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Résumé

Mesures spatio-temporelles d’ondes à la surface de l’eau :
retournement temporel et turbulence d’onde.

Cette thèse porte sur l’étude expérimentale des ondes à la surface de l’eau et se concentre
sur deux sujets : valider la focalisation des ondes de surface par retournement temporel et
caractériser la turbulence d’onde par analyse des spectres spatio-temporels.

La problématique commune était la mesure de la déformation de la surface libre. Avec la
technique de Profilométrie par Transformée de Fourier utilisée jusqu’à present, la coloration
de l’eau par de la peinture usuelle a pour conséquence une atténuation des ondes par réso-
nance d’ondes de films de surface. Une amélioration importante de la méthode permet une
analyse fiable des phénomènes d’ondes en surmontant l’effet d’amortissement.

Ce travail apporte ensuite la première preuve expérimentale de focalisation par retourne-
ment temporel des ondes de surface. Un unique canal de retournement temporel a suffi pour
reconstruire l’onde à sa source initiale dans une cavité. Il a été démontré que la qualité de
la focalisation augmente linéairement avec le nombre de canaux de réémission. Une autre
partie de cette thèse concerne des expériences de turbulence d’onde effectuées pour deux
bandes de fréquence de forçage avec différentes intensités d’onde. Selon la bande de forçage,
deux régimes différents ont été observés. La pente de cascade d’énergie s’est révélée être
dépendante du forçage, comme observé précédemment, ou indépendante. Dans ce dernier
cas, les résultats sont en accord avec la théorie. La thèse traite également de la bathymétrie.
En utilisant la "méthode du cercle" cette étude a permis de déterminer la profondeur d’eau
par ajustement de la fonction de Bessel appropriée aux données expérimentales.

Les mots clés : ondes de surface, ondes de gravité-capillarité, retournement temporel, turbu-
lence d’onde, bathymétrie, études expérimentales, Profilométrie par Transformée de Fourier.
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Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH)
UMR CNRS 7636 - ESPCI - UPMC Univ. Paris 6 - UPD Univ. Paris 7
10, rue Vauquelin
75005 Paris, France



Résumé substantiel

Mesures spatio-temporelles d’ondes à la surface de l’eau :
retournement temporel et turbulence d’onde.

Cette thèse porte sur l’étude expérimentale des ondes à la surface de l’eau. Elle comporte
un volet «technique» relatif à la technique de mesure résolue en temps et en espace (FTP), qui
a consisté à l’identification de particules diffusantes capables de reproduire la même -faible-
atténuation que l’eau pure (une étape essentielle pour assurer un long temps de propagation
des ondes) et un volet d’étude de problèmes physiques concernant la propagation des ondes
à la surface de l’eau en milieux complexes : validation de la focalisation des ondes de surface
par retournement temporel, caractérisation de la turbulence d’onde par analyse des spectres
spatio-temporels et reconstruction d’une bathymétrie variable par analyse de la propagation
d’onde en surface.

Le volet technique de cette thèse est lié à la mesure de la déformation de la surface libre
obtenue avec la technique de Profilométrie par Transformée de Fourier (FTP). Cette tech-
nique optique s’appuie sur l’analyse de la déformation d’un réseau de franges projetées sur la
surface libre d’un liquide. On entend par déformation du réseau la différence entre le réseau
déformé par la surface non plane et le réseau de référence sur la surface plane. Cette méth-
ode expérimentale nécessite que la lumière soit diffusée par la surface du liquide, ce qui était
obtenu habituellement par addition de pigments blancs. Pendant ma thèse, j’ai montré que
la coloration de l’eau par de la peinture usuelle (utilisée jusqu’à présent) produit une forte
augmentation de l’atténuation des ondes. En effet, ces peintures contiennent des tensioac-
tifs qui sont facilement adsorbées à l’interface air-eau. Le film de surface résultant modifie
les propriétés d’atténuation, à cause de la modification de la tension de surface mais aussi
et surtout en raison de l’amortissement due à la résonance des ondes de gravité-capillarité
et des ondes de Marangoni. Cette atténuation a été confirmée et caractérisée expérimentale-
ment. Dans un deuxième temps, j’ai réalisé une étude sur les propriétés physico-chimiques
de différents pigments, montrant que les particules d’anatase (TiO2) sont les meilleurs pig-
ments, au sens d’un compromis entre la diffusion qu’ils produisent et la réduction des effets
de film de surface. J’ai ainsi montré que ces particules permettent d’obtenir les mêmes pro-
priétés d’atténuation que l’eau pure. Ce développement était nécessaire pour nos expériences
menées à l’échelle du laboratoire, notamment en turbulence d’onde et en retournement tem-
porel des ondes à la surface de l’eau. En effet, pour des applications potentielles aux ondes à
l’échelle de l’océan, où on sait que l’atténuation est faible, il est crucial de reproduire autant
que faire se peut les mêmes conditions de faibles atténuations (c’est-à-dire de long temps de
vie de l’onde) que dans l’océan. Ce travail a donné lieu à une publication dans Experiments
in Fluids (52(2):519-527, 2012)



Cette étape un peu «technique» étant résolue, je me suis intéressé à trois problèmes con-
cernant les ondes en régime temporel dans un contexte de propagation complexe : le re-
tournement temporel d’ondes à la surface de l’eau, la turbulence d’ondes et plus récemment,
la reconstruction de la bathymétrie par analyse des ondes à la surface de l’eau.

Retournement temporel d’ondes à la surface de l’eau : Le retournement temporel s’appuie
sur l’invariance de l’équation d’onde par la transformation t →−t . Ainsi, si on renvoie dans
une chronologie inversée les ondes émises par un point source, on s’attend à voir ces on-
des retournées temporellement refocaliser - spatialement et temporellement - sur le point
d’origine. Si des expériences dans différents contextes d’ondes ont été réalisé dans le passé, il
n’y avait jusqu’à aujourd’hui pas de preuve expérimentale de la possibilité de refocaliser des
ondes à la surface de l’eau. Ceci était principalement due à la complexité de ces ondes qui
sont dispersives, non-linéaires et surtout dissipatives. Les expériences ont été menées dans
une cavité pour tirer parti des réflexions multiples sur les bords. Dans une première étape,
l’onde émise par une source ponctuelle est enregistrée par FTP. Dans une deuxième étape,
les signaux enregistrés en certains points de réception (de 1 point à 6 points) sont renver-
sés temporellement et reémis dans la cavité. Comme attendue dans la théorie et malgré les
écarts à cette théorie (dispersion, atténuation, non linéarité), on observe une bonne recom-
pression / refocalisation avec un point de reémission, et la qualité de cette recompression /
recfocalisation augmente linéairement avec le nombre de points de reémission. J’ai égale-
ment vérifié que le rapport signal à bruit, qui mesure quantitativement la qualité de recom-
pression / refocalisation est lié directement aux nombres de modes excités dans la cavité. Ce
nombre de modes est limité dans l’expérience à cause de la forte atténuation aux basses et
hautes fréquences, ce qui a été vérifié par comparaison avec un calcul numérique. Ainsi, à
l’échelle du laboratoire, c’est-à-dire avec des longueurs d’onde centimétriques, la qualité de
la refocalisation est limitée par l’atténuation, mais elle n’est pas supprimée. Des simulations
numériques correspondant à des ondes à plus grande échelle avec une atténuation néglige-
able, comme on l’attend à l’échelle océanique, montre une recompression / refocalisation
plus efficace, ce qui est très encourageant pour les applications à l’échelle océanique. Ce tra-
vail a donné à une publication dans Physical Review Letters (109, 064501 (2012)).

Turbulence d’onde à la surface de l’eau : A la suite des travaux de mon groupe sur l’application
de la FTP pour la caractérisation en temps et en espace des déformations de plaques (collab-
oration avec N. Mordant à l’ENS), je me suis intéressé à la caractérisation spatio-temporelle
des ondes à la surface de l’eau en régime turbulent. Nous avons ainsi montré deux résultats
importants. Par double transformée de Fourier (en espace et en temps) nous avons vérifié
deux hypothèses importantes utilisées dans la théorie de Weak Turbulence (WT) : les ondes
sont réparties de façon isotrope, c’est -à-dire que l’énergie des fluctuations ne dépend pas
de la direction du vecteur d’onde, également l’énergie se répartit à travers les échelles, c’est-
à-dire la norme du vecteur d’onde et la fréquence, sur une courbe proche de la relation de
dispersion. Par ailleurs, nous avons obtenu un résultat nouveau en réalisant plusieurs expéri-



ences à bande de fréquences variables. Lorsque la bande de fréquences d’excitation est large
(avec une référence que nous n’avons pas encore compris, dans nos expérience [0;4] Hz),
nous confirmons les résultats obtenus par d’autres groupes expérimentaux et en contradic-
tion avec les prédictions théoriques, à savoir : l’exposant spectral (pente de la courbe énergie
- nombre d’onde en loglog) dépend de la puissance injectée et la loi de puissance n’est pas
en accord avec la théorie WT. En revanche, pour une bande d’excitation plus faible (dans nos
expériences, [0;1.5] Hz), nous observons une pente spectrale constante en fonction de la puis-
sance injectée et en accord avec la théorie WT, par ailleurs, la dépendance en fonction de la
puissance semble en accord avec la WT (ce résultat, moins net que le premier, reste cepen-
dant à confirmer). Les résultats de ces premières expériences ont donné lieu à une publica-
tion dans Physical Review Letters (107:214503, 2011) et une publication du groupe dans Acta
Physica Polonica (120:142-148, 2011) et je présente dans mon mémoire de thèse les résultats
d’expériences nouvelles que j’ai réalisées de façon systématique (plus grande variabilité de la
bande de fréquence) et dont l’analyse est en cours.

La reconstruction de la bathymétrie par analyse des ondes à la surface de l’eau : Cette
étude réalisée en collaboration avec R.K. Ing concerne la possibilité de reconstruire la bathymétrie
(profondeur variable typiquement due à la présence d’obstacles sous-marins), par analyse de
la forme d’ondes se propageant à la surface de l’eau. La méthode utilise l’ajustement de la
fonction de Bessel (attendue pour la dépendance spatiale des ondes) aux données expérimen-
tales mesurées en surface sur une large bande de fréquences (le signal analysé correspond à
un paquet d’onde se propageant dans un milieu complexe). Notre étude a permis de quan-
tifier les limitations de cette méthode pour des obstacles profonds (limite des ondes en eau
peu profonde) dans le cas des ondes à la surface de l’eau. Un article est en cours de rédaction
sur ce sujet.



Abstract

Space-time resolved measurements for water waves:
time-reversal and wave turbulence.

This thesis presents an experimental investigation on water waves and concentrates on
two current challenges. The first, to validate the time-reversal focusing of surface waves, and
the second, to characterize the wave turbulence by joint space-time energy spectra analysis.

The common requirement for each study was the measurement of free-surface deforma-
tion. Quantitative data was gathered by Fourier Transform Profilometry. Resonance-type
wave damping is shown to be present while using this method with water colored by standard
paint. A proper investigation of the wave phenomena is enabled by a crucial improvement to
this technique which overcomes the damping effect.

This work provides the first experimental evidence of time-reversal focusing of surface
waves. One time-reversal channel was sufficient to reconstruct the wave at the point source
in a reverberating cavity. It is also demonstrated that the quality of the refocusing increases
linearly with the number of re-emitting channels. This thesis also concerns wave turbulence
experiments performed for two forcing frequency ranges with varying wave intensity. De-
pending on the forcing bandwidth two different regimes were observed. The energy cascade
slope was found to be both forcing dependent, as classically observed in laboratory experi-
ments, or forcing independent. In the latter case, the results are in agreement with the the-
ory. The remainder of the thesis focuses on bathymetry. The feasibility of underwater depth
reconstruction, by fitting an appropriate Bessel function to the experimental data, is demon-
strated using a "circle method".

Key words: surface waves, gravity-capillary waves, time-reversal, wave turbulence, bathymetry,
experimental investigations, Fourier Transform Profilometry.

This thesis has been prepared in the
Laboratory of Physics and Mechanics of Heterogeneous Media (PMMH)
UMR CNRS 7636 - ESPCI - UPMC Univ. Paris 6 - UPD Univ. Paris 7
10, rue Vauquelin
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INTRODUCTION

1.1 Motivation

Free-surface waves represent a natural interface between fluid dynamics and wave science
and occur in many aspects in everyday life. Due to their industrial applications, they have
been of interest for decades for coastal engineers, oceanographers and naval architects. In
addition to the engineering communities, a broad society of physicists has been attracted by
the wealth of physical phenomena displayed by gravity-capillary surface waves. Such as, they
continue to be a fertile field of research today.

In the last fifty years, significant progress has been made in the field of free-surface wave
science. Modern scientists have access to the powerful equipment that allows precise mea-
surements. It is, then, very surprising that some theoretical phenomena still remain unsub-
stantiated by the experimental quantitative or even qualitative results.

Despite the common character of various wave phenomena, water waves reflect proper-
ties that can be rarely matched by other kinds of waves. First, they can give a conspicuous
display of the nonlinear effects (which is revealed for enough steep waves). In addition, the
intrinsic dispersion makes their velocity varies with the wavelength. Moreover, the phase ve-
locity differs from the group velocity and is also dependent on the water depth. Finally, short
waves experience strong damping due to the viscous action. Despite the fact that water waves
are ubiquitous and easily observable, all these complexities make them one of the most diffi-
cult examples of waves to study theoretically, experimentally and numerically.

For instance, the spectacular manifestation of the interactions between dispersion and
nonlinear effects has been described by John Scott Russell. He found out that the effect of
weak nonlinearity (due to the moderately steep waves propagating in the shallow water) can
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12 Chapter 1. Introduction

be balanced by the dispersion effect. As a result, permanent shape and propagation velocity
is kept (no wave focusing, no wave separation).

In the case of deep water, nonlinear evolution of the wave group can result in an appear-
ance of steep waves (called freak or rogue waves). These waves have a huge potential for
damage, and thus are interesting for engineers, as well as physicists. They are sporadically
present in the open sea/ocean and in the extreme case can eventually lead to a destruction
of a ship or construction. Zakharov, in 1968, described that the evolution of the nonlinear
wave group can be approximately satisfied by nonlinear Schrödinger equation. This evolu-
tion can lead to the creation of steep waves. The huge waves formation has been obtained
numerically and experimentally as a result of dispersive wave grouping due to an appropriate
phase modulation of initial wave trains. Despite that fact, the exact formation mechanism
of the spontaneous rogue wave formation in nature is still not known. Their evolution is not
precisely described by any theoretical model, which makes it impossible to numerically study
the apparition and physics of rogue waves. In this sense, the experimental investigations of
the freak wave phenomenon could shed some light into fundamental aspects of its formation.

The occurrence of wave focusing has been extensively studied in other fields of wave
physics. Recent efforts concentrate on a unique phenomenon associated with wave physics
- refocusing back the energy of the wave to its initial source point. It can be accomplished
due to the time-reversal invariance of the wave equation. Indeed, the wave equation in a
non-dissipative medium contains only a second-order time-derivative operator. It indicates
that if the wave converging from the source is a solution to the problem, then the diverging
wave propagating in the reverse direction and undertaking the same scattering, reflections
and refraction is also a solution to that problem. It constitutes the principle of time-reversal
phenomenon and is one of the most striking and important results in recent wave science.
The wave time-reversal is related to the freak waves because of the amplitude focusing they
undergo, however, the underlying physics differs significantly.

In the standard time-reversal experiments, a wave is generated at the source and recorded
on a surrounding surface. This signal is time reversed and re-emitted to the system. It prop-
agates back through the same medium as though the wave was being played backwards and
focuses on the source. It was later observed that if the system is closed in a chaotic cavity,
only a single source/receiver is required to focus back energy on the initial source. The time-
reversal phenomenon was originally found for ultrasounds in the 1990s, and has been recently
extended to microwaves, electromagnetism and elastic waves. Despite the considerable ad-
vances of time-reversal applications in almost all wave science domains, it has never been
validated experimentally for water waves, perhaps due to the complexities the water waves
display. Moreover, it has never been tested for any strongly damped nor naturally dispersive
waves. An experimental study on time-reversal water waves could give an insight into the
influence of these complexities on time-reversal phenomenon.

As it was stated, nonlinear effects can have important influence in the wave phenom-
ena. Among others, the nonlinear mutual interactions between surface waves are of particu-
lar importance for the scientific communities and has enjoyed unceasing interest in the last
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decades.

If a system allows nonlinear interactions (weaker than the linear ones) it possesses a nat-
ural asymptotic closure and can be solved mathematically. This state of nonlinear out-of-
equilibrium wave process is called wave turbulence. The power of wave turbulence comes
from the fact that the analytical solution of the kinetic equation, by which it is described,
leads to the familiar solution with fully developed turbulence; the power law scaling of the
energy density spectrum predicted by Kolmogorov. It predicts that the energy is transfered
through different wavelengths from the injection scale to the scale where it is dissipated. The
most common example is that of ocean surface wave stirred by the wind or generated by the
current, but, in principle, it is present in a various wave aspects, such as music of vibrations
on elastic sheets, Alfvén waves in solar winds or waves in nonlinear optics.

At a fundamental level, the study of this interdisciplinary subject aims at understanding
the underlying physics of the energy cascade. Though, since its conception in 1960s, there
have been many notable theoretical developments, there are still some limitations. Further-
more, few experimental measurements have been performed and they reveal some inconsis-
tencies with the developed theory. In addition, the laboratory experiments are mainly local in
space, while the theory predictions concern Fourier space.

In the case of surface waves, the only experimental study in a 3D Fourier space (x,y,t) did
not confirm the premise of weak turbulence - the distribution of the energy was found to be
concentrated not only on the vicinity of the linear dispersion relation. In this context, further
space-time measurements are necessary to better understand the fundamental processes of
wave turbulence.

The investigations of wave turbulence on the ocean are also encouraging in the case of
renewable energy. In recent wave turbulence experiments, the negative energy flux has been
observed, however, current weak turbulence theory does not support energy flux fluctuations.
The nonlinear wave interactions can lead also to high-amplitude wave-induced motion of
submerged bodies. These phenomena could give a possibility to extract energy from ocean
waves, thus the wave turbulence should be further studied in terms of alternative energy har-
nessing.

The study of free-surface deformation can be also attractive since it can reveal the infor-
mations about subsurface field. Surfaces can deform due to the interactions with vortices
or jets or rising bubbles. It is interesting to understand how the phenomena in the bulk are
reflected on the surface. Water depth, amongst other informations encrypted in the surface
deformation, can have particularly practical application. For sufficiently shallow water, the
propagating wave "feels" the bottom and consequently changes its form (wavelength and
height). The regions with shallow water are extremely important for engineers concerned
with coastal problems, such as maintenance of navigation routes, port and harbor construc-
tions or dredging. Surprisingly, data collection in shallow water areas by recent industrial
solutions is expensive and sometimes extremely difficult, therefore, the study of water depth
by free-surface deformation analysis might constitute an alternative to current methods.
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In the light of all these challenges, a crucial issue emerges - the appropriate method-
ology for free-surface measurement. Most of the previous experiments were limited to the
analysis of a single point. This method does not supply enough information to progress the
understanding of discussed subjects. Advanced research in the laboratory scale requires a
technique that allows one to reconstruct, non-intrusively, the 3D surface deformation with
high space and time resolution. A Fourier Transform Profilometry (FTP) method corresponds
to our needs and was recently adapted for surface waves. Here, a fringe pattern of known
characteristic is projected onto the surface. The deformed surface introduces the modula-
tion in the pattern. The topography of the surface is deduced from the phase difference of
that recorded pattern between undeformed and deformed surface. Despite the indisputable
advantages of this method, it requires the use of the white pigments, which were found to
change the physico-chemical properties of water giving rise to the strong damping enhance-
ment. This significantly reduces the possibility of the study of open problems raised above. In
that context, the first objective of my thesis was to overcome these limitations and to propose
an improvement to the measuring technique.

Figure 1.1: Photographs of the free surface deformation short after a pulse injection by the
conical wavemaker. The cylindrical wave is diverging from the source. The size of the rectan-
gular tank is 53 x 38 cm2. Obstacles are placed to break the symmetry. This kind of signal was
used in the time-reversal experiments.
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Figure 1.2: Visualization of the free surface deformation during the experiment of the mutual
wave-wave interactions. Two piston-type wavemakers are used to inject energy to the system.
Observed wavefield is typical for high forcing amplitude experiments. Strong lighting helps
the naked eye to distinguish different wavelengths.
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a) b)

c) d)

e) f)

Figure 1.3: A typical fringe pattern recorded by the camera (a) and a corresponding surface
elevation (b). Space-time resolved technique gives access to the complex fields obtained by
time Fourier transform of the measured transient height. Typical real (c) and imaginary (d)
values of the complex field for frequency f = 8 Hz are presented. Corresponding absolute and
phase values are shown in (e) and (f). All figures are taken from the same data. Physical size
of the images is 30 x 30 cm2 and crest to trough wave height in the image (b) reaches 0.4 mm.
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1.2 Linear wave theory

The linear theory of gravity-capillary waves on water will be given in this section. This the-
ory is often called Airy wave theory thanks to the scientist George Biddell Airy who was first
to derive, in 1841, the correct mathematical formula describing surface waves. Many mono-
graphs and books on wave theory has been written since that time presenting slightly differ-
ent approaches to the problem. The presented derivation for perfect fluid is based on the one
proposed by Lighthill [48].

