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Chapter 1

Introduction

1.1 Nonlinear Optics

Nonlinear optical phenomena [1, 2] includes all these physical processes orig-
inating from the interaction of light with matter, that modify the incoming
electromagnetic field creating a new radiation of different frequency and wave-
length. This is in contrast to linear optics, where the light-beam preserves its
frequency and is only deviated, reflected, diffused or absorbed by the material
and is described by the common laws of optics of Newton, Snell, Fresnel and
Maxwell. Nonlinear optics takes place when a material interacts with an intense
light so that its response yields fundamentally different properties than the one
observed in the linear regime; actually an high photon density is required in
order to allow three-body or higher order processes. As a consequence, until
the development of laser in 1960, there was no way to access them, although
theoretical prediction have been formulated already in 1931 [3]. The first exper-
imental evidence of nonlinear phenomena has been observed in 1961 by Franken
et al. [4]. They detected the frequency doubling of a radiation passing through
a nonlinear crystal; the process was interpreted as the generation of second
harmonic in visible light, a phenomenon previously known for radio waves only.

Since the linear and nonlinear optics involve a different number of photons,
they can be distinguished with respect to the intensity of the field (i.e., the
number of photons) that enters into their description. Consequently, while the
linear response of the material is proportional to the amplitude of the applied
field, in nonlinear optics it is related to the square or the higher powers of this
field. Formally, one can expand the polarization of the material in terms of the
field as [2]:

P = χ(1)E+ χ(2)EE+ χ(3)EEE+ . . . (1.1)

where the term χ(1) determines the linear optical response and all the effects de-
scribed by the other terms are referred to as nonlinear. Obviously, this concerns
a variety of effects and different order processes that have their own properties.
As an example, second order effects are completely absent for materials with in-
version symmetry and a light source that can be described within the dipole ap-
proximation. On the contrary, third order effects (that are not dipole-forbidden)
are present. As a consequence, the susceptibilities χ(i) depend directly on the
material and their efficiency can be very different.

7



8 CHAPTER 1. INTRODUCTION

Even within the same order there are processes that exhibit a completely dif-
ferent nature. Second order phenomena indeed, comprise the second-harmonic
generation together with the sum- or difference-frequency generation (i.e., the
creation of a beam from the sum/difference of two incoming beams), the optical
parametric amplification (it consists in the splitting of one incoming photon into
two outgoing ones that conserve the initial energy) or the optical rectification
i.e., the creation of a DC field from an intense AC field [2]. Things are much
more complex to higher orders, so that at third order one has the two photon
absorption, the third harmonic generation, the self-focalization etc. or, through
a polarization of the system that breaks the inversion symmetry, it can give
rise to second order effects too as it happens in the electric field induced sec-
ond harmonic (EFISH). Increasing the order of the process, the cross section is
diminished and higher order effects are smaller and less intense.

The intense light induces a nonlinear response in the material on a micro-
scopic level that in turn modifies the optical response. As a consequence, any
nonlinear optical process can be described in two steps. The first step is related
to the microscopic structure of the material and thus governed by the quantum
mechanics, while the second step is described by Maxwell’s equations in solids.
The process should hence be described both at the microscopic and macroscopic
level. As an example SHG has a microscopic origin but phase matching between
the macroscopic fields is a necessary condition to have a detectable signal.

1.2 Second Harmonic Generation

In this thesis I will exclusively consider the second-harmonic generation (SHG)
nonlinear process [1, 2, 5]. This is one of the most widely used nonlinear optical
effects and one of the easiest to describe, involving only three-body interaction.
The simpler picture to describe the process is to consider a three level system
(see Fig.1.1). One of the two incoming photons excites an electron of the system
which is promoted to an empty state. It is excited by the second photon from
that level to the third one. Once it relaxes to the equilibrium ground-state (i.e.,
the first level), it emits an unique photon that, because of energy conservation,
has twice the energy and the frequency of the original photons.

However, the steps are not independent and SHG is not a three-step pro-
cess as depicted above, but a single three-body interaction that takes place in
a unique step. The intermediate states can be thought as virtual states and
they do not need to correspond to an energy level of the system. This is of
course a simplification of what happens in the many-body electron system of
the crystal, where all the particles are interacting and described by an unique
many-body wave function. As a consequence, although it is described by the
macroscopic second-order susceptibility tensor χ(2), this quantity includes the
many-body microscopic interactions such as the screening variations due to crys-
tal local-fields and the electron-hole interaction. As an experimental tool, second
harmonic generation has variety of applications that have developed during the
last decades. The major use of the process is to double the source frequency
in laser systems, obtaining an intense secondary beam at wavelength normally
unavailable [6–9]. Indeed one can use existing lasers to achieve new frequencies
without the design and development of new lasing media, but simply making the
beam pass through a nonlinear crystal. Nowadays it is widely exploited in labo-
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Figure 1.1: Scheme of the Second Harmonic Generation process.

ratory and there exists also the first commercial implementations of green-laser
pointer. In order to have an intense outgoing signal there are some technical
conditions to be fulfilled. The most important is the phase matching between
the k-vectors of the two radiations: k(2ω) − k(ω) = 0. This allows to have
constructive interference of the SHG beam outside the material. Moreover the
medium should have a large second-order dielectric susceptibility χ(2) at the
desired frequency so that the signal is intense enough to be subsequently em-
ployed. These properties are material dependent and there are a lot of works
devoted to the research of high-efficiency nonlinear materials [6, 10–12]. Fur-
thermore, SHG is also interesting for the development of optoelectronic devices
as frequency-doubling wave-guides [13].

The other great area of application of the SHG is its use as a probe both
for spectroscopy and microscopy. Indeed, for centro-symmetric systems SHG
is dipole forbidden and is consequently highly sensitive to symmetry breaking.
This makes of it a selective probe for surfaces and interfaces of centro-symmetric
media, where the bulk will not contribute and the frequency-doubled signal is
therefore characteristic of the first few atomic layers close to the discontinuity. It
allows also a time-resolved in-situ monitoring of the surface reconstruction, of its
chemistry, once molecules or other adsorbates are deposited on it or can be used
for measuring the surface coverage [14, 15]. Its applications range over a great
variety of materials: metal surfaces, metal-electrolyte interfaces, semiconduc-
tors, oxides, insulator surfaces/interfaces etc. (see [16, 17] and Refs. therein).
Also thermodynamical phase interfaces, such as liquid-liquid or liquid-air inter-
faces have been studied through SHG. In addition to the numerous applications
of interface-SHG to the study of molecular adsorption, SHG experiments have
been frequently used to determine the average orientation of molecules adsorbed
at surfaces, through measurements of the polarization dependence and phase of
the molecular SHG [16]. In the last decade it has affirmed as a selective non-
destructive spectroscopy technique for the study of surfaces [18], superlattices
[19–21] and interfaces [17, 22, 23].

Recently, second harmonic imaging microscopes (SHIM) have been employed
to the study and imaging of cells and biological membranes. Light is a non-
destructive probe that allows to study in-vivo biological systems in their envi-
ronment [24–26]. In particular the SHG process revealed to be very efficient, in
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particular for collagene.

1.2.1 SHG Theoretical Description

The theoretical description of the SHG process has been addressed by scientists
for several decades. It has represented indeed a difficult taks and nowadays
there is a large variety of approaches that treat this nonlinear optical process
at different level. In literature there are classical and semiclassical approaches
or semiempirical derivations [27–34] that tries to give an accurate description of
SHG, revealing useful particularly in the interpretation and analysis of exper-
imental results. There is instead a general lack of ab initio description of the
process.

Ab initio calculations, especially the ones based on Density Functional The-
ory (DFT), Time-Dependent Density Functional Theory (TDDFT) or Many-
Body Perturbation Theory (MBPT), revealed to be useful both in the interpre-
tation and prediction of the materials properties. In particular, a great effort
has been devoted to the description of the optical response and latest results
shows an excellent agreement with the experiments. Their level of accuracy and
the possibility of treating from first principle (i.e., parameter free) the descrip-
tion of the systems, make of them a powerful spectroscopic tool with respect to
semi-empirical methods. As an example, first principle calculation allows to go
deep into the response of the materials, comparing the relative importance of
the microscopic effects that are involved (e.g., the crystal local fields, the quasi-
particle energy correction, excitonic effects, the quantum confinement etc.) with
the experimental results. This permits a direct investigation of the physical na-
ture of the system. Such a study is not always feasible in experiments where all
these effects are collected and mixed in the final response. Moreover, due to the
high level of accuracy obtained, nowadays ab initio calculations are used to get
informations on complex systems such as DNA, proteins, superlattices, defects,
nanowires, etc., or processes (from tribology to optics) that present technical
difficulties for direct experimental measurements. As an example, one can study
the unknown structure of the experimental sample through comparison of its
measured response function with the theoretical ones obtained from a set of
candidate structures (as will be shown later in chapter 6). The accuracy of ab
initio calculations makes of them an ideal benchmark to predict the behavior
and characteristics of new materials, guiding the design of new devices.

Due to their relevance and possibilities, it is then of great importance to
improve SHG first-principle description and our knowledge of the nonlinear op-
tical processes. The basic requirement is a comprehensive understanding of the
nonlinear microscopic physical mechanisms and the corresponding macroscopic
relation with physical measurable quantities. This is a formidable task and
considerable difficulties have delayed accurate results for many years.

The first description of second harmonic generation based on band-structure
theory was developed soon after its discovery. In 1962 Armstrong [35] and
Loudon [36] gave expressions for the microscopic second harmonic susceptibility
in terms of the frequency spectrum i.e., the transitions among electronic states
that originate the frequency doubling. However, the theoretical results were
very poor once compared with experiments. The early calculations have been
restricted to the static second harmonic coefficients (i.e. at ω = 0) [37, 38]
and with rough approximations for the band structure evaluations. Aspnes
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further analyzed the formulation in 1972 [39] in terms of different gauges for the
applied fields. The calculations however had to rely on empirical data. Fong
and Shen [40] developed the calculations of empirical pseudopotentials showing
the importance of the k-dependence of the matrix elements in the calculation.
However, their results still underestimate the experimental value of about 2
orders of magnitude. Meanwhile, in 1987 Moss and Sipe [41] improved the
technique overestimating the value by a factor of 2-4 using a semi-empirical
tight-binding method, evaluating both static and frequency dependent SHG
coefficients for different semiconductors. Nevertheless the spectra exhibited a
lot of deficiencies. More or less in the same years appeared the first calculations
on more complex systems as the Si/Ge or GaAs/AlAs superlattices [21, 42].

In the 90’s, the evolution of computational methods as the Density Func-
tional Theory allowed the first accurate ab initio calculation of second har-
monic generation considering both quasi-particles effects and crystal local fields
by Levine and Allan in 1991 [43–45] through the SHG description with a one-
electron band theory [46]. Quasi-particle corrections were described by a scissor
shift of the conduction states to better describe the quasi-particle band gap
underestimated by density functional theory. Their static values were in very
good agreement with the experimental results. At the same time Sipe and co-
workers [41, 47] developed a formalism for the calculation of the second-order
optical response of crystals in the independent particle approximations (a more
recent approach has been presented by Sipe and Shkrebtii [48]), that allowed
calculation of the frequency spectra [47, 49–51] and not only of the static con-
stants. In particular Ref. [50] represents a milestone. The independent particle
formulation of the SHG process they gave in the length gauge considering the
optical limit is today widely used for the study of superlattices, several surface
and interface systems [22, 52–60] carbon and SiC nanotubes [61–63]. They also
provided the first formulation of the SHG computation including a scissor non-
linear operator to recover the quasi-particle gap. An alternative formulation was
given by Dal Corso et al. [64]. It is based on the 2n+1 theorem. They adopted
Time-Dependent Density Functional Theory and have been able to account for
self-consistent local-field effects.

These calculations improve the description of the SHG, in particular because
of the improvements of the DFT description of the electronic states on which
the SHG derivation is based. However, the details of each approach show clearly
that the second-order optical susceptibility still remains a nontrivial task, and
the same accuracy obtained for linear optics has not been achieved yet.

Only few attempts tried to go beyond the independent particle picture, and
quasi-particle effects have always been accounted for by the scissor operator
approximation. Bechstedt and co-workers investigated the validity of this ap-
proach comparing results with the quasi-particle band structure and wave func-
tions with the ones obtained within the scissor correction [65] Moreover, only
few works exists on the inclusion of excitonic effects in χ(2). Chang et al. [66]
proposed a method where wave functions were obtained from superposition of
pair excitations. Later, Leitsmann et al. [67] developed further this formalism
using the excitonic wave functions obtained from a Bethe-Salpeter calculation
to construct the many-body χ(2). This approach is clearly an improvement with
respect to IPA, since it includes many-body effects in the wave functions. BSE
demonstrated successful for linear optics and they found a reasonable agreement
with experimental data in the static limit, while in a larger energy range the
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comparison was not satisfactory and only a qualitative agreement was found.
The question arises whether it is possible to use this approach to describe exci-
tons for higher-energy calculations. Moreover the preliminary BSE calculation
requires a great effort that demonstrates prohibitive for big-size or complex sys-
tems. Still, in this approach the crystal local field effects are only accounted for
within the BSE calculation, which might be a limiting factor on the quality of
the result.

These problems arise once looking to crystal structures or solid state physics,
whereas accurate formalisms and schemes exist for molecular systems. There
are indeed important differences between these calculations and the correspond-
ing process in solids. In molecules, an accurate description of the DFT ex-
change correlation functional (e.g. going beyond LDA) gives usually accurate
results. This is not the case of solids. Furthermore, whereas the ALDA TDDFT
exchange-correlation kernel (the time-dependent extension of LDA) revealed to
be accurate for molecules, it fails for solids optical properties already in the
linear regime. It is therefore necessary to further improve the accuracy of the
kernels and the ab initio description of the systems. Also the relation with the
experiment is more complex in solids. Molecules indeed are microscopic and
their response is usually independent and non-coherent. Consequently, a mi-
croscopic description is sufficient to model experiments. This is not the case
for solids where the microscopic response (e.g. the local polarization inside the
material) does not correspond directly to the macroscopic one and they should
be connected via an appropriate average procedure. This is true for linear op-
tics and much more once considering nonlinear processes. The main goal of this
thesis is to advance the description of the SHG process, going beyond the stan-
dard approach for complex materials, evaluating the importance of many-body
effects (crystal local fields and excitons) exploring an efficient formalism based
on TDDFT1 to make feasible large calculations normally unattainable with the
methods previously presented in literature (as the BSE of [67]). This will allow
me to study more in detail the origin of the SHG process and how it is related
to the nature of the studied material.

The formalism, valid for any kind of classical field (longitudinal or transverse)
and systems (from solids down to molecules), connect the microscopic nonlinear
response to the macroscopic second-order susceptibility χ(2) according to the
original work of Del Sole and Fiorino [68]. I have then restricted the theory
that has a general validity, to the calculation of the SHG process in the long
wavelength limit q→ 0 (see Ref [68]). In this limit, χ(2) can be expressed in the
TDDFT framework, but the description of the response through second-order
perturbation theory allows to obtain the final response from the DFT ground
state quantities accordingly to Ref. [69]. It revealed successful in a variety of
systems and in particular for Si surfaces [27, 70, 71]. This IPA formalism has
hence been further developed by V. Véniard [72] improving the accuracy of the
response and the possibility of introducing straightforwardly many-body effects
as crystal local fields and excitons in the macroscopic χ(2).

Starting from previous studies on semiconductors where the formalism and
the code have been successfully applied to bulk cubic materials (GaAs, AlAs,
SiC [72–75]) or deformed centrosymmetric materials (strained Si [13]), I have

1For linear optics the many-body effects are considered to be well understood. Local fields
in TDDFT are routinely calculated and also a connection with the MBPT Bethe-Salpeter
equation, that describe excitons, has recently been established.
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extended its application to the study of complex systems as the interfaces and
surfaces, studying its accuracy and capabilities. This is the first time the theory
and the code are applied to these kinds of systems and non-trivial problems
have been encountered both of theoretical and numerical nature. Surfaces and
interfaces, because of their low-dimensional structure, originate a signal that
is localized in space, contrary to the bulk response. An accurate description
of this transition region and its properties introduces new tasks such as the
determination of its dimension and the contribution of the two materials to the
total signal. Also their ratio and their thickness affects the total response as
well as the interface configuration that need to be identified in according with
the experimental environment [76, 77]. Moreover, simulations of interfaces and
surfaces through a plane-waves DFT approach require to include vacuum into
the simulation cell using a supercell method. Being the response characteristic
of a small volume inside the cell, this introduces unphysical effects making the
intensity dependent on the thickness of the vacuum considered. It has then been
necessary to study and define an appropriate normalization procedure in order to
compare different systems. Moreover, an interface system is characterized by an
hard discontinuity region. Effects that demonstrated negligible in bulk materials
as the crystal local fields can become relevant. Our calculations represent the
first occasion to study their influence and their properties, in comparison with
the independent particle response or the excitonic effects, obtaining an insight
on their dependence on the nature of the system.

I have hence focused the work on the study of the Si(111)/CaF2 interface.
Silicon is a well known material that exhibits important optical properties. In
particular the possibility of designing its electronic and optical gap through
quantum confinement, makes of it a suitable material both for photovoltaic and
optoelectronic devices. The combination of this material with CaF2 that is
a large gap insulator completely transparent in the visible and UV range has
produced a complex material whose electronic and optical properties have been
investigated for more than a decade [78–87].

However, these properties depends directly on the geometrical structure and
in particular on the interface configuration that introduces new states into the
energy gap modifying the system response. Several works have then been ad-
dressed to the study of the interface geometry [82, 88, 89], its dependency on
growth conditions [76, 77, 90] and the possibilities of obtaining an epitaxial, de-
fect free deposition. However, there was a great debate with alternative results
and only the latest experiments gave an almost conclusive answer, although
some discrepancies still exists. In this respect, SHG represented a great spec-
troscopic tool to investigate directly the interface and in 1989 Heinz et al. [82]
studied the SHG spectra of the Si(111)/CaF2 interface obtaining information
about the direct transition at Γ characteristic of the interface region. This in-
terface represents consequently a great opportunity both to test our formalism
and our code and to compare the result with the experiment in which the in-
terface structure is unknown. The eventual matching of our spectra with the
experiment will also confirm the reliability of the proposed interface structure,
that I have guessed in consideration of the growth conditions [76].

Si(111)/CaF2 represents hence an interesting case-study for my purpose, al-
lowing direct comparison with experiment, testing the accuracy of the developed
theory, and permitting to go deep into the analysis of the various microscopic
effects involved in the SHG process. This will allow to achieve new informations
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both on the microscopic nature of the SHG signal and the predictive possibilities
of our description.

I will then study a new system, the Si/Ge superlattices [21, 91, 92] that
demonstrated to be SHG active. These superlattices show a lot of possible
applications and latest deposition techniques allow to employ these structures
in more complex configurations as the multi-layers nanowires [93]. In the past
some studies have been performed however, they were limited to IPA. Theoreti-
cal achievements demonstrated to fail reproducing the experiments, particularly
because of differences among the experimental and theoretical configurations.
The former indeed presents defects due to non-uniform molecular beam epitaxy
layer deposition. For large Ge thicknesses the strain at the interface creates
plane mismatch and big V-shape defects that enhance the SHG response of an
order of magnitude. The analysis of this phenomenon has never been addressed
before, due to the theoretical and numerical difficulties to simulate defects in
materials. Thanks to the efficiency of the TDDFT formalism and the improve-
ments of the 2light code performances, I will try to simulate these conditions.
I will investigate the possibility of establishing a link between the SHG and the
kind of defect present inside the structure. This work is in progress and here I
will present some preliminary results.

The thesis is organized as follows: in chapter 2 I will introduce the many-
body problems and the density functional theory approach to the solution and
the description of the ground state properties of a system. In chapter 3 the
derivation of the excitation properties of a material through TDDFT is pre-
sented, and the derivation of response function obtained within perturbation
theory developed up to the second order is shown. In chapter 4 the deriva-
tion of the relation between the microscopic and macroscopic formulation of
the second-order response is presented, obtaining a general expression for the
macroscopic second-order susceptibility χ(2) valid for any fields. This formu-
lation is then rewritten for practical implementation for longitudinal fields in
the long-wavelength limit. This allows to describe the problem using TDDFT
theory. Chapter 5 briefly introduces the code 2light that implements the pre-
sented formalism, its possibilities and the different approximations that have
been implemented nowadays. I will also report the major modifications that I
have made in order to improve its computational efficiency and the new physical
tools, as the renormalization procedure, that I introduced in order to handle the
response of a cell containing vacuum. Finally, the formalism has been applied
to the calculation of the SHG spectroscopy for the Si(111)/CaF2 interface. The
results and the detailed study of the test system are reported in chapter 6 (and
detailed discussion about the renormalization problem is given in Appendix
G), whereas the preliminary results of the Si/Ge superlattices are presented in
chapter 7 and conclusion in chapter 8.



Chapter 2

Density Functional Theory

In the present thesis I have studied the nonlinear optical properties of solids with
an ab initio technique. These properties are directly related to the description
of the electronic states in a solid, the so-called many-body problem, that can be
studied within the Density Functional Theory and the Time-Dependent Density
Functional Theory formalisms. The latter, that describes the excitations of the
medium, will be addressed in the following chapter. Here we focus on DFT,
briefly introducing the milestones of the theory: the Hohenberg-Kohn theorems
and the basic ideas to solve the problem in the Kohn-Sham scheme. Finally I
will discuss some physical and numerical details.

2.1 The System of Many Interacting Electrons:
the Many-Body Problem

As previously illustrated, Second Harmonic Generation and more generally the
linear and nonlinear optical processes, are directly related to the electronic exci-
tations in solids. As a consequence the knowledge of the electronic states of the
system represents the key to correctly describe the physics behind these pro-
cesses and determine the optical and electronic quantities of interest (e.g. the
energy loss function, the optical absorption, the second harmonic generation
spectrum ...). In the quantum-mechanics frame the evolution of these states is
governed by the time-dependent Schrödinger equation that, for non-relativistic
systems, can be written as:

i~
∂

∂t
|Ψ >= Ĥ|Ψ〉. (2.1)

In solids and in a great variety of materials (in absence of any external field) Ĥ
is given by the kinetic term and the Coulomb interaction of the electrons and
nuclei provided that all the other interaction can be neglected:

Ĥ =
∑

i

−~
2∇2
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2me
+
∑
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I

2MI
+
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2
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+
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2
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I 6=J

ZIZJe
2

|RI −RJ |
(2.2)

where the indexes (i,j) run over electrons and (I,J) run over nuclei. For the
majority of the applications it is possible to reduce the complexity of this

15
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equation decoupling the electronic and nuclei motion: this is called the Born-
Oppenheimer (BO) approximation or adiabatic approximation.

Born-Oppenheimer approximation

The Born-Oppenheimer approximation [94] is based on the observation that the
nuclei have masses of 3 or more orders of magnitude larger than the electrons
(MN ≫ me). This implies that their motion is slow compared with the faster
electron dynamics and takes place on a different time-scale. Therefore, while
solving the electronic problem, nuclear position RI can be considered fixed and
can be described as constant parameters. In this way the electronic problem
is decoupled from the nuclear one reducing the degrees of freedom to the elec-
tronic variables only: a system of identical, indistinguishable particles. The new
electronic Hamiltonian in the BO approximation is given by:

ĤBO =
∑

i

−~
2∇2

i

2me
+

1

2

∑

i6=j

e2

|ri − rj |
−
∑

iI

ZIe
2

|ri −RI |
. (2.3)

The first and second term are universal and independent of the system (they
are respectively the kinetic energy and Coulomb interaction between the elec-
trons), while the last one is characteristic of the studied system and contains
the interaction between the electrons and the nuclei. Nevertheless, at this step
the Schrödinger equation is still too complex to be solved. From now onwards
we will refer to Eq. (2.3) as the Hamiltonian describing the many-body problem
of Eq. (2.1), avoiding the specification of the BO label (Ĥ ≡ ĤBO).

Approaches to the Problem

A diagonalization of the Schrödinger Eq. (2.1) would lead to a solution of the
problem obtaining the energy eigenvalues and the wave functions |Ψ〉 of the
system. Nevertheless, in the previous equations the wave function is contem-
porary functions of 3N variables |Ψ(r1, ..., rN )〉 that are all interconnected due
to the electron-electron interaction term of Eq. (2.3). As a consequence the
Schrödinger equation growths exponentially in complexity increasing N and the
problem, that is not exactly solvable already for N > 2, cannot be handled even
numerically when one deals with materials constituted of several tens of atoms.
Consequently it is impossible to threat the 1023 particles of a macroscopic sys-
tem where the degrees of freedom multiply enormously, and other paths should
be explored to solve the Schrödinger equation of the system.

Several approaches exists that try to find an approximate solution of the full
many-body problem: the configuration interaction and the quantum Monte-
Carlo approach for example aim to describe the full many-body wave function.
Nevertheless such solutions would contain informations about every single elec-
tron of the system, and such a level of detail would be hard to manage and
interpret. Instead, usually one looks for the expectation values or macroscopic
quantities that does not involve directly the knowledge of the exact solution of
Eq. (2.1). With this consideration one can think to simplify the problem and
its Hamiltonian, reducing the number of variables of the system to the ones of
interest. This is in analogy with the Thermodynamic case where one describe
the whole system in terms of the macroscopic average quantities, regardless of
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the real microscopic configuration. Between the variety of approaches that have
been proposed in literature, Density Functional Theory and Time-Dependent
Density Functional Theory maybe represent the prominent examples of this
many-body problem simplification for treating respectively equilibrium ground-
state observables or dynamical properties. Other possible approaches that will
be briefly introduced later are the Many-Body Perturbation Theory and the
dynamical mean-field theory.

2.2 The Density Functional Theory Approach

Density Functional Theory allows to overcome the above mentioned difficulties
with the merit of being formally exact and numerically efficient for the study
of the geometry and ground-state electronic properties of a great variety of
materials. Thanks to this, accurate results are obtained for systems of different
nature going from molecules and nanostructures, to proteins or biological matter
up to solids, surfaces or interfaces.

The strength of this approach stands behind the idea of describing the entire
system through the electronic density distribution, a much simpler variable with
only 3 degrees of freedom with respect to the full many-body wave function. This
key quantity is independent of the size of the system and therefore allows to treat
structures with hundreds of atoms without increasing the amount of data to be
stored in simulations as it happens in other methods based on the full many-
body wave function. A possible solution of the DFT problem is then represented
by the Kohn-Sham scheme. This genius approach exploits the possibility of
mapping the many-body system into an easier independent-particles problem
with a one-to-one correspondence that gives the same expectation value for the
observables of the real ground-state system. Hence each property that depends
on the ground-state configuration can be obtained solving this new simplified
problem. In this section I briefly introduce DFT and the Kohn-Sham scheme
that underlie all our ground-state and relaxation calculations.

2.2.1 Hohenberg-Kohn Theorems

Target of DFT is the solution of a system of N electrons in its ground-state con-
figuration, which experiment the presence of an external, one-particle local po-
tential vext not evolving in time. In the Born-Oppenheimer approximation this
external potential is represented by the interaction with the nuclei of Eq. (2.3)
that are fixed. For this stationary system Eq. (2.1) reduces to the corresponding
time-independent Schrödinger equation:

Ĥ|Ψ〉 = ǫ|Ψ〉 (2.4)

where |Ψ〉 represents a many-body wave function and ǫ the corresponding eigen-
value. The ground-state of the system is then identified by the particular state
|0〉 of energy ǫ0. The Hamiltonian of the N -electron system can be expressed
as:

Ĥ = T̂ + Û + V̂ext where Vext =

∫

dr vext(r)n(r) (2.5)
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with T and U respectively the kinetic and the electron-electron interaction en-
ergies and Vext the interaction energy with the external potential:

T̂ =
∑
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2∇2
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2me
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e2
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∑

iI

ZIe
2

|ri −RI |
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∫
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(2.6)

As T and U have the same expression for all physical system, uniquely Vext de-
termines the particular system of interest with its Hamiltonian, wave functions,
energies and all the other properties that descend from their knowledge i.e. the
electron density of the system in a state |Ψ >:

n(r) = N〈Ψ(r1, ..., rN )|δ(r− r1)|Ψ(r1, ..., rN )〉 (2.7)

and in particular the density n0(r) of the ground-state when |Ψ〉 = |0〉. The
first Hohenberg and Kohn theorem states that also the inverse assumption is
valid:

Theorem 2.1. (Hohenberg and Kohn I, 1964, Ref [95]). The ground-state
density n(r) of a system of interacting electrons subject to an external potential
vext(r) uniquely determines this potential and hence the entire physical system.

Hence, for non-degenerate systems the Hamiltonian Hv0
= T [n] + U [n] +

V0[n] (corresponding to the system with vext = v0), its expectation value (the
electronic total energy) Ev0

[n] = 〈0, [n]|Hv0
|0, [n]〉, and any observable become

unique functionals of the electron density n. This one-to-one relation holds also
for the many-body wave function |Ψ〉 = |Ψ[n]〉.

Consequently the solution of the Schrödinger equation (2.4) is now functional
of n, a 3-variables quantity easier to handle with respect to the complete wave
function. The possibility of finding the ground-state density that corresponds to
the external potential v0 is guaranteed by virtue of the Rayleigh-Ritz principle
through the second important

Theorem 2.2. (Hohenberg and Kohn II, 1964, Ref [95]). The energy func-
tional Ev0

[n] is minimized by the ground-state density n0 that corresponds to
the external potential v0: Ev0

[n] ≥ Ev0
[n0].

Solution of Ĥ|0〉 = ǫ|0〉 is then transformed to a minimization problem of
Ev0

[n] with respect to the variation of n(r)1. A trivial task if the energy func-
tionals T [n], U [n], V0[n] were known. We should point out that the complexity
of the problem is now moved into the possibility of inverting the relation between
Ĥ and n (that is the determination of these functionals) or finding reasonable
and suitable approximations for them.

This procedure allows to obtain directly the ground state properties of the
system (Ev0

[n], |0〉,...) and study its equilibrium. Since the Hamiltonian is
functional of the ground state density, in principle all the other quantities like the

1Under the constraint of the total electron number N being fixed, that is obtained via
the Lagrange multipliers method, where the parameter can be identified with the chemical
potential.
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excited states are achievable as functional of the density. Nevertheless, knowing
the real dependence of |Ψ〉 on n would correspond to a complete knowledge of
the system, i.e. the solution of the Schrödinger equation.

The most successful approach demonstrated to be the one presented by
Kohn-Sham in 1965, that will be described in the following. Other approxi-
mations have been proposed e.g. by Thomas and Fermi in 1927 and can be
found in literature [96–98]. In this work they substituted the electron-electron
interaction U by the classical Hartree term and the kinetic energy T with a
local density approximation using the one of a homogeneous electron gas. How-
ever the approach demonstrated to fail (for instance in reproducing the correct
shell structure of the atoms or the chemical bonding) because T [n] +U [n], that
constitute the large part of the total energy, is hard to approximate.

2.3 Kohn-Sham Equations

A possibility to determine the energy functional is to refer to the one of a known
simple system adapting it to the real problem. This is basically the Kohn-Sham
(KS) approach, that starts from the

Definition 2.3. (Kohn-Sham system, 1965, Ref [99]). Any system of interact-
ing particles in the external potential v0 can be mapped to a system of fictitious,
non-interacting Kohn-Sham particles in the effective, local potential vS such that
both have the same ground-state density n0: H = T+U+V0

n0←→ HS = TS+VS.

Where VS [n] =
∫

dr vS(r)n(r) is a local, single-particle potential. As a
consequence the Hohenberg and Kohn theorems (Ths. 2.1 and 2.2) hold also for
the KS system and show that it is possible to access the real ground-state density
n0 (and all the other quantities that derive from it through theorem 2.1), via the
minimization of the KS energy functional EKS [n] = TS [n] + VS [n]. TS [n] is the
kinetic energy for a system of N independent particles while VS corresponds to
the energy of the effective potential vS determined as the one that makes the KS
ground-state density reproduce the real system ground-state density n0. Given
vS the Schrödinger equation for HS reduces into a system of single-particle
non-interacting Schrödinger equations:2

[

−∇
2
λ

2
+

∫

dr vS(r)n(r)

]

|ψKS
λ 〉 = ǫKS

λ |ψKS
λ 〉, (2.8)

where λ labels the state. The system can be easily solved through a diagonal-
ization, determining the single-particle wave functions |ψKS

λ 〉 and the energy
eigenvalues ǫKS

λ of the KS problem i.e., the ground state solution of both the
KS and the real systems:

n(r) =
N
∑

λ=1

|ψKS
λ |2. (2.9)

In this way the kinetic energy functional of a system of non-interacting particles
is known and given by:

TS [n] =

N
∑

λ=1

〈ψKS
λ |

(

−∇
2

2

)

|ψKS
λ 〉 (2.10)

2In the following I will adopt atomic units (e = me = ~ = 1) to simplify the notation.
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a much easier form with respect to the one of the real system. In order to
obtain an expression for the effective potential vS [n] we can rewrite the energy
functional of the interacting system Ev0

[n] adding and subtracting TS [n] plus
an Hartree energy term VH [n]:3

Ev0
[n] = TS [n] + VH [n] + V0[n] + VXC [n], (2.11)

where:

VH [n] =
1

2

∫∫

drdr′ n(r)vH(r, r′)n(r), (2.12)

VXC [n] = T + U − VH − TS . (2.13)

vH =
∫

dr′ n(r′)
|r−r′| is the functional derivative of VH with respect to the density,

while VXC denotes the exchange-correlation energy that includes the part of
the energy functional that is not explicitly known (named Stupidity energy by
Feynmann [100]). Until TS +VH is rather close to T +U of the real system VXC

is small and can be approximated in a rough way obtaining a good description
of the system. The energy functional of both systems, the interacting and the
auxiliary one, takes its minimum at the same density n0. As a consequence of the
second theorem of Hohenberg and Kohn (Th. 2.2) one can apply the variational
principle to both functionals (under the constraint of n being V -representable4)
obtaining the following relation:

vS(r, [n0]) = v0(r) + vH(r, [n0]) + vXC(r, [n0]) (2.14)

vXC(r, [n0]) =
δVXC

δn(r)
|n0
. (2.15)

It is possible to demonstrate that vXC is the local exchange correlation energy
per particle, that is the electrostatic interaction energy of a particle with its
DFT exchange-correlation hole nXC

5 and should fulfill the sum rule:

∫

dr′ nXC(r, r
′;n) = −1. (2.16)

Eqs. (2.8) and (2.14) represent the KS equations that satisfy definition 2.3. The
single-particle potential vS now depends on the density and this set of equation
has to be solved in a self-consistent procedure. Starting from a guess density
ñ it is possible to determine vH and vXC (i.e., vS), and to calculate the new
wave functions and density solving the single-particle Schrödinger equations
(2.8). This process can be iterated until the differences between the densities
at different steps vanishes or/and the energy converges to its minimum value.
This is guaranteed by the second theorem of Hohenberg and Kohn (Th. 2.2).

The energy of the interacting system Etot is recovered through the total

3VH [n] represents the classical electrostatic energy of interaction between the electrons.
4That is, to belong to the ensemble of physical potentials that have a non-degenerate

ground-state. This is a not trivial constraint to be imposed while varying the density.
5vXC(r, [n]) =

∫

dr′ 1
2

nXC(r,r′;n)
|r′−r|

.
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energy EKS
tot of the non interacting one being:

EKS
tot =

N
∑

λ=1

ǫKS
λ = TS [n] + VS [n]

=TS +

∫

dr v0(r)n(r) +

∫∫

drdr′ n(r)vH(r, r′)n(r)

+

∫

dr vXC(r)n(r)|n=n0

(2.17)

that substituted in Eq. (2.11) gives:

Eel
tot = EKS

tot −
1

2

∫

dr vH(r)n(r) + VXC [n]−
∫

dr vXC(r)n(r). (2.18)

In order to have the total energy of the entire system one should add the term
due to the Coulomb nuclei interaction previously drawn out by the BO approx-
imation.

During the years the first formulation of the HK theorems (Ths. 2.1 and 2.2)
and the KS scheme have been developed reducing the theoretical constraints i.e.
the possibility to apply KS-DFT to spin-polarized materials or the underlying
necessity of the density being V -representable.

The latter problem has been overcome by Levy and Lieb proposing a min-
imization procedure with the new requirement of n(r) being N -representable
i.e., the density should correspond to an antisymmetric many-body wave func-
tion with fixed number N of electrons. This avoids the uniqueness minimum
problem and allows to apply DFT to V -degenerate ground-states.

Further improvements with respect to the original Kohn-Sham work (e.g.
spin inclusion) have been developed during the years and a detailed introduction
can be found in [101].

2.3.1 Exchange and Correlation potential

All the previous equations have been formally exact, except for the Born-
Oppenheimer approximation. However, the lack of an explicit functional for
VXC obliges to take it in an approximated form.6 The majority of the calcula-
tions today are performed in the local-density approximation (LDA) introduced
by Kohn and Sham in 1965 [99]. Similar to the Thomas-Fermi approximation,
the system is locally considered as an interacting homogeneous electron gas: the
density around a certain spatial point r is uniform and the vXC [n] functional
reduces to a mere function ǫhomXC of n(r):

VXC [n] =

∫

dr vXC(r, [n])n(r) −→ V LDA
XC [n] =

∫

dr ǫhomXC (n(r)) (2.19)

where

ǫhomXC = ǫhomX + ǫhomC , with ǫhomX = −3

4

(

3

π

)1/3

n1/3(r). (2.20)

In this particular approximation ǫhomXC (n) has an analytical solution for the ex-
change part (Eq. (2.20)) while exist reliable parametrizations of the correlation

6One notices that when the term is neglected the Hartree approximation is recovered.



22 CHAPTER 2. DENSITY FUNCTIONAL THEORY

function derived from quantum Monte-Carlo simulations of the homogeneous
electron gas [102, 103]. LDA demonstrated successful in the calculation of
ground-state properties of a variety of physical systems: from solids to nanos-
tructures and even molecules where the density significantly deviates from the
homogeneous assumption. Typically the lattice parameters, the bond lengths
and the ground state energies are in excellent agreement with the experimen-
tal results within few percents for covalent, metallic and ionic bonds. While
the same approximation works worse for weak bonding situations as Hydrogen
bonds or Van der Waals forces.

However, the LDA energy functional does not cancel exactly the self-energy
interaction of the Hartree term resulting in a wrong asymptotic behavior of the
XC potential in finite systems.7 There are other attempts that go beyond the
LDA describing in a more accurate way the exchange-correlation functional.
Examples are the generalized-gradient approximation (GGA)8 [104], the opti-
mized effective potential (OPM) [105] as the exact-exchange (EXX) where the
exchange part is exactly treated [106], or the hybrid functionals9 [107, 108].

2.3.2 Kohn-Sham Bandstructure and Bandgap

The orbitals and eigenvalues of Eq. (2.8) do not have a direct physical meaning.
As they have been derived they permit uniquely to construct the real electronic
density obtaining the ground-state properties. Hence, they do not give any di-
rect access to informations about e.g. the excited states.10 The Kohn-Sham
energies ǫKS

λ and wave functions ψKS
λ of the fictitious set of independent elec-

trons do not correspond to the ones of the real system and do not reproduce its
quasi-particle band structure (which is measured e.g., in a photo-emission exper-
iment). In insulators or semiconductors only the energy of the highest occupied
state (HOMO) coincides with the exact ionization-energy of the system as shown
by Janak’s theorem [109].11 Instead one can use TDDFT or Green’s function
formalism to study quasi-particle energies and neutral/charged excitations. De-
spite this, LDA-KS energies and wave functions remain a good starting point for
these perturbative calculations (e.g. in GW-approximation calculations). More-
over, in a system where correlation effects are small, LDA-KS energies can be
considered as a first approximation for the real quasi-particle band structure. In
many cases they demonstrated capable of well reproducing the band dispersion
ǫλ(k) of the valence and excited states, although the latter are underestimated

7It presents an exponential decay whereas it should behave as 1
|r|

.
8In GGA non-local corrections are introduced threating vXC as function of both the density

and its gradient. In this case vXC can describe also fast variations of the density, whereas in
LDA are approximated as negligible.

9Hybrid functionals incorporate part of the exact exchange as derived from Hartree-Fock,
together with XC from other sources (i.e. empirical or ab initio GW calculations). Some
parameters establish the reciprocal weight of these two components.

10It is wrong to assert that through DFT it is formally not possible to know the excited
states of the system. As previously stated, the external potential and all its derived quantities
as the many-body wave functions |Ψ〉 are functionals of the ground-state density. In principle
one can determine these functionals and |Ψ〉 corresponding to the excited states, although
this demonstrates very complicated.

11Janak’s theorem descends from the earlier Koopmans’s theorem, enunciated in 1934 by
Koopmans for molecules [110]. It states that in closed-shell Hartree-Fock theory, the first
ionization energy of a molecular system is equal to the orbital energy of the highest occupied
molecular orbital (HOMO).
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Figure 2.1: LDA-KS (black solid line) and quasi-particle (red dashed line) band
structure of graphene (Reproduced from [111], Copyright c©2008 by The Amer-
ican Physical Society).

by an almost k-independent amount with respect to the experimental measure-
ments (see Figs. (2.1) and (2.2)). This discrepancy is intrinsic of the KS
formalism [112–115] depending on the properties of the adopted XC kernel. In
insulating or semiconducting materials the fundamental energy gap (named also
the quasi-particle gap) is defined as the difference between the largest addition
energy and the smallest removal energy of an electron (i.e. the electron affinity
Etot(N)− Etot(N + 1) and the ionization potential Etot(N − 1)− Etot(N)):

Egap = [Etot(N − 1)− Etot(N)]− [Etot(N)− Etot(N + 1)] (2.21)

that corresponds to the difference between the two HOMO levels of the N and
N+1 particles systems. Thanks to Janak’s theorem in exact DFT (or provided
that vXC is a good approximation for the real functional) these energies are
given by the highest occupied KS states ψKS

(HOMO):

Egap = ǫKS
N+1(N + 1)− ǫKS

N (N). (2.22)

On the other hand, what one obtains within a single KS-DFT calculation with
N particles are the KS-eigenvalues ǫKS

N+1 and ǫKS
N

12 of the ground state density,
and is immediate to recognize a discrepancy between the real and the KS band
gaps [112–115]:

EKS
gap = ǫKS

N+1(N)− ǫN (N) (2.23)

Egap − EKS
gap = ǫKS

N+1(N + 1)− ǫKS
N+1(N) = ∆XC . (2.24)

The latter quantity ∆XC is related to the non-analytic behavior i.e., the deriva-
tive discontinuity, of the real XC potential subjected to variation of the particles
number N. This is in contrast with LDA (or other approximations as GGA)
where VXC is a continuous function of the electrons number. The discrepancy
between the Kohn-Sham and the quasi-particle energy gap is shown in Fig. (2.3).
Further details can be found in [116].

12They correspond to the energies of the lowest unoccupied state (LUMO) and the HOMO
state respectively.
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Figure 2.2: KS (blue line) and quasi-particle (red line) band structure of bulk
silicon (Reproduced from http://exciting-code.org).

Figure 2.3: On the left: Kohn-Sham band structure (HOMO and LUMO states)
of a N particles semiconductor; on the right: Kohn-Sham band structure of the
N + 1 particles system. The shift ∆XC due to the addition of an electron to
the conduction band is shown through the comparison of their energetic levels.
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2.4 Ionic Contribution and Geometry Optimiza-
tion

As stated before, the solution of the KS equations allows to obtain all the
information about the N -body electronic problem. According to the BO ap-
proximation the total energy of the system is obtained through the summation
of the electronic contribution and its interaction with the ionic potential (i.e.,
Eel

tot given by Eq (2.18)) plus the nuclei interaction:Etot = Eel
tot + Eion

int . The
latter is the classical Coulomb interaction of point-particles for finite systems
that can be obtained via the Ewald method [117] of infinite-charges summa-
tion in infinite materials like crystals. In the latter case the divergent terms of
Etot arising from the Coulomb long range potential mutually cancel for neutral-
charge materials. However, it is always possible to impose an uniform charged
background to neutralize systems with non-zero charge (as ionized molecules);
this does not affect the dynamics or the physical quantities of interest as the
density distribution.

