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Résumé

Ce travail a été consacré à l’étude théorique du bismuth semi-métallique à l’aide de
méthodes basées sur la théorie de la fonctionnelle de la densité (DFT). Les effets de
couplage spin-orbite et d’échange et de corrélation dans l’approximation de densité lo-
cale (LDA) et de gradient généralisé (GGA) ont été approfondis de façon systématique.
J’ai trouvé que les poches d’électrons et de trous au niveau de Fermi sont correctement
décrites, ce qui m’a permis d’interpréter avec succès les expériences pompe-sonde dans le
bismuth photoexcité menées au laboratoire des Solides Irradiés. Le calcul du couplage
électron-phonon a montré la forte dépendance, par rapport au vecteur d’onde électronique,
du couplage de la bande de valence la plus haute avec le phonon A1g LO de centre de
zone, ce qui explique l’observation de la forte dépendance en k de l’amplitude d’oscillation
de l’énergie de liaison de cette même bande en photoémission résolue en temps. J’ai aussi
montré que la présence d’extréma dans les bandes de valence et de conduction, où la masse
des porteurs peut atteindre 18m0, favorise une accumulation des porteurs et conduit à
une augmentation de leur fréquence plasma au cours du temps après photoexcitation, un
effet qui n’a pas (encore) été observé dans d’autres matériaux. Enfin, j’ai développé une
nouvelle méthode en théorie de perturbation de la fonctionnelle de la densité dépendante
du temps (TDDFPT), qui permet de calculer la réponse électronique du matériau pour
n’importe quelle valeur du moment transféré. Cette approche basée sur la méthode de
récursion de Lanczos m’a permis de calculer les spectres de perte d’énergie électronique
de Bi dans la gamme d’énergie 0-100 eV et de combler l’intervalle d’énergie entre les
pertes des électrons de valence et celles des électrons de cœur. Cette méthode ouvre des
perspectives considérables, comme le calcul des plasmons de surface.

Mots clés: bismuth, théorie de perturbation de la fonctionnelle de la densité dépendant
du temps, méthode de récursion de Lanczos, couplage électron-phonon, fréquence plasma
des porteurs libres, spectroscopie de perte d’énergie électronique.





Abstract

This work has been devoted to the theoretical study of bulk semimetallic bismuth with
methods based on the density functional theory (DFT). Effects of spin-orbit coupling and
of the exchange-and-correlation functionals in the local density (LDA) and generalized
gradient approximation (GGA) have been systematically investigated. I have found that
electron and hole pockets at the Fermi level are accurately reproduced, which has enabled
me to successfully interpret the pump-probe experiments in the photoexcited bismuth
performed in the Laboratoire des Solides Irradiés. The strong dependence on the elec-
tronic wave vector, of the calculated electronic coupling of the upper valence band with
the zone-center A1g LO phonon, explains the observation of a strongly k-dependent oscil-
lation amplitude of the upper valence band in time-resolved photoemission experiments
upon activation of the coherent A1g phonon under photoexcitation. I have also shown that
the presence of local extrema in the conduction and valence bands structure, where the
carrier mass can be as large as 18m0, favours an accumulation of photoexcited carriers in
these extrema and contributes to the augmentation of the plasma frequency as a function
of time after the photoexcitation, an effect which has no analogy in other materials (as
yet). Finally, I have developed a new ab initio approach in the time-dependent density
functional perturbation theory (TDDFPT), which allows us to calculate the electronic
response of materials for any momentum transfer. This approach based on the Lanczos
recursion method has enabled me to calculate for the first time the electron energy-loss
spectrum of Bi in the 0-100 eV energy range, bridging the gap between valence and core
losses. This method opens the way to the routine calculation of surface plasmons.

Keywords: bismuth, time-dependent density functional perturbation theory, Lanczos
recursion method, electron-phonon interaction, free-carrier plasma frequency, electron
energy-loss spectroscopy.
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Chapter 1

Introduction

The general problem which has been addressed in this thesis is the ab initio study of
the ground-state and excited-state properties of the semimetal bismuth by developing
and applying new theoretical methods based on the (time-dependent) density functional
theory - (TD)DFT [1, 2, 3]. This thesis has followed two main directions: (1) Theoretical
developments needed for the physical interpretation of experiments carried out at the
Laboratoire des Solides Irradiés on photoexcited Bi, (2) The development of a new method
for the calculation of the electron energy-loss spectra, and application to Bi.

Bismuth is the material that has been extensively studied over the last 70 years,
and has gained an increased interest over recent years, both on the experimental and
theoretical side. This material has a lot of unique properties, e.g., it has unusual electronic
properties due to its semimetallic character, which involves the existence of tiny electron
and hole pockets forming the Fermi surface [4]; the relativistic spin-orbit coupling effect
is very large in Bi, which influences its electronic and vibrational properties [5, 6]; the
effective masses of carriers at the Fermi surface may be two orders of magnitude smaller
than the free-electron mass [4]; it is a prototypical element for thermoelectricity [4]; it has
unique spin properties on the surface [7], to recall only some of them.

From the computational point of view bismuth is a challenging material, because (i) it
requires the inclusion of the spin-orbit coupling in the calculations, (ii) the description
of the electron and hole pockets at the Fermi levels requires very dense k point sampling
of the Brillouin zone. The electronic structure of bulk Bi has been studied within the
DFT [5, 8], the tight-binding model [9], empirical pseudopotential calculations [10], and in
various experiments, like Shubnikov-de Haas [11], de Haas-van Alphen [12], photoemission
[13], to recall only some of numerous studies. It is a challenging task to reproduce the
electron and hole pockets near the Fermi level from-first-principles. This has been made
possible in this thesis, by generating a new pseudopotential (PP) for Bi with the help of
Prof. Andrea Dal Corso (SISSA, Trieste, Italy), and using such a PP for the electronic
structure calculations.

Two types of experiments on Bi have been carried out by our collaborators at the
Laboratoire des Solides Irradiés of the École Polytechnique, French synchrotron SOLEIL,
and Max Planck Institute in Germany, namely, the time-resolved and angle-resolved pho-
toemission experiment on Bi(111) surface (by E. Papalazarou, J. Faure, J. Mauchain,

1



2 CHAPTER 1. INTRODUCTION

M. Marsi, A. Taleb-Ibrahimi, I. Reshetnyak, A. van Roekeghem, and L. Perfetti), and
the time-resolved terahertz experiment on Bi film of 100 nm thickness (by T. Kampfrath,
J. Faure, C. R. Ast, C. Frischkorn, M. Wolf, and L. Perfetti). These two kinds of experi-
ments needed a theoretical interpretation on the basis of the ab initio simulations.

In the photoemission experiment the A1g coherent optical phonon mode was activated.
Bismuth is a reference material for the investigation of lattice dynamics in out-of-equilibri-
um conditions [14]. The atomic motion following the photoexcitation of Bi is well under-
stood nowadays: Time-resolved X-ray diffraction experiments [15] and DFT calculations
[16] could accurately describe the amplitude of oscillations at high-excitation densities.
However, the temporal evolution of the electronic states after photoexcitation has never
been directly observed in the time-resolved (pump-probe) photoemission experiments nor
studied ab initio. This issue will be addressed in this thesis.

This thesis also aims at understanding of the free-carrier absorption after the pho-
toexcitation of Bi, as measured in the time-resolved terahertz experiments. I will show
that the carrier dynamics of photoexcited Bi generates a Drude response that evolves over
time. By performing methodological developments in order to describe the free-carrier
response in Bi, I will study the Drude intraband contribution to the dielectric function
of Bi, and will consider the photoinduced change of the plasma frequency. These studies
have been done in collaboration with Dr. Paola Gava, at that time a postdoc at the
Laboratoire des Solides Irradiés.

During the second part of my PhD, in accordance with the Gaspard Monge interna-
tional program, I had to spend at least 6 weeks of my PhD work in a laboratory outside
of France. I had an excellent opportunity to spend in total about 5 months of my PhD at
the Scuola Internazionale Superiore di Studi Avanzati (SISSA) of Trieste (Italy) working
under the supervision of Prof. Baroni, and in collaboration with Dr. Gebauer from the
Abdus Salam International Centre for Theoretical Physics (ICTP) of Trieste. The goal of
the research project was a methodological development of the new ab initio method to the
electron energy-loss spectroscopy, with subsequent application to challenging materials,
in particular bismuth. This project lasted 2 years.

The ability to compute electron energy-loss (EEL) spectra from-first-principles is of
fundamental importance both to complement and help interpret experiments, and to
predict properties of new materials. Thus, it is desirable to develop theoretical methods
and computational techniques to obtain EEL spectra that are both accurate and scalable
to systems with a large number of atoms. A commonly used state-of-the-art approach to
compute EEL spectra ab initio is the time-dependent density functional theory (TDDFT)
[3]. Current techniques based on this theory involve the computation of a multiple of
single-particle empty states and the solution of the Dyson-like screening equation for the
susceptibility [17]. Both operations may become very expensive, from a computational
point of view, even for systems with a small number of atoms, like Bi (two atoms in the
unit cell). The calculation of the EEL spectra for systems with a large number of atoms
is an even more challenging problem. Hence, it is highly desirable to develop theoretical
methods to solve the TDDFT equations that are scalable even to very large systems, and
give access to the carrier response in extended energy range, without relying on various
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approximations, e.g. truncation of the number of empty states, and avoid dielectric matrix
inversion.

In this thesis I will present a new ab initio method, which overcomes all these draw-
backs of the conventional TDDFT methods. The new method is an extension of the
Liouville-Lanczos approach [18] from the calculation of the optical absorption spectra of
finite systems (e.g., molecules) to the calculation of the EEL spectra of extended sys-
tems at various transferred momenta q. After testing the new method on prototypical
examples of bulk silicon and aluminum, I will apply the Liouville-Lanczos approach to
the calculation of the carrier response in bulk Bi in the energy range up to 100 eV, and
thus bridge the gap between the valence-loss and core-loss contributions. I will study
the single-particle and collective carrier response in Bi in the extended energy range, by
calculating the valence EEL spectra at various transferred momenta q. Numerous ex-
perimental investigations of this issue have been carried out, but no theoretical works
exist confirming the origin of peaks in the experimental EEL spectrum of Bi. Thus, the
new method will allow us to calculate the EEL spectra of Bi at various q for the first time.

This thesis is organized in two parts. Part I presents state-of-the-art methods and
current knowledge about bismuth, and Part II presents my results.

Part I contains 3 chapters.

In Chapter 2 I will give an introduction to DFT and its relativistic extension. This
will be needed for the consideration of Bi, in which relativistic effects are essential, in
particular the spin-orbit coupling. I will also point out how the problem can be solved in
practice, by using the plane-wave pseudopotential method.

In Chapter 3 I will present an extension of DFT to the time domain (TDDFT), for
the description of Bi in the excited state in the linear-response regime. I will present the
Liouville-Lanczos approach to the optical absorption spectra, which will be extended to
electron energy-loss spectroscopy (EELS) in Chapter 7.

In Chapter 4 I will explain why Bi has been chosen as a subject of study, and what are
its bulk crystal and electronic structures, surface electronic structure, vibrational proper-
ties, and EEL experimental spectra and optical dielectric function. I will stress the huge
importance of the spin-orbit coupling in Bi, and its influence on all properties of this
material. All of this information will be required for the discussions in Part II.

Part II contains 4 chapters.

In Chapter 5 I will present a detailed study of the theoretical equilibrium lattice
parameters of Bi within the local density (LDA) and generalized gradient (GGA) ap-
proximations, and the study of the Kohn-Sham band structure, with special emphasis
on a description of the electron and hole pockets. I will also discuss an interpretation
of the time-resolved and angle-resolved photoemission experiment on the basis of the
Kohn-Sham band structure. I will show that in the photoexcited Bi the A1g coherent
phonon mode leads to the oscillation of the top valence bulk electronic bands due to the
electron-phonon interaction.

In Chapter 6 I will present the investigation of the low-energy carrier response in Bi.
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I will present methodological developments for the free-carrier absorption, which will be
needed for the interpretation of the time-resolved terahertz experiment. I will show that
Bi displays a free-carrier Drude response at equilibrium and after the photoexcitation.

In Chapter 7 I will present a new method to EELS, which is an extension of the
Liouville-Lanczos approach from optics to EELS at finite q. After testing the new method
on bulk silicon and aluminum, I will show the results of the EEL spectra in Bi, and study
various aspects such as the effect of the exchange-and-correlation, effect of the spin-orbit
coupling, plasmon dispersion, crystal local field effects, anisotropy. I will point out the
advantages of the new method.

In Chapter 8 I will draw general conclusions and perspectives.

Finally, the appendices contain additional information needed for the discussions in
this thesis. Appendix A describes the pseudopotential, the phase diagram, and the re-
stricted density of states of Bi. Appendix B describes the basis of the photoemission
and terahertz experiments, which will be interpreted in Secs. 5.2 and 6.2. Appendix C
contains a summary of the implementation of the new method to EELS. Appendix D
contains my Curriculum Vitae.

Unless otherwise stated, Gaussian units are used throughout this thesis.
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Background: state of the art
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Chapter 2

Theory for the ground state

Since the birth of quantum mechanics, the description of a many-body problem by solving
the Schrödinger equation has been a formidable task. Many approaches exist to find an
approximate solution for such a problem. Let me give examples: (i) the configuration
interaction and the quantum Monte-Carlo approach from quantum chemistry, which aim
at determining the full many-body wavefunction [19, 20], (ii) the dynamical mean-field
theory, where the many-body problem is replaced by a single-site quantum impurity
problem for an effective medium [21], (iii) the many-body perturbation theory, which
is based on the Green’s function formalism [22], and (iv) the density functional theory
(DFT), which uses the ground-state density as a basic variable, and which reduces the
complicated many-body problem to an effective single-particle problem [23]. The method
of choice strongly depends on the material, the physical quantity of interest, and the
required accuracy.

The solution of the many-body problem is even more difficult when relativistic effects
are significant. The relativistic many-body system can be described by the Dirac equa-
tion. However, from a computational point of view, the solution of the Dirac equation
for real many-body systems has remained a big challenge. Nowadays, a treatment of
the relativistic spin-orbit coupling effect can be performed very accurately with different
methods, in particular, within the relativistic version of DFT.

This chapter aims at giving a presentation of the density functional theory and its
relativistic generalization, which I will use in the second part of the manuscript. First,
I will present a non-relativistic formalism, starting from the Schrödinger equation and
subsequently discussing the non-relativistic DFT. Afterwards, I will present a relativistic
formalism, going from the Dirac equation to the relativistic DFT. There exist numerous
textbooks for the detailed description of the theory which will be highlighted in this
chapter. An interested reader can consider, e.g., Refs. [24, 25, 26]. Finally, I will discuss
the plane-wave pseudopotential approach to (relativistic) DFT. At the end of the chapter,
I will give a summary.

7
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2.1 Non-relativistic theory

In the framework of non-relativistic quantum mechanics, the motion of particles is gov-
erned by the Schrödinger equation. The solution of this many-body problem is a formidable
task. Nevertheless, an ab initio description of real materials, based on the density func-
tional theory, can be used to tackle this problem.

In this section I will discuss the Schrödinger equation, and point out what difficulties
one faces when applying the Schrödinger equation to the description of a real many-body
system. Afterwards, I will show how such problems can be overcome by using the density
functional theory, and what is the physical idea behind it.

2.1.1 Schrödinger equation

In non-relativistic quantum mechanics, the Schrödinger equation is a mathematical tool to
describe a physical system. Let us consider a system which consists of interacting electrons
and nuclei. The Schrödinger equation, which was formulated by Erwin Schrödinger in
1925, of this system reads [27, 28]:

Ĥ({ri}, {RI}) Ψ({ri}, {RI}) = EΨ({ri}, {RI}), (2.1)

where {ri} is the set of electronic coordinates, {RI} is the set of nuclear coordinates,
Ψ({ri}, {RI}) is the total many-body wavefunction of the system, E is the total energy
of the system, and Ĥ is the Hamiltonian operator which reads:

Ĥ({ri}, {RI}) = − ~2

2m

∑
i

∇2
i −

∑
I

~2

2MI

∇2
I +

1

2

∑
i 6=j

e2

|ri − rj|

+
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|ri −RI |
, (2.2)

Here, i and I are the indices of electrons and nuclei, respectively, ri and RI are the
coordinates of electrons and nuclei, respectively, m is the electron mass, −e is the electron
charge, MI and +ZIe are the mass and the charge of the I-th nucleus, respectively, and ~
is the Planck constant. In Eq. (2.2), the first term is the kinetic energy of electrons, the
second term is the kinetic energy of nuclei, the third term is the electron-electron Coulomb
repulsion energy, the fourth term is the nucleus-nucleus Coulomb repulsion energy, and
the last term is the electron-nucleus Coulomb attraction energy.

Within the Born-Oppenheimer (BO) or adiabatic approximation [29], the motion of
electrons and nuclei can be separated, because electrons are very light compared to nuclei,
they move much more rapidly, and thus can follow the slower motion of nuclei [30].
Therefore, the total wavefunction Ψ({ri}, {RI}), can be approximated as a product of
the nuclear (ionic) and electronic wavefunctions:

Ψ({ri}, {RI}) = Ψion({RI}) Ψel({ri}, {RI}), (2.3)
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where Ψion({RI}) is the nuclear wavefunction, and Ψel({ri}, {RI}) is the electronic wave-
function which depends parametrically upon {RI}. The Schrödinger equation for the
nuclei reads: (

−
∑
I

~2

2MI

∇2
I + EBO({RI})

)
Ψion({RI}) = EΨion({RI}), (2.4)

where EBO is the ground-state energy of a system of interacting electrons moving in the
field of fixed nuclei. The Schrödinger equation for the electrons reads:

ĤBO({ri}, {RI}) Ψel({ri}, {RI}) = EBO({RI}) Ψel({ri}, {RI}), (2.5)

where ĤBO({ri}, {RI}) is the Hamiltonian of the electronic system, which depends also
parametrically upon {RI}, and it reads:

ĤBO({ri}, {RI}) = − ~2

2m

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
+ Vext. (2.6)

The first term is the electronic kinetic energy, the second term is the electron-electron
Coulomb repulsion energy, the third term is the potential acting on the electrons due to
the nuclei, and Vext =

∑
i,I VI(|ri −RI |). The term EII = 1

2

∑
I 6=J

ZIZJe
2

|RI−RJ |
is the classical

pairwise Coulomb interaction of nuclei, and it is added to the total energy of the electronic
system.

For a system of N electrons, the wavefunction Ψel({ri}) ≡ Ψel(r1, . . . , rN), depends
on 3N spatial variables.1 This leads to a rapid increase of the complexity of the problem
with the size of the system. Already small systems, that consist only of several tens of
electrons, become unfeasible. A solution of this problem is given by the density functional
theory.

2.1.2 Density functional theory

In the previous paragraph I have pointed out that the solution of the Schrödinger equation
for the many-body problem of interacting electrons is a tremendous task. However, the
density functional theory (DFT) gives an elegant solution to this problem: instead of
dealing with the wavefunction of 3N variables, Ψel(r1, . . . , rN), one may consider the
electronic ground-state density n(r) of only 3 variables [23]:

n(r) = N

ˆ
|Ψel(r, r2, . . . , rN)|2 dr2 . . . drN . (2.7)

The entire field of DFT is based on two fundamental mathematical theorems proved by
Pierre Hohenberg and Walter Kohn [1], and the derivation of a set of equations by Wal-
ter Kohn and Lu Jey Sham [2] in the mid 60s. The main achievement of the density
functional theory is a mapping of the many-body problem of interacting electrons onto a

1As has been pointed out above, the electronic wavefunction Ψel depends parametrically upon positions
of the nuclei {RI}. For the sake of simplicity, we will not write explicitly this dependence in the following.
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fictitious single-particle problem of non-interacting electrons in an effective local potential.

2.1.2 (a) Hohenberg-Kohn theorems

Theorem I
For any system of interacting particles in an external local potential Vext(r), the po-

tential Vext(r) is determined uniquely, except for a constant, by the ground state particle
density n0(r).

Theorem II
A universal functional for the energy EHK [n] in terms of the density n(r) can be

defined, valid for any external potential Vext(r):

EHK [n] = FHK [n] +

ˆ
Vext(r)n(r) dr, (2.8)

where FHK [n] is a universal functional of the density which does not depend on Vext(r).
For any particular Vext(r), the exact ground-state energy of the system is the global mini-
mum value of the functional EHK [n], and the density n(r) that minimizes this functional
is the exact ground state density n0(r).

The meaning of the first theorem is that the ground-state density n0(r) completely
determines all properties of the ground state of a given many-body system. The second
theorem is a corollary of the first one, and of the variational principle of quantum me-
chanics. Proofs of the Hohenberg-Kohn (HK) theorems can be found in many textbooks,
see, e.g., Ref. [24]. The HK theorems provide a general theoretical result, but no practical
recipe is given to solve the quantum many-body problem.

2.1.2 (b) Kohn-Sham auxiliary system

A practical formulation of DFT is provided by the Kohn-Sham (KS) approach, which
consists in replacing the difficult interacting many-body system by an auxiliary system
of non-interacting particles in an effective potential, a problem that can be solved more
easily [2]. The Kohn-Sham ansatz assumes that the ground-state density of the original
interacting system is equal to the ground-state density of the auxiliary non-interacting
system [24]. The density of the non-interacting system reads:

n(r) =
occ∑
i

|ϕi(r)|2, (2.9)

where the index i runs over occupied states, and ϕi(r) are the KS wavefunctions.2 The

2Equation (2.9) does not include the factor 2 due to spin, nor the occupation factor which is needed
for the description of metallic systems. In the general case, these factors must be included [24].
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kinetic energy of the non-interacting system reads:

T0 = − ~2

2m0

occ∑
i

〈ϕi|∇2|ϕi〉. (2.10)

The Hartree energy, i.e. the classical Coulomb interaction energy of the electron density
n(r) interacting with the electrostatic potential generated by itself, reads:

EH [n] =
e2

2

ˆˆ
n(r)n(r′)

|r− r′|
dr dr′. (2.11)

The Kohn-Sham approach to the interacting many-body problem consists in rewriting
the Hohenberg-Kohn expression for the ground-state energy functional (2.8) as [24]:

EKS[n] = T0[n] + EH [n] + Exc[n] +

ˆ
Vext(r)n(r) dr, (2.12)

where Exc[n] is the exchange-correlation (XC) energy functional. The XC energy func-
tional contains all quantum effects which are not described by T0[n] and EH [n]. It ac-
counts for the many-body effects missing in the classical description of the Hartree energy,
namely the exchange energy coming from the Pauli principle, and for the correlation ef-
fects which are absent in the kinetic energy term T0[n] and EH [n] of the non-interacting
system of electrons. The XC energy functional is unknown, a suitable approximation for
it is necessary. This problem will be addressed in the following paragraph.

Let us apply the variational principle of Theorem II to the energy functional of
Eq. (2.12), under the constraint of the orthonormalization of KS wavefunctions, 〈ϕi|ϕj〉 =
δij. Since T0, Eq. (2.10), is explicitly expressed as a functional of the KS wavefunctions
ϕi(r), but all other terms in Eq. (2.12) are functionals of the density n(r), one can vary
the KS wavefunctions and use the chain rule to derive the Euler-Lagrange variational
equation:

δEKS
δϕ∗i (r)

+ εi
δ (1− 〈ϕi|ϕi〉)

δϕ∗i (r)
= 0, (2.13)

where εi are the Lagrange multipliers. The first term in Eq. (2.13) reads [see Eq. (2.12)]:

δEKS
δϕ∗i (r)

=
δT0

δϕ∗i (r)
+

[
δEH [n]

δn(r)
+
δExc[n]

δn(r)
+
δEext[n]

δn(r)

]
δn(r)

δϕ∗i (r)
. (2.14)

By using Eqs. (2.9) and (2.10), one obtains:

δn(r)

δϕ∗i (r)
= ϕi(r),

δT0

δϕ∗i (r)
= − ~2

2m0

∇2ϕi(r). (2.15)

Thereby, Eqs. (2.13)-(2.15) lead to the so-called single-particle Kohn-Sham (Schrödinger-
like) equations [24]: (

− ~2

2m0

∇2 + VKS(r)

)
ϕi(r) = εi ϕi(r), (2.16)
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where ϕi and εi are the KS wavefunctions and energy values, respectively, and VKS is the
KS effective potential, which reads:

VKS(r) = VH(r) + Vxc(r) + Vext(r)

= e2

ˆ
n(r′)

|r− r′|
dr′ +

δExc[n]

δn(r)
+ Vext(r), (2.17)

which is the sum of Hartree, exchange-correlation and external potentials [see Eq. (2.14)].
The KS equations are independent of any approximation to the XC functional, and would
lead to the exact ground-state density and energy of the interacting many-body system,
if the exact XC functional were known, which is not the case [24]. In practice, Eqs. (2.9),
(2.16) and (2.17) are solved self-consistently by iterations [24].

2.1.2 (c) Physical meaning of Kohn-Sham energy values

Kohn-Sham energy values εi of a fictitious non-interacting system have no physical
meaning. Only the energy of the highest occupied KS state corresponds to the exact
ionization energy of the system [31]. The time-independent DFT is a ground state theory,
and thus it is not allowed, strictly speaking, to describe the excited states of the system.
The Kohn-Sham energy values εi must be distinguished from the quasiparticle energy
values, which can be obtained by using Green’s function techniques [17], of the system
which is measured, e.g. in photoemission experiments [22]. Nevertheless, there are many
systems where the quasiparticle corrections to the KS energy values are quite small, and
thus the latter can be used as a first approximation to the quasiparticle band structure,
except a gap (see the discussion in Sec. 5.1.3).

I will make a detailed comparison of the KS energy values with available experiments
on bismuth in Sec. 5.1.3.

2.1.2 (d) Exchange-correlation functional

So far, all of the DFT equations have been formally exact. But one still has to find an
explicit form for the XC functional Exc[n]. In fact, the exact form of the XC functional
is unknown [24]. The success of DFT is due to the fact that Exc[n] can be reasonably
approximated. There is a number of approximate functionals that have been found to
give good results in a large variety of physical problems. One useful classification of
functionals has been given by John Perdew and co-workers [32].3 In this paragraph I will
briefly overview the functionals that I have used for the results described in part II of this
manuscript.

The simplest approximation to the true XC functional is the local density approxima-
tion (LDA), which assumes that the XC energy of the real system behaves locally as that

3For a review of XC functionals see, e.g., Ref. [24].
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of a uniform electron gas [32]. The XC functional in this case can be expressed as:

ELDA
xc [n] =

ˆ
εhomxc (n(r))n(r) dr, (2.18)

where εhomxc (n) is the XC energy per electron of the electron gas with a homogeneous den-
sity n. The exchange contribution can be evaluated analytically [24], while the correlation
part is obtained by parameterizing the results of Monte Carlo simulations of Ceperley-
Alder [33]. The most widely used LDA functional is the Perdew-Zunger functional (PZ81)
[34]. The LDA is exact in the limit of high density or slowly varying density distribu-
tions; in fact, experience has shown that accurate results can be obtained well beyond
this expected range of validity [25]. Typically LDA yields a good accuracy in reproducing
experimental structural and vibrational properties of strongly bound systems; it usually
overestimates the values of the bonding energy and underestimates bond lengths [25].

The next approximation to the XC functional is the generalized gradient approximation
(GGA). The physical idea behind the GGA is that the real electron densities are not
uniform, and an inclusion of information about its spatial variation can create a functional
with greater flexibility to describe real materials [32]. In GGA, the XC functional is
expressed using both the local electron density n(r), and the gradient of the electron
density ∇n(r):

EGGA
xc [n] =

ˆ
εxc(n(r),∇n(r))n(r) dr. (2.19)

Since there are many ways in which information from the gradient of the electron density
can be included in the GGA functional, there is a large number of GGA functionals. Two
of the most widely used GGA functionals in calculations for solids are the Perdew-Wang
functional (PW91) [35] and the Perdew-Burke-Ernzerhof functional (PBE) [36]. The GGA
functionals usually overestimate bond lengths.

There are many other types of XC functionals, e.g. meta-GGA, which include the
information from n(r), ∇n(r), and ∇2n(r); hybrid-GGA, which describe exchange using
a mixture of the exact-exchange and GGA-exchange functional, etc. [24]. The choice of
the XC functional depends on the system and properties which are studied.

In this thesis I will use the LDA functional with Ceperley-Alder parametrization [33],
and the GGA functional with Perdew-Burke-Ernzerhof parametrization [36]. In Sec. 5.1.2
I will discuss the lattice parameters and bond length in bismuth, within the LDA and
GGA.

2.1.2 (e) Generalization of DFT

I would like to point out that Hohenberg, Kohn and Sham’s formulation of DFT was
performed for non-relativistic time-independent zero-temperature case. However, after
the great success of this theory, DFT was generalized. In Sec. 2.2.2 I will discuss the
generalization of DFT to the relativistic case, and in Sec. 3.1.2 I will present the time-
dependent DFT. The DFT was also generalized to systems at finite temperatures [37],
however, I will not discuss it in this thesis. Finally, there has also been developed a density
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functional perturbation theory (DFPT) [38, 39, 40, 41], for the description of vibrational
properties of materials (phonons). Sections 3.4 and 7.1 are closely related to DFPT [40].

2.2 Relativistic theory

The preceding discussion of Sec. 2.1 was based on the non-relativistic quantum mechanics,
where the spin of an electron and the relativistic effects were neglected. However, spin
plays an important role in a determination of a wide variety of properties of materials,
and thus without a proper account of it the theory would be incomplete. Moreover, when
the system under study consists of heavy atoms, relativistic effects become essential. The
coupling of the spin to the orbital momentum of an electron, the spin-orbit coupling,
should be taken into account for a correct description of the relativistic system. In some
systems, e.g. semimetal bismuth (see Chapter 4), the spin-orbit coupling is extremely
large, and it is crucial for the correct description of electronic and vibrational properties
of the material.

In this section, I will give an introduction to the relativistic formalism of the many-
body electronic problem. First, I will discuss the relativistic Dirac equation, and after-
wards I will present a relativistic generalization of the density functional theory.

2.2.1 Dirac equation

2.2.1 (a) General theory

The relativistic system is described by the Dirac equation, invented by Paul Dirac
in 1928, which generalizes the Schrödinger equation in a relativistically covariant form
[42, 43]:

ĤD ψ(r) = E ψ(r), (2.20)

where ĤD is the Dirac Hamiltonian, ψ(r) is the four-component single-particle wavefunc-
tion (spinor) that describes spin-1

2
particles, and E is the energy of this particle. The

Dirac Hamiltonian for an electron moving in an effective scalar potential V (as opposed
to a vector potential), reads:

ĤD = c (α · p) + βmc2 + V I4, (2.21)

where c is the speed of light, m is the electron mass, p = −i~∇ is the momentum operator,
and I4 is the 4× 4 identity matrix. The components αi of the 4× 4 matrix α read:

αi =

(
0 σi
σi 0

)
, (2.22)

where σi are the 2× 2 Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.23)
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The 4× 4 matrix β reads:

β =

(
I2 0
0 −I2

)
, (2.24)

where I2 is the 2× 2 identity matrix. The four-component spinor ψ(r), appearing in the
Dirac equation (2.20), can be written in terms of two two-component spinors:

ψ(r) =

(
ψA(r)
ψB(r)

)
, (2.25)

where in the case of electrons (solutions of Eq. (2.20) having a positive energy), ψA is the
large component, and ψB is the small component. The Dirac equation (2.20) becomes a
set of coupled equations for ψA and ψB, namely [24]:

c (σ · p) ψB =
(
E − V −mc2

)
ψA, (2.26)

c (σ · p) ψA =
(
E − V +mc2

)
ψB. (2.27)

Relativistic effects4 originate deep inside the atomic core, so it is sufficient to solve the
relativistic equations in a spherical atomic geometry. In the case of a spherical potential
V (r), one can make use of a conservation of parity and total angular momentum [24].
The total angular momentum reads:

J = L + S, (2.28)

where L is the orbital angular momentum, S = ~ Σ/2 is the spin angular momentum,
and Σ reads:

Σ =

(
σ 0
0 σ

)
. (2.29)

The spinor ψ(r) can be expressed in terms of radial and angular-spin functions [r =
(r, θ, ϕ)]:

ψnjlm(r) =

(
ψAnjlm(r)

ψBnjlm(r)

)
=

(
gnj(r)φjlm(θ, ϕ)

ifnj(r)φjlm(θ, ϕ)

)
, (2.30)

where n, j, l, and m are the quantum numbers, which characterize the quantum state
of the electron: n is the principal quantum number, l is the azimuthal quantum number
(angular momentum), m is the magnetic quantum number (projection of angular momen-
tum), and j is the total angular momentum. Equation (2.30) defines two functions with
the same quantum numbers n, j and m, but opposite parity for the two possible values
l = j± 1

2
. The two-component angular-spin functions φjlm(θ, ϕ) are the eigenfunctions of

the total angular momentum j, and can be written explicitly as [24]:

φjlm =

√
l + 1

2
±m

2l + 1
Y
m− 1

2
l

(
1
0

)
±

√
l + 1

2
∓m

2l + 1
Y
m+ 1

2
l

(
0
1

)
, (2.31)

4Relativistic effects are the spin-orbit coupling, the mass-velocity, and the Darwin correction. These
effects will be defined in the following discussion.
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where the upper sign is for j = l+ 1
2
, and the lower sign is for j = l− 1

2
. Here, Y

m± 1
2

l (θ, ϕ)

are the spherical harmonics, and

(
1
0

)
,

(
0
1

)
are the Pauli spinors. The resulting

equations for the radial functions g(r) and f(r) are simplified if one defines the energy as:

E ′ = E −mc2, (2.32)

and the mass-velocity, which is the radially varying mass, as:

M(r) = m+
E ′ − V (r)

2c2
, (2.33)

and using the quantum number κ,

if l = j +
1

2
, then κ = j +

1

2
= l,

if l = j − 1

2
, then κ = −

(
j +

1

2

)
= −(l + 1). (2.34)

Note that κ(κ+ 1) = l(l+ 1) in either case. Thereby, the coupled equations (2.26), (2.27)
can be written in the form of radial equations [24]:

− ~2

2M

1

r2

d

dr

[
r2dgnκ

dr

]
+

[
V +

~2

2M

l(l + 1)

r2

]
gnκ

− ~2

4M2c2

dV

dr

dgnκ
dr
− ~2

4M2c2

dV

dr

1 + κ

r
gnκ = E ′gnκ , (2.35)

and
dfnκ
dr

=
1

~c
(V − E ′) gnκ +

κ− 1

r
fnκ. (2.36)

For valence5 electrons, i.e. small E ′, outside of the core region, i.e. small V (r), one can
rewrite Eq. (2.36) as [44]:

fnκ =
~

2Mc

[
dgnκ
dr

+
1 + κ

r
gnκ

]
. (2.37)

These are the general equations for a spherical potential. No approximations have been
made so far. Equation (2.35) is the same as an ordinary radial Schrödinger equation [24],
except that the mass M is a function of the radius, and there are two added terms on
the left-hand side, which are, the Darwin term, dV

dr
dg
dr

, and the last term is the spin-orbit
coupling. The latter is due to the fact that

L · σ φκm = −~ (1 + κ)φκm, (2.38)

where φκm is the appropriate φjlm determined by the quantum number κ [see Eq. (2.34)].

5The discussion about a partition of an atom on valence and core regions will be given in Sec. 2.3.2.
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2.2.1 (b) Scalar-relativistic approximation and spin-orbit coupling

If the spin-orbit coupling in the system is weak, then the corresponding term can be
neglected in the radial equations for g and f , Eqs. (2.35) and (2.37). Afterwards, the spin-
orbit coupling can be treated variationally or by the perturbation theory [24]. Thereby,
Eqs. (2.35) and (2.37) can be written in terms of the approximate functions g̃nl and f̃nl
as [24]:

− ~2

2M

1

r2

d

dr

[
r2dg̃nl

dr

]
+

[
V +

~2

2M

l(l + 1)

r2

]
g̃nl −

~2

4M2c2

dV

dr

dg̃nκ
dr

= E ′g̃nl , (2.39)

and

f̃nl =
~

2Mc

dg̃nl
dr

, (2.40)

with the normalization condition:ˆ (
g̃2
nl + f̃ 2

nl

)
r2 dr = 1. (2.41)

Equation (2.39) is the scalar-relativistic radial equation, which can be solved with the
same techniques as the usual non-relativistic equation. By expanding the mass-velocity
M(r) [see Eq. (2.33)] in series in Eq. (2.39), one will obtain the Pauli equation [45]. The
Pauli equation is the non-relativistic limit of the Dirac equation, and it can be used when
electrons are slow enough so that relativistic effects can be neglected.

When the relativistic spin-orbit coupling effect is neglected, all electronic states are
at least twofold degenerate. The spin-orbit coupling term can be included variationally
(perturbatively) following the approach of MacDonald et al. [46], with the corresponding
Hamiltonian:

Ĥso =
~2

2M2c2

1

r

dV

dr

(
(L · σ) I2

0

)
. (2.42)

The matrix elements of Ĥso are computed in the basis used by a particular method, and
then they are added to the Hamiltonian matrix in the variational procedure. In more
refined calculations, the spin-orbit coupling is treated self-consistently (see Sec. 2.2.2).
The inclusion of the spin-orbit coupling effect lifts the degeneracy of the formerly spin-
degenerate bands. In the calculations of solids, relativistic effects can be included indi-
rectly through pseudopotentials, by generating them using relativistic atomic calculations.
This has been done in the present work (see Sec. 2.3.2).

2.2.2 Relativistic density functional theory

One fundamental limitation of the DFT formalism presented in Sec. 2.1.2 is that it is based
on non-relativistic quantum theory, and hence it will not give an accurate description of
a system in which relativistic effects are significant. A few years after the proposal of
DFT, a relativistic extension able to deal with both non-magnetic and magnetic systems
was proposed [47, 48]. The basic variables of the relativistic DFT are the charge and
the vector-current densities [48]. In this thesis I will not consider the general theory
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[49, 50, 51], but a simplified version [47, 48, 52], in which the dependence of the total
energy on the orbital part of the vector-current is neglected.

Before proceeding to the generalization of the non-relativistic DFT to the relativistic
case, I would like to point out that the relativistic effects can be treated by using an
ab initio scalar-relativistic zeroth-order regular approximation (ZORA) [53]. It has been
introduced in the quantum chemistry community for atomic and molecular electronic
structure calculations, which take into account relativistic effects. It is worth noting that
the ZORA approach has been applied almost exclusively within the framework of DFT
[53]. I will not discuss the ZORA approach in the following. An interested reader is
referred to, e.g., Ref. [53].

2.2.2 (a) Dirac-Hohenberg-Kohn theorems

Rajagopal and Callaway have shown [48] that the two Hohenberg-Kohn theorems
(see Sec. 2.1.2) can be generalized by including the relativistic effects. This leads to
the so-called Dirac-Hohenberg-Kohn (DHK) theorems. A proof of the DHK theorems is
performed in exactly the same way as the proof of Hohenberg-Kohn theorems within the
non-relativistic formalism [47].

The Dirac-Hohenberg-Kohn energy functional EDHK , can be written using the Gor-
don decomposition as a functional dependent on the density n(r) and the magnetization
m(r), EDHK [n(r),m(r)], [48]. In the Gordon decomposition a three-dimensional current
is represented as the sum of the orbit-current and the magnetization. The first term is
usually neglected because in most cases it is small in comparison to the second one. A
general theory, based on a quantum electrodynamics (QED) formalism, can be found in
Refs. [49, 50, 51]. One can prove that the ground-state energy is a unique functional of
the ground-state density and magnetization density, provided the system is not subject to
an external magnetic field [49]. This means that the system can be completely described
by its density and magnetization density.

2.2.2 (b) Dirac-Kohn-Sham equations

Similarly to the non-relativistic DFT, the interacting relativistic many-body electronic
system can be replaced by an auxiliary relativistic system of non-interacting electrons.
Therefore, let us start by defining the spin density, nη1,η2(r), of the non-interacting system
as [54]:

nη1,η2(r) =
∑
i

ψ∗i,η1(r)ψi,η2(r), (2.43)

where ψi,η(r) are the four-component one-electron spinors, the index i runs over the
occupied states, and the indices η1 and η2 run over the four spinor components. Then,
one can define the electron density, n(r), and the magnetization density, m(r), of the
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non-interacting system as [54]:6

n(r) =
∑
η

nη,η(r) =
∑
i,η

|ψi,η(r)|2, (2.44)

mk(r) = µB~
∑
η1,η2

nη1,η2(r) (βΣk)
η1,η2

= µB~
∑
i,η1,η2

ψ∗i,η1(r) (βΣk)
η1,η2 ψi,η2(r), (2.45)

where the index k runs over 3 components of the vector-matrix, µB is the Bohr magneton,
~ Σ/2 is the spin angular momentum [see Eq. (2.29)], and β is the 4 × 4 matrix defined
in Eq. (2.24). The Dirac kinetic energy T0 of the non-interacting relativistic system reads
[54]:

T0 =
∑
i,η1,η2

〈Ψi,η1|T
η1,η2
D |Ψi,η2〉, (2.46)

where T η1,η2D are the components of the Dirac kinetic energy operator, which can be written
in terms of the momentum operator p = −i~∇, and the 4 × 4 matrices α and β [see
Eqs. (2.22)-(2.24)]. By subtracting the electron rest energy, mc2, [see Eq. (2.32)], one
obtains [see Eq. (2.21)]:

T̂D = c (α · p) + (β − I4) mc2. (2.47)

Thereby, the Dirac-Kohn-Sham (DKS) energy functional, EDKS, of the interacting rela-
tivistic many-body electronic system in the external potential, Vext(r), can be expressed
as [cf. Eq. (2.12)]:

EDKS[n,m] = T0[n] + EH [n] + Exc[n,m] +

ˆ
Vext(r)n(r) dr, (2.48)

where EH [n] is the Hartree energy functional [see Eq. (2.11)], and Exc[n,m] is the exchange-
correlation (XC) energy functional which depends on both the electron density n(r) and
the magnetization density m(r). The minimization of the energy functional, EDKS, ac-
cording to the DHK Theorem II leads to the Dirac-type relativistic Kohn-Sham single-
particle equations, so-called, Dirac-Kohn-Sham (DKS) equations [54]:∑

η2

[
T η1,η2D + VDKS(r) δη1,η2 − µB~ Bxc(r) · (βΣ)η1,η2

]
ψi,η2(r) = εiψi,η1(r), (2.49)

where ψi,η and εi are the DKS spinors and energy values, respectively, and VDKS is the
DKS effective potential which reads [cf. Eq. (2.17)]:

VDKS(r) = VH(r) + Vxc(r) + Vext(r)

= e2

ˆ
n(r′)

|r− r′|
dr +

δExc[n,m]

δn(r)
+ Vext(r), (2.50)

6The spin density nη1,η2(r) on one hand, or the electron density n(r) and the magnetization density
m(r) on the other hand, can be considered as equivalent variables [54].
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and Bxc is the exchange-correlation magnetic field, which reads:

Bxc(r) = −δExc[n,m]

δm(r)
. (2.51)

There are several differences between the non-relativistic and relativistic formulations of
DFT, namely:

(i) There is a replacement of the single-particle Schrödinger-like equation (2.16), by a
single-particle Dirac-like equation (2.49);

(ii) The sums over the occupied states i in Eqs. (2.43) - (2.46) must be over positive-
energy states only.

(iii) The XC functional, Exc[n,m], contains relativistic effects in addition to the many-
body exchange and correlation effects of the non-relativistic formalism. These addi-
tional effects are the retardation of the Coulomb interaction between the electrons,
and the magnetic interaction between moving electrons [47].

The DKS equations (2.49) can be rewritten by introducing the large and the small com-
ponents of the four-component spinors ψi,η [see Eq. (2.25)]:

ψiη(r) =

(
ψAi,σ(r)

ψBi,σ(r)

)
, (2.52)

where ψAiσ and ψBiσ are the large and the small two-component spinors, respectively, the
index η runs over the four spinor components, and the index σ runs over the two spinor
components. Therefore, Eq. (2.49) becomes a set of coupled equations [cf. Eqs. (2.26) -
(2.27)] [54]: ∑

σ2

c (σσ1,σ2 · p) ψBi,σ2
(r) = (εi − VDKS(r)) δσ1,σ2ψAi,σ1

(r)

+µB~
∑
σ2

(Bxc(r) · σσ1,σ2)ψAi,σ2
(r), (2.53)

∑
σ2

c (σσ1,σ2 · p) ψAi,σ2
(r) =

(
εi − VDKS(r) + 2mc2

)
δσ1,σ2ψBi,σ1

(r)

−µB~
∑
σ2

(Bxc(r) · σσ1,σ2)ψBi,σ2
(r). (2.54)

Equations (2.53) and (2.54) are exact, no approximations have been made so far. They
are solved self-consistently in an iterative way. All relativistic effects, i.e. the spin-orbit
coupling, the mass-velocity, and the Darwin contribution, are contained in these equations.
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2.2.2 (c) Non-relativistic limit: Pauli equations

When the electron speed is much smaller than the speed of light c, the Dirac-type
Kohn-Sham equations (2.53) and (2.54) can be approximated by the Pauli-type Kohn-
Sham equations [54]:7∑

σ2

[(
p2

2m
+ VDKS(r)

)
δσ1,σ2 − µB~ (Bxc(r) · σσ1,σ2)

]
ψAi,σ2

(r) = εiψ
A
i,σ1

(r), (2.55)

and

ψBi,σ1
(r) ≈

∑
σ2

σσ1,σ2 · p
2c

ψAi,σ2
(r). (2.56)

Equations (2.55) and (2.56) have an error of the order (v/c)2, where v is the electron
velocity [54]. In the regions far from the nuclei, i.e. for valence electrons (see Sec. 2.3.2),
the Pauli-type Kohn-Sham equation (2.55) is quite a good approximation of fully rela-
tivistic Dirac-type Kohn-Sham equations (2.53) and (2.54) [54] in some materials, e.g.
light elements. However, the spin-orbit coupling may be essential, e.g. for heavy elements
like bismuth (see Chapter 4). Therefore, it has to be included in the calculations.

2.2.2 (d) Perturbative and self-consistent treatment of the spin-orbit coupling

The relativistic effects up to order α2, where α is the fine-structure constant, can
be included in electronic structure calculations by solving non-relativistic Kohn-Sham
equations, like Pauli-type Kohn-Sham equations for two-component spinors (2.55), with
pseudopotentials (see Sec. 2.3.2) tailored to reproduce the solutions of fully relativis-
tic Dirac-type Kohn-Sham equations (2.53) and (2.54) [44, 55]. The spin-orbit coupling
(SOC) can be treated either perturbatively or self-consistently [56]. In the perturbative
approach, the SOC is included to first order through a second variational step on the
scalar-relativistic zeroth order wavefunctions. Examples of the perturbative treatment
of the SOC are Refs. [57, 58, 59]. In contrast, in the self-consistent approach, the SOC
is treated on equal footing with other relativistic effects, i.e. the mass-velocity and the
Darwin contribution. The self-consistency is achieved for the full Hamiltonian, includ-
ing the SOC term [see Eq. (2.42)], when solving the Pauli-type Kohn-Sham equations
(2.39). Examples of the self-consistent treatment of the SOC are Refs. [60, 61, 62]. The
fully self-consistent treatment of the SOC leads to only minor corrections in the case of
semiconductors, but it is of greater importance when dealing with metals [62].

In this work the self-consistent treatment of the SOC has been used.

7The Pauli-type Kohn-Sham equations can be obtained directly from the minimization of the non-
relativistic energy-functional, Eq. (2.12), written for two-component spinors [54].
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2.2.2 (e) Exchange-correlation functional

In principle, the relativistic DFT provides a method for calculating the charge den-
sity, the magnetization, and the ground-state energy exactly. In practice, however, an
approximation must be made for the exchange-correlation functional, Exc, as in the non-
relativistic case. Only the exchange contribution to the relativistic extension of LDA
(RLDA), Ref. [63, 47], and GGA (RGGA), Ref. [64], has been investigated so far. The ex-
act contribution from the correlation of electrons is not known even in the non-relativistic
formalism. Practice shows that one can still use the XC functionals in their non-relativistic
form for relativistic calculations, because the differences between the results obtained by
using one form or another are small. This has been demonstrated on single atoms [65]
and on periodic solids, like gold and platinum [66, 55].

2.3 Plane-wave pseudopotential method

In Secs. 2.1.2 and 2.2.2 I have presented non-relativistic and relativistic formulation of
the density functional theory, respectively. These theories are based on the solution of
the (Dirac-type) Kohn-Sham equations, Eqs. (2.16) and (2.49). In practice, in order to
solve these equations, one has to choose a basis set, suitable for the system under study,
in order to expand the Kohn-Sham wavefunctions. In particular, for the description of
solids, the plane wave basis set is a good choice, since the plane waves have the periodicity
of solids. However, the electronic wavefunctions become rapidly oscillating functions near
atomic nuclei, and thus a large number of plane waves would be required to describe such
oscillations. Nevertheless, by using a pseudopotential approximation, such a problem can
be overcome. The use of plane waves basis sets with pseudopotentials constitutes the
plane-wave pseudopotential method. A detailed description of such a method is given,
e.g., in Refs. [24, 25, 67]. In this thesis, I will present the results obtained by using
the QUANTUM ESPRESSO package [68], which is based on the plane-wave pseudopotential
method.

In Sec. 2.3.1 I will discuss different basis sets which can be used for the expansion of the
Kohn-Sham wavefunctions. In particular, I will present a formulation of the Kohn-Sham
equations in the basis of plane waves. In Sec. 2.3.2 I will show what is the pseudopotential
approximation, and how the spin-orbit coupling can be treated with pseudopotentials.

2.3.1 Basis set

2.3.1 (a) Choice of the basis set

The basic step of the DFT calculations is an evaluation of the Kohn-Sham Hamiltonian
ĤKS. In order to solve the KS equations [see Eq. (2.16)], ĤKS ϕ(r) = ε ϕ(r), one has to
expand the Kohn-Sham wavefunctions, ϕ, in some suitable basis set {φi} as:

ϕ(r) =
∑
i

ciφi(r), (2.57)
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where ci are the coefficients of the expansion. For an orthonormal basis set, one has to
solve a set of equations: ∑

i

(
〈φj|ĤKS|φi〉 − ε δij

)
ci = 0. (2.58)

Most popular basis sets are:

(i) Localized basis sets:
- Linear Combinations of Atomic Orbitals (LCAO) [69]
- Gaussian-type Orbitals (GTO) [70]
- Linearized Muffin-Tin Orbitals (LMTO) [71]

(ii) Delocalized basis sets:
- Plane Waves (PW) [40]

(iii) Mixed basis sets:
- Linearized Augmented Plane Waves (LAPW) [72]
- Projector Augmented Plane Waves (PAW) [73]

Spatially localized functions are extremely useful to deal with the quantum chemistry of
isolated molecules, because their wavefunctions decay to zero far away from the molecule.
Instead, if one is interested in a bulk material, such as atoms in the solid, the spatially
localized functions can still be used to describe each atom, and these functions must be
added to describe the overall material [25]. But this is certainly not the only possibil-
ity. A good alternative is to use periodic functions, e.g. plane waves, to describe the
wavefunctions which are also spatially periodic.

What are the advantages and disadvantages of localized and delocalized (plane-wave)
basis sets? The advantages of localized basis sets are: (i) the convergence with respect to
the size of the basis set is fast, just a few functions per atom are needed, and (ii) finite
systems, e.g. molecules, can be treated easily. However, there are several disadvantages:
(i) it is difficult to evaluate the convergence quality, as there is no systematic way to
improve the convergence, (ii) localized basis sets are difficult to use, because of the need
to compute two- and three-center integrals, and (iii) it is difficult to calculate forces on
atoms, as there is a Pulay term.8 In contrast, PW basis sets have the following advantages:
(i) it is easy to evaluate the convergence quality by just increasing the kinetic-energy
cutoff, (ii) it is easy to use a Fourier transform, and (iii) it is easy to calculate forces on
atoms, as there is no Pulay term. However, PW basis sets have some disadvantages: (i)
the convergence with respect to the size of the PW basis set is slow, because many more
plane waves are needed than localized functions, and (ii) there is a need to use a supercell
for the description of finite systems.

In this thesis I will consider a bulk material bismuth (see Chapter 2), therefore the
PW basis set will be used. In the following, I will give a brief description of the problem
in the framework of the PW basis set.

8Pulay forces appear when evaluating derivatives of the localized basis set functions with respect to
atomic positions. Pulay forces do not appear when a PW basis set is used.
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2.3.1 (b) Plane-wave basis set

According to the Bloch theorem [74], an electron moving in the effective potential
VKS(r) [see Eqs. (2.17)], which has the periodicity of the crystal, VKS(r + R) = VKS(r),
where R is the radius-vector of the unit cell, can be described by a wavefunction of the
form:

ϕn,k(r) = eik·r un,k(r), (2.59)

where n is the energy band index, k is the point in the Brillouin zone, eik·r is the phase
factor, and un,k(r) is the function which has the periodicity of the crystal, un,k(r + R) =
un,k(r). The periodicity of un,k(r) means that it can be expanded in terms of a set of
plane waves:

un,k(r) =
∑
G

cn,k+G e
iG·r, (2.60)

where the summation is over vectors defined by G = m1b1 + m2b2 + m3b3, where m1,
m2, m3 are integer numbers, and b1, b2, b3 are the reciprocal lattice vectors, and cn,k+G

are the coefficients of the expansion. Combining Eqs. (2.59) and (2.60), gives:

ϕn,k(r) =
∑
G

cn,k+G e
i(k+G)·r. (2.61)

According to Eq. (2.61), evaluating the solution at even one single k point involves a
summation over an infinite number of possible values of G. However, the plane waves
ei(k+G)·r have a simple interpretation as solutions of the Schrödinger equation: they are
solutions of the non-interacting problem with the kinetic energy T = ~2/(2m0)× |k+G|2.
As a result, the infinite sum over G in Eq. (2.61) is usually truncated, to include only
solutions with kinetic energy values less than some value Ecut, the so-called cutoff energy:

~2

2m0

|k + G|2 ≤ Ecut, Ecut =
~2

2m0

G2
cut. (2.62)

Therefore, the infinite sum then reduces to the finite sum:

ϕn,k(r) =
∑

|k+G|≤Gcut

cn,k+G e
i(k+G)·r. (2.63)

The above expression includes slightly different number of terms for different values of k.
In a PW basis set, the eigenvalue problem of Eq. (2.58) takes the form:∑

G′

(
〈k + G|ĤKS|k + G′〉 − εn,k δG,G′

)
cn,k+G′ = 0, (2.64)

where matrix elements of the Hamiltonian read:

〈k + G|ĤKS|k + G′〉 =
~2

2m0

|k + G|2 δG,G′ + VKS(G−G′), (2.65)

and
VKS(G−G′) = 〈k + G|VKS|k + G′〉. (2.66)



2.3. PLANE-WAVE PSEUDOPOTENTIAL METHOD 25

In order to obtain the eigenvalues εn,k and the coefficients cn,k+G (eigenfunctions) of

Eq. (2.64), one has to diagonalize the matrix composed of the elements 〈k+G|ĤKS|k+G′〉.
In the PW basis set the Kohn-Sham equations can be solved very efficiently. However,

it is worth noting that the electronic wavefunctions become rapidly oscillating functions
when approaching the nuclei. Therefore, a very large number of plane waves is required
to describe such oscillations. Nevertheless, this problem can be overcome by using the
pseudopotential approximation.

2.3.2 Pseudopotential approximation

2.3.2 (a) Division of an atom into core and valence regions

The pseudopotential (PP) approximation is based on the fact that chemical prop-
erties of materials mainly depend on the valence electrons, whereas the tightly bound
core electrons are hardly influenced by the environment [24, 75]. Within the frozen core
approximation, one assumes that the core electrons and the corresponding density are
independent of the external perturbation and of the chemical environment of the atom.
They can be determined from an all-electron calculation for a single atom. In the DFT
calculation, only the valence electrons can be taken into account explicitly, while the core
electrons are included in the ionic potential [75].9

Any linear functional of the density, e.g. the Hartree functional, can be separated
into a functional that depends only on the core electron density, and a functional that
depends only on the valence electron density. For nonlinear functionals, e.g. the exchange-
correlation functional, this is only possible when the core and valence densities are spa-
tially separated. This is roughly fulfilled when the core states form a closed shell. Other-
wise, one should use a nonlinear core correction, proposed by Louie et al. [76].

Although the core electrons screen the nuclear charge, the ionic potential still has a
Coulomb singularity at the nucleus (see Fig. 2.1). Hence, due to the steep ionic potential,
the valence wavefunctions strongly oscillate in the core region [24]. Consequently, if a
plane-wave basis set is used to expand the electronic wavefunctions, a very large number
of plane waves would be needed. An extremely large number of plane waves would be re-
quired to perform an all-electron calculation - a computationally demanding task. The PP
approximation allows the electronic wavefunctions to be expanded using a much smaller
number of plane-wave basis states. Moreover, the PP approximation has also other ad-
vantages: (i) a removal of the core electrons means that fewer electronic wavefunctions
have to be calculated, (ii) the total energy of the valence electron system is typically
one thousand times smaller than the total energy of the all-electron system, and thus the
accuracy required to determine energy differences between ionic configurations in a PP
calculation is much smaller than the accuracy required in the all-electron calculation [75].

