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Résumé

Cette thèse contribue au domaine de la morphologie mathématique et illustre comment les statis-
tiques multivariées et les techniques d’apprentissage numérique peuvent être exploitées pour con-
cevoir un ordre dans l’espace des vecteurs et pour inclure les résultats d’opérateurs morphologiques
au processus d’analyse d’images multivariées. En particulier, nous utilisons l’apprentissage super-
visé, les projections aléatoires, les représentations tensorielles et les transformations conditionnelles
pour concevoir de nouveaux types d’ordres multivariés et de nouveaux filtres morphologiques pour
les images multi/hyperspectrales. Nos contributions clés incluent les points suivants :

• Exploration et analyse d’ordres supervisés, basés sur les méthodes à noyaux.

• Proposition d’un ordre non supervisé, basé sur la fonction de profondeur statistique calculée
par projections aléatoires. Nous commençons par explorer les propriétés nécessaires à une
image pour assurer que l’ordre ainsi que les opérateurs morphologiques associés, puissent être
interprétés de manière similaire au cas d’images en niveaux de gris. Cela nous amènera à la
notion de décomposition en arrière plan / premier plan. De plus, les propriétés d’invariance
sont analysées et la convergence théorique est démontrée.

• Analyse de l’ordre supervisé dans les problèmes d’appariement par forme de référence, qui
correspond à l’extension de l’opérateur tout-ou-rien aux images multivariées grâce à l’utilisation
de l’ordre supervisé.

• Discussion sur différentes stratégies pour la décomposition morphologique d’images. Notam-
ment, la décomposition morphologique additive est introduite comme alternative pour l’analyse
d’images de télédétection, en particulier pour les tâches de réduction de dimension et de clas-
sification supervisée d’images hyperspectrales.

• Proposition d’un cadre unifié basé sur des opérateurs morphologiques, pour l’amélioration de
contraste et pour le filtrage du bruit poivre-et-sel.

• Introduction d’un nouveau cadre de modèles Booléens multivariés par l’utilisation d’une for-
mulation en treillis complets. Cette contribution théorique est utile pour la caractérisation et
la simulation de textures multivariées.
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Abstract

This thesis contributes to the field of mathematical morphology and illustrates how multivariate
statistics and machine learning techniques can be exploited to design vector ordering and to include
results of morphological operators in the pipeline of multivariate image analysis. In particular,
we make use of supervised learning, random projections, tensor representations and conditional
transformations to design new kinds of multivariate ordering, and morphological filters for color and
multi/hyperspectral images. Our key contributions include the following points:

• Exploration and analysis of supervised ordering based on kernel methods.

• Proposition of an unsupervised ordering based on statistical depth function computed by ran-
dom projections. We begin by exploring the properties that an image requires to ensure that
the ordering and the associated morphological operators can be interpreted in a similar way
than in the case of grey scale images. This will lead us to the notion of background/foreground
decomposition. Additionally, invariance properties are analyzed and theoretical convergence
is showed.

• Analysis of supervised ordering in morphological template matching problems, which corre-
sponds to the extension of hit-or-miss operator to multivariate image by using supervised
ordering.

• Discussion of various strategies for morphological image decomposition, specifically, the ad-
ditive morphological decomposition is introduced as an alternative for the analysis of remote
sensing multivariate images, in particular for the task of dimensionality reduction and super-
vised classification of hyperspectral remote sensing images.

• Proposition of an unified framework based on morphological operators for contrast enhance-
ment and salt-and-pepper denoising.

• Introduces a new framework of multivariate Boolean models using a complete lattice formula-
tion. This theoretical contribution is useful for characterizing and simulation of multivariate
textures.

7



8



Contents

Contents 9

List of Figures 13

1 Introduction 17
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Order and Mathematical morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Why do we need order? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Multivariate Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Thesis overview and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 25

I Learning Ordering for Multivariate Mathematical Morphology 29

2 Short review on morphological operators 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Scalar images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Morphological transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Dilation and erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Opening and closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Contrast mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.4 Morphological center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Geodesic reconstruction, derived operators, leveling . . . . . . . . . . . . . . . 36
2.3.6 Residue-based operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Morphological Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Preliminary Notions 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Notation and representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Spectral representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Mathematical morphology in multivariate images . . . . . . . . . . . . . . . . . . . . 50
3.4 Ordering in vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Complete lattices and mathematical morphology . . . . . . . . . . . . . . . . 51
3.4.2 Preorder by h-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Supervised Ordering 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Complete lattices in R

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Reduced Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 h-supervised ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Learning the h-supervised ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9



10 CONTENTS

4.3.3 Kriging vs. SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Morphological operators and h-supervised ordering . . . . . . . . . . . . . . . . . . . 63
4.5 Applications to hyperspectral image processing . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Influence of training set in h-ordering . . . . . . . . . . . . . . . . . . . . . . 64
4.5.2 Extracting spatial/spectral structures . . . . . . . . . . . . . . . . . . . . . . 65
4.5.3 Duality between background and foreground . . . . . . . . . . . . . . . . . . 65
4.5.4 Multi-target morphological-driven classification . . . . . . . . . . . . . . . . . 66

4.6 Conclusions on supervised ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Hit-or-miss transform in multivariate images 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Hit-or-Miss Transform in Multivariate Images . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Hit-or-Miss Transform in Binary Images . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Hit-or-miss Transform in supervised h-orderings . . . . . . . . . . . . . . . . 83

5.3 Applications to Multivariate Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Geometric Pattern Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Ship Detection in high-resolution RGB images. . . . . . . . . . . . . . . . . . 86

5.4 Conclusions on supervised multivariate hit-or-miss . . . . . . . . . . . . . . . . . . . 86

6 Unsupervised morphology 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Statistical depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.2 Projection depth function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Equivalence in Elliptically Symmetric Distribution . . . . . . . . . . . . . . . 92

6.3 MM using projection depth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1 Morphological operators and depth h-mapping . . . . . . . . . . . . . . . . . 98
6.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Applications to multivariate image processing . . . . . . . . . . . . . . . . . . . . . . 101
6.4.1 Image enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 Image Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.3 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

II Contributions to morphological modeling 107

7 Additive morphological decomposition 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Main contributions and chapter organisation . . . . . . . . . . . . . . . . . . 111
7.2 Additive Morphological Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 Basic Morphological Transformation . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.3 Morphological Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.4 Additive Morphological Decomposition . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Tensor Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.2 Tensor Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.3 Tensor Principal Component Analysis (TPCA) . . . . . . . . . . . . . . . . . 118
7.3.4 Equivalence with PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.5 Modeling additive morphological decomposition with TPCA . . . . . . . . . . 119

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4.1 Data Description and Experimental Setup . . . . . . . . . . . . . . . . . . . . 121
7.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



CONTENTS 11

7.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Conditional Mathematical Morphology 131
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Brief review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3 Conditional toggle mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.4.1 Salt & pepper noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4.2 Comparison with the state of the art . . . . . . . . . . . . . . . . . . . . . . . 145
8.4.3 Image enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.5 Conclusions and Perspectives of this chapter . . . . . . . . . . . . . . . . . . . . . . . 152

9 Multivariate Chain-Boolean models 155
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Chain compact capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.3 From Boolean Random Model to Chain Boolean Random Models . . . . . . . . . . . 158

9.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3.2 Binary Boolean Random Model . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3.3 Chain Boolean Random Model . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.3.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.3.5 h-ordering and h-adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.5 Conclusions of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10 Conclusion and Perspectives 165
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.2 Suggestions for Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

List of Symbols 170

Bibliography 171



12 CONTENTS



List of Figures

1.1 Scheme hyperspectral image acquisition. Each pixel of the image contains spectral
information in d-bands. It is denoted as a pixel x 2 R

d. . . . . . . . . . . . . . . . . 18
1.2 Comparison of different spatial resolutions. The spatial resolution indicates the small-

est distance between two objects that can be distinguished by the sensor. Note that
when the size of the objects is close to the spatial resolution, the object is represented
in the image as a single pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Increasing in the spatial resolution for different satellites through time. . . . . . . . . 19
1.4 Traditional work-flow for supervised classification or segmentation of hyperspectral

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Pixelwise and spatial-spectral classification. The aim of spatial-spectral approaches

is integrating contextual spatial information with spectral information to produces
more “real" results in the classification stage. . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Notation for a binary image, I : E! {0, 1} . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Structuring element SE ⇢ E. Blue and red pixels correspond to {x|SE(x) = 1} illus-

trating the spatial neighbourhood induced by the structuring element SE centred at
x (red pixel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 From binary erosion/dilation to multivariate counterparts . . . . . . . . . . . . . . . 24
1.9 Notation for a d-variate image, I : E ! F. Note that the image I maps each spatial

point x to a vector x in R
d (represented as a curve). . . . . . . . . . . . . . . . . . . 25

1.10 Different ordering strategies which are discussed in the Part I of this thesis: (c) Refer-
enced Ordering (d) Supervised Ordering (e) Supervised Ordering and (f) Unsupervised
ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.11 Representation of colour values of natural images as vector points in R
3 . . . . . . . 26

1.12 Example of proposed unsupervised ordering . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Basic morphological transformations: dilation (b) and erosion (c). The structuring
element SE is a disk of diameter three pixels. . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Opening (a) and closing (b) transformations. The structuring element SE is a disk of
diameter 3 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Results of toggle mapping and morphological center. . . . . . . . . . . . . . . . . . . 37
2.4 Opening and closing by reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Leveling transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Leveling transformation (b) with a marker given by a Gaussian Filter (a). . . . . . . 41
2.7 Morphological gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8 Watershed transform for a given image I with markers point M. . . . . . . . . . . . 44
2.9 Contrast-driven watershed transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Scheme of different representation for the spectral information of a multivariate image 49
3.2 Spectral information is associated with vector spaces. . . . . . . . . . . . . . . . . . . 50
3.3 Some vector ordering strategies proposed in the literature. The associated ordering

is also illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 The h-ordering (preorder) produces a complete lattice for a given set. . . . . . . . . 54

4.1 Scheme of h-supervised function producing a partial ordering on a given original set. 58
4.2 Comparison of h-mappings and their corresponding h-ordering h in R

2. . . . . . . 59

13



14 LIST OF FIGURES

4.3 Unitary background and foreground sets: F = f and B = b . . . . . . . . . . . . . . 60
4.4 Training spectral for Pavia University HSI. . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Some morphological transformation for Pavia University . . . . . . . . . . . . . . . . 68
4.6 Training spectral for Yellowstone Scene. . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Morphological transformations for Yellowstone scene. . . . . . . . . . . . . . . . . . . 70
4.8 Toy example in supervised ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9 Training size effect in the supervised ordering for the toy example. . . . . . . . . . . 71
4.10 Supervised dilation, erosion and gradient for two sets of background/foreground pixels. 72
4.11 Supervised transformation for Yellowstone for the first group of training sets. . . . . 73
4.12 Supervised transformation for Yellowstone for the second set of training sets. . . . . 74
4.13 Extraction of specific objects can be performed by using geodesic reconstruction in

the supervised ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.14 Supervised Leveling for sets of background/foreground pixels. . . . . . . . . . . . . . 76
4.15 HSI Moffett Field sub-scene using bands {115,70,30}. Reference pixels (background

b and foreground f) used in the experiments. Curves are plots of the spectral values
in the different frequency bands for the reference pixels. . . . . . . . . . . . . . . . . 77

4.16 Comparison of different supervised morphological operators . . . . . . . . . . . . . . 78
4.17 Comparison of supervised top-hats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.18 Illustrative example of multiclass supervised ordering. . . . . . . . . . . . . . . . . . 79
4.19 A false colour of the original image is shown using bands number [80,70,30]. Morpho-

logical driven-classification using leveling operator with unitary structuring element
hexagonal SE. h{T−i,Ti} is obtained using SVM, with polynomial kernel of degree two. 80

5.1 Illustrative example of Hit-or-Miss transform for the set I: HMT (I; SE1, SE2) . . . . 82
5.2 From the binary HMT to the extension for multiband images in the supervised ordering 83
5.3 Example of colour template matching using the proposed multivariate hit-or-miss

transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 ROC-curves in the geometric pattern recognition problem . . . . . . . . . . . . . . . 86
5.5 SEs considered in the Bahrain Image. In both scenarios, the sets of pixels background

(B1)and foreground (B2)are the same. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Ship detection in High-Resolution Samaheej Image using HMT✏ . . . . . . . . . . . 87

6.1 Intrinsic ordering based on dichotomy background and foreground. . . . . . . . . . . 90
6.2 Toy example of the computation of (6.1). Projection depth function for a vector x

given X is basically the maxima normalised eccentricity for all the possible projection
uTX given a couple of centrality and variability univariate measures (µ, σ). . . . . . 92

6.3 “White bird" colour image example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 “Canoe" colour image example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 “Cuenca map" colour image example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6 Example of openings and associated top-hat transformation in the ordering induced

by the projection depth function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7 Projection depth function is invariant to affine transformation in R

d. . . . . . . . . . 101
6.8 Edge enhancement of I using toggle mapping ⌧h(I) in the proposed ordering. Source:

http://www.cellimagelibrary.org/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.9 Original (I), marker (M) and simplification by h-depth vector leveling ΛhI

(I,M).
The marker M is the product of a h-depth closing followed by an h-depth opening
with the SE is a disk of radius 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.10 h-depth gradient and segmentation by using watershed transformation (in red), where
markers are calculated by selecting the minima of strong dynamics in h-depth gradi-
ent, with t = .5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.11 Original multispectral images is the size 200 by 500 pixels in 31 channels. Segmenta-
tion for watershed transformation with different parameters of dynamics minima of
h-depth gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



LIST OF FIGURES 15

6.12 Original hyperspectral image is 610 by 340 pixels on 103-bands. Segmentation by
h-depth watershed transformation with different parameters of dynamics minima of
h-depth gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 Mathematical notation for a 2D multivariate image, I : E! F . . . . . . . . . . . . 110
7.2 Structuring element SE ⇢ E at x = (i, j) 2 E. MM operators are non-linear neighbourhood-

image transforms associated with the structuring element SE. . . . . . . . . . . . . . 112
7.3 Morphological transformations of a scalar (grey level) image. Original image (a) is a

342 ⇥ 342 pixels in 70-cm-resolution satellite image from the panchromatic band of
Quickbird. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Example of AMD and ADL for the remote sensing example. . . . . . . . . . . . . . . 116
7.5 Experiment shows clearly that TPCA is equivalent to PCA. . . . . . . . . . . . . . . 120
7.6 Illustration of dimensional reduction stage using additive morphological decomposition.120
7.7 False colour composition of the HSI considered in the experiments. . . . . . . . . . . 121
7.8 Analysis of AMD in ROSIS Pavia University . . . . . . . . . . . . . . . . . . . . . . 122
7.9 First scenario of classification using Indian Pines. Only five pixels per class are selected

for the training set. The results show the average and standard deviation in 25
repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.10 Classification maps for the Indian Pines HSI using different approaches. Only five
training pixels in nine classes are considered. The classification map is the best result
in 25 random repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.11 Behaviour of the overall accuracy in the Pavia University dataset for different mor-
phological decompositions and dimensional reduction approach. . . . . . . . . . . . . 125

7.12 Classification maps obtained by the different tested methods for Pavia University data
set (Overall accuracies are reported in parentheses) . . . . . . . . . . . . . . . . . . . 129

8.1 Illustration of gradients and local extrema detectors. . . . . . . . . . . . . . . . . . . 134
8.2 Bi-dimensional representation of the evolution in the classical shock filter (8.4) for the

Cameraman grey-scale image in (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Iteration number versus residual between two consecutive iterations of classical and

conditional toggle mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4 Conditional vs Classical Dilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.5 Example showing that the pair conditional operators are not an adjunction in alge-

braic sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.6 The proposed conditional toggle contrast sharpens the signal as well as classical en-

hancement method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.7 The proposed conditional toggle contrast does not produce halos as classical filters in

ramp signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.8 Comparison in free-noisy scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.9 Experimental results in PSNR for grey and colour images. . . . . . . . . . . . . . . . 146
8.10 Example of noise removal by proposed method in grey scale images. . . . . . . . . . 147
8.11 Example of noise removal by proposed method in Lena . . . . . . . . . . . . . . . . . 148
8.12 Example of noise removal by proposed method in colour Birds. . . . . . . . . . . . . 149
8.13 Example of noise removal by proposed method in Baboon. . . . . . . . . . . . . . . . 150
8.14 Example of noise removal by proposed method in Boat. . . . . . . . . . . . . . . . . 151
8.15 Conditional toggle mapping and segmentation by ↵-connected component in a WorldView-

2 satellite image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.16 PSNR of restored image by using mean per ↵-connected component in original, toggle

mapping and conditional toggle mapping. . . . . . . . . . . . . . . . . . . . . . . . . 154

9.1 Example of Binary Boolean Random image and Chain Boolean Random multivariate
image. For illustration, the same Ξ(M ) is used in both simulations. We notice that
L is a color lattice from blue (>L) to yellow (?L). . . . . . . . . . . . . . . . . . . . 159



16 LIST OF FIGURES

9.2 The Chain representation of a multivariate image allows the applications of non-linear
filtering and random Boolean model theory. . . . . . . . . . . . . . . . . . . . . . . . 161

9.3 Example of simulation for a hyperspectral image . . . . . . . . . . . . . . . . . . . . 162
9.4 Summary of proposed steps to generate random realization of a Boolean model in the

lattice induced by the random projection depth function. . . . . . . . . . . . . . . . 163
9.5 Realisations of the proposed algorithm of Multivariate Boolean model in the lattice

induced for the projection depth function . . . . . . . . . . . . . . . . . . . . . . . . 163



1
Introduction

The world is continuous, but the mind is discrete. David Mumford

Résumé

Dans ce chapitre est présentée la motivation générale de l’analyse d’images numériques multivariées
et de leur traitement basé sur la morphologie mathématique. Cette technique est fondée sur la théorie
des treillis, théorie pour laquelle une relation d’ordre entre les pixels de l’image est nécessarie. La
difficulté principale, d’une part, est due au fait qu’il n’existe pas de définition «naturelle» d’ordre
entre vecteurs, ceux-ci correspondant aux pixels des images multivariées. D’autre part, une image
représente un arrangement spatial de l’information et cette dimension est fondamentale pour les
différentes analyses effectuées sur celle-ci. En tenant compte de ces deux points, une introduction
générale à cette thèse est présentée dans ce chapitre, et les contributions principales sont listées est
illustrées au moyen d’exemples simples.

1.1 Motivation

In modern society, huge amounts of images are collected and stored in computers so that useful
information can be later extracted. In a concrete example, the online image hosting Flickr reported
in August 2011, that it was hosting more than 6 billion images and 80 million unique visitors 1.
The growing complexity and volume of digitised sensor measurements, the requirements for their
sophisticated real time exploitation, the limitations of human attention, and increasing reliance on
automated adaptive systems all drive a trend towards heavily automated computational processing
in order to refine out essential information and permit effective exploitation. Additionally, vast
quantities of sophisticated sensor data is readily obtained and often available on the internet: large
quantities of imagery from webcams, surveillance cameras, hyperspectral sensors, synthetic aperture
radars (SAR), and X-ray astronomical data, to name only a few types, are basically colour or multi-
bands images.

The science of extracting useful information from images is usually referred to as image process-
ing. From the mathematical point of view, image processing is any form of signal processing for
which the input is an image and the output may be either an image or a set of characteristics or

1Source: http://en.wikipedia.org/wiki/Flickr
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Figure 1.1: Scheme hyperspectral image acquisition. Each pixel of the image contains spectral
information in d-bands. It is denoted as a pixel x 2 R

d.

features related to the input image. In essence, image processing is concerned with efficient algo-
rithms for acquiring and extracting information from images. In order to design such algorithms for
a particular problem, we must have realistic models for the images of interest. In general, models
are useful for incorporating a priori knowledge to help to distinguish interesting images, from unin-
teresting, which can help us to improve the methods for acquisition, analysis, and transmission.

Modern sensors technology have both high spatial and high spectral resolution covering up to
several hundred bands. One of these modern sensors are the hyperspectral remote sensors. They
collect image data simultaneously in dozens or hundreds of narrow, adjacent spectral bands. These
measurements make it possible to derive an “almost" continuous spectrum for each image cell, as
shown in the Fig. 1.1. The data consists of a large number of two dimensional images with each
different image corresponding to radiation received by the sensor at a particular wavelength. These
images are often referred as band images or simply bands or channels since they corresponds to
reflected energy in a particular frequency band.
Hyperspectral data gives very fine spectral resolution, but this is not always an advantage. Obvi-

ously hyperspectral data is very high-dimensional compared to colour imagery, which is similar in
concept but comprised only three spectral bands (red, green and blue channel). One of the problems
dealing with hyperspectral images is the curse of dimensionality Clarksona (1994). Curse of dimen-
sionality concerns the effect of increasing dimensionality on distance or similarity. The term was
introduced by Bellman (1957) to describe the extraordinarily rapid growth in the difficulty of prob-
lems as the number of dimension (or variables) increases. The curse of dimensionality is explained
with several artificial data problems in Koppen (2000). Additionally, the large data sets produced
by hyperspectral imagers can also lead to significant computational and communication challenges,
particularly for time-critical applications. In addition, an acquired image has a spatial resolution.
It is a measure of the smallest object that can be resolved by the sensor, or the linear dimension
on the ground represented by each pixel or grid cell in the image. Fig. 1.2 illustrates different
spatial resolutions on the same scene. The tendency in the spatial resolution for the main remote
sensing captors in the last 40 years shows that image quality is going to be better in the sense of
spatial resolution, as it is illustrated in Fig. 1.3. It should be noted, however, that most of available
hyperspectral data processing techniques focused on analysing the data without incorporating in-
formation on the spatially adjacent data, i.e., hyperspectral data are usually not treated as images,
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(a) 1m resolution (b) 2m resolution (c) 4m resolution (d) 8m resolution

Figure 1.2: Comparison of different spatial resolutions. The spatial resolution indicates the smallest
distance between two objects that can be distinguished by the sensor. Note that when the size of
the objects is close to the spatial resolution, the object is represented in the image as a single pixel.

Figure 1.3: Increasing in the spatial resolution for different satellites through time.
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Figure 1.4: Traditional work-flow for supervised classification or segmentation of hyperspectral im-
ages.

but as unordered listings of spectral measurements with no particular spatial arrangement Tadjudin
and Landgrebe (1998). An illustrative typical work-flow for classification is shown in Fig. 1.4. For
a given hyperspectral image of n1 rows and n2 columns in d bands, the first stage is to reduce the
dimension without loss of information Landgrebe (2003). Most of the techniques are based on linear
algebra and signal processing. They analyse the image as a matrix of size (n1 ⇥ n2) rows and d
columns. Some examples of these approaches are principal component analysis, orthogonal subspace
projections Harsanyi et al. (1994), Maximum Noise Fraction Green et al. (1988) are some of these
kernel dimensional reduction approaches. Secondly, in the reduced space, spatial features are calcu-
lated and included in the classification procedure by using PDEs Duarte-Carvajalino et al. (2008),
Velasco-Forero and Manian (2009), Kernels Camps-Valls and Bruzzone (2005), and so on. The need
of working on spatial-spectral pattern for analyzing multivariate images has been identified as an
important goal by many scientists devoted to hyperspectral data analysis Chanussot et al. (2010). In
Plaza et al. (2009), authors present three main challenges for the analysis of hyperspectral images:

• Robust analysis techniques to manage images which the spatial correlation between spectral
responses of neighbouring pixels can be potentially high;

• Processing algorithms need to become more knowledge-based, i.e., a priori knowledge about
shape, texture, spatial relationships and pattern may be used to improve the characterisation
of scenes;

• Algorithms should deal with small number of training samples in high number of features
available in remote sensing applications.

Spatial preprocessing methods are often applied to denoise and regularise images. These methods
also enhance spatial texture information resulting in features that improve the performance of clas-
sification techniques. For illustrative purposes, Fig. 1.5 shows a comparison of spectral pixel-wise
and spectral-spatial supervised classification in a real hyperspectral image. In this thesis, we study
different aspects of spatial-spectral analysis of hyperspectral images, where the spatial information is
incorporated by using non-linear filters. There are two general families of nonlinear filters: the poly-
nomial filters, and morphological filters. The polynomial filters are based on traditional nonlinear
system theory based mainly in Volterra series Schetzen (1980). In the set of non-linear image pro-
cessing disciplines, mathematical morphology involves the concept of image transformations based
on geometrical-spatial concepts related to size/shape relationship as prior information. This disser-
tation investigates the use of morphological based nonlinear filters for processing multivariate images.

1.2 Order and Mathematical morphology

Mathematical morphology was originally developed in the end of 1960’s by Georges Matheron and
Jean Serra at the Ecole des Mines in Paris. It has a solid mathematical theory leaning on concepts
from algebra, topology, integral geometry, and stochastic geometry Matheron (1975). The basic
idea of mathematical morphology, as described by Heijmans (1995), is “to examine the geometric
structure of an image by matching it with small patterns at various locations in the image. By
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(a) Pixelwise Classification (b) Spatial-Spectral classification

Figure 1.5: Pixelwise and spatial-spectral classification. The aim of spatial-spectral approaches is
integrating contextual spatial information with spectral information to produces more “real" results
in the classification stage.
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varying the size and shape of the matching patterns, called structuring elements, one can extract
useful information about the shape of the different parts of the image and their interactions." Thus,
structuring elements play the role of a priori knowledge. Originally, mathematical morphology was
developed for binary images; these can be represented mathematically as sets. Serra (1982) were the
first to observe that a general theory on morphological image analysis should include the assumption
that the underlying objects of analysis have to be a partially order set structure in which all subsets
have both a supremum and an infimum, i.e., a complete lattice. It should be noted that the term
“order” is commonly used in two senses. First, “order” denotes an ordering principle: a pattern by
which the elements of a given set may be arranged. For instance, the alphabetical order, marginal
ordering, and so forth. Second, “order" denotes the condition of a given set, its conformity to the
ordering principle. Lorand (2000) give us a concrete example for this dichotomy. Two libraries that
arrange their books according to the same principle, for instance, by authors surnames, thereby
follow an identical order. This is order in the first sense. Yet these libraries may differ in respect to
“order” in the second sense: books may be shelved more carelessly in one library than in the other.
In this second usage, “order” denotes the degree of conformity of the set to its ordering principle. In
the case of multidimensional images, the objects of interest are vectors in high-dimensional spaces.
In this thesis, we study the ordering problem (in the first sense) for elements laying in vector spaces,
as well as other related problems that occur frequently when dealing with mathematical morphology
in multivariate images. This thesis is motivated for the demand for a detailed analysis of this
problem and the development of algorithms useful for the analysis of real-life images in suitable
running time. Many of the techniques used for colour noise reduction are direct implementations
of the methods used for grayscale imaging. The independent processing of colour image channels is
however inappropriate and leads to strong artefacts. To overcome this problem, this thesis extends
techniques developed for monochrome images in a way which exploits the vector structure of spectra
and correlation among the image channels.

1.3 Why do we need order?

In the simplest case, the object of interest is a binary image (denoted by I) which maps the spatial
support E onto a bi-valued set {0, 1}.

Image range: F = {0, 1}

Discrete Support: E = Z
2

x = (i, j) 2 E

I(x) 2 F

Figure 1.6: Notation for a binary image, I : E! {0, 1}

Morphological operators aim at extracting relevant structures of the image. This is achieved
by carrying out an inquest into the image through a set of known shape called structuring element
(SE). Fig. 1.7 shows the neighbourhood induced by two structuring elements. The two basic words
in the mathematical morphology language are erosion and dilation. They are based on the notion
of infimum and supremum. For the case of symmetric structuring element (SE), the erosion and
dilation operators are defined as follow,

"SE (I) (x) =
^

y2SE(x)

I(y) (1.1)
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x

SE(x) is a disk of diameter 3 (4-connectivity).

SE(x) is a square side 3 (8-connectivity).

Figure 1.7: Structuring element SE ⇢ E. Blue and red pixels correspond to {x|SE(x) = 1} illustrating
the spatial neighbourhood induced by the structuring element SE centred at x (red pixel).

and
δSE (I) (x) =

_

y2ŠE(x)

I(y) (1.2)

where SE(x) 2 E denote the spatial neighbourhood induced by the structuring element SE centred
at x, and ŠE is the transpose structuring element.

For binary images, they are simple in the sense that they usually have an intuitive interpretation.
Erosion "SE (I) shrinks bright objects, whereas dilation δSE (I) expands bright object from their
boundaries. The size and shape effect is controlled by the structuring element SE. Fig. 1.8 shows
these two basic operators in a binary image. This pair of transformations are not inverses, however,
they constitute an algebraic-adjunction (Heijmans (1994)), namely

δSE (J)  I () J  "SE (I) (1.3)

for every pair of images I,J. This is called the adjunction relation (Heijmans (1994)). The same
definitions can be directly applied to grey scale image, preserving the interpretation of these opera-
tors. Image analysis tasks that can be tackled by morphological operators include the following ones
(Soille and Pesaresi (2002)): Image filtering, image segmentation and image measurement. In spite
of the simplicity of the definition of erosion and dilation, based only on local minimum/maximum
operators, composition and more elaborated combination of these operators allow to extract object,
noise filtering and characterisation of important objects in the image (Soille (2003)). A natural
question arises: “Can we define a total order for vectors to have useful morphological operators to
analysis real-life multivariate images?"

1.4 Multivariate Ordering

The extension of mathematical morphology to vector spaces, for instance to colour, multispectral or
hyperspectral images, is neither direct nor trivial due, on one hand, to the eventual high dimensional
nature of the data and, on the other hand, because there is no notion of natural ordering in a vector
space, as opposed to one-dimensional (scalar) case (Barnett (1976)). Let us introduce the notation
for a multivariate image, as it is illustrated in Fig. 1.9, where the object of interest is a d-dimensional
image (denoted by I) which maps the spatial support E to the vector support F, i.e.,

I : E ! F = R
d

x ! x

Given a multivariate image I, there are two general methods for morphological processing: component-
wise (marginal) and vector. Marginal approach consists in processing separately each band or chan-
nel of the image. The correlation among bands is totally ignored as well as the vector nature of
pixel values. However, it allows to employ directly all methods available for grey-scale images with
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(a) Erosion, εSE (I). (b) Original, I. (c) Dilation, δSE (I).

(d) Marginal Erosion. (e) Original colour image. (f) Marginal Dilation.

(g) Training Sets: Pixels in
the circle are the background
set B, and in the square are
the foreground set F .

(h) Erosion by supervised or-
dering.

(i) Dilation by supervised or-
dering.

(j) Erosion by unsupervised
ordering.

(k) Dilation by unsupervised
ordering

Figure 1.8: From binary erosion/dilation to multivariate counterparts: Original image is a binary
image of size 350 ⇥ 350. SE is a disk of radius 11. Supervised ordering (Chapter 4) is designed to
learn an ordering based on the couple of training sets (B,F ). Morphological transformation results
are adaptive to the spectral information from (B,F ). Unsupervised ordering based on random
projections (Chapter 6) is fully automatic approach to learn a chain that produces mathematical
morphology transformations interpretable in the physical meaning of erosion and dilation as in the
case of binary images, on the contrary to the marginal extensions. Needless to say, multivariate
image have to fit some assumption to get this sort of interpretation.
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complexity increased by a constant value d, the number of bands. Despite the intense focus of
mathematical morphology community on the problem of generalisation to multivariate images as
colour and multispectral images it is not actually clear how to proceed in general manner (Aptoula
and Lefèvre (2007)). The bottleneck is the definition of a total ordering for vector pixel laying
in F = R

d, i.e., an reflexive, anti-symmetric, transitive and total binary relation. In response to
this challenge, there has been a surge of interest in recent years across many fields in a variety of
multivariate ordering (Angulo (2007), Aptoula and Lefèvre (2007)). In this thesis, we provide for
instance, a multivariate ordering for capturing the fact that in many cases high-dimensional images
contain an intrinsic ordering of their objects. To motivate this important point, a dummy example is
illustrated in Fig. 1.10. Additionally, we remark that vector space representation for natural colour
images involves a structured cloud as it is illustrated in Fig. 1.11.

Range of the vector image: F = R
d

Discrete support: E = Z
2

x = (i, j) 2 E

I(x) 2 F

x

d (dimension space)

Figure 1.9: Notation for a d-variate image, I : E! F. Note that the image I maps each spatial point
x to a vector x in R

d (represented as a curve).

1.5 Thesis overview and main contributions

This thesis contributes to the field of mathematical morphology and illustrates how multivariate
statistics and machine learning techniques can be exploited to design vector ordering and to include
results of morphological operators in the pipeline of hyperspectral image analysis (see Fig. 1.4),
with a particular focus on the manner in which supervised learning, random projections, tensor
representations and conditional transformations can be exploited to design new kinds of multivariate
ordering, and morphological filters for colour and multi/hyperspectral images. Our key contributions
include the following points:

• Exploration and analysis of supervised ordering based on kernel based methods,

• Insight into unsupervised ordering based on random projections,

• Formulation of additive morphological based decomposition and analysis by using tensor mod-
elling,

• Proposition and analysis of a morphological based unified framework for contrast enhancement
and salt-and-pepper noise denoising,

• Formulation of multivariate Boolean models using lattice notions.

For the sake of clarity, these contributions are organised into two main parts. In Part I the concept
of supervised and unsupervised ordering for mathematical morphology is introduced.

• A description of preliminary subject is included in Chapter 3.

• Chapter 4 introduces the notion of supervised ordering based on learning algorithms. Addi-
tionally, applications in real hyperspectral images are included.
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(a) What is a natural order for
these points (in R2)?

(b) Classical approach vector or-
dering according to a component.
In this example the x-axis.

(c) Suppose that we know which is
the greatest point. Can we order
the rest?

(d) Suppose that we know which
point are the greatest (top) and the
least (bottom). Can we order the
rest?

(e) Assume that we have a subset
of points as top and bottom points.
Can we order the rest?

(f) Can we order the points accord-
ing to a measure of outlierness?

Figure 1.10: Different ordering strategies which are discussed in the Part I of this thesis: (c) Refer-
enced Ordering (d) Supervised Ordering (e) Supervised Ordering and (f) Unsupervised ordering.

(a) I (b) Scatterplot of X is illustrated.

Figure 1.11: Representation of colour values of natural images as vector points in R
3. X represents

pixel values of the image I. Color information are included in the scatterplot to aid the comprehen-
sion.
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(a) Dilation: δSE (I) (b) Erosion: εSE (I)

Figure 1.12: Basic Morphological Transformation obtained by proposed unsupervised ordering
(Chapter 6).

• Chapter 5 analyses the potential of supervised ordering in morphological template matching
problems, which corresponds to the extension of hit-or-miss operator to multivariate image by
using supervised ordering.

• Chapter 6 proposes methods for unsupervised ordering based on statistical depth function com-
puted by random projections. We begin by exploring the properties that we will require our im-
age to ensure that the ordering and the associated morphological operators can be interpreted
in a similar way to grey scale images. This will lead us to the notion of background/foreground
decomposition. Additionally, invariance properties are analysed and theoretical convergence is
showed.

Part II we present other contributions on mathematical morphology for the analysis of multivariate
images.

• Chapter 7 discusses various strategies for morphological image decomposition, specifically, the
additive morphological decomposition is introduced as an alternative for the analysis of remote
sensing multivariate images, in particular for the task of supervised/unsupervised classification
of hyperspectral remote sensing images.

• That includes also Tensor modelling as an alternative to dimensional reduction approach in
multivariate images, by including this step in the traditional pipeline to analysis a hyperspectral
image.

• Chapter 8 shifts the focus of our research to conditional morphology as an unified low com-
plexity framework for enhancement and impulse noise removal. Theoretical properties of con-
ditional morphology are discussed and applications are widely studied.

