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Abstract
Architectured materials bring new possibilities in terms of structural and functional properties,
filling gaps and pushing the boundaries of Ashby’s materials maps. The term "architectured
materials" encompasses any microstructure designed in a thoughtful fashion, so that some of
its materials properties have been improved. There are many examples: particulate and fibrous
composites, foams, sandwich structures, woven materials, lattice structures, etc. One engineering
challenge is to predict the effective properties of such materials. In this work, two types of
microstructures are considered: periodic auxetic lattices and stochastic fibrous networks. Auxet-
ics are materials with negative Poisson’s ratio that have been engineered since the mid-1980s.
Such materials have been expected to present enhanced mechanical properties such as shear
modulus or indentation resistance. The stochastic fibrous networks considered in this work is
made of 3D infinite interpenetrating fibers that are randomly distributed and oriented. This case
of random structure is challenging regarding the determination of a volume element size that is
statistically representative. For both materials, computational homogenization using finite ele-
ment analysis is implemented in order to estimate the effective thermal and mechanical properties.

Keywords: Computational homogenization, Representative Volume Element, Auxetics, Ran-
dom fibrous networks, Effective properties
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Résumé
Les matériaux architecturés font émerger de nouvelles possibilités en termes de propriétés struc-
turales et fonctionnelles, repoussant ainsi les limites des cartes d’Ashby. Le terme "matériaux
architecturés" inclus toute microstructure conçue de façon astucieuse, de sorte que certaines de ses
propriétés soient optimisées. Les exemples sont nombreux : composites fibreux et particulaires,
matériaux cellulaires, structures sandwiches, matériaux tissés, structures treillis, etc. Un enjeu
de taille pour l’emploi de tels matériaux est la prédiction de leurs propriétés effectives. Dans ce
travail, deux types de microstructures sont considérés : des structures auxétiques périodiques et
des milieux fibreux aléatoires. Les auxétiques sont des matériaux apparus au milieu des années
1980, présentant un coefficient de Poisson négatif. On attend des auxétiques qu’ils présentent
des propriétés mécaniques améliorées, comme le module de cisaillement ou la résistance à
l’indentation. Les milieux fibreux aléatoires considérés dans ce travail sont constitués de fibres
3D infinies interpénétrantes aléatoirement distribuées et orientées. Ce type de structure aléatoire
est très défavorable à la détermination d’une taille de volume élémentaire statistiquement repré-
sentatif. Pour les deux types de matériaux, l’homogénéisation numérique à l’aide de la méthode
des éléments finis est implémentée dans le but d’estimer les propriétés thermiques et mécaniques
effectives.

Mots-clés : Homogénéisation numérique, Volume élémentaire représentatif, Auxétiques, Mi-
lieux fibreux stochastiques, Propriétés effectives
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Ǎ = {−x, x ∈ A} Transposed set of A

B(r ) Closed ball with radius r

K Compact set
P Probability of an event
p = P {x ∈ A} Probability of x to be in A

q = P
{

x ∈ Ac
}

= 1−p Probability of x to be in Ac

C (h) = P {x ∈ A, x +h ∈ A} Covariance C (h)

Q(h) = P
{

x ∈ Ac , x +h ∈ Ac
}

Covariance Q(h)

T (K ) = P {K ∩ A 6= ;} = 1−Q (K ) Choquet’s capacity
W 2 (x, x +h) 2nd order central correlation function
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0 Architectured Materials

Accident is design

And design is accident

In a cloud of unknowing.

— T. S. Eliot, The Family Reunion (1939)

0.1 A new class of materials

Architectured materials are a rising class of materials that bring new possibilities in terms
of functional properties, filling the gaps and pushing the limits of Ashby’s materials per-
formance maps [Ashby, 1999], as shown on Figure 1 [Ashby, 2013]. The term architec-

tured materials encompasses any microstructure designed in a thoughtful fashion, that some
of its materials properties have been improved in comparison to those of its constituents
[Ashby and Bréchet, 2003, Ashby, 2013, Bréchet and Embury, 2013]. There are many exam-
ples: particulate and fibrous composites, foams, sandwich structures, woven materials, lattice
structures, etc. Most of them are shown on Figure 2, also taken from [Ashby, 2013]. One can
play on many parameters to obtain architectured materials, but all of them are related either to
the microstructure or the geometry. Parameters related to the microstructure can be optimised
for specific needs using a materials-by-design approach, which has been thoroughly developed
by chemists, materials scientists and metallurgists. For instance, it is well-known among met-
allurgists that mechanically decreasing the average grain size of an alloy, as well as increasing
the dislocation density, results in a higher yield strength. Stronger polymers can be engineered
by changing interchain bounds or by optimizing the chain design. These improvements are
intrinsically related to the synthesis and processing of materials and are therefore due to micro-
and nanoscale phenomena, taking place at a scale ranging from 1 nm to 10 µm. This scale is
below the scope of this work but has been extensively studied in the literature, see for instance
[Brinker et al., 1994, Olson, 2001, Freeman, 2002, Embury and Bouaziz, 2010]. Processing is
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Figure 1: Ashby’s material map for Young’s modulus vs. density, from [Ashby, 2013]

the key technological lock for the development of architectured materials, nevertheless progress is
made every day to overcome this, as it was done in [Schaedler et al., 2011] by combining several
processing techniques in order to fabricate ultralight metallic microlattice materials. From a
macroscopic viewpoint, parameters related to the geometry have mainly been the responsibility of
structural and civil engineers for centuries: to efficiently distribute materials within structures. An
obvious example would be the many different strategies available for building bridges. Figure 3,
taken from [Ashby and Bréchet, 2003], illustrates the basic strength of materials fact that one can
optimize bending stiffness by modifying the geometry of the component, keeping the lineic mass
(for beams) or surfacic mass (for plates) unchanged. On the other hand, one might need a lower
flexural strength for the same lineic and surfacic masses. This can be achieved with stranded
structures, as shown on Figure 4, also taken from [Ashby and Bréchet, 2003]. Architectured
materials thus lie between the microscale and the macroscale. This class of materials involves
geometrically engineered distributions of microstructural phases at a scale comparable to the
scale of the component, thus calling for new models in order to determine the effective properties
of materials. One aim of the present work is to provide such models, in the case of mechanical
and thermal properties.
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Figure 2: Examples of architectured materials, from [Ashby, 2013]

Figure 3: Shape as a parameter for increasing sectional bending stiffness, from
[Ashby and Bréchet, 2003]
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Figure 4: Shape as a parameter for decreasing sectional bending stiffness, from
[Ashby and Bréchet, 2003]

0.2 The MANSART project

The MANSART (for MAtériaux saNdwicheS ARchiTecturés, or ARchiTectured saNdwicheS
MAterials) project aims at exploring new tools and approaches to develop such materials. The
project is mostly funded by the French Agence Nationale pour la Recherche (ANR). Starting
from January 2009, the project ran for 4 years, gathering 5 industrial (Airbus, EADS-IW, ON-
ERA, Ateca, SMCI) and 6 academic partners (CdM/MINES-ParisTech, MATEIS/INSA Lyon,
SIMAP/Grenoble-INP, GEMTEX/ENSAIT, ICA/ISAE, CIRIMAT/ENSIACET). It is subsequent
to the previous ANR project MAPO (MAtériaux POreux) and CNRS project MAM (Matéri-
aux Architecturés Multifonctionnels). The applications considered in the MANSART project
are mainly related to crashworthiness and mechanical properties at mid-range temperatures
(ca. 300◦C ). The following architectured materials were considered to fulfill industrial require-
ments: entangled monofilament of perlitic steel (PhD work of Loïc Courtois at MATEIS/INSA
Lyon [Courtois et al., 2011]), sandwich composite structures (PhD work of Amélie Kolopp at
ICA/ISAE [Kolopp et al., 2011]), woven and non-woven textile composites (PhD work of Mar-

ion Amiot at GEMTEX/ENSAIT [Lewandowski et al., 2012]), segmented interlocking structures
(PhD work of Magali Dugué at SIMAP/Grenoble-INP) and materials with negative Poisson’s
ratio (this work). Moreover, optimization of sandwich structures was also investigated (PhD work
of Pierre Leite at ONERA [Leite et al., 2012b, Leite et al., 2012a]), as well as homogenization
methods for predicting the effective properties of architectured materials (this work).
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0.3 The present study

This work is part of the MANSART project and was funded entirely by ANR. While most of
the work was conducted at the Centre des Matériaux1, which is a mixed research unit between
MINES-ParisTech and CNRS located in Evry, some of it, especially most of the computational
microstructural modeling, was done at the Centre de Morphologie Mathématique2 of MINES-
ParisTech in Fontainebleau.

The study is part of MANSART, with a focus on computational modeling as well as rapid
prototyping of architectured materials. As a matter of fact, one engineering challenge is to
predict the effective properties of such materials; numerical homogenization using finite element
analysis is a powerful tool to do so. A challenging candidate material was imagined for assessing
the applicability of such methods to architectured materials: stochastic random networks made
of infinite fibers, more specifically Poissonian fibrous networks. The determination of the
effective properties of Poisson fibers is not trivial, as it will be presented in Part III of this
manuscript. The random fibrous media considered in this work do not exist per se, but their
microstructure can be modeled computationally. The generation of such virtual specimens relies
on a tridimensional Poisson point implantation process. Due to the long-range correlation induced
by the model of random structures chosen, the size of the representative volume element is a

priori unknown. One goal of this work was then to evaluate this size using numerical simulation.
However, periodization of these microstructures is generally impossible, making the periodic
homogenization tools ineffective. Very large virtual samples computations have to be performed
in order to compute their representative volume element sizes a posteriori based on statistical
arguments and finally predict their effective mechanical and thermal properties.

Another type of material was considered soon after we started the project: auxetics. Auxetic
materials are a type of architectured materials exhibiting a negative Poisson’s ratio. They could
present interesting advantages for both functional and structural applications in the future. They
are presented in detail in Section 5.1. Auxetics considered in this work are halfway between
lattice structures and foams. We worked on periodic structures, making their homogenization
straightforward. A whole design-simulation-processing-characterization chain was developed for
auxetics, making it possible for us to study numerically and experimentally auxetics from the
literature, but also to develop new auxetic microstructures, using computer-aided design, results
from homogenization, rapid prototyping with selective laser melting and mechanical testing.
The results for auxetics are presented in Part II. By the means of homogenization technique
coupled with finite elements, we were able to investigate anisotropy for both linear elasticity
and elastoplasticity. Macroscopic modeling was performed and the simulation of indentation
experiments was done using these models.

This work is aiming at helping us developing new architectured materials by understanding the
underlying processes taking place in auxetic periodic lattices structures and stochastic random

1http://www.mat.ensmp.fr/
2http://cmm.ensmp.fr/
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fibrous media. Rapid prototyping using selective laser melting allows us to be creative in terms
of microstructural design. Our intention is also to demonstrate the ability of the computational
homogenization using finite element analysis to be a powerful tool for designing, modeling and
simulating future architectured materials.

0.4 From local heterogeneity to global response of materials

Materials science comes from the following fact: microstructural heterogeneities play a critical
role in the macroscopic behavior of a material. Constitutive modeling, thanks to an interaction
between experiments and simulation, is usually able to describe the response of most materials in
use. Such phenomenological models, including little to no information about the microstructure,
cannot necessarily account for local fluctuation of properties. In that case, the material is
considered as a homogeneous medium. Studying the behavior of heterogeneous materials involves
developing enriched models including morphological information about the microstructure.
These models should be robust enough to predict effective properties depending on statistical
data (volume fraction, n-point correlation function, etc.) and the physical nature of each phase
or constituent. As a matter of fact, advanced models are often restricted to a limited variety
of materials. For instance, the behavior of a polycrystalline material without any particular
texture, a multi-layered composite structure and a metallic ceramic exhibiting a composition
gradient cannot be modeled using the same assumptions. Although isotropic and anisotropic
polycrystalline metals have been extensively studied by the means of analytical and computational
tools, architectured materials bring up new challenges regarding the determination of effective
properties. The core purpose of this work is to meet up these challenges by adapting existing
homogenization methods to architectured materials.

0.5 Summary

In this work, we intend on bringing up answers for the following questions:

• How to determine the effective properties of architectured materials?

• How could we adapt existing computational tools for this purpose?

• Can rapid prototyping be useful to develop architectured materials?

• What can be expected from negative Poisson’s ratio materials?

• How could we assess the representativity of elementary volumes?

Those questions will be covered in the discussion taking place in Part IV.
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1 Preliminary concepts

Experience is simply the name we give our mistakes.

— Oscar Wilde, Lady Windermere’s Fan (1892)

Our scientific goal is the prediction of the mechanical and thermal effective properties for
architectured materials using computational homogenization. This first part aims at introducing
homogenization methods and summarizing some approaches in this field, either analytical or
computational.

Several considerations are necessary for implementing a homogenization scheme. They are
presented hereafter.

A few assumptions have to be made regarding the physics of the materials studied in this work.
They concern the constitutive thermal and mechanical behavior, as well as some related principles.

1.1 Constitutive thermal behavior

Thermal properties of architectured materials are studied in this work. We assume that heat trans-
fer takes place within the material to be defined locally according to Fourier’s law [Fourier, 1822]:

q =−λ∼ ·∇T (1.1)
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with q heat flux density vector, λ∼ second-order symmetric tensor of thermal conductivity, and ∇T

temperature gradient. Equation 1.1 can be written as follows using matrices and column-vectors:






q1

q2

q3




=−






λ11 λ12 λ13

• λ22 λ23

• • λ33











∇T 1

∇T 2

∇T 3




 (1.2)

It is also possible to express the temperature gradient as a function of the heat flux density using
the second-order thermal resistivity tensor ρ

∼
, which is defined as the inverse of tensor λ∼ :

−∇T =ρ
∼
·q with, ρ

∼
=̂ λ∼

−1 (1.3)

Also,

ρ
∼
·λ∼ = I∼ (1.4)

with I∼ second-order identity tensor, defined as follows:

I∼ = δi j e i ⊗e j (1.5)

1.2 Principles for mechanical modeling

Small deformations hypothesis is considered in this work, as well as three classical principles
used in mechanics for constitutive behavior modeling:

• the principle of local action implying that the local behavior defined at the material point x

depends only on variables defined at this material point, hence no effect of the neighboring
points is taken into account.

• the simple material principle allowing only the use of the first gradient of the transformation
within constitutive equations.

• the material objectivity principle making the constitutive behavior independent from the
observer, in particular time cannot explicitly appear in constitutive equations.

1.3 Constitutive mechanical behavior

1.3.1 Linear elasticity

When heterogeneous materials are assumed to respond linearly to mechanical loading, constitutive
relations are expressed locally for each phase in a linear elasticity framework using the generalized

12
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Hooke’s law [Hooke, 1678, Cauchy, 1827]:

σ∼ = c
≈

: ε∼ (1.6)

with σ∼ second-order symmetric Cauchy stress tensor, ε∼ second-order symmetric engineering
strain tensor and c

≈
, fourth-order positive definite tensor of elastic moduli, also known as the

elastic stiffness tensor. It is possible to express strain as a function of stress using the compliance
tensor s

≈
, which is defined as the inverse of tensor c

≈
:

ε∼ = s
≈

: σ∼ with, s
≈
=̂ c

≈
−1 (1.7)

such that,

s
≈
·c
≈
= I

≈
(1.8)

with I
≈
, fourth-order identity tensor operating on symmetric second-order tensors such that:

I
≈
= 1

2

(

δi kδ j l +δi lδ j k

)

e i ⊗e j ⊗e k ⊗e l (1.9)

The 81 components of ci j kl can be thinned-down to 21 for the most anisotropic case (triclinic
elasticity) due to symmetries of σ∼ and ǫ∼. By isomorphism, these 21 components can be written
as a symmetric second-order tensor (matrix) cI J with 21 independent components using Voigt

notation [Voigt, 1887]:














σ11

σ22

σ33

σ23

σ31

σ12














=














c11 c12 c13 c14 c15 c16

• c22 c23 c24 c25 c26

• • c33 c34 c35 c36

• • • c44 c45 c46

• • • • c55 c56

• • • • • c66



























ε11

ε22

ε33

γ23

γ31

γ12














(1.10)

Engineering shear strain is used in the strain column-vector:

γ23 = 2ε23

γ31 = 2ε31

γ12 = 2ε12
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The matrix form of the compliance tensor is obtained by inverting Equation 1.10:














ε11

ε22

ε33

γ23

γ31

γ12














=














s11 s12 s13 s14 s15 s16

• s22 s23 s24 s25 s26

• • s33 s34 s35 s36

• • • s44 s45 s46

• • • • s55 s56

• • • • • s66



























σ11

σ22

σ33

σ23

σ31

σ12














(1.11)

The finite element code used in this work is actually making use of the Kelvin notation presented
in Equations 1.12 and 1.13:














σ11
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2σ31p
2σ12
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(1.12)

The matrix form of the compliance tensor is obtained by inverting Equation 1.12:
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σ11

σ22

σ33p
2σ23p
2σ31p
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(1.13)

In the isotropic case, c
≈

can be rewritten as follows:

c
≈
= 3k J

≈
+2µK

≈
(1.14)

with k bulk modulus, µ shear modulus, J
≈

and K
≈

respectively spherical and deviatoric fourth-order

tensorial projectors such that,

J
≈
= 1

3
δi jδkl e i ⊗e j ⊗e k ⊗e l (1.15)

and

K
≈
= I

≈
− J

≈
(1.16)
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1.3.2 Elastoplasticity

Let us consider the strains as an additive combination of elastic and plastic strains such as,

ε∼ = ε∼
el +ε∼

p (1.17)

The stress state rising from the mechanical loading is only governed by the elastic deformation:

σ∼ = c
≈

: ε∼
el (1.18)

The material considered now exhibits a yield stress R0 corresponding to the elastic limit. Above
this value, the local stress level will induce plasticity and hardening. The evolution of plasticity
will depend on the considered nonlinear model. This model is characterized by a load function f .
We consider a Prager-type function which reads as follows in the case of uniaxial loading:

f (σ, X ) = |σ−X |−R0 (1.19)

with σ uniaxial stress, X kinematic hardening function and R0 yield stress. Plastic flow will take
place if and only if f = 0 and ḟ = 0. This yields the following condition:

∂ f

∂σ
σ̇+ ∂ f

∂X
Ẋ = 0 (1.20)

The load function is considered over three domains:

• Elastic domain if f (σ, X ) < 0 with ε̇= σ̇/E

• Elastic discharge if f (σ, X ) = 0 and ḟ (σ, X ) < 0 with ε̇= σ̇/E

• Plastic flow if f (σ, X ) = 0 and ḟ (σ, X ) = 0 with ε̇= σ̇/E + ε̇p

If X = Hεp with H the hardening modulus, one obtains the linear kinematic hardening function
[Prager, 1949] which is characterized by a shift of the yield surface f (σ, X ). On the other hand, if
one wishes to model an expansion of the elastic domain instead of a shift, the hardening function
R should be centered on the origin as follows:

f (σ, X ) = |σ|−R −R0 (1.21)

This is known as linear isotropic hardening [Lemaitre and Chaboche, 1994].

The shape of the nonlinear stress-strain curve is therefore given by the evolution of the hardening
function R. In order to model more accurately the behavior of materials, nonlinear saturating
hardening functions can be considered. Here is an example of exponential hardening function:

R =Qe−bεp
(1.22)
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with Q ultimate stress and b saturation rate parameter.

When dealing with multiaxial loading, it is mandatory to consider a yield criterion that is based
on the stress tensor σ∼ instead of the uniaxial stress σ. The von Mises criterion [von Mises, 1913]
is one of the most common yield criterion for metallic materials. It makes use of the second
invariant of the deviatoric stress tensor I2

(

σ∼
dev

)

:

I2

(

σ∼
dev

)

= 1

2
σ∼

dev : σ∼
dev (1.23)

For the sake of comparison, it is useful to obtain a criterion that is comparable with a uniaxial
stress. Invariant J2 is defined for this purpose:

J2

(

σ∼
)

=
√

3I2

(

σ∼
dev

)

=
√

3

2
σ∼

dev : σ∼
dev (1.24)

The von Mises yield function (J2-plasticity) then reads as follows:

f
(

σ∼
)

= J2

(

σ∼
)

−R0 (1.25)

Finally, the multiaxial von Mises yield function accounting for linear kinematic and isotropic
hardening is expressed this way:

f
(

σ∼ , X∼ ,R
)

= J2

(

σ∼ −X∼
)

−R −R0 =
√

3

2

(

σ∼
dev −X∼

)

:
(

σ∼
dev −X∼

)

−R −R0 (1.26)

with X∼ tensor accounting for kinematic hardening and R scalar for isotropic hardening.

1.4 Additivity

Throughout this work we will consider the following quantities to be additive, meaning also that
their effective values can be determined by spatial average:

• Lengths, surfaces and volumes

• Thermal dissipation and associated heat flux and temperature fields

• Elastic energy and associated strain, stress, forces and displacement fields
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2 Homogenization

To live effectively is to live with adequate information.

— Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (1954)

2.1 Representative volume element

Many definitions of what is a representative volume element (RVE) have been formulated for
the past 50 years. A partial review on those can be found in [Gitman et al., 2007]. The classical
definition of RVE is usually attributed to [Hill, 1963]. He stated that for a given material the RVE
is a sample that is structurally typical of the whole microstructure, i.e. containing a sufficient
number of heterogeneities for the macroscopic moduli to be independent of the boundary values
of traction and displacement.

Later, [Beran, 1968] emphasized the role of statistical homogeneity, as defined in Section 4.2.3,
especially in a volume-averaged sense. This also meant that the characteristic RVE size considered
should be larger than a certain microstructural length for which moduli fluctuate.

[Hashin, 1983] made a review on analysis of composite materials, and referred to statistical
homogeneity as a practical necessity. In the same article he proposed a scale separation principle
formalized as follows: MICRO ≪ MINI ≪ MACRO, MICRO being the scale of microstructural
heterogeneities, e.g. the size of a particle, a single crystal. MACRO is referring to the scale of the
whole composite material, while MINI is the scale of the RVE, often called the mesoscale.

[Sab, 1992] considered that the classical RVE definition for a heterogeneous medium holds only
if the homogenized moduli tend towards those of a similar periodic medium. This entails that the
response over a RVE should be independent of boundary conditions. The ergodicity hypothesis
(cf. Section 4.2.1) was stated by [Ostoja-Starzewski, 2002] as a requisite for the definition of the
RVE, as well as statistical homogeneity. The author considers the RVE to be only definable over
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Chapter 2. Homogenization

a periodic unit-cell or a non-periodic cell containing an infinite number of heterogeneities.

[Drugan and Willis, 1996] introduced explicitly the idea of minimizing the RVE size, meaning
that the RVE would be the smallest material volume for which the apparent and effective
properties coincide. Using the ergodicity hypothesis, [Kanit et al., 2003] proposed a method to
compute that minimal RVE size for a given property Z , a given contrast of properties and a given
precision in the estimate of effective properties.

Many definitions refer to the separation of scales as a necessary condition for the existence of a
RVE. This condition is not always met, i.e. with percolating media or materials with microstruc-
tural gradient of properties. This separation of scale involves a comparison between different
characteristic lengths:

• d , size of microstructural heterogeneities;

• l , size of the RVE considered;

• L, characteristic length of the applied load.

Previous considerations regarding characteristic lengths can be summarized as follow:

d ≪ l ≪ L (2.1)

Nevertheless, Inequality 2.1 is a necessary but not sufficient condition for the applicability of
homogenization. As a matter of fact, uniform loading, i.e. l ≪ L, has to be enforced. Let us
consider a measurable property, such as a mechanical strain field. The spatial average of its
measured value over a finite volume V converges towards the mathematical expectation of its
measured value over a series of samples smaller than V (ensemble average). It is the ergodicity
hypothesis. Moreover, ergodicity implies that one sample (or realization) of volume V ≥VRVE

contains all the statistical information necessary for the description of its microstructure. Also,
this entails that heterogeneities are small enough in comparison to the RVE size, i.e. d ≪ l . If
and only if these two conditions are met (d ≪ l and l ≪ L), the existence and uniqueness of
an equivalent homogeneous medium for both cases of random and periodic materials can be
rigorously proved [Sab, 1992]. Homogenization is therefore possible.

Besides, it is worth noticing that within one medium the RVE size for thermal conductivity is
a priori different from the RVE size for elastic moduli. Thus, one has to consider a RVE that
depends on the specific investigated property.

In this work, we adopt a restrictive, yet rigorous, definition for the RVE grounded on statistical
arguments. We will ensure that the separability of scales is met and that the ergodicity and
stationarity hypotheses are fulfilled for the materials studied. The definition of [Sab, 1992] is also
taken into account: effective properties should be independent of boundary conditions. For the
case of random media, RVE sizes are determined for mechanical and thermal properties based
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2.2. Averaging relations

on finite elements simulations. The statistical method for determining RVE sizes proposed in
[Kanit et al., 2003] is presented in Section 4.2 and implemented in Section 6.5.

2.2 Averaging relations

In this chapter, voids and rigid inclusions are excluded for simplicity of presentation. In this
work, we will however have to deal with porous media in both Parts II and III. The relations
given hereafter will then be reconsidered to fit the studied problems.

2.2.1 Averaging thermal fields

Let us define a certain volume of interest V ∈Ω and its boundary ∂V . In order to homogenize
thermal properties, one has to consider the spatial average over V of the gradient of temperature
∇T :

〈∇T 〉 = 1

V

∫

V
∇T dV = 1

V

∫

V
T,i dV e i

= 1

V

∫

∂V
T ni dS e i

= 1

V

∫

∂V
T n dS (2.2)

If one considers now the spatial average over V of a balanced steady-state heat flux vector q ∗,
i.e. Div q ∗ = 0 in V , it yields:

〈q ∗〉 = 1

V

∫

V
q ∗dV = 1

V

∫

V
q∗

i dV e i

= 1

V

∫

V

(

q∗
j xi

)

, j
dV e i

= 1

V

∫

∂V
q∗

j n j xi dS e i

= 1

V

∫

∂V

(

q ∗ ·n
)

x dS (2.3)

Finally, let us consider the thermal dissipation rate density D
th that arises from the fields q ∗ and
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Chapter 2. Homogenization

∇T for a reference temperature T0 (linearized theory):

T0D
th = 〈−q ∗ ·∇T 〉

= 1

V

∫

V
−q ∗ ·∇T dV

= 1

V

∫

V
−q∗

i T,i dV

= 1

V

∫

V
−

(

q∗
i T

)

,i
dV

= 1

V

∫

∂V
−q∗

i ni T dS

= 1

V

∫

∂V
−T q ∗ ·n dS (2.4)

2.2.2 Averaging mechanical fields

Thus, in the context of continuum mechanics, if one considers the spatial average of a kinemat-
ically compatible strain field ε∼

′ which is defined as the symmetric part of the gradient of the
displacement field u ′:

〈ε∼
′〉 = 1

V

∫

V
ε∼
′dV = 1

V

∫

V
u′

(i , j )dV e i ⊗e j

= 1

V

∫

∂V
u′

(i n j )dS e i ⊗e j

= 1

V

∫

∂V
u ′ s

⊗ n dS (2.5)

with u ′ s
⊗ n and u′

(i , j ) denoting the symmetric part of the resulting tensor. If one considers now
the spatial average of a statically admissible stress field σ∼

∗, i.e. Div σ∼
∗ = 0 in V , it yields:

〈σ∼
∗〉 = 1

V

∫

V
σ∼
∗dV = 1

V

∫

V
σ∗

i j dV e i ⊗e j

= 1

V

∫

V
σ∗

(i kδ j )k dV e i ⊗e j

= 1

V

∫

V
σ∗

(i k x j ),k dV e i ⊗e j

= 1

V

∫

∂V
σ∗

(i k nk x j )dS e i ⊗e j

= 1

V

∫

∂V

(

σ∼
∗ ·n

) s
⊗ x dS (2.6)
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From these averaging relations, we can define the elastic strain energy density E
el such that,

2E
el = 〈σ∼

∗ : ε∼
′〉

= 1

V

∫

V
σ∼
∗ : ε∼

′dV

= 1

V

∫

V
σ∗

i j u′
(i , j )dV

= 1

V

∫

V

(

σ∗
i j u′

i

)

, j
dV

= 1

V

∫

∂V
σ∗

i j n j u′
i dS

= 1

V

∫

∂V

(

σ∼
∗ ·n

)

·u ′dS (2.7)

2.3 Boundary conditions

2.3.1 Thermal behavior

It is necessary to prescribe values at the boundary of the domain of interest in order to solve the
thermal constitutive equations. Let us consider a volume V , its boundary ∂V and three types of
boundary conditions:

Uniform temperature gradient boundary conditions – UTG

Temperature T is prescribed for any material point x on ∂V such that,

T =G · x ∀x ∈ ∂V (2.8)

with G macroscopic temperature gradient, independent of x . Then,

〈∇T 〉 = 1

V

∫

V
∇T dV =G (2.9)

The macroscopic heat flux density vector can be defined as the spatial average of the local heat
flux density field:

Q =̂ 〈q 〉 = 1

V

∫

V
q dV (2.10)
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Chapter 2. Homogenization

Uniform heat flux boundary conditions – UHF

Heat flux density q is prescribed for any material point x on ∂V such that,

q ·n =Q ·n
(

x
)

∀x ∈ ∂V (2.11)

with Q macroscopic heat flux density vector, independent of x . Then,

〈q 〉 = 1

V

∫

V
q dV =Q (2.12)

The macroscopic temperature gradient can be defined as the spatial average of the local tempera-
ture gradient field:

G =̂ 〈∇T 〉 = 1

V

∫

V
∇T dV (2.13)

Periodic thermal boundary conditions – PTBC

The volume V is considered periodic when it is possible to fill the space by duplicating and
translating this volume. This volume can then be considered as a periodic unit-cell. Temperature
T can be dissociated into a macroscopic temperature given by the macroscopic temperature
gradient G and a periodic fluctuation field for any material point x of V , such that:

T =G · x +ϑ ∀x ∈V (2.14)

with ϑ temperature periodic fluctuation, i.e. taking the same value on two homologous points x +

and x − of ∂V . Moreover, the heat flux vector q must be anti-periodic so that,

q + ·n ++q − ·n − = 0 (2.15)

ϑ+−ϑ− = 0 (2.16)

Periodicity is denoted by # while anti-periodicity is denoted by −#.

2.3.2 Mechanical behavior

As for the thermal case, it is necessary to set boundary conditions to the volume V considered
in order to solve the constitutive equations in the case of statics. Let us consider three types of
boundary conditions:
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2.3. Boundary conditions

Kinematic uniform boundary conditions – KUBC

Displacement u is prescribed for any material point x on the boundary ∂V such that,

u = E∼ ·x ∀x ∈ ∂V (2.17)

with E∼ second-order macroscopic strain tensor, which is symmetric and independent of x . It
follows from Equation 2.17:

〈ε∼〉 =
1

V

∫

V
ε∼dV = E∼ (2.18)

The macroscopic stress tensor is then defined as the spatial average of the local stress field:

Σ∼ =̂ 〈σ∼ 〉 =
1

V

∫

V
σ∼ dV (2.19)

Static uniform boundary conditions – SUBC

Traction t is prescribed for any material point x on ∂V such that,

t =Σ∼ ·n ∀x ∈ ∂V (2.20)

with Σ∼ second-order macroscopic stress tensor, which is symmetric and independent of x . It
follows from Equation 2.20:

〈σ∼ 〉 =
1

V

∫

V
σ∼ dV =Σ∼ (2.21)

The macroscopic strain tensor is then defined as the spatial average of the local strain field:

E∼ =̂ 〈ε∼〉 =
1

V

∫

V
ε∼dV (2.22)

Periodic boundary conditions – PBC

For PBC, the displacement field u can be dissociated into a part given by the macroscopic strain
tensor E∼ and a periodic fluctuation field for any material point x of V , such that:

u = E∼ ·x +v ∀x ∈V (2.23)

with v∼ the periodic fluctuations vector, i.e. taking the same value on two homologous points x +

and x − of ∂V . Furthermore, the traction vector t =σ∼ ·n fulfills anti-periodic conditions such
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Chapter 2. Homogenization

that,

σ∼
+ ·n ++σ∼

− ·n − = 0 (2.24)

v +−v − = 0 (2.25)

A dual approach exists; it consists in prescribing a macroscopic stress to the cell. However we do
not develop this approach here, cf. [Michel et al., 1999] for details.

2.3.3 Hill–Mandel condition

Thermal behavior

Let us consider a volume V with two independent local fields ∇T ′ and q ∗. If q ∗ verifies UHF,
or ∇T ′ verifies UGT, or if q ∗ and ∇T ′ verify simultaneously PTBC, then:

〈−q ∗ ·∇T ′〉 = 〈q ∗〉 · 〈−∇T ′〉 (2.26)

Thus, one obtains the following equivalence for the three types of boundary conditions:

〈−q ·∇T 〉 = 〈q 〉 · 〈−∇T 〉 (2.27)

which corresponds to the Hill macrohomogeneity condition [Hill, 1967] applied to the thermal
problem. This ensures that the thermal dissipation rate density at the microscale is preserved
while scaling up to the macroscopic level.

Mechanical behavior

Let us consider a volume V with two independent local fields ε∼
′ and σ∼

∗ such that ε∼
′ is kinemati-

cally compatible and σ∼
∗ is statically admissible. If σ∼

∗ verifies SUBC, or ε∼
′ verifies KUBC, or if

σ∼
∗ and ε∼

′ verify simultaneously the periodic boundary conditions, then:

〈σ∼
∗ : ε∼

′〉 = 〈σ∼
∗〉 : 〈ε∼

′〉 (2.28)

Thus, one obtains the following equivalence for the three types of boundary conditions:

〈σ∼ : ε∼〉 = 〈σ∼ 〉 : 〈ε∼〉 (2.29)

which corresponds to the Hill macrohomogeneity condition [Hill, 1967]. This ensures that the
mechanical work density at the microscale is preserved while scaling up to the macroscopic level.
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2.4 Effective properties vs. apparent properties

When determining the properties of the volume V smaller than the RVE, apparent properties are
considered. The apparent properties converge towards the effective properties once V ≥VRVE.

