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Thèse présentée pour obtenir le grade de
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“The only way to rectify our reasonings is to make them as tangible as those of

the Mathematicians, so that we can find our error at a glance, and when there are

disputes among persons, we can simply say: Let us calculate [calculemus], without

further ado, to see who is right.” 1

1G. W. Leibniz, The Art of Discovery, 1685, in Leibniz: Selections. Edited by Philip P. Wiener.
New York: Charles Scribner’s Sons, 1951.
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Abstract

The development of a system is always motivated by desiderata that are expressed

by customers, end-users and other stakeholders who are external to the system

to be realized. In order to manage the design process of a system in conformity

with stakeholders’ needs several special techniques are necessary. Some disciplines

deal with this problem. One of these, Systems Engineering (SE), emerged in 1950s

to help design and management of complex systems (namely systems with a high

number of heterogeneous components and interactions) and proposed a suitable

methodology. It adopts an holistic and top-down approach. SE, considering the

system and its environment as a whole, addresses the main issues globally, in the

initial phases of the system design process. Then, progressively breaking down the

system into smaller components, systems engineers go down into details and identify

interactions and interfaces between components. The first task of systems design is

to identify and organize the stakeholders’ needs and to specify them in a clear set

of requirements, namely a set of non ambiguous, testable and measurable features

that the system should have. Requirements can have different levels of abstraction.

Initially they concern the entire system. They are referred as system-level or high-

level requirements. During the system design process, requirements are progressively

refined and associated to sub-systems and components. At each phase of this process,

modelling techniques are employed in order to provide prototypes that can help to

refine the design.

Mathematical Programming (MP) is the branch of Operation Research (OR)

that provides a general formal language useful to describe and solve optimization

problems.

We mix MP and SE modelling methods integrating system-level requirements

in optimization problems. We use MP, in the first phases of the design process,

as a common methodology to model prototypes that fulfil high-level requirements,

consistently with the holistic, top-down approach of SE. This approach is applied to

three different kinds of system.

Information systems, i.e. the network of communication channels, hardware,
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software and trained people used within an enterprise to help planning and control,

are required to provide a basis for numerous IT projects that are launched in order

to respond to the needs of the business. Thus, they shall be able to evolve in its

entirety due to the replacement of an existing software technology by a new one

(e.g. passing from several independent/legacy software packages to an integrated

one, migrating from an existing IT technology to a new one, and so on). These evo-

lutions (or transitions) invariably have a strong impact at the IT layer level, where

existing IT modules are replaced by new ones. This translates to a replacement of

existing services by new services ensuring that the impact on the whole enterprise is

kept low in order to avoid business discontinuity. Such an objective leads thus typ-

ically to the necessity of co-optimizing both creation and replacement/destruction,

called usually kills in the IT language, of parts of the information system, and of

prioritizing the IT responses to the business consequently. The information system

shall ensure profitable services and it shall be maintainable and extensible. We pro-

pose an operational model and a mathematical programming formulation expressing

a generic global prioritization problem occurring in the (limited, but practically rel-

evant) context of a technological evolution of an information system.

Recommender systems (RS) are a kind of search engine and aim to provide per-

sonalized recommendations. The amount of available sources of information has

strongly increased during the last decades. The overwhelming growth of the Web is

probably the clearer example. From one hand this is a wonderful progress but on

the other hand this poses problems, because it is not easy to retrieve the relevant

information when required. Too much information can puzzle users and decision

makers. Thus, the need for new technologies that can help search and retrieve infor-

mation is huge. Recommender systems (RS) are one of these technologies. RS are

designed to help users, who lack knowledge to evaluate the high number of alterna-

tives provided by several sources, first of all the Web. We consider the problem of

designing recommender systems in order to provide good, interesting and accurate

suggestions. We propose three recommender systems: TMW, which is combinatorial

optimization based, BMC, which is clusters modularity based and LSPR, which ex-

ploits information retrieval techniques. We use precise metrics (accuracy, audacity,

computational efficiency) and test the systems in order to identify the best one.

The transportation of hazardous materials (hazmat) entails several issues due

to the environmental consequences of possible accidents. We can figure it this way:

there are some trucks that have to transport some kind of dangerous material from

one or many production points to one or many garbage dumps, crossing different

areas. The concerned transportation system includes road network, garbage sources,

waste disposal plants and is influenced by several stakeholders as national govern-

ment agencies and political jurisdictions, local governments, transportation industry,

the media, public sector interest groups or trade associations, public health and en-
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vironmental interest groups. The transportation system shall ensure safe disposal

of hazardous waste in such a way that the risk of potential catastrophic accident is

equitably distributed over the population. We have to select a set of paths which is

optimal from the point of view of cost, risk and equity. Equity is somehow unusual

and is hard to define. We consider and integrate in MP formulations two different

ideas of equity. The first approach simply requires that all areas involved in the

transportation network share the same level of risk. The second definition of eq-

uity is inspired by the concept of “equity as fairness” of J. Rawls. We evaluate the

relationships between equity requirements and global risk.
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Résumé

Le développement d’un système est toujours motivé par des besoins qui sont ex-

primés par des clients, des utilisateurs et d’autres parties prenantes externes au

système qu’il faut réaliser. Pour maitriser le processus de développement du système

conformément aux besoins des parties prenantes, plusieurs techniques spéciales sont

nécessaires. Certaines disciplines s’occupent de ce problème. Une de ces disciplines,

l’Ingénierie Système, est née/apparue dans les années 50 pour aider le design et la

gestion des systèmes complexes (c.à.d. systèmes qui ont un nombre considérable de

composants hétérogènes qui interagissent mutuellement). Elle a proposé une mé-

thodologie adaptée. Elle adopte une méthode qui est holistique et descendante (top-

down). L’Ingénierie Système, en considérant le système et son environnement comme

une unité, considère les problèmes majeurs dans les premières phases du processus

du développement du système. Ensuite, en décomposant le système en parties plus

petites, les ingénieurs système rentrent dans les détails et identifient les interactions

et les interfaces entre les composants. Le premier but de la phase de conception

des systèmes est d’organiser les besoins des parties prenantes dans un ensemble

d’exigences claires, c.à.d. un ensemble de caractéristiques non ambiguës, testables

et mesurables que le système doit avoir. Ces exigences peuvent présenter différents

niveaux d’abstraction. Au début, les exigences regardent le système globalement.

Elles sont appelées exigences de haut niveau. Pendant le processus de design, elles

sont progressivement affinées et affectées aux sous-systèmes et composants. Pour

chacune des phases de ce processus, des techniques de modélisation sont utilisées

pour pouvoir produire des prototypes qui peuvent aider à l’affinement du design.

La programmation mathématique est un secteur de la recherche opérationnelle qui

fournit un langage formel général qui est utile à décrire et à résoudre les problèmes

d’optimisation. Nous utilisons, ensemble, l’ingénierie système et la programmation

mathématique pour intégrer les exigences de haut niveau dans des problèmes d’opti-

misation. Nous utilisons la programmation mathématique dans les premières phases

du processus de la conception du système comme trait-d’union pour modéliser des

prototypes qui satisfont les exigences de haut niveau, d’une façon cohérente avec la

méthode holistique et descendante (top-down) de l’ingénierie système. Nous appli-
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quons cette méthode à trois types différents de système.

Les Systèmes d’Information (SI), c.à.d. les réseaux des ressources, matérielles,

logicielles et utilisateurs, utilisés dans une entreprise pour aider au contrôle et à la

planification, doivent fournir la base des projets qui sont lancés pour répondre aux

besoins commerciaux/des affaires (business). Les SI doivent être capables d’évoluer

au fil des remplacements d’une technologie par une autre (e.g. le passage des diffé-

rents logiciels indépendants à un unique, intégré, ou d’une version à une autre, et

cetera). Ces évolutions induisent de grandes conséquences au niveau de la couche IT,

où de vieux modules sont remplacés par des nouveaux. Il faut consentir le remplace-

ment des services existants par de nouveaux services en minimisant les perturbations

pour les utilisateurs, pour limiter le risque de discontinuité commerciale (business).

Cet objectif correspond à la nécessité d’optimiser à la fois le remplacement/-

destruction d’une partie du système d’information et à prioriser les réponses de la

division IT au business.

Le système d’information doit garantir des services rentables, et doit être main-

tenable et extensible. Nous proposons un modèle opérationnel et une formulation

de programmation mathématique qui formalise un problème de priorisation qui se

présente dans le contexte (limité mais en pratique pertinent) de l’évolution techno-

logique d’un système d’information.

Les Recommender Systems (RS) sont un type de moteur de recherche dont l’ob-

jectif est de fournir des recommandations personnalisées. La disponibilité des sources

d’informations a remarquablement augmenté ces dernières années. La gigantesque

croissance du Web nous en donne, probablement, l’exemple le plus clair. Même si

cela relève d’une évolution formidable, néanmoins elle présente une difficulté à re-

pérer l’information appropriée quand recherchée/nécessaire. L’excès d’informations

peut perdre/dérouter utilisateurs et décideurs. Aussi apparait un grand besoin de

nouvelles technologies qui peuvent aider à chercher et à repérer l’information. Les

Recommender Systems (RS) sont une de ces technologies. Les RS sont conçus pour

aider les utilisateurs, qui manquent de connaissances, à évaluer de grands nombres

d’alternatives proposées par différentes sources, surtout de la part du Web. Nous

considérons le problème du design des Recommender Systems dans le but de fournir

de bonnes, intéressantes et précises suggestions. Nous proposons trois Recommender

Systems : TMW, qui est basé sur l’optimisation combinatoire ; BMC, qui est basé

sur le clustering et la modularité ; et LSPR, qui exploite des techniques de Recherche

d’Information (RI). Nous utilisons des mesures spécifiques (accuracy, audacity, ra-

pidité de calcul) pour tester les systèmes et en identifier le meilleur.

Le transport des matériaux dangereux entraine plusieurs problèmes liés aux

conséquences écologiques des incidents possibles. Nous pouvons décrire ce scena-

rio de la façon suivante : des camions doivent transporter des matériaux dangereux

à partir d’un ou plusieurs centres de production vers un ou plusieurs points de dé-

charge, à travers des différentes régions. Le système comprend routes, centres de
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production des déchets, points de décharge. Il est conditionné par plusieurs parties

prenantes comme le gouvernement national, les institutions politiques, les autorités

locales, l’industrie du transport, les médias, les groupes d’intérêt publique, les asso-

ciations de commerce et de défense écologique. Le système de transport doit assurer

le transport, pour l’élimination en sécurité des déchets dangereux, d’une façon telle

que le risque des possibles incidents soit distribué d’une manière équitable parmi

la population. Nous devons sélectionner un ensemble de parcours qui est optimal

du point de vue des coûts, des risques et de l’équité. L’équité est une notion plutôt

inhabituelle dans notre domaine, et elle est difficile à définir. Nous considérons et

intégrons dans des formulations de programmation mathématique deux idées diffé-

rentes d’équité. La première approche demande simplement que toutes les régions

impliquées dans le transport obtiennent le même niveau de risque. La seconde dé-

finition d’équité s’inspire du concept de fairness de J. Rawls. Nous évaluons les

relations entre équité et risque.
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Chapter 1
Introduction

1.1 Overview

In this work we focus on systems design. Systems are realized to fulfil the needs

of a set of stakeholders1. In order to achieve this goal, system designers have to

define a set of requirements, i.e. non ambiguous, verifiable and measurable features

that the system should have. When a system is designed from scratch, first of all,

a set of high-level requirements, that concern the system as a whole, are settled.

These high-level requirements define the aims of the system. High-level behavioral

requirements define functions and services that represent the core activities required

by the users. High-level quality (i.e. non-behavioral) requirements define auxiliary

features that determine some of the system’s qualities (for example, portability and

accessibility).

Even if evidence shows that incorrect assumptions about the motivations of a

project can lead to a very poor outcome, several requirements engineering approaches

do not pay special attention to the environment of the system and to stakeholders’

needs. Understanding why the system is needed is not always a fully considered

question, the focus being more on what it shall do and how. In practice, this means

that the phase of high-level requirements elicitation and analysis, is often not suffi-

ciently accurate. In general, at this stage, behavioral requirements are better defined

than quality ones. From a purely technical point of view, this depends on the fact

that non-behavioral requirements are often expressed in blurred and/or informal

terms. However, non-behavioral requirements have an important role in ensuring

the realization of high quality systems.

Typically, the construction of a system goes through the conception of interme-

diate, abstract simplified models that help system designers take their decisions. An

important phase in this process concerns the optimization of these choices, namely

1A stakeholder is an external entity, not necessarily a person, that affects the system or is affected
by the system.



4 Chapter 1. Introduction

the selection of the best ones among all admissible ones. Mathematical programming

(MP) is a formal language used to describe and solve optimization problems. The

optimization of a system’s features can thus be based on the formulation of a MP

model that describes the system’s requirements. Nevertheless, normally, optimiza-

tion does not intervene in the very early stages of the systems design process. The

first abstract models, which are based on high-level requirements, are not written

using MP formulations. MP formulations are typically reserved for detailed models

based on component-level requirements. On the contrary, we anticipate and extend

the use of optimization methods in the system design cycle. In particular, we try

to improve the very early phases of design, corresponding to high-level requirements

definition. We integrate quality requirements in MP formulation to make them

precise and better identify real trade-offs.

The first interpretation of this thesis is simply a collection of case studies for

mathematical programming. Nevertheless, we think there is more to this work than

a simple set of examples. The trait d’union is represented, as pointed out above,

by the enforcement of non-behavioral requirements in our MP formulations, which,

as already mentioned, are technically difficult to treat quantitatively. In general,

we deal with the problem of integrating high-level requirements in MP formulations

in order to improve the early phases of systems design. In particular, we apply

this approach to three different types of system: information systems, recommender

systems and transportation systems. We focus on three different specific problems,

in each of these systems: the information system architecture evolution problem,

the recommendation problem and the equitable hazardous materials transportation

problem. They are introduced in dedicated chapters where we present context,

motivations, formulations and methods. In the next sections we would like to supply

the reader with some general topics and underline some background context that is

common to all the problems we present in the following chapters. In Section 1.2 we

provide introductory elements of mathematical programming and in Section 1.3 of

systems engineering.

1.2 Mathematical Programming

Traditionally, Mathematical Programming (MP) is defined as the branch of Opera-

tion Research (OR)2 that is dedicated to solve optimization problems.

“What does mathematical programming mean? Programming here means

“ planning”. Literally, [. . . ] “ mathematical models for planning”.” [142]

2Operations research (OR) is “a scientific approach to analyzing problems and making deci-

sions” (http://www.hsor.org/what_is_or.cfm) and/or “the application of scientific methods to

the management and administration of military, government, commercial, and industrial systems”
(http://global.britannica.com/).

(http://www.hsor.org/what_is_or.cfm)
(http://global.britannica.com/)
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More recently, Liberti [105] proposes to define MP as a formal language: “. . . there is

a formal language that can be used to describe [problems]: mathematical programming

(MP)”. In this work, we adopt this point of view.

MP provides us with a common method to formalize and solve the problems

presented in the following chapters.

Formally we can define a mathematical program as follows.

min f(x)

s.t. ∀i 1 ≤ i ≤ m gi(x) ≥ 0,

∀j 1 ≤ j ≤ n hj(x) = 0,

x ∈ X,























(1.1)

where:

• f : X → R is the objective function,

• X is the domain for the decision variables x,

• For each i, 1 ≤ i ≤ m, gi : X → R is the left hand side of the i-th inequality

constraint,

• For each j, 1 ≤ j ≤ n, hj : X → R is the left hand side of the j-th equality

constraint.

The interpretation of model (1.1) could be paraphrased as: “find a point x ∈ X

which satisfies both equality and inequality constraints, and which minimizes the ob-

jective function f(x)”. If it exists, this is point is called optimal solution. If it does

not exist, we say that the problem is infeasible.

According to [84], MP as a mathematical discipline includes any or all of the follow-

ing:

• Theorems about the form of a solution, including whether one exists;

• Algorithms to seek a solution or ascertain that none exists;

• Formal problem descriptions as MP formulations;

• Analysis of the formulation properties, including infeasibility or unbounded-

ness;

• Theorems about the model structure, including properties pertaining to feasi-

bility, redundancy and/or implied relations (such theorems are often used to

design more efficient solution algorithms);

• Theorems about solution optimality: whether it is local or global, whether it

comes with an approximation guarantee
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There are several type of MP, depending on the form of the objective, the con-

straints and the domain of decision variables. The following is a simple but common

classification:

• Linear Programming (LP): the objective function and the constraints are lin-

ear, and the variables are continuous;

• Mixed-Integer Linear Programming (MILP or MIP): the objective function

and the constraints are linear, and some variables might be constrained to

take integer values;

• convex Nonlinear Programming (cNLP): the objective function and the con-

straints are convex, some of them might involve nonlinear terms, and the

variables are continuous;

• Nonlinear Programming (NLP): at least one among the objective function and

the constraints might be nonlinear, and the variables are continuous;

• convex Mixed Integer Nonlinear Programming (cMINLP): the objective func-

tion and the constraints are convex, some of them might be nonlinear, and

some variables might be constrained to take integer values;

• Mixed Integer Nonlinear Programming (MINLP): at least one among the ob-

jective function and the constraints might be nonlinear, and some variables

might be constrained to take integer values.

1.2.1 Multiobjective Mathematical Programming

The problems we consider in this work have more than one objective, as we will see

in the next sections. They belong to the class of multiobjective problems. In order

to provide a taxonomy of multiobjective decision making approaches, we introduce

some specifications. A first important distinction is between the following two sce-

narios. In the first case, the possible choices are explicitly known from the beginning,

and the decision maker has to choose among them. In the second scenario the set of

possible choices is not immediately available since they are expressed implicitly as

the solutions of a mathematical model. A second distinction is based on the number

of possible choices, which can be finite or (potentially) infinite. These two features

are often coupled, thus we have two main contexts:

• Scenario 1: a finite set of explicitly known choices

• Scenario 2: a (potentially) infinite set of implicitly known choices.

In the first case the focus is on choice selection, and in the second one it is on

choice identification. These two tasks attracted different communities of researchers

and there is by now a quite clear separation between those who focus on finding the
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set of possible solutions and those who focus on aiding to make the choice among

all possible ones.

Multi Criteria Decision Analysis (MCDA) and Multi Objective Mathematical Pro-

gramming (MOMP) are used respectively for the finite-explicit scenario and for the

infinite-implicit one. Multi Criteria Decision Making (MCDM) is a most general

term, which refers to both of them.

“MCDM can be classified into two main branches of multicriteria de-

cision analysis (MCDA) and multiobjective Mathematical programming

(MOMP). The former applies mainly when there are a small number of

actions, the latter when the number of actions is large. Usually, MCDA

applies to decision problems with discrete actions, and MOMP when the

action space is continuous”. [152]

“we understand multi objective programming as pertaining to situations

where feasible alternatives are available implicitly, through constraints in

the form of mathematical functions. An optimization problem (typically a

mathematical program) has to be solved to explicitly find the alternatives.

Decision problems with multiple criteria and explicitly available alter-

natives are treated within multicriteria decision analysis (MCDA). This

view constitutes the difference between multi objective programming and

multicriteria decision analysis (MCDA) which complement each other

within multicriteria decision making (MCDM).” [59]

According to [59] the conference on “Multiple Criteria Decision Making” (MCDM)

organized in the 1972 at Columbia University in South Carolina opens officially the

field, but, actually, its roots date back into a more distant past.

“The earliest known reference relating to Multiple Criteria Decision Mak-

ing (although not using that name) can be traced to Benjamin Franklin

(1706-1790), the American statesman, who allegedly had a simple paper

system for deciding his position on an important issue.” [93]

The terminology about multiobjectives decision making is not totally uniform in

literature. Nevertheless, in general, context helps to understand if we deal with a

scenario of type 1 or of type 2, so that confusion is avoided. Among others, alterna-

tive terms for Scenario 1 are Multiattribute Decision Making Problems (MADM) and

Multiple Criteria Evaluation Problems and alternative terms for Scenario 2 are Se-

lection Problems and Multiple Criteria Design Problem. Multiobjective optimization

(MOP) is another widespread, general term.

Another distinction is relevant. Some authors (for example see [167, 168]) un-

derline the difference between understanding the decision-making process, aiding to

decide and actual decision making. In fact, they remark that we might want:
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• to study theoretically the decision making process

• to help decision makers to produce a decision

• to provide a method for effective decision making.

We focus on MOMP. In presence of two or more objectives the model 1.1 extends

quite naturally. A general multiobjective mathematical problem is defined as follows:

min F (x) = [f1(x), f2(x), . . . fk∗(x)]
T

s.t. ∀i 1 ≤ i ≤ m gi(x) ≥ 0,

∀j 1 ≤ j ≤ n hj(x) = 0,

x ∈ X,























(1.2)

where:

• F (x) : X → R
p is a vector of k∗ objective functions fk(x) which are are called

criteria (also called payoff functions, cost functions, or value functions).

• x ∈ X is a vector of decision variables (also called design variables)

• The feasible set X (also called design space) is defined as the set {x |∀i 1 ≤

i ≤ m gi(x) ≥ 0 and ∀j 1 ≤ j ≤ n hj(x) = 0}.

• The criterion space Z (also called the feasible cost space or the attainable set)

is defined as the set {F (x)| x ∈ X}.

1.2.2 The meaning of “minimization” in MOMP

There is no standard total order on R
p, thus the meaning of “minimization” in

equation 1.2 requires a clarification, since points in the criterion space Z can be

compared in different ways. A possible interpretation is based on two fundamental

concepts in MOP, Pareto optimality and nondominance.

Definition 1.2.1 (Pareto optimality) A feasible solution, x∗ ∈ X, is Pareto op-

timal iff there is no other feasible solution x ∈ X, such that fi(x) ≤ fi(x
∗) for all

i ≤ k, and fi(x) < fi(x
∗) for at least one i ≤ k.

Alternative terms for referring to Pareto optimal points are Edgeworth-Pareto opti-

mal points and efficient points. The set of all Pareto optimal points is called Pareto

efficient frontier.

Definition 1.2.2 (Weakly Pareto optimality) A feasible solution, x∗ ∈ X, is

weakly Pareto optimal iff there does not exist another feasible solution, x∗ ∈ X, such

that fi(x) < fi(x
∗) for all i ≤ k.
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Pareto optimal points are weakly Pareto optimal, but weakly Pareto optimal points

are not Pareto optimal.

Definition 1.2.3 (Dominance) A vector of objective functions, F (x∗) ∈ Z, is

nondominated iff there does not exist another vector, F (x) ∈ Z, such that fi(x) ≤

fi(x
∗) with at least one fi(x) < fi(x

∗). Otherwise, F (x∗) is dominated.

We underline the fact that Pareto optimality concerns points in the decision space

and that dominance concerns points in the criterion space. According to [55] “we

have to remark that these notations are not unique in literature” and that some

authors do not distinguish between terms as efficient solution, Pareto optimum and

nondominated point. Table 1.1 (that is based on [55], where there is discussion on

this topic) shows some examples of this not uniform use of terminology. This is

uncomfortable, however, normally, the meaning becomes clear from the context and

these terms can be used synonymously with no misunderstanding.

Author Decision space Objective space

Sawaragi et al. (1985) efficient solution efficient element
Chankong and Haimes (1983) noninferior solution noninferior solution

Yu (1985) Pareto optimal point Pareto optimal out-
come

Miettien (1999) Pareto optimal deci-
sion vector

Pareto optimal crite-
rion vector

Deb (2001) Pareto optimal solu-
tion

Pareto optimal solu-
tion

Jahn (2004) Edgeworth-Pareto op-
timal point

minimal element

Table 1.1: Not uniform terminology for Pareto optimality and nondominance

Pareto optimality and dominance provide the elements to define a possible precise

interpretation of the problem represented by Equation 1.2. We look for nondomi-

nated points. This is the meaning of minimization, in MOMP.

Nevertheless, this is not the only possible approach. For example, alternative

ones are, among others, the lexicographical and the min-max approaches. Lexico-

graphic optimization is used when we can set an absolute ranking of the criteria.

Following [55] a feasible solution, x∗ ∈ X, is lexicographically optimal if there is no

other feasible solution x ∈ X, such that f(x) <lex f(x∗) (where y1 <lex y2 if y1q < y2q

and q = min {k : y1k 6= y2k}).

In this case, we want to solve the following problem.

lex min F (x) = [f1(x), f2(x), . . . fk∗(x)]
T

s.t. ∀i 1 ≤ i ≤ m gi(x) ≥ 0,

∀j 1 ≤ j ≤ n hj(x) = 0,

x ∈ X,























(1.3)
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In other words, we consider the optimization of fk(x) only if optimality for

f1(x), f2(x) . . . fk−1(x) have been achieved.

In other situations we want to minimize the worst (i.e. the highest, if we are

minimizing) among all criteria. In this case, we want to solve the following problem.

minmax
i≤k

fi(x)

s.t. ∀i 1 ≤ i ≤ m gi(x) ≥ 0,

∀j 1 ≤ j ≤ n hj(x) = 0,

x ∈ X,



























(1.4)

In general, the objective function vectors of the objective space are mapped from

R
p into an ordered space, e.g. (RP ,≤), through a model map θ. The order relation

≤ makes the comparison possible.

“Feasible set, objective function vector f , and objective space are data of

the [MOMP]. The model map provides the link between objective space

and ordered set, in which, finally the meaning of the minimization is de-

fined.

Thus, with the three main aspects data, model map, and ordered set

the classification (X, f,Rp)/θ/(RP ,≤) completely describe a multicrite-

ria optimization.” [55]

1.2.3 Solution methods

As mentioned above, in some cases (Scenario 1) the feasible set is known at the

outset, and we “only” have to help the decision maker to make his/her choice. In

some other cases (Scenario 2) we have (a) to look for the Pareto optimal set and (b) to

aid the decision maker in his/her last choice. If so, the solution process for a MOMP

includes a first phase, which involves the computation of all efficient solutions, and a

second one, which involves the selection of the most desirable efficient solution with

respect to a set of preferences given by the decision maker.

In the context of multiobjective problems we shall consider the preferences of the

decision maker about the ranking of the objectives. As suggested in [60], we might

say that there are two types of constraints in multiobjective decision making:

“Domain constraints [that] express the domain of definition of the objec-

tive function, [and] preference constraints [that impose] further restric-

tions on the solution of the problem according to knowledge at a higher

level.”

The role played by decision maker’s preferences determines four approaches,

that are referred in literature as follows: no-preference, “a posteriori”, “a priori” and

interactive (cf. [120]).
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1. No-preference methods do not use preferences and propose only one solution.

In this case, the two phases are not clearly distinct; the final choice is based

on a user-independent criterion.

2. “A priori”methods make a limited use of preferences during the optimization

process. Specifically, preferences are used to limit the extent of the efficient

set found in the first phase.

3. “A posteriori” methods search the whole efficient set and use preferences to

delimit the final output given in the second phase. Typically, these methods

are employed when we want to emphasize the presence of a trade-off rather

than to provide a “small” solution set.

4. Interactive methods mix different aspects of methods from previous categories.

There are several solutions methods available for MCDM. The following (not

exhaustive) list shows some of them. In the next chapters, we present in details the

methods we need, when we use them (see [59,55] for a comprehensive exposition).

• Cost-benefit analysis

• Maximin and maximax methods

• Conjunctive and disjunctive methods

• Lexicographic method

• MAUT methods

• Analytic Hierarchy Process (AHP)

• Outranking methods (ELECTRE, PROMETHEE)

• Weighted sum method

• Adaptive Weighted Sum

• ǫ-constraint method

• Normal Boundary Intersection

• Elastic Constraint method

• Benson’s Method

• Compromise solutions
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1.2.4 Computational complexity

In order to solve mathematical programs, we need algorithms. One of the tasks of

OR is the finding of the most efficient algorithm that solves a given problem. In

this section we focus on the concept of computational efficiency and we remind some

elements of computation complexity theory (see [134, 141], on which this section is

strongly based, and [69]).

A decision problem is a problem for which the possible answers are “yes” or “no”.

Computation complexity theory classifies the algorithms that solve a given decision

problem, depending on their complexity. In order to achieve this task, algorithms

have to be described in a uniform way, abstracting several details.

Turing Machines (TM) are the standard computation model that is used to

evaluate the complexity of the algorithms employed in decision problems. We can

figure out a Turing machine as a tape on which a cursor reads, writes or overwrites

symbols moving to assigned positions. Formally, a Turing machine is a tuple M =

(S,Σ, δ, s), where:

• S is a finite set of states;

• Σ is a finite set of symbols, called the alphabet of M . The set Σ includes the

special symbols ⊔ and �, denoting a blank symbol and the “first” symbol;

• δ : S × Σ → (S ∪ {yes,no,h}) × Σ × {←,→,−}, where {yes,no,h} is the set

of the special halting states of M and {←,→,−} is the set that includes the

symbols denoting cursor directions, is a transition function. We assume that S,

Σ, {yes,no,h} and {←,→,−} are disjoint sets. The function δ is also referred

as the program of the machine;

• s ∈ S is the initial state of M .