Accordingly to the results obtained so far, given the nuclei position (i.e.,
the structure of the system) one can solve numerically the ground-state prob-
lem in the DFT framework. Unfortunately the equilibrium geometry is usually
unknown. One can still use the DFT informations to find the structure that
i) minimize the total energy or ii) make forces vanish. The first criterion can
be easily applied to simple systems i.e. in the determination of the bond length
of a bi-atomic molecule or the lattice parameters of a crystal obtained as the
values that minimize the energy. Despite this, if one handles complex structures
it becomes hard to consider all the degrees of freedom of the system and it is
usually more convenient to move each atoms accordingly to the forces acting
on it looking for the equilibrium configuration. These forces can be computed
directly from the total energy:

FJ = −∇RJ
Etot (2.25)

thanks to the Hellmann-Feynman theorem [118, 119].
The total energy Etot has an explicit dependence on the positions RJ and

an implicit one through the electronic density n determined in the BO approx-
imation Eq. (2.3). The latter dependence demonstrated unimportant since it
vanishes, as shown by Slater [120], and does not contribute to FJ . Therefore,
∇RJ

Etot reduces to the derivation of the only terms depending directly on the
variables RJ : V0 of Eel

tot and E
ion
int . The former describes the interaction of the

electrons in the nuclei (of charge ZI) potential:

V0 =

∫

dr v0(r)n(r)

=

∫

dr
∑

I

ZI

|r−RI |
n(r),

(2.26)

giving the force:

FV0

J = −∇RJ
V0

= −
∫

dr ZJ
(r−RJ)

|r−RJ |3
n(r).

(2.27)
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It coincides also with the energy of the nucleus J th in the electric field generated
by the electrons, according to the third principle of the dynamics.13 The force
between the nuclei instead reads:

Fion
int J = −∇RJ

Eion
int

=
∑

I 6=J

ZIZJ
(RI −RJ)

|RI −RJ |3
,

(2.28)

giving the total force acting on nucleus J th:

FJ = −
∫

dr ZJ
(r−RJ)

|r−RJ |3
n(r) +

∑

I 6=J

ZIZJ
(RI −RJ)

|RI −RJ |3
. (2.29)

This result is obtained considering the nuclei density nionJ (r) = ZJδ(r−RJ) i.e.,
approximating the nuclei as point-particles. When a particular distribution is
employed (as in the case of the pseudopotential that will be presented later) nion

can be determined from V0 of the J th atom (V0J ) using the Poisson equation
that gives:

nionJ (r) = − 1

4π
∇2V0J(r), (2.30)

with a final force:14

FJ =−
∫∫

drdr′ nionJ (r′)n(r)
(r− r′)

|r− r′|3

+
∑

I 6=J

∫∫

drdr′ nionI (r)nionJ (r′)
(r− r′)

|r− r′|3 .
(2.31)

As a consequence no further calculations are required once n0 and Etot[n0]
are known. Their knowledge allows a variety of applications: structure relax-
ation, defect-induced deformation, surface reconstruction as well as the study of
phononic-modes. Looking for the equilibrium structure it is possible to proceed
through many algorithms that have been proposed in literature. All of them
involve an iterative process where the electronic KS equation is solved up to
self-consistency and subsequently the Hellmann-Feynman forces are evaluated
from the new Etot[n0]. Then nuclei’s positions are adjusted via different criteria
that shall take into account the history of the iterations and try to optimize the
convergence making it faster.

2.5 Numerical Details

The numerical calculations have been performed using a plane-waves basis set
and norm-conserving pseudopotential for the description of the ions. I have
used AbInit-package [121] in order to determine the ground-state structures

13Indeed Eq. (2.27) has the same expression as the Coulomb force played by the electron

density n with electric field Eel(r) =
∫

dr′ n(r′)
(r′−r)

|r′−r|3
on a charge ZJ in the position RJ .

14Since the distribution of a single ion is always localized avoiding overlaps among nuclei, for
the Gauss theorem the second term of this equation is equal to the one of the point-particles
interaction of Eq. (2.29).
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and properties within DFT-LDA, and further the 2light-code [72] to calcu-
late the linear and nonlinear optical response functions of the materials. In the
following I will briefly address some numerical details and the necessary conver-
gence tests. For a detailed introduction to the practical implementation of the
DFT formalism one can refer to [121].

2.5.1 Plane-Waves Basis Set

The main task of the DFT-KS scheme is the solution of the single-particle
Schrödinger equation that permits to determine n(r). Once one refers to a
crystal lattice or a periodic system, equations and wave functions are signifi-
cantly simplified by means of Bloch’s theorem. Moreover plane-waves become
the natural basis set to represent its states:

|ψKS
λ (r)〉 = |ψnk(r)〉 = ψnk(r) = unk(r) e

ik·r =
∑

G

cG(nk)eiG·r eik·r, (2.32)

where λ can be identified by the band index and wave-vector n,k. k is a
continuous variable15 belonging to the 1st Brillouin Zone that identifies the
reduced momentum of the state andG are the discrete reciprocal lattice vectors.
The Schrödinger equation in this basis is represented by a secular equation where
the new variables are the coefficients cG(nk); the corresponding Hamiltonian is
obtained applying 〈eiG′·r| to the KS equation where |ψKS

λ (r)〉 is replaced by its
Bloch’s expansion (Eq. (2.32)). It is:

∑

G

ĤGG′(k)cG(nk) = ǫcG(nk)cG(nk) (2.33)

ĤGG′(k) =
1

2
|k+G|2δG,G′ + Vext(k+G,k+G′)+

VH(G−G′) + VXC(G−G′).
(2.34)

This basis demonstrates to be very efficient and shows several advantages:
i) plane-waves are a complete set of orthogonalized functions where the quality
of the sampling can be easily improved increasing the number of considered
waves. ii) Its definition is independent on the system but only depends on the
simulation cell, and does not require a knowledge of the atomic orbitals in-
volved or the atomic positions. iii) The equations are considerably simplified
in the reciprocal space, in particular the differential terms as the kinetic energy
or the Hartree potential (evaluated from the Poisson equation) reduce to sim-
ple products. iv) Passing through direct and Fourier space with plane-waves
is also computationally efficient thanks to the Fast Fourier Transform (FFT)
algorithm.

Because of these advantages it is usually convenient to treat with the same
basis also systems with one or more finite dimension i.e., surfaces and nanowires
or alternatively bulk solids with point defects (that lack of the correct lattice
symmetry) or superlattices. For confined systems this can be done by insert-
ing vacuum to cut the material and imposing the periodic Born-von Karman

15This is the case of Bloch’s states where periodic boundary conditions are applied resulting
in an infinite dimension material, whereas for real systems k is discrete and becomes continuous
only in the thermodynamic limit.
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boundary conditions at the edge of the simulation cell.16 Instead, for treating
defects it is usually sufficient to consider multiples of the primitive cell, so that
the periodic constraint is preserved by default. The method takes the name of
supercell technique. In both cases the size along the confined/multiple directions
must be increased in order to avoid interaction among the different replica. This
has to be checked through convergence tests.

Nowadays it is highly exploited since it demonstrated successful even for
the simulation of small confined systems as molecules, where the states are
strongly localized and there is a complete lack of periodicity. It permits also
accurate calculations of systems like surfaces or multi-quantum wells where the
translational invariance along one or more directions makes other kind of basis
(i.e., localized basis sets) very inefficient.

As for the real space, the reciprocal coordinates determined by k and G,
should be finite and discrete for practical implementation. This is achieved
1) considering the plane-waves up to a certain threshold value of their modulus
and 2) using a k -point grid.

1) Plane-Wave Energy Cut-off

As stated above the kinetic energy in reciprocal space assumes the simpler
form:

−∇
2

2
→ (k+G)

2

2
. (2.35)

It is therefore natural to define a cut-off energy Ecut to truncate the infinite
expansion over the G vectors as:

(k+G)
2

2
< Ecut. (2.36)

This approximation is possible since the coefficients cG(kn) of Eq. (2.32)
vanish exponentially when increasing the associated kinetic energy. As a
consequence the first terms are typically the most important. Nevertheless
the approximation can be systematically improved including higher spatial-
frequency contributions by increasing the cut-off energy.

Ecut is obviously dependent on the system of interest, but additionally it
reveals to be dependent on the physical quantity that one intend to study.
Indeed, calculation of ground-state or formation energies need very accurate
results and convergence is slow while increasing the cut-off, because every
improvements in the basis will lower the total energy. At the same time re-
laxations, lattice parameters or molecular bond-length studies converge very
quickly with respect to Ecut since one compares different system geometries.
In these cases the variations of the total energy related to the different atomic
configuration and density are always greater than the systematic error that
is associated to the basis truncation.

There are other technical details related to this topic as the discontinuous
increase of the numbers of the plane waves that can be found on [121].17

16It is not possible to describe finite systems with a finite set of plane-waves. Consequently,
imposing periodic boundary conditions becomes mandatory, in analogy to what is numerically
done to perform Fourier transformations of localized functions.

17Since we map the problem into a discrete G grid, increasing the sphere radius Ecut of
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2) k-point Grid

Evaluating the quantity of interest n(r) from the Bloch’s states |ψnk(r)〉
we should perform an integration over the vectors k that belong to the 1st

Brillouin Zone (Ω0k):

n(r) =
∑

n

1

Ω0k

∫

Ω0k

dk |ψnk(r)|f(ǫnk) (2.37)

where f(ǫnk) represents the occupation number of the band n at point k.
Again, it is not possible to treat numerically the continuum and the space
Ω0k should be discretized. Wave functions are usually slowly varying in k
and can be considered constant for two k points that are close together. This
makes the sample of the Brillouin Zone by a discrete set of k points a good
approximation to the integral. As for plane waves, the resulting error can be
systematically reduced increasing the density of the k-point grid.

The KS equations for a crystal (Eq. 2.33) should be solved for each sam-
pling point k. In order to reduce the computational effort there have been
several attempts to construct representative mesh with the fewest number
of points. Among these, Monkhorst-Pack [122] grids demonstrated particu-
larly efficient: they are regular grids invariant under the point symmetries
of the system. The calculation can then be restricted to points belonging
to the Irreducible Brillouin Zone ΩIRR

0 that are symmetrically inequivalent,
while the other contribute only to the weight factor wk of the former in the
summation:

n(r) =
∑

n

∑

ΩIRR
0

wk|ψnk(r)|f(ǫnk) (2.38)

The number of k-points is consequently considerably decreased. The sym-
metry of the cell may also be used to further reduce the number of needed
k-points. Moreover, shifting the origin of the grid may improve convergence
with k-points [123].

In the following we will study only insulating and semiconducting materials
at the temperature of 0K. The occupations number will then restrict to the
value of 1 at eigenvalue below the Fermi energy (ǫF > ǫnk) and 0 above that
level; summation of Eqs. (2.37), (2.38) is then performed only on the core
and valence states.

2.5.2 Pseudopotential

Up to now we have considered all the electrons involved in the many-body prob-
lem. However, only valence electrons participate to chemical bonds and interac-
tions among the atoms in a material. They are responsible of its structural and
electronic properties hence should be accurately described. Until one does not
move to the high energy regime also the optical processes (e.g. absorption, sec-
ond harmonic generation ...) are determined entirely by the valence electrons,

Eq. (2.36) or varying the grid (e.g. modifying the lattice parameter) will change of a discrete
amount the number of plane waves. This sudden change can affect the other quantities as the
total energy, introducing discontinuities. The problem is usually avoided defining smearing
and damping functions on unk(G) close to |G| cut-off.
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whereas core electrons are confined in a region close to the atomic nucleus.
This consideration allows to neglect their direct involvement as a variable of the
many-body problem, regarding to their effects as an external contribution18.

As stated above, core wave functions and density nc are almost independent
on the chemical environment and can be assumed to be equal to their atomic
configuration (frozen-core approximation). Therefore they can be obtained from
an all-electron calculation for a single atom, and subsequently included together
with their effects in the nuclei potential they surround, forming a fixed frozen-
ion.

The DFT calculation should then take into account only valence electrons
and density nv. Nevertheless the procedure demonstrates complex because core
electrons are fermions indistinguishable from the valence ones with which they
interact. Consequently one should still impose the constraint to valence wave
functions to be orthogonal to the core states. In addition the XC functional
VXC [nc +nv] is nonlinear and it becomes not trivial to separate the two contri-
butions VXC [nc] + VXC [nv] without introducing further approximations. This
condition is fulfilled when the two densities nc and nv are spatially separated
so that their overlap is zero and XC energy vanishes. It happens roughly when
core states form a close shell, as in the materials object of this thesis (this is
obviously an approximation that may lead to errors e.g., in the estimation of
the total energy [124]).

The frozen-core approximation allows also to solve further problems related
to the plane waves basis set. Indeed the ion Coulomb interaction presents a
singularity at the nucleus, that is not completely removed by the screening effect
of the core electrons. As a consequence their wave functions rapidly oscillate and
the same is induced by orthogonality on the valence states in the core region.
An accurate description of the latter would then require high-frequency plane
waves with large cut-off energy.

Again, the observation of what is effectively important to describe the prop-
erties of the materials shows that chemical bounds are largely independent on
the behavior of valence wave functions inside the core region. The simple idea
that derives from this consideration is to replace the real KS eigenfunctions
with other pseudo-functions that have the same chemical properties and shape
outside a certain core region, while being smoother and node-free inside it. This
would make the KS algorithm numerically simpler and faster, requiring a smaller
number of basis plane waves. The purpose can be obtained redefining the ion-
potential (given by the nucleus and the core electrons from an all-electron calcu-
lation), with a pseudopotential that removes completely the core orbitals from
the simulation. It should confine the strong changes within a cut-off radius and
eliminate the Coulomb singularity in order to soften the valence eigenfunctions.
Provided that some constraints are fulfilled, as:

• the preservation of the KS energies,

• the conservation of the KS wave functions outside a sphere of cut-off radius
rc, together with their logarithmic derivative (the scattering properties)
at the surface of the sphere,

• the conservation of the total density inside the sphere,19

18Similar to what has been done for ions within the BO approximation.
19This is required only for norm-conserving pseudopotential.
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• the pseudopotential V̂ ps
ext must be a spherically symmetric hermitian linear

operator,

one can fit the remaining parameters to soften the valence wave function inside
a core region of radius rc. These pseudopotentials can be substituted directly
into the external potential in the KS equation.

The first attempts (in the 1960’s) of constructing these screened potential
where empirically designed to fit experiments. Nowadays it exists a variety of
ab initio pseudopotential satisfying additional requirements as norm conserving,
portability and the inclusion of nonlocal terms in order to correctly reproduce
the different phase shift and scattering properties for each angular momentum
components of the wave function [125].

Among the schemes proposed in literature, we restricted our applications to
the Troullier-Martin type. Further details can be found in [126].
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Chapter 3

Time Dependent Density
Functional Theory

The theory based on the Runge-Gross Theorem gives the electronic density
of the system as function of an external perturbing potential. Describing this
variation within the linear-response formalism allows to obtain the physical
response quantities of interest that are related to the experiments.

3.1 Study of the Excited States of a System

As discussed in the previous chapter DFT addresses the equilibrium ground-
state properties of the system. If one desires to obtain informations on the
excited states (necessary to describe e.g. photoemission spectroscopy, absorp-
tion, optical band gaps, transport etc.) the only possibility is to adopt a more
efficient Hamiltonian that can describe these processes. Such an Hamiltonian
cannot depend on the simple variation of density in space (as in DFT) but
should depend on quantities able to describe dynamical variations of the sys-
tem. There are two main approaches: i) by allowing the system to follow a
time-dependent external potential and reproducing the dynamical properties of
the system through its evolution; ii) via the study of the correlation functions
of particles propagating through the system. The former approach is based on
the Time Dependent Density Functional Theory and studies the excitations of
the system by linking variations in time of the electronic density with the cor-
responding variations of an external acting potential. The latter approach is
based on the Many-Body Perturbation Theory (MBPT). It describes the prop-
agation of one or more particles in an interacting system through the Green’s
functions: these are the so-called quasi-particles experimentally observed. As a
consequence the knowledge of the physics and the implementation of new ap-
proximations are more intuitive in MBPT.1 On the contrary, in TDDFT as for
DFT, all the unknown quantities are condensed in a unique term, the exchange-
correlation kernel which is more difficult to treat and approximate. However it
has been demonstrated that it is possible to establish a link between the two

1The advantage of MBPT methods and Green’s functions is that one can systematically
improve the approximations taking into account particular physical processes represented in
the form of Feynman diagrams.

33
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theories [127–130]. This makes possible to take advantage of the improvements
and accuracy obtained within MBPT transferring them into the more efficient
formalism of TDDFT. This is actually the method adopted in this thesis. All the
results presented are obtained within TDDFT both for the linear and nonlinear
optical response functions.

Time Dependent Density Functional Theory is founded on the same basic
ideas that make DFT a powerful and efficient formalism to treat the ground-
state properties. Generalizing the physical situation to the description of a
system subjected to a time-dependent external perturbation, it is possible to
follow its dynamics from the knowledge of its electronic density n(r, t) (that now
depends on the time). The first calculations have been performed by Peuckert
[131], Zangwill and Soven [132], but the first rigorous formal justification of the
approach was provided by Runge, Gross and Kohn [133, 134] in 1984/85 and
will be briefly introduced in the next paragraphs. A recent overview of the
current developments in TDDFT can be found in [130, 135–137].

3.1.1 Runge-Gross Theorem

The starting point is the time-dependent Schrödinger equation (Eq. 2.1) in the
BO approximation, where the external potential (the nucleus plus an external
time-dependent perturbing scalar field) and the wave functions vary with time:

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (3.1)

The Hamiltonian is defined as

Ĥ = T̂ + Û + ˆVext(t), Vext(t) =

∫

dr vext(r, t)n(r, t), |Ψ(t0)〉 = |Ψ0〉 (3.2)

in analogy with Eq. (2.5). Runge and Gross have shown that it is possible to
achieve a one-to-one connection between the time-dependent electronic density
n(r, t) and the external potential Vext(t) that determines uniquely the system2

and its eigenstates |Ψ[n(t)] >:

Theorem 3.1. (Runge and Gross I, 1984, Ref [133]). The densities n(r, t) and
n′(r, t) evolving from a common initial state |Ψ0〉 at t0 under the influence of the
two Taylor expandable potentials vext(r, t) and v

′
ext(r, t) differ, if and only if the

potentials differ by more than a time-dependent constant vext(r, t)− v′ext(r, t) 6=
c(t).

As a consequence the Hamiltonian is determined by the density up to a free
time-dependent function c(t). This function is unknown but demonstrates irrel-
evant for the calculation of the observables of the system. Indeed it introduces a
time-dependent phase-factor in the wave functions that cancels out when the ex-
pectation values of operators are calculated3 Ô([n], t) = 〈Ψ([n], t)|Ô|Ψ([n], t)〉.
Moreover any physical observable becomes functional of the time-dependent
density n.

The theorem is the equivalent of the first Hohenberg and Kohn Th. 2.1; on
the other hand, it is not possible to establish a counterpart of the theorem 2.2

2In analogy with DFT: T̂ and Û are the same for all the physical systems and only Vext
distinguish among them determining the Hamiltonian.

3This is true until we are not considering derivative or integral operator on time t.
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based on the energy minimization. Indeed the total energy Etot is no more con-
served and it does not exist a minimization principle for E. One should consider
instead the principle of stationary action applied to the quantum-mechanical ac-
tion. This principle asserts that the equation of motion for the system i.e. the
Schrödinger equation (Eq. 3.1) with solution |Ψ(t)〉 that satisfies the initial con-
dition |Ψ0〉 at t = t0, is a stationary point of the quantum-mechanical integral
action A defined as:4

A =

∫ t1

t0

dt 〈Ψ(t)|i ∂
∂t
−H|Ψ(t)〉. (3.3)

Thanks to theorem 3.1 the action is now a functional of the density too, which
can be found as solution of the Euler-Lagrange equations, as stated by the

Theorem 3.2. (Runge and Gross II, 1984, Ref [133]). For a given initial
state |Ψ0〉 at t0, the action Av0

[n] becomes stationary at the density n0(r, t) that
corresponds to the external potential v0(r, t): [δAv0

[n]/δn(r, t)]n0
= 0.

Now finding the density that makes stationary the action integral means to
find the solution of the system since all the other observables are derived from
it accordingly to theorem 3.1.

3.1.2 Kohn-Sham Equations

Analogous to DFT, we do not have complete knowledge of the action functional
A[n]. Again, it is useful to manage with known quantities. It can be introduced
a Kohn-Sham fictitious non-interacting system of N particles, that gives exactly
the same density under the effect of an effective potential vS(r, t), as proposed by
Gross and Kohn [134]. Once the V -representability of n(r, t) has been provided5

[138], for every electronic density exists a potential vS functional of n. The
application of the stationary condition to the variation of the action implies that
the KS system should satisfy a set of time-dependent Kohn-Sham equations :

i
∂

∂t
|ψKS

λ (t)〉 =
(

−∇
2

2
+ vS

)

|ψKS
λ (t)〉. (3.4)

The density n0 solution of both the real and fictitious system is given by:

n(r, t) =

N
∑

λ=1

∣

∣ψKS
λ (r, t)

∣

∣

2
. (3.5)

4Definition (3.3) presents problems of causality violation since it is badly defined and lacks
of the ingredients necessary to construct orbital functionals and XC functionals with memory
[137]. E.g. neither the time-dependent Schrödinger equation can be recovered as stationary
point of this action when the constraint of n being V -representable is applied. The problem
can be overcome in the framework of Keldysh theory, declaring the variable t on the Keldysh
time-contour as proposed by van Leeuven in [137, 138].

5The Runge-Gross theorem has been demonstrated for v0(t) expandable around t0. Pre-
vious demonstrations required periodic v0(t) or static potentials with a small time-dependent
perturbation (as in the linear response theory). Later Runge-Gross theorem has been demon-
strated valid also for Laplace transformable switch-on potentials starting from the ground-
state. Nowadays people believe that the theorem has a more general validity, although there
is still no general proof.
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One should relate the effective potential vS to the action of the real system Av0
.

Adding and subtracting the kinetic term TS of the non interacting KS system
and the Hartree contribution AH (similar to what has been done for the DFT
energy functional of Eq. (2.11)) it is possible to decompose the action as:

Av0
[n] = TS [n] +AH [n] +A0[n] +AXC [n]. (3.6)

Here A0 indicates the part of the action integral generated by the external
potential v0, while all the unknown terms have been isolated in the exchange-
correlation action AXC defined as:

AXC [n] = T + U − TS −AH . (3.7)

In this way the variational principle applied to Av0
and AKS

6 (the action of
the fictitious KS system) at the density distribution n0(r, t) that is a stationary
point for both the actions, allows to obtain an expression for vS

vS(r, t, [n0]) = v0(r, t) + vH(r, t, [n0]) + vXC(r, t, [n0]) (3.8)

with the common Hartree potential (now for a time-dependent density) vH and
vXC defined as:

vH(r, t) =

∫

dr′
n(r′, t)

|r− r′| (3.9)

vXC(r, t) =

[

δAXC [n]

δn(r, t)

]

n0

. (3.10)

The set of equations (3.4) and (3.8) here defined is a coupled system. Starting
from an initial condition and an approximated expression for vXC the system
can be propagated substituting the new density n(r, t) of Eq. (3.5) into Eq. (3.8).
Again, the KS wave functions do not have a direct physical meaning and are
only used to construct the true density distribution of the system.

3.1.3 Exchange-Correlation Functional

The exchange-correlation potential vXC(r, t) is generally unknown and the in-
troduction of approximations becomes mandatory as in DFT. In TDDFT vXC

is much more complex than the ground state one: it is functional of the whole
history of the density n(r, t) between [t0, t1] as suggested by Eq. (3.3) and of
the initial conditions |Ψ0〉 and |ψKS

0 〉 for the interacting and non-interacting
systems7. The latter dependence means that it is possible to find more than
one initial wave function corresponding to an assigned n0. This would lead to
different vS for a given evolution. However, in the special case of non-degenerate
ground state starting condition, the initial wave functions are functionals of the
density only and the initial-state dependence disappears by virtue of the first

6For the non-interacting particle system AKS = TS+AS with AS the action corresponding
to the effective potential vS .

7Indeed the Hartree and external terms inside vS are local in time because of the nature of
the Coulomb interaction in the non-relativistic limit; the same kinetic term is instantaneous.
Therefore these quantities are regardless of the initial condition or the time-evolution of the
system, whose dependency is only contained in the vXC term.
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Hohenberg and Kohn theorem 2.1. This is the usual case for TDDFT applica-
tions.

The XC potential still remains a complex quantity, especially because of its
memory of the past configurations of the system up to t0, that makes it nonlocal
in time and difficult to treat. Several approximations have been introduced, as
the Adiabatic Local Density Approximation (ALDA) [130, 139]. It describes
vXC as a static kernel, local both in time and space (in analogy with LDA). The
exchange-correlation functional becomes hence a mere function of the density
at a fixed position and instant: vALDA

XC (r, t, [n]) = vLDA
XC (n(r, t)). Although it

did not obtain such good successes as its ground state counterpart, it is still
widely adopted. The independent particle, random phase and the alpha kernel
[130, 140] approximations used in this thesis will be presented more in detail
later. The original work of Runge and Gross has been further developed and
extended in the last years and for a complete discussion readers can refer to
[137].

3.2 Time-Dependent Density Response Theory

The theory of the linear and nonlinear response function can be applied to the
TDDFT in order to study the effects of a small perturbation on the system.
As previously stated n(r, t) represents the key quantity and all the physical
properties can be described in terms of the density, its variation and its response
functions. Here I present its derivation up to the second perturbative order and
its link with the KS independent-particles response function.

3.2.1 Response Functions

The behavior of a system under the influence of an external perturbation is
called its response. More accurately it can be defined as the change in the
expectation values of a certain operator of the system when a perturbation
is applied (e.g. the total magnetization as function of an external magnetic
field). Considering a small perturbation ϕ(t) to the unperturbed Hamiltonian
Ĥ0, within the interaction picture,8 one can formally expand an observable Â
in orders of the interaction:

Â(1)[ϕ] =Â(1)0 +

∫ t1

t0

d2
δÂ(1)

δϕ(2)
ϕ(2) +

1

2!

∫ t1

t0

∫ t2

t0

d2d3
δ2Â(1)

δϕ(2)δϕ(3)
ϕ(2)ϕ(3)

+ . . .

(3.11)

where, for simplicity, we have adopted the notation (r1, t1) ≡ (1) etc. Coeffi-

cients of this expansion are the ith order response functions of the system χ
(i)
A :

χ
(1)
A (1, 2) =

δÂ(1)

δϕ(2)
χ
(2)
A (1, 2, 3) =

δ2Â(1)

δϕ(2)δϕ(3)
. (3.12)

8The interaction picture is the most useful scheme in quantomechanics to study the evo-
lution of a system subjected to the switching on of an external perturbation. The total
Hamiltonian Ĥ is given by the unperturbed and the interacting ones: Ĥ = Ĥ0 + ĤI(t).

ĤI(t) = Ôϕ(t) depends on the particular coupling of the perturbation with the system (i.e.
the explicit expression of the force or the interaction) as obtained through the fluctuation-
dissipation theorem in Kubo’s response theory [69, 141, 142].
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These coefficients do not depend on the perturbing quantity in the limit ϕ→ 0
and correspond to the variation of the operator Â with respect to the pertur-
bation. For a physical system the causality condition holds and χA is function
of the time interval only and not of the absolute times:

χ
(1)
A (r1, t1, r2, t2) = χ

(1)
A (r1, r2, t1 − t2) t1 > t2, (3.13)

with the condition (t1 > t2). In the case of homogeneous systems also its spatial
dependence (r1, r2) becomes function of their distance |r1−r2|. Other properties
can be obtained for specific spatial symmetries or distributions, or depending
on the nature of the interaction (i.e. if it is local then χ becomes local too:

χ
(1)
A (r1, r2, t1 − t2) = χ

(1)
A (r2, t1 − t2)δ(r2 − r1)).

The applied perturbation ϕ usually does not coincide with the interacting
Hamiltonian ĤI and Eqs. (3.12) implies the derivation of a composite function
of the perturbation. Imagine this coupling is expressed through an operator ÔI

so that the Hamiltonian becomes:

Ĥ(t) = Ĥ0 + ĤI(t), with (3.14)

ĤI(t) = ÔI(t)ϕ(t) =

∫

dr ÔI(r, t)ϕ(r, t). (3.15)

As an example, in the particular case of the interaction with an external electric
potential φext ĤI is given by:

ĤI(t) =

∫

dr ρ̂(r, t)φext(r, t), with

ÔI(r, t) = ρ̂(r); ϕ(r, t) = φext(r, t).

(3.16)

It is then possible to derive a general form for χ
(i)
A depending only on the

coupling ÔI and the observable Â:

χ
(1)
AO(1, 2) = −iθ(t1 − t2)〈[Â(1), ÔI(2)]〉, (3.17)

χ
(2)
AOO(1, 2, 3) = −θ(t1 − t2)θ(t1 − t3)T 〈[[Â(1), ÔI(2)], ÔI(3)]〉, (3.18)

with T the time-ordered product of the operators. These expressions have been
obtained originally by Kubo for the linear response theory [69, 141] and later
generalized to higher orders [143].

3.2.2 TDDFT Linear Density Response Function

As a consequence of theorem 3.1, once solved Eq. (3.4), the true charge density
and any derived quantity can be obtained. In the experimental condition of a
system originally in its ground state to which is applied an external perturbing
field at time t0, the physical description can pass through the study of its density
in a DFT and TDDFT calculation. At time t < t0 the density n0 and the
KS wave functions |ψKS

λ (t0)〉 are uniquely determined within DFT, while the
evolution of the system can hence be followed in TDDFT.

Nevertheless, when the external field is small and can be considered as a per-
turbation to the initial Hamiltonian, it is not even necessary to solve Eq. (3.4).
Accordingly to Eq. (3.12) the response of the system becomes independent on
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the perturbation and can be derived directly from the ground-state expectation
values (by means of the fluctuation-dissipation theorem [69, 141]). In particular,
for the KS independent particles system χ can be easily evaluated leading to
an efficient formulation of the response (linear and nonlinear) in the TDDFT
framework. Let’s see the derivation for the linear case and its generalization to
the second order.

Let’s make the assumption of knowing the exact KS functional vS of Eq. (3.8).
Hence the density and its variation in time coincides with the exact variation
of the real system n(r, t). As a consequence the induced variation of the den-
sity at the first order is the same whether one derives it as function of the real
interacting potential or of the TD-KS one (see section 3.1.2 or [133]):

δn(1)(1) =

∫

d2 χ(1)(1, 2)δvext(2) (3.19)

=

∫

d2 χ
(1)
0 (1, 2)δvS(2), (3.20)

where

χ(1)(1, 2) =
δn(1)

δvext(2)
χ
(1)
0 (1, 2) =

δn(1)

δvS(2)
. (3.21)

It is then possible to establish a link between the full response function χ,9

that describes the reaction of the system to the perturbing field, and the non-
interacting KS response functions χ0. Since vS is derived as function of vext from
Eq. (3.8) one can apply the chain rule in the definition of the full polarizability
obtaining:

χ(1)(1, 2) =
δn(1)

δvext(2)
=

∫

d3
δn(1)

δvS(3)

δvS(3)

δvext(2)
=

∫

d3 χ
(1)
0 (1, 3)

δvS(3)

δvext(2)
.

(3.22)
Recalling Eq. (3.8) the derivative of the KS potential with respect to the external
perturbation can be further developed as

δvS(3)

δvext(2)
=
δ[vext(3) + vH(3) + vXC(3)]

δvext(2)

= δ(3, 2) +

∫

d4
δ[vH(3) + vXC(3)]

δn(4)

δn(4)

δvext(2)

= δ(3, 2) +

∫

d4 [v(3, 4) + fxc(3, 4)]χ
(1)(4, 2),

(3.23)

with v the Coulomb potential that corresponds to the functional derivative of
the Hartree potential vH . fxc is the exchange-correlation kernel defined as the
functional derivative of vXC :

fxc(1, 2) =
δvXC(1)

δn(2)
. (3.24)

Substituting Eq. (3.23) into Eq. (3.22) one finds the link between the interacting
and non-interacting response functions under the form of a Dyson equation:

χ(1)(1, 2) = χ
(1)
0 (1, 2) +

∫

d3d4 χ
(1)
0 (1, 3)[v(3, 4) + fxc(3, 4)]χ

(1)(4, 2), (3.25)

9Usually χ is called the full polarizability.
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or, in a simplified notation without indexes:

χ(1) = χ
(1)
0 + χ

(1)
0 (v + fxc)χ

(1). (3.26)

Equation (3.26) can be solved by inversion and is exact in the framework of
the linear response theory (i.e. under the assumption of small perturbing field).
Provided that vXC and hence fxc are known, the physical quantities of interest,
as the response function χ, can be obtained directly from χ0. Actually χ0 has a
formulation in terms of the ground state quantities only, as will be shown later.
All the influence of the many-body effects are contained into fxc.

The Exchange-Correlation Kernel

The importance of the kernel fxc is crucial since it contains all the informations
about the response and the screening internal to the medium. When the external
field perturbs the system, changes are induced in the internal quantities like
the Hartree potential vH and the exchange-correlation potential vXC . This
corresponds to the screening of the external potential δvext due to the interaction
between the electrons given by δvH + δvXC in Eq. (3.23). The Hartree term
accounts for their classical Coulomb interaction while the exchange-correlation
term depends on their quantum nature.

The Dyson equation (3.26) incorporates directly all these self-screening ef-
fects into χ so that it could describe directly the total response of the system
in terms of the external field only in Eq. (3.19). Therefore χ is much more
complex than the corresponding independent particle response χ0. This can
also be seen in their different dependence on the shape of the material or their
behavior for finite and infinite systems [144, 145]. It is immediate to notice
that, being fxc the functional derivative of vXC , it is in practice unknown and
suitable approximations should be found.

3.2.3 TDDFT Nonlinear Density Response Function

What has been obtained for the linear response can be further generalized to
higher orders [135]. Recalling Eq. (3.12) the second order interacting and non-
interacting density-susceptibilities χ(2) are defined as:

χ(2)(1, 2, 3) =
δ2n(1)

δvext(2)δvext(3)
=
δχ(1)(1, 2)

δvext(3)

χ
(2)
0 (1, 2, 3) =

δ2n(1)

δvS(2)δvS(3)
=
δχ

(1)
0 (1, 2)

δvS(3)
.

(3.27)

They can be interpreted as a perturbative variation of the first order responses,

once the first derivative has been identified with χ(1)/χ
(1)
0 respectively. Substi-

tuting the Dyson equation (3.25) into the first of Eqs. (3.27) and defining for
simplicity v(1, 2) + fxc(1, 2) ≡ fvxc(1, 2), one obtains:

χ(2)(1, 2, 3) =
δχ

(1)
0 (1, 2)

δvext(3)
+

∫

d4d5
δ[χ

(1)
0 (1, 4)fvxc(4, 5)χ

(1)(5, 2)]

δvext(3)
. (3.28)
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Retaining only the second-order variations it reduces to:

χ(2)(1, 2, 3) =
δχ

(1)
0 (1, 2)

δvext(3)
+

∫

d4d5
δχ

(1)
0 (1, 4)

δvext(3)
fvxc(4, 5)χ

(1)(5, 2)+

∫

d4d5 χ
(1)
0 (1, 4)

δfvxc(4, 5)

δvext(3)
χ(1)(5, 2)+

∫

d4d5 χ
(1)
0 (1, 4)fvxc(4, 5)

δχ(1)(5, 2)

δvext(3)
.

(3.29)

The functional derivative δfvxc

δvext
in the third term of the previous summation

can be reduced to the exchange-correlation part only of the kernel δfxc

δvext
since v

corresponds to the Coulomb potential and is independent by variations in vext.
This functional derivative can be further developed considering fxc function of
vext through the density as:

δfxc(4, 5)

δvext(3)
=

∫

d6
δfxc(4, 5)

δn(6)

δn(6)

δvext(3)
=

∫

d6 gxc(4, 5, 6)χ
(1)(6, 3), (3.30)

where gxc is the second functional derivative of the exchange-correlation poten-
tial vXC and contains the higher orders three-body interactions.

Again, we want to establish a relation between the interacting and non-
interacting second-order response functions. Introducing the chain rule (differ-
entiating with respect to vS), substituting Eqs. (3.23), (3.25) and considering

the definition of χ
(2)
0 (3.27) one achieves the final result (for a detailed derivation

refers to Appendix A.1):

χ(2)(1, 2, 3) =χ
(2)
0 (1, 2, 3) +

∫

d4d5 χ
(2)
0 (1, 4, 3)fvxc(4, 5)χ

(1)(5, 2)+

∫

d4d5 χ
(2)
0 (1, 2, 4)fvxc(4, 5)χ

(1)(5, 3)+

∫

d4d5d6d7 χ
(2)
0 (1, 5, 4)fvxc(5, 6)χ

(1)(6, 2)fvxc(4, 7)χ
(1)(7, 3)+

∫

d4d5d6 χ
(1)
0 (1, 4)gxc(4, 5, 6)χ

(1)(6, 3)χ(1)(5, 2)+

∫

d4d5 χ
(1)
0 (1, 4)fvxc(4, 5)χ

(2)(5, 2, 3).

(3.31)

This is a second-order Dyson equation. This equation has a more complex
structure than the linear one, reflecting the nature of the physical process that
involves electron transitions between three levels. Starting from the second-

order Kohn-Sham response χ
(2)
0 , that describes it neglecting any possible inter-

action among the electrons (the internal screening), the Hartree and exchange-
correlation interactions are added systematically by χ(1), that modulates the
independent particle response. This means that its is necessary to know the
linear solution in order to solve the second-order Dyson equation. The repeated
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occurrence of χ(1) indicates also that the underlying interaction is mainly of lin-
ear nature, i.e. it can be decomposed in successive two bands transitions. Only
the gxc kernel accounts for a real three-body interaction mixing together three
electronic states (this physical insight is more intuitive when the diagrammatic
representation of Feynman is adopted).

There is another way to write the previous equation expressing the interact-
ing solution χ(2) as function of the other quantities. It reveals useful for further
consideration on its physical meaning and properties. Collecting the terms con-
taining χ(2) on the left and rearranging all the others on the right hand side,
equation (3.31) can be rewritten in the final form:

∫

d5

[

δ(1, 5)−
∫

d4 χ
(1)
0 (1, 4)fvxc(4, 5)

]

χ(2)(5, 2, 3) =

∫

d4d5 χ
(2)
0 (1, 5, 4)

[

δ(2, 5) +

∫

d6 fvxc(5, 6)χ
(1)(6, 2)

]

·
[

δ(3, 4) +

∫

d7 fvxc(4, 7)χ
(1)(7, 2)

]

+

∫

d4d5 χ
(1)
0 (1, 4)gxc(4, 5, 6)χ

(1)(6, 3)χ(1)(5, 2),

(3.32)

or, using a compact notation as for the linear case, the expression can be sim-
plified as:

[

1̂− χ(1)
0 fvxc

]

χ(2) = χ
(2)
0

[

1̂ + fvxcχ
(1)
] [

1̂ + fvxcχ
(1)
]

+ χ
(1)
0 gxcχ

(1)χ(1).

(3.33)

The quantities [1̂−χ(1)
0 fvxc] and [1̂ + fvxcχ

(1)] can be expressed in terms of the
first order response functions only via the first order Dyson Eq.(3.26):

[

1̂− χ(1)
0 fvxc

]

= χ
(1)
0

[

χ(1)
]−1

(3.34)

[

1̂ + fvxcχ
(1)
]

=
[

χ
(1)
0

]−1

χ(1), (3.35)

Substituting Eq. (3.34) and (3.35) into (3.33) and multiplying by the inverse

term χ(1)[χ
(1)
0 ]−1 on the left side of both the members of the equation, we finally

achieve the solution:

χ(2) = χ(1)
[

χ
(1)
0

]−1

χ
(2)
0

[

χ
(1)
0

]−1

χ(1)
[

χ
(1)
0

]−1

χ(1) + χ(1)gxcχ
(1)χ(1). (3.36)

Alternatively, one can avoid inverse quantities and express all in terms of the
fvxc and gxc kernels:

χ(2) =
[

1̂ + χ(1)fvxc

]

χ
(2)
0

[

1̂ + fvxcχ
(1)
] [

1̂ + fvxcχ
(1)
]

+ χ(1)gxcχ
(1)χ(1),

(3.37)

where χ(1)[χ
(1)
0 ]−1 has been obtained from Eq. (3.35) multiplying for the correct

inverse functions:
[

1̂ + χ(1)fvxc

]

= χ(1)
[

χ
(1)
0

]−1

. (3.38)
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Insight in the Nonlinear Solution

Eq. (3.37) is useful because it allows to observe the role of the internal screening
on the second-order response. First lets introduce the dielectric function, defined
in the linear approximation as the correlation function between the total effective
potential and the external one:

vtot(1) =

∫

d2 ǫ−1(1, 2)vext(2), with ǫ−1(1, 2) =
δvtot
δvext

. (3.39)

The inverse dielectric function ǫ−1 acts as a screening for the external potential
and contains the many-body interaction of the material.

The total potential is given by the external perturbing one plus its inter-
action with the induced charge density displacement δn(1) = χ(1)δvext (from
the definition of the density response of Eq. (3.19)). The expression of the
latter interaction depends on the nature of the probe. If the probe can be con-
sidered as classical (e.g. an electromagnetic field described by photons) then
vtot = vext + vH . One has the so-called test-particle (TP) case:

ǫ−1
TP (1, 2) =

δvtot(1)

δvext(2)
= δ(1, 2) +

∫

d3
δvH(1)

δn(3)

δn(3)

δvext(2)

= δ(1, 2) +

∫

d3 v(1, 3)χ(1)(3, 2)

= 1 + vχ(1) (in the compact form).

(3.40)

Otherwise, if the probe is an electron, it can test also the screening of the
exchange-correlation interaction with the induced charge, described by the po-
tential vXC . Therefore the total potential vtot = vext + vH + vXC corresponds
to the definition of vS of Eq. (3.8). This is the case of the test-electron (TE)
probe:

ǫ−1
TE(1, 2) =

δvtot(1)

δvext(2)
=

δvS(1)

δvext(2)
(3.41)

that has already been calculated in Eq. (3.23):

ǫ−1
TE(1, 2) = δ(1, 2) +

∫

d3 [v(1, 3) + fxc]χ
(1)(3, 2)

= 1 + fvxcχ
(1) (in a compact form).

(3.42)

The screening function of the TE case is the one that occurs in the Dyson
equation (3.37) that hence can be rewritten as:

χ(2) =
[

ǫ−1
TE(2ω)

]T
χ
(2)
0 (2ω, ω, ω)ǫ−1

TE(ω)ǫ
−1
TE(ω)+

χ(1)(2ω)gxc(2ω, ω, ω)χ
(1)(ω)χ(1)(ω).

(3.43)

Inverting the definition in Eq. (3.41) so that δvS = ǫ−1
TEδvext, it becomes clear

that ǫ−1
TE transforms the external perturbing potential vext into the KS potential

vS . This is exactly the role of the two terms on the right side of χ
(2)
0 . Applying

an external field δvext is transformed by ǫ−1
TE into a KS field on which can act

the second-order independent particle susceptibility χ
(2)
0 .
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The transposed term [ǫ−1
TE ]

T as well as the gxc kernel come both from the

second-order derivative of δ2vS

δvextδvext
in the derivation of χ(2) and do not have any

counterpart in the linear response. They can be identified as the second-order
screening and the second-order three-body interaction of the process.



Chapter 4

Second Harmonic
Generation

The second harmonic generation process involves the absorption of two equal
photons and the emission of a third one with twice their energy due to energy
conservation. This mechanism is described by the polarization of the medium,
in particular by the second-order polarization when it is expanded through per-
turbation theory in term of the total electric field. It is possible to relate this
macroscopic polarization to the microscopic one. Once it has been established
that the long wavelength limit holds, the latter is derived from the nonlinear
density response of TDDFT seen in the previous chapter.

Since its formulation is obtained as a function of the KS response function
from the Dyson equation, we provide the derivation of the exact expression for
the independent particles KS susceptibility in a periodic system using Bloch
states and a plane wave basis.

4.1 Microscopic Derivation

In section 3.2, I have briefly introduced the response theory in a perturbative
approach and its derivation for the density response function in TDDFT. The
second harmonic process instead describes the interaction and the response of
the system to an external electromagnetic radiation. Formally it can be identi-
fied with the (macroscopic) polarization of the material PM . This polarization
can be expanded in term of the macroscopic total electric field E:

PM (1) = P
(1)
M (1) +P

(2)
M (1) +P

(3)
M (1) + . . .