Since the binding properties of materials are independent of the exact form of the
wavefunctions close to the nucleus, one can introduce a pseudo-ion, which has the same

9In the full-potential all-electron calculations both valence and core electrons are treated explicitly.
The core density is recomputed in the spherical symmetry.
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Figure 2.1: Schematic illustra-
tion of the replacement of the
true potential V (r) and true elec-
tronic wavefunction ϕ(r) by a
fictitious pseudopotential V ps(r)
and pseudo-wavefunction ϕps(r),
respectively. For r > rc, the PPs
and wavefunctions become identi-
cal. This is the basic idea of the
PP approximation. According to
Ref. [75].

chemical properties as the real one, but whose pseudo-wavefunctions are smooth inside
a small sphere with radius rc around the ion (see Fig. 2.1). Therefore, one starts from
an all-electron calculation of a single atom, and replaces the real ionic potential by a
pseudopotential V ps, so that the following quantities remain unchanged [24]: (i) the
Kohn-Sham energy values, (ii) the Kohn-Sham wavefunctions outside of the cutoff radius
rc, (iii) the total charge density inside of the sphere (norm conservation), and (iv) the
scattering properties (or phase shifts). Such pseudopotentials are called norm-conserving
(NC) pseudopotentials, and they were first proposed by Hamann, Schlüter and Chiang [77].
Thus, when one solves the Kohn-Sham equations (2.16), instead of using the true ionic
potential, which was designated as Vext [see Eq. (2.17)], one can use the pseudopotential
V ps. Norm-conserving PPs are transferable, i.e. they reproduce the scattering properties
of the true potential in a wide range of energy; and they are relatively smooth [24].

The limitation of NC-PPs is that they are still hard, i.e. they require large plane-
wave basis sets, which results in large requirements of the computational (CPU) time
and the memory (RAM). The ultrasoft (US) pseudopotentials were devised to overcome
such a problem [78]. US-PPs require substantially lower energy cutoff than NC-PPs.
Moreover, US-PPs are directly produced in the separable form [78]. Another frozen core
approach is the projector augmented-wave (PAW) method, originally introduced by Blöchl
[73] and later adapted for plane-wave calculations by Kresse and Joubert [79]. NC and
US pseudopotentials are approximations of the PAW method [24]. It has been shown that
well-constructed US-PPs and the PAW method give results that are essentially identical
in many cases, and which are in good agreement with all-electron calculations [24]. I will
not discuss the principles of the US-PPs and PAW method, because in this thesis I will
use NC-PPs.

2.3.2 (b) Semilocal and separable forms of PP

Originally, NC-PPs were proposed in the semilocal (SL) form, i.e. the radial part of
the PP is local, and the angular part is non-local, so that there is a different PP for each
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atomic angular momentum l [24]:

V ps
SL(r, r′) =

∑
l,m

Y ∗lm(θ, ϕ)Vl(r)δ(r − r′)Ylm(θ′, ϕ′), (2.67)

where l and m are the angular momentum and its projection, respectively, r = (r, θ, ϕ)
is the radius-vector in spherical coordinates, Ylm(θ, ϕ) are the spherical harmonics, and
Vl(r) are PPs for each angular momentum l. One can separate the ionic PP into a local
l-independent part and l-dependent part as Vl(r) = Vloc(r) + δVl(r). Here, Vloc(r) '
−Zve

2/r for large r, where Zv is the number of valence electrons, and δVl(r) = 0 for
r > rc (see Fig. 2.1). All the long-range effects of the Coulomb potential are included
in the local potential Vloc(r) [24]. Hence, by using the property of spherical harmonics,∑

l,m Y
∗
lm(θ, ϕ)Ylm(θ′, ϕ′) = δ(θ − θ′)δ(ϕ− ϕ′), one can rewrite Eq. (2.67) as:

V ps
SL(r, r′) = Vloc(r)δ(r− r′) +

∑
l,m

Y ∗lm(θ, ϕ)δVl(r)δ(r − r′)Ylm(θ′, ϕ′). (2.68)

Kleinman and Bylander [80] realized that PPs can be recast in a separable fully nonlocal
(NL) form, which is computationally much more efficient then semilocal form. Each PP
is projected onto the atomic reference pseudo-wavefunctions, ϕps

lm(r) = χps
l (r)× Ylm(θ, ϕ),

and thus the PP reads:

V ps
NL = Vloc +

∑
l,m

|ϕps
lmδVl〉〈δVlϕ

ps
lm|

〈ϕps
lm|δVl|ϕ

ps
lm〉

. (2.69)

By construction, the original PPs and the projected PPs have the same eigenvalues and
eigenvectors on the reference states ϕps

lm(r). However, the separable form may fail in some
cases due to the appearance of spurious ghost states [81]. Nevertheless, Gonze et al. have
found how to overcome such a problem [81, 82]. It is worth noting that for semilocal PPs
the ghost states do not appear [24].

2.3.2 (c) Scalar-relativistic and fully-relativistic PPs

In the relativistic case, the total ionic pseudopotential reads [60]:

V ps(r, r′) =

l+ 1
2∑

j=l− 1
2

∑
l,m

|φj,l,m(θ, ϕ)〉Vl,j(r, r′)〈φj,l,m(θ, ϕ)|

=
∑
l,m

|φj=l− 1
2
,l,m(θ, ϕ)〉Vl,j=l− 1

2
(r, r′)〈φj=l− 1

2
,l,m(θ, ϕ)|

+
∑
l,m

|φj=l+ 1
2
,l,m(θ, ϕ)〉Vl,j=l+ 1

2
(r, r′)〈φj=l+ 1

2
,l,m(θ, ϕ)|, (2.70)

where φj,l,m(θ, ϕ) are the two-component angular-spin functions [see Eq. (2.31)], and
Vl,j=l± 1

2
are the pseudopotentials for each of the valence states |l, j = l ± 1

2
〉 of orbital
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angular momentum l and total angular momentum j = l± 1
2

of the atom. The potentials
corresponding to states |l, j = l − 1

2
〉 and |l, j = l + 1

2
〉 are combined to define j-weighted

average to obtain the scalar-relativistic (SR) nonlocal pseudopotentials V l(r, r
′) [83]:

V l(r, r
′) =

1

2l + 1

[
lVl,j=l− 1

2
(r, r′) + (l + 1)Vl,j=l+ 1

2
(r, r′)

]
. (2.71)

The weighting accounts for the relative degeneracies of the |l, j = l − 1
2
〉 and |l, j =

l + 1
2
〉 states. The SR-PP contains all scalar parts of the relativistic PP, i.e. the mass-

velocity and the Darwin contribution (see Sec. 2.2.1), and it does not include the spin-
orbit coupling term, which distinguishes different |l, j = l ± 1

2
〉 states. Therefore, in the

calculations with SR-PPs, eigenvalues for l are not split. The spin-orbit PP (weighted
difference), ∆V so

l (r, r′), is defined as [83]:

V so
l (r, r′) =

2

2l + 1

[
Vl,j=l+ 1

2
(r, r′)− Vl,j=l− 1

2
(r, r′)

]
. (2.72)

The total ionic fully-relativistic (FR) pseudopotential is then written as:

V ps(r, r′) =

l+ 1
2∑

j=l− 1
2

∑
l,m

|φj,l,m(θ, ϕ)〉
[
V l(r, r

′) + V so
l (r, r′) L · S

]
〈φj,l,m(θ, ϕ)|, (2.73)

where L is the orbital angular momentum, S is the spin angular momentum [see Eq. (2.29)],
and the term L · S accounts for different j states. The FR NC-PPs were first introduced
by Kleinman [44], and by Bachelet and Schlüter [84]. The disadvantage of the originally
proposed FR NC-PPs was that, while SR-PP, Eq. (2.71), can be replaced by a fully sep-
arable potential of the Kleinman-Bylander form [80] [see Eq. (2.69)], the spin-orbit PP,
Eq. (2.72), cannot. Hence, one must calculate and store a huge number of additional
integrals in the process of calculating the matrix elements of the spin-orbit coupling oper-
ator. This problem has been solved by Hemstreet, Fong and Nelson [57], who represented
both the scalar-relativistic and spin-orbit contributions to the ionic PPs in fully separable
form.10

The major contribution of the spin-orbit coupling to the energy of valence electrons
comes from the core region [24]. The rigid core of the PP approximation is fully rela-
tivistic, and thus the Dirac equation must be solved inside the core region. However,
the wavefunctions describing the valence electrons outside the core region can be accu-
rately described by retaining only the large component of the Dirac spinor [see Eq. (2.25)]
[44]. The radial two-component spinor satisfies the Pauli-like Kohn-Sham equation (2.55)
outside the core, which contains all relativistic effects to order α2, where α is the fine
structure constant [44, 54].

In this thesis I will use fully-relativistic norm-conserving pseudopotentials (FR NC-
PPs) in fully separable (Kleinman-Bylander) form (see Appendix A.1), with the self-
consistent treatment of the spin-orbit coupling.

10Very recently, fully-relativistic US-PPs [55] and fully-relativistic PAW method [54] have been intro-
duced by Andrea Dal Corso.
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2.4 Summary & Outlook

In this chapter, the calculation of the ground state has been addressed in the framework
of non-relativistic and relativistic quantum mechanics. Instead of solving the many-body
Schrödinger equation (or Dirac equation in the relativistic case), the ground-state prop-
erties can be obtained from a minimization of a density functional for the total energy
within the (relativistic) density functional theory. Using the density as a basic variable
results in a tremendous computational simplification compared to approaches which deal
directly with many-body wavefunctions. The density functional is constructed by map-
ping the interacting system to a fictitious system of independent electrons. The latter
constitutes an effective single-particle problem, which is much easier to solve than the
many-body problem of interacting electrons. Such a mapping is exact, and it results in a
set of self-consistent (Dirac-type) Kohn-Sham equations, which can be solved numerically
by iterations. In practice, when the (relativistic) DFT is used, one has to make an ap-
proximation for the exchange-correlation potential, and often pseudopotentials are used
to reduce the numerical workload.

A special attention has been paid in this chapter to the description of the relativistic
effects, in particular the spin-orbit coupling. In the calculations of solids, relativistic effects
can be included indirectly through pseudopotentials, by generating them using relativistic
atomic calculations. Afterwards, when solving the Pauli-type Kohn-Sham equations for
the valence states, the spin-orbit coupling can be treated either perturbatively or self-
consistently.

In this thesis I will consider the semimetal bismuth, in which relativistic effects are
very large due to heavy atoms (Z = 83). The spin-orbit coupling is huge in this material,
and thus it has to be included in calculations for the accurate description of electronic,
vibrational and other properties. Due to the spin-orbit coupling, bismuth is a challenging
material from the computational point of view. As will be shown in the following, this
effect leads to extremely large changes in the bulk and surface electronic states, as well as
in the dispersion of phonon modes in this material. In particular, the spin-orbit coupling
is of crucial importance for the interpretation of the time-resolved terahertz and photoe-
mission experiments on bismuth, as will be shown in Secs. 6.2 and 5.2. Also, it has a large
effect on the electron energy-loss spectra of bismuth, as will be demonstrated in Sec. 7. In
this thesis I will present the ab initio results on bismuth obtained by including the spin-
orbit coupling effect in the calculations in a self-consistent way, by using fully-relativistic
norm-conserving pseudopotentials in the fully separable form (see Appendix A.1).
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Chapter 3

Time-dependent problem

The description of the many-body problem in the ground state is an important issue,
which allows for an understanding of various materials. However, one is often interested
in the description of the many-body system in the excited state. There exist many ap-
proaches to find an approximate solution for the time-dependent many-body problem. I
will mention some of them: (i) The GW approximation within the many-body pertur-
bation theory, which is based on a set of Green’s function equations [85]. It is used to
solve the quasiparticle problem, when a charge is added or subtracted from the system.
(ii) The Bethe-Salpeter approach within the many-body perturbation theory, which is
based on the solution of the Bethe-Salpeter screened equation [86]. It is used on top
of the GW method, and it includes the electron-hole interaction. (iii) Time-dependent
density functional theory (TDDFT), which is an extension of the ground-state DFT to
deal with time-dependent external perturbations in terms of the time-dependent density
[3]. TDDFT in principle is able to describe neutral excitations. It is exact, provided the
time-dependent exchange-correlation potential is known, which is not the case nowadays,
and hence one usually uses approximations, e.g. the adiabatic approximation.

In this chapter I will discuss TDDFT within the linear response. DFT is a ground-state
theory, thus not, strictly speaking, applicable to the calculation of excitation energies or
other excited-state properties - instead, one can use TDDFT. Clearly, the presence of a
time-dependent external perturbation drives the system away from its stationary ground-
state, and hence one can use TDDFT to calculate the excitation properties of the system.

In Sec. 3.1 I will show how the time-dependent many-body problem can be formulated
within the TDDFT instead of dealing with the time-dependent Schrödinger equation. In
Sec. 3.2 I will present a linear response formulation of TDDFT, and discuss the explanation
of the optical absorption and electron energy-loss spectroscopy with the help of the Dyson-
like screening equation. In Sec. 3.4 I will present an alternative efficient Liouville-Lanczos
approach to the calculation of optical absorption spectra of finite systems.

31
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3.1 Time-dependent theory

3.1.1 Time-dependent Schrödinger equation

As in the static case, let us consider the Born-Oppenheimer approximation, which as-
sumes that the motion of electrons and nuclei can be separated, because light electrons
move much faster than heavy nuclei (see Sec. 2.1.1). The evolution of a non-relativistic
interacting many-electron system is governed by the time-dependent Schrödinger equation
[27]:

i~
∂

∂t
Ψel({ri}, t) = Ĥ({ri}, t) Ψel({ri}, t), (3.1)

where i = 1, N , N is the number of electrons, {ri} is the set of electronic coordinates,
t is the time, Ψel is the many-body electronic wavefunction, and Ĥ is the Hamiltonian
operator which reads:

Ĥ({ri}, t) = − ~2

2m0

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
+
∑
i

Vext(ri, t), (3.2)

where m0 is the free-electron mass, −e is the electron charge, and Vext(ri, t) is the time-
dependent external potential. The only difference between the time-dependent Hamilto-
nian, Eq. (3.2), and the static one, Eq. (2.6), is that the external potential Vext depends
on time in the former case.1

Before the time-dependent perturbation is “switched on” at t = t0, the electronic
system is initially at rest in a static potential Vext(ri, t0). The initial state at time t0 is
described by the stationary ground-state wavefunction Ψel({ri}, t0) = Ψel({ri})e−iE0t0/~,
where E0 is the ground-state energy [see Eq. (2.5), where EBO = E0].

The solution of the time-dependent Schrödinger equation for the many-electron sys-
tem, Eq. (3.1), is even more complex than the solution of the static (time-independent)
Schrödinger equation, Eq. (2.5). Therefore, by analogy to the static case, instead of
considering the electronic wavefunction of 3N + 1 variables, Ψel(r1, r2, ..., rN , t), one can
consider the electronic density, n(r, t), which is the function of only 4 variables, and which
reads:

n(r, t) = N

ˆ
|Ψel(r, r2, . . . , rN , t)|2 dr2 . . . drN . (3.3)

After the great success of static density functional theory in the description of the many-
body systems, Runge and Gross extended this theory to the time domain. In the next
section I will give a brief introduction to such a theory.

3.1.2 Time-dependent density functional theory

As we have seen in Sec. 2.1.2, the density functional theory is based on the existence of
an exact mapping between the density and the external potential. This has been proven

1In Eq. (3.2) I do not include the term EII = 1
2

∑
I 6=J

ZIZJe
2

|RI−RJ | , which describes the classical interaction
between the nuclei, which is just a constant energy (parameter) for the electronic system, due to the Born-
Oppenheimer approximation.
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by relying on the Rayleigh-Ritz minimization principle of the total energy. However, a
straightforward extension of this idea to the time-dependent domain is not possible. The
minimization principle of the total energy does not hold because the total energy is no
longer a conserved quantity. The solution of this problem was found by Erich Runge and
Eberhard K. U. Gross in the mid 80s [3], who developed a mathematical formulation of
the time-dependent density functional theory (TDDFT). Analogous to the static DFT,
the time-dependent density n(r, t) can be introduced as a basic variable by means of a
one-to-one correspondence between the density n(r, t) and the external potential Vext(r, t).

3.1.2 (a) Runge-Gross theorems

Theorem I
For any system of interacting particles in an external time-dependent potential Vext(r, t),

which can be expanded in Taylor series with respect to time, and given an initial state
Ψ(r, t0) = Ψ0(r), there is a one-to-one correspondence between Vext(r, t) and the time-
dependent density n(r, t), apart from a trivial function of time.

Similarly to the ground-state DFT, Theorem I states that from the knowledge of the
density n(r, t) alone it is possible to deduce the external potential Vext(r, t) and hence the
many-body wavefunction Ψ(r, t), which in turn determines every observable of the system.
Therefore, all observables can ultimately be regarded as functionals of the density. It is
important to notice that, differently from DFT, in this case it is necessary to set an initial
condition, since we are following an evolution in time.

As I have pointed out in the beginning of this section, in TDDFT the variational
principle cannot be formulated in terms of the energy as in Eq. (2.8). Alternatively, there
exists a quantity analogous to the energy, the quantum-mechanical action functional,
which is defined in Theorem II.

Theorem II
A quantum-mechanical action functional

A[n] =

ˆ t1

t0

dt 〈Ψ(t)|i~ ∂
∂t
− Ĥ(t)|Ψ(t)〉, (3.4)

becomes stationary at the exact time-dependent density n0(r, t) which corresponds to the
external potential V0(r, t), given the initial state Ψ0(r) at t0:

δA[n]

δn(r, t)

∣∣∣∣
n0

= 0. (3.5)

Theorem II means that it is possible to solve the time-dependent problem by searching
for the stationary point of the action A. In contrast to the energy in the static case, the
stationary point is not necessarily a minimum. Furthermore, the value of the action itself
does not provide any relevant additional information, since for the true density A[n0] = 0.
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Actually, the definition of the action functional A, Eq. (3.4), has some problems.
Namely, the exchange-correlation potential deduced from the action is not causal, and
the endpoints at t0 and t1 are not independent. These problems could be solved as pro-
posed by van Leeuwen [87] by using the time-contour formalism of Keldysh.

3.1.2 (b) Time-dependent Kohn-Sham equations

As in the static DFT, the action functional A can be decomposed on the components,
much in the same way as it has been done for the energy functional [see Eq. (2.12)]:

A[n] = T0[n] +AH [n] +Axc[n]−
ˆ t1

t0

dt

ˆ
drVext(r, t)n(r, t), (3.6)

where

AH [n] = −e
2

2

ˆ t1

t0

dt

ˆˆ
n(r, t)n(r′, t)

|r− r′|
dr dr′. (3.7)

In order to approximate the unknown action functional A, Gross and Kohn [88] have
introduced an auxiliary fictitious system of non-interacting particles that satisfy the time-
dependent Kohn-Sham equations [89]:

i~
∂

∂t
ϕi(r, t) =

(
− ~2

2m0

∇2 + VKS(r, t)

)
ϕi(r, t), (3.8)

where ϕi(r, t) and VKS(r, t) are the time-dependent Kohn-Sham wavefunction and poten-
tial, respectively. The density of the non-interacting system reads:

n(r, t) =
N∑
i

|ϕi(r, t)|2, (3.9)

where N is the number of occupied states. The effective potential VKS(r, t) has such a
form that the density of the non-interacting system is equal to the density of the real
system of interacting electrons. The existence of the potential VKS(r, t) for any density
n(r, t) can be inferred from the Runge-Gross Theorem I, and has been rigorously proved
by van Leeuwen [90]. Thus, by using the decomposition of the action functional Eq. (3.6)
and the variational principle stated in Theorem II, we obtain

VKS(r, t) = VH(r, t) + Vxc(r, t) + Vext(r, t)

= e2

ˆ
n(r′, t)

|r− r′|
dr′ +

δAxc[n]

δn(r, t)
+ Vext(r, t), (3.10)

where VH(r, t) is the time-dependent Hartree potential, Vext(r, t) is the time-dependent
external potential, and Vxc(r, t) is the time-dependent exchange-correlation (XC) potential
which is unknown. Equation (3.10) defines the time-dependent XC potential. However,
in practice, this quantity has to be approximated.
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3.1.2 (c) Adiabatic approximation

As in the ground-state DFT, the time-dependent Kohn-Sham equations (3.8) require
a suitable approximation for the XC potential in order to be applied in practice. In the
time-dependent case, the XC potential is time-dependent and depends on density n(r, t)
at all past times, and thus it is absolutely nontrivial and even more difficult than in the
static case to find an expression for it. Therefore, most calculations simply use one of the
established XC functionals of static density functional theory. The most popular choice
is the adiabatic local-density approximation (ALDA), which is obtained by evaluating the
standard LDA potential with the time-dependent density n(r, t):

V ALDA
xc [n](r, t) = V LDA

xc (n(r, t)). (3.11)

The ALDA potential is local both in time and space. In fact, all other ground-state XC
functionals like GGA, hybrid or any other can yield a corresponding adiabatic approxima-
tion. However, it is worth to note that the adiabatic approach is a drastic simplification,
and a priori only justified for systems with a weak time-dependence which are always close
to the equilibrium. In the limit of an external potential that varies slowly in time, the
adiabatic approximation becomes exact if the true XC ground-state functional is known.
In practice, the results are also affected by the faults of the ground-state approxima-
tions, such as the lack of spatial non-locality of LDA or GGA. Nevertheless, despite the
simplicity of the adiabatic approach, it could give accurate results in many systems [17].

There are several known failures of the adiabatic approximation, due to either lack of
the memory effects or spatial non-locality. Among them I mention the optical properties of
solids and long conjugated molecules, double excitations, and charge-transfer excitations.
These drawbacks and the attempts to solve them are reviewed in Ref. [91]. Nowadays,
the design of specific approximations for the time-dependent XC potentials in TDDFT is
still at an early stage [92].

In this thesis, all my applications of TDDFT will be done with the adiabatic approx-
imation.

3.1.2 (c) Generalization of TDDFT

Before going to the next section, I would like to point out that Runge, Gross and
Kohn’s formulation of TDDFT was done for non-relativistic systems at zero temperature.
The TDDFT was generalized to relativistic systems and to systems at finite temperature.
I will not present here the corresponding theories, but just give an idea and references for
further reading.

The TDDFT formalism for systems at finite temperature in thermal equilibrium was
developed in Refs. [93, 94]. The theory states the following: “For a system of fixed
number of particles which satisfies the second law of thermodynamics, there is a one-to-
one mapping between the time-dependent density n(r, t) and the time-dependent external
potential Vext(r, t) (i) if the system under consideration is at thermal equilibrium and (ii)
if corresponding to this equilibrium state there is a unique minimum in the Helmholtz free
energy F” [93].
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The relativistic formulation of TDDFT is given in Ref. [95]. In fact, the theory was
developed not by generalizing the TDDFT to the relativistic case, but by generalizing the
relativistic static DFT to the time domain (see Sec. 2.2.2). Several recent examples of the
applications of the relativistic TDDFT can be found, e.g., in Refs. [96, 97, 98, 99].

3.2 Linear response theory

3.2.1 Dyson-like equation

Let us assume that the time-dependent external potential is weak, and that it can be
presented in the form:

Vext(r, t) = V 0
ext(r) + V ′ext(r, t), (3.12)

where V 0
ext(r) is the static external potential of the unperturbed system, and V ′ext(r, t)

is the time-dependent perturbation. Therefore, the density n(r, t) can be expanded in
Taylor series with respect to the perturbation V ′ext(r, t):

n(r, t) = n0(r) + n′(r, t) + n′′(r, t) + ... , (3.13)

where n0(r) is the density of the unperturbed system, n′(r, t) is the first order time-
dependent density-response, n′′(r, t) is the second order time-dependent density-response
etc. Let us consider a linear-response theory, by taking into account only the first order
density-response and by neglecting higher order terms.2 The first order correction reads
[92]:

n′(r, t) =

ˆ ∞
−∞

dt′
ˆ
dr′ χ(r, r′, t− t′)V ′ext(r′, t′), (3.14)

where χ is the linear density-response function,3 which is defined as:

χ(r, r′, t− t′) =
δn(r, t)

δVext(r′, t′)

∣∣∣∣
Vext(r′,t′)=V 0

ext(r
′)

. (3.15)

The causality principle requires that χ(r, r′, t − t′) = 0 for t < t′, because the density at
time t cannot be affected by later variations of the potential [92].

3.2.1 (a) Dyson-like equation in real space

In order to calculate the susceptibility χ in practice, one makes use of the fact that
the density of the real system is equal to the density of the non-interacting Kohn-Sham
system (see Sec. 3.1.2). Since the latter is described by the effective potential VKS(r, t),
one starts by applying the chain rule for functional derivatives:

χ(r, r′, t− t′) =

ˆ ∞
−∞

dt′
ˆ
dr′′

δn(r, t)

δVKS(r′′, t′′)

δVKS(r′′, t′′)

δVext(r′, t′)
. (3.16)

2If one is interested in nonlinear phenomena, then it is necessary to consider a time-dependent higher-
order (nonlinear) response, by calculating the higher order terms in the Taylor expansion, Eq. (3.13) (see,
e.g. Ref. [89]).

3The linear density-response function χ is also called the susceptibility or reducible polarizability.
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The first term on the right-hand side corresponds to the linear density-response function
of the non-interacting Kohn-Sham system, δn/δVKS = χ0, since the effective potential,
VKS, plays the role of the “external potential” of the Kohn-Sham system [92].4 It can
be calculated explicitly from the time-dependent perturbation theory, and it reads in the
frequency representation as [100]:

χ0(r, r′, ω) =
∑
i,j

(fj − fi)
ϕ0
i (r)ϕ0 ∗

j (r)ϕ0
j(r
′)ϕ0 ∗

i (r′)

~ω − (εi − εj) + iη
, (3.17)

where fi are the occupation numbers, ϕ0
i (r) are the unperturbed Kohn-Sham states, εi are

the unperturbed Kohn-Sham energies, and the index i splits in the periodic system into
a band index n and a wavevector k, i = {n,k}, and η → +0 is the positive infinitesimal.
In order to evaluate the second term in Eq. (3.16), let us decompose the Kohn-Sham
potential given by Eq. (3.10). As a result, one will obtain:

δVKS(r, t)

δVext(r′, t′)
=

δVH(r, t)

δVext(r′, t′)
+

δVxc(r, t)

δVext(r′, t′)
+ δ(r− r′)δ(t− t′). (3.18)

Since both the Hartree and exchange-correlation potentials are functionals of the density,
one can apply the chain rule once again and rewrite these two contributions as:

δVH(r, t)

δVext(r′, t′)
=

ˆ ∞
−∞

dt′′
ˆ
dr′′

δVH(r, t)

δn(r′′, t′′)

δn(r′′, t′′)

δVext(r′, t′)
, (3.19)

and analogously for δVxc/δVext. The first term on the right-hand side of Eq. (3.19) can
be calculated by using the definition of the Hartree potential [see Eq. (3.10)]:

δVH(r, t)

δn(r′′, t′′)
=

e2

|r− r′′|
δ(t− t′′), (3.20)

and the second term in Eq. (3.19) can be easily recognized as the linear density-response
function, δn/δVext = χ. The second term in Eq. (3.18) contains the so-called exchange-
correlation kernel, which reads [92, 100]:

fxc(r, r
′, t− t′) ≡ δVxc(r, t)

δn(r′, t′)

∣∣∣∣
n(r′,t′)=n0(r′)

. (3.21)

After gathering all terms together, and performing a Fourier transformation to the fre-
quency domain, one obtains the final integral equation, which is called the Dyson-like
screening equation, which reads [101]:

χ(r, r′, ω) = χ0(r, r′, ω)+

ˆ
dr′′
ˆ
dr′′′ χ0(r, r′′, ω)

(
e2

|r′′ − r′′′|
+ fxc(r

′′, r′′′, ω)

)
χ(r′′′, r′, ω).

(3.22)

4The linear density-response function χ0 is also called the independent-particle polarizability.



38 CHAPTER 3. TIME-DEPENDENT PROBLEM

3.2.1 (b) Dyson-like equation in reciprocal space

Let us rewrite the Dyson-like equation (3.22) in the reciprocal space. To this end, let
us make use of the Fourier transformation [102]:

χ0(r, r′, ω) =
1

Ω

BZ∑
q

∑
G,G′

ei(q+G)·r χ0
G,G′(q, ω) e−i(q+G′)·r′ , (3.23)

where Ω is the crystal volume, G and G′ are the reciprocal lattice vectors, and q is
the wavevector in the Brillouin zone (BZ). Hence, the Fourier coefficients χ0

G,G′(q, ω) =
χ0(q + G,q + G′, ω) read [103, 104]:

χ0
G,G′(q, ω) =

1

Ω

BZ∑
k

∑
n,n′

fn,k − fn′,k+q

~ω + εn,k − εn′,k+q + iη

× 〈ϕ0
n,k|e−i(q+G)·r|ϕ0

n′,k+q〉 〈ϕ0
n′,k+q|ei(q+G′)·r′|ϕ0

n,k〉, (3.24)

where

〈ϕ0
n,k|e−i(q+G)·r|ϕ0

n′,k+q〉 =

ˆ
ϕ0 ∗
n,k(r) e−i(q+G)·r ϕ0

n′,k+q(r) dr. (3.25)

Therefore, the Dyson-like equation reads [105, 106]:

χG,G′(q, ω) = χ0
G,G′(q, ω) +

∑
G1,G2

χ0
G,G1

(q, ω)
[
vG1(q)δG1 ,G2 + fxc

G1,G2
(q, ω)

]
χG2,G′(q, ω),

(3.26)
where vG(q) = 4πe2/|q + G|2 is the Fourier transform of the Coulomb potential, and
fxc
G,G′(q, ω) is the Fourier transform of the exchange-correlation kernel.

3.2.2 Excitation energy

The independent-particle polarizability χ0 as a function of ω has poles at the Kohn-Sham
energy differences, εi − εj, as can be seen from the denominator of Eq. (3.17). However,
these Kohn-Sham excitation energy differences, εi− εj, are not identical to the true ones,
because the interpretation of the one-particle Kohn-Sham energy εi as quasiparticle energy
is not formally justified. This leads to the well-known problem of the underestimation
of transition energy differences, in particular when one considers the excitations from
the valence bands to the conduction bands in semiconductors or insulators. Indeed, the
“bandgap problem” in DFT underestimates the gaps between the valence and conduction
bands by 30-50 % [24].

In the framework of TDDFT, the relevant information about the excited states is
contained in the screened susceptibility χ(r, r′, ω): the true excitation energy differences
are its poles. The susceptibility χ can be written in the Lehmann representation [107]:

χ(r, r′, ω) =
∑
f 6=i

(
〈Ψi|n̂(r)|Ψf〉〈Ψf |n̂(r′)|Ψi〉

~ω − (Ef − Ei) + iη
− 〈Ψi|n̂(r′)|Ψf〉〈Ψf |n̂(r)|Ψi〉

~ω + (Ef − Ei) + iη

)
, (3.27)
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where n̂(r) =
∑

l δ(r − rl) is the density operator, l runs over all electrons, |Ψi〉, Ei and
|Ψf〉, Ef denote exact initial (ground) state and final (excited) state and corresponding
energy values of the many-body electronic system, respectively, and η → +0 is the positive
infinitesimal. Using the transformation (3.23), one can determine the Fourier coefficients
χG,G′(q, ω) [107]:

χG,G′(q, ω) =
∑
f 6=i

(〈Ψi|n̂∗q+G|Ψf〉〈Ψf |n̂q+G′|Ψi〉
~ω − (Ef − Ei) + iη

−
〈Ψi|n̂q+G′|Ψf〉〈Ψf |n̂∗q+G|Ψi〉

~ω + (Ef − Ei) + iη

)
,

(3.28)
where n̂q+G =

∑
l e
i(q+G)·rl . From Eq. (3.27) it can be seen that the poles of χ(r, r′, ω)

correspond to exact excitation energy differences, Ef−Ei. Moreover, all quantities on the
right-hand side of Eq. (3.27) depend only on the Hamiltonian of the unperturbed system.
Hence, by virtue of the Hohenberg-Kohn theorem, the susceptibility χ is a functional of
the static ground-state density [92]. The form of Eq. (3.27) is valid for finite systems with
discrete eigenvalues. Since the energy values Ei of the many-body electronic system are
real, the poles of χ(r, r′, ω) appear at real energy values. However, for extended systems
the spectrum is continuous, and thus the sum in Eq. (3.27) turns into an integral that
gives rise to a branch cut along the real energy axis. Therefore, the infinitely close-lying
resonances merge into broad structures that can be identified with elementary quasipar-
ticles, such as plasmons or excitons [92]. Since these structures have a certain width,
they are described by poles in the complex plane with a real part, which corresponds to
the energy of the excitation, and an imaginary part, whose inverse is proportional to the
excitation lifetime.

From a practical point of view, the Lehmann representation of the susceptibility χ,
Eqs. (3.27) and (3.28), is not convenient, because a knowledge of the many-body electronic
wavefunctions, Ψi and Ψf , and energy values, Ei and Ef , is needed. Instead, in practice
one usually solves the Dyson-like equation (3.26).

In the second part of this thesis, I will present a new ab initio approach, other than
the Dyson-like equation (3.26), to obtain the susceptibility, χ, Eq. (3.15).

3.2.3 Dielectric function

3.2.3 (a) Definition

The linear response theory can be applied to study the response of an electronic system
to a weak time-dependent perturbation Vext(r, t). Due to the external perturbation, the
system is polarized, and the total potential becomes the sum of the external potential and
the induced potential: Vtot = Vext+Vind. The basic quantity that gives information about
the screening of the system at the level of the linear response is the microscopic dielectric
function, ε, which relates the total potential Vtot to the applied potential Vext [92]:

Vtot(r, t) =

ˆ ∞
−∞

dt′
ˆ
dr′ ε−1(r, r′, t− t′)Vext(r′, t′). (3.29)
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Therefore, the microscopic dielectric function ε and the susceptibility χ are related by the
relation:

ε−1(r, r′, t− t′) = δ(r− r′) δ(t− t′) +

ˆ
dr′′ v(r− r′′)χ(r′′, r′, t− t′), (3.30)

where v(r− r′′) = e2/|r− r′′| is the Coulomb potential. For periodic systems, the most
natural way to deal with spatial periodicity is to apply a Fourier transform [108]:

ε−1(r, r′, ω) =
1

Ω

BZ∑
q

∑
G,G′

ei(q+G)·r ε−1
G,G′(q, ω) e−i(q+G′)·r′ , (3.31)

where Ω is the crystal volume, G and G′ are the reciprocal lattice vectors, and q is the
wavevector in the Brillouin zone (BZ). Thus, one can rewrite Eq. (3.30) in the reciprocal
space as [100]:

ε−1
G,G′(q, ω) = δG,G′ + vG(q)χG,G′(q, ω), (3.32)

where vG(q) = 4πe2/|q + G|2 is the Fourier transform of the Coulomb potential. Note,
we have also used a Fourier transform to move from time to frequency domain.

Once the microscopic dielectric function is known, measurable quantities need to be
obtained. Let us define the function:

εM(Q, ω) =
1

ε−1
G,G(q, ω)

, (3.33)

where Q = q + G. Notice, if the wavevector Q is in the first Brillouin zone, then G = 0,
and therefore Q = q. In the limit when q → 0, one can define a macroscopic dielectric
function, which reads:

εM(ω) = lim
q→0

εM(q, ω) = lim
q→0

1[
ε−1
G,G′(q, ω)

]
G,G′=0

. (3.34)

In the following I will show how the dielectric function εM(Q, ω) is related to different
spectroscopies, namely to the optical absorption spectrum and electron energy-loss spec-
trum. In general, for anisotropic systems, the microscopic and macroscopic dielectric
functions depend on the direction of the wavevector q, i.e. on the polarization of the
incoming radiation. Therefore, both of them are described by a dielectric tensor, instead
of simple scalar functions [92].

3.2.3 (b) Random Phase Approximation without Local Field Effects

The local field effects (LFE) are related to fluctuations of a polarization of the system
on the atomic scale [17]. In the Dyson-like equation (3.26), the LFE arise from the
G 6= 0 components of the Coulomb potential vG(q) = 4πe2/|q + G|2 [109], and from the
off-diagonal elements of the independent-particle polarizability χ0

G,G′(q, ω), provided that
one uses the random phase approximation (RPA), i.e. neglecting the exchange-correlation
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effects, fxc = 0. Therefore, given that q ∈ 1BZ, neglecting the LFE implies including only
the long-range part of the Coulomb potential, vG=0(q), and keeping only the head of the
independent-particle polarizability, χ0

G=0,G′=0. The Dyson equation is then simplified,
and one obtains the head of the susceptibility χ:

χG=0,G′=0 =
χ0

G=0,G′=0

1− vG=0χ0
G=0,G′=0

. (3.35)

This being said, the head of the inverse microscopic dielectric tensor reads:

ε−1
G=0,G′=0(q, ω) = 1 + vG=0(q)χG=0,G′=0(q, ω), (3.36)

and the head of the direct microscopic dielectric tensor reads:

εG=0,G′=0(q, ω) = 1− vG=0(q)χ0
G=0,G′=0(q, ω). (3.37)

In the past, most calculations had been performed at the level of RPA without LFE
[110, 111]. Since then, crystal local-field effects (CLFE) and exchange-correlation (XC)
effects have been studied. I will discuss both effects in Secs. 3.2.3(d) and 3.2.3(e).

3.2.3 (c) Intraband and interband contributions

Within the RPA without LFE, from Eqs. (3.37) and (3.24), in the limit when q→ 0,
to first order in the perturbation theory, one obtains [112, 113, 114]:

lim
q→0

εG=0,G′=0(q, ω) = εintra(ω) + εinter(ω), (3.38)

where the intraband contribution reads:

εintra(ω) = 1−
ω2
p

ω(ω + iγ)
, (3.39)

and the interband contribution reads:

εinter(ω) =
2e2~2

π2m2
0

ˆ
dk

′∑
n,n′

fn,k |〈ϕn′,k|p|ϕn,k〉|2

(εn′,k − εn,k)
[
(εn′,k − εn,k)2 − (~ω + i~Γn,n′)

2] . (3.40)

where m0 is the free-electron mass, −e is the electron charge, Γn,n′ is the interband
scattering rate between bands n and n′, fn,k ≡ fFD(εn,k) = {1+exp[(εn,k−εF )/(kBT )]}−1

is the Fermi-Dirac distribution function, p = −i~∇ is the momentum operator, and the
prime in the sum of Eq. (3.40) means that the term n = n′ is not included. It is not
necessary to distinguish explicitly here between the longitudinal and transverse dielectric
function since at least within the RPA the two are equal at long wavelengths [103]. In
the non-isotropic case, one has to consider a tensor of the dielectric function [115].

Equation (3.39) represents the Drude model [74], where ωp is the Drude plasma fre-
quency:

ω2
p =

4πe2n

m0

, (3.41)
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where n = N/V is the electron density, γ ≡ 1/τ is the intraband scattering rate, τ is the
relaxation time. The Drude model provides accurate results for free-electron-like metals
(e.g. aluminum), whereas there may be deviations from the Drude behavior in non-free-
electron-like materials. Therefore, there exist various generalizations of the Drude model
[116, 117, 118, 119, 120]. In this thesis, in Sec. 6.2 I will use the generalization of the
Drude model to the system, in which there are two types of carriers (electrons and holes)
[118, 120]:

εintra(ω) = 1−
ω2
p,1

ω (ω + i/τ1)
−

ω2
p,2

ω (ω + i/τ2)
, (3.42)

where ωp,1 and τ1 are the plasma frequency and the relaxation time of the first type of
carriers (electrons), and ωp,2 and τ2 are the plasma frequency and the relaxation time of
the second type of carriers (holes). Some two-carrier models presume that τ1 ≈ τ2.

If the plasma frequency of Eq. (3.41) is smaller than the interband threshold, ~ωp �
(εn,k − εn,k′), then the full dielectric function of Eq. (3.38) will read:

ε(ω) = ε∞ −
ω2
p

ω (ω + iγ)
, (3.43)

where ε∞ is the contribution to the dielectric function from everything except the Drude
term [121]. In metals, the onset of interband absorption is associated with transitions
from the Fermi level to the next higher empty band, or with transitions from a lower
lying occupied band to the Fermi level [113].

At finite value of q, one can still divide χ0 [see Eq. (3.37)] into intraband and interband
contributions, and obtain the corresponding dielectric function [122].

The description of the interband contribution, εinter, is sufficient for insulators and
intrinsic semiconductors at equilibrium (see Fig. 3.1). Metals, semimetals, doped semi-
conductors or thermally excited semiconductors, and photoexcited materials might have a
number of non-vanishing electrons (and holes) at the energy of chemical potential (Fermi
surface in the case of metals or semimetals), which present the intraband contribution,
εintra, at very small energy values (tens to hundreds of meV), as well as the interband
contribution, εinter (see Fig. 3.1).

Let us distinguish between two energy regions, the first one for small energy values
(from tens of meV to hundreds of meV), and the second one for large energy values (from
several eV to tens of eV). Let us consider the second energy range. As can be seen in
Fig. 3.1, there is a peak in ε2 due to the interband transition when ε1 crosses zero with
a negative slope, whereas the plasmon peak in the loss function −Im(1/ε) occurs when
ε1 crosses zero with a positive slope, and it corresponds to a collective excitation [110].
If one considers the free-electron-like metal, then the plasmon peak can be accurately
described by the Drude model, otherwise one has to use a more accurate description, like
TDDFT (see Sec. 3.1.2). In addition, there might be peaks due to interband transitions
that appear both in ε2 and −Im(1/ε) at the same energy (see Fig. 3.1). Such peaks may
occur when ε1 has a negative slope but does not cross zero.

At small energy values (tens and hundreds of meV), some materials, e.g. semimetal
bismuth (see Chapter 4), show free-electron-like behaviour (see Ref. [123] and Chapter 6).
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Figure 3.1: Schematic illustration of ε1 = Re ε(ω), ε2 = Im ε(ω), and −Im[1/ε(ω)]. For ε2,
the low energy part represents the intraband contribution, εintra, described by the Drude
model [123, 121], and the higher energy part represents the interband contribution, εinter,
[110, 124].

Therefore, the dielectric function in this energy range can be described by the Drude
model [see Eq. (3.39)].

3.2.3 (d) Crystal Local Field Effects

The crystal local field effects (CLFE) arise whenever the system under consideration is
nonhomogeneous on the microscopic scale. In this case, for example, an external spatially
constant perturbing field will induce fluctuations on the scale of interatomic distances in
the material, giving rise to additional internal microscopic fields [17].

With respect to the previous paragraph, the Dyson-like equation (3.26) is now a matrix
equation. The inclusion of the CLFE implies that G 6= 0 components of the Coulomb
potential are taken into account, and the full integral GG′-matrix equation (3.26) is
solved (but for the fact that fxc = 0), which implies a matrix inversion. Hence, the
inverse microscopic dielectric tensor is given by Eq. (3.32).

Another way to describe the CLFE is to start from the microscopic dielectric ten-
sor and to consider its off-diagonal elements, εG,G′(q, ω). In the inversion, which yields
ε−1
G,G′(q, ω), the CLFE mix transitions of different energy. If the inhomogeneity of the sys-

tem is small, then the off-diagonal elements of the microscopic dielectric tensor εG,G′(q, ω)
are also small, and therefore they can be neglected. Only one diagonal matrix element
would be considered in this case: the head of the matrix, if q ∈ 1BZ. And when one
would make the inversion of the tensor εG,G′(q, ω), there would be no mixing. But one
may wonder, when the CLFE are more important and when they are less important,
and thus can be neglected? It is a general rule that the CLFE become stronger as the
wavevector q increases, since then the wavelength of the excitation becomes smaller, and
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thus one samples the local inhomogeneities of the electronic system [17]. The RPA with
CLFE yields results of reasonable accuracy for a wide range of systems, and it is still
widely employed in actual calculations [17, 100] (but not for optics of extended systems).

3.2.3 (e) The fxc contribution

The exchange-correlation (XC) kernel fxc is a complex quantity that contains all non-
trivial many-body effects [17]. Its exact analytical expression is unknown. Most of present
approximations of fxc have a vanishing G = 0 component. For this reason, their contri-
bution is also called exchange-correlation local field effects (XCLFE) [125]. Similarly to
the CLFE, the XCLFE arise from the G,G′ 6= 0 components of the exchange-correlation
kernel fxc

G,G′(q, ω), and from the off-diagonal components of χ0
G,G′(q, ω).

In the adiabatic approximation (ALDA, or TDLDA), the XC kernel is instantaneous,
i.e. its Fourier transform is frequency independent, but it can be non-local in space:

fxc(r, r
′, t, t′) = fxc(r, r

′) δ(t− t′), (3.44)

where fxc(r, r
′) is the functional derivative of the ground-state XC potential, calculated

at the ground-state charge density, n0(r) [see Eq. (3.21)]:

fxc(r, r
′) =

δVxc(n(r), r)

δn(r′)

∣∣∣∣
n=n0(r)

. (3.45)

In the adiabatic local-density approximation, the XC kernel reads [88]:

fTDLDA
xc (r, r′) = δ(r− r′)

δVxc(n(r), r)

δn(r′)

∣∣∣∣
n=n0(r)

=

= δ(r− r′)
d2

dn2

[
n εhomxc (n)

]
n=n0(r)

, (3.46)

where εhomxc is the energy of the homogeneous electron gas per unit volume. By construc-
tion, the TDLDA kernel is local both in time and space. Memory effects or the influence
of the charge distribution at a distant point are not included, e.g. for the Van-der-Waals
interaction [88]. In the reciprocal space, the TDLDA kernel reads:

fxc
G,G′ =

ˆ
dr e−i(G−G′)·r δVxc[n]

δn

∣∣∣∣
n=n0(r)

. (3.47)

It is evident that the TDLDA retains all of the problems already present in the LDA. The
most important of them for neutral finite systems is the incorrect asymptotic behaviour
of the LDA potential (exponential decay instead of −1/r), and, for infinite systems, its
local dependence on the density [92]. These drawbacks are not corrected by using GGA
nor meta-GGA functionals.

The behaviour of different approximations depends strongly on the spectroscopy and
on the dimensionality of the physical system. I will discuss this issue in more detail for
the optical absorption and electron energy-loss spectra of finite and extended systems.
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3.3 Optical absorption and electron energy-loss spec-

troscopy

3.3.1 TDDFT to explain optical absorption spectroscopy

The optical absorption spectroscopy describes an absorption of the electromagnetic radi-
ation, due to its interaction with a sample. The intensity of the absorption varies as a
function of the frequency, and this variation is described by the absorption spectrum.
The basic quantity for the description of the absorption spectrum is the imaginary part
of the macroscopic dielectric function, Im [εM(ω)] [112, 103, 104], where εM(ω) is given by
Eq. (3.34). From the knowledge of εM(ω), one can determine the absorption coefficient,
which is essentially I(ω) ∝ ω Im [εM(ω)] [126].

3.3.1 (a) Dyson-like equation with modified Coulomb potential

The imaginary part of the macroscopic dielectric function can be written in the form
[17, 92]:

Im [εM(ω)] = − lim
q→0

vG(q) Im
[
χG,G(q, ω)

]
, (3.48)

where χ is the modified density-response function, which satisfies the Dyson-like screening
equation:5

χ = χ0 + χ0 (v + fxc)χ. (3.49)

Here χ0 is the independent-particle polarizability [see Eq. (3.24)], fxc is the exchange-
correlation kernel, and v is the modified Coulomb potential which reads [17, 92]:

vG =

{
vG , if G 6= 0
0 , if G = 0 .

(3.50)

From Eq. (3.50) it is seen that vG does not contain the long-range part of the Coulomb
potential, i.e. when G = 0. This makes a drastic difference with respect to the elec-
tron energy-loss spectroscopy, which does contain the long-range part (see Sec. 3.3.3).
Within the RPA (fxc = 0), and by neglecting the CLFE (vG, when G 6= 0), one obtains
χ = χ0 - the independent particle approximation. The basic ingredients to obtain the
absorption spectrum are the Kohn-Sham wavefunctions and energy values, which enter
the expression of the independent-particle polarizability χ0 [see Eq. (3.17)]. They are
usually obtained from a ground-state DFT calculation, using some approximation for the
exchange-correlation potential.

5The Dyson-like equation (3.49) is written in the compact form. Note that all quantities are GG′-
matrices.
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3.3.1 (b) Discussion

How good is the TDDFT approach for the calculation of the optical absorption spec-
tra? In order to answer this question, let us distinguish between finite and extended
systems. The absorption spectra of finite systems, calculated within the RPA or TDLDA,
are, in general, in good agreement with experimental data [17, 92]. However, there are
many exceptions, most of which are related to the incorrect tail of the LDA or GGA
exchange-correlation potential at large r (exponential decay instead of −1/r). For exam-
ple, the failure in reproducing Rydberg series in the atom within TDDFT [127] is related
to this drawback.

In view of the excellent quality of the results obtained within TDDFT for finite sys-
tems, one could perhaps expect that the same would occur for extended systems. However,
this is not the case [109]. The inability of TDDFT in reproducing the absorption spectra
is found in a wide range of semiconductors (Si, Ge, GaAs, etc.) and wide-band gap semi-
conductors or insulators (diamond, MgO, SiO2, etc.) [17]. The reasons for the failure of
TDDFT are: (1) The poles of χ, obtained from Eq. (3.49), are not at correct (true) energy
values, and (2) TDDFT does not describe the excitonic effects, which are related to the in-
teraction between an excited electron and its associated hole (electron-hole interaction).6

However, these two problems can be overcome within the many-body perturbation theory
[17].

3.3.1 (c) Beyond TDDFT

One may wonder, is there a method beyond TDDFT that can describe optical proper-
ties of extended systems? A good level of approximation is the GW approximation [85], in
the framework of the many-body perturbation theory [85].7 Using this approach, one can
calculate electron addition and removal (quasiparticle) energy values through self-energy
corrections to the DFT Kohn-Sham energy values, hence taking properly into account the
electron-electron interaction, and thus having poles at proper excitation energy values.
This solves the first above mentioned problem of TDDFT. Nevertheless, even when doing
so, the excitonic effects are still neglected, while they might be important.

A good agreement of the theoretical absorption spectrum with the experimental one
can be obtained by solving the many-body Bethe-Salpeter equation (BSE) on top of
the GW method [86, 129], though at the price of very large computational effort.8 In

6Recently, there have been proposed a class of exchange-correlation kernels that turned out to repro-
duce the optical absorption spectra [92, 128].

7The GW approximation consists of solving an equation similar to the DFT Kohn-Sham system
of equations, in which the local exchange-correlation potential Vxc(r) is replaced by a non-local and
dynamical self-energy operator Σ(ω, r, r′): ĤKSϕi(r) − Vxc(r)ϕi(r) +

´
dr′Σ(ω, r, r′)ϕi(r′) = εQP

i ϕi(r),
where Σ ≈ iGW is evaluated at quasiparticle energies ω = εQP

i .
8The BSE is an integral equation that can be written symbolically as: L = L0+L0KL, where L and L0

are the four-point screened and free-particle correlation functions, respectively, and K is the electron-hole
interaction kernel. If K is approximated by the Coulomb potential, the BSE can be rewritten analytically
leading to the Dyson-like equation.
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this framework, the quasiparticle energy values are computed at the GW level, and the
electron-hole interaction is explicitly computed within the many-body Green’s function
theory. Thus, this solves the second aforementioned problem of TDDFT.

3.3.1 (d) f-sum rule

The Im [εM(ω)] satisfies the Thomas-Reiche-Kuhn (or f -sum) rule, which reads [130]:

ˆ ∞
0

Im [εM(ω)]ωdω =
π

2
ω2
p, (3.51)

where ωp is the Drude plasma frequency [see Eq. (3.41)].

3.3.2 Connection between scattering cross-section and dielectric
function

Electron energy-loss spectroscopy (EELS) is a technique that measures the change in
kinetic energy of electrons after they have interacted with the material sample [131].
EELS gives information about the composition, electronic structure and optical properties
of materials.

3.3.2 (a) EELS experiment

A typical angular-resolved EELS9 experiment is illustrated in Fig. 3.2. An electron
with a momentum ki is incident to the sample, where it is inelastically scattered and
where it looses some energy. The electron is scattered into a small solid-angle element
dΩ, and it has a momentum kf , which is smaller than its initial momentum, |kf | < |ki|.
Thus, the incident electron transfers some energy and momentum to electrons of the
atoms of the sample. As a consequence, there may occur single-electron excitations and
collective excitations. In the latter case, the energy of the incident electron is transferred
to many electrons of the target simultaneously, which results in their collective oscillation.
Such a cooperative motion of electrons is due to their mutual interaction. The collective
oscillations of the valence electrons closely resemble the electronic plasma oscillations
observed in gaseous discharges [111]. Therefore, one can define a plasmon as the quantum
of elementary excitation associated with a high-frequency collective motion.

Nowadays, EELS experiments can be carried out with a spatial resolution of ∼ 0.1 nm,
and the energy resolution typically of 1 eV, but it can be reduced down to ∼ 0.1 eV if an
electron-beam monochromator is used [131].

The main goal of the EELS experiment is to measure a double-differential cross section
d2σ/(dΩdω), which is given by the removal rate of electrons from the incoming beam due to
scattering into a solid angle range [Ω,Ω+dΩ] and an energy-transfer range [~ω, ~ω+~dω].

9Angular-resolved EELS provides the same information as inelastic X-ray scattering experiments [131].
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Figure 3.2: Schematic illustration of the angular-resolved EELS experiment. An incident
electron with a momentum ki inelastically scatters in the sample, and thus looses energy.
After the scattering it has a momentum kf = ki− q, where q is the momentum transfer.
According to Ref. [135].

The EELS technique can be divided into the valence-loss and core-loss EELS. The for-
mer measures single-particle and collective excitations of valence electrons, whereas the
latter measures single-particle excitations of core electrons (see also Refs. [132, 133]).10

The dividing line between the valence-loss and core-loss EELS is somewhat ill-defined,
and is in the vicinity of ∼ 50 eV [131]. So far, TDDFT calculations (see Sec. 3.3.3) have
been applied to study the valence-loss EELS. I will show in Chapter 7 that a new method,
developed in this thesis, bridging the gap between the valence-loss and core-loss EELS,
in the range 50 - 100 eV.

3.3.2 (b) Theory of EELS

There are three ways to describe the interaction of an incident electron with matter
[131]: (i) Classical description: collision of a particle with a target (Bohr impact theory),
(ii) Interaction of an electromagnetic field with a dielectric (Fermi dielectric theory), and
(ii) Quantum mechanical interaction between the incident electron and the target rep-
resented by its potential (Bethe transition-rate theory). In this section I will consider
the Bethe theory, which takes into account a quantum mechanical nature of the target in
order to describe dynamic effects in the scattering.

