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Abstract

In this work we study the framework of mathematical morphology on sim-
plicial complex spaces.

Simplicial complexes are a versatile and widely used structure to represent
multidimensional data, such as meshes, that are tridimensional complexes,
or graphs, that can be interpreted as bidimensional complexes.

Mathematical morphology is one of the most powerful frameworks for im-
age processing, including the processing of digital structures, and is heavily
used for many applications. However, mathematical morphology operators
on simplicial complex spaces is not a concept fully developped in the litera-
ture.

In this work, we review some classical operators from simplicial com-
plexes under the light of mathematical morphology, to show that they are
morphology operators. We define some basic lattices and operators acting on
these lattices: dilations, erosions, openings, closings and alternating sequen-
tial filters, including their extension to weighted simplexes. However, the
main contributions of this work are what we called dimensional operators,
small, versatile operators that can be used to define new operators on simpli-
cial complexes, while mantaining properties from mathematical morphology.
These operators can also be used to express virtually any operator from the
literature.

We illustrate all the defined operators and compare the alternating se-
quential filters against filters defined in the literature, where our filters show
better results for removal of small, intense, noise from binary images.

Keywords: Mathematical morphology, simplicial complexes, granulome-
tries, meshes, alternating sequential filters, image filtering.
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Résumé

Dans ce travail, nous étudions le cadre de la morphologie mathématique sur
les complexes simpliciaux.

Complexes simpliciaux sont une structure versatile et largement utilisée
pour représenter des données multidimensionnelles, telles que des maillages,
qui sont des complexes tridimensionnels, ou des graphes, qui peuvent être
interprétées comme des complexes bidimensionnels.

La morphologie mathématique est l’un des cadres les plus puissants pour
le traitement de l’image, y compris le traitement des structures numériques, et
est largement utilisé pour de nombreuses applications. Toutefois, les opérateurs
de morphologie mathématique sur des espaces complexes simpliciaux n’est
pas un concept entièrement développé dans la littérature.

Dans ce travail, nous passons en revue certains opérateurs classiques des
complexes simpliciaux sous la lumière de la morphologie mathématique, de
montrer qu’ils sont des opérateurs de morphologie. Nous définissons certains
treillis de base et les opérateurs agissant sur ces treillis : dilatations, érosions,
ouvertures, fermetures et filtres alternés séquentiels, et aussi leur extension
à simplexes pondérés. Cependant, les principales contributions de ce travail
sont ce que nous appelions les opérateurs dimensionnels, petites et polyva-
lents opérateurs qui peuvent être utilisés pour définir de nouveaux opérateurs
sur les complexes simpliciaux, qui garde les propriétés de la morphologie
mathématique. Ces opérateurs peuvent également être utilisés pour expri-
mer pratiquement n’importe quel opérateur dans la littérature.

Nous illustrons les opérateurs définis et nous comparons les filtres alternés
séquentiels contre filtres définis dans la littérature, où nos filtres présentent
de meilleurs résultats pour l’enlèvement du petit, intense bruit des images
binaires.

Mots clés : Morphologie mathématique, complexes simpliciaux, granu-
lométries, maillages, filtres alterné séquentiel, filtrage d’image.
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Résumé étendu

Les complexes simpliciaux ont été introduites par Poincaré en 1895 [58]
pour étudier la topologie des espaces de dimension arbitraire. Ils sont lar-
gement utilisés pour représenter des données multidimensionnelles dans de
nombreuses applications, telles la modélisation de réseaux [60], la couverture
de capteurs mobiles [19], multi-radio optimisation [61], etc. Sous la forme de
maillages, ils sont largement utilisés dans de nombreux contextes pour expri-
mer des données tridimensionnelles, notamment dans l’analyse des éléments
finis [85, 46] et la géométrie différentielle [20, 26]. Cette polyvalence est la
raison pour laquelle nous avons choisi d’utiliser les complexes simpliciaux
comme espace de travail.

La morphologie mathématique a été introduit par Matheron et Serra en
1964, devenant un cadre puissant pour le traitement et l’analyse d’images [74].
C’est aujourd’hui un des principaux cadres pour le traitement non-linéaire des
images, fournissant des outils pour de nombreuses applications, telles la sup-
pression du bruit [42, 27], la biométrie [59], la segmentation d’images [52, 34],
l’imagerie médicale [69, 1], la recherche par similarité [40], le traitement des
documents [56, 17], l’amélioration des empreintes digitales [3, 32] etc.

Le cadre de la morphologie mathématique a été étendu par Heijmans
et Ronse [30] au cadre des treillis complets, permettant l’application à des
structures numériques plus complexes, tels les graphes [81, 15, 14, 47], les
hypergraphes [9, 77] et les complexes simpliciaux [21, 45].

Malgré la polyvalence de l’espace considéré et la puissance du cadre, au
mieux de notre connaissance, des opérateurs de morphologie mathématique
qui agissant sur des complexes simpliciaux, sont encore un concept peu
développé dans la littérature. La principale motivation de ce travail est d’ex-
plorer ce qui peut être fait en combinant un espace polyvalent avec un puis-
sant cadre d’opérateurs.

Les principales contributions de ce travail prennent la forme de petits
opérateurs que nous introduisons, appelés opérateurs dimensionnels, qui ne
sont pas issus des opérateurs classiques. Ces opérateurs sont très flexibles
et ils offrent une nouvelle façon de représenter d’autres opérateurs. Nous
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Table 1 – Résumé des travaux pertinents.

Espace utilisé Commentaires

Vincent [81] Graphes Structure de graphe uti-
lisée comme relation de
voisinage.

Cousty et. al. [15, 14] Graphes Les valeurs peuvent être
propagées aux arêtes.

Meyer and Stawiaski [53] Graphes Les valeurs peuvent être
propagées aux arêtes.

Bloch and Bretto [9] Hypergraphes Définit quelques treillis et
des opérateurs morpholo-
giques.

Loménie and Stamon [45] Complexes
simpliciaux

Traite séparément les faces
et les arêtes.

This work ([21]) Complexes
simpliciaux

Les valeurs peuvent être
associées à toute simplex
et tous les simplices sont
traités de façon uniforme.

montrons qu’ils peuvent être utilisées pour exprimer pratiquement n’importe
quel opérateur présenté dans la littérature. En utilisant ces opérateurs di-
mensionnels, nous définissons de nouveaux opérateurs morphologiques, que
l’on compare à certains opérateurs présentés dans la littérature, en particulier
pour l’enlèvement du bruit.

Le tableau 1 résume brièvement les travaux reliés à ce travail, y compris
un article contenant des résultats partiels de cette thèse [21].

Dans ce résumé étendu, nous ne rappellerons pas toutes les définitions
que nous utiliserons, issues des complexes simpliciaux et de la morphologie
mathématique. Les preuves des propriétés et les opérateurs agissant sur les
étoilles ont également été omis.

Notations importantes. Dans ce travail, le symbole C désigne un
n-complexe, non-vide, avec n ∈ N. L’ensemble des sous-ensembles de
C est notée P(C ). Tout sous-ensemble de C qui est aussi un com-
plexe est appelé sous-complexe (de C ). Nous noterons par C l’ensemble
des sous-complexes de C . Si X est un sous-ensemble de C , on note X
le complément de X (en C ) : X = C \X. Le complément d’un sous-
complexe de C n’est généralement pas un sous-complexe. Tout sous-
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ensemble X de C dont le complément X est un sous-complexe est appelé
étoile (dans C ). Nous désignons par S l’ensemble des étoiles dans C .

Si l’on considére les complexes simpliciaux, le treillis le plus évident est
l’ensemble puissance P(C ), fait de tous les sous-ensembles de C , avec la
relation d’inclusion. Le supremum est donnée par l’opérateur d’union et le
infimum par l’intersection. Ce treillis est désigné par 〈P(C )

⋃
,
⋂
,⊆〉, ou sim-

plement P(C ) si aucune ambigüıté est présente. Ce treillis est complémenté,
∀x ∈ P(C ),∃x ∈ P(C ) | x ∩ x = ∅ et x ∪ x = C .

L’ensemble C de tous les subcomplexes de C , ordonné par la relation
d’inclusion, avec comme supremum l’opérateur d’union et comme infimum
l’opérateur d’intersection, est aussi un treillis. En outre, 〈C,

⋃
,
⋂
,⊆〉 est un

sous-treillis de P(C ) parce que C est un sous-ensemble de P(C ), fermé par
union et intersection, avec le même supremum C et infimum ∅. Le treillis
〈S,
⋃
,
⋂
,⊆〉, contenant toutes les étoiles de C , muni de la relation d’inclusion

est également un sous-treillis de P(C ). Cependant, les treillis C et S ne sont
pas complémentés, le complément d’un sous-complexe est une étoile et vice-
versa.

Dans le domaine des complexes simpliciaux, certains opérateurs sont bien
connus, tels que la fermeture et l’étoile. Nous définissons la fermeture x̂ et
l’étoile x̌ de x par :

∀x ∈ C , x̂ = {y | y ⊆ x, y 6= ∅} (1)

∀x ∈ C , x̌ = {y ∈ C | x ⊆ y} (2)

L’opérateur fermeture donne comme résultat l’ensemble de tous les sim-
plexes qui sont sous-ensembles du simplexX, et l’étoile donne comme résultat
l’ensemble des simplexes de C qui contiennent le simplex x. Ces opérateurs
peuvent être facilement étendus à des ensembles de simplexes. Les opérateurs Cl :
P(C )→ P(C ) et St : P(C )→ P(C ) sont définies par :

∀X ∈ P(C ), Cl =
⋃
{x̂ | x ∈ X} (3)

∀X ∈ P(C ), St =
⋃
{x̌ | x ∈ X} (4)

Afin d’obtenir des granulométries non triviales sur les complexes, nous
restreignons le domaine de définition des opérateurs des équations ci-dessus
et nous présentons les érosions adjointes.
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Definition 1. Nous définissons les opérateurs � : S → C, ? : C → S, �A :
C → S and ?A : S → C par :

∀X ∈ S, �(X) =Cl(X) (5)

∀Y ∈ C, ?(Y ) =St(Y ) (6)

∀X ∈ C, �A (X) =
⋃
{Y ∈ S | � (Y ) ⊆ X} (7)

∀Y ∈ S, ?A (Y ) =
⋃
{X ∈ C | ? (X) ⊆ Y } (8)

En combinant les opérateurs ?, � et leurs adjoints, on peut définir deux
opérateurs, une ouverture et une fermeture.

Definition 2. Nous définissons :

γh = � �A (9)

φh = ?A ? (10)

Property 3. Nous avons :

1. Les opérateurs γh et φh agissent sur C.

2. Le opérateur γh est un ouverture.

3. Le opérateur φh est un fermeture.

Toutefois, les érosions et dilatations impliquées ci-dessus sont idempo-
tentes, donc toute composition de ces opérateurs suivis par l’opérateur adjoint
conduira à la même ouverture ou fermeture. Par conséquent, ces opérateurs
ne sont pas adaptés pour la construction de granulométries non triviales.
Examinons maintenant la composition des dilatations � et ?, ainsi que leurs
adjoints, afin d’obtenir de nouveaux opérateurs agissant sur les complexes.

Definition 4. Nous définissons les opérateurs δ et ε par :

δ = � ? (11)

ε = ?A �A (12)

Property 5. Nous avons :

1. Les opérateurs δ et ε agissent sur C.

2. Le opérateur δ est un dilatation.

3. Le opérateur ε est un erosion.
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4. Le pair (ε, δ) est un adjunction.

Soit i ∈ N et α un opérateur. Nous utilisons la notation αi pour représenter
l’itération de l’opérateur α, c’est-à-dire αi = α . . . α︸ ︷︷ ︸

i fois

.

Definition 6. Soit i ∈ N. Nous définissons les opérateurs γci et φci par :

γci =δiεi (13)

φci =εiδi (14)

En contrôlant le paramètre i, nous pouvons contrôler la quantité d’éléments
qui seront touchés par les opérateurs. Informellement, en augmentant le
nombre d’itérations, on obtient de plus grands filtres.

Property 7. Soit i ∈ N. Nous avons :

1. Les opérateurs γci et φci agissent sur C.

2. Le opérateur γci est un ouverture.

3. Le opérateur φci est un fermeture.

4. La famille des opérateurs {γcλ, λ ∈ N} est un granulometrie.

5. La famille des opérateurs {φcλ, λ ∈ N} est un anti-granulometrie.

En composant les opérateurs à partir d’une granulométrie et un anti-
granulométrie, agissant sur le même treillis, nous pouvons définir des filtres
alternés séquentiels. Ces filtres peuvent être utilisés pour éliminer progres-
sivement certaines caractéristiques des ensembles considérés, une approche
très utile lorsque la taille des éléments est un facteur déterminant.

Definition 8. Soit i ∈ N. Nous définissons les filtres ASFci et ASFc
′

i par :

∀X ∈ C, ASFci(X) = (γciφ
c
i)
(
γci−1φ

c
i−1
)
. . .(γc1φ

c
1) (X) (15)

∀X ∈ C, ASFc
′

i (X) = (φciγ
c
i )
(
φci−1γ

c
i−1
)
. . .(φc1γ

c
1) (X) (16)

Le paramètre i contrôle combien d’éléments du complexe sont touchés
par les opérateurs. En contrôlant les itérations du filtre, on peut définir des
opérateurs qui éliminent plus de caractéristiques de l’ensemble considéré.

Property 9. Soit i ∈ N. Les opérateurs ASFci et ASFc
′

i agissent sur C.
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Alternativement, nous pouvons combiner les opérateurs γc et φc avec les
opérateurs γh et φh pour obtenir différentes ouvertures et fermetures. En
utilisant cette procédure, nous visons à obtenir des filtres qui affectent moins
d’éléments du complexe.

Dans ce travail, l’opérateur mod représente le résidu commun, qui est le
reste d’une division entière. La notation b c représente la parte entière.

Definition 10. Soit i ∈ N et X ∈ C. Nous définissont les opérateurs γchi/2 et

φchi/2 par :

γchi/2 =

{
δbi/2cεbi/2c si i mod 2 = 0

δbi/2cγhεbi/2c autrement.
(17)

φchi/2 =

{
εbi/2cδbi/2c si i mod 2 = 0

εbi/2cφhδbi/2c autrement.
(18)

Lorsque le paramètre i de ces opérateurs est pair, les opérateurs γh et φh

ne sont pas utilisés, et les opérateurs deviennent identiques aux opérateurs
γc et φc. Ainsi, ces opérateurs sont capables de fonctionner dans une “taille”
intermédiaire, entre deux itérations successives des autres opérateurs.

Property 11. Soit i ∈ N. Nous avons :

1. Les opérateurs γchi/2 et φchi/2 agissent sur C.

2. L’opérateur γchi/2 est un ouverture.

3. L’opérateur φchi/2 est un fermeture.

4. La famille des opérateurs {γchλ/2, λ ∈ N} est une granulometrie.

5. La famille des opérateurs {φchλ/2, λ ∈ N} est une anti-granulometrie.

Ces familles d’opérateurs sont des granulométries et anti-granulométries,
et peuvent être considérées pour de nombreuses applications où la taille du
filtre est pertinente, par exemple pour composer des filtres alternés séquentiels,
comme nous l’avons fait précédemment.

Definition 12. Soit i ∈ N. Nous définissons les opérateurs ASFchi/2 et ASFch
′

i/2

par :

∀X ∈ C, ASFchi/2(X) =
(
γchi/2φ

ch
i/2

) (
γch(i−1)/2φ

ch
(i−1)/2

)
. . .
(
γch1/2φ

ch
1/2

)
(X) (19)

∀X ∈ C, ASFch
′

i/2(X) =
(
φchi/2γ

ch
i/2

) (
φch(i−1)/2γ

ch
(i−1)/2

)
. . .
(
φch1/2γ

ch
1/2

)
(X) (20)
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Property 13. Soit i ∈ N. Les opérateurs ASFchi/2 et ASFch
′

i/2 agissent sur C.

Pour définir les opérateurs dimensionnels, nous commençons par l’intro-
duction d’une nouvelle notation qui permet récupérer seulement des sim-
plexes d’une dimension donnée.

Notations importants. Soit X ⊆ C et i ∈ [0, n], nous désignons
par Xi l’ensemble de tous les i-simplexes de X : Xi = {x ∈ X | dim(x) =
i}. En particulier, Ci est l’ensemble de tous les i-simplexes de C . Nous
désignons par P(Ci) l’ensemble des sous-ensembles de Ci. Nous étendons
également la notation de complément, si X ∈ Ci, le complément est pris
à l’égard de la dimension considérée, X = Ci\X.

Soit i ∈ N tel que i ∈ [0, n]. La structure 〈P(Ci),
⋃
,
⋂
,⊆〉 est un treillis.