= χ
(1)
M (1, 2)E(2) + χ

(2)
M (1, 2, 3)E(2)E(3) + χ

(3)
M (1, 2, 3, 4)E(2)E(3)E(4) + . . .

(4.1)

where χ
(i)
M are the optical responses being χ

(1)
M the linear term and the others

the nonlinear ones. χM is called the dielectric susceptibility of the material.
These response functions are characteristic of the observed system, therefore
they should be determined from its microscopic structure within a quantum-
mechanical approach.

45
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In the following I will show that it is possible, according to Ref. [146] and
[68], to determine the microscopic polarization up to the second order from the
induced current, establishing a relation between the dielectric susceptibility and
the TDDFT density response function.

Usually one wants to compare with spectroscopy experiments. A system in
its equilibrium many-body state |Ψ(t0)〉 is stimulated starting from a certain
instant t0 and its reaction is observed. Consequently one can think to describe
the system within perturbation theory, starting from an unperturbed Hamil-
tonian Ĥ0 and switching on at t = t0 the external field that couples with the
system through an interaction Hamiltonian ĤI :

Ĥ = Ĥ0 + ĤI(t). (4.2)

This approach can be simply described in the interaction picture, where the
wave functions and the operators are defined as:1

|Ψ(I)(t)〉 = eiH0t|Ψ(S)(t)〉, (4.3)

Ô
(I)
I = eiH0tÔ

(S)
I e−iH0t. (4.4)

and in particular

Ĥ
(I)
I = eiH0tĤ

(S)
I e−iH0t. (4.5)

The convenient point is that the evolution operator depends only on the known
eigenvalue and eigenfunctions of the unperturbed Hamiltonian, while the Schrödinger
equation and its solution become:

∂t|Ψ(I)(t)〉 = −iH(I)
I (t)|Ψ(I)(t)〉, (4.6)

|Ψ(I)(t)〉 = |Ψ(I)(t0)〉 − i
∫ t

t0

dt1 H
(I)
I (t1)|Ψ(I)(t1)〉. (4.7)

Substituting iteratively Eq. (4.7) into itself2 in the right hand side integral, one
obtains the solution expressed as summation of different orders of the interaction
ĤI . Retaining only terms up to the second order we have:3

|Ψ(t)〉 =|Ψ(t0)〉 − i
∫ t

t0

dt1 HI(t1)|Ψ(t0)〉

+

∫ t

t0

dt1

∫ t1

t0

dt2 HI(t1)HI(t2)|Ψ(t0)〉+Ø(3).

(4.8)

When one evaluates the expectation value of an operator Ô(t) (I will indi-
cate it with the simplified notation 〈Ô〉 = 〈Ψ(t)|Ô|Ψ(t)〉) adopting the solution
Eq. (4.8), also 〈Ô〉 is decomposed in different orders of the perturbation HI .
They can be collected and re-arranged through the Baker-Campbell-Hausdorff

1Here the superscript (I) and (S) stand respectively for the interaction and Schrödinger
pictures.

2Equation (4.7) is a Dyson Equation for |Ψ〉, where |Ψ(t0)〉 represents the unperturbed
solution.

3From now on the superscript label of the interaction picture (I) will be omitted.
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formula as [147]:

〈Ô(t)〉 =〈Ô(t0)〉+ δ〈Ô(t)〉(1) + δ〈Ô(t)〉(2) +Ø(3) =

=〈Ô(t0)〉 − i
∫ t

t0

dt1 〈Ψ(t0)|[Ô(t), ĤI(t1)]|Ψ(t0)〉

− i
∫ t

t0

dt1

∫ t1

t0

dt2 〈Ψ(t0)|[[Ô(t), ĤI(t1)], ĤI(t2)]|Ψ(t0)〉+Ø(3),

(4.9)

where the expression has been truncated at the second order.
Starting from this general result one can obtain the dielectric susceptibility

and the polarization that arise when the system interacts with a perturbing
electromagnetic field described by its scalar and vector potentials (φP ,AP ). In
this particular case Ĥ takes the form:4

Ĥ(t) = Ĥ0

(

ĵ− 1

c
ρ(r, t)AP (r, t)

)

+

∫

dr ρ(r, t)φP (r, t), (4.10)

where Ĥ0, which is function of the current-density Ĥ0(j) in the unperturbed
case, now becomes function of j − 1

cρ(r, t)A
P (r, t). Whereas, the free current-

density ĵ and the density ρ̂ of Eq. (4.10) are defined as:

ĵ(r) =
1

2
[Ψ∗∇Ψ−Ψ∇Ψ∗] (4.11)

ρ̂(r) = |Ψ(r)|2 (4.12)

The free current-density j(r, t) has been substituted with the total current-
density jtot(r, t) (the additional induced term originates from the interaction of
the electronic charge ρ̂5 in the presence of the vector potential AP ):6

ĵtot = ĵ− 1

c
ρ(r, t)AP (r, t). (4.13)

At the same time the electronic charge of the system in the presence of the
electric potential φP gives rise to the last term of Eq. (4.10). Working on this
equation it is then possible to isolate the interaction terms of the Hamiltonian
HI (I define for simplicity ÃP = 1

cA
P ):

ĤI(t) = −
∫

dr ĵ(r)ÃP (r, t) +

∫

dr ρ̂(r)φP (r, t) +
1

2

∫

dr ρ̂(r)
[

ÃP (r, t)
]2

.

(4.14)
Eq. (4.14) can be collected accordingly to the perturbative order into linear and
second-order terms:

Ĥ
(1)
I (t) = −

∫

dr ĵ(r)ÃP (r, t) +

∫

dr ρ̂(r)φP (r, t),

Ĥ
(2)
I (t) =

1

2

∫

dr ρ̂(r)
[

ÃP (r, t)
]2

.

(4.15)

4I am always considering atomic units e = me = ~ = 1.
5From now on the density operator will be identified as ρ̂ and its expectation value will

be 〈ρ̂〉 = 〈Ψ|ρ̂|Ψ〉 instead of n. Indeed in the following n̂ could be confused with the operator
number that gives the occupation numbers of an electronic state and n with the band index
when the explicit expression of the KS response function is derived.

6This derives from the substitution of the free linear momentum of the electronic system
with the additional term arising from the perturbing field: p̂ → p̂ − 1

c

∫

dr ρ(r, t)AP (r, t).
The current-density is its local form.
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One can now use the results of Eq. (4.9) to obtain the corrections at each
order in (φP ,AP ) given a certain operator Â. From Maxwell equations the
microscopic polarization of the medium, the quantity of interest, is defined as:

ĵtot(r, t) =
∂

∂t
P(r, t), (4.16)

that in frequency-space domain becomes:

ĵtot(r, ω) = −iωP(r, ω). (4.17)

It is then possible to establish a direct link among the linear (and nonlinear)
optical response of the system P(i) and its microscopic current-density response
functions at every order.

4.1.1 Current-Density Derivation

The total current-density because of Eq. (4.17) becomes the key quantity of the
microscopic SHG process. It can be evaluated accordingly to Eq. (4.9) choosing

Ô = ĵtot and substituting Eq. (4.14) into Eq. (4.9):

〈̂jtot(r, t)〉 =〈̂jtot(r, t0)〉 − i
∫ t

t0

dt1 〈[̂jtot(r, t), ĤI(t1)]〉

−
∫ t

t0

dt1

∫ t1

t0

dt2 〈[[̂jtot(r, t), ĤI(t1)], ĤI(t2)]〉+ . . . .

(4.18)

The first order correction of the total current δ〈̂jtot〉(1) in a simplified notation
is:

δ〈̂jtot(1)〉(1) = −〈ρ̂(1)〉ÃP (1)− i
∫ t1

t0

dt2 〈
[

ĵ(1), Ĥ
(1)
I (2)

]

〉, (4.19)

where the first term comes from the zero-order (since the perturbation is already

present in the definition of ĵtot) and the other from the first order interaction.

Further developing the terms substituting Ĥ
(1)
I of Eq. (4.15) one gets:7

δ〈̂jtot(1)〉(1) =− 〈ρ̂(1)〉ÃP (1) + i

∫

dr2

∫ t1

t0

dt2 〈
[

ĵ(1), ĵ(2)
]

〉ÃP (2)

− i
∫

dr2

∫ t1

t0

dt2 〈
[

ĵ(1), ρ̂(2)
]

〉φP (2).
(4.20)

These terms can be identified according to Eqs. (3.11) and (3.12) as the first
order response functions of the system. In order to find an expression that is
consistent with our definition of Eq. (3.17), let’s introduce the step function

(
∫ t1
t0
dt2 =

∫∞
t0
dt2 θ(t1 − t2)):

δ〈̂jtot(1)〉(1) =− 〈ρ̂(1)〉ÃP (1) + i

∫

dr2

∫ ∞

t0

dt2 θ(t1 − t2)〈
[

ĵ(1), ĵ(2)
]

〉ÃP (2)

− i
∫

dr2

∫ ∞

t0

dt2 θ(t1 − t2)〈
[

ĵ(1), ρ̂(2)
]

〉φP (2).

(4.21)

7Since I have adopted the simplified notation (r1, t1) = (1) I represent the integrals
∫∫

dr1dt1 as
∫

d1, making explicit the extremes if necessary. When the integration is per-
formed upon only one of the variables r or t, I will use

∫

dr1 or alternatively
∫

dt1.
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It is now immediate to identify the response functions χ
(1)
jj and χ

(1)
jρ in the form

of Eq. (3.17):

δ〈̂jtot(1)〉(1) =− 〈ρ̂(1)〉ÃP (1)−
∫

dr2

∫ ∞

t0

dt2 χ
(1)
jj (1, 2)ÃP (2)

+

∫

dr2

∫ ∞

t0

dt2 χ
(1)
jρ (1, 2)φP (2).

(4.22)

Time-Fourier transforming these quantities in the frequency space (choosing the
arbitrary variable t0 = −∞, see App. B for the conventions adopted for Fourier
transforms) it takes the form:

δ〈̂jtot(r1, ω)〉(1) =− 〈ρ̂(r1)〉ÃP (r1, ω)−
∫

dr2 χ
(1)
jj (r1, r2, ω)Ã

P (r2, ω)

+

∫

dr2 χ
(1)
jρ (r1, r2, ω)φ

P (r2, ω).

(4.23)

This expression can be further modified using gauge invariance (see [146] and
appendix D for the complete derivation) and one gets:

δ〈̂jtot(r1, ω)〉(1) =
i

ω
〈ρ̂(r1)〉EP (r1, ω) +

i

ω

∫

dr2 χ
(1)
jj (r1, r2, ω)E

P (r2, ω),

(4.24)

where the electric perturbing field EP determined by the external potentials
(φP ,AP ) is defined as:

EP (r, t) = −∇φP (r, t)− 1

c

∂

∂t
AP (r, t)

EP (r, ω) = −∇rφ
P (r, ω) +

iω

c
AP (r, ω).

(4.25)

Defining the quasi-susceptibility8 α̃(1) as:

α̃(1)(r1, r2, ω) ≡
1

ω2
[−χjj(r1, r2, ω)− 〈ρ̂(r2)〉δ(r1 − r2)] , (4.26)

Eq. (4.24) can be rewritten as:

δ〈̂jtot(r1, ω)〉(1) = −iω
∫

dr2 α̃
(1)(r1, r2, ω)E

P (r2, ω), (4.27)

The linear correction to the polarization P(1) is then given in real and re-
ciprocal space by:9

P(1)(r1, ω) =

∫

dr2 α̃
(1)(r1, r2, ω)E

P (r2, ω), (4.28)

P(1)(q1 +G1, ω) =
∑

G2

α̃(1)(q1 +G1,q1 +G2, ω)E
P (q1 +G2, ω). (4.29)

8It is called quasi-susceptibility or quasi-polarizability because it is related to the perturbing
field EP . The polarizability is the one related to the total field E.

9For the reciprocal space the expression is obtained through a Fourier transform over the
spatial variable r considering a periodic medium. This is the case of crystal lattices but the
assumption can be extended also to non periodic systems as presented in section 2.5.1, where
constructing a supercell allows to impose boundary conditions for the usage of a plane waves
basis set.
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The same calculation can be performed for the second-order current-density
(which is linked to P(2)). Collecting all the second-order terms of Eq. (4.18)
and recognizing the response functions of Eq. (3.18), one obtains the final form:

δ〈̂jtot(1)〉(2) = −
1

2

∫

d2 χ
(1)
jρ (1, 2)

[

ÃP (2)
]2

+

∫

d2
[

χ
(1)
ρj (1, 2)Ã

P (1)ÃP (2)− χ(1)
ρρ (1, 2)Ã

P (1)φP (2)
]

+
1

2

∫∫

d2d3
[

χ
(2)
jjj (1, 2, 3)Ã

P (2)ÃP (3) + χ
(2)
jρρ(1, 2, 3)φ

P (2)φP (3)
]

− 1

2

∫∫

d2d3
[

χ
(2)
jjρ(1, 2, 3)Ã

P (2)φP (3) + χ
(2)
jρj(1, 2, 3)φ

P (2)ÃP (3)
]

.

(4.30)

Using the same kind of argument, through gauge invariance relations (see
Appendix D for a complete derivation) one gets:

δ〈̂jtot(r, ω1)〉(2) = −
∫∫

dr2dr3

∫∫

dω2dω3 δ(ω1 − ω2 − ω3)

1

ω2ω3
EP (r2, ω2)E

P (r3, ω3)

[

−1

2
χ
(2)
jjj (r1, r2, r3, ω2, ω3)−

χ
(1)
ρj (r1, r2, ω2)δ(r1 − r3)−

1

2
χ
(1)
jρ (r1, r2, ω2 + ω3)δ(r2 − r3)

]

.

(4.31)

Now one has a direct link between P(2) and EP , that can be expressed
through the second-order quasi-susceptibility α̃(2) as:

P(2)(r1, ω1) =

∫∫

dr2dr3

∫∫

dω2dω3 δ(ω1 − ω2 − ω3)

α̃(2)(r1, r2, r3, ω2, ω3)E
P (r2, ω2)E

P (r3, ω3)

(4.32)

where α̃(2) has been defined from Eq. (4.31) as

α̃(2)(r1, r2, r3, ω2, ω3) = −
i

ω2ω3(ω2 + ω3)

[

1

2
χ
(2)
jjj (r1, r2, r3, ω2, ω3)+

+χ
(1)
ρj (r1, r2, ω2)δ(r1 − r3) +

1

2
χ
(1)
jρ (r1, r2, ω2 + ω3)δ(r2 − r3)

]

.

(4.33)

In the momentum space Eq. (4.32) becomes:

P(2)(q1 +G1, ω1) =
∑

q2G2

∑

G3

∫

dω2 α̃
(2)(q1 +G1,q2 +G2,q1 − q2 +G3, ω2, ω1 − ω2)

EP (q2 +G2, ω2)E
P (q1 − q2 +G3, ω1 − ω2).

(4.34)

4.2 Longitudinal Perturbation

As I have shown in the previous derivations, the current-density variation al-
lows to get the complete knowledge of the polarization of a medium at each
perturbative order. Although it exists an ab-initio formalism that describes the
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system in terms of the current, the Time Dependent Current-Density Functional
Theory (TDCDFT), so far it has proved to be premature for practical appli-
cation on ab-initio optical calculations. TDCDFT indeed, has not yet reached
a level of development comparable to the TDDFT. Calculation methods and
algorithms are still improving and, more important, the development of approx-
imated forms for the fxc kernel that goes beyond the LDA nowadays represents
an open task. Because of these reasons, one may want to rely on well established
TDDFT, which demonstrated to be efficient especially treating an perturbing
field in a perturbative approach (see section 3.2).

In this perspective it is possible to pass from the current-density to the
density through the continuity equation

∇rĵ(r, t) = ∂tρ̂(r, t), (4.35)

that shows a correlation between the two quantities. This differential equation
takes a useful linear expression in the space of frequencies and reciprocal vectors:

q · ĵ(q, ω) = iωρ̂(q, ω) (4.36)

that holds at each order:

q · δ〈̂j(q, ω)〉(i) = iωδ〈ρ̂(q, ω)〉(i). (4.37)

This equation establish a direct link between the density ρ̂ and the current ĵ.
More precisely, it is the longitudinal component of the induced current q · ĵ that
is proportional to the density. It is a general condition and shows how TDDFT
and theories that describe the system in terms of the density only cannot man-
age in principle transverse electromagnetic perturbations. However, under the
constraint that the perturbing field is longitudinal this correspondence permits
to describe the longitudinal component of ĵ and hence P in terms of the density
response functions only. It represents a good approximation for SHG even if the
external electromagnetic field is not longitudinal, since for optical excitations
in the visible range, one can assume that the system undergoes only vertical
transitions q = 0.10 This can be easily seen in the real space considering that
the typical wavelength λ of a photon in the visible range is around 103− 104 Å.
Hence the long wavelength limit (λ → ∞) with respect to the characteristic
dimension of the system (i.e., the lattice parameter) holds and the field is seen
by the system as constant. Therefore it can be locally approximated as uniform.
In this case it does not have any meaning distinguishing between longitudinal
and transverse perturbations [148], since |q| ≃ 0 and no propagation direction is
defined. The problem can therefore be treated in the hypothesis of longitudinal
field without loss of generality. However, q̂ will describe the polarization of the
electromagnetic field that is still defined. Under this assumption TDDFT can
be applied rigorously to every perturbation. From now on I will always consider
the limit q→ 0 in all the demonstrations and calculations.

4.2.1 Density Derivation

Because of the continuity equation the important quantities are now the linear
and nonlinear response functions of the density, that can be obtained with an

10Photons are massless particles. Their wavenumber k is proportional to the frequency
k = 2π

λ
and for frequency around the visible range the exchanged vector with the system is

k ∼ 10−3 Å −1 and can be neglected.
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approach similar to that used for the current. The first order density correction
δ〈ρ̂tot(1)〉(1) derived developing Eq. (4.9) is:

δ〈ρ̂tot(1)〉(1) = −
∫

d2 χ
(1)
ρj (1, 2)Ã

P (2) +

∫

d2 χ(1)
ρρ (1, 2)φ

P (2). (4.38)

With the same kind of calculation as for the current, expressing δ〈ρ̂tot(1)〉(1) as
function of the electric field EP in the frequencies and reciprocal spaces one has
[146]:

δ〈ρ̂tot(r1, ω)〉(1) =
i

ω

∫

dr2 χ
(1)
ρj (r1, r2, ω)E

P (r2, ω),

δ〈ρ̂tot(q1 +G1, ω)〉(1) =
i

ω

∑

G2

χ
(1)
ρj (q1 +G1,q1 +G2, ω)E

P (q1 +G2, ω).

(4.39)

In the case of the density it is interesting to notice that for neutral exci-
tations, e.g. the absorption of one or more photon without emission of any
electron (this is the case we are interested in), the total charge is conserved.
Therefore, the overall variation of the density

∫

drδ〈ρ(r)〉 has to be zero for
each perturbative order, in particular from Eq. (4.39):

∫

dr1 δ〈ρ̂tot(r1, ω)〉(1) =
∫

dr1

∫

dr2 χ
(1)
ρj (r1, r2, ω)E

P (r2, ω) = 0 (4.40)

Because this holds in general, independently on the applied perturbation EP

acting in a generic point r2, it means that the other term should be identically
zero:

∫

dr1 χ
(1)
ρj (r1, r2, ω) = 0 ∀r2

χ
(1)
ρj (0,G2, ω) = 0 ∀G2.

(4.41)

The last equation shows that χ
(1)
ρj vanish because of charge conservation in

neutral excitations.
The second-order density correction instead reads:

δ〈ρ̂tot(1)〉(2) = −
1

2

∫

d2 χ(1)
ρρ (1, 2)[Ã

P (2)]2

+
1

2

∫∫

d2d3
[

χ
(1)
ρjj(1, 2, 3)Ã

P (2)ÃP (3)− χ(1)
ρjρ(1, 2, 3)Ã

P (2)φP (3)
]

+
1

2

∫∫

d2d3
[

χ(2)
ρρρ(1, 2, 3)φ

P (2)φP (3)− χ(1)
ρρj(1, 2, 3)φ

P (3)ÃP (2)
]

.

(4.42)

Using gauge invariance and expressing δ〈ρ̂tot〉(2) as function of EP , Eq. (4.42)
can be rewritten in a form that will be useful in the following (see App. D.3):

δ〈ρ̂tot(1)〉(2) =
1

2

∫

d2d3 χ(2)
ρρρ(q1,q2,q3, ω2, ω3)

i|EP |(q2, ω2)

|q2|
i|EP |(q3, ω3)

|q3|
.

(4.43)

The last equation holds in general because of gauge invariance.
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4.2.2 Optical Limit Considerations

As explained above, for SHG the long wavelength limit constitutes a good ap-
proximation. Its consequences can be further developed. Taking q → 0 the
linear response χjρ vanishes,11 whereas χρj is zero because of charge conserva-
tion in neutral excitations. Then the quasi-susceptibilities of Eqs. (4.26), (4.33)

depend only on the response functions χ
(1)
jj and χ

(2)
jjj that can be derived from the

density ones, achieved via the TDDFT description of the system (see Eqs. (3.26)
and (3.33)). In particular from the continuity equation [149, 150] one has:

q1 · χ(1)
jj (q1,q2, ω) · q2 = −ω2χ(1)

ρρ (q1,q2, ω) (4.44)

χ
(1)LL
jj (q,q, ω) = −ω

2

q2
χ(1)
ρρ (q,q, ω) (4.45)

Where the superscript (L) stands for the longitudinal component (here is double,
both in the perturbation and the response). At the second order instead it
becomes (see Appendix D.3 for a complete derivation):

χ
(2)LLL
jjj (q,q,q, 2ω, ω) = −iω

3

q3
χ(2)
ρρρ(q,q,q, 2ω, ω). (4.46)

A problem still exists connected with the limit q→ 0 of the latter response
function when inserted into the quasi-susceptibilities, which is vanishing and
should be handled in a perturbative approach. However in the following section
I will suppose the limits exists, handling this problem in a second time.

4.3 Response Function Derivation

Now, all the required knowledge for the determination of the polarization in
terms of the response functions depend on the possibility of having an explicit
form for Eqs. (3.17) and (3.18). These quantities have been expressed as function
of the real wave functions and energies in the interaction picture. For an easier
physical understanding I divide Ô, the coupling of the field with the system in
Eqs. (3.17) and (3.18), into its components ρ̂ and ĵ that couples with ϕP and
AP respectively (see Eq. (4.14)). I derive then an explicit form of the linear
and second-order response functions considering two general operators B̂ and Ĉ,
that can be identified at the occurrence with the particular interaction terms (ρ̂,

ĵ) that are involved. As an example, the linear case Eq. (3.17) can be rewritten
as:

χ
(1)
AB(1, 2) = −iθ(t1 − t2)

(

〈Â(I)(1)B̂(I)(2)〉 − 〈B̂(I)(2)Â(I)(1)〉
)

. (4.47)

11χjρ is obtained from gauge invariance calculation and vanish in the long wavelength limit.
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Developing the two formula (the linear and nonlinear case) and translating them
into the frequency domain one obtains the following results:12

χ
(1)
AB(r1, r2, ω) = lim

η→0+

∑

n

(

〈Ψ0|Â(S)(1)|Ψn〉〈Ψn|B̂(S)(2)|Ψ0〉
ω − (En − E0) + iη

−

−〈Ψ0|B̂(S)(2)|Ψn〉〈Ψn|Â(S)(1)|Ψ0〉
ω + (En − E0) + iη

) (4.48)

or in a simplified notation where 〈Ψi|Â(S)(1)|Ψj〉 = Aij(1):

χ
(1)
AB(r1, r2, ω) = lim

η→0+

∑

n

(

A0n(1)Bn0(2)

ω − (En − E0) + iη
− B0n(1)An0(2)

ω + (En − E0) + iη

)

.

(4.49)
The second-order term instead becomes:13

χ
(2)
ABC(r1, r2, r3, ω1, ω2, ω3) = lim

η→0+

∑

nm

δ(ω1 − ω2 − ω3)

(

A0n(1)Bnm(2)Cm0(3)

(E0 − Em + ω3 + iη)(E0 − En + ω2 + ω3 + 2iη

− B0n(1)Anm(2)Cm0(3)

(E0 − Em + ω3 + iη)(En − Em + ω2 + ω3 + 2iη

+
C0n(1)Anm(2)Bm0(3)

(En − E0 + ω3 + iη)(En − Em + ω2 + ω3 + 2iη

− C0n(1)Bnm(2)Am0(3)

(En − E0 + ω3 + iη)(Em − E0 + ω2 + ω3 + 2iη

)

+(2↔ 3) .

(4.50)

One can immediately notice that there are only two independent frequencies.
ω1, the one of the response, is given by the summation of the two perturbations
ω2 and ω3. This process, called frequencies summation, in the particular case
of ω1 = ω2 reduces to the second harmonic generation. While the first needs
two different electromagnetic fields, the latter can take place in the presence of
a single external perturbation. At the linear order the frequency is unique ω
and there is no possibility of frequency composition. Frequency modification
are always related to nonlinear effects.

4.3.1 TDDFT plane waves Independent Particle Deriva-
tion

Forms (4.49) and (4.50) are useful only once the real wave functions and energies
are known. As discussed in chapters 2 and 3, this is not the case and one has
to rely on the response functions of the independent KS system. In a second
time the linear and nonlinear total response can be deduced solving the Dyson
equations (3.26) and (3.33), as achieved in the TDDFT-response theory.

12In the following the operators Â, B̂ and Ĉ are in the Schrödinger picture, that correspond
to the same operators in the interaction picture at t = t0.

13The last term (2 ↔ 3) means that the previous terms should be considered in the addition
also with the indexes (2) and (3) swapped.
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The independent response functions are obtained in second quantization
starting from the previous results. For the linear expression it becomes:

χ
(1)
0 AB(r1, r2, ω) =

∑

i,j

(fi − fj)
〈ψi(r1)|â(r1)|ψj(r1)〉〈ψj(r2)|b̂(r2)|ψi(r2)〉

(ǫi − ǫj + ω + iη)

(4.51)

with the lower-case letters â, b̂ and ĉ (in the following equation) that indicates
the corresponding single particle operators used to express Â, B̂ and Ĉ in second
quantization.14

For the second-order response instead one has:

χ
(2)
0 ABC(r1, r2, r3, ω2 + ω3, ω2, ω3) =

∑

i,j,k

〈ψi(r1)|â(r1)|ψj(r1)〉
(ǫi − ǫj + ω1 + ω2 + 2iη)

[

(fi − fk)
〈ψj(r2)|b̂(r2)|ψk(r2)〉〈ψk(r3)|ĉ(r3)|ψi(r3)〉

(ǫi − ǫk + ω3 + iη)
+

(fj − fk)
〈ψj(r3)|ĉ(r3)|ψk(r3)〉〈ψk(r2)|b̂(r2)|ψi(r2)〉

(ǫk − ǫj + ω3 + iη)
+

(2↔ 3)] .

(4.52)

The derivation is general and holds for the eigenfunctions and eigenenergies
ψi, ǫi of a single particle basis (i.e., an independent particle system). In the
particular case of interest, they represents the KS wave functions and energies
ψKS
λ , ǫKS

λ . If Â = B̂ = Ĉ = ρ̂ Eqs. (4.51) and (4.52) correspond to the responses

of the independent particles KS system χ
(1)
0 , χ

(2)
0 of Eqs. (3.21), (3.27).

Substituting to â, b̂, ĉ the density single particle operator (i.e., â(r1) = δ(r1−
r)) and developing the two formula Eqs. (4.51), (4.52) in the basis of Bloch’s
states, the two independent particles susceptibilities take the expressions:

χ
(1)
0 ρρ(r1, r2, ω) =

∑

i,j

(fi − fj)
ψ∗
i (r1)ψj(r1)ψ

∗
j (r2)ψi(r2)

(ǫi − ǫj + ω + iη)
(4.53)

χ
(2)
0 ρρρ(r1, r2, r3, ω2 + ω3, ω2, ω3) =

∑

i,j,k

ψ∗
i (r1)ψj(r1)

(ǫi − ǫj + ω2 + ω3 + 2iη)

[

(fi − fk)
ψ∗
j (r2)ψk(r2)ψ

∗
k(r3)ψi(r3)

(ǫi − ǫk + ω3 + iη)
+

(fi − fk)
ψ∗
j (r3)ψk(r3)ψ

∗
k(r2)ψi(r2)

(ǫi − ǫk + ω2 + iη)
+

(fj − fk)
ψ∗
j (r3)ψk(r3)ψ

∗
k(r2)ψi(r2)

(ǫk − ǫj + ω3 + iη)
+

(fj − fk)
ψ∗
j (r2)ψk(r2)ψ

∗
k(r3)ψi(r3)

(ǫk − ǫj + ω2 + iη)

]

.

(4.54)

14In second quantization the single particle operator Â is expressed as Â =
∫

dr ψ†(r)â(r)ψ(r) where ψ†, ψ are the field operators that create or annihilate a particle
in r. In the particular case of the density â(r1) = δ(r1 − r) and

〈ψi(r1)|â(r1)|ψj(r1)〉 =

∫

dr ψ∗
i (r1)δ(r1 − r)ψj(r1) = ψ∗

i (r1)ψj(r1).
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At the same time one has (with p̂ = −i∇ the linear momentum operator):

χ
(1)
0 ρj(r1, r2, ω) =

∑

i,j

(fi − fj)
ψ∗
i (r1)ψj(r1)ψ

∗
j (r2)p̂ψi(r2)

(ǫi − ǫj + ω + iη)
(4.55)

So far the equations have been expressed for two incoming fields of frequency
ω2 and ω3 with the general constraint that the second-order response has the
frequency component ω1 = ω2 + ω3. The same holds in reciprocal space: q1 =
q2+q3. It is a general condition valid for the sum frequencies generation process.
However now I want to restrict to the SHG case defined by ω2 = ω3. From now
on I will pose them equal to ω. Due to all these relations that subsist among
the variables I will also use a shorter notation for the susceptibility:

χ
(2)
0 ρρρ(q2+q3+G1,q2+G2,q3+G3, ω2+ω3, ω2, ω3)→ χ

(2)
0 G1G2G3

(q2,q3, ω).

The KS response functions are then obtained using the KS basis ψi = ψKS
λ ,

ǫi = ǫKS
λ , and expressing them on the Bloch states |ψkn〉 of Eq. (2.32) the final

form for SHG reads:

χ
(2)
0 G1G2G3

(q2,q3, ω) =
2

V

∑

n,n′,n′′,k

〈ψn′k|e−i(q2+q3+G1)r1 |ψnk〉
ǫnk − ǫn′k+q2+q3

+ 2ω + 2iη
{[

〈ψn′k+q2+q3
|ei(q3+G3)r2 |ψn′′k+q2

〉〈ψn′′k+q2
|ei(q2+G2)r3 |ψnk〉

]

·
[

(fnk − fn′′k+q2
)

ǫnk − ǫn′′k+q2
+ ω + iη

+
(fn′k+q2+q3

− fn′′k+q2
)

ǫn′′k+q2
− ǫn′k+q2+q3

+ ω + iη

]

+

[

〈ψn′k+q2+q3
|ei(q2+G2)r2 |ψn′′k+q3

〉〈ψn′′k+q3
|ei(q3+G3)r3 |ψnk〉

]

·
[

(fnk − fn′′k+q3
)

ǫnk − ǫn′′k+q3
+ ω + iη

+
(fn′k+q2+q3

− fn′′k+q3
)

ǫn′′k+q3
− ǫn′k+q2+q3

+ ω + iη

]}

.

(4.56)

As stated before, it is not immediate to obtain the limit q → 0 since χ
(2)
0

vanishes. As a consequence one cannot substitute directly q = 0 but has to ex-
pand the Bloch functions in q using perturbation theory up to the second order
both for the energies and the wave functions (I am considering semiconductors
and insulators for which fn,k+q = fn,k and is k-independent).15

4.3.2 Optical Limit through Perturbation Theory

|ψnk〉 is solution of the Bloch Hamiltonian [151]:

Ĥk|ψnk〉 =
[

−1

2
∇2 + Vnl

]

|ψnk〉 = ǫnk|ψnk〉 (4.57)

with Vnl a generic nonlocal periodic lattice potential, that can be identified
with the total potential Vext or the ionic pseudopotential. Decomposing the

15This corresponds considering all the terms in χ
(2)
0 = that are proportional to |q|3,

the higher non-vanishing order. Indeed because of equation (4.46) and the finite limit for

χ
(2)LLL

jjj
(q → 0), once one expands χ

(2)
0 in powers of q the terms up to |q|2 must vanish

and the one proportional to |q|3 is the only one that remains in Eq. (4.46) when the limit is
performed.
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wave functions on the Bloch states of Eq. (2.32), the periodic term |unk〉 is
solution of the equation:16

hk|unk〉
[

1

2
k2 − ik∇− 1

2
∇2 + e−ikrVnle

ikr

]

|unk〉 = ǫnk|unk〉. (4.58)

Accordingly to Eq. (4.56), the Bloch functions and energies depends on the
linear momentum k + q. The periodic part of |ψk+qn〉, |unk+q〉, becomes the
solution of the corresponding Hamiltonian hk+q:

hk+q|unk+q〉 = ǫnk+q|unk+q〉 (4.59)

hk+q =

[

1

2
(k+ q)2 − i(k+ q)∇− 1

2
∇2 + e−i(k+q)rVnle

i(k+q)r

]

.

(4.60)

It is possible to identify Eq. (4.59) with Eq. (4.58) where the variable k is
substituted with k → k + q. In the long wavelength limit q → 0 one can
think hk+q and its eigenvalues/eigenvectors being the perturbed Hamiltonian
of the unperturbed hk.

17. Rearranging the terms of Eq. (4.59) according to
their respective order of q, the perturbation Hamiltonian can be written as
hk+q = hk + h1,k + h2,k +Ø(3), with:

h1,k = kq− iq∇+
[

e−ikrVnle
ikr, iqr

]

, (4.61)

h2,k =
1

2
q2 + qre−ikrVnle

ikrqr− 1

2
(qr)2e−ikrVnle

ikr−

− 1

2
e−ikrVnle

ikr(qr)2.

(4.62)

These perturbations and the relative corrections to the eigenstates |unk〉 can
be obtained also for the complete wave functions |ψnk〉. Indeed, considering
Hk+q = Hk +H1,k +H2,k +Ø(3) one has:

h1,k|unk〉 = e−ikrH1,k|ψnk〉
h2,k|unk〉 = e−ikrH2,k|ψnk〉,

(4.63)

that gives

H1,k =− iq∇+ [Vnl, iqr] = iq [Hk, r]

=qv
(4.64)

H2,k =
1

2
q2 + qrVnlqr−

1

2
(qr)2Vnl −

1

2
Vnl(qr)

2

=
1

2
q2 +

1

2
[qr, [Vnl,qr]]

=− i

2
[qr,qv] ,

(4.65)

where the velocity operator v is given by v = q+ i [Vnl, r]. One can notice that
Vnl enters through its commutator with the position operator r. Therefore only

16It is obtained developing the Hamiltonian for the full Bloch states eikr|unk〉 and then
dividing by the exponential term eikr. It results that hk = e−ikrHk.

17Here the perturbation is identified with the exchanged linear momentum q.
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its nonlocal part, that does not commute, contributes to these Hamiltonians.
H1,k and H2,k allow to obtain the energy and wave functions corrections within
Time-Independent Perturbation Theory.

The energy corrections (see Appendix C for a complete derivation) developed
up to the second order become:

ǫ
(1)
nk = 〈ψnk|H1,k|ψnk〉

= 〈ψnk|qv|ψnk〉
(4.66)

ǫ
(2)
nk =

∑

m/∈Dn

|〈ψmk|H1,k|ψnk〉|2
ǫnk − ǫmk

+ 〈ψnk|H2,k|ψnk〉

=
∑

m/∈Dn

|〈ψmk|qv|ψnk〉|2
ǫnk − ǫmk

− i

2
〈ψnk| [qr,qv] |ψnk〉,

(4.67)

with ǫnk+q = ǫnk + ǫ
(1)
nk + ǫ

(2)
nk +Ø(3). The wave functions instead are given by:

|ψ(1)
nk 〉 =

∑

m/∈Dn

〈ψmk|H1,k|ψnk〉
ǫnk − ǫmk

|ψmk〉

=
∑

m/∈Dn

〈ψmk|qv|ψnk〉
ǫnk − ǫmk

|ψmk〉
(4.68)

|ψ(2)
nk 〉 =

∑

m/∈Dn

∑

p/∈Dn

〈ψmk|H1,k|ψpk〉〈ψpk|H1,k|ψnk〉
(ǫnk − ǫpk)(ǫnk − ǫmk)

|ψmk〉

− 〈ψnk|H1,k|ψnk〉
∑

m/∈Dn

〈ψmk|H1,k|ψnk〉
(ǫnk − ǫmk)2

|ψmk〉

+
∑

m/∈Dn

〈ψmk|H2,k|ψnk〉
(ǫnk − ǫmk)

|ψmk〉

− 1

2

∑

m/∈Dn

|〈ψmk|H1,k|ψnk〉|2
(ǫnk − ǫmk)2

|ψnk〉

=
∑

m/∈Dn

∑

p/∈Dn

〈ψmk|qv|ψpk〉〈ψpk|qv|ψnk〉
(ǫnk − ǫpk)(ǫnk − ǫmk)

|ψmk〉

− 〈ψnk|qv|ψnk〉
∑

m/∈Dn

〈ψmk|qv|ψnk〉
(ǫnk − ǫmk)2

|ψmk〉

−
∑

m/∈Dn

i

2

〈ψmk| [qr,qv] |ψnk〉
(ǫnk − ǫmk)

|ψmk〉

− 1

2

∑

m/∈Dn

|〈ψmk|qv|ψnk〉|2
(ǫnk − ǫmk)2

|ψnk〉

(4.69)

with Dn the degenerate subspace of the eigenvectors with energy equal to ǫnk.
In the particular case of ǫnk being non-degenerate, Dn ≡ n.

The wave function is given by: |ψnk+q〉 = eiqr(|ψnk〉 + |ψ(1)
nk 〉 + |ψ

(2)
nk 〉 +

Ø(3)). These formulas, substituted in Eq. (4.56) gives the desired KS second-

order density response χ
(2)
0 , that I will not present here because of the lengthy
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expression. The matrix elements are here evaluated in the velocity gauge, but
the final result can be demonstrated to be in agreement with the one of Hughes
and Sipe [48, 50, 152] evaluated in the length gauge [153]. More informations
about the correspondences between the two gauges can be found in appendix
D.4.

4.4 Macroscopic Derivation

In the previous sections I have shown the microscopic derivation of the second-
order response function. This has been achieved applying perturbation theory
to the TDDFT formalisms. Nevertheless, it is not sufficient in order to compare
with experimental results. Experiments on semiconducting materials as the ones
of interest are usually performed on macroscopic samples in the laboratory en-
vironment. Also the optical phenomena (reflection, propagation, transmission)
can be quantified by a number of parameters that determine the properties of
the medium at the macroscopic level. Therefore the macroscopic response of the
system that is measured must be linked to the microscopic one that has been
derived so-far. This process corresponds to a spatial average over a distance
that is large with respect to the lattice parameter, as shown by Ehrenreich in
Ref. [146]. It is obtained by averaging the parts of the microscopic quantities
that are periodic with respect to the lattice. The two responses (macroscopic
and microscopic) generally differ because of the microscopic inhomogeneities of
the system that make the induced polarization locally different. Differences can
arise also from the microscopic order that differs from the macroscopic one (an
example is given by anti-ferromagnetic materials, where the microscopic order
given by well defined alignment of the electronic spins is averaged to zero at a
macroscopic level). The starting point is again the definition of the polariza-
tion18

PM (1) = P
(1)
M (1) +P

(2)
M (1) + . . .

= χ
(1)
M (1, 2)E(2) + χ

(2)
M (1, 2, 3)E(2)E(3) + . . .

(4.70)

where E corresponds to the total macroscopic electric field, given by the external
and the induced ones. The SHG process is then defined by the second-order
macroscopic polarization:

P
(2)
M (1) = χ

(2)
M (1, 2, 3)E(2)E(3), (4.71)

with the constraint that the two frequencies of the fields E(ω2), E(ω3) are equal:

ω2 = ω3. χ
(i)
M , as well as other optical quantities as ǫM (the dielectric function

responsible of the linear response), cannot be obtained directly by averaging
the microscopic expressions of P(1) and P(2) Eqs. (4.28) and (4.32). These are
function of the external perturbing field EP and should be first reformulated
in terms of E. The average is then performed by taking the G = 0 component
(this is a general theorem that holds for periodic functions).

18This definition holds for materials that lack of an intrinsic polarization when EP = 0.
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4.4.1 Derivation of the Perturbing Field as Function of
the Total Field

The dielectric susceptibility is obtained from the polarization as seen before.
An useful derivation of the different P(i) orders can be obtained considering
the displacement vector D in Maxwell’s equations. Let’s now introduce their
microscopic form in the usual c.g.s units:19

∇ ·D = 4πρext (4.72)

∇×E = −∂t
c
B (4.73)

∇×H =
∂t
c
D+

4π

c
jext (4.74)

∇ ·B = 0 (4.75)

where ρext, jext are the sources of the external field

∇ ·Eext = 4πρext (4.76)

and E is the total field given by the external and the induced one:

∇ ·E = ∇ ·Eext +∇ ·Eind =

= 4πρext + 4πρind = 4πρtot.
(4.77)

The last equation, together with Maxwell’s equation (4.72) and the definition
of the polarization vector −∇ ·P = ρind, gives the displacement vector D:

D = E+ 4πP. (4.78)

I will not consider the magnetization of the material (M = 0, so that B = H+
M = H). The previous equations can be transformed from the differential form
into a linear one in the frequencies-momenta space through a Fourier transform.
Maxwell’s equations then read:

i(q+G) ·D(q+G, ω) = 4πρext(q+G, ω) (4.79)

(q+G)×E(q+G, ω) =
ω

c
B(q+G, ω) (4.80)

(q+G)×B(q+G, ω) = −ω
c
D− 4πi

c
jext(q+G, ω) (4.81)

i(q+G) ·B(q+G, ω) = 0. (4.82)

Equation (4.78) for the microscopic electric displacement vector becomes:

D(q+G, ω) = E(q+G, ω) + 4πP(q+G, ω)

= E(q+G, ω) + 4π(P(1)(q+G, ω) +P(2)(q+G, ω))
(4.83)

where P has been developed up to the second order.
D can be related to Eext thanks to equations (4.76) and (4.79), that give:

∇ ·D = ∇ ·Eext

(q+G) ·D(q+G, ω) = (q+G) ·Eext(q+G, ω)

DL(q+G, ω) = Eext,L(q+G, ω).

(4.84)

19The velocity of light is expressed by c, while ǫ0, µ0 = 1.
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Combining the Eqs. (4.80) and (4.81) instead one has:

(q+G)× [(q+G)×E(q+G, ω)] =

−ω
2

c2
D(q+G, ω)− 4πiω

c2
jext(q+G, ω)

(4.85)

[(q+G) ·E(q+G, ω)](q+G)− |q+G|2E(q+G, ω) =

−ω
2

c2
D(q+G, ω)− 4πiω

c2
jext(q+G, ω),

(4.86)

where the relation a× (b× c) = (a · c)b− (a · b)c. In the absence of external
currents (jext = 0), projecting Eq. (4.86) on both hand-sides on the transverse
component gives:

ET (q+G, ω) =
ω2

c2|q+G|2D
T (q+G, ω). (4.87)

The last equation in the case of long wavelengths q → 0 so that λ ≫ 1, one
has ω

c ≪ 1 that makes all the terms with G 6= 0 vanish being their limit 0
G2 .

As a consequence only the macroscopic component of the transverse total field
remains.

4.4.2 Macroscopic response

The derivation of the second-order macroscopic response is a nontrivial task,
because one wants to pass from the induced microscopic fluctuations obtained
in the response theory to the knowledge of the macroscopic polarization of
equation (4.1). The most difficult goal is to pass from the external field Eext

that is macroscopic, to the total electric field E that is microscopic since it
contains also the contribution of the microscopic induced fields i.e., the crystal
local fields effects.

