
HAL Id: pastel-00827107
https://pastel.hal.science/pastel-00827107v2

Submitted on 16 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified formalism for complex systems architecture
Boris Golden

To cite this version:
Boris Golden. A unified formalism for complex systems architecture. Modeling and Simulation. Ecole
Polytechnique X, 2013. English. �NNT : �. �pastel-00827107v2�

https://pastel.hal.science/pastel-00827107v2
https://hal.archives-ouvertes.fr

A Unified Formalism for

Complex Systems Architecture

Ph.D. in Computer Science

by

Boris Golden

Defended on May 13th 2013 in front of:

M. Daniel KROB École Polytechnique Advisor

M. Marc AIGUIER École Centrale Paris (ECP) Co-Advisor
M. Frédéric BOULANGER Supélec Reporter
M. Sylvain PEYRONNET Université de Caen Reporter

M. Marc POUZET École Normale Supérieure (ENS) Reporter

M. Éric GOUBAULT CEA President
M. Patrice PERNY Université Paris 6 Examiner

École Polytechnique - LIX

Acknowledgments

Thank you to Daniel Krob, who introduced me to the fascinating subject of

systems architecture, from formal models to real industrial case studies!

Thank you to Marc Aiguier, who helped me make all this happen, and who

has been supportive during the whole study!

Thank you to Dan Frey for inviting me to visit him at the Massachusetts

Institute of Technology, opening new perspectives for my work!

Thank you to Antoine Rauzy who has always been providing stunning in-

sights & feedbacks on my work!

Thank you to Patrice Perny for introducing me to the amazing world of

multi-criteria optimization!

Thank you to Yann Hourdel with whom I have been working at LIX and

sharing a lot at the end of my PhD!

Thank you to Frédéric Boulanger, Sylvain Peyronnet and Marc Pouzet

for accepting to be the reporters of this PhD thesis!

Thank you to Éric Goubault for having accepted to be the President of the

Jury for my defense!

Thank you to my friends and family who have provided so much support

during my whole PhD!

And finally, thank you to my Delphine for her unconditional love & support!

Abstract

Complex industrial systems are typically artificial objects designed by men,
involving a huge number of heterogeneous components (e.g. hardware, software,
or human organizations) working together to perform a mission. In this thesis,
we are interested in modeling the functional behavior of such systems, and their
integration. We will model real systems as functional black boxes (with an
internal state), whose structure and behaviors can be described by the recursive
integration of heterogeneous smaller subsystems.

Our purpose is to give a unified and minimalist semantics for heterogeneous
integrated systems and their integration. By “unified”, we mean that we propose
a unified model of real systems that can describe the functional behavior of
heterogeneous systems and that is closed under integration. By “minimalist”
we mean that our formalization intends to provide a small number of concepts
and operators to model the behaviors and the integration of complex industrial
systems. Our work thus allows to give a relevant formal semantics to concepts
and models typically used in Systems Engineering.

In this framework, the integration of real systems can be modeled as a re-
cursive process consisting in alternating composition and abstraction, to build
a target overall system from elementary systems recursively composed and ab-
stracted at different levels. Based on these definitions of systems and their
integration, a minimalist systems architecture framework allows to deal with
requirements, systems structure and underspecification during the design.

In this thesis, we first define heterogeneous dataflows, and then systems as
step-by-step machines transforming dataflows. Such systems can be integrated
using operators, to build more complex systems, so that we can handle the
two dimensions of the complexity (heterogeneity and integration). We then in-
troduce a minimalist formalism for systems architecture to model requirements,
underspecification & structure of systems through the design process. We finally
open perspectives around systems optimization when fairness is required.

Keywords: Complex industrial systems, Systems modeling, Systems archi-
tecture, Systems semantics, Systems Engineering, Systems integration, Timed
Mealy machine, Hybrid time, Non-standard analysis, Dataflows, Architecture
framework, Transfer function, Requirements, Fair optimization.

5

Les systèmes industriels complexes sont des objets artificiels conçus par
l’Homme, et constitués d’un grand nombre de composants hétérogènes (e.g.
matériels, logiciels ou organisationnels) collaborant pour accomplir une mission
globale. Dans cette thèse, nous nous intéressons à la modélisation du comporte-
ment fonctionnel de tels systèmes, ainsi qu’à leur intégration. Nous modéliserons
donc les systèmes réels par le biais d’une approche de bôıte noire fonctionnelle
avec un état interne, dont la structure et le comportement fonctionnel peuvent
être obtenus par l’intégration récursive de composants élémentaires hétérogènes.