• Chapter 9 introduces a new framework of multivariate Boolean models using a complete lat-
tice formulation. This theoretical contribution is useful for characterising and simulation of
multivariate textures.

We conclude with a summary of our findings, discussion of ongoing work, and directions for future
research in Chapter 10. This thesis is the culmination of a variety of intensive collaborations. Most of
results have been already published, the first page of each chapter provides the associated references.
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Part I

Learning Ordering for Multivariate

Mathematical Morphology
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2
Short review on morphological operators for scalar

images

As morphology deals with forms and relations of position, it demands a careful selection
of terms, and a methodized nomenclature.
The Anatomical Memoirs of John Goodsir
(Volume 2) Chapter V (pp. 83Ð84)
Edinburgh, Scotland. 1868

Résumé

Ce chapitre donne un compendium des principaux opérateurs de morphologie mathématique utilisés
au cours de la thèse. Les résultats son illustrés au travers d’exemples d’images en niveaux de gris
provenant de la télédétection.

2.1 Introduction

Mathematical morphology is a mathematical theory of image processing which facilitates the quan-
titative analysis and description of the geometric structures of image. Mathematical morphology
discuss nonlinear image transformations such as erosion, dilation, opening, closing, leveling and wa-
tershed transformations. In more general scenarios, morphological operators needs a complete lattice
structure, i.e., the possibility of defining an ordering relationship between the points to be processed
Ronse (1990b), Goutsias and Heijmans (2000). This key point has been introduced by Jean Serra
in Serra (1982) is analysed in Chapter 3. The aim of this chapter is to provide a background on the
basic morphological operators for scalar images (grey scale images). This short review is necessary
to fix the notation and to make easier the definition of the operators for images valued on R

d.

2.2 Scalar images

Let E be a subset of the Euclidean R
n or the discrete space Z

n, considered as the support space of
the image, and let T be a set of grey-levels, corresponding to the space of values of the image. It is
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assumed that T = R = R [ {−1,+1}. A grey-level image is represented by a function,

I :

⇢
E ! T
x 7! t

(2.1)

i.e., I 2 F(E, T ), where F(E, T ) denotes the functions from the discrete support E onto the space of
values of the image T . Thus, I maps each pixel x 2 E into a grey-level value t 2 T : t = I(x). Note
that T with the natural order relation  is a complete lattice. It is important to remark that if the
T is a complete lattice, then F(E, T ) is a complete lattice too (Serra (1988)).

2.3 Morphological transformations

2.3.1 Dilation and erosion

The two basic morphological mappings F(E, T )! F(E, T ) are the grey-level dilation and the grey-
level erosion given respectively by

δb(I)(x) = sup
h2E

(I(x− h) + b(h)) (2.2)

and
"b(I)(x) = inf

h2E
(I(x+ h)− b(h)) , (2.3)

where I 2 F(E, T ) is the original grey-level image and b 2 F(E, T ) is the fixed structuring function.
The further convention to avoid ambiguous expression is considered: I(x − h) + b(h) = −1 when
I(x−h) = −1 or b(h) = −1, and that I(x+h)−b(h) = +1 when I(x+h) = +1 or b(h) = −1.
Particularly interesting in theory and in practical applications, the flat grey-level dilation and erosion
is obtained when the structuring function is flat and becomes a structuring element (Soille (2003)).
More precisely, a flat structuring function of the set SE is defined as

b(x) =

⇢
0 x 2 SE

−1 x 2 SE
c ,

where SE is a set which indicator function os a Boolean set, i.e., SE ✓ E or SE 2 P(E), which defines
the “shape” of the structuring element. We notice that SEc denotes the complement set of SE (i.e.,
SE \ SE

c = ; and SE [ SE
c = E). The structuring element is defined at the origin y 2 E, then to

each point z of E corresponds the translation mapping y to z, and this translation maps SE onto
SEz, i.e., SEz = {y + z : y 2 SE}. Therefore, the flat grey-level image dilated I(x) with respect to
the structuring element SE is

δSE(I)(x) = sup
h2SE

(I(x− h)) (2.4)

= {I(y) | I(y) = sup[I(z)], z 2 SEx}

and respectively the flat grey-level erosion of a image

"SE(I)(x) = inf
h2SE

(I(x+ h)) (2.5)

= {I(y) | I(y) = inf[I(z)], z 2 ŠEx},

where ŠE is the reflection of SE with respect to the origin, i.e., ŠE = {−b | b 2 SE}. Dilation and
erosion are dual operators with respect to the image complement (negative), i.e.,

δSE(I) = ("
ŠE
(Ic))c

where Ic(x) = −I(x). Dilation and erosion are increasing operators: if I(x)  J(x), 8x 2 E, then
δSE(I)  δSE(J) and "SE(I)  "SE(J), 8x 2 E. Dilation (erosion) is an extensive (anti-extensive)
operator, i.e., I  δSE (I) ("SE (I)  I), 8x 2 E, when the structuring element SE contains the origin.
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Dilation and erosion are also negative operators in the following sense:

(δSE(I))
c = "

ŠE
(Ic)

This means that dilation of the image foreground has the same effect as erosion of the background
(with the reflected structuring element). However, the heart of the construction of the morphological
operators is the duality in the adjunction sense, namely

δSE (J)  I () J  "SE (I) (2.6)

for every pair of images I,J 2 F(E, T ). This is called the adjunction relation forms the basis of
the extension of mathematical morphology to complete lattice Serra (1982), Heijmans (1995). An
important point is that given an adjunction ("SE (·) , δSE (·)), then "SE (·) is an erosion (it distributes
over infimum) and δSE (·) is a dilation (it distributes over supremum). Additionally, the two following
properties also hold:

• Distributivity:
δSE (I _ J) (x) = δSE (J) (x) _ δSE (I) (x)

"SE (I ^ J) (x) = "SE (I) (x) ^ "SE (J) (x)

• Associativity:
δSE1⊕SE2(δSE3(I))(x) = δSE1(δSE2⊕SE3(I))(x)

where SE1 ⊕ SE2 is the Minkowski addition of the structuring elements. Fig. 2.1 shows the effect
of these operators for a real high-resolution remote sensing image. These two elementary operators
can be viewed as building blocks of more advanced morphological operators.

2.3.2 Opening and closing

The two elementary operations of grey-level erosion and dilation can be composed together to yield
a new set of grey-level operators having desirable feature extractor properties which are the opening
and the closing. More precisely, starting from the adjunction pair {"b(·), δb(·)}, the opening and
closing of a grey-level image I according to the structuring function b are the mappings F(E, T )!
F(E, T ) given respectively by

γb(I)(x) = δb("b(I))(x), (2.7)

and
'b(I)(x) = "b(δb(I))(x). (2.8)

The flat counterparts are obtained by using the flat erosion and flat dilation by the structuring
element SE. The opening and closing are dual operators, i.e.,

γSE(I) = ('SE(I
c))c

Opening (closing) removes positive (negative) structures according to the predefined size and shape
criterion of the structuring element SE: they smooth in a nonlinear way the image.

The pair (γSE(·), 'SE(·)) is called adjunction opening and adjunction closing. Let I,J 2 F(E, T )
be two grey-level images. The opening γSE(·) and closing 'SE(·) verify the following properties.

• Increasingness (ordering preservation): γSE(·) and 'SE(·) are increasing as products of increasing
operators, i.e., I(x)  J(x)) γSE(I)(x)  γSE(J)(x), 'SE(I)(x)  'SE(J)(x).

• Idempotence (invariance with respect to the transformation itself): γSE(·) and 'SE(·) are idem-
potent, i.e., γSE(γSE(I)) = γSE(I), 'SE('SE(I)) = 'SE(I).

• Extensivity and anti-extensivity: γSE(·) is anti-extensive, i.e., γSE(I)(x)  I(x); and 'SE(·) is
extensive, i.e., I(x)  'SE(I)(x).

Examples of opening/closing in a high-resolution remote sensing image are illustrated in Fig. 2.2.
The other morphological operators are obtained as products of openings/closings or by residues
between erosion/dilation and opening/closing.
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(a) I

(b) δSE (I)

(c) εSE (I)

Figure 2.1: Basic morphological transformations: dilation (b) and erosion (c). The structuring
element SE is a disk of diameter three pixels.
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(a) γSE(I)

(b) ϕSE(I)

Figure 2.2: Opening (a) and closing (b) transformations. The structuring element SE is a disk of
diameter 3 pixels.
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2.3.3 Contrast mappings

The contrast mapping is a particular operator from a more general class of transformations called
toggle mappings Serra (1989b). A contrast mapping is defined, on the one hand, by two primitives
Φ1 and Φ2 applied to the initial function, and on the other hand, by a decision rule which makes, at
each point x the output of this mapping toggles between the value of Φ1 at x and the value of Φ2,
according to which is closer to the input value of the function at x.

⌧(Φ1,Φ2)(I)(x) =

⇢
Φ2(I)(x) if kI(x)− Φ2(I)(x)k  kI(x)− Φ1(I)(x)k
Φ1(I)(x) if kI(x)− Φ2(I)(x)k > kI(x)− Φ1(I)(x)k

(2.9)

If the pair of primitives (Φ1(I),Φ2(I)) are an erosion "SE (I) and the adjunction dilation δSE (I),
the toggle mapping for an image I is given by Kramer and Bruckner (1975):

⌧("SE(·),δSE(·)) := ⌧(I)(x) =

⇢
δSE (I) (x) if kI(x)− δSE (I) (x)k  kI(x)− "SE (I) (x)k
"SE (I) (x) if kI(x)− δSE (I) (x)k > kI(x)− "SE (I) (x)k

(2.10)

where δSE (I) and "SE (I) are dilation and erosion transformations and the norm are differences in
grey scale values. This morphological transformation enhances the local contrast of I by sharpening
its edges. It is usually applied more than once, being iterated, and the iterations converge to a
limit reached after a finite number of iterations, because we only consider the case of images with
finite support. An example is shown in Fig. 2.3. Another interesting contrast mapping is defined
by changing the previous expression for the pair of opening γSE(I) and its dual closing 'SE(I) Meyer
and Serra (1989).

2.3.4 Morphological center

The opening/closing are nonlinear smoothing filters, and classically an opening followed by a closing
(or a closing followed by an opening) can be used to suppress impulse noise, i.e., suppressing posi-
tive spikes via the opening and negative spikes via the closing and without blurring the contours. A
more interesting operator to suppress noise is the morphological center, also known as automedian
filter Serra (1982, 1989b). Given an opening γSE(I) and the dual closing 'SE(I) with a small struc-
turing element (typically a discrete disk of diameter equal to the “noise scale”), the morphological
center associated to these primitives for an image I is given by the algorithm:

⇣(I) = [I _ (γSE('SE(γSE(I))) ^ 'SE(γSE('SE(I))))] ^ (γSE('SE(γSE(I))) _ 'SE(γSE('SE(I))). (2.11)

This is an increasing and autodual operator, not idempotent, but the iteration of ⇣(·) presents a
point monotonicity and converges to the idempotence, i.e. d⇣(I) = [⇣(I)]i, such that [⇣(·)]i = [⇣(·)]i+1.
An example of this filter is illustrated in Fig. 2.3.

2.3.5 Geodesic reconstruction, derived operators, leveling

The geodesic dilation is based on restricting the iterative unitary dilation of an image M 2 F(E, T )
called function marker by an isotropic structuring element associated with the smallest connectivity
(a disk of diameter three for 4-connectivity or a square of side three for 8-connectivity, see Fig. 1.7),
denoted by B, to a function reference I Vincent (1993), i.e.,

δi
B
(I,M) = δ1

B
(δi−1

B
(I,M)), (2.12)

where the unitary dilation controlled by I is given by δ1
B
(I,M) = δB(M)^ I. The reconstruction by

dilation is then defined by
δ1
B
(I,M) = δi

B
(I,M), (2.13)

such that δi
B
(I,M) = δi+1

B
(I,M) (idempotence).

Equivalently, geodesic erosion is defined as follows

"i
B
(I,M) = "1

B
("i+1

B
(I,M)), (2.14)
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(a) τ(I)

(b) ζ(I)

Figure 2.3: Results of toggle mapping and morphological center. In both cases, the structuring
element SE is a digital disk of diameter three pixels.
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(a) γREC
SE

(I)

(b) ϕREC
SE

(I)

Figure 2.4: Opening (a) and closing (b) by reconstructions, where the markers are respectively the
opening and closing adjunction of Fig. 2.2.
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where the unitary dilation controlled by I is given by "1
B
(I,M) = "B(M)_ I. The reconstruction by

erosion is then defined by

"1
B
(I,M) = "i

B
(I,M), (2.15)

such that "i
B
(I,M) = "i+1

B
(I,M) (idempotence). The important issue at this point is how to select

an adequate image marker M.

Opening/Closing by reconstruction

The opening by reconstruction is a geodesic reconstruction by using an opening as marker, i.e.,

γREC

SE
(I) := γREC

SE
(I, γSE(I)) = δ1

B
(I, γSE(I)) (2.16)

γSE(I) (from an erosion/dilation) modifies the contours, the opening by reconstruction γREC
SE

(I) is
aimed at efficiently and precisely reconstructing the contours of the objects which have not been
totally removed by the marker filtering process. Accordingly the closing by reconstruction 'REC

SE
(I)

is a erosion by reconstruction by using a closing as marker. Comparison of both morphological
transformations is shown in Fig. 2.4.

Leveling

In a similar way, the leveling Λ(I,M) of a reference function I and a marker function M is a
symmetric geodesic operator computed by means of an iterative algorithm with geodesic dilations
and geodesic erosions until idempotence Meyer (1998), i.e.

Λi(I,M) =
⇥
I ^ δi

B
(M)

⇤
_ "i

B
(M), (2.17)

until Λi(I,M) = Λi+1(I,M). The leveling simplifies the image, removing the objects and textures
smaller than the structuring element and preserving the contours of the remaining objects. Moreover,
it acts simultaneously on the “bright” and “dark” objects. The usefulness of this transformation is
related to the role of the marker image M. Different types of markers have been considered in
the literature, for instance, Alternate Sequential Filter, Isotropic Gaussian Function or Anisotropy
diffusion filtering. Figs. 2.5 and 2.6 illustrate two different markers and the correspondent leveling
operator.

2.3.6 Residue-based operators

From definition of basic morphological operators is easy to define the morphological gradient

∆SE(I) := δSE (I)− "SE (I) (2.18)

The structuring element SE for the gradient is generally the unitary ball B. This function gives the
contours of the image, attributing more importance to the transitions between regions close/far to
the background/foreground. Similarly, the positive(white) top-hat transformation is the residue of
an opening, i.e.,

⇢+
SE
(I) = I− γSE(I). (2.19)

Dually, negative(black) top-hat transformation is given by

⇢−
SE
(I) = 'SE(I)− I. (2.20)

The top-hat transformation yields grey level images and is used to extract contrasted components.
Moreover, top-hats remove the slow trends, and thus enhancing the contrast of objects smaller than
the structuring element SE used for the opening/closing.
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(a) γSE(ϕSE(I))

(b) Λ(I, γSE(ϕSE(I)))

Figure 2.5: Leveling transformation (b) with a morphological marker (a).
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(a) σ ∗ I

(b) Λ(I, σ ∗ I)

Figure 2.6: Leveling transformation (b) with a marker given by a Gaussian Filter (a).
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(a) ∆SE(I)

(b) ∆δ
SE
(I)

(c) ∆"
SE
(I)

Figure 2.7: Morphological gradients: (a) symmetric gradient, (b) gradient by dilation (∆δ
SE
(I) =

δSE (I)− I) and (c) gradient by erosion (∆"
SE
(I) = I− "SE (I)).
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2.4 Morphological Segmentation

For grey scale images, the watershed transform, originally proposed by Lantuéjoul (1978) and later
improved by Beucher and Lantuejoul (1979), is a region based image segmentation Beucher and
Meyer (1993). Works on watersheds began over a hundred years ago when Cayley and Maxwell
(Cayley (1859), Maxwell (1870)), described how smooth surfaces could be decomposed into hills
and dales by studying the critical points and slope lines of a surface. The intuitive idea underlying
this method comes from geography: it is that of a landscape or topographic relief which is flooded
by water, watersheds being the divide lines of the domains of attraction of rain falling over the
region. The watershed algorithm Vincent and Soille (1991) is a flooding process: water, starting
from specified markers, “floods" the image, from the smallest to highest grey values. When two
catchment basins meet, a dam is created, called “watershed plane". This presentation is called the
“flooding paradigm". However, there exist many possibles way to defining a watershed Najman and
Schmitt (1994), Roerdink and Meijster (2000), Bertrand (2005), Cousty et al. (2009), Meyer (2012).
Additionally, random marker process have been introduced in Angulo and Jeulin (2007) to yield
a stochastic watershed that can be interpreted as to give an edge probability for a given image.
Recently, links between watershed algorithm as a Maximum a Posteriori estimation of a Markov
Random Field have been introduced in Couprie et al. (2011).
In this document, we denote the watershed transformation of an image M, by using a set the markers
M (seeds in the flooding process) as WS(I,M). Watershed transformation is typically applied on
the gradient magnitude image, i.e., the morphological gradient. A simple example of the watershed
with two markers is illustrated in Fig. 2.8. We can observe that watershed is relatively sensitive to
noise. Over-segmentation is a well-known difficulty with this approach, which has led to a number
of approaches for merging watershed regions to obtain larger regions corresponding to objects of
interest Beucher and Meyer (1993), Gauch (1999), Cousty et al. (2010), Najman (2011). A simple
approach to deal with the over-segmentation problem consists in determine markers for each region
of interest, for instance, the dynamics or contrast based transform applied to the minima of the
gradient image. The parameter t in the contrast based transform, is normalized to (0, 1) with
respect to the minimum and maximum of the original image. We denote this approach as WS(I, t)
for some parameter t 2 (0, 1). Note that WS(I, 0) = WS(I). Watershed regions associated with
different value of t are illustrated for the same original image (see Fig. 2.9). From this example, we
observe that different levels of segmentation with respect to t constitute a hierarchical (pyramid)
of regions. Watershed transform have been applied in multidimensional remote sensing application,
where the important selection of an adequate multivariate gradient is still an open problem Noyel
et al. (2007), Tarabalka et al. (2010b).
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(a) I (b) Markers (Red points) (c) WS(I,M)

(d) I+ .05N(0, 1) (e) Markers (Red points) (f) WS(I+ .05N (0, 1),M)

Figure 2.8: Watershed transform for a given image I, with markers point M are the red points in
(b) and (e). (Watershed Transform is applied in ∆SE(I)).
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(a) WS(I, .01)

(b) WS(I, .06)

(c) WS(I, 11)
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(d) WS(I, .16)

(e) WS(I, .21)

(f) WS(I, .26)

Figure 2.9: Contrast-driven watershed transforms with markers calculated as % of the maximum
value in I.



3
Preliminary Notions

By a tranquil mind I mean nothing else than a mind well ordered. Marcus Aurelius

Résumé

Ce chapitre donne un présentation générale de la représentation spectrale d’une image multivariée.
Pour le cas particulier de la représentation basée sur un ordre total, l’ordre-h est utilisé pour ap-
préhender le caractère vectoriel des images multidimensionnelles. Les aspects les plus importants de
la théorie des treillis liés à cette thèse sont présentés en détail.

3.1 Introduction

Digital image processing is an expanding and dynamic area with applications reaching out into our
everyday life as surveillance, medicine, authentication, automated industrial quality control and
many more areas. An important research topic is to design parameter-free algorithms or at least
approaches where the parameter model can be interpreted in the context of the problem. However,
on the one hand, a parameter-free algorithm would limit our ability to impose our prejudices,
expectations, presumptions, or any a priori information on the problem setting. On the other
hand, an incorrect setting in a non-parameter free approach may cause that an algorithm to fail in
finding the true patterns. A useful approach to tackle this kind of problems for image processing
is mathematical morphology. It consists of a set of operators that transform image according to
geometric characteristics as size, shape, connectivity, etc. Serra (1982). In this chapter we review
some results related to mathematical morphology for multivariate images, i.e., in each pixel of
the image a vector information is available. We include several results of flat operator for images
I : E ! L, where L is a lattice of values. Details about lattice formulation and mathematical
morphology can be found in e.g. Ronse (2006) and Chapter 2 (J. Serra and C. Ronse) in Najman
and Talbot (2010). Most morphological operators used for processing and filtering are flat operators.
This means that they are grey-level extensions of the operators for binary images, and they can be
obtained by Serra (1982):

1. thresholding the grey-level image for all values of the image,

2. applying the binary operator to each thresholded image set,

3. superposing the resulting set.

47
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Flat operators have been also studied under the name of stack filters Wendt et al. (1986), threshold
decomposition filters Shih and Mitchell (1989), rank filters Soille (2002) and order-configuration
filters Ronse (1990a).

In the case of grey scale images, two types of lattices L have been considered. First, in a
“continuos" scenario the values of the image belong to a R[{−1,1}. Second, in a “discrete" setting,
the grey levels be in [a, b]\Z, i.e. the set of integer values from a to b by step of one. An important
issue to remark is that some properties like commutation with thresholding hold unconditionally in
the discrete grey-levels, and only for upper semicontinuous operators in the case of continuous grey-
levels Ronse (1990a). A general theory of flat morphology for real grey-levels is made in Guichard and
Morel (2002), where it is shown in particular that the commutation with thresholding holds “almost
everywhere". In this thesis, we limit our analysis to the “discrete" setting, i.e., the L is finite.
In this case, if L is modular, distributive, infinitely supremum or infimum distributive, or complete
distributive, then the lattice of functions F(E,L) will share that property. That lattice is denoted by
LE. LE is fundamental in mathematical morphology due to a morphological transformation (called
operator) is a map LE ! LE. To make easier the presentation of the concept, we analysis the simplest
case where the lattice L is a chain. In this particular case, LE will be completely distributive.

3.2 Notation and representation

3.2.1 Notation

Let us make precise the terms and notation to be used in the rest of the thesis. Let E be a subset
of the discrete space Z

2, considered as the support space of the 2D image, and F ✓ R
d be a set of

pixels values in dimension d, corresponding to the space of values of the multivariate image with d
channels. A vector-value image is represented by the mapping,

I :

(
E ! F

x = (i, j) ! x
(3.1)

i.e., I 2 F(E,F) the set of maps from a point x at the discrete spatial coordinates (i, j) 2 E into a
vector value x 2 F ✓ R

d. Let us assume that the pixel x is represented by a d-dimensional vector
x(i, j) = [x1(i, j), x2(i, j), . . . , xd(i, j)] 2 R

d, where R denotes the set of real numbers in which the
pixel’s spectral response xl(i, j) at sensor channels l = 1, . . . , d. Additionally, let the data matrix
XI be an n ⇥ d matrix representing d spectral bands for each n pixels in the vector-value image
I. In fact, XI is a matrix, with a slight abuse of notation we denote it as X to make easier the
presentation. A representation of this notation is illustrated in Fig. 1.9.

3.2.2 Spectral representations

In this thesis we focus on multivariate image, but to illustrate the performance of our algorithms we
analyse colour and hyperspectral images. Hyperspectral images provide both spatial and spectral
representations of scenes, materials, and sources of illumination. They differ from images obtained
with a conventional RGB colour camera, which divides the light spectrum into broad overlapping
red, green, and blue image slices that when combined seem realistic to the eye. By contrast, a
hyperspectral camera effectively divides the spectrum into very many thin image slices, the actual
number depending on the camera and application. To understand its structure, a hyperspectral
image may be represented as an image containing two spatial dimensions (pixels) and one spectral
dimension (wavelength), as illustrated in Fig. 1.9. Usually, at each sample wavelength, there is an
intensity (grey-level) representation of the reflectance or radiance in the scene. From a mathematical
point of view, spectral information corresponds to points in a vector space of dimension d equal to
the number of channels of the image. However, in the vector space, the spectral information can be
represented by different mathematical structures, for instance:

• Probability density models. It is the classical assumption of the statistical modelling for a
multivariate image. The classical assumption is a Multivariate Gaussian Distribution, i.e., the
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(a) Original spectral information,
denoted by X.

(b) Probability density models pro-
vide the probability spectrum to
be at certain region of the space.
X ∼ N (µ,Σ).

(c) Linear mixing models (positiv-
ity and additivity constrains) per-
mit spectra only in the convex hull
of the spectral space. X = ATE,
where 0 ≤ A is the abundance ma-
trix and E are the endmembers.

(d) Manifold models, for in-
stance, representations on the
sphere, allow a representation
invariant to intensity changes
(norm). xi → xi/||xi||, for
all i = 1 . . . n.

(e) Graph models provides a struc-
ture representation invariant to
small perturbations in the spectral
space. X → (V,E).

(f) In the complete lattice represen-
tation, the set of pixels are anal-
ysed through a total order relation.
X → L.

Figure 3.1: Scheme of different representation for the spectral information of a multivariate image.
This thesis deals with spectral representation based on complete lattice representation as in (f).

probability of a spectrum to be at certain region of the space follows N (µ,Σ) for some mean
vector µ and covariance matrix Σ.

• Linear mixing models: In such a way that each pixel in a scene may be decomposed into a sum
of finite number of constituent endmembers, which represent the purest pixels in the scene.
The abundances (weights in the sum) are subject to non-negativity constraint and, in some
cases, sum-to-one constraint.

• Manifold models: The idea of capturing the complex geometry in the spectral representation
of an image is the core of a (non-Euclidean) manifold representation Peyré (2009). Manifold
learning methods are commonly becoming a standard to embedding data onto their new trans-
formed spaces. For instance, on the d− 1 hypersphere by normalising by the norm per pixel,
or in supervised projections on the sphere as in Lunga and Ersoy (2011). Another manifold
structure in a local-graph. It is denoted by the graph G = (E,W), where E = X is the set
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(a) Original image I is multivariate image
I : E → R3

(b) Spectral information of (a) is represented by a scatter-
plot of X.

Figure 3.2: Spectral information is associated with vector spaces.

of vertices and V = [vij ] 2 R
n ⇥ R

n the edge weight matrix. The graph is constructed in an
unsupervised manner, with a goal of automatically determining the neighborhood structure as
well as the corresponding connection weight for each datum. Examples of this type of repre-
sentation are k-graph, ✏-graph and L1-graph Wright et al. (2010). Clustering, dimensionality
reduction, image segmentation and analysis can be performed in this representation space.

• Complete lattice model: A total ordering definition for a cloud of points. The relation x  y
have to be know for all pair of pixels x and y of the multivariate image. That is the main
goal of this thesis. Mathematical morphology requires this kind of representation to ensure
the appropriate application of lattice based transformations.

Fig. 3.1 shows a scheme of the different representation for the spectral information of a given mul-
tivariate image.

3.3 Mathematical morphology in multivariate images

Mathematical morphology operators in modern image analysis are a set of powerful, robust and
computationally efficient tools with multiple applications including image filtering, segmentation
and visualization Najman and Talbot (2010). It requires the definition of a complete lattice struc-
ture, i.e., an ordering among the pixels to be analysed. However, there is not difficult to see
that the idea of order is entirely absent from multivariate scene, i.e., there is no unambiguous
means of defining the minimum and maximum values between two vectors of more than one di-
mension. Accordingly, the extension of mathematical morphology to vector spaces, for instance,
colour/multi/hyper/ultraspectral images, is neither direct nor trivial because the pixels in the images
are vectors. We refer keen readers to Angulo (2007)Aptoula and Lefèvre (2007) for a comprehensive
review of vector morphology.

3.4 Ordering in vector spaces

In his seminal paper about multivariate ordering, Barnett (1976) identified four families of ordering
for vectors:
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• The marginal ordering (M-ordering), is a trivial approach consisting in applying grayscale
morphology techniques to each channel separately, that has been called marginal morphology
in the literature Soille (2003). However, the marginal approach is often unacceptable in several
applications because, when morphological techniques are applied independently to each image
channel, analysis techniques are subject to the well-known problem of false colours Serra
(2009); that is, it is very likely that new spectral constituents (not present in the original
image) may be created as a result of processing the channels separately.

• To strictly preserve input vectors, the conditional ordering (C-ordering) approach, also known
as lexicographic ordering, is frequently used. The C-ordering is based on the ordering of the
components selected sequentially according to different conditions or priorities. When all the
components are used, the C-ordering is a total ordering Aptoula and Lefèvre (2008).

• The reduced ordering (R-ordering) which performs the ordering of vectors in some scalar space,
computed from a mapping of the vector onto a different representation where the ordering
is naturally defined, typically distances or projections onto a dimensionality reduced space
(using for instance the principal component analysis). For instance, Mahalanobis distance has
been employed in several works on multivariate morphology including the information from a
reference set Al-Otum (2003). Chapter 4 introduces a reduced supervised ordering has shown
be useful in the analysis of high dimensional images.

• The P-ordering, is based on the partition of the vectors into groups, such that the groups can be
distinguished with respect to rank or extremeness. Recently, approaches using combinatorial
techniques and median/anti-median filters have been also used to construct ordering Lezoray
et al. (2007), Plaza et al. (2004). There is however a problem of these latter approaches: the
ordering is locally depending on the values of the spatial window, consequently it is not a partial
ordering for the set of vectors in an image, i.e., dilation (erosion) obtained does not commute
with the supremum (infimum) and the distributive property is not valid. Chapter 6 introduces
a reduced supervised ordering has shown be useful in the analysis of high dimensional images

Different reported approaches are illustrated in Fig. 3.3. Figs. 3.3(a-c) presents three different
schemes to order the vector space, but they are not taking into consideration the information con-
tained in the data. These orderings share the same minimum and maximum in the induced lattice,
the vectors 0 = ? and 1 = >, i.e., the vector with the minimum(maximum) value in each marginal
ordering. Another approach is to use a dimensional reduction algorithm, for example, principal com-
ponent analysis (PCA) Jolliffe (1986) or some non-linear projections approach Lezoray et al. (2009).
It considers the first projection to induce the ordering. The minimum and maximum induced for
that ordering are a priori unknown. An example is illustrated in Fig. 3.3(d). In this case, the min-
imum or maximum can change including a new element in the set. In Angulo (2007), the ordering
is based on a reference spectrum exhibiting lattice where the minimum has been fixed. However,
that maximum is associated with the “farthest" vector but that does not have a real interpretation.
In Chapter 4, the supervised ordering is introduced. It brings forth an interesting observation, the
lattice exploits the information carried directly by the vectors in {F,B}. Figs. 3.3(e-f) show these
two referenced ordering, but in advantage the supervised ordering induces a lattice with predefined
minimum/maximum. The basic idea is to deduce a prediction function from training data {B,F}
to induce the ordering.

The theoretical framework of the proposed morphological operators roots in the notions of h-
ordering and h-adjunction introduced in Goutsias et al. (1995). So let us start by a reminder of the
main results from Heijmans and Ronse (1990) and Goutsias et al. (1995) useful for our approach.
Additionally, an excellent presentation of mathematical morphology and lattice theory can be found
in Ronse (2006).

3.4.1 Complete lattices and mathematical morphology

Theoretical formulation of mathematical morphology is nowadays phrased in terms of complete
lattices and operators defined on them. For a detailed exposition on complete lattice theory in
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(a) Conditional Ordering (b) Space Filling Regazzoni and
Teschioni (1997)

(c) Bits Mixing Chanussot and
Lambert (2000)

(d) PCA Jolliffe (1986) (e) Referenced Angulo (2007) (f) Supervised (Chapter 4)

Figure 3.3: Some vector ordering strategies proposed in the literature. The associated ordering is
also illustrated.

mathematical morphology, we refer to Chapter 2 (J. Serra and C. Ronse) in Najman and Talbot
(2010).

Definition 1. A space L endowed with a partial order  is called a complete lattice, denoted (L,)
if every subset M✓ L has both supremum (join)

W
M and infimum (meet)

V
M.

A minimum (or least) ? 2 M is an element which is least than or equal to any other element
of M, that is, r 2 M ) ?  r. We denote the minimum of L by ?. Equivalently, a maximum
(largest) > in M is the greatest element of M, that is, r 2 M) r  >. We denote the maximum
of L by >.

Definition 2. A mapping f : L1 ! L2 of a complete lattice L1 into a complete lattice L2 is said
to be a dilation if f(_j2Jrj) = _j2Jf(rj) for all families (rj)j2J of elements in L1. A mapping is
said to be an erosion if f(^j2Jrj) = ^j2Jf(rj) for all families (rj)j2J of elements in L1.

The important relationship between dilation and erosion is that they are dual concepts from the
lattice point of view. Heijmans and Ronse (1990) showed that for any complete lattice L, we always
have a dual isomorphism between the complete lattice of dilation on L and the complete lattice of
erosions on L. This dual isomorphism is called by Serra [Serra (1988), Chapter 1] the morphological
duality. In fact it is linked to what one calls Galois connections in lattice theory, as we will see at
the end of this section.

Definition 3. Let δ, " 2 LL. Then we say that (", δ) is an adjunction of every r, s 2 L, we have

δ(r)  s () r  "(r) (3.2)

In an adjunction (", δ), " is called the upper adjoint and δ the lower adjoint.

Proposition 1 (Heijmans and Ronse (1990) p. 264). Let δ, " 2 LL. If (", δ) is an adjunction, then
δ is a dilation and " is an erosion.
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Definition 4. Let L1 and L2 be lattices and let ↵ : L1 ! L2 and β : L2 ! L1 satisfy the following
conditions.

1. For r, s 2 L1, if r  s, then ↵(s)  ↵(r).

2. For r, s 2 L1, if r  s, then β(s)  β(r).

3. For r 2 L1, β↵(r)  r.

4. For r 2 L2, ↵β(r)  r.

Then (↵, β) is a Galois connection between L1 and L2.

Proposition 2. Let the lattices L1 and L2, maps ↵ : L1 ! L2 and β : L2 ! L1 a Galois connection.
Then the following condition holds for all r 2 L1 and s 2 L2:

s  ↵(r) () r  β(s) (3.3)

Clearly an adjunction in L is a Galois connection between (L,) and its dual (L,≥) (indeed,
compare definition 3 and proposition 2).

3.4.2 Preorder by h-function

Let E be a nonempty set and assume that L is a complete lattice. Let h : E ! L be a surjective
mapping. Define an equivalence relation =h on E as follows: x =h y , h(x) = h(y) 8x, y 2 E.
As it was defined in Goutsias et al. (1995), we refer by h the h−ordering given by the following
relation on E

8x, y 2 E, x h y , h(x)  h(y)

Note that h preserves reflexivity (x h x) and transitivity (x1 h x2 and x2 h x3 ) x1 h x3).
However, h is not a partial ordering because x h y and y h x implies only that x =h y but not
x = y. Note that h-ordering is a preorder in E.

An operator  : E ! E is h−increasing if x h y implies that  (x) h  (y). Additionally,
since h is surjective, an equivalence class is defined by L[r] = {y 2 E|h(y) = r}. The Axiom of
Choice Goutsias et al. (1995) implies that there exist mappings h : L ! E such that hh (r) = r,
for r 2 L. Unless h is injective, there exist more than one such h mappings: h is called the
semi-inverse of h. Note that h h is not the identity mapping in general (but h h =h id). However,
we have that for any h−increasing  : E ! E the result  h h =h  and hence h h h = h . Let
us introduce e the operator associated to  in the lattice L. A mapping  : E! E is h−increasing
if and only there exists an increasing mapping e : L ! L such that e h = h . The mapping e is
uniquely determined by  and can be computed from

e = h h 

We can now define the h−erosion and h−dilation. Let ", δ : E ! E be two mappings with the
property

δ(x) h y , x h "(y), 8x, y 2 E

then the pair (", δ) is called an h−adjunction. Moreover, let (", δ) be h−increasing mappings on E,
and let " 7!h e", δ 7!h eδ. Then (", δ) is an h−adjunction on E if and only if (e", eδ) is an adjunction
on the lattice L. Therefore a mapping δ (resp. ") on E is called h−dilation (resp. h−erosion) if eδ
(resp. e") is a dilation (resp. erosion) on L. h−adjunctions inherit a large number of properties from
ordinary adjunctions between complete lattices. Assume that (", δ) is an h−adjunction then

γ = δ" h id h ' = "δ.