The total field E can be considered in general as the sum of the perturbing
field EP and the response field ER.

If one choses EP = Eext so that ER = Eind as done by Ehrenreich [146] for
cubic crystal, the results is more physically intuitive. Nevertheless, it demon-
strated extremely difficult to treat a general crystal lattice and another choice of
the fields presented by Del Sole and Fiorino [68] should be adopted. Other defi-
nitions of EP and ER are formally exact and possible in the response theory: It
means moving part of the response already into the unperturbed Hamiltonian,
i.e. in the linear case redefining

Ĥ = Ĥ0 + ĤI = Ĥ ′
0 + Ĥ ′

I (4.88)

with different unperturbed states, but keeping the same total Hamiltonian.
Hence it has the same behavior of the system subjected to the external per-
turbation.20 According to Ref. [68] for a general crystal symmetry it reveals
convenient to split the induced part of the total electric field into its longitudi-
nal and transverse components:

Eind = Eind,L +Eind,T . (4.89)

20One can find an analogy in Many-Body Perturbation Theory in the arbitrariness of the
choice of the G0 Green’s function. E.g., one can include or not the Hartree term into the
unperturbed Hamiltonian so that G0 → GH . The quantities into the Dyson equation (the
self-energy Σ) will change, but the full-interacting G will be the same in both the cases.
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The perturbing field EP as considered before, should then be redefined in or-
der to have a complete knowledge of the two main quantities: the unperturbed
Hamiltonian,21 and the perturbing field EP as obtained from the Kubo response
theory [69]. If one considers as Ref. [146] EP = Eext then Eind contains both
Eind,L given by the instantaneous Coulomb interaction between the electrons
and Eind,T that originates from their retarded Coulomb interaction [68]. The
latter is extremely complicated and for noncubic crystals precludes the knowl-
edge of the unperturbed states, making this particular choice of EP unuseful.
On the contrary, including the induced transverse response directly in the per-
turbing field i.e.,

EP = Eext +Eind,T = E−Eind,L, (4.90)

permits to have a simpler non-retarded Hamiltonian whose states (including the
longitudinal perturbation) can be more easily evaluated. In addition it has the
advantage that the perturbing field is macroscopic as both its component Eext

and Eind,T . This makes easier its macroscopic average, that is present in the
subsequent derivation.

Further developing this general assumption I can now find the expression of
PM passing from the perturbing fieldEP to the total fieldE. From the definition
of the displacement vector Eq. (4.83), looking at its longitudinal component one
has:

DL(q+G, ω) = EL(q+G, ω) + 4πPL(q+G, ω)

= Eext,L(q+G, ω) +Eind,L(q+G, ω) + 4πPL(q+G, ω)

(4.91)

and substituting DL from Eq. (4.84), one obtains that

Eind,L(q+G, ω) = −4πPL(q+G, ω)

Eind,L(q+G, ω) = −4π q+G

|q+G|P
L(q+G, ω).

(4.92)

From Eqs. (4.90) and (4.92) the total field in its microscopic and macroscopic
formulation becomes:

E(q+G, ω) = EP (q+G, ω)− 4π
q+G

|q+G|P
L(q+G, ω) (4.93)

E(q, ω) = EP (q, ω)− 4π
q

|q|P
L(q, ω) (4.94)

where the macroscopic component of the field Eq. (4.94) has been obtain from
the microscopic average posing G = 0.

According to the formulation of the first order microscopic polarization as
it has been obtained in Eq. (4.29), its macroscopic component becomes:

P(1)(q, ω) = α̃(1)(q,q, ω)EP (q, ω). (4.95)

Substituting EP as obtained from Eq. (4.94) into (4.95)

P(1)(q, ω) = α̃(1)(q,q, ω)E(q, ω) + 4πα̃(1)(q,q, ω)
q

|q|P
L(q, ω) (4.96)

21It gives access to the unperturbed states ad as a consequence to all the observable one is
interested in, as the dielectric susceptibility. see section 3.2.1.
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and expanding PL = q

|q| · P up to the second order in P = P(1) + P(2), it is

then possible to get a relation between the polarization and the total electric
field only:

P(1)(q, ω) =α̃(1)(q,q, ω)E(q, ω)

+ 4πα̃(1)(q,q, ω)
q

|q|
q

|q| ·
(

P(1)(q, ω) +P(2)(q, ω)
)

.
(4.97)

Further manipulating the equation, adding P(2) to both hand sides and then
collecting (P(1) +P(2)) at the left member, one has:

[

1− 4πα̃(1)(q,q, ω)
q

|q|
q

|q| ·
]

(

P(1)(q, ω) +P(2)(q, ω)
)

=

α̃(1)(q,q, ω)E(q, ω) +P(2)(q, ω).

(4.98)

It is then possible to obtain the value of P = P(1) +P(2):

P(q, ω) = P(1)(q, ω) +P(2)(q, ω)

= AR(q, ω)α̃(1)(q,q, ω)E(q, ω) +AR(q, ω)P(2)(q, ω),
(4.99)

where the tensor AR is defined from Eq. (4.98) as

AR(q, ω) =

[

1− 4πα̃(1)(q,q, ω) · q

|q|
q

|q|

]−1

(4.100)

= 1 + 4π
α̃(1)(q,q, ω)

1− 4πα̃(1),LL(q,q, ω)
· q

|q|
q

|q| . (4.101)

and comes from the right-hand longitudinal contraction of the quasi-susceptibility
tensor α̃(1), whereas α̃(1),LL corresponds to its longitudinal-longitudinal contrac-
tion. It is possible to define an analogous tensor AL for its left-hand longitudinal
contraction:

AL(q, ω) =

[

1− 4π
q

|q|
q

|q| · α̃
(1)(q,q, ω)

]−1

(4.102)

= 1 + 4π
q

|q|
q

|q| ·
α̃(1)(q,q, ω)

1− 4πα̃(1),LL(q,q, ω)
. (4.103)

Now P as it has been derived can be substituted in the definition of the
macroscopic electric displacement vector Eq. (4.83) obtaining:

D(q, ω) = E(q, ω) + 4π(P(1)(q, ω) +P(2)(q, ω))

= E(q, ω) + 4πAR(q, ω)α̃(1)(q,q, ω)E(q, ω) + 4πAR(q, ω)P(2)(q, ω).

(4.104)

The terms that are linear in the electric field correspond to the linear response
of the system i.e., the tensor of the macroscopic dielectric function ǫM :22

ǫM (q, ω) = 1 + 4πAR(q, ω) · α̃(1)(q,q, ω),

= 1 + 4πα̃(1)(q,q, ω) ·AL(q, ω)
(4.105)

where all is expressed in terms of averaged G = 0 macroscopic quantities.

22This derives from its definition for linear materials D = ǫE and holds also for nonlinear
systems, where all the other contributions are included into the nonlinear optical coefficients:
D = ǫE+ 4πχ(2)EE+Ø(3).
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Second Order Macroscopic Response

Equation (4.104) of the former section contains an additional term, that ac-
counts for the second-order nonlinear response of the system.23 This nonlinear
part that I will call for simplicity D(2) is given by:

D(2)(q, ω) = 4πAR(q, ω)P(2)(q, ω). (4.106)

It is the macroscopic second-order displacement vector, obtained from the av-
erage of the microscopic polarization P(2). This term can be expressed also as
function of the macroscopic polarization, as defined in Eq. (4.78)):

D(q, ω) = E(q, ω) + 4π
(

P
(1)
M (q, ω) +P

(2)
M (q, ω)

)

. (4.107)

D(2)(q, ω) = 4πP
(2)
M (q, ω) (4.108)

Imposing the two definition to be equal, the macroscopic second-order polariza-

tion P
(2)
M of Eq. (4.71) becomes:

P
(2)
M (q, ω) = AR(q, ω)P(2)(q, ω). (4.109)

Again, as done for the linear case one should express the microscopic polarization
as function of the total field to obtain an expression for the macroscopic second-

order susceptibility χ
(2)
M . Since the microscopic polarization P(2) is already

second order in the perturbing field EP it is sufficient to use the linear relation
between the total and the perturbing fields to have a second order expression
in E. With this consideration Eq. (4.97) can be truncated to the first order
retaining only P(1)24 and reduces to:

P(1)(q, ω) = α̃(1)(q,q, ω)E(q, ω) + 4πα̃(1)(q,q, ω)
q

|q|
q

|q| ·P
(1)(q, ω). (4.110)

Substituting the averaged microscopic polarization P(1) with Eq. (4.95) and
collecting E and EP on the opposite sides of the equation one obtains:

E(q, ω) =

[

1− 4π
q

|q|
q

|q| · α̃
(1)(q,q, ω)

]

EP (q, ω)

= AL −1(q, ω)EP (q, ω),

(4.111)

EP (q, ω) = AL(q, ω)E(q, ω). (4.112)

Once this equivalence is introduced in the expression of the microscopic second-
order polarization (see Eq. (4.34)), P(2) can be written as:25

P(2)(q, ω) =
∑

q′

∫

dω′ α̃(2)(q,q′,q− q′, ω1, ω − ω′)

AL(q′, ω′)AL(q− q′, ω − ω′)E(q′, ω′)E(q− q′, ω − ω′).

(4.113)

23One should have further developed the polarization in order to include and study higher
corrections.

24P(2) would give rise to higher order corrections.
25Being G = 0 equation (4.34) is considerably simplified. The link is immediate, identifying

(q1, ω1) with (q, ω) and (q2, ω2) with (q′, ω′).
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The macroscopic polarization is then:

P
(2)
M (q, ω) =

∑

q′

∫

dω′ AR(q, ω)α̃(2)(q,q′,q− q′, ω′, ω − ω′)

AL(q′, ω′)AL(q− q′, ω − ω′)E(q′, ω′)E(q− q′, ω − ω′)

(4.114)

and from the definition of the macroscopic second-order dielectric susceptibility

χ
(2)
M in the reciprocal space:26

P
(2)
M (q, ω) =

∑

q′

∫

dω′ χ(2)
M (q,q′,q−q′, ω, ω′, ω−ω′)E(q′, ω′)E(q−q′, ω−ω′)

(4.115)
One has finally the relation between the microscopic (α̃(2)) and the macroscopic

nonlinear polarization of matter. In addition, it allows to link χ
(2)
M with the

microscopic response α̃(2):

χ
(2)
M (q,q′,q− q′, ω, ω′, ω − ω′) =

AR(q, ω)α̃(2)(q,q′,q− q′, ω′, ω − ω′)AL(q′, ω′)AL(q− q′, ω − ω′).
(4.116)

In the particular case of second harmonic generation ω = 2ω′:

χ
(2)
M (q,q′,q− q′, 2ω, ω) =

AR(q, ω)α̃(2)(q,q′,q− q′, ω, ω)AL(q′, ω)AL(q− q′, ω).
(4.117)

Link to TDDFT

The last equation presented in the previous section is not yet useful. Before
one should express the second-order microscopic quasi-susceptibility α̃(2), as
obtained in Eq. (4.33) from the TD-Response Function Theory, in terms of the

TDDFT density response χ
(2)
ρρρ. The quasi-susceptibility α̃(2) contains three re-

sponse functions: χ
(2)
jjj , χ

(1)
ρj and χ

(1)
jρ . The last two vanish in the limit q→ 0 as

seen in section (4.2), whereas χ
(2)
jjj is related to χ

(2)
ρρρ through its longitudinal com-

ponent in Eq. (4.46) via the continuity equation. Consequently from TDDFT

one does not have the knowledge of the complete α̃(2) and χ
(2)
M , but only of their

longitudinal elements (they are tensor whose elements can be decomposed into
directions perpendicular or parallel with respect to the polarizations vectors q).

Considering only the longitudinal component of the dielectric susceptibility

χ
(2)
M means projecting it along the directions of q2 + q3, q2, q3.

27 For sim-
plicity of notation I will call Pq the projection operator along q̂: Pq = q

|q|
q

|q| .

26It has been obtained Fourier transforming Eq. (4.71).
27As α̃(2) has been derived, one should project on left for the outgoing polarization q1 =

q2+q3 and on right for the two incoming electric fields q2, q3. The projection along a certain
direction q̂ of a tensor T (e.g. it can be α̃ or χ) is given as usual by Tqq̂ = (T ·q̂)q̂ = T · q

|q|
q

|q|
.

This projection operator q

|q|
q

|q|
correspond to a 3×3 matrix in space, whose elements are given

by

1

|q|2





qx
qy
qz





(

qx qy qz
)

=
1

|q|2





q2x qxqy qxqz
qyqx q2y qyqz
qzqx qzqy q2z



 .



66 CHAPTER 4. SECOND HARMONIC GENERATION

What one is interested in is the second-order macroscopic polarization P
(2)
M of

Eq. (4.1). In particular, because of the limits of TDDFT that can describe only
the longitudinal response to a longitudinal perturbation, one restricts to the

calculation of P
(2) L
M once assumed E being longitudinal (E = EL).28 P

(2) L
M is

then given by

P
(2) L
M (q2 + q3, 2ω) =

=Pq2+q3
·P(2)

M (q2 + q3, 2ω) =

=Pq2+q3
· χ(2)

M (q2 + q3,q2,q3, 2ω, ω) ·E(q2, ω) ·E(q3, ω) =

=Pq2+q3
· χ(2)

M (q2 + q3,q2,q3, 2ω, ω) · Pq2
E(q2, ω) · Pq3

E(q3, ω).

(4.118)

The quantity that is then needed is the longitudinal second-order susceptibility

χ
(2) LLL
M that reads:

χ
(2) LLL
M (q2 + q3,q2,q3, 2ω, ω) =

=Pq2+q3
· χ(2)

M (q2 + q3,q2,q3, 2ω, ω) · Pq2
· Pq3

=Pq2+q3
·AR(q2 + q3, ω)α̃

(2)(q2 + q3,q2,q3, 2ω, ω)

AL(q2, ω) · Pq2
AL(q3, ω) · Pq3

.

(4.119)

Projections of the tensors AR,L takes a simple form considering the expressions
Eqs. (4.101), (4.103):

Pq ·AR(q, ω) = AL(q, ω) · Pq

= Pq + 4πPq ·
α̃(1)(q,q, ω)

1− 4πα̃(1),LL(q,q, ω)
· Pq

= ǫLL
M (q, ω)Pq.

(4.120)

Where ǫLL
M (q, ω) correspond to the longitudinal longitudinal contraction of the

dielectric function:

ǫLL
M (q, ω) = Pq · ǫM (q, ω) · Pq

=
Pq

1− 4πα̃(1),LL(q,q, ω)
.

(4.121)

The longitudinal second-order susceptibility then reads:

χ
(2) LLL
M (q2 + q3,q2,q3, 2ω, ω) = 4πǫLL

M (q2 + q3, 2ω)ǫ
LL
M (q2, ω)ǫ

LL
M (q3, ω)

Pq2+q3
· α̃(2)(q2 + q3,q2,q3, 2ω, ω) · Pq2

· Pq3
.

(4.122)

As previously pointed out, the condition deriving from the continuity equation
(4.36) links the current longitudinal projection to the density (see Appendix

28As stated above, in the long wavelength limit this assumption does not represent a con-
straint since it holds the equivalence of longitudinal and transverse fields for vanishing wave
vector. Indeed the field does not propagate and the only light polarization defines q. Under
this assumption E can be written as

E = EL ≡ PqE.
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D.3). This equation can then be exploited in order to obtain an expression for

Pqχ
(2)
jjj = Pqα̃

(2) as functions of χ
(2)
ρρρ:

q · ĵ(q, ω) = iωρ̂(q, ω)

|q|Pq · ĵ(q, ω) = iωρ̂(q, ω)
(4.123)

The microscopic quasi-susceptibility α̃(2) of Eq. (4.33) when Fourier trans-
formed in reciprocal space takes the form:

α̃(2)(q2 + q3,q2,q3, ω2, ω3) = −
i

ω2ω3(ω2 + ω3)

1

2
χ
(2)
jjj (q2 + q3,q2,q3, ω2, ω3)

(4.124)

where χ
(2)
ρj is zero and χ

(2)
jρ vanish in the long wavelength limit. Using then

Eq. (4.123) allow to obtain the longitudinal projection of α̃(2) as:

Pq2+q3
· α̃(2)(q2 + q3,q2,q3, 2ω, ω) · Pq2

· Pq3
=

1

2

1

|q2 + q3|q2q3
χ(2)
ρρρ(q2 + q3,q2,q3, 2ω, ω)

(4.125)

giving then

χ
(2) LLL
M (q2 + q3,q2,q3, 2ω, ω) = −2π

1

|q2 + q3|q2q3
ǫLL
M (q2 + q3, 2ω)ǫ

LL
M (q2, ω)ǫ

LL
M (q3, ω)χ

(2)
ρρρ(q2 + q3,q2,q3, 2ω, ω).

(4.126)

It is clear that the TDDFT response is modulated in frequency by three different
dielectric functions at frequency ω and 2ω. Moreover it is evident that only

χ
(2) LLL
M can be evaluated from the density response, although in the limit

q → 0 valid for optical processes this does not represent a limitation for the
applicability of TDDFT.

The scalar quantity χ
(2) LLL
M constitute only one element of the whole ten-

sor χ
(2)
M , identified by the polarization vectors (q2,q3). It is however possible to

reduce the independent elements through symmetry consideration on the crys-
talline structure, and finding relations between the remaining components. In

this way χ
(2) LLL
M can provide more information than the ones strictly connected

to the particular choice of (q2,q3) when necessary. This will be addressed more
in detail once the specific structures I present in this work will be analized. As
an example I present here the final result for the cubic symmetry, whose tensor

has only one independent element, χ
(2)
xyz that reads:

χ(2)
xyz(2ω) = −

i

24
ǫ(x, 2ω)ǫ(y, ω)ǫ(z, ω)χ(2)

ρρρ(x,y, z, 2ω, ω). (4.127)

The module of these tensor elements is the quantity experimentally measured.
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Chapter 5

The 2light code

The 2light code [72, 73] has been written by the European Theoretical Spec-
troscopy Facility (ETSF) group of Palaiseau1 and it implements the ab-initio
calculation of the SHG process. The code is based originally on DP [154], an-
other ETSF code for the linear optic calculation in solids. During my PHD
research activity I have developed the code at many different levels: i) intro-
ducing new features as the possibility of renormalization of the results when
vacuum is inluded in the simulation cell, ii) optimizing the code for better per-
formances also reducing the memory requirements, and iii) implementing a
parallel version of the latter in order to make calculations faster. All this work,
that constituted the majority of my activity, was necessary in order to simulate
the system of interest, for which ab initio SHG calculations demonstrated to be
expensive both in terms of memory and cpu-time requirement.

SHG computation in practice

The practical calculation of the SHG response function χ(2), accordingly to the
formalism presented in this thesis, is performed in two steps:

• the solution of the KS system (wave functions and eigenvalues) through a
DFT calculation,

• the computation of the KS and full response functions χ
(2)
0 , χ(2) via the

developed SHG formalism.

The first calculation exploits the existing open-source codeABINIT [121]. It
is a package whose main program allows one to find the total energy, charge den-
sity and electronic structure of systems made of electrons and nuclei (molecules
and periodic solids) within Density Functional Theory, using pseudo-potentials
and a plane waves or wavelet basis. ABINIT also includes options to optimize
the geometry according to the DFT forces and stresses, or to perform molecular
dynamics simulations using these forces, [...]. ABINIT is a project that favours
development and collaboration.2

1Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau (France).
2This introduction has been taken from the ABINIT package’s presentation at

http://www.abinit.org.
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DFT calculations on a converged and relaxed system obtained with ABINIT

constitute the starting point of the subsequent SHG calculation. The latter is
performed with the code 2light that will be presented more in detail in the
following section. Input quantities are the DFT Kohn-Sham wave functions
ψKS
nk (r) and the respective single particle energies ǫKS

nk (as seen in chapter 4
equation (4.56)) that are stored in an unique ABINIT’s output file with the
“KSS” extension.

The linear and SHG spectra can be obtained from the KS response functions
of Eq. (4.54) and (4.53), introducing them into the Dyson equations (3.26),
(3.33) providing a suitable fxc kernel.

Further details on ABINIT, a description of the input parameters and its
usage can be found in [121] and on the code’s website http://www.abinit.org
where tutorials are also provided. In the following I will give only the neces-
sary numerical details concerning the calculation variables of physical meaning
presented in section 2.5.

5.1 2light Input Description

The KSS file, where the Kohn-Sham wave functions and eigenvalues are stored,
constitutes the main input of the calculation from which 2light gets also the
informations about the cell geometry (its dimension, the number, position and
species of the atoms) and the set of parameters upon which the calculation
is performed (e.g., the k-mesh, the maximum band index and the planewaves
used to describe the wave functions). These quantities are fixed in the DFT
simulation while the SHG parameters are then chosen seeking for convergence
in the following 2light calculation.

5.1.1 Numerical Details

Input quantities are provided on a plane wave basis, obtained imposing periodic
boundary conditions at the cell’s border and describing the system in terms of its
Bloch’s states. As I have briefly introduced in section 2.5 some approximations
and truncations of the basis have to be imposed in order to have a limited
number of quantities to be stored in memory by the calculator, making the
calculation feasible in reasonable time. This of course cannot be regardless
of the convergence of the results as discussed previously, and tests are always
necessary. Only where meaningful I will present convergence studies, while
elsewhere I will give the technical details of the calculation and its convergence
parameters.

As for the DFT calculation, there are technological and practical limitations
that do not allow calculations on the complete basis and series the main quan-
tities have been expressed on (i.e., the infinite vacuum states or the plane wave
basis). Here I provide a list of the parameters3 that have to be set in a SHG
calculation performed with the 2light code, and their relative description.

3Some of the parameters are identical to the ones of DP [154], especially the structure of
the input files.
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Numerical Approximations to Physical Quantities:

• ω range: it is the frequency range within the calculation of χ(2) is
performed. It is identified by three parameters omegai, omegae and
domega that represent respectively the start, end and step values of the
frequency grid on which the spectrum is evaluated.

• npwwfn: the parameter establishes the number of plane waves to be
used in the description of the KS single particle states. By default it is
reduced to be equal to the number of plane waves in the last closed shell.4

Alternatively one can choose the number of closed shells npwsh.

• nbands: it represents the maximum band index to be considered in the
construction of the KS susceptibilities. To obtain the whole χ(2) at each
frequency one would require all the empty states. Nevertheless, reducing
into a certain frequency range the transitions that are far away from the
band gap are not involved, contributing to the higher frequency spectrum
only.5 It is then possible to truncate the summation to N ≤nbands.

• lomo: this parameter is the counterpart of nbands for the occupied
states. If one is looking at low energies only the highest valence states
are involved (or the corresponding pseudo-states if pseudopotentials are
used).

• npwmat: it is the number of G vectors to be considered in the represen-

tation of the microscopic KS response functions matrices. χ
(1)
0 (G1,G2, ω)

is then represented in the reciprocal space as a two dimensional matrix of

range npwmat×npwmat, while χ
(2)
0 (G1,G2,G3, 2ω, ω) will be a three-

dimensional matrix.

Code Optimizations and Developments:

There are other parameters internal to the code, that can be set up in order
to improve the speed of the calculation. I do not report here their detailed
description because they have no physical meaning, nevertheless they are fun-
damental for the computation. In order to pursue the studies here presented,
and improving the performance of 2light, they have been necessary various
modifications and developments. This has constituted a prominent part of my
activity, and in the following I will briefly present my work on the code.

(I) Restart capabilities. In 2light are implemented two restart possibili-

ties: one on the transitions-cycle i.e., the summations that give χ
(1)
0 and

χ
(2)
0 in Eqs. (4.53) and (4.54), and another one on the G vectors of these

matrices. The first permits to reload an interrupted calculation storing in-
termediate results. The last one instead allow to improve the calculation

4As described in sec. 2.5 the number of plane waves npw does not vary continuously
increasing the cutoff energy Ecut. If npwwfn does not match one of these npw values, the
last shell is not closed. It means that along different directions in the reciprocal space one
is considering a different cutoff and plane waves, loosing the symmetry and consequently
impoverishing the accuracy of the result.

5This can be directly seen in the summations of Eqs. (4.53) and (4.54), where contribu-
tions from transitions that are too far in energy from the frequencies of interest give large
denominators making their terms negligible.
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using a larger npwmat parameter to describe the susceptibility matrices
starting from a previous calculation on a smaller matrix’s dimension. This
is particularly useful during convergence tests over npwmat. Indeed the

χ
(2)
0 matrix dimension is proportional to (npwmat)3 and calculations be-

come quickly very long and memory consuming. Hence it revealed useful
to avoid double counting of the elements that are already available from
a previous calculation.

(II) Grid separation. The principal summation of Eqs. (4.53) and (4.54) are
performed respectively on 2 and 3 band indexes for each k-point belonging
to the grid over which one samples the Brillouin Zone.6 Since terms be-
longing to different k-points are independent, the grid can be decomposed
in smaller sub-grids diminishing computational requirements both for the
DFT and SHG calculations. Subsequently, through an appropriate set-
ting of the input parameters it is possible to collect the various responses
over the different grids in a total response function. During this operation
the required memory is not increased and calculation results faster. In
addition the convergence over the chosen k-points set can always be im-
proved adding new grids to the final results. This feature avoids time and
resources wasting that are present if convergence is studied on a single
k-points grid.7

(III) Division of χ
(i)
0 matrices for memory saving. The microscopic KS

response functions χ
(1)
0 and χ

(2)
0 are matrices of order (npwmat)2 and

(npwmat)3 in the G−vectors. The memory required to store the second
one can be significant when local fields (they will be defined later in
this chapter) are important and slowly converging. This translates in
high values of npwmat. In order to reduce this bottleneck that did
not allow big calculations, I have modified the code 2light redefining

the algorithm and subroutines for the calculation of χ
(2)
0 . Now the cubic

matrix can be divided into layers, storing data and performing calculation
on several (npwmat)2 matrices, that are allocated and used separately,
consequently saving memory.

(IV) Re-definition of the transitions cycle. I have implemented a new
procedure for the evaluation of the second-order KS response function.
The original cycle over the transition elements in Eq. (4.54) (i.e., the
sum over the states identified by the band index and the k -point) has
been reorganized without loosing of speed performance. The memory

requirements relative to the calculation of χ
(2)
0 are now independent of the

total number of transitions. This means that the computational resources
are independent of the size and complexity of the system and fixed a priori

6For computational needs one has to approximate the integration over the full Brillouin
Zone with a finite summation over a sampling grid of reciprocal k-points.

7This improvement was mandatory to perform studies on big size systems such as the
Si/CaF2 interface presented below, where already DFT calculations need a large amount of
resources and time. Hence every unnecessary double-counting or re-calculation should be
avoided. Before, converging over the k-mesh meant running various calculations each time
increasing the grid and solving the KS secular equation for all its points. Now one can retain
the old grid running the calculation for the new added points only.
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by the user.8 Before the cange, this represented a great bottleneck of
the code, preventing the simulation of the large-size systems as the ones
presented in this thesis. Indeed the memory previously required to store
all the transitions involved, could easily pass e.g. the 120 GByte available
on a typical computing node where calculations have been performed.9

This because of the nonlinear increase of the transitions, that in first
approximation can be related to (nbands)3 since the SHG process and

more generally χ
(2)
0 involves combinations of three-bands indexes (see

section 4 Eq. (4.56)). When the dimension of the system is increased
(e.g. using supercell methods) this number rapidly increase too. As an
example, on the smaller Si/CaF2 interface system presented in chapter 6,
the memory requirement for a converged result has been diminished from
80 GBytes down to 4 GBytes with the new procedure, without loosing
speed in the overall calculation.

(V) Parallelization of the code. The other limitation I have encountered
during the simulations corresponds to the large amount of time required
to evaluate the linear and especially the nonlinear response. This time is
roughly proportional to the number of transitions and to the dimension

of the χ
(i)
0 matrices. To improve the performances of the code, making

feasible simulations that would else be too long, a parallel version of the
code has been implemented. This work has been done during my PHD
activity thanks to the support and resources of the HPC-Europa2 project,
in collaboration with the GENCI-CINES HPC center in Montpellier. The
parallelization strategy has been focused on two part of the code where
the majority of the time is spent. At first the calculation of the transition
elements i.e., 〈ψnk|H1,2 k|ψnk〉 of Eqs. (4.66)-(4.69) when perturbation
theory is applied to the limit q → 0. Secondly I have parallelized the

cycles for the evaluation of χ
(1)
0 , χ

(2)
0 , where the summation over the dif-

ferent transition elements is performed. This has been achieved through a
shared memory paradigm, using OpenMP. The code is not entirely paral-
lel hence one does not expect a linear scaling. Nevertheless, the efficiency
of these two parallel parts is almost linear especially if applied to big size
systems where the time spent in the creation of the parallel environment
becomes negligible with respect to the one spent in the calculation.

5.2 Available Approximations

So far, I have introduced the numerical approximations that are intrinsic to the
possibility to perform a finite calculation of the SHG response of the system
(e.g., the npwwfn and npwmat parameters). Other approximations instead
arise from the unknown response of the system (the exchange correlation terms)
that have be included into the functional derivative vXC of the DFT potential
and the TDDFT kernel fxc. The first has been exhaustively treated in chapter 2

8For this purpose it has been introduced a new computation flag named nt2 elements

that fix the number of iteration to be stored at each calculation step.
9The majority of the results here presented have been obtained thanks to the resources of

the CINECA-HPC center. In particular calculations have been performed on the sp6 cluster
with 32 cores per node and 120 GBytes of RAM per node. Therefore it represents the limit
of the available memory for the serial calculation.



74 CHAPTER 5. THE 2LIGHT CODE

while the second will be deepened in this section describing the several levels of
approximation implemented in 2light.

The main characteristic of adopting TD Perturbation Theory to TDDFT is
that the final response can be obtained through a Dyson equation both for the
linear (Eq. (3.26)) and the nonlinear case (Eq. (3.33)):

χ(1) = χ
(1)
0 + χ

(1)
0 (v + fxc)χ

(1) (5.1)
[

1̂− χ(1)
0 fvxc

]

χ(2) = χ
(2)
0

[

1̂ + fvxcχ
(1)
] [

1̂ + fvxcχ
(1)
]

+ χ
(1)
0 gxcχ

(1)χ(1).

(5.2)

In the usual frequency-momenta space it becomes [47,50,70ArtLEO]:10

∑

G2

[

δG,G2
−
∑

G1

χ
(1)
0,GG1

(2q, 2q, 2ω)fvxc,G1G2
(2q, 2q, 2ω)

]

×

χ
(2)
G2,G′,G′′(2q,q,q, 2ω, ω) =

∑

G1G3

χ
(2)
0,G,G1,G3

(2q,q,q, 2ω, ω)×
[

δG′′,G3
+
∑

G4

fvxc,G3G4
χ
(1)
G4G′′(q,q, ω)

]

×
[

δG′,G1
+
∑

G2

fvxc,G1G2
χ
(1)
G2G′(q,q, ω)

]

+

∑

G1G2G3

χ
(1)
0,GG1

(2q, 2q, 2ω)gxc,G1G2G3
(2q,q,q, 2ω, ω)×

χ
(1)
G2G′(q,q, ω)χ

(1)
G3G′′(q,q, ω).

(5.3)

One should notice that χ
(i)
0 are the KS density response functions and χ(i) the

full density response functions χ
(1)
ρρ , χ

(2)
ρρρ. The latter should be substituted into

Eq. (4.126) thanks to its relation with the density-current response χLLL
jjj to get

the desired second-order dielectric susceptibility χ
(2)
M .

Thanks to the form the second-order response takes, it is straightforward to
improve the accuracy of the results when necessary. Indeed one can use more
sophisticated fvxc, gxc kernels and better describe the tensors increasing the G-

vectors expansion (i.e., the dimension of the χ
(i)
0 matrices) before the final result

is averaged at G = 0. Up to now there are different levels of approximation
that have been implemented into 2light.

10The tensors χ(1)(q1 +G1,q2 +G2, ω) depends on q+G, where the vectors G belong to
the reciprocal lattice. Hence they are a discrete variable and χ(1) can then be represented as
a matrix over G indexes:

χ(1)(q1 +G1,q2 +G2, ω) = χ
(1)
G1,G2

(q1,q2, ω).

The same holds for the KS response function that can be represented as χ
(1)
0,G1G2

and the

nonlinear responses χ
(2)
0,G1G2G3

, χ
(2)
G1G2G3

. This compact notation makes clearer the meaning

of G-vectors basis expansion and its numerical truncation, showing that the Dyson equations
consists of matrices products. The macroscopic average G = 0 is then performed once the
final microscopic result χ(1), χ(2) are evaluated from the Dyson equation retaining all the
G-vectors.
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Here I present the ones adopted in this thesis. Higher order variations of
the exchange-correlation kernels are neglected in the following, imposing gxc =
δ2vXC

δρδρ = 0. I will now describe in details the approximations to the second-

order Dyson-like equation (5.2). They are adopted at the same time in the
linear response of Eq. (5.1).

5.2.1 Independent Particle Approximation in the SHG
spectrum

Independent Particle Approximation (IPA) is the simplest approximation to
Eq. (5.2) and represents the standard approach used in literature so far [13, 22,
50, 54, 57, 70, 152]. It is obtained treating the electrons as non-interacting parti-
cles. This means that all the many-body effects are neglected posing fxc = 0.11

At the same time also local fields effects are not considered restricting the G-
vector expansion to the only G1,G2,G3 = 0 elements. This means to consider

the macroscopic average of χ
(i)
0 when the Dyson equation is evaluated. All the

involved quantities become scalar objects. Hence the off-diagonal elements, that
enter in the matrices products or inversions, are here neglected (the meaning
will be treated more in detail in the local field approximation).

With this particular choice only the Coulomb potential fv = v remains, and
solving the Dyson equations one has:

χ(1) = χ
(1)
0 + χ

(1)
0 vχ(1) (5.4)

χ(2) =
[

1 + χ(1)v
]

χ
(2)
0

[

1 + vχ(1)
] [

1 + vχ(1)
]

. (5.5)

Now, recognizing that

[

ǫLL
]−1

= 1 + vχ(1) = 1 + χ(1)v (5.6)

because they are scalar quantities in IPA, χ(2) becomes:

χ(2) =
[

ǫLL
]−1

χ
(2)
0

[

ǫLL
]−1 [

ǫLL
]−1

(5.7)

The latter substituted to χ
(2)
ρρρ in Eq. (4.126) gives:

χ
(2) LLL
M (q2 + q3,q2,q3, 2ω, ω) =

− 2π
1

(q2 + q3)q2q3
ǫLL
M (q2 + q3, 2ω)

[ǫLL
M (q2 + q3, 2ω)]

−1χ
(2)
0 (q2 + q3,q2,q3, 2ω, ω)

[ǫLL
M (q2, ω)]

−1ǫLL
M (q2, ω)[ǫ

LL
M (q3, ω)]

−1ǫLL
M (q3, ω)

= −2π 1

|q2 + q3|q2q3
χ
(2)
0 (q2 + q3,q2,q3, 2ω, ω).

(5.8)

Thus, in the IPA the macroscopic susceptibility corresponds to the microscopic
response of the non-interacting system. This is physically intuitive since one is
neglecting the many-body interaction posing the exchange-correlation potential

11I remind that fvxc = fv + fxc where the Hartee functional fv coincides with the bare

Coulomb potential fv = δvH
δρ

= v and fxc = δvXC
δρ

is the exchange-correlation functional.
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equal to zero. Nevertheless it is not trivial because everything pass through two
Dyson equations and is modulated by three dielectric functions in Eq. (4.126).

It is immediate to notice that this approximation is simple since no particular
knowledge of fxc is required and from a computational point of view is the
less time and memory consuming since the G expansion series are reduced to
one point. For this reason it represents the standard approach in literature
to the study of complex and big-size systems, as the ones considered in this
thesis. The IPA, although is a drastic simplification, can however get some
important features of the real response and reveals a good starting point. Its
validity and accuracy depend mainly on the physical nature of the system under
investigation, as I will show later in the results. Therefore, in materials where
local fields and many-body effects are small, already IPA can provide a trustful
description of the material.

5.2.2 Local Fields in the Random Phase Approximation

This approximation is obtained retaining only the microscopic variation in the
induced Hartree potential, thus still neglecting the exchange and correlation
interaction between the electrons: fvxc = fv = v. This is called the Random
Phase Approximation (RPA) [130]. With respect to IPA the microscopic quan-
tities are described on the G-basis12 keeping their G dependence. Retaining
higher G vectors means that density variation up to the atomic scale are con-
sidered. The following microscopic induced field, in turn, can then polarize the
material nearby, contributing to the overall perturbation. Since these fields are
rapidly varying as the underlying microscopic density from which they are origi-
nated, the response depends locally on the lattice structure and these effects are
called crystal local fields effects (LF). Depending on how much rapid variations
are, the G basis should be improved to correctly describe it.

Contrary to IPA, all these microscopic induced polarization effects are taken
into account when solving the linear and nonlinear Dyson equation:

∑

G2

[

δG,G2
−
∑

G1

χ
(1)
0,GG1

vG1G2

]

χ
(2)
G2,G′,G′′ =

∑

G1G3

χ
(2)
0,G,G1,G3

[

δG′′,G3
+
∑

G4

vG3G4
χ
(1)
G4G′′

][

δG′,G1
+
∑

G2

vG1G2
χ
(1)
G2G′

]

.

(5.9)

The macroscopic average is then performed at the end of the calculation posing
G = G′ = G′′ = 0.

A more intuitive example of the different behavior of the IPA and RPA re-
sponses is provided by the dielectric function ǫM (ω) [155]. It is connected to the
inverse of the microscopic dielectric function ǫGG′(q,ω) through the macroscopic
average:

ǫM (ω) = limq→0
1

ǫ−1
GG′(q, ω)|G=G′=0

(5.10)

In IPA ǫGG′(q, ω) = ǫ00(q, ω) is a scalar quantity and one gets ǫM (ω) =
limq→0ǫ00(q, ω). In RPA instead one should invert the full matrix ǫGG′(q, ω)

12As previously stated, for practical reason one restrict the calculation to a converged set
of G-vectors i.e, one represents χ as square (or cubic) matrices.



5.2. AVAILABLE APPROXIMATIONS 77

before averaging. In the inversion process all the off-diagonal terms of ǫGG′

describing the microscopic nonlocal fields are mixed with the diagonal ones. In
particular they enter in ǫ−1

GG′(q, ω)|G=G′=0 modifying the macroscopic averaged
response.

At the second order, formulas are more complex and many terms weight
in the final response, just remembering that the dielectric susceptibility χ(2) is
obtained from Eq. (4.126) where the result of the Dyson equation is modulated
by three dielectric functions. It is therefore difficult to predict how they modify
the IPA response or understand through which quantities of Eq. (5.9) they have
the major contribution. I will show a detailed analysis in chapter 6.

As LF effects have been described, it is immediate to notice that their impor-
tance depends entirely on the nature of the system. In particular they revealed
essential when the material presents inhomogeneities, defects or other character-
istic that give rise to rapid variations in the microscopic polarization, whereas
they demonstrated negligible for highly homogeneous systems. This holds also
for sharp macroscopic discontinuities, as in the presence of an interface or a
surface, or for finite system where LF could give rise to depolarization effects
[145]. This is in agreement also with the outcomes of the macroscopic Effective
Medium Theory [145, 156]. Their importance will be treated more in detail later
while presenting the results. In general one should expect a redistribution of the
oscillator strength that leads to shift the peaks in the linear and SHG spectra
towards higher energies, decreasing the overall intensity in order to preserve
the f-sum rule [157, 158]. However their influence is generally unpredictable
especially in the case of sharp discontinuity materials like interfaces or surfaces.

Tests should always be performed to check the relative importance of LF
effects inclusion when possible. Up to now only few ab initio studies that include
LF have been presented in literature [64, 66, 67], while the majority of the
studies are performed in the IPA. This is because of the great difficulty to
develop a theory as the one proposed here, where LF can be easily identified
in the formalism and equations. Moreover their inclusion greatly affects the
computational effort increasing both the memory (χ(2) matrices are proportional
to (npwmat)3) and time requirements.

5.2.3 Adiabatic Local Density Approximation

This particular kernel has been already presented in section 3. It provides a
first approximation to the exchange and correlation kernel that is neglected in
the previous cases. It is the time-dependent generalization of the LDA in DFT.
Assuming the LDA exchange correlation potential vXC(r, t, [ρ]) being local in
space and instantaneous in time (this approximation takes the name of Adia-
batic Local Density Approximation ALDA) [135]:

vALDA
XC (r, t, [ρ]) = vLDA

XC (ρ(r, t)), (5.11)

the TDDFT kernel named TDLDA takes the form

fALDA
xc (r1, r2, t1, t2) = δ(r1 − r2)δ(t1 − t2)

δvLDA
XC (ρ(r1, t1))

δρ(r2, t2)

= δ(r1 − r2)δ(t1 − t2)
δvLDA

XC (ρ(r1, ω))

δρ(r2, ω)

∣

∣

∣

∣

ω=0

.

(5.12)
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Because of its instantaneous nature it neglects the memory effects (it is a static
kernel) while its locality get rid of the nonlocal XC density interaction. It is
a first drastic approximation to the unknown fxc nevertheless, as LDA demon-
strated successful in a variety of systems, even TDLDA works well e.g. for exci-
tation properties of finite systems or electron energy loss spectroscopy (EELS)
and ion X-ray scattering spectroscopy (IXSS) in extended matter. However it
fails in the calculation of optical (q = 0) spectra of solids [130, 159, 160] due
to the wrong asymptotic behavior of the exchange-correlation kernel [159]. In
particular for this kind of system it only slightly improves the RPA optical
absorption [159, 161] or the second harmonic generation spectra [72–74] with
minor modifications. For this reason it is not appreciated as a good candidate
for optics and SHG spectroscopy going beyond the RPA, and other ways should
be followed.

5.2.4 Quasi-Particles Corrections

In chapter 2 I have presented in detail the problem of the gap underestimation
that arise in DFT, especially if LDA is adopted. Differences among the KS

eigenenergies (ǫnk − ǫmk) as the ones present at the denominators of χ
(i)
0 in

Eqs. (4.66)-(4.69), can give rise to deviations from the correct results. One
should then provide a correction to the non-interacting band-structure in order
to consider the exact quasi-particle energies, determined by the screening of the
hole the electron lefts behind.

Indeed one can see the neutral excitation process in three steps:

(I) the electron is excited from its initial state and leaves a hole behind it.

(II) This hole interacts both with the system and the promoted electron. In
the first case it is seen as a positive charge that attracts the neighboring
electrons, surrounding itself of a cloud of opposite charge. This rear-
rangement of the system density is a screening effect, that mediates the
interaction of the bare excited particle with the KS system. The union of
the particle together with its screening takes the name of quasi-particle.13

This can be thought as a single particle process and is well accounted for
in MBPT Hedin’s equations [162, 163], in particular by the first order
Green’s function. The Green’s function describes the propagation of the
quasi-particle and allows to obtain information about the quasi-particle’s
energies (from its poles) and wave functions. This set of five connected
equations is usually solved in the GW Approximation for the Self-Energy,
where eigenfunctions are supposed not to vary from the intial LDA-KS
and one cycle of Hedin’s equations provides the quasi-particle energy cor-
rections. For further details please refer to [162, 164–168].

(III) The last step is represented by the direct interaction of the hole with the
promoted electrons. Both of them are interacting with the medium, hence
locally modifying the surrounding environment, i.e., they can be thought

13This can be interpreted as a reorganization of the system once the electron has been
promoted from state n to state m in order to get the minimum energy configuration. Indeed
the KS ground state of a DFT calculation with N − 1 electrons does not correspond to
the ground state of a N independent particles system where the topmost electron has been
eliminated.
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as quasi-particles. However, these quasi-particles are not independent
and propagate during their lifetime interacting each other by Coulomb
attraction. This two-body interaction between the electron and the hole
is called the exciton, and its influence on the final optical response is
identified as the excitonic effects. Later in this chapter these effects will
be treated more in detail.

In the Kohn Sham system the non-interacting nature of the particles shifts
all these dynamical informations in the exchange correlation kernel. However
they are lost in the LDA and this lack translates in a general shift of the peaks
position.

The third step is complicated involving two-particle effects that should be
accounted in the fxc kernel. The second one is instead a single-particle process,
whose effects can be directly included in the KS system modifying the energies
and wave functions at the basis of the KS response calculation instead of con-
sidering later them into fxc.