Figure 1.4: Schematic illustration of the system.

In most of the phenomena in nature (as it is also in our case) the compressibility of wa-
ter can be neglected (constant water density ρ), thus the continuity equation takes a form:
∇·u = 0, where u stands for a velocity with components [u, v, w] which correspond to

[
x, y, z

]
directions, where z is a direction perpendicular to the water surface measured upwards (Fig. 1.4).

Considering the irrotationality of velocity field, the velocity can be expressed as a gradient
of the velocity potential φ, therefore the continuity equation reduces to Laplace’s equation:

∇2φ= 0 (1.1)

The linearized momentum equation for inviscid fluid can be written as:

ρ
∂u

∂t
=−∇pe , (1.2)

where pe denotes excess pressure. With the hydrostatically distributed undisturbed pressure
p0 = pa −ρg z, where pa is an atmospheric pressure, the excess pressure due to a disturbance
can be defined as:

pe = p −p0 (1.3)

Then, due to the action of gravity g , the excess pressure on the water surface z = η(x, y, t )
reaches:

pe = ρgη (1.4)
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The linearized momentum eq. (1.2) can be associated with the excess pressure field by:

pe =−ρ∂φ
∂t

, (1.5)

which taking into account eq. (1.4) and linearizing gives a dynamic free-surface boundary
condition on the mean water surface: [

∂φ

∂t

]
z=0

=−gη (1.6)

The second boundary condition (kinematic free-surface boundary condition) connects
the vertical component of the velocity field ∇φ with the vertical displacement η on the mean
water surface. Its linearized version takes the form:[

∂φ

∂z

]
z=0

= ∂η

∂t
(1.7)

The velocity potential φ satisfying the above conditions for sinusoidal wave can be expressed
as:

φ=Φ(z)e i (ωt−kx), (1.8)

whereω stands for the pulsation, k for wavenumber andΦ(z) is the amplitude of fluid motion
beneath the water surface. The above expression fulfills Laplace’s eq. (1.1) ifΦ(z) satisfies the
Helmholz equation:

Φ′′(z)−k2Φ(z) = 0 (1.9)

To find a solution to this differential equation we include a third boundary condition - the
finite depth of water (impermeable bottom):[

∂φ

∂z

]
z=−H

= 0 (1.10)

It can be proved that in that case Φ(z) = Φ0cosh[k(z + H)], where Φ0 is a constant value on
the water surface (at z = 0). The above solution along with the free-surface boundary condi-
tions (1.6) and (1.7) yields to a linear dispersion relation for gravity waves:

ω2 = g ktanh(kH) (1.11)

Since not only long gravity waves are the subject of our experiments, we also have to con-
sider a surface tension (γ) force which plays a major role in restoring the flatness of the water-
air interface for waves with short wavelengths λ (where k = 2π/λ). Then, the excess pressure
is enlarged and becomes:

pe = ρgη+γk2η (1.12)

This modifies the boundary condition (1.6) and the capillary-gravity linear dispersion relation
finally reaches:

ω2 = (g k + γ

ρ
k3)tanh(kH) (1.13)
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1.3 Organization of the manuscript

The manuscript consists of six chapters and is organized as follows:

• Introduction (Chapter 1): motivation for the present experimental work with general
insights on recent studies on water waves is given. A mathematical description of the
linear water wave theory is also formulated.

• Fourier Transform Profilometry for pure water waves (Chapter 2): recent profilome-
try technique to measure surface elevation is described. A strong increase of the water
wave attenuation in the standard FTP measurements is detected. The resonance-type-
damping is discussed and is shown to be responsible for the enhanced dissipation. This
scenario is experimentally validated. The successful development to the technique by
appropriate water physico-chemical preparation is proposed and pure water attenua-
tion is achieved.

• Time-reversal of water waves (Chapter 3): deals with one of the most important results
of this thesis - the time-reversal of water waves closed in the reverberating cavity. There,
first evidence of experimental water wave time refocalisation is given. Spatial and tem-
poral refocalisation on the initial source point is shown. The role of the non-negligible
wave attenuation as well as the number of re-emitting channels on the refocalisation
quality is studied. Owing to the dispersive nature of the water waves, even one-channel
refocalisation is presented.

• Water Wave Turbulence (Chapter 4): this chapter concentrates on the experimental
study of wave turbulence. Because of our measurement method, we have access to
the wavevector-frequency wave energy density spectra. Behavior of that spectra for
various forcing frequency bandwidths and forcing amplitudes is investigated and com-
pared with theory and recent experimental studies on that subject. Different regimes,
depending on the forcing frequency bandwidth, are shown.

• Bathymetry (Chapter 5): the measurement of local liquid depth is a subject of this
chapter. We present experimentally a feasibility of underwater depth reconstruction
obtained with circle method as well as by means of Helmholtz equation. Limitations of
methods and its possible applications are discussed.

• Conclusions and perspectives (Chapter 6): summary of the presented results is given.
Major conclusions and propositions for further experimantal investigations are pro-
vided.
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FOURIER TRANSFORM PROFILOMETRY FOR

PURE WATER WAVES

This chapter presents a brief description of Fourier Transform Profilometry (FTP) method for
water waves and its influence on water properties, manifested by an enhanced energy dissi-
pation. The physical basis of this effect are discussed. It is followed with the article published
in Experiments in Fluids [68] describing the improvement to the FTP technique, which over-
comes the enhanced damping effect and enables a proper investigations of the wave phe-
nomena.

2.1 Fourier Transform Profilometry - method description

Experimental investigations of the physical phenomena demands the measurement tech-
nique and appropriate equipment. Constant progress in water waves experiments spurs re-
searchers to invent new methods, which can make use of new technologies. The most valu-
able quantity in the study of surface waves is the free-surface deformation (FSD). The devel-
opment of a water wave field is revealed through its FSD. The technique for studying the FSD
underlies the fundamental issue in the experimental investigations of phenomena occurring
on the free surface and its vicinity. In the last decades various techniques have been invented,
such as refractive and reflective techniques [15], gradient detector techniques [83, 84], diffus-
ing light photography [76], and others. Unfortunately, all these methods present limitations
(only one or few-points measurements, intrusive methods) and cannot be easily applied in a
wide range of experiments on water waves (for the extensive monograph of different fringe
projection techniques and its recent developments see Gorthi and Rastogi [35]). Advanced
research of the FSD in the laboratory scale requires a technique that allows to reconstruct,
non-intrusively, the 3D surface deformation with high space and time resolution.

21
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Figure 2.1: Setup of the FTP method for water waves with parallel optical axes.

A Fourier Transform Profilometry method (FTP) seemed to be a good answer to our needs.
Originally developed for solid bodies [72, 73] it has been used to measure water waves firstly in
2002 [82]. Later, it has been adapted by our group for fully resolved space-time measurements
of FSD. The scheme of our setup configuration is presented in the Fig. 2.1. The basic idea is
as follows: the fringe pattern of known characteristic is projected onto the flat surface and
recorded by a camera (reference image). When surface deforms the fringe pattern acquired
by the camera is also distorted. The deformation depends on the object’s profile and the per-
spective from which it is seen by the camera. This deformed fringe pattern is then compared
to the reference one, revealing the phase difference between them (see Fig. 2.2). The informa-
tion about FSD is directly encoded in this phase shift map. The appropriate detection of the
underlying phase shift map 4ϕ of the captured patterns and conversion from 4ϕ to absolute
height η are the key tasks in the FTP method for water waves.

Following [10, 58] (where the detailed description of the method can be found) the ele-
mentary geometrical optics is used to connect surface elevation η with a phase shift 4ϕ:

η= ∆ϕL

∆ϕ−2π/pD
, (2.1)

where D is a distance between camera and videoprojector, L is a distance between surface at
rest and the camera/videoprojector (see Fig. 2.1) and p the periodicity of the fringes. These
values are known a priori, thus the phase shift 4ϕ has to be found to reconstruct FSD.

Omitting the background variations, the intensity of light recorded by the camera for refer-
ence image I0 and deformed image I , while projecting sinusoidal wave can be mathematically
described as:

I0(x, y) = A(x, y)cos(
2π

p
x +ϕ0(x)), (2.2)
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Figure 2.2: A reference fringe pattern of known characteristic is projected onto a surface at
rest (on the left) and onto a deformed surface (on the right). The distortion of the fringe pat-
tern on the deformed image with respect to the undeformed one is clearly visible. Determi-
nation of the phase shift 4ϕ between both patterns is fundamental to reconstruct the free
surface deformation (FSD) by means of the FTP method.

I (x, y) = A(x, y)cos(
2π

p
x +ϕ(x)) (2.3)

A stands for the amplitude intensity of the captured pattern. This light intensity amplitude A
depends not only on the projection power, but also on a surface light diffusivity and a camera
sensitivity. Note also that due to the inhomogeneous projection by the videoprojector (more
intense at the center than close to the borders) its value is not constant on the recording area.
Now, an analytical form to obtain phase shift 4ϕ=ϕ(x)−ϕ0(x) has to be found. Let’s perform
a Hilbert transform of both quantities:

H (I0) = A(x, y)exp[i (
2π

p
x +ϕ0(x))], (2.4)

H (I ) = A(x, y)exp[i (
2π

p
x +ϕ(x))], (2.5)

where i stands for the imaginary unit. Complex conjugation of the expression (2.4) multiplied
by the expression (2.5) gives:

H (I ) ·H ∗(I0) = A2exp[i (
2π

p
x +ϕ(x)− 2π

p
x −ϕ0(x))] = A2exp[i4ϕ] (2.6)

To separate the value of phase shift 4ϕ from the above formula, it is enough to take the imag-
inary part of the natural logarithm:

ln[H (I ) ·H ∗(I0)] = ln |A|+ i∆ϕ (2.7)
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This procedure allows one to obtain ∆ϕ completely isolated from the light intensity varia-
tion A.

This method has been successfully employed in our laboratory and used by our group to
study water-wave trapped modes [11, 13] and drop impact on thin liquid film [45]. It has also
been used by other groups of scientists, e.g. in the case of wave turbulence on the surface of
fluid [40].

Since the FTP method uses images reflected from the surface, this surface has to be light
diffusive. The most natural and cheapest liquid for studying wave phenomena is obviously
water, for which the sufficient surface diffusivity cannot be obtained. Our previous experi-
mental investigations (quoted above) used white paint dissolved in water (at 1 : 200 ratio by
volume). This solution does not change significantly the density and gives the sufficient light
scattering to employ the FTP method.

While performing experiments it has been found that the attenuation of waves is strongly
enhanced compared to the one of pure water. At the beginning a reason for such behavior
was unknown. The solution to that problem was a first task of my thesis and gave unexpected
results.

2.2 Surface wave attenuation - resonance phenomenon

Water waves suffer attenuation due to the viscosity µ (not considered in the linear wave the-
ory developed in section 1.2) through two main processes of energy dissipation. The first one
is the bottom friction. Its presence is significant, whenever the wavelength λ is large com-
pared to the depth of the liquid H . In that case, the wave motion is far from being cylindrical
and takes an elliptical form. Horizontal motion near the bottom induces the friction and in
consequence the attenuation.

Second type of attenuation connected with the water viscosity µ is known as internal
(bulk) dissipation. If we take into account water viscosity, then the stress tensor is altered
and governing equation changes, namely the linearized momentum equation (1.2) takes a
form:

ρ
∂u

∂t
=−∇pe +µ∆u (2.8)

and this in consequence changes boundary condition on the free surface (it is no more only
surface tension and gravity that are balanced on the surface). The new set of boundary con-
ditions, which incorporate the viscous losses, has to be satisfied now, resulting in the wave
energy dissipation. Based on the conservation of energy, one can derive the relationship be-
tween the spatial decay of the wave amplitude and the fluid viscosity [2] (presented in eq. (5)
in the following article). The resulting internal attenuation by viscous shearing is substantial
only for high frequency waves (low wavelengths).

None of that effects could be responsible for the largely enhanced dissipation of the in-
termediate waves. It has been finally discovered that the application of paint has a big disad-
vantage not considered before. Paint requires substances stabilizing emulsion. These surface
active substances, so important in normal use of paint, can have a dramatic impact directly
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on the water surface and indirectly on water wave character (amplitude and energy attenua-
tion). Due to the surfactant’s structure, containing the hydrophobic and hydrophilic groups,
their molecules move towards liquid’s interface (water-air interface in this case) spreading on
the water surface until creating a monolayer. Hence, relatively small amount of surfactant can
cause an extensive area of fluid to be covered. It may seem questionable whether the surfac-
tant film of the thickness of few 10−9 m can have a considerable influence on wave attenu-
ation, however, the investigations of the surface film rheology, carried out in the end of the
XXth century, distinctly proved the enhance of the wave energy dissipation due to the phys-
ical properties of the monomolecular film. Passing wave locally expands (at the wave back)
and compresses (at the wave front) the surfactant monolayer causing locally higher and lower
surface tension areas (due to the local differences in surfactant density) and in consequence
of surface gradients - tangential stresses.

Figure 2.3: Due to the horizontal velocity on the surface of the traveling wave, the surfactant
density on the wave front is increased and reduced on its wave back. Resulting surface tension
gradients induce longitudinal waves (Marangoni waves). The scheme proposed by Behrozzi
et al. [3]

In the consequence of elastic properties of the surface, which causes resistance to stretch-
ing and compressing, the underlying fluid changes its motion pattern from cylindrical to el-
liptical. For this reason, the energy is drawn away stronger by viscous friction. The result-
ing damping coefficient is significantly enhanced. The experiments performed in 1940s [47],
in 1950s [19] and in the next decade [52, 60] showed that surface elasticity has strong influ-
ence on capillary wave damping. They revealed that damping is the strongest for low surface
elasticity values, however, the precise explanation for this effect remained unanswered. Fi-
nally, in 1968, Lucassen [50] made a discovery. He proved an existance of longitudinal waves
(called Marangoni waves) accompanying the capillary ones. He stated that in contrast to cap-
illary waves, the Marangoni waves are governed by the surface elastic modulus rather than
by surface tension. Due to the tangential surface stresses, the kinematic boundary condi-
tion on the surface is changed, thus the linearized Navier-Stokes equation has two different
solutions: one describing well-known transversal waves and another describing Marangoni
waves. These waves occur independently of each other. He also reported [50] that surface
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elasticity has practically no influence on surface transversal waves, while it has strong influ-
ence on Marangoni waves, which reaches maximum damping for a low surface elasticity.

Further investigations revealed that not only capillary waves, but also short-gravity as
well as intermediate ocean waves, can be significantly damped while Marangoni waves exist
(see [8, 42, 51]). An in-depth explanation to these observations has been given by Alpers and
Hühnerfuss [1]. They stated that increased energy attenuation is caused by the resonance-
type wave damping between Marangoni and short-gravity waves.

In the second section of this chapter my article published in Experiments in Fluids [68] is
presented. The article describes in details the theory of surface contamination and proposes
the use of new pigment to obtain water-air interface light scattering with clean surface. The
experimental measurements of water colored by standard paint and non-surface active pig-
ment are given and compared. The resonance-type damping arising from the surface tensions
gradients is confirmed experimentally. The mathematical formulas and physical interpreta-
tion of the calming effect due to the presence of surface film in the capillary-gravity regime is
also discussed.

This study was crucial for subsequent experimental studies conducted during my thesis.
It opened a possibility of proper studying of wave turbulence by means of FTP method as well
as increased a quality of water wave refocalisation in time-reversal experiments.
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Abstract We present a study of the damping of capillary-

gravity waves in water containing pigments. The practical

interest comes from a recent profilometry technique (FTP

for Fourier Transform Profilometry) using fringe projection

onto the liquid-free surface. This experimental technique

requires diffusive reflection of light on the liquid surface,

which is usually achieved by adding white pigments. It is

shown that the use of most paint pigments causes a large

enhancement of the damping of the waves. Indeed, these

paints contain surfactants which are easily adsorbed at the

air–water interface. The resulting surface film changes the

attenuation properties because of the resonance-type

damping between capillary-gravity waves and Marangoni

waves. We study the physicochemical properties of col-

oring pigments, showing that particles of the anatase

(TiO2) pigment make the water surface light diffusive

while avoiding any surface film effects. The use of the

chosen particles allows to perform space-time resolved

FTP measurements on capillary-gravity waves, in a liquid

with the damping properties of pure water.

1 Introduction

Free surface waves are an important subject in fluid

dynamics due to their practical applications in the industry

(such as naval architecture, coastal and ocean engineering)

and also due to the wealth of physical phenomena that they

display. Most experimental studies on liquid surface

deformation have used qualitative direct visualizations of

the 2D surface or quantitative one-point temporal mea-

surements. Recently, our group has proposed a full space-

time resolved measurement of the surface elevation, using

a technique called Fourier transform profilometry (FTP).

This technique was first developed by Takeda et al. (1982),

Takeda (1983) for solid surfaces. We have improved and

implemented it for liquid surfaces (for details and biblio-

graphy see Maurel et al. 2009; Cobelli et al. 2009; Gorthi

2010). Typical examples of measured wave fields are

shown in the Fig. 1. In the first example, a plane wave

propagates with defined frequency x over a nonuniform

bottom producing wave scattering. Owing to the temporal

resolution, the total measured displacement field

h(x, y, t) can be easily expanded in h(x, y, t) =
P

n

Re[hn(x, y)einxt] to extract the complex field h1 that is later

analyzed. The second example is of particular interest with

respect to the purpose of this paper.1 In the case of wave

turbulence experiments, the water wave field results from

the nonlinear interactions of random waves. The theoretical

predictions in weak turbulence theory are done in the

Fourier (k, x)-space, and this space becomes accessible
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1 The effect of monomolecular surface film, that we want to avoid,

has been studied in Alpers (1989), where the authors show that the

power law of the energy spectra in water wave turbulence can be

modified by the presence of a surface film.
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experimentally thanks to our full space-time resolved

method.

Since the FTP method uses the deformation of fringes

projected onto the free surface, this surface must scatter light.

It is not possible with pure water, which is transparent and

has a very low surface reflectance. Previously, light diffu-

sivity was achieved by diluting white paint in water. This

produced a substantial increase in the scattering from water

(in the reflectance of the water surface). However, it was also

found that the attenuation of surface waves was dramatically

enhanced compared to that of pure water. This spurious

attenuation is particularly harmfull when studying wave

phenomena. It was soon found that it is caused by the pres-

ence of a film at the surface of water. Indeed, water is a liquid

that has an unusually high cohesion and, therefore, a very

high surface tension. Consequently, many species adsorb to

the water–air interface, either from the water side (dissolved

species) or from the atmosphere (airborne molecules or

particles). These species quickly create a film at the water

surface and this film may strongly change the attenuation

properties of surface waves: this phenomenon is well known

since the observations of the ‘‘calming effect of oil on water’’

by Benjamin Franklin in the eighteenth century (Franklin

1774; Behroozi et al. 2007). Since then, the attenuation due

to the excitation of surface film vibrations by water waves

has been studied in details by several authors (Alpers 1989;

Levich 1962; Miles 1967; Lucassen 1968, 1982; Lange

1984).

We have found a way to make the water light diffusive

while keeping its low attenuation property. The solution to

this problem required investigation into the surface chem-

istry of the pigments. It also involved the use of rigorous

methods to ensure good pigments dispersion without

release of any surface active molecules in water (not even

traces!).

This paper is organized as follows: Section 2 is dedi-

cated to the choice and characterization of nonsurface

active aqueous dispersions that can make water light dif-

fusive while avoiding the formation of a surface film. To

verify the absence of a surface film, the measurement of the

surface tension of the dilute aqueous dispersions was per-

formed. In Sect. 3, we present FTP measurements of the

water wave attenuation, comparing water colored by plain

paint to the dispersion of nonsurface active particles. It is

also confirmed that the chosen particles allow us to restore

the attenuation of pure water. Incidentally, it is shown that

the enhancement of attenuation by plain paint is associated

with a resonance of the film surface, in agreement with the

theory (Alpers 1989; Lucassen 1968, 1982).

2 Nonsurface active dispersions

The desired characteristics of the pigment particles are

threefold: (a) they must provide a high reflectance of the

water surface; (b) they must be well dispersed in water;

(c) they must not release any surface active molecules or

ions that would form a film at the surface of water. To a

large extent, these constraints are in conflict with each

other and this is what makes the choice of the pigments

difficult.

In order to meet condition (a), the classical choice is to

use titania (TiO2) particles. Indeed, titania has a very high

refractive index (n = 2.7), nearly the highest among min-

erals. With this high refractive index, the optimum size of

the titania particles is about 300 nm, which is the average

size of commercially available TiO2 pigments. Particles of

this size are strongly agitated by Brownian motions and

sediment quite slowly, unless they aggregate.