Definition 14. Soit i, j ∈ N tel que 0 ≤ i < j ≤ n. Nous définissons les
opérateurs δ+i,j et ε+i,j agissant de P(Ci) dans P(Cj) et les opérateurs δ−j,i et ε−j,i
agissant de P(Cj) dans P(Ci) par :

∀X ∈ P(Ci), δ
+
i,j(X) ={x ∈ Cj | ∃y ∈ X, y ⊆ x} (21)

∀X ∈ P(Ci), ε
+
i,j(X) ={x ∈ Cj | ∀y ∈ Ci, y ⊆ x =⇒ y ∈ X} (22)

∀X ∈ P(Cj), δ
−
j,i(X) ={x ∈ Ci | ∃y ∈ X, x ⊆ y} (23)

∀X ∈ P(Cj), ε
−
j,i(X) ={x ∈ Ci | ∀y ∈ Cj, x ⊆ y =⇒ y ∈ X} (24)

En d’autres termes, δ+i,j(X) est l’ensemble de tous les j-simplexes de C
qui comprennent un i-simplexe de X, δ−j,i(X) est l’ensemble de tous les i-
simplexes de C qui sont inclus dans un j-simplex de X, ε+i,j(X) est l’ensemble
de tous les j-simplexes de C , dont les sous-ensembles de dimension i appar-
tiennent tous à X, et ε−j,i(X) est l’ensemble de tous les i-simplexes de C qui

ne sont pas contenues dans les j-simplexes de X.

Property 15. Soit i, j ∈ N tels que 0 ≤ i < j ≤ n.

1. Les paires (ε+i,j, δ
−
j,i) et (ε−j,i, δ

+
i,j) sont des adjunctions.

2. L’opérateur δ+i,j est dual de l’opérateur ε+i,j
∀X ⊆ Ci, ε

+
i,j(X) = Cj \ δ+i,j(Ci \X).

3. L’opérateur δ−j,i est dual de l’opérateur ε−j,i
∀X ⊆ Cj, ε

−
j,i(X) = Ci \ δ−j,i(Cj \X).
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Basé sur le comportement attendu des opérateurs ouverture et de ferme-
ture, qui est, la suppression progressive des petits éléments du sous-ensemble
considéré, dans notre cas, un complexe contenue dans C , et le complément
de la partie, respectivement, nous pouvons définir deux opérateurs simples
en utilisant les opérateurs dimensionnelles.

Definition 16. Soit d ∈ N tel que 0 < d ≤ n. Nous définissons les opérateurs γmd
et φmd par :

∀X ∈ C, γmd (X) =

 ⋃
i∈[0,d−1]

δ−d,i(Xd)

⋃
 ⋃
i∈[d,n]

Xi

 (25)

∀X ∈ C, φmd (X) =

 ⋃
i∈[0,n−d]

Xi

 ⋃ ⋃
i∈[n−d+1,n]

ε+n−d,i(Xn−d)

 (26)

Property 17. Soit d ∈ N tel que 0 < d ≤ n. Nous avons :

1. Les opérateurs γmd et φmd agissent sur C.

2. L’opérateur γmd est une ouverture.

3. L’opérateur φmd est une fermeture.

Parce que le paramètre d de ces opérateurs est limité par la dimension
de l’espace considéré, les tailles possibles des filtres sont également limités.
Pour créer des filtres qui peuvent avoir des tailles arbitraires, nous pouvons
enrichir les opérateurs γc et φc en les composant avec les opérateurs γm et
φm.

Definition 18. Soit i ∈ N. Nous définissons les opérateurs γcmi/(n+1) et φcmi/(n+1)

par :

∀X ∈ C, γcmi/(n+1)(X) =δbi/(n+1)cγm(imod (n+1))ε
bi/(n+1)c(X) (27)

∀X ∈ C, φcmi/(n+1)(X) =εbi/(n+1)cφm(imod (n+1))δ
bi/(n+1)c(X) (28)

Property 19. Soit i ∈ N. Nous avons :

1. Les opérateurs γcmi/(n+1) et φcmi/(n+1) agissent sur C.

2. L’opérateur γcmi/(n+1) est une ouverture.

3. L’opérateur φcmi/(n+1) est une fermeture.

4. La famille des opérateurs {γcmλ/(n+1), λ ∈ N} est une granulometrie.
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5. La famille des opérateurs {φcmλ/(n+1), λ ∈ N} est une anti-granulometrie.

Definition 20.

∀X ∈ C, ASFcmi/(n+1)(X) =
(
γcmi/(n+1)φ

cm
i/(n+1)

) (
γcm(i−1)/(n+1)φ

cm
(i−1)/(n+1)

)
. . .

. . .
(
γcm1/(n+1)φ

cm
1/(n+1)

)
(X) (29)

∀X ∈ C, ASFcm
′

i/(n+1)(X) =
(
φcmi/(n+1)γ

cm
i/(n+1)

) (
φcm(i−1)/(n+1)γ

cm
(i−1)/(n+1)

)
. . .

. . .
(
φcm1/(n+1)γ

cm
1/(n+1)

)
(X) (30)

Nous pouvons aussi utiliser les opérateurs dimensionnels pour définir de
nouveaux opérateurs par composition, conduisant à de nouvelles dilatations,
érosions, ouvertures, fermetures et filtres alternés séquentiels. Avant de com-
mencer la composition de ces opérateurs, nous allons examiner les résultats
suivants, qui peuvent guider l’exploration de nouvelles compositions.

Property 21. Soit i, j, k ∈ N tels que 0 ≤ i < j < k ≤ n.

1. ∀X ⊆ P(Ci), δ
+
j,kδ

+
i,j(X) = δ+i,k(X)

2. ∀X ⊆ P(Ci), ε
+
j,kε

+
i,j(X) = ε+i,k(X)

3. ∀X ⊆ P(Ck), δ
−
j,iδ
−
k,j(X) = δ−k,i(X)

4. ∀X ⊆ P(Ck), ε
−
j,iε
−
k,j(X) = ε−k,i(X)

En d’autres termes, cette propriété indique que toute composition du
même opérateur est équivalent à l’opérateur agissant de la première dimen-
sion à la dimension finale.

Property 22. Soit i, j, k ∈ N tels que 0 ≤ i < j < k ≤ n.

1. ∀X ⊆ P(Ci), δ
−
j,iδ

+
i,j(X) = δ−k,iδ

+
i,k(X)

2. ∀X ⊆ P(Ci), ε
−
j,iε

+
i,j(X) = ε−k,iε

+
i,k(X)

3. ∀X ⊆ P(Ci), ε
−
j,iδ

+
i,j(X) = ε−k,iδ

+
i,k(X)

4. ∀X ⊆ P(Ci), δ
−
j,iε

+
i,j(X) = δ−k,iε

+
i,k(X)

En d’autres termes, cette propriété signifie que le résultat des composi-
tions de dilatations et d’érosions qui utilisent une dimension supérieure in-
termédiaire est indépendante de la dimension exacte choisie. Par conséquent,
nous pouvons obtenir une seule dilatation de base, une érosion de base, une
ouverture et une fermeture à l’aide de ces compositions. Toutefois, ce n’est
pas tout à fait vrai si l’on considère une dimension inférieure comme dimen-
sion intermédiaire pour les compositions, comme suit :
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Property 23. Soit i, j, k ∈ N tels que 0 ≤ i < j < k ≤ n.

1. ∀X ∈ P(Ck), δ
+
i,kδ
−
k,i(X) ⊇ δ+j,kδ

−
k,j(X)

2. ∀X ∈ P(Ck), ε
+
i,kε
−
k,i(X) ⊆ ε+j,kε

−
k,j(X)

3. ∀X ∈ P(Ck), ε
+
i,kδ
−
k,i(X) = ε+j,kδ

−
k,j(X)

4. ∀X ∈ P(Ck), δ
+
i,kε
−
k,i(X) = δ+j,kε

−
k,j(X)

Jusqu’à présent, nous avons présenté les opérateurs dimensionnelles et cer-
taines propriétés pertinentes. En utilisant ces opérateurs, nous avons défini
de nouveaux opérateurs et les avons combiné avec les opérateurs classiques.
Maintenant, nous présentons de nouvelles adjonctions, fondées uniquement
sur les opérateurs dimensionnelles. En utilisant ces adjonctions, nous définissons
les ouvertures, fermetures et filtres séquentiels alternés, lorsque c’est possible.

Definition 24. Nous définissons :

∀X ∈ C, δþ(X) =

{⋃
i∈[0...(n−1)]

δ−i+1,iδ
+
i,i+1(Xi)

}⋃{
δ+n−1,nδ

−
n,n−1(Xn)

}
(31)

∀X ∈ C, εþ(X) =ClA
({⋃

i∈[0...(n−1)]
ε−i+1,iε

+
i,i+1(Xi)

}⋃
. . .

. . .
{
ε+n−1,nε

−
n,n−1(Xn)

})
(32)

Property 25. Nous avons :

1. Les opérateurs δþ, εþ, δß et εß agissent sur C.

2. Les paires d’opérateurs (εþ, δþ) et (εß, δß) sont des adjunctions.

Comme nous l’avons fait avec les opérateurs des sections précédentes,
nous pouvons composer ces opérateurs pour définir de nouveaux opérateurs.

Definition 26. Soit i ∈ N. Nous définissons :

γþ

i =
(
δþ
)i (

εþ
)i

(33)

φþ

i =
(
εþ
)i (

δþ
)i

(34)

Property 27. Soit i ∈ N. Nous avons :

1. Les opérateurs γþ

i et φþ

i agissent sur C.
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2. Les opérateurs γþ

i sont des ouvertures.

3. Les opérateurs φþ

i sont des fermetures.

4. Le famille d’opérateurs {γþ

λ , λ ∈ N} est une granulometrie.

5. Le famille d’opérateurs {φþ

λ , λ ∈ N} est une anti-granulometrie.

Étant donné que ces familles agissent sur des sous-complexes et sont des
granulométries et des anti-granulométries, nous pouvons les composer pour
définir plus de filtres alternées séquentiels.

Definition 28. Soit i ∈ N. Nous définissons :

∀X ∈ C, ASFþ

i (X) =
(
γþ

i φ
þ

i

)(
γþ

(i−1)φ
þ

(i−1)

)
. . .
(
γþ

1 φ
þ

1

)
(X) (35)

∀X ∈ C, ASFþ′

i (X) =
(
φþ

i γ
þ

i

)(
φþ

(i−1)γ
þ

(i−1)

)
. . .
(
φþ

1 γ
þ

1

)
(X) (36)

Property 29. Soit i ∈ N. Les opérateurs ASFþ

i et ASFþ′

i , agissent sur C.

La figure ci-dessous montre une comparaison entre les meilleurs résultats
obtenus par nos opérateurs par rapport aux opérateurs de la littérature, sur
le problème de suppression du bruit d’une image binaire.

Dans ce travail, nous avons exploré certains opérateurs du cadre de la mor-
phologie mathématique agissant sur des complexes simpliciaux. Nous avons
commencé par analyser les opérateurs classiques du domaine des complexes
simpliciaux dans le cadre des concepts de la morphologie mathématique. En
utilisant ces opérateurs, nous avons créé de nouvelles dilatations, érosions,
ouvertures, fermetures et filtres alternées séquentiels qui sont en concurrence
avec les opérateurs présents dans la littérature.

Nous avons ensuite présenté la contribution principale de ce travail, les
opérateurs dimensionnels, qui peuvent être utilisés pour définir de nouveaux
opérateurs. De nouveaux opérateurs ont été présentés et nous avons démontré
que les opérateurs dimensionnels peut être utilisé pour exprimer les opérateurs
de la littérature, agissant sur des complexes et des graphes.
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(a) L’image originale. ([15]). (b) Version bruitée de l’image. ([15]),
MSE = 19.56%.

(c) ASF classique, 3 itérations. MSE =
13.91%.

(d) ASF classique, 9 itérations et 3x
résolution. MSE = 2.54%.

(e) Graphe ASF6/2 [15]. MSE = 3.27%. (f) ASFc
3. MSE = 1.91%.

Figure 1 – Comparaison avec les résultats de la littérature.

15



Acknowledgements

This work has been funded by Conseil Général de Seine-Saint-Denis
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Chapter 1

Introduction and related work

Simplicial complexes were first introduced by Poincaré in 1895 [58] to study
the topology of spaces of arbitrary dimension, and are basic tools for algebraic
topology [48], homotopy by collapse [84], image analysis [37, 8, 12], discrete
surfaces [23, 24, 16]. They are widely used to represent multidimensional
data in many applications, such as modelling networks [60], mobile sensors
coverage [19], multi-radio broadcasting optimization [61] and even in pattern
recognition, to find symmetries in musics, where each music is represented
as a complex [62]. In [44], simplicial complexes are used to capture the
topological information about the visual coverage of a camera network, used
for object tracking.

A similar structure, the cubical complex, often called cellular complex, is
also considered as space for image processing [38, 39], including a version of
the Jordan theorem [35]. They can also be considered to represent tridimen-
sional data [57]. We will not explore cubical complexes in this work, but,
since many properties and definitions also hold for cubical complexes, we will
mention, briefly, what does not hold for cubical complexes.

In the form of meshes they are widely used in many contexts to express
tridimensional data, notably for finite elements analysis [85, 46] and digi-
tal exterior calculus [20, 26]. Some graphs can be represented as a form of
simplicial complexes, and we can build simplicial complex based on regular,
matricial, images, as we will demonstrate further in this work. This versa-
tility was the reason we chose to use simplicial complexes as the operating
space. However, we will put aside, momentarily, the practical applications
mentioned and focus on developing operators that act on simplicial com-
plexes.

Usually, such operators act on the structure of the complex. For instance,
it is fairly common to change the complexity of the mesh structure [18, 11].
Even when additional data is associated with the elements of the complex,
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they are mostly used to guide the change of the structure, the values them-
selves are not changed. We pursuit a different option, in this work, our ob-
jective is to filter values associated to the elements of the complex, without
changing its structure, using the framework of mathematical morphology.

Mathematical morphology was introduced by Matheron and Serra in
1964, becoming a powerful framework for image analysis and processing [74].
It has become one of the most important frameworks for non-linear image
processing, with applications wherever an image can be found, providing
tools for great many applications, such as noise removing [42, 27], biomet-
rics [59], image segmentation [52, 34], medical imaging [69, 1], pattern match-
ing, similarity search [40], document processing [56, 17], fingerprint enhance-
ment [3, 32] and so on.

The framework of mathematical morphology was later extended by Heij-
mans and Ronse [30] using complete lattices, allowing the application of the
framework on more complex digital structures, such as graphs [81, 15, 14, 47],
hypergraphs [9, 77] and simplicial complexes [21, 45].

The various operators [74, 70, 75, 55] created by mathematical morphol-
ogy stem from the two sources of an adjunction and of a connection. The first
one leads to theory of openings and closings by adjunction [29, 64, 28], and
then, to morphological filters. The second source, a general study of which
can be found in [73], introduces and studies connections [71, 66], regional
minima, flat zones processing [82, 68, 10, 54], levellings [49, 50, 72], water-
sheds [83, 7, 13], homotopic thinning [36, 6] and so on. The two sources are
not incompatible, and one can combine their axioms (e.g. a connected open-
ing). In practice the first line expresses mainly filtering, whereas the second
one focuses on segmentation. The present thesis is exclusively devoted to the
building up of adjunctions, and to its consequences in terms of filtering.

Despite the versatility of the considered space and the power of the frame-
work, to the best of our knowledge, operators from mathematical morphology,
acting on simplicial complexes, are still an undeveloped concept in the liter-
ature. The main motivation of this work is to explore what can be achieved
by combining a versatile space with a powerful framework of operators.

Simplicial complexes and mathematical morphology are not incompatible,
it is well known, and we also demonstrate, that some classical operators
from simplicial complexes are in fact morphological operators. However, the
way we interpret these operators is new, and we use them as starting point
to develop new operators. We define dilations, erosions, openings, closings
and alternating sequential filters, based on these well known operators from
simplicial complexes. We chose to develop these operators because they are
some of the most basic operators one can consider when using mathematical
morphology, that is, they can be used as tools to build other applications or
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operators.
However, the main contributions of this work are the small operators

we introduce, called dimensional operators, that are not derived from the
classic operators. These operators provide a new and very flexible way to
represent operators, and we show that they can be used to express virtually
any operator presented in the literature. Using the dimensional operators, we
define new morphological operators, that we compare against some operators
presented in the literature, considering noise removal.

The idea to use a digital structure to image processing is not new. In [81],
Vincent uses the lattice approach to mathematical morphology to define mor-
phological operators on neighborhood graphs [67], where the graph structure
is used to define neighborhood relationships between unorganized data, ex-
pressed as vertices. The same idea is further explored by Barrera et al. [5].
Some morphological operators can also be obtained by using the Image
Foresting transform [25], that also explores the idea of using a graph to
express neighborhood relationship between data points.

By allowing the vertices values to be propagated to the edges, therefore
using the graph structure to express more than just neighborhood relation,
Cousty et al. [15] obtained different morphological operators, including open-
ings, closings and alternating sequential filters. Those operators are capable
of dealing with smaller noise, effectivelly acting in a smaller size than the
classical operators. Similar operators were also used by Meyer and Staw-
iaski [53] and by Meyer and Angulo [51] to obtain a new approach to image
segmentation and levellings, respectively.

In [78], Ta et al. use partial differential equations [4] to define morpho-
logical operators on weighted graphs, extending the PDE-based approach to
the processing of high dimensional data.

Recently, Block and Bretto [9] introduced mathematical morphology on
hypergraphs, defining lattices and operators on this domain. Their lattices
and operators are similar to the ones presented in this work, respected the
differences between hypergraphs and complexes.