14 This means toprovide the exact quasi-particles
structure e.g., using more sophisticated XC potentials in the DFT calculation.
However, it turns out that in many semiconducting materials the effect of quasi-
particles consists in a almost constant shift of the conduction states in the band
structure. This justifies the scissor operator (SO) correction here adopted. For
the wave functions instead the KS states are usually very close to the real
ones. In MBPT approaches, and GW Approximation, usually corrections are
neglected and KS eigenstates are used.

Scissor Operator Correction

Real quasiparticle band structure can be approximated via a rigid shift of the
KS conduction bands, avoiding a longer and expensive MBPT calculation of
the quasiparticle states. This is a rough approximation justified by experience
in many materials (e.g. for silicon Fig. (2.2), GaAs, graphene Fig. (2.1) etc.,
although it does not work in general), that demonstrated to be valid also for
second-order response [72–74, 152, 169], being able to reproduce the spectra and
in particular the correct position of the peaks.

Shift of the conduction states however introduces non-trivial implications to
the calculation of SHG [57] because of the non-locality of the scissor operator.
This in particular creates new terms when the optical limit q→ 0 is performed
modifying the perturbed and unperturbed Hamiltonians.15 The scissor operator
Ŝ takes the form:

Ŝ = ∆
∑

n

(1− fn)|ψn〉〈ψn| (5.13)

being ∆ the constant energy shift, fn the occupation number so that (1 − fn)
makes the correction acts to the only empty states (I am supposing an insulating

14Here I am considering the response of the system in TDDFT. Hence the true fxc is
expected to give the real response and correctly reproduce the conduction states although
starting from a less accurate initial guess as the KS-LDA. Nevertheless, the better is the
starting point and the reproduction of the excited levels, the more fxc and its effects can be
negligible.

15As seen in Eqs. (4.64) and (4.65) and derived, expanding the Bloch’s states on q it appears
a commutator between the potential and the density [Vnl, r]. As a consequence the nonlocal
part of Vnl give a nonvanishing term. In this case also the scissor operator that does not
commute with r will contribute.
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or semiconduting material), and |ψn〉 the KS states.16 This formula corresponds
to the hypothesis that the real eigenstates |ψn〉 are really close to the KS ones (so
that their difference can be neglected) and only the energies of the conduction
bands are incremented by the constant positive factor ∆. Applying perturbation
theory in order to develop the states and energies corrections at different or-
ders for q→ 0, the ground-state SO-corrected unperturbed Hamiltonian (ĤSO)
becomes:

ĤSO =
1

2
∇2 + Vnl + Ŝ. (5.14)

Whereas without considering the SO it was (cfr. Eq. (4.57)):

Ĥk =
1

2
∇2 + Vnl, (5.15)

that is the usual Hamiltonians whose wave functions and energies are obtained
from the DFT(-LDA) ground state calculations expressed on the Bloch’s states.
Because of the non-locality of Ŝ, the velocity operator v = q + [Vnl, r] that

appears through the commutator [qr,qv] in the second order corrections ǫ
(2)
nk ,

|ψ(2)
nk 〉 of Eqs. (4.67) and (4.69) has a new term:

vSO = q+ [(Vnl + Ŝ), r]. (5.16)

consequently one finds that (see derivation in Appendix E)

〈ψn|vSO|ψm〉 = 〈ψn|v|ψm〉
ǫSO
nk − ǫSO

mk

ǫnk − ǫmk

. (5.17)

Supposing ∆ = 0 one recovers the original result, while important changes can
be introduced with increasing ∆ that appears in the form [r, [Ŝ, r]] into the
second order corrections.

In linear optics the contribution of the scissor operator can be identified
with an almost rigid shift of the spectra to higher energies of a quantity ∆.
In nonlinear processes as second harmonic generation it keeps the function of
shift but in a more convoluted way. Indeed an unequal mixing of increased and
unmodified energies in the transitions17 makes it difficult to predict the real
effect of the SO At first approximation it correspond to a rough shift of ∆

2 of
the whole SHG spectra.

It is important to remark that the possibility of including a scissor operator
has been straightforwardly demonstrated for SHG [152] deriving the correction
to the equations. There is instead no justification to the direct substitution of
GW eigenvalues avoiding the modification of the Hamiltonian.18 The assump-
tion that LDA and GW (or SO) wave functions are equal and are both eigenfunc-
tion of their respective Hamiltonian, does not imply that the two Hamiltonian

16Here for simplicity I avoid to put the k dependence since ∆ and hence Ŝ are the same for
each k-vector.

17The easiest way to comprehend it is to remember that SHG is described by many terms, be-
tween which there are also three-bands transitions given by valence-valence-conduction states
or valence-conduction-conduction states. Hence the corrections enters twice in some terms
and once in the others. As a result the shift is different and mixed in a non trivial way.
Moreover χ(2) is following multiplied by three dielectric functions with their own shifts.

18As it has been done for the SO correction, with the introduction of Ŝ in Eq. (5.14).
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are equivalent, so that their eigenvalues ǫnk, ǫ
GW
nk can be straightforwardly ex-

changed in the response expression.19 Indeed, HLDA is local whereas HGW

contains the GW-self energy term Σ̂ that is nonlocal. So, there should be a cor-
rection term (as found for the SO) that arises from the [(Vnl+Σ̂), r] commutator
and change the calculation of the optical matrix elements [67, 68, 152, 170]. As a
consequence, one cannot substitute the GW (or SO) energies, that stem from a
nonlocal Hamiltonian, to ǫnk into Eqs. (4.66-eq:bloch-k-wf-corr2) and Eq. (4.56)
without introducing the correction term.20 This substitution will neglect some
terms giving wrong results. People in the past have misunderstood and have
made mistakes on this.

GW corrections are then difficult to be implemented, increasing the complex-
ity of the SHG calculation and are not yet available in the 2light code. The
possibility of using a SO correction instead, has been implemented in 2light

(it is described by the soenergy input variable), and can then be used in every
SHG calculation as it is independent of the subsequent choice of fxc.

21 All the
approximations presented in this chapter can then be performed on top of the
SO one. Remembering that for semiconductors DFT-LDA is far from the ex-
perimental gap, it becomes important to apply this energy correction, although
it is a very basic approximation.

5.2.5 MBPT-TDDFT link

The great simplification that one achieves condensing all the informations in a
unique variable, the density ρ(r, t), makes the link with other physical quantities
complex and of difficult interpretation. This applies also to fxc and gxc. These
kernels contain all the dynamical exchange and correlation effects that acts on
the response of a system to an external perturbation. As stated above, they are
generally unknown quantities and one should provide approximated expressions
as the ones considered in this chapter in order to study the response. However,
going beyond RPA becomes soon very difficult not only for computational lim-
its but also for theoretical analysis. Indeed, given a physical approximation,
because of the complexity of the XC functional it is usually hard to derive an
expression for fxc. The same holds for the opposite i.e., starting from a designed
approximated expression and understanding the physics behind it as the effects
that have been included or neglected.

With this regard it demonstrated useful to establish a link between TDDFT
and Many-Body Perturbation Theory, where the physics of the system is more
intuitively expressed in terms of the correlations Green’s functions. They are
more complex quantities that at the first order describe the propagation in space
and time of a particle/hole inside the material, at second order depicts the evo-
lution of two interacting particle and so on. Green’s functions are useful since
one consider quasi -particles and their reciprocal interaction while propagating.
They contains more informations about the system than the density at the cost

19That is, considering the GW hamiltonian HGW an operator of the same form and nature
of the LDA one HLDA but only more accurate, giving the correct eigenstates energy values.
In that case, direct substitution of ǫnk with ǫGW

nk
would be justified, improving the HLDA

reasults only.
20In Eq. (4.56) it is also evident that LDA-DFT energy differences are required toghether

with the corrected (GW or SO) ones in the response calculation.
21This is true unless fxc does not contain any information about the quasiparticle energy

correction i.e., the screening of the system.
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of the simplicity of equations and formulas. In particular TDDFT has the great
advantage to represent low dimensional quantities i.e. ρ(r, t) = ρ(1) while the
first order Green’s function is a two-point quantity G(r, t; r′, t′) = G(1; 2)) and
the second order is a four-point quantity G2(1, 2; 3, 4), while fxc that describes
the same second-order effects depends on only two points: fxc(1, 2). This trans-
late in more efficient numerical algorithms for TDDFT, provided an exchange
correlation kernel able to get the same informations contained in the Green’s
functions formalism.

Excitonic Effects and the Alpha Kernel

Following this line there are many works devoted to the transfer of knowledge
achieved in MBPT to TDDFT. The prominent examples are provided by the
NANO-QUANTA kernel, derived from the contraction of the Bethe-Saltpeter
Equation (BSE) [127, 171, 172], and the long range alpha-kernel [140]. Both
of them aim to include excitonic effects. They are a two particle process de-
scribing the mutual interaction of the excited electron-hole pair created by the
interaction with the external field (i.e. through the absorption of photons). In
semiconductors for example, once the electron is promoted from the valence to
the conduction state it lefts behind itself an empty state: the hole. They feel the
reciprocal Coulomb attraction and the screening provided by the surrounding
electronic density, modifying the evolution of the system and its response. Their
importance is linked to the nature of the material. In general excitonic effects
demonstrated important in a variety of systems, in particular for optical neutral
excitations e.g. in the absorption (see Ref. [127]). Literature has systematically
improved their description for linear optical processes, but there is still a lack
in the application to nonlinear optics and in the SHG only few attempts have
been proposed [64, 67, 72, 73].

Excitons are correctly described by BSE in MBPT and the derived NANO-
QUANTA kernel contains the same information describing excitonic effects at
the same level of accuracy. However, it requires a computational effort close to
the one needed to solve BSE due to the complex structure of the kernel, and
for this reason it reveals inadequate for practical applications and has not been
yet implemented into the code 2light.

The alpha kernel here adopted [140, 171] instead has demonstrated to be a
good simplification able to catch the effects of moderate electron-hole interac-
tions, as the ones characteristic of silicon. This static kernel is obtained from
the intuition [159] that failure of TDLDA are related to the wrong behavior of
its long-range contribution that is missing due to the locality of the approxima-
tion. This interaction is mainly given by the Coulomb particle-hole attraction,
mediated and softened by the screening of the other electrons. At first approxi-
mation it can then be thought as a Coulomb interaction whose reduced strength
is given by a multiplicative factor α. fLRC

xc
22 has then been defined [140, 171]

as:

fLRC
xc (r1, r1) = −

α

4π|r1 − r2|
fLRC
xc (q+G) = − α

|q+G|2 .
(5.18)

22LRC superscript stands for Long-Range Correlation kernel.
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Figure 5.1: Material dependence of the parameter α with respect to the inverse
of the dielectric constant. Filled circles: α fitted to reproduce BSE optical
spectra; solid line: linear fit (using Eq. (5.19)) for α(ǫ−1

∞ ) on filled circles; empty
circles calculated from Eq. (5.19). (Reproduced from [140], Copyright c©2004
by The American Physical Society).

In general α is a parameter that represents the average of the dynamical depen-
dence of the real fxc kernel for a given frequency range. This physical intuition
is also motivated by the NANO-QUANTA kernel once is averaged over the fre-
quency and considering the limit q → 0, that gives the trend 1

q2 . Moreover,
according to its derivation the kernel α has been supposed to be equal to the
attractive screened-Coulomb interaction W = ǫ−1v. This shows that fxc hence
α should be negative and roughly proportional to the inverse of the static di-
electric function ǫ∞. In particular for linear optics it has been shown that exists
a well respected general trend for semiconducting materials, given by [140]:

α = 4.615ǫ−1
∞ − 0.213 (5.19)

as can be seen in figure (Fig. 5.1). This law allows to guess reasonable values
also for other materials unless ǫ−1

∞ is small, i.e. one is considering semiconduc-
tors with a large screening that makes exciton’s interaction weak. Unless this
trend is good it provides the possibility of estimating the excitonic correction23

to the optical spectra of new materials without adding computational complex-
ity beyond the RPA where ǫ∞ is evaluated: that is, without solving the BSE or
evaluating more complicated expressions for fxc. Indications presented in the
work of Botti et al. [140] show that the range of materials where fLRC

xc works
well coincide to materials dominated by continuum excitons.24 Differences be-
tween BSE and the alpha kernel become evident instead when studying strongly

23The validity of this correction has been proven for absorption spectra in a large variety
of materials through a comparison of the results with BSE calculations [140].

24It means the material has small to moderate electron-hole interaction.
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bound excitons, because of its static approximation25 (e.g., in solid argon that
exhibits a strongly localized Frenkel exciton) or when the real fxc is no more
well reproduced by the screened-Coulomb interaction W .26

It has been observed for linear optics that the general effect of the alpha
kernel is to redistribute oscillator strength. This can lead as a consequence to
an apparent shift of peaks. For second harmonic generation, up to now excitons
have shown an almost constant increase of the total response of the system
Refs. [72–74]. Is however more difficult to predict their effects that are mixed
through all the quantities appearing in Eq. (4.126).

All the results presented in this thesis regarding excitonic effects have been
obtained using the long range alpha kernel.

25Indeed it becomes mandatory to keep the dynamic frequency dependency in order to
reproduce the different excitonic peaks of the experimental spectra, while α gives only an
average that fits all these features together into an unique single-excitation model.

26I.e., it is no more a good approximation the one adopted for the derivation of the kernel
fxc =W .



Chapter 6

The Si/CaF2 Interface

As discussed in the introduction, second-harmonic generation has been largely
used for materials characterization [13–15, 17, 71, 82, 173]. It can give multiple
information on the structural [22, 27, 58, 59, 70, 92, 174, 175] and electronic
properties of materials by detecting the modifications induced by the presence
of adsorbates [14], stress [13] or external perturbing electromagnetic fields [176]
and also permitting an in situ monitoring of dynamical processes [14, 15].

Sensitivity of SHG to the symmetry of the system is at the basis of all these
different applications. Since SHG is dipole forbidden in centro-symmetric mate-
rials [2], a distinctive structural and electronic characterization of complex mate-
rials such as interfaces, surfaces, nanostructures or defects can be obtained from
the signal originated by the symmetry-broken regions [2, 17, 27, 70, 71, 175].
Meanwhile, the surrounding bulk environment (if possessing the inversion sym-
metry) does not contribute. This makes of SHG a great selective spectroscopic
tool.

An example is provided by the Si/Ge superlattices where SHG [17, 92] ex-
hibits an increase of about one order of magnitude with respect to the crystalline
system if the structure presents defects. Even the atomic angle and bond-length
distortion inside materials as bulk silicon can be detected and measured thor-
ough SHG as function of an applied external stress, as it has been shown in
[13].

Moreover, SHG demonstrated sensitive not only to microscopic deviations
from the centro-symmetric structure, but also to the macroscopic breaking of
the symmetry due to surfaces and interfaces. Fig. (6.1) shows that the SHG
signal originates in the interface between two centro-symmetric materials. It
is characteristic of their contact region, whereas elsewhere it cannot take place
because of selection rules.1 With this regard, SHG has been investigated both
experimentally and theoretically for a large variety of interfaces [17].

1Silicon has a small bulk contribution to the SHG process arising from higher-order term
as the electric-quadrupole and the magnetic-dipole [2]. An example is provided by the third-

order dielectric susceptibility χ
(3)
M

once an external static field Edc is applied. It polarize the
system breaking the inversion symmetry and allowing SHG. This process is called electric field
induced second harmonic (EFISH) generation and give rise to frequency doubling: PE(2ω) =

χ
(3)
M E(ω)E(ω)Edc. The intensity of these higher-order processes is usually smaller with respect

to the second-order one and can be detected only when the second-order vanish. In interfaces

χ
(2)
M dominates; because of this, hereafter I will neglect the higher-order contributions.

85
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Figure 6.1: Second-Harmonic Generation process in the Si/CaF2 interface. The
two bulk materials cannot generate the double-frequency signal because of their
inversion-symmetry. The SHG signal is genertated by light interaction with the
interface region where the symmetry is broken.

Here I present an ab initio study of the Si/CaF2 interface [82]. In this
contest, Si/CaF2 interface is a suitable material because of its optical and elec-
tronic properties, being a well-controlled semiconductor/insulator interface with
potential technological importance [177–179]. Indeed, thanks to the small mis-
match between the two lattice parameters, it is possible to grow epitaxially Si-
CaF2 nanostructures by superimposing semiconducting and insulating slabs in a
multi-quantum well [180, 181]. It consents to exploit the relation between opti-
cal properties and quantum confinement effects of Si [86, 87, 177–179, 181, 182]
whereas CaF2 plays the role of an excellent insulator. In fact, its 12 eV energy
gap makes this material transparent in a wide frequency range.

Because of these two factors i.e., i) the possibility of technologically design
the energy gap via the silicon quantum confinement, and ii) the complete trans-
parency of CaF2 into the window of visible light, the interface demonstrates use-
ful for photovoltaic and optoelectronic applications. In particular in solar cells,
a different opening of the electronic and optical gaps, that can be achieved de-
positing Si slabs of various thickness in a multi-quantum well structure,2 would
enlarge the devices absorbtion frequency-range increasing the efficiency. Mean-
while CaF2 provides that sunlight propagates deep into the material without
loss of intensity, so that an higher number of Si slab can be superimposed.

However, these optical properties, in particular in the low-energy region (i.e.
visible light), strongly depend on the interface electronic-states [85–87, 181]. In
fact, interface states enters into the electronic gap varying its dispersion along
the wave vectors k and generally reducing the gap. Moreover crystal local-field
effects become important around that region due to the sharp variation of the
potential inside the lattice, consequently modifying the final optical response.

As a result, the interface is a competing effect with respect to the quantum-
confinement. Understanding the influence of this competition on the final re-
sponse has become then a mandatory task for practical applications of Si/CaF2

2In the present case I am considering multi-layers structures. Also in 2- and 3-dimensional
confined structures, such as nano-wires and nano-dots, one can observe the quantum confine-
ment effect playing on silicon and opening its electronic gap. In these cases the gap opening
depends respectively on the width or the diameter of the structure [183]
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and the interfaces in general [21, 22, 54, 67]. Therefore, a great effort has been
devoted to analyze these states. In particular, literature presents a lot of works
focused on the understanding of the possible geometrical configuration that de-
termines them [85, 88, 89, 182], and its dependency on the growth conditions
[76, 77]. This represented an open question for a decade in the 90’s, animating
a long discussion with several experimental and theoretical studies. Nowadays
there is general agreement about the crystalline structure, although some con-
troversies are still opened [76, 77].

Besides the linear optics, the Si/CaF2 interface has also important nonlin-
ear optical properties which have been investigated experimentally by Heinz et
al. [82] in 1989. They used optical second harmonic to probe the electronic
transitions in order to understand the distinctive nature of the interface region.

In linear optics, at these frequencies, interface effects are hidden by the
intense bulk response of Si (e.g. in absorption spectra). Therefore, SHG spec-
troscopy revealed an useful technique to investigate the same system in the
absence of the underlying bulk contribution, thanks to it symmetry-broken se-
lectivness. In fact, both silicon and calcium fluoride are centro-symmetric and
do not contribute to the SHG signal that becomes distinctive of the insulator-
semiconductor discontinuity (see Fig. (6.1)). Through SHG Heinz, Himpsel and
Palange [82] observed directly the interface electronic transitions. In particular
they achieved information from the peaks of the SHG spectrum on the direct
electronic transition between the HOMO-LUMO states at the special point Γ.

This experimental work constitutes then an opportunity for comparison with
our calculated spectra, allowing the test and study of several topics object of
this thesis.

I) It is the first time the code 2light and the formalism presented in chap-
ter 4 are applied to a complex system as the Si/CaF2 interface. Only bulk
systems with a limited amount of atoms were studied before [13, 72–75].
As a consequence, the comparison with the experiment represent an ideal
test for the accuracy of the method once applied to complex materials.

II) Knowledge of the accuracy of the calculation can give informations on the
capabilities of SHG ab initio simulations, ever for predictive application
to unknown interfaces.3

III) As for linear optics, ab initio studies of SHG allow to gain knowledge on the
different effects contributing to the final response e.g., the crystal local-field
or the excitonic effects. This is not always possible in experiments where
one collects their resulting total response. Comparison among different
level of approximations and the experiments indeed, allows one to estimate
their importance, obtaining informations both on the nature of the system
and on the second-harmonic generation process.

IV) So far, SHG ab initio calculations have been restricted to the independent
particle approximation and eventually to small-size systems when more
accurate approximations have been adopted. Therefore, there is still a
need to deepen our knowledge of the physics behind the process, extending

3Experimentally SHG measurements represent a nontrivial task and it is not always pos-
sible to perform accurate studies [17].
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the first-principle studies to a larger variety of materials, as the interface
here proposed.

V) Finally, the comparison will permit to confirm experimental analysis con-
cerning the nature of the interface with respect to the growing conditions.
The interface structure of [82] is indeed experimentally unknown, contrary
to the studied ab initio system. Because of the high sensitivity of SHG,
matching of the spectra would then represent a confirmation of the cor-
respondence between the two structures. All these considerations justify
the use of ab initio SHG simulations not only on the interpretation and
study of structures, but also as a theoretical predictive tool that could
guide both new experiments and the design of innovative materials.

6.1 The 1989 Experiment

In the 80’s Himpsel et al. dedicated part of their work to the study of the epitax-
ial interface of Si/CaF2 [78, 79, 81–83]. In particular in Ref. [82] they studied its
resonant second-harmonic and sum-frequency (SF) spectra. These three-wave-
mixing signals have been obtained by exposing the sample to laser radiation
from a tunable source. In the first case tunable laser light is employed and after
spectral filtering of the frequency-doubled reflected radiation coming from the
interface, the SHG signal is collected. In SF generation instead, the spectrum
is obtained mixing the tunable source with another laser operating at fixed fre-
quency (of 1.17 eV). Again, reflected radiation pass thorough a frequency filter
and is following amplified by a photomultiplier. The tunable radiation is pro-
duced from a dye laser pumped by second harmonic radiation coming from a
Q-switched Nd-doped yttrium aluminum garnet (Nd:YalG) laser. Its radiation
constitutes also the fixed frequency laser employed in SF measurements.

They obtained a significant signal, easily measurable, with weakly focused
laser beam (diameter>1 mm) and a laser fluence far below the damage threshold
(∼ 1 mJ), in the range of [2.2 − 2.5]eV . Pulses of 5 ns where employed and
using a parallel optical path they registered possible variations in the intensity
of the pump radiation4 that have been considered and compensated in the SHG
spectrum (obtained as function of the incoming radiation intensity).

They detected p-polarized three-wave mixing radiation produced by excita-
tion with a p-polarized beam incident on the sample with an angle of 80◦ from

the interface normal. In this configuration it is obtained the χ
(2)
M zzz element

of the second-order dielectric susceptibility tensor. The contributions from the
topmost CaF2 and the underlying Si surfaces demonstrated to be negligible
together with higher-order terms (magnetic-dipole and electric quadrupole mo-
ments) arising from bulk Si (cfr. [82]). Figure (6.2) shows the mesured SHG

and SF spectra for the χ
(2)
M zzz component in the Si(111)/CaF2 interface of [82].

The SHG and SF spectra are plotted as function of the dye laser photon energy
i.e., the varying ingoing radiation. The two spectra present the same resonant

4When the dye laser frequency is modified, the outgoing frequency can have a different
intensity. It is therefore necessary to account for it i.e., considering the ratio between the SHG

(ISHG) and the laser (Il) intensities ISHG
Il

instead of the bare SHG signal while analyzing

the spectrum.
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Figure 6.2: Resonant three-wave-mixing signals associated with χ
(2)
M zzz as a

function of the energy of a photon from the tunable dye laser. (a) Results for
the SHG process and (b) the SF generation mixing the dye laser output with
a photon of fixed energy (1.17 eV). The filled simbols refer to signals from the
Si(111)/CaF2 sample. The open symbols refers to a Si(111) surface covered
by native oxide showing the contribution of the underlying Si surface being
negligible. The solid curve in (a) is a fit to theory presented in [82] (Reproduced
from [82], Copyright c©1989 by The American Physical Society).
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Figure 6.3: Band-gap structure of the Si(111)/CaF2 interface. (Reproduced
from [82], Copyright c©1989 by The American Physical Society).

peak at the same fundamental frequency (the one of the dye laser).5 This
made the authors conclude that the peak arises from a direct transition at the
Si(111)/CaF2 interface. They associate the strong peak at about 2.4 eV to the
vertical gap (HOMO-LUMO) transition at the Γ point Fig (6.3) [81, 83]. It is
originated by the bonding and anti-bonding matching of the Ca+(4s) and the
hybridized Si(sp3) orbitals at the interface [78].

6.2 The Si(111)/CaF2 Structure

6.2.1 Experimental Sample

The Si(111)/CaF2 samples studied in [82] consisted of a layer of about 500 Å of
CaF2 grown epitaxially on top of Si(111) crystal surface. This is allowed by
the similar crystal structures of the two materials and the small lattice mis-
match of ∼ 0.6% at room temperature. CaF2 has been grown with molecular-
beam epitaxy (MBE) technique on an initial Si(111) substrate at a temperature
of [700 ÷ 750]◦C. The silicon presented a clean (7×7) surface reconstruction
[81, 82].6 After the first layers growth, MBE deposition can continue at lower
temperature, diminishing the lattice mismatch. This improves the growing con-
ditions and increases the achievable CaF2 thickness.

The electronic configuration (and consequently the SHG spectrum) is di-
rectly related to the geometrical one. The latter has represented an open ques-

5One can considers as an example the peak at 2.42 eV as an example. In SHG spectrum
the second harmonic photon has an energy that is twice the one of the dye laser i.e., 4.84 eV.
In SF instead the final photon possesses an energy of 1.17 + 2.4 = 3.59 eV.

6It has been obtained through a previous annealing at higher temperature and a subse-
quent slow cooling. The surface cleanness and reconstruction has been verified by LEED and
photoelectron spectroscopy.
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Figure 6.4: Top view of the Si surface unit cell (left). The two possible adsorp-
tion sites T4 and H3 for the Ca atom in the CaF layer at the interface are shown
by shaded atoms. The basis vectors of the hexagonal unit cell are indicated.
Frontal view of the T4 and H3 interfaces are compared on the right.

tion [76, 77, 79, 84, 85, 89, 90, 182], particularly because of its dependence on
the growing conditions of the sample. In particular, the geometrical structure
of the experimental sample [82] is unknown.

Experimental Studies on the Interface Geometry

The match between the latest studies on the effects of growth parameters on
the structural interface features [76, 77] and the sample synthesis conditions
described by [82], allow to predict for the experimental interface a T4 configura-
tion (see Fig. (6.4)) with B-type orientation [77, 85] Fig. (6.5). In this particular
configuration Ca atoms at the interface are in T4 high symmetry sites Fig. (6.4)
while one fluorine of the first layer is lost at the interface after the dissociation of
the CaF2 molecule [76, 79], and the other occupies the H3 sites (see Fig. (6.4)).

In Ref. [89], Zegenhagen claims, for the interface grown at temperature close
to the one of Heinz et al.,7 a mixture of domain structures characterized by both
the T4 and H3 bonding sites for calcium. This appears in the sub-monolayer cov-
erages [89], and depends on the cleanness of the surface and a possible nonuni-
form growth, as following discussed in [76], whereas there is no evidence of that
mixture for clean substrate and thicker coverages [76] as in the experiment of
Ref. [82]. Therefore, I am confident that T4 is the correct interface geometry
that reproduce the experimental sample.

Formation Energy study

In addition to the above considerations, as further check I have performed a
study of the formation energy of the two interfaces (see Fig. (6.6)). A comparison
between the multi-quantum wells structure where the two materials match in the
T4 and H3 configurations respectively, show that the first is energetically favored
with respect to the latter. Evaluating the formation energy of a particular
interface as the difference between its total energy and the chemical potential
µ of its single components (NX is the number of X species atoms)

Eform = Etot −NCaµCa −NFµF −NSiµSi (6.1)

7Samples of Ref. [89] has been grown at temperatures between [450÷ 770]◦C.
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Figure 6.5: Two types of epitaxial relations of the Si(111)/CaF2 interface: for
type-A (left) and for type-B (right). Interlayer spaces a1, d, a0 are different
among the two materials and the interface.

I obtained:

Eform(H3)− Eform(T4) = 47Ha

Eform(H3) > Eform(T4).
(6.2)

These studies have been performed with the Abinit code, on a Si(111)/CaF2

interface where 5 double layers of Si and 4/5 layers of CaF2 alternates in a multi-
quantum well structure presenting a particular matching face (cfr. Fig. (6.6)).8

These test structures have been studied in analogous works [86, 87, 177, 184]
on Si/CaF2 and constituted a good starting point. In particular, relaxation of
the cell dimension allows to obtain the (x, y) inplane lattice parameters that
minimize the interface stress between the two materials. This value of axy ≃
5.40Å is the one I adopt in the following also in the single interface structure.

The formation energy result, together with the experimental studies pre-
viously presented [76, 77], identify T4 as the most probable structure for the
experimental samples I am comparing with.

6.2.2 Simulation Cell Structure

I have studied the T4 B-type configuration of Si/CaF2 in Density-Functional
Theory within Local-Density Approximation using the plane-wave pseudopo-
tential method as implemented in the ABINIT package [121].

Si/CaF2 Pseudopotentials

For Si I have adopted the pseudopotential used in [72]. It is built in a Troullier-
Martin scheme and has been already tested in literature for linear and nonlinear
calculations [13, 72, 74]. Whereas, for CaF2 they do not exists tested pseudopo-
tentials for nonlinear optics. I have chosen Fritz-Haber Institute (FHI) pseu-

8The adopted pseudopotential and the parameters of these test-systems are the same of
the single interface system presented in the next section, to which I remand for further details.
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Figure 6.6: H3 interface multilayers system (left) and T4 interface multilayers
system (right). Five double layers of silicon (yellow balls) have been considered
for both the structures, while calcium fluoride (Ca is shown in red and fluorine
in grey) has a different thickness to recover the periodicity along z.

dopotentials obtained in a Troullier-Martin scheme present in the Abinit pack-
age (see http://www.abinit.org/downloads/psp-links). The linear optical spectra
of bulk CaF2 and multi-quantum well test structures have been compared with
[87, 184], obtaining a reasonable agreement. Calcium contributes with one 4s
electron to the interface states [78, 82, 83, 86, 182], together with an unpaired
Si electron in the sp3 hybridized orbital. Spatial separation and the negligible
exchange-correlation interaction between 4s and core/semi-core electrons in the
underlying closed shells, make possible to consider only 4s valence electrons.

Bulk CaF2 system is well described when looking at its structural properties,
as obtained by comparing the lattice parameter with the experimental one or
the interface bond-lengths that will be presented in the following. The optical
response of bulk CaF2 instead, could be influenced by the semi-core electrons
(as observed for other compounds). However, for the experimental energies of
interest [82], CaF2 is completely transparent being a large gap insulator. As a
consequence its bulk states do not contribute to the final linear and nonlinear
spectra and one can freeze semi-core electrons in the pseudopotential approxi-
mation.

Fluorine does not contribute directly to the interface. It desorbs far away
from it after the molecule dissociations, and the one which remains links to Ca
atoms only.

Performing a relaxation of the silicon and calcium fluoride bulk systems and
of their lattice parameters, I have obtained respectively aCaF2 = 5.410 Å and aSi
= 5.389 Å, with a lattice mismatch of 0.4%. These theoretical values calculated
at 0 K well reproduce the experimental values aCaF2

= 5.447 Å and aSi =
5.430 Å at 6.4 K [185].
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Single Interface Structure

The experiment has been performed on a single interface between a Si substrate
and a 500 Å thick CaF2 insulating slab. Because of computational limits it is
prohibitive to reproduce that size, and I have proceeded starting from a smaller
system of about 5 Å of silicon and 6 Å of CaF2, then increasing their thickness
up to convergence of the SHG spectra. Since the insulating and semiconducting
slabs assume rapidly the bulk structure below the interface i.e., the centro-
symmetry, one expects that the SHG signal originates from a region of few
angstrom around the interface.

The system has been built aligning the growth direction with the z axis, so
that the interface lies in the xy plane. In order to have a single-interface system9

I have built a supercell introducing vacuum into the simulation cell on top of
the CaF2. It avoids interaction between the different replica and breaks the
multi-layer structure created by the periodic-boundary conditions in absence of
the vacuum. The dangling-bonds of the external surfaces have been passivated
with hydrogen atoms.10

The experimental thickness of CaF2 makes it possible a modification of the
substrate lattice parameter close to the interface due to the stress, although the
mismatch between aCaF2 and aSi is very small. Choosing the in-plane lattice
parameter as the one of Si, CaF2 or values within, should be negligible. However,
I take the relaxed in-plane lattice parameter of axy ≃ 5.40 Å to diminish this
stress.11

To further reduce the required computational resources, I have considered
the unitary cell given by the basis vectors (X, Y, Z):

C =





X = 1
2x+ 1

2y

Y = − 1+
√
3

4 x− 1−
√
3

4 y
Z = z



 (6.3)

where x, y are the basis vector of the Si(CaF2) FCC cell and z is the total
height of the interface plus the vacuum. The cell C is obtained passing from
the FCC cell to the tetragonal unitary cell C′:

C′ =





x′ = 1
2x+ 1

2y
y′ = − 1

2x+ 1
2y

z′ = z



 (6.4)

and then rotating the y′ axis to 120◦ from x (i.e. considering the unitary
hexagonal cell of the Si(111) interface):

C =





X = x′

Y = − 1
2x

′ +
√
3
2 y′

Z = z′



 (6.5)

9One cannot use the multilayer structure because it generate spurious contributions to the
SHG process arising from the interferences between the various layers in the superlattice, as
it happens e.g., in Si/Ge superlattices [21].

10For hydrogen I have used a FHI Troullier-Martin pseudopotential obtained from [121].
11This has been done through a DFT relaxation on the multy-layer T4 system. The Si/CaF2

interface is easier relaxed in a multi-layers structure [86, 87, 177]. In the single interface,
because of the vacuum, the stress is partially redistributed along z, interfering with the in-
plane relaxation. One should then use thicker slabs to have the internal part of the system
resembling the bulk, but this would require a greater computational effort.
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Figure 6.7: Relation among the primitive vectors of the simulation cell C =
(X,Y,Z) Eq. (6.3) and the silicon FCC cell C = (x,y, z) Eq. (6.5) passing
through C ′ = (x′,y′, z′) Eq. (6.4). Top view of the interface-plane on the right.

as seen in Fig. (6.7). The last transformation is useful when defining the atomic
positions in terms of the reduced coordinates (i.e., with respect to the primitive
vectors) for the silicon crystal structure.12

6.3 SHG Calculation

The in-plane structure presents 120◦ symmetry-rotation angle around the nor-
mal to the interface, as observed by the experiment [82]. It corresponds to a
primitive hexagonal symmetry, as confirmed by the results of the DFT relax-
ation.

To compare with the experiment I have calculated |χ(2)
zzz| which corresponds

to light polarized along the z direction i.e., perpendicular to the interface (as
discussed in [82] and in section 6.1). In the formalism presented in chapter 4,

considering hexagonal geometry χ
(2)
zzz is related to the second-order response

function χ
(2)
ρρρ as follows:13

χ(2)
zzz(2ω) = −

i

4
ǫLL
M (z, 2ω)χ(2)

ρρρ(2z, z, z, 2ω, ω, ω)ǫ
LL
M (z, ω)ǫLL

M (z, ω), (6.6)

where the polarization vectors q have been identified with z.

12The (X, Y) axis forms an angle of 120◦. In this coordinate system the (x, y) reduced
atomic coordinates assume the simple values of 0, 1

3
, 2

3
.

13Full derivation can be found in Appendix F.1.
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6.3.1 SHG Spectra Normalization

The systems I have studied contains a vacuum slab that breaks the structure
along the z direction. The response of the system, as discussed in chapter 4 gives
a signal that is characteristic of the whole simulation cell. In bulk materials this
coincide to a signal normalized to the volume. Varying the size of the cell does
not modify the final response.14

For surfaces, interfaces and similar structures, built introducing the vac-
uum instead, the empty part of the simulation cell does not contribute to the
response, although entering in the normalization factor of the equations.

E.g., the integrals deriving from the products 〈ψnk|ψn′k′〉 are all performed
on the volume of the simulation cell V : 1

V

∫

V
dr. As a consequence also the

vacuum part is considered when evaluating the linear and the second-order re-
sponses. This can be seen directly in Eq. (4.56) where the term 1

V appears in
front of the summation that gives the contribution of all the two- and three-
bands transitions. It is immediate to notice that for a given system, differ-
ent thicknesses of the surrounding vacuum will give different responses (see
App. G.1.3 for a detailed discussion). Consequently, it is not clear which is the
real physical situation that reproduces the experiment.

Let’s start from analogous consideration on a similar system: a surface.
The surface is determined by its nature as the region between two semi-infinite
media: the material and the vacuum.15 This is justified once looking to the ex-
perimental environment (e.g. in absorption spectroscopy). The probe (the light)
examines a region defined by the substrate and the vacuum inside the experi-
mental chamber. Both the sample and the chamber are macroscopic therefore
the probe see them as infinite.

With this assumption the surface is the matching between two semi-infinite
dielectric media. Reporting this idea into the finite dimension of the simulation
cell, it means considering the surface composed of an equal amount of vacuum
and material: Vsys = Vvac. Vsys is the volume of the material and Vvac the void
inside the simulation cell.

This interpretation holds also for interfaces, as the matching between two
semi-infinite medium (regarding the vacuum as a medium of dielectric function
ǫ = 1, even the surface can be considered as an interface between matter and
vacuum).

In the Si(111)/CaF2 samples of [82], Si and CaF2 have both a great size
compared with the interface region probed by the light. Therefore, accordingly
to the previous considerations it can be thought as defined by two semi-infinite
media. Consequently an equal amount of both should be considered. However,
in my simulation cell I have a different configuration. Actually, three dielectrics
materials are present: the silicon, the calcium fluoride and the vacuum.

The essential nature of the Si(111)/CaF2 system is characterized by the
interface between the semiconductor and the insulator. In particular calcium
fluoride at the frequency I am looking at is completely transparent. Therefore,
optically it behaves exactly as the vacuum on top of it and they can be thought
together as forming an unique CaF2 insulating slab. I decide then to consider the
vacuum and the CaF2 as the semi-infinite insulator, and the silicon as the semi-

14This holds for processes that are proportional to the volume i.e., the linear optics or SHG
in bulk materials as GaAs.

15Here I suppose the sample is micrometric so that can be considered macroscopic.
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infinite semiconductor. The results here proposed are then obtained considering
almost an equal amount of these two media.

Renormalization

Considering the same amount of insulating and semiconducting material in the
Si(111)/CaF2 interface is usually a waste of resources. One of the two slabs
could indeed converge within a smaller thickness. Therefore, in order to contain
the calculation, it is useful to define a renormalization procedure that allows to
pass from the response of a system to another one with a different insulator-
semiconductor ratio (see Appendix G.1.3 for further details). For practical
reasons I have then simulated smaller systems converting their response to the
adopted convention of 50%/50% silicon/insulator percentage. In particular,
the SHG response has been renormalized keeping fixed the silicon volume and
renormalizing the CaF2-vacuum thickness to the one of silicon. This because a
larger silicon region contributes to the signal with respect to the calcium fluoride
one (as I will show later).

6.4 Studied Systems and Convergence Tests

I have studied different systems, increasing respectively:

I) the vacuum thickness to avoid interaction among the replica,

II) the insulating CaF2 slab and

III) the silicon thickness.

I tested the convergence of the various systems looking at the IPA-SHG signal.
Because of its simpler equations, the independent-particle reveals to be the best
approximation for comparison among different systems. In IPA indeed, peaks
are uniquely identified by the two- and three-bands transition of Eq. (4.56) at
the corresponding denominator energies. On the contrary, once LF or excitonic
effects are introduced, transitions at different energies are mixed both in the
second-order Dyson equation (Eq. (3.31)) and in the final response Eq. (4.126)

where χ
(2)
ρρρ is further convoluted with three dielectric functions at different fre-

quencies. One loses the direct peak-transition correspondence and consequently
the identities of the peaks. Therefore, peaks close to the same energies can have
different origins while going beyond IPA.16 IPA reveals then the best choice for
comparison among different structures while testing convergence.

In the particular case of testing the thickness of the silicon slab, also the
scissor operator correction to the DFT energies has to be taken into account.
Indeed for silicon, the quantum confinement effects due to the finite height of
the semiconductor opens the gap. As studied elsewhere [186], the gap opening
is different depending on the size of silicon and tends to the bulk value while
increasing its thickness. The different confinement hence reflects in a different
shift of the peaks position, that have to be corrected applying the SO correction.
In particular, the SO energy correction ∆ (cfr. Eq. (5.13)) has been taken to
reproduce the experimental gap of 2.4 eV at the Γ point [82].

16Moreover, in the particular case of the Si(111)/CaF2 interface, introduction of the LF
generally soften the spectra making less clear and more difficult to identify differences.
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For each of these systems I will then provide the convergence parameters of
the DFT and SHG calculations.17

6.4.1 Vacuum Convergence

Si(111)(3dl)/CaF2(4l)

I started from a system composed of 3 double layers (dl) of Si(111) and 4 layers
(l) of insulating CaF2, see Fig. (6.8). The total height of the cell is 50.3 Å.
The equilibrium configuration of the system has been obtained thorough a DFT
relaxation of the atomic positions with the Abinit code. The DFT convergence
parameters are:

1. Ecut represents the energy cutoff over the plane waves (i.e., the maximum
module of the G vectors). I have chosen this cutoff in order to converge
the total energy within 5 · 10−5%.

2. toldfe establishes the threshold value for DFT convergence. When the
difference of the total energy between two following step is smaller than
this value, the self-consistent KS cycle is considered to be converged.

3. k-grids; it gives the number of points along the three reciprocal-space di-
rections that define the grid over which the KS Hamiltonian is solved. The
grids here presented are all Monkhorst-Pack grids, centered in ( 12 ,

1
2 ,

1
2 ).

I considered a grid (N,N,M) to be converged once differences in the to-
tal energy between it and the finest one (N + 2, N + 2,M + 2) is below
7 · 10−5 %.18

4. tolmxf is the force threshold for the relaxation cycle. Only if the force
acting on each atom is below tolmxf relaxation is considered as converged.

5. toldff is the force threshold considered by Abinit while converging the
KS self-consistent cycle for the electronic density during the relaxation
procedure.

I have always performed a convergence test of the Ecut value and the k-grids,
testing also values beyond the desired accuracy in order to be confident of their
convergence. After the relaxation of the system with toldff, I have always
performed a DFT cycle in order to improve and better converge the electronic
density, choosing a more stringent toldfe threshold parameter. Using it directly
into the relaxation procedure, where numerous self-consistent DFT cycle are
performed, would have increase the computational effort without significantly
improving the ion dynamics. For the Si(111)(3dl)/CaF2(4l) system and the ones
presented in the following, I have adopted the parameters of Tab. (6.1).19

17Since nonlinear optical properties requires more accurate parameters then the linear ones,
I perform both the calculation with the same values converged for the SHG spectrum. Indeed
the linear response is a necessary ingredient to obtain the nonlinear one through the second-
order Dyson equation. Convergence of the latter implies necessary convergence of the former.
The linear quantities are given in output by 2light together with the nonlinear ones.

18Because of the different dimension along the z component M can be smaller than the
number of points along the x, y direction in reciprocal space.

19These values are over-converged for the smaller systems therefore revealed accurate also
for the bigger structures presented in the following.
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Figure 6.8: Si(111)(3dl)/CaF2(4l) B-type, T4 single interface system. The sil-
icon (yellow) and the calcium fluoride (respectively Ca in red and F in grey)
slabs are terminated both with H atoms (light-blue).

Ecut 100 Ha
toldfe 10−12 Ha
k-grid 8× 8× 1
tolmxf 5 · 10−5 Ha/bohr
toldff 5 · 10−6 Ha/bohr

.

Table 6.1: DFT parameters for the Si(111)/CaF2 systems.
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Figure 6.9: Band structure of the Si(111)(3dl)/CaF2(4l) interface along the
L− Γ−X − Γ path. The zero has been taken as the valence maximum.