Condition (b) is not easily met for pure titania particles,

for two reasons. Firstly, titania surfaces are ionized in

water according to the classical reaction schemes:

Ti� OHþ OH� $ TiO� þ HOH;

Ti� OHþ OHþ3 $ TiOHþ2 þ HOH
ð1Þ

If one of these reactions prevails, the surface acquires

a net electrical charge and the corresponding electrical

potential attracts a double layer of counterions in the

Fig. 1 Example of FTP measurements in water wave experiments:

a real part of the wave field h1(x,y) in experiments of wave

propagating over a nonuniform bottom. The complex field h1 is

obtained by extracting the Fourier component of the total measured

field. Colorbar is in mm. b Instantaneously measured velocity field in

experiments of wave turbulence. The measure of h(x, y, t) gives

access to the Fourier (k, x)-space for comparison with theoretical

predictions. Colorbar is in m/s

520 Exp Fluids (2012) 52:519–527
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vicinity of the surface. When particles approach each other,

the overlap of the diffuse layers of counterions gives rise to

the classical DLVO repulsions, which keep the surfaces

apart and prevent particle aggregation (Evans 1994;

Israelachvili 1991; Hunter 1981). However, for titania,

their reactions are balanced at pH = 6, which means that the

surface has an isoelectric point at this pH. Consequently,

the titania surfaces do not retain any electrical double

layers of counterions, and when particles approach each

other, the classical DLVO repulsive forces are absent. This

is true for both common crystalline forms of titania, that is,

anatase and rutile.

In order to prevent the aggregation of titania particles in

water, the particles’ surfaces are usually covered either

with a layer of another oxide (e.g., silica or alumina) or

with adsorbed polyelectrolytes, such as polyacrylates.

These changes shift the zeta potential curve and the loca-

tion of the isoelectric point on the pH scale. Figure 2 shows

the results of measurements of the electrophoretic mobility

of various titania dispersions, here expressed in terms of

the zeta potential, which is the electrical potential at the

shear plane near the particle surface. The titania pigments

provided by Kronos International, Inc. have been applied in

all our dispersions.

These values of the zeta potential make it possible to

predict the aggregation behavior of the various titania

dispersions. Indeed, it is known from DLVO theory that

zeta potentials above 40 mV provide strong electrical

double layer repulsions and, therefore, predict adequate

colloidal stability. Conversely, zeta potentials below

30 mV do not provide sufficiently strong electrical double

layer repulsions, especially for the case of particles that

have strong Van der Waals attractions as is the case for

titania particles.

According to the results shown in Fig. 2, the rutile TiO2

coated with alumina would only be acceptable at pH B 3,

which is too acidic to be handled in a large water tank with

delicate electrical and optical equipment. Similarly, the

rutile TiO2 coated with alumina and silica would not

aggregate in a solution with pH C 9, but this is not

acceptable in a laboratory with standard instrumentation.

Nowadays, many titania dispersions have gained a sur-

face charge and a high zeta potential through the adsorption

of polycarboxylates, e.g., sodium polyacrylate or sodium

citrate. However, the molecules are only physically bound

to the titania surfaces through ionic interactions with the

surface sites. A fraction of these molecules is always

released in water, either because the adsorption forces are

not infinitely strong or because the manufacturer has added

an amount of the molecules that exceeds the saturation

level of the surface (most likely). It is then in conflict with

condition (c), because these excess molecules are surface

active and, therefore, spontaneously adsorb and form a film

at the free water surface. Indeed, we have found that all

water-dispersible pigments that are made of particles with

‘‘dispersants’’ adsorbed on their surfaces fail to pass con-

dition (c), as defined by the criteria presented below.

Figure 2 shows that the anatase pigment is for us the

best choice since it has a zeta potential Zp \ -40 mV in

all aqueous solutions with pH[4. It is then possible to use

pure water to disperse these particles. The water used in

our experiment is purified. Its resistivity is greater than

16 MX cm, and its surface tension is 71 mN/m.

It is then necessary to verify that condition (c) is met

with the chosen pigment. For this purpose, some experi-

mental criteria and procedures must be defined. A criterion

for the presence or absence of a film at the water surface is

the value of the surface tension. If pfilm is the film pressure,

c the measured surface tension and c0 the surface tension of

pure water, then

c ¼ c0 � pfilm

Typical values of pfilm are 20 mN/m for water surfaces

exposed to open air and 40 mN/m for water containing

dissolved surface active molecules. Thus, a practical cri-

terion for assessing the absence of adsorbed films at the

water surface is that the measured surface tension should

be within 5 mN/m of that of pure water. As noted previ-

ously, the absence of any surface film is not easily achieved

with water containing dispersed pigments, as most com-

mercially available pigments release surface active species

in water. In contrast, aqueous dispersions made with the

anatase pigment had surface tensions above 70 mN/m. This

surface tension decreased very slowly with time because of

adsorption of surface active species that have migrated

from the air or other parts of the equipment (Prisle et al.

2008). A brief aspiration of the surface layer brought it

back to its initial value.

For FTP experiments, it is useful to characterize the

reflectance of the water surface (condition (a)) in terms of

the contrast. The contrast is defined as the number of

intensity gray levels between the white and black fringes.Fig. 2 Zeta potential as a function of pH
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The better resolved is the fringe signal recorded by the

camera, the better resolution on the measured surface

shape. This is because the resolution in the FTP measure-

ments depends on this contrast (for more technical details

see Sect. 3.1). This contrast is a combination of the abso-

lute reflectance of the particles, of the characteristics of the

projecting device and of the characteristics of the camera.

In our studies, we have obtained accurate measurements for

at least 50 gray levels between white and black fringes,

while the contrast below 20 gray levels was found to be

critical.

Figure 3 illustrates the contrast as a function of the

concentration of anatase (rutile pigments are given for

comparison). For the chosen anatase particles, the contrast

of 50 is obtained for a concentration of 2 g/l.

Finally, the particle sedimentation has been analyzed for

the chosen anatase pigment. Settling out process causes the

light to be diffused not from the surface, but from the lower

layer of the dispersion and this induces an error in the

measurements. The sedimentation speed v can be calcu-

lated by equaling the gravity force and viscous resistance

of the water

v ¼ 2

9

r2Dqg

l
; ð2Þ

where r stands for particle radius, g for the gravity accel-

eration, and Dq ¼ 2:8 g/cm3 for the density difference

between the particles and water, and l = 10-3 Pa.s for the

dynamical viscosity. The measurements of the particles’

size for the pH in the electrically stable range showed the

particle diameter to be 350 ± 50 nm.

Figure 4 illustrates the effect of the particles’ sedimen-

tation on the FTP measurements. The liquid was agitated at

the initial time, and then the elevation of the free surface

was measured at several times in two cases: I) the liquid

was not shaken anymore (it remained at rest) during the

whole experiment, and II) the liquid was excited by the

wavemaker for a short time between two measurements.

In the first case, the free surface position seems to decrease

in time which is connected with particles’ sedimentation.

Initially, sedimentation follows reasonably the theoretical

prediction (black curve in the Fig. 4) using Eq. 2 with r the

mean size of the particles. Then, the particles seem to

sediment slower. It is connected with the existence of

smaller particles which settle out slower. In the case II, the

free surface position varies around the zero level within the

error bar. This means that the motion induced by the wave

propagation provides enough mixing to prevent the sedi-

mentation effect.

3 FTP measurement of water wave attenuation

In 1872, Marangoni described the effect of surface tension

gradients. He found that they alter the tangential stresses

balance on the surface: while the wave passes, it locally

expands (at the wave back) and compresses (at the wave

front) the surfactant monolayer causing locally higher and

lower surface tension areas due to the local differences in

surfactant density. In 1968, Lucassen proved the existence

of longitudinal waves on the surface film accompanying

the capillary-gravity waves. These waves are governed by

the surface elastic modulus of the film rather than by the

surface tension and the gravity. Because of the tangential

surface stresses, the kinematic boundary condition on the

surface is changed, implying that the linearized Navier–

Stokes equation has two different solutions: one describing

well-known water waves and another one describing lon-

gitudinal waves (often called Marangoni waves).

In the past, the calming effect due to the monomolecular

slicks existence has been supposed to affect only the cap-

illary waves. Few years later, Lucassen (1982), Cini et al.

Fig. 3 Contrast as a function of the particles’ concentration for

anatase pigment and rutile pigments. The camera worked at 8 bits

(256 gray levels)

Fig. 4 The apparent surface position, as measured by FTP, as a

function of time for two cases: no liquid shaking (blue curve), the

liquid was excited by waves produced by a wavemaker during a short

time between two measurements (red curve). Black curve shows the

theoretical prediction for the sedimentation (Eq. 2, using the mean

size of the particles). The dispersion used here is the anatase with a

concentration of 4 g/l. The real position of the free surface is at zero

(the errorbar is 0.02 mm)
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(1987) showed that such a film can induce the resonance-

type wave damping between Marangoni and capillary-

gravity waves, which results in a large attenuation

enhancement also in the short-gravity-wave region. At the

same time, the experimental evidence of the higher energy

dissipation of the short gravity waves was given by Lange

(1984) in the laboratory scale and by Ermakov et al. (1986)

in the open sea. The mathematical description of the

problem, originally proposed by Alpers (1989), can be

found in the ‘‘Appendix’’.

3.1 Experimental details

The presented experiments were performed in the rectan-

gular basin of 160 9 60 cm2. The industrial titanium

dioxide anatase particles (Kronos 1002) with a concentra-

tion 4 g/l were used to color water of 5 cm depth. The

surface tension c was measured before and regularly during

experiments by Krüss K100 Tensiometer using the ring

method and was equal to 71 ± 1 mN/m for water with

titania particles (and 32 ± 1 mN/m for water colored

by plain paint). Water temperature was maintained at

17 ± 1�C.

The FTP method implemented by Maurel et al. (2009)

and Cobelli et al. (2009) was applied to measure the sur-

face elevation h(x, y, t). In the FTP method, a fringe pat-

tern is projected onto the free surface and observed from a

different position by the camera. The surface elevation

information is encoded in the fringes deformation in

comparison with the original (undeformed) grating image.

It is, therefore, the phase shift between the reference and

deformed images which contains all information about the

deformed surface (see Lagubeau et al. 2010; Cobelli et al.

2009, 2011a, b, for the examples of applications).

A Phantom v9 high-speed camera was used to record the

surface of 30 9 30 cm2 area with a 560 9 560 pix2 and a

sampling frequency fs = 160 fps. The horizontal resolution

was equal to 0.53 mm, which corresponds to the pixel size.

The vertical precision was estimated to 0.1 mm with an

error of 0.05 mm. It was found to be sufficient to recon-

struct the waves with typical wavelength 3–15 cm and

amplitude of few millimeters (to avoid the nonlinear

effects).

The experiment consists in recording the transient wave

produced by a broadband wavepacket signal (modulated

with a blackman window). In the case of water colored by

the titania particles, the central frequency of the signal was

8 Hz and the sampling was chosen such that 20 points were

recored per period. A single input signal allowed us to treat

broad frequency range between 4 and 10 Hz. For water

colored by plain paint, the damping is enhanced, so the

frequency range around the central frequency with energy

above the noise level is reduced. Thus, five different input

signals were used with central frequency at 4, 5, 6, 7 and

8 Hz. The images recording finished after capturing 16,000

images (100 s), which was enough for the waves to be

totally attenuated.

Since the depth of the water is constant, in the harmonic

regime, at pulsation x, it can be shown that the height

perturbation is the solution of the Helmholtz equation:

ðMþ k2ÞH ¼ 0; ð3Þ

where k is linked to the pulsation x by the linear dispersion

relation. It is important to notice that k has an imaginary

part due to the attenuation (k ¼ jþ ib; where j, b are

real). In the above equation, k is the unknown and H stands

for the time Fourier transform of the measured transient

height h(x, y, t):

Hðx; y;xÞ ¼
Z1

�1

hðx; y; tÞ � e�ixtdt ð4Þ

The FTP measurement of the transient h allowed to

obtain the H fields for a broad range of frequencies with

0.01 Hz step.

An example of the measured H field is shown in the top

of the Fig. 5. Owing to the spatial resolution of the FTP

Fig. 5 Typical real value of the complex signal H (top) and

corresponding real value of its laplacian with a negative sign: �DH
(bottom)
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measurements, it is possible to numerically compute the

discrete laplacian

½DH�ij ¼
1

Dx2
ðHi�1;j þ Hiþ1;j þ Hi;j�1 þ Hi;jþ1 � 4Hi;jÞ:

The field corresponding to -DH is shown in the Fig. 5

(bottom). Both patterns are very similar, indicating that the

calculation of the wavenumber from the Helmholtz equa-

tion 3 can be achieved. To find the complex wavenumber

k, we used the following method: from a given H pattern,

the norm function ðMþ k2ÞH
�
�

�
� is minimized in the

complex k plane. Figure 6 illustrates the minimization

result. As it can be noticed from that plot, the minimum is

found to be cylindrical and well defined.

The error of the minimization e ¼ ðMþ k2
calcÞH for the

calculated wavenumber kcalc is shown in the Fig. 7. This

error is one order of magnitude smaller than DH, and it is

fairly randomly distributed in space.

3.2 Results

The above procedure allowed to determine the wavenum-

ber k and thus the attenuation for surface waves on water

colored by titanium dioxide pigment (anatase) and colored

by plain paint. The measured damping coefficient (bcalc) of

these two different aqueous dispersions is compared in

Fig. 8. The theoretical values for water with a clean surface

are caused by the viscous attenuation in the bulk and are

given by Stokes equation:

b0 ¼
4j2lx

qgþ 3cj2
ð5Þ

We can notice that the attenuation of the titanium dis-

persion is comparable to the theoretical attenuation of the

pure water, satisfying the aim of this study. The attenuation

of the water colored by plain paint is many times larger

than for the pure water and strongly depends on the fre-

quency. It confirms that a viscoelastic film dramatically

enhances the viscous energy dissipation in the boundary

layer near the free surface.

Figure 9 shows the relative damping normalized by the

damping of pure water. The theoretical prediction of the

relative damping of water covered by a thin viscoelastic

surface film is given by the Eq. 9 of Alpers (1989) (not

reported here). It is compared to the measured attenuations

Fig. 6 Minimization of the norm ðMþ k2ÞH
�
�

�
� in the function of j

(the real part of the wavenumber k) and damping coefficient b (the

imaginary part of the wavenumber k)

Fig. 7 Typical field of the minimization error e ¼ ðMþ k2
calcÞH

Fig. 8 Absolute damping coefficient bcalc in the function of the

frequency. Comparison of the water suspensions obtained by adding

anatase pigment and white paint. The black line is the theoretical

attenuation b0 given by Stokes (Eq. 5)

Fig. 9 Relative damping coefficient (bcalc/b0) in the function of the

frequency. Comparison of the water suspensions obtained by adding

anatase pigment and white paint. The black line is the theoretical fit

based on the formula proposed by Alpers (1989)
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in the case of the water colored by plain paint, by fitting the

surface-dilational modulus e of the model. The black line in

Fig. 9 shows the fit for which the absolute value of this

modulus was found to be ej j ¼ 0:033 N/m and its phase

angle h = 180�.

The maximum damping enhancement due to the surface

film is found to be around 4 Hz where the attenuation with

plain paint is 25 times larger than the attenuation of the water

with clean surface. This damping resonance coincides with

the intersection of the dispersion relation branches for the

surface and Marangoni waves presented in the Fig. 10. The

dispersion relation for Marangoni waves is given by:

x3
M ¼

�ie2

ql

� �

k4
M ; ð6Þ

while for the water capillary-gravity waves, it is:

x2
S ¼ gkS þ

c
q

k3
S ð7Þ

Note also that based on the theoretical wave attenuation

of the pure water (Eq. 5), the drop of the surface tension

c, caused by the presence of the surfactant, increases by

itself the damping coefficient (without considering any

resonance phenomena). Indeed, it was measured by Behr-

oozi et al. (2007) that the decrease in the surface tension

has influence on the attenuation jump.

Since the surface of suspension is exposed to ambient

air, it becomes polluted as time evolves. Thus, the time

range for which the suspension remains the damping equal

to that of the pure water is in great interest for the exper-

imentalists. Qualitative measurements were carried out

systematically in time (for wave packet centered at 8 Hz).

We observed a slow increase in the damping coefficient

during the first 10 h. Further measurements revealed that a

plateau is reached after 24 h. This enhancement of the

attenuation cannot be neglected; however, it is small and

does not exceed 35% of the original value. Practically, this

pollution effect can be reduced by a careful surface aspi-

ration which permits to restore the original value of the

damping coefficient (where the original value means the

value just after suspension preparation).

4 Conclusions

We have shown the great influence of the surface visco-

elastic film on water wave attenuation when water is col-

ored with plain paint for which the theoretical predictions

of the Marangoni-surface wave resonance damping (stud-

ied by Alpers 1989) have been confirmed experimentally.

Different types of titanium dioxide particles have been

investigated in order to avoid the enhancement of damping.

Eventually, the titanium dioxide anatase particles have

been chosen to color water. They allow to perform space-

time resolved FTP measurements of water waves with a

damping equivalent to the clean surface case.
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Appendix

Let us consider the propagation of a plane wave in x

positive direction (coordinate z being normal to the surface

at rest) in an incompressible fluid with density q and

dynamical viscosity l. Neglecting the nonlinear terms, the

Navier–Stokes equations for the velocity field u ¼ ½ux; uz�
read:

q
oux

ot
¼ � op

ox
þ lDux

q
ouz

ot
¼ � op

oz
þ qgþ lDuz

ð8Þ

where g denotes the gravity acceleration, and p is the

pressure.

Considering the existence of the surface tension gradi-

ents, the kinematic boundary conditions on the surface

(tangential and normal components, respectively) can be

expressed as:

oc
ox
� Txz ¼ 0

c
o2f
ox2
þ p� pa � qgf� Tzz ¼ 0

ð9Þ

where f denotes the surface elevation, pa is the atmospheric

pressure, and T the stress tensor. It has to be noted that the

only difference in the whole mathematical formulation

compared to the clean surface case is the nonzero

tangential component of the stress tensor (due to the

Marangoni effect of surface tension gradients). This

gradient can be expressed as:

Fig. 10 Dispersion relation of the Marangoni and surface waves. The

intersection region is the region of the dramatical increase in the wave

energy dissipation
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oc
ox
¼ e

o2n
ox2

Here, n is the horizontal displacement of the surface, and e
denotes the surface-dilational modulus, which characterizes

the viscoelastic fluid properties and is a complex number in

general. The whole quantity is given by:

e ¼ ej j expð�ihÞ

A phase difference between the imposed area change and

the surface tension variations, caused by a relaxation

processes such as diffusion exchange, is expressed by the h
number.

Introducing the velocity field u as a sum of the velocity

potential U (providing an irrotational field) and the vor-

ticity function W (providing a divergence-free field) and

assuming zero velocity at infinite depth, we can obtain the

harmonic wave solutions to the linearized Navier–Stokes

equations (8).

Substituting these solutions into boundary conditions (9),

it can be shown that the system has two solutions at each

frequency. One solution corresponds to the classical capil-

lary-gravity water wave and the other to the Marangoni

wave. Lucassen (1968) showed experimentally that the

wavelength of the capillary-gravity wave does not depend on

the surface viscoelastic properties (is almost independent of

e), while the imaginary part of their wavenumber (damping

coefficient) is strongly dependent on e.
A simple way to obtain the dispersion relation of the

Marangoni wave is to take the tangential component of the

force balance at the surface assuming a horizontal Stokes

boundary layer in the fluid:

e
o2n
ox2
’ l

oux

oz

Then, the derivative qzux is equal to mux (with the

exponential decrement of the Stokes boundary layer

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ixq=l

p
). Eventually, the continuity of horizontal

velocity between the film surface and the fluid, ux = ixn,

is used to obtain

e
o2n
ox2
¼ ilxmn

that yields the dispersion relation for the Marangoni wave,

given by Eq. 6.

This Marangoni wave is strongly damped. Assuming

purely elastic film (e is a real quantity) and denoting

kM ¼ jM þ ibM:

jM ¼ cosðp=8Þ ql
e2

� �1=4

x3=4
M

bM ¼ tanðp=8ÞjM � 0:414jM

ð10Þ

The real and imaginary part are of the same order of

magnitude—the longitudinal waves are damped out very

rapidly!

The capillary-gravity waves and surface waves are in

general not oscillating with the same frequency and wave-

length. However, the character of the dispersion relations

allows to intersect the frequency-wavelength branches

(Fig. 10). When the frequencies and wavelengths of the

capillary-gravity wave and Marangoni wave are equal, the

particle motion coincides for both waves, giving rise to a

high velocity gradients in a Stokes boundary layer just

beneath the surface film. This explains why the strongest

enhancement of damping of capillary-gravity wave is found

to be around the transverse-longitudinal resonance values.
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36 Chapter 2. Fourier Transform Profilometry for pure water waves

2.4 Supplementary results

As it was mentioned in the article, surface becomes polluted as time evolves. Fig. 2.5 shows a
relative damping coefficient just after suspension preparation (blue), after 24 hours of surface
exposure to ambient air (green) and after carefull surface aspiration (red). We can observe that
after 24 hours the attenuation coefficient is shifted up and reduces after surface aspiration.

