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Preface 

 

This dissertation deals with the photovoltaic industry, however each chapter brings up 

distinct research themes and can be read separately. They are or are intended to be published 

separately as well. 

The first chapter, “technology transfers to China”, is part of a research project for the 

Agence Française de Développement on technology transfers in in the context of the climate 

change negotiations. It has been carried out with my two thesis supervisors, Matthieu 

Glachant, and Yann Ménière. It led to a publication in energy policy under the following title: 

“Innovation and international technology transfer: The case of the Chinese photovoltaic 

industry”. It has been presented at several workshops including the 2010 International Energy 

Workshop in Stockholm. 

The following chapters are part of a research project financed by the Conseil Français de 

l’Energie. Chapter two has been presented in Toxa at the 5th Atlantic workshop on 

environmental and energy economics. 
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Introduction 

 

Context 

The photovoltaic (PV) market has been growing exponentially over the last decade, more 

than doubling every two years. PV electricity being until today and in a foreseeable future 

more expensive to produce than conventional electricity sources, this market is driven by 

incentive policies. The main one is the feed-in tariff (FIT), administratively setting a price at 

which electric utilities are obliged to buy electricity produced by renewable energy sources, 

for a fixed period of time. Besides FITs, other policies contribute to the development of the 

market, including Renewable Portfolio Standards, mandates requiring each utility to have a 

minimum percentage of power that is sold or produced by renewable energy sources, 

tendering schemes, and various investment subsidies. These costly policies were first 

implemented in industrialised countries, which is where the PV market thus started: Until 

2011, 35% of the PV capacity has been installed in Germany (EPIA, 2012), leading the 

market, followed by Italy, Japan, Spain, and the US. 

A side effect of this exponential market growth is the fast cost reduction, as we observe 

that each time the PV market doubles, the price of PV modules is reduced by 20%. This 

should lead to further cost reduction provided that the market keeps expanding. This trend 

was only broken during times of silicon shortage, which started in 2005 when silicon demand 

driven by the PV market exceeded production capacity. Since the planning and construction 
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of a silicon plant requires several years, the silicon shortage lasted until 2009, with a silicon 

spot price peak at 396 $/kg in 2008, compared to 56 $/kg in 2005 - driving module price up in 

the same period.  

Polysilicon production overcapacity prevailing since 2009 has lead silicon price back to 

pre-shortage levels. As a result, module price decreased sharply too, going back to its 

historical down trend. This created a discrepancy:  generous incentive policies, at times when 

module prices were significantly lower than policymakers expected resulted in high profits 

and market over-heating to the point where it became too costly to sustain. To cool things 

down, severe policy adjustments were carried out, such as drastic FIT cuts or moratorium, 

creating uncertainty and wiping the weakest companies out of the market. 

In recent years, globalisation resulted in another important market transformation. Over 

time, most of the production of cells and modules transferred to China, while demand 

remained mostly concentrated in Europe. As a consequence, PV modules exports from China 

to Europe exploded, leading to an increase in polysilicon and manufacturing equipment sales 

from industrialised countries to China. The aggressive pricing of Chinese firms and the 

slowing demand in Europe is pushing many firms to bankruptcy. This led to a tense situation 

today with the US and Europe filing trade cases for illegal price against China. China is seen 

as a free rider taking profit of the technology developed in industrialised countries at the cost 

of massive incentive policies. 

Research questions and Thesis structure 

As explained above, the PV industry went through tremendous changes: in the last ten 

years, the size of the photovoltaic market was multiplied by 10, module price decreased by 

60%, and China’s share of cell and module production went from almost nothing to more than 

half. The purpose of this thesis is to shed light on some of the mechanisms driving these 

transformations. 

The first research question is the following: How did China acquire the technology 

required to enter the photovoltaic industry? We see that China’s known competitive 
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advantages came to play in the PV industry as in others: Cheap labour, a strong local supply 

chain for raw material used to produce modules (glass, Polyvinyl Acetate, aluminium, etc.), 

cheap energy, etc. Besides, Chinese companies got access to loans at favourable terms and 

conditions, guaranteed by the government. A more surprising fact is that they managed to 

acquire and master the technology required to produce cells and modules, and more recently 

to purify silicon. This became a key issue, as it put tremendous competitive pressure on the 

traditional players in this segment of the value chain, to the point where some went bankrupt, 

thus ruining industrialised countries’ plans to build a strong domestic industry by stimulating 

national PV markets. Moreover, this case study gives some insights regarding technology 

transfers which developing countries ask for in the context of the international negotiations on 

climate change. 

The second research question is: How fast and how far will cost further decrease? Will 

the historical trends observed in the PV industry continue? Will PV eventually become 

competitive against conventional electricity sources, and when? This hope has justified huge 

investments in incentive policies. Incidentally, more accurate cost prediction would allow a 

finer tuning of these policies. 

The third and fourth research questions relate to the interdependencies between feed-in 

tariffs, module price, and silicon price: How is module price affected by feed-in tariffs and 

silicon price? How to design feed-in tariffs able to adjust to module price volatility? 

Those research questions relate to the efficiency of FITs. Indeed, a better tool to anticipate 

short term variations in module price, and a better ability to adjust FITs when these 

anticipations are not accurate enough, would help avoid discrepancies. This is crucial for 

policymakers since these discrepancies cause market overheating – or recession – calling for 

drastic and harmful adjustments. Besides, a better anticipation of module price would reduce 

uncertainty and risk, thus fostering investment in the PV industry. 

The fifth and last research question is the following: What is the influence of firms’ 

strategies on the optimal FIT policy? The purpose of a FIT policy is to provide the right 

incentive to drive demand along an optimal path. The issue is to understand how FITs lead 

companies to decide upon PV installation, depending on the strategy they pursue, and to draw 

conclusions about the optimal FIT policy. This is important in the context of industry 
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consolidation, evolving from small players pursuing a short term strategy toward bigger 

players following a long term strategy. 

This essay is structured as follows: Each chapter tackles one or two research questions. 

Chapter one addresses questions around technology transfers to China. Chapter two proposes 

a model for long term module cost prediction, while chapter three focuses on market drivers, 

analysing how module price is affected by FITs and silicon price, as well as how FITs can 

best follow module price. Chapter four also focuses on FITs with a different angle, presenting 

a model to evaluate the influence of firm’s strategies on an optimal FIT policy. While each 

chapter deals with the PV industry, they bring up distinct research themes and can be read 

separately. 

How did China acquire the technology required to enter the 

photovoltaic industry? 

This question is addressed in the first chapter. The issue is not to analyse the competitive 

advantage of China, but to understand how Chinese firms managed to acquire the technology 

and knowledge required to produce PV cells and module, and more recently polysilicon. The 

role of intellectual property rights protection is analysed. We also see if China is able to 

produce new technologies domestically. 

These questions are addressed empirically, by combining both quantitative and qualitative 

evidence. On the quantitative side, we rely on a dataset comprising 79,642 PV-related patents 

to analyse innovation and cross country technology transfers in the different segments of the 

PV industry. To supplement this quantitative analysis, we carried out field interviews with 

Chinese PV actors. It allows us to understand further details about the economics of the 

Chinese PV industry, and provides qualitative information about innovation and technology 

transfers to China. 

Chinese firms acquired the technology to produce cells and modules through two main 

channels: the purchase of manufacturing equipment from historical players of the PV industry 

- Germany, Japan, and the US - and the recruitment of skilled entrepreneurs from the Chinese 
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Diaspora who studied or worked abroad. Foreign direct investment played a minor role in the 

emergence of the Chinese industry, since pioneers were purely Chinese firms. 

The trade of intellectual property rights such as licensing has played no role. More 

generally, the existence of property rights has not prevented the emergence of the Chinese 

industry. The core technology, being more than 20 years old, was in the public domain. The 

new patents are protecting only incremental innovation, making it possible to get around 

them. 

The silicon purification technology has also been known for a long time. But mastering it 

and reaching low cost production, to be competitive on the market, requires advanced know-

how protected by trade secrets. In contrast to cell and module segments, the lack of 

competitive supply of production equipment appears to have been a significant barrier to the 

development of Chinese firms in the upstream silicon segment.  They are now overcoming 

this barrier thanks to important domestic R&D efforts. However, the low silicon price in 2012 

is a threat for many Chinese new entrants, as they still have higher production cost than the 

incumbents.  

As measured by patent statistics, the innovative performance of China denotes a policy-

driven effort to catch up in silicon purification rather than the inventive dynamism of local 

companies. Chinese producers of cells and modules invest less in R&D than their competitors 

in Japan and Western countries, and consequently file fewer patents that are of lesser value. 

By contrast, China is making big R&D efforts in the silicon and wafer segments. This is 

driven by public research institutions, denoting an effort to break the technology barriers 

preventing firms from entering these segments. China now reaps the benefits of this strategy, 

accounting for 33% of world silicon production in 2011, but sees many local firms struggling 

with recent low silicon price. 
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How fast and how far will photovoltaic module cost further 

decrease? 

We address the question of long term cost prediction in the second chapter. The ultimate 

goal is to predict module cost until 2020. The predictive model we use is based on experience 

curves, also called learning curves. Based on the learning by doing theory developed by 

Arrow (1962), they explain cost by experience, measured by cumulative production, or 

cumulative installed capacity in the case of the PV industry. Additional explanatory variables 

can been added, such as production scale, research and development (R&D), or input price. 

Using data on world average annual value of module price, cumulative capacity, plant size, 

silicon and silver price, and R&D, we select the specification with the best predictive power. 

That is, the set of explanatory variables which minimises the difference between predicted 

and realised module price. The model is used to make predictions up to 2020 

The most powerful model includes cumulative production (or cumulative capacity) with a 

one year lag, and silicon price, as explanatory variables. Based on this model, scenarios for 

module price evolution until 2020 predict a 67% price decrease, from 1.52 $/Wp1 in 2011 to 

0.50 $/Wp in 2020. The increase in cumulative capacity is responsible for 75% of this 

evolution, corresponding to a learning rate of 19.6%, and silicon price decrease is responsible 

for 25% of module price reduction. 

Using this module price prediction and a simple extrapolation of the price of other 

components of a PV system, it is possible to predict the competitiveness of PV electricity. 

Grid parity should be reached by 2013 in Spain, 2015 in Germany, and not before 2018 in 

California or France where retail price of electricity is low. However, this criterion should be 

interpreted with caution as it does not take into account the cost of transportation and 

distribution of PV electricity. Hence it only makes sense for residential systems for which all 

the electricity is used on-site. 

                                                 
1 Watt-peak (Wp) is a measure of the nominal power of a photovoltaic solar energy device 

under Standard Test Conditions. 
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A comparison against other technologies suggests that PV’s levelised cost of electricity 

(LCOE) will only reach conventional technologies’ LCOE in 2020 in the sunniest countries 

such as California, Italy, or Spain. However, it should be kept in mind that the LCOE is not 

really appropriate to estimate the economic value of intermittent and non dispatchable 

technologies such as PV. The reason is that it does not take into account the different 

production profiles which lead to different market values for the electricity generated. In 

addition, it does not consider the additional cost of short term integration of intermittent 

sources into the grid, and storage or back-up capacity required to meet demand in peak 

periods. 

How is module price affected by feed-in tariffs and silicon price? 

How to design feed-in tariffs able to adapt to module price 

volatility? 

To address these questions, Chapter three relies on series of weekly values of module 

price, FITs in Germany, Italy, Spain, and France, and silicon price from January 2005 to May 

2012. The interdependencies between the three variables involved – module price, FIT level, 

and silicon price – are studied with Granger causality tests applied to vector autoregressive 

(VAR) models. 

It indicates that FITs follow module price more closely in the recent period, especially in 

Germany. We interpret that as a consequence of a change in their FIT scheme. The frequency 

of the adjustments increases and flexibility is further improved by volume responsive 

mechanisms. These two features reduce the deviation of the FITs from module price. This 

gives important insights as to how to design a FIT able to adapt to module price volatility, 

which is crucial for policymakers. However, the tests do not show an influence of the FIT 

level on module price, meaning that FITs are not likely to create a rent in the PV 

manufacturing activity. A possible explanation is the fierce competition prevailing in this 

industry. However, polynomial growth models point out short term distortions of module 

price close to a FIT change caused by firms’ anticipation behaviour: before a FIT reduction, 
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module price increases as a consequence of a higher demand, firms rushing to install PV 

systems before the FIT reduction. A few weeks before the FIT reduction, once it is too late to 

install a PV system and connect it to the grid before the change, the demand decreases, 

bringing module price down. 

With regards to the influence of silicon price, the Granger causality tests indicate a 

fundamental change in 2009, at the end of the silicon shortage: during the silicon shortage, 

silicon producers are price makers, benefiting from market power brought by the capacity 

constraint. Silicon price thus influences module price. After the shortage, the situation 

switches to over capacity, preventing silicon producers to benefit from market power and 

influence price in the PV industry. 

What is the influence of firms’ strategies on the optimal feed-in 

tariff policy? 

This question is addressed in chapter four. To analyse the influence of firm’s strategies on 

the incentive effect of FITs, and therefore their optimal design, we rely on a theoretical 

model. To get the dynamic effect, the model considers firms installing PV systems over two 

periods, module price decreasing from period 1 to period 2, according to the quantity installed 

in period one following the learning by doing theory. A FIT can be implemented in period 

one, and reduced in period two. Two strategies are modelled: a long term strategy, 

anticipating FIT modifications and module price variation, and a short term strategy, 

installing PV systems as long as they are profitable. 

The model suggests that firms’ strategies should be taken into account when designing a 

FIT policy. If firms follow a long term strategy, a higher FIT should be implemented initially, 

with a more important degression rate, to compensate for their expectation of decreasing 

module price. Another finding is that if firms do not all follow the same strategy, different 

FITs should be implemented, each addressing firms following a similar strategy. A single FIT 

is not optimal when firms do not all follow the same strategy. 
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Chapter One 

 

Technology transfers to China 

 

 

 

 

 

Abstract 

China is the largest photovoltaic (PV) cell producer in the world, with more than half of 

the worldwide production in 2011, exporting 92 percent of what it produces. The purpose of 

this chapter is to understand the drivers of this success, with a particular emphasis on the role 

of technology transfers and innovation. Our analysis combines a review of international 

patent data at a detailed technology level with field interviews of ten Chinese PV companies. 

We show that Chinese producers have acquired the technologies and skills necessary to 

produce PV products through two main channels: the purchasing of manufacturing equipment 

in a competitive international market and the recruitment of skilled executives from the 

Chinese diaspora who built pioneer PV firms. The success of these firms in their market is, 
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however, not reflected in their performance in terms of innovation. Rather, patent data 

highlight a policy-driven effort to catch up in critical technological areas. 

 

Résumé français 

La Chine est devenue en quelques années le premier producteur mondial de panneaux 

solaires. Elle est à l’origine de plus de la moitié de la production mondiale en 2011 dont une 

grande majorité  exportée vers l’Europe. Le but de ce chapitre est de comprendre les facteurs 

de ce développement spectaculaire, mais aussi d’en éclairer les limites, en s’attachant 

particulièrement à l’innovation et aux transferts de technologie. L’analyse proposée s’appuie 

d’une part sur une base de données de 79.642 brevets liés à l’industrie photovoltaïque, d’autre 

part sur une enquête de terrain réalisée auprès de professionnels de cette filière en Chine.  

Nous montrons que les entreprises chinoises ont acquis la technologie nécessaire pour 

entrer dans l’industrie solaire photovoltaïque par deux principaux moyens: l’achat de lignes 

de production « clef en main » sur un marché concurrentiel de fournisseurs d’équipements 

dans les pays industrialisés, et la disponibilité de cadres qualifiés au sein de la Diaspora 

chinoise, lesquels ont fondé les premières entreprises du pays. A contrario, les principaux 

verrous technologiques auxquels sont encore confrontés les industriels chinois concernent des 

procédés protégés par le secret, pour lesquels il n’existe pas de marchés d’équipements 

concurrentiels. Dans ce contexte, l’effort d’innovation chinois est principalement mené par 

l’Etat et vise à rattraper les pays industrialisés dans les segments technologiques en amont de 

la filière. Leur récente progression dans la purification de silicium montre qu’ils sont en passe 

d’atteindre leur objectif. 
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1 Introduction 

In 2003, China's market share in cell and module segments was less than 2%. Yet the 

country became the leader in only a few years, responsible for more than half of worldwide 

production in 2011. The purpose of this chapter is to analyse how China managed to acquire 

the technology required for this success. 

This is a key issue as it puts tremendous competitive pressure on the traditional players 

from industrialized countries in the cell and module segments, to the point where numerous 

companies go bankrupt. It ruins the plans of industrialised countries to build a strong 

domestic industry based on stimulating national PV markets. This is particularly true for 

second movers like France, and first movers like Germany and the US are struggling as well. 

This case study is also particularly interesting to feed the debate regarding technology 

transfers in the context of climate change negotiations. On the one hand, it is a successful case 

of technology transfer that could inspire other countries. By focusing on the role of 

intellectual property rights (IPR), we analyse which role they play in facilitating or impeding 

these transfers. On the other hand, it shows that the technology required for the production of 

PV cells and modules can be transferred without leading to local deployment of PV systems, 

thus shedding light on new issues.  

The purpose of this paper is to understand the drivers and limitations of this Chinese 

success in mastering a production technology that had initially been developed in 

industrialized countries. The main questions we will address are: How did Chinese firms 

manage to acquire production technologies and skills? Which segments of the PV supply 

chain does it concern? Have IPR impeded this process? Is China now able to produce new 

technologies domestically? 

We address these questions empirically, by combining both quantitative and qualitative 

evidences. On the quantitative side, we rely on a dataset comprising 79,642 PV-related 

patents to analyse cross-country innovation and technology transfers in the different segments 

of the PV industry. To supplement this quantitative analysis, we carry out a series of field 
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interviews with PV actors in China2. These interviews allow us to further understand specific 

details of the economics of the Chinese PV industry, and provide qualitative information 

concerning the innovation and technology transfers to China.  

The theoretical framework of our empirical analysis draws on the economic literature on 

technology transfer and absorptive capacities (for excellent surveys of this literature, see 

Keller, 2004 and 2008). Within the Chinese context, our chief purpose is to highlight and 

explain the mechanisms of technology transfer in each part of the PV value chain. The paper 

is also related to the available literature on the photovoltaic industry in China. This includes 

the works of Yanga et al. (2003) and Marigo (2007). We also exploit a substantial body of 

professional literature published by public organizations (European Commission PV status 

reports; IEA, 2009; REDP, 2008), industry associations (EPIA, 2012, REN21, 2008) and 

consulting groups (McKinsey, 2008). 

The paper is organized into four sections. In Section 1, we highlight the position of China 

in the global PV market. We then characterize and explain how technology transfer is 

occurring from developed countries to China in Section 2. Then, in Section 3, we focus on the 

innovation process in order to see whether China is now a major innovator. Section 4 presents 

our conclusions. 

2 The global photovoltaic industry 

This section yields an economic analysis of the PV sector in order to recast our 

understanding of the role of China in the rapid development of the PV industry on a global 

scale. 

                                                 
2 You can refer to Annex 1 for more information concerning interviewed actors. 
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2.1 The demand 

The large-scale deployment of PV generation capacity, and consequently the existence of a 

mass market for PV modules, is a recent phenomenon. Until the nineties, PV systems have 

been installed almost exclusively off the grid, for marginal uses (communication devices, 

satellites, remote habitations) for which PV electricity was competitive compared to other 

available off-grid electricity sources. As illustrated in Figure 1, the photovoltaic market 

reached 100 MW in 1999 and grew at a 51% compound annual growth rate (CAGR) from 

then until 2011. The market is chiefly in industrialized countries, and mainly comprises on-

grid installation. In 1995, 33% of PV systems were installed on-grid; by 2011, it had reached 

97% (IEA 2011). 

 

Figure 1 Photovoltaic installation per year from 1995 to 2005 

 

Source IEA, 2011  
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Figure 2 Photovoltaic installation per year from 2006 to 2011 

 

Source IEA, 2011, EPIA (2012) 

 

This fast deployment of on-grid PV systems has been entirely driven by incentive policies 

initially implemented in a limited number of industrialized countries (mainly Germany, Japan, 

and the US which are the main historical markets as shows figure 1). PV electricity cannot 

compete on the power grid because it is more expensive than traditional electricity sources. 

Therefore, the development of national markets requires economic incentives. 

Besides various investment subsidies where the financial burden falls upon taxpayers, the 

main instruments aimed at stimulating the PV industry are quotas and feed-in tariffs (FITs). 

Quotas, such as renewable portfolio standards, are mandates requiring each utility to have a 

minimum percentage of power that is sold or produced by renewable energy sources. FITs 

consist of setting administratively-fixed guaranteed prices at which electricity suppliers must 

purchase renewable electricity from producers. That is, they prescribe a price, not a quantity 

as in the case of quotas. The first FIT leading to a massive development of the PV market has 

been implemented in 2000 in Germany, under the Erneuerbare Energien Gesetz. Spain also 

adopted a FIT in 2006 which was so generous that it led to a market boom in the country in 

2008 as figure 2 shows. Spanish authorities reacted in 2009 by setting a cap limiting the 

deployment of PV systems to 500 MW per year. Along with the economic downturn, this 

policy change explains why the market growth slowed down in 2009. 
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The majority of developed countries have now implemented FITs. A notable exception is 

the US in which most states have opted instead for the use of renewable portfolio standards.  

In contrast, policies promoting solar energy hardly exist in developing countries, or are 

very recent. Their priority is to find the cheapest source of energy to feed economic 

development, and therefore PV energy is mostly used in off-grid installations. However, 

China stands out with a feed-in tariff provided by the China’s Renewable Energy Law at a 

regional level in 2006, and at a national level in 2011. It triggered a fast development with an 

CAGR of 280% from 2008 to 2011.  In 2011, the Chinese PV market represented 7% of the 

global market, while it was still only 0.6% in 2008. 

2.2 The supply 

Figure 3 presents the PV supply chain. The industrial production process includes four 

technical stages that are briefly described in Box 1. Then the deployment of the PV system 

requires combining the modules with complementary equipment (such as inverters, batteries, 

mounting systems, etc.) into integrated systems which, once installed, can generate power. As 

explained in the introduction, we focus our analysis on the first four production stages, 

Silicon, Wafers/Ingots, PV Cells, and PV Modules. They account for 44% of the average 

global cost of installed PV systems in 2011 (Photon International 2012).  

 

Figure 3 PV supply chain 

 

Source: Authors 
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Box 1: The PV production process 

The production of PV modules involves four technical steps: 

1. Silicon purification from silica (SiO2) found in quartz sand. The ultra-high purity 

required for the photovoltaic industry ( > 99.999% pure) is obtained through heavy and highly 

energy-consuming chemical processes. The construction of a silicon plant takes about two 

years. 

2. Ingot and wafer manufacturing. An ingot – a cylinder or a brick of silicon – is grown 

from the pure silicon. It can be a single crystal, leading to monocrystalline cells, or multiple 

silicon crystals that are smaller leading to polycrystalline cells3. Then, using a saw, ingots are 

sliced into thin layers called wafers. Secondary processes like polishing are involved. New 

technologies such as sheets or ribbons growing are emerging. 

3. Cell production. To form the cell, two differently doped wafers are assembled together 

to form a so-called p-n junction responsible for the photovoltaic effect, and the top and rear 

metal contacts are applied. Many treatments or modifications in the process can be applied to 

increase the efficiency. 

4. Module assembling. Cells are soldered together, the electrical junction being done by 

hand or automatically, and the cells are encapsulated in glass sheets to form a module which 

will be cooked in a laminating machine. 

 

Table 1 shows the market share of Chinese producers in the different segments. In 2011, 

China is the world leader in cell production (59.3%), followed by Taiwan (14.7%), Malaysia 

(6.5%), Japan (5.7%), and Germany (4.8%) (SolarBuzz 2012). China became the leader in 

2007 (27%), but this is a recent phenomenon: in 2003, China’s market share was only 1.6%, 

the biggest producers being Japan, Germany, and the US. 

                                                 
3 The monocrystalline conversion leads to more efficient PV cells, but has large power consumption and is 

thus more expensive than the polycrystalline process. Dopant impurity atoms such as boron or phosphorus can 

be added to the molten silicon in precise amounts in order to dope the silicon, thus changing it into n-type or p-

type silicon. 
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An even more recent phenomenon is the vertical integration of China in upstream 

segments. China’s market share in silicon purification grew from 2.3% in 2007 to 33% in 

2011, catapulting China to the first place. This fast increase followed the same expansion in 

the cell and module segments four years earlier. The increase in Chinese polysilicon 

production has been strongly supported by the Chinese government, as we will see later. The 

pattern is similar for ingots and wafers: China still represented a minor part of world 

production in 2007, but has reached 73% in 2011.   

 

Table 1 China market share in different PV industry segments in 2007 and 2011 

China Market share 

Segment 2007 2011 

Silicon 3% 33% 

Ingot and wafer <5% 73% 

Cells 
27% 60% 

Module 

Source: Authors calculation from Ruoss, 2007, REDP 2008, and SolarBuzz 2012 

 

It is interesting to relate the timing of China’s entry in the PV industry to the economic 

characteristics of the different segments. Those economic characteristics are presented in 

Table 2, giving figures for 2011, and 2007 in brackets. We pointed out that China entered first 

in module and cell manufacturing. They correspond to the most competitive segments as 

indicate the low Herfindahl-Hirschman Indexes (HHI)4, even in 2007. They are also the least 

profitable. China’s later entry in silicon and wafer manufacturing after 2007 explains the 

substantial increase in competition in those segments in 2011. 

 

 

                                                 
4 The HHI is defined as the sum of the squares of the market shares of the largest firms within the industry. 

The result is proportional to the average market share, weighted by market share. As such, it can range from 0 to 

1, moving from a huge number of very small firms to a single monopolistic producer. 
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Table 2 PV industry segments economic features in 2011 (and 2007 in brackets) 

Segment 
% cost in a 

panel 

Market 

concentration 

(HHI) 

Investment 

costa 

(millions/USD) 

Technological 

barrier height 
% of profitb 

Silicon 20% 0.059 (0.19) 140 High 43% (41%) 

Ingot and wafer 24% 0.028 (0.24) 95 Medium/High 20% (41%) 

Cells 24% 0.020 (0.04) 125 Medium/Low 5% (11%) 

Module 31% <0.020 (<0.04) 25 Low 18% (7%) 

a Investment for a plant with annual production capacity of 1,000 tonnes for silicon 

purification, and 100MW for the downstream segments. 
b  % of the whole profit along the supply chain in 2007. 

Sources: Calculated by the authors with data from SolarBuzz (2012) 

 

China entered the PV industry through the downstream segments where technological 

barriers to entry are relatively low. The cell and module production technologies are easily 

accessible because, contrary to upstream segments, turnkey production lines can be bought 

and run without much prior manufacturing experience. In this context, the relative low price 

of energy and accessible loans in China has spurred the creation of local firms in the energy 

and capital intensive cell manufacturing segment. Module assembling is even simpler and is 

more labour-intensive, which gives Chinese firms another competitive advantage5. In 

contrast, silicon purification requires advanced technologies and very specific know-how to 

control all the parameters of the chemical reactions, in order to be able to produce silicon at a 

competitive price. Attracted by the high profits in those segments, China is trying to break 

those technology locks. We will examine technology issues at length in later sections. 