The final structure is composed of ∼ 8.4 Å of CaF2 and ∼ 12.2 Åof Si.20 The
vacuum present into the cell is ∼ 30 Å. Afterwards, I have evaluated the band
structure of the system along the L−Γ−X −Γ special points path, Fig. (6.9).
It presents an indirect-gap of 0.92 eV at Γ−L and Γ−X and a direct gap at Γ
of 1.59 eV. The smalles direct transition take place at the L, X special points.

The IPA-SHG spectra has been obtained considering a scissor operatore
defined as ∆ = 0.81 eV, correcting the DFT gap at Γ in order to recover the
experimental one. The input density has been taken from the previous DFT
calculation. Due to the small energy range I am looking at (the experiment has
been performed in a 0.4 eV energy window) it is necessary to achieve an high
accuracy of the second-harmonic calculation. The tested converged parameters
used in the 2light code are reported in Tab. (6.2) whereas the IPA result is
presented in Fig. (6.10).

The silicon slab is smaller if compared with the insulating one (the vac-
uum plus the CaF2). Therefore, spectra have been normalized according to the
renormalization procedure presented in Appendix G.1.3 to the 50%/50% semi-
conductor/insulator ratio (as discussed in section 6.3.1) keeping the Si height
as reference. The same has been applied to all the other systems presented in
the following once VSi 6= VCaF2

+ Vvac.

Vacuum Convergence Test on Si(111)(3dl)/CaF2(4l)

The SHG response of the same system has been evaluated inserting a vacuum
of respectively 20 and 40 Å into the simulation cell. The DFT and SHG pa-
rameters used in the previous calculation (Tabs. 6.1, 6.2) demonstrated to be
converged even for these two systems. IPA-SHG responses of the three systems

20The height of a slab is evaluated from its surface (identified as the middle point between
the Si-H/Ca-H bond) and the interface (identified as the middle of the Si-Ca bond).
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IPA
npwwfn 2997
nband 90
lomo 34
npwmat 1
k-grid 1152
SO 0.81
domega 0.004
broad 0.013

Table 6.2: Parameters of the 2light calculation on Si(111)(3dl)/CaF2(4l). k-
grid indicates the number of random k-points used in the calculation to better
sample the first Brillouin Zone. I have applied a gaussian broadening (broad)
of 0.013 eV to the theoretical results.
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Figure 6.10: IPA-SHG spectrum of the Si(111)(3dl)/CaF2(4l) system with
30 Å of vacuum into the simulation cell.
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Figure 6.11: Comparison among the IPA second harmonic generation spectra
for the Si(111)(3dl)/CaF2(4l) with respectively 20 Å (blue curve), 30 Å (red
curve) and 40 Å (green curve) of vacuum into the simulation cell. The results
have not been renormalized.

are compared in Fig. (6.11) and the same spectra are reported in Fig. (6.12)
once an appropriate renormalization factor has been applied to make the three
systems coincide to a cell with a 50%/50% insulator/semiconductor ratio (the Si
height has been taken as reference). As can be seen 30 Å represents an accurate
choice of the height of the vacuum slab. It permits to avoid interference among
the Si and CaF2 surfaces of different replica in the SHG response. From now
on, all the following systems are constructed inserting 30 Å of vacuum on top
of the CaF2 slab.

6.4.2 Insulator Thickness Convergence

Si(111)(6dl)/CaF2(4l)

I started from a system composed of 6 dl of Si(111) and 4 layers of insulating
CaF2; the height of the simulation cell is 59.6 Å (see Fig. (6.13)). Again,
the equilibrium configuration of the system has been obtained through a DFT
relaxation of the atomic positions with the DFT convergence parameters of
Tab. 6.1. The total thickness of the silicon slab is ∼ 17.7 Å and the one of
the insulating CaF2 is ∼ 12.2 Å. In Fig. (6.14) is plotted the band dispersion
along the L− Γ−X − Γ path. The systems present an indirect gap of 0.70 eV
between the Γ and L points and a direct gap of 1.14 eV at the L and X points.
The DFT-LDA direct gap at Γ of 1.47 eV in the following SHG-IPA calculation
corrected through a scissor operator of ∆ = 0.93 eV to recover the experimental
value. The converged SHG parameters are reported in Tab. (6.3).

The same calculation has been performed on the system where the insulat-
ing slab has been doubled up to 21.6 Å of thickness (i.e. 7 layers of calcium
fluoride). The height of the cell has been consequently increased to 68.8 Å and
the geometry has been relaxed with the DFT parameters of Tab. 6.1. For com-
pleteness the band structure has been reported in Fig. (6.15). The converged
SHG parameters are reported in Tab. (6.3).

The two spectra are compared in Fig. (6.16), where the Si(111)/CaF2(7l)
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Figure 6.12: Comparison among the IPA second harmonic generation spectra
for the Si(111)(3dl)/CaF2(4l) with respectively 20 Å (blue curve), 30 Å (red
curve) and 40 Å (green curve) of vacuum into the simulation cell. The results
have been renormalized to a simulation cell composed of an equal amount of
insulator and semiconductor material, keeping the silicon thickness as reference.

Figure 6.13: Si(111)(6dl)/CaF2(4l) system (left) and Si(111)(6dl)/CaF2(7l) sys-
tem (right). The silicon (yellow) thickness is fixed whereas the calcium fluoride
(respectively Ca in red and F in grey) slab is varied. Both the surfaces are
terminated with H atoms (light-blue).
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Figure 6.14: Band structure of the Si(111)(6dl)/CaF2(4l) interface along the
L− Γ−X − Γ path. The zero has been taken as the valence maximum.
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Figure 6.15: Band structure of the Si(111)(6dl)/CaF2(7l) interface along the
L− Γ−X − Γ path. The zero has been taken as the valence maximum.
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(4l) (7l)
npwwfn 2997 3989
nband 105 120
lomo 34 55
npwmat 1 1
k-grid 960 960
SO 0.93 0.93
domega 0.004 0.004
broad 0.013 0.013

Table 6.3: Parameters of the IPA 2light calculation on Si(111)/CaF2(4l) and
Si(111)/CaF2(7l) systems.
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Figure 6.16: Comparison of the IPA-SHG spectra for the Si(111)(6dl)/CaF2(4l)
system (blue straight line) and the Si(111)(6dl)/CaF2(7l) system (red dashed
line). doubling the thickness of the insulating slab the spectra is almost unaf-
fected.

response has been renormalized to the volume of the Si(111)/CaF2(4l) system.

They agree within a good accuracy. The peaks of both the systems have the
same energy positions and the shape of the two spectra coincide. This shows
that only the first interface layers of the CaF2 contributes to the interface SHG
optical signal. Adding new insulator layers will introduce bulk states that are
far from the energy gap (calcium fluoride possesses an energy gap of about 8 eV
for the used pseudopotentials). Because of the inversion symmetry they do not
contribute to the SHG spectrum. Moreover, already for the linear optics where
the transition are allowed, they enter only in the high part of the spectrum,
far from the studied energies because of the large energy gap of CaF2. In
conclusion, the CaF2 after the first layers does not enter in the interface SHG
signal. Adding new states does not modify the response. This is due to its
transparency that makes it behave as the overhanging vacuum, justifying the
assumption of considering vacuum and CaF2 as an unique transparent insulating
slab.

From now on I will consider only four layers of CaF2.
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6.4.3 Semiconductor Thickness Convergence

As done for CaF2, I have studied the active region of silicon contributing to the
interface SHG response. Silicon should give the most important contribution to
the spectrum with respect to CaF2. Its states are indeed close to the energy gap,
describing transitions in the low energy part of the optical signal. Moreover, the
effects of the interface propagates deep in the volume. This can be se from the
relaxation of the layers beyond the interface. Whereas CaF2 is almost unaffected
and achieve soon the bulk geometry, the distance among the first Si layers is
reduced close to the interface and increases progressively converging after the
first four double layers to the bulk configuration. One expects hence that all that
region, where the centro-symmetry is lost, originates the SHG process. The high
sensitivity of SHG to the symmetry can even go deeper into the substrate being
related to the electronic configuration (i.e. the deformation of the electronic
orbitals) more than to the nuclei geometry. As a consequence silicon thickness
has to be increased until the bulk configuration is recovered. This define the
active region of silicon.

The surface, as a symmetry-broken region, can contribute to the final SHG
process. It becomes then mandatory to keep the same configuration (i.e., the
same surface SHG-signal) in order identify and distinguish it from the interface
spectrum, as will be later presented in section 6.5. Therefore, each time I
increase the cell, I add 3 double layers of silicon, that correspond to the Si(111)
unit of repetition keeping the same surface configuration.

Si(111)(9dl)/CaF2(4l)

I keep ∼ 12.2 Å of CaF2 increasing the Si thickness up to 9 double layers achiev-
ing a semiconducting slab of 27.0 Å (for a total height of 68.9 Å of the simulation
cell). The parameter of the DFT relaxation are the ones of Tab. 6.1. Fig. (6.17)
shows the relaxed geometry while Fig. (6.18) shows the band structure of the
system. The relaxation do not modify anymore the interface and surface ge-
ometry. That is, the distances among the silicon layers forming these regions
is unchanged. All the new Si inserted into the cell increases then the bulk slab
inside the semiconductor i.e., the geometry of the interface and the surface are
both converged within 9dl-27.0 Å of silicon.

Whereas the maximum of the valence band (HOMO) continues to be posi-
tioned at the Γ point, the minimum of the conduction band is close to the X
point slightly shifted. The system presents an indirect gap of 0.60 Å whereas the
optical gap is still at the X and L points, with a value of 1.12 Å. The DFT-LDA
direct gap at Γ of 1.41 eV has been then corrected introducing a scissor operator
of ∆ = 0.99 eV to the whole band structure. The converged SHG parameters
are given in Tab. 6.4 and the renormalized spectra is reported in Fig. (6.19).

Si(111)(12dl)/CaF2(4l)

The system has been then increased to 12 double layers of silicon, obtaining a
thickness of 36.3 Å and a simulation cell height of 78.1 Å. Relaxing the system
after the introduction of 3dl of bulk Si inside the semiconductor, I have verified
that the maximum force acting on the ions is already below the force-threshold of
tolmxf= 5·10−5 Ha/bohr, without performing any relaxation cycle. Again, the
DFT parameter are the ones of Tab. 6.1, whereas in Fig. (6.17) and Fig. (6.20)
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Figure 6.17: Si(111)(9dl)/CaF2(4l) system (left) and Si(111)(12dl)/CaF2(4l)
system (right). The silicon (yellow) thickness is increased while the calcium
fluoride (respectively Ca in red and F in grey) is is kept fixed. Both the surfaces
are terminated with H atoms (light-blue).
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Figure 6.18: Band structure of the Si(111)(9dl)/CaF2(4l) interface along the
L− Γ−X − Γ path. The zero has been taken as the valence maximum.



108 CHAPTER 6. THE SI/CAF2 INTERFACE

1.8 2 2.2 2.4 2.6 2.8
E (eV)

0

250

500

750

1000

1250

|χ
(2

) zz
z 
| (

pm
/V

)

Si (9 dl)/CaF2

Figure 6.19: IPA second harmonic generation spectra for the
Si(111)(9dl)/CaF2(4l) system. The spectrum has been normalized to
50%/50% silicon/insulator ratio.

9 dl 12 dl 15 dl
npwwfn 3989 3989 4493
nband 110 115 130
lomo 45 55 60
npwmat 1 1 1
k-grid 960 640 608
SO 0.099 1.03 1.065
domega 0.004 0.004 0.004
broad 0.013 0.013 0.013

Table 6.4: Parameters of the IPA 2light calculation on Si(111)(9dl)/CaF2,
Si(111)(12dl)/CaF2 and Si(111)(15dl)/CaF2 systems.

they are reported respectively the geometry and the band structure of the sys-
tem.

The indirect gap is given by the same HOMO-LUMO transition of the
Si(111)(9dl)/CaF2(4l) system, with a value of 0.55 eV. The DFT-LDA opti-
cal gap at X reads 1.11 eV whereas the one at the Γ points is equal to 1.37 eV.
In the optical simulation I have therefore adopted a scissor operator identified
by ∆ = 1.03 eV. The others SHG parameters are listed in Tab. 6.4 and the
spectrum is reported in Fig. (6.21).

Si(111)(15dl)/CaF2(4l)

The last studied system is the single interface of Si(111)/CaF2 with 15 double
layers of silicon, for a total thickness of 45.6 Å of the semiconductor, 12.2 Å of
CaF2 insulator, 30 Å of vacuum and a simulation cell of 87.4 Å height (see
Fig. (6.22))

The maximum force acting on the ions are below the force-threshold of
tolmxf= 7 · 10−5 Ha/bohr. For the self-consistent DFT cycle the parameter of
Tab. 6.1 demonstrated to be sufficiently accurate accordingly to the total energy
threshold of 5 · 10−5% chosen in section 6.4.1. Bigger k-grids or values of Ecut
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Figure 6.20: Band structure of the Si(111)(12dl)/CaF2(4l) interface along the
L− Γ−X − Γ path. The zero has been taken as the valence maximum.
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Figure 6.21: IPA second harmonic generation spectra for the
Si(111)(12dl)/CaF2(4l) system. The spectrum has been normalized to
50%/50% silicon/insulator ratio.
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Figure 6.22: Si(111)(15dl)/CaF2(4l) system (left). On the right is shown the
interface region and the two surfaces.

give rise to corrections that are below that value. The geometrical configuration
at the interface is in good agreement with the atomic distances measured by
Tromp et al. [88].

The direct gap at Γ (Fig. (6.23)) measures 1.335 eV, consequently the scissor
operator has been chosen as ∆ = 1.065 eV. The others SHG parameters are
listed in Tab. 6.4. Since the insulating silicon reached the same height of the
CaF2 plus vacuum volume, the signal does not require to be renormalized. The
spectrum is shown in Fig. (6.24) and the convergence parameters are listed in
Tab. (6.4).

Comparison of the results

In Figs. (6.25-6.28) the second harmonic spectra of the different single-interface
system presented in section 6.4.3 are compared. Convergence of the spectra,
as seen in 6.4.2, is mainly motivated by the position of the main peaks and by
the overall shape of the spectra in the interesting energy range. Therefore, the
scissor operator revealed necessary in order to correct the DFT-LDA underes-
timation of the quasi-particle gap, positioning at the correct energy value the
peaks arising from the resonant transitions.

In order to make clearer the comparison among the systems, I plotted only
two systems at a time. As can be seen in Fig. (6.27), already at 36.3 Å of silicon
(12dl) there is convergence in the shape of the spectra with respect to the former
9dl system.

The form of the peaks around 2.4 eV (the energy of the experimental mea-
surements) becomes more defined and the SHG spectra is well converged. How-
ever, there is an important structure present both in the 9dl, 12dl systems at
about [1.8÷ 1.9] eV that is decreasing and disappears only when 15dl are con-
sidered. This big resonance arises from the bottom silicon surface, as will be
shown in the next section 6.5 and as obtained in previous works presented in
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Figure 6.23: Band structure of the Si(111)(15dl)/CaF2(4l) interface along the
L− Γ−X path. The zero has been taken as the valence maximum.
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Figure 6.24: IPA second harmonic generation spectra for the
Si(111)(15dl)/CaF2(4l) system.
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Figure 6.25: Comparison of the IPA second harmonic generation spec-
tra between the Si(111)(3dl)/CaF2(4l) (blue straight line) and the
Si(111)(6dl)/CaF2(4l) (red dashed line) systems.
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Figure 6.26: Comparison of the IPA second harmonic generation
spectra between the Si(111)(6dl)/CaF2(4l) (red dashed line) and the
Si(111)(9dl)/CaF2(4l) (green continuous line) systems.

literature [70].21 Consequently I have chosen the Si(111)(15dl)/CaF2(4l) system
as the converged structure, where the surface contribution becomes negligible
with respect to the interface signal that dominates. The active silicon region
beyond the interface demonstrated to go deep into the substrate, more than
what suggested by the structure relaxation that involves the first 3-4 double
layers underlying the interface.

21Ref. [70] evaluates the contribution of an monohydride-terminated Si(111)(1×1)-H surface
and the theoretical result corrected with a scissor operator shows an analogous peak at about
3.8 eV for the outgoing signal i.e., 1.9 eV for the input laser. This is exactly the peak found in
our calculation. They found another peak at higher energy (∼2.25 eV), but in our system that
structure is suppressed because of the presence of the interface and the different geometry, as
will be shown later.
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Figure 6.27: Comparison of the IPA second harmonic generation spec-
tra between the Si(111)(9dl)/CaF2(4l) (green continuous line) and the
Si(111)(12dl)/CaF2(4l) (magenta dashed line) systems.
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Figure 6.28: Comparison of the IPA second harmonic generation spec-
tra between the Si(111)(12dl)/CaF2(4l) (magenta dashed line) and the
Si(111)(15dl)/CaF2(4l) (light-blue continuous line) systems. The two spectra
are converged in the energetic region of the interface (shaded area). The sur-
face peak at about 1.9 eV is vanishing with respect to the interface signal that
dominates.
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Figure 6.29: Energy-gap band structure for the Si(111)(3dl)/CaF2 system (left).
The projected density of states has been plotted (right) for the interface Ca
(blue continuous line), Si (light-blue continuous line) atoms and the surface
Ca (orange dashed line), Si (red dashed line) atoms. Silicon surface states are
present into the energy gap.

6.5 Surface Signal

As observed in the previous section (Sec. 6.4.3), the two surfaces that appears
in the simulation cell can have a proper SHG signal that mix with the one
characteristic of the interface. Looking a the density of states for the CaF2

hydrogenated surface (see Fig. (6.29)), one does not expect it to contribute
to the SHG spectra at these low energies being far away from the considered
energy. On the contrary, Si surface states enters directly in the gap region
(and determines the HOMO state at X, the optical gap), and their contribution
cannot be neglected.

Consequently further analysis should be performed to evaluate the contri-
bution of the Si(111)-H surface. I studied the Si(111) slabs passivated on one
surface with the H atoms as for the interface case, and on the other side with P
and As atoms that saturates the dangling-bonds of silicon. I have then increased
the Si thickness looking to the surfaces SHG spectra and their behavior. These
do not coincide with real observed surface reconstruction, but are simple and
useful for our purpose of determining the spurious features due to the presence
of the Si(111)-H surface in our simulation cell.

H/Si(111)/As systems

The systems have been constructed in the usual way, substituting the topmost
Si layer with an As atoms that bonds with its three dangling-bonds to the three
underlying Si atoms. A vacuum height of 30 Å has been introduced into the
simulation cell while the (x, y) lattice parameters have been taken to be the
same of the former calculation. I have considered 6, 9 and 12 double layers of
Si (see Fig. (6.30)).

Convergence parameter for the DFT calculation are presented in Tab. (6.5) I
have performed both a relaxation of the cell parameter and a final self-consistent
calculation of the ground state density of the system. In the silicon slab there
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Figure 6.30: H/Si(111)(6dl)/As (left) H/Si(111)(9dl)/As (center) and
H/Si(111)(12dl)/As (right) systems. The silicon (yellow) thickness is increased.
The bottom surface is terminatd with hydrogen atoms (light-blue) while the
upper surface is terminated with As atoms (white).

Ecut 60 Ha
toldfe 10−12 Ha
k-grid 9× 9× 1
tolmxf 5 · 10−5 Ha/bohr
toldff 5 · 10−6 Ha/bohr

Table 6.5: Parameters of the DFT Abinit relaxation and following self-
consistent density calculation for the H/Si(111)/As systems.
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Figure 6.31: Band structure of the H/Si(111)(6dl)/As interface along the L −
Γ−X − Γ path. The zero has been taken as the valence maximum. The band
dispersion around the gap is different with respect to the corresponding interface
system (Fig. (6.14)).

are new surface states originating from the Si-As bond that modify the gap
states dispersion, whereas the interface ones are not present. As an example,
the optical gap due to band-folding is positioned at Γ (see Figs. (6.31-6.33)) con-
trary to what has been observed for the interface systems. As a consequence,
the energy gap is no more the one of the interface for which the direct transition
at Γ has been experimentally measured, and the SHG gap opening should be
differently evaluated. Considering that the silicon quantum confinement is char-
acteristic of the height of the silicon slab only, I decided to adopt the same SO
correction of the corresponding Si(111)/CaF2 interfaces. The SHG parameters
for the H/Si(111)(6dl)/As, H/Si(111)(9dl)/As and H/Si(111)(12dl)/As systems
are reported in Tab. (6.6) whereas the spectra are compared in Fig. (6.34).
Convergence is achieved at 12 double layers of silicon. One finds the same struc-

6dl 9dl 12dl
npwwfn 2489 2489 2493
nband 50 70 90
lomo 10 15 20
npwmat 1 1 1
k-grid 576 800 640
SO 0.93 0.99 1.03
domega 0.004 0.004 0.004
broad 0.013 0.013 0.013

Table 6.6: Parameters of the IPA 2light calculation on H/Si(111)(ndl)/As
systems.
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Figure 6.32: Band structure of the H/Si(111)(9dl)/As interface along the L −
Γ−X − Γ path. The zero has been taken as the valence maximum.
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Figure 6.33: Band structure of the H/Si(111)(12dl)/As interface along the L−
Γ−X − Γ path. The zero has been taken as the valence maximum.
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Figure 6.34: Comparison of the IPA second harmonic generation spectra be-
tween the H/Si(111)/As systems composed of 6 (blue straight line) 9 (red dashed
line) and 12 double layers of silicon (green dashed-dotted line). The spectra are
well converged already for 9dl. The peak at about 1.9 eV is consequently a
characteristic of the silicon H-terminated surface.

ture at about 1.9 eV of the corresponding Si(111)/CaF2 systems. In the present
case the interface states are missing, substituted by a donor As atoms. The
Si/As surface does not present dangling bonds and the Si surface is terminated
with As atoms that links to the underlying three Si atoms. In the interface
system instead, the Si slab is terminated with a unique Si-Ca bond. Therefore,
the similarities between the two systems should arise from the hydrogenated
Si(111) surface that, in conclusion, is responsible of the 1.9 eV peak.

H/Si(111)/P systems

The same test has been performed considering a P atom instead of As to satu-
rate the surface silicon dangling-bonds. The bottom surfaces is again hydride-
terminated Si(111) and I have considered 6 and 9 double layers composing
the silicon slab (see Fig. fig:cellaSiP). Convergence parameter of Tab. (6.5)
demonstrate to give results within the desired accuracy. In Figs.(6.36,6.37) are
shown the band structures of the two systems. The SHG parameters for the
H/Si(111)(6dl)/P and H/Si(111)(9dl)/P calculations are reported in Tab. (6.7)
and the corresponding IPA-SHG spectra are shown in Fig. (6.38). Both of
the systems show the same surface peak at about 1.9 eV although in this case
H/Si(111)(6dl)/P is still converging. For my purpose the 9 double layers struc-
ture is sufficiently converged to compare with the previous results.

A comparison among the Si(111)(12dl)/CaF2 and the H/Si(111)(12dl)/As
and H/Si(111)(9dl)/P SHG spectra is shown in Fig. (6.39). The peaks around
1.9 eV is present in all the systems confirming to be characteristic of the hydro-
genated surface, whereas the structures at higher energies are dependent on the
topmost termination of silicon (i.e., the interface or the P/As surfaces).

The higher intensity of the interface signal around 2.4 eV shows that the
interface signal is dominating over the surface response. This is clearer in
Fig. (6.28) where increasing the Si thickness up to 15 dl the interface peaks
are almost constant whereas the surface signal decrease. Therefore I consider
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Figure 6.35: H/Si(111)(6dl)/P (left) H/Si(111)(9dl)/P (right). The silicon (yel-
low) thickness is increased. The bottom surface is terminatd with hydrogen
atoms (light-blue) while the upper surface is terminated with P atoms (white).
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Figure 6.36: Band structure of the H/Si(111)(6dl)/P interface along the L −
Γ−X − Γ path. The zero has been taken as the valence maximum.
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Figure 6.37: Band structure of the H/Si(111)(9dl)/P interface along the L −
Γ−X − Γ path. The zero has been taken as the valence maximum.

6dl 9dl
npwwfn 2489 2489
nband 50 70
lomo 10 15
npwmat 1 1
k-grid 960 800
SO 0.93 0.99
domega 0.004 0.004
broad 0.013 0.013

Table 6.7: Parameters of the IPA 2light calculation of the H/Si(111)(6dl)/P
and H/Si(111)(9dl)/P systems.
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Figure 6.38: Comparison of the IPA second harmonic generation spectra be-
tween the H/Si(111)/P systems composed of 6 (blue straight line) and 9 (red
dashed line) double layers of silicon. Again, the peak at about 1.9 eV reveals to
be characteristic of the Si/H surface.

IPA LF-RPA EXC
npwwfn 4493 4993 4993
nband 130 130 130
lomo 60 60 60
npwmat 1 11 11
k-grid 608 608 608
SO 1.065 1.065 1.065
alpha 0.0 0.0 -0.22355
domega 0.004 0.004 0.004
broad 0.013 0.013 0.013

Table 6.8: Parameters of the IPA and LF-RPA 2light calculation on
Si(111)(15dl)/CaF2(4l) system. Maximum values of npwmat have been tested
up to 57 G-vectors per dimension of the χ(i) matrices. Variations from npw-
mat= 11 demonstrated to be negligible in the present energy range.

the SHG signal of the Si(111)/CaF2 interface to be converged with a silicon
thickness of 45.6 Å and I chose the Si(111)(15dl)/CaF2(4l) system for further
analysis of the second harmonic generation process in the Si/CaF2 interface.

6.6 Analysis of the SHG Spectrum

Once convergence in the IPA spectrum is achieved, I have studied the second-
harmonic generation process at the Si(111)/CaF2 interface introducing both
the LF effects in the random phase approximation and the excitonic effects us-
ing the alpha-kernel according to the formalism and the equations presented
in chapter 5.2. The SHG convergence parameter for the calculations are pre-
sented in Tab. (6.8). In Fig. (6.40) I report the calculated SHG spectra together
with experimental data [82]. The experimental spectrum [82], originally in ar-
bitrary units, has been reproduced for an easy comparison with our theoretical
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Figure 6.39: Comparison of the IPA second harmonic generation spectra of
the Si(111)(12dl)/CaF2 interface (blue stright line) and the response arising
from the 12dl silicon slab passivated with As (green dashed-dotted line) and
the 9dl slab whose upper surface has been passivated with P (red dashed line).
The latter has been normalized to the silicon thickness of 12 dl for consistency
in order to better compare with the other systems. The low energy peak is
characteristic of the Si/H surface shared among the three structures, whereas
the differences above 2.1 eV arise from the different termination of the silicon
top-surface.

results. In the IPA response the energy position of the three main experimental
peaks (2.26, 2.33 and 2.42 eV) are recovered but their relative intensities are
wrong. In particular, the intensity of the second peak is strongly overestimated.
When LF are included the energy position of the peaks remains practically un-
changed while their height is in general diminished in this low energy region
of the spectrum. The same trend has been observed for SiC and GaAs bulk
semiconductors [72]. Nevertheless, with respect to these homogeneous systems,
for Si/CaF2 interface the SHG reduction and hence its dependence on LF ef-
fects is more important because of the discontinuity region. This behavior (i.e.,
the significant influence of LF on the spectrum) also occurs in the linear op-
tic outcomes but with some noticeable differences. In fact, while IPA and LF
absorption spectra almost coincide in that energy range, apart for a constant
factor (Fig. (6.41)), IPA and LF SHG spectra present a different intensity mod-
ulation for each peak. This is the consequence of the specific local environment
that surrounds the interface discontinuity where the SHG process is generated.
In particular, in IPA the SHG peak at 2.33 eV seems to be the most important
feature in the spectrum while with the inclusion of the LF this peak is drastically
diminished with respect to the others.

Moreover the peaks at 2.26 and 2.42 eV substantially keep their relative
intensity with the inclusion of the LF which also contributes to flatten out the
peaked structure above 2.5 eV. Comparing with the experiment it is evident
that only including the LF effects one can obtain a good agreement in terms of
both energy positions and relative intensity of the peak structures.
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Figure 6.40: Second-harmonics generation spectra (χ
(2)
zzz) calculated in IPA (blue

line) and including LF (orange line). The experimental SHG spectrum from [82]
is also reported (black line and circles) on the lower part of the graphic.
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Figure 6.41: Absorption spectra (Im(ǫM,zz)) in the z direction calculated in IPA
(blue continuous line) and with inclusion of LF effects (orange continuous line).
For a clearer comparison the LF curve has been multiplied by a factor of 10
(orange dashed line).
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Figure 6.42: Absorption spectra (Im(ǫM,zz)) in the z direction calculated in
IPA (blue continuous line) and with inclusion of LF effects (orange continuous
line). The energy range goes up to 7 eV including silicon bulk transitions. The
depolarization effect caused by the sharp discontinuity shifts the IPA intensity
at energies below the studied range. For a clearer comparison the LF curve has
been multiplied by a factor of 10 (orange dashed line).
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Figure 6.43: Absorption spectra (Im(ǫM,xx)) evaluated with IPA (blue-
continuous line) and with the inclusion of local-fields effects (orange-dashed
line). The IPA curve of the Im(ǫM,zz) component has been reported for com-
parison (light-blue-continuous line).
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6.6.1 Local Field Effects

In our approach, the effects of the crystal local fields enter through ǫM of

Eq. (4.126) and through χ
(2)
ρρρ obtained from the second-order Dyson equation

(Eq. (3.33)). In order to estimate the magnitude of these effects I have per-
formed a comparative study with the linear absorption spectroscopy which is
proportional to the imaginary part of ǫM (Eq. (4.121)).

The linear optical-absorption spectra for light polarized along the z direction
are shown in Fig. (6.42). The presence of the LF strongly influences the linear
optical properties of the system. In the IPA spectrum, at energy above ∼3.5
eV the silicon-bulk transitions start to be optically allowed and are much more
numerous than the ones that take place at the interface, due to the different
sizes of the two competing regions. As a result the latter are completely cov-
ered up. This becomes clear comparing e.g. the intensity of the Independent
Particle Approximation (IPA) response (Fig. (6.42)) in the low energy part of
the spectrum (i.e. where the bulk signal is absent, around 3 eV) with the total
signal around 5 eV (where the curve is the sum of the bulk and the interface
contributions): the former is 2 orders of magnitude smaller.

As a consequence, one can directly compare the linear and non-linear optical
behaviors of the interface in the low part of the energy spectrum (Fig. (6.41))
only. LF effects strongly influences the absorption spectra in this energetic
region: the whole intensity is lowered by about 10 times with respect to the
independent particle response. However, the main features of the spectrum like
the position of the peaks, the shape and the relative intensities are only slightly
modified.

However, this is not an unexpected result. In a finite silicon structure (like
the silicon slab of our calculations) or close to a surface/interface, the response
at low energies along the confined direction is practically zero due to a depolar-
ization effect [145, 187–189] while the main bulk peaks (i.e. the critical point
energies E1 and E2) are shifted to higher energies. This effect is not present
in the IPA calculation that cannot describe rapid variation of the potential in
small regions and emerges when LF are introduced. Fig. (6.42) shows in fact the
IPA bulk structure shifted22 even out of the range of the calculation for the LF
response. This depolarization effect arising from LF has already been studied
in literature on similar Si-based systems like nanowires [145] surfaces [189] and
nanodots [187, 188].

As suggested in Ref. [145], it is possible to compare and study their effects on
the dielectric function along a direction where the system is infinite (in our case
x or y). Here the system is homogeneous and one finds (Fig. (6.43)) that LF are
almost negligible and the spectrum is not modified by the depolarization effect,
as explained in Ref. [145]. As a consequence, this drastic intensity reduction is
characteristic of the discontinuous direction z and negligible for the other more
homogeneous components ǫM,xx and ǫM,yy (Fig. (6.43)).

These LF effects start to become relevant specifically for the calculation of

the SHG coefficient χ
(2)
M zzz (as seen in Fig. (6.40)) i.e., when light is polarized

along the z direction where the system is discontinuous. Similar to ǫM , one
finds that their relevance is not true in general. Fig. (6.44) shows the SHG

22This is not a shift of the transition, hence a real shift of the IPA peak. It coincides with a
remodulation of the oscillator strength that shifts the intensities (and consequently the peak)
at higher energies.
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Figure 6.44: SHG spectra of the (χ
(2)
M xxx) component calculated in the indepen-

dent particle (IPA, blue line) and local fields (LF, orange line) approximations.
LF effects are negligible along the homogeneous x, y directions.

χ
(2)
M xxx = χ

(2)
M yyy spectra for light polarized in the x direction evaluated both

in the independent particle approximation and introducing local fields. It is
immediate to notice that because of the interface the signal does not vanish,23

then the effects of LF demonstrated to be negligible with respect to IPA accu-
racy. In fact, along this direction the system is continuous and homogeneous
and the SHG shares the same behavior of the linear response.

Analysis of the Local Field Effects

A direct study of the transitions contribution to the SHG process is possible
only at the IPA level because, accordingly to our formalism, when LF are intro-

duced χ
(2)
zzz is obtained through a second-order Dyson equation (Eq. 4.126) that

mix linear and non-linear coefficients at different frequencies. Moreover, in the
velocity-gauge several terms mixing two- and three-bands transitions contribute
to the final response. As a consequence, it is not possible to identify particular
transitions contributing to the final spectrum. Considering the length-gauge in-
stead, Eq. (4.56) takes a simpler form in terms of three-states excitations and
one can distinguish between transitions where the intermediate electronic state
is a valence state (vvc transition) or a conduction one (vcc transition). The
Si(111)/CaF2 interface however show that the three major peaks of the IPA
response contain both the two components Fig. (6.45). Since both contribute
with the same order of magnitude to the main optical SHG peaks, it is not
possible to relate the drastic decrease of the IPA peak at 2.33 eV when LF are
included, with the suppression of a particular set of transitions, or the different
nature of that peak.

Consequently, I developed another analysis method in order to understand
which are the quantities that are mostly affected by the introduction of LF and

23For a pure hexagonal symmetry (as the one of Si(111)) the SHG component χ
(2)
M xxx

=

χ
(2)
M yyy is identically zero because of symmetry selection rules (see App. F.1). In this case

the interface breaks the symmetry and even these terms can exhibit a non-vanishing value.
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Figure 6.45: SHG-IPA spectra of the (χ
(2)
M zzz) component calculated in the

length-gauge. The VCC transitions (blue continuous line) and the VVC ones
(red dashed line) signals are compared. Both the signal contributes to the main
peaks of the total IPA spectrum (grey area).

which are responsible of the differences between the linear and non-linear cases.
From Eq. (4.126) its is clear that the final response depends on the product of
the dielectric function ǫM,zz with the density response function χ2

ρρρ.

From Figs. (6.41) and (6.42) it is evident that going beyond IPA the dielec-
tric function is generally diminished by one order of magnitude, whereas the
consequent decrease (about 10−3 arising from the three dielectric function that
appear in Eq. (4.126)) is not observed in the SHG-LF result. As consequence

LF produce a great enhancement of χ
(2)
ρρρ with respect to IPA that compensate

the reduction.

Secondly I have investigated the non-uniform decrease of the SHG-IPA peaks
when LF are included. It can be consequence of both the variation of the

dielectric functions ǫLL
M (z, ω), ǫLL

M (z, 2ω) or of χ
(2)
ρρρ(z, z, z, ω, ω). Therefore, I

combined the different results:

(A) substituting in Eq. (4.126) the dielectric function ǫLL
M as obtained within the

independent particle approximation, while including the local-field effects

in the χ
(2)
ρρρ description (Fig. (6.46)).

(B) Studying the contribution of the single ǫLL
M (z, ω) or ǫLL

M (z, 2ω) quantities.
The latter indeed contains frequencies where the bulk silicon is optically
active in IPA and because of the depolarization effects LF drastically lower
these structures (cfr. Fig. (6.42)). Results are reported in Fig. (6.47).

(C) In a similar way I have then evaluated the nonlinear optical spectra treating

χ
(2)
ρρρ at the IPA level, while including LF effects into the dielectric functions

(see Fig. (6.48)).

Comparison among these spectra and the ones of the IPA and LF calcula-
tion can give useful informations about the final form of the signal to which I
am interested. Fig. (6.46) (A) show that when ǫLL

M is threat at the IPA level,
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Figure 6.46: Comparison of the SHG (χ
(2)
M zzz) spectra obtained within the

IPA (blue line), including LF (orange line), and combining the IPA dielectric

function ǫM zz and LF-χ
(2)
ρρρ (red dashed line) in Eq. (4.126). The latter curve

is reported in arbitrary units (right hand-side scale). The curve recovers with
good agreement the LF spectrum.

the peak at 2.33 eV disappears while the other are less affected, and one al-
most recover the SHG-LF curve. Hence, one can conclude that the different

behavior of the linear response with respect to the SHG is contained in the χ
(2)
ρρρ

quantity. From Fig. (6.47) (B) it is evident that the suppression of the peak at
2.33 eV is not due to the almost uniform decrease of interface states in the LF
dielectric function (Fig (6.41)), neither to the shift of the bulk signal due to the
depolarization effect in silicon (Fig. (6.42)). This indicates that the response is
characteristic of the interface and is not enhanced by the presence of direct-bulk
transitions that are missing in the LF absorption spectra.24 The confirmation

is provided by Fig. (6.48) (C) where the ǫLL
M LF spectra combined with the χ

(2)
ρρρ

IPA curve recover the SHG-IPA result.
In conclusion it has been shown that interface local-field effects play an im-

portant role both for the linear as well as for the SHG spectrum, but the latter
is almost independent of the former. All the information about the modifica-

tions of the SHG curve are mostly contained in χ
(2)
ρρρ response function, since the

form of ǫM is almost unchanged and variations are small and slow with respect
to the SHG range. This highlights how, for inhomogeneous systems where the
potential undergoes rapid variations, the second-order density response func-

tions χ
(2)
ρρρ become the key quantity for the SHG process and LF effects become

predominant on the studied system.

6.6.2 Excitonic Effects

I have also studied the influence of the electronic effects on the interface SHG
signal. Excitons have been described accordingly to the alpha-kernel fLRC

xc

presented in section 5.2 Eq. (5.18). The value of the binding constant α has
been evaluated as in Eq. (5.19) from the static dielectric constant. The latter
is obtained from the trace of the dielectric function tensor in the random phase

24Countrary to the Si(111)/H surface signal (Ref. [70]) where the enhancement of the SHG
response has been shown to coincide with the E1, E2 bulk transitions.
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Figure 6.47: SHG (χ
(2)
M zzz) spectra obtained considering separately ǫM zz(ω),

ǫM zz(2ω) at the IPA and LF level of approximation (red dashed line) or vicev-

ersa (green dashed-dotted line). χ
(2)
ρρρ is taken in the LF-RPA, the results are

in arbitrary units (right hand-side scale). The IPA (blue line) and LF (orange
line) spectra are reported for comparison (left hand-side scale).
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Figure 6.48: Comparison of the SHG (χ
(2)
M zzz) spectra obtained within the IPA

(blue line), including LF (orange line), and combining the LF dielectric function

ǫM zz and the IPA-χ
(2)
ρρρ (red dashed line) in Eq. (4.126). The latter curve is

reported in arbitrary units (right hand-side scale). The curve recovers with good
agreement the IPA spectrum.
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approximation (i.e., including the LF correction of section 5.2):

ǫ∞ =
1

3
(ǫxx(ω = 0) + ǫyy(ω = 0) + ǫzz(ω = 0)) = 4.52

α = 0.81.
(6.7)

In Tab. (6.8) are presented the converged parameter of the alpha-SHG calcu-
lations. The spectra is presented in Fig. (6.49). The importance of excitonic
effects on the investigated Si(111)/CaF2 interface is very small when compared
to the LF one. Their contribution does not change at all the shape of SHG
spectrum as calculated with LF.

Analogous studies have been performed on bulk semiconductors (GaAs, SiC).
In particular in Refs. [72–74] using the same formalism and the serial version of
2light here adopted, they claim that only when one accounts for the excitonic
effects obtain a very good agreement with the experimental second-harmonic
generation spectrum. That consideration is explicitly related to a discussion on
those systems. In general, the importance of LF and excitons depends on the
physical nature of the system studied. LF carries out the information about the
inhomogeneity of the system. Therefore, their effects are expected to be more
important in the Si(111)/CaF2 which has a discontinuity at the interface, than
in bulk semiconductor (as GaAs).

From Fig. (6.49) is evident that the interface between Si and CaF2 makes
LF more important than excitons which contributes by just slightly and almost
rigidly increasing the spectrum intensity. Moreover, as a test, I also varied α
in a wider range of values as reported in Fig. (6.50). As can be seen, the role
of the excitons on this particular system consists in a uniform variation of the
general intensity of the system, that maintains unchanged the shape of the LF
curve. In comparison, the local-fields effects play a much more important role
modifying the form of the spectrum and smoothing in a selective way particular
peaks.

This result, compared with the previous studies on bulk systems [72–74] un-
derlines how the different physical nature of the systems determines the relative
importance of these two effects. In the present case the interface is responsible of
the SHG signal, making predominant the sharp variation of the potential in the
interface region i.e. the local-fields, with respect to others many-body effects.
This is an advancement in the comprehension of the SHG process, relating the
nature of the system to the physics behind the process in order to obtain a good
agreement with the experimental measurements.

6.7 Geometrical confirmation

Thanks to the knowledge of the systems acquired in the previous studies, as
a test I have considered the Si(111)/CaF2 interface in the B-type H3 config-
uration. I have considered 12 double layers of silicon and four layers of CaF2

with 30 Å of vacuum inside the simulation cell (see Fig. fig:cellaSiCaF2-H3).
This configuration has been chosen in analogy with convergence parameters of
T4 interface. In Fig. (6.52) is shown the converged SHG spectra (convergence
parameters are reported in Tab. (6.9)) where a scissor operator of 1.17 eV has
been applied in order to open the direct energy gap at Γ to the experimental
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Figure 6.49: Second-harmonics generation spectra (χ
(2)
zzz) calculated in IPA (blue

line), including LF (orange line) and excitonic effects (red line).
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Figure 6.50: Second-harmonics generation spectra (χ
(2)
zzz) including excitons con-

tribution for different values of the parameter α, starting from α = 0 i.e., the LF
curve (orange line) up to te value α = 1.4. The excitonic effects at the interface
increase the outgoing signal although not changing its from even augmenting
the electron-hole strength. For higher values of α the fLRC

xc kernel is no more a
good approximation.
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Figure 6.51: Si(111)(12dl)/CaF2(4l) system in the H3 configuration.

value of 2.4 eV as obtained from the band structure (Fig. (6.53)). It is imme-
diate to notice that neither IPA recovers the experimental data, nor LF that
completely smooth down the spectrum giving an almost uniform background.

This results, together with the significant agreement obtained for the T4
configuration, confirms the experimental investigations [76, 77] that attribute a
T4 B-type nature to the Si/CaF2 interface grown at temperature above 700◦C.

Conclusions

In conclusion, I have shown that an independent particle picture can give a
qualitative description of the SHG process in the Si/CaF2 interface, recover-

IPA LF-RPA
npwwfn 3999 3999
nband 124 124
lomo 40 40
npwmat 1 15
k-grid 912 912
SO 1.17 1.17
alpha 0.0 0.0
domega 0.004 0.004
broad 0.013 0.013

Table 6.9: Parameters of the IPA and LF-RPA 2light calculation on
Si(111)(12dl)/CaF2(4l) H3 system.
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Figure 6.52: SHG spectra of the Si(111)/CaF2 interface in the H3 geometry.

The (χ
(2)
zzz) component is calcualted in IPA (blue line) and including LF (orange

line). The experimental SHG spectrum from [82] is also reported (black line
and circles) on the lower part of the graphic.
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Figure 6.53: Band structure of the Si(111)/CaF2 interface in the H3 geometry
along the L−Γ−X−Γ path. The zero has been taken as the valence maximum.
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ing the main features (in terms of energy peak position) originated from the
anisotropies of the system. However, to match the spectral line shape of the
experiment, LF effects become essential. In fact, LFs strongly influence the
second-order nonlinear response close to the discontinuity region inducing a sig-
nificant redistribution of the intensity. I demonstrated that this redistribution is
largely more dramatic in nonlinear optical response than in the linear response.
For SHG the lowering of the intensities is selective and not homogeneous while
for absorption the shape of the spectrum is almost unchanged. My results have
far-reaching consequences beyond the specific interface I have studied. The mi-
croscopic induced polarization can have large and unpredictable effects on the
SHG process becoming essential for complex systems.