This work is focused on mathematical morphology on simplicial com-
plexes, specifically to process values associated to elements of the complex
in an unified manner, without altering the structure itself. In [45], Loménie
and Stamon explore mathematical morphology operators on mesh spaces
provenient from point spaces. However, the complex only provides struc-
tural information, while the information itself is associated only to triangles
or edges of the mesh.

Table 1.1 briefly summarizes the related works that are more relevant for
this work, including an article containing partial results of this work [21].

In chapter 2 we remind the basic concepts and definitions of simplicial
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Table 1.1: Summary of the related works.

Considered
space

Comments

Vincent [81] Graphs Graph structure used as
neighborhood relation.

Cousty et. al. [15, 14] Graphs Values can be propagated
to edges.

Meyer and Stawiaski [53] Graphs Values can be propagated
to edges.

Bloch and Bretto [9] Hypergraphs Defines several lattices and
morphological operators.

Loménie and Stamon [45] Simplicial com-
plexes

Processes separately faces
and edges.

This work ([21]) Simplicial com-
plexes

Values can be associated
with any simplex and all
simplices are treated uni-
formly.

complexes and mathematical morphology used in this work, leading to op-
erators from mathematical morphology acting on simplicial complexes, pre-
sented on chapter 3. In that chapter we present operators based on the
classical operators from simplicial complexes and new basic operators, called
dimensional operators, that are the main contribution of this work. Using
these dimensional operators, we define new operators acting on simplicial
complexes and we can also express the operators presented in the litera-
ture. Since we extend these operators to weighted complexes, using threshold
decomposition and stacking, all the operators presented can be applied on
weighted complexes.

Some illustrations and experimental results are presented in chapter 4,
using values associated with elements of a tridimensional mesh, regular bi-
nary and grayscale images. We also analyse the noise removal capabilities of
our filters on sets of regular images with varying amounts of small noise.
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Chapter 2

Basic theoretical concepts

The objective of this work is to explore mathematical morphology on sim-
plicial complex spaces. To this end, we start by reminding useful definitions
about simplicial complexes, in section 2.1, and mathematical morphology, in
section 2.2.

2.1 Simplicial complexes

One of the most known forms of complex [33] is the concept of mesh, often
used to express tridimensional data on various domains, such as computer
aided design, animation and computer graphics in general. However, in this
work we prefer to approach complexes by the combinatorial definition of an
abstract complex.

The basic element of a complex is a simplex . In this work, a simplex is
a finite, nonempty set. The dimension of a simplex x, denoted by dim(x),
is the number of its elements minus one. A simplex of dimension n is also
called an n-simplex .

Figure 2.1(a) (resp. 2.1(b), and 2.1(c)) graphically represents a simplex x =
{a} (resp. y = {a, b} and z = {a, b, c}) of dimension 0 (resp. 1, 2). Fig-
ure 2.1(d) shows a set of simplices composed of one 2-simplex ({a, b, c}), three
1-simplices ({a, b}, {b, c} and {a, c}) and three 0-simplices ({a}, {b} and {c}).

We call simplicial complex , or simply complex , any set X of simplices
such that, for any x ∈ X, any non-empty subset of x also belongs to X. The
dimension of a complex is equal to the greatest dimension of its simplices.
In the following, a complex of dimension n is also called an n-complex . For
instance, figure 2.1(d) represents an elementary 2-complex. Figure 2.2(a)
shows another 2-complex.
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(a) A 0-simplex. (b) A 1-simplex. (c) A 2-simplex. (d) A 2-cell

Figure 2.1: Graphical representation of simplexes, complexes and cells.

Important notations. In this work, the symbol C denotes a non-
empty n-complex, with n ∈ N. The set of all subsets of C is denoted
by P(C ). Any subset of C that is also a complex is called a subcomplex
(of C ). We denote by C the set of all subcomplexes of C .

A subcomplex X of C is called a cell of C if there exists a simplex x in
X such that X is the set of all subsets of x. As an example, the 2-complex
depicted on figure 2.1(d) is also a 2-cell. The subset {{a}, {b}, {a, b}} of
this complex is a 1-subcomplex and also a 1-cell. The set of gray simplices
depicted in figure 2.2(a) is a 2-subcomplex.

Any subcomplex X ∈ C is generated, using the union operator, by the
family G of all cells of C that are included in X: X = ∪{Y ∈ G}. Conversely,
any family G of cells generates, using the union operator, an element of C.
In this sense, the cells can be seen as the elementary building blocks of the
complexes.

If X is a subset of C , we denote by X the complement of X (in C ): X =
C \X. The complement of a subcomplex of C is usually not a subcomplex.
Any subset X of C whose complement X is a subcomplex is called a star
(in C ). For instance, the gray set of simplices of figure 2.2(a), is a sub-
complex, but its complement, the set of black simplices, is, by definition, a
star. Similarly, the gray set of figure 2.2(b) is a star, and the black set is a
subcomplex. We denote by S the set of all stars in C .

The intersection C ∩ S is non-empty since it always contains at least ∅
and C .

In this section we presented some basic definitions and properties regard-
ing simplicial complexes. We will consider simplicial complexes as operating
space for the operators defined on the next chapters.
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(a) A complex containing a subcom-
plex.

(b) A complex containing a star.

Figure 2.2: Graphical examples of a complex containing a subcomplex and
a star.

2.2 Mathematical morphology

Our goal is to investigate morphological operators acting on simplicial com-
plexes. The previous section presented a brief reminder of the involved con-
cepts from that domain. In this section we remind the basic concepts of
mathematical morphology. In this work, we approach mathematical mor-
phology through the framework of lattices [63].

We start with the concept of partially ordered set (poset). It is composed
by a set and a binary relation. The binary relation is defined only between
certain pairs of elements of the set, representing precedence, and must be
reflexive, antisymmetric and transitive.

A lattice is a poset with a least upper bound, called supremum, and
a greatest lower bound, called infimum. For instance, consider the set
P(S) = {{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}}, the power set of the set
S = {a, b, c}. This set, ordered by the inclusion relation, is a lattice. The
supremum of two elements of this lattice is given by the union operator and
the infimum by the intersection operator. This lattice can be denoted by
〈P(S),

⋃
,
⋂
,⊆〉. A lattice is complemented if the complement of any given

element of the lattice also belongs to the lattice. A graphical representation
of this lattice, known as Hasse diagram, is shown on figure 2.3. In such di-
agram, two sets x1 and x2 are linked if x1 ⊂ x2 and there is no set x3 such
that x1 ⊂ x3 ⊂ x2.

In mathematical morphology (see, e.g., [65]), any operator that associates
elements of a lattice L1 to elements of a lattice L2 is called a dilation if it
commutes with the supremum. Similarly, an operator that commutes with
the infimum is called an erosion.

Let L1 and L2 be two lattices whose order relations and suprema are
denoted by ≤1, ≤2, ∨1, and ∨2. Two operators α : L2 → L1 and β : L1 → L2

28



Figure 2.3: Hasse diagram of the lattice of a set.

form an adjunction (β, α) if α(a) ≤1 b ↔ a ≤2 β(b) for every element a in
L2 and b in L1. It is well known (see, e.g., [65]) that, given two operators α
and β, if the pair (β, α) is an adjunction, then β is an erosion and α is a
dilation. Furthermore, if α is a dilation, the following relation characterizes
its adjoint erosion β [65]:

∀a ∈ L1, β(a) = ∨2 {b ∈ L2 | α(b) ≤1 a} (2.1)

We will, in certain cases, express the adjoint operator of an operator α
as αA , to explicit the relationship between them.

In mathematical morphology, an operator α, acting on a lattice L, that
is increasing (∀A,B ∈ L, A ⊆ B =⇒ α(A) ⊆ α(B)) and idempotent (∀A ∈
L, α(A) = α(α(A))) is a filter . If a filter is anti-extensive (∀A ∈ L, α(A) ⊆
A) it is called an opening . Similarly, an extensive filter (∀A ∈ L, A ⊆ α(A))
is called a closing .

One easy way of obtaining openings and closings is by combining dilations
and erosions [65]. Let α : L → L be a dilation. We can obtain a closing ζ
and an opening ψ acting on L by:

ζ = αAα (2.2)

ψ = ααA (2.3)

A family of openings Ψ = {ψλ, λ ∈ N} acting on L, is a granulometry
if, given two positive integers i and j, we have i ≥ j =⇒ ψi(a) ⊆ ψj(a),
for any a ∈ L [65]. Similarly, a family of closings Z = {ζλ, λ ≥ 0}, is a
anti-granulometry if, given two positive integers i and j, we have i ≤ j =⇒
ψi(a) ⊆ ψj(a), for any a ∈ L.

A family of filters {αλ, λ ∈ N} is a family of alternating sequential filters
if, given two positive integers i and j, we have i > j =⇒ αiαj = αi, for any
a ∈ L [65].
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Let Ψ = {ψλ, λ ∈ N} be a granulometry and Z = {ζλ, λ ∈ N} be an anti-
granulometry. We can construct two alternating sequential filters (ASF) by
composing operators from both families [65]. Let i ∈ N:

∀X ∈ L, νi(X) = (ψiζi)(ψi−1ζi−1) . . .(ψ1ζ1) (X) (2.4)

∀X ∈ L, ν ′i(X) = (ζiψi)(ζi−1ψi−1) . . .(ζ1ψ1) (X) (2.5)

In this section we presented a brief reminder of the concepts of mathe-
matical morphology that will be explored in the next chapters, considered in
the context of simplicial complexes.
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Chapter 3

Proposed operators

In this chapter we will present new mathematical morphology operators act-
ing on lattices of simplicial complexes. This is the main contribution of this
work, more specifically the dimensional operators presented on section 3.2.

3.1 Classical approach: P(C ), C and S.
Considering simplicial complexes, the most obvious lattice we can define is
the power set P(C ), made of all subsets of C , together with the inclusion
relation. The supremum operator is given by the union and the infimum
operator by the intersection. This lattice is denoted by 〈P(C ),

⋃
,
⋂
,⊆〉, or

simply P(C ) if no ambiguity is present. This lattice is complemented, that
is, ∀x ∈ P(C ),∃x ∈ P(C ) | x ∩ x = ∅ and x ∪ x = C .

The set C of all subcomplexes of C , ordered by the inclusion relation,
along with the union as supremum operator and the intersection as infimum
operator, is also a lattice. Further, 〈C,

⋃
,
⋂
,⊆〉 is a sublattice of P(C ) since

C is a subset of P(C ), closed under union and intersection, with the same
supremum C and infimum ∅. Similarly, the lattice 〈S,

⋃
,
⋂
,⊆〉, containing

the S of all stars of C , equipped with the inclusion relation is also a sublattice
of P(C ). However, the lattices C and S are not complemented, since the
complement of a subcomplex is a star and vice versa.

In the domain of simplicial complexes, some operators are well known,
such as the closure and star [33]. We define the closure x̂ and the star x̌ of
x as:

∀x ∈ C , x̂ = {y | y ⊆ x, y 6= ∅} (3.1)

∀x ∈ C , x̌ = {y ∈ C | x ⊆ y} (3.2)
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(a) X (b) Y (c) Z (d) V (e) W

Figure 3.1: Illustration of morphological dilations and erosions.

In other words, the closure operator gives as result the set of all simplices
that are subsets of the simplex x, and the star gives as result the set of all
simplices of C that contain the simplex x. These operators can be easily
extended to sets of simplices. The operators Cl : P(C ) → P(C ) and St :
P(C )→ P(C ) are defined by:

∀X ∈ P(C ), Cl(X) =
⋃
{x̂ | x ∈ X} (3.3)

∀X ∈ P(C ), St(X) =
⋃
{x̌ | x ∈ X} (3.4)

Both operators commute with the union operator, that is the supremum
of the lattice P(C ). Therefore, the operators Cl and St are dilations, acting
on P(C ).

We can use equation 2.1 to find the adjunct erosions ClA : P(C )→ P(C )
and StA : P(C )→ P(C ), as follows:

∀X ∈ P(C ), ClA (X) =
⋃
{Y ∈ P(C ) | Cl(Y ) ⊆ X} (3.5)

∀X ∈ P(C ), StA (X) =
⋃
{Y ∈ P(C ) | St(Y ) ⊆ X} (3.6)

The four operators presented above are illustrated in the figure 3.1, where
the subsetsX, Y, Z, V , andW , made of gray simplices in figures 3.1(a), 3.1(b),
3.1(c), 3.1(d), and 3.1(e), satisfy the following relations Y = St(X), Z =
StA (X), V = Cl(Y ), W = ClA (Z). The result of operator St is always a
star and the star depicted on figure 3.1(b) is the smallest star that contains
X. Similarly, the star depicted on figure 3.1(c) is the greatest star contained
in X. The subcomplex depicted in figure 3.1(d) is the smallest complex V
that contains Y . The subcomplex depicted in figure 3.1(e) is the greatest
subcomplex contained in Z.
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Since the operators Cl and St are dilations, they constitute a straightfor-
ward choice to investigate morphology on complexes. However, these dila-
tions are idempotent. The adjunct erosions ClA and StA are also idempotent.
Thus, they lead to trivial granulometries.

In order to obtain nontrivial granulometries, one could consider the fol-
lowing compositions:

Dil =ClSt (3.7)

Er =StAClA (3.8)

Indeed, the operator Dil : P(C )→ P(C ) is a dilation, since it is a com-
position of dilations [31]. This operator is not idempotent, and its results are
always complexes. By the theorem of composition of adjunctions (see [65], p.
59), the erosion Er : P(C )→ P(C ) is the adjunct operator of Dil. However,
the pair (Er,Dil) does not lead to granulometries acting on complexes, since
the result of Er is always a star.

In order to obtain nontrivial granulometries on complexes, let us restrict
the operators of equations 3.3 and 3.4.

Definition 30. We define the operators � : S → C and ? : C → S by:

∀X ∈ S, �(X) =Cl(X) (3.9)

∀Y ∈ C, ?(Y ) =St(Y ) (3.10)

The only difference between � and Cl is the domain of activity of the
each operator. A similar remark holds true for ? and St. The operators �
and ? are also obviously two dilations. Then, using again the equation 2.1,
the adjoint erosions �A and ?A are given by:

Property 31.

∀X ∈ C, �A (X) =
⋃
{Y ∈ S | � (Y ) ⊆ X} (3.11)

∀Y ∈ S, ?A (Y ) =
⋃
{X ∈ C | ? (X) ⊆ Y } (3.12)

The star �A (X) is the interior of the complex X and that the com-
plex ?A (Y ) is the core of the star Y . Therefore, the following property
links the adjoint of ?, St, �, and Cl in a surprising way.
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Property 32. The two following propositions hold true:

∀X ∈ C, �A (X) =StA (X) (3.13)

∀Y ∈ S, ?A (Y ) =ClA (Y ) (3.14)

It is known in topology that the closure and interior operators are dual
with respect to the complement. Thus, we deduce the following result.

Property 33. The operators � and �A (resp. ? and ?A ) are dual with

respect to the complement in P(C ): we have �A (X) = �
(
X
)
, for any X ∈ C

(resp. ?A (Y ) = ?
(
Y
)
, for any Y ∈ S)

By using equations 3.11 and 3.12 directly, computing �A (X) (resp. ?A (X))
requires an exponential time since the family of all stars (complexes) must
be considered. On the other hand, as the operators Cl and St are locally
defined, �(X) and ?(X) can be computed in linear-time. Hence, due to
Property 33, �A (X) and ?A (X) can also be computed in linear-time.

We can also provide an alternative characterization for the operators from
definition 30 and the classical closure and star operators.

Property 34.

∀X ∈ C ? (X) ={x ∈ C | ∃y ∈ X, y ⊆ x} (3.15)

∀Y ∈ S, �(Y ) ={x ∈ C | ∃y ∈ X, x ⊆ y} (3.16)

∀Z ∈ C , St(Z) ={x ∈ C | ∃y ∈ Z, y ⊆ x} (3.17)

∀Z ∈ C , Cl(Z) ={x ∈ C | ∃y ∈ Z, x ⊆ y} (3.18)

By combining the operators ? and � and their adjoints we can define two
pairs of openings and closings.
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Definition 35. We define:

γh = � �A (3.19)

φh = ?A ? (3.20)

Γh = ? ?A (3.21)

Φh = �A � (3.22)

The operators φh, γh, Φh and Γh are illustrated on figure 3.2, with the
considered sets in gray. We consider the results for two subcomplexes, Y
and Z, and two stars, W and V . As expected, the closing operators added
elements to the considered set. For the subcomplex, triangles and edges
were included, and edges and points were included for the star. Similarly,
the opening operators removed small elements of the set. These images also
illustrate the duality w.r.t. the complement between the operators.

Property 36. We have:

1. The operators γh and φh act on C.

2. The operators Γh and Φh act on S.

3. The operators γh and Γh are openings.

4. The operators φh and Φh are closings.

5. The operators γh and Φh are dual of each other, with respect to the
complement.

6. The operators φh and Γh are dual of each other, with respect to the
complement.

Proof. 1. Straightforward from the domains of the operators � and �A for
the operator γh, and from the domains of the operators ? and ?A for
the operator φh.

2. Identical to the previous property, considering the change in the order
of the operators.

3. Any erosion followed by the adjoint dilation is an opening [65].
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(a) Y (b) φh(Y ) (c) Z (d) γh(Z)

(e) W (f) Γh(W ) (g) V (h) Φh(V )

Figure 3.2: Illustration of operators φh, γh, Γh and Φh.

