim
η→0+

1
x + iη

= P 1
x
− iπδ(x) (B.5)

lim
η→0+

1
x − iη

= P 1
x
+ iπδ(x) (B.6)

hence the imaginary part of W(ω) is

ImW(ω) = −πλ
[

δ(ω + ωp) + δ(ω − ωp)
]

. (B.7)
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The experimental valence band photoemission spectrum of semiconductors exhibits multiple satellites

that cannot be described by the GW approximation for the self-energy in the framework of many-body

perturbation theory. Taking silicon as a prototypical example, we compare experimental high energy

photoemission spectra withGW calculations and analyze the origin of theGW failure. We then propose an

approximation to the functional differential equation that determines the exact one-body Green’s function,

whose solution has an exponential form. This yields a calculated spectrum, including cross sections,

secondary electrons, and an estimate for extrinsic and interference effects, in excellent agreement with

experiment. Our result can be recast as a dynamical vertex correction beyond GW, giving hints for further

developments.

DOI: 10.1103/PhysRevLett.107.166401 PACS numbers: 71.45.Gm, 71.10.�w, 71.15.Qe

Photoemission is a prominent tool to access information

about electronic structure and excitations in materials.

Modern synchrotron sources can provide detailed insight,

thanks to their high intensity and broad photon energy

range. But the interpretation of the experimental data is

far from obvious, and theory is an essential complementary

tool. However, ab initio calculations typically focus on

bulk band structure [1,2]; thus surface effects are ignored,

and satellites are not included. The latter are a pure many-

body effect due to coupling to excitations of the material.

Such many-body effects are contained in approaches de-

veloped for correlated materials [3,4]; however, these are

usually based on models with short-range interactions,

whereas satellites such as plasmons involve long-range

effects. Plasmon satellites have been extensively studied

in core-level experiments [5]. There they can be described

by a theoretical model where a single dispersionless fer-

mion couples to bosons. The resulting exact Green’s func-

tion has an exponential form given by the so-called

cumulant expansion (CE). A Taylor expansion of the ex-

ponential leads to a well-defined quasiparticle (QP) peak

followed by a decaying series of plasmon satellites at

energy differences given by the plasmon energy, consistent

with experimental observations [6–10]. In the valence

region, plasmon satellites are much less studied, though

ab initio approaches can provide a good starting point. At

high photoelectron energies the photoemission spectrum is

approximately proportional to the intrinsic spectral func-

tion Að!Þ ¼ �ð1=�ÞImGð!Þ, where G is the one-particle

Green’s function. The latter is typically calculated using

the widely used GW approximation (GWA) [7,11,12]. In

principle, the GWA contains correlation effects beyond the

quasiparticle approximation. However, these additional

features are rarely calculated due to computational com-

plexity and, more importantly, the serious discrepancies

between GWA and experiment (see, e.g., [13–16]). The CE

has also been used for homogeneous electron gas [17] and

simple metals [14,15], yielding an improved description of

satellites overGW. Silicon [16] and graphite [18] were also

studied, but no plasmon satellite series were observed.

However, these results are not conclusive due to difficulties

of interpreting the experimental data. This leaves a series

of important questions: (i) Do materials generally exhibit

intrinsic satellites in the valence band region following a

cumulant like distribution, or are the extrinsic plasmon

peaks, due to losses incurred by the escaping photoelec-

tron, dominant? (ii) If such series are seen, how bad are

ab initio GW calculations? what is the reason for their

failure? and (iii) how can they be improved? Answering

these questions would be a crucial step towards a better

understanding of correlation effects in electronic excita-

tions and a predictive ab initio approach to photoemission.

In this Letter we focus on plasmon satellites using

silicon as a prototypical example. We have obtained va-

lence band photoemission data at high photon energy

(XPS) that constitute a reliable and well resolved bench-

mark. Analysis of the data allows us to elucidate the failure

of GW in describing the satellites. Then, starting from the

fundamental equations of many-body perturbation theory

(MBPT), we show how the failure can be overcome by
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using a decoupling approximation that leads to an expo-

nential representation of the one-particle Green’s function.

Together with an estimate for extrinsic and interference

effects, we obtain results for the quasiparticle peaks and

satellites in excellent agreement with experiment. Our

theoretical results can be expressed in terms of a dynamical

vertex correction, a powerful basis for further modeling.

Angular resolved valence photoemission (ARPES) mea-

surements were performed at the UHV photoemission

experimental station of the TEMPO beam line [19] at the

SOLEIL synchrotron radiation source. Linearly polarized

photons from the Apple II type Insertion Device (HU44)

were selected in energy using a high resolution plane grat-

ing monochromator with a resolving powerE=�E ¼ 5000.

The end-station chamber (base pressure 10�10 mbar) is

equipped with a modified SCIENTA-200 electron analyzer

with a delay-line 2D detector which optimizes the

detection linearity and signal/background ratio [20]. The

overall energy resolution was better than 200 meV.

The photon beam impinges on the sample at an angle of

43�, and photoelectrons were detected around the sample

surface normal with an angular acceptance of �6�. An

n-type (ND ’ 2� 10�18P atoms=cm3) Si(001) wafer was

cleaned from the native oxide by flash annealing at 1100 �C

after prolonged degassing at 600 �C in ultrahigh vacuum.

The silicon surface was annealed at 300 �C to prevent

surface etching, and hydrogenated in a partial pressure of

activated hydrogen about 2� 10�8 mbar for 20 min. The

ARPES was measured along the � direction. At 800 eV

kinetic energy the Si Brillouin zone is observed with an

emission angle slightly smaller than 5�. The measured

photoemission map was integrated over the spectral inten-

sity originated by two Brillouin zones. The Fermi level was

obtained by measuring a clean Au(111) surface. The ex-

perimental data (crosses) are summarized in Fig. 1. One can

distinguish the quasiparticle peaks between the Fermi level

at zero and the bottom valence at�12 eV, followed by two

prominent satellite structures, each at a mutual distance of

about 17 eV, as well as a more weakly visible third satellite

between �52 and �60 eV. These structures are obviously

related to the 17 eV silicon bulk plasmon [21,22].