2.4.1 Linear conductivity

The thermal problem admits a unique solution, up to a temperature offset, for the UHF and PTBC
problems. One can define two second-order concentration tensors Φ∼ and Ψ∼ accounting respec-
tively for the temperature gradient localization (UTG problem) and the heat flux concentration
(UHF problem), such that,

∇T (x ) =Φ∼ (x ) ·G ∀x ∈V and ∀G∼ (2.30)

and

q (x ) =Ψ∼ (x ) ·Q ∀x ∈V and ∀Q
∼

(2.31)

such that,

〈Φ∼ 〉 = 〈Ψ∼ 〉 = I∼ (2.32)

Let us consider the conductivity λ∼ (x ) and the resistivity ρ
∼

(x ), then:

q (x ) =−λ∼ (x ) ·∇T (x ) ∀x ∈V (2.33)

and

−∇T (x ) =ρ
∼

(x ) ·q (x ) ∀x ∈V (2.34)

Thus,

Q = 〈q 〉 = 〈−λ∼ ·∇T 〉 = 〈−λ∼ ·Ψ∼ ·G 〉 = 〈−λ∼ ·Ψ∼ 〉 ·G (2.35)

and

G = 〈∇T 〉 = 〈−ρ
∼
·q 〉 = 〈−ρ

∼
·Φ∼ ·Q 〉 = 〈−ρ

∼
·Φ∼ 〉 ·Q (2.36)

Let us then define Λ∼
app
G

and P∼
app
Q

, second-order symmetric tensors respectively accounting for
the apparent thermal conductivity and resistivity for an elementary volume V of the considered
material so that,

Λ∼
app
G

= 〈λ∼ ·Φ∼ 〉 (2.37)
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P∼
app
Q

= 〈ρ
∼
·Ψ∼ 〉 (2.38)

These equations highlight the fact that homogenized properties are generally not obtained by a
simple mixture rule.

Also, one can define the apparent properties in the linear case from the thermal dissipation rate
density D

th for a given temperature T0:

T0D
th = 〈−q ·∇T 〉 = 〈∇T ·λ∼ ·∇T 〉 =G · 〈Φ∼

T ·λ∼ ·Φ∼ 〉 ·G (2.39)

and

T0D
th = 〈−q ·∇T 〉 = 〈q ·ρ

∼
·q 〉 =Q · 〈Ψ∼

T ·ρ
∼
·Ψ∼ 〉 ·Q (2.40)

x∼
T denotes transposition of tensor x∼ . This way, we obtain a new definition of the apparent thermal

conductivity and resistivity:

Λ∼
app
G

= 〈Φ∼
T ·λ∼ ·Φ∼ 〉 (2.41)

and

P∼
app
Q

= 〈Ψ∼
T ·ρ

∼
·Ψ∼ 〉 (2.42)

This new definition justifies the symmetric nature of the apparent thermal conductivity and
resistivity tensors. It can be shown using the Hill–Mandel lemma that the results of Equations 2.37
and 2.41 provide the same effective moduli. If one considers V ≥ VRVE, the apparent thermal
conductivity and resistivity will converge towards the effective thermal properties.

2.4.2 Linear elasticity

As for the thermal problem, the micromechanical linear elastic problem admits a unique solution,
up to a rigid body displacement for SUBC and a periodic translation for PBC. Let us consider
two fourth-order tensors A

≈
and B

≈
accounting respectively for strain localization and for stress

concentration:

ε∼(x ) = A
≈

(x ) : E∼ ∀x ∈V and ∀E∼ (2.43)

and

σ∼ (x ) = B
≈

(x ) : Σ∼ ∀x ∈V and ∀Σ∼ (2.44)
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such that,

〈A
≈
〉 = 〈B

≈
〉 = I

≈
(2.45)

Let us consider the elastic moduli c
≈

(x ) and the compliances s
≈

(x ), then:

σ∼ (x ) = c
≈

(x ) : ε∼(x ) ∀x ∈V (2.46)

and

ε∼(x ) = s
≈

(x ) : σ∼ (x ) ∀x ∈V (2.47)

Thus,

Σ∼ = 〈σ∼ 〉 = 〈C
≈

: ε∼〉 = 〈c
≈

: A
≈

: E∼ 〉 = 〈c
≈

: A
≈
〉 : E∼ (2.48)

and

E∼ = 〈ε∼〉 = 〈S
≈

: σ∼ 〉 = 〈s
≈

: B
≈

: Σ∼ 〉 = 〈s
≈

: B
≈
〉 : Σ∼ (2.49)

We can define C
≈

app

E
and S

≈
app

Σ

, fourth-order symmetric tensors, accounting respectively for the

apparent elastic moduli and compliance of the volume V considered such that,

C
≈

app

E
= 〈c

≈
: A

≈
〉 (2.50)

and

S
≈

app

Σ

= 〈s
≈

: B
≈
〉 (2.51)

As for the thermal case, these equations show that homogenized properties are not usually
obtained by a simple mixing rule.

Also, one can define the apparent properties from the elastic strain energy density E
el :

E
el = 1

2
〈σ∼ : ε∼〉 =

1

2
〈ε∼ : c

≈
: ε∼〉 =

1

2
E∼ : 〈A

≈
T : c

≈
: A

≈
〉 : E∼ (2.52)

and

E
el = 1

2
〈σ∼ : ε∼〉 =

1

2
〈σ∼ : s

≈
: σ∼ 〉 =

1

2
Σ∼ : 〈B

≈
T : s

≈
: B

≈
〉 : Σ∼ (2.53)

This way, we obtain a new definition of the apparent elastic moduli and compliance:

C
≈

app

E
= 〈A

≈
T : c

≈
: A

≈
〉 (2.54)
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and

S
≈

app

Σ

= 〈B
≈

T : s
≈

: B
≈
〉 (2.55)

This new definition justifies the symmetric nature of the apparent elastic moduli and compliance
tensors. By applying the Hill–Mandel lemma (cf. Section 2.3.3) one can prove the equivalence
between direct and energetic definitions [Sanchez-Palencia and Zaoui, 1987].

According to [Sab, 1992], for an elementary volume V large enough (V >VRVE), the apparent
properties do not depend on the boundary conditions and match with the effective properties of
the considered material, then:

C
≈

app

Σ

= S
≈

app

Σ

−1 =C
≈

app

E
= S

≈
app

E

−1 =C
≈

eff = S
≈

eff−1
(2.56)

For volumes (V ≥ VRVE), based on energetic considerations and the subadditivity property of
the effective elastic moduli tensor, [Huet, 1990] proposed the so-called partition theorem. The
effective properties can be bounded by the following inequalities:

C
≈

app

Σ

≤C
≈

eff ≤C
≈

app

E
(2.57)

S
≈

app

E
≤ S

≈
eff ≤ S

≈
app

Σ

(2.58)

These inequalities have to be considered in a quadratic form sense. For elementary volumes
smaller than the RVE, using the same arguments but for partitions of different sizes, [Huet, 1990]
derived hierarchical inequalities regarding apparent and effective properties. Coarse and fine
partitions are considered and their respective statistical apparent properties are denoted by indices

c and f :

C
≈

Reuss ≤C
≈

app

Σ f
≤C

≈
app

Σc
≤C

≈
eff ≤C

≈
app

Ec
≤C

≈
app

E f
≤C

≈
Voigt (2.59)

S
≈

Voigt ≤ S
≈

app

E f
≤ S

≈
app

Ec
≤ S

≈
eff ≤ S

≈
app

Σc
≤ S

≈
app

Σ f
≤ S

≈
Reuss (2.60)

C
≈

Voigt, S
≈

Voigt, C
≈

Reuss and S
≈

Reuss refer to the classical Voigt and Reuss bounds that are introduced

in Section 3.4.2. The inequalities presented above can be used for verification of computational
homogenization results, as it was done for instance in [Kanit et al., 2003, Kanit et al., 2006] for
elastic and thermal properties. Moreover, the bounds C

≈
app

Σ

and C
≈

app

E
are usually far apart when

the contrast of properties between phases is large. If the microstructure features a matrix phase,
tighter bounds can be obtained by choosing elementary volumes including only the matrix at the
boundary, as shown in [Salmi et al., 2012a, Salmi et al., 2012b].
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2.5 Some boundary value problems for the estimation of isotropic

effective properties

Boundary value problems are presented in this section for determining linear isotropic thermal
and elastic properties: bulk modulus k, shear modulus µ and conductivity λ.

2.5.1 Thermal properties

In order to solve the thermal conduction problem, one can prescribe G or Q tensors by means of
PTBC, UTG or UHF.

Thermal conductivity

For determining an apparent thermal conductivity λapp over V , let us apply the following
macroscopic gradient of temperature in order to solve the thermal UTG problem:

G λ =






1
3
1
3
1
3




 (2.61)

An apparent thermal conductivity λapp can be defined from the thermal dissipation rate density
using the macroscopic temperature gradient given by Equation 2.61 as follows:

λapp =̂ 3T0D
th

(

G∼ λ

)

= 3〈−q ·∇T 〉 = 3〈q 〉 · 〈−∇T 〉 =−3Q ·G λ (2.62)

= − (Q1 +Q2 +Q3) (2.63)

λapp can be regarded as an estimate of λeff. Conversely the apparent thermal resistivity can be
obtained from solving the thermal UHF problem. Let us apply the following macroscopic heat
flux:

Q
ρ
=






1
3
1
3
1
3




 (2.64)

The apparent thermal resistivity ρapp can be defined the same way using the macroscopic heat
flux given in Equation 2.64 as follows:

ρapp =̂ 3T0D
th

(

Q
∼ ρ

)

= 3λapp−1 = 3〈−q
∼
·∇T 〉 = 3〈q 〉 · 〈−∇T 〉 =−3Q

λ
·G (2.65)

= − (G1 +G2 +G3) (2.66)
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ρapp can be regarded as an estimate of ρeff.

2.5.2 Elastic properties

Let us consider an elastic strain energy density over a volume V as defined in Equation 2.52. One
can prescribe specific E∼ and Σ∼ tensors for PBC and respectively for KUBC and SUBC.

Bulk modulus

For determining an apparent bulk modulus kapp over V , let us apply the following macroscopic
strain tensor in order to solve the micromechanical KUBC problem:

E∼ k =






1
3

0 0

0 1
3

0

0 0 1
3




 (2.67)

An apparent bulk modulus kapp can be defined from the elastic strain energy density for the
macroscopic strain given in Equation 2.67 using the Hill–Mandel lemma, such that:

kapp =̂ 2E
el

(

E∼ k

)

= 〈σ∼ : ε∼〉 = 〈σ∼ 〉 : 〈ε∼〉 =Σ∼ : E∼ k (2.68)

= 1

3
TrΣ∼ (2.69)

kapp can be regarded as an estimate of keff. Conversely an apparent bulk modulus can be obtained
from solving the micromechanical SUBC problem using the following macroscopic stress tensor:

Σ∼ k =






1 0 0

0 1 0

0 0 1




 (2.70)

Then, again using the elastic strain energy density:

kapp−1 =̂ 2E
el

(

Σ∼ k

)

= 〈σ∼ : ε∼〉 = 〈σ∼ 〉 : 〈ε∼〉 =Σ∼ k : E∼ (2.71)

= TrE∼ (2.72)
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2.5. Some boundary value problems for the estimation of isotropic effective properties

Shear modulus

We consider the shear modulus µapp over V , let us apply the following macroscopic strain tensor
in order to solve the micromechanical KUBC problem:

E∼ µ =






0 1
2

0
1
2

0 0

0 0 0




 (2.73)

An apparent shear modulus µapp can be defined from the elastic strain energy density for the
macroscopic strain given in Equation 2.73 using the Hill–Mandel lemma, such that:

µapp =̂ 2E
el

(

E∼ µ

)

= 〈σ∼ : ε∼〉 = 〈σ∼ 〉 : 〈ε∼〉 =Σ∼ : E∼ µ (2.74)

= Σ12 (2.75)

µapp can be regarded as an estimate of µeff. Conversely we can obtain an apparent shear modulus
from the SUBC problem using the following macroscopic stress tensor:

Σ∼ µ =






0 1 0

1 0 0

0 0 0




 (2.76)

Then, again using the elastic strain energy density:

µapp−1 =̂ 2E
el

(

Σ∼ µ

)

= 〈σ∼ : ε∼〉 = 〈σ∼ 〉 : 〈ε∼〉 =Σ∼ µ : E∼ (2.77)

= 2E12 (2.78)

The shear and bulk moduli are material parameters related to isotropic elasticity, which is an
idealization of reality. Thus, we will have to verify carefully the isotropy hypothesis when
computing these quantities, this is discussed in Section 6.3.
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3 Analytical estimates and bounds

Qu’il ne faut point tâcher de comprendre l’infini, mais seulement penser que

tout ce en quoi nous ne trouvons aucunes bornes est indéfini.

— René Descartes, Principes de la philosophie (1644)

Analytical methods are available for estimating the properties of heterogeneous materials.
They usually involve assumptions regarding the microstructure. In the field of mechanics,
asymptotic expansions [Sanchez-Palencia, 1974, Bensoussan et al., 1978] and variational bounds
[Hashin and Shtrikman, 1962b, Beran, 1968] are examples of analytical approaches. For a het-
erogeneous elastic material, homogenization consists in solving the micromechanical prob-
lem of localization (for a prescribed strain) or concentration (for a prescribed stress). For-
mally, this means solving an implicit integral Lippmann–Schwinger-type equation. That can
be done numerically, or analytically using some assumptions. This is how estimates and
bounds have been developed. This chapter was written based on the following textbooks:
[Bornert et al., 2001, Torquato, 2001, Besson et al., 2001, Milton, 2002], as well as the gradu-
ate course Modélisation du comportement des matériaux hétérogènes et composites taught at
ENSTA-ParisTech by Profs. Bornert and Brenner.

3.1 Analytical estimates for thermal properties

3.1.1 Maxwell Garnett’s estimate

In his treatise [Maxwell, 1873], J. C. Maxwell gave an approximation for the effective thermal
conductivity of a single spherical inclusion embedded within an infinite matrix. Based on
this result, Maxwell’s son J. C. Maxwell Garnett proposed a d-dimensional extension to n

spherical inclusions of conductivity λi and volume fraction V i
V within an infinite matrix of

conductivity λm , by assuming no interaction between the inclusions (high dilution assumption)
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[Maxwell Garnett, 1904]. Thus, by superposition of the contribution of each inclusion, it yields:

λMG −λm

λMG + (d −1)λm
=V i

V

(
λi −λm

λi + (d −1)λm

)

(3.1)

which can be rewritten as follows for d = 3:

λMG =λm
λi

(

1+2V i
V

)

−λm
(

2V i
V
−2

)

λm
(

2+V i
V

)

+λi
(

1−V i
V

) (3.2)

Equation 3.1 can be generalized to n spherical inclusions with different conductivities λr such
that:

λMG −λm

λMG + (d −1)λm
=

n∑

r=1

V r
V

(
λr −λm

λr + (d −1)λm

)

(3.3)

and again, one can rewrite it as follows for d = 3:

λMG =
n∑

r=1

λm
λr

(

1+2V r
V

)

−λm
(

2V r
V
−2

)

λm
(

2+V r
V

)

+λr
(

1−V r
V

) (3.4)

Equation 3.1 and 3.2 actually coincide with the Hashin–Shtrikman optimal bounds that are
introduced in Section 3.2.3. Since Maxwell Garnett’s estimate is not accounting for interaction
between particles, its validity is restricted to small volume fractions.

3.1.2 Bruggeman’s self-consistent model

Bruggeman proposed in [Bruggeman, 1935] a self-consistent model for determining the effective
conductivity λSC of a medium made of n spherical particles of different conductivities λr and
volume fractions V r

V :

n∑

r=1

V r
V

λr −λSC

λr + (d −1)λSC
= 0 (3.5)

For the case of d-dimensional two-phase materials, the solution of Equation 3.5 reads as follows:

λSC = α+
√

α2 +4(d −1)λ1λ2

2(d −1)
(3.6)

with α = λ1
(

dV 1
V −1

)

+λ2
(

dV 2
V −1

)

. The self-consistent equation was extended to the d-
dimensional case of a dilute distribution of spherical inclusions of conductivity λi and volume
fraction V i

V within a matrix of conductivity λm :

V i
V

(

λi −λSC)

dλSC
+

(

1−V i
V

)(

λm −λSC)

λm + (d −1)λSC
= 0 (3.7)
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3.2. Analytical bounds for thermal properties

Since all phases are treated equally with the self-consistent estimate, its use for highly contrasted
composites is not recommended.

3.2 Analytical bounds for thermal properties

We will now focus on rigorous bounds that can be defined based on variational principles and
statistical information about the morphology of the material. Effective properties are included
in-between these bounds. An analytical bound of order k is considered optimal if its definition
uses all the statistical data of order k available. We will consider n-phase materials although each
bound will be specialized for two-phase materials.

3.2.1 Bounds of order 0

Considering that λ∼
2 >λ∼

1, bounds of order 0 correspond to the properties of each phase. The
homogenized tensor of conductivity λ∼

H is then bounded by the conductivities of the most
conductive phase λ∼

2 and the least conductive phase λ∼
1 as follows:

λ∼
1 ≤λ∼

H ≤λ∼
2 (3.8)

These inequalities have to be considered in the sense of quadratic forms. Such bounds do not
take volume fraction into account. As a matter of fact, they are of limited interest since they do
not give any useful estimate of the homogenized properties.

3.2.2 Bounds of order 1

If information about the volume fraction is available, one should use it. Wiener bounds can then
be obtained [Wiener, 1912]. They correspond respectively to the arithmetic and harmonic means
of phase conductivities, balanced by V r

V , the volume fraction of each phase r such that,

λ∼
W+ =

n∑

r=1

V r
V λ∼

r =
(

ρ
∼

W+
)−1

(3.9)

and

ρ
∼

W- =
n∑

r=1

V r
V ρ

∼
r =

(

λ∼
W-)−1

(3.10)

One can thus bound λ∼
H and ρ

∼
H as follows:

λ∼
W- ≤λ∼

H ≤λ∼
W+ (3.11)
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and

ρ
∼

W+ ≤ρ
∼

H ≤ρ
∼

W- (3.12)

3.2.3 Bounds of order 2

For the case of d-dimensional isotropic media, i.e. exhibiting an isotropic distribution of het-
erogeneities with isotropic thermal behavior, tighter bounds can be obtained. From variational
principles of energy minimization for linear conductivity, Hashin and Shtrikman have defined
the 2nd-order bounds [Hashin and Shtrikman, 1962a] for thermal conductivity in the case of a
macroscopically isotropic material made of n isotropic phases with conductivity λr . The low-
est conductivity is denoted by exponent 1, the highest by exponent n . It is thus assumed that
λn−1 <λn . Exponent HS+

denotes upper bounds while exponent HS−
denotes lower bounds:

λHS−
=

( n∑

r=1

V r
V

(

α1 +λr
)−1

)−1

−α1 (3.13)

λHS+
=

( n∑

r=1

V r
V

(

αn +λr
)−1

)−1

−αn (3.14)

with α1 and αn as follows:

α1 =V 1
V λ1 +V r

V λr −
V 1

V V r
V

(

λr −λ1
)2

λr V 1
V
+λ1V r

V
+ (d −1)λ1

(3.15)

αn =V r
V λr +V n

V λn −
V r

V
V n

V (λn −λr )2

λnV r
V
+λr V n

V
+ (d −1)λr

(3.16)

with V r
V , volume fraction of phase r . This way one can bound the effective thermal conductivity

λH :

λHS−
≤λH ≤λHS+

(3.17)

Application to two-phase composites

λHS−
=V 1

V λ1 +V 2
V λ2 −

V 1
V V 2

V

(

λ2 −λ1
)2

λ2V 1
V
+λ1V 2

V
+ (d −1)λ1

(3.18)

λHS+
=V 1

V λ1 +V 2
V λ2 −

V 1
V V 2

V

(

λ2 −λ1
)2

λ2V 1
V
+λ1V 2

V
+ (d −1)λ2

(3.19)
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3.2. Analytical bounds for thermal properties

which can be rewritten as follows for d = 3:

λHS−
=λ1 +

3V 2
V λ1

(

λ2 −λ1
)

3λ1 +V 1
V

(

λ2 −λ1
) (3.20)

λHS+
=λ2 −

3V 1
V λ2

(

λ2 −λ1
)

3λ2 −V 2
V

(

λ2 −λ1
) (3.21)

We will compare our simulation results in Chapter 6 with the Hashin–Shtrikman bounds for 3D
two-phase materials.

3.2.4 Bounds of order 3

Higher-order bounds have been developed for random media based on three-point correlation
functions. This was first achieved by Beran for conductivity properties [Beran, 1965].

3.2.5 Bounds of order 4

Milton proposed fourth-order bounds for elastic properties based on four-point correlation func-
tions in [Milton and Phan-Thien, 1982].

In this work, we will not use bounds of order higher than 2. Considering a dispersion of inclusions
within a matrix, Hill’s lens for thermal conductivity is plotted on Figures 3.1 and 3.2, respectively
for a contrast between phases of 4 and 100.

Figure 3.1: Hill’s lens for thermal conductivity with contrast c = 4
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Chapter 3. Analytical estimates and bounds

Figure 3.2: Hill’s lens for thermal conductivity with contrast c = 100

3.3 Analytical estimates for elastic properties

3.3.1 Einstein’s estimate

Estimates can be drawn from reasonable assumptions in the case of biphasic materials, as
Einstein did while studying the viscous properties of a fluid with incompressible spherical
particles [Einstein, 1906, Einstein, 1911]. Small concentration of particles is assumed (high

dilution assumption or HD). For a weakly viscous fluid M with dilute incompressible particles P

of volume fraction V P
V , Einstein’s estimate for the shear modulus µEinstein yields:

µEinstein =µM
(

1+2.5V P
V

)

(3.22)

3.3.2 Eshelby’s model

As for Einstein’s, Eshelby’s model neglects interactions between inclusions. The response of
each inclusion is the same as the one of a unique inclusion surrounded by a quasi-infinite elastic
matrix domain Ω. Eshelby gave the analytical expressions of the elastic fields for an ellipsoidal
inclusion [Eshelby, 1957]. He first considers a homogeneous problem: an ellipsoidal inclusion
with moduli C

≈
0 and compliance S

≈
0, embedded within an infinite matrix with the same elastic

properties. The inclusion is subject to eigen-strain ε∼
f =−S

≈
0 : τ∼ , with τ∼ =−C

≈
0 : ε∼

f polarization

stress tensor. The constitutive behavior is described as follows:






σ∼ = C
≈

0 : ε∼ outside the inclusion

σ∼ = C
≈

0 :
(

ε∼ −ε∼
f
)

=C
≈

0 : ε∼ +τ∼ inside the inclusion
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3.3. Analytical estimates for elastic properties

The actual strain field ε∼
i in the inclusion is given by:

ε∼
i = S

≈
0

i
: ε∼

f =−P
≈

0

i
: τ∼ (3.23)

with S
≈

0

i
, the dimensionless Eshelby interaction tensor and P

≈
0

i
, the Hill interaction tensor, sym-

metric positive definite, both depending on C
≈

0 and the shape of the inclusion. These tensors are

related in this way:

P
≈

0

i
= S

≈
0

i
: S
≈

0 (3.24)

If one considers now the same problem with kinematic boundary condition (prescribed displace-
ment u 0, yielding homogeneous strain ε∼

0) at the boundary ∂Ω of the quasi-infinite domain, the
strain field seen by the inclusion can be deduced from the previous result by superposition:

ε∼
i = ε∼

0 −P
≈

0

i
: τ∼ (3.25)

Eshelby showed that the solution he proposed for the homogeneous problem was applicable to
the inhomogeneous problem involving an ellipsoidal inclusion with different elastic properties
from the quasi-infinite matrix. Let us consider the previous problem, with an ellipsoidal inclusion
now with moduli C

≈
i . Hooke’s law outside and inside the inclusion reads as follows:







σ∼ = C
≈

0 : ε∼ outside the inclusion

σ∼ = C
≈

i : ε∼ inside the inclusion

which can be rewritten such that:






σ∼ = C
≈

0 : ε∼ outside the inclusion

σ∼ = C
≈

0 : ε∼ +
(

C
≈

i −C
≈

0

)

ε∼
︸ ︷︷ ︸

τ∼
′

inside the inclusion

If τ∼
′ is considered homogeneous within the inclusion, the inhomogeneous problem becomes

similar to the homogeneous problem, the strain in the inclusion is homogeneous and is given by
Equation 3.25, which yields:

ε∼
i = ε∼

0 −P
≈

0

i
: τ∼

′ = ε∼
0 −P

≈
0

i
:

(

C
≈

i −C
≈

0

)

: ε∼
i (3.26)
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which can be rewritten in this way:

(

I
≈
+P

≈
0

i
:

(

C
≈

i −C
≈

0

))

: ε∼
i = ε∼

0

((

P
≈

0

i

)−1

−C
≈

0 +C
≈

i

)

: ε∼
i =

(

P
≈

0

i

)−1

: ε∼
0

(

C
≈
⋆

i
+C

≈
i

)

: ε∼
i =

(

C
≈
⋆

i
+C

≈
0

)

: ε∼
0

ε∼
i =

(

C
≈
⋆

i
+C

≈
i

)−1

:

(

C
≈
⋆

i
+C

≈
0

)

: ε∼
0 (3.27)

with C
≈
⋆

i
=

(

P
≈

0

i

)−1

−C
≈

0 =C
≈

0 :

((

S
≈

0

i

)−1

− I
≈

)

, the Hill influence tensor, symmetric positive definite,

which only depends on C
≈

0 and on the shape of the inclusion. This tensor is accounting for the

reaction of the quasi-infinite matrix on the inclusion. Finally, by homogenization one obtains the
estimate of tensor of elastic moduli (resp. compliance) using the approach with prescribed strain
(resp. stress), for a high dilution (HD) of inclusions without any interaction:

C
≈

HD = C
≈

0 +V i
V T

≈
0

i
(3.28)

S
≈

HD = S
≈

0 −V i
V

(

S
≈

0 : T
≈

0

i
: S
≈

0

)

(3.29)

with T
≈

0

i
, tensor relating the polarization stress tensor τ∼

′ within the inclusion to the homogeneous

strain ε∼
0 outside of the inclusion, which can be obtain as follows:

T
≈

0

i
=

(

C
≈

i −C
≈

0

)

:

(

C
≈
⋆

i
+C

≈
i

)−1

:

(

C
≈
⋆

i
+C

≈
0

)

=
(

C
≈

i −C
≈

0

)

−
(

C
≈

i −C
≈

0

)

:

(

C
≈
⋆

i
+C

≈
i

)−1

:

(

C
≈

i +C
≈

0

)

(3.30)

For an elastically isotropic matrix reinforced with a highly dilute dispersion of elastically isotropic
spherical particles, one can analytically compute the Hill influence tensor:

C
≈
⋆

i
=

{

3k⋆,2µ⋆
}

=
{

4µ0,
µ0

(

9k0 +8µ0
)

3
(

k0 +2µ0
)

}

=µ0

{

4,
7−5ν0

4−5ν0

}

(3.31)
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Then, when applied to the shear and bulk moduli, it yields:

µHD
E = µ0 +V i

V

(

µi −µ0
)(

µ⋆

i
+µ0

)

µ⋆

i
+µi

=µ0 +V i
V

(

µi −µ0
)(µ0(9k0+8µ0)

6(k0+2µ0)
+µ0

)

µ0(9k0+8µ0)
6(k0+2µ0)

+µi
(3.32)

1

µHD
Σ

= 1

µ0
+V i

V

(
1
µi − 1

µ0

)(
1
µ⋆

i

+ 1
µ0

)

1
µ⋆

i

+ 1
µi

= 1

µ0
+V i

V

(
1
µi − 1

µ0

)(
6(k0+2µ0)

µ0(9k0+8µ0)
+ 1

µ0

)

6(k0+2µ0)
µ0(9k0+8µ0)

+ 1
µi

(3.33)

kHD
E = k0 +V i

V

(

k i −k0
)(

k⋆

i
+k0

)

k⋆

i
+k i

= k0 +V i
V

(

k i −k0
)(4µ0

3
+k0

)

4µ0

3
+k i

(3.34)

1

kHD
Σ

= 1

k0
+V i

V

(
1

k i − 1
k0

)(
1

k⋆

i

+ 1
k0

)

1
k⋆

i

+ 1
k i

= 1

k0
+V i

V

(
1

k i − 1
k0

)(
3

4µ0 + 1
k0

)

3
4µ0 + 1

k i

(3.35)

3.3.3 Self-consistent scheme

The self-consistent scheme applied to elastic moduli was first proposed by Budiansky

[Budiansky, 1965] and Hill [Hill, 1965]. This approach is taking into account the interaction
between particles by simplifying the problem such that the average of neighboring effects seen by
each particle can be accounted for by replacing the reference medium (matrix) properties C

≈
0 by

the estimated ones C
≈

SC. Let us rewrite Equation 3.27 in the case of spherical phases such that:

ε∼
i =

(

C
≈
⋆

i
+C

≈
i

)−1

:

(

C
≈
⋆

i
+C

≈
SC

)

: ε∼
0 (3.36)

Thus, by considering the spatial average over the whole domain Ω:

〈

ε∼
i
〉

=
〈(

C
≈
⋆

i
+C

≈
i

)−1

:

(

C
≈
⋆

i
+C

≈
SC

)〉

: ε∼
0 (3.37)

As for Eshelby’s problems, the overall spatial average of the elastic strain field
〈

ε∼
i
〉

converges

towards the value of the strain ε∼
0 prescribed on ∂Ω. Hence, it yields:

1 =
〈(

C
≈
⋆

i
+C

≈
i

)−1〉

:

(

C
≈
⋆

i
+C

≈
SC

)

(3.38)

which is the self-consistent equation. Solving this equation by finding C
≈

SC is usually done

computationally. It is worth noting that with this model, the contribution of each phase is treated
equally, making it interesting for studying polycrystalline materials but not so much for reinforced
composites with large contrast of properties between phases.
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For the case of isotropic d-dimensional materials made of n different spherical isotropic particles
with bulk modulus kn and shear modulus µn , Equation 3.38 can be rewritten as follows for the
bulk modulus kSC:

n∑

r=1

V r
V

kr −kSC

kr + 2(d−1)
d

µSC
= 0 (3.39)

The bulk modulus estimate obtained using the self-consistent scheme depends on the estimate of
the shear modulus µSC:

n∑

r=1

V r
V

µr −µSC

µr +hSC
= 0 (3.40)

with

hSC =̂ µSC
dkSC

2
+ (d+1)(d−2)µSC

d

kSC +2µSC
(3.41)

Let us now apply these formulae to 3D 2-phase composites.

Application to two-phase composites

V 1
V

k1 −kSC

k1 + 4
3
µSC

+V 2
V

k2 −kSC

k2 + 4
3
µSC

= 0 (3.42)

V 1
V

µ1 −µSC

µ1 +hSC
+V 2

V

µ2 −µSC

µ2 +hSC
= 0 (3.43)

with

hSC =̂ µSC
3
2

kSC + 4
3
µSC

kSC +2µSC
(3.44)

and

V 2
V = 1−V 1

V (3.45)

After calculation, it yields:

kSC =
k1k2 +

(

V 1
V k1 +V 2

V k2
)

4
3
µSC

V 2
V

k1 +V 1
V

k2 + 4
3
µSC

(3.46)
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µSC =
µ1µ2 +

(

V 1
V µ1 +V 2

V µ2
) µSC

(
3
2

kSC+ 4
3
µSC

)

kSC+2µSC

V 2
V
µ1 +V 1

V
µ2 + µSC

(
3
2

kSC+ 4
3
µSC

)

kSC+2µSC

(3.47)

A unique solution can be found for Equations 3.46 and 3.47 using a fixed-point algorithm.

3.4 Analytical bounds for elastic properties

As for the thermal conductivity, rigorous bounds can be defined for the elastic properties.

3.4.1 Bounds of order 0

Considering that one phase is stiffer than the other, bounds of order 0 correspond to the properties
of each phase. The homogenized tensor of elasticity moduli C

≈
H is then bounded by the moduli

of the hardest phase C
≈

2 and the softest phase C
≈

1 as follows:

C
≈

1 ≤C
≈

H ≤C
≈

2 (3.48)

These inequalities have to be considered in the sense of quadratic forms. Such bounds do not
take volume fraction into account. As a matter of fact, they are of limited interest since they do
not give any useful estimate of the homogenized properties.

3.4.2 Bounds of order 1

If information about the volume fraction is available, one should use it. Voigt and Reuss bounds
can then be obtained [Voigt, 1889, Reuss, 1929]. Voigt’s assumption is that the strain field is
homogeneous throughout the medium, while Reuss’ correspond to a homogeneous stress field.
They correspond respectively to the arithmetic and harmonic means of phase properties, balanced
by V r

V , the volume fraction of each phase r such that,

C
≈

Voigt =
n∑

r=1

V r
V C

≈
r =

(

S
≈

Voigt
)−1

(3.49)

and

S
≈

Reuss =
n∑

r=1

V r
V S

≈
r =

(

C
≈

Reuss
)−1

(3.50)
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One can thus bound C
≈

H and S
≈

H as follows:

C
≈

Reuss ≤C
≈

H ≤C
≈

Voigt (3.51)

and

S
≈

Voigt ≤ S
≈

H ≤ S
≈

Reuss (3.52)

3.4.3 Bounds of order 2

For the case of two-dimensional isotropic media, i.e. exhibiting an isotropic distribution of
heterogeneities with isotropic elastic behavior, tighter bounds can be obtained. From variational
principles of energy minimization for linear elasticity, Hashin and Shtrikman have defined 2nd-
order bounds for bulk modulus k and shear modulus µ [Hashin and Shtrikman, 1963]. Lowest
moduli are denoted by exponents 1, highest moduli by exponents n . It is thus assumed that
kn−1 < kn and µn−1 < µn . Exponent HS+

denotes upper bounds while exponent HS−
denotes

lower bounds. Let us define the bounds for the bulk modulus K ,

k HS−
= k1 + A1

1+α1 A1
(3.53)

k HS+
= kn + An

1+αn An
(3.54)

with α1, αn , A1 and An as follows:

α1 =− 3

3k1 +4µ1
(3.55)

αn =− 3

3kn +4µn
(3.56)

A1 =
n∑

r=2

Ar
A

1
kr −k1 −α1

(3.57)

An =
n−1∑

r=1

Ar
A

1
kr −kn −αn

(3.58)
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with Ar
A , surface fraction of phase r in R

2 or V r
V , volume fraction of phase r in R

3. This way one
can bound the homogenized bulk modulus k H :

k HS−
≤ k H ≤ k HS+

(3.59)

Let us now consider the shear modulus µ:

µHS−
=µ1 + 1

2

B1

1+β1B1
(3.60)

µHS+
=µn + 1

2

Bn

1+βnBn
(3.61)

with β1, βn , B1 and Bn as follows:

β1 =−
3
(

k1 +2µ1
)

5µ1
(

3k1 +4µ1
) (3.62)

βn =−
3
(

kn +2µn
)

5µn
(

3kn +4µn
) (3.63)

B1 =
n∑

r=2

Ar
A

1
2(µr −µ1)

−β1

(3.64)

Bn =
n−1∑

r=1

Ar
A

1
2(µr −µn)

−βn

(3.65)

Thus bounds for the homogenized shear modulus µH can be defined:

µHS−
≤µH ≤µHS+

(3.66)

Application to two-phase composites in R
2

µHS−
=µ1 +

A2
A

1
µ2−µ1 +

6(k1+2µ1)A1
A

5µ1(3k1+4µ1)

(3.67)

µHS+
=µ2 +

A1
A

1
µ1−µ2 +

6(k2+2µ2)A2
A

5µ2(3k2+4µ2)

(3.68)
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k HS−
= k1 +

A2
A

1
k2−k1 +

3A1
A

3k1+4µ1

(3.69)

k HS+
= k2 +

A1
A

1
k1−k2 +

3A2
A

3k2+4µ2

(3.70)

The Hashin–Shtrikman bounds are also available for bounding the properties of 3-dimensional
isotropic microstructures, they are presented hereafter for the case of a two-phase composite.