4. Any dilation followed by the adjoint erosion is a closing [65].

5. Trivial from property 33 and the definition of the operators.

6. Trivial from property 33 and the definition of the operators.

In other words, the presented operators act on the desired spaces, C for
γh and φh, S for Γh and Φh, and consist of openings and closings, as ex-
pected, and can be use to remove small objects from the considered set or its
background. The duality property between the operators can, for instance,
ease the implementation of the operators.

However, since the erosions and dilations involved are idempotent, any
composition of these operators followed by the adjoint operator will lead to
the same opening or closing. Therefore these operators are not suitable for
constructing nontrivial granulometries.

Let us now compose the dilations � and ?, as well as their adjoints, to
obtain new operators acting on complexes and stars.
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Definition 37. We define the operators δ, ε, ∆ and E by:

δ = � ? (3.23)

ε = ?A �A (3.24)

∆ = ? � (3.25)

E = �A ?A (3.26)

Figures 3.1(d) and 3.1(e) represent, in gray, the complexes V = δ(X) and
W = ε(X), where X is the complex represented in gray in figure 3.1(a).

Property 38. Considering the operators from definition 37, we have:

1. The operators δ and ε act on C.

2. The operators ∆ and E act on S.

3. The operators δ and ∆ are dilations.

4. The operators ε and E are erosions.

5. The pairs (ε, δ) and (E ,∆) are adjunctions.

Proof. 1. Straightforward from the domain of the operators � and ?A .

2. Straightforward from the domain of the operators ? and ?A .

3. Operators � and ? are dilations. Compositions of dilations are dila-
tions [65].

4. Operators �A and ?A are erosions. Compositions of erosions are ero-
sions [65].

5. Direct application of the theorem of compositions of adjunctions (see,
e.g. [65], p. 59).

The adjunctions from definition 37 are not idempotent and act on the
desired spaces, so they are suitable for building granulometries and anti-
granulometries. Since the involved lattices are not complemented, these ad-
junctions are not dual, with respect to the complement.
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Let i ∈ N and α an operator. We use the notation αi to represent the
iteration of the operator α, that is, αi = α . . . α︸ ︷︷ ︸

i times

.

Definition 39. Let i ∈ N. We define the operators γci , φ
c
i , Γci and Φc

i by:

γci =δiεi (3.27)

φci =εiδi (3.28)

Γci =∆iE i (3.29)

Φc
i =E i∆i (3.30)

By controlling the parameter i, we can control the amount of elements
that will be affected by the operators. Informally speaking, by increasing the
number of iterations, we obtain “greater” filters.

Property 40. Let i ∈ N. We have:

1. The operators γci and φci act on C.

2. The operators Γci and Φc
i act on S.

3. The operators γci and Γci are openings.

4. The operators φci and Φc
i are closings.

5. The families of operators {γcλ, λ ∈ N} and {Γcλ, λ ∈ N} are granu-
lometries.

6. The families of operators {φcλ, λ ∈ N} and {Φc
λ, λ ∈ N} are anti-

granulometries.

Proof. 1. Trivial from property 38.

2. Trivial from property 38.

3. Compositions of erosions followed by the adjoint dilations are open-
ings [65].
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(a) Y (b) φc1(Y ) (c) Z (d) γc1(Z)

(e) W (f) Φc
1(W ) (g) V (h) Γc

1(V )

Figure 3.3: Illustration of operators φc1, γ
c
1, Φc

1 and Γc1.

4. Compositions of dilations followed by the adjoint erosions are clos-
ings [65].

5. Since all elements of the families are openings, we need to prove that,
for any two non-negative integers λ and µ, we have λ ≤ µ =⇒ γcµ ⊆ γcλ
(resp. λ ≤ µ =⇒ Γcµ ⊆ Γcλ). From the definition 39, we have: γcµ =
δµ−λγcλε

µ−λ (resp. Γcµ = ∆µ−λΓcλEµ−λ). Using the Lemma 2.7, equation
2.6, from [31], we easily conclude that γcµ ⊆ γcλ (resp. Γcµ ⊆ Γcλ).

6. Identical to the previous proof, but using equation 2.7 of Lemma 2.7
presented in [31].

In other words, the operators φc, Φc, γc and Γc are increasing and idem-
potent, whereas φc and Φc are extensive and γc and Γc are anti-extensive.
Furthermore, since δ, ε, ∆ and E are not idempotent, the operators obtained
by iterating these operators lead to nontrivial granulometries. The operators
φc, γc, Φc and Γc are illustrated on figure 3.3. We considered two different
subcomplexes, Y and Z, and two different stars, W and V . As we expected,
the openings removed elements of the sets, whereas the closing included ele-
ments. However, these operators affected more elements than the operators
illustrated on figure 3.2. Informally speaking, we can consider the operators
from definition 35 “smaller” than the operators from definition 39.

By composing the operators from a granulometry and an anti-granulometry,
acting on the same lattice, we can define alternating sequential filters, follow-
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ing equations 2.4 and 2.5. These filters can be used to progressively remove
features of the considered sets, a very useful approach when the size of the
features is a determinant factor.

Definition 41. Let i ∈ N. We define the alternating sequential filters
ASFci , ASFc

′

i , ASFSci and ASFSc
′

i by:

∀X ∈ C, ASFci(X) = (γciφ
c
i)
(
γci−1φ

c
i−1
)
. . . (γc1φ

c
1) (X) (3.31)

∀X ∈ C, ASFc
′

i (X) = (φciγ
c
i )
(
φci−1γ

c
i−1
)
. . . (φc1γ

c
1) (X) (3.32)

∀Y ∈ S, ASFSci (Y ) = (ΓciΦ
c
i)
(
Γci−1Φ

c
i−1
)
. . .(Γc1Φ

c
1) (Y ) (3.33)

∀Y ∈ S, ASFSc
′

i (Y ) = (Φc
iΓ

c
i)
(
Φc
i−1Γ

c
i−1
)
. . .(Φc

1Γ
c
1) (Y ) (3.34)

Similarly to the openings and closing defined previously, the parameter
i controls how many elements of the complex are affected by the operators.
By controlling the iterations of the filter, we can define “greater” filters, that
is, filters that remove greater features of the considered set.

Property 42. Let i ∈ N. We have:

1. The operators ASFci and ASFc
′

i act on C.

2. The operators ASFSci and ASFSc
′

i act on S.

Proof. Trivial from property 40.

Alternatively, we can combine the operators from definition 39 with the
operators from definition 35, to obtain different openings and closings. By
using this procedure, we aim to obtain filters that affect less elements of the
complex, when compared to the filters from definition 39. Informally speak-
ing, we want to obtain filters “smaller” than the operators from definition 39.

In this work, the operator mod represents the common residue, that is,
the remainder of an integer division. The notation b c represents the floor
operator.

Definition 43. Let i ∈ N and X ∈ C. We define the operators γchi/2 and

φchi/2, Γchi/2 and Φch
i/2 by:
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γchi/2 =

{
δbi/2cεbi/2c if i mod 2 = 0

δbi/2cγhεbi/2c otherwise.
(3.35)

φchi/2 =

{
εbi/2cδbi/2c if i mod 2 = 0

εbi/2cφhδbi/2c otherwise.
(3.36)

Γchi/2 =

{
∆bi/2cEbi/2c if i mod 2 = 0

∆bi/2cΓhEbi/2c otherwise.
(3.37)

Φch
i/2 =

{
Ebi/2c∆bi/2c if i mod 2 = 0

Ebi/2cΦh∆bi/2c otherwise.
(3.38)

When the parameter i of these operators is even, the operators γh, φh, Γh

and Φh are not used, and the operators become identical to the operators from
definition 39. Thus, these operators are very similar to the operators from
definition 39, but they are capable of operating in an intermediary “size”,
between two consecutive iterations of the operators from definition 39.

Property 44. Let i ∈ N. We have:

1. The operators γchi/2 and φchi/2 act on C.

2. The operators Γchi/2 and Φch
i/2 act on S.

3. The operators γchi/2 and Γchi/2 are openings.

4. The operators φchi/2 and Φch
i/2 are closings.

5. The families of operators {γchλ/2, λ ∈ N} and {Γchλ/2, λ ∈ N} are
granulometries.

6. The families of operators {φchλ/2, λ ∈ N} and {Φch
λ/2, λ ∈ N} are

anti-granulometries.

Proof. 1. Trivial from properties 38 and 36.

2. Trivial from properties 38 and 36.
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(a) Y (b) φch1/2(Y ) (c) φch2/2(Y ) (d) φch3/2(Y )

(e) Z (f) γch1/2(Z) (g) γch2/2(Z) (h) γch3/2(Z)

Figure 3.4: Illustration of operators φchi/2, γ
ch
i/2.

3. Trivial from Preposition 5.2 of [31].

4. Trivial from Table II of [31].

5. Identical to the proof of property 40.5, with a special case when i = 1,
that is, we still have to prove that γch2/2 ⊆ γch1/2. Following the definitions,

this equation becomes � ? ?A �A ⊆ ��A , that is equivalent to �Γh�A ⊆
��A , which is true, since Γh is an opening. A similar procedure can be
done for the family {Γchλ/2, λ ∈ N}.

6. Identical to the proof of property 40.6, considering the special case
when i = 1, following the same procedure as we used in the previous
item.

Figure 3.4 illustrates the operators γchi/2 and φchi/2 on two subcomplexes. As
expected, by increasing the parameter i, we control how many elements of the
complex are affected by the operators. When i = 2, the results are identical
to the results of the operators from definition 39, illustrated on figure 3.3.

The operators act on the desired spaces, and are closings and openings.
The insertion of the operators γh, φh, Γh and Φh did not interfered with
the basic properties of the operators from definition 39. Additionally, these
families of operators are also granulometries and anti-granulometries, and can
be considered for many applications where the size of the filter is relevant,
for instance to compose alternating sequential filters, as we did previously.
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Definition 45. Let i ∈ N. We define the alternating sequential filters
ASFchi/2, ASFch

′

i/2, ASFSchi/2 and ASFSch
′

i/2 by:

∀X ∈ C, ASFchi/2(X) =
(
γchi/2φ

ch
i/2

) (
γch(i−1)/2φ

ch
(i−1)/2

)
. . .
(
γch1/2φ

ch
1/2

)
(X)

(3.39)

∀X ∈ C, ASFch
′

i/2(X) =
(
φchi/2γ

ch
i/2

) (
φch(i−1)/2γ

ch
(i−1)/2

)
. . .
(
φch1/2γ

ch
1/2

)
(X)

(3.40)

∀Y ∈ S, ASFSchi/2 (Y ) =
(
Γchi/2Φ

ch
i/2

) (
Γch(i−1)/2Φ

ch
(i−1)/2

)
. . .
(
Γch1/2Φ

ch
1/2

)
(Y )

(3.41)

∀Y ∈ S, ASFSch
′

i/2 (Y ) =
(
Φch
i/2Γ

ch
i/2

) (
Φch

(i−1)/2Γ
ch
(i−1)/2

)
. . .
(
Φch

1/2Γ
ch
1/2

)
(Y )

(3.42)

Property 46. Let i ∈ N. We have:

1. The alternating sequential filters ASFchi/2 and ASFch
′

i/2 act on C.

2. The alternating sequential filters ASFSchi/2 and ASFSch
′

i/2 act on S.

Proof. Trivial from property 44.

If we considered only the iterations with an even i, the operators from def-
inition 45 would be identical to the operators from definition 41, because the
openings and closings involved would be identical. The additional iterations,
using a smaller operator, allows these filters to deal with smaller components
of the complex in a consistent way, but also increases their computational
cost.

3.2 Dimensional operators

In this section we introduce four new basic operators that act on simplices of
given dimensions. These operators are the main contribution of this work and
can be composed into new operators which behaviour can be finely controlled.

We start by introducing a new notation that allows only simplices of a
given dimension to be retrieved. Let X ⊆ C and let i ∈ [0, n], we denote
by Xi the set of all i-simplices of X: Xi = {x ∈ X | dim(x) = i}. In
particular, Ci is the set of all i-simplices of C . We denote by P(Ci) the set
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of all subsets of Ci. We also extend the notation of complement, if X ∈ Ci,
the complement is taken with respect to the considered dimension, that is,
X = Ci\X.

Let i ∈ N such that i ∈ [0, n]. The structure 〈P(Ci),
⋃
,
⋂
,⊆〉 is a lattice.

Definition 47. Let i, j ∈ N such that 0 ≤ i < j ≤ n. We define the
operators δ+i,j and ε+i,j acting from P(Ci) into P(Cj) and the operators δ−j,i
and ε−j,i acting from P(Cj) into P(Ci) by:

∀X ∈ P(Ci), δ
+
i,j(X) ={x ∈ Cj | ∃y ∈ X, y ⊆ x} (3.43)

∀X ∈ P(Ci), ε
+
i,j(X) ={x ∈ Cj | ∀y ∈ Ci, y ⊆ x =⇒ y ∈ X} (3.44)

∀X ∈ P(Cj), δ
−
j,i(X) ={x ∈ Ci | ∃y ∈ X, x ⊆ y} (3.45)

∀X ∈ P(Cj), ε
−
j,i(X) ={x ∈ Ci | ∀y ∈ Cj, x ⊆ y =⇒ y ∈ X} (3.46)

In other words, δ+i,j(X) is the set of all j-simplices of C that include an
i-simplex of X, δ−j,i(X) is the set of all i-simplices of C that are included in
a j-simplex of X, ε+i,j(X) is the set of all j-simplices of C whose subsets of
dimension i all belong to X, and ε−j,i(X) is the set of all i-simplices of C that

are not contained in any j-simplex of X.
The dimensional operators from definition 47 are illustrated on figure 3.5,

considering a simple 2-complex as the operating space C . The first, third and
fifth columns represent the input sets considered for each example. The first
row illustrates the operator δ+i,j, for all possible combinations of input and
output dimension on this complex. This operator returns all simplices of the
output dimension that contain a simplex of the argument set. The second
row illustrates the operator δ−j,i, that, as expected, returns all simplices of
the output dimension that are contained in a simplex of the argument. The
third row illustrates the operator ε+i,j, that returns all simplices of the output
dimension such that all its components of the input dimension are contained
in the argument. For instance, consider the figures 3.5(m) and 3.5(n). The
result is the only edge such that all its contained points are also contained in
the input set Xm. The fourth row illustrates the operator ε−j,i, that returns
a set of simplices of the output dimension such that, for every simplex, all
simplices of the input dimension that contain that simplex belong to the
argument. For instance, consider the figures 3.5(w) and 3.5(x). For each
edge of the result, all the triangles that contain that edge belong to the
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(a) Xa (b) δ+0,1(Xa) (c) Xc (d) δ+0,2(Xc) (e) Xe (f) δ+1,2(Xe)

(g) Xg (h) δ−1,0(Xg) (i) Xi (j) δ−2,0(Xi) (k) Xk (l) δ−2,1(Xk)

(m) Xm (n) ε+0,1(Xm) (o) Xo (p) ε+0,2(Xo) (q) Xq (r) ε+1,2(Xq)

(s) Xs (t) ε−1,0(Xs) (u) Xu (v) ε−2,0(Xu) (w) Xw (x) ε−2,1(Xw)

Figure 3.5: Illustration of the operators δ+i,j, δ
−
j,i, ε

+
i,j and ε−j,i.

argument, that is, these edges are not contained in a triangle belonging to
the complement of the input set.

By using the star and closure operators from definition 30, we can provide
alternative characterizations for the dimensional operators.

Property 48. We have:

∀X ⊆ Ci, δ
+
i,j(X) = [St(X)]j (3.47)

∀X ⊆ Cj, δ
−
j,i(X) = [Cl(X)]i (3.48)

∀X ⊆ Ci, ε
+
i,j(X) =

[
St
(
X
)]

j
(3.49)

∀X ⊆ Cj, ε
−
j,i(X) =

[
Cl
(
X
)]

i
(3.50)

Proof. Trivial from the alternative characterization by property 34 and the
duality property 33.
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Since the objective of this work is to find interesting operators acting
on subcomplexes, and, incidentally, stars, we mostly use these operators as
building blocks to define new operators. However, they can be useful when
the considered data is associated only with simplices of a given dimension of
the complex, which is fairly common. In this situation, these operators can
be used to propagate the values to the other dimensions of the complex, or
even filter the values directly, depending on the application.

Property 49. Let i, j ∈ N such that 0 ≤ i < j ≤ n.

1. The pairs (ε+i,j, δ
−
j,i) and (ε−j,i, δ

+
i,j) are adjunctions.

2. The operators δ+i,j and ε+i,j are dual of each other:
∀X ⊆ Ci, ε

+
i,j(X) = Cj \ δ+i,j(Ci \X).

3. The operators δ−j,i and ε−j,i are dual of each other:
∀X ⊆ Cj, ε

−
j,i(X) = Ci \ δ−j,i(Cj \X).