Differential cross section

The differential cross section for the scattering of the incident electron from the sample
reads:

dσ =
1

Ji

∑
f

dwfi, (3.52)

10Because of the strong binding of core electrons to the nucleus, collective effects are less important
than for valence electrons [131].
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where the indexes i and j stand for initial and final states, respectively,
∑

f is the sum-
mation over all final states, Ji = ~ki/m0 is the current of incoming electrons, m0 is the
free-electron mass, and dwfi is the probability per unit time that the system makes a
transition from the initial to any of the final states compatible with the observation con-
ditions of the outcoming electrons, e.g. their energy and direction of propagation. Let us
assume that the initial and final states can have the form:

Φi(r, {rl}) = eiki·r Ψi({rl}), (3.53)

Φf (r, {rl}) = eikf ·r Ψf ({rl}), (3.54)

where r is the coordinate of the scattering electron, {rl} is the set of coordinates of
the electrons of the target, and Ψi and Ψf are the many-body ground- and excited-
state electronic wavefunctions of the target, respectively. According to standard quantum
mechanics [27], the transition probability dwfi in Eq. (3.52) is given by the Fermi golden
rule:

dwfi =
2π

~
|〈Φf |V̂ |Φi〉|2 δ(E ′f − E ′i) dνf , (3.55)

where V̂ is the Coulomb interaction potential between the incident electron and the target
atom, which in coordinate representation reads:

V (r, {rl}) =
∑
l

e2

|r− rl|
− Ze2

|r|
, (3.56)

where the first term describes the electrostatic repulsion between the incident electron
and the atomic electrons l, and the second term describes the electrostatic attraction
between the incident electron and the nucleus of charge +Ze. Furthermore, E ′i and E ′f in
Eq. (3.55) are the energy values of the initial and final states, respectively, which read:

E ′i = Ei +
~2k2

i

2m0

, E ′f = Ef +
~2k2

f

2m0

, (3.57)

where Ei and Ef are the energy values of the target before and after the interaction with
the incident electron, respectively. Finally, νf in Eq. (3.55) are the (continuous) quantum
numbers of the final states, such as the energy and propagation direction of the scattering
electron, as well as any internal degrees of freedom of the target. The differential dνf
reads:

dνf =
dkf

(2π)3
=

1

(2π)3
k2
fdkfdΩ =

m0

(2π)3~2
kfdεdΩ, (3.58)

where ε = ~ω = ~2(k2
f − k2

i )/(2m0) is the amount of energy transferred from the incident
electron to the target,11 and dΩ is the solid angle in which the electron is scattered. The
matrix element in Eq. (3.55) reads:

〈Φf |V̂ |Φi〉 =

ˆ
d{rl}Ψ∗f ({rl}) Ψi({rl})

ˆ
dr eiq·r

[∑
l

e2

|r− rl|
− Ze2

|r|

]
, (3.59)

11I have used the differential of the transferred energy dε, rather than that of the final-state momentum
dkf for later notational convenience.
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where q = ki − kf is the momentum transfer.12 The evaluation of integrals gives:

ˆ
eiq·r

|r− rl|
dr =

4π

q2
eiq·rl ,

ˆ
eiq·r

|r|
dr = 0. (3.60)

Therefore, Eq. (3.59) can be rewritten in the form:

〈Φf |V̂ |Φi〉 =
4πe2

q2
〈Ψf |n̂q|Ψi〉, (3.61)

where n̂q =
∑

l e
iq·rl is the Fourier transform of the density operator. Finally, the double-

differential cross section of Eq. (3.52) reads:

d2σ

dΩdε
= AS(q, ω), (3.62)

where

A =

(
4πe2

q2

)2
m2

0

4π2~5

kf
ki
, (3.63)

and

S(q, ω) =
∑
f

|〈Ψf |n̂q|Ψi〉|2 δ
(
Ef − Ei

~
− ω

)
. (3.64)

Such a separation of two factors in the double-differential cross section is quite general
[134], and it is a consequence of the use of momentum and energy transfer as indepen-
dent variables.13 14 The first factor, A, is called the probe factor which describes the
properties of the incident electron, and the second factor, S(q, ω), is called the dynamic
structure factor which describes the target. The ratio kf/ki in Eq. (3.63) is ensuring that
the incoming electron current is the same as the outgoing one. This ratio is close to unity,
provided the energy loss is much smaller than the energy of the incident electron.15

12In general case the momentum transfer can be out of the first Brillouin zone (1BZ), i.e. Q = q+G =
ki−kf , where G is the reciprocal lattice vector, and q ∈ 1BZ. For the sake of simplicity and without loss
of generality, let us assume that the momentum transfer is in the 1BZ, thus G = 0 and Q = q = ki−kf .

13Equations (3.62)-(3.64) coincide with Eqs. (2)-(4) of Ref. [134] upon a substitution W (q) =(
4πe2/q2

)2, which is the Coulomb interaction between the incident electron and the target, and
pn0 = δn0,0, since the target is initially in its ground state.

14In the dipole approximation, eiq·rl ≈ 1 + iq · rl, which assumes that the region of overlap be-
tween final and initial states of the electron making the transition is smaller than 1/q, one has that
d2σ/(dΩdε) ∝ |〈Ψf |r|Ψi〉|2. The matrix element |〈Ψf |r|Ψi〉| is the same as the matrix element for optical
dipole transitions.

15For small energy losses ≤ 100 eV and an energy value of the incoming electron of 10 keV, the factor
kf/ki is frequency independent, and kf/ki ≈ 1.
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Connection with the dielectric theory

The diagonal matrix element of the susceptibility in the Lehmann representation
χ(q, ω) ≡ χ00(q, ω) reads [see Eq. (3.28)]:16

χ(q, ω) =
∑
f

|〈Ψf |n̂q|Ψi〉|2
(

1

~ω − (Ef − Ei) + iη
− 1

~ω + (Ef − Ei) + iη

)
, (3.65)

where η → +0 is the positive infinitesimal. Using the relation:

lim
η→+0

1

x+ iη
= P

(
1

x

)
− iπδ(x), (3.66)

one obtains:

Im[χ(q, ω)] = −π
∑
f

|〈Ψf |n̂q|Ψi〉|2
[
δ(~ω − (Ef − Ei))− δ(~ω + (Ef − Ei))

]
. (3.67)

For positive frequencies, one has therefore [135]:

S(q, ω) = −~
π

Im[χ(q, ω)]. (3.68)

This is the so-called fluctuation-dissipation theorem [134, 110, 136]. It relates the density
fluctuations due to electronic correlations which is described by S(q, ω) with the dissi-
pation of energy in the system described by Im[χ(q, ω)] [135]. Finally, by making use of
Eqs. (3.32) and (3.33) one can rewrite the double-differential cross section as:

d2σ

dΩdε
= − 1

(πea0)2

1

q2
Im

[
1

εM(q, ω)

]
, (3.69)

where a0 = ~2/(m0e
2) is the Bohr radius, −e is the electron charge, m0 is the free-

electron mass, and εM is the dielectric function. This formula is the main conclusion
of this section.17 Therefore, a measurement of the angular distribution of inelastically
scattered incident electrons is a direct measurement of the imaginary part of the inverse
dielectric function of the solid, at the frequency and momentum of the energy transfer to
the electrons of the solid.

16For simplicity and without loss of generality I have chosen G = G′ = 0. In the general case, one has
to consider G = G′ which are different from zero.

17In Eq. (3.69) I have assumed that the momentum transfer q is inside the first Brillouin zone (1BZ).
In the general case, one has instead Q = q + G, where G is the reciprocal lattice vector, and q ∈ 1BZ.
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3.3.3 TDDFT to explain EELS

3.3.3 (a) Dyson-like equation for EELS

The basic quantity for the description of EELS is the loss function, which reads:

−Im

[
1

εM(Q, ω)

]
= −Im

[
ε−1
G,G(q, ω)

]
, (3.70)

where Q = q + G, q is the momentum transfer, G is the reciprocal lattice vector, εM is
the dielectric tensor defined by Eq. (3.33), and ε−1

G,G′ is the microscopic dielectric tensor
defined by Eq. (3.32). From Eq. (3.32) it follows that the loss function is related to the
susceptibility χ as:

−Im
[
ε−1
G,G(q, ω)

]
= −vG(q) Im [χG,G′(q, ω)] , (3.71)

where the susceptibility χ can be obtained by solving the Dyson-like screening equation
(3.26):18

χ = χ0 + χ0 (v + fxc)χ. (3.72)

Here χ0 is the independent-particle polarizability [see Eq. (3.24)], fxc is the exchange-
correlation kernel, and v is the full Coulomb potential. The Coulomb potential v in
Eq. (3.72) contains the long-range part, i.e. G = 0 term, at variance with the optical
absorption case, which does not contain this term (see Sec. 3.3.1). This makes the dif-
ference between EELS and absorption spectroscopy [109]. Whenever this contribution is
negligible, both spectra should be equivalent, e.g. for finite systems [92].19 In the case
of EELS, the electron-hole interaction (which is long-range) has a weak influence on the
plasmon resonance (because there is already a strong Coulomb long-range term vG=0 in
Eq. (3.72)), whereas it is crucial in optical spectra.

As in the case of absorption spectroscopy, the basic ingredients to calculate EELS
are the Kohn-Sham wavefunctions and energy values that enter the expression of the
independent-particle polarizability χ0 [see Eq. (3.17)], and which are usually obtained
from a ground-state DFT calculation.

3.3.3 (b) Discussion

How good is TDDFT for the calculation of EELS? In the case of absorption spec-
troscopy, we have seen that TDDFT works well for finite systems and it fails for extended
systems within RPA and TDLDA. What about EELS?

The TDDFT works well for the calculation of EELS in finite systems, as in the case of
absorption spectroscopy [109]. In fact, EELS at vanishing momentum transfer q→ 0 and

18The Dyson-like equation (3.26) is written in the compact form. Note that all quantities are GG′-
matrices.

19Sottile et al. [109] have demonstrated on the example of bulk silicon, that one can go smoothly from
EELS at q→ 0 to the absorption spectrum by “switching off” the long-range component of the Coulomb
potential v0 (see also Fig. 5 in Ref. [92]).
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absorption spectra are equivalent for finite systems [109]. This is because the long-range
part of the Coulomb potential is not significant for finite systems. Since this term is not
present in the absorption spectrum and it has a small effect in the case of EELS for finite
systems, the two spectroscopies give the same result.

The TDDFT works also well for the calculation of EELS in extended systems, in con-
trast to the absorption spectrum [17]. In the case of EELS, it is a common finding that
the inclusion of exchange-correlation corrections in the scheme of TDLDA beyond the
RPA has a small effect at small values of transferred momenta q, as was demonstrated,
e.g., for graphite and TiO2 [109, 137]. However, at large q, TDLDA can give sizable
improvement with respect to RPA [138].

3.3.3 (c) Beyond TDDFT

One may wonder, is there a method that can give the electron energy-loss spectrum of
extended systems even better than TDDFT? Olevano and Reining [139] (see also Ref. [17])
have shown on the example of silicon, that the Bethe-Salpeter approach on top of the GW
method give slightly better agreement with the experimental data than TDLDA, for van-
ishing momentum transfer. However, since the full BSE calculation is still very expensive
from the computational point of view, the use of TDLDA (or even RPA) is ofter well jus-
tified. It is worth noting that the GW + Bethe-Salpeter results are superior to TDLDA
results in those parts of the electron energy-loss spectra that are dominated by interband
transitions, i.e. by the structures in the imaginary part of the dielectric function which
might be not well reproduced in TDLDA [17].

3.3.3 (d) Comparison between −Im [1/εM(Q, ω)] & Im [εM(Q, ω)]

Let us make a point about the comparison of two functions, namely, −Im [1/εM(Q, ω)]
and Im [εM(Q, ω)]. Recently, Weissker et al. [140] have shown on the example of silicon,
that these functions are different for small momentum transfer Q, whereas they become
equivalent when Q increases. This is due to the fact that for small Q the long-range
component of the kernel (v+fxc) is important [see Eq. (3.72)], and thus the two functions
are different [140]. Instead, for large Q the short-range effects dominate and the screen-
ing that causes the difference between −Im [1/εM(Q, ω)] and Im [εM(Q, ω)] becomes less
relevant, until finally the two functions become identical [140].

3.3.3 (e) f-sum rule

The −Im [1/εM(Q, ω)], satisfies the Thomas-Reiche-Kuhn (or f -sum) rule, which reads
[130]:

−
ˆ ∞

0

Im

[
1

εM(Q, ω)

]
ωdω =

π

2
ω2
p, (3.73)

where ωp is the Drude plasma frequency [see Eq. (3.41)]. Equation (3.73) holds for Q 6= 0,
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and Q → 0. Interestingly, the f -sum rule for both −Im [1/εM(Q, ω)] and Im [εM(Q, ω)]
(see Sec. 3.3.1 for Q → 0) yield the same result, πω2

p/2, and this result is independent
of Q. It should not be concluded that the functions −Im [1/εM(Q, ω)] and Im [εM(Q, ω)]
are identical (but for large Q).

3.4 Liouville-Lanczos approach to optical absorption

spectroscopy

In this section I will discuss the calculation of the optical absorption spectra of finite
systems (molecules, clusters) within the linear-response time-dependent density functional
perturbation theory (TDDFPT).

The TDDFT equations in the linear-response regime can be cast in numerous different
forms. In most current implementations, the Dyson-like integral equation (3.26) is solved
(see Sec. 3.2). This is an expensive operation both from a computational and memory-
requirement point of view. The first expensive task, is the calculation of the empty states
of the ground-state Kohn-Sham (KS) Hamiltonian in order to determine the independent-
particle polarizability χ0 [see Eq. (3.17)]. In practice, one truncates the sum over empty
states, and thus limits the applicability of this approach to a lower energy range.20 21

The second expensive task, is the solution of the Dyson-like equation (3.26), which re-
quires multiplications and inversions of large matrices. Moreover, this procedure must be
repeated for each value of frequency. In practice, because of its unfavourable scaling, such
an approach is applicable only for systems containing relatively small number of atoms.

Alternatively, optical absorption spectra can be calculated by propagating the full
time-dependent KS equations in real time [143, 144]. This description decreases storage
requirements; it allows the entire frequency-dependent dielectric function to be calculated
at once, and the scaling with the number of atoms is quite favourable [145]. This approach
scales numerically as ground-state DFT calculations, and it also allows the calculation
of nonlinear optical properties. Due to this, the real-time propagation approach has
recently gained popularity in conjunction with the use of real-space grids [146]. The
main limitation of such an approach is that a stable integration of the time-dependent KS
equations requires a time step as small as≈ 10−3 fs in typical pseudopotential applications,
and the typical number of time-steps can be as large as ≈ 104 [145].

Another alternative approach is based on Ghosh and Dhara’s linear-response time-
dependent density functional formalism [147, 148]. This approach uses an iterative scheme
in real space, in which the density and potential are updated in each cycle, thus avoiding

20Very recently, Berger et al. [141, 142] have proposed a method for the calculation of electronic
excitations by reformulating spectral sum-over-states expressions so that only occupied states appear,
and all empty states are replaced by one effective energy. Such a method speeds up the calculations by
more than one order of magnitude. Though, such a method cannot be applied for calculation of spectra.

21One can also raise a question about the validity of the description of empty states at high energy, in
particular when pseudopotentials are used, and also with linear methods involving the choice of energy
values to build the basis wavefunctions, like (FP)LMTO and (FP)LAPW [45].
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the explicit calculation of the Kohn-Sham response kernels [148].

Finally, recently there has been proposed a new efficient approach, the so-called
Liouville-Lanczos approach, to calculate optical absorption spectra of finite systems in
the frequency domain, thus avoiding the explicit integration of the time-dependent Kohn-
Sham equations [149, 18].22 This method does not require the calculation of empty states,
nor time-consuming matrix operations, in contrast to the conventional TDDFT approach
described in Sec. 3.2 [145, 153, 154]. In the Liouville-Lanczos approach, the susceptibil-
ity χ is expressed as an off-diagonal matrix element of the resolvent of the Liouvillian
superoperator, which is evaluated using a Lanczos recursion method [149], as will be dis-
cussed in Secs. 3.4.1 and 3.4.2. The distinctive feature of the new approach is that it
allows the calculation of the full spectrum of a system over a broad frequency range; most
importantly, the full spectrum is obtained at once without repeating time-consuming op-
erations for different frequencies [18]. The computational effort of such an approach is of
the same order as that of time-independent density functional perturbation theory [40], or
of the iterative diagonalization of a ground-state KS Hamiltonian, or of a Car-Parrinello
molecular dynamics [155]. The Liouville-Lanczos approach can be readily applied to sys-
tems with a large number (hundreds) of atoms (see, e.g., Refs. [156, 157, 158]).23 Note,
such large systems can also be treated by conventional TDDFT approach, though with
considerably higher computational cost.

In the following, I will describe in detail the Liouville-Lanczos formalism. In Chapter 7
I will extend this approach to the electron energy-loss spectroscopy for extended systems.

3.4.1 Formalism

The formalism starts from Casida’s linear-response formulation of TDDFT [159, 160].
Before this thesis, the formalism has been published by Rocca et al. [18] for optical
absorption spectra of molecules, i.e. for zero momentum transfer, q = 0, using super-
cells and Γ point sampling of the Brillouin zone. In the following, I will closely follow
Refs. [145, 18, 154] for the explanation of the Liouville-Lanczos approach.

3.4.1 (a) Linearized time-dependent Kohn-Sham equations

The time-dependent Kohn-Sham (KS) equations of TDDFT read [see Eq. (3.8)]:

i~
∂ϕv(r, t)

∂t
= ĤKS(r, t)ϕv(r, t), (3.74)

where v is the dummy index, ϕv(r, t) are the KS eigenstates, and ĤKS(r, t) is the KS

22Very recently, the Liouville-Lanczos approach has been applied within the many-body perturbation
theory to the calculation of optical absorption spectra of finite and extended systems by solving the
Bethe-Salpeter equation [150, 151, 152].

23For example, Malcioglu et al. Ref. [158] have successfully applied the Liouville-Lanczos approach to
calculate the absorption spectrum of the solvated Cya molecule: C21H21O11Cl surrounded by 95 water
molecules H2O. Thus, in total there were 339 atoms (938 electrons).
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Hamiltonian which reads:

ĤKS(r, t) = − ~2

2m0

∇2 + Vext(r, t) + VHxc(r, t), (3.75)

where Vext(r, t) is the time-dependent external potential, and VHxc(r, t) is the time-
dependent Hartree plus exchange-correlation (XC) potential [see Eq. (3.10)]. If the exter-
nal perturbation is weak, it can be linearized [see Eq. (3.12)]:

Vext(r, t) = V 0
ext(r) + V ′ext(r, t), (3.76)

where V 0
ext(r) is the static external potential of the unperturbed system, and V ′ext(r, t)

is the time-dependent perturbation. Thus, the Hartree-plus-XC potential can also be
linearized:

VHxc(r, t) = V 0
Hxc(r) + V ′Hxc(r, t), (3.77)

where V 0
Hxc(r) is the static Hartree-plus-XC potential of the unperturbed system, and

V ′Hxc(r, t) is the time-dependent Hartree-plus-XC potential induced due to the external
perturbing potential V ′ext(r, t) (through the density response). Therefore, the KS Hamil-
tonian, Eq. (3.75), reads:

ĤKS(r, t) = Ĥ0(r) + V ′(r, t), (3.78)

where

Ĥ0(r) = − ~2

2m0

∇2 + V 0
ext(r) + V 0

Hxc(r), (3.79)

and
V ′(r, t) = V ′ext(r, t) + V ′Hxc(r, t), (3.80)

where Ĥ0 is the Hamiltonian of the unperturbed system, whose solution is given by the
static KS equation [see Eq. (2.16)]:

Ĥ0(r)ϕ0
v(r) = εv ϕ

0
v(r), (3.81)

where ϕ0
v(r) and εv are the KS wavefunctions and energy values of the unperturbed system,

respectively.
The KS wavefunctions ϕv(r, t) of Eq. (3.74), can be presented in the form:

ϕv(r, t) = e−iεvt/~
[
ϕ0
v(r) + ϕ′v(r, t)

]
, (3.82)

where ϕ′v(r, t) are the orbital response functions, which can be chosen to be orthogonal
to all of the unperturbed occupied orbitals {ϕ0

v}, i.e. 〈ϕ′v′ |ϕ0
v〉 = 0, ∀ (v, v′) [18]. Let us

also assume that the KS states ϕv(r, t) satisfy the initial conditions: ϕv(r, 0) = ϕ0
v(r),

therefore ϕ′v(r, 0) = 0.
Thereby, to first order in the perturbation, the time-dependent KS equations (3.74)

can be cast into the form [18]:

i~
∂ϕ′v(r, t)

∂t
= (Ĥ0 − εv)ϕ′v(r, t) +

[
V ′ext(r, t) + V ′Hxc(r, t)

]
ϕ0
v(r). (3.83)
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A similar expression can also be written for the complex-conjugate problem:

−i~∂ϕ
′ ∗
v (r, t)

∂t
= (Ĥ0 − εv)ϕ′ ∗v (r, t) +

[
V ′ext(r, t) + V ′Hxc(r, t)

]
ϕ0 ∗
v (r). (3.84)

Here I have used the fact that some operators and functions are real, due to time-reversal
symmetry, namely Ĥ0 ∗ = Ĥ0, V ′ ∗ext(r, t) = V ′ext(r, t), V

′ ∗
Hxc(r, t) = V ′Hxc(r, t), and ε∗v = εv.

Let us Fourier analyze Eqs. (3.83) and (3.84). By definition, the Fourier transformation
reads:

ϕ′v(r, t) =

ˆ ∞
−∞

ϕ̃′v(r, ω)e−iωtdω, (3.85)

ϕ′ ∗v (r, t) =

ˆ ∞
−∞

ϕ̃′ ∗v (r,−ω)e−iωtdω. (3.86)

Hence, in the frequency domain, Eqs. (3.83) and (3.84) read [145]:

(Ĥ0 − εv − ~ω)ϕ̃′v(r, ω) + P̂cṼ
′
Hxc(r, ω)ϕ0

v(r) = −P̂cṼ ′ext(r, ω)ϕ0
v(r), (3.87)

(Ĥ0 − εv + ~ω)ϕ̃′ ∗v (r,−ω) + P̂cṼ
′
Hxc(r, ω)ϕ0

v(r) = −P̂cṼ ′ext(r, ω)ϕ0
v(r). (3.88)

Equations (3.87) and (3.88) have the same form but for the sign of the frequency, ±~ω,
which is the only difference. A projector on empty states, P̂c =

∑
c |ϕ0

c〉〈ϕ0
c |, where the

summation runs only over empty states, has been applied in Eqs. (3.87) and (3.88).24 In
order to avoid the summation over empty states, one can present the projector on empty
states as P̂c = 1 − P̂v, where P̂v =

∑
v |ϕ0

v〉〈ϕ0
v| is the projector on occupied states, and

the summation runs only over occupied states v. 25 One can do so, because the following
relation holds: P̂v + P̂c =

∑
i |ϕ0

i 〉〈ϕ0
i | = 1, where i runs over all states. The use of the

projector on empty states P̂c is a common practise of the static density functional pertur-
bation theory (DFPT) [40]. Since the orbital response functions {ϕ′v} have been chosen
to be orthogonal to the unperturbed occupied orbitals {ϕ0

v}, the action of the projector
operator P̂c on the first term on the left-hand side of Eqs. (3.87) and (3.88) will give zero.

3.4.1 (b) Quantum Liouville equation

In classical mechanics, the Liouville equation describes an evolution in time of the
probability density in phase space [27]. In quantum mechanics, the quantum Liouville
equation dictates that:

i~
dρ̂(r, t)

dt
=
[
ĤKS(r, t), ρ̂(r, t)

]
, (3.89)

where ρ̂(r, t) is the reduced one-electron KS density-matrix, whose kernel reads:

ρ(r, r′; t) = 2
∑
v

ϕv(r, t)ϕ
∗
v(r
′, t), (3.90)

24The dummy index c stands for “conduction” bands, i.e. empty states.
25The dummy index v stands for “valence” bands, i.e. occupied states.
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and the square brackets indicate a commutator. Note, we consider a non-spin-polarized
case, therefore the definition (3.90) contains a factor of 2 due to spin degeneracy. Equa-
tion (3.89) is the equivalent of the time-dependent KS equation (3.74) [18]. Linearization
of Eq. (3.89) with respect to the external perturbation leads to:

i~
dρ̂′(r, t)

dt
= [Ĥ0, ρ̂′(r, t)] +

[
V ′Hxc(r, t), ρ̂

0(r)
]

+
[
V ′ext(r, t), ρ̂

0(r)
]
, (3.91)

where ρ̂0(r) is the unperturbed density-matrix, and ρ̂′(r, t) = ρ̂(r, t) − ρ̂0(r) is the re-
sponse density-matrix. Let us linearize also the density-matrix kernel Eq. (3.90), by using
Eq. (3.82). One will obtain:

ρ′(r, r′; t) = 2
∑
v

[
ϕ′v(r, t)ϕ

0 ∗
v (r′) + ϕ′ ∗v (r′, t)ϕ0

v(r)
]
, (3.92)

whose Fourier transform reads:

ρ̃′(r, r′;ω) = 2
∑
v

[
ϕ′v(r, ω)ϕ0 ∗

v (r′) + ϕ′ ∗v (r′,−ω)ϕ0
v(r)

]
. (3.93)

Therefore, the Fourier transform of the linearized response charge-density, ñ′(r, ω) =
ρ̃′(r, r;ω), reads:

ñ′(r, ω) = 2
∑
v

[
ϕ̃′v(r, ω)ϕ0 ∗

v (r) + ϕ̃′ ∗v (r,−ω)ϕ0
v(r)

]
, (3.94)

and the following relation holds: ñ′ ∗(r, ω) = ñ′(r,−ω).
The Hartree-plus-XC potential V ′Hxc(r, t) is linearly induced by the response charge-

density n′(r, t), and it reads:

V ′Hxc(r, t) =

ˆ ˆ [
e2

|r− r′|
δ(t− t′) + fxc(r, r

′, t, t′)

]
n′(r′, t′) dr′ dt′, (3.95)

where fxc is the exchange-correlation kernel defined in Eq. (3.21). In the adiabatic ap-
proximation [see Eq. (3.44)], Eq. (3.95) can be rewritten in the form:

V ′Hxc(r, t) =

ˆ
κ(r, r′)n′(r′, t) dr′, (3.96)

where κ(r, r′) is the Hartree-plus-XC kernel which reads:

κ(r, r′) =
e2

|r− r′|
+ fxc(r, r

′), (3.97)

where fxc(r, r
′) is the XC kernel which is defined in Eq. (3.45). By inserting Eq. (3.96)

into Eq. (3.91), the linearized quantum Liouville equation is cast into the form [18]:

i~
dρ̂′(r, t)

dt
= L̂ · ρ̂′(r, t) +

[
V ′ext(r, t), ρ̂

0(r)
]
, (3.98)
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where the action of the Liouvillian superoperator26 L̂ onto ρ̂′ is defined as:

L̂ · ρ̂′ = [Ĥ0, ρ̂′] +
[
V ′Hxc[ρ̂

′], ρ̂0
]
. (3.99)

By Fourier analyzing the quantum Liouville equation (3.98) in time, one obtains:

(~ω − L̂) · ˆ̃ρ′(r, ω) = [Ṽ ′ext(r, ω), ρ̂0(r)], (3.100)

The solution of Eq. (3.100) can be formally written as:

ˆ̃ρ′(r, ω) = (~ω − L̂)−1 · [Ṽ ′ext(r, ω), ρ̂0(r)]. (3.101)

In the absence of any external perturbations, i.e. Ṽ ′ext(r, ω) = 0, Eq. (3.100) becomes an
eigenvalue equation for ˆ̃ρ′(r, ω), whose eigen-pairs describe free oscillations of the system,
i.e. excited states [159]. Eigenvalues correspond to excitation energy values, whereas
eigenvectors can be used to calculate transition oscillator strength, and the response of
system properties to any generic external perturbation [18].

3.4.1 (c) Optical properties: dipole dynamical polarizability

The expectation value of any one-electron operator can be expressed as the trace of
its product with the one-electron density-matrix. Therefore, the Fourier transform of the
dipole which is linearly induced by the external perturbation reads:

d(ω) = Tr[r̂ ˆ̃ρ′(r, ω)], (3.102)

where r̂ is the quantum-mechanical position operator, and ˆ̃ρ′(r, ω) is the solution of the
quantum Liouville equation (3.101). Let us suppose that the external perturbation is a
homogeneous electric field:

Ṽ ′ext(r, ω) = −eE(ω) · r, (3.103)

where −e is the electron charge, and E(ω) is the Fourier transform of the amplitude of
the electric field. The dipole given by Eq. (3.102) reads:

di(ω) =
∑
j

αij(ω)Ej(ω), (3.104)

where αij(ω) is the dynamical polarizability tensor of the dipole, which reads:

αij(ω) = −eTr
(
r̂i (~ω − L̂)−1 · [r̂j, ρ̂0]

)
. (3.105)

Traces of products of operators can be considered as scalar products defined in the linear
space of quantum mechanical operators.27 Therefore, Eq. (3.105) can be formally written
as:

αij(ω) = −e 〈r̂i|(~ω − L̂)−1 · ŝj〉, (3.106)

26Superoperator is a linear operator acting on a vector space of linear operators.
27For example, if Â and B̂ are two general one-electron operators, then the scalar product can be

defined as: 〈Â|B̂〉 ≡ Tr(Â†B̂).
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where ŝj = [r̂j, ρ̂
0]. From Eq. (3.106) one can conclude, that the dynamical polarizability

can be expressed as the off-diagonal matrix element of the resolvent28 of the Liouvillian
super-operator [18]. This statement can be extended in a straightforward way to the
dynamic linear response of any observable to any local one-electron perturbation. It is
worth noting that the operators r̂i and ŝj, which enter the definition of the scalar product
in Eq. (3.106), are orthogonal. Indeed, since r̂i is Hermitian and ŝj is anti-Hermitian, the
scalar product of one Hermitian and one anti-Hermitian operators vanishes, 〈r̂i|ŝj〉 = 0.

Lastly, I would like to point out that the absorption coefficient is related to the dy-
namical polarizability as: I(ω) ∝ ωTr[αij(ω)].

3.4.1 (d) Batch representation

As can be seen from Eq. (3.93), the response density-matrix at any given frequency ω
is uniquely determined by the two sets of response orbitals:

x = {xv(r)} = {ϕ̃′v(r, ω)}, (3.107)

y = {yv(r)} = {ϕ̃′ ∗v (r,−ω)}, (3.108)

which are so-called batches [18]. This term has been introduced in Ref. [149]. Also, as
I have pointed out earlier, the response orbitals {ϕ̃′v} can be chosen to be orthogonal to
the KS occupied-state manifold {ϕ0

v}. For this reason, the response density-matrix kernel
of Eq. (3.93) has vanishing matrix elements between pairs of occupied and unoccupied
states. Namely, 〈ϕ0

v|ρ̂′|ϕ0
v′〉 = 0, ∀ (v, v′), where v and v′ denote occupied (valence) states,

and 〈ϕ0
c |ρ̂′|ϕ0

c′〉 = 0, ∀ (c, c′), where c and c′ denote empty (conduction) states [18]. Hence,
the response density-matrix has the block structure:

ρ̂′ −→
(

0 ρ′vc
ρ′cv 0

)
. (3.109)

This block structure allows us to represent conveniently the operators appearing in Eqs. (3.99)
and (3.105). A detailed discussion about this issue can be found in Refs. [18, 154].

From now on, let us assume that the unperturbed system is time-reversal invariant,
so that the unperturbed KS orbitals ϕ0

v(r) can be assumed to be real.29 Therefore, the
response charge-density, Eq. (3.94), in the batch representation reads:

ñ′(r, ω) = 2
∑
v

ϕ0
v(r) [ϕ̃′v(r, ω) + ϕ̃′ ∗v (r,−ω)] = 2

∑
v

ϕ0
v(r) [xv(r) + yv(r)] . (3.110)

28Given a linear operator Â, the resolvent is defined as R(z) = (Â − zÎ)−1, where Î is the identity
operator, and z is the complex number. In the current context, the resolvent of the linear Liouvillian
superoperator L̂ is defined as (~ω−L̂)−1, where ω is the frequency, with the real part which corresponds to
the excitation energy values and the complex part which corresponds to the broadening of the spectrum.

29Such an assumption can be made because we are considering optical absorption spectra of finite
systems. In order to perform an ab initio calculation of a finite system within the plane-wave pseudopo-
tential framework (see Sec. 2.3), one uses a supercell scheme and samples the Brillouin zone only with the
Γ point. The wavefunctions at the Γ point are real, ϕ0 ∗

v (r) = ϕ0
v(r), and I use this fact in the following

derivations.
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The batch representation of the product of the Liouvillian superoperator with the response
density-matrix, Eq. (3.99), or equivalently the left-hand side of Eqs. (3.87) and (3.88) but
for the ~ω term, can be written in the matrix form [18]:

L̂
(

x
y

)
=

(
D̂ + K̂ K̂
−K̂ −D̂ − K̂

)(
x
y

)
, (3.111)

where the action of the D̂ and K̂ super-operators on batches of orbitals is defined as:

D̂ · xv(r) = (Ĥ0 − εv)xv(r), (3.112)

and

K̂ · xv(r) = 2P̂c
∑
v′

ˆ
Kvv′(r, r

′)xv′(r
′) dr′, (3.113)

where the kernel Kvv′(r, r
′) reads:

Kvv′(r, r
′) = κ(r, r′)ϕ0

v(r)ϕ0
v′(r

′), (3.114)

where κ(r, r′) is the Hartree-plus-XC kernel defined in Eq. (3.97). According to Eqs. (3.111)-
(3.113), the calculation of the product of the Liouvillian with a general one-electron op-
erator in the batch representation only requires operating on a number of one-electron
orbitals equal to the number of occupied KS states, without the need to calculate any empty
states [18]. Also, I would like to point out, that in practice the calculation of Eq. (3.113) is
performed by calculating first the Hartree-plus-XC potential Ṽ ′Hxc [see Eq. (3.96)], then by
applying it to each unperturbed occupied KS orbital, Ṽ ′Hxc ϕ

0
v, and afterwords by applying

the projector on empty states, P̂c Ṽ
′
Hxc ϕ

0
v [see the second term on the left-hand side in

Eqs. (3.87) and (3.88)].
According to Tsiper [161], it is convenient to perform a 45◦ rotation in the space of

batches and define:

qv(r) =
1

2
[ϕ̃′v(r, ω) + ϕ̃′ ∗v (r,−ω)] , (3.115)

pv(r) =
1

2
[ϕ̃′v(r, ω)− ϕ̃′ ∗v (r,−ω)] . (3.116)

Equations (3.115) and (3.116) define the standard batch representation (SBR) of the
density-matrix response, q = {qv(r)} and p = {pv(r)}. The qv(r) and pv(r) are called the
upper (or q-like) and the lower (or p-like) components of the SBR [154]. The SBR of the
response charge-density, Eq. (3.110), therefore reads:

ñ′(r, ω) = 4
∑
v

ϕ0
v(r)qv(r). (3.117)

The SBR of the Liouvillian super-operator, Eq. (3.111), reads:

L̂ =

(
0 D̂

D̂ + 2K̂ 0

)
, (3.118)
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and the SBR of the quantum Liouville equation (3.100) reads:(
~ω −D̂

−D̂ − 2K̂ ~ω

)(
q
p

)
=

(
0

{P̂c Ṽ ′ext(r, ω)ϕ0
v(r)}

)
. (3.119)

General one-electron quantum mechanical operators can also be presented in the stan-
dard batch representation. The SBR of a general operator is defined as [154]:

Â
SBR−→

(
{aqv}
{apv}

)
, (3.120)

where the orbitals aqv(r) and apv(r) are defined as:

aqv(r) =
1

2

[
P̂c Â ϕ

0
v(r) + (P̂c Â

† ϕ0
v(r))∗

]
, (3.121)

apv(r) =
1

2

[
P̂c Â ϕ

0
v(r)− (P̂c Â

† ϕ0
v(r))∗

]
. (3.122)

If Â is a Hermitian operator, then its SBR is given by

Â = Â†
SBR−→

(
{P̂c Â ϕ0

v(r)}
0

)
. (3.123)

Armed with foregoing considerations, let us express the dynamical polarizability αij(ω),
Eq. (3.106), in the SBR. According to definitions (3.120)-(3.122), the operators r̂i and

[r̂j, ρ̂0], appearing in Eq. (3.106), in the SBR read [154]:

r̂i
SBR−→

(
{P̂c r̂i ϕ0

v(r)}
0

)
, (3.124)

and

[r̂j, ρ̂0]
SBR−→

(
0

{P̂c r̂j ϕ0
v(r)}

)
. (3.125)

Therefore, the dynamical polarizability αij(ω) in the SBR reads (see Eq. (2.40) in Ref. [162]):

αij(ω) = −e
〈

({P̂c r̂i ϕ0
v}, 0)

∣∣∣(~ωÎ − L̂)−1 · (0, {P̂c r̂j ϕ0
v})
〉
, (3.126)

or, equivalently [see Eq. (3.119)],

αij(ω) =

〈
({P̂c r̂i ϕ0

v}, 0)
∣∣∣ ( ~ω −D̂
−D̂ − 2K̂ ~ω

)−1(
0

{P̂c r̂j ϕ0
v}

)〉
. (3.127)

Such a matrix element can be efficiently calculated using the Lanczos recursion method
(see Sec. 3.4.2).

3.4.1 (e) Dipole operator in periodic boundary conditions
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On the right-hand side of Eq. (3.119), there is a term P̂c Ṽ
′
ext(r, ω)ϕ0

v(r). In the case
when the external perturbation is the electric field, Eq. (3.103), one has to compute hence
P̂c r̂ϕ0

v(r). However, the quantum mechanical position operator r̂ is ill-defined in the
periodic boundary conditions, used in plane-wave implementation. Nevertheless, since
P̂c r̂ϕ0

v(r) =
∑

c |ϕ0
c〉〈ϕ0

c |r̂|ϕ0
v〉, one can make use of the relation:

〈ϕ0
c |r̂|ϕ0

v〉 =
〈ϕ0

c |[Ĥ0, r̂]|ϕ0
v〉

εc − εv
, (3.128)

where the matrix element 〈ϕ0
c |[Ĥ0, r̂]|ϕ0

v〉 is well defined in periodic boundary conditions
[154]. If the potential in the unperturbed Hamiltonian Ĥ0 is local, then [Ĥ0, r̂] = −i~p̂/m,
where p̂ is the momentum operator, and m is the electron mass. However, if the potential
acting on electrons has also a non-local part, which is the case for many pseudopotentials,
then an additional term must be added to the momentum operator [163].30

In the summary of this section, in order to calculate optical absorption spectra of finite
systems, one has to determine the dynamical polarizability Eq. (3.106). All operators
which are present in Eq. (3.106) can be conveniently presented in the batch representation,
introduced in Ref. [149], which allows us to avoid explicit calculation of unoccupied Kohn-
Sham states. In the next section I will present a numerical algorithm, which allows us to
calculate an off-diagonal matrix element of the resolvent of the Liouvillian superoperator,
like the one in Eq. (3.106).

3.4.2 Lanczos recursion method

3.4.2 (a) The algorithm

According to the discussion in the previous section, the dynamical polarizability αij(ω)
can be expressed as an off-diagonal matrix element of the resolvent of the Liouvillian
superoperator, Eq. (3.106). In this section I will briefly present how such a matrix element
can be efficiently calculated using the Lanczos recursion method, which is a generalization
of the recursion method by Haydock, Heine, and Kelly [164].

At first sight, it may seem that the calculation of the dynamical polarizability from
the resolvent of the Liouvillian would require an inversion of (ω − L̂) for each value of
the frequency ω, which is a very demanding task as the system size and the number of
frequencies increase. However, a specially tailored iterative method, the so-called Lanczos
biorthogonalization algorithm [18, 165, 166], can be used, which allows to perform the
calculation only once for all frequencies.

Let us define two two-component Lanczos vectors:

Vi =

(
qiv
piv

)
, and Ui =

(
q̃iv
p̃iv

)
, (3.129)

30Notice, the electron velocity reads v = (i/~)〈ϕ0
v|[Ĥ0, r̂]|ϕ0

v〉, which is the diagonal matrix element of
the commutator. Instead, here we are interested in the off-diagonal matrix element of the commutator
Eq. (3.128). In Sec. 6.1.3 I will discussion in detail practical aspects of an ab initio calculation of such
matrix elements.
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where index i denotes the number of the Lanczos iteration, v is the band index, qiv and q̃iv
are the upper (or q-like) components of the SBR, and piv and p̃iv are the lower (or p-like)
components of the SBR. Further, let us define the starting Lanczos vectors V1 and U1

according to the right-hand side of Eq. (3.119):

V1 = U1 =

(
0

P̂c r̂ϕ0
v(r)

)
. (3.130)

The scalar product of the starting Lanczos vectors V1 and U1 must be equal to 1 [167],
hence they have to be normalized: V′1 = V1/〈U1|V1〉, and U′1 = U1/〈U1|V1〉, so that
〈U′1|V′1〉 = 1.

The rule to build the Lanczos recursion chain reads [165]:

βi+1 Vi+1 = L̂Vi − γi Vi−1, (3.131)

γi+1 Ui+1 = L̂T Ui − βi Ui−1, (3.132)

where the index i runs from 1 to N (N being the maximal number of Lanczos iterations),
V0 = U0 = 0, and βi and γi are the Lanczos coefficients (real numbers). Since the
diagonal elements of the Liouvillian L̂ are zero in the SBR, Eq. (3.118), an application of
L̂ (or L̂T ) to Lanczos vectors Vi and Ui will bring a q-part to a p-part of the new vector,
and a p-part to a q-part. Therefore, the Vi and Ui vectors will always have either the
p-part zero and q-part non-zero, or vice-versa. Which part is zero in a given iteration
depends on whether the iteration is even or odd.

The Lanczos coefficients are defined so that they must fulfill the orthonormality con-
dition of the Lanczos vectors: 〈Ui+1|Vi+1〉 = 1. Therefore, according to Saad [165]:

βi+1 =

√
|〈L̂Vi − γi Vi−1|L̂T Ui − βi Ui−1〉| , (3.133)

γi+1 = βi+1 sign
(
〈L̂Vi − γi Vi−1|L̂T Ui − βi Ui−1〉

)
, (3.134)

and β1 = γ1 = 0. By solving the system (3.131) - (3.132) in an iterative way, two matrices

of Lanczos vectors are generated: V
N

= [V1,V2, . . . ,VN ], and U
N

= [U1,U2, . . . ,UN ].
In the basis of the Lanczos vectors {Vi} and {Ui}, the Liouvillian L̂ has a tridiagonal
form [167]: (

U
N
)T
L̂ V

N
= T̂N , (3.135)

where T̂N is the tridiagonal matrix which reads:

T̂N =


0 γ2 0 . . . 0
β2 0 γ3 0 0

0 β3 0
. . . 0

... 0
. . . . . . γN

0 . . . 0 βN 0

 . (3.136)
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It is worth noting that the diagonal matrix elements in Eq. (3.136) vanish because of the
special (off-diagonal) structure of the Liouvillian L̂ in the SBR, Eq. (3.118),31 and of the
starting Lanczos vectors V1 and U1, Eq. (3.130). This is the reason why the diagonal
matrix elements αi = 〈Ui|L̂Vi〉, which in the general case must be present in Eqs. (3.131)
- (3.132), are equal to zero [18, 154].

It can be shown (see Eqs. (71)-(77) of Ref. [18]) that within the Lanczos recursive
scheme the matrix element of the form Eq. (3.106) can be cast into the form [154]:

α(ω) ' −e
〈
ζN |(~ωÎ − T̂N)−1 · eN1

〉
, (3.137)

where α(ω) is the dynamical polarizability, −e is the electron charge, N is the maximal
number of Lanczos iterations, Î is the N × N identity matrix, eN1 = (1, 0, . . . , 0) is the
unit vector in N -dimensional space, and ζN = (ζ1, ζ2, . . . , ζN) is the vector composed of
the coefficients ζi which are defined as:

ζi =
〈
(P̂c r̂ϕ0

v(r), 0)|Vi

〉
, (3.138)

where the index i denotes the number of the Lanczos iteration. The right-hand side of
the scalar product in Eq. (3.137) is determined by solving, for a given value of ω, the
following equation: (

~ωÎ − T̂N
)
· ηN = eN1 , (3.139)

and, therefore, the dynamical polarizability α(ω) can be calculated as:

α(ω) = −e 〈ζN |ηN〉. (3.140)

The coefficients ζi, Eq. (3.138), are calculated on the fly during the Lanczos recursion.
Since the Lanczos vectors Vi have either q-part zero and p-part non-zero, or p-part zero
and q-part non-zero depending on whether the iteration is even or odd, the coefficients ζi
can be either zero or non-zero. More specifically, when the iteration is odd then ζi = 0,
and when the iteration is even then ζi 6= 0.

In practice, the procedure outlined above is performed in two steps. In the first
step, which is also the most time consuming, one generates the tridiagonal matrix T̂N ,
Eq. (3.136), and the ζN array, Eq. (3.138). In the second step, the dynamical polariz-
ability α(ω) is calculated from Eq. (3.140) upon the solution of Eq. (3.139), for different
frequencies ω.32 Because of the tridiagonal form and the small dimension of the matrix
T̂N , the second step computationally costs much less than the first step, and this is one
of the big advantages of the method.

31This is why the rotation of batches on 45◦ is convenient, Eqs. (3.115) and (3.116).
32In practice a small imaginary part σ is added to the frequency argument, ω → ω + iσ, in order to

regularize the spectrum [18]. Setting σ to a non-zero value amounts to convolute the theoretical spectrum
with a Lorentzian, or, alternatively, to broaden each individual spectral line. The optimal value of σ is
slightly larger than the minimum separation between discrete peaks, and depends in principle on the
details of the system being studied.
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3.4.2 (b) Extrapolation of the Lanczos recursion chain

A careful inspection of the convergence of the calculated spectrum with respect to
the number of Lanczos iterations allows the formulation of a simple extrapolation scheme
that drastically enhances the numerical performance of the Liouville-Lanczos method [18].
The components of the ζN array, Eq. (3.138), decrease rather rapidly when the number of
Lanczos iterations increases, so that only a relatively small number of components have
to be explicitly calculated [18]. However, a much larger number of βi and γi coefficients is
necessary in order to converge the solution of Eq. (3.139). When the number of Lanczos
iterations is large enough, βi and γi coefficients oscillate around two distinct values for
odd and even iterations, whose average is approximatively equal to half of the kinetic-
energy cutoff (in a plane-wave implementation, see Sec. 2.3.1), and whose difference is
approximatively twice as large as the optical gap [18, 154].

Thereby, the extrapolation can be performed in the following way. Let us suppose
that N Lanczos iterations have been performed, and that a regime where further com-
ponents of the ζN array are negligible have been attained, and the Lanczos coefficients
βi and γi display a bimodal behaviour. Subsequently, a much larger tridiagonal system
can be solved, for N ′ � N , Eq. (3.139), where the missing components of ζN

′
are set to

zero, and the missing values of βi and γi are set to the average of the values which have
been actually calculated, 〈βi〉 and 〈γi〉.33 Moreover, using distinct averages for odd and
even iterations, 〈βi〉odd and 〈βi〉even, may actually slightly improve the accuracy of the
extrapolation - the, so-called, biconstant extrapolation.

3.4.2 (c) Feautures of the Liouville-Lanczos approach

• The higher the plane-wave kinetic-energy cutoff, the more Lanczos iterations are
necessary to converge the absorption spectrum [149]. This is related to the condi-
tion number of the problem, which is defined as a ratio of the total spectral width
of the Liouvillian to the typical energy level spacing one need to resolve (typically
fractions of 1 eV). At high energy values, the Hamiltonian (and therefore the Liou-
villian) is determined in a PW basis set by the kinetic energy, and the maximum
energy is (roughly) the highest kinetic energy possible. Therefore, the higher the
kinetic-energy cutoff, the larger the condition number, and the worse the spectrum
is converged. Hence, the increase of the number of Lanczos iterations is needed to
converge the spectrum. The dependence between the number of Lanczos iterations
and the kinetic-energy cutoff is linear, e.g. the increase of the kinetic-energy cutoff
by a factor of two requires the increase of the number of Lanczos iterations also by
the factor of two.

• The numerical instabilities, which may occur during the Lanczos recursion, have
little effect on the final absorption spectrum [18, 167].

33Notice that γi = ±|βi|. It very rarely occurs that γi and βi have a different sign. Thus, extrapolating
them to the same positive value, 〈γi〉 ' 〈βi〉, does not affect the accuracy of the extrapolation [18].
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• The Tamm-Dancoff approximation34 reduces the computational effort of the Liouville-
Lanczos approach. Though, one has to check whether such an approximation is suf-
ficient for the description of the absorption spectrum of the system being studied.

• If the exchange-correlation kernel fxc is frequency independent, as in the adia-
batic approximation, Eq. (3.45), the tridiagonal representation of the Liouvillian L̂,
Eq. (3.135), is also independent of frequency, and thus one single Lanczos chain al-
lows for the calculation of the absorption spectrum at all frequencies via Eq. (3.137).

• If the exchange-correlation kernel fxc is frequency dependent, the situation is not
as simple. It is possible to make a linearization of the fxc kernel within selected
frequency windows, which will result in a manageable scheme based on a single
Lanczos chain per window [149].

• The Liouville-Lanczos approach can also be applied with non-local kernels, such
as those occuring with hybrid functionals, once the action of the exchange operator
onto a molecular orbital is properly implemented for ground-state calculations [149].

• A remarkable feature of the Liouville-Lanczos approach is that the f -sum rule is
satisfied exactly when truncating the Lanczos recursion to any number of iterations
[169]. However, this is only the case when using local pseudopotentials. When
non-local pseudopotentials are used, violations of the f -sum rule occur. Experience
shows [154], that such violations are rather small, though larger for ultrasoft (< 8%)
than for norm-conserving (∼ 1%) pseudopotentials.

3.5 Summary & Outlook

In this chapter, the time-dependent problem has been addressed in the framework of
non-relativistic quantum mechanics. Excitation properties, like the linear response to an
external perturbation, can be accessed in the framework of the time-dependent density
functional theory (TDDFT). It is based on the same ideas as static density functional
theory (see Chapter 2), but the time evolution of the density is formally given by the
stationary solution of a quantum-mechanical action functional, and can be calculated
from the time-dependent Kohn-Sham equations.

I have presented a conventional linear-response formalism to TDDFT. Within this
formalism, the microscopic and macroscopic dielectric tensors can be obtained in the fol-
lowing way: First, the independent-particle polarizability χ0 of the Kohn-Sham particles
is calculated; second, one solves the Dyson-like screening equation for the susceptibility χ;
and finally, one determines micro- and macroscopic dielectric tensors. The knowledge of
these quantities allows for a determination of optical absorption spectra in finite systems
and electron energy-loss spectra in finite and extended systems. I have pointed out that

34The Tamm-Dancoff approximation (TDA) consists in neglecting the non-Hermitian components of
the Liouvillian, thus enforcing to it a Hermiticity [168]. It has been shown that the use of the TDA does
not change the overall absorption spectrum much (this is not the case for EELS) [18]. The convergence
of TDA calculations is much faster than when using the full non-Hermitian form of the Liouvillian [149].
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the crystal local field effects and exchange-correlation effects may be very important for
both spectroscopies, depending on the system under study. In addition, I have discussed
the principles of EELS experiments, what physics behind it, and what is the relation to
the dielectric theory.

Finally, I have discussed a new very efficient approach to the calculation of absorption
spectra of finite systems - Liouville-Lanczos approach. This approach does not require the
calculation of any unoccupied Kohn-Sham states, nor time-consuming matrix operations.
The absorption spectrum can be obtained from a dynamical polarizability, which is eval-
uated using a Lanczos recursion method. The Liouville-Lanczos approach opens the way
to the study of systems which are too large to be treated with conventional techniques,
i.e. the solution of the Dyson-like equation. Moreover, very recently, this new approach
has been extended to the calculation of absorption spectra of finite and extended systems
by solving the Bethe-Salpeter equation [150, 151, 152].

In Chapter 7 of this thesis, I will extend the Liouville-Lanczos approach from the case
of optical absorption of finite systems (q = 0) to the case of EELS of extended systems
(q 6= 0). In particular, I will make an extension of the implementation based on the use of
supercells and Γ point sampling of the Brillouin zone and real unperturbed KS wavefunc-
tions, to the general case of the use of primitive unit cells with generic k points sampling
of the Brillouin zone and complex unperturbed KS wavefunctions. Such an extension of
the method would allow us to make calculations of EELS for systems containing hun-
dreds of atoms, which is a computationally demanding task for the conventional TDDFT
methods (see Sec. 3.2). Moreover, such a new method for EELS would also allow us to
fill the gap between 50 and 100 eV between the valence-loss and core-loss EELS, which
is hardly accessible by conventional techniques. Furthermore, I will extend the method
to metals, and introduce the relativistic effect of the spin-orbit coupling (see Sec. 2.2),
which would allow the study of EELS of systems where relativistic effects are important,
like in bismuth (see Chapter 4).



Chapter 4

Material: bismuth

In this chapter I will describe the material which I have studied during my thesis -
semimetal bismuth. Owing to semimetals, and especially to bismuth, many of the sophis-
ticated experimental techniques and various effects have been discovered. For example,
the quantum oscillatory techniques like de Haas-van Alphen and Shubnikov-de Haas, and
a property like thermoelectricity, have been indeed first discovered on bismuth [4]. This is
not surprising, because its particular properties facilitate the observation of such effects.
In recent years, there has been an increasing interest in Bi, both from the experimental
and theoretical side, and considerable progress has been made [7].

Nevertheless, Bi still remains rather challenging for both experiments and calculations.
Very high energy resolution and low temperatures are required in order to experimentally
resolve tiny features of Bi, like its extremely small Fermi surface and small effective masses
of carriers. From the theoretical point of view, Bi requires inclusion of relativistic effects
(spin-orbit coupling) due to its heavy atoms, and a very dense k point sampling of the
Brillouin zone is needed to accurately describe tiny details like the electron and hole
pockets forming the Fermi surface.

This chapter is organized as follows. In Sec. 4.1 I will explain my motivation for
studying bismuth. In Sec. 4.2 I will discuss the bulk properties of Bi, like its crystalline
structure, electronic structure and the density of states. I will put a stress on the impor-
tance of the spin-orbit coupling effect, in particular, for the description of the electron
and hole pockets. In Sec. 4.3 I will discuss the Bi(111) surface, and I will show the crucial
role of the spin-orbit coupling effect in the description of surface states. In Sec. 4.4 I will
present the phonon dispersion in Bi, again by pointing out the effect of the spin-orbit
coupling, and also I will describe the generation mechanism of the A1g coherent phonon
in bulk Bi. In Sec. 4.5 I will discuss the electron-energy loss spectrum of Bi. Finally, at
the end of the chapter I will give a summary.

69
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4.1 Motivation for studying Bi

Bismuth is the semimetal which has an atomic number Z = 83 in Mendeleev’s periodic
table of elements. This is one of the materials which have been extensively studied over
the past 70 years because it has a number of unique properties:

• Very low density of carriers (electrons and holes) n = p = 2.7× 1017 cm−3 [4], and
high carrier mobility, µn = 12 838 and µp = 5 986 cm2/(V s) at 300 K [170].

• Extremely small Fermi surface volume and small anisotropic effective mass of car-
riers (∼ 10−2m0), which lead to a long de Broglie wavelength of around λ = 120 Å
[7].

• Bi has carriers with a very long mean free path, ≈ 1 mm at low temperatures
[7], which is advantageous for electronic transport, as it can be measured on the
macroscopic scale. The later property makes Bi a very attractive material for ther-
moelectric applications [4].

• Bi is the most diamagnetic element, with the volume magnetic susceptibility χv =
−1.66× 10−4 (unitless) [171].

• Bi has the highest Hall effect, with the Hall coefficient R = −171 (unitless) at 0.07
Gauss [172].

• Bi has low thermal conductivity, κ = 0.1 W/(m K) at 200 K [4], due to heavy mass
ions.

• Bi has a low melting temperature of T = 271 ◦C [4].

• Bi is a reference material for the investigation of lattice dynamics in out-of-equilibrium
conditions. Indeed, a photoexcitation of this material induces coherent phonons of
large amplitude of oscillation [15].

• Core electrons may move at a speed close to light velocity in the interior of Bi atom,
and thus a purely nonrelativistic theoretical description of Bi is not sufficient [82].

• The spin-orbit coupling effect in Bi is extremely large for valence electrons, which
influences all its properties, like electronic [82], vibrational [6].

Recently, much attention has been directed toward the electronic structure and trans-
port properties of Bi nanostructures [7]. For instance, there is a potential importance of
Bi nanowires and nanowire arrays in thermoelectric applications. For purposes of cooling
or power generation, the thermoelectric figure of merit ZT has to be maximized [4], but
for conventional materials the achievable values of ZT are reached. It has been proposed
that the limits of ZT could be overcome by using nanowires instead of bulk crystals [173],
and that Bi would be a promising material for such nanowires [174]. These ideas are
supported by recent experimental results [175, 176].
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Moreover, there is a lot of interest in the electronic structure and superconducting
properties of small Bi clusters. Bulk Bi at ambient conditions is not superconducting
(see Appendix A.2). However, Weitzel and Micklitz have reported the observation of
superconductivity in granular films of rhombohedral Bi clusters [177]. Depending on the
cluster size, the critical temperature of superconductivity Tc can reach values as high as
several Kelvins.

There is an increased interest also in metallic Bi surfaces, because they have unique
spin properties [7]. One of the practical applications of Bi surfaces could be a construction
of spin-sources or spin-filters for the field of spintronics, which is a novel type of electronics
based on a spin degree of freedom in addition to the charge [7].

Bismuth is a semimetal like graphite, and it is one of the elements on which are based
topological insulators Bi2Te3 and Bi2Se3 [178, 179]. Both, graphite-originated systems
(e.g. graphene, carbon nanotubes, etc. [180]) and topological insulators, have gained
enormous attention among scientists over the past years, due to their unique properties
and a potential importance in nanoelectronics. Therefore, it is important to understand in
detail properties of bismuth, which would allow us to make parallels with aforementioned
systems and to give new insights into the understanding of their properties. For instance,
the main problem of the carbon nanotubes research is related to the preparation of sam-
ples. However, these technical problems can be overcome for Bi nanowires. Recently, it
has been possible to grow Bi nanowires with a precise diameter size as well as crystalline
quality [181]. Therefore, a comparative investigation of Bi nanowires may reveal optical
and transport effects due to the 1D confinement of the electronic wavefunctions.

In this thesis I will present an ab initio study of bulk Bi. Although bulk Bi has been
extensively studied, both experimentally and theoretically, there are still many unrevealed
issues in this unusual material. In Secs. 5.2 and 6.2 I will present a theoretical interpre-
tation of the time-resolved photoemission and terahertz experiments, relying on the ab
initio calculations within the density functional theory. In Sec. 7.3 I will present the
first ab initio study of the electron energy-loss spectra of bulk Bi, as well as new findings
related to this issue.

