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pour le traitement des images

Soutenue publiquement le 9 mars 2012.

Jury

Directeur : Antonin Chambolle École Polytechnique
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mon engouement pour les mathématiques.
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CHAPITRE 1

Introduction

1.1 Introduction générale

Les problèmes inverses consistent à retrouver une donnée qui a été transfor-

mée ou altérée. L’élaboration de méthodes de restauration efficaces trouve des

applications dans des domaines aussi variés que la reconnaissance vocale, l’ima-

gerie médicale et spatiale, la géophysique, la finance pour ne citer que quelques

exemples.

Dans le domaine de l’imagerie, l’acquisition, la transmission et le stockage sont

des étapes qui altèrent les données. Une image idéale peut ainsi à chacune de ces

étapes subir l’addition d’un flou, d’un bruit ou des dégradations plus sévères.

L’objectif du traitement d’images consiste soit à reconstruire cette image, soit à

la simplifier pour en extraire une information pertinente.

La résolution de ce type de problèmes met en oeuvre de nombreux outils

mathématiques comme les équations aux dérivées partielles, des méthodes statis-

tiques, l’analyse harmonique, l’analyse numérique, le calcul des variations.

Cette thèse s’inscrit dans le cadre des approches variationnelles. Dans ce type

de méthodes, la donnée restaurée est vue comme un minimiseur d’une énergie qui

reflète une connaissance a priori de la structure du problème. Dans le cadre qui

nous intéresse, l’énergie en question doit rendre compte des propriétés intrinsèques

des images pour espérer avoir une bonne restauration. Le modèle doit également

prendre en considération le procédé de dégradation. La grande variété des images

et des perturbations rend ce problème difficile et donc intéressant.
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4 CHAPITRE 1. INTRODUCTION

La thèse mêle modélisation, étude théorique et algorithmique accompagnées

de résultats numériques. Elle est organisée en quatre parties :

– Dans le Chapitre 2, nous nous intéressons à une étude théorique des proprié-

tés de la pénalisation par variation totale. Pour la restauration des images,

la variation totale, en tant qu’outil de régularisation, a l’avantage de pré-

server les discontinuités tout en créant des zones lisses. Nous établissons

pour des énergies anisotropes générales les résultats connus pour les dis-

continuités de minimiseurs de la variation totale. Cette étude nous amène

notamment à nous interroger sur la régularité des ensembles de niveau et à

faire appel à la théorie de régularité des surfaces minimales. Nous montrons

également qu’il est inévitable que l’image restaurée contienne des grandes

zones constantes, phénomène indésirable que l’on appelle staircasing. En-

fin, nous établissons un lien intéressant avec le flot de la variation totale

pour une donnée radiale. Cette relation nous permet de raffiner les résultats

précédents dans le contexte des fonctions radiales.

– Dans le Chapitre 3, nous proposons une alternative à la variation totale

qui diminue dans certains cas le phénomène de staircasing. L’étude de cette

fonctionnelle nous amène à établir une formulation duale, utile pour dé-

montrer que la variante proposée cöıncide avec la variation totale sur les

images “cartoon”. Une comparaison numérique avec la variation totale est

proposée.

– Ces dernières années, les méthodes non-locales exploitant les auto-similarités

dans les images ont connu un vif succès. Dans le Chapitre 4, nous adaptons

ce type d’approche au problème de restauration de spectre de Fourier. Nous

présentons en outre des applications pour des problèmes inverses généraux.

Cette partie, essentiellement numérique a nécessité la rédaction d’un pro-

gramme en Matlab, mais également en C, pour paralléliser le calcul.

– Le dernier chapitre est consacré aux problèmes algorithmiques inhérents à

l’optimisation des énergies convexes considérées dans la thèse. Nous étu-

dions notamment la convergence et la complexité d’une famille d’algo-

rithmes dits Primal-Dual récemment développée.

Avant de poursuivre nous allons faire quelques rappels sur les différents mo-

dèles variationnels qui dominent la littérature contemporaine.
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1.2 Les méthodes variationnelles en traitement des images

1.2.1 Les problèmes inverses nécessitent une régularisation

Une image numérique est en général une matrice g = (gi,j)i,j où

gi,j ∈ {0, · · · , 255} pour les images en niveau de gris sur 8 bits et gi,j ∈ {0, · · · , 255}3

pour les images couleur en représentation RGB sur 8 bits. Il existe des représen-

tations avec d’avantage de niveaux (typiquement 16 bits) en imagerie médicale

et en imagerie satellitaire par exemple. Un élément de la matrice g est appelé pixel.

Prenons l’exemple d’une image capturée par un appareil photo numérique.

Elle est le résultat d’un échantillonage spatial puisque la valeur d’un pixel est la

moyenne de l’intensité lumineuse reçue par un capteur et d’une quantification qui

consiste à se ramener à un nombre de niveaux de gris fini. On passe ainsi d’une

donnée continue à une donnée discrète qui donne lieu à un traitement informatisé.

Le traitement des images a ainsi pour objet :

– la restauration (débruitage, défloutage, reconstruction de zones manquantes :

problème d’inpainting, etc.),

– l’interprétation (extraction d’éléments caractéristiques par segmentation,

classification, comparaison d’images, etc.),

– la compression (réduction de l’information nécessaire pour avoir une bonne

représentation de l’image).

Ces traitements sont dans la pratique effectués dans un domaine discret. Néan-

moins, il est souvent intéressant de les définir et de les analyser dans un cadre

continu. Le lien entre les deux approches est obtenu par des résultats d’approxi-

mation par Γ-convergence.

Ainsi, dans la suite, une image g0 idéale sera vue comme une fonction d’un do-

maine ouvert Ω ⊂ RN → R, de carré intégrable. Un modèle rudimentaire consiste

à voir l’image comme une juxtaposition d’objets. Cela revient à supposer que g0
est régulière par morceaux en dehors d’un ensemble de discontinuité lui-même ré-

gulier. Cependant nous verrons dans la suite que ce modèle est loin d’être parfait.

En ce qui concerne l’image transformée g, elle peut être vue comme le résultat

d’une transformation linéaire A suivie de l’addition d’un bruit blanc Gaussien

n de variance σ ; en d’autres termes g = Ag0 + n. D’autres dégradations sont

également envisagées dans la littérature (bruit multiplicatif, bruit Poissonnien).
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Un candidat u pour la restauration doit rester proche de g après application de

la transformation A, tout en minimisant une contrainte de régularité, quantifiée

par un opérateur R. Dans la pratique, cela consiste à chercher l’image restaurée

ū comme minimiseur d’un problème non contraint

min
u

1

2
‖Au− g‖2

2 + λR(u) (1.2.1)

dit problème régularisé.

Une autre approche qui en général n’est pas équivalente consiste à résoudre

le problème contraint

min{R(u), u tel que ‖Au− g‖2 = σ}. (1.2.2)

Les méthodes par régularisation développées pour le traitement des images

peuvent évidemment trouver des applications pour les signaux 1D comme le

montre l’exemple suivant :

Fig. 1.1: De gauche à droite, le signal constant par morceaux originel, le signal
corrompu et le signal restauré par pénalisation de la variation totale (cf. ci-après).

1.2.2 L’interprétation bayésienne

Supposons que Ω est fini et qu’une image naturelle est la réalisation d’un

processus aléatoire qui suit la distribution de Gibbs

p(u) =
1

Z(β)
exp(−βR(u)).

Ici, Z(β) est un facteur de renormalisation. En d’autres termes, les images irré-

gulières, correspondant à des grandes valeurs de R(u), sont peu probables.
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Grâce à la loi de Bayes

p(u|g)p(g) = p(g|u)p(u),

on peut calculer la probabilité a posteriori de u étant donné g. Comme nous

avons supposé que le bruit était blanc Gaussien de variance σ,

p(g|u) =
1

Z(g)
exp

(
−‖Au− g‖2

2

2σ2

)
.

En somme,

p(u|g) = C(g, β) exp

(
−‖Au− g‖2

2

2σ2
− βR(u)

)
.

Une première idée, consistant à maximiser cette probabilité, redonne exactement

le problème (1.2.1) pour le choix λ = 2σ2β. Une autre approche envisageable

revient à calculer l’espérance

E(u|g) =

∫

RΩ

up(u|g)du,

qui est donc une image. Cette approche peut être interprétée comme une modi-

fication de risque.

Pour avoir une restauration acceptable, trois pistes s’offrent à nous :

- Trouver le paramètre optimal λ. Dans la pratique, ce paramètre est laissé

libre et permet à un utilisateur final de choisir le niveau de régularisation

souhaité.

- Envisager d’autres types de risques. L’emploi d’un risque quadratique en

traitement des images a été étudié par Louchet et Moisan dans [109].

- Choisir une régularisation R, ce qui revient à se donner une distribution

sur les images naturelles.

Le choix de la régularisation R est difficile mais crucial et a fait l’objet d’une

littérature abondante dans le domaine des problèmes inverses. Nous allons, dans

la suite de cette introduction, suivre les étapes qui ont mené au développement

de méthodes efficaces.

1.2.3 L’approche de Tychonov

Une approche populaire, initiée par Tychonov en 1963, consiste à pénaliser

les grandes oscillations du bruit par adjonction dans l’énergie de la norme L2 du
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gradient. L’image restaurée ū est obtenue comme solution du problème convexe

min
u

1

2
‖Au− g‖2

2 +
λ

2

∫

Ω
|∇u|2,

où la minimisation se fait dans l’espace de Sobolev H1(Ω).

Remarquons que l’interprétation bayésienne et le changement de risque n’ap-

portent rien dans ce cas puisque l’énergie considérée est quadratique et donc

E(u|g) = ū.

Cette approche présente un avantage important d’un point de vue numérique.

L’énergie se minimise aisément grâce à une méthode de type gradient conjugué

et ce en un nombre fini d’itérations. On peut également envisager de résoudre

l’équation d’Euler-Lagrange associée

A∗(Au− g) − λ∆u = 0 (1.2.3)

du côté Fourier. Néanmoins, ce modèle présente un inconvénient qui est reflété

par le comportement diffusif de l’équation (1.2.3) : le minimiseur ne peut contenir

de discontinuités le long d’hypersurfaces. Autrement dit, ce modèle produit des

images restaurées où les zones de transition ne sont pas clairement marquées.

Plus généralement, il a été envisagé d’employer la norme Lp, pour p > 1, avec

à la clé le même type de phénomène. L’équation d’Euler-Lagrange s’écrit alors

A∗(Au− g) − λ∆pu = 0

où ∆pu = div(|∇u|p−2∇u) est le p-Laplacien.

1.2.4 Une régularisation non-lisse pour préserver les discontinuités

La parution de l’article fondateur de Rudin, Osher et Fatemi [141] (ROF dans

la suite) a marqué l’avènement des méthodes non linéaires et non lisses dans le

traitement des images. Pour éviter le comportement diffusif décrit ci-dessus, leur

idée est de pénaliser la norme L1 du gradient. Le problème de minimisation dans

l’espace W 1,1(Ω) est mal posé et la solution doit être cherchée dans son complété

pour la norme ‖ · ‖W 1,1 : l’espace des fonctions à variation bornée BV (Ω). Cet

espace peut être vu comme l’ensemble des fonctions u ∈ L1
loc(Ω) dont la dérivée

au sens des distributions Du est une mesure de Radon bornée. L’image restaurée

ū est alors obtenue comme minimiseur du problème

min
u∈BV (Ω)

1

2
‖Au− g‖2

2 + λ

∫

Ω
|Du|, (1.2.4)

où on a pénalisé la variation totale de la dérivée Du, dorénavant notée TV (u).

L’espace BV (Ω) jouit de bonnes propriétés de semi-continuité et de compacité ce
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qui garantit l’existence d’une solution au problème (1.2.4).

Chambolle et Lions [57] démontrent que, moyennant un bruit dont la variance

n’est pas trop élevée (σ ≤
∥∥g −

∫
Ω g
∥∥

2
), il existe un paramètre λ pour lequel il

est équivalent de résoudre le problème avec contrainte (1.2.2).

Fig. 1.2: A gauche l’image corrompue et à droite, un exemple de restauration
par minimisation de la variation totale.

Différentes modifications du modèle ont été envisagées dans la littérature.

Nikolova propose dans [134] d’utiliser une norme L1 dans l’attache à la donnée

classique. Cela donne de meilleurs résultats en présence de bruit impulsionnel.

L’idée d’utiliser une attache à la donnée non-différentiable en traitement du signal

remonte à [4]. Gilboa et al. [91], envisagent un paramètre de régularisation qui

s’adapte aux zones de l’image à restaurer. Le paramètre λ devient alors une

fonction de l’espace et doit être interprété comme un poids. D’autres variantes

consistent à considérer des versions différentiables de la semi-norme TV (Huber,

TVε). L’implémentation numérique du problème de minimisation en est alors

facilitée

De plus, il est bien connu que la minimisation de la variation totale favorise

l’apparition de régions constantes dans l’image restaurée. Ce phénomène, quali-

fié de staircasing dans la littérature en anglais, n’est pas toujours souhaitable.

Considérer des variantes différentiables de la variation totale tend alors à dimi-

nuer le phénomène de staircasing comme l’a démontré Nikolova [133] dans un

cadre discret.

Le phénomène de staircasing en lui-même a été mis en évidence en dimension

N = 1 dans [140, 43] et Nikolova [133] l’a étudié pour des énergies discrétisées en

dimension supérieure.

Une approche similaire à la minimisation de la variation totale consiste à

suivre le flot de la variation totale pour obtenir une image débruitée. Plus précisé-

ment, étant donnés un ouvert Ω ⊂ RN et une condition initiale u(0) = g ∈ L2(Ω),
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on obtient une famille d’images restaurées comme unique solution du flot de gra-

dient :

−∂tu(t) ∈ ∂TV (u(t)) presque tout t ∈ [0, T ]. (1.2.5)

L’étude des propriétés de ce flot est condensé dans le livre [13].

Au final, le modèle basé sur la variation totale et plus généralement les fonc-

tions à variation bornée ont trouvé des applications bien au-delà des problèmes

qui se posent en traitement d’images.

1.2.5 Lien avec les surfaces minimales

Un autre aspect fondamental des fonctions de classe BV est le lien avec le

problème de surface minimale. En effet, la formule de la coaire permet de montrer

que les surniveaux Et = {ū > t} du minimiseur ū de (1.2.4) résolvent

min
E

λP (E) +

∫

E
t− g. (1.2.6)

Ici, P (E) = HN−1(∂E) désigne le périmètre de l’ensemble E et le second terme

doit être interprété comme une contrainte sur la courbure moyenne de la surface

minimisante Et. Le lien entre la minimisation de la variation totale et le problème

de surface minimale était déjà connu par De Giorgi dans les années 1950.

L’étude de ce type de problèmes est l’objet de la théorie géométrique de la

mesure. Le problème de Plateau en est un autre exemple et consiste à montrer

qu’il existe une surface minimale avec un bord imposé. Ce problème porte le nom

de Joseph Plateau qui s’est intéressé au xixe siècle à la formation des films de

savon.

Fig. 1.3: Deux surfaces minimales qui résolvent le problème de Plateau.
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Une question fondamentale a consisté à se demander s’il existe, pour ce type de

problèmes, des solutions régulières en un sens classique. Les travaux de De Giorgi,

Bombieri, Massari, Tamanini et Federer [31, 148, 115, 116, 117, 85] ont permis de

répondre par l’affirmative à cette question en dimension N < 8 et ce dans divers

contextes. En 1969, Bombieri, De Giorgi et Giusti [32] donnent un exemple de

cône minimal pour le problème de Plateau en dimension N = 8, exhibant ainsi

une surface minimale comportant une singularité. Enfin, en dimension supérieure,

Federer démontre en 1970 que l’ensemble de singularité a une dimension de Haus-

dorff inférieure à N − 8.

Pour une introduction pédagogique aux questions de régularité des minimi-

seurs du problème (1.2.6), on pourra consulter les notes de cours d’Ambrosio [7]

ou le livre récent de Maggi [111, Chapitre 3].

Le lien entre l’énergie (1.2.4) et le problème de surface minimale sous-jacent est

notamment exploité dans [48, 49]. Dans ces travaux, la proximité des ensembles de

niveau permettent de déduire des propriétés en ce qui concerne les discontinuités

et la régularité du minimiseur du problème (1.2.4). Dans leur étude, la régularité

des ensembles de niveau joue un rôle fondamental.

Pour les minimiseurs de (1.2.4), des résultats de ce type étaient partiellement

connus grâce au calcul de solutions explicites. Mentionnons notamment les tra-

vaux [13, 2] qui s’intéressent à une donnée qui est la caractéristique d’un convexe

ou la somme de caractéristiques d’ensembles convexes éloignés. Les résultats de

ces papiers sont complétés par les articles récents [3, 51] où les auteurs s’inté-

ressent à une donnée dans le plan qui est l’union de deux disques ou deux carrés

proches.

1.2.6 Un exemple de problème aux frontières libres

La littérature regorge de modèles concurrents de la variation totale. Faute

d’être exhaustif, nous ne pouvons pas oublier l’approche de Mumford et Shah

[128] qui fait partie de la grande famille des problèmes aux frontières libres.

Ce modèle a l’avantage de concilier l’approche de Tychonov et celle de Rudin,

Osher et Fatemi et revient à chercher un couple (ū, K̄) qui minimise

min
u,K

1

2
‖u− g‖2

2 +
λ

2

∫

Ω\K
|∇u|2 + µHN−1(K), (1.2.7)

parmi les ensembles K fermés dans Ω et u ∈ H1(Ω \K).

La question de l’existence d’un couple solution est loin d’être triviale. Une

preuve d’existence utilise la formulation faible

min
u∈SBV (Ω)

1

2
‖u− g‖2

2 +
λ

2

∫

Ω\Su

|∇u|2 + µHN−1(Su),
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où l’image restaurée ū est recherchée dans la sous-classe SBV ⊂ BV et K̄ = Sū,

l’ensemble singulier de ū. Cette démonstration repose sur une propriété fonda-

mentale de compacité de l’espace SBV (Ω) (nous renvoyons pour plus de détails

à [8]).

Une mise en oeuvre numérique se base sur le résultat de Γ-convergence d’Am-

brosio et Tortorelli [12]. Ainsi, étant donnée une approximation ηε de K, ils

établissent la Γ-convergence [38] de l’énergie de champ de phase

λ

2

∫

Ω
(ηε + v2)|∇u|2 + µ

∫

Ω

(
ε|∇v|2 +

(1 − v)2

4ε

)

vers le terme de régularisation de l’énergie de Mumford et Shah (1.2.7). Les

méthodes de champ de phase sont également redoutables pour approcher le péri-

mètre [123] et simuler le mouvement par courbure moyenne via l’approximation

d’Allen-Cahn [39]. Dans [93, 52], Chambolle et Gobbino proposent une approxi-

mation par différences finies inspirée d’une conjecture de De Giorgi. Enfin, Chan

et Vese [64] envisagent une méthode de type level set pour le problème de seg-

mentation, correspondant au cas où le paramètre λ→ +∞.

L’approche de Mumford et Shah soulève encore de nombreuses questions pal-

pitantes mais difficiles. En dimension N = 2, Mumford et Shah ont notamment

conjecturé que la segmentation minimale K̄ est une union finie d’arcs lisses et

que ceux-ci se croisent toujours par nombre de trois en formant des angles de 2π
3 .

Dans [87], Fornasier, March et Solombrino ont étendu l’étude variationnelle

au cas où l’attache à la donnée tient compte d’une perturbation linéaire A de la

donnée.

1.2.7 Régularisations d’ordre supérieur

La pénalisation des dérivées d’ordre supérieur apparâıt dans la littérature

comme une solution pour éviter le phénomène de staircasing observé avec la

variation totale. Dans [57], la fonctionnelle

min
u1∈BV (Ω)
u2∈BH(Ω)

1

2
‖A(u1 + u2) − g‖2

2 + λ

∫

Ω
|Du1| + µ

∫

Ω
|D(D(u2))| (1.2.8)

permet d’atteindre cet objectif. Remarquons que BH(Ω) est l’espace des fonc-

tions dites à Hessiennes bornées étudié par Demengel dans [76]. Une idée similaire,

développée dans [61], revient à remplacer la dernière intégrale dans (1.2.8) par

la norme L1 du Laplacien. Les articles [26, 40] utilisent une variante de la défini-

tion duale de la variation totale qui fait également intervenir des dérivées d’ordre
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supérieur de u. Dans [28], les auteurs considèrent une modification de l’équation

de Cahn-Hilliard où apparâıt le terme ∆(∆u). Cependant, il n’est pas clair que

le flot considéré dérive d’une énergie.

Pour des raisons différentes, Ambrosio et Masnou considèrent dans [10] une

énergie de Willmore

R(u) =

∫

Ω
|Du|

(
1 +

∣∣∣∣div

(
Du

|Du|

)∣∣∣∣
p)

.

Une telle régularisation permet non seulement de tenir compte du périmètre des

ensembles de niveau mais également de leur courbure moyenne.

Fig. 1.4: A gauche, la zone en noir doit être recouvrée, restauration par mi-
nimisation du périmètre et restauration avec prise en compte de la courbure
respectivement.

D’autres travaux récents intègrent également une énergie de courbure de ce

type (cf. par exemple Boscain et al. [34]). L’intégration d’un terme de courbure

à la fonctionnelle de Mumford-Shah a été envisagée par Esedoglu et Shen dans

[81] et les propriétés variationnelles de cette nouvelle fonctionnelle sont étudiées

dans [23] par Bellettini et March.

1.2.8 Prise en compte de la texture

Les modèles basés sur la pénalisation des dérivées connaissent cependant un

défaut important. En effet, ils sont connus pour dégrader les textures puisque

celles-ci présentent un gradient élevé. D’autre part, des méthodes statistiques

(voir [95]) mettent en évidence le fait que les images ne sont pas des fonctions de

classe BV . Ceci a motivé la recherche de modèles adaptés aux images naturelles.

Pour pallier les faiblesses des modèles précédents, une première méthode

consiste à décomposer l’image en une composante géométrique représentant la

structure des éléments de l’image et une seconde composante contenant les tex-

tures. Ces deux parties peuvent ensuite être traitées de manière indépendante.
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Yves Meyer a initié ce type d’approches dans [120] en remplaçant la norme

L2 dans l’énergie de ROF par une norme ‖ · ‖G. L’espace de Banach G associé

à cette norme contient des signaux présentant de grandes oscillations et en par-

ticulier le bruit et les textures. D’autres auteurs ont poussé plus loin cette idée

en considérant des espaces fonctionnels de plus en plus sophistiqués (Sobolev,

BMO, H−1, Hilbert à noyau). Mentionnons en particulier le travail [17] où les

auteurs emploient l’espace de Besov homogène E = Ḃ∞
−1,∞ pour capturer le bruit

blanc Gaussien. Ils parviennent ainsi à décomposer une image bruitée en trois

composantes cartoon u, texture v et bruit n par minimisation de l’énergie

min
u∈BV (Ω)

‖v‖G≤µ, ‖n‖E≤ν

1

2
‖g − (u+ v + n)‖2

2 + λ

∫

Ω
|Du|.

La décomposition structure-texture trouve notamment une application inté-

ressante dans [27] où les auteurs décomposent l’image pour le problème d’in-

painting. Ainsi, la texture est retrouvée par copier-coller alors que le contenu

géométrique est restauré par un procédé de diffusion. Cette idée est également

exploitée dans [119] pour une donnée présentant des textures dites “localement

parallèles”.

1.2.9 L’ère des méthodes non-locales

Ces dernières années, les méthodes non-locales ont remporté tous les suffrages

en se plaçant en tête des tests comparatifs. L’idée simple mais fondamentale

repose sur un axiome de base : les images présentent des régions similaires qui

peuvent être distantes les unes des autres.

Buades, Coll et Morel [44] exploitent cette idée pour le problème de débrui-

tage en proposant le filtre à moyennes non-locales (NLMeans). Celui-ci consiste

à moyenner entre elles les portions de l’image (patches en anglais) qui sont sem-

blables. L’idée de comparer les niveaux de gris des pixels remonte en fait à [157].

Les articles [91, 90, 135, 15] permettent d’exploiter cette propriété de régula-

rité des images pour des problèmes inverses généraux en proposant de minimiser

une énergie du type

min
u

1

2
‖Au− g‖2

2 + λ

∫

Ω×Ω
‖pu(x) − pu(y)‖ exp

(
−d(pg(x), pg(y))

h

)
dxdy,

où pu(x) désigne un patch de l’image u centré en x. De plus, d(pg(x), pg(y)) =

‖pg(x) − pg(y)‖2 quantifie la proximité entre deux patches de l’image corrompue.

L’usage des méthodes non-locales a largement été adopté par la communauté

de traitement d’images et on connâıt désormais de nombreuses variations autour

de ce thème. Mentionnons notamment le filtre BM3D [70] qui se hisse tout en

haut de l’état de l’art pour le problème de débruitage.
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1.2.10 Les représentations parcimonieuses

L’idée d’utiliser une base d’ondelettes a été envisagée par Grossman et Morlet

dans les années 80 comme une alternative à la base de Fourier. Les ondelettes

ont été démocratisées via l’approche multirésolution de Mallat [113] et sont utili-

sées au quotidien pour la compression des images grâce au standard JPEG2000.

L’approche par ondelettes s’appuie sur le fait que les images (continues) sont

invariantes par changement d’échelle. Les ondelettes trouvent des applications

intéressantes pour l’ensemble des problèmes inverses et en particulier pour le

problème de débruitage. Dans ce dernier cas, il est possible d’obtenir une image

débruitée par approximation non linéaire. En d’autres termes, on ne conserve que

les coefficients d’ondelettes de l’image g qui sont supérieurs à un seuil λ (soft thre-

sholding). Or, une estimation sur la taille des coefficients d’ondelettes caractérise

l’appartenance à un espace de Besov. Ce procédé revient donc à minimiser

min
u∈Ḃ1

1,1

1

2
‖Au− g‖2

2 + λ‖u‖Ḃ1
1,1
,

où Ḃ1
1,1 est l’espace de Besov homogène muni de sa norme ‖ · ‖Ḃ1

1,1
et A = Id.

Cette dernière décennie a vu apparâıtre de nouvelles familles d’ondelettes dites

géométriques (curvelets [47], bandlets [107, 114],...). Celles-ci prennent mieux

en compte la géométrie des discontinuités et permettent d’obtenir une bonne

représentation avec très peu de coefficients, représentation dite parcimonieuse

(sparse en anglais).

Une catégorie de méthodes plus générale est basée sur la construction d’un

dictionnaire D formé d’une famille de vecteurs (qui ne sont pas nécessairement

des ondelettes). Dans ce cas, l’image restaurée ū s’exprime de la manière la plus

simple possible comme combinaison des vecteurs de D. En d’autres termes, on

cherche un vecteur de coefficients x̄ qui contienne un maximum de zéros telle que

ū = Dx̄. Évidemment la solution doit rester proche de la donnée initiale ce qui

revient à chercher les coefficients x̄ comme solution du problème

min
x

1

2
‖ADx− g‖2

2 + λ‖x‖1. (1.2.9)

Remarquons que le dictionnaire engendre l’espace sans forcément constituer une

base et généralise en ce sens l’approche par ondelettes. Le choix de la norme L1

est cruciale puisqu’elle impose dans la pratique une représentation parcimonieuse

[78].

Certaines publications récentes visent à apprendre le meilleur dictionnaire,

soit en utilisant des bases de données d’images similaires [1] (méthodes dites

offline), soit à partir de l’image à restaurer directement (en online). Dans ce

dernier cas, il est possible d’utiliser un dictionnaire adapté aux patches de l’image

[112], ce qui fait le lien avec les méthodes non-locales.
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1.3 Contributions de la thèse

1.3.1 Propriétés fines des minimiseurs de la variation totale

L’étude des propriétés des minimiseurs de la variation totale est au coeur du

Chapitre 2 de cette thèse. Nous nous intéresserons notamment au comportement

des discontinuités et des zones homogènes des minimiseurs de ce type de problème.

Nos résultats ont donné lieu à trois publications [98, 99, 50].

Les discontinuités du minimiseur

Notre travail a consisté, dans un premier temps, à généraliser le résultat d’in-

clusion des discontinuités du minimiseur de ROF [48] pour des énergies générales

du type

E(u) =

∫

Ω
Φ(x,Du)dx+

∫

Ω
Ψ(x, u(x))dx. (1.3.1)

Ici, Φ est une anisotropie dérivant d’une métrique de Finsler, essentiellement lisse

en dehors de Ω × RN \ {0}, positivement 1-homogène et elliptique en la seconde

variable tandis que Ψ est mesurable en la première variable, strictement convexe

et coercive en la seconde.

Dans ce contexte, le résultat de [48] devient :

Théorème 1.3.1. Soient Φ et Ψ comme ci-dessus. Supposons que pour un en-

semble dénombrable D dense dans R, on ait

∂tΨ(·, t) ∈ BV (Ω) ∩ L∞(Ω), ∀t ∈ D.

Alors, si u est le minimiseur de E, son ensemble de discontinuité satisfait

Ju ⊂
⋃

t∈D

J∂tΨ(·,t)

à un ensemble de mesure HN−1 négligeable près.

L’idée de la preuve, dans le cas plus simple de la fonctionnelle de ROF, exploite

le lien avec le problème de minimisation du périmètre (1.2.6). Formellement,

l’ensemble de surniveau Et = {u > t} satisfait l’équation d’Euler-Lagrange

κEt +
1

λ
(t− g) = 0 sur ∂Et, (1.3.2)

où κEt désigne la courbure moyenne du bord ∂Et. Ainsi, si l’on suppose qu’il existe

x ∈ Ju \ Jg, alors on peut trouver deux valeurs t1 < t2 telles que

x ∈ ∂Et1 ∩ ∂Et2 \ Jg. Or Et2 ⊂ Et1 et ces deux ensembles se touchent en x.
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On en déduit que l’ensemble de niveau le plus petit est le plus élevé mais a la

courbure moyenne la plus petite. Ceci contredit le fait que x est un point de

contact des deux niveaux.

La théorie de régularité des surfaces minimales permet d’écrire l’équation

d’Euler-Lagrange (1.3.2) de manière rigoureuse. La démonstration se généralise

pour l’énergie E ci-dessus moyennant des résultats de régularité sur les quasi-

minimiseurs du périmètre anisotrope. De tels résultats existent et sont établis

dans le langage des courants.

Cependant, la régularité C1,α, α < 1/2, fournie par cette théorie n’est pas

suffisante. Il est possible de gagner un peu en utilisant la méthode des translations

de Nirenberg. On peut alors poursuivre, en appliquant un résultat de régularité

pour les EDPs elliptiques, pour obtenir in fine une régularité W 2,p pour le bord

réduit de Et.

Dans le cas du problème de débruitage, le Théorème 1.3.1 stipule essentielle-

ment que la minimisation de la variation totale ne produit pas de nouvel objet

dans l’image. Cependant, cette assertion tombe en défaut si on s’intéresse au

problème à poids

min
u∈BV (Ω)

∫

Ω
w|Du| + 1

2
‖u− g‖2

2 (1.3.3)

où w est lipschitzienne et ∇w ∈ BV (Ω,RN ). Dans ce cas, il est possible d’observer

la création de discontinuités absentes dans l’image g. En fait, on peut raffiner le

résultat du théorème précédent :

Théorème 1.3.2. Soit w : Ω → R un poids lipschitzien tel qu’il existe une

constante Cw > 0 avec C−1
w ≤ w ≤ Cw et tel que ∇w ∈ BV (Ω,RN ). Soit

g ∈ BV (Ω) ∩ L∞(Ω). Si on note J∇w :=
⋃N
i=1 J∂xi

w, alors le minimiseur u de

(1.3.3) satisfait

Ju ⊂ Jg ∪ J∇w (1.3.4)

à un ensemble de mesure HN−1 négligeable près.

De plus, on dispose d’une borne sur la courbure moyenne de l’ensemble de saut

κJu ∈
[
C−1
w (g− − u−), Cw(g+ − u+)

]
HN−1-p.p.

Enfin, si on suppose que w est de classe C1, on obtient à la discontinuité

(u+ − u−) ≤ (g+ − g−) sur Ju HN−1-p.p. (1.3.5)

Ce théorème montre qu’il est possible de forcer la création de discontinuités

en choisissant un poids w adéquat. Quant à (1.3.5), l’inégalité caractérise une
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baisse de contraste au niveau de la discontinuité et ce même pour une donnée qui

oscille dans un voisinage de la discontinuité ! Ce résultat est utile dans [50] pour

étendre les résultats de [48].

Dans le cas à poids, le résultat de régularité sous-jacent se démontre sans né-

cessairement faire appel à la théorie des courants. En effet, comme nous le verrons

plus tard, un quasi-minimiseur du périmètre à poids est un quasi-minimiseur du

périmètre classique. Ainsi, la théorie classique de [147] s’applique.

Création de zones homogènes

Dans cette partie, nous nous intéressons à la création de régions constantes,

inhérente à la minimisation de la variation totale. Nous mettons en évidence la

présence du phénomène de staircasing dans un cadre continu et en dimension

N ≥ 2. Comme nous l’avons expliqué précédemment, les seuls résultats de ce

type sont énoncés soit dans un cadre discret, soit en dimension N = 1.

La contribution principale de cette section est énoncée dans le théorème sui-

vant :

Théorème 1.3.3. (i) Soient g ∈ L2(RN ) ∩ L∞(RN ) et λ > 0. Alors le minimi-

seur uλ de (1.2.4) est borné, atteint ses bornes et

|{uλ = minuλ}|, |{uλ = maxuλ}| > 0.

En particulier, Duλ = 0 sur {uλ = minuλ} ∪ {uλ = max uλ} qui admet un

représentant ouvert.

(ii) Soient g ∈ Lp(Ω) pour un p ∈ (N,+∞], λ > 0 et x0 un extremum local de uλ.

Alors, il existe un voisinage N (x0) tel que

Duλ = 0 sur N (x0).

Pour le premier point, nous proposons une démonstration simple qui repose

uniquement sur la formule de la coaire. Quant au deuxième résultat, il utilise le

théorème de densité pour les quasi-minimiseurs du périmètre.

Problème de débruitage pour une donnée radiale

Eu égard aux théorèmes précédemment établis, on peut désormais s’attacher

à déterminer le comportement du minimiseur de l’énergie de Rudin, Osher et

Fatemi en fonction du paramètre de régularisation λ.

Nous poussons donc notre étude un peu plus loin en démontrant que la solu-

tion du problème de ROF pour une donnée radiale g s’obtient en suivant le flot

de la variation totale à partir de la donnée g. En d’autres termes, on a :
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Théorème 1.3.4. Soient Ω = B(0, R), g ∈ L2(Ω) radiale et u(t) la solution de

−∂tu(t) ∈ ∂TV (u(t)) presque tout t ∈ [0, T ], (1.3.6)

pour la condition initiale u(0) = g. Alors, u(t) est l’unique minimiseur de

min
u∈BV (Ω)

t

∫

Ω
|Du| + 1

2
‖u− g‖2

2. (1.3.7)

En particulier, ce théorème impose une décroissance de l’ensemble de saut et

une croissance de l’ensemble de staircase en fonction du paramètre de régularisa-

tion :

Théorème 1.3.5. Soient Ω = B(0, R) et g ∈ LN (Ω) radiale. Considérons deux

réels 0 ≤ λ < µ et uλ, uµ deux minimiseurs de (1.2.4). Si on note Sλ et Sµ les

ensembles de staircase respectifs, on a

Sλ ⊂ Sµ,

Juµ ⊂Juλ
⊂ Jg.

Une fois le Théorème 1.3.4 établi, l’embôıtement des sauts est une conséquence

de [48] où Caselles, Chambolle et Novaga établissent ce résultat pour le flot.

Il serait intéressant de comprendre si le résultat d’inclusion pour les sauts reste

vrai pour une donnée générale. En effet, la construction de solutions explicites

par Allard [3] montre que le Théorème 1.3.4 n’est plus vrai lorsque la donnée

n’est pas radiale. Le même exemple d’Allard montre qu’on ne peut rien espérer

de tel pour l’ensemble de staircase.

1.3.2 Étude des propriétés d’une variante de la variation totale

Dans le Chapitre 3, nous proposons et étudions une alternative à la variation

totale pour la restauration d’images. Une partie des résultats présentés a été pu-

bliée dans [100, 101].

Le terme de régularisation proposé se définit comme suit :

R(u) = inf

{∫

Ω
|Du+ ψ| / ψ ∈ Mb(Ω,R

N ) et

∫

Ω
∇v · ψ = 0 ∀v ∈ C1(Ω̄)

}
,

où Mb(Ω,R
N ) est l’espace des mesures de Radon bornées à valeurs vectorielles.