Proof. 1. We start with the proof for the pair (ε+i,j, δ
−
j,i). The operator δ−j,i is

clearly a dilation, acting from Cj to Ci. Therefore, it exists an operator
δ− A
i,j acting from Ci to Cj, such that (δ− A

i,j , δ−j,i) is an adjuntion. We

can use the equation 2.1, to express the operator δ− A
i,j . The following

equations are equivalent:

∀a ∈ P(Ci), δ
− A
i,j (a) =

⋃
{b ∈ Cj | δ−j,i(b) ⊆ a} (3.51)

∀a ∈ P(Ci), δ
− A
i,j (a) =

⋃
{b ∈ Cj | [Cl(b)]i ⊆ a} (3.52)

∀a ∈ P(Ci), δ
− A
i,j (a) =

⋃
{b ∈ Cj | ∀y ∈ Ci, y ⊆ b =⇒ y ∈ a}

(3.53)

∀a ∈ P(Ci), δ
− A
i,j (a) = ε+i,j(a) (3.54)

Since the adjoint erosion of a dilation is unique [65], the pair (ε+i,j, δ
−
j,i)

is indeed an adjunction and the operator ε+i,j is an erosion.

The proof for the pair (ε−j,i, δ
+
i,j) follows the same procedure.

2. Trivial from property 48.

3. Trivial from property 48.
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Based on the expected behaviour of the opening and closing operators,
that is, the gradual removal of small elements of the considered subset, in
our case, a star or a complex contained in C , and the complement of the sub-
set, respectively, we can define four simple operators using the dimensional
operators presented on definition 47.

Definition 50. Let d ∈ N such that 0 < d ≤ n. We define the opera-
tors γmd , φmd , Γmd and Φm

d by:

∀X ∈ C, γmd (X) =

 ⋃
i∈[0,d−1]

δ−d,i(Xd)

⋃
 ⋃
i∈[d,n]

Xi

 (3.55)

∀X ∈ C, φmd (X) =

 ⋃
i∈[0,n−d]

Xi

 ⋃ ⋃
i∈[n−d+1,n]

ε+n−d,i(Xn−d)


(3.56)

∀Y ∈ S, Γmd (Y ) =

 ⋃
i∈[0,n−d]

Yi

 ⋃ ⋃
i∈[n−d+1,n]

δ+n−d,i(Yn−d)


(3.57)

∀Y ∈ S, Φm
d (Y ) =

 ⋃
i∈[0,d−1]

ε−d,i(Yd)

⋃
 ⋃
i∈[d,n]

Yi

 (3.58)

From the equations, we can see that each operator is composed of two
distinct parts. In each case, a part of the argument is simply copied to the
output while the other part of the result is created using the dimensional
operators, based on the copied part. Consider the operator γmd , the second
part of the equation simply copies the simplices with dimension higher or
equal to d to the output, while the simplices of dimension inferior to d are
based on the operator δ+i,j, using the simplices of dimension d as argument.
The figure 3.6 illustrates the operator for a tridimensional complex.

Consider the subcomplex Z depicted on figure 3.7(a). The opening oper-
ator γm1/3(Z), which result is depicted on figure 3.7(b), removes all 0-simplices

of Z that are not contained in any 1-simplex of Z. Similarly, γm2/3(Z), shown

on figure 3.7(c), removes all 0 and 1-simplices that are not contained in any 2-
simplex of Z. The closing operator φmd operates on similar way. Figure 3.7(d)
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X0

X1

Y0

δ −
1,0

X2

Y1

Y2δ −
2,1

Figure 3.6: Example diagram for the operation Y = γm2 (X), with n = 3.

shows a subcomplex Y , figure 3.7(e) shows the subcomplex φm1/3(Y ). The op-
erator included all the 2-simplices such that all its 1-simplices are contained
on Y . Similarly, operator φm2/3(Y ) includes all 1 and 2-simplices such that all

its 0-simplices are contained on Y , as depicted on figure 3.7(f).

Property 51. Let d ∈ N such that 0 < d ≤ n. We have:

1. The operators γmd and φmd act on C.

2. The operators Γmd and Φm
d act on S.

3. The operators γmd and Γmd are openings.

4. The operators φmd and Φm
d are closings.

Proof. 1. Consider the operator γmd . The simplices of dimension higher
or equal to d are the same as the input, which is a subcomplex. The
simplices of dimension smaller than d are generated using the operator
δ−d,i, which includes all simplices contained by d-simplices of X. There-
fore, all simplices contained by simplices of γmd (X) are also contained
in γmd (X) and γmd (X) is indeed a subcomplex.

The proof for the operator φmd follows the same procedure, but exploring
the fact that operator ε+n−d,i will only include simplices x such that all
simplices contained in x are also contained in the result.

2. The proof follows the same procedure used for γmd , presented in the
previous item.

3. We have to prove that these operators are idempotent, increasing and
anti-extensive. The idempotency and the increasingness are trivial.
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(a) Z (b) γm1/3(Z) (c) γm2/3(Z)

(d) Y (e) φm1/3(Y ) (f) φm2/3(Y )

Figure 3.7: Illustration of the operators γmd and φmd on complexes.

Since the operators only remove simplices of the argument, the anti-
extensive property is also trivial.

4. We have to prove that these operators are idempotent, increasing and
extensive. The idempotency and the increasingness are trivial. Since
the operators only include simplices not present in the argument, the
extensive property is also trivial.

Since the parameter d of these operators is limited by the dimension of
the considered space n, the possible sizes of the filters are also limited. To
create filters that can have arbitrary sizes, we can enrich the opening and
closing presented on definition 39 by composing them with the operators
from definition 50.

Definition 52. Let i ∈ N. We define operators γcmi/(n+1), φ
cm
i/(n+1), Γcmi/(n+1)
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and Φcm
i/(n+1) by:

∀X ∈ C, γcmi/(n+1)(X) =δbi/(n+1)cγm(imod (n+1))ε
bi/(n+1)c(X) (3.59)

∀X ∈ C, φcmi/(n+1)(X) =εbi/(n+1)cφm(imod (n+1))δ
bi/(n+1)c(X) (3.60)

∀Y ∈ S, Γcmi/(n+1)(Y ) =∆bi/(n+1)cΓm(imod (n+1))Ebi/(n+1)c(Y ) (3.61)

∀Y ∈ S, Φcm
i/(n+1)(Y ) =Ebi/(n+1)cΦm

(imod (n+1))∆
bi/(n+1)c(Y ) (3.62)

Similarly to the operators from definition 43, when the parameter i is
multiple of (n + 1), these operators become identical to the operators from
definition 39. However, these operators have n intermediary sizes between
two consecutive integer parameters, instead of one. Therefore these operators
allow for more control of the result than the operators presented previously.

Property 53. Let i ∈ N. We have:

1. The operators γcmi/(n+1) and φcmi/(n+1) act on C.

2. The operators Γcmi/(n+1) and Φcm
i/(n+1) act on S.

3. The operators γcmi/(n+1) and Γcmi/(n+1) are openings.

4. The operators φcmi/(n+1) and Φcm
i/(n+1) are closings.

5. The families of operators {γcmλ/(n+1), λ ∈ N} and {Γcmλ/(n+1), λ ∈ N}
are granulometries.

6. The families of operators {φcmλ/(n+1), λ ∈ N} and {Φcm
λ/(n+1), λ ∈ N}

are anti-granulometries.

Proof. 1. Trivial from properties 40 and 51.

2. Trivial from properties 40 and 51.

3. Direct result from table II of [31].

4. Direct result from table II of [31].
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5. For λ ∈ [1 . . . n], it is a direct result from the definition of the operators.
For λ > n, the proof is identical to the proof of property 40.5. We still
have to consider the case of λ = n, that is, prove that γcmn+1/(n+1)(X) ⊆
γcmn/(n+1)(X) for any X ∈ C. From the definition, we know that this

relation is equivalent to δε(X) ⊆ γmn (X). The operator γmn only con-
siders the simplices of dimension n, and can be rewritten as �(Xn),
leading to the equivalent relation δε(X) ⊆ �(Xn). We also have that
δε(X) ⊆ X and that �(Xn) ⊆ X. However, �(Xn)n = Xn, that is, the
operator γmn (X) preserves the n-simplices of the argument. The same
is not true for the operator δε(X). Therefore, δε(X) ⊆ γmn (X). A
similar argument can be made for the family {Γcmλ/(n+1), λ ∈ N}.

6. For λ ∈ [1 . . . n], it is a direct result from the definition of the operators.
For λ > n, the proof is identical to the proof of property 40.6. For
λ = n, the procedure is similar to the one followed on the previous
item.

As expected, the operators from definition 52 act on the desired spaces
and are openings and closings. Since we have more intermediary iterations
than the previous operators, we expect these operators to be more “deli-
cate” than the previously defined operators, dealing with finer features in a
controlled way. These families of operators are also granulometries and anti-
granulometries and can be combined to define new alternating sequential
filters.

Definition 54. Let i ∈ N.

∀X ∈ C, ASFcmi/(n+1)(X) =
(
γcmi/(n+1)φ

cm
i/(n+1)

) (
γcm(i−1)/(n+1)φ

cm
(i−1)/(n+1)

)
. . .

. . .
(
γcm1/(n+1)φ

cm
1/(n+1)

)
(X) (3.63)

∀X ∈ C, ASFcm
′

i/(n+1)(X) =
(
φcmi/(n+1)γ

cm
i/(n+1)

) (
φcm(i−1)/(n+1)γ

cm
(i−1)/(n+1)

)
. . .

. . .
(
φcm1/(n+1)γ

cm
1/(n+1)

)
(X) (3.64)

∀Y ∈ S, ASFScmi/(n+1)(Y ) =
(
Γcmi/(n+1)Φ

cm
i/(n+1)

) (
Γcm(i−1)/(n+1)Φ

cm
(i−1)/(n+1)

)
. . .

. . .
(
Γcm1/(n+1)Φ

cm
1/(n+1)

)
(Y ) (3.65)

∀Y ∈ S, ASFScm
′

i/(n+1)(Y ) =
(
Φcm
i/(n+1)Γ

cm
i/(n+1)

) (
Φcm

(i−1)/(n+1)Γ
cm
(i−1)/(n+1)

)
. . .

. . .
(
Φcm

1/(n+1)Γ
cm
1/(n+1)

)
(Y ) (3.66)
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We can also use the dimensional operators from definition 47 to define
new operators by composition, leading to new dilations, erosions, openings,
closings and alternating sequential filters. Before we start composing these
operators, let us to consider the following results, that can guide the explo-
ration of new compositions.

Property 55. Let i, j, k ∈ N such that 0 ≤ i < j < k ≤ n.

1. ∀X ⊆ P(Ci), δ
+
j,kδ

+
i,j(X) = δ+i,k(X)

2. ∀X ⊆ P(Ci), ε
+
j,kε

+
i,j(X) = ε+i,k(X)

3. ∀X ⊆ P(Ck), δ
−
j,iδ
−
k,j(X) = δ−k,i(X)

4. ∀X ⊆ P(Ck), ε
−
j,iε
−
k,j(X) = ε−k,i(X)

Proof. We approach this problem using a contradiction proof. Assume that
δ+j,kδ

+
i,j(X) 6= δ+i,k(X). Then, there is a j-simplex xj that contains an i-simplex

xi of X but is not contained in any k-simplex that contains xi. That violates
the definition of a simplicial complex. The same method can be used for the
other equations.

In other words, property 55 states that any composition of the same
operator is equivalent to the operator acting from the initial to the final
dimension.

To explore the possible combinations of the operators from definition 47,
we start by considering only operators acting on the same dimension.

Property 56. Let i, j, k ∈ N such that 0 ≤ i < j < k ≤ n.

1. ∀X ⊆ P(Ci), δ
−
j,iδ

+
i,j(X) = δ−k,iδ

+
i,k(X)

2. ∀X ⊆ P(Ci), ε
−
j,iε

+
i,j(X) = ε−k,iε

+
i,k(X)

3. ∀X ⊆ P(Ci), ε
−
j,iδ

+
i,j(X) = ε−k,iδ

+
i,k(X)

4. ∀X ⊆ P(Ci), δ
−
j,iε

+
i,j(X) = δ−k,iε

+
i,k(X)
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Proof. Let us consider the alternative characterization from property 48:

∀X ∈ P(Ci), δ
−
j,iδ

+
i,j(X) =

[
Cl
(

[St(X)]j

)]
i

(3.67)

∀X ∈ P(Ci), ε
−
j,iε

+
i,j(X) =

[
Cl
([
St
(
X
)]
j

)]
i

(3.68)

∀X ∈ P(Ci), ε
−
j,iδ

+
i,j(X) =

[
Cl
(

[St(X)]j

)]
i

(3.69)

∀X ∈ P(Ci), δ
−
j,iε

+
i,j(X) =

[
Cl
([
St
(
X
)]

i

)]
i

(3.70)

Therefore, this property becomes:

∀X ∈ P(Ci),
[
Cl
(

[St(X)]j

)]
i

= [Cl ([St(X)]k)]i (3.71)

∀X ∈ P(Ci),

[
Cl
([
St
(
X
)]
j

)]
i

=
[
Cl
([
St
(
X
)]
k

)]
i

(3.72)

∀X ∈ P(Ci),

[
Cl
(

[St(X)]j

)]
i

=

[
Cl
(

[St(X)]k

)]
i

(3.73)

∀X ∈ P(Ci),

[
Cl

([
St
(
X
)]

j

)]
i

=
[
Cl
([
St
(
X
)]

k

)]
i

(3.74)

Since the input of the star operator is the same on both sides of the
equations, the result of the star operator is the same. Even considering
simplices of different dimensions for the closing operators, the final result is
the same, because the output dimension is lower than the intermediary ones.

In other words, the property 56 states that the result of the compositions
of dilations and erosions that use a higher intermediary dimension is inde-
pendent of the exact dimension chosen. Therefore, we can obtain only one
basic dilation, one basic erosion, one opening and one closing using those
compositions. However, this is not entirely true when we consider a lower
dimension as intermediary dimension for the compositions, as follows:

Property 57. Let i, j, k ∈ N such that 0 ≤ i < j < k ≤ n.

1. ∀X ∈ P(Ck), δ
+
i,kδ
−
k,i(X) ⊇ δ+j,kδ

−
k,j(X)

2. ∀X ∈ P(Ck), ε
+
i,kε
−
k,i(X) ⊆ ε+j,kε

−
k,j(X)
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3. ∀X ∈ P(Ck), ε
+
i,kδ
−
k,i(X) = ε+j,kδ

−
k,j(X)

4. ∀X ∈ P(Ck), δ
+
i,kε
−
k,i(X) = δ+j,kε

−
k,j(X)

Proof. Let us consider again the alternative characterization from property 48:

∀X ∈ P(Ck), δ
+
i,kδ
−
k,i(X) = [St ([Cl (X)]i)]k (3.75)

∀X ∈ P(Ck), ε
+
i,kε
−
k,i(X) =

[
St
([
Cl
(
X
)]
i

)]
k

(3.76)

∀X ∈ P(Ck), ε
+
i,kδ
−
k,i(X) =

[
St
(

[Cl(X)]i

)]
k

(3.77)

∀X ∈ P(Ck), δ
+
i,kε
−
k,i(X) =

[
St
([
Cl
(
X
)]

i

)]
k

(3.78)

1. Let Y = Cl(X). Using the alternative characterization, the prop-
erty 57.1 becomes:

[St ([Cl (X)]i)]k ⊇
[
St
(

[Cl (X)]j

)]
k

(3.79)

[St (Yi)]k ⊇ [St (Yj)]k (3.80)

Which is true because Y is a k-subcomplex.

2. For the property 57.2, let Y = Cl
(
X
)
. The following equations are

equivalent: [
St
([
Cl
(
X
)]
i

)]
k
⊆
[
St
([
Cl
(
X
)]
j

)]
k

(3.81)[
St
([
Cl
(
X
)]
i

)]
k
⊇
[
St
([
Cl
(
X
)]
j

)]
k

(3.82)

[St (Yi)]k ⊇ [St (Yj)]k (3.83)

Which is true because Y is a k-subcomplex.

3. Let Y = Cl (X).

[
St
(

[Cl(X)]i

)]
k

=

[
St
(

[Cl(X)]j

)]
k

(3.84)[
St
(

[Cl(X)]i

)]
k

=
[
St
(

[Cl(X)]j

)]
k

(3.85)

[St (Yi)]k = [St (Yj)]k (3.86)

Which is true because Y is a star.
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4. Let Y = Cl
(
X
)
.

[
St
([
Cl
(
X
)]

i

)]
k

=

[
St

([
Cl
(
X
)]

j

)]
k

(3.87)

[St (Yi)]k = [St (Yj)]k (3.88)

Which is true, because Y is a star.

In this section we presented the dimensional operators and some related
properties. Using these operators, we defined new operators and combined
them with the operators from section 3.1. In the next section we present
new adjunctions, based solely on the dimensional operators. Using these
adjunctions, we define openings, closings and alternating sequential filters,
where applicable.

3.3 Morphological operators on C using a higher

intermediary dimension

The objective of this section is to find operators, acting on subcomplexes,
whose result is a complex of the same dimension of its argument, using an
higher intermediary dimension, exploring the effects of property 56. For
instance, if we consider a complex X of dimension i, with i ∈ N, 0 < i ≤ n,
we would like the dilation of X to also be an i-complex. To that end, the
operators proposed in the next definition act independly on each dimension
of the complex:

Definition 58. We define:

∀X ∈ C, δþ(X) =

{⋃
i∈[0...(n−1)]

δ−i+1,iδ
+
i,i+1(Xi)

}⋃{
δ+n−1,nδ

−
n,n−1(Xn)

}
(3.89)

∀X ∈ C, εþ(X) =ClA
({⋃

i∈[0...(n−1)]
ε−i+1,iε

+
i,i+1(Xi)

}⋃
. . .