4.2 Bulk properties of Bi

Bismuth has a complex phase diagram, as discussed in the Appendix A.2. In this section,
I will present the crystal and electronic structure of bulk Bi in the rhombohedral phase.
I will discuss the peculiarity of the band structure of Bi, and about the density of states,
in particular, near the Fermi level.

4.2.1 Crystal structure

Most of the properties that distinguish the group-V semimetals from the less exotic
isotropic metals or semiconductors are due to their particular crystallographic structure.
Bismuth is the heaviest element among the group-V semimetals. Like As and Sb, it crys-
tallizes in the A7 rhombohedral structure [see Fig. 4.1(a)], with two atoms in the primitive
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(a) (b) (c)

Figure 4.1: (a) A7 rhombohedral unit cell of Bi. (b) Illustration of the formation of
the A7 rhombohedral unit cell by two interpenetrating fcc sublattices. Two independent
distortions have to be applied: a slight displacement of the fcc sublattices along a body di-
agonal, which remains a trigonal axis of symmetry, and a small shear of the rhombohedral
angle α. From Ref. [186]. (c) Puckered bilayers of Bi atoms. From Ref. [13].

unit cell. It can be obtained from the simple cubic structure formed by two interpene-
trating face-centered cubic (fcc) sublattices, by applying two independent distortions: (i)
a strain of the unit cell along the [111] direction, i.e. along the trigonal axis, and (ii)
an internal displacement of the atoms of the two fcc sublattices towards each other along
the [111] direction [see Fig. 4.1(b)]. Such a distortion from the cubic structure to A7
structure is stabilized by the Peierls-Jones mechanism [see Ref. [182], and chapter 5 in
Ref. [183]], because the A7 structure is energetically more favorable [184]. Alternatively,
the structure of bismuth can be described as hexagonal with six atoms per unit cell, or as
a pseudocubic structure with one atom per unit cell. More details on the crystal structure
of Bi can be found in Refs. [7, 185].

Each atom has three equidistant nearest-neighbour atoms and three equidistant next-
nearest neighbours slightly further away. This results in puckered bilayers of atoms per-
pendicular to the [111] direction, in which each atom is covalently bonded to its three
nearest neighbours [see Fig. 4.1(c)]. The next-nearest neighbours are in the adjacent bi-
layer, and a bonding within each bilayer is much stronger than the inter-bilayer bonding.
As Bi is brittle at room temperature, Bi crystals are easily cleaved along the (111) plane,
i.e. along the basal plane, which is perpendicular to the [111] direction.

What is the symmetry of the A7 rhombohedral structure? The twelve symmetry
elements are the trigonal axis, binary axis, bisectrix axis, mirror planes and the inversion
symmetry [187, 188]. Since the trigonal axis has a threefold symmetry, the binary and
bisectrix axes and the mirror plane exist three times.

The simplest description of the Bi structure is obtained when using the A7 rhom-
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bohedral Bravais lattice with two atoms in the primitive unit cell. Three parameters
completely determine the unit cell and atomic positions: the length a0 of the rhombo-
hedral edge, the rhombohedral angle α, and the internal parameter u describing atomic
positions along the trigonal axis: (u, u, u) and (−u,−u,−u). From X-ray diffraction mea-
surements at T = 4.2 K [189] the following parameters for the unit cell of Bi were found:
a0 = 4.7236 Å, α = 57.35◦, and u = 0.234 (in units of a0). 1 The Brillouin zone (BZ) of
bismuth is shown in Fig. 4.3(a).

In the hexagonal lattice system, the crystal structure is described by the parameters
ahex, c and u. To recall, the transformation from the rhombohedral lattice parameters
to the hexagonal ones is done by means of the equations [190]: ahex = 2 a0 sin (α/2),
c =
√

3 a0

√
1 + 2 cosα. The experimental values are ahex = 4.5330 Å, c = 11.797 Å[189].

In Sec. 5.1.2 I will make a comparison between the equilibrium theoretical lattice
parameters obtained in this thesis by using DFT within LDA and GGA approximations,
and experimental lattice parameters.

4.2.2 Electronic structure

The electronic configuration of the neutral Bi atom is [Xe]4f 145d106s26p3. The external
(valence) electrons are 6s26p3, plus a complete 5d semicore shell. The lower lying electrons
together with the nucleus form a core. The 6s and 6p levels form energy bands in the solid,
while 5d-electrons and core-electron energy levels remain practically unchanged. The 5d
semicore electrons can be either included in the core, or in the valence region. In some of
the anterior studies the 5d-electrons were included in the core region [186, 5, 191, 9, 8],
and some authors included them in the valence region [192]. It is worth noting that the
inclusion of semicore states in the valence region influences the exchange energy, which
shows up in the transferability tests of pseudopotentials (see Appendix A.1). For this
reason, in this thesis I will include the 5d-electrons in the valence region.

Figure 4.2.2 shows the Kohn-Sham band structure of bulk bismuth, including the effect
of spin-orbit coupling (SOC). The high-symmetry directions in the bulk Brillouin zone
can be seen in Fig. 4.3(a). There are several features in the band structure of Bi:

(i) two 6s valence bands are well separated from the three 6p valence bands, and
disperse around −10 eV,

(ii) three lowest conduction 6p bands are separated from the higher lying conduction
bands,

(iii) ten 5d levels lie very deeply, below −20 eV, and are split due to the SOC; and
more peculiarly,

(iv) the highest valence band crosses the Fermi level at the T point, and thus creates
the hole pocket,

(v) the lowest conduction band crosses the Fermi level at the L point, and thus creates
the electron pocket,

(vi) in the full BZ there are three electron pockets (at three L points) and one hole
pocket (at point T) [see Fig. 4.3(b)],

1The comparison of the experimental lattice parameters with the theoretical ones will be given in
Sec. 5.1.2.
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Figure 4.2: Kohn-Sham band structure of Bi including spin-orbit coupling, obtained
within DFT-GGA (see Sec. 5.1 for more details). Fermi level is at zero energy. (Un-
published)

(vii) there is an extremely small overlap between the highest valence band and the
lowest conduction band.

The effect of the spin-orbit coupling causes a very large splitting of energy bands, as
can be seen in Figs. 4.4(a) and 4.4(b), by comparing two calculations performed with and
without the SOC. Namely, there is a large splitting of the 6p levels due to the SOC, in
particular, at the Γ point the splitting is as large as 1.5 eV [5]. The 6s levels do not split,
because the orbital momentum is zero (L = 0). Also there is a large splitting of the 5d
semicore levels, as illustrated in Fig. 4.4(b). A similar observation of the splitting of the
5d levels due to the SOC has been observed in metallic Pb, in which the SOC effect is
also very large [56]. Without the SOC, the details of the band structure near the Fermi
level change dramatically [see Fig. 4.4(a)]:

(i) the highest valence band does not cross the Fermi level at the T point, and thus
there is no hole pocket,

(ii) there is an artificial crossing of the bands at the Fermi level along the T - W
direction, and thus the material becomes metallic,

(iii) the electron pockets at the L points are still present, even when the SOC is
“switched off”, though they are modified.

Unique electronic properties of bulk Bi are directly related to its crystalline A7 struc-
ture. Namely, the Peierls distortion lowers the conduction band at the L point, slightly
causing a negative indirect band gap with the band maximum at the T point. Shick et
al. [8] have studied from ab initio the effects of two structural distortions, yielding to the
A7 structure (see Sec. 4.2.1), on the electronic structure of Bi. It has been shown that
the increase of the internal displacement u along the [111] direction towards the value of
0.25, which corresponds to undistorted simple-cubic structure, causes the semimetal-to-
metal transition; and the increase of the rhombohedral angle α towards the value of 60◦,
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(a) (b)

Figure 4.3: (a) Bulk (black) and surface (red) Brillouin zone with usual notation for
symmetry points, Refs. [188, 7]. The principal crystallographic axes (trigonal, binary,
and bisectrix) are indicated according to Ref. [193]. (b) Fermi surface of bulk Bi, which
consists of hole pockets at the T points, and electron pockets at the L points. The pockets
have been enlarged for clarity, in reality they are very small (volume of each ellipsoid is
∼ 10−5 the volume of the bulk BZ [4]). From Ref. [194].

which also corresponds to undistorted simple-cubic structure, causes the semimetal-to-
semiconductor transition [8]. The latter can be used to induce a semiconducting behaviour
of Bi films, and to control their thermoelectric properties [8].

The electronic band structure of Bi has been extensively studied over the past 70 years
by different theoretical methods and in different experiments. Among theoretical methods
I mention:

(i) The tight-binding calculations [195, 196, 191, 9].

(ii) The empirical pseudopotential calculations [10].

The above mentioned approaches rely on a fit with experimental data.

(iii) The studies based on DFT with pseudopotentials [186, 5], where the occupancy
of valence states was fixed before including the spin-orbit coupling.

(iv) The ab initio all-electron DFT studies [8].

In particular, a big effort has been made to describe accurately the electron and hole
pockets. Even though a considerable progress has been made, further attempts to improve
the theoretical description of the subtleties in the band structure of Bi are desirable. In
this thesis, I will present an ab initio study of the electronic structure of Bi. I will make a
detailed comparison of the Kohn-Sham band structure obtained in this work with previous
theoretical calculations and experiments in Sec. 5.1.3. Particular attention will be paid
to the description of the electron and hole pockets.
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(a) (b)

Figure 4.4: Comparison of the Kohn-Sham band structure of Bi with SOC (black lines)
and without SOC (red lines), obtained within DFT-GGA (see Sec. 5.1 for more details).
(a) Splitting of the 6p levels. (b) Splitting of the 5d levels. Fermi level is at zero energy.
(Unpublished)

4.2.3 Density of states

The electronic density of states (DOS) of bulk bismuth with and without the spin-orbit
coupling is illustrated in Figs. 4.5(a) and 4.5(b). The first study of the SOC effect on
the DOS has been made by Gonze et al. [5]. In Fig. 4.5(a) it can be seen that there are
two structures at about −9.5 and −11 eV, which are due to 6s states. When the SOC
is included, these two structures do not change, because there is no splitting of the 6s
states. However, the DOS in the range from 0 to −4.5 eV changes drastically when the
SOC is included, which is due to a splitting of the 6p states [5]. Thus, this is one of the
direct consequences of the relativistic behavior of electrons. Above the Fermi level, i.e.
for energy values larger than 0 eV, there is also a big change of the DOS when the SOC
is included, for the same reason - splitting of the levels.

In this thesis, I am interested in the DOS near the Fermi level (see Sec. 6). Therefore,
in Fig. 4.5(b) I present such a DOS. As can be seen, the SOC has a very large effect.
Moreover, the DOS is very small at the Fermi level, which means that bismuth is not
superconducting in the rhombohedral phase at zero pressure (see Appendix A.2). Such a
small DOS at the Fermi level is due to the smallness of the volume spanned by the Fermi
surface, which is formed by tiny electron and hole pockets [see Fig. 4.3(b)].

When the SOC is not included, Bi is metallic as there is an artificial crossing of bands
at the Fermi level [see Fig. 4.4(a)]. The DOS without SOC is still small at the Fermi
level, though larger than the DOS with SOC.

In the Appendix A.3 I present the ab initio calculation of the restricted DOS near the
Fermi level. It will be needed in Sec. 6.1 for a study of free-carrier absorption in Bi.
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(a) (b)

Figure 4.5: (a) Density of states (DOS) of bulk bismuth with and without spin-orbit
coupling (SOC). (b) The same as (a) but near the Fermi level. The DOS was calculated
within DFT-GGA, by using a tetrahedron method [197] and 30×30×30 uniform k point
mesh centered at the Γ point (see Sec. 5.1.1 for more details). The separate contributions
from the electron and hole pockets is given in Figs. A.4(a) and A.4(b) in Appendix A.3.
(Unpublished)

4.3 Bi(111) surface

Properties of surfaces can be very different from those of the corresponding bulk material
[7]. The importance of surfaces increases for smaller structures, and this has considerable
practical interest, in particular for nanotechnology. Bismuth is a striking example of the
difference between bulk and surface material properties [7]. Namely, while the bulk is a
semimetal the surface is a metal due to an existence of electronic surface states crossing
the Fermi level [198]. This means that the surface carrier density is also much higher
than the corresponding bulk value. Hence, Bi surfaces may probably be superconducting
[177, 7].

In this section I will briefly talk about the Bi(111) surface. This discussion will be
needed for the interpretation of the time- and angle-resolved photoemission experiments
in Sec. 5.2. In this thesis I will not present the ab initio calculations on surfaces of bismuth
(I will present the calculations only on the bulk Bi), therefore I will not discuss the surface
geometric structure. The reader interested in this issue is referred to the review on Bi
surfaces by Hofmann [7], which contains also a discussion about the Bi(110) and Bi(100)
surfaces. Bi(111) is by far the most important Bi surface for practical applications. It
is the natural cleavage plane of Bi crystals, and it is the preferred direction of epitaxial
growth [7]. Moreover, Bi(111) is the only surface of Bi for which many angle-resolved
photoemission spectroscopy studies have been performed.
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(a) (b)

Figure 4.6: (a) Surface states of Bi(111) surface calculated within ab initio one-step
photoemission theory, without (black) and with (red) spin-orbit coupling. The shaded
areas show the projection of bulk bands obtained without (violet) and with (yellow) spin-
orbit coupling and their superposition. From Ref. [198]. (b) Calculated (from ab initio)
and measured (in photoemission experiments) electronic structure near the Γ point of the
surface Brillouin zone (see Fig. 4.3(a)). The small black dots are the projected bulk band
structure, the red circles are the calculated surface state energies with spin-orbit coupling,
the red line is a guide for the eye. The photoemission intensity is linearly scaled from
dark blue (minimum) to white (maximum). From Ref. [198].

4.3.1 Large SOC-assisted splitting of Bi(111) surface states

In Sec. 4.2.2 we have seen that in bulk Bi there is a large splitting of energy levels due
to the spin-orbit coupling (SOC). It turns out that the effect of SOC is also large at the
surface. Figure 4.6(a) shows the electronic structure of Bi(111) surface, and the projected
on this surface bulk band structure, calculated with and without SOC (from Ref. [198]).
When the SOC is not included, there is a parabolic surface state which is located around
Γ. This surface state gives rise to a hexagonal electron-like Fermi surface element [198].
When the SOC is included, there is a large splitting of the surface state in all directions,
and only at the Γ and M points the degeneracy is left (there is no degeneracy at K).
Around Γ this SOC-assisted surface state is degenerate with bulk states, and thus shows
less clear surface character [198].

4.3.2 Bi(111) Fermi surface

The inclusion of the spin-orbit coupling leads to radical changes of the Bi(111) Fermi
surface [see Fig. 4.6(a)]:

(i) the radius of the electron pocket Fermi surface is smaller by 30% compared to the
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(a) (b)

Figure 4.7: (a) Intensity map at the Fermi level of Bi(111) surface. From Ref. [200]. (b)
Schematic illustration of the Fermi surface of Bi(111) in the surface Brillouin zone [see
Fig. 4.3(a)]. Electron pockets are colored in light blue and hole pockets in purple. From
Ref. [200].

non-relativistic calculation [198],

(ii) in the Γ - M symmetry directions, hole pockets are formed,2

(iii) the splitting of the surface states due to SOC is strongly anisotropic: it is ≈ 0.2
eV in the Γ - M direction and even more along Γ - K,

(iv) the splitting of the surface states gives an explanation of the fact that Bi(111) is
metallic.

The proof of the large splitting of the surface states due to SOC is obtained when
the calculations are compared to the experimental findings, as shown in Fig. 4.6(b) (from
Ref. [198]). There is a remarkable agreement between measurements in photoemission
experiments with ab initio calculations only if the spin-orbit coupling is taken into account
[198].

In angle-resolved photoemission experiments [199, 201, 200] it was observed that there
are two features in the Bi(111) Fermi surface near the Γ point: an inner ring, which is
actually a hexagon, and six narrow lobes in the Γ - M directions, as shown in Figs. 4.7(a)
and 4.7(b). The inner hexagon encloses occupied states and the lobes enclose empty states,
as can be seen in Fig. 4.6(a). Therefore, these Fermi surface elements have been called the
electron pocket and hole pocket, respectively [199]. Probing this electronic structure over
a wider range of photon energies has shown that both the electron and hole pockets are
surface states [7]. From Fig. 4.7(b) it can be seen that along the Γ - M directions there
are also cigar-shaped electron pockets. Their existence has been confirmed experimentally
and theoretically [202, 200].

For rhombohedral systems, like bismuth, bulk features are expected to show a three-
fold symmetry around the trigonal axis. However, the rotational symmetry of the ovals
around the trigonal axis is six-fold, as can be seen in Figs. 4.7(a) and 4.7(b), indicating

2Interestingly, the hole pockets both in the bulk and on the surface are caused by SOC (see Sec. 4.2.2).
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the two-dimensional nature [199, 201].

Finally, I would like to point out that due to the breakdown of the inversion symmetry
at the surface, in contrast to the bulk, there is a large spin-polarization of the surface
states. Very recently this fact has been confirmed by spin- and angle-resolved photoemis-
sion experiments and ab initio one-step photoemission calculations [203, 204, 205].

4.4 Phonons in bulk Bi

In Secs. 4.2.2 and 4.3 we have seen that the spin-orbit coupling (SOC) effect is very
important for the description of the bulk and surface electronic states. In this section
I will point out that the SOC has a large effect also on the phonon dispersion in bulk
Bi. Also, I will discuss the A1g coherent phonons and a mechanism of their generation.
Discussions of this section will be needed for the interpretation of the time- and angle-
resolved photoemission experiments in Sec. 5.2.

4.4.1 Phonon dispersion

Since in the A7 crystal structure there are two atoms in the primitive unit cell (see
Sec. 4.2.1), there are six phonon branches, which are divided into three acoustic and three
optical phonon branches [6, 206]. Along the Γ - T direction of the bulk Brillouin zone
[see Fig. 4.3(a)], which coincides with the trigonal axis, the phonon dispersion curves can
be classified as Eg or A1g, according to whether their displacements are perpendicular or
parallel to the trigonal axis, respectively. For the acoustic or optical A1g phonon modes,
the atoms move in the direction parallel to the trigonal axis. For the other two acoustic
or optical Eg phonon modes, the atoms move in the perpendicular plane with respect
to this axis. In the simple-cubic structure (u = 0.25) the A1g and Eg phonon modes
are degenerate, but the degeneracy is removed in the A7 structure due to the Peierls
distortion (see Sec. 4.2.1).

Figure 4.8: Phonon
dispersion of Bi calcu-
lated from ab initio [6]
with (solid black curves)
and without (dashed
red curves) spin-orbit
coupling effect, and mea-
sured in experiments:
blue dots from Ref. [207],
and green dots from
Ref. [208]. Reproduced
after Ref. [6].
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Figure 4.8 shows the comparison of the phonon dispersion of Bi calculated from ab
initio [6] with and without spin-orbit coupling effect, and measured in experiments [207,
208]. It can be seen that the effect of SOC is very large. Without SOC the disagreement
is on the order of 10 % for many phonon branches when compared to the experimental
data [6]. However, the agreement is excellent when the SOC is included. The major effect
due to the SOC is a softening of all of the phonon branches.

At the Γ point the optical phonons are split by the crystal symmetry. Usually the
mode at zone center has the highest frequency since (for 2 atoms per primitive cell)
one of the mode is a breathing mode in which the bonds are stretched. However, in
bismuth the highest frequency phonon does not occur at Γ but instead along the Γ - T
direction. The maximum overbending is 1.8 meV when SOC is included, 1.5 meV when
SOC is not included, and 1.1 meV as determined from the experiment (see Fig. 4.8).
The overbending is not peculiar to bismuth, it has been also observed in diamond. The
maximum overbending in diamond is along the Γ - X direction, with the experimental
value of 1.5 meV [211], and the theoretical value of 1.8 meV [209, 210]. The origin of
the overbending is sufficiently large interatomic force constants between second-nearest
neighbors [209, 210].

4.4.2 A1g coherent phonons

In Sec. 4.2.1 I have shown that bismuth crystallizes in the A7 rhombohedral structure
which is a Peierls distortion of the simple-cubic lattice. Hence, due to the distorted nature
of the ground state, atomic positions are extremely sensitive to external perturbations
[15, 212]. Because of the strong electron-phonon interaction in Bi, the lattice configuration
is sensitive to the population distribution of electrons within the conduction bands [15].
This conjecture has been verified experimentally by suddenly changing the occupation
number of the electrons via the absorption of a femtosecond laser pulse [213, 214, 14].
The photoexcitation of electrons changes the equilibrium positions of the atoms, and
then these atoms oscillate coherently3 with large amplitudes around their new quasi-
equilibrium positions [see Fig. 4.9(a)], a mechanism known as the displacive excitation
of coherent phonons4 (DECP) [213]. In this kind of experiment, the fully-symmetric A1g

zone-center longitudinal-optical coherent phonon mode is generated [15]. According to
the DECP theory, an excitation of the coherent phonon mode with only the A1g symmetry
is possible [213]. The A1g is a “breathing mode” because it corresponds to the beating
of the two atoms in the primitive unit cell against each other [see Fig. 4.1(a)]. The A1g

coherent phonon mode does not lower the symmetry of the lattice. The atomic separation
is 2uc along the trigonal axis (see Sec. 4.2.1), thus u is the A1g phonon coordinate [16].

Further insights into the understanding of the A1g coherent phonon generation in Bi
can be gained by considering the laser-induced evolution of the potential energy surface
along the direction of the Peierls distortion. Such a potential energy surface has been
mapped by time-resolved X-ray diffraction experiments for excitation carrier densities
n < 2 % [15], and calculated using a constrained density functional theory for densities

3Coherent oscillation means in-phase atomic oscillation.
4Coherent states are superpositions of states with different number of phonons [215].
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(a) (b)

Figure 4.9: (a) Schematic illustration of the displacive excitation of the A1g phonon mode.
The photoexcitation of electrons changes the potential energy surface of the lattice, and
therefore atoms change their equilibrium positions from uexp0 ≈ 0.234 toward a hypothet-
ical cubic phase with u = 0.25. (b) Potential energy surface (adjusted) in Bi. Here,
x = 2u, where u is the A1g phonon coordinate and the internal parameter describing the
A7 rhombohedral structure [see Fig. 4.1(a)]. For each value of the photoexcited carrier
density n, the energy for x0 = 2u0 = 0.468 (the ground-state equilibrium position) was
subtracted for illustrative purposes. From Ref. [216].

n ≤ 3 % [216]. The calculated potential energy surface from Ref. [216] is shown in
Fig. 4.9(b). In the absence of damping, oscillations at constant n occur along the [111]
direction, i.e. along x = 2u, between locations where the adjusted energy is zero. At the
excitation carrier density of n ' 1 % there is a shift of the potential energy surface minima,
and the Peierls barrier (central peak) decreases. The atoms are initially at the equilibrium
position of the electronic ground state x0 = 2u0, and therefore experience a net force
along the A1g mode coordinate due to the increase of the potential energy gradient [216].
The overall result is the launching of atomic motions by the aforementioned displacive
excitation mechanism. When the excitation level reaches the value of n ' 2 %, the Peierls
barrier completely flattens. Therefore, as the excitation density increases, the equilibrium
position shifts toward x = 0.5 (u = 0.25), which corresponds to the hypothetical cubic
phase, with an accompanying loss of the Peierls distortion. However, in reality, material
displays a non-thermal melting before the symmetric phase can be attained [217].

Experimentally, the A1g coherent vibrational mode has been observed indirectly by
measuring time-dependent optical reflectivity [218, 214, 14, 216], and directly by time-
resolved X-ray diffraction measurements [212, 15]. Theoretically, the A1g atomic motion
following the photoexcitation of bismuth has been studied in Refs. [16, 194] by using
a thermodynamic model based on the two-temperature approach and density-functional
theory, and in Refs. [216, 219] by performing ab initio density-functional theory calcula-
tions.

Lastly, the observations in photoexcited bismuth have revealed that the vibrational
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frequency of the A1g mode is not constant: it red-shifts from the equilibrium value of
2.92 THz to 2.45 THz at the fluence of 7.6 mJ/cm2 under high-intensity excitations [14],
indicating a softening of the phonon mode. After the initial softening, the oscillation
frequency blue-shifts back toward the equilibrium value as the oscillation amplitude and
carrier density decay [14, 216]. The mechanism responsible for this time-dependent vi-
brational frequency shift has been controversial. Hase and coworkers concluded that the
shift is due to an amplitude-dependent frequency caused by anharmonicity of the in-
teratomic potential [14]. Fahy and Reis suggested an alternative explanation based on
the electronic softening5 of the potential and the subsequent dynamics of photoexcited
carriers [220]. Optical coherent control experiments and constrained density functional
theory calculations demonstrated that the observed phonon frequency variation is domi-
nated by electronic effects, and that the anharmonicity in the interatomic potential plays
a negligible role [216].

In Sec. 5.2 I will present an interpretation of the time- and angle-resolved photoemis-
sion experiment on Bi, in which an A1g coherent phonon mode was generated.

4.5 EELS and optical constants of bulk Bi

In this section I will highlight briefly what is known in the literature about the electron
energy-loss (EEL) spectrum of bismuth.

The EEL spectrum of bulk Bi was studied experimentally about half a century ago
by several authors [221, 222, 223, 224, 225, 226, 227]. Only over the last decade, when
the technical and scientific development of the EEL spectroscopy (EELS) instrumentation
became rapid, EELS experiments were carried out on Bi nanoparticles [228, 229, 230],
Bi nanowires [231, 232], and Bi nanorods [233]. However, until today, there have been
no ab initio studies of the EEL spectra of bulk Bi nor of Bi nanostructures, because this
material is challenging from the computational point of view. In this thesis I will deal
with the EELS of bulk Bi, and thus in this section I will present old experimental data
on bulk Bi. In Sec. 7.3 I will present the first ab initio calculations of the EEL spectra of
bulk Bi, by using the newly developed method of this thesis.

Figure 4.10(a) shows Wehenkel and Gauthe’s experimental electron energy-loss spec-
trum at vanishing momentum transfer (q → 0) of Bi films with 230 Å thickness [227].
As can be seen, there are several contributions to the spectrum. The main contribution
comes from the volume loss, which contains a main plasmon peak at 14 eV, a shoulder
at E < 10 eV, two peaks between 20 and 30 eV, and a faint broad structure between
40 and 100 eV. The total experimental spectrum also contains a contribution due to the
electron energy-loss at the surface, which displays a rather sharp peak at about 11 eV,
and is also partially responsible for the slope change observed near 5 eV. The main peak
of the surface loss spectrum cannot be seen on the experimental spectrum in Fig. 4.10(a)
because of the superposition of a predominant volume contribution. However, in other
experiments the surface plasmon peak was resolved, at around 10 eV [221, 226]. And,

5Electronic softening is the effect which consists in a weakening of the interatomic restoring forces due
to excitation of electrons from valence bands to conduction bands.
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(a) (b)

Figure 4.10: (a) Experimental electron energy-loss spectrum at vanishing momentum
transfer (q → 0) of 230 Å thick Bi films. Reproduced after Ref. [227]. (b) Real and
imaginary parts of the macroscopic dielectric constant, obtained from the loss spectrum
by applying Kramers-Kronig transformation. Reproduced after Ref. [227].

finally, in the total experimental spectrum there are contributions due to the double and
triple scattering, which are present because the Bi film, used in the experiments, was
rather thick [227].

Let us consider in more detail the volume loss spectrum. In order to interpret the fea-
tures in the loss spectrum, let us consider the real and imaginary parts of the macroscopic
dielectric constant, which are depicted in Fig. 4.10(b). They can be obtained from the
knowledge of the loss function, −Im[1/εM], by applying Kramers-Kronig transformation,
which was done by Wehenkel and Gauthe [227]. Figure 4.10(b) shows that the volume
plasmon condition, Re[εM] = 0, is satisfied at E = ~ωp = 13.95 eV, and the corresponding
Im[εM] is 0.5. Thus, the classical resonance condition, Re[εM] = Im[εM] = 0, is not strictly
satisfied [227].6 Further, the two peaks observed in the volume loss spectrum at 24.45
and 27.3 eV [227], are also present in the absorption spectrum, i.e. in Im[εM]. Moreover,
Hunter et al. [234] have found minima in the transmittance of Bi films at photon energies
of 24.6 and 27.6 eV. Therefore, these two peaks were attributed to excitations of elec-
trons from O4 and O5 subshells,7 i.e. from the 5d levels [236, 223, 227] [see Fig. 4.2.2].
Finally, the broad feature in the volume loss function with a maximum at about 50 eV
[see Fig. 4.10(a)] was also observed in the optical absorption coefficient [227], and was
reported in the optical work by Hunter et al. [234]. This faint structure corresponds
to the excitations from the 5d levels to higher conduction bands,8 as was also confirmed

6Wehenkel and Gauthe reported [227] that the surface plasmon condition, Re[εM] = −1, is fulfilled at
6 eV. However, Im[εM] = 3.5 at 6 eV, which is too large. Thus the main surface plasmon occurs at 11
eV, where Re[εM] = −0.75 and Im[εM] = 1.15 [227].

7The photoemission data on Bi indicates that the binding energy values of the O4 and O5 subshells
relative to the Fermi level, which is taken to be zero, are 26.5 ± 0.5 and 24.4 ± 0.6 eV, respectively [235].

8The next atomic levels, which lie below the 5d levels, are 5p levels (O3 subshell) with a binding energy
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(a) (b)

Figure 4.11: Real and imaginary parts of the macroscopic dielectric constant, measured
by (a) Lenham et al. Ref. [239], Wang et al. Ref. [240], Hunderi Ref. [241], and (b) Toots
and Marton, Ref. [242].

by the theoretical calculations of the 5d subshell photoionization cross-section maximum
[237].

I would like to point out that there are two other peaks in the volume loss spectrum,
at ∼ 5.5 and 29 eV, which are not present in Fig. 4.10(a), but were observed in other
experimental works. The first peak was reported in Refs. [222, 225, 226, 224], and it is
seen as a shoulder at about 5 eV in Fig. 4.10(a). Moreover, the measurements of Cardona
and Greenaway show an optical absorption peak at 5.3 eV, which corresponds to the zero
optical transmittance [238]. Therefore, this peak can be attributed to 6p→ 6p interband
transitions (from occupied to empty levels) [see Fig. 4.4(a)]. The second peak of 29 eV
was reported in Refs. [221, 226, 225], but the origin of this peak has not been revealed.
Notice, in Ref. [227] the authors have pointed out that Bi2O3 has a pronounced loss peak
at exactly 29 eV.

Lastly, I discuss the experimental data on optical dielectric constants in bismuth,
which were determined without relying on the knowledge of the loss function nor us-
ing the Kramers-Kronig transformation. The available experimental data is depicted in
Figs. 4.11(a) and 4.11(b). In Fig. 4.11(a) it is seen that there is an absorption peak at
about 0.7 eV, though the real part of the dielectric constant is zero only at 0.9 eV. The
energy range which is covered in Fig. 4.11(a) cannot help us to interpret any feature in
the loss function in Fig. 4.10(a). In Fig. 4.11(b) one can see that there is a rise in Im[εM]
between 24 and 26 eV, which corresponds to aforementioned excitations from the 5d lev-
els. Notice, the data of Toots et al. [242] shows that Re[εM] = 0.3 and Im[εM] = 0.6 at
14 eV, where the volume plasmon peak was observed. Unfortunately, there is no experi-
mental data on the dielectric constant in the energy range 5 < E < 12 eV, where there
are features in the loss function: a peak at ∼ 5.5 eV due to interband transitions, and a

of 92.8 ± 0.6 eV [235]. Therefore, the broad feature in the volume loss spectrum at about 50 eV cannot
be attributed to the excitations from the 5p levels.
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surface plasmon peak at ∼ 11 eV.
Ab initio calculations of EEL spectra of Bi are desirable for the confirmation of origin

of peaks in the loss function, and to give new insights in the understanding of unrevealed
features in the spectrum. I will address this question in Sec. 7, by performing first ab initio
calculations of EEL spectra of bulk Bi, by using a new theoretical approach developed in
this thesis in Sec. 7.1.

4.6 Summary & Outlook

In this chapter, I have given a description of the semimetal bismuth and its various
properties, and I have described problems which I will tackle in the second part of this
manuscript.

Bulk Bi crystallizes in the A7 rhombohedral structure, which is a Peierls distortion
of the simple cubic lattice. This leads to unique electronic properties, namely, there is a
weak overlap between the lowest conduction band at the L point and the highest valence
band at the T point. The effect of the spin-orbit coupling (SOC) is extremely large,
and it leads to large splitting of bulk electronic states. The SOC is responsible for the
semimetallic character of bulk Bi. The Fermi surface, which consists of the hole pocket
at the T point and three electron pockets at equivalent L points, is exceedingly small.
Owing to this fact, the density of electronic states at the Fermi level is also very small,
which prevents an occurrence of superconductivity in bulk Bi. In Sec. 5.1 I will present
an ab initio study of the crystal and electronic structure of bulk Bi. I will pay particular
attention to the description of electron and hole pockets, and make a comparison with
previous theoretical and experimental studies. In Sec. 6.1 I will investigate free-carrier
absorption in bulk Bi on the basis of the Kohn-Sham band structure, which will be needed
for an interpretation of the time-resolved terahertz experiment on Bi in Sec. 6.2.

In contrast to the bulk, the surface of Bi is metallic. The effect of the SOC on the
surface states is huge, as it is in the bulk. There is a large splitting of the surface states
due to the SOC, which results in the Fermi surface which consists of the electron pocket
at the Γ point, six cigar-shaped hole pockets and six cigar-shaped electron pockets located
along the Γ - M and Γ - M

′
directions, which are connected by 60◦ rotation. In Sec. 5.2 I

will interpret the time- and angle-resolved photoemission experiment on Bi(111) surface,
where the surface states, surface resonances and bulk states are observed. Knowledge of
the difference between bulk and surface states, like their symmetry and polarization, will
be essential for the interpretation of the experiment.

I have also discussed the phonons in bulk Bi. The SOC is equally important for the
correct description of the phonon dispersion, much like it is important for the correct de-
scription of the above mentioned bulk and surface electronic states. Due to the distorted
nature of the ground state, Bi is extremely sensitive to external perturbations. For exam-
ple, a photoexcitation of electrons gives rise to appearance of A1g coherent phonons with a
very large amplitude of oscillation. In Sec. 5.2 I will address the time- and angle-resolved
photoemission experiment on Bi(111) surface, in the sense of a birth of A1g coherent
phonons and their coupling to electronic states.

Finally, I have discussed the electron energy-loss (EEL) spectrum and optical dielectric
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properties of bulk Bi. I have presented the available experimental data, and the interpre-
tation of different features in the spectrum. I have pointed out that until today there have
been no ab initio studies of EEL spectra of Bi, and that such a study would be desirable.
In Chapter 7 I will address this question by using a new efficient ab initio approach to
EELS within the time-dependent density functional perturbation theory, which will be
described in Sec. 7.1. In particular, this new approach will allow us to examine the effect
of the SOC on EEL spectra, the plasmon dispersion, and the anisotropy of EEL spectra.
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Part II

Developments, applications & results
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Chapter 5

Ab initio description of Bi at
equilibrium and in the photoexcited
state

In this chapter I will present an ab initio DFT study of bulk bismuth within the LDA
and GGA including the spin-orbit coupling. This chapter is divided into two parts.

In the first part, Sec. 5.1, I will study Bi at equilibrium. I will compare the theoretical
equilibrium lattice parameters of Bi within the LDA and GGA, between themselves and
with the experimental ones. Particular attention will be given to the study of the influence
of the spin-orbit coupling on the lattice parameters. I will also present a detailed com-
parison of the Kohn-Sham band structure of Bi within the LDA and GGA including the
spin-orbit coupling with anterior theoretical and experimental studies. Special attention
will be given to the description of the electron and hole pockets at the Fermi level.

In the second part, Sec. 5.2, I will study Bi in the photoexcited state by using the
ground-state DFT. Strictly speaking, the ground-state theory should not be applied to a
study of the system in the excited state (see Chapter 3). However, my analysis will be
based on the valence Kohn-Sham energy levels near the Fermi level, which are in remark-
able agreement with the experimental electronic structure of Bi, according to Sec. 5.1,
and thus the method is justified. I will present an interpretation of the time- and angle-
resolved photoemission experiment on Bi(111) surface.

91
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5.1 Structural and electronic properties

In this section I will present a detailed analysis of the theoretical equilibrium lattice pa-
rameters and Kohn-Sham band structure of bulk Bi. Special attention will be given to
the discussion the effect of the spin-orbit coupling (SOC). The SOC has been included in
the ab initio DFT calculations, because it is crucial for the comparison of the Kohn-Sham
band structure with the experimental data. Although the electronic band structure of Bi
has been extensively studied during the last 70 years, both experimentally and theoreti-
cally, until today there has been no comparison of the local density approximation (LDA)
and generalized gradient approximation (GGA) in Bi. Therefore, I will present such a
study, also by making a comparison with anterior DFT and tight-binding calculations,
and various experiments such as Shubnikov-de Haas, de Haas-van Alphen, photoemission.

In Sec. 5.1.1 I will present the computational details of the DFT studies. In Sec. 5.1.2
I will make a comparison of the theoretical equilibrium lattice parameters of Bi, within
the LDA and GGA, with and without spin-orbit coupling, as obtained in this work and
other theoretical and experimental studies. Finally, in Sec. 5.1.3 I will make a detailed
analysis of the Kohn-Sham band structure of Bi. Particular attention will be given to the
description of the electron and hole pockets, and the effect of the spin-orbit coupling.

5.1.1 Computational method

I have performed ab initio DFT calculations with the QUANTUM ESPRESSO package [68], by
solving self-consistently the Kohn-Sham equations, as described in Sec. 2.1.2. The total
energy has been calculated by finding its convergence towards an absolute minimum. I
have used the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm and damped
(Verlet) dynamics for structural relaxation [243], which allowed me to obtain theoretical
equilibrium lattice parameters within the LDA and GGA (see Sec. 5.1.2). The calcula-
tions have been performed by using the norm-conserving pseudopotentials described in
Appendix A.1, including the 5d semicore levels in the valence region.

The calculations have been converged with respect to all of the parameters. The Kohn-
Sham wavefunctions were expanded in plane waves (see Sec. 2.3.1) up to a kinetic-energy
cutoff of 150 Ry, which corresponds to about 14 700 plane waves. The use of such a high
kinetic-energy cutoff is needed due to the inclusion of the 5d semicore states in the valence
region. These semicore states are more localized than the valence states, and thus more
plane waves are needed for their description. I have used the Methfessel-Paxton smearing
method [244] with a broadening parameter of 0.02 Ry.

Special attention has been paid to the k points sampling of the Brillouin zone (BZ),
which is important for the description of the electron and hole pockets (see Sec. 4.2.2).
I have used a uniform 20 × 20 × 20 k points mesh centered at the Γ point, which yields
781 k points in the irreducible BZ. Special care has been given to the convergence of the
Fermi energy EF : it has been obtained independently by a calculation with the improved
tetrahedron method of Ref. [197], using a 50 × 50 × 50 uniform k point mesh centered
at the Γ point, yielding 11076 k points in the irreducible BZ. Afterwards, the 5d energy
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levels have been aligned in the two calculations. A precision of ± 5 meV on the Fermi
energy was reached.

In the calculations, the spin-orbit coupling has been included self-consistently, as de-
scribed in Sec. 2.2.2. The convergence parameters were the same in both calculations,
with and without SOC, and they have been described above. The calculations with SOC
were twice as long as those without SOC, due to the use of two-component spinors while
solving Pauli-type Kohn-Sham equations (see Sec. 2.2.2), instead of one-component Kohn-
Sham wavefunctions. This doubles the number of plane waves. In Sec. 5.1.2 I will present
theoretical lattice parameters optimized both with and without SOC, in order to figure
out the effect of SOC. In Sec. 5.1.3 I will present the Kohn-Sham band structure including
SOC, since the SOC is crucial for the comparison with experiments [see also Fig. 4.4(a)].

5.1.2 Lattice parameters

Most of the ab initio calculations of Bi have been performed within the LDA at experi-
mental lattice parameters (see, e.g., Refs. [5, 8, 16]), and there is only one study in which
theoretical equilibrium lattice parameters within the LDA have been used [6]. No calcula-
tions within the GGA have been performed so far (except our own publication, Ref. [245]).
In the following, I will present a detailed analysis of the theoretical equilibrium lattice
parameters (ELP) of Bi, within the LDA and GGA. Special attention will be given to the
effect of the spin-orbit coupling, and the effect of the inclusion of the 5d semicore levels
in the valence region. I will also make a comparison with findings on the metallic Pb
(Z = 82) and metallic Tl (Z = 81), in which the SOC is also large as in the semimetallic
Bi (Z = 83).

The theoretical lattice parameters of Bi have been determined in Refs. [6, 194], within
the LDA, with and without SOC (see Table 5.1). However, in both references the authors
used the same pseudopotential, namely Hartwigsen-Goedecker-Hutter type [246], which
does not include the 5d semicore levels in the valence region. Transferability tests of my
pseudopotentials (PP) described in Appendix A.1 have shown that the inclusion of the
5d semicore levels in the valence region is necessary. A similar conclusion was reached for
Pb [247, 248, 249], namely, although 5d semicore levels are low in energy, their inclusion
in the valence region significantly changes the lattice parameter, by ∼ 1% within the
LDA,1 and leads to better agreement with the experimental lattice parameter. Therefore,
given the fact that the PPs of this work are different from those of Refs. [6, 194], and
the lack of reliability to the PPs of Refs. [6, 194] when maintaining the 5d levels in the
core region, I will not make a direct comparison of the theoretical equilibrium lattice
parameters obtained in this thesis with those of Refs. [6, 194].

Table 5.1 shows the comparison of the theoretical equilibrium lattice parameters of Bi,
as obtained in this work within the LDA and GGA, with and without spin-orbit coupling,
including the 5d semicore electrons in the valence region, with the experimental lattice
parameters [189]. Let us discuss first the lattice parameter a0, which is the length of the
edge of the rhombohedral unit cell (see Sec. 4.2.1), and afterwards the volume V of the

1The spin-orbit coupling has been found to make a negligible effect on the lattice parameters in Pb,
namely 0.1% within the LDA [248, 249, 250].
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primitive unit cell.
Within the LDA, a0 is underestimated with respect to the experimental value by 1.6%

(without SOC) and 0.5% (with SOC). Thus, the SOC has a large effect, it changes the
lattice parameter a0 by 1.1%. In fact, the same effect of the SOC in Bi has been also
found in Refs. [6, 194], even when the 5d levels were maintained in the core region. In
contrast, in Pb the SOC has a negligible effect, 0.1% [248, 249, 250], but in Tl the effect is
bigger, 0.7% [250]. The reason for such a difference between Bi on one hand, and Pb and
Tl on the hand, is the following. In Bi there are much more electronic occupied bands (6p
valence bands) which are drastically affected by the SOC [see Fig. 4.4(a)], whereas in Pb
and Tl the SOC leads to much smaller changes in the dispersion of the occupied bands
with respect to Bi [56, 250, 248], as most of the 6p states in Pb and Tl are above the
Fermi level. Hence, since the electronic distribution has an influence on the equilibration
of the atomic positions, especially in Bi which is extremely sensitive to it, the SOC leads
to big changes in the lattice parameter a0 in Bi.

In contrast, within the GGA, the parameter a0 is overestimated by 3.8% (without
SOC) and 4.2% (with SOC), which is slightly higher than what is expected from the
GGA [24]. I ascribe such unusual behaviour of the GGA to the inclusion of the 5d
semicore states in the valence region (see Appendix A.1). Within the GGA, the SOC
leads to smaller changes in a0, 0.4%, compared to the LDA. Another difference between
LDA and GGA is that, when including the SOC, a0 becomes closer to the experimental
value within the LDA, whereas it becomes farther from the experimental value within the
GGA.

As for the volume of a primitive unit cell, when the SOC is not included, the LDA
volume is underestimated by 3.9%, whereas when the SOC is included, the LDA volume is
overestimated by 0.02%. Such unusual behaviour of the LDA when the SOC is included,
is probably due to the inclusion of the 5d levels in the valence region. The combination
of these two effects (5d + SOC) yields to such unexpected behaviour of the LDA. I
did not check this conjecture explicitly, because without the 5d semicore levels in the
valence region, the pseudopotential is not transferable enough, and thus not justifiable for
the utilization, and not expected to give reliable results. In contrast, the GGA volume is
overestimated both with and without the inclusion of the SOC. Namely, it is overestimated
by 8.2% (without SOC) and 10.4% (with SOC), which is a lot, and which is not expected
from the GGA. This is again ascribed to the inclusion of the 5d levels in the valence
region. Thus, the SOC changes the volume of the primitive unit cell by ∼ 4 % within
LDA, and ∼ 2 % within GGA.

As has been pointed out in Sec. 2.1.2(d), the bond length within the LDA is expected
to be underestimated, and within the GGA, overestimated. In Table 5.1 I report the bond
length in Bi. As can be seen, the bond length within the LDA without SOC is indeed
underestimated by 0.3%, though it is overestimated by 0.9% when the SOC is included.
The latter is not expected from the LDA, and is attributed to the inclusion of the 5d
levels in the valence region. Within the GGA, the bond length is indeed overestimated,
however, more than what is usually expected. Namely, the bong length is overestimated
by 7.9% (without SOC) and 8.3% (with SOC). I ascribe such an unusual behaviour of the
GGA again to the 5d levels.
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In the next section, I will show that both the LDA and GGA give a rather accurate
description of the electronic band structure of bulk Bi, in particular the electron and hole
pockets are described fairly good. Moreover, although the GGA lattice parameters and
the GGA volume quite largely deviate from the experimental values, the calculations of
the Kohn-Sham band structure within the GGA provide a slightly better agreement with
experiment rather than the calculations within the LDA. In the rest of the second part
of the thesis, most of the results will be presented both within the LDA and GGA. Both
approximations describe the same physics, and thus they should give qualitatively similar
results. Hence, in the following chapters I will make systematic comparisons between
these two approximations.

5.1.3 Electronic structure within LDA & GGA

Figure 5.1(a) shows the Kohn-Sham band structure obtained within the GGA at the GGA
equilibrium lattice parameters including the SOC, along some high-symmetry directions
in the Brillouin zone. The symmetry of bands at the high symmetry points X, Γ, T and
L are indicated, in agreement with Ref. [9]. The subtleties of the band structure around
the Fermi level, i.e. the electron and hole pockets, are shown in Fig. 5.1(b). I reproduce
the hole pocket at the T point and the electron pocket at the L point, in agreement with
previous DFT calculations [5, 8] and with various experiments (see Table 5.2).

In anterior DFT studies of the band structure of Bi, a lot of effort has been made
in order to describe the electron and hole pockets. For example, Gonze et al. [5] have
performed DFT calculations including the SOC by treating the charge density of Bi as
of a semiconductor, and by adding to it the experimental number of electrons at the L
point and of holes at the T point. The charge density was treated non-self-consistently,
since there was an adjustment to the experimental data. Hence, these calculations cannot
be considered as fully ab initio. Another DFT calculation has been performed by Shick
et al. [8], who used the relativistic version of the full-potential linear muffin-tin orbital-
plane wave method [71]. In contrast, Liu and Allen [9] have developed a third-neighbor
tight-binding model including the spin-orbit coupling. The parameters of their model
were fitted to the experimental data, and thus their model describes the electron and hole
pockets much better, than the two aforementioned DFT studies.

A detailed comparison of the ab initio DFT study of Bi including SOC performed in
this thesis with other theoretical and experimental studies is summarized in Tables 5.2
and 5.3. I present the DFT calculations within two approximations, LDA and GGA, in
order to compare the quality of their description of the band structure of Bi. The effect
of the spin-orbit coupling on energy bands is so big (see Sec. 4.2.2), that it was necessary
to include SOC in the calculations for the comparison with the experimental data. The
LDA and GGA calculations have been performed at their respective equilibrium lattice
parameters (see Table 5.1). I would also like to point out that in the anterior DFT studies
[5, 8], the authors used the LDA at the experimental lattice parameters. Moreover, up to
today, there have been no studies of Bi within the GGA, since it severely overestimates
the lattice parameters with respect to the experimental ones (see Table 5.1). Thus, since
the details of the electronic band structure depend strongly on the lattice parameters,
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(a) (b)

Figure 5.1: (a) Kohn-Sham band structure of Bi including the spin-orbit coupling, calcu-
lated within the GGA at the GGA equilibrium lattice parameters. Symmetry of bands
are indicated according to Ref. [9]. From Ref. [245]. (b) Zoom on the band structure near
the Fermi level. The hole pocket at the T point, and the electron pocket at the L point
are reproduced. The Fermi level is taken to be equal to zero. (Unpublished)

the GGA has never been used. However, in the following I will show, on the basis of
Table 5.2, that the GGA provides a very good description of the band structure, in some
cases describing some energy levels or their differences even better than the LDA.

One may wonder if we can describe tiny electron and hole pockets in Bi by DFT?
What is the accuracy of DFT calculations? The accuracy of DFT calculations is limited
by the exchange-correlation and pseudopotential approximations, and is ∼ 0.03 eV within
the LDA or greater [251], while the electron and hole pockets in Bi are of the order of
∼ 0.01 eV. Therefore, their description within the DFT can be made only with a precision
not better than 0.03 eV. Nevertheless, we will see in the following, that the DFT can still
give a fairly good description of the electron and hole pockets despite the relatively large
error bar of the ab initio calculations.
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When comparing ab initio DFT Kohn-Sham energy bands with the experimental data,
special attention has to be paid to which experiment we are comparing them with. Let us
distinguish between two groups of experiments, which are listed in Table 5.3, namely: (i)
photoemission experiments, and (ii) all other experiments, like Shubnikov-de Haas effect,
de Haas-van Alphen effect, etc.2 When considering the photoemission experiments, the
quasiparticle corrections may be large, and thus Kohn-Sham energy bands may generally
differ significantly from the experimentally measured ones [17]. In contrast, the Kohn-
Sham energy bands can be safely compared with the experiments like the Shubnikov-de
Haas or others (see Table 5.3).

5.1.3 (a) Comparison of Kohn-Sham energy levels with Shubnikov-de Haas
and de Haas-van Alphen experiments

(i) The energy difference of the two highest occupied bands at the L point is E[La(3)]−
E[Ls(3)] [see Fig. 5.1(b)], and it covers the energy range -11 – -15 meV according
to various experiments (see Table 5.3). The GGA at the GGA equilibrium lattice
parameters (ELP) gives -24 meV, and it is the closest value to the experimental one,
because the LDA at the LDA-ELP gives -112 meV, and the LDA at the experimental
LP gives -108 meV. With respect to the previous theoretical studies, the GGA value
of -24 meV is much closer to the experimental one than the value of -262 meV from
the DFT calculations of Gonze et al. [5]. The tight-binding calculations of Liu and
Allen [9] give -14 meV, which is in extremely good agreement with the experimental
value, due to the fit with the experimental data.

(ii) The electron pocket at the L point is defined by the depth of the Ls(3) level. The
experimental value is ∼ -27 meV (see Table 5.2). The Ls(3) level is almost equally
well reproduced within the LDA and GGA at the experimental LP and within the
LDA at the LDA-ELP, ∼ -15 meV, which is not very far from the experimental
value, while the GGA at the GGA-ELP gives -96 meV. Gonze et al. [5] obtained
-18 meV, while Liu and Allen [9] obtained again an extremely good value of ∼ -27
meV.

(iii) The energy difference of the two lowest unoccupied bands at the T point is E[T+
6 (3)]−

E[T−45(1)] [see Fig. 5.1(b)], and it covers the energy range 180 – 410 meV according
to various experiments (see Table 5.3). The GGA at the GGA-ELP gives 326 meV,
which is inside the experimental energy range; the LDA at the LDA-ELP gives
120 meV, which underestimates the gap and is outside the experimental energy
range; the LDA and GGA at the experimental LP give 203 and 234 meV, respec-
tively, which are very close to the lower border of the experimental energy range. It
is well known that both the LDA and GGA underestimate gaps in semiconductors
[24]. Thus, it is not expected that the gap at the T point is well reproduced within

2Shubnikov-de Haas and de Haas-van Alphen effects describe oscillations in the conductivity and
magnetization of a material, respectively, that occur at low temperatures in the presence of very intense
magnetic fields.
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either the LDA or GGA. The DFT calculations of Gonze et al. [5] give the value
of 467 meV, which is too large and is outside the experimental energy range, and
the tight-binding calculations of Liu and Allen give 370 meV, which is inside the
experimental energy range.

(iv) The hole pocket at the T point is defined by the height of the T−45(1) level. This
level is unoccupied, and there is no experimental data in the literature. The energy
of the T−45(1) level is almost equal in each case of my calculations, and cover the
energy range 92 – 112 meV, and is much larger than the values obtained in anterior
theoretical studies. Namely, the DFT calculations of Gonze et al. [5] give 23 meV,
and the tight-binding calculations of Liu and Allen [9] give 11 meV. However, the
ab initio DFT calculations of Shick et al. [8] give 95 meV, which is very close to the
values obtained in my calculations.

(v) The overlap energy is E[T−45(1)]−E[Ls(3)], and it is greatly overestimated in all cases
with respect to the experimental values which cover the energy range 36 – 39 meV.
Namely, within the LDA at the LDA-ELP I obtain 112 meV, within the GGA at the
GGA-ELP I obtain 188 meV, and within the LDA and GGA at the experimental LP
I obtain 127 meV and 114 meV, respectively. The DFT calculations of Shick et al.
[8] give the value of the overlap of 163 meV, which is also far from the experimental
energy range. The calculations of Gonze et al. [5], and Liu and Allen [9], both
fitted onto the experimental data, give extremely good values of 41 meV and 38
meV, respectively.

5.1.3 (b) Comparison of Kohn-Sham energy levels with photoemission exper-
iments

In photoemission experiments, the electronic band structure is subject to many-body
effects incorporated in the electronic self-energy Σ(ω) [17]. The self-energy is usually
evaluated within the GW approximation [85], which is based on an expansion in terms
of the dynamically screened Coulomb interaction. The application of the GW method
to compute self-energy corrections on top of ab initio DFT results has become a well-
established and standard technique, giving energy levels generally in close agreement
with experiments [264]. The gaps between occupied and empty states generally increase
by a substantial amount with respect to those obtained in the Kohn-Sham formulation
of DFT, reaching agreement with experimental results [264]. However, due to the high
complexity and large computational requirements of ab initio calculations of Σ [17], the
experimental band structure measured by photoemission of electrons is often compared
with the results of (simpler) calculations performed within the DFT. The consequences of
this approach, in which the LDA or GGA exchange-correlation potentials can be consid-
ered as approximations to the self-energy Σ, must, however, be considered with a great
care. A priori, it is not clear to which extent and over which energy range the quasi-
particle corrections will affect the Kohn-Sham band structure of the system as semimetal
Bi. In general, they can lead to a reduced band width and cause dispersion deviations
near the Fermi level [262]. Up to today there have been no GW studies of Bi, because
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it is very challenging material. Such calculations would be desirable in order to estimate
the quasiparticle corrections in Bi. In the following I show, that both DFT-LDA and
DFT-GGA descriptions of the band structure of Bi are in fairly close agreement with the
photoemission data:

(i) The energy difference of two 6s levels at the Γ point, E[Γ−6 (1)] − E[Γ+
6 (1)], [see

Fig. 5.1(a)] was measured in the photoemission experiments by Ley et al. [261],
and they obtained the value of 5.9 eV with a precision of 0.55 eV on a single level;
and more recently the photoemission experiment by Jezequel et al. [13] yielded 4.7
eV with a higher precision on a single level of 0.25 eV. From my DFT calculations
I have found that within the GGA at the GGA-ELP I obtain a value of 4.82 eV,
which is very close to the measurement by Jezequel et al. The other cases of my
DFT calculations give values in the range 5.65 – 5.75 which are closer to less precise
experimental data by Ley et al. The DFT calculations by Shick et al. [8] give
5.61 eV, the DFT calculations by Gonze et al. [5] give 5.73 eV, and the tight-
binding calculations by Liu and Allen [9] give 5.91 eV, which are all close to the
measurement by Ley et al. rather than to the data of Jezequel et al. However, the
experimental data of Jezequel et al. should be considered as being more reliable,
since the resolution on a single level in their photoemission experiments was higher
by a factor of ∼ 2 with respect to experiment of Ley et al.. Therefore, the GGA at
the GGA-ELP provides the closest results to the experimental ones.

(ii) The energy difference E[Γ+
45(1)]−E[Γ+

6 (3)] was measured in the photoemission ex-
periments by Jezequel et al. [13], and they obtained a value of 0.35 eV, and more
recently by Ast and Höchst [262], who obtained a value of 0.18 eV. My ab initio
calculations within the GGA at the GGA-ELP give 0.25 eV, which is between the
two experimental values, and thus can be considered to be satisfactory. The LDA
at the LDA-ELP gives 0.15 eV, slightly smaller than the value obtained by Ast and
Höchst; and the LDA and GGA at the experimental LP both give 0.21 eV, which
is again between the two experimental values. The DFT calculations by Shick et
al. [8] give 0.23 eV, Gonze et al. [5] obtained 0.19 eV, and Liu and Allen [9] ob-
tained 0.31 eV, which are all between the two experimental values, and thus can be
considered to be satisfactory as well.