Remarquons immédiatement que R(u) ≤
∫
Ω |Du|, donc cette fonctionnelle a bien

un intérêt dans le contexte des fonctions de classe BV .
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Grâce à un argument de dualité convexe, il est possible de prouver que

R(u) = sup

{∫

Ω
∇w ·Du, w ∈ C1(Ω̄) et ‖∇w‖∞ ≤ 1

}
.

Cette réécriture de la définition montre que le calcul de R(u) fait appel aux dé-

rivées secondes de u et permet de classer R dans la catégorie des régularisations

d’ordre supérieur (cf. la section 1.2.8).

La formulation duale est une étape importante pour démontrer le théorème

suivant :

Théorème 1.3.6. Soient Ω ⊂ RN ouvert et u = χE la fonction caractéristique

d’un ensemble de périmètre fini E dans Ω, ou plus généralement u ∈ BV (Ω) avec

une dérivée Du concentrée sur l’ensemble de saut Ju. Alors,

R(u) =

∫

Ω
|Du|.

La preuve repose sur le fait que l’ensemble de discontinuité d’une fonction

de classe BV est rectifiable. Rappeleons qu’un ensemble est rectifiable lorsqu’il

admet des hyperplans tangents en un sens faible.

Le Théorème 1.3.6 légitime l’utilisation de R dans le contexte du traitement

des images puisque, en somme, cette fonctionnelle cöıncide avec la variation totale

dans le cas des images de type “cartoon”.

Cette proximité avec la variation totale se traduit également par l’inégalité

de type Poincaré suivante :

Proposition 1.3.7. Soient Ω ⊂ RN ouvert, u ∈ BV (Ω) et (ρε)ε>0 un noyau

régularisant radial. Alors, pour K ⊂⊂ Ω et ε > 0 petit, on a

‖u ∗ ρε − u‖L1(K) ≤ CεR(u).

Cette proposition est une première étape pour démontrer une inégalité de

Poincaré dans ce contexte.

Dans la dernière partie de ce chapitre, nous revisitons le problème de Rudin,

Osher et Fatemi en adoptant la régularisation proposée. Après avoir démontré

l’existence et l’unicité d’une solution, nous calculons la solution explicite d’une

donnée qui est la caractéristique d’un disque et présentons des tests comparatifs

avec la variation totale.
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1.3.3 Régularisation non-locale pour la complétion de spectre

Le Chapitre 4 (dont les résultats proviennent de [56]) est consacré à l’étude

de divers problèmes inverses où la donnée vient sous la forme de coefficients

de Fourier corrompus . Ce type de problèmes trouve des applications dans des

domaines variés.

Donnons quelques exemples :

(i) Le problème inverse de diffusion d’ondes acoustiques (ou scattering inverse pro-

blem) sert à la détection d’objets enfouis dans un matériau. Il s’agit d’un problème

récurrent en géophysique et en imagerie médicale. Dans le cadre de l’approxima-

tion de Born, nous devons déterminer l’objet représenté par l’ensemble D à partir

de la donnée du champ de diffusion lointain

u∞(x, d) =

∫

RN

χD(y)e−i(x−d)·ydy,

où x et d appartiennent à la sphère unité. Ceci se ramène à un problème général

d’échantillonage du spectre. En effet, dans ce cas, u∞(x, d) peut être interprété

comme un coefficient de Fourier.

(ii) Le problème de tomographie en imagerie médicale : dans ce cas les coefficients

de Fourier sont connus le long de droites qui sont soit parall̀eles, soit qui se croisent

à l’origine. L’IRM (Imagerie par Résonance Magnétique) utilise cette technique.

(iii) En imagerie spatiale et satellitaire, la “synthèse d’ouverture” (“aperture syn-

thesis” en anglais) est un procédé qui permet de regrouper les images issues d’un

ensemble de télescopes pour produire une image qui a la même résolution que

celle produite par un télescope ayant la taille de l’ensemble. L’image fournie par

chaque télescope est une composante de la transformée de Fourier de l’image

finale. Le Very Large Array au Nouveau Mexique regroupe un ensemble de 27

radiotélescopes et permet de simuler un radiotélescope d’un diamètre de 36km.

(iv) Le problème de zoom en traitement des images (utile par exemple pour le

passage de la SD (Standard Definition) à la HD (High Definition)) se ramène à

la construction de hautes fréquences cohérentes avec une donnée basse fréquence.

L’objet de notre étude a été de trouver un critère adéquat pour régulariser

ce type de problèmes. L’objectif étant d’élaborer une énergie non-locale du type

(1.2.9) pour exploiter autant que possible les redondances de la donnée.

Dans ce type d’approches, il est important de comprendre à partir de l’image

dégradée, les régions de l’image qui étaient semblables dans l’image d’origine.

Dans les méthode de type NLMeans (comprenant donc l’énergie (1.2.9)) le critère

adopté est la distance ℓ2. Ainsi deux voisinages pg0(x1), pg0(x2), centrés en les

pixels x1 et x2, étaient proches dans l’image d’origine si la quantité

‖pg(x1) − pg(x2)‖2,
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calculée sur l’image dégradée g, est petite.

L’idée mâıtresse de notre travail consiste à proposer un critère qui quantifie la

proximité de deux régions de l’image dégradée et qui diffère de celui utilisé pour

les NLMeans. Il s’agit de construire une famille de fonctions tests (φα)α adaptée

au processus de corruption telle que

g ∗ φα = g0 ∗ φα, ∀α.

Si les atomes ainsi construits sont suffisamment nombreux et ont un support

réduit, il est possible de supputer que deux voisinages centrés en x1 et x2 étaient

proches dans l’image d’origine si la quantité

∑

α

|g ∗ φα(x1) − g ∗ φα(x2)|2,

calculée à partir de l’image dégradée, est petite. Nous expliquerons en détail

la construction de ces atomes et comparerons notre approche avec la méthode

classique.

1.3.4 Optimisation convexe : aspects algorithmiques

Dans le dernier chapitre de cette thèse, nous nous penchons sur les aspects

algorithmiques inhérents à la minimisation des énergies convexes susmentionnées.

L’élaboration d’algorithmes rapides est un point crucial si l’on veut espérer procé-

der, par exemple, à des traitements en temps réel dans des dispositifs embarqués.

Enfin le développement du calcul parallèle sur GPU impose de nouveaux défis

dans ce domaine. Nous rappelons à l’occasion de ce chapitre quelques avancées

récentes et consacrons une section importante aux approches dites“Primal-Dual”.

Récemment, cette nouvelle famille d’algorithmes a été envisagée en traitement

d’images pour la recherche d’un point-selle (x̂, ŷ) d’un problème général du type

min
x∈X

max
y∈Y

〈Ax, y〉 +G(x) − F ∗(y)

où X et Y sont deux espaces vectoriels de dimension finie, A : X → Y est une

matrice, F ∗ désigne la transformée de Legendre de la fonction convexe sci F et

G en plus d’être sci est uniformément convexe de paramètre γ.

Quitte à introduire une variable dite “duale”, cette structure générique

s’adapte à de nombreux problèmes de minimisation en traitement des images.

On peut notamment penser à la minimisation de la variation totale ou bien sim-

plement de la norme L1, primordiale pour avoir une représentation parcimonieuse.

L’approche näıve qui consiste à effectuer une descente de gradient est rendue dif-
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ficile puisque les énergies considérées ne sont pas différentiables. L’introduction

de la dualité à permis dès la fin des années 90 de contourner ce problème [62, 54].

L’algorithme de type Primal-Dual proposé dans [159, 59, 82] s’inspire d’un

travail ancien de Arrow et Hurwicz et consiste à faire une descente de gradient

en la variable primale x et une montée de gradient en la variable duale y :

Algorithme 1.1 Schéma d’Arrow-Hurwicz

– Initialisation : Choisir x0 ∈ X, y0 ∈ Y , (σn)n, (τn)n.
– Itérations : Pour n ≥ 1, mettre à jour comme suit :

xn+1 = (I + τn∂G)−1(xn − τnA
∗yn),

yn+1 = (I + σn∂F
∗)−1(yn + σnAx

n+1).

Rappelons que (I + ∂H)−1 désigne l’opérateur proximal introduit par Moreau.

Dans le cas où les pas σn et τn sont maintenus constants, nous démontrons que

l’algorithme précédent permet de construire une suite minimisante convergente

et que l’on a une estimation du taux de convergence :

Théorème 1.3.8. Soient τ, σ > 0 tels que σ ≤ γ
‖A‖2 . Alors la suite (xn)n∈N

converge vers x̂ et l’erreur ‖x̂− xn‖2 est sommable.

Chambolle et Pock [59] s’intéressent au cas à pas variables et montrent qu’une

modification simple de cet algorithme offre un résultat de convergence en O
(

1
n2

)
.

Cependant, une observation empirique montre que le choix du paramètre de

convexité γ est crucial dans leur algorithme et donne lieu à des résultats très

contrastés. Cette remarque nous amène à proposer une variante de leur preuve

qui améliore le taux de convergence connu :

Théorème 1.3.9. Étant donnés τ0, σ0 > 0 tels que σ0τ0‖A‖2 ≤ 1 alors la suite

(xn)n∈N converge vers x̂ et

∑

n

n‖x̂− xn‖2 < +∞.

Ceci laisse espérer une convergence en o
(

1
n2

)
observée dans la pratique et qui

dépasse donc la complexité théorique établie dans [21, 131, 132, 59] mais égale-

ment la limite théorique en O
(

1
n2

)
de [130] pour les algorithmes de premier ordre

et qui est valable pour des problèmes convexes généraux.

Dans la dernière partie de ce chapitre, nous proposons un comparatif de la

performance des algorithmes couramment utilisés pour le problème de débruitage

par variation totale.
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2.1 Introduction

Functions of bounded variation equipped with the total variation semi-norm were

introduced for image reconstruction in 1992. Since then, they have had many

successful applications for inverse problems in imaging. Indeed, the penalization

of the total variation has the ability to smooth out the image by creating large

regular zones and to keep the edges of the most important objects in the image.

In this chapter we aim to study these two key properties in the continuous setting

and for general energies.

We assume that a corrupted image g : Ω ⊂ R2 → R went through a degrada-

tion

g = g0 + n

where g0 is the original clean image, n is a Gaussian white noise of standard

deviation σ. Rudin, Osher and Fatemi (ROF) proposed in 1992 to minimize the

total variation

u 7→ TV (u) =

∫

Ω
|Du|

amongst functions of bounded variation under the constraint ‖u − g‖2
2 ≤ σ2|Ω|2

to solve the inverse problem and thus get a restored image u. It was proven in

[57] that one can solve in an equivalent way the unconstrained problem

min
u∈BV (Ω)

λ

∫

Ω
|Du| + 1

2
‖u− g‖2

2

for an adequate Lagrange multiplier λ. In the literature the minimization of

ROF’s energy is referred to as the denoising problem.

Another possibility is to consider the total variation flow for restoring g. A

denoised image is given by u(t) that solves

{
−∂tu(t) ∈ ∂TV (u(t)) a.e. t ∈ [0, T ],

u(0) = g.

which has a unique solution according to [13]. As we shall see it is not true in

general that these approaches coincide.

It has been long observed that using the total variation has the advantage of

recovering the discontinuities quite well. We will devote a part of our study to

the behavior of the minimizer of the denoising problem at these discontinuities.

Recently Chambolle, Caselles and Novaga proved in [48] that the discontinuities

of the denoised image are contained in those of the datum g. In other words

minimizing ROF’s energy does not create new discontinuities. The idea of their
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proof is to use the coarea formula to look at the level sets of the minimizer

locally and to detect the creation of jumps when two of these level sets touch.

The argument was further refined by the same authors in [49] to prove local

Hölder continuity of the minimizer of the denoising problem when the datum is

itself Hölder continuous. All these results are extended to the case of the total

variation flow in both papers. See also [50] where the initial datum g is not

assumed to be bounded.

In the first part of this work, our aim is to generalize their results to a problem

of the form

min
u∈BV (Ω)

∫

Ω
Φ(x,Du) +

∫

Ω
Ψ(x, u(x))dx.

Here Φ is a smooth elliptic anisotropy, Ψ is essentially strictly convex, coercive

in the second variable and integrable in the first one. To adapt the argument of

[48] we need to recall some basic results on the regularity of solutions of elliptic

PDEs and also some standard facts on the regularity of minimal surfaces [144].

Moreover, we refine the obtained result in the weighted case

min
u∈BV (Ω)

∫

Ω
w(x)|Du| + 1

2
‖u− g‖2

2

and prove that whenever w is merely Lipschitz, one can observe the creation

of discontinuities, that is to say, the minimizer has discontinuities that are not

contained in those of the datum g. We also prove that the jump (think of the

contrast for images) is decreased at the discontinuity. This is quite counterintu-

itive is one consider a datum that is highly oscillating in the nerighborhood of the

discontinuity. Our result is a key step in [50], allowing that the authors to extend

the results of [48]. In the weighted case, we also prove directly the regularity

of the level lines. This way one can avoid using the difficult result of [144] that

makes a wide usage of the theory of currents.

In the second part of this chapter, we shall focus on another very important

property of the total variation: it smoothes the highly oscillating regions by

creating large constant zones which is known in the literature as the staircasing

effect. This phenomenon is sometimes not desirable in imaging applications since

it yields blocky and non-natural structures. It was already studied in [140] for

the one-dimensional case. Actually, the author proves that whenever the data

g 6∈ BV (a, b), the minimizer u′λ vanishes almost everywhere. In [133], Nikolova

proves that the staircasing effect is related to the non-differentiability of the total

variation term. More precisely, large homogeneous zones are recovered from noisy

data and remain unchanged for small perturbations. In other words, the creation

of such zones is quite probable. On the contrary, absence of staircasing with

the differentiable approximation TVε =
√

|Du|2 + ε is also proven. The latter
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approaches were carried out only for finite dimensional approximations of the

total variation. In [109], Louchet proposed an alternative to the minimization of

the total variation by considering the TV-LSE filter. She proved in the discrete

setting that TV-LSE avoids the staircasing effect (in the sense that a region made

of 2 pixels or more where the restored image is constant almost never occurs).

As far as we know, there is no result on the subject in the higher dimensional

and continuous setting for the classical total variation functional. We shall show

that staircasing always occurs (even without addition of noise) at global extrema

of the datum and at all extrema of the minimizer.

In the last section, we investigate further these qualitative properties. An

interesting question is to understand how the staircase zones and the discontinu-

ities evolve with the regularization parameter λ. The idea is to use the results

that are already established for the flow. Unfortunately, in higher dimension the

connection between the flow and ROF’s energy fails (we give a counterexam-

ple). Though, we are going to prove that this connection actually holds for radial

functions. This way, one can prove that the discontinuities form a decreasing

sequence, whereas the staircase zones increase with the regularization parameter

(which is not true in general).

Let us remark that all the results are established in dimension N ≥ 2 since

the situation is quite well understood in the one-dimensional case and was widely

studied in the literature (see the recent paper [33] for instance). Indeed, in

dimension one, ROF’s denoising problem reads as follows

min
u∈BV (R)

∫
λ|u′(x)| + 1

2
(u− g)2(x)dx (2.1.1)

for g ∈ L2(R) and some positive real λ. Let us denote uλ the minimizer of this

problem.

Writing down the Euler-Lagrange (see equation 2.2.2) one immediately sees

that either uλ is constant or zλ = sgn(u′λ) and as a consequence uλ = g. This is

an almost explicit formulation of the solution that tells us that

- the discontinuities of uλ are contained in those of g,

- flat zones are created at maxima and minima of g.

This can be seen in the following simulation:

Figure 2.1: Minimizer uλ (in red) of a 1D data g (in blue).
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The other important result in dimension one is the link with the flow of the

total variation. It is known that problem (2.1.1) with λ = t is minimized by u(t),

the unique solution of the flow. In the recent article [43], the authors used this

relation to prove that for a signal that went through an addition of noise (that

is the trajectory of a Wiener process strictly speaking), staircasing occurs almost

everywhere. This observation seems to be more general as can be seen in the

following test:

Figure 2.2: Minimizer uλ (in red) of a noisy data g (in blue) is constant almost
everywhere.

2.2 Mathematical preliminary

Henceforth Ω will denote an open subset of RN with Lipschitz continuous bound-

ary. The material of this section can be found in the classical textbooks [8, 92, 160]

but also in the recent survey [55].

2.2.1 Functions of bounded variation

Definition 2.2.1. A function u ∈ L1(Ω) is of bounded variation in Ω (denoted

u ∈ BV (Ω)) if its distributional derivative Du is a vector-valued Radon measure

that has finite total variation i.e. |Du|(Ω) < ∞. By the Riesz representation

theorem, this is equivalent to say that

|Du|(Ω) = sup

{∫

Ω
udivϕ / ϕ ∈ C∞

c (Ω,RN ),∀x ∈ Ω |ϕ(x)| ≤ 1

}
<∞.

In the sequel, the quantity |Du|(Ω) also denoted
∫
Ω |Du| or simply TV (u) will

be called the total variation of u. It is readily checked that ‖ · ‖1 + TV defines a

norm on BV (Ω) that makes it a Banach space.

A first result that is a straightforward consequence of the dual definition we

just gave is a key step to apply the direct method in the calculus of variations:

Proposition 2.2.2 (Sequential lower semicontinuity). Let (un)n∈N
be any

sequence in BV (Ω) such that un → u in L1(Ω) then

∫

Ω
|Du| ≤ lim inf

n→∞

∫

Ω
|Dun|.
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One also has

Proposition 2.2.3 (Approximation by smooth functions). If u ∈ BV (Ω) then

there exists a sequence (un)n∈N
of functions in C∞(Ω) such that

un → u in L1(Ω)
∫

Ω
|∇un| →

∫

Ω
|Du|.

For the direct method to apply it is usually of importance to have a compact-

ness result:

Theorem 2.2.4 (Rellich’s compactness in BV ). Given a bounded Ω ⊂ RN with

Lipschitz boundary and any sequence (un)n∈N
such that

(
‖un‖L1(Ω) +

∫
Ω |Dun|

)

is bounded, there exists a subsequence (un(k))k∈N
that converges in L1 to some

u ∈ BV (Ω) as k → ∞.

Definition 2.2.5. Let E ⊂ RN be a Borelian set. It is called a set of finite

perimeter or also Cacciopoli set if u = χE is a function of bounded variation.

We will call perimeter of E in Ω, and denote P (E,Ω) or simply P (E), its total

variation.

The following key result provides a connection between the total variation of

a function and the perimeter of its level sets.

Theorem 2.2.6 (Coarea formula). If u ∈ BV (Ω), the set Et = {u > t} has

finite perimeter for a.e. t ∈ R and

|Du|(B) =

∫ ∞

−∞
|Dχ{u>t}|(B)dt

for any Borel set B ⊂ Ω.

Functions of bounded variation have some nice structural properties that we

are going to recall here:

Definition 2.2.7. We say that u ∈ L1
loc(Ω) has an approximate limit at x ∈ Ω

if there exists z ∈ R such that

lim
r→0

1

|B(x, r)|

∫

B(x,r)
|u(y) − z|dy = 0.

The set of points where this does not hold is called the approximate discontinuity

set and denoted Su.

We say that x ∈ Ω is an approximate jump point of u if there exist u+(x) 6=
u−(x) ∈ R, ν(x) ∈ RN a unitary vector such that

lim
r→0

1

|B±
r (x, ν(x))|

∫

B±
r (x,ν(x))

|u(y) − u±(x)| = 0
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where B±
r (x, ν(x)) = {y ∈ B(x, r);±|〈ν(x), y − x〉| > 0}. We shall denote by Ju

the set of jump points.

If u = χE is the characteristic function of a set E of finite perimeter in Ω, Ju
is then denoted ∂∗E and called the reduced boundary of E.

Then we have the following structure theorem that will be further detailed in

Chapter 3 (see Section 3.5).

Theorem 2.2.8. If u ∈ BV (Ω) then

HN−1(Su \ Ju) = 0

and one has the following decomposition

Du = ∇udx+ (u+ − u−)νHN−1
|Ju

+Dcu

for some measure Dcu referred to as the Cantor part of Du.

Finally let us recall the following

Theorem 2.2.9 (Sobolev inequalities). Let u ∈ BV (Ω) and let us denote 〈u〉 =
1
|Ω|

∫
Ω u. For a bounded Lipschitz domain Ω, the following Poincaré inequality

holds

‖u− 〈u〉‖
L

N
N−1 (Ω)

≤ C(N,Ω)

∫

Ω
|Du|.

If Ω = RN , one has the Sobolev inequality

‖u‖
L

N
N−1 (RN )

≤ C(N)

∫

Ω
|Du|.

In particular, if u = χE, one gets the isoperimetric inequality

|E|N−1
N ≤ C(N)P (E,Ω).

2.2.2 BV functions in image processing

The classical model of a functional where total variation plays a key role is the

so-called Rudin-Osher-Fatemi energy:

Eλ(u) = λ

∫

Ω
|Du| + 1

2
‖u− g‖2

2 (ROF)

In the sequel we shall be interested in minimizing this energy in BV (Ω) for some

positive real λ. By Proposition 2.2.2, there is a unique minimizer in BV (Ω),

denoted uλ in the sequel. The parameter λ really plays the role of a tuning

parameter as one can see it in the following



32
CHAPTER 2. FINE PROPERTIES OF THE TOTAL VARIATION MINIMIZATION

PROBLEM

Proposition 2.2.10. Let g ∈ L2(Ω), λ some positive real and uλ be the corre-

sponding minimizer of (ROF ) then whenever λ→ 0

uλ → g in L2(Ω).

In other words, the less we regularize the closer the minimizer gets to the data

in the L2 sense. This is quite what we expect. The proof is really simple in case

g ∈ BV (Ω): since g is itself a candidate for the minimization

λ

∫

Ω
|Duλ| +

1

2
‖uλ − g‖2

2 ≤ λ

∫

Ω
|Dg| (2.2.1)

which yields the result with λ→ 0. In case g ∈ L2(Ω), this proposition is actually

a basic property of the proximal mapping (see [41, Proposition 2.6]).

The energy Eλ is not smooth though convex so it is still possible to get the

Euler-Lagrange equation as follows:

Proposition 2.2.11. Function uλ minimizes Eλ in BV (Ω) if and only if there

exists zλ ∈ L∞(Ω,RN ) such that






−λdiv zλ + uλ = g in Ω,

|zλ| ≤ 1 in Ω,

zλ ·Duλ = |Duλ|,
zλ · ν = 0 on ∂Ω,

(2.2.2)

with ν denoting the inner normal to Ω.

In the sequel, we shall only consider Neumann boundary conditions but we

could of course take into account Dirichlet or more complicated conditions.

Remark 2.2.12. zλ ·Duλ is the pairing of a bounded function with a bounded

measure and should be understood in the sense of Anzelotti [14].

By the coarea formula, the superlevel sets {uλ > t} are sets of finite perimeter

for almost every t that satisfy the following minimal surface problem:

Theorem 2.2.13. Let uλ be the minimizer of (ROF). Then for any t ∈ R,

{uλ > t} (resp. {uλ ≥ t}) is the minimal (resp. maximal) solution of the

minimal surface problem

min
E
λP (E,Ω) +

∫

E
(t− g(x)) dx (2.2.3)

over all sets of finite perimeter in Ω. Moreover {uλ > t} being defined up to

negligible sets, there exists an open representative.
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The results of this section form the foundations for the study of similar prop-

erties for more general energies. This will be the object of the next part.

2.3 Anisotropic total variation with a generic data fidelity

2.3.1 The anisotropic total variation: the general case of a Finsler

metric

In calculus of variations, one is often interested in minimizing an integral func-

tional of the form

E(u) =

∫

Ω
F (x, u,∇u)

among all C1(Ω) or W 1,1(Ω) functions u and under some additional constraints.

Though, the minimization problem is not well-posed and it is natural to seek for

an extension of this functional in the completion of W 1,1(Ω) which is the space

BV (Ω). Moreover, to apply the classical direct method of the calculus of varia-

tions we need the extension functional to be lower semicontinuous with respect to

the L1 convergence. The natural choice for the extension is therefore the so-called

relaxed functional Ē(u) which corresponds to the lower semicontinuous envelope.

In the sequel, we shall be interested in minimizing energies of the form

E(u) =

∫

Ω
Φ(x,∇u(x))dx +

∫

Ω
Ψ(x, u(x))dx

for some Φ and Ψ that we will specify later. For the moment, we are going to

focus on the first term namely

JΦ(u) =

∫

Ω
Φ(x,∇u(x))dx

and will recall its lower semicontinuous envelope J̄Φ.

From now on, the integrand Φ(x, p) : Ω × RN → R will be called a Finsler

integrand if

(H1) Φ(x, ·) is convex for any x ∈ Ω,

(H2) Φ(x, ·) is of linear growth uniformly x ∈ Ω i.e.

C−1
Φ |p| ≤ Φ(x, p) ≤ CΦ|p|, ∀x ∈ Ω, p ∈ RN

for some positive real constant CΦ,
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(H3) Φ is positively 1-homogeneous in the variable p i.e.

Φ(·, λp) = λΦ(·, p), ∀λ > 0, p ∈ RN ,

(H4) Φ is continuous.

The integrand Φ is a reversible Finsler integrand if it satisfies in addition

(H5) Φ(x,−p) = Φ(x, p), ∀x ∈ Ω, p ∈ RN .

If one assumes that

(H6) Φ(·, p) and DpΦ(·, p) are Lipschitz continuous on Ω uniformly p ∈ SN−1 i.e.

sup
p∈SN−1

|Φ(x, p) − Φ(x̃, p)| ≤ C|x− x̃| ∀x, x̃ ∈ Ω,

sup
p∈SN−1

|DpΦ(x, p) −DpΦ(x̃, p)| ≤ C|x− x̃| ∀x, x̃ ∈ Ω,

(H7) Φ(x, ·) has locally β-Hölder second order partial derivatives (with β ∈ (0, 1])

on RN \ {0} uniformly x ∈ Ω and

|D2
pΦ(x, p)| ≤ C ∀x ∈ Ω, p ∈ SN−1,

(H8) Φ is elliptic in the sense that

〈D2
pΦ(x, p)ξ, ξ〉 ≥

∣∣∣ξ −
(
ξ · p

|p|

)
p
|p|

∣∣∣
2

|p| , ∀x ∈ Ω, ξ ∈ RN , p ∈ RN \ {0},

or equivalently (see [144])

〈∇pΦ(x, p) −∇pΦ(x, p̃), p − p̃〉 ≥ |p− p̃|2, ∀x ∈ Ω, p, p̃ ∈ SN−1,

we shall say that Φ is a strongly convex Finsler integrand.

Remarks 2.3.1.(i) Assumptions (H1) − (H3) imply that Φ(x, ·) is Lipschitz

continuous uniformly x ∈ Ω i.e.

sup
x∈Ω

|Φ(x, p) − Φ(x, p̃)| ≤ C|p− p̃|.

(ii) For later reference we also note that

p · ∇pΦ(·, p) = Φ(·, p)
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by assumption (H3). If β = 1, then by (H7) it follows that ∇pΦ is Lipschitz

continuous on RN × SN−1.

(iii) Any Riemannian metric or more generally Finsler metric gives rise to a Finsler

integrand. We refer to [6, 22] for further details.

(iv) We get the total variation by simply setting Φ(x, p) = |p| which is also called

in the literature the area integrand.

As we just said, to be of some interest the extension of functional JΦ has to be

lower semicontinuous on BV (Ω). This is ensured by the following representation

result:

Proposition 2.3.2. Let Φ : Ω × RN → R be a Finsler integrand. For any

u ∈ BV (Ω) we have

J̄Φ(u) =

∫

Ω
Φ(x,∇u) +

∫

Ω
Φ

(
x,

Dsu

|Dsu|

)
|Dsu|

where Dsu
|Dsu| is the Radon-Nikodym derivative of Dsu with respect to |Dsu|.

One of the first versions of this theorem was proven by Demengel and Temam

in [76] in case JΦ(µ) =
∫

Φ(µ). The result was progressively refined in articles

such as [35] and [18] which contains the general case in which we are interested.

We would like to note that the hypotheses we made can be weakened a little.

It is indeed possible to assume that Φ is only a quasi-convex function in p, not

necessarily continuous and we need a little less than the 1-homogeneity but for

the sake of clarity we refer to [8] for the exact statement of the general theorem.

In [6, Theorem 5.1], it is proven that the latter definition has a dual counter-

part:

Proposition 2.3.3. Let Φ be a Finsler integrand and u ∈ BV (Ω) then

J̄Φ(u) = sup

{∫

Ω
udivϕ / ϕ ∈ C1

c (Ω,R
N ), ∀x ∈ Ω Φ0(x, ϕ(x)) ≤ 1

}

where Φ0 denotes the polar of Φ defined by

Φ0(x, ϕ(x)) = max{p · ϕ(x) / p ∈ RN ,Φ(x, p) ≤ 1}.

Henceforth we will not make any distinction between JΦ and its L1-lower

semicontinuous envelope J̄Φ.
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Definition 2.3.4. Let Φ be a Finsler integrand. If u ∈ BV (Ω) then the quantity

JΦ(u,Ω) (or simply JΦ(u) if Ω = RN) is the anisotropic total variation of u in Ω.

If E is a set of finite perimeter then the anisotropic perimeter of E in Ω, denoted

PΦ(E,Ω) (or PΦ(E) if Ω = RN ) is the anisotropic total variation of E namely

PΦ(E,Ω) =

∫

∂∗E∩Ω
Φ(x, νE)dHN−1(x).

Remark 2.3.5. If Φ is a reversible Finsler integrand then for any set E of finite

perimeter in Ω one has

PΦ(E,Ω) = PΦ(Ω \ E,Ω).

Soon, we will need two generalizations of the coarea formula for the anisotropic

total variation. Let us state them here:

Proposition 2.3.6. Let u ∈ BV (Ω) and w : Ω → R be a non-negative Borelian

weight. Then one has

∫

Ω
w|Du| =

∫ ∞

−∞

(∫

Ω
w|Dχ{u>t}|

)
dt =

∫ ∞

−∞
Pw({u > t},Ω)dt.

Proof. By [84, Theorem 7], there exists a sequence of Borelian sets (Ak)k∈N
such

that

w =
∞∑

k=1

1

k
χAk

.

Therefore by Fubini and then by Theorem 2.2.6,

∫

Ω
w|Du| =

∞∑

k=1

1

k

∫

Ak

|Du| =
∞∑

k=1

1

k

∫ ∞

−∞
|Dχ{u>t}|(Ak)dt

=

∫ ∞

−∞

(
∞∑

k=1

1

k

∫

Ak

|Dχ{u>t}|
)
dt =

∫ ∞

−∞

(∫

Ω
w|Dχ{u>t}|

)
dt.

The following proposition is stated in [6, Remark 4.4] without any proof:

Proposition 2.3.7. Let u ∈ BV (Ω) and Φ : Ω×RN → R be a Finsler integrand.

Then then one has
∫

Ω
Φ(x,Du) =

∫ ∞

−∞
PΦ({u > t},Ω)dt.

Proof. Applying Proposition 2.2.3, one can pick an approximating sequence (un)n∈N

of C∞ functions such that un → u in L1(Ω) and
∫
Ω |∇un| →

∫
Ω |Du|.
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If we set

w(x) = Φ

(
x,

∇un(x)
|∇un(x)|

)

whenever ∇un(x) 6= 0 then by Proposition 2.3.6 the result holds for un, namely

∫

Ω
Φ

(
x,

∇un(x)
|∇un(x)|

)
|∇un(x)|dx =

∫ ∞

−∞

(∫

Ω
Φ

(
· , ∇un

|∇un|

)
|Dχ{un>t}|

)
dt

=

∫ ∞

−∞
PΦ({un > t},Ω)dt.

Finally by Reshetnyak Theorem 2.39 in [8], we can send n→ +∞ and we get

∫

Ω
Φ

(
x,

Du

|Du|

)
d|Du| ≥ lim inf

n→∞

∫ ∞

−∞
PΦ({un > t},Ω)dt

≥
∫ ∞

−∞
PΦ({u > t},Ω)dt

where in the second line we used the lower semicontinuity of PΦ in conjunction

with Fatou’s lemma.

To prove the converse inequality, let us pick a candidate ϕ ∈ C1
c (Ω,R

N ) such

that for any x ∈ Ω, Φ0(x, ϕ(x)) ≤ 1. Then, by the layer cake formula and by

application of Fubini and Proposition 2.3.3,

∫

Ω
udivϕ =

∫ ∞

−∞

∫

Ω
χ{u>t}(x) divϕ(x) dxdt

≤
∫ ∞

−∞
PΦ ({u > t},Ω) dt,

which proves the result taking the supremum of the left hand side over all admis-

sible ϕ.

2.3.2 The minimization problem for functions

In the sequel, we are going to consider the following energy

E(u) =

∫

Ω
Φ(x,Du) +

∫

Ω
Ψ(x, u(x))dx (2.3.1)

over the space BV (Ω). Henceforth, we assume that Φ is a Finsler integrand and

that

(H9) Ψ(x, t) : Ω × R → R is measurable in x, strictly convex and coercive in t,
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that is to say

lim
t→±∞

Ψ(x, t) = +∞,

and such that

Ψ(·, 0) ∈ L1(Ω), (2.3.2)

∂−t Ψ(·, t) ∈ L1(Ω) ∀t ∈ R. (2.3.3)

Remark 2.3.8.(i) We recall that function Ψ(x, ·) being convex for any x ∈ RN it

is therefore locally Lipschitz continuous on R (see [80] for instance). We therefore

denote

∂tΨ(x, t) := ∂−t Ψ(x, t)

the left derivative that exists at any t ∈ R.

(ii) Clearly the energy (ROF) is a special case of (2.3.1) since it amounts to take

Φ(x, p) = |p| and Ψ(x, u(x)) = 1
2 (u(x) − g(x))2 for some g ∈ L2(Ω) and bounded

Ω. Observe that one can also consider a general data fidelity term of the form

Ψ(x, u(x)) = 1
q (u(x) − g(x))q for some g ∈ Lq(Ω) with q > 1.

(iii) Let us note that for t > s and x ∈ Ω,

∂tΨ(x, s)(s − t) ≤ Ψ(x, s) − Ψ(x, t) ≤ ∂Ψt(x, t)(t − s) (2.3.4)

which, in conjunction with (2.3.2), implies that

Ψ(·, t) ∈ L1(Ω) ∀t ∈ R.

For further reference, let us also remark that if tn → t ∈ R then for n large,

|Ψ(x, tn) − Ψ(x, t)| ≤ sup
k≥n

|tk − t|max(|∂tΨ(x, t− 1)|, |∂tΨ(x, t+ 1)|)

hence in particular Ψ(·, tn) → Ψ(·, t) in L1(Ω).

(iv) We could have replaced assumption (2.3.3) in (H9) by

Ψ(·, t) ≥ ψ ∈ L1(Ω) ∀t ∈ R,

if one considered local minimizers of the ROF problem on an unbounded domain

but this would lead us too far. See the beginning of [49, Section 5] for further

details.
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Applying the direct method, we get readily

Proposition 2.3.9. Let Φ be a Finsler integrand and Ψ measurable in x and

strictly convex in the second variable, then E has a unique minimizer u in the

space BV (Ω).

Proof. Consider a minimizing sequence (un)n∈N
such that E(un) → infΩ E . As

E(un) ≤ E(0) < +∞, assumption (H2) implies that (un)n∈N
is bounded in

BV (Ω). Then, Rellich’s theorem asserts that up to extraction of a subsequence

(still denoted (un)n∈N
) it converges in L1(Ω) and also pointwise to some u ∈

BV (Ω). By lower-semicontinuity of JΦ and Fatou, we get

E(u) ≤ lim inf
n→∞

E(un) = inf
Ω

E(u).

This proves the existence of a minimizer namely u. It is unique by strict convexity

of E .

Remark 2.3.10. It is also possible to reason in a slightly different way to avoid

using Rellich’s theorem in case Ψ(x, u(x)) = 1
q (u(x) − g(x))q . This way we also

avoid the regularity assumption on ∂Ω. See the proof we gave for Proposition

3.6.1 or also [55, 58].

2.3.3 The minimization problem for level sets

We assume, for the time being, that Φ is a Finsler integrand and Ψ is as above.

Let us introduce the following minimal surface problems parametrized by t ∈ R

min
E

PΦ(E,Ω) +

∫

E
∂tΨ(x, t)dx. (2.3.5)

The minimization is carried out on all sets of finite perimeter. Simply reasoning

as in the previous proof we get the existence of minimizers (and again, in some

cases, it is possible to avoid using Rellich’s theorem as was done in [58]). Ob-

viously, we may not have a unique solution. Given t ∈ R, we shall denote Et a

solution of (2.3.5).