The exact one-electron Green’s function G is described

by an equation of motion with the form of a functional

differential equation [23],

G ¼ G0 þ G0VHG þG0’G þ iG0vc

�G

�’
: (1)

Here G0 is the noninteracting Green’s function, ’ is a

fictitious external perturbation that is set to zero at the

end of the derivation, vc is the bare Coulomb interaction,

and all quantities are understood to be matrices in space,

spin, and time. The Hartree potential VH gives rise to

screening to all orders. Linearizing VH with respect to ’
yields [24]

Gðt1t2Þ ¼ G0
Hðt1t2Þ þ G0

Hðt1t3Þ �’ðt3ÞGðt3t2Þ

þ iG0
Hðt1t3ÞW ðt3t4Þ

�Gðt3t2Þ

� �’ðt4Þ
; (2)

where �’ is equal to ’ screened by the inverse dielectric

function,W is the screened Coulomb interaction, and G0
H

is the Green’s function containing the Hartree potential at

vanishing �’; only time arguments are displayed explicitly

and repeated indices are integrated. This linearization pre-

serves the main effects ofW and hence of plasmons. With

the additional approximation
�Gðt3t2Þ
� �’ðt4Þ

’ Gðt3t4ÞGðt4t2Þ one

obtains the Dyson equation G ¼ G0
H þ G0

H�G in the

GWA for the self-energy �. However this approximation

can be problematic. For the following analysis we use

the standard G0W0 approach, where G0 is taken from a

local-density approximation calculation and W 0 is the

screened interaction in the random phase approximation.

Figure 2 shows the G0W0 spectral function Að!Þ ¼
1
�
jIm�ð!Þj=f½!� "H � Re�ð!Þ�2 þ ½Im�ð!Þ�2g of Si

[25] at the � point, for the top valence (solid line) and

bottom valence (dashed), respectively. The top valence

shows a sharp quasiparticle peak followed by a broad,

weak satellite structure at about �21 eV. This peak stems

from the prominent peak in Im� (full circles) at about

�18 eV, itself due to the plasmon peak in ImW . It is a

typical plasmon satellite, though (cf. [7]), the QP-satellite

spacing is slightly overestimated because the term !�
"H � Re� (full squares) in the denominator of the expres-

sion for Að!Þ is not constant. However the GWA has a

more severe problem: for the bottom valence, the satellite

structure at about �36 eV is much too far from the QP
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FIG. 1 (color online). Experimental XPS spectrum of Si at

800 eV photon energy (blue crosses), compared to the theoretical

intrinsic Að!Þ calculated from G0W0 (red dashed line), and from

Eq. (4) (green dot-dashed line). On top of the latter the black

solid line also includes extrinsic and interference effects. All

spectra contain photoabsorption cross sections, a calculated

secondary electron background and 0.4 eV Gaussian broadening

to account for finite k-point sampling and experimental resolu-

tion. The Fermi energy is set to 0 eV.
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peak at about �12 eV, and much too sharp. This satellite

does not correspond to a plasmon peak in Im� (empty

circles), but to a zero in!� "H � Re� (empty squares) in

the denominator of Að!Þ, as for a QP peak. It has been

interpreted in the HEG as a plasmaron, a coupled hole-

plasmon mode [26], but as noted below it is an artifact of

the GWA [27,28]. Figure 1 compares the total GW spectral

function (dashed red line) summed over all valence bands

and k points, with our XPS data. The effects of cross

sections are included by projecting on angular momenta

in atomic spheres using the atomic data of Ref. [29]. The

secondary electrons’ background at energy ! was deter-

mined by integrating the calculated intrinsic spectral in-

tensity between ! and the Fermi level, similar to [22]. A

constant scaling factor was set such that the measured

photoemission intensity at the highest binding energy

(60 eV), where primary electrons intensity is absent, is

reproduced. As expected, the dominant QP spectrum is

well described by GW, but the satellite is dominated by

the plasmaron around �36 eV, in complete disagreement

with experiment. The experimental plasmon satellite at

about �25 eV appears only as a weak shoulder in the

GWA. Thus the plasmaron peak is responsible for the

GWA failure [27,28] in silicon.

Vertex corrections are required to go beyond the GW

self-energy. However, adiabatic vertex corrections (see,

e.g., [30]) only lead to renormalization of energies and

do not create new structures. Thus alternatively, we con-

centrate here on dynamical effects, and we choose to

approximate directly Eq. (2), without passing through a

self-energy.

We decouple Eq. (2) approximately by supposing that G
and GH are diagonal in the same single particle basis.

Equation (2) is then applicable separately for every single

matrix element of G and each state couples independently

to the neutral excitations of the system through W [31].

The latter can now be understood as the screened intra-

orbital Coulomb matrix element for the chosen state. Such

a decoupling approximation can be optimized [27,28] by

adding and subtracting a self-energy correction, hence by

using a QP Green’s function G� obtained from a good QP

self-energy instead of GH. Since the GWA is currently

the state-of-the art for QP properties, we suppose that for

every decoupled state k, Gk
�
ð�Þ ¼ i�ð��Þe�i"k� is deter-

mined from �GWð"kÞ, where "k ¼ "0k þ �GWð"kÞ is the

(complex) GW quasiparticle energy and � ¼ t1 � t2.
Now Eq. (2) can be solved exactly for each state. Briefly

the main steps are: (i) solve the noninteracting (W ¼ 0)

version of (2), which leads to an explicit solution G’
�
;

(ii) iterate the result G ¼ G’
�
� G’

�
�G þ iG’

�
W �G

� �’
start-

ing from Gð0Þ ¼ G’
�
. Here � compensates for the self-

energy insertion used for the optimized decoupling;

(iii) use the exact relation
�G’

�
ðt3t2Þ

� �’ðt4Þ
¼ G’

�
ðt3t4ÞG

’
�
ðt4t2Þ ¼

iG’
�
ðt3t2Þ�ðt2 � t4Þ�ðt4 � t1Þ to derive

Gðt1t2Þ ¼ G�ð�Þe
i��e

i
R

t2
t1
dt0½ �’ðt0Þ�

R

t2

t0
dt00W ðt0t00Þ�

: (3)

The equilibrium solution is obtained setting �’ ¼ 0.