                                                 
5 According to Chinese Firms that we interviewed, the labour represents 1-2% of the total cost in China in 

module production segment in 2009; in developed countries it represents 5-10%. 
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3 Technology transfers to China 

We have seen that China has strong positions in the PV industry, which is a recent pattern 

especially in more technology-intensive activities located upstream in the production chain. 

We show in this section how this rapid development of the Chinese PV industry has been 

made possible by the successful transfer of technologies form industrialized countries during 

the last decade. 

We mean by technology transfers all mechanisms by which a Chinese firm can benefit 

from a foreign party’s knowledge on the design and manufacturing of PV products (Maskus, 

2004). The economic literature argues that transfers generally occur through the following 

channels: 

• Licensing: This is the most obvious channel, in which codified technology and the 

exclusive right to exploit it commercially is sold by one party to another. 

• Foreign direct investment: It is the ownership of a productive asset such as factory in a 

foreign country by a multinational firm. This ownership can be full (subsidiary), or 

partial (joint venture). As the primary motivation for a firm making a foreign direct 

investment is to take advantage of some cost or quality advantage on the country 

based on knowledge asset, this knowledge is expected to be transferred in the 

subsidiary or the joint venture (Markusen, 1995). The foreign direct investment in a 

developing country being carried out to benefit of cheap labour, they hire local 

workforce to which the know-how is then transferred. Licensing contracts may be 

involved in joint venture. 

• Trade in goods and services: Technology can be embedded in goods and services, and 

thus be transferred when they are exported. For example reverse engineering can allow 

the importing party to get access to the technology used to produce the goods. 

Moreover, capital goods such as production lines, fertilizer, software etc. can directly 

improve productivity by being placed into production processes and thus be a form of 

technology transfer. 

• Movement of personnel: Cross border movements of skilled workers in one 

multinational firm, or such movements between two firms bring the know-how of the 
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personnel in the new firm or country. This know-how is a form of disembodied 

information that can be crucial for the effective transfer of a technology; 

We discuss in decreasing order of importance the different channels through which the 

technology was introduced in China. 

3.1 The markets for manufacturing equipment  

From purified silicon to solar panels, products along the PV supply chain are very 

standardized. Market competitiveness mainly derives from the capability to manufacture 

products that satisfy a standard level of quality at an affordable cost. In this context, 

successful entry into each of the market segments requires access to state-of-the-art 

production technology. This in turn requires international markets for production equipment 

that is competitive.  

The number of manufacturing equipment producers registered on ENF website6 serves as a 

proxy of competition intensity in the market for PV manufacturing equipment. Table 3 

presents each PV industry segment in 2012 with the figure from 2009 in brackets. The first 

line gives the total number of providers while the second gives only the number of firms 

which provide turnkey production lines. 

There are numerous suppliers in each segment of the supply chain. However, the numbers 

are significantly higher in the downstream segments. Downstream segments also present more 

suppliers offering integrated turnkey production lines that make it possible to start production 

with a minimum level of technical knowledge. This explains the easy entry of Chinese firms 

in those segments. By contrast, equipment suppliers are scarce in upstream segments. Fewer 

firms are selling specific equipment, especially in 2009. More importantly, there are no firms 

selling equipment for polysilicon purification, and only one providing turnkey production 

lines for ingot production, even in 2012. This is a factor in why Chinese companies had 

difficulties entering those segments. 

 

                                                 
6 http://www.enf.cn/ is an online solar company database. 



21 
 

Table 3 Count of manufacturing equipment providers in the PV industry in 2012 (and 2009) 

 Ingot Wafer Cell Module 

All firms* 134(70) 361(178) 607(335) 851(234) 

Firms providing turnkey 
production lines 

1(1) 15(9) 14(15) 58(26) 

* Firms selling specific equipment that are part of the production lines 

The brackets stand for the 2009 figures 

Source: ENF website 

 

Besides the importing of equipment goods, the purchase of manufacturing equipment 

usually involves the transfer of complementary know-how through training sessions of 

engineers and technicians operating the production line. This in turn progressively enables PV 

manufacturers to adapt their production chain to local conditions – for instance, substituting 

some equipment with a cheaper workforce. Several of our interviewees moreover indicated 

that large PV manufacturers tend to develop partnerships with equipment suppliers, sharing 

know-how and feedback to improve the manufacturing process. Although they may include 

temporary exclusivity clauses, such partnerships make it possible for equipment suppliers to 

redistribute this know-how to other customers, thereby accelerating the circulation of 

knowledge across the industry. 

Another evidence of the diffusion of technology generated by the international trade of 

equipment goods is the progressive emergence of equipment goods suppliers that are solely 

Chinese. This is illustrated in Figure 4, which shows that there existed a significant number of 

Chinese firms selling specific equipment in 2009, and that in 2012, they have reached an 

important market share for turnkey production lines in the cell (14%) but especially module 

(38%) segments. This has important implications as it allows Chinese firms manufacturing 

PV products to buy cheaper production equipment. They can also do so in the more upstream 

segments provided that they are able to customize their production line by integrating specific 

Chinese equipment. 
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Figure 4 Share of china in the market for manufacturing equipment for each segments7 

  

Source: Authors’ calculation based on ENF website 

3.2 Labour mobility 

The circulation of a skilled workforce has been another key factor aiding the emergence of 

the Chinese PV industry. Recall that a major part of the technology concerns the operation of 

manufacturing processes, which mainly consists of know-how. In this context, the 

manufacturing experience of skilled employees is a key asset. 

Chinese PV companies have benefited strongly from the arrival of highly skilled 

executives, who brought capital, professional networks, and technology acquired in foreign 

companies or universities to China. For instance, the founder and CEO of Suntech, China’s 

largest PV company, had been studying at the University of New South Whales in Australia, 

and then worked for the Australian company Pacific Solar. In addition, four out of the six 

members of the Suntech Board studied or worked in the US or in the UK. The CEO of the 

second largest company, Yingli, also studied abroad. In Trina Solar, half of the 12 person 

management team have studied or worked abroad: 4 in the US, 2 in Singapore. At Solarfun, 

the figure is 7 out of 10. On average, 61% of the board members of the three largest Chinese 

                                                 
7 The number of equipment providers is the only, admittedly rough, indicator available to measure the 

country market shares as turnover data are seldom available. 
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PV firms have studied or worked abroad8. This highlights the importance of the Chinese 

Diaspora: 8 million Chinese people live in foreign industrialised countries (source: Overseas 

Compatriot Affairs Commission, R.O.C).  

To a large extent, this prevalence of executives with foreign training results from 

aggressive recruitment strategies pursued by Chinese firms in a context of scarce skilled 

labour locally. Suntech has a special program for recruiting foreign Chinese, while Trina 

Solar has created special “international staffing teams”. 

The local mobility of Chinese employees has also accelerated knowledge diffusion within 

China. Although the phenomenon is hard to quantify, representatives of three Chinese 

companies complained during our interviews about their employees being hired by other 

companies or creating their own company. Moreover, we also learnt that Chinese firms are 

developing specific programs to attract middle level management employees. There are even 

agreements between the 9 biggest Chinese solar firms to prevent hiring each other’s skilled 

employees.  

3.3 Foreign direct investment  

The economic literature has shown for a long time that investment by a multinational firm 

in a productive asset such as a factory in a foreign country also induces a transfer of 

knowledge, since the technology is operated directly in the recipient country.  

In 2009, China had attracted about one third of the global foreign direct investment flows 

in the PV industry. Although massive, this is a rather recent phenomenon, which has not been 

a decisive factor in the emergence of the Chinese industry. Table 4 presents the top 9 PV 

manufacturers located in China in 2009. Only three of them feature investment links with 

foreign companies. Moreover, these firms turn out to be late entrants, whose creation has 

followed in the footsteps of strictly Chinese pioneer firms.  

                                                 
8 Information obtained on the companies’ website: http://www.suntech-power.com; 

http://www.trinasolar.com ; http://www.solarfun-power.com. 
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Although it was not decisive for the emergence of Chinese pioneers, incoming foreign 

direct investment is nevertheless likely to accelerate technology transfers to China. Figure 5 

moreover shows that the proportion of joint ventures with respect to fully owned subsidiaries 

is much more important in China than in other countries. This reflects a general feature of the 

Chinese economy, where public authorities often force foreign investors to accept joint 

ownership. Such joint ventures are likely to induce more knowledge spillovers than the 

creation of mere subsidiaries, because they involve a local partner.  

 

Table 4 Top 9 PV companies in China in 2009 

 
Output          

(MWp) 
Creation 

FDI-Joint Venture 

links 

Suntech 327 2001 None 

Yingli 142 1998 None 

JingAo 113 2005 Australia 

Solarfun 88 2004 None 

Sunenergy 78 2004 Australia 

Canadian Solar 55 2001 Canada 

Ningbo Solar 45 2003 None 

Trina Solar 37 1997 None 

Jiangsu Junxin 35 - None 

Source European Commission (2008 and 2009) 
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Figure 5 Regional repartition of the two types of FDI 

 

Source: Authors, European Commission (2005, 2008, 2009) 
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4 Chinese innovation  

We have just seen that China has mainly acquired foreign technologies to create a domestic 

PV industry mostly through the international trade of manufacturing equipment and the hiring 

of top level managers trained in industrialized countries. In this section, we investigate 

whether China is now able to generate locally new technologies and inventions. 

0%

20%

40%

60%

80%

Industrialized countries China Other Asia Region

P
e
rc

e
n
ta

g
e
 o

f 
F
D

I 
in

 t
h
e
 

re
g
io

n

% JV

% Subsidiary



26 
 

4.1 A study of photovoltaic patents 

As a first measure of innovation in the PV industry, we tabulate patent applications. 

Although patents do not provide a measure of all innovation, they offer a good indication of 

innovative activity and allow for interesting cross-country comparisons. Data on patents 

grants with an application date prior 2007 were extracted and filtered from the Espacenet 

website, a free online service developed by the European Patent Office for searching 

information on patents and patent applications, available at http://ep.espacenet.com. Using 

International Patent Classifications combined with key word searches, we created separate 

patent indicators for each segment of the PV supply chain. More information on our dataset 

and the methodology used is available in Annex 2. 

Figure 6 represents major countries’ shares of innovation patented worldwide for each 

segment of the PV industry in 2006-2007. China’s performance is impressive as it ranks third 

in all segments. But in silicon production it is all the more so, where it leads with 37% of 

world patents. Comparing these percentages with the 2007 market shares presented above in 

Table 1 leads again to distinguishing between upstream and downstream segments. China’s 

patenting activity is significantly higher in silicon, ingot, and wafer production than its 

contribution to world production (respectively, 2.5 and 5%). The reverse is true in 

downstream segments in which China is the largest producer with a 27% market share 

whereas it generates around 15% of worldwide inventions. This suggests different roles for 

innovation in silicon, ingot, and wafer production on the one hand, and cell production and 

module assembling on the other. 
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Figure 6 Percentage of world patented innovation by segment and country in 2006-2007 

 

Source: Authors’ calculations based on the Espacenet database 

4.2 Innovation in cells and modules segments 

The important share of China in globally patented innovation has to be put in perspective. 

Indeed, only 1% of Chinese patents were also filed abroad as compared to 15% for Germany, 

26% for Japan, and 7% for the US. Since the foreign extension of patent applications is 

usually reserved for the most valuable inventions9, this reinforces the hypothesis that the 

value of the average Chinese patented invention is quite low. This is in line with the low 

percentage of revenue that Chinese firms devote to R&D in comparison to western 

companies, as indicated by Table 5, which gives R&D expenditure for a selection of big PV 

cell and module manufacturers in 2009. Moreover, the 2008 public budget devoted to R&D in 

the PV industry in China ranks 12th in the world (with USD 6.30 Million, Mo-Lin and Dan-

Wei, 2012). 

 

 

                                                 
9 For further details, see annex 2, Limits of the indicator. 
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Table 5. R&D expenditure in some major cell and module companies in 2009. 

Companies 
Country of 
origin 

R&D intensity 
(% of 2008 turnover) Segments 

Schott Solar DE+US 5.0% Cells 

Q-cells DE 2.0% Cells 

SunPower US + PH 1.7% Cells+ modules 

Solar World DE 1.4% Cells 

Suntech CN 0.8% Cells+ modules 

China Sunergy CN 0.5% Cells + modules 

Solarfun CN 0.4% 
Cells + modules 
+ingots + wafers 

Trina Solar CN 0.4% 
Cells + modules 
+ingots + wafers 

Source: company annual reports 

 

Chinese firms then have a higher propensity to patent than their foreign competitors – they 

file more patent applications for an equivalent innovation output. Our field investigations in 

China confirm that local companies patent minor inventions intensively. The reason is not to 

protect the inventions – critical inventions are usually kept secret – but to send a signal to 

public authorities. In particular, the allocation of public subsidies by the National 

Development and Reform Commission (NDRC) is significantly influenced by the quantity of 

patents.  

However, concluding from this low patent value that Chinese firms do not innovate could 

be misleading. As the interviews suggest, Chinese innovation focuses more on process, which 

is often not carried out in specific R&D departments but directly on the production lines, and 

protected by secrecy rather than patenting. 
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4.3 Innovation in silicon, ingot, and wafer segments 

We have seen that China’s patenting performance in upstream segments is impressive. 

This is particularly true for silicon, with 37% of the world’s patented inventions as shown by 

Figure 6. This results from a specific effort initiated in 2002 as figure 7 indicates, showing the 

evolution of the share of China in world’s patenting activity in each segment. 

 

Figure 7 Share of China in world innovation in each segment of the PV industry 

 

Source Authors’ calculation based on the Espacenet database 

 

Why is it so? China only accounted for 2.5% of 2007 world production, but the 

government had voiced its ambition to dramatically raise production capacities in the 

following years. Domestic production of purified silicon indeed grew at a 192% yearly rate 

from 2007 to 2011, from 1,100 to almost 80,000 metric tons (REDP, 2008, SolarBuzz, 2012) 

The Chinese patenting activity in silicon technology is related to this strategic objective. 

Besides capital investment in production facilities, the main barrier to entry in the silicon 

feedstock market is technological. The purification of metallurgical grade silicon into 

electronical grade silicon is based on the Siemens process – the principles of which have been 
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public information for decades. The key to purifying silicon at reasonable cost, however, is in 

the efficiency of the silicon purification process, which requires precisely controlling the 

parameters of all the chemical reactions. Major western and Japanese silicon producers have 

developed advanced know-how in this domain, which they usually keep secret. In this 

context, the creation of a competitive branch of the Chinese PV industry in the silicon 

segment hinges on its domestic R&D effort to develop economically efficient refining 

processes. These efforts are chiefly funded by public authorities. Private patents represent less 

than 40% of total Chinese patented innovation, against around 85% in industrialized 

countries.   

To summarize, the Chinese weight in patent applications in silicon purification, far from 

proving a technological leadership, actually denotes a massive domestic effort to break a 

technological lock in a strategic segment where the Chinese industry was heavily dependent 

on a small number of foreign suppliers. In 2011, China is still importing silicon, but is much 

less dependent on foreign suppliers. However it does not mean that they managed to catch up 

with incumbents, since except for the two major companies GCL and Dago, new Chinese 

entrants’ production costs exceed 40$/kg, which is above 2011 market price (Morgan Stanley 

research estimates). 

5 Concluding remarks 

China has become in just a few years a major player of the global PV industry. In this 

paper, we explain how this has occurred, and in particular, how Chinese producers got access 

to the technologies and skills necessary to produce PV systems. 

China has acquired the technologies to produce cells and modules through two main 

channels: the purchase of manufacturing equipment – in particular turnkey production lines – 

on a competitive international market, and the recruitment of skilled entrepreneurs from the 

Chinese Diaspora who have managed to build pioneer PV firms, taking advantage of China’s 

comparative advantage of cheap labour, energy, and capital. In contrast, the lack of 
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competitive supply of production equipment appears to have been a significant barrier to the 

development of Chinese firms in the upstream silicon segment. They are now overcoming this 

barrier thanks to important R&D efforts. However, the low silicon price in 2012 is a threat for 

many of those Chinese new entrants still having higher production cost than incumbents. 

Foreign Direct Investments, mainly through the establishment of joint-ventures with 

western partners, are another potential channel for importing technologies. They are very 

significant in the Chinese PV industry but they are quite recent and they do not involve 

pioneering Chinese companies. This suggests that they have played a minor role in the 

emergence of the industry. The trade of intellectual property rights such as licensing has 

played no role.  

More generally, the existence of property rights has not impeded the emergence of the 

Chinese industry. The core technology, being more than 20 years old, was a public good. The 

new patents were protecting only incremental innovation; it was thus possible to get round 

them. Moreover, the high competition prevailing in downstream segments and in the 

corresponding market of manufacturing equipment prevented the owners of the technologies 

to get enough market power to stop the entry of new comers. 

As measured by patent statistics, the innovative performance of China denotes a policy-

driven effort to catch up rather than the inventive dynamism of local companies. Chinese 

producers of cells and modules invest less in R&D than their competitors in Japan and 

Western countries, and consequently file fewer patents that are of lesser value. By contrast, 

the important share of China in world patents in the silicon, ingot and wafer segments is 

largely accounted for by public research institutions, denoting an effort to break the 

technology barriers preventing firms from entering those segments. This trend highlights the 

ability of the Chinese public authorities to intervene selectively when the market fails to 

generate technology transfers. China now reaps the benefits of this strategy, accounting for 

33% of world silicon production in 2011. 

Keeping in mind that our analysis is limited to the PV sector in China, it is interesting to 

recast it in the current policy debate on the promotion of North-South technology transfer. 

Our results indicate that international trade has been a key factor of PV technology diffusion 

in China. Chinese firms export their products to industrialized countries, and manufacture 
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them with technology acquired from international equipment goods suppliers. In this respect, 

low trade barriers and competitive markets for equipment goods seem more important than 

intellectual property policies. Indeed, our results show that IPR have not been an impediment 

in the technology transfer process, which is in line with what Barton (2007) or Kirkegaard et 

al. (2009) observed for solar, biofuel and wind technologies. Competition is sufficient in these 

sectors to prevent a single company from creating a lock on the technology with patents.  

The case of the Chinese PV industry is also interesting with regards to the role of national 

absorptive capacities. The Chinese PV industry has strongly benefited from the availability of 

skilled workforce, but also from its local and international mobility. Indeed, the fact that pure 

Chinese firms have been created before the arrival of foreign direct investors is due to the 

existence of a highly skilled diaspora; and the diffusion of technical knowledge between 

Chinese firms has in turn been accelerated by the turnover of their middle management. The 

Chinese government has been strongly committed to alleviating technology barriers to the 

entry of Chinese firms in the Silicon segment, with promising results. 

Here at the end of this paper, it is also possible to address a more fundamental question: 

what is the rationale for promoting the transfer of production technologies to the South, from 

a general interest perspective? The example of the PV sector shows that this transfer does not 

necessarily induce GHG emissions abatement in emerging economies: China has successfully 

entered the PV market without deploying panels at home in the first place. In fact, the real 

justification is that the transfer of technology is necessary in order to transfer production 

capacities to emerging economies and this relocation can decrease production costs and prices 

through fiercer competition, as is true in many other industrial sectors. Ultimately, technology 

transfers reduce the cost of mitigating greenhouse gas emissions. However the price of this 

static efficiency could be a dynamic inefficiency. The PV industry is technologically intensive 

as shown by the important R&D efforts from industrialised countries. Since Chinese firms put 

fewer efforts in R&D, their domination could jeopardise future cost reduction by lowering the 

global R&D in the PV industry. 

From the perspective of industrialized countries, this is disturbing. On the one hand, their 

companies producing PV cells or modules face tougher competitors and lose market share –

see the dozens of companies that filed for bankruptcy in the last years. It also ruined plans of 

second movers such as France to create a local industry by stimulating the domestic market. 
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Added to the fact that industrialised countries bore the cost of expensive incentive policies, 

the transfer of manufacturing capacity to China raises some concerns, as shown by the anti-

dumping trade cases in the US in 2011 and in Europe in 2012. But on the other hand, 

industrialised countries benefit from these cost reductions, as demonstrated by the commercial 

success of Chinese panels especially in Europe. This provides cheaper PV electricity, helping 

to reach GHG emissions mitigation targets at a lower price, and participates in stimulating the 

manufacturing equipment and local installation business. 
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Annex 

Annex 1 List of firms where interviews have been carried out 

 

Firms 
Nb 

Employees 
Activity 

Creation 

Year 

Turnover 

 (Millions of 

USD) 

2008 cell 

production 

World 

rank 

Suntech 8000 cell+Module 2001 278M 1000 3 

TRINA Solar 5200 ingot+wafer+cell+modules 1997 150M 450 11 

Solarfun Power 1500 ingot+wafer+cell+modules 2004 576M 200 12 

China Sunergy 

(CEEG) 5000 ingot+wafer+cell+modules 1990 149.5 111 20 

Topsolar 800 cell+Module 2002 175 48 38 

ST Solar  125 modules 2003 n.a. 25 >50 

Universal Solar 120 modules 2003 53 25 >50 

Chaori Solar  1100 ingot+wafer+cell+modules 2001 n.a. 22.5 >50 

Solar Energy 

(SSEC) 560 ingot+wafer+cell+modules 2000 n.a. 20 >50 

       

University 

Shiaotong University, Institute of Solar Energy     

 

Source: Interviews, ENF website, firms’ websites, and PV report 2009 
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Annex 2 Methodology: The patent as an indicator of the innovation and 

technology transfer 

Innovation cannot be measured directly like other variables. Several indicators have 

therefore been developed to measure it. One is the measure of the input (R&D expenditure, 

number of staff in the R&D department), but such information is difficult to find, is 

aggregated, and only measures the input while the output can be preferable (Dechezleprêtre et 

al. 2010). Measure of the output can be done by studying the data on patents. This indicator 

has many advantages as it allows to have disaggregated information by technology, and also 

gives information about where the innovation is patented, which is necessary to study 

technology transfer. 

As represented in Figure 6, if a person (or firm) innovates, it can decide to patent the 

invention in one or several countries, which will give him the exclusive right to commercially 

exploit that invention in those countries. In a single country, one or several patents can be 

granted to protect the invention according to its importance and the characteristics of the 

patent office of the country. The heterogeneity of national patent laws makes it difficult to 

make reliable cross-country comparisons. We deal with this classical problem by counting 

patent families, i.e. the set of patents granted for the invention in the different countries.  
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Figure 8 Schema of a patent family 

 

Following the method developed by Dechezleprêtre et al. (2010), the indicator used to 

measure the quantity of innovation or technology diffusion process is then based on the 

number of families, that is to say the number of inventions. 

However, a variable quantity of innovation can be embedded in those inventions. To take 

that into consideration, we use as a proxy of the “size” of the invention the number of patents 

granted in one country for this invention multiplied by the average patent breath in this 

country. The patent breadth of one country is the average “size” of the patents registered in 

the patent office of the country. In our example, the same invention has been protected by 

three patents in country A, while only 2 in country B. That is to say that with this single case, 

patent breadth in country A is 2/3 of that of country B. In our study, countries patent breadths 

have been computed using the US benchmark: for each countries “c”, we kept only the patent 

families where patents have been at least granted in the US and in country c, and the patent 

breadth of country c is then defined as 
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PatentBreadthc =
NbPatentUS

NbPatentc

 (1) 

If the invention i has been patented in only one country (most of the case), the “size” of 

this invention (quantity of innovation embedded the invention) is then approximated by: 

 (2) 

Where  is the number of patents granted for invention i in country c. 

If the invention has been patented in several countries, the size of the invention is then 

approximated by the average of (2), that is: 

 (3) 

Having this information, one can then approximate the innovation done by one country c in 

one year y in one segment s by summing the sizes of all the inventions done by this country, 

this year, in this segment  (  ) 

 (4) 

The technology transfer can be approximated the same way by keeping only the inventions 

that have been patented in a chosen country. 

Limits of the indicator 

Inventions do not have uniformly equal value, but this value can be approximated by the 

percentage of international families (meaning a patent that has been granted in at least two 

countries). Indeed, after the first patent application, the applicant has two years to patent the 

invention in other countries. The first application can only be an option for future commercial 

application while if the invention is patented in other countries, it proves that the applicant 

really shows some commercial interest in it. There is then a big gap in value between a patent 

that has been granted only in one country, and patents that have been granted in two or more 

countries. 

cci,i dthPatentBrea*NbPatentS =ize

ci,NbPatent

Sizei =
1

n
NbPatent i,c * PatentBreadthc

c

∑

),,( syci ∈

Innovation c,y,s = Sizei

i∈(c,y,s)

∑
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A second, more difficult methodological issue is due to the fact that not all innovations are 

patented in practice. This is especially true for process innovations, which are often kept 

secret (Cohen et al., 2000). Since an important part of PV innovations concern manufacturing 

processes, this implies that our patent indicators probably do not account for all inventions 

Annex 3 Database used 

We built our dataset by downloading patent information from the espacenet website10. For 

this purpose, we choose research criteria designed for all PV segments in order to obtain the 

biggest part of the relevant patents (corresponding to the technology) while having as few 

irrelevant patents as possible. Not having all the patents does not matter as the sample is still 

representative, but having too many irrelevant patents is more problematic. This can be 

limited by using proper research criteria. Here are the research criteria used: 

 

Keyword(s) in title or abstract: 
International Patent Classification 

(IPC) code: 

Silicon purification 

Silicon  C01B33 not C01B33/02  

Ingot 

Silicon  C01B33/02 OR C30B 

Wafer 

silicon wafer not semiconductor ?  H01L21  

wafer B24 OR B28 

Cell 

(solar cell?) or photovoltaic not 
H01L 

                                                 
10 http://ep.espacenet.com  is a free online service developed by the European Patent Office 

for searching information on patent and patent application. 
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module  

Module 

PV or solar or photovoltaic and 
module  H01L 

 

We note that the fact that we obtain a different proportion of the patents really granted in 

each segment does not matter, as no absolute comparison will be done for the reasons 

explained in the previous section. We obtained 79,642 patents, published before 2010, 

covering the PV industry from silicon purification to module assembling. 
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Chapter two 

 

What cost for photovoltaic modules in 2020? 

Lessons from experience curve models 

 

 

Abstract 

Except in few locations, photovoltaic technology remains more expensive than 

conventional electricity sources. It is however expected that innovation and learning-by-doing 

will lead to drastic cuts in production cost in the near future. The goal of this essay is to 

predict the cost of PV modules up to 2020 using experience curve models, and to draw 

implications about the cost of PV electricity. 

Experience curves relate production costs decrease to the accumulation of experience (in 

particular, cumulative production). Relying on annual data on photovoltaic module prices, 

cumulative production, R&D knowledge stock, and silicon and silver price over the period 

1990 – 2011, we identify the experience curve model which minimizes the difference between 

predicted and actual module prices. The model is then used to make out-of-sample predictions 

up to 2020. We predict a 67% decrease of module price from 1.52 $/Wp in 2011 to 0.50 $/Wp 
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in 2020. The increase in cumulative capacity is responsible for 75% of this evolution, 

corresponding to a learning rate of 19.6%, and silicon price decrease is responsible for 25%. 