This behavior has been also confirmed in the stationary state, when we imposed not a
broadband signal, but a constant sinusoidal wave with a frequency of 8 Hz. In this case the
recorded signal of 10 s was enough to calculate time Fourier transform of the measured height.
The measurements started when the waves produced due to the effect of switching on the
wavemaker were totally attenuated. The results of the stationary state validate results ob-
tained for transient waves. The usefulness of surface aspiration is also proved (see Fig. 2.5).

Figure 2.4: Relative damping coefficient (βcalc /β0) in the function of the frequency. The influ-
ence of surface pollution on damping coefficient can be observed 24 hours after suspension
preparation. Surface aspiration reduces that effect.

Figure 2.5: Relative damping coefficient (βcalc /β0) in the function of time for the measure-
ments performed in the stationary state. The influence of surface pollution on damping co-
efficient during first 24 hours after suspension preparation is presented. Surface aspiration
reduces that effect.
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3
TIME-REVERSAL OF WATER WAVES

Recent developments, applications and theoretical description of perfect time-reversal phe-
nomenon, as well as its limitations in the reality are given in this chapter. It is followed by the
description of the experimental investigations for time-reversal water waves. The preprint of
the article accepted for publication in Physical Review Letters [69] presents the most impor-
tant results obtained during this study. The chapter is completed with the supplementary
material not published in the mentioned article.

3.1 Motivation

Wave focusing is an important phenomenon commonly present in nature and everyday life.
Spatial focusing of monochromatic or pulsed waves can be reached by means of optical or
acoustic lenses, such as light focusing by the assembly of lenses in eyes or acoustic focusing
by means of headphones. Wave focusing is also a subject of extensive studies in water waves.
This is mainly due to the appearance of steep waves (called freak or rogue waves) in the open
sea, which have huge potential for damage and thus are of great importance for oceanogra-
phers and physicists. The mechanism for the presence of these extreme waves highly local-
ized in space and time is still not fully understood, however, it has been demonstrated that
nonlinear effects are essential in their evolution [5]. Large amplitude waves can also be ex-
pected as a result of interactions between surface gravity waves and a mean flow (see [67] for
theoretical description and [56, 75] for recent experimental studies).

It is shown numerically and experimentally in [70] that nonlinear wave group evolution of
initially wide bandwidth can emerge as a single steep wave if numerous frequency harmon-
ics arrive in phase to the certain location. It is proved that it is possible to obtain a designed
form of the wave in the focalisation point by the backward integration of the Zakharov equa-
tion [78] starting from the focusing location till the source location. The process of formation
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38 Chapter 3. Time-reversal of water waves

of huge waves on water in this case is a result of dispersive wave grouping due to an appro-
priate phase modulation of initial wave trains. Note that the signal in the source location has
wide frequency spectrum with moderate amplitude, so can be easily generated by the wave-
maker in the case of experimental investigations.

The above procedure allows the focusing of waves in time and space, however, it has in-
herent limitations and difficulties. The evolution of the wave group (in time and space) has
to be calculated and a well-controlled signal, far from the focusing location, has to be sent to
recreate the designed form of the wave in the focusing location. In this case, the re-emitting
position with respect to the focusing location, as well as the geometry of the propagation
medium has to be known. The following paragraphs present a method that can re-create
wave (ergo: re-focus energy) in time and space, while the geometry, distance from source and
focusing point as well as the form of the wave to re-create is a priori unknown!

The latter can be accomplished due to the time-reversal invariance of the wave equation in
lossless media. It allows one to examine a unique phenomenon associated with wave physics
- the focusing back energy of the wave at the initial source point, as though the wave was
being played backwards (wave has the same shape as the initial one, but propagates in the
reverse direction). The time-reversal technique was developed at the beginning of the 1990s
(primarily for acoustic waves) by a group of Mathias Fink [6, 31, 77] and is now employed in
many different fields of wave physics. If one can claim that it is trivial that, due to the time-
invariance of the wave equation, the re-emitted energy will focus back on the original source,
it is obviously not trivial that the refocalisation of waves is possible in inhomogeneous open
system (with unknown geometry), in multiple scattering medium, in chaotic cavities, with
only single source/receiver or in the presence of nonlinearities and attenuation. Since the
first experimental evidences on the efficiency of this concept its limitations, refocusing quality
and perspectives have been extensively studied in theoretical as well as applied aspects. Its
applications have been investigated in the areas such as indoor wireless communications [49],
seismic source location [46], tumor detection [44] and sensors to measure small perturbations
in the system [71]. It is then unexpected that water waves were never tested experimentally in
the case of time-reversal focusing and we are first to qualitatively demonstrate its feasibility.

In a classical time-reversal experiments the wave emitted from source point generates a
wave field. The field is closed and recorded on a surrounding surface. In the second step the
recorded signal is reversed in time and re-emitted into the system. The resulting field un-
does the same phase changes and distortions that they suffered in time-forward propagation
focusing back on the source position [33].

It has been shown that time-reversal experiments are not limited only to the closed cav-
ities. They can also converge on the targets (scattering centers) in the open system (with in-
homogeneous medium). In the case of acoustic waves, the area which contains a target (for
example a kidney stone) is first illuminated. The wave is distorted due to inhomogeneities
and reflects from the target. The backscattered pressure is recorded by the transducer array,
then time reversed and re-emitted. The resulting pressure field focuses back on the target [77].
Further experiments [18] surprisingly proved that even in the presence of high-order scatter-
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ing in the open system (that was initially considered to limit the time-reversal efficiency [31])
acoustic waves can be successfully converged to its source. In addition, the focusing resolu-
tion was found to be below the theoretical limit for the aperture used in the experiment.

In a case of a closed cavity, to ideally reconstruct a refocusing wave, the perfect measure-
ment of the Green’s function (and its normal derivative) over the whole surrounding surface
should be performed. This would require an infinite number of transceivers to capture the
entire signal emitted from the source. Also, a reciprocity theorem has to be fulfilled - impulse
response from the source point to receiving point and from receiving point to source point
are identical (the positions of the source point and receiving point can be reversed without
altering the wave field). In practice, the refocusing quality is reduced because of the finite
number of transceivers and the diffraction limit of the retransmitting devices.

Despite these limitations, it has been shown [20] that a confined reflective cavity with
chaotic ray dynamics can simplify time-reversal focusing to a single transceiver (one-channel
time-reversal) whilst maintaining very good spatial and temporal quality of refocusing! The
quality increases with the time-reversal window. The presence of multiple reflections and no
signal "leaks" might indicate that in the lossless media all the information about the system
can be collected in one point, however, theoretical [21] and experimental [22] investigations
distinctly proved that even in the case of infinite time-reversal window the reversal focusing
quality is limited.

Note that if the propagation medium is attenuative, then the odd order time-derivative
operator appears in the wave equation and this might suppress the time-reversal invariance
as well as the validity of the reciprocity theorem. Water waves have strong attenuation, thus
their time-reversal focusing is not obvious. On the other hand, they are dispersive by nature
which can largely enhances the refocusing quality and decreases the number of re-emitters
needed in the backward step. This encouraged us to test, experimentally, the possibility of
time-reversal water waves focusing in a reverberating cavity.

3.2 Time-reversal - problem formulation

Following [21] and [32] the mathematical description of time-reversal focusing can be devel-
oped.

Let us consider a wave propagating with velocity c (in general dispersive) in a lossless
medium with a wave scalar field σ(r, t ) and the source term function f (t ) at the position r0,
then the wave equation reaches:

(∆− 1

c2

∂2

∂t 2
)σ(r, t ) =−δ(r− r0) f (t ) (3.1)

If for now, for simplicity, we assume that our source is impulsive f (t ) = δ(t ) then the associ-
ated Green’s function verifies:

(∆− 1

c2

∂2

∂t 2
)G(r,r0, t ) =−δ(r− r0)δ(t ) (3.2)
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Note that with respect to the causality in physics, we have chosen a retarded Green’s function
- diverging wave from the source (see Fig. 3.1).

Figure 3.1: A schematic view of the (a) retarded and (b) advanced Green’s function solutions.
The retarded solution diverges from the source (the yellow star), while the advanced solution
converges to it. Relationship between causes and effects inclined us to choose retarded solu-
tion in the eq. (3.2) - diverging wave from the source. The aim of the time-reversal is to create
an advanced solution!

In the perfect time-reversal phenomenon, in its first step, the wave elevation and its nor-
mal derivative should be measured in every point rs on the surrounding surface S during a
time-window ∆T . In the second step, the obtained signals are time reversed and re-emitted
(with an inverse direction as they arrived). The original source becomes passive and surface
becomes active with sources:

σs(rs , t ) =G(rs ,r0,T − t )
∂nσs(rs , t ) = ∂nG(rs ,r0,T − t )

(3.3)

Taking into account the above sources, the Gauss theorem, spatial reciprocity and time-reversal
invariance the time reversed field σtr yields:

σtr (r, t ) =G(r,r0,T − t )−G(r,r0, t −T ) (3.4)

The time-reversal generates not only the advanced solution, but a difference of the advanced
and retarded solutions. Indeed, while the propagation equations can be reversed in time, the
energy input induced by the impulse cannot (we cannot suck out the energy from the sys-
tem). For that reason, the converging wave (advanced solution) typically diverges (retarded
solution) after the recompression time T . Note that it has been shown that if a source point
can work as an emitter, then an excitation function can be also time reversed (sink) and im-
posed in the anti-phase to the diverging wave creating a super-focusing of the reversed signal.

We simplified the calculation by introducing the impulsive source. If we want to obtain
the time reversed field after the excitation f (t ), the right hand side of the expression obtained
in (3.4) should be convoluted with a signal f (−t ). This gives us a perfect time reversed signal
in the cavity.
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In reality we can simplify this problem and consider that the surface is located on the
far field from the source, then the source due to the re-transmitted normal derivative can
be omitted (see eq. (3.3)). In addition, only the finite number N of the transceivers on the
surrounding surface can be analyzed. Then - the signal at the source location r0 after emitting
a time reversed signal from the N positions reaches:

σtr (r0, t ) ∝
N∑

i=1
G(r0,ri ,−t )⊗G(r0,ri , t ), (3.5)

where ⊗ is a convolution operator and from the definition:

G(r0,ri ,−t )⊗G(r0,ri , t ) =
∫

dτG(r0,ri , t +τ)G(r0,ri ,τ) (3.6)

Each term of N channels in this sum reaches maximum at t = 0 and is added constructively,
while in other times this summation is uncorrelated, thus a peak appears for t = 0!

3.3 One-channel time-reversal in chaotic cavity

As was mentioned earlier, time-reversal can be carried out using down to one sensor and
transmitter. The main difference between one-channel time-reversal with the problem for-
mulated in the previous section is that the boundaries do not absorb the energy, the receiver
can be localized inside the cavity and that the re-emitted signal is omnidirectional.

The requirement is for the cavity to be chaotic, so that wavefronts leaving the source in
any direction eventually come to the sensor to be recorded. This is analogous to an ergodicity
condition.

In that case if we inject a signal f (t ) at point A, then a signal obtained in B can be expressed
as f (t )⊗G(rA,rB , t ). This signal has to be time reversed and re-emitted. The refocusing signal
S A(t ) arriving in the second step to point A thus reaches:

S A(t ) = f (−t )⊗G(rA,rB ,−t )⊗G(rB ,rA, t ) (3.7)

Unfortunately, not all the information imposed in point A can be gathered and re-transmitted
by point B, giving rise to the temporal and spatial sidelobes.

Let us consider a signal that is injected, captured and re-transmitted by the same point A.
In the case of perfect time-reversion, we would expect from the refocusing signal to give:
f (−t )⊗G(rA,rA,−t ). Using an eigenmode analysis it can be proved [21] that, for long time-
reversal signals, the temporal shape of the refocused signal S A(t ) is equal to the given perfectly
reversed signal ( f (−t )⊗G(rA,rA,−t )) convoluted with the backscattering impulse response of
B:

f (−t )⊗G(rA,rB ,−t )⊗G(rB ,rA, t ) = f (−t )⊗G(rA,rA,−t )⊗G(rB ,rB , t ) (3.8)

and we obtain a cavity equation:

G(rA,rB ,−t )⊗G(rB ,rA, t ) =G(rA,rA,−t )⊗G(rB ,rB , t ), (3.9)
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The above formula introduces a reduction in the reversal quality in terms of the backscat-
tering impulse response of B. This impulse will deviate the perfect focusing. It suggests that
the loss of the information is entirely due to point B. Indeed, point B (unlike point A) is located
in the nodes of some excited eigenfrequencies and thus cannot reproduce them! In addition,
the weight of the other eigenmodes is also not perfectly re-injected (it depends on the mea-
sured amplitudes of the eigenmodes at point B during the first step). This gives rise to the
appearance of the temporal sidelobes in the refocused signal. It has been found [21] that the
refocusing peak at A contains roughly 1/3 of the total energy present in all cavity.

Despite the wrong re-transmission of the eigenmodes’ amplitudes, all of their phases are
correctly set back to 0 at the point A at the time t = 0. In the effect, they are constructively
superposed in contrast to the rest of the cavity, where the superposition is decorrelated. We
can then conclude, that increasing the number of frequencies excited in the cavity increases
the refocalisation quality.

By analogy to the number of excited frequencies, the use of several reversal points can lead
to the increased refocalisation quality! In this case, refocused signal S A(t ) is the sum of signals
originating from different time-reversal points and thus based on the cavity equation (3.9):

S A(t ) = f (−t )⊗G(rA,rA,−t )⊗ [G(rB ,rB , t )+G(rC ,rC , t )+ ...] (3.10)

A constructive superposition indicates that the peak amplitude increases linearly with
number of re-emitters N , while noise should be proportional to its square root (

p
N ).

There is also one more crucial parameter to be discussed, namely the time reversal win-
dow ∆T . In this section, till now, we assumed that ∆T →∞. Introduction of the finite ∆T will
induce the noise in the system. The influence of ∆T on the refocalisation quality was a sub-
ject of experimental study presented in [22]. The re-injected signal from B is omnidirectional,
thus the waves are sent in directions that find their way back to the source (and as mentioned
above - all of them set back their phase to 0 at the source point at time t = 0) as well as in
directions that take the wrong way, and though are randomly superposed in all the cavity at
the recompression time. It has been found that, if we consider noise induced only due to the
finite∆T , the quality of the refocused signal increases linearly with∆T . However, considering
also the residual noise (induced by imperfect reconstruction of the weights of the eigenmodes
in B) the saturation is reached for large∆T . It is never possible to infinitely increase refocusing
quality, because even for infinite ∆T it is not possible to recover the signal lost in B.

The important condition to perform succesful one-channel time-reversal is a low absorp-
tion coefficient. The emitted and re-emitted wavefronts may undergo several reflections on
the borders between the source and the sensor. This condition is easily verified by acous-
tics waves whose absorption coefficient is close to zero at the experimental time scale (for an
example see [20], where decay time corresponds to around 100000 to 200000 periods of the
injected signal and is about 10 times longer than the largest time-reversal window).

In the case of water waves, the attenuation is much larger and (for gravity waves in the lab-
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Figure 3.2: Ratio of typical attenuation length Lat t to the wavelength λ in the function of the
frequency (left) and wavelength λ (right). Blue line corresponds to the waves at the laboratory
scale and considers both: viscous damping and bottom friction (for water depth H = 10 cm).
Red line corresponds to the waves on the sea and then takes into account only viscous damp-
ing. Green points (given for the comparison) are our experimental values presented and dis-
cussed in the Chapter 2 "Fourier Transform Profilometry for pure water waves". Influence of
finite water depth is visible, which suggests that time-reversal of water waves should be more
effective for sea waves.

oratory scale) corresponds to roughly few hundreds periods (see Fig. 3.2). One can doubt that
time-reversal refocusing in that case cannot be reached. It is shown in the following article
that the quality of the refocusing is highly damped due to the attenuation, however, thanks
to the broadband excitation function - a successfully refocusing is obtained! During our ex-
periments we used a one-period signal with a central frequency f0 = 5 Hz, which is able to
re-create small focal spot (compared to the measurement field) and excites broad bandwidth
of the frequencies, which do not suffer a huge damping due to the strong viscous forces nor
bottom friction. It is a first experimental evidence of time-reversal phenomenon for water
waves.
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We present time-reversal experiments demonstrating refocusing of gravity-

capillary waves in water tank cavity. Owing to the reverberating effect of the cavity,

only few channels are sufficient to reconstruct the surface wave at the point source,

even if the absorption is not negligible. Space-time resolved measurements of the

waves during the refocusing allow to quantitatively demonstrate that the quality of

the refocusing increases linearly with the number of re-emitting channels. Numerical

simulations corresponding to water waves at larger scales, with negligible damping,

indicate the possibility of very high quality refocusing.

Time-reversal of acoustic, elastic and electromagnetic waves has been extensively studied
in recent years [1, 2]. In a standard TR experiment, waves generated by a source are first
measured by an array of antennas positioned around the source, and then time reversed
and simultaneously rebroadcasted by the same antenna array. Due to the time invariance
of the wave process, the re-emitted energy will focus back on the original source whatever
the complexity of the propagation medium [3]. According to diffraction theory, an exact
control of the wave would require to measure and time reverse both the wave and its normal
derivative along a closed surface. This would require a large number of antennas and time-
reversal channes. However, it has been shown that the reversal remains quite good even
when these conditions are not fulfilled by the experiment [4]. One surprising result that
was demonstrated both for elastic [5–7] and electromagnetic waves [2] was that when a
broadband wave field is trapped inside a reverberating cavity, a one channel time-reversal
antenna is enough to refocus back on the source. In this case, the refocusing quality depends
directly on the number of cavity modes that are excited by the source. To better resolve
these modes, breaking the symmetries of the cavity avoids mode degeneracy which improves
the refocusing [6].

The present work concentrates on the application of time-reversal to the focusing of
water waves in a laboratory tank which plays the role of reverberating cavity. Although
water waves are ubiquitous and easily observable, they have never been tested in a time-
reversal experiment (for theoretical formulation of time-reversal for water waves see [8]).
This is certainly due to their complexity: to cite Richard Feynman, ”[water waves] that are
easily seen by everyone and which are usually used as an example of waves in elementary
courses [...] are the worst possible example, because they are in no respects like sound and
light; they have all the complications that waves can have.” [9]. Water waves are scalar
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waves, that refer to the evolution of small perturbation of the height of fluid η(r, t) under
the action of gravity and surface tension. They are dispersive by nature, nonlinear when
generated with standard wavemakers, and they experience strong damping at the scale of
a laboratory experiments. The effect of dispersion on time-reversal process has already
been studied in time-reversal experiments for guided elastic waves [5, 10]; these waves are
dispersionless in free space and the dispersion is due only to the reflection on the boundaries
of the waveguide. In the case of water waves the dispersion is intrinsic but preserve the
time-reversal invariance (obviously not taking the damping into account).

The effect of the nonlinearities has been experimentally studied in [11] for acoustic waves
where it has been shown that the time-reversal invariance is preserved as long as nonlinear-
ities do not create dissipation, i.e. as long as the propagation distance is smaller than the
shock distance. In the case of water waves, the effect of nonlinearities has been theoretically
studied displaying that refocusing is robust with respect to nonlinearities, when small but
not negligible [8]. Eventually, the main complication in a water wave TR experiment is the
damping. This latter has various origins: i) the viscosity of the fluid that produces a bulk
damping, ii) the bottom friction (water waves produces oscillation at the bottom), which
occurs when the wavelength is not small compared to the fluid depth since the penetration
depth of the wave is given by the wavelength, iii) the film surface effect that is able to
create an important friction just beneath the surface of the liquid (the calming effect of oil
on troubled waters [12]), iv) the walls of the water tank. The damping may break time-
reversal invariance if it is too strong. It was already shown by our group in [13], where the
same experimental set-up was used, that no surface film effect is present and that damping
coefficient is comparable to the one of pure water.

In this letter, we show for the first time an experimental proof of time-reversal of gravity-
capillary waves. The experiment is conducted in a water tank cavity to take advantage
of multiple reflections on the boundaries. The influence of the number of channels in the
time-reversal mirror is studied and it allows us to show that a small number of channels is
sufficient to obtain the TR refocusing owing to the reverberating effect of the cavity.

The reverberating tank is filled with water with depth at rest H = 10 cm. The dimension
of the rectangular tank is 53 × 38 cm2 with obstacles placed in order to break the spatial
symmetries (see Fig. 1). The waves are generated by using a vertical conical vibrator and
recorded by using an optical method (note that this differs from TR experiments in acoustics
that use the same transducer to record and to regenerate the wave). We perform a typical
one channel TR experiments in two steps. In the first step of emission, a wave packet is
generated from a conical vibrator that can be considered as a point source. In a second step,
the signal recorded at a receiver point is time reversed and re-emitted.

The time reversed wave is expected to refocus spatially at the source point and refocus
temporally at the recompression time. As previously stressed, the key point to ensure TR
refocusing is the number of cavity modes that the wave packet has been able to excite in
the first step of the TR.