The following comparison result similar to [53, Lemma 2.1] and [5, Lemma 4]

will be needed:

Lemma 2.3.11. Let f1, f2 ∈ L1(Ω) and E, F be respectively minimizers of

min
E

PΦ(E,Ω) −
∫

E
f1(x)dx and min

F
PΦ(F,Ω) −

∫

F
f2(x)dx

Then, if f1 < f2 a.e., |E \ F | = 0 (i.e. E ⊂ F up to a negligible set).
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Proof. First, observe that by the triangle inequality

JΦ(χE + χF ,Ω) ≤ PΦ(E,Ω) + PΦ(F,Ω).

Whereas, by the coarea formula we also know that

JΦ(χE + χF ,Ω) =

∫ 2

0
PΦ({χE + χF > t},Ω)dt = PΦ(E ∪ F,Ω) + PΦ(E ∩ F,Ω).

This proves that

PΦ(E ∩ F,Ω) + PΦ(E ∪ F,Ω) ≤ PΦ(E,Ω) + PΦ(F,Ω). (2.3.6)

Now, by minimality of E and F , we get

PΦ(E,Ω) −
∫

E
f1(x)dx ≤ PΦ(E ∩ F,Ω) −

∫

E∩F
f1(x)dx,

PΦ(F,Ω) −
∫

F
f2(x)dx ≤ PΦ(E ∪ F,Ω) −

∫

E∪F
f2(x)dx.

Adding both inequalities and using (2.3.6), we have

∫

E\F
(f1(x) − f2(x)) dx ≥ 0

hence the result since f1 < f2 a.e.

In particular, we observe that

Lemma 2.3.12. If t < t′ and Et, Et′ are the corresponding minimizers of the

minimal surface problem (2.3.5) then Et′ ⊂ Et up to a negligible set.

Proof. Note that the strict convexity implies ∂tΨ(·, t) < ∂tΨ(·, t′) thus the state-

ment follows from the previous lemma.

Knowing this we can, as in [55], introduce

E−
t =

⋃

t′>t

Et′ , E
+
t =

⋂

t′<t

Et′ ,

respectively the smallest solution and largest solution of

min
E
PΦ(E,Ω) +

∫

E
∂tΨ(x, t)dx.

One has to be careful because the sets Et′ are defined up to negligible sets. As a

consequence, the non-countable union and intersection may not be well-defined.
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To remedy this problem one could have taken as a representative for Et′ the set

of points of density 1 which is also an open set. This can be shown thanks to the

density lemma for the anisotropic perimeter (see [45, 60]). We will come back to

this later (see Lemma 2.4.13 and the remark that follows).

If we set

v(x) := sup{t ∈ R / x ∈ Et}.

It is easily seen that {v > t} = E−
t and that {v ≥ t} = E+

t .

Proceeding as for the total variation (see [53]), we get

Lemma 2.3.13. Let Φ be a reversible Finsler integrand and Ψ as in (H9). Then

v is the minimizer of E.

Proof. Step 1. We claim that Ψ(·, v) ∈ L1(Ω). Let us prove it. Since E−
t solves

(2.3.5), we have in particular

PΦ(E−
t ,Ω) +

∫

E−
t

∂tΨ(x, t)dx ≤ 0. (2.3.7)

Integrating with respect to t it follows

∫ M

0

∫

E−
t

∂tΨ(x, t)dxdt ≤ 0

where by Fubini’s theorem the integral to the left can be rewritten

∫ M

0

∫

E−
t

∂tΨ(x, t)dxdt =

∫

E−
0

∫ min(v(x),M)

0
∂tΨ(x, t)dtdx

=

∫

E−
0

(
Ψ(x,min(v(x),M)) − Ψ(x, 0)

)
dx

which implies

∫

{v>0}
Ψ(x,min(v(x),M))dx ≤

∫

Ω
Ψ(x, 0) < +∞.

Now, by Fatou’s lemma, that can by applied by Remark 2.3.8,

∫

{v>0}
Ψ(x, v(x))dx < +∞.

Observe that by Remark 2.3.5 (this is where the reversibility of Φ comes into
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play), {−v > t} = {v < −t} = Ω \ E+
−t solves

min
E

PΦ(E,Ω) −
∫

E
∂tΨ(x,−t)dx.

Thus replacing Ψ(·, t) by Ψ(·,−t) in (2.3.5), function v is replaced by −v. This

proves

∫

{v<0}
Ψ(x, v(x))dx < +∞

hence our claim.

Step 2. Let v′ ∈ BV (Ω) such that Ψ(·, v′) ∈ L1(Ω) a candidate for the mini-

mization and denote E′
t = {v′ > t} for some t ∈ R. By minimality of E−

t ,

PΦ(E−
t ,Ω) +

∫

E−
t

∂tΨ(x, t)dx ≤ PΦ(E′
t,Ω) +

∫

E′
t

∂tΨ(x, t)dx.

Integrating with respect to t

∫ M

−M

(
PΦ(E−

t ,Ω) +

∫

E−
t

∂tΨ(x, t)dx

)
dt ≤

∫ M

−M

(
PΦ(E′

t,Ω) +

∫

E′
t

∂tΨ(x, t)dx

)
dt.

(2.3.8)

Note that by Fubini’s theorem

∫ M

−M

∫

E−
t

∂tΨ(x, t)dxdt =

∫

Ω

∫ M

−M
χ{v>t}∂tΨ(x, t)dtdx

=

∫

Ω

∫ min(v(x),M)

min(v(x),−M)
∂tΨ(x, t)dtdx

=

∫

Ω
Ψ(x,min(v(x),M)) − Ψ(x,min(v(x),−M))dx

=

∫

Ω
Ψ(x, v(x))dx −

∫

Ω
Ψ(x,−M)dx+ R(v,M)

where we set

R(v,M) =

∫

Ω
Ψ(x,min(v(x),M)) − Ψ(x, v(x))dx

+

∫

Ω
Ψ(x,−M) − Ψ(x,min(v(x),−M))dx.
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For the function v′ one obtains a similar identity, namely

∫ M

−M

∫

E′
t

∂tΨ(x, t)dxdt =

∫

Ω
Ψ(x, v′(x))dx −

∫

Ω
Ψ(x,−M)dx+ R(v′,M).

Though, for any function v such that Ψ(·, v) ∈ L1

lim
M→+∞

R(v,M) = 0.

Indeed, observe that on {v > M}

|Ψ(·,min(v,M)) − Ψ(·, v)| = Ψ(·, v) − Ψ(·,M) ≤ Ψ(·, v),

and on {v < −M}

|Ψ(·,−M) − Ψ(·,min(v,−M))| = Ψ(·, v) − Ψ(·,−M) ≤ Ψ(·, v),

which proves the claim by application of the dominated convergence theorem.

In the end, making M → +∞ in (2.3.8) and using the anisotropic coarea

formula we get

∫

Ω
Φ(x,Dv) +

∫

Ω
Ψ(x, v(x))dx ≤

∫

Ω
Φ(x,Dv′) +

∫

Ω
Ψ(x, v′(x))dx

which means that v minimizes E that is v = u since the minimizer is unique.

As a consequence, one actually proved

Proposition 2.3.14. Let Φ be a reversible Finsler integrand, Ψ satisfy (H9) and

u be the minimizer of E. Then the superlevel Et := {u > t}, t ∈ R, solves the

minimal surface problem

min
E

PΦ(E,Ω) +

∫

E
∂tΨ(x, t)dx

over all sets of finite perimeter in Ω.

Remark 2.3.15. The case Ψ(x, t) = F (t− g(x)) with F of class C1 and merely

convex is discussed in [150]. The proof is based on an approximation argument.

We expect the argument to work for a general integrand Ψ(x, t) convex in t.

Though, for our future analysis, such a refinement is not necessary.
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2.4 The discontinuity set

In this section, we are interested in proving qualitative results on the behavior of

the jump set of the minimizer of (2.3.1). For this purpose, we first need to deal

with the regularity of the level sets of the minimizer.

2.4.1 Regularity theory for elliptic PDEs

Let us recall a classical result that is taken from Gilbarg and Trudinger’s book

[89] (see in particular Theorem 8.9 and Theorem 9.15). First, let us consider an

operator in non divergence form

L =
∑

i,j

ai,j∂xixj +
∑

i

bi∂xi + c,

that satisfies the ellipticity condition

∑

i,j

ai,jξiξj ≥ C|ξ|2.

We will say that L is strictly elliptic.

For such an operator, one has a general existence and regularity result for the

Dirichlet problem:

Theorem 2.4.1 ([89, Theorem 9.15]). Let Ω be a C1,1 open domain in RN , and

let the operator L be strictly elliptic in Ω with coefficients ai,j ∈ C0(Ω̄), bi, c ∈
L∞(Ω), with i, j = 1, · · · , n and c ≤ 0. Then if f ∈ Lp(Ω) and ϕ ∈ W 2,p(Ω)

with 1 < p < ∞, the Dirichlet problem Lu = f in Ω, u− ϕ ∈ W 1,p
0 has a unique

solution u ∈W 2,p(Ω).

Here me must mention the names of Ennio De Giorgi, John Nash and Jürgen

Kurt Moser whose pioneering works contributed the most to the theory of regu-

larity of elliptic PDEs. We refer to the survey of [122] for further PDE related

regularity results and historical facts.

Remark 2.4.2. Let us also recall that for Sobolev spaces we have the following

embedding in Hölder spaces

W k,p(Ω) ⊂ Cr,α(Ω)

when k − r − α = N
p and α ∈ (0, 1).

This is a consequence of Morrey’s inequality (see [83]). Consequently, if p > N

in the previous theorem, the solution inherits more regularity, namely u ∈ C1,α

with α = 1 − p
N .
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2.4.2 Regularity issues for minimal surfaces

The classical regularity theory for minimal surfaces (see [144, 143, 31]) and the re-

cent paper [79, Theorem 6.1], which discusses the regularity of rectifiable currents

that are almost minimizers of an elliptic integrand, yield

Theorem 2.4.3. Let Φ be any strongly convex Finsler integrand and Ψ be such

that assumption (H9) is satisfied. We also assume that for some real t,

∂tΨ(·, t) ∈ Lp(Ω) with p > N . Then a set Et that solves (2.3.5) has a reduced

boundary ∂∗Et of Hölder class C1,α for any α < 1
2

(
1 − N

p

)
.

Moreover, ∂E \ ∂∗E is a closed set and

Hs(∂Et \ ∂∗Et) = 0

for every s > N − 3.

The hypothesis ∂tΨ(·, t) ∈ Lp(Ω) with p > N is essential. Indeed, in [20], the

authors even prove that any set of finite perimeter E ⊂ RN solves the prescribed

mean curvature problem

min
E

P (E,RN ) +

∫

E
f

for some appropriate f ∈ L1(RN ).

Morgan proved in [126] that the value N−3 is sharp by exhibiting an example

of a singular Φ-minimizing hypersurface in R4.

When the anisotropy takes the form Φ(x, p) = w(x)|p| for some Hölder con-

tinuous weight w, it is possible to refine these regularity results and get N − 8

instead of N − 3 without even using the theory of currents. We shall discuss this

case with many more details and references in Section 2.4.4.

If one assumes in addition that ∂tΨ(·, t) ∈ L∞ we can actually gain a little

more regularity:

Theorem 2.4.4. Let Φ be a strongly convex Finsler integrand that is Lipschitz

continuous in p uniformly x and consider a function Ψ that satisfies (H9). Sup-

pose that for some t ∈ R, ∂tΨ(·, t) ∈ L∞ and pick Et that solves (2.3.5). Then

∂∗Et is W 2,p for all 1 < p <∞ and thus C1,α for any α < 1.

In addition, ∂E \ ∂∗E is closed and

Hs(∂E \ ∂∗E) = 0

for every s > N − 3.
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We actually improve Theorem 2.4.3 since the degree of Hölder continuity of

the boundary increases from α/2 to α. This result is stated in [7, p.140] for the

classical curvature problem (2.2.3). As we could not find any precise reference

for this more general case, we provide a proof.

First, let us point out that ∂∗Et is W 2,2
loc as a consequence of the following

lemma:

Lemma 2.4.5. Let v ∈ C1(Ω′) with Ω′ ⊂ RM open be a weak solution of

− div (A(·, v,∇v)) = h (2.4.1)

where h ∈ L∞(Ω′) and A : Ω′×R×RM → RM is Lipschitz continuous and locally

strictly monotone i.e. for any compact set K ⊂ RM there is a constant cK s.t.

〈A(x, t, p) −A(x, t, p̃), p − p̃〉 ≥ cK |p− p̃|2, ∀p, p̃ ∈ K (2.4.2)

uniformly x ∈ Ω′, t ∈ R. Then v ∈W 2,2
loc (Ω′).

Remark 2.4.6. Notice that the mean curvature equation

div

(
Dv√

1 + |Dv|2

)
= h (2.4.3)

is a special case of (2.4.1) corresponding to

A(x, t, p) =
p√

1 + |p|2
.

The latter does satisfy the ellipticity condition (2.4.2).

The proof of the lemma is based on Nirenberg’s method (see [42] for instance

for further details). We simply adapt the proof given in [8, Proposition 7.56].

Proof. Since the property we are interested is local, we can assume that Ω′ is a

ball of measure less than 1, that ‖∇v‖∞ ≤ Mv for some positive Mv . We will

consider that K = B(0,Mv) and will denote respectively Lv, LA the Lipschitz

constants of v, A in K and MA the maximum of A over K. For any generic

function u we denote the difference

∆εu(x) =
u(x+ εei) − u(x)

ε

in the direction ei, i ranging from 1 to M .
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Now, in the weak formulation of (2.4.1), we take as test functions ϕ(· − εei)

and ϕ with ϕ ∈ C∞
c (Ω′), ε > 0 small enough and substract the two identities to

get after a change of variable

1

ε

∫

Ω′

〈A(x+ εei, v(x+ εei),∇v(x+ εei)) −A(x, v(x),∇v(x)),∇ϕ(x)〉dx

= −
∫

Ω′

h∆−εϕ

which can be rewritten as

1

ε

∫

Ω′

〈[A(x, v(x),∇v(x + εei)) −A(x, v(x),∇v(x))] ,∇ϕ(x)〉dx

= −1

ε

∫

Ω′

〈[A(x+ εei, v(x+ εei),∇v(x+ εei)) −A(x, v(x),∇v(x + εei))] ,∇ϕ(x)〉dx

−
∫

Ω′

h∆−εϕ.

We take ϕ = η2∆εv with η ∈ C1
c (Ω

′) and 0 ≤ η ≤ 1 a cut-off function. Notice that

∇ϕ = 2η∇η∆εv + η2∆ε(∇v) so using (2.4.2) we may estimate the first integral

from below by

cK

∫

Ω′

η2|∆ε(∇v)|2 − 2LAMv‖∇η‖∞
∫

Ω′

η|∆ε(∇v)|.

The second integral can be controlled by

LA
√

1 +M2
v

(
2Mv‖∇η‖∞ +

∫

Ω′

η2|∆ε(∇v)|
)
.

As for the last integral, we get the following bound from above

‖h‖∞
(

6Mv‖∇η‖∞ +

∫

Ω′

η2|∆ε(∂xiv)|
)

exactly as in the proof of [8, Proposition 7.56].

All in all, we get a uniform bound for

∫

Ω′

η2|∆ε(∇v)|2

when ε → 0. Though we already know that ∆ε(∇v) converges in the sense of

distributions to ∂xi(∇v) so we obtain that it must have a L2
loc representative in

Ω′.

With the previous lemma in hands we can now turn to the proof of Theorem

2.4.4:
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Proof of Theorem 2.4.4. As will be detailed in the proof of Theorem 2.4.8 (see

especially equation (2.4.4)) the level sets ∂Et can be locally represented as the

graph of a C1 function v that satisfies the following Euler-Lagrange equation

divx′
(
∇p′Φ(·, v,−∇x′v, 1)

)
+ ∂xN

Φ(·, v,−∇v, 1) = ∂tΨ ((·, v), t)

over a ball B′ ⊂ RN−1 and note that we used the notation x = (x′, xN ) and

p = (p′, pN ).

This actually means that function v solves in a weak sense

− divx′
(
∇p′Φ(·, v,−∇x′v, 1)

)
= h

for some h ∈ L∞(B′).

Now, ∇pΦ being Lipschitz continuous (see Remark 2.3.1), we can apply

Lemma 2.4.5 so v is in W 2,2
loc (B′) and we are allowed to expand the divergence.

Doing so, we find that v satisfies in a weak sense the following identity

−(divx′ ∇p′Φ)(·, v,−∇x′v, 1) −∇x′v · (∂xN
∇p′Φ)(·, v,−∇x′v, 1)

+ tr
(
D2
x′v

T
D2
p′Φ(·, v,−∇x′v, 1)

)
= h

which can be rewritten as

N−1∑

i,j=1

ai,j∂xixjv = h̃

with

ai,j =∂pipjΦ(·, v,−∇x′v, 1),

h̃ =h+ (divx′ ∇p′Φ)(·, v,−∇x′v, 1)

+ ∇x′v · (∂xN
∇p′Φ)(·, v,−∇x′v, 1) ∈ L∞(B′).

The W 2,p regularity for any 1 < p < ∞ follows from well-known results on the

regularity of solutions of elliptic partial differential equations in general form

with continuous coefficients (see Theorem 2.4.1). Then Morrey’s inequality (see

Remark 2.4.2) yields the C1,α regularity for any α < 1.

Remark 2.4.7. Clearly the regularity theorem for elliptic equations in diver-

gence form cannot be applied since the coefficients lack regularity. This is the

reason why we proceeded by first proving Lemma 2.4.5 to be able to differentiate

∇x′v and use the second regularity theorem for PDEs in non-divergence form.
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2.4.3 The discontinuities of solutions of the anisotropic minimum

problem

We are now ready to state the main result of this section:

Theorem 2.4.8. Let Φ be a strongly convex reversible Finsler integrand of class

C2 on Ω × RN \ {0}, Ψ be as in (H9) and that satisfies in addition for some

countable D dense in R

∂tΨ(·, t) ∈ BV (Ω) ∩ L∞(Ω) ∀t ∈ D.

If u ∈ BV (Ω) is the minimizer of (2.3.1), then one has

Ju ⊂
⋃

t∈D

J∂tΨ(·,t)

up to a HN−1-negligible set.

Remark 2.4.9.(i) When Φ does not depend on x and if we set Ψ(x, t) to get

the classical quadratic data fidelity term the result was already stated in [48] and

is the key step to get an extension of this theorem when dealing with TVε. This

is not trivial since the latter functional is not positively 1-homogeneous. Let us

denote uλ the minimizer of

min
u∈BV (Ω)

λ

∫

Ω

√
1 + |Du|2 +

1

2
‖u− g‖2

2

where without loss of generality we dropped the ε.

The trick is to add another dimension and consider the functions

ũ(x, xN+1) := u(x) + xN+1,

g̃(x, xN+1) := g(x) + xN+1.

Then it is possible to prove that ũλ minimizes (locally)

λ

∫

Ω×R⊂RN+1

|Dũ| + 1

2
‖ũ− g̃‖2

2

thus Juλ
× R = Jũλ

⊂ Jg̃ = Jg × R.

(ii) The ellipticity assumption for Φ is necessary. Indeed, in [24], it is shown that,

in the crystalline case Φ(p) = ‖p‖1 in dimension N = 2, it is possible to construct

a function g such that one has for the corresponding minimizer u, Jg ( Ju.

Our proof follows closely the one given by Caselles, Chambolle and Novaga

in [48].
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Proof. Since for any countable set D dense in R

Ju ⊂
⋃

t1,t2∈D
t1<t2

∂Et1 ∩ ∂Et2 ,

it is sufficient to prove that for all t1, t2 ∈ D

∂Et1 ∩ ∂Et2 ⊂ J∂tΨ(·,t1) ∪ J∂tΨ(·,t2)

up to a HN−1-negligible set.

To prove the latter inclusion, we are going to reason by contradiction and

assume that there are t1 6= t2 such that

HN−1
(
(∂Et1 ∩ ∂Et2) \ (J∂tΨ(·,t1) ∪ J∂tΨ(·,t2))

)
> 0.

Given that

HN−1
(
(S∂tΨ(·,t1) ∪ S∂tΨ(·,t2)) \ (J∂tΨ(·,t1) ∪ J∂tΨ(·,t2))

)
= 0,

where we recall that Ω \ S∂tΨ(·,ti) is the set of approximate continuity points of

∂tΨ(·, ti) (see Definition 2.2.7), it is equivalent to assume that

HN−1
(
(∂Et1 ∩ ∂Et2) \ (S∂tΨ(·,t1) ∪ S∂tΨ(·,t2))

)
> 0.

By Theorem 2.4.3, one can get rid of the closed set where the boundary ∂Et1 and

∂Et2 are not regular and place ourself at a point

x̄ ∈ ∂∗Et1 ∩ ∂∗Et2 \ (S∂tΨ(·,t1) ∪ S∂tΨ(·,t2))

such that both these boundaries can be represented as graphs in the vicinity

of x̄. That is to say, up to a Euclidian motion, there is a cylindrical neighbor-

hood {(x′, xN ) ∈ RN / |x′| < R, −R < xN < R} of x̄ = (x̄′, x̄N ) for some

small R > 0 such that Eti , i ∈ {1, 2} coincides with the epigraph of a function

vi : B(x̄′, R) → (−R,R) of class W 2,q, for any q ≥ 1. Again, throwing away

HN−1-negligible sets one can assume that x̄′ is a Lebesgue point of vi, ∇x′vi and

D2
x′vi. Actually, by Rademacher-Calderón’s theorem, we know that vi and ∇x′vi

are differentiable a.e. on B′ but this stronger result will not be necessary in what

follows.

By Proposition 2.3.14, we know that both superlevels Eti , i ∈ {1, 2} solve the

following

min
E

∫

∂∗E
Φ(x, νE)dHN−1 +

∫

E
∂tΨ(x, ti)dx
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where we minimize over all sets of finite perimeter in Ω. By doing compact

modifications in the ball B′ = B(x̄′, R), one can see that the graph vi, i ∈ {1, 2},
minimizes

I(v) =

∫

B′

Φ

(
x′, v(x′),

(−∇x′v(x
′), 1)√

1 + |∇x′v(x′)|2

)
√

1 + |∇x′v(x′)|2 dx′

+

∫

B′

∫ R

v(x′)
∂tΨ

(
(x′, xN ), ti

)
dxNdx

′.

This means that, for any positive perturbation ϕ ∈ C∞
c (B′) of the level set ∂Eti

with i ∈ {1, 2},

lim
ε→0
ε>0

I(vi + εϕ) − I(vi)

ε
≥ 0.

On the other hand, if we denote p′ = (p1, ..., pN−1),

I(vi + εϕ) = I(vi) + ε

∫

B′

(
∂xN

Φ
(
x′, vi(x

′),−∇x′vi(x
′), 1

)
ϕ(x′)

−∇p′Φ
(
x′, vi(x

′),−∇x′vi(x
′), 1

)
· ∇x′ϕ(x′)

−
∫ vi(x′)+εϕ(x′)

vi(x′)
∂tΨ

(
(x′, xN ), ti

)
dxN

)
dx′ + o(ε). (2.4.4)

One should note that the partial differentiations are done in the new set of coor-

dinates. If we integrate by parts, which is possible by Corollary 2.4.4, and given

the slicing properties of BV functions (see [8]), one has for HN−1-a.e. x′ ∈ B′

∂xN
Φ(x, νEti

(x)) + [divx′∇p′Φ](x, νEti
(x)) + ∇x′vi(x

′) · [∂xN
∇p′Φ](x, νEti

(x))

−D2
x′vi(x̄

′) : D2
p′Φ(x, νEti

(x)) − ∂tΨ (x, ti + 0) ≥ 0,

where D2
x′vi(x

′) : D2
p′Φ(x, νEti

(x)) designates the tensor contraction of the Hes-

sians and is defined as follows

D2
x′vi(x

′) : D2
p′Φ(x, νEti

(x)) = tr
(
D2
x′vi

T
D2
p′Φ(x, νEti

(x))
)

=

N−1∑

k,l=1

∂xkxl
vi(x

′) ∂pkpl
Φ(x, νEti

(x)).

Reasoning in the same way with ε < 0, one gets

∂xN
Φ(x, νEti

(x)) − [divx′∇p′Φ](x, νEti
(x)) −∇x′vi(x

′) · [∂xN
∇p′Φ](x, νEti

(x))

+D2
x′vi(x̄

′) : D2
p′Φ(x, νEti

(x)) − ∂tΨ (x, ti − 0) ≤ 0.
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Now, without loss of generality, we can assume t2 > t1. By Lemma 2.3.12, which

asserts that v2 ≥ v1 a.e. on B′, one has

v1(x̄
′) = v2(x̄

′),

∇x′v1(x̄
′) = ∇x′v2(x̄

′),

D2
x′v1(x̄

′) ≤ D2
x′v2(x̄

′).

Since in addition we assumed x̄ 6∈ S∂tΨ(·,ti) for i ∈ {1, 2}, we find

∂xN
Φ(x̄, νEti

(x̄)) + [divx′∇p′Φ](x̄, νEti
(x̄)) + ∇x′vi(x̄

′) · ∂xN
∇p′Φ(x̄, νEti

(x̄))

−D2
x′vi(x̄

′) : D2
p′Φ(x̄, νEti

(x̄)) − ∂tΨ (x̄, ti) = 0.

(2.4.5)

Therefore, substracting the equations (2.4.5) we got for the two values of i and

using the strict convexity assumption on Ψ (see (H9)), we are simply left with

D2
p′Φ(x̄, νE(x̄)) :

(
D2
x′v1(x̄

′) −D2
x′v2(x̄

′)
)

= ∂tΨ(x̄, t2) − ∂tΨ(x̄, t1) > 0.

Whereas, by non-negativity of Φ which is asserted by (H8), it follows (see [106,

p. 218])

D2
p′Φ(x̄, νE(x̄)) :

(
D2
x′v1(x̄

′) −D2
x′v2(x̄

′)
)
≤ 0

hence the contradiction.

2.4.4 Refinement for a weighted regularization

In this section, we are going to focus on the case when the integrand Φ is simply

given by a weight against the total variation measure namely

Φ(x, p) = w(x)|p|.

For simplicity, we consider that

Ψ(x, t) =
1

2
‖t− g‖2

2.

This corresponds to the classical quadratic data fidelity term for some Lebesgue

measurable function g. Function Φ is a strictly convex reversible Finsler integrand

as soon as

(H10) w : Ω → R is positive, β-Hölder with β ∈ (0, 1] and there exists a positive

real Cw such that C−1
w ≤ w ≤ Cw.

Henceforth, w will satisfy this assumption.
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To sum up, from now on, given w that satisfies (H10), we are interested in

the minimizer u of the following problem

min
u∈BV (Ω)

∫

Ω
w|Du| + 1

2
‖u− g‖2

2. (2.4.6)

Its superlevels Et = {u > t} solve the minimal surface problem

min
E

Pw(E,Ω) +

∫

E
(t− g(x))dx (2.4.7)

over sets of finite perimeter in Ω, where we recall that

Pw(E,Ω) =

∫

∂∗E
w(x)dHN−1(x)

is the weighted perimeter.

All the results we developed for general Finsler integrands are still valid in

this special case. In particular, the anisotropic coarea formula and the regularity

Theorem 2.4.3 for quasi minimizers of the perimeter hold true.

More regularity in the weighted case

As already seen in the proof of Theorem 2.4.8, it is important to be able to say

that the level sets of minimizers of problems involving the total variation are

regular namely C1,α for some α ∈ (0, 1/2). Such results stem from the theory

of regularity of minimal surfaces and have become classical in the literature.

We already mentioned the works [144, 143, 31, 79] that deal with minimizers or

quasi-minimizers of the perimeter in the anisotropic setting. In particular, they

establish the regularity of minimizers of the perimeter that have a prescribed

curvature.

Similar regularity results have also been established for various constraints.

Let us mention two recent examples. In [127], Frank Morgan proved such a

regularity for isoperimetric surfaces. Indeed, he shows that an isoperimetric hy-

persurface of dimension at most six in a smooth Riemannian manifold is a smooth

submanifold. If the metric is merely Lipschitz, then it is still C1,α for any α > 1.

In the recent article [86], Figalli and Maggi are led to consider a problem with

both a constraint on the curvature and on the volume i.e.

min
E

{∫

∂∗E
Φ(νE)dHN−1 +

∫

E
g / |E| = m

}
(2.4.8)

for a positively 1-homogeneous elliptic Φ, coercive g and for small m. In Ap-

pendix C of their work, they discuss the C1,α regularity of a solution of (2.4.8)
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as a consequence of the regularity theory for quasi-minimizers of the anisotropic

perimeter [79].

The papers we just cited make a wide usage of the language of currents and

varifolds. Some other works ([115, 116, 117, 147, 148, 11]) are based on techniques

that date back to the results of De Giorgi and deal with these regularity issues

in the framework of sets of finite perimeter. To keep the exposition as clear as

possible we prefer to adopt their approach to get a regularity theorem for the

weighted total variation. This way, we can provide a quite simple proof based on

these results and that does not make any reference to the theory of currents. The

aim is to make this work accessible to a wide audience that is not familiar with

such concepts. Our result is partially contained in the above-mentioned Theorem

2.4.3 for the anisotropic total variation which follows from [79] but to our knowl-

edge there is no simple proof of it in the context of sets of finite perimeter.

First, let us recall the concept of quasi-minimizer:

Definition 2.4.10. Let E be a set of finite perimeter in Ω, w satisfy assumption

(H10), α ∈ (0, 1) and Λ ≥ 0. Then E is a (Λ, α)-quasi-minimizer of the perimeter

Pw in Ω or simply quasi-minimizer if

Pw (E,B(x, r)) ≤ Pw (F,B(x, r)) + Λ|E∆F |1+ 2α−1
N (2.4.9)

for any ball B(x, r) ⊂⊂ Ω with r > 0 and any F ⊂ Ω of finite perimeter such

that F∆E ⊂⊂ B(x, r).

Remark 2.4.11. We could have replaced (2.4.9) by the weaker condition

Pw (E,B(x, r)) ≤ Pw (F,B(x, r)) + ΛrN−1+2α (2.4.10)

but for simplicity we refer to [147, 148] where the author considers this definition.

The aim is to show that the following regularity for quasi-minimizers of the

weighted perimeter holds:

Theorem 2.4.12. Let Ω be an open set of RN , N ≥ 2, w : Ω → R β-Hölder for

some β ∈ (0, 1] and such that there is a positive real Cw with C−1
w ≤ w ≤ Cw.

Consider also α ∈ (0, 1
2 ), Λ ≥ 0 and E a set of finite perimeter that is a (Λ, α)-

minimizer of the perimeter Pw.

Then, if we denote γ = min(α, β2 ), the reduced boundary ∂∗E is a C1,γ-hypersurface

and

Hs(∂E \ ∂∗E) = 0

for every s > N − 8.
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Moreover, let us assume that (Eh)h∈R
are (Λ, α)-minimizers of the perimeter

Pw with Eh converging locally to some limit set E∞ as h → +∞. If xh ∈ ∂Eh
for every h and converges as h → +∞ to some x∞ ∈ Ω then x∞ ∈ ∂E∞. If, in

addition, x∞ ∈ ∂∗E∞ then there exists h0 such that for h ≥ h0, xh ∈ ∂∗Eh and

the unit outward normal to ∂∗Eh at xh converges to the unit outward normal to

∂∗E∞ at x∞.

The theorem is well-known for quasi-minimizers of the classical perimeter

(even with the weaker condition (2.4.10)) and follows from [148] whose work

is based on earlier papers of Massari ([115, 116, 117]). Thus, to get the an-

nounced regularity, it is sufficient to prove that a quasi-minimizer of Pw is a

quasi-minimizer of the classical perimeter P . The argument is based on a key

ingredient: the density lemma. The latter result is well-known for problems in-

volving the perimeter. The density lemma will also play an important role in

Section 2.5 to prove that minimizers of ROF have large flat zones.

Lemma 2.4.13 (Density estimate). Let w be as in assumption (H10), α ∈ (0, 1),

Λ ≥ 0 and consider E a set of finite perimeter that is a (Λ, α)-quasi-minimizer

of Pw. Then there exists a radius r0 > 0 and C > 0 depending only on N and w

such that for any point x ∈ Ω,

- if ∀r > 0, |E ∩B(x, r)| > 0 then ∀r < r0, |E ∩B(x, r)| ≥ wN r
N

2NCN
w
,

- if ∀r > 0, |B(x, r) \ E| > 0 then ∀r < r0, |B(x, r) \E| ≥ wNr
N

2NCN
w

.

In particular, if x ∈ ∂∗E,

∀r < r0, min (|E ∩B(x, r)|, |B(x, r) \E|) ≥ wNr
N

2NCNw
.

Moreover, one has for the classical perimeter

C−1rN−1 ≤ P (E,B(x, r)) ≤ CrN−1.

Remark 2.4.14.(i) The assertion on the perimeter is sometimes referred to as

the Ahlfors regularity of the boundary ∂E.

(ii) A variant of this lemma holds also for the anisotropic perimeter PΦ (see [45]

for instance).

In our problem, the key point is that (2.4.9) can be rewritten in terms of the

classical perimeter in the following way:

Pw(E,B(x, r)) = w(x)P (E,B(x, r)) +

∫

∂∗E
(w(y) − w(x))dHN−1

≤ w(x)P (F,B(x, r)) +

∫

∂∗F
(w(y) − w(x))dHN−1 + Λ|E∆F |1+ 2α−1

N
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But, since w is β-Hölder, the quasi-minimality condition becomes

(w(x) − ‖w‖C0,βrβ)P (E,B(x, r)) ≤ (w(x) + ‖w‖C0,βrβ)P (F,B(x, r))

+Λ|E∆F |1+ 2α−1
N .

To alleviate notations, we are going to assume that w has Hölder norm ‖w‖C0,β =

1 and we are going to write Br for the ball B(x, r). So for some small radius r

with rβ < C−1
w , we are simply left with

(w(x) − rβ)P (E,Br) ≤ (w(x) + rβ)P (F,Br) + Λ|E∆F |1+ 2α−1
N . (2.4.11)

Having this remark in mind, we can now get to the proof:

Proof. Let us prove the first item of the lemma. The idea is to compare the

energy of E with that of E \ Br. Let f(r) = |E ∩ Br| > 0 for all r > 0. We see

that it is a non decreasing function thus differentiable almost everywhere and by

the coarea formula one knows that f ′(r) = HN−1(E ∩ ∂Br) for a.e. r. Now by

the isoperimetric inequality,

Nω
1
N
N f(r)

N−1
N ≤ P (E ∩Br,RN ) = HN−1(∂∗E ∩Br) + HN−1(E ∩ ∂Br).

But by minimality of E,

HN−1(∂∗E ∩Br) ≤
w(x) + rβ

w(x) − rβ
HN−1(E ∩ ∂Br) + Λ

f(r)1+
2α−1

N

w(x) − rβ
.

So

(
Nω

1
N
N − Λf(r)

2α
N

w(x) − rβ

)
f(r)

N−1
N ≤

(
1 +

w(x) + rβ

w(x) − rβ

)
f ′(r),

which implies

w(x) − rβ

2

(
ω

1
N
N − Λf(r)

2α
N

N(w(x) − rβ)

)
≤
(
f(r)

1
N

)′
.

Now for ε ∈ (0, 1), we can find rε > 0 such that for a.e. r < rε,

w(x) − rε
β

2

(
ω

1
N
N − Λε

N(w(x) − rεβ)

)
≤
(
f(r)

1
N

)′
.

Integrating between 0 and rε and sending ε→ 0, one obtains

w(x)NwN
2N

≤ lim inf
r→0

f(r)

rN
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hence the first assertion of the lemma.

Reasoning in a similar way with f(r) = |Br \ E| one proves the second item

of the lemma.

Let us prove the last statement. As above by comparison of E with E \ Br
one has

(w(x) − rβ)P (E,Br) ≤ (w(x) + rβ)HN−1(E ∩ ∂Br) + Λ|E ∩Br|1−
1
N .

Thus we obtain

P (E,Br) ≤ C

(
Λ +

Cw + rβ

C−1
w − rβ

)
rN−1

for some constant C that only depends on N .

In the last statement, the inequality to the left is obtained by applying the

relative isoperimetric inequality.