Résumé français 

L’électricité photovoltaïque est toujours plus chère que celle produite par des technologies 

classiques et plus matures comme celles liées aux énergies fossiles. Cependant, l’innovation 

et l’effet d’apprentissage vont conduire à une baisse importante du coût des panneaux solaires 

dans les prochaines décennies. L’objectif de ce chapitre est de prédire cette évolution jusqu’en 

2020, en utilisant les modèles de courbe d’apprentissage, et d’en tirer des conclusions quant 

au prix de l’électricité photovoltaïque. Les courbes d’apprentissage modélisent le coût par 

l’expérience mesurée en production cumulée. A l’aide des données annuelles de prix des 

panneaux solaires, de production cumulée, de brevets et de prix du silicium et de l’argent de 

1990 à 2011, nous identifions le model dont le pouvoir prédictif est le meilleur, c’est-à-dire 

qui minimise la différence entre les prédictions et le prix réel des modules sur cette période. 

Le modèle sélectionné est ensuite utilisé pour effectuer une prédiction du prix des panneaux 

solaires jusqu’en 2020. Nous attendons une réduction du prix de 67% entre 2011 et2020, de 

1.52 $/kWp à 0.50 $/kWp, les trois quarts étant dus à l’effet d’apprentissage, le reste à la 

baisse du prix du silicium. 
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1 Introduction 

Experience curves, also called learning curves, are widespread models used to predict cost 

in the middle and long term. In its simplest version, an experience curve relates production 

costs to the accumulation of experience (often measured by cumulative production). 

Experience curves are based on the theory of learning by doing which claims that  “technical 

change in general can be ascribed to experience, that it is the very activity of production 

which gives rise to problems for which favourable responses are selected over time” (Arrow, 

1962). Their success arises from their huge empirical support in various industries11.  

Experience curve is a familiar notion in the photovoltaic (PV) industry. PV technology is 

not yet competitive against conventional energy sources. However, it is expected that 

important cost reductions brought by learning by doing will lead to important gains in the 

future provided that the industry is developed enough now. Added to the fact that this learning 

cannot be internalised by the firms due to learning spillovers12, this provides the rationale for 

public policies which subsidize the deployment of PV installation. In this policy context, a 

quantitative evaluation of the size of the cost decrease one can expect in the future by 

developing the market is important to justify the immediate cost of these policies. On the 

short term, experience curves are also useful to select the pace at which public subsidies 

should be reduced. For instance, a too pessimistic anticipation of cost evolution has led to an 

uncontrolled market boom in Spain in 2008 and in France in 2010, triggering sharp policy 

revisions (a cap on installations in Spain and a three-month moratorium together with a 

drastic cut of the feed-on tariff in 2011 in France). This stop-and-go policy was devastating, 

resulting in dozens of bankruptcies and thousands of job losses in the PV system installation 

activity. Reliable cost prediction is therefore crucial to the sustainable development of this 

industry. 

                                                 
11 see for example Dutton and Thomas (1984) who study the results of 108 experience curves in 22 industrial 

sectors 
12 Note that public policies are justified because a share of these cost reductions are external in the sense that 

they do not benefit only the companies which install these capacities due to learning spillovers (Flint, 2009). As 

a result the private return of installing PV panels is less than their social return. 
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In this chapter, we seek to predict the cost of PV modules up to 2020 using experience 

curves and to draw implications about the cost of PV electricity.  As mentioned previously, 

the base version of the experience curve consists in regressing the module price (a proxy for 

the cost) on experience measured by cumulative production. More recently, additional 

explanatory variables have been added, such as input price, scale, or research and 

development (R&D) (Isoard and Soaria, 2001, Kobos et al., 2006, Yu et al., 2011). However, 

little attention has been paid in the literature to the influence on the predictive power of the 

model of adding these explanatory variables. This chapter aims at filling this gap, by 

identifying and selecting the most reliable model of experience curve applied to the PV 

industry. 

Using data on world average annual value of module price, cumulative capacity, plant size, 

silicon and silver price, and the R&D knowledge stock13 from 1990 to 2011, we select the 

specification with the best predictive power. That is, the set of explanatory variables which 

minimizes the difference between predicted and realized module prices. The model is then 

used to make out-of-sample predictions up to 2020. 

Possible additional variables are identified through a survey of the literature on experience 

curves applied to the PV modules. We restrict the analysis to modules because they are 

standard products for which the price is available at the world level in dollar per Watt-peak 

for standard conditions. Other components of PV systems like inverter, battery, and wires are 

not specific to the PV industry. Moreover, the cost of local installation, and sunlight 

availability influencing the output, depend on local conditions. As a result, the estimation of a 

global experience curve14 on PV systems, and a fortiori on PV electricity, is meaningless. 

Most existing studies dealing with PV modules on a global scale like ours use experience 

as the only explanatory variable, with an average learning rate of 20.9%. Only three studies 

include other variables: R&D, scale, silicon price, or/and silver price. Our contribution is to 

carry out a systematic analysis by considering the inclusion of those variables and selecting 

the combination with the best predicting power. 

                                                 
13 The data concerning R&D stops in 2007 
14 To overcome this issue, Ferioli et al. (2009) propose to consider overall costs as the sum of cost dynamics 

for individual subsystems. 
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Our analysis shows that only silicon price should be added to experience to predict module 

cost. Based on this model, we predict a 67% cost decrease from 2011 to 2020, experience 

being responsible for 75% of this evolution, and silicon price decrease the remaining 25% 

The remainder of this paper is structured as follows: The next section recalls the history of 

experience curves. The third section presents the experience curve model and its classical 

limitations. A critical survey of experience curves applied to PV modules and their particular 

limitations is presented in section four. We perform an out of sample evaluation to choose the 

best specification of the model in section five.  Section six presents scenarios for module cost 

until 2020 based on the best specification, and section seven the implications for PV 

electricity’s competitiveness. Section eight concludes.   

2 History of experience curves 

Experience curves15 are based on Arrow’s theory (1962) basing endogenous technological 

change on “learning by doing”, and analysing its economic implications. Learning by doing 

relies on the hypothesis that “technical change in general can be ascribed to experience, that it 

is the very activity of production which gives rise to problems for which favourable responses 

are selected over time” (Arrow, 1962). It arises from the empirical observation that experience 

increases performance (defined as an output/input ratio). This was earlier formalized in 

economics by Wright (1936) for the Aeronautical industry, who noticed that the number of 

labour-hours spent in the production of an airframe is a decreasing function of the number of 

similar airframes previously produced. The amount of labour-hours required for the Nth 

airframe was indeed proportional to N-1/3. This relation was used as a production planning 

tool. 

Based on 24 selected industrial products, the Boston Consulting Group (BCG, 1968) 

developed a modern approach of the experience curve, based on total unit cost rather than 

                                                 
15 Both terms “learning curve” and “experience curve” are used interchangeably throughout the literature. We 

will only use the term “experience curve” thereafter. 
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only labour productivity. The model defines average unit cost as a function of cumulative 

output. As experience curve, we will refer to this modern approach from now on. Experience 

curves gained business planners interest, as they would help strategic planning of production. 

For example, an important first mover advantage was promised to firms riding down the 

experience curve to reduce costs, by expanding their market early through aggressive pricing. 

However, the outcome of such strategies happened to be disappointing (Lieberman, 1987), 

bringing up many critics, such as the impossibility to account for knowledge spillovers or 

market effects on price. This led to a certain loss of interest from strategic business planners. 

Despite this relative loss of interest in business planning, the experience curve concept has 

not been neglected, as it drew attention for other purposes. Used on more global scales, it 

identifies the cost decrease potential from learning by doing for technologies that are not yet 

competitive, which justifies technology development policies when this learning is not fully 

captured by the firms. It is also one of the most common ways of endogenizing technological 

change in economic-energy-environment models such as MESSAGE (Messner, 1997) or 

MARKAL (Seebregts et al., 2000). As a result, many experience curves have been carried out 

in various industries (see for example Dutton and Thomas (1984) who study the results of 108 

experience curves in 22 industrial sectors). 

3 The experience curve model 

3.1 The model 

Experience curves are classical econometric models in which experience is always an 

explanatory variable, measured by cumulative production or another proxy such as 

cumulative installed capacity. If no additional explanatory variable is used, one gets the 

simplest specification, defined by: 

C� =	C�	Exp�–
																						(1) 
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With 

C� the cost of one unit of output at time t 

C0 the cost of the first unit 

Exp� experience at t, measured by cumulative output 

To estimate the parameters econometrically, the following specification derived from (1) is 

used: 

log�C�� = 	 log	�C�� − E	log�	Exp�� + ε� 																				(2) 

With ε� the error term, assumed to have a zero mean and constant variance, and to be 

independent and identically distributed 

Based on the experience parameter E, the learning rate gives a practical evaluation of the 

percentage of change in cost corresponding to a doubling of experience: 

Learning rate= 1 - 2–E 

A learning rate of 0.1 means that unit cost decreases by 10% for each doubling of 

experience. 

Experience is always included in experience curves. It drives cost down through learning 

by doing as defined by Arrow (1962). However, other drivers of total cost16, identified by 

Hall and Howell (1985) are often omitted: 

• Other forms of learning, including learning by searching (brought by R&D), learning 

by using (through feed-backs from users which helps optimising the product), and 

learning by interacting (transfer of knowledge between users, producers, research 

institutes and policy makers due to knowledge networks, Kamp, 2002). 

• Knowledge spillovers: the flow of knowledge outside the organisation where it has 

been created, without any market compensation. These spillovers are more important 

between firms that are geographically or technologically close. For experience curves 

at the firm scale, they induce a cost reduction that is not generated by the firm’s own 

experience, thus altering the experience parameter. However, for global experience 

                                                 
16 The experience curve defined by Wright (1936) and Arrow (1962) are applied to labour cost at a firm 

scale, which is reduced by learning by doing only. Being applied to total cost on a more global scale, other 

parameters drive cost dynamics for modern experience curves. 
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curves based on world average cost, spillovers are included in the global experience 

effect. 

• Scale effect, which is the unit cost variation corresponding to an increase in 

production scale. 

• Product standardisation, reducing transaction costs in the industry. 

 

The econometric theory argues that if an explanatory variable is excluded from a model, 

the coefficients of the remaining variables will be biased unless the omitted variable is 

uncorrelated with every included variable (Berndt, 1991).  

To limit the omitted variable bias, other explanatory variables have been recently added to 

the model, such as input price, R&D, or scale effect, leading to more complex experience 

curves with the following general specification: 

C� = 	A	�P���	�Exp��–
�R&���∝ 		∏ �p	�,��		��� 																						(3) 

With: 

P� the average plant size at time t 

Exp� experience at time t 

R&�� the stock of knowledge brought by R&D at time t, the definition is explained in section 

3.2. 

p	�,� the price of input j at time t 

A,s17, E, ∝, and �� the parameters that can be estimated econometrically taking the logarithm 

of (3). 

3.2 Econometric issues and other limitations 

Experience curves are usually estimated with Ordinary Least Squares (OLS). This 

estimator is designed for classical linear regression models. However, this implies several 

assumptions with which experience curves do not always comply, mostly specification error 

(omitted variables as explained before and structural stability), serial correlation, simultaneity, 
                                                 
17 Note that here, s, the scale index, is a constant, leading to a linear function on a log-log scale. Isoard and 

Soria (2008) suggest a different equation to account for flexible return to scale with a convex or concave shape 

on a log-log scale. 
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and multicollinearity. Other concerns are not related to the econometric theory such as the use 

of price as a proxy for cost, knowledge spillovers, and the lack of product quality 

consideration. We describe those limitations with a particular attention to the consequences 

on the predictive power rather than the accuracy of the estimation of the parameters. We see 

to which extent those limitations apply to the PV industry in section 4. 

3.2.1 Use of price as a proxy for cost 

Cost data being difficult to obtain, average price is generally used as a proxy for average 

cost. It introduces a bias if price varies independently of cost. Such variations happen if the 

structure of the industry or the regulation changes. 

While it is growing, an industry goes through different market structures with different 

impacts on price irrespective of cost. First market entrants can fix price below production cost 

in order to establish the market. Benefiting from market power, they can then maintain price 

while costs drop to benefit from a monopoly rent, increasing the gap between cost and price. 

Finally industry growth can lower entry barriers, increasing competition and reducing the gap 

between cost and price.  

New disruptions such as technology breakthroughs can bring new phases of instability 

influencing price separately from cost. Market concentration could be controlled with the 

Herfindahl–Hirschman Index18 (HHI). Lieberman (1984) for example finds a change in price 

behaviour at a HHI of roughly 0.2 (that is to say five firms of equal size) for chemical 

processing industries. 

3.2.2 Knowledge spillovers 

We distinguish intra-sectoral spillovers, for which the knowledge remains in the same 

sector, and cross-sectoral spillovers, for which it flows into another sector.  

Cross sectoral spillovers bias all experience curves, since part of the experience effect is 

then due to the flow of knowledge from another industry. If it does not happen to the same 

extent after the estimation period, price reduction predictions are over-optimistic. Söderholm 

                                                 
18 The HHI is defined as the sum of the squares of the market shares of the largest firms within the industry. 
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and Sundqvist (2007) recommend the introduction of a time trend in the experience curve 

equation to test the presence of external spillovers. If the experience parameter remains 

statistically significant, it really captures the impact of experience and not a general 

exogenous technical improvement. 

The effect of intra-sectoral spillovers depends on the scale at which experience curves are 

carried out. At company level, they were acknowledged as an important limit of experience 

curves as a business planning tool, since early aggressive pricing didn’t always prevent new 

entrants from penetrating the market, even those with strong learning rate. Using the BCG’s 

data (BCG, 1968), Lieberman (1987) shows that a big part of the learning ultimately diffuses 

outside the firms. Gruber (1998) studies those spillovers in the semiconductor industry, 

separating the internal, national, and foreign components of the experience effect. He finds 

strong evidence that firms learn from external sources, but the origin of this external learning, 

domestic or foreign, does not seem to be relevant in this particular industry. However, at a 

global scale, experience curves aggregate cumulative output across all firms, therefore taking 

intra-sectoral spillovers into account as part of the global experience effect (Argote and Epple, 

1990). 

3.2.3 Multicollinearity 

Multicollinearity arises when explanatory variables are highly correlated. If it does not bias 

the OLS estimators, and does not affect the R2 statistic, it leads to high variances of the 

estimators. The regressions can then give absurd values of the parameters which affects 

predictions accuracy. This suggests that multicollinearity might be a major issue if some 

additional explanatory variables are highly correlated to experience. 

3.2.4 Structural stability 

To apply an OLS regression to experience curve equations, the parameters are assumed to 

be constant over time. If experience is the only explanatory variable, it does not allow any 

flexibility in the pace at which cost decreases with cumulative production, which can be 

inconsistent with economic theory. Grübler (1998) claims that cost reduction is fast during the 

initial development phase when R&D plays an important role, while it would slow down in 
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the more mature phases. Additional explanatory variables can allow some flexibility, as for 

example R&D could account for the different phases described above19. 

Constant parameters also prevent from analysing technological breakthroughs. They can be 

modelled by breaking the experience curves in several linear parts having different 

parameters. To analyse the significance of breaking the adjustment into two periods, Isoard 

and Soria (2001) propose a structural change test procedure developed by Brown et al. (1975). 

A Chow structural break test can also be used. 

3.2.5 Simultaneity 

The causal relationship assumed in experience curves is that cost is brought down by the 

increase in experience through new production. Conversely, in their paper exploring the 

econometric issues of experience curves, Söderholm and Sundqvist (2007) note that a main 

reason why investments required to produce new output are made is that costs have been 

brought down. This suggests that new capacity installation and cost are determined 

simultaneously; hence that cumulative production is endogenous20.  

3.2.6 No perfect proxy of innovation 

The R&D based knowledge stock at time t R&Dt in equation (3) is generally calculated 

according to: 

R&Dt =  (1-r) R&Dt-1 +   It-x                                                               (4) 

With 

r the depreciation rate 
                                                 
19 Logistic curves or S curves can account for different learning rates corresponding to the different 

development phases (Pan and Köhler, 2007). However, they lack the empirical support experience curve have. 
20 Söderholm and Klassen (2007) use an econometric model with two equations: an experience curve 

including R&D to account for innovation, and a diffusion equation, in which cost, among other variables, 

explains new output production. However those equations are estimated independently because of the low 

correlation among the error terms of the two equations (correlation coefficient of -0.3). If the correlation would 

be important, they suggest using a three stage least square estimation instead of the OLS. 
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It-x  innovation (R&D expenditure or patent application) at time t-x, with x a lag accounting 

for the time for innovation to become effective 

The two most common proxies for innovation are R&D expenditure and patents 

application (OECD, 2009), which are far from perfect. Indeed, R&D expenditure does not 

measure the output of innovation, and patented innovation only represents a minor part of this 

output, which can also be protected by secrecy or lead time. Besides, public and private R&D 

should be differentiated as they have a different impact on the technological change process, 

and this differentiation would help better understand the impact of “technology push” 

policies. 

3.2.7 Other 

Product quality is not taken into account by experience curves, while it has important 

economic implications. Indeed, experience curves focus on unit cost. Change in quality is 

then beyond this measure. 

In experience curves, there is theoretically no floor cost since the cost tends to 0 when 

cumulative production tends to infinite. However cumulative production is obviously limited, 

which constitutes a de facto limit. Some studies introduce a floor cost by adding a constant in 

the equation as Yang and Williams (2009).  

The uncertainty is difficult to evaluate due to its high number of possible causes: the data 

source, the proxy used for experience, the econometric method, the methodology to correct 

for inflation or exchange rates, etc. The IEA (2000) suggests constant re-estimation of the 

parameters to lower this uncertainty while the technology is being developed. Van Sark 

(2008) notes that the standard error of the mean price used as dependent variable to compute 

the experience parameter, has to be considered as well. It can be included through the error 

propagation theory. 
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4 Critical literature survey of experience curves applied to 

photovoltaic modules 

4.1 Survey of experience curves applied to photovoltaic modules 

In this section, we survey experience curves applied to PV modules in academic 

publications and a report from the International Energy Agency (IEA). We obtain 20 studies, 

among which 17 explain module cost by experience only, listed in table 1, and only 3 include 

additional explanatory variables besides experience, listed in table 2. 

All the experience curves listed in table 1 have the same specification, with module price 

as dependent variable, and experience as unique explanatory variable. They differ by the time 

frame used for the estimation, the geographical scale, and the data source. The average 

learning rate is 20.2%, meaning that module price is reduced by 20.2 % each time cumulative 

production doubles. The standard error of experience curves on a global scale is 3.2%, while 

it is 7.6% for experience curves at a country scale. We explain this difference in section 4.2.2 

by knowledge spillovers. 

Table 1 Review of experience curves of PV modules with experience as only explanatory variable 

Study 
Geographical 
scale 

Time 
frame 

Learning 
rate 

Data Source 

Maycock & Wakefield 
(1975) 

Global 1965-1973 20.0% n.a. 

Tsuchiya (1992) Japan 1979-1988 19.0% n.a. 

Williams é Terzian (1993) Global 1976-1992 18.4% Strategies Unlimited 

Cody and Tiedje (1997) US 1976-1988 22.0% Maycock 

Tsuchiya (1999) Japan  1979-1998 17.6% n.a. 

IEA (2000) Global 
1976-1984 16.0% 

EU-Atlas and Nitsch (1998) 
1987-1996 21.0% 

Harmon (2000) Global 1968-1998 20.2% Maycock 
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Wiliams (2002) Global 1976-2000 20.0% Strategies Unlimited 

Parente et al. (2002) Global 

1981-2000 22.8% 

Maycock 1981-1990 20.2% 

1991-2000 22.6% 

Poponi (2003) Global 
1976-2002 25.0% 

Maycock 
1989-2002 19.5% 

Schaeffer (2004) 
Global 

1976-2001 20.0% 
Strategies Unlimited 

1987-2001 23.0% 

Germany 1992-2001 10.0% Photex database 

Papineau (2004) 

Germany 1992-2000 15.0% 

Extool Project, IEA Switzerland 1992-2000 10.0% 

US 1992-2001 32.0% 

  US 1992-2001 20.0% US DOE 

Nemet (2006) Global 
1978-2001 26.0% Maycock 

1976-2001 17.0% Strategies Unlimited 

Van Sark (2006)  Global 

1976-2001 20.6% 

Strategies Unlimited 1981-1990 16.6% 

1991-2000 29.6% 

Swanson (2006) Global 1979-2005 19.0% Strategies Unlimited & other 

Van Sark (2008)  Global 1976-2006 20.6% Strategies Unlimited & other 

Breyer et al. (2010) Global 
1976-2003 22.8% 

Strategies Unlimited & other 
1976-2010 19.3% 

 

Besides experience, experience curves in table 2 identify four variables with a significant 

effect on modules cost: 

• R&D, through learning by searching. Kobos et al. (2006) find that learning by 

searching has a significant positive effect. 
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• Scale, through return to scale. Isoard and Soria (2001) find constant return to scale. 

However, allowing for a flexible value of the parameter, he finds decreasing return to 

scale before 1994. With more recent data, Yu et al. (2011) find increasing return to 

scale. This suggests that returns to scale were decreasing in the early phase of the 

development of the PV industry, and then increasing, which is inconsistent with the 

constant parameters hypothesis. However, the variability of the scale parameter found 

in the studies can be due to multicollinearity increasing the variance of the estimator. 

• Input price, which accounts for 30% of the cost of a module21. The most important are 

silicon (20% of module cost), flat glass (4%) EVA (3%) and silver (<3%). Yu et al. 

(2011) find a strong positive effect of silicon price on module price. They also find a 

slight negative effect of silver price, explaining it by the substitution effect: A rise in 

silver price urges firms to decrease their use of silver, leading to a reduction in the cost 

of PV production. 

 

Table 2 Review of multifactor experience curves of PV modules 

Study Time scale 
Learning 
by doing 

Learning by 
searching 

(R&D) 

Return to 
scale 

Input price 

Silicon Silver 

Isoard and Soaria 
(2001) 

1876-1994 9.2% - 1 - - 

Kobos et al. (2006) 1975-2000 18.4% 14.3% - - - 

Yu et al. (2011)  1976-2006 13.5% - 1.066 0.285 -0.135 

 

The average learning by doing rate found by experience curves with several explanatory 

variables in table 2 is 13.7%. It is calculated from the experience parameter too. However it is 

much lower than the learning rate from models with experience only, in table 1 (20.9% on a 

global scale). This is in line with the fact that when experience is the only explanatory 

variable, the parameter captures the influence of other drivers. 

                                                 
21 Source: Photon consulting annual report 2012, p. 154, and US DOE (2010), p.22. 
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4.2 Main limitations of experience curves applied to photovoltaic modules. 

Are those results weakened by the limitations listed in section 3? We check whether each 

limitation applies to experience curves applied to PV modules on a global scale. 

Simultaneity does not seem to be an issue for experience curves applied to PV modules. 

With an intertemporal correlation analysis based on the Granger causality test (Granger, 

1969), Isoard and Soria (2001) find that the null hypothesis can be accepted, which means 

that there is no proof that lower cost induces additional capacity in the following periods. 

Based on the same test, and a Hausman (1978) exogeneity test, Kahouli-Brahmi (2009) also 

shows that there is no evidence of endogeneity effect. Since on the middle and long term, 

FITs follow the price of PV electricity, the gap between PV electricity price and the FITs, 

driving demand, does not depend on PV module price. Therefore the price of PV modules is 

not likely to be an important driver of new capacity installation. 

Structural stability does not seem to be an issue either. Nemet (2009) finds a high 

variability of the learning rates, which depend on the estimation period. However, when 

silicon price is controlled, the learning rate is stable (see figure 6 in section 5.3). The 

instability of the learning rate is therefore rather due to the omission of silicon price than to 

the variation of the actual learning rate. Based on a Chow structural break test, Parente (2002) 

found a significant break in 1991 for an experience curve based on experience only, 

interpreting it as a consequence of economies of scale and technology development driven by 

important PV development initiatives in various countries at that time (Japanese Sun Shine 

and the German 1000 Roofs). However Isoard and Soria (2001) find a temporal stability of 

the coefficients of his experience curve using CUSUM and CUSUM of square tests. 

4.2.1 Omitted variables bias 

Other than experience, four drivers of module cost are identified in the literature survey: 

R&D, scale, silicon and silver price. Therefore experience curves that do not take all these 

drivers into account might have an omitted variable bias in their remaining parameters, as 

shown by the difference between the average learning by doing rates in table 1 and 2. Omitted 
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variable bias is therefore a major issue for experience curves, and can be reduced by the 

addition of explanatory variables. 

If the omitted variable bias prevents from accurately measuring the effect of each variable, 

the consequence on the accuracy of the predictions is not straightforward. We show in annex 

2 that the omitted variable bias affects the accuracy of the prediction only if the relation 

between the omitted variable and experience during the predicted period is different than 

during the estimated period. 

4.2.2 Knowledge spillovers 

Intra-sectoral spillovers take place in the PV industry. They have been identified by Flint 

(2009) calculating that firms benefited from 8.83% of the “total stock of learning”, using a 

dynamic structural-empirical model on 2003/2008 data22. 

Those intra-sectoral spillovers explain the different learning rates found in every country in 

table 1. Countries producing more PV modules than the average have lower learning rates 

(Germany, average of 12.5%), because the increase in experience is higher, while the price 

follows the same trend as in other countries because of the global nature of the learning due to 

those spillovers. This global learning process advocates for the estimation of experience 

curves on a global scale. 

Cross-sectoral spillovers could also be a limitation to experience curves applied to the PV 

industry. Köhler (2006) suggests that major spillovers happened from the semiconductor to 

the nascent PV industry, explaining part of past cost reductions, while this might not happen 

to the same extent in the future, since compared to the growing PV industry, the 

semiconductor industry is of diminishing importance. But Kahouli-Brahmi (2009) found that 

there is no significant time trend effect for rural photovoltaic energy, while the other 

coefficients remain significant23, suggesting that these spillovers didn’t play a significant role. 

                                                 
22 Studying the Chinese PV industry, De La Tour et al. (2011) find that this knowledge transfer happens 

mainly through labour mobility and manufacturing equipment trade 
23 However the same test for decentralized PV show gives opposite results 
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4.2.3 Use of price as a proxy for cost 

The use of price as a proxy for cost is likely to introduce a bias in the experience parameter 

since market conditions have been very unstable in the PV sector. Market effects affecting 

price independently of cost are analysed in chapter 3. Schaeffer et al (2004) notice that the 

first PV companies were subsidiaries of bigger firms, whose core business was not PV, but 

saw PV as a strategic investment where they could afford short term losses by setting a price 

below production cost. Then, benefiting from market power, they could maintain price while 

costs was dropping to take advantage of monopoly rent. The industry getting more mature, 

qualified workforce and turn-key manufacturing equipment became widely available as 

explained in chapter one, lowering entry barriers. Numerous new manufacturers, especially 

from China, entered the PV industry, increasing competition and decreasing margins. This 

resulted in important overcapacity in 2011 and 2012 pressuring price down24. 