Chapter 7

Future Developments

Si/Ge Superlattices

In this chapter I will briefly introduce my work on the (Si)n/(Ge)n superlat-
tices. These are the preliminary results of a more detailed study that is, at the
moment, in progress.

Si/Ge are of interest because of the particular properties they can assume
in a superlattice structure. Actually, Because of quantum confinement it is
possible to design the band dispersion close to the energy gap obtaining inter-
esting electronic, optical and thermal-conductivity properties [190–193] Within
the optical studies, also the nonlinear SHG process has been experimentally in-
vestigated [91, 92, 194–198]. In particular, considering the superposition of an
equal amount of Si and Ge, if n (i.e., the number of Si and Ge layers) is even the
crystal is centrosymmetric and the SHG signal vanishes, while for odd period-
icity the nonlinear response is allowed and constructive interference among the
periodic interfaces should give an intense harmonic radiation as theoretically
predicted [21, 199, 200]. Further interest on these systems arise from the possi-
bility to nanostructure these superlattices into different shapes e.g. constructing
(Si)n/(Ge)n nanowires [93].

These structures are experimentally obtained with MBE technique and nowa-
days, thanks to the latest technological developments, high control of the geo-
metrical structure has been achieved and SHG has been measured [93, 196, 198]
This allows to growth high, defect-free multilayers. In the past only low pe-
riodicity has been obtained and the even/odd layering has not been observed
because of the growth errors (± 1 layer) that broaden the interfaces [195, 197].
Moreover, Zhang et al. [92] have observed, for superlattices grown on top of
a Si(001) surface, that once the germanium thickness is over the value n = 5
layers there is a great enhancement (Fig. 7.1), of about one orders of magnitude,
of the SHG response. This is due to the creation of nanometric V-shape misfit
stacking fault defects (see Fig. 7.2) that originate from the lattice mismatch
between Si and Ge.

Consequently, different kind of defects can be present and characterize the
SHG process. In my work I have first addressed the role of defects in the
(Si)n/(Ge)n superlattices, trying to relate the different intensity and the form
of the measured experimental spectra to their nature. In the future I will try
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Figure 7.1: Experimental measurements of the Second Harmonic reflected in-
tensity in (Si)n/(Ge)m systems. A great enhancement has been observed once
Ge thickness is over m = 5. (Reproduced from [92], Copyright c©1998 American
Institute of Physics).

Figure 7.2: A defect-free (Si)3/(Ge)3 system (top left) and a V-shape misfit in
(Si)5/(Ge)5 (top right) have been observed at TEM. (Reproduced from [92],
Copyright c©1998 American Institute of Physics).
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System Å
Si3/Ge3 8.334
Si4/Ge4 11.113
Si5/Ge5 13.893
Si7/Ge7 19.455

Table 7.1: Height of the Si/Ge superlattice structure, considering the thickness
of the Si slab plus the one of the Ge.

to compare the influence of other effects also, as the quantum confinement that
appears once the superlattice is cut in a nanowire shape as in [93]. In the
following some preliminary results are presented.

I have studied the (Si)n/(Ge)n superlattices varying n from 3 up to 9 con-
sidering odd values and the even value n = 4 for comparison. The simulation
cell C (X,Y,Z) for even-periodic system is obtained passing from the FCC cell
(x,y, z) to the tetragonal unitary cell:

C =





X = 1
2x+ 1

2y
Y = − 1

2x+ 1
2y

Z = z



 (7.1)

where z depends on the Si and Ge thicknesses. For odd-periodicity instead I have
used both the tetragonal cell and the triclinic one. The first one is non-primitive,
indeed two unitary cells of the Si/Ge slabs are required in order to recover the
periodicity along z. However, it reveals useful for ground state, band structure
and GW calculations to take advantage of its symmetries. The triclinic cell C′

is instead unitary, and reduce the computational cost of the optical calculations
when looking for independent or random k-points grid to better sample the
Brillouin zone: symmetries here are less important. The triclinic cell has the
same basis (x,y) but different third vector (that for simplicity I will call Z′

although it is no more perpendicular to the basis), so C′ becomes:

C =





X′ = 1
2x+ 1

2y
Y′ = − 1

2x+ 1
2y

Z′ = 1
2y + z



 (7.2)

The in-plane lattice parameter as been taken equal to 5.389 Å i.e., the one of
silicon being the systems I want to compare with [92] grown on top of a Si(001)
substrate. This is the lattice constant found for the pseudopotential used already
in the simulation of the Si(111)/CaF2. For germanium instead, I have adopted
the pseudopotential of [183] that has already been tested with success for linear
optics in Si/Ge nanowires. The perpendicular parameter instead has been fitted
with a Murnhaghan curve for each system, looking at the value that minimizes
the total energy. Their values are reported in Tab. (7.1). The studied structures
are reported in Figs. (7.3-7.4). I have relaxed the systems with n =3,4,5,7. The
thresholds values of the DFT calculation are the same of the previous Si/CaF2

systems, while the energy cutoff varies from 30 Ha for the smallest ones, up to
50 Ha for the Si7/Ge7. The band structure of the Si5/Ge5 system is shown as
an example in Fig. (7.5).

The SHG measurement is performed using afig:cellaDefA Ti:sapphire laser
with 100 fs pulses at the wavelength of 800 nm (1.55 eV) corresponding to
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Figure 7.3: Ball and stick representation of the Si3/Ge3 (left) and Si4/Ge4
system (right), silicon is represented by yellow-balls and Ge by violet ones.

Figure 7.4: Ball and stick representation of the Si5/Ge5 (left) and Si7/Ge7
system (right), silicon is represented by yellow-balls and Ge by violet ones.
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Figure 7.5: Band structure of the Si5/Ge5 superlattice along the X −Γ−R−Γ
path. The zero has been taken as the valence maximum.

the peak of the SHG response. The incident light is s-polarized and the ob-
served SH radiation is p-polarized As observed for the Si(111)/CaF2 system,
it is important to apply a correction to the underestimation of the DFT-LDA
band gap, otherwise the calculated spectra will be red-shifted with respect to
the experiment, with missing peak due to the calculation of a different zone
of the SHG spectrum. These corrections have been evaluated with a one-shot
G0W0 calculation at the Γ point. The convergence parameters and the values
of the quasi-particle energy gap are reported in Tab. (7.2). I have then studied
the SHG signal of the defect-free superlattice structures (Figs. (7.3-7.4)). Lo-
cal fields in this particular case revealed to be negligible and all the presented

data are calculated in the IPA. I evaluated the tensor component χ
(2)
xyz in the

tetragonal symmetry. It is given by:1

χ(2)
zxy = − i

2
ǫLL
M

(

x+ y√
2
, 2ω

)

ǫLL
M (x, ω)ǫLL

M (z, ω)

·χ(2)
ρρρ

(

x+ y√
2

+ z,
x+ y√

2
, z, ω, ω

)

.

(7.3)

The converged spectra have been evaluated up to 6.0 eV (Fig. 7.6). The mea-
sured intensity is almost the same for all the spectra, as observed in Ref. [92,
195, 197]. Hence the increase of the SHG signal at n ≥ 7 does not originate
from the higher different periodicity or the increasing of the separation between
the Si/Ge interfaces, but is characteristic of the creation of large planar defects
inside the material as suggested by [92].

1In the following I do not take into account the real formula for the reflected SHG intensity

that is proportional to χ
(2)
xyz apart for some factors deriving from the Fresnel coefficients. This

tensor component does not correspond directly to the one of Ref. [92] (i.e., χ
(2)
zxy), but the

latter cannot be accessed directly and it is necessary this intermediate step. Calculation of

χ
(2)
zxy are still in progress.



140 CHAPTER 7. FUTURE DEVELOPMENTS

Si3/Ge3 Si4/Ge4 Si5/Ge5 Si7/Ge7
k-grid 3x3x2 3x3x2 3x3x2 3x3x1
pwwfn 3000 2000 2000 4000
pwx 4000 1500 3000 2000
bands 850 512 800 1152

pweps 1250 1000 1500 2250
bands 300 480 500 512
pwwfn 5000 4000 6000 9000

QP-gap 1.01 eV 0.97 0.852 0.71

Table 7.2: Abinit convergence parameters of the GW calculation for the Si/Ge
superlattice structures (refer to [121] for a complete description). The upper
values are the ones used for the screening and the lower are the ones for the
self-energy calculation. QP-gap shows the final result for the quasi-particle gap
at Γ.
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Figure 7.6: Second-harmonics generation spectra (χ
(2)
zxy) calculated in the in-

dependent particle approximation for the defect free (Si)n/(Ge)n superlattices.
Odd values of n i.e., 3 (blue line), 5 (red line) and 7 (green line) shows an intense
signal with respect to the even superlattice n = 4 (black dashed line).
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Figure 7.7: Ball and stick representation of the type-A defect: Si5/Ge5 with two
silicon atoms (yellow) substituting germanium atoms (violet) at the interface
(the simulation cell is reported).

Defect Systems

I would like to compare with two experiments, the one of Bottomley et al.
[195, 197] where they found a non-vanishing signal for the Si4/Ge4 structure,
although being centrosymmetric, and the experiment of Ref. [92] were V-shape
misfit stacking fault defects have been observed for Gen slabs with n ≥ 7.

Up to now only three defects have been studied, and are reported in Figs.
(7.7-7.9). In the first (type A) case I have considered four crystal cells of Si5/Ge5
where I have substituted two interface Ge atoms with Si ones. In the others
cases I have substituted four Si atoms with Ge (as shown in Fig. (7.8) and (7.9))
in the Si4/Ge4 structure, whose unitary cell has been considered four times.2

The latter two substitutional defects are able to reproduce the experimental
findings of [195, 197], increasing the response of the Si4/Ge4 superlattice. This
is an evidence that the non-perfect superlattices, where the broaden interface
is a mixture of odd and even periodicities, gives almost the same intensity.
The relative spectra are reported in Fig. (7.10). The first defect (the one of
Si5/Ge5) recovers the same trend and intensity. It is then interesting to notice
that the signal is characteristic of the whole superlattice structure and not of
the symmetry breaking at the interface. Indeed, introducing the defect, the
system is more inhomogeneous and one expects a larger intensity if compared
with the even or odd systems. Instead, the total signal is almost one half of
the perfect3 Si5/Ge5 superlattice. This confirm that the SHG signal originating
at the Si/Ge interfaces is enhanced by their constructive interference and once
small defects are introduced, this effect is diminished.

In the future I will try to treat the misfit stacking fault defect observed by

2I have applied the same scissor operator of the corresponding defect-free structures.
3I am performing ab initio simulations in order to understand the role of LF effects once

these inhomogeneities are introduced. This work is still in progress.
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Figure 7.8: Ball and stick representation of the type-B defect: Si4/Ge4 with four
silicon atoms (yellow) substituted by germanium ones (violet) at the interface.

Figure 7.9: Ball and stick representation of the type-C defect: Si4/Ge4. Alter-
natively, the silicon slabs (yellow) has been shifted by one layers with respect
to the Ge slabs (violet).
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Figure 7.10: Second-harmonics generation spectra (χ
(2)
zxy) calculated in the inde-

pendent particle approximation for the substitutional defects of Figs. (7.7-7.9).
The Si5/Ge5 (black continuous line) and the Si4/Ge4 (black dashed line) sys-
tems have been reported for comparison. The defects stay in-between the two
perfect systems.

[92]. Contrary to the previous substitutional defects, this is a big mismatch
plane that propagates through the superlattice and is not localized into a single
slab. This higher breaking of the symmetry can be regarded as an additional
interface that cross the Si/Ge ones and can following cause an enhancement of
the total response.
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Chapter 8

Conclusions

In this thesis I have dealt with the description of the nonlinear optical proper-
ties of materials, with a particular interest in quantum confined, silicon-based
systems. The state of the art of first principle calculations of second harmonic
generation is represented, nowadays, by the inclusion of many-body effects as
crystal local fields and electron-hole interaction. However, due to the theoretical
difficulties and the great computational effort required by nonlinear calculations,
so far this accuracy has been reserved to small-size bulk systems only, while in-
dependent particle approximation is today the most used approach and the only
one that has made feasible calculations of complex structures such as surfaces
and interfaces. While IPA can be a good approximation for bulk materials (in
GaAs it is able to get the correct shape of the SHG spectrum and fails only the
quantitative agreement if excitons are neglected) in confined and discontinuous
ones, other effects may be predominant. Hence their description is of great rele-
vance although the lack of studies. My thesis fits into this context trying to give
a first analysis of the SHG process in more complex systems as the interfaces
and the Si-confined systems, infering new insights on the physical mechanism
and its link with the nature of the system.

Here, I have presented an efficient formalism for the ab initio study of second
harmonic generation, based on the Time Dependent Density Functional Theory.
It is a density-based approach and, therefore, could lead to simpler calculations
with respect to the previous approaches based on Many-Body Perturbation The-
ory present in literature. In this framework many-body effects can be included
via a more sophisticated choice of the kernel. In this thesis the formalism and
the code 2light based on it have been developed in order to study more com-
plex materials at the desired accurate levels of description. New questions and
difficulties, that arose from the particular nature of the studied systems, have
been addressed both through theory and in the code developing new tools as
the normalization of the SHG signal when comparing with the experiment, or
new methods of analysis of the response. Indeed, once the direct link between
the peaks position and the transition energies (characteristic of IPA) is lost
in the second order Dyson equation because local fields introduction, different
approaches had to be tested.

The research has been focused on a case study, the Si(111)/CaF2 interface.
However, its complexity allowed me to extend the study to a large variety of
systems as the multilayers and the silicon confined slabs, comparing the re-
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sults and hence obtaining information on the SHG signal and its dependence
on the nature of the materials. Actually, new features and behavior have been
observed, thanks to this formalism and code, with respect to second-order non-
linear optical processes on strained silicon, GaAs or SiC showing in particular
the importance of crystal local-field effects with respect of both the independent
particle approximation and the excitons. The results here presented on Si-based
interfaces show a good agreement with the experiment. This underlines the effi-
ciency and accuracy of our formalism, the possibility of improving our knowledge
on these complex materials going beyond the standard approaches, and validates
the particular choice of the interface structure adopted. The latter confirm the
possibility of SHG ab initio simulations to be employed as a predictive technique,
supporting and guiding experiments and technological developments.

More in detail, after the theoretical framework presented in chapters 2-4,
and the code together with the implemented developments in chapter 5,

• in chapter 6 I have introduced the Si(111)/CaF2 interface case study, dis-
cussing both the experiment and the corresponding simulation cell struc-
ture.

• I have presented the unphysical features of the SHG spectra that arise
from its dependence on the vacuum volume. This is due to the particular
nature of the signal, characteristic of the interface region and not of the
whole cell volume as for bulk systems. I have then presented a physical
interpretation of the experimental environment, choosing an equal amount
of silicon and insulating material and demonstrating the same transparent
nature the insulating slab shares with the vacuum in the SHG process. I
have then derived a normalization procedure.

• I have performed convergence tests on the vacuum, the insulator and the
semiconductor thicknesses, showing their differences and their contribu-
tion to the final outgoing signal. In particular CaF2 behaves as the vacuum
on top of it and already the first two layers can correctly reproduce the
interface SHG process. Silicon instead, contribute to the second harmonic
signal far below the interface discontinuity, demonstrating to be character-
istic of small variations of the electronic density whereas the ionic structure
recovers soon the bulk configuration.

• The different nature of the peaks present in the spectrum has been in-
vestigated, identifying the structure at low energy as originated by the
silicon-hydrogenated surface. A comparison with different systems as the
silicon-confined slabs passivated with As and P has been provided.

• I have shown that an independent particle picture can give a qualitative
description of the SHG process in the Si(111)/CaF2 interface, recover-
ing the main features (in terms of energy peak position) originated from
the anisotropies of the system. However, the results does not match the
spectral line shape of the experiment.

• Contrary to bulk systems, LF effects become essential and are the key
quantity that allow to recover the experimental data. In fact, LFs strongly
influence the second-order nonlinear response close to the discontinuity re-
gion inducing a significant redistribution of the intensity. I demonstrated
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that this redistribution is largely more dramatic in nonlinear optical re-
sponse than in the linear response. Indeed for SHG the lowering of the
intensities is selective and not homogeneous while for absorption the shape
of the spectrum is almost unchanged.

• As for linear optics, also second harmonic generation is really sensitive
to the homogeneity of the system. In particular I have shown that along
the in-plane direction the inclusion of LF effects is negligible whereas it
becomes important perpendicularly to the interface.

• The presented results have far-reaching consequences beyond the specific
interface I have studied. The microscopic induced polarization can have
large and unpredictable effects on the SHG process, becoming essential
for complex systems. In this case the major modifications are included

in the variation of the second-order density response χ
(2)
ρρρ with respect to

the dielectric function.

• As observed in previous studies, excitonic effects do not change the form
of the SHG spectrum but increase its intensity. Opposite to the bulk
systems, here the electron-hole interaction is negligible while the LF effects
describes the physics of the second harmonic generation at the interface.
This underlines how the process is related to the different nature of the
systems where the nonlinear signal originates.

This thesis made progresses in the description of the nonlinear optical prop-
erties of materials. However, one of the major results is represented by the
development of the 2light code. The use of an efficient formalism based on the
well established TDDFT, and the improvements of the numerical tools open the
field of investigation to a large variety of new materials, making feasible ab initio
calculations. This is a great advancement that will allow a deeper knowledge
of the second harmonic process applying its study to technologically interesting
systems where other effects could arise as the nanowires of Si/Ge superlattices
[93].



148 CHAPTER 8. CONCLUSIONS



Appendix A

TDDFT formulas
Derivation

A.1 Derivation of χ(2)(1, 2, 3)

Equation (3.31) can be obtained from Eq. (3.29):

χ(2)(1, 2, 3) =χ
(2)
0 (1, 2, 3) + χ

(2)
0 (1, 4, 3)fvxc(4, 5)χ

(1)(5, 2)+

χ
(2)
0 (1, 2, 4)fvxc(4, 5)χ

(1)(5, 3)+

χ
(2)
0 (1, 5, 4)fvxc(5, 6)χ

(1)(6, 2)fvxc(4, 7)χ
(1)(7, 3)+

χ
(1)
0 (1, 4)gxc(4, 5, 6)χ

(1)(6, 3)χ(1)(5, 2)+

χ
(1)
0 (1, 4)fvxc(4, 5)χ

(2)(5, 2, 3).

(A.1)

where I have adopted a shorter notation, avoiding an explicit representation of
the integrals which are implied when an index variable appears twice inside a
product e.g.,

∫

d3 A(1, 3)B(3, 2) = A(1, 3)B(3, 2). Using the chain rules

δA

δvext
=

δA

δvS

δvS
δvext

, (A.2)

Eq. (A.1) reads:

χ(2)(1, 2, 3) =
δχ

(1)
0 (1, 2)

δvS(4)

δvS(4)

δvext(3)
+

δχ
(1)
0 (1, 4)

δvS(6)

δvS(6)

δvext(3)
fvxc(4, 5)χ

(1)(5, 2)+

χ
(1)
0 (1, 4)

δfxc(4, 5)

δvext(3)
χ(1)(5, 2)+

χ
(1)
0 (1, 4)fvxc(4, 5)

δχ(1)(5, 2)

δvext(3)
.

(A.3)

Remembering that from Eq. (3.23):

δvS(1)

δvext(2)
= δ(1, 2) + [v(1, 3) + fxc(1, 3)]χ

(1)(3, 2), (A.4)
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and defining

δfxc(4, 5)

δvext(3)
= gxc(4, 5, 6)χ

(1)(6, 3), (A.5)

Eq. (A.3) becomes:

χ(2)(1, 2, 3) =χ
(2)
0 (1, 2, 4)

δvS(4)

δvext(3)
+

χ
(2)
0 (1, 4, 6)

δvS(6)

δvext(3)
fvxc(4, 5)χ

(1)(5, 2)+

χ
(1)
0 (1, 4)gxc(4, 5, 6)χ

(1)(6, 3)χ(1)(5, 2)+

χ
(1)
0 (1, 4)fvxc(4, 5)χ

(2)(5, 2, 6),

(A.6)

χ(2)(1, 2, 3) =χ
(2)
0 (1, 2, 4)

[

δ(4, 3) + fvxc(4, 5)χ
(1)(5, 3)

]

+

χ
(2)
0 (1, 4, 6)

[

δ(6, 3) + fvxc(6, 7)χ
(1)(7, 3)

]

fvxc(4, 5)χ
(1)(5, 2)+

χ
(1)
0 (1, 4)gxc(4, 5, 6)χ

(1)(6, 3)χ(1)(5, 2)+

χ
(1)
0 (1, 4)fvxc(4, 5)χ

(2)(5, 2, 6),

(A.7)

χ(2)(1, 2, 3) =χ
(2)
0 (1, 2, 3) + χ

(2)
0 (1, 2, 4)fvxc(4, 5)χ

(1)(5, 3)+

χ
(2)
0 (1, 4, 3)fvxc(4, 5)χ

(1)(5, 2)+

χ
(2)
0 (1, 4, 6)fvxc(6, 7)χ

(1)(7, 3)fvxc(4, 5)χ
(1)(5, 2)+

χ
(1)
0 (1, 4)gxc(4, 5, 6)χ

(1)(6, 3)χ(1)(5, 2)+

χ
(1)
0 (1, 4)fvxc(4, 5)χ

(2)(5, 2, 6).

(A.8)

That is exactly Eq. (3.31).



Appendix B

Fourier Tansform

B.1 Frequency-space

In this thesis, for time-frequency Fourier Transform I have adopted the following
conventions:

f(ω) =
1

2π

∫

eiωtf(t)dt (B.1)

f(t) =

∫

e−iωtf(ω)dω (B.2)

while for the response function I have used

χ(x, ..., t− t′) = 1

2π

∫

e−iω(t−t′)χ(x, ..., ω)dω (B.3)

B.2 Impulses space

B.2.1 One Variable Function

In the case of the reciprocal-real space transformations, the periodicity of the
lattice impose k to be discrete and function in real space are described by a
Fourier Series.

f(r) =
∑

qG

f(q+G)ei(q+G)r (B.4)

and

f(q+G) =
1

V

∫

drf(r)e−i(q+G)r (B.5)

where q is a point of the 1st Brillouin Zone and G is a vector of the reciprocal
lattice. r and k = q +G do not share the same behavior once integrated: r is
a continue variable whereas k = q+G is discrete. This yelds:

δ(r− r′) =
1

V

∑

k

eik·(r−r′) (B.6)

and

δkk′ =
1

V

∫

drei(k−k′)·r (B.7)
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B.2.2 Two Variables Function

f(r1, r2) =
1

V

∑

q1q2

∑

G1G2

ei(q1+G1)r1f(q1 +G1,q2 +G2)e
−i(q2+G2)r2 (B.8)

and

f(q1 +G1,q2 +G2) =
1

V

∫

dr1dr2e
−i(q1+G1)r1f(r1, r2)e

i(q2+G2)r2 (B.9)

As an exaple one can consider the polarization at the first and second order:

P
(1)
ind(x, ω) =

∫

dx′α̃(1)(x,x′, ω)Eext(x′, ω) (B.10)

In the reciprocal space one has:

P (1)(q+G, ω) =
1

V

∫

dxP (1)(x, ω)e−i(q+G)x (B.11)

with

P (1)(q+G, ω) =
1

V

∫

dxe−i(q+G)x

∫

dx′Eext(x′, ω)

1

V

∑

q1q2

∑

G1G2

ei(q1+G1)xα̃(1)(q1 +G1,q2 +G2, ω)e
−i(q2+G2)x

′
(B.12)

last equation gives:

P (1)(q+G, ω) =
∑

q1q2

∑

G1G2

δq+G,q1+G1
α̃(1)(q1 +G1,q2 +G2, ω)

Eext(q2 +G2, ω)

(B.13)

and one finally obtains

P (1)(q+G, ω) =
∑

q′

∑

G′

α̃(1)(q+G,q′ +G′, ω)Eext(q′ +G′, ω). (B.14)

Let’s consider a function f(r1, r2) = f(r1 +R, r2 +R) where R is a lattice
vector. It follows that

f(q1 +G1,q2 +G2) = f(q1 +G1,q1 +G2)δq1,q2
(B.15)

that gives:

f(r1, r2) =
1

V

∑

q

∑

G1G2

ei(q+G1)r1f(q+G1,q+G2)e
−i(q+G2)r2 (B.16)

and

P (1)(q+G, ω) =
∑

G′

α̃(1)(q+G,q+G′, ω)Eext(q+G′, ω) (B.17)
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B.2.3 Three Variables Function

f(r1, r2, r3) =
1

V 2

∑

q1q2q3

∑

G1G2G3

ei(q1+G1)r1e−i(q2+G2)r2e−i(q3+G3)r3

f(q1 +G1,q2 +G2,q3 +G3)

(B.18)

and

f(q1 +G1,q2 +G2,q3 +G3) =
1

V

∫

dr1dr2dr3e
−i(q1+G1)r1

ei(q2+G2)r2ei(q3+G3)r3f(r1, r2, r3).

(B.19)

Let’s consider agin the polarization, the second-order term reads

P (2)(x) =

∫

dx′
∫

dx′′α̃(2)(x,x′,x′′)Eext(x′)Eext(x′′) (B.20)

Here I omit the ω dependece to keep formulas short. In the impulse space one
has:

P (2)(q+G) =
1

V

∫

dxP (2)(x)e−i(q+G)x (B.21)

P (2)(q+G) =
1

V

∫

dxe−i(q+G)x

∫

dx′
∫

dx′′Eext(x′)Eext(x′′)

1

V 2

∑

q1q2q3

∑

G1G2G3

ei(q1+G1)xe−i(q2+G2)x
′

e−i(q3+G3)x
′′

α̃(2)(q1 +G1,q2 +G2,q3 +G3)

(B.22)

that gives:

P (2)(q+G) =
∑

q1q2q3

∑

G1G2G3

δq+G,q1+G1
Eext(q2 +G2)E

ext(q3 +G3)

α̃(2)(q1 +G1,q2 +G2,q3 +G3)

(B.23)

and one has the final form

P (2)(q+G) =
∑

q′q′′

∑

G′G′′

α̃(2)(q+G,q′ +G′,q′′ +G′′)

Eext(q′ +G′)Eext(q′′ +G′′)

(B.24)

Considering a three-variables function f(r1, r2, r3) = f(r1+R, r2+R, r3+R)
où R one has:

f(q+G,q′+G′,q′′+G′′) = f(q′+q′′+G,q′+G′,q′′+G′′)δq,q′+q′′ (B.25)

that gives

f(r1, r2, r3) =
1

V 2

∑

q2q3

∑

G1G2G3

ei(q2+q3+G1)r1e−i(q2+G2)r2e−i(q3+G3)r3

f(q2 + q3 +G1,q2 +G2,q3 +G3)

(B.26)

et

P (2)(q′ + q′′ +G) =
∑

q′q′′

∑

G′G′′

α̃(2)(q′ + q′′ +G,q′ +G′,q′′ +G′′)

Eext(q′ +G′)Eext(q′′ +G′′)

(B.27)
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B.2.4 Response Function

An other example is provided by the first-orders response function:

χ(0)
ρρ (r, r

′, ω) =
∑

i,ki,j,kj

(fi,ki
− fj,kj

)
φ∗i,ki

(r)φj,kj
(r)φ∗j,kj

(r′)φi,ki
(r′)

(Ei,ki
− Ej,kj

+ ω + iη) (B.28)

Considering the periodicity of the crystal lattice (or the simulation cell once the
supercell-technique is adopted)

χ(0)
ρρ (q+G,q+G′, ω) =

1

V

∫

drdr′e−i(q+G)rχ(0)
ρρ (r, r

′, ω)ei(q+G′)r′ (B.29)

gives

χ(0)
ρρ (q+G,q+G′, ω) =

1

V

∑

i,j,k

(fi,k − fj,k+q)

< i,k|e−i(q+G)r)|j,k+ q >< j,k+ q|ei(q+G′)r′ |i,k >
(Ei,k − Ej,k+q + ω + iη)

(B.30)

and the equivalent can be obtained for the second order term.



Appendix C

Explicit Formulas for the
SHG Derivation

C.1 Time Ordering Operator

The time-ordering operator can be identified as:

∫ t1

t0

dt2

∫ t2

t0

dt3f(t2, t3) =

∫ t1

t0

dt2

∫ t1

t0

θ(t2 − t3)dt3f(t2, t3)

= 1
2

∫ t1

t0

dt2

∫ t1

t0

dt3 θ(t2 − t3)dt3f(t2, t3) + 1
2

∫ t1

t0

dt2

∫ t1

t0

dt3 θ(t2 − t3)dt3f(t2, t3)

= 1
2

∫ t1

t0

dt2

∫ t1

t0

dt3 θ(t2 − t3)dt3f(t2, t3) + 1
2

∫ t1

t0

dt3

∫ t1

t0

dt2 θ(t3 − t2)dt2f(t3, t2)

obtained switching the index names

= 1
2

∫ t1

t0

dt2

∫ t1

t0

dt3 T [f(t2, t3)],

(C.1)

where I have swapped the indexes t2 and t3 in the third line.

C.2 Microscopic Average

Given a function f(r, ω) that is periodic because of crystal periodicity (otherwise
imposing Born von Karaman conditions) one can identify its Bravais’ lattice
basis with the spatial coordinate R. They define a reciprocal basis G over
which the function can be expressed through a Fourier series:

f(r, ω) =
∑

q,G

f(q+G)ei(q+G)r, (C.2)

where vectors q belong to the first Brillouin Zone (BZ). This expression can
be divided in two parts, as for the Bloch’s states: the first one that has the
periodicity of the crystal cell and the second one (described by ei(qr)) that
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varies over a larger distance:

f(r, ω) =
∑

q

eiqr
∑

G

f(q+G)eiGr. (C.3)

The macroscopic average is then obtained integrating the function over a
space volume that is (i) big with respect to the microscopic variation inside
the cell volume Ωc containing to the electronic fluctuations, and (ii) small if
compared with the external perturbation, so that the dipole approximation
(i.e., the long wavelength limit) holds.

The latter assumption consists in supposing that variation of ei(qr) inside the
cell atR are negligible and well approximated by ei(qR). Furthermore, it permits
to considerR as the continuous coordinate appearing in the Maxwell’s equations
from a macroscopic point of view. The first one instead allows to obtain the
fluctuations’ contribution atR as an average (over a unit cell) around that point.
The differences between the microscopic fields and the averaged (macroscopic)
fields are called the crystal local fields. The microscopic function has the form

f(r, ω) =
∑

q

eiqr
∑

G

f(q+G)eiGr

=
∑

q

eiqrf ′(r;q, ω)
(C.4)

where with f ′(r;q, ω) =
∑

G f(q + G)eiGr it has been identified its periodic
part.1 In the hypothesis of a monochromatic external field with wave-vector q
(so that summation over q disappears), the average over a unit cell positioned
in R is given by:

f(R, ω) = eiqR〈f ′(r;q, ω)〉Ωc(R)

= eiqR
1

Ωc

∫

Ωc

dr
∑

G

f(q+G)eiGr (C.5)

and recognizing the delta function 1
Ωc

∫

dr eiGr = δG, 0 one obtains the final
result:

f(R, ω) = eiqRf(q, ω). (C.6)

1Because it can be expressed as a Fourier series over G it is periodic in reciprocal space
with the periodicity R of the Bravais lattice.



Appendix D

Gauge Invariance Relations

D.1 First Order Relations

D.1.1 Induced current and induced density

The general expression for the first-order induced current-density (cfr. Eq. (4.38))
is:

j
(1)
ind(r, ω) = −

1

c
〈ρ̂(r)〉AP (r, ω)− 1

c

∫

dr′χjj(r, r
′, ω)AP (r′, ω)

+

∫

dr′χjρ(r, r
′, ω)φP (r′, ω)

(D.1)

whereas the density reads:

ρ
(1)
ind(r, ω) = −

1

c

∫

dr′χρj(r, r
′, ω)AP (r′, ω)+

∫

dr′χρρ(r, r
′, ω)φP (r′, ω) (D.2)

Thanks to the gauge invariance of the scalar- and vector-potentials (φP ,AP )
that defines the perturbing electric field EP through

EP (r, ω) =
iω

c
AP (r, ω)−∇rφ

P (r, ω), (D.3)

one can write the previous equations Eqs. (D.1), (D.2) in a general form as:

j
(1)
ind(r, ω) =

i

ω
〈ρ̂(r)〉EP (r, ω) +

i

ω

∫

dr′χjj(r, r
′, ω)EP (r′, ω) (D.4)

ρ
(1)
ind(r, ω) =

i

ω

∫

dr′χρj(r, r
′, ω)EP (r′, ω). (D.5)

D.1.2 Relation among the First-Order Response Functions

Let’s now transform Eqs. (D.1), (D.2) in the reciprocal space. Fourier-transforming
the equations one obtains:

j
(1)
ind(k, ω) = −

1

c

∑

k′

〈ρ̂(k− k′)〉AP (k′, ω)− 1

c

∑

k′

χjj(k,k
′, ω)AP (k′, ω)

+
∑

k′

χjρ(k,k
′, ω)φP (k′, ω)

(D.6)
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and

ρ
(1)
ind(k, ω) = −

1

c

∑

k′

χρj(k,k
′, ω)AP (k′, ω) +

∑

k′

χρρ(k,k
′, ω)φP (k′, ω). (D.7)

The gradient of the scalar potential ∇rφ
P (r, ω) once φP is written in the recip-

rocal space becomes a simple product and the electric field in the Fourier space
EP reads:

EP (k, ω) =
iω

c
AP (k, ω)− ikφP (k, ω) (D.8)

Because of the arbitraryness in defining the electromagnetic field through the
electromagnetic potentials, it is always possible to gauge transform the latter
according to:

ĀP (k, ω) = AP (k, ω) + ikΛ(k, ω)

φ̄P (k, ω) = φP (k, ω) +
iω

c
Λ(k, ω),

(D.9)

(with Λ(k, ω) a scalar potential) without modifying the physical observables. In
particular the field EP and all the induced densities and currents. This property
takes the name of gauge-invariance.

As a consequence, substituting the new potentials of Eq. (D.9) to (φP ,AP )
into the induced current-density definition jind (Eq. (D.1)), one has:

j
(1)
ind(k, ω) =−

1

c

∑

k′

〈ρ̂(k− k′)〉
[

AP (k′, ω) + ik′Λ(k′, ω)
]

− 1

c

∑

k′

χjj(k,k
′, ω)

[

AP (k′, ω) + ik′Λ(k′, ω)
]

+
∑

k′

χjρ(k,k
′, ω)

[

φP (k′, ω) +
iω

c
Λ(k′, ω)

]

.

(D.10)

Because of gauge invariance, Eq. (D.1) and Eq. (D.10) must be equal. Imposing
their equivalency one obtains:

∑

k′

[

−1

c
〈ρ̂(k− k′)〉k′ − 1

c
χjj(k,k

′, ω)k′ + χjρ(k,k
′, ω)

ω

c

]

Λ(k′, ω) = 0.

(D.11)
that is independent of the particular choice of Λ. This implies

χjρ(k,k
′, ω) =

1

ω
[〈ρ̂(k− k′)〉+ χjj(k,k

′, ω)]k′. (D.12)

In a similar way the induced density permits to obtain the relation:

χρρ(k,k
′, ω) =

1

ω
χρj(k,k

′, ω)k′. (D.13)

Substituting the relation among χjρ and 〈ρ̂〉, χjj Eq. (D.12) into Eq. (D.1)
and identifying the perturbing field EP of Eq. (D.8), one achieves the final form

j
(1)
ind(k, ω) = −iω

∑

k′

− 1

ω2
{〈ρ̂(k− k′)〉+ χjj(k,k

′, ω)}EP (k′, ω). (D.14)



D.2. SECOND ORDER RELATIONS 159

Alternatively, defining the quasi-susceptibility or quasi-polarizability α̃(1) as:

α̃(1)(k,k′, ω) = − 1

ω2
{〈ρ̂(k− k′)〉+ χjj(k,k

′, ω)} , (D.15)

equation Eq. (D.14) can be rewritten as

j
(1)
ind(k, ω) = −iω

∑

k′

α̃(1)(k,k′, ω)EP (k′, ω). (D.16)

or, Fourier transforming in the direct space

α̃(1)(r, r′, ω) =
1

ω2
{−χjj(r, r

′, ω)− 〈ρ̂(r)〉δ(r− r′)} (D.17)

j
(1)
ind(r, ω) = −iω

∫

dr′α̃(1)(r, r′, ω)EP (r′, ω) (D.18)

that is exactly the results of Eq. (D.4).

Similary for ρ
(1)
ind, once substituting the realtion Eq. (D.13) to the first-order

induced density Eq. (D.2) one obtains:

ρ
(1)
ind(k, ω) = −

1

iω

∑

k′

EP (k′, ω)χρj(k,k
′, ω). (D.19)

The continuity equation holds at each perturbative order. In particular, for
the first order in reciprocal space it reads

k · j(1)ind(k, ω) = ωρ
(1)
ind(k, ω), (D.20)

and considering the last expression for j
(1)
ind, ρ

(1)
ind one has

−k · {〈ρ̂(k− k′)〉+ χjj(k,k
′, ω)}+ ωχρj(k,k

′, ω) = 0 (D.21)

that finally gives:

k {〈ρ̂(k− k′)〉+ χjj(k,k
′, ω)}k′ = ω2χρρ(k,k

′, ω) (D.22)

D.2 Second Order Relations

D.2.1 Induced current and induced density

The second-order perturbing terms in (φP ,AP ), once the perturbing field cou-
ples with the system are Eq. (4.15):

Ĥ(1)(t) = −1

c

∫

dr̂j(r)AP (r, t) +

∫

drρ̂(r)φP (r, t) (D.23)

Ĥ(2)(t) =
1

2c2

∫

drρ̂(r)
[

AP (r, t)
]2

(D.24)
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The second-order induced current can then be written (cfr Eq. (4.30)) as:

j
(2)
ind(k, ω) =

∑

k′k′′

∫

dω′
∫

dω′′ δ(ω − ω′ − ω′′)

[

1

2c2
χjρ(k,k

′ + k′′, ω)AP (k′, ω′)AP (k′′, ω′′)

+
1

c2
χρj(k− k′,k′′, ω′′)AP (k′, ω′)AP (k′′, ω′′)

−1

c
χρρ(k− k′,k′′, ω′′)AP (k′, ω′)φP (k′′, ω′′)

+
1

2c2
χjjj(k,k

′,k′′, ω′, ω′′)AP (k′, ω′)AP (k′′, ω′′)

− 1

2c
χjjρ(k,k

′,k′′, ω′, ω′′)AP (k′, ω′)φP (k′′, ω′′)

− 1

2c
χjρj(k,k

′,k′′, ω′, ω′′)φP (k′, ω′)AP (k′′, ω′′)

+
1

2
χjρρ(k,k

′,k′′, ω′, ω′′)φP (k′, ω′)φP (k′′, ω′′)

]

.

(D.25)

The second-order density instead reads (cfr. Eq. (4.42):

ρ
(2)
ind(k, ω) =

1

2c2

∑

k′k′′

∫

dω′χρρ(k,k
′ + k′′, ω)AP (k′, ω′)AP (k′′, ω − ω′)

+
1

2c2

∑

k′k′′

∫

dω′
∫

dω′′χρjj(k,k
′,k′′, ω′, ω′′)AP (k′, ω′)AP (k′′, ω′′)

− 1

2c

∑

k′k′′

∫

dω′
∫

dω′′χρjρ(k,k
′,k′′, ω′, ω′′)AP (k′, ω′)φP (k′′, ω′)

− 1

2c

∑

k′k′′

∫

dω′
∫

dω′′χρρj(k,k
′,k′′, ω′, ω′′)φP (k′, ω′)AP (k′′, ω′′)

+
1

2

∑

k′k′′

∫

dω′
∫

dω′′χρρρ(k,k
′,k′′, ω′, ω′′)φP (k′, ω′)φP (k′′, ω′′)

D.2.2 Relation among the Second-Order Response Func-
tions

Imposing the gauge-invariance while applying the trasformation Eq. (D.9) to

j
(2)
ind in equation Eq. (D.25)

j
(2)
ind(φ

P ,AP ) = j
(2)
ind(φ

P +
iω

c
Λ,AP + ikΛ) (D.26)

it is possible to derive a relation among the second order response functions (the
explicit formula is rather long and I do not report it). The relation holds in
general, for each value of the gauge-transformation potential Λ. In particular,
imposing the transformations arising from Λ and −Λ to be equal, the previous
terms that are linear in Λ cancels each others and only terms that are quadratic
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in Λ remains:

0 = χjρ(k,k
′ + k′′, ω)k′k′′ + χjjj(k,k

′,k′′, ω′, ω′′)k′k′′

− χjjρ(k,k
′,k′′, ω′, ω′′)k′ω′′ − χjρj(k,k

′,k′′, ω′, ω′′)ω′k′′

+ χjρρ(k,k
′,k′′, ω′, ω′′)ω′ω′′

(D.27)

(where it has been considered that the sum should be zero for every choice of
Λ). This means, that second-order terms in Λ vanish, indipendently from the
linear ones.1 Therefore, the remaining linear terms of Eq. (D.26) have to be
zero:

0 =
1

2c2

∑

k′

∫

dω′χjρ(k,k
′ + k′′, ω)AP (k′, ω′)ik′′

+
1

2c2

∑

k′

∫

dω′χjρ(k,k
′ + k′′, ω)ik′′AP (k′, ω′)

+
1

c2

∑

k′

∫

dω′χρj(k− k′,k′′, ω′′)AP (k′, ω′)ik′′

+
1

c2

∑

k′

∫

dω′χρj(k− k′′,k′, ω′)ik′′AP (k′, ω′)

− 1

c

∑

k′

∫

dω′χρρ(k− k′′,k′, ω′)ik′′φP (k′, ω′)

− 1

c

∑

k′

∫

dω′χρρ(k− k′,k′′, ω′′)AP (k′, ω′)
iω′′

c

+
1

2c2

∑

k′

∫

dω′χjjj(k,k
′,k′′, ω′, ω′′)AP (k′, ω′)ik′′

+
1

2c2

∑

k′

∫

dω′χjjj(k,k
′′,k′, ω′′, ω′)ik′′AP (k′, ω′)

− 1

2c

∑

k′

∫

dω′χjjρ(k,k
′,k′′, ω′, ω′′)AP (k′, ω′)

iω′′

c

− 1

2c

∑

k′

∫

dω′χjjρ(k,k
′′,k′, ω′′, ω′)ik′′φP (k′, ω′)

− 1

2c

∑

k′

∫

dω′χjρj(k,k
′,k′′, ω′, ω′′)φP (k′, ω′)ik′′

− 1

2c

∑

k′

∫

dω′χjρj(k,k
′′,k′, ω′′, ω′)

iω′′

c
AP (k′, ω′)

+
1

2

∑

k′

∫

dω′χjρρ(k,k
′,k′′, ω′, ω′′)φP (k′, ω′)

iω′′

c

+
1

2

∑

k′

∫

dω′χjρρ(k,k
′′,k′, ω′′, ω′)

iω′′

c
φP (k′, ω′).

(D.28)

1The relation is more general and establishes that the sum of all the odd-order terms in Λ
have to be zero independently from the sum of all the even-order terms, that vanish too.



162 APPENDIX D. GAUGE INVARIANCE RELATIONS

Considering Eq. (D.27) and Eq. (D.13) the last equation can be rewritten as:

0 =
1

c

∑

k′

∫

dω′χjρ(k,k
′ + k′′, ω)

[

i

c
AP (k′, ω′)− i

ω′k
′φP (k′, ω′)

]

k′′

+
1

c

∑

k′

∫

dω′χρj(k− k′′,k′, ω′)

[

i

c
AP (k′, ω′)− i

ω′k
′φP (k′, ω′)

]

k′′

+
1

2c

∑

k′

∫

dω′χjjj(k,k
′,k′′, ω′, ω′′)

[

i

c
AP (k′, ω′)− i

ω′k
′φP (k′, ω′)

]

k′′

+
1

2c

∑

k′

∫

dω′χjjj(k,k
′′,k′, ω′′, ω′)k′′

[

i

c
AP (k′, ω′)− i

ω′k
′φP (k′, ω′)

]

− 1

2c

∑

k′

∫

dω′χjjρ(k,k
′,k′′, ω′, ω′′)

[

i

c
AP (k′, ω′)− i

ω′k
′φP (k′, ω′)

]

ω′′

− 1

2c

∑

k′

∫

dω′χjρj(k,k
′′,k′, ω′′, ω′)

[

i

c
AP (k′, ω′)− i

ω′k
′φP (k′, ω′)

]

ω′′

(D.29)

that, being independent of the particular choice of (φP ,AP ) or equivalently
EP ,2 gives:

0 = χjρ(k,k
′ + k′′, ω)k′′ + χρj(k− k′′,k′, ω′)k′′

+
1

2
χjjj(k,k

′,k′′, ω′, ω′′)k′′ +
1

2
χjjj(k,k

′′,k′, ω′′, ω′)k′′

−1

2
χjjρ(k,k

′,k′′, ω′, ω′′)ω′′ − 1

2
χjρj(k,k

′′,k′, ω′′, ω′)ω′′.

