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Résumé
Cette thèse étudie la compensation robuste d’un retard de commande affectant un

système dynamique. Pour répondre aux besoins du domaine applicatif du contrôle moteur,
nous étudions d’un point de vue théorique des lois de contrôle par prédiction, dans les cas
de retards incertains et de retards variables, et présentons des résultats de convergence
asymptotique.

Dans une première partie, nous proposons une méthodologie générale d’adaptation du
retard, à même de traiter également d’autres incertitudes par une analyse de Lyapunov-
Krasovskii. Cette analyse est obtenue grâce à une technique d’ajout de dérivateur récem-
ment proposée dans la littérature et exploitant une modélisation du retard sous forme
d’une équation à paramètres distribués.

Dans une seconde partie, nous établissons des conditions sur les variations admissibles
du retard assurant la stabilité du système boucle fermée. Nous nous intéressons tout
particulièrement à une famille de retards dépendant de la commande (retard de transport).
Des résultats de stabilité inspirés de l’ingalité Halanay sont utilisés pour formuler une
condition de petit gain permettant une compensation robuste. Des exemples illustratifs
ainsi que des résultats expérimentaux au banc moteur soulignent la compatibilité de ces
lois de contrôle avec les impératifs du temps réel ainsi que les mérites de cette approche.

Mots-clefs

Systèmes à retard, systèmes à paramètres distribués, contrôle moteur, ajout de dérivateur,
control adaptatif, analyse de Lyapunov, contrôle robuste, équations différentielles à retard

Abstract
This thesis addresses the general problem of robust compensation of input delays.

Motivated by engine applications, we theoretically study prediction-based control laws
for uncertain delays and time-varying delays. Results of asymptotic convergence are
obtained.

In a first part, a general delay-adaptive scheme is proposed to handle uncertainties,
through a Lyapunov-Krasovskii analysis induced by a backstepping transformation (ap-
plied to a transport equation) recently introduced in the literature.

In a second part, conditions to handle delay variability are established. A particular
class of input-dependent delay is considered (transport). Halanay-like stability results
serve to formulate a small-gain condition guaranteeing robust compensation. Illustrative
examples and experimental results obtained on a test bench assess the implementability
of the proposed control laws and highlight the merits of the approach.

Keywords

Time-delay systems, distributed parameter systems, engine control, backstepping, adap-
tive control, Lyapunov design, robust control, delay differential equations
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Chapter 1

Introduction : handling the
variability of delays to unblock a
performance bottleneck

The general problem under consideration in this thesis is the robust compensation of
input delays in control systems. For decades, the occurrence of a delay has been identified
as a source of performance losses of closed-loop control design. Indeed, to reach acceptable
levels of robustness, it is necessary to decrease the feedback gains, that in turn lowers the
tracking and disturbance rejection capabilities.

When the delay is sufficiently large so that it can not be neglected in the control syn-
thesis, a natural question is its compensation. Ideally, delay compensation by a prediction
of the future system state should allow, after a finite time, to obtain the same performance
as for the corresponding delay-free system.

In this manuscript, we are interested into automotive Spark-Ignited engines, in which
delays are ubiquitous. Indeed, flow transportations (fresh air, burned gas) and the nu-
merous loops involved in engine architecture naturally result into transport delay. Fur-
thermore, for cost reasons, only a few sensors are embedded in commercial-line engines,
resulting into delayed measurement in addition to communication lags. Finally, delays
also originate from the inherent distributed nature of post-treatment devices. All these
delays are varying and uncertain.

Prediction-based techniques are difficult to apply in this context, because these meth-
ods are well known to provide little robustness to delay uncertainties and compensation is
not easy to obtain for time-varying delays. However, the potential performance improve-
ments motivates to address these issues.

In this thesis, two problems are tackled by a robust compensation approach. By ro-
bust compensation, we refer to a prediction-based control law, which does not exactly
compensate the input delay but still provides asymptotic convergence. This thesis is then
divided in two parts, pictured in Figure 1.1.

Part I. This part focuses on the case of constant but uncertain input delay. A general
method to design a prediction-based control law aiming at robustly compensating the
input delay is proposed. It follows and develops a recent overture to conduct a Lyapunov-
Krasovskii analysis of prediction-based control. This method uses a transport partial
differential equation representation of the delay, together with a backstepping transfor-
mation, and sets up a delay-adaptive scheme. The scheme is compliant with various other
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components the control may need to handle system specificities. In addition, the proposed
control strategy is shown to ensure closed-loop system stability for a large number of delay
update laws.

The infinite-dimensional tools that are used in this general adaptive scheme are first
presented in a dedicated introduction, before focusing, in Chapter 3, on plant parameter
adaptation. In Chapter 4, we study admissible delay on-line update laws, before intro-
ducing an output feedback design in Chapter 5. In Chapter 6, we propose a disturbance
rejection strategy. Each of these designs is illustrated by simulation examples of two dif-
ferent systems: one open-loop unstable plant and a stable but very slow plant. These two
examples aim at highlighting the different merits of the proposed control strategy.

From a bird’s eye view, the results stated in these parts can be summarized as fol-
lows: robust compensation is achieved provided that the estimation errors made while
computing the state prediction are small enough. Besides, the delay estimate used for
this prediction has to vary sufficiently slowly.

Finally, in Chapter 7, the versatility of the proposed approach is underlined by experi-
mental results obtained on test-bench for the Fuel-to-Air Ratio regulation in Spark-Ignited
engines. Various combinations of the proposed elements are declined, to illustrate the vast
class of possible problems this methodology can handle.

Part II. This part focuses on the case of time-varying input delays. Particular attention
is paid to a given model of transport delay, which implicitly defines the delay as the
lower-bound of a positive integral. The relevance of this model is illustrated by numerous
examples of flow processes, most of them related to engines. The practical interest of
this model and its compliance with on line requirements are highlighted by experiments
conducted on test bench for the estimation of the burned gas rate for Spark-Ignited
engines.

This class of transport delay, together with the engine context elements presented
earlier, motivate the need to design a delay compensation methodology for time-varying
delays. Indeed, the existing tools require a prediction of the system state on a varying
time interval, the length of which matches the future variations of the delay. When these
variations are not known or not available, e.g. when the time dependency is related to an
exogenous variable (flow, . . . ), this cannot be achieved.

In this thesis, we propose to use the current value of the delay as prediction horizon
and show that robust compensation is achieved provided that the delay variations are
sufficiently slow. Besides, in the case of an input-dependent delay defined by the afore-
mentioned transport delay model, this requirement is ensured by a small gain condition
on the feedback gain, which provides insight into the nature of the interconnection be-
tween the control and the delay variations. This result is obtained using delay differential
equation stability results inspired from the Halanay inequality.

This part is organized as follows. In Chapter 8, the previously mentioned model of
transport delay, relating the delay to past values of given variables, is presented. Various
examples are given. Then, in Chapter 9, practical use of this model is proposed, to
estimate the transport delay occurring for a low-pressure exhaust burned gas recirculation
loop on a spark-ignited engine. The delay is analytically determined by the ideal gas low
fed with measurements from temperature and pressure sensors located along the line.
Extensive experimental results obtained on test bench stress the relevance of this model.
In Chapter 10, robust compensation of a general time-varying delay is designed, requiring
that the delay variations are sufficiently slow. This condition is then further studied in the
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Figure 1.1: The problem addressed in this thesis.

particular case of input-dependent delay belonging to the considered transport delay class
and finally related to a small gain condition, provided stabilization of the plant is still
achieved. The merits of this result is then illustrated on a well-known time delay system,
the temperature regulation of a shower (or bathtub). Chapter 11 briefly introduces the
system under consideration and presents simulation results highlighting the benefits of
the designed robust compensation approach for input-dependent input delay.

The works presented in this thesis have been the subject of the following publications:

• Journals

1. D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive control scheme for un-
certain time-delay systems”, in Automatica, Vol. 48, Issue 8, pp.1536-1552,
2012

• Conference

1. D. Bresch-Pietri, T. Leroy, J. Chauvin and N. Petit, “Practical delay modeling
of externally recirculated burned gas fraction for Spark-Ignited Engines”, to
appear in the Proc. of the 11th Workshop on Time Delay Systems 2013

2. D. Bresch-Pietri, T. Leroy, J. Chauvin and N. Petit, “Contrôle de la recircula-
tion de gaz brûlés pour un moteur essence suralimenté”, in Proc. of the Con-
férence Internationale Française d’Automatique 2012, Invited Session Time-
delay systems: applications and theoretical advances

3. D. Bresch-Pietri, J. Chauvin, and N. Petit,“Invoking Halanay inequality to
conclude on closed-loop stability of processes with input-varying delay”, in Proc.
of the 10-th IFAC Workshop on Time Delay Systems 2012
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4. D. Bresch-Pietri, J. Chauvin, and N. Petit,“Prediction-based feedback control
of a class of processes with input-varying delay”, in Proc. of the American
Control Conference 2012

5. D. Bresch-Pietri, T. Leroy, J. Chauvin, and N. Petit,“Prediction-based trajec-
tory tracking of External Gas Recirculation for turbocharged SI engines”, in
Proc. of the American Control Conference 2012

6. D. Bresch-Pietri, J. Chauvin, and N. Petit, “Output feedback control of time
delay systems with adaptation of delay estimate”, in Proc. of the 2011 IFAC
World Congress
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gines”, in Proc. of the 49th IEEE Conf. on Decision and Control 2010



Introduction : maîtriser les
variations de retards pour pallier les
pertes de performance

Cette thèse étudie la compensation robuste d’un retard de commande affectant un
système dynamique. Depuis des décennies, l’apparition d’un retard a été diagnostiquée
comme une cause majeure de dégradation des performances d’un système boucle fermée.
En effet, pour obtenir un niveau satisfaisant de robustesse, il est alors nécessaire de
diminuer l’amplitude des gains de rétroaction, ce qui, en conséquence, diminue également
les performances en asservissement et en rejet de perturbations.

Quand le retard de commande est trop grand pour pouvoir être négligé lors du
développement des lois de commande, on cherche tout naturellement à le compenser.
Idéalement, cela permettrait, par une prédiction de l’état futur du système, d’obtenir,
après un temps fini, des performances similaires à celles du système non-retardé corre-
spondant.

Dans ce manuscrit, nous considérons des sous-systèmes de moteurs thermiques essence,
dans lesquels les retards sont omniprésents. En effet, les flux de matière en jeu (gaz frais
ou brûlés) et les nombreux circuits de canalisations présents sur un moteur thermique
impliquent intrinsèquement un retard de transport. De plus, pour des raisons de coût, peu
de capteurs sont embarqués sur des moteurs série ; en conséquence, les signaux mesurés
sont souvent retardés, ce à quoi il faut ajouter le retard inhérent à la chaîne d’acquisition
des données. Enfin, la nature distribuée des systèmes de post-traitement utilisés dans la
ligne d’échappement génèrent également un retard de transport. Tous ces retards sont
variables et incertains.

Les techniques usuelles de compensation par prédiction sont difficilement applicables
dans un tel contexte, du fait de leur grande sensibilité aux erreurs d’estimation du retard
et de la complexité de leur extension au retard variable. Cependant, du fait des gains de
performances qu’elles peuvent susciter, il est utile d’étudier ces deux cas de figure et de
fournir des solutions correspondantes.

Dans cette thèse, ces deux problèmes sont abordés par une approche de compensation
robuste. Nous entendons par compensation robuste, une loi de contrôle exploitant une
prédiction, ne compensant pas exactement le retard mais préservant la convergence asymp-
totique. Cette thèse s’articule donc naturellement en deux parties, comme représenté en
Figure 1.2.

Part I. Cette partie aborde le cas d’un retard de commande constant, mais incertain.
Une méthodologie générale de développement de lois de prédiction réalisant une compen-
sation robuste d’un retard d’entrée y est proposée. Cette méthode poursuit et étend des
travaux récents ayant permis une analyse de Lyapunov-Krasovskii des lois de contrôle
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par prédiction. Ces travaux s’appuient sur la représentation du retard par une équa-
tion différentielle partielle de transport, ainsi que sur une transformation backstepping
du contrôle distribué correspondant, et fondent les prémisses d’un schéma d’adaptation
du retard. La méthodologie obtenue est compatible avec diverses autres difficultés que
le système peut présenter et permet, de plus, l’utilisation d’une large gamme de lois
d’adaptation du retard.

Les outils de dimension infinie utilisés dans cette méthodologie générale d’adaptation
sont d’abord présentés individuellement en introduction, avant de détailler l’adaptation
aux paramètres incertains du systèmes dans le Chapitre 3. Puis, dans le Chapitre 4,
nous étudions les lois admissibles d’adaptation du retard, avant de nous concentrer sur la
régulation de sortie dans le Chapitre 5. Dans le Chapter 6, nous proposons une stratégie
de rejet de perturbations. Chaque loi de contrôle est illustrée par des simulations ; deux
exemples de dynamique sont considérés, l’une instable en boucle ouverte et l’autre stable
mais présentant un temps de réponse conséquent, pour souligner les différents mérites de
notre approche.

D’une façon générale, les différents résultats présentés dans cette partie stipulent que
le retard est bien compensé de façon robuste sous réserve que les erreurs d’estimation
réalisées lors du calcul de la prédiction sont suffisamment faibles. De plus, les variations
de l’estimation du retard utilisée lors de cette prédiction doivent être suffisamment lentes.

Enfin, dans le Chapitre 7, la polyvalence de notre approche est mise en exergue par
des résultats expérimentaux obtenus sur banc moteur pour la régulation de la richesse
sur moteur essence. Différentes combinaisons des éléments présentés précédemment sont
déclinées, afin d’illustrer la vaste classe de problèmes que notre méthodologie permet de
traiter.

Part II. Cette partie aborde le cas d’un retard variable dans le temps et accorde une
attention particulière à une famille de retards de transport, pour laquelle le retard est
modélisé sous forme de borne inférieure d’une équation intégrale implicite, d’intégrande
positive. La validité de ce modèle est soulignée par de nombreux exemples de dynamique
de flux, la plupart liés au domaine du contrôle moteur. L’intérêt pratique de ce modèle et
sa compatibilité avec les exigences temps-réel sont illustrés par des essais réalisés au banc
moteur pour l’estimation boucle ouverte du taux de gaz brûlés admission d’un moteur
essence.

Cette famille de retards de transport, ainsi que les spécificités du domaine du contrôle
moteur évoquées ci-dessus, expliquent que nous cherchions à développer une méthodologie
de compensation pour un retard variable. En effet, les outils existants nécessitent une
prédiction de l’état du système sur un horizon temporel variable, dont la longueur dépend
des variations futures du retard. Lorsque ces variations ne sont pas connues ou pas
obtensibles, par exemple lorsque le retard dépendent implicitement du temps comme
fonction de variables exogènes (flux,. . . ), cette longueur ne peut pas être déterminée.

Dans cette thèse, nous proposons d’utiliser la valeur courante du retard comme horizon
de prédiction et prouvons que le retard est alors compensé de façon robuste pourvu que
ses variations soient suffisamment lentes au cours du temps. De plus, dans le cas d’un
retard dépendant de la commande et défini par l’équation intégrale de transport sus-
mentionnée, nous montrons qu’une condition suffisante pour cela est une condition de
petit gain portant sur le gain de rétroaction. Ce résultat est obtenu grâce à des propriétés
de stabilité d’équations différentielles à retard, obtenues par analyse de la dépendance
implicite entre commande et variations du retard.
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Schéma adaptatif de compensation robuste
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Figure 1.2: Le problème considéré dans cette thèse.

Cette partie du manuscrit est organisée comme suit. Le Chapitre 8 présente le modèle
de retarde de transport évoqué ci-dessus, exprimant le retard en fonction de l’historique
des commandes. Puis, dans le Chapitre 9, une utilisation pratique de ce modèle est ex-
posée, afin d’estimer le retard de transport présent dans la dynamique d’un système de
recirculation basse-pression de gaz brûlés pour moteur essence. Le retard est calculé ana-
lytiquement par l’intermédiaire de la loi des gaz parfaits et à l’aide de mesures ponctuelles
de températures et pressions le long de la ligne admission. De nombreux essais sur banc
moteur soulignent l’intérêt et la pertinence de notre modèle. Le chapitre 10 présente une
approche de compensation robuste d’un retard variable, sous réserve que les variations
de ce dernier soient suffisamment lentes. L’étude de cette condition est complétée dans
le cas particulier d’un retard dépendant de la commande et appartenant à la famille de
retard de transport considéré et conduit à une condition finale de petit gain, sous laque-
lle la stabilisation du système est assurée. Enfin, ce résultat est ensuite illustré sur un
exemple classique des systèmes à retard, celui de la douche (ou du bain); le chapitre 11
présente brièvement ce système, puis les résultats de simulation obtenus qui soulignent
les nombreux avantages en termes de performance de notre approche par compensation
robuste pour retard dépendant de la commande.

Les travaux présentés dans ce manuscrit ont fait l’objet des publications suivantes :

• Journaux internationaux avec comité de lecture

1. D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive control scheme for un-
certain time-delay systems”, in Automatica, Vol. 48, Issue 8, pp.1536-1552,
2012

• Conférences internationales avec comité de lecture

1. D. Bresch-Pietri, T. Leroy, J. Chauvin and N. Petit, “Practical delay modeling
of externally recirculated burned gas fraction for Spark-Ignited Engines”, to
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appear in the Proc. of the 11th Workshop on Time Delay Systems 2013
2. D. Bresch-Pietri, T. Leroy, J. Chauvin and N. Petit, “Contrôle de la recircula-

tion de gaz brûlés pour un moteur essence suralimenté”, in Proc. of the Con-
férence Internationale Française d’Automatique 2012, Invited Session Time-
delay systems: applications and theoretical advances

3. D. Bresch-Pietri, J. Chauvin, and N. Petit,“Invoking Halanay inequality to
conclude on closed-loop stability of processes with input-varying delay”, in Proc.
of the 10-th IFAC Workshop on Time Delay Systems 2012

4. D. Bresch-Pietri, J. Chauvin, and N. Petit,“Prediction-based feedback control
of a class of processes with input-varying delay”, in Proc. of the American
Control Conference 2012

5. D. Bresch-Pietri, T. Leroy, J. Chauvin, and N. Petit,“Prediction-based trajec-
tory tracking of External Gas Recirculation for turbocharged SI engines”, in
Proc. of the American Control Conference 2012

6. D. Bresch-Pietri, J. Chauvin, and N. Petit, “Output feedback control of time
delay systems with adaptation of delay estimate”, in Proc. of the 2011 IFAC
World Congress

7. D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive backstepping for uncer-
tain systems with time-delay on-line update laws”, in Proc. of the American
Control Conference 2011

8. D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive backstepping controller
for uncertain systems with unknown input time-Delay. Application to SI en-
gines”, in Proc. of the 49th IEEE Conf. on Decision and Control 2010
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Chapter 2

A quick tour of state prediction for
input delay systems

Chapitre 2 – Un rapide tour d’horizon des techniques de prédiction pour
systèmes à entrée retardée. Ce chapitre introduit brièvement les technique de con-
trôle utilisant une prédiction d’état et aborde leur sensibilité aux erreurs d’estimation du
retard. Nous cherchons ici à donner des éléments de contexte sur le contrôle des systèmes
à entrée retardée pour situer la contribution de cette thèse. Deux pans se dessinent claire-
ment, l’un concernant un schéma adaptatif pour retard constant mais incertain et l’autre
la compensation robuste d’un retard de commande variable. Enfin, ce chapitre contient
une présentation des outils de dimension infinie récemment développés dans la littérature
et utilisés dans ce manuscrit pour développer une analyse de Lyapunov-Krasovskii des lois
de contrôle par prédiction considérées.
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Introduction
This first chapter contains a short description of state prediction control techniques

and a discussion of their sensitivity to delay uncertainties. For sake of simplicity, we
address only stabilization problems and leaves out open-loop and motion planning tech-
niques. The subject under discussion here is well-established and widely described in
the literature. The aim here is not to provide an exhaustive panorama of results but
simply to introduce some background information on control of input delay systems and
implementation considerations. These elements are necessary to situate the contribution
of this thesis. For more details, interested readers are referred to recent monographs on
this topic ([Zhong 06, Michiels 07, Krstic 09a, Watanabe 96]).

We first sketch the principles behind the method by gathering some early results
published in the 1970s.

2.1 Compensation of a (known) constant input delay:
Smith Predictor and its modifications

Consider a constant lag D that delays the input of a continuous linear time-invariant
(LTI) dynamic system

Ẋ(t) =AX(t) +BU(t−D) (2.1)

The basic idea of state prediction is to compensate the time delay D by generating a
control law that enables one to directly reason on the corresponding delay-free case. The
prediction control law

U(t) =KX(t+D) (2.2)

guarantees that, after D units of time, the closed-loop system simply writes without delay

Ẋ(t) = (A+BK)X(t) (2.3)

Thus, after a non-reducible time-lag of D, the transient performances do not depend
anymore on the delay, which is compensated by the prediction.

Illustrative example

To emphasize the merits of this technique, consider the scalar open-loop unstable plant
ẋ = x+ u(t−D). The transient performance of the previous control law is compared to
a simple proportional controller using the same feedback gain in Figure 2.1. The system
is not initially at equilibrium, with x(0) = 1 and, for −D ≤ t ≤ 0, u(t) = 1. This results
into an initial state increase.

When the delay is significantly smaller than the system time constant, the two con-
trollers act similarly (see Figure 2.1(a) with D = 0.05 s). However, the benefits of the
prediction-based control law become visible when the delay is increased (see Figure 2.1(b)
with D = 0.5 s), as the proportional controller performance substantially worsen. In par-
ticular, one can note that the exponential decrease obtained after D units of time with
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Figure 2.1: Simulation results of the closed loop system consisting in the scalar plant
ẋ = x+ u(t−D) and, respectively, a proportional controller or a prediction-based con-
troller. The two controllers employ the same feedback gain K = −2. Two scenarii with
different delays are considered.
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Figure 2.2: The Smith Predictor controller (in the gray box) for a stable transfer function
G(s) = G0(s)e

−Ds with G0 rational. The internal loop of the controller generates a signal
e2 = yr −G0(s)u where G0(s)u is the output of the delay-free system, i.e. the prediction
of the output over a time horizon D. The actual Smith Predictor control law is then
u = K0e2 = K0(y

r − y(t+D)) where −K0 is a stabilizing gain for the delay-free system.
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the prediction-based controller has the exact same rate in both cases. This is because
the performance resulting from the delay compensation (2.3) are, by construction, delay-
independent.

The prediction control method was first introduced by O. J. Smith in 1957 in the
frequency-domain for Single-Input-Single-Output (SISO) and open-loop stable systems
[Smith 57], [Smith 59]. The Smith Predictor originally proposed1 is pictured in Figure 2.2.
The corresponding state-space extension described above was only conceived two decades
later, almost simultaneously, by Manitius and Olbrot [Manitius 79] and Kwon and Pear-
son [Kwon 80] under the name of Finite Spectrum Assignment (FSA)2 and by Artstein
[Artstein 82] as Model Reduction.

2.1.1 Finite spectrum assignment or model reduction
By definition, a delayed differential equation has an infinite spectrum [Hale 71]. The

name FSA highlights the fact that using a state prediction leads to a closed-loop system
with a finite spectrum and that this spectrum can be freely assigned. On the contrary,
a linear state feedback controller u(t) = Kx(t) would result into an infinite spectrum as
the closed-loop dynamics would be Ẋ = AX(t) +BX(t−D). This is the meaning of the
following theorem 3.

Theorem 1. (FSA, Manitius and Olbrot [1979]) The spectrum of the closed-loop system

Ẋ(t) =AX(t) +BU(t−D)

U(t) =KX(t+D) = K

[
eADX(t) +

∫ t+D

t

eA(t+D−s)BU(s−D)ds

]
(2.4)

coincides with the spectrum of the matrix A + BK. Moreover, assuming controllability
(resp. stabilizability) of the pair (A,B) the spectrum of the above closed-loop system can
be placed at any preassigned self-conjugate set of n points in the complex plan (resp. the
unstable eigenvalues of A can be arbitrarily shifted) by a suitable choice of the matrix K.

Equivalently, and more closely to the Smith predictor approach, one can understand
this result by directly considering the predicted system state at time t+D

P (t) =X(t+D) = eADX(t) +

∫ t+D

t

eA(t+D−s)BU(s−D)ds

which is governed by the following free-of-delay dynamics

Ṗ (t) =AP (t) +BU(t)

This transformation is known as model reduction. It is straightforward to compute a
classical state feedback, provided that the pair (A,B) is controllable, in the form

U(t) =KP (t) (2.5)
1Several other versions exist, e.g. to improve performance in case of model mismatch or to reject

disturbances.
2The results presented in [Manitius 79] deal with a slightly different type of system of type

ẋ(t) = Ax(t) +B0u(t) +B1u(t−D). For sake of clarity, we present here a modified version of these
results for B0 = 0.

3Similar results were obtained for the more general class of distributed delays, which input delays are
a particular class of.
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The strong similarities between the two design frameworks (FSA and model reduction)
explain why the two approaches are classically presented together, often even without any
distinction. However, the underlying principles are radically different:

• FSA is inherently an eigenvalue-based approach that focuses on the characteristic
equation of the closed-loop system.

• model reduction is a functional analysis result which uses the operator

L : (Xt, Ut) ∈ C0([−D, 0])2 7→ eADXt(0) +

∫ 0

−D

e−AsBUt(s)ds

whereXt(.) and Ut(.) are functions defined on the interval [−D, 0] byXt(s) = X(t+ s)
and Ut(s) = U(t+ s) for s ∈ [−D, 0]. Equivalence between the original system and
the predicted one is based on the properties of this mapping to ensure stabilization
for the original system.

From these elements, a significant number of improvements and modifications were
proposed and resulted in various control laws that are called prediction-based control
laws. Interested readers are referred to [Palmor 96] for examples.

We now focus on the resulting control law (2.4) or, equivalently, (2.5).

2.1.2 A distributed control law
The feedback law (2.4) can be interpreted as the result of the variation-of-constants

formula, starting at time t, over a time-window of length D. For LTI systems, this
prediction can be made explicitly.

At first sight, choice of the prediction-based control law u(t) = Kx(t+D) might seem
non-implementable. However, a simple change of time leads to

U(t) =K

[
eADX(t) +

∫ t+D

t

eA(t+D−s)BU(s−D)ds

]
=K

[
eADX(t) +

∫ t

t−D

eA(t−s)BU(s)ds

]
(2.6)

which is actually an implementable feedback law, as only past values of the input are
involved in the calculation of the integral. To be more precise, this last expression
defines a Volterra integral equation of the second kind (see [Polyanin 07]) of kernel
K(t− s) = expA(t−s)B and the feedback law is properly defined by this implicit relation.

Owing to the integral term
∫ t

t−D
eA(t−s)BU(s)ds, which can be viewed as a distributed

delay, this input is infinite-dimensional. As a result, the dimension of the spectrum of the
closed-loop system has only been reduced at the expense of the dimension of the definition
set of the input. This integral term is also the main source of practical difficulties.

Two issues arise when considering the implementation of this control law and often
lead to a performance bottleneck.

First, exact knowledge of the delay D is required. This issue has been highlighted
since the seminal work of Smith and is one of the essential purposes of this thesis. We
detail this below.
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Second, discretization of the integral in (2.6) to implement the feedback law may yield
to instability. such integral is widely used throughout this thesis, so we provide some
further details regarding this issue.

Implementation of the integral

Use of a quadratic rule to approximate the integral yields the discrete form

U(t) =K

[
eADX(t) +

∑
i∈In

hie
AθiBU(t− θi)

]
(2.7)

where In is a finite sequence of sets of length (hi) mapping the interval [−D, 0] and
the scalars θi depend on the integration rule selected. The effect of the implementation
(2.7) on stability was fist investigated by Van Assche and co-workers in [Van Assche 99].
Interestingly and non-intuitively, they have shown that the closed-loop system consisting
of (2.1) and the discretized control law (2.7) may be unstable for arbitrarily large values
of n.

This striking fact was analyzed using eigenvalue considerations. When the theoretical
control law (2.4) is replaced by the approximated form (2.7), the finite spectrum property
is lost. Indeed, the corresponding closed-loop system is then a point-wise delayed differen-
tial equation that potentially possesses an infinite number of characteristic roots, like any
time-delay system. While improving the approximation accuracy (by making n larger),
some of the characteristic roots tend to those of the exact closed-loop system, while others
tend to infinity. Depending on the discretization method, unstable characteristic roots
may appear and some of them may tend to infinity while staying on the right half-plane.
If this is the case, instability occurs even for n arbitrarily large.

Van Assche et al. pointed out this mechanism on an example [Van Assche 99]. By
comparing three classical constant-step integration methods, the authors stressed the
importance of the choice of the integration rule.

Alternatively, a necessary and sufficient stability condition that does not depend on
the discrete integration scheme was provided by Michiels et al. [Michiels 03]. Yet, this
condition is only obtained at the expense of severe restrictions on the feasible feedback
gain which involve the value of the delay. As a result, in [Mondié 03], a modification
of the control law was proposed, by adding a low-pass filter to relax this condition. To
avoid numerical instabilities, particular attention of these considerations is required when
using a prediction-based feedback approach. In this thesis, following the comforting re-
sults presented in [Van Assche 99], a trapezoidal approximation is systematically used to
implement the proposed control strategies.

2.1.3 Sensitivity to delay uncertainties
A well-known fact about prediction-based techniques is that they may suffer from be-

ing sensitive to delay mismatch (and, to a lesser extent, to plant parameters uncertainties)
[Palmor 80]. Numerous works investigated the robustness of predictor-based controllers to
such mismatch. Most were devoted to the derivation of an upper-bound of admissible de-
lay mismatch preserving stability, based on analysis in the frequency-domain [Smith 59],
[Owens 82] [Adam 00], [Mondié 01], [Niculescu 01], [Zhong 06].

The main idea of these methods can be summarized as follows. Consider a system
with n states and m inputs. First, define a mismatch ∆ between the actual delay D and
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the one used for prediction D0 = D −∆. The control law can be written as

U(t) =K

[
eA(D−∆)X(t) +

∫ t

t−D+∆

eA(t−ξ)BU(ξ)

]
dξ

and is described in the frequency domain by

[Im −K(sI − A)−1(I − e−(D−∆)(sI−A))B]U(s) =KeA(D−∆)X(s)

After taking the Laplace transform of (2.1), the closed-loop characteristic matrix can be
expressed as

Mchar =

(
sI − A −Be−Ds

−KeA(D−∆) Im −K(sI − A)−1(I − e−(D−∆)(sI−A))B

)
It is then possible to study the resulting characteristic roots and to determine a maximum
admissible value of the error ∆, depending on the feedback gain K and on the system
dynamics.

However, this approach cannot be naturally extended when the delay estimate is
varying over time (e.g. in an attempt to improve the prediction capabilities), because no
frequency-domain tool can capture the variations of D0(t) in a refined manner.

2.1.4 Extension to a broader class of systems
Predictor strategies can be extended to more general dynamics than the relatively

simple but tutorial plant (2.1). We describe these briefly.

Linear time-varying (LTV) systems

By introducing the transition matrix Φ(t, s) of the homogeneous LTV dynamics
Ẋ(t) = A(t)X

∂Φ

∂t
(t, s) =A(t)Φ(t, s) , φ(t, t) = I

the prediction-based control law becomes

U(t) =K

[
Φ(t, t+D)X(t) +

∫ t+D

t

Φ(s, t+D)B(s)U(s−D)ds

]
Even if this expression is not explicit, it is implementable provided that the values of B
over the time-interval [t, t+D] are known. More details can be found in [Artstein 82].

Nonlinear systems

Non-linear versions of the original Smith predictors were developed quite early for
processes [Kravaris 89], [Henson 94]. However, generalization of prediction techniques
to more general classes of systems was only proposed recently [Krstic 09a]. The class
of nonlinear systems considered is the one of forward complete systems (i.e. non-linear
systems that do not escape in finite time for any finite control law or initial conditions
[Angeli 99]) of the form

Ẋ(t) =f(X(t), U(t−D))
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for which a continuous control law κ(X) is known such that the delay-free system
Ẋ = f(X, κ(X)) is globally asymptotically stable. Compensation of the delay is then
achieved via the prediction-based control law

U(t) =κ(P (t))

P (t) =X(0) +

∫ t+D

t

f(X(s), U(s−D))ds = X(0) +

∫ t

t−D

f(P (s), U(s))ds

Again, this control law is implicit but computable.

2.2 Compensation of a time-varying delay
Extension of the prediction to the case of time-varying delays is rather intuitive. The

key is to calculate the prediction over a non-constant time window, accounting for future
variations of the delay. These elements were introduced by Nihtila [Nihtila 91], who
considered the following linear system

Ẋ(t) =AX(t) +Bu(η(t)) , η(t) = t−D(t) (2.8)

For mathematical well-posedness, the time-varying delay is assumed to satisfy the follow-
ing properties:

• the delay function D is differentiable

• the delay D is bounded: 0 ≤ D(t) ≤ Dmax , t ≥ 0 with Dmax > 0.

• the time-derivative of D is strictly upper-bounded by one, Ḋ(t) ≤ 1− δ , δ > 0

This last property ensures that the time derivative of the function η is strictly positive,
as η̇ = 1− Ḋ. Consequently, the causality of system (2.8) is guaranteed: as η is a strictly
increasing function, there is no flashback in the input history. Furthermore, under this
assumption, the function η is invertible and one can consider r(t) = η−1(t).

To obtain a delay-free closed loop system, prediction techniques aim at obtaining
U(η(t)) = KX(t), which naturally results here into the control law

U(t) =KX(r(t)) (2.9)

which can be reformulated as

U(t) =K

[
eA(r(t)−t)X(t) +

∫ r(t)

t

eA(r(t)−s)BU(η(s))ds

]

=K

[
eA(r(t)−t)X(t) +

∫ t

t−D(t)

eA(r(t)−r(s))BU(s)
ds

1− Ḋ(r(s))

]
(2.10)

Remark 1. To illustrate the discussion above, consider the case of a constant delay
D > 0. The inverse of the function η is then simply r(t) = 1 + D, which yields ṙ = 0.
Thus, (2.10) can be rewritten as (2.6).
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Figure 2.3: Example of the delay evolution function (in blue, on the left-hand side figure)
and of the corresponding delay-related functions. In the right-hand panel, the delayed
function η = t−D(t) is plotted along with its inverse r = η−1. As this inverse is computed
from the original function, it is not available at all times.

Remark 2. Again, for the sake of clarity, consider the feedback law U(t) = KX(t+D(t))
that one might be tempted to apply by directly following the approach of the constant delay
case. Then the closed-loop systems can be rewritten as

Ẋ(t) =AX(t) +BU(t−D(t)) = AX(t) +BKX(t−D(t) +D(t−D(t))︸ ︷︷ ︸
6=0 in general

)

The appearance of the term D(t) − D(t − D(t)) highlights the fact that the delay has
changed between the time the input was computed, t − D(t), and the time it reaches the
system, t. As a result, the future variations of the delay have to be taken into account to
compensate the delay.