Notre but est de donner une sémantique unifiée et minimaliste pour de
tels systèmes, ainsi que pour leur intégration. Par “unifié”, nous voulons dire
que nous proposons un modèle permettant de représenter différents types de
systèmes et qui reste clos sous les opérateurs d’intégration. Par “minimaliste”,
nous voulons dire que notre formalisme entend définir un petit nombre de con-
cepts et d’opérateurs pour modéliser l’intégration des systèmes industriels com-
plexes. Notre travail permet donc de donner une sémantique aux concepts et
modèles typiquement utilisés en Ingénierie système.

Dans ce cadre, l’intégration de systèmes réels peut être modélisée comme un
processus récursif consistant en une alternance de composition et d’abstraction,
pour construire un système cible à partir de systèmes plus élémentaires récursive-
ment connectés entre eux puis redéfinis à des niveaux supérieurs d’abstraction.
En s’appuyant sur ces définitions, nous proposons un cadre d’architecture mini-
maliste qui permet d’exprimer des exigences, de décrire la structure d’un système
et de rendre compte de la sous-spécification durant la phase de conception.

Dans cette thèse, nous définissions tout d’abord la notion de flots de données
hétérogènes, puis de systèmes comme machines de transformation de flots de
données de façon algorithmique. Ces systèmes peuvent ensuite être intégrés par
le biais d’opérateurs, permettant de construire des systèmes plus complexes,
et donc de rendre compte des deux dimensions principales de la complexité
(l’hétérogénéité et l’intégration). Nous introduisons ensuite un formalisme pour
l’architecture système, en modélisant les exigences, la sous-spécification et la
structure des systèmes. Enfin, nous ouvrons des perspectives autour de l’optimi-
sation entre systèmes lorsque l’équité est recherchée.

Mots-clés : Systèmes industriels complexes, Modélisation de système, Archi-
tecture système, Sémantique des systèmes, Ingénierie système, Intégration de
systèmes, Machine de Mealy temporisée, Temps hybride, Analyse non-standard,
Flot de données, Cadre d’architecture, Fonction de transfert, Exigences, Opti-
misation équitable.

6

Contents

1 Introduction 9

1.1 Complex industrial systems . 9

1.2 Systems Engineering . 11

1.3 What is systems architecture? . 13

1.3.1 A definition . 13

1.3.2 Fundamental principles 15

1.4 Towards a unified formalism . 19

1.5 Structure of this manuscript . 21

I Systems modeling 23

2 Heterogeneous dataflows 25

2.1 Time . 25

2.1.1 Time reference . 26

2.1.2 Time scale . 28

2.2 Data . 30

2.2.1 Datasets . 30

2.2.2 Implementation of standard data behaviors 32

2.3 Dataflows . 33

2.3.1 Definition . 33

2.3.2 Operators . 33

2.3.3 Consistency of dataflows 35

3 Systems 39

3.1 Systems . 39

3.1.1 Definition . 39

3.1.2 Execution . 41

3.1.3 Examples & expressivity 42

3.2 Transfer functions . 45

3.2.1 Definition . 46

3.2.2 Transfer function of a system 47

7

CONTENTS

4 Integration operators 49
4.1 Composition . 49

4.1.1 Timed extension . 50
4.1.2 Product . 52
4.1.3 Feedback . 55

4.2 Abstraction . 57
4.2.1 Nondeterminism . 58
4.2.2 Abstraction . 59

4.3 Integration of systems . 61
4.3.1 Composition & abstraction 61
4.3.2 Example . 62

II Systems architecture 65

5 A logic for requirements 67
5.1 A coalgebraic definition of systems 67

5.1.1 Preliminaries . 67
5.1.2 Transfer functions via coalgebras 69
5.1.3 Systems as coalgebras . 70

5.2 A logic for system requirements 72
5.2.1 Definition . 72
5.2.2 Examples of requirements 74
5.2.3 Adequacy of the logic . 76

6 Towards a framework for systems architecture 79
6.1 Handling underspecification . 80
6.2 Modeling recursive structure . 83

7 Fair assignments between systems 89
7.1 Introduction . 90
7.2 Inequality measurement with Lorenz dominance relations 92

7.2.1 Notations and definitions 92
7.2.2 Infinite order Lorenz dominance 95

7.3 Properties of infinite order Lorenz dominance 97
7.3.1 A representation theorem 97
7.3.2 Main properties of L∞-dominance 100

7.4 Solving multiagent assignment problems 102
7.4.1 Fair multiagent optimization 103
7.4.2 Linearization of the problem 104
7.4.3 Numerical tests . 105

8 Conclusion 107

8

Chapter 1

Introduction

1.1 Complex industrial systems

Industrial systems are typically artificial objects designed by men, involving
heterogeneous components (mostly: hardware, software, and human organiza-
tions) working together to perform a mission. In this thesis, we are interested in
modeling the functional behavior of such systems, and their integration. From
a practical point of view, our aim is to give a unified formal semantics to the
concepts manipulated on a daily basis by engineers from various fields working
together on the design of complex industrial systems. Indeed, they need formal
tools to reason on & model those systems in a unified & consistent way, with a
clear understanding of the underlying concepts.