. . .
{
ε+n−1,nε

−
n,n−1(Xn)

})
(3.90)
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Figure 3.8: Example of the operation Y = δþ(X), with n = 3.

The set (δþ(X))i, made of the i-simplices of δþ(X), depends only on the
set Xi, made of the i-simplices of X. Intuitively, for i < n, the set (δþ(X))i
contains all i-simplices of C that either belong to Xi or are contained in a
(i+ 1)-simplex that includes an i-simplex of Xi. For i = n, the operator will
return all n-simplices that contains an (n− 1)-simplex of X.

The figure 3.9 illustrates the operators δþ and εþ, along with the results
of the operators δ and ε, for comparison. As expected, the operators from
definition 58 result in a subcomplex more similar to the argument than the
operators from definition 37. The dilation included less simplices into the set,
while the erosion removed less simplices of the set. The figure 3.8 illustrates
the operator δþ for a tridimensional complex.

Property 59. We have:

1. The operators δþ and εþ act on C.

2. The pair (εþ, δþ) is an adjunction.

Proof. 1. Consider the operator δþ and let X ∈ C. We divide the proof
in two parts.

First, we consider the simplices of dimension between 0 and (n − 1).
Let i, j ∈ N such that 0 ≤ i < j < n. Suppose that δþ(X) 6∈ C.
Then, it exists a j-simplex xj that contains an i-simplex xi, such that
xj ∈ δþ(X) but xi 6∈ δþ(X). Any i-simplex belonging to δþ(X) shares
a simplex with dimension higher than i with an i-simplex of X. So
this would only be possible if at least one of the simplices of inferior
dimension that belong to xj does not belong to X. Therefore X would
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(a) Y (b) δ(Y ) (c) ε(Y )

(d) Y (e) δþ(Y ) (f) εþ(Y )

Figure 3.9: Illustration of morphological dilations and erosions.

not be a subcomplex. Then δþ(X) is a subcomplex, when X is a
subcomplex.

For the n-simplices, we have two separate subcases. Let xn be an n-
simplex such that xn ∈ δþ(X). If xn ∈ X, all its simplices also belong
to δþ(X) because the operator is extensive. If xn 6∈ X, it means that
xn was included by the operator δþ. Therefore, xn contains, at least,
one (n − 1)-simplex that belongs to X. Since X is a subcomplex, we
can deduce that xn contains at least one simplex of each dimension,
between 0 and (n− 1), that also belong to X. Therefore, all simplices
of xn were included in the result, because they share a simplex of higher
dimension, namely xn, with a simplex that belongs to X.

For the εþ operator, it is a direct result from the output space of the
operator ClA , that is always a subcomplex.

2.

Lemma 60. Let X, Y ∈ C:

X ⊆ Y↔∀i ∈ [0 . . . n], Xi ⊆ Yi (3.91)

Since the operator δþ commutes with the union operator, it is clearly
a dilation. We can use equation 2.1 to express the adjoint erosion. Let
X ∈ C.
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δþA (X) =
⋃
{Y ∈ C | δþ(Y ) ⊆ X} (3.92)

From lemma 60:

δþA (X) =
⋃
{Y ∈ C | ∀i ∈ [0 . . . n], [δþ(Y )]i ⊆ Xi} (3.93)

Using the definition 58, we have:

δþA (X) =
⋃{

Y ∈ C | ∀i ∈ [0 . . . n],

{
δ−i+1,iδ

+
i,i+1(Yi) ⊆ Xi if i < n

δ+n−1,nδ
−
n,n−1(Yn) ⊆ Xn if i = n

}
(3.94)

Using the adjoint operators from property 49:

δþA (X) =
⋃{

Y ∈ C | ∀i ∈ [0 . . . n],

{
Yi ⊆ ε−i+1,iε

+
i,i+1(Xi) if i < n

Yi ⊆ ε+n−1,nε
−
n,n−1(Xn) if i = n

}
(3.95)

Let Z ⊆ C , such that:

Z =

 ⋃
i∈[0...n−1]

ε−i+1,iε
+
i,i+1(Xi)

⋃ ε+n−1,nε
−
n,n−1(Xn) (3.96)

Then, we have:

δþA (X) =
⋃
{Y ∈ C | Y ⊆ Z} (3.97)

Which is equivalent to:

δþA (X) =
⋃
{Y ∈ P(C ) | Cl(Y ) ⊆ Z} (3.98)

δþA (X) =ClA (Z) (3.99)

As we did with the classical operators, we can compose the operators δþ

and εþ to define new operators.

Definition 61. Let i ∈ N. We define:

γþ

i =
(
δþ
)i (

εþ
)i

(3.100)

φþ

i =
(
εþ
)i (

δþ
)i

(3.101)
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(a) Y (b) φþ
1 (Y ) (c) φþ

2 (Y )

(d) Z (e) γþ
1 (Z) (f) γþ

2 (Z)

Figure 3.10: Illustration of operators γþ

i and φþ

i .

Similarly to the operators from definition 39, the parameter i control how
much of the complex will be affected by the operator. Figure 3.10 illustrates
the operators γþ

i and φþ

i on two subcomplexes, depicted in gray. Since the
dilation and erosion used to compose these operators are “smaller” than the
ones from definition 37, we expect these openings and closings to affect less
elements of the complexes as well. Comparing the results from Figure 3.10
with the results from figure 3.3, we can see that the result of operator φþ

i

is indeed “smaller” than the result of operator φci , however the result of the
opening operator γþ

i was also “smaller” than the result of the operator γci ,
that is, the operator γþ

i removed more elements of the set than the other
operator, being more “abrasive”, which is not particularly a desired feature.

Property 62. Let i ∈ N. We have:

1. The operators γþ

i and φþ

i act on C.

2. The operators γþ

i are openings.

3. The operators φþ

i are closings.

4. The family of operators {γþ

λ , λ ∈ N} is a granulometry.

59



5. The family of operators {φþ

λ , λ ∈ N} is an anti-granulometry.

Proof. 1. Trivial from property 59.

2. Any erosion followed by the adjoint dilation is an opening [65].

3. Any dilation followed by the adjoint erosion is a closing [65].

4. Identical to the proof of property 40.5.

5. Identical to the proof of property 40.6.

Since the operators from definition 61 act on subcomplexes and the fami-
lies of operators are granulometries and anti-granulometries, we can use them
to define new alternating sequential filters.

Definition 63. Let i ∈ N. We define:

∀X ∈ C, ASFþ

i (X) =
(
γþ

i φ
þ

i

)(
γþ

(i−1)φ
þ

(i−1)

)
. . .
(
γþ

1 φ
þ

1

)
(X) (3.102)

∀X ∈ C, ASFþ′

i (X) =
(
φþ

i γ
þ

i

)(
φþ

(i−1)γ
þ

(i−1)

)
. . .
(
φþ

1 γ
þ

1

)
(X) (3.103)

Property 64. Let i ∈ N. The operators ASFþ

i and ASFþ′

i act on C.

Proof. Trivial from property 62.

Using the same procedure we used for the operators from definition 39,
we can also enrich the operators from definition 61 with the operators from
definition 35 to achieve new operators.

Definition 65. Let i ∈ N. We define operators γþh
i/2 and φþh

i/2 by:

γþh
i/2 =

{(
δþ
)bi/2c (

εþ
)bi/2c

if imod 2 = 0(
δþ
)bi/2c

γh
(
εþ
)bi/2c

otherwise.
(3.104)

φþh
i/2 =

{(
εþ
)bi/2c (

δþ
)bi/2c

if imod 2 = 0(
εþ
)bi/2c

φh
(
δþ
)bi/2c

otherwise.
(3.105)
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When the parameter i is even, the operators γh and φh are not used, and
these operators become identical to the operators from definition 61.

Property 66. Let i ∈ N. We have:

1. The operators γþh
i/2 and φþh

i/2 act on C.

2. The operators γþh
i/2 are openings.

3. The operators φþh
i/2 are closings.

Proof. 1. Trivial from properties 59 and 36.

2. Any erosion followed by the adjoint dilation is an opening [65].

3. Any dilation followed by the adjoint erosion is a closing [65].

Unlike the previously defined openings and closings, the family of op-
erators {γþh

λ/2, λ ∈ N} (resp. {φþh
λ/2, λ ∈ N}) is not a granulometry (resp.

anti-granulometry), because, we do not have γþh
2/2 ⊆ γþh

1/2. Let X be a 1-

subcomplex of a 2-complex space C . While γþh
2/2(X) would be, in general, a

non-empty subset of X, γþh
1/2(X) = γh(X) = ∅.

We can try the same process we just considered with the operators from
definition 50 as well, combining them with the operators from definition 61.

Definition 67. Let i ∈ N. We define operators γþm
i/(n+1) and φþm

i/(n+1) by:

γþm
i/(n+1) =

(
δþ
)bi/(n+1)c

γm(imod (n+1))

(
εþ
)bi/(n+1)c

(3.106)

φþm
i/(n+1) =

(
εþ
)bi/(n+1)c

φm(imod (n+1))

(
δþ
)bi/(n+1)c

(3.107)

As expected, when the parameter i is a multiple of (n+1), these operators
become identical to the operators from definition 39. Therefore, similarly to
the operators from definition 52, we have multiple intermediary “sizes” of
filter between two integer parameters.
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Property 68. Let i ∈ N. We have:

1. The operators γþm
i/(n+1) and φþm

i/(n+1) act on C.

2. The operators γþm
i/(n+1) are openings.

3. The operators φþm
i/(n+1) are closings.

Proof. 1. Trivial from properties 59 and 51.

2. Any erosion followed by the adjoint dilation is an opening [65].

3. Any dilation followed by the adjoint erosion is a closing [65].

The family of operators {γþm
λ/(n+1), λ ∈ N} (resp. {φþm

λ/(n+1), λ ∈ N}) is not

a granulometry (resp. anti-granulometry), for the exactly same reason the
operators from definition 65.

The figure 3.11 illustrates the operators φþh
i/2, φ

þm
i/(n+1), γ

þh
i/2 and γþm

i/(n+1).

As expected, φþh
2/2 and φþm

3/(n+1) are identical, while the intermediary levels

show an increasing effect of the filters. The figures 3.11(o) and 3.11(p) shows
an example of why the family of operators {γþm

λ/(n+1), λ ∈ N} is not a granu-

lometry, because γþm
3/(n+1) 6⊆ γþm

2/(n+1).
In this section we explored operators acting on subcomplexes composed

by dimensional operators using a higher intermediary dimension. We de-
fined an adjunction, three families of openings and three families of closings,
from which only one family of openings is a granulometry and one family
of closings is an anti-granulometry. We composed these granulometry and
anti-granulometry into two alternating sequential filters. The families of
openings and closings that are not granulometries and anti-granulometries
are the ones composed with the operators γh, φh, γm and φm, because these
operators affect more elements of the complex.

3.4 Morphological operators on C using a lower

intermediary dimension

We just explored compositions of dimensional operators using a higher in-
termediary dimension. We will explore compositions that use a lower in-
termediary dimension. As theorem 57 suggests, we can define a family of
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(a) Y (b) φþh
1/2(Y ) (c) φþh

2/2(Y ) (d) φþh
3/2(Y )

(e) Y (f) φþm
1/3 (Y ) (g) φþm

2/3 (Y ) (h) φþm
3/3 (Y )

(i) Z (j) γþh
1/2(Z) (k) γþh

2/2(Z) (l) γþh
3/2(Z)

(m) Z (n) γþm
1/3 (Z) (o) γþm

2/3 (Z) (p) γþm
3/3 (Z)

Figure 3.11: Illustration of operators γþh
i/2 , γþm

i/(n+1), φ
þh
i/2 and φþm

i/(n+1).
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different operators, using the variation of the temporary dimension as pa-
rameter. However, we chose to explore only the operators that affects the
smallest possible number of simplices, because such operators usually lead
to more controlled filters. Additionally, one would need a space of higher
dimensionality, that is, a big n, in order to properly exploit these families.

Definition 69. We define the operators δß and εß by:

∀X ∈ C, δß(X) =

{⋃
i∈[1...n]

δ+i−1,iδ
−
i,i−1(X)

}⋃{
δ−1,0δ

+
0,1(X)

}
(3.108)

∀X ∈ C, εß(X) =ClA
({⋃

i∈[1...n]
ε+i−1,iε

−
i,i−1(X)

}⋃{
ε−1,0ε

+
0,1(X)

})
(3.109)

However, the following property states that the operators from defini-
tion 69 are the same operators from definition 58.

Property 70. Let i ∈ N such that 1 ≤ i ≤ (n− 1).

1. ∀X ∈ P(Ci), δ
+
i−1,iδ

−
i,i−1(X) = δ−i+1,iδ

+
i,i+1(X)

2. ∀X ∈ P(Ci), ε
+
i−1,iε

−
i,i−1(X) = ε−i+1,iε

+
i,i+1(X)

Proof. 1. Since X ∈ P(Ci), it be expressed as X = {x1, x2, . . . , xi}. We
start by developping the left side of the equation.

Let d ∈ N such that 1 ≤ d ≤ i. We have that:

δ−i,i−1(X) = X \ xd (3.110)

Let a ∈ Ci. Then:

δ+i−1,iδ
−
i,i−1(X) = {X \ xd} ∪ a (3.111)

Developping the right side of the equation, we have:

δ+i,i+1(X) = {X ∪ a} (3.112)

Since the operator δ−i+1,i will remove an element of the input set, one
of the two following equations is true:

δ−i+1,iδ
+
i,i+1(X) ={X ∪ a} \ xd (3.113)

δ−i+1,iδ
+
i,i+1(X) ={X ∪ a} \ a (3.114)

The first equation is equivalent to the left side equation. The second
equation is equal to X, which is the result of the left side equation
when a = xd. Therefore both sides of the equation are equivalent.
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2. The proof for this property follows the same procedure of the property
above.

3.5 Extension to weighted complexes

In the previous sections, we introduced new operators acting on subsets of
a simplicial complex space. In this section, we will extend the operators
defined previously to work on weighted simplicial complexes. Let kmin and
kmax be two distinct, positive integers. We define the set K as the set of the
integers between these two numbers, K = {x ∈ N | kmin ≤ x ≤ kmax}. Now,
let M be a map from C to K, that associates every element of the simplicial
complex C to an element of K. Let x ∈ C , in this work, M(x) is called the
value of the simplex x.

We can extend the notion of subcomplexes and stars to the domain of
weighted complexes. A subset X of the space C is a (weighted) subcomplex
if the value of each simplex is smaller or equal to the value of the simplices
it contains, ∀x ∈ X, ∀y ⊆ x,M(x) ≥ M(y). For stars, the comparison is
reversed, X ∈ S↔∀x ∈ X, ∀y ⊆ x,M(x) ≤ M(y). The complement X of a
subset X of C can also be defined, using the value kmax, X : ∀x ∈ C ,M(x) =
kmax −M(x).

Important notations: In this work, M denotes a map from C to
K. Let k ∈ N. We denote by M [k] the set of simplices with value greater
of equal to k, M [k](X) = {x ∈ X | M(x) ≥ k}. These sets are called
k-thresholds of X.

The following lemma concerning k-thresholds, stars and subcomplexes is
easily proved from the definitions.

Lemma 71. Let X ∈ C .

X ∈ C↔∀k ∈ [kmin . . . kmax], M [k](X) ∈ C (3.115)

X ∈ S↔∀k ∈ [kmin . . . kmax], M [k](X) ∈ S (3.116)

We approach the problem of extending the dimensional operators, from
definition 47, to weighted complexes using threshold decomposition and stack
reconstruction (see, e.g. [22], section 5.7). The main idea of this method is
that, if the considered operator is increasing and translation-invariant, we
can apply it to each k-threshold of the complex and then combine the results
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X α(X)

M [kmin](X) Ykmin

α

+
M [kmin + 1](X) Ykmin+1

α
+

...
...

M [kmax](X) Ykmax

α

+

Figure 3.12: Example diagram of the threshold decomposition and stacking
reconstruction [22].

to obtain the final values, as illustrated on figure 3.12. More precisely, let
α : C → C be an increasing and translation-invariant operator and X ∈ C .
We have:

∀X ∈ P(C ), α(X) : ∀x ∈ X, M(x) = argmaxk{x ∈ α(M [k](X))} (3.117)

Since all operators presented in this work are incresing and translation-
invariant, we can use the equation 3.117 to extend them to consider weighted
simplicial complexes. As example, we demonstrate for the classical closure
and star operators.

∀X ∈ P(C ), Cl(X) : ∀x ∈ C , M(x) = argmaxk{x ∈ Cl(M [k](X))}
(3.118)

∀X ∈ P(C ), St(X) : ∀x ∈ C , M(x) = argmaxk{x ∈ St(M [k](X)}
(3.119)

It can be easily proved that the above equations are equivalent to:

∀X ∈ P(C ), Cl(X) : ∀x ∈ C , M(x) = max({M(y) | x ∈ y}) (3.120)

∀X ∈ P(C ), St(X) : ∀x ∈ C , M(x) = max({M(y) | y ∈ x}) (3.121)

Following the same procedure, we extend the dimensional operators, from
definition 47, to weighted complexes:
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Property 72.