With this lemma in hands, we are in a position to prove that a quasi-minimizer

of the weighted perimeter is simply a quasi-minimizer of the perimeter. Take E a

quasi-minimizer of Pw as in Definition 2.4.9. Then, using the notations introduced

before the proof of the lemma, we have from (2.4.11) that for any admissible F ,

P (F,Br) + Λ
|E∆F |1+ 2α−1

N

w(x) + rβ
≥ w(x) − rβ

w(x) + rβ
P (E,Br)

≥ (1 − 2Cwr
β)P (E,Br)

≥ P (E,Br) − 2CCwr
N−1+β,

where in the last line we used the density lemma. Then

P (E,Br) ≤ P (F,Br) + rN−1(ΛCwr
2α + 2CCwr

β)

≤ P (F,Br) + C ′rN−1+2γ ,

for some positive constant C ′ and Theorem 2.4.12 follows from the regular-

ity of quasi-minimizers for the classical perimeter (see Remark 2.4.11 and also

[147, 148]).

Consider now u a minimizer of (2.4.6) for g ∈ Lp(Ω) with p > N and let

Et = {u > t} for some t ∈ R. Then, if x ∈ Ω, r > 0 and F is a compact
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modification of Et in B(x, r) i.e. F∆Et ⊂⊂ B(x, r), one has

Pw(Et, B(x, r)) ≤ Pw(F,B(x, r)) +

∫

Et∆F
|t− g|

≤ Pw(F,B(x, r)) + |Et∆F |1−
1
p ‖t− g‖Lp(B(x,r))

≤ Pw(F,B(x, r)) + Λr
N

“

1− 1
p

”

,

so the superlevel Et is a quasi-minimizer of Pw (and satisfies also the weaker

definition (2.4.10)). Therefore, Theorem 2.4.12 applies with α = 1
2(1 − N

p ). In

the end, we get exactly the same regularity as in Theorem 2.4.3 but this time we

also know that the singular set has dimension at most N − 8.

Note that there is no way to adapt our approach in the anisotropic case since

this would contradict the counterexample of Frank Morgan (see the remark that

follows Theorem 2.4.3). Thus, a quasi-minimizer of the anisotropic perimeter is

not necessarily a quasi-minimizer of the classical perimeter.

Now if one assumes that g ∈ L∞(Ω), we recall that the Nirenberg’s method

and the regularity theory for elliptic PDEs let us gain a little regularity as can

be seen from the following reformulation of Theorem 2.4.4:

Theorem 2.4.15. Let Ω be an open set of RN , N ≥ 2, w : Ω → R be Lipschitz

continuous and such that there exists a positive real Cw with C−1
w ≤ w ≤ Cw.

Consider also E a set of finite perimeter that is a quasi-minimizer of the perimeter

Pw. Then ∂∗E is W 2,p for all 1 < p <∞ and thus C1,γ for any γ < 1 and

Hs(∂E \ ∂∗E) = 0

for every s > N − 8.

Remark 2.4.16. As was done before (see (2.4.4)), the level set ∂Et can be

locally represented as the graph of a C1 function v that satisfies the following

Euler-Lagrange

− divx′



w(x′, v(x′))
∇x′v(x

′)√
1 + |∇x′v(x′)|2



+ ∂xN
w(x′, v(x′))

√
1 + |∇x′v(x′)|2

=
(
t− g(x′, v(x′))

)

over a ball B′ ⊂ RN−1. We recall that we denoted x = (x′, xN ) ∈ RN . It follows
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that function v solves

− divx′



w(·, v) ∇x′v√
1 + |∇x′v|2



 = h

with h ∈ L∞(B′). In particular when N = 2, Rademacher’s theorem implies that

w(·, v)v′/
√

1 + |v′|2 is Lipschitz continuous which in turn implies that v is locally

of class C1,1. This provides additional regularity for the weighted total variation

in dimension 2.

Discontinuities for the adaptive total variation minimization problem

In the weighted case, we can now get a refinement of the jump inclusion result.

Theorem 2.4.17. Let w : Ω → R be positive, bounded, Lipschitz continuous with

∇w ∈ BV (Ω,RN ) and g ∈ BV (Ω)∩L∞(Ω). Then, denoting J∇w :=
⋃N
i=1 J∂xi

w,

the minimizer u ∈ BV (Ω) of (2.4.6) satisfies

Ju ⊂ Jg ∪ J∇w (2.4.12)

up to a HN−1-negligible set.

Moreover, we have the following bound on the mean curvature of the jump set

κJu ∈
[
C−1
w (g− − u−), Cw(g+ − u+)

]
HN−1-a.e.

If in addition we assume that w is of class C1 we get that at the discontinuity

(u+ − u−) ≤ (g+ − g−) HN−1-a.e. on Ju. (2.4.13)

Remark 2.4.18. Assumption ∇w ∈ BV (Ω,RN ) means that w lies in the space

BH(Ω) of bounded Hessian functions that has been thouroughly studied by De-

mengel in [75]. It is possible to obtain results that are similar in nature to those

known for the BV space. Let us mention in particular that these functions have

a W 1,1 trace, there is also an extension theorem, a Poincaré type inequality and

a continuous inclusion BH(Ω) ⊂ C0(Ω̄) for Lipschitz domains of R2 (see also

[142]).

Let us make few comments before getting to the proof. First of all it is

interesting to see that whenever the weight is merely Lipschitz continuous it is

possible to add discontinuities to the minimizer that were not contained in the

datum g.
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To illustrate this point, we give few numerical experiments in dimension one:
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Figure 2.3: Creation of jumps with
w(x) =

√
xχ{x≤1} + xχ{x>1} + 0.2
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Figure 2.4: Creation of a flat zone for
w(x) = x2χ{x≤1} + xχ{x>1} + 0.2
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Figure 2.5: Hölder continuous weight
w(x) = |x|1/10
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Figure 2.6: Weight function w(x) =

|x|−1/10

These simulations suggest that tweaking w so that w′ contains a discontinuity

one can obtain desired properties for u and for instance force the creation of jumps

for some to be processed smooth g.

In case the weight function w is of class C1, J∇w = ∅ which implies merely

Ju ⊂ Jg.

For such a smooth w, (2.4.13) means that the “contrast” (if one thinks of

images) decreases at the discontinuity set Ju. This is not that surprising for

natural images but quite counterintuitive if we consider the following function

g : [0, 2π)2 −→ R

(x, y) 7−→
{

2 + cos(x) if y > 0,

0 otherwise.
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provided periodic boundary conditions. Let us illustrate this example by a nu-

merical experiment to get a clear idea of what is going on: we minimize ROF

functional with the data function g that is above.
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Figure 2.7: Functions u and g at the
jump set.
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Figure 2.8: Functions u and g far from
the discontinuity.

Figure 2.9: Level lines {u = t} for some
values of t ∈ (1, 2).

Figure 2.10: Graph of u on one period.
Some level lines are represented in red.

One can clearly see that little bumps are created near the discontinuities to

keep the jump as small as possible. We recall that, far from the jump set, we

expect the solution to be constant on large neighborhoods of the extrema and to

have a lower infinity norm. This is the object of the forthcoming Section 2.5 (see
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in particular Theorems 2.5.1 and 2.5.3).

The proof that follows is slightly different from the one given for Theorem

2.4.8 since this time we are no longer going to reason by contradiction. This way

we can get the desired refinement in the weighted case.

Proof. We recall that up to a HN−1-negligible set

Ju ⊂
⋃

t1,t2∈D
t1<t2

∂Et1 ∩ ∂Et2

for any countable D dense in R, thus it is enough that the result for any t1, t2 ∈ D

and for HN−1-any x̄ ∈ ∂Et1 ∩ ∂Et2 . Combining Theorems 2.4.12 and 2.4.15 one

can assume that both these boundaries can be represented by smooth graphs near

HN−1-every x̄. That is to say that up to a Euclidian motion there exists a cylinder

{x = (x′, xN ) ∈ RN / |x′| < R, −R < xN < R} neighborhood of x̄ such that Eti ,

i ∈ {1, 2}, coincides with the epigraph of a function vi : B′ = B(x̄′, R) → (−R,R)

of class W 2,q for any q ≥ 1. We also assume that we have

HN−1
(
{x′ ∈ B′ / v1(x

′) = v2(x
′)}
)
> 0

for the contact set. Without loss of generality one can finally suppose that t2 > t1
which implies by Lemma 2.3.12 that v2 ≥ v1 a.e. on B′. Moreover, HN−1-every

x′ ∈ B′ is a Lebesgue point of functions vi, ∇vi, D2vi, i ∈ {1, 2} thus at HN−1-

almost every contact point one has

v1(x
′) = v2(x

′),

∇x′v1(x
′) = ∇x′v2(x

′),

D2
x′v1(x

′) ≤ D2
x′v2(x

′). (2.4.14)

Recall that Proposition 2.3.14 tells us that the superlevels Eti with i ∈ {1, 2}
solve

min
E

∫

∂∗E
w(x)dHN−1(x) +

∫

E
(ti − g(x))dx

where the minimization is carried out on all sets of finite perimeter in Ω. Doing

compact modifications in the ball B′ one immediately sees that vi, i ∈ {1, 2}
minimizes

I(v) =

∫

B′

w(x′, vi(x
′))

√
1 + |∇x′vi(x′)|2dx′ +

∫

B′

∫ R

v(x′)
ti − g(x′, xN )dxNdx

′.

(2.4.15)
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This means that for any perturbation ϕ ∈ C∞
c (B′) such that ϕ ≥ 0

I ′(vi)
+ · ϕ = lim

ε→0
ε>0

I(vi + εϕ) − I(vi)

ε
≥ 0

whereas we know by the slicing properties of BV functions (see in particular [8,

Remark 3.109]) that for a.e. x′ ∈ B′

1

ε

∫ vi(x′)+εϕ(x′)

vi(x′)
g(x′, xN )dxN →

ε→0
g(x′, vi(x

′) + 0),

w(x′, vi(x
′) + εϕ(x′)) − w(x′, vi(x

′))

ε
→
ε→0

∂xN
w(x′, vi(x

′) + 0).

Thus, we find that, for any ϕ ∈ C∞
c (B′) such that ϕ ≥ 0,

I ′(vi)
+ · ϕ =

∫

B′

w(x′, vi(x
′))

( ∇x′vi(x
′)√

1 + |∇x′vi(x′)|2

)
· ∇x′ϕ(x′)dx′

+

∫

B′

(∂xN
w(x′, vi(x

′) + 0)
√

1 + |∇x′vi(x′)|2 − (ti − g(x′, vi(x
′) + 0)))ϕ(x′)dx′.

(2.4.16)

Our aim is now to integrate by parts in the first integral that we shall denote

Ĩ(vi). For this purpose, let us also denote fi(x
′) = w(x′, vi(x

′)). It is readily

checked that fi ∈ Lip(B′) ⊂ H1(B′). Therefore, vi being regular

Ĩ(vi) =

∫

B′

fi

( ∇x′vi√
1 + |∇x′vi|2

)
∇x′ϕ

= −
∫

B′

divx′

(
fi

( ∇x′vi√
1 + |∇x′vi|2

))
ϕ

= −
∫

B′

∇x′fi

( ∇x′vi√
1 + |∇x′vi|2

)
ϕ−

∫

B′

w(·, vi)κiϕ (2.4.17)

where we denoted κi(x
′) = divx′

(
∇x′vi(x′)√

1+|∇x′vi(x′)|2

)
the mean curvature of the level

set ∂∗Eti at (x′, vi(x
′)).

Note that HN−1-a.e. point in B′ is a Lebesgue point for ∇x′fi so vi satisfies

−∇x′fi(x
′) · ∇x′vi(x

′)√
1 + |∇x′vi(x′)|2

− w(x′, vi(x
′))κi(x

′)

+∂xN
w(x′, vi(x

′) + 0)
√

1 + |∇x′vi(x′)|2 −
(
ti − g(x′, vi(x

′) + 0)
)
≥ 0. (2.4.18)
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If one chooses ε < 0 in (2.4.15) then one obtains in the same way

−∇x′fi(x
′) · ∇x′vi(x

′)√
1 + |∇x′vi(x′)|2

− w(x′, vi(x
′))κi(x

′)

+∂xN
w(x′, vi(x

′) − 0)
√

1 + |∇x′vi(x′)|2 −
(
ti − g(x′, vi(x

′) − 0)
)
≤ 0. (2.4.19)

These identities hold for a.e. x′ ∈ B′. Since we assumed that the contact set

{v1 = v2} has positive HN−1-measure, then we can find a contact point x′ ∈ B′

that satisfies the inequalities (2.4.18) and (2.4.19), identities (2.4.14) and such

that ∇x′f1(x
′) = ∇x′f2(x

′) (indeed f1 = f2 on the contact set) which implies

that

∂xN
w(x′, xN − 0)

√
1 + |∇x′v1(x′)|2 − (t1 − g(x′, xN − 0)) ≤ w(x)κ1(x

′)

≤ w(x)κ2(x
′) ≤ ∂xN

w(x′, xN + 0)
√

1 + |∇x′v2(x′)|2 − (t2 − g(x′, xN + 0)).

(2.4.20)

It follows that for HN−1-every x′ ∈ B′

0 < t2 − t1 ≤
(
∂xN

w(x′, xN + 0) − ∂xN
w(x′, xN − 0)

)
(1 + η)

+
(
g(x′, xN + 0) − g(x′, xN − 0)

)

with η that can be chosen as small as one wishes by taking a smaller ball B′. Thus

∂xN
w or g jumps at x̄ hence (2.4.12). Moreover, from the previous inequality one

has for the value of the jump

(u+ − u−)(x) ≤ (∂xN
w+ − ∂xN

w−)(x) + (g+ − g−)(x) (2.4.21)

which furnishes (2.4.13). The claim on the mean curvature follows at once from

(2.4.20).

Remark 2.4.19.(i) Assume that the discontinuity of ∂xN
w occurs in the oppo-

site direction of that of g, namely

(∂xN
w+ − ∂xN

w−)(x) + (g+ − g−)(x) = 0.

Then one can simply erase the jump of g: indeed from (2.4.21) one sees that u

has no discontinuity at x.

(ii) Note that if one is merely interested in the jump inclusion (2.4.12), it can be

obtained by copying and pasting the proof given in the anisotropic setting: indeed

reasoning by contradiction one can assume that HN−1
(
Ju \ (Jg ∪ J∇w)

)
> 0 and

the rest follows.
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2.4.5 Dependency on the regularization parameter λ

In this section, we assume that the weight is constant i.e. w = λ > 0. This

corresponds to ROF’s model. Before getting further we need the following

Lemma 2.4.20. Consider an open set Ω with finite Lebesgue measure, let g ∈
L∞(Ω) and consider respectively two minimizers uλ, uµ of (ROF) corresponding

to the regularization parameters λ, µ > 0 then

‖uλ − uµ‖∞ ≤ 2|Ω|‖g‖∞
min (λ, µ)

|λ− µ|.

Proof. Without loss of generality, one can assume that µ > λ. The minimizers

uλ and uµ satisfy the Euler-Lagrange equation for ROF i.e. there exist zλ, zµ ∈
L∞(Ω,RN ) such that

{
−λdiv zλ + uλ = g,

−µ div zµ + uµ = g.

Multiplying the first equation by µ/λ, the second by −1 and summing the result-

ing identities we get

〈−µ div(zλ − zµ) + uλ − uµ, ϕ〉 =
(µ
λ
− 1
)
〈(g − uλ), ϕ〉.

for any test function ϕ ∈ L2(Ω). If for some even integer p ≥ 2 we set ϕ =

(uλ − uµ)
p−1 and denote q = p/(p− 1) the adjoint of p, it follows

µ〈(zλ − zµ), (p − 1)(uλ − uµ)
p−2D(uλ − uµ)〉 + ‖uλ − uµ‖pp

≤
(µ
λ
− 1
)
‖g − uλ‖q‖uλ − uµ‖p−1

p .

Though, the first term on the left side of the inequality is non-negative since ∂TV

is a monotone operator (see [41]) so we are simply left with

‖uλ − uµ‖p ≤
µ− λ

λ
‖g − uλ‖q (2.4.22)

which implies

‖uλ − uµ‖p ≤ |Ω|
1
q
µ− λ

λ
‖g − uλ‖∞

≤ 2|Ω|
1
q ‖g‖∞

µ− λ

λ
(2.4.23)

which yields the result making p→ +∞.



66
CHAPTER 2. FINE PROPERTIES OF THE TOTAL VARIATION MINIMIZATION

PROBLEM

Remark 2.4.21.(i) Equation (2.4.22) in conjunction with (2.2.1) implies that

for g ∈ BV (Ω),

‖uλ − uµ‖2 ≤ |µ− λ|
min(λ, µ)

‖g − uλ‖2 ≤
√

2
µ− λ√
min(λ, µ)

(∫

Ω
|Dg|

) 1
2

,

where the rightmost bound does not depend on |Ω| hence we can relax the as-

sumption on Ω.

(ii) Inequality (2.4.23) suggests some differentiability property for the mapping

{
R+ → Lp(Ω)

λ 7→ u(λ)

defined for p ∈ [2,+∞]. Unfortunately Rademacher’s theorem fails in the infinite

dimensional setting. Nonetheless, in our problem we can actually get Fréchet-

differentiability almost everywhere from [25, Corollary 5.21] whenever the desti-

nation space has the so-called Radon-Nikodym Property (RNP). A space satisfies

the RNP whenever it is a separable dual Banach space or a reflexive space (see

[25, Corollary 5.12] ). This is indeed true for any Lp(Ω) space with p < ∞ but

not for L∞(Ω) and furnishes the differentiability for the ‖ · ‖p norm only.

Note that in general it is not trivial to get Fréchet-differentiability for a generic

mapping with values in a space of infinite dimension. The only positive answer

in this direction states that every real-valued Lipschitz function on an Asplund

space has points of Fréchet differentiability (see [138] but also [29] for counterex-

amples). In general, the result does not even hold after convolution (see for

instance [30]). Though the situation for Gâteaux is more favorable: the idea is

that every Lipschitz map from a separable Banach space into a space with the

RNP is Gâteaux differentiable almost everywhere in the sense of Aronszajn ([25,

Proposition 6.41 and Theorem 6.42] ).

Lemma 2.4.20 helps us prove the following result that says essentially that

the highest jumps form a decreasing sequence with respect to the regularization

parameter λ:

Proposition 2.4.22. Let an open domain Ω ⊂ RN of finite Lebesgue measure,

g ∈ L∞(Ω) non identically zero and λ, µ positive such that for some real ε > 0

|µ− λ| ≤ εmin (λ, µ)

2|Ω|‖g‖∞
.

Let also uλ and uµ be two minimizers of (ROF). Then if we denote

Jεuλ
:= {x ∈ Juλ

/ (u+
λ − u−λ )(x) > ε},
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one has

Jεuλ
⊂ Juµ

up to a HN−1-negligible set.

Proof. This proposition is a straightforward application of the preceding lemma

which implies ‖uλ − uµ‖∞ ≤ ε. Then clearly for HN−1-almost any x ∈ Jεuλ

ε < (u+
λ − u−λ )(x) ≤ ε+ (u+

µ − u−µ )(x)

hence the conclusion.

2.5 Staircasing for the denoising problem

From now on, we shall only focus on the (ROF) problem and drop the anisotropy.

As recalled in our introduction, it has been long observed that the minimizer of

this problem has unnatural homogeneous regions referred to as the staircase re-

gions. The problem of proving the existence of these constant zones has been

tackled in the discrete setting in [133] though almost nothing is known in the

continuous setting. We will prove in this section that the staircasing phenomenon

is unavoidable in the continuous setting in dimension N ≥ 2 even though there

is no addition of noise.

Staircasing through the level lines:

Figure 2.11: Level lines for the TV-
minimizer of the Lena image

Figure 2.12: Level lines for the TV-
minimizer of a noisy image

The previous images show that the level lines of the minimizers miss large

regions that are therefore constant. The idea of looking at the level sets gives a

good intuition but it is also a key point in our analysis to establish results from

a theoretical point of view.
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2.5.1 Staircasing at extrema

Let us start by stating one of the main results of this section:

Theorem 2.5.1. Let g ∈ L2(RN ) bounded from above. Then the associated

minimizer uλ of (ROF) (λ > 0) is also bounded from above, attains its maximum

and one has

|{uλ = max uλ}| > 0.

In particular Duλ = 0 in {uλ = maxuλ}.

Proof. We denote mg := sup g. Proving that there is a staircase amounts to

show that the superlevel sets vanish at some point. Let us therefore consider the

superlevel Eλt := {uλ > t} for some real t. By Theorem 2.2.13, we know that Eλt
minimizes the following problem

min
E

λP (E) +

∫

E
(t− g(x))dx.

In particular,

λP
(
Eλt

)
+

∫

Eλ
t

(t− g(x))dx ≤ 0. (2.5.1)

By the isoperimetric inequality and equation (2.5.1), we get

|Eλt |
N−1

N ≤ P
(
Eλt

)
≤ 1

λ

∫

Eλ
t

(g(x) − t)dx ≤ |Eλt |
mg − t

λ
.

This implies immediately that |Eλt | = 0 for any t ≥ mg. Actually, by a thresh-

olding argument, one can show that Eλt = ∅, but this additional information will

not be needed here.

If for some t ∈ R, |Eλt | 6= 0 then

|Eλt | ≥
(

λ

mg − t

)N
. (2.5.2)

Let us assume that we have |Eλt | 6= 0 for any t0 < t < mg. Then letting t → mg

in (2.5.2) contradicts |Eλt | < +∞. So, if we set mu := supuλ, we therefore have

mu = sup{t, |Eλt | 6= 0} < mg.

Now, we would like to prove that |{uλ = mu}| 6= 0. This is indeed true since

{uλ = mu} =
⋂

n∈N

Eλ
mu−

1
n
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and by (2.5.2) it follows

|{uλ = mu}| ≥ lim
n→∞

∣∣∣Eλmu−
1
n

∣∣∣ ≥
(

λ

mg −mu

)N
> 0.

By the coarea formula, we then simply have

∫

{uλ=mu}
|Duλ| =

∫ +∞

−∞
P (Eλt ∩ {uλ = mu})dt

=

∫ mg

mu

P (Eλt )dt

= 0.

This implies that Duλ = 0 on the staircase set {uλ = mu} that has positive

Lebesgue measure.

Remark 2.5.2.(i) In case g ∈ L∞(Ω) is not assumed to be constant, we actually

proved that u is also bounded and that we have a.e.

inf
Ω
g < min

Ω
uλ ≤ max

Ω
uλ < sup

Ω
g.

Moreover, inequality (2.5.2) gives a lower bound for the staircasing effect namely

|{Duλ = 0}| ≥ |{uλ = min
Ω
uλ} ∪ {uλ = max

Ω
uλ}|

≥ 2

(
λ

supΩ g − infΩ g

)N
. (2.5.3)

(ii) As was already stated in Theorem 2.2.13, it is possible to prove that

{uλ = maxΩ uλ} has an open representative which in turn implies |{uλ = maxΩ uλ}| >
0. Though the proof is not direct and relies on the density estimate established

in Lemma 2.4.13 for quasi-minimizers of the perimeter. Needless to say that the

same holds for {uλ = minΩ uλ}.

As we just saw, Theorem 2.5.1 furnishes a way to quantify the staircase effect

through the inequality (2.5.3). Nonetheless, this bound is not sharp as can be

seen for g the characteristic of a convex set (see below). The reason is that we do

not take into account creation of flat zones occurring near local extrema. This is

the object of the following theorem

Theorem 2.5.3. Let g ∈ Lp(Ω) with p ∈ (N,+∞] and uλ with λ > 0 the

corresponding minimizer of (ROF). If x0 is a local extremum of uλ then there

exists N (x0) a neighborhood of x0 such that

Duλ = 0 on N (x0).
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Proof. Without loss of generality, we can consider a local maximum point x0 of

uλ that is to say there is a radius ρ > 0 such that

uλ ≤ u+
λ (x0) on B(x0, ρ).

Considering that x0 ∈ Eλt = {uλ > t} for some t < u+
λ (x0), one has for any r > 0,

|Eλt ∩B(x0, r)| > 0,

and by the density lemma there exists r0 > 0 such that

|Eλt ∩B(x0, r)| ≥
wNr

N

2N
,

for any 0 < r ≤ r0. Now, if we take r = min(ρ, r0) and make t→ u+
λ (x0), we get

|{uλ = u+
λ (x0)} ∩B(x0, ρ)| ≥

wNr
N

2N
.

Moreover, according to Remark 2.5.2, {uλ = u+
λ (x0)} has an open representative.

Putting together these two theorems we get

Corollary 2.5.4. Let g ∈ L2(RN )∩L∞(RN ) and uλ, λ > 0 be the minimizer of

(ROF) associated to g. If uλ is constant on at most two disjoint sets then it has

no local extrema other than its global maximum and minimum.

2.5.2 Dependency of the staircasing on λ

In the previous section, we proved that for fixed λ staircasing always occurs and

can be quantified by (2.5.1). This bound suggests that the Lebesgue measure

of the created flat zones is non-decreasing with respect to λ. This was already

observed for the total variation flow in RN . In [13, Chapter 4] the authors even

prove that the solution u(t) of the total variation flow in RN decreases in time,

for some norm, with a finite extinction time. It is possible to get a similar result

for the minimizer uλ:

Proposition 2.5.5. Let Ω be a connected bounded Lipschitz continuous open

set in RN , g ∈ LN (Ω) and uλ the minimizer of (ROF). Then, there exists

λ∗ = CΩ‖g‖N ≥ 0 with CΩ that only depends on Ω, such that for any λ ≥ λ∗,

uλ =
1

|Ω|

∫

Ω
g.
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Proof. The conclusion follows readily if one can find some zλ that satisfies the

system






−λdiv zλ + 1
|Ω|

∫
Ω g = g in Ω,

‖zλ‖∞ ≤ 1 in Ω,

zλ · νΩ = 0 on ∂Ω.

If p ≥ N , the function g − 1
|Ω|

∫
Ω g is in LN (Ω) and of mean zero. Therefore,

the result of Bourgain and Brezis [37] (see also [72]) asserts that there exists a

z ∈ L∞(Ω,RN ) ∩W 1,N (Ω,RN ) that solves

{
− div z = g − 1

|Ω|

∫
Ω g in Ω,

z · νΩ = 0 on ∂Ω.

Thus a nice candidate is zλ = z
λ , for λ large enough. Actually, λ∗ = ‖z‖∞ that is

controlled by ‖g‖N .

If the domain is not bounded, the result of Bourgain and Brezis does not

apply. Though, one has a similar result for a data g that lies in the so-called

Schwartz class S that contains those functions whose derivatives are decreasing

faster that any polynomial (see [97]):

Proposition 2.5.6. If g is an element of S(RN ) and uλ denotes the minimizer

of (ROF) corresponding to g then there exists λ∗ ≥ 0 such that for λ ≥ λ∗

uλ = 0 in RN .

Proof. As in the previous proof, the assertion follows if one can find some zλ that

solves the following system

{
−λdiv zλ = g,

‖zλ‖∞ ≤ 1.

Let us look for a zλ that is of the form zλ = ∇v
λ with v that satisfies in RN

−∆v = g. (2.5.4)

Taking the Fourier transform on both sides, one gets

−4π2|ξ|2v̂(ξ) = ĝ(ξ), ∀ξ ∈ RN
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hence the following estimate

‖∇v‖∞ ≤ ‖∇̂v‖1 =
1

4π2

∥∥|ξ|−1ĝ(ξ)
∥∥

1
< +∞

where in the last inequality we used the well-known fact that ĝ ∈ S ⊂ Lp(RN )

for any p ∈ [1,∞] (see [97] for instance for further details). Therefore zλ = ∇v
λ

satisfies the system above as soon as λ ≥ λ∗ := ‖∇v‖∞.

For a general unbounded subdomain of RN , the previous proof cannot be

adapted since it is well known that for a bounded g, equation (2.5.4) does not

necessarily admit a solution v in W 2,∞ (see [37]).

In case N = 2, it is possible to prove Proposition 2.5.5 without having to use

the difficult result of Bourgain and Brezis:

Proposition 2.5.7. Let Ω ⊂ R2 a be connected open set that is bounded with

a Lipschitz continuous boundary, g ∈ L2(Ω) and uλ the minimizer of (ROF)

associated to g. Then there exists λ∗ = CΩ‖g‖2, with CΩ that only depends on Ω,

such that for λ ≥ λ∗

uλ =
1

|Ω|

∫

Ω
g.

Proof. Given u ∈ BV (Ω)∩L2(Ω), in [13, Lemma 2.4], one can find the following

characterization of p = − div(z) ∈ ∂TV (u):

∫

Ω
|Du| ≤

∫

Ω
(u− ϕ)p +

∫

Ω
z · ∇ϕ, ∀ϕ ∈W 1,1(Ω) ∩ L2(Ω).

Therefore, denoting 〈uλ〉 the average of uλ and setting u = uλ, ϕ = 〈uλ〉 and

p = 1
λ(g − uλ) one has

∫

Ω
|Duλ| ≤

1

λ

∫

Ω
(g − uλ) (uλ − 〈uλ〉) .

Then, applying the Poincaré inequality and Cauchy-Schwarz and using 〈uλ〉 =

〈g〉, the average of g, one obtains the estimate

C‖uλ − 〈g〉‖2 ≤ 1

λ
‖uλ − 〈g〉‖2‖uλ − g‖2,

where C is the constant that appears in the Poincaré inequality. Now remarking

that, by minimality of uλ,

‖uλ − g‖2 ≤ ‖g‖2

concludes the proof. Moreover, we get λ∗ =
‖g‖2

C .
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Remark 2.5.8. This way we also get the calibration zλ through the Euler-

Lagrange equation.

Since there exists a version of the Poincaré inequality in RN , for which the

optimal constant is known, it is readily checked that we also gave an alternative

proof for Proposition 2.5.6 in case N = 2:

Proposition 2.5.9. Let g ∈ L2(R2) and uλ be the minimizer of (ROF) associated

to g then there exists

λ∗ =
(
2π

1
2

)−1
‖g‖2

such that for λ ≥ λ∗

uλ = 0 in RN .

Remark 2.5.10.(i) Reasoning as we did we get an explicit λ∗ that is optimal as

can be seen for g = χD the characteristic of the unit disc since we know in this

case that

uλ = (1 − 2λ)+χD.

(ii) Our proof is very similar in spirit to that one given in [13, Theorem 2.21]

for the total variation flow when again N = 2. It was brought to our attention

that in a recent article (see [88]), Giga and Kohn extend the results of [13] in

the N -dimensional case. We thus suspect that their proof can be adapted to our

context.

Now that we got rid of the case when λ is large, let us see through some exam-

ples how the staircase regions behave for reasonable values of the regularization

parameter. In the rest of this section, we assume that g is the characteristic

function of a set C which means we are now interested in the minimizers of

Eλ(u) = λ

∫

Ω
|Du| + 1

2
‖u− χC‖2

2.

We are going to distinguish two different cases for C:

The characteristic of a bounded convex set in RN .

Then it is well known (see [2, 5]) that for λ ≤ λ∗ and for any t ≥ 0 the superlevel

Eλt = {uλ > t} of the solution uλ is given by

Eλt =

{
Cλ/(1−t) if t ≤ 1 − λ/R∗,

∅ otherwise.
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where for any R > 0, CR is the opening of C defined by

CR =
⋃

B(x,R)⊂C

B(x,R),

and R∗ is the inverse of the so-called Cheeger constant defined by the value of R

that solves

P (CR)

|CR|
=

1

R
.

Therefore, the staircase set

{uλ = max uλ} = CR∗

is the so-called Cheeger set and is independent of λ ≤ λ∗. We would get similar

results if C were the union of spaced convex sets (see [13] for the expression of

uλ in this case).

The characteristic of two touching squares in R2.

Here C = [0, 1] × [0,−1] ∪ [−1, 0] × [0, 1] is the union of two unit squares that

only touch on a vertex. In [3], Allard gives a full description of the superlevels of

the solution uλ, hence uλ itself. The level sets Eλt = {uλ > t} are of five kinds

namely

Eλt ∈
{
∅, R2, Fr,s, Gr,s, Hr / λ =

1

r
+

1

s
, r, s ∈ R+

}

where the last three sets are formally defined in [3]. They are depicted in the

following figures as the interior of the domain bounded by the red curve:

s

r

r

r

s

θ

r
π
2

Figure 2.13: Fr,s.

r

r

s

s

r

r

Figure 2.14: Gr,s.

r r

r

r

r

r

Figure 2.15: Hr.

In the following figure Allard summed up the different possibilities:
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r = s

r + s = 1

r = q(s)

∅

Fr,s

λ1 = 7
32

λ2 = 11
64

λ3 = 3
32

Hr

Gr,s

r

s

Figure 2.16: Level sets Eλt . Figure 2.17: uλ and its level lines.

Now consider that λ ∈ (0, λ∗). As seen previously, the staircase set

Sλ := {uλ = maxuλ} is exactly the smallest superlevel set that is not empty

this is to say

Sλ ∈ {Fq(s),s, Gq(s),s, Hq(s)}

where the function q(s) is non-decreasing in s. Let us focus on two values of

the regularization parameter: λ1 = 7
32 and λ2 = 11

64 and let si, i ∈ {1, 2} be the

unique value such that λi = 1
si

+ 1
q(si)

. Then it is readily seen that

Sλ2
= Gq(s2),s2 6⊂ Fq(s1),s1 = Sλ1

even though λ2 < λ1.

This example shows that in general the staircase zones (Sλ)λ≥0 do not form

a monotone sequence.

Such a phenomenon cannot occur given a radial function g and this is what

we are going to prove in the following section. In short, this is due to the fact

that the solutions (uλ)λ of the radial problem form a semi-group. This was

already established in the one-dimensional setting [43] and in case g = χC the

characteristic function of a convex set C [13, 5].

2.6 Denoising problem for radial data

Unless otherwise stated, in this section Ω will denote the ball B(0, R) ⊂ RN with

N ≥ 2 and we consider a radial g ∈ L2(Ω). It is easily seen that the minimizer

uλ of (ROF) is itself radial. Indeed one could argue that for any rotation R,
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uλ(Rx) is also a minimizer. Since it is unique uλ(Rx) = uλ(x) for any x ∈ RN .

We denote ṽ the function defined by ṽ(|x|) = v(x) for any x ∈ RN . Then uλ
minimizes

min
u∈BV (Ω)

∫ R

0

(
λ|ũ′(r)| + 1

2
(ũ(r) − g̃(r))2

)
rN−1dr. (2.6.1)

Thus, proceeding as in the one-dimensional case, either uλ is constant or

uλ(x) = g(x) + sgn (ũ′λ
(
|x|)
) (N − 1)λ

|x|

for any x ∈ RN \ {0}. Now, introducing the dual variable z̃ and reasoning as in

[54], we can derive a dual formulation for the minimization problem (2.6.1), that

is

inf
z̃∈W 1,2(0,R),
z̃(R)=0, |z̃|≤λ

∫ R

0

(
z̃′(r) +

N − 1

r
z̃(r) + g(r)

)2

rN−1dr.

Then, if we set z(x) = z̃(x) x
|x| for any x ∈ RN \ {0},

(div(z))(x) = ∇(z̃(|x|)) · x|x| + z̃(|x|) div

(
x

|x|

)
= z̃′(|x|) + z̃(|x|)N − 1

|x|

which gives the dual formulation

inf
z∈Aλ

E(z) =

∫

B(0,R)
(div(z) + g)2, (2.6.2)

where

Aλ =

{
z(x) = z̃(x)

x

|x| / ∀x ∈ RN \ {0}, z̃ ∈W 1,2(0, R), z̃(R) = 0, |z̃| ≤ λ

}

is the set of admissible z. Henceforth, we denote zλ a minimizer of problem

(2.6.2). Since it is radial, we will sometimes write zλ instead of z̃λ. Note also

that zλ is actually continuous by the Sobolev embedding therem.

Remark 2.6.1. We decided to proceed this way to justify rigorously that one

can pick a radial vectorfield zλ in the Euler-Lagrange equation (2.2.2).

2.6.1 The solutions form a semi-group

Let us start with the following lemma:
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Lemma 2.6.2. Let g ∈ Lp(Ω) with p ∈ [N,+∞] then for any λ > 0,

|zλ(x)| ≤ C|x|1−
N
p ‖g − uλ‖Lp(B(0,|x|))

for some positive C hence in particular zλ(0) = 0.

Proof. For a.e. r = |x| with x ∈ RN

div(zλ)(x) = z̃′λ(r) +
N − 1

r
z̃λ(r) =

1

rN−1
(z̃λ(r)r

N−1)′.

Hence integrating with respect to r and using div(zλ) ≤ |g − uλ|, it follows

z̃λ(r)r
N−1 ≤

∫

B(0,r)
|g − uλ| ≤ C‖g − uλ‖Lp(B(0,r))r

N
“

1− 1
p

”

for some positive real C.

The following proposition is the key result in the study of the radial problem:

Proposition 2.6.3 (Comparison result). Let g ∈ L2(Ω), µ > λ ≥ 0 and consider

respectively zλ and zµ the corresponding minimizers of E then one has

zλ − λ ≥ zµ − µ.