PV demand being historically mostly driven by incentive policies, policy changes affect 

demand, eventually affecting price irrespective of cost. Söderholm and Sundqvist (2007) 

point out that it may be a bad practice for analysts to use an estimated econometric model 

found suitable for one time period when attempting to predict what will happen in another 

period under a different set of policy rules, for example with different feed-in tariffs for some 

major countries. Nevertheless, most previous experience curve studies are built on the 

presumption that the structure of the model employed is unaffected by any policy change over 

the time period considered. Chapter three confirms that the influence of feed-in tariffs on 

module price in not significant. However feed-in tariff changes cause short term distortions. 

For the PV industry, the frequency of policy changes is such that it is not possible to find a 

period of policy stability long enough to perform a regression. 

Finally, we show in chapter 3 that the silicon shortage from 2005 to 2009 had a big impact 

on the structure of the PV industry. The capacity constraint gave silicon producers some 

market power allowing them to set high silicon price. As it is the main input for PV cells 

production, this raised cells and modules price over this period. This can be controlled by 

including silicon price in the model. 

                                                 
24 http://www.pv-tech.org/news/solar_module_inventories_reach_a_massive_10gw_says_ims_research 
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4.2.4 Multicollinearity 

Since the PV industry is growing quickly25, each year’s new production (defining the 

market size) accounts for an important part of cumulative production. Therefore scale and 

R&D that are linked to market size are likely to be correlated to cumulative production.  This 

suggests that multicollinearity could be an important issue for experience curves applied to 

the PV industry including scale or R&D. With the Belsley et al. (1980) procedure, Isoard and 

Soria (2001) find no evidence of collinearity for PV with an experience curve with scale as 

additional variable. However Kobos et al. (2006) find multicollinearity for an experience 

curve including cumulative production and R&D knowledge stock with a VIF test, but only 

with some specific values of the time lag and the depreciation rate used to estimate the R&D 

knowledge stock. Kouvaritakis et al. (2000) suggest a solution to deal with the issue of 

multicollinearity by fixing the R&D parameter at different levels while estimating experience 

parameter econometrically. The final choice of the former parameter then depends on 

statistical criteria such as the value of the likelihood function and the robustness of remaining 

estimated parameters, and subjective ones. 

4.2.5 Uncertainty concerning the data prior 1990 

For old data (before 2005), all studies on a global scale except IEA (2000) are based on 

two major data providers: Maycock26, a historical expert of the PV industry, and Strategies 

Unlimited27, a company specialised in semi-conductors selling market reports. As figure 1 

shows, Maycock’s data suggests a steeper experience curve than Strategies Unlimited one, 

due to very different values for PV module price prior to 1990 (corresponding to 200 MW 

cumulative capacity). Experience curves listed in table 1 show that global studies following 

Maycock’s data have an average learning rate of 22.3%, while those following Strategies 

Unlimited have an average learning rate of 20.6%. Since those datasets are the only one 

available for old data, this creates a high uncertainty concerning the data prior to 1990. To our 

knowledge, it is not possible to identify the best data source. 
                                                 
25 The size of the market has been growing on a 57% compound annual growth rate from 2000 to 2011. 
26 Maycock and Wakefileld, 1975; Maycock, various PV news; Maycock, 2002, 2005; Maycock and 

Bradford, 2007 

27 See for example Strategies Unlimited, 2003 
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Figure 1 PV modules price evolution according to the two major data providers (Source: Nemet 
2007) 

 

4.2.6 Product quality consideration 

For PV modules, the measure is often in dollar per Watt-peak28 ($/Wp), which accounts 

neither for the lifetime nor for the reliability of power generation, while those two features are 

major determinants of PV electricity cost (in dollar per kWh). Those characteristics should 

then be taken into account when electricity cost is studied rather than module cost. 

4.2.7 Influence of currency rates 

International trade plays an important role in the PV industry. For example, while Europe 

accounted for 75% of the global market in 2011 (EPIA, 2012), 94% of the modules are 

assembled elsewhere, mainly in China. Fluctuations between the US Dollar, the Chinese 

Renminbi, and the Euro therefore affect PV module prices in dollars independently of 

technological progress.  

                                                 
28 Watt-peak (Wp) is a measure of the nominal power of a photovoltaic solar energy device under Standard 

Test Conditions. 
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4.2.8 Synthesis 

We focus on experience curves applied to PV modules on a global scale. The most 

important limitations are omitted variable bias, especially when experience is the only 

explanatory variable and multicollinearity when other variables are added. Moreover, the 

utilisation of price as proxy for cost is likely to introduce a bias in the unstable PV industry. 

5 Determination of the best specification of the model 

The purpose of experience curves is to predict future cost (or price). Therefore predictions 

are done out of the sample used to estimate the model. The accuracy of the predictions 

depends on two elements: (1) the predictive power of the model, and (2) the prediction of the 

explanatory variables used. In this section we focus only on the first one, by choosing the 

model specification with the best predictive power. 

The addition of an explanatory variable has two opposite effects on the predictive power. 

On the one hand, it limits the omitted variable bias, which increases the predictive power of 

the model. But on the other hand, it can create multicollinearity if the additional variable is 

highly correlated to one or several other explanatory variables, which decreases the predictive 

power by increasing the variance of the estimator. Therefore, econometric considerations 

cannot help decide whether an explanatory variable should be added or not. In this section, we 

choose the best specification by evaluating empirically the predictive power of all the possible 

combinations of explanatory variables. 

5.1 Methodology 

We test 16 different specifications of the model listed in table 3. Indeed, if experience is 

always included, four variables identified in the literature can be added: R&D, scale, silicon 

price, and silver price. We didn’t find a significant effect of other input prices on module 
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cost29. Besides, we test two proxies to measure experience: cumulative capacity, and 

cumulative capacity with one year lag to account for the time for the learning process to take 

place. 

 

Table 3 Sets of additional variables besides experience for the 16 specifications tested 

No additional variable 

1 

 
Si (Silicon) Ar (Silver) Scale R&D 

 

 
2 3 4 5 

 
Si and Ar Si and Scale Si and R&D Ar and Scale Ar and R&D Scale and R&D 

6 7 8 9 10 11 

 

Si, Ar, 

and Scale 

Si, Ar, 

and R&D 

Si, Scale, 

and R&D 

Ar, Scale, 

and RD  

 
12 13 14 15 

 

ALL (Si, Ar, Scale, and R&D) 

16 

 

 

Since the model is built to predict future values, the predictive power of the specifications 

is evaluated on predictions out of the samples used to estimate them. For example, if a model 

is estimated from 1990 to 1999, the evaluation is done with predictions after 1999. 

We estimate 192 models. Indeed, each of the 16 possible specifications is estimated on 12 

ten years periods. The first one goes from 1990 to 1999, and the last one from 2001 to 2010. 

For each estimation, module price predictions are made for every year from the one following 

the estimation, to 2011, the last year for which we have historical values. The predictions are 

done using historical values of the explanatory variables. The error is measured by the 

                                                 
29 Using the data explained in section 5.1, and flat glass price and synthetic rubber price from the US Bureau 

of statistics. 
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difference between the prediction  !"		and the realised value of module price  ". Since price 

decreases quickly, we need to consider the error relative to the price by taking the percentage 

error. Moreover, since error can be either negative or positive, we take the absolute value of 

those percentage errors. 

For each specification/time horizon, we get several evaluations of the prediction’s 

accuracy. Therefore, we compute for each specification/time horizon the Mean Absolute 

Percentage Error defined by: 

#$%&�'� = (
)* ∗ ∑ -.!/0././ -)*"1(               (5) 

With 

t the time horizon 

2� the number of evaluations of the specification at this time horizon 

This methodology provides us with the MAPE of the predictions for time horizons 

between 1 and 11 years for each of the 16 specifications. 

5.2 Data 

The dataset consists in world average annual values of module price, cumulative capacity, 

plant size, silicon price, and R&D knowledge stock from 1990 to 201130 represented in 

figures 2 to 5. It avoids the high uncertainty of the data prior 1990 noted in section 4. The 

sources of the data are listed in annex 3. 

The high silicon price from 2004 to 2009 (figure 3) due to the silicon shortage with a peak 

in 2008 explains the slight increase in module price on the same period (figure 2). Silver price 

(figure 3) also started to rise in 2004, due to growing investor’s interest in silver modifying 

the supply/demand balance. 

The other variables, cumulative capacity and scale (figure 4), and R&D (figure 5), increase 

regularly over time with the size of the industry. As a consequence, they are highly correlated 

as confirmed by table 4 giving the correlation between the logarithms of the variables which 

                                                 
30 Except R&D for which the data stops in 2007 
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are used in the regressions: ρ(LogScale,LogExp)= 0.996, and ρ(LogR&D,LogExp)=0.984, 

with ρ the correlation coefficient. 

Figure 2 Evolution of module price from 1990 to 2011 

 

Source: see Annex 3 

 

Figure 3 Evolution of silicon and silver price from 1990 to 2011 

 

Source: see Annex 3 
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Figure 4 Evolution of cumulative capacity and plant size from 1990 to 2011 

 

Source: see Annex 3 

 

 

Figure 5 Evolution of R&D knowledge stock from 1990 to 2007 

 

Source: see Annex 3 
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Table 4 Correlation between variables used in the specifications 

  LogExpa LogScale LogSilicon LogSilver LogRD 

LogExpa 1 

LogScale 0.996 1 

LogSilicon 0.455 0.499 1 

LogSilver 0.784 0.792 0.763 1 

LogRD 0.984 0.975 0.306 0.683 1 

a: Here we use cumulative capacity as proxy for experience, 

cumulative capacity with one year lag gives similar results 

5.3 Results 

The MAPE of the 16 specifications according to the time horizon is represented in figure 6. 

The proxy for experience used is cumulative capacity with one year lag. It performs better 

than cumulative capacity without lag (the results without lag are shown in annex 4) : the 

average MAPE is 41.6% with the lag and 44% without lag31. 

The numbers represent the specification numbers from table 3. The thick and dark curve 

represents the classic specification with experience only. It shows that the best set of 

explanatory variables is the number 2 with experience and silicon price (the doted curve). It 

performs better than the usual specification with experience alone, and the addition of any 

other explanatory variable decreases the predictive power of the model. We will therefore use 

this specification for the prediction post 2011. 

 

                                                 
31 A two years lag gives worth predictions based on the same tests 
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Figure 6 Comparison of MAPE(t) for each model, MAPE(t) being the mean absolute percentage 
error according to the time horizon t 

 

The specifications including R&D (5,8,10,11,13,14,15,16)  end after a time horizon of 7 years because 
we do not have data for R&D after 2007, so no long term evaluation could be done. 

 

This result can be interpreted in light of the trade-off between omitted variable bias and 

multicollinearity. The inclusion of silicon price avoids the corresponding omitted variable 

bias. Figure 7 showing the learning rate of experience curves with or without including silicon 

price show that the bias corresponding to the omission of silicon price is important and 

temporally not stable because of the silicon shortage from 2004 to 2009. Moreover, since 

silicon price is poorly correlated to experience (ρ=0.46, c.f. table 3), its inclusion in the model 

does not create multicollinearity32. On the contrary, the introduction of scale or R&D 

decreases the accuracy of the model, because they are highly correlated to experience 

(ρ>0.98), so they create important multicollinearity33. But the bias resulting from their 

omission does not affect the predictions’ accuracy much: because their relation with 

                                                 
32 The Variance Inflation Factor (VIF) of the regression from 1990 to 2011 with experience and silicon price 

is 1.64. Since 10 is the maximum acceptable with a 0.1 tolerance value, this does not show multicollinearity. 
33 The VIF are 159 for experience and scale, and 30.9 for experience and R&D, the regression with R&D 

ending in 2007. This shows important multicollinearity. 
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experience is stable, the effect of this omitted variable bias in the predictions accounts for the 

real effect of the omitted variable (c.f. annex 2 for the justification). Silver price is less 

correlated to experience (ρ=0.78)34, but it has only a small effect on module price, and the 

results show that it shouldn’t be used in the model.  

 

Figure 7 Learning rates according to the end of the 10 years estimations, for two specifications: 
experience only and experience and silicon price. 

 

The learning rate is temporally stable when silicon is included in the specification. But with 
experience only, the learning rate is not stable. The difference corresponds to the omitted variable bias 

due to the omission of silicon price in the model. 

 

Note that the poor performance of the models in general, with a MAPE over 15% on a ten 

years horizon, is due to the short estimation periods (10 years). This leads to a high variance 

of the estimators. For the module price prediction post 2011 in next section, the selected 

model with experience and silicon is estimated over 22 years (from 1990 to 2011), which 

leads to much lower standard errors of the coefficients than for the 10 years estimations (more 

than five time for the intercept and experience, and 3.4 times for silicon price), suggesting that 

the predictions are more accurate than what figure 6 suggests. 

                                                 
34 The VIF for silver price is 5.95. 
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Besides the predictive power of the model, the issue of explanatory variables prediction 

has to be considered as well. This will be treated in the next section by building scenarios of 

experience and silicon price evolution. 

6 Prediction of module price post 2011 

Following the results of section 5, we base the predictions post 2011 on an experience 

curve with experience and silicon price as explanatory variables. The proxy for experience is 

cumulative capacity with one year lag. We estimate the model on the whole period, from 

1990 to 2011. The addition of a time trend is not significant, which suggests that no important 

extra sectoral spillovers happened during the estimation period. The result of the regression is 

shown in table 5. The experience parameter of -0.338 corresponds to a learning rate of 20.1%. 

 

Table 5 Results of the regression of log(module price) on log(lagged cumulative capacity) and 
log(silicon price) on 1990/2011 

LogPrice Coef. Std. Err. t P>|t| [95% Conf. Interval] 

LogExp -0.338 0.010 -34.030 0.000 -0.359 -0.317 

LogSilicon 0.385 0.027 14.300 0.000 0.328 0.441 

Constant 2.490 0.073 33.920 0.000 2.336 2.644 

 

6.1 Prediction of the explanatory variables 

We need to build scenarios about the evolution of the explanatory variables until 2020. All 

the prices are in dollar 2011. The construction of different scenarios helps to test the 

sensitivity of the model to the variables. 
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6.1.1 Cumulative capacity scenarios 

Cumulative capacity scenarios made in 2012 by Photon Consulting35 and Solarbuzz36, the 

two leading market research companies in the PV sector, and the European Photovoltaic 

Industry Association (EPIA)37, are shown in figure 838.They correspond to Compound Annual 

Growth Rates (CAGRs) of the market from 15% (EPIA low) to 23% (EPIA high) from 2011 

to 2020. The CAGR was 55% from 2000 to 2011. The lower predicted CAGRs until 2020 are 

due to lower incentive policies expected in Europe, the main market. 

Figure 8 Cumulative capacity forecast until 2020 

 

Source: Photon consulting (2012), Solarbuzz (2012), EPIA (2012) 

                                                 
35 Photon Consulting annual report 2012, p.149, prediction until 2015. Predictions from 2016 to 2020 have 

been made using the same trend in the CAGR. 
36 Solarbuzz, Marketbuzz 2012 (annual market report), p.254, prediction until 2016. Predictions from 2017 to 

2020 have been made using the same trend in the CAGR. 
37 EPIA (Global market outlook for photovoltaic until 2016), EPIA, May 2012. Predictions from 2017 to 

2020 have been made following the same trend in the CAGR. 
38 The International Energy Agency predicted a lower cumulative capacity of 210GW in its roadmap in 2010. 

However, this scenario is two years older than those from the EPIA , and the prediction for 2010 already showed 

an important underestimation of 30% (27 instead of 40 GW). Therefore we do not consider this scenario. 
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6.1.2 Silicon price scenarios 

We build two scenarios of silicon price evolution until 2020, shown in figure 9. We 

consider a linear decrease from 53$/kg in 2011 to 20 $/kg in 2020 in the low case, which 

corresponds to the lowest price prevision found in market forecasts in 201239, or 40 $/kg in 

the high case, which corresponds to the highest price prevision40. We consider a regular 

decrease of silicon price, because after the shortage period from 2004 to 2009 explaining the 

sudden rise of silicon price until 2009 and the sudden decrease since then, there is now an 

oversupply of polysilicon, which is expected to be a long term situation given the 

announcement of new production capacity. The cost decrease is driven by scale increase, 

lower electricity cost, technology improvement, and long term contracts renegotiation 

reducing the gap with the lower spot price. 

 

Figure 9 Silicon price forecast until 2020 

  

                                                 
39 Source: Sun & Wind Energy, 2011 
40 Source: http://www.pv-magazine.com/news/details/beitrag/report-finds-silicon-market-recovering-on-the-

back-of-solar-demand_100003385/ 
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6.2 Module price prediction until 2020 

Using the specification chosen in section 5 and estimated from 1990 to 2011, and the two 

previous scenarios of the evolution of the explanatory variables, we are able to forecast the 

evolution of module price, presented in figure 10. The low scenario for module price 

corresponds to the highest scenario for PV industry development, and the lowest scenario of 

silicon price. The highest scenario for module price corresponds to the slowest development 

of the industry and the highest scenario for silicon price. On average, we find a 67% decrease 

of module price from 1.52 $/Wp in 2011 to 0.50$/Wp in 2020. The increase in cumulative 

capacity is responsible for 75% of this reduction, and the silicon price decrease for 25%. 

 

Figure 10 Module price prediction until 2020 

 

7 Impact on the cost of photovoltaic electricity 

In this section, we predict the cost of PV electricity based on the prediction of module 

price from section 6. The standard measure of the cost of electricity is the Levelised Cost Of 
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Electricity (LCOE), which is the average cost of generating electricity over the lifetime of the 

system, according to: 

345& = 67'	%87972'	:;<=7	�>?9'	?@78	'ℎ7	<BC7'BD7�67'	%87972'	:;<=7	�7<7>'8B>B' 	E8?F=>7F	?@78	'ℎ7	<BC7'BD7� 

7.1 Calculation of the photovoltaic levelised cost of electricity 

Module price accounts for 40% of the total price of an average system in 201141 as shown 

in figure 11.  

 

Figure 11 Cost breakdown of a PV system in 2011 (source: Photon consulting 2012) 

 

 

We are thus not able to directly infer the PV system or PV electricity cost from the results 

concerning modules. We need to make assumptions about the cost of other components, the 

type of system, parameters influencing the quantity of electricity produced such as sunlight 

availability and lifetime of the system, and the discount rate.  

The system can be residential, commercial, or industrial (utility). Due to economies of 

scale, the LCOE is cheaper for bigger systems, and modules account for a more important 

part of total cost. The inverter has to be replaced once which accounts for most of the 

                                                 
41 Source: Photon Consulting (2012), p. 84 
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operation and maintenance cost. Moreover, the lifetime of the system has an influence on the 

LCOE. Other than the characteristics of the system, sunlight availability and discount rates 

are also important determinants. Sunlight availability is measured by the Annual Solar 

Irradiation (ASI). For example, the North of Germany or Alaska has an ASI of 1000 

kWh/year, while the south of Spain, Italy, or California has an ASI of 2000 kWh/year. Since 

95% of the cost of a PV system over its lifetime is CAPEX while the electricity is produced 

regularly over the whole lifetime, the discount rate is an important determinant of the LCOE. 

As Branker et al. (2011) noted in a survey of studies of PV LCOE, the assumptions relative to 

the discount rate are often not clear; it stands between 5% and 10% in most studies. 

We computed the LCOE of three types of PV systems: residential, commercial, and utility. 

Two ASI are considered, 1000 kWh/year which corresponds the north of Germany, and 2000 

kWh/year which corresponds to the sunniest areas such as California or south of Spain42. The 

lifetime of the systems increases from 25 years in 2011 to 35 years in 2020. Figure 12 shows 

the predicted LCOE in 2020 for a discount rate of 6.8%, as used by the IEA (2012) to 

compute LCOEs, and figure 13 shows the predicted LCOE for a 10% discount rate which 

correspond to the highest value used in LCOE studies. The other underlying assumptions are 

listed in annex 5. The differences in the results illustrate the importance of the geographic 

location, the type of PV system, and the discount rate on the cost of PV electricity. In 

comparison, Bosetti et al. (2012) predict a module price between 75 and 145 $/MWh for 2030 

with an expert elicitation survey, with the most likely scenario being 108$/MWh, not 

differentiating the location or the type of system. 

 

                                                 
42 Source : http://solargis.info/ 
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Figure 12 PV LCOE prediction for 2020 with a 6.8% discount rate (source: Author) 

 

ASI: Annual Solar Irradiation, 1000 kWh/year corresponds to the north of Germany or Alaska, and 
2000 to the south of Spain, Italy, or California. Hypothesis used for the computation of the LCOE are 

explained in annex 5. 

 

 

Figure 13 PV LCOE prediction for 2020 with a 10% discount rate (source: Author) 

 

ASI: Annual Solar Irradiation, 1000 kWh/year corresponds to the north of Germany or Alaska, and 
2000 to the south of Spain, Italy, or California. Hypothesis used for the computation of the LCOE are 

explained in annex 5. 
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7.2 Comparison with the levelised cost of electricity of other electricity 

generation technologies 

We can compare the cost of generating electricity by comparing the LCOE of PV 

technology and conventional technologies. Figure 14 compares predictions of LCOEs in 2020 

for conventional electricity sources and a PV utility system, with a 6.8% discount rate and for 

two locations: with solar annual irradiation of 1000kWh/year, and 2000kWh/year. The results 

suggest that the average cost of electricity generated with PV technology will only match the 

cost of conventional technologies in 2020 in the sunniest places. 

 

Figure 14 Comparison of the LCOE with a 6.8% discount rate 

 

ASI stands for Annual Solar Irradiation. 1000 kWh/year corresponds to the north of Germany or 
Alaska, and 2000 to the south of Spain, Italy, or California. Additional hypothesis used for the 

computation of the PV LCOE are explained in annex 5. Source: Author and EIA, 2012. 
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residential PV system. It is already reached in Italy having high sunlight availability and high 

electricity price. It is expected to happen in 2013 in Spain, 2015 in Germany, 2018 in 

California, and 2020 in France. 

 

Table 6 Grid parity predictions for residential PV systems in several countries 

  Italy Spain Germany California France 

Retail price of electricity43 ($/MWh) 329 277 364 149 189 

Annual Solar Irradiation44  (kWh/year ) 1800 1900 1100 2100 1400 

Grid Parity Reached 2013 2015 2018 2020 

 

7.4 Synthesis 

PV LCOE already reached the retail electricity price in some countries, but it will not 

match other technologies’ LCOE until 2018 or 2020 in the sunniest areas, and a few years 

later elsewhere. This gap is due to the fact that retail price of electricity also takes into 

account the cost of transportation and distribution. 

One should be aware about the caveats of those indicators. Grid parity compares the cost of 

PV electricity without transportation and distribution cost with retail price on the grid, so it 

makes sense only if all the electricity generated in used in situ. Moreover, both indicators are 

based on PV LCOE which does not take into account the production profile. Joskow (2011) 

notes that since the wholesale price of electricity varies throughout the day, different 

production profiles give different market values for the electricity produced. He suggests 

using more standard economic evaluation methods than the LCOE to evaluate intermittent 

technologies such as wind or PV. The market value of the electricity produced can be 

evaluated according to the production profile and the corresponding electricity price. This can 

lead to a higher value if production is synchronised with high price periods, and a lower value 

in the opposite case. Moreover, other costs are induced by the integration of intermittent 

                                                 
43 Residential, Source: http://www.energy.eu/ and http://www.cpuc.ca.gov/ 
44 Source: http://solargis.info/ 



78 
 

generation technologies into the grid. They cause short term operating challenges to balance 

supply and demand, which are costly. If the share of intermittent technologies becomes too 

important, additional cost can be caused by the need for storage capacity, grid extension, or 

back-up capacity with flexible and expensive power plants. 

8 Conclusion 

The objective of this paper is to find the best model to predict module cost and to use it to 

forecast module cost and photovoltaic (PV) electricity cost until 2020. The selection of the 

best set of combination of explanatory variables is based on an out of the sample evaluation of 

the predictive power. 

We find that the most accurate combination of explanatory variables includes experience 

(measured by cumulative capacity with one year lag) and silicon price. Based on this model 

and scenarios for the future evolution of the explanatory variables, cumulative capacity and 

silicon price, we are able to predict module price until 2020.  We predict a 67% decrease of 

module price from 1.52 $/Wp in 2011 to 0.50 $/Wp in 2020. The increase in cumulative 

capacity is responsible for 75% of this evolution, corresponding to a learning rate of 19.6%, 

and silicon price decrease is responsible for 25% of module price reduction. 

We determine the consequence on PV’s Levelised Cost Of Electricity (LCOE). The LCOE 

highly depends on the type of PV system, its geographic location (sunlight availability), and 

the discount rate. A comparison against other technologies suggests that PV’s LCOE will only 

reach conventional technologies’ LCOE in 2018/2020 in the sunniest areas with an annual 

solar irradiation of 2000 kWh/year or more, such as California, Italy, or Spain. It should be 

kept in mind that the LCOE is not really appropriate to estimate the economic value of 

intermittent and non dispatchable technologies such as PV. The reason is that  it does not take 

into account the different production profiles -  which lead to different market values for the 

electricity generated - , and does not consider  the additional cost of integrating  intermittent 

sources into the grid. 
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Grid parity – when the LCOE of PV electricity falls below the retail price of electricity – is 

already reached in countries with high sun availability or high electricity price such as Italy. It 

will happen in 2013 in Spain, 2015 in Germany, and not before 2018 in California or France 

where retail price of electricity is low. However, this criterion should be interpreted with 

caution as it does not take into account the cost of transportation and distribution of PV 

electricity. Hence it only makes sense for residential system for which all the electricity is 

used in-situ. 

Our models can still be improved. The main limitation is that we proxy the module cost 

with its price. Although intense competition suggests that it is a reliable proxy, there might be 

discrepancies between these two variables in reality. Dealing with this problem would require 

controlling for market effects such as market power, overproduction, or incentive policies 

which might create rents in the value chain. Chapter three explores some of these effects. 
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Annex 

Annex 1 Theoretical basis of experience curves 

Berndt (1991) derives experience curves from a cost minimization program (7) subject to a 

constraint defined by a Cobb-Douglass production function (8): 

Ctotal  = ∑ (Pi Annex 3 qi)                                (7) 

s.c. Q = A Π (qi
 δi )                                (8) 

With 

Ctotal  the total cost 

Pi the price of input i, qi the quantity of input i 

Q the maximum quantity produced with the set of input qi, and δi the corresponding input 

elasticity of production 

A representing the technical knowledge, which is assumed to be described by the learning 

effect: 

A= Exp-σ   Where Exp is experience (measured by cumulative production or cumulative 

capacity), and σ is a constant. 

Solving this system, and with r = ∑ δi, a = r Π δi -δi/r , s= (1-r)/r , α= σ (s+1), and βi= δi 

(s+1), Berndt (1991) finds the following cost function: 

Cunit= a Q s . Expα . Π pi
 βi                (9) 

Cunit is the cost of one unit of output 

Q stands for the production scale effects, and s the scale index, or plant size elasticity of unit 

cost 

Exp stands for experience, and α experience elasticity of unit cost (=-E) 

Π pi
 βi represents the effects of inputs prices pi, βi being the corresponding input elasticity of 

unit cost 
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From equation (8), he obtains the classic experience curve equation (1) by adding two 

more assumptions (besides the description technical knowledge by the learning effects) 

• The effects of input prices changes on total cost Π pi
 βi can be accurately measured 

using a Growth National Product (GNP) deflator. 