Hashin–Shtrikman bounds for 3D two-phase materials

µHS−

3D =µ1 +
V 2

V

1
µ2−µ1 +

2(k1+2µ1)V 1
V

5µ1
(

k1+ 4
3
µ1

)

(3.71)

µHS+

3D =µ2 +
V 1

V

1
µ1−µ2 +

2(k2+2µ2)V 2
V

5µ2
(

k2+ 4
3
µ2

)

(3.72)

k HS−

3D = 1

V 2
V

k2+ 4µ2

3

+ V 1
V

k1+ 4µ1

3

− 4µ2

3
(3.73)

k HS+

3D = 1

V 2
V

k2+ 4

3µ2

+ V 1
V

k1+ 4

3µ1

− 4

3µ2
(3.74)

It is worth noting that for an isotropic dilute distribution of hard spherical inclusions in a soft
matrix considered as the reference medium, the lower HS bound is equivalent to the Mori–Tanaka

estimate [Mori and Tanaka, 1973]. We will compare our simulation results in Chapter 6 with the
Hashin–Shtrikman bounds for 3D two-phase materials.

3.4.4 Bounds of order 3

Higher-order bounds have been developed for random media based on three-point correlation
functions. The third-order bounds were proposed in [Beran and Molyneux, 1966] for the elastic
bulk modulus, and in [McCoy, 1970] for the shear modulus. Jeulin developed third-order bounds
for specific models of random structures [Jeulin and Ostoja-Starzewski, 2001].
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3.4.5 Bounds of order 4

Milton proposed fourth-order bounds for elastic properties based on four-point correlation func-
tions in [Milton and Phan-Thien, 1982].

In this work, we will not use bounds of order higher than 2. There are
many other bounds and estimates available. An extensive literature exist on the
topic of analytical homogenization, for a comprehensive review readers should con-
sult these references: [Sanchez-Palencia and Zaoui, 1987, Mura, 1987, Besson et al., 2001,
Bornert et al., 2001, Jeulin and Ostoja-Starzewski, 2001, Torquato, 2001, Milton, 2002].

Considering a dispersion of inclusions within a matrix, Hill’s lens for bulk and shear moduli are
plotted on Figures 3.3 to 3.6, for two contrasts of properties between phases.

Figure 3.3: Hill’s lens for bulk modulus with contrast c = 4
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Figure 3.4: Hill’s lens for bulk modulus with contrast c = 100

Figure 3.5: Hill’s lens for shear modulus with contrast c = 4
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Figure 3.6: Hill’s lens for shear modulus with contrast c = 100
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4 Computational homogenization

The liberating force of technology—the instrumentalization of things—turns into...

the instrumentalization of man.

— Herbert Marcuse, One-dimensional man (1964)

4.1 Computational homogenization using the finite element method

There are many computational homogenization techniques available for predicting effective
properties. In this work we will primarily focus on full-field approaches using the finite element
(FE) method.

In order to determine homogenized mechanical properties for a given microstructure, one has
to solve boundary value problems in statics. The finite element method has proved to be a
quite efficient technique to solve this kind of problems even in the case of highly nonlinear
phenomena [Besson et al., 2001, Cailletaud et al., 2003]. The complex and heterogeneous nature
of microstructures brings up systems to solve including millions of degrees of freedom (DOFs).
Every FE computation in this work has been done using Z-Set code1 which is flexible and robust
enough for our purpose. The content of this section is based on reference [Besson et al., 2001]
and on the graduate course Nonlinear computational mechanics given by Profs. Cailletaud and
Chaboche at École Nationale Supérieure des Mines de Paris2. This section is limited to the FE
method for determining mechanical properties, a similar approach can be drawn for computing
thermal properties.

1http://www.zset-software.com
2http://mms2.ensmp.fr
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Chapter 4. Computational homogenization

4.1.1 FE formulation of the principle of virtual work

Galerkin’s approach [Galerkin, 1915] for continuum mechanics is implemented and used with
the principle of virtual work. In each of the n elements e, knowing the nodal displacements

{

u∗
e

}

,
one can compute the virtual displacement field u ∗ and the strain tensor ε∼ as follows:

u ∗ = [N ]
{

u∗
e

}

(4.1)

and,

ε∼ = [B ]
{

u∗
e

}

(4.2)

with [N ], the shape function matrix and [B ], the matrix of shape function derivatives. Then, for
all

{

u∗
e

}

with prescribed body forces f and surface forces F :

n∑

e=1

(∫

Ω

σ∼
({

u∗
e

})

[B ]
{

u∗
e

}

dV

)

=
n∑

e=1

(∫

Ω

f [N ]
{

u∗
e

}

dV +
∫

∂Ω
F [N ]

{

u∗
e

}

dS

)

(4.3)

Thus,

n∑

e=1

({

F
int
e

}

−
{

F
ext
e

}){

u∗
e

}

= 0 (4.4)

with
{

F
int
e

}

and
{

F
ext
e

}

respectively internal and external forces, in each element e, such that:

{

F
int
e

}

=
∫

Ω

[B ]T σ∼
({

u∗
e

})

dV (4.5)

and,

{

F
ext
e

}

=
∫

Ω

[N ]T f dV +
∫

∂Ω
[N ]T F dS (4.6)

Balance between internal and external forces is achieved with a Newton iterative algorithm using
the element stiffness matrix [Ke ]:

[Ke ] =
∂
{

F
int
e

}

∂
{

u∗
e

}

=
∫

e
[B ]T ∂ {σ}

∂ {ε}

∂ {ε}

∂
{

u∗
e

}dV

=
∫

e
[B ]T ∂ {σ}

∂ {ε}
[B ]dV (4.7)
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which yields, for linear elastic problems:

[Ke ] =
∫

e
[B ]T [c

≈
] [B ]dV (4.8)

4.1.2 Application to linear elasticity

In the case of linear elasticity within a volume V fulfilling RVE requirements, one can compute
the effective elastic moduli C

≈
or compliances S

≈
using Equation 1.10 by prescribing either the

macroscopic strain E∼ or macroscopic stress Σ∼ :














Σ11

Σ22

Σ33

Σ23

Σ31

Σ12














=














C11 C12 C13 C14 C15 C16

− C22 C23 C24 C25 C26

− − C33 C34 C35 C36

− − − C44 C45 C46

− − − − C55 C56

− − − − − C66



























E11

E22

E33

2E23

2E31

2E12














(4.9)
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2E23

2E31
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S11 S12 S13 S14 S15 S16

− S22 S23 S24 S25 S26

− − S33 S34 S35 S36

− − − S44 S45 S46

− − − − S55 S56

− − − − − S66



























Σ11

Σ22

Σ33

Σ23

Σ31

Σ12














(4.10)

Linear relations thus appear between macroscopic stress and strain. For instance, if E22 = E33 =
E23 = E31 = E12 = 0 and E11 = 1, then:














Σ11

Σ22

Σ33

Σ23

Σ31

Σ12














=














C11 C12 C13 C14 C15 C16

− C22 C23 C24 C25 C26

− − C33 C34 C35 C36

− − − C44 C45 C46

− − − − C55 C56

− − − − − C66



























E11

0

0

0

0

0














=














C11

C12

C13

C14

C15

C16














(4.11)

which can be rewritten such as:

Σ11 =C11, Σ22 =C12, Σ33 =C13, Σ23 =C14, Σ31 =C15, Σ12 =C16 (4.12)

Using these linear relations, one can build up effective compliance and elastic moduli tensors
for a given microstructure. The formalism is similar for any linear property, e.g. thermal conduc-
tivity. Such an approach has been successfully implemented in [Kanit et al., 2003, Kanit, 2003,
Madi et al., 2005, Kanit et al., 2006, Madi, 2006, Jean, 2009, Jean and Engelmayr, 2010].
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4.1.3 The element DOF method with prescribed macroscopic strain

In the case of periodic boundary conditions (cf. Section 2.3.2), there is an alternative to the FE
formulation presented in Section 4.1.1. It consists in adding DOFs at the scale of the element.
These DOFs correspond to the macroscopic strain Ei j , in addition to nodal DOFs for displacement
ui . The balance equations can thus be written as follows:

∫

V
σi j ui , j dV =

∫

V
σi j (Ei k xk + vi ), j dV

=
∫

V
σi j Ei j dV +

∫

V
σi j vi , j dV

=
∫

V
σi j Ei j dV +

∫

V

(

σi j vi

)

, j
dV

=
∫

V
σi j Ei j dV +

∫

∂V
σi j vi n j dS

︸ ︷︷ ︸

=0

=
∫

V
σi j dV Ei j

= V Σi j Ei j

= RE i j Ei j (4.13)

The FE problem left to solve concerns the homogeneous strain tensor Ei j and its dual RE i j , which
corresponds to the macroscopic reaction stress. Prescribing Ei j corresponds to the macroscopic
strain approach, while prescribing RE i j leads to the macroscopic stress approach. The product
RE i j Ei j is developed in this way:

RE i j Ei j = RE 11E11 +RE 22E22 + . . .+RE 33E33

+2RE 12E12 +2RE 31E31 +2RE 23E23 (4.14)

Implementation of additional degrees of freedom in the FE framework is done as follows:

{ε∼} = [B ]{u}+ {E∼ } (4.15)

Also,

{ε∼} = [B ′]{u′} (4.16)
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with

[B ′] =



















1

1

1

1

1

1

N i

. . .



















(4.17)

and

{u} =







E11

E22

E33

E23

E31

E12

ui

...







(4.18)

For instance, a macroscopic extension is prescribed along direction 1:

E11 = 〈ε11〉 = 1, E22 = E33 = E23 = E31 = E12 = 0

⇒Σ11 =C11E11

. . .

Σ12 =C16E11

By computing 〈σi j 〉, it yields:

C11 =
Σ11

E11
= 〈σ11〉

1

. . .

C16 =
Σ12

E11
= 〈σ12〉

1

For a macroscopic pure shear within the plan (1,2):
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E12 = 〈ε12〉 = 1, E11 = E22 = E33 = E23 = E31 = 0

⇒Σ11 =C162E12

. . .

Σ12 =C662E12

By computing 〈σi j 〉, it yields:

C16 =
Σ11

2E12
= 〈σ11〉

2

. . .

C66 =
Σ11

2E12
= 〈σ12〉

2

A similar approach with prescribed macroscopic stress is given in Appendix A, as well as a
simplified method for determining elastic properties without having to compute spatial averages.
We will now introduce the statistical computational homogenization approach for determining
RVE sizes for random media.

4.2 Statistical approach for determining a RVE size

This approach, already mentioned in Section 2.1, was applied on materials for the first
time in [Kanit et al., 2003], albeit it was based on a seminal work on representativity:
[Cailletaud et al., 1994]. The problem of representativity of samples is addressed by means
of a probabilistic approach giving size-dependent intervals of confidence, which is a well-known
approach used in geostatistics [Matheron, 1971]. It is based on the scaling effect on the variance
of effective properties in simulations of random media. Several assumptions have to be considered
regarding the statistics of the microstructures we intend to study.

4.2.1 Ergodicity hypothesis

The ergodicity hypothesis is fulfilled for a property or a random function Z when the statistical
properties of its measured value (mathematical expectation, variance, etc.) over a finite volume V

(spatial average) converge to those estimated over series of independent samples smaller than V

(ensemble average), when the volume V goes to infinity. Ergodicity implies that one realization
of a volume V ≥VRVE contains all the statistical information necessary to the description of its
microstructure.
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4.2.2 Stationarity hypothesis

The stationarity hypothesis is assumed for a property or a random function Z when its mathemat-
ical expectation is constant with respect to time and space.

4.2.3 Statistical homogeneity hypothesis

A random structure is considered statistically homogeneous when the statistical description of its
morphology, by the means of n-point correlation functions, is invariant by translation.

4.2.4 RVE size determination for media with finite integral range

Let us consider a microstructure that fulfills the ergodicity and stationarity conditions for a given
physical quantity Z (x) regarded as a random function with mathematical expectation E {Z (x)} and
point variance D2

Z . The variance D2
Z (V ) of its average value Z (V ) over the domain Ω with volume

V can be obtained using the centered second-order correlation function W 2 (cf. Appendix B.1.4)
in this way:

D2
Z (V ) = 1

V

Ï

Ω

W 2(x − y)d xd y (4.19)

with

W 2(h) = E
{(

Z (x)−Z
)(

Z (x +h)−Z
)}

(4.20)

For determining the RVE size for the physical property Z one can rely on the geostatistical
notion of integral range [Matheron, 1975, Lantuéjoul, 1991, Cailletaud et al., 1994, Jeulin, 2001,
Jeulin and Ostoja-Starzewski, 2001, Lantuéjoul, 2002]. The integral range An is homogeneous
to a volume of dimension n in R

n . For n = 3, the integral range is given by:

A3 =
1

D2
Z

∫

R3
W 2(h)dh (4.21)

The physical interpretation of the integral range is such that for a given volume V , one can define

n = V

A3
volume elements for which the i average values Zi (V ′) over the n sub-volumes V ′ = V

n
are uncorrelated random variables. Hence, for a large specimen, i.e. V ≫ A3, Equation 4.19 can
be rewritten introducing the point variance of Z , D2

Z as follows:

D2
Z (V ) = D2

Z

A3

V
(4.22)

Let us analyze this asymptotic relation. First, in general one has no guarantee on the finiteness
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of point variance D2
Z [Matheron, 1971]: let us consider a large domain Ω and a smaller domain

V ⊂Ω that is attainable by means of experimentation or computation, one can then compute an
experimental variance which is in fact a function of Ω supported by V , that will increase with Ω.
If the variance over V is finite, it should be regarded as a limit of the experimental variance for
Ω→+∞. D2

Z can be computed over V as follows:

D2
Z = 1

V

∫

V

(

Z (x)−Z
)2

dV

= 1

V

∫

V
Z 2(x)−Z

2
dV

= 1

V

∫

V
Z 2(x)dV −

(
1

V

∫

V
Z (x)dV

)2

(4.23)

On the other hand, the ensemble variance D2
Z (V ′) is computed from the average values Zi over n

sub-volumes:

D2
Z (V ′) = 1

n

n∑

i=1

(

Zi (V ′)−Zi

)2

= 1

n

n∑

i=1

Z 2
i (V ′)−Zi

2

= 1

n

n∑

i=1

Z 2
i (V ′)−

(

1

n

n∑

i=1

Zi (V ′)

)2

(4.24)

Equation 4.24 uses the average value of the average values Zi over n sub-volumes V ′, which is
expected to converge towards the effective property Zeff when V →+∞. If Zeff is already known,
it might be of interest to use it instead of Zi in order to obtain a better estimate.

If Z (x) is the indicator function of the random set A, then one can obtain analytically the variance
of the local volume fraction as a function of the point variance as follows:

D2
Z = p −p2 = p(1−p) (4.25)

with p, probability for a point x to belong to the random set A, which is equivalent to the volume
fraction of A in V .

The asymptotic scaling law given in Equation 4.22 can be used for any additive variable Z over
the domain Ω. In the case of elastic properties for instance, average stress 〈σ∼ 〉 or strain 〈ε∼〉 fields
have to be computed. For determining the RVE size for a given property Z , one thus has to know
its integral range A3. There is no theoretical covariance for mechanical fields. However, there are
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two ways to estimate it; first by assuming that Z is equal to the arithmetic average of properties
(mixing rule) for a biphasic medium, hence Equation 4.23 yields:

D2
Z = p(1−p) (Z1 −Z2)2 (4.26)

with Z1 and Z2, respectively property Z of phase 1 and 2. D2
Z can also be estimated compu-

tationally on the largest virtual sample available, in order to minimize boundary layer effects
and obtain a converged value. The approach proposed by [Pascal et al., 2010, di Paola, 2010]
consists in taking only into account the inner part of the simulation volume. This could present
an advantage for determining point variance.

Once the point variance has been estimated for a given property, the integral range can be obtained
using the procedure proposed by [Matheron, 1989] for any random function: consider realizations
of domains Ω with an increasing volume V (or non-overlapping sub-domains of large simulations,
with a wide range of sizes), the parameter A3 can be estimated by fitting the obtained variance
according to Equation 4.22:

logD2
Z (V ) = logD2

Z + log A3 − logV (4.27)

Following the method proposed in [Kanit et al., 2003], considering a large number n of realiza-
tions (or sub-volumes), the following sampling error in the estimation of the effective properties
arises:

ǫabs =
2DZ (V )

p
n

(4.28)

From which the relative error ǫrel can be defined:

ǫrel =
ǫabs

Z
= 2DZ (V )

Z
p

n
⇒ ǫ2

rel =
4D2

Z A3

Z
2

nV
(4.29)

Hence a volume size that we will consider statistically representative can be defined for a
prescribed property Z , number of realizations n and relative error (e.g. 5%):

VRVE =
4D2

Z A3

ǫ2
relZ

2
n

(4.30)

This RVE size then depends on the point variance D2
Z , integral range A3 and mean value Z , 3

parameters that are estimated from simulations.
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4.2.5 Generalization of the statistical approach to microstructures with non-finite

integral range

The method presented above is now adapted and generalized to the case of media with non-finite
integral range, especially Poisson linear varieties and Boolean random models made of Poisson

linear varieties, e.g. Poisson fibers. Since the integral range of linear Poisson varieties is not finite
[Jeulin, 1991a], Equation 4.22 does not apply anymore. It was proposed in [Lantuéjoul, 1991] to
use a modified scaling law with exponent γ< 1. The variance can thus be rewritten as follows
[Jeulin, 2011]:

D2
Z (V ) = D2

Z

(
A∗

3

V

)γ

(4.31)

which yields by linearization,

logD2
Z (V ) = logD2

Z +γ log A∗
3 −γ logV (4.32)

A∗
3 is not the integral of the centered second-order correlation function W 2(h) anymore, as

defined before in Equation 4.21. Nonetheless, it is homogeneous to a volume of material and
can readily be used to determine RVE sizes which can then be obtained by updating the previous
definition for relative error:

ǫrel =
ǫabs

Z
= 2DZ (V )

Z
p

n
⇒ ǫ2

rel =
4D2

Z A∗
3
γ

Z
2

nV γ
(4.33)

Hence yielding an updated definition of the RVE size:

VRVE = A∗
3

γ

√
√
√
√

4D2
Z

ǫ2
relZ

2
n

(4.34)

The generalized integral range A∗
3 and scaling-law exponent γ can be estimated from simulations

as it was done in [Kanit et al., 2003] and [Altendorf, 2011]. Some results from those sources are
gathered in Table 4.1. For a Voronoi tesselation, the variance on the morphological properties,
i.e. the volume fraction of each phase, is inversely proportional to the volume considered, γ= 1. It
can also be observed that for the bulk modulus kapp, with a volume fraction of 70% for the phase
considered and a contrast of properties of 100, the integral range is smaller for PBC than for
SUBC and KUBC. On the other hand, the convergence of the variance with the simulation size is
slower with PBC than with SUBC and KUBC. We will study infinite fibers in this work, results
from [Altendorf, 2011] are thus of interest for us since they correspond to long-fibers that are
randomly distributed in 3D. Interestingly, the convergence of the variance on the volume fraction
of fibers is following a scaling law with exponent γ= 0.87, which is in between the values for

infinite fibers (γ= 2

3
, cf. [Jeulin, 2011]) and short-fibers, or a random distribution of spheres in

the extreme case of a shape factor equal to 1, for which γ = 1 as shown from simulations in
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Source Morphology Z BC A∗
3 γ

[Kanit et al., 2003] Voronoi VV (0.5) - 1.178 1

[Kanit et al., 2003] Voronoi VV (0.7) - 1.111 1

[Kanit et al., 2003] Voronoi VV (0.9) - 1.177 1

[Kanit et al., 2003] Voronoi kapp (VV = 0.5,
E1

E2
= 102) PBC 1.589 0.875

[Kanit et al., 2003] Voronoi kapp (VV = 0.7,
E1

E2
= 102) PBC 1.020 0.780

[Kanit et al., 2003] Voronoi kapp (VV = 0.7,
E1

E2
= 102) SUBC 1.267 0.915

[Kanit et al., 2003] Voronoi kapp (VV = 0.7,
E1

E2
= 102) KUBC 2.088 1.029

[Kanit et al., 2003] Voronoi µapp (VV = 0.7,
E1

E2
= 102) PBC 1.322 0.763

[Kanit et al., 2003] Voronoi µapp (VV = 0.7,
E1

E2
= 103) PBC 2.097 0.862

[Altendorf, 2011] Isotropic fibers VV - 1.743 0.87

[Altendorf, 2011] Isotropic fibers µapp PBC 1.718 0.84

[Altendorf, 2011] Isotropic fibers kapp PBC 0.932 0.77

Table 4.1: Estimates of A3 and γ for various properties, morphologies and boundary conditions

[Jean et al., 2011a]. When considering statistical RVE sizes of microstructures with non-finite
integral range for other properties than morphological ones, for which there is no information
about the theoretical value of the point variance D2

Z , it may be useful to reformulate Equation 4.31
as follows:

D2
Z (V ) = K V −γ (4.35)

with K = D2
Z A∗

3
γ, leaving only 2 parameters to identify from the statistical data obtained by

simulation. We will adopt this formulation when studying Poisson fibers in Part III.

The method for determining statistical RVE sizes has been studied and used for media
with finite integral range in the references [Kanit, 2003, Kanit et al., 2003, Kanit et al., 2006,
Madi et al., 2005, Madi, 2006, Madi et al., 2007, Jean, 2009, Jean et al., 2011a, Oumarou et al., 2011].
We implement this approach for media with infinite integral range, i.e. Poisson fibers, in Sec-
tion 6.5.

We presented an introduction to analytical and computational homogenization and its implementa-
tion using finite elements. We will now apply this technique to study two classes of architectured
materials: auxetic periodic lattices and stochastic Poisson fiber networks, respectively in Part II
and Part III.
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Résumé

La première partie de ce mémoire est constituée principalement de rappels bibliographiques et de
remarques préliminaires concernant l’homogénéisation de milieux hétérogènes. Les lois de com-
portement thermique et mécanique sont présentées, ainsi que le principe des puissances virtuelles.
La notion de volume élémentaire représentatif est discutée à partir de définitions provenant de la
littérature. Les conditions aux limites des problèmes d’homogénéisation sont ensuite analysées.
Afin de pouvoir comparer les résultats provenant de l’homogénéisation numérique, les estimateurs
et autres bornes analytiques sont aussi introduites. Enfin, l’implémentation de l’homogénéisation
numérique en utilisant la méthode des éléments finis est présentée, ainsi que la méthode statistique
de détermination de la taille du volume élémentaire représentatif dans le cas de milieux aléatoires.
Toutes ces notions sont mises à contribution dans les applications des Chapitres 5 et 6.
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5 Auxetics

The only way to discover the limits of the possible is to go beyond them into the impossible.

— Arthur C. Clarke, Profiles of the Future (1973)

This part deals with the determination of the effective mechanical properties of some negative
Poisson’s ratio (NPR) materials. First, an introduction to NPR materials is given in Section 5.1.
The computational homogenization procedure presented in Chapter 4 is adapted to the case of
cellular materials in Section 5.2. Geometries of the microstructures considered and the classical
honeycomb cell are presented in Section 5.3. Volumic FE coupled with periodic homogenization
techniques are then used in Section 5.4 to compute the elastic moduli. Anisotropy is then
characterized and a comparison is made between the different microstructures considered. An
extension of this study to elastoplasticity for the hexachiral lattice is provided in Section 5.5,
influence of the hardening modulus is investigated, as well as macroscopic modeling of the plastic
compressible behaviour. A new tridimensional auxetic periodic microstructure is proposed and
studied in Section 5.6. Structural applicability of auxetics is validated in Section 5.7 with the
simulation of spherical and cylindrical elastic indentation tests. Experimental characterization
was conducted on auxetic samples manufactured using rapid prototyping, results are presented in
Section 5.8. Finally the use of such materials in terms of design and engineering applications is
put into perspective in Section 5.9.

5.1 Introduction to auxetics

In the case of isotropic elasticity, mechanical behavior is described by any couple of parameters
among these: Young’s modulus E , Poisson’s ratio ν, the bulk modulus k and Lamé’s coefficients
λ and µ (also referred to as the shear modulus). Poisson’s ratio is defined as the ratio of the
contraction in the transverse direction to the extension in the longitudinal direction. Material
stability requires the tensor of elastic moduli to be positive definite, resulting in a positive Young’s
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modulus E and a Poisson’s ratio ν ranging from −1, for unshearable materials, and 0.5 for
incompressible or rubber-like materials. Most materials naturally present a positive Poisson’s
ratio, although negative Poisson’s ratio materials, or auxetics [Evans et al., 1991], have been en-
gineered since the mid-1980s with the pioneering works of [Herakovich, 1984, Almgren, 1985]
and [Lakes, 1987]. This new class of materials has been drawing more and more at-
tention since then [Bathurst and Rothenburg, 1988, Caddock and Evans, 1989, Lakes, 1991,
Rothenburg et al., 1991, Milton, 1992, Prall and Lakes, 1997, Evans and Alderson, 2000, Yang et al., 2004,
Gaspar et al., 2005, Hughes et al., 2010, Alderson et al., 2010], as well as their potential applica-
tions [Evans, 1991, Choi and Lakes, 1991, Martin et al., 2008, Spadoni, 2008].

Let us consider several mechanical models involving the Poisson ratio ν. First, let us consider
the classical formula of isotropic elasticity relating the shear modulus to Young’s modulus and
Poisson’s ratio:

µ= E

2(1+ν)
(5.1)

For ν→−1, the shear modulus µ tends towards +∞. This relationship holds only for isotropic
materials, or transversely isotropic materials when the in-plane shear modulus is considered.
Another interesting property is the elastic indentation resistance F which is classically related to
Poisson’s ratio by the following formula [Timoshenko and Goodier, 1951]:

F ∝
(

1−ν2
)−x

(5.2)

with exponent x depending on the indentation problem considered. For the classical sphere-

to-sphere contact, x = 2

3
[Hertz, 1881], whereas x = 1 for the contact between two cylinders

of parallel axes, or for the spherical indentation of a semi-infinite solid. Clearly, an isotropic
material with ν close to −1 would exhibit an increased elastic indentation resistance in comparison
with the same material (same Young’s modulus), but with a positive Poisson’s ratio. This was
discussed in the literature and shown from experiments in [Lakes, 1993, Alderson et al., 1994,
Alderson et al., 2000]. If one now considers the growth of a penny-shaped crack within an
isotropic elastic brittle material under plane-strain conditions, the fracture toughness Kc is related
to Poisson’s ratio as follows [Irwin, 1957]:

Kc =
√

2Eγ

1−ν2
(5.3)

with γ the surface energy. Thus, a material with a Poisson ratio of −0.3 would exhibit a fracture
toughness similar to those of typical metallic materials. Nevertheless, with Poisson’s ratio close
to −1 and same Young’s modulus and surface energy, this value would increase dramatically. This
particular property was investigated in [Choi and Lakes, 1996] for the case of auxetic copper
foams. Finally, if one considers the deflection of an isotropic elastic plate subject to a prescribed
curvature along direction 1, the associated curvature along direction 2 is due to the Poisson effect,
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thus yielding [Timoshenko and Goodier, 1951]:

R2 =−R1

ν
(5.4)

with R1 and R2 the radii of curvature of the plate respectively along directions 1 and 2. For
conventional materials, this yields anticlastic (saddle-shaped) curvature, whereas for auxetic
materials, ν being negative, it yields synclastic (dome-shaped) curvature. This enables one to
manufacture curved sandwich panels without core buckling. The synclastic curvature property
was studied in [Evans, 1991].

Auxetic materials have also been expected to present enhanced acoustic damping
[Lipsett and Beltzer, 1988]; this was shown experimentally in [Chen and Lakes, 1996,
Chekkal et al., 2010]. The use of auxetics as building blocks for wave-guiding metamateri-
als has also been investigated in [Spadoni et al., 2009]. Moreover, experiments on auxetic foams
seem to provide evidence of better resistance to crash compared to conventional cellular materials
[Scarpa et al., 2002].

Poisson’s ratio is defined only for isotropic elastic materials. In the anisotropic case, negative
apparent Poisson’s ratio can be defined as the opposite of the ratio between transverse and
longitudinal strains for a given specific direction. There is no restriction anymore on the values of
the apparent Poisson ratio ν∗. We call anisotropic auxetics, materials for which negative apparent
Poisson’s ratio is observed for a sufficiently large set of tensile directions.

5.2 Computational homogenization

The computational framework used for homogenization has been presented in Chapter 4.1. For
this application, effective mechanical properties are computed over a unit-cell (defined by its
periodicity vectors vi ) with periodic boundary conditions (PBC) using FE. Homogenization
requires separation between micro and macro scales. In the case of periodic homogenization, the
computed effective properties correspond to those of an infinite continuum made of periodic tiles.

Let us consider an elementary volume V including a solid phase Vs and porous one Vp . In the
latter, the stress field is extended by setting σ∼ = 0∼ in Vp . Practically, the macroscopic strain E∼ and
stress Σ∼ are computed by averaging the local fields ε∼ and σ∼ . Within the porous phase, stresses are
assumed to be equal to zero. Using periodic boundary conditions, and applying a homogeneous
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macroscopic strain field E∼ (cf. Section A.1.2), it yields:

Σ∼ = 〈σ∼ 〉 =
1

V

∫

V
σ∼ dV

= 1

V

∫

Vs

σ∼ dV + 1

V

∫

Vp

σ∼ dV

︸ ︷︷ ︸

=0

= Vs

V

1

Vs

∫

Vs

σ∼ dV

= V s
V 〈σ∼ 〉s (5.5)

(5.6)

with V s
V , volume fraction of the solid phase. Let us now consider the case of a prescribed

homogeneous macroscopic stress Σ∼ :

E∼ = 〈ε∼〉 =
1

V

∫

V
ε∼dV

= 1

V

∫

Vs

ε∼dV + 1

V

∫

Vp

ε∼dV

= Vs

V

1

Vs

∫

Vs

ε∼dV +
Vp

V

1

Vp

∫

Vp

ε∼dV

= V s
V 〈ε∼〉s +V

p

V
〈ε∼〉p (5.7)

with V
p

V
, volume fraction of the porous phase.

5.3 Microstructures considered

5.3.1 Hexachiral lattice

This chiral microstructure was first proposed by Lakes in 1991 [Lakes, 1991], then studied in
[Prall and Lakes, 1997, Spadoni, 2008, Alderson et al., 2010, Dirrenberger et al., 2011]. Based
on the parameters defined in reference [Alderson et al., 2010], cell geometry can be described in
this way: the circular nodes have radius r, the ligaments have length L, and both have in common
wall thickness t (cf. figure 5.1(a)) as well as depth d, which in our case is considered infinite
due to periodicity conditions along direction 3. Hence, three dimensionless parameters can be
derived as shown in Equations 5.8 to 5.10. On Figure 5.1(b), α= 5, β= 0.25 and γ→+∞. These
parameters correspond to a volume fraction of 15%. The microstructure is invariant by a rotation
of order 6, which provides transverse hemitropy, which is equivalent to transverse isotropy in
the case of linear elasticity. An in-depth study of symmetries in architectured materials was
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conducted in [Auffray, 2008a, Auffray, 2008b].

α= L/r (5.8)

β= t/r (5.9)

γ= d/r (5.10)

(a) Hexachiral unit-cell

(b) Hexachiral lattice

Figure 5.1: (a) Periodic cell with geometric parameters. (b) Hexachiral lattice with unit-cell
(blue) and periodicity vectors v1 and v2 (red).

5.3.2 Anti-tetrachiral lattice

This microstructure was proposed and studied in [Alderson et al., 2010]. Cell geometry can
be described exactly as for the hexachiral lattice, cf. Figure 5.2(a). Here, α= 11, β= 0.06 and
γ→+∞, cf. Figure 5.2(b). Volume fraction is 15%. The cell is invariant by a rotation in-plane of
order 4, thus giving rise to quadratic elasticity.
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(a) Anti-tetrachiral unit-cell (b) Anti-tetrachiral lattice

Figure 5.2: (a) Periodic cell with geometric parameters. (b) Anti-tetrachiral lattice with unit-cell
(blue) and periodicity vectors v1 and v2 (red).

5.3.3 Rotachiral lattice

This chiral microstructure, initially proposed in [Dirrenberger et al., 2011], has been designed
based on ideas from [Prall and Lakes, 1997] and [Gaspar et al., 2005], the aim was to study
the impact of ligaments geometry on auxeticity for chiral lattices. It was also investigated
in [Alvarez Elipe and Diaz Lantada, 2012]. Cell geometry is similar to the hexachiral case,
except for the straight ligaments that have been replaced by circular ones with diameter D,
cf. Figure 5.3(a). A new dimensionless parameter is defined by:

δ= D/r (5.11)

As shown on Figure 5.3(b), δ= 2.4, β= 0.1 and γ→+∞. Volume fraction is 15%. As for the
hexachiral lattice, the 6–fold symmetry provides transverse isotropy.

5.3.4 Honeycomb lattice

For the purpose of this work, the classical honeycomb lattice is considered as a comparison
medium. The 6-fold symmetry provides transverse isotropy. Geometry can be described using
the same parameters as for the rotachiral lattice. For a regular hexagonal honeycomb cell, r

and D are not independent and δ =
p

3, cf. Figure 5.4(a). Also, β = 0.15 and γ→+∞, which
corresponds to 15% of volume fraction as for the other microstructures considered in this work.
Unit-cell for this microstructure has been chosen hexagonal but it could have been square or
rhomboid shaped as for the previous lattices, cf. Figure 5.4(b).
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(a) Rotachiral unit-cell

(b) Rotachiral lattice

Figure 5.3: (a) Periodic cell with geometric parameters. (b) Rotachiral lattice with unit-cell (blue)
and periodicity vectors v1 and v2 (red).