(iii) The energy difference E[T+
6 (1)] − E[T−6 (1)] was measured in the photoemission

experiments by Ley et al. [261], and they obtained the value of 1.18 eV, whereas
Jezequel et al. [13] obtained the value of 1.90 eV. All our values are very close to
the measurement by Jezequel et al., and they cover the range 1.72 – 2.01 eV. The ab
initio DFT calculations by Shick et al. [8] give 1.94 eV, and the DFT calculations
by Gonze et al. [5] give 1.88 eV, which are both close to the data by Jezequel et
al. In contrast, the tight-binding calculations by Liu and Allen [9] give the value
of 1.11 eV, which is close to the less precise experimental data by Ley et al. It
is worth noting, that Liu and Allen applied the tight-binding approach in order
to describe the details of the band structure near the Fermi level, and thus the
dispersion of bands far from the Fermi level, e.g. T+

6 (1) and T−6 (1) levels, might be
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Figure 5.2: Comparison of the band structure of Bi along the Γ-T direction in the Brillouin
zone, as computed in this work within the DFT-GGA at the GGA-ELP (red dashed lines),
the DFT-LDA at the LDA-ELP (green dot-dashed lines), anterior DFT-LDA studies at
the experimental LP by Gonze et al. Ref. [5] (blue solid lines), and as mesured in the
photoemission experiment of Ref. [262] (black dots). The Fermi level is taken to be equal
to zero. (Unpublished)

unsatisfactory (see Fig. 2 of Ref. [7]). Therefore, the theoretical data by Liu and
Allen for the energy difference E[T+

6 (1)] − E[T−6 (1)] should not be considered as
being reliable.

Figure 5.2 shows the comparison of the band structure of bismuth along the Γ-T direc-
tion in the BZ, as computed in this work within the LDA and GGA, anterior calculations
by Gonze et al. within the LDA [5], and as measured in the photoemission experiment of
Ref. [262]. The absolute values of the Kohn-Sham energies of this work within the DFT
(both LDA and GGA) are in better agreement with experimental binding energies then
calculations by Shick et al. using DFT-LDA [8], and the calculations by Liu and Allen
using the tight-binding model [9] (see Fig. 7(d) of Ref. [262]).

It might seem very surprising that the DFT calculations provide a close agreement with
photoemission experiments in bulk Bi. This is, probably, an indication of the fact that
DFT Kohn-Sham energy bands are reasonable approximations to the full quasiparticle
band structure of Bi. In fact, quasiparticle corrections are expected to be less important
in metals than in semiconductors, as has been observed for metallic β-Sn [265]. Therefore,
for further discussions in this thesis, I will use the DFT Kohn-Sham energy bands.

5.1.3 (c) Effect of lattice parameters on Kohn-Sham energy levels

Once we are convinced of the quality of the DFT Kohn-Sham description of the energy
bands in Bi from the comparison with various experiments, let us make a point about
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the effect of lattice parameters on the Kohn-Sham energy levels. As it has been shown
above and illustrated in Fig. 5.3(a), the electronic band structure, and, in particular, the
electron and hole pockets, are very sensitive to the lattice parameters. In the vicinity of the
Fermi level, covering the energy range from -1.5 to 1.5 eV, the dispersion of Kohn-Sham
levels differ quite significantly within the LDA and GGA at their respective theoretical
parameters, as shown in Fig. 5.3(b). However, if the LDA and GGA are used with the same
LP, then the energy bands are almost identical. This is illustrated, e.g., in Figs. 5.3(c) and
5.3(d), where the LDA and GGA are both used at the experimental LP. Moreover, if we
compare the LDA and GGA both at the LDA (or GGA) ELP, then we will see that both
approximations give again almost identical band structures (not shown). This indicates
that the LDA and GGA describe the same physics. It means that one has to apply some
pressure in order to adjust the LDA band structure at the LDA-ELP to the GGA band
structure at the GGA-ELP. Such a shift in pressure has been found to be necessary in a
semiconductor like Ge [266].

Finally, in Fig. 5.3(e) I compare the LDA band structure calculated at the LDA-ELP
and experimental LP. The dispersion of bands is qualitatively similar, but quantitatively
there are some small differences. Namely, the valence bands behave very similarly, whereas
the conduction bands are shifted down when calculated at theoretical LP with respect
to the calculation at the experimental LP. Figure 5.3(f) shows similar comparison for
the GGA: the GGA band structure calculated at the GGA-ELP and experimental LP.
The difference between the calculations at the theoretical and experimental LP is more
pronounced in GGA, than in LDA. This is due to the fact that GGA-ELP differ more
from the experimental LP, than LDA-ELP do (see Table 5.1).

5.1.4 Conclusions

In this section I have presented a detailed analysis of the theoretical equilibrium lattice
parameters and the Kohn-Sham band structure of Bi within the local density and gen-
eralized gradient approximations. It turns out, that the lattice parameters are strongly
influenced by the spin-orbit coupling. Namely, if the SOC is included, the volume of the
unit cell increases by as much as ∼ 4 % within the LDA, and ∼ 2 % within the GGA.
Moreover, the 5d semicore levels, which were treated as valence states, have a drastic
effect on the volume of the primitive unit cell: The LDA volume is overestimated by 0.02
% when the SOC is included, and the GGA volume is greatly overestimated, by 8-10 %
with respect to the experimental one.

I have discussed in great detail the Kohn-Sham band structure within the LDA and
GGA at the respective theoretical equilibrium lattice parameters, as well as at the ex-
perimental ones. I have also made a detailed comparison with previous theoretical and
experimental studies. The overall band structure, and the subtleties near the Fermi level
- electron and hole pockets - are well reproduced within the current ab initio DFT calcu-
lations including the spin-orbit coupling. It appears that the GGA at GGA equilibrium
lattice parameters performs slightly better than the LDA at LDA-ELP, when compared to
various experiments, like Shubnikov-de Haas, de Haas-van Alphen, and photoemission. A
close agreement of the Kohn-Sham band structure with the photoemission data indicates
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Comparison of the Kohn-Sham band structure of Bi including the spin-orbit
coupling within the LDA and GGA. (a) The LDA at the LDA equilibrium lattice pa-
rameters (ELP), and the GGA at the GGA-ELP, (b) the same as (a) but zoomed on the
region near the Fermi level. (c) The LDA and GGA at the experimental LP, (d) the same
as (c) but zoomed on the region near the Fermi level. (e) The LDA at the LDA-ELP and
experimental LP, (f) the GGA at the GGA-ELP and experimental LP. The Fermi level is
taken to be equal to zero. (Unpublished)
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that the quasiparticle corrections in bulk Bi, presumably, are not large. Though, GW
calculations would be highly desirable in order to shed more light on this question.

In the following sections of this manuscript, most of the results will be presented by
using both approximations, LDA and GGA.
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5.2 Interpretation of time- and angle-resolved pho-

toemission experiment

In this section I will present an ab initio DFT study of bulk bismuth in order to interpret
the time-resolved and angle-resolved photoemission experiment on Bi(111) surface. As
has been pointed out in Sec. 4.4, the high-density photoexcitation of bismuth leads to
the generation of the A1g coherent phonon mode with a large amplitude of oscillations.
Such an atomic motion following the photoexcitation of Bi is nowadays well understood.
Time-resolved X-ray diffraction experiments and DFT calculations could accurately de-
scribe the amplitude of oscillations and the frequency softening of the A1g phonon mode
(see Sec. 4.4). However, the temporal evolution of the electronic states after the pho-
toexcitation has never been directly observed nor studied ab initio. This section aims at
addressing this issue.

This section is organized as follows. In Secs. 5.2.1 and 5.2.2 I will present the experi-
mental results, which have been obtained by our collaborators (E. Papalazarou, J. Faure,
J. Mauchain, M. Marsi, A. Taleb-Ibrahimi, I. Reshetnyak, A. van Roekeghem, and L. Per-
fetti). Namely, I will show that the electronic structure of Bi displays a rich combination
of bulk bands, surface states, and surface resonances, which upon the photoexcitation
display a dynamics that depends on the wavevector and band index. In Sec. 5.2.3 I will
present the details of my ab initio DFT calculations within the LDA and GGA, including
the spin-orbit coupling. In Sec. 5.2.4 I will make a comparison of the Kohn-Sham band
structure of bulk Bi with the photoelectron intensity map in order to reveal the origin of
the electronic states which were measured. The symmetry arguments of the electronic
states will also be used. In Secs. 5.2.5 and 5.2.6 I will demonstrate the generation mech-
anism of the A1g phonon mode from the change of the electronic charge-density, and I
will also evaluate ab initio the electron-phonon deformation potential within the frozen-
phonon approximation. Finally, in Sec. 5.2.7 I will discuss the origin of the shift in the
binding energy of electronic states immediately after the photoexcitation. At the end of
the section, I will draw a conclusion.

In Appendix B.1 I give a brief introduction to the photoemission spectroscopy - tech-
nique, which has been used by our collaborators in the experiments on Bi(111) surface.
The details of the experiment are also given in Appendix B.1.

The results, which will be presented in this section, have been published recently in
Ref. [267].

5.2.1 Distinction between bulk states and surface resonances

Figure 5.4(a) shows the intensity map of the photoelectrons emitted along the Γ − M
direction of the surface Brillouin zone (SBZ) [see Fig. 4.3(a)]. As has been pointed out
in Sec. 4.3, the breakdown of translational symmetry in the [111] direction generates
surface states that intersect the Fermi level and give rise to the Fermi surface [198].
These evanescent wavefunctions are localized at the topmost layers, thus conferring to
the surface of bismuth good metallic properties. Although the band structure supports
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(a) (b)

Figure 5.4: (a) Intensity map of photoelectrons emitted for parallel wave vector k‖ along
the Γ −M direction of the surface Brillouin zone [see Fig. 4.3(a)]. Band a is the surface
resonance, and band b is the bulk state. (b) Intensity map of photoelectrons emitted at
binding energy εB = −0.26 eV. An intense structure originating from band b is visible
along the Γ−M directions, but not along Γ−M

′
. From Ref. [267].

surface states only near the Fermi level, some bulk states and surface resonances are clearly
visible at higher binding energy, in agreement with Ref. [262]. Two bands of a different
nature are indicated in Fig. 5.4(a) by letters a and b. Due to the matrix elements of the
photoemission process, band b is clearly visible only when the parallel component of the
electronic wavevector is k‖ < 0.25 Å−1. Band a has a larger value of the binding energy,
it disperses more strongly, and intersects band b at the Γ point.

The overall agreement between current measurements and one-step photoemission
calculations by Kimura et al. [204] is remarkable. Furthermore, the authors of Ref. [204]
reported that band a is strongly spin-polarized, whereas band b has a negligible spin-
polarization.3 This finding suggests that band a is the surface resonance, and band b is
the bulk band. Nevertheless, additional arguments confirming this hypothesis would be
desirable. In Sec. 5.2.4 I will present two such additional arguments, which are based on
the ab initio calculations and symmetry analysis.

More insights into the dispersion of band b can be obtained by mapping photoelectrons
in the reciprocal space at a fixed kinetic energy. Figure 5.4(b) shows the intensity map of
photoelectrons acquired at different wavevectors for the binding energy εB = −0.26 eV. As
can be seen, the structure b is very intense along the Γ−M directions, whereas it vanishes
in the Γ −M

′
directions. The experimental evidence that band b is invariant under the

rotation of 120◦, and not under the rotation of 60◦, corroborates the bulk character of
band b. In Sec. 5.2.4(c) I will make a comparison of Fig. 5.4(b) with ab initio results, and
confirm this experimental finding.

3I recall, that the bulk electronic states of the centrosymmetric bismuth are not spin-polarized. In
contrast, the breakdown of inversion symmetry at the surface induces a large spin-polarization of the
surface states (see Sec. 4.3).



5.2 INTERPRETATION OF THE PHOTOEMISSION EXPERIMENT 109

5.2.2 Oscillation of electronic bands after the photoexcitation

Large variations in the structure of the electronic states have been observed in the pho-
toemission experiment. The oscillations are large for the bulk band b, whereas they fall
below the detection limit for the surface resonance a and for all other surface states, as
can be seen from the photoelectron intensity map in Fig. 5.5(a) and in Fig. 5.5(b). In-
deed, on the upper panel of Fig. 5.5(b) it is clearly seen that the bulk band b displays
periodic modulations. Moreover, the frequency of such periodic modulations is equal to
the frequency of the A1g phonon mode (see Sec. 4.4). This indicates the fact that there is
a coupling between the electronic states and coherent phonons. The oscillations induced
by the A1g phonon mode have a frequency ω = 2.97 ± 0.05 THz, and a damping time
2.6 ± 0.2 ps. These values compare well with the ones obtained in the experiments on
measuring the transient reflectivity [268]. On the other hand, the surface resonance does
not display periodic modulations [see Fig. 5.5(b), lower panel]. This observation leads
to two possible conclusions: either the amplitude of the A1g phonon mode is smaller on
the topmost bilayer, or the surface states have a weak coupling to this mode. Further
experimental and theoretical investigations are required in order to clarify this point. In
Sec. 5.2.6 I will present an ab initio study of the electron-phonon coupling in Bi, in order
to confirm the origin of oscillations of bulk band b.

(a) (b)

Figure 5.5: (a) Intensity map of photoelectrons emitted at parallel wavevector k‖ =
0.12 Å−1 along the Γ −M direction as a function of the pump-probe delay. (b) Binding
energy of the bulk band b (upper panel) and of the surface resonance a (lower panel)
for parallel wavevector k‖ = 0.12 Å−1 along the Γ − M direction as a function of the
pump-probe delay. From Ref. [267].
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In addition, as can be seen in Fig. 5.5(b), the binding energy of both bulk band b and
surface resonance a show a steep shift immediately after the photoexcitation. After such
a shift the electronic bands show damping oscillations, which correspond to the fact that
the electronic system cools down and goes towards the initial equilibrium state. I will
address this issue in Sec. 5.2.7.

5.2.3 Computational method

I have performed ab initio DFT calculations within the LDA and GGA approximations
at their respective theoretical equilibrium lattice parameters (see Sec. 5.1.2), including
the spin-orbit coupling. I have used the norm-conserving pseudopotentials including the
5d semicore levels in the valence region (see Appendix A.1), and a kinetic-energy cutoff
of 150 Ry.

After the photoexcitation of Bi sample, the electronic system is in the nonequilibrium
state, and afterwards it is thermalized due to the electron-electron interaction, and can
be described by the Fermi-Dirac distribution with the effective electronic temperature T
[269]. In the photoemission experiment, the electronic temperature reached the maximum
value of 2080 K (see Appendix B.1.5). Therefore, I have performed DFT calculations by
using the Fermi-Dirac smearing function with a broadening parameter σ = kBT = 0.013
Ry (kB is the Boltzmann constant) in order to calculate integrals of different quantities
over k points in the reciprocal space.

The k point sampling of the bulk Brillouin zone [see Fig. 4.3(a)] must be sufficiently
dense in order to satisfy the condition, |εki

−εkj
| < σ, where εki

and εkj
are the Kohn-Sham

energy values at the two nearest neighbouring points ki and kj, respectively. Therefore,
I have used a uniform 40 × 40 × 40 k point mesh centered at the Γ point, yielding 5761
k points in the irreducible wedge of the Brillouin zone (IBZ).

5.2.4 Determination of bulk band

5.2.4 (a) Determination of k⊥ from DFT

In Appendix B.1 it is pointed out that in the photoemission process the perpendicular
component of the electronic wavevector k⊥ is not conserved. Hence, it is not possible to
determine from the experimental data to what k⊥ the intensity maps in Figs. 5.4(a) and
5.4(b) correspond. However, ab initio calculations can help us to answer this question.

Let us consider the Kohn-Sham band structure of bulk Bi along the Γ-T direction
in the bulk Brillouin zone [see Fig. 4.3(a)]. Figure 5.6 shows the highest valence band
calculated within the LDA and GGA at their corresponding theoretical equilibrium lattice
parameters (see Sec. 5.1.2). Since the lattice parameter a0 is larger in the GGA than in
the LDA (see Table 5.1), the distance between the Γ and T points in the reciprocal space
is smaller in the GGA than in the LDA, as it is seen in Fig. 5.6. This means that at a
given binding energy the wavevector component k⊥ does not have the same value within
the LDA and GGA. Therefore, in the following I will perform an analysis by using both
approximations.
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Figure 5.6: Kohn-
Sham band structure
within the LDA at the
LDA-ELP (red curve)
and within the GGA at
the GGA-ELP (black
curve) along the Γ-T
direction in the bulk
Brillouin zone [see
Fig. 4.3(a)]. The Fermi
level is at zero energy.
(Unpublished)

(a) (b)

Figure 5.7: Kohn-Sham band structure of bulk Bi calculated along the direction in the
bulk Brillouin zone which is parallel to the Γ−M direction of the surface Brillouin zone,
at various values of k⊥. The unit of k⊥ is Å−1. (a) Calculation within the LDA at the
LDA-ELP, (b) Calculation within the GGA at the GGA-ELP. (Unpublished)
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Since the value of k⊥ corresponding to the intensity map in Fig. 5.4(a) is not known,
I have performed calculations at several values of k⊥. By choosing a point between the Γ
and T points in the bulk BZ, I have calculated the electronic band along the direction of
the bulk BZ which is parallel to the Γ −M direction of the surface BZ [see Fig. 4.3(a)].
The results are shown in Figs. 5.7(a) and 5.7(b). It turns out, that the best agreement
between the ab initio dispersion of the bulk electronic band and the experimental bulk
band b [see Fig. 5.4(a)] is at k⊥ = 0.45 Å−1 within the LDA (εB = −0.33 eV at Γ), and
at k⊥ = 0.37 Å−1 within the GGA (εB = −0.26 eV at Γ). In Sec. 5.2.4(b) I will present
a detailed comparison with the experimental data.

5.2.4 (b) Determination of bulk band b from the dispersion of Kohn-Sham
levels

Figures 5.8(a) and 5.8(b) show the bulk band b calculated ab initio on top of the

experimental intensity maps of the photoelectrons emitted along the Γ −M and Γ −M
′

directions. The red and white lines are guides for the eye for the surface resonance a and
for the surface states s, respectively. Notice, the energy dispersion of a and s are identical
in the two intensity maps, whereas the dispersion of band b is much weaker along Γ−M
than along Γ − M

′
. The remarkable agreement between the calculated band b of bulk

bismuth and the photoelectron intensity map reveals the bulk character of band b. On
the other hand, the fact that no bulk electronic states match the dispersion of electronic
states a and s indicates that they do not have the bulk character, but that they are re-
lated, rather, to the surface resonances and surface states, respectively.

5.2.4 (c) Determination of bulk band b using symmetry arguments

Symmetry arguments may also help us to assert the dominant character of the states
a, b and s. As has been pointed out in Sec. 4.3, the surface states of Bi have six-fold
symmetry with respect to the rotation around the [111] direction. On the other hand,

the bulk states have only three-fold symmetry. Since the directions Γ −M and Γ −M
′

are connected by a rotation of 60◦, from Figs. 5.8(a) and 5.8(b) one can see that states
a and s have six-fold symmetry, because they are identical on the two intensity maps,
whereas state b does not have six-fold symmetry, because its dispersion on different in-
tensity maps is different. But how can one say that band b is three-fold symmetric? In
order to answer this question, let us analyze Fig. 5.4(b), which illustrates the intensity map
of photoelectrons acquired at different wave vectors for the binding energy εB = −0.26 eV.

I have performed ab initio calculation of the energy isosurface corresponding to the
binding energy εB = −0.26 eV within the GGA at the GGA-ELP, and the result is shown
in Fig. 5.9(a). Figure 5.9(b) represents the result of the cut of such an isosurface by
a plane at k⊥ = 0.37 Å−1 within the GGA. As one can see from Fig. 5.9(b), there are

prolongated structures along the Γ−M directions, but not along Γ−M
′
. This is in remar-
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(a) (b)

Figure 5.8: Intensity map of photoelectrons emitted along the Γ −M direction (a) and

along the Γ−M
′
direction (b). The bulk band b, calculated within DFT-LDA, is marked

by a blue line. No bulk electronic states match the dispersion of band a and of the surface
states s. The red and white lines are guides to the eye for the surface resonance a and for
the surface states s, respectively. From Ref. [267].

(a) (b)

Figure 5.9: (a) Energy isosurface corresponding to the binding energy εB = −0.26 eV
in the bulk Brillouin zone, calculated from ab initio within the GGA at the GGA-ELP.
Red dotted lines represent a plane which cuts the isosurface at k⊥ = 0.37 Å−1 within the
GGA. The result of the cutting is shown in (b). Points Γ, T, and L are the high symmetry

points in the bulk BZ, and Γ, M, M
′

are the high symmetry points in the surface BZ.
(Unpublished)
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kable agreement with the experimental finding presented in Fig. 5.4(b). These prolon-
gated structures have a rotational symmetry of 120◦, which was directly observed in the
experiment. This is a feature of the bulk electronic bands, i.e. the three-fold symmetry.
Eventually, the symmetry arguments give us yet another confirmation of the fact that
band b has a bulk character, and that band a is the surface resonance and s is the surface
state.

5.2.5 Analysis of electronic charge-density

Let us analyze the experimental results presented in Figs. 5.5(a) and 5.5(b). After the
photoexcitation of Bi, the change in the electronic charge-density leads to the change in
the distance between the two atoms in the unit cell along the [111] direction, which induces
the A1g phonon mode (see Sec. 4.4). In turn, the A1g phonon mode induces oscillations
of the bulk band b due to the electron-phonon coupling. Ab initio calculations can help
us to illustrate this point.

(a) (b)

Figure 5.10: (a) Color scale plot of the charge-density at 130 K in the (110) plane. (b)
Relative change of the charge-density for an increase of the electronic temperature from
130 K to 2080 K. From Ref. [267].

Figure 5.10(a) shows a color scale plot of the electronic charge-density n(r, Ti) at
Ti = 130 K in the (110) plane. The sudden increase of the electronic temperature up
to Tf = 2080 K (see Appendix B.1.5) after the photoexcitation changes the spatial dis-
tribution of the electronic charge-density. The relative change of the charge density,
[n(r, Tf )− n(r, Ti)] /n(r, Ti), becomes negative in the region between the nearest neigh-
bours (atoms 1 and 2), as illustrated in Fig. 5.10(b). Hence, the transfer of the electronic
charge out of the bonding region increases the repulsion between the ionic cores. As a
consequence, the atoms change their equilibrium position and oscillate around a new equi-
librium position, until the energy dissipation into other phonon modes brings the system
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back to the initial state. Such a change of the equilibrium position of the atoms induces
the A1g phonon mode, which in turn forces the oscillation of the bulk band b due to the
electron-phonon interaction. This issue will be addressed in the next section.

5.2.6 Dispersion of the electron-phonon coupling

The lattice motion changes the binding energy of the Bloch state |b, k‖〉 by Db,k‖u, where
u is the A1g phonon coordinate (see Sec. 4.4), and Db,k‖ is the deformation potential [270].
I have determined ab initio the value of the deformation potential within the LDA and
GGA, within the frozen-phonon approximation [40]. To this end, I have calculated the
Kohn-Sham band structure of bulk Bi along the Γ−M direction for several values of the
displacement u, and keeping other lattice parameters (a0 and α0) equal to their theoretical
equilibrium values (see Table 5.1). The results are shown in Figs. 5.11(a) and 5.11(b).

(a) (b)

Figure 5.11: Dispersion of bulk band b along the Γ − M direction for the several val-
ues of the displacement u. (a) LDA for k⊥ = 0.45 Å−1, (b) GGA for k⊥ = 0.37 Å−1.
(Unpublished)

I would like to point out that in order to plot Figs. 5.11(a) and 5.11(b) I have used
the advantage of the pseudopotential used in this thesis: the inclusion of the 5d semicore
levels in the valence region [see Fig. 4.4(b)]. I have made an assumption that a relatively
small change of the parameter u should not induce a shift of the deeply lying 5d semicore
levels, whereas the highest valence bulk band b does move, because it is very sensitive to
the change of u. Therefore, 5d levels have been used as a reference for the energy,4 and
they have been aligned when comparing the dispersion of the bulk band b for different
values of the parameter u.5

4In ab initio DFT calculations there is no reference for the energy [271]. By changing u, the Fermi level
also changes, therefore it cannot be considered as a reference. Instead, the 5d levels could be considered
as a reference.

5The inclusion of the 5d semicore levels in the valence region is a necessary condition, in order to
satisfy the transferability properties of the pseudopotential (see Appendix A.1). Moreover, as one can
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The inclusion of the 5d semicore levels in the valence region means that the corre-
sponding wavefunctions are orthogonal to the 6s and 6p wavefunctions, which are also in
valence. The displacement of the atoms (change of u) changes the 6s and 6p wavefunctions,
but the 5d wavefunctions are assumed to be unchanged. This is a reasonable approxi-
mation from the physical point of view, since the 5d levels are deeply lying and tightly
bound levels which barely respond to small perturbations, like small change of atomic
positions, in contrast to the 6s and 6p levels, which are very sensitive to perturbations.
The 5d occupied levels are orthogonal also to the 6d unoccupied levels. If the excitation
of electrons is such that the 6d levels are occupied, then due to the orthogonality of 5d
and 6d wavefunctions, there will be a change of 5d wavefunctions. However, since the 6d
levels are not populated after the photoexcitation, and they are not hybridized with the
6s and 6p levels, they do not contribute to the change of the self-consistent Kohn-Sham
potential, and hence they do not change the 5d wavefunctions. Due to the orthogonality,
the change of the 6s and 6p wavefunctions leads to the change of the 5d wavefunctions,
but the later is negligible. Thus, the 5d levels can be assumed to be unchanged in the
interpretation of the current photoemission experiment on photoexcited bismuth with a
small perturbation of 1.5 eV. This assumption may be not valid in general case, e.g. when
the perturbation is large or when 6d states are occupied.

The variation of the electronic bulk band b is somewhat different within the LDA and
GGA. However, within both approximations the binding energy strongly varies near the
Γ point, and it is less sensitive to the phonon coordinate u for k‖ ≈ 0.2 Å−1. This is in
agreement with the measurements. Figure 5.12 shows the comparison of the experimental
and theoretical oscillation amplitude of the binding energy of bulk band b as a function of
the wavevector k‖ along the Γ−M direction. The measured amplitude of the oscillation
is 20 meV for k‖ = 0.05 Å−1, and decreases down to 10 meV for k‖ = 0.20 Å−1. At
larger wave vectors, k‖ > 0.20 Å−1, the photoelectron intensity of bulk band b is too
low for a reliable extraction of the oscillation amplitude. The agreement between theory
and experiment on the oscillation amplitude is achieved for ∆u ' 0.001 (unitless) both
within the LDA and GGA. Such a value of ∆u corresponds to the atomic displacement of
∆u·c = 1.17 pm within the LDA, and of ∆u·c = 1.24 pm within the GGA.6 The agreement
between theory and experiment is remarkable in the range 0.05 < k‖ < 0.14 Å−1, and
there is some discrepancy for k‖ > 0.14 Å−1 (see Fig. 5.12).

A displacement of the two atoms within the unit cell, ∆u, which is induced by the
excitation laser pulse, can be determined using the two-temperature model [16, 194].
Within such a model the electronic subsystem and the lattice are described by two distinct
temperatures. Experimentally only the electronic temperature can be determined (see
Appendix B.1.5), which has been found to be in remarkable agreement with the theoretical
one [267]. On the basis of the two-temperature model, the atomic displacement ∆u has
been found to be also ≈ 0.001 [267].

The deformation potential is defined within the frozen-phonon approximation asDb,k‖ =

see, the 5d levels serve also for other purposes - being the reference.
6Note, that c = 11.684 (Å) within the LDA, c = 12.378 (Å) within the GGA, and the experimental

value is c = 11.797 (Å). For more details see Secs. 4.2.1 and 5.1.2.
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Figure 5.12: Oscillation am-
plitude of the binding energy
of bulk band b, ∆ε, as a func-
tion of the wave vector k‖
along the Γ−M direction. The
experimental data is marked
by empty circles with error
bars. The ab initio results are
presented for the atomic dis-
placements of ∆u · c = 1.17
pm within the LDA, and of
∆u · c = 1.24 pm within the
GGA. (Unpublished)

∆ε(k‖)/(∆u c).
7 It can be directly computed from the data in Fig. 5.12. For example, for

k‖ = 0.12 Å−1 the deformation potential is equal to Db,k‖ = 1.10 eV/Å within the LDA,

and Db,k‖ = 1.02 eV/Å within the GGA. As a term of comparison, the optical phonons

have the electron-phonon matrix element of 7.8 eV/Å in graphite [272], and 14 eV/Å in
boron doped diamond [273]. The deformation potential in bismuth is very small compared
to other materials.

The large k‖-dependence of Db,k‖ has also been observed in TbTe3 [274]. Due to the
presence of a charge-density wave, the variation of the interaction strength as a function
of the Bloch state in TbTe3 has been explained by the good nesting properties of the
Fermi surface. The k‖-dependence of the electron-phonon coupling has been also known
from calculations in semiconductors [275, 276, 277, 278, 279]. However, the current mea-
surements on Bi suggest that the wavevector dependence of the electron-phonon coupling
constitutes a general property of covalent crystals. This aspect of the coupling can be
understood by a simple tight-binding model on a linear chain: if the atomic displacement
modifies the overlap between the atomic orbitals, the binding energy of the Bloch states
will change differently for different wave vectors.

5.2.7 Origin of the shift of binding energy

As has been pointed out in Sec. 5.2.2, the dynamics of the electronic states does not
depend simply on the phonon coordinate u. As can be seen in Fig. 5.5(b) (upper panel),
besides the oscillations of the binding energy of bulk band b with the frequency of the A1g

phonon mode, an additional effect shifts band b towards higher binding energy just after
the photoexcitation. This photoinduced shift occurs also in the surface resonance a [see
Fig. 5.5(b), lower panel], and in the surface states. The magnitude of such a shift depends
on the electronic wavevector and band index. Under similar experimental conditions, the
photoinduced increase of the binding energy has been also observed in the surface states

7Within the frozen-phonon approximation, a finite amplitude displacement ∆u c of atoms is “frozen”
into the system, and the resulting deformation potential is calculated.



118 CHAPTER 5. AB INITIO DESCRIPTION OF BI

of Gd [280].

I have tried to reproduce such a shift from ab initio calculations on bulk Bi. I have
performed two independent calculations of the Kohn-Sham band structure, corresponding
to the electronic system at the equilibrium and in the photoexcited state. On one hand, as
has been discussed in Sec. 5.2.3, I have performed a calculation of the Kohn-Sham band
structure by using the Fermi-Dirac smearing function with the broadening parameter
σ = 0.013 Ry, which mimics the electronic temperature of T = 2080 K, which was
reached in the photoemission experiment (see Appendix B.1.5). On the other hand, I
have performed a calculation of the Kohn-Sham band structure by using the tetrahedron
method [197], in which there is no smearing σ, and which corresponds to zero temperature.
In the latter case I have used a very dense k point sampling of the bulk Brillouin zone:
a 50× 50× 50 uniform k point mesh centered at the Γ point, yielding 11076 k points in
the IBZ.

The 5d semicore levels of the two calculations have been aligned, and the relative shift
of the topmost valence bulk band b has been evaluated, which corresponds to the increase
of the electronic temperature from 0 to 2080 K. However, I have found that this shift is
extremely small, ∼ 2 meV, both within the LDA and GGA. Instead, in the experiment
it was found that such a shift is equal to 20 meV for the bulk band b [see Fig. 5.5(b),
upper panel]. It should be noted that the increase of the electronic temperature after the
photoexcitation leads to the broadening of the Fermi-Dirac distribution around the top
of the occupied valence bands. This fact has been taken into account in the experimental
determination of the photoinduced shift of the electronic states (see Appendix B.1.5). It
turns out that such a broadening of the Fermi-Dirac function has a minor effect on the
band shift (6 meV).

The discrepancy between ab initio DFT calculations and experiment may be due to
the fact that the former does not account for the charge redistribution nor the carrier
transport on the surface of the sample. Alternatively, dynamical aspects of the electronic
screening may require simulations that go beyond DFT, like the GW method [281]. Thus,
the shift of 20 meV in the binding energy of the bulk band b is likely to be of a purely
electronic nature. Additional theoretical investigations are required in order to reveal the
origin of the shift.

5.2.8 Conclusions

In this section I have presented a theoretical interpretation of the time-resolved and angle-
resolved photoemission experiment on Bi(111) surface, on the basis of the analysis of the
Kohn-Sham band structure, which was obtained by performing ab initio DFT calculations
on bulk Bi. I have performed the analysis within the LDA and GGA, and by including
the spin-orbit coupling in the calculations, since it is crucial for the description of the
band structure.

I have revealed a character of the electronic states in the experimental photoelectron
intensity map, by making a comparison of the Kohn-Sham band structure of bulk Bi
with the experimental electronic structure. With the help of symmetry arguments I have
shown that one of the bands has a bulk character with a three-fold symmetry, in contrast
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to surface states and surface resonances which have six-fold symmetry.
Furthermore, I have shown that a change of the electronic charge-density due to the

increase of the electronic temperature after the photoexcitation of Bi, modulates the
distance between two atoms in the unit cell, and thus is responsible for the generation of
the A1g phonon mode. The A1g mode, in turn, provokes oscillations of the electronic bulk
band b through the electron-phonon interaction.

In addition, I have found within the frozen-phonon approximation that the electron-
phonon coupling in Bi strongly depends on the electronic wavevector, in remarkable agree-
ment with experimental observations. Both approximations, LDA and GGA, give an
amplitude of oscillation of bulk band b in very good agreement with the experimental
one.

Finally, I have found that DFT calculations on bulk Bi neither within the LDA nor
within the GGA can explain the shift of 20 meV in the binding energy of the bulk band
b immediately after the photoexcitation. This may be due to the inability of the bulk
model to account for the charge redistribution nor the carrier transport on the surface
of the sample. Moreover, the dynamical aspects of the renormalization of the electronic
screening, due to the increase of the electronic temperature, may be responsible for the
shift of the electronic states. Further theoretical studies are required in order to reveal
the origin of the shift.



120 CHAPTER 5. AB INITIO DESCRIPTION OF BI



Chapter 6

Free-carrier absorption in
photoexcited Bi

In this chapter I will present a study of the low-energy Drude intraband response of
electrons and holes in the photoexcited bismuth, by means of ab initio DFT calculations.
I will perform methodological developments for the free-carrier absorption in order to
interpret the time-resolved terahertz experiment on Bi, in which the Drude response has
been observed. My analysis is based on a consideration of the intraband contribution to
the dielectric function of Bi, and its change due to the photoexcitation.

In particular, I will investigate why the frequency of oscillation of the plasma in the
photoexcited Bi does not show the usual behaviour, i.e. rapid decrease immediately after
the photoexcitation of carriers [282, 283]. I will present a qualitative and quantitative
explanation of such an observation, on the basis of the Kohn-Sham band structure of Bi
near the Fermi level. The description of the latter is of major importance for the correct
determination of the Fermi velocity of electrons and holes, effective masses in the local
extrema of the band structure, optical masses of carriers near the Fermi level at the L and
T points, and of the characteristic plasma frequency. All these ingredients are needed for
the ab initio description of the free-carrier absorption in materials, and in particular in
bismuth.

This chapter is divided on two parts. First, in Sec. 6.1 I will present methodological
developments for the free-carrier absorption, and its application to Bi. Second, in Sec. 6.2
I will apply such methodological developments for the interpretation of the time-resolved
terahertz experiment on Bi.

121



122 CHAPTER 6. FREE-CARRIER ABSORPTION IN PHOTOEXCITED BI

6.1 Methodological developments for free-carrier ab-

sorption

In Sec. 6.2 I will study a change of the intraband dielectric function of Bi after the
low density photoexcitation. The intraband contribution to the dielectric function is
found to be described by the Drude model [see Sec. 3.2.3(c)], and corresponds to the
free-carrier absorption, well known in doped semiconductors [284]. This section aims at
methodological developments for the free-carrier absorption, which will be needed for the
theoretical description of the free-carrier response in the photoexcited Bi.

Free-carrier absorption (FCA) is the second-order process, which involves the absorp-
tion of photons by free carriers and scattering with phonons or impurities [285]. The
scattering mechanism is necessary for the conservation of the momentum, because the
absorbed photon has a negligible momentum. Quantum theory of the FCA was devel-
oped long ago [284, 285, 286], and nowadays the FCA can be described very accurately
in complex materials (see, e.g., Refs. [287, 288]).

Since in Bi the FCA corresponds to the Drude response, it is important to accurately
determine properties of charge carriers such as their velocity, effective and optical masses,
and the plasma frequency. In this section I will present how these quantities can be de-
termined ab initio, and will be used in the semiclassical approximation to the FCA. In
Sec. 6.1.2 I will present a derivation of the semiclassical expression for the plasma fre-
quency. In Sec. 6.1.3 I will show how the carrier velocity can be calculated ab initio. In
Sec. 6.1.4 I will determine effective masses of the true local extrema in the Kohn-Sham
band structure of bulk Bi near the Fermi level. Finally, in Sec. 6.1.5 I will give a definition
of the optical mass, and determine its values in Bi. At the end, I will draw a conclusion
about the ab initio description of the free-carrier absorption.

6.1.1 Computational method

The results of Sec. 6.1 have been obtained by preforming ab initio DFT calculations
within the generalized gradient approximation (GGA). As has been shown in Sec. 5.1.3,
the GGA at the GGA equilibrium lattice parameters (see Table 5.1) gives somewhat
better agreement of the Kohn-Sham energy levels with various experimental data than
the LDA. Therefore, the GGA has been chosen for studies in this chapter. The details of
the calculations are the same as described in Sec. 5.1.1. The spin-orbit coupling has been
included in the calculations.

6.1.2 Plasma frequency

According to the Drude model, the plasma frequency ωp is determined by the variation
of the electron density [see Eq. (3.41)]. On the other hand, the plasma frequency can be
defined as [114, 289, 290, 265]:

ω2
p =

8πe2

3V

∑
n,k

v2
n,k δ(εn,k − εF ) =

4πe2

3

∑
n

ˆ
dk

4π3
v2
n,k δ(εn,k − εF ), (6.1)
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where V is the volume of the primitive cell, vn,k is the carrier velocity at the n-th band with
a wave vector k, εn,k is the Kohn-Sham energy, and εF is the Fermi energy.1 Equation (6.1)
is valid only at zero temperature, T = 0 K. In the following I will show how Eq. (6.1)
can be obtained and generalized to finite temperatures from the semiclassical theory of
electrical conductivity [115].

In the semiclassical theory, the tensor of electrical conductivity reads [115]:

σ̂(ω, T ) = e2
∑
n

ˆ
dk

4π3

vn,kvn,k
[1/τn(εn,k)]− iω

[
−∂f(ε, T )

∂ε

]
ε=εn,k

, (6.2)

where τn(εn,k) is the relaxation time which may differ from band to band, f(ε) is the
distribution function,2 and T is the electronic temperature.3 In metals, with a high level
of accuracy, one may consider τn(ε) as τn(εF ). Let us make the following approximations:
(i) the relaxation time does not depend on the band number n nor the wave vector k, i.e.
τ is the constant, and (ii) the isotropic model for tensorial quantities. As a consequence,
Eq. (6.2) will read:

σ(ω, T ) =
e2

1/τ − iω
∑
n

ˆ
dk

4π3

v2
n,k

3

[
−∂f(ε, T )

∂ε

]
ε=εn,k

. (6.3)

If one substitutes Eq. (6.3) into the Drude expression for the dielectric function [74]:

εintra(ω) = 1 +
4πiσ

ω
, (6.4)

then one will immediately see that the plasma frequency can be defined as [see Eq. (3.39)]:

ω2
p(T ) =

4πe2

3

∑
n

ˆ
dk

4π3
v2
n,k

[
−∂f(ε, T )

∂ε

]
ε=εn,k

. (6.5)

If one considers a Fermi-Dirac distribution fFD(ε, T ), then in the limit when temperature
goes to zero, Eq. (6.5) will coincide with Eq. (6.1), because limT→0[−dfFD(ε, T )/dε] = δ(ε).

If contributions to the plasma frequency mainly come from the region around the
Fermi level (like in semimetallic bismuth), then the sum over all bands n in Eq. (6.5) will
be reduced to only those bands which cross the Fermi level. For this reason, among all
the carriers with velocities vn,k we can consider only those which are near the Fermi level
and which, thus, have the Fermi velocity vF . Hence, the Fermi velocity can be taken out
from the integral. This is, so-called, mid-point approximation. Therefore, Eq. (6.5) reads:

ω2
p(T ) =

4πe2

3
v2
F

∑
n

ˆ
dk

4π3

[
−∂f(ε, T )

∂ε

]
ε=εn,k

. (6.6)

1In Eq. (6.1) I have used the relation (1/V )
∑

k =
´
dk/(8π3).

2The distribution function f(ε) can be either the Fermi-Dirac function or any other distribution
function, depending on the problem.

3The electronic temperature is defined as the temperature of a thermalized electronic distribution [291].
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By introducing the density of states (DOS), g(ε), Eq. (6.6) can be rewritten as:

ω2
p(T ) =

4πe2

3
v2
F

ˆ
g(ε)

[
−∂f(ε, T )

∂ε

]
dε, (6.7)

where

g(ε) =
∑
n

ˆ
dk

4π3
δ(ε− εn,k). (6.8)

In order to calculate the plasma frequency, Eq. (6.7), one needs to know the following
ingredients: the distribution function f(ε, T ), the density of states g(ε), and the carrier
velocity at the Fermi level vF . Let us comment on each of these ingredients.

The choice of the distribution function f(ε, T ) depends on the system under consider-
ation. It can be the Fermi-Dirac distribution, fFD(ε, T ) = {1+exp[(ε−εF )/(kBT )]}−1, or
some specific model distribution, or it can be obtained by solving the kinetic Boltzmann
equation [74].

The density of states can be computed ab initio by using a smearing technique to
approximate the Dirac δ-function. Many kinds of smearing functions can be used: Fermi-
Dirac broadening, Lorentzian, Gaussian [292], Gaussian combined with polynomials [244],
or cold smearing functions [293], to recall only some of them. While the choice of a given
smearing function is to some extent a matter of computational convenience, the specific
choice of Fermi-Dirac broadening allows one to mimic the effects of a finite temperature
(T = σ/kB, where σ is a broadening parameter). Another approximation to the calcula-
tion of DOS is the tetrahedron method [197]. This method does not contain any smearing
parameter, and it is more precise than the smearing technique. The choice between the
tetrahedron method and the smearing technique depends on the precision which is needed
for a specific problem.

The last but not least ingredient of the plasma frequency is the carrier velocity. A full
section will be denoted to this question, since the accurate determination of the carrier
velocity is challenging, and thus deserves special attention.

6.1.3 Carrier velocity

In this section, I will derive the expression for the carrier velocity, when the Hamiltonian
contains or not the spin-orbit coupling.

6.1.3 (a) Hamiltonian without the spin-orbit coupling

Let us start from the Schrödinger equation:

Ĥϕn,k = εn,k ϕn,k, (6.9)

where ϕn,k and εn,k are the Kohn-Sham (KS) wavefunctions and energy values, respec-

tively, and the Hamiltonian Ĥ in the pseudopotential calculation reads:

Ĥ = T̂ + V̂loc + V̂NL, (6.10)
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where T̂ = p2/2m is the kinetic term, V̂loc = V̂ (r)δ(r − r′) is the local potential, and
V̂NL =

∑
IlmD

I
l |βIlm〉〈βIlm| is the non-local potential in the Kleinman-Bylander form (see

Sec. 2.3.2). The functions βIlm are defined as [see Eq. (2.69)]:

βIlm(r− τ I) = δV̂ I
l (|r− τ I |)χl(|r− τ I |)Ylm(θ, ϕ) , (6.11)

where τ I is the position of the I-th ion, δV̂ I
l (|r − τ I |) is the potential corresponding to

the I-th ion, χl(|r − τ I |) is the radial part of the wavefunction, and Ylm(θ, ϕ) are the
spherical harmonics.

The Hellmann - Feynman theorem [24] dictates that, given the relation εn,k = 〈ϕn,k|Ĥ|ϕn,k〉
[see Eq. (6.9)], there is a relationship for the derivatives:

∂εn,k
∂k

=
〈
ϕn,k

∣∣∣ ∂Ĥ
∂k

∣∣∣ϕn,k〉. (6.12)

Now let us suppose for the moment that an electron moves only in the local potential
(V̂NL = 0). It means that (1/~)(∂Ĥ/∂k) = p/m = v, and, therefore, Eq. (6.12) gives the
definition of the electron velocity. But when there is also a non-local potential (V̂NL 6= 0),
then (1/~)(∂Ĥ/∂k) 6= p/m, and there will be a contribution from the non-local potential
to the velocity [294]. Equation (6.12) is general, and, hence, the electron velocity can be
defined as [115]:

vn,k =
1

~
∂εn,k
∂k

, (6.13)

or it can be calculated also as:

vn,k =
1

~
〈
ϕn,k

∣∣∣ ∂Ĥ
∂k

∣∣∣ϕn,k〉. (6.14)

Thus, the carrier velocity can be computed either by evaluating the numerical derivative of
the KS energy values εn,k with respect to k wavevector, Eq. (6.13), or it can be computed
fully ab initio by evaluating the matrix element of the derivative of the Hamiltonian with
respect to k wavevector, Eq. (6.14). In the following I will discuss the later case, i.e. ab
initio calculation of the carrier velocity.

Three terms need to be calculated:

vn,k =
1

~
〈
ϕn,k

∣∣∣ ∂T̂
∂k

∣∣∣ϕn,k〉+
1

~
〈
ϕn,k

∣∣∣ ∂V̂loc
∂k

∣∣∣ϕn,k〉+
1

~
〈
ϕn,k

∣∣∣ ∂V̂NL
∂k

∣∣∣ϕn,k〉. (6.15)

Let us consider the first term in Eq. (6.15). By using the expansion of the KS wavefunc-
tions in plane waves [see Eq. (2.61)], and the fact that T̂ = p2/(2m) = −(~2/2m)∇2, one
will obtain:

〈ϕn,k|T̂ |ϕn,k〉 =
~2

2m

∑
G

|k + G|2 |cn,k+G|2, (6.16)

and, therefore, 〈
ϕn,k

∣∣∣ ∂T̂
∂kα

∣∣∣ϕn,k〉 =
~2

m

∑
G

(k + G)α |cn,k+G|2 , (6.17)
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where the derivative is calculated along the cartesian components of the k wavevector,
α = x, y, z. Now let us consider the second term in Eq. (6.15), coming from the local
potential:

〈ϕn,k|V̂loc|ϕn,k〉 =
∑
G,G′

c∗n,k+G cn,k+G′

ˆ
V̂ (r) ei(G

′−G)·r dr, (6.18)

and, therefore, 〈
ϕn,k

∣∣∣ ∂V̂loc
∂k

∣∣∣ϕn,k〉 = 0. (6.19)

And, finally, let us consider the third term in Eq. (6.15), coming from the non-local
potential. Let us consider first the matrix element without the derivative:

〈ϕn,k|V̂NL|ϕn,k〉 =
∑
Ilm

DI
l 〈ϕn,k|βIlm〉〈βIlm|ϕn,k〉

=
∑
Ilm

∑
G,G′

DI
l c
∗
n,k+G cn,k+G′ β̃Ilm(k + G) β̃I ∗lm(k + G′), (6.20)

where β̃Ilm(k + G) is the Fourier transform of the function βIlm(r− τ I), which reads:

β̃Ilm(k + G) =

ˆ
βIlm(r− τ I) e−i(k+G)·r dr. (6.21)

By making a change of variables r− τ I = r′, Eq. (6.21) will read:

β̃Ilm(k + G) = e−i(k+G)·τ I

ˆ
βIlm(r′) e−i(k+G)·r′ dr′. (6.22)

Further, let us use the explicit form of the functions βIlm(r), Eq. (6.11), and the expansion
of a plane wave in series:

eik·r = 4π
∑
lm

il jl(|k · r|)Y ∗lm(θk, ϕk)Ylm(θr, ϕr), (6.23)

where jl(|k·r|) are the Bessel functions, and Ylm(θ, ϕ) are the spherical harmonics. Hence,
Eq. (6.22) will read:

β̃Ilm(k + G) = e−i(k+G)·τ I

ˆ
dr δV̂ I

l (r)χl(r)Ylm(θr, ϕr)

×4π
∑
l′m′

(−i)l′ j∗l′(| (k + G) · r|) Yl′m′(θk+G, ϕk+G)Y ∗l′m′(θr, ϕr).

(6.24)

Let us use the orthogonality property of spherical harmonics:

ˆ
Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ) dΩ = δll′ δmm′ , (6.25)
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and the fact that
´
dr =

´
dr r2

´
dΩ. Thus, Eq. (6.24) will read:

β̃Ilm(k + G) = 4π (−i)l e−i(k+G)·τ I Ylm(θk+G, ϕk+G)

×
ˆ
δV̂ I

l (r)χl(r) j
∗
l (| (k + G) · r|) r2 dr. (6.26)

Equation (6.26) is the final expression for the β̃Ilm(k + G) functions. From Eq. (6.20) one
can calculate the matrix element of the first derivative of the non-local potential. It reads:

〈ϕn,k
∣∣∣ ∂V̂NL
∂kα

∣∣∣ϕn,k〉 =
∑
Ilm

∑
G,G′

DI
l c
∗
n,k+G cn,k+G′

×

[
∂β̃Ilm(k + G)

∂kα
β̃I ∗lm(k + G′) + β̃Ilm(k + G)

∂β̃I ∗lm(k + G′)

∂kα

]
,

(6.27)

where

∂β̃Ilm(k + G)

∂kα
= −i τI,α β̃Ilm(k + G)

+ 4π (−i)l e−i(k+G)·τ I
∂Ylm(θk+G, ϕk+G)

∂kα

×
ˆ
δV̂ I

l (r)χl(r) j
∗
l (| (k + G) · r|) r2 dr

+ 4π (−i)l e−i(k+G)·τ I Ylm(θk+G, ϕk+G)

×
ˆ
δV̂ I

l (r)χl(r)
∂j∗l (| (k + G) · r|)

∂|k + G|
∂|k + G|
∂kα

r2 dr ,

(6.28)

where α = x, y, z are the cartesian components, and τI,α is the α component of the τ I
vector.

In conclusion, the carrier velocity can be computed fully ab initio by using the def-
inition Eq. (6.14) [or equivalently Eq. (6.15)] and Eqs. (6.17), (6.19) and (6.27). This
approach has already been used by P. Gava et al. [295] for the calculation of the electron
velocity in graphene.

In the next paragraph I will present an extension of the formalism explained above in
the case when the spin-orbit coupling effect is included.

6.1.3 (b) Hamiltonian with the spin-orbit coupling

In the relativistic case, the carrier velocity reads:

vn,k =
1

~
〈
ψn,k

∣∣∣ ∂Ĥ
∂k

∣∣∣ψn,k〉, (6.29)
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where ψn,k(r) = (ϕ1
n,k, ϕ

2
n,k) is the two-component spinor (see Sec. 2.2), and ϕ1

n,k, ϕ2
n,k are

the KS wavefunctions. The spinor components have a Bloch form [see Eq. (2.61)]:

ϕ1
n,k(r) =

∑
G

c1
n,k+G e

i(k+G)·r, ϕ2
n,k(r) =

∑
G

c2
n,k+G e

i(k+G)·r, (6.30)

where c1
n,k+G and c2

n,k+G are the coefficients of the expansion. Since the kinetic operator

T̂ is local, Eq. (6.17) in the relativistic case reads:

〈
ψn,k

∣∣∣ ∂T̂
∂k

∣∣∣ψn,k〉 =
〈
ϕ1
n,k

∣∣∣ ∂T̂
∂k

∣∣∣ϕ1
n,k

〉
+
〈
ϕ2
n,k

∣∣∣ ∂T̂
∂k

∣∣∣ϕ2
n,k

〉
=

~2

m

∑
G

(k + G)α

(∣∣c1
n,k+G

∣∣2 +
∣∣c2
n,k+G

∣∣2). (6.31)

The contribution to the carrier velocity from the derivative of the local potential is
also zero, like in the non-relativistic case, Eq. (6.19).

Let us consider the last contribution coming from the derivative of the non-local po-
tential. In the relativistic case, Eq. (6.20) reads:

〈ψn,k|V̂NL|ψn,k〉 =
∑
Ilm

DI
l,11〈ϕ1

n,k|βIlm〉〈βIlm|ϕ1
n,k〉+

∑
Ilm

DI
l,12〈ϕ1

n,k|βIlm〉〈βIlm|ϕ2
n,k〉

+
∑
Ilm

DI
l,21〈ϕ2

n,k|βIlm〉〈βIlm|ϕ1
n,k〉+

∑
Ilm

DI
l,22〈ϕ2

n,k|βIlm〉〈βIlm|ϕ2
n,k〉,

(6.32)

where we are now dealing with the matrix of DI
l,i coefficients, containing the information

about the spin-orbit coupling [see Eq. (2.73)]:

D̂I
l =

(
DI
l,11 DI

l,12

DI
l,21 DI

l,22

)
. (6.33)

It can be shown, that Eq. (6.27) in the relativistic case will read:

〈ϕn,k
∣∣∣ ∂V̂NL
∂kα

∣∣∣ϕn,k〉 =
∑
Ilm

∑
G,G′

(
DI
l,11 c

1 ∗
n,k+G c

1
n,k+G′ +DI

l,12 c
1 ∗
n,k+G c

2
n,k+G′

+DI
l,21 c

2
n,k+G c

1 ∗
n,k+G′ +DI

l,22 c
2 ∗
n,k+G c

2
n,k+G′

)
×

[
∂β̃Ilm(k + G)

∂kα
β̃I ∗lm(k + G′) + β̃Ilm(k + G)

∂β̃I ∗lm(k + G′)

∂kα

]
.

(6.34)

Thus, in order to calculate the carrier velocity ab initio, one has to use the definition
Eq. (6.29), and Eqs. (6.31) and (6.34).
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6.1.3 (c) Application to Bi

Let us apply the methodology of an ab initio calculation of the carrier velocity to
bismuth. In order to calculate the plasma frequency in Eq. (6.7), one needs to know the
Fermi velocity vF of electrons in the vicinity of the three equivalent L points, and the
Fermi velocity of holes in the vicinity of the T point [see Fig. 4.3(b)]. Both the electron
pocket at L and the hole pocket at T can be approximated by ellipsoids. Each point on
the ellipsoid corresponds to different velocities, hence, let us calculate the average velocity
of the carriers.

Let us consider an electron pocket, i.e. an ellipsoid centered at the L point. Such
an ellipsoid is the isosurface of constant energy which corresponds to the Fermi energy.
Let us consider three k points from this ellipsoid, namely along L - Γ, L -W, and L -
U [see Fig. 4.3(a)]. For each of these three k points, let us determine its three velocity
components in the cartesian axes (vx, vy, vz), and the modulus of the velocity, vF =√

v2
x + v2

y + v2
z. The results are presented in Table 6.1. In order to obtain the average

Fermi velocity of electrons, 〈vF 〉el, let us take the average of the three velocities listed
in Table 6.1. The average Fermi velocity of electrons has been found to be 〈vF 〉e ≈ 655
(km/s).

Now let us consider a hole pocket, i.e. an ellipsoid centered at the T point, and
consider three k points on this ellipsoid, namely, along T - Γ, T -W, and T - U [see
Fig. 4.3(a). The results are presented in Table 6.1. The average Fermi velocity of holes
has been found to be 〈vF 〉h ≈ 363 (km/s).

vx vy vz vF 〈vF 〉
electrons

L - Γ 5 3 451 451
L - W 439 760 0 878 655
L - U 65 37 632 636

holes
T - Γ 0 0 148 148
T - W 235 407 0 469 363
T - U 410 237 5 473

Table 6.1: Velocity of electrons on the Fermi surface at the L point, calculated at three k
points lying along high symmetry directions: L - Γ, L - W, and L - U; and the velocity of
holes on the Fermi surface at the T point, calculated at three k points lying along high
symmetry directions: T - Γ, T - W, and T - U. Unit of velocity is km/s. (Unpublished)

Thus, it turns out that the average Fermi velocity of electrons is about two times
larger than the average Fermi velocity of holes. Since the velocity is the gradient of the
band energy, Eq. (6.13), thus the steeper the band the larger the velocity [see Fig. 5.1(b)].

The results of Table 6.1 are in good agreement with the calculations of the carrier
velocity as a gradient of the band energy, i.e. the evaluation of the numerical derivative
[see Eq. (6.13)]. Both calculations agree within < 1%.
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vF,1 vF,2 vF,3 〈vF 〉
electrons

Refs. [296, 297] 89 1000 750 613
Ref. [121] 71 1080 669 607

holes
Refs. [296, 297] 252 838 838 643

Table 6.2: Experimental values of the modulus of the Fermi velocity, vF , along three
mutually orthogonal directions in the Brillouin zone, and the average value of the Fermi
velocity, 〈vF 〉. Unit of velocity is km/s. From Refs. [121, 296, 297].