• Returns to scale s are constant (s=0). 

•  

By relaxing the last two hypotheses, this theory leads to the multi-factor experience curve 

(Isoard and Soria, 2001, Söderholm and Sundqvist, 2007, Yu, 2011). This attempt to find a 

theoretical basis relies on a strong hypothesis concerning the description of technical 

knowledge by the experience effect. 

Pan and Köhler (2007) derive the experience curve from a two inputs Leontief cost 

function with time, but it is also based on a strong assumption concerning the role of learning 

by doing. 

 

Annex 2 Consequence of the omitted variable bias on the accuracy of the 

predictions 

If besides experience (Exp), a variable X has an effect on cost, and α is its corresponding 

parameter, the “correct” specification of the model is: 

<?G�4�� 	= 	<?G�4��	– 	&	3?G&HE� 	+ 	I	J� +	K�   (10) 

The variable  X�	 can be described according to its relation with experience with (11), 

where β( and βN are specific to each period: 

X� 	= 	 β( 	+	βN3?G&HE� 	+	μ�   (11) 

By substituting (11) into (10), we get (12) explaining log�4�� by experience only. This is 

the model estimated if X is omitted and cost is regressed on experience only. Therefore the 

regression of the equation with experience as only explanatory variable estimates  −�& − I ∗
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�N� instead of  −&. There is then an omitted variable bias45 if the omitted variable X has an 

effect on cost (I ≠ 0�, and X and LogExp are not uncorrelated	�βN ≠ 0). This can be easily 

generalized to multivariate regression for the case of omitted variable in multifactor 

experience curves (Greene, 2000, p.334). 

log�4�� = log�4�� + I�( − �& − I�N�3?G&HE�	+	ε� + αμ�   (12) 

To understand the consequence of this bias on the predictions accuracy, we consider a 

second period where cost is predicted. In this predicted period, the omitted variable X can be 

modelled by (13), with β′( and β′N specific to this period. We get the expression of the real 

value of cost (14). 

X� 	= 	 β′( 	+ 	β′NLogExp� 	+ 	μ′�  (13) 

log�4�� = log�4�� + Iβ′( − �& − Iβ′N�3?G&HE� 	+	ε� + αμ′�   (14) 

By comparing prediction that would be done with the predictive model (12) without the 

error terms, and the real value (8), the prediction error is: 

&88?8� = IUβ ( − βV(W + IUβ N − βVNWLogExp� − K� − 	αμ′�   (15) 

Since K� and  μ′� have a 0 mean, the average error is then IUβ ( − βV(W + IUβ N −
βVNWLogExp�	. Therefore if the relation between the omitted variable and experience is similar 

during the estimating period and during the estimated period,  β ( = βV(	  and β N = βVN	, so 

there is no error in the predictions due to the omitted variable bias. But the more the relations 

between X and experience changes between the estimation and prediction period, the more 

the error due to the omitted variable bias is important. 

Annex 3 Database sources 

(1) Cumulative output and Average prices: 

                                                 
45 The bias is −I ∗ �N	with βN = X�LogExp, J� ∗ YZ[\�]�

YZ[\�^_`abc� in the case of a bivariate regression. 
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• 1990-2001: Report PM-52, Five-Year Market Forecast 2002-2007, Strategies 

Unlimited, 2003 (Through Yu, 2008). 

• 2002-2005: Swanson, Progress in Photovoltaics, 2006 (Through Yu, 2008). 

• 2006: Photon International magazine (Through Yu, 2008). 

• 2007 to 2011: Photon consulting annual reports 

 

(2) Plant size: 

• 1990-2001: Nemet (2007), Policy and Innovation in Low-Carbon Energy 

Technologies Chart 4, 

• Page 170: (Yu (2008 obtained these data from Nemet’s plant size figure.) 

• 2002-2003: Photon International magazine, 7-2003, Page 42. 

• 2004-2005: Photon International magazine, 1-2005, Page 42. 

• 2006: Photon International magazine, 4-2006, Page 42. 

• 2007-2009: Photon international magazine, cell and module production survey 2007, 

2008, 2009, 2010, and 2011. A proxy has been constructed by the average production 

of the 15 biggest firms. 

 

(3) Silver price: 

• 1990-20011, Silver Institute website, http://www.silverinstitute.org/site/silver-price/ 

 

(4) Silicon price: 

• 1990-2002: Nemet (2007), (Through Yu, 2008) 

• 2003: Photon International magazine, 4-2006, Page 30. 

• 2004: Photon International magazine, 9-2006, Page 139. 

• 2005-2006: Photon International magazine, 12-2007, Page 115. 

• 2007-2011: Photon Consulting annual reports 

 

(5) R&D knowledge stock 

• 1990-2007: Author. The R&D knowledge stock has been computed with the number 

of patent families as proxy for innovation according to the methodology developed by 
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Dechezleprêtre et al. (2011). A patent family is the set of patents granted in different 

countries for the same innovation. Therefore one patent family represent on 

innovation. We use an annual depreciation rate of 10% to account for technology 

obsolescence, but no lag since we use patent and not R&D expenditure. The patent 

data come from the European Patent Office website (http://www.epo.org/) 

Annex 4 Result of the out of the sample evaluation with cumulative capacity 

as proxy for experience 

Figure 15 Comparison of MAPE(t) for each model, MAPE(t) being the mean absolute 
percentage error according to the time horizon t. The proxy for experience is cumulative 

capacity without lag. 

 

The specifications including R&D (5,8,10,11,13,14,15,16)  end after a time horizon of 7 years because we do 

not have data for R&D after 2007, so no long term evaluation could be done. 
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Annex 5 Hypothesis for the LCOE simulation: 

Each year, Electricity produced = PR * ASI 

With 

• PR is the Performance Ratio of the installation: the ratio of the actual and theoretically 

possible energy output 

• ASI is the Annual Solar Irradiation: the sum of the quantity of solar energy reaching 

the installation over a year 

Discount rate=5% (figure 11) or 10% (figure 12) 

Performance ratio=0.75 

Lifetime: from 25 years in 2011 to 35 in 2020 

O&M=6% of system cost 

The module accounts for around 30% of the price of a residential system, 40% of a 

commercial system, and 60% of the cost of a utility plant. 

Module price evolution is defined by the results from the Author 

Price evolution of other components is done by the extrapolation46 of previsions made by 

photon consulting in 2012. 

  

                                                 
46 The extrapolation has been done with a time trend only. We cannot use a learning curve since the learning 

is local for installation, and the other cost do not depend on the VP industry only. 
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Chapter three 

 

Impact of photovoltaic feed-in tariffs 

and silicon price on module price 

 

Abstract 

Long term determinants of photovoltaic (PV) module cost have been extensively 

investigated, and cost prediction is traditionally done by using experience curves as in chapter 

two. Here, we focus instead on market drivers that influence price regardless of cost, by 

affecting the profit margin. In particular, we analyse the influence of silicon price, the main 

input, and feed-in tariffs (FITs), the main policy tool used to drive the development of the 

photovoltaic industry. Relying on weekly data from January 2005 to May 2012, and Granger 

causality tests applied to vector autoregressive models, we test several hypotheses that are 

important with regards to the design of FITs. 

We find that FITs have followed module price more closely in the recent years, especially 

in Germany. This is important to avoid creating too high rents leading to market overheating. 

But FITs have no influence on module price in the long term, as its evolution is rather defined 

by production cost, and silicon price during the silicon shortage. However, FITs changes have 
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short term impacts on module price because firms anticipate those policy changes. As a 

consequence, module price rises in the months before important FIT cuts, and decreases just 

before and after. We use these findings to give practical recommendations on the design of an 

optimal FIT policy. 

 

Résumé français 

Les déterminants du coût des panneaux solaires ont plutôt un effet à long terme, et sont 

modélisés par des  courbes d’apprentissage présentées dans le chapitre précédent. Ici, nous 

nous intéressons aux effets de marché, qui ont une influence sur le prix, indépendamment du 

coût. En particulier, nous regardons le prix du silicium, matière première majeure de 

l’industrie photovoltaïque et les tarifs de rachat de l’électricité, qui est la principale politique 

vouée à stimuler le développement de l’industrie photovoltaïque. Pour étudier leur influence, 

nous nous appuyons sur une base de données de prix spot hebdomadaires mondiaux du 

silicium et des panneaux solaires, et sur des tarifs de rachats, de 2005 à 2012. Nous étudions 

les liens de causalité grâce à des modèles dynamiques et des tests de causalité de Granger. 

Nous arrivons à la conclusion que les tarifs de rachat suivent de plus près le prix des 

panneaux solaires depuis 2009,  surtout en Allemagne. C’est un facteur important pour éviter 

la création d’une trop forte rente pour les installateurs de systèmes photovoltaïques, risquant 

d’engendrer une bulle comme en Espagne en 2008 ou en France en 2010. Nous trouvons que 

les tarifs de rachat n’ont pas d’influence sur le prix des modules, dont l’évolution à long terme 

est plutôt dirigée par le cout de production, et le cout du silicium pendant sa pénurie. 

Cependant, les changements de tarif de rachat ont une influence à court terme sur le prix des 

panneaux photovoltaïques, influence due à l’anticipation du marché. Le prix augmente 

pendant les mois précédent une diminution importante du tarif de rachat, alors qu’il diminue 

après. Nous utilisons ces conclusions pour donner des recommandations quant au mécanisme 

de tarif de rachat optimal. 



89 
 

1 Introduction 

This chapter aims at identifying market effects, in particular the influence of feed-in tariffs 

and silicon price, on photovoltaic (PV) module price. Together with chapter two analysing 

technical drivers of module cost, it participates in a better understanding of PV price 

dynamics. 

The price is made of the cost plus a margin. Cost drivers are technical elements, such as 

scale effect, R&D, learning by doing brought by the accumulation of experience, etc. They 

have long term effects as explained in chapter two. The drivers of profit margin - the 

difference between price and cost - are more market based elements, such as competition, 

demand/supply balance, strategic behaviours, etc. 

The question at the core of this chapter is the following: How is module price affected by 

changes in feed-in tariffs and silicon price? This question is of particular importance for 

policymakers. 

Feed-in tariffs (FITs) are administratively set prices at which the grid operator has the 

obligation to buy electricity from renewable energy sources. They are the most common 

policy tools to stimulate the development of the PV market. The understanding of their 

influence on module price is therefore critical for policymakers. In particular, while FITs aim 

at increasing the attractiveness of PV electricity, two constraints should be considered when 

designing them: First, they should follow module price to avoid creating a rent for companies 

installing PV systems. A high rent leads to market overheating which is costly and often 

followed by drastic cuts harming the whole industry. Second, FITs should not influence 

module price; in particular, they should not lead to module price increase and end up creating 

a rent for module producers, since an increase in module price reduces the incentive effect of 

the FITs. This issue is even more sensitive since most PV modules are produced in China: in 

this context, a FIT in Germany or France would create a rent which would benefit Chinese 

manufacturers. 
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Silicon is the main material input for the PV industry, accounting for 20% of a module 

cost, and most of the energy required to produce it. Other inputs are glass, aluminium, silver, 

but they either account for a small part of the manufacturing cost, or their price is very stable. 

A better understanding of the effect of silicon price on module price would be important to 

design FITs based on accurate module price evolution predictions. In addition, it would help 

reduce the uncertainty in the industry, thus removing a major obstacle to investment. 

A substantial amount of literature focuses on the analysis and prediction of module cost. It 

has been explored in chapter two. However, if market effects are often mentioned in the grey 

literature, there is a lack of academic literature focusing on it. Hayward and Graham (2011) 

suggest that next to the experience effect, market forces such as demand/supply imbalance or 

input price are responsible for recent deviation in module price from the historical trend. This 

view is shared by the vast majority of market studies. However there is a lack of quantitative 

evidences.  In this chapter, we aim at filling this gap. 

To address those issues, we rely on a database of weekly polysilicon and module spot 

price, and FITs values in Germany, Italy, France, and Spain from January 2005 to May 2012. 

To focus on market effects, we control long term cost drivers measured by the experience 

effect. We use vector autoregressive variable (VAR) models and Granger causality tests to 

find the direction of the causality between the variables. We also study variations of module 

price around a FIT decrease with polynomial growth models. 

We find that FITs adaptation to module price evolution differs according to the period and 

the country, which provides some insight to policymakers in term of optimal FIT scheme. 

Besides, FITs do not seem to influence module price, which means that the rent of module 

manufacturers is not an issue when designing a FIT. We believe that this is due to the fierce 

competition prevailing in the cell and module manufacturing segments. However, in the short 

term, module price increases before a FIT reduction, and decreases after, as a consequence of 

firms’ anticipations. 

Regarding the influence of silicon price on module price, we find a fundamental change in 

2009: If they are highly correlated over the whole period, silicon price causes module price 

only before 2009. We interpret this change as a consequence of silicon shortage giving market 

power to silicon producers during this pre-2009 period while overcapacity prevails post 2009. 
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As long as there is overcapacity in silicon production, silicon price is thus not likely to 

influence module price. 

The remaining of this chapter is structured as follows: Section two introduces the 

analytical framework and the hypothesis that are tested later on. The data set is presented in 

section 3 together with a first correlation analysis. Section 4 aims at finding the direction of 

the causality to test the hypothesis made in the analytical framework.  In section 5, we analyse 

the influence of past but also future FIT changes on module price with polynomial growth 

models. Finally, section 6 concludes. 

2 Analytical framework and hypothesis 

In this section, we introduce a framework used to formulate hypothesis about the influence 

of FITs and silicon price on module price. 

2.1 Introduction of the framework 

To focus on the effects of silicon price and FITs on module price, we use the analytical 

framework presented in figure 1. 

Purified silicon, also called polysilicon, is the main input for module production, 

accounting for 20% of a module cost (photon international 2012). Other inputs are glass, 

aluminium, silver, labour, but they either account for a small part of the manufacturing cost, 

or their price is very stable. Module production from silicon involves several steps. The 

silicon is crystallised, forming ingots which are sliced into wafers. The wafers are processed 

and assembled by pairs into cells, which are soldered and encapsulated to build modules. 

The electricity produced by modules is transformed into alternating current by an inverter, 

and sold at the FIT.  
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Figure 1 Analytical framework 

 

Silicon and PV modules are commodities. Once silicon exceeds the minimum purity level 

of 999.999%, or modules meet the quality standards, not much product differentiation can be 

achieved. Firms producing them compete on price. 

The supply of silicon depends on production capacity, which is constrained since it takes 

two years to build a production plant. The demand of silicon is more and more driven by 

module production, since the PV market is responsible for 87% of silicon consumption in 

2011 compared to 53% in 2007 (SolarBuzz 2012).  

Modules supply is not as much capacity constrained, and results from the experience effect 

reducing cost regularly through accumulation of experience, and possibly the price of silicon, 

hypothesis which will be tested later. The demand is defined by incentive policies, mainly 

FITs, which have been available in 50 countries over recent years (REN 21, 2011). 

2.2 Hypothesis 

Based on the previous framework, we formulate several hypotheses, represented in figure 

2. 

Figure 2 Hypothesis 
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2.2.1 Influence of feed-in tariffs 

The first hypothesis (1) is that FITs follow module price, avoiding the creation of a rent in 

the most downstream segments of the industry, PV systems installation and electricity 

production. The idea behind FITs is to set a price for a fixed period of time to make the 

installation of PV systems attractive for investors, with an internal rate of return above a 

certain level. But if the attractiveness is too high, it provokes an uncontrolled market growth 

such as in Spain in 2008 and France in 2010. 

This is an important issue since these market booms caused by poor adjustments of FITs to 

module price dynamics are costly and corrected a posteriori by drastic cuts harming the 

industry. 

The second hypothesis (2) is that FITs influence module price, a higher FIT leading to 

increasing module prices and creating a rent in the cell and module production segments. FITs 

that would result in increasing module prices would therefore see their efficiency affected. 

2.2.2 Influence of silicon 

The first hypothesis about the influence of silicon is that silicon producers are price makers 

(3). Module producers would then integrate silicon price variation in module price since it 

represents 20% of the cost. This would imply that silicon price should be used as an 

exogenous variable in models predicting module price. 

The second hypothesis is that silicon producers are price takers. Since module production 

is the main market for silicon (87% in 2011, SolarBuzz 20112), a module price variation 

changes the demand for silicon, impacting its price. 

The prevailing situation depends on who has market power. 
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3 Data 

The hypotheses formulated in section two are tested with a dataset of weekly silicon and 

module spot prices from PV Insight47, and FITs values in Germany, Italy, France, and Spain 

(various sources, listed in annex 1). The time series start in January 2005 and end in May 

2012. 

3.1 Description 

3.1.1 Silicon and module price 

As table 1 indicates, silicon and module price has been very unstable during the period 

considered, with a standard deviation of 75% of the mean for silicon price, and 38% for 

module price. This is illustrated by figure 3 representing silicon and module price evolution 

from January 2005 to May 2012. Silicon price increased from 56 $/kg in 2005 to 396 $/kg in 

2008. This corresponds to a silicon shortage from 2005 to 2009. Meanwhile, module price 

also increased from 2.55 $/Wp in 2005 to 3.56 $/Wp in 2008. From July 2009 on, prices are 

much more stable, with silicon price back to January 2005 level, indicating the end of the 

silicon shortage. 

 

Table 1 Summary statistics of module and silicon price data (Data source: PV Insight) 

Variable Obs Mean Std. Dev. Min Max 

silicon 387 168 127 24.1 396 

module 387 2.57 0.98 0.84 4.60 

      

 

                                                 
47 http://pvinsights.com/  
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 Figure 3 Silicon and PV modules spot price evolution from January 2005 to May 2012 

 

Source: PV insight 

 

3.1.2 Feed-in tariffs 

We gathered weekly values of FITs in Germany, Italy, Spain, and France from January 

2005 to may 2012. As table 2 indicates, this covers more than 60% of the global market over 

the whole period. Other countries are not considered because they only implemented 

alternative PV technology development policies (RPS, investment subsidies, etc.) such as 

Japan or the US, or they do not account for a significant share of the global market. 

Table 2 Market sizes of the countries included in the surveyed FITs, and corresponding total 
share of the market covered (source: IEA 2011 and EPIA 2012) 

Country 2005 2006 2007 2008 2009 2010 2011 

Italy (MW) 6.8 12.5 70.2 338.1 723 2320.9 9284 

Germany (MW) 906 951 1274 1955 3799 7411 7485 

France (MW) 7 10.9 31.3 104.5 155.5 719 1671 

Spain (MW) 25 99 557 2758 60 392 372 

Total (MW) 1429 1575 2529 6330 7437 16817 29965 

Share covered 66% 68% 76% 81% 64% 64% 63% 
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Since for each country, there are different tariffs corresponding to various types of PV 

sytems (ground based, commercial, residential, etc.), we calculate the average value weighted 

by the market share of each type. On the period considered, there have been 11 changes in 

Germany, 14 in Italy, 6 in Spain, and 9 in France, mainly reductions.. 

Figure 4 shows the evolution of the average FIT for Germany, Italy, France, and Spain. It 

indicates that the German and Italian FITs have been decreasing steadily, while the Spanish 

and French ones show some chaotic variations. 

 

Figure 4 Average FIT evolution in the main countries 

 

 

3.2 Correlation analysis 

We perform an analysis of the correlation, first between module price and silicon price, 

then between module price and countries’ FITs. 
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3.2.1 Correlation between module price and silicon 

Silicon and module price are highly correlated (the correlation coefficient is 0.91). This 

confirms what could be deducted from the synchronised price increase in silicon and module 

price between 2005 and 2008 (c.f. figure 3). However, the price increase is much lower for 

modules (40%) compared to silicon (607%). Two facts explain this observation: First, silicon 

price represents only 20% of a module’s total cost48. Second, most of the silicon is sold 

through long term contracts (about 80%, Photon Consulting 2012), thus the average purchase 

price didn’t rise in the same proportions as the spot price (143%, from 51$/kg to 124$/kg , 

photon consulting 2012). 

This high correlation between silicon and module price suggests that at least one of the two 

hypotheses (3) and (4) is realistic. However it is not sufficient to choose which one, as this 

would require information about the direction of the causality. This is the purpose of section 

4. 

3.2.2 Correlation between module price and countries’ feed-in tariffs 

Table 3 shows the correlation of module price with the average FIT in the four countries 

we take into account. It points out that the German and Italian FITs are not only more stable 

than the Spanish and French ones, but also more correlated to module price. But once again, 

this gives no indication about the direction of the causality, which is investigated in next 

section. 

Table 3 Correlation table of module price and countries FITs 

German FIT Italian FIT Spanish FIT French FIT 

Module price 0.86 0.76 0.67 0.39 

     

                                                 
48 Source: Photon consulting annual report 2012, p. 154. 
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4 Causality analysis 

Section three shows the high correlation between module price on the one hand, and 

silicon price and FITs on the other hand. In this section, we further analyse the 

interdependencies by disentangling the causal relationships. We test the hypothesis 

represented in figure 2 in the analytical framework (Figure 2, section 2). (1) Do FITs follow 

module price closely? (2) Do FITs influence module price by driving the demand? (3) Are 

silicon producer price makers or (4) price takers? 

4.1 Methodology 

We make no assumption about the direction of the causal relationships for now; therefore 

all the variables are endogenous. The only equations that can be estimated are then one 

variable written as a function of its own lagged values and the lagged values of all the other 

variables. Those equations make up a vector-autoregressive (VAR) model. 

Real causality cannot be identified with econometric tools. Therefore we adopt the 

definition of Granger (Granger, 1969):  x “granger causes” y if the prediction of the current 

value of y is enhanced by the knowledge of past values of x. From now on, as “causes” we 

mean “granger causes”. Granger developed a methodology based on VAR models to test for 

this causality. We use this test to identify causality among the variables. 

We control for the experience effect on module price, which represents long term drivers 

of cost as explained in chapter two. The experience effect, also called learning by doing, 

decreases price through the accumulation of experience measured by cumulative production, 

according to: 

%8B>7� = %8B>7�d ∗ e 4=D=<;'B@7	E8?F=>'B?2�4=D=<;'B@7	E8?F=>'B?2�df
0a

 

 

 



99 
 

Where 

4=D=<;'B@7	E8?F=>'B?2� is the cumulative PV module production at t49 

E is the experience parameter, measuring the intensity of the learning by doing process. We 

use the results from chapter two finding an experience parameter of 0.338, corresponding 

to a learning rate50 of 20.1%. 

Learning by doing is a long term process which cannot be analysed based on weekly data, 

but rather annual ones as in chapter two. We therefore control for this effect on price by 

creating a variable #?F=<7  which is the equivalent module price if no learning would have 

happened since '�	, according to: 

#?F=<7� = g7;<#?F=<7%8B>7� ∗ h ijkjl[�"mn	c\_ojp�"_)*ijkjl[�"mn	c\_ojp�"_)*dq
a

             (2) 

We also create a variable rst, average of countries’ FITs, weighted by the size of the 

national electricity markets, according to: 

rst� = ∑ rst",� ∗ &<7>'8B>B' #;8u7'vBw7",�"                (3) 

Where 

&<7>'8B>B' #;8u7'vBw7",� is the size of the electricity market of country i at time t. 

rst",� is the FIT in country i at time t 

4.2 Regression equation 

We apply the VAR model to the first order derivative of the logarithm of module price, 

silicon price, and FIT with a lag l. It gives: 

�. y� 	= 	∑ z� 	�. y�0�l�1( + E",�    (4) 

                                                 
49 Since the learning effect is a slow process which cannot be affected to the production of a particular week 

or even month, we created a proxy of the week cumulative production following the yearly production trend 

from photon consulting (2012). 
50 A learning rate of 20.1 means that unit cost decreases by 20.1% for each doubling of cumulative 

production. 
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With 

y� 	= 	{3?G_#?F=<7�3?G_vB<B>?2�3?G_rst� }  the vector of the variables 

z� = {z�,(z�,Nz�,~}  the corresponding parameters 

EB = {K1K2K3} the vector of error terms, the KB,' assumed to be independent and identically 

distributed 

�. y� = y� − y�0(  the first order derivative of y� 
3?G_#?F=<7� is the logarithm of #?F=<7 at t 

3?G_vB<B>?2� is the logarithm of silicon price at t 

3?G_rst� is the logarithm of rst� at t 

 

The estimation is done by running a separate regression for each variable, regressing it on 

lags of itself and all other variables with ordinary least squares. 

4.3 Econometric considerations 

A Dickey-Fuller test for unit root shows that the time series are not stationary, even when a 

trend is allowed, but they are first-order stationary. This explains why we apply the VAR 

model to the first-order derivatives of the variables. 

A Clemonte-Montañés-Reyes test for unit root, allowing for one or two breaks in the time 

series, points out a break in the fourth week of September for 3?G_vB<B>?2  (see annex 2). 

We therefore run the regressions of the VAR models on two periods: before and after 

24/09/2009. The first period actually corresponds to the silicon shortage, while the second 

period starts after this event. 

The optimal lags are found by maximizing the AIC information criterion; 2 weeks during 

the silicon shortage, and 3 weeks after. 
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4.4 Results 

The model (4) is estimated during and after the silicon shortage. The regressions are all 

significant. Table 4 and 5 show the results of Granger causality tests applied to the 

estimations of the model during (table 4) and after (table 5) the silicon shortage. The grey 

boxes correspond to the cases where the null hypothesis - that the excluded variable does not 

cause the dependant variable - is rejected at a 0.05 significance level. Excluded variables in 

the grey cases therefore cause the corresponding dependent variable of the equation estimated. 

Regarding causality between silicon and module price, there is a switch at the end of the 

silicon shortage period. During the silicon shortage, silicon price causes module price, while 

after the end of the shortage, it is the opposite. 

Results about causality between module price and FITs are more ambiguous. During the 

first period, between January 2005 and July 2009, the Granger test does not yield any 

conclusion regarding causal relationships, at least not at a 5% or even 10% significance level. 

During the second period, after July 2009, FIT still does not cause module price, but module 

price causes FIT. Indeed, the test indicates that silicon price causes FITs. And since module 

price causes silicon price, it means that module price also causes FITs. 

 

Table 4 Granger causality test during the silicon shortage 

Dependent 

variable 
Excluded chi2 df Prob > chi2 

Log_Module 

Log_Silicon 22.48 2 0.000 

Log_FIT 0.120 2 0.942 

ALL 22.76 4 0.000 

Log_Silicon 

Log_Module 1.373 2 0.503 

Log_FIT 0.078 2 0.962 

ALL 1.468 4 0.832 

Log_FIT 

Log_Module 0.724 2 0.696 

Log_Silicon 4.288 2 0.117 

ALL 7.046 4 0.133 
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Table 5 Granger causality test after the silicon shortage 

Dependent 

variable 
Excluded chi2 df Prob > chi2 

Log_Module 

Log_Silicon 3.090 3 0.378 

Log_FIT 2.722 3 0.436 

ALL 7.006 6 0.320 

Log_Silicon 

Log_Module 17.47 3 0.001 

Log_FIT 0.567 3 0.904 

ALL 18.69 6 0.005 

Log_FIT 

Log_Module 1.518 3 0.678 

Log_Silicon 19.73 3 0.000 

ALL 21.50 6 0.001 

4.5 Interpretation regarding module and silicon prices 

The previous results suggest that there is a fundamental change in the market in 2009. The 

fact that before September 2009, silicon price was driving module price and not the opposite 

indicates that silicon producers were price makers. This can be interpreted as a consequence 

of the silicon shortage during this period, leading to a capacity constraint giving silicon 

producers market power. 