Hence, γ is h−anti-extensive and φ is h−extensive. The operator γ on E is called h−opening if the
operator eγ on L determined by γ 7!h eγ is an opening. The operator γ is also h−increasing and
satisfies γγ =h γ (h−idempotency). The h−closing is similarly defined.
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Figure 3.4: The h-ordering (preorder) produces a complete lattice for a given set. In this thesis a
“tie-break rule” is applied in each equivalence class of h to yield a chain.

In this thesis, we assume that L is a complete totally ordering lattice, i.e. a chain. A“tie-
break rule” is applied in each equivalence class of h as it is illustrate in Fig. 3.4. Summarising, in
simple words this thesis deals with the idea of analyse multivariate images taking advantage of the
lattice representation via h-orderings. Thus, spatial components can be studied by the constituent
“shape/size" that characterise most of the mathematical morphology transformations.



4
Supervised ordering and multivariate mathematical

morphology

Order and complexity are antagonistic, in that order tends to reduce complexity while
complexity tends to reduce order. To create order requires not only rearrangement but
in most cases also the elimination of what does not fit the principles determining the
order. On the other hand, when one increases the complexity of an object, order will be
harder to achieve. Rudolf Arnheim(1966)

Résumé

Une approche originale d’ordre sur l’espace des vecteurs est introduite dans ce chapitre. Le cadre
générique est basé sur une formulation de type apprentissage supervisé qui mène à des ordres ré-
duits. Un ensemble d’apprentissage pour l’arrière-plan (ou le fond) de l’image, et un ensemble
d’apprentissage pour le premier plan (ou les objets), sont nécessaires, ainsi qu’une méthode super-
visée pour construire l’ordre-h. Deux cas particuliers de techniques d’apprentissage numérique sont
considérés en détail: 1) ordre vectoriel basé sur le krigeage et 2) ordre vectoriel basé les SVM. Ces
ordres supervisés peuvent être utilisés pour l’extension dans un cadre supervisé de la morphologie
mathématique aux images vectorielles1.

4.1 Introduction

This chapter introduces a supervised learning formulation which leads to reduced orderings for vector
spaces. In our model, a training set for the background and another training set for the foreground
as well as a supervised method, are needed to construct the h-ordering mapping. According to the

1The content of this chapter is mainly based on the following published papers:

• Velasco-Forero and Angulo (2010b), Morphological Processing of Hyperspectral images using kriging-based

supervised ordering. In IEEE - International Conference of Image Processing.

• Velasco-Forero and Angulo (2011c), Supervised Ordering in Rp: Application to Morphological Processing of

Hyperspectral Images. IEEE Transaction on Image Process. 20(11):3301-3308.

• Velasco-Forero and Angulo (2011b), Multiclass ordering for filtering and classification of hyperspectral images,
3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1-4
(2011).

.
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learning technique considered, two particular cases are studied in detail in Section 4.3. On the one
hand, the Kriging-based vector ordering and on the other hand, the support vector machines-based
vector ordering. Some analytical results and pedagogical examples allow us to understand how
the corresponding orderings are constructed. These supervised orderings may then be used for the
extension of mathematical morphology to vector images. In Section 4.4, the general definitions of
morphological operators in vector spaces are briefly revised. Then, we focus, in Section 4.5, on their
application to hyperspectral image processing. The performance of the morphological operators is
illustrated with some examples. Conclusions close the chapter in Section 4.6.

4.2 Complete lattices in R
d

In this section, fundamentals of complete lattices for R
d is reviewed and a new supervised ordering

is introduced. For a detailed exposition see Chapter 3.

4.2.1 Basic Definitions

A space L endowed with a partial order  is called a complete lattice, denoted (L,) if every subset
M ✓ L has both supremum (join)

W
M and infimum (meet)

V
M. The smallest ? 2 M is an

element smaller or equal than all other elements of M, that is, r 2 M ) ?  r. We denote the
smallest element (bottom) of L by ?. Equivalently, the largest > inM is an element that is larger
than every element of M, that is, r 2 M ) r  >. We denote the largest element (top) of L by
>. Let R be a nonempty set and L a complete lattice. Furthermore, let h : R ! L be a surjective
mapping. As it was defined in Goutsias et al. (1995), we refer by h as the h-ordering given by:

r h r0 , h(r)  h(r0), 8r, r0 2 R

Note that h preserves reflexivity (r h r) and transitivity (r1 h r2 and r2 h r3 ) r1 h r3 )
but is not necessarily a total ordering. Additionally, an equivalence class is defined by L[r] = {r 2
R|h(r) = r}. We remark that in practical application, the h-ordering has to be completed in each
equivalence class to lead to a h-injective, therefore a complete total ordering.

4.2.2 Reduced Ordering

For multi-band imagery, as colour or hyperspectral images, pixel values are vectors defined in F = R
d.

Consequently the main challenge to build complete lattice structures is to define a mapping h : Rd !
L, where L can be the lattice of the extended real line (R,) using R = R

S
{−1,+1} and  as

the “less than or equal to" relation (the natural partial ordering). Once an ordering is defined for a
set, the application of mathematical morphology operators is direct, and these operators are useful
for denoising, object extraction and other tasks. Many authors have already worked in this idea. As
it was noted in Barnett (1976), two main families of mappings h for a given x = (x1, x2, . . . , xd) 2 R

d

can be defined as follow:

• Based on projections (unsupervised), i.e.;

h(x) =

dX

i=1

λixi (4.1)

That can be obtained by using the more representative projection in a statistical dimensional
reduction technique, for example a linear approach as PCA Jolliffe (1986).

• Based on distances (supervised): Given a subset T ⇢ F, T = {t1, . . . , t|T |}, with ti 2 R
d, 8i;

the mapping h(x) can be written as:

h(x) =

|T |X

i=1

λiφ(ti,x) (4.2)
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where φ : Rd ⇥ R
d ! R

+ is a kernel-induced distance. Different authors have utilised this
approach using mainly the Mahalanobis distance as Goutsias et al. (1995), Al-Otum (2003),
Garcia et al. (2008). Nonlinear approaches as Kernel PCA Scholkopf et al. (1998), or ISOMAP
Tenenbaum et al. (2000) are also example of this category. An interesting example had been
introduced in Lezoray et al. (2009) using Laplacian eigenmaps Belkin and Niyogi (2002).

Additionally, projections can take in consideration local structures in R
d, mainly under so-called

“cluster assumption” (the data is “structured” into groups of points, in such a way that a local
coordinate system for each group is more efficient than a global one), namely, expressions (4.1) and
(4.2) can be generalised to:

• Based on local projections: The different projections are obtained per cluster, i.e.;

h(x) =

dX

i=1

λixxi (4.3)

Examples of techniques useful for that are Local-PCA Kambhatla and Leen (1997) and mix-
tures of factor analysis as in Ghahramani and Hinton (1997). The clusters are usually deter-
mined using unsupervised algorithms such as Expectation-Maximization (EM) algorithm or
k-means, which usually require at least the number of clusters.

• Based on local adaptive distances: Given a reference set T ⇢ F, T = {t1, . . . , t|T |}, with
ti 2 R

d, 8i, as in (4.2) but including a contribution which depends on x. Thus, h(x) can be
written as:

h(x) =

|T |X

i=1

λixφ(ti,x) (4.4)

where φ is a kernel-induced distance and weights λix are fitted for each vector x in R
d. As it

will be presented in section 3.1., if φ(ti,x) = φ(ti, ti) we obtain the local linear combination
based on Kriging Matheron (1969).

4.2.3 h-supervised ordering

Let us focus on the case of h-ordering based on distances. We define a h-supervised ordering for a
nonempty set R based on the subsets B,F ⇢ R, such that B

T
F = ;, as a h-ordering that satisfies

the conditions: h(b) = ?, if b 2 B, and h(f) = > if f 2 F. Note that ?,> are the smallest
and largest element in the lattice L. Such an h-supervised ordering is denoted by h{B,F}. Fig.
(4.1) illustrates the main idea for a h-supervised ordering function. Note the important conditions
B ✓ L(?) and F ✓ L(>). Once this additional supervised restriction is imposed, an adequate vector
ranking scheme can be formulated based on T = B [ F. The main motivation of defining this new
supervised ordering schema is to obtain maximum and minimum in the lattice L interpretable with
respect to sets B and F. It is important to remind that max and min are the basic words in the
construction of all mathematical morphology operators. At this point, the problem is how to define
an adequate supervised ordering for a given vector space F and two pixel sets B,F . Our approach
takes advantage of algorithms to solve a supervised classification problem to define the function h(x)
as in (4.4), but based on B and F ⇢ R

d as follows:

h(x) =

|T |X

i=1

λixφ(ti,x) =

|B|X

k=1

λkxφ(bk,x) +

|F |X

j=1

λjxφ(fj ,x) (4.5)

Different h-mappings and induced ordering h are illustrated in the Fig. (4.2) for some vectors in
R

2.
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Figure 4.1: Scheme of h-supervised function producing a partial ordering on the original set R based
on the subsets B and F. h-supervised function requires that h(b) belong to the equivalence class
L[?], for all b 2 B and equivalently h(f) belong to L[>], for all f 2 F. L is the lattice (R,) using
 as the “less than or equal to" relation.

4.3 Learning the h-supervised ordering

In this section, we introduce how to calculate h-supervised ordering using well-known supervised
learning algorithms. The two approaches presented in this chapter are selected to illustrate the design
of h-supervised ordering, but other supervised or semi-supervised approaches can be also explored.
However, due to h(·) is not necessary injective, the complete ordering have to be completed in
practical examples.

4.3.1 Kriging

A Kriging model gives an interpolating predictor, which can be used to approximate a function
based on a finite number of evaluations. Kriging was originated in geostatistics by Matheron (1969).
Kriging is also referred to as the Gaussian process predictor in the machine learning domain Ras-
mussen and Williams (2006). The kriging model postulates estimate an unknown function of interest
in the value x as a linear combination of known realisations of the form bh(x) =

P
λixh(ti). The

most commonly used variant is called ordinary kriging, which is often referred to as a Best Linear
Unbiased Estimator (BLUE) Matheron (1969). It is considered to be best because it minimises the
variance of the estimation error. It is “linear” because estimates are a weighted linear combination
of available data, and is “unbiased” since it aims to have the mean error equal to zero. A more
complete introduction to kriging can be found in Matheron (1969). Denoting by e the estimation
error, i.e., h(x)− bh(x), we would like to find an unbiased estimator as follows

E(e) = E[h(x)− bh(x)] = E[h(x)−

|T |X

i

λixh(ti)] = 0)

|T |X

i

λix = 1.

where E(·) is the expected value. Additionally, the variance of the estimation error, with the
assumption of weak-stationarity, is given by:

V ar(e) = E[(h(x)− bh(x))2]
= E[h(x)2]− 2E[h(x)bh(x)] + E[bh(x)2]

= E[h(x)2]− 2

|T |X

i=1

λixK(ti,x) +

|T |X

i

|T |X

j

λixλ
j
xK(ti, tj)

where K is the matrix |T | ⇥ |T | of points pairwise covariances. Minimising the variance of the
estimation error forms the objective function of an optimisation problem. Ensuring unbiasedness
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(a) Unsupervised ordering using first principal
component. h(x) = h(x1, x2) =

P2
i=1 λ

i
xi

(b) Supervised ordering using a single reference
vector t (red circle). h{t}(x) = (K(x, t)) An-
gulo (2007)

(c) Supervised ordering h{b,t} based on B = b1

(green circle) and F = f(red circle)
(d) Supervised ordering h{b,t} based on B = b2

(purple circle) and F = f(red circle)

Figure 4.2: Comparison of h-mappings and their corresponding h-ordering h in R
2. Circles in

white represent the pixels that we would like to order and colored circles are the information about
background and foreground. Vector with the same value in h-function (value in the level set) are in
the same equivalence class produced by the h- supervised ordering. Proposed supervised ordering is
adaptive to the training set T = {B,F}. A Gaussian kernel is used as K in the examples.

of the error imposes a constraint on this function. Formalising this objective function with its
constraint results in the following system Matheron (1969):

'(λ1x, . . . ,λ
|T |
x , µ) = V ar(e)− 2µ

0
@
|T |X

i

λix − 1

1
A (4.6)

where µ is a Lagrangian multiplier. Setting the partial first derivatives of (4.6) to zero with respect
to µ and λ’s. After |T | + 1 differentiations, the set of weight that minimise the error variance can
be expressed in matrix form as:

✓
K 1
1t 0

◆✓
λx
µ

◆
=

✓
Kx

1

◆
(4.7)

where K is the matrix |T |⇥ |T | of points pairwise covariances and Kx is a column vector containing
K(x, ti) for all i = 1, . . . , |T |. Pairwise covariances are often modelled as a function of points
separation. The flexibility in kriging is achieved through a variety of spatial correlation functions
Matheron (1969). Finally, to obtain a h-supervised ordering based on B,F , we set h(b) = ? = −1
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and h(f) = > = 1 to interpret bh(x) as a kriging interpolation using K. Thus, the h-supervised
ordering using ordinary kriging is given by

bh(x) =
|T |X

i

λixh(ti) =

|F |X

i

λixh(f)−

|B|X

j

λjxh(b) =

|F |X

i

λix −

|B|X

j

λjx (4.8)

where the λx’s are found using expression (4.7), that is, by solving the corresponding linear system
(4.7). Note that (4.8) is defined in the sense of expression (4.5), and it can be used to obtain a
supervised ordering. As an illustrative example, we propose to solve the expression (4.7) when both

Figure 4.3: Unitary background and foreground sets: F = f and B = b

background and foreground sets are singletons, that is to say, B = {b} and F = {f}. In this case,
the kernels are negative exponential of euclidean distances between pairs of vectors are denoted as
is illustrated in figure 4.3, i.e., u = K(x,x), v = K(f ,b), c = K(b,x) and d = K(f ,x). From (4.7),
we obtain using the notation u = K(x,x), v = K(f ,b), c = K(b,x) and d = K(f ,x),
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Clearly, λix depends on x because of values c = K(b,x) and d = K(f ,x). Finally, to obtain a
h-supervised ordering, using expression (4.8),

bh(x) = λ2x − λ
1
x =

d− c

u− v
=

K(f ,x)−K(b,x)

K(x,x)−K(f ,b)
(4.9)

Thus, the supervised reduced ordering is basically the difference between kernelized distances. Note
that as u > v then if x! f ) h(x)! 1 and if x! b) h(x)! −1, where “!” means “tends to”.

4.3.2 Support Vector Machines

Let us focus now on linearly separable problems, because they are the simplest for Support Vector
Machines (SVM) Cristianini and Shawe-Taylor (2000). Given a labeled training set

{(t1, y1), (t2, y2), . . . , (ti, yi), . . . , (t|T |, y|T |)},
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where t 2 R
d and a class label yi = ±1, it is said to be linearly separable if there exists a linear

discriminant function whose sign matches the class of all training examples. In this case, the dis-
crimination function is modelled by by(x) = uTx + β0 and it is used to separate the two classes.
However, there usually exist infinite separating hyperplanes which can separate the training set per-
fectly. Vapnik and Lerner (1963) proposes to choose the separating hyperplane that maximises the
margin, i.e., the largest distance to the nearest training vector (t) of any class. This new additional
requirement, at the basis of the SVM framework, is the main difference, with respect to classical
classifiers as Fisher’s linear discriminant or logistic regression. As it is pointed out by several authors
Cristianini and Shawe-Taylor (2000), the signed distance from a point x to a given hyperplane is
1
y i
||u||(uTx + β0). Hence, the aim is to obtain the biggest positive C which makes all examples

satisfy 1
||u|| (u

T ti +β0) ≥ C, 8i. Since the length of u is insignificant, SVM assumes 1
||u|| = C. Thus,

the constrained optimisation problem can be written as,
⇢

maxu,β0
, 1

2 ||u||
2

subject to, 1
||u||yi(u

T ti + β0) ≥ 1, 8i
(4.10)

One method for solving optimisation problems involves introducing Lagrange multipliers Boyd and
Vandenberghe (2004), λi, i = 1, . . . , |T |, one for each of the inequality constraints in (4.10). In such
case, the so-called Lagrangian function is given by

φ(u,β0,λ)P =
1

2
||u||2 −

|T |X

i=1

λiyi(u
T ti + β0) +

|T |X

i=1

λi (4.11)

Taking the partial derivatives in u and β0 gives

u =

|T |X

i=1

λiyiti,

|T |X

i=1

λiyi = 0 (4.12)

The solution is usually obtained using a dual formulation for the primal problem (4.11) Vapnik
and Lerner (1963). Hence substituting (4.12) in (4.11) we obtain the so-called Wolfe dual Cristianini
and Shawe-Taylor (2000):

φ(λ)D =

|T |X

i=1

λi −
1

2

|T |X

i=1

|T |X

k=1

λiλkyiykt
T
i tk (4.13)

Due to dual formulation of the primal problem and the equation involved in this formulation Boyd
and Vandenberghe (2004), Vapnik and Lerner (1963), Cristianini and Shawe-Taylor (2000), we can
express the original linear model as:

by(x) = uTx+ β0 =

|T |X

i=1

λiyit
T
i x+ β0 (4.14)

where λ’s are the Lagrangian coefficients. Additionally, this formulation can be extended to construct
non-linear classifiers in the original space. Notice that in (4.14) the training points are included only
via their inner products. Thus, we obtain using nonlinear functions a “kernel trick" Cristianini and
Shawe-Taylor (2000),

by(x) =
|T |X

i=1

λiyiK(x, ti) + β0.

The evaluation function is discriminating between labels as background and foreground, then to
obtain a h-supervised ordering, we set yi = h(b) = ? = −1 and yi = h(f) = > = 1. Thus, omitting
β0 because is constant for all x our h-ordering based on SVM is obtained by:

bh(x) =
|F |X

i=1

λiK(x, fi)−

|B|X

j=1

λjK(x,bj) (4.15)



62 CHAPTER 4. SUPERVISED ORDERING

Figure 4.4: Training spectra for Pavia University: b0 (tree) and f0 (gravel). Morphological operators
are calculated using the h-supervised ordering induced by B = {b0} and F = {f0}. Curves are plots
of the spectral values in the different wavelength for these two pixels.

where λ’s are the Lagrangian solution in (4.10). Note that (4.15) can be used to obtain a supervised
ordering because it is defined in the sense of expression (4.5). For the example presented in the
section 4.3.1, the corresponding function of h-ordering based on SVM can be calculated. Thus, we
obtain λ1 = λ2, substituting this in a kernelized dual formulation, and finding the value where the
derivative is equal to zero, we can say that φD = 2λ1 − λ

2
1(u − v) ) λ1 = λ2 = 1

u−v . Thus, from
(4.15), the h-ordering using SVM in the unitary background and foreground example is:

bh(x) = λ1K(x, fi)− λ2K(x,bj) =
d− c

u− v
=

K(f ,x)−K(b,x)

K(x,x)−K(f ,b)

We must remark that is the same h-ordering found in (4.9) using ordinary kriging. In Fig. 4.2, we
provide a comparison among different ordering schemes in R

2. Fig. 4.2(a) shows non-supervised
ordering using the first principal component, 4.2(b) an ordering based on a unique reference vector
Angulo (2007), and 4.2(c),4.2(d) two examples of h-ordering using the proposed supervised ordering.

4.3.3 Kriging vs. SVM

As we have shown, the same function h(x) is obtained for both methods in the simplest case, when
the training set is composed of a vector for the background and a vector for the foreground. However,
in general, the results are different. Let us compare in detail Kriging and SVM ordering approaches.
First of all, we notice that the ordering in Kriging is formulated as an interpolation problem, whereas
in SVM as an optimisation one. In both cases, the choice of the kernelized distance introduces a great
flexibility and the possibility to extend the approach to non vector spaces. From a computational
viewpoint, Kriging requires a global computation of the Gram matrix for the training set and the
vector of distances for each vector: the value is obtained by the product of the inverse matrix and the
vector. Hence, it is a linear algorithm, without any parameter, and quite efficient for a low number
of training vectors. The optimisation algorithms used for SVM requires basically a few penalisation
parameters. After the learning procedure, only a subset of the training vectors (the support vectors)
are used to compute the value of the ordering function at each vector. It has been proven that SVM
are particularly robust in the case of high dimension spaces and SVM are also very efficient in large
training sets.
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4.4 Morphological operators and h-supervised ordering

Once the family of orderings has been established, the morphological vector operators are defined in
the standard way. To illustrate the design of morphological operator by h-supervised ordering, we
limited our example to the ordering by SVM in (4.15). However, an equivalent analysis can be done
in the case of ordering by Kriging in (4.8). The evaluation function of the SVM in (4.15) requires a
training set T with two classes. We denote these classes as B (background) and F (foreground) and
the correspondent h-supervised ordering by h{B,F}. Additionally, all morphological operators based
on this h{B,F} will be referred to as supervised. We limit here our developments to the flat operators,
i.e., the structuring elements are planar shapes. The supervised erosion of an image I 2 F(E,L) at
pixel x 2 E by the structuring element SE ⇢ E based on the set of pixels B,F is given by

"SE,h{B,F}
(I(x)) = {I(y) = ^h{B,F}

[I(z)], z 2 SE(x)}, (4.16)

where ^h{B,F}
is the minimum according to the total ordering h{B,F} and SE(x) is the neighbourhood

region centred on the considered pixel x.
The corresponding adjunct supervised dilation δSE,h{B,F}

(·) is obtained by replacing the ^h{B,F}

by the _h{B,F}
, i.e.,

δSE,h{B,F}
(I(x)) = {I(y) = _h{B,F}

[I(z)], z 2 ŠE(x)}, (4.17)

where ŜE is the reflected structuring element Soille (2003). The erosion and the dilation are increasing
operators. Moreover, the erosion is anti-extensive and the dilation is extensive if SE contains the
origin. In practice, the supervised erosion shrinks the structures which have a spectrum close to
the foreground; “peaks of spectra” thinner than the structuring element disappear by taking the
spectrum of neighbouring structures with a spectrum values close to the background. As well,
it expands the structures which have a vector value close to background. Dilation produces the
dual effects, enlarging the regions having a spectrum close to the foreground and contracting the
background. One of the most interesting properties of grey-level morphological operators is the
duality by the complementation. The complement image f c is defined as the negative of f (f(x))c =
−f(x) = f c(x). Let the pair of erosion/dilation (", δ) be an adjunction, the property of duality holds
that "(f c) = (δ(f))

c ) "(f) = (δ(f c))
c; and this is verified for any other pair of dual operators, such

as the opening/closing. In practice, this property allows us to implement exclusively the dilation,
and using the complement, to be able to obtain the corresponding erosion. In our case, it is easy to
see that we have the following equivalent properties of duality:

1. "SE,h{B,F}
(I) = δSE,h{F,B}

(I),

2. "SE,h{B,F}
(I) = δSE,−h{B,F}

(I).

Dilation and erosion allow us to define morphological filters Serra (1988), Soille (2003). A morpho-
logical filter is defined as an increasing operator that is also idempotent (the erosion/dilation are
not idempotent) Serra (1988). A supervised opening is an erosion followed by a dilation, i.e.,

γSE,h{B,F}
(I) = δSE,h{B,F}

("SE,h{B,F}
(I)) (4.18)

and a supervised closing is a dilation followed by an erosion. The opening (closing) is an anti-
extensive (extensive) morphological filter. More precisely, the opening removes spectra peaks that
are thinner than the structuring element, having a vector value close to the foreground; the closing
remove vector values peaks that are thinner than the structuring element, having a spectrum close
to background.
It is important to remark that the residue-based operator for multivariate are defined in h-units,
i.e., the supervised morphological gradient

∆SE,h{B,F}
(I) = h{B,F}(δSE,h{B,F}

(I))− h{B,F}("SE,h{B,F}
(I)), (4.19)

and accordingly the supervised top-hat as follows

⇢+
SE,h{B,F}

(I) = h{B,F}(I)− h{B,F}(γSE,h{B,F}
(I)) (4.20)
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for the positive supervised top-hat transformation and

⇢−
SE,h{B,F}

(I) = h{B,F}('SE,h{B,F}
(I))− h{B,F}(I) (4.21)

for the negative supervised top-hat transformation. They interpretation are similar than in grey
scale image, but under the consideration of the h-ordering. For instance, the positive top-hat
transformation yields grey level images and it is used to extract contrasted components with respect
to the background B.

4.5 Applications to hyperspectral image processing

In practice, the construction of a total order is required to avoid arbitrary decisions among pixels
that belong to the same equivalence class. In the sequel, the total ordering is induced including a
lexicographic order in L[r], for all r, in cases with equal value in the h-supervised ordering and hence
a chain is obtained for the pixels from a given hyperspectral image. We must notice however that
using h-mapping for R

d (d 8 2) the possibility of having two different spectra with equal value in
h is quite rare in practice.
We present our examples over three images:

• Pavia University hyperspectral image is an urban area that was recorded by the ROSIS-03
optical sensor with spatial resolution of 1.3 meters per pixel. The number of bands is 115
with a spectral coverage ranging from 0.43 to 0.86µm. The 12 most noisy channels have
been removed, and the experiments are conducted on the 103-band image. Fig. 4.5(a) is the
false-colour preview for an image of 340 columns, 610 rows in 103 bands.

• Yellowstone calibrated scene 3 is an AVIRIS image which has been provided in Kiely and
Klimesh (2009). The spatial resolution is 20 meter-pixels. Fig. 4.7(a) is the false-color preview
for the 512 columns, 677 rows in 224 bands.

• Moffett Field is a Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image developed
at the Jet Propulsion Laboratory of NASA. This sensor operates in the Visible to Near Infrared
(VNIR) and Short-Wave Infrared (SWIR) range to achieve 224 spectral bands. To test the
ability to detect targets with a priori the number of spectral bands is initially reduced to
203 by removing extremely noisy bands, i.e., we include the information contained in bands
[1:106,114:153,168:224]. False colour is illustrated in Fig. 4.15.

In the studied scenarios, only two pixels for foreground and background had been selected as it is
shown in Fig. 4.4 for the experiments in Pavia University and Fig. 4.6 for Yellowstone HSI. Erosion
and dilation operators (Figs. 4.7(c), 4.5(c) and 4.7(b), 4.5(b)) do not introduce false spectra. By
computing the morphological gradient Figs. 4.7(d), 4.5(d), as difference in h between the erosion
and the dilation, we obtain contours which correspond here to the spatial transition but it gives
priority to changes according with the training set, i.e. water-land or trees-gravel.

4.5.1 Influence of training set in h-ordering

Obviously, the results obtained can be improved including a higher number of training pixels in F and
B. Examples illustrate that even using a limited number of training set size, our approach produces
operators that can be interpreted as grey-scale mathematical morphological operators according with
the spatial size of the structuring element SE, but it takes into consideration the inherent dependence
of our approach to the sets B and F . However, the selection of reference spectra have to be done
according with practical needs.

In the present study, we considered only one set of a single pixel for B and as well as for F .
Our motivation is to show the worst case of the supervised-ordering. However, a “toy-example"
has been designed to illustrate the behaviour of the h-function, induced ordering and its respective
morphological operator. The performance of the proposed approach is presented using a the well-
known Indiana‘s Indian Pines hyperspectral image. The number of bands is initially reduced to
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200 by removing bands covering water absorption and noisy bands. A spatial section is selected
(40 : 60, 122 : 140). A square 8 ⇥ 8 is generated by using random spectrum from class 11 at it
shows Fig. 4.8. The cardinality of B and F take different values {1, 5, 30}. The corresponding
h-supervised an associated morphological gradient are presented in Fig. 4.9. The experiment shows
as the gradient is higher when the training size increases. It follows the intuition of the performance
of supervised morphological transformation improves when the number of training pixels increases.

4.5.2 Extracting spatial/spectral structures

Morphological opening and closing are appropriate operators for structure extraction according
to their spatial/spectral properties. More precisely, the top-hats or residues between the original
image and the opened/closed image give the structures selectively removed by the opening/closing.
Examples of positive supervised top-hat are shown in Figs. 4.11(c),4.5(e) and 4.5(f), which allow us
to extract regions with size smaller than the corresponding structuring element and whose spectra are
close to the F . By modifying the size of the structuring element, a scale-space spectral extraction is
obtained. In Figs. 4.10(b) and 4.10(a) are also given the counterpart operators but using as another
foreground (vegetation) and another background (water) and as we can observe, particularly for the
gradient (Fig. 4.10(c)), the obtained results are totally different.

Examples of supervised positive top-hat transformations are presented in Figs. (4.11(c)) and
(4.11(g)), which allow to extract regions with spectrum is close to the foreground (water) and whose
size is smaller than the correspondent structuring element. Dually, supervised negative top-hat
transformations (Figs. (4.11(d)) and (4.11(h))) emphasise information according background/size.
By modifying the size of the structuring element, an scale-space spectral extraction is obtained.
In Figs. (4.12(c)),(4.12(g)),(4.12(d)) and (4.12(h)) are compared again the importance of the role
played by the choice in the training set for the background and foreground.

As it has been mentioned above, the morphological openings/closings extract the object according
to the size/shape of the structuring element. However, after applying these operators, all the image
contours are “modified”. Opening/closing by reconstruction can be used in order to selectively extract
the objects “marked” by the marker image, and which are spectrally near to the foreground and far
from the background, but preserving the objects contours.

The marker image can be for instance defined interactively, by choosing a pixel of the image. In
Fig. (4.13(b)) is given an example of this method, where the used marker is given in Fig. (4.13(a)):
the marker is a point touching one of the lakes, and after reconstruction only the marked lake is
totally preserved; the other structures having a spectral value close to the foreground are removed
(we observe in the image that the river is not connected to the lake). Then, by computing the
difference in h between the original image and the reconstructed image, all the image structures
(independently of their size/shape) associated with the foreground and do not marked are perfectly
extracted, see Fig. (4.13(c)). We must notice that to obtain an appropriate result the choice of the
foreground set must be coherent with the spectrum of the marked structure.

Nevertheless the power of the operators by reconstruction are not limited to “interactive” filtering.
The marker image can also be defined as a rough image simplifications. A typical size-selective
maker is an alternate sequential filter of size n. The corresponding leveling operator, a product of
an opening and a closing by reconstruction, allows to simplify the image, removing the objects and
textures smaller than the size n and preserving the contours of the remaining objects. Moreover,
it acts simultaneously on the “foreground objects” and “background objects”. Figs. (4.14(a)) and
(4.14(b)) and their corresponding residues (4.14(c)), (4.14(d)) illustrate the fundamental advantage
of these operators. We can also observe once more the role of background/foreground comparing
with their equivalents for the second set of reference spectra, i.e., Figs. (4.14(e)),(4.14(f)),(4.14(g)),
(4.14(h)).

4.5.3 Duality between background and foreground

Let us now compare in another example how the idea of using a framework where the notion of a
prior foreground F and background B are used for the ordering performs with respect to the most
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classical framework which only uses the notion of foreground F (as for instance in works Angulo
(2007) Goutsias et al. (1995) Garcia et al. (2008)). Conceptually, in the classical case, the dilation
tends to approach the pixels towards the F , and by duality, the erosion tends to move further away F ,
but without defining to which “image background” the spectrum must be addressed. This asymmetric
situation is one the problems which motivate this chapter. The case with a single spectrum of
reference for the foreground f (Angulo (2007)) is equivalent to the h-ordering by h{·,f}(x) := K(f ,x).
A comparative experiment was performed using Moffett Field data set. Single target signatures were
inserted at known locations in a lake and another over a building. A set of two pixels are selected for
foreground (water) and background (building) as it is shown in Fig. 4.15. In our experiments, the
unitary structuring element SE is the hexagon. Supervised erosion and dilation are given respectively
in Fig. 4.16(a), 4.16(b), (4.16(c)) and (4.16(d)). The supervised morphological gradient based on
h{f} in Fig. 4.16(e) favours structures with high differences among pixels close or far from f .
The supervised morphological gradient based on h{b,f} in Fig. 4.16(f) highlights spatial patterns
favouring structures containing the reference pixels b or f .

Similarly, supervised positive/negative top-hat transformations are presented in Fig. 4.17(b)
which allows to extract regions with spectrum close to foreground (water) contrasted with respect
to the background and whose size is smaller than the corresponding structuring element, as well as
regions close to the background and contrasted with respect to the foreground. We remark that in
the case of h{f}, the interpretation of the positive/negative top-hat Fig. 4.17(a), is not clear due to
a lack of duality in ordering induced by the asymmetric training set, i.e., we can say that dilation
“takes" the spectral information from pixels close to f but we do not have a dual interpretation for
the erosion. Note that in the proposed h{b,f} both interpretations are available.

4.5.4 Multi-target morphological-driven classification

In real hyperspectral applications, it is often necessary to analyse the image with multiple set of
targets (i.e., multiple foregrounds using our terminology) and that task is classically tackled in the
context of multi-class supervised classification Cristianini and Shawe-Taylor (2000). Inspired by this
same rationale, we propose a version of one-versus-all classification based in supervised morphological
processing for a set of multi-targets. For a morphological operator Υ{B,F} : F(E,L) ! F(E,L)
induced by the supervised order h{B,F} in the complete lattice (L,h), we define the morphological-
driven classification Υ{T}, for each pixel x, based on the multi-target set T = {

S
i Ti|Ti \ Tj =

; 8 i 6= j}, as
Υ{T}(x) = argmax

i

Υ{T−i,Ti}(x) (4.22)

where argmax is calculated using the associated order h in the complete lattice L and {T−i,Ti}
denotes one-versus-all decomposition of the multi-target set. For instance, if T = {T1,T2,T3} then
{T−2,T2} denotes the background/foreground set {B = {T1[T3}, F = T2}. Accordingly, the usual
one-versus-all classification, associated to h{T−i,Ti}, is obtained when the operator Υ is the identity.
For this problem of classification, the mapping h{T−i,Ti} which induces the ordering is constructed
using SVM framework. The intuition of the multi-class ordering is given in Fig. 4.18. Additionally,
we proposed to use as Υ{B,F} , which regularise the classification, the leveling λ{B,F},SE, where the
marker is an alternate sequential filter. To illustrate the performance of our approach, we use the
University of Pavia hyperspectral image. That image is an urban area that was recorded by the
ROSIS-03 optical sensor. Nine classes of interest are considered, with the number of test and training
samples detailed for each class in Table (4.1). The accuracies in terms of classification are listed in
Table (4.2). The overall accuracy (OA) is the percentage of correctly classified pixels whereas the
average accuracy (AA) represents the average of class classification accuracies. Kappa coefficient
is another criterion used in remote sensing classification to measure the degree of agreement and
takes into account the correct classification that may have been obtained “by chance” by weighting
the measured accuracies. Per class classification accuracy has been also reported in Table (4.1).
Classification map using leveling operator (using as a marker a hexagonal alternate sequential filter)
in a multi-target approach is depicted in Fig. (4.19) for different sizes of the structuring element.
The parameters of the SVMs were fixed to (C = 103, γ = 0.0001). As we can observe, the spectral-
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Table 4.1: Performance comparison per class for Pavia University Hyperspectral Image. Note that
Id{T} is equivalent to standard one-vs-all SVM. The best score for each class is highlighted in bold
face font.

i-Class |Ti| Test samples Id{T}(·) Λ{T},SE(·) Λ{T},2SE(·) Λ{T},3SE(·)

1-asphalt 548 6304 0.7914 0.9246 0.9624 0.9774

2-meadows 540 18146 0.6949 0.7138 0.7177 0.7256

3-gravel 392 1815 0.7365 0.7770 0.7842 0.6951

4-tress 524 2912 0.8688 0.8913 0.8456 0.7771

5-metal sheets 265 1113 0.9926 0.9993 0.9993 1

6-bare soil 532 4572 0.9572 0.9998 1 1

7-bitumen 375 981 0.8917 0.9398 0.9519 0.9662

8-bricks 514 3364 0.8764 0.9772 0.9940 0.9978

9-shadows 231 795 0.9747 1 0.9984 0.6684

Table 4.2: Performance comparison for Pavia University Hyperspectral Image. Note that Id{T} is
equivalent to standard one-vs-all SVM. OA is the overall accuracy, AA the average accuracy and 
is the kappa statistic.