Σ∗ is the set of all the strings composed by symbols of Σ (excepted the null string).

A configuration of a Turing machine M is a tuple (s, σ, σ′), where s ∈ S is a state,

and σ, σ′ ∈ Σ∗ are strings. σ is the string to the left of the cursor (including the

symbol at the cursor’s position), and σ′ is the string to the right.

The input of a TM is a string x ∈ (Σ\⊔)∗. We say that the TM M accepts a

given input, if, for that input, it halts in the “yes” halting state. Formally, we refer

to this case with the expression (M(x) = yes). We say that the TM M rejects the

input if it halts in the “no” halting state. Formally, (M(x) = no).

A language L ⊆ Σ∗ is decided by a TM M if, for all strings x ∈ L, M(x) = yes

and, for all strings x 6∈ L, M(x) = no. If a language L is decided by a TM, then L

is said to be recursive. A language L ⊆ Σ∗ is accepted by a TM M if, for all strings

x ∈ L, M(x) = yes. The term recursive enumerable is used to qualify a language

that is accepted by a TM. Recursive enumerability is weaker than recursion. In fact,

remark that it is not required that the machine halts when x 6∈ L.
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TM can be extended to multi-string TM: a k-string TM (where k ≥ 1 is an

integer) is a tuple M = (S,Σ, δ, s), where S and Σ are as above, and the transition

function δ takes into account the k strings of M . Formally, δ : S × Σk → (S ∪

{yes,no,h})× (Σ×{←,→,−})k . A configuration of a k-string TM is a (2k+1) tuple

(s, σ1, σ
′
1, . . . , σk, σ

′
k), defined as for single tape Turing machines. The program δ

define the next symbol and the next move of the cursor for each string. The output

of a k-string TM is represented by the last string.

The number of steps necessary to a (multi-string) TM M on input x to reach

the halting state is called time required to halt. If for any string x ∈ Σ∗, the

time required by a TM M on input x is at most f(|x|), where f(n) is a function

f : N,→ N, we say that M operates in time f(n).

A language L belongs to the complexity class TIME(f(n)) if L is decided by

a multi-string TM operating in time f(n). A time complexity class is the set of

languages that can be decided within a certain time threshold.

A k-string Turing machine with input and output is a standard k-string Turing

machine with the constraint that the input string is a read-only string, and the

output string is a write-only string. Given a k-string Turing machine M with input

and output, suppose that M halts in the configuration (s, σ1, σ
′
1, . . . , σk, σ

′
k) on input

x. The space required by M on input x is defined as
k−1
∑

i=2
|σiσ

′
i|, i.e. the space required

is the sum of the lengths of all the strings excluding the input and the output string.

A language L belongs to the complexity class SPACE(f(n)) if L is decided by a

k-string Turing machine with input and output operating in space f(n).

A non-deterministic Turing machine is a tuple M = (S,Σ,∆, s), where S,Σ and

s are as in standard Turing machines, and ∆ is a transition relation: ∆ ⊆ (S×Σ)×

[(S ∪{yes,no,h})×Σ×{←,→,−}]. For each configuration, there may be more than

one possible “next” configuration. Non-deterministic Turing machines differ from

deterministic machines with respect to the definition of complexity classes. A non-

deterministic Turing machineM is said to decide language L if, given x ∈ L, M(x) =

yes for a possible computation of M . Notice that M is not required to accept x in all

possible computations. A non-deterministic Turing machine M decides a language

L in time f(n) if (i) M decides L and (ii) M does not have computation paths longer

than f(n) (where n is the size of the input). The set of languages decided by a non-

deterministic Turing machine within time f(n) is denoted by NTIME(f(n)). The

complexity class NSPACE(f(n)) is defined analogously to SPACE(f(n)). Table 1.2

lists the definition of some commonly used complexity classes and their names.

Complexity classes can be ordered, as showed as follows:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

We know that L is strictly a subset of PSPACE, and that P is strictly a subset of

EXP. At present, it is not known if the other inclusions are proper or not.
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Name Definition

L
⋃

SPACE(log(n))

NL
⋃

NSPACE(log(n))

P
⋃

TIME(nk)

NP
⋃

NTIME(nk)

PSPACE
⋃

SPACE(nk)

NPSPACE
⋃

NSPACE(nk)

EXP
⋃

TIME(2n
k
)

Table 1.2: Some complexity classes and their definitions.

1.3 Systems Engineering

Systems Engineering (SE) emerged as discipline in 1950s due to necessity of the U.S.

Department of Defense of managing complex military equipments. This discipline is

intended to help design and management of complex systems, namely systems with

a high number of heterogeneous components that interact in many ways. Complex

systems are characterized by the combinatorial explosive number of possible config-

urations, by the variety of different technologies by which are permeated and by the

intense interaction with human users (that makes the human factor a key factor of

SE). From that initial period, up to now, SE has spread over a wide range of fields

of application (energy, transportation systems, spacecraft design, software integra-

tion . . . ) and has showed a new approach to systems design and problem solving in

general.

SE has an holistic approach. It adopts an high-level point of view in order to

have a global vision of its target. SE focuses on a system as a whole. In particular,

it does not observe a system apart from its environment. Secondly, SE uses a top-

down methodology. In fact by considering the system as a whole, the main issues are

addressed globally in the initial phases of the design process. Then, progressively

breaking down the system into smaller components, systems engineers go down into

details and identify interactions and interfaces between components.

In this work we adopt both these two methodological attitudes. Nevertheless,

since SE is a very wide discipline, in the following sections we present only a few

concepts that are necessary to our exposition (for a comprehensive introduction

see [151,15,126,131]).

1.3.1 Requirements engineering

The International Council on Systems Engineering (INCOSE) defines systems as “an

interacting combination of elements organized to achieve one more stated purposes”.

Among several available definitions, this one stresses the importance of having stated

an aim in order to define an (artificial) system3. We use the terms system-of-interest

3It fits only for designed systems, not natural ones, see Section 5 for a discussion.
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or target system or system-to-be, equivalently, to refer to the system whose design is

under consideration.

Rarely systems can be described once for all by means of a single representation.

From a methodological point of view, real systems (especially complex ones) are

described adopting different perspectives and different levels of detail. Normally,

several models are necessary; one for each point of view and level of abstraction.

The set of points of view that designers choose to describe the target system, defines

their conceptual systems architecture framework. An architecture framework is an

encompassing structure, or set of structures, which can be used for developing a set

of different system architectures, since it includes methods, tools and standards for

representing and designing systems. It provides the frame of reference for a consistent

organization of the many models that can be required during the systems design

process. “Classical” architecture frameworks are, among others, DODAF, MODAF,

TOGAF, Zachman4. We adopt the systems architecture framework proposed in

[16,17,95,74].

Some techniques help to manage complex systems decoupling them into parts. In

this context, we use the terms abstraction and concretization to indicate the processes

that allow to shift from a specific level of details of the target system to a properly

lower/higher one, so that we can focus on the features which are really relevant and

“hide” the others. Decomposition and integration are the ones that let the analyst

identify and solve sub-problems. Alternating these techniques, we can provide a

series of partial visions that cooperate to produce the whole picture, instead of a

single global description. We call operational vision what concerns the analysis of

the external interactions of the system and its aim, functional vision what regards

the analysis of the abstract functions of the system and constructional vision what

deals with the analysis of the concrete components of the system. A fundamental

distinction is between the internal and the external perspective of the system. When

designers take an internal point of view, they focus on the capability of a system

to perform correctly a given function. They take care of ensuring that the system

works correctly. Functional and constructional visions are internal. When designers

assume an external point of view, they try to empathize with the stakeholders and

to identify the reasons why a system is needed. Operational vision is external.

The Institute of Electrical and Electronics Engineers (IEEE) proposes the fol-

lowing definition of the term requirement5.

Definition 1.3.1 (Requirement) A requirement R(S) on a system S is a non

ambiguous, testable and measurable feature which expresses an operational, func-

tional or constructional characteristics of S or a constraint on S which is necessary

for the approval of the system S by its stakeholders.

4See http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html for an
overview

5[IEEE Std 1220-1998]

http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html
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System’s requirements have to be distinguished from users’ and stakeholders’ needs

and from specifications. In fact, the term requirement shall be used to indicate only

something that is inside the system domain, while the term need shall be used to

indicate a desideratum that is entered by a stakeholder. Requirements concern sys-

tems, needs concern stakeholders. In particular, system’s requirements are answers

to stakeholders’ needs. Moreover, Nuseibeh et al. [130] specify that “requirements

are things in the application domain that we wish to be made true by delivering

the proposed system” while “a specification is a description of the behaviors that the

system must have in order to meet the requirements”.

The development of a system is always motivated by desiderata that are ex-

pressed by customers, end-users and other stakeholders who are external to the

system to be realized. The first task of system designers is to identify and organize

these desiderata and to specify them in a clear set of requirements.

Requirements have to be organized coherently, allocated to the proper level of

analysis (since they can concern the whole system but also subsystems and com-

ponents) and traceable (i.e. it shall be possible to trace the connections between

requirements and needs, in order to explain which is the motivation of each com-

ponent of a system). All these activities are included in the scope of a specific

discipline, called Requirements Engineering (RE). The IEEE defines it as follows6.

Definition 1.3.2 (Requirements Engineering) (1) The process of studying user

needs to arrive at a definition of system, hardware, or software requirements. (2) The

process of studying and refining system, hardware or software requirements.

Notice that, the term“requirements engineering” is used to denote both the discipline

and the process. RE includes the following subfields.

• Requirements elicitation: it is the set of activities concerned with the issue of

collecting the requirements. It has the objective of understanding the stake-

holders’ needs. The identification of the system boundaries and of the set of

stakeholders are preliminary tasks. Typically, customers and end-users can be

found easily, but other stakeholders can be difficult to identify.

• Requirements analysis: it is the set of actions that are done in order to classify

requirements in homogeneous groups and identify possible conflicts among

requirements of different stakeholders.

• Requirement prioritization: this subfield deals with the problem of ranking

the requirements and establishing which ones have to be considered first, at

an intermediate phase of a project or in a specific product release.

6[IEEE-Standard - 610.12, 91]
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• Requirements traceability: it is concerned with the issue of tracking the evo-

lution of requirements and tracing the links between them. It makes possible,

for stakeholders, to find the motivation of a requirement even when several

changes have been made to a project or system.

There are multiple taxonomies for requirements. Consistently with the termi-

nology introduced above, we use the term operational requirements to refer to stake-

holders’ needs, functional requirements to refer to the processes that have to be

performed by the system and constructional requirements to indicate the required

concrete features of the actual elements of the system.

A common distinction that we take from RE literature, is between behavioral and

non-behavioral (or quality) requirements. Behavioral requirements describe what a

system shall do, non-behavioral requirements qualify the way a system accomplishes

its tasks and its quality7. Non-behavioral requirements are called, informally, “-

ilities” or “-ities” because many of them correspond to features that are referred by

words that end with “-ility” or “-ity”, as accessibility, exploitability, extensibility,

operability portability, security, usability. Of course, this is not always the case, for

example coherence is a possible non-behavioral requirement. However, “-ilities” is a

common way to refer to the whole set of these requirements, in the RE community.

Some authors propose constraining taxonomies for quality constraints (for exam-

ple, Fig. 1.1, coming from [18], shows a possible hierarchy of quality requirements).

However, this approach is not unanimously accepted and most authors are more

encompassing and admit a huge set of non-behavioral requirements. Moreover, the

distinction between behavioral and non-behavioral requirements is fuzzy. For ex-

ample, access control issues are generally considered to be a security issue and are

classified as non-behavioral, even if they imply several actions that the system shall

do, and, consequently, entail behavioral requirements. Requirements classification

should be simply considered as a conceptual tool that helps their elicitation. Thus,

we concur for a supple use of the distinction between behavioral and non-behavioral

requirements.

Requirements can have different levels of abstraction. During the system design

process, requirements are progressively refined and associated to sub-systems and

components. At the first step of this process, requirements concern the entire system.

They are referred as system-level or high-level requirements. Then, consistently with

the process, they are classified as subsystem-level and component- (or low-) level.

High-level requirements are the most abstract, in the sense that they do not concern

concrete details, that are embodied by low-level requirements.

Requirements can be expressed in several, different ways. Possible approaches

range from the utilization of natural language, to the use of semi-formal languages as

7Some authors use the term “non-functional requirement” as synonym of “non-behavioral re-
quirement”, but we avoid this terminology that we consider misleading. The term “non-functional”
suggests the idea that there is something that doesn’t work.
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device−indipendence

reliability

portability

efficiency

human engineering

accuracy

completeness

integrity

consistency

accountability

device efficiency

accessibility
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self−containedness

legibility

conciseness

structuredness

augmentability

self−descrptiveness

modifiability

testability

understandability

general utility

maintainability

as−is utility

Figure 1.1: Quality requirements [18]

UML and SYSML, to formal methods and propositional logic. Nevertheless, in the

early phases of requirements elicitation, they are usually written in natural language,

respecting typical general patterns.

For operational requirements (i.e. needs), the generic informal pattern is:

• The external system Sn shall do f

where f expresses a function of the external system Sn, i.e. a system in the en-

vironment that interacts with the target system and that requires a contribution

(generally speaking, an answer) from the system-to-be.

For behavioral (functional) requirements, the generic informal pattern is:

• The target system S shall do f

where f expresses a required function of the system.

For quality requirements, the generic informal pattern is:

• The target system S shall be Q

where Q is a quality feature (an “-ilities”, in the sense introduced above).

For constructional requirements, the generic informal pattern is:

• The target system S shall be C

where C is a constructional feature (a detailed description of a concrete technical

characteristic as, for example “made in plastic” or “written in Java”).
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These formulations are acceptable, but basic. They can be refined specifying

context and performance level, in particular for behavioral requirements. The con-

text defines the conditions in which a function is required. For example, if we think

of a train, it shall prevent passengers to exit the wagon, when the train is moving,

but the system shall facilitate passengers to leave when the train is at the station

(where “moving” and “at the station” are the contexts). Typical contexts are, for

example, “nominal”, “standby” and “maintenance”.

When the concerned functionality can be measured, the performance level as-

sesses the threshold that has to be achieved in order to fulfil the requirement. For

example, a train can be required to transport at least n passengers per hour from

station A to station B. Context and performance level are meaningful, but, in reality

are often omitted in practice.

Thus, for behavioral requirements, the full, generic informal pattern is:

• The system S shall do f in the context C with the performance P

This pattern has a wide acceptance. Nevertheless, we notice that it embodies an

approach to needs that can be termed“satisficing”8 (a concept introduced by H.A. Si-

mon, in his work [162, 163]) since it asks that a certain function is provided with a

sufficient level of performance. Thus, a possible alternative way, to formulate the

behavioral requirements of a system in optimization oriented way, is as follows:

• The system S shall do f in the context C with the highest possible performance

This formulation fits with an optimization oriented approach, which searches form

optimal solutions. We remark that this formulation is not standard and not used

in common SE practice. Nevertheless, since we integrate high-level requirements in

MP formulations we adopt, implicitly, this kind of approach.

1.3.2 Goals

A goal is a task that the system should achieve, and represents the reason why an ac-

tion is needed. Needs (i.e. operational requirements) are goals from the point of view

of stakeholders and external systems. Functional requirements are goals from the

point of view of the systems designer. In the following we use the concept of “goal” as

a super-class that includes both operational and functional requirements (when the

context is sufficiently clear to avoid confusion). Table 1.3 resumes our terminology

and represents our framework. Each cell refers to a kind of requirement. Columns

progress from external (the environment of the system) to internal (the system itself

and its elements), rows from abstract (system-level) to concrete (component-level).

In this work we focus on the the top-left cells of this schema, which correspond to

system-level operational and functional requirements, i.e. global goals. Empty cells

denote the type of requirements that we do not consider.

8Satisfice means satisfy and suffice.
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Needs (opera-
tional require-
ments)

Functional
requirements

Constructional
requirements

external internal internal

system-level global goals global goals

sub-system-level

...

component-level

Table 1.3: Global Goals: high-level needs and high-level functional requirements

Goal-Oriented Requirements Engineering (GORE), is a sub-field of RE that fo-

cuses on goals analysis. GORE analyzes a target system focusing on the aims,

expectations and needs in order to define properly a set goals. There are several

GORE methods. The following list resumes the principal ones.

• The NFR9 Framework focuses on the classification of non-behavioral require-

ments. It provides a “map” that entails a special care of non-behavioral re-

quirements during the initial phases of systems design [38,125].

• i* is a modeling framework that can be used to represent the reasons that

motivate the realization of a system. In particular, it is used to represent the

environment of a system, its stakeholders and their objectives [177].

• The KAOS methodology (Knowledge Acquisition in autOmated Specification)

is a framework that mixes semi-formal representation tools and formal ones.

It is based on semantic nets and linear-time temporal logic [45].

• The Tropos methodology [71,29] (that we present in Section 1.3.2.1, since we

borrow from it some concepts and tools used in this work).

1.3.2.1 Tropos

Tropos10 is a semi-formal language and modeling methodology inspired by the i∗

methodology. It endorses an agent oriented programming approach, and it exploits

mentalistic notions as goals, beliefs and plans. The aim of Tropos is to ease the

understanding of the environment and of the interactions among stakeholders of a

system-to-be. It is intended to cover all the phases of requirements engineering (it

has a wider range of applicability than i∗, see Fig. 1.2 that is from [124]).

The methodology covers five phases: early requirements management, late re-

quirements management, architectural design, detailed design and implementation.

However, if compared with other methods, for example UML-oriented ones, Tropos

focuses more on the early phases of the system design process.

9NFR: Non-Functional Requirement
10From the Greek “tropé”, i.e. easily “changeable and adaptable”.
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Figure 1.2: Tropos in perspective [124]

In order to provide an early requirements model, Tropos includes several mod-

eling activities. Among them, the most relevant from our point of view, are the

following ones. Notice that the term“actor”, in Tropos methodology context, means

“an entity that has a goal”. Thus, the stakeholders of a system are actors.

• Actor modeling: this activity aims to identify actors of the environment and

of the system.

• Dependency modeling: it aims to find which actors depends on another one

for achieving a goal.

• Goal modeling: it aims to analyze goals to understand if they can be decom-

posed in subgoals and if there are dependencies among them.

In Tropos methodology, goals are classified as “hard” if they are sharply defined

and there is a clear condition that states if the goal is achieved or not. Otherwise,

goals are termed “soft”.

During goal modeling, a goal can be broken down into subgoals that cover it.

This means that subgoals entail the main goal. If all subgoals have to be fulfilled

to achieve the original one, then the decomposition is called AND-decomposition.

If the fulfillment of at least one subgoal entails the achievement of the main goal,

the decomposition is called OR-decomposition. However, when relationships among

goals are not clearly defined, these decompositions can be not suitable. This hap-

pens more frequently with soft-goals. Moreover AND/OR decomposition does not

allow the expression of the opposition of two goals. For this reason the methodol-

ogy includes other relationships. In particular, it admits the positive contribution,

labeled by the “+” symbol, and the negative contribution, labeled by the “-” symbol.

Given two goals G1 and G2, +(G1, G2) means that the achievement of G1 helps the

achievement of G2. Conversely, −(G1, G2) means that the achievement of G1 con-
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trasts the achievement of G2. In this case, as we discuss in the following, a trade-off

between G1 and G2 has to be managed.

Actor and goal models are represented graphically by means of actor and goal

diagrams. Actors are depicted as circles, hard goals as ovals, softgoal as cloud shapes.

Arrows links show the relationships among actors and goals (see Fig. 1.21). We use

goal diagrams of Tropos methodology to represent in semi-formal way the objectives

of the problems we deal with in this work.

1.3.3 Systems design and management process

Complex systems design and management are processes that can last very long.

The concerned period of time can be split in typical phases and there are several

frameworks that propose possible subdivisions. A first, big division is between the

acquisition phase and the in-service phase. In the acquisition phase the system

in designed and built; in the in-service phase, the system works, is managed and

maintained. Fig. 1.3 (that we borrow from [15]) shows a general process.

Widespread design processes are, among others, the waterfall, spiral and V-

Model models. Originally conceived for information systems, are now used in several

industrial fields. The waterfall model, showed in Fig. 1.4, is the earliest method

Figure 1.3: System life cycle.

for system development process management. It consists in subsequent steps that

progress in rigid sequence. This means that a phase can begin only when the previous

is completely ended and there is not possible rollback (the name waterfall, suggests

exactly this idea).

The spiral model, depicted in Fig. 1.5, is based on a cyclic repetition of all the

development phases with an increasing level of detail and concreteness. All phases

are considered once in order to produce a first prototype or model, and then re-

executed n times, producing n prototypes or models, progressively more accurate.

It allows for incremental improvement at each “turn around the spiral”.

The V-model, showed in Fig. 1.6, is used to underline the relationships between

development and testing phases. The descending-ascending disposition of the phases

of the development cycle in its diagram gives it its particular V shape. The descend-

ing part of the“V” includes requirements management and design, and the ascending

part includes integration, verification and validation. The symmetry of the dispo-
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Figure 1.4: Waterfall model, from Royce (1970), see [150]

Figure 1.5: Spiral model, from Boehm (1988), see [19]

sition suggests that there should be a continuous interchange among early and late

steps of the design.

The Manifesto for Agile Software Development [11] introduces in the context of

software systems development the concept of agile methods. This kind of approach

is gaining increasing consideration in the last years and it is what we might call an

“hot topic”. The agile methodology appears to have several positive features that

are useful for many types of systems (principally, but not only, software ones). It

is an iterative approach that was proposed to avoid the shortcomings of waterfall

methods and one of its feature is the tightening of the design-develop-test loops.

Ideas already proposed by spiral and V models become more radical. Development

sub-cycles are short and many, frequent prototypes are tested in order to manage
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Figure 1.6: V-model, see [8]

the correctness of the design process [1].

1.3.4 From goals to objective functions

One of the hypothesis of our work is the adoption of an iterative system design

process, represented, for example by the spiral-model introduced in Section 1.3.3. We

figure out a scenario in which we want to design a system with this kind of approach.

This includes the production of several prototypes, with different abstraction level;

at least, one for each iteration. In particular we focus on the first “turn”, which

aims to produce the first prototype of the system-to-be, considering only high-level

requirements.

As mentioned in the previous sections, often, high-level requirements, are stated

as soft ones. Moreover, agreements and oppositions among goals are assumed on a

hypothetical basis. Designers suppose that some goals could contrast some others.

Nevertheless, it is only during the following steps, when formal models are deployed,

that these assumptions can be verified. Thus, new trade-offs can be necessary and

supposed ones can reveal themselves as apparent. In others words, potential trade-

offs are commonly analyzed in details only when the design process reaches the

constructional level.

Hard Soft

Do

Be

Req.1

Req.2

Figure 1.7: Basic requirements framework (a).
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Hard Soft

Do

Be

Req.1

Req.2

Figure 1.8: Basic requirements framework (b).

Hard Soft

Do

Be

Req.1
Req.2(ex)

Figure 1.9: Basic requirements framework (c).

If, in the initial phases of the design process, a requirement is specified in a soft

manner, then, it should be transformed in a hard one, i.e. one for which there is a

measurable satisfaction criterion (see Fig. 1.7 and Fig. 1.8). Subsequently, if possible,

requirements should be reformulated in behavioral terms (see Fig. 1.9). This can

be done considering the fact that non-behavioral requirements of the target system,

correspond to behavioral ones of an external system that is in its environment.

This ideal path, i.e. reduction of requirements to hard, behavioral ones, guides our

modeling process, as we will see in the next chapters. If fact, we integrate high-level

requirements into MP formulations. These make them well defined, formal and, ipso

facto, hard (measurable). As a (positive) consequence, trade-offs can be precisely

analyzed early.

1.4 Structure of the work

This work considers the integration of (quality) high-level requirements in system

optimization problems in order to provide a fast prototyping and to facilitate the

design process. Its structure is as follows:

1. In Chapter 1 we provide motivational introduction and common background.
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2. In Chapter 2, we present and formalize a problem arising in the strategic

innovation management of service-based enterprises. The informal, system-

level requirement we deal with is:

• The information system shall ensure profitable services and it shall be

maintainable and extensible.

where provide services and be profitable, maintainable and extensible are re-

spectively the behavioral and non-behavioral component of the system-level

requirement. We provide a MP formulation of this problem, i.e. the evolution

of an information system architecture. Model validation is approached with

a collaborative methodology (see Chapter 5 for a discussion on this point).

We ask a team of experts to judge their compliance with the empirical reality

perceived by each of them, to decide if the model is valid.

3. In Chapter 3 we consider the problem of analyzing and improving recommender

systems. The informal, system-level requirement we deal with is:

• The recommender system shall provide recommendations to users, about

items of a given domain, and it shall be good, interesting and accurate.

where provide recommendations and good, interesting and accurate are respec-

tively the behavioral and non-behavioral component of the requirement. We

propose several models and adopt an experimental approach to select the best,

choosing a benchmark to compare their performances A model is best if the

corresponding solutions are the best in the benchmark. This approach is em-

pirical and requires the possibility of repeatable tests (see Chapter 5, for a

discussion on this point).

4. In Chapter 4, we describe and solve a problem arising in the transportation of

hazardous material on a road network, using a fleet of lorries. The informal,

system-level requirement we deal with is:

• The transportation system shall ensure safe disposal of hazardous waste

in such a way that the risk of potential catastrophic accident is equitable

over the population.

where ensure hazardous waste disposal and be equitable are respectively the

behavioral and non-behavioral component of the system-level requirement. We

propose two formalizations of the concepts of equity and provide a rationale

to choose between them.

5. In Chapter 5 we provide some epistemological and historical considerations

related to the topics proposed in this thesis.

6. In Chapter 6 we present the conclusions of this work.
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Applications





Chapter 2
The information system architecture

evolution problem

2.1 Introduction

For any information system manager, a recurrent key challenge is to avoid creating

more complexity within its existing information system through the numerous IT

projects that are launched in order to respond to the needs of the business. Such

an objective leads thus typically to the necessity of co-optimizing both creation and

replacement/destruction — called usually kills in the IT language — of parts of the

information system, and of prioritizing the IT responses to the business consequently.

This important question is well known in practice and quite often addressed in

the IT literature, but basically only from an enterprise architecture or an IT techni-

cal management perspective [14, 37, 115]. Architectural and managerial techniques,

however, are often only parts of the puzzle that one has to solve to handle these

optimization problems. On the basis of budget, resource and time constraints given

by the enterprise management, architecture provides the business and IT structure

of these problems. This is however not sufficient to model them completely or solve

them. We propose an operational model and a Mathematical Programming (MP)

formulation expressing a generic global prioritization problem occurring in the (lim-

ited, but practically relevant) context of a technological evolution of an information

system.

The presence of many teams at work is worth a close examination, because

it can lead to puzzling situations if some specific conditions hold or resources are

insufficient. If we introduce a bound on the duration of the whole transition, or, at

least, on each step of it, and force the activation/deactivations to be done before a

short deadline we generate a “competition” between departments. Thus, we employ

multi-optimization techniques in order to model and numerically solve a wider part

of this general problem. This is a step towards a full formalization of the problem
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which promises to provide a valuable help for IT practitioners.

The rest of this chapter is organized as follows: section 2 describes the problem

and the key elements involved, section 3 proposes the Mathematical Programming

formulation and introduces the necessary multi-optimization techniques, section 4

discusses the theoretical properties of the model and section 5 reports the results of

the computational tests.

2.2 Operational model of an evolving information sys-

tem

2.2.1 Elements of information system architecture

Any information system of an enterprise (consisting of a set D of departments) is

classically described by two architectural layers:

• the business layer: the description of the business services (forming a set V )

offered by the information system;

• the IT layer: the description of the IT modules (forming a set U) on which

business services rely on.

....

Business layer

IT layer

....

service 1 service 2 service |V |

M1 M2 M|U|

Figure 2.1: A simple two-layer information system architecture.

In general, the relationship A ⊆ V × U between these two layers is not one-to-one.

A given business service can require any number of IT modules to be delivered and

vice-versa a given IT module can be involved in the delivery of several business

services, as shown in Fig. 2.1.

2.2.2 Global Goal

The general goal, we deal with, is:

• The information system shall ensure profitable services and it shall be main-

tainable and extensible.
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Fig. 2.2 shows the related goal diagram. Provide services is a behavioral requirement.

The non-behavioral requirements that we consider are: be profitable, be maintainable

and be extensible. Be profitable is an hard goal. Be maintainable and be extensible

are soft-goals, which tell us that the target system shall be able to evolve. We need

some more elements in order to make these soft-goals precise. We introduce them

in the next sections.