Proof. On the one hand,

E
((

zµ + (λ− µ)
x

|x|
)
∨ zλ

)
=

∫

{zλ>zµ+λ−µ}
(div (zλ) + g)2dx

+

∫

{zλ<zµ+λ−µ}

(
div
(
zµ + (λ− µ)

x

|x|
)

+ g

)2

dx,

E
((

zλ + (µ− λ)
x

|x|
)
∧ zµ

)
=

∫

{zλ>zµ+λ−µ}
(div(zµ) + g)2dx

+

∫

{zλ<zµ+λ−µ}

(
div
(
zλ + (µ− λ)

x

|x|
)

+ g

)2

dx,

thus by minimality of zµ and zλ

∫

{zλ<zµ+λ−µ}

(
(div(zλ) + g)2 + (div(zµ) + g)2

)
dx

≤
∫

{zλ<zµ+λ−µ}

(
div
(
zµ + (λ− µ)

x

|x|
)

+ g

)2

dx

+

∫

{zλ<zµ+λ−µ}

(
div
(
zλ + (µ− λ)

x

|x|
)

+ g

)2

dx,
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and then it follows that

∫

{zλ−zµ+µ−λ<0}
(µ− λ)

N − 1

|x|

(
div
(
zλ − zµ + (µ− λ)

x

|x|
))

dx ≥ 0. (2.6.3)

But on the other hand, given that zλ−zµ+µ−λ > 0 on ∂Ω and zλ−zµ+µ−λ = 0

on ∂{zλ − zµ + µ− λ < 0}, one gets by integration for ε > 0,

∫

[Ω\B(0,ε)]∩{zλ−zµ+µ−λ<0}

N − 1

|x|

(
div
(
zλ − zµ + (µ− λ)

x

|x|
))

dx

= −N − 1

ε

∫

∂B(0,ε)∩{zλ−zµ+µ−λ<0}
(zλ − zµ + µ− λ)(x)dx

+

∫

[Ω\B(0,ε)]∩{zλ−zµ+µ−λ<0}

N − 1

|x|2
(zλ − zµ + µ− λ)(x)dx.

Now one has to distinguish two cases:

If N ≥ 3, then, given that C := ‖zλ − zµ + µ− λ‖∞ < +∞, one has

0 ≤ −N − 1

ε

∫

∂B(0,ε)∩{zλ−zµ+µ−λ<0}
(zλ − zµ + µ− λ)(x)dx ≤ 2πCεN−2.

Thus sending ε→ 0 and considering identity (2.6.3) we obtain

∫

{zλ−zµ+µ−λ<0}

N − 1

|x|2
(zλ − zµ + µ− λ)(x)dx ≥ 0

hence

zλ − λ ≥ zµ − µ.

If N = 2 and ε is small then, by Lemma 2.6.2,

∂B(0, ε) ∩ {zλ − zµ + µ− λ < 0} = ∅

thus

−N − 1

ε

∫

∂B(0,ε)∩{zλ−zµ+µ−λ<0}
(zλ − zµ + µ− λ)(x)dx = 0

and the conclusion follows in the same way as above.

Corollary 2.6.4. For any λ, µ ≥ 0, one has

‖zλ − zµ‖∞ ≤ |λ− µ|.

Another very important consequence of Proposition 2.6.3 is that solutions
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(uλ)λ∈R+ form a semigroup. To prove this, let us denote

Tλ(g) = argmin
u∈BV (Ω)

λ

∫

Ω
|Du| + 1

2
‖u− g‖2

2

for any real λ ≥ 0 and any datum g ∈ L2(Ω). Thus,

Tλ = (I + λ∂TV )−1

is the resolvent operator discussed in [41].

Proposition 2.6.5. If Ω = B(0, R), g ∈ L2(Ω) is radial, µ > λ ≥ 0 are two

regularization parameters then

Tµ(g) = Tµ−λ ◦ Tλ(g).

Proof. Step 1: Let us set

z0 = argmin
z∈Aµ−λ

∫

Ω
(div(z) + Tλ(g))

2

and z′µ = z0 + zλ. We claim that div(z′µ) = div(zµ).

On the one hand, we know from the previous corollary that zµ − zλ ∈ Aµ−λ thus

by comparison with z0
∫

Ω
(div(z′µ − zλ) + Tλ(g))

2 ≤
∫

Ω
(div(zµ − zλ) + Tλ(g))

2.

and using the Euler-Lagrange equation it follows that

∫

Ω
(div(z′µ) + g)2 ≤

∫

Ω
(div(zµ) + g)2.

Whereas, on the other hand, z′µ ∈ Aµ thus by comparison with zµ

∫

Ω
(div(zµ) + g)2 ≤

∫

Ω
(div(z′µ) + g)2

which proves our claim.

Step 2: Now considering the following Euler-Lagrange equations






div(zµ) = Tµ(g) − g,

div(zλ) = Tλ(g) − g,

div(z0) = Tµ−λ ◦ Tλ(g) − Tλ(g),

the conclusion follows readily from the result of Step 1.
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Let us recall that given an open set Ω ⊂ RN and an initial condition

u(0) = g ∈ L2(Ω) there exists a unique solution to the gradient flow equation

(see [13]):

−∂tu(t) ∈ ∂TV (u(t)) a.e. in t ∈ [0, T ]. (2.6.4)

We are also going to need the following classical result for the resolvent operator

of a maximal monotone operator (see [41, Corollary 4.4]):

Proposition 2.6.6. Let Ω be an open set of RN and u(t) be the solution of

(2.6.4) with an initial condition u(0) = g ∈ L2(Ω) then

lim
n→+∞

T t
n

n(u(0)) = lim
n→+∞

(
I +

t

n
∂TV

)−n(
u(0)

)
= u(t),

the convergence taking place in L2(Ω).

With these results in hands we are ready to prove the main result of this

section, namely

Theorem 2.6.7. Let Ω = B(0, R), g ∈ L2(Ω) be radial and u(t) be the solution

of (2.6.4) with an initial condition u(0) = g. Then u(t) is the unique minimizer

of

min
u∈BV (Ω)

t

∫

Ω
|Du| + 1

2
‖u− g‖2

2. (2.6.5)

Proof. From Proposition 2.6.5 it follows

T t
n

n(u(0)) = Tt(u(0))

and making n→ +∞ one has by Proposition 2.6.6

u(t) = Tt(u(0))

hence the statement of the theorem.

Remark 2.6.8. This property is not true for general semi-groups u(t). Let us

reason by contradiction. If u(t) solves both (2.6.4) and (2.6.5) then writing the

Euler-Lagrange equation one has for some fixed t > 0:

{
−∂tu(t) ∈ ∂TV (u(t)),
g−u(t)

t ∈ ∂TV (u(t)).

Placing ourselves on the set {∇u(t) 6= 0}, it follows

−t∂tu = g − u,



2.6. DENOISING PROBLEM FOR RADIAL DATA 81

hence

d

dt

(u
t

)
= − 1

t2
(u− t∂tu) = − g

t2
=

d

dt

(g
t

)
.

Thus, there exists C(x) that does not depend on t such that

u(t, x) = g(x) + C(x)t

whenever ∇u(t) 6= 0 in a neighborhood of x. This contradicts the example of

Allard where Ω = R2 and g = χ[0,1]×[0,−1]∪[−1,0]×[0,1]. Indeed let us consider

the origin x0 = 0. Then from the analysis of Allard (see section 2.5.2) one

knows that for 0 < t < t∗ there is a neighborhood of x0 that is contained in

{∇u(t) 6= 0}. Thus we get a contradiction if the minimizer ut of (ROF) with

parameter λ = t is not affine in t at x0. This is indeed observed by a simple

numerical experimentation:

0 t_0
0.4

0.5

0.6

0.7

0.8

0.9

1

t

Figure 2.18: Evolution of u(t, 0) Figure 2.19: Solution u(t) for t = t0

The approach is rigorous since the algorithm used for the minimization of

discrete (ROF) functional is convergent (see Chapter 5) and in [155] it is shown

that the difference between the continuous (ROF) model and its finite difference

discretization is bounded and tends to zero.

2.6.2 Staircasing and discontinuities

From Proposition 2.6.3 we can also get some information on the staircase re-

gions. Indeed, whenever condition |zλ| ≤ λ is saturated, we know from the Euler-

Lagrange equation that ∇uλ 6= 0. This way, we can get an inclusion principle for

the staircasing namely:
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Theorem 2.6.9. For any reals µ > λ ≥ 0, one has {|zλ| < λ} ⊂ {|zµ| < µ}.
This is not true in general as seen through the example of Allard (see Section

2.5.2).

Remark 2.6.10. Theorem 2.6.7 is a key step in [43] to prove that in the one-

dimensional case, staircasing occurs almost everywhere for a noisy 1D signal. By

noisy we mean that the original signal was perturbed by a Wiener process. We

cannot expect to get from our analysis such a result simply because a radial

function that underwent an addition of noise is not radial anymore. We could

though extend their result to the case of a radial “noise” but this does not seem

really interesting. However, it would tell us again that staircasing is an important

phenomenon for minimizers of perturbed signals.

As for the discontinuities one can actually refine the results of Section 2.4

thanks to the following

Theorem 2.6.11. Let Ω = B(0, R) and g ∈ LN (Ω) be radial. Consider also

µ > λ > 0 and uλ, uµ the corresponding minimizers of (ROF). Then one has

Juµ ⊂ Juλ
.

If in addition, g ∈ LN (Ω) ∩BV (Ω) then given µ > λ ≥ 0,

Juµ ⊂ Juλ
⊂ Jg.

Proof. Once we know Theorem 2.6.7 the result is a straightforward consequence

of [48, Theorem 4.1] and [50, Theorem 2] which establishes a similar inclusion

principle for the TV flow.

2.7 Conclusion and perspective

In this chapter, we examined some fine results for energies involving terms that

behave like the total variation. In particular, we prove that no new discontinu-

ities are created for energies involving a smooth elliptic anisotropy and a generic

fidelity term. This extends the result of [48] where they dealt with the denoising

problem. On the other hand, we characterized creation of unobserved discontinu-

ities for the adaptive total variation functional if the weight is merely Lipschitz

continuous. In addition, we proved that the infinity norm is decreased at the

discontinuity while minimizing ROF’s energy, which is quite counterintuitive.

In the second part, we established that the staircasing phenomenon always

occurs for the continuous ROF problem. We refined this result in the radial case

by proving that the staircase zones are non-decreasing with the regularization pa-

rameter. The argument is based on the relation between the ROF problem and
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the total variation flow, which we prove to hold for radial data. In particular,

using known results for the flow we also get that discontinuities form a monotone

sequence given that the datum is radial.

The aforementioned results motivate many interesting questions that remain

unsettled and pave the way for future researches. First of all, most of the results

of this chapter (jump inclusion and staircasing) rely heavily on the connection

with the perimeter problem via the coarea formula and it does not seem clear to

us how they can be adapted to take into account linear perturbations of the data

(convolution but also Radon or Fourier transforms).

Concerning the problem of inclusion of the discontinuities, it is not clear

whether the discontinuities form a monotone sequence for a general datum. In-

deed, in this case the connection with the flow fails. This question seems to be

related to the existence of a smooth underlying calibration z (obviously not C1)

for the ROF problem. This question is actually interesting by itself. But“Finding

a calibration remains an art, not a science” as would say Frank Morgan. Here, we

should also mention the work of Bourgain-Brezis [37] and De Pauw-Pfeffer [72]

where the authors were interested in finding a continuous z such that

div(z) = µ

for a given Radon measure µ. Though these results are not constructive since

referring to the axiom of choice and cannot be easily adapted. The inclusion

could also be obtained by establishing strong properties of the derivative u′(λ)

by means of Γ-convergence for instance (see [38]). Though the resulting func-

tional seems to be non-local making the problem difficult (see [46]).

As for the staircasing phenomenon, it would be interesting to prove an N -

dimensional counterpart for the result of the recent paper [43]: staircasing occurs

almost everywhere for noisy images.

Another problem, which seems within reach, would be to examine the regu-

larity of the minimizer for the general energy we considered. This could be done

by adapting [49] where such a result is established for the denoising problem.
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3.1 Introduction

Functions of bounded variation are of particular interest in image processing.

Ideally, a grayscale image can be seen as a function of the unit square into the the

interval [0, 1] representing the gray levels. Moreover, one wishes this function to

be mostly smooth but one allows discontinuities all along regular curves: the edges

of the objects that are depicted in the image. The derivative of such a function

will then have measure parts, as functions of bounded variation. Formally, an

integrable function u defined on an open set Ω ⊂ RN is of bounded variation on

Ω, and we shall denote u ∈ BV (Ω), if the total variation

∫

Ω
|Du| < +∞

The derivative Du being obviously taken in the sense of distributions.

Then, given a function u ∈ BV (Ω), it is natural to be interested in the

quantity

J(u) = inf
Pφ=Du

∫

Ω
|φ|

where the operator P is the “orthogonal projection on gradients” and acts on

measures φ. To better understand this projection, let us for the moment consider

that φ is simply a function in L2(Ω,RN ) and one assumes in addition that the

domain Ω is connected, bounded and smooth so that we can invoke the Gauss-

Green formula whenever needed. Then one can set Pφ = ∇ū where ū solves

min
u∈H1(Ω)

‖∇u− φ‖L2(Ω,RN ).

This definition does indeed express the fact that ∇ū is the orthogonal projection

of φ on the subspace

{
∇u ;u ∈ H1(Ω)

}
.

The latter is actually a closed subspace in L2(Ω,RN ) as will be checked in the

sequel (see Remark 3.2.20). It is therefore easy to see that there exists a unique

function ψ ∈ L2(Ω,RN ) such that one has the so-called Helmholtz decomposition

φ = Pφ+ ψ,

where
∫

Ω
∇v · ψ = 0, ∀v ∈ C1(Ω̄). (3.1.1)
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In [149], it is proven that a function ψ ∈ L2(Ω,RN ) with divψ ∈ L2(Ω), has a

trace on the boundary of the domain Ω whenever the latter is (at least) Lipschitz

continuous. The Gauss-Green formula can then be generalized to such functions.

Thus, in the present case, condition (3.1.1) means that

{
divψ = 0 in Ω,

ψ · ν = 0 on ∂Ω.
(3.1.2)

where ψ · ν designates the trace of ψ at the boundary. Note that the integral in

(3.1.1) makes sense even for a measure ψ, thus generalizing (3.1.2) for measures.

In the end, for any u ∈ H1(Ω) one can write

inf
φ∈L2(Ω,RN )
Pφ=Du

∫

Ω
|φ| = inf

ψ∈L2(Ω,RN )
divψ=0, ψ·ν=0

∫

Ω
|Du+ ψ|.

Though, the integral to the right is just the total variation of Du + ψ and thus

still makes sense if function u ∈ BV (Ω) and ψ is a measure. This legitimates the

following definition

J(u) = inf
divψ=0
ψ·ν=0

∫

Ω
|Du+ ψ|.

The infimum is taken on all measures on Ω. To be more precise, we shall only

deal with bounded Radon measures. We remark in passing that J is well-defined

on BV (Ω) since one has

J(u) ≤
∫

Ω
|Du|.

This functional and a variant will be the object of our study in this chapter.

After some mathematical preliminaries, we are going to use a convex duality

argument to show that under the appropriate assumptions on Ω (bounded and

smooth are enough), one has

J(u) = sup
w∈C1(Ω̄)
‖∇w‖∞≤1

∫

Ω
∇w ·Du.

This result will then allow us to deal with sets of finite perimeter. Indeed, we

shall see that for such a set E, J(χE) is nothing else but the perimeter P (E,Ω) =∫
Ω |DχE|. This equality can actually be generalized to functions of bounded

variation whose diffuse part vanishes. To prove this result, we are going to exploit

some fine properties of functions of bounded variation. Though, some of them
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have already been mentioned and used in Chapter 2, we need to recall and detail

them in this chapter.

The dual formulation will also help us discuss the possibility of proving a

version of the Poincaré inequality for J .

In the last part of the present chapter, we propose a possible approach to

tackle the problem of restoring a corrupted image by means of this functional.

Moreover, we shall detail the algorithmic aspects of the minimization of a dis-

cretized energy involving J . Finally, we are going to compare numerically our

approach with the one based on the total variation.

Parts of our results were published in [100, 101].

3.2 Preliminaries

Before getting to our main topic, we need to recall some classical results on

generalized sequences, then some basic measure theory and finally some convex

analysis that we are going to need in the sequel. We are also going to recall an

important theorem that dates back to the work of De Rham and that will let us

get back to the Helmholtz decomposition.

3.2.1 Generalized sequences

A sequence is a function whose domain is in general the set of integer numbers

which is a set that is totally ordered. It is then possible to generalize this con-

cept by allowing more general index sets: the so-called directed sets. This new

concept is of particular interest when one deals with functional spaces that are

not metrizable. Then the various sequential criteria that we all know are still

valid, provided we consider generalized sequences instead of the usual sequences.

This is what we are going to see in what follows. Proofs for the results we shall

mention can be found in the textbooks [108, 156].

Definition 3.2.1. A set A is oriented if on one hand, it is equipped with a partial

order � and on the other hand, each pair of elements of A has an upper bound

in A i.e. whatever a, b ∈ A there exists m ∈ A such that a � m and b � m.

Definition 3.2.2. A generalized sequence (or net) of a non-empty set X is a

function x : A → X where A is oriented. By analogy with classical sequences,

x(α) will be denoted xα and (xα)α∈A or simply (xα) will denote the function

x : A→ X itself.

So any real function and any sequence indexed by N is a generalized sequence.

Definition 3.2.3. A generalized sequence (xα)α∈A of a topological space X con-

verges to a limit x ∈ X if for any neighborhood V of x, there exists αV ∈ A
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such that xα ∈ V when α � αV . It will be said of (xα)α∈A that it converges if it

converges to an element of X.

This notion of limit obviously includes the one known for sequences indexed by

natural numbers. The following results show that any topology can be described

in terms of generalized sequences.

Theorem 3.2.4. Let E be a subset of a topological space X. Then an element

x ∈ Ē if and only if there exists a generalized sequence of E converging to x.

Corollary 3.2.5. Let X be a topological space and E ⊂ X. Then E is closed if

and only if E contains all limits of convergent generalized sequences of its own

elements.

Corollary 3.2.6 (Semi-continuity criteria). Let X be a topological space. Then

f : X → R is lower semicontinuous at x ∈ X if and only if for any generalized

sequence (xα)α∈A converging to x,

f(x) ≤ lim inf
xα→x

f(xα) = sup
l∈A

inf
α� l

f(xα).

Function g : X → R is upper semicontinuous at x if and only if for any generalized

sequence as above

g(x) ≥ lim inf
xα→x

g(xα) = inf
l∈A

sup
α� l

g(xα).

Corollary 3.2.7 (Continuity criterion). Let X,Y be topological spaces. A func-

tion f : X → Y is continuous on X if and only if it preserves the convergence of

generalized sequences of X.

The notions of continuity and semicontinuity are essential for minimization

problems. But, what can be said about the sequential compactness criterion?

Does it also remain valid in this new framework? As will be seen in the next

theorem, the answer is yes in some sense, but, first of all, we have to formulate

it correctly in the language of generalized sequences:

Definition 3.2.8. Let (xα)α∈A and (yβ)β∈B be two generalized sequences. We

shall say that (yβ)β∈B is a generalized subsequence of (xα)α∈A if for any α0 ∈ A,

there exists β0 ∈ B such that

{yβ;β � β0} ⊂ {xα;α � α0}.

Remark 3.2.9. As for sequences indexed by N, lower and upper limits are ob-

tained as limits of convergent generalized subsequences.

Theorem 3.2.10 (Compactness criterion). A topological space X is compact

if and only if any generalized sequence of X admits a convergent generalized

subsequence.
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3.2.2 A bit of measure theory

To fix notations, recall that for a topological space X, Cb(X)M denotes the set of

RM -valued bounded continuous functions onX and C0(X)M the set of continuous

functions with values in RM that tend to 0 at infinity, i.e. those functions f for

which, given ε > 0, there exists a compact of X such that ‖f‖∞ < ε outside

this compact. These two functional spaces will be equipped with the infinity

norm. If X is equipped with the Borel σ-algebra we also recall that the Riesz

representation theorem then identifies the dual of the Banach space C0(X)M with

the space Mb(X)M of bounded Radon measures on X with values in RM . The

dual norm corresponds then simply to the total variation measure. Moreover,

we say that a generalized sequence (µα)α∈A converges weakly-* (or in the sense

σ(Mb(X)M , C0(X)M )) to µ if for all f ∈ C0(X)M we have

∫

Ω
fdµα →

∫

Ω
fdµ.

One can also consider a slightly stronger convergence: we say that a generalized

sequence (µα)α∈A of measures converges narrowly (or in the sense

σ(Mb(X)M , Cb(X)M )) if this time we have
∫
Ω fdµα →

∫
Ω fdµ whatever f ∈

Cb(X)M . This convergence is not a weak-* convergence in the classical sense since

there is no reason a priori for Mb(X)M to be the topological dual of Cb(X)M .

However, given two vector spaces E and E∗ not necessarily related, it is always

possible to consider that they are in duality thanks to a separating bilinear form

〈., .〉 defined on E×E∗ as far as we can define the latter. Here, ”separating”means

that for every x ∈ E (respectively x∗ ∈ E∗), the linear forms 〈x, .〉 (respectively

〈., x∗〉) separate any two elements. E and E∗ are respectively equipped with the

finest topology that makes 〈·, x∗〉 and 〈x, ·〉 continuous functions. Of course, one

can extend the notions of weak convergence for the pair (E,E∗). Indeed, we say

that a generalized sequence (xα)α∈A of elements of E converges weakly to x ∈ E

if for every element x∗ of E∗ one has

〈xα, x∗〉 → 〈x, x∗〉.

The limit is then necessarily unique. We define the weak convergence of a gener-

alized sequence of elements of E∗ similarly. Readers who wish to know more on

this topic can refer to [36, 80]. In the present case, we can therefore assume that

Cb(X)M and Mb(X)M are in duality via the bilinear form

〈µ, f〉 =

∫

X
fdµ

and the ”abstract” weak convergence, we have just introduced, will be exactly

the narrow convergence. However, in the sequel when we talk about the weak
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convergence of a generalized sequence of bounded Radon measures, it will be a

convergence in the sense σ(Mb(X)M , C0(X)M ).

In what follows, we will also need a standard weak compactness criterion we

choose to recall here:

Theorem 3.2.11. Let X be a subset of RN . From any bounded generalized

sequence of Mb(X)M one can extract a generalized subsequence converging weakly

in Mb(X)M .

By the criterion of compactness of the preceding paragraph, it is a simple

corollary of the Banach-Alaoglu theorem. But this criterion does not say much

about the narrow convergence. To state a result in this direction, we need to

introduce the notion of tension:

Definition 3.2.12. A sequence (µn)n∈N
of bounded Radon measures with values

in RM is tight if for any ε > 0, there exists a compact set Kε such that one has

|µn|(Ω \Kε) < ε for any n ∈ N.

Theorem 3.2.13 (Prokhorov’s theorem). Let X be a subset of RN . Then from

any sequence of Mb(X)M that is bounded and tight, one can extract a subsequence

converging narrowly in Mb(X)M .

This theorem as well as the notion of strong convergence is mainly used by

probabilists and we will not have to use it in the sequel.

The results of this section are standard and can be found with their proofs in

[8].

3.2.3 Convex duality

Duality is a very important notion for convex functions. It is used in particular

when one is interested in inverting an infimum and a supremum. A reference for

the following results is the classical textbook of Ekeland and Temam [80].

Definition 3.2.14. Let E and E∗ be two vector spaces that are in duality thanks

to a separating bilinear form 〈., .〉. We also consider a convex function f : E → R.

Its Legendre conjugate f∗ is a function from E∗ to R defined by

f∗(x∗) = sup
x∈E

(
〈x∗, x〉 − f(x)

)
,

and its Legendre biconjugate f∗∗ : E → R is defined by

f∗∗(x) = sup
x∗∈E∗

(
〈x∗, x〉 − f∗(x∗)

)
.
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Theorem 3.2.15 (Legendre-Fenchel-Moreau Duality). Let E and E∗ be two

normed vector spaces in separating duality, f : E → R be a lower semicontinuous

convex function. Then

f∗∗ = f.

Remark 3.2.16. The lower semicontinuity assumption is crucial here. In RN ,

a convex function is automatically continuous in the interior of its domain, but

there is no guarantee that it is lower semicontinuous at the boundary of the

domain.

3.2.4 A De Rham theorem and an application

If S is a distribution on an open set Ω and ϕ is a function lying in C∞
c (Ω)N with

zero divergence then it is easily checked that

〈∇S,ϕ〉 =

N∑

i=1

〈∂iSi, ϕi〉 = −
N∑

i=1

〈S, ∂iϕi〉 = −〈S,divϕ〉 = 0.

The theorem that follows is the converse of this property and is due to De Rham.

Theorem 3.2.17. Let Ω be an open set in RN and T be a distribution of

D′(Ω,RN ). It is further assumed that for any test function ϕ such that divϕ = 0,

one has 〈T,ϕ〉 = 0. Then there exists a distribution S ∈ D′(Ω) such that

T = ∇S.

We give here another result of the same kind on the L2 regularity of a distri-

bution and that reminds us of the Poincaré theorem:

Theorem 3.2.18. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary

and S a distribution in D′(Ω). Then if ∇S lies in L2(Ω)
N

one actually has

S ∈ H1(Ω).

Let us now see a first application of these two results. In particular, this

will allow us to get back to the Helmholtz decomposition we mentioned in the

introduction and clarify some results. To begin with, given an open set Ω with

Lipschitz continuous boundary, consider the following three spaces:

E =
{
u ∈ L2(Ω)

N
; div u ∈ L2(Ω)

}

V =
{
u ∈ C∞

c (Ω)N ; div u = 0
}

H = closure of V in L2(Ω)
N
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Note that E is a Hilbert space when equipped with the inner product

〈u, v〉E = 〈u, v〉L2(Ω)N + 〈div u,div v〉L2(Ω).

Let us verify that the associated norm is complete. Let (un)n∈N
be a Cauchy

sequence in E, then it is Cauchy in L2(Ω)
N

so it converges to u ∈ L2(Ω)
N

.

Similarly, (divun)n∈N
converges to v ∈ L2(Ω). Necessarily, v = div u and as a

consequence (un)n∈N
converges to u ∈ E.

One also recalls that there exists a trace operator γν ∈ L
(
E,L2(∂Ω)

)
for

which the Gauss-Green formula remains valid. For a function u ∈ E that is also

C1 near the boundary, the previous trace coincides with the classical notion of

trace i.e. γν(u) = u · ν|∂Ω. This is the reason why, in the sequel, the trace of u

will be denoted u · ν even though u does not lie in C1(Ω̄).

The aforementioned results can be found in one form or another in [71, 149]. In

particular, one can find sketches of proofs for the two theorems that we mentioned.

Now we are ready to state the following important theorem:

Theorem 3.2.19. Let Ω be a bounded open set in RN with a Lipschitz boundary.

Then,

(i) H⊥ =
{
∇u ; u ∈ H1(Ω)

}
,

(ii) H =
{
u ∈ L2(Ω)

N
; div u = 0, u · ν = 0

}
,

(iii) L2(Ω)
N

= H ⊕H⊥.

Proof. Let us prove (i). Let u ∈ H1(Ω)
N

, then for any v ∈ V ,

〈∇u, v〉 = −〈u,div v〉 = 0

and as a consequence ∇u ∈ H⊥. Conversely, one has to prove that any w ∈ H⊥

is the gradient of a function H1(Ω). This follows by applying Theorems 3.2.17

and 3.2.18 successively.

Now let us turn to (ii) and denote H ′ the set to the right. We will first prove

the inclusion H ⊂ H ′. So let u ∈ H, then by definition, u = limn→∞ un where

(un)n∈N
is a sequence in V . This convergence in L2(Ω)

N
implies a convergence

in the sense of distributions and since derivation is a continuous operator in the

space of distributions divun = 0 implies that div u = 0. As a consequence,

(un)n∈N
converges actually to u in E. The trace operator enjoys a good notion

of continuity on E, u · ν = limn→∞ un · ν = 0. Thus u ∈ H ′. Conversely, consider

the orthogonal H ′′ to H in H ′. By (i), an element of H ′′ is of the form ∇u where
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u ∈ H1(Ω), and satisfies in addition

{
∆u = div∇u = 0 in Ω,
∂u
∂ν = ∇u · ν = 0 on ∂Ω.

This implies that u is constant in each connected component of Ω hence ∇u = 0.

Consequently, H ′′ = {0} and H = H ′.

As for (iii), one proved in the introduction that any function φ ∈ L2(Ω)
N

that has a decomposition of the form

φ = ∇u+ ψ

where ψ ∈ H and ∇u ∈ H⊥.

Remark 3.2.20. We would like to point out that item (i) establishes the fact

that {∇u ; u ∈ H1(Ω)} is a closed set in L2(Ω)
N

. This was left aside in the

introduction.

3.3 Definition and first properties

In this section, we are going to derive important properties for the functional J .

We are also going to introduce a variant that is of some interest.

3.3.1 Definition

Let Ω ⊂ RN be an open set then, for any u ∈ BVloc(Ω), we set

J(u,Ω) = inf

{∫

Ω
|Du+ ψ| / ψ ∈ Mb(Ω)N and

∫

Ω
∇v · ψ = 0 ∀v ∈ C1(Ω̄)

}
,

J̃(u,Ω) = inf

{∫

Ω
|Du+ ψ| / ψ ∈ Mb(Ω)N and

∫

Ω
∇v · ψ = 0 ∀v ∈ C1

c (Ω)

}
.

We might simply denote J(u) and J̃(u) when there is no ambiguity. We recall

that for a smooth ψ, the condition

∫

Ω
∇v · ψ = 0, ∀v ∈ C1(Ω̄)

is equivalent to the fact that divψ = 0 in Ω and ψ · ν = 0 on ∂Ω, whereas

∫

Ω
∇v · ψ = 0, ∀v ∈ C1

c (Ω)
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merely enforces divψ = 0 in Ω. Thus, J differs from J̃ by a Neumann type

constraint at the boundary.

Let us collect in the following proposition some basic consequences of the

previous definition:

Proposition 3.3.1. Let Ω an open set of RN , then one has:

(i) For any u ∈ BV (Ω),

J̃(u) ≤ J(u) ≤
∫

Ω
|Du|.

thus both J and J̃ define semi-norms on the space BV (Ω).

(ii) If u ∈ BV (Ω), in the definition of J̃(u) the infimum is attained that is to say

J̃(u) = min
divψ=0

∫

Ω
|Du+ ψ|.

(iii) If we denote H(Ω) the space of harmonic functions in Ω then

{J̃ = 0} = H(Ω).

Proof. Let us prove item (ii). Consider a minimizing sequence (ψn)n∈N
that

satisfies

J̃(u) ≤
∫

Ω
|Du+ ψn| ≤ J̃(u) +

1

n
.

This sequence is in fact bounded since

lim sup
n→∞

∫

Ω
|ψn| ≤ lim sup

n→∞

(∫

Ω
|Du| + J̃(u) +

1

n

)
≤ 2

∫

Ω
|Du|.

As a consequence, up to extraction of a subsequence, it converges to some

ψu ∈ Mb(Ω)N and one can verify that the condition on the divergence remains

true at the limit. Indeed, for any function v ∈ C1
c (Ω), one has

∫

Ω
∇v · ψn →

∫

Ω
∇v · ψ.

Finally, the semicontinuity of the total variation ensures that

∫

Ω
|Du+ ψu| ≤ lim inf

n→∞

∫

Ω
|Du+ ψn| ≤ J̃(u).

Let us now turn to (iii). Given a harmonic function u, one has ∇u+ ψ = 0

for the choice ψ = −∇u which is admissible since div(ψ) = 0. Conversely, from
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(ii) there exists ψu ∈ Mb(Ω)N with div(ψu) = 0 such that

J̃(u) =

∫

Ω
|Du+ ψu| = 0.

Hence ∆u = div(Du) = 0.

3.3.2 Lower semicontinuity of J̃(u)

Theorem 3.3.2. Let Ω ⊂ RN be an open set. Then J̃ is convex and

Du 7→ J̃(u)

is lowersemicontinuous for σ(Mb(Ω)N , C0(Ω)N ).

We are going to give two proofs for this theorem. The first one uses the notion

of generalized sequence introduced previously.

Proof 1 of Theorem 3.3.2. Given a bounded Radon measure µ, let us set

H̃(µ) = inf
divψ=0

∫

Ω
|µ+ ψ|.

Then H̃ is a function of Mb(Ω)N → R and for any u ∈ BV (Ω), one simply has

H̃(Du) = J̃(u). Note that, one knows from the proof of Proposition 3.3.1, that,

in the definition of H̃, the infimum is attained. On the other hand, H̃ is obviously

convex because the function of two variables (µ,ψ) 7−→
∫
Ω |µ+ ψ| is.

It remains to show that H̃ is lower-semicontinuous. Given the semicontinuity

criterion of Section 3.2.1, it is sufficient to prove that for any generalized sequence

(µα)α∈A converging weakly to µ ∈ Mb(Ω)N , one has

H̃(µ) ≤ lim inf
µα→µ

H̃(µα).

Let us consider a generalized subsequence still denoted (µα)α∈A that minimizes

the right hand side (see Remark 3.2.9). Thus, we have to prove that

H̃(µ) ≤ lim
µα→µ

∫

Ω
|µα + ψµα |.

Obviously, we can assume that the limit is finite. So by the corollary of the

Banach-Alaoglu theorem, (µα + ψµα)α∈A converges weakly up to extraction of a

subsequence. Now, let us not forget that we have assumed that the generalized

sequence (µα)α∈A converges weakly to µ so, the limit being unique, (ψµα)α∈A
converges weakly to some ψµ and the condition on the divergence remains valid
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at the limit i.e. divψµ = 0. Then, by lower-semicontinuity of the total variation,

one has

H̃(µ) ≤
∫

Ω
|µ+ ψµ| ≤ lim inf

µα→µ

∫

Ω
|µα + ψµα | = lim inf

µα→µ
H̃(µα),

which proves the claim.

The previous proof, though simple uses the notion of generalized sequences.

We decide to provide an alternative proof for the lower-semicontinuity where we

are going to classical sequences.

Proof 2 of Theorem 3.3.2. Step 1: We use the notations introduced in the be-

ginning of the previous proof. To prove the lower semicontinuity, one would like

to show that if

ℓ = lim inf
µ

H̃(µ) = sup
V ∋µ

inf
V
H̃(µ)

then ℓ ≥ H̃(µ). Note that the supremum above is taken over (weak-*) open sets

V that contain µ. If (Vk)k∈N
is a sequence of open sets that contain µ, then

ℓ ≥ sup
k

inf
Vk

H̃.

Then one can find νk such that ℓ ≥ H̃(νk), with νk ∈ Vk for any k ∈ N. The

problem is that, a priori, νk does not have a limit. On the other hand, one knows

from the proof of Proposition 3.3.1 that, for any µ ∈ Mb(Ω)N ,

H̃(µ) = inf
divψ=0

∫

Ω
|µ+ ψ| =

∫

Ω
|µ+ ψµ|,

for some measure ψµ with zero divergence. The limit above can thus be written

ℓ ≥ lim sup
k

∫

Ω
|νk + ψνk

|.

Now, if one sets λk = νk + ψνk
, we get a sequence of measures that is bounded

and thus converges weakly to a measure λ. Hence ℓ ≥
∫
Ω |λ|.

Suppose that one is able to prove that for some appropriate neighborhoods

Vk, one has divλ = divµ (that is to say, div(λ− µ) = 0). Then we would get

H̃(µ) ≤
∫

Ω
|µ+ (λ− µ)| =

∫

Ω
|λ| ≤ ℓ,

that is the lower-semicontinuity that we had to prove.

Step 2: Construction of Vk. Let us first admit that there exists a sequence
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(wl)l∈N
of functions of class C1

c (Ω), that is countable and dense in the sense

that for any function w ∈ C1
c and any ε > 0, there exits an l ∈ N such that

‖∇w −∇wl‖∞ ≤ ε. Let us then set for any integer k,

Vk =
⋂

l≤k

{
ν,

∫

Ω
∇wl · ν −

∫

Ω
∇wl · µ <

1

k

}
.

These are weak-* open sets that contain µ. For any l ∈ N, if k ≥ l then, given

that divψνk
= 0, one can see that

∫

Ω
∇wl · (λk − µ) =

∫

Ω
∇wl · (νk − µ) <

1

k

and, passing to the limit, we get

∫

Ω
∇wl · (λ− µ) ≤ 0.