The various elements presented above are summarized in Figure 2.3 for a given delay
variation.

One point of crucial importance, in particular for implementation, is the calculation
of r(t). This involves future values of the delay, which may not be available.

Witrant proposed a methodology to compute this horizon when a model of the delay
is available [Witrant 05] and Bekiaris-Liberis et al. proposed another approach for state-
dependent delay with joint convergence analysis [Bekiaris-Liberis 12].

2.3 Open questions related to input delay systems
and compensation

As a summary of the elements presented above, one can notice the importance of the
following issues.
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1. for constant input delays : the delay mismatches have been identified has a major
source of performance losses. Even if operational calculus methods exist to evaluate
the maximal admissible mismatch preserving stability, no result is available today on
asymptotic stabilization using (time-varying) delay update laws used in prediction-
based feedbacks. Second, even if several works considered the on-line identification
of either the delay or the parameters, simultaneous adaptation of delay and plant
parameters remains to be done.

2. for time-varying input delays : exact compensation of time-varying delay requires
to anticipate the future variations of the delay, which can only be performed when
delay time-variations are known. The case of unknown (even if structured) delay
variations remains to be addressed. Second, it is also worth noticing that delay
compensation does not naturally extend to the case of input-dependent delay. This
case arises in many transport phenomena, but has never been studied theoretically.
Therefore, robust compensation of input-varying input delay is an open problem.

These are the problems this manuscript focuses on. A large part of our work relies on
an overture that was recently proposed to design a systematic Lyapunov methodology for
input delay system. We now describe these tools.

2.4 Transport representation and backstepping ap-
proach

Recently, in the case of a single input (i.e. U scalar), Krstic interpreted (2.6) as the
result of a backstepping transformation that allows one to use systematic Lyapunov tools
to analyze the stability of input delay systems [Krstic 08a].

Let us introduce a transport representation of the delay phenomenon by defining a
distributed input u(x, t) = U(t + D(x − 1)) for x ∈ [0, 1]. This actuator satisfies the
following partial differential equation (PDE)

Dut(x, t) = ux(x, t)
u(1, t) = U(t)
u(0, t) = U(t−D)

(2.11)

This convective/first-order hyperbolic PDE is simply a propagation equation with a speed
1/D, having boundary condition U(t) at x = 1. It is represented in Figure 2.4. With this
formalism, the LTI system (2.1) can be expressed as

 Ẋ(t) = AX(t) +Bu(0, t)
Dut(x, t) = ux(x, t)
u(1, t) = U(t)

(2.12)

(2.12) represents an ordinary differential equation (ODE) cascaded with a PDE driven
by the input U at its boundary. When the boundary U(t) is chosen as the stabilizing
prediction-based control law (2.6), this coupling is stable, and even exponentially stable
after a finite-time (D units of time).
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e−sD Ẋ = AX + BU(t−D)

convection direction

1 0

x

U(t)

u(1, t)

U(t−D)

u(0, t)

X(t)

Figure 2.4: Representation of the plant with a transport equation accounting for the
delay.

2.4.1 Backstepping transformation
To emphasize the exponential stability resulting from delay compensation, one may

choose to modify the distributed input and to design a transformed actuator w(., t) sat-
isfying the target system Ẋ(t) = (A+BK)X(t) +Bw(0, t)

Dwt(x, t) = wx(x, t)
w(1, t) = 0

(2.13)

Indeed, if such a transformation can be performed, one can observe that the transformed
actuator value is zero in finite time and, after D units of time, exponential convergence
of the plant is ensured by the nominal design (i.e. the Hurwitz matrix A+BK).

Following this idea, a natural modified distributed actuator, which satisfies the same
transport PDE with propagation speed 1/D, is

w(x, t) =u(x, t)−KX(t+Dx)

=u(x, t)−KeADxX(t)−K

∫ t+Dx

t

eA(t+Dx−s)BU(s−D)ds

=u(x, t)−KeADxX(t)−K

∫ x

0

eAD(x−y)Bu(y, t)dy (2.14)

Then, in particular, the boundary condition of (2.13) can be used to obtain the original
control law generating this delay compensation, i.e.

U(t) =u(1, t) = w(1, t) +KX(t+D) = KX(t+D)

which is indeed the prediction-based law (2.2). Due to the boundary condition, one can
now complete a corresponding Lyapunov analysis, which, so far, had never been designed
for prediction-based control laws4.

2.4.2 Lyapunov-Krasovskii analysis
To illustrate the last point, consider the Lyapunov-Krasovskii functional

Γ(t) =X(t)TPX(t) + b

∫ t

t−D

U(s)2ds = X(t)TPX(t) + bD

∫ 1

0

u(s)2ds

4This is not the case for state delay systems or memoryless proportional controllers that may be used
for input delays (in a robustness spirit in the case of small delay), see [Malisoff 09].
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which may be shown, using (2.14), to be equivalent to

V (t) =X(t)TPX(t) + bD

∫ 1

0

(1 + x)w(x, t)2dx

Taking a time derivative of the last functional and using (2.13) jointly with integration
by parts, one obtains

V̇ (t) =−X(t)TQX(t) + 2X(t)TPBw(0, t) + 2b

∫ 1

0

(1 + x)w(x, t)wx(x, t)dx

=−X(t)TQX(t) + 2X(t)TPBw(0, t) +
[
b(1 + x)w(x, t)2

]1
0
− b

∫ 1

0

w(x, t)2dx

≤− λmin(Q)

2
|X(t)|2 −

(
b− 2

λmin(Q)
|PB|2

)
w(0, t)2 − b ‖w(t)‖2

≤−min

{
λmin(Q)

2
, b

}(
|X(t)|2 + ‖w(t)‖2)

by choosing b ≥ 2
λmin(Q)

|PB|2. Successive use of the equivalence between V and |X̃|2 + ‖w(t)‖2

and between V and Γ gives the existence of strictly positive constants R and ρ such that

∀t ≥ 0 ,Γ(t) ≤ RΓ(0)e−ρt

Comparing this approach to the ones presented in Section 2.1, this last methodology
only provides an alternative proof of stabilization of (2.1) while using a predictor-based
control. Nevertheless, this technique presents two major advantages:

• the transport PDE characterizing the distributed input u(x, t) introduces a linear
parametrization of the delay, which is compliant with adaptive control design as
highlighted in [Ioannou 96].

• the transformed state of the actuator w(x, t) is designed to fulfill the boundary
condition w(1, t) = 0, which is of particular interest in Lyapunov analysis as it rep-
resents a stabilizing effect on a diffusion phenomenon. Consequently, this transport
PDE representation of the delay, reformulated with a backstepping transformation,
equips the designer with a tool for Lyapunov-Krasovskii analysis compliant with a
delay-adaptation framework.

2.5 Organization of the thesis/ Presentation of the
contributions

The tools presented above are the main ones used in this thesis to address the open
problems listed in Section 2.3. Following this list, this manuscript is naturally divided in
two parts.

Part I focuses on the case of a constant but uncertain input delay. Exploiting the
certainty equivalence principle, the backstepping tools introduced earlier are employed to
propose a generic adaptive framework for input delay systems. This approach is then illus-
trated by experimental results obtained on test-bench for the Fuel-to-Air Ratio regulation
in Spark-Ignited engines.
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Part II focuses on the case of time-varying input delays and, among them, on an
input-dependent input delay. Robust compensation of these two classes is addressed by
combining the previous Lyapunov tools with Delay Differential Equation (DDE) stabil-
ity results. Special care is taken for a class of transport delays, often involved in flow
processes, modeled by an implicit integral. Relevance of this model is illustrated by
experiments conducted at test bench on an Exhaust Gas Recirculation system for Spark-
Ignited engines. The strategy is then illustrated on a well-known delay-system case study,
the temperature regulation of a shower/bathtub.

By robust compensation, we refer to a prediction-based control law, inspired from the
elements presented above in this chapter, which does not exactly compensate the input
delay but still provides asymptotic convergence of the plant considered. The reasons for
not compensating exactly the delay are either delay uncertainties or delay variations.





Part I

Adaptive control scheme for
uncertain systems with constant

input delay





Introduction

In this part, the general problem of equilibrium regulation of (potentially unstable)
linear systems with an uncertain input delay is addressed. To fulfill this objective, the new
predictor-based technique proposed lately in [Krstic 08a] and [Krstic 08b] and described
in Chapter 2 is used.

Here, this methodology is pursued for an uncertain delay and an implementable form
of the resulting controller is developed, that potentially uses an on-line delay estimate. In
the spirit of [Bresch-Pietri 10], we use a backstepping boundary control corresponding to
a transport PDE with an estimated propagation speed accounting for delay estimation.
This transformation still allows to use the systematic Lyapunov tools presented previously,
to design robust stabilization and adaptation.

Different classical control issues are considered in this part, jointly with delay uncer-
tainty. Each increases the complexity of the controller design. For pedagogical reasons,
these issues are addressed separately, in dedicated chapters (Chapters 3–6) in which the
merits of each corresponding robust input delay compensation are illustrated by simula-
tions results. Of course, various combinations of the elements presented in this part are
possible. Examples of practical use of the proposed general methodology are then given
on an (Spark Ignited) engine control problem, and illustrated experimentally.

Problem Statement
In this part of the thesis, we consider a potentially open-loop unstable LTI input delay

system of the form {
Ẋ(t) =A(θ)X(t) +B(θ)[U(t−D) + d]

Y (t) =CX(t)
(2.15)

where Y ∈ Rm, X ∈ Rn and U is a scalar input. D > 0 is an unknown (potentially long)
constant delay, d is a constant input disturbance and the system matrix A(θ) and the
input vector B(θ) are linearly parameterized under the form

A(θ) = A0 +

p∑
i=1

Aiθi and B(θ) = B0 +

p∑
i=1

Biθi , (2.16)

where θ is a constant parameter belonging to a convex closed set Π = {θ ∈ Π|P(θ) ≤ 0}
included in Rp, where P : Rp → R is a smooth convex function.

The control objective is to have system (2.15) track a given constant set point Y r via
a robust compensation approach, despite uncertainties for the delay D. The control also
has to deal with several other difficulties that may be encountered: (i) uncertainty in
the plant parameter θ; (ii) unmeasured state X of the plant; and (iii) unknown input
disturbance d.
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Several assumptions are formulated following [Bresch-Pietri 09] that apply throughout
subsequent chapters. The first two ensure that the problem is well-posed, while the fourth
is useful for the Lyapunov analysis.

Assumption 1. The set Π is known and bounded. An upper bound D̄ and a lower bound
D > 0 of the delay D are known.

Assumption 2. For a given set point Y r, there exist known functions Xr(θ) and U r(θ)
that are continuously differentiable in the parameter θ ∈ Π and that satisfy, for all θ ∈ Π,

0 =A(θ)Xr(θ) +B(θ)U r(θ) (2.17)
Y r =CXr(θ) (2.18)

Assumption 3. The pair (A(θ), B(θ)) is controllable for every θ ∈ Π and there exists a
triple of vector/matrix functions (K(θ), P (θ), Q(θ)) such that, for all θ ∈ Π,
i) P (θ) and Q(θ) are positive definite and symmetric ;
ii) the following Lyapunov equation is satisfied

P (θ)(A+BK)(θ) + (A+BK)(θ)TP (θ) = −Q(θ)

iii) (K,P ) ∈ C1(Π)2 and Q ∈ C0(Π).

Assumption 4. The following quantities are well-defined

λ = inf
θ∈Π

min {λmin(P (θ)), λmin(Q(θ))}

λ = sup
θ∈Π

λmax(P (θ))

Only one of these assumptions is restrictive: Assumption 3 requires the equivalent
delay-free form of the system (2.15) to be controllable. This is a reasonable assumption
to guarantee the possibility of regulation about the constant reference Y r. As a final
remark, we wish to stress that neither the reference U r considered, nor the state reference
Xr depend on time or delay, because the reference Y r is constant. This point is important
in the control design.

Adaptive methodology principle and organization of the chapters
As detailed in Chapter 2, when delay, plant and disturbance are perfectly known and

system state is fully-measured, the following controller compensates for the delay and
achieves exponential stabilization of system (2.15) after D units of time5

U(t) =KX(t+D)− d = K

[
eADX(t) +

∫ t

t−D

eA(t−s)BU(s)ds

]
− d (2.19)

In the following, applying the certainty equivalence principle ([Ioannou 96, Landau 98]),
we decline different versions of this controller (2.19) to tackle each difficulty listed above.
The aim here is to develop a prediction-based control law stabilizing the plant output to
the set-point Y r, corresponding to the equilibrium (Xr(.), U r(.)) defined in Assumption 2.

To analyze the robustness of the resulting control law and to design delay adaptation,
we aim at exploiting the cascaded ODE-PDE representation introduced in Chapter 2,

5The only difference here is the presence of the term d, counteracting the input bias in (2.15).
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x

1 0

u(0, t) = U(t −D)

û(0, t) = U(t − D̂)

C = 1/D

Ĉ = 1/D̂
u(1, t) =U(t)

=û(1, t)

Figure 2.5: Transport representation of the waiting line at a speed of C = 1/D, and the es-
timate for a constant but overestimated delay D̂ > D corresponding to an underestimated
propagation speed Ĉ = 1/D̂.

together with corresponding backstepping elements. The key element of this framework
is the distributed input u(x, t) = U(t+D(x− 1)), for x ∈ [0, 1]. When, the full actuator
state is known (i.e. the past values of the input over an interval of length equal to
the delay), the systematic adaptive control design proposed in [Bresch-Pietri 09] for an
unknown actuator delay can be applied.

Unfortunately, because the propagation speed 1/D is uncertain, even if the applied
input U(t) is fully known, one cannot deduce the value of u(x, t) for each x ∈ [0, 1] from
it. Consequently, if this distributed input is not measured (which is seldom the case in
applications, especially as this variable is infinite-dimensional), one cannot directly apply
this strategy. Yet, it is still possible to introduce an estimate of the actuator state and to
design the infinite-dimensional elements corresponding to this estimate.

Distributed input estimate and backstepping transformation

Let us define an estimate of the distributed input as û(x, t) = U(t+ D̂(t)(x− 1)), for
x ∈ [0, 1]. This variable is obtained naturally by replacing the delay appearing in the
definition of u(., t) by an estimate D̂, potentially time-varying. This estimate satisfies the
following transport equation

D̂(t)ût(x, t) =ûx(x, t) +
˙̂
D(t)(x− 1)ûx(x, t) (2.20)

û(1, t) =U(t) (2.21)

in which the propagation speed is time- and spatially-varying. This distributed input
estimate is represented in Figure 2.5 for a constant delay estimate and is a key point in
the control design.

By considering the original backstepping transformation (2.14) in Chapter 2, a natural
choice for the backstepping transformation corresponding to the previous distributed input
estimate is

ŵ(x, t) =û(x, t)−KXP (t+ D̂(t)x) (2.22)

where XP (t0) represents a system state prediction at time t0 computed using the delay es-
timate D̂(t) (and, potentially, using additional estimates depending on the arising issues).
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The transformed actuator state satisfies{
D̂(t)ŵt(x, t) = ŵx(x, t) +

˙̂
D(t)(x− 1)ŵx(x, t) + ψ(x, t)

ŵ(1, t) = 0
(2.23)

where ψ aggregates the different terms that may arise due to potential erroneous estimates
when calculating the prediction.

This last equation can be seen as a transport phenomena, similar to the one of the
estimate (2.20), but impacted by a distributed source term ψ. The unforced transport
PDE is naturally stable because of its zero boundary condition, and one can guess that
the same is true for the forced case for both significantly small source term and delay
estimate variations. These are the considerations that are rigorously obtained in the next
chapters.

These elements above have been presented in the paper [Bresch-Pietri 10] and form
the basis of the methodology proposed in this part of the thesis. They are represented as
gray blocks in Figure 2.6.

Organization of the chapters

In the following, besides delay uncertainties, a series of classic issues in the filed
of linear automatic control is considered: model uncertainties, disturbance rejection and
partial state measurement. In addition to the distributed input estimate presented above,
each of the aforementioned regulation issues requires introduction of specific elements. For
clarity, these difficulties are therefore addressed separately in the following chapters.

For each issue, a dedicated implementable solution is proposed and theoretically stud-
ied via a formal proof of convergence, that stresses the role of the various adaptation and
feedback components. Even if each situation represents a different technical challenge, a
common structure guides the convergence proofs detailed in each chapter. To facilitate
reading and comprehension, we provide it here:

1. definition of a backstepping transformation w(., t) of the actuator state, compliant
with the general form (2.22) and based on the certainty equivalence principle, to
obtain the null boundary condition w(1, t) = 0;

2. definition of a Lyapunov equation, involving a suitable set of error variables and
alternative spatial integral norms of some of them;

3. derivation of the corresponding differential error equations (one of them being of
form (2.23));

4. a time derivative of the Lyapunov equation and integration by parts to create neg-
ative upper-bounding terms; and

5. bounding of the remaining positive error terms using Young’s and Cauchy-Schwartz’s
inequality.
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Figure 2.6: The proposed adaptive control scheme. The closed-loop algorithm still uses
a prediction-based control law jointly with distributed parameters, i.e. the estimated
waiting line (gray; Section I). According to the context, a combination of the remaining
blocks (in white), namely a parameter estimate update law (Chapter 3), a delay estimate
update law (Chapter 4), a system state observer (Chapter 5) or a disturbance estimate
(Chapter 6), can be applied. This may also require computation of the transformed state
of the actuator.

Table 2.1: Comparison of the presented results and the corresponding elements of proof.

Problem Error variables Main technicality
under in Lyapunov in the Lyapunov Solution CV

consideration analysis analysis

Parameter creation of error introduction of
adaptation X̃, ẽ, ŵ, ŵx, θ̃ variables (completion a parameter lo. & as.
(Block (θ̂)) of non-vanishing terms) update law

Delay
adaptation X̃, ẽ, ŵ, ŵx, D̃ bounding of | ˙̂

D(t)| Conditions 1 and 2 lo. & as.
(Block (D̂))

study of an
Observer X̃,∆X̂, ẽ, ŵ, ŵx extra state variable extra Lyapunov gl. & exp.

(Block (X̂)) equation
Disturbance additive disturbance incorporation of

estimate X̃, ẽ0, ŵ0, ŵ0,x, d̃ estimate a double integral gl. & as.
(Block (d̂)) in the control law term in the functional

(Abbreviations: CV, convergence; lo., local; gl., global; as. asymptotic; exp.,
exponential.)
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Choice of the variables set in (2) and the bounding realized in (5) are the most elaborate
parts. In particular, the last point is different in each of the contexts and chapters because
of the specific difficulties listed in Table 2.1. This table also aims at facilitating the reading
and comparison of the following chapters.

Corresponding controller elements designed in the following chapters are represented
as white blocks in Figure 2.6. Elements in the gray blocks, which are not problem-specific,
have been presented in the previous section.

The goal of this part is to present a unified framework of these various techniques,
for sake of comparisons of their merits and limitations in the light of their mathematical
analysis. In view of application, the interested reader and the practitioner can simply
make its own selection to address a vast class of possible problems. We illustrate this
point in the last chapter by detailing experiments that were conducted on a test-bench
to control the Fuel-to-Air Ratio of a Spark-Ignited engine.

This part is organized as follows. In Chapter 3, we focus on plant parameter adap-
tation. In Chapter 4, we study admissible delay on-line adaptation scheme, before intro-
ducing an output feedback design in Chapter 5. In Chapter 6, we propose a disturbance
rejection strategy. Each of these designs is illustrated by simulation examples of two dif-
ferent systems: one open-loop unstable plant and a stable but very slow plant. These two
examples highlight the merits of the proposed control strategy. Finally, in Chapter 7, the
versatility of the proposed approach is underlined by experiments covering various cases.



Chapter 3

Control strategy with parameter
adaptation

Chapitre 3 – Stratégie de contrôle avec adaptation aux incertitudes de mod-
èle. Ce chapitre présente une loi de compensation robuste du retard (incertain) avec
adaptation aux paramètres inconnus de dynamique. Les résultats locaux de convergence
asymptotique obtenus sont illustrés en simulation sur un système instable.
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This chapter addresses the case of plant parameters adaptation despite uncertain-
ties on the delay, which yields to the consideration of the plant{

Ẋ(t) =A(θ)X(t) +B(θ)U(t−D)

Y (t) =CX(t)
(3.1)

where, compared to (2.15) we consider the input disturbance d as known and, more
conveniently, equal to zero and the system state X as measured. In (3.1), the plant
parameter θ and the delay D are uncertain.

Several works on the frequency-domain (see [Palmor 96] and more recently [Evesque 03],
[Niculescu 03]) have dealt with an adaptive framework for input delay systems. Yet,
a few have simultaneously considered delay uncertainties and most controllers are not
prediction-based and do not aim to compensate the delay effect. Some time-domain ap-
proaches (lately, [Zhou 09]) have also been proposed, but the same drawbacks apply.
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Here, to achieve regulation despite the uncertainties, we introduce two estimates of
the delay D and the plant parameter θ. For clarity, no particular effort is made to update
the delay estimate, which is kept constant1.

3.1 Controller design
Consider the error variables used below

X̃(t) =X(t)−Xr(θ̂)

e(x, t) = u(x, t)− U r(θ̂) , ê(x, t) =û(x, t)− U r(θ̂) , ẽ(x, t) = u(x, t)− û(x, t)

in which X̃ represents the tracking error, e(., t) and ê(., t) are the distributed input track-
ing errors, and ẽ(., t) is the distributed input estimation error. These are the variables
used to represent the overall system state.

Applying the certainty equivalence principle from the general prediction-based
feedback (2.19), we apply the control law

U(t) =U r(θ̂)−K(θ̂)Xr(θ̂) +K(θ̂)

[
eA(θ̂)D̂X(t) + D̂

∫ 1

0

eA(θ̂)D̂(1−x)B(θ̂)û(x, t)dx

]
(3.2)

and define the transformed state of the distributed input estimate ê by the following
Volterra integral equation of the second kind

ŵ(x, t) =ê(x, t)− D̂

∫ x

0

K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)ê(y, t)dy −K(θ̂)eA(θ̂)D̂xX̃(t) (3.3)

The parameter update law chosen is
˙̂
θ(t) =γθProjΠ(τθ(t)) (3.4)

with
τθ,i(t) = h(t)× (AiX(t) +BiU

r(θ̂)) (3.5)

h(t) =
X̃(t)TP (θ̂)

b2
− D̂K(θ̂)

∫ 1

0

(1 + x)
[
ŵ(x, t) + A(θ̂)D̂ŵx(x, t)

]
eA(θ̂)D̂xdx (3.6)

and γθ > 0, 1 ≤ i ≤ p. In addition, the matrix P is the one considered in Assumption 3,
the constant b2 is chosen such that b2 ≥ 8supθ∈Π|PB(θ)|2/λ and ProjΠ is the standard
projector operator onto the convex set Π

ProjΠ{τθ} = τθ


I, θ̂ ∈ Π̊ or ∇θ̂PT τθ ≤ 0

I − ∇θ̂P∇θ̂P
T

∇θ̂PT∇θ̂P
, θ̂ ∈ ∂Π and ∇θ̂PT τθ > 0

(3.7)

Theorem 3.1.1
Consider the closed-loop system consisting of (3.1), the control law (3.2) and the

update law defined by (3.4)–(3.6). Define the functional

Γ(t) =|X̃(t)|+ ‖e(t)‖2 + ‖ê(t)‖2 + ‖êx(t)‖2 + θ̃(t)2 (3.8)

1i.e. ˙̂
D(t) = 0, which trivially satisfies either Condition 1 or Condition 2 defined later in Chapter 4.

Delay adaptation is addressed specifically in Chapter 4.
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Then there exists γ∗ > 0, δ∗ > 0, R > 0 and ρ > 0 such that, provided the initial state
(X̃(0), e0, ê0, êx,0, θ̃(0)) is such that Γ(0) < ρ, if |D̃| < δ∗ and if γθ < γ∗, then

∀t ≥ 0 Γ(t) ≤ RΓ(0) , (3.9)
lim
t→∞

Y (t) = Y r , lim
t→∞

X̃(t) = 0 and lim
t→∞

[U(t)− U r(θ̂)] = 0 (3.10)

Before proving this theorem, a few comments can be made. First, Theorem 3.1.1
introduces a functional Γ that can be understood as an evaluation of both convergence and
estimation errors. In particular, note the presence of the spatial derivative of the estimate
queue êx in the statement. This quantity is involved in the state variable dynamics
presented below as a result of the estimation of the distributed input.

The stated results are only asymptotic and local; in other words, they require that each
of the state variables is initially sufficiently close to its corresponding set-point (namely,
Xr, U r and the unknown θ). This is the meaning of the condition Γ(0) < ρ. The delay
estimate also needs to be sufficiently close to the true (uncertain) delay, which can be
interpreted as robustness to a delay mismatch.

The main particularity of the above statement lies in introduction of the parameter
update law (3.4)–(3.6) based on the projector (3.7). This operator, commonly found in
adaptive schemes [Ioannou 96], is typical of a Lyapunov adaptive design, which is here
possible here because of the backstepping transformation (3.3), as shown in the following.
Note that the update gain of the parameter estimate has to be upper-bounded to be
compliant with the control design.

Finally, and contrary to the controllers designed in the following, the backstepping
transformation appears explicitly in the control design and is not only an element of
proof. This is because of the adaptive Lyapunov design of the parameter update law.

3.2 Convergence analysis

3.2.1 Error variable dynamics and Lyapunov analysis
To take advantage of the backstepping transformation (designed to fulfill the boundary
condition ŵ(1, t) = 0 from the control law (3.2)), instead of Γ, we use an alternative
functional, which is the Lyapunov-Krasovskii functional we consider from now on,

V (t) =X̃(t)TP (θ̂)X̃(t) + b1D

∫ 1

0

(1 + x)ẽ(x, t)2dx+ b2D̂

∫ 1

0

(1 + x)ŵ(x, t)dx

+ b2D̂

∫ 1

0

(1 + x)ŵx(x, t)dx+ b2|θ̃(t)|2/γθ

where b1 and b2 are positive constants. The boundary conditions of the set (ẽ, ŵ, ŵx) can
easily be obtained via integrations by parts, involving the factor (1+x) under the integrals,
to create upper-bounding negative terms. Before working with this functional, we consider
the dynamics of the variables involved using (3.3) and its inverse transformation

ê(x, t) =ŵ(x, t) +K(θ̂)D̂

∫ x

0

e(A+BK)(θ̂)(x−y)B(θ̂)ŵ(y, t)dy +K(θ̂)e(A+BK)(θ̂)D̂xX̃(t)

(3.11)
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which yields

˙̃X(t) = (A+BK)(θ̂)X̃(t) +B(θ̂)ŵ(0, t) +B(θ̂)ẽ(0, t) + ÃX(t) + B̃u(0, t)− ∂Xr

∂θ̂

˙̂
θ(t)

(3.12){
Dẽt(x, t) = ẽx(x, t)− D̃(t)f(x, t)

ẽ(1, t) = 0

{
D̂ŵt(x, t) = ŵx(x, t)− D̂

˙̂
θ(t)Tg(x, t)− D̂θ̃(t)Tg0(x, t)− D̂K(θ̂)eA(θ̂)D̂xB(θ̂)ẽ(0, t) (3.13)

ŵ(1, t) = 0


D̂ŵxt(x, t) = ŵxx(x, t)− D̂

˙̂
θ(t)Tgx(x, t)− D̂θ̃(t)Tg0,x(x, t)

−D̂2KA(θ̂)eA(θ̂)D̂xB(θ̂)ẽ(0, t) (3.14)

ŵx(1, t) = D̂
˙̂
θ(t)Tg(1, t) + D̂θ̃(t)Tg0(1, t) + D̂K(θ̂)eA(θ̂)D̂B(θ̂)ẽ(0, t) (3.15)

where Ã =
∑p

i=1Aiθ̃i(t), B̃ =
∑p

i=1Biθ̃i(t) and f, g and g0 are defined as

f(x, t) =
ŵx(x, t)

D̂
+KB(θ̂)ŵ(x, t) + D̂

∫ x

0

K(A+BK)(θ̂)e(A+BK)(θ̂)D̂(x−y)B(θ̂)ŵ(y, t)dy

+K(A+BK)(θ̂)e(A+BK)(θ̂)D̂xX̃(t)

g0,i(x, t) =K(θ̂)eA(θ̂)D̂x(AiX(t) +Biu(0, t))

gi(x, t) =D̂

∫ x

0

ŵ(y, t)

[(
∂K

∂θ̂i

+K(θ̂)AiD̂(x− y)

)
eA(θ̂)D̂(x−y)B(θ̂) +K(θ̂)eA(θ̂)D̂(x−y)Bi

+D̂

∫ x

y

[(
∂K

∂θ̂i

+K(θ̂)AiD̂(x− ξ)

)
eA(θ̂)D̂(x−ξ)B(θ̂) +K(θ̂)eA(θ̂)D̂(x−ξ)Bi

]
K(θ̂)e(A+BK)(θ̂)D̂(ξ−y)B(θ̂)dξ

]
dy − D̂

∫ x

0

K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)
dU r

dθ̂i

(θ̂)dy

−K(θ̂)eA(θ̂)D̂x∂X
r

∂θ̂i

+
dU r

dθ̂i

(θ̂)

+

(
D̂

∫ x

0

([
∂K

∂θ̂i

+K(θ̂)AiD̂(x− y)

]
eA(θ̂)D̂(x−y)B(θ̂) +K(θ̂)eA(θ̂)D̂(x−y)Bi

)
× K(θ̂)e(A+BK)(θ̂)D̂ydy +

[
∂K

∂θ̂i

+K(θ̂)AiD̂x

]
eA(θ̂)D̂x

)
X̃(t)
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Taking a time derivative of V , after suitable integration by parts and using the update
law (3.4)-(3.6), one obtains

V̇ (t) ≤ −(λ|X̃(t)|+ b1ẽ(0, t)
2 + b1 ‖ẽ(t)‖2 + b2ŵ(0, t)2 + b2 ‖ŵ(t)‖2 + b2 ‖ŵx(t)‖2)

+ 2| ˙̂θ(t)|
∣∣∣∣P (θ̂)

∂Xr

∂θ̂

∣∣∣∣ |X̃(t)|+ 2b2|h(t)||B̃||ẽ(0, t) + ŵ(0, t) +K(θ̂)X̃(t)|

+ 2|X̃(t)TPB(θ̂)(ŵ(0, t) + ẽ(0, t))|+ 2b1|D̃|
∫ 1

0

(1 + x)|ẽ(x, t)||f(x, t)|dx

+ b2

(
2D̂| ˙̂θ(t)|

∫ 1

0

(1 + x)|ŵ(x, t)||g(x, t)|dx

+ 2D̂|ẽ(0, t)|
∫ 1

0

(1 + x)|ŵ(x, t)||K(θ̂)eA(θ̂)D̂xB(θ̂)|dx
)

+ b2

(
2D̂| ˙̂θ(t)|

∫ 1

0

(1 + x)|ŵx(x, t)||gx(x, t)|dx

+ 2D̂2|ẽ(0, t)|
∫ 1

0

(1 + x)|ŵx(x, t)||KA(θ̂)eA(θ̂)D̂xB(θ̂)|dx
)

+ 2b2ŵx(1, t)
2 +

p∑
i=1

| ˙̂θi(t)|
∥∥∥∥∂P∂θ̂i

∥∥∥∥
∞
|X̃(t)|2

Furthermore, applying Young’s inequality, Cauchy-Schwartz’s inequality and Agmon’s in-
equality ŵ(0, t)2 ≤ 4 ‖ŵx(t)‖2 (with the help of the fact that ŵ(1, t)2 = 0), one can obtain
the inequalities below. The positive constants M1, . . . ,M10 are independent on initial con-
ditions and the functional V0 is defined as V0(t) = |X̃(t)|2 + ‖ẽ(t)‖2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2.