ANDAND AND

Be maintenable Be extensible
Ensure services Be profitable

AND

_

_

_
_

Ensure profitable services,

being maintenable and extensible

Figure 2.2: Goal Diagram

2.2.3 Evolution of an information system architecture

From time to time, an information system may evolve in its entirety due to the

replacement of an existing software technology by a new one (e.g. passing from

several independent/legacy software packages to an integrated one, migrating from

an existing IT technology to a new one, and so on). These evolutions (or transitions)

invariably have a strong impact at the IT layer level, where the existing IT modules

UE = {M1, . . . ,Mn} are replaced by new ones in a set UN = {N1, . . . , Nn′} (in

the sequel, we assume U = UE ∪ UN ). This translates to a replacement of existing

services (sometimes denoted as ES) in V by new services (sometimes denoted as NS)

in W ensuring that the impact on the whole enterprise is kept low in order to avoid

business discontinuity. This also induces a relation B ⊆W ×UN expressing reliance

of new services on IT modules. Note also that in this context, at the business level,

there exists a relation (in V ×W ) between existing services and new services which

expresses the fact that a given existing service shall be replaced by a subset of new

business services. We note in passing that this relation also induces another relation

in UE × UN expressing the business covering of an existing IT module to a subset

of new IT modules (see Fig. 2.3).
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ES1 ES2 ES|V | NS1 NS2 NS|W |

M1 M2 Mn N1 N2 Nn′

Business layer

IT layer

Requires

Figure 2.3: Evolution of an information system architecture.

2.2.4 Management of IT system architecture evolutions

Mapping the above information system architecture on the organization of a com-

pany, it appears clear that three main types of enterprise actors are naturally in-

volved in the management of these technological evolutions which are described

below.

1. Business department managers: they are responsible of creating business value

— within the perimeter of a business department in the set D — through the

new business services. This value might be measured by the amount of money

they are ready to invest in the creation of these services (business services are

usually bought internally by their users within the enterprise).

2. IT project managers: they are responsible for creating the new IT modules,

which is a pre-requisite to creating the associated business services. The IT

project manager has a project schedule usually organized in work packages,

each having specific starting times and global budget: in our case, this schedule

is presented as a set of deployment precedence rules for new modules.

3. Kill managers: they are responsible for destroying the old IT modules in order

to avoid to duplicate the information system — and therefore its operating

costs — when achieving its evolution. Kill managers have a budget for realizing

such “kills”, but they must ensure that any old IT module i is only killed after

the new services replacing those old ones relying on i are put into service.

The enterprise motivates the efficiency of kill managers by setting a monetary

value on each deactivation: this provides a measure of the desirability of killing

module i.



2.3. Mathematical Programming based approach 35

In this context, managing the technological evolution of an information system means

being able of creating new IT modules within the time and budget constraints of

the IT project manager in order to maximize both the IT modules business value

brought by the new services and the associated kill value (i.e. the number of old

services than can be killed).

2.2.5 The IT system architecture evolution management

The architecture evolution of the IT system involves revenues, costs and schedules

over a time horizon tmax, as detailed below.

• Time and budget constraints of the IT project manager. Each new IT module

i ∈ U has a cost ai and a production schedule.

• IT module business value. Each department ℓ ∈ D is willing to pay qℓk

monetary units for a new service k ∈ W from a departmental production

budget Hℓ =
∑

k:(ℓ,k)∈F qℓk; the business value of the new service k is ck =
∑

ℓ:(ℓ,k)∈F qℓk. We assume that this business value is transferred in a conserva-

tive way via the relation B to the IT modules. Thus, there is a business contri-

bution βik over every (i, k) ∈ B such that for each k we have ck =
∑

(i,k)∈B βik;

furthermore, the global business value of module i is
∑

k:(i,k)∈B βik. We also

introduce a set N ⊆ U of IT modules that are necessary to the new services.

• Deployment schedule of new modules. We are given a Directed Acyclic Graph

(DAG) (U,S) where each couple (i, h) ∈ S ⊂ U × U encodes a deployment

precedence between the new modules i, h (i.e. h cannot be deployed before i).

• Kill value. Discontinuing (or killing) a module i ∈ U has a cost bi due to

the requirement, prior to the kill, of an analysis of the interactions between

the module and the rest of the system architecture, in order to minimize the

chances of the kill causing unexpected system behaviour. As mentioned above,

it also has a monetary value (or desirability) φi .

The evolution involves several stakeholders. The department heads want to max-

imize the value of the required new services. The module managers want to produce

the modules according to an assigned schedule whilst maximizing the business value

for the new services to be activated. The kill managers want to maximize the

monetary value of the deactivated modules within a certain kill budget. Thus, the

rational planning of this evolution requires the solution of an optimization problem

with several constraints and criteria, which we shall discuss in the next session.

2.3 Mathematical Programming based approach

We present two MOP techniques that we use in the following. The Lp-metric method

sketched below belongs the class of no-preference methods. It aims to identify a



36 Chapter 2. The information system architecture evolution problem

f 2

f 1

Y

p = 1

p = 2

h∗

p =∞

Figure 2.4: Lp-metric method

point in the objective space which has minimal distance from a reference point h∗.

Typically, the chosen reference is the ideal point (utopia), which corresponds to the

maximum values of all objectives, optimized separately. In other words, the ideal

point is the one we would chose if there were no compromise between tasks. For a

vector f = (f1, . . . , fk) of objective functions, the ideal point is formally defined as

the h∗ ∈ R
k satisfying:

∀i ∈ {1, . . . , k} h∗i = max{fi(s) | s ∈ X}, (2.1)

where depending on the decision variables s and X is the feasible region of the

MOP. Figure 2.4 shows the sets of points that are equidistant from h∗, determined

by different norms. The circle is given by the common Euclidean norm. The square

and the rhombus are determined by the Maximum norm (p =∞) and the Manhattan

norm (p = 1). Thus, if we use the utopia point as benchmark and the p-norm to

define a metric, the general formulation of the method is:

min

(

k
∑

i=1

|fi(x)− h∗i |
p

)1/p

(2.2)

We remark that if we consider p = 1, we obtain the single objective problem:

mins
∑

i |h
∗
i − fi(s)| = mins

∑

i(h
∗
i − fi(s)) = ‖h∗‖1 + maxs

∑

i fi(s), since ‖h
∗‖1

is a constant. It therefore suffices to maximize
∑

i fi(s) with respect to s.

The weighted-sum method is (probably) the most common “a posteriori” ap-

proach to multi-objective optimization. Its principle is to assign to each individual

objective function a weight αi ≥ 0 normalized by
∑k

i=1 αi = 1 and then to replace

the set of objective functions by the single compound objective mins
∑k

i=1 αifi(s).

By varying α = (α1, α2....αk)
T one can obtain a subset of the total set of efficient

solutions (see Figure 2.5 and 2.6). If all of the weights are positive, the minimum of
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the scalar-valued formulation is an efficient solution. Conversely, there may be effi-

cient solutions which cannot be found by minimizing any weight vector α (this might

happen whenever the feasible set is nonconvex). In such cases, the weighted-sum

method can be used to find an approximation of the efficient frontier. If necessary,

other techniques can be applied in the second phase to inspect the objective space

between solutions found by the weighted-sum method.

f 2

f 1

Y

Figure 2.5: Weighted-sum method (1)

f 2

f 1

Y

Figure 2.6: Weighted-sum method (2)

2.3.1 Introducing the MP formulation

As explained above, an enterprise in our context consists of a set D of departments

currently relying on existing services in V and wishing to evolve to new services in

W within a time horizon tmax. Each service relies on some IT module in U . The

set N ⊆ U indexes those IT modules that are necessary. The relations between

services and modules and, respectively, departments and services, are denoted as

follows: A ⊆ V × U , B ⊆ W × U , E ⊆ D × V and F ⊆ D ×W . If an IT module

i ∈ U is required by a new service, then it must be produced (or activated) at a

certain cost ai. When an IT module i ∈ U is no longer used by any service it

must be killed at a certain cost bi. Departments can discontinue using their existing
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services only when all new services providing the functionalities have been activated;

when this happens, the service (and the corresponding IT modules) can be killed;

a killed module i contributes φi monetary units to the goal of the kill manager.

Departments have budgets dedicated to producing and killing IT modules, which

must be sufficient to perform their evolution to the new services; for the purposes

of this paper, we suppose that departmental budgets are interchangeable, i.e. all

departments credit and debit their costs and revenues to two unique enterprise-level

budgets: a production budget Ht and a kill budget Kt indexed by the time period

t. A new service k ∈ W has a value ck, and an IT module i ∈ U contributes βik

to the value of the new service k that relies on it. We use the graph G = (V, E)

shown in Fig. 2.7 to model departments, existing services, new services, IT modules

and their relations. The vertices are V = U ∪ V ∪ W ∪ D, and the edges are

E = A ∪ B ∪ E ∪ F . This graph is the union of the four bipartite graphs (U, V,A),

(U,W,B), (D,V,E) and (D,W,F ) encoding the respective relations. We remark

that E and F collectively induce a relation between existing services and new services

with a “replacement” semantics (an existing service can be killed if the related new

services are active).

vj

ui

wk

zi

U

V

W

ℓ

existing services

new services

IT modules

departments
E

F

A

B

D

Figure 2.7: The bipartite graphs used to model the problem.

2.3.2 Sets, variables, objectives, constraints

We present here the MP formulation of the Architecture Evolution Problem (AEP).

We recall that NS stands for new service and ES for existing service.

1. Sets:
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• T = {0, . . . , tmax}: set of time periods (Sect. 2.2.5, p. 35);

• U : set of IT modules (Sect. 2.2.1, p. 32);

• N ⊆ U : set of IT modules that are necessary for the NS (Sect. 2.2.5,

p. 35);

• V : set of existing services (Sect. 2.2.1, p. 32);

• W : set of new services (Sect. 2.2.3, p. 33);

• A ⊆ V × U : relations between ES and IT modules (Sect. 2.2.1, p. 32);

• B ⊆W × U : relations between NS and IT modules (Sect. 2.2.3, p. 33);

• D: set of departments (Sect. 2.2.1, p. 32);

• E ⊆ D × V : relations between departments and ES (Sect. 2.3.1, p. 38);

• F ⊆ D ×W : relations between departments and NS (Sect. 2.3.1, p. 38);

• S ⊂ N ×N : deployment precedences between new modules (Sect. 2.2.5,

p. 35).

2. Parameters:

• ∀i ∈ U ai = cost of producing an IT module (Sect. 2.2.5, p. 35);

• ∀i ∈ U bi = cost of killing an IT module (Sect. 2.2.5, p. 35);

• ∀i ∈ U φi = desirability (monetary units) of killing an IT module (Sect 2.2.5,

p. 35)

• ∀t ∈ T Ht = production budget per time period (Sect. 2.3.1, p. 38);

• ∀t ∈ T Kt = kill budget per time period (Sect. 2.3.1, p. 38);

• ∀(i, k) ∈ B βik = monetary value given to NS k by IT module i (Sect. 35,

p. 2.2.5).

3. Decision variables:

∀i ∈ U, t ∈ T uit =

{

1 if IT module i is used for a ES at time t

0 otherwise;
(2.3)

∀i ∈ U, t ∈ T zit =

{

1 if IT module i is used for a NS at time t

0 otherwise;
(2.4)

∀j ∈ V, t ∈ T vjt =

{

1 if existing service j is active at time t

0 otherwise;
(2.5)

∀k ∈W, t ∈ T wkt =

{

1 if new service k is active at time t

0 otherwise.
(2.6)

4. Objective functions.
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• Business gain: value contributed to new services by IT modules. This

is the objective of the module managers, and, because β is indexed on

both modules and services, it agrees with the objective of the department

heads.

max
u,v,w,z

∑

t∈T
(i,k)∈B

βikzitwkt. (2.7)

• Killing gain: objective of the kill managers.

max
u,v,w,z

∑

t∈T
i∈U

φi(1− uit). (2.8)

5. Constraints.

• Production budget (cost of producing new IT modules; this is another

objective of the module managers):

∀t ∈ T r {tmax}
∑

i∈U

ai(zi,t+1 − zit) ≤ Ht, (2.9)

where the term zi,t+1− zit is only ever 1 when a new service requires pro-

duction of an IT module — we remark that the next constraints prevent

the term from ever taking value −1.

• Once an IT module is activated, do not deactivate it.

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi,t+1. (2.10)

• Kill budget (cost of killing IT modules; this is part of the objective of the

kill managers):

∀t ∈ T r {tmax}
∑

i∈U

bi(uit − ui,t+1) ≤ Kt, (2.11)

where the term uit − ui,t+1 is only ever 1 when an IT module is killed —

we remark that the next constraints prevent the term from ever taking

value −1.

• Once an IT module is killed, cannot activate it again.

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui,t+1. (2.12)

• If an existing service is active, the necessary IT modules must also be

active:

∀t ∈ T, (i, j) ∈ A uit ≥ vjt. (2.13)
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• If a new service is active, the necessary IT modules must also be active:

∀t ∈ T, (i, k) ∈ B : i ∈ N zit ≥ wkt. (2.14)

• An existing service can be deactivated once all departments relying on

it have already switched to new services; for this purpose, we define sets

Wj = {k ∈W | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F )} for all j ∈ V :

∀t ∈ T, j ∈ V
∑

k∈Wj

(1 −wkt) ≤ |Wj |vjt. (2.15)

• New modules must be deployed according to precedences: for a prece-

dence (i, h) ∈ S, i must be deployed at least one timestep before h is;

therefore, if zit = 0 then zhs = 0 for all s ≤ t (2.16), and if t is the first

timestep where zit = 1 then zht = 0 (2.17):

∀s ≤ t ∈ T, (i, h) ∈ S zhs − zit ≤ 0 (2.16)

∀s ≤ t ∈ T r {0}, (i, h) ∈ S zhs + zit − zi,t−1 ≤ 1. (2.17)

• Boundary conditions. To be consistent with the objectives of the module

and kill managers, we postulate that:

– at t = 0 all IT modules needed by existing services are active, all IT

modules needed by new services are inactive:

∀i ∈ U rN ui0 = 1; (2.18)

∀i ∈ N ui0 = 0; (2.19)

∀i ∈ U zi0 = 0; (2.20)

∀j ∈ V vj0 = 1 ∧ ∀k ∈W wk0 = 0. (2.21)

– at t = tmax all IT modules needed by the existing services have been

killed:

∀i ∈ U uitmax = 0. (2.22)

These boundary conditions are a simple implementation of the objectives

of module and kill managers. Similar objectives can also be pursued by

adjoining further constraints to the MP, such as for example that the

number of IT modules serving ES must not exceed a given amount.

The formulation above is a Binary Quadratic Program (BQP) with two objective

functions. Single-objective BQPs exhibit products of binary decision variables [133];

they can either be solved directly using standard BB-based solvers [13, 85, 153] or

reformulated exactly (see [107] for a formal definition of reformulation) to a MILP,

by means of the ProdBin reformulation [61, 108] prior to solving is with standard



42 Chapter 2. The information system architecture evolution problem

MILP solvers.

Remark 2.3.1 (Single-objective vs bi-objective formulations) Consider the

single objective formulation with objective function (2.7) only. This pursues the

maximization of the business value by activating those modules that are necessary

to the implementation of new services as soon as possible. The deactivation of old

modules is considered as a cost, hence this formulation forces the solutions to respect

a kill budget by means of constraint (2.11). The time of deactivation might influence

feasibility (through constraint (2.15)) but not the solution cost. In the biobjective

formulation, on the other hand, objective function (2.8) induces an anticipation of

the deactivation of the useless modules. Consider the two partial solutions showed

time module: uit uit − ui,t+1 1− uit
1 1 0 0

2 1 0 0

3 1 0 0

4 1 1 0

5 0 0 1

. . . . . . . . . . . .

time module: uit uit − ui,t+1 1− uit
1 1 1 0

2 0 0 1

3 0 0 1

4 0 0 1

5 0 0 1

. . . . . . . . . . . .

Table 2.1: Left: a partial solution of the single-objective formulation. Right: effect
of second objective

in Tables 2.1. We observe that uit − ui,t+1 is positive only at step 3, while 1 − uit

is true from the deactivation till to the end. Thus the earlier the deactivation of a

module occurs, the larger the value
∑

i,t φi(1− uit) of objective (2.8) will be.

2.3.3 Valid cuts from implied properties

The BB method for MPs with binary variables performs a binary tree-like recursive

search. At every node, a lower bound to the optimal objective function value is

computed by solving a continuous relaxation of the problem. If all integral variables

happen to take integer values at the optimum of the relaxation, the node is fath-

omed with a feasible optimum. If this optimum has better objective function value

than the feasible optima found previously, it replaces the incumbent, i.e. the best

current optimum. Otherwise, a variable xj taking fractional value x̄j is selected for

branching. Two subnodes of the current node are created by imposing constraints

xj ≤ ⌊x̄j⌋ (left node) and xj ≥ ⌈x̄j⌉ (right node) to the problem. If the relaxed
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objective function value at a node is worse than the current incumbent, the node

is also fathomed. The step of BB which most deeply impacts its performance is

the computation of the lower bound. To improve the relaxation quality, one often

adjoins “redundant constraints” to the problem whenever their redundancy follows

from the integrality constraints. Thus, such constraints will not be redundant with

respect to the relaxation. An inequality is valid for a MP if it is satisfied by all its

feasible points. If an inequality is valid for an MP but not for its relaxation, it is

called a valid cut.

We shall now discuss two valid inequalities for the evolution problem. The first

one stems from the following statement: If a new service k ∈W is inactive, then all

existing services linked to all departments relying on k must be active. We formalize

this statement by defining the sets:

∀k ∈W Vk = {j ∈ V | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F )}.

The statement corresponds to the inequality:

∀t ∈ T, k ∈W
∑

j∈Vk

(1− vjt) ≤ |Vk|wkt. (2.23)

Lemma 2.3.2 Whenever (v,w) are part of a feasible solution of the evolution prob-

lem, (2.15) ⇔ (2.23).

Firstly, we start proving that (2.15) ⇒ (2.23). We proceed by contradiction:

suppose (2.15) holds and (2.23) does not. Then there must be t ∈ T, k ∈ W, j ∈ Vk

such that wkt = 0 and vjt = 0. By (2.15), vjt = 0 implies ∀h ∈ Wj (wht = 1).

By definition of Vk and Wj, we have that k ∈ Wj, and hence wkt = 1 against the

assumption. Secondly, we observe that the converse, (2.15) ⇐ (2.23), also holds.

The proof is symmetric: it suffices to swap j with k, Wj with Vk, v with w, (2.15)

with (2.23).

We remark that (2.15) ⇒ (2.23) let us assert that (2.23) is a valid inequality for the

AEP. The second inequality is a simple relation between v and w.

Proposition 2.3.3 The inequalities

∀t ∈ T, j ∈ V, k ∈W ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F ) vjt + wkt ≥ 1 (2.24)

are valid for the AEP.

Suppose (2.24) does not hold: hence there are t ∈ T, j ∈ V, k ∈ W, ℓ ∈ D with

(ℓ, j) ∈ E and (ℓ, k) ∈ F such that vjt + wkt = 0. Since vjt, wkt ≥ 0, this implies

vjt = wkt = 0. It is easy to verify that if this is the case, (2.15) and (2.23) cannot

both hold, contradicting (2.15) ⇔ (2.23) (cf. Lemma (2.3.2)).



44 Chapter 2. The information system architecture evolution problem

Eq. (2.24) states that at any given time period no pair (ES, NS) related to a given

department must be inactive (otherwise the department cannot be functional). We

can add (2.23) and (2.24) to the MP formulation of the AEP, and hope they will

improve the quality of the lower bound obtained via the LP relaxation. This is

verified empirically in Sect. 2.5.3.

2.4 Formulation properties and trade-off

As mentioned previously, the formulation (2.3)-(2.22) models a biobjective problem.

Notice, however, that the two objective functions (2.7), (2.8) involve different sets

of variables. Thus, it is not immediately evident that this formulation might not be

decomposed in two separate problems, one maximizing (2.7) and the other (2.8). Nor

it is evident that the Pareto region might consist of more than one single optimum.

In other words, establishing whether this bi-objective formulation really corresponds

to a trade-off type of problem is a relevant question.

In this section we present a mathematical analysis which shows that this is indeed

the case. Specifically, we show that without (2.15), the problem can be decomposed

in such a way that the only efficient solution is the utopia point. In this sense,

(2.15) are the true source of the trade-off nature of (2.3)-(2.22). We first analyse a

Lagrangian relaxation of (2.15), then give an example of a class of problem instances

whose corresponding Pareto region fails to be a singleton set. For simplicity, we

consider the original formulation only, without the valid cuts of Sect. 2.3.3.

2.4.1 Decomposability

Without (2.15), the formulation can be decomposed into two bi-objective subprob-

lems involving only the u, v and respectively w, z variables. This suggests a La-

grangian relaxation [175] of (2.15) using Lagrangian coefficients λ, µ ≥ 0, which

yields the two maximization objectives:

ζ(λ, u, v, w, z) =
∑

(i,k)∈B
t∈T

βikzitwkt +
∑

t∈T
j∈V

λjt





∑

k∈Wj

(wkt − 1) + |Wj |vjt



 =

=
∑

t∈T
(i,k)∈B

βikzitwkt +
∑

t∈T,j∈V
k∈Wj

λjtwkt +
∑

t∈T
j∈V

|Wj |λjt(vjt − 1),

and

η(µ, u, v, w, z) =
∑

t∈T
i∈U

φiuit +
∑

t∈T
j∈V

µjt





∑

k∈Wj

(wkt − 1) + |Wj|vjt



 =

=
∑

t∈T
i∈U

φiuit +
∑

t∈T,j∈V
k∈Wj

µjtwkt +
∑

t∈T
j∈V

|Wj |µjt(vjt − 1).



2.4. Formulation properties and trade-off 45

Thus, we can decompose the problem of Sect. 2.3.1 into the two bi-objective

Lagrangian subproblems P,Q:

max
u,v

∑

t∈T
j∈V

|Wj|λjt(vjt − 1)

max
u,v

∑

t∈T
i∈U

φiuit +
∑

t∈T
j∈V

|Wj |µjt(vjt − 1)

∀t ∈ T r {tmax}
∑

i∈U
bi(uit − ui,t+1) ≤ Kt

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui,t+1

∀t ∈ T, (i, j) ∈ A uit ≥ vjt

∀i ∈ U ui0 = 1

∀j ∈ V vj0 = 1

∀i ∈ U uitmax = 0,



















































































(2.25)

max
w,z

∑

t∈T
(i,k)∈B

βikzitwkt +
∑

t∈T,j∈V
k∈Wj

λjtwkt

max
w,z

∑

t∈T,j∈V
k∈Wj

µjtwkt

∀t ∈ T r {tmax}
∑

i∈U
ai(zi,t+1 − zit) ≤ Ht

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi,t+1

∀t ∈ T, (i, k) ∈ B : i ∈ N zit ≥ wkt

∀s ≤ t ∈ T, (i, h) ∈ S zhs − zit ≤ 0

∀s ≤ t ∈ T r {0}, (i, h) ∈ S zhs + zit − zi,t−1 ≤ 1

∀i ∈ U zi0 = 0

∀j ∈ V wj0 = 0.































































































(2.26)

We remark that objective functions for (2.25) and (2.26) are specific instances

of the following more general case:

max
y∈Y

f(y) + g(y)

max
y∈Y

g(y)







. (2.27)

for functions f, g and a set Y . We have the following results.

Proposition 2.4.1 The efficient set of (2.27) is contained in that of:

max
y∈Y

f(y)

max
y∈Y

g(y)







. (2.28)

Let y, y′ be in the efficient set of (2.27). Then, either f(y)+ g(y) ≤ f(y′)+ g(y′)

(∗) and g(y) ≥ g(y′) (†), or f(y)+ g(y) ≥ f(y′)+ g(y′) (∗∗) and g(y) ≤ g(y′) (‡). By
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rearrangement of (∗) we have f(y)− f(y′) ≤ g(y′) − g(y); by (†), g(y′) − g(y) ≤ 0.

Therefore, f(y) − f(y′) ≤ 0. By rearrangement of (∗∗) we have f(y) − f(y′) ≥

g(y′) − g(y), which by (‡) is ≥ 0, hence f(y) − f(y′) ≥ 0. Thus y, y′ are in the

efficient set of (2.28).

By Prop. 2.4.1 one could find the efficient sets of:

max
u,v

∑

t∈T
j∈V

|Wj|λjt(vjt − 1)

max
u,v

∑

t∈T
i∈U

φiuit

constraints of (2.25)



























(2.29)

max
w,z

∑

t∈T
(i,k)∈B

βikzitwkt

max
w,z

∑

t∈T,j∈V
k∈Wj

µjtwkt

constraints of (2.26)































(2.30)
and then simply filter out all the dominated solutions with respect to the objectives

of (2.25) and, respectively, (2.26).

Formulations (2.29)-(2.30) are difficult to solve because, in accordance with La-

grangian duality theory, one would also have to minimize with respect to λ, µ. In

practice, one could employ a “pure decomposition” where λ = µ = 0. This reduces

(2.29)-(2.30) to the two following single-objective problems:

max
u,v

∑

t∈T
i∈U

φiuit

constraints of (2.25)











(2.31)

max
w,z

∑

t∈T
(i,k)∈B

βikzitwkt

constraints of (2.26)











(2.32)
This proves the following result:

Theorem 2.4.2 Relaxing (2.15) yields a MP with the single objective function (2.7)

+ (2.8).

In other words, the MP cannot be decomposed unless constraints (2.15) are relaxed.

2.4.2 Trade-off

Often, in complex environments, architects and systems engineers have to regard

many non-functional requirements such as safety and maintainability. These require-

ments do not change the main mission of a system which is to fulfil the functional

requirements but influence its quality. Different architectures could attain the tar-

get, uncovering different additional features. The main functional requirement that

the evolution of an information system must satisfy is the complete switching to new

services without service discontinuity. This task is optimized when the transition

can be done quickly, in order to profit from the income provided by the new services.

The first objective of the model (business gain) expresses this feature. The second

objective, killing gain, incorporates the need of keeping the system “clean”, because

it rewards the fact that old modules are removed. These useless modules pollute

the system and may, in the worst case, introduce some elements of risk, if obsolete
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functionalities are not managed properly. Thus, this second objective pushes the

research of transitions which leads to a configuration of the whole system which

exhibits good non-functional attributes.

Consider the following class of instances: U = {1, 2}, N = {1, 2}, V = {1, 2},

D = {1, 2}, W = {3, 4}, A = {(1, 1), (2, 2)}, B = {(1, 3), (2, 4)}, E = {(1, 1), (2, 2)},

F = {(1, 3), (2, 4)}, summarized graphically in Fig. 2.8. Two IT modules have to be

existing services

IT modules

new services

vj

ui

wk

zi

U

V

W

ℓ

departments
E

FA

B

D

Figure 2.8: Basic instance

switched from old services to new services by activating/deactivating their interfaces

to these services. The set T is limited to only two time periods. From this class,

consider the specific instances given by the parameter values in Table 2.2.

i ai bi φi βi1 βi2

1 1 1 2 1 0

2 1 1 1 0 2

t Ht Kt

0 0 0

1 1 1

2 1 1

Table 2.2: Time-independent (left) and time-dependent (right) parameter values

We remark on some effects produced by the constraints of the model combined

with the budget thresholds in Table 2.2. The production budget constraints (2.9)

prevent both new modules from being switched on at the same time period, because

this would cost 2 monetary units and the allowed bound is 1. Similarly, the kill

budget constraints (2.11) prevent both old modules from being switched off at the
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same time period. The utopia point therefore corresponds to the solution given in

Table 2.3, where the most profitable modules are switched on/off first. Because of

t u1t u2t z1t z2t v1t v2t w1t w2t

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1

2 0 0 1 1 0 0 1 1

Table 2.3: Utopia point

the values of φ and β, however, this solution is infeasible with respect to constraints

2.15.

These constraints require that when old modules are deactivated, and hence

the corresponding services are stopped, the replacing (new) services, on which the

departments rely, must already be in place. For example, if we switch the old

module 1 off, the old service 1 based on it has to be halted. Thus, department

1, which loses its existing service 1, needs the new service 3, and consequently the

module 1 has to be switched (and similarly for department 2 with old service 2 and

new service 4 and the corresponding module 2). The partial solution u1 = 0∧z2 = 1

is not possible because of constraints (2.15), and this make the utopical solution

in Table 2.3 infeasible. The allowed partial solutions are u1 = 0 ∧ z1 = 1 and

u2 = 0 ∧ z2 = 1. Thus, a feasible efficient transition is represented by table 2.4: at

first the most profitable deactivation is realised and then the less profitable activation

must be carried out to avoid service discontinuity for the first business department.