Now, if w ∈ C1
c (Ω) and ε > 0, given that there exists l ∈ N such that

‖∇w −∇wl‖∞ ≤ ε, one has

∫

Ω
∇w · (λ− µ) ≤

∫

Ω
∇wl · (λ− µ) + ‖∇w −∇wl‖∞

∫

Ω
|λ− µ| ≤ ε

∫

Ω
|λ− µ|,

and, ε being arbitrarily small, it follows

∫

Ω
∇w · (λ− µ) ≤ 0.

Thus replacing w by −w, we get = 0. This implies that div(λ − µ) = 0. As a

consequence, H is lower-semicontinuous, provided one can find the wl).

Step 3: Construction of wl. For any n ∈ N, let Ωn = {x ∈ Ω, d(x, ∂Ω) > 1/n}.
By the Stone-Weierstrass theorem, we know that it is possible to find, for any

n ∈ N, a sequence (vnk )k∈N
of smooth functions, with support in Ω̄n, dense in the

set of functions with the same support.

Consider ρ a regularizing kernel (that we assume to be symmetric, positive,

of class C∞, with compact support in the unit ball and such that
∫
RN ρ = 1), and

let us denote ρm(x) = mNρ(mx). Consider all the functions wk,m,n = ρm ∗ vnk ,

for any n ∈ N, k ∈ N and m > n, so that they are of compact support.

Let w ∈ C1
c (Ω) and ε > 0. Pick n ∈ N such that the support of w is in Ωn.

Then we know that ρm ∗ ∇w → ∇w uniformly when m → +∞, so if m is great

enough,

‖ρm ∗ ∇w −∇w‖∞ ≤ ε.
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Now, there exists a k such that

‖vnk − w‖∞ ≤ ε∫
B1/m|∇ρm|

.

Then, it follows

‖∇wk,m,n −∇w‖∞ ≤ ‖∇wk,m,n − ρm ∗ ∇w‖∞ + ‖ρm ∗ ∇w −∇w‖∞
≤ ‖(∇ρm) ∗ (vnk − w)‖∞ + ε

≤ ‖vnk −w‖∞‖∇ρm‖1 + ε

≤ 2ε

which is exactly what we wanted. So, we just need to choose (wl)l∈N
with an

appropriate renumbering of the countable family (wk,m,n)n∈N, k∈N, m>n.

Remark 3.3.3. This second proof may look tedious but we have to keep in mind

that the space of bounded Radon measures Mb(Ω) equipped with the weak-*

topology is not metrizable. This forced us either to use generalized sequences

(Proof 1) or work a little harder (Proof 2). If from the beginning, we had consid-

ered a bounded set of Mb(Ω) (the probability measures for instance), we could

have simply used the classical sequential criteria, the weak-* topology being then

metrizable (see [42]).

3.3.3 Dual formulation for J̃(u)

In this section, we are going to prove a dual definition for the functional J̃ ,

namely:

Theorem 3.3.4 (Dual formulation of J̃(u)). Let Ω ⊂ RN open and u ∈ BV (Ω).

Then

J̃(u) = sup
w∈C1(Ω)

∇w∈Cc(Ω)N

‖∇w‖∞≤1

∫

Ω
∇w ·Du.

If in addition, ∂Ω is connected then one simply has

J̃(u) = sup
w∈C1

c (Ω)
‖∇w‖∞≤1

∫

Ω
∇w ·Du.

Remark 3.3.5. Note that it is sufficient to require that the functions w are of

class C1 in a neighborhood of the support of the measure Du.

Proof. The proof is based on a convex duality argument. Note that we keep the

notations introduced in the previous section. Since H̃ is convex and lower semi-
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continuous, Legendre-Fenchel-Moreau’s duality theorem tells us that H̃∗∗ = H̃.

It remains to compute the Legendre biconjugate. Let us start with the Legendre

transform of H̃. For any u ∈ C0(Ω),

H̃∗(u) = sup
µ∈Mb(Ω)N

(∫

Ω
udµ−H(µ)

)

= sup
µ,ψ∈Mb(Ω)N

divψ=0

(∫

Ω
udµ−

∫

Ω
|µ+ ψ|

)

= sup
ψ∈Mb(Ω)N

divψ=0

(
sup

µ∈Mb(Ω)N

(∫

Ω
ud(µ+ ψ) −

∫

Ω
|µ+ ψ|

)
−
∫

Ω
udψ

)
.

For the moment, let us focus on

sup
µ∈Mb(Ω)N

(∫

Ω
udµ −

∫

Ω
|µ|
)
. (3.3.1)

If |u(x0)| > 1 at some point x0 ∈ Ω then by continuity ‖u‖∞ > 1 in a neighbor-

hood of x0. If one picks a measure µ, with support in this neighborhood, one

has
(∫

Ω
udµ−

∫

Ω
|µ|
)

6= 0.

Then, choosing µ′ = λµ for some λ → +∞ shows that the suprememum (3.3.1)

has to be infinite. Moreover, if ‖u‖∞ ≤ 1 then the supremum is clearly zero.

Hence,

H̃∗(u) =






sup
ψ∈ Mb(Ω)N

divψ=0

∫

Ω
udψ if ‖u‖∞ ≤ 1,

+∞ otherwise.

Reasoning as above, we claim that

sup
ψ∈ Mb(Ω)N

divψ=0

∫

Ω
udψ

is either infinite or zero. If it is zero, then De Rham’s theorem asserts that

u = ∇w for some w ∈ C1(Ω). Finally,

H̃∗(u) =

{
0 if ‖u‖∞ ≤ 1 and u = ∇w for some w ∈ C1(Ω),

+∞ otherwise.
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Now we can turn to the calculation of the Legendre biconjugate.

For µ ∈ Mb(Ω)N ,

H̃∗∗(µ) = sup
u∈C0(Ω)

(∫

Ω
udµ− H̃∗(u)

)
= sup

w∈C1(Ω)

∇w∈Cc(Ω)N

‖∇w‖∞≤1

∫

Ω
∇wdµ.

This yields the conclusion given that J̃(u) = H̃(Du) for any u ∈ BV (Ω).

The following consequence of Theorem 3.3.4 will be useful for the direct

method to apply in Section 3.6:

Corollary 3.3.6 (L2 lower-semicontinuity). Let Ω ⊂ RN open. Then J̃ has a

lower-semicontinuous extension to L2(Ω).

Proof. This is simply because for any u ∈ BV (Ω) one can write

J̃(u) = sup
w∈C∞(Ω)

∇w∈C∞
c (Ω)N

‖∇w‖∞≤1

∫

Ω
∇w ·Du = sup

w∈C∞(Ω)

∇w∈C∞
c (Ω)N

‖∇w‖∞≤1

∫

Ω
u∆w.

and the rightmost term makes sense for any u ∈ L2(Ω).

3.3.4 Dual formulation for J(u)

Theorem 3.3.7 (Dual formulation of J(u)). Let Ω ⊂ RN be a bounded open set

of class C1. Then,

Du 7→ J(u)

is lower-semicontinuous for σ(Mb(Ω̄)
N
, C(Ω̄)

N
) and for any u ∈ BV (Ω),

J(u) = sup
w∈C1(Ω̄)
‖∇w‖∞≤1

∫

Ω
∇w ·Du.

Before getting further, let us make some comments:

Remarks 3.3.8.(i) Let u ∈ H1(Ω) such that ∇u ∈ BV (Ω)N . Note the space

of functions that satisfy the latter condition were studied thouroughly in [76]

(see also Remark 2.4.18). Using the Gauss-Green formula for BV functions (see

[65, 66]), on can write

J(u) = sup
w∈C1(Ω̄)
‖∇w‖∞≤1

(∫

Ω
w∆u−

∫

∂Ω
w
∂u

∂ν

)
.
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One assumes that Ω is an open set for which the Gauss-Green formula is valid (for

instance, Ω bounded with Lipschitz continuous boundary is fine). If, in addition,

Ω is convex the then condition ‖∇w‖∞ ≤ 1 is equivalent to w being Lipschitz

continuous in Ω with ‖w‖C0,1 ≤ 1. As a consequence, if one considers the Hahn

decomposition (µ+, µ−) associated to the measure µ = ∆u− ∂u
∂ν |∂Ω

, one has

J(u) = W1(µ
+, µ−)

where

W1(µ
+, µ−) = sup

‖w‖Lip≤1

∫

Ω
wd(µ+ − µ−)

is the Kantorovitch-Rubinstein distance defined for positive finite measures. This

distance, sometimes also called Wasserstein distance, is very important in the the-

ory of optimal transportation. For more on this topic, we refer to [153, Chapters

1 and 7]. Let us point out that the previous theorem proves that

W1(µ
+, µ−) = inf

{∫

Ω
|φ| ; φ ∈ Mb(Ω)N , divφ = ∆u, φ · ν =

∂u

∂ν

}
.

This gives an alternative definition for this distance (see [153, 154]).

(ii) The fact that Ω is of class C1 is necessary if one wishes to invoke the forthcom-

ing approximation Lemma 3.3.10. Nonetheless, we suspect that this assumption

is superfluous. Getting rid of it is certainly possible but would demand lot of

technicalities as one can see it in the proof of Kantorovitch’s theorem in [153].

Indeed, Villani proves the latter theorem for a compact Ω and deduces the general

result by a truncation argument.

(iii) As already noted in Remark 3.3.5, w may not be smooth outside of supp(Du)

To prove Theorem 3.3.7, we need some intermediate results that we are going

to establish here. Let us start with a deformation lemma:

Lemma 3.3.9 (Deformation lemma). Let Ω ⊂ RN be a C1 open set with com-

pact boundary. Then for ε > 0 small enough, there exists a vector field η ∈
C∞
c (RN ,RN ) such that

(i) η(x) = 0 on {x ∈ Ω, d(x, ∂Ω) > ε},

(ii) {x+ δη(x), x ∈ Ω} ⊂⊂ Ω for any δ > 0 sufficiently small.

Proof. To begin with, we have to localize the problem. To do so, let us consider

a finite covering of ∂Ω by a family of balls (Bi = B(xi, ri))i=1,...,n that are all

centered at the boundary ∂Ω. Since Ω is smooth, one can pick these balls in such

a way that Ω ∩ Bi is a C1 subgraph. Taking if necessary smaller balls, one can
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assume that the hypersurface ∂Ω has only one connected component in Bi and

which is close to the tangent hyperplane at the point xi. This is the step where

we actually need the boundary to be regular.

Choose now ε > 0 small enough such that for Ωε = {x ∈ Ω, d(x, ∂Ω) > ε} one

has

Ω̄ \ Ωε ⊂
n⋃

i=1

Bi.

For each ball Bi, one can consider a function fi ∈ C∞(Bi) that has values in [0, 1]

and is defined by

fi(x) =

{
1 if x ∈ Bi \ Ω,

0 if x ∈ Bi ∩ Ωε.

Then, given a partition of unity (gi)i=1,...,n that is subordinate to the open cover

(Bi)i=1,...,n and an element x ∈ RN , one sets

η(x) =

n∑

i=1

−fi(x)gi(x)ν(xi)

where ν(xi) is the outer normal vector to Ω at xi. For any x 6∈ Bi, the product

fi(x)gi(x) is set to 0 so there is no definition problem. This way we defined a

vector field that has a compact support in
⋃n
i=1Bi and that vanishes on Ωε.

∂Ω

Bi

ν(xi)

ε
∂Ωε

xi

fi = 0

R
N \ Ω

Ωε

Figure 3.1: Vectorfield −fiν(xi)
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Moreover, I + δη with 0 < δ << ε is a homeomorphism from Ω to its image

{x+ δη(x), x ∈ Ω}. By the way, since we supposed that the set ∂Ω ∩ Bi is close

to the tangent hyperplane at xi and since ‖η‖∞ ≤ 1, the latter set is relatively

compact in Ω.

The previous lemma helps us proving the following approximation result:

Lemma 3.3.10 (Approximation lemma). Let Ω ⊂ RN be a C1 open set with

compact boundary. Given a measure ψ ∈ Mb(Ω̄)
N

with zero divergence and

ε > 0 small enough, there exists a sequence (φn)n∈N
of Mb(Ω)N such that

φn → ψ in the sense σ(Mb(Ω̄)
N
, C0(Ω̄)

N
).

Moreover,

(i) divφn = 0 in Ω,

(ii) φn = 0 in a neighborhood of ∂Ω,

(iii) φn = ψ in Ωε = {x ∈ Ω, d(x, ∂Ω) > ε},

(iv)
∫
Ω |φn| →

∫
Ω̄ |ψ|.

In other words, one can approximate ψ by zero divergence measures that

coincide with ψ inside Ω. Furthermore, one demands convergence of the total

variations.

Proof. Take ε, δ and η as in the previous lemma. Recall that one can let ε and

δ be as small as one wishes. Let us first introduce some notations. In the sequel,

Aδ will respresent the set {x + δη(x), x ∈ Ω}. We are also going to consider the

vector field Vδ : Ω → Aδ defined by

Vδ(x) = x+ δη(x).

And finally, if f ∈ C(Ω) or C(Ω)N , fδ will denote function f ◦ Vδ−1.

The idea of the proof is to construct a sequence (φδ)δ>0 of the form

φδ =

{
Mδ(Vδ#ψ) in Aδ,

0 in Ω \Aδ,

where Mδ is an endomorphism of Mb(Aδ)
N that we have to determine. Since

Vδ#ψ is a measure of Mb(Aδ)
N , φδ is well-defined and belongs to Mb(Ω)N . Now

it remains to find Mδ.

Let us start by writing that divψ = 0 i.e. for any w ∈ C1
c (Ω),

∫

Ω
∇wdψ = 0.
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On the other hand,

∫

Ω
∇wdψ =

∫

Aδ

(∇w)δd(Vδ#ψ)

=

∫

Aδ

(
I − δDη(x)

)T∇wδ(x)d(Vδ#ψ)(x).

For any f ∈ Cc(Ω)N and for any x ∈ Ω, one sets

(Tδf)(x) =
(
I − δDη(x)

)T
f(x).

Since η is of class C∞, Tδ is a continuous operator from C0(Aδ)
N → C0(Aδ)

N and

has, as a consequence, an adjoint operator Tδ
∗ that is continuous from Mb(Aδ)

N

to itself. We can now resume our calculation,

∫

Aδ

(
I − δDη(x)

)T∇wδ(x)d(Vδ#ψ)(x) =

∫

Aδ

Tδ∇wδd(Vδ#ψ)

=

∫

Aδ

∇wδd
(
Tδ

∗(Vδ#ψ)
)
.

Setting Mδ = Tδ
∗ and putting things together, one has proven that for any

w ∈ C1
c (Ω),

∫

Aδ

∇wδdφδ = 0.

This reflects the fact that φδ has zero divergence and thus establishes (i).

Let us get to the other items. (ii) becomes obvious if one recalls that Aδ is

relatively compact in Ω (see Lemma 3.3.9).

To prove (iii), consider a function f ∈ C∞
c (Ω)N with support in Ωε. As η = 0

on Ωε, one can write

∫

Ωε

fdφδ =

∫

Ωε

(
I − δDη(x)

)T
f(x)d(Vδ#ψ)(x) =

∫

Ωε

fdψ

and, as a consequence, φδ = ψ in Ωε.

It remains to prove item (iv). Let us start by the definition of the total

variation:
∫

Ω
|φδ| =

∫

Aδ

|φδ| = sup
f∈C∞

c (Aδ)N

‖f‖∞≤1

∫

Aδ

fdφδ.
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For such an f , one has

∫

Aδ

fdφδ =

∫

Ω

(
I − δDη

(
x+ δη(x)

))T
f
(
x+ δη(x)

)
dψ(x)

≤ sup
x∈V −1

δ (supp(f))

∥∥I − δDη
(
x+ δη(x)

)∥∥
∫

Aδ

|ψ|

≤ (1 + δ max
x∈RN

‖Dη(x)‖)
∫

Aδ

|ψ|.

It follows that

lim sup
δ→0

∫

Ω
|φδ| ≤

∫

Ω̄
|ψ|.

For the moment, let us assume that we know that φδ ⇀
∗ ψ when δ → 0. The

lower-semicontinuity of the total variation then tells us

∫

Ω̄
|ψ| ≤ lim inf

δ→0

∫

Ω
|φδ|,

which ends the proof of (iv).

The only thing that is left is to prove that for any function f ∈ C0(Ω̄),

lim
δ→0

∫

Ω
fdφδ =

∫

Ω̄
fdψ.

This is actually true since

∫

Ω
fdφδ =

∫

Ω

(
I − δDη

(
x+ δη(x)

))T
f
(
x+ δη(x)

)
dψ(x)

where the function x 7→
(
I − δDη

(
x+ δη(x)

))T
f
(
x+δη(x)

)
converges uniformly

to f with δ → 0.

Proof of Theorem 3.3.7. Step 1: Let us start by considering the convex function

H : Mb(Ω̄) → R defined by

H(µ) = inf
ψ∈Mb(Ω̄)
divψ=0
ψ·ν=0

∫

Ω̄
|µ+ ψ|.

Our goal is to apply the convex duality theorem for H and to do so we have to

prove that this function is really lsc with respect to the topology

σ(Mb(Ω̄)
N
, C(Ω̄)

N
). Actually, the semicontinuity can be proven exactly as for

the functional H̃. We thus refer to the proof of Theorem 3.3.2. Now, thanks to

Theorem 3.2.15, we know that H = H∗∗. It remains to compute the Legendre

biconjugate. Once more, it is enough to copy step by step what we did for H̃∗ in
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the proof of Theorem 3.3.4 to deduce that for any u ∈ C(Ω̄),

H∗(u) =

{
0 if ‖u‖∞ ≤ 1 and u = ∇w for some w ∈ C1(Ω̄),

+∞ otherwise.

It follows that the Legendre biconjugate is

H∗∗(µ) = sup
u∈C(Ω̄)

(∫

Ω̄
udµ−H∗(u)

)

= sup
w∈C1(Ω̄)
‖∇w‖∞≤1

∫

Ω̄
∇wdµ.

If we put things together, we have proven so far

inf
ψ∈Mb(Ω̄)
divψ=0
ψ·ν=0

∫

Ω̄
|µ+ ψ| = sup

w∈C1(Ω̄)
‖∇w‖∞≤1

∫

Ω̄
∇wdµ.

Taking µ = Du, one can see that the term to the right is exactly the expression

we are interested in. Unfortunately, it is not clear that the first term is equal to

J(u). In fact, we will see in the sequel that this is true.

Step 2: Given a measure µ ∈ Mb(Ω̄) such that µ|∂Ω = 0, we are going to

prove that

inf
ψ∈Mb(Ω̄)
divψ=0
ψ·ν=0

∫

Ω̄
|µ+ ψ| = inf

φ∈Mb(Ω)
div φ=0
φ·ν=0

∫

Ω
|µ+ φ|

hence the expected result. In fact, it would suffice to prove that for a measure

ψ ∈ Mb(Ω̄) satisfying divψ = 0 and ψ · ν = 0, there exists a sequence (φn)n∈N
of

Mb(Ω) such that div φn = 0 and φn · ν = 0 with

∫

Ω
|µ+ φn| →

∫

Ω̄
|µ+ ψ|.

This sequence has already been constructed in the previous lemma. So this is

actually the step where the regularity of the boundary comes into play. Be-

fore going further, let us point out that since Ω =
⋃
ε>0 Ωε with, we recall,

Ωε = {x ∈ Ω, d(x, ∂Ω) > ε}, then for any δ > 0, there exists ε > 0 as small as one

wishes such that |µ|(Ω \Ωε) < δ. For such an ε, the approximation lemma yields

a sequence (φn)n∈N
satisfying the two conditions divφn = 0, φn · ν = 0.



108
CHAPTER 3. AN ALTERNATIVE FOR THE TOTAL VARIATION WITH

APPLICATIONS IN IMAGING

In addition, one can write

∫

Ω̄
|µ+ ψ| =

∫

Ωε

|µ+ φn| +
∫

Ω̄\Ωε

|µ+ ψ|

=

∫

Ω
|µ+ φn| +

∫

Ω̄\Ωε

(|µ+ ψ| − |µ+ φn|).

However,

∫

Ω̄\Ωε

(|µ+ ψ| − |µ+ φn|) ≤
∫

Ω̄\Ωε

(|µ+ ψ| + |µ| − |φn|).

Since, on the one hand φn = ψ in Ωε and on the other hand
∫
Ω |φn| →

∫
Ω̄ |ψ|,

∫

Ω̄\Ωε

(|µ+ ψ| + |µ| − |φn|) →
∫

Ω̄\Ωε

(|µ+ ψ| + |µ| − |ψ|).

Finally, the assumption µ|∂Ω = 0 implies that

∫

Ω̄\Ωε

(|µ+ ψ| + |µ| − |ψ|) =

∫

Ω\Ωε

(|µ+ ψ| + |µ| − |ψ|)

≤ 2

∫

Ω\Ωε

|µ| ≤ 2δ.

Reasoning in a similar way with −
(∫

Ω̄ |µ+ ψ| −
∫
Ω |µ+ φn|

)
, we have actually

proven that for any δ > 0,

lim sup
n→∞

∣∣∣∣
∫

Ω̄
|µ+ ψ| −

∫

Ω
|µ+ φn|

∣∣∣∣ ≤ 2δ.

This establishes the announced convergence and ends the proof of the theorem.

3.4 Toward a Poincaré-type inequality for J and J̃

Theorem 3.4.1. Let u ∈ BV (Ω) and (ρε)ε>0 be a mollifying sequence associated

to a radial regularizing kernel ρ. Then, for any K ⊂⊂ Ω and ε > 0 sufficiently

small, one has

‖u ∗ ρε − u‖L1(K) ≤ CεJ̃(u,Ω) ≤ CεJ(u,Ω).

This improves a similar inequality that is proven for the total variation in [8,

Lemma 3.2], namely for ε small

‖u ∗ ρε − u‖L1(K) ≤ Cε|Du(Ω)|. (3.4.1)
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Proof. By a regularization argument, one can assume that u ∈ C1(Ω). Then,

∫

K
|u ∗ ρε − u| = sup

ϕ∈C∞
c (K)

|ϕ|≤1

∫

RN

(u ∗ ρε − u)ϕ,

where
∫

RN

(u ∗ ρε − u)ϕ =

∫

RN×RN

[u(x− εy) − u(x)] ρ(y)ϕ(x)dydx

= ε

∫

RN×RN

∫ 1

0
∇u(x− εty) · yρ(y)ϕ(x)dtdydx

=

∫ ε

0

∫

RN×RN

∇u(x− ty) · yρ(y)ϕ(x)dydxdt

=

∫ ε

0

∫

RN

∇u(z) ·
[∫

RN

yρ(y)ϕ(z + ty)dy

]
dzdt

=

∫ ε

0

∫

RN

∇u(z) ·
[∫

RN

ξ − z

tn+1
ρ̃

( |ξ − z|
t

)
ϕ(ξ)dξ

]

where we denoted z = x− ty, then ξ = z + ty and ρ̃ ∈ C∞
c (R+) such that ρ̃ = 0

on [1,+∞) and ρ̃(|y|) = ρ(y). If, for any s ∈ R, we set

η(s) =

∫ s

0
λρ̃(λ)dλ−

∫ 1

0
λρ̃(λ)dλ

and

wξ,t(z) =
1

tn−1
η

( |ξ − z|
t

)

then, given that η′(s) = sρ̃(s), one has

∇zwξ,t(z) =
ξ − z

tn+1
ρ̃

( |ξ − z|
t

)
.

So, if one sets

wϕ,t(z) =

∫

RN

wξ,t(z)ϕ(ξ)dξ,

one finally gets

∫

RN

(u ∗ ρε − u)ϕ =

∫ ε

0

∫

RN

∇u(z) · ∇wϕ,t(z)dzdt.

Moreover, wϕ,t ∈ C1(Ω) with supp(wϕ,t) ⊂ supp (ϕ) +B(0, t).
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As a consequence,

∫

RN

(u ∗ ρε − u)ϕ = J̃(u)

∫ ε

0
‖∇wϕ,t‖∞dt.

hence the claim.

A challenging question would be to know whether there exists a Poincaré

inequality in this context. In [8], (3.4.1) is a key lemma to prove the Poincaré

inequality for the total variation. To get such a result for J or J̃ there is still

some work to be done. First of all, in a bounded and smooth domain Ω ⊂ RN ,

the Poincaré inequality for J̃ should be of the form

∥∥u− PH(Ω)(u)
∥∥
L

N
N−1 (Ω)

≤ CJ̃(u)

where PH(Ω) is the orthogonal projection on {J̃ = 0} = H(Ω) the space of square

integrable harmonic functions in Ω, which is known to be closed in L2(Ω) (see

[103] for further details). The remaining ingredients for the proof to work are a

compactness theorem (that is to say, a variant of Rellich’s theorem) and also an

extension theorem similar to [8, Proposition 3.21].

3.5 Relation with the Total Variation

Let us recall that, for any open set Ω ⊂ RN and function u ∈ BV (Ω), one has

J̃(u) ≤ J(u) ≤
∫

Ω
|Du|. (3.5.1)

For the moment, we consider the one-dimensional case. Then we claim that the

three terms above are actually equal. Indeed, we have seen that

J̃(u) = sup
w′∈Cc(Ω)
‖w′‖∞≤1

∫

Ω
w′du′.

However, any function ϕ ∈ C1
c (Ω) has a primitive w, so

∫

Ω
|u′| = sup

ϕ∈C1
c (Ω)

‖ϕ‖∞≤1

∫

Ω
ϕdu′ ≤ J̃(u).

In higher dimension, one can prove in a similar way that the total variation

coincides with J and J̃ for any radial u ∈ BV (Ω).

Though, we cannot expect such a result to hold in general. For instance, we

know that J̃ vanishes on harmonic functions which is not true for TV (see also the

numerical simulations of Section 3.6.3). Therefore, we could ask oneself: when
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does equality occur? We will see in this chapter that the three terms in (3.5.1)

are actually equal if u is the characteristic function of a set of finite perimeter.

Then in the second part of this section, we are going to generalize this result

to functions of bounded variation whose diffuse part vanishes. Our proofs rely

on a localization argument that is possible thanks to a covering lemma that we

need to recall. Since we are also going to use some results on the structure of the

derivative of BV functions, we are going to detail them.

3.5.1 A covering lemma

Theorem 3.5.1 (Besicovitch-Vitali covering lemma). Given µ a Radon measure,

A ⊂ RN a measurable set and B a family of closed balls with positive radii such

that, for any x ∈ A,

inf{r,B(x, r) ∈ B} = 0.

Then there exists a countable and disjoint (Bi)i∈N
such that

µ

(
A \

⋃

i∈N

Bi

)
= 0.

If in addition, one is given ε > 0, one can choose the balls Bi such that

∑

i∈N

µ(Bi) ≤ µ(A) + ε.

We refer to [118] for a proof of this classical result of geometric measure theory.

3.5.2 The case of sets of finite perimeter

Let us recall that given an open set Ω ⊂ RN , a set E is of finite perimeter in Ω

if the quantity P (E,Ω) =
∫
Ω |DχE|, called perimeter, is finite.

Regularity of sets of finite perimeter

Definition 3.5.2. Let Ω ⊂ RN open, E be a set of finite perimeter in Ω. Then

one defines its reduced boundary ∂∗E as the Borelian set of all points x ∈ RN

such that

(i)
∫
B(x,r) |DχE| > 0 for any r > 0,

(ii) the limit ν(x) = − lim
r→0

∫
B(x,r)DχE∫
B(x,r) |DχE|

exists,

(iii) |ν| = 1.
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Actually, in case ∂E is a C1 hypersurface, ∂∗E = ∂E, ν is exactly the outer

normal vector to Ω and one has

DχE = −νHN−1
|∂E .

This remark motivates the first of the two following theorems. As for the

second theorem, it states that any set of finite perimeter has tangent hyperplanes

in a weak sense. These formulation of Theorems 3.5.3 and 3.5.4 are borrowed

from [92].

Theorem 3.5.3 (De Giorgi). Let Ω ⊂ RN open and E be a set of finite perimeter

in Ω. Then,

(i) ∂∗E ⊂ ∂E,

(ii) DχE = −νHN−1
|∂∗E ,

(iii) |DχE | = HN−1
|∂∗E .

Theorem 3.5.4 (De Giorgi). Let Ω ⊂ RN open, E be a set of finite perimeter

in Ω and x ∈ ∂∗E. Given r, ε > 0, one sets

Sr,ε(x) = {y ∈ B(x, r); |〈ν(x), y − x〉| ≤ rε},
Tr,ε(x) = B(x, r) \ Sr,ε.

Then,

lim
r→0

r1−n
∫

Tr,ε(x)
|DχE| = 0,

lim
r→0

r1−n
∫

Sr,ε(x)
|DχE| = ωN−1,

where ωN−1 is the Lebesgue measure of the unit ball of RN−1.

Equality for sets of finite perimeter

Theorem 3.5.5. For any open set Ω ⊂ RN and any set E of finite perimeter in

Ω, one has

J̃(χE) = J(χE) = P (E,Ω).

Proof. We recall that

J̃(u) = sup
∇w∈Cc(Ω)N

‖∇w‖∞≤1

∫

Ω
∇w ·Du
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for any u ∈ BV (Ω) and in particular for u = χE. To prove the announced result,

we can approximate P (E,Ω) by the integral
∫
Ω ∇wε ·DχE where we have to pick

the functions wε ∈ C1
c (Ω) judiciously. The key point is that we have to construct

them in such a way that, locally, their gradients coincide on average with the

normal vector to E. In what follows µ will denote the measure HN−1
|∂∗E

. We also

fix a real ε ∈ ]0, 1[.

At first, we must find a covering of ∂∗E. This way we can localize the problem.

Given a point x ∈ ∂∗E, Theorem 3.5.3 asserts that on the one hand

∫

B(x,r)
ν(x) · ν(y)dµ(y) = −

∫

B(x,r)
ν(x) ·DχE

and on the other hand
∫

B(x,r)
|DχE | = µ(B(x, r)).

So by definition of ν(x), there exists r0(x) such that for any r < r0(x),

∫

B(x,r)
ν(x) · ν(y)dµ(y) = (1 + η1(r))µ (B(x, r)) ,

where |η1(r)| < ε.

Then, let us consider the family of balls B = (B(x, rx)) x∈∂∗E
0<rx<r0(x)

. As we can

apply the covering lemma, there exists a countable subfamily (Bi = B(xi, ri))i∈N

of pairwise disjoint balls. Since the balls of B are as small as one wishes, one can

assume that

∑

i∈N

rN−1
i < +∞. (3.5.2)

This hypothesis will be useful in the end of the proof.

Furthermore, one has

µ(∂∗E) =
∑

i∈N

µ(Bi) =
n∑

i=1

µ(Bi) + η2

where one can choose the integer n in such a way that η2 < ε.

In what follows, Si denotes the set Sri,ε(xi) introduced in the statement of

Theorem 3.5.4 and S′
i is the set Sri,ε(xi) + 2riεν(xi). For any y ∈ Bi, one sets

wi,ε(y) =






y · ν(xi) + riε if y ∈ Si ∩ (1 − 4ε)Bi,

−y · ν(xi) + 3riε if y ∈ S′
i ∩ (1 − 4ε)Bi,

0 if y ∈ Bi \ [(Si ∪ S′
i) ∩ (1 − 2ε)Bi] .
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We represent in the following figure the latter construction

2riε

2riε

ν(xi)

wi,ε(y) = ν(xi) · y

xi

ri

Bi

wi,ε = 0

wi,ε = 0

wi,ε(y) = −ν(xi) · y
∂∗E

Figure 3.2: Construction of wi,ε.

Moreover, for any i ∈ N, one requires that wi,ε decreases regularly and

that it vanishes on (Si ∪ S′
i) \ (1 − 2ε)Bi while keeping a gradient that satisfies

‖∇wi,ε‖∞ ≤ 1. The following figure will clarify the final construction:

2riε

2riε

ν(xi)

wi,ε(y) = ν(xi) · y

xi

ri
wi,ε = 0

wi,ε = 0

wi,ε(y) = −ν(xi) · y
∂∗E

Bi
ε

Figure 3.3: Graph of wi,ε.

As each wi,ε is of compact support in Bi and since these balls were chosen to
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be pairwise disjoint, then one can define wε on Ω by

wε(y) =

{
wi,ε(y) if y ∈ ⋃ni=1Bi,

0 otherwise.

One can clearly see that wε is Lipschitz continuous, that it has compact support

in Ω and that ‖∇wε‖∞ ≤ 1.

Then by the previous covering result, it follows

∫

Ω
∇wε ·DχE =

n∑

i=1

∫

Bi

∇wε ·DχE

=

n∑

i=1

(∫

Si

ν(xi) · ν(y)dµ(y) −
∫

S′
i

ν(xi) · ν(y)dµ(y)

)

−
n∑

i=1

(∫

Si\(1−4ε)B̄i

ν(xi) · ν dµ −
∫

S′
i\(1−4ε)B̄i

ν(xi) · ν dµ
)

+
n∑

i=1

∫

(1−2ε)Bi\(1−4ε)B̄i

∇wε ·DχE.

At first, remark that thanks to Theorem 3.5.4, one could have chosen from the

beginning a covering such that the general term of the first series equals

(1 + η1(ri))

(∫

Si

|DχE| −
∫

S′
i

|DχE |
)
.

Moreover, Theorem 3.5.4 also asserts that for a radius r0(xi) that is supposed to

be small,

∫

Si

|DχE | −
∫

S′
i

|DχE | = (1 + η3(ri))µ(Bi),

with |η3(ri)| < ε.

As for the term that is made of the two other sums, let us denote it η4(ε), its

absolute value is not greater than

C
n∑

i=1

[
µ
(
Bi \ (1 − 4ε)B̄i

)]
≤ CεN−1

n∑

i=1

rN−1
i ≤ C ′εN−1,

with a constant C ′ that does not depend on n, by assumption (3.5.2). So, when-

ever ε is small, η4(ε) is also small.
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All in all,

∫

Ω
∇wε ·DχE =

n∑

i=1

(1 + η1(ri)) (1 + η3(ri))µ(Bi) + η4(ε)

≥ (1 − ε)2(µ(∂∗E) − η2) + η4(ε)

≥ (1 − ε)2
(∫

Ω
|DχE| − ε

)
+ η4(ε).

Making ε→ 0 ends the proof provided that the function wε is smooth. This can

be achieved by regularizing and throwing away sets of µ-measure small. We can

therefore safely assume that wε lies in C∞
c (Ω).

Remark 3.5.6. Actually, in this proof we merely used

J̃(u) ≥ sup
∇w∈Cc(Ω)N

‖∇w‖∞≤1

∫

Ω
∇w ·Du,

and not the duality result for J(u).

Theorem 3.5.4 that we used several times in this proof hides a very interesting

property of any set of finite perimeter: its boundary is (N − 1)-rectifiable. We

will get back to this notion later but let us recall its definition here:

Definition 3.5.7. Given some integer d, a set E ⊂ Ω is d-rectifiable (or simply

rectifiable whenever d = N − 1) if there exists a countable family of surfaces Γi
of dimension d, where each Γi is, up to a change of coordinates, the graph of a

C1 function, and such that

Hd

(
E \

⋃

i

Γi

)
= 0.

This definition suggests that the case where E of class C1 is of particular

interest. Under this assumption, it seems more natural to consider the signed

distance d̄(x,E) = d(x,Ω \ E) − d(x,E) instead of the function wε. The normal

vector to E can then be obtained as the gradient of d̄(·, E). Nonetheless, one still

has to address the question of the regularity of this function. A general rule is

that the regularity of the signed distance in the neighborhood of ∂E is directly

related to the regularity of the boundary ∂E. In [74] (see also [9]), Delfour and

Zolésio establish the equivalence for a domain whose boundary is (at least) C1,1.

They prove in particular the following result:
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Theorem 3.5.8. Let E ⊂ RN of class C1,1. Then for any x ∈ ∂E, there exists

a neighborhood of x where d̄(·, E) is of class C1,1 and one has ∇d̄(x,E) = ν(x).

The proof of this theorem is based on the fact that, locally, one has a good

notion of projection on the set ∂E (i.e. existence of a local and unique orthogonal

projection). This unfortunately fails in case the boundary ∂E is only C1. Actu-

ally, in the same textbook the authors consider a simple domain of class C1,1−1/n

with n ≥ 1 such that its signed distance is not even C1. This is the reason why

we had to construct the function wε as we did.