Table 6.2 shows the experimental values of the Fermi velocity of electrons and holes.
As can be seen, the theoretical value of the average Fermi velocity of electrons is in quite
good agreement with the experimental values, and differs by ∼ 7%. Such a difference is
due to the limited accuracy of ab initio calculations in reproducing tiny electron pockets
at the L points (see Sec. 5.1.3). In contrast, there is a factor of ∼ 2 between the theoretical
and experimental values of the average Fermi velocity of holes. Such a disagreement is
due to the fact that the energy at the top of the valence band at the T point, i.e. T−45(1)
level, is quite largely overestimated within the DFT-LDA and DFT-GGA with respect to
the experimental value (see Fig. 5.1(b) and Table 5.2). This means that the slope of the
band crossing the Fermi level near the T point is different, which shows up in the value
of the Fermi velocity.

In this thesis, I will use the theoretical values of the average Fermi velocity of electrons
and holes, listed in Table 6.1.

6.1.4 Effective mass

The effective mass tensor (EMT) of carriers, corresponding to the energy band n at point
k, is defined as [115]:

[
m∗−1(k)

]
ij

= ± 1

~2

∂2εn,k
∂ki∂kj

= ±1

~
∂vin,k
∂kj

, (6.35)

where i, j = 1, 3, εn,k is the Kohn-Sham energy, vin,k is the i-th component of the carrier
velocity, and the sign “+” or “-” is chosen according to whether k is near a band minimum
(electrons) or maximum (holes), respectively. In this thesis, the EMT will be calculated
from ab initio in two steps: (1) ab initio calculation of the carrier velocity vn,k by means
of Eq. (6.29), and (2) numerical differentiation of vn,k with respect to k, Eq. (6.35).

6.1.4 (a) The search of true local extrema

In order to investigate the carrier relaxation in Bi after a photoexcitation of 1.6 eV
(as will be discussed in Sec. 6.2), let us inspect the Kohn-Sham band structure of Bi
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Figure 6.1: Local extrema in the valence and conduction bands near the Fermi level.
Black arrows indicate the true local extrema found in the high symmetry directions.
From Ref. [245].

near the Fermi level, in the energy range from −1.6 eV to 1.6 eV (see Fig. 6.1). Let us
check whether there are true local minima in the lowest conduction bands and true local
maxima in the highest valence bands. For the analysis of the band structure, I will use
the calculations within the GGA at the GGA theoretical equilibrium lattice parameters,
since the GGA gives the closest agreement with the experimental data (see Sec. 5.1.3).

Let us define a true local (TL) maximum (minimum) as the top (bottom) of a valley
where the energy band is at an extremum along three principal axes.4 I have investigated
the full Brillouin zone of Bi [see Fig. 4.3(a)] with the precision of ∆k = 0.026 (2π/a0) =
0.033 (Å−1), and found six TL extrema. Three of them are maxima, at the Γ, T, and L
points. The energy value of the maximum at T lies above the Fermi level, while maxima
at Γ and L lie below the Fermi level. Two minima lie above the Fermi level, in the lowest
conduction band along high symmetry directions, close to the T point.5 The remaining
minimum lies at the L point, below the Fermi level. These six extrema are indicated in
Fig. 6.1 by black arrows. Let us compute the tensor of effective mass of these true local
extrema.

6.1.4 (b) Effective mass approximation

I have applied the effective mass approximation (EMA), Eq. (6.35), to all of the TL
extrema. It is worth noting that the bands at the L point in the vicinity of the Fermi
level are strongly non-parabolic [4]. Thus, the EMA, strictly speaking, is not applicable.
Instead, one usually applies the Lax two-band model [298, 12], which is also called the

4In the principal axes, the tensorial quantities have a diagonal form, i.e. the off-diagonal matrix
elements are zero.

5The minimum along the Γ-T direction is located 0.25 Å−1 from the T point (ε− εF = 0.34 eV), and
the minimum along the T-W direction is located 0.29 Å−1 from the T point (ε− εF = 0.45 eV).
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ellipsoidal non-parabolic model, or the non-ellipsoidal non-parabolic model developed by
Cohen [188]. These models are used in the analysis of the magnetoreflection experiments
where the magnetic field is applied. Nevertheless, in this thesis I will use the EMA in
order to compare the effective mass with the optical mass (see Sec. 6.1.5). The EMA is
found to give remarkable results for the effective mass tensor at the L point. Such a good
agreement is attributed to the fact that the calculation is ab initio.

The EMT of the true local extrema has been calculated in the following way. First,
the inverse EMT in the basis of the cartesian framework, M̂−1

XYZ, was computed. Each
component of the inverse EMT was calculated by means of Eq. (6.35). Second, the
inverse EMT was transformed to the basis of the trigonal, binary and bisectrix axes [see
Fig. 4.3(a)], M̂−1

TBB. Third, the tensor M̂−1
TBB was inverted in order to obtain M̂TBB. And,

finally, the tensor M̂TBB was diagonalized, i.e. expressed in the basis of the principal axes,
M̂diag. In order to make a transformation of the inverse EMT from the cartesian framework
(XYZ framework) to the trigonal-binary-bisectrix framework (TBB framework), one has
to use the transformation relation:

M̂−1
TBB = ÂTM̂−1

XYZÂ, (6.36)

where Â is the transformation matrix which reads:

Â =

 cosα sinα 0
sinα cosα 0

0 0 1

 , (6.37)

where α is the angle between the (X, Y ) axes and (binary, bisectrix) axes. Note that the
Z axis coincides with the trigonal axis. In the TBB framework, the EMT has the form:

M̂TBB =

 m∗11 0 0
0 m∗22 m∗23

0 m∗23 m∗33

 , (6.38)

where 1, 2, and 3 refer to the binary, bisectrix, and trigonal axes, respectively. Indeed,
the EMT of the true local extrema at the L point in the TBB framework has the form of
Eq. (6.38) [299, 253].

6.1.4 (c) Results

Table 6.3 reports the components of the EMT in the trigonal-binary-bisectrix frame-
work of all six true local extrema in the Kohn-Sham band structure of Bi, as well as the
EMT in the framework of the principal axes. The average effective mass was calculated
as [300]:

1

〈m∗〉
=

1

3

(
1

m∗1
+

1

m∗2
+

1

m∗3

)
, (6.39)

where the indices 1, 2, and 3 refer to the principal axes. The principal axes are different
for the six true local extrema, however, for some of the extrema the principal axes are the
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m∗11 m∗22 m∗33 m∗23 m∗1 m∗2 m∗3 〈m∗〉
Maxima Maxima

Γ 48.1 48.1 8.1 0.0 48.1 48.1 8.1 18.1
T 0.06 0.06 0.85 0.0 0.056 0.056 0.850 0.081
L 0.003 0.268 0.010 0.035 0.003 0.27 0.005 0.006

Maxima Maxima
T - Γ 0.14 0.14 1.50 0.0 0.14 0.14 1.50 0.20
T - W 0.94 0.31 2.17 0.76 0.94 0.04 2.44 0.11
L 0.003 0.289 0.010 0.038 0.003 0.29 0.005 0.006

Table 6.3: Effective mass tensor expressed in: (1) the trigonal-binary-bisectrix framework
(m∗11, m∗22, m∗33, m∗23), where the indices 1, 2, and 3 refer to the binary, bisectrix, and
trigonal axes, respectively; (2) the principal axes (m∗1, m∗2, m∗3), where the indices 1, 2,
and 3 refer to the principal axes, which are not the same for all six extrema. 〈m∗〉 is the
average effective mass. Unit is the free electron mass m0. Extension of the table from
Ref. [245].

same. Namely, the maxima at Γ and T, and the minimum along T - Γ have the trigonal,
binary and bisectrix axes as their principal axes.

A detailed comparison of the EMT at the T and L points in the framework of the
principal axes with other theoretical and experimental works is given in Table 6.4. As
can be seen, the agreement is remarkable both for the hole pocket at the T point and for
the electron pocket at the L point.
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m∗1 m∗2 m∗3 〈m∗〉
T point

This work
Theory Maximum 0.056 0.056 0.850 0.081

Previous works Maximum
Theorya 0.0675 0.0675 0.612 0.096

Expt.b 0.0644 0.0644 0.696 0.092
Expt.c 0.064 0.064 0.69 0.092
Expt.d 0.0678 0.0678 0.721 0.097
Expt.e 0.063 0.063 0.654 0.090

L point
This work

Theory Minimum 0.00302 0.294 0.00523 0.006
Theory Maximum 0.00305 0.273 0.00524 0.006

Previous works Minimum
Theorya 0.00147 0.198 0.00215 0.003

Expt.b 0.00139 0.295 0.00263 0.003
Expt.c 0.00113 0.261 0.00295 0.002
Expt.d 0.00124 0.260 0.00283 0.003

Previous works Maximum
Expt.b 0.00651 1.382 0.00993 0.012
Expt.f 0.005 1.290 0.01142 0.010

Previous works at EF

Expt.c 0.00521 1.207 0.01357 0.011
Expt.e 0.00705 1.567 0.00958 0.012

a Tight-binding method, Liu et al. Ref. [9].
b Alfvén-Wave propagation, Isaacson et al. Ref. [252].
c Shubnikov-de Haas oscillations, Smith et al. Ref. [253].
d Nernst experiment, Zhu et al. Ref. [301].
e Far-infrared magnetospectroscopy, Verdun et al. Ref. [256].
f Alfvén-Wave propagation, Isaacson et al. Ref. [299].

Table 6.4: Comparison of the effective mass tensor of the true local minimum at T and
true local minimum and maximum at L, expressed in the framework of the principal
axes, with other theoretical and experimental works. The indices 1, 2, and 3 refer to the
principal axes. 〈m∗〉 is the average effective mass. Unit is the free electron mass m0.
(Unpublished)
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6.1.4 (d) Discussion

As reported in Table 6.3, the average effective mass of the maximum at the Γ point is
strikingly large, 〈m∗〉 = 18.1 m0, and is approximatively two orders of magnitude larger
than the average effective masses at other extrema. The existence of the maximum at
Γ turns out to be robust: for instance, when evaluated at a hydrostatic pressure of 10
kbar, the extremum is still located at the Γ point, and the value of the average effective
mass becomes even larger, 〈m∗〉 = 64 m0 (see Fig. 6.2). Moreover, it has been verified
experimentally that there is a true local maximum at the Γ point and that the band is
very flat, which essentially indicates the large effective mass [302, 240]. This is the main
result of this section, which will be used in Sec. 6.2.

Figure 6.2: Kohn-Sham band structure of Bi including spin-orbit coupling, obtained
within the DFT-GGA at the GGA theoretical equilibrium lattice parameters (see Ta-
ble 5.1) and at the non-equilibrium lattice parameters (a = 9.203 a.u., α = 56.36◦,
u = 0.23197) which induce a hydrostatic pressure of 10 kbar. Fermi level is at zero
energy. (Unpublished)

Finally, I would like to point out that it was noted in Ref. [252] that the true local
minimum in the lowest conduction band is exactly at the T point, and has the EMT
components in the principal axes 0.059, 0.059, and 0.634 m0. However, from my DFT
calculations, and in agreement with the DFT calculations of Gonze et al. [5], I have found
that this minimum is slightly displaced along the T - Γ direction (see Fig. 6.1), and has
the EMT components in the principal axes 0.14, 0.14, and 1.50 m0 (see Table 6.3).
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6.1.5 Optical mass

6.1.5 (a) Definition

The optical mass (also called optical effective mass) has been first defined by Cohen
[303]:

1

mop
≡ 1

4π3~2n

ˆ
1

3

∂2εn,k
∂k2

dk, (6.40)

where mop is the optical mass, n is the density of carriers (electrons and/or holes), and
εn,k is the energy. Authors of Refs. [117, 304, 305] used the definition (6.40) for the de-
termination of the optical mass in various experiments with the free-carrier-like response.

In order to interpret the terahertz experiment on photoexcited Bi (see Sec. 6.2), I
will use a slightly different definition of the optical mass. The starting point is the
application of the Drude law [see Eq. (3.41)], under the assumption that the mass does
not change after the photoexcitation, to express a change of the carrier density, ∆n,
after the photoexcitation, and to obtain the corresponding change of the squared plasma
frequency, ∆ω2

p, at various temperatures T . Thus, I define the optical mass as:

1

mop
≡

∆ω2
p(T )

4πe2∆n(T )
, (6.41)

where the change of the carrier density ∆n(T ) reads:

∆n(T ) =

+∞ˆ

−∞

g̃(ε)
∣∣∣fFD(ε, T )− fFD(ε, T0)

∣∣∣ dε, (6.42)

and the change of the squared plasma frequency ∆ω2
p(T ) reads [see Eq. (6.7)]:

∆ω2
p(T ) =

4πe2

3
v2
F

∞̂

−∞

g̃(ε)

[(
−∂fFD(ε, T )

∂ε

)
−
(
−∂fFD(ε, T0)

∂ε

)]
dε. (6.43)

Here, T is the electronic temperature after the photoexcitation of the carriers, T0=300 K
is the temperature at the equilibrium, vF is the Fermi velocity of carriers (see Sec. 6.1.3),
fFD(ε, T ) = {1+exp[(ε−εF )/(kBT )]}−1 is the Fermi-Dirac distribution function, and g̃(ε)
is the restricted density of states to the region in the reciprocal space around k point at
which the optical mass is being calculated. Notice that ∆n(T ) and ∆ω2

p(T ) are calculated
independently at various temperatures, and afterwards mop is determined from Eq. (6.41).

Figure 6.3(a) shows the function |fFD(ε, T )− fFD(ε, T0)| at several temperatures T ,
which is used in the calculation of the change of the carrier density ∆n(T ), Eq. (6.42).
Note that one has to take a modulus of the difference because there are contributions
both from electrons and holes. Without the modulus, the contribution from holes would
come with the minus sign, which would reduce ∆n(T ). Figure 6.3(b) shows the function
(−∂fFD(ε, T )/∂ε) − (−∂fFD(ε, T0)/∂ε) at several temperatures T , which is used in the
calculation of the change of the squared plasma frequency ∆ω2

p(T ), Eq. (6.43).
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(a) (b)

Figure 6.3: Functions which are used in the calculation of ∆n(T ) and ∆ω2
p(T ). (a) Plot

of the modulus of the difference between the Fermi-Dirac functions at temperatures T
and T0, (b) Plot of the difference between the derivatives of the Fermi-Dirac functions at
temperatures T and T0. The reference temperature is T0=300 K. (Unpublished)

The restricted DOS, g̃(ε), and the Fermi velocity of carriers, vF , are specific for each
material. The detailed discussion about the calculation of the Fermi velocity was given
in Sec. 6.1.3, and the explanation of how to calculate the restricted DOS is given in the
Appendix A.3. Both quantities are calculated ab initio, and, thus, the optical mass is also
determined fully ab initio.

6.1.5 (b) Application to Bi

Figure 6.4 shows the plot of the change of the squared plasma frequency, ∆ω2
p(T ), and

of the change of the carrier density (electrons and holes), ∆n(T ), at several temperatures
in the range 330 < T < 500 K, near the T and L points. This data has been fitted by
Eq. (6.41) in order to obtain the values of the optical mass at the T and L points. As a
result, I have obtained the following values: mop

T ' 0.20 m0 is the optical mass at T, and
mop

L ' 0.05 m0 is the optical mass at L. Thus, it turns out that the optical mass at the T
point is four times larger than optical mass at the L point, mop

T /m
op
L ' 4.

The optical masses at T and L are larger than corresponding average effective masses
(see Table 6.3): mop

T /〈m∗〉T ' 2.5, and mop
L /〈m∗〉L ' 8.3.

Finally, it turns out that the optical masses at T and L are (much) smaller than some
of the average effective masses of the true local extrema in the valence and conduction
bands away from the Fermi level [see Fig. (6.1)]. In particular, the optical masses at T and
L are smaller by two orders of magnitude with respect to the average effective mass of the
true local maximum of the valence band at the Γ point, 〈m∗〉Γ = 18.1m0 (see Sec. 6.1.4).
This finding is the main result of this section. This argument will be used in Sec. 6.2 for
the interpretation of the time-resolved terahertz experiment on photoexcited Bi.
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Figure 6.4: Plot of the change of the squared plasma frequency, ∆ω2
p(T ), and of the

change of the carrier density, ∆n(T ), at several temperatures in the range 330 < T < 500
K, near the T and L points. Theis data is indicated by circles (for holes) and triangles
(for electrons), and are fitted by Eq. (6.41) (solid lines). As a result of the fitting, the
following values of the optical mass are obtained: mop

T ' 0.20 m0 at the T point, and
mop

L ' 0.05 m0 at the L point. (Unpublished)

6.1.6 Conclusions

In this section I have performed methodological developments for the free-carrier ab-
sorption, which will be needed in the next section for a theoretical interpretation of the
free-carrier response in the photoexcited bismuth.

According to the classical Drude model, the intraband contribution to the dielectric
function is determined by the Drude plasma frequency, which is defined simply by a vari-
ation of the charge-density of electrons and holes. However, in this section I have derived
a semiclassical expression for the plasma frequency at finite temperatures, ωp(T ), which
accounts for the electronic structure of the material. Namely, the semiclassical ωp(T )
requires a knowledge of such properties of electrons and holes as their Fermi velocity and
the (restricted) density of states. These quantities are directly determined by the Kohn-
Sham band structure of Bi. In addition, a knowledge of the effective and optical masses
of carriers is essential for the description of the free-carrier response. Furthermore, the
spin-orbit coupling appears to be of the biggest and crucial importance for the description
of the free-carrier response in Bi.

I have shown that the Fermi velocity of carriers can be calculated ab initio by making
use of the Hellmann-Feynman theorem: It can be computed as a matrix element of the
derivative of the Hamiltonian with respect to the wavevector. Within the plane-wave
pseudopotential description of solids, the main difficulty in the calculation of the carrier
velocity arises from the non-local part of the pseudopotential. I have generalized this
approach to the relativistic case, when the spin-orbit coupling is essential. I have applied
the current approach to Bi and have found that ab initio Fermi velocity is very close
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to the one calculated as a numerical derivative of the energy bands with respect to the
wavevector, though the former is more precise. It turns out that the Fermi velocity of
electrons is in a good agreement with the experimental one, whereas the Fermi velocity
of holes is two times smaller than the experimental one due to the overestimation of the
T−45(1) level within the LDA and GGA.

I have analyzed the Kohn-Sham band structure of Bi close to the Fermi level in the
range from −1.6 to 1.6 eV, and have found six true local extrema. There are two true
local minima in the lowest conduction band close to the T point, one minimum at the L
point, one maximum in the second highest valence band at the Γ point, and two maxima
in the highest valence band at the T and L points. I have calculated the tensor of
effective mass and the average effective mass of these extrema by applying the effective
mass approximation. I have found that the maximum at Γ has an extremely large average
effective mass, 〈m∗〉Γ = 18.1m0, which is two orders of magnitude larger than all other
masses. Moreover, I have shown that this maximum is robust with respect to a hydrostatic
pressure of 10 kbar.

Finally, I have determined optical masses of electrons and holes near the Fermi level
at the L and T points, respectively. It appears that the optical mass of electrons is
mop

L ' 0.05m0, and the optical mass of holes is mop
T ' 0.20m0. These masses are smaller

than average effective masses of carriers in the true local extrema of the valence and
conduction bands away from the Fermi level, in particular the true local maximum at Γ.

In the next section I will show that the methodological developments for the free-carrier
absorption of this section can help to interpret the time-resolved terahertz experiment on
bismuth, which shows the free-carrier response.
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6.2 Interpretation of time-resolved terahertz experi-

ment

As has been pointed out in Sec. 4.1, bismuth is a reference material for the investigation
of lattice and carrier dynamics in out-of-equilibrium conditions. In this section, I will
present a study of the carrier dynamics in photoexcited Bi by means of ab initio DFT
calculations and time-resolved terahertz experiment. Due to the low center frequency of
the terahertz pulses, it is possible to probe the Drude-like response of the electron-hole
system, which arises from intraband transitions. I will show that ab initio calculations
and the methodological developments for the free-carrier absorption presented in Sec. 6.1
can explain the Drude-like response in Bi at equilibrium and in the photoexcited state.

This section is organized as follows. In Secs. 6.2.1 and 6.2.2 I will present the experi-
mental results, which have been obtained by our collaborators (T. Kampfrath, J. Faure,
C. R. Ast, C. Frischkorn, M. Wolf, and L. Perfetti). Namely, I will show that Bi at
equilibrium and in the photoexcited state shows the Drude-like response, which has been
determined from the intraband contribution to the dielectric function. In Sec. 6.2.3 I
will show that the ab initio methodological developments for the free-carrier absorption
of Sec. 6.1 allow us to explain the two regimes observed experimentally in temporal evo-
lution of the plasma frequency in photoexcited Bi. In Sec. 6.2.4 I will present a simple
model based on the rate equations, which allows us to obtain the relaxation times of pho-
toexcited carriers in Bi from the fit of the experimental data. At the end of the section,
I will draw a conclusion.

In Appendix B.2 I give a brief introduction to the terahertz spectroscopy - technique,
which has been used by our collaborators in the experiments on Bi. The details of the
experiment are also presented in Appendix B.2.

The results, which will be presented in this section, and part of the results of Sec. 6.1,
have been published recently in Ref. [245].

6.2.1 Intraband contribution to dielectric function of Bi at equi-
librium

Figure 6.5 shows the equilibrium intraband dielectric function εintra(ω) [see Eq. (3.42)],
where Re εintra(ω) was shifted up by an offset ε∞. A fit of the experimental data in Fig. 6.5
with the Drude model [see Eq. (3.43)] gives the following values: the plasma frequency
~ωp = 560 meV, the scattering rate ~γ = 37 meV, and ε∞ = 100. The reasonably good
fit achieved with the Drude model confirms that free carriers dominate εintra(ω) in the
mid-infrared spectral region.

The Drude response originates from intraband optical transitions. The absorption
of a photon is accompanied by the scattering of a charge carrier (electron or hole) with
impurities, phonons, or other charge carriers [286]. In principle, two effects may cause
deviations from the classical Drude model:

(i) The interband optical transitions. In metals, the onset of interband absorption
is associated with transitions from the Fermi level to the next higher empty band, or
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Figure 6.5: The equilibrium intraband dielectric function, εintra(ω), measured as a function
of frequency (circles), and the result of a fit with the Drude model (solid lines), Eq. (3.43).
The real part of the intraband dielectric function, Re εintra(ω), was shifted up by an offset
ε∞ = 100. Note, 1 THz = 4.14 meV. From Ref. [245].

with transitions from a lower lying occupied band to the Fermi level [113]. In bismuth,
it is associated with a vertical transition at the L point from the highest valence band
to the Fermi level,6 and is equal to 67 meV (16 THz) [123]. It should induce additional
absorption in the mid-infrared window. However, optical measurements on an extended
energy range suggest that the contribution from this term is negligible [123].

(ii) The coupling of single particles to plasmons, results in a temperature-dependent
plasmaronic absorption [123]. Within the extended Drude model [116], this many-body
correction induces a strong dependence of the effective scattering rate on the probing
frequency, γeff (ω). In Bi films, which were used by our collaborators in the experiments,
this relative variation of the scattering rate is reduced by the presence of strong extrinsic
scattering (due to impurities). As a consequence, the real and imaginary parts of the
intraband dielectric function, εintra(ω), have been accurately fitted with a constant scat-
tering rate, γ = const. On the other hand, a nonresonant contribution to the real part
of intraband dielectric function, Re εintra(ω), results in a frequency-independent offset ε∞
[see Eq. (3.43)].

The plasma frequency, ωp, and the scattering rate, γ, obtained from the Drude model
are larger than the values measured for single crystals of bismuth. According to Armitage
et al. [121], the plasma frequency and the scattering rate of crystalline bismuth are 400
meV and 5 meV, respectively. Such a discrepancy is due to the granular structure of the
polycrystalline Bi film used in the experiments by our collaborators. The high concen-
tration of scattering centers reduces the mean free path of the charge carriers down to

6The transition at the L point is not from the top of the highest valence band to the Fermi level, but
from the point which is lower than the top of the highest valence band, because there is an electron-hole
symmetry.
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Figure 6.6: Pump-induced change of the intraband dielectric function ∆εintra(ω, τ) at sev-
eral pump-probe delays (circles). In each panel, the upper (lower) curve is the imaginary
(real) part of the variation of the intraband dielectric function. Fits obtained with the
Drude model (solid lines) are superimposed onto the experimental data. From Ref. [245].

100 nm. Despite this fact, all findings on the charge carrier dynamics are expected to be
qualitatively valid also for the Bi single crystals.

6.2.2 Intraband contribution to dielectric function of photoex-
cited Bi

The pump-induced change of the intraband dielectric function at several delays is shown
in Fig. 6.6. As can be seen, the Drude model accurately fits the experimental data. This
means that the non-equilibrium distribution function of charge carriers also displays a free-
carrier response, as in the equilibrium case. The amplitude of the photoinduced signal is
very large. This is due to the fact that, since the density of states near the Fermi level
is very low [see Fig. 4.5(b)], the photoinduced redistribution of the occupation numbers
leads to a large increase in the number of conducting carriers. In Fig. 6.6 the measured
∆εintra(ω, τ) first increases up to around τ = 1 ps, and afterwards decreases for larger
pump-probe delays. Such a non-monotonous dynamics has not been observed in other
semimetals like graphite, which instead display a continuous decrease of the photoinduced
signal [282].

Our collaborators have verified in their experiment, that the temporal evolution of the
THz signal does not show any sign of periodic oscillations due to the coherent A1g phonon
mode (see Sec. 4.4). Usually, such a coherent phonon mode affects the optical spectral
region by modulating the joint density of states, and consequently can be observed in
optical reflectivity experiments [14, 306]. In the current experiment, the lack of oscilla-
tions in the temporal evolution of the THz signal indicates that the transient change of
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(a) (b)

Figure 6.7: (a) Squared plasma frequency as a function of the pump-probe delay. (b)
Scattering rate as a function of the pump-probe delay. From Ref. [245].

the nuclear positions has a negligible effect on the photoinduced plasma frequency ∆ωp.
Simple considerations on the magnitude of the lattice motion induced by the laser field
support this conclusion. According to time-resolved X-ray experiments, a laser pulse of
3 mJ/cm2 shifts the A1g coordinate u [see Fig. 4.1(a)] by 6 picometers [15]. Scaling this
value with respect to the pump fluence of the current experiment (10 µJ/cm2), I estimate
a photoinduced displacement of 0.02 pm. Since the isothermal compressibility of bismuth
is 0.0317 GPa−1 [4], an applied pressure of 40 bar would induce a displacement of com-
parable amplitude. The direct comparison to the data of Armitage et al. [121] suggests
that such a pressure should change the plasma frequency by ∼ 1 meV. This indicates that
the photoinduced activation of the A1g mode has minor effects on the plasma frequency.
Instead, the THz response is strongly dominated by the non-equilibrium distribution of
the photoexcited electrons and holes, which leads to the larger increase of the plasma
frequency (two orders of magnitude larger that the change due to the coherent phonons).

Figures 6.7(a) and 6.7(b) show the evolution of the squared plasma frequency ω2
p,

and of the Drude scattering rate γ as a function of the pump-probe delay τ . They
were extracted from the complex intraband dielectric function by means of Eq. (3.43).
Figure 6.7(a) shows that the value of the squared plasma frequency ω2

p at equilibrium
is 0.31 eV2, and it increases up to 0.37 eV2 just after the photoexcitation. It reaches
the maximum value of 0.42 eV2 for a pump-probe delay of 1 ps, and afterwards decays
exponentially at larger delays. Thus, there are two regimes in the behaviour of ω2

p: an
initial increase and a subsequent decay. In the next section I will explain why there are
two such regimes in the evolution of ω2

p.

Figure 6.7(b) shows that the value of the scattering rate γ at equilibrium is 37 meV,
and it increases up to 44 meV just after the photoexcitation. It reaches the maximum
value of 45 meV for a pump-probe delay of 1 ps, and afterwards decays exponentially at
larger delays. The exponential decay is faster than that of the squared plasma frequency.
The sudden increase of γ in the photoexcited state is due to the larger phase space that
becomes available for scattering events. The carrier scattering is dominated by the large
defect concentration in the polycrystalline Bi film. Further experiments on high-quality
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single crystals of Bi would be necessary in order to observe the behavior of the intrinsic
scattering channels.

6.2.3 Theoretical interpretation of two regimes in plasma fre-
quency

In this section I will give a qualitative explanation of the non-monotonic behaviour of
the plasma frequency in photoexcited Bi, which has no analogy in other semimetals, e.g.
graphite [282]. To this end, I will use the results of Sec. 6.1.

As shown in Fig. 6.8(a), direct optical transitions generated by the pump beam of
1.6 eV promote electrons to highly excited states, and create holes in the valence bands.
Afterwards, the photoexcited carriers (electrons and holes) “stick” in the local extrema of
the band structure, which act as charge reservoirs: electrons reside in the local minima of
the lowest conduction bands, and holes reside in the local maxima of the valence bands.
I have verified the existence of true local extrema in the valence and conduction bands
of bismuth in Sec. 6.1.4, and found that there are two true local minima in the lowest
conduction band near the T point, and one true local maximum in the second highest
valence band at the Γ point (they are indicated by arrows in Fig. 6.8(a)). While residing
in these extrema, the trapped carriers barely respond to the THz field.

After the photoexcitation, the carriers are described by a nonequilibrium distribution,
which is basically unknown.7 Afterwards, owing to the carrier-carrier and carrier-phonon
scattering,8 the excited electrons and holes redistribute their internal energy, i.e. a ther-
malization of carriers occurs, after which the charge distribution can be described by the
Fermi-Dirac function [269].

How occurs the relaxation of carriers which were trapped in the true local extrema?
These carriers start to decay to the Fermi level, namely: excited electrons decay from the
two true local minima around the T point to the Fermi level near the L point, due to
the intervalley electron-phonon interaction; and excited holes decay from the true local
maximum at the Γ point to the Fermi level near the T point, due to the intervalley hole-
phonon interaction [see Fig. 6.8(b)]. In turn, the energy states at the Fermi level in the
vicinity of the T and L points, strongly respond to the THz field and contribute to the
Drude conductivity.

This explanation of the dynamics of the photoexcited electrons and holes would hold
only if the average effective masses of the true local extrema are (much) larger than the
optical masses near the Fermi level in the vicinity of the T and L points. Indeed, this is
the case. In Sec. 6.1.4 and 6.1.5 I have determined these masses, and it turns out that:

• The average effective masses, 〈m∗〉, of the true local minima of the lowest conduction
band along T - Γ and T - W are 0.20 m0 and 0.11 m0, respectively (see Table 6.3).

7In order to determine the nonequilibrium distribution function, one can either solve the kinetic
Boltzmann equation (see, e.g. Ref. [307]), or use some models.

8By carrier-carrier scattering I mean electron-electron and hole-hole interaction, and by carrier-phonon
scattering I mean electron-phonon and hole-phonon interaction. Interaction of electrons and holes results
in Auger recombination, and this is not what is meant here; it will be discussed in Sec. 6.2.4.
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(a) (b)

Figure 6.8: (a) Schematic illustration of the direct optical transitions generated by the
pump beam of 1.6 eV, which promote electrons to highly excited states, and create holes in
the valence bands (red dashed arrows). True local extrema in the valence and conduction
bands near the Fermi level are indicated (black arrows). (b) Schematic illustration of
decay of electrons and holes from the true local extrema to the Fermi level, due to the
electron-phonon (e-ph) and hole-phonon (h-ph) scattering. From Ref. [245].

They are larger than the optical mass near the Fermi level around the L point, which
is equal to 0.05 m0 (see Sec. 6.1.5).

• The average effective mass, 〈m∗〉, of the true local maximum of the second highest
valence band at the Γ point is 18.1 m0 (see Table 6.3). This mass is larger by two
orders of magnitude than the optical mass near the Fermi level around the T point,
which is equal to 0.20 m0 (see Sec. 6.1.5). The decay of holes out of the maximum
at Γ is likely dominating the initial rise of the plasma frequency.

One may wonder, how such a dynamics of carriers shows up in the non-monotonous
behaviour of the plasma frequency? In the experiments, which have been carried out by
our collaborators, the signal is coming from the Fermi level near the T and L points.
Immediately after the photoexcitation, the carriers stick in the reservoirs. When they
start to decay to the Fermi level [see Fig. 6.8(b)], there is an increase of the conductivity
σ, and thus the plasma frequency also increases (see Sec. 6.1.2). Afterwards, when all
carriers have decayed to the Fermi level, there is no further increase of ωp, it reached its
maximum value of 0.65 eV [see Fig. 6.7(a)]. Subsequently, the plasma frequency decays
due to the electron-hole recombination.

In fact, there are two contributions to the plasma frequency: one coming from the
Fermi level near the L point, ∆ω2

p,L, and the second one coming from the Fermi level near
the T point, ∆ω2

p,T. This means that there are two plasmas: the plasma of electrons and
the plasma of holes, which coexist simultaneously and interact [111]. Thus, the intraband
dielectric function must be described by Eq. (3.42). However, the following approximation
is reasonable in the current study: to assume that both types of carriers, electrons and
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holes, have the same effective relaxation time τ .9 Therefore, the problem is reduced to
the equation:

∆εintra(ω) = 1−
∆ω2

p

ω (ω + i/τ)
, (6.44)

where ∆ω2
p = ∆ω2

p,L + ∆ω2
p,T is the total change of the squared plasma frequency.

Let us determine the relaxation timescales in bismuth, by considering a simple model
based on the rate equations (see, e.g., Ref. [308]).

6.2.4 A model for the temporal evolution of the plasma fre-
quency

Let us assume that there are two characteristic timescales, which determine the temporal
evolution of the photoexcited carriers: (i) electrons and holes residing in the local extrema
decay to the Fermi level with a rate 1/τh, and (ii) the electron-hole plasma recombination
at the Fermi level with a rate 1/τl (h stands for heavy carriers, and l stands for light
carriers). The simplest model accounting for such a dynamics is described by the following
system of rate equations:

∂nh
∂t

= −nh
τh
, (6.45)

∂∆nl
∂t

= −∆nl
τl

+
λnh
τh

, (6.46)

where nh(t) is the number of heavy carriers in the true local extrema, ∆nl(t) is the change
of the number of light carriers at the Fermi level near the T and L points, and λ is the
carrier multiplication factor accounting for secondary electron-hole pairs generated by
impact ionization [309, 310]. Equation (6.45) describes the decay of carriers from the true
local extrema where they were stuck. In Eq. (6.46) the first term on the right hand side
describes the recombination of the electron-hole plasma at the Fermi level near the T and
L points, and the second term describes the augmentation of the number of carriers at the
Fermi level due to the fact that carriers decay from the true local extrema by means of the
carrier-phonon scattering. In the experiment which was carried out by our collaborators,
only ∆nl was probed by the THz field, which is proportional to the pump-induced change
in the squared plasma frequency ∆ω2

p, due to the Drude law [see Eq. (3.41)]. The initial
increase in ∆ω2

p for the pump-probe delays up to 1 ps, can be explained by the fact that
the term λnh/τh is larger than the term −∆nl/τl in Eq. (6.46) [see Fig. 6.7(a)]. Instead,
for pump-probe delays larger than 1 ps, the first term dominates the second term, and,
thus, there is a decrease of ∆ω2

p.
The solutions of Eqs. (6.45) - (6.46) read:

nh(t) = n0
h e
−t/τh , (6.47)

9Both electrons and holes are assumed to have the same scattering rate γ = 1/τ , due to the strong
extrinsic scattering with impurities in Bi film. Hence, the scattering rage γ (or, equivalently, the relation
time τ) is likely very similar for electrons near the L point and for holes near the T point.
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(a) (b)

Figure 6.9: (a) Fit by rate equations of the squared plasma frequency as a function of
the pump-probe delay (solid line). (b) Fit by an exponential of the scattering rate as a
function of the pump-probe delay (dashed line). From Ref. [245].

∆nl(t) =

(
∆n0

l −
λn0

h

τh/τl − 1

)
e−t/τl +

λn0
h

τh/τl − 1
e−t/τh , (6.48)

where n0
h and ∆n0

l are the values of nh(t) and ∆nl(t) just after the photoexcitation (at
t = 0), respectively. Figure 6.9(a) shows the curve obtained with the best fitting param-
eters τh = 0.6 ± 0.1 ps, τl = 4.0 ± 0.5 ps, and λn0

h/∆n
0
l = 2.24 ± 0.5. The value of λ

depends on the relative weights of impact ionization, Auger recombination and carrier-
phonon scattering.10 If the photoexcited carriers could decay solely by phonon emission,
the number of carriers would be conserved. On the other hand, the carrier multiplication
factor should be larger than one when the carrier-carrier interaction dominates the ther-
malization process. Simulations on photoexcited graphene [309] and experiments on PbSe
[310], suggest that 1 < λ < 2 for an excitation with a photon energy of 1.5 eV. Accord-
ing to this estimation, a consistent fraction of the electrons and holes created during the
photoexcitation of bismuth populates the local extrema soon after the photoexcitation.

The timescale of τh = 0.6 ps is comparable to the electron-phonon intervalley scattering
time observed in semiconductors [311, 312, 279, 119]. In fact, it has been observed
that in some semiconductors the electron-phonon intervalley scattering can be a much
faster process - as fast as the electron-electron scattering [313]. In bismuth, electron
thermalization is a particularly slow process leading to time scales of the order of 0.23 ps
for the fluence 20 µJ/cm2 [314]. Therefore, our time scale of τh = 0.6 ps should be
attributed both to electron-electron and electron-phonon scattering. Additional ab initio
calculations are called for in order to disentangle these two time scales [315].

On the other hand, the recombination of the electron-hole plasma at the T and L
points is a slower process, τl=4 ps. A similar timescale has also been observed in the

10Auger recombination is the process, in which an electron is scattered from the conduction band to
the valence band, while at the same time, the energy is transferred to another electron, which is excited
to an energetically higher state within the conduction band. Impact ionization is the opposite process
(inverse Auger recombination): an electron relaxes to an energetically lower state inducing the excitation
of an electron from the valence band to the conduction band. The result of the impact ionization is an
increase of the carrier density (carrier multiplication). Both processes also occur for holes in an analogous
way. See, e.g., Ref. [309], for more details.
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recovery time of transient conductivity [306]. Such an inefficient cooling of the plasma is
due to the very low density of states near the Fermi level (see Sec. 4.2.3), which reduces
the number of final states available for the electron-phonon and hole-phonon scattering.

Figure 6.9(b) shows the result of the fit by exponential of the Drude scattering rate,
γ, as a function of the pump-probe delay. Note that γ slightly increases during the
first picosecond, and decreases exponentially at longer delays with a time constant of
2.6 ps. The scattering rate decreases almost twice as fast as the carrier density. As I
have already pointed out in Sec. 6.2.2, the carrier scattering is dominated by the large
defect concentration in Bi polycrystalline films used by our collaborators. The value of
37 meV corresponds to such a carrier-defect scattering. The sudden increase of γ in the
photoexcited state is due to the larger phase space that becomes available for scattering
events. Further experiments on high quality single crystals would be necessary to observe
the behaviour of the intrinsic scattering channels.

6.2.5 Conclusions

In this section I have studied by means of ab initio DFT calculations the free-carrier
response in the photoexcited bismuth, which was measured in the time-resolved terahertz
experiment. The photoexcitation of Bi leads to an exceptionally large change of the
intraband dielectric function, which is found to be accurately described by the Drude
model, as has been observed experimentally. The free-carrier dynamics of the photoexcited
Bi shows a Drude response that evolves in time, and which yields to a non-monotonic
behaviour of the plasma frequency, which has not been observed in other materials.

Methodological developments for the free-carrier absorption of Sec. 6.1 have allowed
me to explain two regimes in the temporal evolution of the plasma frequency in the
photoexcited Bi. I have found that the reason for the initial increase (for the pump-probe
delays ≤ 1 ps) and subsequent decrease of the plasma frequency is the presence of local
extrema in the valence and conduction bands, where the photoexcited electrons and holes
spend several hundreds of femtoseconds before thermalizing to the Fermi level due to the
electron-phonon and hole-phonon interaction. I have shown that the average effective
masses of carriers in these true local extrema are significantly larger than the optical
masses of carriers around the Fermi level near the L and T points, which explains the fact
that photoexcited carriers do not decay immediately to the Fermi level.

The main effect yielding the non-monotonic behaviour of the plasma frequency arises
from the accumulation of holes in the true local maximum at Γ in the valence band. As
has been shown in Sec. 6.1, the average effective mass of holes in the maximum at Γ is
〈m∗〉Γ = 18.1m0, and it is two orders of magnitude larger the the optical mass of holes
near the T point, mop

T ' 0.20m0. The decay of heavy holes out of this maximum, and
the decay of less heavy electrons out of the minima in the conduction band near the T
point, to the Fermi level at T and L takes place with an inverse rate of 0.6 ps. Such
a decay mechanism is similar to the intervalley electron-phonon scattering observed in
many semiconductors. The subsequent electron-hole recombination has been found to be
a slower process, with a time constant of 4 ps.



Chapter 7

A new method to EELS &
application to Bi

In this chapter I will present a new ab initio approach to the electron energy-loss spec-
troscopy (EELS) within the time-dependent density functional perturbation theory (TDDFPT).
This approach is an extension of the Liouville-Lanczos approach of Sec. 3.4 from the case
of optical absorption (q = 0) to the case of EELS (q 6= 0), and from finite systems (like
molecules) to periodic solids. The new approach is based on the iterative solution of the
TDDFPT equations within the linear-response theory, by means of the Lanczos recur-
sion method (see Sec. 3.4.2). Techniques based on the density functional perturbation
theory (DFPT) [40] are used to avoid the explicit computation of single-particle unoc-
cupied states and inversion of dielectric matrices. This allows for accurate and efficient
calculations of the electron energy-loss (EEL) spectra with a computational workload
comparable to ground-state DFT calculations. Such an approach has been successfully
applied to the calculation of the optical absorption spectra of finite systems (see Sec. 3.4),
and, more recently, it has been extended to the calculation of the optical absorption
spectra of extended systems by solving the Bethe-Salpeter equation [151].

This chapter is organized as follows. In Sec. 7.1 I will present an extension of the
Liouville-Lanczos approach to EELS. The derivation of the theory is coherent with Sec. 3.4
and DFPT theory [40]. In Sec. 7.2 I will demonstrate how the method works on proto-
typical examples of bulk silicon and bulk aluminum. I will show what are the convergence
properties of the new method, and the way by which they can be improved. Finally, in
Sec. 7.3 I will apply the new method to bulk bismuth. I will present a detailed analysis
of the EEL spectra of bismuth, and discuss the plasmon dispersion, the effect of the spin-
orbit coupling, anisotropy, effects of exchange-correlation and crystal local field effects.
At the end of the chapter I will draw a conclusion.

The results which will be presented in this chapter, have been obtained in collaboration
with Prof. Stefano Baroni and Dr. Ralph Gebauer. These results have not been published
yet.

149
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7.1 Methodological developments

In this section I will present an extension of the Liouville-Lanczos approach of Sec. 3.4
to EELS of extended systems. The derivation of the theory is made within the linear-
response regime. I will not repeat here the details of the theory of Sec. 3.4, but make a
generalization of basic equations to the case of general k points for periodic solids (not
only the Γ point, as for molecules) and to the non-zero momentum transfer, q 6= 0.

The derivation made in this section is one of the main achievements of my PhD work.

7.1.1 TDDFPT linear-response equations

7.1.1 (a) Monochromatic perturbation

Let us start from the time-dependent Kohn-Sham equations of linear-response TDDFPT,
Eqs. (3.74) - (3.88). The time-dependent weak external perturbation is given by a beam of
electrons freely propagating in space and time from the source towards the target, which
can be described by plane waves ei(q·r−ωt). Let us write the external perturbing potential
as:

V ′ext(r, t) =

∞̂

−∞

Ṽ ′ext(r, ω) e−iωt dω =

∞̂

0

[
Ṽ ′ext(r, ω) e−iωt + c.c.

]
dω, (7.1)

where Ṽ ′ext(r, ω) can be further decomposed into Fourier monochromatic q components:1

Ṽ ′ext(r, ω) =
1BZ∑
q

eiq·r ṽext,q(r, ω), ṽext,q(r + R, ω) = ṽext,q(r, ω), (7.2)

where ṽext,q(r, ω) is the lattice-periodic function, and R is the radius-vector of the prim-
itive unit cell. In the case of EELS, ṽext,q(r, ω) = eiG·r, since the transferred momentum
is presented as Q = q + G, where q ∈ 1BZ, and G is the reciprocal lattice vector. If
Q is small enough and it is in 1BZ, then Q = q, G = 0, and therefore ṽext,q(r, ω) = 1.
Note, the time-dependent external potential is real, i.e. V ′ ∗ext(r, t) = V ′ext(r, t). Therefore,
in Eq. (7.1) we used the fact that Ṽ ′ ∗ext(r, ω) = Ṽ ′ext(r,−ω).

The external perturbation Ṽ ′ext induces the response of the charge-density of the system
ñ′ through the response orbitals [see Eq. (3.94)]. In turn, the response charge-density
induces the change of the Hartree-plus-XC potential Ṽ ′Hxc [see Eq. (3.96)]. Thereby, since
the external perturbation can be decoupled into the monochromatic q components, so
can be done with the response charge-density ñ′ [as will be discussed in Sec. 7.1.2(a)],
and therefore the Hartree-plus-XC potential also can be split into the monochromatic q
components:

Ṽ ′Hxc(r, ω) =
BZ∑
q

eiq·r ṽHxc,q(r, ω), ṽHxc,q(r + R, ω) = ṽHxc,q(r, ω), (7.3)

1In the electronic beam different electrons have different values of q, thus a decomposition of Eq. (7.2)
is relevant.
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where ṽHxc,q(r, ω) is the lattice-periodic function. Therefore, the potential Ṽ ′ of Eq. (3.80),
reads:

Ṽ ′(r, ω) =
BZ∑
q

eiq·r ṽq(r, ω), ṽq(r, ω) = ṽext,q(r, ω) + ṽHxc,q(r, ω). (7.4)

7.1.1 (b) TDDFPT equation for periodic systems

Let us consider the Fourier transform of the linearized time-dependent Kohn-Sham
equation (3.87), which reads:

(Ĥ0 − εv − ~ω) ϕ̃′v(r, ω) = −P̂c Ṽ ′(r, ω)ϕ0
v(r), (7.5)

where Ĥ0 is the Hamiltonian of the unperturbed system, εv and ϕ0
v(r) are the Kohn-Sham

energy values and wavefunctions, respectively, Ṽ ′ = Ṽ ′ext + Ṽ ′Hxc, and P̂c =
∑

c |ϕ0
c〉〈ϕ0

c | is
the projector on empty states.

In periodic systems, the index v splits into two indices, {v} ≡ {n,k}, where n indicates
the set of valence bands, and k is a wavevector belonging to the first Brillouin zone. Hence,
according to the Bloch theorem [74], the ground-state Kohn-Sham wavefunctions ϕ0

n,k(r)
of Eq. (7.5) read [see Eq. (2.59)]:

ϕ0
n,k(r) = eik·r u0

n,k(r), u0
n,k(r + R) = u0

n,k(r), (7.6)

where u0
n,k(r) is the lattice-periodic function. By making use of Eqs. (7.4) and (7.6), one

can rewrite Eq. (7.5) as:

(Ĥ0 − εn,k − ~ω) ϕ̃′n,k(r, ω) = −P̂c
∑
q

ei(k+q)·r ṽ′q(r, ω)u0
n,k(r). (7.7)

Let us consider the projector on empty states P̂c, by using the notations of Refs. [40, 316].
In the coordinate representation it reads:

Pc(r, r
′) =

unocc∑
n′,k′

ϕ0
n′,k′(r)ϕ0 ∗

n′,k′(r
′)

=
unocc∑
n′,k′

eik
′·r u0

n′,k′(r)u0 ∗
n′,k′(r

′) e−ik
′·r′

=
∑
k′

eik
′·r P k′

c (r, r′) e−ik
′·r′ , (7.8)

where the summation is over unoccupied states n′, and P k′
c (r, r′) is the coordinate repre-

sentation of the projector on empty states at point k′ which reads:

P k′

c (r, r′) =
unocc∑
n′

u0
n′,k′(r)u0 ∗

n′,k′(r
′)

= δ(r− r′)−
occ∑
n′

u0
n′,k′(r)u0 ∗

n′,k′(r
′). (7.9)



152 CHAPTER 7. A NEW METHOD TO EELS & APPLICATION TO BI

Thereby, when the projector P̂c in the form of Eq. (7.8) is applied on the right-hand side
of Eq. (7.7), only the term k′ = k + q gives a non-zero contribution. Thus, one obtains:

(Ĥ0 − εn,k − ~ω) ϕ̃′n,k(r, ω) = −
∑
q

ei(k+q)·r P̂ k+q
c ṽ′q(r, ω)u0

n,k(r). (7.10)

Inspection of the right-hand side of Eq. (7.10) suggests that the response wavefunction
ϕ̃′n,k(r, ω) on the left-hand side can be decomposed into the monochromatic q components
as:

ϕ̃′n,k(r, ω) =
∑
q

ϕ̃′n,k+q(r, ω) =
∑
q

ei(k+q)·r ũ′n,k+q(r, ω), (7.11)

where ũ′n,k+q(r, ω) is the lattice-periodic function. Hence, Eq. (7.10) takes the form:

(Ĥ0 − εn,k − ~ω)
∑
q

ei(k+q)·r ũ′n,k+q(r, ω) = −
∑
q

ei(k+q)·r P̂ k+q
c ṽ′q(r, ω)u0

n,k(r). (7.12)

From Eq. (7.12) it is easy to see that the perturbations of different periodicity, i.e. different
monochromatic q components, can be treated independently of each other. Therefore, for
a given monochromatic component q one can solve the equation:

(Ĥ0
k+q − εn,k − ~ω) ũ′n,k+q(r, ω) = −P̂ k+q

c ṽ′q(r, ω)u0
n,k(r), (7.13)

where Ĥ0
k+q reads [40, 316]:

Ĥ0
k+q = e−i(k+q)·r Ĥ0 ei(k+q)·r. (7.14)

Equation (7.13) is the direct generalization of static linear-response equation of the den-
sity functional perturbation theory to the frequency domain (see Eq. (33) in Ref. [40]).

7.1.1 (c) Complex-conjugate TDDFPT equation for periodic systems

Let us obtain the second linear-response equation, as Eq. (3.88) in the optical case.
To this end, let us complex-conjugate Eq. (7.13), and change the signs of k, q and ω. By
making use of the time-reversal symmetry of the unperturbed wavefunctions, u0 ∗

n,−k(r) =
u0
n,k(r), and of the potential, ṽ′ ∗−q(r,−ω) = ṽ′q(r, ω), one obtains:

(Ĥ0
k+q − εn,k + ~ω) ũ′ ∗n,−k−q(r,−ω) = −P̂ k+q

c ṽ′q(r, ω)u0
n,k(r). (7.15)

The response wavefunctions ũ′n,k+q(r, ω) and ũ′ ∗n,−k−q(r,−ω) satisfy the same equation but
for the sign of ω on the left-hand side [cf. Eqs. (7.13) and (7.15)]. Therefore, the system
of two coupled linear-response TDDFPT equations reads:

(Ĥ0
k+q − εn,k − ~ω) ũ′n,k+q(r, ω) + P̂ k+q

c ṽ′Hxc,q(r, ω)u0
n,k(r) = −P̂ k+q

c ṽ′ext,q(r, ω)u0
n,k(r),

(7.16)
(Ĥ0

k+q− εn,k + ~ω) ũ′ ∗n,−k−q(r,−ω) + P̂ k+q
c ṽ′Hxc,q(r, ω)u0

n,k(r) = −P̂ k+q
c ṽ′ext,q(r, ω)u0

n,k(r).
(7.17)
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Equations (7.16) and (7.17) are generalizations of the optical equations (3.87) and (3.88)
to q 6= 0. In general EELS case, when ṽ′ext,q(r, ω) = eiG·r, the right-hand side of the above

equations reads, −P̂ k+q
c eiG·r u0

n,k(r).2

7.1.2 Expression of the electronic response

7.1.2 (a) Response charge-density

To first order in the perturbation, the charge-density reads:

n(r, t) = 2
∑
n,k

|ϕn,k(r, t)|2 ' n0(r) + n′(r, t), (7.18)

where ϕn,k(r, t) is the wavefunction given by Eq. (3.82), n0(r) is the charge-density of the
unperturbed system:

n0(r) = 2
∑
n,k

|ϕ0
n,k(r)|2, (7.19)

and n′(r, t) is the first-order response charge-density which reads:

n′(r, t) = 2
∑
n,k

[
ϕ′n,k(r, t)ϕ0 ∗

n,k(r) + ϕ′ ∗n,k(r, t)ϕ0
n,k(r)

]
. (7.20)

Notice, since the external time-dependent perturbation is real, the response of the charge-
density to such a perturbation is also real, i.e. n′ ∗(r, t) = n′(r, t). By Fourier transforming
Eq. (7.20) [see Eqs. (3.85) and (3.86)], one will obtain:

ñ′(r, ω) = 2
∑
n,k

[
ϕ̃′n,k(r, ω)ϕ0 ∗

n,k(r) + ϕ̃′ ∗n,k(r,−ω)ϕ0
n,k(r)

]
. (7.21)

Since the response wavefunctions ϕ̃′ can be decoupled into the monochromatic q com-
ponents, Eq. (7.11), so can be done also with the response charge-density ñ′. Therefore,
Eq. (7.21) reads:

ñ′(r, ω) = 2
∑
n,k,q

[
ϕ̃′n,k+q(r, ω)ϕ0 ∗

n,k(r) + ϕ̃′ ∗n,k+q(r,−ω)ϕ0
n,k(r)

]
. (7.22)

Simple inspection of Eq. (7.22) allows one to identify the first term in parenthesis within
the sum as the +q component of the response charge-density, whereas the second term
is the −q component. This comes from the fact that ϕ̃′ and ϕ0 are the Bloch functions

2The term −P̂k+q
c eiG·r u0

n,k(r) can be alternatively written as −P̂k+Q
c u0

n,k(r), where Q = q + G,
and on the left-hand side of Eqs. (7.16), (7.17) there will be Ĥ0

k+Q, P̂k+Q
c , ṽ′Hxc,Q(r, ω), ũ′n,k+Q(r, ω),

and ũ′ ∗n,−k−Q(r,−ω).
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of wavevectors k + q and k, respectively. Indeed, by using Eqs. (7.6) and (7.11), one
obtains:

ñ′(r, ω) = 2
∑
n,k,q

[
eiq·r ũ′n,k+q(r, ω)u0 ∗

n,k(r) + e−iq·r ũ′ ∗n,k+q(r,−ω)u0
n,k(r)

]
. (7.23)

In order to have the two terms in Eq. (7.22) or (7.23) to display the same wavevector, let
us change the sign of both q and k in the second term.3 Thus, the response charge-density
will read:

ñ′(r, ω) =
∑
q

ñ′q(r, ω) =
∑
q

eiq·r n′q(r, ω), (7.24)

where ñ′q(r, ω) is the monochromatic q component which reads:

ñ′q(r, ω) = 2
∑
n,k

ϕ0 ∗
n,k(r)

[
ϕ̃′n,k+q(r, ω) + ϕ̃′ ∗n,−k−q(r,−ω)

]
, (7.25)

and n′q(r, ω) is its lattice-periodic part which reads:

n′q(r, ω) = 2
∑
n,k

u0 ∗
n,k(r)

[
ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)

]
. (7.26)

Notice, there is a property:
n′ ∗q (r, ω) = n′−q(r,−ω). (7.27)

It is worth noting that none of the monochromatic q components ñ′q(r, ω) is real. There-
fore, they cannot be associated to any physical response charge-density. They are the
mathematical tools which allow us to split the problem for each q and be solved indepen-
dently.

7.1.2 (b) Response Hartree potential

From the knowledge of ñ′(r, ω), one can determine the Hartree and exchange-correlation
potentials, Eq. (3.96). Let us consider the Hartree potential. By making a Fourier trans-
formation with respect to the spatial coordinate r, it is easy to show that the lattice-
periodic monochromatic q component of the Hartree potential reads:

ṽ′H,q(r, ω) =
∑
G

eiG·r ṽ′H,q(G, ω) =
∑
G

eiG·r
4πe2

|q + G|2
n′q(G, ω), (7.28)

where n′q is given by Eq. (7.26). If we keep only the G = 0 term in the sum of Eq. (7.28)
and neglect all the other contributions G 6= 0, it would mean that we have neglected the
crystal local-field effects [see Sec. 3.2.3(d)].4

3In fact, changing the sign of k is not strictly necessary, but it appears to be convenient for further
notational purposes.

