Stability and Receptivity of the Swept
 Wing Attachment-Line Boundary Layer:

a Multigrid Numerical Approach

Gianluca Meneghello
LadHyX, École Polytechnique
CNRS

Palaiseau, February 15, 2013

Motivation

- Gain a better understanding of the coherent flow structures and their dynamics in the leading-edge region of swept wings
- Identify the regions of maximum receptivity and sensitivity

Academic research

"The goal of any scientific study of a fluid-dynamical process is not in the reproduction of its physical features by direct numerical simulations but in the extraction of the governing underlying mechanisms from the data the DNS produces. In other words, we are interested in the intrinsic flow behavior captured by the dynamics of coherent structures."

Motivation

- Gain a better understanding of the coherent flow structures and their dynamics in the leading-edge region of swept wings
- Identify the regions of maximum receptivity and sensitivity

Academic research

Industrial research

Drag components for a subsonic aircraft; Thibert, Reneaux \&

Schmitt, 1990

- Friction drag $\approx 50 \%$ of total drag for a subsonic aircraft
- Laminar friction drag $\approx 1 / 10$ of turbulent friction drag
- Large savings are possible by extending the laminar flow region
- An understanding of the instabilities leading to turbulence is required

Academic research

Non-alignment between the velocity vector and the pressure gradient is at the origin of three dimensional boundary layers

Reed and Saric, 1989; Poll, 1978

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Swept-wing instabilities

Crossflow

Tollmien-Schlichting

Local analysis based on simplified flow models provides us with different instability mechanisms for different regions

Swept-wing instabilities - Attachment line

Attachment-line instability: streamlines under the influence of the most unstable modes; Lin \& Malik 1996.

Swept-wing instabilities - Crossflow vortices

Swept-wing instabilities - Crossflow vortices

Crossflow instability: streamlines of crossflow vortices obtained from experimental results; Reed, 1988

Swept-wing instabilities - Crossflow vortices

Streamwise velocity contours under the influence of crossflow vortices, from experimental results; Haynes \& Reed, 2000

Swept-wing instabilities - Global analysis

Isosurfaces of the normal velocity component of the disturbance Hypersonic flow with bow-shock inflow; Mack, 2009

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Procedure and tools

Procedures and tools - Governing equations

Base Flow

$$
\mathcal{R}(\mathbf{q}) \equiv\left\{\begin{array}{cc}
\nabla \mathbf{u} \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p & =0 \\
\nabla \cdot \mathbf{u} & =0
\end{array}\right.
$$

Linearized equations for the perturbations \mathbf{q}^{\prime}

$$
\mathcal{L} \mathbf{q}^{\prime}=\left(B \partial_{t}+\left.\frac{\partial \mathcal{R}}{\partial \mathbf{q}}\right|_{\mathbf{Q}}\right) \mathbf{q}^{\prime} \quad \Longrightarrow \quad \mathcal{L}(\mathbf{Q}) \mathbf{q}^{\prime}=\mathbf{f}^{\prime}
$$

Procedures and tools - Governing equations

Base Flow

$$
\mathcal{R}(\mathbf{q}) \equiv\left\{\begin{array}{cc}
\nabla \mathbf{u} \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p & =0 \\
\nabla \cdot \mathbf{u} & =0
\end{array}\right.
$$

Linearized equations for the perturbations \mathbf{q}^{\prime}

$$
\mathcal{L} \mathbf{q}^{\prime}=\left(B \partial_{t}+\left.\frac{\partial \mathcal{R}}{\partial \mathbf{q}}\right|_{\mathbf{Q}}\right) \mathbf{q}^{\prime} \quad \Longrightarrow \quad \mathcal{L}(\mathbf{Q}) \mathbf{q}^{\prime}=\mathbf{f}^{\prime}
$$

Procedures and tools - Governing equations

Base Flow

$$
\mathcal{R}(\mathbf{q}) \equiv\left\{\begin{array}{ccc}
\nabla \mathbf{u} \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p & =0 \\
\nabla \cdot \mathbf{u} & =0
\end{array}\right.
$$

Linearized equations for the perturbations \mathbf{q}^{\prime}

$$
\mathcal{L} \mathbf{q}^{\prime}=\left(B \partial_{t}+\left.\frac{\partial \mathcal{R}}{\partial \mathbf{q}}\right|_{\mathbf{Q}}\right) \mathbf{q}^{\prime} \quad \Longrightarrow \quad \mathcal{L}(\mathbf{Q}) \mathbf{q}^{\prime}=\mathbf{f}^{\prime}
$$