In silicon, where the peaks in the loss function are well

defined, it is justified to use a single plasmon pole model

W ð�Þ ¼ �i�kfe
�i ~!k��ð�Þ þ ei ~!k��ð��Þg with plasmon

energy ~!k and intrinsic strengths �k for each matrix ele-

ment of W . Besides �’, the total exponent becomes then

ak½e
i ~!k� � 1� with ak ¼ �k= ~!

2
k obtained from the corre-

sponding GW results. We find that ak varies around 0.3.

Taylor expansion of the exponential leads then to the

spectral function

Akð!Þ ¼
e�ak

�

X

1

n¼0

ank
n!

�k

ð!� �k þ n ~!kÞ
2 þ �2

k

; (4)

where �k ¼ Re½"k� and �k ¼ Im½"k�. Equation (4) is simi-

lar to the plasmon pole version of the CE (cf. Ref. [13]).

However here the exponential solution arises from a

straightforward approximation to the fundamental differ-

ential equation (1): the linearization of the Hartree poten-

tial reveals the boson of the model (i.e., the plasmon via

peaks in W ), and the diagonal approximation of G gives

rise to each isolated fermion. Our results are summarized

in Fig. 1. The dot-dashed line gives the result of this

procedure together with the cross sections and the second-

ary electron background. The shapes of the QP peaks

change little with respect to GW, but now the full series

of satellites is present. The internal structure of the satel-

lites which originate from the multiple valence bands, is

also reproduced. This validates the decoupling approxima-

tion in the dense valence band region where, contrary to the

case of an isolated core level, its success is a priori far from

-40 -35 -30 -25 -20 -15 -10 -5  0
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18 eV

FIG. 2 (color online). G0W0 spectral function of bulk silicon

for the top and bottom valence bands at the � point (black solid

and blue dashed lines, respectively). The corresponding imagi-

nary parts of the self-energy (red empty circles and dashed line,

and green full circles and solid-line) and !� "H � Re� (red

empty squares and dashed line, and green full squares and solid

line) are also shown. The Fermi energy is set to 0 eV.
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obvious. However, the intensity of the observed satellites is

significantly underestimated. This discrepancy is similar to

that found for the CE in simple metals, where extrinsic

losses were suggested as a likely cause [14]. These might

also be reduced by interference effects [32]. To check this

possibility we estimated the contributions from both ef-

fects to the satellite strengths ak using Eq. (32) and (36) of
Ref. [33]. This approach uses a plasmon pole model,

Inglesfield fluctuation potentials, and an average over

hole position that takes account of the photoelectron

mean free path � [33]. We observe that the averaged total

satellite line shape in this model is similar to that for the

intrinsic part, with a width � � 2 eV due to plasmon

dispersion. Thus we can approximate the extrinsic and

interference effects by renormalizing the intrinsic satellite

intensity, i.e., by the replacement �ak ¼ ak þ aext þ ainf in
Eq. (4). These quantities are evaluated with !p ¼ 16:7 eV

and � ¼ 17:5 �A at 800 eV for Si, yielding aext ¼ 0:63 and
ainf ¼ �0:11. This also modifies the strength Zk ¼ e� �ak

of the QP peaks, but preserves overall normalization.

The broadening of the satellites must also be increased,

� ! �þ n�. The total spectrum thus obtained (black line)

is in unprecedented agreement with experiment. We stress

that this result contains no fit parameters besides the two

scaling factors (for spectrum and background) due to the

arbitrary units of the experiment.

The success of our present approach stresses the need to

go beyond the GWA. The exponential representation of G

implicitly corresponds to a vertex correction ~� ¼ � �G�1

� �’
to

the self-energy. Since our derivation yields G as a function

of the screened potential �’ (3), this functional derivative

can be performed explicitly, using � �G�1

� �’
¼ G�1 �G

� �’
G�1.

From Eq. (3), a straightforward derivative of G contains a

series of satellite contributions. The two inverse Green’s

functions lead to a significant complication, because they

contain the inverse of this series. This clearly illustrates the

difficulty of modeling ~� in order to treat dynamical effects.

It suggests rather to concentrate on modeling �G
� �’

, where the

various contributions are simply summed, and hence to

search for a self-energy of the form � ¼ �iW �G
� �’G

�1

instead of � ¼ iGW ~�. In conclusion, on the basis of

our experimental XPS data we have analyzed the failure

of GW to reproduce plasmon satellites and linked this

failure to the appearance of an artificial plasmaron peak.

On the other hand, GW results are fair when the imaginary

part of �, hence the intensity of the corresponding plas-

mon, is small enough so that no sharp plasmaron is created.