2|h(t)||B̃||ẽ(0, t) + ŵ(0, t) +K(θ̂)X̃(t)| ≤ M1|θ̃(t)|
(
V0(t) + ẽ(0, t)2

)
2|X̃(t)TPB(θ̂)(ŵ(0, t) + ẽ(0, t))| ≤ λ

2
|X̃(t)|2 +

4 ‖PB‖2
∞

λ
(ŵ(0, t)2 + ẽ(0, t)2)

2

∫ 1

0

(1 + x)|ẽ(x, t)||f(x, t)|dx ≤ M2V0(t)

2D̂

∫ 1

0

(1 + x)|ŵ(x, t)||g(x, t)|dx ≤ M3 (V0(t) + ‖ŵ(t)‖)

2D̂|ẽ(0, t)|
∫ 1

0

(1 + x)|ŵ(x, t)||K(θ̂)eA(θ̂)D̂xB(θ̂)|dx ≤ M4ẽ(0, t)
2 + ‖ŵ(t)‖2 /2

2D̂

∫ 1

0

(1 + x)|ŵ(x, t)||gx(x, t)|dx ≤ M5V0(t)

2D̂2|ẽ(0, t)|
∫ 1

0

(1 + x)|ŵx(x, t)||KA(θ̂)eA(θ̂)D̂xB(θ̂)|dx ≤ M6ẽ(0, t)
2 + ‖ŵx(t)‖2 /2

2ŵx(1, t)
2 ≤ M7| ˙̂θ(t)|2 (V0(t) + 1) +M8ẽ(0, t)

2 +M9|θ̃(t)|2
(
|X̃(t)|2 + ‖ŵx(t)‖2

)
(3.16)

| ˙̂θ(t)| ≤ γθM10(V0(t) + |X̃(t)|+ ‖ŵ(t)‖+ ‖ŵx(t)‖) (3.17)
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With these inequalities, by choosing b2,2 ≥ 8‖PB‖2∞
λ

and defining M11 = 2
∥∥∥P∂Xr/∂θ̂

∥∥∥
∞

and M0 = pmax
1≤i≤p

∥∥∥∂P/∂θ̂i

∥∥∥
∞

, the previous inequality yields

V̇ (t) ≤ −λ
2
|X̃(t)|2 − b1 ‖ẽ(t)‖2 − b2

2
ŵ(0, t)2 − b2

2
‖ŵ(t)‖2 − b2

2
‖ŵx(t)‖2 +M0| ˙̂θ(t)||X̃(t)|2

+M11| ˙̂θ||X̃(t)| −
(
b1 − b2

(
1

2
+M1|θ̃(t)|+M4 +M6 +M8

))
ẽ(0, t)2

+ (b2M1|θ̃(t)|+ b1|D̃|M2)V0(t) + b2| ˙̂θ(t)|
(
M3 (V0(t) + ‖ŵ(t)‖) +M5 (V0(t) + ‖ŵx(t)‖)

)
+ b2M7| ˙̂θ(t)|2 (V0(t) + 1) + b2M9|θ̃(t)|2V0(t)

To obtain a negative definite expression, we choose b1 > b2(1/2 + 2M1 ‖θ‖∞ + M4 +
M6 + M8) and define η = min {λ/2, b1, b2/2} . Then, using (3.17), Young’s inequality
|θ̃(t)| ≤ ε2

2
+ 1

2ε2
(V2(t)− η2V0(t)), involving ε2 > 0, yields

V̇ (t) ≤−
[
η − b1M2|D̃| − γθn1(γθ)− b2(M1 + 2M9 ‖θ‖∞)

(
ε2
2

+
1

2ε2
V2(t)

)]
V0(t)

−
[
η2b2,2

2ε2
(M1 + 2M9 ‖θ‖∞)− γθn2(γθ)− 5M7γθM10V0(t)

]
V0(t)

2 (3.18)

where the function n1 and n2 are defined as n1(γθ) = 2M10(M0 + 3M11 + 4M3 + 4M5 +
4γθM7M10) and n2(γθ) = M10(M0 + 2M11 + 5M3 + 5M5 + 13M7γθM10). Consequently,
if the delay estimate error satisfies |D̃(t)| < η

b1M2
, choosing the update gain γθ and the

parameter ε2 such that

γθ <γ
∗ = min

{
1,
η − b1M2|D̃|

n1(1)

}
(3.19)

ε2 <min

{
2(η − b1M2|D̃| − γθn1(γθ))

b2(M1 + 2M9 ‖θ‖2
∞)

,
η2b2

2γθn2(γθ)
(M1 + 2M9 ‖θ‖∞)

}
and restricting the initial condition to

V (0) ≤min

{
ε2

[
2
η − b1M2|D̃| − γθn1(γθ)

b2(M1 + 2M9 ‖θ‖2
∞)

− ε2

]
, η2

η2b2(M1 + 2M9 ‖θ‖∞)− 2ε2γθn2(γθ)

10ε2M7γθM10

}
(3.20)

one finally obtains two non-negative functions µ1 and µ2 such that

V̇ (t) ≤ −µ1(t)V0(t)− µ2(t)V0(t)
2 (3.21)

and consequently

∀t ≥ 0 , V (t) ≤ V (0) (3.22)

3.2.2 Equivalence and convergence result
To obtain the stability result stated in Theorem 3.1.1, one can prove the equiva-

lence of the two functionals V and Γ, that is, the existence of (a, b) ∈ R∗
+

2 such that
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aV1(t) ≤ Γ1(t) ≤ bV1(t), for t ≥ 0. First, considering (3.3) and its inverse (3.11) and
applying Young’s inequality, one can establish the following inequalities

‖ê(t)‖2 ≤r1|X̃(t)|2 + r2 ‖ŵ(t)‖2 (3.23)
‖êx(t)‖2 ≤r3|X̃(t)|2 + r4 ‖ŵ(t)‖2 + r5 ‖ŵx(t)‖2 (3.24)
‖ŵ(t)‖2 ≤s1|X̃(t)|2 + s2 ‖ê(t)‖2 (3.25)
‖ŵx(t)‖2 ≤s3|X̃(t)|2 + s4 ‖ê(t)‖2 + s5 ‖êx(t)‖2 (3.26)

where r1, r2, r3, r4, r5, s1, s2, s3, s4 and s5 are positive constants. From this, one directly
obtains

Γ(t) ≤|X̃(t)|2 + 2 ‖ẽ(t)‖2 + 3 ‖ê(t)‖2 + ‖êx(t)‖2 + θ̃2(t)

≤max {1 + 3r1 + r3, 3r2 + r4, r5, 2}
min {λ, b1D, b2D, b2/γθ}

V (t)

V (t) ≤max
{
λ̄+ 2s1b1D̄ + 2s3b2D̄, 2s5b2D̄, 4b1D + 2s2b1D̄ + 2s4b2D̄, b2/γθ

}
Γ(t)

This gives the desired stability property (3.9), with R = b/a.

We conclude using Barbalat’s Lemma on the variables |X̃(t)| and Ũ(t). By integrating
(3.21) from 0 to +∞, it is straightforward to show that both signals are square integrable.
Then, consider the following equations

d|X̃(t)|2

dt
=2X̃(t)

(
A(θ)X(t) +B(θ)u(0, t)− ∂Xr

∂θ̂

˙̂
θ

)
dŨ(t)2

dt
=2Ũ(t)

(
K(θ̂)eA(θ̂)D̂ ˙̃X(t) +

p∑
i=1

˙̂
θi(t)Gi(t) +H0(t)

)
where

Gi(t) =
∂K

∂θ̂i

[
eA(θ̂)D̂X̃(t) + D̂

∫ 1

0

eA(θ̂)D̂(1−y)B(θ̂)ê(y, t)dy

]
+K(θ̂)

[
D̂Aie

A(θ̂)D̂X̃(t) + D̂

∫ 1

0

eA(θ̂)D̂(1−y)(AiD̂(1− y)B(θ̂) +Bi)ê(y, t)dy

−D̂
∫ 1

0

eA(θ̂)D̂(1−y)B(θ̂)
dU r

dθ̂i

(θ̂)dy

]
H0(t) =K(θ̂)

∫ 1

0

eA(θ̂)D̂(1−y)B(θ̂)êx(y, t)dy

From (3.22), it follows that |X̃(t)|, ‖ẽ(t)‖, ‖ŵ(t)‖ and ‖ŵx(t)‖ are uniformly bounded.
Then, with (3.23), we obtain the uniform boundedness of ‖ê(t)‖ and, consequently, of
‖û(t)‖. With (4.2), we conclude that U(t) is uniformly bounded, and, therefore, that
u(0, t) = U(t − D) is bounded for t ≥ D̄. Using the projection operator properties,
one can deduce that G1, . . . , Gp and H0 are uniformly bounded for t ≥ max

{
D, D̂

}
.

Finally, from (3.4)–(3.6), one obtains the uniform boundedness of ˙̂
θi for 1 ≤ i ≤ p. It is

therefore easy to conclude that both d|X̃(t)|2/dt and dŨ(t)2/dt are uniformly bounded
for t ≥ max

{
D, D̂

}
. Consequently, one obtains, with Barbalat’s Lemma, that X̃(t) → 0

and Ũ(t) → 0 as t→∞.
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3.2.3 Main specificity of the proof and other comments
The essence of the proof is based on the backstepping transformation of the actuator

state. As shown in Section 2.4.2, this transformation facilitates use of a class of Lyapunov-
Krasovskii techniques taking advantage of the particular null boundary condition. These
tools are then particularly useful for analysis of the closed-loop stability.

Contrary to the following chapters, this backstepping transformation is more than an
analysis tool here. The present proof uses an actual Lyapunov design of the parameter
update law and consequently the transformed distributed input explicitly appears in the
update law (3.6).

In detail, the (X̃, ŵ, ŵx) dynamics (3.12), (3.13), (3.14) introduce bilinear terms of the
form θ̃i(t)(AiX(t) +Biu(0, t)) (for 1 ≤ i ≤ p). Because of the presence of the unknown
term u(0, t), it is impossible to exactly cancel these terms via the parameter update law,
which itself appears in the time-derivative as a sum of terms θ̃iτθ,i. However, one can still
create vanishing terms, namely e(0, t), by incorporating the control reference U r(θ̂) in
the parameter update law, as in (3.5). Because these terms arise in the three dynamics,
X̃, ŵ(., t) and ŵx(., t) appear in the definition of h in (3.6). In other words, the function
h aggregates all the terms appearing as factors of θ̃ in the error variable dynamics.

A point worth noting is that the creation of vanishing terms cannot be directly applied
to a non-constant trajectory. Indeed, in this context, the reference distributed input
ur(x, t, θ̂) depends explicitly on time and space. Then the quantity ur(0, t, θ̂) is unknown
and cannot be used in the parameter update law as done above.

One parameter estimation error term also occurs in ŵx(1, t)
2, as (3.15) points it out.

Its quadratic form is inconsistent with a Lyapunov design. Consequently, its treatment
requires introduction of the intermediate function V0 and a constraint on the initial con-
dition. Treatment of the delay estimation error D̃ directly yields the condition stated in
Theorem 3.1.1.

The main calculation difficulty is due to cubic terms because of the quantity ŵx(1, t)
2.

Various bounds can be used to express these in polynomial form in the V0 variables. The
bounds presented in (3.18) have been relatively roughly chosen. Consequently, the pro-
posed expression for the bound for the update gain γ∗ (3.19) and for the initial condition
(3.20) are not the least conservative ones.

3.3 Illustrative example
In this section, to illustrate the merits, the practical interest and the feasibility of the

proposed adaptive control scheme, we consider an open-loop unstable systems of order
three with an unknown time delay, as originally proposed in [Huang 95] and [Huang 97]

Y (s) =
e−0.5s

(5s− 1)(2s+ 1)(0.5s+ 1)
U(s)

Control is designed to regulate the system around the set-point Y r = 1. We compare
the simulation results obtained for both the PID proposed in [Huang 95] and the control
strategy proposed in [Huang 97], called a three-element controller in the following.
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3.3.1 State-space representation
The controller proposed in [Huang 97] was designed specifically for a first- and second-

order-delayed unstable plant. Consequently, for control purposes, the authors used the
effective following approximation of the plant

Y (s) ≈ e−0.939s

(5s− 1)(2.07s+ 1)
U(s) =

e−Ds

(as− 1)(Ts+ 1)
U(s)

The stable part of the transfer function is here approximated by a first-order plus delay
plant, using a closed-loop identification technique and a least mean-square optimization
in the frequency domain. Huang and Chen searched for controller settings using this
approximated model, so we consider the same model for comparison and consider the
plant parameters as uncertain (with a 10% uncertainty interval).

Our first step is derivation of a state-space realization of this transfer function. To
match the previous framework, we choose the following realization

Ẋ(t) =

(
0 1

aT

1 a−T
aT

)
X(t) +

(
1

aT

0

)
U(t−D) (3.27)

Y (t) =(0 1)X(t) (3.28)

This formulation is consistent with the linear parametrization form (2.16), with the pa-
rameter θ = 1

aT
(1 a− T )T ∈ R2 and the matrices

A(θ) =

(
0 θ1

1 θ2

)
= A0 + A1θ1 + A2θ2 B(θ) =

(
θ1

0

)
= B1θ1

We focus on the reference corresponding to the output set point Y rn which can be simply
determined as

Xr(θ) =

[
−θ2

1

]
Y r and U r(θ) = −Y r

We consider that the plant (3.27) is fully measured.

3.3.2 Control law with parameter adaptation
The delay D is uncertain but is known to belong to the interval [D, D̄] = [0.8, 1.1].

Its estimate is taken as D̂ = 1.
Considering a 10% error interval on the parameters a and T yields a definition of the

convex set Π = [0.05, 0.15]× [0.2, 0.4] for the parameter θ.
The closed-loop system (3.1), the control law (3.2) and the update law are defined

through (3.4)–(3.6) with

τθ,1(t) =h(t)× (A1X(t)−B1Y
r)

τθ,2(t) =h(t)× A2X(t)

The integrals in (3.2) and (3.6) are calculated with a trapezoidal discretization scheme.
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Figure 3.1: Simulation results for control of system (3.27) starting from X(0) = [0 0]T ,
u(., 0) = 0 and θ̂(0) = [0.08 0.258]. The constant delay estimate is D̂ = 1. The
controller gain K(θ̂) is chosen according to an LQR criterion and the update gain is
chosen as γθ = 10−4.

Table 3.1: Performances in tracking for the different controllers : Integral Absolute Error
(IAE) and 5% time-response.

Proposed strategy Three-elements controller PID
IAE [-] 2.77 3.04 5.37
T5% 8 8.02 14.81

Simulation results are reported in Figure 3.1 for θ̂(0) = [0.08 0.258] and an unknown
plant parameter of θ = [0.097 0.28] which represents an error of approximately 15%.
In general, the performance of the controller is consistent with the properties stated in
Theorem 3.1.1. The slight overshoot observed during the transient at approximately 4-5
s is due to the parameter adaptation lag.

When convergence of the system state and control is eventually achieved (approx.
12s), the estimate θ̂(t) also converges, which is expected from the update law (3.4)–(3.6).
Nevertheless, a multiparameter estimation is not obtained, as is well-known in adaptive
control [Ioannou 96]. In particular, θ̃2(t) converges to zero for the considered system, but
θ̃1(t) does not. This is consistent with the dynamics given above. By examining (2.17)–
(2.18) in Assumption 2 and comparing it to the plant (3.27) jointly with the convergence
result of Theorem 3.1.1, one can infer the convergence of θ̂2 to θ2, but not of θ̂1.

Table 3.1 shows that this control strategy compares favorably to the PID and the
alternative feedback law proposed in [Huang 97]. Furthermore, it is worth noting that
the performances obtained here are not the best achievable, as the controller was not
tuned for speed convergence but was merely used to illustrate the mechanism.



Chapter 4

Control strategy with an online
time-delay update law

Chapitre 4 – Stratégie de contrôle avec adaptation en ligne de l’estimation
du retard. Dans ce chapitre, l’intégration d’une loi d’évolution du retard estimé dans
la stratégie de commande est étudiée, ainsi que son impact sur la stabilité en boucle
fermée. On montre qu’une large gamme de loi d’adaptation peut être considérée, sous
réserve que les variations de l’estimation soient suffisamment lentes. Ce résultat lo-
cal est illustré en simulation pour une loi particulière d’adaptation inspirée de méthodes
d’identification/optimisation.
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This chapter focuses on derivation of a delay estimate and its integration in the
proposed general prediction-based control law. We consider the plant{

Ẋ(t) =AX(t) +BU(t−D)

Y (t) =X(t)
(4.1)

where, compared to (2.15), we consider the plant and the input disturbance d as perfectly
known (more conveniently, d = 0) and the system state X as fully-measured.
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As shown below, a Lyapunov-based synthesis of the delay update law in the spirit
of [Bresch-Pietri 09] is not possible without the knowledge of the distributed input u.
Instead, to improve the delay estimation, one can use an optimization-based update law
(e.g. gradient methods) or exploit some knowledge about delay stochastic properties in
the sense of the methods presented in [O’Dwyer 00]. These techniques are shown here
to be compliant with the proposed adaptive control scheme, but at the expense of extra
assumptions bearing on the delay initial estimate (required to be close enough to the
unknown delay value).

This is the main result of this chapter, based on Conditions 1 and 2, presented below
which cover relatively large classes of delay update laws.

4.1 Controller design
Following (2.19) and the certainty equivalence principle, we use the control law

U(t) =U r −KXr +KD̂(t)

∫ 1

0

eAD̂(t)(1−x)Bû(x, t)dx+KeAD̂(t)X(t) (4.2)

where the update law for the delay estimate is characterized by one of the following growth
conditions expressed in terms of the error variables

X̃(t) = X(t)−Xr , e(x, t) = u(x, t)− U r , ê(x, t) = û(x, t)− U r

ẽ(x, t) =u(x, t)− û(x, t)

Condition 1. There exist positive constants γD > 0 and M > 0 such that

˙̂
D(t) =γDProj[D,D̄] {τD(t)}

|τD(t)| ≤M
(
|X̃(t)|2 + ‖e(t)‖2 + ‖ê(t)‖2 + ‖êx(t)‖2

)
where Proj[D,D̄] is the standard projection operator on the interval [D, D̄].

Condition 2. There exists positive constants γD > 0 and M > 0 such that

˙̂
D(t) =γDProj[D,D̄] {τD(t)}

∀t ≥ 0, τD(t)D̃(t) ≥ 0 and |τD(t)| ≤M

where Proj[D,D̄] is the standard projection operator on the interval [D, D̄].

The following result was described in a less general form in [Bresch-Pietri 10]. The
main difference is the form of delay update law used: int the latter case, only one particular
law is proposed1, whereas both Condition 1 and Condition 2 allow considerations of a large
number of laws.

1This particular delay update law originates from the case in which the (infinite) state of the transport
PDE is known, applying the certainty equivalence principle. In the case of regulation, this update law
can be expressed as

τD(t) =−
∫ 1

0

(1 + x)ŵ(x, t)KeAD̂(t)xdx
[
AX̃(t) +Bê(0, t)

]
which satisfies Condition 1.
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Theorem 4.1.1
Consider the closed-loop system consisting of (4.1), the control law (4.2), the actuator
state estimate (2.20)–(2.21) and a delay update law satisfying either Condition 1 or
Condition 2. Define

Γ(t) =|X̃(t)|2 + ‖e(t)‖2 + ‖ê(t)‖2 + ‖êx(t)‖2 + D̃(t)2

Then there exist γ∗ > 0, R > 0 and ρ > 0 such that if 0 < γD < γ∗ and if the initial
state satisfies Γ(0) < ρ, then

∀t ≥ 0, Γ(t) ≤ RΓ(0) (4.3)
Y (t) →

t→∞
Y r, X(t) →

t→∞
Xr and U(t) →

t→∞
U r (4.4)

From a comparison of this result to Theorem 3.1.1, several remarks can be made.
First, it is evident that similar tools are introduced to formulate the two statements. The
functional Γ also evaluates the system state, but, as expected, the delay estimation error
is included in the functional in place of the parameter.

Theorem 4.1.1 states an asymptotic and local result, as the functional Γ has to be
small enough initially.

Condition 1 allows updating of the delay estimate while preserving stability. This
condition cannot be checked directly, as some of the signals involved in the upper bound
are unavailable. For strict implementability, an alternative constructive choice could be
to satisfy the more restrictive assumption τD(t) ≤M

(
|X̃(t)|+ ‖ê(t)‖2 + ‖êx(t)‖2

)
. Con-

versely, Condition 2 allows consideration of sharper update laws provided that they im-
prove in the estimation, which is consistent with numerous delay identification techniques
[O’Dwyer 00].

Use of an online time-delay update-law that satisfies Condition 2 should allow identi-
fication of the unknown delay and thus facilitate larger leeway for control (i.e. advanced
feedforward strategies). In this context, Condition 1 would then ensure that small com-
putational errors in the delay update law do not jeopardize the stability of the controller.
For both cases, Theorem 4.1.1 requires this delay update law to be slow enough (γD < γ∗)
to guarantee that it does not negatively affect the controller.

4.2 Convergence analysis

4.2.1 Error dynamics and Lyapunov analysis
Following the main steps summarized in Table 2.1, in the following we use a back-

stepping transformation of the actuator state that satisfies a Volterra integral equation of
the second kind,

ŵ(x, t) =ê(x, t)−KD̂(t)

∫ x

0

eAD̂(t)(x−y)Bê(y, t)dy −KeAD̂(t)xX̃(t) (4.5)
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together with the inverse transformation

ê(x, t) =ŵ(x, t) +KD̂(t)

∫ x

0

e(A+BK)D̂(t)(x−y)Bŵ(y, t)dy +Ke(A+BK)D̂(t)xX̃(t) (4.6)

designed to fulfill the boundary condition ŵ(1, t) = 0 for control law (4.2). This motivates
the definition of the following candidate functional

V (t) =X̃(t)TPX̃(t) + b1D

∫ 1

0

(1 + x)ẽ(x, t)2dx

+ b2D̂(t)

∫ 1

0

(1 + x)ŵ(x, t)2dx+ b2D̂(t)

∫ 1

0

(1 + x)ŵx(x, t)
2dx+ D̃(t)2 (4.7)

where P is defined in Assumption 3 and b1 and b2 are positive coefficients.
First, consider the dynamics of the variables involved in (4.7), which can be written,

using (4.5) and (4.6), as

˙̃X(t) = (A+BK)X̃(t) +Bẽ(0, t) +Bŵ(0, t) (4.8){
Dẽt(x, t) = ẽx(x, t)− D̃(t)f(x, t)− ˙̂

D(t)D(x− 1)f(x, t)

ẽ(1, t) = 0
(4.9){

D̂(t)ŵt(x, t) = ŵx(x, t)− D̂(t)
˙̂
D(t)g(x, t)− D̂(t)KeAD̂(t)xBẽ(0, t)

ŵ(1, t) = 0
(4.10) D̂(t)ŵxt(x, t) = ŵxx(x, t)− D̂(t)

˙̂
D(t)gx(x, t)− D̂(t)2KAeAD̂(t)xBẽ(0, t)

ŵx(1, t) = D̂(t)
˙̂
D(t)g(1, t) + D̂(t)KeAD̂(t)Bẽ(0, t)

(4.11)

where the functions f and g can be expressed, according to (4.5) and (4.6), using the set
of variables (ẽ, ŵ, ŵx) as follows

f(x, t) =
ŵx(x, t)

D̂(t)
+KBŵ(x, t) +K(A+BK)e(A+BK)D̂(t)xX̃(t)

+ D̂(t)

∫ x

0

K(A+BK)e(A+BK)D̂(t)(x−y)Bŵ(y, t)dy

g(x, t) = (1− x)f(x, t) + D̂(t)K

∫ x

0

eAD̂(t)(x−y)B(y − 1)f(y, t)dy +KAxeAD̂(t)xX̃(t)

+

∫ x

0

K(I + AD̂(t)(x− y))eAD̂(t)(x−y)B

[
ŵ(y, t) + D̂(t)

∫ y

0

Ke(A+BK)D̂(t)(y−ξ)Bŵ(ξ, t)dξ

+Ke(A+BK)D̂(t)yX̃(t)
]

Taking a time derivative of V and using suitable integrations by parts, one obtains from



4.2. Convergence analysis 53

the dynamic equations (4.8)-(4.11)

V̇ (t) = −X̃(t)TQX̃(t) + 2X̃(t)TPB [ẽ(0, t) + ŵ(0, t)] + b1

(
− ‖ẽ(t)‖2 − ẽ(0, t)2

− 2D̃(t)

∫ 1

0

(1 + x)f(x, t)ẽ(x, t)dx+ 2
˙̂
D(t)D

∫ 1

0

(1− x2)f(x, t)ẽ(x, t)dx

)
+ b2

(
− ‖ŵ(t)‖2 − ŵ(0, t)2 − 2D̂(t)

˙̂
D(t)

∫ 1

0

(1 + x)g(x, t)ŵ(x, t)dx

− 2D̂(t)

∫ 1

0

(1 + x)KeAD̂(t)xBẽ(0, t)ŵ(x, t)dx

)
+ b2

(
2ŵx(1, t)

2 − ŵx(0, t)
2 − ‖ŵx(t)‖2

−2D̂(t)
˙̂
D(t)

∫ 1

0

(1 + x)gx(x, t)ŵx(x, t)dx− 2D̂(t)2

∫ 1

0

(1 + x)KAeAD̂(t)xBẽ(0, t)ŵx(x, t)dx

)
+ b2

˙̂
D(t)

∫ 1

0

(1 + x)[ŵ(x, t)2 + ŵx(x, t)
2]dx− 2D̃(t)

˙̂
D(t)

The magnitude of the resulting non-negative terms can be bounded. Indeed, using
Young and Cauchy-Schwartz inequalities, one can obtain the following inequalities, where
M1, . . . ,M6 are positive constants independent of the initial conditions,

2X̃(t)TPB [ẽ(0, t) + ŵ(0, t)] ≤ λmin(Q)

2
|X̃(t)|2 +

4 ‖PB‖2

λmin(Q)
(ẽ(0, t)2 + ŵ(0, t)2)

2

∫ 1

0

(1 + x)|f(x, t)ẽ(x, t)|dx ≤ M1

(
|X̃(t)|2 + ‖ẽ(t)‖2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2

)
2

∫ 1

0

(1− x2)|f(x, t)ẽ(x, t)|dx ≤ M1

(
|X̃(t)|2 + ‖ẽ(t)‖2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2

)
2D̂(t)

∫ 1

0

(1 + x)|g(x, t)ŵ(x, t)|dx ≤ M2

(
|X̃(t)|2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2

)
2D̂(t)

∫ 1

0

(1 + x)
∣∣∣KeAD̂(t)xBẽ(0, t)ŵ(x, t)

∣∣∣ dx ≤ M3ẽ(0, t)
2 + ‖ŵ(t)‖2 /2

2ŵx(1, t)
2 ≤ M4

(
˙̂
D(t)2

(
|X̃(t)|2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2

)
+ ẽ(0, t)2

)
2D̂(t)

∫ 1

0

(1 + x)|gx(x, t)ŵx(x, t)|dx ≤ M5

(
|X̃(t)|2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2 + ŵx(0, t)

2
)

2D̂(t)2

∫ 1

0

(1 + x)
∣∣∣KAeAD̂(t)xBẽ(0, t)ŵx(x, t)

∣∣∣ dx ≤ M6ẽ(0, t)
2 + ‖ŵx(t)‖2 /2

Consequently, if one defines V0(t) = |X̃(t)|2 + ‖ẽ(t)‖2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2, the previous
ineequality yields

V̇ (t) ≤ −λmin(Q)

2
|X̃(t)|2 − b1 ‖ẽ(t)‖2 − b2

2
‖ŵ(t)‖2 − b2

2
‖ŵx(t)‖2

−

(
b2 −

4 ‖PB‖2

λmin(Q)

)
ŵ(0, t)2 −

(
b1 −

4 ‖PB‖2

λmin(Q)
− b2M3 − b2M4 − b2M6

)
ẽ(0, t)2

+
(
b1|D̃(t)|M1 + b1D̄| ˙̂

D(t)|M1 + b2| ˙̂
D(t)|M2 + b2M4

˙̂
D(t)2 + b2M5| ˙̂

D(t)|+ 2b2| ˙̂
D(t)|

)
V0(t)

− 2D̃(t)
˙̂
D(t)− b2

(
1− | ˙̂

D(t)|M5

)
ŵx(0, t)

2 (4.12)
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Conveniently, to make the terms in ẽ(0, t)2 and ŵ(0, t)2 vanish, one can choose constant co-
efficients b1 and b2 such that b2 = 8‖PB‖2

λmin(Q)
and b1 > b2

(
1
2

+M3 +M4 +M6

)
The techniques

for treating the remaining non-negative terms slightly depend on whether Condition 1 or
Condition 2 is satisfied. We now distinguish the two cases.

4.2.2 Delay update law satisfying Condition 1
First, considering (4.5)-(4.6) and applying Young’s inequality, one can establish the fol-
lowing inequalities

‖ê(t)‖2 ≤r1|X̃(t)|2 + r2 ‖ŵ(t)‖2 (4.13)
‖êx(t)‖2 ≤r3|X̃(t)|2 + r4 ‖ŵ(t)‖2 + r5 ‖ŵx(t)‖2 (4.14)
‖ŵ(t)‖2 ≤s1|X̃(t)|2 + s2 ‖ê(t)‖2 (4.15)
‖ŵx(t)‖2 ≤s3|X̃(t)|2 + s4 ‖ê(t)‖2 + s5 ‖êx(t)‖2 (4.16)

where r1, r2, r3, r4, r5, s1, s2, s3, s4 and s5 are positive constants. Using (4.13) and (4.14),
Condition 1 (with M > 0) can be reformulated as

| ˙̂
D(t)| ≤ γDMV0(t)

which, with η = min {λmin(Q)/2, b1, b2/2}, yields

V̇ (t) ≤ −
(
η − b1|D̃(t)|M1 − 2|D̃(t)|γDM

)
V0(t) + γDM

(
b2M2 + b1D̄M1 + b2M5 + 2b2

)
V0(t)

2

+ b2M4γ
2
DM

2V0(t)
3 − b2 (1− γDMV0(t)M5) ŵx(0, t)

2

Furthermore, we use the following bound, where ε1 > 0,

|D̃(t)| ≤ε1
2

+
1

2ε1
(V (t)− ηV0(t)) (4.17)

and obtain

V̇ (t) ≤ −
(
η − (b1M1 + 2γDM)

(
ε1
2

+
V (t)

2ε1

))
V0(t)− b2 (1− γDMV0(t)M5) ŵx(0, t)

2

−
(

(b1M1 + 2γDM1)
η

2ε1
− γDM(b2M2 + b1D̄M1 + b2M5 + 2b2)− b2M4γ

2
DM

2V0(t)

)
V0(t)

2

By choosing ε1 such that

ε1 <min

{
2η

b1M1 + 2γDM
,

η(b1M + 2γDM)

2γDM(b2M2 + b1D̄M1 + b2M5 + 2b2)

}
and restricting the initial condition to

V (0) < min

{
ε1

(
2η

b1M1 + 2γDM
− ε1

)
,

η

b2M4γ2
DM

2

(
(b1M1 + 2γDM)

η

2ε1
− γDM(b2M2 + b1D̄M1 + b2M5 + 2b2)

)
,

η

γDMM5

}
we conclude that there exist non-negative functions µ1 and µ2 such that

V̇ (t) ≤− µ1(t)V0(t)− µ2(t)V0(t)
2 (4.18)

and finally
∀t ≥ 0 , V (t) ≤ V (0) (4.19)

This gives the conclusion.
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4.2.3 Delay update law satisfying Condition 2
Inequality (4.12), together with (4.17), gives

V̇ (t) ≤−
(
η − b1M1

(
ε1
2

+
V (t)

2ε1

)
− γDM(b1D̄M1 + b2(M2 + γDMM4 +M5 + 2))

)
V0(t)

− b2 (1− γDMM5) ŵx(0, t)
2

Consequently, by choosing the delay update gain γD and the parameter ε1 such that

γD <min

{
η

M(b1D̄M1 + b2(M2 +MM4 +M5 + 2))
,

1

MM5

, 1

}
ε1
2
<
η − γDM(b1D̄M1 + b2(M2 + γDMM4 +M5 + 2))

b1M1 + 2γDM

and restricting the initial condition to satisfy

V (0) < 2ε1

(
η − γDMb1D̄M1

b1M1

− ε1
2

+
γDMb2(M2 + γDMM4 +M5 + 2)

b1M1

)
one finally obtains

V̇ (t) ≤− µ(t)V0(t) (4.20)

where µ is a non-negative function. Consequently,

∀t ≥ 0 , V (t) ≤ V (0) (4.21)

This gives the conclusion.

4.2.4 Equivalence and convergence result
Stability results for the Lyapunov function V have been provided in (4.19) and (4.21)

respectively. In view of the proof of Theorem 4.1.1, as previously, we now show the
equivalence of the two functionals V and Γ.

Using (4.13)-(4.16), one directly obtains this property as follows

Γ(t) ≤|X̃(t)|2 + 2 ‖ẽ(t)‖2 + 3 ‖ê(t)‖2 + ‖êx(t)‖2 + D̃(t)2

≤max {1 + 3r1 + r3, 3r2 + r4, r5, 2}
min {λmin(P ), b1D, b2D, 1}

V (t)

V (t) ≤max
{
λmax(P ) + 2s1b1D̄ + 2s3b2D̄, 4b1D + 2s2b1D̄ + 2s4b2D̄, 2s5b2D̄, 1

}
Γ(t)

This gives the desired stability property (4.3) with R = b/a.
We can now conclude the proof of Theorem 4.1.1, by applying Barbalat’s Lemma to

the variables |X̃(t)|2 and Ũ(t)2. Integrating (4.18) and (4.20) from 0 to +∞, we can
directly conclude that both quantities are integrable. Furthermore, from (4.8), one has

d|X̃(t)|2

dt
=2X̃(t)T ((A+BK)X̃(t) +Bẽ(0, t) +Bŵ(0, t))

From (4.19) or (4.21), it follows that |X̃(t)|, ‖ẽ(t)‖, ‖ŵ(t)‖ and ‖ŵx(t)‖ are uniformly
bounded. Then, according to (4.13), we obtain the uniform boundedness of ‖ê(t)‖ and
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consequently of ‖û(t)‖. From (4.2), we conclude that U(t) is uniformly bounded, and
therefore that ẽ(0, t) = U(t − D) − U(t − D̂(t)) is bounded for t ≥ D̄. Furthermore,
from the definition (4.5), we obtain the uniform boundedness of ŵ(0, t) for t ≥ D̄ and of
d(|X̃(t)|2)/dt for t ≥ D̄. Finally, using Barbalat’s lemma, we conclude that X̃(t) → 0 as
t→∞.

Similarly, from (4.2), one can obtain

dŨ(t)2

dt
=2Ũ(t)

(
KeAD̂(t) ˙̃X(t) + D̂(t)G0(t) +H0(t)

)
with

G0(t) =K

[
eAD̂(t)AX̃(t) +

∫ 1

0

eAD̂(y)(1−y)B(y − 1)êx(y, t)dy

+

∫ 1

0

(I + AD̂(t)(1− y))eAD̂(t)(1−y)Bê(y, t)dy

]
H0(t) =K

∫ 1

0

eAD̂(t)(1−y)Bêx(y, t)dy

Using (4.14), we deduce from above that ‖êx(t)‖ is uniformly bounded. Therefore, it is
straightforward to obtain the uniform boundedness of G0 and H0 and the one of dŨ(t)2/dt,
using Assumption 1 and the previous arguments. Then, applying Barbalat’s Lemma, we
conclude the Ũ(t) → 0 as t→∞. This concludes the proof of Theorem 4.1.1.

4.2.5 Main specificity of the proof of Theorem 4.1.1 and other
comments

The transformed state of the actuator plays a key role in the Lyapunov analysis and in
the emergence of negative bounding terms in particular. However, compared to the proof
presented in the previous chapter, this backstepping transformation is only a generic tool
for studying stability and does not play any constructive role in the control design.

Here, the main difficulties stem from treatment of the delay update law ˙̂
D(t) and the

delay estimate error D̃(t). These two difficulties arise from the same fact: the dynamics
of ẽ results in a bilinear term in V̇ , namely a D̃(t)ẽ(., t), that is difficult to handle in a
Lyapunov design [Ioannou 06]; this has been used in previous studies in which this term is
linear, as it was assumed that ẽ(., t) is measured [Bresch-Pietri 09, Krstic 09b]. The first
difficulty is addressed by the formulation of Condition 1 and Condition 2. The second one
implies both the definition of the intermediate functional V0 and the restriction imposed
on the initial condition. Furthermore, a direct consequence is the necessity to invoke
Barbalat’s Lemma to transform the stability (4.3) into the asymptotic convergence (4.4).

4.3 Illustrative example
We consider the same illustrative example as in Chapter 3 in which the following

open-loop unstable system under state-space representation was considered

Ẋ(t) =

(
0 1

aT

1 a−T
aT

)
X(t) +

(
k

aT

0

)
U(t−D) (4.22)

Y (t) =(0 1)X(t) (4.23)
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where a and T positive parameters and the time value of the time-delay D = 0.939 is
unknown, but is supposed to belong to the known interval [D, D̄] = [0.8, 1.1].

4.3.1 Delay update law design
We focus here on the design of a particular delay update law satisfying Condition (2).

For this, we define the cost function

φ : [0,+∞)× [D, D̄] → R,

(t, D̂) 7→|XP (t, D̂)−X(t)|2 =

∣∣∣∣eA(t−D̂)X(D̂) +

∫ t

D̂

eA(t−s)BU(s− D̂)ds−X(t)

∣∣∣∣2
where XP (t, D̂) is a (t − D̂)−units of time ahead prediction of the system state, using
X(D̂) as the initial condition and assuming that the actual delay value is D̂(t). Then,
using a steepest descent algorithm, one can take

τD(t) =− γD(XP (t, D̂)−X(t))× ∂XP

∂D̂
(t, D̂) (4.24)

∂XP

∂D̂
=eAtBU(0)−BU(t− D̂)−

∫ t

D̂

AeA(t−τ)BU(τ − D̂)dτ

where these expressions are directly implementable.