We will model complex industrial systems as heterogeneous integrated sys-
tems, since our work highlights two aspects of the complexity of such systems:

• the heterogeneity of systems, that can be naturally modeled following
continuous or discrete time, and that are exchanging data of different
types1. Several specialized fields are involved in the design of a complex
industrial system, making it difficult to keep a unified vision of this system
and to manage its design.

• the integration of systems, i.e. the recursive mechanism to build a system
through the synthesis of smaller systems working together, and whose be-
haviors will be described at a more concrete level (i.e. a finer grain). There
are many interrelations between a possibly huge number of components,
and there are recursive levels of integration.

The concept of complex systems has led to various definitions in numerous
disciplines (biology, physics, engineering, mathematics, computer science, etc).

1Data encompasses here all kinds of elements that can be exchanged between real objects.
We distinguish three kinds of homogeneous systems: hardware/physical systems (transforming
continuous physical parameters), software systems (transforming and managing discrete data),
and human/organizational systems (organized through processes).

9

CHAPTER 1. INTRODUCTION

One speaks for instance of dynamical, mechanical, Hamiltonian, hybrid, em-
bedded, concurrent or distributed systems (cf. [6, 8, 45, 53, 60]). A minimalist
informal definition consistent with (almost) all those of the literature is that
a system is “a set of interconnected parts forming an integrated whole”, and
the adjective complex implies that a system has “properties that are not easily
understandable from the properties of its parts”. In the mathematical formal-
ization of complex systems, there are today two major approaches: the first one
is centered on understanding how very simple but numerous elementary com-
ponents can lead to complex overall behaviors (e.g. cellular automatas), the
second one (that will also be ours) is centered on giving a precise semantics to
the notion of system and to the integration of systems to build greater overall
systems.

When mathematically apprehended, the concept of system (in the sense of
this second approach) is classically defined with models coming from:

• control theory and physics, that deal with systems as partial functions
(dynamical systems may also be rewritten in this way), called transfer
functions, of the form:

∀t ∈ T, y(t) = F (x, q, t)

where x, q and y are inputs, states and outputs dataflows, and where
T stands for time (usually considered in these approaches as continuous
(see [60, 5, 21]).

• theoretical computer sciences and software engineering, with systems that
can be depicted by automaton-oriented formalisms equivalent to timed
transition systems with input and output, evolving on discrete times gen-
erally considered as a universal predefined sequence of steps (see for in-
stance [37, 10, 35, 26, 19, 18]). There is also a purely logical approach for
representing discrete abstract systems. The core modelling language in
this direction is probably Lustre [35, 20]. A reasoned overview of all these
approaches can be found in [39].

However all these models do not easily allow to handle systems with het-
erogeneous time scales. The introduction of a more evolved notion of time
within models involves many difficulties, mainly the proper definition of sequen-
tial transitions or the synchronization of different systems exchanging dataflows
without synchronization of their time scales. Dealing with an advanced defi-
nition of time will typically imply to introduce infinity and infinitesimal (for
instance with non-standard real numbers).

To address this challenge, the theory of hybrid systems was developed jointly
in control theory (see [60, 66]) and in computer science (see [36, 6, 41]). A
serious issue with this theory is however that the underlying formalism has
some troubling properties such as the Zeno’s paradox which corresponds to
the fact that an hybrid system can change of state an infinite number of times
within a finite time with the convergence of a series of decreasing durations

10

1.2. SYSTEMS ENGINEERING

which should be avoided in a robust modeling approach. Other interesting and
slightly different attempts in the same direction can also be found in Rabinovitch
and Trakhtenbrot (see [52, 61]) who tried to reconstruct a finite automata theory
on the basis of a real time framework, or in [67]. Hybrid automatas (see [36])
are another classical model for representing abstract hybrid systems.

Moreover, none of these models address the integrative & architectural di-
mensions of complex industrial systems (an approach similar to ours on the
structure of complex systems, but without the introduction of heterogeneous
time, has been carried out in [3], using a coalgebraic formalism). There is
therefore a great challenge on being able to unify in a same formal framework
mathematical methods dealing with the definition & design of both continuous
and discrete systems, and at the same time being able to define the integration
& architecture of such systems in the same formalism. This will be at the center
of our approach.

1.2 Systems Engineering

When dealing with complex industrial systems containing heterogeneous com-
ponents, engineers face problems with the semantics of the models they work
with to describe real systems when they involve a large number of heterogeneous
elementary systems.