After the silicon shortage, module price causes silicon price, while the opposite is not 

clear, which denotes a loss of market power from silicon producers, due to the end of the 

capacity constraint. This market power shift from silicon producers to module manufacturers 

can also be due to the PV industry becoming a more and more important market for silicon, 

the first one before semi-conductor since 2007 (SolarBuzz 2012). 
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4.6 Interpretation regarding module price and feed-in tariffs 

4.6.1 Hypothesis one: do feed-in tariffs follow module price? 

The hypothesis (1) assuming that FITs follow module price seems to be true after 2009, but 

not before. We now compare the evolution of FITs and module price in each country, before 

and after 2009. 

In order to understand why there is a difference before and after 2009, we now compare 

the evolution of FITs and module price in each country. To do so, we need to convert them 

into the same unit. Indeed, FITs correspond to the price of a quantity of electricity (in $/kWh), 

while module price corresponds to the price of a production capacity (in $/kWp51). We 

therefore calculate the value of all the electricity produced by a module of a standard capacity 

of 1kWp over its lifetime, if this electricity is sold at a FIT. This gives the value of the FIT 

corresponding to a standard production capacity, as for the price of PV modules. 

6%:", the net present value of the electricity produced by a standard 1kWp PV system 

when sold at the FIT in country i, is calculated according to: 

6%:" = rst",� ∗ ∑ ��	∗	���/�(�\�*��^"�n�"knl1(             (1) 

With 

rst",� the FIT in country i at time t 

3BC7'BD7  the period for which FITs are granted, assumed to be the lifetime of a PV system 

r the discount rate 

PR  the Performance Ratio of the installation: the ratio of the actual and theoretically possible 

energy output 

ASI the Annual Solar Irradiation: the sum of the quantity of solar energy reaching the 

installation over a year. It depends on the country. 

PR	 ∗ 	ASI" is then the electricity produced each year in country i by a PV system 

 

                                                 
51 Watt-peak (Wp) is a measure of the nominal power of a photovoltaic device under laboratory illumination 

conditions. 
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Besides FITs, the main difference between countries is sunlight availability. We consider 

annual solar irradiation of 1200 kWh/kWp/year for Germany, 1500 for Italy, 1700 for Spain, 

and 1350 for France52. The other assumptions are a discount rate of 10%, a lifetime of 25 

years, and a capacity factor of 0.75. 

The 6%: has to be compared to the price of a PV system, not of a module only. Indeed, 

the incentive effect of a FIT depends on the difference between the 6%: and the price of a 

PV system. Modules represent only 40% of the cost of a PV system in 2011 (photon 

consulting 2012). To get the price of a PV system from module price, we add the price of 

other components: inverter, wire, mounting system, etc. Weekly values of the price of other 

components of a system are computed following the trend of annual price given by Photon 

international (2012), as in chapter 2. 

For each country, figure 5 compares the cost of a PV system (the shaded area) with 6%:" , 
the net present values of the electricity produced by a PV system sold at the national FIT. It 

shows that the German FIT follows PV system price the most closely, while important  

discrepancies in 2007/2008 in Spain and 2009/2010 in France explain the observed 

uncontrolled developments of the PV market. A significant discrepancy in 2010/2011 in Italy 

also explains the fast market growth during this period (multiplied by 13 in two years, from 

720 MW in 2009 to 9300 MW in 2011, EPIA 2012). Note that additional incentive policies 

such as tax rebate are not taken into account here, although they further increase the 

attractiveness of PV systems. 

The observation of those graphs helps understand why module price causes FITs after 

2009 but not before. Before 2009, FITs were very stable, modified only once a year in 

Germany, and even less frequently in other countries. Besides, their level was set well in 

advance, sometimes years ahead53. FITs were thus very rigid, explaining why they couldn’t 

follow module price closely. On the contrary, after 2009, FITs became much more flexible, 

with intra-year adjustments, sometimes unscheduled, to follow module price more closely. 

Besides, volume responsive systems have been implemented such as the FIT corridor in 

Germany in 2009 and in France in 2011, further enhancing the flexibility. The fact that FITs 

                                                 
52 Source : solarGIS website http://solargis.info/ 
53 This was adapted to the steady and predictable price decrease triggered by the experience effect before the 

silicon shortage. 
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track module price more closely in recent years should then be interpreted as a consequence 

of a modification of the FITs schemes. 

   

Figure 5 Comparison of PV systems price (shaded area) with the value of the FIT corresponding 
to all the electricity produced by a PV system over its lifetime (line) 

   

 

 

4.6.2 Hypothesis two: do feed-in tariffs influence module price? 

The hypothesis (2) assuming that FITs influence module price does not seem to be true. It 

means that module price does not depend on the level of the FITs. This can be interpreted as a 

consequence of the fierce competition prevailing in the cell and module market, keeping price 

close to production cost, preventing producers to get a rent from attractive FITs. 

However, VAR models use past values as explanatory variables, while FITs are 

announced, and therefore expected, months or even years ahead. We go further in the analysis 

of FITs effect on module price in the next section, by analysing the effect of a past but also 

future FIT change on module price. 
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5 Short term effects of feed-in tariff modifications on module 

price 

In this section, we analyse the variation of module price before and after a FIT decrease. 

We observe 24 FIT cuts during the period considered. We cannot analyse the effect of a FIT 

increase since it happened only twice during the period considered, which is not enough to get 

significant results. However, it is more important to analyse FIT decreases since they are the 

most common events, and will still be in the future as FITs are expected to decrease until PV 

electricity becomes competitive. 

5.1 Hypothesis 

We test the hypothesis of module price being influenced by future FITs changes through an 

anticipation effect. We indeed observe a positive effect during the few months before a FIT 

decrease, and a negative one after. This is illustrated by figure 6 and 7 showing the deviation 

of module price compared to a business as usual scenario (the methodology to calculate the 

deviation is explained in the next subsection). The FIT decrease considered in figure 6 

occurred in Germany (-5%) and Italy (-9%) on January 1st 2007, and figure 7 focuses on a 

major FIT decrease in Spain in October 2008 (-37%). Those FIT changes can be observed in 

figure 4 (section 3). 



107 
 

Figure 6 Deviation of module price compared to a business as usual scenario before and after a 
FIT decrease in January 2007. 

 

 

Figure 7 Deviation of module price compared to a business as usual scenario before and after a 
FIT decrease in October 2008. 

 

5.2 Methodology 

To capture the dynamic effect of a FIT decrease on module price, we use a polynomial 

growth model. It explains the deviation of module price by a polynomial function of the time 

before the following FIT decrease, or the time after the last FIT decrease. 
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To quantify the variation of module price compared to a scenario where no FIT change 

would have happened, we create the variable �7@B;'B?2. It measures the deviation of the first 

order derivative of module price compared to a business as usual (BAU) scenario, according 

to (5). If �7@B;'B?2� is positive, it means that module price increased more in week t than 

what the BAU scenario predicted. 

�7@B;'B?2� = �.#?F=<7� − �.#?F=<7����          (5) 

Following the results from section 4.4., the BAU scenario is different during and after the 

silicon shortage. During the silicon shortage, it depends on lags of silicon price (6); while 

after the silicon shortage, it is constant (7): 

�.#?F=<7���� = $ + �(�. vB%8B>7�0( +	�N�. vB%8B>7�0N    (6) 

�.#?F=<7���� = �   (7) 

The polynomial growth models consist in explaining �7@B;'B?2 by a polynomial function 

of the time before the following FIT decrease, or the time after the previous one. This enables 

us to draw the dynamic profile of the deviation from a BAU scenario before and after a FIT 

decrease. 

5.3 Equation 

The regression equations of the polynomial growth models are:  

�7@B;'B?2� = ∑ 	�b�7C?87�b 	+~b1( ��            (8) 

 

�7@B;'B?2� = ∑ ;b	$C'78�b 	+b1(,~ �′�            (9) 

Where 

�7C?87� is the number of weeks before the following FIT decrease 

$C'78�	is the number of weeks after the previous FIT decrease 

��  and �′� are the error terms, assumed to be independent and identically distributed. 
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5.4 Econometric considerations 

Since #?F=<7 is not stationary, we use its first-order derivative, which is stationary, to 

calculate �7@B;'B?2. 

The length of the lag of silicon price included in (6), two weeks, is defined by the 

minimisation of the AIC information criteria as explained in the econometric considerations 

of the causality analysis (section 4.4). 

The observation of figures 6 and 7 suggests that polynomial models should be at least 

quadratic, preferably or degree 3. However, when the three degrees of $C'78 are used in (9), 

they are not significant. We therefore reject the variable of degree two. Besides, the 

coefficients are not significant when an equation with both explanatory variables  �7C?87 and 

$C'78 is estimated. This explains why we perform two distinct regressions, one with a 

polynomial function of �7C?87 as independent variables (8), and one with a polynomial 

function of $C'78 (9). 

5.5 Result 

Using the results of the estimation of (8) and (9), given in annex 4, we simulate 

�7@B;'B?2�, the deviation of the first order derivative of module price compared to a BAU 

scenario,  before (figure 8) and after (figure 9) a FIT decrease. Simulations cover a time scale 

of 40 weeks. 

Before a FIT decrease, there is a positive deviation confirming the observation of real FIT 

decreases in figure 6 and 7. It means that before a FIT decrease, module price rises more than 

in a BAU scenario. 

A negative effect starts 5 weeks before the FIT decrease (figure 8), and last until 8 weeks 

after, which corresponds to what is observed in figure 7. Module price thus decreases more 

than usual just before and after a FIT decrease. 

Finally, ten weeks after a FIT decrease, there is a positive effect. 
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Figure 8 Simulation of the deviation of the first order derivative of module price from a business 
as usual scenario before a FIT decrease 

 

 

Figure 9 Simulation of the deviation of the first order derivative of module price from a business 
as usual scenario after a FIT decrease 
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5.6 Interpretation of the results 

The positive price deviation before a FIT decrease can be interpreted as a consequence of 

firms anticipating FIT changes, thus increasing modules demand before the FIT decreases to 

benefit from the higher FIT, which eventually increases price. 

This assumption is supported by the observation of monthly PV installation and FIT 

evolution in Germany (figure 10). It clearly indicates that peaks of installation, measured by 

the number of connections to the grid, arise in the months before FIT decreases. 

 

Figure 10 Impact of the feed-in tariff reductions on monthly capacity addition in Germany 

 

Source: Enerdata, from German Ministry for Environment, SolarWirtshaft 
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The installation of PV systems requires some time, especially for big installations. To 

install them before the FIT decreases, firms thus need to buy the modules a few weeks before 

for small projects, or a few months for big installations. This boosts module demand during 

the months before the FIT cuts, and therefore increases their price. 

A few weeks before the FIT decreases, firms lose this incentive since they would not have 

time to complete the installation and connect it to the grid before the FIT changes. This 

lowers the demand, decreasing module price, which encourages firms to wait to benefit from 

this reduction, eventually decreasing price even further. This explains why module price 

decreases during the 5 weeks before the FIT modification, and after. 

Finally, demand goes back to “as usual” a dozen weeks after the FIT decreases, pulling 

price back to “as usual” levels.  

6 Conclusion 

This chapter analyses market effects on module price. In particular, it focuses on the 

influence of feed-in tariffs (FITs) and silicon price, FITs being the main policy instruments 

used to stimulate the development of the PV market, and silicon the main input for the PV 

industry. 

To analyse the influence of FITs and silicon price on module price, we rely on times series 

data of silicon and module weekly spot price, and FIT values in Germany, Italy, Spain, and 

France from January 2005 to May 2012. We find the direction of causality relations using 

Granger causality tests on vector-autoregressive (VAR) models. With polynomial growth 

models, we analyse the short term effects of FIT changes on module price. We reached 

several conclusions leading to practical recommendations for the design of a FIT policy. 

First, FITs follow module price more closely in the recent period, especially in Germany. 

This is important since poor adjustment of FITs to module and PV system price can lead to 

market overheating such as in Spain in 2008 and France in 2010. This better adjustment in the 

second period comes from an increase in the frequency of the adjustments. Moreover, volume 
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responsive mechanisms implemented in Germany since 2009 further increase this flexibility, 

while still allowing some anticipation from the industry. 

Second, Granger causality tests are not conclusive with regards to the effect of FITs value 

on module price. This can be explained by the fierce competition prevailing on the module 

market, keeping module price close to production cost whatever the FITs level. However, 

polynomial growth models show that FIT changes have short term effects. In the months 

before a FIT decrease, module price increases. This is likely due to a higher demand triggered 

by market anticipation, increasing the installations before the FIT decreases. This should be 

avoided since price distortions give wrong signals to the industry. This also advocates for 

more frequent FIT changes, since they would thus be less important, reducing the magnitude 

of those distortions. 

Finally, we find that silicon price has been influencing module price only during the silicon 

shortage, when silicon producers had market power. This explains the slight increase in 

module price during this period. This market power was due to a capacity constraint and a 

low contestability of the market54. After the end of the shortage period, they lost their market 

power. This can be explained by several factors: First the competition is increasing with new 

players entering the market, including many Chinese ones (cf chapter one). Then, the situation 

went from shortage to excess production, due to the arrival of new capacity planned a few 

years before - when important margins due to the shortage attracted investors. 

This suggests that as long as there is over-capacity in silicon production, silicon price 

should not be taken into account to predict short term module variations. Rather, silicon price 

depends on the module market, which represents 87% of polysilicon consumption in 2011. 

However, the situation could change in the future if demand catches up with production 

capacity. 

What are the implications regarding optimal FIT schemes?  

The first lesson is that price formation in the PV industry is very complex, and difficult to 

predict. Therefore FIT mechanisms must be flexible, to avoid important discrepancies with 

PV electricity cost when price evolution has not been anticipated correctly. Such 
                                                 
54 We explain in chapter one that silicon production requires advanced technical know-how which is an 

important entry barrier. 
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discrepancies create market overheating calling for violent adjustments harmful to the 

industry, as evidenced by the Spanish and French examples. 

So far, flexibility has been allowed by several means: a) implementing unscheduled 

modifications, b) Increasing the frequency of FITs change, and c) making changes dependent 

of previous PV installation through volume responsive mechanisms. a) Unscheduled FIT 

changes are certainly not a good solution since they increase the uncertainty in the PV 

industry. b) More frequent FIT changes allow a faster adaptation to module price. Moreover, 

a higher frequency implies smaller adjustments, reducing the magnitude of the price 

distortions around FIT changes. c) The volume responsive aspect enables fast responses to the 

market, while giving investors some visibility since it is a transparent process. More frequent 

FIT changes depending on previous market development then appears to be the optimal type 

of FIT scheme. 
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Annex 

Annex 1 Sources for FIT values 

 

http://www.solarfeedintariff.net 

http://www.pv-magazine.com/news/details/beitrag/germany 

http://www.res-legal.de/en/search-for-countries/spain/single/land/spanien/instrument/price-

regulation-regimen-

especial/ueberblick/foerderung.html?bmu%5BlastPid%5D=95&bmu%5BlastShow%5D=5&b

mu%5BlastUid%5D=239&bmu%5Brel%5D=1&cHash=4c1babe1c30c936ef618e7e942050f1

b 

http://www.sfv.de/druckver/lokal/mails/sj/verguetu.htm 

http://www.iea.org/textbase/pm/?mode=re&action=result 

http://www.columbia.edu/cu/cures/Stephen-Oroukes-presentation2.pdf 
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Annex 2 Clemonte-Montañés-Reyes test for unit root applied to log (silicon 

price) 

 

The 238th value of the time series correspond to 22/07/2009 
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Annex 3 Regressions of the BAU model 

Table 6 Before 

 (1) 
VARIABLES D. Log_Module 
  
LD.Log_Silicon 0.2160*** 
 (0.041) 
L2D.Log_Silicon 0.0935** 
 (0.041) 
Constant 0.0006 
 (0.001) 
  
Observations 234 
R-squared 0.3746 
Adj. R-squared 0.3692 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.2 

Regression performed during the silicon shortage. L is the operator for Lag 
F for Forward lag 

and D for first order derivative 
 

Table 7 After 

 (1) 
VARIABLES D.Log_Module 
  
Constant -0.0022** 
 (0.001) 
  
Observations 150 
R-squared 0.0000 
Adj. R-squared 0.0000 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.2 

Regression performed after the silicon shortage. L is the operator for Lag 
F for Forward lag 

and D for first order derivative 
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Annex 4 Result of the regression (8) and (9) 

 

Table 8 Result of the regression (8) 

  
VARIABLES Deviation 
  
Before 0.001057984*** 
 (0.000) 
Before2 -0.000039290*** 
 (0.000) 
Before3 0.000000386* 
 (0.000) 
Constant -0.005062572*** 
 (0.001) 
  
Observations 380 
R-squared 0.0651 
Adj. R-squared 0.0576 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 9 Results of the regression (9) 

  
VARIABLES Deviation 
  
After 0.0003988*** 
 (0.000) 
After3 -0.000000160*** 
 (0.000) 
Constant -0.0033644*** 
 (0.001) 
  
Observations 335 
R-squared 0.0613 
Adj. R-squared 0.0557 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Chapter four 

 

Impact of firms’ strategies on the 

optimal feed-in tariff policy 

 

 

Abstract 

Feed-in tariffs (FITs) are the main policy instruments used to stimulate the photovoltaic 

(PV) market. They set administratively a price at which the power grid operator must buy PV 

electricity. Taking into account the speed at which cost is reduced by learning by doing, there 

is an optimal path for the development of the PV industry. In this chapter, we analyse the 

consequences on firms’ strategies on the FIT policy that should be implemented to reach the 

optimal installation timing. The analysis is based on a model of firms installing PV systems 

over two periods, the cost decreasing in period 2 thanks to the experience effect triggered by 

the quantity installed in period 1. A FIT can be implemented, and reduced in period two. We 

consider three situations: firms adopting a short term strategy (myopic firms), a long term one 

(rational firms), or a mix of both types of firms. Myopic firms relate to small firms, while 

rational firms relate to bigger players. For each situation, the installation timing without FIT is 

compared with the optimal situation, and we find the FIT policy that allows reaching the 

optimum. 

We find that without FIT policy, the social welfare loss increases with the intensity of the 

learning by doing. But the optimum can be reached with a single FIT policy when firms 
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behave heterogeneously, whether is in a myopic or rational way. The initial FIT must be 

higher when firms are rational. However, when firms behave heterogeneously, the optimum 

can be reached only if two distinct FITs are implemented, each one addressing one type of 

firm. 

Résumé français 

Les tarifs de rachat de l’électricité sont les principales politiques publiques visant à 

stimuler le développement de l’industrie photovoltaïque. Un prix est fixé auquel les 

électriciens sont tenus d’acheter l’électricité d’origine photovoltaïque. En fonction de 

l’intensité de l’effet d’apprentissage qui réduit le coût en fonction de la production cumulée, il 

y a une vitesse optimale du développement de l’industrie photovoltaïque. Ce chapitre vise à 

analyser les conséquences du comportement stratégique des entreprises installant des 

panneaux photovoltaïques sur le tarif de rachat optimal. L’analyse est basée sur un modèle de 

deux périodes pendant lesquelles des entreprises installent des panneaux photovoltaïques. Le 

cout des panneaux diminue en période 2 grâce à l’effet d’apprentissage, en fonction de la 

quantité installée en période 1. Un tarif de rachat peut être instauré, et diminué en période 2. 

Nous considérons trois cas : les entreprises suivant une stratégie de court terme (myope), de 

long terme (rationnelle) ou un mélange des deux. Les entreprises myopes peuvent être 

assimilées aux petits acteurs de l’installation de systèmes photovoltaïques, alors que les 

rationnelles peuvent être assimilées aux acteurs plus importants. Dans chaque cas, nous 

comparons les quantités installées et le bien-être social sans tarif de rachat avec la situation 

optimale, puis nous déduisons le tarif de rachat qui permet d’atteindre la situation optimale. 

Nous trouvons que sans tarif de rachat, la perte de bien-être social augmente avec 

l’intensité de l’effet d’apprentissage. Cependant, avec un tarif de rachat adapté, la situation 

optimale peut être atteinte si les entreprises adoptent la même stratégie. Ce tarif doit être plus 

élevé lorsque les entreprises sont rationnelles. Par contre, lorsque les deux types de stratégies 

existent, la situation optimale peut être atteinte uniquement en instaurant deux tarifs de rachat 

distincts, chacun visant un type d’entreprise. 



1 Introduction

Feed-in tariff (FITs) are policy mechanisms guaranteeing a price for fixed periods of time

for electricity produced by renewable energy sources. They were implemented in the US

in 1978 and in Europe in 1990. The first FIT leading to a massive development of the

photovoltaic (PV) market was implemented in 2000 in Germany, under the Erneuerbare

Energien Gesetz. Following a steady decrease, it led the German PV market to regular

and strong development, propelling it to the head of the world market for the last decade.

However, FITs provoked uncontrolled market growth in other countries such as Spain

and France, followed by dramatic cuts that harmed the industry. FITs can then be efficient

to develop a young industry, but only if well designed.

The main purpose of FITs is to handle the externality that originates from learning

by doing, which cannot be captured by firms due to knowledge spillovers1. Learning

by doing identified by Arrow (1962) decreases unit cost with the accumulation of experi-

ence through cumulative production. But knowledge spillovers spread the cost reduction

through the whole industry, preventing individual firms to internalise it in their strategic

planning. Because of this positive externality, the production is under-optimal. Without

incentive policies such as FITs, PV technology would be adopted at a too slow pace.

The issue we address in this paper is the impact of firm’s strategies on optimal FIT

policies. Is it always possible to reach the optimal installation timing with a FIT? Should

the FIT vary depending on firms’ behaviours? Over the last decade, the PV industry

has undergone deep transformations. The many firms set up to take advantage of this

new market have consolidated, creating bigger players. Traditional utility companies

also entered the market. These bigger firms might have a long term strategy while small

firms follow a short term strategy. Long term strategies take into account FITs changes,

but also the module price reduction originating from learning by doing effect, which is

a public good for firms installing PV systems. Indeed, learning by doing is achieved by

firms located more upstream in the value chain, in the manufacturing segments, which

1The environmental externality that originates from conventional electricity sources’ greenhouse gases
emissions is often cited to justify FITs. However, this can also be sorted out by pricing those emissions.
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are different players of the industry, among which knowledge spillovers take place on a

large scale as explained in the first chapter.

To address the question of the impact of firms’ strategies on the optimal FIT policy, we

created a model with myopic firms (following a short term strategy) and rational firms

(following a long term strategy) installing PV systems over two periods. The learning

by doing effect decreases module price in period 2 depending on the total installation in

the first period. We show that there is an optimal timing of PV systems installation which

depends on the strength of the learning by doing effect. After analysing firms’ behaviours

when facing a FIT change, we draw some conclusions concerning the optimal FIT policy

to reach the optimal installation timing.

We show that the optimal policy is different depending on whether firms are myopic

or rational. The initial FIT must be higher when firms are rational. This result holds

in a heterogeneous world made of a mix of both behaviours. However, if a single FIT

can reach the optimal installation timing when firms all adopt the same strategy, it is

impossible when firms behave heterogeneously. In this situation, only distinct FITs each

targeting one type of firm can reach the optimum. This justifies different FITs according to

the size of the projects, considering that big PV systems are installed by big firms having

a long term rational strategy, while small systems are installed by smaller firms having a

short term "myopic" strategy.

There is substantial literature comparing the efficiency of the numerous policies de-

signed over the last decades to pull renewable energies’ markets: FITs, Quotas such as

Renewable Portfolio Standards (RPS), tendering schemes, investment subsidies, tax re-

bate, etc. This literature is not extensively explored here, but a few important results

are reminded. Building on Weitzman’s (1974) argument of the difference between price

and quantity approaches in the presence of uncertainty, Menanteau et al. (2003) show

that quantity based mechanisms such as RPS bring a better control of total cost. How-

ever, they point out that renewable energies markets have been growing faster when FITs

were used, thanks to the attractiveness of fixed prices for investors, and lower transaction

costs. In addition, Finon and Menanteau (2004) remind that if FITs have a poor static effi-
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ciency, they have a better dynamic efficiency than other instruments: if on a static side, the

present cost is higher for the consumers, the upside is a rent on the producer/installator

side, giving them resources to invest in R&D, reducing future cost. Moreover, they allow

to differentiate immature from mature technologies. Midttun and Gautesen (2007) take

a new look at this debate, arguing that FITs are more relevant for the early development

phase, when the dynamic efficiency is important due to a strong learning effect, while in

the later phase, RPS can allow more static efficiency by fostering cross-industry compet-

ition. The debate regarding which policy is the most efficient does not seem to reach a

clear conclusion, since it depends on the regulators priorities. In this chapter, we focus on

FITs since they are the main policy used today.

Regarding FITs dynamic efficiency, Rigter and Vidican (2010) establish a theoretically

optimal initial FIT and digression rate for decentralised PV in China. The optimisation

is based on the anticipation of PV systems price evolution and a required internal rate of

return for investors. Benthem et al. (2008) develop an intertemporal model of the optimal

policy in California, including environmental externality and various degrees of learning

by doing with spillovers. They find that the California Solar Policy based on rebates

cannot be justified by the environmental externality alone, but with a 20% learning rate,

this policy is below the optimal level. Wand and Leuthold (2011) adapt this model to

the German FIT policy. They find that with a 20% learning rate for solar panels, there is

a net social welfare loss until 2030 for Germany, considering a 15% growth in the world

market. However, in these models, the assumption is made that local installation does not

influence the global installation. The learning effect is therefore determined exogenously.

In this chapter, the learning is endogenous to highlight the dynamic effect. In addition,

contrary to the previous cited papers modelling demand by a non-linear function of net

present value of PV systems, we consider two different firms’ behaviours to study the

influence of firms’ strategy on the optimal policy regime.

The paper is structured as follows: Section 2 presents the model and the social op-

timum, section 3 considers the case of myopic firms while section 4 envisages the case

of rational firms. Then, section 5 considers a heterogeneous situation with a mix of both

behaviours. Finally, section 6 concludes.
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2 The model and the social optimum

This section presents the model of photovoltaic (PV) systems installation, and derives the

first best solution for the installation timing.

To highlight the dynamic effect, we consider two periods (referred to 1 and 2), over

which standard PV systems can be installed. Let Q1 be the quantity installed over the first

period, Q2 over the two periods, and therefore Q2−Q1 over the second period. Assuming

limited module production capacity, a total quantity Qmax of PV systems can be installed

over the two periods.

The cost of PV systems is composed of the cost of PV modules, which is exogenous

in the first period, but endogenous in the second period to take the learning effect into

account, and an additional cost (inverter, wires, mounting system, installation, land, etc.),

which is responsible for PV systems heterogeneity.