After a few experimental trials, the authors found the central frequency f0 = 5 Hz
the best to obtain good refocusing in time and space. This is a compromise between the
bulk dissipation that grows with a frequency increase and the bottom friction that becomes
significant while decreasing frequency (note: no significant peaks in the low frequency region
in the Fig. 2(b)). The Fig. 2(a) shows the signal recorded at one point (point R1 in Fig. 1)
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FIG. 1. Water tank used in the experiment. Point A is at the initial source position. Note the

fringes used for the Fourier Transform Profilometry technique. Points R1 to R6 correspond to the

positions of the different channels of the time-reversal mirror. At each of these channel positions

the wave is measured and can be re-emitted after the time-reversal operation.

when a one-period sinusoidal pulse centered at f0 Hz is generated at the initial source
position. The duration of the signal is typically 20 s, corresponding both to reverberating
effects and linear dispersion effects. This latter is given by the linear dispersion relation
for water wave propagation (taking into account the effects of finite depth H and surface
tension γ):

ω2 =

(
gk +

γ

ρ
k3
)

tanh kH, (1)

where k denotes the complex wavenumber, g the gravity acceleration and ρ the water density.
The wavelength at central frequency f0 is λ = 6 cm. The magnitude of nonlinearity of the
waves based on the maximum measured gradient of surface elevation was found to be ε =
0.13. The attenuation is such that the wave can propagate over roughly 100 wavelengths, i.e.
about 10 to 20 times the lengthscale of the cavity. This is consistent with the 20 s duration
of the time signal recorded at one point in the cavity (Fig. 2(a)) since the phase velocity at
the central frequency is 0.33 m/s corresponding to 12 − 17 reflections from the boundaries.
The spectrum of the signal recorded during the direct propagation is shown in Fig. 2(b). It
presents several peaks (one can count roughly 20 peaks) corresponding to the eigenmodes of
the cavity that have been excited. Although the initial pulse covers a broadband frequency
range [0 15] Hz, the signal recorded is limited to frequencies smaller than about 10 Hz. We
have checked that this is an effect of the attenuation: direct numerical simulations of the
2-D wave equation in the same geometry but omitting the attenuation give a spectrum with

46



0 5 10 15 20
−10

0

10

t (s)

η
  

(m
m

)

a)

0 5 10 15
0

0.5

1

f (Hz)

η
2
  

(a
.u

.)

b)

0 5 10 15 20
−10

0

10

t (s)

η
  

(m
m

)

c)

0 5 10 15
0

0.5

1

f (Hz)

η
2
  

(a
.u

.)

d)

0 0.2 0.4
−10

0

10

t (s)

η
  
(m

m
)

0 0.2 0.4
−10

0

10

t (s)

η
  
(m

m
)

0 5 10 15
0

0.5

1

f (Hz)

η
2
  
(a

.u
.)

0 5 10 15
0

0.5

1

f (Hz)

η
2
  
(a

.u
.)

FIG. 2. (Color online). a) Experimental measurement of the temporal evolution of the surface

elevation (η(r1, t))) during the forward propagation after emission from point A. The inset shows

the signal emitted from point A, b) corresponding spectrum, the inset shows the spectrum of the

signal emitted from point A, c) & d): same representation from numerical simulations of the wave

equation.

around 100 cavity modes excited in the whole range [0 15] Hz (Fig 2(c)-(d)).
We now investigate the refocusing. The perturbation of the surface elevation η(r, t)

is measured in time and in space during the wave propagation using an optical method
(FTP for Fourier Transform Profilometry) that has been adapted recently to water wave
measurements [13–16]. FTP is used to measure the whole pattern of surface elevation η(r, t)
at each time of the reverse propagation. This has been done in a one channel experiments
(N = 1). Although the spatial refocusing and temporal recompression are visible (Fig. 3),
it is not possible to distinguish the converging wavefronts before the recompression and the
diverging wavefronts after recompression in this one channel experiments (for a movie, see
the supplementary material).

To improve the refocusing, it is possible to increase the number of channels. In a time-
reversal experiments with multiple channels, the signal emitted from the source point is
recorded at N receiver points. The TR signal are then re-emitted simultaneously from the
N receiver points. If the N receiver points are uncorrelated, it is meant to improve the
refocusing since the wave experiences many different trajectories in the cavity. In our ex-
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FIG. 3. (Color online). Measured amplitude (η(r, t = 0)) and intensity (η(r, t = 0)2) of the time

reversed wave around the initial source position (point A) where the wave is refocused at the

recompression time (t = 0) in a one channel TR experiment (N = 1). The spatial range around

the refocusing point A is 34 × 26 cm2.
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FIG. 4. (Color online). Space-time resolved experimental measurements of the surface elevation

η(r, t) during the refocusing of the time reversed wave. In this case, N = 6 channels (points R1

to R6) reemit the time reversed signals. The recompression time is at t = 0 s. Converging and

diverging wavefronts appear respectively for negative and positive time. The spatial range around

the refocusing point A is 34 × 26 cm2.
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periment, rather than using N wave generators to reemit the signal, the N channel TR have
been done with just one wave generator. This is possible by exploiting the linearity of the
problem which implies that the wave field excited by N generators is equal to the sum of
the N wave fields excited by each generator alone. We have checked this linearity by com-
paring the time signal recorded at the refocalization point when using 2 channels and when
summing the two signals obtained in two single channel experiments (see supplementary
material). The temporal signals in both cases coincide, with less than 10% discrepancy in a
10/f0 time window centered at the recompression time. Six different positions of the receiver
point have been used (points R1 to R6 in the Fig. 1). Fig. 4 shows a time sequence of the
reverse propagation for the 6 channel TR. As expected, the peak at the recompression time
is much higher than in the one channel TR, confirming that the channels are uncorrelated.
Besides, the converging and diverging wavefronts, before and after the recompression time
are visible.
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FIG. 5. (Color online). Experimentally measured peak to noise ratio as a function of the number N

of channels (black points). For comparison, the blue squares show numerical results with negligible

damping. Note the standard deviation accounting for the sensitivity of the refocusing to th position

of the re-emission point. The insets present the experimental temporal refocalisation while using

one and six channels.

To gain insights in the study of the quality of the refocusing, we want to inspect both
the effect of the number of channels and the effect of the damping. To characterize the
quality of the spatial refocusing, we define a peak to noise ratio (PNR) at the recompression
time as the ratio of the maximum intensity at the focal spot to the mean sidelobe intensity.
Experimental results are shown in Fig. 5 (black points). With a single channel, the peak to

50



noise ratio is typically 20, a value that is related to the number of cavity modes that can be
resolved from the spectrum at the receiver point in Fig. 2. With several channels, the PNR
increases linearly with the number N of channels [6]. Although this behavior is expected
without damping, it was not obvious to be verified with the typical range of damping of
our experiment. The insets of Fig. 5 show the temporal recompression for N = 1 and
N = 6 at the refocusing point A. The refocusing is clearly visible in the one-channel time-
reversal experiment but with higher temporal sidelobes than with 6 channels. Note that
these temporal signals allow also to define a peak to noise ratio and we observed that PNR
either defined in space or in time have roughly the same values. Varying the damping is more
difficult. To perform experiments where the damping effect is negligible would necessitate
much larger size of the cavity (e.g. the size of a swimming pool) because the attenuation per
wavelength decreases with he frequency [17]. Therefore, numerical simulations have been
used to model the case with negligible damping. The results are shown in Fig. 5 (blue square)
where computations have been done by taking the same protocol as in the experiment. The
same trends as in the experiment are observed: i) for N = 1, the PNR is equal to 100 and
is given by the number of excited cavity modes that can be resolved in the spectrum in Fig.
2, ii) the PNR increases linearly with N . With about 20 excited modes in our laboratory
experiments, versus the 100 modes obtained in the numerics, it appears that the refocusing
can be significantly reduced because of the attenuation occurring at that laboratory scale.

Our experiments illustrate the feasibility of a few channel time-reversal refocusing for
gravity-capillary waves. This has been performed in a well controlled laboratory context
that allows quantitative measurements simultaneously in time and space. At this laboratory
scale, with centimetric wavelengths, the quality of the refocusing is limited by the damping
due to viscous effects but it is not suppressed. At larger scales, viscous damping highly
decreases and numerical simulations show that the refocusing is greatly improved. Thus,
this paves the way to applications in the context of water waves in the sea, with very small
damping, where very high quality of refocusing is expected.

The authors thank the Agence Nationale de la Recherche for its funding under Grant No.
Tourbillonde ANR-08- BLAN-0108-02.
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3.5 Supplementary results

Presented refocusing for N re-emitting channels were obtained by superposition of the N
wave fields generated each time by a single channel. The linearity of the system has been
tested using two generators at the same time and comparing the obtained temporal focusing
signal with a superposition of two temporal signals measured separately for each excitation
channel. The similarity of both results is substantial (Fig. 3.3), however, the superposition
seems to be more efficient. Indeed, here we approach the problem of imperfections of our
system, which reduces the refocalisation quality and has not been analyzed until this point.
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Figure 3.3: Comparison of the time signal recorded at the refocalisation point when using
2 channels (red) and when summing the two signals obtained in two single channel experi-
ments (blue). The refocalisation quality is enhanced in the latter case.

In contrary to the acoustic time-reversal, where receiver works also like a transmitter, our
re-emitting generators are obviously not present in the medium during the first step It means
that, in the second step, geometry is not preserved compared to the first step! Time inversed
waves would reflect not only from walls but also from the generator (that for once emitted
wave would behave like an obstacle), therefore some waves that took a "good" way to the ini-
tial source position would never get there. Furthermore, while using more than one generator
at the same time, waves will reflect not only from their proper generator, but also from the
others, thus they will suffer more distortion than if they were sent separately one by one and
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superposed. In addition, this distortion is repetitive and cannot be reduced by the averaging
of many experiments. The result confirms the above line of thought (along with the system
linearity) and reinforced our decision to use the superposition of one-channel signals.

The shape of refocalisation peak has also been a subject of study. Time reversed wave
should redo a path which has been done by the initially injected wave, thus the shape of the
peak should be comparable to the shape of the injected signal. Fig. 3.4 shows temporal eleva-
tion in the source position during a reverse propagation (blue) and compares it to the injec-
tion signal imposed during the first step of the experiment (green). It can be observed, that
the reversed wave follows the original path, even when the imposed signal is broad (injected
sinusoidal signal had 5 periods with central frequency equal to 5 Hz and was modulated with
a Blackman window). Experiments with many-periods injection signals are a good candidate
to study peak shapes, however, they excite narrow bandwidth of frequencies and in addition
make it hard to analyze peak to noise spatial ratio (while observing a highest peak, some wave-
fronts are still converging and some are already diverging giving rise to the strong surface ele-
vation around the main peak). After testing many signals, we found that one-period excitation
functions were the most suitable experimentally.

The presented article demonstrates numerical results, however, it does not describe de-
tails of used simulation. This subject will be clarified below.

Numerical simulations concerned a simplified model of water waves and were performed
for non-dispersive, linear waves. The wave equation takes a form:

∂2U

∂t 2
+Λ∂U

∂t
− c2∆U = 0, (3.11)

where U is the scalar field, c is the wave celerity andΛ is a constant (frequency independent)
absorption coefficient (set to zero for a loss-less medium). Discretizing this equation, one can
reach:

U p+1 +U p−1 −2U p

∆t 2
+ΛU p+1 −U p−1

2∆t
− c2 del2(U p )

∆x2
= 0, (3.12)

where U p is a two-dimensional matrix modeling the field at time step p, while ∆x and ∆t
correspond to space and time discretization respectively. The discrete Laplace operator del2
is defined for a two-dimensional array as:

(del2(U ))i , j = (ui+1, j +ui−1, j +ui , j+1 +ui , j−1)−4ui , j (3.13)

and equal to zero on the edges (reflecting walls). The evolution equation thus yields:

U p+1 = 2

1+a
U p − 1−a

1+a
U p−1 + c2∆t 2

(1+a)∆x2
del2(U p ), (3.14)

where a = Λ∆t
2 . To satisfy the Courant-Friedrichs-Lewy condition of discrete partial differen-

tial equations, the quantity c2∆t 2

∆x2 must be set below 1. Note that Λ stands for the numerical
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Figure 3.4: Blue line: Surface elevation measurement during the time reversed step in the
source position (top) and its close-up around the recompression time t = 0 s (bottom). Green
line indicates an excitation function used in the first step of the experiment. The undone time
evolution of the reversed signal is similar to the excitation function.
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dissipation coefficient and is not equal to the attenuation coefficientβ (which was the subject
of study in the chapter 2).
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Figure 3.5: Quality of the refocusing peak in the function of time-reversal window∆T for two-
channel time-reversal experiments. Dotted lines show numerical results for non-attenuative
medium (blue), for damping equal to the theoretical damping for f = 5 Hz (green) and
f = 8 Hz (red). Black markers present the experimental results.

This model has been used not only to validate the strong linear increase of the peak to
noise ratio in the case of non-attenuated (sea) waves, but also to present this value in the
function of ∆T and compare it with experiments. Fig. 3.5 summarizes numerical and exper-
imental results for the two-channel case. Black markers indicate the experimental results,
while blue, green and red curves show the numerical results with damping set to zero and to
the values equal to the theoretical damping for f = 5 Hz and f = 8 Hz. The numerical results
confirm the validity of theoretical predictions presented in the Sec. 3.3. Initially linear ten-
dency is visible, while for high ∆T the saturation is reached. The quantity ∆T for which this
saturation is obtained as well as the intensity level depends strongly on the damping coeffi-
cient.

Experimental results (performed for the excitation function centered at f0 = 5 Hz) do not
fit the numerical predictions. It can be assumed that there are other losses of information
in the system that reduce the refocalisation quality. These loses are believed to be due to
the broken geometry invariance, while introducing wavemakers inside the cavity during the
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reversed step of the experiment.
Despite strongly suppressed experimental refocalisation quality, it should be recalled that

one-channel time-reversal refocalisation can be obtained. Fig. 3.6 shows the experimental
measurements of the surface elevation η(r, t ) around the refocusing point for various times,
proving the success of this experimental study. Fig. 3.6 corresponds to the Fig. 4 in the pre-
sented article (for which N = 6 re-emitting channels were used).
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Figure 3.6: Space-time resolved experimental measurements of the surface elevation η(r, t )
during the refocusing of the time reversed wave. In this case, only one channel (point R2) re-
emits the time reversed signal. The recompression time is at t = 0 s. Converging and diverging
cylindrical wavefront for negative and positive time are less visible and much more noisy than
in the case of N = 6 channels (see Fig. 4 in the above article). Wavefronts do not come from all
directions surrounding the refocalisation point. The spatial range around the refocusing point
A is 34 x 26 cm2. Amplitude is normalized with the maximum amplitude in the refocusing
point at the recompression time.
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DIFFERENT REGIMES FOR WATER WAVE

TURBULENCE

This chapter presents experimental results on simultaneous 3D space-time measurements
(x,y,t) for gravity-capillary wave turbulence in a laboratory tank. It is composed of brief in-
troduction into the wave turbulence (WT) and its recent studies and followed by an article
published in Physical Review Letters [14], where behavior of wave energy density is inspected
and compared to available theoretical predictions. Additionally, a more extensive exposition
of the results obtained in this study is displayed in the last section.

4.1 Motivation

Turbulence is a non-equilibrium state where nonlinear processes and energy transport oc-
cur. In all turbulent systems kinetic energy is carried from the scales where it is injected down
(or up) to scales where it is dissipated by viscous shear stress. In 1941 Kolmogorov made
an assumption of self-similarity of the system and statistically described an energy cascade
for classical 3D hydrodynamic turbulence. If we consider that the scales of energy injection
and dissipation are separated, then the kinetic energy has to be distributed over the multi-
ple scales between them (this range is called "inertial range" since inertial effects dominate
over viscous effects). Dimensional analysis leads to the famous energy spectrum predictions
proposed by Kolmogorov:

E(k) =C P 2/3k−5/3, (4.1)

where P stands for the energy flux, k is the wavenumber and C is a dimensionless constant.
In reality, some processes occur sporadically and are not universal, thus they cannot be pre-
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dicted by the averaged quantities. This gives rise to the discrepancies between theory and real
turbulence observations. Such deviations from the theory are known as intermittency.

Despite the success of this model, which gives qualitative description of turbulence, it is
based on scaling arguments and does not precise the exact mechanism by which the cascade
occurs and furthermore it cannot describe the physics of intermittency. The lack of math-
ematical tractability in classical turbulence is the main constraint which limits the under-
standing and ability to predict its behavior. The underlying physics and the mathematical
description of the problem is still an open subject and turbulence remains today one of the
least understood (and at the same time, one of the most fascinating) phenomenon in physics.

4.2 Introduction

In contrast to the hydrodynamic turbulence, systems that can be described in terms of small
parameters can have natural asymptotic closure and thus, can be solved mathematically.
These systems allow for both linear and nonlinear interactions, but the nonlinear processes
have to be weaker than the linear ones (while in hydrodynamic turbulence the nonlinear ef-
fects dominates). This kind of turbulence is called wave turbulence or weak turbulence (WT)
and has been observed in many fields of physics, such as surface waves, waves in nonlinear
optics [23], elastic bending waves in plates [12], Alfvén waves in solar winds [34, 63].

The power of WT comes from the fact, that the analytical solution of the kinetic equation
describing WT leads to the solution which is familiar with the power law scaling of the energy
density spectrum predicted by Kolmogorov for fully developed turbulence (and at the same
time prescribes physical mechanism for the transfer of energy). Then, in the general context,
the study of WT can be used to understand essential features of turbulence.

Our work concentrates on the WT on the surface of water. The first analytical studies
on the mutual nonlinear interactions between surface waves began in the 1960’s. Based on
the assumption of weakly nonlinear waves with random phases propagating in the infinite
system, Hasselmann derived, in 1962 [38], the kinetic equation (describing the temporal evo-
lution of the spectral density of the wave action n(k, t )) which reads:

∂n(k, t )

∂t
= Snl +Si n +Sd s , (4.2)

where Snl represents the interaction between waves, Si n the energy injection and Sd s the en-
ergy dissipation. Zakharov and his co-workers [79, 80, 81] were first to find the finite-flux
non-equilibrium solution to that equation (for the energy sources and sinks separated by the
inertial range) and found the space energy cascade such as:

E(k) =C P 1/(N−1)k−α, (4.3)

where all transport is carried by N -wave resonances. Thanks to the phenomenological simi-
larities of WT with hydrodynamic turbulence this spectrum is called the Kolmogorov-Zakharov
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(KZ) spectrum and the exact solution to that spectrum can be derived in many fields of physics
dealing with wave dynamics (some listed above). In the case of surface water waves the gravity
waves are dominated by 4-wave resonance, while capillary waves has been found to depend
on 3-wave resonant interactions. The power space and frequency spectra of surface wave
amplitude can be expressed as:∣∣ηω∣∣2 ∝ P 1/3ω−4,

∣∣ηk
∣∣2 ∝ P 1/3k−5/2 for gravity waves,∣∣ηω∣∣2 ∝ P 1/2ω−17/6,

∣∣ηk
∣∣2 ∝ P 1/2k−15/4 for capillary waves.

(4.4)

4.3 Wave turbulence - a real experimental challenge

Since the first derivation of water wave turbulence, there had been many theoretical advances,
however, only few experimental evidences are available. In addition, they reveal some incon-
sistencies with the developed theory (for recent review on WT see [62]).

These discrepancies can originate from the theoretical requirements, which are particu-
larly difficult to meet experimentally. It is worthwhile to recall at this point the main assump-
tions of the WT theory. These are:

• weak-nonlinearities (small amplitudes, mild slopes).

• isotropic and homogeneous system.

• infinite size of the system.

• random waves phases.

• no fluctuations of the energy flux during the cascade through the scales.

• wave energy concentration on the renormalized linear dispersion relation, which re-
mains close to the linear one.

Obviously, the third assumption cannot be fulfilled experimentally. This limitation has
been analyzed by the group of Nazarenko [17, 54, 55]. They found the frequency energy cas-
cade for gravity waves to be dependent on the forcing with ω-slopes varying from −6 to −4
(which is in agreement with other experimental observations [26, 28]). This effect has been
attributed to the finite-size of the tank, which suppresses the resonant wave interactions, thus
slowdowns the energy cascades from long to short waves. Surprisingly, they also found the
space spectral exponent to be forcing dependent. They concluded that none of the existing
theories can fully explain these results.

Moreover, in most cases measurements are restricted to a single-point surface elevation in
time (to cite only the recent ones [17, 26, 28, 54]). In that case, the directly accessible quantity
is the frequency spectrum. The space spectrum can be evaluated only via dispersion relation.
The approach with a single-point measurement is highly limited and cannot bring any infor-
mation about energy distribution in the (k,ω) space. Newell and Rumpf [62] noticed a need to
overcome previous experimental constraints and stated: "In particular, it would be valuable
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to measure joint space-time power spectrum". This can be obtained by a measurement of
surface elevation in time and in space with good lateral resolution.