Thus surprisingly, one might expect GW to work better in

describing satellites stemming from local plasmon or in-

terband excitations close to the Fermi level in ‘‘strongly

correlated’’ materials than for the strong plasmon struc-

tures in conventional semiconductors. Starting from the

fundamental equations of MBPT we have derived an ex-

ponential solution to the one-particle Green’s function,

analogous to that from the CE, that overcomes the draw-

backs of the GWA. Comparison to new photoemission data

shows that this yields a very good description of the

spectral function of bulk silicon, including the satellites

series. By calculating the secondary electron background,

cross section corrections as well as a correction for extrin-

sic and interference effects, we achieve an agreement

between theory and experiment that can be considered as

a benchmark. Our derivation also suggests how the results

can be improved in cases where the presently used approx-

imations are inadequate. Finally, by accessing an expres-

sion for the vertex function, our approach yields precious

hints for directions to take in modeling dynamical effects

beyond the GWA.
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The experimental valence band photoemission 

spectrum of semiconductors is typically 

used to extract information about the band 

structure of materials. Satellites are much less 

explored, both experimentally and theoretically. 

The state-of-the-art approach to calculate 

bandstructures, the GW approximation, often 

fails to describe these many-body effects. 

Taking  silicon as a prototypical example, 

we compare experimental high energy 

photoemission spectra with GW calculations 

and analyze the origin of the GW failure. We 

then show how to go beyond GW in a systematic 

way. Our calculated spectrum, including cross 

sections, secondary electrons, and an estimate 

for extrinsic and interference effects, is in 

unprecedented agreement with experiment 

down to 60 eV from the Fermi energy. 

Photoemission is a prominent tool to access information 
about electronic structure and excitations in materials. 
Thanks to their high intensity and broad photon energy range, 
modern synchrotron sources can provide detailed insight.
The interpretation of the experimental data is far from 
obvious, and theory is an essential complementary tool. 
However, ab initio calculations typically focus on bulk band 
structure; thus surface effects are ignored, and satellites are 
not included. The latter are a pure many-body effect due to 
coupling of primary photoexcitation to neutral excitations of 
the material, such as plasmons. 

Plasmon satellites have been extensively studied in core-level 
photoemission experiments [1]. There they can be described 
by a model where a single dispersionless fermion couples 
to bosons [2], which yields a description consistent with 
experimental observations. In the valence region, plasmon 
satellites are much less studied theoretically, even though 
ab initio approaches can provide a good starting point. 
At high photoelectron energies the photoemission spectrum 
is approximately proportional to the intrinsic spectral 
function A(ω)=1/π|ImG(ω)|, where G is the one-particle 
Green’s function. The latter is typically calculated using the 
widely used GW approximation (GWA) [2]. In principle, the 
GWA contains correlations effects beyond the quasiparticle 
approximation. However, these additional features are 
rarely calculated due to computational complexity and, 
more importantly, serious discrepancies between GWA and 
experiment. 
We have proposed an approximate differential equation 
for the one-particle Green’s function with an exponential 
solution that contains multiple plasmon excitations through 
the dynamical screening of the material. Extrinsic effects 
due to the losses of the outgoing electron through bulk 
and surface [3], as well as interference effects [2,3], can be 
straightforwardly included in this formulation, on top of the 
intrinsic satellites created by the photoemission hole and 
contained in A(ω). 
The performance of the approach could be assessed thanks 
to benchmark measurements performed on the UHV 
photoemission experimental station of the TEMPO beamline. 
The experimental spectrum was obtained by integrating over 
almost ten degrees angular resolved photoemission of a 
Si(001) surface. At 800 eV photon energy along the Σ direction 
this is equivalent to the emission of two Brillouin zones. 
To prevent surface oxidation, the surface was hydrogenated in 
a partial pressure of activated hydrogen under a pressure of 
10-8 mbar.  

Valence-band satellites in
photoemission spectroscopy

TEMPO beamline

Valence electron photoemission spectrum of 

semiconductors : ab initio description of multiple satellites
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The calculated intrinsic spectral function of our approach 
reproduces the observed series of multiple satellites with 
correct positions; extrinsic and interference effects are 
crucial to describe the  weight of the satellites with respect
to the quasiparticle peaks.  

Figure 1: Experimental XPS spectrum of Si at 800 eV photon energy (blue crosses), compared 

to the theoretical intrinsic A(ω) calculated from GW (red dashed), and from the exponential 

solution for G (green dot-dashed). On top of the latter the black solid line also includes extrin-

sic and interference effects. All spectra contain photoabsorption cross sections, a calculated 

secondary electron background and 0.4 eV Gaussian broadening to account for inite k-point 

sampling and experimental resolution. The Fermi energy is set to 0 eV.
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Abstract. We present experimental data and theoretical results for valence-band satellites in semicon-
ductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new
approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement
with experiment. Here we give more details; we show how the the spectra change with photon energy,
and how the theory explains this behaviour. We also describe how we include several effects which are
important to obtain a correct comparison between theory and experiment, such as secondary electrons and
photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon
energy are key to the description of the energy dependence of spectra.

1 Introduction

Photoemission spectroscopy (PES) is an established tool
for the analysis of the electronic structure of solids and
molecules. Its increasing capability in energy-resolution
and flexibility has made more urgent the need for ad-
vanced theoretical approaches able to cope with the huge
range of systems being measured and with the high pre-
cision needed to match the experiment [1]. One power-
ful and commonly used framework is based on the one-
particle Green’s function G(x,x′, t, t′) [2], which describes
the propagation of one particle in the system. A popular
approximation for the propagator is the GW approxima-
tion [3], which has proven to be successful in a variety
of systems calculations of photoemission band gaps [4,5].
The quantity to be compared with experiment is the one-
particle spectral function A(ω) which is proportional to
the imaginary part of G. The main features of the spectral
function A(ω) are quasiparticle (QP) peaks with finite life-
time. In addition, the spectral function shows incoherent
satellite structures. In sp semiconductors these satellites
are mainly due to the excitation of plasmons (both surface
and bulk). Satellites in photoemission spectroscopy have
been extensively studied for core-level spectra [6–8], while
for valence-band spectroscopy there has been much less
effort [9–11]. Still, valence-band satellites have been mea-
sured in a number of systems and are at the center of the
debate around some highly interesting systems like tran-

a e-mail: matteo.guzzo@polytechnique.edu
b European Theoretical Spectroscopy Facility (ETSF),

http://www.etsf.eu

sition metal oxides. In a previous work [12] we introduced
a new method to describe satellites with an improved de-
scription of the intrinsic spectral function, including ef-
fects beyond the latter. In particular our method includes
the dependence of the spectrum on photon energy. In this
paper we present details of the method. We also show how
the photoemission spectrum of silicon depends on the pho-
ton energy and we give a prediction for the trend at very
high photon energies.