3.5.3 Generalization to BV functions with vanishing diffuse part

Structure theorem for BV functions

In [8], Ambrosio, Fusco and Pallara are interested in continuity and differen-

tiability in a weak sense of BV functions. They also give a precise descrip-

tion of Du that we are going to recall here. Given an open set Ω ⊂ RN and

u ∈ BV (Ω), Radon-Nikodym’s theorem asserts that one has a decomposition

Du = Dau + Dsu where Dau is a measure that is absolutely continuous with

respect to the Lebesgue measure of RN whereas Dsu is the singular part. In

fact, the absolutely continuous part can be obtained by differentiating almost

everywhere i.e. Du = ∇udx + Dsu. As for the singular part, one can actually

decompose it as Dsu = Dju+Dcu where Dcu is the Cantor part of the derivative.

In the sequel, we will forget about this part and will consider only BV functions

whose diffuse part Dau+Dcu vanishes. As for the jump part Dju, we recall that

it is defined by restricting the measure Dsu to the jump set Ju:

Definition 3.5.9. Let Ω be an open set of RN and u ∈ L1
loc(Ω)

M
. We are going

to say that x ∈ Ω is a jump point of u whenever there exists u+(x), u−(x) ∈ RM

and a unitary vector ν(x) such that

lim
r→0

1

|B±
r (x, ν(x))|

∫

B±
r (x,ν(x))

|u(y) − u±(x)| = 0

where B±
r (x, ν(x)) = {y ∈ B(x, r);±|〈ν(x), y − x〉| > 0}.

The set of jump points of u will be denoted Ju and [u](x) will designate the value

u+(x) − u−(x) of the jump.

The following theorem gives a precise description of the jump part of the

derivative Du:
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Theorem 3.5.10 (Federer-Vol’pert). For any Ω ⊂ RN open and u ∈ BV (Ω),

Ju is an (N − 1)-rectifiable set. Moreover,

|Du||Ju
= |[u]|HN−1

|Ju
,

Du|Ju
= [u]νHN−1

|Ju
.

If one denotes ν⊥(x) the hyperplane that is orthogonal to ν(x), then for any

ϕ ∈ C1
c (Ω)

N
, one has

lim
r→0

r1−N
∫

Ω
ϕ

(
y − x

r

)
|Du|(y) = |[u](x)|

∫

ν(x)⊥
ϕ(y)dHN−1(y),

lim
r→0

r1−N
∫

Ω
ϕ

(
y − x

r

)
·Du(y) = [u](x)ν(x) ·

∫

ν(x)⊥
ϕ(y)dHN−1(y),

for HN−1-a.e. x ∈ Ju.

Remark 3.5.11. First of all, in case u = χE with E a set of finite perimeter,

Ju coincides with the reduced boundary ∂∗E up to a set of HN−1-measure zero

(see [8, Example 3.68]). At this point, it is also interesting to observe that

the theorem we just stated actually generalizes Theorems 3.5.3 and 3.5.4 of the

previous section.

Equality for purely jump BV functions

The following theorem was announced in the conference papers [100, 101].

Theorem 3.5.12. Let Ω be an open set in RN and u ∈ BV (Ω) whose diffuse

part vanishes i.e. such that Du = [u]νHN−1
|Ju

, then

J̃(u) = J(u) =

∫

Ω
|Du|.

Remark 3.5.13. In light of Remark 3.5.11, the previous theorem generalizes

the one given for sets of finite perimeter. Nonetheless, this theorem is much

more general since it proves that the equality remains valid even though the

Hausdorff measure HN−1(Ju) is not finite. Actually, only the rectifiability of Ju,

and therefore the existence of tangents in a weak sense, really matters.

Proof. Step 1 : First, we assume that HN−1(Ju) < +∞. The strategy of this

proof is similar to that of Theorem 3.5.5. Thus, since

J̃(u) = sup
∇w∈Cc(Ω)N

‖∇w‖∞≤1

∫

Ω
∇w ·Du,
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we have to approximate
∫
Ω |Du| by

∫
Ω ∇wε.DχE, as in the proof of Theorem 3.5.5.

To begin with, let us localize the problem. First we need to fix some 0 < ε < 1.

Theorem 3.5.10 asserts that there exists r0 > 0 such that for HN−1-a.e. x ∈ Ju
and rx ≥ 0,

∫

B(x,rx)
|Du| = ωN−1rx

N−1 (1 + η1(rx))
∣∣[u](x)

∣∣

and

∫

B(x,rx)
ν(x) ·Du = ωN−1rx

N−1 (1 + η2(rx)) [u](x),

with |η1(rx)|, |η2(rx)| < ε whenever rx < r0.

The covering theorem asserts that the family (B(x, rx))x,rx admits a countable

and disjoint subcovering, denote in the sequel (Bi = B(xi, ri))i∈N
, and whose balls

satisfy

∑

i∈N

HN−1(Bi) = HN−1(Ju).

We will not deal with the construction of the functions wi,ε in each ball and the

problems that might occur at the boundary to define a global wε. We already

took care of this in the proof of Theorem 3.5.5. In the sequel, it is enough to

know that wε = wi,ε in each Bi and that ∇wi,ε = sgn([u](xi))νxi in Bi.

Then, by the covering result, one gets

∫

Ω
∇wε ·Du =

∑

i∈N

∫

Bi

∇wi,ε ·Du.

Though, for any i ∈ N,

∫

Bi

∇wi,ε ·Du = ωN−1r
N−1
i (1 + η2(ri)) sgn([u](xi))[u](xi)

= (1 + η1(ri))
−1(1 + η2(ri))

∫

B(xi,ri)
|Du|

≥ (1 + ε)−1(1 − ε)

∫

B(xi,ri)
|Du|.

This is where we used several times Federer-Vol’pert’s theorem. In fine, summing

with respect to i, one has

J̃(u) ≥ lim sup
ε→0

∫

Ω
∇wε ·Du ≥

∫

Ω
|Du|.

Step 2 : In case HN−1(Ju) = +∞, it is proven in [8, Proposition 4.2] that Ju is

a Borel set that is σ-finite with respect to HN−1. This means that there exists

an increasing sequence (Kn)n∈N of subsets of RN such that Ju =
⋃
n∈N

Kn and
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HN−1(Kn) < +∞. Then, by the previous reasoning, for fixed n ∈ N and ε > 0,

one can construct a function wε,n such that

∫

Ω
∇wε,n ·Du|Kn

≥ (1 + ε)−1(1 − ε)

∫

Ω
|Du||Kn

and the conclusion follows in the same way as in first step.

Remark 3.5.14. Our proof can be readily adapted to show that the so-called

TGV 2 introduced in both [26, 40] equals the total variation for functions with

vanishing diffuse part Du = [u]νHN−1
|Ju

. In other words, one has

J(u) = J̃(u) = TGV 2(u) = TV (u).

Example 3.5.15. In some simple cases, it is actually possible to shorten the

previous proof. Suppose, for instance, that the function u ∈ BV (Ω) is of the

form u =
∑

i λiχEi and the sets Ei form a countable increasing sequence, that is

to say, one has Ēi ⊂⊂ Ei+1. One assumes in addition that each boundary ∂Ei is

of class C1,1. In this case, one can actually exhibit a function w that is smooth

and such that

J̃(u) =

∫

Ω
∇w ·Du =

∫

Ω
|Du|.

Since (Ei)i is increasing, there exists (Vi)i a sequence of open and disjoint neigh-

borhoods such that ∂Ei ⊂ Vi and ∂Ei+1 ⊂ Vi+1. As explained in Remark 3.3.5,

it is not necessary to define w outside the disjoint union
⊔
i ∂Vi, which is a neigh-

borhood of supp(Du) =
⊔
i ∂Ei. Then let us set

w = −
∑

i

d̄(·, Ei) in Vi

where we recall that d̄ is the signed distance defined by

d̄(x,Ei) = d(x,Ω \Ei) − d(x,Ei).

Then, Theorem 3.5.8 asserts that w is C1,1 in a neighborhood of supp(Du) and

that ∇w = −ν. As a consequence,

J̃(u) ≥
∫

Ω
∇w ·Du = −

∑

i

∫

∂Ei

ν ·Du =

∫

Ω
|Du|

and the conclusion follows.
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3.6 Application to image processing

3.6.1 ROF revisited

In 1992, Rudin, Osher and Fatemi (ROF) introduced the total variation, in their

article [141], as a regularizing criterion for inverse problems in imaging. Total

variation has been fruitful in image restoration since it can regularize images

without smoothing the edges. We propose a possible approach to tackle the

problem of restoring a degraded image by replacing the TV term by the functional

J̃ . Given g ∈ L2, we are thus interested in the problem

min
u∈L2(Ω)

F(u) = λJ̃(u) +
1

2
‖u− g‖2

2, (3.6.1)

parametrized by λ ≥ 0. We recall that Corollary 3.3.6 asserts that J̃(u) is well-

defined for any u ∈ L2(Ω).

Proposition 3.6.1. Let Ω ⊂ RN be open and g ∈ L2(Ω). Then F has a unique

minimizer uλ in L2(Ω).

Proof. Consider a minimizing sequence (un)n∈N
such that F(un) → infΩ F . As

F(un) ≤ F(0) < +∞, (un)n∈N
is bounded in L2(Ω). Then up to extraction

of a subsequence, still denoted (un)n∈N
, it converges in L2(Ω) weakly and also

pointwise to some uλ. Since (un)n∈N
is a minimizing sequence, we observe con-

vergence of the norms. Thus (un)n∈N
converges strongly in L2(Ω) and by lower-

semicontinuity of J̃ (Corollary 3.3.6) together with Fatou, we get

F(u) ≤ lim inf
n→∞

F(un) = inf
Ω

F(uλ).

This proves the existence of a minimizer, namely uλ. It is unique by strict con-

vexity of F .

Remark 3.6.2. We did not need any compactness result for functional J̃ . Only

the L2-semicontinuity is important.

Once, the existence of a minimizer is established, it is often interesting to

compute an explicit solution. This is the object of the next part.

3.6.2 An explicit solution

In this section, let us assume that N ≥ 2 and Ω = RN .

Proposition 3.6.3. Let g = CχB(0,1) and λ ≥ 0. Then, if C ≥ λN , the mini-

mizer of F is

uλ = (C − λN)χB(0,1).
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Remark 3.6.4. This is to be compared with the well-known result for TV (see

[13]): under the previous assumptions, the minimizer of (ROF) is

uλ = (C − λN)χB(0,1).

Proof of Proposition 3.6.3. If N = 2, let us first set

w(x) = λ×
{
−1

2 |x|2 if |x| ≤ 1,

− ln |x| − 1
2 otherwise,

and for N ≥ 3,

w(x) = λ×





−1

2 |x|2 if |x| ≤ 1,

1
N−2

1
|x|N−2 + C ′ otherwise.

Then

∇w(x) = λ×





−x if |x| ≤ 1,

− x
|x|N

otherwise,

hence

∆w(x) =

{
−λN if |x| ≤ 1,

0 otherwise.

This tells us that

uλ − g = ∆w. (3.6.2)

Thus,

∫

Ω
∇w ·Duλ =

∫

Ω
|Duλ|.

From Theorem 3.3.4 and the fact that J̃(u) ≤
∫
Ω |Du|, it follows

λJ̃(uλ) =

∫

Ω
∇w ·Duλ = −

∫

Ω
uλ(uλ − g)

Now considering some v ∈ L2(Ω), (3.6.2) implies that

λJ̃(v) ≥
∫

Ω
∇w ·Dv = −

∫

Ω
v(uλ − g).



3.6. APPLICATION TO IMAGE PROCESSING 123

Therefore,

F(v) −F(uλ) ≥ −
∫

Ω
(v − uλ)(uλ − g) +

1

2

∫

Ω

(
(v − g)2 − (uλ − g)2

)

=

∫

Ω
(v − uλ)(g − uλ) +

∫

Ω
(v − uλ)

(
uλ + v

2
− g

)

=
1

2

∫

Ω
(uλ − v)2 ≥ 0

hence uλ is the minimum of F .

3.6.3 Numerical aspects

Discretization

From now on, an image u will be represented by an N×N matrix with real entries

i.e. an element of X = RN×N . To simplify matters in the sequel, especially

when we shall consider the discrete Fourier transform of u, we assume that the

image u is also periodic and defined for all k ∈ Z by ui+kN,j+kN = ui,j with

i, j ∈ {1, ..., N}.
To define the total variation of the image u, we first have to introduce a

discretized version of the gradient. For u ∈ X, it is the vector ∇u of Y = X ×X

given by

(∇u)i,j =

(
ui+1,j − ui,j
ui,j+1 − ui,j

)
,

for i, j = 1, ..., N .

Let us also introduce two important operators: the divergence div p of an

element p ∈ Y and the Laplacian ∆v of an image v. By analogy with the

continuous setting, we want them to satisfy

〈div p, u〉X = −〈p,∇u〉Y and ∆v = div∇v, (3.6.3)

for all u ∈ X.

The classical discrete approach

Given a noisy image g which has also been exposed to a linear perturbation A, the

Rudin, Osher and Fatemi method suggests to minimize the following functional

E(u) =
1

2
‖Au− g‖2

2 + λTV (u) (3.6.4)

to restore the image g. The positive parameter λ controls the regularization level.

Here, TV (u) is the most simple approximation of the total variation of u ∈ X
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and is defined by

TV (u) =
∑

i,j

|(∇u)i,j|,

where | · | is simply the Euclidian norm of R2.

The discrete approach based on the variant J(u)

Let u ∈ X be an image. The main idea is to replace the TV term in (3.6.4) by

J(u) = min
p∈Y

Πp=∇u

‖p‖1

where on the one hand, ‖p‖1 =
∑

i,j

√
(p1
i,j)

2
+ (p2

i,j)
2

when p = (p1, p2) ∈ X×X
and on the other hand, Π is the projection on the gradients defined by Πp = ∇v̄,
where v̄ realizes the minimum

min
v∈X

‖∇v − p‖2. (3.6.5)

Here ‖ · ‖2 is the Euclidian norm of Y . Remark by the way that we have

J(u) ≤ TV (u)

for any u ∈ X. This is a straightforward consequence of the definition.

Now, it should be noted that, the solution of (3.6.5) is characterized by the

Euler-Lagrange equation

∇∗(∇u− p) = 0

or, using the notation introduced in (3.6.3),

∆u = div p,

(we recall that our operators ∇, div and ∆ are here discrete operators with

periodic boundary conditions). Therefore,

J(u) = min
p∈Y

div p=∆u

‖p‖1.

Hence, the Rudin, Osher and Fatemi’s problem expressed in terms of this new

functional consists in minimizing

F(p) =
1

2
‖Au− g‖2

2 + λ‖p‖1

over (p, u) which satisfy the constraint u = ∆−1 div p.
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Figure 3.4: Approximation of a basis element ∆−1 div(δ0, 0) of J

Lately, minimization of such functionals has attracted lot of attention and was

the subject of many papers. Among those, the recent articles [132, 21, 59] (see

Chapter 5 for further details) focus on the minimization of objective functions

which can be decomposed as a sum namely

min
x
F (x) +G(x)

where G is a continuously differentiable convex function whose gradient is Lip-

schitz continuous and F is a continuous convex function which is possibly non-

smooth but is simple in the sense that its proximal operator is easy to compute

(see Combettes and Wajs [69] for more on the subject). These characteristics

suit perfectly the two terms composing F and we henceforth denote

G(p) =
1

2
‖A∆−1 div p− g‖2

2 and F (p) = ‖p‖1.

In the sequel, we detail, as an example, the implementation of the algorithm of

Beck-Teboulle. As just said, we could have also used the Primal-Dual algorithm

instead. Now let us denote L the Lipschitz constant of ∇G. In their article, Beck

and Teboulle describe the following scheme to construct a minimizing sequence

(pn)n∈N
for F :

Algorithm 3.1 proposed by Beck and Teboulle in [21]

• Initialization: q1 = p0 ∈ Y, t1 = 1,

• Iterations: For n ≥ 1 consider the following updates

pn = argmin

{
G(qn) + 〈p− qn,∇G(qn)〉Y +

L

2
‖p− qn‖2

2 + ‖p‖1, p ∈ Y

}
,

tn+1 =
1 +

√
1 + 4t2n
2

,

qn+1 = pn +

(
tn − 1

tn+1

)
(pn − pn−1).
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In the present case, one actually has

pn = argmin

{∑

i,j

(
pi,j · (γn)i,j +

L

2
|pi,j − (qn)i,j |2 + λ|pi,j |

)
, p ∈ Y

}
,

where γn = ∇G(qn) = (A∆−1 div)∗(A∆−1 div qn − g), that can be computed

easily with the Fourier transform if A itself can be calculated thanks to the

Fourier transform (this is true for the convolution or the Radon transform for

instance). The previous sum can be minimized termwise, thus it follows

(pn)i,j = max

(
0,
∣∣(xn)i,j

∣∣− λ

L

)
(xn)i,j∣∣(xn)i,j

∣∣

with (xn)i,j = (qn)i,j −
(γn)i,j

L . Moreover, in case A is the convolution with a

Gaussian, one has L = 1
2(1 − cos(2π

N ))
−1

.

Let us remark that in the algorithm proposed by Beck and Teboulle, each

iteration requires only one computation of the gradient ∇G. Whereas, a similar

algorithm proposed by Nesterov in [132], each iteration demands the computation

of the gradient ∇G at two different locations, which slows down notably the

overall calculation. Though, from a theoretical point of view, the algorithms of

Nesterov and Beck-Teboulle both converge as O( 1
n2 ) (see Chapter 5).

Experimental results

Characteristic function of a square

Even though we proved that J , J̃ and TV coincide on characteristic functions of

sets of finite perimeter, it is not true that the minimizers of (3.6.1) are identical.

In the following simulation, the datum is the characteristic of a square S:

Figure 3.5: Graph of g = χS , the TV -minimizer and the J-minimizer, respec-
tively. The regularization parameter is kept constant.
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Absence of staircasing

Let us consider the function g : R2 → R defined by g(x, y) = x2 − y2. As seen

in Proposition 3.3.1, J̃(g) = 0 which means that it should be restored perfectly

whereas the minimizer of TV will necessary have a flat region in a neighborhood

of the origin. This can actually be seen in the following experiments:

Figure 3.6: Graph of g, the TV -minimizer and the J̃-minimizer, respectively.
One kept λ = 100.

Real images

In the sequel, we compare J with TV for natural images. The images we consid-

ered are not periodic so we used the periodic+smooth decomposition introduced

by Moisan in [125] to get a proper periodic image. This way we can use the

discrete Fourier transform without having any artifact near the boundary. For

the TV -minimization we use the Primal-Dual algorithm whereas we get the J-

restored images with the algorithm of Beck-Teboulle. The resulting images are

obtained after 250 iterations of both of these algorithms, which is fair enough

according to the results of Section 5.6.

Here follows a first experiment for a clean image:

Figure 3.7: Image Lena, its TV -minimizer and its J-minimizer obtained with
λ = 25, respectively.
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Let us remark that the underlying vectorfield p which minimizes F is quite

different from the gradient of the J-restored image though p characterizes quite

well the boundaries in the image:

Figure 3.8: Vectorfield p minimizing F and ∇u = ∇∆−1 div p, respectively. Hue
indicates the field direction, and saturation indicates the magnitude.

If one increases the value of the parameter λ one expects the same smoothing

effect as TV . Though, as for TV the edges are quite well preserved:

Figure 3.9: Lena, its TV -minimizer and its J-minimizer for λ = 100, respectively.

Noisy image 1:

PSNR=22.1 dB PSNR=29.4 dB PSNR=29.3 dB

Figure 3.10: Image Boats that underwent an addition of a white Gaussian noise
of standard deviation σ = 20, its TV -minimizer and its J-minimizer obtained
with λ = 25, respectively.
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Noisy image 2:

PSNR=22.1 dB PSNR=24.7 dB PSNR=24.6 dB

Figure 3.11: Image Barbara that underwent an addition of a white Gaussian noise
of standard deviation σ = 20, its TV -minimizer and its J-minimizer obtained
with λ = 25, respectively.

Blurry and noisy image:

PSNR=18.6 dB PSNR=20.9 dB PSNR=21.2 dB

Figure 3.12: Image Peppers that underwent a Gaussian blur of standard deviation
σ = 3 and was contaminated by a white Gaussian noise of standard deviation σ =
20, the TV -minimizer and the J-minimizer obtained with λ = 25, respectively.

3.7 Conclusion and perspective

In this chapter, we studied an alternative for the total variation and we gave some

applications to image processing. The actual functional we propose coincides with

the total variation on cartoon images. This was proven by first establishing a dual

formulation and then using some known results on the regularity of the disconti-

nuity set of a function of bounded variation.
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The latter formulation also helps proving a first result toward a Poincaré-type

inequality. It is actually not clear to us whether such an inequality can hold in

this context.

Another interesting question would be to prove that the canonical space,

normed by the functional we proposed, is embedded in some Besov space. By

definition, this canonical space contains BV .

The “projection on the gradients” of the introduction can be rewritten in RN

in terms of the Riesz transformation (see [146] on the subject). This seems to be

related to the work of Michaël Unser [151] where steerable wavelets are defined

via Riesz tranformations. This connection could be investigated in a future work.

Another related question that remains unsettled: does the Helmholtz decom-

position make sense for measures? The answer is not clear though in [19], the

authors prove that such a result does not hold for 1-forms.
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4.1 Introduction

Traditional methods in image processing are based on local properties of images

(wavelets, total variation). Recently, state of the art results were achieved by

non-local or semi-local methods that exploit redundancies in images. The idea

of using self-similarities in images was first exploited in [44] for the denoising

problem. They indeed propose a (semi-)non-local filter that averages similar

patterns of a noisy image g = g0 + n defined on Ω ⊂ R2 even though these

self-similarities occur at large distance. The filter reads as follows

NLMeans(g)(x) =
1

C(x)

∫

Ω
g(y) exp

(
−‖pg(x) − pg(y)‖

h

)
dy

where pg(x) and pg(y) are patches of the noisy image g and h determines the

selectivity of the similarity measure. As already noted the idea of looking at such

a term dates back to the filter

Y (g)(x) =
1

C(x)

∫

Ω
g(y) exp

(
−‖g(x) − g(y)‖

h

)
dy

proposed in [157] which merely compares gray levels. It was actually observed

that the NLMeans filter yields much better results if one seeks for similar patches

in a subdomain of the image, referred to as the window. This is why this filter is

not fully non-local. Many modifications of this filter were considered for denois-

ing purposes (adaptive h, adaptive window [104], non-square patches [73], shape

adaptive patches [70]).

Though, an important drawback of the NLMeans filter is that the image is

not processed if no similar patches are found. This phenomenon is referred to

as the rare patch effect. To remedy this artifact, the authors of [110] propose

to mix local and non-local methods by preprocessing the patches with the total

variation. The regularization parameter being set locally so that one gets enough

similar patches.

The use of patches has been widely adopted in the image processing commu-

nity and in the recent years, these non-local methods were extended to the study

of general inverse problems (see [91, 90, 135, 15]). Such a general inverse problem

can be modelled as follows:

g = Ag0 + n

where g0 is the original image defined on Ω ⊂ R2, A is a linear transformation

and n is a Gaussian white noise. The classical local methods were adapted by
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considering a pointwise Non-Local regularization as introduced in [91]

Jw(u) =

∫

Ω×Ω
|u(x) − u(y)|αw(x, y)η(x − y)dxdy

for some α ≥ 1 and where w(x, y) = exp
(
−‖pg(x)−pg(y)‖

h

)
is the weight function

used in the NLMeans filter and is based on the Sum of Squared Differences

(henceforth called SSD distance). As for η, it is a function of compact support

centered at the origin. It indicates that patches that are too far from each other

should not be taken into account. The support of η is referred to as the search

window.

Peyré et al. proposed in [136] (see also [15]) to replace the latter term by a

patchwise Non-Local regularization

Jw(u) =

∫

Ω×Ω
‖pu(x) − pu(y)‖w(x, y)η(x − y)dxdy

that is able to reconstruct entire patches. To get a restored image one therefore

has to minimize the following non-local energy

E(u) =
1

2
‖Au− g‖2

2 + λJw(u).

It is further remarked that one can enhance the restoration by recomputing the

weight w(x, y) on the being processed image. In [15, 136], the authors proposed a

general framework where the weight w(x, ·) is interpreted up to renormalization

as a density of probability and is an unknown of the problem. The energy to be

minimized is then

E(u,w) =
1

2
‖Au− g‖2

2 + λJw(u) − h2

∫

Ω×Ω
w logw (4.1.1)

which involves the potential energy of w(x, ·), used to infer unknown probabil-

ity distributions. The energy E is obviously not convex in w and an alternate

coordinate descent gives back the SSD-based weight but computed this time on

the being processed u. This corresponds actually to the aforementioned weight

recomputation procedure.

In this chapter, we are going to deal with the problem of restoring miss-

ing Fourier coefficients of an image. Our aim is to adapt the abovementioned

patchwise Non-Local Regularization by proposing an original way of computing

the distance between patches, that is adapted to the problem of spectrum com-

pletion. This problem, though interesting by itself, has several applications for

general inverse problems. This is the object of the next part.
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4.2 Motivation

In this section, we consider the problem of retrieving missing Fourier coefficients

of a raw data. This problem has important applications since several important

inverse problems can be casted into this framework:

• The tomography problem for medical imaging or seismic imaging. In this

case Fourier coefficients usually lie on straight lines that are either parallel

or that cross at the origin.

• Aperture Synthesis for spatial imaging where the corruption is given by the

mask considered in Figure 4.5 (see [102] for instance for further details).

• The zooming problem: this is of some importance nowadays for the transi-

tion of SD (Standard Definition) videos to HD (High Definition) ones.

• The inverse scattering problem where one is interested in recovering the

shape of an object that is hidden in a medium using electromagnetic or

acoustic waves.

As an exemple, we decide to detail the latter application. This topic is the

object of two recent surveys [68, 67] and the text book [129]. Scattering theory

is concerned with the effects of static objects on traveling waves. Let us consider

an incident acoustic plane wave ui(x) = eikx·d propagating in the direction of the

unit vector d in an isotropic medium. Here k > 0 is the wave number. In case

there is an inhomogeneity D (one should think of a hidden object in the medium),

the wave will be “scattered” and give rise to another wave us. The resulting wave

u = ui + us satisfies in RN the Helmholtz equation

∆u+ k2(1 − χD)u = 0

and the scattered wave us satisfies the Sommerfeld radiation condition

lim
r→+∞

r

(
∂us

∂r
− ikus

)
= 0,

where r = |x| and the limit is uniform in the direction x̂ = x/|x|. Then, it is

known that us has an asymptotic behavior

us(x) =
eik|x|

|x| u∞(x̂, d) +O

(
1

|x|2
)
,

where u∞(x̂, d) is known as the far field pattern and gives an idea of the behavior

of the scattered wave at large distance. Here, x̂ is the observation direction and

d is the incident wave direction. The direct problem amounts to find u∞(x̂, d)

whereas the nonlinear inverse problem takes the direct method as a starting point
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and asks what is the nature of the scatterer D that gave rise to such a farfield.

This problem is well-posed since the knowledge of u∞(x̂, d) determines uniquely

the obstacle D. A significant development in this field is the introduction of the

factorization method that is detailed in the references above (see also [105]). In

what follows we assume that k is sufficiently small so that the Born approximation

implies that

u∞(x̂, d) ≈
∫

RN

χD(y)e−ik(x̂−d)·ydy. (4.2.1)

This means that u∞(x̂, d) can be interpreted as Fourier coefficients in the ball of

radius 2k. In practice, one has only limited incident waves (dj)j and limited mea-

surements (x̂i)i corresponding to the values u∞(x̂i, dj). We thus have a sampling

of the Fourier coefficients of χD(y) as one can see in Figure 4.1.

Figure 4.1: Spectrum obtained with 32
incident planewaves and 32 measure-
ment directions.
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Figure 4.2: Scatterer D.

Irregular sampling of the Fourier coefficients is a difficult problem (see for

instance [121]), though in the present case this is not really an issue. Indeed,

assuming that D is bounded its Fourier transform is actually a C∞ function and

can therefore be interpolated on a uniform grid. This allows us to use the fft.

This is sometimes referred to as the regridding procedure.

In [96], the author uses the total variation for interpolating missing parts

of the spectrum. The problem has also been tackled in [124] where a weighted

total variation was considered. Let us therefore compare the performance of this

approach with that of the factorization method thanks to a numerical test. We

consider the object that is bounded by the red curves depicted in Figure 4.2.

The inverse problem is then solved given 32 incident waves and 32 measurement

directions∗. The wave number is k = 3π. The factorization method, which

∗I would like to thank Armin Lechleiter who provided me with the solution of the direct

problem and the code for the factorization method.
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performs quite well for small values of k, yields quite poor results in this extreme

case:

Figure 4.3: Solution obtained by the classical factorization method (left) [105]
and then thresholded (right).

Figure 4.4: Solution obtained by TV minimization (left), then thresholded and
segmented (red curve on the right). For details on segmentation see [64].

The total variation method performs very well in this case. Indeed, from

partial and noisy measurements, we were able to distinguish two objects that

are merely separated by 3/4λ where λ = 2π/k is the wavelength. This value is

close to the theoretical diffraction limit that is λ/2. Moreover, we would like to

point out that it is not necessary to tune a Lagrange multiplier λ. Indeed if one

denotes M the discrete set of points where u∞ is known one can simply minimize

the constrained problem

min
Fu|M =u∞

TV (u),

to get the restoration shown above. Total variation was already used for solving

the nonlinear inverse scattering problem in [152]. The idea of considering the

inverse problem within the Born approximation as an inpainting problem in the

Fourier domain is discussed in [77].
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For this family of problems, can we do better than using TV ? The object of

this work is to propose an adequate regularization for the problem of interpolating

missing Fourier coefficients. As said in the introduction, some recent papers

address the problem of solving general inverse problems in imaging by means of

non-local methods. These methods obviously apply to the problem of retrieving

missing Fourier coefficients. We should also mention the not so different problem

of restoring missing wavelet coefficients which is treated in [63, 158] by classical

local and then non-local methods.

In these approaches, a critical step is to compute the distance between patches

of the corrupted image. Usually this similarity measure is simply taken to be

δ(pg(xk), pg(xℓ)) = ‖pg(xk) − pg(xℓ)‖ℓ2

where pg(xk), pg(xℓ) are two patches of the corrupted image g. The idea of con-

sidering the SSD distance dates back to the NLMeans [44] and to our knowledge

no other distance has been considered since then.

In this work, we propose a variant of these recent non local methods by design-

ing an original patch-wise distance that is adapted to the problem of spectrum

completion. Our idea is to define atoms similar to Gabor atoms to test whether

two regions of the corrupted image are similar. These atoms should not depend

on the corruption process. This way two patches that are close in the clean image

will be close in the corrupted image.

4.3 A Non-Local energy for the problem

Unless otherwise stated we place ourselves in R2 which will be equipped with the

infinity norm still denoted | · |. Considering squares instead of balls can be handy

in image processing.

As seen in the previous section, the problem of reconstructing unknown co-

efficients of a Fourier series has several applications. Let us call M ⊂ Z2 the

finite mask of points where the Fourier coefficients are known. Assuming that

the image is periodic and defined on T = [0, 1]2, one thus considers a clean image

g0(x) =
∑

k∈Z2

cke
−2iπk·x

and a corrupted one

g(x) =
∑

k∈M

cke
−2iπk·x.

In the sequel we are going to consider the following generic mask M :
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Figure 4.5: Corruption mask M .

We keep the Fourier coefficients corresponding to the white discs of radius rM :

this means that we capture low frequencies and some middle range frequencies

but we discard all the high frequencies.

Let M = {∑k∈M cke
−2iπk·x, ck ∈ R} and its complement

M⊥ = {∑k 6∈M cke
−2iπk·x, ck ∈ R and

∑
k∈Z2 |ck|2 < +∞}. Let us also denote

PM the orthogonal projection on M and let us recall that the Fourier transform

on the torus F : L2(T) → ℓ2(Z2) is an isometry and thus invertible. We therefore

have a corrupted data g ∈ M, obtained by

g = F−1 ◦ PM ◦ F(g0) = F−1(χMF(g0)),

that one has to interpolate. The corruption process results into a perturbation

that is similar in nature to the Gibbs phenomenon. Note by the way that g is

real-valued as soon as M is symmetric with respect to the origin.

In the sequel we shall call patch centered at xk ∈ R2, and denote pg(xk), the

cropped image g(·−xk)ϕ where ϕ is some mollifier function with support B(0, ρ2 )

where ρ is the patch size.

Let us now assume that the original image is such that there are two distinct

xk, xℓ ∈ R2 with

g0(x− xk)ϕ(x) = g0(x− xℓ)ϕ(x), ∀x ∈ R2.

This is to say that the two patches are similar in the original image. Then clearly

one expects that the missing spectrum v solves

min
v∈M⊥

∫

T

ψ(x)2|(g + v)(x− xk) − (g + v)(x− xℓ)|2dx (4.3.1)

for some smooth ψ such that supp(ψ) ⊂ supp(ϕ) = B(0, ρ2 ). This means that

knowing that pg0(xk) and pg0(xℓ) are similar one can hope to get a restored

spectrum by minimizing (4.3.1). The reconstruction is obviously not unique since

modifying v out of (xk + supp(ψ)) ∪ (xℓ + supp(ψ)) does not change the energy.
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Numerical simulations show that the reconstructed v has the same support as

(xk + supp(ψ)) ∪ (xℓ + supp(ψ)) that is to say we have to take into account all

the patches in the image to get a global reconstruction: we are therefore led to

consider the following problem

min
v∈M⊥

∫

T

∑

(k,ℓ)∈I

ψ2|(g + v)(· − xk) − (g + v)(· − xℓ)|2w(xk, xℓ) (4.3.2)

where w(xk, xℓ) = exp
(
− δ(xk ,xℓ)

h

)
and δ(xk, xl), that is going to be defined in

the sequel, should tell us from the corrupted image g whether one had for the

original image pg0(xk) ∼ pg0(ℓ). This is going to be a critical step as can be seen

in the following simulation where we consider the oracle distance

δ(xk, xℓ) = ‖pg0(xk) − pg0(xℓ)‖2

computed on the clean image:

Original image Corrupted image Ideal weight TV restored
PSNR=20,0dB PSNR=26.5dB PSNR=21.0dB

Original image Corrupted image Ideal weight TV restored
PSNR=24,1dB PSNR=29.8dB PSNR=24.5dB

Figure 4.6: Non-Local restoration thanks to the oracle distance.

This oracle distance which obviously cannot be used in practice, leads to a

very good restoration and shows that this model performs very well if one is able

to define a good measure of similarity for patches.

4.4 Construction of Atoms adapted to the corruption

Our aim is to define a notion of (semi-)distance that is not modified through the

corruption process F−1(χMF(·)). This way, if two points are close in the original
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image with respect to this distance they will remain close in the perturbed image.

To do so, our idea is to find a family of test functions (φα)α dense in M, that

do not depend on g and such that

g ∗ φα = g0 ∗ φα, ∀α.

These atoms (φα)α will obviously depend on the mask M . In particular, one

should have for any g ∈ M,

〈g, φα〉 = 〈F−1(χMF(g)), φα〉
= 〈g,F−1(χMF(φα))〉

which means that Fφα = χMFφα and therefore supp(Fφα) ⊂ M for any α.

From the uncertainty principle (see [113] for instance), one knows that φα is not

of compact support but one could still expect it to be localized possible in space.

This can be ensured by defining these functions as minimizers of the following

parametrized problems

φα = argmin

{∫

Ω
|φ(x)|2|x|p2dx, ‖φ‖2 ≥ 1, φ ∈ M, φ ⊥ Span{φα′ , α′ < α}

}

where the moment p > 1.

In the end, we define for each φα

δα(xk, xℓ) = |g ∗ φα(xk) − g ∗ φα(xℓ)|
= |g0 ∗ φα(xk) − g0 ∗ φα(xℓ)|.

We can then consider a measure of similarity between patches that is of the form

δ(xk, xl) =

(
∑

α<α0

δα(xk, xℓ)
2

) 1
2

,

where α0 is a threshold that sets how localized the considered atoms φα are. The

semi-distance δ is by definition invariant under the corruption processF−1(χMF(·)).

In the discrete setting, the atoms introduced above can be computed itera-

tively by a projected gradient algorithm [130]. Then, if we consider the generic

mask M introduced in the previous section we get the following atoms:
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Figure 4.7: The 50 first atoms (zoomed in) with p = 4 adapted to the 128 × 128
mask M .

It is interesting to see that these atoms are really localized and can actually

be used as test functions. Let us have a better look at the normalized 7 first

atoms with their respective spectra:

Figure 4.8: Atoms φn, n = 1, ..., 7 with p = 4 adapted to the 128 × 128 mask M ,

Figure 4.9: Atoms φn, n = 1, ..., 7, zoomed in,

Figure 4.10: log(|F(φn)|), n = 1, ..., 7.
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The atoms adapted to the mask M may recall the reader of the Gabor atoms

(see [113]). However they have the advantage of having a prescribed spectrum

and being as localized as possible. They are by definition the optimal functions

satisfying these two conditions.