Our group was first to report an experimental wave-vector-frequency (k, ω) Fourier spec-
trum for wave turbulence in a case of vibrating plate [12]. The behavior of space-time wave
energy density for water gravity wave turbulence has been recently published by the group of
Falcon [40]. They reported that the transition from k space toω space cannot be achieved ac-
cording to the linear dispersion relation. Their work therefore, calls with question the validity
of previous experimental results using this connection to change the variables. They have also
shown that the energy is shared between resonant free modes and nonresonant slave modes
(while its number depends on the injection power), thus the energy is not concentrated only
on the linear dispersion relation manifold. Spatial spectrum exponent was found to be differ-
ent than the one predicted by the theory. The isotropy of the spectra was also broken due to
the forcing.

In addition to the listed theory-experiment discrepancies, none of the so far available ex-
perimental results reported consistency with theoretical energy cascade dependency from
energy flux P , neither in the gravity regime, nor in the capillary regime. It is also discussed
that the energy flux might have fluctuations much larger than the mean itself and further-
more, can take positive and negative values [62].

In this context, further analysis of the 3D spectra seems like a natural continuation to the
previous experimental effort on understanding the physics of weak turbulence interactions,
thus we used space-time resolved FTP method to study behavior of the wave energy density
simultaneously in k andω spaces. To have a deeper insight to the phenomenon, we report the
results for two different forcing frequency bandwidths. The broad one, that could increase the
intensity of the nonlinear interactions, and the narrow one, which allows one to enlarge the
inertial range in the gravity regime.

The key result of this study is the determination of the 3D energy spectra. It gave a possi-
bility to compare the results directly to the weak turbulence theory premises. These spectra
were used to deduce weather the experiment is indeed weakly nonlinear - the energy density
should be localized on the dispersion relation close to the linear counterpart. This has been
confirmed for the narrowband experiments. The access to the Fourier space allows one also
to compute independently, both, frequency and wave-vector energy spectra. Our results for
narrowband experiments were found to be consistent with the theoretical predictions.

The precise determination of the statistical behavior is achieved by the calculation of the
probability density function of the surface elevation velocity in the whole area of measure-
ment. The Gaussian form is obtained for narrowband forcing, however, non-Gaussian statis-
tics occur in the broadband one. The latter can result from third-order effects in wave field
or existence of bound waves. As suggested in [74] the effects of third-order nonlinearities
are suppressed due to the finite-depth effects. Indeed, bound waves have been observed for
enough high forcing amplitude. This is then a poor candidate to study WT, however, for this
regime the wave intensity is strong and the energy cascade can induce capillary waves, thus
this broadband forcing was also a subject of our study.
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The capillary range was not accessed in the previous 3D (k, ω) space experiment pre-
sented in [40]. Here, the FTP method was also employed, but possibly white pigment with
surface active materials was used, without taking into account the calming effect induced by
the presence of the monomolecular slicks (the article reported surface tension on the level
of 31±1 mN/m, much lower than for the pure water). Indeed, as found in [1] the Marangoni
damping leads to a deformation of the energy cascade and its faster dissipation. This can be
a reason of inaccessibility of energy in the capillary range in the mentioned article.

The experimental study presented in the following article takes advantage of the possibil-
ity for the space-time measurement of pure water waves. The characterization of the wave-
vector-frequency (k,ω) Fourier spectrum for surface wave turbulence constitutes a significant
advance on that subject and paved the way for first experimental agreement with theory for
power law scaling.
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Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Avenue Olivier Messiaen, 72085 Le Mans, France

A. Maurel

Institut Langevin, LOA, UMR CNRS 7587, ESPCI, UPD Univ. Paris 7, 10 rue Vauquelin, 75231 Paris Cedex 05, France
(Received 20 July 2011; published 18 November 2011)

We present an experimental study on gravity capillary wave turbulence in water. By using space-time

resolved Fourier transform profilometry, the behavior of the wave energy density j�k;!j2 in the 3D ðk; !Þ
space is inspected for various forcing frequency bandwidths and forcing amplitudes. Depending on the

bandwidth, the gravity spectral slope is found to be either forcing dependent, as classically observed in

laboratory experiments, or forcing independent. In the latter case, the wave spectrum is consistent with the

Zakharov-Filonenko cascade predicted within wave turbulence theory.

DOI: 10.1103/PhysRevLett.107.214503 PACS numbers: 47.27.�i, 47.35.Bb

Nonlinear wave interactions are ubiquitous in all do-
mains of physics [1]. Among these, weak nonlinear ran-
dom waves are especially interesting since they are able to
experience an energy cascade through different scales.
This has been described in the framework of wave turbu-
lence theory, which, in contrast to classical hydrodynamic
turbulence, possesses analytical predictions for the power
law scaling of the energy density spectrum [2–4]. Note also
the work of [5] on the interaction of bulk hydrodynamic
turbulence and free surface. There is still debate about
whether the physics of ocean waves is described well by
the wave turbulence theory (WT) even though this appears
to fit the spectra measured for ocean waves in many cases
[6,7]. To gain deeper insight into the concordance between
the theory and measurements, well-controlled laboratory
experiments have been developed in recent years [8–13].
These experiments have raised the question of whether or
not the conditions for the applicability of WT theory can be
in place in such finite systems. Indeed, this theory assumes
weak nonlinearities, low attenuation, and small finite size
effects, and meeting these requirements is particularly
difficult in a laboratory tank [13–16].

In the present Letter, we present space-time resolved
experimental results of different regimes of wave
turbulence.

The joint space-time power spectrum,

j�k;!j2 �
Z

drdth�ðr0; t0Þ�ðrþ r0; tþ t0Þieið!tþk�rÞ; (1)

shows how the nonlinear interactions spread the wave
energy in the 3D (k; !) space. This quantity fills the gap
between the k-space point of view of WT theory and the !
space which is usually more accessible in experiments

(even though the link between the wave action variables
used in the theory and the observable measurable quantities
is not obvious [17]). Note that several attempts have
previously been made to directly compute the wave num-
ber spectra [8,11,18]. The joint space-time power spectrum
allows us to test the validity of the premise of WT theory
that assumes the concentration of the wave energy on the
renormalized dispersion relation (which remains close to
the linear dispersion relation) and it allows us to evaluate
the isotropy of the energy distribution. We obtained
different turbulence regimes by varying the forcing fre-
quency range ½0; !m�. In one case, the wave field is shown
to be composed only of resonant free modes whose energy
is concentrated on the dispersion relation and the spectra
appear to be in good agreement with the Zakharov-
Filonenko (ZF) spectra [19]. In the other case, the wave
field is shared between the free modes and the nonresonant
slave modes [17] (also called bound waves [20]) and our
observations are similar to those of most of the laboratory
experiments, with the existence of an inertial range that is
dependent on the forcing amplitude [10,12,13].
In our experiments, water waves are generated by two

piston-type wave makers (20 cm large and 1 cm immersed)
in a ð177� 61Þ cm2 tank filled with water with depth at
rest h0 ¼ 5 cm. The wave maker motions are controlled by
a random signal within a broadband frequency range
½0; !m� with maximum amplitude A. We use excitations
with typically A between 1 and 30 mm and!m ¼ 25:1 s�1

(4 Hz, the experiment is hereafter referred to as
experiments I) and !m ¼ 9:44 s�1 (1.5 Hz, hereafter
experiments II). Note that the transition between gravity

and capillary waves corresponds to a wave number kc �ffiffiffiffiffiffiffiffiffiffiffiffi
�g=�

p ¼ 369 m�1 (!c ¼ 85 s�1).
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Waves were measured by an optical method (Fourier
transform profilometry) that we recently adapted for free
surface characterization [21,22] and previously used in the
context of wave turbulence in an elastic plate [23] (see also
[24]). A full space-time characterization of the velocity
field is performed. In the direct space, our spatial resolu-
tions in both directions are the size of the projected pixel
(0.2 or 0.4 mm in our experiments) and the temporal
resolution is 1=F, with F the acquisition frequency of the
high-speed camera (F ¼ 250 Hz in experiments I and
40 Hz in experiments II). The inspected field is 45�
45 cm2, with 9682 pixels and the measurements are per-
formed over 6000 successive time steps. The resulting
resolutions in the spectral space are �k ¼ 4:44� m�1

and �! ¼ 0:42 or 2:61 s�1 (with 600 successive time
steps in order to permit 10 averages). Finally, the acces-
sible range of wave numbers is limited by the phase
demodulation by k=2�< 1=�F ¼ 200 m�1, with �F the
wavelength of the projected fringes. The sensitivity is
improved by treating the phase shifts between two succes-
sive images (rather than the phase shift with a reference to
unperturbed free surface), resulting in the measurement of
the velocity of the surface elevation _�ðr; tÞ. Typical fields
and the corresponding renormalized probability density
functions are shown in Fig. 1 for both experiments I and
II. In order to evaluate if it is close to a Gaussian distribu-
tion [25], we calculate the skewness S � h _�ðrÞ3i=�3 and

the kurtosis K � h _�ðrÞ4i=�4 [with � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih _�ðrÞ2ip
the vari-

ance]. In experiments I, the field is typically non-Gaussian
with S ¼ 0:15 and K ¼ 3:54. On the other hand, in
experiments II, it is fairly Gaussian with S ¼ 0:023 and
K ¼ 2:95. This makes a priori experiments II a better
candidate to satisfy the assumption of WT theory, but the
full space-time characterization of the fields will give us
deeper insight into the differences between the two
experiments.

We first report the results obtained for experiments I,
where the forcing is between 0 and 4 Hz. The space-time
power spectra of the velocity j _�k;!j2 (and j _�k;!j2 ¼
j�k;!j2=!2) are computed by a multidimensional Fourier

transform [Eq. (1)]. The isotropy of j _�k;!j2 in the ðkx; kyÞ
space is illustrated in inset (ii) of Fig. 2 (and it has been
checked that the isotropy is preserved at all frequencies. By
averaging over the direction �k of k, one obtains the wave
energy spectrum j�k;!j2 ¼

R
d�kkj�k;!j2 (main plot of

Fig. 2), where the wave energy appears to be mainly
concentrated on the linear dispersion relation !ðkÞ,

!2ðkÞ ¼ gk tanhðkh0Þð1þ �k2=�gÞ: (2)

Nevertheless, as shown in inset (i) of Fig. 2, the wave
energy is shared between the resonant part of the wave
field on the linear dispersion relation !ðkÞ and a nonreso-
nant part composed of slave modes (with ! ! N!, k !
Nk) [17]. These latter modes, also called bound waves,

have already been observed numerically [16] and experi-
mentally [11,20].
The ðk;!Þ power spectra give the usual energy

density spectra j�!j2 ¼
R
dkj _�k;!j2=!2 and j _�kj2 ¼R

d!j _�k;!j2. WT theory for water waves predicts spectra

for gravity waves,

j�!j2 / P1=3!�4; j�kj2 / P1=3k�5=2; (3)

and for capillary waves,

FIG. 1 (color online). Typical instantaneous velocity fields
_�ðr; tÞ (color scale is in m=s). Top: Experiments I (A ¼
22 mm), the variance � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih _�ðrÞ2ip ¼ 0:16 m=s, skewness S �
h _�ðrÞ3i=�3 ¼ 0:15 and kurtosis K � h _�ðrÞ4i=�4 ¼ 3:54.
Bottom: Experiments II (A ¼ 28 mm), � ¼ 0:012 m=s, S ¼
0:023, K ¼ 2:95. The insets show the probability density func-
tions of the normalized wave velocity _�ðrÞ=�: circles for the
presented field, solid line when averaged over six fields at
different times, and dotted line the Gaussian fit with mean
zero and unit variance.
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j�!j2 / P1=2!�17=6; j�kj2 / P1=2k�15=4; (4)

where P is the injected energy. Figure 3 displays the energy
density spectra for experiments I. The inertial ranges for

capillary waves (k > kc) are forcing independent, with a
spectral slope close to the �17=6 value predicted by WT
[Eq. (4)]. For gravity waves (k < kc), the spectral slope is
forcing dependent, with values from �6 to �5 when
increasing the forcing amplitude. Our results are consistent
with most of the results of laboratory experiments: indeed,
similar tendency, with increasing spectral slope values
when increasing the forcing amplitude, has been observed
recently by several authors [10,12,13].
As suggested in [16], it is attractive to make the low

frequency forcing bandwidth as narrow as possible to try
(i) to enlarge the inertial range in the gravity regime and
(ii) to reduce the strong nonlinearities produced near the
injection scale. Therefore, we reduce the frequency band-
width in the series of experiments II with the maximum
frequency !m ¼ 9:4 s�1.
Figures 4 and 5 show the same quantities as for

experiments I (Figs. 2 and 3). Clear differences between
the two wave systems appear: the most significant is the
existence of a forcing independent inertial range with
scaling laws in agreement with the ZF predictions j�!j2 /
!�4. The spectra in the k space are shown in the inset of

Fig. 5, where the ZF prediction j _�kj2 / k�3=2 is displayed
for comparison.
Another clear different feature is the absence of non-

linear branches in Fig. 4, where nonlinear shifts with
respect to the linear dispersion relation are not measurable.
That means that the wave fields are only composed of
resonant harmonics that cascade through smaller scales
remaining on the dispersion relation manifold.

FIG. 2 (color online). Experiments I: Typical spectrum j�k;!j2
at low forcing (A ¼ 3 mm). Inset (i) shows a zoom of j�k;!j2 in
the gravity wave regime at high forcing (A ¼ 22 mm). The solid
line shows the linear dispersion relation!ðkÞ and the dotted lines
the dispersion relation of the slave modes N ¼ 2; 3; 4. Inset (ii)
illustrates the isotropy in the ðkx; kyÞ space by plotting j�k;!j2 for
! ¼ 138 s�1 (A ¼ 3 mm).

FIG. 3. Spectra j�!j2 in experiments I for A ¼ 1:5, 3, 7.5, 15,
22, and 30 mm. Vertical dotted lines at 30 s�1 and at !c ¼
85 s�1 delimitate the inertial range of the gravity regime. Top
inset: Corresponding spectra j _�kj2. Bottom inset: Spectral ex-
ponent as a function of A; open circles in the gravity regime and
plain circles in the capillary regime (multiple symbols corre-
spond to multiple fits in a moving window within the inertial
range).

FIG. 4 (color online). Experiments II: Typical spectrum
j�k;!j2 at forcing amplitude A ¼ 20 mm. Inset (i) shows the

collected dispersion relations for A ¼ 1, 6, 12, 20, and 28 mm.
The dashed line shows the linear dispersion relation and the
dotted line the first nonlinear mode. Inset (ii) illustrates the
isotropy in the ðkx; kyÞ space by plotting j�k;!j2 for ! ¼
27:64 s�1.
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WT theory [Eqs. (3) and (4)] predicts power laws in !
and k as previously discussed and also power laws in the
injected power P. A direct measurement ofP can be done in
decaying turbulence, as in [12]. Otherwise, an estimate is
given by the scaling P / !2

mA
2 obtained in [10]. Another

estimate is the maximum of the energy spectrum j�kj2max

that is shown to be proportional to !2
mA

2 in the inset of
Fig. 6; therefore, we use this latter estimate for P. Figure 6
shows typical values of the spectral amplitudes in the inertial
ranges j�kj2IR as a function of P for both experiments I and
II. In experiments I, we observe the same behavior as in
previous experiments of the literature [10], with a linear
power law with respect to P, both in the gravity and in the
capillarity regimes. More interestingly, in experiments II,

the power law with P1=3 is a better fit than the power law
with P1, in agreement with WT theory.

Our work exemplifies the complexity of determining the
parameters relevant to describe the weak or strong non-
linearities of turbulent wave fields in finite systems as used
in laboratory experiments. Evidently, the loss of sensitivity
to k-space discreteness and the associated resonance
broadening necessary for the approximate four free waves
interaction are expected to occur for large wave intensities.
On the other hand, at large wave intensities, the appearance
of bound modes may produce deviations with respect to the
WT theory. In our experiments, we have changed the wave
intensity for two forcing frequency ranges, and we ob-
served two different regimes of wave turbulence. In
experiments I, with broader forcing bandwidth, the pres-
ence of bound waves at large intensities indeed produce a
deviation with respect to WT theory, but decreasing the
wave intensity to eliminate the bound waves does not
permit us to approach the WT prediction. In
experiments II, with narrow forcing bandwidth, no bound

waves are generated for the intensities accessible experi-
mentally, and the wave system appears to be in good
agreement with WT theory, but we have not been able to
further increase the wave intensity to see the appearance of
bound waves. The difference between these two regimes
remains an open question. Further works are needed to
better understand the transition between both regimes, for
instance, by changing continuously the forcing frequency
bandwidth.
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4.5 Supplementary results

The presented results show forcing dependent spectra for the gravity range in the case of
broad bandwidth. Since these results are obtained experimentally, it should be useful to check
if it is not the effect of the wave generation. By measuring the amplitude of the wavemaker’s
motion, we can obtain frequency spectra injected to the system. Fig. 4.1 shows such spectra
for different forcing amplitudes. The observed injected energy spectra (blue lines) are close
to the expected one (red line), for the whole range of used amplitudes. Similar results, con-
firming the correctness of experimental wave intensity injection, have been obtained for fixed
amplitude while varying frequency bandwidth (Fig. 4.2). The observed spectra do not inject
unintended frequencies.

The additional material on the evolution of the energy distribution in the wavenumber-
frequency domain in the function of forcing amplitude should be given also along with the
one presented in the article. In the Fig. 4.3 and 4.4 this evolution is presented for narrowband
and broadband forcing, respectively. As stated in the article, for the narrowband forcing the
energy is distributed close to the linear dispersion manifold. The increase of the forcing am-
plitude results only in the broadening of the energy distribution. For broadband forcing, the
nonlinear branches appear firstly only in the low frequency region, and expands with increas-
ing forcing amplitude. It has to be recalled, that even for the low forcing amplitudes, where the
energy seems to be localized close to the linear dispersion relation (meeting the requirement
of the theory), the gravity spectra do not agree with the WT predictions.

As discussed in the conclusions in the above article, the understanding of the differences
between both regimes might be obtained by continuously changing the frequency bandwidth.
First experimental investigations were performed to explain this effect. Fig. 4.5 and 4.6 show
space energy cascade for surface velocity deformation and frequency energy cascade for sur-
face deformation. The forcing frequency bandwidth varies from [0, 1] Hz to [0, 5] Hz. Both
figures give similar conclusions. The transition from the spectra, which are in agreement with
theory, is not rapid, but rather smooth. It indicates that the effects responsible for discrepan-
cies with the theory are gradually involved in our system, however, the physical explanation
of that effect cannot be yet given.
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Figure 4.1: Frequency spectra injected by the wavemaker for different amplitude values (blue
lines). Red line indicates the frequency spectrum of the signal imposed to the wavemaker.
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Figure 4.2: Frequency spectra injected by the wavemaker for different forcing frequency
bandwidth values. The spectra are calculated from the temporal displacement of the wave-
maker.
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Figure 4.3: Spectra
∣∣ηk,ω

∣∣2 for narrowband forcing for different forcing amplitudes A. Solid
line shows the linear dispersion relation and the dashed lines the dispersion relation for
slave modes (2,3). Horizontal axis shows frequency ω (rad/s) and vertical axis - wavenum-
ber k (1/m).
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Figure 4.4: Spactra
∣∣ηk,ω

∣∣2 for narrowband forcing for different forcing amplitudes A. Solid
line shows the linear dispersion relation and the dashed lines the dispersion relation for
slave modes (2,3). Horizontal axis show frequency ω (rad/s) and vertical axis - wavenumber
k (1/m).
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Figure 4.5: Spectra
∣∣ηω∣∣2 for fixed forcing amplitude 20 mm and different forcing frequency

bandwidths. Dashed lines indicate theoretical predictions with slope −4.
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∣∣2 for fixed forcing amplitude 20 mm and different forcing frequency
bandwidths. Dashed lines indicate theoretical predictions with slope −3/2.
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5
LOCAL MEASUREMENT OF LIQUID DEPTH

This chapter presents an experimental study of underwater depth reconstruction obtained
with circle method. The theory of this method is given. The results for three different bottom
configurations are presented and discussed. This study has been carried out in the frame of a
joint collaboration with Ros Kiri Ing.

We also compare the circle method to the one that deduces the water depth directly using
Helmholtz equation and linear dispersion relation.

5.1 Introduction

The underwater depth detection has gained the attention of engineers and sailors over the
decades due to their practical applications - the ship transport through the inland waterways
and close to the shore or coast (eg. entrance to the harbor). There, water depth is often shallow
and contains obstacles, such as rocks. The knowledge of the bottom characteristic and surface
navigational informations in these regions is crucial to avoid accidents.

First method, from 1920s onwards, used a lead-line to measure the water depth. It was re-
placed in the 1950s by a single beam echo sounder, which allowed a continuous recording of
depth along track of the ship. Later on, the real-time seabed relief measurement from meter
to kilometer was applied. Multibeam systems provided the shape of the seafloor measure-
ments beyond a single-point. This method can be also applied in the domain different than
bathymetry. For instance, backscattered signals from different incidence angles can reveal
geological history of the seabed and its classification [61].