Modal decomposition $\hat{\mathbf{q}}^{\prime}$

$$
\hat{\mathbf{q}}^{\prime}=\int_{0}^{\infty} \mathbf{q}^{\prime} e^{-\sigma t} d t \quad \Longrightarrow \quad \hat{\mathcal{L}} \hat{\mathbf{q}}^{\prime}=(\sigma B+A) \hat{\mathbf{q}}^{\prime}=\hat{\mathbf{f}}^{\prime}+\mathbf{q}_{0}
$$

Procedures and tools - Receptivity and sensitivity

Lagrangian functional

$$
\mathcal{I}\left(o b j, \hat{\mathbf{q}}, \hat{\mathbf{q}}^{+}, \hat{\mathbf{f}}, A\right)=o b j-\left\langle\hat{\mathbf{q}}^{+},(\sigma B+A) \hat{\mathbf{q}}-\hat{\mathbf{f}}\right\rangle
$$

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\int_{\Omega} \mathbf{a}^{H} \mathbf{b} d \Omega
$$

What is the variation of the
objective functional given a variation in the forcing?

$\delta(o b j)=\left\langle\hat{\mathbf{q}}^{+}, \delta A \hat{\mathbf{q}}\right\rangle$

Procedures and tools - Receptivity and sensitivity

Lagrangian functional

$$
\mathcal{I}\left(o b j, \hat{\mathbf{q}}, \hat{\mathbf{q}}^{+}, \hat{\mathbf{f}}, A\right)=o b j-\left\langle\hat{\mathbf{q}}^{+},(\sigma B+A) \hat{\mathbf{q}}-\hat{\mathbf{f}}\right\rangle
$$

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\int_{\Omega} \mathbf{a}^{H} \mathbf{b} d \Omega
$$

Receptivity

What is the variation of the objective functional given a variation in the forcing?

What is the variation of the
objective functional given a variation in the operator A?

$$
\begin{aligned}
\frac{\partial \mathcal{I}}{\partial \hat{\mathbf{f}}} \delta \hat{\mathbf{f}} & =0 \\
\delta(o b j) & =-\left\langle\hat{\mathbf{q}}^{+}, \delta \hat{\mathbf{f}}\right\rangle
\end{aligned}
$$

Procedures and tools - Receptivity and sensitivity

Lagrangian functional

$$
\mathcal{I}\left(o b j, \hat{\mathbf{q}}, \hat{\mathbf{q}}^{+}, \hat{\mathbf{f}}, A\right)=o b j-\left\langle\hat{\mathbf{q}}^{+},(\sigma B+A) \hat{\mathbf{q}}-\hat{\mathbf{f}}\right\rangle
$$

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\int_{\Omega} \mathbf{a}^{H} \mathbf{b} d \Omega
$$

Receptivity

What is the variation of the objective functional given a variation in the forcing?

$$
\begin{aligned}
\frac{\partial \mathcal{I}}{\partial \hat{\mathbf{f}}} \delta \hat{\mathbf{f}} & =0 \\
\delta(o b j) & =-\left\langle\hat{\mathbf{q}}^{+}, \delta \hat{\mathbf{f}}\right\rangle
\end{aligned}
$$

Sensitivity

What is the variation of the objective functional given a variation in the operator A ?

$$
\begin{aligned}
\frac{\partial \mathcal{I}}{\partial A} \delta A & =0 \\
\delta(o b j) & =\left\langle\hat{\mathbf{q}}^{+}, \delta A \hat{\mathbf{q}}\right\rangle
\end{aligned}
$$

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Multigrid — Gauss-Seidel

$\Delta q=f$

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

Poisson problem: error $e^{m}=\bar{q}-q^{m}$ of the approximate solution at iteration m

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components the approximate solution at iteration m
$\rightarrow m=10$
- $m=100$

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel
 $\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid — Gauss-Seidel

$\Delta q=f$

The Gauss-Seidel algorithm

- Simple and memory efficient algorithm
- Fast convergence for high wavenumbers
- Most of the computational cost is related to the reduction of the low wavenumber error components