(a) Honeycomb unit-cell (b) Honeycomb lattice

Figure 5.4: (a) Periodic cell with geometric parameters. (b) Honeycomb lattice with unit-cell
(blue) and periodicity vectors v1 and v2 (red).

5.4 Effective elastic properties

The tensor of elastic moduli C
≈

is computed over a periodic unit-cell for each microstructure using

Z-Set FE software1. Meshes are composed of volumic fully-integrated quadratic elements, such

1http://www.zset-software.com/
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as 10-node tetrahedra and 20-node hexahedra. Using the Euler–Bunge [Bunge, 1982] angles φ,
θ and ψ as shown on Figure 5.5, let us define 3 orthogonal vectors l , m and n , such that:

[l ] =






cos(φ)cos(ψ)− sin(φ)sin(ψ)cos(θ)

sin(φ)cos(ψ)+cos(φ)sin(ψ)cos(θ)

sin(ψ)sin(θ)




 (5.12)

[m ] =






−cos(φ)sin(ψ)− sin(φ)cos(ψ)cos(θ)

−sin(φ)sin(ψ)+cos(φ)cos(ψ)cos(θ)

cos(ψ)sin(θ)




 (5.13)

[n ] =






sin(φ)sin(θ)

−cos(φ)sin(θ)

cos(θ)




 (5.14)

Figure 5.5: Euler–Bunge angles

Using macroscopic strain and stress tensors E∼ (φ,θ,ψ) and Σ∼ (φ,θ,ψ), one can now define the
Young modulus E and effective Poisson ratio ν∗ for any uniaxial tensile test along direction l ,
and the shear modulus µ for any shear test within directions

(

l ,m
)

as follows:

E
(

l
)

=
l .Σ∼ .l

l .E∼ .l
(5.15)

µ
(

l ,m
)

=
l .Σ∼ .m

l .E∼ .m
(5.16)
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ν∗
(

l ,m
)

=−
m .E∼ .m

l .E∼ .l
(5.17)

For θ =ψ= 0, elastic moduli and Poisson’s ratios are obtained in the plane (1,2) as functions of
φ, we will refer to those as in-plane elastic properties. On the other hand, when φ= 0 and θ = π

2
,

one obtains moduli and Poisson’s ratios within plane (1,3) as functions of ψ. These values will
be considered as out-of-plane elastic properties.

For comparison purposes, normalized elastic moduli are defined using V s
V , volume fraction of

solid phase, local constitutive isotropic elastic material parameters such as E0 (Young’s modulus)
and µ0. Shear modulus µ0 is defined from E0 and Poisson’s ratio ν0 as follows:

µ0 =
E0

2(1+ν0)
(5.18)

Thus, normalized Young’s modulus E∗ is obtained as follows:

E∗ (

l
)

= 1

E0V s
V

E
(

l
)

(5.19)

Normalized shear modulus µ∗ is defined in this way:

µ∗ (

l ,m
)

= 1

µ0V s
V

µ
(

l ,m
)

(5.20)

In-plane elastic properties are shown in Table 5.1 and plotted against φ for the anti-tetrachiral
cell on Figures 5.8 and 5.9 (polar plots). The use of auxetic lattices in engineering applications
might involve out-of-plane loading. Hence, ν∗

(

l ,m
)

, E∗ (

l
)

and µ∗ (

l ,m
)

were also plotted
against ψ on Figures 5.6 to 5.15. For this work, E0 = 210000 MPa and ν0 = 0.3. The resulting
elastic moduli tensors are presented in Equations 5.21 for the hexachiral lattice, 5.22 for the anti-
tetrachiral lattice, 5.23 for the rotachiral lattice and 5.24 for the honeycomb lattice. Components
are expressed in MPa.

5.4.1 Hexachiral lattice

Transverse isotropy is verified since
C11 −C12

2
= C66. Components were used to obtain the

in-plane properties gathered in Table 5.1. ν∗
(

l ,m
)

is underestimated compared to the value
from [Alderson et al., 2010], while our estimation of the normalized Young’s modulus E∗ (

l
)

is higher. This is discussed later. Figure 5.6 shows an increase of E∗ (

l
)

when the material is

stretched out-of-plane, while reaching its maximum value along direction 3 (ψ= π

2
). Figure 5.7

shows that Poisson’s ratio ν∗
(

l ,m
)

is always negative, except for ψ= 0 where ν∗
(

l ,m
)

is close
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to 0, and ψ= π

2
where it takes the constitutive material value 0.3. Normalized shear modulus

µ∗ (

l ,m
)

fluctuates in a decade around the in-plane value depending on angle ψ. A similar kind
of 6–fold symmetric chiral lattice was proposed and studied in [Mitschke et al., 2011], yielding
the same value for the value for in-plane effective Poisson’s ratio.

[C
≈

] =














1650 −1218 130 0 0 0

−1218 1650 130 0 0 0

130 130 31968 0 0 0

0 0 0 5075 0 0

0 0 0 0 5075 0

0 0 0 0 0 1434














(5.21)

Figure 5.6: Hexachiral lattice (θ = π

2
, φ= 0)

5.4.2 Anti-tetrachiral lattice

The tensor given below verifies quadratic elasticity (invariant by rotation of
π

2
in plane). Fig-

ure 5.9 shows that in the cell’s principal directions, ν∗
(

l ,m
)

is lower than the value from
[Alderson et al., 2010], for the same lattice with approximately the same geometric parameters,
but the normalized Young modulus E∗ (

l
)

is higher as shown on Figure 5.8. Besides, µ∗ (

l ,m
)

fluctuates over 2 decades and reaches its minimum when ν∗
(

l ,m
)

is close to −1. ν∗
(

l ,m
)

is
negative for short angle intervals around the principal directions of the cell. E∗ (

l
)

is varying over
less than one order of magnitude depending on φ. Normalized out-of-plane moduli are plotted on
Figure 5.10, which is very comparable with Figure 5.6 in terms of values and angles. E∗ (

l
)

is
higher than or equal to in-plane values. ν∗

(

l ,m
)

is always negative as shown on Figure 5.11,

except for ψ= 0 where ν∗
(

l ,m
)

is close to 0, and ψ= π

2
where it takes the bulk material value
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Figure 5.7: Hexachiral lattice (θ = π

2
, φ= 0)

0.3 as for the hexachiral lattice. µ∗ (

l ,m
)

fluctuates less with φ than with ψ.

[C
≈

] =














5474 −5040 130 0 0 0

−5040 5474 130 0 0 0

130 130 31233 0 0 0

0 0 0 5184 0 0

0 0 0 0 5184 0

0 0 0 0 0 39














(5.22)

Figure 5.8: Anti-tetrachiral lattice (θ = 0, ψ= 0)
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Figure 5.9: Anti-tetrachiral lattice (θ = 0, ψ= 0)

Figure 5.10: Anti-tetrachiral lattice (θ = π

2
, φ= 0)

5.4.3 Rotachiral lattice

Elastic moduli tensor components for the rotachiral lattice are given in Equation 5.23. As for the

hexachiral lattice, transverse isotropy is verified by the following relationship
C11 −C12

2
=C66.

The in-plane normalized moduli and effective Poisson ratio are listed in Table 5.1. E∗ (

l
)

and
µ∗ (

l ,m
)

are about one order of magnitude lower than for the hexachiral lattice. Figure 5.12
shows an increase of E∗ (

l
)

which fluctuates over 3 orders of magnitude when the material is
stretched out-of-plane. ν∗

(

l ,m
)

is always negative as shown on Figure 5.13, except for ψ= 0

or ψ = π where ν∗
(

l ,m
)

is close to 0, and ψ = π

2
or ψ = 3π

2
where it reaches 0.3, which is

the constituent value. Normalized shear modulus µ∗ (

l ,m
)

is always higher than its in-plane
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Figure 5.11: Anti-tetrachiral lattice (θ = π

2
, φ= 0)

counterpart.

[C
≈

] =














93 −24 20 0 0 0

−24 93 20 0 0 0

20 20 31617 0 0 0

0 0 0 3605 0 0

0 0 0 0 3605 0

0 0 0 0 0 59














(5.23)

Figure 5.12: Rotachiral lattice (θ = π

2
, φ= 0)
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Figure 5.13: Rotachiral lattice (θ = π

2
, φ= 0)

5.4.4 Honeycomb lattice

Transverse isotropy is verified since
C11 −C12

2
= C66. Components were used to obtain the

in-plane properties gathered in Table 5.1. ν∗
(

l ,m
)

differs from the theoretical value of 1, due
to the beams infinite slenderness hypothesis which is not fulfilled in our full-field simulations.
Figure 5.14 shows an increase of E∗ (

l
)

when the material is stretched out-of-plane. Surprisingly,
out-of-plane, the effective Poisson’s ratio ν∗

(

l ,m
)

shown on Figure 5.15 is almost always
negative for the honeycomb lattice, except for ψ= 0 or ψ=π where ν∗

(

l ,m
)

is close to 0, and

along direction 3 (ψ= π

2
or ψ= 3π

2
) where it takes the bulk material value 0.3 as for the other

microstructures. Out-of-plane µ∗ (

l ,m
)

and E∗ (

l
)

are always equal or higher than their in-plane
counterparts.

[C
≈

] =














9945 9259 5761 0 0 0

9259 9945 5761 0 0 0

5761 5761 35070 0 0 0

0 0 0 6512 0 0

0 0 0 0 6512 0

0 0 0 0 0 343














(5.24)

5.4.5 Discussion

Values obtained in this work for E∗ (

l
)

(cf. Table 5.1) exceed those from [Alderson et al., 2010].
This is due to the boundary conditions of the FE problem. The nodal force loading prescribed
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Figure 5.14: Honeycomb lattice (θ = π

2
, φ= 0)

Figure 5.15: Honeycomb lattice (θ = π

2
, φ= 0)

in [Alderson et al., 2010] actually corresponds to a static uniform boundary conditions (SUBC)
micromechanical problem, which is known for underestimating elastic moduli. On the other hand,
the periodic boundary conditions used in this work give exact results for a linear elastic infinite
medium. While the honeycomb cell exhibits the higher normalized in-plane Young modulus,
the hexachiral lattice presents a normalized shear modulus µ∗ (

l ,m
)

about 4 times higher. The
hexachiral, anti-tetrachiral, rotachiral and honeycomb lattices all present a strong anisotropy
when loaded out-of-plane (cf. Figures 5.6, 5.10, 5.12 and 5.14). An extreme Poisson’s ratio value
of −8 can be reached for the rotachiral lattice as shown on figure 5.13. It is worth noting that
the anti-tetrachiral lattice presents a negative in-plane Poisson’s ratio only for quite small angle
intervals. Interestingly, for each microstructure, even the honeycomb lattice, ν∗

(

l ,m
)

is almost
always negative when a function of angle ψ. The hexachiral, anti-tetrachiral and honeycomb
lattices show comparable values in terms of magnitude for normalized elastic moduli as functions
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Hexachiral Anti-tetrachiral Rotachiral Honeycomb

ν∗
(

l ,m
)

−0.73 [−0.92;0.69] −0.26 0.92

E∗ (

l
)

2.3×10-2 [4.3×10-3;2.7×10-2] 2.7×10-3 4.2×10-2

µ∗ (

l ,m
)

2.3×10-1 [6.6×10-3;8.8×10-1] 9.6×10-3 5.6×10-2

Table 5.1: In-plane Poisson’s ratio and normalized elastic moduli

of ψ. For the same volume fraction, the impact on in and out-of-plane mechanical properties from
the change in ligaments geometry between hexachiral and rotachiral lattices is critical: circular
ligaments give values which are more than one order of magnitude lower for both E∗ (

l
)

and
µ∗ (

l ,m
)

.

5.5 Extension to elastoplasticity

We are now interested in the interaction between auxeticity and plasticity. Computational
experiments are carried out on the hexachiral cell, which was presented in Section 5.3.1.

5.5.1 Constitutive model considered

In the case of elastoplasticity, the strain rate can be decomposed in an elastic strain rate part ε̇∼
el

and a plastic strain rate part ε̇∼
pl, such that:

ε̇∼ = ε̇∼
el + ε̇∼

pl (5.25)

Let us consider the following yield function f (σ∼ ):

f (σ∼ ) =σeq − r (5.26)

with the von Mises equivalent stress,

σeq =
√

3

2
σ∼

dev : σ∼
dev (5.27)

where σ∼
dev is the deviatoric part of the stress tensor. Based on experimental evidence obtained in

[Deshpande and Fleck, 2000] for metallic foams, associated plasticity is assumed. The plastic
strain rate can then be defined in this way:

ε̇∼
pl = ṗ

3

2

σ∼
dev

σeq (5.28)
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Yield stress (MPa) 100

Hardening modulus (MPa) {100,1000,10000}

Table 5.2: Constitutive plastic parameters

and the cumulative plastic strain rate ṗ:

ṗ =
√

2

3
ε̇∼

pl : ε̇∼
pl (5.29)

A linear isotropic hardening rule is adopted:

r= r0 +hp (5.30)

where r0 is the yield stress, h the hardening modulus and p the cumulative plastic strain.

Local material is now considered isotropic von Mises elastoplastic. Plastic material parameters
are shown in Table 5.2.

First, the auxetic behavior is investigated. Although the parameters given in Table 5.2 will be
used in the following sections, a short parametric study has been performed in order to assess the
effect of the hardening modulus on the Poisson ratio. Uniaxial strain-controlled tensile test is
performed along direction 1 until 4% of total macroscopic strain. The homogenized cell exhibits
a nonlinear elastoplastic behavior, cf. Figure 5.19. Now, if one considers the ratio of transverse
over longitudinal macroscopic strains, an apparent Poisson’s ratio can be defined in the nonlinear
regime as defined in Equation 5.31 and plotted on Figure 5.19. From these curves we observe
that the auxetic nature of the lattice is kept with plasticity. The effect is even stronger than in
elasticity when the hardening modulus is in the range h = 100–1000 MPa. The auxetic effect
is dependent on the size of the plastic zone in the unit cell. If the plastic zone is confined to
a small domain around the junction between the rotating nodes and the connecting beams, as
shown on Figure 5.16 and 5.17 for low values of the hardening modulus, the auxetic deformation
mechanism is strengthened. For h= 10000 MPa, the plastic zone spreads almost over the entire
cell (cf. Figure 5.18), thus fading the effect of plasticity on the auxetic behavior. The hardening
modulus value, h = 1000 MPa, is kept for the rest of this work since it is of the same order of
magnitude as the hardening modulus of many common alloys.

νapp =−E22

E11
(5.31)

Now, anisotropy in the plastic regime is investigated. As a matter of fact, there is no guarantee for
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Figure 5.16: Deformed shape of unit-cell after 4% of total strain for a uniaxial tensile test along
direction 1, with von Mises equivalent stress map (h = 100 MPa)

Figure 5.17: Deformed shape of unit-cell after 4% of total strain for a uniaxial tensile test along
direction 1, with von Mises equivalent stress map (h = 1000 MPa)
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Figure 5.18: Deformed shape of unit-cell after 4% of total strain for a uniaxial tensile test along
direction 1, with von Mises equivalent stress map (h = 10000 MPa)

Figure 5.19: Stress and apparent Poisson’s ratio vs. strain response for the HC cell

the 6-fold symmetric material to behave isotropically in the plastic regime. Polar plots shown on
Figures 5.20, 5.21 and 5.22 are obtained from uniaxial tensile and shear tests in every direction
of the plane (1,2). Each point corresponds to a test for a different direction with angle φ from the
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principal direction 1 of the structure defined on Figure 5.16. Figures 5.20 and 5.22 shows stress
level versus angle φ for three given strain states: respectively 0.2% (green), 1% (red) and 4%
(blue) total strain for tension, and 0.1%, 0.5% and 2% for shear. Figure 5.21 uses the same color
code but for the apparent Poisson’s ratio versus angle φ for the same given tension states. The
three plots show a quasi-transversely isotropic response for the hexachiral lattice with plasticity.

Figure 5.20: Stress level (MPa) for 0.2% (green), 1% (red) and 4% (blue) total strain for the HC
cell

Figure 5.21: Apparent Poisson’s ratio for 0.2% (green), 1% (red) and 4% (blue) total strain for
the HC cell

5.5.2 Comparison with the honeycomb lattice

Starting from the results presented above, a comparison was made with the honeycomb lattice,
which was introduced in Section 5.3.4. As for the hexachiral lattice, there is no guarantee for
a material that is transversely isotropic in the elastic regime to behave the same with plasticity.
Polar plots shown on Figures 5.23, 5.24 and 5.25 are obtained from uniaxial tensile and shear
tests in every direction of the plane (1,2). Figures 5.23 and 5.25 show stress level versus angle
φ for three given strain states: respectively 0.2% (green), 1% (red) and 4% (blue) total strain
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Figure 5.22: Stress level (MPa) for 0.1% (green), 0.5% (red) and 2% (blue) total shear strain for
the HC cell

for tension, and 0.1%, 0.5% and 2% for shear. Figure 5.24 uses the same color code but for the
apparent Poisson’s ratio versus angle φ for the same given tension states. Regarding stress levels,
the honeycomb develops a higher stress than the hexachiral cell in traction. However, the shear
stress is as much as 3 times higher for the hexachiral cell than for the honeycomb lattice, this is
mainly due to the auxetic nature of the cell. The three plots show a loss of transverse isotropy
with plasticity. The honeycomb lattice behaves more anisotropically in the plastic regime in
comparison with the hexachiral cell. Nevertheless, as for the hexachiral lattice, the anisotropy is
fading with plastic saturation.

Figure 5.23: Stress level (MPa) for 0.2% (green), 1% (red) and 4% (blue) total strain for the
honeycomb lattice

5.5.3 Macroscopic modeling

An additional upscaling is performed. The mesoscopic elastoplastic behavior shown on Fig-
ure 5.19 is now modelled as the constitutive behavior of an homogeneous equivalent medium for

87



Chapter 5. Auxetics

Figure 5.24: Apparent Poisson’s ratio for 0.2% (green), 1% (red) and 4% (blue) total strain for
the honeycomb lattice

Figure 5.25: Stress level (MPa) for 0.1% (green), 0.5% (red) and 2% (blue) total shear strain for
the honeycomb lattice

further use in structural computations. First, let us consider an isotropic compressible plasticity
model such as those developed by [Green, 1972] and [Abouaf et al., 1988] for porous metals,
and by [Miller, 2000] and [Deshpande and Fleck, 2000] for cellular materials. An extension to
the anisotropic case was proposed in [Badiche et al., 2000] and [Forest et al., 2005].

Let us now consider a yield function f (Σ∼ ) such that,

f (Σ∼ ) =Σeq −R (5.32)

where R is the macroscopic yield stress. Moreover, let us adopt the following equivalent yield
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stress:

Σeq =
√

3

2
C Σ∼

dev : Σ∼
dev +F

(

TrΣ∼
)2 (5.33)

where TrΣ∼ is the trace of the stress tensor. C and F are weighting coefficients accounting for the
relative influence of deviatoric and hydrostatic stress, they are usually expressed as functions of
the porosity ρ for isotropic porous materials.

Associated plasticity is assumed, such that the macroscopic plastic strain rate is:

Ė∼
p = ṗ

∂ f

∂Σ∼
= ṗ

σeq

(
3

2
C Σ∼

dev +F
(

TrΣ∼
)

I∼

)

(5.34)

In the case of uniaxial tension, we define the in-plane plastic Poisson ratio:

νp =−
Ė

p
22

Ė
p
11

=−
F− C

2

C+F
=

C
2
−F

C+F
(5.35)

When F= 0, incompressible plasticity is recovered. If C= 1, then νp < 0 for F> 1

2
and lim

F→+∞
νp =

−1. νp as a function of F is plotted on Figure 5.26.

Figure 5.26: Plastic Poisson’s ratio for an isotropic material as a function of parameter F, with
C= 1

Such a plasticity model is not fully capable of describing the anisotropic behavior of our mi-
crostructure along direction 3, especially the transverse contraction when tension is applied
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in plane (1,2). In order to simplify the model, instead of using a fully anisotropic Hill tensor
[Hill, 1950] applied to the deviatoric stress tensor and a separate contribution of the hydrostatic
stress, we consider here a generalized Hill tensor applied to the Cauchy stress tensor2.

We consider the same yield function f (Σ∼ ) as in Equation 5.32 with the following equivalent yield
stress:

Σ
eq =

√

Σ∼ : H
≈

: Σ∼ (5.36)

where H
≈

is the applied generalized Hill fourth-rank tensor.

For the hardening rule, we consider an isotropic hardening function with a nonlinear potential
and a linear part:

R = R0 +Hp +Q(1−e−bp ) (5.37)

5.5.4 Simulation and identification

In order to determine parameters for the model, we first estimate some of them from reference
curves obtained by periodic simulations of the unit-cell. Then comparison between reference data
with results computed on a RVE is made and optimization of macroscopic material parameters
is run using a Nelder–Mead (simplex) algorithm. The experimental database includes tensile,
shear and Poisson’s ratio curves. While loading in tension, we consider out-of-plane contraction.
However, we do not take into account tension in direction 3 and out-of-plane shear. Tensorial
components of H

≈
(cf. Equation 5.41) and parameters for the hardening rule (5.37) are thus

identified:

R= 1.40+8.61p +0.1
(

1−e−140p
)

(5.38)

Identification of the hardening rule was also performed for the two other constitutive hardening
moduli: h = 100 MPa (Equation 5.39) and h = 10000 MPa (Equation 5.40) in order to test the
robustness of the identification scheme and to verify the effect of the local hardening modulus on
the macroscopic hardening rule:

R= 1.26+0.62p +0.1
(

1−e−160p
)

(5.39)

2Although the Hill tensor is named after the work of Rodney Hill after World War II, its actual origin goes
back to June 1928 and the paper of Richard von Mises in the Zeitschrift für Angewandte Mathematik und Mechanik
[von Mises, 1928]. One could argue that von Mises describes a Spannungsfunktionen, a strain function using yielding
compliance tensor components, instead of a stress criterion using yielding moduli tensor components. It seems likely
that this oversight of the literature was a consequence of the geopolitical environment at the time.
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R= 1.28+25.9p +1.07
(

1−e−86p
)

(5.40)

We observe that linear hardening modulus in the macroscopic rule increases with the local
hardening modulus.

Comparison between curves from full-field simulations and the identified macroscopic model
provides a good correlation as shown on the tensile stress and apparent Poisson ratio vs. strain
curve (cf. Figure 5.27), the shear stress vs. strain curve (cf. Figure 5.28) and the transverse strain
vs. longitudinal strain curve, cf. Figure 5.29.

[H
≈

] =














1.00 0.9294 −0.00031 0.0006 0 0

0.9294 0.99 −0.00027 −0.00067 0 0

−0.00031 −0.00027 × 0 0 0

0.0006 −0.00067 0 0.11554 0 0

0 0 0 0 × 0

0 0 0 0 0 ×














(5.41)

Figure 5.27: Stress and apparent Poisson’s ratio vs. strain for full-field simulation and macroscopic
model for an uniaxial tensile test along direction 1 for the hexachiral lattice (h= 1000 MPa)
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Figure 5.28: Stress vs. strain for full-field simulation and macroscopic model for an pure shear
test in plane (1,2) for the hexachiral lattice (h= 1000 MPa)

5.5.5 Discussion

Full-field simulations and macroscopic modeling using an anisotropic compressible plasticity
framework have been performed for an auxetic microstructure: the hexachiral lattice. Plasticity
of auxetics has been explored, showing that the auxetic effect persists and becomes even stronger
with plastic yielding. It was also shown that the strengthening effect of plasticity on auxeticity
fades with the expansion of the plastic zone. The plastic response anisotropy for this 6–fold
symmetric lattice is becoming weaker with hardening. The proposed fully anisotropic Hill

criterion seems to be suitable for modeling architectured cellular materials as it was able to
catch negative Poisson’s ratios, transverse contractions, and volume changes. Further work
could include the modeling of other auxetic microstructures, a parametric study of the influence
of the yield stress and the local hardening rule on the homogenized plastic behavior and the
simulation of an indentation test using the macroscopic model developed in this work. This
study on elastoplasticity and compressible plasticity modeling of auxetics was published in
[Dirrenberger et al., 2012].

5.6 3D auxetic microstructure: the hexatruss lattice

The hexatruss lattice is an extension of auxetic lattices to 3D. It was first pro-
posed in [Dirrenberger et al., 2013] but is very comparable with the unit-cell used in
[Doyoyo and Hu, 2006] for modeling auxetic foams. The geometry of the cell is cubic, the
principal directions are all equivalent as shown on Figure 5.30. The geometry can be described by
lengths L, l, t and angle ω as shown on Figure 5.31. A new dimensionless parameter is defined in
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Figure 5.29: Transverse strain vs. longitudinal strain for full-field simulation and macroscopic
model for an uniaxial tensile test along direction 1 for the hexachiral lattice (h= 1000 MPa)

Equation 5.42. L is not independent from l and ω, they are related to each other by the following
equation: L = 2lcos2ω. For this work, ω= π

5
and ζ= 15, this corresponds to a volume fraction of

2.0%.

ζ= l

t
(5.42)

Figure 5.30: Hexatruss unit-cell

Cubic elasticity is verified since C11 =C22 =C33, C44 =C55 =C66 and C12 =C23 =C31. Compo-
nents were used to plot elastic properties on Figures 5.32 and 5.33. ν∗

(

l ,m
)

is negative for
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Figure 5.31: Hexatruss periodic unit-cell with geometric parameters

a large angle range, except near the principal directions of the cell, it reaches a minimal value
of −0.97 for ψ = π

4
. Figure 5.32 shows a massive increase of µ∗ (

l ,m
)

along the principal

directions of the cell with a maximal normalized value of 0.5. E∗ (

l
)

is higher in diagonal
directions than in the principal directions. Overall, the elastic behavior of the hexatruss is strongly
anisotropic, as shown in Equation 5.43:

[C
≈

] =














6.12 1.62 1.62 0 0 0

1.62 6.12 1.62 0 0 0

1.62 1.62 6.12 0 0 0

0 0 0 227 0 0

0 0 0 0 227 0

0 0 0 0 0 227














(5.43)

5.7 Structural applications of auxetics

In order to conclude on the potential use of auxetic materials in engineering applications, we
performed simulations of both elastic spherical and cylindrical indentation test on macroscopic
homogenized models using elastic moduli determined in Sections 5.4 and 5.6. Since anisotropy is
being investigated, we considered tridimensional meshes for the spherical indentation, as shown
on Figure 5.34. In order to reduce computation time, symmetry conditions were prescribed at
face boundaries so that the FE problem is equivalent to a full spherical indentation simulation.
Also, for the sake of simplicity, 8-node hexahedral and 6-node tetrahedral linear elements were
chosen for this computation. Two sets of boundary conditions have been considered. For each set
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Figure 5.32: Hexatruss lattice (θ = π

2
, φ= 0)

Figure 5.33: Hexatruss lattice (θ = π

2
, φ= 0)

and each microstructure, indentation was performed along direction 2 in plane (1,2) and direction
3 in plane (1,3), respectively corresponding to in-plane and out-of-plane indentation tests. Radius
of the indentor R = 1 mm and maximum indentation depth hs = 0.2 mm.

5.7.1 Spherical indentation: loading case 1

The first loading case corresponds to the classical indentation test with prescribed displacement at
the base of the indented medium along the direction of indentation, and symmetry conditions in
the plane transverse to the direction of indentation. Loading is controlled by the displacement of
the indentor. Force vs. indentation depth curves are shown on Figure 5.35 for in-plane indentation
and Figure 5.36 for out-of-plane indentation. For both in-plane and out-of-plane indentations, the
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honeycomb cell exhibits the higher strength. Both hexachiral and anti-tetrachiral lattices develop
a slightly lower but reasonable strength. On the other hand, the rotachiral lattice does not seem
adequate for such applications. The hexatruss lattice exhibits very low indentation resistance in
comparison with the extruded 2D geometries for both orientations, although the difference in
volume fraction has to be taken into account.

5.7.2 Spherical indentation: loading case 2

The second loading case differs by its boundary conditions. Here, the bottom base of the indented
medium is free and the displacement is prescribed at the external circumferential border of the
cylinder. These boundary conditions are closer to those of an impact test, which relates more to
what an hypothetical architectured sandwich panel would endure in use. Force vs. indentation
depth curves are shown on Figure 5.37 for in-plane indentation and Figure 5.38 for out-of-plane
indentation. Once again, the honeycomb cell exhibits the higher strength for both orientations, and
the hexachiral and anti-tetrachiral lattices are still competitive, at least in its principal directions
for the latter. The rotachiral lattice is definitely inadequate as far as elastic energy is concerned.
Again, the hexatruss cell seems inadequate as is for structural design.

5.7.3 Cylindrical indentation

In order to emphasize the structural applicability of auxetics, we performed an elastic cylindrical
indentation test using the same loading conditions as before. Unlike for the spherical indentation,
a 2D-mesh was used for the cylindrical indentation as shown on Figure 5.39. Computations
were done for both plane-strain and plane-stress assumptions. Force vs. indentation depth curves
for both in-plane and out-of-plane cylindrical indentations for both loading cases are presented
in Figures 5.40 to 5.43. Plain lines denote plane-strain assumption while dashed lines denote
plane-stress. It is clear from Figures 5.40 and 5.42 that the rotachiral and hexatruss lattices
are not good candidates for in-plane structural applications. On the other hand, results for the
honeycomb cell are constantly good. For the second loading case, the hexachiral cell develops
a higher strength in-plane that the honeycomb for hs = 0.2 mm, this would advocate for the
potential use of hexachiral cells for in-plane applications. The in-plane performance of the
anti-tetrachiral cell is not as high as expected from spherical indentation tests. If we now consider
the out-of-plane performance of auxetics (cf. Figures 5.41 and 5.43), it is interesting to note
that again, the hexatruss lattice exhibits very low indentation resistance in comparison with
the extruded 2D cells. Nevertheless, its small volume fraction could be an obvious cause for
such behavior. The anti-tetrachiral cell exhibits high out-of-plane strength, comparable with the
honeycomb strength level, for both loading cases. There are very strong discrepancies for the
out-of-plane response of the rotachiral cell between loading cases 1 and 2.
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Figure 5.34: Cross sectional view of FE mesh used for spherical indentation tests, here with
orientation for in-plane indentation

Figure 5.35: Force vs. indentation depth curves for spherical loading case 1 with (1,2) orientation
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Figure 5.36: Force vs. indentation depth curves for spherical loading case 1 with (1,3) orientation

Figure 5.37: Force vs. indentation depth curves for spherical loading case 2 with (1,2) orientation
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Figure 5.38: Force vs. indentation depth curves for spherical loading case 2 with (1,3) orientation

Figure 5.39: FE mesh used for cylindrical indentation tests, here with orientation for in-plane
indentation
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Figure 5.40: Force vs. indentation depth curves for cylindrical loading case 1 with (1,2) orientation

Figure 5.41: Force vs. indentation depth curves for cylindrical loading case 1 with (1,3) orientation
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Figure 5.42: Force vs. indentation depth curves for cylindrical loading case 2 with (1,2) orientation

Figure 5.43: Force vs. indentation depth curves for cylindrical loading case 2 with (1,3) orientation
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5.8 Experimental characterization of auxetics

In this work, metallic and polymeric auxetic samples were manufactured using the rapid proto-
typing method of selective laser melting (SLM). This method has been used successfully by oth-
ers for auxetics [Huang and Blackburn, 2002, Schwerdtfeger et al., 2010, Mitschke et al., 2011].
Several experiments were conducted on auxetic samples in the context of mini-projects with
students from MINES-ParisTech: the main goal was to investigate the effect of SLM on the
resulting microstructure, as well as measure the auxetic effect experimentally.

For the case of a 316L stainless steel bulk sample made with SLM, micrographs revealed a
surface fraction of porosity of about 4%, which makes SLM samples quite dense in comparison
with other powder metallurgy processes, cf. Figure C.1. However, porosities are located at
the boundary between two neighboring melting beds. The effects of such defaults are partly
counterbalanced during the process by the laser beam path which alternates between x and
y directions, thus disconnecting the initial voids. Unfortunately, this does not apply for truss
structures with very thin struts, say 200 µm in diameter. Therefore, we suspect our auxetic
samples to be sensibly more porous than the bulk samples made using SLM. This assertion was
validated by microstructural characterization made using X-ray microtomography, as discussed
in Section C.3. Further investigation of the microstructure showed a strong grain anisotropy, with
very elongated grains up to a few millimeters long, cf. Figures C.2. On the same figure, as well as
on Figures C.3 and C.4, we can observe that the grain growth occured across many melting bed
layers.

The rest of the experiments were macroscopic mechanical tests performed in order to determine
the Poisson ratio of the samples studied. Due to lack of time and to the very strong heterogeneity
of the microstructures considered, a full digital image correlation approach was not implemented.
Instead, macroscopic strain values were evaluated from the discrepancies between two pho-
tographs corresponding respectively to the undeformed and deformed states. For instance, from
Figure 5.44 a Poisson ratio of −1 was estimated on one cell. Although, this value fluctuates
between −1 and −0.2 depending on local buckling and failure, it is comparable to the value
ν=−0.97 obtained from the simulation for an ideal elastic medium. All the experimental data
acquired for auxetics is gathered in Appendix C.

5.9 Conclusions and prospects

Elastic moduli for three periodic auxetic 2D lattices, a 15% volume fraction honeycomb cell
and a new 3D auxetic microstructure, have been computed using periodic homogenization
technique coupled with finite elements. Anisotropy of in-plane and out-of-plane normalized
elastic parameters was investigated. While the honeycomb cell exhibits a constantly high
indentation strength, auxetic lattices can be competitive if shear is involved, especially the
hexachiral and anti-tetrachiral lattices. With its circular (or elliptic) ligaments, the rotachiral
lattice provides an additional parameter for tuning the microstructure for specific absorption
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Figure 5.44: Initial (a) and final (b) states for a hexatruss 316L sample under compressive

loading along the vertical direction (φ= π

2
, θ = 0 and ψ= π

4
). Poisson’s ratio is estimated from

discrepancies in pixel sizes.

properties. This lattice can exhibit highly negative Poisson’s ratios when loaded out-of-plane.
The quadratic elasticity of the anti-tetrachiral lattice was investigated numerically, showing higher
normalized Young’s modulus E∗ (

l
)

in the principal directions of the cell, while in-plane auxetic
effects are restricted to short angle intervals around these directions. Such lattices could be used
in replacement of traditional honeycomb-core for sandwich panels, especially if produced by
extrusion. In the context of this work, panels are being produced this way by SMCI3, which is an
industrial partner of the MANSART project.