This choice is based on comparison of two versions of a signal, one (measured) cor-
responding to the unknown delay D and another computed with a prediction using the
controlled delay D̂(t). The descent algorithm provides an accurate estimation of the un-
known delay provided that the initial delay estimate is sufficiently close to the true value.
In particular, this condition, which is compliant with the one stated in Theorem 4.1.1,
guarantees that no extraneous local minimum interferes with the minimization process.

4.3.2 Simulation results
Simulation results are reported in Figure 4.1. The tracked trajectory is a periodic

signal, with the period set to highlight transient behaviors. It is evident that the delay
estimate eventually converges to the unknown delay. The most visible improvements
in the estimation occur immediately after step changes in the reference signal. This is
consistent with the update law, as the cost function shows the most significant gradient
at these instants. This identification extends the possibilities for regulation, as accurate
tracking of any time-varying smooth trajectory is then achievable.

In general, the performance of the controller is consistent with the properties stated
in Theorem 4.1.1.
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Figure 4.1: Simulation results for control of system (4.22), starting from X(0) = [0 0]T ,
u(., 0) = 0 and D̂(0) = 1. The gradient-based delay update law (4.24) is used, with
γD = 50 and the controller gain K is chosen according to an LQR criterion.
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Output feedback strategy

Chapitre 5 – Stratégie de retour de sortie. L’extension d’une loi de contrôle par
prédiction au retour de sortie est réalisée dans ce chapitre. Les résultats de convergence
obtenus ici sont globaux et exponentiels, sous réserve que l’erreur d’estimation du retard
de commande soit suffisamment faible. Nous illustrons les performances de cette loi de
contrôle sur un système de réchauffeur dont la dynamique (stable) a fait l’objet de tests
d’identification sur banc moteur.
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In this chapter, we consider the more general case of partial measurement of the
system state X and design an output feedback version of the prediction-based controller.
The plant considered here is {

Ẋ(t) =AX(t) +BU(t−D)

Y (t) =CX(t)
(5.1)

where, compared to (2.15), we consider the plant as known (and certain) and the input
disturbance d known and, more conveniently, equal to zero. The output dimension m is
supposed to be strictly inferior to the state dimension n.

The control design we propose originates from the delay-compensation observer form
previously described in [Klamka 82] [Watanabe 81] and incorporates modifications corre-
sponding to the presence of an input in the plant.
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5.1 Controller design
First, using the estimate waiting line introduced in (2.20)–(2.21), we define the fol-

lowing observer for the system state
˙̂
X(t) =AX̂(t) +Bû(0, t)− L(Y (t)− CX̂(t)) (5.2)

where the vector gain L is defined through the following additional assumption.

Assumption 5. The pair (A,C) is observable and L ∈ Rn×m is a stabilizing gain.

Applying the certainty equivalence principle, we use the control law

U(t) =U r −KXr +K

[
eAD̂X̂(t) + D̂

∫ 1

0

eAD̂(1−y)Bû(y, t)dy

]
(5.3)

and introduce several error variables,

∆X(t) = X(t)−Xr , ∆X̂(t) = X̂(t)−Xr , X̃(t) = X(t)− X̂(t)

Theorem 5.1.1
Consider the closed-loop system, consisting of (5.1), the plant estimate (5.2) and the

control law (5.3). Define

Γ(t) =|∆X(t)|2 + |∆X̂(t)|2 + ‖e(t)‖2 + ‖ê(t)‖2 + ‖êx(t)‖2 (5.4)

Then there exist δ∗ > 0, R > 0 and ρ > 0 such that, if |D̃| < δ∗, then for any initial
conditions one has

∀t ≥ 0, Γ(t) ≤ RΓ(0)e−ρt (5.5)

and, consequently, Y (t) → Y r and X̃(t) → 0 as t→∞.

Again, the statement comprises a functional Γ that evaluates the overall system. The
functional contains the state observation error.

Compared to the previous chapters, two main differences should be noted: the con-
vergence is now global (provided that the delay estimate is chosen close enough to the
uncertain delay, which can be understood here as robustness to delay mismatch) and
exponential. The reasons for these differences are detailed above.

5.2 Convergence analysis

5.2.1 Error dynamics and Lyapunov analysis
Following similar lines to the proof of the previous results (summarized in Table 2.1),

we define the following candidate Lyapunov functional

V (t) =∆X̂(t)TP1∆X̂(t) + b0X̃(t)P2X̃(t) + b1D

∫ 1

0

(1 + x)ẽ(x, t)2dx

+ b2D̂

∫ 1

0

(1 + x)[ŵ(x, t)2 + ŵx(x, t)
2]dx (5.6)
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where b0, b1 and b2 are positive coefficients, (P1, Q1) = (P,Q) is defined in Assumption 3
and the symmetric definite matrix P2 satisfies the following Lyapunov equation, with Q2

a given symmetric definite positive matrix,

P2(A+ LC) + (A+ LC)TP2 =−Q2 (5.7)

The transformed state of the actuator is then defined through the following Volterra
integral equation of the second kind

ŵ(x, t) =ê(x, t)− D̂

∫ x

0

KeAD̂(x−y)Bê(y, t)dy −KeAD̂x∆X̂(t) (5.8)

which satisfies the boundary property ŵ(1, t) = 0, taking into account the control law
(5.3). First, we consider this transformation jointly with its inverse to obtain the dynamics
of the variables in (5.6)

˙̃X(t) = (A+ LC)X̃(t) +Bẽ(0, t)

d∆X̂

dt
= (A+BK)∆X̂(t) +Bŵ(0, t)− LCX̃(t){

Dẽ(x, t) =ẽx(x, t)− D̃f(x, t)

ẽ(1, t) =0{
D̂ŵt(x, t) =ŵx(x, t) + D̂KeAD̂xLCX̃(t)

ŵ(1, t) =0{
D̂ŵxt(x, t) =ŵxx(x, t) + D̂2KAeAD̂xLCX̃(t)

ŵx(1, t) =− D̂KeAD̂LCX̃(t)

where the function f can be expressed in terms of (ŵ, ŵx) in the form

f(x, t) =
ŵx(x, t)

D̂
+KBŵ(x, t) +K(A+BK)e(A+BK)D̂x∆X̂(t)

+ D̂

∫ x

0

K(A+BK)e(A+BK)D̂(x−y)Bŵ(y, t)dy

Taking a time derivative of V and using suitable integrations by parts, one obtains

V̇ (t) =−∆X̂(t)TQ1∆X̂(t) + 2∆X̂(t)TP1Bŵ(0, t)− 2∆X̂(t)TP1LCX̃(t)

+ b0

(
−X̃(t)TQ2X̃(t) + 2X̃(t)P2Bẽ(0, t)

)
+ b1

(
−‖ẽ(t)‖2 − ẽ(0, t)2 − 2D̃

∫ 1

0

(1 + x)ẽ(x, t)f(x, t)dx

)
+ b2

(
−‖ŵ(t)‖2 − ŵ(0, t)2 + 2D̂

∫ 1

0

(1 + x)ŵ(x, t)KeAD̂xLCX̃(t)dx

)
+ b2

(
2ŵx(1, t)

2 − ŵx(0, t)
2 − ‖ŵx(t)‖2 + 2D̂2

∫ 1

0

(1 + x)ŵx(x, t)KAe
AD̂xLCX̃(t)dx

)
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Choosing b2 ≥ 4|P1B|2/λ1, b0 ≥ 16 |P1LC|2
λ1λ2

, one gets

V̇ (t) ≤ −λ1

4
|∆X̂(t)|2 − b0λ2

4
|X̃(t)|2 − b1 ‖ẽ(t)‖2 −

(
b1 −

2|P2B|2

λ2b0

)
ẽ(0, t)2 − b2 ‖ŵ(t)‖2

− b2
2
ŵ(0, t)2 + 2b2ŵx(1, t)

2 − b2 ‖ŵx‖2 − b2ŵx(0, t)
2 + 2b1|D̃|

∫ 1

0

(1 + x)|ẽ(x, t)||f(x, t)|dx

+ 2b2D̂

∫ 1

0

(1 + x)|KeAD̂xLCX̃(t)ŵ(x, t)|dx

+ 2b2D̂(t)2

∫ 1

0

(1 + x)|KAeAD̂(t)xLCX̃(t)ŵx(x, t)|dx

Applying Young’s and Cauchy-Schwartz’s inequalities, one can show that there exist pos-
itive constants M1,M2,M3 and M4 that are independent on initial conditions such that

2

∫ 1

0

(1 + x)|ẽ(x, t)||f(x, t)|dx ≤M1

(
|∆X̂(t)|2 + ‖ẽ(t)‖2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2

)
2D̂

∫ 1

0

(1 + x)|KeAD̂xLCŵ(x, t)dx| ≤M2|X̃(t)|2 + ‖ŵ(t)‖2 /2

2ŵx(1, t)
2 ≤M3|X̃(t)|2

2D̂2

∫ 1

0

(1 + x)|KAeAD̂xLCŵx(x, t)|dx ≤M4|X̃(t)|2 + ‖ŵx(t)‖2 /2

One can use the last inequalities to bound the resulting positive terms in the last expres-
sion of V̇ . By choosing b1 ≥ 2|P2B|2

λ2b0
and b0 ≥ 8b2

λ2
(M2 +M3 +M4), we define the quantities

V0(t) =|∆X̂(t)|2 + |X̃(t)|2 + ‖ẽ(t)‖2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2 (5.9)
η = min {λ1/4, b0λ2/8, b1, b2/2}

and obtain

V̇ (t) ≤−
(
η − b1M1|D̃|

)
V0(t)

Consequently, if we assume D̃ < η
2b1M1

= δ∗, we can finally conclude that

V̇ (t) ≤− η

2
V0(t) ≤ −

ηV (t)

2 max
{
λmax(P1), b0λmax(P2), 2b1D, 2b2D̂

}
This establishes the existence of ρ > 0 such that

∀t ≥ 0 , V (t) ≤ V (0)e−ρt (5.10)

This concludes the proof of Theorem 5.1.1.

5.2.2 Equivalence and convergence
In view of obtaining the exponential stability result stated in Theorem 5.1.1, we prove

that the two functionals Γ and V are equivalent, in other words that there exist a > 0
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and b > 0 such that ∀t ≥ 0, aV (t) ≤ Γ(t) ≤ bV (t). This is straightforward and follows
the same lines as in Chapters 3 and 4. Then, using (5.10), one directly obtains

Γ(t) ≤bV (t) ≤ bV (0)e−ρt ≤ b

a
Γ(0)e−ρt

which gives the desired exponential convergence result with R = b/a. This concludes the
proof of Theorem 5.1.1 without the need to invoke Barbalat’s Lemma, as was done earlier,
because the Lyapunov analysis directly provides asymptotic stability.

5.2.3 Main specificity and other comments
The main challenge in this chapter has been the introduction of a second error vari-

able to account for the state estimation error. This additional variable is treated in the
proof according to the dedicated Lyapunov equation (5.7), highlighting the stability of its
internal dynamics.

In fact, this stability is directly related to the global and exponential convergence
of the overall system. In the previous chapters and the following one, the existence of
estimation error variables, which were impossible to compensate, motivated the definition
of a “truncated” functional V0 to express a restriction on the initial condition. The
resulting bound on the time derivative of the Lyapunov functional then appears as a
function of this truncated functional, which cannot be directly compared to the original
Lyapunov one. Nevertheless, in the present case, there are no such terms because the
state estimation error is asymptotically stable. Therefore, the intermediate functional V0

defined in (5.9) does not need to be truncated and is directly equivalent to the Lyapunov
functional V .

5.3 Illustration : control of an air heater
For illustration, we present an automotive engine control problem. The system con-

sidered is an air heater that uses electrical resistance of power φ to heat the intake air. As
shown in Appendix A, thermal exchange between the air and the electrical device can be
efficiently represented by an asymptotically stable third-order plus delay transfer function

G(s) =
KH(Tzs+ 1)

a3s3 + a2s2 + a1s+ 1
e−Ds (5.11)

In practice, the delay varies due to both transport phenomena and communication lags.
This variability is treated here as an uncertainty. Furthermore, as mentioned in Ap-
pendix A, the plant parameters may be subject to large variations. However, careful
identification of the gain is possible. Then, because the plant is asymptotically stable for
every value of the parameters, updating of the parameters in the control design is not
necessary. Therefore, for clarity, we consider the plant as perfectly known.

The control objective is to have the output of the system (air temperature) reach a
set-point Tref as fast as possible. The described context motivates the use of the proposed
prediction-based approach. Because of the third-order dynamics and the fact that only
the outlet temperature of the gas is measured, an observer design is clearly necessary if
one desires to reach good performances.
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5.3.1 State-space representation
We consider a canonical state-space realization of the previous process using the three-

dimensional state

X =

 Y (t)

Ẏ (t)

Ÿ (t)−KH
Tz

a3
u


and define the corresponding dynamics matrices

A =

 0 1 0
0 0 1
− 1

a3
−a1

a3
−a2

a3

 , B =

 0
KH

Tz

a3
KH

a3
−KHTz

a2

a2
3

 and C = (1 0 0) (5.12)

With this representation, reconstruction of the last two coordinates of the system state
is necessary and requires an observer design. Finally, for a given output temperature set
point Y r = Tref , the corresponding equilibrium in the state space is

Ur =
1

KH

Y r and Xr =

 Y r

0

−Tz θ̂1

a3
Y r


5.3.2 Simulation results

Simulation results for the feedback strategy are reported in Figure 5.1. For simplic-
ity, we consider a given operating point for the heater (i.e. a constant gas velocity),
which results in a constant delay of D = 10 s and constant coefficients a3 = 1560,
a2 = 9300, a1 = 250 and KH = 0.075. The system is assumed to be initially at the origin
X(0) = [0 0 0] and is erroneously estimated as X̂(0) = [0 0.1 0.1]T . Finally, the
delay is overestimated with D̂ = 15 s.

First, one can observe that the response time of the system is considerably improved
by the feedback strategy. Second, the effect of the delay estimation error is particularly
notable at the beginning of the observer response.

From a more general point of view, this behavior is consistent with that usually ob-
tained for the design of a linear system observer.
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Figure 5.1: Simulation results for control of plant (5.11) represented in the form of (5.12).
The plant is supposed to be initially at zero, namely X(0) = [0 0 0]T , u(., 0) = 0; but
if initially erroneously estimated with X̂(0) = [0 0.1 0.1]. The constant input delay
D = 10 s is overestimated with D̂ = 15 s. The controller gain K is chosen according to
an LQR design, while the observer gain is constant at L = [5 − 33 200]T .





Chapter 6

Input disturbance rejection

Chapitre 6 – Rejet de perturbation Ce chapitre aborde la problématique du rejet de
perturbation pour une loi de contrôle de type prédictif. Nous considérons seulement le cas
simple d’une perturbation constante portant sur l’entrée et obtenons une loi d’adaptation
de ce biais permettant la compensation robuste du retard de commande. Les résultats
globaux de convergence asymptotique obtenus sont illustrés en simulation sur une dy-
namique de réchauffeur.
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In this chapter, we focus on compensation of a constant unknown bias acting on
the system input. A number of studies have dealt with complex external disturbances for
linear disturbances on delay systems [Pyrkin 10], even in a nonlinear context [Bobtsov 10].
Nevertheless, these works consider the delay value as known. The aim here is to give some
directions to fill this gap by considering the simple case of a constant disturbance.

We consider the plant

{
Ẋ(t) =AX(t) +B[U(t−D) + d]

Y (t) =X(t)
(6.1)

where, compared to (2.15) we consider the plant as perfectly known and the system state
X as measured.
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6.1 Controller design

To reject the disturbance d, we introduce a dedicated estimate in the control law{
U(t) = U0(t)− d̂(t)

U0(t) = U r −KXr +KeAD̂X(t) +KD̂
∫ 1

0
eAD̂(1−x)Bû0(x, t)dx

(6.2)

and define the corresponding distributed actuator corresponding to the control prediction
part U0, namely, for x ∈ [0, 1] and t ≥ 0, u0(x, t) = U0(t + D(x − 1)), û0(x, t) = U0(t +
D̂(x − 1)), ê0(x, t) = û0(x, t) − U r and ẽ0(x, t) = u0(x, t) − û0(x, t). The estimate d̂ is
chosen as

˙̂
d(t) =γdτd(t) (6.3)

τd(t) =
X̃(t)TPB

b2
− D̂

∫ 1

0

(1 + x)[ŵ0(x, t) + AD̂ŵ0,x(x, t)]Ke
AD̂xBdx (6.4)

Theorem 6.1.1
Consider the closed-loop system consisting of (6.1) and the control law (6.2) with

(6.3)-(6.4). Define

Γ(t) = |X̃(t)|2 + ‖e0(t)‖2 + ‖ê0(t)‖2 + ‖ê0,x(t)‖2 + d̃(t)2

+

∫ t

t−D

∫ t

s

[
|X̃(r)|2 + ‖ê0(r)‖2 + ‖ê0,x(r)‖2

]
drds

Then there exist δ∗ > 0 and γ∗ > 0 such that, provided that |γd| < γ∗ and |D̃| < δ∗,

∀t ≥ 0 , Γ(t) ≤ RΓ(0) ,

lim
t→∞

X(t) = Xr and lim
t→∞

U(t) = U r

The previous theorem gives global asymptotic convergence (except for the delay esti-
mation error, which is required to be sufficiently small). The disturbance estimate update
law is chosen through a Lyapunov design, as in Chapter 3. It is inspired by the well-known
result that an integral stabilizing controller for a linear system rejects any constant dis-
turbance [Kailath 80]. The delay-free form of the system is stabilized by the X̃ term of
update law (6.3)–(6.4), whereas the rest of the update law (6.4) accounts for the delay
existence. The similarity between this update law and the one proposed in Chapter 3 is
evident in (3.4)–(3.6) because the estimation errors in the two cases have a similar impact
on the dynamics.

The main novelty is the introduction of a double integral term in the functional Γ.
This term does not help to characterize the system state, as it is more or less redundant
with the first one, but is useful in the Lyapunov analysis, as shown below. Besides, a
limitation on the update gain (γd) is still present and has an impact on the integrator
gain.
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6.2 Convergence analysis

6.2.1 Error dynamics and Lyapunov analysis
Before working with a Lyapunov-Krasovskii functional, we introduce again a backstepping
transformation of the actuator state

ŵ0(x, t) =ê0(x, t)− D̂

∫ x

0

KeAD̂(x−y)Bê0(y, t)dy −KeAD̂xX̃(t) (6.5)

Using this transformation, (2.15) can be expressed as

˙̃X(t) =(A+BK)X̃(t) +B [ẽ0(0, t) + ŵ0(0, t)] +Bd̃(t) +B
[
d̂(t)− d̂(t−D)

]
(6.6)

In details, (6.6) can now be viewed as the result of four distinct factors:

• the stabilized dynamics (the A+BK-term);
• the mismatch between the delay and its estimate, namely Bẽ(0, t);
• the mismatch between the disturbance and its estimate, d̃(t); and
• the delay effects over the disturbance rejection (non-synchronization between the

estimate and the plant).

Now, define the following Lyapunov-Krasovskii functional

V (t) = X̃(t)TPX̃(t) +
b2
γd

d̃(t)2 + b1D

∫ 1

0

(1 + x)ẽ0(x, t)
2dx+ b2D̂

∫ 1

0

(1 + x)ŵ0(x, t)
2dx

+ b2D̂

∫ 1

0

(1 + x)ŵ0,x(x, t)
2dx+ b3

∫ t

t−D

∫ t

s

[
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

]
drds

Considering (6.5) and its inverse transformation

ê0(x, t) =ŵ0(x, t) + D̂

∫ x

0

Ke(A+BK)D̂(x−y)Bŵ0(y, t)dy +Ke(A+BK)D̂xX̃(t)

the actuators dynamics can be written as{
Dẽ0,t(x, t) =ẽ0,x(x, t)− D̃f(x, t)

ẽ(1, t) =0 D̂ŵ0,t(x, t) =ŵ0,x(x, t)− D̂KeAD̂xB
[
ẽ0(0, t) + d̃(t) + d̂(t)− d̂(t−D)

]
ŵ0(1, t) =0 D̂ŵ0,xt(x, t) =ŵ0,xx(x, t)− D̂2KAeAD̂xB[ẽ0(0, t) + d̃(t) + d̂(t)− d̂(t−D)]

ŵ0,x(1, t) =D̂KeAD̂B
[
ẽ(0, t) + d̃(t) + d̂(t)− d̂(t−D)

]
where the function f is defined as

f(x, t) =
ŵ0,x(x, t)

D̂
+KBŵ0(x, t) +K(A+BK)e(A+BK)D̂xX̃(t)

+ D̂

∫ x

0

K(A+BK)e(A+BK)D̂(x−y)Bŵ0(y, t)dy
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Taking a time derivative of V4 and using suitable integrations by parts, one obtains

V̇ (t) = −X̃(t)TQX̃(t) + 2X̃(t)TPB[ẽ0(0, t) + ŵ0(0, t)] + 2X̃(t)TPB
[
d̂(t)− d̂(t−D)

]
+

2b2
γD

d̃(t)
(
τd(t)− ˙̂

d(t)
)

+ b1

(
− ẽ0(0, t)

2 − ‖ẽ0(t)‖2 − 2D̃

∫ 1

0

(1 + x)ẽ0(x, t)f(x, t)dx

)
+ b2

(
− ŵ0(0, t)

2 − ‖ŵ0(t)‖2 − 2D̂

∫ 1

0

(1 + x)KeAD̂xB[ẽ0(0, t) + d̂(t)− d̂(t−D)]ŵ0(x, t)dx

)
+ b2

(
2ŵ0,x(1, t)

2 − ŵ0,x(0, t)
2 − ‖ŵ0,x(t)‖2 − 2D̂2

∫ 1

0

(1 + x)KAeAD̂xB

× [ẽ0(0, t) + d̂(t)− d̂(t−D)]ŵ0,x(x, t)dx

)
+ b3

(
−
∫ t

t−D

[
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

]
dr +D

[
|X̃(t)|2 + ‖ŵ0(t)‖2 + ‖ŵ0,x(t)‖2

])
(6.7)

Furthermore, observing that d̂(t)− d̂(t−D) = γd

∫ t

t−D
τd(s)ds and the definition of τd in

(6.4), Cauchy-Schwartz’s inequality and Young’s inequality can be applied to provide the
following inequalities for the non-negative terms of (6.7)

2

∣∣∣∣X̃(t)TPB[ẽ0(0, t) + ŵ0(0, t) + d̂(t)− d̂(t−D)]

∣∣∣∣ ≤ λmin(Q)

2
|X̃(t)|2

+
4|PB|2

λmin(Q)
[ẽ0(0, t)

2 + ŵ0(0, t)
2] + γdM1

∫ t

t−D

(
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

)
dr

2

∫ 1

0

(1+x)|ẽ0(x, t)||f(x, t)|dx ≤M2

(
|X̃(t)|2 + ‖ẽ0(t)‖2 + ‖ŵ0(t)‖2 + ‖ŵ0,x(t)‖2

)
2D̂

∣∣∣∣ ∫ 1

0

(1 + x)KeAD̂xB[ẽ0(0, t) + d̂(t)− d̂(t−D)]ŵ0(x, t)dx

∣∣∣∣
≤ ‖ŵ0(t)‖2 /2 +M3ẽ0(0, t)

2 + γdM3

∫ t

t−D

(
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

)
dr

2ŵ0,x(1, t)
2 − ŵ0,x(0, t)

2

≤M4ẽ0(0, t)
2 + γdM5

∫ t

t−D

(
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

)
dr

2D̂2

∣∣∣∣ ∫ 1

0

(1 + x)KAeAD̂x[ẽ0(0, t) + d̂(t)− d̂(t−D)]ŵ0,x(x, t)dx

∣∣∣∣
≤ ‖ŵ0,x(t)‖2 /2 +M6ẽ0(0, t)

2 + γdM6

∫ t

t−D

(
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

)
dr



6.2. Convergence analysis 71

With these inequalities and choosing b2 ≥ 8|PB|2
λmin(Q)

, (6.7) yields

V̇ (t) ≤ −λmin(Q)

2
|X̃(t)|2 − b2

2
ŵ0(0, t)

2 −
(
b1 −

b2
2
− b2(M3 +M4 +M6)

)
ẽ0(0, t)

2 − b1 ‖ẽ0(t)‖2

−−b2
2
‖ŵ0(t)‖2 − b2

2
‖ŵ0,x(t)‖2 + b1|D̃|M2

(
|X̃(t)|2 + ‖ẽ0(t)‖2 + ‖ŵ0(t)‖2 + ‖ŵ0,x(t)‖2

)
+ b3

(
D
[
|X̃(t)|2 + ‖ŵ0(t)‖2 + ‖ŵ0,x(t)‖2

]
−
∫ t

t−D

[
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

]
dr

)
+ γd (M1 + b2(M3 +M5 +M6))

∫ t

t−D

(
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

)
dr

By choosing b1 > b2 (1/2 +M3 +M4 +M6) and defining M7 = M1 + b2(M3 +M5 +M6)
together with

V0,1(t) =|X̃(t)|2 + ‖ẽ0(t)‖2 + ‖ŵ0(t)‖2 + ‖ŵ0,x(t)‖2

V0,2(t) =

∫ t

t−D

[
|X̃(r)|2 + ‖ŵ0(r)‖2 + ‖ŵ0,x(r)‖2

]
dr

η = min {λmin(Q)/2, b1, b2/2}

one obtains

V̇ (t) ≤− (η − b3D)V0,1(t) + b1|D̃(t)|M2V0,1(t)− (b3 − γdM7)V0,2(t)

Consequently, if b3 = γdM7, and the update gain is (conveniently) chosen as γd = η
2D̄M7

,
and if |D̃| < δ∗ = η

4b1M2
, one concludes that

∀t ≥ 0 , V̇ (t) ≤ −η
4
V0,1(t) (6.8)

and finally that ∀t ≥ 0 , V (t) ≤ V (0). This concludes the proof of Theorem 6.1.1.

6.2.2 Convergence result
To obtain the stability result stated in Theorem 6.1.1, we apply the same arguments as

in Chapters 3 and 4. First, the stability result can be rewritten in terms of the functional
Γ as: ∀t ≥ 0 , Γ(t) ≤ RΓ(0), with R > 0.

We conclude by applying Barbalat’s Lemma to the variables |X̃(t)| and |Ũ(t)|. Inte-
grating (6.8), from 0 to +∞, one obtains that both signals are square integrable. Further,
similar to the above considerations, the equations

d|X̃(t)|2

dt
=2X̃(t)T

[
(A+BK)X̃(t) +B(ẽ0(0, t) + ŵ0(0, t)) +Bd̃(t) +B(d̂(t)− d̂(t− D̂))

]
dŨ(t)2

dt
=2Ũ(t)

[
KeAD̂Ẋ(t) +K

∫ 1

0

eAD̂(1−x)Bû0,x(x, t)dx− ˙̂
d(t)

]
together with (6.3)–(6.4) and the stability result give that both d|X̃(t)|2/dt and dŨ(t)2/dt
are uniformly bounded for t ≥ D̄. The convergence result directly follows. The same
arguments applied to dŨ0(t)

2/dt give the convergence of the prediction part of the control
to U r and of the disturbance estimate to the unknown disturbance.
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6.2.3 Main specificities and other comments
The proof is similar to those given earlier. Here, as in Chapter 3, the disturbance

estimate is chosen via a Lyapunov design. The main difference is the appearance of a
de-synchronized term d̂(t)− d̂(t−D) due to the additive form of controller (6.2), which
requires introduction of a double integral term to treat this mismatch. Finally, it should be
noted that the disturbance estimate converges to the unknown but constant disturbance.

6.3 Illustration: disturbance rejection for an air heater
In this section, we focus on the same illustrative example as in Section 5.3 (air heater).

For convenience, we repeat the transfer function

G(s) =
KH(Tzs+ 1)

a3s3 + a2s2 + a1s+ 1
e−Ds (6.9)

As previously, we consider a fixed operating point of the system that yields a constant
delay D = 10 s and constant coefficients a3 = 1560, a2 = 9300, a1 = 250 and KH = 0.075.
A state-space representation of the plant is (as before)

A =

 0 1 0
0 0 1
− 1

a3
−a1

a3
−a2

a3

 , B =

 0
KH

Tz

a3
KH

a3
−KHTz

a2

a2
3

 and C = (1 0 0)

We assume that a constant disturbance d = 50 impacts the input and that the delay is
overestimated with D̂ = 15 s. We assume that the system is fully measured.

Finally, for a given output set point Y = Tref , the corresponding references are

Ur =
1

KH

Y r and Xr =

 Y r

0

−Tz θ̂1

a3
Y r


Simulation results for the feedback strategy are provided in Figure 6.1. The system is

considered initially at the origin X(0) = [0 0 0] with d̂(0) = 0.
Results are reported in Figure 6.1. First, one can observe that the disturbance bias is

correctly estimated. which is compliant with the convergence of both the plant and the
control law to their references. Second, the response time is slightly shortened compared to
the simulation results proposed in Section 5.3. This is because the plant is fully measured
in this example.
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Figure 6.1: Simulation results for control of plant (6.9). The plant is initially at zero,
namely X(0) = [0 0 0]T , u(., 0) = 0, and impacted with a constant disturbance d = 50.
The constant input delay D = 10 s is overestimated with D̂ = 15 s. The controller gain
K is chosen according to an LQR design and the integrator gain is γd = 0.039.





Chapter 7

Case study of a Spark-Ignited
engine: control of the Fuel-to-Air
Ratio

Chapitre 7 – Contrôle de richesse sur moteur essence. Dans ce chapitre, nous
illustrons la polyvalence de la méthodologie adaptative générique proposée dans cette partie
en réalisant plusieurs combinaisons des éléments présentés dans les chapitres précédents.
Nous considérons ici le problème de la régulation de la richesse pour un moteur essence
suralimenté à injection indirecte. Après avoir détaillé pourquoi l’asservissement de cette
quantité à la stoechiométrie est essentiel au fonctionnement d’un moteur essence, nous
présentons les stratégies usuelles de contrôle correspondante. En nous inspirant de ces
stratégies, la boucle de rétroaction employée ici exploite le signal donné par une sonde à
oxygène (sonde Lambda) dont l’emplacement dans la ligne d’échappement génère un retard
de transport incertain. Nous présentons un modèle de dynamique validé sur banc moteur
puis considérons deux stratégies différentes pour tenir compte du phénomène de mouillage
de paroi inhérent au dispositif d’injection indirecte. Les performances des deux lois de
contrôle distinctes obtenues sont illustrées par des essaus expérimentaux sur banc moteur.
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In this chapter, we present some practical combinations of the various elements pro-
posed in the previous chapters. The considered application belongs to the field of gasoline
engine control and is the control of the Fuel-to-Air Ratio (FAR).

Before detailing the different control strategies that were considered and tested exper-
imentally on a test bench, we provide a background on internal combustion engines with
a focus on the control architecture for Spark-Ignited (SI) engines.

7.1 Background on SI engine control and FAR regu-
lation

There are two main classes of automotive engines, both of which generate torque
by burning a mixture of air and fuel (and exhaust gases). These are: (1) compression
ignition engines (also referred to as diesel engines), in which combustion is initiated by
compressing the mixture inside the cylinder during the operating cycle; (ii) SI engines
(gasoline engines) in which combustion is initiated by a correctly timed spark plug. The
latter is the class of engines considered in this thesis.

7.1.1 SI engine structure
The general structure of as SI engine is shown in Figure 7.1. Details can be found in

[Heywood 88]. The elements presented there can be be divided in three main subsystems:

• the air path which consists of the intake throttle, the turbocharger, intake and ex-
haust manifolds, valve actuators, and all the pipes. The air path feeds the cylinder
with the correct amount of air (and burned gas) by providing appropriate thermo-
dynamic conditions.

• the fuel path (mainly the injectors) is used to inject the appropriate amount of fuel
into the combustion chamber. In modern SI engines, it is usually located within the
cylinder (direct injection) but it can also be located in the intake pipe (port-fuel
injection or indirect injection).

• the ignition path, which consists in the spark plug, aims at initiating the combustion.

In general, a throttle valve, located at the engine intake, controls the air flow through
the intake manifold pressure (or, depending on the operating point via the turbocharger),
while injectors are responsible for fuel injection. The air/fuel mixture inside the cylinder
after the intake valve is closed is ignited by the spark plug and the combustion-generated
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Figure 7.1: Schematic illustration of a turbocharged SI engine equipped with direct in-
jection and VVT devices. An oxygen sensor (Lambda sensor) used for feedback control
of the FAR is located in the exhaust line, downstream of the turbine and upstream of the
three-way catalytic converter.

pressure in the combustion chamber pushes down the piston, which transmits energy to
the crankshaft.

7.1.2 Stoichiometric operation
To meet standard requirements for emission of pollutants resulting from combustion,

SI engines are equipped with a three-way catalytic (TWC) converter. This device, located
in the engine exhaust, fulfills three simultaneous tasks for the three main concerned pol-
lutant emissions: reduction of the nitrogen oxides (NOx), oxidation of carbon monoxide
(CO) and the oxidation of hydrocarbons (HC).

As these three reactions involve contradictory optimal combustion conditions (lean
or rich environment), they occur most efficiently when the engine is operating near the
stoichiometric point (see Figure 7.2). Outside of a narrow band around the stoichiometric
composition, conversion efficiency decreases very rapidly [Kiencke 00]. In the context of
ever-increasing requirements to reduce pollutant emissions and fuel consumption, accurate
FAR control is then necessary.

FAR is defined as the ratio between the in-cylinder fuel mass mf filling the cylinder
at each stroke and the air mass aspirated into the cylinder masp. For convenience, the
normalized ratio is commonly used

φ =
1

FARS

mf

masp

(7.1)

where FARS is the stoichiometric FAR value1. The aim of the control is then to maintain
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Figure 7.2: Three-way catalytic converter efficiency for a warm device.

φ as close as possible to unity.

7.1.3 Existing control strategy for the fuel path and air path
The necessity of maintaining a stoichiometric blend of fuel and air in the cylinder

means that variations of the air path and fuel path have to be intimately correlated.
Because of the relative slowness of the air path compared to the fuel path, the produced

torque can be considered as following the variations in air filling. Therefore, the air path
of an SI engine is classically dedicated to the driver torque request and the fuel path is
then adjusted. Correct coordination of the two paths is crucial to both torque generation
and stoichiometry.

Aspirated air mass model

Over the years, numerous air path controllers have been designed (see [Das 08],
[Van Nieuwstadt 00], or [Leroy 08] among others) and usually provide an aspirated air
mass estimate mest

asp. This estimate is then used to compute the set-point for the injected
fuel mass. To account for the relative slowness of the air path and to obtain a correct
synchronization of the two paths, a predictive technique may be used for this estimate
(see for a detailed description [Chevalier 00]).