A second feasible and efficient transition is represented by table 2.5: at first the most

t u1t u2t z1t z2t v1t v2t w1t w2t

0 1 1 0 0 1 1 0 0

1 0 1 1 0 0 1 1 0

2 0 0 1 1 0 0 1 1

Table 2.4: Feasible Solution 1

profitable activation is realised, which means that the most profitable deactivation

must be delayed. These two solutions are feasible. Nevertheless no option is clearly

t u1t u2t z1t z2t v1t v2t w1t w2t

0 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1

2 0 0 1 1 0 0 1 1

Table 2.5: Feasible Solution 2

better than the other one. Business gain and killing gain are different if you choose
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the first solution or the second one. If we simply sum them without preference,

namely if we weight equally the objectives, we get the same gain with both solutions

(9 monetary units), but the “composition” of the revenue varies. Figure 2.9 shows

the Pareto region. We can observe that no solution dominates the other. If the

KILLING GAIN

BUSINESS GAIN

4 5

5

4

Solution 2

Solution 1

Figure 2.9: Basic trade-off

decision maker favours the deactivation of the old modules, then the first solution is

preferable. If the decision maker likes the activation of the new services better, the

second solution becomes more desirable. This simple example dispels the doubt that

this bi-objective problem might simply be a single objective problem in disguise, and

highlights constraints (2.15) as the main source of the trade-off.

2.5 Computational results

In [70] we proposed a single objective model of the architecture evolutions problem

and showed that it can be solved in a reasonable amount of time with regard to

realistically sized instances. Here, we aim to establish if we can solve the MOP

involving the two objectives (2.7) and (2.8) as well. We are more interested in

evaluating the computational effort required rather than in exactly modelling the

preferences of the decision makers. Hence, we adopt a no-preference approach, the

Lp-metric method, with p = 1 and solve:

min
u,v,w,z

∣

∣

∣

∣

∣

∣

∣

∑

t∈T
(i,k)∈B

βikzitwkt − h∗1

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∑

t∈T
i∈U

φi(1− uit)− h∗2

∣

∣

∣

∣

∣

∣

∣

, (2.33)

where h∗1, h
∗
2 are the optimum values of the single-objective maximizations of (2.7)

and, respectively, (2.8), subject to all problem constraints.

We consider a set of small instances, to be solved to guaranteed optimality, and

another set of larger instances where the BB algorithm is stopped either at BB
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termination or after 30 minutes of CPU time (whichever comes first). We use the

AMPL modelling environment [63] and the CPLEX 12.2 solver [85] running with

its default configuration on a single 2.4 GHz Intel Xeon CPU with 8GB RAM. Or-

dinarily CPLEX’s Quadratic Programming (QP) solver requires QPs with Positive

Semi-Definite (PSD) quadratic forms only. Although in our case this may fail to

hold, CPLEX can reformulate the problem exactly to the required form because all

variables involved in the quadratic products are binary.

We consider the same set of instances both for the single objective form of the

problem and the bi-objective form. All instances have been randomly generated from

a model that bears some similarity to data coming from an actual service industry.

We consider three parameter categories: cardinalities (vertex set), graph density

(edge creation probability) and monetary values. Each of the 64 instances in each

set corresponds to a triplet (cardinality, edge creation probability, monetary value),

each component of which ranges over a set of four elements.

Since our solution method of choice, which consists in solving (2.33), makes

use of the single-objective optimum values h∗1 and h∗2, we have to compute them.

We remind that our previous paper [70] deals with the CPU time necessary for

solving the mono-objective model which considers only the Business Gain and which

provides the values of h∗1. Thus, we focus now on CPU times necessary for solving

the mono-objective model which considers only the Killing Gain and which gives the

values of h∗2. The results, for medium and big instances, are reported in Table 2.6.

We remark that it can be achieved with small computational effort.

We suppose h∗1, h
∗
2 as pre-calculated in the tests we present in the next section.

Hence, our subsequent results do not consider the time needed to calculate the utopia

point.

2.5.1 CPU time
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Figure 2.10: Bi-objective Model: CPU time when solving small instances.



2.5. Computational results 51

Card. Prob. Bud. feas. cpu Killing Gain
25 0.2 10 feasible 0.01 300
25 0.2 12 feasible 0.01 300
25 0.2 14 feasible 0.01 300
25 0.2 16 feasible 0.01 300
25 0.4 10 feasible 0.74 159
25 0.4 12 feasible 0.06 225
25 0.4 14 feasible 0.07 225
25 0.4 16 feasible 0.07 228
25 0.6 10 feasible 0.43 150
25 0.6 12 feasible 0.43 150
25 0.6 14 feasible 0.10 225
25 0.6 16 feasible 0.12 225
25 0.8 10 feasible 0.24 150
25 0.8 12 feasible 0.21 150
25 0.8 14 feasible 0.12 225
25 0.8 16 feasible 0.14 225
30 0.2 10 feasible 0.06 315
30 0.2 12 feasible 0.01 360
30 0.2 14 feasible 0.13 327
30 0.2 16 feasible 0.01 360
30 0.4 10 feasible 0.53 183
30 0.4 12 feasible 0.53 180
30 0.4 14 feasible 0.13 270
30 0.4 16 feasible 0.11 270
30 0.6 10 feasible 0.45 180
30 0.6 12 feasible 0.43 180
30 0.6 14 feasible 0.49 180
30 0.6 16 feasible 0.16 270
30 0.8 10 feasible 0.41 180
30 0.8 12 feasible 0.46 180
30 0.8 14 feasible 0.43 180
30 0.8 16 feasible 0.18 270
35 0.2 10 feasible 0.02 420
35 0.2 12 feasible 0.07 354
35 0.2 14 feasible 0.18 354
35 0.2 16 feasible 0.02 420
35 0.4 10 feasible 3.83 111
35 0.4 12 feasible 0.58 210
35 0.4 14 feasible 0.51 210
35 0.4 16 feasible 2.03 213
35 0.6 10 feasible 0.98 105
35 0.6 12 feasible 0.47 210
35 0.6 14 feasible 0.52 210
35 0.6 16 feasible 0.46 210
35 0.8 10 feasible 0.73 105
35 0.8 12 feasible 0.52 210
35 0.8 14 feasible 0.51 210
35 0.8 16 feasible 0.45 210
40 0.2 10 feasible 0.10 369
40 0.2 12 feasible 0.07 396
40 0.2 14 feasible 0.12 381
40 0.2 16 feasible 0.02 480
40 0.4 10 feasible 0.98 120
40 0.4 12 feasible 3.76 120
40 0.4 14 feasible 3.66 240
40 0.4 16 feasible 1.19 240
40 0.6 10 feasible 1.31 120
40 0.6 12 feasible 1.64 120
40 0.6 14 feasible 0.58 240
40 0.6 16 feasible 0.80 240
40 0.8 10 feasible 0.88 120
40 0.8 12 feasible 1.71 120
40 0.8 14 feasible 0.82 240
40 0.8 16 feasible 0.89 240

Table 2.6: Killing Gain - Single Objective

In order to observe how CPU time scales when solving to guaranteed optimality,

we present 12 plots referring to the small set, grouped by row. We plot seconds of

user CPU time: for each fixed cardinality, in function of edge creation probability

and monetary value (Fig. 2.10, first row); for each fixed edge creation probability,

in function of cardinality and monetary value (Fig. 2.10, second row); for each fixed

monetary value, in function of cardinality and edge creation probability (Fig. 2.10,

third row). The largest “small instance” corresponds to the triplet (20, 0.8, 8). The

plots show that the proposed methodology can solve a small instance to guaran-

teed optimality within half an hour on standard computational equipment; it is also

possible to notice that denser graphs and smaller budgets yield more difficult in-
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stances. Sudden drops in CPU time might correspond to infeasible instances, which,

interestingly, are usually detected quite fast.

These results and the results reported in [70] show that we can solve both the

single objective and the bi-objective formulations for realistic instances reasonably

quickly. Table 2.7 shows the results of the comparison (with cardinality fixed at

20, i.e. the largest instances in the set of small instances) and the relative increase

of the CPU time needed to solve the bi-objective formulation, with respect to the

single-objective one (which considers only Business Gain). The effort is considerably

higher but still manageable for practical purposes. Infeasibily is detected similarly in

both models. Table 2.8 reports the results for medium and big instances. However

in this case the timeout is set to 30 minutes and thus only executions shorter than

30 minutes are relevant to the comparison of CPU time. The other executions are

relevant only for the evaluation of the optimality gap.

Edge Probability Budget feasible/infeasible CPU time increment

0.4 2 infeasible 0.0
0.4 4 feasible 314.3
0.4 6 feasible 241.2
0.4 8 feasible 257.9
0.6 2 infeasible 12.5
0.6 4 infeasible 0.0
0.6 6 feasible 73.4
0.6 8 feasible 135.7
0.8 2 infeasible -4.5
0.8 4 infeasible 4.0
0.8 6 feasible 186.7
0.8 8 feasible 137.0

Table 2.7: CPU time increment

2.5.2 Optimality Gap

In Fig. 2.11 and Fig. 2.12 we plot the optimality gap at termination (which is limited

to 30 minutes). The largest “large instance” corresponds to the triplet (40, 0.8, 16).

The optimality gap, expressed in percentage, is defined by CPLEX as
(

100|f∗−f̄ |
|f∗+10−10|

)

%,

where f∗ is the objective function value of the best feasible solution found within the

time limit, and f̄ is the tightest overall lower bound. A gap of 0% corresponds to the

instance being solved to optimality. The plots show that the proposed methodology

is able to solve large instances to a gap of 12.8% within half an hour of CPU time at

worst. It can solve and to an average gap of 1.13% both the single objective (which

considers only Business Gain) and the bi-objective formulation (which considers

both Business Gain and Killing Gain), within an average CPU time of 459s and 538s

respectively (about 8 minutes). Table 2.8 reports the details of this comparison.
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Figure 2.11: Single Objective Model: Optimality gap.
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Figure 2.12: Bi-objective Model: Optimality gap.

2.5.3 Cuts effectiveness

As discussed in Section 2.3.3, valid cuts are redundant for the original formulation,

but may improve the bound given by its continuous relaxation. In order to show that

the cuts we have introduced are actually useful, we compare the optimal solution

value of the continuous relaxation with and without the cuts.

Table 2.9 reports the most interesting variations of the objective function we

recorded during the tests. The value of the average variation for all the instances

is 0.0106. Although this may not sound so impressive, one must bear in mind that

these values refer to the root node relaxation only: improvements in deeper BB

nodes might improve the bound considerably. Table 2.9 should only taken to be a

counterexample dispelling the doubt that our cuts might be supposed useless.

2.5.4 Trade-off in realistic instances

We empirically observed a trend involving the edge density of the tripartite graph

(D ∪ V ∪W,E ∪ F ) and the shape of the Pareto region. It is easy to see that, if
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Card.Prob. Bud. feas.
(1)

CPU (1) obj.
(1)

gap (1) feas.
(2)

CPU (2) obj. (2) gap
(2)

CPU
time in-
crement

Single Objective Model Bi-objective Model
25 0.20 10 yes 0.09 230 0.13 yes 0.03 529 0.37 -66.6
25 0.20 12 yes 0.03 261 0.58 yes 0.04 561 0.23 33.3
25 0.20 14 yes 0.02 190 0.65 yes 0.03 490 0.25 50.0
25 0.20 16 yes 0.02 205 0.06 yes 0.02 505 0.02 0.0
25 0.40 10 yes 0.12 344 1.45 yes 0.69 497 0.63 475.0
25 0.40 12 yes 0.17 404 0.21 yes 0.35 629 0.84 105.8
25 0.40 14 yes 0.04 411 1.62 yes 0.26 636 1.25 550.0
25 0.40 16 yes 0.1 424 3.41 yes 0.44 652 0.3 340.0
25 0.60 10 yes 1.33 424 0.42 yes 3.14 574 0.03 136.0
25 0.60 12 yes 0.46 499 0.37 yes 2.48 649 0.76 439.1
25 0.60 14 yes 0.22 578 1.13 yes 0.64 803 0.03 190.9
25 0.60 16 yes 0.32 562 0.79 yes 0.72 787 0.44 125.0
25 0.80 10 yes 196.76 540 0.01 yes 504.4 690 0.01 156.3
25 0.80 12 yes 1801.15 631 0.55 yes 1800.55 781 0.83 0.0
25 0.80 14 yes 5.85 734 0.02 yes 13.4 959 0.01 129.0
25 0.80 16 yes 2.15 745 0.08 yes 6.33 970 0.04 194.4
30 0.20 10 yes 0.51 304 0.05 yes 0.69 612 1.04 35.2
30 0.20 12 yes 0.05 344 0.59 yes 0.05 704 0.24 0.0
30 0.20 14 yes 0.04 303 1.05 yes 0.44 627 0.21 1000.0
30 0.20 16 yes 0.06 315 0.53 yes 0.05 674 0.47 -16.6
30 0.40 10 yes 2.54 477 0.09 yes 7.34 657 0.06 188.9
30 0.40 12 yes 0.95 532 0.14 yes 4.36 712 0.11 358.9
30 0.40 14 yes 0.27 609 0.49 yes 0.76 879 0.89 181.4
30 0.40 16 yes 0.26 560 0.16 yes 1.94 830 0.06 646.1
30 0.60 10 yes 13.27 635 0.01 yes 37.76 815 0.01 184.5
30 0.60 12 yes 10.06 634 0.02 yes 11.43 814 0.07 13.6
30 0.60 14 yes 3.11 734 0.06 yes 5.81 914 0.11 86.8
30 0.60 16 yes 0.31 824 0.19 yes 1.2 1094 0.34 287.1
30 0.80 10 yes 1800.96 772 3.84 yes 1800.46 952 3.55 0.0
30 0.80 12 yes 1800.96 789 1.31 yes 1800.45 969 1.44 0.0
30 0.80 14 yes 1800.99 837 1.73 yes 1800.46 1017 1.78 0.0
30 0.80 16 yes 359.42 1099 0.01 yes 1296.32 1369 0.01 260.6
35 0.20 10 yes 7.51 352 0.02 yes 0.28 764 0.02 -96.27
35 0.20 12 yes 0.31 377 0.04 yes 0.33 716 0.07 6.45
35 0.20 14 yes 0.09 425 0.11 yes 0.39 769 0.11 333.3
35 0.20 16 yes 0.09 437 0.03 yes 0.07 857 0.32 -22.2
35 0.40 10 yes 20.45 534 0.03 yes 212.1 641 0.02 937.1
35 0.40 12 yes 6.86 665 0.01 yes 20.34 875 0.01 196.5
35 0.40 14 yes 5.46 726 0.05 yes 15.19 936 0.04 178.2
35 0.40 16 yes 5.5 701 0.02 yes 10.72 914 0.07 94.9
35 0.60 10 yes 61.68 613 0.02 yes 459.1 718 0.01 644.3
35 0.60 12 yes 55.69 824 0.01 yes 87.78 1034 0.01 57.6
35 0.60 14 yes 12.79 816 0.02 yes 28.15 1026 0.01 120.0
35 0.60 16 yes 2.53 1012 0.13 yes 8.29 1222 0.03 227.6
35 0.80 10 yes 1800.83 579 7.74 yes 1800.45 684 7.32 0.0
35 0.80 12 yes 1800.85 978 4.97 yes 1800.4 1188 4.5 0.0
35 0.80 14 yes 1800.87 969 2.45 yes 1800.45 1179 2.33 0.0
35 0.80 16 yes 1800.72 1121 0.31 yes 1800.37 1331 0.56 0.0
40 0.20 10 yes 6.13 463 0.01 yes 1.72 812 0.04 -71.9
40 0.20 12 yes 2.75 453 0.01 yes 0.62 837 0.04 -77.4
40 0.20 14 yes 0.39 449 0.03 yes 0.59 822 0.01 51.2
40 0.20 16 yes 0.19 479 0.16 yes 0.08 948 0.1 -57.8
40 0.40 10 yes 511.06 588 0.01 yes 1800.31 708 1.38 252.2
40 0.40 12 yes 324.62 686 0.01 yes 994.54 806 0.01 206.3
40 0.40 14 yes 41.64 818 0.01 yes 69.13 1058 0.01 66.0
40 0.40 16 yes 7.48 906 0.03 yes 25.12 1146 0.02 235.8
40 0.60 10 yes 1800.88 638 2.36 yes 1800.33 758 6.72 0.0
40 0.60 12 yes 1273.08 753 0.01 yes 1800.27 873 2.9 41.4
40 0.60 14 yes 1800.95 1061 0.73 yes 1800.37 1301 0.66 0.0
40 0.60 16 yes 1222.44 1105 0.01 yes 1800.36 1345 0.37 47.2
40 0.80 10 yes 1800.72 720 12.84 yes 1800.33 840 11.49 0.0
40 0.80 12 yes 1800.75 807 9.18 yes 1800.46 927 8.3 0.0
40 0.80 14 yes 1800.72 1340 6.08 yes 1800.39 1580 5.48 0.0
40 0.80 16 yes 1800.74 1315 3.59 yes 1800.53 1555 3.41 0.0

Table 2.8: Comparison

Card. Prob. Bud. Objective function variation

25 0.4 10 0.012
30 0.2 10 0.016
35 0.2 12 0.011
40 0.2 10 0.018
40 0.2 14 0.019

Table 2.9: Cuts effectiveness
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E∪F = ∅, then constraints (2.15) disappear, and hence the efficient set only consists

of the utopia point. Pareto regions of different shapes and sizes can be obtained by

employing instances with different edge sets E ∪ F .

We consider medium-sized realistic instances (which correspond to triplets (30, p, b(p)),

where vertex cardinality is fixed, the edge probability changes, and the budget is

augmented with respect to the edge probability) and perform computational tests

using the weighted-sum method. Varying the α coefficient vector, we obtain different

points in the Pareto region. Fig. 2.13 shows three different Pareto regions, corre-
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Figure 2.13: Pareto frontiers for realistic instances

sponding to three different densities of the bipartite graphs linking departments with

old and new services: densest graphs yield flatter Pareto regions, and vice versa.

The architecture of an information system is done to fulfil a set of requirements

expressed by several stakeholders. When new stakeholders intervene or when new

needs arise, as a consequence, this set of requirements change. The architecture

of the information system must evolve consistently. We have showed as the man-

agement of the transition from one architecture to another can be formulated and

solved as an optimization problem that integrates high-level goals. This application

shows the viability of this approach in a realistic scenario. In Section 6 we present

some general conclusions.
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Chapter 3
The recommendation problem

3.1 Introduction

The amount of available sources of information has strongly increased during the

last decades. The overwhelming growth of the Web is probably the clearer exam-

ple. From one hand this is a wonderful progress but on the other hand this poses

problems, because it is not easy to retrieve the relevant information when required.

Too much information can puzzle users and decision makers. Thus, the need for new

technologies that can help search and retrieve information is huge. Recommender

systems (RS) are one of these technologies. RS exploit a set of established user pref-

erences to predict items1 (topics, movies, books, restaurants. . . ) that a user might

like. RS are designed to help users, who lack knowledge to evaluate the high number

of alternatives provided by several sources, first of all the Web. Recommender Sys-

tems (RS) have become an important research area and emerged as an independent

field in the mid-1990s [73, 27, 3]. This research field has its roots in Information

Retrieval (IR). RS can be seen as a kind of search engine. Nevertheless, important

differences can be noticed. The main one is that recommender systems aim to pro-

vide personalized recommendations. IR develops global retrieval methods, but does

not focus on individual needs and preferences of users. Basically, this is true also for

“traditional” search engines. Moreover, search engines answer to questions. Users

have to provide a query or a keyword. RS do not require from users an explicit

search activity, since suggestions are provided by RS in background. Thus, RS are

able to suggest items before a user asks for them.

“The Web [. . . ] is leaving the era of search and entering one of discovery.

What’s the difference? Search is what you do when you’re looking for

something. Discovery is when something wonderful that you didn’t know

existed, or didn’t know how to ask for, finds you.” 2

1A recommender system often is specialized in recommending a specific type of item, for example
movies, books, music . . . . However, item is used as general term in the related literature.

2CNN Money, The race to create a ’smart’ Google By Jeffrey M. O’Brien, Fortune writer.
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Probably, the most famous example of recommender systems is represented by Ama-

zon.com [109]. Users who purchase a product, for example a book, on their website,

receive suggestions about similar books they might like. Similar services are provided

by YouTube, Netflix, Yahoo, Tripadvisor among others.

The information that RS exploit can be of several different types (textual, users’

behaviour, ratings . . . ). Preferences that can be explicitly expressed (typically rat-

ings for products) or implicitly expressed (for example a recommender system can

consider the visit of a of page concerning a specific item in a website, as a sign

of interest or positive appreciation for that item). Moreover users usually react to

the first recommendations that the system provides, accepting, refusing and rating

them, and these feedbacks can be used to improve the following suggestions.

Herlocker et al. provide an exhaustive list of the aims of existing RS, in their

work [82].

• Find some good items: this is the most common task

• Find all good items: this task is common when the number of items is small

• Annotation in context: in an existing context, for example a list of TV shows,

underline the ones that might be interesting

• Recommend a sequence: recommend a sequence of items instead of a single

item (for example a play list of musical tracks)

• Recommend a bundle: propose a set of items that are complementary (for

example a set of places in a travel plan)

• Just browsing: this task consists in making the browsing of a set of items (for

example a catalog) as comfortable as possible

• Find a credible recommender: allow users to “play” with the recommender

system to test it

• Express self: some users desire a system that helps them to express their

opinion about items. A recommender system shall ease this desire

• Help others: some users want to provide information about items they tested

in order to help other people.

• Influence others: some users want to persuade other people about their opin-

ion on an item. A recommender system should prevent this purpose (but it

depends on the point of view of the stakeholders of the system)

From our point of view, the first two of these possible tasks are the most common. RS

are usually required to perform two jobs. On one hand, they provide the list of the

best n items with reference to a user. RS community refers to this kind of suggestion



3.1. Introduction 59

with the term top-n recommendation. On the other hand, they forecast the rating

of given user about a given item. This kind of suggestion is called prediction. These

two tasks are related. If you can provide predictions for each item and each user,

you can also provide a top-n recommendation. Nevertheless, in some situations, it

is not suitable to calculate all the predictions and RS provide simply a list without

a prediction about ratings. For example, the list of the most downloaded songs of a

genre of music that a user likes.

3.1.1 Recommendation problem

In this work, we focus on the capability of RS in providing predictions. The task

we deal with is the prediction of the rating of a selected user (the active user) for a

given item (the target item) . We can formulate our problem as follows. We have:

• a set U of users, |U | = n;

• a set I of items (movies, songs, restaurants...), |I| = m;

• a gain function G which expresses the utility of an item for a user

Utility is expressed by a numeric value representing a rating (the higher the better)

varying on a chosen interval Ψ, more formally the function G is defined as:

G: UxI → Ψ

We want to maximize the users’ utility by recommending good items and advising

against bad ones. The problem is that we do not know “a priori” all the values of

G, hence we have to predict users’ ratings.

3.1.2 Recommendation methods

There are several possible approaches to the design of a recommender system. The

most relevant methods are the following.

• Content-based: this kind of recommender analyzes items and is able to identify

its main features [9,114,46,157]. Typically, items are described by documents

or textual information, in which the system can browse. Consequently, items

are classified by genre and typology. Users who purchase or rate positively an

item that belong to a genre, receive recommendations that concern items of the

same genre. For example, a content-based recommender system that suggests

movies would propose science fiction ones to someone who purchased “Star

Trek: The Motion Picture”. This is a white box approach since the system

builds profiles of both items and users and it knows the items it recommends.

This means that, the system can tell which is the genre of an item, for example

Italian, expensive, trendy if it proposes restaurants and which are the tastes

of a user. Others approaches, especially collaborative filtering do not gather
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all this information. Content-based recommender systems are accurate but

the analysis phase, which collects information and produces items and users

profile, can be long. Moreover, they fail in suggesting items that can surprise

the users. They tend to recommend items that are, somehow, expectable.

Again, if a user purchased “Star Trek: The Motion Picture” then “Star Trek

II: The Wrath of Khan”“Star Trek III: The Search for Spock” and also “Star

Wars” are probably correct recommendations but they are quite obvious (in

others words, probably, the user does not need a recommender systems for

them).

• Collaborative filtering: this is, probably, the most widespread approach in

RS [94, 147, 158, 165, 102]. Collaborative filtering oriented recommender sys-

tems look for users who have a similar behavior, typically who rated similarly

a common set of items. The underlying idea is that these common ratings

correspond to an affinity of taste. Once users are clustered in homogeneous

groups (called neighborhoods) the system can recommend to a first user items

that a second user, who belongs to his group, likes and the first user has not

already rated. If they agreed in the past for some items, probably they agree

even for new items. This is a black box approach, since the system ignores the

features of the items. Items and users are described by the ratings they re-

ceive and express, but there is not information about their nature. If a system

recommends movies, for example, it only knows that “Star Trek: The Motion

Picture” has been rated “good”, “very good” and “not very good” by “Fabio”,

“John” and “Alice” but it can not define the genre of the movie. This is both a

drawback and an asset. It is a drawback because there is a lack of information.

It is an asset because this kind of system can work for all types of items, with

no changes. A collaborative filtering based system that works fine with movies

will work fine with restaurants and books. The system needs only ratings.

Other types of RS are more dependent on the type of item they are required

to suggest.

• Community-based (or Social): this type of system exploits the social network

of a user [72,34,76,77]. It is conceptually similar to collaborative filtering but

the neighborhood is based on explicit friendships. The user chooses his friends

and the system uses their ratings and opinions in order to provide suggestions.

Social recommender systems are based on the assumption that friends have

similar preferences and that users trust friends more than unknown users.

• Knowledge-based: this approach is based on a huge amount of information

on a specific domain [32, 30]. In particular the knowledge base of the system

contains information about how each item meets users needs. The system

has these data from the beginning and it does not perform an analysis of the
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items to gather them. It recommends items and products through an inference

about a user’s needs and features of the items. The drawback of this kind of

recommender is that its knowledge base shall be completed by experts and, as

a consequence, this process can be long and expensive.

• Hybrid recommender systems: are based on the combination of the methods

we mentioned above [33].

Despite all the efforts, RS still need further development and more advanced

recommendation modelling methods. Therefore, first of all we define which is our

goal and in the following sections we present three different models of recommender

system, a methodology to test them and the results of their comparison (even if the

definition of the right way to measure the effectiveness of a recommender system is

still an unsolved problem). Section 3.3 is dedicated to a combinatorial optimization

based RS [149], section 3.4 to a clusters modularity based RS [148] and section 3.5

to an Information Retrieval based RS [44].

3.2 Operational model of a recommender system

The operational context of a recommender system includes several stakeholders. We

focus on four main types.

• Basic users: they do not know the domain of application, namely the kind of

items that the system can recommend and looks for suggestion that are simple

to understand and appear trustworthy. They can become regular users (and,

potentially, advanced users) if the service provided is good and friendly.

• Advanced users: they know very well the domain of application and looks for

recommendation that are surprising, highly specialized and accurate. If the

system satisfies them, they become regular customer thus they represent the

main target (from a marketing point of view) of the management.

• Website administrators: they worries about the global performance of the

website (most of all, about response time) and look for fast algorithms.

• Management: they need some kind of evidence that shows that the recom-

mender system works properly in order to persuade investors and sponsors

and want to attract regular customers (since these one accept more easily

to create a profile, to register themselves providing some personal data and

purchase “premium” services ).

Notice, that we suppose that the recommender system works as part of a website

(thus we considers the website administrator. Fig. 3.1 depicts the related actor

diagram that shows the main stakeholders (in Tropos like style).
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Basic users

Advanced users

ManagementWebsite admin Rec. Sys.

Figure 3.1: Operational context

3.2.1 Global Goal

Providing recommendations is part of the aims of a recommender system. The

general goal we deal with is the following one:

• The recommender system shall provide recommendations to users, about items

of a given domain, and it shall be good, interesting and accurate.

Notice that, the non-behavioral requirements that qualify recommender systems are

numerous and some of them are non clearly defined. Among them, we consider two

in particular: be interesting and be accurate. Fig. 3.2 shows the related goal diagram.

accurate recommendations

ANDAND

Provide recommendations

Provide many recommendations

Make users happy
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Be fast
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Figure 3.2: Goal Diagram
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In the next sections we describe three new different recommend systems that try

to get these goals.

3.3 Recommender system 1: TMW

The first recommender system we present, called TMW, is an hybrid one, as it is

collaborative filtering oriented and community-based. It takes into account, past

ratings of the active user and his known social network. If the latter is totally

unknown, TMW reduces to a pure collaborative filtering system. In TMW we put

together the use of a graph theoretical model and that of combinatorial optimization

methods. We encode known relations between users and items and users and other

users by means of weighted graphs. We then define essential components of the

system by means of a combinatorial optimization problem.