∀x ∈ Cj, δ
+
i,j : M(x) =max({M(y) : y ∈ Ci | y ⊆ x}) (3.122)

∀x ∈ Cj, ε
+
i,j : M(x) =min({M(y) : y ∈ Ci | y ⊆ x}) (3.123)

∀x ∈ Ci, δ
−
j,i : M(x) =max({M(y) : y ∈ Cj | x ⊆ y}) (3.124)

∀x ∈ Ci, ε
−
j,i : M(x) =min({M(y) : y ∈ Cj | x ⊆ y}) (3.125)

In the next section we will demonstrate that the operators defined in
section 3.1, that are not based on the dimensional operators, can be expressed
using them. The other operators presented in this work are defined using
these operators. Therefore, all operators presented can be considered for
weighted complexes, using the property 72.

3.6 Revisiting the related work

In section 3.2 we defined four operators acting between specific dimensions
of the complex. These operators are the principal contribution of this work,
because they can be used to define new operators. In this section, we use
the operators from definition 47, considering especially the property 72, to
express operators from the literature.

We start by the classical star and closure operators. Let X ⊆ C .

St(X) =
⋃{

δ+i,j(Xi) | i, j ∈ N, i ≤ j
}

(3.126)

Cl(X) =
⋃{

δ−j,i(Xj) | i, j ∈ N, i ≤ j
}

(3.127)

Since the restricted star and closure operators from definition 30 are based
on the classical star and closure, they also can be expressed using the dimen-
sional operators. Let X ∈ C and Y ∈ S.

?(X) =
⋃{

δ+i,j(Xi) | i, j ∈ N, i ≤ j
}

(3.128)

�(Y ) =
⋃{

δ−j,i(Yj) | i, j ∈ N, i ≤ j
}

(3.129)

Since all other operators presented on section 3.1 are based on these
operators, they can also be expressed using the dimensional operators from
definition 47.
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Vincent [81] defined operators acting on a graph G = (V,E), where V
represents the set of valued vertices and E the set of edges between vertices.
The edges are not valued and have the form (a, b) | a, b ∈ V .

Let v ∈ V , the set of neighbors of a vertex v is given by NE(v) =
{v′ ∈ V | (v, v′) ∈ E}. The dilated graph Γ(G) and the eroded graph Γ0(G)
of the graph G are given by:

Γ(G) : ∀v ∈ V, G(v) = max {G(v′) | v′ ∈ NE(v) ∪ {v}} (3.130)

Γ0(G) : ∀v ∈ V, G(v) = min {G(v′) | v′ ∈ NE(v) ∪ {v}} (3.131)

In other words, these operators replace the value of each vertex with the
maximum (or minimum) value of its neighbors, as morphological operators
often do. To be able to draw a parallel between these operators and the
dimensional operators presented in this work, let the considered space C be
a 1-complex, with values associated only with the 0-simplices and X ⊆ C be
the considered subset. In this particular case, the whole graph is considered,
so X = C = G. Using the dimensional operators from definition 47 and
abusing the notation, we have:

Γ(X) =δ−1,0δ
+
0,1(X0) (3.132)

Γ0(X) =ε−1,0ε
+
0,1(X0) (3.133)

Vincent [81] also defined a family of structuring functions Γλ. Let d(v, v′)
be the size of the minimum path between two vertices v and v′ of V , we have:

∀λ ∈ R+,∀v ∈ V,
Γλ(v) = {v′ ∈ V, d(v, v′) ≤ λ} (3.134)

Again, let the considered space C be a 1-complex, with values associated
only with its 0-simplices. Let Xv be a subset of C containing only the vertex
that corresponds to the vertex v on Vincent’s notation. We have:

∀λ ∈ R+, ∀v ∈ V

Γλ(v) =
(
δ−1,0δ

+
0,1(Xv)

)λ
(3.135)

So far the edges of the graphs were used only to provide structural in-
formation about the considered space. However, by considering the edges
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and vertices in an uniform way, that is, allowing the propagation of the val-
ues also to the edges of the graph, both Cousty et. al. [15] and Meyer and
Stawiaski [53] obtained new operators.

Cousty et. al. [15] considered the graph G = (G•,G×), where G• is the
set of vertices and G× is the set of edges between vertices. Then, they defined
the operators ε×, δ×, ε• and δ• by:

Let X× ⊆ G× and Y • ⊆ G•.

ε×(Y •) =
{
ex,y ∈ G× | x ∈ Y • and y ∈ Y •

}
(3.136)

δ×(Y •) =
{
ex,y ∈ G× | either x ∈ Y • or y ∈ Y •

}
(3.137)

ε•(X×) =
{
x ∈ G• | ∀ex,y ∈ G×, ex,y ∈ X×

}
(3.138)

δ•(X×) =
{
x ∈ G• | ∃ex,y ∈ X×

}
(3.139)

Let the considered space C be a 1-complex and X ⊆ C . Using the
dimensional operators from definition 47, we have:

ε×(X0) =ε+0,1(X0) (3.140)

δ×(X0) =δ+0,1(X0) (3.141)

ε•(X1) =ε−1,0(X1) (3.142)

δ•(X1) =δ−1,0(X1) (3.143)

While the operators proposed by Cousty et. al. act only on subsets of the
graph, Meyer and Stawiaski [53] defined operators capable of dealing with
weighted graphs. They consider the space as a graph G = (N,E), where N ={
n1, n2, . . . , n|N |

}
is the set of vertices and E = {eij | i, j ∈ N+, 0 < i < j ≤ |N |}

is the set of edges. The proposed operators are defined as follows.

[εenn]ij =ni ∧ nj (3.144)

[δnee]i =
∨

k neighbors of i
{eik} (3.145)

[εnee]i =
∧

k neighbors of i
{eik} (3.146)

[δenn]ij =ni ∨ nj (3.147)

Let the considered space C be a 1-complex and X ⊆ C . Using the
dimensional operators from definition 47, we have:
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δ+i,j , δ
−
j,i

ε+i,j , ε
−
j,i

?, �,
?A , �A δ, ε δþ, εþ

γh, φh γc, φc γm, φm γþ, φþ

ASFch

ASFch′
ASFc

ASFc′
ASFcm

ASFcm′
ASFþ

ASFþ′

Figure 3.13: Diagram depicting the relationship between the operators de-
fined.

{
∀n ∈ N, [εenn]ij

}
=ε+0,1(X0) (3.148){

∀n ∈ N, [δenn]ij

}
=δ+0,1(X0) (3.149)

{∀e ∈ E, [εnee]i} =ε−1,0(X1) (3.150)

{∀e ∈ E, [δnee]i} =δ−1,0(X1) (3.151)

Since these operators are the base operators used to define other oper-
ators, we can express all the operators presented in these works using our
dimensional operators.

3.7 Summary of the proposed operators

The following diagram illustrates the relationships between the operators
defined in this section.

The following tables summarizes the operators defined on this chapter,
also providing the involved lattices and the number of the corresponding defi-
nition, as well as basic comments regarding the construction of the operator.
Table 3.1 lists the dilations, table 3.2 the erosions, table 3.3 the openings
and table 3.4 the closings. The alternating sequential filters that act on
subcomplexes are listed on 3.5.
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Table 3.1: Summary of the dilation operators defined on this work.

Operator Spaces Defined on Comments

� S → C Def. 30 on page 33 Based on Cl.
? C → S Def. 30 on page 33 Based on St.
δ C → C Def. 37 on page 36 Based on ? and �.
∆ S → S Def. 37 on page 36 Based on � and ?.
δ+i,j P(Ci)→ P(Cj) Def. 47 on page 44 Dimensional operator.

δ−j,i P(Cj)→ P(Ci) Def. 47 on page 44 Dimensional operator.

δþ C → C Def. 58 on page 55 Composition of δ+i,j and δ−j,i.

Table 3.2: Summary of the erosion operators defined on this work.

Operator Spaces Defined on Comments

�A C → S Def. 31 on page 33 Based on StA and adjoint of �.
?A S → C Def. 31 on page 33 Based on ClA and adjoint of ?.
ε C → C Def. 37 on page 36 Composition of �A and ?A .
E S → S Def. 37 on page 36 Composition of ?A and �A .
ε+i,j P(Ci)→ P(Cj) Def. 47 on page 44 Dimensional operator.

ε−j,i P(Cj)→ P(Ci) Def. 47 on page 44 Dimensional operator.

εþ C → C Def. 58 on page 55 Composition of ε+i,j and ε−j,i.

Table 3.3: Summary of the opening operators defined on this work.

Operator Spaces Defined on Comments

γh C → C Def. 35 on page 34 Composition of �A and �.
Γh S → S Def. 35 on page 34 Composition of ?A and ?.
γci C → C Def. 39 on page 38 Composition of ε and δ.
Γci S → S Def. 39 on page 38 Composition of E and ∆.
γchi/2 C → C Def. 43 on page 40 Composition of ε, γh and δ.

Γchi/2 S → S Def. 43 on page 40 Composition of E , Γh and ∆.

γm C → C Def. 50 on page 47 Based on δ−j,i.

Γm S → S Def. 50 on page 47 Based on δ+i,j.

γcmi/(n+1) C → C Def. 52 on page 49 Composition of ε, γm and δ.

Γcmi/(n+1) S → S Def. 52 on page 49 Composition of E , Γm and ∆.

γþ

i C → C Def. 61 on page 58 Composition of εþ and δþ.

γþh
i/2 C → C Def. 65 on page 60 Composition of εþ, γh and δþ.

γþm
i/(n+1) C → C Def. 67 on page 61 Composition of εþ, γm and δþ.
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Table 3.4: Summary of the closing operators defined on this work.

Operator Spaces Defined on Comments

φh C → C Def. 35 on page 34 Composition of ?A and ?.
Φh S → S Def. 35 on page 34 Composition of �A and �.
φci C → C Def. 39 on page 38 Composition of δ and ε.
Φc
i S → S Def. 39 on page 38 Composition of ∆ and E .

φchi/2 C → C Def. 43 on page 40 Composition of δ, φh and ε.

Φch
i/2 S → S Def. 43 on page 40 Composition of ∆, Φh and E .

φm C → C Def. 50 on page 47 Based on ε+i,j.

Φm S → S Def. 50 on page 47 Based on ε−j,i.

φcmi/(n+1) C → C Def. 52 on page 49 Composition of δ, φm and ε.

Φcm
i/(n+1) S → S Def. 52 on page 49 Composition of ∆, Φm and E .

φþ

i C → C Def. 61 on page 58 Composition of δþ and εþ.

φþh
i/2 C → C Def. 65 on page 60 Composition of δþ, φh and εþ.

φþm
i/(n+1) C → C Def. 67 on page 61 Composition of δþ, φm and εþ.

Table 3.5: Summary of the alternating sequential filters acting on C defined
on this work.

Operator Defined on Comments

ASFci Def. 41 on page 40 Composition of γci and φci .

ASFc
′

i Def. 41 on page 40 Composition of φci and γci .

ASFchi Def. 45 on page 43 Composition of γchi/2 and φchi/2.

ASFch
′

i Def. 45 on page 43 Composition of φchi/2 and γchi/2.

ASFcmi Def. 54 on page 51 Composition of γcmi/(n+1) and φcmi/(n+1).

ASFcm
′

i Def. 54 on page 51 Composition of φcmi/(n+1) and γcmi/(n+1).

ASFþ

i Def. 63 on page 60 Composition of γþ

i and φþ

i .

ASFþ′

i Def. 63 on page 60 Composition of φþ

i and γþ

i .
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Chapter 4

Experimental results

In the previous chapter we defined various operators and filters acting on
subcomplexes. In this chapter we illustrate and avaliate these operators,
acting on values associated with elements of a mesh and on subcomplexes
created from regular images. We consider images with a variable amount
of small noise, while the objects themselves are larger, and compare the
performance of our operators against operators presented in the literature
for the removal of such noise.

4.1 Illustration on a tridimensional mesh

As illustration, we processed the curvature values associated with a 3D mesh,
shown in figure 4.1(a), courtesy of the French Museum Center for Research.
We computed the curvature for the vertices and propagated these values to
the edges and triangles, following the procedure described in [2], resulting in
values between 0 and 1. These values were then processed using our filters.
For visualization purposes only, we thresholded the values at 0.51, as shown
in black on figure 4.1(b) that depicts the thresholded set for the original
curvature data. The renderings presented in this section consider only the
values associated with the vertices of the mesh, an no interpolation was used.

We considered the operator ASFc and its variants, the enriched versions
ASFch and ASFcm, including the operators ASFc

′
, ASFch

′
and ASFcm

′
, and

the operators derived from the dimensional operators ASFþ and ASFþ′ . The
results are shown on figure 4.1, with equivalent size parameters. As expected,
the filters that apply the opening first result in smaller sets than the operators
that apply the closing first, but they are similar for the operator ASFþ.
Additionally, the results of the operators ASFch and ASFcm are closer to the
original image than the operator ASFc.
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(a) Original data. (b) X (in black). (c) ASFc
3(X). (d) ASFc′

3 (X).

(e) ASFch
6/2(X). (f) ASFch′

6/2(X). (g) ASFcm
9/3(X). (h) ASFcm′

9/3 (X).

(i) ASFþ
3 (X). (j) ASFþ

′

3 (X).

Figure 4.1: Rendering of the mesh considered, the result of a thresholding
operation on the curvature values and the results of the operators. The
thresholded sets are represented in black.
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(a) Pixels as vertices. (b) Edges linking the vertices.

(c) Triangles are placed. (d) The values are propagated.

Figure 4.2: Example of the method used to construct a simplicial complex
based on a regular image.

4.2 Illustration on regular images

In this section we consider the application of our alternating sequential filters
on regular images. For this end, we need to create a simplicial complex
based on the image. Several methods can be used and the choice is highly
application dependent.

In this work, we chose to create a vertice for each pixel, as illustrated
on figure 4.2(a). Edges are placed between the vertices, six edges for each
vertice, creating the equivalent of a hexagonal grid (figure 4.2(b)). Triangles
are placed between three vertices, consequently three edges, so each vertice is
contained by six triangles (figure 4.2(c)). Let X be the constructed complex,
we propagate the values of the vertices to the higher dimensional simplices
by applying the operator

⋃
i∈[1...n] ε

+
0,i(X0), leading to the greatest complex

that can be made using the value of the vertices (figure 4.2(d)). For visu-
alization purposes, the images presented in this section correspond to the
values associated with the vertices of the complex.

To be able to compare our results with the literature, we start by consid-
ering the same image used by Cousty et. al. [15], shown on figure 4.3. We
use the mean square error as error measure. This value, for binary images as
these, is equivalent to the number of wrong pixels with respect to the original
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(a) Original image ([15]). (b) Noisy version ([15]), MSE = 19.56%.

Figure 4.3: Original test image and its noisy version.

image and we chose to express it as percentage. The noisy image shown on
figure 4.3(b) has MSE equal to 19.56%.

The noisy image shown on figure 4.3(b) was then processed, using all the
alternating sequential filters from table 3.5, up to filters of size 6, meaning
six iterations for the operators ASFc and ASFþ, twelve iterations for ASFch

and eighteen iterations for ASFcm.
Figures 4.4 to 4.7 show the graph of error versus size of the filter for

considered operators. The points corresponding to operators that apply first
a closing operator are connected with by a line, and the points corresponding
to operators that apply first an opening operator are connected with dashed
line. The operators that apply first a closing operator obtained better results,
with similar results for all variants, approximately 2% for size three. The
minimum error for the operator ASFþ was reached with size 10, with error
value of 10.88%.

Figure 4.8 shows the resulting images for the operators with best results
that are based on operator ASFc. On the three images, we have presence of
small artifacts on the background and on the object. The object itself also
lost some features, such as the contour of the ear and some small stripes on
the head of the zebra.

Figure 4.9 shows that the best results of the operator ASFþ reduced the
numerical value of the error by half, but removed most of the features of the
zebra and left some noise on the background. The operator ASFþ′ obtained
better results, with error value under 4%, removing most of the background
noise and preserving some of the gaps between the stripes. However it also
removed the smaller features of the object and left small holes. The over-
all result is visually acceptable, but inferior to the results of the previous
operators.
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Figure 4.4: MSE versus size of the filter for the operators ASFc and ASFc
′
.

Figure 4.5: MSE versus size of the filter for the operators ASFch and ASFch
′
.
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Figure 4.6: MSE versus size of the filter for the operators ASFcm and ASFcm
′
.

Figure 4.7: MSE versus size of the filter for the operators ASFþ and ASFþ′ .
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(a) ASFc
3. MSE = 1.91%. (b) ASFc′

2. MSE = 7.67%.

(c) ASFch
6/2. MSE = 1.98%. (d) ASFch′

5/2. MSE = 4.93%.

(e) ASFcm
9/3. MSE = 1.99%. (f) ASFcm′

8/3. MSE = 4.76%.

Figure 4.8: Illustration of the best results obtained with the operators based
on ASFc.
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(a) ASFþ
6 . MSE = 10.88%. (b) ASFþ′

3. MSE = 3.46%.

Figure 4.9: Illustration of the best results obtained with the operators ASFþ.