FAR control architecture

FAR management usually consists of a feedforward term, mff
f = FARSm

est
asp, associ-

ated with a feedback loop based on measurements by an oxygen sensor (a.k.a. Lambda
sensor) located in the exhaust line [Di Gaeta 03]. Such an architecture is shown in Fig-
ure 7.3. Note that in this scheme, the regulated value is actually the measured signal φm,
as discussed below.

In the following we pursue this generic approach, but simply propose an alternative
feedback control to the usual carefully tuned PID. Before detailing this control design, we
focus on the FAR dynamics to characterize the regulation problem under consideration.

1For a conventional SI engine, its value is around 1
14.6 .
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Figure 7.3: Classical general FAR control strategy. An aspirated air mass estimate is
used to compute a fuel mass feedforward term. This term is completed by a feedback
loop using the FAR measurement φm.

7.2 FAR dynamics
The closed-loop FAR strategy relies on a signal given by the Lambda Sensor, which

is located in the exhaust line, downstream of the turbine and upstream of the catalyst.
As the actuator (the injector, inside or near the combustion chamber) and the control
variable (the exhaust FAR φm) are not co-located, the system dynamics naturally involves
a transport delay [Kahveci 10].

As this delay originates from transportation of material, it is highly variable over the
operating range of the engine2. This justifies the design of a prediction-based control
law using the various elements proposed in the previous chapters. To identify the best
components to use among the ones presented, we now detail an FAR model.

7.2.1 Transport delay and sensor dynamics
As pointed out in numerous studies (e.g. [Wang 06], [Guzzella 10], [Jankovic 11]), the

dynamics of the sensor can be approximated by a low-pass transfer function, driven by a
delayed input signal. In practice,

τφφ̇m(t) = −φm(t) + φ(t−D(t)) (7.2)

where φm is the normalized FAR signal measured3 and the intake FAR φ is defined in (7.1).
Accounting for a static injection error δmf and a transient aspirated air mass estimation
error δmasp, this expression can be reformulated as

φ(t) =
1

FARS

1 + δmf

1 + δmasp(t)

msp
f (t)

mest
asp(t)

=
α(t)

FARS

msp
f (t)

mest
asp(t)

(7.3)

where the errors δmf and δmasp(t) are assumed proportional4. As a result, defining the
control variable as U(t) = 1

FARS

msp
f (t)

mest
asp(t)

in accordance with the previous considerations

2The delay variations are related to the gas speed. As the fresh air mass flow rate varies according to
the engine speed and the torque request, this delay is also variable.

3The quantity measured by the oxygen sensor is the exhaust equivalent ratio φexh = mbg/mexh,
where mexh is the exhaust gas mass and mbg the exhaust burned gas mass, which can be related to the
in-cylinder quantities as φm.

4These errors could also have been considered as additive and would have yielded the choice of another
control design.
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masp

minj (1 − X)minj

mwΔt/τ

Figure 7.4: Model of the wall-wetting phenomenon that occurs for an indirect injection
set-up.

(7.2) can be rewritten as

τφφ̇m(t) =− φm + α(t)U(t−D) (7.4)

which is compliant with the general plant form given in (2.15).

Delay description

The delay D includes injection and combustion lags and the transport delay from the
exhaust valve to the oxygen sensor:

D = Dinj +Dburn +Dtrans (7.5)

where the injection delay Dinj is the sum of computation duration and injection (including
the sensor lag). The combustion delay Dburn depends on the timing of intake and exhaust
valves. Finally, the transport delay Dtrans depends on the gas velocity.

7.2.2 Wall-wetting phenomenon
In the case of indirect injection, the fuel injected in liquid form is not instantaneously

vaporized in the intake manifold: a proportion X of the injected quantity constitutes a
liquid fuel film on the intake manifold walls. The fuel mass entering the cylinder is then
different from the injected mass. This well-known phenomenon is called wall-wetting (see
[Hendricks 97], [Arsie 03]). It is represented in Figure 7.4 and described in terms of flows
in [Aquino 81] as 

ṁw =XFinj −
mw

τ

Ff =(1−X)Finj +
1

τ
mw

(7.6)

Of course, at steady-state, the fuel masses are equal, i.e. Ff = Finj. At each stroke,
the full mass admitted in the cylinder is mf = (1−X)minj +mw∆t/τ . The parameters
(τ,X) can be identified experimentally and depend mainly on the engine speed (and, less
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significantly, on the fuel properties and on the intake manifold pressure and temperature).
The set-point for the injected mass of fuel msp

inj can then be determined from the set-point
for the in-cylinder mass of fuel msp

f and a (τ,X)- look-up table, by simply inverting this
model.

7.2.3 Experimental model validation
Model (7.4) was validated on an experimental test bench. The engine under consider-

ation in this section is a turbocharged 2L four-cylinder SI engine using indirect injection
(Renault F4Rt).
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Figure 7.5: FAR open-loop dynamics for two different transients starting from the sto-
ichiometric point: an increasing step (msp

f 5% greater) and a decreasing step (msp
f 5%

lower). The torque is constant at 10 Nm and three different engine speed are considered,
Ne = 1000, 2000 and 3000 rpm.

Figure 7.5 shows the open-loop FAR response to two different steps for msp
f corre-

sponding to two different steps on the input U in (7.4), for different engine speed (1000,
2000 and 3000 rpm) and a low torque request (10 Nm). It is easy to see the occurrence of
a delay that decreases with the engine speed and the occurrence of a time constant and
a static gain that vary with the engine operating point.
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Parameter Unit Operating range Step size
Engine speed rpm 800 and 1000 to 3500 500

Effective torque Nm 50 to 200 50

Table 7.1: Test Bench Data.

The general dynamics is well captured by the input delay first-order system (7.4).

These experiments were conducted over a wide engine operating range (see Table
7.1) to identify the parameters τφ, α and D when possible. Figure 7.6 shows the results
obtained, which can be interpreted as follows.

The error gain α

α aggregates various error factors, as defined in (7.3), including the in-cylinder air
mass estimation error and the injection error. This term cannot be easily measured, as
the error varies over the operating range and over time due to device ageing among other
causes.

For example, it is evident from Figure 7.5 that, for a given engine speed and torque
request, α varies with the FAR (which can be explained by variations in δmasp depending
on the injected fuel mass).

Therefore, this quantity is very uncertain, even if, as can be observed, its variability
is relatively small (α ∈ [α, ᾱ] = [0.75; 1.25]) and of low-frequency.

The time constant τφ

This constant represents the sensor dynamics, namely the time needed to fill the porous
coating layers that protect the sensor electrodes. As depicted in Figure 7.6, it can be
readily identified as a function of the aspirated air flow as

τφ =
1

aτ + bτFair

(7.7)

where aτ and bτ are constant. From now on, we assume that we have accurate knowledge
of τφ via (7.7).

The delay D

From (7.5), a simple representative parametrization of the delay is

D(Ne) =
aD

Ne

(7.8)

where aD is constant and which is commonly used (see [Coppin 10]) but is an inaccurate
approximation. Indeed, in Figure 7.6 substantial variations with the torque request are
evident for a given engine speed. Nevertheless, for simplicity, we keep this approximation
but consider the delay as relatively uncertain, even if it belongs to the interval [D, D̄] =
[100, 600] ms.
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7.3 A first control design for scalar plant
From the previous considerations, one can summarize the FAR regulation problem by

the control of the dynamics
τφφ̇m(t) =− φm(t) + αU(t−D)

τφ =τφ(Fair)

α =α(Ne, Fair)

D =D(Ne, Fair)

(7.9)

with:

• an unknown gain α ∈ [0.75, 1.25] that varies with the operating point (and extremely
slowly over time as it is mostly related to ageing); and

• an uncertain input time delay, estimated by D̂ = D̂(Ne) ∈ [D, D̄] = [100, 600] ms.

Then, for a given operating point, all the parameters are constant. Using the notations
of (2.15), we define X = φm, θ = α, A = 1/τφ and B(α) = α/τφ. We note φr = 1 the
FAR set-point 5 and U r(α) = φr/α the corresponding control reference.

The control goal is here to improve the transient performance by substantially de-
creasing the time response of the system. Therefore, compensation of the delay seems to
be a promising way to achieve this objective.

This question falls directly into the scope of Theorem 3.1.1. Indeed, one can easily
check that the required Assumptions 1-4 are fulfilled.

7.3.1 Controller equations
For a given operating point (Ne, Fair), we denote τφ = τφ(Fair) the corresponding time

constant and arbitrarily set the controller gain as K = −1. Applying the control strategy
presented in Theorem 3.1.1 with a constant delay estimate D̂ = D̂(Ne), we define the
following.

Prediction control law

U(t) =
φr

α̂(t)
+ φr − e−D̂/τφφm(t)− D̂

α̂(t)

τφ

∫ 1

0

e−D̂(1−y)/τφû(y, t)dy

Distributed input estimate{
D̂ût(x, t) =ûx(x, t)

û(1, t) =U(t)
(7.10)

5except for a high load, for which it is useful to obtain a rich mixture (φr > 1) to prevent knock.
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Figure 7.7: Proposed alternative FAR adaptive control strategy. Compared to Figure 7.3,
the control U now takes into account the aspirated air mass estimation error and the
injection error, using an estimate of the transport delay D̂. An inverse wall-wetting
model (τ,X)−1 was added to the architecture to account for indirect injection.

Transformed estimated distributed input
ŵ(x, t) =ê(x, t) + D̂

α̂(t)

τφ

∫ x

0

e−D̂(x−y)/τφ ê(y, t)dy + e−D̂x/τφ(φm(t)− φr)

ê(x, t) =û(x, t)− φr

α̂(t)

(7.11)

Parameter update law


˙̂α(t) = γ

φr

α̂(t)
h(t) (7.12)

h(t) =
φm(t)− φr

b
+
D̂

τφ

∫ 1

0

(1 + x)

[
ŵ(x, t)− D̂

τφ
ŵx(x, t)

]
e−D̂x/τφdx (7.13)

According to the local asymptotic stability result of Theorem 3.1.1, if the estimate D̂
is close enough to the true delay D and if the initial conditions are chosen close enough
to their corresponding reference or true value, then φ tracks φr and U tracks φr/α̂(t).

7.3.2 Transient control strategy

The range of variations of the delay and the parameter α over the entire operating
space is sufficiently narrow so that the updated set-point lies in the vicinity of the current
set-point at all times. Consequently, the previously presented controller (7.10)–(7.12) can
be used in transient mode. No particular feedforward terms are needed.

In addition, it is possible to tune the transient behavior adjusting the gains γ and −K
to the operating point in a gain scheduling approach. This did not seem necessary in the
following experimental test, in which the main objective was to validate the controller (its
implementability and robustness assessment) and not to maximize its performances.

Figure 7.7 shows the general architecture of the adaptive control strategy.
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7.3.3 Experimental results
Experimental set-up

All experimental results presented in this section were obtained for the engine de-
scribed above. The set point for the in-cylinder fuel mass is related to that of the injected
fuel mass through 2D look-up tables accounting for the wall-wetting phenomenon de-
scribed above.

For this test, a PID controller tuned with Ziegler-Nichols rules [Ziegler 42] is used as
a reference. For the proposed controller, the gains were chosen as K = −1 and γ = 0.4.

Torque trajectory at constant speed

To validate the proposed strategy, we consider an increasing torque variation at constant
engine speed (1000 rpm), followed by a tip-out. The delay estimate corresponding to this
engine speed is D̂ = 390 ms.

Figure 7.8 shows experimental results obtained on the test bench for the torque tra-
jectory of Figure 7.8-(a).

Comparison of the performance of the controller to the reference PID in Figure 7.8-(c)
reveals that the time response of the proposed controller is shorter for the first two steps
of torque (2–12 s and 12–22 s). In addition, in the interval between 30 and 50 s, it is
evident that convergence about the value φr = 1 is tighter. This result is compliant with
the corresponding set point for the in-cylinder fuel mass in Figure 7.8-(d), which is slightly
higher for PID regulation.

More generally, there is slight but persistent de-synchronization between the PID con-
troller and prediction-based results: the prediction-based feedback law still varies before
the PID law. This is particularly evident in Figure 7.8-(d). This is because of the antici-
pation effect of our controller, tailored to deal with delay, which is its main advantage.

Figure 7.8-(e) shows the history of the estimator α̂(t) throughout this experiment. Its
behavior is well explained by the dynamics of the FAR tracking error

τφ
d

dt
[φm(t)− φr] =− (φm(t)− φr) + α̂(t)(u(0, t)− φr

α̂(t)
) + α̃(t)u(0, t) (7.14)

When FAR and control convergences have been obtained (i.e. when φm equals φr and U
equals φr/α̂), the estimate error α̃(t) is zero, which means that the estimate parameter
α̂(t) has converged to the unknown value α. This result (which unfortunately cannot be
generalized to multi-parameter estimation in adaptive control [Ioannou 96]) is of great
interest in the context of engine diagnosis (see [Ceccarelli 09]).

NEDC cycle

To test our controller under real representative driving conditions, experiments were
conducted on a challenging part of the new European driving cycle (NEDC). This consists
of one urban driving cycle (ECE) followed by an extra-urban driving cycle (EUDC).
Results are reported in Figure 7.9.

In general, this demanding test yields similar conclusions. Tight convergence is ob-
tained with the proposed strategy, particularly for a gear shift above 3 (corresponding
to the time interval 250–600 s). The convergence value of α̂ obtained is indeed unique
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Figure 7.8: Test-bench results for a constant engine speed of 1000 rpm and the torque
demand (a), for the proposed strategy (blue) and a tuned PID (red).
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Figure 7.9: Test bench results during a normalized ECE (0–200 s) cycle and an EUDC
(200–600 s) cycle, for the proposed strategy (blue) and a tuned PID (red).
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for a given operating point: for example, around respectively 250 s and 425 s, the same
operating point (Ne, Fair)=(1800 rpm, 40 kg/h) is reached and α̂ converges around 1.04
each time. Interpreting α as a diagnosis information for the aspirated air charge model,
one can see that it is globally overestimated (α̂ is globally greater than 1) except for high
load where it is perfectly accurate (approx. 450 s).

More precisely, this test stresses the relevance of the proposed controller over a large
range of operating points and under real driving conditions (injection shut-off correspond-
ing to the sudden decrease in FAR in Figure 7.9(e)). Finally, Table 7.2 quantitatively
summarizes the benefits of the proposed strategy for the two previous tests.

Test Constant speed NEDC
PID performance 0.0541 0.1622

Adaptive control performance 0.0464 0.1286
Relative gain

compared with PID 14 % 20 %

Table 7.2: Performance comparison for the two controllers, measured as∫
{t : Injection ON} φ̃(t)2dt.

7.4 Control design for the second-order plant induced
by the wall-wetting phenomenon

In this section, we present an alternative design based on the complete dynamics.
Taking explicitly into account the wall-wetting phenomenon leads to consideration of
(stable) second-order dynamics with one zero.

7.4.1 Alternative model for indirect injection
We consider wall-wetting model (7.6), together with sensor dynamics (7.4). Taking a

time derivative of (7.6) yields

dFf

dt
=(1−X)

dFinj

dt
+

1

τ

(
XFinj −

mw

τ

)
= (1−X)

dFinj

dt
+

1

τ
(Finj − Ff )

Then, taking a time derivative of (7.4) and using the previous equation, one obtains

τφ
d2φm

dt2
+
dφm

dt
=

1

FARS

d

dt

[
Ff (t−D)

Fair(t−D)

]
=

1− Ḋ

FARS

[
1

Fair(t−D)

(
[1−X]

dFinj

dt
(t−D) +

1

τ
[Finj(t−D)− Ff (t−D)]

)
− Ff (t−D)

Fair(t−D)2

dFair

dt
(t−D)

]
As a result, using (7.4) again and taking into account the fact that the transient quan-
tities 1

Fair

dFair

dt
are negligible compared with the time scale 1/τ and that the delay time
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derivative is negligible compared to 1 (which are usual assumption, see [Orlov 06]), the
last expression can be simplified to

τφ
d2φm

dt2
+
[
1 +

τφ
τ

] dφm

dt
+

1

τ
φm =

[
(1−X)v̇(t−D) +

1

τ
v(t−D)

]
(7.15)

with v = 1
FARS

Finj

Fair(t)
= 1

FARS

minj

masp(t)
. This is the dynamics that we consider in the follow-

ing.

7.4.2 Dynamics analysis
As previously, we introduce proportional errors for both the injection process and the

in-cylinder air flow estimation

v(t) =
1

FARS

1 + δminj

1 + δmasp

msp
inj

mest
asp(t)

= α(t)
1

FARS

msp
inj

mest
asp(t)

Defining the control variable as U(t) = 1
FARS

msp
inj

mest
asp(t)

, one obtains
τφτ φ̈m(t) + (τφ + τ)φ̇m + φm = α(t)

[
τ(1−X)U̇(t−D) + U(t−D)

]
τφ = τφ(Fair)

α = α(Ne, Fair)

D = D(Ne, Fair)

(7.16)

with:

• an unknown gain α ∈ [0.75, 1.25], that varies with the operating point (and ex-
tremely slowly over time due the ageing);

• an uncertain input time delay, estimated by D̂ = D̂(Ne) ∈ [D, D̄] = [100, 600] ms;
and

• only one available measurement, φm.

The control goal is to improve the transient performances, as the system is stable.
Therefore, compensation of the delay seems to be a promising way to achieve this objec-
tive.

To design such a controller, adaptation of the unknown parameter and observation are
necessary. The resulting controller will then be a combination of the elements proposed
in Chapters 3 and 5.

State-space representation

Defining the system state as X ∈ R2, the unknown plant parameter as θ = α and the
matrices

A =

 0 1

− 1

τφτ
− 1

τφ
− 1

τ

 , B =

 0
α

ττφ

 and C = [1 τ(1−X)]
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one can reformulate the problem as

Ẋ(t) =AX(t) +B(θ)U(t−D)

Y (t) =φm(t) = CX(t)

Defining the reference trajectories as (Xr , U r) = ([φr 0]T , φr/α), we use the following
prediction-based controller.

Controller design

Applying the certainty equivalence principle, we use various components for the control
design based on the elements proposed in Chapters 3 and 5.

• Control law

U(t) =U r(θ̂)−KXr +K

[
eAD̂X̂(t) +

∫ 1

0

eAD̂(1−x)B(θ̂)û(x, t)dx

]
• Observer

˙̂
X(t) = AX̂(t) +B(θ̂)û(0, t)− L(Y (t)− CX̂(t))

∀x ∈ [0, 1] , û(x, t) = U(t+ D̂(x− 1))

• Backstepping transformation

∀x ∈ [0, 1] , ê(x, t) =û(x, t)− φr

α̂

∀x ∈ [0, 1] , ŵ(x, t) =ê(x, t)− D̂

∫ x

0

KeAD̂(x−y)B(θ̂)ê(y, t)dy −KeAD̂x
[
X̂(t)−Xr

]
• Update law

˙̂
θ(t) =γ

[
(X̂(t)−Xr)TP (θ̂)

b
− D̂K(θ̂)

∫ 1

0

(1 + x)[ŵ(x, t) + AD̂ŵx(x, t)]e
AD̂xdx

][
0
φr

α̂ττφ

]

In the spirit of the previous chapters, we foresee that the state X will asymptotically
converge to the trajectory Xr and, equivalently, that the FAR will asymptotically converge
to its set-point φr for any given operating point.

This control strategy is pictured in Figure 7.11.

7.4.3 Experimental results
Experiments were conducted on a test-bench for an atmospheric 1.4L four-cylinder

SI engine (PSA ET3) to validate the proposed control strategy. The results obtained
for torque variations at a constant engine speed are shown in Figure 7.10. The tuning
parameters (feedback gain K, observer gain L and update gain γ) are constant over the
whole operating range.

It is clear that good FAR convergence is obtained after each change in operating point
and that the transient performance matches that of a PID controller.
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Figure 7.10: Test bench results for a constant engine speed Ne = 2000rpm for the torque
variations picture in (c), for the proposed strategy (in blue) and for a PID controller (in
red). The injection time represented in (b) characterizes the set-point for the injected
mass.
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Figure 7.11: Proposed FAR adaptive control strategy for the second-order plant. Com-
pared to Figure 7.7, the control U takes into account the wall-wetting model (τ,X) for
indirect injection and compensates for it.

To emphasize the comparison between the classical PID controller and the prediction-
based control proposed here, we focus on one particular transient occurring between 16
and 19 s, as shown in Figure 7.12. Three different phenomena occur:

• the aspirated air mass is underestimated during the transient, resulting in mis-
synchronization of the fuel path and the air path. The injected fuel mass is computed
based on the estimate mest

asp < masp. Therefore, during this lag, the resulting intake
FAR is φ =

mest
asp

masp
< 1. This generates the decrease measured between approximately

17.15 and 17.3 s;

• the air mass is still underestimated but, as the feedback loop is based on a prediction,
the control anticipates the future important decrease of the FAR. Conversely, the
PID simply uses the current FAR value and the computed input is therefore less
aggressive. During this second phase, the FAR response of the PID is still decreasing
while that of the prediction-based controller starts increasing up to unity; and

• in the last phase, the behavior of the two control laws is quite similar, even if the
effect of the start of the transient is still evident.

The integral difference between the two responses during the transient is highlighted
in gray in Figure 7.12.

While the first phase may be avoided by carefully designing a predicted aspirated air
model (see [Chevalier 00]), the second phase will still occur. This is the main advantage
of the proposed controller. The magnitude of this improvement is here accentuated by
the mis-synchronization between the two paths, which would not reasonably be allowed
on a commercial engine.
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Introduction

In this part, we address the problem of compensation-based regulation of a class of
time- and input-dependent input delays.

As was detailed in Section 2.2, the key element for exact compensation of a time-
varying delay is determination of the time window of the prediction. However, calculation
of this time horizon requires knowledge of future variations of the delay to anticipate them.
In the absence of any variations modeling, this approach is obviously unsuitable, as no
information is available on the future delay.

In this part of the thesis, robust compensation is designed by using the current value
of the delay as time horizon of prediction. The spirit of this approach is to consider the
delay as slowly varying. It naturally calls for an extra assumption for the delay variations,
which have to be sufficiently slow.

We go further in the analysis and consider the particular case of input-dependent
delays. In this context, exact compensation may even result in an ill-posed problem.
This is because of the reciprocal interactions between the control law and the delay,
which yield a closed-loop dependence that is pictured in Figure 7.13. For this reason,
we propose a two-step methodology for an input-dependent delay that disrupts this loop.
First, following the previously mentioned robust compensation result, the delay derivative
is required to be bounded. Second, this derivative is related to input fluctuations and to
a small-gain condition for the feedback gain.

We formally prove an exponential stabilization result for a specific type of delay model,
representative of a large class of flow process. This model involves an integral relation im-

D(t) function of u(t)

u(t) function of D(t)

Figure 7.13: For an input-dependent delay, exact compensation of the delay involves the
control law u(t) = KX(r(t)), where r(t) = η−1(t) with η(t) = t−D(t). This control law
depends on the current value of the delay, which itself depends on the current value of
the control law, creating a circular scheme of dependency.
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plicitly defining the delay in terms of the input history. Therefore, the delay is inherently
time- and input-dependent.

This part is organized as follows. In Chapter 8, the mentioned model of transport delay
is presented. Various delay systems, shown to be compliant with this model, are given.
Then, in Chapter 9, practical use of this model is proposed, to estimate the transport
delay occurring for a low-pressure exhaust burned gas recirculation loop on a SI engine.
In Chapter 10, robust compensation of a general time-varying delay is designed, requiring
that the delay variations are sufficiently slow. This condition is then further studied in
the particular case of input-dependent delay belonging to the considered transport delay
class. The merits of this result is then illustrated in Chapter 11 on a well-known time
delay system, the temperature regulation of a shower (or bathtub).



Chapter 8

Examples of transport delay systems

Chapitre 8 – Quelques exemples de systèmes dynamiques avec retard de
transport. Ce chapitre détaille une famille particulière de retard variable dépendant de
la commande. Le modèle considéré, représentant le retard comme la borne inférieure d’une
équation implicite intégrale, est représentatif d’une large gamme de systèmes comprenant
un transport de matière. Ce point est illustré ici par plusieurs modèles de systèmes à
retard, certains du domaine du contrôle moteur.
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In this chapter, a particular class of time- and input-dependent delay model is
introduced. This model is representative of a wide class of systems involving transport
phenomena. To illustrate this point, we list a certain number of examples, most of them
relative to SI engines, that entail a transport delay.

This class is then studied in Chapter 10, where sufficient conditions for robust stabi-
lization are provided.

8.1 An implicit integral definition of transport delay
Consider a fluid flow with varying speed v(t) through a pipe of length L. Following

the Plug-Flow assumption [Perry 84], one can define the time tprop of propagation through
the pipe according to the integral equation1∫ t

t−tprop

v(s)ds =L (8.1)

1Formally, this integral equation can be directly obtained by studying the PDE ut + v(t)ux = 0 for
x ∈ [0, L] with v(t) ≥ 0. Consider the new variable w(t) = u(t,

∫ t

γ
v(s)ds) for a given constant γ ≤ t,

which satisfies dw
dt = 0. Therefore, ∀t ≥ 0 , w(t) = w(γ). By choosing γ = t − D(t) ≤ t such that∫ t

t−D(t)
v(s)ds = L which is the integral relation (8.1), one directly gets that the delay between the

output and the input of the system is D(t) as u(t, L) = w(t) = w(t−D) = u(t−D(t), 0).
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When one considers a delay D due to a transport phenomenon, it can then be defined
through the lower bound of the integral∫ t

t−D(t)

ϕ(s, U(s))ds =1 (8.2)

where ϕ is a certain non-negative function that depends potentially on the manipulated
variable U and potentially implicitly on time, gathering all other dependencies. For the
simple example (8.1), one has ϕ(s, U(s))) = v(s)/L.

The delay modeled in (8.2) is well-defined:

• D > 0: as the function ϕ is non-negative, the lower bound of the integral has to be
less or equal than the lower bound, i.e. t−D(t) ≤ t.

• Ḋ(t) ≤ 1: this property is related to causality and guarantees that no back-flow
occurs. Taking a time derivative of (8.2), one obtains

ϕ(t, U(t))− (1− Ḋ)ϕ(t−D(t), U(t−D(t))) =0

or, equivalently,

Ḋ =1− ϕ(t, U(t))

ϕ(t−D(t), U(t−D(t)))
≤ 1

because the function ϕ is non-negative.

Furthermore, because ϕ is non-negative, the function f : D →
∫ t

t−D
ϕ(s, U(s))ds is

strictly increasing and is therefore invertible. Consequently, one can easily compute the
transport delay from it. This point is detailed in the next chapter.

We now describe a few examples of SI engine subsystems fitting into this class of
models.

8.2 Fuel-to-Air Ratio
In Chapter 7, the FAR regulation problem for SI engines has been presented. As

explained in Section 7.1.2, this ratio has to be kept as close as possible to the stoichiometric
ratio. To do so, a feedback loop is typically used to coordinate the fuel path and the air
path using a measurement given by a dedicated sensor in the exhaust line.

However, since the injector (i.e. the actuator) is located upstream of the intake line,
a transport delay occurs. Further delays can be summed as

D = Dinj +Dburn +Dtrans

where Dinj is the injection lag, Dburn is the combustion delay and Dtrans is the transport
delay from the exhaust valve to the oxygen sensor, which is represented in Figure 8.1.
The transport delay can be expressed via the integral equation∫ t

t−Dtrans

vbg(s)ds =Lev→λ

where vbg accounts for the burned gas velocity in the exhaust line and Lev→λ is the pipe
length from the exhaust valve up to the Lambda sensor.
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Figure 8.1: Schematic illustration of a turbocharged SI engine equipped with direct in-
jection and VVT devices. In the formulation of the regulation problem of the Fuel-to-Air
Ratio, a transport delay occurs because the Lambda sensor (measurement) is located
downstream of the turbine (and upstream of the Three-Way catalyst) and the injector
(actuator) is located near the combustion chamber.

For FAR regulation, the controlled variable does not interfere with the burned gas
velocity vbg. Therefore, the expression in 8.2, can be simplified with a varying input-
independent delay,

ϕ(s, U(s)) =ϕ(s) =
vbg(s)

Lev→λ

However, because the gas speed is not measured, the last formula is not directly usable
and requires some reformulation, like the one introduced in the next chapter (on a different
topic).

8.3 Crushing-mill
In the survey article [Richard 03], a crushing mill system is described as an open

problem in which the delay is inherently input-dependent.
This system is depicted in Figure 8.2. An input flow rate uin of raw material enters

the crushing mill and its size is reduced when the material is processed through the mill.
Depending on the output size, the output flow of material uout may be simply extracted
if the size is small enough, or may be recycled over a rolling band of total length L and
variable speed vrec, which is controlled.

Then, the flow of recycled matter re-entering the mill depends on the material available
on the rolling band and on its speed and is therefore delayed. Again, this delay is due to
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Figure 8.2: Schematic view of the crushing mill, with a variable conveyor speed vrec(t).

material transportation and can be simply expressed via the integral equation∫ t

t−D(t)

vrec(s)ds =L

which follows the general form (8.2) with a function ϕ depending only on the manipulated
variable

ϕ(s, U(s)) =ϕ(U(s)) =
vrec(s)

L

A complete model allowing to derive this equation is proposed in Appendix A. This
model can be reasonably compared to the bath temperature regulation problem pre-
sented later and addressed in Chapter 11. It could be treated using a similar con-
troller. Other examples of process systems that use such delay model can be found
in [Chèbre 10, Barraud 06].

8.4 Catalyst internal temperature
We now consider a three-way catalytic converter (TWC) located in the exhaust line

of a SI engine to treat pollutant emissions resulting from the combustion process. As
the efficiency of this conversion strongly depends on the catalyst wall temperature, it is
necessary to consider the thermal behavior of the system to obtain good performance.
The model considered here is based on a one dimensional distributed parameter system,
which is eventually recast into a linear delay system.

The system is pictured in Figure 8.3. Exhaust burned gas enter the monolith at x = 0
with a varying mass flow rate F (t). Convective exchange with the wall occurs all along the
monolith from x = 0 to x = L yielding inhomogeneous distributed temperature profiles
of the gas Tg(x, t) and the catalyst wall Tw(x, t)2. Initially, when the catalyst is cold, no
chemical reaction can occur and only the gas warms the monolith wall. Here, we show
that the wall temperature dynamics of the catalyst can be modeled by a first-order plus
delay equation, fed by the gas temperature at the inlet. The time-varying delay can be
represented by a transport equation of the form (8.2).

2On the contrary, the axial conduction in the solid is not important and can be neglected, as previously
demonstrated in [Vardi 68], [Young 76].
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Figure 8.3: Schematic view of the distributed profile temperature inside a TWC, v being
the wall temperature and w the temperature of the gas flowing through the catalyst.

Denoting Tw(., t) and Tg(., t) respectively the wall and gas temperatures, we consider
a coupled linear infinite dimensional thermal dynamics

∂Tw

∂t
(x, t) = k1(Tg(x, t)− Tw(x, t)) (8.3)

F (t)
∂Tg

∂x
(x, t) = k2(Tw(x, t)− Tg(x, t)) (8.4)

where F > 0 is the varying gas mass flow rate and k1, k2 > 0 are given constants. More
details about this model can be found in [Lepreux 10] 3.

By taking a spatial derivative of (8.3), a time-derivative of (8.4) and matching terms
with (8.3)-(8.4), one obtains the decoupled equations

F (t)
∂2Tw

∂x∂t
=− k2

∂Tw

∂t
− k1F (t)

∂Tw

∂x

F (t)
∂2Tg

∂x∂t
+ Ḟ (t)

∂Tg

∂x
=− k2

∂Tg

∂t
− k1F (t)

∂Tg

∂x

where the first equation defining Tw can be solved using a spatial Laplace transform (with
p as Laplace variable) to get

∀t ≥ 0 , (F (t)p+ k2)
dT̂w

dt
=− k1F (t)pT̂w(p, t)

This scalar system can be solved as

T̂w(p, t) = exp

(
−
[∫ t

t0

k1F (s)p

F (s)p+ k2

ds

])
T̂w(p, t0)

for every t0 such that t0 ≤ t. A catalyst is a low-pass filter so it is relatively insensitive to
high frequencies. Consequently, by considering only low spatial frequencies (i.e. Fp << k2

for any gas flow F ), the term below the integral can be substantially simplified. Taking
into account this consideration and rewriting the resulting equation into the space domain,
one obtains

∀x ∈ [0, L] , Tw(x, t) =Tw

(
x−

[∫ t

t0

k1

k2

F (s)ds

]
, t0

)
3One point of importance to notice is that this model does not include the enthalpy originating from

the chemical reactions inside the catalyst.
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Formally, for any x ∈ [0, L], one can define D(x, t) ≥ 0 such that∫ t

t−D(x,t)

k1

k2

F (s)ds = x (8.5)

which is equivalent to the implicit integral equation (8.2). Consequently, the wall tem-
perature at x is formally delayed by

∀x ∈ [0, L] , Tw(x, t) =Tw(0, t−D(x, t))

Besides, using (8.3) for x = 0, one can obtain that Tw satisfies a first-order plus delay
model with respect to the inlet temperature Tg(0, .).

This delay is indeed a transport delay, compliant with the form (8.2) in which the
function ϕ does not depend on the input (the inlet gas temperature) but on an exogenous
signal (the mass flow rate F ) and is defined as

ϕ(s, U(s)) = ϕ(s) =
k1

xk2

F (s)

This delay can be computed from the information of the mass flow rate used for cylinder
charge estimation and used for warm-up strategies, for example.

From the elements presented in this chapter, the frequent appearance in process and
flow systems of a transport delay defined by an implicit integral relation of type (8.2) is
clear. In the following chapter, we describe practical calculations to invert this relation
to determine the delay. The system under study is the recirculation of burned gas in SI
engines. In Chapter 10, methods to guarantee delay compensation are investigated, with
a focus on the class of delay presented in this chapter.



Chapter 9

Practical delay calculation. A SI
engine case study : Exhaust Gas
Recirculation

Chapitre 9 – Cas pratique de calcul du retard de transport : recirculation
de gaz brûlés sur moteur essence. Ce chapitre détaille l’implémentation pratique
du modèle implicite intégral de retard précédemment introduit. La vitesse distribuées des
gaz, de dimension infinie et non mesurée, est reliée au débit massique par la loi des gaz
parfaits. Cette dernière est utilisée sur une segmentation judicieuse de la ligne admission,
réalisée en fonction des capteurs disponibles. Après quelques éléments introductifs, nous
détaillons cette procédure ainsi que le modèle de dilution considéré qui est ensuite utilisé
en boucle ouverte pour fournir un estimateur du taux de gaz brûlés admission. Des essais
expérimentaux sur banc moteur mettent en exergue la pertinence de cet estimateur ainsi
que la technique de calcul du retard employée.
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In this chapter, we present practical computations of a delay transport equation of
type (8.2), as described earlier in Chapter 8, occurring on the low-pressure Exhaust Gas
Recirculation (EGR) loop of a SI engine.
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As emphasized in the previous chapter, because of the positivity of the integrand
function ϕ, the function f : D 7→

∫ t

t−D
ϕ(s, u(s))ds is strictly increasing and is therefore

invertible. For a given history of ϕ, it is possible to calculate the delay D by successively
evaluating the function f for increasing arguments, starting from 0, until the equation
defining D is matched. Here, we present a case study for an SI engine for which the
function ϕ is not directly known but related to measured signals (mass flow rates). Despite
this difficulty, we show here that the delay can be computed and used, for example, to
design an open-loop estimate.