Assuming a competitive PV module market, there is a unique module price, equal to

the cost for each period. The module cost in period 1 C1 is exogenous. Following the

learning by doing theory, with complete knowledge spillovers, it decreases from period

1 to 2 depending on the total installed quantity in period 1, according to:

C2 = C1(
Cum2
Cum1

)−ǫ = C1(1+
Q1

Cum1
)−ǫ

Where Cumj is the cumulative quantity of PV systems installed at the beginning of

period j, and ǫ the experience parameter.

Since we consider the cost decrease from period 1 to period 2 rather than the marginal

effect, the expression of the learning effect can be linearized giving:

C2 = C1(1− ǫ ∗ Q1
Cum1

) = C1 − βQ1 with β = ǫ∗C1
Cum1

and Q1 <
C1
β

Additional cost is assumed to be heterogeneous, following a uniform distribution on

(0,+∞) with a density 1
γ . Since the positive discount rate implies that most profitable
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projects are installed first, the installation of one unit of PV system raises additional cost

by γ. Therefore the total cost of the installation of a standard PV system when a quantity q

has already been installed is:

C1 + γq in period 1

C1 − βQ1 + γq in period 2

The electricity price E is assumed to be constant over the two periods. It corresponds

to the net present value of all the electricity produced by a standard PV system over its

lifetime. It can then be compared to the cost of a PV system.

Given a discount rate r, the first best installation program is defined by (Q1, Q2) max-

imizing the following expression of the social welfare:

W =
Q

1∫

0

(E− C1 − γq)dq+ 1
1+r

Q2∫

Q1

(E− C1 + βQ1 − γq)dq (1)

s.c.Qmax ≥ Q2 ≥ Q1 ≥ 0

The optimal total installed quantity can be bounded by Qmax. Table 1 summarizes our

findings in term of optimal installation, which are explained in proposition 1.
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Table 1: Optimal installation in period 1 (Q
optimal
1 ) and 2 (Q

optimal
2 )

β < βbounding βbounding < β < βlim βlim < β

case 1 case 2 a Qmax < Qlim

No installation

case 2 b Qmax > Qlim

C1 > E No installation Bounded by Qmax

Q
optimal
1 = r(E−C1)+βQmax

2β+rγ

Q
optimal
2 = Qmax

case 3 case 4

C1 < E Not bounded Bounded by Qmax

Q
optimal
1 = (E− C1) ∗ β+rγ

∇ Q
optimal
1 = r(E−C1)+βQmax

2β+rγ

Q
optimal
2 = (E− C1) ∗ 2β+rγ+rβ

∇ Q
optimal
2 = Qmax

βlim =γ(1+
√

1+ r)

Qlim=
(2β+rγ)(1+

√
1+r)+rβ

∇ (E− C1)

∇ = 2γβ+ rγ2 − β2 which is positive for β < βlim and negative for β > βlim

Proposition 1 Depending on the value of initial module cost, and the strength of the learning

effect, four optimal situations exist:

Case 1: If initial module cost is higher than the cost of electricity (C1 > E), and the

learning rate is low, it is optimal to install nothing.

Case 2: If initial module cost is higher than the cost of electricity (C1 > E), and the

learning rate is high, it is optimal to install PV systems only if the maximum capacity is high

enough to allow a strong learning effect to compensate for the high initial cost (case 2b). Otherwise,

it is optimal to install nothing (case 2a).

Case 3 and 4: If initial module cost is lower than the cost of electricity (C1 < E), it is

optimal to install some PV systems. The optimal installed quantities increase with the learning

effect (case 3) until it is bounded by Qmax (case 4).
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Proof. If C1 > E (case 3 and 4): If β < βlim = γ(1+
√

1+ r), ∇ = 2γβ+ rγ2 − β2
> 0,

so Q
optimal
2 is strictly increasing, and Qoptimal → +∞ when β → βlim. So there is a unique

βbounding < βlim corresponding to Q
optimal
2 (βbounding) = Qmax (limit between case 3 and 4). If

β ≥ βbounding (case 4), Q
optimal
2 = Qmax.

If (C1 > E) (case 1 and 2):

If β < βlim (case1), ∇ > 0 so Q
optimal
2 < Q

optimal
1 < 0. Since the installed quantities

cannot be negative, Q
optimal
1 = Q

optimal
2 = 0.

If β > βlim (case2), the optimal installed capacity is bounded by Qmax (c.f. case C1 > E).

Since (E−C1) < 0, W
optimal
Bounded > 0 only if Qmax > Qlim =

(E−C1)
∇ ∗

[
(2β+ rγ)

(
1+

√
1+ r

)
+ rβ

]
>

0 (case2b). If Qmax < Qlim, it is optimal to install nothing (case 2a).

These cases can be interpreted in terms of maturity and learning rate of the techno-

logy. Case 1 corresponds to a technology which does not show any potential since its

low learning rate does not compensate for its high initial cost. Case 2 describes a very

young technology having a high initial cost, but showing important cost reduction po-

tential thanks to a high learning rate. Case 3 and 4 correspond to technologies for which

best applications are profitable. In case 4, there is a bounding constraint on the installation

rate. In case 3, the installation is not limited by any physical or logistic constraint.

From now on, we focus on case 3, which corresponds to the PV industry. Indeed PV

systems are profitable in some niche markets such as for off-grid applications. Moreover

the installation is not bounded, as it is acknowledged that module production and in-

stallation are much lower than actual production capacity, and the low penetration of PV

technology in the electricity market allows further important development (0.6% of the

gross electricity consumption in Europe in 2010, Jäger-Waldau et al., 2011). Other cases

are treated in the annex 1.

In case 3, the optimal social welfare is defined by (2). This expression is used as a

reference to assess the social welfare loss in business as usual or policy scenarios.

Woptimal = (E− C1)
2 ∗ 2β+rγ

2∇ (2)
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3 The case of Myopic firms

In this section and the following ones, we assume that the electricity produced by the PV

systems is sold at a fixed price over their whole lifetime. This feed-in tariff (FIT) is π in

period 1, and π − δπ in period 2. The FIT policy is therefore defined by (π; δπ). As for

the cost of electricity, π and δπ correspond to the net present value of all the electricity

produced by a standard system over its lifetime. It can then be directly compared to the

cost of a PV system.

The installed quantities Q1 and Q2 are now determined by firms’ behaviour. Two be-

haviours are considered: myopic and rational. This can correspond to small firms having

short term strategies, installing PV systems as long as they are profitable in a "myopic"

manner, and bigger ones following a long term strategy, anticipating market and policy

evolution in a rational way.

In this section, firms are myopic, anticipating neither the cost reduction triggered by

the learning effect, nor the FIT change in the second period. They install PV systems

as long the marginal project is profitable, following a short term strategy according to

π−C1− γQM
1 = 0 in the first period, and π− δπ−C1+ βQM

1 − γQM
2 = 0 in the second

period, with QM
2 ≥ QM

1 ≥ 0. Solving these equations gives the following expressions of

the installed quantities:

QM
1 = π−C1

γ

QM
2 = (π−C1)(β+γ)−γδπ

γ2

Replacing QM
1 and QM

2 by those expressions in the definition of the social welfare (1)

gives the expression of the social welfare when firms are myopic (3). See annex 1 for the

other cases than 3. Two scenarios are considered: business as usual (BAU) and an optimal

policy (π̂M,δπ̂M).
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WM(π, δπ) = (E−C1)(π−C1)
γ + (E−C1)∗[β(π−C1)−γδπ]

γ2(1+r)

− (π−C1)
2

2γ + (π−C1)
2∗(β2−2γβ)+2γ2∗(π−C1)∗δπ−γ2∗δπ2

2γ3(1+r)
(3)

3.1 Business as usual scenario (Without policy)

To analyse the situation where no FIT policy is implemented, we consider a BAU scenario,

where the electricity is sold at the market price E in both periods, which corresponds to

π = E and δπ = 0 in our model. Using these values in the previous expression gives the

following installed quantities and social welfare:

QM,BAU
1 = E−C1

γ ; QM,BAU
2 = (E−C1)(β+γ)

γ2 ; WM,BAU = (E− C1)
2 β2+γ2(1+r)

2γ3(1+r)

Proposition 2 The business as usual situation is not optimal if and only if there is a learning

effect.

Proof. If β = 0, WM,BAU =Woptimal

If β > 0, Woptimal −WM,BAU = (E− C1)
2 β2(β−γ)2

2γ3(1+r)∇ > 0 since ∇ > 0 in case 3.

To illustrate proposition 2, it is interesting to consider a simulation, shown in figure 1

(quantities) and 2 (social welfare).

With a weak learning effect (β < γ), the cost decrease in period 2 does not compensate

for the increase in additional cost. In this situation it would be optimal to wait for period

2 to install some of the systems that myopic firms install in period 1.

With a strong learning effect (β > γ), the corresponding cost decrease in period 2 is

more important than the increase in additional cost. Therefore it is optimal to install more

projects in period 1 than what myopic firms would do, to benefit from this strong learning

effect in period 2. The gap between the optimal and BAU installed quantities and social

welfares then increases with β.
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Figure 1 Simulation of installed quantities in an optimal and BAU scenario according to the

learning strength (β), in case 3. (Parameters: γ = 0.001, β = various, E = 18, C1 = 14,

r = 0.15)

Figure 2 Simulation of the social welfare loss in a BAU scenario according to the learning

strength (β), in case 3. (Parameters: γ = 0.001, β = various, E = 18, C1 = 14, r = 0.15)
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3.2 Optimal policy scenario

To see if it is possible to reach the optimal situation with a FIT policy, we now consider the

optimal policy, which corresponds to (π̂M; δπ̂M) maximizing the social welfare defined

by (3).

Proposition 3 If all firms are myopic, it is possible to reach the optimal situation with an ap-

propriate FIT policy (π̂M; δπ̂M) defined by π̂M = E + (E − C1)
β∗(β−γ)
∇ and δπ̂M = (E −

C1)
β∗(β−γ)
∇ .

Proof. C.F. annex 2

An appropriate FIT policy therefore allows reaching the optimal installation timing

when all firms are myopic. See annex 1 for the optimal policy in the bounded case, which

also leads to the optimal situation.

4 The case of Rational firms

In this section, firms are rational, anticipating the cost reduction triggered by the learning

effect, and the FIT change in the second period. They follow a long term strategy.

We assume a high number of firms, thus each firm’s production is negligible com-

pared to the global production. Therefore the learning effect triggered by each firm is

not separated from the global learning in rational firms’ optimisation program. They in-

stall PV systems as long as they are profitable, but also provided that their net present

value wouldn’t be higher if installed in period 2. Their optimisation program is therefore

π−C1− γQR
1 =

1
1+r (π− δπ−C1+ βQR

1 − γQR
1 ) in period 1, and π− δπ−C1+ βQR

1 −
γQR

2 = 0 in period 2, with QR
2 ≥ QR

1 ≥ 0.
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Solving these equation gives:

QR
1 =

r(π−C1)+δπ
β+rγ

QR
2 =

(π−C1)(β+rβ+rγ)−γrδπ
γ(β+γr)

Using those expressions in the definition of the social welfare (1) gives the social wel-

fare in the general case when firms are rational (4). A BAU and an optimal policy (π̂,δπ̂)

scenario are considered.

WR(π, δπ) = (E−C1)(π−C1)
γ + (rβ2−(γr+β)2)(π−C1)

2+2β2(π−C1)∗δπ−(2γβ+γ2r)δπ2

2γ(γr+β)2
(4)

4.1 Business as usual scenario

As in the myopic case, the BAU scenario corresponds to π = E and δπ = 0, giving:

QR,BAU
1 = r(E−C1)

β+rγ , QR,BAU
2 = (E−C1)(β+rβ+rγ)

γ(β+γr)
, WR,BAU = (E− C1)

2 (γr+β)2+rβ2

2γ(γr+β)2

Proposition 4 The business as usual situation is non-optimal if and only if there is a learning

effect.

Proof. If β = 0, WR,BAU =Woptimal

If β > 0, Woptimal −WR,BAU = (E− C1)
2 β4(1+r)

2γ(γr+β)2∇ > 0 since ∇ > 0 in case 3.

Simulations in figure 3 and 4 show that the gap between the optimal and the BAU

installed quantities and social welfare increase with the strength of the learning effect (β).

It illustrates the learning by doing externality.
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Figure 3 Simulation of installed quantities in an optimal and BAU scenario according to the

learning, in case 3. (Parameters: γ = 0.001, β = various, E = 18, C1 = 14, r = 0.15)

Figure 4 Simulation of the social welfare loss in a BAU scenario according to the learning, in case

3. (Parameters: γ = 0.001, β = various, E = 18, C1 = 14, r = 0.15)
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4.2 Optimal policy scenario

The optimal policy corresponds to (π̂R, δπ̂R) maximizing the social welfare defined by

(4). It allows the model to reach the optimal installation timing (c.f. proposition 5).

Proposition 5 If all firms are rational, it is possible to reach the optimal quantities of PV systems

installed in period 1 and 2 with an appropriate FIT policy (π̂R, δπ̂R), defined by π̂R = E+ (E−
C1)

β2

∇ and δπ̂R = (E− C1)
β2

∇

Proof. C.F. annex 3.

4.3 Comparison with the case of myopic firms

Whether firms adopt a myopic or rational behaviour, the business as usual scenario is

not optimal if there is some learning by doing (β > 0). The social welfare loss is higher

when firms are rational, except if the learning is really low (0 < β < γ(
√

r2 − r− r)), in

which case the over-installation by myopic firms leads to more social welfare loss than

the under installation by rational ones. This is illustrated by the simulation in figure 5

showing the logarithm of the social welfare loss in the BAU scenario for both myopic and

rational behaviours.
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Figure 5 Simulation of the social welfare loss in a BAU scenario according to the learning

strength, in case 3. (Parameters: γ = 0.001, β = various, E = 18, C1 = 14, r = 0.15)

Whether firms are all myopic or all rational, the optimal situation can be reached with

an appropriate FIT policy. However, these optimal initial FITs are different: It must be

higher if firms are rational (c.f. proposition 6). The difference increases with the learning

rate as shows figure 6 simulating the optimal initial FITs for myopic and rational firms.

The economic rationals behind this result is that rational firms anticipate the future cost

decrease, which increases their incentive to wait for period two. Therefore to reach the

optimal installed quantity in period one, the incentive must be higher through a higher

initial FIT. The FIT in period 2 is always the electricity price E, allowing to stop the in-

stallation when the marginal cost of installation reaches the cost of electricity2.

Proposition 6 The optimal initial FIT is higher when firms follow a long term strategy (rational).

Proof. π̂R − π̂M = γ
∇ > 0 in case 3.

2It would be higher if the consequences of the learning effect on the periods after would be considered
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Figure 6 Simulation of optimal initial FITs for myopic or rational firms according to the learning

strength (Parameters: γ = 0.001, β = various, E = 18, C1 = 14, r = 0.15)

5 The case of homogeneous behaviours: mix of Myopic

and Rational firms

In this section, we consider that a proportion a of the firms are rational, and (1− a) are

myopic. Additional cost then follows a uniform distribution on (0+∞) with a density a
γ

for rational firms, and 1−a
γ for myopic ones.

Myopic firms install PV systems until it is not profitable, therefore until π − C1 −
γ

1−a QM
1 = 0 in the first period, and π − δπ − C1 + β(QM

1 + QR
1 ) −

γ
1−a QM

2 = 0 in the

second period. Rational firms install PV systems until π − C1 − γ
a QR

1 =
1

1+r (π − δπ −
C1 + β(QM

1 + QR
1 ) −

γ
a QR

1 ) in period 1, and π − δπ − C1 + β(QM
1 + QR

1 ) −
γ
a QR

2 = 0 in

period 2.

Solving the previous equations gives the following result, with QM
2 ≥ QM

1 ≥ 0, and

QR
2 ≥ QR

1 ≥ 0:

QM
1 = (1−a)

γ (π − C1) and QR
1 = max( a

γ ∗
(π−C1)(rγ−β(1−a))+γδπ

aβ+rγ ; 0)
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QM
2 = (1− a)Q2 and QR

2 = aQ2

with Q2 =
(π−C1)(aβ+rγ+rβ)−rγδπ

γ(aβ+rγ)
if QR

1 > 0

Q2 =
(π−C1)(γ+β(1−a))−γδπ

γ2 if QR
1 = 0

With a proportion a of rational firms, the social welfare is now defined by:

WH(a) =
QM

1∫

0

(E− C1 − γ
1−a q)dq+

QR
1∫

0

(E− C1 − γ
a q)dq

+ 1
1+r

QM
2∫

QM
1

(E− C1 + β(QM
1 +QR

1 )−
γ

1−a q)dq+ 1
1+r

QR
2∫

QR
1

(E− C1 + β(QM
1 +QR

1 )−
γ
a q)dq

Integrating and replacing QM
2 ,QM

1 , QR
2 ,and QR

1 by the previous expressions gives two

expression of the social welfare W(a, π, δπ), depending on whether rational firms install

PV systems in period one (QR
1 > 0) or not (QR

1 = 0) (c.f. annex 4). As for the homogeneous

case, two scenarios are considered: BAU and an optimal policy (π̂, δπ̂).

5.1 Business as usual scenario

The BAU scenario still corresponds to π = E and δπ = 0, giving the following expres-

sions of the social welfare:

WBAU(a) = (E− C1)
2 2(aβ+rγ+rβ+r2γ)(aβ+rγ)−(aβ+rγ)2−r(β+rγ)2+rβ2(1+r)−a(1−a)β2

2γ(1+r)(aβ+rγ)2
if QR

1 > 0

WBAU(a) = (E− C1)
2 γ2+(1−a)(2γβ+rγ2)+(1−a)2(β2−2γβ)

2γ3(1+r)
if QR

1 = 0

Proposition 7 Without learning effect (β = 0), the total installed quantity does not depend on

a, and is optimal whatever the share of rational firms.

If the learning effect is stronger than the additional cost decrease (β > γ), the BAU scenario

leads to less installation than the optimal scenario. Otherwise (β < γ), the BAU situation can be

an over installation if the share of rational firms and the learning are low enough.
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Proof. C.F. Annex 5.

To illustrate proposition 7, figures 7, 8, and 9 show simulations of installed quantities

in a BAU scenario for shares of rational firms from 0 to 1, without learning effect (figure 7),

with a strong learning effect (figure 8), or with a weak learning effect (figure 9). Without

learning, the total installed quantity in period 1 is always optimal (therefore in period 2

as well). If the learning is strong (β > γ), rational firms anticipate the learning effect, so

they do not install PV systems in period 1, unless their share is important. In any case,

the total installed quantity in period 1 is lower than the optimal one. If the learning is low

(β < γ), rational firms also install too few PV systems, but this does not compensate the

over installation from myopic firms for high proportion of myopic firms (a low), leading

to the installation of too many PV systems in period 1 in this case.

Figure 7 Simulation of installed quantities in the optimal and BAU scenario without learning

effect, according to the share of rational firms. (Parameters: γ = 0.001, β = 0, E = 18, C1 = 14,

r = 0.15, a = various)
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Figure 8 Simulation of installed quantities in the optimal and BAU scenario with a strong

learning effect, according to the share of rational firms, if β > γ > 0. (Parameters: γ = 0.001,

β = 0.0012, E = 18, C1 = 14, r = 0.15, a = various)

Figure 9 Simulation of installed quantities in the optimal and BAU scenario with a weak learning

effect, according to the share of rational firms, if γ > β > 0. (Parameters: γ = 0.001,

β = 0.0004, E = 18, C1 = 14, r = 0.15, a = various)
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5.2 Optimal policy scenario

As in the homogeneous cases (a ∈ {0, 1}), the optimal policy is found by maximizing

W(a, π, δπ) on δπ and π. The expression of WOptimalPolicy(a) is given in annex 7.

Proposition 8 A unique FIT policy cannot reach the optimal situation when firms behave hetero-

geneously.

Proof. See annex 7.

The result formulated in proposition 8 is illustrated in the simulation in figure 10. It

shows that contrary to the homogeneous case, the optimal policy in the heterogeneous

case (a /∈ {0, 1}) does not lead to the optimal situation.

Figure 10 Simulation of the social welfares in the mix case with an optimal policy.

(Parameters: γ = 0.001, β = 0.0015, E = 18, C1 = 14, r = 0.25, a = various)

When firms’ behaviour is homogeneous, the objective of the FIT policy is to get the

optimal quantities of PV systems installed in period 1 and 2, to benefit from the learning
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effect without installing too many projects raising the additional cost. Let’s call that the

quantitative issue. This can be controlled by a unique FIT policy (proposition 3 and 5).

The inability of a unique FIT to reach the optimum in the heterogeneous case (pro-

position 8) is due to the emergence of another issue when both types of firms exist, that

we call the heterogeneity issue: for any FIT policy, one type of firm installs PV systems

in period 2 which are less costly than the last one installed by the other type of firm in

period 1. This is not optimal since the positive discount rate implies that the most profit-

able projects should be installed first.

A trade-off has to be made between the two issues. Indeed, a higher FIT leads to

more total installation in period one reducing the quantitative issue, but increases the

heterogeneity issue since rational firms wait for period 2 to benefit from the learning

effect caused by the installation by myopic firms. The optimal policy depends on the

share of rational firms.

For low proportions of rational firms, the heterogeneity issue caused by their absence

is not too important, so the optimal policy corresponds to no rational firms installing PV

systems in period one (c.f. figure 11).

For high proportions of rational firms, the heterogeneity issue caused by their absence

is important, so the optimal policy corresponds to the installation of PV systems by both

types of firms in period one (c.f.. figure 11).
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Figure 11 Simulation of installed quantity in period 1 according to the optimal FIT policy.

(Parameters: γ = 0.001, β = 0.0015, E = 18, C1 = 14, r = 0.25, a = various)

As figure 12 shows, the transition between these two optima corresponds to a decrease

of the optimal initial FIT. But for both optima, the optimal initial FIT increases with the

share of rational firms. If the FIT policy is designed considering that firms are myopic, a

too small initial FIT would be implemented, since the fully myopic case (a = 0) corres-

ponds to the smallest value of the optimal initial FIT. The installation in period 1 would be

under-optimal. This shows that the result that the initial FIT must be higher when firms

are rational (proposition 6) holds when firms behave heterogeneously. However in the

heterogeneous, case the economic rationals behind this result is more complex, since ra-

tional firms also take into account the installation from myopic firms. This explains why

if a high proportion of the firms are myopic, all rational firms prefer to wait for period

two, to benefit from the learning effect triggered by myopic firms.
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Figure 12 Simulation of the optimal FIT policy. (Parameters: γ = 0.001, β = 0.0015, E = 18,

C1 = 14, r = 0.25, a = various)

5.3 Optimal policy with differentiated feed-in tariffs

To deal with both issues at the same time, another policy instrument needs to be added. If

myopic and rational firms can be differentiated ex ante, two different FITs can be applied

to reach the optimum (c.f. proposition 9), each one targeting one type of firm. The dif-

ferentiation can be based on the size of the PV systems, multi Megawatts ground based

PV power plant being constructed by big companies anticipating FIT and module cost

evolution, while smaller roof-top systems are installed by smaller firms when they are

profitable, therefore in a "myopic" way.

Proposition 9 For any proportion of rational/myopic firms, it is possible to reach the optimal

situation with a differentiated FIT.

Proof. See annex 8.
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Using the expression of the optimal FITs (annex 8), we find that the FIT addressing

rational firms has to be higher than the one addressing myopic firms, with the difference

being more important for small shares of rational firms, as figure 13 shows, simulating

the best combination of initial FITs. This gap increases with the strength of the learning

effect.

Figure 13 Simulation of optimal differentiated FITs according to the share of rational firms.

(Parameters: γ = 0.001, β = 0.0012, E = 18, C1 = 14, r = 0.25, a = various)
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6 Conclusion

This chapter explores the consequences of the strategic behaviour of firms installing photo-

voltaic (PV) systems on the design of an optimal feed-in tariff (FIT) policy.

Two consecutive periods are considered, during which firms install PV systems. The

learning by doing effect decreasing module price in period 2 according to the global in-

stallation in period 1. A FIT at which firms sell the electricity produced by PV systems is

implemented, and can be changed in period 2. Two types of behaviours are considered:

myopic and rational. Myopic firms install PV systems as long as they are profitable, fol-

lowing a short term strategy. Rational firms install PV systems if they are profitable, but

also if it is not more profitable to wait for the following period to benefit from the learning

effect, following a long term strategy. Myopic firms can refer to small ones, while rational

firms can relate to bigger companies resulting from the consolidation of the industry or

the entry of utility companies such as EDF or Areva in France. Since rational firms are

more and more present in the market, it is important to understand the consequences

of these strategies concerning the FIT policy that should be implemented to reach the

optimal installation timing.

We first show that with a positive learning rate, the business as usual (BAU) situation

- without FIT policy - is not optimal whatever firms’ behaviour. This corresponds to the

situation of the PV industry3.

A main finding of this chapter is that firms’ strategies should be taken into account

when designing a FIT policy. If firms follow a long term strategy, a higher FIT should

be implemented initially, with a more important degression rate. The reason is that the

anticipation of future module price reduction is an incentive to wait to benefit from this

dynamic effect. Conducting those firms to install the optimal quantity of PV systems thus

requires a higher incentive effect than for firms following a short term strategy, which is

the induced by a higher initial FIT followed by more important degression. This result

3However, if we assume no spillovers and vertical integration with firms installing PV systems also
producing them, the result would be different. Indeed, the cost reduction driven by their private production
would peruade firms to install more PV systems.
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holds when firms behave heterogeneously (some pursuing short term strategies, other

long term strategies): the augmentation of the share of rational firms requires a higher

initial FIT.

The second main result is that if it is possible to reach the optimum with a unique

FIT when firms are homogenous (all myopic or all rational), it is not possible when firms

behave heterogeneously (mix of myopic and rational firms), which is the most realistic

situation. In this case, only a combination of two FITs allows reaching the optimal situ-

ation, one addressing myopic firms, and one addressing rational firms. However this

requires being able to differentiate myopic from rational firms. This is possible if myopic

firms are small ones installing PV systems on rooftops while rational firms are big com-

panies installing multi Megawatts PV power plant. Another policy instrument could be

used to prevent rational firms from waiting for future cost reductions, such as a cap on

future installation.

146



7 Annex

7.1 Annex 1: Bounded case

Social welfare in the optimal installation timing

W
optimal
Bounded =

1
2∗(1+r)∗(2β+rγ)

[
−∇ ∗Q2

max + 2 ∗ (2β+ rγ+ rβ)(E− C1) ∗Qmax + r2 ∗ (E− C1)
2
]

Expression of installed quantities and social welfare In the bounded case the installed

quantities and social welfares are:

With myopic firms:

QM
1 = E−C1

γ Q2 = Qmax

W(π, δπ, Qmax) =
[r(E−C1)+βQmax]∗(π−C1)

(1+r)γ
− (2β+rγ)∗(E−C1)

2

2(1+r)γ2 + 2∗(E−C1)Q max−γQ2
max

2(1+r)

With rational firms

Q1 =
r(E−C1)

β+rγ Q2 = Qmax

WBR(π, δπ, Qmax) =

[r(E−C1)+βQmax]∗[r(π−C1)+δπ]
(1+r)(β+rγ)

− (2β+rγ)∗[r(E−C1)+δπ]2

2(1+r)(β+rγ)2
+ 2∗(E−C1)Q max−γQ2

max
2(1+r)

Business as usual
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Myopic:

W(π, δπ, Qmax) =
[r(E−C1)+βQmax]∗(π−C1)

(1+r)γ
− (2β+rγ)∗(E−C1)

2

2(1+r)γ2 + 2∗(E−C1)Q max−γQ2
max

2(1+r)

Rational:

W(π, δπ, Qmax) = (E− C1)
2 r3γ

2(1+r)(β+rγ)2
+ (E− C1)Qmax

β+rγ+rβ
(1+r)(β+rγ)

−Q2
max

γ
2(1+r)

Proposition 10 The business as usual situation is not optimal only in case 2b or 4 (and 3 as

shown before), whether firms are myopic or rational.In case 1 or 2a (no installation in the optimal

situation). For any proportion of rational/myopic firms, it is possible to reach the optimal situation

with a differentiated FIT.