Results from structural computations were presented, advocating for further developments in the
field of structural auxetics. Nevertheless, due to the importance of sandwich skins in the strength
of composite structures, those will be taken into account and their influence investigated in
subsequent works. The hexatruss 3D lattice gave not so promising results in terms of indentation
strength. This is partly due to its very small volume fraction in comparison with the other
microstructures studied in this work. Our simulations demonstrate the impact of elastic anisotropy
on the loss of structural properties for architectured materials. It would be interesting to compare
the hexatruss mechanical performance with those of other tridimensional struts lattices with
same densities. Auxetic samples were made using selective laser melting (SLM), an additive
powder metallurgy process, extending one’s microstructural design spectrum from 2D to 3D.
The microstructure of the processed samples was investigated using optical microscopy and
scanning electron microscopy, showing a very strong anisotropy in grain sizes and orientation.
The crystallographic orientation distribution was not measured since it was out of the spectrum
of the present study. The heterogeneous nature of the constitutive microstructure of our samples
is conflicting with the assumption of homogeneous isotropy made in the simulation. In order to
develop more realistic models, microstructural and crystallographic information has to be taken

3http://www.klege-europ-smci.com/
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into account in the computation. This would advocate for modeling the actual process of selective
laser melting to have a full understanding of the underlying phenomena taking place within the
material. At a macroscopic scale, mechanical experiments were performed in compression and
Poisson’s ratio was estimated, yielding a fair accordance between simulation and experiments.
Further characterization could be actual indentation experiments in order to compare the obtained
data with our FE results.

Regarding plasticity, full-field simulations and macroscopic modeling using an anisotropic
compressible plasticity framework have also been performed for the auxetic hexachiral lattice and
compared with the honeycomb lattice. Elastoplasticity of auxetics has been explored, showing
that the auxetic effect persists and becomes even stronger with plastic yielding. Transverse
isotropy was preserved within the plastic domain for the hexachiral lattice unlike the honeycomb.
The hexachiral cell exhibits an in-plane plastic shear stress that is about 3 times higher than for
the honeycomb lattice, this is due to its auxetic properties. The plastic response anisotropy for
this 6–fold symmetric lattice is becoming weaker with plastic saturation. The proposed fully
anisotropic Hill criterion seems to be suitable for modeling architectured cellular materials as it
was able to catch negative Poisson’s ratios, transverse contractions, and volume changes. Further
work will include the modeling of other auxetic microstructures, a study of the influence of the
local hardening rule on the homogenized plastic behavior and the simulation of an indentation
test using the macroscopic model developed in this work. For industrial applications, non-linear
phenomena such as buckling will also have to be taken into account.
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Résumé

Dans cette seconde partie, l’homogénéisation numérique à l’aide des éléments finis est implé-
mentée dans le cas de matériaux périodiques à coefficient de Poisson négatif. Une introduction à
ce type de matériaux est donnée. Les formules de moyennes pour les champs mécaniques sont
adaptées pour le cas des matériaux cellulaires. Les différentes microstructures considérées sont
ensuite présentées et leurs propriétés effectives déterminées. Une étude de l’anisotropie élastique
est réalisée pour ces microstructures. L’extension au domaine élastoplastique est réalisée pour
la cellule hexachirale, ainsi que pour le nid d’abeilles classique : la comparaison est faite entre
ces deux motifs. Une modélisation macroscopique du comportement plastique compressible
est proposée en utilisant un critère anisotrope généralisé de Hill. En se basant sur les résultats
obtenus, une nouvelle cellule 3D est proposée et étudiée. L’application structurale des auxétiques
est validée par la simulation d’essais d’indentation sphérique et cylindrique. Enfin la caractéri-
sation expérimentale d’échantillons obtenus par fusion laser sélective est décrite et les résultats
sont confrontés à la simulation.
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6 Poisson fibers

L’homme est capable de faire ce qu’il est incapable d’imaginer.

Sa tête sillonne la galaxie de l’absurde.

— René Char, Feuillets d’Hypnos, Fureur et mystère (1948)

Part II was dedicated to periodic microstructures. We will now focus our attention on the homog-
enization of random media. We have introduced the problem of the representativity of samples in
Section 2.1 and presented the statistical approach for determining RVE sizes of heterogeneous
materials in Section 4.2. This method was implemented as is in several contributions such as
[Kanit et al., 2003, Pelissou et al., 2009, Jean et al., 2011b] and has proved to be quite effective.
However, all the microstructures considered in these 3 references are morphologically periodic.
For the sake of efficiency, [Pelissou et al., 2009] and [Jean et al., 2011b] resort to periodic bound-
ary conditions (PBC) since [Kanit et al., 2003] showed from computational experiments that
apparent properties obtained with PBC converge towards the effective properties more rapidly
than those obtained with KUBC and SUBC. The rate of convergence of apparent properties
towards the effective properties, with respect to the volume of the system, informs us on the size
of the RVE. If one considers a given microstructure for which this rate of convergence is slow, this
would give rise to large RVE sizes, especially if this medium is not morphologically periodic (or
periodizable) and if PBC cannot be used. It would thus be a challenge to homogenize such media,
this is the purpose of the present chapter. Some extreme, or pathological, candidate morphologies
could give rise to gigantic RVE sizes. This is the case of Poisson fibers, which correspond to a
particular type of 3D stochastic networks composed by randomly oriented and distributed infinite
rectilinear interpenetrating fibers. There are many studies in the literature regarding finite-length
fibrous media and strongly oriented infinite-fiber media, likely due to the industrial relevance
of such materials. For instance, [Delisée et al., 2001] and [Peyrega et al., 2009] dealt with the
morphology of 3D long-fiber media randomly oriented in-plane, [Schladitz et al., 2006] used
a 3D random model of randomly oriented long-fibers for the design of an acoustic absorber,
and [Barbier et al., 2009b, Barbier et al., 2009a] used virtual samples of long but finite fibers,
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for modeling the mechanics of entangled materials. None of these studies accounted for the
representativity of samples. [Oumarou et al., 2012] computed RVE sizes for 2D random arrays
of fibers, using the statistical method of [Kanit et al., 2003]. We also acknowledge the work of
Picu et al. on 2D fibrous fractal networks, as it deals with the homogenization of such, yet self-
similar, fibrous media. See for instance [Soare and Picu, 2007, Hatami-Marbini and Picu, 2009,
Picu and Hatami-Marbini, 2010, Picu, 2011]. To our knowledge, no one ever assessed the ques-
tion of RVE size for 3D infinite randomly oriented fibrous media.

When dealing with the computational homogenization of random media, one has to consider
virtual specimens or models. In order for the model to be realistic, the microstructural hetero-
geneities have to be taken into account in the simulation. Mathematical morphology provides
powerful tools to do so (cf. Appendix B). For the case of real microstructures the method consists
of the digitization and reconstruction from actual physical measurements of the microstructure
obtained using techniques such as microscopic contrast tomography (µCT), transmission electron
microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy (CM), electron
back scattering diffraction (EBSD), synchrotron light beam source, etc. Virtual samples obtained
in this way can be used, without much change, for computational homogenization with Fast
Fourier Transform (FFT), which is voxel-based, or FE, thus adding an intermediate meshing
step. Nevertheless, it would be a pity not to access the underlying morphological information
present in any realistic sample. The data acquired earlier should thus be quantitatively charac-
terized by means of a two-step morphological measurements procedure: first, a morphological
transformation is applied on the data; then a measure performed on the resulting object. Typical
morphological measurements include stereological data (volume fraction, integral of mean curva-
ture, etc.), size distribution, spatial distribution (clustering, scales, anisotropy) and connectivity.
Knowing this information allows one to generate realistic virtual samples based on models of
random structures as it was done in [Kanit et al., 2006, Schladitz et al., 2006, Madi et al., 2007,
Peyrega et al., 2009, Escoda et al., 2011, Jean et al., 2011a] for instance. Based on morphologi-
cal arguments, one can also define a specific model of random structures that does not necessarily
correspond to a realistic medium. This kind of models could present interest for testing theories
and to further our understanding of the physics of random media.

This is the main goal of the present chapter, as well as examining the statistical RVE approach of
Kanit et al. in the light of a quite unfavorable case. The morphology considered here, Poisson

fibers, correspond to a particular type of 3D stochastic network composed by randomly oriented
and distributed infinitely-long rectilinear interpenetrating fibers. This specific model of random
structure exhibits an infinite integral range [Jeulin, 1991a], i.e. an infinite correlation length; the
statistical RVE method would thus have to be updated. Besides, Poisson fibers exhibit two
percolating phases with an infinite contrast of properties. This medium does not respect the
principle of scale separation and it is non-periodizable without modifying its morphology, thus
falling beyond the spectrum of periodic homogenization and the definition of RVE proposed
by [Sab and Nedjar, 2005]. Although infinite fibers do not exist in nature, they could be a
limit case representative of sintered long-fiber non-woven materials, such as those studied in
[Mezeix et al., 2009]. Throughout this paper, we implement a computational homogenization
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scheme based on finite element (FE) simulations. This will require virtual samples generated
using a specific mathematical morphology model, which is described in [Jeulin, 2012] along with
a review on the determination of effective properties for random sets, including Poisson fibers.

The approach adopted in this work is quite original, considering that we are trying to homogenize
a rather unrealistic material in order to show the robustness of the proposed approach for
realistic materials. It is intended to compute the effective properties of a pathological type
of models of random structures, for which periodic homogenization is helpless. First, the
microstructural model is presented in Section 6.1 along with the virtual samples generation
procedure. Numerical simulation setup and parameters, and boundary conditions for the thermal
and mechanical problems are discussed in Section 6.2. Results coming from the simulation are
shown in Section 6.3. Morphological, thermal and elastic isotropy is checked for in Section 6.4.1.
In Section 6.5, we determine the RVE size for this kind of microstructure regarding thermal
and mechanical properties using the generalized statistical method presented in Section 4.2.5.
Discussion is postponed to Section 6.4.

6.1 Microstructural model

The microstructural model considered for Poisson fibers is made of a Boolean model on a Poisson

variety. Firstly, we will clarify the notion of Poisson point process, then present the Poisson

linear varieties and finally we will define a Boolean model on Poisson lines in 3D. In this section
we will use vocabulary and notation specific to mathematical morphology that are explained in
Appendix B.

6.1.1 Poisson point process

The Poisson point process is a random point process on which many stochastic models are based,
cf. for instance [Serra, 1982], it is the prototype for random processes without any order. It
consists in implanting points xi in R

n according to a Poisson law [Poisson, 1837]. The intensity
of the Poisson law is equal to its mathematical expectation and its variance. For instance, P2(m)

is the probability for m Poisson points to be implanted with intensity θ on a surface S:

P2(m) = (θS)m

m!
exp(−θS) (6.1)

This type of random point process is illustrated on Figure 6.1:
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Figure 6.1: Realization of a Poisson point process in R
2

6.1.2 Linear Poisson varieties

Let us now consider a Poisson point process {xi (ω)}, with intensity θk (dω) on the variety of
dimension (n −k) containing the origin O, and with orientation ω. For every point xi (ω) there is
a variety of dimension k, called Vk (ω)xi

, that is orthogonal to the direction ω. Let us consider the
set Vk , which is the union over {xi (ω)} of all varieties, such that:

Vk =∪xi (ω)Vk (ω)xi
(6.2)

Using this definition in R
3, one can for instance generate a network of Poisson hyperplanes (k = 2)

or Poisson lines (k = 1).

The number of varieties of dimension k hit by a compact set K is a Poisson variable with
parameter θ(K ), and as proved in [Jeulin, 1991a, Jeulin, 1991b, Jeulin, 2011] for the stationary
case:

θ(K ) =
∫

Rn
θk (dω)µn−k (K (ω)) (6.3)

where K (ω) is the orthogonal projection of K on the space orthogonal to Vk (ω), Vk⊥ (ω). In the
isotropic (θk being constant), stationary case of Poisson lines in R

3 (n = 3, k = 1), for a convex
set K , we can prove that the number of varieties of dimension k hit by a compact set K is a
Poisson variable, with parameter θ(K ):

θ(K ) = π

4
θS (K ) (6.4)

where S is the measure of surface.

6.1.3 Boolean random sets

Boolean random sets can be built from Poisson varieties and a primary grain A′, as described in
[Jeulin, 1991a, Jeulin, 1991b, Jeulin, 2011]. A Boolean model built on Poisson lines generates
a fibrous network, with a possible overlap of fibers. According to [Jeulin, 1991a], the Choquet
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capacity of a Boolean random model built on a Poisson variety of dimension k reads as:

T (K ) = 1−exp

(

−
∫

θk (dω)µn−k

(

A′(ω)⊕ Ǩ (ω)
)
)

(6.5)

In the case of isotropic Poisson lines, for a convex set A′⊕ Ǩ , the Choquet capacity simplifies to:

T (K ) = 1−exp
(

−θπ
2

S̄
(

A′⊕ Ǩ
))

(6.6)

Thus, for Poisson fibers resulting from the dilation of isotropic Poisson lines by a sphere of radius
R:

T (0) = P {x ∈ A} = 1−exp

(

−θπ
2R2

2

)

(6.7)

Hence, for a given volume fraction VV of Poisson fibers, we obtain θ that is:

θ = −2ln(1−VV )

π2R2
(6.8)

Based on Equation 6.8, one can compute the average number of Poisson fibers N̄ for a given set
of parameters in the model: the fiber radius R, the volume fraction of fibers VV and the volume
considered V = L3:

N̄ = Sθ =π

(p
3L

2

)2 −2ln(1−VV )

π2R2
= −3ln(1−VV )

2π

L2

R2
(6.9)

with
L2

R2
ratio of characteristic lengths.

6.1.4 Generation of Poisson fiber virtual models

Using the aforementioned definition of Poisson fibers, we can use the morphological description
to generate virtual models (realizations) with the help of a structure-generating software. In this
work we relied on vtkSim1 which is developed at the Centre de Morphologie Mathématique
of MINES-ParisTech in Fontainebleau. This software is able to generate tridimensional random
structures based on a morphological description. It is programmed in C++ and based on the vtk2

graphics library [Schroeder et al., 2006]. The main advantages of using this software compared
to an acquired data-based approach is that vtkSim operates on a vectorial framework making the

1http://cmm.ensmp.fr/∼faessel/vtkSim/demo/
2http://vtk.org
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computation time for generating a random structure almost size-independent until discretization,
and its ability to generate very large random structures in comparison with voxel-based software.

Hereafter is the algorithm we developed for generating Poisson fibers using vtkSim, illustrated
in Figure 6.2.

1. Input : volume fraction of isotropic fibers VV , fibers radius R, sample size L (V = L3)

2. Compute the theoretical number of germs for implanting fibers ntheo = π

(p
3L

2

)2

θ =

−3L2 ln(1−VV )

2πR2

3. Monte-Carlo type simulation for determining the random number of germs nsimul according
to a Poisson law

4. Generate and implant the nth Poisson line

• Randomize angles ρ and φ accounting for the fiber orientation

• Rotate the equatorial plan Π→Π
′ → Γ after angles ρ and φ

• Randomize coordinates {x, y} of the germ on the disc Γ and trace the normal of Γ in
{x, y}

5. Repeat step 4 while n ≤ nsimul

6. Dilate the ensemble of Poisson lines by the sphere of radius R

7. Write geometric data file

On Figure 6.3 is presented a vectorial (non-discretized) realization of Poisson fibers.

6.1.5 Discretization of microstructural models

Our aim is to use finite element analysis for determining effective properties, we thus have to
discretize the generated realizations. vtkSim uses the meshing tools of the vtk library, which
provides 3D regular triangular meshes attached to a Cartesian grid. The spacing of the grid
is a parameter for the generation. Those meshes cannot be used directly for FE computations
for two reasons: they are only 3D surface meshes; they are not optimized at all. In order
to obtain a 3D volume mesh based on a 3D closed surface mesh, one needs to fill the latter
with tetrahedra. In this work, this was done using the Z-Set FE package3 interfaced with the
meshing tools developed at INRIA. This procedure first consists in a shape optimization of the
3D surface mesh using YAMS software [Frey, 2001]. The resulting closed surface mesh is then

3http://www.zset-software.com/
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Figure 6.2: Geometrical model for generating Poisson fibers

Figure 6.3: Vectorial realization of Poisson fibers
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filled with TetMesh-GHS3D software [SIMULOG, 2003] using a Voronoi–Delaunay algorithm
[Voronoi, 1908, Delaunay, 1934]. Finally, the meshes obtained in this way are compatible with
the Z-Set standards, they can thus be used for computational homogenization.

6.1.6 Parameters of the simulation

There are several parameters to be set for the simulation, they are summarized in Table 6.1.

Volume fraction

Volume fraction VV of fibers was chosen to be 15%. This value corresponds to an average
number of fibers large enough to compute mechanical properties on reasonably small volumes.
Unfortunately, by increasing the mesh density in vtkSim, i.e. enhancing the morphological
description, we ended up with an average volume fraction of fibers close to 16% for the same
Poisson intensity.

Fibres radius

Fibres radius R is kept constant and equal to 1 as a convention, hence setting the unit-length for
the computation of elementary volumes.

Simulation size

Many simulation sizes L are considered. It corresponds to the edge length of the simulation cube
of volume V . This length ranges from 10 to 200. Examples of virtual sample realizations are
shown for different sizes on Figure 6.4.

Mesh density

In order to assess the impact of mesh refinement on the results, 5 different mesh densities d are
considered. The mesh density is approximately equal to a normalized quantity of finite elements
per unit-length. The higher this value, the larger the number of elements in the mesh and the
better the description of the morphological model. The effect of mesh density is investigated and
computations are performed, when possible, with the 5 densities shown in Figure 6.5.

6.1.7 Computational strategy

Since a vectorial framework was used for generating samples, binarization was avoided in order to
keep the number of degrees of freedom (DOFs) low for a given morphological description. Voxel-
based computational homogenization methods were put aside, such as Fast-Fourier Transform-
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(a) L = 20 (b) L = 30 (c) L = 40 (d) L = 60

(e) L = 200

Figure 6.4: 3D rendering of Poisson fibers models (a) L = 20, (b) L = 30, (c) L = 40, (d) L = 60

and (e) L = 200
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

(e) d = 5

Figure 6.5: Mesh densities (a) d = 1, (b) d = 2, (c) d = 3, (d) d = 4 and (e) d = 5
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Simulation size (L) Mesh density (d) Fiber radius Volume fraction Boundary conditions

[10;200] [1;5] 1 0.16 Uniform & mixed

Table 6.1: Simulation parameters for computing effective properties

based (FFT) [Moulinec and Suquet, 1994] and FE with multi-phase elements [Barbe et al., 2001].
We opted for volumic FE with free meshes using linear tetrahedra for efficiency. Sequential
computations were considered for the sake of simplicity. FE package Z-Set 8.5 was used for
the computation as it is developed in-house and has previously been used with success for com-
puting properties of heterogeneous microstructures [Barbe et al., 2001, Cailletaud et al., 2003,
Kanit et al., 2003, Madi et al., 2005, Jean et al., 2011b, Dirrenberger et al., 2012].

The many simulations considered in this work were performed on the computing cluster of the
Centre des Matériaux, allowing us to run many sequential computations in a parallel manner.
The largest computation considered in this paper corresponds to a volume V = 106 including
ca. 800 Poisson fibers. The associated mesh includes 11 million linear tetrahedral elements,
i.e. 7.6 million DOFs. The MUMPS linear solver [Amestoy et al., 2000] was used as it was the
most efficient available. For comparison, about 128 GB of RAM were necessary for the whole
resolution of a linear elastic problem with the largest mesh using the default DSC_Pack linear
solver, whereas MUMPS only needed 54 GB. In terms of time, the computation itself takes about
2.5 hours for an elastic problem on a AMD Opteron 6134 single-core @ 2.3 GHz, while the
post-processing takes another half hour. All the data considered in this paper has been generated
over a duration of 4 months; this does not include meshing.

6.2 Boundary conditions

Based on the microstructural model defined in Section 6.1, we compute the effective elastic and
thermal properties of Poisson fibers. After discussing and adapting the averaging relations for the
thermal and mechanical fields to the case of Poisson fibers, we will specify the boundary value
problems considered in the simulations.

As shown on Figure 6.6, the elementary volume considered here is the volume V that is composed
of two complementary phases V f and Vp , respectively accounting for the Poisson fibers and the
porous phase, such that:

V =V f ∪Vp (6.10)
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Figure 6.6: Example of elementary volume of Poisson fibers used in simulations

Let us consider the boundary of each phase:

∂V f = ∂V in
f ∪∂V out

f (6.11)

∂Vp = ∂V in
p ∪∂V out

p (6.12)

with exponent in and out, respectively accounting for the internal and external boundaries of the
phases. For instance, ∂V out

f corresponds to the set of red surfaces in Figure 6.6. Moreover,

n in
f =−n in

p ∀x ∈ ∂V in
f ,p (6.13)

Finally, the boundary ∂V of the elementary volume considered is made of the 6 faces of the cube
F+

1 , F−
1 , F+

2 , F−
2 , F+

3 and F−
3 . ∂V can also be defined as the union of the external boundaries of

each phase:

∂V = ∂V out
f ∪∂V out

p (6.14)
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6.2.1 Thermal properties

The temperature T and heat flux q fields are defined on the elementary volume V : they are
computed on V f only; on Vp , fields T and q may be considered as extensions of T and q on

V f using suitable interpolations assuming continuity for T and q ·n on ∂V in
f ,p . We adopt the

following extension of the q field on Vp :

q
(

x
)

= 0 ∀x ∈Vp (6.15)

This choice requires that,

q
(

x
)

·n = 0 ∀x ∈ ∂V in
f (6.16)

This is compatible with the condition of fibers free boundaries used in the computation.

For thermal effective properties of Poisson fibers, we use boundary conditions that have been
introduced in Section 2.3.1 (UTG), which we recall hereafter, as well as new boundary conditions:
the mixed thermal boundary conditions (MTBC). First, the averaging relations given for ∇T and
q , respectively in Equations 2.2 and 2.3, have to be adapted for the homogenization of Poisson

fibers. Let us consider the volume V , made of two complementary phases of volume V f and Vp ,
respectively accounting for the fibers and the porous phase. Thus, if one considers the spatial
average over V of the gradient of temperature ∇T :

〈∇T 〉 = 1

V

∫

V
∇T dV = 1

V

∫

V f

∇T dV + 1

V

∫

Vp

∇T dV

= 1

V

∫

V f

T,i dV e i +
1

V

∫

Vp

T,i dV e i

= 1

V

∫

∂V f

T ni dS e i +
1

V

∫

∂Vp

T ni dS e i

= 1

V

∫

∂V f

T n dS + 1

V

∫

∂Vp

T n dS

= 1

V

∫

∂V out
f

T n dS + 1

V

∫

∂V out
p

T n dS (6.17)

The value of 〈∇T 〉 depends on the interpolation chosen for T on ∂Vp .

If one considers now the spatial average over V of a steady-state heat flux vector q ∗, i.e. Div q ∗ =
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0 in V , it yields:

〈q ∗〉 = 1

V

∫

V f

q ∗dV + 1

V

∫

Vp

q ∗dV

︸ ︷︷ ︸

=0 cf. Equation 6.15

= 1

V

∫

V f

q∗
i dV e i

= 1

V

∫

V f

(

q∗
j xi

)

, j
dV e i

= 1

V

∫

V f

q∗
j n j xi dS e i

= 1

V

∫

∂V f

(

q ∗ ·n
)

x dS

= 1

V

∫

∂V out
f

(

q ∗ ·n
)

x dS + 1

V

∫

∂V in
f

(

q ∗ ·n
)

x dS

︸ ︷︷ ︸

=0 cf. Equation 6.16

= 1

V

∫

∂V out
f

(

q ∗ ·n
)

x dS (6.18)

From a practical viewpoint, 〈q 〉 is computed on the fibers in this way:

〈q 〉 = 1

V

∫

V f

q dV =
V f

V

1

V f

∫

V f

q dV =V
f

V
〈q 〉

f
(6.19)

Finally, let us consider the thermal dissipation rate density D
th that arises from the fields q ∗ and
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∇T in the porous linear case for a reference temperature T0 (linearized theory):

T0D
th = 〈−q ∗ ·∇T 〉

= 1

V

∫

V f

−q ∗ ·∇T dV + 1

V

∫

Vp

−q ∗ ·∇T dV

︸ ︷︷ ︸

=0

= 1

V

∫

V f

−q∗
i T,i dV

= 1

V

∫

V f

−
(

q∗
i T

)

,i
dV

= 1

V

∫

∂V f

−q∗
i ni T dS

= 1

V

∫

∂V out
f

−T q ∗ ·n dS + 1

V

∫

∂V in
f

−T q ∗ ·n dS

︸ ︷︷ ︸

=0

= 1

V

∫

∂V out
f

−T q ∗ ·n dS (6.20)

Practically, T0D
th is computed this way:

T0D
th = 〈−q ·∇T 〉 = 1

V

∫

V f

−q ·∇T dV =V
f

V
〈−q 〉

f
· 〈∇T 〉 (6.21)

Uniform temperature gradient boundary conditions – UTG

The macroscopic gradient of temperature G is prescribed at the boundary of the simulation
domain, such that:

T =G · x ∀x ∈ ∂V = ∂V out
f ∪∂V out

p (6.22)

which yields from Equation 6.17,

〈∇T 〉 = 1

V

∫

∂V

(

G · x
)

n dS =G (6.23)

The macroscopic heat flux field Q is computed in this way:

Q = 〈q 〉 =V
f

V
〈q 〉

f
(6.24)

Finally, the apparent thermal conductivity λ∼
app is estimated using the following relation:

Q =−λ∼
app ·G (6.25)
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Let us consider the thermal dissipation rate density D
th, computed in this way:

T0D
th = 1

V

∫

V
−q ·∇T dV

= 1

V

∫

∂V
−

(

q ·n
)

T dS

= 1

V

∫

∂V
−

(

q ·n
)(

G ·x
)

dS

= 1

V

∫

∂V
−

(

qi G j x j

)

ni dS

= 1

V

∫

V
−qi G j x j ,i dV

= 1

V

∫

V
−q ·G dV

= 〈−q 〉 ·G
= −Q ·G
=

(

λ∼
app ·G

)

·G (6.26)

Assuming that the homogeneous equivalent medium is isotropic, we use −〈q ·∇T 〉 as an estimate

of λeffG ·G . The following macroscopic gradient of temperature is considered:

G =






−1

0

0




 (6.27)

so that,

T0D
th = 〈−q ·∇T 〉 =V

f

V
〈−q ·∇T 〉

f
=−Q ·G =−Q1G1 =Q1 (6.28)

is an estimate of λeff.

Uniform heat flux boundary conditions – UHF

Let us now consider the case of a macroscopic heat flux Q ·n prescribed at the boundary ∂V of
the simulation domain, such that:

q ·n =Q ·n ∀x ∈ ∂V (6.29)

In the case of Poisson fibers, this condition is in conflict with extension of the heat flux field:

q = 0 ∀x ∈Vp (6.30)
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so that,

q ·n = 0 ∀x ∈ ∂Vp (6.31)

We can only prescribe:

q ·n =Q ·n ∀x ∈ ∂V out
f (6.32)

but in the case of a random microstructure, these boundary conditions do not ensure the following
balance equation:

∫

∂V
q ·n dS = 0 (6.33)

That is why we propose the following alternative boundary conditions.

Mixed thermal boundary conditions – MTBC

Temperature is prescribed on a pair of opposite faces F1 = F+
1 ∪F−

1 (normal to direction 1) of the
boundary ∂V of the simulation domain, such that:

T =G · x ∀x ∈ F1 ∩∂V out
f (6.34)

The temperature field T is extended on F1 ∩∂V out
p following the same expression T =G · x .

On the other pairs of faces F2 and F3, the heat flux is prescribed such that:

q ·n = 0 ∀x ∈
(

F2 ∩∂V out
f

)

∪
(

F3 ∩∂V out
f

)

(6.35)

Let us consider the spatial average of the temperature gradient:

〈∇T 〉 = 1

V

∫

V
∇T dV

= 1

V

∫

∂V
T n dS

= 1

V

∫

F1

T n dS + 1

V

∫

F2∪F3

T n dS (6.36)

For a coordinates system with its origin at the center of the simulation cube, let us consider each
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component of the temperature gradient, it yields:

〈T,1〉 = 1

V

∫

F1

T n1dS

= 1

V

∫

F+
1

T n1dS − 1

V

∫

F−
1

T n1dS

= 1

V

∫

F1

G · x n1dS

= 1

V
G

∫

F1

x n1dS

= 1

V








G1

∫

F1

x1n1dS +G2

∫

F1

x2n1dS

︸ ︷︷ ︸

=0

+G3

∫

F1

x3n1dS

︸ ︷︷ ︸

=0








= G1 (6.37)

〈T,2〉 = 1

V

∫

F2

T n2dS

= 1

V

∫

F+
2

T n2dS − 1

V

∫

F−
2

T n2dS (6.38)

= 1

V

∫

F+
2 ∩∂V out

f

T n2dS +
∫

F+
2 ∩∂V out

p

T n2dS −
∫

F−
2 ∩∂V out

f

T n2dS −
∫

F−
2 ∩∂V out

p

T n2dS

In our computations the surface integral over ∂V out
f ∩F2 can be evaluated. However, a suitable

extrapolation of T on ∂V out
p ∩F2 is needed for the full evaluation of 〈T,2〉. The same argument

holds for 〈T,3〉.

Let us now consider the macroscopic heat flux, using Equation 6.18:

Q =V
f

V
〈q 〉

f
= 1

V

∫

∂V out
f

(

q ·n
)

x dS (6.39)
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So for each components:

Qi = 1

V

∫

∂V out
f

(

q ·n
)

xi dS

= 1

V

∫

F1∩∂V out
f

(

q ·n
)

xi dS

= 1

V

∫

F+
1

q1xi dS − 1

V

∫

F−
1

q1xi dS (6.40)

which yields,

Q1 =
1

V
L

∫

F+
1

q1dS (6.41)

In our computation, Q1 is actually post-processed by means of the following spatial average:

Q1 =V
f

V
〈q1〉 f (6.42)

Components Q2 and Q3 are estimated in the same fashion. They do not vanish in general.

Finally, let us consider the thermal dissipation rate density, computed in this way:

T0D
th = 1

V

∫

∂V
−T

(

q ·n
)

dS

= 1

V

∫

F1

−Gi xi q j n j dS (6.43)

Assuming that the homogeneous equivalent medium is isotropic, we use 〈−q ·∇T 〉 as an estimate

of λeffG ·G . The following macroscopic gradient of temperature is considered:

G =






−1

0

0




 (6.44)
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so that,

T0D
th = 〈−q ·∇T 〉

= 1

V

∫

∂V
−

(

q ·n
)(

G ·x
)

dS

= G1

V

∫

∂V
−

(

q ·n
)

x1dS

= G1

V

∫

V
−

(

qi x1

)

,i dV

= G1

V

∫

V
−q1dV

= −G1Q1

= Q1 (6.45)

is an estimate of λeff. For an isotropic material, Q2 and Q3 should converge towards zero for the
macroscopic gradient of temperature considered here. This is a useful tool to check for isotropy,
as it will be done in Section 6.4.1.

6.2.2 Mechanical properties

The displacement u and stress σ∼ fields are defined on the elementary volume V : they are
computed on V f only. Over Vp , the fields u and σ∼ may be considered as extensions of u and σ∼
on V f using suitable interpolations assuming continuity for u and σ∼ ·n on ∂V in

f ,p . We adopt the
following extension of the σ∼ field on Vp :

σ∼
(

x
)

= 0∼ ∀x ∈Vp (6.46)

This choice requires that,

σ∼
(

x
)

·n = 0 ∀x ∈ ∂V in
f (6.47)

This is compatible with the condition of fibers free boundaries used in the computation.

For mechanical effective properties of Poisson fibers, we use boundary conditions that have
been introduced in Section 2.3.2 (KUBC), which we recall hereafter, as well as new boundary
conditions: the mixed boundary conditions (MBC). First, the averaging relations given for ε∼ and
σ∼ , respectively in Equations 2.5 and 2.6, have to be adapted for the homogenization of Poisson

fibers. Let us consider the volume V , made of two complementary phases of volume V f and Vp ,
respectively accounting for the fibers and the porous phase. Thus, if one considers the spatial
average over V of the kinematically compatible strain field ε∼

′, which is defined as the symmetric
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part of the gradient of the displacement field u ′:

〈ε∼
′〉 = 1

V

∫

V
ε∼
′dV = 1

V

∫

V f

ε∼
′dV + 1

V

∫

Vp

ε∼
′dV

= 1

V

∫

V f

u′
(i , j )dV e i ⊗e j +

1

V

∫

Vp

u′
(i , j )dV e i ⊗e j

= 1

V

∫

∂V f

u′
(i n j )dS e i ⊗e j +

1

V

∫

∂Vp

u′
(i n j )dS e i ⊗e j

= 1

V

∫

∂V f

u ′ s
⊗ n dS + 1

V

∫

∂Vp

u ′ s
⊗ n dS

= 1

V

∫

∂V out
f

u ′ s
⊗ n dS + 1

V

∫

∂V out
p

u ′ s
⊗ n dS (6.48)

The value of 〈ε∼
′〉 depends on the interpolation chosen for u ′ on ∂Vp .