This chapter is organized as follows. In a first section, some further elements of
background on downsized SI engines are presented, especially on EGR, before focusing on
the resulting transport delay which is the main specificity of this technology (compared
to the one usually embedded in Diesel engines). We present a model of the intake burned
gas rate dynamics, under the form of a LTV system with a time-dependent delay output.
Implementation and test bench experimental results are provided.

9.1 Background on turbocharged SI engines and in-
terest of EGR

Downsizing (reduction of the engine size) has appeared as the most efficient solution
to reduce pollutant emissions of SI engines and, in turn, satisfy increasingly stringent
environmental requirements. Downsized engines can reach high levels of performance and
driveability, provided they are equipped with direct injection, turbocharger and Variable
Valve Timing (VVT) actuators [Stefanopoulou 98].

A major control issue for such engines is prevention of the knock phenomenon, which is
an undesirable self-ignition of the gaseous blend that occurs at high loads (see [Eriksson 99]).
To address this issue, one strategy is to use EGR through a low-pressure circuit (see
[Hoepke 12] or [Potteau 07]). A typical implementation is represented in Figure 9.1. In
this recirculation configuration, burned gases are picked up downstream of the catalyst
and mixed with fresh air upstream of the compressor. EGR is a valuable alternative
to spark advance degradation, which is commonly considered to prevent knock1. The
addition of exhaust gas to the gaseous blend leads to an increase of the auto-ignition
delay: intermixing of the incoming air with recirculated exhaust gas dilutes the mixture
with inert gas, increases its specific heat capacity and consequently lowers the combustion
peak temperature. The net effect of EGR is therefore prevention of knock which leads to
substantial improvements of overall combustion efficiency [Cairns 05].

However, EGR has some downside. During tip-outs (defined as a transient mode dur-
ing which the torque demand is suddenly decreased), the presence of burned gases in the
intake manifold, and later in the combustion chamber, seriously impacts the combustion
process and may cause the engine to stall. Furthermore, EGR has strong interactions
with simultaneously operating engine controllers such as stoichiometric FAR regulation
[Jankovic 09]. To illustrate this point, Figure 9.2 shows a classic architecture for engine
control with air path control, fuel path control and ignition path control. To counteract

1Furthermore, the latter solution leads to a substantial increase in the exhaust gas temperature, which
is detrimental to the exhaust after-treatment devices. To counteract this phenomenon, the combustion
mixture is often purposely made richer to decrease the exhaust temperature. Consequently, in addition
to a higher fuel consumption, the catalyst efficiency is significantly reduced.
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Figure 9.1: Scheme of a turbocharged SI engine equipped with direct injection, VVTs
and a low-pressure EGR loop. Parts A and B of the intake line account for two different
dynamics that are depicted in Figure 9.3.

the impact of intake burned gas, a solution would be to modify the feedforward action
on the cascaded controllers (fuel path and ignition path controllers) based on a real-time
estimate x̂ of the intake burned gas rate.

However, it is not easy to obtain this estimate. First, no real-time sensor for this vari-
able is embedded in real-world vehicles. The approach that we advocate is to substitute a
model for such a sensor2. Second, for the low-pressure gas recirculation circuit considered,
the amount of burned gases reintroduced is controlled by an EGR Valve, an actuator lo-
cated upstream of the compressor. Consequently, the relatively long distance between the
compressor and the inlet manifold leads to a large transport delay (up to several seconds
depending on the engine specifications). Most importantly, this delay depends on the gas
flow rate and therefore is time-varying (and partly input-varying, as emphasized below)
to a large extent.

Comparison with Diesel EGR In the seemingly similar context of automotive Diesel
engines, numerous solutions for the discussed control issues have been developed in the
last decades (see for example [Ammann 03], [Van Nieuwstadt 00], [Zheng 04] and the
references therein). However, none of these strategies includes any transport delay model,
which is non-negligible for SI engines, as discussed. Indeed, besides using a low-pressure
EGR circuit configuration (which substantially increases the transport lag compared to
high-pressure configuration [Stotsky 02] [Lauber 02]), the combustion constraints for SI

2Other studies (see [Caicedo 12]) have investigated the potential of using a cylinder pressure sensor
signal, but such sensors are not commercially used at present because of cost constraints.
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E is the spark advance controller. x̂, an estimate of the intake burned gas fraction, used
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engines significantly increase the magnitude of the delay:

1. first, SI engines require a stoichiometric FAR, which results in a fraction of burned
gas close to unity in the exhaust line. Consequently, to obtain a given intake fraction
of burned gas, the amount of exhaust burned gas to be reintroduced at steady state
is substantially lower than for Diesel engines;

2. in contrast to Diesel engines, SI engines may operate at intake pressure less than
atmospheric pressure (low loads). For this operating range, the steady-state gas
flow rates are considerably less important. To illustrate this point, consider an idle
speed operating point for both Diesel (intake manifold pressure Pint = 1 bar) and
SI (Pint = 0.2 bar) engines. At fist order, thermodynamical conditions on the intake
line (from the EGR valve down to the throttle) can be considered as similar for
the two engines and the gas mass flow rates as proportional to the intake manifold
pressure. Therefore, the propagation time is up to 1

0.2
= 5 times more important

for the SI application.

Here, a model of the intake burned gas rate is presented, that explicitly accounts for
the transport time-varying delay and its dependency on the history of gas flow rates in
a way that compensates for thermal exchanges and induced changes in the gas velocity.
The model is then used as a “software” sensor. The estimation is based on a practical
delay calculation that was experimentally validated on a test bench. The estimate is then
used to coordinate the controllers.

9.2 Modeling
Consider the air path of a turbocharged SI engine equipped with an intake throttle, a

waste gate, dual independent VVT actuators and a low-pressure EGR loop, as depicted
in Figure 9.1. Such a set-up is usually considered for downsized engines [Kiencke 00].
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Formally, the in-cylinder burned gas fraction xcyl is defined as the ratio of the in-
cylinder burned gas mass originating from the EGR loop mbg to the total mass of gas in
the cylinder volume (masp = mair +mbg)

xcyl =
mbg

mair +mbg

Hereafter, this variable is considered equal to x the intake burned gas fraction 3.

9.2.1 Dilution dynamics and transport delay
Defining xlp as the burned gas rate upstream of the compressor, the EGR dynamics

can be expressed as

ẋlp =α [−(Fegr(t) + Fair(t))xlp(t) + Fegr(t)] (9.1)
x(t) =xlp(t−D(t)) (9.2)

where D(t), the transport delay between this ratio and the intake composition, can be
implicitly defined by the integral equation∫ t

t−D(t)

vgas(s)ds =LP (9.3)

where LP is the pipe length from the compressor to the intake manifold and vgas is the
gas speed. (9.3) is in the form (8.2).

Comments Equation (9.1) is a balance equation for the volume downstream of the EGR
valve, using the fact that the EGR circuit is totally filled with burned gas4. Depending on
the engine set-up, the thermodynamics constant α in (9.1) is either measured or known.
Following the proposed model, which is represented in Figure 9.3, the intake burned gas
fraction is a first order dynamics with a transport delay.

For clarity, the approach used to model the mass flow rate variables in (9.1)–(9.3) is
presented in Appendix C. We assume that these are known quantities.

To provide an implementable open-loop estimation of x based on the model (9.1)–(9.3),
the delay D must be related to available measurements. This point is now addressed.

3In fact, this relation depends mainly on the VVT control strategy [Leroy 08]. We neglect this influence
here for the sake of clarity.

4For SI engines, FAR is regulated to its stoichiometric value (see [Heywood 88]), which results in an
exhaust burned gas fraction close to unity.
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9.2.2 Transport delay description
Equation (9.3) implicitly determines the delay according to the gas speed along the

intake line, which, besides being a distributed parameter, is not measured in practice.
However, using the ideal gas law (as is classically done for engine gas flows, e.g. in
[Heywood 88]), one can relate this variable to thermodynamic conditions and mass flow
rates that are measured or modeled. The used relation is

∀t ≥ 0 , vgas(t) =
1

S(x)

rT (t)

P (t)
[Fair(t) + Fegr(t)]

where
• S is the current pipe area

• T, P are the current temperature and pressure values

• r is, as previously, the (common) ideal gas constant of both fresh air and burned
gas

From this reformulation, it is clear that the delay can be implicitly expressed using the
mass flow rates Fair(t) and Fegr(t)

5. Consequently, the delay variations depend on both the
input (the EGR mass flow rate) and implicitly on time (via the fresh air mass flow rate and
the pressure/temperature), which is compliant with the general form of (8.2). In practice,
the total mass flow rate under the integral is estimated as Fair(s) + Fegr(s) = Fdc(s) (a
model of the mass flow rate Fdc being provided in Appendix C).

Thermal contraction of the gas occurs inside the intake cooler (Figure 9.1). This
results in spatial variations in the gas velocity vgas. To model this, we split the intake
line into three main sections with cumulative transport delays D1, D2 and D3 such that
D = D1 +D2 +D3. This decomposition is pictured in Figure 9.4. The three main sections
are as follows:

• downstream of the compressor to the intercooler: here, the current pressure and the
temperature are measured. We can use them to write∫ t

t−D1(t)

rTdc

Pdc

Fdc(s)ds = V1 (9.4)

where V1 is the corresponding volume.

• inside the intercooler: considering boundary conditions, the pressure inside the in-
tercooler can reasonably be assumed to be spatially constant and equal to the input
pressure Pdc. We assume that the spatial profile of the internal temperature is
affine with respect to the spatial variable, with measured boundary conditions Tdc

and Tint, i.e. T (x) = Tint−Tdc

L2
x+Tdc for any position x ∈ [0, 1] inside the intercooler.

Under this assumption, (9.3) yields∫ t−D1(t)

t−D2(t)−D1(t)

r

Pdc

Fdc(s)ds =S2

∫ L2

0

dx

T (x)
=

V2

Tint − Tdc

ln

(
Tint

Tdc

)
(9.5)

where L2, S2 and V2 are the corresponding length, area and volume.
5In classical control architectures, the intake manifold pressure is regulated to provide a given in-

cylinder mass of fresh air, regardless of the amount of recirculated burned gas. Therefore, these two mass
flow rates can be considered as independent.
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Figure 9.4: The intake line is split into three parts to account for spatial differences in
the gas velocity. Along the line, the temperature decreases, which results in an increase
in velocity that is analytically determined by the ideal gas low using measurements from
temperature and pressure sensors located along the line.

• downstream of the intercooler to the intake manifold: here, the temperature is ap-
proximately equal to the intake manifold temperature, which yields∫ t−D2(t)−D1(t)

t−D3(t)−D2(t)−D1(t)

rTint

Pdc

Fdc(s)ds = V3 (9.6)

where V3 is the corresponding volume.

Setting values for the intermediate volumes V1, V2 and V3, one can calculate the delay
in a very straightforward manner, solving (9.4), (9.5) and (9.6) sequentially. The transport
delay is then simply deduced as D(t) = D1(t) +D2(t) +D3(t).

The numerical method for solving this problem is based on the observation that the
term under the integral is strictly positive and that the integral is then a strictly increasing
function of the delay Di (i ∈ {1, 2, 3}) appearing in its lower bound. By simply sampling
and evaluating the integral at increasing values of Di starting from 0, one can obtain a
numerical evaluation of the corresponding delay. All these calculations can be performed
online6.

9.2.3 Estimation strategy with practical identification proce-
dure

An estimation strategy for the model above is summarized in Figure 9.5. Real-time
temperatures and pressures measurements are used to determine the value of the delay.

6This approach is directly inspired of [Petit 98] and [Zenger 09] for modeling plug flows in networks
of pipes problem.
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Figure 9.5: Strategy for proposed delay calculation for intake burned gas fraction estimate
x. The implicit integral equations (9.4)–(9.6) can be numerically solved by sampling and
calculating the integrals at increasing values of Di starting from 0, which are real-time
compliant calculations.

These informations are commonly available using (cheap) embedded sensors. Values for
physical volumes (V1, V2 and V3) can be used to calibrate the model.

It is worth noting that splitting of the intake line as proposed above was motivated
mainly by the instrumentation available and in particular by the availability of temper-
ature (and pressure) sensors. It can easily be adapted to any engine. In particular, if
no temperature nor pressure sensors are available downstream of the compressor, they
can be replaced by approximations using the intake values at the expense of slight up-
dates of the volumes values in the fit. Indeed, the two pressures are sufficiently close and
these equations are moderately sensitive to temperature. In such a case, the delay can be
directly determined by one equation of type (9.4).

9.3 Experimental results

The proposed model (9.1)–(9.3) together with (9.4)–(9.6) was used as a “software”
sensor and the estimate obtained was embedded into a real-time control target and used
on a test-bench. The experiments aim at validating the model and in particular the delay
modeling.

9.3.1 Experimental set-up and indirect validation methodology
from FAR measurements

The engine under consideration is a Renault F5Rt 1.8L four cylinder SI engine with
direct injection (see [Le Solliec 06] for details). The air path consists of a turbocharger
controller with a waste gate, an intake throttle, an intercooler and a low-pressure EGR
loop. This engine set-up is consistent with the scheme in Figure 9.1.
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(c) Burned gas fraction estimate

Figure 9.6: Experimental results for constant engine speed (Ne = 2000 rpm) and torque
request (IMEP = 8 bar). The EGR valve position is pictured in (a). Blue dotted curve:
gas composition transient without estimation. Black curve: gas composition transient
with estimation and feedforward correction.
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To validate the proposed estimation strategy, since no real-time information for the
intake burned gas fraction is available for this engine, we focus on the open-loop response
of the FAR, which should be regulated to 1.

Here, the FAR is simply controlled by a feedforward strategy for the mass of fuel
injected into the cylinder, namely

minj = FARstmair

The additional feedback term that is commonly used is purposely omitted.
When no burned gas is recirculated, the in-cylinder air mass is accurately estimated

using the model presented in Appendix (see [Leroy 09]), i.e. mair = masp. When burned
gas are reintroduced, one can formally write mair = masp − mbg = masp(1 − x) and
consequently estimate the in-cylinder air mass as masp(1− x̂), where x̂ is the estimate of
the intake burned gas fraction provided by the proposed model.

With this setup, it is possible to qualitatively relate the FAR variations to the intake
burned gas fraction. Indeed, if the estimation is accurate, the normalized FAR remains
close to unity and, in turn, one obtains an indirect validation of the intake burned gas
rate estimation. Any offset reveals a steady-state estimation error while any temporary
undershoot (or overshoot) reveals a mis-estimation of the delay.

9.3.2 First validation : variation of the amount of reintroduced
EGR (constant delay)

The first scenario considered is variation of the amount of burned gas reintroduced for
a given operating point. Two different operating points are considered, both at a constant
engine speed Ne = 2000 rpm for a requested torque of 12.5 bar (Figure 9.7) and of 8 bar
(Figure 9.6).

This scenario is of particular interest for validation as the intake mixture composition
is the only parameter that varies.

Figure 9.7(c) and Figure 9.6(c) picture the intake burned gas fraction estimates corre-
sponding to the EGR valve variations in (a). The corresponding delays are constant and
are not reported.

With burned gas feedforward correction: mair = (1− x̂)masp The corresponding
normalized FAR evolution is pictured in black in Figure 9.7(b) and Figure 9.6(b). It is
clear that, in both cases, the normalized FAR remains satisfactorily close to the unity.
This behavior reveals a good fit between the real intake burned gas rate and the estimate
provided in Figure 9.6(c).

For comparison, the FAR response for a burned gas fraction estimate computed ne-
glecting the delay is also provided (red dotted curves). The mis-synchronization due to
neglecting the delay leads to a transient overestimation of the burned gas fraction and
consequently to a significant FAR undershoot. This stresses the importance of the delay
in the burned gas rate dynamics and the relevance of the proposed model.

Without burned gas correction, i.e. considering mair = masp In this case, as the
in-cylinder mass air is overestimated, the injected mass of fuel is too large. This results in
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(c) Burned gas fraction estimate

Figure 9.7: Experimental results for constant engine speed (Ne = 2000 rpm) and torque
request (IMEP = 12.5 bar). The EGR valve position is pictured in (a). Blue dotted curve:
gas composition transient without estimation. Black curve: gas composition transient
with estimation and feedforward correction.
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Figure 9.8: Experimental results for constant engine speed (Ne = 2000 rpm) and a tran-
sient torque request (step from IMEP = 6 bar to 12.5 bar), resulting into a delay variation.
The normalized FAR response pictured in (a) uses the intake burned gas fraction estima-
tion pictured in (b), obtained with the on-line estimation of the delay (d).
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both case in deviation of the normalized FAR, respectively to 1.14 and 1.09 (blue dotted
curve in Figure 9.7 and Figure 9.6). A feedback control would reasonably eliminate this
offset, but, since the FAR measurement obtained is delayed (see [Lauber 11] for a FAR
dynamics details), an important overshoot would still be present.

9.3.3 Second validation : torque transients (varying delay)
The second scenario under consideration is a torque transient requested by the driver

corresponding to a step from 6 bar to 12.5 bar. This tip-in is a typical driving situation
leading to an increase in the in-cylinder air mass set point and consequently the total gas
flow rate. Both the dilution dynamics in (9.1) and the delay vary during this transient.

The scenario also implies a variation of the EGR amount requested, as the initial
operating point is low loaded and does not require any EGR. Without any dedicated
control structure, we simply consider here the EGR valve position as either fully closed
or fully open. Its variations are shown in Figure 9.8(c).

The calculated delay is shown in Figure 9.8(d). As the total mass flow rate increases
during the transient, the delay gradually decreases, as expected.

Finally, as in the previous scenario, FAR remains close to unity. This validates the
burned gas fraction estimate variations depicted in Figure 9.8(b).





Chapter 10

Robust compensation of a varying
delay and sufficient conditions for
the input-dependent transport delay
case

Chapitre 10 – Compensation robuste d’un retard variable et conditions suff-
isantes pour une famille de retard dépendant de la commande. Dans ce
chapitre, nous proposons d’utiliser la valeur courante du retard comme horizon de pré-
diction dans le contrôle et prouvons que le retard est alors compensé de façon robuste
pourvu que ses variations soient suffisamment lentes au cours du temps. Dans le cas d’un
retard dépendant de la commande et défini par l’équation intégrale de transport faisant
l’objet des chapitres précédents, nous montrons qu’une condition suffisante pour cela est
une condition de petit gain portant sur le gain de rétroaction. Ce résultat est obtenu
grâce à des propriétés de stabilité d’équations différentielles à retard (inégalités de type
Halanay), obtenues par analyse de la dépendance implicite entre commande et variations
du retard.
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In this chapter, the problem of robust compensation of a time- and input-dependent
delay is addressed. We focus on the class of transport delays described in Chapter 8 and
illustrated in Chapter 9.

We consider a potentially unstable LTI plant driven by a delayed input φ, where the
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varying delay D(t) is implicitly defined in terms of the input history by∫ t

t−D(t)

ϕ(s, U(s))ds = 1 (10.1)

where the integrated variable ϕ is assumed to be strictly positive with a strictly positive
lower bound. Therefore, the resulting transport delay D(t) is well defined and, in particu-
lar, is upper-bounded. Our aim is to stabilize the plant over a given equilibrium set-point
by a predictor-based feedback approach.

The main concern for compensation of a time-varying delay is the calculation of the
prediction horizon, which involves future variations of the delay. The particular model
of transport delay under study here does not allow prediction of future delay values.
This is why only robust compensation is designed here, in which the prediction is simply
calculated based on the current value of the delay.

We start our analysis with formulation of a general condition for the delay variation
to achieve global exponential stabilization of the plant. We then focus on the particular
case of a solely input-dependent delay and relate this condition to a small-gain condition
for the feedback gain.

10.1 Robust compensation for time-varying delay
Theorem 10.1.1

Consider the closed-loop system

Ẋ(t) =AX(t) +BU(t−D(t)) (10.2a)

U(t) =K

[
eAD(t)X(t) +

∫ t

t−D(t)

eA(t−s)BU(s)ds

]
(10.2b)

where X ∈ Rn, U is scalar, the vector K is chosen such that A+BK is Hurwitz, and
D : R+ → [0, D] is a time-differentiable function. Consider the functional

Γ(t) =|X(t)|2 +

∫ t

t−D(t)

U(θ)2dθ +D(t)2

∫ t

t−D(t)

U ′(θ)2dθ

There exists δ∗ ∈]0; 1[ such that, provided

∀t ≥ 0 , |Ḋ(t)| < δ∗ , (10.3)

then there exist R, ρ > 0 such that

∀t ≥ 0 , Γ(t) ≤ RΓ(0)e−ρt

and the plant (10.2a) globally exponentially converges to the origin.

Control law (10.2b) is a predictor directly inspired by the constant delay case and fore-
casts values of the state over a time window of varying length D(t). Exact compensation
of the delay is not achieved with this controller. For exact compensation, one would need
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to consider a time window of length which exactly matches the value of the future delay,
as in [Nihtila 91] and [Krstic 09a]. In detail, defining the delay operator η(t) = t −D(t)
and assuming that its inverse r = η−1 exists and is available, exact delay-compensation
is obtained according to the feedback law

U(t) =KX(r(t)) = K

[
eA(r(t)−t)X(t) +

∫ t

t−D(t)

eA(r(t)−r(s))BU(s)
ds

1− Ḋ(r(s))

]
(10.4)

However, this requires to be able to predict the future variation of the delay via the
function r, for which values over the time interval [t−D(t), t] are necessary to calculate
(10.4). This may not be practically achievable for an input-varying delay (more details
are given in Section 2.2).

In this context, equation (10.3) can be interpreted as a condition for robust compensa-
tion achievement1. This condition means that if the delay varies sufficiently slowly, its cur-
rent value D(t) used for prediction is close enough to its future values, and the correspond-
ing prediction is accurate enough to guarantee stabilization of the plant. In other words,
one can easily observe that, assuming Ḋ(t) << 1 (and consequently r(t) − r(s) ≈ t − s)
(10.2b) is a direct approximation of (10.4).

The main advantage of this prediction-based approach is that control law (10.2b) only
requires knowledge of the current delay value and is therefore implementable provided the
delay is known.

We now prove this theorem.

Proof : In the following, we use the Lyapunov tools presented in Section 2.4 to analyze the
stability of input time-delay systems.

First, to extend these tools to the time-varying delay case, we introduce the dis-
tributed input u(x, t) = U(t + D(t)(x − 1)), x ∈ [0, 1], so the plant (10.2a) can be
rewritten as 

Ẋ(t) = AX(t) +Bu(0, t)
D(t)ut(x, t) = ux(x, t) + Ḋ(t)(x− 1)ux(x, t)

u(1, t) = U(t)

The input delay is now represented as a coupling with a transport PDE driven by the
input and for which the convection speed varies both with space and time.

Pursuing the mentioned approach, we now define the following transformed dis-
tributed input

w(x, t) =u(x, t)−D(t)K
∫ x

0
eAD(t)(x−y)Bu(y, t)dy −KeAD(t)xX(t) (10.5)

This Volterra integral equation of the second kind is designed such that w(1, t) = 0, con-
sistently with the control choice formulated earlier. The plant corresponding to (10.2a)–
(10.2b) can then be expressed as

Ẋ(t) = (A+BK)X(t) +Bw(0, t)
D(t)wt(x, t) = wx(x, t)− Ḋ(t)g(x, t)

w(1, t) = 0
(10.6)

1Interestingly, a similar condition is often stated in Linear Matrix Inequality approaches, such as
[Yue 05] for example, in which the delay is also assumed to be time-differentiable.
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where the function g is defined as

g(x, t) =(1− x)ux(x, t) +D(t)K
[
AxeAD(t)xX(t) +

∫ x

0
eAD(t)(x−y)B(y − 1)ux(y, t)dy

]
+D(t)K

∫ x

0
eAD(t)(x−y)(I +AD(t)(x− y))Bu(y, t)dy

For the Lyapunov analysis below, we also need the equation governing the spatial deriva-
tive of the transformed distributed input wx

D(t)wxt(x, t) =wxx(x, t)− Ḋ(t)gx(x, t)

wx(1, t) =Ḋ(t)g(1, t)

We can now start the Lyapunov analysis and introduce the following Lyapunov-Krasovskii
functional

V (t) =X(t)TPX(t) + b1D(t)
∫ 1

0
(1 + x)w(x, t)2dx+ b1D(t)

∫ 1

0
(1 + x)wx(x, t)2dx

where the symmetric matrix P satisfies the Lyapunov equation P (A + BK) + (A +
BK)TP = −Q for a given symmetric definite positive matrix Q for which λmin(Q) is its
minimum eigenvalue. After taking a time derivative of V , integrations by parts yield

V̇ (t) ≤ −X̃(t)TQX̃(t) + 2X̃(t)TPBw(0, t) + b1

(
−w(0, t)2 − ‖w(t)‖2

)
+ b1

(
2wx(1, t)2

−wx(0, t)2 − ‖ŵx(t)‖2
)

+ |Ḋ(t)|b1
∫ 1

0
(1 + x)[w(x, t)2 + wx(x, t)2]dx

+ 2b1|Ḋ(t)|
∣∣∣∣∫ 1

0
(1 + x)w(x, t)g(x, t)dx

∣∣∣∣+ 2b1|Ḋ(t)|
∣∣∣∣∫ 1

0
(1 + x)wx(x, t)gx(x, t)dx

∣∣∣∣
To bound the remaining positive terms, one can introduce the inverse transformation
of (10.5)

u(x, t) =w(x, t) +D(t)K
∫ x

0
e(A+BK)D(t)(x−y)Bw(y, t)dy +Ke(A+BK)D(t)xX̃(t)

and its spatial derivative to obtain the following inequalities, using Young’s and Cauchy-
Schwartz’s inequalities,

2
∣∣∣∣∫ 1

0
(1 + x)w(x, t)g(x, t)

∣∣∣∣ dx ≤M1

(
|X̃(t)|2 + ‖w(t)‖2 + ‖wx(t)‖2

)
2wx(1, t)2 ≤M2|Ḋ(t)|2

(
|X̃(t)|2 + ‖w(t)‖2 + ‖wx(t)‖2

)
2
∣∣∣∣∫ 1

0
(1 + x)wx(x, t)gx(x, t)

∣∣∣∣ dx ≤M3

(
|X̃(t)|2 + ‖w(t)‖2 + ‖wx(t)‖2 + wx(0, t)2

)
where M1, M2 and M3 are positive constants, the expressions of which are omitted
for sake of brevity. Using Young’s inequality and the previous ones, defining V0(t) =
|X̃(t)|2 + ‖w(t)‖2 + ‖wx(t)‖2, it is straightforward to obtain

V̇ (t) ≤ −λ(Q)
2
|X̃(t)|2 −

(
b1 −

2|PB|2

λ(Q)

)
w(0, t)2 − b1 ‖w(t)‖2 − b1 ‖wx(t)‖2

− b1(1−M3|Ḋ(t)|)wx(0, t)2 + b1|Ḋ(t)|(M1 +M2|Ḋ(t)|+M3 + 2)V0(t)
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Consequently, choosing b1 ≥ 2|PB|2/λmin(Q) and defining

δ∗ =min
{

min {λ(Q)/2, b1}
b1(M1 +M2 +M3 + 2)

,
1
M3

, 1
}

(10.7)

we obtain the existence of a positive constant µ such that, provided |Ḋ(t)| < δ∗, t ≥ 0,

∀t ∈ R+ , V̇ (t) ≤ −µV0(t) ≤ −
µ

max
{
λ̄(P ), 2b1D

}V (t)

Consequently, V (t) ≤ V (0)e
− µ

max{λ̄(P ),2b1D} t
, t ≥ 0. Finally, observing that there exist

positive constant r1, r2, r3 such that the following inequalities are fulfilled

‖u(t)‖2 ≤r1|X(t)|2 + r2 ‖w(t)‖2

‖ux(t)‖2 ≤r3|X(t)|2 + r4 ‖w(t)‖2 + r5 ‖wx(t)‖2

‖w(t)‖2 ≤s1|X(t)|2 + s2 ‖u(t)‖2

‖wx(t)‖2 ≤s3|X(t)|2 + s4 ‖u(t)‖2 + s5 ‖ux(t)‖2

one can obtain that, for any t ≥ 0,

1
max

{
λ̄(P ), 2b1

}V (t) ≤ Γ(t) ≤
max

{
1 +Dr1 +Dr3, r2 + r4, r5

}
min {λ(P ), b1}

V (t)

which gives the existence of R and ρ. This concludes the proof.

Theorem 10.1.1 guarantees exponential convergence provided that variations in the
delay are sufficiently slow. An expression of the bound δ∗ on these variations is provided
in (10.7). However, as it is obtained from a Lyapunov analysis, it is quite conservative
and is not recommended for practical use. Nevertheless, this expression leads to the
conclusion, at least according to the Lyapunov proof, that the faster the dynamics of the
system, the smaller is this bound, which is expected. In particular, the constants M1,M2

and M3 introduced above are then larger, which results in a smaller value of δ∗.
Second, it is also worth noticing that the bound δ∗ indirectly depends on the absolute

value of the feedback gain K. Indeed, one can show that M2 is a linear function in |K| and
P and therefore b1 also depend on |K| ; a thorough study of (10.7) yields the conclusion
that δ∗ tends to zero as |K| tends to zero and is constant as |K| tends to +∞.

When the delay depends on external variables (i.e. φ depends on s), it is not possible
to go further to guarantee that condition (10.3) is fulfilled. We now investigate the case
of a solely input-dependent delay, for which a more complete analysis can be performed.

10.2 Derivation of sufficient conditions for input-vary–
ing delays

In this section, we consider the case of a purely input-dependent delay. Namely, with
the formalism introduced in (10.1), we consider ϕ(s, φ(s)) = φ(s) or, equivalently,∫ t

t−D(t)

φ(s)ds = 1 with φ(t) = Sat[u,+∞[(U(t)) (10.8)

The variable φ should be understood in this context as a (normalized) flow rate. Therefore,
the saturation operator is necessary to make the control law compliant with the positivity
of the input variable. These elements are sketched in Figure 10.1.
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Process
Transport delay∫ t

t−D(t)
φ(s)ds = 1

Saturation operator
Sat[u,+∞[

U(t) φ(t) φ(t−D)

Figure 10.1: The addressed problem, in which the input is delayed by a transport delay
that is input-dependent.

10.2.1 Problem statement
The plant under consideration in this section is the following linear one2

x(n) + an−1x
(n−1) + . . .+ a1ẋ+ a0x = b0φ(t−D(t)) (10.9)

which we wish to stabilize over the equilibrium xr = b0/a0U
r with U r ≥ u > 0. To con-

struct a prediction-based control law, we use Theorem 10.1.1 and focus on a general
condition to guarantee that (10.3) holds, the form of which should be more compliant
with practical control implementation. This leads to the formulation of Theorem 10.3.1
below.

With this aim in view, to use Theorem 10.1.1, we first formulate a state-space repre-
sentation of this system as

Ẋ = AX(t) +Bφ(t−D(t))∫ t

t−D(t)

φ(s)ds = 1 with φ(t) = Sat[u,+∞[(U(t))
(10.10)

where

A =


0 1 0
... . . .
0 0 1
−a0 −a1 . . . −an−1

 , B =


0
...
0
b0

 (10.11)

and Xr is the state-space equilibrium corresponding to the original equilibrium xr. For
clarity, we make the following extra assumption for this state-space representation3.

Assumption 6. The system state X is assumed to be fully measured.

According to the elements proposed in the previous section, we then consider the
control law

U(t) = U r +K

[
eAD(t)X(t) +

∫ t

t−D(t)

eA(t−s)Bφ(s)ds−Xr

]
(10.12)

Following Theorem 10.1.1, we know that this control law achieves global exponential
stability provided that Ḋ(t) < δ∗ , t ≥ 0 (with δ∗ potentially depending on |K|). We now
focus on a sufficient condition to fulfill the latter.

2Potential zeros can still be handled by a suitable choice of state-space representation and of the
output vector.

3Addition of a state observer into this control law and the study of its compliance with the corre-
sponding analysis are natural extensions of this work.
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Reformulation of Condition 10.3 Taking a time derivative of (10.8) and defining
the error variable ε = φ− U r and using the fact that φ ≥ u, one obtains

Ḋ(t) =1− ε(t) + U r

ε(t−D(t)) + U r
=
ε(t−D)− ε(t)

ε(t−D) + U r
≤ 2 max |εt|

u

where εt is the function defined by εt : s ∈ [−D, 0] 7→ ε(t+ s) and max εt is then defined
on the interval [−D, 0]. As a result, condition (10.3) is satisfied if

∀t ≥ 0 , max |εt| <
uδ∗(|K|)

2
(10.13)

This is the condition we aim at guaranteeing and on which we focus in the following. This
requires an analysis of the dynamics of the variable ε.

10.2.2 Error dynamics, defined through the predictor-based con-
trol law

Preliminary result

To obtain the differential equation governing ε = φ − U r, we establish preliminary
results for the successive derivations of this variable. In the following, Z = X −Xr is the
state tracking error.

Lemma 1. If the actuator is unsaturated over the interval [t−D(t), t], the control variable
in (10.25) satisfies the following differential equations for 1 ≤ m ≤ n

ε(m) −
m∑

l=1

KAl−1Bε(m−l) =

fm
Z (t) + fm

ε (t) + (1 + Ḋ)mKeADAmZ +K

∫ t

t−D

AmeA(t−s)Bε(s)ds (10.14)

with
f 1

Z(t) = 0

for 2 ≤ m ≤ n , fm
Z (t) =

d[(1 + Ḋ)m−1]

dt
KeADAm−1Z +

d

dt

(
fm−1

Z (t)
) f 1

ε (t) = ḊKeADBε(t−D)

for 2 ≤ m ≤ n , fm
ε (t) =

d

dt

(
fm−1

ε (t)
)

+
[
(1 + Ḋ)m−1 − (1− Ḋ)

]
ε(t−D)KeADAm−1B

Furthermore, the sequences (fm
ε ) and (fm

Z ) satisfy the following properties:

• for 2 ≤ m ≤ n, fm
ε is a polynomial function in εt, . . . , ε

(m−1)
t , Ḋ, . . . , D(m) without

constant nor first-order terms.