Method (OA) (AA) 

Id{T}(·) 0.7925 0.8649 0.7394
Λ{T},SE(·) 0.8409 0.9136 0.8002
Λ{T},2SE(·) 0.8472 0.9159 0.8081
Λ{T},3SE(·) 0.8373 0.8675 0.7957

spatial processing by means of morphological operators improves notably the classification results.
But obviously, the spatial regularisation effect involves that small regions can disappear and for large
structuring elements the performance of classification for classes associated to small regions can be
deteriorated.

4.6 Conclusions on supervised ordering

Hyperspectral imaging is an active field of image analysis which is usually considered under the
supervised paradigm Melgani and Bruzzone (2004): both the complexity of the data and the typical
real-life applications require the construction of training sets of spectra which drive the algorithms of
classification, feature extraction, segmentation, etc. Hence, from our viewpoint, the construction of
hyperspectral mathematical morphology operators should be also coherent with this idea of super-
vised processing. In previous works, some of the introduced ideas were useful but their formulation
was not correct in the theoretical framework of mathematical morphology. Other works, following
direct extensions of the works on colour morphology, were basically based on the notion of colour
of reference (for the supervised ones) or on the projection on main directions (for the unsupervised
ones). We consider that the present methodology generalises most of the precedent works on vector
mathematical morphology. In particular, we have shown how mathematically sound machine learn-
ing techniques can be also used to define supervised partial orderings in vector spaces. In fact, using
for instance the kernel-trick and SVM algorithms, the framework is valid to define supervised order-
ing in any space providing that a kernel between the points is defined. Additionally, this formulation
based on both a background and a foreground training set allows an adequate interpretation of dual
morphological operations. The examples given in the chapter illustrate the potential interest of the
algorithms for real applications in hyperspectral images processing.
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(a) False colour of I (b) δSE,h{B,F}
(I) (c) εSE,h{B,F}

(I)

(d) ∆SE,h{B,F}
(I) (e) ρ+2SE,h{B,F}

(I) (f) ρ+5SE,h{B,F}
(I)

Figure 4.5: Pavia University with 340 ⇥ 610 pixels in 103 bands. Supervised dilation, erosion,
gradient, and positive top-hats for a set of background/foreground pixels B = {b0} and F = {f0}
illustrated in Fig. 4.4. Unitary structuring element SE is a square of side three pixels. Spectra are
shown using bands {80,90,70}. h-ordering calculated using SVM as (4.9) with a polynomial kernel
of order 2.
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Figure 4.6: Training spectral for Yellowstone Scene. Left: First example (b0 (land) and f0 (water)).
Right: Second example of the Yellowstone Scene: (b0 (water) and f0 (unknown material)). Curves
are plots of the spectral values in the different frequency bands for these pixels.
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(a) I (b) δSE,h{B,F}
(I) (c) εSE,h{B,F}

(I)

(d) ∆SE,h{B,F}
(I) (e) γ4SE,h{B,F}

(I) (f) ρ+4SE,h{B,F}
(I)

(g) γ10SE,h{B,F}
(I) (h) ρ+10SE,h{B,F}

(I)

Figure 4.7: Yellowstone scene with 512 ⇥ 677 pixels in 224 bands. Supervised dilation, erosion,
opening, and their positive top-hats for a set of background/foreground pixels B = {b0}, F = {f0}
illustrated in Fig. 4.6. Unitary structuring element SE is an hexagon. Spectra are shown using
bands {125,70,30}. h-ordering calculated using (4.9) with a polynomial kernel of order 2.
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Figure 4.8: Toy example: A square 8 ⇥ 8 is generated by using random selection of spectra from
class 11 of well-know Indian Pines hyperspectral image. The background is the image subset between
[40:60,122:140] from the same hyperspectral image.

(a) h{B,F}, |B| = |F | = 1 (b) ∆SE,h{B,F}
(I) with |B| =

|F | = 1

(c) h{B,F}, |B| = |F | = 5

(d) ∆SE,h{B,F}
(I) with

|B| = |F | = 5

(e) h{B,F}, |B| = |F | = 30 (f) ∆SE,h{B,F}
(I) with

|B| = |F | = 30

Figure 4.9: Comparison of h function, ordering and morphological gradient using different size of
training set in the Toy example of Fig. 4.8. The experiment shows as the gradient is higher when
the training size increases. We remark that the scale gradient in (f) in larger than (d) and (b).
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(a) δSE,h{b1,f1}
(I) (b) εSE,h{b1,f1}

(I)

(c) ∆SE,h{b1,f1}

Figure 4.10: Supervised dilation (4.17), erosion (4.16) and gradient (4.19) for two sets of back-
ground/foreground pixels. Unitary structuring element SE is an hexagon. Spectra are showed using
bands {125,70,30}. h-ordering calculated using (4.9) with a polynomial kernel of order 2.
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(a) γ4SE,h{b0,f0}
(I) (b) ϕ4SE,h{b0,f0}

(I)

(c) ρ−4SE,h{b0,f0}
(I) (d) ρ+4SE,h{b0,f0}

(I)

(e) γ10SE,h{b0,f0}
(I) (f) ϕ10SE,h{b0,f0}

(I)

(g) ρ−10SE,h{b0,f0}
(I) (h) ρ+10SE,h{b0,f0}

(I)

Figure 4.11: Supervised opening (4.4), closing (and their positive and negative top-hats for a set of
background/foreground pixels B = {b0}, F = {f0}. Spectra are showed using bands {125,70,30}.
h-ordering calculated using (4.9) with a polynomial kernel of order 2.
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(a) γ4SE,h{b1,f1}
(I) (b) ϕ4SE,h{b1,f1}

(I)

(c) ρ+4SE,h{b1,f1}
(d) ρ−4SE,h{b1,f1}

(I)

(e) γ10SE,h{b1,f1}
(I) (f) ϕ10SE,h{b1,f1}

(I)

(g) ρ+10SE,h{b1,f1}
(I) (h) ρ−10SE,h{b1,f1}

(I)

Figure 4.12: Supervised opening (4.4), closing and their positive and negative supervised top-hats
for a set of background/foreground pixels {b1, f1}. Spectra are showed using bands {125,70,30}.
h-ordering calculated using (4.9) with a polynomial kernel of order 2.
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(a) Marker contains the spectral values
correspondent to the pixel in the original
image in the dark spot and b0 in the rest
of the image (illustrated as grey color).
That multivariate image is denote as M.

(b) δ∞
{b0,f0}

(M, I)

(c) h{b0,f0}(I)− h{b0,f0}(δ
∞
h{b0,f0}

(M, I))

Figure 4.13: Extraction of specific objects can be performed by using geodesic reconstruction in the
supervised ordering. Unitary structuring element SE is an hexagon. Spectra are showed using bands
{125,70,30}. h-ordering calculated using (4.9) with a polynomial kernel of order 2. The image c)
has been resized to make details visible.
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(a) Λ4SE,h{b0,f0}
(I, ϕγ) (b) Λ10SE,h{b0,f0}

(I, ϕγ)

(c) h{b0,f0}(a)− h{b0,f0}(I) (d) h{b0,f0}(b)− h{b0,f0}(I)

(e) Λ4SE,h{b1,f1}
(I, ϕγ) (f) Λ10SE,h{b1,f1}

(I, ϕγ)

(g) h{b1,f1}(e)− h{b1,f1}(I) (h) h{b0,f0}(f)− h{b0,f0}(I)

Figure 4.14: Supervised leveling for sets of background/foreground pixels. Unitary structuring
element SE is an hexagon. False colour image are showed using bands {125,70,30}. h-ordering
calculated using (4.9) with a polynomial kernel of order 2. Red and blue colors are incorporate to
illustrate positive or negative values in the difference.
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Figure 4.15: HSI Moffett Field sub-scene using bands {115,70,30}. Reference pixels (background b

and foreground f) used in the experiments. Curves are plots of the spectral values in the different
frequency bands for the reference pixels.



78 CHAPTER 4. SUPERVISED ORDERING

(a) δSE,h{·,f}
(I) (b) εSE,h{·,f}

(I)

(c) δSE,h{b,f}
(I) (d) εSE,h{b,f}

(I)

(e) ∆SE,h{b,f}
(f) ∆SE,h{·,f}

Figure 4.16: Comparison of different supervised morphological operators for h{·,f} and h{b,f} .
Spectra are showed using bands {115,70,30}. Both h-orderings are calculated using (4.9) with a
polynomial kernel of degree two.
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(a) ρ+5SE,h{·,f}
(I) in blue and ρ−5SE,h{·,f}

(I) in red. (b) ρ+5SE,h{b,f}
(I) in blue and ρ−5SE,h{b,f}

(I) in red.

Figure 4.17: Comparison of supervised top-hats. In the single reference ordering (h{·,f}) Angulo
(2007) positive top-hat detects the spatial component with spectral information close to the water
(f) in blue. However interpretation of the negative top-hat is not easy to perceive. For the proposed
h{b,f} positive top-hat has similar interpretation than h{·,f} and negative top-hat can be explicated
with respect to the spectral data included in b.

(a) Pixel in Rd (b) Classification functions in a three
classes problem. Υ{T−i,Ti}

in the
notation.

(c) Projection Space

Figure 4.18: Given a training set of three classes, the pixels in the original image I 2 R
d are projected

to R
J , where J is the number of classes by using supervised evaluation functions.
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(a) False Color Image (b) Reference Data (c) Id{T}

(d) Λ{B,F},SE(·) (e) Λ{B,F},2SE(·) (f) Λ{B,F},3SE(·)

Figure 4.19: A false colour of the original image is shown using bands number [80,70,30]. Morpho-
logical driven-classification using leveling operator with unitary structuring element hexagonal SE.
h{T−i,Ti} is obtained using SVM, with polynomial kernel of degree two.



5
Hit-or-miss transform in multivariate images

Yes, I’ve learnt from my mistakes and I think I’m now able to repeat them almost exactly.
Peter Cook

Résumé

La transformation en Tout-Ou-Rien est un opérateur morphologique classique pour l’appariement
par forme de référence sur des images binaires. Une approche originale pour les images multivariées
est introduite dans ce chapitre. Le cadre proposé est une généralisation du cas binaire en utilisant
l’ordre-h supervisé introduit au chapitre 4. En particulier, nous nous concentrons sur l’application
de la transformation en Tout-Ou-Rien multivariée à la détection de cibles sur des images à haute
résolution spatiale. Les résultats ainsi obtenus montrent la performance de l’approche proposée1.

5.1 Introduction

Since the first Landsat satellite was launched by the NASA in 1972, satellite remote sensing has
become an important source of data for better understanding the earth’s natural resources, and to
increase the number of researchers in image processing with applications from international secu-
rity system to archaeology. Depending on the sensor systems, civil and commercial satellites can
produce several types of imagery data, including high-resolution RGB, panchromatic, multispectral,
hyperspectral and radar, each of which have particular advantages and withdraws, depending on the
specific requirements of the user. An efficient template matching operator to deal with automatic
processing of these huge collections of images to extract spatial/spectral structures matching with
a prototype or target is required in many applications. In the literature, template matching as hy-
pothesis test under Gaussian distribution assumptions, feature template matching in low-dimensional
representation, matching points using Hausdorff Distance Sim et al. (1999), Zhu et al. (2004) and
normalised cross-correlation, are the most frequently alternatives to solve this problem. However,
the extension to vector images is not evident or it requires strong theoretical assumptions. On the
other hand, mathematical morphology (MM) offers several tools for image processing, including a
template matching operator called the Hit-or-Miss Transform (HMT). This operation was devised
in Serra (1982) in the mid-sixties, but unfortunately, there are not an unique extension to grey-level

1The content of this chapter is mainly based on the published paper, Velasco-Forero and Angulo (2010a), "Hit-or-

miss Transform in Multivariate Images" in Advanced Concepts for Intelligent Vision Systems, vol. 6474 of Lecture
Notes in Computer Science, pp. 452–462. Springer-Verlag.
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82 CHAPTER 5. HIT-OR-MISS TRANSFORM IN MULTIVARIATE IMAGES

images Soille (2002, 2003), Naegel et al. (2007), Ronse (1996), or multivariate images Aptoula and
Lefèvre (2009), Weber and Lefevre (2008). Our approach, it is inspired by ideas presented in chapter
4, see also Velasco-Forero and Angulo (2010b), using supervised ordering to formulate a HMT for
multiband images as a natural extension of the binary case to complete lattices. In this chapter,
we use the Support Vector Machines (SVMs) to calculate the supervised ordering Cristianini and
Shawe-Taylor (2000). SVMs constructs a set of hyperplanes in a high dimensional space, to separate
in two classes, the vectors emanate from {F} and {B}. Thus, the distance to that maximum-margin
hyperplane can be employed as a supervised ordering. See details in previous chapter.

5.2 Hit-or-Miss Transform in Multivariate Images

We briefly recall in this section the definition of the Hit-or-Miss Transform, then we explain how
these notion can be extended to colour and multivariate images.

(a) Structuring elements SE1

and SE2

(b) I (c) εSE1 (I)

(d) εSE2 (I
c) (e) εSE1 (I) ∩ εSE2 (I

c)

Figure 5.1: Illustrative example of Hit-or-Miss transform for the set I: HMT (I; SE1, SE2)

5.2.1 Hit-or-Miss Transform in Binary Images

A pattern probe SE called structuring element (SE) is involved in most of the morphological opera-
tors. In binary case, at it was presented in Soille (2003): “the first question that may arise when we
probe a set with a structuring element is: Does the structuring element fit the set? The eroded set
is the locus of points where the answer to this question is affirmative." Thus the erosion of a set I
by a structuring element SE is denoted by "SE (I) and it is defined by:

"SE (I) =
\

x2SE

I−x (5.1)

The hit-or-miss transform (HMT) is a fundamental operation on binary images. In fact, historically
it is one of the first operators introduced in mathematical morphology (Serra (1982)). In such
images, this operator uses two disjoint structuring elements: the first has to match the foreground
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while the second has to match the background. Both matches are necessary in order the operator
to give a positive matching response. HMT uses a pair (SE1, SE2) of SEs, and looks for all positions
where SE1 can be fitted within a set I, and SE2 within the background Ic, in other words, it is defined
by:

HMT (I; SE1, SE2) = "SE1(I) \ "SE2(I
c) (5.2)

One assumes that SE1

T
SE2 = ;, otherwise we always have HMT (I; SE1, SE2) = ;. One calls SE1

and SE2, respectively, the foreground and background SE. Fig. 5.1 presents the binary HMT for a
pedagogical example. We remark that HMT is simultaneously finding templates for the both pattern
contained in the SEs, for the set I and its complementary dual. Let us define the binary image I as
the indicator function of the set I, i.e., I(x) = 1 if x 2 I ✓ E and zero otherwise. Consequently, we
can rewrite (5.2) as follows,

HMT (I; SE1, SE2) = {x 2 E|"SE1(I(x)) = "SE2(I
c(x)) = 1} (5.3)

(a) SE = {SE1, SE2} (b) I (c) εh{•,•};SE1
(I)

(d) εh{•,•};SE2
(I) (e) HMT (I; {•, •}, SE1, SE2)

Figure 5.2: From the binary HMT 5.1 to the extension for multiband images in the supervised
ordering. The proposed Hit-or-miss transform (e) finds pixels such that both erosions detect the
corresponding spectrum associated to the SE, i.e., "h{•,•};SE1(I) = • = >1 and "h{•,•};SE2(I) = • = >2.
The lattice induced by the h-supervised ordering is presented in each case, using ? and > for least
and greatest values in the corresponding ordering.

5.2.2 Hit-or-miss Transform in supervised h-orderings

We introduce now an extension of hit-or-miss transformation for multivariate images in the frame-
work of supervised h-orderings. The proposal can be used to find an exact template matching in
the original multivariate image I with the structuring element SE = SE1 [ SE2 with SE1 \ SE2 = ;
and SE1, SE2 2 E, where E is the support space of the image. Our approach defines HMT using
the h-supervised ordering presented in Chapter 4, as a natural extension of the original HMT de-
fined in the binary case. It is important to remark that expression 5.3 can be expressed in term of
h-supervised ordering as follows,

HMT (I; SE1, SE2) = {x 2 E | h{0,1}("SE1,h{0,1}
(I)) = 1 ^ h{1,0}("SE2,h{1,0}

(I)) = 0}



84 CHAPTER 5. HIT-OR-MISS TRANSFORM IN MULTIVARIATE IMAGES

In the case that I and SE are sets, then the natural order is {0 = ?,1 = >} and the complement
inverses the order to {1 = ?,0 = >}. In the h-supervised ordering the inverse ordering, associated
to complementation can be induced interchanging the referenced set {B,F} by {F,B}. Thus the
expression 5.3 can be generalised using the h-supervised ordering as follows,

HMT (I; {B,F}, SE1, SE2) = {x 2 E | 8i 2 {1, 2}, hi("SEi,hi
(I(x)) = >i} (5.4)

where

hi =

⇢
h{B,F} | h(b) = ?, h(f) = > if i=1,
h{F,B} | h(f) = ?, h(b) = > if i=2.

From 5.4, it easy to note that for each structuring element there are a set of vector value associated.
Therefore, we introduce a generalised HMT based on the sets of couples {Bi, SEi}i=1,...,k such that
SEi ⇢ E, SEi \ SEj = ;, 8i 6= j, and Bi ⇢ F = R

d , as follows,

HMT (I; {Bi, SEi}) = {x 2 E|8i 2 {1, 2, . . . , k}, h{Bi,B−i}("SEi,h{Bi,B−i}
(I(x))) = >i} (5.5)

where B−i =
S

j 6=i Bj , {SEi}i=1...k is the family of structuring elements and {Bi}i=1...k is the family
of vector values associated with {SEi}i=1...k. The expression 5.4 is a particular case when i = 2,
B1 = B and B−1 = F .
For practical applications, the generalised HMT can be useful as a template matching technique,
but it requires to be robust to noise and easy to tune parameters. We refer keen readers to Aptoula
and Lefèvre (2009) for a comprehensive review of robust HMT in grey scale images using a different
framework. In our formulation, the robust against noise version can be naturally defined by including
a threshold ✏ in equation 5.5 to allow a degree of noise in the “detection” of each SEi related to Bi.
Thus, the HMT✏ is defined as follows,

HMT✏(I; {Bi, SEi}) = {x 2 E | 8i, h{Bi,B−i}(>i)− h{Bi,B−i}("SEi,h{Bi,B−i}
(I)(x)  ✏} (5.6)

Clearly 5.4 is a particular case of 5.6 with ✏ = 0. The parameter ✏ can be interpreted as the allowed
maximum difference between each theoretical value >i and the value detected for the operator
HMT✏.

5.3 Applications to Multivariate Images

In order to illustrate the interest of HMT✏(I; {Bi, SEi}) for template matching, we consider two
different problems and show the corresponding results

5.3.1 Geometric Pattern Problem

The proposed algorithm is tested using a colour image of size 448 ⇥ 322 with a “diamond pattern"
of size 6 ⇥ 6 of different colours. In figure 5.3, the application of multivariate HMT to the original
colour image (Figure (5.3(a)) is illustrated using two sets of template to match (Figure (5.3(b-c)).
The intermediate steps (h-supervised erosions) are further exemplified in figure 5.3(d-e,g-h). The
final detection maps are presented in figure 5.3(f,i). In this toy example, the detection is perfect,
and it is according with the natural generalisation from the binary case.

To analyse the robustness of our proposal, the original image is normalised to the interval [0, 1]
and then corrupted with white Gaussian noise with variance, Σ = 0.05. The results were recorded
and plotted as Receiver Operating Characteristic (ROC) curves. In that case, HMT✏ have to be
more accurate to avoid the false positives caused by inadequate parameters. In this experiment, the
supervised ordering is calculated using SVMs with Gaussian and polynomial kernels. Figure 5.4(a)
shows that the low-degree polynomial kernel has a similar performance that a Gaussian kernel with a
adequate parameter σ. Additionally, ROC-curves are presented in 5.4(b) for different noisy versions
of the image, with various values of Gaussian noise of variance Σ using a polynomial kernel of degree
one.
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(a) I (b) SE
1 = {SE11, SE

1
2} (c) SE

2 = {SE21, SE
2
2}

(d) ε{•,•};SE11
(I) (e) ε{•,•};SE12

(I) (f) HMT (I; {•, SE11}, {•, SE
1
2})

(g) ε{•,•};SE21
(I) (h) ε{•,•};SE22

(I) (i) HMT (I; {•, SE21}, •, SE
2
2})

Figure 5.3: Example of colour template matching using the proposed multivariate hit-or-miss trans-
form.
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(a) HMT✏ using Gaussian and polynomial kernel with
different parameters

(b) HMT✏ using polynomial kernel with different
value of noise variance Σ with additive Gaussian noise

Figure 5.4: ROC-curves in the geometric pattern recognition problem

5.3.2 Ship Detection in high-resolution RGB images.

To illustrate the performance of this operator in a real example, we compare the proposedHMT✏(I, ·)
in the extraction of image objects characterised by spectrum and shape simultaneously. This is a nat-
ural RGB, 50 centimetre high-resolution, WorldView-2 satellite image featuring the village Samaheej,
Bahrain in the Persian Gulf, collected at January 28, 2010, and available in www.digitalglobe.com.
The original colour image is reduced to [2326, 864, 3] pixels for improve the visualisation (5.6(a)).
Our approach run over that test image for two sets of SEs. The main goal is the extraction of ships
using the colour information in {B1, B2} and the shape information in SE

1, SE2. In the first scenario
we extract the bigger ships using as SE

1 a square of 47 pixels, such that SE
1 = {SE11, SE

1
2} as it is

shown in figures 5.5(a) and 5.5(b). The set of pixels background B and foreground F are shown in
figures 5.5(e)5.5(f), which roughly correspond to the distribution of colour for the ships and for the
ocean. In the second scenario the small ships are extracted using SE

2 as a square of 28 pixels, such
that SE

2 = {SE21, SE
2
2}. SE

2
1 and SE

2
2 are presented in figures 5.5(c-d). The results are presented in

figures 5.6 (b-c) for the two scenarios using the proposed robust HMT✏. It is important to remark
the sole large ship which is not detected correspond to one (bottom-right 5.6(d)) presenting an ori-
entation which involves that the background shape template (i.e. SE

1
1) does no match in a suitable

way. In the case of small ships, some false alarms are obtained, which correspond to objects on the
sea and colour similar to the distribution B1 in the shape SE

2
2. Obviously, the results should be

more robust using a more selective shape prototype of the ship shape as well as a better spectral
resolution which would involve more selective values of B1 and B2. The values in the h-ordering
were normalised between [0, 1] and the parameter ✏ was fixed to 0.4. An optimal parameter selection
can be done, however that is beyond the scope of this illustrative example.

5.4 Conclusions on supervised multivariate hit-or-miss

We have introduced a genuine extension of the classical binary Hit-or-miss transform based on
h-supervised ordering for multivariate images in R

d. Standard HMT involves a pair of disjoint
structuring elements, one for the foreground and the other el background. Hence, our formulation of
supervised h-orderings which requires training sets for the foreground and background is appropriate
for the definition of generalised HMT. In addition, the natural duality by inverting foreground
and background solves the complementation required for the binary formulation of HMT. More
practically, the interest of the HMT transform for combined spatial/spectral image detection has been
illustrated for multivariate images. The combination of prior information given by the shape of the
structuring elements as well as the spectral values for the foreground and background is compatible
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(a) SE
1
1 (b) SE

1
2 (c) SE

2
1 (d) SE

2
2 (e) B1 (f) B2

Figure 5.5: SEs considered in the Bahrain Image. In both scenarios, the sets of pixels background
(B1)and foreground (B2)are the same.

(a) I (b) HMT✏(I, {B1, SE11}, {B2, SE12}) (c) HMT✏(I, {B1, SE21}, {B2, SE22})

(d) Zoomed in version (a) (e) Enlarged results of (b)

Figure 5.6: Ship detection in High-Resolution Samaheej Image using HMT✏

with the current paradigm of structural target detection in remote sensing applications. We should
remark also that our supervised morphological framework can simultaneously implementing HMT
where templates have the same shape but different alternative values for the foreground/background.
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We have also studied the influence of the learning method (i.e., kernel parameters of SVM), used
in the construction of the h-ordering, in the results of the HMT. This robustness as well as the
good properties against noise of HMT entail promising perspectives for its application in many real
problems. In ongoing research two issues should be considered in depth. On the one hand, to
evaluate the interest of non-flat erosions in the construction of HMT, which will allow to define more
“fuzzy" structuring elements. On the other, to conceive different ways of parallelisation of the HMT
for an efficient implementation of the generic case where a family of templates is associated to the
target structure, e.g., group of rotations and scale transformation of the object shape.



6
Random projection depth for unsupervised

multivariate mathematical morphology

Probability is a lot of logic at once: If you don’t know which one to pick, take ’em all.
Tommaso Toffoli

Résumé

Le problème ouvert de la généralisation de la morphologie mathématique à des images vectorielles est
géré dans ce chapitre par l’utilisation du paradigme des fonctions de profondeur statistique. Celles-ci
fournissent, à partir du point «le plus profond», un «ordre centre-vers-extérieur»de la distribution
de données multidimensionnelles et elles peuvent être alors utilisées pour construire des opérateurs
morphologiques. L’hypothèse fondamentale de cette approche «adaptée aux données»est l’existence
d’une représentation «arrière-plan/premier plan»de l’image. Des exemples sur des images réelles en
couleurs et multivariées illustrent les résultats1.

6.1 Introduction

In this chapter, a P-ordering for pixels in multivariate images is presented. To the best of our
knowledge, this is the first approach which uses P-ordering to extend MM to multivariate image.
Fig. 6.1 gives the intuition of the proposed ordering.
The chapter is organised as follows. Restricting ourselves to data in vector spaces, in Section 6.2 the
statistical depth functions definition is reviewed. This is the basic ingredient for the construction of
P-ordering. The case of projection depth function is analyse in detail and its convergence to classical
Mahalanobis distance is presented for elliptically contoured distributions. Section 6.3 analyses the
application of ordering based on projected depth function in the context of vector images and it
presents some interesting properties for practical problems in image processing. Section 6.4 shows

1The content of this chapter is mainly based on the following published papers:

• Velasco-Forero and Angulo (2011a), "Mathematical morphology for vector images using statistical depth". In
Mathematical Morphology and Its Applications to Image and Signal Processing, vol. 6671 of Lecture Notes in
Computer Science, pp. 355–366. Springer.

• Velasco-Forero and Angulo (2012), "Random projection depth for multivariate mathematical morphology".
IEEE-Journal of Selected Topics in Signal Processing, accepted.

89



90 CHAPTER 6. UNSUPERVISED MORPHOLOGY

(a) Original multivariate image I of n1×n2×d (b) X represents (n1 × n2) pixels in Rd

(c) Projection depth function: DP (·;X) (d) Chain by projection depth function. Left-
up corner is the maximum and right-down cor-
ner is the minimum by the proposed ordering.

Figure 6.1: Intrinsic ordering based on dichotomy background and foreground. x1 < x2 ,
DP (x1; I) < DP (x2; I)

the effectiveness of the proposed approach via practical examples and visual comparison in image
enhancement, simplification and segmentation. Finally, Section 6.5 concludes the chapter.

6.2 Statistical depth functions

6.2.1 Definition

Depth functions for multivariate data have been pursued in nonparametric data analysis and robust
inference Zuo and Serfling (2000). Depth functions assign to each point its degree of centrality with
respect to a data cloud or a probability distribution. A depth function suitable for a distribution F in
R

d, denoted by D(x;F), brings out the non-central ranking of the vector x in R
d with respect to F. A

number of depth functions are available in the literature, for instance halfspace depth Tukey (1975),
simplicial depth Liu (1990), projection depth Donoho and Gasko (1992), spatial depth Vardi and
Zhang (2000), Mahalanobis depth Zuo and Serfling (2000), etc. Roughly speaking, for a distribution
F 2 R

d, a corresponding depth function D(x;F) provides an F-based center-outward ordering of
point x 2 R

d. Hence, D(x;F) is a function R
d ! R. Depth-based methods are completely data-

driven and avoid strong distributional assumption. Moreover, they provide intuitive visualisation
of the data set via depth contours for a low dimensional input space. Analogous to linear order in
one dimension, statistical depth functions provide an ordering of all points from the centre outward
in a multivariate data set, where the median is the “deepest" point in the data set. This leads to
centre-outward ordering to points and to a description in terms of nested contours. Let us start by
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a formal definition of a depth function.

Definition 1. Liu (1990), Zuo and Serfling (2000) A statistical depth function is a bounded non-
negative mapping D(·; ·) : Rd ⇥ F! R satisfying

1. D(Ax + b;FAx+b) = D(x;F) holds for any random vector x in R
d, any d ⇥ d nonsingular

matrix A, and any b 2 R
d, where FAx+b denotes the distribution F after rotation by A and

translation by b. That invariance to affine transformation means, the depth of a vector x 2 R
d

should not depend on the underlying coordinate system or, in particular, on the scales of the
underlying measurements.

2. D(✓;F) = supx2Rd D(x;F) holds for any F having center ✓. That means, for any distribution
having a unique “centre", the depth function should attain maximum value at this centre.

3. D(x;F)  D(✓+ ↵(x− ✓);F) holds for any F having a deepest point ✓ and any ↵ 2 [0, 1], i.e.,
as a point x 2 R

d moves away from the “deepest point" along any fixed ray through the centre,
the depth at x should decrease monotonically.

4. D(x;F) ! 0 as ||x|| ! 1, for each F, i.e., the depth of a point x should approach to zero as
its norm approaches infinity.

In the sequel, we focus on the projection depth function Donoho and Gasko (1992), and we de-
scribe some useful properties to support it as a clever option to produce P-order. Other statistical
depth functions have considered in our preliminary work Velasco-Forero and Angulo (2011a) for vec-
tor morphology. However, projection depth function presents the best trade-off between robustness
and computation time.

6.2.2 Projection depth function

The basic concept of a projection depth function was introduced by Donoho and Gasko (1992) and
posteriorly developed by Zuo and Serfling (2000), Zuo (2003). It defines the measure of centrality
for a vector x with respect to a multivariate distribution or a multivariate data cloud (X) as the
worst case outlyingness with respect to the one-dimensional scale functional in any one-dimensional
projection, that is,

Definition 2. Donoho and Gasko (1992) The projection depth function for a vector x according
with a data cloud X = [x1, . . . ,xn] as follows,

DP (x;X) = sup
u2Sd−1

|uTx−med(uTX)|

mad(uTX)
(6.1)

where med is the median and mad is the median absolute deviation (MAD) and S
d−1 = {x 2

R
d : ||x||2 = 1} is the d-dimensional hypersphere. Fig. 6.2 shows two random projections to

compute (6.1) in a simple example. MAD is a robust estimator of variability attributed to Gauss
in 1816 Hampel et al. (1986). The pair of robust estimators (med,mad) is included in (6.1) because
they are not unduly affected by outliers Zuo (2003). Projection depth has been used to robust
multivariate classification Cui et al. (2008) and classification of functional data Cuevas et al. (2007).
Note that DP (x;X) is impossible to calculate in practice, because it requires the analysis for an
infinite set of random projections. Our approach follows the suggestion of Zuo (2006): replacing the
supremum in (6.1) by a maximum over a finite number of randomly chosen projection, obtaining a
stochastic approximation to the random projection depth. The same argument have been used in
Cuesta-Albertos and Nietos-Reyes (2008) for other type of statistical depth function. Thus, we can
calculate an approximate value of DP (x;X) by using k random projections uniformly distributed
in S

d−1 as follow

DP (x; k,X) = max
u2U

|uTx−med(uTX)|

mad(uTX)
(6.2)

where U = {u1,u2, . . . ,uk} with ui 2 S
d−1. Clearly, if k !1 then DP (x; k,X)! DP (x;X).
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(a) X is a set of 10 points in R2 (b) A random projection (c) A second random projection

Figure 6.2: Toy example of the computation of (6.1). Projection depth function for a vector x given
X is basically the maxima normalised eccentricity for all the possible projection uTX given a couple
of centrality and variability univariate measures (µ,σ).

6.2.3 Equivalence in Elliptically Symmetric Distribution

The depth function admits an analytical formulation when elliptically symmetric random variables
are considered.

Definition 3. Fang et al. (1990) A d⇥ 1 random vector x is said to have an elliptically symmetric
distribution with parameters µ(d⇥1) and a semidefinite matrix Σ(d⇥d) if

x
dist
= µ+ATy (6.3)

where, ATA = Σ with rank(Σ) = r. Where y
dist
= ↵u(r), ↵ 2 R, u(r) denote a random vector

distributed uniformly on the unit sphere surface in R
r and dist

= means equality in distribution.

Proposition 1. Fang et al. (1990) The d-dimension random vector X has a multivariate elliptical
distribution, written as X ⇠ Ed(µ,Σ, ), if its characteristic function can be expressed as:

φX = exp(itTµ) 

✓
1

2
tTΣt

◆
(6.4)

for some vector µ, positive-definite matrix Σ, and for some function  , which is called the charac-
teristic generator.

From X ⇠ Ed(µ,Σ, ), it does not generally follow that X has a density fX(x), but, if it exists,
it has the following form:

fX(x) =
cdp
|Σ|

gd


1

2
(x− µ)TΣ−1(x− µ)

]
(6.5)

where cd is the normalisation constant and gd is some nonnegative function with (d2 − 1)-moment
finite. gd is called density generator Fang et al. (1990). In this case we shall use the notation
Ed(µ,Σ, gd) instead of Ed(µ,Σ, ).

Proposition 2. If x has a symmetric probability density function Φ(·) that is continuous and positive
on its support then

mad2(x)

var(x)
= (Φ−1 (3/4))2 (6.6)

The next result is very well known in linear algebra and it will be used to prove the equivalence of
the projection depth function and the Mahalanobis distance; see, for example Johnson and Wichern
(2007) p. 65.
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Proposition 3. For A a positive definite matrix, and b a given vector, and u a non zero arbitrary
vector,

sup
u 6=0

(uTb)2

uTAu
= bTA−1b (6.7)

Proposition 4 (Fang et al. (1990) p.43). Assume that X ⇠ Ed(µ,Σ, ) with rank(Σ) = r, B is a
d⇥ k matrix and v is a k ⇥ 1 vector, then

v +BTX ⇠ Ed(v +BT
µ,BTΣB, ) (6.8)

We now state our first proposition for the case of standardised random projections.

Proposition 5. Let X(d⇥n) be a i.i.d. random sample of size n, where xi ⇠ Ed(µ,Σ, g), then:

sup
u2Sd−1

(uTx−mean(uTX))2

var(uTX)
= (x− µ)TΣ−1(x− µ) (6.9)

where mean is the univariate mean and var is the univariate variance.

Proof. From Prop. 4, we have mean(uTX) = uT
µ and var(uTX) = uTΣu. Therefore

sup
u2Sd−1

(uTx−mean(uTX))2

var(uTX)
= sup

u2Sd−1

(uTx− uT
µ)2

uTΣu

sup
u2Sd−1

(uT (x− µ))2

uTΣu
= sup

u 6=0

((u/||u||)T (x− µ))2

(u/||u||)TΣ(u/||u||)

by Prop. 3 the proof is complete.