1.1 The sudden approximation and the three-step
model

When making comparisons between theory and experi-
ment, it is worth noting that there is not a complete coin-
cidence between the spectral function A(ω) and the PES
spectrum. This is because A(ω) only describes the propa-
gation of the hole created by the incoming photon, while
completely neglecting the losses of the photoelectron be-
fore it leaves the system. The use of A(ω), within these
limits, to describe PES is known as the sudden approxima-
tion. While this approximation simplifies the description
of PES, it is safe to say that it is never actually true. In
fact it turns out that the losses of the outgoing photoelec-
trons are roughly the same at all photon energies. This is
the result of two competing processes [6]:

(i) the reduction of the inelastic scattering cross section
of electrons as their kinetic energy increases. As the
photon energy increases, the average kinetic energy
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of the electrons in the solid will increase. With it, the
average loss probability per electron will decrease;

(ii) the increase of the mean free path of electrons as their
kinetic energy increases. A larger mean free path will
correspond to a greater maximum depth of a hole for
which the corresponding photoelectron is fast enough
to reach the surface and be detected. This implies
that, on average, electrons will have to travel through
a thicker layer of atoms before escaping the material.
This way, the energy-loss probability will increase.

These two phenomena make the losses of the photoelec-
trons non-negligible at any photon energy. The good news
is that the effect of these losses on the QP part of the spec-
trum is often only an overall renormalization of the peaks,
which explains the success of the sudden approximation
for the description of QP band structures. However, an ap-
propriate calculation and interpretation of satellite struc-
tures in photoemission spectra requires one to go beyond
the sudden approximation. A more complete, yet simplis-
tic way of modeling the photoemission process is to divide
it in three independent sequential steps:

1. optical excitation of the electron in the bulk;
2. travel of the excited electron to the surface;
3. escape of the photoelectron into vacuum.

This is known as the three-step model, as first proposed
by Berglund and Spicer [13]. The total photoemission in-
tensity is then given by the product of the probabilities
of the three different processes. The first step is described
by the one-particle spectral function A(ω). Losses coming
from A(ω) are called intrinsic [6]. Step two is described by
the electron energy-loss spectrum of the system and, along
with step three, is considered part of the extrinsic losses.
At this point, to get the total intensity, it would be suf-
ficient to convolute A(ω) with the energy-loss spectrum.
This case is referred to as the sudden limit [6]. However,
this condition is met only at very high photon energies
that are rarely accessed in usual PES conditions. In fact,
there is quantum-mechanical interference between intrin-
sic and extrinsic losses, which is due to the interaction
between the outgoing photoelectron and the hole it has
left behind. The changes occurring in the photoemission
spectrum following this kind of process, are referred to
as interference effects. To describe this kind of processes
one should in principle make use of a two-particle prop-
agator [14], but it is possible to treat this effect in an
approximate way retaining at the same time a good deal
of physical insight. Within this picture, we use an opti-
mized three-step model that attempts to overcome the
shortcomings of its original formulation.

2 Theoretical framework

Our method is based on the exact equation of motion of
the fully-interacting 1-particle electronic Green’s function
Gσ(x,x

′, t, t′). The equation reads [15]

G = G0 +G0VHG+G0ϕG+ iG0vc
δG

δϕ
, (1)

where G0 is the non-interacting Green’s function, ϕ is a
fictitious external perturbation that is set to zero at the
end of the derivation, vc is the bare Coulomb interaction,
and all quantities are understood to be matrices in space,
spin, and time. The Hartree potential VH gives rise to
screening to all orders. Spin only gives rise to a factor of
2, since we are interested here in non-magnetic systems
where G is spin-diagonal.

2.1 Decoupling approximation for the Green’s function

Linearizing VH with respect to ϕ and assuming G and GH

diagonal on the same discrete basis yields a scalar equation
for each matrix element G = Gii which corresponds to a
single state of the system [12,16]:

G(t1t2) = G0
H(t1t2) + G0

H(t1t3)ϕ̄(t3)G(t3t2)

+ iG0
H(t1t3)W(t3t4)

δG(t3t2)
δϕ̄(t4)

, (2)

where G0
H is the Hartree Green’s function in the limit of

vanishing external potential; ϕ̄ = ε−1ϕ is the screened
external perturbation potential;

W(t3t4) =

∫

drdr′|φ(r)|2|φ(r′)|2W (rr′t3t4) (3)

is a diagonal matrix element of the screened Coulomb in-
teraction W ; φ is the single-particle wavefunction of the
corresponding state; and ε−1 is the inverse microscopic di-
electric function. It is worth noting that in equation (2) the
approximation δG/δϕ̄ = GG – which corresponds to the
Random-Phase Approximation (RPA) for the response to
the screened external potential ϕ̄ – gives back the GW
approximation [3], which is hence included in the current
approximation. The solution of equation (2) at vanishing
ϕ, for a single occupied state, is

G(t1t2) = G0
H(t1t2) exp

[

−i

∫ t2

t1

dt′
∫ t2

t′
dt′′W(t′t′′)

]

. (4)

We assume that W can be represented by a sum of Np

poles ω̃j with strength λj , which is exact for infinite Np:

W(τ) =

Np
∑

j

λj

[

eiω̃jτθ(−τ) + e−iω̃jτθ(τ)
]