3.3.1 Formal model

We employ the usual graph-theoretical notation, e.g. for a vertex v of a graph G,

δ+G(v), δ
−
G(v) are the set of vertices adjacent to incoming and respectively outgoing

arcs. For vertices u, v of G we also let ∆G(u, v) = δ+G(u) ∩ δ+G(v).

We are given two finite sets U (the users) and P (the items), and a vertex set

V = U ∪ P . We are also given two directed graphs as follows.

• A ratings bipartite digraph R = (V,A) where A ⊆ U × P is weighted by a

function ρ : A → [−1, 1], which expresses the ratings of users with respect to

the items.

• A social network S = (U,B) weighted by a function γ : B → [0, 1] which

encodes a confidence coefficient between users (the trust).

Figure 3.3: The graph G.

The union of the two graphs, G = R∪S, is a mixed ratings/social network. Starting

from G we build a new graph G′ adding new arcs in U × U or changing the values

that γ takes on existing arcs: a missing relation of confidence between two users can
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be established if both like (almost) the same items in (almost) the same way. More-

over, even when a confidence relation is already part of B, its strength can change

according to similar shared preferences situations. More precisely, the reformulated

graph G′ is described below.

We define a graph G′ with vertex set V ′ = U ∪ P and arc set B′ (weighted by a

function γ′ : B′ → [0, 1]) defined in the following way.

Figure 3.4: The graph G′.

1. New arcs: for every couple of users k, ℓ ∈ U such that (k, ℓ) 6∈ B (i.e. there

is no trust arc between them) if there is a subgraph H = (VH , AH) of R

induced by the vertex set VH = {k, ℓ} ∪ ∆R(k, ℓ) such that AH 6= ∅ (i.e. the

users have common rated items), then we add to B′ the arc (k, ℓ) weighted

by γ′kℓ = f(ϑ), where ϑ represents the difference between users computed as

follow: ϑ = 1
|∆R(k,ℓ)|

∑

i∈∆R(k,ℓ) |ρki − ρℓi|. γ
′
kℓ is obtained as a function f of ϑ,

f(ϑ) = 1
ǫ+ϑ where ǫ is relatively small (the exact value depends on the versions

of TMW; in the version we consider in this work is 0.001). The bigger is the

difference, the lower the confidence γ′kℓ
3.

2. Existing arcs: for every couple of users k, ℓ ∈ U such that (k, ℓ) ∈ B (i.e. there

is a trust arc between them) if there is a subgraph H = (VH , AH) of R induced

by the vertex set VH = {k, ℓ} ∪∆R(k, ℓ) such that AH 6= ∅ (i.e. the users have

common rated items) then B′ still contains the arc (k, ℓ), with a new weigh

given by γ′kℓ = g(γkℓ, f(ϑ)) where f(ϑ) is defined as above and g is a weighted

mean (weights depend on the version of TMW; in this version we consider here

they are equal).

We let X = (U × P ) r A, (i.e. not rated items) be the set of all recommendations

that the system is supposed to be able to make.
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Figure 3.5: The graph Z.

3.3.2 Identification of maximum confidence paths

Given a pair composed by an active user and a target item not already rated,

(k∗, i∗) ∈ X, we consider the graph Z = (W,C) where W = U ∪ {i∗} and C =

B′ ∪ {(k, i∗) | k ∈ δ−R(i
∗)} (in practice, the set of neighbors of the active users and

the ratings/arcs towards the target item). The ratings of the neighbors about i∗ are

the basic elements that we need in order to produce our prediction. The ratings of the

most reliable neighbors have to be trusted more than the ones of distant neighbors.

Thus, our aim is to compute a ranking for these known ratings {ρki∗ | k ∈ δ−R(i
∗)}.

We exploit the confidence relations encoded in the network Z, using paths (or sets

of arcs) ensuring maximum confidence. Notice that, by convention, we extend the

confidence function γ to arcs in C adjacent to i∗ as follows: ∀k ∈ δ−R(i
∗) (γki∗ = 1).

Neighbors are linked to the active user by paths. In order to establish the

reliability of a neighbor we have to estimate the “quality” of the path. We make the

assumption that for a path p ⊆ C in Z, γ(p) = min
(k,ℓ)∈p

γkℓ, i.e. that the confidence on

a path is defined by the lowest confidence arc in the path. This implies that finding

the maximum confidence path between k∗ and i∗ is the same as finding a path whose

arc of minimum weight γ is maximum (among all paths k∗ → i∗). Considering Z as a

network where γ are capacities on the arcs, a maximum confidence path is the same

as a maximum capacity path between k∗ and i∗, for which there exists an algorithm

linear in the number of arcs [139]. The mathematical programming formulation for

3Notice that there are several techniques for calculating similarities between users (see [82] for
details)
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the Maximum Capacity Path (MCP) problem is:

max
x,t

t

s.t.
∑

ℓ∈δ+R(k∗)

xk∗ℓ = 1

∀ℓ ∈W r {k∗, i∗}
∑

h∈δ−R (ℓ)

xhℓ =
∑

h∈δ+R(ℓ)

xℓh

∀(k, ℓ) ∈ C t ≤ γkℓxkℓ +M(1− xkℓ)

x ∈ {0, 1}, t ≥ 0,















































(3.1)

where M ≥ max
(k,ℓ)∈C

γkℓ.

Let p̄ ⊆ C be the maximum confidence path and α(p̄) = argmin{γkℓ | (k, ℓ) ∈ p̄}.

This path leads us to the most trusted neighbor. We can iterate the process, to find

other ones. In fact, removing α(p̄) from C1 = C yields a different set of arcs C2 with

associated network Z2 = (W,C2), in which we can re-solve (3.1) to obtain a path

p̄2 as long as Z2 is connected (otherwise, define p̄2 = ∅): this defines an iterative

process for obtaining a sequence of triplets (Zr, p̄r, r). Given a confidence threshold

Γ ∈ [0, 1] and an integer q > 0, we define the set Ω = {p̄r | p̄r 6= ∅∧r ≤ q∧γα(p̄r) ≥ Γ}

of the q high confidence paths from k∗ to i∗.

3.3.3 Exploiting the ratings

Recall that each p ∈ Ω ends in i∗, so we can define λ : Ω → δ−R(i
∗) such that λ(p)

is the last arc of p. Thus, we can figure out that paths and ratings are coupled, as

follows:

ρ(p) = ρ(λ(p)).

Let Θ = {σ ∈ [−1, 1] | ∃p ∈ Ω (σ = ρ(p))} be the set of ratings for i∗ available

to provide a prediction for the rating of k∗ about i∗. We evaluate each rating

by assigning to it the sum of the confidences along the corresponding paths. Let

v : Θ→ R+ be given by

∀σ ∈ Θ v(σ) =
∑

p∈Ω
ρ(p)=σ

γ(p).

We use v to define a ranking on Θ (i.e. an order < on Θ): for all σ, τ ∈ Θ (σ < τ ↔

v(σ) < v(τ)). Finally, the recommender system picks the most trustworthy σ in Θ

(i.e. the rating with highest associated cumulative confidence) as the prediction of

the rating of the user k∗ concerning the item i∗.
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3.4 Recommender system 2: BMC

In this section we present a recommender system, called BMC, which is based on

clustering techniques. It exploits only users’ ratings, thus it can be classified as

a collaborative filtering oriented system. Clustering is intensively used in the RS

field. In fact, it is useful to cluster items or users into homogeneous groups because

similar customers choose (presumably) similar objects, thus items chosen in the past

give suggestions of new items to recommend. However it is not easy to find useful

clusters because data are usually sparse and each user has considered, purchased or

rated only a small portion of the whole set of possible items. In literature, examples

and discussions of recommender systems which exploit clustering methods can be

found, among others, in [176,154,41]. Clustering algorithms group users maximizing

both intra-cluster similarity and dissimilarity between different clusters. They work

essentially as follows.

General clustering based recommendation algorithm.

1. Calculate similarities between users4.

2. Produce c clusters of users (note that, depending on the clustering algorithm, c

could be fixed a priori or not). Namely, the subset of all users U is partitioned

in c mutually disjoint clusters U1, U2, . . . Uc so that
⋃c

i=1 Ui = U . As usual,

users belonging to the same cluster are called neighbors (for simplicity, we use

Ua to refer to the set of neighbors of a).

3. Given an active user a ∈ Ua who needs a recommendation, use its neighbors’

ratings to predict a suggestion, by means of a prediction function (often, an

average):

prediction(a, j) =

∑

u∈Ua
ru,j · sima,u

∑

u∈Ua
|sima,u|

(3.2)

where j is the item for which the active user needs a prediction, ru,j is the

rating of the neighbor u for item j, and sima,u is used to identify the similarity

between the active user a and its neighbor u.

Step 2 of this process can be computationally difficult for large instances, so

we have to look for specificities of the data in order to adopt convenient clustering

strategies. A remarkable point is that data feeding pure collaborative filtering ori-

ented recommender systems have a typical structure that make them suitable for

a representation by means of bipartite networks. In fact there are no direct rela-

tionships between items or between users, but only connections between item and

user.

4As mentioned previously, there are several techniques for calculating similarities between users
(see [82] for details)
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Figure 3.6: Clusters formation.

3.4.1 Bipartite networks and modularity

Formally, a bipartite network is a graph G = (V1, V2, E) which has two subsets of

nodes V1 = {1, . . . , p} and V2 = {p + 1, . . . , n} and a set of edges E = {1, . . . ,m}

connecting pairs of nodes in different subsets. Bipartite graphs can represent prop-

erly data arising in the domain of recommender systems where there are users who

give ratings to items. More precisely, one can associate the set V1 to the users and

the set V2 to the items. An edge connects a user to an item for which that user has

given a rating (which can be represented as the weight of the edge).

In this work (in order to boost clustering based collaborative filtering) we focus on

clustering methods that fit bipartite networks. In particular we consider modularity

based techniques that have been introduced by Newman and Girvan (and that, at

the best of our knowledge, have never been used in this context) [128]. The idea

underlyingmodularity based approaches is that the most relevant way to evaluate the

links between groups in a network is a comparison between their effective quantity

and the expected one, if the network would have been randomly generated. Basically,

it is the “statistically surprising arrangement of edges” that gives us information,

because “. . . if the number within groups is significantly more, then it is reasonable to

conclude that something interesting is going on” [127]. We can precise and quantify

this idea by means of a measure that is just called “modularity” and that is the

fraction of edges within communities minus the expected fraction of such edges [128].

In case of bipartite unweighted undirected graphs, as reported by Barber [10] and

Newman and Leicht [103] the modularity is defined as

Qb =
1

m

p
∑

i=1

n
∑

j=p+1

[

Ãi,j −
kikj
m

]

δ(gi, gj), (3.3)

where the adjacency matrix Ãi,j is equal to 1 if there is an edge between nodes i and

j, and 0 otherwise, ki and kj are respectively the degrees of nodes i and j, that is the

number of edges incident with i and with j. Finally, gi and gj are the communities

to which belong nodes i and j, and δ is the Kronecker symbol, equal to 1 if gi and

gj are the same, and 0 otherwise.

A good partition into communities should provide a high value of modularity.
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Unhappily, the problem of modularity maximization is NP-complete [23]. For bipar-

tite graphs the complexity is an open problem. However, the problem is not easy

to solve, and some heuristics are proposed; for a review, see [62]. An interesting

method is that of Liu and Murata called LPAb+ [112]. This heuristic combines a

modified label propagation algorithm (LPAb’) and a multistep greedy agglomerative

algorithm to avoid local maxima.

3.4.2 RS by means of bipartite modularity based clustering

Our recommendation process is similar to the general clustering based recommen-

dation one described in Section 3.4. However, there are three remarkable features

that should be pointed out:

• clustering is based on bipartite modularity maximization.

• we reduce the graph to an unweighted one. We consider only the top ratings:

there exists an edge between a user and an item if the user likes that item and

the rating is maximum in the ratings range;

• we drop the prediction function and use directly clusters to provide suggestions.

Thus, our procedure reduces to the following two steps, as depicted in Fig. 3.7.

Modularity based recommendation algorithm:

1. Produce c clusters of the bipartite users-items graph with high bipartite mod-

ularity value (c is decided by the algorithm during computation).

2. If an active user a and an item j are in the same cluster and there is not a

edge between them, then predict than the rating of j given by a would be the

maximum in the rating range.

Figure 3.7: Modularity based recommendation.

Basically, we consider only maximum ratings to feed the recommender system

and provide predictions that have a value that corresponds to the maximum possible.
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3.5 Recommender system 3: LSPR

In this section we present another collaborative filtering oriented recommender sys-

tem, called LSPR, that exploits Information Retrieval (IR) techniques (see [116] for

an introduction to IR). In fact, as mentioned above, it was remarked (for example

see [12]) that RS shares fundamental aspects with IR and there is somehow a conti-

nuity between these two fields of research. Thus, we have developed a recommender

system that makes use of concepts and tools used elsewhere in an IR context, be-

lieving that the underlying structure could also provide an interesting framework

for RS algorithms. IR methods deal with documents and terms. A common task

is retrieving a set of documents in answer to a query. Thus, our idea is that meth-

ods that can find similar documents can be used to find similar users, because the

problems are formally comparable, introducing the match we expose below.

The elements that compose a IR scenario are documents, terms and a query.

First of all, notice that in IR a document is characterized by a set of terms. The

presence of specific terms in a document and their frequency (their weights), define

it. In RS a user is characterized by the set of items (that he/she has rated) and by

ratings. We consider each user as a document, each item as a term and ratings as

term weights. Moreover, we observe that the active user plays the same role played

IR RS

document user

term item

query active user

weight rating

Table 3.1: Translation of IR elements into RS ones

by the query in IR contexts (see table 3.1). The meaning of this analogy is that in

IR we want the documents more similar to the query, and for the RS problem we

want the users more similar to the active user.

Once we have set this correspondence, we can use one of the several existing IR

algorithms to obtain the list (called ranking list in IR) that represents the set of

users more similar to the active user, ordered by decreasing similarity.

We can use this set of users to get the prediction for the active user.

3.5.1 Model

This section describes the IR method that we adopt and exploit. Basically in the

LSPR model [43] the query is viewed as a spectrum and each document as a set of

filters, with one filter for each document term. Usually in IR two weighting schemes

are necessary: the first one for the terms of the documents and the second one for

the terms in the query. LSPR uses the TF-IDF weighting schema for the former,

and the IDF weighting schema for the latter. In order to use the IR algorithms for



3.5. Recommender system 3: LSPR 71

the recommender systems, it is necessary to modify these weighting functions. Since

each user becomes a document, and each item becomes a term, there is a similarity

between the matrix D and the well-known term-document matrix. At this point,

consider an active user k ∈ U , for which we want to predict the rating for the item

h ∈ I. Starting from D, we compute a new matrix WU (that plays the role of the

normalized TF-IDF weights matrix in IR) as follows:

WUij =







0 if Dij ·Dik = 0

1−
|Dij−Dik|

4 otherwise.
(3.4)

This means that the more the rating of a user for a item is similar to the rating of

the active user, the more its weight (from 0 to 1).

The column k in this matrix is not considered, because it is 0 for the items not

rated by the active user, 1 otherwise.

After that, we compute the weights for the active user (i.e. the IDF weights for

the query); we save these informations in the column k of the matrix WU , using the

following formula:

WUik =







0 if ni = 0 OR Dik = 0

log2

(

n
ni

)

otherwise,
(3.5)

where ni is the number of users that have rated the item i ∈ I, and n is the total

number of users.

Now we are ready to use the IR algorithm: the query is represented by the

column k of WU , while the documents of the collection are the columns j 6= k of

the same matrix with WUhj 6= 0. The output of the model is the ranking list of

the documents, ordered by increasing relevance. This means that the collection is

the set of users that have rated the item h, and the output is the same set of users

ordered from the more to the less “similar” to the active user.

The last operation is to predict the rating. To do this, we use the ratings of the

users in the ranking list, weighted by their rank, so that the smaller the rank of the

user is, the more his rating is considered. Suppose the ranking is given by the list of

users R, where |R| is the number of retrieved users, the rank of each user is from 0

(first) to |R| − 1 (last), and Dh,j(r) is the rating for the item h of the user with rank

r. The predicted rating is computed as:

phk =

|R|−1
∑

r=0

(

1−
r

|R|

)

·Dh,j(r)

λ
, (3.6)
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where λ is the normalization term, computed as

λ =

|R|−1
∑

r=0

(

1−
r

|R|

)

=
|R|+ 1

2
. (3.7)

Figure 3.8 summarizes the algorithm. Basically, the rows from 1 to 14 represent

the operation described by equation (3.4), while the rows from 15 to 23 implement

the equation (3.5). Finally there is the call to the IR algorithm, and the prediction

of the rating, according to equations (3.6) and (3.7).

Algoritm: RecSys-to-IR
Input: data set D, active user k, item h, IR algorithm
Output: prediction phk

1 for each i ∈ I
2 do
3 ni ← 0
4 for each j ∈ U |j 6= k
5 do
6 if (Dij ·Dik = 0)
7 then
8 WUij ← 0
9 else

10 WUij ← 1−
|Dij−Dik|

4
11 ni ← ni + 1
12 end if
13 end for
14 end for
15 for each i ∈ I
16 do
17 if (ni = 0)
18 then
19 WUik ← 0
20 else
21 WUik ← log( n

ni
)

22 end if
23 end for
24 Call the IR algorithm, and get the ranking list R

25 phk ← Round

(

2 ·

∑|R|−1
r=0

(

1− r
|R|

)

·Dh,j(r)

|R|+1

)

26 return phk

Figure 3.8: The prediction algorithm.
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3.6 Evaluating the recommender systems

Several measures have been proposed in order to evaluate the effectiveness of a

recommender system. First of all, we use a metric that is popular in the Recom-

mender Systems community because it was used during the Netflix Prize (an open

competition for the best recommender system that was promoted by the American

corporation Netflix and which is a milestone in the field of Collaborative Filter-

ing [166]). It is the accuracy computed as the square root of the averaged squared

difference between each prediction and the actual rating (the root mean squared er-

ror or “RMSE”), as we detail below. We believe that it represents a good choice since

it is widespread and ensures somehow a standard benchmark. Nevertheless other

metrics can be exploited to have a better evaluation (see [118, 82] for a discussion

on this topic). In the next subsections we describe each one of the metrics we use.

3.6.1 Dataset

We use a standard dataset provided by GroupLens (one the most important research

team in the RS community). It contains 100 000 ratings (from 1 to 5) given by

n = 943 users on m = 1682 movies and each user rated at least 20 movies. The

evaluation is performed using the “leave-n-out” approach [28]. The dataset is split

into two parts. The ratings of the first part, called test set, are hidden. The ratings

of the second part, called training set, are available to the recommender systems to

learn users’ profiles, calculate similarities and/or clusters. The recommender system

tries to predict properly the withheld ratings and we can verify if it works fine

because we know the true values. We used five pairs (training set, test set) that

share the same composition (80%/20% splits of the orginal data into training and

test sets) as suggested by the guidelines of GroupLens itself. Notice that with this

dataset, which contains only ratings and no direct trust relationships among users,

TMW performs as a pure collaborative filtering oriented system (see Section 3.8 for

a test with a different dataset that includes social relationships).

3.6.2 Evaluating effectiveness

3.6.2.1 Accuracy

Let Ū be the set of active users, Īk be the set of movies rated by an active user

k ∈ Ū ; let pik denote the predictions generated by a certain algorithm for the movie

i and the active user k, while rik is the correspondig real rating. RMSE is defined

by

RMSE =

√

√

√

√

∑

k∈Ū

∑

i∈Īk
(rik − pik)

2

∑

k∈Ū

∑

i∈Īk
1

. (3.8)

We calculate the predictions with the systems using data from the training set
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and we compare the prediction against the real rating in the test set. Moreover,

(as explained in the example below) we employ the community average for a certain

item (that is the average of the ratings given by all the users who vote the item)

as a benchmark, with the aim of measuring how much our algorithm can improve

the simple community recommendation. Thus, we also compute the RMSE of the

community recommendation with respect to the actual ratings provided by the users.

Consider the following example, in order to clarify the use of RMSE and com-

munity average. We have in our dataset 5 items, and 5 users who rate some of these

items (from 1 to 5, 0 means no rating); table 3.2 shows these ratings. There are 2

item\user 1 2 3 4 5

1 0 3 0 0 2

2 0 5 4 0 2

3 2 1 0 3 3

4 1 3 3 2 0

5 0 2 2 4 3

Table 3.2: Ratings

active users for whom we want to predict some ratings, as shown in table 3.3. The

item\active users a b

1 0 1

2 5 3

3 0 0

4 2 0

5 0 3

Table 3.3: Active users

aim of each recommender system algorithm is to predict the ratings of the active

users; in our example, the ratings of the user a for the items 2 and 4, and the ratings

of the user b for the items 1, 2 and 5, trying to find values closer to the real ones

reported in table 3.3. According to the notation used in equation (3.8), we have

Ū = {a, b}, Īa = {2, 4}, Īb = {1, 2, 5}. Moreover, ra2 = 5, ra4 = 2, rb1 = 1, rb2 = 3,

rb5 = 3. To show what is the community average, consider pa2: it is the average of

the ratings of the users who vote the item 2 (rounded to the closest integer, since

the ratings are integer). This means that

pa2 = Round

(

5 + 4 + 2

3

)

= 4.

In a similar way, we obtain pa4 = 2, pb1 = 3, pb2 = 4, pb5 = 3. Now we have all the

elements to compute the RMSE, and we obtain the following result

RMSE =

√

6

5
= 1.095.
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For our experiments we proceed as follows: we calculate the predictions with all

the three algorithms and store all prediction results. Basically, for every rating we

record a line in a log file with the predictions about that item and user of each one

of the recommender systems and the community average, respectively, as shown in

Table 3.4.

rating (real) Rec. Sys. 1 Rec. Sys. 2 Rec. Sys. 3 community average

R(ui, pk) PrRS1 PrRS2 PrRS3 Prcomm.aver.

Table 3.4: Log line for accuracy calculation.

Table 3.5 shows the outcome. Five rows correspond to five different subdivisions

in training and test sets, as mentioned above.

set TMW BMC LSPR community

1 0.956 1.025 0.985 1.073

2 0.948 0.998 0.974 1.067

3 0.953 1.010 0.971 1.060

4 0.951 1.080 0.967 1.056

5 0.952 1.045 0.975 1.065

Table 3.5: RMSE

In Table 3.6 we express this result in relative terms by providing the rate of

improvement with respect to the average of the ratings by the community.

set TMW BMC LSPR

1 10.9 % 4.5 % 8.2 %

2 11.2 % 6.5 % 8.7 %

3 10.1 % 4.7 % 8.4 %

4 9.9 % -2.3 % 8.4 %

5 10.6 % 1.9 % 8.5 %

mean 10.5 % 3.1 % 8.4 %

Table 3.6: Improvement over community average.

3.6.2.2 Audacity

We would like to provide users with the maximum possible number of good recom-

mendations. Moreover, one of the sub-goal of the system is to be interesting. This

means that we prefer a recommender system that tries to suggest a lot of “five stars”

items to one that recommends only common and known items. We could say that we

prefer a “audacious” system rather than a too “timid” one. If a recommender never

proposes a top rating prediction and it always predicts a rating that is average, it

might result quite accurate, but, definitely, it does not provide a good service. Users

look for great restaurants, movies and books, not for unimpressive ones. Thus, we
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introduce another measure. We define audacity the portion of predictions that at-

tain the maximum possible rating in the rating scale. A high audacity means that

the recommender system tries to be unequivocal and provide sharp judgments.Thus

we count the portion of top ratings that the system propose. Table 3.7 reports the

results

set TMW BMC LSPR

1 18.5% 100% 19%

2 18.8% 100% 17.3%

3 21.3% 100% 18.4%

4 19.2% 100% 18.2%

5 19.1% 100% 19.0%

mean 19.4% 100% 18.4%

Table 3.7: Portion of top rating predictions

Notice that BMC is extremely audacious. This depends on the fact that it

builds clusters considering only the arcs that correspond to top ratings, thus it is

deliberately designed to recommend only top rated items.

3.6.3 Evaluating efficiency

A widespread distinction, in RS community, is between systems that shall work

online (i.e. on-the-fly) and system that can work off-line. In the first case, the

system shall be able to recalculate very quickly its predictions each time a user

rates an item. In the second case, the system can provide its recommendation

asynchronously (for example through periodical newsletters) and does not have to

be very fast. We observe that computational efficiency is one of the objective of RS

design, but not the most important one. RS are realized to achieve users’ satisfaction.

Fast systems that provide poor recommendations do not get the goal.

Nevertheless, in order to evaluate efficiency, we record the time the systems need

to produce their recommendations. Table 3.8 shows the outcome of our tests, for

each pair training/test set. Notice that we require the predictions for all the hidden

ratings of the test set, for all users. This is a big job. In real online scenario,

normally, the system is required to provide a few predictions for one single user at a

time. Tests are performed on a AMD Sempron Mobile, 2 Ghz, 3 Gb ram. Algorithms

are implemented in java.

Even from this point of view, BMC behaves quite differently from the other sys-

tems. It is remarkably faster. Nevertheless, we observe again that it considers only

the top rated items, namely a subset of the training set. This reduces considerably

the computational effort, but entails the important drawback of a poor accuracy.
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set TMW BMC LSPR

1 824 591 2531

2 1023 623 3753

3 1265 685 4176

4 1284 698 4350

5 1367 688 4397

mean 1095 657 3841

Table 3.8: Computation time (seconds)

3.7 Recommender systems design problem

We have presented three systems that perform differently from several points of

view, hence, the choice of the best system is not straightforward. In this section, we

analyze the problem of choosing among a set of available recommender systems.

When we design a recommender system there are conflicting aims. We have

selected three goals and would like to have an accurate, audacious and fast system.

From the point of view of the final decision, each system represents a possible choice

that is characterized by its accuracy, audacity and computational efficiency. This

defines a multicriteria problem that has a finite set of explicitly known choices. This

corresponds to a typical scenario 1 of MCDM (see Section 1.2.1). We want to rank

the three systems exploiting the tests we have done. However the metrics we have

used are not dimensionally homogeneous, thus, quite classically, we need a method

to make comparisons possible. We adopt very simple functions. Each function maps

a system into an absolute rating that is equal to the ranking, in reverse order, of the

recommender system in a specific test.

Rank Utility

1 3

2 2

3 1

Table 3.9: Mapping functions. If a recommender system is the best in a test then
its utility is 3.

The range of the functions is the interval Rank = {x : 1 ≤ x ≤ 3, x ∈ N}.

For example, if a system was ranked first in the efficiency test, its score with ref-

erence to this attribute is 3, as showed in table 3.9. More formally, let Srs =

{TMW,LSPR,BMC}. We introduce three functions that map the performance in

a test into an element of Rank (i.e. a numeric value).

• Ucpu : Srs → Rank

• Uacc : Srs → Rank

• Uaud : Srs → Rank
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Each system is now associated to a triplet that qualifies its global performance.

For example, a triplet such as (3, 3, 3) would mean that the system performs better

than the others from all points of view. We want to solve the following problem.

max
s

Ucpu(s)

max
s

Uacc(s)

max
s

Uaud(s)

s.t. s ∈ Srs,



























(3.9)

The problem has three criteria. If we assume, for simplicity, that the criteria

have equivalent importance, we obtain the Table 3.10 that shows that the LSPR is

the worst system. TMW and BMC get the same score.

cputime accuracy audacity final rating

TWW 2 3 2 7

BMC 3 1 3 7

LSPR 1 2 1 4

Table 3.10: Evaluation matrix.

If we privilege, among objectives, computational efficiency or audacity, BMC

results even better. It would be the best system. Nevertheless, this would be quite

misleading. BMC provides quickly hazardous recommendations with a poor accu-

racy. It behaves as a friend who suggests you, quickly, enthusiastically and indiffer-

ently, bad and good restaurants with no much awareness. This is not the kind of

recommender that people normally look for. In our opinion, BMC is a good option

only when we are short of time. If we privilege accuracy, then TMW is the best

system. We think it is a better choice. Clearly, this brief analysis shows the funda-

mental importance of a good balance of the criteria in order to take the final choice.

The balance depends on the preferences of the decision-maker and on the capacity of

gathering them (this is a huge topic and is out of the scope of this work, see [132]).

3.8 Evaluation TMW using a small dataset

TMW has been used as engine of a working website. The system was developed

for “DisMoiOu” (“TellMeWhere”) an on-line service5, that provides the user with

advice on places that can be interesting for him/her. This gave us the possibility of

applying a different testing method, due to the recording of ratings and predictions

live. Unhappily, due to the policy of the enterprise, we could not use this method

to test BMC and LSPR.