• assume that 1 + Ḋ > 0. Then, for 2 ≤ m ≤ n, fm
Z is a polynomial function in

εt, . . . , ε
(m−1)
t , Ḋ, . . . D(m) and 1

1+Ḋ
, at least quadratic in the variables εt, . . . , ε

(m−1)
t ,

Ḋ, . . . D(m).
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Proof : We start by observing that, when the actuator is unsaturated over the time interval
[t−D(t), t], the error system can be written following (10.10) and (10.12) as

Ż(t) = AZ(t) +Bε(t−D(t)) (10.15)

ε(t) = K

[
eAD(t)Z(t) +

∫ t

t−D(t)
eA(t−s)Bε(s)

]
(10.16)

We now constructively establish the first result of this lemma by induction and successive
substitutions.

Initial step: taking a time-derivative of (10.16) and using (10.15), one gets

ε̇(t) =KBε(t) + (1 + Ḋ)KeADAZ + ḊKeADBε(t−D)︸ ︷︷ ︸
=f1

ε (t)

+ f1
Z(t)︸ ︷︷ ︸
=0

+K
∫ t

t−D
AeA(t−s)Bε(s)ds

which gives (10.14) for m = 1.

Induction: assume that the property is true for a given m ≥ 1. We now show that it
also holds for m+ 1. Taking a time derivative of (10.14) for some m ≥ 1 yields

ε(m+1)−
m∑

l=1

KAl−1Bε(m+1−l) =
d

dt
(fm

ε (t)) +
d

dt
(fm

Z (t)) +
d(1 + Ḋ)m

dt
KeADAmZ︸ ︷︷ ︸

=fm+1
Z (t)

+ Ḋ(1 + Ḋ)mKeADAm+1Z + (1 + Ḋ)mKeADAm [AZ +Bε(t−D)] +KAmBε(t)

− (1− Ḋ)KeADAmBε(t−D) +K

∫ t

t−D
Am+1eA(t−s)Bε(s)ds

Rearranging terms, one obtains (10.14) for m+ 1. This gives the conclusion.
Second, the property of the sequence (fm

ε ) is straightforward using the definition of
this sequence together with the fact that

(1 + Ḋ)m−1 − (1− Ḋ) =
m−1∑
l=1

(
n
l

)
Ḋl + Ḋ

Finally, to obtain the property for the sequence (fm
Z ), again, we reason by induction.

Induction: we assume that the property is true for a given m ≥ 2. Then, using (10.14)
for m, one can obtain

fm+1
Z (t) =

d[(1 + Ḋ)m]
dt

KeADAmZ +
d

dt
(fm

Z (t))

=
mD̈

1 + Ḋ

[
ε(m) −

m∑
l=1

KAl−1ε(m−l) − fm
Z (t)− fm+1

ε (t)−K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]

+
d

dt
(fm

Z (t))

Using the induction assumption jointly with the previous lemma, one can conclude that
fm+1

Z is a polynomial function in εt, . . . , ε
(m)
t , Ḋ, . . . ,D(m+1), 1

1+Ḋ
, at least quadratic in

εt, . . . , ε
(m)
t , Ḋ, . . . ,D(m+1).
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Initial step: the same argument as that above applies for m = 2.

It is now possible to express the dynamics of ε in the following form.

Lemma 2. Consider t0 ∈ R and assume that the function φ is unsaturated for t ≤ t0 (or
equivalently that U(t) ≥ u , t ≤ t0). Then the error variable ε = U −U r with U as defined
in (10.12) satisfies the following differential equation for t ≤ t0

ε(n) + (an−1+b0kn−1)ε
(n−1) + . . .+ (a0 + b0k0)ε

= π0(εt, . . . , ε
(n−1)
t ) + π1

(
Ḋ, . . . , D(n), εt, . . . , ε

(n−1)
t ,

1

1 + Ḋ

)
(10.17)

where the constants ki are the coefficients of the feedback gain K = [−k0 . . .− kn−1] and
π0 and π1 are polynomial functions satisfying the following properties:

• there exists a class K∞ function β such that

|π0(εt, . . . , ε
(n−1)
t )| ≤ β(|K|) max |Et|

with E(t) = [ε(t) ε̇(t) . . . ε(n−1)(t)]T .

• π1 is at least quadratic in the variables εt, . . . , ε
(n−1)
t , Ḋ, . . . , D(n).

Proof : The dynamics matrix that we consider in (10.11) is of the companion type, so the
Cayley-Hamilton theorem gives

An =−
n−1∑
i=0

aiA
i

Therefore, the dynamics equation (10.14) for m = n can be reformulated as

ε(n) −
n∑

l=1

KAl−1Bε(n−l) =

fn
Z(t) + fn

ε (t)− (1 + Ḋ)mKeAD
n−1∑
i=0

aiA
iZ +K

∫ t

tD

AneA(t−s)Bε(s)ds

Using (10.14) for m ranging from 1 to n− 1, one can replace the state-dependent terms
in this last expression to obtain

ε(n) −
n∑

l=1

KAl−1Bε(n−l) =

fn
Z(t) + fn

ε (t)−
n−1∑
m=0

am(1 + Ḋ)n−m

[
ε(m) −

m∑
l=1

KAl−1Bε(m−l) − fm
Z (t)

−fm
ε (t)−K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]
+K

∫ t

t−D
AneA(t−s)Bε(s)ds

In addition, using the Leibniz formula for the power (1 + Ḋ)n−m together with the fact
that

n∑
l=1

KAl−1Bε(n−l) =−
n∑

l=1

b0kn−lε
(n−l) +K

n∑
l=1

Mlε
(n−l)
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where the coefficients of the constant matricesMl are polynomial functions of a0, . . . , an−1

and b0, one can define

π0(εt, . . . , ε
(n−1)
t ) = K

n∑
l=1

Mlε
(n−l) +K

∫ t

t−D
AneA(t−s)Bε(s)ds

+
n−1∑
m=1

am

[
m∑

l=1

KAl−1Bε(m−l) +K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]
(10.18)

π1(Ḋ, . . . , D(n), εt, . . . , ε
(n−1)
t ) = fn

Z(t) + fn
ε (t)

+
n−1∑
m=0

am(1 + Ḋ)n−m(fm
Z (t)− fm

ε (t))−
n−1∑
m=1

am

[
n−m∑
l=1

(
n−m
l

)
Ḋl

]

×

[
ε(m) −

m∑
l=1

KAl−1Bε(m−l) −K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]
(10.19)

to obtain the dynamic (10.17). Finally, introducing

β(|K|) =|K|n
[ n∑

l=1

|Ml|+ |A|(n−1)|eAD − 1||B|

+
n−1∑
m=1

|am|
[
|Al−1B|+ |A|(m−1)|eAD − 1||B|

]]
(10.20)

which is a class K∞ function, π0 in (10.18) is such that

|π0(εt, . . . , ε
(n−1)
t )| ≤ β(|K|) max |Et|

with E(t) = [ε(t) ε̇(t) . . . ε(n−1)(t)]T . Further, from (10.19) and using the properties
of the sequences (fm

ε ) and (fm
Z ) stated in Lemma 2, π1 is a polynomial function in the

variables εt, . . . , ε(n−1)
t , Ḋ, . . . , D(n) and 1

1+Ḋ
, that is at least quadratic in the variables

εt, . . . , ε
(n−1)
t , Ḋ, . . . , D(n).

10.2.3 Application of the Halanay-like Lemma 10.2.1 to the con-
sidered variable

The stability analysis performed here is based on the following DDE result that is
established in Appendix B. We apply it to the dynamics obtained in the previous lemma
to guarantee that the stability condition (10.13) holds.



10.2. Derivation of sufficient conditions for input-vary–ing delays 129

Lemma 10.2.1
Let x be a solution of the nth order DDE{

x(n) + αn−1x
(n−1) + . . .+ α0x = c`(t, xt, . . . x

(n−1)
t ) , t ≥ t0

xt0 = φ ∈ C0([−D, 0],V)

where the left-hand side of the differential equation defines a polynomial which roots
have only strictly negative real parts, c > 0, ` is a continuous functional and V is a
neighborhood of the origin for which ` satisfies the sup-norm relation

∀t ≥ t0 , |`(t, xt, . . . , x
(n−1)
t )| ≤ max |Xt|

with X = [x ẋ . . . x(n−1)]T . Then there exists cmax > 0 such that, provided that
0 ≤ c < cmax, there exist γ > 0 and r > 0 such that

∀t ≥ 0 , |X(t)| ≤ r max |Xt0|e−γ(t−t0)

As shown in Appendix B, a constructive choice is cmax = λ(P )λ(Q)

2λ(P )2
and r =

√
λ(P )
λ(P )

for
the couple (P,Q) of the Lyapunov equation corresponding to the asymptotically stable
equation x(n) + αn−1x

(n−1) + . . .+ α0x = 0.

Lemma 3. Consider the functional

Θ(t) =|X(t)−Xr|+ max
[t−D,t]

|U(s)− U r| (10.21)

and Q a symmetric definite positive matrix. Assume that, for a given ε ∈ (0, 1), there
exists k∗ > 0 such that

β(|K0|) <(1− ε)
λ(P )λ(Q)

2λ(P )2
with P (A+BK0) + (A+BK0)

TP = −Q (10.22)

for any K0 ∈ R1×n such that |K0| < k∗, with β defined in (10.20). Then, there exists
θ : R+ 7→ R+ such that for any K ∈ R1×n such that |K| < k∗ and Θ(0) < θ(|K|), then

∀t ≥ 0 , |ε(t)| ≤ min

{
uδ?(|K|)

2
, U r − u

}
which implies that condition (10.13) is fulfilled.

Proof : Assume for a moment that the function φ is unsaturated for t ≤ 0. Therefore, dy-
namics (10.17) in Lemma 2 holds and is compliant with the framework of Lemma 10.2.1.

In details, first, the left-hand side of (10.17) is stable, as it represents the last line of
the Hurwitz companion matrix A+BK. Second, by observing that

Ḋ =
ε(t−D)− ε(t)
ε(t−D) + U r

one can obtain by induction that, form ≥ 1, D(m) is a polynomial function in εt, . . . , ε(m−1)
t ,

1
ε(t−D)+Ur without terms of order 0 or 1. Therefore, π1 is directly a polynomial function
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of the variables εt, . . . , ε(n−1)
t , 1

1+Ḋ
, that is at least quadratic in the variables εt, . . . , ε(n−1)

t .
Finally, define

c`(t, εt, . . . , ε
(n−1)
t ) = π0(εt, . . . , ε

(n−1)
t ) + π1

(
Ḋ, . . . ,D(n), εt, . . . , ε

(n−1)
t ,

1
1 + Ḋ

)
Observing that

1
1 + Ḋ

=
ε(t−D) + U r

2ε(t−D)− ε(t) + U r

and because π1 is at least quadratic, it is possible to properly define a neighborhood of
the origin V such that, for ε ∈ (0, 1),∣∣∣π1

(
εt, . . . , ε

(n−1)
t

)∣∣∣ ≤ εcmax max |Et|

for Et with values in Vn−1 (and such that 1+Ḋ(t) > 0). Assume the existence of k∗ such
that the condition expressed in (10.22) is fulfilled. Therefore, by restricting |K| < k∗,
β(|K|) ≤ (1− ε)cmax. Consequently, for |K| ≤ k∗ and for Et([−D, 0]) ⊂ Vn−1, one gets∣∣∣c`(t, εt, . . . , ε(n−1)

t )
∣∣∣ <cmax max |Et|

Therefore, Lemma 10.2.1 guarantees the existence of r > 0 and γ > 0 such that

∀t ≥ 0 , |E(t)| ≤ rmax |E0|e−γt

as long as the actuator φ is not saturated and that (10.17) applies. Yet, one can observe
that a sufficient condition to ensure that the actuator is not saturated is |ε(t)| ≤ U r − u ,

t ≥ 0. Therefore, by choosing max |E0| ≤ 1
r min

{
uδ∗(|K|)

2 , U r − u
}

=∆ θ(|K|), one can

ensure both that this condition is fulfilled for any t ≥ 0 and that |E(t)| ≤ uδ∗(|K|)
2 , t ≥ 0.

In particular, the condition (10.13) is also fulfilled. This concludes the proof.

Finally, the choice max |E0| ≤ 1
r min

{
uδ∗(|K|)

2 , U r − u
}

can be expressed in terms of
Θ, judiciously redefining the function θ.

10.3 Sufficient conditions for robust compensation of
an input-dependent delay

From the result finally obtained in Lemma 3, it is possible to gather the previous
elements into the following result.
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Theorem 10.3.1
Consider the closed-loop system

Ẋ(t) = AX(t) +Bφ(t−D(t)) (10.23)∫ t

t−D(t)

φ(s)ds = 1 with φ(t) = Sat[u,+∞[(U(t)) (10.24)

U(t) = U r +K

[
eAD(t)X(t) +

∫ t

t−D(t)

eA(t−s)Bφ(s)ds−Xr

]
(10.25)

where A and B are defined in (10.11), U is scalar, Xr is the state equilibrium corre-
sponding to the original equilibrium xr of plant (10.9) and U r is the corresponding
reference control. Consider the functional

Θ(t) =|X(t)−Xr|+ max
s∈[t−D,t]

|U(s)− U r|

and Q a symmetric positive definite matrix. Assume that, for a given ε ∈ (0, 1), there
exists k∗ > 0 such that

β(|K0|) <(1− ε)
λ(P )λ(Q)

2λ(P )2
with P (A+BK0) + (A+BK0)

TP = −Q (10.26)

for any K0 ∈ R1×n such that |K0| < k∗, with β defined in (10.20) by A and B. Then,
there exists θ : R+ 7→ R+ such that for any K ∈ R1×n such that |K| < k∗ and
Θ(0) < θ(|K|) the condition (10.3) is fulfilled and the plant exponentially converges
to Xr.

The meaning of this result is not surprising : Theorem 10.1.1 requires that the delay
varies sufficiently slowly, whereas the delay variations implicitly depend on the control
input with a magnitude scaled by the gain K. Then, restricting the input variations by
both choosing the feedback gain sufficiently small and the initial conditions close enough
to the desired equilibrium seems like a natural solution. This is indeed the assumption
formulated in Theorem 10.3.1.

The upper-bound k∗ is defined through the assumption (10.26) which is worth being
commented. The second part of this condition simply expresses that the feedback gain has
to be compliant with stabilization; in other words, A+BK is still required to be Hurwitz.
Yet, the first part of the condition is more complex to investigate and the existence of
a upper-bound k∗ may not hold for any unstable plant4. This assumption is an obvious
limitation of the proposed result, which should be investigated further in future works.

In particular, this result highlights the well known and long-standing necessity to
detune the predictive controllers commonly used for delay systems.

4Conversely, the existence of k∗ holds for a stable plant. Indeed, for a given matrix Q, one can
obtain that (1 − ε)λ(P )λ(Q)

2λ(P )2
tends to a positive constant for |K| → 0 (as P can be expressed ad

P =
∫∞
0
e(A+BK)T tQe(A+BK)tdt which is a continuous function of K [Rugh 96] and the (all real) eigen-

values of P can then be shown to be continuous with respect to K, using Rouché’s Theorem for example
[Miller 82]), while β(|K|) → 0 by definition of the class K∞ function β.
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The approach proposed to address the problem of robust compensation of a linear
system driven by a delayed input is based on a two-step methodology. First, the delay
derivative must be bounded and, then, this derivative must be related to input fluctua-
tions. Here, this approach was applied to a particular class of transport delays that are
input-dependent (through an integral relation) using a Halanay-like inequality. The suf-
ficient conditions obtained limit both the magnitude of the feedback gain and the initial
conditions.

This approach may be applied to other equations defining the delay, but an accurate
analysis for each type of dependence would be necessary. An example of such a study is
given in the next chapter.



Chapter 11

Case study of the bath temperature
regulation, as an input-dependent
delay system

Chapitre 11 – Etude d’un système à entrée retardée en fonction de la com-
mande : régulation de la température d’un bain. Ce chapitre illustre les résultats
théoriques du chapitre précédent sur un exemple classique des systèmes à retard, celui de la
douche (ou du bain). Après avoir exposé brièvement le système considéré, nous commen-
tons les résultats de simulation obtenus qui soulignent les nombreux avantages en termes
de performance de notre approche par compensation robuste pour retard dépendant de la
commande.
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In this chapter, at the light of a simple tutorial example, we illustrate the prediction-
based controller for input-dependent input-delay proposed in Chapter 10. We focus on one
of the simplest time-delay system example one can think of: the temperature regulation
of the bath depicted in Figure 11.1, for which the non-negligible pipe holdups involved are
directly correlated to the history of the input flow rates. Because of its relative simplicity
and everyday occurrence, this example is often used to introduce time-delay systems in
lectures [Zhong 06] and to illustrate some corresponding control challenges.
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Tmoy

Tout

V

control

sensor

node

nozzle

Figure 11.1: The studied shower and bathtub system.

After describing the system, we design a prediction-based control law based on the
methodology presented in the previous section and illustrated by Theorem 10.3.1. The
anticipation capabilities of the proposed controller are then illustrated using simulation
results that report closed-loop performance.

11.1 Physical description and problem statement
Consider the bathtub system represented in Figure 11.1, where the water temperature

(assumed to be homogeneous in the bath) is the result of mixing between a cold water
source (flow rate u1 and temperature T1) and a warm source (u2, T2). For comfort, the
user wishes to obtain a desired temperature Tref without over- nor under-shoots as quickly
as possible (namely, close to the minimum time introduced by the transport delay through
the pipe).

For simplicity, we assume that the change of faucet position is immediate and that
the cold flow rate is constant. Assuming that the position of the warm faucet is directly
correlated to the flow rate through static relations, u2 could then be considered as the input
variable. Finally, we assume that the bath temperature Tf is available for measurement
and that the bath volume is constant (i.e. ∀t ≥ 0, uout(t) = u1 + u2(t)).

11.1.1 Balance equations
Assuming that mixing at the node is instantaneous, the temperature at the node can

simply be expressed as

Tmoy(t) =
u1T1 + u2(t)T2

u1 + u2(t)
(11.1)

We neglect the heat transfer during flow transport from the node to the nozzle, namely

Tout(t) =Tmoy(t−D(t)) (11.2)
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where D(t) accounts for the varying transport delay implicitly defined by

VP =

∫ t

t−D(t)

(u1 + u2(s))ds (11.3)

where VP is the pipe volume. Furthermore, considering the bathtub volume V as constant
and using (11.2), a heat balance yields

d

dt
(Tf ) =

u1 + u2(t)

V
[−Tf (t) + Tmoy(t−D(t))] (11.4)

11.1.2 Constraints and control objective
Valve Position Both faucets have physical limitations and therefore the warm water
flow rate is also bounded, i.e. u2 ∈ [0, ū2].

Control objective The control objective is to have (11.4) track the given temperature
Tref as quickly as possible, taking into account the above constraints. To reach this goal,
we develop a prediction-based control law by taking advantage of knowledge of the implicit
delay variation law (11.3).

11.1.3 Link to the results of Chapter 10
The dynamics (11.4) under consideration is nonlinear. Therefore, Theorem 10.1.1

cannot be directly applied. For this reason, we present below a time-change that results
in a linear form.

Second, the input in (11.4) is the average temperature Tmoy. Therefore, the transport
delay described in terms of the mass flow rates in (11.3) does not directly follow (10.8)
because the integrated variable is not Tmoy. However, this delay is still solely input-
dependent1 and the two-step methodology introduced above can still be applied. This is
the purpose of the following section.

11.2 Problem normalization and control design
For clarity and without loss of generality, in this section we normalize the parameters

introduced above as T1 = 0, T2 = 1, u1 = 1, V = 1, Tref ∈ [0, 1[ and denote by
u = u2 ∈ [0, ū] the actual actuator.

11.2.1 Alternative system representation
To obtain a linear dynamic representation, we first introduce the following time-change

τ =h0(t)
∆
=

1

1 + ū

∫ t

0

(1 + u(s))ds+ τ0 (11.5)

where ū is a normalization factor chosen as ū =
Tref

1−Tref
and τ0 ≥ 0 is a given constant.

This leads to the alternative linear system
dX

dτ
(τ) =(1 + ū) [−X(τ) + Tmoy(τ −D2(τ))] (11.6)

1In particular, it could be reformulated as
∫ t

t−D(t)
u1
VP

T2−T1
T2−Tmoy(s)

ds = 1.
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where the alternative system state is defined asX(τ) = Tf (t) and a new delay is introduced
as

D2(τ) = τ − t+D(t) = τ − h−1
0 (τ) +D(h−1

0 (τ)) (11.7)

In this new time scale 2, (11.6) is a linear input delay system with constant parameters.
Rewriting the alternative delay as D2(h0(t)) = h0(t)−t+D(t) and considering both (11.3)
and (11.5), one can observe that this delay is still input-dependent, but in a much more
complex way.

Before working with this representation, we need to make sure that (11.5)-(11.7) is
well-posed in the sense detailed below.

(i) The function h0 defined in (11.5) is a C1 function, strictly increasing w.r.t. t.
Therefore, it describes a diffeomorphism and in particular its inverse in (11.7) is well-
defined.

(ii) One has to ensure that the delay D2 is well defined, namely positive, whereby
∀t ≥ 0 , τ ≥ t − D(t). This property is given by choosing τ0 large enough compared to
the upper bound of the delay D̄ = VP .

(iii) h0 is unbounded and then lim
t→∞

Tf (t) = lim
τ→∞

X(τ) (if it exists). This allows di-
rect translation of any asymptotic result obtained for the alternative plant (11.6) to the
original (11.4).

11.2.2 Control law
The alternative plant (11.6) now directly fits in the framework of Theorem 10.1.1.

Therefore, furthering this theorem, we use the controller

u(t) = Sat[0,ū]

{
Tmoy(t)

1− Tmoy(t)
,

}
(11.8)

Tmoy(t) = (1 + k)Tref − k

[
e−(1+ū)D2(t)Tf (h

−1
0 (t)) + (1 + ū)

∫ t

t−D2(t)

e−(1+ū)(t−s)Tmoy(s)ds

]
(11.9)

D2(t) = t− h−1
0 (t) +D(h−1

0 (t)) (11.10)

where the function h0 is as defined in (11.5), and Sat[0,ū] represents the usual saturation
operator. Based on the elements presented in Theorem 10.1.1, this controller achieves
global exponential convergence of the plant, provided that the following condition is ful-
filled ∣∣∣∣∂D2

∂τ
(τ)

∣∣∣∣ < δ∗(k) (11.11)

We now investigate a sufficient condition to fulfill the latter.

2A different constant scale factor could be introduced in (11.5) to simplify the expression of (11.6) at
the expense of later complexity in the analysis of closed-loop behavior.



11.2. Problem normalization and control design 137

11.2.3 Reformulation of the delay variations condition (11.11)
From (11.5) and (11.7), one can easily obtain an analytic expression of the partial

derivative in (11.11)

∂D2

∂τ
(τ) =

∂D2

∂τ
(h0(t)) = 1− [1− Ḋ(t)]

1 + ū

1 + u(t)

Furthermore, taking a time derivative of the implicit equation (11.3) with normalized
data one obtains

1− Ḋ(t) =
1 + u(t)

1 + u(t−D(t))

Substituting then yields∣∣∣∣∂D2

∂τ
(τ)

∣∣∣∣ < δ∗ ⇔
∣∣∣∣1− 1 + ū

1 + u(t−D(t))

∣∣∣∣ < δ∗ ⇔ 1 + ū

1 + δ∗
< 1 + u(t−D(t)) <

1 + ū

1− δ∗

⇔ 1− δ∗

1 + ū
< 1− Tmoy(t−D(t)) <

1 + δ∗

1 + ū

Finally, exploiting the equilibrium relation between ū and Tref , this condition can be
rewritten as the inequality

|Tmoy(t−D(t))− Tref | < δ∗(k)
1

1 + ū
= δ∗(k)(1− Tref ) (11.12)

This is the condition we focus on in the following.

11.2.4 Derivation of a sufficient condition using an Halanay-like
inequality

To analyze (11.12), we use the following stability result, directly inspired by the
Halanay inequality reproduced in Appendix B, which also contains the proof of this result.

Corollary 1. Consider a DDE of the form{
ẋ(t) + ax(t) + bh(t, xt) = 0 , t ≥ t0
xt0 = φ ∈ C0([−D, 0])

(11.13)

where h is a continuous functional satisfying, on an open neighborhood V of the origin,
the sup-norm relation

∀xt : [−D̄, 0] 7→ V , |h(t, xt)| ≤ max |xt| (11.14)

Then if the initial value φ maps [−D, 0] to V and if a ≥ b ≥ 0, then there exists γ ≥ 0
(γ = 0 if a = b and γ > 0 otherwise) such that every solution satisfies

∀t ≥ t0 , |x(t)| ≤ max |xt0 |e−γ(t−t0) (11.15)

This corollary can be used to establish the following intermediate lemma.
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Lemma 4. Consider a continuous real-valued f and a differentiable real-valued function
ψ such that

f(t) =− k

[
e−αD(t)ψ(t) + α

∫ t

t−D(t)

e−α(t−s)f(s)ds

]
(11.16)

ψ̇(t) =α [−ψ(t) + f(t−D(t))] (11.17)

where k > 0 and α > 0 are constant and D : [0,∞[→ [D,D](0 < D < D̄) is a time-
differentiable function such that

∀t ≥ 0 , |Ḋ(t)| ≤ β max
s∈[t−D,t]

|f(s)| (11.18)

If there exists t0 ∈ R s.t. ∀t ∈ [t0 − D̄, t0]|f(t)| < M/β with M < 1 and β > 0, then

∀t ≥ t0 , |f(t)| < M/β

Proof : Taking the time derivative of (11.16) and using (11.17), one shows that f satisfies
the following DDE

ḟ(t) + α(1 + k)f(t) =− αḊ(t)

(
f(t) + ke−αD(t)f(t−D(t)) + kα

∫ t

t−D(t)
e−α(t−s)f(s)ds

)

Then, defining a = b = α(1 + k), V = ]−M/β,M/β[ and

h(t, xt) =
Ḋ(t)
1 + k

[
f(t) + k

(
e−αD(t)f(t−D(t)) + α

∫ t

t−D(t)
e−α(t−s)f(s)ds

)]

one can apply Corollary 1 using (11.18),

|h(x, t)| ≤|βmax |ft|
1 + k

(
1 + k

[
e−αD(t) + 1− eαD(t)

])
max |ft| ≤ βmax |ft|2

≤ max |ft| for ft : [−D, 0] 7→ V

and conclude that, ∀t ≥ t0 , f(t) ∈ V, i.e. ∀t ≥ t0 , f(t) < M
β .

Theorem 2. Consider the closed-loop system consisting of the plant (11.4) with the input
delay defined through (11.1)-(11.3) and the control law (11.8)–(11.10). There exists k∗ > 0,
potentially depending on the initial condition and the input past values over a time window
of finite length, such that, for k ∈ [0, k∗[,

Tf (t) →
t→∞

Tref

Proof : Observing (11.8), we use Lemma 4 with α = 1 + u, ψ(t) = Tf (h−1
0 (t))− Tref and

f = Tmoy − Tref . Taking a time derivative of (11.5) evaluated at time h−1
0 (t), one obtains

dh−1
0 (t)
dt = 1+u

1+u(h−1
0 (t))

and it is clear that ψ satisfies

ψ̇(t) =
dTf

dt
(h−1

0 (t))
dh−1

0 (t)
dt

=
(
1 + u(h−1

0 (t))
) [
−ψ(t) + f(h−1

0 (t)−D(h−1
0 (t)))

] dh−1
0 (t)
dt

= (1 + u) [−ψ(t) + f(t−D2(t))]



11.3. Simulation results 139

Notation Value
Cold water temperature T1 20o C

Warm water temperature T2 40o C
Maximum flow rate ū2 0.25 L/s
Cold water flow rate u1 0.125 L/s

Pipe volume VP 6.3 L
Bath volume V 100 L

Table 11.1: Bath parameters used for the simulation.

Consequently, we just need to study the alternative delay D2(t). Taking a time derivative
of (11.7) and of the implicit relation (11.3), both evaluated at time h−1

0 (t), one gets

Ḋ2(t) = 1− d

dt
[h−1

0 (t)−D(h−1
0 (t))] = 1− 1 + u

1 + u(h−1
0 (t)−D(h−1

0 (t)))

=
Tmoy(t−D2(t))− Tref

1− Tref
=
f(t−D2(t))

1− Tref

Therefore, |Ḋ2(t)| ≤ βmax |ft| with β = 1
1−Tref

> 0 and ft defined on [−D2(t), 0]. Fur-
thermore, the previous results can easily be extended to the case in which the upper
bound for the delay is time-varying and one can observe that δ∗(k) < 1. Therefore, one
deduces from Lemma 4 that for t ≥ t0, |f(t)| < δ∗(k)/β provided that |f(t0 + s)| < δ∗(k)/β,
s ∈ [−D2(t0), 0] (where D2(t0) denotes the upper bound at time t0). Then (11.12) is
equivalent to the less restrictive condition

max
s∈[−D2(0),0]

|Tmoy(t)− Tref | < δ∗(k)(1− Tref )

with D2(0) = D+ τ0. Finally, from (11.9), this condition is fulfilled provided 0 ≤ k < k?

with k? > 0. Finally, as the considered plant is stable, it is possible to choose k as small
as desired and in particular into [0, k∗[. This concludes the proof.

Remark 3. Comparing this result to that formulated in Theorem 10.3.1, it is worth noting
that the condition required here only affects the magnitude of the feedback gain. This is
because of the stability of the process under consideration. This is also the reason of the
existence of k∗.

11.3 Simulation results
In this section, we provide some simulation results. We compare our prediction-based

controller to a “memoryless” controller using simple proportional feedback and to an
open-loop controller.

The parameters of the bath system used for simulation are listed in Table 11.2.4. Our
aim is to control the system from an equilibrium point at which the bathtub is filled
only with cold water, namely Tf (0) = 20o C, to Tref = 30o C. Figure 11.2 compares
the three aforementioned strategies, with the same feedback gain k = 10 for the two
closed-loop controllers. It is clear that both feedback strategies provide a significant
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Figure 11.2: Stabilization of the bath temperature at the equilibrium Tref = 30o C,
starting from Tf (0) = 20o C respectively without feedback (black dotted) and with a gain
k = 10 both for proportional (green curve) and prediction-based (blue curve) feedback.
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Figure 11.3: Stabilization of the bath temperature about the equilibrium Tref = 30o C,
starting from Tf (0) = 20o C for proportional (green curve) and prediction-based (blue
curve) feedback, both with a gain of k = 26.
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Figure 11.4: Stabilizing proportional gain k corresponding to (11.6) for a delay varying
between 15 and 35 s. The maximum gain obtained for a 25-s delay is circled in red.

performance improvement over the open-loop strategy, as expected. In particular, the
proposed controller favorably compares to a simple proportional controller in terms of
output variations and overall effect. In detail, both controllers increase the warm water
flow rate u, which results into a delay decrease (approximately 10 s shorter than with
an open-loop strategy). Nevertheless, it is also evident that the proportional controller
generates an overshoot and, as expected, has a later action compared to the prediction-
based controller.

In light of this result, as the two feedback laws act quite similarly, it may be preferable
to use the proportional feedback law, which is much easier to implement. However,
the merits of the proposed prediction-based law are highlighted for increasing feedback
gain k. Indeed, damped oscillations quickly appear for proportional control and the
damping decreases as the gain increases. Finally, for a gain value k = 26, a limit cycle
is reached and stabilization cannot be achieved, as observed in Figure 11.3. This can be
easily interpreted by analyzing the characteristic equation of the closed-loop alternative
system (11.6)

∆(λ) =λ+
u1 + ū2

V

(
1 + ke−λD2

)
= 0 (11.19)

It is well known that the (infinite number of) characteristic roots of (11.19) are all located
in the right-hand complex half-plane if and only if the following condition is satisfied
[Silva 05]

−1 < k <
V

(u1 + ū2)D2

√
z2
1 +

(
u1 + ū2

V

)2

D2
2 (11.20)

where z1 is the unique solution of tan(z) = − V
(u1+ū2)D2

z on the interval (π/2, π). This
range of variation is represented in Fig. 11.4, for a delay varying between 15 s and 35 s
(corresponding to the range of the delay oscillations in Figure 11.3). The value of the
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maximum stabilizing gain for a 25 s delay (the delay steady-state value of the operating
point considered) is circled in red. As the proportional gain k increases from 25 to the
critical value of 26, it is evident that the upper unstable region is reached, generating
the behavior observed in Figure 11.3. Conversely, the prediction-based control still yields
good performances for this feedback gain, as it is well-tuned. If the actuator were not
saturated, one would reasonably expect improvements in the transient dynamics.

Finally, calculating the expression (10.7) of δ∗ provided below, one obtains a scale of
10−6, which would result here into a gain limitation around 10−7 as the initial error track-
ing of the bath temperature is 10o C. This value is of course conservative, as underlined
by the above simulation results.





Perspectives

To conclude this thesis, several possible future directions are sketched, which could
benefit from the proposed work.

The robust compensation methodology presented in this thesis has been tested experi-
mentally on various SI engine subsystems and particular attention was paid to a transport
delay class, representative of a wide range of flow transportation processes. The proposed
approach is expected to be relevant for other types of applications involving similar trans-
port phenomena, especially in the process industry, e.g. blending in refineries, raw mix
proportioning control in cement plants, polymerization reactor with long feed pipes, etc.

From a theoretical point of view, three natural paths could be explored. First, in
the input-dependent delay compensation methodology proposed in the second part of the
manuscript, the existence of an upper-bound limit for the feedback gain for any unstable
plant would be worth further analysis ; this would reasonably involve elements of condition
number theory for Lyapunov matrix equations. The compliance of this analysis with state
observer design would also be worth being investigated. From the elements presented in
the first part, this objective seems reachable but it is expected that the stability results
would yield substantial calculations and require the initial state estimation error to be
sufficiently small. Second, other delay defining equations could be considered as-well
to ensure the generality of the obtained results. Third, the extension of the elements
presented in this manuscript to some class of nonlinear systems (e.g. forward complete
systems) would be worth being investigated.