4The G = 0 term in Eq. (7.28), which is the long-rang Coulomb term, makes the difference between
EELS and optics (see Secs. 3.3.1 and 3.3.3). Therefore, by neglecting this term, one can calculate the
dielectric function for a given q, and describe optical properties in the limit q→ 0.
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7.1.3 Quantum Liouville equation

The quantum Liouville equation of Eq. (3.89) can be generalized to q 6= 0, and split into
different monochromatic q components. According to above considerations, the response
density-matrix ρ̃′ can be decoupled with respect to q, and its kernel reads:

ρ̃′(r, r′;ω) =
∑
q

ρ̃′q(r, r′;ω) =
∑
q

eiq·r ρ′q(r, r′;ω), (7.29)

where ρ̃′q(r, r′;ω) is the monochromatic q component which reads [cf. with Eq. (3.93)]:

ρ̃′q(r, r′;ω) = 2
∑
n,k

[
ϕ̃′n,k+q(r, ω)ϕ0 ∗

n,k(r′) + ϕ̃′ ∗n,−k−q(r′,−ω)ϕ0 ∗
n,k(r)

]
, (7.30)

and ρ′q(r, r′;ω) is its lattice-periodic part which reads:

ρ′q(r, r′;ω) = 2
∑
n,k

[
ũ′n,k+q(r, ω)u0 ∗

n,k(r′) + ũ′ ∗n,−k−q(r′,−ω)u0 ∗
n,k(r)

]
. (7.31)

Therefore, the Fourier transform of the linearized quantum Liouville equation will read
[see Eq. (3.100)]:

(~ω − L̂) · ρ̂′q(r, ω) = [ṽ′ext,q(r, ω), ρ̂0(r)], (7.32)

where ρ̂
′
q(r, ω) is the lattice-periodic part of the monochromatic q component of the

density-matrix operator, ṽ′ext,q(r, ω) is the lattice-periodic part of the monochromatic q
component of the external potential, ρ̂0(r) is the density-matrix operator of the unper-

turbed system, and L̂ is the Liouvillian super-operator whose action on ρ̂
′
q reads:

L̂ · ρ̂′q = [ Ĥ0, ρ̂
′
q ] + [ ṽ′Hxc,q [ ρ̂

′
q ], ρ̂0 ]. (7.33)

7.1.4 Electronic susceptibility

Our final goal is to determine the susceptibility χ(q, ω), which would give access to the
loss function, −Im[1/εM(q, ω)], and thus to the double-differential cross section measured
in the EELS experiments [see Eq. (3.69)]. How to determine χ(q, ω) within the current
formalism? In Sec. 3.4.1(c) I have pointed out that the expectation value of any one-
electron operator can be expressed as the trace of its product with the one-electron density-
matrix. Therefore, one can define the susceptibility χ(q, ω) as [cf. with Eq. (3.102)]:

χ(q, ω) ≡ Tr [ ṽ′ext,q(r, ω) ρ̂
′
q(r, ω) ], (7.34)

and it can be rewritten as the scalar product, using Eq. (7.32):

χ(q, ω) =
〈
ṽ′ext,q(r, ω)

∣∣(~ω − L̂)−1 · [ṽ′ext,q(r, ω), ρ̂0(r)]
〉
. (7.35)

As in the optical case [see Eq. (3.106)], this is the off-diagonal matrix element of the re-
solvent of the Liouvillian superoperator. It can be efficiently calculated using the Lanczos
recursion method, as will be shown in Sec. 7.1.10.
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7.1.5 Batch representation

7.1.5 (a) Batch representation of the response charge-density

Similarly to the optical case, one can see that the two sets of response wavefunctions
uniquely determine the response charge-density n′q, Eq. (7.26), and the coupled equa-
tions (7.16) and (7.17), namely:

x = {xn,k+q(r)} = {ũ′n,k+q(r, ω)}, (7.36)

y = {yn,k+q(r)} = {ũ′ ∗n,−k−q(r,−ω)}, (7.37)

which are called batches. It is convenient to go to the standard batch representation
(SBR), by performing a 45◦ rotation in the space of batches, and define q = {qn,k+q(r)}
and p = {pn,k+q(r)}, where

qn,k+q(r) =
1

2
[ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)], (7.38)

pn,k+q(r) =
1

2
[ũ′n,k+q(r, ω)− ũ′ ∗n,−k−q(r,−ω)]. (7.39)

In the SBR, the lattice-periodic monochromatic q component of the response charge-
density reads [see Eq. (7.26)]:

n′q(r, ω) = 4
∑
n,k

u0 ∗
n,k(r) qn,k+q(r). (7.40)

7.1.5 (b) Quantum Liouville equation in the batch representation

In the SBR, the quantum Liouville equation (7.32), or equivalently the coupled equa-
tions (7.16) and (7.17), can be written in the matrix form:(

~ω −D̂
−D̂ − 2K̂ ~ω

)(
q
p

)
=

(
0

{P̂ k+q
c ṽ′ext,q(r, ω)u0

n,k(r)}

)
, (7.41)

where the action of the D̂ and K̂ superoperators on the batches of orbitals is defined as:

D̂ · qn,k+q(r) = (Ĥ0
k+q − εn,k) qn,k+q(r), (7.42)

and

K̂ · qn,k+q(r) = 2P̂ k+q
c

∑
n′,k′

ˆ
Knk;n′k′(r, r

′) qn′,k′+q(r′) dr′, (7.43)

where the kernel Knk;n′k′(r, r
′) reads:

Knk;n′k′(r, r
′) = κ(r, r′)u0

n,k(r)u0 ∗
n′,k′(r

′), (7.44)
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where κ(r, r′) is the Hartree-plus-XC kernel defined in Eq. (3.97).

7.1.5 (c) Batch representation of the electronic susceptibility

Let us present the susceptibility χ(q, ω) in the SBR [see Eq. (7.35)]. The components
of the matrix element in Eq. (7.35) in the SBR read:

ṽ′ext,q(r, ω)
SBR−→

(
{P̂ k+q

c ṽ′ext,q(r, ω)u0
n,k(r)}

0

)
, (7.45)

and

[ ṽ′ext,q(r, ω), ρ̂0(r) ]
SBR−→

(
0

{P̂ k+q
c ṽ′ext,q(r, ω)u0

n,k(r)}

)
. (7.46)

Hence, the susceptibility χ(q, ω) reads:

χ(q, ω) =
〈

({P̂ k+q
c ṽ′ext,q u

0
n,k}, 0)

∣∣∣(~ωÎ − L̂)−1 · (0, {P̂ k+q
c ṽ′ext,q u

0
n,k})

〉
, (7.47)

where

L̂ =

(
0 D̂

D̂ + 2K̂ 0

)
, (7.48)

or, equivalently [see Eq. (7.41)],

χ(q, ω) =

〈
({P̂ k+q

c ṽ′ext,q u
0
n,k}, 0)

∣∣∣ ( ~ω −D̂
−D̂ − 2K̂ ~ω

)−1(
0

{P̂ k+q
c ṽ′ext,q u

0
n,k}

)〉
.

(7.49)
Such a matrix element can be efficiently calculated using the Lanczos recursion method.

7.1.6 Use of symmetry

One may exploit the symmetry of the system in order to reduce the computational time
and the memory requirements of the calculations. In addition to lattice translations,
the space group of a crystal contains symmetry operations Ŝ, combining rotations and
translations that leave the crystal unchanged: Ŝ ≡ {R|f}, where R is a 3× 3 orthogonal
matrix, and f is the fractional translation vector. The rotational part of these operations,
R, defines the crystal point group. As a consequence of symmetry, the unperturbed
roto-translated orbitals are the orbitals with the rotated Bloch vector [68]:

Ŝϕ0
n,k(r) = ϕ0

n,k(R−1r− f) = ϕ0
n,Rk(r). (7.50)

The ground-state calculation and the TDDFPT linear-response calculation involve the
evaluation of integrals over a grid of k points in the first Brillouin zone (BZ). By exploit-
ing the symmetry, instead of using all the k points in the BZ, one can use only those
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which belong to the irreducible wedge of the BZ (IBZ). This leads to the appearance in
the sum over irreducible k points of the geometrical factors wk, which are called weights
[68]. The weights wk are proportional to the number of vectors in the star, i.e. inequiv-
alent k vectors among all the {Rk} vectors generated by the point-group rotations, and
are normalized to 1:

∑
k∈IBZ wk = 1.

7.1.6 (a) Symmetrization of the unperturbed charge-density

The non-symmetrized ground-state charge-density, Eq. (7.19), calculated on the IBZ,
reads:

n0(r) = 2
∑
n

∑
k∈IBZ

wk |ϕ0
n,k(r)|2. (7.51)

The ground-state charge-density is then symmetrized as:

n0,(s)(r) =
1

Ns

∑
Ŝ

Ŝn0(r) =
1

Ns

∑
Ŝ

n0(R−1r− f), (7.52)

where the sum runs over all Ns symmetry operations.

7.1.6 (b) Symmetrization of the response charge-density

The symmetrization technique must be applied to all quantities that are expressed as
sums over k points in the BZ. Therefore, one has to symmetrize the lattice-periodic part of
the monochromatic q component of the response charge-density n′q, Eq. (7.26). Since the
monochromatic q component of the external perturbation reduces the symmetry of the
system to the small group of q, Ŝq, which leaves the q vector invariant up to a reciprocal
lattice vector G:

Ŝq q = q + G, (7.53)

the unsymmetrized n′q then reads:

n′q(r, ω) = 2
∑
n

∑
k∈IBZ(q)

wk u
0 ∗
n,k(r)

[
ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)

]
, (7.54)

where the notation IBZ(q) indicates the IBZ calculated assuming the small group of q as
a symmetry group, and the weights wk are calculated accordingly, i.e.

∑
k∈IBZ(q) wk = 1.

By using the relation:

Ŝ
[
ñ′q(r, ω)

]
= ñ′

Ŝq
(r, ω) = ñ′q(R−1r− f , ω), (7.55)

where ñ′q(r, ω) is the Bloch function containing the phase and the periodic part, ñ′q(r, ω) =
eiq·r n′q(r, ω) [see Eq. (7.24)], the symmetrized lattice-periodic monochromatic q compo-
nent of the response charge-density reads:

n′ (s)q (r, ω) =
1

Ns(q)

∑
Ŝq

eiG·r n′q(R−1r− f , ω). (7.56)
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where the sum runs over all Ns(q) symmetry operations.

7.1.7 Extension of the formalism to metals

So far I have been assuming that the target is a semiconductor or an insulator, i.e. there
is an energy band gap between the highest valence band and the lowest conduction band.
The current formalist can be straightforwardly extended to the case of a metallic target,
i.e. when the valence and conduction bands intersect. In the following, I will closely
follow the formulation of the static density functional perturbation theory for metals by
de Gironcoli [317, 40], which is based on the smearing technique for dealing with Fermi-
surface effects.

7.1.7 (a) Unperturbed charge-density

In the smearing approach, each Kohn-Sham energy level is broadened by a smearing
function (1/σ) δ̃(ε/σ), which is an approximation to the Dirac δ-function in the limit of
vanishing smearing width σ. Many kinds of smearing functions can be used: Fermi-Dirac
broadening, Lorentzian, Gaussian [292], Gaussian combined with polynomials [244], or
cold smearing functions [293], to recall only some of them. The local density of states
resulting from the broadened energy levels will be the original density of states convoluted
with the smearing function [see Eq. (7.19)]:

n0(r, ε) = 2
∑
n,k

1

σ
δ̃

(
ε− εn,k

σ

)
|ϕ0
n,k(r)|2. (7.57)

From this basic quantity the electron charge-density follows [317]:

n0(r) =

ˆ εF

−∞
n0(r, ε) dε = 2

∑
n,k

θ̃

(
εF − εn,k

σ

)
|ϕ0
n,k(r)|2, (7.58)

where θ̃(x) =
´ x
−∞ δ̃(y)dy is a smooth approximation to the step function, and εF is the

Fermi energy which is determined by the normalization to the total number of electrons:

N =

ˆ εF

−∞
n0(ε) dε =

∑
n,k

θ̃

(
εF − εn,k

σ

)
. (7.59)

The advantage of this procedure is that after the convolution the (modified) local den-
sity of states can be computed accurately on a discrete grid of k points in the Brillouin
zone, provided that the average separation between neighboring eigenvalues is small with
respect to the broadening width σ.
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7.1.7 (b) Response charge-density

In the metallic case, the lattice-periodic monochromatic q component of the response
charge-density reads [see Eq. (7.26)]:

n′q(r, ω) = 2
∑
n,k

θ̃F ;n,k u
0 ∗
n,k(r)

[
ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)

]
, (7.60)

where I have used a notation θ̃F ;n,k ≡ θ̃[(εF − εn,k)/σ]. Let us substitute in Eq. (7.60) the
definitions of the linear-response wavefunctions ũ′n,k+q(r, ω) and ũ′ ∗n,−k−q(r,−ω), Eqs. (7.16)
and (7.17), which can be rewritten as:

ũ′n,k+q(r, ω) =
∞∑
m 6=n

u0
m,k+q(r)

〈u0
m,k+q|ṽ′q(r, ω)|u0

n,k〉
εn,k − εm,k+q + ~ω

, (7.61)

and

ũ′ ∗n,−k−q(r,−ω) =
∞∑
m6=n

u0
m,k+q(r)

〈u0
m,k+q|ṽ′q(r, ω)|u0

n,k〉
εn,k − εm,k+q − ~ω

, (7.62)

where ṽ′q(r, ω) contains the external and Hartree-plus-XC potentials [see Eq. (7.4)]. Note,
the difference between Eqs. (7.61) and (7.62) is the sign of ~ω in the denominator. By
exploiting the symmetry between the two contributions in square brackets in Eq. (7.60),
it is easy to show that it will read:

n′q(r, ω) = 2
∑
n,m,k

θ̃F ;n,k − θ̃F ;m,k+q

εn,k − εm,k+q + ~ω
u0 ∗
n,k(r)u0

m,k+q(r) 〈u0
m,k+q|ṽ′q(r, ω)|u0

n,k〉, (7.63)

Note, n′q(r, ω) in the form of Eq. (7.63) satisfies the relation Eq. (7.27). In order to avoid
the double sum over occupied and empty states in Eq. (7.63), let us use the relation
θ̃(x) + θ̃(−x) = 1. It is easy to show that Eq. (7.63) will read:

n′q(r, ω) = 2
∑
n,m,k

(θ̃F ;n,k − θ̃F ;m,k+q) θ̃m,k+q;n,k u
0 ∗
n,k(r)u0

m,k+q(r) 〈u0
m,k+q|ṽ′q(r, ω)|u0

n,k〉

×
(

1

εn,k − εm,k+q + ~ω
+

1

εn,k − εm,k+q − ~ω

)
, (7.64)

where the index n runs over the partially occupied states, and the index m runs over the
partially unoccupied states, and θ̃m,k+q;n,k ≡ θ̃[(εm,k+q − εn,k)/σ]. Equation (7.64) can be
further simplified, avoiding the sum over the unoccupied states, by writing

n′q(r, ω) = 2
∑
n,k

u0 ∗
n,k(r)

[
u′n,k+q(r, ω) + u′ ∗n,−k−q(r,−ω)

]
, (7.65)

where I have defined new response wavefunctions, u′n,k+q(r, ω) and u′ ∗n,−k−q(r,−ω), which
satisfy the following equations, respectively [cf. with Eqs. (7.16) and (7.17)]:

(Ĥ0
k+q − εn,k − ~ω)u′n,k+q(r, ω) = −[ θ̃F ;n,k − P̂ k+q

n,k ] ṽ′q(r, ω)u0
n,k(r), (7.66)
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(Ĥ0
k+q − εn,k + ~ω)u′ ∗n,−k−q(r,−ω) = −[ θ̃F ;n,k − P̂ k+q

n,k ] ṽ′q(r, ω)u0
n,k(r), (7.67)

where

P̂ k+q
n,k =

occ∑
m

βn,k;m,k+q |u0
m,k+q〉〈u0

m,k+q|, (7.68)

and
βn,k;m,k+q = θ̃F ;n,k θ̃n,k;m,k+q + θ̃F ;m,k+q θ̃m,k+q;n,k. (7.69)

It can be easily verified that the coefficients βn,k;m,k+q vanish when any of its indices refers

to an unoccupied state. Therefore, the operator P̂ k+q
n,k involves only the small number of

partially filled bands, and the first-order variation of the wavefunctions and of the charge-
density can be computed avoiding any explicit reference to unoccupied states, much in
the same way as for insulating materials.

7.1.8 Relativistic case: inclusion of the spin-orbit coupling

In the relativistic case, instead of simple Kohn-Sham wavefunctions there are two-component
spinors (see Sec. 2.2). The ground-state and response spinors read, respectively:

ψ0
n,k(r) =

(
ϕ0
n,k,1(r)

ϕ0
n,k,2(r)

)
, ψ̃′n,k(r, ω) =

(
ϕ̃′n,k,1(r, ω)

ϕ̃′n,k,2(r, ω)

)
, (7.70)

where the ground-state wavefunctions ϕ0
n,k,1, ϕ0

n,k,2 are defined by Eq. (7.6), and the
response wavefunctions ϕ̃′n,k,1, ϕ̃′n,k,2 are defined by Eq. (7.11). Thereby, the lattice-
periodic part of the monochromatic q component of the response charge-density reads
[see Eqs. (7.26), (7.38) and (7.40)]:

n′q(r, ω) = 2
∑
n,k

[
u0 ∗
n,k,1(r) q1

n,k+q(r) + u0 ∗
n,k,2(r) q2

n,k+q(r)
]
, (7.71)

where q1
n,k+q and q2

n,k+q are defined by Eq. (7.38).

In the relativistic case, the Hamiltonian Ĥ0
k+q, which figures out in Eq. (7.42), has a

potential part given by Eq. (2.73), which contains the spin-orbit contribution.

7.1.9 Calculation of the dielectric function

The Liouville-Lanczos approach to EELS can be applied for the calculation of the real
and imaginary part of the dielectric function at any finite value of q. To this end, one
has to apply exactly the same approach as described above for EELS, but for one single
change: in the Fourier transform of the Hartree potential, Eq. (7.28), one has to drop the
long-range Coulomb term which corresponds to G = 0.

The long-range Coulomb term makes the difference between the loss function and
the imaginary part of the dielectric function, as has been explained in Secs. 3.3.1 and
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3.3.3. Thus, on one hand, when the G = 0 is included, one obtains the susceptibility
χ [see Eq. (3.72)], and afterwards one can calculate the inverse dielectric function [see
Eqs. (3.32) and (3.71)]. On the other hand, when the G = 0 is neglected in Eq. (7.28),
one obtains the susceptibility χ [see Eq. (3.49)], and afterwards one can calculate the
dielectric function [see Eq. (3.48)].

Such an approach allows accurate determination of the dielectric function without
relying on the Kramers-Kronig relations. I will demonstrate how such an approach works
on the example of Bi in Sec. 7.3.5.

7.1.10 Use of Lanczos recursion method

Let us turn back to the question of the evaluation of the susceptibility χ(q, ω) given by
Eq. (7.47), which is the off-diagonal matrix element of the resolvent of the Liouvillian
superoperator. Such a matrix element can be efficiently calculated using the Lanczos
recursion method, much in the same way as in the optical case for the calculation of the
dynamical polarizability αij(ω) (see Sec. 3.4.2). The application of the Lanczos algorithm
is exactly the same as in the optical case. The extension of the Lanczos method to q 6= 0
and k 6= 0 presents no particular difficulty. Thus, I will not repeat here all the details of
the method, but give a few remarks.

The starting point is the definition of two two-component Lanczos vectors:

Vi =

(
qin,k+q

pin,k+q

)
, and Ui =

(
q̃in,k+q

p̃in,k+q

)
, (7.72)

where the index i denotes the number of the Lanczos iteration, n is the energy band index,
and k + q is the point in the Brillouin zone. Here qin,k+q and q̃in,k+q are the upper (or
q-like) components of the SBR, and pin,k+q and p̃in,k+q are the lower (or p-like) components
of the SBR. I define the starting Lanczos vectors V1 and U1 according to the right-hand
side of Eq. (7.41):

V1 = U1 =

(
0

P̂ k+q
c v̂′ext,q(r, ω)u0

n,k(r)

)
. (7.73)

Subsequently, the starting vectors are normalized to unity. Afterwards, one applies the
equations (3.131) - (3.136), similarly to the optical case.

Within the Lanczos recursion method, the susceptibility χ(q, ω) reads:

χ(q, ω) '
〈
ζNq |(~ωÎ − T̂N)−1 · eN1

〉
, (7.74)

where N is the maximal number of Lanczos iterations, Î is the N×N identity matrix, T̂N

is the tridiagonal matrix defined in Eq. (3.136), eN1 = (1, 0, . . . , 0) is the unit vector in N -
dimensional space, and ζNq = (ζ1,q, ζ2,q, . . . , ζN,q) is the vector composed of the coefficients
ζi,q which are defined as:

ζi,q =
〈
(P̂ k+q

c v̂′ext,q(r, ω)u0
n,k(r), 0)|Vi

〉
, (7.75)
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where the index i denotes the number of the Lanczos iteration. All the discussions of
Sec. 3.4.2 hold also for the current case,5 including the extrapolation technique.

7.1.11 Conclusions

I have presented a generalization of the TDDFPT formalism from the optical case (q = 0)
to the case of EELS (q 6= 0). I have shown that the electronic susceptibility χ(q, ω)
can be rationally calculated with the Lanczos recursion method, without the need to
calculate numerous unoccupied states and inversion of large matrices, as is the case in the
conventional TDDFT approach (see Sec. 3.3.3). In the next section I will demonstrate
how the current approach works on the prototypical examples, silicon and aluminum.

I have implemented the Liouville-Lanczos approach to EELS in the QUANTUM ESSPRESSO

package [68]. A short summary of the program is given in Appendix C.

5An important difference of EELS with respect to the optical case, is that the Tamm-Dancoff approx-
imation fails to describe plasmons in solids [318]. An example of such a failure is the description of EEL
spectrum of bulk silicon, where both electron-hole pairs and antipairs need to be taken into account [139].
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7.2 Test cases

In this section I proceed to a numerical benchmark of the new methodology of EELS
against the test cases of silicon and aluminum, systems for which several TDDFT studies
already exist, and whose electron energy-loss (EEL) spectra are known to be accurately
described within the adiabatic approximation. My purpose is not to analyze the features
of the EEL spectra of silicon and aluminum, which are already rather well understood
(see, e.g., Refs. [138, 140, 319] regarding Si, and Refs. [320, 321, 322] regarding Al), nor
to dwell on the comparison between theory and experiment, but rather to understand the
factors that determine the convergence properties of the new method, and how they can
be improved.

7.2.1 Semiconductors: bulk Si

7.2.1 (a) Computational method

Calculations have been performed by using norm-conserving pseudopotential with the
Perdew-Zunger (LDA) [34] parameterization of the exchange-correlation functional. The
3s and 3p electrons were treated as valence electrons. I have used an experimental lattice
parameter aexp = 10.263 a.u. [323], and the kinetic-energy cutoff Ecut = 16 Ry. The
geometry was specified using the primitive fcc unit cell, with two atoms of Si positioned
at (0,0,0) and (1/4,1/4,1/4) in cartesian coordinates, in units of the lattice parameter
aexp. The first Brillouin zone (BZ) was sampled with a Monkhorst-Pack (MP) k point
mesh [324] (see the discussion below). To plot the EEL spectra I have used a Lorentzian
smearing with a broadening parameter σ (see the discussion below).

7.2.1 (b) Convergence of the EEL spectrum

The EEL spectrum must be checked for a convergence with respect to the number
of Lanczos iterations and number of k points in the Brillouin zone. Let us define the
convergence criterion: a maximal relative change of the intensity, due to the increase
of the convergence parameter (number of Lanczos iterations or number of k points),
constitutes the accuracy with which the EEL spectrum is converged.

Figure 7.1(a) shows the convergence of the EEL spectrum of Si for a momentum
transfer q = 0.53 a.u. along the [100] direction, as a function of the number of Lanc-
zos iterations. As can be seen, after 500 iterations the spectrum shows large spurious
unphysical wiggles. By increasing the number of Lanczos iterations up to 1500, the wig-
gles disappear.6 The maximal relative change of the intensity between the EEL spectra
obtained after 500 and 1500 iterations is 21 % at 19.6 eV, which is too large, indicating
that 500 iterations is not sufficient for the convergence. The comparison of the maximal

6There is a dependence between the number of Lanczos iterations needed to obtain the converged
spectrum on one hand, and the kinetic-energy cutoff Ecut on the other hand. The larger the cutoff, the
more iterations is needed for the convergence [18].
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(a) (b)

Figure 7.1: EEL spectrum of bulk silicon, q = 0.53 a.u.|| [100]. (a) Convergence of the
EEL spectrum with respect to the number of Lanczos iterations, using a 10 × 10 × 10
Monkhorst-Pack k point mesh. (b) Convergence of the EEL spectrum with respect to the
size of the k point mesh, for 1500 Lanczos iterations. Both figures have been obtained with
a Lorentzian broadening σ = 0.035 Ry. Curves have been shifted vertically for clarity.

relative change of the intensity between the EEL spectra obtained after 1500 and 2000
iterations gives 0.3 % at 19.8 eV, which is extremely satisfactory. Therefore, in the fol-
lowing I will consider the EEL spectrum obtained after 1500 iterations, which constitutes
the accuracy of 0.3 %.

Figure 7.1(b) shows the convergence of the EEL spectrum with respect to the k point
sampling of the Brillouin zone. The 4 × 4 × 4 MP k point mesh is not dense enough
to obtain the converged spectrum, because the maximal relative change of the intensity
with respect to the calculation with a 10 × 10 × 10 MP k point mesh is 5.5 % at 21.4
eV. The maximal relative difference in the intensity between the EEL spectra calculated
with 10 × 10 × 10 and 12 × 12 × 12 MP k point meshes is 1.5 % at 17.6 eV, which is
sufficient. Therefore, in the following I will consider the 10 × 10 × 10 MP k point mesh
converged with the accuracy of 1.5 %. Such a mesh corresponds to 110 k points in the IBZ
for the ground-state calculation, and 550 k points in the IBZ(q) for the linear-response
calculation (see Sec. 7.1.6).7

Figures 7.1(a) and 7.1(b) have been obtained with a Lorentzian broadening parameter
σ = 0.035 Ry. There is a link between the broadening σ and the k point sampling of
the BZ: the smaller the broadening, the larger the number of k points needed for the
convergence.

7In the linear-response calculation the number of k points is doubled, since one has k and k+q. Thus,
in total there are 1100 points k and k + q.
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7.2.1 (c) Use of the extrapolation technique

As has been pointed out in Sec. 3.4.2(b), a speed of the convergence of the EEL
spectrum with respect to the number of Lanczos iterations can be drastically increased
using an extrapolation technique. Figures 7.2(a) and 7.2(b) show a numerical behaviour
of the β and ζ coefficients of the Larczos recursion method [see Eqs. (3.133) and (3.138)].
It is seen that the β coefficients tend to a constant,8 whereas the ζ coefficients rapidly
tend towards zero. The fast decrease of ζ coefficients implies that the quality of the
calculated spectrum depends only on the first hundred iterations in the present test.
However, a relatively large number of iterations is necessary to generate a tridiagonal
matrix consisting of β and γ coefficients [see Eq. (3.136)].

Closer inspection of Fig. 7.2(a) shows that the values of the β coefficients are scattered
around two close, but distinct, values for odd and even iteration numbers. The average
value for odd β’s is 8.08 Ry, and the average value for even β’s is 8.03 Ry. The average
values of β’s are approximately equal to half of the kinetic-energy cutoff, which is in this
case Ecut/2 = 8 Ry.

(a) (b)

Figure 7.2: Coefficients of the Lanczos recursion method for bulk Si, q = 0.53 a.u.|| [100].
(a) Numerical behaviour of odd and even β coefficients as functions of the Lanczos iter-
ation number. The horizontal lines are the averages of odd and even β coefficients. (b)
Numerical behaviour of odd and even ζ coefficients as functions of the Lanczos iteration
number. Solid lines are guides for the eye.

The extrapolation technique consists in the fact that instead of making 1500 iterations
in order to obtain the converged EEL spectrum [see Fig. 7.1(a)], one might explicitly make
only 400 iterations, and then extrapolate the β coefficients up to, say, 5 000 iterations.9

8I recall that γi = ±|βi|. It very rarely occurs that γi and βi have a different sign. Thus, extrapolating
them to the same positive value does not affect the accuracy of the extrapolation [see Sec. 3.4.2(b)].

9The value of 5 000 has been chosen rather arbitrarily because both the numerical workload and the
resulting accuracy depend very little on it, as long as it is large enough. Such a value can be chosen
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Figure 7.3: Effect
of the extrapola-
tion technique on
the convergence
of the EEL spec-
trum of bulk Si for
q = 0.53 a.u.|| [100].
Curves have been
shifted vertically for
clarity.

Thus, the dimension of the tridiagonal matrix T̂N [see Eq. (3.136)], which is needed for
the calculation of the susceptibility χ(q, ω) [see Eq. (7.74)], is 5 000 × 5 000, instead of
400 × 400. There are two ways to make the extrapolation of the β coefficients from 400
to 5 000, namely, constant and bi-constant extrapolation. In the constant extrapolation
one has to take one average value for both even and odd β coefficients, which is 8.055
Ry, whereas in the bi-constant extrapolation one has to use different average values for
even and odd β coefficients, 8.03 Ry and 8.08 Ry, respectively [see Fig. 7.2(a)]. These
two extrapolation schemes give almost identical EEL spectra in the current case. In the
following, I will use the bi-constant extrapolation.

Figure 7.2(b) shows the numerical behaviour of the odd and even ζ coefficients. The
odd coefficients equal to zero, whereas the even coefficients show an exponential decay as
the number of Lanczos iterations grows. The fact that even ζ’s are non-zero and odd ζ’s
are zero, is due to the definition (7.75).

Figure 7.3 shows that the EEL spectrum calculated with 400 iterations without the
extrapolation has large oscillations when compared to the converged spectrum with 1500
iterations. However, if after 400 iterations the Lanczos coefficients β, γ and ζ are extrap-
olated to a sufficiently large number (e.g., 5 000 in this case), the calculated spectrum
becomes indistinguishable from the converged spectrum. This example shows that the
extrapolation technique can significantly reduce the computational effort needed to ob-
tained the converged spectrum.

7.2.1 (d) Comparison with experiment and conventional TDDFT calculations

Let us make a comparison between the EEL spectrum of Si calculated with the
Liouville-Lanczos approach, the experimental spectrum, and the theoretical EEL spec-
trum obtained with the conventional TDDFT method (see Sec. 3.3.3). Figure 7.4(a)
shows the comparison of the theoretical EEL spectrum for q = 0.53 a.u. along the [100]
direction with the experimental EEL spectrum. As can be seen, the agreement is re-
markable. The theoretical EEL spectrum reproduces the main plasmon peak around 20

arbitrarily large at an extremely small computational cost [18].
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(a) (b)

Figure 7.4: Comparison between the EEL spectrum of Si for q = 0.53 a.u.|| [100] calcu-
lated with the Liouville-Lanczos (LL) approach, using a 10× 10× 10 MP k point mesh,
a Lorentzian broadening σ = 0.035 Ry, 400 Lanczos iterations, and the extrapolation
scheme, with (a) the experimental spectrum [140], and (b) the theoretical EEL spectrum
obtained within the conventional TDDFT approach [140] (see Sec. 3.3.3).

eV, a shoulder around 15 eV, and a weak peak around 6.5 eV. Figure 7.4(b) shows the
comparison of two theoretical EEL spectra, one obtained with the Liouville-Lanczos ap-
proach and the other one with the conventional TDDFT approach. I attribute a slight
difference between the two EEL spectra to the fact that they have not been calculated
with the same parameters.10 In particular, the authors of Ref. [140] have used a lifetime
broadening.

Figures 7.5(a) and 7.5(b) show the comparisons between the calculated and the ex-
perimental EEL spectra, for q = 0.80 a.u. and q = 1.45 a.u. along the [111] direction,
respectively. As can be seen, the agreement is also remarkable. Though, there are some
small discrepancies between theory and experiment; I attribute them to the lifetime effects
[140], which have been approximated in my calculations by a constant broadening. The
theoretical EEL spectra reproduce all features of the experimental spectra. In order to
reach a better agreement of the theoretical spectra with the experimental ones, I had to
increase the Lorentzian broadening up to σ = 0.060 Ry for q = 0.80 a.u., and σ = 0.080
Ry for q = 1.45 a.u. As a consequence, I could reduce the size of the k point mesh down
to 8× 8× 8 for q = 0.80 a.u., and 6× 6× 6 for q = 1.45 a.u., without a loss of accuracy.

7.2.1 (e) Test of the f-sum rule

I have checked the f -sum rule of the EEL spectra of Si calculated with the Liouville-

10The authors of Ref. [140] have used a Hamann pseudopotential [325], the kinetic-energy cutoff of 32
Ry, 2048 off-symmetry k points, and a Gaussian broadening of 0.015 Ry plus a lifetime broadening.
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(a) (b)

Figure 7.5: (a) Comparison of the EEL spectra of Si for q = 0.80 a.u.|| [111] between
experiment [140] and theory, using a 8 × 8 × 8 MP k point mesh, and a Lorentzian
broadening σ = 0.060 Ry. (b) Comparison of the EEL spectra of Si for q = 1.45 a.u.|| [111]
between experiment [319] and theory, using a 6×6×6 MP k point mesh, and a Lorentzian
broadening σ = 0.080 Ry. The convergence has been achieved after 400 Lanczos iterations
using the extrapolation technique.

Lanczos approach, by using Eq. (3.73). I have found that there is a violation of the f -sum
rule by 5.3 % in Fig. 7.4(a), by 5.6 % in Fig. 7.5(a), and by 5.8 % in Fig. 7.5(b). I recall
that the violation of the f -sum rule is due to the use of non-local pseudopotentials [see
Sec. 3.4.2(c)]. The f -sum rule does not depend on the number of Lanczos iterations, as
has been proven rigorously mathematically in Ref. [169]. Instead, it is sensitive to the k
point sampling of the Brillouin zone.

7.2.2 Metals: bulk Al

In this section I will demonstrate the applicability the Liouville-Lanczos approach to met-
als, by using an extension of the formalism of Sec. 7.1.7.

7.2.2 (a) Computational method

Calculations have been performed by using norm-conserving pseudopotential with the
Perdew-Zunger (LDA) [34] parameterization of the exchange-correlation functional. The
3s and 3p electrons were treated as valence electrons. I used an experimental lattice
parameter aexp = 7.60 a.u. [326], and the kinetic-energy cutoff Ecut = 16 Ry. The ge-
ometry was specified using the primitive fcc unit cell, with one atom of Al positioned
at (0,0,0). The first Brillouin zone (BZ) was sampled with a Monkhorst-Pack (MP) k
point mesh [324] (see the discussion below). For the ground-state calculation I have used
a Methfessel-Paxton smearing [244] with a broadening parameter of 0.02 Ry. To plot
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the EEL spectra I have used a Lorentzian smearing with a broadening parameter σ (see
the discussion below), which is different from the one used in the ground-state calculation.

7.2.2 (b) Convergence of the EEL spectrum

Figure 7.6(a) shows the convergence of the EEL spectrum of Al for a momentum
transfer q = 0.513 a.u. along the [100] direction, as a function of the number of Lanczos
iterations. As can be seen, after 200 iterations there are spurious wiggles in the spectrum,
whereas when increasing the number of Lanczos iterations up to 600 the wiggles disappear.

Let us apply the convergence criterion defined in Sec. 7.2.1(b). The maximal relative
change of the intensity between the EEL spectra obtained after 200 and 600 iterations is
17 % at 17.5 eV, which is too big. However, the maximal relative change of the intensity
between the EEL spectra obtained after 600 and 1 000 iterations is 0.6 % at 18.0 eV,
which constitutes an extremely good level of convergence. Note, the convergence of the
EEL spectrum of Al is reached after a much smaller number of iterations than in the case
of Si [see Fig. 7.1(a)].

Let us investigate the convergence of the EEL spectrum of Al with respect to the size
of the k point mesh. Figure 7.6(b) shows that the convergence of the EEL spectrum is
achieved when using a 10 × 10 × 10 mesh, and a broadening parameter σ = 0.056 Ry.
The maximal relative change of the intensity between the EEL spectra calculated with
10 × 10 × 10 and 12 × 12 × 12 k point meshes is 2.8 %. If the broadening parameter is
decreased, then a larger k point mesh is required to converge the spectrum.

(a) (b)

Figure 7.6: EEL spectrum of bulk Al, q = 0.513 a.u.|| [100]. (a) Convergence of the EEL
spectrum with respect to the number of Lanczos iterations, using a 10 × 10 × 10 MP k
point mesh. (b) Convergence of the EEL spectrum with respect to the size of the k point
mesh, with 600 Lanczos iterations. Both figures have been obtained with a Lorentzian
broadening σ = 0.056 Ry. Curves have been shifted vertically for clarity.
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7.2.2 (c) Use of the extrapolation technique

Let us see how to speed up the convergence of the EEL spectrum of Al by using the
extrapolation technique. Figures 7.7(a) and 7.7(b) show the numerical behaviour of the β
and ζ coefficients of the Lanczos recursion method. In contrast to silicon [see Fig. 7.2(a)],
in aluminum the odd and even β coefficients do not oscillate around two different average
values, instead they oscillate around the same average value of 7.9 Ry. This average value
is approximatively equal to half of the kinetic-energy cutoff.

(a) (b)

Figure 7.7: Coefficients of the Lanczos recursion method for bulk Al, q = 0.513 a.u.|| [100].
(a) Numerical behaviour of odd and even β coefficients as functions of the Lanczos itera-
tion number. The horizontal line is the average of β coefficients. (b) Numerical behaviour
of odd and even ζ coefficients as functions of the Lanczos iteration number. Solid lines
are guides for the eye.

As can be seen in Fig. 7.7(a), there is a jump of the β coefficients around the iteration
number 365. This corresponds to an instability of the Lanczos algorithm [18], which occurs
when the inner products in Eqs. (3.133) and (3.134) tend to small values. However, the
final spectrum is robust with respect to such instabilities. This issue has been discussed
in detail in Ref. [18].

The even ζ coefficients tend to zero as the number of Lanczos iterations increases,
whereas the odd ζ coefficients are zero, as illustrated in Fig. 7.7(b). The decay of even
ζ’s is much slower than for Si [see Fig. 7.2(b)].

The extrapolation technique consists in performing explicitly some number of Lanczos
iterations, which provide β, γ, and ζ coefficients, and then extrapolating these coefficients.
The EEL spectrum has to be checked for a convergence with respect to the number of
Lanczos iterations, which are performed explicitly.

The effect of the use of the extrapolation technique is shown in Fig. 7.8. The EEL
spectrum calculated with only 300 iterations without the extrapolation contains spurious
oscillations when compared to the converged spectrum with 600 iterations. However, if



172 CHAPTER 7. A NEW METHOD TO EELS & APPLICATION TO BI

Figure 7.8: Effect
of the extrapolation
technique on the
convergence of the
EEL spectrum of
bulk Al for q =
0.513 a.u.|| [100].
Curves have been
shifted vertically for
clarity.

after 300 iterations the Lanczos coefficients β, γ and ζ are extrapolated to a sufficiently
large iteration number (e.g., 5 000 in this case), the calculated spectrum becomes indis-
tinguishable from the converged spectrum. In fact, in the current case, the extrapolation
technique allows us to gain only a factor of 2 in the number of Lanczos iterations. However,
in more complex systems, this factor can be larger. Hence, the use of the extrapolation
technique may significantly reduce the computational effort needed to obtain the con-
verged EEL spectrum.

7.2.1 (d) Comparison with experiment and conventional TDDFT calculations

Let us make a comparison between the EEL spectrum of Al calculated with the
Liouville-Lanczos approach, the experimental spectrum, and the theoretical EEL spec-
trum obtained with the conventional TDDFT method (see Sec. 3.3.3). Figure 7.9(a)
shows a comparison of the EEL spectrum for q = 0.616 a.u. along the [100] direction
obtained with the Liouville-Lanczos approach and the experimental one. As can be seen,
the agreement is remarkable, but for the slight misalignment of the plasmon peak. Fig-
ure 7.9(b) shows a comparison of the EEL spectrum obtained with the Liouville-Lanczos
approach and with the conventional TDDFT method [320]. As can be seen, both theo-
retical approaches give very similar spectra. The small difference between the two EEL
spectra can be attributed to the fact that the two calculations have not been performed
with the same parameters.11

11The authors of Ref. [320] have used the kinetic-energy cutoff of 32 Ry, a 16 × 16 × 16 MP k point
mesh, a Fermi-Dirac broadening of 0.002 Ry for the ground-state calculation, and a Gaussian broadening
of 0.073 Ry plus a lifetime broadening to plot the EEL spectra.
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(a) (b)

Figure 7.9: Comparison between the EEL spectrum of Al for q = 0.616 a.u.|| [100] calcu-
lated with the Liouville-Lanczos (LL) approach, using a 10× 10× 10 MP k point mesh,
a Lorentzian broadening σ = 0.051 Ry, 400 Lanczos iterations, and the extrapolation
scheme, with (a) the experimental spectrum [320], and (b) the theoretical EEL spectrum
obtained within the conventional TDDFT approach [320] (see Sec. 3.3.3).

Figures 7.9(a) and 7.10(b) show the comparisons between the calculated and the ex-
perimental EEL spectra, for q = 0.513 a.u. and q = 0.821 a.u. along the [100] direction,
respectively. As can be seen, the agreement is also good. I attribute the remaining dis-
crepancies to the lifetime effects [320], which have been approximated in my calculations
by a constant broadening. In order to have the same intensity of the plasmon peaks as
in the experiment, I have used σ = 0.056 Ry for q = 0.513 a.u., and σ = 0.068 Ry for
q = 0.821 a.u. In the case of q = 0.821 a.u., I had to use a MP k point mesh as dense
as 14× 14× 14 in order to converge the spectrum, which corresponds to 280 k points in
the IBZ, and 1470 k points in the IBZ(q). By using the extrapolation technique, I had to
make 300 Lanczos iterations for q = 0.513 a.u. and 450 Lanczos iterations for q = 0.821
a.u., in order to converge the EEL spectra.

7.2.2 (e) Test of the f-sum rule

I have checked the f -sum rule of the EEL spectra of Al calculated with the Liouville-
Lanczos approach, by using Eq. (3.73). The violation of the f -sum rule is about 6.7 % in
all cases considered above, i.e. in Figs. 7.9(a), 7.10(a), and 7.10(b).
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(a) (b)

Figure 7.10: (a) Comparison of the EEL spectra of Al for q = 0.513 a.u.|| [100] between ex-
periment [320] and theory, using a 10×10×10 MP k point mesh, a Lorentzian broadening
σ = 0.056 Ry, 300 Lanczos iterations, and the extrapolation technique. (b) Comparison
of the EEL spectra of Al for q = 0.821 a.u.|| [100] between experiment [320] and theory,
using a 14×14×14 MP k point mesh, a Lorentzian broadening σ = 0.068 Ry, 450 Lanczos
iterations, and the extrapolation technique.

7.3 Application to Bi

In this section I will present the first ab initio study of the EEL spectra of bulk bismuth
by applying the Liouville-Lanczos approach developed in Sec. 7.1. In particular, I will
demonstrate the effect of the spin-orbit coupling on the EEL spectra of Bi, by using the
extension of the Liouville-Lanczos formalism to the relativistic case (see Sec. 7.1.8).

This section is organized as follows. In Sec. 7.3.1 I will present the computational
details of my calculations. In Sec. 7.3.2 I will present the investigation of the convergence
of the EEL spectrum. In Sec. 7.3.3 I will make a comparison of the EEL spectra within
the LDA and GGA with the experimental one (see Sec. 4.5). In Sec. 7.3.4 I will present
the first study of the effect of the spin-orbit coupling on the EEL spectra of Bi. In
Sec. 7.3.5 I will demonstrate the application of the Liouville-Lanczos approach to the
calculation of the real and imaginary part of the dielectric function of Bi. In Sec. 7.3.6
I will demonstrate the plasmon dispersion in Bi within the LDA and GGA, with and
without spin-orbit coupling. In Sec. 7.3.7 I will present an investigation of various effects
in the EEL spectrum of Bi: exchange-correlation effects, crystal local field effects, and
the anisotropy. Finally, in Sec. 7.3.8 I will show a comparison between the loss function
and the imaginary part of the dielectric function at various finite values of the momentum
transfer q.
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7.3.1 Computational method

Calculations have been performed by using fully-relativistic norm-conserving pseudopo-
tentials described in Appendix A.1. I have considered two approximations for the exchange-
correlation functional, LDA and GGA. Within each of them I have used the corresponding
theoretical equilibrium lattice parameters (see Table 5.1) optimized when the spin-orbit
coupling (SOC) was included. I have used the kinetic-energy cutoff Ecut = 60 Ry, which
was sufficient to obtain converged EEL spectra, with respect to a cutoff of 80 Ry. The
geometry is described in detail in Sec. 4.2.1. The first Brillouin zone (BZ) was sampled
with a uniform k point mesh centered at the Γ point. For the ground-state calculation I
have used a Methfessel-Paxton smearing [244] with a broadening parameter of 0.02 Ry.
To plot the EEL spectra I have used a Lorentzian smearing with a broadening parameter
σ. The details about the k point mesh and the broadening parameter σ will be given in
the following.

7.3.2 Convergence of the EEL spectrum

Let us examine the convergence of the EEL spectrum of Bi with respect to the number
of Lanczos iterations and number k points in the BZ. To this end, let us consider the
LDA without the spin-orbit coupling. The convergence properties are similar when the
spin-orbit coupling is included in the calculations, and within the GGA.

(a) (b)

Figure 7.11: EEL spectrum of bulk Bi, calculated within the LDA without the spin-orbit
coupling for q = 0.2 Å−1 || [111]. (a) Convergence of the EEL spectrum with respect to
the number of Lanczos iterations, using a 12× 12× 12 uniform k point mesh centered at
the Γ point. (b) Convergence of the EEL spectrum with respect to the size of the k point
mesh, for 6000 Lanczos iterations. Both figures have been obtained with a Lorentzian
broadening σ = 0.035 Ry. Curves have been shifted vertically for clarity.

Figure 7.11(a) shows the convergence of the EEL spectrum of Bi for a momentum
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transfer q = 0.2 Å−1 along the [111] direction [see Fig. 4.3(a)], as a function of the
number of Lanczos iterations. As can be seen, the convergence is achieved after as much
as 6000 iterations. The maximal relative change of the intensity when comparing the EEL
spectra after 6000 and 8000 iterations is 0.4 % at 14.3 eV, which is extremely satisfactory.
This number of iterations (6 000) is much larger than in the case of silicon (1500 iterations)
and aluminum (600 iterations). This is due to the fact that the kinetic-energy cutoff in
Bi is much larger than the one I used for Si and Al (60 Ry compared to 16 Ry), and thus
a larger number of Lanczos iterations is necessary to achieve the convergence.

Figure 7.11(b) shows the convergence of the EEL spectrum with respect to the k point
sampling of the BZ. As can be seen, the convergence is reached by using a 12 × 12 × 12
uniform k point mesh. The maximal relative change of the intensity when comparing the
EEL spectra obtained with 12× 12× 12 and 14× 14× 14 k point meshes is 0.9 % at 12.3
eV. The 12 × 12 × 12 mesh corresponds to 189 k points in the IBZ for the ground-state
calculation, and 364 k points in the IBZ(q) for the linear-response calculation.

(a) (b)

Figure 7.12: Coefficients of the Lanczos recursion method for bulk Bi, q = 0.2 Å−1

|| [111]. (a) Numerical behaviour of odd and even β coefficients as functions of the Lanczos
iteration number. The horizontal line is the average of β coefficients. (b) Numerical
behaviour of odd and even ζ coefficients as functions of the Lanczos iteration number.
Solid lines are guides for the eye.

The computational effort needed to obtain the converged spectrum can be greatly
reduced by using the extrapolation technique. Figures 7.12(a) and 7.12(b) show the
numerical behaviour of β and ζ coefficients of the Lanczos recursion method. In contrast to
silicon, and similarly to aluminum, in semimetallic bismuth the odd and even β coefficients
do not oscillate around two different average values, instead they oscillate around the same
average value of 30.59 Ry. This average value is approximatively equal to the half of the
kinetic-energy cutoff.

There is an instability in the chain of β coefficients, which occurs around the iteration
number 1250, and there are some deviations of β’s from the average value around the
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Figure 7.13: Effect
of the extrapolation
technique on the
convergence of the
EEL spectrum of
bulk Bi for q = 0.2
Å−1 || [111]. Curves
have been shifted
vertically for clarity.

iteration numbers 2750 and 3600. However, the final EEL spectrum is stable with respect
to such instabilities. Figure 7.12(b) shows that even ζ coefficients oscillate around zero
and decay exponentially almost as fast as in silicon [see Fig. 7.2(b)], whereas odd ζ’s are
zero by definition, Eq. (3.138).

It turns out that the extrapolation technique can be applied after 2500 Lanczos iter-
ations, as illustrated in Fig. 7.13. Indeed, by making explicitly 2500 iterations, and then
using the average value of 30.59 Ry for β’s and zero for ζ’s up to, say, 20 000, one can
readily obtained the converged EEL spectrum. Thus, I gain a factor of 6000/2500 = 2.4
in the number of iterations, which is very significant. In Bi each Lanczos iteration is much
more computationally expensive than in Si or Al, and therefore it is important to spare
computer resources.

7.3.3 Comparison between LDA, GGA and experiment

Figures 7.14(a) and 7.14(b) show the comparison of the experimental EEL spectrum of
bulk Bi for q→ 0 [227] with the theoretical one for q = 0.1 Å−1 || [111], calculated within
the LDA and GGA, including the spin-orbit coupling (SOC). It turns out that the finite12

value of the momentum transfer q = 0.1 Å−1 is sufficient for the comparison with the
experiment.13

As can be seen, despite the big difference of the volume of the unit cell within the LDA
and GGA (see Table 5.1), both approximations give very similar EEL spectra. Though,
there are some small differences. The intensity of the main plasmon peak is slightly
smaller within the GGA, but the peak position is the same within both approximations.

12If one chooses q = 0, then the starting Lanczos vectors in Eq. (7.73) will be exactly zero, because
P̂k
c u

0
n,k(r) = 0, and thus the solution of linear-response equations will be also zero. Therefore, in practice

one should choose some small but finite value of q.
13The distance between the Γ and T points in the bulk Brillouin zone is ≈ 0.8 Å−1 [see Fig. 4.3(a)].

Therefore, the momentum transfer q = 0.1 Å−1 || [111] can be considered to be small enough. Moreover,
I have tested that a further decrease of q does not lead to significant changes in the EEL spectra in
Figs. 7.14(a) and 7.14(b). In addition, the fact that I have chosen q along the specific direction is
justified by the fact that the anisotropic effects are small for small q, as will be shown in Sec. 7.3.7.
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(a) (b)

Figure 7.14: (a) Comparison of the EEL spectrum of bulk Bi within the LDA and GGA
with the spin-orbit coupling (SOC) for q = 0.1 Å−1 || [111], and experimental spectrum
for q → 0 [227]. (b) The same as (a) but in the larger energy range. Calculations have
been performed by using a 14 × 14 × 14 uniform k point mesh centered at the Γ point,
and a Lorentzian broadening σ = 0.015 Ry.

Peaks due to the interband transitions from the 5d levels, in the energy range from 20 to
30 eV, also look very similar within the LDA and GGA.

Both approximations give EEL spectra in good agreement with the experimental one of
Ref. [227]. The position of the plasmon peak around 14 eV coincides between theory and
experiment. In my calculations I have also found a peak at about 6 eV, which corresponds
to the shoulder in the experimental spectrum of Ref. [227]. As can be seen in Fig. 7.14(a),
positions of the peaks due to transitions from the 5d levels are red-shifted by about 2 eV
with respect to the experimental ones. Such a shift comes from the delocalization of the
5d semicore levels in the LDA and GGA (see Fig. 4.2.2). As a consequence, they appear
at higher binding energy in the theory than in the experiment, which red-shifts the peak
positions in the EEL spectrum.

Figure 7.14(b) shows that the theory remarkably reproduces the broad structure ex-
tending between 40 and 100 eV. The GGA reproduces this structure better than LDA.
It is worth noting that it is extremely difficult to reproduce this broad structure with the
conventional TDDFT approach (see Sec. 3.3.3), as one would require a huge number of
empty states in order to converge the EEL spectrum in such a wide energy range. How-
ever, within the Liouville-Lanczos approach, no empty states are calculated, and thus one
can easily consider large energy range. The excellent description of this broad structure
in Bi is a good example showing one of the power points of the new approach.

A detailed comparison of the peak positions in the theoretical EEL spectrum with
various experimental data is given in Table 7.1. In Fig. 7.14(a) I do not find a surface
plasmon peak at about 10 eV, because I have performed calculations on bulk Bi. More-
over, I do not find in the theoretical EEL spectrum a peak at about 29 eV, which was
observed in some experiments (see Table 7.1). Presumably, such a peak was measured
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peak This work Ref.a Ref.b Ref.c Ref.d Ref.e

1 5.8 ± 0.1 5 5 5.3 ± 0.2 5.3 5.6
2 10 9.9 ± 0.2 9.5 ± 0.2
3 14.0 ± 0.2 13.95 ± 0.15 14 14.7 ± 0.2 14.4 ± 0.2 14.1 ± 0.3
4 22.6 ± 0.1 24.45 ± 0.2 24 24.8 ± 0.2 24.6
5 25.9 ± 0.2 27.3 ± 0.2 27 27.8 28
6 29 29 ± 0.2 29.7
7 51 ± 1 52 52

a Wehenkel and Gauthe, Ref. [227]. d Zacharias, Ref. [225].
b Gauthe and Wehenkel, Ref. [226]. e Sueoka, Ref. [224].
c Powell, Refs. [221, 222].

Table 7.1: Comparison of the peak positions in the EEL spectrum of bulk Bi as obtained in
this work and various experiments. The error bar in my calculations has been determined
as a difference between the LDA and GGA.

due to some experimental conditions. Namely, as has been pointed out by Wehenkel and
Gauthe [227], Bi2O3 has a peak at 29 eV. Therefore, the origin of such a peak is probably
due to the oxidation of Bi films in the experiments.

7.3.4 Effect of the spin-orbit coupling on EEL spectrum

The effect of the SOC is rather strong both within the LDA and GGA, as can be seen
in Figs. 7.15(a) and 7.15(b). The position of the plasmon peak at about 14 eV does not
change, however its intensity changes significantly: it increases by ∼ 26% when the SOC
is “switched off”, both within the LDA and GGA. The change in the intensity of the
plasmon peak in Bi due to SOC is more pronounced than in Pb [56], for which the SOC
is also large. In Figs. 7.15(a) and 7.15(b) the Lorentzian broadening, σ = 0.015 Ry, has
been chosen in such a way that the intensity of the plasmon peak within the LDA with
the SOC is equal to the experimental one.

When the SOC is “switched off” the peak at ∼ 6 eV and the peaks between 20 and
30 eV blue-shift, and their intensity changes only slightly. Positions of the peaks due to
transitions from the 5d levels are fortuitously in better agreement with experiment when
the SOC is neglected. This can be understood from Fig. 4.4(b), which shows that when
the SOC is included the 5d levels split, and some of them appear at higher binding energy
values than the 5d levels without SOC.
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(a) (b)

Figure 7.15: Comparison of the experimental EEL spectrum of bulk Bi for q → 0 [227]
with the theoretical ones for q = 0.1 Å−1 || [111], calculated with and without spin-orbit
coupling (SOC) within (a) the LDA, and (b) the GGA. Calculations have been performed
by using a 14× 14× 14 uniform k point mesh centered at the Γ point, and a Lorentzian
broadening σ = 0.015 Ry.

7.3.5 Real and imaginary part of the dielectric function

Although the origin of all peaks in the EEL spectrum of Bi was revealed a long time ago
from the experimental works, I give here a first ab initio confirmation. To this end, let
us consider the real and imaginary parts of the dielectric function, Re[εM] and Im[εM].
They can be obtained by using the loss function and by applying the Kramers-Kronig
transformation [131]. However, I have used another method: I performed a direct ab
initio calculation of Re[εM] and Im[εM], by means of the Liouville-Lanczos approach, as
described in Sec. 7.1.9.

The result of the application of such an approach is illustrated in Figs. 7.16(a) and
7.16(b). In Fig. 7.16(a) it is seen that the agreement between the TDLDA calculation of
Re[εM] and Im[εM] on the one hand, and the data of Ref. [225], which was obtained by
applying the Kramers-Kronig relation to the loss function, on the other hand, is remark-
able. In particular, the peak at about 6 eV, which is due to interband transitions, is well
reproduced. Also, in my calculations I reproduce the peaks between 20 and 30 eV, which
are indeed due to the interband transitions from the 5d levels. In Fig. 7.16(b) it can be
seen that these peaks coincide with the peaks in the loss function. Also, one can see that
the plasmon peak at 14 eV occurs when the Re[εM] changes its sign with a positive slope,
which confirms that this is indeed a plasmon.