With live data, we don’t need to simulate the prediction process because we can

compare predictions with real ratings from users on-the-fly. For our experiment we

5http://dismoiou.fr,http://tellmewhere.com/

http://dismoiou.fr, http://tellmewhere.com/
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proceed as follows: every time a user provides a rating, we calculate the predictions

with TMW using the entire dataset (with the exception of the rating entered), and

store all the prediction results. Basically, for every rating, we record a line in a

log file with the predictions of TMW, about that item and user. As a benchmark

to evaluate the algorithm we employ the community average, as usual. The result

reported in the following table refers to the analysis we performed using the ratings

we got over the first four months of activity of the website. We had 315,463 ratings

(from 1 to 5), inserted by 69,794 users on 147,319 items (places). Table 3.11 reports

the overall RMSE computed in that period.

comm. TMW

1.0710 0.9865

Table 3.11: RMSE for all ratings

TMW improves community ratings by only 7.89% on average. Notice that in this

situation TMW can also exploit explicit friendships statements among users, which

are included in the database. Despite to this advantage, TMW performs worse in

this case than in the previous tests. We suspect that the results obtained are due

to the structure and the dimension of the dataset. Some known RS dataset are

bigger. Netflix consists of 100 million ratings provided by over 480 thousand users,

on nearly 18 thousand movie titles. Jester Joke dataset has 4.1 million by 73,496

users on 100 jokes. The dataset of GroupLens that we have used is smaller (since

it has 100,000 ratings) but each user rated at least 20 movies. On the contrary,

the dataset of DisMoiOu is sparse. Most users have expressed only a few ratings.

The main issue, which arises from this experience, is that it is not clear which is

the minimal dimension of a dataset to make it a reliable base to build a test bed.

This a very important question in our opinion and our impression is that it has

been underestimated. Of course, if a dataset is untrustworthy then tests can be

misleading. This experience has shown that from the practitioner’s point of view,

tuning a good recommender system relies on finding a reliable dataset and test bed,

and that this issue has not been addressed adequately in the RS literature.



80 Chapter 3. The recommendation problem



Chapter 4
The equitable hazmat transportation

problem

4.1 Introduction

The term “sustainable development” refers to the problem of balancing economic

growth and ecological issues. This theme has been attracting great consideration

in the last decades, due to an increasing awareness of the fragility of the natural

environment. MCDM methods appear to be an effective framework to deal with the

conflicting needs that characterize environment related scenarios. In fact, there is a

stable tradition of application of MCDM techniques to ecological issues [59,122].

In this chapter, we consider the problem of hazardous materials transportation on

a road network (Hazmat transportation problem), that is relevant from an ecological

point of view, due to the environmental consequences of possible accidents.

This kind of transportation can involve one origin-destination pairs, in which case

it remains a local routing problem. Nevertheless, in general, it concerns many origins

and destinations, yielding a global routing problem [111]. We can figure it this way:

there are N trucks that have to transport some kind of dangerous material from one

or many production points to one or many garbage dumps, crossing different areas,

and we have to select a set of paths that is optimal from the point of view of cost, risk

and equity. However, equity is somehow unusual and is hard to define. We consider

and compare two different ideas of equity. The first approach simply requires that

all areas involved in the transportation network share the same level of risk, namely

that the difference of the risk of two areas is inferior to a fixed threshold. This is

a fair and intuitive idea, but it could also lead to improper solutions where risk is

similar but uniformly high. The second definition of equity we use is inspired by the

concept of “equity as fairness” of J. Rawls [143,144,145]. It is an application of his

difference principle that allows disparities in the distribution of goods only if those

disparities benefit the poorer members of society (see Section 5.5 for a discussion).
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Basically, in this context, the difference principle means that we may introduce

disparities only if they advantage the worst-off zone, namely reduce the risk of the

less favorite area (the most exposed to the risk). We look for a rationale for choosing

a particular definition of equity (for hazmat transportation), thus we investigate the

relationships between each definition of equity and the consequences it entails.

4.2 Related works

Many authors suggest that the need for equity in a transportation problem can be

achieved finding a set of different paths, the more different, the better. In fact, if

paths are different, they cross different zones and they spread the risk over a big

area. This approach reduces our problem to the Path Dissimilarity Problem (PDP).

Most of the methods for PDP have two phases: in the first phase a set of paths

that fulfil a requirement (typically that minimize length or cost) is identified, in the

second phase the most dissimilar paths are selected among them. In this case equity

is ensured a posteriori. Equity itself is not explicitly defined and it is assumed that

the dissimilarity among paths assures it.

We briefly recap some of the most relevant works in this field.

• Iterative Penalty Method, Johnson et al. [86], 1992.

This method includes two phases. The authors consider a single one origin-

destination pairs, thus, they initially look for the shortest path. Subsequently,

weights on the arcs of the selected path are increased in order to penalize it.

Then they look again for the shortest path, according to the new weights. The

process is repeated k times, to obtain k different paths.

• Gateway Shortest Path (GSP) method, Lombard and Church [113], 1993.

This method includes two phases. In the first, the authors generate a set of dif-

ferent paths by forcing them to go through different selected nodes (gateways).

In the second phase dissimilar ones are selected by means of a dissimilarity

measure between paths, that is defined as the absolute difference between the

“area-under-the-path” of two paths (i.e. the area between a path and an axis).

• Minimax method, Kuby et al. [96], 1997.

This method includes two phases. In the first phase a set of paths is obtained

solving the k-shortest paths problem. In the second phase a subset of short,

dissimilar paths is constructed step by step, exploiting a criterion that is a

linear combination of length and similarity. The similarity ds(P1, P2) of two

paths P1 and P2 is calculated as the length of their shared portion. The first

path P1 that is selected is always the shortest path; the second path is selected

in order to minimize its length and minimize the similarity with P1. The third
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path P3 is selected in order to minimize the length and minimize the similarity

with P1 and P2. The procedure is repeated until the desired number of paths

is obtained.

• Akgun et al. [4], 2000.

This method includes two phases. In the first phase the authors build a set of

candidate paths, either solving a k-shortest paths problem or applying the iter-

ative penalty method. Then, in order to build a subset of dissimilar paths, they

solve a discrete p-dispersion subproblem (p out of m given elements (p < m)

are selected to maximize the minimum distance between any two of the selected

elements). A similarity measure is defined as the average ratio between the

length of the shared portions of two paths and the length of the whole path. In

particular, the authors define the similarity S(Pi, Pj) between two paths P1 and

P2 as 1
2

(

L(P1∩P2)
L(P1)

+ L(P1∩P2)
L(P2)

)

, where L(Pi) denotes the length of path Pi and

L(Pn∩Pm) denotes the length of the shared portions of path Pn and path Pm.

The dissimilarityD(Pi, Pj) of two paths Pi and Pj , isD(Pi, Pj) = 1−S(Pi, Pj).

Using this dissimilarity as a distance they can reduce the dissimilarity problem

to the discrete p-dispersion one.

• Dell’Olmo et al. [48], 2005.

Similarly to other methods, this method includes two phases. Dell’Olmo et

al. stress the drawbacks of the approaches proposed by previous works. In

the context of the hazmat problem, there are at least two objectives. In fact,

normally, minimal distance and minimal risk are both required. They observe

that the construction of the candidate set is realized using only one criterion or

a linear combination of two objectives (a technique that implies an “a priori”

choice of the relative importance of the objectives). Thus, in the first phase,

they generate the whole set of Pareto optimal solutions by solving a Bi-criteria

Shortest Path Problem. In the second phase they look for the most dissimilar

paths in the candidate set that contains all the efficient solutions. The authors

introduce the notion of “buffer zone” that is the area near a path that could

be impacted by an accident. The similarity between two paths corresponds to

their shared buffer zone. This similarity is used to choose the most dissimilar

path by means of a reduction to the discrete p-dispersion problem.

• Carotenuto et al. [36], 2007.

The authors distinguish between the risk (for the population due to hazmat

transportation) on a path and on an edge of the that path. They require that

the risk of the zone near an edge (called buffer zone) remains below a specific

threshold. Basically, this constraint prevents from choosing always the same

edges (if an edge is chosen too often, the region near the edge has a considerable
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risk). In this method, the two phases are not clearly distinguished. Moreover,

no explicit definition of dissimilarity between paths is used.

Transport hazmat waste towards dump sites safely, equitably

Be equitableBe safe
_

AND AND

Transport hazmat waste towards dump sites

OR

Help the most
disadvantaged zones

Share the risk  equally

Reduce global risk

Figure 4.1: Goal Diagram

4.3 Operational model of a transportation system

Our target system is the whole transportation system that includes road network,

hazmat sources, waste disposal plants. Tables 4.1-4.4, which are based on [35], shows

some relevant stakeholders of our target system, that can affect or be affected by the

transportation of hazardous material. Among others, waste producing industries,

national government agencies and political jurisdictions, local governments, trans-

portation industry, the media, public sector interest groups or trade associations,

public health and environmental interest groups.

A detailed model of the scenario we are considering would involve many details.

Nevertheless, as we have explained in the Chapter 1, a top-down approach goes

through the definition of several models with different levels of abstraction. We focus

on the system-level perspective, namely we aim to provide a prototype, overriding

some stakeholders and specific technical features (of the lorries, of the roads, of the

transported materials etc.).

4.3.1 Global Goal

The high-level requirement, which sets the general goal we deal with, is:
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institution Generic con-
cern(s)

Specific con-
cern(s)

Need(s)

PUBLIC SECTOR - FEDERAL

Shipper Provide for en-
vironmentally
sound transport
and disposal
of hazardous
materials

Assure that haz-
mat transporta-
tion complies
with planned
generation, pro-
cessing and
disposal schedules

Maintenance of
planned haz-
ardous materials
program and
schedule

Traffic
managers

Arrange for, ne-
gotiate and man-
age HMT

Negotiate ship-
ping rates, sched-
ules, operating
conditions with
carries; ensure
that carriers
meet laws and
regulations

Maintain suffi-
cient authority
to ensure timely
transport of such
materials

Department
of trans-
portation

Hazardous ma-
terials be trans-
ported in a
manner that is
safe and poses
minimum threat
to public safety

Compliance of
affected parties
with statutes and
regulations

Coordination
with relevant
federal and state
authorities

Table 4.1: Environment of the hazmat transportation problem (a)

institution Generic con-
cern(s)

Specific con-
cern(s)

Need(s)

PUBLIC SECTOR - STATE

Governor Protect interests
of his/her elec-
torate

Protect pub-
lic health and
welfare

participation
in hazmat
transportation
planning and
implementation

Representatives
of affected
districts

Protect interests
of district’s citi-
zens

Equitable distri-
bution of costs

mitigation for
potential ad-
verse impacts of
accidents

Department
of trans-
portation

Safe transport of
hazardous materi-
als

select preferred
routes for large
shipments

approval of trans-
portation route
and vehicles

Environmental
Protection
Agency

Environmentally
sound transport

shipper/carrier
compliance

monitoring of
transport

Table 4.2: Environment of the hazmat transportation problem (b)
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institution Generic con-
cern(s)

Specific con-
cern(s)

Need(s)

PUBLIC SECTOR - LOCAL

Major Protect interests
of electorate

Equitable distri-
bution of costs

participate in
state’s selection
of preferred route

Fire Depart-
ment

Protection of life Adequacy of
existing resources
to participate to
hazmat trans-
portation scenar-
ios

Provision of tech-
nical and financial
assistance

Table 4.3: Environment of the hazmat transportation problem (c)

institution Generic con-
cern(s)

Specific con-
cern(s)

Need(s)

PRIVATE SECTOR

Carrier Safe transport of
hazmat materials

Compliance with
regulations and
other require-
ments

Ability to de-
termine proper
routes within
constraints

Mass media Ability to pro-
vide accurate re-
portage

Being provided
comprehensive
and accurate
information

Access to relevant
information

Environmental
interest
groups

Protection of
public Health

Potential adverse
impact to public
health

monitoring of
transport dis-
posal

Table 4.4: Environment of the hazmat transportation problem (d)

• The transportation system shall ensure safe disposal of hazardous waste in

such a way that the risk of potential catastrophic accident is equitable over

the population.

Fig. 4.1 depicts the related goal diagram. Notice that, be safe and be equitable

are non-behavioral requirements. Our working hypothesis is that safety and equity

are contradictory goals.

In the following sections, we make all these requirements hard by integrating

them in MP formulation and check this hypothesis, examining the related trade-off.

4.4 Mathematical programming formulation

In this section we formalize our problem introducing a mathematical programming

formulation. First of all, we observe that it is quite natural to represent our scenario,

that we can figure out as a road network, by a means of graphs. Thus, we introduce



4.4. Mathematical programming formulation 87

the related terminology. Secondly, we also remark that our problem, apart from

the requirement of being equitable, shares several features with the Minimum Cost

Multi-Commodity Flow Problem [58]. Therefore the following model is inspired

by the formulation of this problem and we use the term commodity to denote an

hazardous material that we need to dump.

• Let G = (V,A) be a directed graph, modeling a road network.

• For v ∈ V (G) let N+(v) = {u ∈ V | {v, u} ∈ A} be the forward star of v

• For v ∈ V (G) let N−(v) = {u ∈ V | {u, v} ∈ A} be the backward star of v

4.4.1 Sets, variables, objectives, constraints

1. Sets:

• We consider many commodities, which we identify by means of a set of

unique keys; thus, we introduce the set K = {1, . . . ,Kmax} of commodity

indices.

• Typically we can imagine that the geographic area, covered by the road

network, is divided into administrative zones; we introduce the set Z =

{1, . . . , Zmax} of zones.

• For the sake of simplicity we assume that each road (arc) belongs to a

single zone. Hence we can associate each zone to a subset of the set of

arcs, so that these subsets are disjointed, through the following function

ζ : Z → P(A). Hence, ∀z ∈ Z, we indicate with ζz ⊆ A the set of roads

of the zone z.

2. Parameters.

• Each arc (u, v) has a positive traversal cost and a capacity, thus we in-

troduce the following functions that attribute arc weights and capacities:

(a) l : A→ R+ (lengths, traveling time or traversal cost)

(b) C : A→ R+ (arc capacity)

• Each commodity has an origin, a destination, a “demand”, i.e. the quan-

tity of that commodity that has to be dumped. Moreover, the garbage

dumps can contain a limited amount of a specific commodity. We in-

troduce mappings between the set of commodities and the sets of its

attributes as follows:

(a) Map s : K → V (source nodes for each commodity)

(b) Map t : K → V (target nodes for each commodity)

(c) Map d : K → R (quantity to dump for each commodity)
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(d) Map c : K → R (capacity of the garbage dumps for each commod-

ity)

• We assume also that we know the probability of an accident that may

occur on a road (arc), and that the potential damage depends on the

kind of commodity involved in the accident, so that we can evaluate the

risk as the product of these two aspects (probability and damage). We

call it traditional risk (see [57, 56] for a discussion on the modeling of

transportation risk). Therefore, basically, we assume that risk is a given

input of the problem.

(a) Map p : A→ [0, 1] (probability of accident on arc)

(b) ∆ : A×K → R+ (damage caused by accident, by unit of commod-

ity on an arc)

(c) For (u, v) ∈ A, k ∈ K : rkuv = puv∆
k
uv (traditional risk)

3. Decision variables.

• x : A×K → R+: flow of commodity on arc

4. Objective functions.

There are several objectives that we can consider. We focus on total damage

and equity.

• Objective function 1: total damage.

min
∑

(u,v)∈A
k∈K

∆k
uvx

k
uv (4.1)

• Objective function 2: equity.

Our problem has a special aim. In fact, the goal concerning equity is the

most peculiar ones of our scenario. Equity is not a easy concept. There

are several ways to define it. We consider two possible formulations.

(a) Risk sharing: the first one simply limits the difference in risk, in

a pairwise comparison between zones (minimize pairwise risk differ-

ence):

min
∑

(z<w∈Z)

∣

∣

∣

∣

∣

∣

∣

∑

(u,v)∈ζz
k∈K

rkuvx
k
uv −

∑

(u,v)∈ζw
k∈K

rkuvx
k
uv

∣

∣

∣

∣

∣

∣

∣

(4.2)

(b) Rawls’ principle: the second formulation exploits ideas proposed by

J. Rawls who thinks that equity consists in aiding the most disad-

vantaged one (minimize the risk of riskiest zone):

min max
z<w∈Z

∑

(u,v)∈ζz
k∈K

rkuvx
k
uv (4.3)
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5. Constraints.

Basic constraints:

• Arc capacity:

∀(u, v) ∈ A
∑

k∈K

xkuv ≤ Cuv (4.4)

• Zero flow into sources:

∀k ∈ K
∑

v∈N−(sk)

xkvsk = 0 (4.5)

• Zero flow out of targets:

∀k ∈ K
∑

v∈N+(tk)

xktkv = 0 (4.6)

• Flow conservation:

∀k ∈ K, v ∈ V \{sk, tk}
∑

u∈N−(v)

xkuv =
∑

u∈N+(v)

xkvu (4.7)

• Garbage dumps capacity:

∀k ∈ K
∑

v∈N−(tk)

xkvtk ≤ ck (4.8)

• Demand (quantity of commodity that has to be dumped):

∀k ∈ K
∑

v∈N+(sk)

xkskv = dk (4.9)

Notice that, if we consider only the Objective 4.1, the Constraints 4.4 -4.8 and

we impose a strict equality to Constraint 4.8, then the problem reduces to a

minimum cost multi-commodity flow problem.

4.4.2 Reformulation of the model

The formulation we have introduced so far, is multi-objective. To deal with this

formulation, we need a MOMP method. We use the ǫ-constraint method, to avoid

possible problems due non-convexity of the Pareto frontier.

However, preliminarily, we remark that we can slightly change the MP formu-

lation to ease it management. Procedures that transform a given formulation into

another formulation are called “reformulations”.
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“It is well known that several different formulations may share the same

numerical properties (feasible region, optima) though some of them are

easier to solve than others with respect to the most efficient available

algorithms. . . .When a problem with a given formulation P is cast into

a different formulation Q, we say that Q is a reformulation of P.” [106].

This is common technique in MP practice that has been recently systematized,

in fact, according to [107], there are four important families of reformulations in

MP: exact reformulations (which preserve all the optima of the original problem),

narrowings (which preserve at least one optimum of the original problem), relax-

ations (which provide guaranteed bounds to the optimal objective function value of

the original problem) and approximations (which are “asymptotic” exact reformula-

tions: they are exact in the limiting value of some parameter). We use the first type

of reformulation.

Focusing on the objective function 4.3, we notice that, in general, when we are

given a problem in the form:

min
x

max
i∈I

fi(x) (4.10)

where i is a parameter which varies in the set I, we can reformulate it, introducing

an additional variable α:

min
α

α

s.t. ∀i ∈ I, fi(x) ≤ α

}

(4.11)

Hence, similarly, we can introduce in our case a new variable α and reformulate the

objective (4.3) in the following way:

min
α

α

s.t. ∀z ∈ Z, Ω ≤ α

}

(4.12)

where we have set:

Ω =







∑

(u,v)∈ζz
k∈K

rkuvx
k
uv






(4.13)

Then, we apply the ǫ-constraint method.

4.4.2.1 ǫ-constraint method

The basic idea of the method consists in the minimization (or maximization) of only

one objective function fǫ and the transformation of all the others in constraints of

the following type, fk(x) ≤ ǫk, (where ǫk are convenient bounds) that reduce the

search space. It has been introduced to overcome the main drawback of common

scalarization methods (for example the weighted sum method) that fail to find solu-
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tions if the objectives space is not convex . It is a variation the method developed

by Haimes et al. [80]. Thus, the general MOMP:

min
x

F (x) = [f1(x), f2(x), . . . fk∗(x)]
T

s.t. ∀i 1 ≤ i ≤ m gi(x) ≥ 0,

∀j 1 ≤ j ≤ n hj(x) = 0,

x ∈ X,























(4.14)

can be reformulated as follows:

min
x

fǫ(x)

s.t. ∀k k 6= ǫ fk(x) ≤ ǫk

∀i 1 ≤ i ≤ m gi(x) ≥ 0,

∀j 1 ≤ j ≤ n hj(x) = 0,

x ∈ X,



































(4.15)

Varying ǫk, alternative solutions are obtained. Optimal solution of (4.15) are weakly

efficient for (4.14). If there is only one solution , then it is Pareto optimal, but usually

uniqueness is hard to verify.

The application of the reformulation technique proposed above and of the ǫ-

constraint method, change our MP formulation of the problem. We transform the

objectives 4.2 and 4.3 in the following two constraints.

6. Additional (reformulated) constraints.

• Risk sharing:

∀z < w ∈ Z

∣

∣

∣

∣

∣

∣

∣

∑

(u,v)∈ζz
k∈K

rkuvx
k
uv −

∑

(u,v)∈ζw
k∈K

rkuvx
k
uv

∣

∣

∣

∣

∣

∣

∣

≤ RD (4.16)

where the scalar RD is the threshold for the difference of risk. Through

algebraic transformations we can dispose of the absolute value, and obtain

the following two constraints.

∀z < w ∈ Z







∑

(u,v)∈ζz
k∈K

rkuvx
k
uv −

∑

(u,v)∈ζw
k∈K

rkuvx
k
uv






≤ RD (4.17)

∀z < w ∈ Z −







∑

(u,v)∈ζz
k∈K

rkuvx
k
uv −

∑

(u,v)∈ζw
k∈K

rkuvx
k
uv






≤ RD (4.18)
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• Rawls’ principle:

∀z < w ∈ Z
∑

(u,v)∈ζz
k∈K

rkuvx
k
uv ≤ RP (4.19)

where the scalar RP is the threshold for riskiest zone.

We consider two MP formulations. One includes Constraints 4.17 and 4.18.

The other one includes Constraint 4.19. These two formulations embody the

two ideas of equity introduced above. We evaluate in next section how equity,

in these two different formalizations, influences global risk.

4.5 Computational results

We perform a series of tests to establish if our models can be utilized with realistic

instances of our problem. We observe CPU time in function of the instance size.

We use the AMPL modelling environment [63] and the CPLEX 12.2 solver [85]

running with its default configuration on a single 2.4 GHz Intel Xeon CPU with 8GB

RAM. We generate instances randomly, considering five parameters: the number n

of the vertices of the network (cardinality of vertex set), the probability p that

an arc exist (graph density), the maximum capacity C on arcs, the number K of

commodities and the number Z of administrative zones (notice that in the following

tables we use these abbreviations “Card.” for graph cardinality, “Gr.d.” for graph

density, “Cap.” for arcs capacity, “Comm.” for number of commodities).

4.5.1 Preliminary tests

Tables 4.5 and 4.6 show the outcome with small instances, and increasing number

of zones, respectively with equity as risk sharing and equity as Rawls’s principle.

Rows have to be considered by couples: one row shows the outcome considering

equity constraints and the following one without equity constraints. Tables 4.7 and

4.8 show the result with increasing cardinality till to medium size instances.

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total damage

1
10 0.5 10 2 3 yes 0.010998 1456.08
10 0.5 10 2 3 no 0.012998 894.356

2
10 0.5 10 2 4 yes 0.018997 427.923
10 0.5 10 2 4 no 0.019996 375.871

3
10 0.5 10 2 5 yes 0.012998 2101.45
10 0.5 10 2 5 no 0.013997 894.427

Table 4.5: CPU time and total damage for equity as risk sharing, with an increasing
number of zones
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Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total demage

1
10 0.5 10 2 3 yes 0.001999 8975.24
10 0.5 10 2 3 no 0.002999 894.356

2
10 0.5 10 2 4 yes 0.001999 375.871
10 0.5 10 2 4 no 0.001999 375.871

3
10 0.5 10 2 5 yes 0.004999 1562.6
10 0.5 10 2 5 no 0.004999 894.427

Table 4.6: CPU time and total damage for equity as Rawls’ principle, with an
increasing number of zones

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total damage

1
10 0.5 10 3 4 yes 0.025996 866.045
10 0.5 10 3 4 no 0.027995 677.997

2
20 0.5 10 3 4 yes 0.314952 383.153
20 0.5 10 3 4 no 0.317951 313.265

3
30 0.5 10 3 4 yes 3.34749 400.658
30 0.5 10 3 4 no 3.35249 245.669

4
40 0.5 10 3 4 yes 16.6485 289.919
40 0.5 10 3 4 no 16.6565 246.897

5
50 0.5 10 3 4 yes 57.9702 1098.87
50 0.5 10 3 4 no 57.9992 1062.44

Table 4.7: CPU time and total damage for equity as risk sharing, with increasing
cardinality (threshold for sum of risk difference between zones: 10), see Fig. 4.2

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total damage

1
10 0.5 10 3 4 yes 0.004999 728.432
10 0.5 10 3 4 no 0.005999 677.997

2
20 0.5 10 3 4 yes 0.004999 313.265
20 0.5 10 3 4 no 0.005999 313.265

3
30 0.5 10 3 4 yes 0.004999 327.509
30 0.5 10 3 4 no 0.008998 245.669

4
40 0.5 10 3 4 yes 0.011998 250.84
40 0.5 10 3 4 no 0.016997 246.897

5
50 0.5 10 3 4 yes 0.033994 1381.43
50 0.5 10 3 4 no 0.045993 1062.44

Table 4.8: CPU time and total damage for equity as Rawls’ principle, with an
increasing cardinality (threshold for risk of most disadvantaged zone: 30), see Fig. 4.3

The results we got, show that both kinds of equity have a negative impact on

the damage and make it grow, that is the awaited outcome.

4.5.2 Comparison

The aim of these set of tests is to establish which idea of equity makes total damage

increase most. Nevertheless, we can not compare them directly since parameters

RD and RP have not the same meaning. In order to answer this question, we have
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Figure 4.2: Total damage for equity as risk sharing, with increasing cardinality, for
details see Table 4.7

Figure 4.3: Total damage for equity as Rawls’ principle, with an increasing cardi-
nality, for details see Table 4.8

to normalize the comparison to equal levels of equity and to map the increase of

total damage to the share of equity instead of its absolute value. We observe what

happens when equity varies from zero to “top”, i.e. to maximum possible level. At

zero-equity level, we solve the problem with no care about equity. In others words we

drop the equity constraints. At the top-equity level, we require to be as equitable as

possible, namely we set the bounds on constraints to tightest possible level, before

transportation become impossible (i.e. when a smaller threshold for sum of risk

difference between zones or a smaller threshold for risk of most disadvantaged zone

would lead to infeasibility of our MP formulation). We scale the range between this

two extremes from 0% to 100%. We measure the increment of damage while equity

varies from its possible minimum to its possible maximum and we map it on the

share of equity. For example, we compare the cost we get when we have the peak
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of equity in Risk Sharing and Rawls sense, then when we get the 90% of equity, the

80% . . . and so on.

Tables 4.9 and 4.11 show the value of total damage in function of equity rate,

respectively for equity as risk sharing and equity as Rawls’s principle. Tables 4.10

and 4.12 focus on the difference between transportation with and without equity

constraints, in function of equity rate, respectively for equity as risk sharing and

equity as Rawls’s principle. Figures 4.4 and 4.5 show graphically these results.