Finally, we provide the corresponding particularised result to the case of projection depth function
in elliptically symmetric random variables.

Proposition 6. Let X(d⇥n) be a i.i.d. random sample of size n, where xi ⇠ Ed(µ,Σ, g), then:

cgDP (x;X)2 = (x− µ)TΣ−1(x− µ) (6.10)

with cg = (Φ−1(3/4))2.

Proof.

DP (x;X)2 = sup
u2Sd−1

⇢
|uTx−med(uTX)|2

mad2(uTX)

}

= sup
u2Sd−1

⇢
(uT (x− µ))2

uTΣu

✓
var(uTX)

mad2(uTX)

◆}

and by using Propositions 2 and 5, we obtain:

DP (x;X)2(Φ−1(3/4))2 = (x− µ)TΣ−1(x− µ).

Summarising our theoretical results, projection depth function provides an robust order from
the “centre” of multidimensional data to “outlier" values. Theoretically, in the case of elliptically
symmetric random variables, it approximates the Mahalanobis distance from the “vector mean"
without any covariance matrix estimation. We end this section by providing an implementation of
the proposed approach (see Algorithm 1).
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Algorithm 1 Calculate DP (·;X) based on k projections

Require: k ≥ 1 and the data matrix X of (n) rows and d columns.
Ensure: y = DP (·;X)
1: y = 0n1⇥1

2: for all i = 1 to k do
3: r = randn(d, 1) (Random Gaussian generation).
4: r = r/||r|| (Random value in S

d−1).
5: p = Xr (Random projection of the original data).
6: medi = med(p) (Median of the Random projection).
7: p = |p−medi|
8: madi = med(p) (MAD of the Random projection).
9: if madi 6= 0 then

10: p = p/madi
11: y = max(y,p)
12: end if
13: end for

6.3 Multivariate vector morphology using projection depth

functions

The rationale behind our formulation of MM for multivariate images is to use projection depth func-
tions in the vector space to produce a vector ordering. As discussed above, statistical depth functions
provide from the “deepest” point a “centre-outward” ordering of multidimensional data. According
to the taxonomy of Barnett’s orderings Barnett (1976), it seems natural to say that statistical depth
function involves a P-ordering. However, according to the result provided in the previous section,
statistical depth function can be interpreted as a robust estimation, up to a multiplicative constant,
of a distance from the centre of the image vector values and consequently it can be considered also
as a R-ordering. In fact, from our viewpoint, any P-ordering based on extremeness is essentially a
R-ordering according to a particular centrality measure.

Given a vector image I 2 F(E,F), let XI be the set of vector values of the image, which can be
viewed as a cloud of points in F. Fig. 6.1 shows an example of colour image I, its representation
as points XI, and the image of the associated depth function DP (·; I). The ordering for two pixel
vectors is given by x1 < x2 () DP (x1; I) < DP (x2; I). That is an ordering based on a data-
adapted function and in such a way that the interpretation of supremum and infimum operations is
known a priori, because max values can be associated with “outlier” pixels in the high-dimensional
space and min are “central” pixels in R

d space. Projection depth function can be computed for any
image, but is the order associated to the statistical depth function appropriate for any image? Or
in other terms, in which cases the notions of “outlier” pixels and “central” pixels make sense? We
consider that for such images the assumption of existence of a background/foreground representation
is required. Formally we could express the assumption of background/foreground representation in
this way. Given a vector image I : E ! F, the subset of vector values XI has a decomposition
XI = {XB(I),XF (I)} such that XB(I) \ XF (I) = ; and card{XB(I)} > card{XF (I)}. Roughly
speaking, the assumption means: (1) the image has two main components: the background and the
foreground; (2) There are more pixels in the background than in the foreground. We notice that
there is no hypothesis about the multivariate or spatial distribution of the background XB(I) and
the foreground XF (I).

The theoretical framework of the proposed morphological operators roots in the notions of h-
ordering and h-adjunction introduced in Goutsias et al. (1995). So let us start by a reminder of the
main results from Goutsias et al. (1995) useful for our approach.



6.3. MM USING PROJECTION DEPTH FUNCTIONS 95

(a) Original, I1 (b) M-Ordering

(c) C-Ordering (d) R-Ordering

(e) P-Ordering (f) DP (·; I1)

Figure 6.3: Example of different vector morphology operator in the “White-bird" colour image.
Erosions by a disk of radius 10 in the family of orders proposed by Barnett (1976). C-ordering uses
the priority red>green>blue. R-ordering is calculated by the saturation component of the colour
image. Proposed P-ordering is illustrated in (e).
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(a) Original I2 (b) M-Ordering

(c) C-Ordering (d) R-Ordering

(e) P-Ordering (f) DP (·; I2)

Figure 6.4: Example of different vector morphology operator in the ‘’canoe" colour image. Erosions
by a disk of radius 10 in the family of orders proposed by Barnett (1976). C-ordering uses the
priority red>green>blue. R-ordering is calculated by the saturation component of the colour image.
Proposed P-ordering is illustrated in (e).



6.3. MM USING PROJECTION DEPTH FUNCTIONS 97

(a) Original, I3 (b) M-Ordering

(c) C-Ordering (d) R-Ordering

(e) P-Ordering (f) DP (·; I3)

Figure 6.5: Example of different vector morphology operator in the “Cuenca map" colour image.
Erosions by a disk of radius 10 in the family of orders proposed by Barnett (1976). C-ordering uses
the priority red>green>blue. R-ordering is calculated by the saturation component of the colour
image. Proposed P-ordering is illustrated in (e).
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6.3.1 Morphological operators and depth h-mapping

The previous theoretical results can be particularised to the case of vector images using projection
depth.

For multivariate images I : E ! F, as colour or hyperspectral ones, pixel values are vectors
defined in F = R

d. Consequently the main challenge to build complete lattice structures is to define
a mapping

h : F! L,

where L can be the lattice of the extended real line, i.e., L = (R,), with R = R
S
{−1,+1} and

 as the “less than or equal to” operation (the natural total ordering). Furthermore the composition
of I and h will be denoted by h(I) : E! L. According to the previous subsection, once the mapping
h has been established, the morphological vector operators can be defined as h−adjunction.

Given a multivariate vector image I 2 F(E,F), its h-depth mapping is defined as

hI(x) = DP (x;XI) (6.11)

Therefore, the ordering hI
generated by the projection depth function yields morphological opera-

tors which can be interpreted as follows: low values in L induced by hI(x) correspond to pixels close
to the “background” (median vector) and high values in L coincide with “foreground” (outlier vec-
tors). That is coherent with binary and gray-level morphology, where high gray-levels are associated
to the objects (foreground) and low gray-levels to the background.

We have now the ingredients to formulate the corresponding multivariate vector erosion and di-
lation. We limit here our developments to the flat operators, i.e., the structuring elements are planar
shapes. The non-planar structuring functions are defined by weighting values on their support Serra
(1982). The h-depth erosion "SE,hI

(I) and h-depth dilation δSE,hI
(I) of an image I at pixel x 2 E by

the structuring element SE ⇢ E are the two mappings F(E,F)! F(E,F) defined respectively by

hI ("SE,hI
(I)(x)) = e"SE (hI(I)) (x), (6.12)

and
hI (δSE,hI

(I)(x)) = eδSE (hI(I)) (x), (6.13)

where e"SE (I) and eδSE (I) are the standard numerical flat erosion and dilation of image I 2 F(E,L):

e"SE (I) (x) =
n
I(y) : I(y) =

^
[I(z)] , z 2 SEx

o
(6.14)

eδSE (I) (x) =
n
I(y) : I(y) =

_
[I(z)] , z 2 ŠEx

o
(6.15)

with SEx being the structuring element centred at point x and ŠE is the reflected structuring element.
If the inverse mapping h−1

I
is defined, the h−depth erosion and dilation can be explicitly written as:

"SE,hI
(I)(x) = h−1

I
(e"SE (hI(I))) (x),

and
δSE,hI

(I)(x) = h−1
I

⇣
eδSE (hI(I))

⌘
(x).

Of course, the inverse h−1 only exists if h is injective. Theoretically, this is not guaranteed for hI since
two different vectors x1 and x2 can have the same projection depth; i.e., x1 6= x2 but DP (x1;XI) =
DP (x2;XI). We can impose in practice the invertibility of hI by considering a lexicographic ordering
for equivalence class L[x]. In fact, this solution involves a structure of total ordering which allows
to compute directly the h−depth erosion and dilation without using the inverse mapping, i.e.,

"SE,hI
(I)(x) =

(
I(y) : I(y) =

^

hI

[I(z)] , z 2 SEx

)
, (6.16)
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and

δSE,hI
(I)(x) =

(
I(y) : I(y) =

_

hI

[I(z)] , z 2 ŠEx

)
, (6.17)

where
V

hI
and

W
hI

are respectively the infimum and supremum according to the ordering hI
,

induced for the projection depth function DP (x;XI) and completed with a lexicographic ordering
in F. Starting from the h-depth adjunction ("SE,hI

(I), δSE,hI
(I)), all the morphological filters such as

the opening and closing have their h-depth counterpart, e.g., the h-depth opening and closing are
defined as

γSE,hI
(I) = δSE,hI

("SE,hI
(I)), 'SE,hI

(I) = "SE,hI
(δSE,hI

(I)) (6.18)

Similarly, geodesic operators as opening by reconstruction Soille (2003), γREC
SE

(I), can be also natu-
rally extended to multivariate images.

6.3.2 Properties

h-depth vector erosion and dilation inherit the standard algebraic properties of morphological op-
erators Serra (1982), Najman and Talbot (2010) since they fit into the theory of h-adjunctions.
Nevertheless, some remarks about their particular behavior are useful for practical applications.

Filtering effects. Multivariate morphological operators defined using h-depth adjunction have
the classical filtering properties Soille (2003). Namely, the erosion shrinks the structures which
pixel values distant to the centre in the vector dimensional space; “spatial peaks” thinner than
the structuring element disappear by taking the value of neighbouring pixels with a vector value
close to the “background”. As well, it expands the structures which have a vector value close to
“foreground”. Fig. 6.5 illustrates these effects in comparison with marginal, conditional and reduced
order by saturation Angulo and Serra (2003). Dilation produces the dual effects, enlarging the
regions having values close to the outliers and contracting the background. The other morphological
operators are naturally interpreted as products of dilations and erosions. Concerning the product
operators, opening (closing) is an idempotent and anti-extensive (extensive) operator, which removes
foreground (background) objects that are smaller than the structuring element, leaving intact the
structures invariant to the structuring element, for instance, see Fig. 6.6.

From the image analysis viewpoint, we can consider that the h-depth erosion/dilation, and all
the associated operators, are unsupervised transformations, in the sense that ordering is intrinsically
adapted to the image without giving any training set of vectors for the background and foreground.

Duality. The notion of duality by complement in grey level images I 2 F(E,L) allows us to
compute the dilation using the erosion operator, i.e., eδSE (I) = {e"SE

(
{I

)
, where {I = −I. The

ordering function hI(x)  hI(f) for all x 2 F and some f 2 XF (I), and equivalently, hI(x) ≥ hI(b)
for all x 2 F and some b 2 XB(I). Hence, the smallest element of the vector space belongs to
the “background” and the largest to the “foreground”, i.e., ?F 2 XB(I) and >F 2 XF (I). We have
therefore a qualitative dual role played by the background and foreground of the image. However,
the quantitative duality does not involved an involution on F: projection depth is invariant to the
complement of the vector coordinates. The duality by complement appears in the h−depth mapping
which involves:

hI (δSE,hI
(I)(x)) = −e"SE (−hI(I)) (x)

and consequently
δSE,hI

(I)(x) = "SE,−hI
(I)(x). (6.19)

Invariance. From its original formulation MM is contrast invariant due to its basic operators
are based on rank filters Soille (2002). The representation of the image as a topographic map is
a key point of the contrast invariance properties of MM in grey scale images Caselles and Morel
(1999). Contrast invariance is an interesting property linked to the fact that image grey level is not
an absolute data, since in many cases the pixel values depend of the acquisition circumstances. For
instance, the contrast depends on the type of the camera and illuminations conditions of the scene.
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(a) Proposed γSE,hI
(I), with SE a disk of radius 4. (b) Proposed γSE,hI

(I), with SE a disk of radius 10.

(c) hI(I)− hI(γSE,hI
(I)) (d) hI(γSE,hI

(I))− hI(I)

Figure 6.6: Example of openings and associated top-hat transformation, in the ordering induced by
the projection depth function. Note that the both white and dark small circles are considered as
foreground.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Projection depth function is invariant to affine transformation in R
d. (a)-(c) are obtained

by affine transformations in R
3 of Fig. 6.1(a). (d)-(f) show approximated DP (·; k, I), with k = 1000

random projections.

Mathematically, we say that the h−ordering is contrast invariant if for every continuous contrast
change b 2 R

d, x1 hI
x2 ) x1 hI+b

x2, for all x1,x2,b 2 R
d and 8I 2 F(E,Rd), where hI+b

denotes the h-mapping calculated from I + b. From definition (6.1), it is easy to see DP (x;XI) =
DP (x;XI + b), 8x,b 2 R

d, and its approximated version (6.2) is contrast invariance when the
number of random projection k is large enough, i.e., DP (·; k,XI) = DP (·; k,XI+b), 8x 2 R

d, when
k tend to 1. Thus, the contrast invariance property is not automatic guaranteed, but it depends
on the number of projections in the expression (6.2).
A more general suitable property is the invariance to affine transformation. An h-ordering is said

to be invariant to affine transformation if, for every A 2 R
d⇥d definite positive matrix and b 2 R

d a
vector, h-ordering is invariant to the transformation defined by Γ (I) = AXI + b, i.e., x1 hI

x2 )
x1 hΓ (I)

x2, for all x1,x2 2 R
d. Affine transformations includes rotation and scaling, but also

shearing. From Zuo and Serfling (2000), (6.1) is affine invariant for X in the family of symmetric
distributions, i.e., DP (·;X) = DP (·;AX+ b) for A 2 R

d⇥d a definite positive matrix and b 2 R
d.

Nevertheless, there is not guarantee of an image I with background/foreground representation has
symmetric distribution. However, experimental results shows that proposed ordering is robust to
affine transformation in the vector space R

d. This situation is illustrated in Fig. 6.7.

Local knowledge. Given an image I parameterized for its spatial support, IE : E! F, and a subset
in its spatial support, E0 ⇢ E, the depth functions associated of both images are not equivalent, i.e,
hIE 6= hI

E0
. However, the local knowledge property Serra (1982) is preserved if and only if the depth

function is calculated using the whole available image in E.

6.4 Applications to multivariate image processing

This section presents three applicative examples that utilise MM operators in the induced ordering
by random projection depth. The aim is to demonstrate the impact of this unsupervised ordering
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Figure 6.8: Edge enhancement of I using toggle mapping ⌧h(I) in the proposed ordering. Source:
http://www.cellimagelibrary.org/

in standard morphological operators for object filtering and segmentation in vector images. The
definition h-depth ordering can be applied to multivariate images, allowing to use “any" morpho-
logical operator for colour, multispectral and hyperspectral images. Theoretically, convergence of
iterative algorithms is guarantied if the h-depth ordering induced a total order, once completed with
lexicographic order. The first application concerns edge enhancement in multivariate images and is
based on shock filters Serra (1982), Soille (2003).

6.4.1 Image enhancement

Given an image I, and two transformations Ψ(I) hI
I hI

Υ(I) the shock filter is defined as follows

⌧hI
(I) =

8
><
>:

ΨhI
(I) if ∆hI

(I,Ψ,Υ) < 0,

ΥhI
(I) if ∆hI

(I,Ψ,Υ) > 0,

I otherwise.

(6.20)

where ∆hI
(I,Ψ,Υ) = hI(I−Ψ(I))−hI(Υ(I)−I) is the morphological Laplacian of the original image,

based on Ψ and Υ in the domain of h-depth function. For grey scale images, in the particular case
of h as the identity function, ΨhI

(I) = "SE,hI
(I), ΥhI

(I) = δSE,hI
(I), and SE as the unitary ball, we

have the classical shock filter introduced by Kramer and Bruckner (1975). It is based on the idea of
using a dilation process near a local maximum and an erosion process around a local minimum. The
toggle mapping ⌧hI

enhances images edges detected by differences in the projection depth function,
i.e., background/foreground transitions. The enhanced image tends to be piecewise constant due to
morphological operators and preserves the original information in pixels where the edge detector is
ambiguous (otherwise case in (8.4)). Additionally, the vector formulation allows to perform edge
enhancement without include false colours during the procedure. Fig. 6.8 presents an illustrative
example to show how the toggle mapping works for a vector image.
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(a) I (b) M = γSE,hI
(ϕSE,hI

(I)) (c) ΛhI
(I,M)

Figure 6.9: Original (I), marker (M) and simplification by h-depth vector leveling ΛhI
(I,M). The

marker M is the product of a h-depth closing followed by an h-depth opening with the SE is a disk
of radius 10.

6.4.2 Image Simplification

The task of image simplification is the subject of various approaches and applications Soille (2008)
Pizarro et al. (2010). The aim is to produce from an initial image, an approximated version with is
simpler in some sense. In the list of MM operators, the morphological leveling attempts to produce
flat zones for an original image I from a given marker image M, consequently, simpler according to
the norm of the gradient, but preserving the main object according to the marker M. The idea of
such a filter goes back to Matheron (1997) and Meyer (1998). In the induced order produced by a
h-depth function, an image J is a leveling of the image I, denoted by J 2 Λ(I), iff 8(p, q) 2 E ⇥ E

neighbours:
J(p) >hI

J(q)) I(p) hI
J(p) and J(q) ≥hI

I(q).

The criterion also gives the clue to the algorithm for constructing a leveling. The function J is
modified until the criterion is satisfied, on K+ = {x s.t. J(x) <hI

I(x)}, J is replaced by I ^hI

δSE,hI
(J) and on K− = {x s.t. J(x) >hI

I(x)}, J, by I _hI
"SE,hI

(J) until the criterion is satisfied
everywhere. The leveling ΛhI

(I,M) can be obtained by the following iterative algorithm:

ΛhI
(I,M) = Λi(I,M) = [I ^hI

δiI,hI
(M)] _hI

"iI,hI
(M),

such that Λi(I,M) = Λi+1
hI

(I,M) (convergence until idempotency), where the geodesic dilation
(erosion) of size i denotes δi

I,hI
(M)("i

I,hI
(M)). Fig. 6.9 gives a real example of our method. The

leveling is a simplified version of the original image, and it contains less transitions. Naturally, the
simplification level is controlled by the marker image M. In the example illustrated in Fig. 6.9, M
is an opening followed by a closing with a disk of radius 10 as structuring element (SE). Clearly,
objects smaller that SE have been eliminated in M and they are not recovered by ΛhI

(I,M). Thus,
Fig. 6.9(c) is a simplified version of Fig. 6.9(a) where small structures have been removed but
contours of larger components are preserved.

6.4.3 Image segmentation

Multivariate image segmentation has been widely considered from different approaches Qin and
Clausi (2010), Grana et al. (2009), Nguyen and Wu (2011). Although theoretically feasible to ex-
tend many univariate segmentation techniques to their multivariate analogs, practical behaviour
is influenced by the multivariate nature of the image. Intraclass variation increases at the same
time that the dimension in vector images, reducing class distinguishability and degrading segmen-
tation performance. Multivariate imagery is specially sensitive to large intraclass variation since
every component image is a variation contributor. Additionally, computational cost of segmentation
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algorithms increases while algorithmic robustness tends to decrease with increasing feature space
sparseness and solution space complexity. We proposed to use the proposed random projection
depth in combination with classical watershed transform Meyer and Beucher (1990) to yield a seg-
mentation in multivariate images. The same idea can be applied to a larger family of segmentation
techniques Couprie et al. (2011). A watershed transform, denoted by WS(I) associate a catch basin
to each minimum of the image I Meyer and Beucher (1990). We note in passing that in practice
one often does not apply the watershed transform to the original image, but to its (morphological)
gradient Soille (2003). Watershed transform have been applied in multivariate image, where the
important issue is the selection of an adequate multivariate gradient Noyel et al. (2007), Tarabalka
et al. (2010b). Basically, we apply the watershed transformation in the gradient induced by the
h-ordering calculated by the projection depth function(6.2), i.e., hI(δSE,hI

(I)− "SE,hI
(I)).

However, even in the case of grey scale images, the watershed transformation without any prepro-
cessing leads to a over-segmentation. There are two possibilities to throw out the over-segmentation.
The first one involves hierarchical approaches based on merging of catchment basins or based on the
selection of the most significant minima according to different criteria Meyer (2001). The second
one consists in determining markers for each interest region, for instance, the dynamics or contrast
based transform applied to the minima of the gradient Soille (2003). In the framework of h-depth
morphology, the dynamics-based selection of minima is able to suppress minima whose depth is
smaller than a given threshold t Soille (2003). We denote WS(I, t) the watershed transform where
the seeds are the local minima, calculated from a dynamics-based minima transform of parameter
t (The dynamic is normalise between 0 and 1 in the experiments). Experimental results of the
segmentation strategy are shown in Figs. 6.10, 6.11 and 6.12. The first set of examples are colour
images, where the watershed segmentation produces sharp borders. The main advantage of the
formulation is it is directly applicable to multidimensional images. Thus, we perform experiment in
multispectral images from Chakrabarti and Zickler (2011). The hyperspectral images were captured
with a time-multiplexed 31-channel camera. We can observe that, our approach performs well and
produce shrewd segmentation in the sense that only anomalous regions are segmented, for instance,
fruits in Fig. 6.11. Fig. 6.12 also shows an example on a well-known hyperspectral image from the
remote sensing community acquired by the ROSIS-03 optical sensor. The original image is a 610
by 340 pixels on 103-bands. Our approach can produce a very selective foreground segmentation
guided by the value of the projection depth function, i.e., buildings and some isolated pixels in the
image.

6.5 Conclusions on random projections depth-based mathe-

matical morphology

The chapter proposes the statistical depth function as a powerful approach to induce a vector
ordering for multivariate images and consequently a framework for unsupervised multivariate math-
ematical morphology. Indeed, it reaches a good compromise between simplicity and effectiveness
in cases where no prior information is available for a supervised approach. Multivariate segmen-
tation based on projection depth function is a sort of anomaly segmentation algorithm. That is
understandable because the proposed method is a measure of eccentricity (outlandishness) from a
cloud point representation, where the spatial representation is not considered. In the future, we
are planning to further speed up the proposed ordering and sharpness enhancement algorithm, then
extend the proposed method to video segmentation and enhancement.
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(a) hI(δSE,hI
(I)− εSE,hI

(I)) (b) hI(δSE,hI
(I)− εSE,hI

(I)) (c) hI(δSE,hI
(I)− εSE,hI

(I))

(d) WS(I, t) (e) WS(I, t) (f) WS(I, t)

Figure 6.10: h-depth gradient and segmentation by using watershed transformation (in red), where
markers are calculated by selecting the minima of strong dynamics in h-depth gradient, with t = .5.

(a) False colour image. (b) WS(I, .1)

(c) WS(I, .3) (d) WS(I, .5)

Figure 6.11: Original multispectral images is the size 200 by 500 pixels in 31 channels. Segmentation
for watershed transformation with different parameters of dynamics minima of h-depth gradient.
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(a) WS(I, .05) (b) WS(I, .1)

(c) WS(I, .3) (d) WS(I, .5)

Figure 6.12: Original hyperspectral image is 610 by 340 pixels on 103-bands. Segmentation by h-
depth watershed transformation with different parameters of dynamics minima of h-depth gradient.
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7
Additive morphological decomposition and tensor

modeling of multivariate images

No question is so difficult to answer as that to which the answer is obvious.
George Bernard Shaw

Résumé

La classification pixel-à-pixel d’images multivariées de haute dimension est étudiée dans ce chapitre.
La méthode proposée est basée sur l’analyse conjointe de l’information spectrale et spatiale de l’image
hyperspectrale. Une décomposition additive morphologique (DAM) basée sur les opérateurs mor-
phologiques est proposée. Elle définit une décomposition espace/échelle pour les images multivariées,
sans perte d’information. La DAM est modélisée par une structure tensorielle et la version tensorielle
de l’analyse en composantes principales est comparée, en tant qu’algorithme de réduction de dimen-
sion, á la version matricielle. La comparaison expérimentale montre que l’algorithme proposé peut
donner une meilleure performance pour la classification pixel-à-pixel des images hyperspectrales que
de nombreuses autres techniques classiques1.

7.1 Introduction

Hyperspectral imaging (HSI) is a remote sensing technique that acquires two dimension spatial
images in typically hundreds of contiguous bands of high spectral resolution covering the visible, near-
infrared, and shortwave infrared bands. This technique has been applied for planetary exploitation
Gendrin et al. (2005), environmental monitoring Brekke and Solberg (2005), agriculture Haboudane
(2004), forestry Clark et al. (2005), geology Kruse et al. (2003), food safety Sun (2010), Barbin et al.

1The content of this chapter is mainly based on the following published papers:

• Velasco-Forero and Angulo (2009), "Morphological scale-space for hyperspectral images and dimensionality

exploration using tensor modeling". First IEEE Workshop on Hyperspectral Image and Signal Processing:
Emerging Remote Sensing (WHISPERS 2009).

• Velasco-Forero and Angulo (2010c), "Parameters selection of morphological scale-space decomposition for hy-

perspectral images using tensor modeling". In Proceeding of the SPIE, vol. 7695, p. 76951B (12pp).

• Velasco-Forero and Angulo (2013), "Classification of hyperspectral images by tensor modeling and additive

morphological decomposition". accepted to Pattern Recognition, (2012).

109
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n1 n3

n2

x = (i, j) 2 E

I(x) = x 2 F

(a) Multivariate image as a tensor I of size n1 ×
n2 × n3

Figure 7.1: Mathematical notation for a 2D multivariate image, I : E! F

(2011), counterfeit drugs detection Rodionova et al. (2005), urban geography Chen et al. (2003),
detection of military target activities Manolakis et al. (2003), and biology Schultz et al. (2001).
That technology produces a signature for each pixel in the image in many highly correlated bands
presenting considerable amounts of spectral redundancy. On the one hand, dimension reduction of
multivariate images is one of the main subject of interest for the hyperspectral community. Target
detection, image segmentation, pixel classification and spectral unmixing in HSI have the additional
difficulty that pixels are located in a high dimension space increasing computational complexity and
degrading accuracy Landgrebe (2002), Keshava and Mustard (2002), Manolakis et al. (2001), Jiménez
et al. (2007). Due to its simplicity, principal component analysis (PCA) is the most popular approach
to dimensionality reduction in HSI using singular value decomposition over zero mean covariance
matrix. Unfortunately, PCA requires a preliminary step to vectorize the images retaining spectral
information and neglecting the spatial information presented in the original array.
On the other hand, identification of relatively small objects incorporates issues because spatial
resolution is necessary for accurate classification. Accordingly, if the spatial contents of the image
is not used, the resulting thematic map sometimes looks noisy (salt and pepper classification noise).
In the particular case of supervised classification, that topic is called spatial/spectral classification.
The aim is to assign each image pixel to one class using a feature vector based on its own spectral
value (the spectral information) and information extracted from its neighbourhood (referred to as
the spatial information). The pioneer work in introducing spatial context into a multivariate image
classification is ECHO (Extraction and Classification of Homogeneous Objects) classifier Landgrebe
(2003). Since then, many studies have been led to propose new algorithms to perform spectral-spatial
classification. Recent works in HSI have seen a surge of research toward developing approaches
that exploit various features specific to the spatial/spectral classification. The approaches due to
(Jackson and Landgrebe (2002), Camps-Valls and Bruzzone (2005), Bruzzone and Carlin (2006),
Martin-Herrero (2007), Fauvel et al. (2008), Duarte-Carvajalino et al. (2008), Zhang et al. (2008),
Velasco-Forero and Manian (2009), Tarabalka et al. (2010b), Bolton and Gader (2009), Bourennane
et al. (2010), Wang et al. (2010), Li et al. (2011, 2012), Dalla-Mura et al. (2011)) show some degree
of success. Pixel-wise classification incorporating spatial information in HSI can be roughly divided
according to their mathematical formulation as follows.

• Smoothing by partial differential equation Duarte-Carvajalino et al. (2008), Velasco-Forero and
Manian (2009), Wang et al. (2010), Martin-Herrero (2007): anisotropic diffusion from classic
grey-scale image processing Perona and Malik (1990) is extended to multivariate scenarios, by
using a general definition of vector gradient.

• Markov random field, which takes into account the spatial dependence between the pixels
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based on the observed intensity field Jackson and Landgrebe (2002), Li et al. (2011).

• Mathematical morphology Palmason et al. (2005), Fauvel et al. (2008), Dalla-Mura et al.
(2011), Pesaresi and Benediktsson (2001): Incorporate the results of morphological operators
over features calculated by some dimensionality reduction technique as Principal (or Indepen-
dent) Component Analysis.

• Classifiers with spatial information Camps-Valls and Bruzzone (2005), Dundar et al. (2006):
pairwise classification based on kernel formulation where the spatial information is incorporated
as an operation among spatial, spectral and spatial-spectral kernels.

• Segmentation and post-processing Tarabalka et al. (2010b,a), Li et al. (2012): approaches
start with a preliminary spatial/spectral clustering/segmentation followed by a fusion-area
stage based on supervised criterium.

• Tensor modeling Renard and Bourennane (2008), Zhang et al. (2008), Bourennane et al. (2010):
three dimension array or third-order tensor preserves the usual image representation and band
continuity is represented as the third tensor dimension. Spatial information is included as
row-column correspondence in the mathematical structure.

• Context-based classification Bolton and Gader (2009), Bruzzone and Carlin (2006) attempts
to identify relevant models to a test sample through context estimation in the feature space,
using random set framework Bolton and Gader (2009) or hierarchical multilevel segmentation
Bruzzone and Carlin (2006).

7.1.1 Main contributions and chapter organisation

To the best of our knowledge, there has been no previous work on modelling multivariate images
using additive morphological decompositions as tensor structures, which is the subject of this chapter.
Our approach is motivated by the desire to discover “interesting” low-dimensional linear projections
of high-dimensional images where the spatial information plays an important role. In this chapter,
we present an additive scale-space decomposition which incorporates spatial information into the
dimensionality reduction stage for multivariate images. In summary, the main contributions of this
chapter are as follows.

• A new image decomposition based on mathematical morphology which is more compact and
performs better in supervised classification.

• Tensor-PCA based on morphological decomposition producing a workflow where the spatial
information is included in the dimensionality reduction step instead of in the classification
stage.

• We show in practical examples that our workflow allows to include the spatial information in
the dimensionality reduction stage.

• State of the art for classification of HSI in remote sensing based on morphological decomposi-
tion.

The chapter is organised as follows. Section 7.2 presents the additive scale-space decomposition
with morphological transformations. Section 7.3 introduces tensor modelling of morphological de-
composed multivariate images. Section 7.4 proposes a formulation of classification for reduced
tensors using support vector machines (SVM) and shows the effectiveness of the modified approach
via practical examples with a comparison versus classical approaches. Section 7.5 concludes the
chapter.
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x
SE(x) is a square of size 3

Discrete Support: E = Z
2

Figure 7.2: Structuring element SE ⇢ E at x = (i, j) 2 E. MM operators are non-linear
neighbourhood-image transforms associated with the structuring element SE.

7.2 Additive Morphological Decomposition

In this section we focus on mathematical morphology (MM) as a nonlinear image processing method-
ology composed of a larger family of operators based on the set theory and defined on an abstract
structure known as complete lattice of spatial structures Najman and Talbot (2010).

7.2.1 Notation

Let us make precise the terms and notation to be used in the rest of the chapter. Let E be a subset
of the discrete space Z

2, considered as the support space of the 2D image, and F ✓ R
d be a set of

pixels values in dimension d, corresponding to the vector space of values of the image of size n1⇥n2

and d channels. A vector-valued image is represented by the mapping,

I :

(
E ! F

x = (i, j) ! x
(7.1)

i.e., I 2 F(E,F) is the set of maps from a point x at the discrete spatial coordinates (i, j) 2 E into
a vector value x 2 F ✓ R

d. Let us assume that the pixel x is represented by a d-dimensional vector
x(i, j) = [x1(i, j), x2(i, j), . . . , xd(i, j)] 2 R

d, where R denotes the set of real numbers in which the
pixels spectral response xl(i, j) at sensor channels l = 1, . . . , d. Figure 7.1 shows the notation in two
graphical schemes. Additionally, let X be an n⇥ d matrix representing d spectral bands for each n
pixels in the vector-value image I. We use the following notations to facilitate presentation: scalars
are denoted by lower case letters (a, b, . . .), vectors by bold lower case letters (a,b, . . .), matrices or
images by bold upper-case letters (X,Y, . . .), and higher-order tensors by calligraphic upper-case
letters (I,S, . . .). The order of tensor I 2 R

n1⇥n2...⇥nJ is J . We use subscripts to illustrate the
tensor order, for example Iijkl is a tensor of order four.

7.2.2 Basic Morphological Transformation

The morphological transformation Φ is an image to image transformation, i.e., Φ : F(E,F)! F(E,F).
Additionally, it is a neighborhood-image transform Soille (2003), i.e., the output value at a given pixel
x is a function of the values of the pixels falling in the neighbourhood induced by the structuring
element SE and centred at the considered pixel x as it is illustrated in Figure 7.2 . The shape of
SE plays the role of the a priori knowledge about the geometry of the interesting and uninteresting
spatial structures in the image. In general a transformation Φ 2 F(E,F)! F(E,F) is called:

• extensive if I(x)  Φ(I(x)),

• anti-extensive if Φ(I(x))  I(x),
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(a) I (b) Gσ(I)

(c) εSE (I) (d) δSE (I) (e) γSE(I) (f) ϕSE(I)

(g) γREC
SE

(I) (h) ϕREC
SE

(I) (i) λσ(I) (j) λσ(I)

Figure 7.3: Morphological transformations of a scalar (grey level) image. Original image (a) is a
342⇥ 342 pixels in 70-cm-resolution satellite image from the panchromatic band of Quickbird.
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Table 7.1: Key notations used in the chapter formulation. I is the original image and M a marker
image. B is the unitary isotropic structuring element useful in the geodesic operators. SE is any
structuring element. Idempotent means that application the operator twice with the same set of
parameters yields the same result. Transformations are illustrated in Fig. 7.3 using a practical
example.