In fact, a more stringent test of the Liouville-Lanczos approach can be a compari-
son of Re[εM] and Im[εM] with those obtained by applying the Kramers-Kronig relation
to the reflectivity spectrum of Bi, which was measured with high accuracy [238], and
where 6 peaks were found between 0 - 10 eV. From a computational point of view of the
Liouville-Lanczos approach, such a comparison may require a decrease of the Lorentzian
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(a) (b)

Figure 7.16: (a) Comparison of Re[εM(q)] and Im[εM(q)] at q = 0.1 Å−1, calculated within
the LDA with the spin-orbit coupling (SOC) included, with the data of Ref. [225] which
were obtained from the measured loss function by applying the Kramers-Kronig trans-
formation. (b) Comparison of the calculated Re[εM(q)], Im[εM(q)], and −Im[1/εM(q)].
Calculations have been performed by using a 14× 14× 14 uniform k point mesh centered
at the Γ point, and a Lorentzian broadening σ = 0.015 Ry.

broadening and increase of the k point sampling of the Brillouin zone (with respect to
those parameters given in the caption of Fig. 7.16), in order to resolve fine features in
Re[εM] and Im[εM].

7.3.6 Plasmon dispersion

In this thesis I report for the first time the plasmon dispersion in bulk Bi, i.e. how the plas-
mon peak position changes when the transferred momentum q changes. Figures 7.17(a)
and 7.17(b) show the comparison between the LDA and GGA, both with and without the
spin-orbit coupling. As can be seen, despite the large variation of the equilibrium volume
of the unit cell (see Table 5.1), both the LDA and GGA give very similar EEL spectra,
but for some quite small differences.14 The plasmon dispersion within the LDA and GGA
shows the same behaviour when the transferred momentum q is increased. The plasmon
peak is blue-shifted, but the peaks due to transitions from the 5d levels do not move,
which confirms that they are not plasmons and due to interband transitions. In contrast,
the peak below the plasmon peak, which was attributed to the interband transition, does
move (blue-shifts) when q increases.

When q is increased, the plasmon peak merges with the 5d interband transitions.
Namely, the spectrum becomes very broad, and it has a much smaller intensity, so that

14If LDA and GGA are used with the same (e.g. experimental) lattice parameters, the EEL spectra
are the same, because the corresponding Kohn-Sham band structures are identical [see Figs. 5.3(c) and
5.3(d)].
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(a) (b)

Figure 7.17: EEL spectra of bulk Bi at various values of the transferred momentum q
along the [111] direction, in units of Å−1. (a) Calculations within the LDA with and
without spin-orbit coupling (SOC), (b) Calculations within the GGA with and without
SOC. Curves have been shifted vertically for clarity. Calculations have been performed
by using a 12× 12× 12 uniform k point mesh centered at the Γ point, and a Lorentzian
broadening σ = 0.035 Ry.

the f -sum rule is satisfied at any transferred momentum q. Such a broadening of the
EEL spectrum occurs due to the electron-hole continuum [130].

The effect of the spin-orbit coupling on the EEL spectrum is more pronounced for
small q, and becomes less important for large q. This feature is present both for the LDA
and GGA.

7.3.7 Exchange-correlation, crystal local field and anisotropy ef-
fects

It is important to understand the effects of the exchange and correlation (XC), the crystal
local field effects (CLFE) and the anisotropy in the EEL spectrum of Bi. Let us consider
the LDA without the spin-orbit coupling effect. In Fig. 7.18(a) it can be seen that XC
effects are not significant for small q, and they become more important for larger q.
Thus, the random phase approximation (RPA) including CLFE already gives accurate
description of the EEL spectrum.

Crystal local field effects are more important than XC effects. When CLFE are ne-
glected, i.e. when one uses RPA without CLFE, one can see in Fig. 7.18(a) quite signif-
icant changes in the EEL spectrum. For example, for q = 0.2 Å−1 the plasmon peak is
blue-shifted by ∼ 2 eV, and its intensity is reduced. The peaks due to interband transi-
tions from the 5d levels do not move but increase their intensity. By increasing q, CLFE
become more pronounced.
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(a)

(b)

Figure 7.18: EEL spectra of bulk Bi, calculated within the LDA without the spin-orbit
coupling, by using a 12 × 12 × 12 uniform k point mesh centered at the Γ point, and
a Lorentzian broadening σ = 0.035 Ry. (a) Comparison between TDLDA, RPA with
and without crystal local field effects (CLFE) for several values of q along the [111]
direction. (b) Effect of the anisotropy for several values of q along the [111], [110], and
[100] directions, within the TDLDA. Curves have been shifted vertically for clarity.

I have found that the EEL spectrum of bulk Bi is anisotropic15 for large transferred
momenta, as can be seen in Fig. 7.18(b). However, for small transferred momenta, e.g.
q = 0.2 Å−1, the anisotropy is very small. When q is increased up to, e.g. 0.8 Å−1 or
larger, the anisotropy becomes very significant. When q = 0.2 Å−1 and q = 0.8 Å−1 the
peaks due to the interband transitions from the 5d levels are isotropic, in contrast to the
plasmon peak and the peak at ∼ 6 eV.

15The anisotropy is determined by the electronic bandstructure [140].
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(a) (b)

(c) (d)

(e) (f)

Figure 7.19: (a)-(f) Comparison of Re[εM], Im[εM], and −Im [1/εM(q)] at various values
of q along the [111] direction. Calculations have been performed within the LDA without
the spin-orbit coupling, by using a 12 × 12 × 12 uniform k point mesh centered at the
Γ point, and a Lorentzian broadening σ = 0.035 Ry. In panels (e) and (f), Im[εM] and
−Im [1/εM(q)] have been multiplied by a factor for better visibility.
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7.3.8 Comparison between −Im [1/εM(q)] & Im [εM(q)]

Figure 7.19 shows the comparison of the loss function, −Im [1/εM(q)], and the imaginary
part of the dielectric function, Im [εM(q)], at various values of the transferred momenta q.
It is seen that for small q these two spectra are very different, but for large q they become
almost identical. As has been pointed out in Sec. 3.3.3(d), this is due to the fact that
for small q, the long-range component is important, whereas for large q the short-range
effects dominate. The same trend has been confirmed by Weissker et al. on the example
of silicon (see Fig. 20 in Ref. [140]).

7.3.9 Effect of the 5d semicore levels

Figure 7.20 shows the comparison of the EEL spectrum of bismuth with 5d semicore levels
in the valence region and without 5d semicore levels.16 As can be seen, without 5d levels
the broad structure between 30 - 100 eV is not present in the spectrum, which means that
this structure is due to the interband transitions from the 5d levels to higher conduction
bands (see Sec. 4.5). It is worth noting that it would be computationally very expensive
to describe such a broad structure in the EEL spectrum using the conventional TDDFT
approach, because one would need to include very large number of empty states in the
calculations [see Sec. 3.2.1 (b)], whereas in the Liouville-Lanczos approach there are no
empty states.

Figure 7.20: Comparison of the EEL spectrum of bulk Bi within the LDA with the spin-
orbit coupling for q = 0.1 Å−1 ‖ [111] with 5d semicore levels (solid black line) and
without 5d semicore levels (red dashed line). The calculations have been performed using
a 12 × 12 × 12 uniform k point mesh centered at the Γ point, a Lorentzian broadening
σ = 0.035 Ry, and 2500 Lanczos iterations using the extrapolation technique.

Moreover, when the 5d levels are not included in the valence region there are no peaks
between 20 - 30 eV, which are due to the interband transitions from the 5d levels to the

16Without 5d semicore levels in the valence region the transferability of the pseudopotential is worse
than when the 5d levels are included in the valence region (see Appendix A.1).
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lowest conduction bands. In addition, there is a blue-shift of the plasmon peak by 2.5 eV,
and increase in its intensity.

A more precise comparison of the spectrum in the 0 - 10 eV range is beyond the scope
of this study. The pseudopotential without 5d semicore states has not been optimized,
and thus the corresponding band structure shows deviations from the one obtained when
5d levels are included in the valence region.

7.4 Conclusions

In this chapter I have presented a new ab initio method to the electron energy-loss spec-
troscopy. It is an extension of the Liouville-Lanczos approach from the optical case (q = 0)
to EELS (q 6= 0). The theory, which has been developed in this chapter, unites the the-
ory of TDDFPT for optics (see Sec. 3.4) and the theory of the static density functional
perturbation theory for q 6= 0 [40]. The new method consists in solving the linearized
TDDFPT equations in the frequency domain. The electronic susceptibility χ(q, ω) is ex-
pressed as an off-diagonal matrix element of the resolvent of the Liouvilian superoperator,
which can be efficiently calculated by means of the Lanczos recursion method, much like
in the optical case.

The Liouville-Lanczos approach to EELS has several advantages over the conventional
TDDFT approach to EELS, based on the solution of the Dyson-like equation. Firstly,
no empty states are calculated, which allows for an extension of the calculations of the
EEL spectra from the low-loss to the 50-100 eV region. Secondly, the new approach
scales computationally only a few times larger than the ground-state DFT calculations,
which allows us to consider systems containing hundreds of atoms. However, currently the
new method is limited by the adiabatic approximation to the exact exchange-correlation
kernel.

I have tested the Liouville-Lanczos approach to EELS on prototypical examples of
silicon and aluminum. The agreement between theory and experiment is remarkable. I
have paid special attention to a study of the convergence properties of the new method.
It turns out, that the use of the extrapolation technique can greatly reduce the computa-
tional effort needed to obtain the converged EEL spectra, as in the optical case.

I have applied the new method to a study of the EEL spectrum of bismuth. The
agreement between theory and experiment is extremely good. In particular, I have found
that the effect of the spin-orbit coupling on the EEL spectrum of Bi is large. The SOC
influences the intensities as well as the positions of the peaks due to interband transi-
tions, whereas the plasmon peak position is not sensitive to the SOC, and its intensity is
increased by 26 % when the SOC is not included. Moreover, with the new method I could
easily reproduce the broad structure in the 40-100 eV range in the EEL spectrum of Bi. I
have calculated the plasmon dispersion, and have found that by increasing q the plasmon
peak merges with the peaks due to the interband transitions from the 5d levels, due to
the electron-hole continuum. I have also shown that the description of the EEL spectrum
of Bi within the RPA with crystal local field effects is very close to TDLDA, whereas
a neglect of the CLFE leads to significant changes in the EEL spectrum. In addition,
I have shown that the anisotropy in the EEL spectrum of Bi becomes pronounced with
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increasing the transferred momentum q.
The Liouville-Lanczos approach to EELS is very promising in the field of plasmonics

[327]. In particular, it is expected to be very efficiently applied for calculations of surface
plasmons [328], which implies an inclusion in the simulations of large number of atoms -
a challenging task for conventional state-of-the-art methods.
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Chapter 8

General conclusions and perspectives

In this thesis, I have interpreted the time-resolved and angle-resolved photoemission ex-
periment on the Bi(111) surface, on the basis of the Kohn-Sham band structure within
the LDA and GGA. I have revealed the character of the electronic states - bulk states
or surface resonances - in the experimental intensity map. By using the symmetry argu-
ments I have shown that one of the electronic bands has a bulk character with a three-fold
symmetry, and the other bands correspond to the surface states and surface resonances
having a six-fold symmetry. Moreover, by using the frozen-phonon approximation I have
computed the electron-phonon coupling in Bi, and have shown that it strongly depends
on the electronic wavevector, confirming the experimental finding. The amplitude of the
oscillation of the electronic bulk band, which is induced by the A1g coherent phonon mode
through the electron-phonon interaction, has been accurately reproduced within both the
LDA and GGA. I have also shown that the DFT calculations on bulk Bi cannot explain a
very steep shift of 20 meV in the binding energy of the highest valence bulk band imme-
diately after the photoexcitation of the sample, and that further theoretical studies that
go beyond DFT are required.

I have performed a detailed study of the low-energy and high-energy plasmonic exci-
tations in Bi. To this end, theoretical developments and implementation of a new method
for the electron energy-loss spectroscopy (EELS) have been performed.

I have studied the low-energy carrier-response in the photoexcited Bi in the range
from tens to hundreds of meV, which is determined by the intraband contribution to the
dielectric function of the material. I have developed a new methodology to describe the
free-carrier absorption from-first-principles, which allowed us to interpret the free-carrier
Drude response in Bi at equilibrium and in the photoexcited state in the time-resolved
terahertz experiment. The new methodology is based on the semiclassical description of
the frequency of the electron-and-hole plasma oscillations, which in Bi displays a non-
monotonic behaviour as initial increase and subsequent decay. By determining various
carriers properties as the Fermi velocity, effective and optical masses, restricted density of
states near the Fermi level, I could explain the peculiar behaviour of the plasma frequency.
I have shown that such a behaviour is induced by an accumulation of electrons and holes
in the true local extrema of the electronic band structure near the Fermi level, where
the photoexcited carriers spend several hundreds of femtoseconds before thermalizing

189
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to the Fermi level due to the electron-phonon and hole-phonon interaction, where the
recombination of the electron-hole plasma subsequently takes place. In particular, I have
shown that the maximum in the valence band at the Γ point serves as a charge-reservoir
for extremely heavy holes, having the average effective mass of ∼ 18m0, and slows down
the hole thermalization process, which is likely to be dominant and responsible for the
non-monotonic evolution of the plasma frequency.

I have also studied the high-energy carrier-response in Bi in the energy range up to
100 eV, which is determined by the single-particle interband excitations and collective
excitations of carriers at various momenta q, the information about which is incorporated
in the inverse dielectric function of the material. To this end, I have developed an new ab
initio method to EELS, the so-called Liouville-Lanczos (LL) approach. Such a method is
based on the evaluation of the carrier susceptibility as an off-diagonal matrix element of
the resolvent of the Liouvillian superoperator, which can be readily computed by using the
Lanczos recursion method. The LL approach is superior with respect to the traditional
TDDFT approach based on the solution of the Dyson-like equation for the susceptibility.
Namely, the new method avoids the computation of numerous empty states, which allows
us to extend the calculations of the electron energy-loss (EEL) spectra to the 50-100 eV
range, and which scales computationally only a few times larger than the ground-state
DFT calculations, which allows us to treat hundreds of atoms. However, currently the
LL approach is limited by the adiabatic approximation to the exact exchange-correlation
kernel. After a successful test of the new method on silicon and aluminum, I have per-
formed a detailed analysis of the EEL spectra of Bi. I have found the following features
of the EEL spectra of Bi: (i) the spin-orbit coupling is essential for a description of the
plasmon peak and the peaks due to interband transitions, (ii) the increase of the trans-
ferred momentum q leads to a merging of the plasmon peak with the peaks coming from
the interband transitions, which is due to the electron-hole continuum, (iii) the crystal
local field effects become important when q increases, and (iv) the anisotropy of the EEL
spectrum of Bi becomes pronounced when q increases.

The perspectives of this PhD work are numerous.

• Surfaces of Bi and of Bi compounds.

In the past years, a new field has emerged in solid state physics when it was realized
that the spin-orbit coupling leads to topological insulating phases that cannot be
adiabatically connected to conventional insulators and semiconductors [179]. Many
of these topological insulators are based on Bi compounds, e.g., Bi2Te3 and Bi2Se3.
My understanding of both the spin-orbit coupling and the modelling of Bi can be
used to attack this field of research.

• Thermoelectricity in Bi.

In this thesis I have discussed little the thermoelectric properties of Bi. However,
thanks to my ab initio modelling of Bi, the thermal transport is going to be computed
including the phonon-phonon interaction, in collaboration with J. Sjakste (LSI,
École Polytechnique), F. Mauri, M. Lazzeri, and L. Paulatto (IMPMC, Université
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Paris VI, France), and N. Mingo (CEA-LITEN, Grenoble, France). Next step then
will be an understanding of the thermoelectric properties of Bi, where the electron-
phonon interaction plays a big role known as the phonon drag effect [329, 330].

• Ab initio calculation of the relaxation times.

In the interpretation of the time-resolved terahertz experiment of Chapter 6, the
rates of recombination τh and τl have been obtained as fitting parameters. In the
future, they could be obtained ab initio by calculating the electron-hole plasma
recombination carried by the carrier-phonon interaction.

• Charge density waves.

Another topic which my PhD leaves open for the future is the ab initio calcula-
tion of the electron-phonon coupling in materials sustaining a charge density wave
(CDW). Indeed, phase coexistence due to the coupling between various degrees of
freedom (spin, charge, lattice) are a characteristic of emerging materials which are
“hot topics” because of their important physical properties, such as materials with
a CDW, or materials showing superconductivity at high temperatures, or with large
magnetoresistivity [331]. Charge density wave is a structural transition in which
the electronic subsystem is strongly coupled to the atomic one [332]. The structural
transition can be dominated by the electronic subsystem (Mott instability) or by
phonons, i.e. the collective atomic motion (Peierls instability). The electronic cor-
relations, which are present in the Mott instability, are difficult to take into account
in the calculation. In contrast, it has been shown that Peierls instabilities can be
calculated in the framework of DFT [333]. The formation of a CDW is expected
in a system showing a large anisotropy. In order to understand the formation of a
CDW, the electron-phonon coupling is an essential ingredient, and more specifically,
the dispersion of the electron-phonon coupling in the Brillouin zone is crucial [332].
In my PhD, I have shown that this dispersion of the electron-phonon coupling is in
extremely satisfactory agreement with experiments in bismuth, which opens the way
to the study of other materials where a Peierls-driven CDW occurs, like in CeTe3.

• Liouville-Lanczos approach to EELS.

Finally, one of the main achievements of my PhD is the new method to EELS.
I believe that the Liouville-Lanczos approach is the next-generation method, which
can be readily applied for various challenging problems in the field of plasmonics
[327], e.g., for a calculation of surface plasmons [328] in complex materials containing
hundreds of atoms in the unit cell.
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Appendix A

Bismuth

A.1 Pseudopotential

I have generated a fully-relativistic norm-conserving pseudopotential (PP) of Bi in a
separable form [77, 80] (see Sec. 2.3.2). For the PP generation I used the ATOMIC code
which is a part of the QUANTUM ESPRESSO package [68]. The work has been done in
collaboration with Prof. Andrea Dal Corso.

The electronic configuration of a neutral Bi atom is [Xe]4f 145d106s26p3. At the first
step of the PP generation, all of these electronic levels have to be separated into the
valence region and the core region [see Sec. 2.3.2(a)]. I have included the 5d106s26p3

levels in the valence region, and the rest - into the core. As pointed out in Sec. 4.2.2, the
5d semicore levels can be included either in the core region or in the valence region. I
have found that it is necessary to include the 5d levels in the valence region in order to
greatly improve the transferability of the PP. However, this makes the NC-PP extremely
hard, which shows up in the necessity to use a very high kinetic-energy cutoff.1 Thus, it is
usually recommended to switch from NC-PP to Ultrasoft-PP, which are much softer and
require smaller kinetic-energy cutoff. Nonetheless, I have decided to generate a NC-PP.
The results obtained with such a NC-PP are used as a reference for the development of
Ultrasoft-PPs.

At the next step of the PP generation, I solved the relativistic Dirac equation for a
single Bi atom by performing all-electron (AE) calculation. The AE-wavefunctions serve
as a reference for the construction of the PP. Since I am interested in the generation of the
norm-conserving PP, certain conditions must be satisfied (see Sec. 2.3.2). One of these
conditions is that the pseudo-wavefunctions must coincide with the AE-wavefunctions
outside of the sphere with a cutoff radius rc. To this end, I have set up the 5d, 6s, and 6p
wavefunctions with the cutoff radii rc of 1.88, 1.79, and 2.30 (a.u.), respectively. In the
generation process, I have also included the unoccupied 5f levels with rc = 2.41 (a.u.).
For a pseudization of the wavefunctions I have used the Troullier-Martins method [334].
The nonlinear core correction was not used [76]. As a local part of the PP I have taken
the s channel, which insured the absence of ghost states [81]. I have checked that if one
of the channels p, d or f is taken as a local part of the PP, then the ghost states appear.

1For the ground-state calculation of Bi I had to use a kinetic-energy cutoff as large as 150 Ry.
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Figure A.1: Comparison of the all-electron wavefunctions (solid lines) with the pseudo-
wavefunctions (dashed lines) of a single Bi atom. When r approaches zero, the all-electron
wavefunctions become frequently oscillating functions, while the pseudo-wavefunctions
remain smooth nodeless functions. (Unpublished)

Figure A.1 shows the comparison of the AE-wavefunctions with the pseudo-wavefunctions
of a single Bi atom. As can be seen, the AE-wavefunctions become rapidly oscillating func-
tions when the radius r approaches zero (r = 0 corresponds to the center of the nucleus),
while the pseudo-wavefunctions remain smooth and nodeless. Due to the spin-orbit cou-
pling effect, there are two different 6p wavefunctions, two different 5d wavefunctions, and
only one 6s wavefunction (there is no splitting of the 6s level, because the orbital mo-
mentum is zero). Thus, all electronic levels, except the s levels, are split on j + 1/2 and
j − 1/2 levels, where j is the total angular momentum (see Sec. 2.2.1).

During the PP generation, the approximation for the exchange-correlation energy has
to be specified. I have generated two pseudopotentials: one within the LDA by using
Perdew-Zunger parametrization of the Ceperley-Alder functional [34], and another one
within the GGA by using Perdew-Burke-Ernzerhof parametrization [36].

The transferability of the LDA and GGA PPs has been tested. By considering different
electronic configurations apart from the neutral one, I have compared the total energy of
the all-electron and pseudopotential calculations. The energy differences are within 0.001-
0.01 (Ry), which confirms good transferability properties of my PPs. I have also compared
logarithmic derivatives of the pseudo-wavefunctions with the ones of AE-wavefunctions.
It turns out, that the logarithmic derivatives of the two are close, and no ghost states are
present. All of these tests confirm good properties of the new PPs.
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A.2 Phase diagram

As illustrated in Fig. A.2, bismuth has a very complex phase diagram, with as many as
10 different phases. The phase diagram of Bi is much more intricate in comparison with
other group-V elements (e.g., As, Sb). The literature on the Bi phase diagram is confused
by controversy over the existence of certain phases and by changes in phase numbering
due to conflicting observations [335]. In Fig. A.2 I use the numbering according to Homan
[336].

Figure A.2: Phase diagram of bismuth according to Ref. [335]. Numbering of phases
according to Ref. [336].

At ambient pressure and room temperature, bismuth crystallizes in the A7 rhombo-
hedral structure (see Sec. 4.2.1). I will label this phase by rh(2), where 2 in the brackets
indicates the number of atoms in the primitive unit cell. The compression at room tem-
perature to 40 GPa produces the structure sequence I → II → III → IV → V → VI.
Phase II has been identified as base-centered monoclinic with 4 atoms per unit cell -
cm(4), and phase III has been tentatively identified as orthorombic with 8 atoms per unit
cell - orth(8) [335]. The high-pressure phase VI is body-centered cubic - bcc [335]. No
further transitions were found up to 40 GPa.

At temperatures below 300 K, the I - II transition disappears in a triple point, and
two new phases, VIII and IX, appear. At temperatures above 300 K, two additional
phases, VII and II′, with a very small stability field, were found [335]. Phase VII has been
identified as tetragonal with 8 atoms per unit cell - tet(8), very similar to phase III [335].

The melting curve of bismuth has been measured up to 7.0 GPa. Interestingly, the
rh(2) melting curve has a large negative slope, unlike the other group-V elements, and
like silicon [337]. This is a signature of covalent bonding in the material.
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The structural phase transitions of Bi as a function of pressure, and the associated
large changes in the electrical resistivity, have been of great importance in high pressure
physics where Bi has been used as a pressure calibrant [338]. The interest is in the fact
that Bi becomes a superconductor under pressure [338]. The pressure is one of the mech-
anisms which can induce a superconductivity in solids, which are not superconducting at
ambient pressure, e.g. Bi in the rh(2) phase. Bismuth is not superconducting in the rh(2)
phase because the density of states at the Fermi level is extremely small [see Fig. 4.5(b)].
However, Bi in the bcc phase at pressure of 9 GPa is superconducting, with the critical
temperature of superconductivity of Tc = 8.6 K [338]. This is due to the fact that the
density of states at the Fermi level is high, and thus the (theoretical) electron-phonon
coupling constant is also large, λ ∼ 0.8 [338].

A.3 Restricted density of states

The purpose of this appendix is to calculate the restricted density of states of bismuth
near the T and L points (see Figs. 4.3(a) and 4.3(b)), which is needed for the calculation of
the change of the number of carriers, ∆n, and the change of the squared plasma frequency,
∆ω2

p, due to the photoexcitation [see Eqs. (6.42) and (6.43)].

Let us define the restricted density of states (RDOS) as the number of states per eV
in a restricted region of the Brillouin zone (BZ).

For the calculation of the RDOS, I have modified the tetrahedron method of Blochl et
al. [197]. In the tetrahedron method, the Brillouin zone is divided into tetrahedra. There
are four vertices in each tetrahedron, and these vertices coincide with the k points with
which the BZ is sampled. It is worth noting that the k point sampling of the BZ must be
uniform, thus one can use a Monkhorst-Pack scheme [324].

In bismuth, as a restricted region for the RDOS I have used a sphere of radius R =
0.3 (2π/a0), where a0 is the equilibrium lattice parameter.2 Once the full BZ is sampled
with the tetrahedra, one has to select only those tetrahedra which are inside of the sphere.
There are some tetrahedra which are exactly on the border of the sphere: if at least one
vertex of the tetrahedron is outside of the sphere, this tetrahedron is not included in the
calculation of the RDOS. This is an approximation which leads to some small error in
the RDOS. However, this error can be reduced by sampling the BZ by a larger number
of smaller tetrahedra, i.e. by sampling the BZ with very dense k point mesh. In the case
of Bi, I have sampled the BZ with a 58 × 58 × 58 uniform k point mesh centered at the
Γ point, which resulted in 5221 k points in the sphere. It is worth noting that the RDOS
has to be normalized on the volume of the sphere, V = (4/3)πR3, whereas the total DOS
is normalized on the volume of the full BZ.

In the case of Bi, I am interested in the RDOS in the energy range from -0.3 to 0.3
eV with respect to the Fermi level. The reason why this energy range is considered is
the following. The aim is to calculate the optical mass with Eqs. (6.41) - (6.43). In
these equations, the RDOS, g̃(ε), is multiplied by the modulus of the difference of the
Fermi-Dirac functions, |fFD(ε, T )− fFD(ε, T0)|, and by the difference of its derivatives,

2Note that the distance between Γ and T (or between Γ and L) is equal to ≈ 0.6 (2π/a0).



A.3 RESTRICTED DENSITY OF STATES 197

Figure A.3: Kohn-Sham band structure of Bi near the Fermi level, calculated within the
GGA at the GGA theoretical equilibrium lattice parameters (see Table 5.1), including the
spin-orbit coupling. The Fermi level is at zero energy. See Sec. 5.1.1 for computational
details. (Unpublished)

(−∂fFD(ε, T )/∂ε)− (−∂fFD(ε, T0)/∂ε). From Figs. 6.3(a) and 6.3(b) it can be seen that
these functions vanish for energy values ε < −0.3 eV and ε > 0.3 eV, if one considers the
temperatures 300 < T < 500 K. Therefore, it is sufficient to determine the RDOS for the
energy range −0.3 < ε < 0.3 eV (see Fig. A.3).

Figures A.4(a) and A.4(b) show the comparison of the RDOS near the T and L points
with the total DOS. In the energy range 0.09 < ε < 0.3 eV the RDOS with a sphere
centered at the L point fully coincides with the total DOS. This is due to the fact that
the contribution to the RDOS near L comes only from the lowest conduction band (see
Fig. A.3.1). For instance, in Fig. A.5(a) the isosurface of constant energy ε−εF = 0.20 eV
is shown. It can be seen that the whole isosurface is contained inside the sphere centered
at the L point. Note, the energy ε = 0.09 eV corresponds to the top of the highest
valence band at the T point (see Table 5.2, GGA at the GGA theoretical equilibrium
lattice parameters). Hence, for energy values ε < 0.09 eV the highest valence band comes
into play, and its states make a contribution to the DOS (see Fig. A.3.1).

At the L point, there is a “gap” between the top and the bottom of the bands (see
Fig. A.3), which covers the energy range −0.120 < ε < −0.096 eV (see Table 5.2, GGA
at the GGA theoretical equilibrium lattice parameters). These bands at the L point are
extremely sharp, which means that the density of states is exceedingly small. Indeed, in
Fig. A.4(b) it can be seen that the RDOS near the L point is non-distinguishable from
zero in the energy range −0.18 < ε < −0.06 eV. For this reason, the RDOS near the T
point fully coincides with the total DOS in this energy range. Figure A.5(b) confirms this
feature: the isosurface of constant energy ε − εF = −0.11 eV consists only of the part
coming from the highest valence band near the T point, and it is fully contained in the
sphere centered at the T point.

Finally, in the energy range −0.30 < ε < −0.18 eV, both the RDOS near the T point
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(a) (b)

Figure A.4: (a) Comparison of the restricted density of states (RDOS) near the T and
L points with the total DOS. (b) The same as (a) but zoomed. The (R)DOS is in units
of states per eV and per volume [in the case of the total DOS, the volume of the full
Brillouin zone, and in the case of the RDOS, the volume of the sphere centered at T
or L]. (Unpublished)

and the RDOS near the L point differ considerably from the total DOS [see Fig. A.4(a)].
This can be understood from Figs. A.5(c) and A.5(d): a large portion of the isosurfaces
ε − εF = −0.21 eV and ε − εF = −0.26 eV is contained outside of the spheres centered
at the T and L points. There is a very steep rise of the total DOS in this energy range.
This is so because the highest valence band in the vicinity of the T point becomes very
flat (see Fig. A.3), which enhances the DOS appreciably.
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(a) (b)

(c) (d)

Figure A.5: Energy isosurfaces in the Brillouin zone of the rhombohedral lattice. The
yellow color corresponds to the contribution from the lowest conduction band, and the
green color - from the highest valence band. (a) Energy isosurface ε− εF = 0.20 eV, (b)
Energy isosurface ε−εF = −0.11 eV, (c) Energy isosurface ε−εF = −0.21 eV, (d) Energy
isosurface ε − εF = −0.26 eV. Circles denote spheres with the radius R = 0.3 (2π/a0),
which restrict regions in the reciprocal space around the high symmetry points T and L.
(Unpublished)
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Appendix B

Spectroscopy

B.1 Photoemission spectroscopy

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy, is a general
term which refers to all techniques based on the photoelectric effect [339, 340, 341]. In the
photoelectric effect, electrons are emitted from matter as a consequence of the absorption
of photons, and they are called photoelectrons. PES is one of the most sensitive and
accurate techniques for measuring the energy of electronic states [340].

B.1.1 Mechanism of photoemission

A beam of monochromatic radiation, provided either by a gas-discharge lamp, or laser,
or synchrotron beamline, is incident on a sample. If an electron in the sample absorbs
the energy of one photon and it is larger than the work function of the sample,1 then this
electron is ejected from the sample. A part of the photon energy is used to liberate the
electron from the atomic binding, and the rest contributes to the kinetic energy of the
free electron. Instead, if the photon energy is too low, the electron is unable to escape
from the material.

B.1.2 Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods
of studying the electronic structure of solids [341]. By measuring the kinetic energy
and angular distribution of the photoelectrons, one can gain information on both the
energy and momentum of the electrons propagating inside a material. Nowadays, ARPES
experiments can reach the energy resolution of ∼ 2 meV and angular resolution of ∼ 0.2◦

[341].
Since photoelectrons have different momenta, they escape in different directions. By

collecting these photoelectrons with an electron energy analyzer, one measures their ki-
netic energy εkin for a given emission angle [340]. Thus, the wavevector k of the photo-

1The work function is the measure of the potential barrier at the surface of the material that prevents
the valence electrons from escaping [339].
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Figure B.1: Geometry of the ARPES experiment. The emission direction of the photoelec-
tron is specified by the polar emission angle θ and azimuthal emission angle φ. According
to Ref. [341].

electron can be determined: its modulus is given by |k| =
√

2m0εkin/~, and its parallel
component k‖ and perpendicular component k⊥ to the sample surface are obtained from
the polar emission angle θ and azimuthal emission angle φ (see Fig. B.1). The goal is
then to deduce the electronic band dispersion of the solid εn(k) (where n is the band in-
dex), i.e. the relation between the binding energy εB and momentum k for the electrons
propagating inside the solid, starting from εkin and k measured for the photoelectrons in
vacuum. In order to do that, one has to use the conservation laws of the total energy and
momentum.2

Within the non-interacting electron picture, one can relate the kinetic energy and
momentum of the photoelectron to the binding energy εB and crystal momentum k inside
the solid as [340]:

εkin = ~ω −W − |εB|, (B.1)

k‖ =
1

~
√

2m0εkin sin θ, (B.2)

where W is the work function of the material, m0 is the free-electron mass, and k‖ is the
component of the momentum parallel to the surface of the crystal.

In order to map the electronic dispersion εn(k), one needs to know the full crystal wave
vector k, i.e. its parallel and perpendicular components. However, the perpendicular
component k⊥ is not conserved across the sample surface due to the lack of translational
symmetry along the surface normal [340]. This implies that, in general, even experiments
performed for all k‖, i.e. by collecting photoelectrons at all possible angles, will not allow
for a complete determination of the total crystal wavevector k [340]. However, there
are two possible solutions to this problem, experimental and theoretical. On one hand,
several specific experimental methods for absolute three-dimensional band mapping have
been developed (see, e.g. Ref. [339]). On the other hand, k⊥ can be determined from
ab initio DFT calculations [see Sec. 5.2.4(a)]. A particular case in which the uncertainty

2The photon momentum can be neglected at the low photon energy typically used in ARPES experi-
ments [341].
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in k⊥ is less relevant is that of the low-dimensional systems characterized by a negligible
dispersion along the z axis, i.e. the surface normal [340].

B.1.3 Time-resolved ARPES

The femtosecond ARPES can be used for the investigation of the time-resolved electron
dynamics by the pump-probe experiment [339]. By pumping an electron to a higher-level
excited state with the first photon, the subsequent evolution and interaction of electronic
states as a function of time can be studied by the second probing photon. The pump-
probe ARPES can be used to study complicated electronic systems with a sub-picosecond
resolution [339].

B.1.4 Experimental set-up

In this section I present the details of the time-resolved and angle-resolved photoemission
experiment, which has been carried out by our collaborators.

The FemtoARPES setup has been employed, using a Ti:Sapphire laser that generated
35 fs pulses centered at 810 nm, corresponding to the energy ~ω = 1.5 eV, with a repetition
rate of 250 kHz. Part of the beam was employed to generate the fourth harmonic by
frequency doubling in BBO crystals (β-BaB2O4).3 The 50 fs probe pulse, corresponding
to the energy ~ω = 6 eV, was centered at 205 nm. The 205 nm probe and the 810 nm
pump were focused on the sample with spot diameters of 100 µm and 200 µm, respectively.
Their cross-correlation in a BBO crystal had a full width at half maximum (FWHM) of
80 fs. An electrostatic spectrometer with an energy resolution better than 10 meV and an
angular resolution better than 0.5◦ was used to analyze the emitted photoelectrons. The
overall energy resolution was, nonetheless, limited to 50 meV by the bandwidth of the
205 nm beam. The (111) surface of bismuth was obtained by sputtering and annealing
cycles of a single crystal. All measurements were carried out at the base temperature of
130 K and at the base pressure of 7×10−11 mbar. The out-of-equilibrium spectra were
collected with the incident pump fluence of 0.6 mJ/cm2.

B.1.5 Electronic temperature after the photoexcitation of Bi

Photoexcitation by an intense and ultrafast laser pulse generates sizable effects on the
photoelectron current. Figure B.2(a) shows the spectrum acquired at k‖ = 0.12 Å−1 along
the Γ−M direction for two different pump-probe delays [see Fig. 5.4(a)]. There is a large
shift of band b and a somewhat smaller shift of band a towards higher binding energy.
Moreover, there is a large reduction of the spectral weight, taking place 300 fs after the
arrival of the pump beam, due to the electron depopulation. This depopulation has been
used for the extraction of the electronic temperature as described in the following.

Let us denote by S(ε, τ−) the spectrum taken at the pump-probe delay τ− before the
photoexcitation corresponding to the equilibrium temperature T−, and S(ε, τ+) is the
spectrum taken at the pump-probe delay τ+ after the photoexcitation corresponding to

3Note that BBO crystals absorb light at 200 nm.
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(a) (b)

Figure B.2: (a) Photoelectron spectra acquired 100 fs before and 300 fs after the arrival of
the pump beam along the Γ−M direction at k‖ = 0.12 Å−1. (b) The effective temperature
T+ of the photoexcited electrons as a function of the pump-probe delay. From Ref. [267].

the temperature T+. It is worth noting that at high electronic temperature T+ the spectral
weight of bands a and b is modified also due to the Fermi-Dirac distribution. Thus, the
weighting factor has to be corrected by multiplying the spectrum of the photoexcited
state S(ε, τ+) by fFD(ε, T−)/fFD(ε, T+). Therefore, in order to determine the electronic
temperature T+, let us define the functional:

F (T+) =

ε2ˆ

ε1

[
S(ε, τ+)

fFD(ε, T−)

fFD(ε, T+)
− S(ε, τ−)

]2

dε, (B.3)

where fFD(ε, T∓) is the Fermi-Dirac distribution function, τ− = −130 fs and τ+ = 300 fs
are the pump-probe delays before and after the photoexcitation, respectively, ε1 = −400
meV and ε1 = −150 meV are the energy limits of the interval in which the integral is
calculated, T− = 130 K is the temperature of electrons at equilibrium, and T+ is the
temperature of electrons in the photoexcited state, which is unknown. The temperature
T+ can be determined by minimizing the functional in Eq. (B.3), dF (T+)/dT+ = 0. As
a result, the following value of the maximum electronic temperature has been obtained:
T+ = 2080 K. The temporal evolution of T+(τ) is shown in Fig. B.2(b). By using a fitting
by an exponential, it has been determined that T+ decays as a function of the pump-probe
delay τ with a time constant of 6 ps.

It turns out that the correction of the weighting factor in Eq. (B.3) due to the Fermi-
Dirac distribution has a minor effect on the photoinduced shift of the electronic states:
the position of band b changes only by 6 meV, which corresponds to 23% of the total shift.
Moreover, the temporal evolution of this correction follows the monotonic and slow decay
of the electronic temperature T+. Therefore, its contribution completely cancels out when
evaluating the amplitude of the fast oscillations induced by the A1g phonon mode.
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B.2 Terahertz spectroscopy

What is terahertz (THz) spectroscopy? As a working definition, THz spectroscopy covers
the spectral range from 3 cm−1 to 600 cm−1, also known as the far-infrared region of the
spectrum [342, 343, 344]. This implies frequencies between 0.1 and 20 THz.4 Though, any
work in the frequency range from 0.1 to 100 THz can be regarded as THz spectroscopy
[342]. However, in view of developments over the last 23 years, the connotation of this
terminology is that it implies generation and detection of THz pulses in a synchronous,
coherent manner using visible or near-IR laser pulses [342].

Terahertz radiation can probe physical phenomena such as low-energy excitations and
carrier dynamics in electronic materials, and collective vibrational modes in condensed-
phase media [344]. However, until 1988, when THz spectroscopy was developed, it has
been very challenging to access this region of the electromagnetic spectrum, leading to
the “terahertz gap”. The THz spectral region bridges microwave and infrared domains
(see Fig. B.3). However, developments in THz sources and detectors over the last 20 years
have allowed for the coverage of this spectral region [344].

Figure B.3: Spectrum of electromagnetic radiation. The terahertz region is marked by a
green rectangle. According to Ref. [344].

The THz pulses are created and detected using short-pulsed visible lasers with pulse
widths ranging from 100 fs down to 10 fs [342]. This allows for the possibility to carry
out time-resolved far-IR studies with sub-picosecond temporal resolution, which is not
possible with conventional far-IR studies [342]. An additional advantage of the THz
spectroscopy is that the transient electric field is measured itself, not simply its intensity.
This determines the amplitude and the phase of each of the spectral components that
make the pulse. The amplitude and the phase are directly related to the absorption
coefficient and index of refraction of the sample, and thus the complex permittivity of the
sample can be obtained without relying on the Kramers-Kronig analysis [343].

B.2.1 Time-resolved THz spectroscopy

There are different forms of THz spectroscopy [344]: THz time-domain spectroscopy,
time-resolved THz spectroscopy, THz emission spectroscopy, and THz imaging. Let us
focus on the time-resolved THz spectroscopy, which probes the dynamical properties of
the material as a function of the pump-probe delay.

4Notice that 1 THz = 1012 Hz ≈ 1 ps ≈ 0.3 mm ≈ 33.33 cm−1 ≈ 4.14 meV ≈ 48 K.
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(a) (b)

Figure B.4: (a) Schematic illustration of the transmittance and reflection of the incoming
THz pulse. Upper panel: the incoming THz pulse passes through the substrate only,
lower panel: the incoming THz pulse passes through the sample and substrate. (b)
Experimental apparatus used to collect time-resolved THz spectra, from Ref. [342].

In the time-resolved THz spectroscopy (also called, optical pump - terahertz probe
spectroscopy), the sample is photoexcited with an ultrafast laser pump pulse with energy
ranging from ultraviolet to mid-infrared (and even THz), and is probed by the THz pulse
after delay times ranging from less than 100 fs to several nanoseconds [343]. In this way,
the THz frequency-dependent complex dielectric function can be determined as a function
of the pump-probe delay τ . Owing to the low energy of the THz photons, time-resolved
THz spectroscopy constitutes an excellent non-destructive non-contact electrical probe of
various transport processes [342].

In the limit of small film thickness, the dielectric function ε(ω) reads:

ε(ω) =

[
E0(ω)

E(ω)
− 1

]
c

iωd
(n+ 1), (B.4)

and the pump-induced change of the dielectric function at a given pump-probe delay τ ,
∆ε(ω, τ), reads:

∆ε(ω, τ) =
∆E(ω, τ)

E(ω)

c

iωd

[
n+ 1 +

ωd

ic
ε(ω)

]
, (B.5)

where n is the refractive index of the substrate, c is the light velocity, d is the film
thickness, E0(ω) is the Fourier transform of the electric field transmitted only through
the substrate, E(ω) is the Fourier transform of the electric field transmitted through
the unexcited sample and substrate, and ∆ε(ω, τ) is its pump-induced change at given
pump-probe delay τ [see Fig. B.4(a)].
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The experimental apparatus used to collect time-resolved THz spectra is shown in
Fig. B.4(b). A reference scan is collected with the chopper in position 1, and a photoex-
cited difference scan is collected with the chopper in position 2. The THz amplitude is
monitored by changing the relative delay of table 1 or table 2 depending on the type of
experiment being performed. Delay table 3 is used to change the relative delay of the
pump beam.

B.2.2 Experimental set-up

In this section I present the details of the time-resolved THz experiment, which has been
carried out by our collaborators.

In the experiment, the THz spectrometer is driven by a Ti:sapphire laser oscillator,
delivering 10 fs pulses at a 780 nm center wavelength, and energy 1.6 eV. Part of the
laser output is used to excite the sample with an incident fluence of about 10µJ/cm2.
The THz pulses are obtained from the residual 10% of the laser output by difference-
frequency generation in a 90 µm GaSe crystal. The THz pulses have a duration of 100
fs (covering a spectral range from 10 to 30 THz) (see Fig. B.5), and energy 0.1 eV. The
time-dependent THz electric field is detected by electro-optic sampling using the 12 fs
pulses of the seed laser and a 300 µm thick ZnTe crystal. The sample is a polycrystalline
Bi film that was evaporated onto a diamond substrate. The purity of Bi film was not
high, and the presence of defects was detected. Current measurements have been carried
out in the regime of low excitation densities, ∼ 10−4 electrons per unit cell.

Figure B.5: The electric field transmitted through the unexcited bismuth film and dia-
mond substrate E(t) (dark line), and the pump-induced change ∆E(t, τ) at τ= 100 fs
(red line). From Ref. [245].
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Appendix C

Implementation of the new method
to EELS

This thesis will be presented to the C3I committee associated to CPU,1 GENCI,2 and
“Maison de la Simulation”3 for the evaluation to obtain the C3I label of skills “Certificat
de Compétences en Calcul Intensif”. To this end, as well as for the sake of highlighting
its main features, in this appendix I present a summary of the implementation of the
Liouville-Lanczos approach to the electron energy-loss spectroscopy (EELS), which I have
developed during my thesis, and which is described in detail in Chapter 7.

C.1 Program summary

Program title: EELS code

Authors: I. Timrov, N. Vast, R. Gebauer, and S. Baroni.

Nature of the problem: Calculation of the electron energy-loss spectra.

Solution method: The susceptibility of a system is calculated within the time-dependent
density functional perturbation theory. It is expressed in terms of the resolvent of the
Liouvillian superoperator, and calculated using the Lanczos recursion method.

Programming language: Fortran 95

Computer: Any computer architecture

Operating system: Linux, Mac OS X, and other UNIX-like OS’s

External routines: The program is tightly integrated component of the QUANTUM

ESPRESSO distribution [68], which is an integrated suite of computer codes for electronic-
structure calculations and materials modelling. The EELS code resides in a self-contained
directory under the root directory of the QUANTUM ESPRESSO tree.

Libraries: The program uses standard mathematical libraries: BLAS, LAPACK [345],
and FFTW [346], for which highly optimized implementations exist on many platforms.

Performance: High, both in serial and in parallel execution.

1Conférence des Présidents d’Universités, www.cpu.fr
2Grand Equipement National de Calcul Intensif, www.genci.fr
3www.maisondelasimulation.fr
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Current implementation: The program supports norm-conserving (NC) and ultrasoft
(US) pseudopotentials; local density approximation (LDA) and generalized gradient ap-
proximation (GGA); it works for insulators and metals; non-polarized and noncollinear
spin-polarized calculations are possible; spin-orbit coupling can be included; use of sym-
metry is supported.

Current restrictions: Linear-response regime; adiabatic exchange-correlation kernels
only; no hybrid functionals; no projected-augmented wave method; no collinear spin-
polarized calculations (LSDA).

Unusual features: Empty states neither used nor even calculated. The new approach
scales computationally a few times larger than ground-state calculations. A single Lanczos
recursion gives access to the whole electron energy-loss spectrum, i.e. there is no need to
perform Lanczos recursions for each value of a frequency separately. The new approach
is readily applicable to systems containing hundreds of atoms.

Running time: From a few minutes for small systems with few atoms in the unit cell
on serial machines, up to many hours on multiple processors for complex systems with
hundreds of atoms.

Additional comments: 1. The EELS code requires a preliminary ground-state DFT
calculation by PWscf code, which is also a component of the QUANTUM ESPRESSO package.
The PWscf code yields the Kohn-Sham wavefunctions and energy values for all occupied
states, and then this information is further used as an input for the EELS code. 2. The
EELS code contains a restart option, which is very useful for: (i) testing a convergence of
the spectrum with respect to the number of Lanczos iterations, (ii) calculations for large
systems on massively parallel architectures, which can have a time limit (e.g. 24 hours)
for one single run.

C.2 Parallelization

As with other components of the QUANTUM ESPRESSO package, the EELS code is optimized
to run on a variety of different platforms, from laptops to massively parallel architectures.
The parallelization of the EELS code is achieved by using message-passing paradigm and
calls to standard MPI (message-passing interface) libraries [347]. High performance on
massively parallel architectures is achieved by distributing both data and computations in
a hierarchical way across processors. The EELS code supports a plane-wave parallelization,
which is implemented by distributing real- and reciprocal-space grids across the processors.
The FFT’s (Fast Fourier Transforms), which are used for transformations from real space
to reciprocal space and vice versa, are also efficiently parallelized among processors.

The size of a specific application sets limits to the maximum number of processors up
to which the performance of the EELS code is expected to scale. This is demonstrated
in Fig. C.1, where the CPU time as a function of the number of cores is shown, on the
example of bismuth. As can be seen, the optimal number of cores is 24, which corresponds
to 1 h 11 min. If the number of cores is increased further, e.g. up to 32, the calculation
will not be faster, even contrarily - it takes 1 h 14 min. This is due to the fact that the
number of cores is too large for this specific case, and the communication between the
cores takes too much time, which slows down the calculation. Therefore, before launching
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Figure C.1: Scalability of the EELS code: CPU time as a function of the number of cores.
The system is bulk bismuth, calculated within the LDA without the spin-orbit coupling,
with the following parameters: kinetic-energy cutoff was 60 Ry, a 12 × 12 × 12 uniform
k point mesh centered at the Γ point, norm-conserving pseudopotential, 500 Lanczos
iterations.

large calculations one has to determine the optimal number of cores for the system under
study.

The performance of the EELS code is optimized also for simulations of intermediate size
(on systems containing several tens of atoms or so), which can be performed on medium-
size clusters readily available to many groups.

During my thesis, I have performed calculations with the EELS code for Si, Al, and
Bi, and the results are presented in Chapter 7. Calculations have been performed on
massively parallel supercomputers JADE (CINES) and TITANE (TGCC).



212 CHAPTER C. IMPLEMENTATION OF THE NEW METHOD TO EELS



Appendix D

Curriculum Vitae

D.1 Personal information

Family name: Timrov

First name: Iurii

Date of birth: 14.08.1987

Nationality: Ukrainian

E-mail: iurii.timrov@polytechnique.edu

Education

2009 - 2013:

PhD student at the Laboratoire des Solides Irradiés of the École Polytechnique (Palaiseau,
France), in the group Théorie: Science des matériaux headed by Dr. Nathalie Vast.

2008 - 2009:

MSc student at the Department of Theoretical Physics of the National Taras Shevchenko
University of Kyiv (Kyiv, Ukraine). Obtained Master’s degree with honours, qualification:
theoretician.

2004 - 2008:

BSc student at the Department of Theoretical Physics of the National Taras Shevchenko
University of Kyiv. Obtained Bachelor’s degree with honours, qualification: theoretician.

1994 - 2004:

Studied at the school Collegium 11 with an emphasis on mathematics (Chernigov,
Ukraine). Obtained Honours degree with a Golden medal.

Languages

Native: Ukrainian, Russian.

Other: Excellent knowledge of written and spoken English; good knowledge of French.
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Professional skills

I handle a lot of methods of theoretical physics, have strong knowledge and experience
in computational physics, and have a high level of knowledge in mathematics.

Membership

Member of American Physical Society since 2011.

Participation in international conferences and workshops

1. “TD-DFT conference”, Nantes, France (23.04.2013 - 26.04.2013)

Oral talk “A new ab initio approach for electron energy-loss and inelastic X-ray
scattering spectroscopies from linear-response TD-DFT”

2. “XVI International Workshop on Computational Physics and Materials Science:
Total Energy and Force Methods”, ICTP, Trieste, Italy (10.01.2013 - 12.01.2013)

Presented a poster “A new ab initio approach to Electron Energy Loss Spectroscopy
based on Lanczos recursion chains within Time-Dependent Density Functional Per-
turbation Theory”

3. Conference “JEELS”, Aix les Bains, France, (23.10.2012 - 25.10.2012)

Oral talk “A new ab initio approach to EELS based on Lanczos recursion chains
within TDDFPT”

4. Conference “APS March Meeting”, Boston, USA (27.02.2012 - 02.03.2012)

Oral talk “Thermalization of photoexcited carriers in bismuth investigated by time-
resolved THz spectroscopy and ab initio calculations”

5. Conference “Le XXIeme Congres General de la Societe Francaise de Physique”,
Bordeux, France (04.07.2011 - 08.07.2011)

Oral talk “Time-Resolved Terahertz Spectroscopy of Bismuth Films: Experiment
and Theory”

6. Conference “Co-DFT”, Obernai, France (27.06.2011 - 30.06.2011)

Presented a poster “Time-Resolved Terahertz Spectroscopy of Bismuth Films: Ex-
periment and Theory”

7. “XV International Workshop on Computational Physics and Materials Science: To-
tal Energy and Force Methods”, ICTP, Trieste, Italy (13.01.2011 - 15.01.2011)

Presented a poster “Ab initio study of electronic properties of bismuth”

8. Workshop “Electron-phonon interaction in metals, superconductors and semicon-
ducting nanostructures”, Paris, France (29.11.2010 - 30.11.2010)

Presented a poster “Ab initio study of electronic properties of bismuth”
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9. MORE 2010 (“Meeting on Optical Response in Extended Systems”), Vienna, Aus-
tria (03.11.2010 - 05.11.2010)

10. 18th Annual Student Conference “Week of Doctoral Students 2009”, Prague, Czech
Republic (02.06.2009 - 05.06.2009)

Participation in international tutorials and schools

1. CECAM Tutorial “Computational spectroscopy using QUANTUM ESPRESSO and re-
lated codes”, SISSA, Trieste, Italy (26.07.2010 - 30.07.2010)

2. CECAM “Summer school on atomistic simulation techniques for material science,
nanotechnology and biophysics”, SISSA, Trieste, Italy (05.07.2010 - 23.07.2010)

3. CECAM “Spring College on Computational Nanoscience”, ICTP, Trieste, Italy
(17.05.2010 - 28.05.2010)

4. CECAM Tutorial “Calculation of Solid-State NMR parameters Using the GIPAW
Method”, Zurich, Switzerland (21.09.2009 - 25.09.2009)

D.2 List of publications

1. I. Timrov, T. Kampfrath, J. Faure, N. Vast, C. R. Ast, C. Frischkorn, M. Wolf, P.
Gava, and L. Perfetti, “Thermalization of photoexcited carriers in bismuth investi-
gated by time-resolved THz spectroscopy and ab initio calculations”, Phys. Rev. B
85, 155139 (2012).

2. E. Papalazarou, J. Faure, J. Mauchain, M. Marsi, A. Taleb-Ibrahimi, I. Reshetnyak,
A. van Roekeghem, I. Timrov, N. Vast, B. Arnaud, and L. Perfetti, “Coherent
Phonon Coupling to Individual Bloch States in Photoexcited Bismuth”, Phys. Rev.
Lett. 108, 256808 (2012).

3. J. Sjakste, I. Timrov, P. Gava, N. Mingo, and N. Vast, “First-principles calculations
of electron-phonon scattering”, Annual Reviews of Heat Transfer, book chapter,
accepted (2013).

4. I. Timrov, N. Vast, R. Gebauer, and S. Baroni, “Electron energy-loss and inelastic
X-ray scattering cross sections from time-dependent density-functional perturbation
theory”, in preparation.

5. J. Faure, J. Mauchain, E. Papalazarou, M. Marsi, D. Boschetto, I. Timrov, N. Vast,
Y. Ohtsubo, B. Arnaud, and L. Perfetti, “Direct observation of electron thermaliza-
tion and electron-phonon coupling in photoexcited bismuth”, in preparation.

6. I. Timrov, N. Vast, C. Guedj, R. Gebauer, and S. Baroni, “Electron Energy-Loss
Spectroscopy of bulk bismuth for finite momentum transfer: Ab initio calculations
and experiments”, in preparation.
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7. I. Timrov, P. Gava, N. Vast, J. Faure, and L. Perfetti, “Ab initio calculation of
carrier mass in bismuth”, in preparation.

D.3 High performance computing and programming

• Programming in Fortran

• Knowledge of LaTeX and Maple.

• High Performance Computing (HPC)

During my thesis, I have performed the following numerical developments:

1. Program for calculation of the electron energy-loss spectra (see Appendix C)

I have extended the Liouville-Lanczos approach to the electron energy-loss spec-
troscopy for non-zero momentum transfer (q 6= 0), with the help of N. Vast, S. Ba-
roni, and R. Gebauer. I have performed an implementation of this approach on top
of the turboTDDFT code, which is the implementation of Liouville-Lanczos approach
to optical case, with zero momentum transfer (q = 0). To this end, I have used
some routines of the PHonon code, which can be used for calculation of phonons
with non-zero momentum transfer (q 6= 0). The turboTDDFT and PHonon codes are
components of the QUANTUM ESPRESSO package, as well as newly developed EELS

code (see Appendix C), which is merged with the turboTDDFT code.

2. Program for calculation of the carrier velocity (see Sec. 6.1.3)

I have extended the LIGHT code, which is used for the calculation of carrier velocity,
to the relativistic case, by including the spin-orbit coupling (see Sec. 6.1.3), with
the help of P. Gava. The LIGHT code was originally written by P. Gava on the basis
of the PHonon code. The LIGHT code is a component of the QUANTUM ESPRESSO

package.

3. Program for calculation of the restricted density of states (see Appendix A.3)

I have extended the DOS code, which is used for the calculation of the density of
states, to the calculation of the restricted density of states (see Appendix A.3), with
the help of N. Vast. To this end, slight modifications of the PWscf code were also
necessary. The PWscf and DOS codes are components of the QUANTUM ESPRESSO

package.

For each of these developments, the standards for implementation of the HPC envi-
ronments have been followed. In particular, the parallelization has been implemented,
and calculations have been performed using the French HPC facilities of GENCI (Grand
Equipement National de Calcul Intensif) at CINES (Centre Informatique National de
l’Enseignement Supérieur) and TGCC (Très Grand Centre de calcul du CEA).
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