Proof. In case 2b, there is no installation over the two periods, while it would be optimal

to install PV systems (c.f. proposition 1). Therefore the business as usual case is not optimal in

case 2b.

In case 4:

for myopic firms Woptimal −WB(E, 0) = (2(E− C1)− γQmax)2
β2

2γ2(1+r)(2β+rγ)
> 0

for rational firms, Woptimal−WR(E, 0) = (r(E−C1)− (β+ rγ)Qmax)2
β2

2(1+r)(2β+rγ)(β+rγ)2
>

0

Optimal policy

Proposition 11 It is always possible to reach the optimal case with an appropriate FIT policy

(π; δπ) in the bounded case as well. These FIT policies maximising the welfare for each case are

describe bellow.

Proof. See annex 2 for myopic firms, and 3 for rational firms.

Rational: r(π − C1) + δπ = β+rγ
2β+rγ [r(E− C1) + βQmax]

myopic: π − C1 = γ
2β+rγ [r(E− C1) + βQmax]
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7.2 Annex 2: Proof of proposition 3

7.2.1 Not bounded case

With a FIT (π, δπ), the social welfare when firms behave in a myopic way is:

WB(π, δπ) =

(E−C1)(π−C1)
γ + (E−C1)∗[β(π−C1)−γδπ]

γ2(1+r)
− (π−C1)2

2γ + (π−C1)
2∗(β2−2γβ)+2γ2∗(π−C1)∗δπ−γ2∗δπ2

2γ3(1+r)

Step 1: Best FIT change according to the FIT in period 1:

δ(WB)
δ(δπ)

= 2γ(π−E−δπ)
2γ2(1+r)

= 0 ⇔ δπ = π − E

The corresponding δπ is a maximum since
δ2(WB)

δ2(δπ)
= − 1

γ(1+r)
< 0

Step 2: Best FIT in period 1

With the previous expression of δπ in WB(π, δπ) , we get

WR(π) = (π − C1)
2−(2γβ+rγ2−β2)

2γ3(1+r)
+ (π − C1)(E− C1)

β+rγ

γ2(1+r)
+ (E− C1)

2 1
2γ(1+r)

δ(WB)
δ(π−C1)

= −(2γβ+rγ2−β2)
γ3(1+r)

(π − C1) + (E− C1)
β+rγ

γ2(1+r)
= 0 ⇔ (π − C1) =

γ(β+rγ)

2γβ+rγ2−β2

This is also a maximum since
δ2(WB)

δ2(π−C1)
= −2γβ+rγ2−β2

γ3(1+r)
< 0 since 2γβ + rγ2 − β2 =

∇ > 0 in case 3.

The optimal FIT policy (πo; δπo) is then defined by πo = E+ (E− C1)
β2

∇ and δπo =

(E− C1)
β2

∇ . The corresponding social welfare is:

W(πo; δπo) = (E− C1)
2 2β+rγ

2∇ = WOptimal
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7.2.2 Bounded case

With a FIT (π, δπ), the social welfare when firms behave in a myopic way is:

W(π, δπ, Qmax) =
[r(E−C1)+βQmax]∗(π−C1)

(1+r)γ
− (2β+rγ)∗(E−C1)

2

2(1+r)γ2 + 2∗(E−C1)Q max−γQ2
max

2(1+r)

It does not depend on δπ, so any δπ which allow to reach Qmax, that is to say πo −
δπo ≥ E, is optimal.

δ(W)
δ(π−C1)

= γ(r(E−C1)+βQmax)−(2β+rγ)(π−C1)
γ2(1+r)

= 0 ⇔ (π − C1) =
γ(r(E−C1)+βQmax)

2β+rγ

This is a maximum since
δ2(WB)

δ2(π−C1)
= − 2β+rγ

γ2(1+r)
< 0

The optimal FIT policy (πo; δπo) is then defined by πo = C1 +
γ(r(E−C1)+βQmax)

2β+rγ and

πo − δπo ≥ E. The corresponding social welfare is:

W(πo; δπo) =

1
2∗(1+r)∗(2β+rγ)

[
−∇ ∗Q2

max + 2 ∗ (2β+ rγ+ rβ)(E− C1) ∗Qmax + r2 ∗ (E− C1)
2
]

= WOptimal

7.3 Annex 3: Proof of proposition 5

7.3.1 Not bounded case

With a FIT (π, δπ), the social welfare when firms behave in a rational way is:

WR(π, δπ) = (E−C1)(π−C1)
γ + (rβ2−(γr+β)2)(π−C1)

2+2β2(π−C1)∗δπ−(2γβ+γ2r)δπ2

2γ(γr+β)2
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Step 1: Best FIT change according to the FIT in period 1:

δ(WB)
δ(δπ)

= β2(π−C1)−(2γβ+rγ2)δπ

γ(rγ+β)2
= 0 ⇔ δπ = (π − C1)

β2

2γβ+rγ2

The corresponding δπ is a maximum since
δ2(WB)

δ2(δπ)
= −(2γβ+rγ2)

γ(rγ+β)2
< 0

Step 2: Best FIT in period 1

With the previous expression of δπ in WB(π, δπ) , we get

WB(π) = (E−C1)(π−C1)
γ + (π−C1)

2

2
β2−2γβ−rγ2

γ(2γβ+rγ2)

δ(WB)
δ(π−C1)

= (E−C1)
γ − (π − C1)

2γβ+rγ2−β2

γ(2γβ+rγ2)
= 0 ⇔ (π − C1) =

2γβ+rγ2

2γβ+rγ2−β2

This is also a maximum since
δ2(WB)

δ2(π−C1)
= −2γβ+rγ2−β2

γ(2γβ+rγ2)
< 0 since 2γβ + rγ2 − β2 =

∇ < 0 in case 3.

The optimal FIT policy (πo; δπo) is then defined by πo = E+ (E− C1)
β2

∇ and δπo =

(E− C1)
β2

∇ . The corresponding social welfare is:

W(πo; δπo) = (E− C1)
2 2β+rγ

2∇ = WOptimal

7.3.2 Bounded case

With a FIT (π, δπ), the social welfare when firms behave in a rational way is:

W(π, δπ, Qmax) =

[r(E−C1)+βQmax]∗(δπ+r(π−C1))
(1+r)(β+rγ)

− (2β+rγ)∗[δπ+r(π−C1)]
2

2(1+r)(β+rγ)2
+ 2(E−C1)−γQmax

2(1+r)
Qmax
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It does not depend on δπ, so any δπ which allow to reach Qmax, that is to say πo −
δπo ≥ E, is optimal.

δ(W)
δ(δπ)

= −[δπ+r(π−C1)](2β+rγ)+(β+rγ)[r(E−C1)+βQmax]
(1+r)(β+rγ)2

= 0 ⇔ δπ + r(π − C1) =
β+rγ

2β+rγ

[r(E− C1) + βQmax]

This is a maximum since
δ2(WB)

δ2(δπ)
= − 2β+rγ

(1+r)(β+rγ)2
< 0

The optimal FIT policy (πo; δπo) is then defined by δπo+ r(π−C1) =
β+rγ

2β+rγ [r(E− C1) + βQmax].

The corresponding social welfare is:

W(πo; δπo) =

1
2∗(1+r)∗(2β+rγ)

[
−∇ ∗Q2

max + 2 ∗ (2β+ rγ+ rβ)(E− C1) ∗Qmax + r2 ∗ (E− C1)
2
]

= WOptimal

7.4 Annex 4: Social welfare with a mix of myopic and rational firms

With a FIT policy (π, δπ)

If QR
1 > 0

W(a, π, δπ) =
(E−C1)[(π−C1)(aβ+rγ+rβ+r2γ)−(1−a)rγδπ]

γ(1+r)(aβ+rγ)
+
−(π−C1)

2[(aβ+rγ)2+r(β+rγ)2−rβ2(1+r)+a(1−a)β2]
2γ(1+r)(aβ+rγ)2

+
2(π−C1)δπ[rγ(1−a)(aβ+rγ)+(a+r)aβ2]−δπ2(a+r)(2aγβ+rγ2)

2γ(1+r)(aβ+rγ)2

If QR
1 = 0

W(a, π, δπ) = (π−C1)
2[(1−a)2(β2−2γβ)−(1−a)rγ2−γ2]+2(E−C1)(π−C1)γ[γ+(1−a)(β+rγ)+2γ2(π−E)δπ−γ2δπ2

2γ3(1+r)
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7.5 Annex 5: Proof of proposition 7

If β = 0 :

WBAU(a) = (E−C1)
2

2γ = WOptimal

If β > 0 :

The installed quantities in the BAU case are:

QM
1 = (E− C1)

1−a
γ

QR
1 = max( a

γ ∗
(E−C1)(rγ−β(1−a))

aβ+rγ ; 0)

QM
2 = (1− a)Q2 and QR

2 = aQ2

with Q2 =
(E−C1)(aβ+rγ+rβ)

γ(aβ+rγ)
if QR

1 > 0

Q2 =
(E−C1)(γ+β(1−a))

γ2 if QR
1 = 0

Therefore in period 1:

from myopic firms:

1−a
γ (E− C1)

from rational firms:

0 if a < 1− rγ
β , and a

γ ∗
(E−C1)(rγ−β(1−a))

aβ+rγ if a > 1− rγ
β

This gives two cases:

Case A: If a < 1− rγ
β
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Q
optimal
1 −Q1

BAU = (E− C1)(a+ β
β−γ
∇ ), so Q1

BAU > Q
optimal
1

Case B: If a > 1− rγ
β

Q
optimal
1 −Q1

BAU = (E− C1)
β

∇(aβ+rγ) [r(β− γ) + a(β+ rγ)]

If β > γ, Q1
BAU < Q

optimal
1 in both cases

If β < γ,

In case A, Q1
BAU < Q

optimal
1 if a > β

γ−β
∇

In case B, Q1
BAU < Q

optimal
1 if a > r

γ−β
β+rγ

7.6 Annex 6: Optimal policy in the mix case, and corresponding social

welfare

Taking the expressions of the social welfare from annex 5, and maximizing on δπ then π:

If QR
1 > 0, the optimal policy is

(π − C1) = (E− C1)(aβ+

rγ)
(1−a)rγ[rγ(1−a)(aβ+rγ)+(a+r)aβ2]−(a+r)(2aγβ+rγ2)(aβ+rγ+rβ+r2γ)

[rγ(1−a)(aβ+rγ)+(a+r)aβ2]
2−(a+r)(2aγβ+rγ2)[(aβ+rγ)2+r(β+rγ)2−rβ2(1+r)+a(1−a)β2]

δπ =
[rγ(1−a)(aβ+rγ)+(a+r)aβ2](π−C1)−rγ(1−a)(aβ+rγ)(E−C1)

(a+r)γ(2aβ+rγ)

Which gives the following social welfare

Wo(a) = (E− C1)
2 (1−a)2r2γ2

[
[rγ(1−a)(aβ+rγ)+(a+r)aβ2]

2−(a+r)(2aγβ+rγ2)[(aβ+rγ)2+r(β+rγ)2−rβ2(1+r)+a(1−a)β2]
]
−

2γ2(a+r)(1+r)(2aβ+rγ)
[
[rγ(1−a)(aβ+rγ)+(a+r)aβ2]

2−(a+r)(2aγβ+rγ2)

− [(1−a)rγ[rγ(1−a)(aβ+rγ)+(a+r)aβ2]−(a+r)(2aγβ+rγ2)(aβ+rγ+rβ+r2γ)]
2

2γ2(a+r)(1+r)(2aβ+rγ)
[
[rγ(1−a)(aβ+rγ)+(a+r)aβ2]

2−(a+r)(2aγβ+rγ2)[(aβ+rγ)2+r(β+rγ)2−rβ2(1+r)+a(1−a)β2]
]
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If QR
1 = 0, the optimal policy is

(π − C1) = (E− C1)
γ(β+rγ)

(1−a)(2γβ−β2)+rγ2
and δπ = π − E

Which gives the following social welfare

Wo(a) = (E− C1)
2 2β(1+r)(1+a)+rγ(1+r+ar)

2(1+r)[(1−a)(2γβ−β2)+rγ2]

7.7 Annex 7 Proof of proposition 8

To reach the optimum, the additional cost has to be the same for the last PV system in-

stalled in period 1 (first condition). It implies that

γ
a QR

1 =
γ

1−a QM
1 (i)

Replacing QR
1 and QM

1 by their expressions gives

δπ =(π − C1)
β
γ

Another condition is that π − δπ = E

Therefore (π − C1) = (E− C1)
γ

γ−β (ii)

So QR
1 = (E− C1)

1−a
γ−β

Using (i),

Q1
Total = QR

1 +QM
1 =

QR
1

a = (E− C1)
1−a

a(γ−β)
6= Q1

TotalOptimal

So the optimum cannot be reached
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7.8 Annex 8 Proof of proposition 9

With δπ such that π − δπ = E, the optimal simultaneous FITs in period 1 are:

For myopic firms:

(πB − C1) = (E− C1)
γ(β+rγ)
∇

For rational firms:

(πR − C1) = (E− C1)γ
γβ(2+r2ar)−β2(1−a)+rγ2(1+r)

∇[γ(1+r)−β(1−a)]

This gives

Qtotal
1 = QM

1 (πB, δπB) +QR
1 (πR, δπR) = (E− C1)

β+rγ
∇ = Q

Optimal
1

Since the expression of the social welfare only depends on the installed quantities, if

they are optimal, then the social welfare is optimal to.
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Conclusion 

 

This Ph.D. dissertation contributes to further understanding the mechanisms driving the 

main transformations of the photovoltaic (PV) industry. We have analysed how China 

acquired the technology and know-how required to enter the PV industry and outperform 

pioneer firms from developed countries. It also provides some elements to feed the debate 

around technology transfers in the context of international negotiations on climate change 

mitigation. A prediction of module cost until 2020 has been carried out based on experience 

curves models, to assess long term PV competitiveness. Finally, several aspects of feed-in 

tariffs’ efficiency (FITs) have been investigated relying on a theoretical model. We have 

analysed how they affect module price, how they are able to best adapt to module price 

volatility, and why policymakers should take firms’ strategies into consideration. These issues 

are of crucial importance since FITs will drive the market until the PV industry reaches 

maturity and the energy it produces reaches competitiveness.  

We will not go through the results in this conclusion as they are available in the general 

introduction and in the conclusion of each chapter. We will rather focus on policy 

implications and opportunities for further research. 



158 
 

Policy implications 

International technology transfers in the context of climate change 

negotiations 

Drivers of the success of the technology transfers to China 

Looking at technology transfers in the sense of the technical knowledge required for the 

manufacturing activity, developing countries traditionally call for more flexible intellectual 

property rights (IPR) policies. In light of the results from chapter one, we highlight different 

technology transfer mechanisms. 

International trade: The Chinese industry has been driven by European-based demand. In 

addition, trade also played a role through import of turnkey production lines from Europe, 

Japan, and the US which enabled the first Chinese firms to start production without much 

prior knowledge. There is also a transfer of know-how as local staff training comes along with 

equipment sales. Finally, the Chinese industry is relying on polysilicon feedstock massively 

imported from industrialised countries. 

Competition: Fierce competition in the manufacturing equipment market prevented a 

single company from controlling the necessary technology.  

Absorptive capacity: the technology transfer has also been made possible thanks to the 

important Chinese Diaspora and available local skilled workforce. The local labour mobility 

also drove this success, the diffusion of technical knowledge between Chinese firms being 

accelerated by the high employee turnover of their middle management. 

No role of IPR: We show that IPR didn’t play a significant role in the transfer of PV 

technology to China: There was almost no licensing, and IPRs were not an impediment. To 

understand to what extent this result can be transferred to other technologies, it is important to 

consider which characteristics of the PV industry this conclusion is based upon. Although the 

PV industry is young, its core underlying patents are old and were already in the public 
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domain. New patents protect only incremental innovations, which can be bypassed thanks to a 

wide availability of manufacturing equipment on an open and competitive market. 

In this respect, low trade barrier, labour mobility and a competitive market seem to be 

more powerful drivers of international technology transfers than IPR relaxation. However, 

these results are specific to the PV industry; therefore they may not be applicable to other 

industries.  

What are the consequences of such a technology transfer in terms of greenhouse 

gases emission reductions? 

If transfer of technology refers to the transfer of technological solutions to reduce 

greenhouse gases (GHG) emissions, the positive impact on climate change mitigation is not 

questionable. However, if it refers to the transfer of technical knowledge required to produce 

those solutions, the consequences in term of GHG emission reductions are not so clear. On 

the positive side, it reduces cost, fostering the adoption of the technology. However our case 

study shows that the PV production in China did not trigger its local adoption. Rather, the vast 

majority of the production is exported, which raises some concerns due to the GHG emitted in 

the process. A positive evolution can be seen on this topic since China is starting to install PV 

systems domestically, but this issue should be taken into account in the technology transfers 

debate. More importantly, Chinese electricity mainly originates from coal burning. PV 

production, which is highly energy intensive, especially in the upstream silicon purification 

activity, would therefore be responsible for much more GHG emissions if produced in China. 

Another drawback could be a dynamic inefficiency: if Chinese competition leads to lower 

costs in the short term, it’s domination would reduce the global innovation since Chinese 

firms innovate less, and thus jeopardise future cost reduction. This is an important issue for 

the technology intensive PV industry. 

How fast will photovoltaic module cost further decrease? 

In chapter two, we build a model intended to predict module cost evolution in the long 

term using cumulative installed PV capacity and silicon price as explanatory variables. This 
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model can help policymakers better assess the potential of PV technology in the energy mix 

and grasp the dynamic aspect of price reduction in the design of incentive policies. The 

predictive model is: 

������	�	
�� = 12.06 ∗ �Cumulative	Capacity !".##$ ∗ �%
�
��&	�	
�� ".#$' 

Using this model, and scenarios of silicon price and cumulative capacity evolution, we 

predict a 67% decrease of module price from 1.52 $/Wp in 2011 to 0.50 $/Wp in 2020. The 

increase in cumulative capacity is responsible for 75% of this evolution, corresponding to a 

learning rate of 19.6%. In other words, it means that each time the cumulative installed PV 

capacity will double, the price of PV modules will be reduced by 19.6%. 

To precisely assess the evolution of the competitiveness of PV electricity, the price of 

other components of PV systems must be predicted too, but this is beyond the scope of this 

thesis. However, we can affirm that the PV industry will not be competitive against 

conventional technologies soon in most countries. The role of research and development in 

PV price dynamics is also beyond the scope of this study since it couldn’t be included in the 

predictive model because of technical reasons. 

How to design an efficient feed-in tariff? 

In this thesis, we focus on feed-in tariffs (FITs). Other incentive policies are beyond its 

scope. Chapter four shows that there is an optimal timing for PV installation that depends on 

the speed of module cost decrease due to the learning by doing effect. An optimal feed-in 

tariff is one that allows the achievement of this optimal timing by creating the right incentive 

effect. It means that the difference between FIT and PV electricity cost must be carefully 

controlled. If it is too low, the market stagnates but if it is too big, it leads to market 

overheating calling for violent adjustments, eventually harming the industry. In light of the 

result of this thesis, we suggest the following recommendations for the design of a FIT: 
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Firms strategies should be considered 

The impact of a FIT depends on the gap between its value and PV electricity cost. Chapter 

four suggests that it also depends on the strategy of the firms installing the PV systems. If 

they have a long term strategy, the optimal installation timing is reached with a higher initial 

FIT which decreases more quickly than if they follow a short term strategy. Indeed, if 

companies follow a long term strategy, they anticipate future price reduction linked to 

learning by doing, so they need a stronger incentive to install PV systems at a given time. 

Besides, if firms behave heterogeneously, only distinct FITs, each targeting one type of firm, 

will help reach the optimal installation timing. 

Market effects on module price should be considered to anticipate module price 

FITs need to be planned in advance to give the market some visibility. This requires 

module price anticipation since the incentive effect depends on the gap between the FIT and 

PV electricity cost. Chapter two predicts long term cost evolution. However, FITs are set in a 

shorter time scale in which market effects on price dominate. Chapter three shows that the 

silicon market influences module price only when silicon producers have market power. This 

was the case during the silicon shortage from 2005 to 2009, but the situation is now an 

overproduction of silicon, preventing producers from enjoying market power. The silicon 

market is therefore not influencing module price as long as there is no silicon shortage. This 

chapter also shows that FIT changes induce module price distortion, a consequence of firms’ 

anticipation. The module price increases in the months before a planned FIT decrease as 

companies rush to install PV systems. Conversely, the demand and thus the price decreases 

when it is too late, a few weeks before the FIT decrease. The impact of FIT changes in major 

countries should thus be also taken into consideration when forecasting prices. 

Allow some flexibility to correct for errors in feed-in tariff tuning 

Module price is difficult to predict. Therefore FITs should be flexible enough to adapt to 

unpredicted variations in module price, in order to keep the gap between PV price and FIT 

under control. But it should not create uncertainty. In this respect, the German system seems 

to be the best solution so far, thanks to more frequent FIT changes and adjustments based on 
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previous market developments using volume responsive mechanisms. This is what is 

suggested in Chapter three showing that the German FIT was the best at tracking PV price 

evolution. A higher frequency also implies smaller adjustments, reducing the magnitude of 

the price distortions around FIT changes noted in the same chapter. In addition, the 

transparency of the volume responsive mechanism gives investors some visibility. However 

unscheduled FIT changes are certainly not a good solution since they increase the uncertainty 

in the PV industry. Therefore, they should only be used in case of emergency. 

Opportunities for further research 

Further analysis of market effects on module price 

In this thesis, the influence of silicon price and FITs has been analysed. However, other 

market effects susceptible of affecting price regardless of cost could be investigated, such as 

intensity of competition, utilisation rate of manufacturing lines, foreign exchange rates, etc… 

The main benefit would be to reduce short term uncertainty which would in turn help 

policymakers design policies and investors rely on stable business plans. Besides, the results 

could be used to control for price variations independent of cost in models of long term 

module cost prediction. 

Better understand the incentive effect of feed-in tariffs 

The numerous countries implementing FITs in the recent years are a growing source of 

information, which would allow carrying out further empirical analysis of FITs influence on 

module price. In particular, this would enable deeper quantitative analysis of the effect of the 

particularities of each country’s FIT. 
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When empirical research does not provide answers, theoretical models could help better 

understand the underlying mechanisms of FITs influence on the PV market. The model 

proposed in the fourth chapter is basic, and several hypotheses could be changed: 

• Several countries can be included in the model, with allowing for international 

spillovers. This could shed light on strategic behaviours like free-riding.  

• A social cost of the FIT could be integrated, which is lacking in the model. 

• Other policies could be implemented, which would be an opportunity to better 

understand their interactions. 

Definition of a framework for global cooperation in the photovoltaic 

industry 

Today, The PV industry is facing a critical situation: it can continue on the path of 

increasing protectionism, or countries can instead cooperate if they manage to find a common 

ground. Since protectionism is likely to slow down the development of the industry and the 

positive effect of the diffusion of technology, it seems important and urgent to assess what the 

opportunities are for a global cooperation, in which framework, and what would be the 

limitations. 

An opportunity worth exploring is the integration of incentive mechanisms on a global 

scale. This globalisation would bring the stability the PV market is begging for, since national 

policies are unpredictable and too dependent on local economic and political situations.  

Bringing this predictability would be a major benefit to all stakeholders. 
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Analyse économique de l’industrie photovoltaïque :             

mondialisation, dynamique des coûts, et politiques publiques 

RESUME : Au cours de la dernière décennie, le marché photovoltaïque a été multiplié par 10, le 

prix des panneaux solaires réduit de 60%, et la Chine est devenue le premier producteur 

mondial. L’objectif de cette thèse est d’identifier les mécanismes à l’origine de ces fortes 

mutations. Grâce à des entretiens auprès d’acteurs de l’industrie photovoltaïque chinoise, et 

l’analyse de données de brevets, nous expliquons comment la Chine a réussi à acquérir la 

technologie et le savoir-faire nécessaires à ce succès. Le transfert de technologie a eu lieu grâce 

au déploiement du marché d’équipement de production et au recrutement de cadres formés dans 

les pays industrialisés. En revanche, la propriété intellectuelle n’a joué aucun rôle. L’analyse de 

l’évolution du coût des modules grâce au modèle de courbe d’apprentissage nous permet de 

prédire une réduction du coût de deux tiers d’ici à 2020. Elle donne des indications quant à la 

future compétitivité de l’électricité photovoltaïque. Enfin, une attention particulière est portée 

aux tarifs de rachat de l’électricité, qui ont largement contribué au développement du marché 

photovoltaïque. Nous analysons leur influence sur le marché et leur capacité à s’adapter à la 

volatilité du prix des modules, en analysant des séries temporelles. Nous construisons aussi un 

modèle théorique pour analyser l’influence du comportement stratégique des entreprises sur 

l’efficacité d’un tarif de rachat. Cela permet de suggérer des recommandations quant à la 

conception de ces instruments incitatifs. 

Mots clés : Solaire, photovoltaïque, courbe d’apprentissage, tarif de rachat, Chine, transfert de 

technologie 

 

Economic analysis of the photovoltaic industry:                                  

globalisation, price dynamics, and incentive policies 

ABSTRACT : In the last decade, the photovoltaic market was multiplied by 10, module price 

was reduced by 60%, and China increased its share in cell and module production from almost 

nothing to more than half. The purpose of this thesis is to shed light on the mechanisms driving 

these transformations. We analyse how China managed to acquire the photovoltaic technology, 

relying on interviews with actors of the Chinese photovoltaic industry, and data gathered on 

patents related to the photovoltaic technology. We show that intellectual property rights did not 

play a significant role, Chinese firms getting access to the technology by buying manufacturing 

equipment from industrialised countries, and from labour mobility. The cost decrease is 

analysed with experience curves models, allowing us to forecast a further cost decrease of two 

thirds by 2020, provided that the market follows the high predicted expansion. It gives some 

insight regarding when photovoltaic technology will become competitive. An important 

attention is dedicated to feed-in tariffs which largely participated in driving the demand so far. 

Their influence on the photovoltaic market, and their ability to adapt to module price volatility 

to avoid too attractive profits, is analysed using weekly data. A theoretical model analysing the 

influence of firms’ strategies on the incentive effect of feed-in tariffs allows us to give further 

recommendations concerning an optimal feed-in tariff scheme. 

Keywords : Solar, photovoltaic, learning curve, feed-in tariff, China, technology transfer 