Modern techniques allow the bottom characterization from the airborne systems (so-called
LIDAR methods). Water depth is calculated based on the time difference of light or sound re-
flected from the water surface and the bottom [36]. The review of the bathymetry methods
has been given in 2012 by Blondel [4].
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The following sections propose a new technique based on the water waves properties
combined with circle method, that has been recently succesfully adapted to study velocity
and thickness of the plates [43, 24].

5.2 Circle method principles

First, let us for clarity recall a set of fundamental equations (already presented in Chapter 1
and 2). Let’s consider wave propagating on the water surface with wavenumber k = ‖k‖ linked
to the pulsation ω by the linear dispersion relation:

ω2 = (g k + γ

ρ
k3)tanh(kH), (5.1)

where g denotes the gravity acceleration, ρ water density and H water depth. Note that in
general k is a complex number where the real part is related to the wavelength λ and the
imaginary part describes the attenuation. In this study we are interested only in the real value.
In an area of constant water depth H the surface elevation perturbation is a solution of the
Helmholtz equation:

(4+k2)η̂= 0, (5.2)

In the above equation η̂ stands for the time Fourier transform of the measured transient
height η(x, y, t ):

η̂(x, y,ω) =
∞∫

−∞
η(x, y, t ) ·e−iωt d t (5.3)

Figure 5.1: Geometry of the circle.

Now, we can define a circle (Fig. 5.1) where these equations are verified and explain the
circle method principles. The surface elevation η along the circle can be expressed as:

η(R,θ) =
n=+∞∑
n=−∞

an Jn(kR)e i nθ (5.4)

The average of the surface elevation over the circle is denoted as:

〈
η
〉

R = 1

2π

∫
CR

η(R,θ)dθ = a0 J0(kR) (5.5)
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and the value of the surface elevation at the center of the circle η(0) = a0. Consequently, the
ratio of the average over the circle to the value at the center is:〈

η
〉

R

η(0)
= J0(kR) (5.6)

This equation forms the basis of the method. In the time domain (when surface waves are
generated in the liquid basin), the surface elevation is measured along a circular path and at
the center of the circle. The measurement along the circular path is an averaged measure-
ment. Both signals must be simultaneously acquired. After Fourier transform, the signal ratio〈
η
〉

R /η(0) is computed and determined as a function of the frequency. The depth of the liquid
H is deduced by determining the right dispersion function as defined by eq. (5.1) that allows
the Bessel function defined in eq. (5.6) to fit at best experimental data.

To calculate the averaged signal along the circular path, N positions regularly distributed
along a circle are chosen and signals at these points are linearly interpolated from previous
data and then averaged. In general N is chosen big enough to have an averaged surface el-
evation signal close to that really measured along a circle. Results shown in this chapter are
achieved using N = 90.

One can doubt whether the capillary action should be taken into account in the dispersion
relation (5.1). Wave should "feel" the bottom, though it is needed to excite rather low frequen-
cies f (long wavelengths λ) for which capillary forces are usually negligible. It is a misleading
impression, because one has to take into account a laboratory scale, where depth of few mil-
limeters to few centimeters is usually used. Indeed, for fixed frequency, while a water depth
decreases, a wavelength also decreases and the capillary forces become stronger. Red curves
in the Fig. 5.2 indicates the full dispersion relation (5.1) for different water depths. Blue lines
correspond to the dispersion relation when only gravity action is taken into account. It can be
observed that while decreasing water depth, the detachment of the red curves from blue ones
is visible for lower and lower values of frequency f , though for very shallow water waves the
surface tension action should be included in the model, even for the intermediate frequency
values.

It can be also noticed that the curves rejoin at certain frequency and for certain water
depth. In that region finite water depth effect becomes negligible (wave does not "feel" the
bottom any more), ergo, using this frequency superior water depths cannot be distinguished
by looking on the waves. It is a limitation of our method - it demands to operate on such
frequencies that change their wavelengths due to the bottom presence.

Fig. 5.3 presents a frequency f in the function of water depth H , for which, due to the
bottom presence, the linear dispersion relation is deviated by 10% (

p
tanh(kH) = 0.9) from its

infinite-depth case (
p

tanh(kH) = 1). It indicates that all frequencies below that curve "feel"
the bottom, thus the wavelength is shortened. Fig. 5.3 shows corresponding graph for the
wavelength λ versus water depth H . In the latter case the wavelength values above the pre-
sented curve are affected by the finite-depth effect and these wavelength are good candidates
to determine the water depth. Note that the wavelength of 6 times higher value than the water
depth results in only 10% variation of the dispersion relation.
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Figure 5.2: Dispersion relation for different water depths. Blue curves: only gravity term is
taken into account, red curves: both gravity and capillary terms are included (see eq. (5.1)).
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Figure 5.3: Frequency f (top) and wavelength λ (bottom) in the function of water depth H
calculated from the dispersion relation (5.1) for

p
tanh(kH) = 0.9. It corresponds to the 10%

deviation from its infinite-depth case (
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tanh(kH) = 1).
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5.3 Experimental setup

The experiments have been carried out in the tank with dimensions 53x38 cm2 filled with wa-
ter with non-negligible attenuation and varying depth H(x, y). The surface elevation η(x, y, t )
was measured with a good accuracy in time and in space during the wave propagation using
a Photron SA4 high-speed camera with the acquisition frequency of 125 fps.

The experiment consists in recording the transient waves produced by a broadband wavepacket
signal, generated by the conical vibrator, that can be considered as a source point. A one-
period sinusoidal pulse centered at f0 = 4 Hz was imposed, exciting a wave packet propagat-
ing with the linear dispersion relation (5.1). The perturbation η(x, y, t ) is measured during 50 s
till the total attenuation of the wave.

Three different geometrical configurations have been studied:

• C1: basin with constant liquid depth H0 = 12 mm.

• C2: a conical, step pyramid is placed in the middle of the bottom of the configuration
C1. The geometry of the pyramid is show in the Fig. 5.4. The total pyramid height is
10 mm, thus is 2 mm below the liquid free surface.

• C3: different objects of different heights are immersed inside the basin of H0 = 47 mm
liquid depth (Fig. 5.9(a)).

Figure 5.4: Geometrical configuration C2: side view with dimensions and a 3D view.
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5.4 Results - circle method depth reconstruction

As afore-mentioned in the circle method description - to obtain water depth one has to fit
the right Bessel function J0(kR) (which depends on the dispersion relation though also on the
water depth) to the signal ratio

〈
η
〉

R /η(0) obtained from the experimental measurements.

In the Fig. 5.5 the typically obtained ratio
〈
η
〉

R /η(0) in the function of frequency for water
depth H = 2 mm and R = 5 mm is shown by the blue points. It is fitted with J0(kR) function
considering only gravity forces (black continuous curve) and considering both - gravity and
capillary forces (black dotted curve). As expected, the capillary wave action has to be consid-
ered. This fit gives the expected water depth. The red curves are given for the comparison and
present J0(kR) functions, while considering water depth H = 20 mm. They are found to be far
from the experimental points. This fitting procedure is repeated in the recorded image zone
giving a water depth map.

Figure 5.5: Experiment with water depth H = 2 mm: blue points show obtained ra-
tio

〈
η
〉

R /η(0) for R = 5 mm (see eq. (5.5) and (5.6)). Continuous and dotted lines present
Bessel functions J0(kR) considering only gravity and both - gravity with capillary effects, re-
spectively. Red lines are plotted assuming water depth on the level of 20 mm, while the black
ones on the level of 2 mm.
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Configuration C1

The first geometrical configuration C1 with constant depth was used to characterize accuracy
level and resolution of the circle method for water waves. The wavelength λ0 corresponding
to f0 for H0 = 12 mm is equal to 8 cm and water can be treated as shallow. Fig. 5.6 shows the
real part of the signal ratio as a function of the product kR for different values of R. It can be
observed that kR variations fit well Bessel function even for low values of R. For these values
however, the fitting process is not expected to be accurate, because the Bessel curve is not
well enough defined. Therefore a biased value of the liquid depth H parameter is expected.
The used frequency bandwidth is 0.1 Hz-5.5 Hz.

Figure 5.6: Configuration C1 with constant water depth H = 12 mm. Signal ratio
〈
η
〉

R /η(0)
versus kR for different values of R. Dotted lines: experimental data. Solid lines: Bessel J0(kR)
fitting function.
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Figure 5.7: Liquid depth H versus circle radius R for configuration C1.

Fig. 5.7 shows variation of the liquid depth parameter H (after fitting process) versus ra-
dius circle R. The fitting process is based on the minimization of the quadratic error. It is
observed that H parameter evolves toward an asymptotic value. The final value to within 5%
is reached when the radius R is greater than 10 mm. At 5.5 Hz, the surface elevation wave-
length λmi n is equal to 52 mm. The final value to within 5% is achieved when the circle radius
is approximately higher than λmi n/4.
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Configuration C2

Since the depth of the liquid without obstacles H0 is known for each configuration we can
introduce a value s(x, y), which stands for a local shape of the bottom (bathymetric map) and
can be calculated as the difference between known constant liquid depth without obstacles
H0 and locally obtained liquid depth H :

s(x, y) = H0 −H(x, y) (5.7)

The representation by the variable s(x, y) is more natural, because we can directly compare
the theoretical geometry of the bottom with experimentally obtained shape s(x, y).

In the case of configuration C2, Fig. 5.8 represents s(x, y) computed with two different
radii R = 10 mm and R = 20 mm. As expected, for low values of R,the liquid depth values
are biased. In this case, resolution is however better. For larger values of R, s(x, y) are less
chaotic, but the conical pyramid is also less defined. In the neighborhood of the obstacle,
constant bottom was found to be deeper than it was in real and becomes more accurate while
moving away from the obstacle.
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Figure 5.8: Bathymetric maps s(x, y) obtained experimentally by means of the circle method
for two different values of R = 10 mm (a) and R = 20 mm (b). The color scale of the local
bottom shape s(x, y) is given in millimeters. Plots (c) and (d) correspond to the horizontal cut
at y = 80 mm (center of the obstacle).
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Configuration C3

In configuration C3 several objects are immersed inside the basin. The geometrical configu-
ration is shown in the Fig. 5.9(a). Each value shown on the top of each object corresponds to
its height. The liquid level in the basin is H0 = 47 mm.

Experimentally determined bottom shape distribution s(x, y) is presented in the Fig. 5.9(b).
All the obstacles (except the one with lowest height) are reconstructed by the method. The ob-
stacles are found to be broader then in reality (the influence of the radius R). The bottom of
the tank is in agreement with the theory. The obstacle with lowest height (3 mm) cannot be
found due to the small deviation in the Bessel function between the depth of the liquid over
the bottom of the tank and over the obstacle. Cylinders with height 25 mm and 30 mm can be
observed, but the reconstructed height is around 20% lower then the real one. The black cylin-
drical obstacle (even being enough high to be correctly detected) has small diameter and due
to the circle radius R its height has been found to be lower than the expected one. Positions
and heights of the other obstacles are correctly reconstructed.
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Figure 5.9: Configuration C3: real geometry of the bottom (left) and corresponding bathymet-
ric maps s(x, y) (right) obtained experimentally by means of the circular method (R = 20 mm)
for liquid depth H0 = 47 mm. The color scale of the local bottom shape s(x, y) is given in
millimeters
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5.5 Results - depth reconstruction by use of Helmholtz
equation

Configuration C2 has been also tested by another method, that used directly Helmholtz eq. (5.2)
to reconstruct the bottom shape.

Since we operate in the shallow water and waves are governed by the linear dispersion re-
lation (5.1) and Helmholtz eq. (5.2) we can make use of the method developed in the Chapter 2
and find the local value of k. For fixed frequency, the information about the local k gives us
the information about the local water depth H , ergo, the form of the bottom s(x, y). In the ex-
treme case, the local region can be defined as a pixel size. In that case (instead of minimizing
the norm on the complex plain as it was in Chapter 2), it can be written that:

k(x, y,ω) =
√

−4η̂(x, y,ω)

η̂(x, y,ω)
(5.8)

Obviously, in the presence of obstacles - that value will not be constant! The examples
of the measured η̂ fields and corresponding laplacians (−∆η̂) for frequency 4 Hz and 6 Hz
are shown in the Fig. 5.10 and Fig. 5.11, respectively. Two observations are evident on that
figures. Firstly, as expected, in contrary to the results obtained in the Chapter 2, the patterns
of η̂ and (−∆η̂) are not identical. Secondly, in the case of 6 Hz they resemble much more than
for 4 Hz. For 4 Hz one can observe a notable difference of the color contrast between the
center of the obstacle (center of the image) and its surrounding. Indeed, lower frequency has
longer wavelength, thus the 4 Hz wave "feels" bottom more than the wave of 6 Hz and thus k
is stronger scaled.

This procedure gives a result of water depth (obtained from every frequency!) by simple
use of the linear dispersion relation (5.1) in the form:

H(x, y,ω) = atanh

(
ω2

g k + γ
ρ

)
/k (5.9)

The FTP measurements of the transient η allowed to obtain the η̂ fields for a broad range
of frequencies with 0.2 Hz step. Then, we can average the obtained H fields over the possi-
ble pulsations. The averaging process here is very important - note the denominator in the
eq. (5.9) can take the values close 0 and thus this division is very sensible to noise. The results
of s(x, y) are given in the Fig. 5.12 for averaged frequencies in the range from 3 to 5 Hz and
from 5 to 7 Hz. The minimum depth is reconstructed properly. The step-like shape of the
pyramid has not been found, like as it was for the circle method. The bottom of the tank in
both cases is found to be shifted upwards compared to the real one. It is due to the pene-
tration depth of the wave. The Fig. 5.10 suggested that 4 Hz is a better candidate to measure
water depth. Indeed, the result obtained for the frequency range from 3 to 5 Hz reconstructed
more precise shape of the bottom.

Unfortunately, this method did not allow to obtain results for lower values of frequency
than 3 Hz. Noise becomes too strong. Note that noise is not dependent from k, thus when k
decreases, computation of k from eq. (5.9) drastically reduces.
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Figure 5.10: Typical real value of the complex signal η̂ (left) and corresponding real value of
its laplacian with a negative sign: −∆η̂ (right) for 4 Hz.

x (mm)

y
 (

m
m

)

 

 

0 50 100 150

0

50

100

150

−20

0

20

x (mm)

y
 (

m
m

)

 

 

0 50 100 150

0

50

100

150
−0.04

−0.02

0

0.02

Figure 5.11: Typical real value of the complex signal η̂ (left) and corresponding real value of
its laplacian with a negative sign: −∆η̂ (right) for 6 Hz.

5.6 Conclusions

The presented experimental results showed a feasibility of the local detection of liquid depth
by circle method for surface waves. The assumptions are that the wave obeys the wave equa-
tion in linear regime and the measurement area is far from the boundaries where evanescent
waves or nonlinear effects should exist. It has been shown that the liquid depth can be deter-
mined locally and quantitatively under the circle area with the limitation that no sharp edges
can be reconstructed and the smooth transition of the liquid depth is obtained in all cases.
The method is found to be robust and not very sensitive to noise, since it integrates the wave
dynamics on a broad range of frequencies. Besides, the integral on the circle is another step
that reduces the noise effect. Wave excitation due to windy environment is sufficient for the
presented method and the measurements could be done without any vibrator.
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Figure 5.12: Experimental bathymetric maps s(x, y) obtained from eq. 5.9 for two different
frequency ranges: 3− 5 Hz (a) and 5− 7 Hz (b). The color scale of the local bottom shape
s(x, y) is given in millimeters. Plots (c) and (d) correspond to the horizontal cut at y = 80 mm
(center of the obstacle). Singular lines can be observed in the areas where η̂(x, y,ω) is close
to 0 (see eq. 5.8)

Along with the circle method, the local bottom detection by Helmholtz equation has been
performed. This method was found to be robust but only for very shallow water due to high
noise for low wavenumber values.
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6
CONCLUSIONS AND PERSPECTIVES

6.1 Summary and conclusions

This thesis presents advances in the understanding of current water waves challenges. The ex-
perimental investigations concentrated on time-reversal and wave turbulence phenomenon
as well as resonance-type damping of surface waves and underwater depth reconstruction.

The first prominent study concerned the development of the measuring system. It raised
from the need of free-surface deformation measurement. Previously, techniques were usu-
ally limited to one-point measurements or synchronized array-points measurements, which
could not cover an extensive area of surface with good lateral resolution. Fourier Trans-
form Profilometry (FTP) method, recently adapted for surface waves, has been used for high-
resolution global measurements of surface deformation. This optical method uses fringe pro-
jection and thus requires a diffusive reflection of light on the liquid surface. It was previ-
ously obtained by diluting white paint in water. This procedure was found to unintentionally
change the properties of the surface resulting in the dramatically increased wave damping
compared to pure water.

It is found that the presence of film at the surface of water is responsible for that spuri-
ous attenuation. Standard paints contain surfactants which create monolayer on the surface,
which results in the appearance of Marangoni waves accompanying surface waves. These
waves are strongly attenuative and the film can induce the resonance-type wave damping
between Marangoni and capillary-gravity waves.

The presented study confirms, experimentally, the Marangoni-surface wave resonance
damping. The theoretical prediction of the relative damping of water covered by a thin vis-
coelastic surface is successfully fitted to the experimental results obtained for water colored
by plain paint. The maximum damping enhancement was found to be 25 times larger than
the attenuation of pure water and occurred around 4 Hz, which was shown to coincide with
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the intersection of the dispersion relation branches for the surface and Marangoni waves.
The elimination of that attenuation demanded an extensive physico-chemical study of

different coloring pigments, including the measurements of zeta-potential, particles size and
surface tension. Finally, the anatase (TiO2) pigment was found to make the water surface light
diffusive while avoiding any surface film effects, which has been confirmed by the measure-
ment of wave attenuation.

This investigation was crucial for further experimental studies and allowed the performing
of space-time resolved FTP measurements of water waves with a damping equivalent to the
clean surface case.

Next, an attention turned to the phenomenon of time-reversal, commonly studied in the
other fields of wave science. Refocusing back the energy could be accomplished because of
the time-reversal invariance of the wave equation. The linear wave packet was mechanically
generated by the conical wavemaker. To take advantage of the multiple reflections, the wa-
ter tank cavity of the size not larger than a dozen wavelengths of the central frequency was
used. Surface elevation was measured during direct propagation by the FTP method. In a
second step, the signal recorded was time reversed and re-emitted separately at 6 different
positions, making use of the system linearity. The attenuation was that the wave could prop-
agate roughly 10 to 20 times the lengthscale of the cavity.

The results show that the effect of viscous attenuation damps the excited high frequencies.
Though, due to the dispersion of water waves, one-channel experiment was sufficient to focus
wave spatially and temporally (for every of the re-emitting channel), however, in this case
converging wavefronts are not clearly visible (not enough information from every angle). In a
time-reversal experiments with multiple channels, the quality of refocusing has been found to
be linearly dependent on the number of the re-emitters. It is in the agreement with the theory.
Quality of refocusing should increase linearly with the number of excited modes. Considering
that the re-emitting channels are random and uncorrelated, they should in general excite a
similar number of modes. In the case of 6 re-emitting channels, the converging and diverging
wavefronts can be easily observed.

The effect of damping was found to limit the quality of refocusing, but could not sup-
press it, however, a relatively short time-reversal window has been used. The increase of that
window did not result in a focusing quality increase. Numerical simulations corresponding
to water waves at larger scales with negligible damping indicate the possibility of very high
quality refocusing.

As a closing remark, it should be noted that the results obtained in the frame of this study
represent a significant advance in time-reversal phenomenon. To our knowledge, it is a first
quantitative experimental evidence for time-reversal focusing of surface waves.

Further experiments concentrated on wave turbulence (WT). It is an out-of-equilibrium
state of nonlinear wave-wave interactions. The analytical solution of the kinetic equation
predicts that the energy is transfered through different wavelengths from the injection scale
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to the scale where it is dissipated. This solution is similar to the power law scaling of the
energy density spectrum predicted by Kolmogorov for fully developed turbulence. The WT
is present in different wave fields such as vibrations on elastic sheets, Alfvén waves in solar
winds or waves in nonlinear optics.

Only few experimental results have been performed in the field of surface WT. Moreover,
most of these measurements are restricted only to one point measurement and cannot be
directly compared to the theory which predicts the statistics in the space-time dimensions.
Prior to the presented investigations, only one experimental study for surface WT with the
access to the Fourier space has been published.

Our experiments were performed in the laboratory water tank and surface waves were
generated by two piston-type wavemakers. Two different forcing frequency bandwidths for
various forcing amplitudes were analyzed. The aim of the use of narrow bandwidth was to
maximally increase inertial range and of broad bandwidth to increase the wave intensity.