Card. Gr.d. Cap. Comm. Zones Equity Equity rate Total damage

50 0.5 10 3 4 yes 100; 0% 1062.44

50 0.5 10 3 4 no 100; 0% 1062.44

50 0.5 10 3 4 yes 90; 10% 1062.92

50 0.5 10 3 4 no 90; 10% 1062.44

50 0.5 10 3 4 yes 80; 20% 1064.86

50 0.5 10 3 4 no 80; 20% 1062.44

50 0.5 10 3 4 yes 70; 30% 1066.99

50 0.5 10 3 4 no 70; 30% 1062.44

50 0.5 10 3 4 yes 60; 40% 1069.52

50 0.5 10 3 4 no 60; 40% 1062.44

50 0.5 10 3 4 yes 50; 50% 1072.36

50 0.5 10 3 4 no 50; 50% 1062.44

50 0.5 10 3 4 yes 40; 60% 1075.77

50 0.5 10 3 4 no 40; 60% 1062.44

50 0.5 10 3 4 yes 30; 70% 1082.47

50 0.5 10 3 4 no 30; 70% 1062.44

50 0.5 10 3 4 yes 20; 80% 1090.37

50 0.5 10 3 4 no 20; 80% 1062.44

50 0.5 10 3 4 yes 10; 90% 1098.87

50 0.5 10 3 4 no 10; 90% 1062.44

50 0.5 10 3 4 yes 0; 100% 1108.38

50 0.5 10 3 4 no 0; 100% 1062.44

Table 4.9: Increase of damage induced by equity as risk sharing (normalized)

4.6 A heuristic for large-scale instances

As instance graphs sizes and densities grow, the solution of the MP formulation gets

harder. Thus, we try to reduce the size of the graphs preserving their fundamental

features, in order to look for approximated solutions. The basic idea is to establish a

ranking among vertices. Once vertices are classified, a smaller graph can be obtained

by removing the least relevant vertices (this is an implementation, in this specific

context, of the “abstraction” technique mentioned in Section 1.3.1).
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Equity rate Total damage Increase

0% 1062.44 0.00

10% 1062.92 0.05

20% 1064.86 0.23

30% 1066.99 0.43

40% 1069.52 0.67

50% 1072.36 0.93

60% 1075.77 1.25

70% 1082.47 1.89

80% 1090.37 2.63

90% 1098.87 3.43

100% 1108.38 4.43

Table 4.10: Difference of damage in function of the rate of equity, in the case of
equity as risk sharing

Card. Gr.d. Cap. Comm. Zones Equity Equity rate Total demage

50 0.5 10 3 4 yes 76; 0% 1062.44

50 0.5 10 3 4 no 76; 0% 1062.44

50 0.5 10 3 4 yes 69; 10% 1068.21

50 0.5 10 3 4 no 69; 10% 1062.44

50 0.5 10 3 4 yes 62; 20% 1076.53

50 0.5 10 3 4 no 62; 20% 1062.44

50 0.5 10 3 4 yes 55; 30% 1088.03

50 0.5 10 3 4 no 55; 30% 1062.44

50 0.5 10 3 4 yes 47; 40% 1105.22

50 0.5 10 3 4 no 47; 40% 1062.44

50 0.5 10 3 4 yes 40; 50% 1124.67

50 0.5 10 3 4 no 40; 50% 1062.44

50 0.5 10 3 4 yes 33; 60% 1210.34

50 0.5 10 3 4 no 33; 60% 1062.44

50 0.5 10 3 4 yes 26; 70% 14197.9

50 0.5 10 3 4 no 26; 70% 1062.44

50 0.5 10 3 4 yes 19; 80% 47472.8

50 0.5 10 3 4 no 19; 80% 1062.44

50 0.5 10 3 4 yes 11; 90% 230180

50 0.5 10 3 4 no 11; 90% 1062.44

50 0.5 10 3 4 yes 3; 100% 381861

50 0.5 10 3 4 no 3; 100% 1062.44

Table 4.11: Increase of demage induced by equity as Rawls’ principle (normalized)

4.6.1 Graph reduction through centrality erosion

There are several metrics that can be used to calculate the importance of a vertex in

a graph. In particular, sociology has studied this matter deeply, due to its interest for

social networks, and has proposed many measures. The metric we use in this section

is centrality betweenness that considers how often a vertex is along the shortest path
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Equity rate Total demage Increase

0% 1062.44 0.00

10% 1068.21 0.54

20% 1076.53 1.33

30% 1088.03 2.41

40% 1105.22 4.03

50% 1124.67 5.86

60% 1210.34 13.92

70% 14197.9 > 1000.00

80% 47472.8 > 1000.00

90% 230180 > 1000.00

100% 381861 0 > 1000.00

Table 4.12: Difference of damage in function of the rate of equity, in the case of
equity as Rawls principle

Figure 4.4: Difference of demage in function of the rate of equity, in the case of
equity as risk sharing.

between two other vertices. Anthonisse’s work [7] and Freeman’s works [64, 65] are

seminal. We refer to them as “traditional” approach. Nevertheless, we consider a

more recent work from Brandes [21] (on which this section is based). We introduce

below, more formally, centrality betweenness and some other common measures.

A walk is an alternating sequence of vertices and edges. A walk is closed if its first

and last vertices are the same, otherwise it is open. A path is an open walk. When

no other attribute is specified, it assumed that it is simple, i.e. that no vertices and

no edges are repeated. The length of a path is the sum of the weights of its edges.

The distance between vertices s and t is the minimum length of any path connecting

s and t in G and we denote it with dG(s, t). We call σst the number of the shortest

paths from vertex s to vertex t and σst(v) the number of shortest paths from vertex

s to vertex t that pass through v. We call δst(v) =
σst(v)
σst

the pair-dependency of a

pair (s, t) ∈ V on an intermediary v ∈ V .
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Figure 4.5: Difference of damage in function of the rate of equity, in the case of
equity as Rawls’ principle. Dotted red bars mean out-of-scale values.

• Closeness centrality (Sabidussi, 1966)

CC(v) =
1

∑

t∈V dG(v, t)
(4.20)

• Graph centrality (Hage and Harary, 1995)

CG(v) =
1

maxt∈V dG(v, t)
(4.21)

• Stress centrality (Shimbel, 1953)

CS(v) =
∑

s 6=v 6=t∈V

σst(v) (4.22)

• Betweenness centrality (Freeman, 1977; Anthonisse, 1971)

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(4.23)

In order to calculate centrality, we have to consider each combination of vertices

in the graph and to find the shortest path between them. Each vertex that is along a

shortest path gets a point. The resulting scores for each vertex in the ratio between

the total number of shortest paths from node to node and the number of paths that

pass through, and represents its betweenness centrality.

Typically, betweenness centrality is determined through a two steps procedure.

First, we compute length and number of shortest paths between all pairs of ver-
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tices, then sum all pair-dependencies. From a computational time complexity point

of view, traditional algorithms, which are based on the Floyd-Warshall algorithm,

belong to Θ(n3). Brandes introduces a faster algorithm for betweenness centrality

computation that belongs to O(nm+ n2logn) [21,22]. We implemented it1 in order

to produce a ranking of the vertices of a given instance and applied it to an instance

that we can not solve directly with the method exposed in Section 4.5, due to its size.

It is the instance that corresponds to the parameters vector (70, 0.5, 10, 3, 4), where,

in particular, 70 is the cardinality of the set of vertices. Thus, we calculate the

centrality betweenness of its vertices. Figure 4.6 provides a graphical representation

of the instance graph and of the centrality of the vertices (which are depicted in the

figure with different color and size, depending on their centrality). Consequently,

Figure 4.6: Graphical representation of the instance (70,0.5,10,3,4) showing the most
central nodes. Big red squares have an high betweenness centrality.

we transform the graph corresponding to the instance (70, 0.5, 10, 3, 4) into a new re-

duced one, removing the ten less central vertices and considering the graph induced

by the remaining vertices. We then solve the problem for this reduced instance,

as explained above. Table 4.13 and Table 4.14 show the outcome we obtain with

the reduced instance respectively with equity as risk sharing and equity as Rawls’s

1We exploit the public library GraphStream that is hosted by the University of Le Havre and has
beens initiated and maintained by members of the RI2C research team from the LITIS computer
science lab, http://graphstream-project.org/.

http://graphstream-project.org/
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Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total
damage

original
70 0.5 10 3 4 yes exit code exit

code
70 0.5 10 3 4 no exit code exit

code

reduced
70 0.5 10 3 4 yes 309.803 146.152
70 0.5 10 3 4 no 309.847 145.569

Table 4.13: CPU time and Total damage for equity as risk sharing, for reduced
instance (threshold for sum of risk difference between zones: 10)

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total
damage

original
70 0.5 10 3 4 yes 0.051992 145.569
70 0.5 10 3 4 no 0.081987 145.569

reduced
70 0.5 10 3 4 yes 0.044993 145.569
70 0.5 10 3 4 no 0.072988 145.569

Table 4.14: CPU time and Total damage for equity as Rawls’ principle, with an
increasing cardinality (threshold for risk of most disadvantaged zone: 30).

principle.The procedure enables the handling of an instance that we could not solve

directly by means of the solver, in the case of equity as risk sharing, and speed up

the process in both cases.

Notice that, no matter how we define equity, we are considering equity between

regions. Moreover, a same area may have different partitions that are nested (this

could make the problem of equitable transportation even more complicated than the

scenario we have considered). Typically equity is required by public institutions that

operate at different levels and that could be not totally consistent. For example, we

can imagine a problem of transport in Europe which shall respect a constraint of

equity between nations, but also between regions of a same nation, districts of a same

region, cities of a same district and so on. There are different approaches for such a

situation. If we consider the subdivision as given, we have to solve an optimization

problem, respecting the input data. Otherwise, if we consider the problem from the

point of view of the lawmaker, namely if we are in charge of choosing the structure

of the administrative zones (typically, within certain limitations) then we face a

design problem: we look for the architecture of the transport system that entails

the minimum risk and maximum equity. In other words we design the instances.

The methodology that we have presented can be useful for both kinds of approach,

to search optimal solution for given scenarios and to test different zone subdivisions

when we are free to manipulate input data.
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Meta-theory





Chapter 5
Some epistemological and historical

remarks

In this chapter we provide epistemological and historical remarks that concern some

of the subjects considered in this work. This is consistent with the subjective opinion

of the author that science and co-science (i.e. philosophy of science) can cooperate

fruitfully. However, we think that it is confusing to mix them vaguely, thus we

have separated the treatment of the problems presented so far and the consideration

about their philosophical implications. Using a terminology that philosophers love,

the previous parts represent the object level of this work, this part represents the

meta-level.

5.1 Philosophy of Engineering

The match between philosophy and engineering is quite unusual and merits further

clarifications. The basic issue in the philosophy of science can be introduced as

follows: scientists study the world, philosophers of science study how they do that

(and sometimes they also study scientists themselves).

Borrowing from Lipton [110],

“I am a philosopher of science: what do I do? Here is the short version:

astronomers study the galaxies; I study the Astronomers.”

There has been a certain disregard by philosophers of science towards technology,

which they consider a straightforward application of pure sciences.

“The method and the theories of science can be applied either to increas-

ing our knowledge of the external and the internal reality or to enhancing

our welfare and power. If the goal is purely cognitive, pure science is ob-

tained; if primarily practical, applied science. Thus, whereas cytology is

a branch of pure science, cancer research is one of applied research.” [31]

103
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This idea, i.e. “technology is applied science”, hides the fact that technology and

engineering disciplines have some features needing a special epistemological inves-

tigation. Recently, a new branch of epistemology called philosophy of engineering

has attracted increasing interest: it is concerned with the clarification of the episte-

mological role of technology and engineering within science and human knowledge.

To continue the analogy introduced above, engineers study how to design systems,

philosophers of engineering study how they do that. The crucial difference between

engineers and scientists is that the former decide how to manufacture or produce

working artifacts and systems, while the latter analyze nature and formulate theories

to explain how natural systems work. Decision-making naturally brings engineers to

think about objectives much more than natural scientists need to do. This profiles

a different kind of rationality. On the one hand, we might believe that models are

simplified versions of reality that exists independently from our ideas about it, and

that the task of science is to describe this reality. On the other hand we might

think that models do not describe reality, but they actually create it (indeed most

of the modern epistemology tells us that all observation is theory-laden, for exam-

ple see Hanson [81] on this point and, more philosophically, think of Kant and his

Copernican revolution). Likewise, we might feel a need to simply explain systems, as

opposed to endowing them with aims. If truth is not discovered, but it is invented,

the hierarchy between science and technology is inverted.

“Despite the more than two millennia that separate Aristotle’s thinking

from ours, Aristotle’s conception [sets] the agenda for almost all subse-

quent thinking about explanation. [. . . ] The rivalry had been between

those who thought that all causal explanation must proceed in terms of

efficient causation and those who (following closely on Aristotle’s foot-

steps) thought that there is room (and need for) teleological explanation

(that is, for explanation that cites final causes). [. . . ] Aristotle saw goals

and purposes in nature, mechanical philosophers either excised all pur-

pose from nature (Hobbes, Hume) or placed it firmly in the hands of God

(Descartes)”. [137]

This debate fails to have a clear outcome within epistemology, but if the target

system is artificial rather than natural, then it must have a goal, and the issue be-

comes clearer. What we might call the “pure problem” of scientists is “is it true?”,

while that of engineers might either be “does it work?”, or, perhaps more appropri-

ately, “does it do what the stakeholders want?” It is clear that there is a relationship

between being able to verify a statement and making a choice. However, decision

making and systems design have some features that make them a special case from

an epistemological point of view.

“In engineering the ultimate purpose of modeling is to realize reliable arti-

facts or technical processes. This contrasts substantially with the natural
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sciences where, conceptually at least, the aim underlying the modeling

activities is to gain knowledge for knowledge’s sake.” [6]

Epistemologists, in the first half of the ’900, usually made reference to natural

sciences as chemistry, biology and, most of all, physics (probably due to its resound-

ing success). In this case, the observer is in front of a system that is given and

he/she has to describe and understand it. However, in engineering the system is

actually built by the observer (or one of his/her fellow humans). Thus, the demar-

cation criterion of natural science may be not perfectly suitable. Systems designers

still have to do verifications and observations (as natural scientists) but most of all

they have to make choices. They are interested in the truth of statements as much

as in the effectiveness of choices. From the point of view of systems design, good

models are the ones that help to split properly the domain of possible choices in

good and bad ones. Some epistemologists underline the problem-solving aspect of

science, for example Laudan.

“Science is essentially a problem-solving activity. [. . . ] The approach

taken here is not meant to imply that science is “nothing but” a problem-

solving activity. Science has a wide variety of aims [. . . ] My approach,

however, contends that a view of science as a problem-solving system

holds out more hope of capturing what is most characteristic about science

than any alternative framework has.” [100]

Considering science as problem-solving corresponds to a change of perspective since

we are more interested in getting local solutions rather than global theories. In

particular, Khun suggested Operations Research as a good example of the problem-

solving approach to science. This is remarkable since in our work we have used

extensively the methods provided by OR, tackling the problems presented in each

chapter through Mathematical Programming.

“For Kuhn, science is problem-solving rather than truth-seeking activity

. . . . And what would be a more striking example of problem-solving than

OR! . . .As a problem-solving activity OR is oriented towards practice: it

tries to use the methods of science to find optimal solutions to problems

concerned with alternative courses of actions. As the solutions are its

primary aim, it is clear in which sense OR is not a truth-seeking activity:

it is not a knowledge-seeking enterprise.” [129]

Philosophy of engineering focus of these special aspects of applied science. We adopt

the same perspective. For each engineering application discussed in the chapters

of this thesis, we provide some elements of the philosophical debate which helped

to settle the current definition of the problem, and propose some epistemological

considerations. We remark that the structure of this work splits clearly the section
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dedicated to science and this section dedicated to methodological and epistemological

considerations.

It has been said that “Philosophy of science is about as useful to scientists as

ornithology is to birds” 1, namely that it is not very useful in practice, but we try to

show that some epistemological issues arise anyhow. In our opinion, they require a

consideration. At least, epistemology is useful for an external analysis of the scientific

method. A scientific analysis of the scientic method would be self-referential.

Nevertheless, no-one is better placed than an scientist or an engineer to under-

stand and analyze his or her own way of working. This is why this thesis is, above

all, a scientific work. With the words of Schlick,

“A philosopher, therefore, who knew nothing except philosophy would be

a knife without blade and handle. Nowadays a professor of philosophy

very often is a man who is not able to make anything clearer, that means

he does not really philosophize at all, he just talks about philosophy or

writes a book about it. This will be impossible in the future. The result of

philosophizing will be that no more book will be written about philosophy,

but all books will be written in a philosophical manner.” [155]

5.1.1 Epistemic vs non-epistemic values

McMullin [117] introduces a distinction between epistemic and non-epistemic values,

that is relevant in epistemology. He proposes that a value is epistemic if it helps to

“promote the truth-like character of science”. Otherwise, it is non-epistemic. Do-

rato [50] confirms that we can use the term epistemic for values “regarded as capable

of furthering our knowledge” and non-epistemic to refer essentially to values that

are ideological, economical, political, ethical, environmental, esthetic or religious.

Non-epistemic values can influence science, indirectly. They influence, for example,

the choice of the destination of economic endorsement of research projects. Never-

theless, there is a strong agreement, in the scientific community, on the idea that

non-epistemic values have no role in determining scientific truth. Non-epistemic val-

ues influence the use of the results of pure science, but are never (or hardly never)

integrated in the content of scientific theories.

However, for engineering and technology disciplines the role of non-epistemic

values appears to be less clear. Safety, equity and economical sustainability are

examples of non-epistemic values (since they do not produce knowledge) that have

an important role in the decision making process concerning real systems. Engineers,

who have to choose between two or more alternative models, in some cases, have to

consider non-epistemic values, and integrate them in their models. It is the case of

the systems we have considered in this work.

1Richard P. Feynman
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This leads us to think about the way a model can gain a justification when it

does not rely upon pure epistemic values. In fact, in Chapter 3 we have adopted an

experimental approach. We “try and observe”. This is not unusual, but in Chapter

2, we have adopted a collaborative methodology, taking care of business needs.

Moreover, in Chapter 4 we have integrated equity in our models. This is not totally

common. Thus, in the next sections, we present the tradition that is behind each

one of these approaches.

However, preliminarily, we present some remarks about the concept of model,

since we have tackled several problems with a model oriented approach using math-

ematical programming (see Section 1.2) as unified language to formalize them. Thus,

independently from specific applications, modeling tout court has got a subject of

our reflection, and model is one of the keyword of this work. Moreover, from an

epistemological point of view, some questions arise naturally.

• What we can properly consider as a “good” model of a given system from a

scientific point view?

• Given a model Ma and model Mb both referring to a same target system S,

when we can state that Mb is better than Ma ?

• What does it mean for a model to be better than another model ?

• What does it mean for two or more models to refer to a same target system ?

5.2 Models

The root of the term model can be traced back to the Latin term modus which in

turn would derive from the Indo-European root “med-”. Its meaning is measure

[159]. Modus has two diminutives modellus and modulus which we find in different

contexts linked to engineering related disciplines. The roman architect Vitruvius

uses modulus to mean architectural standard, which is a surprisingly modern use

of the term. Tertullianus uses modulus to indicate basis for a marble sculpture. In

the period which spans from the Roman Empire to the Middle Ages, terms derived

from modulus spread across Europe and we detect the terms modle, mole and moule,

which came into English as mould. Modern English also introduced directly the term

module from Latin. During the italian renaissance modelo and modello are employed

by important architects, such as Brunelleschi, who uses it while building the cupola

of the dome of Firenze, and Alberti:

“Be sure to have a complete Model of the Whole, by which examine every

minute Part of your future Structure eight, nine, ten Times over, and

again, after different Intermissions of Times”. [5]
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From the Italian modello derives the French modèle and the English model and

modell. Shakespeare uses model both with reference to buildings, thus in the archi-

tectural sense, and in a more general sense as “kind of behavior”and Bacon indicates

with modulus a mental copy of the real world, which is quite close to the modern

use. Nowadays these terms are intensively diffused. For example, during the decade

1990-1999 there have been 17,000 publications including them in the title.

The remarkable point is that along centuries there is an interesting feature which

characterizes models: they appear to be tools which help to design artifacts. Models

are visions of a target system constructed respecting constraints drawn from its

environment, which help the system designer/architect to conceive it. In engineering

disciplines, modeling is first of all an activity that is close to design. The designing

of systems and services requires both analytical and synthetic processes, because

designers invent and create new artificial systems to fulfill a need. This is different

from describing and understanding a given natural system. From this point of view

modeling assumes a meaning which is much more practical with reference to other

scientific disciplines as natural sciences, formal logic and mathematics. Modeling

is a set of activities, tools, heuristics (in the broad sense of the term), capabilities

which lead a designer to build system-answer to a problem-question which he/she is

confronted to.

5.2.1 Model validation

“The mathematical models that are used in OR are representations of the

system under study. These models may be imperfect and idealized, but

still the quality of the solutions that they yield crucially depends upon

their closeness to reality in the relevant respectes.” [129]

Engineers separate the “judgment” of a system into two distinct phases, verifica-

tion and validation. The verification process guarantees that the system has been

realized correctly, respecting all the specifications documented during the phase of

requirements engineering. The validation process ensures that the system functions

as expected. Notice that, from an end-user perspective, a system which performs

perfectly a wrong task is not a good outcome. This issue is very important in systems

design.

“Simply put, the Product Verification Process answers the critical ques-

tion - Was the end product realized right? The Product Validation Pro-

cess addresses the equally critical question - Was the right end product

realized?” [88]

This issue concerns also the method of OR, which typically includes two phases: in

the first phase a problem is formalized into a model; in the second phase efficient

techniques are searched in order to solve the model. Model verification deals with
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questions about the capacity of providing correct solutions with a limited amount of

computational resources and time. We refer to this issue as the problem of efficiency.

Model validation assesses that the model really addresses the right problem. We refer

to this issue as the problem of effectiveness. For example, a model for the shortest

path problem and a fast and correct algorithm that finds its solutions would not be

a good answer for someone who is looking for paths that go through the “top n”

interesting cities starting from Milan and arriving in Paris. It would be efficient but

not effective. In OR several important problems are already accurately identified

and classified, therefore the focus is most of all on the capacity of solving them,

i.e. efficiency. The problem of efficiency is well defined. Computational complexity

theory deals with it and provides a stable framework (see Section 1.2.4). However,

engineers and system designers are often puzzled by the problem of writing the right

model. In systems design effectiveness is a major issue.

“- What is a valid model? - has been one of the least discussed top-

ics in the OR literature. [. . . ] Thinking about model construction and

model validation is basically to raise the issue of different ways of pro-

ducing knowledge and deciding about the acceptability of the knowledge

thus produced”. [99]

The problem of effectiveness encompasses several approaches and has blurred bound-

aries. Validation tests can be based on comparing model predictions to real world

results. However this kind of validation is not always possible because repeated tests

can be expensive, time-consuming or simply impossible. Thus, alternatively, models

can be validated using historical events and inter-subjective arguments. In our opin-

ion, the problem of model validation in OR can not be separated from general issues

about the approach to scientific knowledge. We believe that philosophy of science

and in particular philosophy of engineering are good frameworks for the problem of

effectiveness. A few authors share this opinion with us.

“Whether Operational Researchers are aware of it or not does not make

any difference: to take an option in the debate on model validation in

OR is, explicitly or not, to actualize epistemological choices”. [52]

5.3 Experimental approach to scientific knowledge

In Chapter 3 we proposed different models of a recommender system and to establish

which is the best one we have tested them. This appears to be reasonable, even

obvious. Modern science is empirical. Experimentation has a role in science which

can not be underestimated. According to R.P. Feynman:

“The principle of science, the definition, almost, is the following: The test

of all knowledge is experiment. Experiment is the sole judge of scientific

truth” [140]



110 Chapter 5. Some epistemological and historical remarks

Nevertheless, in this section we provide some arguments to remind that the debates

that emerged in contemporary epistemology show that the role of experimentation

is (sometimes) considered as troublesome. There are a bright and a dark side of the

coin. We start from the bright side.

First of all, experiments are used to produce a confirmation, as they can give

us strong arguments to trust a hypothesis. Secondly they can favor the discovery

of new theories showing new unknown phenomena which call for an explication.

As representatives of these two uses of experiment, we can cite, among others, G.

Galileo and F. Bacon. Both of them championed a more empirical attitude in

natural philosophy and both of them supported a new vision of knowledge based on

observations that had to be performed without prejudice or preconception. However,

we consider Galileo to exhibit an example of the use of experimentation to confirm

a theory and Bacon as an example of use of experimentation to favour the discovery

of new theories.

Observations can endorse a theory. With the telescope, Galileo discovered the

four large moons of Jupiter, which, since they do not orbit Earth, provide an ar-

gument against the Ptolemaic theory that fixed it at the center of the universe. In

this case, facts obtained trough experimental work (repeated observation) confirm a

theory (Copernican system).

Observations can foster new, general ideas, as explained by Bacon. In fact, Bacon

was a convinced inductivist. His Novum Organum (1620) can be considered as the

first modern work on inductive logic. In particular, it analyses the methods that

can be used to produce theoretical inductive inferences, namely from particular to

general, which had been relegated to a minor role during the previous centuries.

“The syllogism consists of propositions, propositions consist of words, and

words are tokens for notions. Hence if the notions themselves (this is the

basis of the matter) are confused and abstracted from things without care,

there is nothing sound in what is built on them. The only hope is true

induction.”

More recently, the more radical defense of empiricism is reasserted by the logical

empiricists of Vienna Circle2: who stated, in their Manifesto, that true knowledge

is totally empirical because the scientific enterprise is characterized

“essentially by two features. First it is empiricist and positivist: there

is knowledge only from experience [...] Second, the scientific world-

conception is marked by the application of a certain method, namely

logical analysis.”

2The Vienna Circle was an association of philosophers centered at the University of Vienna in
1922. Among its members there were Moritz Schlick, Rudolf Carnap, Richard von Mises, Otto
Neurath, Herbert Feigl.
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One of their most famous thesis is the verification criterion of meaning: the meaning

of a proposition consists in its method of verification, and a proposition which cannot

be verified is meaningless. Thus, the role of experimental verification is even stronger

than in the vision of Galileo and Bacon, since it is at the basis of meaning.

We now take a look at the dark side of the experimentation coin. Duhem [54]

proposes that it is not possible to test experimentally a single hypothesis because

complex theories includes many hypotheses and it is really hard to establish which

statements are contradicted by a test (systems engineers would call this a traceabil-

ity problem). Moreover, an observation that refutes a model can be compatible with

many other ones. For example, the observation of Galileo was consistent with both

the models proposed by Copernicus and the one proposed by Tycho Brahe. This

position is known, nowadays, as Duhem-Thesis3.

A second difficulty concerns the trustworthiness of what we are used to consider

objective facts. Starting from the platonic allegory of the cave up to now, several

philosophers have warned about the possibility that facts could be illusory. Many

times in the history of philosophy evidence has been called into question. However,

in this case, the target is not knowledge in general, it is the exactly the scientific

method which is questioned. In the context of modern science a common reference,

from this point of view, is the work of Hanson, as mentioned above. Hanson believes

that there is not unconditioned observation of facts and, moreover, there is not a

neutral language to express them. Observational terms are “full of theory”. Thus

the idea that theories are confronted to pure facts is wrong, in his opinion.

“There is a sense, then, in which seeing is a ‘theory-laden’ undertaking.

Observation of x is shaped by prior knowledge of x. Another influence

on observations rests in the language or notation used to express what

we know, and without which there would be little we could recognize as

knowledge.” [81]

What we observe is influenced, from the beginning, by our system of reference, our

opinions, our background knowledge and, in general, our theory.

A third difficulty is explained by Hempel. He proposed the so-called paradox of

confirmation, which he explains through the example of the ravens. We normally

admit that the observation of a black raven confirms the hypothesis that “all ravens

are black”. On the other hand, a white raven is a clear counterexample. However

if we also admit (and in general we do) the equivalence condition, then we get

strange results. The equivalence condition states that if two hypothesis are logically

equivalent, then certain evidence that confirms the first one confirms also the second

(equivalent) one. A logical equivalent of“all ravens are black”is“all non-black objects

3We remark the often the terms Duhem-Thesis and Duhem-Quine Thesis are used as equivalent,
but, in reality they refer to quite different thesis.
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are non-ravens”. This last is confirmed by a non-black non-raven, e.g. a white tie. It

follows that a white tie also confirms “all ravens are black”. This is logically correct,

but it sounds strange.

We know that Popper proposes a fundamental improvement to the verification

principle of Vienna Circle. He believes that inductive inferences have no justification,

since no matter how many singular facts you have observed, you are never sure that

a different singular phenomenon could occur, making your general conclusion wrong.

Thus verification is, in practice, not feasible. He introduces a different criterion to

defend the possibility of empirical justification of a theory. A theory has to divide

the world into two distinct classes of phenomena: the ones that are compatible with

it and the ones that contradict it. Thus, we should not look for facts that confirm

a theory, but for the ones that could make it false. The longest a theory resists to

these assaults, the better. It is trusted, or, using his terminology, corroborated. This

is a considerable progress with reference to the positions of Vienna Circle. Problems

caused by induction are reduced.

Nevertheless, according to his opponents, the falsification method proposed by

Popper does not escape to the issues of theories underdetermination. During the

sixties, authors like Kuhn and Lakatos promoted the idea that science progresses

through many different ways, making our comprehension of its method more en-

compassing. Their focus was no more on one single theory against facts. Scientific

research started to be considered as a complex system that comprehends many het-

erogeneous elements. The terms paradigm proposed by Kuhn and research program

proposed by Lakatos gained a remarkable success and entered the terminology of phi-

losophy of science, becoming quite common. In particular (following [97, 98]) there

are 4 types of basic research programs: descriptive, explanatory, design, explicative.

Descriptive research programs aim “simply” to describe of a set of phenomena, while

explanatory programs try to provide an explanation and a framework to predict sim-

ilar phenomena. These first two types concern empirical sciences. Design research

programs deal with the realization of artifacts that fulfill certain previously chosen

needs. This type concerns engineering and related disciplines. Explicative research

programs are meant to provide precise, possibly formal explication of interesting,

but unclear concepts. This last type regards mathematics and analytic philosophy.

Thus, there are at least four different approaches to science, and not all of them

are purely based on experimentation. The “lesson” of these philosophers of science

is that we should consider the method of science simply as “what scientists do”,

without limitations. Feyerabend, most of all, strongly endorses this point of view.