Let us now consider the following synthetic clean image

Figure 4.11: Image g0 and its spectrum log |F(g0)|,

and its corrupted version where we got rid of the high frequencies

Figure 4.12: Image g and its spectrum log |F(g)|.

Let us now have a closer look at this image filtered by the atoms φn:

Figure 4.13: Filtered g ∗ φn, n = 1, ..., 7.

We can see that these atoms behave as Gabor atoms by capturing different

patterns in the corrupted image. The different regions of g can thus be separated

by analyzing the filtered g ∗ φn.
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The previous atoms were computed for the generic mask considered in Figure

4.5. Though, our approach is quite general and can be adapted to any other

corruption mask. As an example, here follow the atoms we get if we consider the

mask that comes into play in the scattering problem:

Figure 4.14: The 50 first atoms (zoomed in) with p = 4 adapted to the mask
associated to the scattering problem.

In the following we depict the very first atoms with their spectra:

Figure 4.15: Atoms φn, n = 1, ..., 7 with p = 4 adapted to the scattering problem,

Figure 4.16: Atoms φn, n = 1, ..., 7, zoomed in,

Figure 4.17: log(|F(φn)|), n = 1, ..., 7.
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4.5 Distance map comparison

We are going to compare the performance of different similarity measures on

patches. Let us consider the following image g0 and its corresponding g:

Figure 4.18: Psychedelic Lena image g0 that and the corrupted g obtained with
the mask of Figure 4.5.

We fix one patch of the corrupted image g (which is indicated in green) and

identify the 13 best matches (in red) according to

1. The atom-based ℓ2 distance δ1(xk, xℓ) =
(∑7

n=1 δn(xk, xℓ)
2
) 1

2
. We could

have used a general ℓq, q > 1, but this choice does not seem to modify

significantly the final results.

2. The ideal ℓ2 distance δ2(xk, xℓ) = ‖pg0(xk) − pg0(xℓ)‖2 computed on the

clean image g0.

3. The SSD ℓ2 distance δ3(xk, xℓ) = ‖pg(xk) − pg(xℓ)‖2 computed on the cor-

rupted image g.

Example 1:

Figure 4.19: Best matches
for the atom-based δ1,

Figure 4.20: Best matches
for the ideal distance δ2,

Figure 4.21: Best matches
for the SSD δ3.
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Example 2:

Figure 4.22: Best matches
for the atom-based δ1,

Figure 4.23: Best matches
for the ideal distance δ2,

Figure 4.24: Best matches
for the SSD δ3.

As can be seen in these two examples, the atom-based distance designed in

the previous section seems to perform well and even better than the SSD distance

in some cases.

4.6 Numerical experiment

From now on, we are going to make important assumptions that let us drastically

improve the complexity of the minimization problem (4.3.2) and save memory:

(i) Two patches are unlikely to be the same if they are far from each other

thus we can assume that for any fixed xk, xℓ is a candidate if |xk − xℓ| ≤ η

for some fixed η. This defines a neighborhood of candidates (also called

window) centered at xk.

(ii) If we consider two distinct points xk, xℓ, there is some numerical evidence

that minimizing (4.3.1) yields a vk,ℓ whose support is actually

(xk + supp(ψ)) ∪ (xℓ + supp(ψ)). Therefore assuming that ε ≤ |xk − xℓ|
for some positive ε ≤ ρ which is the patch size we can still get a global

minimizer for (4.3.2). Although, usually ε = 1 pixel, assuming that ε = 7

pixels for a patch size ρ = 7 or 9 pixels (to let the reconstructed patches to

overlap) results in an acceleration of order 10.

(iii) Once the weight w is computed, we can for fixed xk keep only the m0 best

matches for xl (see the previous examples).
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Weight computation: Notice that for a fixed mask M , the atoms (φn)n=1,...,n0

can be computed in advance and stored. Then gn = φn ∗ g can be readily,

computed once for all, using the fft. Finally, for two fixed pixels xk and xℓ

(δ1(xk, xl))
2

=

n0∑

n=1

|gn(xk) − gn(xℓ)|2

whereas

(δ3(xk, xl))
2

=

ρ2∑

i=1

|pg(xk)(i) − pg(xℓ)(i)|2.

Typically ρ = 7 or 9 pixels is the patch size. This suggests that the computation

of δ1 is faster as far as n0 ≤ ρ2 which will actually be the case. In practice, this

can result in an acceleration of order 10.

Energy minimization: The constrained minimization problem (4.3.2) involves

a quadratic energy that can be minimized thanks to the conjugate gradient or

also by Nesterov’s algorithm [131]. We refer to Chapter 5 for further details on

these algorithms. Notice that the assumptions (i) − (iii) are important at this

stage to accelerate the computation of the gradient of the energy.

Numerical results: In the following tests we consider three different energies:
- The constrained total variation: we get the restored spectrum Fv by solving

minv∈M⊥ TV (g + v).
- The constrained minimization problem (4.3.2) where we consider the mea-

sure of similarity δ3 used in the NLMeans method. In the first two examples

that follow, we take the window size η = 20 pixels, the size of the patch

ρ = 7 pixels and ε = 5 pixels. As indicated in assumption (iii), for each

fixed patch, we only keep the m0 = 10 best matches. Finally, the selectiv-

ity parameter h = 100. In the examples on page 148, 149, we set η = 100,

ρ = 5, ε = 3, m0 = 6, h = 100, p = 4. In the last simulation we chose

η = 60, ρ = 9, ε = 3, m0 = 10, h = 100, p = 4.
- The constrained minimization problem (4.3.2) where the weight is computed

with the atom-based distance δ1 introduced in this chapter. We consider

the n0 = 25 first atoms where the moment p = 4. And as above we take

ε = 5 pixels, h = 100 and for a fixed patch, we only consider the m0 = 10

best matches. In the examples on page 148, we take η = 100, ε = 3, m0 = 6,

n0 = 18, h = 100, p = 4. To produce the last tests we set η = 60, ε = 3,

m0 = 10, n0 = 18, h = 100, p = 4.

We compare all these methods using the standard PSNR. The higher this value

is the better the restoration is.
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Figure 4.25: 128 × 128 toy example image g and its spectrum,

Corrupted g SSD-δ3 NL-Atom based-δ1 TV restored

PSNR=8.5dB PSNR=9.2dB PSNR=10.6dB PSNR=8.4dB

Figure 4.26: Corrupted and restored images and their respective spectra.

Figure 4.27: 256 × 256 crop of the Barbara image g and its spectrum,

Corrupted g SSD-δ3 NL-Atom based-δ1 TV restored

PSNR=24.0dB PSNR=24.6dB PSNR=24.7dB PSNR=24.1dB

Figure 4.28: Corrupted and restored 256×256 crop of Barbara and their respective
spectra.
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Let us see how these methods perform for the acoustic scattering problem we

introduced previously. To do so, we consider the mask introduced in Figure 4.1.
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Figure 4.29: 128 × 128 image of two scatterers and the corresponding spectrum.

Corrupted g SSD-δ3 NL-Atom based-δ1 TV restored
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Figure 4.30: Corrupted and restored scatterers and their respective spectra.

In the next simulation, we are going to assume that the Fourier coefficients

that we kept are contaminated by a Gaussian noise of magnitude 0.03‖g0‖2.

Corrupted g SSD-δ3 NL-Atom based-δ1 TV restored
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Figure 4.31: Corrupted and restored scatterers and their respective spectra.
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Now considering the Born approximation (4.2.1), let us use the data that

comes out of the direct problem. In a sense, this amounts to add some noise to

the Fourier coefficients. Our method is able to get rid of all the spurious objects.

Corrupted g SSD-δ3 NL-Atom based-δ1 TV restored
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Figure 4.32: Corrupted and restored scatterers and their respective spectra.

In this kind of problems it is usually important to distinguish objects that are

very close. Let us consider such a situation:
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Figure 4.33: 128× 128 image of scatterers separated by 6 pixels and its spectrum

Corrupted g SSD-δ3 NL-Atom based-δ1 TV restored
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Figure 4.34: Corrupted and restored scatterers and their respective spectra.

In the latter experiment, we were able to distinguish objects that are sepa-

rated by at least 0.56λ which is quite close to the theoretical limit λ/2.
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Weight recomputation: In [91, 90, 135, 136, 15], it was pointed out that

one can get improved results (especially for inpainting problems) by allowing

recomputation of the NLMeans weight on the being restored image. Though

really cumbersome, here are the kind of restoration results one can expect after

several recomputations of the weight:
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Figure 4.35: Restored images after many SSD weight recomputations.

This procedure, that does not always improve results over the atom-based

method, is not possible for the atom-based distance we introduced since the

distance computed on the restored image is exactly the same as the one computed

on the corrupted image. Though, our method can be used as an initialization for

the classical weight recomputation to improve results further. This is the strategy

we adopt in the following tomography problem where the Fourier coefficients got

corrupted by a Gaussian noise of magnitude 0.3‖g0‖2:

Original g0 Spectrum of g0 Corrupted g Spectrum of g

PSNR=22.4dB

δ1 then one δ3 recomputed
NLMeans - δ3 NL-Atom - δ1 comput. of δ3 20 times TV restored

PSNR= 23.8dB PSNR=24.9dB PSNR=25.8dB PSNR=24.8dBPSNR=23.6dB

Figure 4.36: Restoration for a 240 × 240 tomography image.
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4.7 Conclusion

The object of this work was to design an adequate regularization for the problem

of recovering missing Fourier coefficients. We proposed a Non-Local energy based

on an original patchwise similarity measure that is adapted to the missing spec-

trum. The similarity criterion is invariant under the corruption process so that

the distance between two patches of the corrupted image is exactly equal to the

one computed on the clean image. We illustrated our method with experiments

which showed its efficiency, both in terms of speed and quality of the results, with

respect to other common approaches. We showed that the method is practical on

synthetic examples which are built upon models of inverse scattering problems,

synthetic aperture mirrors for spatial imaging or also medical imaging.
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5.1 Introduction

In this chapter, we aim to present some algorithms that were used in this thesis

and that are important for the minimization of general convex problems. The

idea is that the more we know about the structure of the problem the faster the

designed algorithms can be. The first algorithms we recall are quite classical and

one can find more details in the textbook [130]. For a relatively recent review of

the most popular algorithms and their connections we refer to [82]. We shall de-

vote an important section to the very recent Primal-Dual algorithms [159, 82, 59].

Contributions:

• We give a proof of convergence for the Arrow-Hurwicz algorithm with con-

stant stepsize and prove that this convergence is better than O
(

1
n

)
.

• We also prove, that with a slight modification of the primal-dual algorithm

with varying stepsize of [59], we can obtain a rate of convergence that is

beyond O
(

1
n2

)
. This is to our knowledge the best result in this direction.

• Finally, we compare the performance of all these classical algorithms for

the ROF denoising problem.

Henceforth, X = RN and Y = RM for some N,M ∈ N. They will be equipped

with an inner product 〈·, ·〉 and the corresponding norm ‖ · ‖.

5.2 Conjugate Gradient

Given a matrix A : X → Y , b ∈ Y and the quadratic form Q(x) = 1
2‖Ax − b‖2.

We are interested in the problem

inf
x∈X

Q(x).

Note that here we do not assume that the matrix is symmetric or definite-positive.

A might not even be a square matrix. For a comprehensive introduction to this

algorithm we refer to [145, 139].

Algorithm 5.1 Conjugate gradient

• Initialization: Pick x0 ∈ X, r0 = b−Ax0, z0 = A∗r0, p0 = z0.

• Iterations: For n ≥ 0, consider the updates:

wn = Apn, zn+1 = A∗rn+1,

αn = ‖zn‖2/‖wn‖2, βn = ‖zn+1‖2
/‖zn‖2,

xn+1 = xn + αnpn, pn+1 = zn+1 + βnpn.
rn+1 = rn − αnwn,
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It is well known that, theoretically, the iterate xn reaches a minimizer x̂ of

Q in a finite number of iterations which is not larger than the size of A that is

N ×M .

The algorithm can actually be used for solving the system Ax = b for an in-

vertible A. This kind of problem arises in many finite difference or finite elements

problems. The idea is to minimize the quadratic form Q(x) = 1
2‖Ax− b‖2

2 which

is much faster than inverting the matrix A of size N × N (whose complexity is

bounded from below by O(N2 ln(N))). Minimizing the latter quadratic form al-

lows oneself to solve Ax = b even though A is not invertible, not a square matrix

or even in case b 6∈ R(A), the range of A.

5.3 General non smooth convex problem

Given a convex set C and some C1,1 convex F (with L the Lipschitz constant of

∇F ), we aim to solve

inf
x∈C

F (x).

Nesterov proposed in 2005 to construct a minimizing sequence (yn)n∈N
for this

problem in the following way:

Algorithm 5.2 Nesterov’s scheme [131]

• Initialization: Pick x0 ∈ C.

• Iterations: For n ≥ 0, perform the updates:

yn = argmin
x∈C

〈∇F (xn), y − xn〉 +
L

2
‖y − xk‖2,

zn = argmin
x∈C

n∑

k=0

k + 1

2
(f(xk) + 〈G(xk), x− xk〉) +

L

2
‖x− x0‖2

,

xn+1 =
2

n+ 3
zn +

n+ 1

n+ 3
yn.

If C = X things can be rewritten as follows:

Algorithm 5.3 Nesterov’s scheme [131] when C = X

• Initialization: Pick x0 ∈ X.

• Iterations: For n ≥ 0, perform the updates:

yn = xn − L−1∇F (xn), xn+1 = 2
n+3z

n + n+1
n+3y

n.

zn = x0 − 1
2L

∑n
k=0(k + 1)∇F (xk),
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If the Lipschitz constant L is not known then one can perform a linesearch to

find the optimal stepsize (see [130] for more on the subject).

This algorithm is proven to converge:

Theorem 5.3.1. Given a minimizer x̂ one has

F (yn) − F (x̂) ≤ L‖x0 − x̂‖
(n+ 1)(n + 2)

.

Thus one has

Corollary 5.3.2. Let F be uniformly convex and consider a minimizer x̂ then

‖yn − x̂‖2 ≤ L‖x0 − x̂‖
(n+ 1)(n + 2)

.

5.4 A splitting algorithm for composite objective

Let F be of class C1,1 with L the Lipschitz constant of the gradient ∇F and

assume that G is such that its resolvent operator, also called proximal operator,

(I + α∂G)−1 (that we introduced in section 2.6) is easily computed. We recall

that this means that it is possible to solve

(I + α∂G)−1(x) = argmin
x′∈X

1

2
‖x′ − x‖2

+ αG(x′).

In such a case we shall say that G is simple (see also [69] on the subject).

We aim to solve

inf
x∈X

F (x) +G(x)

where the objective is the sum of two functions. As already seen, this kind of

problem is quite classical for solving general inverse problems in image processing.

The following algorithm was recently proposed for such composite objectives:

Algorithm 5.4 Beck-Teboulle’s scheme [21]

• Initialization: Pick x0 ∈ X, y1 = x0, t1 = 1.

• Iterations: For n ≥ 1, perform the updates:

xn = (I + L−1∂G)
−1

(yn − L−1∇F (yn)),

tn+1 =
1 +

√
1 + 4tn2

2
,

yn+1 = xn + (tn − 1)t−1
n+1(x

n − xn−1).
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Then the following convergence result is proven in [21]:

Theorem 5.4.1. Consider a minimizer x̂ then one has

(F (xn) +G(xn)) − (F (x̂) −G(x̂)) ≤ 2L‖x0 − x̂‖2

(n+ 1)2
.

And if G is uniformly convex this implies

Corollary 5.4.2. Let x̂ be a minimizer then

‖xn − x̂‖2
2 ≤ 2L‖x0 − x̂‖2

(n+ 1)2
.

A O( 1
n2 ) variant of this algorithm for minimizing composite objective func-

tions has first been introduced by Nesterov in [132], though it is in practice slower

than the algorithm of Beck and Teboulle.

Remark 5.4.3. Given a convex C, if we set G = ιC the indicator of C, we get

back the problem

min
x∈C

F (x).

The proximal operator in this case is simply the projection on the convex C.

5.5 The Primal-Dual framework

In the context of image processing, a Primal-Dual type algorithm was proposed

in [159] for the minimization of ROF’s functional but was probably first studied

in [16]. Given two convex and lower semicontinuous functions G : X → [0,+∞),

F : Y → [0,+∞) and a matrix A : X → Y , the method amounts to write

min
x∈X

F (Ax) +G(x)

as a saddle-point problem

min
x∈X

max
y∈Y

〈Ax, y〉 +G(x) − F ∗(y). (5.5.1)

thanks to the Legendre transformation of F . We assume that there exists at

least one solution that we shall denote (x̂, ŷ). The general idea for solving such

a problem is to perform iteratively a gradient descent in the variable x and a

gradient ascent in y which gives the following generic algorithm

{
xn+1 = (I + τ∂G)−1(xn − τA∗ȳn),

yn+1 = (I + σ∂F ∗)−1(yn + σAx̄n),
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for some positive stepsizes σ, τ and x̄n, ȳn that we are going to set in the sequel and

that will allow us to consider different algorithms. In [59], the authors consider

such a general scheme and prove various results of convergence. Their analysis is

inspired by an old paper of Popov [137]. In [82], it is proven that many algorithms

in the literature can be casted more or less into this form.

Henceforth, we are going to deal with the case when G is uniformly convex.

In other words, we assume there exists γ > 0 such that for any x ∈ dom ∂G

G(x′) −G(x) ≥ 〈p, x′ − x〉 +
γ

2
‖x− x′‖2. (5.5.2)

The case when F ∗ is uniformly convex can be handled in an equivalent way.

For such a G, it is proven in [59, Eq. (37)] that one has the following estimate:

‖ŷ − yn‖2

σ
+

‖x̂− xn‖2

τ
≥ 2γ‖x̂− xn+1‖2

+
‖ŷ − yn+1‖2

σ
+

‖x̂− xn+1‖2

τ
+

‖yn+1 − yn‖2

σ
+

‖xn+1 − xn‖2

τ

+ 2〈A(xn+1 − x̄n), yn+1 − ŷ〉 − 2〈A(xn+1 − x̂), yn+1 − ȳn〉. (5.5.3)

5.5.1 Convergence of the Arrow-Hurwicz algorithm

In this section, we are interested in the Arrow-Hurwicz scheme which amounts

to choose

x̄n = xn+1, ȳn = yn,

This choice corresponds to the following semi-implicit algorithm:

Algorithm 5.5 Arrow-Hurwicz’s scheme

• Initialization: Pick x0 ∈ X, y0 ∈ Y , σ, τ with σ‖A‖2 ≤ γ.

• Iterations: For n ≥ 1 update as follows:

xn+1 = (I + τ∂G)−1(xn − τA∗yn),

yn+1 = (I + σ∂F ∗)−1(yn + σAxn+1).

A proof of convergence for the ROF problem is given in [82] but the conditions

on the stepsizes are quite restrictive and result in a very slow algorithm. In [59],

the authors prove a O(1/
√
n) convergence result for this algorithm in case G is

merely convex but they suppose in addition that dom(F ∗) is bounded (which is

true for the ROF problem). In the following we propose a really simple proof of
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convergence in case G is uniformly convex.

First, let us denote

∆n =
‖ŷ − yn‖2

σ
+

‖x̂− xn‖2

τ
.

From (5.5.3) we then get

∆n ≥ ∆n+1 + 2γ‖x̂− xn+1‖2
+

‖yn+1 − yn‖2

σ
+

‖xn+1 − xn‖2

τ

− γ‖x̂− xn+1‖2 − ‖A‖2

γ
‖yn+1 − yn‖2

.

Therefore, since σ ≤ γ

‖A‖2 ,

∆n ≥ ∆n+1 + γ‖x̂− xn+1‖2
. (5.5.4)

Summing from n = 0 to + ∞, it follows

γ
∑

n

‖x̂− xn‖2 ≤ ∆0.

So far we have proven

Theorem 5.5.1. Let τ, σ > 0 such that σ ≤ γ
‖A‖2 . Then the sequence (xn)n∈N

converges to x̂ and the error ‖x̂− xn‖2 is summable.

Remark 5.5.2.(i) This means that the convergence rate is better that O
(

1
n

)

though one cannot conclude that xn = o
(

1
n

)
since (xn)n∈N

is not necessarily a

decreasing sequence.

(ii) As was done in [59], from this point it is possible to prove convergence of

(yn)n∈N
to some ŷ′ ∈ Y that might be different from ŷ but such that (x̂, ŷ′) is

still a saddle point of (5.5.1).

(iii) In [94], the Arrow-Hurwicz algorithm is studied in the continuous framework.

The author proves an analogous of (5.5.4) (see [94, Eq. (9)]) which as in the

discrete setting implies convergence.

5.5.2 Dependency on γ of the adaptive stepsize algorithm

Let us take

x̄n = xn + θn−1(x
n − xn−1), ȳn = yn+1,

for some positive θn−1 to be set later on. Then, making σ and τ depend on the

iterations with σ0, τ0 > 0 such that σ0τ0‖A‖2 ≤ 1, one can consider the scheme
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Algorithm 5.6 Primal Dual with adaptive stepsize of [59]

• Initialization: Pick x0 = x̄0 ∈ X, y0 ∈ Y , σ0, τ0 ≥ 0 with σ0τ0‖A‖2 ≤ 1.

• Iterations: For n ≥ 1, consider the updates:

yn+1 = (I + σn∂F
∗)−1(yn + σnAx̄

n),

xn+1 = (I + τn∂G)−1(xn − τnA
∗yn+1),

θn =1/
√

1 + 2γτn, τn+1 = θnτn, σn+1 = σn/θn,

x̄n+1 = xn+1 + θn(x
n+1 − xn).

A. Chambolle and T. Pock prove that whenever σ0τ0‖A‖2 = 1 one has

‖x̂− xn‖2 ≤ 1

n2

(
η +

‖A‖2

γ2
‖ŷ − y0‖2

)

for some small η. In other words, the previous scheme converges as O( 1
n2 ). This

is to be compared with the aforementioned algorithms.

Though, we observed that if we pick the optimal γ = γ0 in (5.5.2) (that is, for

a smooth G, the best constant such that D2G(x) ≥ γ) the algorithm may perform

very poorly. To see this, we minimize the discretized ROF functional where we

set λ = 10 and g is a noisy 64 × 64 image. We set τ0 = 100
L2 , σ0 = 1

τ0L2 with

L =
√

8. Then we compare the rate of convergence of (xn)n∈N
given different γ:
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Figure 5.1: Error ‖xn − x̂‖2 for different values of the convexity parameter γ
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Dashed lines are used to represent respectively rates of convergence O
(

1
nk

)

for k = 1, ..., 6 and also some linear convergence rates. We can observe that, for

the optimal value γ0 (for ROF, γ0 = 1), the algorithm converges as O( 1
n2 ) but

not faster as it seems to be for smaller values of γ. Note that γ = 0 actually

corresponds to a scheme where the stepsizes remain constant. It appears that

the choice of the uniform convexity parameter γ is therefore critical.

5.5.3 A result of convergence beyond O( 1
n2 )

The observation of the previous section suggests a modification of the algorithm

that allows us to improve the theoretical rate of convergence. Let us change

slightly the iteration of θn which is the only place where γ appears:

Algorithm 5.7 Proposed variant of Primal Dual

• Initialization: Pick x0 = x̄0 ∈ X, y0 ∈ Y , σ0, τ0 ≥ 0 with σ0τ0‖A‖2 ≤ 1.

• Iterations: For n ≥ 1, consider the following updates:

yn+1 = (I + σn∂F
∗)−1(yn + σnAx̄

n),

xn+1 = (I + τn∂G)−1(xn − τnA
∗yn+1),

θn =1/
√

1 + γτn, τn+1 = θnτn, σn+1 = σn/θn,

x̄n+1 = xn+1 + θn(x
n+1 − xn).

We are going to prove that this algorithm converges by adapting the argument

of Chambolle-Pock. We get from (5.5.3)

‖ŷ − yn‖2

σn
+

‖x̂− xn‖2

τn
≥ 2γ‖x̂ − xn+1‖2

+
‖ŷ − yn+1‖2

σn
+

‖x̂− xn+1‖2

τn
+

‖yn+1 − yn‖2

σn
+

‖xn+1 − xn‖2

τn

+ 2〈A(xn+1 − xn), yn+1 − ŷ〉 − 2θn−1〈A(xn − xn−1), yn − ŷ〉
− 2θn−1‖A‖‖xn − xn−1‖‖yn+1 − yn‖ (5.5.5)

which implies that

‖ŷ − yn‖2

σn
+

‖x̂− xn‖2

τn
≥ θ2

n‖x̂− xn+1‖2
+

‖ŷ − yn+1‖2

σn

+
‖xn+1 − xn‖2

τn
− σnθ

2
n−1‖A‖2‖xn − xn−1‖2

+ 2〈A(xn+1 − xn), yn+1 − ŷ〉 − 2θn−1〈A(xn − xn−1), yn − ŷ〉
+ γ‖x̂− xn+1‖2
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where we used

2θn−1‖A‖‖xn − xn−1‖‖yn+1 − yn‖ ≤ σnθ
2
n−1‖A‖2‖xn − xn−1‖2

+
‖yn+1 − yn‖2

σn
.

As previously, denoting

∆n =
‖ŷ − yn‖2

σn
+

‖x̂− xn‖2

τn
,

and remarking that by definition

θ2
n

τn+1

τn
=
σn+1

σn
=

τn
τn+1

it follows

∆n

τn
≥ ∆n+1

τn+1
+

‖xn+1 − xn‖2

τ2
n

− ‖xn − xn−1‖2

τ2
n−1

+
2

τn
〈A(xn+1 − xn), yn+1 − ŷ〉 − 2

τn−1
〈A(xn − xn−1), yn − ŷ〉

+
γ

τn
‖x̂− xn+1‖2

since we have

‖A‖2σnτn = ‖A‖2σ0τ0 ≤ 1.

Then summing we can telescope terms so we get in the end

γ
∑

n

‖x̂− xn+1‖2

τn
< +∞.

Though, since we know from the definition of τn (see [59, Corollary 1]) that

τn ∼ 2

γn

when n→ +∞, we have proven so far

Theorem 5.5.3. Let τ0, σ0 > 0 such that σ0τ0‖A‖2 ≤ 1 then the sequence

(xn)n∈N
converges to x̂ and

∑

n

n‖x̂− xn‖2 < +∞. (5.5.6)

To our knowledge, the resulting complexity for this class of problems is the

best theoretical rate of convergence in the literature that is to say beyond the

O
(

1
n2

)
estimates of [131, 132, 21, 59] and is beyond the theoretical convergence
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rate of first order gradient methods for convex problems (see [130, Theorem

2.1.7]). This is not surprising since we have additional assumptions on the struc-

ture of our problem. In case both G and F ∗ are uniformly convex, it is proven in

[59] that one can actually achieve a linear convergence rate.

Remark 5.5.4. If one assumes σ0τ0‖A‖2 < 1, that is to say there exists 0 < ε <

1 such that σ0τ0‖A‖2 = 1 − ε, it follows from (5.5.5) that

∆n

τn
≥ ∆n+1

τn+1
+ (1 − ε)

(
‖xn+1 − xn‖2

τ2
n

− ‖xn − xn−1‖2

τ2
n−1

)

+
2

τn
〈A(xn+1 − xn), yn+1 − ŷ〉 − 2

τn−1
〈A(xn − xn−1), yn − ŷ〉

+
γ

τn
‖x̂− xn+1‖2

+ ε
‖xn+1 − xn‖2

τ2
n

which implies in addition to (5.5.6) that

∑

n

n2‖xn+1 − xn‖2
< +∞.

Said otherwise, the sequence (xn)n∈N
does not oscillate too much.

5.6 Comparison for the TV denoising problem

In this section, we compare the Primal-Dual algorithm with some popular meth-

ods to see how well they either minimize the primal formulation of the denoising

problem, namely

min
u
λ

∫

Ω
|Du| + 1

2
‖u− g‖2

2 (5.6.1)

or equivalently minimize the smooth but constrained dual problem (see [54])

min
‖z‖∞≤λ

‖div(z) + g‖2
2. (5.6.2)

In the dual case, if zλ is a minimizer, the restored image is given by uλ =

div(zλ) + g.
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We carry out some tests with a fixed regularization parameter λ = 10 and we

consider a 512 × 512 pixels image g = g0 + n where n is a Gaussian noise.

We are going to consider the following algorithms:

• Zhu-Chan: This is an implementation of the Arrow-Hurwicz algorithm

according to the update of the stepsizes described in [159].

• Adaptive Arrow-Hurwicz: We consider the Arrow-Hurwicz algorithm

where the stepsizes are updated according to Algorithm 5.7. We take τ0 =
20
L , σ0 = 1

τ0L2 with L =
√

8 and γ = 0.06.

• Nesterov Dual: Nesterov’s algorithm [131] on the dual problem (5.6.2).

• Beck-Teboulle Dual: The algorithm proposed in [21] for the dual problem

(5.6.2).

• Proj-Grad Dual: Projected gradient on the dual problem which corre-

sponds to the Arrow-Hurwicz algorithm with the choice σ = +∞ and τ = 1
4 .

• Chambolle Dual: Chambolle’s fixed point algorithm with τ = 1
4 proposed

in [54] for the dual problem (5.6.2) and which is proven to converge for

τ ≤ 1
8 .

• Adaptive Primal-Dual: Algorithm 5.7 with τ0 = 40
L , σ0 = 1

τ0L2 where

L =
√

8 and γ = 0.06.

In the following figures, we plotted some performance tests for all these algo-

rithms. An approximation of x̂ = uλ has been first computed by doing 105

iterations of the algorithm of Zhu and Chan.
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Figure 5.2: Minimizer error ‖xn − x̂‖2 for the considered algorithms
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Figure 5.3: Energy error Eλ(xn) − Eλ(x̂) for the considered algorithms

The latter tests suggest that almost all these algorithms perform much better

than O( 1
n2 ) which is the main idea of Theorem 5.5.3.
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The previous performance tests matter if one is interested in the accuracy of

the calculation. However, if one is simply interested in the visual quality of the

enhanced image, one should preferably focus on the evolution of the PSNR:
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Figure 5.4: PSNR(xn, g0) for the considered algorithms

Overall, one can see that in much less than 100 iterations all the work is

done and surprisingly the algorithm that performs best is merely the projected

gradient on the dual problem.

5.7 Conclusion and perspective

In this chapter, we recalled some recent advances in convex optimization and

we examined convergence and complexity of the recently developed Primal-Dual

algorithms. Some questions remain unsettled. Indeed, it would be interesting to

• Prove that the dual variable converges for the adaptive Primal-Dual algo-

rithm.

• Devise the optimal uniform convexity parameter γ that gives the best rate

of convergence which is in practice beyond o
(

1
n2

)
.
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[51] V. Caselles, M. Novaga, and C. Pöschl, TV denoising of the characteristic

function of two balls in the plane. [cited at p. 11]

[52] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional,

M2AN Math. Model. Numer. Anal., 33 (1999), pp. 261–288. [cited at p. 12]

[53] , An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004),

pp. 195–218. [cited at p. 39, 41]

[54] , An algorithm for total variation minimization and applications, J. Math.

Imaging Vision, 20 (2004), pp. 89–97. Special issue on mathematics and image

analysis. [cited at p. 23, 76, 163, 164]

[55] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An

introduction to total variation for image analysis, in Theoretical foundations and

numerical methods for sparse recovery, vol. 9 of Radon Ser. Comput. Appl. Math.,

Walter de Gruyter, Berlin, 2010, pp. 263–340. [cited at p. 29, 39, 40]



173

[56] A. Chambolle and K. Jalalzai, Adapted basis for non-local reconstruction of

missing spectrum, (2012). [cited at p. 21]

[57] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization

and related problems, Numer. Math., 76 (1997), pp. 167–188. [cited at p. 9, 12, 26]

[58] A. Chambolle, M. Morini, and M. Ponsiglione, A non-local mean curvature

flow and its semi-implicit time-discrete approximation, (2012). [cited at p. 39]

[59] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex

problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–

145. [cited at p. 23, 125, 154, 158, 159, 160, 162, 163]

[60] A. Chambolle and G. Thouroude, Homogenization of interfacial energies and

construction of plane-like minimizers in periodic media through a cell problem,

Netw. Heterog. Media, 4 (2009), pp. 127–152. [cited at p. 41]

[61] T. Chan, S. Esedoglu, and F. Park, A fourth order dual method for staircase

reduction in texture extraction and image restoration problems, in Image Processing

(ICIP), 2010 17th IEEE International Conference on, IEEE, 2010, pp. 4137–4140.

[cited at p. 12]

[62] T. Chan, G. Golub, and P. Mulet, A nonlinear primal-dual method for total

variation-based image restoration, ICAOS’96, (1996), pp. 241–252. [cited at p. 23]

[63] T. Chan, J. Shen, and H.-M. Zhou, Total variation wavelet inpainting, J. Math.

Imaging Vision, 25 (2006), pp. 107–125. [cited at p. 137]

[64] T. Chan and L. Vese, Active contours without edges, Image Processing, IEEE

Transactions on, 10 (2001), pp. 266–277. [cited at p. 12, 136, 184]

[65] G. Chen, C. Levermore, and T. Liu, Hyperbolic conservation laws with stiff

relaxation terms and entropy, Communications on pure and applied mathematics,

47 (1994), pp. 787–830. [cited at p. 101]

[66] G.-Q. Chen and H. Frid, Extended divergence-measure fields and the Euler equa-

tions for gas dynamics, Comm. Math. Phys., 236 (2003), pp. 251–280. [cited at p. 101]

[67] D. Colton, Inverse acoustic and electromagnetic scattering theory, in Inside out:

inverse problems and applications, vol. 47 of Math. Sci. Res. Inst. Publ., Cambridge

Univ. Press, Cambridge, 2003, pp. 67–110. [cited at p. 134]

[68] D. Colton, J. Coyle, and P. Monk, Recent developments in inverse acoustic

scattering theory, SIAM Rev., 42 (2000), pp. 369–414 (electronic). [cited at p. 134]

[69] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-

backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168–1200 (electronic).

[cited at p. 125, 156]

[70] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Bm3d image denoising

with shape-adaptive principal component analysis, (2009). [cited at p. 14, 132]



174 BIBLIOGRAPHY

[71] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for

science and technology. Vol. 6, Springer-Verlag, Berlin, 1993. Evolution problems.

II, With the collaboration of Claude Bardos, Michel Cessenat, Alain Kavenoky,

Patrick Lascaux, Bertrand Mercier, Olivier Pironneau, Bruno Scheurer and Rémi
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J. Reine Angew. Math., 334 (1982), pp. 27–39. [cited at p. 18, 54, 57]

[148] , Regularity results for almost minimal oriented hypersurfaces in Rn,

Quaderni del Dipartimento di Matematica dell’Università del Salento, 1984 (1984).
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Résumé

Les problèmes inverses consistent à retrouver une donnée qui a été transformée

ou perturbée. Ils nécessitent une régularisation puisque mal posés.

En traitement d’images, la variation totale en tant qu’outil de régularisation a

l’avantage de préserver les discontinuités tout en créant des zones lisses, résultats

établis dans cette thèse dans un cadre continu et pour des énergies générales.

En outre, nous proposons et étudions une variante de la variation totale.

Nous établissons une formulation duale qui nous permet de démontrer que cette

variante cöıncide avec la variation totale sur des ensembles de périmètre fini.

Ces dernières années les méthodes non-locales exploitant les auto-similarités

dans les images ont connu un succès particulier. Nous adaptons cette approche

au problème de complétion de spectre pour des problèmes inverses généraux.

La dernière partie est consacrée aux aspects algorithmiques inhérents à

l’optimisation des énergies convexes considérées. Nous étudions la convergence

et la complexité d’une famille récente d’algorithmes dits Primal-Dual.

Abstract

Inverse problems are to recover the data that has been processed or corrupted.

Since they are ill-posed they require a regularization.

In image processing, the total variation as a regularization tool has the ad-

vantage of preserving the discontinuities while creating smooth regions. These

results are established in this thesis in a continuous setting for general energies.

In addition, we propose and examine a variant of the total variation. We

establish a dual formulation that allows us to prove that this variant coincides

with the total variation for sets of finite perimeter.

Nowadays, non-local methods exploiting the self-similarities of images is par-

ticularly successful. We adapt this approach to the problem of spectrum comple-

tion, which has applications for general inverse problems.

The final part is devoted to the algorithmic aspects inherent to the optimiza-

tion of the convex energies we considered. We study the convergence and the

complexity of the recently developed Primal-Dual algorithms.
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