(D.30)

Combining the two relations Eqs. (D.27), (D.30) together one obtains a third
one

χjρρ(k,k
′,k′′, ω′, ω′′) =

1

ω′ω′′χρj(k− k′′,k′, ω′)k′k′′

− 1

2

1

ω′ω′′χjjj(k,k
′,k′′, ω′, ω′′)k′k′′ +

1

2

1

ω′ω′′χjjj(k,k
′′,k′, ω′′, ω′)k′k′′

+
1

2

1

ω′ω′′χjjρ(k,k
′,k′′, ω′, ω′′)k′ω′′ − 1

2

1

ω′ω′′χjρj(k,k
′′,k′, ω′′, ω′)k′ω′′

+
1

ω′ω′′χjρj(k,k
′,k′′, ω′, ω′′)ω′k′′.

(D.31)

2From its definition Eq. (D.8) one can recognize the square brackets into Eq. (D.29) as:

[

i
c
AP (k′, ω′)− i

ω′
k′φP (k′, ω′)

]

= ω′EP (k′, ω′).
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D.2.3 Expression for the second order current

Considering Eq. (D.25) and substituting χρj to χρρ through the relation Eq. (D.13),

j
(2)
ind(k, ω) =

∑

k′k′′

∫

dω′
∫

dω′′δ(ω − ω′ − ω′′)

[

1

2c2
χjρ(k,k

′ + k′′, ω)AP (k′, ω′)AP (k′′, ω′′)

−i1
c
χρj(k− k′,k′′, ω′′)AP (k′, ω′)

1

ω′′E
P (k′′, ω′′)

+
1

2c2
χjjj(k,k

′,k′′, ω′, ω′′)AP (k′, ω′)AP (k′′, ω′′)

− 1

2c
χjjρ(k,k

′,k′′, ω′, ω′′)AP (k′, ω′)φP (k′′, ω′′)

− 1

2c
χjρj(k,k

′,k′′, ω′, ω′′)φP (k′, ω′)AP (k′′, ω′′)

+
1

2
χjρρ(k,k

′,k′′, ω′, ω′′)φP (k′, ω′)φP (k′′, ω′′)

]

.

(D.32)

Substituting χjρρ as obtained from Eq. (D.31)

j
(2)
ind(k, ω) =

∑

k′k′′

∫

dω′
∫

dω′′δ(ω − ω′ − ω′′)

[

1

2c2
χjρ(k,k

′ + k′′, ω)AP (k′, ω′)AP (k′′, ω′′)

− i1
c
χρj(k− k′,k′′, ω′′)AP (k′, ω′)

1

ω′′E
P (k′′, ω′′)

+
1

2

1

ω′ω′′χρj(k− k′′,k′, ω′)k′k′′φP (k′, ω′)φP (k′′, ω′′)

+
1

2c2
χjjj(k,k

′,k′′, ω′, ω′′)AP (k′, ω′)AP (k′′, ω′′)

− 1

2c
[χjjρ(k,k

′,k′′, ω′, ω′′) + χjρj(k,k
′′,k′, ω′′, ω′)]

·AP (k′, ω′)φP (k′′, ω′′)

+
1

2

1

2

1

ω′ω′′ [χjjρ(k,k
′,k′′, ω′, ω′′) + χjρj(k,k

′′,k′, ω′′, ω′)]

·k′ω′′φP (k′, ω′)φP (k′′, ω′′)
]

.

(D.33)

and using the following relation

2χjρ(k,k
′ + k′′, ω)k′′ + 2χρj(k− k′′,k′, ω′)k′′

+χjjj(k,k
′,k′′, ω′, ω′′)k′′ + χjjj(k,k

′′,k′, ω′′, ω′)k′′

= χjjρ(k,k
′,k′′, ω′, ω′′)ω′′ + χjρj(k,k

′′,k′, ω′′, ω′)ω′′
(D.34)
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derived from the linear combination of Eq. (D.27) and Eq. (D.30), one has:

j
(2)
ind(k, ω) =

1

2c2

∑

k′k′′

∫

dω′
∫

dω′′χjρ(k,k
′ + k′′, ω)AP (k′, ω′)AP (k′′, ω′′)δ(ω − ω′ − ω′′)

− i1
c

∑

k′k′′

∫

dω′
∫

dω′′χρj(k− k′,k′′, ω′′)AP (k′, ω′)
1

ω′′E
P (k′′, ω′′)δ(ω − ω′ − ω′′)

+
1

2

∑

k′k′′

∫

dω′
∫

dω′′ 1

ω′ω′′χρj(k− k′′,k′, ω′)k′k′′φP (k′, ω′)φP (k′′, ω′′)δ(ω − ω′ − ω′′)

+
1

2c2

∑

k′k′′

∫

dω′
∫

dω′′χjjj(k,k
′,k′′, ω′, ω′′)AP (k′, ω′)AP (k′′, ω′′)δ(ω − ω′ − ω′′)

− 1

2c

∑

k′k′′

∫

dω′
∫

dω′′ 1

ω′χjjj(k,k
′,k′′, ω′, ω′′)k′′AP (k′, ω′)φP (k′′, ω′′)δ(ω − ω′ − ω′′)

− 1

2c

∑

k′k′′

∫

dω′
∫

dω′′ 1

ω′′χjjj(k,k
′,k′′, ω′, ω′′)k′AP (k′′, ω′′)φP (k′, ω′)δ(ω − ω′ − ω′′)

+
1

2

∑

k′k′′

∫

dω′
∫

dω′′ 1

ω′ω′′χjjj(k,k
′,k′′, ω′, ω′′)k′k′′φP (k′, ω′)φP (k′′, ω′′)δ(ω − ω′ − ω′′)

− 1

2c

∑

k′k′′

∫

dω′
∫

dω′′ 1

ω′′ [2χjρ(k,k
′ + k′′, ω)k′′ + 2χρj(k− k′′,k′, ω′)k′′]

·AP (k′, ω′)φP (k′′, ω′′)δ(ω − ω′ − ω′′)

+
1

2

∑

k′k′′

∫

dω′
∫

dω′′ 1

2

1

ω′ω′′ [2χjρ(k,k
′ + k′′, ω) + 2χρj(k− k′′,k′, ω′)]

· k′k′′φP (k′, ω′)φP (k′′, ω′′)δ(ω − ω′ − ω′′).
(D.35)
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j
(2)
ind(k, ω) =

∑

k′k′′

∫

dω′
∫

dω′′δ(ω − ω′ − ω′′)

[

1

2c2
χjρ(k,k

′ + k′′, ω)AP (k′, ω′)AP (k′′, ω′′)

− i1
c
χρj(k− k′,k′′, ω′′)AP (k′, ω′)

1

ω′′E
P (k′′, ω′′)

+
1

2

1

ω′ω′′χρj(k− k′′,k′, ω′)k′k′′φP (k′, ω′)φP (k′′, ω′′)

+
1

2c2
χjjj(k,k

′,k′′, ω′, ω′′)AP (k′, ω′)AP (k′′, ω′′)

− 1

2c

1

ω′χjjj(k,k
′,k′′, ω′, ω′′)k′′AP (k′, ω′)φP (k′′, ω′′)

− 1

2c

1

ω′′χjjj(k,k
′,k′′, ω′, ω′′)k′AP (k′′, ω′′)φP (k′, ω′)

+
1

2

1

ω′ω′′χjjj(k,k
′,k′′, ω′, ω′′)k′k′′φP (k′, ω′)φP (k′′, ω′′)

− 1

2c

1

ω′′ [2χjρ(k,k
′ + k′′, ω)k′′ + 2χρj(k− k′′,k′, ω′)k′′]

·AP (k′, ω′)φP (k′′, ω′′)

+
1

2

1

2

1

ω′ω′′ [2χjρ(k,k
′ + k′′, ω) + 2χρj(k− k′′,k′, ω′)]

·k′k′′φP (k′, ω′)φP (k′′, ω′′)
]

.

(D.36)

Collecting the terms as function of the perturbing field EP given by Eq. (D.8)
one achieves the final gauge-invariant result for the second-order induced current-

density j
(2)
ind (cfr. Eq. (4.31)):

j
(2)
ind(k, ω) =

∑

k′k′′

∫

dω′
∫

dω′′ 1

ω′ω′′

[

−1

2
χjρ(k,k

′ + k′′, ω)

−χρj(k− k′′,k′, ω′)− 1

2
χjjj(k,k

′,k′′, ω′, ω′′)

]

EP (k′, ω′)EP (k′′, ω′′)δ(ω − ω′ − ω′′).

(D.37)

A similar relation can be obtained for the second-order density correction

ρ
(2)
ind:

ρ̂ind(1)
(2)

=
1

2

∫

dω′
∫

dω′′χρρρ(k
′ + k′′,k′,k′′, ω′, ω′′)

ik′ ·EP (k′, ω′)

k′ · k′
ik′′ ·EP (k′′, ω′′)

k′′ · k′′

=
1

2

∫

dω′
∫

dω′′χρρρ(k
′ + k′′,k′,k′′, ω′, ω′′)

i

|k′| |E
P |(k′, ω′)

i

|k′′| |E
P |(k′′, ω′′)

=
1

2

∫

dω′
∫

dω′′χρρρ(k
′ + k′′,k′,k′′, ω′, ω′′)

i

k′
EP (k′, ω′)

i

k′′
EP (k′′, ω′′),

(D.38)

cfr. Eq. (4.43).
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D.3 Relation between second-order density and
current-density

Starting from the continuity equation Eq. (4.36), that should hold for each
perturbative order:

q · δ〈̂j(q, ω)〉(i) = iωδ〈ρ̂(q, ω)〉(i), (D.39)

it is possible to find relations among the density and current-density response
functions.

At the second order in the long wavelength limit Eq. (4.30) reduces to:

δ〈̂jtot(q1, ω1)〉(2) = δ〈̂jtot(q2 + q3, ω2 + ω3)〉(2)

=
1

2

1

ω2ω3
χ
(2)
jjj (q1,q2,q3, ω2, ω3) ·EP (q2, ω2) ·EP (q3, ω3)

(D.40)

While the density can be rewritten thanks to gauge invariance as (cfr. Eq. (D.38)):

δ〈ρ̂tot(q1, ω1)〉(2) = δ〈ρ̂tot(q2 + q3, ω2 + ω3)〉(2)

=
1

2
χ(2)
ρρρ(q1,q2,q3, ω2, ω3)

i

q2
EP (q2, ω2)

i

q3
EP (q3, ω3).

(D.41)

With qi = |qi| and EP = |EP |, where the perturbing electric field has been
substituted through its general definition Eq. (4.25) that in reciprocal space
reads

EP (q, ω) = −iqφP (q, ω) + iω

c
AP (q, ω). (D.42)

These equations substituted into Eq. (D.39) for the second perturbative
order give:

q1 · δ〈̂jtot(q1, ω1)〉(2) = iω1δ〈ρ̂(q1, ω1)〉(2)
1

2

1

ω2ω3
q1 · χ(2)

jjj (q1,q2,q3, ω2, ω3) ·EP (q2, ω2) ·EP (q3, ω3) =

iω1
1

2
χ(2)
ρρρ(q1,q2,q3, ω2, ω3)

i

q2
EP (q2, ω2)

i

q3
EP (q3, ω3)

1

ω2ω3
q1 · χ(2)

jjj (q1,q2,q3, ω2, ω3) · q̂2E
P (q2, ω2) · q̂3E

P (q3, ω3) =

iω1χ
(2)
ρρρ(q1,q2,q3, ω2, ω3)

i

q2
EP (q2, ω2)

i

q3
EP (q3, ω3),

(D.43)

where q̂ represents the polarization versor q

q . Simplifying EP and dividing by

q1 to both sides one obtains the final relation Eq. (4.46):

q̂1 · χ(2)
jjj (q1,q2,q3, ω2, ω3) · q̂2 · q̂3 = −iω1ω2ω3

q1q2q3
χ(2)
ρρρ(q1,q2,q3, ω2, ω3)

χ
(2)LLL
jjj (q1,q2,q3, ω2, ω3) = −i

ω1ω2ω3

q1q2q3
χ(1)
ρρρ(q1,q2,q3, ω2, ω3).

(D.44)

A similar derivation can be obtained also for the first order responses.
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D.4 Length and Velocity gauges

In section 4.3.2 I have provided the general expression for the second-order
density response function developed on Bloch’s states when q→ 0. It has been
obtained in the length gauge that express the second-order response in terms of

χ
(2)
ρρρ, the only quantity that can be derived through TDDFT. However, it finds

a correspondence to the velocity gauge thanks to the continuity equations that

links χ
(2)
ρρρ and χ

(2)LLL
jjj (descending directly from the gauge invariance that is

independent of the gauge where ϕP ,AP are expressed). They are reconnected
via the relation:

〈ψnk|ir|ψmk〉 =
〈ψnk|v|ψmk〉
ǫnk − ǫmk

. (D.45)

For practical purpose it is convenient to evaluate all the matrix elements in
the velocity gauge, because of the simple expression they takes, then passing

through Eq. (D.45) to the correspective length gauge where χ
(2)
ρρρ is expressed.

Indeed the velocity is related to the operator −i∇ that simply gives a factor
q in front of the Bloch’s state 〈ψnk|v|ψmk〉 = −iq〈ψnk|ψmk〉. This avoids the
evaluation of the more complex 〈ψnk|ir|ψmk〉 integral.

The results is equivalent to the one developed by Hughes and Sipe [50] for
the length gauge that has been largely used also by other authors [22, 53, 54]
for SHG calculation within the independent particle approximation.
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Appendix E

2light Approximations
Derivation

Equation (5.17) is easily obtained considering the results of appendix D.4. Being

〈ψnk|ir|ψmk〉 =
〈ψnk|v|ψmk〉
ǫnk − ǫmk

(E.1)

for Hk, the same holds also for HSO:

〈ψnk|ir|ψmk〉 =
〈ψnk|vSO|ψmk〉
ǫSO
nk − ǫSO

mk

(E.2)

because the position matrix elements 〈ψnk|ir|ψmk〉 depends only on the eigen-
states |ψnk〉 that are the same for both the system. As a consequence

〈ψnk|v|ψmk〉
ǫnk − ǫmk

=
〈ψnk|vSO|ψmk〉
ǫSO
nk − ǫSO

mk

〈ψn|vSO|ψm〉 = 〈ψn|v|ψm〉
ǫSO
nk − ǫSO

mk

ǫnk − ǫmk

.

(E.3)
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Appendix F

System

F.1 Hexagonal System, χ
(2)
zzz Component

For the hexagonal symmetry, the non-vanishing elements of the second-order

dielectric susceptibility χ
(2)
M have the form [Shenbook]: χ

(2)
xzx = χ

(2)
yzy, χ

(2)
xxz =

χ
(2)
yyz, χ

(2)
zxx = χ

(2)
zyy, χ

(2)
zzz. The macroscopic second-order polarization then reads:

P
(2)
M =







χ
(2)
xzx(ω)E1zE2x

χ
(2)
yzy(ω)E1zE2y

χ
(2)
zxx(ω)E1xE2x + χ

(2)
zyy(ω)E1yE2y + χ

(2)
zzz(ω)E1zE2z






(F.1)

where the electric fields have been decomposed in their coordinatesEi = (Eix, EiyEiz).

The longitudinal polarization P
(2)L
M is:

P
(2)L
M =

u1 + u2

|u1 + u2|
P

(2)
M

=
1

|u1 + u2|
{

(u1x + u2x)χ
(2)
xzx(ω)E1zE2x + (u1y + u2y)χ

(2)
yzy(ω)E1zE2y

+(u1z + u2z)
[

χ(2)
zxx(ω)E1xE2x + χ(2)

zyy(ω)E1yE2y + χ(2)
zzz(ω)E1zE2z

]}

.

(F.2)

The last equation has a general validity. Once looking at the second harmonic
generation (i.e., ω1 = ω2 = ω) q1 and q2 have the same modulus q: q = ω/c.
Considering longitudinal perturbing fields, the polarization vector are: ui =
Ei

Ei
= qi

q (where Ei = |Ei|).
According to Eq. (4.114) (here q = q1 + q2, q

′ = q1 and ω = 2ω, ω′ = ω),
the macroscopic polarization is related to the microscopic one through:

P
(2)
M (q1 + q2, 2ω) =
[

1 + 4π
α̃(1)(q1 + q2,q1 + q2, 2ω)

1− 4πα̃(1),LL(q1 + q2,q1 + q2, 2ω)

q1 + q2

|q1 + q2|
q1 + q2

|q1 + q2|

]

α̃(2)(q1 + q2,q1,q2, ω, ω)

[

1 + 4π
q1

q1

q1

q1

α̃(1)(q1,q1, ω)

1− 4πα̃(1),LL(q1q1, ω)

]

[

1 + 4π
q2

q2

q2

q2

α̃(1)(q2,q2, ω)

1− 4πα̃(1),LL(q2,q2, ω)

]

E(q1, ω)E(q2, ω).

(F.3)
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In the particular case of a longitudinal field, Eq. (4.120) holds for the longitudinal-
longitudinal component of the dielectric function:

[

1 + 4π
q

|q|
q

|q|
α̃(1)

1− 4πα̃(1),LL

]

E(q, ω) = ǫLL
M (q, ω)E(q, ω) (F.4)

Consequently one has

P
(2)L
M (q1 + q2, 2ω) = E1E2ǫ

LL
M (u1 + u2, 2ω)ǫ

LL
M (u1, ω)ǫ

LL
M (u2, ω)

u1 + u2

|u1 + u2|
α̃(2)(q1 + q2,q1,q2, ω, ω)u1u2

(F.5)

Going back to the definition of the longitudinal polarization as function of
the perturbing field, if EP is longitudinal too

P (2)L(q1 + q2, 2ω) =
u1 + u2

|u1 + u2|
α̃(2)(q1 + q2,q1,q2, ω, ω)u1u2E

P
1 E

P
2 (F.6)

The longitudinal polarization is linked to the induced density through the con-
tinuity equation

P (2)L(q1 + q2, 2ω) =
i

|q1 + q2|
ρ
(2)
ind(q1 + q2, 2ω) (F.7)

that gives (cfr. Eq. (4.125)):

q1 + q2

|q1 + q2|
α̃(2)(q1 + q2,q1,q2, ω, ω)

q1

q1

q2

q2
=

−i
2q1q2|q1 + q2|

χρρρ(q1 + q2,q1,q2, ω, ω).
(F.8)

Substituting Eq. (F.8) into Eq. (F.8) one finally obtains for the secon-harmonic
generation in an hexagonal symmetry

1

|u1 + u2|
{

(u1x + u2x)χ
(2)
xzx(ω)E1zE2x + (u1y + u2y)χ

(2)
yzy(ω)E1zE2y

+(u1z + u2z)
[

χ(2)
zxx(ω)E1xE2x + χ(2)

zyy(ω)E1yE2y + χ(2)
zzz(ω)E1zE2z

]}

=

−i E1E2

2q1q2|q1 + q2|
ǫLL
M (u1 + u2, 2ω)ǫ

LL
M (u1, ω)ǫ

LL
M (u2, ω)χρρρ(q1 + q2,q1,q2, ω, ω).

(F.9)

If the two fields has the same amplitude E1 = E2 = E then Eq. (F.9) reduces
to

{

(u1x + u2x)χ
(2)
xzxu1zu2x + (u1y + u2y)χ

(2)
yzyu1zu2y

+(u1z + u2z)
[

χ(2)
zxx(u1xu2x + u1yu2y) + χ(2)

zzzu1zu2z

]}

= ǫLL
M (u1 + u2, 2ω)ǫ

LL
M (u1, ω)ǫ

LL
M (u2, ω)

−i
2q3

χρρρ(q1 + q2,q1,q2, ω, ω).

(F.10)
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In the particular case I am interested χ
(2)
zzz can be obtained from the last

equation with the appropriate choice of the polarization directions: u1 = u2 =
z:1

χ(2)
zzz =

−i
4
ǫLL
M (z, 2ω)ǫLL

M (z, ω)ǫLL
M (z, ω)χρρρ(2z, z, z, ω, ω). (F.11)

F.2 Dielectric Function Derivation

The dielectric function ǫLL
M is given by Eq. (5.10):

ǫM (ω) = limq→0
1

ǫ−1
GG′(q, ω)|G=G′=0

(F.12)

The inverse of the dielectric function ǫLL
M is given by:

[

ǫLL
M

]−1
= 1 + vχ(1). (F.13)

These are function of the reciprocal lattice vectors G, and can be represented by
matrices of (npwmat×npwmat) dimension once the G-basis has been trun-
cated to npwmat. In the Independent Particle Approximation one keeps the
only terms G = 0 corresponding to npwmat= 1 and all these matrices reduce
to scalar quantities. Consequently, their inverse corresponds to their reciprocal
and one has:

ǫIPA
M =

1

ǫIPA
M

=
1

1 + vχ(1)

=
1 + vχ(1) − vχ(1)

1 + vχ(1)

=1− vχ(1)

1 + vχ(1)
.

(F.14)

Remembering the Dyson equation for the linear density susceptibility Eq. (5.5),
it holds the following relation:

χ(1) = χ
(1)
0 + χ

(1)
0 vχ(1)

= χ
(1)
0

(

1 + vχ(1)
) (F.15)

(

1 + vχ(1)
)

=
[

χ
(1)
0

]−1

χ(1) (F.16)

1In this case uix = uiy = 0.
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that substituted in Eq. (F.14) gives:2

ǫIPA
M =1− vχ(1)

[

χ
(1)
0

]−1

χ(1)

=1− v
[

χ
(1)
0

]−1

=1− vχ(1)
0

=1− 4πχ
(1)
0

(F.17)

While introducing Local Fields in the Random Phase Approximation i.e.,
npwmat> 1, the solution is more complicated. From Eqs. (F.12) and (F.13)
one has:

ǫRPA
M =

1

(1 + vχ(1))|G=G′=0
.

=
1

1 + 4πχ(1)|G=G′=0
.

(F.18)

2In reciprocal space v(G) = − 4π
|q+G|2

. In principle the term G = 0 diverges in the

long wavelength limit. However, in formulas it is always multiplied by χ(i), that removes
the divergence and the dependence on |q| once it is expanded in powers of q (see section
4.3.2). Therefore, in the limit q → 0 after the q-expansion of χ(i), the product vχ(1) reads
4πχ(1)|G=0.



Appendix G

Renormalization Problem

G.1 Simulation Cell Response

It is immediate to notice that for a given system, different thicknesses of the
surrounding vacuum will give different responses. The volume of the cell enters
as a multiplicative factor in front of the linear and nonlinear response (cfr.

Eq. (4.56)) that I will call χ̃
(i)
sys.1 The first-order density response χ

(1)
0 can then

be written as:

χ
(1)
0 =

1

Vcell
χ̃(1)
sys. (G.1)

χ̃
(1)
sys is characteristic of the material, it comes only from the volume of the cell

occupied by the material (Vsys) where all the electronic states are localized. The
total volume of Eq. (G.1) is given by the cell and the vacuum (Vvac):

Vcell = Vsys + Vvac. (G.2)

Varing the vacuum will therefore change Vsys without modifying χ̃
(1)
sys. The

difference between two response functions arising from the same system in two
simulation cell of different vacuum-height, is therefore a constant factor that
depends on the ratio Vvac

Vsys
.

G.1.1 Bulk Response

Let’s now consider as an example the Si surface. The simulation cell is composed
of a silicon slab, with the upper surface reconstructed in a (2× 1) structure and
the bottom one made of cutted bulk silicon passivated by hydrogen atoms, and
a vacuum slab on top of it.

Signals that are proportional to the bulk part i.e., that arise from bulk states
inside the Si, are proportional to the volume of the slab Vsys. Indeed, adding
new bulk layers will increase the number of bulk states and consequently the

1As an example, in Eq. (4.56) χ̃
(2)
sys coincides with the summation over the possible tran-

sitions between the electronic states.
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response χ̃
(1)
sys: χ̃

(1)
sys ∝ Vsys. The ratio

χ̃(1)
sys

Vsys
is therefore constant2 and the linear

response χ
(1)
0 becomes:

χ
(1)
0 =

1

Vsys + Vvac
χ̃sys

=
Vsys

Vsys + Vvac

χ̃sys

Vsys

=
1

1 +
Vvac
Vsys

χ̃sys

Vsys
.

(G.3)

Hence, systems with different silicon thickness will give the same response if the
ratio Vvac

Vsys
is constant, being all the others terms constant. From Eqs. (F.17) and

(F.18), also the dielectric functions in the independent particle or the random
phase approximations are unchanged if Vvac

Vsys
is the same (see Figs. (G.1), (G.2)).

Keeping this ratio fixed is then the requirement to make comparison between
the bulk-response of different size systems.

For a defined slab Vsys, it is also possible to pass from the response obtained
within a certain value of the vacuum Va to the one of another value Vb:

χ(1)
a =

1

Vsys + Va
χ̃(1)
sys (G.4)

χ
(1)
b =

1

Vsys + Vb
χ̃(1)
sys (G.5)

χ
(1)
b =

Vsys + Va
Vsys + Vb

χ(1)
a . (G.6)

This renormalization factor
Vsys+Va

Vsys+Vb
has to be applied to χ(1) IPA (RPA) to

obtain the corresponding IPA (RPA) dielectric function (see Figs. (G.3-G.6)).
It is even possible to renormalize to the volume of the system only, posing
Vb = 0 hence neglecting the vacuum. However, the choice of the appropriate
amount of vacuum represents a nontrivial task for absolute comparison with the
experiments, as discussed in chapter 6.3.

G.1.2 Surface and Interface Response

While considering responses that arise from a two-dimensional region such as
the surface or the interface, the previous considerations are no more valid. In

particular χ̃
(1)
sys arise from a confined region close to the surface/interface and is

no more proportional to Vint.
The optical signal changes until all the active region (where it is originated

from) is included into the simulation cell. Once it has been achieved, χ̃
(1)
sys does

not change anymore and the surface spectra will present a well defined shape.
Further increasing the thickness of the underlying silicon slab adds electronic
states that are characteristic of the volume only. As a consequence, the signal

2One can figure it imaging a bulk system (Vvac = 0). Changing the cell thickness e.g.,
doubling its height, does not modify the response, since both χ̃sys and Vsys are doubled and

χ
(1)
0 =

χ̃sys

Vsys
remains unchanged.
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Figure G.1: Imaginary part of the dielectric function ǫzz. The silicon surface
systems are composed of an equal amount of Si and vacuum (n − n system).
Here are reported the IPA spectra of the surface composed by three (3-3 system,
blue straight line), four (4-4 system, red dashed line) and and five silicon cells
(5-5 system, green dotted-dashed line). The intensity is almost the same. Small
differences in the main peak arise from the non complete convergence of the
bulk in the 3-3 system. Convergence is achieved with four cells of bulk silicon.
The small peak at about 2.5 eV decreases while increasing the bulk thickness
and is characteristic of the Si surface.
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Figure G.2: Imaginary part of the dielectric function ǫzz. The silicon surface
systems are composed of an equal amount of Si and vacuum (n-n system). Here
are reported the RPA spectra of the surface composed of three silicon cells (3-3
system, blue straight line), four (4-4 system, red dashed line) and and five silicon
cells (5-5 system, green dotted-dashed line). The peak of Fig. (G.1) is blue
shifted an the intensity is decreased according to the f-sum rule. The spectra of
the three systems and their intensities coincide within good agreement.
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Figure G.3: Imaginary part of the dielectric function ǫzz. The silicon surface
systems are composed of 3 silicon cells and a varying amount of vacuum (3-n
system). Here are reported the IPA spectra of the 3-3 system (blue straight
line), 3-4 system (red dashed line) and 3-5 system (green dotted-dashed line).
The intensity is different depending on the vacuum thickness but the peaks
share the same shape and position.
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Figure G.4: Imaginary part of the dielectric function ǫzz. The IPA spectra
of the silicon surface systems of Fig. (G.3) have been renormalized to vacuum
thickness of the 3-3 system. After the renormalization procedure (Eq. (G.6))
the spectra of the 3-3 system (blue straight line), 3-4 system (red dashed line)
and 3-5 system (green dotted-dashed line) are identical.



G.1. SIMULATION CELL RESPONSE 179

0 5 10 15 20
E (eV)

0

1

2

3

4

Im
(ε

2z
z 
) 

(a
.u

.)
3-3 system
3-4 system
3-5 system

Figure G.5: Imaginary part of the dielectric function ǫzz. The silicon surface
systems are composed of 3 silicon cells and a varying amount of vacuum (3-n
system). Here are reported the RPA spectra of the 3-3 system (blue straight
line), 3-4 system (red dashed line) and 3-5 system (green dotted-dashed line).
Once LF effects are introduced, contrary to IPA (Fig. (G.3)) the peak position
and height depend on the vacuum thickness.

0 5 10 15 20
E (eV)

0

1

2

3

4

Im
(ε

2z
z 
) 

(a
.u

.)

3-3 system
3-4 system
3-5 system

Figure G.6: Imaginary part of the dielectric function ǫzz. The RPA spectra
of the silicon surface systems of Fig. (G.5) have been renormalized to vacuum
thickness of the 3-3 system according to Eq. (G.6). After the renormalization
procedure the spectra of the 3-3 system (blue straight line), 3-4 system (red
dashed line) and 3-5 system (green dotted-dashed line) are identical, both the
intensity and the position of the peak.
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will start to decrease proportionally to 1
V (see the small peak at about 2.5 eV

in Fig. (G.1)).
The signal becomes soon very small compared to the bulk one (e.g., in a

linear optics absorption spectra Fig. (G.1)). In DFT/TDDFT ab initio calcu-
lations it is not clear how to establish the absolute intensity of the spectrum,
that decreases proportionally to the chosen volume of the simulation cell. In
my simulation I assume it as the one of the system where convergence in the
surface/interface peaks position and shape is reached i.e., when all the active
optical region is included.

Even experimentally the magnitude of the nonlinear coefficient is not easy to
determine because of technical difficulties. Therefore, often only relative com-
parison can be performed with the theoretical results. An example is provided
by the experiment of Heinz et al. [82]. The output is the reflected SHG sig-
nal, measured as the ratio of the SHG intensity ISHG and the laser IL that
pass through the interface: ISHG

IL
. However, the latter does not coincide with

the total laser intensity I3 used to normalize ISHG in the experiment: ISHG

I .
Therefore, the total intensity of the signal Fig. (6.2) is reported in arbitrary
units.

G.1.3 Renormalization of the SHG response

The same conclusions holds also for the second harmonic generation process. As
a consequence, whereas for bulk systems one can compare also quantitatively
the SHG signal [72], for interfaces such as the Si/CaF2 [82] this is not trivial.
Ab initio calculations demonstrate hence useful for SHG intensity predictions
or in comparison with experiments where, due to technical difficulties, accurate
intensity measurements are not available.

For practical uses, in simulation cell containing the vacuum it is always
possible to renormalize the SHG signal passing from different vacuum thickness
according to the renormalization procedure of Eq. (G.6):

χ(2)
a =

1

Vsys + Va
χ̃(2)
sys (G.7)

χ
(2)
b =

1

Vsys + Vb
χ̃(2)
sys (G.8)

χ
(2)
b =

Vsys + Va
Vsys + Vb

χ(2)
a (G.9)

see Figs. (G.7) and (G.8).

3E.g., part of it is reflected at the sample surface and part cross the material without
passing through the interface region because of the almost planar incidence and the great
dimension of the laser spot (about 1 mm).
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Figure G.7: Second-harmonic generation spectra of the Si surface composed of

an equal amount of Si and vacuum (n − n system). The IPA χ
(2)
zzz component

has been reported for the 3-3 (blue straight line), 4-4 (red dashed line) and
and 5-5 (green dotted-dashed line) systems. Contrary to the bulk response, the
intensity decreases proportionally to the cell volume although the ratio Vvac

Vsys
is

constant, being characteristic of the surface. The spectrum converges in the 5-5
system, showing the larger amount of underlying Si required by the nonlinear
optical process with respect to the linear one.
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Figure G.8: Renormalized second-harmonic generation spectra of the Si(2x1)
surface composed of an equal amount of Si and vacuum (n-n system). The IPA

χ
(2)
zzz component of the three (3-3 system, blue straight line), four (4-4 system,

red dashed line) and and five (5-5 system, green dotted-dashed line) silicon cells
systems has been renormalized to the volume of the 5-5 system according to
Eq. (G.9). The intensity of the signal is recovered, although differences among
the spectral shapes arise from the non complete convergence of the bulk-silicon
in the 3-3 and 4-4 systems.
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[14] U. Höfer, Appl. Phys. A 63, 533 (1996).

[15] W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and
X.-Y. Zhu, Science 328, 1543 (2010).

[16] R. M. Corn and D. A. Higgins, Chem. Rev. 94, 107 (1994).
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[74] H. Hübener, E. Luppi, and V. Véniard, Phys. Rev. B 83, 115205 (2011).
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c’è solo la fisica a questo mondo.

193











Summary

In this thesis I have dealt with the ab initio description of the second-harmonic gener-
ation (SHG) process, a nonlinear optical property of materials, focusing in particular
on quantum confined, silicon-based systems. In the last decades, the accuracy and
possibilities of ab initio studies have demonstrated a great relevance in both the inter-
pretation and prediction of the materials properties. It is then mandatory to improve
the knowledge of the nonlinear optical processes as well as the SHG first-principle
description.

Nowadays, due to nontrivial difficulties, nonlinear optics has not yet reached the
accuracy and development of linear phenomena. In particular, the state of the art
of ab initio SHG calculations is represented by the inclusion of many-body effects as
crystal local fields (LF) and electron-hole interaction, but today, the mostly used ap-
proach is the independent particle approximation (IPA), the only one able to approach
calculations of complex structures such as surfaces and interfaces. Whereas IPA can
be a good approximation for bulk systems, in discontinuous materials other effects
may be predominant. Hence their description is of great relevance although the lack
of studies. My thesis tries to give a first analysis of the SHG process in more com-
plex systems as the interfaces and the Si-confined systems, inferring new insights on
the physical mechanism and its link with the nature of the system. I use an efficient
formalism based on the Time Dependent Density Functional Theory (TDDFT) where
many-body effects are included via an appropriate choice of the TDDFT kernels. Both
the formalism and the code have been developed during the thesis work permitting
the study complex materials.

The research has been focused on the Si(111)/CaF2 (T4 B-type) interface case
study. Convergence studies show the importance of the semiconductor material with
respect to the insulator. The response is characteristic of a deep region beyond the Si
interface whereas the CaF2 converges soon after the first interface layers. Moreover,
the signal demonstrates to be sensitive to the electronic-states modifications that are
induced far below the interface, and not to the Si ionic structure that recovers soon
the bulk configuration. A normalization procedure to compare with the experiment
has been proposed. The SHG spectra have been calculated in the IPA, introducing
LF and excitonic interactions. New behaviors have been observed with respect to the
SHG processes on strained silicon, GaAs or SiC showing in particular the importance
of crystal local-field effects with respect to both the IPA and the excitons. Whereas
IPA can describe the position of the SHG main peaks and the excitonic effects slightly
modify the total intensity, only LF are able to correctly reproduce the spectral shape
and the relative intensities of the peaks. This underlines how SHG and the different
involved effects depends on the nature of the materials.

New methods of analysis of the response have been proposed; actually, the direct
link between the peaks position and the transition energies is lost in SHG calculations
(i.e. the signal comes from a second order Dyson equation where linear and nonlinear
response functions at different frequencies are mixed together). Furthermore, the
complexity of the system allowed me to extend the study to a large variety of materials
as the multilayers and the silicon confined slabs. The results show a good agreement
with the experiment confirming the proposed T4 B-type interface structure. This
underlines the accuracy of the formalism, the possibility of improving our knowledge
on these complex materials going beyond the standard approaches, and confirms the
possibility of SHG ab-initio simulations to be employed as a predictive technique,
supporting and guiding experiments and technological developments.

Preliminary results on Si/Ge superlattice are presented.



Résumé

Dans cette thèse, je me suis interessé à la description ab initio du processus de
génération de seconde harmonique (SHG), qui est une propriété optique non-linéaire
des matériaux, et je me suis concentré sur les systèmes quantiques confinés, à base
de silicium. Ces dernières années, les études ab initio ont suscité un grand intérêt
pour l’interprétation et la prévision des propriétés des matériaux. Il est indispensable
d’améliorer la connaissance des processus non-linéaires et de proposer une description
de SHG, à partir des premiers principes.

En raison de difficultés importantes, la description de l’optique non linéaire n’a
pas encore atteint la précision des phénomènes linéaires. L’état de l’art des calculs ab
initio SHG est représenté par l’inclusion des effets à plusieurs corps comme les champs
locaux (LF) et l’interaction électron-trou, mais aujourd’hui, l’approche la plus utilisée
est l’approximation de particules indépendantes (IPA), la seule en mesure d’aborder
les calculs de structures complexes, tels que des surfaces et des interfaces. Alors que
IPA peut être une bonne approximation pour les systèmes massifs, dans des matériaux
discontinus d’autres effets peuvent être prédominants.

L’objectif de ma thèse est de donner une analyse du processus de SHG dans des
systèmes complexes comme les interfaces et les systèmes confinés à base de silicium,
d’inférer de nouvelles connaissances sur le mécanisme physique mis en jeu et son lien
avec la nature du système. J’utilise un formalisme fondé sur la théorie de la fonction-
nelle de la densité dépendant du temps (TDDFT) où les effets à plusieurs corps sont
inclus par un choix approprié des noyaux de la TDDFT. Le formalisme et le code ont
été développés au cours de mon travail, permettant l’étude de matériaux complexes.

Mes recherches ont porté sur l’étude de l’interface Si (111)/CaF2 (de type B,T4).
Des études de convergence montrent l’importance du matériau semi-conducteur par
rapport à l’isolant. La réponse est caractéristique d’une région profonde au-delà de
l’interface Si, alors que CaF2 converge rapidement juste après l’interface. La réponse
montre une sensibilité aux modifications électroniques, induites dans des états bien
en-dessous de l’interface, et non à la structure ionique du silicium, qui retrouve rapi-
dement la configuration du matériau massif. Une procédure de normalisation pour
comparer avec l’expérience a été proposée. Les spectres de SHG ont été calculés en
IPA, et en introduisant les interactions de champs locaux et excitoniques. De nou-
veaux comportements ont été observés par rapport aux processus SHG dans GaAs
ou SiC, montrant l’importance des effets de champ locaux cristallins. Alors que IPA
décrit la position des pics principaux de SHG et que les effets excitoniques modifient
légèrement l’intensité totale, seuls les champs locaux reproduisent la forme spectrale et
les intensités relatives des pics. Cela souligne combien les effets des différents acteurs
dans le processus dépendent de la nature des matériaux.

De nouvelles méthodes d’analyse de la réponse ont été proposées: en effet, le lien
direct entre la position des pics et les énergies de transition est perdu dans les calculs
de SHG : le signal provient d’une équation de Dyson du second ordre où les fonctions
de réponse linéaires et non-linéaire pour des fréquences différentes sont mélangées.
En outre, la complexité du matériau m’a permis d’obtenir des informations sur une
grande variété de systèmes comme les multicouches et les couches de silicium confinées.
Les résultats montrent un bon accord avec l’expérience, confirmant la structure de
l’interface proposée. Cela souligne la précision du formalisme, la possibilité d’améliorer
nos connaissances sur ces matériaux complexes. Les simulations ab-initio de SHG
peuvent être utilisées comme une technique prédictive, pour soutenir et guider les
expériences et les développements technologiques.

Les résultats préliminaires sur les structures Si/Ge sont présentés.



Riassunto

In questa tesi ho trattato la descrizione ab initio del processo di generazione di seconda
armonica (SHG), un fenomeno di ottica non lineare dei materiali, concentrandomi in
particolare sui sistemi confinati a base di silicio. Negli ultimi decenni, l’accuratezza
e le potenzialità degli studi ab initio hanno dimostrato una grande rilevanza sia
nell’interpretazione che nella predizione delle proprietà dei materiali. Diviene quindi
essenziale migliorare la descrizione da principi primi dei processi nonlineari come la
SHG.

Oggi, l’ottica nonlineare non ha ancora raggiunto il livello di accuratezza e sviluppo
dei fenomeni di ottica lineare a causa delle notevoli difficoltà che la descrizione com-
porta. In particolare, lo stato dell’arte dei conti ab initio di SHG è rappresen-
tato dall’inclusione degli effetti many-body come i campi locali (LF) e l’interazione
elettrone-lacuna. Ad oggi l’approccio più utilizzato rimane l’approssimazione di par-
ticelle indipendenti (IPA), l’unico capace di affrontare calcoli di strutture complesse
come le superfici e le interfacce. Mentre l’IPA può essere una buona approssimazione
per i sistemi di volume, nei materiali discontinui altri effetti possono essere predomi-
nanti. La loro descrizione diviene quindi di grande importanza nonostante la mancanza
di studi. La mia tesi cerca di fornire una prima analisi del processo di SHG in sistemi
complessi come le interfacce ed i sistemi confinati di Si, ottenendo una più appro-
fondita comprensione del fenomeno e della sua relazione con la natura del materiale.
Ho utilizzato un efficiente formalismo basato sulla Time Dependent Density Func-
tional Theory (TDDFT) in cui è possible descrivere gli effetti many-body attraverso
l’appropriata scelta dei kernels TDDFT. In questa tesi sia il formalismo che il codice
sono stati sviluppati per rendere possibile lo studio di materiali complessi.

La ricerca è stata focalizzata sul sistema prototipo dell’interfaccia Si(111)/CaF2

(T4 B-type). Gli studi di convergenza evidenziano l’importanza del materiale semi-
conduttore rispetto all’isolante. La risposta è infatti caratteristica di una profonda
regione di Si sotto l’interfaccia mentre il CaF2 converge già dopo i primi layers. In-
oltre, il segnale si dimostra sensibile alle variazioni degli stati elettronici molto al di
sotto l’interfaccia, e non alla struttura del Si che raggiunge velocemente la configu-
razione di volume. Si è proposta una procedura di normalizzazione per il confronto
con l’esperimento. Gli spettri di SHG sono stati calcolati in IPA, introducendo i LF
e l’interazione eccitonica. Sono stati osservati nuovi comportamenti rispetto al pro-
cesso di SHG nei sistemi di volume (GaAs o SiC) che evidenziano l’importanza dei
campi locali rispetto all’IPA e agli eccitoni. Infatti, mentre l’IPA riesce a descrivere
la posizione dei picchi principali del segnale SHG e gli effetti eccitonici ne modificano
lievemente l’intensità totale, solo i LF riproducono correttamente la forma spettrale e
le intensità relative dei picchi. Ciò mostra come la SHG ed i differenti effetti coinvolti
dipendano dalla natura del materiale.

Nuovi metodi di analisi del segnale sono stati proposti; infatti, il legame tra la
posizione del picco e le energie di transizione tra gli stati elettronici è perso nel calcolo
della SHG (il segnale è ottenuto tramite un’equazione di Dyson di secondo ordine dove
le funzioni di risposta lineari e nonlineari a frequenze differenti sono mescolate tra di
loro). In aggiunta, la complessità del sistema mi ha permesso di estendere lo studio a
materiali quali i multistrati e gli strati confinati di Si. I risultati mostrano un buon
accordo con l’esperimento confermando inoltre la struttura T4 B-type proposta. Ciò
avvalora l’accuratezza del formalismo, la possibilità di migliorare la nostra conoscenza
del processo in materiali complessi e conferma la possibilità di utilizzare le simulazioni
ab initio come tecnica predittiva per la SHG, supportando e guidando gli esperimenti
e gli sviluppi tecnologici.

Sono infine presentati i risultati preliminari sui supercristalli di Si/Ge.