If one considers now the spatial average over V of a statically admissible stress field σ∼
∗,

i.e. Divσ∼
∗ = 0 in V , it yields:

〈σ∼
∗〉 = 1

V

∫

V f

σ∼
∗dV + 1

V

∫

Vp

σ∼
∗dV

︸ ︷︷ ︸

=0 cf. Equation 6.46

= 1

V

∫

V f

σ∗
i j dV e i ⊗e j

= 1

V

∫

V f

σ∗
(i kδ j )k dV e i ⊗e j

= 1

V

∫

V f

σ∗
(i k x j ),k dV e i ⊗e j

= 1

V

∫

∂V f

σ∗
(i k nk x j )dS e i ⊗e j

= 1

V

∫

∂V out
f

(

σ∼
∗ ·n

) s
⊗ x dS + 1

V

∫

∂V in
f

(

σ∼
∗ ·n

) s
⊗ x dS

︸ ︷︷ ︸

=0 cf. Equation 6.47

= 1

V

∫

∂V out
f

(

σ∼
∗ ·n

) s
⊗ x dS (6.49)

From a practical viewpoint, 〈σ∼ 〉 is computed on the fibers in this way:

〈σ∼ 〉 =
1

V

∫

V f

σ∼ dV =
V f

V

1

V f

∫

V f

σ∼ dV =V
f

V
〈σ∼ 〉 f (6.50)

Finally, let us consider the elastic energy density E
el that arises from the fields σ∼

∗ and ε∼
′ in the
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porous case:

2E
el = 〈σ∼

∗ : ε∼
′〉

= 1

V

∫

V f

σ∼
∗ : ε∼

′dV + 1

V

∫

Vp

σ∼
∗ : ε∼

′dV

︸ ︷︷ ︸

=0

= 1

V

∫

V f

σ∗
i j u′

(i , j )dV

= 1

V

∫

V f

(

σ∗
i j u′

i

)

, j
dV

= 1

V

∫

∂V f

σ∗
i j u′

i n j dS

= 1

V

∫

∂V f

(

σ∼
∗ ·n

)

·u ′dS

= 1

V

∫

∂V out
f

(

σ∼
∗ ·n

)

·u ′dS + 1

V

∫

∂V in
f

(

σ∼
∗ ·n

)

·u ′dS

︸ ︷︷ ︸

=0

= 1

V

∫

∂V out
f

(

σ∼
∗ ·n

)

·u ′dS (6.51)

Practically, E
el is computed this way:

2E
el = 〈σ∼ : ε∼〉 =

1

V

∫

V f

σ∼ : ε∼dV =V
f

V
〈σ∼ 〉 f : 〈ε∼〉 (6.52)

Kinematic uniform boundary conditions – KUBC

The macroscopic strain tensor E∼ is prescribed at the boundary ∂V of the simulation domain, such
that:

u = E∼ ·x ∀x ∈ ∂V = ∂V out
f ∪∂V out

p (6.53)

which yields,

〈ε∼〉 =
1

V

∫

∂V

(

E∼ · x
)

n dS = E∼ (6.54)

The macroscopic stress field Σ∼ is computed in this way:

Σ∼ = 〈σ∼ 〉 =V
f

V
〈σ∼ 〉 f (6.55)
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Finally, the apparent elastic moduli C
≈

app are estimated using the following relation:

Σ∼ =C
≈

app : E∼ (6.56)

Elastic moduli Using the linear relationships arising from Equation 1.10, 6 different computa-
tions have to be performed to determine the full elastic moduli tensor. For instance, in order to
compute the components C

app
2I

, the following macroscopic strain tensor E∼ is considered:

E∼ =






0 0 0

0 1 0

0 0 0




 (6.57)

so that,

2E
el = 〈σ∼ : ε∼〉 =V

f

V
〈σ∼ : ε∼〉 f =Σ∼ : E∼ (6.58)

Using Equation 6.56, the following linear relationships arise for C
app
2I

:

Σ11 =C
app
12 E22

Σ22 =C
app
22 E22

Σ33 =C
app
23 E22

Σ23 =C
app
24 E22

Σ31 =C
app
25 E22

Σ12 =C
app
26 E22 (6.59)

The other components of C
app
I J

are computed the same way.

Bulk modulus Assuming that the homogeneous equivalent medium is isotropic, we use 〈σ∼ : ε∼〉

as an estimate of
(

C
≈

eff : E∼

)

: E∼ , with C
≈

eff that can be rewritten in this way:

C
≈

eff = 3keff J
≈
+2µeffK

≈
(6.60)

Hence, for a hydrostatic macroscopic strain tensor,

E∼ =






1 0 0

0 1 0

0 0 1




 (6.61)
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it yields:

2E
el = 〈σ∼ : ε∼〉 =V

f

V
〈σ∼ : ε∼〉 f =Σ∼ : E∼ =

(

C
≈

eff : E∼

)

: E∼ = 3keffE∼ : J
≈

: E∼ = 9keff (6.62)

1

9
〈σ∼ : ε∼〉 is then an estimate of keff.

Shear modulus Assuming that the homogeneous equivalent medium is isotropic, we use 〈σ∼ : ε∼〉

as an estimate of
(

C
≈

eff : E∼

)

: E∼ , with C
≈

eff that can be rewritten using Equation 6.60.

So, for a deviatoric macroscopic strain tensor,

E∼ =






0 1
2

0
1
2

0 0

0 0 0




 (6.63)

it yields:

2E
el = 〈σ∼ : ε∼〉 =V

f

V
〈σ∼ : ε∼〉 f =Σ∼ : E∼ =

(

C
≈

eff : E∼

)

: E∼ = 2µeffE∼ : K
≈

: E∼ =µeff (6.64)

〈σ∼ : ε∼〉 is then an estimate of µeff.

Static uniform boundary conditions – SUBC

Let us now consider the case of a macroscopic traction vector Σ∼ ·n prescribed at the boundary
∂V of the simulation domain, such that:

σ∼ ·n =Σ∼ ·n ∀x ∈ ∂V (6.65)

In the case of Poisson fibers, this condition is in conflict with extension of the stress field:

σ∼ = 0 ∀x ∈Vp (6.66)

so that,

σ∼ ·n = 0 ∀x ∈ ∂Vp (6.67)

We can only prescribe:

σ∼ ·n =Σ∼ ·n ∀x ∈ ∂V out
f (6.68)
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6.2. Boundary conditions

but in the case of a random microstructure, these boundary conditions do not ensure the following
balance equation:

∫

∂V
σ∼ ·n dS = 0 (6.69)

That is why we propose the following alternative boundary conditions.

Mixed boundary conditions – MBC

A non-uniform type of boundary conditions is proposed here, instead of SUBC, in order
to compute values that we can compare with those obtained using KUBC. Mixed bound-
ary conditions are “softer” than KUBC, only certain DOFs are prescribed at the bound-
ary ∂V . They differ from the mixed uniform boundary conditions proposed (MUBC) in
[Hazanov and Huet, 1994] and [Hazanov, 1998], or the normal mixed boundary conditions
(NMBC) proposed by [Gélébart et al., 2009]. As a matter of fact, in the case of Poisson fibers, the
existence of a porous phase intersecting the limit ∂V of the elementary volume is incompatible
with MUBC and NMBC. Nevertheless, considering that the mechanical work is happening within
the fibers, we defined boundary conditions on ∂V f only. Isotropic elastic behavior is assumed for
determining the bulk and shear moduli from the following mixed loading.

Triaxial loading Let us consider the case of a triaxial loading in order to estimate the bulk
modulus k. Displacement u is prescribed along normals on ∂V , as illustrated on Figure 6.7, such
that:

u1 = E11x1 ∀x ∈ F1

u2 = E22x2 ∀x ∈ F2

u3 = E33x3 ∀x ∈ F3 (6.70)

The traction vector σ∼ ·n is prescribed in this way:

σ21n1 =σ31n1 = 0 ∀x ∈ F1

σ12n2 =σ32n2 = 0 ∀x ∈ F2

σ13n3 =σ23n3 = 0 ∀x ∈ F3 (6.71)
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Figure 6.7: Deformed shape (red) of an elementary volume under hydrostatic compression

Let us consider the spatial average of the strain:

〈ε∼〉 = 1

V

∫

V
ε∼dV

= 1

V

∫

∂V
u

s
⊗ n dS

= 1

V

∫

∂V
ui n j dS e i ⊗e j (6.72)

If we now consider each component of the strain field for the case of a coordinates system with
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its origin at the center of the cube, it yields:

〈ε11〉 = 1

V

∫

V
ε11dV

= 1

V

∫

V
u1,1dV

= 1

V

∫

∂V
u1n1dS

= 1

V








∫

F1

u1n1dS +
∫

F2

u1n1dS

︸ ︷︷ ︸

=0

+
∫

F3

u1n1dS

︸ ︷︷ ︸

=0








= 1

V

∫

F1

u1n1dS

= 1

V

∫

F1

E11x1n1dS

= 1

V

∫

F+
1

E11x1dS − 1

V

∫

F−
1

E11x1dS

= E11

V
L3

= E11 (6.73)

The spatial averages 〈ε22〉 = E22 and 〈ε33〉 = E33 are determined similarly. Let us now consider
other components, for instance:

〈ε12〉 = 1

V

∫

V
ε12dV

= 1

V

∫

V
u1,2dV

= 1

V

∫

∂V
u1n2dS

= 1

V








∫

F1

u1n2dS

︸ ︷︷ ︸

=0

+
∫

F2

u1n2dS +
∫

F3

u1n2dS

︸ ︷︷ ︸

=0








= 1

V

∫

F2

u1n2dS

= 1

V

(∫

F+
2

u1dS −
∫

F−
2

u1dS

)

= 1

V

(
∫

F+
2 ∩∂V out

f

u1dS +
∫

F+
2 ∩∂V out

p

u1dS −
∫

F−
2 ∩∂V out

f

u1dS −
∫

F−
2 ∩∂V out

p

u1dS

)

(6.74)
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In our computations the surface integral over ∂V out
f ∩F2 can be evaluated. However, a suitable

extrapolation of u on ∂V out
p ∩F2 is needed for the full evaluation of 〈ε12〉. This holds for every

component 〈εi j 〉 ∀i 6= j .

Let us now consider the macroscopic stress field. From Equation 6.49, it yields:

Σ∼ =V
f

V
〈σ∼ 〉 f =

1

V

∫

∂V out
f

σ(i k nk x j )dS (6.75)

If we now consider each component of the stress field:

Σ11 =V
f

V
〈σ11〉 f (6.76)

In our computations, Σ11 is computed as a spatial average. Other components Σi j are computed
in the same way. If we consider another example:

Σ12 = 1

2V

∫

∂V out
f

σ1k nk x2 +σ2k nk x1dS

= 1

2V





∫

F1



σ11n1x2 +σ21n1x1
︸ ︷︷ ︸

=0



dS +
∫

F2



σ12n2x2
︸ ︷︷ ︸

=0

+σ22n2x1



dS

+
∫

F3



σ13n3x2
︸ ︷︷ ︸

=0

+σ23n3x1
︸ ︷︷ ︸

=0



dS





= 1

2V

(∫

F1

σ11n1x2dS +
∫

F2

σ22n2x1dS

)

(6.77)

which does not vanish in general.

Assuming that the homogeneous equivalent medium is isotropic, we use 〈σ∼ : ε∼〉 as an estimate of
(

C
≈

eff : E∼

)

: E∼ , with C
≈

eff that can be rewritten using Equation 6.60.

Hence, for a hydrostatic macroscopic strain tensor,

E∼ =






1 0 0

0 1 0

0 0 1




 (6.78)

1

9
〈σ∼ : ε∼〉 is an estimate of keff. For an isotropic material, K

≈
: Σ∼ should tend towards zero for the

macroscopic strain tensor considered here. This will be used to check for isotropy in Section 6.4.1.

Shear loading Let us now consider the case of the shear loading for determining the shear
modulus µ. Displacement u is prescribed along direction 1 on F2 and direction 2 on F1, as
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illustrated on Figure 6.8, such that:

u2 = E12x1 ∀x ∈ F1

u1 = E12x2 ∀x ∈ F2 (6.79)

The traction vector σ∼ ·n is prescribed in this way:

σ11n1 =σ31n1 = 0 ∀x ∈ F1

σ22n2 =σ32n2 = 0 ∀x ∈ F2

σ33n3 =σ13n3 =σ23n3 = 0 ∀x ∈ F3 (6.80)

Figure 6.8: Deformed shape (red) of an elementary volume under shear

Let us consider the spatial average of the strain using Equation 6.72. If we now consider each
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component of the strain field, it yields:

〈ε12〉 = 1

V

∫

V
ε12dV

= 1

V

∫

V
u1,2dV

= 1

V

∫

∂V
u1n2dS

= 1

V








∫

F1

u1n2dS

︸ ︷︷ ︸

=0

+
∫

F2

u1n2dS +
∫

F3

u1n2dS

︸ ︷︷ ︸

=0








= 1

V

∫

F2

u1n2dS

= 1

V

∫

F2

E12x1n2dS

= 1

V

∫

F+
1

E12
L

2
dS − 1

V

∫

F−
1

(

−E12
L

2

)

dS

= E12

V
L3

= E12 (6.81)

Let us now consider other components, for instance:

〈ε11〉 = 1

V

∫

V
ε11dV

= 1

V

∫

V
u1,1dV

= 1

V

∫

∂V
u1n1dS

= 1

V








∫

F1

u1n1dS +
∫

F2

u1n1dS

︸ ︷︷ ︸

=0

+
∫

F3

u1n1dS

︸ ︷︷ ︸

=0








= 1

V

∫

F1

u1n1dS

= 1

V

(∫

F+
1

u1dS −
∫

F−
1

u1dS

)

= 1

V

(
∫

F1∩∂V out
f

u1dS +
∫

F1∩∂V out
p

u1dS

)

(6.82)

In our computations the surface integrals over ∂V out
f ∩F1 can be evaluated. However, a suitable
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extrapolation of u on ∂V out
p ∩F1 is needed for the full evaluation of 〈ε11〉. This holds for every

component 〈εi j 〉.

Let us now consider the macroscopic stress field. From Equation 6.49, it yields:

Σ∼ =V
f

V
〈σ∼ 〉 f =

1

V

∫

∂V out
f

σ(i k nk x j )dS (6.83)

If we now consider each component of the stress field:

Σ12 =V
f

V
〈σ12〉 f (6.84)

In our computations, Σ12 is computed as a spatial average. Other components Σi j are computed
in the same way. If we consider another example:

Σ11 = 1

V

∫

∂V out
f

σ1k nk x1dS

= 1

V








∫

F1

σ11n1x1dS

︸ ︷︷ ︸

=0

+
∫

F2

σ12n2x1dS +
∫

F3

σ13n3x1

︸ ︷︷ ︸

=0

dS








= 1

V

∫

F2

σ12n2x1dS (6.85)

which does not vanish in general.

Finally, by computing the elastic energy density using Equation 6.51, and assuming that the

homogeneous equivalent medium is isotropic, we use 〈σ∼ : ε∼〉 as an estimate of
(

C
≈

eff : E∼

)

: E∼ , with

C
≈

eff that can be rewritten using Equation 6.60: C
≈

eff = 3keff J
≈
+2µeffK

≈
.

Hence, for a deviatoric macroscopic strain tensor,

E∼ =






0 1
2

0
1
2

0 0

0 0 0




 (6.86)

〈σ∼ : ε∼〉 is an estimate of µeff. For an isotropic material, J
≈

: Σ∼ should tend towards zero for the

macroscopic strain tensor considered here. This will be used to check for isotropy in Section 6.4.1.
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Young’s modulus (GPa) 210

Poisson’s ratio 0.3

Shear modulus (GPa) 81

Bulk modulus (GPa) 175

Thermal conductivity (W.[L]−1.K−1) 100

Volume fraction 0.16

Table 6.2: Constitutive material parameters for Poisson fibers

6.3 Results

The computation of elastic and thermal properties has been performed on hundreds of realizations
of Poisson fibers. Fibres were attributed the constitutive material properties listed in Table 6.2.
Each realization gives rise to different results for apparent morphological, thermal and mechanical
properties. Mean values over n realizations of the same size and mesh density are considered
in this section. The number of realizations n fluctuates depending on the size and boundary
conditions, these values are gathered in Table 6.3 for d = 2, with the relative error associated,
determined using Equation 4.33. Results presented in this section are only shown for a given
mesh density d = 2. Results for all mesh densities are postponed to Appendix D.

6.3.1 Morphological properties

The volume fraction of fibers V
f

V
over n realizations for a given volume size V is computed using

FE as follows:

V
f

V
= 1

n

n∑

i=1

〈V f

V
〉

i
= 1

n

n∑

i=1

(
1

V

∫

V
1V f

dV

)

i

(6.87)

with 1V f
the indicator function of the fiber phase.

The number of realizations considered corresponds to the highest number in each column of
Table 6.3. These mean values are then plotted as a function of the volume of simulation. Results
are shown on Figure 6.9 for the volume fraction of Poisson fibers. The mean value obtained for

V = 106 is V
f

V
= 16.2%±1.3%. Fluctuations are inherent to morphological stochastic modeling,

but there is also a bias due to the mesh density, as explained in Section 6.1.6.
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BC
Size

10 20 30 40 50 60 70 80 90 100

n – UTG – λapp 64 64 62 60 56 56 53 58 39 21

ǫrel – UTG – λapp 12.2% 5.6% 4.2% 3.1% 2.7% 2.3% 2.0% 1.7% 1.9% 2.3%

n – MTBC – λapp 51 63 60 56 50 46 48 46 30 19

ǫrel – MTBC – λapp 17.0% 8.0% 5.8% 4.1% 3.6% 3.0% 2.5% 2.3% 2.5% 2.8%

n – KUBC – kapp 63 63 61 60 56 54 44 51 32 13

ǫrel – KUBC – kapp 9.9% 4.9% 3.7% 2.9% 2.5% 2.1% 2.0% 1.7% 1.9% 2.6%

n – KUBC – µapp 63 63 61 60 54 54 47 50 27 14

ǫrel – KUBC – µapp 11.9% 6.2% 4.7% 3.7% 3.3% 2.7% 2.6% 2.2% 2.7% 3.3%

n – MBC – kapp 40 60 53 55 45 48 37 46 28 13

ǫrel – MBC – kapp 25.6% 11.7% 8.8% 6.0% 5.3% 4.1% 3.9% 3.0% 3.3% 4.2%

n – MBC – µapp 41 62 58 59 48 49 45 41 11 12

ǫrel – MBC – µapp 51.6% 21.8% 14.7% 9.8% 8.8% 6.8% 5.6% 5.4% 8.9% 7.1%

Table 6.3: Number of realizations n considered and associated relative error ǫrel depending on
boundary conditions and simulation size

Figure 6.9: Mean values for the volume fraction depending on the volume size V

6.3.2 Thermal properties

Results for the thermal properties are obtained over a large number of realizations. Assuming
isotropy of the thermal behavior, the thermal conductivity λapp is computed in this way:

λapp = 1

n

n∑

i=1

〈λapp〉i =
1

n

n∑

i=1

(

〈−q 〉
f

: 〈∇T 〉
)

i
(6.88)
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λapp (W.[L]−1.K−1)

FE-UTG 7.07±0.93

FE-MTBC 6.07±0.97

Hashin–Shtrikman upper bound 11.27

Wiener upper bound 16.00

Table 6.4: Results for the thermal conductivity

Results are shown on Figure 6.10 for the thermal conductivity λapp of Poisson fibers. The Hashin–

Shtrikman and Wiener lower bounds, along with Bruggeman’s self-consistent estimate, are equal
to zero since the thermal conductivity of the porous matrix is considered to be zero. There are
discrepancies that are decreasing with volume down to an amount of about 16% between UTG
and MTBC regarding the estimated value for thermal conductivity for the largest volume, this
advocates for larger RVE sizes than the elementary volumes considered in this study. It can
also be seen that mesh density does not influence the average values obtained, except for small
elementary volume sizes, for which boundary effects are strongly affecting the results. The
values obtained for the larger size considered (N ≃ 800), with mesh density d = 2, are shown
with their corresponding intervals of confidence [Z −2DZ , Z +2DZ ] in Table 6.4 and compared
with analytical bounds.

Figure 6.10: Mean values for the thermal conductivity depending on the number of fibers N
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kapp (MPa) µapp (MPa)

FE-KUBC 4763±624 3270±394

FE-MBC 2527±413 1097±272

Hashin–Shtrikman upper bound 11839 7328

Voigt bound 28000 12923

Table 6.5: Results for the bulk and shear moduli

6.3.3 Elastic properties

As for the thermal conductivity, elastic properties are obtained as mean values over hundreds of
realizations. Assuming isotropy of the elastic behavior, the bulk modulus kapp is computed in
this way:

kapp = 1

n

n∑

i=1

〈kapp〉i =
1

n

n∑

i=1

(
1

9
〈σ∼ 〉 f : 〈ε∼〉

)

i

(6.89)

On the other hand, still assuming elastic isotropy, the shear modulus µapp is obtained as follows:

µapp = 1

n

n∑

i=1

〈µapp〉i =
1

n

n∑

i=1

(

〈σ∼ 〉 f : 〈ε∼〉
)

i
(6.90)

Results for the bulk modulus kapp and shear modulus µapp are shown respectively on Figures 6.11
and 6.12 against the volume and corresponding number of fibers considered, which is proportional
to V

2
3 . The Hashin–Shtrikman and Reuss lower bounds, as well as the self-consistent estimate, are

equal to zero since the elastic moduli of the porous matrix are considered to be zero. The values
obtained for the largest system size considered (N ≃ 800) are shown with their corresponding
intervals of confidence [Z ±2DZ ] in Table 6.5 and compared with analytical bounds. Boundary
layer effects are important for small elementary volume sizes, for both types of boundary
conditions. Mesh density has a limited impact on the average values obtained for elastic moduli,
except for small volumes. There are very strong discrepancies for mean values obtained with
KUBC and MBC for both bulk and shear moduli, even for the largest volume considered: 213%

for kapp and 66% for µapp. These results advocate for an RVE size dramatically larger than the
elementary volume sizes studied here.

6.4 Discussion

In the results presented above, isotropy is assumed for elastic and thermal properties, however
this question should be assessed with measurements: this is the purpose of this section. First, we
will consider morphological isotropy with the analysis of the covariance. Then we will compute
thermal and elastic properties without assuming isotropy, and we will draw conclusions from

143



Chapter 6. Poisson fibers

Figure 6.11: Mean values for the bulk modulus depending on the number of fibers

Figure 6.12: Mean values for the shear modulus depending on the number of fibers

these results.
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6.4. Discussion

6.4.1 Morphological isotropy

Let us consider the elementary volume of Poisson fibers of volume 403, with approximately
N = 127 fibers, as shown on Figure 6.13.

Figure 6.13: Elementary volume of fibers on which the covariance is computed (L = 40)

This virtual sample has been sliced and voxelized. Covariance was then computed on different
slices. Results have been averaged over all the slices, they are plotted on Figure 6.14. For 4

different orientations ω of the vector h , the covariance reaches its sill for a separation close to 10

pixels. One would expect the covariance to converge for longer correlation lengths in the case of
Poisson fibers, this is true if an infinite medium is considered. In the case of a limited sample like
this one, the probability for fibers to be aligned with h is very small, the larger the sample, the
higher the probability for this to occur.

Thermal conductivity

Firstly, the data computed for determining λapp is used to check for isotropy. This is done by
checking that Q2 → 0 and Q3 → 0. In order to characterize this vanishing, a discriminating
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Figure 6.14: Covariance of the Poisson fibers determined on 2D slices for several orientations ω

BC
Size

10 20 30 40 50 60 70 80 90 100

UTG – δλ 0.027 0.021 0.004 0.007 0.001 0.011 0.003 0.004 0.003 0.003

MTBC – δλ 0.084 0.008 0.008 0.007 0.002 0.001 0.003 0.004 0.003 0.002

Table 6.6: Thermal isotropy with respect to the thermal conductivity for Poisson fibers

criterion δλ, which is homogeneous to a temperature gradient, is defined as follows:

δλ =

∣
∣
∣Q2

∣
∣
∣+

∣
∣
∣Q3

∣
∣
∣

λapp
(6.91)

The values for δλ have been computed and shown in Table 6.6 for the volumes of samples
considered. δλ values have to be compared with the value of the macroscopic temperature
gradient prescribed G1 = 1. Isotropy can assumed as soon as δλ ≪ 1. δλ fluctuates between
1×10−3 and 2.7×10−2 for UTG and 2×10−3 and 8.4×10−2 for MTBC, yielding a very low
degree of anisotropy, depending on the considered realizations.

6.4.2 Elastic isotropy

Finally, let us consider the elastic isotropy of Poisson fibers. Using arguments presented in
Section 6.2.2, we analyze the data that were already computed for determining the bulk and shear
moduli. We will consider two separate analyses.
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BC
Size

10 20 30 40 50 60 70 80 90 100

KUBC – δk 0.093 0.055 0.032 0.008 0.012 0.050 0.005 < 0.001 0.019 0.014

MBC – δk 0.041 0.048 0.034 0.006 0.035 0.025 0.006 0.025 0.008 0.022

Table 6.7: Elastic isotropy with respect to the bulk modulus for Poisson fibers

Bulk modulus

First, we will use the data computed for determining kapp. To check for isotropy is to check that
Σ∼ : K

≈
: Σ∼ → 0, with Σ∼ mean macroscopic stress tensor and K

≈
the deviatoric projector for 2nd-order

symmetric tensors. In order to characterize this vanishing, a discriminating criterion δk , which is
homogeneous to strain, is defined as follows:

δk =

√

Σ∼ : K
≈

: Σ∼

3kapp
=

√

Σ∼
dev : Σ∼

dev

3kapp
(6.92)

The values for δk have been computed and shown in Table 6.7 for the volumes of the samples
considered. δk values have to be compared with the value of the macroscopic strain prescribed
E11 = E22 = E33 = 1. Isotropy can assumed as soon as δk ≪ 1. δk fluctuates between < 10−3 and
9.3×10−2 for KUBC and 6×10−3 and 4.8×10−2 for MBC, yielding a relatively low degree of
anisotropy, depending on the considered realizations.

Shear modulus

We will now use the data computed for determining µapp. To check for isotropy is to check
that Σ∼ : J

≈
: Σ∼ → 0, with J

≈
the spherical projector for 2nd-order symmetric tensors. In order to

characterize this vanishing, a discriminating criterion δµ is defined as follows:

δµ =

√

Σ∼ : J
≈

: Σ∼

2µapp
=

√

3Σ∼
sph : Σ∼

sph

2µapp
(6.93)

The values for δµ have been computed and plotted on Figure 6.8 against the volume of the
samples considered. As for δk , δµ is homogeneous to strain, its values thus have to be compared
with the value of the macroscopic strain prescribed E12 = 0.5. Isotropy can assumed as soon as
δµ ≪ 0.5. It appears that δµ is fluctuating between < 10−3 and 2.9×10−2 for KUBC, and 2×10−3

and 2×10−1 for MBC. These results show that for MBC, there is a higher degree of anisotropy
when considering the shear modulus than for the bulk modulus. Interstingly, this statement is
inversed for KUBC. Discrepancies are observed on the elastic response for very small volumes
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BC
Size

10 20 30 40 50 60 70 80 90 100

KUBC – δµ 0.010 0.029 0.002 < 0.001 0.015 0.024 0.008 0.004 0.014 0.005

MBC – δµ 0.199 0.045 0.031 0.022 0.016 0.006 0.015 0.002 0.015 0.009

Table 6.8: Elastic isotropy with respect to the shear modulus for Poisson fibers

with inherent fluctuation due to boundary layer effects and very large volumes for which not
enough realizations are available. They seem to be reinforced for MBC, due to a slightly smaller
number of realizations.

Tensor of elastic moduli

Finally, we determined using KUBC the full elastic moduli tensor C
≈

app

E
for 50 realizations of

Poisson fibers with a volume of simulation V = 503 which corresponds to N ≃ 180 fibers for each
sample. Details regarding the boundary value problems for determining the components of the
elastic moduli tensor are given in Section 6.2.2. The elastic moduli tensor averaged over n = 10,
n = 20 and n = 50 realizations are presented respectively in Equations 6.94, 6.95 and 6.96. Values
obtained for n = 50 are presented in Equation 6.96 with their corresponding intervals of confidence
[C I J ±2DC I J

]. The averaged tensor components obtained for n = 50 are characteristic of isotropic
elasticity since C11 ≈C22 ≈C33 with a maximal error of 12%, C12 ≈C13 ≈C23 with ǫrel = 20%,

C44 ≈C55 ≈C66 with ǫrel = 17% and are approximately equal to
C11 −C12

2
with a relative error

of 14% at worst, also C14 ≈C15 ≈C16 ≈C24 ≈C25 ≈C26 ≈C34 ≈C35 ≈C36 ≈C45 ≈C46 ≈C56 and
they represent in the worst case less than 1% of C11.

[C
≈

]10 =














10032 3118 3122 33 −100 50

• 9272 2573 −13 55 94

• • 8773 150 −74 −58

• • • 2977 −57 49

• • • • 3528 26

• • • • • 3539














(6.94)
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[C
≈

]20 =














9814 3067 3032 33 −35 44

• 9029 2583 −1 36 59

• • 8551 51 24 −40

• • • 2976 −40 30

• • • • 3418 27

• • • • • 3469














(6.95)

[C
≈

]50 =














9627±2820 3002±740 3028±709 14±342 −64±714 85±890

• 8715±2401 2530±639 14±664 24±307 44±934

• • 8630±2445 48±697 −24±841 15±298

• • • 2910±763 13±310 21±314

• • • • 3408±836 13±344

• • • • • 3389±872














(6.96)

6.4.3 Thermal and mechanical fields

In order to explain the discrepancies observed on the apparent properties, let us analyze the
thermal and mechanical fields coming out of the simulation. In the case of thermal conduction,
the heat flux within the fibers percolating in-between F+

1 and F−
1 is the same for UTG and MTBC.

The only difference comes from the thermal conduction taking place in the fibers intersecting
F2 and F3 when considering UTG. This has a limited impact on the homogenized value λapp.
On the other hand, in the case of elasticity, discrepancies in the macroscopic results can be

explained from the mechanical fields. For the hydrostatic load, mapping of
Tr

(

ε∼
)

Tr
(

E∼
) is presented

on Figure 6.16 for KUBC and MBC with a sample realization of V = 503. From this figure,
localization of strain on certain fibers seems to be more pronounced with MBC than KUBC. This
is likely due to the more restrictive KUBC for a imposed macroscopic strain that is the same that
for MBC. This is confirmed on Figure 6.17, mapping only ε33, with E33 = 1. The localization is
clearly confined to the both ends of preferentially oriented fibers, here along the vertical direction.
For KUBC, most of the deformation takes place all over the boundary ∂V , including within fibers
that are not preferentially oriented.
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(a) UTG (b) MTBC

Figure 6.15: Q1 mapping for a V = 503 realization using (a) UTG and (b) MTBC

(a) KUBC (b) MBC

Figure 6.16:
Tr

(

ε∼
)

Tr
(

E∼
) mapping for a V = 503 realization under hydrostatic load with (a) KUBC and

(b) MBC
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6.5 Determination of the statistical RVE size

6.5.1 Variance from simulation

In order to determine RVE sizes, variance of the mean value for each properties is studied, based
on the approach we introduced in Section 4.2. For the case of Poisson fibers, [Jeulin, 2011] gave

the theoretical value of
2

3
for γ in Equation 4.31, which is recalled hereafter:

D2
Z (V ) = D2

Z

(
A∗

3

V

)γ

(6.97)

The theoretical value γ= 2

3
given by [Jeulin, 2011] holds only for the indicator function of the

Poisson fibers and its mean value, the volume fraction. Anyway, we will consider, as a 1st-order
approximation, that the elastic energy density and thermal dissipation rate density are dependent
of the indicator function of the fibers, since the evolution of its variance with the volume is the
only theoretical result available. γ exponents of the scaling-law for each physical property was
estimated from the results of simulations and are gathered in Table 6.9. Only the data points for
volumes V ≥ 403 are considered here to avoid any bias due to boundary effects. However, in
order to be able to compare representativity of samples for different properties, we will indeed

consider γ = 2

3
for fitting all the results. As a matter of fact, it is the only theoretical value

available for Poisson fibers and it is not too far apart from the values obtained from computational
experiments. Since we have no information about the convergence of the point variance D2

Z for
the effective properties, except for the volume fraction VV for which the theoretical value is given
in Equation 4.25, we use the alternative form of the ensemble variance given in Equation 4.35,
recalled hereafter:

D2
Z (V ) = K V −γ (6.98)

γ being fixed, K is the only parameter left for fitting the data.

Results regarding the volume fraction are presented on Figure 6.18. Variance for the bulk and
shear moduli as functions of the volume are shown on Figures 6.20 and 6.21. Similar results
for the thermal conductivity are obtained on Figure 6.19. For the sake of clarity, only one mesh
density (d = 2) is shown, but similar results are obtained for other mesh densities, making the
variance on apparent properties mesh-independent.