Notation Name Definition Idempotent
Gσ(·) Gaussian Filter Gσ(I) = I ⇤ N (0,σ) No
"SE (·) Erosion "SE(I)(x) = {I(z) :

V
y2SE(x) I(y)} No

δSE (·) Dilation δSE(I)(x) = {I(z) :
W

y2SE(x) I(y)} No
γSE(·) Opening γSE(I) = δSE ("SE (I)) Yes
'SE(·) Closing 'SE(I) = "SE (δSE (I)) Yes
δi
B
(·, ·) Geodesic dilation of size i δi

B
(M, I) = δ1

B
(δi−1

B
(M, I), I), with δ1

B
(M, I) = δSE (M) ^ I No

"i
B
(·, ·) Geodesic erosion of size i "i

B
(M, I) = "1

B
("i−1

B
(M, I), I), with "1

B
(M, I) = "SE (M) _ I No

δ1
B
(·, ·) Reconstruction by Dilation δ1

B
(M, I) = {δi

B
(M, I) | δi+1

B
(M, I) = δi

B
(M, I)} Yes

"1
B
(·, ·) Reconstruction by Erosion "1

B
(M, I) = {"i

B
(M, I) | "i+1

B
(M, I) = "i

B
(M, I)} Yes

γREC
SE

(·) Opening by reconstruction γREC
SE

(I) = δ1
B
(γSE(I), I) Yes

'REC
SE

(·) Closing by reconstruction 'REC
SE

(I) = "1
B
('SE(I), I) Yes

λσ(·) Gaussian Upper-Leveling Meyer (1998) λσ(I) = δ1
B
(Gσ(I) ^ I, I) No

λσ(·) Gaussian Lower-Leveling Meyer (1998) λσ(I) = "1
B
(Gσ(I) _ I, I) No

• idempotent if Φ(Φ(I(x))) = Φ(I(x)),

for all x 2 E and I 2 F(E,F). There are two basic operators in MM named erosion and dilation.
The erosion of an image I at pixel x 2 E by the structuring element SE ⇢ E is the transformation
given by

"SE (I) (x) = {I(y) : I(y) =
^

z2SE(x)

I(z)} (7.2)

where
V

is the infimum according to a total ordering in F and SE(x) is the structuring element
centred at the considered pixel x. The dual operator called dilation is the transformation given by

δSE (I) (x) = {I(y) : I(y) =
_

z2SE(x)

I(z)} (7.3)

For binary or grey-scale images, they are simple in the sense that they usually have an intuitive
interpretation. Erosion "SE (I) shrinks bright objects, whereas dilation δSE (I) expands bright ob-
jects at the boundary. The size effect is controlled by the structuring element SE. They are not
inverses of each other, owing to the non-linear character of the operators, however, they consti-
tute an algebraic-adjunction Serra (1988), Heijmans (1994). The morphological opening γSE(·) is an
idempotent transformation defined by composition of erosion and dilation, i.e. γSE(I) = δSE ("SE (I)).
Duality, the morphological closing 'SE(·) is defined as the composition of dilation and erosion i.e.
γSE(I) = "SE (δSE (I)). Their effect are also intuitive: Closing removes “holes" and thin cavities, and
opening removes small object protuberances. Fig. 7.3 shows the basic morphological transforma-
tions in a high resolution panchromatic image. Additionally, one of the most interesting properties
for (γSE(·),'SE(·)) is that they forms a Matheron-semigroup and they obey the absorption law Serra
(1982), i.e.

γSE1(γSE2(I)) = γSE1(I) and φSE1(φSE2(I)) = φSE1(I) (7.4)

if SE2 ✓ SE1 in a family of scaled structuring elements. For the case of the family of concentric
discrete disks, see Soille (2003) p.325.

7.2.3 Morphological Reconstruction

It is often desirable to remove small objects from the image, while keeping larger objects totally
intact. A morphological approach to answer this is the morphological reconstruction. For example, in
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the case of reconstruction by dilation, a marker image M is dilated in the usual way, but constrained
so as to never grow outside the “control" image I, called mask image. This operator is iterated until
convergence is reached. Similarly, the reconstruction by erosion uses standard erosion and the
dual constrain. We use the notation ("1

B
(M, I), δ1

B
(M, I)) for the couple erosion and dilation by

reconstruction Soille (2003), Vincent (1993). Table 7.1 gives the key notations used and the detailed
definitions of morphological transformations required in the following formulation. Additionally,
transformations by reconstruction are shown in Fig. 7.3 using a practical example.

7.2.4 Additive Morphological Decomposition

Let {Φi}, i = 1 . . . ,m be a set of m anti-extensive transformations indexed for its scale i, such that:

Φm(Φm−1(I))  . . .  Φ2(Φ1(I))  Φ1(I)  I (7.5)

Similarly, let {Φ
i
} be a set of m extensive transformations, where i is associated with the parameter

of scale, such that:
I  Φ(I)  Φ

2
(Φ

1
(I))  . . .  Φ

m
(Φ

m−1
(I)). (7.6)

Let us define the consecutive residuals from (7.5) and (7.6), as follows

R+
i = Φ

i
(Φ

i−1
(I))− Φ

i−1
(Φ

i−2
(I)) ≥ 0 (7.7)

R−i = Φi−1(Φi−2(I))− Φi(Φi−1(I)) ≥ 0 (7.8)

with Φ
0
= Φ0 = Id, the identity transform. From (7.5) and (7.6) we obtain,

I = Φ
m
(Φ

m−1
(I))−

mX

i=1

R+
i (7.9)

and likewise,

I = Φm(Φm−1(I)) +
mX

i=1

R−i (7.10)

combining (7.9) and (7.10) provides us with an additive decomposition of the original image as
follows

I =
Φ

m
(Φ

m−1
(I)) + Φm(Φm−1(I))

2| {z }
S

+
mX

i=1

(R−i −R+
i )

2| {z }
Ri

= S+
mX

i=1

Ri = S+R. (7.11)

We now need to determine what kind of transformations (Φi,Φ
i
) should use to have interesting

additive decomposition.

1. Firstly, we consider the case of a family of morphological operators by reconstruction indexed
by the size of the structuring element, i.e., (Φi,Φ

i
) = (γ1

SEi
,φ1

SEi
) such that SEi ✓ SEj for all

i < j. In this additive morphological decomposition (AMD), the couple (R−i ,R
+
i ) is essentially

composed by image structures associated with bright and dark objects in the image at different
scales. The results for a spectral band of a hyperspectral image are shown in Fig.7.4(a)-(d).
In this case, thanks to idempotence and absorption laws of the openings Soille (2003), i.e.
φ1
SEi

(φ1
SEj

) = φ1
SEj

if SEi ✓ SEj , the implementation of AMD does not require the composition
of transformations associated with different scales. We remark that AMD has the same residues
produced by the differential morphological profile (DMP) Benediktsson et al. (2003) but its
representation has dimension (m + 1)d instead than 2md, and in addition the AMD includes
the term S associated with the image structure.
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(a) S (b) R1 (c) R2 (d) R3

(e) S (f) R1 (g) R2 (h) R3

Figure 7.4: Comparison of Additive decomposition for the image shown in Fig. 7.3(a). (a)-(d)
Additive Morphological Decomposition (AMD) with SEs disks of diameters equal to 3,7,11. (e)-(h)
Additive Decomposition by Gaussian Upper and Lower Leveling (ADL) with standard deviation σi
equal to 3,7,11. Note that residuals can be negatives(red) or positives(green).

2. Secondly, the additive decomposition (7.11) can be even applied if the transformations do not

satisfy the absorption law as in the previous case. That is the case of (Φi,Φ
i
) = (λσi

(·),λσi
(·))

the pair of Upper/Lower Leveling where marker M is the minimum (maximum) between Gσ(I)
(the convolution of the original image with a Gaussian kernel with variance σ2) and the original
image I Meyer (1998). See Table 7.1 to get details of the definition. We use the acronym ADL
for additive decomposition by leveling to refer to this approach. In ADL, the multiscale effect
is controlled by the value σ in the Gaussian kernel associated to the marker. Results for ADL
are shown in Fig.7.4(f)-(h) for a practical example. In remote sensing applications, the leveling
transformation was advocated in Soille and Pesaresi (2002). Other kind of function can be
considered instead of a Gaussian convolution, for instance, subtraction of the original image
and a constant as in Meyer (2010).

The decomposition step extracts the most relevant parts from the original image I, resulting to
a cartoon-like image S, formed by homogeneous regions with sharp boundaries. Expressed in a
different way, image S retains all contrast and boundary information but loses all small scale pattern
details. The correspondent residue R = {R1, . . . ,Rm}, constitutes a hierarchy of multiscale texture
components. It should be remarked that the scope of this decomposition is not to find the optimum
additive decomposition as done in Buades et al. (2010), Vese and Osher (2003), but it is a simple
decomposition scheme where the spatial size of the texture can be interpreted. In the particular case
of remote sensing imagery, several morphological decompositions have been proposed as summarised
in Table 7.2. In section 7.4, we include experiments of performance of AMD, ADL and DMP in
well-known hyperspectral images. Recently, difference of morphological attributes filters have been
also introduced by Dalla-Mura et al. (2010, 2011), Ouzounis et al. (2012). The extension of additive
morphological decomposition using these filters is straightforward but it is out of the scope of this
chapter. At this point, we have introduced an additive decomposition for a multivariate image. The
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Table 7.2: Different morphological decomposition considered in m levels.

Acronym Additive Trans.(Φ/Φ) Dimension
Differential Morphological
Profile (DMP) Benedikts-
son et al. (2003)

No γREC
SE

(·)/'REC
SE

(·) 2⇥m⇥ d

Morphological Profile by
Leveling (MPL) Velasco-
Forero and Angulo (2009)

Yes λσ(·)/λσ(·) 2⇥m⇥ d

Additive Morphological
Decomposition (AMD)

Yes γREC
SE

(·)/'REC
SE

(·) (m+ 1)⇥ d

Additive Decomposition
by Leveling (ADL)

Yes λσ(·)/λσ(·) (m+ 1)⇥ d

next challenge is to find a way to handle the increase of the dimensionality.

7.3 Tensor Modeling

7.3.1 Introduction

The most popular dimensional reduction approach in HSI is PCA. However, PCA requires a prelimi-
nary data arrangement, i.e., the original hyperspectral image I of size n1⇥n2⇥n3 is firstly vectorised
into a matrix X of size (n1n2)⇥n3 permitting the use of classic linear algebra approaches, but neglect-
ing spatial rearrangement. The main shortcoming of this method is the assumption of separability
between spatial processing and spectral processing. The dimensional reduction approach based on
tensor decomposition considers the multivariate image I as a third order tensor I Kolda and Bader
(2009). This kind of model based on tensor signal processing had been previously applied in HSI
Muti et al. (2008) Bourennane et al. (2010). Let us introduce the notation commonly used within
tensor analysis literature, followed by the core of dimensional reduction problem and its solution.
Let the tensor I 2 R

n1⇥n2⇥n3 be an n1⇥n2⇥n3 array containing the original information of image
I. Note that n3 = d. Each index in the tensor is called mode: the first two are spatial and the third
is spectral. Our approach is based on applying multilinear algebra on the whole tensor structure
instead of adapting the data tensor to classical matrix-based algebraic techniques by rearrangement.

7.3.2 Tensor Decomposition

A matrix X 2 R
n1⇥n2 is a two-mode mathematical object that has two associated vector spaces, a

row space and a column space. Singular Value Decomposition (SVD) orthogonalises these two spaces
and decomposes the matrix as X = U1ΣUT

2 , where U1 and UT
2 represent orthogonal column space,

and Σ is a diagonal singular value matrix. In terms of the i-mode products, this SVD decomposition
can be rewritten as X = Σ ⇥1 U1 ⇥2 U2, where ⇥i is the i-mode product Lathauwer et al. (2000)
Kolda and Bader (2009). Extension to a J-order tensor I 2 R

n1⇥n2⇥n3⇥...⇥nJ was presented by
Lathauwer et al. (2000) orthogonalising J spaces and expressing the tensor as the J-mode product
of J-orthogonal spaces

I = C ⇥1 U1 ⇥2 U2 ⇥3 . . .⇥J UJ (7.12)

Tensor C, known as the core tensor, is analogous to the diagonal singular value matrix in conventional
matrix SVD. It is important to realise, however, that the core tensor has no diagonal structure;
rather, C is in general a full tensor. The core tensor governs the interaction between the mode
matrices Ui, for i = 1, . . . , J . Mode matrix Ui contains the orthonormal vectors spanning the
column space of the matrix Xi that results from the i-mode flattening of I. Flattening, also known
as matricization or unfolding, is the process of reordering the elements of an i-mode into a matrix
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Kolda and Bader (2009).
This tensor version of singular value decomposition is know as higher-order SVD (HOSVD) from
the work of De Lathauwer, De Moor, and Vandewalle Lathauwer et al. (2000), who showed that the
HOSVD is a convincing generalisation of the matrix SVD and discussed ways to efficiently compute
the leading left singular vectors of Xi. An excellent compendium about tensor decomposition is
presented in Kolda and Bader (2009). The HOSVD is usually performed using Alternative Least
Square algorithm used to jointly find i-mode matrices Ui, but recently other approaches have been
introduced Eldén and Savas (2009). In the case of three mode tensors I, the objective of HOSVD
is to select subspaces U1,U2 and U3 and the core tensor C such that the L2-norm reconstruction
error is minimised Kolda and Bader (2009),

min
U1,U2,U3,C

E1 = ||I − C ⇥1 U1 ⇥2 U2 ⇥3 U3||
2 (7.13)

where U1,U2,U3 are required to be orthogonal, i.e., UT
1 U1 = UT

2 U2 = UT
3 U3. With the orthonor-

mality condition, we can obtain E = I ⇥1 U
T
1 ⇥2 U

T
2 ⇥3 U

T
3 ,and (7.13) can be written as:

min
U1,U2,U3

E1 = ||I||2 − ||E||2

, max
U1,U2,U3

E2 = ||E||2 (7.14)

As it was presented by Huang et al. (2008), the equation (7.14) is equivalent to maximize:

max
U1,U2,U3

E2 = Trace(UT
1 FU1) =

Trace(UT
2 GU2) = Trace(UT

3 HU3)
(7.15)

where:

Fii0 =
X

ll0

(X(l)U2U
T
2 X

T
(l0))ii0(U3U

T
3 )ll0

Gjj0 =
X

ll0

(X(l)U1U
T
1 X

T
(l0))jj0(U3U

T
3 )ll0

Hll0 =
X

ii0jj0

IijlIi0j0l0(U1U
T
1 )ii0(U2U

T
2 )jj0

Since F,G,H are semi-positive definite, ||E2|| is monotonically increasing, therefore HOSVD algo-
rithm converges to a local optimum. Thus theoretically, the solutions HOSVD are not unique. That
issue was already pointed in Kolda and Bader (2009) and studied in detail for Luo et al. (2011) in
real life databases concluding that the convergence depends on the eigenvalue distribution for the
matrix F,G and H. However, our analysis of the algorithm convergence in real HSIs has shown that
cumulative values in the eigenvalues of F and G is a better criterion Velasco-Forero and Angulo
(2010c).

7.3.3 Tensor Principal Component Analysis (TPCA)

In high-dimensional images as HSI, it is of great interest to reduce the spectral dimension in order to
exceed problems as “Curse of Dimensionality" in distance-based analysis or nonparametric analysis
and “Hughes phenomenon" in linear classifiers (Jiménez et al. (2007)). Commonly a pre-processing
step consists in performing a PCA to the reduce feature space by considering only the k first
components. We present a tensor version for PCA based on Renard and Bourennane (2008). It
is a lower rank approximation, where classical PCA is a particular case, if no subspace reduction
is performed in the modes associated with rows and columns. We assume that the hyperspectral
image I is a zero-mean tensor in the flattening matrix related to the J-mode, i.e., XJ = 0. That is
equivalent to subtracting the empirical mean vector from each column of the data matrix X as in
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PCA. In addition, the best lower rank tensor approximation of I Lathauwer et al. (2000), denoted
by Ĩ is:

Ĩ = I ⇥1 P1 ⇥2 P2 ⇥3 . . .⇥J PJ (7.16)

where Pi = UiUi
T , and Ui is found by using expression (7.12). This representation allows to

include noise filtering in the sense of SVD filtering Andrews and Patterson (1976) if only the largest
eigenvectors are considered per mode. Thus, the tensor-PCA (TPCA) approximation of the image
I with parameters (s1, s2, . . . , sJ−1, k), 1  si  ni, 8i = 1, . . . , J − 1, is defined as follows:

eI = I ⇥1
eUs1

eUT
s1
⇥2

eUs2
eUT

s2
⇥3 . . .⇥J

eUT
k (7.17)

where k denotes the dimension in the J-mode, i.e., the number of components in the dimensional
reduction. Additionally, si is the number of eigenvectors included in the filtering with respect to
the i-mode and eUsi contains the si eigenvectors associated with the si largest eigenvalues holding
of the unfolding matrix Xi. We define the first k tensor principal components with parameters
(s1, . . . , sj−1) of I as the first k column of the matrix eUT

k from (7.17). Summarising, for a HSI I,
the tensor principal component analysis with parameters (s1, s2, k) is a transformation F(E,Rd)!
F(E,Rk). The equivalence to the principal component analysis is presented in the next section.

7.3.4 Equivalence with PCA

In the case of a typical hyperspectral image represented as a tensor, I of size n1 ⇥ n2 ⇥ n3, the
expression (7.17) is particularised as

eI = I ⇥1
eUs1

eUT
s1
⇥2

eUs2
eUT

s2
⇥3

eUT
k , (7.18)

where eU1 and eU2 has the s1 and s2 largest eigenvectors associated of the unfolding matrix X1 and
X2, respectively. Firstly, it is important to remark that if s1 = n1 and s2 = n2, eU1

eUT
1 = In1⇥n1

and eU2
eUT

2 = In2⇥n2
in that case, expression (7.18) becomes:

eI = I ⇥3
eUT

k ,

where eUk contains the k-largest eigenvectors associated of the unfolding matrix X3, i.e., the matrix
X of (n1 ⇥ n2) rows and n3 columns that is the traditional unfolding of I. Using the assumption
that I is a zero-mean tensor in the third order, the eigenvectors associated to X are the same as
the expression (X − µ)T (X − µ) which are the projections calculated by PCA. To illustrate this
results in a practical example, we calculate the first five components in both PCA and TPCA. The
absolute value of the differences between the squares of projections calculated by PCA and TPCA
are illustrated in Fig. 7.5 for a real HSI (Indian Pines). It is easy to see that when the components
number in the spatial dimension (s1, s2) for TPCA are equal to the image original dimension, the
projections calculated by TPCA and PCA become similar. The differences become larger as soon
as the spatial dimension reduces. Consequently, by this spatial dimension reduction with s1 < n1

and s2 < n2 we obtain through TPCA a spatial smoothing separately in rows and columns of the
image, which is not produced in PCA.

7.3.5 Modeling additive morphological decomposition with TPCA

The basic idea of our approach is summarised in Fig. 7.6. For a hyperspectral image I we find the
additive decomposition in m levels, as it was introduced in Section 7.2, i.e. I = S +R1 + . . .+Rm.
We regroup the whole decomposition in a four-order tensor D = [S,R1, . . . ,Rm]. We apply the
TPCA with parameters s1, s2, k1, k2 with k = k1 ⇥ k2,

eD = D ⇥1
eUs1

eUT
s1
⇥2

eUs2
eUT

s2
⇥3

eUT
k1
⇥4

eUT
k2

(7.19)

where eD is a tensor of size n1 ⇥ n2 ⇥ k1 ⇥ k2. The parameters s1 and s2 are associated with the
spatial filtering in the sense of SVD filtering in the rows and columns space, k1 is the reduction in
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Figure 7.5: Experiment shows clearly that TPCA is equivalent to PCA. Experiments are presented
with s1 = s2 in the interval [n1 = n2, . . . , 1], for the Indian Pines hyperspectral image of size 145⇥145
in 200 bands.
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Figure 7.6: Illustration of dimensional reduction stage using additive morphological decomposition.
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(a) Indian Pines HSI: 145×145 pix-
els in 200 bands

(b) Pavia University HSI: 610×340
pixels in 103 bands

Figure 7.7: False colour composition of the HSI considered in the experiments.

the spectral space and k2 is corresponding to the scale decomposition. The connection to precedent
subsection is established for TPCA in four-order tensors, to traditional PCA in the case of k1 = n1,
k2 = n2 and no scale decomposition. In summary, the proposed workflow yields a reduced feature
space as PCA where the spatial information included in the morphological decomposition is relevant.
Additionally, spatial filtering can be included through the tensor decomposition.

7.4 Experiments

In this section, we present the experimental results obtained in our analysis. Firstly, we overview
the characteristics of the data used in the experimental setup. After that, several experiments
are presented in order to compare the effectiveness of the proposed additive decompositions and
tensor dimensional reduction. The application of the introduced approach requires a morphological
transformation for vector images. Supervised or unsupervised ordering introduced in the first part
of the thesis can be used in this proposed. However, for the sake of simplicity and comparison with
the state of the art, we present the results of our approach applying the transformations marginally,
i.e. for each channel i = 1, . . . , d independently. For instance, the dilation of the d-variate image I

is given by δSE (I) (x) = [δSE (x1) , δSE (x2) , . . . , δSE (xd)], where x = [x1, x2, . . . , xd]. And similarly, for
all the other operators summarised in Table 7.1.

7.4.1 Data Description and Experimental Setup

In order to further evaluate and compare the proposed algorithm with other state-of-the-art ap-
proaches for spatial-spectral classification, we use two real hyperspectral images:

1. Airborne Visible/Infrared imaging spectrometer hyperspectral image (AVIRIS) Indian Pines
Scene. The AVIRIS sensor generates 220 bands across the spectral range from 0.2 to 2.4 µm.
In the experiments, the number of bands is reduced to 200 by removing 20 water absorption
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Figure 7.8: AMD using {SE1, SE2} a disk of diameter 2 and 4 is shown for four pixels in the ROSIS
Pavia University HSI. First pixel (Left-Up) is a one-pixel set object. Its residual component (R) is
large in comparison to the structure one S, i.e., the pixel is very different from its neighbours. Second
pixel (Right-Up) is a tree. The residual component is important only in the spectrum associated with
vegetation. Third pixel (Left-Down) is a shadow-tree. Residual is negative and significative only
in the vegetation section of the spectrum. Fourth pixel (Right-Down) is a pixel in a homogeneous
zone, i.e., it has no texture component.
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Table 7.3: Classification accuracy for Indian Pines HSI. Only five samples per class are included in
the training set.

Method OA % Kappa
statistics
()

Spatial Kernel Camps-Valls et al. (2007)
Spectral +SVM 45.79 0.43
Spectral +Graph 48.96 0.46

Summation + SVM 48.88 0.46
Summation + Graph 52.27 0.49

Cross +SVM 61.75 0.60
Cross+Graph 66.04 0.64

Random Field+Multinomial Logistic Regression Li et al. (2009)
SS 72.62 N/A

LORSAL 58.10 N/A
Differential Morphological Profile

DMP + PCA(16)+SVM 67.33 0.62
DMP + TPCA(15)+SVM 68.10 0.63

Additive Morphological Decomposition
ADL + PCA(15)+SVM 70.57 0.66

ADL + TPCA(12)+SVM 73.39 0.69
AMD + PCA(13)+SVM 63.13 0.57

AMD + TPCA(14)+SVM 65.31 0.60

bands. The image has a spatial resolution of 20 meters per pixel and a spatial dimension of
145⇥ 145 pixels. For illustrative purpose, Fig. 7.7(a) shows a false colour composition of the
AVIRIS Indian Pines. This image is a classical benchmark to validate the accuracy of HSI
analysis algorithms and constitutes a challenging problem due to the significant presence of
mixed pixels in all available classes and also because of the unbalanced number of available
labeled pixels per class. We follow the experiment proposed in Camps-Valls et al. (2007) to
analyse HSI classification in a very difficult situation. From the 16 different land-cover classes
available in the original ground-truth, seven were discarded due to an insufficient number of
training samples. The finally selected classes with the training sample size in parenthesis were:
ÔCorn-no tillÕ (1434), ÔCorn-min tillÕ (834), ÔGrass/PastureÕ (497), ÔGrass/TreesÕ (747),
ÔHay-wind-rowedÕ (489), ÔSoybean-no tillÕ (968), ÔSoybean-min tillÕ (2468), ÔSoybean-
clean tillÕ (614), and ÔWoodsÕ (1294). Summarising, the ground-truth contains nine classes,
as seen in Fig. 7.10(a). In the experiment, we test the introduced method in different ill-posed
scenarios where only five pixels are used as training samples per class. Our results are com-
pared with those reported by Camps-Valls et al. (2007), Li et al. (2009).

2. University of Pavia, is an urban image acquired by Reflective Optics System Imaging Spec-
trometer (ROSIS). The ROSIS sensor generates 115 spectral bands ranging from 0.43 to 0.86
µm with a band of 4nm and has a spatial resolution of 1.3-meter per pixel. The image consists
of 610⇥ 340 pixels as shown in Fig. 7.7(b), each having 103 bands with 12 most noisy bands
removed. There are nine ground-truth classes of interest, as shown in Fig. 7.12(a). Nine
thematic land-cover classes were identified in the university campus: Trees, Asphalt, Bitumen,
Gravel, Metal sheets, Shadows, Self-blocking Bricks, Meadows, and Bare soil. For this data set,
a total of 3921 and 42776 pixels were available as training and test sets, respectively, as seen
in Fig. 7.12(b). Proposed approach results are compared with those obtained from Landgrebe
(2003), Tarabalka et al. (2010c), Li et al. (2011, 2012), Fauvel et al. (2012).
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(a) Overall accuracy of morphological decompositions as a function of the number of
components in PCA.

(b) Overall accuracy of morphological decompositions as a function of the number of
component in TPCA.

Figure 7.9: First scenario of classification using Indian Pines. Only five pixels per class are selected
for the training set. The results show the average and standard deviation in 25 repetitions.
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(a) Groundtruth (b) PCA+SVM (c) DMP+PCA+SVM (d) DMP+TPCA+SVM

(e) AMD+PCA+SVM (f) ADL+PCA+SVM (g) AMD+TPCA+SVM (h) ADL+TPCA+SVM

Figure 7.10: Classification maps for the Indian Pines HSI using different approaches. Only five
training pixels in nine classes are considered. The classification map is the best result in 25 random
repetitions.

Figure 7.11: Behaviour of the overall accuracy in the Pavia University dataset for different morpho-
logical decompositions and dimensional reduction approach.
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Table 7.4: Overall and average classification accuracies and  statistics obtained after comparing
the proposed framework with other spatial-spectral classifiers for Pavia University data set. Classi-
fication task is performed by SVM.

Method Overall
Accuracy

Average
Accuracy

Kappa statistics ()

ECHO Landgrebe (2003) 87.58 92.16 .8390
SVMMSF+MV Tarabalka et al. (2010c) 91.08 94.76 .8830

SSK Fauvel et al. (2012) 86.11 91.98 .8235
LORSAL-MLL Li et al. (2011) 85.57 92.54 .8180
MLRsubMLL Li et al. (2012) 94.10 93.45 .9224

PCA+SVM(9) 81.57 87.39 .7662
DMP+PCA+SVM(23) 82.12 83.54 .7675
AMD+PCA+SVM(20) 94.32 94.64 .9253
ADL+PCA+SVM (18) 88.67 91.39 .8508

AMD+TPCA+SVM(15) 94.70 94.51 .9301
ADL+TPCA+SVM(15) 92.72 91.77 .9043
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Table 7.5: Overall, average, and individual class accuracies (in percentage) and  statistic obtained for Pavia University data set. The best results
are highlighted in bold typeface. Additive decomposition are compared with others morphological analysis. EMP is the algorithm introduced by
Benediktsson et al. (2005) and SSK is the procedure suggested by Fauvel et al. (2012)

Class SVM EMP SSK PCA(9) DMP + PCA(23) AMD + PCA(20) ADL + PCA(18) AMD + TPCA(15) ADL+ TPCA(15)
Asphalt 80.64 93.33 84.36 83.52 88.30 96.56 92.75 93.45 93.30
Meadow 68.47 73.40 78.52 74.89 84.06 94.01 89.72 95.77 94.07
Gravel 73.80 52.45 84.80 70.32 55.03 84.52 88.71 82.80 65.41
Tree 97.49 99.31 96.87 98.07 84.30 98.56 97.91 98.86 98.56

Metal sheet 99.49 99.48 99.88 99.48 99.78 99.48 100 99.48 99.55
Bare soil 94.83 61.90 95.61 82.86 57.49 88.86 59.14 89.72 87.69
Bitumen 91.50 97.67 95.56 90.30 99.02 99.17 96.84 99.02 97.44

Brick 91.88 95.17 95.44 88.78 93.78 98.23 99.13 98.86 98.56
Shadow 97.04 92.29 97.78 98.21 90.07 92.40 98.31 92.61 91.34
Overall 80.13 79.83 86.11 81.57 82.12 94.32 88.67 94.70 92.72
Average 88.33 85.00 91.98 87.39 83.54 94.64 91.39 94.51 91.77

 .7519 .7415 .8235 .7662 .7675 .9253 .8508 .9301 .9043
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7.4.2 Classification

Support Vector Machine (SVM) have shown promising results in terms of prediction accuracy in
HSI Melgani and Bruzzone (2004). A pixel-wise classification was performed using the multi-class
one versus one SVM classifier in the correspondent dimension produced by PCA and TPCA in the
morphological decompositions considered in Section 7.2. The reduced space is scaled to the range
of [0, 1] and SVM is trained with Gaussian kernel, and parameters tuned in the range {−1, . . . , 3}
for the regularisation parameter and {−4, 1} for the Gaussian kernel parameter by using cross-
validation. The following measures of accuracy were used: Overall accuracy (OA) is the percentage
of correctly classified pixels, average accuracy (AA) is the mean of class-specific accuracies, i.e., the
percentage of correctly classified pixels for each class, and kappa coefficient () is the percentage
of agreement, i.e., correctly classified pixels, corrected by the number of agreements that would
be expected purely by chance. In order to compare the performance of the proposed technique
to include the spatial information into a classification task, we have also included results of the
previously proposed methods: ECHO spatial classifier Landgrebe (2003), Spatial kernels Camps-
Valls et al. (2007), Markov Random Field Li et al. (2009) Bayesian approach to active learning Li
et al. (2011), subspace multinomial logistic regression Li et al. (2012) and classification followed by
post-processing Tarabalka et al. (2010c). Morphological approaches to analysis HSI are also included
Fauvel et al. (2012) and Benediktsson et al. (2005). Additionally, the objective in the experiment is
to complete the comparative analysis in feature spaces of different dimension size produced by the
proposed additive morphological decomposition and extracted by PCA and TPCA. The parameters
in the TPCA (s1, s2) have been set to avoid the convergence problem in the tensor decomposition,
as it has been suggested in Velasco-Forero and Angulo (2010c).

7.4.3 Results and discussion

Firstly, to illustrate the motivation behind this work and to clarify the concept of additive decom-
position for multivariate images, Fig. 7.8 visualises the concept of additive decomposition for four
types of pixels in a well-know HSI. Spectra are decomposed accordingly to their relationship in the
spatial neighbourhood. Simple interpretations can be done regarding the structure+texture decom-
position in the spectrum range (See caption in Fig. 7.8). Secondly, a quantitive comparison is carried
out using two real HSI. The Indian Pines experiment shows the importance to incorporate spatial
information previously to feature reduction. To reliably evaluate the performance of the proposed
method, the results were averaged over 25 different randomly selected training (of size five) for a
number of feature yield by PCA and TPCA in the range of [1, . . . , 16]. Mean and standard deviation
are shown in Fig. 7.9. In the broader range of results, ADL performs better than AMD and DMP,
it was applied in different reduced feature dimensions. ADL led to the best classification results,
as it can also be seen from Table 7.3. On the other hand, this experiment confirms our intuition
that the inclusion of a spatial prior can significantly improve the classification results provided by
using only spectral information. Fig. 7.10 shows the thematic classification maps for the pixel wise
SVM and the spectral-spatial classification by morphological decomposition after the dimensional
reduction step.
Our approach involving morphological information is clearly better that its spectral equivalent. Ad-
ditionally, our proposal ADL involving tensor reduction has the best performance with more than
73% in overall classification in this very difficult scenario.
In turn, it can also be seen in Fig. 7.11 that the inclusion of the tensor structure provides much
higher classification accuracies than those reported for PCA. Pavia University HSI allows us to
compare the results of our workflow with spatial-spectral classifiers based on different approaches.
From Table 7.4, it can be observed that the proposed additive decompositions (AMD and ADL)
obtain good result when compared with other methods. Tensor structure improves the classification
accuracy and yields a representation with better separability in lower dimension, for instance, from
20 features for ADL+PCA+SVM (OA-88.67%) to 15 features for ADL+TPC+SVM (OA-92.72%).
Table 7.5 gives the class-specific accuracies of the best pixel wise classification in the projected space
induced by the correspondent dimensional reduction algorithm. The performances of the proposed
additive decomposition are compared with those obtained by other morphological based approaches
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(a) Training Set (b) Test Set (c) PCA (81.57%) (d) DMP+PCA (82.12%)

(e) AMD+PCA (94.32%) (f) ADL+PCA (88.67%) (g) AMD+TPCA (94.70%) (h) ADL+TPCA (92.72%)

Figure 7.12: Classification maps obtained by the different tested methods for Pavia University data
set (Overall accuracies are reported in parentheses)
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Benediktsson et al. (2005), Fauvel et al. (2012). The AMD+TPCA yields the best OA and kappa
coefficient. Most of the best class-specific accuracies are obtained by AMD with PCA or TPCA.
This approach significantly outperforms other classification approaches. For illustrative purposes,
the effectiveness of the proposed framework with Pavia University HSI is further shown in Fig. 7.12
and the classification maps obtained are displayed along with their associated OA scores. Fig. 7.12
shows the classification maps of PCA, DMP+PCA, and additive decompositions reduced by PCA
and TPCA. As it can be seen, the ADM map contains much more homogeneous spatial structures
when compared for instance to the PCA map.

7.5 Conclusions of the chapter

This chapter proposed a framework integrating structural/spatial information in unsupervised di-
mensionality exploration and feature extraction for multivariate images. Additive morphological
decomposition is a nonlinear representation that favourably incorporates the spatial information
in dimension reduction approaches. Tensor modelling integrates structural/spatial information, to-
gether with the spectral one, in feature extraction causing drastic dimension reductions without
detrimental effect to classifier performance. We notice that complex objects are not defined by
single level sets and consequently their structures appear in several scales of the decomposition. Re-
sults in real hyperspectral images show how the tensor approach incorporates more usefully spatial
information in dimensional reduction stage in comparison with its matrix equivalent version.



8
Conditional mathematical morphology for

enhancement and impulse noise removal

There are known knowns; there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things we do not know. But
there are also unknown unknowns – there are things we do not know we don’t know.
Donald Rumsfeld

Résumé

Nous considérons dans ce chapitre les deux problèmes suivants : l’amélioration du contraste d’une
image et la restauration d’une image «contaminée»par de bruit poivre-et-sel. Un cadre unifié et de
faible complexité, basé sur la morphologie mathématique conditionnelle, est introduit. Nous intro-
duisons la notion de morphologie mathématique conditionnelle et ses opérateurs sont utilisés pour
définir un critère pour l’opérateur de contraste (Toggle Mapping) basé sur un masque conditionnant.
Ce cadre unifié est basé sur la définition d’un masque initial, qui varie selon le type de traitement
requis. En comparaison avec de techniques complexes plus avancées, telles que les médianes non
locales et la régression à noyau, notre approche a un meilleur comportement dans le cas d’images très
bruitées (>75%), menant à une performance relativement stable, même pour de très forts niveaux
de bruit (>90%) 1.