Considering the figure 4.8, we can conclude that the best presented re-
sult corresponds to the operator ASFc3, with ASFch6/2 and ASFcm9/3 as valid
alternatives. We now compare that result against the results found on the
literature. We start by considering the classical alternating sequential filters,
using an structuring element that corresponds to the neighborhood defined

by the edges of the complex, that is,
[
1 1 0
1 1 1
0 1 1

]
. We also consider the classical

ASF on an image with the triple resolution of the original image, created
by dividing each pixels into nine, without using interpolation. This resized
image was processed using a filter of size 9, that corresponds to a filter of size
3 on the original image, and also uses the same number of iteration as some
of our filters. The result for the classical operator with normal resolution
is shown on figure 4.10(a), and the result of the triple resolution image on
figure 4.10(b).

We also considered the filter presented by Cousty et. al. [15], the original
source of the images, with size 6/2. The result is shown on figure 4.10(c).
Despite the corresponding size of the considered filters, the neighborhood
relations considered on each operator are slightly different, mostly due to
the fact that we have, inherently, two different neighborhood relations for
the vertices of a 2D simplicial complexes, one defined by the edges, another
defined by the triangles.

From the results presented in this section, we conclude that our operators
are, on this example, on a competitive level with the operators presented in
the literature.
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(a) Classical ASF with 3 iterations.
MSE = 13.91%.

(b) Classical ASF with 9 iterations
and triple resolution. MSE = 2.54%.

(c) Graph ASF6/2 [15]. MSE =
3.27%.

(d) ASFc
3. MSE = 1.91%.

Figure 4.10: Comparison with some of the literature results.
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Figure 4.11: Photomicrograph of bone marrow showing abnormal mononu-
clear megakaryocytes typical of 5q− syndrome.

4.3 Illustration on a grayscale image

On the section 4.1, we considered a triangular mesh, with a curvature value
associated with every element of the complex. The values were processed in
their natural form, as a real number between 0 and 1, inclusive. However, for
visualization purposes, we thresholded the values. In order to illustrate the
behaviour of the operators on non-binary data, in this section, we consider
a grayscale image, shown on figure 4.11. This image is from Jon Salisbury
at the English language wikipedia, released under Creative Commons license
and is a photomicrograph of bone marrow showing abnormal mononuclear
megakaryocytes typical of 5q− syndrome. This image has 1024× 768 pixels
and was converted from RGB to grayscale, to allow the processing using our
operators. Specific medical meaning aside, this image was chosen as example
because it has many features of variate sizes.

Figure 4.12 shows the same section of the results of the considered closing
operators, with size 4. As expected, all of them removed the very small noise
of the images. However the operator φc closed less holes than the classical
closing, with normal and triple resolution. However, the difference between
the images is small.
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(a) Original. (b) Classical closing. (c) Classical, triple res.

(d) Graph closing 8/2 (e) φc4 (f) φch8/2

(g) φcm12/3 (h) φþ
4

Figure 4.12: Zoom of the same section of the image after closings of size 4.
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4.4 Results on a set of regular images

On the section 4.2, we illustrated the capabilities of our operators regarding
noise removal on a binary image. In this section we will consider a set
of 20 binary images, composed by white symbols on a black background
and significant level of small noise. The original images are depicted on
figure 4.13 and have 800×600 pixels. We created six datasets based on these
images, each with increasing degree of noise. The mean square error for each
dataset is 5.99%, 11.26%, 15.95%, 20.05%, 23.55% and 26.90%, respectively.
Figure 4.14 shows the same zoomed section of one of the images, for all
datasets, to illustrate the amount of noise present. The whole sixth dataset
is shown on figure 4.15.

To generate the noise, we used an auxiliary image, of same size of the
original image, containing only pixels in random locations. This image was
then dilated using a classical dilation and one of the considered structuring
elements: lines, disks and crosses, with different sizes and directions, and
then combined, individually, with the original image using an exclusive or
logical operation. Single points were also considered. By controlling how
many pixels are randomly generated, we can control the final level of noise.
The noise of each image of the set was generated separatedly.

Despite the presence of letters and symbols on the images, this is not an
example of document processing. We used such symbols because they can
be easily produced and recognized. The noise present on document images
is considerably different, mostly because small features of the letters are
often smaller than the noise itself, making them unsuitable for alternating
sequential filters.

We constructed the complexes using the same method described on the
section 4.2, in which the pixels correspond to the vertices of the complex.
For visualization purposes, the images of this section correspond only to the
values associated with the vertices of the complex. Filters of size up to 8
were considered.

Figure 4.16 shows the error versus size of the filter for the operator ASFc,
where each curve corresponds to one dataset. For all datasets, with a filter
of size 3, the error is under 3%. Table 4.1 shows the best results for this
operator, obtained with size four for the first dataset, size five for the datasets
2 to 5 and with size six for the last dataset. Figure 4.17 shows the error
versus size of the filter for the operator ASFc

′
. The error decreased quickly,

but increased again after a few iterations, because the operator started filling
the gaps of the background noise, instead of removing the noise. Table 4.1
also shows the best results for this operator.

Figures 4.18 and 4.19 show the error versus size of the filter for the op-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4.13: Considered set of images.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Zoom of a section of the same image on all datasets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4.15: Sixth dataset considered. Average MSE = 26.90%.
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Figure 4.16: Error versus size of the filter for all sets of noisy images using
the operator ASFc.

Figure 4.17: Error versus size of the filter for all sets of noisy images using
the operator ASFc

′
.
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ASFc ASFc
′

Dataset Error (%) Size Error (%) Size

1 0.2057 4 0.5241 4
2 0.3942 5 1.4891 4
3 0.5739 5 3.5927 3
4 0.7186 5 5.8064 2
5 0.9019 5 7.5930 2
6 1.1683 6 9.2314 1

Table 4.1: Summary of the best results of operators ASFc and ASFc
′

for all
datasets.

ASFch ASFch
′

Dataset Error (%) Size Error (%) Size

1 0.2221 3 0.3778 3
2 0.4374 4 0.9283 4
3 0.7348 4 2.2594 4
4 0.9618 4 4.1555 2
5 1.3670 4 6.1209 2
6 2.0017 5 8.2791 1 1/2

Table 4.2: Summary of the best results of operators ASFch and ASFch
′

for
all datasets.

erators ASFch and ASFch
′
, respectively. The behaviour of the curves is very

similar to the operators ASFc and ASFc
′
, but with a faster decrease in the

error value. However the minimum value of error obtained by the operator
ASFch is not as low as the values obtained by the operator ASFc. However,
the operator ASFch

′
obtained better error values when compared to the oper-

ator ASFc
′
. Table 4.2 shows the best error values obtained by the operators

ASFch and ASFch
′

for all six datasets.
Figures 4.20 and 4.21 show the error versus size of the filter graph for the

operators ASFcm and ASFcm
′
for all six datasets. The results are very similar

to the results obtained with the operators ASFch and ASFch
′
. Similarly, the

values obtained by the operator ASFcm are slightly worse than the results of
operator ASFc, while the operator ASFcm

′
performs slightly better than the

operator ASFc
′
. Table 4.3 shows the error values for the best results obtained

with operators ASFcm and ASFcm
′

for all datasets.
Figure 4.22 shows the result of the operator ASFþ. For the sixth dataset,

the one with most noise, the filter further degrades the image, stabilizing
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Figure 4.18: Error versus size of the filter for all sets of noisy images using
the operator ASFch.

Figure 4.19: Error versus size of the filter for all sets of noisy images using
the operator ASFch

′
.
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Figure 4.20: Error versus size of the filter for all sets of noisy images using
the operator ASFcm.

Figure 4.21: Error versus size of the filter for all sets of noisy images using
the operator ASFcm

′
.
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ASFcm ASFcm
′

Dataset Error (%) Size Error (%) Size

1 0.2202 3 0.3724 3
2 0.4379 4 0.9083 4
3 0.7470 4 2.1888 4
4 0.9846 4 4.0199 3
5 1.4274 4 5.9587 2
6 2.1036 5 8.0727 1 2/3

Table 4.3: Summary of the best results of operators ASFcm and ASFcm
′

for
all datasets.

ASFþ ASFþ′

Dataset Error (%) Size Error (%) Size

1 0.3201 5 0.3314 4
2 0.7904 6 0.7490 4
3 1.6067 7 1.6278 4
4 3.3988 8 2.8885 4
5 11.2141 8 4.6643 3
6 −−−−−− − 6.8385 2

Table 4.4: Summary of the best results of operators ASFþ and ASFþ′ for all
datasets.

with an error value of more than 35%. For the other datasets, the error
value was decreased slowly, with one exception to the fifth dataset and size
1 that increased the error before decreasing. Even on the datasets with less
noise, the error values were worse than the values obtained by the operator
ASFc. On the other hand, the operator ASFþ′ , illustrated on figure 4.23,
presented a behaviour similar to the operators ASFc

′
, ASFch

′
and ASFcm

′
,

but with better error values. The error values of the best obtained results
for the operators ASFþ and ASFþ′ are shown in table 4.4.

As we did on the section 4.2, we also processed this set of images using
the classical alternating sequential filter, with normal and triple resolution,
and the graph ASF introduced by Cousty et. al. [15]. Figures 4.24, 4.25
and 4.26 show the error versus size of the filter graph for these filters. with
the classical ASF using triple resolution obtaining the best error values. The
best results obtained for each of these operators is shown on table 4.5.

The classical ASF presented the same behaviour of the operator ASFþ for
the sixth dataset, increasing the error value. Considering the classical ASF
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Figure 4.22: Error versus size of the filter for all sets of noisy images using
the operator ASFþ.

Figure 4.23: Error versus size of the filter for all sets of noisy images using
the operator ASFþ′ .
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Figure 4.24: Error versus size of the filter for all sets of noisy images using
the classic ASF operator.

Figure 4.25: Error versus size of the filter for all sets of noisy images using
the classic ASF operator and triple resolution.
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Figure 4.26: Error versus size of the filter for all sets of noisy images using
the graph ASF [15].

Classic Classic x3 Graph
Dataset Error (%) Size Error (%) Size Error (%) Size

1 0.3201 5 0.2327 4 0.2625 4 1/2
2 0.7904 6 0.4277 4 2/3 0.5579 5 1/2
3 1.6067 7 0.6342 5 1/3 0.9768 6 1/2
4 3.3988 8 0.8789 5 2/3 1.6279 7 1/2
5 11.2141 8 1.1855 6 1/3 2.7244 8
6 −−−−−− − 1.6235 7 1/3 6.2523 8

Table 4.5: Summary of the best results of the classic ASF operator, with
normal and triple resolution, and the graph ASF [15] for all datasets.
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with triple resolution, that is, each pixel is divided in nine pixels, without
interpolation, the result was considerably better, with better error results
than the graph ASF [15]. This was expected because the classical operator
with triple resolution has three intermediary sizes and the graph ASF only
two. The results of the operator ASFc, considering the sixth dataset, is shown
on figure 4.27. The results for the classical ASF with triple resolution, also
for the sixth dataset, is shown on figure 4.28.

Based on the results presented in this section, we conclude that, for binary
images containing objects and a great amount of smaller noise, our operator
outperforms the operators presented in the literature.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4.27: Results of the operator ASFc6 on the sixth dataset. Average
MSE = 1.17%.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4.28: Results of the classical ASF with triple resolution and size 7 1/3
for the sixth dataset. Average MSE = 1.62%.
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4.5 Implementational considerations

The operators defined on chapter 3 act on simplicial complexes. The imple-
mentation of these operators heavily rely on the structure used to represent
the complex.

A very easy implementation consists in represent each simplex as an ob-
ject containing the associated data and, at least, two lists of pointers, one
containing the simplices contained by the represented simplex and the other
containing the simplices that contain that simplex. These lists can contain
only the simplices of dimension immediately inferior or superior to the sim-
plex, or contain all the simplices that contain or are contained in the simplex.
The first uses less memory, but makes accessing simplices of very different
dimension costly, where the latter uses more memory and is harder to update
if the complex is modified. The choice is application dependent.

Using this structure, the operator δ+i,j, with i, j ∈ N and 0 ≤ i < j ≤ n, is
implemented by visiting all simplices of dimension j, accessing all i-simplices
contained, gathering the associated values and calculating the value to be
attributed using a maximum operation. The implementation for the other
dimensional operators is similar, following the property 72.

This implementation is rather slow, because of the many memory accesses
needed for each simplex. For general complexes, this implementation can be
improved by making each complex easier to access, but the general idea of
the algorithm would not change much.

However, if we consider only 2-complexes built from regular images, such
as the results presented earlier in this chapter, the inherent uniformity of
the complex can be exploited to speed the processing. The main idea of this
algorithm is to exploit how easily modern computers deal with large matrices
and also to allow parallel processing of the images.

Let I be an grayscale image, with dimensions (d1, d2). The points of the
complex are represented by the image itself. The edges are represented using
3 different matrices h, v and d, also of size (d1, d2): one for the horizontal
edges, one for the vertical edges and one for the diagonal edges. The value of
each edge is stored in the position of the vertex of smaller index, for instance,
an horizontal edge between points (2, 3) and (3, 3) is stored in the position
(2, 3) of the matrix h. The last row and column are not used and marked
to be ignored, using, for instance, “not-a-number” values. The triangles
are represented using 2 matrices t1 and t2, again with size (d1, d2): one for
the upper triangles, the other for the lower triangles. Upper and lower are
defined locally. For instance, consider the square comprised between the
coordinates (1, 1) and (2, 2). Using the convention shown on figure 4.2(c),
the triangle with coordinates {(1, 1), (1, 2), (2, 1)} is considered the upper
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triangle, while the triangle with coordinates {(1, 2), (2, 1), (2, 2)} is considered
the lower triangle. In this example, the values of the triangles are stored in
the position (1, 1) and (2, 2) of t1 and t2, respectively. The unused values are
again marked to be ignored.

Using this structure, the complex generated using the image I is repre-
sented using six matrices of size (d1, d2). The implementation of operators
is made by copying and shifting the matrices, following by the maximum or
minimum operator applied point-wise on all matrices. For instance, consider
the operator δ+0,2. The value of the upper triangle stored in coordinates (x, y)
is calculated using only the vertices {(x, y), (x+1, y), (x, y+1)}. We then cre-
ate two copies of the matrix that represents the vertices. The original matrix
represents the point (x, y), the first copy we shift by one row, representing
(x + 1, y), and the other we shift by one column, representing (x, y + 1).
The values that exceed the dimension of the matrices are discarted. Then, a
maximum operator is applied on the matrices, resulting in one matrix of size
(d1, d2). The last row and column are marked to be ignored, and the result
is the matrix t1. The process is then repeated, using the appropriated shifts,
to calculate the second triangle matrix t2.

Precise measurements were not made, but, as example, we used a com-
puter equipped with an intel Q8300 processor and 8Gb of DDR2−800 mem-
ory to run both implementations. Using the first implementation suggested in
this section, done in C++ using STL structures, applying the operator ASFc3
on an 800× 600 image took more than 5 minutes. Using the same computer
and a matlab implementation of the optimized algorithm, the same opera-
tion took just over 6 seconds. This processing time can be further reduced
by considering parallel processing or GPU processing, since the matrices can
be easily splitted in different processing parts.
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Chapter 5

Conclusion

In this work we explored some operators from the framework of mathemati-
cal morphology acting on simplicial complexes. We started by analysing the
classical operators from the domain of simplicial complexes under the con-
cepts of mathematical morphology. Using these operators we created new
dilations, erosions, openings, closings and alternating sequential filters that
are competitive with the operators found in the literature.

We then introduced the main contribution of this work, the dimensional
operators, that can be used to define new operators. New operators were
presented and we demonstrated that dimensional operators can be used to
express operators from the literature, acting on complexes and graphs.

We considered all the presented alternating sequential filters for noise
removing on sintetic images. The main characteristic of our operators is
that they are “smaller” than the operators presented in the literature, that
is, they affects less elements of the space. Therefore, they are suitable to
remove very small noise, as we demonstrated on the experimental chapter,
where our operators outperformed the classical operators, with normal and
triple resolution, and the graph operators defined by Cousty et. al. [15, 14].

On the experimental chapter, we illustrated our operators on meshes and
regular images, both binary and grayscale. We also made some consider-
ations regarding the implementation of the operators, that can affect their
applicability.

Despite the good results, we did not consider a data structure with values
inherently associated with all dimensions of the complex. When considering
the mesh, we propagated the curvature values of the points. With the regular
images, the pixels were used to create the points, and then the values were
also propagated to the edges and triangles. In none of the considered cases the
simplices have naturally associated values, that are semantically meaningful.
Since our operators were defined completely based on simplicial complexes,
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instead of using the complex only to express the structural information w.r.t.
the points, the performance on such data should be even better than the
results we obtained.

The operators presented in this work are only a small sample of what can
be done using the dimensional operators. Therefore, future work includes
the definition of more operators, along with other classic uses of mathemat-
ical morphology. Adaptative mathematical morphology [41, 79, 80, 53, 76]
on simplicial complexes is another interesting concept to be developed, by
changing the way we construct the complex based on regular images.

We can also consider the same procedure applied to simplicial complexes
into different spaces, such as the combinatorial maps [43], hypergraphs, sim-
ilarly to the work done by Bloch and Bretto [9], or consider it as a tool for
differential geometry [20, 26].
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