Finally, an interesting question that remains open is the relevance of the approach
proposed here for delayed measurements. Indeed, when the delay is time-varying, an
output delay is not formally equivalent to an input-delay representation. Synchronization
of data and models has long been a topic of importance for practitioners of observers and
data fusion algorithms design. The potential application of delay compensation technique
in this context is still to address.
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Notations and acronyms

Acronyms

Mathematical acronyms
DDE Delay Differential Equation
LTI Linear Time Invariant
LTV Linear Time Varying
PDE Partial Differential Equation

Engine acronyms
BGR Burned Gas Rate
CI Compression Ignition engine
CO Carbon Monoxide
DOC Diesel Oxidation Catalyst
ECE Urban Driving Cycle
EGR Exhaust Gas Recirculation
EUDC Extra-Urban Driving Cycle
FAR Fuel-to-Air Ratio
HC Unburned Hydrocarbons
IMEP Indicated Mean Effective Pressure
LP EGR Low Pressure Exhaust Gas Recirculation
MAF Mass Air Flow
NEDC New European Driving Cycle
NOx Nitrogen oxides
PM Particulate matter
SA Spark Advance
SI Spark Ignited
TDC Top Dead Center
TWC Three Way Catalytic converter
VVT Variable Valve Timing
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Function regularity classes and norms

C0 continuous functions
C1 continuously differentiable functions
|.| Euclidean norm
K∞ set of functions defined in R+ with values in R+, strictly increasing,

taking the value 0 in 0 and tending to +∞ in +∞
SatI saturation operator onto the interval I
ProjΠ projector operator onto the convex set Π

‖f(t)‖ =
√∫ 1

0
f(x, t)2dx , f : (x, t) ∈ [0; 1]× R+ → R

‖f‖∞ = sup
θ̂∈Π

|f(θ̂)| , f : Π → Rl (l ∈ N∗)

|M | = sup
|x|≤1

|Mx|, M ∈Ml(R) (l ∈ N∗)

xt : s ∈ [−D, 0] 7→ x(t+s) for D > 0 and for a given function x. For any bounded func-
tion k defined on [−D, 0], a polynomial function π

(
x(t1), . . . , x(tn−2),

∫ tn
tn−1

k(t− s)x(s)ds
)

for (t1, . . . , tn) ∈ [t−D, t]n is denoted π(xt).
A polynomial function π in the variables (x1, . . . , xn, xn+1) is said to be at least

quadratic in x1, . . . , xn iff, for any given xn+1, the corresponding polynomial function
πxn+1 defined as

πxn+1(x1, . . . , xn) =π(x1, . . . , xn, xn+1)

has no terms of order 0 or 1, e.g. π = x2
1 + x1x2x3 and π = x2x1 + x3x

2
1 are both at least

quadratic in (x1, x2) while π = x3 + x3x
2
2 is not.

Notations

Symbol Description Unit
dmf Feedback in-cylinder fuel mass set-point mg/str
Dburn Combustion duration s
Dinj Computation and injection duration s
Dtrans Transport FAR delay s
F Gas mass flow rate kg/s
Fair Fresh air mass flow rate (upstream of the compressor) kg/s
Fasp In -cylinder mass flow rate kg/s
Fdc Mass flow rate downstream of the compressor kg/s
Fegr EGR mass flow rate through the EGR valve kg/s
F sp

egr EGR mass flow rate set-point kg/s
Ff Mass flow rate of in-cylinder fuel kg/s
Finj Mass flow rate of injected fuel kg/s
Fthr Mass flow rate through the throttle kg/s
FARst Stoichiometric Fuel-to-Air Ratio -
LP Pipe length from the compressor down m

to the intake manifold
mair In-cylinder air mass mg/str
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Symbol Description Unit
msp

air In-cylinder air mass set-point mg/str
masp Aspirated air mass mg/str
mest

asp Estimated aspirated air mass mg/str
msp

asp Aspirated air mass set-point mg/str
msp

bg In-cylinder burned gas mass set-point mg/str
mbg In-cylinder burned gas mass mg/str
mexh Exhaust Gases Mass mg/str
mf In-cylinder fuel mass mg/str
mff

f Feed-forward in-cylinder fuel mass set-point mg/str
msp

f In-cylinder injected fuel mass set-point mg/str
minj Injected mass of fuel mg/str
mw Liquid fuel wall mass mg
Lev→λ Pipe length from the exhaust valve up to the Lambda sensor m
Ne Engine Speed rpm
Patm Atmospheric pressure Pa
Pdc Pressure downstream of the compressor Pa
Pdt Pressure downstream of the turbine Pa
Pdv Pressure downstream of the EGR valve Pa
pint Intake manifold pressure Pa
Puv Pressure upstream of the EGR valve Pa
r Specific ideal gas constant J/kg/K
SAsp Spark Advance set-point CAD
Svalve EGR valve effective area m2

T1, T1 Cold and warm bath sources temperature K
Tdc Temperature downstream of the compressor K
Tf Bath homogeneous temperature K
Tg Distributed gas temperature inside the catalyst L
Tint Intake manifold temperature K
Tmoy Fluid temperature at the node K
Tref Bath temperature set-point K
Tuv Temperature upstream of the EGR valve K
TR Distributed resistance temperature K
Tw Distributed wall temperature K
u1, u2 Cold and warm bath source flow rate m3/s
vbg Burned gas speed m/s
vrec Conveyor belt speed m/s
vgas Gas velocity m/s
Vdc Volume downstream of the compressor m3

Vint Intake manifold volume m3

VP Pipe volume of the bath system m3

X Ratio of un-vaporized fuel -
x Intake burned gas fraction -
xcyl In-cylinder burned gas fraction -
xlp Burned gas fraction upstream of the compressor -
xsp Intake burned gas rate set-point -
α FAR error -
δmf Fuel injection error -
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Symbol Description Unit
δmasp Aspirated air mass estimation error -
∆P Differential pressure at the EGR valve Pa
γ Heat capacity ratio -
θegr EGR valve position set-point %
θsp

egr EGR valve position %
τ Wall-wetting time constant s
τφ Fuel-to-Air Ratio dynamic time constant s
φ Normalized Fuel-to-Air Ratio
φm Normalized Fuel-to-Air Ratio signal given by the Lambda sensor -
φr Fuel-to Air Ratio set-point -



Appendix A

Modeling of some delay systems

A.1 Air Heater Model
Here we describe the design of a temperature model for an air heater, as shown in

Figure A.1. This system is often used on experimental test benches to simulate changes
in atmospheric conditions and to account for various disturbances of the intake air tem-
perature.

Fresh air enters and flows through the air heater, where it is heated by an electrical
resistance but also exchanges with the monolith wall. This yields spatially distributed
temperature profiles for the air heater wall Tw(x, t), the gas Tg(x, t), and the resistance
TR(x, t), as pictured in Figure A.2. Axial conduction in the solid is not important and
can be neglected.

Thermal balance equations for the wall, the gas and the resistance give the following
set of coupled PDEs

∂Tw

∂t
(x, t) = k1(Tg(x, t)− Tw(x, t)) (A.1)

∂Tg

∂t
(x, t) + v(t)

∂Tg

∂x
(x, t) = k2(Tw(x, t)− Tg(x, t)) + k3(TR(x, t)− Tg(x, t)) (A.2)

∂TR

∂t
(x, t) = k4(Tg(x, t)− TR(x, t)) + k5φ(t) (A.3)

Figure A.1: Photograph of the air heater and a transversal view of the system.
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v(t)

Tw(x, t)

TR(x, t)

Tg(x, t)

x

0 L

Figure A.2: Schematic view of thermal exchanges.

where φ denotes the ohmic heat generation, which is assumed to be spatially homoge-
neous; the intermediate positive constants involved can be explicitly expressed in terms
of physical constants.

In the previous model, conduction within the wall and the gas storage were neglected
compared to the convection phenomena.

We are interested in the transfer from the ohmic heat generation φ to the output
gas temperature Tg(L, t). To do so, in the following, we perform an operational calculus
analysis of the previous infinite-dimensional model and exploit the low-pass filter property
of the air heater.

A.1.1 Reduced model
In the Laplace domain, (A.1) and (A.3) can be rewritten as

T̂w(x, s) =
k1

s+ k1

T̂g(x, s)

T̂R(x, s) =
k4

s+ k4

T̂g(x, s) +
k5

s+ k4

φ̂(s)

Then, (A.2) can be reformulated as

v(t)
dT̂g

dx
(x, s) =−

(
s+ k2 + k3 −

k1k2

s+ k1

− k3k4

s+ k4

)
T̂g(x, s) +

k3k5

s+ k4

φ̂(s)

Solving the resulting (spatially) ordinary differential equation yields
T̂g(L, s) =exp

(
−L
v
f(s)

)
T̂g(0, s) +

k3k5

(s+ k4)f(s)

(
1− exp

[
−L
v
f(s)

])
φ̂(s)

f(s) =s
s2 + s(k1 + k2 + k3 + k4) + k1k3 + k2k4 + k1k4

(s+ k1)(s+ k4)

As an air-heater is a low-pass filter, it is almost non-sensitive to high frequencies and one
can efficiently use a first-order Padé approximation to simplify this last expression. In
other words, as f tends to zero for low frequencies, one can write

1− exp
(
−L
v
f(s)

)
≈ L/v f(s)

1 + L/2v f(s)
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and consequently obtain

T̂g(L, s)

φ̂
≈L
v

k3k5

(s+ k4)(s+ L
2v
f(s))

=
L

v

k3k5(s+ k1)

(s+ k1)(s+ k4) + L
2v
s(s2 + s(k1 + k2 + k3 + k4) + k1k3 + k2k4 + k1k4)

which is a transfer function with one zero and three poles, all in the right-half plane.

Accounting for the input delay Because of communication lags and the fact that
the electrical devices are not located directly at the inlet of the air heater, a time lag
occurs. This can be represented as follows

D =Dtrans +Dcomm

where Dtrans if the transport dead time, which is inversely proportional to the gas speed
v, and the transmission delay Dcomm can be considered as constant.

Finally the transfer of the air heater is given the following equations

T̂g(L, s)

φ̂
=

K(Tzs+ 1)e−Ds

a3s3 + a2s2 + a1s+ 1
where

K =
k3k5L

k4v
, Tz =

1

k1

, D =
α

v

a3 =
β

v
, a2 = γ +

δ

v
and a1 = ε+

ζ

v

(A.4)

In this model, the gain, the (stable) poles and the delay can be considered as functions
of the varying gas speed which is not perfectly measured (uncertain).

A.1.2 Validation using experimental data

To validate the proposed model, experimental tests were conducted on a test bench
under various operating conditions to identify the parametrization constants in (A.4).

Figure A.3 compares the resulting modeled temperature to experimental data gas mass
flow rate of 12 kg/h and 54 kg/h. Several points can be observed. First, the long response
time of the (stable) plant stresses the need for a closed-loop controller to improve transient
performances. Second, the occurrence of an input delay is notable, but it is relatively small
compared to the response time of the system. Finally, the overall trends are well captured
by the proposed model.

In particular, the parameter values for a mass flow rate of 54 kg/h are those used
for illustration purposes in Chapter 5 and Chapter 6. Details regarding possible control
design are given in these chapters.
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Figure A.3: Output gas temperature corresponding to a step of electrical heat (in black).
The proposed model (red) is compared to experimental data (blue) for gas speed of 12
kg/h (top) and 54 kg/h (bottom).
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A.2 Crushing mill
We consider the crushing mill pictured in Figure 8.2 and inspired from the example

proposed in [Richard 03]. The task of this mill is to reduce the size of raw elements
entering the process. We describe a model of this delayed system using the elements
presented in Chapter 8.

The size of a volume V of N elements is defined as

y =
V

N

The aim of the control design is to reduce the output size down to a critical value ylim. We
first propose an infinite-dimensional model, and then a finite-dimensional lumped model.
Notations are listed in Table A.2.1.

A.2.1 PDE model
Distributed size profile into the mill

The size of elements into the mill satisfies the following parabolic PDE
∂y

∂t
(x, t)− vCM

∂y

∂x
(x, t) =− ηy(x, t) (A.5)

where vCM = uout

A
> 0 is the uniform and constant propagation speed of the material

inside the crushing mill and η > 0 is the size decay rate. This equation can be simply
solved as

∀x ∈ [0, L(t)] , y(x, t) =y(L(t− δ(x, t)), t− δ(x, t))e−
η

vcm
[L(t−δ(x,t))−x]

in which the time-varying propagation time δ is implicitly defined as δ(x, t) = L(t−δ(x,t))−x
vCM

,
because the speed of propagation vCM is constant. Finally, a simple flow balance gives
variations of the level L

L̇(t) =
uint + urec − uout

A

Recirculated matter flow

The output is recirculated only if the final size is greater than the critical value ylim,
i.e.

w(0, t) =

{
y(0, t) if y(0, t) > ylim

0 otherwise

Boundary condition

Following the definition of the size introduced above, one can express the input ele-
ments size as a weighted average of the input flows

y(L, t) =


yin if urec = 0

uint(t) + urec(t)
uin

yin
+ urec

yrec

otherwise
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Figure A.4: Schematic view of the crushing system considered.

Table A.1: Variables used in the crushing mill model
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Equivalent area of the mill
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Height of the mill
Lrec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Height of the tread mill
uin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input flow rate
uout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output flow rate
urec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input recirculated flow rate
vCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propagation speed into the mill
vrec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed of the tread mill
w(z, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Distributed size of the elements over the tread mill
y(x, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distributed size into the mill
yin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size of the input product
δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time of propagation through the mill
η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Crushing efficiency of the mill
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where the recirculated flow and size are related to the past values of the output conveyor
belt speed and size via a delay

urec(t) =uout(t)
vrec(t)

vrec(t−D(t))
and yrec(t) = w(0, t−D(t))

This delay can be defined through the following implicit integral equation of the conveyor
belt speed ∫ t

t−D(t)

vrec(s) = Lrec

A.2.2 Lumped model
In this section, we focus on the design of an average model that satisfies a more simple

dynamics than the one presented above. With this aim, we define the average size as

Y (t) =
1

L(t)

∫ L

0

e−ηxy(x, t)dx

Taking a time derivative of this quantity, using (A.5) and using integration by parts, one
can show that this variable satisfies

Ẏ (t) =− L̇(t)

L(t)
Y (t) +

L̇(t) + vCM

L(t)
e−ηLy(L, t)− vCM

L(t)
y(0, t)

=− uin + urec(t)− uout

V (t)
Y (t) +

uin + urec(t)

V (t)
e−ηLy(L, t)− uout

V (t)
y(0, t)

By approximating y(0, t) ≈ Y (t) and defining the input composition as yin(t − D(t)) =
e−ηLy(L, t), the dynamics of the average variable Y can be rewritten as

Ẏ (t) =
uin + urec(t)

V (t)
[−Y (t) + yin(t−D(t))]

From this, the link to the bath model presented in Chapter 11 is obvious. Therefore, a
similar control strategy can be reasonably applied.





Appendix B

Proof of Halanay-type stability
results for DDEs

The DDE stability results used in Chapter 10 are instrumental to derive sufficient
conditions for delay compensation. Here, we prove these results.

As before, a function xt is defined over a given interval [−D, 0] (with D > 0) as
xt(s) = x(t+ s) for a given function x ∈ C([−D, 0],R) and t ∈ R.

We first recall the original Halanay inequality1. Its proof can be found for example in
the original paper [Halanay 66] and is also given in [Ivanov 02].

Lemma B.0.1
(Halanay inequality) Consider a positive, continuous, real-value function x such that,

for some t0 ∈ R,

ẋ(t) ≤ −ax(t) + bmaxxt , t ≥ t0

with a ≥ b ≥ 0. Then there exists γ ≥ 0 such that

∀t ≥ t0 , x(t) ≤ maxxt0e
−γ(t−t0)

B.1 Extension to first-order scalar DDE stability
A straightforward extension of the Halanay inequality is stated below. This relies on

a maximum property applied to a functional in the equation second-term. This property
enables us to relate the dynamics considered to the aforementioned inequality, but is quite
demanding. Therefore, we also propose a local version of this result.

1More precisely, in [Halanay 66], this result is stated for a > b > 0.
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Lemma B.1.1
Consider a DDE of the form{

ẋ(t) + ax(t) + bh(t, xt) = 0 , t ≥ t0
xt0 = ψ ∈ C0([−D, 0],R)

(B.1)

where the continuous functional h satisfies the sup-norm relation

|h(t, xt)| ≤ max |xt|

Then if a ≥ b ≥ 0, there exists γ ≥ 0 (γ = 0 if a = b and γ > 0 otherwise) such that
every solution of (B.1) satisfies

∀t ≥ t0 , |x(t)| ≤ max |xt0 |e−γ(t−t0) (B.2)

Proof : Consider x a non-trivial continuous solution of (B.1)2, which satisfies the inequality

d|x(t)|
dt

+ a|x(t)| ≤ bmax |xt| provided |x(t)| 6= 0

Following the proof of [Halanay 66], define y(t) = ke−γ(t−t0), with k > 0 and γ chosen
such that y satisfies the corresponding differential equation3

ẏ(t) =− ay(t) + bmax yt , t ≥ t0

We now define the difference z = y−|x|, which is a continuous function; we are interested
in its sign change. We choose k > max |xt0 | to ensure that z(t0) > 0 for t ∈ [t0 −D, t0].
Since the function z is continuous, we define

t1 = inf {t > t0|z(t) = 0} ∈ R ∪ {∞}

Assume that t1 < ∞. Then |x(t1)| = y(t1) > 0 by the analytic expression of y. By
continuity, there exists an open set ]a1, b1[ such that t1 ∈]a1, b1[ and |x(t)| > 0 for
t ∈]a1, b1[. Consequently, z is continuously differentiable on ]a1, b1[ and satisfies

∀t ∈]a1, b1[ , ż(t) + az(t) ≥ b (max yt −max |xt|)

Then ż(t1) ≥ max yt1 −max |xt1 | > 0 by the definition of t1. However, one has

ż(t1) = lim
t→t−1

z(t)− z(t1)
t− t1

= lim
t→t−1

z(t)
t− t1

≤ 0 as z(t) ≥ 0 on [t0, t1]

We finally conclude that t1 = ∞. Then ∀t ≥ t0 , z(t) > 0 and

∀ε > 0 ∀t ≥ t0 |x(t)| < (max |xt0 |+ ε)e−γ(t−t0)

which gives the result.

We now state a local version of the previous lemma.

2The continuity (and even more) is obtained by assuming φ smooth enough.
3γ ≥ 0 is the unique solution on [0,∞[ of a− γ = beγD.
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Corollary B.1.1
Consider a DDE of the form{

ẋ(t) + ax(t) + bh(t, xt) = 0 , t ≥ t0
xt0 = ψ ∈ C0([−D, 0],V)

(B.3)

where h is a continuous functional satisfying, on an open neighborhood V of the origin,
the sup-norm relation

∀xt : [−D̄, 0] 7→ V , |h(t, xt)| ≤ max |xt| (B.4)

If the initial value ψ has values in V and if a ≥ b ≥ 0, then there exists γ ≥ 0 (γ = 0
if a = b and γ > 0 otherwise) such that every solution satisfies

∀t ≥ t0 , |x(t)| ≤ max |xt0 |e−γ(t−t0) (B.5)

Proof : The essence of the proof is similar to that of Lemma B.1.1. Consider again a
non-trivial solution x such that xt0 : [−D, 0] 7→ V and y(t) = ke−γ(t−t0) s. t.

ẏ(t) =− ay(t) + bmax yt for t ≥ t0

and z = y − |x| with z(t0) > 0.

Define again t1 = inf {t > t0|z(t) = 0} ∈ R ∪ {∞}. If k > max |xt0 | and k ∈ V (k
always exists as V is an open set by assumption), one can ensure that x(t) ∈ V for
t ∈ [t0, t1] from the fact that y(t) ∈ V , for t ∈ [t0, t1]. Then ∀t ≥ t0 z(t) > 0 and the
result directly follows.

B.2 Stability analysis for scalar DDEs of order n
Lemma B.2.1

Let x be a solution of the nth order DDE{
x(n) + αn−1x

(n−1) + . . .+ α0x = c`(t, xt, . . . x
(n−1)
t ) , t ≥ t0

xt0 = ψ ∈ C0([−D, 0],V)

where the left-hand side of the differential equation defines a polynomial which roots
have only strictly negative real parts, c > 0, ` is a continuous functional and V is a
neighborhood of the origin for which ` satisfies the sup-norm relation

∀t ≥ t0 , |`(t, xt, . . . , x
(n−1)
t )| ≤ max |Xt|

with X = [x ẋ . . . x(n−1)]T . Then there exists cmax > 0 such that, provided
0 ≤ c < cmax, there exist γ > 0 and r > 0 (r = 1, cmax = α0 if n = 1) such that

∀t ≥ 0 , |X(t)| ≤ rmax |Xt0|e−γ(t−t0)
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Proof : The idea is to use the scalar result of Corollary B.1.1. Define the scalar-valued
function m(t) = XTPX, where P is the symmetric positive definite matrix solution of
the Lyapunov equation ATP + PA = −Q for some given symmetric positive definite
matrix Q and A0 is the companion matrix

A0 =


0 1
... . . .
0 1
−α0 −α1 . . . −αn−1


Taking a time derivative of m, one can obtain

ṁ(t) =−XT (t)QX(t) + 2X(t)TP


0
...
0

c`(t, xt, . . . , x
(n−1)
t )


≤− λ(Q)

λ(P )
m(t) + 2cλ(P )|X(t)||`(t, xt, . . . , x

(n−1)
t )|

Then,

ṁ(t) +
λ(Q)
λ(P )

m(t) ≤2cλ(P )√
λ(P )

√
m(t)|`(t, xt, . . . , x

(n−1)
t )|

Defining a = λ(Q)

λ(P )
and b = 2cλ(P )

λ(P ) and

h(t,mt, . . . ,m
(n−1)
t ) =

√
λ(P )

√
m(t)|`|

which satisfies the following over the neighborhood V

|h(t,mt, . . . ,m
(n−1)
t )| ≤

√
m(t) max

√
mt ≤ maxmt

Applying Corollary B.1.1, one can conclude that, if mt0 has values in V and if a > b,
then there exists γ > 0 such that

∀t ≥ t0 , m(t) ≤ maxmt0e
−γ(t−t0)

or

∀t ≥ t0 , |X(t)| ≤

√
λ(P )
λ(P )

max |Xt0 |e−γ(t−t0)/2

Finally, the condition a > b can be reformulated as c < λ(P )λ(Q)

2λ(P )2
= cmax which concludes

the proof.
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Low-Pressure EGR control

Here we describe the design of an open-loop estimate of the intake burned gas rate and
a control strategy that exploits this estimate. The open-loop estimate is computed based
on the delay calculation procedure presented in Chapter 9. Details on the architecture of
low-pressure EGR systems and this issue involved are also presented in Chapter 9.

Two different engine set-ups are considered here. The first set-up uses a sensor of
the intake air mass flow rate while the second set-up assumes that a differential pressure
sensor is located at the EGR valve. Experiments on a test bench underline the relevance
of the proposed control strategy.

C.1 Dilution dynamics and transport delay
Defining xlp as the burned gas rate upstream of the compressor, the EGR dynamics

can be expressed as {
ẋlp = α [−(Fegr(t) + Fair(t))xlp(t) + Fegr(t)] (C.1)
x(t) = xlp(t−D(t)) (C.2)

The delay D(t) between the ratio upstream of the compressor and the intake composition
can be implicitly defined by the following integral equation∫ t

t−D(t)

vgas(s)ds =LP

where LP is the pipe length from the compressor to the intake manifold and vgas is the
gas speed.

Following the presented model (C.1)–(C.2), the intake burned gas fraction is the result
of first order dynamics coupled with a transport delay.

Open-loop estimation of the intake manifold burned gas rate proceeds in two steps:

• open-loop estimation of the low-pressure burned gas ratio, designed below; and

• estimation of the transport measurement delay, exploiting the integral form above
and the perfect gas law. This step is presented in Chapter 9.
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C.2 Flow rate model and corresponding low-pressure
burned gas estimate

To compute an open-loop estimation of (C.1), mass flow rate information is needed.
We first provide a model of the gas mass flow rate downstream of the compressor before
describing its use in design of the burned gas ratio estimate.

C.2.1 In-cylinder and downstream compressor mass flow rates
We use the model of in-cylinder gas mass presented in [Leroy 09] to define mass flow

rates. In this model, Fasp is represented as a function of the engine speed Ne, the manifold
pressure Pint and the intake and exhaust VVT actuators positions. Using the ideal gas law,
this flow rate is dynamically related to flow rates through the throttle and downstream
of the compressor according to

Fthr =Fasp(Ne, Pint, V V T ) +
Vint

rTint

Ṗint (C.3)

Fdc =Fthr +
Vdc

rTdc

Ṗdc (C.4)

where r = rair = rbg is the (common) ideal gas constant. The variables used in these two
last equations are either known or measured.

C.2.2 Low-pressure burned gas ratio model
Only the mass flow rate Fegr remains to be modeled in (C.1). We distinguish two

cases, depending on the sensors used.

Intake mass air flow sensor Neglecting the mis-synchronization of the flows signals,
we simply write (with a projection operator forcing the flow rate to be zero when the
valve is closed)

F̂egr(t) =Projθegr>0
{Fdc(t)− Fair(t)} (C.5)

The low-pressure burned gas ratio can then be estimated as the solution of the dynamics

˙̂xlp =α[−Fdc(t)x̂lp(t) + F̂egr(t)]

correctly initialized to zero when the EGR valve is closed. In this last equation, the
constant α is known.

Differential pressure sensor The EGR mass flow rate can be assumed as sub-critical
and modeled as [Heywood 88]

Fegr = Svalveψ(Puv) (C.6)

ψ(Puv) =
Puv√
RTuv

(
Patm

Puv

)1/γ

√√√√ 2γ

γ − 1

(
1−

(
Patm

Puv

) γ−1
γ

)
(C.7)

where Svalve is the effective opening area of the EGR valve, Puv is the upstream valve pres-
sure, obtained from atmospheric pressure and differential pressure sensor measurements
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Figure C.1: Intake burned gas ratio estimate obtained with a MAF sensor (in cyan) and
with a differential pressure sensor (in blue) for a given operating point (engine speed
2000 rpm and intake manifold pressure 1.2 bar).

(∆P , which gives Puv = ∆P +Patm) and γ is the ratio of specific heat. The effective area
is itself statically related to the angular position of the actuator.

In practice, an alternative linearized model may be needed to account for the potential
low values of the differential of pressure ∆P , which result into a pressure ratio Patm/Puv

close to the unity.

Because the constant α is known, an estimate of the low-pressure burned gas rate is
then simply

˙̂xlp =α[−Fdc(t)x̂lp(t) + Fegr(t)] (C.8)

C.2.3 Experimental validation of the intake burned gas estimate
For experiments, the proposed estimation strategy was embedded into a real-time

control target and tested on a test-bench. The aim of the experiments was to validate
both model (C.1)–(C.2) and the corresponding estimation strategy presented above.

Experimental results are presented in Section 9.3, where the low-pressure estimate
is not presented. These estimates are pictured in Figure C.1. In both instrumentation
cases, the accuracy of the intake burned gas ratio is highlighted by the experimental
results provided in Section 9.3.

C.3 Low-pressure burned gas rate control
The model (C.1)-(C.2)is an output-delay system, where the delay is time-varying.

Consequently, due to this particular form, we propose here to directly control the low-
pressure intake-burned gas rate xlp, through a feedforward approach. This approach is
based on steady-state pressure profile considerations.
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Turbine
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Fegr
Puv

Pdt

PdvPatm

Patm

Fair

Figure C.2: Schematic view of the pressures and mass flow rates involved in the head
losses balances.

C.3.1 Head losses balance at steady-state
At steady-state, first-order head losses balances of, respectively, the intake line, the

exhaust line and the EGR circuit yield

P 2
atm − P 2

dv =f1(Fair)

P 2
atm − P 2

dt =f2(Fair)

P 2
dt − P 2

uv =f3(Fegr)

Namely, the pressure drops along the considered pipe segments are simply written at
first order as functions of the flowing mass flow rate, neglecting mainly the temperature
influence.

Matching the terms involved in these three equations and writing a first-order approx-
imation give the steady-state relation expressed in terms of the burned gas rate set-point
xsp

∆P = Puv − Pdv = g(Fair, Fegr) = g(Fair, xsp)

This relation is then exploited to provide a feedforward control strategy.

C.3.2 EGR mass flow rate set-point and corresponding low-
order control law

From there, considering the EGR mass flow rate model (C.6)-(C.7), one can directly
obtain the following EGR valve set-point

F sp
egr =xspFdc

θsp
egr =S−1

valve

(
F sp

egr

ψ(g(Patm + g(Fair, xsp)))

)
where the total gas mass flow downstream of the turbine Fdc is modeled in (C.4) and the
function ψ in (C.7). The function Svalve is a known 1D-look-up table which character-
izes the EGR valve and is invertible. Correspondingly, the EGR valve set-point can be
compactly expressed under the form

θsp
egr =g(Fair, xsp) (C.9)
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Figure C.3: Schematic view of the pressures and mass flow rates involved in the head
losses balances.

Experiments were conducted at test-bench to identify this function g which is pictured
in Figure C.3 for the operating range of the considered engine (Renault F5Rt).

To account for the potential inaccuracies of this map, or modifications due e.g. to
devices aging, the final employed control law includes an integral error of the estimate
low-pressure burned gas rate

θsp
egr =g

(
Fair, xsp + kI

∫ t

0

[xsp − x̂lp(s)]ds

)
(C.10)

C.3.3 Experimental results
To validate the proposed control law, experiments were conducted at test bench.

Figure C.4 reports the results corresponding to a torque transient from 8 bar to 12 bar
occurring after t = 2s. As in Chapter 9, the engine under consideration is a Renault
F5Rt 1.8L four cylinder SI engine with direct injection, and an air path consisting in
a turbocharger, an intake throttle, an intercooler and a low-pressure EGR loop. For
this engine, no real-time information of the intake burned gas fraction is available and
therefore no data is provided here. Yet, the validity of the proposed estimates has been
highlighted by the open-loop response of the FAR (see Chapter 9 for details).

Figure C.4(a) consists in the intake burned gas rate estimates obtained respectively
with (C.9) (in blue) and with (C.10) (in red), compared with an intake burned gas rate
trajectory (in black) obtained as a delay version of the low-pressure trajectory (black
dotted). One can observe on Figure C.4(c) that the main contribution of the control law
is achieved by the feedforward term (C.9). Yet, the action of the integral term added in
(C.10) is decisive to track the given reference as it is noticeable in Figure C.4(a). It is
worth noticing that the torque transient, indirectly represented in Figure C.4(b) with the
intake pressure variations, is particularly challenging and that the obtained performances
are therefore representative of the ones that could be expected on real driving conditions.
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(a) Intake burned gas rate estimate. (b) Intake manifold pressure.
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(c) EGR valve position. (d) Delay estimate.

Figure C.4: Torque variation (IMEP step from 8 bar to 12 bar) for a constant engine
speed of 2000 rpm, resulting into an intake burned gas rate set-point change. The EGR
valve control is realized for both control laws (C.9) and (C.10).
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Commande robuste de systèmes à retard variable. Contributions
théoriques et applications au contrôle moteur.

Résumé: Cette thèse étudie la compensation robuste d’un retard de com-
mande affectant un système dynamique. Pour répondre aux besoins du do-
maine applicatif du contrôle moteur, nous étudions d’un point de vue théorique
des lois de contrôle par prédiction, dans les cas de retards incertains et de re-
tards variables, et présentons des résultats de convergence asymptotique. Dans
une première partie, nous proposons une méthodologie générale d’adaptation
du retard, à même de traiter également d’autres incertitudes par une anal-
yse de Lyapunov-Krasovskii. Cette analyse est obtenue grâce à une technique
d’ajout de dérivateur récemment proposée dans la littérature et exploitant une
modélisation du retard sous forme d’une équation à paramètres distribués.
Dans une seconde partie, nous établissons des conditions sur les variations ad-
missibles du retard assurant la stabilité du système boucle fermée. Nous nous
intéressons tout particulièrement à une famille de retards dépendant de la com-
mande (retard de transport). Des résultats de stabilité inspirés de l’ingalité
Halanay sont utilisés pour formuler une condition de petit gain permettant
une compensation robuste. Des exemples illustratifs ainsi que des résultats ex-
périmentaux au banc moteur soulignent la compatibilité de ces lois de contrôle
avec les impératifs du temps réel ainsi que les mérites de cette approche.
Mots clés: Systèmes à retard, systèmes à paramètres distribués, contrôle
moteur, ajout de dérivateur, control adaptatif, analyse de Lyapunov, contrôle
robuste, équations différentielles à retard

Robust control of variable time-delay systems. Theoretical
contributions and applications to engine control.

Abstract: This thesis addresses the general problem of robust compensa-
tion of input delays. Motivated by engine applications, we theoretically study
prediction-based control laws for uncertain delays and time-varying delays. Re-
sults of asymptotic convergence are obtained. In a first part, a general delay-
adaptive scheme is proposed to handle uncertainties, through a Lyapunov-
Krasovskii analysis induced by a backstepping transformation (applied to a
transport equation) recently introduced in the literature. In a second part,
conditions to handle delay variability are established. A particular class of
input-dependent delay is considered (transport). Halanay-like stability results
serve to formulate a small-gain condition guaranteeing robust compensation.
Illustrative examples and experimental results obtained on a test bench assess
the implementability of the proposed control laws and highlight the merits of
the approach.
Keywords: Time-delay systems, distributed parameter systems, engine con-
trol, backstepping, adaptive control, Lyapunov design, robust control, delay
differential equations


	Page de garde
	Résumé
	Remerciements
	Contents
	Introduction : handling the variability of delays to unblock a performance bottleneck
	A quick tour of state prediction for input delay systems
	Compensation of a (known) constant input delay: Smith Predictor and its modifications
	Compensation of a time-varying delay
	Open questions related to input delay systems and compensation
	Transport representation and backstepping approach
	Organization of the thesis/ Presentation of the contributions

	I Adaptive control scheme for uncertain systems with constant input delay
	Control strategy with parameter adaptation
	Controller design
	Convergence analysis
	Illustrative example

	Control strategy with an online time-delay update law
	Controller design
	Convergence analysis
	Illustrative example

	Output feedback strategy
	Controller design
	Convergence analysis
	Illustration : control of an air heater

	Input disturbance rejection
	Controller design
	Convergence analysis
	Illustration: disturbance rejection for an air heater

	Case study of a Spark-Ignited engine: control of the Fuel-to-Air Ratio
	Background on SI engine control and FAR regulation
	FAR dynamics
	A first control design for scalar plant
	Control design for the second-order plant induced by the wall-wetting phenomenon


	II Robust compensation of a class of time- and input-dependent input delays
	Examples of transport delay systems
	An implicit integral definition of transport delay
	Fuel-to-Air Ratio
	Crushing-mill
	Catalyst internal temperature

	Practical delay calculation. A SI engine case study : Exhaust Gas Recirculation
	Background on turbocharged SI engines and interest of EGR
	Modeling
	Experimental results

	Robust compensation of a varying delay and sufficient conditions for the input-dependent transport delay case
	Robust compensation for time-varying delay
	Derivation of sufficient conditions for input-vary--ing delays
	Sufficient conditions for robust compensation of an input-dependent delay

	Case study of the bath temperature regulation, as an input-dependent delay system
	Physical description and problem statement
	Problem normalization and control design
	Simulation results

	Perspectives
	Bibliography
	Modeling of some delay systems
	Air Heater Model
	Crushing mill

	Proof of Halanay-type stability results for DDEs
	Extension to first-order scalar DDE stability
	Stability analysis for scalar DDEs of order n

	Low-Pressure EGR control
	Dilution dynamics and transport delay
	Flow rate model and corresponding low-pressure burned gas estimate
	Low-pressure burned gas rate control

	
	Page de garde