8.1 Introduction

Denoising and edge enhancement are probably two of the most studied problems in signal and im-
age processing. Digital signals and images are frequently affected by impulse noise, also known as
salt-and-pepper noise, during their acquisition and/or transmission. It is well known that linear
filtering techniques fail when the noise is non-additive and are not effective in removing impulse
noise Gonzalez and Woods (2008). This has led to the development of nonlinear signal processing
techniques. A class of widely used nonlinear digital filters are mathematical morphology filters.
In general, mathematical morphology is a nonlinear image processing methodology based on the

1The content of this chapter is mainly based on the following paper:

• Velasco-Forero et al. (2012), Conditional mathematical morphology for edge enhancement and salt-and-pepper

noise reduction, submitted.
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application of lattice theory to spatial structures. This means that the definition of morphological
operators needs a complete lattice structure, i.e., the possibility of defining an ordering relationship
between the points to be processed.
On the one hand, image enhancement is used to refine the quality of an image for visualisation
purposes, or to provide better input for other automated image processing techniques. Available
techniques of image enhancement can be roughly divided into two broad categories: spatial domain
methods and frequency domain methods Gonzalez and Woods (2008). The spatial domain meth-
ods operate on image pixels directly. Many of these methods are based on grey-level histogram
modifications, while others are based on PDEs or morphological versions of shock filters. The basic
idea behind shock filters is to perform dilations and erosions in order to create a “shock” between
influence zones. Dilation is performed around maxima and erosion around minima. Thus, shock
filters belong to the class of morphological image enhancement methods. Most of the current shock
filters are based either on the original definition of Kramer and Bruckner (1975) or on modifications
of Osher and Rudin formulation in terms of partial differential equations (PDEs) Osher and Rudin
(1990). Shock filters offer a number of advantages: They create strong discontinuities at image
edges, and within a region the filtered signal becomes flat. Since they satisfy a maximum-minimum
principle stating that the range of the filtered image remains within the range of the original image,
and they do not increase the L1 norms of the derivatives of a signal (total variation), they possess
inherent stability properties Weickert (2003). Moreover, in contrast to frequency domain methods
based on Fourier or wavelet transforms, over- and undershoots cannot appear Mallat (2008). This
makes shock filters attractive for a number of applications where edge sharpening and a piecewise
constant segmentation is desired. Several interesting modifications of the original schemes have
been proposed, for instance: morphological toggle mappings Serra and Vincent (1992), Meyer and
Serra (1989), PDE-based enhancing Gilboa et al. (2002), Osher and Rudin (1991), Schavemaker
et al. (2000) as well as coherence-enhancing shock filters Weickert (2003) combining the stability
properties of shock filters with the possibility of enhancing flow based on the eigenvalues of the
second-moment matrix or structure tensor. All these variants, however, still pursue the original
intention of shock filtering, namely edge enhancement. In many practical situations, the intensity of
pixels within an object vary slowly across the “interior" of objects Elder and Zucker (1998). A good
edge enhancement algorithm should alter pixels “close” to the edges and preserve local contrast for
interior pixels. However, the image contrast is highly correlated with the gradient magnitude of its
edges Elder and Zucker (1998). Thus, some shock filters can cause unpleasant ring or halo effects.
This drawback was pointed out by different authors Meyer and Serra (1989), Gilboa et al. (2004). In
this chapter a conditional shock filter is formulated. It is robust to halo problems, with convergence
in a few number of iterations. This is achieved by generalising the original Kramer formulation with
an enhancing flow based on a mask image. We use the name conditional toggle mapping to refer to
our approach.
On the other hand, there are many methods for the removal of impulse noise. Some of the more
relevant with respect to the present work are those of vector median filter Astola et al. (1990),
vector directional filter Trahanias and Venetsanopoulos (1993), and methods that combine noise
detection with noise removal Hwang and Haddad (1995). Each of these studies has several variants
and combinations Chan et al. (2005), Zhang and Karim (2002), Eng and Ma. (2001), Srinivasan and
Ebenezer (2007). These papers detect possible noisy pixels and replaced by using median value or
its variant while leaving uncorrupted pixels unchanged. The main contribution of this chapter is the
formulation of an unified framework for enhancement and impulse noise reduction.
The chapter is outlined as follows. Section 8.2 briefly recalls the notion of shock filters and toggle
mappings. The proposed conditional toggle mapping is detailed in Section 8.3. It is followed by ex-
perimental results in well-known grey and colour images in Section 8.4. Section 8.5 ends the chapter
with concluding remarks.
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8.2 Brief review

Let us precise the terms and notation to be used in the rest of the chapter. Let E be a subset of the
discrete space Z

2, considered as the support space of the image, and F ✓ R
d be a set of pixels values

in dimension d, corresponding to the space of values of the image with d channels. A vector-value
image is represented by the mapping,

I :

(
E ! F

x ! x
(8.1)

i.e., I 2 F(E,F) the set of maps from a pixel x 2 E into a vector value x 2 F ✓ R
d. The two

basic morphological mappings F(E,F)! F(E,F) are the erosion and dilation by a flat (symmetric)
structuring element SE and are given respectively by:

"SE (I) (x) = {I(z) : I(z) =
^

y2SE(x)

I(y)} (8.2)

and
δSE (I) (x) = {I(z) : I(z) =

_

y2SE(x)

I(y)} (8.3)

where SE(x) 2 E denote the spatial neighbourhood induced by the structuring element SE centred
at x. These operators require than F should be a lattice with suitable operators

W
and

V
. In

the grey-level case (d = 1) basic morphological operators (8.2) and (8.3) have an unified definition.
However, in multivariate case (d > 1) maximum and minimum operators do not have a natural
extension. Existing multichannel image processing approaches can be roughly discerned between
marginal methods, which act on each channel separately, and vector methods, which analyse pixels
as multivariate objects. Specifically, in applying our approach to multichannel images, we use a
marginal approach where the conditional toggle mappings are applied to the different channels
independently. In any case, methods of extension of mathematical morphology introduced in first
part of this thesis can be used for the conditional toggle mapping discussed in this chapter. Consider
now, I is a grey-level image. The first definition of the shock filter may be traced back to 1975 when
Kramer and Bruckner have proposed the non-linear transformation for enhancement of digital images
as follows,1

Definition 5. Kramer and Bruckner (1975) Given an image I the shock filter is defined as follows

⌧SE(I) =

8
><
>:

"SE (I) if ∆SE(I) < 0,

δSE (I) if ∆SE(I) > 0,

I otherwise.

(8.4)

where ∆SE(I) = ∆"
SE
(I) −∆δ

SE
(I) = (I − "SE (I)) − (δSE (I) − I) is the morphological Laplacian of the

original image, "SE (·) and δSE (·) are erosion and dilation by using a structuring element SE.

It is based on the idea of using a dilation process near a local maximum and an erosion process
around a local minimum. The decision whether a pixel belongs to the influence zone of a maximum or
a minimum is made on the basis of the morphological Laplacian Vliet et al. (1989). If the Laplacian
is negative, then the pixel is considered to be in the influence zone of a maximum, while it is regarded
to belong to the influence zone of a minimum if the Laplacian is positive. Iterating this procedure
produces a sharp discontinuity (shock) at the borderline between two influence zones. Within each
zone, a constant segment is created. The method of Kramer and Bruckner has been formulated in a
fully discrete way. The term shock filtering has been introduced by Osher and Rudin (1991). Shock
filtering constitutes an example of a PDE that is difficult to analyse in the continuous setting, while

1The original formulation includes less or equal in the dilation case. Schavemaker et al. (2000) includes the
“otherwise" case to preserve the original signal in a single-slope signal (∀x : ∆"

SE
(f(x)) = ∆δ

SE
(f(x)))
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(a) min{∆"
SE

(I),∆δ
SE

(I)} (b)
∆SE(I)

2
(c) Kσ ∗∆I, σ = 1

(d) Local extrema of min{∆"
SE

(I),∆δ
SE

(I)} (e) Local extrema of
∆SE(I)

2
(f) Local extrema of (Kσ ∗∆I)

Figure 8.1: (a-c) Gradient definition used in the chapter, and other definitions by Kramer and
Bruckner (1975) and Alvarez and Mazorra (1994). SE is a disk of size 1 and σ = 1. (d-f) Local
extrema detector (< 2) by using (a-c).

for a 1-D space discretization in Welk et al. (2007) has been shown that this process is well-posed
and satisfies a maximum-minimum principle. An analytic solution of the corresponding dynamical
system was even found Welk et al. (2007). Different modifications have been proposed in order to
improve the performance of shock filters. Alvarez and Mazorra Alvarez and Mazorra (1994) replaced
the Laplacian as edge detector by Kσ ⇤ ∆(I), where Kσ is a Gaussian with standard deviation σ,
∆I is the gradient of I, and ⇤ denotes convolution. Fig. 8.1 illustrates different edge detector and
associated local extrema (pixels considered as local maxima or local minima) according to different
definitions.

On the other hand, in the literature of mathematical morphology, a toggle mapping is defined
for the original image I and a series of transformations Ψ = { 1, 2, . . . , n} as the transformation
based on a toggling criterion operating over Ψ, i.e. a decision rule which determines at each point
the “best" value among the “candidates" Ψ Serra (1988), Serra and Vincent (1992), Meyer and Serra
(1989). A trivial example of a toggle mapping is the threshold operator. The primitives Ψ are the
white and black images, and the decision rule involves a simple comparison of I with a threshold
value. The classical shock filter (8.4) is also a particular case of a toggle mapping denominated
as toggle contrast Serra (1989b). Additionally, the morphological centre Serra (1988) defined by
the median among the triplet (^Ψ(I),_Ψ(I), I) is a notion which naturally appears in the self-dual
morphological filters Serra (1988). Toggle contrast is usually applied not only once but is iterated,
i.e.,

⌧1
SE
(I) = {⌧ i

SE
(I)|⌧ i

SE
(I) = ⌧SE(⌧

i
SE
(I))}, (8.5)
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(a) ∆"
SE
(I) vs ∆δ

SE
(I) (b) ∆"

SE
(τSE(I)) vs ∆δ

SE
(τSE(I))

(c) ∆"
SE
(τ∞

SE
(I)) vs ∆δ

SE
(τ∞

SE
(I)) (d) I

(e) Red pixels are local maximum (mini-
mum) according to min{I− εSE (I) , δSE (I)−
I} = 0 and blue according to I − εSE (I) =
δSE (I) − I. Green are pixels satisfying both
definitions.

(f) τ∞
SE

(I)

Figure 8.2: Bi-dimensional representation of the evolution in the classical shock filter (8.4) for the
Cameraman grey-scale image in (d).



136 CHAPTER 8. CONDITIONAL MATHEMATICAL MORPHOLOGY

Figure 8.3: Iteration number versus residual between two consecutive iterations of classical ||⌧ i+1
SE

(I)−
⌧ i
SE
(I)|| and conditional ||⌧̃ i+1

SE
(I,M) − ⌧̃ i

SE
(I,M)|| approach in a grey scale image of size 256 ⇥ 256

pixels. The proposed conditional toggle mapping converges in at small number of iterations in
comparison with the original one. In terms of processing time, the original toggle mapping takes at
least four times than conditional toggle mapping(110 ms in a 2.4 GHz Intel Core 2 Duo with 4 GB
1067 MHz.)

where ⌧0
SE
(I) = I and ⌧1

SE
(I) is given by (8.4). The iterations of toggle contrast converge to a fixed point

Kramer and Bruckner (1975) reached after a finite number of iterations. Heijmans (1997) defines
self-dual operators based on the morphological center and subsequently self-dual filters. Basically,
he considers the important fact that every increasing, self-dual operator can be modified in such a
way that the sequence of iterations of a given image is pixelwise monotone (strictly increasing or
decreasing in each pixel). This implies on a convergence to a limit operator, thus avoiding oscillation
problems typical in non-convergent filters such as median filtering. The convergence is obtained when
all the pixels are fixed points, as shown in Fig. 8.2. To illustrate the evolution until convergence,
Figs. 8.2(a-b) show the first and second iteration of (8.5) in a bi-dimensional representation of image
value gradient by erosion and dilation. When convergence is reached, Fig. 8.2(c), all the pixels are
fixed points according to the criterion (8.4). Note the presence of pixels in the line ∆"

SE
(I) = ∆δ

SE
(I).

Classic shock filters have two main drawbacks. First, the halo effect Meyer and Serra (1989), Gilboa
et al. (2002) can be produced due to the tie case in the definition. The second problem lies in the
large number of iterations until convergence. Convergence curve for the toggle mapping in the case
of cameraman image is shown in Fig. 8.3. These two drawback motived us to define the conditional
toggle mapping introduced in the next section.

8.3 Conditional toggle mapping

In this section, we introduce the central idea in our approach: the definition of a conditional toggle
mapping. Let M be the characteristic function of a mask, i.e., M 2 F(E, {0, 1}) maps each pixel
x 2 E into M(x) = {0, 1}. Our approach is based on a neighbourhood associated to a structuring
element SE and to the mask M,

N(SE,M)(x) = {y 2 SE(x) and M(y) = 1}.
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That allows us to define the conditional version of the erosion, the morphological mapping F(E,F)!
F(E,F) as follows,

Definition 6. Conditional erosion of an image I with respect to a binary mask M is defined by the
following expression:

"SE (I,M) (x) =

8
<
:

V
y2N(SE,M)(x)

I(y) if M(x) = 0 and N(SE,M)(x) 6= ;,

I(x) otherwise,
(8.6)

and equivalently for the dilation,

Definition 7. Conditional dilation of an image I with respect to M is defined by

δSE (I,M) (x) =

8
<
:

W
y2N(SE,M)(x)

I(y) if M(x) = 0 and N(SE,M)(x) 6= ;

I(x) otherwise.
(8.7)

The idea of conditional morphology was firstly presented by Jochems (1997) for binary images.
Expression (8.6) and (8.7) are equivalent to the ones introduced in Jochems (1997) for binary images
but differs in grey-scale images due to the “otherwise” case. The motivation of this idea is that pixels
in the mask are considered as sources in the morphological operation, and they are invariants (See
Fig. 8.4 for visual intuition).

(a) I (b) δSE (I) (c) M (d) δSE (I,M)

Figure 8.4: Conditional vs Classical Dilation. I is a grey scale image of 175 ⇥ 245 pixels, SE is a
square of size 25. Pixels of the mask are displayed in green. Note that objects in the mask are not
dilated.

Algebraic properties of morphological operators have been studied extensively in Heijmans (1994,
1997), Roerdink (2009), Maragos (2005). One of the main ingredients of the theory of the algebraic
properties of morphological operator is the definition of adjunction.

Definition 8. Heijmans (1994) Let L1 and L2 be two complete lattices, " an operator L1 ! L2,
and δ an operator L2 ! L1. The pair (", δ) is called an adjunction if δ(I) L1

J () I L2
"(J).

We prove the following equivalence between adjunction and the composition of morphological
operators.

Theorem 1. (", δ) is an adjunction () δ and " are both increasing and δ("(J)) L1
J 8J 2 L1

and I L2
"(δ(I)) 8I 2 L2.

Proof. (Only if) Suppose (", δ) is an adjunction, so we have

δ(I) L1
J () I L2

"(J), so in the particular case of δ(I)

δ(I) L1
δ(I) () I L2

"(δ(I))

Similarly for the other half

δ(I) L1
J () I L2

"(J), so in the particular case of "(J)

() δ("(J)) L1
J () "(J) L2

"(J)
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(if) Now assume that δ("(J)) L1 J and I L2 "(δ(I)) holds and " and δ are increasing.

If δ(I) L1
J, then by increasing assumption,

) "(δ(I)) L2
"(J), by hypothesis

) I L2
"(J)

Similarly for the other half, if

I L2
"(J), (increasing)

) δ(I) L1
δ("(J)), (hypothesis)

) δ(I) L1
J.

We can now note that the pair ("SE (·,M) , δSE (·,M)) is not an adjunction as it is illustrated in Fig.
8.5. However, we can calculate the algebraic adjunction of the conditional dilation. It is important

(a) I (b) M (c) δSE (εSE (I,M) ,M)

Figure 8.5: Example showing that the pair conditional operators are not an adjunction in algebraic
sense. If k 6= m, δSE ("SE (I,M) ,M) = "SE (δSE (I,M) ,M) but not equal to I, so by Theorem
1, ("SE (·,M) , δSE (·,M)) is not an adjunction. In the example, SE is a square of side three (8-
connectivity).

because it produces a link in a unique way between morphological operators, and idempotent filtering
can be achieved by composition (opening). Additionally, it guarantees that the composition reduces
the information content. This kind of analysis has been carried out in morphological operators
applied to images Heijmans and Ronse (1990), graphs Heijmans et al. (1992), pyramids Keshet and
Heijmans (2003), and curve evolution Keshet and Heijmans (2003).

Proposition 3. Let "̃SE(I,M) be defined by:

"̃SE(I,M)(x) =

(V
y2N(SE,Mc)(x)

I(y) if x 2M, and 9y 2 N(SE,Mc)(x),

I(x) otherwise
(8.8)

then the pair ("̃SE(I,M), δSE (I,M)) is an adjunction.

Proof. For every SE 2 E and a given M 2 F(E, {0, 1}), the pair ("̃SE(·,M), δSE (·,M)) defines an
adjunction on F(E,F) [Proposition 4.33, Heijmans (1994)]. In other words

δSE (I,M)  J () I  "̃SE(J,M)
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for all I,J 2 F(E,F).
Definition (8.7) is equivalent to

δSE (I,M) (x) =

8
>><
>>:

I(x) if x 2M,

I(x) if M(x) = 0 and 6 9y 2 N(SE,M)(x),W
y2N(SE,M)(x)

I(y) if M(x) = 0 and 9y 2 N(SE,M)(x).
(8.9)

We start analysing the first two cases, i.e., M(x) = 0, and, x 2M and 6 9y 2 N(SE,M)(x), where the
proof is simple: δSE (I,M) (x)  J(x) () I(x)  J(x)  "̃SE(J,M)(x) due to M(x) = 0 or 6 9y 2
N(SE,M)(x). To prove in the third case is enough to see that y 2 N(SE,M)(x) () J(y)  "SE (J,M)
and following a similar idea that in Roerdink (2009) we have:

δSE (I,M) (x)  J(x) 8M(x) = 0

()
_

y2N(SE,M)(x)

I(y)  J(x) 8M(x) = 0

() I(y)  J(x), 8M(x) = 0, y 2 N(SE,M)(x)

() I(y)  J(x), 8y 2M, x 2 N(SE,Mc)(y)

() I(y) 
^

x2N(SE,Mc)(y)

J(x), 8y 2M, x 2 N(SE,Mc)(y)

() I(y)  "̃SE(J,M
c), 8y 2M, x 2 N(SE,Mc)(y).

However, in the practical application considered in this chapter (noise reduction and edge en-
hancement), the operator "̃SE(·, ·) does not have any interest. Finally, we present a list of proper-
ties for the conditional morphological operators defined in (8.6) and (8.7). Let "SE (·, ·), δSE (·, ·)
be the pair of conditional operators. Define φSE(I,M) = "SE (δSE (I,M) ,M) and γSE(I,M) =
δSE ("SE (I,M) ,M), the following properties hold:

(a)
Vi

i=1 "SE (Ii,M) = "SE

⇣Vi
i=1 Ii,M

⌘
, (distributivity)

(b)
Wi

i=1 δSE (Ii,M) = δSE

⇣Wi
i=1 Ii,M

⌘
, (distributivity)

(c) I  J) "SE (I,M)  "SE (J,M) , (increasing)

(d) I  J) δSE (I,M)  δSE (J,M) , (increasing)

(e) γSE(γSE(I,M),M) = γSE(I,M), (idempotence)

(f) φSE(φSE(I,M),M) = φSE(I,M), (idempotence)

(g) "SE (I,M)  δSE (I,M)

(h) γSE(I,M)  φSE(I,M)

(i) "SE (I,M) = tmax − (δSE (tmax − I,M)), (duality)

where, tmax = max(I).

The demonstration of these properties is straightforward from the definition of conditional operators
and is therefore omitted.
The key question in conditional morphology is how to define the mask M. On the one hand, if the
main interest is edge enhancement, M should have the local max/minimum pixels, because they
must not be enhanced. This means that the grey value at a local maximum or minimum must not
increase or decrease, respectively. For this purpose, we propose to use the notion of transition pixels



140 CHAPTER 8. CONDITIONAL MATHEMATICAL MORPHOLOGY

Soille and Grazzini (2009),

ME(x) =

(
1 if min(∆"

SE
(x),∆δ

SE
(x)) = 0

0 otherwise,
(8.10)

but other options can be also considered, for instance, the classical edge detector as it is shown
in Fig. 8.1, the morphological gradient Soille (2003) or the inverse of geodesic path distance as in
Grazzini and Soille (2009). On the other hand, if the purpose is impulse noise removal, M should
have the pixels that are not corrupted by the impulse noise. We propose,

MN (x) =

(
1 if min(∆"

SE
(x),∆δ

SE
(x)) > 0

0 otherwise.
(8.11)

Other impulse detectors have been proposed in Hwang and Haddad (1995), Zhang and Karim (2002)
(see also the review Lukac et al. (2005)).

Thus, for the definition of the toggle criterion, we keep the definition "SE (·, ·), i.e.,

Definition 9. The conditional toggle criterion based on M is defined as follows,

⌧SE(I,M) =

8
><
>:

"SE (I,M) if δSE (I,M)− "SE (I,M) < 0,

δSE (I,M) if δSE (I,M)− "SE (I,M) > 0,

I otherwise.

(8.12)

The motivation behind definition (8.12) is that the mask M plays the role of a seed indicator,
where the pixel values spread through the image I according to the toggling criterion. Similarly to
non-conditional toggle mapping, conditional toggle mapping should be applied iteratively. In this
point, the detector matrix M have to spread their values through the image. Thus, the iterative
conditional toggle mapping ⌧̃ i

SE
(I,M) based on M is defined as a mapping from and onto the pair

image I image and the mask M, i.e. it is a mapping F(E,F)⇥F(E, {0, 1})! (F(E,F),F(E, {0, 1}))
such that

⌧̃SE(I,M) = (⌧SE(I,M), δSE (M)).

An iteration should be calculate as

⌧̃2
SE
(I,M) = ⌧̃SE(⌧̃SE(I,M))

= ⌧̃SE(⌧SE(I,M), δSE (M))

= (⌧SE(⌧SE(I,M), δSE(M)), δSE(δSE(M)))

= (⌧SE(⌧̃SE(I,M)), δ2
SE
(M))

Accordingly an iterative version of (8.12), named as generalised conditional toggle mapping is defined
by iteration until convergence as follows

Definition 10. The generalised conditional toggle criterion based on M is defined by,

⌧̃1
SE
(I,M) = {⌧̃ i

SE
(I,M)|⌧̃ i

SE
(I,M) = ⌧̃ i−1

SE
(I,M)}, (8.13)

where ⌧̃ i
SE
(I,M) = ⌧SE(⌧̃

i−1
SE

(I,M), δi
SE
(M)) and ⌧̃0

SE
(I,M) = (I,M).

Proposition 4. If iD ≥ max(DSE(M)) then ⌧̃ i
D

SE
(I,M) converge, where DSE(M) is the distance

transform of the binary image M associated with connectivity induced by the structuring element SE.

Proof. Let M : Z2 ! [0, 1] be a binary image. The distance transform (DT) is the transformation
that generates a map D whose value in each pixel x is the smallest distance from this pixel to Mc,
i.e.:

DSE(M)(x) = max{i|M(x) = δi
SE
(M(x))} (8.14)
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By definition, ⌧̃ i
SE
(I,M) = (⌧SE(⌧̃

i−1
SE

(I,M)), δi(M)). Let i ≥ iD = max(DSE(M)) so we have
δi+1
SE

(M) = δi
SE
(M) = 1, where 1 is the indicator image of Z

2. Accordingly, by definition of
conditional morphology, "SE(I,1) = δSE(I,1) = ⌧SE(I,1) = I. Therefore, ⌧̃ i

SE
(I,M) = ⌧̃ i

SE
(I,1) =

⌧̃ i+1
SE

(I,1) = ⌧̃ i+1
SE

(I,M). Proposition 4 means that expression (8.13) converges in no more itera-
tions than iD = max(DSE(M)), where DSE(M) is the distance transform of M with connectivity
induced by the structuring element SE. Fig. 8.3 compares the number of iterations until convergence
for the classical shock filter given by expression (8.5) and the proposed one based on conditional
mathematical morphology defined by (8.13).

The actual implementation relies on matrix representation and classical morphological opera-
tors. The pseudocode of the proposed conditional toggle mapping is displayed in Algorithms 2 and
3 respectively. Algorithm 2 is an iteration of the conditional toggle criterion (8.12) by using a bi-
nary mask. Algorithm 3 implements generalised conditional toggle mapping described in (8.13). We
present simple examples to illustrate the advantages of our approach. Let us consider the one dimen-
sional signal examples given in Figs. 8.6 and 8.7 which illustrate the outperformance of proposed
conditional toggle mapping with respect to the traditional shock filter. In the sinusoidal signal,
f(x) = |5 cos(x)| of Fig. 8.6, the behavior of classical and proposed approach are both accurate.
However, classical shock filter fails in the ramp case, f(x) = min(7, 3|x|), as it is illustrated in
Fig. 8.7. Proposed conditional enhancement operates without including obnoxious halos.

(a) Erosion εSE(f)(x) and dilation δSE(f)(x) (b) Toggle criterion for Eq. (8.4)

(c) First iteration of Eq. (8.4) (d) Conditional toggle contrast, Eq. (8.13)

Figure 8.6: The proposed conditional toggle contrast sharpens the signal as well as classical en-
hancement method. f(x) = |5 cos(x)| with x = [−3, 3], SE is a symmetric window of length 0.5. The
size of the points in (d) gives the different iteration of the conditional toggle contrast.

For a given image I, the conditional toggle mapping ⌧̃1
SE
(I,M) produces results in accordance

with the mask M. To illustrate the flexibility in the proposed framework to handle noise removal and
edge enhancement, we present the obtained mask by (8.10) and (8.11) in free-noise colour images.
Fig. 8.8 shows the outputs for conditional toggle mapping by using as mask M expressions (8.10)
and (8.11) in the proposed conditional toggle mapping defined in (8.13). For a free-noise image the
mask (8.11) is a kind of image simplification, where local maximum/minimum are preserved and the
rest of the pixels have been substituted by using the toggle criterion.
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Algorithm 2 Conditional toggle mask (A single iteration).

Require: Original Image (I), Mask(M) and Structuring Element SE. · denotes the pixel-wise
multiplication.
Id = δSE (I ·M)
A = Id − I

In = max(I)− I

Ie = δSE (In ·M)
Ie = max(I)− Ie
B = I− Ie
k = find(A > B)
Iout(k) = Ie(k)
k = find(A < B)
Iout(k) = Id(k)
m = find(M == 1)
Iout(m) = I(m)
M = δSE (M)
return [Iout,M]

Algorithm 3 Conditional Toggle Mapping.

Require: Original Image (I), Mask(M) and Structuring Element SE.
Io = I, i = 0, e = 1;
while e > 0 do
i = i+ 1
[Ii,M] =ToggleMask(Io,M, SE)
e = ||Ii − Io||

2

Io = Ii
end while
return Io
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(a) Erosion εSE(f)(x) and dilation δSE(f)(x) (b) Toggle criterion for Eq. (8.4)

(c) First iteration of Eq. (8.4) (d) Conditional toggle contrast, Eq. (8.13)

Figure 8.7: The proposed conditional toggle contrast does not produce halos as classical filters in
ramp signals, i.e., oscillate signal in (c). f(x) = min(7, 3|x|) with x = [−3, 3], SE is a symmetric
window of length 0.5. The size of the points in (d) gives the different iteration of the conditional
toggle contrast.

8.4 Experiments

In order to test the proposed conditional toggle contrast, we conducted experiments in high resolution
remote sensing images as well as in classical examples of grey and colour images. Firstly, numeri-
cal experiments are carried out to demonstrate the performance of our proposed conditional toggle
mapping for noise removal in standard test images (Lena, Goldhill, Cameraman, and Grey-Boat).
Additionally, examples in colour images from the Kodak PhotoCD dataset are also included. Sec-
ondly, the proposed method is compared in the edge enhancement task. Segmentation after/before
are compared according to the number of segmented regions and reconstruction error. Our con-
ditional toggle mapping is parameter-free, which reduces the complexity of searching the optimal
configuration of parameter for image restoration. The peak signal-to-noise ration (PSNR) in decibels
is used to assess the strength of the filtered image defined as:

PSNR = 10 log10
2552

1/N2||Irest − I||2
(8.15)

where Irest is the restored image by operator given in Eq. (8.13), and N is the number of pixels
in the image I. This is used to measure the quality of an image. In the case of colour images a
channel-independent salt-and-pepper noise was simulated according to the following rule Boncelet
(2000): the value of pixels was replaced by 0 with probability ✓/2 and replaced by 1 with probability
⇠/2 with ⇠ 2 [0, 1].

8.4.1 Salt & pepper noise reduction

Images are contaminated with salt-and-pepper noise ranging from 20% to 95%, with increment steps
of 5%. Results of the proposed conditional toggle mapping by using the mask MN are compared with
three well-known algorithms: Decision based Filtering Srinivasan and Ebenezer (2007), Progressive
Switching Median Filter Wang and Zhang (1999) and Classical Median Filter Gonzalez and Woods
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(a) ME by (8.10) (b) τ̃∞
SE

(I,ME),
PSNR=25.7434

(c) MN by(8.11) (d) τ̃∞
SE

(I,MN ), PSNR=
40.8280

(e) ME by (8.10) (f) τ̃∞
SE

(I,ME),
PSNR=19.9575

(g) MN by (8.11) (h) τ̃∞
SE

(I,MN ),
PSNR=31.7459

Figure 8.8: Comparison in free-noisy scenario. Conditional toggle mapping handled with different
image processing problem according to the mask M. Particular cases of M = ME as Eq. (8.10) pro-
vide edge enhancement (second column) or M = MN as Eq. (8.11) produce an image simplification
(fourth column). Masks are computed marginally and displayed as black pixels.
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(2008). The PSNR values resulting from various experiment are shown in Fig.8.9. From these
curves, it can be easily observed that the proposed conditional toggle mapping outperforms the
other filtering schemes in noise level greater than 50%. We remark that the results reported in Fig.
8.9 are the average of results of 25 repeated experiments. Furthermore, a subjective visual result of
the noise reduction is presented in Figs. 8.10-8.11-8.12-8.13-8.14 for different noise densities.

8.4.2 Comparison with the state of the art

Firstly, we compare our approach with two state-of-the-art powerful denoising techniques on the
Set-24 dataset Chan et al. (2005): Non-local means Buades et al. (2005) and Kernel Regression
Takeda et al. (2007). The idea in Non-local means Buades et al. (2005), Baudes et al. (2005), is to
take advantage of self-similarities in images by comparing local neighbourhoods (patches) across the
whole image. To deal with salt-and-pepper noise, the filtered pixel value is estimated as a weighted
median of the pixels whose neighbourhoods are the most similar to the neighbourhood of the one to be
denoised. Kernel Regression Takeda et al. (2007) is roughly based on the idea of a robust adaptive
fitting of the image by using kernel functions. The kernel regression framework provides a rich
mechanism for computing point-wise estimates of the regression function with minimal assumptions
about global signal or noise models. The filtering result is a weighted mean from this local adaptive
regression problem. Some popular existing methods as bilateral filter Tomasi and Manduchi (1998),
are special cases of the kernel regression framework Chatterjee and Milanfar (2010). Table 8.1
summarises the results for the experiments. For the latter, we include the average PSNR over the
set of images (as done also for the results reported in Motta et al. (2011)). From the quantitative
results show that for the heavily noisy data set (salt-and-pepper noise larger than 50%) the proposed
approach works better than non-local techniques Baudes et al. (2005)Takeda et al. (2007). However,
these approaches work better when the noise level is less than 50%. The authors suppose that this
fact may due to two factors. On the one hand, the estimation step in non-local techniques is clearly
affect to the lack of information (Noise level greater than 50%). On the other hand, the proposed
approach is "myope" in the sense that information considered in spatial neighbours is not greater
than the 8-connectivity for a given pixel. However, that allows to deal with noise level higher that
90% as it is shown in Table 8.1.
Secondly, we compare our results to those of Chan et al. (2005), Motta et al. (2011). The scheme
of Motta et al. (2011) was selected for comparison as it presents, to the best of knowledge, the
best published results for salt-and-pepper noise available in the literature. The performance of
the proposed approach is significantly lower for the noisy level which have been considered in the
published works, namely, iDUDE and regularisation based denoisers. However, our approach has
very low complexity (there are not parameters) and it can be implemented using standard dilation
and erosion transformations. We remark that both Motta et al. (2011) and Chan et al. (2005) start
with a traditional median filter, where the window size is related with noise level of the image.
Our approach could be used instead of the traditional median filter to avoid that parameter in the
algorithm. Once again, a remarkable point concerning the behaviour the proposed approach is the
fact that between 50% and 95% is obtained a difference of less than 5% in PNSR, which proves the
stability of the method with respect to the noise level. Finally, the other significant advantage of
our approach is the fact that the proposed procedure handles other kind of problems such as image
enhancement.

8.4.3 Image enhancement

Optical remote sensing imagery has been a paradigm in the last decade. From Landsat 7 launched
in 1999 to WorldView-2 in 2009 the spatial resolution has increased considerably from 15m to
0.46m. This led to research on new data-driven segmentation algorithms. Hierarchical region based
segmentation approach is a very natural manner since the target has different meanings according
to object size, i.e., from tile to building there are an entire range of scales. Recently, constrained
connectivity Soille (2008) has emerged as a data-driven approach useful to handle practical problems
in remote sensing. However, objects transitions depend on orientation Soille (2011), so it can alter
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% Noise CHN05 Chan et al. (2005) iDUDE Motta et al. (2011) NL-MediansBuades et al. (2005) Kernel-RegressionTakeda et al. (2006) Proposed
30% 34.5 35.1 27.93 28.94 26.81
50% 31.1 31.6 23.56 24.53 25.29
70% 28.1 28.6 22.28 21.29 24.28
75% 27.3 N/A 21.28 20.78 23.92
80% N/A N/A 19.90 18.65 23.47
90% N/A N/A 14.79 13.60 22.08
95% N/A N/A 10.09 9.93 20.69

Table 8.1: Comparison with state of the art in salt-and-pepper noise removal. Proposed approach
is a parameter-free algorithm.

(a) Lena Grey (b) Lena Color

(c) Baboon Color (d) Boat Color

Figure 8.9: Experimental results in PSNR for grey and colour Lena, Baboon and Boat at various
noise levels for different approaches: Decision based Srinivasan and Ebenezer (2007), Progressive
Switching Median Filter Wang and Zhang (1999), and Classical Median Filter Gonzalez and Woods
(2008).
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(a) PSNR=9.066 (b) PSNR=9.408 (c) PSNR=9.469 (d) PSNR=9.317

(e) PSNR=24.847 (f) PSNR=29.245 (g) PSNR=28.128 (h) PSNR=25.520

(i) PSNR=6.054 (j) PSNR=6.410 (k) PSNR=6.443 (l) PSNR=6.313

(m) PSNR=21.13 (n) PSNR=25.822 (o) PSNR=24.096 (p) PSNR=23.521

Figure 8.10: Example of noise removal by proposed method. Images contaminated by salt-and-
pepper noise. (a)-(d) Noisy images (40%.) (e)-(h) Results restored by using the conditional toggle
mapping. (i)-(l) Noisy images (80%.). (m)-(p) Image restored by the conditional toggle mapping.
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(a) PSNR=8.1802 (b) PSNR=6.8835 (c) PSNR=29.6457

(d) PSNR=6.7217 (e) PSNR=6.0641 (f) PSNR=27.7017

(g) PSNR=5.3995 (h) PSNR=5.2712 (i) PSNR=23.1189

Figure 8.11: Example of noise removal by proposed method. Images contaminated by marginal
salt-and-pepper noise. (a)-(c) Experiment (50%.) (d)-(f) Experiment (70%). (g)-(i) Experiments
(95%.).
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(a) PSNR=8.0979 (b) PSNR=8.1943 (c) PSNR=29.4936

(d) PSNR=6.6301 (e) PSNR=7.5271 (f) PSNR=27.9396

(g) PSNR=5.3011 (h) PSNR=6.8547 (i) PSNR=23.9581

Figure 8.12: Example of noise removal by proposed method.(a)-(c) Experiment (50%). (d)-(f) Ex-
periment (70%). (g)-(i) Experiments (95%.). First column shows images contaminated by marginal
salt-and-pepper noise, second column includes mask image by using Eq. (8.11) and third column
displays the result of the conditional toggle mapping.

segmentation results. A question of considerable practical interest in remote sensing is: How well can
image enhancement algorithms avoid unpleasant result in hierarchical image segmentation? Thus, in
this section we discuss the results obtained applying the conditional toggle contrast to hierarchical
segmentation based on ↵ connectivity from Soille (2008).