, (5)

where τ = t−t′. Using equation (5), the double integration
ofW in equation (4) is then analytically feasible. Once this
is carried out, the matrix elements of the Green’s function
read

G(τ) = iθ(−τ)e−i(ǫ+iΓ )τ exp

⎡

⎣

Np
∑

j

aj(1− eiω̃jτ )

⎤

⎦, (6)

with aj = λj/ω̃
2
j . In equation (6), the first exponent ǫ+iΓ

is the complex QP energy within the GW approxima-
tion. The GW correction to the Hartree energy naturally
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emerges from the integral of W in equation (4), provided
that the same level of approximation is used for W in the
GW self energy. The second exponential term provides for
renormalization and formation of satellites at all orders.
After having expanded and Fourier-transformed the lat-
ter, A(ω) = 1/π| ImG(ω)| becomes

A(ω) =
Γ

π
e−

∑Np

j
aj

[

1

(ω − ǫ)2 + Γ 2

+

Np
∑

j

aj
(ω − ǫ+ ω̃j)2 + Γ 2

+
1

2

Np
∑

jk

ajak
(ω − ǫ+ ω̃j + ω̃k)2 + Γ 2

+
1

6

Np
∑

jkl

ajakal
(ω − ǫ+ ω̃j + ω̃k + ω̃l)2 + Γ 2

+ . . .

]

.

(7)

Equation (7) shows how the spectral function can be ex-
panded as a sum of poles, which are regrouped here in
different terms following the corresponding order. The ze-
roth order (first term) is the QP peak, centered at the QP
energy ǫ. The following terms are centered at ω−nω̃j (at
order n, giving rise to the n-th satellite replica for that
frequency) with a weight decreasing exponentially with n.
In general, the weights aj are of the order of 0.1/Np.

The electron energy-loss function of bulk silicon has
a well-defined single-peaked shape, centered at 16.7 eV.
This fact justifies the use of a single plasmon-pole model
which is equivalent, in the above formulation, to the case
Np = 1.

2.2 Calculation of extrinsic losses and interference
effects

In order to take the extrinsic and interference terms
into account, we use the theoretical formalism of Hedin,
Michiels, and Inglefield [6], which includes all three effects,
i.e., intrinsic, extrinsic, and interference. In addition, the
theory is based on a semi-infinite model of the system, and
thus the satellite spectrum depends on the average dis-
tance traveled by the photo-electron through the surface.
However, these calculations use a rather crude approxima-
tion for the valence electrons, treating them as localized
states. The strategy is thus to use this complete model
to calculate the extrinsic and interference terms only, re-
placing the intrinsic contribution with the more rigorous
calculations detailed in the previous section. One might
worry that the intrinsic spectrum would then not include
effects due to the semi-infinite model. However, we find
that the intrinsic spectrum is quite insensitive to distance
from the surface. The theory accounts for the satellites in
the PES spectrum in terms of a spectral function A(ω) of
exponential form consistent with equation (7), which al-
lows us to combine the two approaches. In this approach

the photocurrent is given by

〈Jk(ω)〉 =
∑

i

|Mik0
|2
∫

∞

0

e−a

∫

∞

−∞

ei(ω0−ǫk+ǫi)t (8)

× exp

[
∫

γik(ω)(e
−iωt − 1) dω

]

dt dzc, (9)

where

a ≈

∫

dω γik(ω) = 2zcImk̃ + aiint. (10)

Here ω0 is the photon-frequency, k0 =
√

2(ω0 + ǫi) is
the photo-electron momentum at threshold, and we have
made the approximation that the matrix elements Mik =
〈i|d|k〉 are roughly constant over the range of photo-
electron energies of interest, i.e., from a few multiples of
the plasmon energy below the photon energy to thresh-
old where ǫk = ω. The function γik(ω) characterizes the
losses due to the excitation of single plasmons of energy ωq

and can be split into intrinsic, extrinsic and interference
contributions,

γik(ω) =
∑

q

|gq|
2δ(ω − ωq) = γint

i + γext
k + γinf

ik . (11)

We calculate the extrinsic and interference terms by as-
suming that the intrinsic amplitude is independent of the
initial (valence) state, which gives the amplitudes,

|gq| =

∣

∣

∣

∣

V q(zc)

ω
+

i

κ

∫ zc

−∞

ei(k̃−κ)(z−zc)V q(z)dz

∣

∣

∣

∣

(12)

where the solid occupies the space z > 0. The first term
gives the intrinsic amplitude, while the second term gives
the extrinsic, and the cross terms give the interference,
i.e.,

|gq|
2 = |gintq |2 + |gextq |2 + 2Re[gintq gextq ]. (13)

The complex wave numbers κ and k̃ are given by

κ =
√

2(ω0 + φ+ ǫF + iΓ (ω + ǫk))− |Q+K|2, (14)

k̃ =
√

k2 + 2(φ+ ǫF + iΓ (ǫk), (15)

and correspond to a time-inverted LEED state,

|k̃〉 = eiK·R
[

θ(z)e−ik̃∗z + θ(−z)e−ikz
]

. (16)

Here ǫF is the Fermi energy and φ is the work function.
Further, bold capitals denote components of the vector
perpendicular to the z direction (parallel to the surface).
With the above definitions, ǫk = k2, and ω is measured
relative to the valence binding energy so that the first
detectable photo-electron comes at ω = ǫk = 0.

In order to evaluate the relative weights of various con-
tributions to the PES signal, we use the Inglesfield fluctua-
tion potential inside the solid (contributions outside being
negligible) [6]. We then calculate the weight of the ex-
trinsic and interference aextinf (ω0) = aext(ω0) + ainf (ω0)
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Table 1. Values of the correction term aextinf including ex-
trinsic losses and interference effects and relative width (inverse
lifetime) η for a set of photon energies ω0.