From our point of view, we notice that, actually, system designers and decision

makers (sometime) have to make choices that can not be based on experimental

evidence. Therefore, in the following sections, we consider different possible ap-

proaches.
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5.4 Collaborative approach to scientific knowledge

The method we have used in Chapter 2 to validate our model is basically a collab-

orative agreement of a set of practitioners. In this section we trace historical and

conceptual roots of this kind of method, namely the search of truth (only) through

an open discussion.

There are approaches to the scientific knowledge that skip most of the issues

about the capacity of science of catching the ultimate truth about reality. For

example, instrumentalism.

“Instrumentalism can be formulated as the thesis that scientific theories,

the theories of the so-called “pure” sciences, are nothing but computa-

tional rules (or inference rules)”. [135]

Ontological4 problems about the effective existence of an immutable “being”, that

has to be described by a conclusive explanation, are totally left out. Instrumental-

ism does not focus on the distinction between truthfulness and falseness of scientific

theories. On the contrary it considers, by choice, “only” their practical utility. Im-

portant representatives of this approach are, among others, E. Mach, H. Poincarè,

P. Duhem, E. Le Roy. For example, Poincarè proposes that we can consider the ax-

ioms of the geometry as simple conventions. Similarily, Le Roy thinks that science

has a pure instrumental value and that scientific laws are only convenient synthesis

of sets of facts. The position of Duhem is more variegated, but not very different.

“A physical theory is not an explanation. It is a system of mathematical

propositions which can be derived from a small number of principles that

serve to precisely depict a coherent group of experimental laws in a both

simple and complete way”. [53]

The “second”5 Wittgenstein (see. [174]) believes that a general formal study of

the language is not viable. No theory can provide general rules that are valid in

all cases. On the contrary, we can establish only local norms since human language

is elaborated in local contexts. He thinks that these norms emerge from behaviors

and cultures based on what he calls language games, i.e. specific sets of linguistic

rules. A perfect language does not exist and in particular there is not a perfect

scientific language. Moreover, in his opinion, this reflects the absence of a common

underlying structure, namely the absence of a common logic. We should drop the

idea that there is one single “Logic” at the basis of human rationality and accept the

fact that we act and think according to particular practices which are functional to

particular aims and can not be generalized.

4Ontology is the branch of metaphysics that studies the nature of existence or being as such
5We remark that the “second”Wittgenstein is almost different from the “first” one, whose posi-

tions are represented most of all by the Tractatus logico-philosophicus.
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Instrumentalism, conventionalism and the “second”Wittgenstein open the door

to the entrance in the field of philosophy of science of elements that, in the first

decades of the 20th century, had been kept out. Social components are introduced

as a fundamental part of scientific knowledge. The separation between external

and internal components of scientific enterprise starts weakening, so that context

and content begin running into one and knowledge is no more justified true belief,

but, more weakly, locally accepted belief. Physics loses its supremacy as model of

all scientific disciplines, and the nineteenth-century idea, renewed by the project

of unity of science of Vienna Circle, that all branches of science could be reduced

to mathematical explanation, is replaced by a more encompassing approach that

admits final causes, interpretations, narrative explications. From the point of view

of these authors, the study of nature is similar to the study of social institutions,

myths, political groups. In other words, these epistemologists think that knowledge

is only a social construction, namely that truth does not exist in itself and it is only

agreed consensus (often, of experts). This current of thought suggests that what

we consider true is composed by simple beliefs that someone, who has the power,

prestige or status to do it, has legitimated.

Bloor and Barnes and other researchers of the University Edinburgh funded in

the ’60 the Strong program of sociology of knowledge (Strong Program, for short)

endorsing these ideas. This stream of research fits in with the tradition of sociology

of science of Merton (cf. [119]) but has stronger objectives. Traditional sociology of

science wants to explain the influence of social factors on the process that leads to a

discovery, but does not believe that they influence also its content. We could say that

it focuses more on scientists than on scientific theories. Basically, the contribution

of sociology is considered useful to explain scientific failures. Correct theories do not

need sociological explanations. Wrong ones can be object of a sociological analysis.

On the contrary the Strong Program states that truth is a social product, thus

all statements, even correct ones, have a sociological justification. For example,

Bloor thinks that the psychologist approach to mathematics proposed by J.S. Mill

still had full plausibility. Mill thinks that to understand mathematics is equivalent

to understand the psychological processes that are carried out by mathematicians.

Frege contrasted this idea, asking for an objective substrate of mathematics. Starting

from Frege’s objections, Bloor states that this substrate is provided by the inter-

subjective layer of psychological processes, namely the social one. Mathematics,

from this point of view, becomes essentially a social practice.

We remark that, among others, Popper was absolutely opposed to this approach

and he believed that sociology and psychology cannot be used to ground science.

“. . . to me the idea of turning for enlightenment concerning the aims of

science, and its possible progress, to sociology or to psychology . . . is sur-

prising and disappointing. In fact, compared with physics, sociology and
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psychology are riddled with fashions and uncontrolled dogmas . . .This is

why I regard the idea of turning to sociology or psychology as surprising.”

[136]

However, independently from the question of establishing which one of these opposed

approaches to knowledge is correct (which is not our task) we can retain that there is

an approach to scientific knowledge that tells us that a decision can be legitimately

supported by a deal stipulated by all the people in charge of the choice.

Coming back to the point of view of our work, we can observe that collaborative

decision making has its own tradition and, thus, indirectly, a kind of legitimation.

We do not believe that this is the best method, neither that this is the only method,

as strong program sociologists tell us. Nevertheless, in practice, when no other

options are available, or empirical evidence is missing, decisions are taken by means

of stakeholders’ agreement. We concur that this is not inadmissible. In practice, it

happens, quite often. In our case, the best model in Chapter 2 has been chosen in

this way. In our experience, this is not unusual in projects management and systems

design.

5.5 Ethical approach to scientific knowledge

In Chapter 4 we have considered the possible integration of equity constraints in

a MP formulation. Equity deals with ethics. The separation between epistemic

and non-epistemic values, in this case, wavers. This calls for a reflection about the

plausibility of such an operation. In this section we provide some remarks about the

idea of equity that we have exploited and (a few) general observations. We look in

literature for relationships between ethics and science (OR in particular).

Churchman [40] warns about the possible immorality of OR which, in his opin-

ion, could not respect the Kant’s moral law “make only those decisions which treat

humanity as an end, never as a means only” since, in some occasions, OR treats

people only as means, in order to achieve an optimum. Nevertheless, we have in-

tegrated Rawls’s moral principles in our model. Philosophically speaking, Rawls is

Kantian. His theory fits with the tradition of the social contract of Locke, Rousseau,

and Kant.

“[My] theory . . . is highly Kantian in nature. Indeed, I must disclaim any

originality for the views I put forward. The leading ideas are classical

and well known. My intention has been to organize them into a general

framework. . . ” [143]

Rawls’s main work, A Theory of Justice, presents organically a set of concepts that

he has developed over years. Most of all the concept of “justice as fairness”, that is

based on the “liberty principle” and the “difference principle”. He states again and

refines them, in another, later work, Justice as Fairness: A Restatement:
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1. “Each person has the same indefeasible claim to a fully adequate

scheme of equal basic liberties, which scheme is compatible with the

same scheme of liberties for all . . . ”

2. “Social and economic inequalities are to satisfy two conditions: first,

[a] they are to be attached to offices and positions open to all under

conditions of fair equality of opportunity; and second, [b] they are to

be to the greatest benefit of the least-advantaged members of society

(the difference principle)” [146]

Rawls exploits a mental experiment based on the idea of “veil of ignorance”. We

should image to ignore our actual social status and try to establish a set of rules for

the whole society. Probably we would choose equitable rules that prevent ourselves

from any disadvantages, whatever condition we really have.

Rawls opposes his approach to the three main alternatives that he identifies in

utilitarianism, intuitionism, and perfectionism. Utilitarians think that there are no

good actions “in themselves” since the morality of a course of action is determined

by its outcome. In particular they aim at the maximization of overall welfare, with

no care of differences between individuals.

“ [. . . ] utilitarianism is generally held to be the view that the morally

right action is the action that produces the most good. [. . . ] the theory

is a form of consequentialism: the right action is understood entirely in

terms of consequences produced. [. . . ] On the utilitarian view one ought

to maximize the overall good, that is, consider the good of others as well

as one’s own good” [51]

Moral intuitionism proposes that ethics is based on moral laws that are self-

evident and true “a priori” and we do not have any method to discriminate among

them, out of our intuition and our moral sense:

“ Intuitionist theories, then, have two features: first, they consist of a

plurality of first principles [. . . ] second, they include no explicit method,

no priority rules, for weighing these principles against one another: we

are simply to strike a balance by intuition, by what seems to us most

nearly right.” [143]

Perfectionism uses the concept of human perfection as a guideline.

“ Perfectionist ethics has often been associated with elitist doctrines.

. . . the perfection that matters the most is the perfection of those who are

capable of achieving the most. This “superman” version of perfectionism,

a view famously associated with Nietzsche, . . . ” [171]
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The relationships between ethics and OR are recurrent. Wenstøp [173] offers us a

comprehensive overview of the last four decades, indicating the work of Boulding [20]

as a divide. Boulding proposes OR as an instrument for ethics due to its capability

of optimizing consequences of a decision and maximizing utility, which is the goal of

some kinds of moral approaches, for example utilitarianism.

Ackoff observes that OR should take care of the interest of the stakeholders (an

idea that is consistent with the approach we have adopted in this work).

“Decisions should be made by consensus of all who are directly affected

by the decisions, the stakeholders.” [2]

Wallace’s edited book, Ethics in Modeling [172], covers several arguments related

to the role of ethics in design disciplines and endorses an attentive care for stakehold-

ers and ethical issues. Brans [24, 25] indicates Multi Criteria Decision Analysis as

the OR tool that can “take the interests of the stakeholders and nature into account,

and calls for a multifaceted concept of ethics, consisting of respect, multi criteria

management and happiness” [173]. Gallo [67] underlines that the research should

care about both the consequences of a decision and the respect of fundamental prin-

ciples. He identifies the two that should ground OR. The responsability principle,

based on the though of Jonas [87], and the sharing and cooperation principle. Brans

and Gallo [26] provide another historical account of the relationships between OR

and ethics, indicating Churchman as one of the main initiators of this “match”. They

observe that:

“Unlike natural sciences, OR/MS6 [. . . ] has as its object not natural

reality but rather a man-made reality, the reality of man-machine complex

systems [. . . ] Hardly any area in OR/MS can be considered far enough

from the real world to escape from ethical considerations”.

Mingers [121] analyses the relationships between OR and Discourse ethics (DE),

a moral framework developed by Habermas [79, 78]. According to Mingers, this

theory fits well with the science of decision-making. Habermas thinks that we can,

through the analysis of communicative structures, identify the conditions for the

acceptability of a valid argument and that these conditions are common to a valid

moral theory.

“How then should we apply DE to OR? [. . . ] DE does not put itself

forward as a panacea but it does provide a processual template against

which proposals and decisions can be tested for ethical legitimacy, and,

if followed, should lead to actions that are better in the long run for both

organizations and civil society as a whole.” [121]

Le Menestrel and Van Wassenhove focus on the trade-off between

6Operations Research / Management Science (OR/MS)
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“scientific legitimacy of OR models (ethics outside OR models) and the

integration of ethics within models (ethics within OR models)” [101].

This argument recalls the opposition of epistemic and non-epistemic values intro-

duced previously. They identify three possible attitudes towards the relationships

between OR and ethics. The first one corresponds to a sharp separation between

them. It ensures objectivity of OR, but, in their opinion, is incomplete. The second

one integrates ethics in OR. This approach is more complete, but has the flaw of

accepting a certain amount of subjectivity. The third approach is based on a dis-

tinction between OR model and OR process. Ethics should be integrated with OR

process, and not in the models. The OR process can operate as a connector between

OR models and the real world and can include ethical matters without compromis-

ing the objectivity of OR models. Thus, they refer to this approach as ethics beyond

the model.

“We present three methodological approaches to combine ethics with Op-

erational Research. The first one is ethics outside OR models [. . . ] The

second approach is ethics within OR models [. . . ] The third approach is

ethics beyond OR models”

5.6 Computational approach to scientific knowledge

Many scientists use software systems in order to build other kinds of systems that are

physical. Computer scientists have a different point of view, since software systems

represent their target systems. Moreover, a model of a software system is, almost

always, another software system. In this case, efficiency appears to be one of the most

important criteria to be considered to choose between different models. The models

that entail the most efficient computation are good. This approach is, a fortiori,

widespread in mathematical programming community. Computational complexity

is a well developed field of computer science. In Section 1.2.4 we have provided some

elements, but we do not provide a full exposition of this matter. This is out of the

scope of this work. We underline only a few points that are philosophically relevant,

in our opinion.

In fact, the idea of efficient computation is based on the idea of effective com-

putation (this is not particularly surprising). We think that this second concept is

worth an epistemological analysis.

During the 1930s several computational models have been proposed: the univer-

sal Turing machine proposed by Turing, the λ-calculus proposed by Church and the

µ-recursive functions. It was proved that these three models are equivalent. This

led to the formulation of a famous thesis (now known as the Church-Turing Thesis).
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Thesis 5.6.1 (Church-Turing Thesis, CT-T) Whenever there is an effective method

(algorithm) for obtaining the values of a mathematical function, the function can be

computed by a Turing Machine.

The statement of 5.6.1 as a thesis has not been totally straightforward. According

to [161] it went through Church’s definition, Turing’s definition, Church’s thesis,

Turing’s thesis and finally Church-Turing thesis 7. As suggested in [164] the modern

terminolgy is probably originally due to S. Kleene who called Thesis I the Church’s

definition in [90] and used Church’s Thesis and Turing’s Thesis in [91]. Finally, if

we follow [42], is again Kleene who introduced the expression Church-Turing thesis.

“So Turing’s and Church’s thesis are equivalent. We shall usually refer

to them both as Church’s thesis, or in connection with that one of its

. . . version which deal with - Turing machines - as the Church-Turing

thesis.” [92]

A first unusual implication of this thesis is that it has generated a series of

different interpretations. Several authors consider it as a claim that a Turing machine

can calculate everything that a computer (of every kind) can calculate. R. Gandy

introduced a distinction between the Church-Turing thesis and this second claim,

who he called Thesis M (followed by other authors) [68].

Thesis 5.6.2 (Thesis M) Whatever can be calculated by a machine (working on

finite data in accordance with a finite program of instructions) is Turing-machine

computable.

Opinions about this distinction are not unanimous. For example, we can consider

the exchange between J. Copeland and A. Hodges. On one hand, Copeland endorses

the distinction.

“ A myth seems to have arisen concerning Turing’s paper of 1936, namely

that he there gave a treatment of the limits of mechanism and established

a fundamental result to the effect that the universal Turing machine can

simulate the behaviour of any machine. ” [42]

On the other hand, Hodges thinks that Church actually refers to machines:

7Church’s definition:

“We now define the notion, already discussed, of an effectively calculable function of
positive integers by identifying it with the notion of a recursive function of positive
integers (or of a λ-definable function of positive integers). This definition is thought to
be justified by considerations which follow, so far as positive justification can ever be
obtained for the selection of a formal definition to correspond to intuitive notion.” [39]

Turing’s definition:

“The ‘computable’ numbers include all numbers which would naturally be regarded
as computable.” [169]
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“ Copeland’s entry is focused on the claim that the Church-Turing the-

sis was never meant to apply to machines. So he is adamant that we

should never interpret Church or Turing as stating Thesis M. . . .This is

nonsense. Church was enthusiastically entertaining some form of Thesis

M.” [83]

A second, different reading of the thesis, which is again pointed out by Copeland, is

the following.

Thesis 5.6.3 (Thesis S) Any process that can be given a mathematical description

(or that is scientifically describable or scientifically explicable) can be simulated by a

Turing machine.

Even in this case, it does not (or at least, would not) correspond to the original

thesis.

“. . . any device or organ whose mathematical description involves func-

tions that are not effectively calculable cannot be so simulated. As Turing

showed, there are uncountably many such functions.” [42]

D. Goldin and P. Wegner [75], propose another interpretation. They believe that

computation is a wider concept than function computation. With this premise they

claim that the CT-T concerns only function computation, but it is wrongly applied

to computation in general.

We think that the simple fact the CT-thesis needs an interpretation is relevant.

Moreover, its “status” is not clear. Murawski and Wolenski [123] distinguish four

lines about the status of the Church-Turing Thesis: (1) it is an empirical hypothesis,

(2) it is an axiom or theorem (3) it is a definition, (4) it is an explication.

Some authors suggest a possible refutation.

“ We have two possible ways for refutation. One possibility for refutation

is to eliminate equivalence in one direction, it means: If a function f is

Turing computable do not imply that function f is effectively calculable

. . .

Another possibility for refutation is to eliminate the equivalence in the

other direction, it means: If a function f is effectively calculable do not

imply that function f is Turing computable. [161]

Some authors suggest a possible proof.

“[It] may seem that it is impossible to give a proof of Church’s Thesis.

However, this is not necessarily the case.. . . In other words, we can

write down some axioms about computable functions which most people

would agree are evidently true. It might be possible to prove Church’s

Thesis from such axioms” [160]
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For example, in [49], we can find an axiomatization and a proof. We are not inter-

ested in establishing if proofs of the thesis are correct or not. From our point of view,

it is sufficient to stress the different opinions that we can find in literature about

the necessity (or not necessity) of a proof. In fact, not only the CT-T is differently

interpreted and often misunderstood, but also there is not a total agreement about

the necessity of proving it. Some authors think it is possible, some others that it

is meaningless since it is not a formal statement. Unusually, computer scientists do

not concur if it is a definition, an empirical hypothesis, an axiom or a theorem to

be proven. The most common position is considering it true, even without a proof.

Its justification is based on its persuasiveness (which is huge). All these elements

make the Church-Turing Thesis look like an epistemological assumption. This is

remarkable, in our opinion.

5.7 Teleological approach to scientific knowledge

In this section we focus on the concepts of goals and objectives, which pervade this

thesis. In particular, we dare a possible (audacious) link. The concepts of goal

and requirement, used in systems design, have their conceptual “ancestors” in the

Aristotelian final causes.

For empiricists, the concept itself of teleological explanation of phenomena,

namely the existence of purposes and objectives in nature for the sake of which

things are done, is unadmissible. This would confer to nature something like a “free

will”, which is incompatible with the idea of nature as mechanism. However, Aris-

totle advanced aims as one of his famous four causes: material, formal, efficient and

final.

“Aristotle was deeply committed to investigating and explaining natural

phenomena, which is reflected all through the surviving treatises on nat-

ural philosophy [. . . ] What unites the questions explored in these natural

treatises,[. . . ] is that they are predominantly questions asking for the

purpose of things, or, as Aristotle puts it, questions asking for - that

for the sake of which -. According to Aristotle’s understanding of sci-

entific knowledge, the answers to these specific why questions constitute

teleological explanations [. . . ]” [104]

Final causes (or telos) differ from other ones from many points of view. The most

evident difference is that“normally”causes happen before effects while in teleological

explanations are the effects which occur first. In a causal explanation a first event E1

happens at time t1 and a second one E2 at time t2. This is not a sufficient condition

to state that E1 causes E2, but it is a necessary one. In teleological explanation this

temporal sequence is inverted. The E1 happens at time t1 to serve the second one

E2 at time t2, which is the cause.



122 Chapter 5. Some epistemological and historical remarks

“Whereas in a typical causal explanation the earlier-in-time cause ex-

plains the later-in-time effect, in teleological explanations, as tradition-

ally understood, the later-in-time effect (that is, the aim or purpose for

which something happened) explains the earlier-in-time cause (that is,

why something happened). The typical locution of a teleological explana-

tion is: this happened in order that that should occur.” [138]

Bacon recommended a limited use of final causes:

“Bacon. . . quotes with approval the Aristotelien maxim - Vere scire est

per causes scire - and the Aristotelien distinction of four causes, Materia,

Forma, Efficiens, et Finis [but proposes . . . ] his famous condemnation

of final causes [. . . ] He blames their use in Physics; he approves their

use in Metaphysics”. [170]

Nevertheless, this kind of causes was admitted by authors such as Leibniz and Kant

(among others).

“ Leibniz did admit teleological explanations alongside mechanical ones.

Apart from the need of teleological explanations (in terms of God’s pur-

poses) in metaphysics, he argued that physical phenomena can be ex-

plained by mechanical as well as teleological principles. . . . Indeed, Leib-

niz wholeheartedly accepted the Aristotelian final causes alongside effi-

cient causes”. [136]

The question is if science should admit or refuse final causes. We propose a com-

promise solution. In our opinion, the answer is that, anyway, they are actually used

in everyday activity by engineers, during systems design, but are hidden by the use

of a different terminology. Of course we do not claim the “airplanes want to fly”

or “ships want to swim”. It would be an evident nonsense. However, stakeholders

and systems have objectives, thus we simply suggest that the term “final causes”

can have a (smooth) interpretation that is not incompatible with our standard view

of science: the term “goal” is a (safe) synonym of the term “final cause”. From this

point of view, we might say (quite provocatively), that requirements engineering and

operations research are applied philosophy.
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Chapter 6
Conclusions

One of the main risks of systems design is producing something that is technically

brilliant, but which does not fulfill the needs of the people who will use it or does

not fit in the context where it will be used or, finally, does not respect the business

model of its sponsor. From this point of view, there’s no lack of examples. The

Concorde aircraft [89], the Denver International Airport baggage system [156] and

the Vajont Dam [47] are examples of systems that missed their global goal despite

outstanding technical features because their operational context was not sufficiently

considered (in certain cases with catastrophic consequences). It is emblematic that

the term Concorde syndrome is used in project management “folklore” to refer to

the obstinacy of persisting on choices that appear technically engaging with no

regard for contextual bad feedbacks. Designers can quite easily make the mistake

of focusing only on the technical features of the target system, looking for efficiency

and performance while the most important thing is the effectiveness of the system,

namely its capacity to answer to a need.

One of the claims of this work is that if the needs of the stakeholders, who

are supposed to use the system-to-be, and the constraints of the environment, in

which the system will work, are included as soon as possible in the design process,

then the misunderstandings mentioned above can be reduced. In fact we use a

systemic, i.e. holistic and top-down approach, inspired by Systems Engineering

(SE) methods, that considers the system and its environment as a whole. Therefore,

the first step of any project should be the definition of an abstract model, namely

that considers only high-level system requirements. The set of stakeholders’ needs

should be as broad as possible to ensure a global vision, even if this means to deal

with requirements that can be not technical and not-epistemic1. The drawback is

that high-level requirements can be blurred and contradictory. We need methods to

make them clear.

We think that formal methods can be used since the early design phases in order

1See 5.1.1, for a clarification of this term.
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to clarify stakeholders’ needs and system’s goals and that Mathematical Program-

ming (MP) (which is commonly used quite late in the design process, to optimize

the constructional features of a system) is a viable technique from this point of view.

Fundamentally, we mix MP and SE modelling methods. We claim that this

synergy can facilitate systems design. In order to show the validity of this join, we

have provided three examples of application of high-level requirements integration in

optimization problems with reference to three actual different systems. Three cases

are not sufficient to prove a scientific claim, nevertheless the heterogeneity of the

kinds of systems that we have considered endorses the generality of the applicability

of our approach. Moreover, since our claim ismethodological, this type of justification

is legitimate (see Part 5 for a discussion on the different approaches to scientific

knowledge).

1. The information system architecture evolution management problem, namely

the problem of scheduling the replacement of existing services with new services

without discontinuity.

The problem has considerable practical importance, but was never previously

formalized to the extent we discussed. Our formalization, which is new, is the

main contribution of the chapter.

The scenario is complex. The presence of many decision-makers, as business

department managers, IT project managers and kill managers, entails several

goals and we have provided an analysis of the underlying trade-offs. In fact

different stakeholders have different needs that the evolution of the system has

to satisfy and this causes conflicts between the respective tasks, especially when

the scheduling of the activities is tight. The decision makers typically aim to

gain: (1) top business value produced by the new services, (2) the maximum

number of new useful modules activated and (3) the maximum number of

useless modules deactivated. In most situations, the objectives (1) and (2) are

not really conflicting since the activation of new services require new modules,

thus Business and IT managers push the activities in the same direction. On

the contrary, the objective (3) is potentially controversial, when there is a lack

of time and resources. The activation of new modules and the deactivation

of old ones requires work. If the amount of workforce is limited, as is usually

the case, we then have to decide what has to be done first and, eventually,

what is not necessary and can be planned for a later period. Business and

project managers on one side and kill managers on the other have to compete

for the existing resources and employ them for diverging aims. The former

can fully attain their tasks on time only forcing the latter to delay theirs and

vice versa. We have proposed a MP formulation that models the problem

correctly, provide a theoretical analysis thereof, showing exactly where the
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source of trade-off lies, and verify empirically that it can be used as a practical

tool to solve realistically-structured instances.

2. The recommendation problem, namely the problem of providing reliable pre-

dictions of the ratings that a given user would express for given items, which

is the basic function of a recommender system.

We have provided an abstract analysis of the global goals that a recommender

system shall pursue and we have presented three different algorithms for the

recommendation problem (TMW, BMC, LSPR). Each one is based on a differ-

ent technique. TMWmodels the word-of-mouth in the social network of similar

users as a flow, and exploits a pure MP approach. BMC adopts modularity

based clustering methods for bipartite networks (which represents properly the

typical input data that are used in this context). LSPR is based on information

retrieval techniques since we guessed that retrieving interesting documents is

a special case of retrieving interesting items and consequently we can transfer

methods ideas from one field to the other.

A recommender system can help users by suggesting good items only if it can

forecast correctly their potential ratings. In the case of RS design, a possi-

ble pitfall, due to a misunderstanding of the stakeholders’ needs, consists in

privileging computational efficiency to the detriment of effectiveness, namely

the capability of providing good recommendations. Nevertheless, requiring,

from the beginning, that the system shall be accurate and interesting reduces

this risk. We formalize these goals and integrate them as criteria of a decision

problem that can help the decision-maker to choose the best recommender sys-

tem among a set of available ones in order to maximize users’ satisfaction. We

use our “home made” recommender systems as possible choices. Nevertheless

the approach is general. This is the general contribution of the chapter. We

have analyzed the trade-off between goals. A quite natural hypothesis, in the

initial design phases, is that accuracy and quickness are in opposition. We

have showed that this is actually the case. From this point of view, we ex-

ploit our approach to identify clearly which goals are in contrast to each other.

More specific contributions are: the recommender systems themselves, which

are brand-new or exploit methods never used before in RS fields (in particular

TMW that has been used in a real application); their empirical evaluation; an

experimental study of modularity based clustering and LSPR with RS dataset;

a new simple metric, audacity, for RS testing.

3. The equitable hazardous material transportation problem, namely the problem

arising in the transportation of hazardous material on a road network from one

or many production points to one or many garbage dumps, crossing different

areas.
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This problem is well addressed in literature, but we have considered a particu-

lar type of constraint, namely equity. The seek of equity is a clear example of

soft goal that is not easy to formalize. The main contribution of the chapter

consists in the formal formulation of two definitions of equity and their integra-

tion in a MP model. The first is a form of straightforward egalitarianism, as it

asks for similar values of risk for all the interested areas. The second one, more

sophisticated from a philosophical point of view, admits an unequal distribu-

tion of available resources if this can help the most disadvantaged member of a

group. In this context it means to plan the transportation is a way that reduces

the risk for the most exposed area even if this increases the global risk. Our

finding is that equity makes global risk increase, with both the interpretations

introduced above. Rawls’ s principle induces the higher increment of global

risk. This shows that safety and equity are in opposition, in this context. The

results is influenced by the features of the instances, but method and model

are general.

Other contributions of the chapter concerns the computational efficiency of

our approach. Optimization problems can be solved by simply “modelling

them” using MP and calling an appropriate solver. This is called the model-

and-solve approach to optimization (that we use extensively in this work). It

adopts many features of a declarative programming paradigm since its control

flow is not explicitly defined (by comparison with the “common” imperative

paradigm). Notice that, many different formulations can describe the same

optimization problem and the practical efficiency of solvers depends on both

formulation and problem itself. Notice also that there is a linguistic, even

rhetoric (in the noble sense of the term, as in [66]) dimension in this ap-

proach. The way problems are described influences their solution. In fact,

well formulated models are more efficient than badly formulated ones, even if

the underlying problem that we describe is the same (see Chapter 5 for more

observations on this point).

We have applied some reformulations in order to make the MP hazmat model

more efficient. The reformulations we adopt are exact. This means that we

have improved the efficiency of our approach without compromising safety and

equity.

We provide also a heuristic for accelerating the solution process through the

reduction of the size of the instance, preserving its most fundamental feature.

This approach is a kind of abstraction of the system domain, one of the tech-

nique that SE endorses.
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