Multigrid - Gauss-Seidel
 $\Delta q=f$

Error definition

$$
e^{m}=\bar{q}-q^{m}=\sum_{i} \varepsilon_{i}^{m} \psi_{i}(x) \quad \underbrace{\psi_{i}(x)=\exp \left(i \boldsymbol{\theta}^{\top} \boldsymbol{x} / \boldsymbol{h}\right)}_{\text {eigenvectors decomposition }}
$$

Error evolution

$$
\begin{aligned}
e^{m+1}=M e^{m} \Longrightarrow \quad & \left|\varepsilon_{\boldsymbol{\theta}}^{m+1}\right|=\left|\lambda_{\boldsymbol{\theta}}\right|\left|\varepsilon_{\boldsymbol{\theta}}^{m}\right| \\
& \left|\lambda_{\boldsymbol{\theta}}\right|>1 \rightarrow \quad \text { divergence } \\
& \left|\lambda_{\theta}\right|<1 \rightarrow \quad \text { convergence }
\end{aligned}
$$

Multigrid - Gauss-Seidel
 $\Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid — Gauss-Seidel $\quad \Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid - Gauss-Seidel $\quad \Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid — Gauss-Seidel $\quad \Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid - Gauss-Seidel $\quad \Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid - Gauss-Seidel $\quad \Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid - Gauss-Seidel $\quad \Delta q=f$

amplification factor $\rho=\left|\lambda_{\theta}\right|$ for the error amplitude: $\left|\varepsilon_{\theta}^{m+1}\right|=\left|\lambda_{\theta}\right|\left|\varepsilon_{\theta}^{m}\right|$

Multigrid - V-cycle

Multigrid - Full approximation scheme

Ideas

- Represent the full solution an all grids
- τ_{h}^{H} : forcing of coarser grids' equations guarantees the same solution on all grids

Advantages

- Treatment of non-linear equations
- Natural approach to adaptive grid refinement

Multigrid - Full approximation scheme

Ideas

- Represent the full solution an all grids
- τ_{h}^{H} : forcing of coarser grids' equations guarantees the same solution on all grids

Advantages

- Treatment of non-linear equations
- Natural approach to adaptive grid refinement

Multigrid - Full approximation scheme

Ideas

- Represent the full solution an all grids
- τ_{h}^{H} : forcing of coarser grids' equations guarantees the same solution on all grids

Advantages

- Treatment of non-linear equations
- Natural approach to adaptive grid refinement

Multigrid - Full approximation scheme

Ideas

- Represent the full solution an all grids
- τ_{h}^{H} : forcing of coarser grids' equations guarantees the same solution on all grids

Advantages

- Treatment of non-linear equations
- Natural approach to adaptive grid refinement

Multigrid - Test case $\quad \Delta q=f$

Convergence rate of the residual

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Base Flow - Configuration

$$
\begin{array}{cc}
R e_{C}=10^{6} & \Lambda=45^{\circ} \\
R e_{r}=16000 & R e_{s}=126
\end{array}
$$

Base Flow - Computation

Base Flow \subset Computation

Base Flow - Computation $\begin{aligned} & \text { root grid } \\ & \text { finest grid } \\ & \text { Ree } \\ & \text { time }(\text { min })\end{aligned}$

Base Flow - Computation

$\begin{aligned} \text { root grid } & = \\ \text { finest grid } & = \\ R e_{c} & = \\ \text { time }(\mathrm{min}) & =\end{aligned}$
129×33
257×65
$1 \cdot 10^{3}$
1.0

10

Base Flow - Computation

$$
\begin{gathered}
129 \times 33 \\
257 \times 65 \\
1 \cdot 10^{3}
\end{gathered}
$$

$$
\begin{aligned}
& 129 \times 33 \\
& 1025 \times 257 \\
& 1 \cdot 10^{4}
\end{aligned}
$$

$$
\begin{array}{cr}
129 \times 33 & 129 \times 33 \\
1025 \times 257 & 1025 \times 257 \\
1 \cdot 10^{5} & 2 \cdot 10^{5} \\
6.7 & 7.6
\end{array}
$$

$$
\begin{gathered}
257 \times 65 \\
1025 \times 257 \\
5 \cdot 10^{5} \\
11.3
\end{gathered}
$$

$$
\begin{aligned}
& 1 \\
& \leftrightarrow \quad 1
\end{aligned}
$$

Base Flow - Computation

Base Flow - Streamlines

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Perturbations - Domains

Perturbations - Spectrum

Perturbations - Direct and adjoint eigenvectors

Iso-contours of the u-compoment of the perturbation. Blue: negative, red: positive