ω0 (eV) aextinf η

200 0.432 2.882
480 0.479 1.085
800 0.530 0.570
1200 0.568 0.341
2000 0.609 0.178
5000 0.669 0.066
10000 0.703 0.027

contributions to the PES due to plasmons of energy ωp =
16.7 eV, at a given photon energy ω0, i.e.,

aextinf(ω0) =

∫

dkγext
k (ω0) + γinf

k (ω0). (17)

We incorporate these contributions in our total spectral
function correcting the intrinsic contribution of Section 2.1
with the addition of aextinf (ω0) i.e.,

āi = ainti + aextinf (ω0), (18)

where i denotes the valence state, ainti is the intrinsic
weight of the pole as it appears in equation (7) for the
case Np = 1. We can also calculate the width of the ex-
trinsic + interference satellites and account for this by
replacing the widths Γ in equation (7), i.e.

Γ → Γ + n η(ω0), (19)

η being the width (related to the dispersion of the plas-
mon) of the extrinsic plasmon peak at a given photon en-
ergy ω0 and n the number of plasmon excitations involved,
i.e. the order of the expansion in equation (7). Values of
ω0, a

extinf and η are listed in Table 1.

2.3 Additional effects

2.3.1 Lifetime of intrinsic plasmons

We must include a correction for the finite lifetime of in-
trinsic plasmons, which is infinite in (7) because of the
plasmon-pole model we are using for the intrinsic part.
Therefore, an additional width of 1.5 eV [17] is added to
the inverse lifetime of extrinsic plasmons η.

2.3.2 Photon cross sections

Photon cross sections are taken from references [18,19].
For each element, the tables give the relative photon
cross section of the atomic orbitals, calculated within the
Hartree-Fock approximation. We have to use the atomic
data for bulk silicon; since we are in a solid, the atomic
character is mixed. The four valence bands of silicon con-
tain two s electrons and two p electrons. The character of
each band is calculated by projecting the wavefunctions
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Fig. 1. (Color online) Photon cross sections, from refer-
ence [18]. Red solid line shows the values for the 3s electrons,
while the blue dashed line shows the 3p electrons cross sections.

onto spherical harmonics inside a sphere centered on the
Si ion. The s and p character of each band sum up to one.
We have then the following values:

Band #1 #2 #3 #4
s-type 0.95 0.75 0.25 0.05
p-type 0.05 0.25 0.75 0.95

In this picture, the relative weight of a photoemission peak
will be the consequence of the sk and/or pk character of
the corresponding state k. To include this effect in the
spectral function, we can define an effective Ã so that

Ã(ω) =
∑

k

(skσs + pkσp)Ak(ω), (20)

where Ak is the (intrinsic or corrected) spectral function of
a single state k and σs and σp are the photon cross sections
for s and p electrons, tabulated in references [18,19] and
shown in Figure 1 up to 1500 eV. The inclusion of cross-
section effects is very important to reproduce the relative
weight of s and p peaks in the photoemission spectrum
(which can differ by an order of magnitude) and the re-
spective changes at different photon energies.

2.3.3 Secondary electrons

The background of secondary electrons is calculated us-
ing the effective intrinsic spectral function Ã(ω), assuming
that each peak in the intrinsic spectrum produces a con-
stant flux of secondary electrons (i.e. a step function) at
all binding energies greater than the quasiparticle energy
ǫ. This is commonly known as a Shirley background [20].
The calculation of the background is achieved by the fol-
lowing integration of Ã(ω):

B(ω) =

∫ µ

ω

dω′Ã(ω′), (21)
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where B is the background of secondary electrons. The
final quantity that has to be compared with experimental
data is given by the photocurrent J(ω) defined as:

J(ω) = αÃ(ω) + βB(ω), (22)

where α and β are two parameters that must be fixed
to match the signal/background ratio in the experimental
data. β is to be determined using the high binding-energy
limit (where Ã(ω) ∼ 0) and then we fix α so as to match
the QP peak intensity. The calculated background could
also be subtracted from the experimental curves, in case
one wishes e.g. to evaluate the intensity of satellites (see
below).

3 Experimental setup

Valence PES measurements were performed at the UHV
photoemission experimental station of the TEMPO beam-
line [21] at the SOLEIL synchrotron radiation source.
Linearly polarized photons from the Apple II type In-
sertion Device (HU44) were selected in energy using a
high resolution plane grating monochromator with a re-
solving power E/∆E = 5000. The end-station chamber
(base pressure 10−10 mbar) is equipped with a modified
SCIENTA-200 electron analyzer with a delay-line 2D de-
tector which optimizes the detection linearity and sig-
nal/background ratio [22]. The overall energy resolution
was better than 200 meV. The photon beam impinges on
the sample at an angle of 43◦, and photoelectrons were
detected around the sample surface normal with an an-
gular acceptance of ±6◦. A doped n+-type Si(001) wafer
(ND ≃ 2× 10−18P atoms/cm3) was cleaned from the na-
tive oxide by flash annealing at 1100 ◦C after prolonged
degassing at 600 ◦C in ultra-high vacuum. The silicon sur-
face annealed at 300 ◦C to prevent surface etching was
then hydrogenated in a partial pressure of activated hy-
drogen about 2×10−8 mbar for 20 min. At 800 eV kinetic
energy the Si Brillouin zone (BZ) is observed with an emis-
sion angle slightly smaller than 5◦. The Fermi level was
obtained by measuring a clean Au(111) surface. The mea-
sured photoemission map at 800 eV was integrated over
the spectral intensity originated by two BZ. For lower pho-
ton energies it was not possible to have a complete inte-
gration of the BZ. Considering the ratio between satellites
and QP peaks – which is a key quantity for our analysis
– independent of the integration on the BZ (as our theory
assumes), justifies the use of photon energies lower than
800 eV for comparison with theory.