↵-connectivity

↵-connectivity produces nested partitions with successive degree of coarseness by changing the con-
nectivity threshold Soille (2008, 2011). Given two pixels x and y 2 E, they are ↵-connected if there
exist a path P going from x to y such that the dissimilarity (d) between any two successive pixels
of this path does not exceed the value ↵, i.e.,

CC↵(x) = {x} [ {y|9Phx = p1, p2, . . . , pi−1, pi = yi, i > 1,

d(pi, pj)  ↵ 8i, j 1  i, j  i}
(8.16)

Basically, (8.16) is equivalent to the single linkage clustering method Gower and Ross (1969) consid-
ering finite similarities only among horizontal and vertical neighbours (4-neighbours or also known
as direct-neighbour Gonzalez and Woods (2008)). Additionally, (8.16) is equivalent to quasi-flat
zones in the grey level case with dissimilarity set to absolute difference Meyer (1998). In the sequel,
CC↵(I) denotes the segmentation by (8.16) of the image I. ↵-connectivity (8.16) has the drawback
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(a) PSNR=8.2644 (b) PSNR=6.8818 (c) PSNR=21.3946

(d) PSNR=6.7981 (e) PSNR=6.1463 (f) PSNR=19.8168

(g) PSNR=5.4735 (h) PSNR=5.4287 (i) PSNR=17.0243

Figure 8.13: Example of noise removal by proposed method. Images contaminated by marginal
salt-and-pepper noise. (a)-(c) Experiment (50%.) (d)-(f) Experiment (70%). (g)-(i) Experiments
(95%.).
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(a) PSNR=8.0688 (b) PSNR=9.4870 (c) PSNR=25.5758

(d) PSNR=6.5977 (e) PSNR=8.7175 (f) PSNR=23.9395

(g) PSNR=5.2642 (h) PSNR=7.9730 (i) PSNR=20.2759

Figure 8.14: Example of noise removal by proposed method. Images contaminated by marginal
salt-and-pepper noise. (a)-(c) Experiment (50%.) (d)-(f) Experiment (70%). (g)-(i) Experiments
(95%.).
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that if two distinct image objects are separated by one or more transitions going in steps having dis-
similarity value than or equal to ↵, they appear within the same CC↵. Accordingly, we evaluate the
performance of conditional toggle mapping as a preprocessing to avoid unpleasant segmentations.

Evaluation

The performance of the conditional toggle enhancement is first qualitatively evaluated through the
visual appearance of associated segmentation and their filtered images and Fig. 8.15. Secondly, a
quantitative comparison is performed. The mean of I(x) in each connected component of CC↵(I) is
used as restored image and the PSNR (8.15) is calculated for values of ↵ = [3, 4, . . . , 25]. Fig. 8.16
shows that segmentation in the conditional toggle mapping provides better PSNR in comparison
with segmentation on the original images with equivalent number of connected components. The
performance is comparable with classical toggle mapping but our approach is obtained in a few
number of iterations as shown Fig. 8.3.

8.5 Conclusions and Perspectives of this chapter

In this chapter, we introduced a new free-parameters unified approach for both edge enhancement
and salt-and-pepper noise removal by using conditional mathematical morphology. The unified
framework is based on defining a seed mask M, which is different according to type of processing,
and by using condition mathematical morphology operators in an iterative toggle contrast style. The
task can be obtained a relative few number of iterations. The proposed filter also shows consistent
and stable performance across a wide range of noise densities from 10% to 95%. A remarkable point
concerning the behaviour the present approach is the fact that between 50% and 95% is obtained
a difference of less than 5 in PNSR, which proves the stability of the method with respect to the
noise level. Conditional toggle contrast has the additional advantage of easy of implementation.
Specifically, interesting future work includes:

1. Compression based on conditional morphology.

2. Extension to high dimensional images by using vector morphology Velasco-Forero and Angulo
(2011c,a) instead of the marginal ordering scheme adopted in this chapter.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) # CC = 4525 (j) # CC = 6314 (k) # CC = 5194 (l) # CC = 7898

(m) # CC = 1049 (n) # CC = 782 (o) # CC = 898 (p) # CC =1127

Figure 8.15: (a)-(d) Original Image I, (e)-(h) Conditional Toggle Mapping ⌧̃(I,M), (i)-(l) CC↵(I)
and (m)-(p) CC↵⌧̃(I,M). The dissimilarity measure is the absolute different and ↵ = 4 in all the
experiments. The input images were extracted from the WorldView-2 satellite image (European
Space Imaging) with spatial resolution of 50 cm. The number of ↵-connected component is reported
in each segmentation.
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(a) Original image is 8.15(a) (b) Original image is 8.15(b)

(c) Original image is 8.15(c) (d) Original image is 8.15(d)

Figure 8.16: PSNR of restored image by using mean per ↵-connected component in original, toggle
mapping and conditional toggle mapping. ↵ = [3, 4, . . . , 25]. Proposed conditional toggle mapping
can be calculated in a quarter of the computational time of classical one.



9
Towards multivariate Chain-Boolean models for

texture simulation

Great things are done by a series of small things brought together. Vincent Van Gogh

Résumé

Les premiers pas de la généralisation du modèle Booléen dans le cas d’images multivariées sont
présentés dans ce chapitre. Une approche de type treillis complet totalement ordonné, basée sur la
généralisation marginale, est formulée. Des exemples obtenus à partir d’images réelles sont présentés.

9.1 Introduction

Multivariate images are now commonly produced in many applications. Some are images in the
conventional sense (such as satellite data) while others are not (secondary ion mass spectroscopy,
Raman spectroscopy, SIMS). The growth in the acquisition dimension can be observed in different
scientific areas and this new category of images is referred to as hyperspectral or ultraspectral
images Chang (2003). In these images, an almost arbitrary number of variables is associated with
each pixel that represent, for instance, different spectral bands or different imaging parameters or
modalities. Therefore, these images can no longer be interpreted as gray-value or color images, and
new approaches are needed for their modeling and their analysis.
In various practical applications, the characterization of texture is an important issue to study the
physical objects acquired in the image. A germ-grain model may provide a good description for a very
irregular pattern observed in microscopy materials science, biology and analysis of images Molchanov
(2005, 1997). Perhaps the best known model is the Boolean model Matheron (1975) generating a
configuration of independent randomly placed particles. In the binary case, a Boolean model is
formed by placing random balls centered at the points of a Poisson process and taking the union
of these balls. The model was later extended to numerical Boolean function by Serra (1989a). The
natural generalization of the Boolean model for multivariate images consists in replacing the union
by the maximum in a marginal approach Jeulin and Jeulin (1981), Jeulin (1991, 1992a), i.e., band-
wise extension which is stable under the maximum of marginal bands. This indeed yields worthwhile
procedures but fails to take into account the geometric features often inherent in multivariate data.
In this chapter, we are concerned with the analysis of overlapping events in multivariate images. To
approach this problem, we introduce a generation of Boolean model for multidimensional images in a

155
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chain representation, i.e. including total ordering representation. The proposed model formalizes the
configuration of independent randomly placed events with multivariate independent information. In
particular, we consider the vector ordering computed from images using statistical depth functions,
introduced in Chapter 6.

9.2 Chain compact capacity

A random closed set is a random element whose values are closed subsets of a basic setting space.
They can be interpreted as imprecise observations of random variables which assign to each element
of the underlying probability space a set instead of a single value. We will consider random closed
sets, that is, random maps whose values are closed subsets of a topological space E. The family of
all closed subsets of E will be denoted by FE which can in turn be topologised by the so-called Hit-
or-Miss topology (or Fell topology). Random closed set can then be seen as random elements with
values in F and classical probability theory can be applied. Thus, one is more interested in events
from the Borel-σ-algebra B(E), than from B(FE) and non-additive set functions (Choquet capacity)
are introduced to measure if a random closed set hits or misses a certain set from B(E). The link
between these two interpretations is given by the so-called Choquet-Matheron-Kendall Theorem,
which states a one-to-one correspondence between probability distributions on B(FE) and a certain
class of non-additive functions, called capacity functionals, on B(E). In the context of multivariate
image processing, object of interest are spatial structures (two or three dimensional arrays of pixels)
with a vector information pixel-wise. These kind of structures can be considered as maps from E to
L, where L is a chain: a total ordered set of pixels according to . In this section, we introduce the
concept that allows us to generalise the idea of random sets to vector images. Let us fix a complete
probability space (Ω,F,P), where Ω is a sample space, F the set of events, and P a measure of
probability of events, which will be used to define random elements in LE. Additionally, we denote
F the family of closed subsets of LE.

Definition 11. For any K ✓ E and r 2 L, the cylinder of base K and level r is the function CK,r

defined by

8x 2 E, C(K,r) =

(
r if x 2 K,

? if x /2 K.

Now, we would like to generalize the concept of a random closed set including a cylinder with a
given lattice value. Thus,

Definition 12. A cylinder of base K and level kL, C(K,kL) 2 L
E is a compact chain-set if K ⇢ E is a

compact set and kL 2 L.

Definition 13. A map C(X,xL) : Ω 7! F is called a random closed chain-set if, for every compact
chain-set (K, kL) 2 LE,

{! 2 Ω : X \ K 6= ;,?L <L kL L xL} 2 F, (9.1)

or equivalently,
{! 2 Ω : ! 2 X \ K,?L <L kL(!) L xL(!)} 2 F. (9.2)

Definition (13) simply means that observing C(X,xL) one can always say if C(X,xL) hits or misses
any given compact chain-set (K, kL). The following definition is fundamental for the rest of this
study.

Definition 14. The functional TX,xL
(·, ·) : LE 7! [0, 1] given by

TC(X,xL)
(C(K,kL)) = P{! 2 Ω : ! 2 X \ K,?L <L kL(!) L xL(!)} (9.3)

= P{X \ K 6= ;,?L <L kL L xL}

is said to be the capacity chain functional of C(X,xL). For simplicity, we write T(C(K,kL)) instead of
TC(X,xL)

(C(K,kL)) where no ambiguity occurs.
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We can consider in particular the simplest case which show the compatibility of our framework
with the classical Boolean model.

Proposition 5. (Capacity chain functional of simple random sets).

1. If C(X,xL) = (⇠,>L) is a random singleton with chain value equal to the maximum of L, and
(K, kL) is a non-trivial compact chain-set then

T(⇠,>L)(C(K,kL)) = P{⇠ \ K 6= ;} = P{⇠ 2 K}, (9.4)

so that the capacity chain functional is the probability distribution of ⇠.

2. If C(X,xL) = (X,>L) is a random closed chain-set with chain value equal to the maximum of L,
and (K, kL) is a non-trivial compact chain-set then

T(X,>L)(C(K,kL)) = P{X \ K 6= ;} = TX(K), (9.5)

so that the capacity chain functional is the classical Choquet capacity functional.

It follows immediately from Definition (14) that:

• TC(X,xL)
(C;,rL) = 0, for all rL 2 L,

• TC(X,xL)
(CK,?L

) = 0, for all K 2 K,

• 0  TC(X,xL)
(C(K,kL))  1, for all K 2 K, kL 2 L.

It is easy to see that the capacity chain functional is monotone in E, i.e., T(K1, rL)  T(K2, rL) if
K1 ✓ K2, 8rL 2 L, and it is monotone in L for chain value not greater than xL, i.e., T(K, r1)  T(K, r2)
if r1 L r2 L xL, 8r1, r2 2 L, and accordingly monotone in LE for all r1, r2 L xL 2 L. In contrast
to the notion of measure, the capacity chain functional T(·, ·) is not additive, but only subadditive
in K, i.e., for K1, K2 2 K

T(K1 [ K2, r)  T(K1, r) +T(K2, r) (9.6)

and also in L, i.e., for r1, r2 2 L

T(K, r1 _ r2) = max{T(K, r1),T(K, r2)}  T(K, r1) +T(K, r2) (9.7)

Therefore,
T(K1 [ K2, r1 _ r2)  T(K1, r1) +T(K1, r2) +T(K2, r1) +T(K2, r2) (9.8)

The advantages of the representation introduced by Definition (14) is the fact that T(K, r) can be
calculated by simple transformations. Thus, it is often desirable to represent the capacity by using
morphological transformations Matheron (1975).

Definition 15. A transformation LE 7! LE, called the dilation in the chain representation, denoted
by δ, is defined as

δ(C(K,kL))(X, xL)(x) =

(W
y2Kx,kL(y)xL(y) xL(y) if x 2 δK(X),

?L otherwise.
(9.9)

From (9.9) and Definition (14), the capacity can be expressed as follows

Proposition 6. (Capacity chain functional using dilation)

1. TC(X,xL)
(C(K,kL)) = P{δ(C(K,kL))(X, xL) ≥L ?L},

2. P{δ(C(K,kL))(X,>L) >L ?L} = P{X \ K 6= ;} = TX(K)

3. P{δ(C(K,kL))(X, xL) >L ?L} = T(X,>L)(C(K,kL))
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We now wish to look at a simpler representation of Definition (14) for particular cases. We follow
Jeulin (1992b,a) to get a level-set representation of the capacity chain functional. We define two
auxiliary functions as

AC(X,xL)
(zL) =

(
xL(x), if x 2 X, xL(x) ≥ zL,

?L otherwise.
(9.10)

and

B(C(K,kL))(zL) =

(
kL(x), if x 2 K,?L < kL(x)  zL,

?L otherwise.
(9.11)

It is straightforward to see that:

TC(X,xL)
(C(K,kL)) = P{δ(C(K,kL))(X, kL) >L ?L} = P

( [

zL2L

δB(K̂,kL)(zL)(AC(X,xL)
(zL)) >L ?L

)

(9.12)
Assume that kL(x) = kL, 8x 2 K, i.e., “flat compact" constant-value. Thus, (9.12) becomes:

= P

( [

zL2L

δ(Ǩ,kL)(AC(X,xL)
(zL)) >L ?L

)

= P

8
<
:

[

zL≥LkL

δǨ(xL ≥ zL)

9
=
;

where Ǩ is the transposed compact set in E. That is the probability of the dilation of the upper
level set in the lattice higher that the chain value in the compact K.

9.3 From Boolean Random Model to Chain Boolean Random

Models

The aim of this section is to explain how can be generated a realisation of function LE which fits the
Chain Boolean Random Model.

9.3.1 Notation

A point process M is a form of stochastic or random process. It may be thought of as a set of
random points in a space, with a certain probability defined over the same space. We remark that
a realisation of M comprises the number k ≥ 0 2 N and the locations Mk = {x1, . . . , xk}, where
xi 2 E 8i. In general we can broadly distinguish two kinds of point process, spatial homogeneous
and inhomogeneous. We assume that M is spatial homogeneous, i.e. stationary. That is to say
that the distribution of the shifted point M + z is the same for all z 2 E. We denote Ξ the primary
grains assumed to be non-empty convex subset of E. The intuitive idea behind this is that the
points Mk are the “germs” and the compact sets Ξ(Mk) = {Ξ1, . . .Ξk} are the “grains". Germ-grain
models of this form are a rather flexible class of random closed sets. An important special case is
the Boolean model, where the germ form a homogeneous Poisson process. We refer to Molchanov
(1997), Lantuéjoul (2002) for a detailed introduction into the subject.

9.3.2 Binary Boolean Random Model

For binary images, the vector space is simply L = {0, 1}, and a realisation of the Boolean model
denoted by B(Ξ(M )) falls into the following stages:

1. An homogeneous Poisson process with intensity λ is generated. We denote it as Mλ =
{x1, . . . , xk}, where k ⇠ Poisson(λ).
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(a) M is a random reali-
sation of the homogeneous
Poisson process

(b) B(Ξ(M )) is obtained
by dilation and union of
the Poisson process.

(c) L (d) B(Ξ(M ),L)

Figure 9.1: Example of Binary Boolean Random image and Chain Boolean Random multivariate
image. For illustration, the same Ξ(M ) is used in both simulations. We notice that L is a color
lattice from blue (>L) to yellow (?L).

2. Second, the set of germs Ξ(Mk) is determined. For example, Ξ(Mk) = Brk denoting balls of
radius rk centered at point xk. The germs Ξ(Mk) follow a particular distribution. For instance
the radius of balls can follow an uniform distribution.

3. Finally, the Boolean model is produced by:

B(Ξ(M )) :=
[
δΞ(Mi)(xi) (9.13)

where δSE (x) denote the dilation (Minkowski addtion) by a structuring element SE centered at
x. Note the B(Ξ(M )) is an binary image, i.e. B(Ξ(M ) 2 F(E, {0, 1}).

9.3.3 Chain Boolean Random Model

The aim of this section is to generate a multivariate image from (M ,Ξ(M ),L), where M is a point
process, Ξ(M ) is a set of germs associated to the given point process M , L is a lattice. The
idea of Germ-grain model is based on the notion that the an image can be characterised by using an
approximation of independent discrete objects of different sizes. To generate a new version according
to this characterisation, a random disposition of these discrete objects have to be implanted and the
application of an occlusion criterion in the interception of objects give us the final result. In our
setting, the idea “implantation" implies the definition of a background, i.e., the part of the image
that serves as a setting to the implanted objects. We denote ?L the minimum of the lattice L.
Thus, a Chain Boolean Random Model based on a lattice L, the point process M and the primary
grains Ξ is denoted by B(Ξ(M ),L) and it can be generated in the following stages:

1. An homogeneous Poisson process with intensity λ is generated. We denote it as Mλ =
{x1, . . . , xk}, where k ⇠ Poisson(λ).

2. Second, the set of germs Ξ(Mk) is determined. For example, Ξ(Mk) = Brk denoting balls of
radius rk.

3. Third, a random sample of size k, {x1
L, . . . , x

k
L} is drawn from L and implanted at Mλ over an

homogeneous background with vector value equal to ?L.

4. Finally, the Boolean model is produced by:

B(Ξ(M ),L) :=
k_

i=1

δ(Ξ(Mk),xk
L)(X,>L) (9.14)
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where δSE (·) denote the dilation in the lattice formulation. Note the B(Ξ(M ),L) is by con-
struction an image with values from L, i.e., B(Ξ(M ),L) 2 LE. In Fig. 9.1 is given an example
of simulation of a lattice Boolean Random color image.

9.3.4 Properties

In the framework of the theory of random sets, these structures and their models are fully char-
acterised by a functional called Choquet capacity. By the Choquet theorem [15], the distribution
of the grain Ξ0 with M a stationary Poisson process, is determined by the correspondent capacity
functional:

TΞ0(K) = P{Ξ0 \ K 6= ;}, (9.15)

where K runs through the family of all compact sets. The capacity functional of the Boolean Model
B(Ξ0) is defined analogously. It can be evaluated as Molchanov (1997) [p.21] :

TB(Ξ0)(K) = P{B(Ξ0) \ K 6= ;} = 1− exp{−E(δ
Ǩ
(Ξ0))} (9.16)

where E is the expected value operator, and in the stationary case, we obtain the simplified expres-
sion:

TB(Ξ0)(K) = P{B(Ξ0) \ K 6= ;} = 1− exp{−λµE(δǨ(Ξ0))} (9.17)

where µE is the Lebesgue measure of E, i.e., (Area in 2D images, Volume in 3D images).
Now we assume that the chain value kL are drawn i.i.d. with distribution FL, the capacity chain
functional TB(Ξ0,L)(K) is given by

TB(Ξ0,L)(K) = P{B(Ξ0) \ K 6= ;,?L <L kL L xL} (9.18)

= (1− exp{−λµE(δǨ(Ξ0))})PFL
{?L <L kL L xL} (9.19)

Proposition 7. Any random Boolean function B(Ξ0,L) from E into L is infinitely divisible underW
L; i.e. for each integer k, it can be written as:

B =
_

L

{Bi, i 2 [1 . . . , k]}, (9.20)

in which Bi are k equivalent independent Boolean random function.

9.3.5 h-ordering and h-adjunctions

The formalism introduced in the previous section requires the notion of a well-ordered set or lattice.
As it was presented in Chapter 3, from a h-ordering, we can define a h−adjunction.Summarising,

to define morphological operator in a vector space R
d, a surjective mapping h is required. It is

illustrated in (9.21)

F(E,Rd)
h
−! LE

" # δ

F(E,Rd)
h−1

 −− LE (9.21)

For practical application, the lattice L should be obtained from examples of images. Let us consider
the example illustrated in Fig. 9.2: starting from a multivariate image I 2 F(E,Rd), in this case a
colour image (i.e., d = 3), the first step to deal with it involves to obtain a mapping from the vector
space of values R

d to a complete lattice L, which introduces an ordering structure compatible with
mathematical morphology operators, such as dilation, and with Chain Boolean Random Models.
In particular, for this study, we focus on an ordering mapping which is intrinsically associated to
the image I based on the h-ordering introduced in Chapter 6. Different types of h-ordering have
been proposed in the literature. However, it is convenient and natural to orient to a “centre", which
can be defined in a variety of ways. This leads naturally to the use the center-outward ordering of
points and description in term of nested contours.
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Figure 9.2: The Chain representation of a multivariate image allows the applications of non-linear
filtering and random Boolean model theory.

9.4 Experiments

The aim of this section is to provide some initial experiments of multivariate Boolean Random image
simulation. We are considering in ongoing research a more systematic study on the issue of image
characterising and simulation using the models introduced in this chapter.
Let us consider the first example given in Fig. 9.3(a). This example shows a hyperspectral image
with 201 rows, 143 columns in 102 bands. The value of the projection depth function in shown
in Fig. 9.3(b), and the associated intrinsic ordering is obtained in Fig. 9.3(c). Now, working on
the lattice LI induced by this ordering, it is possible to simulate a hyperspectral Boolean image.
From the projection depth function, we can, on the one hand, obtain the background value (which
correspond to the bottom on the lattice, ?L) and, on the other hand, the distribution of values of L,
i.e., the histogram of the chain value. The notion of lattice volume fraction f̂L can be introduced as
the fraction lattice of points of the image which are greater than the background in the order induced
by the random projection depth. Accordingly, the size distribution of the image associated to the
lattice L, which is obtained by means of a granulometry based on openings with disks as structuring
element of increasing size, allows us to estimate the typical size of the image objects: r̂. They are
important parameters to simulate multivariate textures according to our model, because from them,
we can estimate the intensity λ̂ of the homogeneous Poisson processing by using Matheron (1975):

f̂L = 1− exp(−λ̂⇡r̂2)

() λ̂ =
ln (1− fL)

−⇡r̂2

We observe that the original (Fig.9.3(a)) and the simulated images have the same spectra (Fig.9.3(d))
but of course the “texture" of the original one does not fit the Boolean model and consequently the
simulation is not realistic. On the other hand, even if both images underlay the some lattice, the
distribution of the spectral space is not the same. The second and third examples given in Fig.9.4
and 9.5 correspond to natural multivariate images which are more appropriate to be considered un-
der the Boolean paradigm. We have used the same procedure in both cases. Starting from the initial
image, the intrinsic ordering associated to the projection depth function is obtained.The germs are
generated according to an homogeneous Poisson process with intensity estimated from f̂L and r̂. The
next step consist in generating a lattice Boolean random image B(Ξ,L), where the primary grain Ξ
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(a) Original image is a Hy-
perspectral image I. False
colour in the bands corre-
spondent to {50, 90, 100}

(b) Projection Depth Func-
tion associated to I

(c) Lattice (LI) by using
Projection Depth Ordering
from Chapter 5.

(d) Simulation of a Boolean
model in LI.

Figure 9.3: Example of simulation for a hyperspectral image

is a disk of size r̂. The random values in the disks are drawn from L following the distribution of
the image.
The extension of the classical Boolean model presented in this Chapter discusses the basic ingredi-
ents of the model, however more research work is necessary to consolidate the theoretical basis of
the approach. Despite that, we believe that the examples are useful to illustrate the interest of the
procedure.

9.5 Conclusions of this chapter

We have introduced in this chapter the first milestone towards a theoretical framework for lat-
tice Boolean Random Model. The interest of such a stochastic geometry models is the charac-
terization and simulation of multivariate images, and in particular the analysis and simulation of
multi/hyperspectral texture images. We have discussed the basic ingredients of the model, however
more research work is necessary to consolidate the theoretical basis of the approach.
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(a) I2 (b) Projection depth function for
I2

(c) Associated Lattice LI2

(d) Granulometry in LI2
(e) Random generation of the
Boolean model

(f) Random generation of the
Boolean model

Figure 9.4: Summary of proposed steps to generate random realization of a Boolean model in the
lattice induced by the random projection depth function.

(a) I3 (b) A realization of the Lattice-
Boolean model

(c) Other realization of the Lattice-
Boolean model

Figure 9.5: Realisations of the proposed algorithm of Multivariate Boolean model in the lattice
induced for the projection depth function
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10
Conclusion and Perspectives

Résumé

Dans ce chapitre, les contributions plus importantes de cette thèse sont rappelées. Quelques remar-
ques finales sont accompagnées de perspectives concernant de possibles travaux futurs.

10.1 Conclusion

We studied multivariate ordering and its relationship with mathematical morphology to analyse
multi/hyperspectral images as well as connections between techniques of dimensionality reduction,
tensor structures and supervised classification of remote sensing imagery. The main idea and con-
tribution of this thesis is to demonstrate that the study of the multivariate statistics and machine
learning techniques such as supervised learning and distances based on random projections is closely
related to the idea of ordering in high-dimensional spaces with applications to nonlinear image pro-
cessing, i.e. mathematical morphology for multivariate images.
The work presented in this dissertation addressed the problem of modelling multivariate images in
a partially ordered set through techniques based on mathematical morphology. The main contribu-
tions of our work include the following points:

• The introduction of new notions as supervised ordering, background/foreground decomposi-
tion, order based on random projections, additive morphological decomposition, and condi-
tional toggle mapping transformation and showed that they are closely related to the morpho-
logical analysis of multivariate images.

• The idea of supervised ordering allows us to generalise, in a natural way, classical morphological
operators. In particular a multivariate version of the hit-and-miss transformation, which is
applied in the template matching problem from high resolution remote sensing images.

• We bring a theoretical idea from the literature of multivariate statistics (the elliptically con-
toured distribution), to prove that for data following this class of probability distributions,
the ordering based on random projections is equivalent to the classical Mahalanobis distance.
Additionally, our formulation allow us to include robust estimators to build a multivariate
ordering with natural interpretation in many real-life images.

• We introduced a new free-parameters unified approach for both edge enhancement and salt-
and-pepper noise removal by using conditional mathematical morphology. The unified frame-
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work is based on defining a seed mask, which is different according to type of processing, and
by using condition mathematical morphology operators in an iterative toggle contrast style.
The proposed filter also shows consistent and stable performance across a wide range of noise
densities from 10% to 95%. A remarkable point concerning the behaviour of the present ap-
proach is the fact that between 50% and 95% is obtained a difference of less than 5 in PNSR,
which proves the stability of the method with respect to the noise level.

• Inspired by the necessity of including spatial information in dimensionality reduction tech-
niques, we proposed the additive morphological decomposition (AMD). A spatial/spectral
dimensional reduction technique with a really good performance in classification task have
been proposed by interacting AMD with a tensor version of classical principal component
analysis. Practical examples achieved in supervised classification show that the proposed ad-
ditive morphological decomposition outperforms traditional decompositions in remote sensing
scenarios. Additionally, the morphological additive decomposition is more compact, in the
sense of dimension size, than classical decompositions.

• We introduced the first milestone towards a theoretical framework for lattice Boolean Random
Model. The interest of such a stochastic geometry model is the characterization and simulation
of multivariate images, and in particular the analysis and simulation of multi/hyperspectral
texture images.

For all of these approaches, there are a variety of open theoretical and algorithmic questions, that
are included in the next section.

10.2 Suggestions for Future Works

Here, we discuss some questions and suggestions for future works on mathematical morphology in
multivariate images.

Chapter 1:

• The orders proposed in this thesis are image adaptive, so a natural question is how can we
define a measure of agreement between an order and a image?.

• Degree of conformity, i.e., a measure of conformity of a given set to its ordering principle.
Thus, sets that share the same ordering principle may differ in their degree of conformity, i.e.,
an order can be more adequate to a given image than to another.

• Degree of complexity; it should measure the amount of distinctions resulting from the applica-
tion of an ordering principle to a set, i.e., in the context of multivariate morphology, it should
answer the question “Does the order allow us to extract the important objects of the image?"

Chapter 4

• Multiscale Ordering: One can define a multi-scale representation of a multivariate image. So,
it is important to know what kind of ordering can be calculated in the reduced image to get
an order that is invariant to the sampling size in the representation.

• Semi-supervised Ordering: Machine Learning approaches allow the generation of classification
function from labeled and unlabeled data at the same time. These types of approaches are
named “semi-supervised". What properties of type of learning approaches can be feasible for
multivariate ordering?

• Can the ordering be learned from some images and then be applied to others from the same
scene? For instance, the analysis of a video sequence by morphological operators.

Chapter 5
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• The main question in the multivariate version of the hit-and-miss transform is how to find
automatically the best value of threshold parameter ✏.

Chapter 6

• Does Proposition 6 stating that the random projection depth is equivalent to the Mahalanobis
distance (k !1) hold for a more general family of probability distribution?

• Can we apply the same idea of random projections to manifold structures (graph, shapes, etc)
or to data with missing information ?

Chapter 7

• To understand the advantage of the additive decomposition, it is important to know the
statistical properties and their relationship with classical estimators (mean, median, etc).

• Tensor decomposition is not invariant to rotations of the scene. So, an important question
is how to get invariant decompositions, for instance, in a polar representation of the original
image.

Chapter 8

• The conditional toggle mapping allows us to solve simple in-painting problems. Thus, image
compression or super-resolution can be performed by using the same approach.

• Ideally, non-flat and local adaptive morphology have to be used to improve the performance
of the proposed algorithms to filter salt-and-pepper noise.

• An adequate multivariate extension have to be considered. For instance, the order based on
random projection can be performed before the mask detection stage.

Chapter 9

• Ideally, if we are interested to generate random version of a given multivariate image, our
model should capture the structure (granulometry) and texture of objects of interest. So,
the real challenge in such generalisation of Multivariate Boolean Models would be developing
methods for deducing structure plus texture information about the original image based on,
for instance, random projections.
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List of Symbols

Symbol Meaning
I Original image.
d Dimension of the vector space.
n Number of pixels.
x A pixel in the original image.
x A coordinate in the original image.
E Spatial space of points.
F Domain of vector values.
SE Structuring Element.
ŠE Transpose of the structuring element.
B Ball centered at x.
tmax Maximum value for a grey value image.
X Matrix version of the original image I.
δSE (·) , "SE (·) Dilation, Erosion operator.
γSE(·),'SE(·) Opening, Closing operator.
⌧ Toggle mapping operator.
δ1
B
(M, I) dilation by reconstruction from the M to I

Λ(I) Leveling
λσ(I) Upper Leveling
λσ(I) Lower Leveling
T Training set.
B,F Background, Foreground set.
b, f, p A pixel in the background, foreground or path.
M Mask or Marker image.
K A kernel matrix.
D Distance matrix.
∆"

SE
(I),∆δ

SE
(I) Gradient by Erosion, Gradient by Dilation.

∆SE(I) Morphological Gradient.
"SE (I,M) , δSE (I,M) Conditional Erosion, Conditional Dilation.
⌧SE(I,M) Conditional Toggle Mapping.
N(SE,M)(I) Conditional Neighborhood.
"̃SE(I,M) Algebraic Adjunction of Conditional Dilation.
L A lattice
?,> Minimum, maximum in the lattice.
r Element in the lattice.
R A set.
r A element in the set.
DP (x; I) Depth function for a vector x based on an image I.
hD(·;I) h-ordering for a given image I based on a the depth function.
h{B,F} h-supervised ordering based on the sets {B,F}.
δSE,h(·) Dilation by the h ordering.
med Median.
mad Median absolute difference.
CC Connected component.
K Compact set in the space support.
M Point Process
Ξ Primary grain
T(K) Choquet capacity of K
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Contributions en morphologie mathématique pour l’analyse d’images
multivariées

Résumé : Cette thèse contribue au domaine de la morphologie mathématique et illustre comment les sta-
tistiques multivariées et les techniques d’apprentissage numérique peuvent être exploitées pour concevoir un
ordre dans l’espace des vecteurs et pour inclure les résultats d’opérateurs morphologiques au processus d’ana-
lyse d’images multivariées. En particulier, nous utilisons l’apprentissage supervisé, les projections aléatoires, les
représentations tensorielles et les transformations conditionnelles pour concevoir de nouveaux types d’ordres
multivariés et de nouveaux filtres morphologiques pour les images multi/hyperspectrales. Nos contributions clés
incluent les points suivants :

• Exploration et analyse d’ordre supervisé, basé sur les méthodes à noyaux.

• Proposition d’un ordre non supervisé, basé sur la fonction de profondeur statistique calculée par projections
aléatoires. Nous commençons par explorer les propriétés nécessaires à une image pour assurer que l’ordre
ainsi que les opérateurs morphologiques associés, puissent être interprétés de manière similaire au cas
d’images en niveaux de gris. Cela nous amènera à la notion de décomposition en arrière plan / premier
plan. De plus, les propriétés d’invariance sont analysées et la convergence théorique est démontrée.

• Analyse de l’ordre supervisé dans les problèmes d’appariement par forme de référence, qui correspond à
l’extension de l’opérateur tout-ou-rien aux images multivariées grâce à l‘utilisation de l’ordre supervisé.

• Discussion sur différentes stratégies pour la décomposition morphologique d’images. Notamment, la dé-
composition morphologique additive est introduite comme alternative pour l’analyse d’images de télédé-
tection, en particulier pour les tâches de réduction de dimension et de classification supervisée d’images
hyperspectrales.

• Proposition d’un cadre unifié basé sur des opérateurs morphologiques, pour l’amélioration de contraste et
pour le filtrage du bruit poivre-et-sel.

• Introduction d’un nouveau cadre de modèles Booléens multivariés par l’utilisation d’une formulation en
treillis complets. Cette contribution théorique est utile pour la caractérisation et la simulation de textures
multivariées.

Mots clés : Morphologie mathématique, Télédétection, Projections aléatoires, Structure tensorielle,
Traitement d’images.

Topics in Mathematical Morphology to Multivariate Image Analysis

Abstract: This thesis contributes to the field of mathematical morphology and illustrates how multivariate
statistics and machine learning techniques can be exploited to design vector ordering and to include results of
morphological operators in the pipeline of multivariate image analysis. In particular, we make use of supervised
learning, random projections, tensor representations and conditional transformations to design new kinds of multi-
variate ordering, and morphological filters for color and multi/hyperspectral images. Our key contributions include
the following points:

• Exploration and analysis of supervised ordering based on kernel methods.

• Proposition of an unsupervised ordering based on statistical depth function computed by random projec-
tions. We begin by exploring the properties that an image requires to ensure that the ordering and the
associated morphological operators can be interpreted in a similar way than in the case of grey scale im-
ages. This will lead us to the notion of background/foreground decomposition. Additionally, invariance
properties are analyzed and theoretical convergence is showed.

• Analysis of supervised ordering in morphological template matching problems, which corresponds to the
extension of hit-or-miss operator to multivariate image by using supervised ordering.

• Discussion of various strategies for morphological image decomposition, specifically, the additive morpho-
logical decomposition is introduced as an alternative for the analysis of remote sensing multivariate images,
in particular for the task of dimensionality reduction and supervised classification of hyperspectral remote
sensing images.

• Proposition of an unified framework based on morphological operators for contrast enhancement and salt-
and-pepper denoising.

• Introduces a new framework of multivariate Boolean models using a complete lattice formulation. This
theoretical contribution is useful for characterizing and simulation of multivariate textures.

Keywords: Mathematical Morphology, Remote Sensing, Random Projections, Tensor Structure,
Image Processing.
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