Perturbations - Direct and adjoint eigenvectors

Direct eigenvector, attachment-line like structures

Perturbations - Direct and adjoint eigenvectors

Direct eigenvector, structure orientation is against streamlines

Perturbations - Direct and adjoint eigenvectors

Direct eigenvector, transition from attachment line to crossflow like structures

Perturbations - Direct and adjoint eigenvectors

Direct eigenvector, crossflow like structures

Perturbations - Direct and adjoint eigenvectors

Perturbations - Direct and adjoint eigenvectors

Adjoint eigenvector, localized upstream of and close to the attachment line region

Perturbations - Direct eigenvector

Direct eigenvector, norm of the velocity as a function of the chordwise coordinate

Perturbations - Direct eigenvector

Direct eigenvector, u component at fixed spanwise position; logarithmic scale in color

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Perturbations - Receptivity $\quad \delta(a m p)=-\left\langle\hat{\mathbf{q}}^{+}, \delta \hat{\mathbf{f}}\right\rangle$

Adjoint eigenvector, u^{+}component at fixed spanwise location

Perturbations - Wavemaker

Sensitivity

$$
\begin{gathered}
\mathcal{I}\left(o b j, \hat{\mathbf{q}}, \hat{\mathbf{q}}^{+}, \hat{\mathbf{f}}, A\right)=o b j-\left\langle\hat{\mathbf{q}}^{+},(\sigma B+A) \hat{\mathbf{q}}-\hat{\mathbf{f}}\right\rangle \\
\frac{\partial \mathcal{I}}{\partial A} \delta A=0 \quad \Longrightarrow \quad \delta(\sigma)=\left\langle\hat{\mathbf{q}}^{+}, \delta A \hat{\mathbf{q}}\right\rangle
\end{gathered}
$$

δA - variation in the operator

- base-flow change
- boundary conditions
- feedback forcing
- generic structural change

Feedback forcing

$$
\delta A=C_{0} \delta\left(x-x_{0}\right)
$$

localized feedback forcing dependent on the perturbation e.g. small cylinder

Giannetti \& Luchini, 2003, 2007

Perturbations - Wavemaker $\quad \delta \sigma=\left\langle\hat{\mathbf{q}}^{+}, \delta A \hat{\mathbf{q}}\right\rangle$

Wavemaker at fixed spanwise location, $u^{+} u$

Outline

- Swept-wing instabilities
- Procedure and tools
- Multigrid
- Base flow
- Perturbations: a modal description
- Receptivity and sensitivity
- Conclusions and future work

Conclusions

Numerics

- Multigrid has been proven as an extremely efficient solver for the non-linear Navier-Stokes equations on stretched grids and with adaptive refinement
- The Krylov subspace method implemented in SLEPc has been used to identify the flow's coherent structures
- The location of the outflow boundary has no influence on the stability results

Physics

- Direct modes show features of both attachment line and crossflow vortices: they share the same growth rate and phase speed
- The amplitude and growth rate of the global eigenvectors are dependent on a very small region a few boundary layer thicknesses across the attachment line
- The localization of the most sensitive region suggests local stability results are valid

Future work

Numerics

- Extension of multigrid to complex-valued linear problems will provide a fast and memory efficient solution strategy for eigenvector computations
- Multigrid refinement strategies for eigenvector computations
- Provide documentation and clean up/optimize the code (parallelization?)

Physics

- The role of the adjoint's boundary values regarding receptivity to boundary conditions
- Identification of physical mechanisms leading to the transition between attachment line and crossflow vortices
- Parametric study and identification of the critical Reynolds number

Thanks

Gauss-Seidel vs. Multigrid
 $\Delta q=f, \quad \partial_{n} q=0$

Gauss-Seidel vs. Multigrid
 $\Delta q=f, \quad \partial_{n} q=0$

Gauss-Seidel vs. Multigrid
 $\Delta q=f, \quad \partial_{n} q=0$

Gauss-Seidel vs. Multigrid
 $\Delta q=f, \quad \partial_{n} q=0$