The departure point for further analysis was the study of wavevector-frequency energy
spectra for surface elevation, which constitute the major result of that investigations. The nar-
rowband forcing confirmed the persistence of the energy density close to the linear dispersion
relation, whatever the forcing amplitude. It gives the evidence that for this forcing bandwidth
our system was indeed weakly nonlinear. For this bandwidth, the power density function for
surface velocity takes a Gaussian form. Frequency spectra slope and space spectra slope for
gravity regime approach the WT predictions. The power law scaling in the function of the
injected power is also in the agreement with the theory.

For broadband forcing, the appearance of bound modes produces deviations with respect
to the theory. Increasing wave intensity, increases the energy carried by the bound modes.
In that case, frequency spectra were found to be forcing dependent. Surprisingly, decreasing
the wave intensity did not result in the elimination of the bound waves and did not permit
to approach the WT predictions for gravity regime. Despite that fact, the capillary regime
showed a good accord with the theory.

This experimental study revealed, for the first time, the 3D spectra for surface elevation
with the agreement with the theory. Overcoming the previous inconsistencies between exper-
imental results and theoretical predictions, the turbulent energy cascade obtained for narrow
forcing bandwidth confirmed the weakly nonlinear behavior of waves assumed by the the-
ory. The disagreement with theory for broad forcing bandwidth has been shown to be similar
to the one observed in the previous experimental studies. The difference between these two
regimes remains an open question.

The final experiments carried out during my thesis concentrated on the underwater depth
reconstruction. The practical interest come from the coastal engineering and inland trans-
port. In the case of shallow water surface wave, deformation can reflect the information about
water depth. This property has been used in this study to deduce the form of the bottom.

The surface elevation is measured and averaged along a circular path and at the center of
the circle. After a time Fourier transform, the ratio of that quantities is fitted with the appro-
priate Bessel function. The one that fits the best experimental data while adjusting the water
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depth was selected. This procedure is done for broad range of frequencies, which reduces the
noise.

It is shown that for different water depths, different working frequencies should be used.
After inspecting three geometrical configurations it has been proved that the liquid depth can
be determined locally and quantitatively. The limitations here are the sharp edges that could
not be determined in any of the analyzed configurations and the obtained bottom shape was
smooth. In addition, the immersed object were found to be larger than in the reality. It is also
the effect of the edges and of drastic change of the water depth, which cannot be perfectly
reflected in the water surface (waves do not support discontinuities).

6.2 Perspectives

The improvement to the already existing optical profilometric method for free-surface mea-
surements opened the possibilities of more precise and detailed analysis of the phenomena
that were not accessible before. This development has been used to study some of the cur-
rently important wave problems. Here, I would like to propose further experiments that arise
from the performed studies and advances applied to the measuring technique.

The study of the freak waves constitutes an experimental challenge and is of great inter-
est to the physical communities. In a manner similar to the wave turbulence, energy can be
imposed to the system with a high amplitude, giving rise to the strong nonlinearities. The
random interactions could finally result in the rogue wave creation. This wave could be cap-
tured by the optical method and later studied in terms of time and spatial evolution. This
would give a quantitative evidence of a freak wave that is not synthetically created, but is a
spontaneous event.

Moreover, once the rogue wave appears and is measured, it could be extremely interesting
to try to recreate its form using the time-reversal phenomenon. This would give a possibility
to test this phenomenon in terms of nonlinearities and, eventually, to systematically study the
interactions leading to the freak wave appearance. In addition, different time-reversal points
and time-reversal windows could be used.

Encouraged by the promising results obtained for water wave turbulence, further effort
should be directed towards the characterization of the difference between narrowband forc-
ing and broadband forcing. It can cast a light on the features responsible for that difference
and can give the reason of the observed discrepancies between the theory and experiments.

The next problem proposes for future experimental investigations is the detailed study of
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underwater depth reconstruction. The limits for water depth, object size, lateral and depth
resolution in the function of analyzed frequencies should be further studied. The compari-
son of cost and time consumption with recently existing bathymetry methods should be per-
formed to validate the applicability of this technique in the fields of engineering.

Finally, I would like to discuss another significant wave phenomenon, which results from
the recent scientific and technological progress, that demands a precise experimental re-
search. Wave focusing by use of unconventional materials with negative refractive index
(metamaterials) received a worldwide attention from the wave science communities after
Pendry’s breakthrough paper published in 2000 [65]. He showed that waves converging through
the flat metamaterial lens can beat the diffraction limit. Furtheremore, in 2006, metamaterials
were found to have another impressive application - concealing the objects from electromag-
netic waves [66], thus creating an "invisibility cloak". Since then, research in many fields such
as acoustics or thermodynamics has been focused on creating metamaterials for different
kinds of waves

In the case of water waves, the metamaterial effect can be obtained when water wave
propagates over a periodic structure with a subwavelength size. The behavior of surface waves
in the presence of metamaterials have been recently studied [7, 29, 30, 41] for different aspects
(antenna, cloaking, lensing), but there is still much to be done theoretically, numerically and
experimentally. An accurate technique for experimental analysis will move forward this field
of wave science. The notable motivation here for further research is the cloaking of floating
structures that can be used for coastline protection. Our group recently designed and tested
a surface water wave deviators obtaining very optimistic results [64].





BIBLIOGRAPHY

[1] W. Alpers and H. Huehnerfuss. The damping of ocean waves by surface films: A new look at an
old problem. J. Geophysical Research, 94(5):6251–6265, 1989.

[2] F. Behrozzi. Fluid viscosity and the attenuation of surface waves: a derivation based on conserva-
tion of energy. Eur. J. Phys, 25:115–122, 2004.

[3] P. Behrozzi, K. Cordray, W. Griffin, and F. Behrozzi. The calming effect of oil on water. Am. J. Phys.,
75(5):407–414, 2007.

[4] P. Blondel. Bathymetry and Its Applications. INTECHWEB.ORG, online edition, 2012.

[5] M. G. Brow and A. Jensen. Experiments on focusing unidirectional water waves. J. Geophys. Res.,
106(16):917–928, 2001.

[6] D. Cassereau and M. Fink. Time Reversal of Ultrasonic Fields-Part III: Theory of the Closed Time-
reversal Cavity. IEEE Trans. Ulatrason. Ferroelectr. Freq. Control, 39:579–592, 1992.

[7] H. Chen, J. Yang, J. Zi, and C.T. Chan. Transformation media for linear liquid surface waves. Eu-
rophys. Lett., 85:24004, 2009.

[8] R. Cini and P.P. Lombardini. Experimental evidence of maximum in the frequency domain of the
ratio of ripple attenuation in monolayered water to that in pure water. J. Colloid Interface Sci., 81
(1):125–131, 1981.

[9] R. Cini, P.P. Lombardini, C. Manfredi, and E. Cini. Ripples damping due to monomolecular films.
J. Colloid Interface Sci., 119:74–80, 1987.

[10] P. Cobelli, A. Maurel, V. Pagneux, and P. Petitjeans. Global measurement of water waves by Fourier
transform profilometry. Exp. Fluids, 46:1037–1047, 2009.

[11] P. Cobelli, V. Pagneux, A. Maurel, and P. Petitjeans. Experimental observation of trapped modes in
a water wave channel. Euro Phys. Letters, 88:20006, 2009.

[12] P. Cobelli, P. Petitjeans, A. Maurel, V. Pagneux, and N. Mordant. Space-Time Resolved Wave Tur-
bulence in a Vibrating Plate. Phys. Rev. Lett., 103:204301, 2009.

[13] P. Cobelli, V. Pagneux, A. Maurel, and P. Petitjeans. Experimental study on water-wave trapped
modes. J. Fluid Mech., 666:445–476, 2011.

95



96 Bibliography

[14] P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, and A. Maurel. Different Regimes for
Water Wave Turbulence. Phys. Rev. Lett., 107:214503, 2011.

[15] C.S. Cox. Measurement of slopes of high-frequency wind waves . J. Mar. Res., 16(9):199–225, 1958.

[16] J.T. Davies and R.W Vose. On the damping of capillary waves by surface films. Proc. Roy. Soc., Ser
A, 286:218–234, 1965.

[17] P. Denissenko, S. Lukaschuk, and S. Nazarenko. Gravity Wave Turbulence in a Laboratory Flame.
Phys. Rev. Lett., 99:014501, 2007.

[18] A. Derode, P. Roux, and M. Fink. Robust Acoustic Time Reversal with High-Order Multiple Scat-
tering. Phys. Rev. Lett., 75(23):4206–4210, 1995.

[19] R. Dorrenstein. General linearized theory of the effect of surface films on water ripples. Proc. K.
Ned. Akad. Wet. Ser. B, 54:260–272, 350–356, 1951.

[20] C. Draeger and M. Fink. One-Channel Time Reversal of Elastic Waves in a Chaotic 2D-Silicon
Cavity. Phys. Rev. Lett., 79(3):407, 1997.

[21] C. Draeger and M. Fink. One-Channel Time-reversal in chaotic cavities: Theoretical Limits. J.
Acoust. Soc. Am, 105(2):611–617, 1999.

[22] C. Draeger, J-C. Aime, and M. Fink. One-Channel Time-reversal in chaotic cavities: Experimental
Results. J. Acoust. Soc. Am, 105(2):618–625, 1999.

[23] S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E.Zakharov. Optical turbulence: weak turbu-
lence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Physica D,
57:96–160, 1992.

[24] N. Etaix, A. Leblanc, M. Fink, and R. K. Ing. Thickness or phase velocity measurements using
the Green’s function comparison method. IEEE Trans. Ulatrason. Ferroelectr. Freq. Control, 57(8):
1804–1812, 2000.

[25] C. Falcon, E. Falcon, U. Bortolozzo, and S. Fauve. Capillary wave turbulence on a spherical fluid
surface in zero gravity. Europhys. Lett., 86:14002, 2009.

[26] E. Falcon. Laboratory experiments on wave turbulence. Discrete Contin. Dyn. Syst. B, 13:819–840,
2010.

[27] E. Falcon, S. Fauve, and C. Laroche. Observation of intermittency in wave turbulence. Phys. Rev.
Lett., 98:154501, 2007.

[28] E. Falcon, C. Laroche, and S. Fauve. Observation of gravity-capillary wave turbulence. Phys. Rev.
Lett., 98:154503, 2007.

[29] M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan. Broadband cylindrical acoustic cloak for
linear surface waves in a fluid. Phys. Rev. Lett., 101:134501, 2008.



Bibliography 97

[30] M. Farhat, S. Guenneau, S. Enoch, G. Tayeb, A. B. Movchan, and N. V. Movchan. Analytical and
numerical analysis of lensing effect for linear surface water waves through a square array of nearly
touching rigid square cylinders. Phys. Rev. E, 77:046308, 2008.

[31] M. Fink. Time Reversal of Ultrasonic Fields-Part I: Basic Principles. IEEE Trans. Ulatrason. Ferro-
electr. Freq. Control, 39:555–566, 1992.

[32] M. Fink. Time-Reversal Acoustics. J. Phys.: Conf. Ser., 118:012001, 2008.

[33] M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu. Time-
reversed acoustics. Rep. Prog. Phys., 63:1933, 2000.

[34] S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet. A weak turbulence theory for incom-
pressible magnetohydrodynamics. J. Plasma Phys., 63:447–488, 200.

[35] S. S. Gorthi and P. Rastogi. Fringe Projection Techniques: Whither we are? Optics and Lasers in
Engineering, 48(2):133–140, 2010.

[36] G. C. Guenther, A. G. Cunningham, P. E. LaRocque, and D. J. Reid. Meeting the accuracy challenge
in airborne LIDAR bathymetry. Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, 2000.

[37] E. Guerber, M. Benoit, S.T. Grilli, and C. Buvat. A fully nonlinear implicit model for wave interac-
tions with submerged structures in forced or free motion. Eng. Analysis with Boundary Elements,
36:1151–1163, 2012.

[38] K. Hasselmann. On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General
Theory. J. Fluid Mech., 12:481–500, 1962.

[39] D.M. Henderson and J.W. Miles. Surface-wave damping in a circular cylinder with a fixed contact
line. J. Fluid Mech., 275:285–299, 1994.

[40] E. Herbert, N. Mordant, and E. Falcon. Observation of the nonlinear dispersion relation and spa-
tial statistics of wave turbulence on the surface of a fluid. Phys. Rev. Lett., 105:144502, 2010.

[41] X. Hu, C.T. Chan, K.M. Ho, and J. Zi. Negative effective gravity in water waves by periodic resonator
arrays. Phys. Rev. Lett., 106:174501, 2011.

[42] H. Huehnerfuss, W. Alpers, W.L. Jones, P.A. Lange, and K. Richter. The damping of ocean surface
waves by monomolecular film measured by wave staffs and microwave radars. J. Geophysical
Research, 86:429–438, 1981.

[43] R. K. Ing, N. Etaix, A. Leblanc, and M. Fink. Measurement of thickness or plate velocity using
ambient vibrations. J. Acoust. Soc. Am., 127(6):EL252–257, 2000.

[44] P. Kosmas and C. Rappaport. Time reversal with the FDTD method for microwave breast cancer
detection. IEEE Trans. on Microwave Theory and Tech., 53(7):2317 –2323, 2005.

[45] G. Lagubeau, M.A. Fontelos, C. Josserand, A. Maurel, V. Pagneux, and P. Petitjeans. Flower patterns
in drop impact on thin liquid films . Phys. Rev. Lett., 105:184503, 2010.



98 Bibliography

[46] C. Larmat, J.-P. Montagner, M. Fink, Y. Capdeville, A. Tourin, and E. Clévédé. Time-reversal imag-
ing of seismic sources and application to the great Sumatra earthquake. Geophys. Reaserch Lett.,
33:L19312, 2006.

[47] V.G. Levich. The damping of waves by surface active materials. Acta Physicochim., 14:307–328,
1941.

[48] J. Lighthill. Waves in fluids. Cambridge University Press, Great Britain, 1978.

[49] G. Loresoy, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink. Time Reversal of Electro-
magnetic Waves. Phys. Rev. Lett., 92(19):193904, 2004.

[50] J. Lucassen. Longitudinal capillary waves. Part 1. - Theory. Trans. Faraday Soc., 64:2221–2229,
1968.

[51] J. Lucassen. Effect of surface-active material on damping of gravity waves: a reappraisal. J. Colloid
Interface Sci., 85(1):52–58, 1982.

[52] J. Lucassen and R. Hansen. Damping of waves on monolayer-covered surfaces, I, Systems with
Negligible Surface Dilational Viscosity. J. Colloid Interface Sci., 22:32–44, 1966.

[53] J. Lucassen and M. van den Tempel. Longitudinal Waves on Visco-Elastic Surfaces. J. Colloid
Interface Sci., 41:491–498, 1972.

[54] S. Lukaschuk, S. Nazarenko, S. McLelland, and d P. Denissenko. Gravity Wave Turbulence in Wave
Tanks: Space and Time Statistics. Phys. Rev. Lett., 103:044501, 2009.

[55] S. Lukaschuk, S. Nazarenko, S. McLelland, and P. Denissenko. Statistics of surface gravity wave
turbulence in the space and time domains. J. Fluid Mech., 642:395–420, 2009.

[56] Y. Ma, G. Dong, M. Perlin, M. Ma A., X. Wang, and J. Xu. Laboratory observations of wave evo-
lution, modulation and blocking due to spatially varying opposing currents. J. Fluid Mech., 661:
108–429, 2010.

[57] C. Marangoni. Sul principio della viscosita superficiale dei liquidi stabili. Nuovo Cimento, Ser. 2,
5–6:239–276, 1872.

[58] A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans. Experimental and theoretical inspection of the
phase-to-height relation in Fourier transform profilometry. Applied Optics, 48(2):380–392, 2009.

[59] J. Miles. A note on surface films and surface waves. Wave Motion, 13:303–306, 1991.

[60] J.W. Miles. Surface-wave damping in closed basins. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 297(1451):459–475, 1967.

[61] N. C. Mitchell and M. L. Somers. Quantitative backscatter measurements with a long-range side-
scan sonar. IEEE J. Oceanic Engineering, 14:368–374, 1989.

[62] A. C. Newell and B. Rumpf. Wave Turbulence. Annu. Rev. Fluid Mech., 43:59–78, 2010.



Bibliography 99

[63] C. S. Ng and A. Bhattacharjee. Interaction of shear-Alfvn wave packets: implication for weak mag-
netohydrodynamic turbulence in astrophysical plasmas. Astrophysical Journal, 465:845, 1996.

[64] C. Palacios. Water wave metamaterials. Master Thesis: ESPCI ParisTech & Imperial College Lon-
don, 2012.

[65] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966–3969, 2000.

[66] J. B. Pendry, D. Schurig, and D. R. Smith. Negative refraction makes a perfect lens. Science, 312:
1780–1782, 2006.

[67] D.H. Peregrine. Interaction of water waves and current. Adv. Appl. Mech., 16:9–117, 1976.

[68] A. Przadka, B. Cabane, V. Pagneux, A. Maurel, and P. Petitjeans. Fourier Transform Profilometry
for water waves: how to achieve clean water attenuation with diffusive reflection at the water
surface? Exp. Fluids, 52(2):519–527, 2012.

[69] A. Przadka, S Feat, P. Petitjeans, V. Pagneux, A. Maurel, and M. Fink. Time-reversal of water waves.
accepted for publication in Phys. Rev. Lett., 2012.

[70] L. Shemer, K. Goulitski, and E. Kit. Evolution of wide-spectrum unidirectional wave groups in a
tank: an experimental and numerical study. Europ. J. Mech. B/Fl., 26:193, 2007.

[71] B. T. Taddese, J. Hart, T. M. Antonsen, E. Ott, and S. M. Anlage. Sensor based on extending the
concept of fidelity to classical waves. Appl. Phys. Lett., 95:114103, 2009.

[72] M. Takeda and K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D
object shapes. Applied Optics, 22:3977–3982, 1983.

[73] M. Takeda, H. Ina, and S. Kobayashi. Fourier-transform method of fringe-pattern analysis for
computer-based topography and interferometry. Journal of the Optical Society of America, 72(1):
156–160, 1982.

[74] A. Toffoli, M. Benoit, M. Onorato, and E.M. Bitner-Gregersen. The effect of third-order nonlinear-
ity on statistical properties of random directional waves in finite depth. Nonlinear Processes in
Geophysics, 16:131–139, 2009.

[75] A. Toffoli, L. Cavaleri, A.V. Babanin, M. Benoit, E.M. Bitner-Gregersen, J. Monbaliu, M. Onorato,
A. R. Osborne, and C. T. Stansberg. Occurrence of extreme waves in three-dimensional mechan-
ically generated wave fields propagating over an oblique current. Natural Hazards and Earth
System Sci., 11:895–903, 2011.

[76] W.B. Wright, R. Budakian, and S.J. Putterman. Diffusing light photography of fully developed
isotropic ripple turbulence . Phys. Rev. Lett., 76:4528–4531, 1996.

[77] F. Wu, J.L. Thomas, and M. Fink. Time Reversal of Ultrasonic Fields-Part II: Experimental Results.
IEEE Trans. Ulatrason. Ferroelectr. Freq. Control, 39:567–578, 1992.

[78] V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of deep wate. J. App.
Mech. Tech. Phys., 2:190–194, 1968.



100 Bibliography

[79] V.E. Zakharov and N.N. Filonenko. Energy spectrum for stochastic oscillations of the surface of a
liquid. Sov. Phys. Dokl., 11:882–884, 1967.

[80] V.E. Zakharov and N.N. Filonenko. Weak turbulence of capillary waves. J. App. Mech. Tech., 8:
37–42, 1967.

[81] V.E. Zakharov, V. L’vov, and G. Falkovich. Kolmogorov Spectra of Turbulence I. Berlin: Springer-
Verlag, 1992.

[82] Q.-C. Zhang and X.-Y. Su. An optical measurement of vortex shape at a free surface . Opt. Laser
Technol., 34:107–113, 2002.

[83] X. Zhang and C.S. Cox. A novel technique for free-surface elevation mapping . Phys. Fluids, 6(9):
s11, 1994.

[84] X. Zhang and C.S. Cox. Measuring the two-dimensional structure of a wavy water surface opti-
cally: a surface gradient detector. Exp. Fluids, 17:225–237, 1994.





Acknowledgments

First and foremost, I would like to  express my sincere gratitude to my supervisors, 
Philippe Petitjeans, Vincent Pagneux and Agnès Maurel for their support, help and 
valuable guidance. Their sympathy, flexibility and professional approach contributed 
tremendously  to  my  project.  I  am  grateful  for  both  our  academic  and  personal 
discussions, which motivated me throughout my thesis. I would also like to thank 
Sophie Goujon-Durand for her invaluable assistance during my project. My gratitude 
goes  to  my  colleagues  from  PMMH  laboratory  for  their  help  and  the  pleasant 
atmosphere they created.

I am grateful to my friends, Vera Asvanyi, Guadalupe Couto, József Orbán, Robert 
Somogyi and Thomas Pujol for the happy and unforgettable time we shared together. 
I would also like to take this opportunity to thank my friends from Cité Universitaire, 
for being my surrogate family during the years I  stayed there.  Special  thanks are 
extended to my polish friends for their understanding during my exile.

Lastly, none of this would have been possible without the love, patience and support 
of my wife Julia and my family.