6.5.2 Results

Using Equation 4.34, it is now possible to determine statistical RVE sizes from computational
simulations. A∗

3 or K are estimated numerically from Equation 6.97 and 6.98, for different
properties Z and boundary conditions. Estimates for RVE sizes are presented in Table 6.10. RVE
sizes presented in this table are way larger than elementary volume sizes achieved throughout
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(a) KUBC (b) MBC

Figure 6.17: ε33 mapping for a V = 503 realization under hydrostatic load with (a) KUBC and (b)
MBC

γ

λapp-UTG 0.68

λapp-MTBC 0.64

kapp-KUBC 0.51

kapp-MBC 0.77

µapp-KUBC 0.64

µapp-MBC 0.66

V
f

V
0.67

Table 6.9: Values for γ exponent estimated from the simulation
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Figure 6.18: Variance for the volume fraction of fibers depending on the volume of simulation V

Figure 6.19: Variance for the thermal conductivity depending on the volume of simulation V

this work. This concurs with the discrepancies observed on the elastic moduli; as a matter of
fact, the response over an elementary volume should be independent of the boundary conditions
once the RVE size is reached. Nevertheless, the same precision, i.e. relative error, can be obtained
from multiple realizations of smaller volumes. As an example, for kapp with KUBC, if V = 503,
and ǫrel = 5%, one must compute 18 realizations to attain the same statistical convergence as
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Figure 6.20: Variance for the bulk modulus depending on the volume of simulation V

Figure 6.21: Variance for the shear modulus depending on the volume of simulation V

for 1 realization of V = 1883. One should however be careful and consider the bias induced
by boundary layer effects on mean values when choosing smaller elementary volumes: virtual
samples that are too small should be avoided.
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Z BC ǫrel K D2
Z A∗

3 VRVE N

VV N/A 5% − 1.3×10−1 6. 1713 2.3×103

λapp UTG 5% 1.3×103 − − 2053 3.3×103

λapp MTBC 5% 1.3×103 − − 2423 4.6×103

kapp KUBC 5% 5.0×108 − − 1883 2.8×103

kapp MBC 5% 3.5×108 − − 2963 7.0×103

µapp KUBC 5% 4.0×108 − − 2413 4.6×103

µapp MBC 5% 1.8×108 − − 4993 2.0×104

Table 6.10: RVE sizes estimated from computations with γ= 2

3
and n = 1

6.6 Conclusion

A microstructural model was designed in order to create virtual samples of Poisson fibers. The
statistical approach for determining RVE sizes was then implemented for Poisson fibers based
on data obtained from FE simulations using uniform and mixed boundary conditions. First,
mean values for morphological, thermal and elastic properties were obtained after averaging
over a significant number of sample realizations, and this for 10 different sizes of simulation.
For the volume fraction, the convergence of the mean value is independent of the simulation
size, only the associated variance is decreasing with respect to the volume. For the case of
heat transfer and elasticity, effective properties were bounded by the apparent values obtained
for uniform and mixed boundary conditions. UHF and SUBC being incompatible with the
microstructure considered, mixed boundary conditions were proposed as an alternative. A slow
but steady convergence of the mean values for thermal conductivity and elastic moduli was
observed. Unfortunately, even for the largest volumes considered, discrepancies persist between
mean values obtained for both types of boundary conditions. This could mean that the RVE size
should be quite larger according to [Sab, 1992], but the demonstration given in this reference does
not necessarily hold in the case of an elementary volume including a porous phase intersecting the
limit ∂V ; this is an open question. Anyway, even if the mixed BC used in this work differ from
the MUBC proposed by [Hazanov and Huet, 1994], one could consider that the MBC estimates
are closer than the KUBC estimates to the effective values, this was shown experimentally in
[Hazanov and Amieur, 1995]. Further computations on samples including a meshed porous phase
with asymptotically weaker thermal and elastic properties will have to be done for comparison.
UHF and SUBC should then be applicable and results would be compared respectively with
MTBC and MBC. Isotropy was investigated from a morphological, thermal and elastic viewpoint.
Results in Section 6.4.1 yielded isotropy in average for most realizations, except in the worst case
such as very small volumes that are highly inhomogeneous, and the very large ones for which only
a few realizations are available. Isotropy is attained statistically but each sample is anisotropic.
Finally, the evolution of ensemble variance for homogenized properties was investigated and
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fitted with a power-law of exponent
2

3
which is a theoretical value for Poisson fibers. The fitting

parameter used was then the value K . RVE sizes were determined for a given relative error of
5%. As expected, the obtained values were quite large for a single realization, but attainable with
full-field approaches if many realizations are considered.
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Résumé

Dans cette partie, un exemple de milieu aléatoire non-périodisable est considéré : les fibres de
Poisson. Un modèle microstructural, basé sur la théorie des ensembles aléatoires, est formulé.
Des échantillons virtuels sont ainsi créés et maillés de façon à pouvoir être utilisés dans un code
de calcul par éléments finis. L’homogénéisation numérique est ici à nouveau implémentée, mais
à l’aide de conditions aux limites différentes par rapport à l’étude des auxétiques. Les différents
types de conditions limites (KUBC et MBC en mécanique, UTG et MTBC en thermique)
considérées sont présentées et analysées. Les résultats obtenus pour de telles conditions limites
permettent d’estimer les propriétés effectives des fibres de Poisson. Une analyse statistique des
données obtenues sur des centaines de simulations nous permet notamment de définir une taille
de volume élémentaire représentatif pour une erreur de mesure relative donnée.
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General conclusions

The circle of our understanding

Is a very restricted area.

Except for a limited number

Of strictly practical purposes

We do not know what we are doing;

And even then, when you think of it,

We do not know much about thinking.

— T. S. Eliot, The Family Reunion (1939)

In this thesis, existing homogenization tools were adapted in order to study architectured materials.
In many cases, architectured materials are imagined as periodic materials, as we did for instance
for auxetics. We also proposed to design random architectured materials in order to reach isotropy
of the effective behavior. First, an introduction to homogenization was presented and a description
of a computational approach using the finite element method was given. This approach was
applied for the specific case of periodic auxetic microstructures. Determining the effective
elastic properties of periodic auxetics is straightforward, considering the availability of periodic
boundary conditions in FE commercial packages. This gave us the opportunity to explore new
auxetic patterns, but also the effect of plasticity on auxeticity, as well as structural applications.
The main results we obtained regarding negative Poisson’s ratio materials can be summarized as
follows:

• 2D auxetic lattices, especially the hexachiral one, are plausible candidates for replacing
honeycomb-core within sandwich panels. There are at least two reasons for that: all
things being equal, the hexachiral cell exhibits a higher in-plane shear modulus than the
honeycomb. Also, negative Poisson’s ratio materials yield synclastic curvature when
bended, which allows the design of dome-shaped or bent panels.

• A new tridimensional auxetic microstructure was proposed, homogenized, manufactured
and characterized mechanically, yielding promising results in terms of mechanical strength
in comparison with the honeycomb lattice for the same volume fraction. The use of such a
microstructure, optimally oriented along the [110] or [111] direction for solicitation, would
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dramatically increase the crashworthiness of structures subject to impact.

• Elastoplasticity of auxetics has been explored, showing that the auxetic effect persists and
becomes even stronger with a confined plastic zone. The larger spread of the plastic zone,
the smaller the strengthening of auxeticity due to plastic yielding. Transverse isotropy
was preserved within the plastic regime for the hexachiral lattice unlike the honeycomb.
Nevertheless, the plastic anisotropy for the honeycomb lattice is becoming weaker with
hardening. All these considerations make auxetics good candidates for energy absorption
in impacted structures.

• Macroscopic modeling using an anisotropic compressible plasticity framework was per-
formed for the auxetic hexachiral lattice. The proposed fully anisotropic Hill criterion
seems to be suitable for modeling 2D architectured cellular materials as it was able to catch
negative Poisson’s ratios, transverse contractions, and volume changes.

• Manufacturing is the key technological lock for the development of auxetics in the industry:
except for the most simple 2D patterns, most auxetics are currently being produced using
direct manufacturing, which is the industrial version of rapid prototyping, based on additive
powder metallurgy or polymer sintering processes, all of which are quite expensive.

A second application was considered for computational homogenization: random media. One
could then have considered periodized random media, as it was done in [Kanit, 2003] for Voronoi

polyhedra and [Jean, 2009] for Boolean random models of spheres, or consider random media
with no constraint of periodicity, or even unperiodizable random media. The latter seemed the
most challenging for us in terms of assessing the long-standing question of representativity. As a
matter of fact, Poisson fibers are undoubtedly one of the worst case scenario one could think of in
terms of homogenizing biphasic materials: this microstructure is "unperiodizable", presents an
infinite contrast of properties, includes a porous phase that is intersecting with the outer limits of
the samples considered, and has an infinite integral range. These features are also what makes this
type of random media interesting for testing the robustness of the statistical approach that was
introduced in [Kanit et al., 2003] for determining RVE sizes. A microstructural model of Poisson

fibers was developed and implemented numerically. The meshed virtual samples obtained in this
way were then filled and optimized in order to be used in finite element simulations. Hundreds of
realizations were performed, generating a large amount of data to be analyzed statistically. The
main results arising from the study of Poisson fibers can be summarized as follows:

• When considering mean values for the volume fraction, the mean value is independent of
the simulation size, only the associated variance is decreasing with respect to the volume
size.

• Uniform heat flux boundary conditions (UHF) and static uniform boundary conditions
(SUBC) are incompatible with the microstructure considered, mixed boundary conditions
were proposed as an alternative.
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• For the case of heat transfer, effective properties were estimated by the apparent values
obtained for uniform temperature gradient boundary conditions (UGT) and mixed thermal
boundary conditions (MTBC). A slow but steady convergence of the mean values for
thermal conductivity was observed for an increasing volume of simulation. Even for the
largest volumes considered, discrepancies persist between mean values obtained for UGT
and MTBC (about 16%). This could be symptomatic of gigantic RVE sizes.

• For the case of elasticity, effective properties were estimated by the apparent values obtained
for kinematic uniform boundary conditions (KUBC) and mixed boundary conditions
(MBC). The same trend was observed as for thermal properties, but with a larger gap:
∼ 213% discrepancy for the bulk modulus and ∼ 66% discrepancy for the shear modulus.
This advocates for quite larger RVE sizes according to [Sab, 1992]. Even if the MBC differ
from the MUBC proposed by [Hazanov and Huet, 1994], it should give a better estimate
than the KUBC, as it was shown experimentally in [Hazanov and Amieur, 1995].

• Isotropy of the microstructural model used was verified on the morphology, on the thermal
conductivity tensor and on the elastic moduli tensor. This allowed us to thin down to 1
instead of 3 the number of computations needed to estimate the thermal properties, and
from 6 to 2 per realization for the elastic properties.

• The study of the ensemble variance for apparent properties gave rise to scaling power-laws

of exponents close to
2

3
. We obtained this exponent from computational experiments and

verified the theoretical value given in [Jeulin, 2011]. The value γ= 2

3
was then used for

comparison between RVE sizes determined for different properties.

• Values for A∗
3 or K were fitted from the data, allowing us to determine RVE sizes for a

given relative error. The values obtained are quite large for a single realization only, but
attainable with full-field approaches if many realizations are considered.

As a synthesis, let us answer the questions asked in Chapter 0:

• How to determine the effective properties of architectured materials?
There are plenty of approximate analytical models for determining the effective properties
of architectured materials. For simple configurations in terms of morphology and phases,
these models can probably give a good estimate of the properties, but they will not be
sufficient to account for anisotropy, nonlinear behavior, multiple scales, etc. This is why
we advocate for computational methods, such as finite element analysis, to be a pertinent
tool for designing architectured materials, as we have hopefully shown for auxetic cellular
materials.

• How could we adapt existing computational tools for this purpose?
In the case of periodic architectured materials, the now classical periodic homogenization
approaches are readily available, but attention should be paid to contrasts of properties
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between phases which are often very large, infinite indeed, and should then be taken into
account carefully. From a practical viewpoint, eccentric architectured microstructures can
be challenging to mesh; advanced meshing tools should thus be operational in order to
avoid falling into a computational nightmare.

• Can rapid prototyping be useful to develop architectured materials?
Definitely. The ability to extend one’s microstructural design space from 2D to 3D is
priceless. This calls for advanced shape optimization tools in order to efficiently exploit
the rapid prototyping technology. The negative aspect of such manufacturing processes is
obviously the financial cost, even if competitive with other powder metallurgy processes,
and the scalability of the process which does not allow to produce materials larger than a
few hundred cubic centimeters.

• What can be expected from negative Poisson’s ratio materials?
Unusual properties. Based on the study we have conducted on auxetics, we think that their
enhanced strength in shear could be used smartly in impacted structures. More generally,
this new class of materials may not have direct applications, anyhow studying auxetics is
fundamental for understand the link between microstructure and macroscopic behavior.
Counterintuitive Poisson effects may inspire one to think of new ways for architecturing
materials.

• How could we assess the representativity of elementary volumes?
As it was presented and implemented in this work, there is a rational way to evaluate
the representativity of elementary volumes for heterogeneous media based on statistical
arguments. We used this method to determine the RVE size of a quite unfavorable case
of random structures, in order to successfully test the robustness of the approach. It is a
powerful tool for determining effective properties from samples smaller than the predicted
RVE size for a given relative error on the results. However, the statistical method supposes
convergence towards the same limit for each boundary condition. This is not the case in
our study. As a consequence, the actual RVE sizes may actually be way larger, gigantic
even, that the ones we determined from the parcellar information obtained throughout this
work.
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Further work

The world of the future will be an even more demanding

struggle against the limitations of our intelligence,

not a comfortable hammock in which we can lie down

to be waited upon by our robot slaves.

— Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (1954)

Regarding auxetics, further work should include the modeling of other auxetic microstructures,
especially tridimensional ones. A deeper study of the influence of the local hardening rule on
the homogenized plastic behavior should also be attempted. Taking into account non-linear
phenomena such as elastic buckling and damage would be necessary before using such materials
in actual structures. Also, the simulation of structural applications should include aluminium
skins in addition to the macroscopic model developed in this work. More mechanical experiments
should be conducted on auxetics, in order to feed the models.

Negative Poisson’s ratio materials are undoubtedly fascinating, mainly because of their counter-
intuitive mechanical behavior. Unfortunately, this fascination sometimes overshadow the fact
that most auxetics are strongly anisotropic, an aspect that is often omitted in the literature, hence
limiting the use of auxetics in structural applications. One goal for auxetics research should
be to achieve isotropy, this was done by [Lakes, 1987] with his reentrant random copper foam,
with ν=−0.7, and [Milton, 1992] with his multiscale laminate that theoretically reaches ν=−1

but that was never fabricated for obvious technological reasons. One possible way for further
research would be to develop a periodic cell that is shape-optimized for exhibiting the most
isotropic mechanical behavior and for presenting a Poisson ratio close to −1, a reentrant truss-like
structure based on a tetrakaidecahedron for instance. Besides, the association of auxetics with
classical materials would probably give rise to some interesting new composites.

Concerning the study of Poisson fibers, more simulations should be done to obtain a base of data
points that is more representative statistically, larger samples should also be investigated. To do so,
parallel computing could be an interesting way. For instance, considering the high-performance
computing cluster of the Centre des Matériaux, and the largest volume studied (V = 1003, which
took up to 100 GB of RAM for the mesh density d = 3), one could theoretically compute an

165



elementary volume V = 3003 using domain decomposition on 27 cluster nodes, which represents
about N ≈ 7000 fibers, using the same parameters as in our study. Unfortunately, meshing such a
virtual sample is currently out of reach with the computational means available in our laboratory,
yielding at least 100 million elements as an optimistic estimate. However, there is no theoretical
limit a priori regarding mesh sizes, only contingent obstacles. In order to conclude about
bounding of effective properties, computations on samples including a meshed porous phase
with asymptotically weak thermal and elastic properties could be done for comparison. UHF and
SUBC would then be applicable and results could be compared respectively with MTBC and MBC.
Even if the microstructure is not periodic, comparison should be made with results coming from
FFT computations. In that case, using a regular grid-mesh, artificial periodic boundary conditions
could also be used for FE. The FFT method was proposed by [Moulinec and Suquet, 1994]
and was subsequently enhanced by [Moulinec and Suquet, 1998, Michel et al., 2001]. It was
used for instance for the homogenization of polycrystals [Lebensohn, 2001] and composites
[Willot et al., 2008, Willot and Jeulin, 2009]. From a materials science viewpoint, the influence
of the volume fraction of fibers should also be investigated, as well as a Poisson fibers hard-core
random model, which would be closer to what real fibrous media actually look like. Poisson

fibers samples could be manufactured using rapid prototyping and be mechanically characterized.
Finally, in order to go one step further, one could apply the same statistical approach to Poisson

planes, which are another Poisson linear variety, but with a scaling power-law of exponent γ= 1

3
.

We showed in this work the universality of the statistical RVE size determination method
by applying it successfully to a medium with non-finite integral range. This advocates for a
systematic use of the method whenever sampling of random media is involved. The method
is indeed very powerful when considering arbitrary models of random structures but really is
a powerful tool for assessing the representativity of actual samples. For instance, this method
would be useful in the context of the mechanical characterization of concrete samples since
the characteristic lengths of such materials are often quite large, while samples are limited in
size. Hopefully, applications of this method to many different classes of materials will provide a
positive feedback for improving the approach.

The use of architectured materials in industrial applications is conditional upon the development
of appropriate models for such materials. This thesis dealt with the determination of the effective
properties of architectured materials as infinite media, not as finite materials within structures.
While our approach, which is based on micromechanics, is valid for microstructures, it probably
lacks answers for the case of macrostructures. A way of development are the higher-order
models of continua, that are able to render the non-separability of scales that occurs often within
architectured materials. For instance, plate and shell models for architectured materials have been
studied recently in [Lebée, 2010, Trinh, 2011, Forest and Trinh, 2011, Laszczyk, 2011], as well
as models for bio-inspired architectured actuators [Turcaud et al., 2011].

Architectured materials do bring up new challenges for scientists, but they also provide new
opportunities for engineers. A healthy partnership between the academic research and the industry
on the topic of architectured materials could be beneficial for both parties. We strongly believe
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that architectured materials could be a factor of innovation since they are reshuffling the card deck

of materials properties, yielding the possibility of coexistence of what used to be antagonistic
physical properties within a single material. For this to happen, an effort on education is necessary.

Hopefully, this work will contribute to architecturing our knowledge of such materials.
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A Finite element method for periodic

homogenization

The effective properties of heterogeneous materials can be determined using computational
simulation based on the finite element method combined with the homogenization technique.
The purpose of this appendix is to present, with two case studies, computational homogenization
using the Z-Set finite element code in the case of linear elasticity for a periodic unit-cell.

A.1 Case study #1: fiber-reinforced composite material

The first case study consists in homogenizing a fiber-reinforced composite material. Both phases
are considered isotropic linear elastic. Volume fraction of fibers is approximately of 13%: the
periodic cell is of length 10 while the fiber radius is 2.

Cell geometry exhibits a quadratic symmetry. The tensor of elastic moduli CIJ will thus be as
follows:














C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66














(A.1)

Matrix Fiber

Young’s modulus (GPa) 3 50

Poisson’s ratio 0.3 0.3

Table A.1: Constitutive material parameters
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Appendix A. Finite element method for periodic homogenization

Figure A.1: FE mesh of the periodic cell with the matrix (blue) reinforced by the fiber (red)

In this appendix, we intend on presenting 3 methods for computing the effective properties of the
periodic cell:

• The MPC_periodic method

• The element DOF method:

– with prescribed macroscopic strain

– with prescribed macroscopic stress

A.1.1 The MPC_periodic method

This method, which uses standard finite elements, allows one to prescribe an average strain E∼
with periodic boundary conditions corresponding to affine relationships between DOFs at the
boundary of the periodic cell, such that:

u (x +)−u (x −) = E∼ (x +−x −) (A.2)

In 2D, 4 components of E∼ have to be prescribed (3 components for the average strain + 1 compo-
nent for the average rotation), while in 3D, 9 components have to be prescribed (6 components
for the average strain + 3 components for the average rotation). "MPC" means Multi-Point
Constraint, i.e. prescribing linear relationships between certain DOFs on several mesh nodes,
themselves defined by sets of nodes (nsets). In order to use the MPC_periodic it is mandatory to
distinguish and label properly, using appropriate nsets, mesh nodes included on faces, edges and
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A.1. Case study #1: fiber-reinforced composite material

vertices of the periodic cell.
The definition of nsets can be performed using Z-Set meshing tools via functions and Boolean
operations. For example,

****mesher

***mesh periodic_mesh.geof

**open mesh.geof

**nset faceBottom

*function (z<=0.01)*(x>=0.01)*(x<=9.99)*(y>=0.01)*(y<=9.99);

**nset faceTop

*function (z>=0.49)*(x>=0.01)*(x<=9.99)*(y>=0.01)*(y<=9.99);

**nset faceLeft

*function (x<=0.01)*(z>=0.01)*(z<=0.49)*(y>=0.01)*(y<=9.99);

**nset faceRight

*function (x>=9.99)*(z>=0.01)*(z<=0.49)*(y>=0.01)*(y<=9.99);

**nset faceFront

*function (y<=0.01)*(x>=0.01)*(x<=9.99)*(z>=0.01)*(z<=0.49);

**nset faceBack

*function (y>=9.99)*(x>=0.01)*(x<=9.99)*(z>=0.01)*(z<=0.49);

****return

Here, we are considering a hexahedron of dimension 10 by 10 by 0.5.

The AND operation reads function1*function2, while the OR operation reads
function1||function2. Furthermore, the **rotate and **remove_nodes_from_nset com-
mands can become very handy when it is needed to exclude nodes from nsets, e.g. nodes from
faces belonging to edges, or nodes from edges belonging to vertices.

Periodic boundary conditions, here for the case of an average strain of 1.0 along direction 1, are
implemented within the input file (.inp):

****calcul

***mesh

**file periodic_mesh.geof % MESH LOADING

***bc % PRESCRIBING RIGID MOTION

**impose_nodal_dof center U1 0.

**impose_nodal_dof center U2 0.

**impose_nodal_dof center U3 0.

***table

**name tab

*time 0. 1.

*value 0. 1.

***resolution % LINEAR ELASTICITY

**sequence

*time 1.

*increment 1

*ratio absolu 0.001

*algorithm eeeeee

***material % CONSTITUTIVE PARAMETERS

**elset fiber

*file fiber.mat

**elset matrix

*file matrix.mat

***equation % MPC_PERIODIC : DOF + NSET COUPLE + AVERAGE STRAIN COMPONENT

**mpc_periodic U1 faceBack faceFront E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab

**mpc_periodic U2 faceBack faceFront E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab

**mpc_periodic U3 faceBack faceFront E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab

...

**mpc_periodic U1 edge09 edge12 E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab
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Appendix A. Finite element method for periodic homogenization

**mpc_periodic U2 edge09 edge12 E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab

...

**mpc_periodic U2 vertex01 vertex08 E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab

**mpc_periodic U3 vertex01 vertex08 E11 1.0 E22 0.0 E33 0.0 E12 0.0 E21 0.0 E13 0.0 E31 0.0 E23 0.0 E32 0.0 tab

****return

Results can be vizualized via Z-Set GUI, here for equivalent von Mises stresses:

Figure A.2: Deformed FE mesh and equivalent von Mises stress map (MPa) for E11 = 1.0

Post-processing necessary for determining the homogenized elastic moduli tensor C
≈

consists in

a spatial average over the periodic cell of the local stress tensor σ∼ . Applying the same average
operation on the local strain tensor ε∼ enables one to verify the macroscopic strain applied to the
cell. It can be done using the post-processor of Z-Set as follows:

****post_processing

***precision 6

***global_post_processing

**file integ

**elset ALL_ELEMENT

**process volume

**process average

*list_var sig11 sig22 sig33 sig12 sig23 sig13 eto11 eto22 eto33 eto12 eto23 eto13

****return

Using linear relationships defined previously between stress and strain (Hooke’s law) one can
deduce the numerical value of each components of C

≈
. Hence, it yields (in MPa):
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A.1. Case study #1: fiber-reinforced composite material

[Ci j ] =














4822 2001 2047 0 0 0

2001 4822 2047 0 0 0

2047 2047 10134 0 0 0

0 0 0 1365 0 0

0 0 0 0 1443 0

0 0 0 0 0 1443














This method might feel tedious since one needs to define manually all the nsets on the boundary
of the cell. Moreover, there is a risk for the nset couples not to be numbered in the right order,
especially with free meshes. It is advised to check the mesh and nsets before starting any compu-
tation. In order to avoid these complications, there are 2 alternatives. The first one is to create
nsets using Z-Set GUI, which is quite efficient in 2D, but a nightmare in 3D. Anyway, the mesher
will number nsets properly. In 3D, is can be useful to define nsets using the functions presented
previously, also the **match_nset function is renumbering nodes within a nset in order to make
them correspond to those of the homologous nset. Here is an example:

****mesher

**match_nset

*n1 front %NAME OF NSET #1

*n2 back %NAME OF NSET #2

*distance 10. %DISTANCE BETWEEN NSETS

*no_x %ONLY Y COORDINATES

*no_z %ARE CONSIDERED HERE

****return

The second option consists in using the periodic element method along with the

**nset_for_cell command, as explained hereafter.

A.1.2 The element DOF method with prescribed macroscopic strain

This method has been presented in Section .

We will now describe the procedure for implementing the method, starting with meshing. Z-
Set developers fortunately coded the **nset_for_cell function which allows to define periodic
boundary conditions automatically for the periodic cell. This function needs the definition of
periodicity vectors, up to 3 (b0, b1, b2) in its initial version. These vectors correspond to Cartesian
components of directions of replication of the initial pattern, using the axes of the structure. For a
cubic cell, this is the length of the cube along directions x, y and z. It may be needed to have more
than 3 vectors of periodicity, as for a tetrakaïdecahedral cell: 14 faces, 7 vectors of periodicity.
One then needs the extended version of the **nset_for_cell function. Nevertheless, one can
always go down to 3 vectors of periodicity in 3D, but for practical purpose, using more vectors in
often easier. Here is an example of implementation:
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Appendix A. Finite element method for periodic homogenization

****mesher

***mesh periodic_mesh.geof

**open mesh.geof

**nset_for_cell

*name cell %NSETS NAME PREFIX

*prec 0.001 %PRECISION

*b0 (10. 0. 0.) %COORDINATES OF THE

*b1 (0. 10. 0.) %PERIODICITY VECTORS

*b2 (0. 0. 0.5)

****return

As an output, Z-Set will generate the input mesh with added periodic nsets, as well as a list of
equations to be added within the input file. They correspond to the periodicity equations of the
generated mesh and nsets
For instance, **mpc1 cell4 U1 means that all nodes within nset cell4 are prescribed the same
value for their U1 DOF;

**mpc2 cell81 U3 cell82 U3 means that all nodes within nset cell81 are prescribed the same
value for their U3 DOF as their homologous nodes within nset cell82.
Once these equations have been copied under ***equation in the input file, the loading has to
be set, i.e. the macroscopic strain prescibed over the periodic cell:

****calcul

***mesh periodic % FE WITH ADDITIONAL DOF

**file periodic_mesh.geof

***bc

**impose_elset_dof ALL_ELEMENT E11 1.0 tab

**impose_elset_dof ALL_ELEMENT E22 0.0 tab

**impose_elset_dof ALL_ELEMENT E33 0.0 tab

**impose_elset_dof ALL_ELEMENT E12 0.0 tab

**impose_elset_dof ALL_ELEMENT E23 0.0 tab

**impose_elset_dof ALL_ELEMENT E31 0.0 tab

***table

**name tab

*time 0. 1.

*value 0. 1.

***equation

**mpc1 cell1 U1

...

**mpc2 cell81 U3 cell82 U3

...

****return

The element type is defined by ***mesh periodic for the volumic periodic element. There are
2D element formulation for plane stress and plane strain conditions, respectively activated by

***mesh periodic_plane_stress and ***mesh periodic_plane_strain.

Using Z-Set GUI, we check the deformed mesh and equivalent von Mises stress map:

Post-processing is the same as for the MPC_periodic method. This yields:
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A.1. Case study #1: fiber-reinforced composite material

Figure A.3: Deformed FE mesh and equivalent von Mises stress map (MPa) for E11 = 1.0

[Ci j ] =














4822 2001 2047 0 0 0

2001 4822 2047 0 0 0

2047 2047 10134 0 0 0

0 0 0 1365 0 0

0 0 0 0 1443 0

0 0 0 0 0 1443














This method has the advantage of being very quick to implement and to work in many situations.
Nevertheless, for complex periodic microstructures, the use of the **nset_for_cell function
might be a drawback.

A.1.3 The element DOF method with prescribed macroscopic stress

The method above is presented for prescribed macroscopic stress. It is an interesting approach
when homogenizing nonlinear mechanical behavior, e.g. creep, and for computing homogenized
compliance tensor S

≈
directly. Let us prescribe macroscopic reactions REi j =V Σi j at the scale of

the element.

For a macroscopic stress (1 MPa) prescribed along direction 1:
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RE11 =V Σ11 =V 〈σ11〉 = 1.0

⇒ E11 = S11Σ11

. . .

2 E12 = S14Σ11

By computing 〈εi j 〉, it yields:

S11 =
E11

Σ11
= V 〈ε11〉

RE11
= V 〈ε11〉

1.0

. . .

S16 =
2 E12

Σ11
= 2 V 〈ε12〉

RE11
= 2 V 〈ε12〉

1.0

When prescribing RE12:

RE12 = 2 V Σ12 =V 〈σ12〉 = 1.0

⇒ E11 = S61Σ12

. . .

2 E12 = S66Σ12

By computing 〈εi j 〉, it yields:

S61 =
E11

Σ12
= 2 V 〈ε12〉

1.0

. . .

S66 =
2 E12

Σ12
= 4 V 〈ε12〉

1.0

From Equation 4.14, it is worth noting that REi j = RE j i =
1

2
V Σi j .

The macroscopic stress is computed as the spatial average of the local stress field:

Σ∼ = 1

V

∫

V
σ∼ dV (A.3)

For cellular materials, the prescribed stress has to be balanced by the volume fraction of the solid
phase:

Σ∼ = 1

V

∫

Vsol

σ∼ dV = Vsol

V
= 1

Vsol

∫

Vsol

σ∼ dV = Vsol

V
〈σ∼ 〉sol (A.4)

with Vsol, volume of solid phase within the periodic cell of volume V .
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A.1. Case study #1: fiber-reinforced composite material

The prescribed value corresponds to the macroscopic stress multiplied by the volume of the cell,
i.e. 10×10×0.5 = 50 for this example. The input file reads as follows:

***bc

**impose_elset_dof_reaction ALL_ELEMENT E11 1.0 tab

**impose_elset_dof_reaction ALL_ELEMENT E22 0.0 tab

**impose_elset_dof_reaction ALL_ELEMENT E33 0.0 tab

**impose_elset_dof_reaction ALL_ELEMENT E12 0.0 tab

**impose_elset_dof_reaction ALL_ELEMENT E23 0.0 tab

**impose_elset_dof_reaction ALL_ELEMENT E31 0.0 tab

***table **name tab

*time 0. 1.

*value 0. 50.

The small macroscopic stress applied (1 MPa) results in a slightly deformed FE mesh:

Figure A.4: Deformed FE mesh and equivalent von Mises stress map (MPa) for RE11 = 1×V

After post-processing, i.e. spatial averaging of the local fields, the components of the compliance
tensor S

≈
(expressed in MPa−1) are obtained from 〈ε∼〉:

[Si j ] =














2,6.10−4 −9,4.10−5 −3,4.10−5 0 0 0

−9,4.10−5 2,6.10−4 −3,4.10−5 0 0 0

−3,4.10−5 −3,4.10−5 1,1.10−4 0 0 0

0 0 0 7,3.10−4 0 0

0 0 0 0 6,9.10−4 0

0 0 0 0 0 6,9.10−4














The elastic moduli tensor C
≈

is obtained by inverting S
≈

. The values are exactly the same as for the

approach with prescribed macroscopic strain:
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Grid

Young’s modulus (GPa) 210

Poisson’s ratio 0.3

Table A.2: Constitutive material parameters for case study #2

[Ci j ] =














4822 2001 2047 0 0 0

2001 4822 2047 0 0 0

2047 2047 10134 0 0 0

0 0 0 1365 0 0

0 0 0 0 1443 0

0 0 0 0 0 1443














A.2 Case study #2: 3D grid

Let us now consider a grid-type material, or a solid/air composite. Both phases are considered
isotropic linear elastic. The volume fraction of solid phase, the grid, is 36%: a periodic cell of
length 10 with a grid width of 1.

Figure A.5: Replicated FE mesh of the periodic cell with the grid (red)
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A.2. Case study #2: 3D grid

As for the case study #1, the cell geometry exhibits quadratic symmetry. The elastic moduli
tensor will have the same shape as before.

Figure A.6: FE mesh of the periodic unit cell with the grid (red)

Let us implement the 3 methods presented in case study #1.

A.2.1 The MPC_periodic method

Let us implement the MPC_periodic method as described earlier. The input file is prepared in
the same way as before. Results can be vizualized through the Z-Set GUI:

Figure A.7: Deformed FE mesh and equivalent von Mises stress map (MPa) for E11 = 1.0

Post-processing still consists in a spatial averaging the local stress tensor in order to determine
the components of the elastic moduli tensor C

≈
. Nevertheless, there is a critical difference: the

averaged stress components have to be weighed by the volume fraction of solid phase, thus
yielding the following values:
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[Ci j ] =














48096 4917 15904 0 0 0

4917 48096 15904 0 0 0

15904 15904 85142 0 0 0

0 0 0 1142 0 0

0 0 0 0 17125 0

0 0 0 0 0 17125














These values are characteristic of quadratic elasticity. However, there is an issue still: if one
wants to verify the applied load, here a macroscopic strain, the spatial average will not be correct.
As a matter of fact, the strain of the void phase is not taken into account. In order to verify the
macroscopic strain of the periodic cell, one can use either the element DOF method, or the nodal
displacement measurements, cf. Section A.2.3.

A.2.2 The element DOF method with prescribed macroscopic strain

The **nset_for_cell function allows one to define automatically the periodic boundary conditions
of the problem, as well as their corresponding node sets. The implementation is similar to the
first case study #1.

Figure A.8: Deformed FE mesh and equivalent von Mises stress map (MPa) for E11 = 1.0
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A.2. Case study #2: 3D grid

Post-processing is the same as for the MPC_periodic method:

[Ci j ] =














48096 4917 15904 0 0 0

4917 48096 15904 0 0 0

15904 15904 85142 0 0 0

0 0 0 1142 0 0

0 0 0 0 17125 0

0 0 0 0 0 17125














This method is as quick to implement as for the first case study and yields results that are exactly
the same as for the MPC_periodic method. As is, it does not allow one to verify the prescribed
loading. Let us try the same method but with a prescribed macroscopic stress.

A.2.3 The element DOF method with prescribed macroscopic stress

The procedure is now different from the first case study. It is mandatory to account for the strain
of the void phase when computing the macroscopic strain of the cell. There are 3 solutions to
that:

• Mesh the void phase, even roughly, so that the spatial average strain field can be computed.
It can be very costly to do so in the case of very porous microstructures. Anyway, additional
meshing will always cost more in terms of computation time.

• Measure the local displacements of certain nodes of the mesh, which enables one to
compute the macroscopic strain tensor over the periodic cell.

• Compute the DOF of the element instead of the nodal ones. This method is limited to the
linear elastic case and does not help one to verify the loading of the periodic cell.

Mesh of the void phase

Let us consider a new mesh, including the void phase:

Once again, one has to prescribe the value of the macroscopic stress multiplied by the volume of
the cell, but

Σ∼ = 1

V

∫

V
σ∼ dV (A.5)
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Figure A.9: FE mesh of the periodic unit cell with the grid (red) and the void (blue)

Stress in void phase are equal to zero, this yields:

Σ∼ = 1

V

∫

Vg r i d

σ∼ dV (A.6)

=
Vg r i d

V

1

Vg r i d

∫

Vg r i d

σ∼ dV (A.7)

=
Vg r i d

V
〈σ∼ 〉g r i d (A.8)

with Vg r i d , volume of the in the periodic unit cell of volume V . In this example, for a cell of
dimension 10×10×0.2 and a grid volume per cell of 7.2, the prescribed value for Vg r i d 〈σ∼ 〉g r i d =
V Σ is 10×10×0.2×7.2÷20 = 7.2, which corresponds to 1×Vg r i d . Constitutive parameters of
the void phase are chosen as follows: E = 0.1 MPa, ν= 0.3.