4 Results

We have measured PES data for several photon ener-
gies between 200 and 800 eV. Using our procedure we
have calculated the photoemission spectra for a range of
photon energies between 200 eV and 10 keV. A stan-
dard GW calculation was performed using the ABINIT
code [23]. The GW calculation was used to evaluate the
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Fig. 2. (Color online) Calculated spectrum Ã(ω) for several
photon energies between 200 eV and 10 keV. The spectra in-
clude the effect of cross sections and extrinsic losses. The curve
intensities are aligned to match in the QP region, between −15
and 0 eV, to highlight the relative change of the satellite spec-
tral weight, i.e. below −15 eV. The Fermi energy is at 0 eV.

parameters of equation (7), under the assumption that
ImW ∼ 1/π ImΣ [24], hence using an RPA screening. We
calculated the correction paramenters for extrinsic losses
and interference effects as described earlier in Section 2.2,
and eventually included cross-section effects as in equa-
tion (20). The graph in Figure 2 shows the calculated

photoemission spectra Ã(ω) for a number of selected pho-
ton energies, from 200 eV to 10 keV. In this figure the
intensity of the curves has been scaled so that the spec-
tra match in the QP region. Varying the photon energy,
there is a small change in the QP part of the spectrum
– between −15 and 0 eV from the Fermi energy – due to
cross-section effects1. The most apparent change is in the
satellite part, i.e. below −15 eV, where three satellites are
visible. Our calculations show that with increasing pho-
ton energy the satellites have a tendency to show more
structures. More importantly, the relative weight of satel-
lites increases as the photon energy increases. This trend
is the same as the one found in the experimental data, as
reported in Figure 3. In this figure we also include data
from reference [25]. We assume a complete integration of
the BZ. The ratio between the weight of the first satellite
– taken between −33 and −15 eV – and the QP peaks
has been calculated, both in the theoretical and exper-
imental case, evaluating the integral under the curves.
The calculated background has been removed from the
experimental curves before the evaluation of the integrals.
The set of experimental values is small with respect to
what would be needed to perform an exhaustive compari-
son with theory. For smaller photon energies (between 200
and 400 eV), the ratios are systematically overestimated.
Partial integration of the BZ, caused by the low photon
energy used, is probably the cause of the overestimation

1 Additional variations related to different integrations of the
BZ (found in experiment) are here neglected.
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Fig. 3. (Color online) Intensity ratio between the first satellite
and the QP part of the spectrum as a function of the photon
energy. Our experimental data (blue crosses) are compared to
theoretical calculation (black solid line). An additional point
(red circle) taken from [25] has also been included for compar-
ison. The inset shows a detail of the same plot.

of the satellite/QP ratio in these cases. In fact, the lower
the photon energy, the smaller the portion of BZ mea-
sured for the same emission angle [1]. In our theory, we
assume that QP states do not mix and each QP state has
its own plasmons. This is a good approximation if done
to evaluate a total spectrum, which is the result of a sum
over all the states, i.e. over the whole BZ. Moreover our
background is calculated assuming a uniform integral over
the full BZ. Taken into account this and the inherent dif-
ficulty to precisely determine the points that define the
QP region and the first satellite, our experimental points
have an absolute error of ±0.1.

Theory allowed us to calculate spectra at high values
of photon energies that we could not reach in experiment.
Figure 3 shows how the satellite/QP ratio increases sig-
nificantly from 0 up to 1−2 keV and how above 5−10 keV
there is a sort of saturation effect. However, the satellite
shape continues to sharpen (show more structure) as the
photon energy increases. The origin of this sharpening is
to be found in the width of extrinsic plasmon peak (see
Tab. 1), which decreases as the photon energy increases
and changes more than the intensity of plasmons, hence
being the crucial quantity in the equation that deter-
mines most changes in the shape of satellites, as it appears
from our analysis. The behavior of the satellite/QP ratio
is more complicated due to the inelastic mean free path
(IMFP) of the photoelectron, which increases with energy.
This increase in IMFP gives rise to two competing effects:
(i) the increased IMFP allows electrons from deeper in
the material to escape, which increases the strenth of the
extrinsic plasmon peak; (ii) the IMFP is (inversely) a mea-
sure of the probability of scattering plasmons, thus a larger
IMFP means that the contribution to the plasmon peak
from each hole is lowered.

5 Conclusion

In conclusion we have shown how to describe ab ini-
tio satellites in valence-band photoemission spectroscopy.
Our method is able to describe multiple excitation of plas-
mons including lifetimes. This gives an accurate descrip-
tion of the intrinsic part of the spectrum. A number of
effects that are not removable from experiment have to be
added to the theoretical calculations to obtain an appro-
priate comparison with experimental data. The photon-
energy dependence of satellites was studied including, in
the spectral function A(ω), correcting terms for the in-
tensity and width of extrinsic plasmon peaks, also taking
into account interference effects. We compared the theo-
retical results with our experimental photoemission data,
taken at several photon energies, between 200 and 800 eV.
Using our theoretical approach, we could give a predic-
tion on a larger range of energies. We evaluated the ratio
between the weight of the first satellite and of the QP
peaks. Satellites grow bigger with respect to QP peaks
as the photon energy increases, until the sudden limit is
reached, above 5−10 keV. The measured data are in agree-
ment with the theoretical curve. The main physical pro-
cess behind the increase of satellite weight appears to be
the variation of the IMFP of photoelectrons. The evalu-
ation of extrinsic and interference effects could be done
in a relatively straightforward way thanks to the formula-
tion we introduced for the Green’s function and the spec-
tral function. The same would not have been possible if
one stayed within the GW approximation, where spurious
plasmaron excitations spoil the satellite spectra [12] and
multiple satellites are absent.

We acknowledge ANR (project #: NT09-610745) for funding,
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