Components of the compliance tensor S
≈

(expressed in MPa−1) are obtained by post-processing

and weighing of the average by the inverse of the volume fraction of solid phase:

[Si j ] =














2,2.10−5 −9,6.10−7 −4,0.10−6 0 0 0

−9,6.10−7 2,2.10−5 −4,0.10−6 0 0 0

−4,0.10−6 −4,0.10−6 1,3.10−5 0 0 0

0 0 0 8,8.10−4 0 0

0 0 0 0 5,8.10−5 0

0 0 0 0 0 5,8.10−5
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A.2. Case study #2: 3D grid

Figure A.10: Deformed FE mesh and equivalent von Mises stress map (MPa) for RE11 = 1×Vg r i d

By inverting S
≈
, one obtains the components of the elastic moduli tensor C

≈
(MPa):

[Ci j ] =














48096 4917 15904 0 0 0

4917 48096 15904 0 0 0

15904 15904 85142 0 0 0

0 0 0 1142 0 0

0 0 0 0 17125 0

0 0 0 0 0 17125














The elastic properties of the void pahse are taken into account here hence increasing the values
slightly (+0,02%) in comparison with the previous examples.

Average strain method

We describe a simple method for determining macroscopic strain for a stress-loaded periodic cell
without using element DOFs. It is based on a direct measure of the homogenized compliance
tensor S

≈
. Let us define 3 pairs of nodes defining vectors x i that are collinear to the periodicity

vectors of the cell. For the trivial case of a rectangular parallelepiped defined within basis (x, y, z),
it yields

{

x a ∥~x ; x b ∥~y ; x c ∥~z
}

. For the sake of simplicity, let us use vectors x i as basis,
with nodes located at the vertices of the periodic cell so that the norms of vectors correspond to
the dimensions of the cell. Hence, knowing the initial location of the considered nodes and by
measuring their local displacements one can compute the macroscopic strain using the following
relationship:

u i = E∼ .∆x i (A.9)
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with,

∆x i = x i −x i+1 = [∆xi
1;∆xi

2;∆xi
3] (A.10)

Equation A.9 can be rewritten as follows:
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1

ua
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ua
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ub
1

ub
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uc
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uc
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∆xa
1 0 0 ∆xa

2 0 0 ∆xa
3 0 0

0 ∆xa
2 0 0 ∆xa

3 0 0 ∆xa
1 0

0 0 ∆xa
3 0 0 ∆xa

1 0 0 ∆xa
2

∆xb
1 0 0 ∆xb

2 0 0 ∆xb
3 0 0

0 ∆xb
2 0 0 ∆xb

3 0 0 ∆xb
1 0

0 0 ∆xb
3 0 0 ∆xb

1 0 0 ∆xb
2

∆xc
1 0 0 ∆xc

2 0 0 ∆xc
3 0 0

0 ∆xc
2 0 0 ∆xc

3 0 0 ∆xc
1 0

0 0 ∆xc
3 0 0 ∆xc

1 0 0 ∆xc
2







































E11

E22

E33

E12

E23

E31

E13

E21

E32




















(A.11)

For the case of a rectangular parallelepiped, as shown on Figure A.11, let us consider the vertex
O of the periodic cell and 3 homologous nodes {A ; B ; C }. Three vectors O A , OB and OC can
be defined:

O A = x A −x O = X A +u A −X O −u O

= (X A −X O)+ (u A −u O) (A.12)

= (X A −X O)+E∼ .(X A −X O)

Also,

OB = x B −x O = (X B −X O)+E∼ .(X B −X O) (A.13)

OC = x C −x O = (X C −X O)+E∼ .(X C −X O) (A.14)

It yields a system of 9 equations with 9 unknown variables:

u A −u O = E∼ .(X A −X O) (A.15)

u B −u O = E∼ .(X B −X O) (A.16)

u C −u O = E∼ .(X C −X O) (A.17)

The macroscopic strain tensor E∼ can thus be easily obtained from the displacement measure of a
few nodes. This measure is simple done by a local post-processing.

Using this method, one can compute the macroscopic strain tensor E∼ just by measuring the
displacement of certain nodes of the mesh. Nevertheless, a local post-processing is necessary in
order to obtain the nodal displacements, here is an example:

****post_processing

***precision 6

***local_post_processing
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**output_number 1

**file node

**nset vertices

**process format

*file nodes_displacement

*list_var U1 U2 U3

****return

The displacements U1, U2 and U3 of the nodes included within the nset vertices are written in
the nodes_displacement file.

Coming back to our case study, this yields the components of the compliance tensor S
≈

, in MPa−1:

[Si j ] =














2,2.10−5 −9,6.10−7 −4,0.10−6 0 0 0

−9,6.10−7 2,2.10−5 −4,0.10−6 0 0 0

−4,0.10−6 −4,0.10−6 1,3.10−5 0 0 0

0 0 0 8,8.10−4 0 0

0 0 0 0 5,8.10−5 0

0 0 0 0 0 5,8.10−5














By inverting S
≈
, one obtains C

≈
, in MPa:

[Ci j ] =














48096 4917 15904 0 0 0

4917 48096 15904 0 0 0

15904 15904 85142 0 0 0

0 0 0 1142 0 0

0 0 0 0 17125 0

0 0 0 0 0 17125














These values are identical to those obtaind using the MPC_periodic and the element DOF

methods with prescribed macroscopic strain.

Figure A.11: Parallelepipedic periodic cell
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Make use of the additional element DOF

In this last method, the spatial average of the local strain field is not computed anymore. Instead,
it makes use of the duality between the macroscopic strain DOF Ei j and their associated reactions
REi j . Thus, the values of Ei j obtained after the computation correspond to the effective values
of macroscopic strain over the periodic cell. By default, these values are not kept during the
computation, it has to be specified in the input file using the following commands:

****calcul

...

***ouput

**test

*elset_var ALL_ELEMENT E11 E22 E33 E12 E23 E31 RE11 RE22 RE33 RE12 RE23 RE31

...

****return

These values are written in a .test file after the computation. One can then obtain the compliance
tensor S

≈
. We obtain the same values as before:

[Si j ] =














2,2.10−5 −9,6.10−7 −4,0.10−6 0 0 0

−9,6.10−7 2,2.10−5 −4,0.10−6 0 0 0

−4,0.10−6 −4,0.10−6 1,3.10−5 0 0 0

0 0 0 8,8.10−4 0 0

0 0 0 0 5,8.10−5 0

0 0 0 0 0 5,8.10−5














This method is straightforward and avoids post-processing, however it does not allow one to
verify the applied load over the periodic cell.
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B Basics of mathematical morphology

This appendix is a selective synthesis of the mathematical morphology courses given by Prof.
Dominique Jeulin at the École Nationale Supérieure des Mines de Paris, where this discipline
was created in the 1960s by Profs. Georges Matheron and Jean Serra. I am completely endebted
to Prof. Jeulin for the content of this part, everything here can be found in a more detailed manner
in both the Models of Random Structures and Physics & Mechanics of Random Media graduate
courses he taught at ENSMP, as well as in [Bornert et al., 2001]. Only the concepts useful in the
context of this work are presented hereafter, for a more exhaustive description please check the
aforementioned references.

The purpose of the present appendix is to sum up and clarify notations used and results given
previously in this work. Hopefully, this can also serve as an introduction for the inquiring reader
to go deeper in the established literature of a subject that is often overlooked but always beneficial.

In Part III, we make use of models of random structures to simulate materials. There are
many morphological models that are useful for simulating materials, for instance realizations
stochastic point processes can account for dispersions of particles in a matrix, polycrystalline
materials can be assimilated to random tesselations of space, biphasic or multiphasic media can be
modeled by binary or multicomponent random sets. When considering measurements, chemical
concentration mappings or gray level images for instance can be modeled by random functions
or multivariate random function models; random graphs can be used to model porous networks,
cracks, etc. In this work we considered Boolean random models using Poisson linear varieties in
order to simulate a medium made of interpenetrating randomly oriented and distributed infinite
rectilinear fibres, Poisson fibres. Random structures need to be characterized in order to build
models accordingly. First, the characterization of random structures is introduced, followed by a
presentation of some models of random structures, namely the Poisson point process, Poisson

linear varieties and the Boolean scheme.
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B.1 Characterization of random structures

B.1.1 Minkowski functionals

The morphological characterization of random structures is a two-step process [Serra, 1982]: first
a morphological transformation is applied to a random structure (obtained from experiments for
instance), then a measure is done on the resulting structure. The choice of the morphological
transformation is related to the morphological criterion chosen for characterizing the random
structure. Measures performed for morphological characterization must have the following
properties: invariance by translation, continuity, locality, additivity and stereology. In integral
geometry, it is shown [Matheron, 1975, Serra, 1982] that in R

n , n + 1 measures satisfy these
constraints: Minkowski functionals Wi , homogeneous and of degree i :

Wi (λA) =λn−i Wi (A) (B.1)

Also for a given set A in R
3, the Minkowski functionals read as follows:

W0 (A) = V (A) (B.2)

3W1 (A) = S (A) (B.3)

3W2 (A) = M (A) =
1

2

∫

∂A

(
1

R1
+ 1

R2

)

dS (B.4)

3W3 (A) = 4π (N −G) =N (A) =
∫

∂A

(
1

R1R2

)

dS (B.5)

with V (A) volume of A, S (A) its surface, M (A) its integral of mean curvature, N (A) its
integral of total curvature (connectivity number in R

3), R1 and R2 maximum and minimum radii
of curvature on ∂A, N , number of connected components of A, and G, genus of A (maximal
number of closed curves to be drawn on its boundary ∂A without disconnecting it into two parts).

In the case of random sets, the Minkowski functionals become random variables. For stationary
random sets, average measures are invariant by translation. Specific values such as the volume
fraction VV or specific surface SV are obtained by normalizing by the volume unit. These specific
quantities exhibit stereological properties relating one to another using the Crofton relationships
(cf. [Bornert et al., 2001]), thus meaning that for instance the volume fraction VV of a stationary
random structure can be obtained from 2D or 1D cuts.

B.1.2 Basic operations of mathematical morphology

The morphology of random structures can be described using structuring elements. A structuring
element K is a compact set implanted in every point x of the Euclidean space R

n . It is necessary
to know if both Kx and the set A are mutually located in every point x. This yields the indicator
function Φ (A), obtained by transforming set A. By answering the question "Is K hiting A?" or
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"K ∩ A 6= ;?", the dilation operation can be defined:

A⊕ Ǩ = {x,Kx ∩ A 6= ;} =∪y∈K A−y =∪x∈A,y∈K

{

x − y
}

(B.6)

with Kx =
{

x + y, y ∈ K
}

, translated of K to point x and Ǩ = {−x, x ∈ K }, obtained by transposition
of K . By answering the question "Is K included in A?" or "K ⊂ A?", the erosion operation can be
defined:

A⊖ Ǩ = {x,Kx ⊂ A} =∩y∈K A−y =
(

Ac ⊕ Ǩ
)c

(B.7)

In Equations B.6 and B.7, the symbols ⊕ and ⊖ denote the Minkowski addition and substraction
respectively:

A⊕K = ∪x∈A,y∈K

{

x + y
}

=∪y∈K Ay =∪x∈AKx (B.8)

A⊖K = ∩y∈K Ay =
(

Ac ⊕K
)c (B.9)

As shown in Equation B.9, dilation and erosion are not independent operations. The following
rules apply:

(

A⊖ Ǩ1

)

⊖ Ǩ2 = A⊖
(

Ǩ1 ⊕ Ǩ2

)

(B.10)

(A∩B)⊖ Ǩ =
(

A⊖ Ǩ
)

∩
(

B ⊖ Ǩ
)

(B.11)

A⊕
(

Ǩ1 ∪ Ǩ2

)

=
(

A⊕ Ǩ1

)

∪
(

A⊕ Ǩ2

)

(B.12)

B.1.3 Steiner formulae

Relationships between the Minkowski functionals of a convex set A dilated by a convex set K and
the Minkowski functionals of A and K are given by the Steiner formulae. For A ⊂R

3 and K ⊂R
3,

they read as follows:

E
{

V
(

A⊕ Ǩ
)}

= V (A)+
M (K )

4π
S (A)+

M (A)

4π
S (K )+V (K ) (B.13)

E
{

S
(

A⊕ Ǩ
)}

= S (A)+
M (A)M (K )

2π
+S (K ) (B.14)

E
{

M
(

A⊕ Ǩ
)}

= M (A)+M (K ) (B.15)
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For A ⊂R
3 and K ⊂R

2, M (K ) =
π

2
L (K ), thus yielding the following Steiner formulae:

E
{

V
(

A⊕ Ǩ
)}

= V (A)+
L (K )

8
S (A)+

M (A)

2π
A (K ) (B.16)

E
{

S
(

A⊕ Ǩ
)}

= S (A)+
M (A)L (K )

4
+2A (K ) (B.17)

with A (K ), area of compact set K and L (K ), perimeter of compact set K in R
2.

B.1.4 Covariance

There are several morphological criteria (granulometry, anisotropy, etc.) that can be used to
characterize random structures. We focus here on the spatial arrangement of a given random
structure. It is characterized by, at least, three properties: covariance, distance function and
anisotropy. Since this work does not deal with multiscale and/or anisotropic models of random
structures, we will only consider the covariance. The covariance C (x, x +h) of random set A is
given by:

C (x, x +h) = P {x ∈ A, x +h ∈ A} (B.18)

If A is a stationary random set, C (x, x +h) =C (h). If A is ergodic, C (h) can be estimated from
the volume fraction of A∩ A−h:

C (h) =VV (A∩ A−h) =VV

(

A⊖ ȟ
)

(B.19)

The erosion by {x, x +h} results in variations in C (h) which depend on vector h (modulus |h| and
orientation α). The covariance Q (h) of the complementary random set Ac can also be considered,
although it does not give any information compared to C (h):

Q (0) = q = 1−p (B.20)

Q (h) = P
{

x ∈ Ac , x +h ∈ Ac
}

= 1−2C (0)+C (h) (B.21)

The covariance of a random set in R
3 is subject to the following properties:

• C (0) = P {x ∈ A} = p;

•
1

π

∫4π

0
−

(
∂C (h,α)

∂ |h|

)

h=0

dα= SV (A) when the partial derivative remains finite;

• if C (0)−C (h) ≃ |h|β for h → 0, with 0 < β < 1, the boundary of A has a non integer
Haussdorf dimension d = 3−β, and A is a fractal set;
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• C (∞) = p2, the covariance of a stationary ergodic random set reaches a sill, the events are
independent;

• For a given orientation α, C (h) reaches a sill at a certain distance aα, or range, that
we consider as the characteristic length scale of the random structure: C (aα) =C (∞) =
VV (A)2 = p2;

• The presence of multiple scales in the random structure is characterized inflections of the
experimental covariance;

• Periodicity of the structure results in periodicity of the covariance.

Correlation functions are useful for studying physical properties within random structures. The
centered second-order correlation function can be deduced from the covariance. For the case of a
two-phase medium with properties Z = Z1 when x ∈ A and Z = Z2 when x ∈ Ac , it yields:

W 2 (h) = E {(Z (x +h)−E {Z }) (Z (x)−E {Z })}

= (Z1 −Z2)2
(

C (h)−p2
)

= (Z1 −Z2)2
(

Q (h)−q2
)

(B.22)

The integral range An presented in Section 4.2.4 is obtained from the centered second-order
correlation function in this way:

An = 1

D2
Z

∫

Rn
W 2 (h)dh (B.23)

The characterization of random structures has been presented, let us now introduce models of
random structures.

B.2 Models of random structures

B.2.1 Choquet capacity

Models of random structures are derived from the theory of random sets by G. Matheron

[Matheron, 1975]. A random closed set A (RACS) is characterized by its Choquet capacity T (K ),
which is a functional defined on the compact sets K , such that:

T (K ) = P {K ∩ A 6= ;} = 1−P
{

K ⊂ Ac
}

= 1−Q (K ) (B.24)

The Choquet capacity exhibits the following properties:

• T (Kx ) = T (K ), invariant by translation for a stationary RACS;
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• T (K ) is invariant by rotation for an isotropic RACS;

• T (K )⋆ = P
{

x ∈ A⊕ Ǩ
}⋆ = VV

(

A⊕ Ǩ
)⋆

, T (K ) can be estimated (⋆ denotes estimation)
from the measure of the volume fraction on a single realization for an ergodic RACS.

This last property is due to the following equation:

1

µn (B)

∫

B
1A (x)d x = µn (A∩B)

µn (B)
−→

B→Rn
P {x ∈ A} = p (B.25)

The construction consists in the choice of basic assumptions regarding the model, and in the
computation of the Choquet capacity T (K ). For a given model, T (K ) is obtained by theoretical
calculation or by estimation from either simulations or real structures.

B.2.2 Poisson point process

Let us now consider the Poisson point process. It is the prototype model for random processes
without any order. For a non-homogeneous Poisson point process in R

n with a regionalized
intensity θ(x) with x ∈R

n and θ ≥ 0, the numbers N (Ki ) are indenpendent random variables for
any family of disjoint compact sets Ki . N (K ) is a Poisson random variable with parameter θ(K )

such that:

θ(K ) =
∫

K
θ(d x) (B.26)

Pn (K ) = P {N (K ) = m} =
θ (K )m

m!
(B.27)

The Choquet capacity of a Poisson point process is given by:

T (K ) = 1−Q (K ) = 1−P0 (K ) = 1−exp(−θ (K )) (B.28)

which yields for the stationary case:

T (K ) = 1−exp
(

−θµn (K )
)

(B.29)

The Poisson point process, like other point processes, can be used to generate more general
models, known as the grain models (Boolean models, dead leaves models, random function
models). No spatial interaction is considered in the Poisson point process. By introducing a
repulsion distance dR , hard core processes can be derived from the Poisson point process. For
instance, in a realization of a Poisson point process, delete every pair of points separated by a
distance d ≤ dR . Other point processes can be derived from the Poisson point process, such as
the Cox point process [Cox, 1955].
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B.2.3 Poisson linear varieties

Poisson linear varieties are also derived from the Poisson point process. Here is a definition
of Poisson linear varieties taken from [Jeulin, 1991b, Jeulin, 1991a, Jeulin, 2011], based on
[Matheron, 1975]:

“Poisson linear varieties can be introduced as follows: a Poisson point process

{xi (ω)}, with intensity θk (dω) is considered on the variety of dimension (n − k)

containing the origin O, and with orientation ω. On every point xi (ω) is given a

variety of dimension k, Vk (ω)xi
, orthogonal to the direction ω. By construction, we

have Vk = ∪xi (ω)Vk (ω)xi
. For instance in R

3 [. . . ] a network of Poisson lines in

every plane Πω containing the origin. ”

The Poisson point process is actually a Poisson linear variety of dimension k = 0. In R
n , k = n−1

yields Poisson hyperplanes. For any dimension k ≥ 1, a network of Poisson linear varieties of
dimension k can be considered as a Poisson point process in the space Sk ×R

n−k , with intensity
θk (dω)µn−k (d x). θk is a positive Radon measure for the set of subspaces of dimension k, Sk ,
and µn−k is the Lebesgue measure on R

n−k . If θk (dω) is any Radon measure, the obtained
varieties are anisotropic, whereas if θk (dω) = θk dω, they are isotropic. If µn−k (d x) is replaced
by ωn−k (d x) in the intensity formula, the varieties are non-stationary.

The number of Poisson linear varieties of dimension k hit by a compact set K is a Poisson variable
[Jeulin, 1991b, Jeulin, 1991a, Jeulin, 2011], with parameter θ (K ) such that,

θ(K ) =
∫

θk (dω)

∫

K (ω)
θn−k (d x) =

∫

θk (dω)θn−k (K (ω)) (B.30)

where K (ω) is the orthogonal projection of K on the orthogonal space to Vk (ω), Vk⊥ (ω). For the
stationary case,

θ(K ) =
∫

θk (dω)µn−k (K (ω)) (B.31)

The Choquet capacity of the Poisson linear varieties of dimension k is thus obtained as follows:

T (K ) = 1−exp

(

−
∫

θk (dω)

∫

K (ω)
θn−k (d x)

)

(B.32)

which reads as follows for the stationary case:

T (K ) = 1−exp

(

−
∫

θk (dω)µn−k (K (ω))

)

(B.33)

For the isotropic (θk being constant) and stationary case, the number of Poisson linear varieties
of dimension k hit by a compact set K (convex) is a Poisson variable, with parameter θ (K ) such
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that:

θ (K ) = θk

∫

µn−k (K (ω))dω= θk
bn−k bk+1

bn

k +1

2
Wk (K ) (B.34)

where Wk (K ) is the Minkowski functional of K , homogeneous and of degree n −k, and bk the
volume of the unit-ball in R

k , given by the following formula:

bk = π
k
2

Γ

(

1+ k
2

) (B.35)

with Γ (x), the Euler gamma function, defined in this way:

Γ (x) =
∫∞

0
e−uux−1du (B.36)

The Euler gamma function exhibits the following properties:

• Γ (1+x) = xΓ (x);

• Γ (1+n) = n! for n ∈N;

• Γ (x)Γ (1−x) =
π

sinπx
for x ∈R

−;

• Γ

(
1

2

)

=
p
π;

• Γ (2x) = Γ (x)Γ

(

x + 1

2

)
22x−1

p
π

.

Using this function in Equation B.35, it yields:

• b1 = 2 for k = 1;

• b2 =π for k = 2;

• b3 =
4

3
π for k = 3.

In R
3, Poisson lines are obtained for k = 1, this yields the following parameter for the Poisson

process:

θ (K ) =
π

4
θS (K ) (B.37)
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B.2.4 Boolean model

The Boolean model [Matheron, 1967] is obtained by implanting random primary grains A′,
possibly with overlapping, on Poisson points {xk } with intensity θ, such that A =∪xk

A′
xk

. Any
shape can be used for the grain A′.

The number of primary grains of the Boolean model hit by a compact set K , N (K ), follows a
Poisson distribution with parameter E

{

θ
(

Ǎ′⊕K
)}

. In the stationary case, the parameter of the
Poisson distribution is given by θµn

(

A′⊕ Ǩ
)

.

The Choquet capacity of the Boolean model with primary grain A′ reads as follows:

T (K ) = 1−exp
(

−E
{

θ
(

Ǎ′⊕K
)})

(B.38)

which becomes, for the stationary case:

T (K ) = 1−exp
(

−θµn

(

A′⊕ Ǩ
))

(B.39)

with µn

(

A′⊕ Ǩ
)

= E
{

µn

(

A′⊕ Ǩ
)}

. For the stationary case, let us consider the Choquet capacity
T (K ) with q = P

{

x ∈ Ac
}

= exp
(

−θµn

(

A′)):

T (K ) = 1−Q (K ) = 1−exp
(

−θµn

(

A′⊕ Ǩ
))

= 1−q
µn (A′⊕Ǩ )
µn (A′) (B.40)

If A′ is a ball of radius r , q = exp

(

−θ4

3
πr 3

)

. If one considers m balls of radii rm , q =

exp

(

−θ4

3
πE

{

r 3
m

}
)

.

The covariance of the Boolean model is given by the following expression:

Q (h) = P
{

x ∈ Ac , x +h ∈ Ac
}

= q2 exp(θK (h)) = q2−r (h) (B.41)

with the geometrical covariogram given by:

K (h) =µn

(

A′∩ A′
−h

)

and r (h) =
K (h)

K (0)
(B.42)

The Boolean model exhibits the following stereological properties:

• For sections of a Boolean model in R
n by a subspace Sk with k < n, it yields a Boolean

model in Sk with intensity θk and the induced primary grain A′
k satisfying for any K ⊂ Sk ,

θµn

(

A′⊕ Ǩ
)

= θkµk

(

A′
k ⊕ Ǩ

)

;

• The property above yields also a particular case: θµn

(

A′)= θkµk

(

A′
k

)

;

• A 3D Boolean model induces in R
2 a Boolean model with intensity θ2 = θ

M
(

A′)

2π
;
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• A Boolean model of spherical primary grains in R
3 induces a Boolean model of discs

in R
2, and a Boolean model of segments in R, hence allowing the reconstruction of the

distribution function of radii in R
3 from the covariance Q (h) obtained on sections.

A Boolean model can be built using Poisson linear varieties, we will refer to this model as
Boolean random varieties.

B.2.5 Boolean random varieties

Boolean random varieties [Jeulin, 1991b, Jeulin, 1991a, Jeulin, 2011] with primary grain A′ are
built on Poisson linear varieties in this way: a network of Poisson linear varieties Vk is considered.
Each Poisson linear variety Vkα is dilated by an independent realization of the primary grain A′.
The resulting Boolean random varieties are a Boolean random closed set A such that:

A =∪αVkα⊕ A′ (B.43)

The Choquet capacity of the Boolean random varieties of dimension k is given by this expression:

T (K ) = 1−exp

(

−
∫

θk (dω)µn−k

(

A′(ω)⊕ Ǩ (ω)
)
)

(B.44)

For isotropic Boolean random varieties, the Choquet capacity reads as follows:

T (K ) = 1−exp

(

−θk
bn−k bk+1

bn

k +1

2
W k

(

A′⊕ Ǩ
)
)

(B.45)

with bk , volume of the unit-ball in R
k (cf. Equation B.35).

When K = {x}, the probability q yields:

q = P
{

x ∈ Ac
}

= exp

(

−
∫

θk (dω)µn−k

(

A′ (ω)
)
)

(B.46)

Finally, when K = {x, x +h}, the covariance of Ac , Q (h) yields:

Q (h) = q2 exp

(∫

θk (dω)Kn−k (ω,h)

)

(B.47)

where Kn−k (ω,h) =µn−k

(

A′ (ω)∩ A′
−h (ω)

)

and h = h .u (ω), with u (ω) unit-vector along direc-
tion ω.

For a compact primary grain A′ and for any h, there is an angular sector Kn−k (ω,h) 6= 0, so that
the covariance generally does not reach a sill, and the integral range defined in Equation B.23 is
infinite.
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B.2. Models of random structures

B.2.6 Poisson fibres

Poisson fibres are obtained when considering a Poisson linear variety of dimension k = 1 in
R

3, i.e. a network of Poisson lines, that is dilated by the compact set of primary grains A′. For
isotropic Poisson lines, with a convex set A′⊕ Ǩ , the following Choquet capacity is obtained
using Equation B.45:

T (K ) = 1−exp
(

−θπ
2

S
(

A′⊕ Ǩ
))

(B.48)

In the event of A′⊕ Ǩ not being convex, the Choquet capacity can be expressed as a function of
the area A of the projection on the planes Πω using this formula:

T (K ) = 1−exp

(

−θ
∫

2πster
A

(

A′ (ω)⊕ Ǩ (ω)
)

dω

)

(B.49)

If A′ is a random sphere with a random radius R and K is a sphere with radius r , the Choquet

capacity becomes:

T (r ) = 1−exp

(

−π2

2
θ

(

E
{

R2
}

+2r R + r 2
))

(B.50)

T (0) = P {x ∈ A} = 1−exp

(

−π2

2
θE

{

R2
}
)

(B.51)

When considering a single spherical primary grain A′ with radius R, the Choquet capacity is
finally expressed in this way:

T (0) = P {x ∈ A} = 1−exp

(

−θπ
2R2

2

)

(B.52)

Equation B.52 gives the Choquet capacity characterizing the model of Poisson fibres used in
Part III.
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C Experimental characterization of

auxetics

Experiments on auxetics were not planned at the beginning of this work. Anyhow, the availability
of samples made using SLM coincided with a call for students research projects, making these
experiments happen. I would like to acknowledge the interest of two students for this work:
Lenaïc Chizat and Valentin Vermeulen. I would also like to thank Prof. Gourgues-Lorenzon for
accepting my project, and Dr. Mazière, as well as Mmes. Betbeder and Heurtel for their precious
help with the experiments. What could be more satisfactory for an aspiring academic than having
his spectrum of understanding broaden by doing projects with students? First, an investigation
of the microstructure was done on a bulk cube made of 316L stainless steel using SLM. Then
force-displacement curves obtained for uniaxial compression testing are presented for hexatruss
316L samples processed with SLM.

C.1 Microstructural characterization
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Appendix C. Experimental characterization of auxetics

Figure C.1: SEM-BSE micrograph of a 316L stainless steel bulk sample made using SLM

Figure C.2: Optical micrograph (x10) of a 316L stainless steel bulk sample made using SLM
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C.2. Macroscopic mechanical testing

Figure C.3: Optical micrograph (x50) of a 316L stainless steel bulk sample made using SLM

Figure C.4: Polarized optical micrograph (x50) of a 316L stainless steel bulk sample made using
SLM

C.2 Macroscopic mechanical testing

Samples were made from 316L stainless steel powders using SLM. These samples were tested
in compression. Photographs of the compressive experimental settings are shown in Figure C.5
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Appendix C. Experimental characterization of auxetics

for the hexachiral sample and Figure C.6 for the hexatruss one. In order to ensure that the
stress state would be mostly compressive uniaxially, we ran a linear elastic FE simulation of
the compressive test of the homogenized material. Maps of the principal stress components
during compression can be found in Figures C.7 and C.8, showing evidence of a homogeneous
unixial stress field in the region of interest. Results for the hexatruss samples are shown on
Figure C.9. In that case, samples were compressed along direction [110], which is the direction
of solicitation yielding the lowest Poisson ratio. Discrepancies arise from the two tests but
the trend is similar: heterogeneous deformation is happening, as it was shown on Figure 5.44,
which is coming from the same set of experiments. Young’s modulus was estimated from the
fit of the linear part of the curves: E∗

exp = 8 MPa. This value is quite comparable to the value
obtained from the simulation, that can also be estimated for direction [110] from Figure 5.32:
E∗

sim = 210000×0.02×0.0033 = 13.9 MPa. Results from the experiments are in the same order of
magnitude. The same test was done on hexachiral samples, along the principal direction [010] in
order to measure the in-plane Young’s modulus. Its value was estimated from the results shown on
Figure C.10: E∗

exp = 815 MPa. This value is comparable with the value obtained from simulation
(cf. Table 5.1): E∗

sim = 210000×0.15×0.023 = 725 MPa. The experimental value is higher than
the one predicted from simulation, this is likely due to localized plasticity happening at the very
beginning of the experiment. As a matter of fact, the deformation taking place in the hexachiral
cell is confined to small zones at the junction between beams and circular nodes; this was shown
with the simulations done in Section 5.5.

Figure C.5: Experimental setting for the compressive test of the hexachiral cell along [100]

C.3 X-ray microtomography

A sample of the hexatruss lattice material made using SLM was scanned using X-ray microto-
mography by Prof. Maire at MATEIS/INSA Lyon. Analysis of the micrograph obtained in this
way (cf. Figure C.11) reveals porosities of about 40 µm in diameter, thus justifying our suspicions
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C.3. X-ray microtomography

Figure C.6: Experimental setting for the compressive test of the hexatruss cell along [110]

Figure C.7: Deformed shape and σ11 stress map for the hexatruss homogeneous equivalent
medium

of larger porosity in truss structures made using SLM, in comparison with bulk samples. X-ray
spot size used here is 20 µm.
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Appendix C. Experimental characterization of auxetics

Figure C.8: Deformed shape and σ22 stress map for the hexatruss homogeneous equivalent
medium

Figure C.9: Force vs. displacement curves for the compression of hexatruss samples
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C.3. X-ray microtomography

Figure C.10: Force vs. displacement curves for the compression of hexachiral samples

Figure C.11: X-ray micrograph of a hexatruss lattice sample made using SLM

207





D Simulation results for Poisson fibers

Figure D.1: Mean values for the volume fraction depending on the volume size V
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Appendix D. Simulation results for Poisson fibers

Figure D.2: Mean values for the thermal conductivity depending on the number of fibers N

Figure D.3: Mean values for the bulk modulus depending on the number of fibers
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Figure D.4: Mean values for the shear modulus depending on the number of fibers

Figure D.5: Variance for the volume fraction of fibers depending on the volume of simulation V
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Appendix D. Simulation results for Poisson fibers

Figure D.6: Variance for the thermal conductivity depending on the volume of simulation V

Figure D.7: Variance for the bulk modulus depending on the volume of simulation V
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Figure D.8: Variance for the shear modulus depending on the volume of simulation V
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Propriétés effectives de matériaux architecturés

Résumé: Les matériaux architecturés font émerger de nouvelles possibilités en termes de propriétés

structurales et fonctionnelles, repoussant ainsi les limites des cartes d’Ashby. Le terme "matériaux

architecturés" inclus toute microstructure conçue de façon astucieuse, de sorte que certaines de

ses propriétés soient optimisées. Les exemples sont nombreux : composites fibreux et particulaires,

matériaux cellulaires, structures sandwiches, matériaux tissés, structures treillis, etc. Un enjeu de taille

pour l’emploi de tels matériaux est la prédiction de leurs propriétés effectives. Dans ce travail, deux

types de microstructures sont considérés: des structures auxétiques périodiques et des milieux fibreux

aléatoires. Les auxétiques sont des matériaux apparus au milieu des années 1980, présentant un

coefficient de Poisson négatif. On attend des auxétiques qu’ils présentent des propriétés mécaniques

améliorées, comme le module de cisaillement ou la résistance à l’indentation. Les milieux fibreux

aléatoires considérés dans ce travail sont constitués de fibres 3D infinies interpénétrantes aléatoirement

distribuées et orientées. Ce type de structure aléatoire est très défavorable à la détermination

d’une taille de volume élémentaire statistiquement représentatif. Pour les deux types de matériaux,

l’homogénéisation numérique à l’aide de la méthode des éléments finis est implémentée dans le but

d’estimer les propriétés thermiques et mécaniques effectives.

Mots-clés: Homogénéisation numérique, Volume élémentaire représentatif, Auxétiques, Mi-

lieux fibreux stochastiques, Propriétés effectives

Effective properties of architectured materials

Abstract: Architectured materials bring new possibilities in terms of structural and functional properties,

filling gaps and pushing the boundaries of Ashby ’s materials maps. The term "architectured materials"

encompasses any microstructure designed in a thoughtful fashion, so that some of its materials

properties have been improved. There are many examples: particulate and fibrous composites, foams,

sandwich structures, woven materials, lattice structures, etc. One engineering challenge is to predict the

effective properties of such materials. In this work, two types of microstructures are considered: periodic

auxetic lattices and stochastic fibrous networks. Auxetics are materials with negative Poisson’s ratio that

have been engineered since the mid-1980s. Such materials have been expected to present enhanced

mechanical properties such as shear modulus or indentation resistance. The stochastic fibrous networks

considered in this work is made of 3D infinite interpenetrating fibers that are randomly distributed and

oriented. This case of random structure is challenging regarding the determination of a volume element

size that is statistically representative. For both materials, computational homogenization using fi-

nite element analysis is implemented in order to estimate the effective thermal and mechanical properties.

Keywords: Computational homogenization, Representative Volume Element, Auxetics, Ran-

dom fibrous networks, Effective properties
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