To build modern industrial systems, it has thus been necessary to create
complex engineering models & processes being able to deal with a huge number
of engineers coming from many different domains. Indeed, because of the size of
such modern industrial systems (trains, planes, space shuttles, etc), their real-
ization leads to major conceptual and technical difficulties. The reason is that it
is difficult, or even impossible, for one single person to completely comprehend
such systems globally. Although this designation is not precise nor universal, it is
naturally associated with industrial systems whose design, industrialization and
change lead to important and difficult problems of integration, directly related
to both the huge number of basic components integrated at multiple levels, and
the important scientific and technological heterogeneity of such systems (gener-
ally involving software, hardware/physical and human/organizational parts).
To manage the complexity of such systems, some methods have emerged during
the last century. We can trace the origin of these methods to the Cold War
where USA had to build defence systems for which the issues of data manage-
ment, decisions and military riposte had been taken into account as a whole,
in an integrated and consistent way, in order to ensure a short reaction time
between a Soviet attack and an American counter-attack. From there, a body
of knowledge called Systems Engineering, focused on the integration mastery of
large industrial systems has progressively emerged since the 50’s. Hence, Sys-
tems Engineering consists of a set of concepts, methods and good organizational
and technical practices that the industry had to develop to be able to deal with
the complexity of industrial systems (see [11, 42, 57, 62] for more details on this
subject).

11

CHAPTER 1. INTRODUCTION

But in fact, Systems Engineering is “just” the application to engineering of
a more general thought paradigm, called systems approach (also often referred
to as systems thinking). Systems approach focuses on interactions between sys-
tems, and views such systems as black boxes described only through their func-
tional behavior and their internal state. In systems approach, a system is thus
a black box receiving and emitting flows, and characterized by an internal state.
A system can itself be decomposed into a set of interconnected subsystems. It is
therefore an observational modeling of systems. Systems approach also implies
to step back with a high-level point of view seeing any system as being part of
an overall greater system (i.e. a system is in interaction with other systems in
its environment).

A key assumption of systems approach is thus to consider that any system
is only in interaction with other systems, and that the behavior of any real
system2 can be explained within this framework. The main advantage of this
approach is that it helps to understand how things influence one another within
a whole (with often unexpected long-term or long-distance influences). All inter-
actions between systems are captured by logical flows, figuring a unidirectional
transmission of elements (which can be material, energetic or informational).
“Logical” here means that it only models the exchange of data between ele-
ments, and not the way this exchange really occurs. For instance, the physical
reality behind a flow between two real systems (like the delay or the rate of
transmission of the network cable between two computers) will itself be mod-
eled by a specific type of system called interface (it would here take into account
the physical properties of the cable, when the flow would only account for the
logical exchange of data).

The systems approach is a very powerful tool to model a lot of real-life objects
and situations. We give a simple example to illustrate the main concepts of
systems approach. Imagine an individual, John, sitting in front of its computer
and using it. John has on its table a bottle of water and a glass he uses when
he is thirsty. We want to model the overall real system3 (which is here closed,
i.e. not exchanging data with its environment). We should characterize the
following objects at the right abstraction level:

• systems : those are all the objects involved. Here: glass, bottle, computer,
John (the table will not be useful in our modeling).

• states : each system has a set of possible states. E.g. the glass can be
‘not empty’ or ‘empty’.

2In the literature, the real object and its model are often confused and both called system.
When clarification is needed, we will call real system any object of the real world which
behavior we want to explain as a transformation of flows of data. We will call system the
mathematical object introduced to model real systems.

3As every model, it is not exhaustive since focused on given aspects of the real system
considered to meet the (implicit) goals of the modeling.

12

1.3. WHAT IS SYSTEMS ARCHITECTURE?

• data: each system can receive or send data. E.g. the glass can send water,
or a visual stimulus (indicating the level of water in the glass).

• flows : each system has inputs and outputs that allow it to exchange data
with other systems. E.g. the bottle can send water to the glass (when the
bottle is not empty). But the glass may send water to the computer, even
if it is not its intended use.

• behaviors (functions and states): each system will have specific behaviors
that will make it generate outputs and change its states, according to time
and inputs. E.g. when the glass is empty and receives water, it becomes
not empty. But if it receives a drinking move, it sends water to John and
becomes empty.

• time of the overall system: a time scale of description has to be chosen to
be consistent with the model. E.g. a step of 1 minute for the time scale
can be a consistent choice here.

Bottle

Glass

John

ComputerWater

Water
Water, visual stimulus

Drinking moves

Physical movements

(to fill the glass)

D
is

p
la

y

&
 s

o
u

n
d

U
s
e

r's

in
p

u
ts

{Broken,
working}

{Empty,
not_empty}

{Thirsty,
not_thirsty}

Step of T : 1 minute

{Empty,
not_empty}

Figure 1.1: Example of an elementary systemic modeling

All the concepts introduced here are informal. We will give a semantics to
all the objects of this intuitive “graphical” language used in systems approach.

1.3 What is systems architecture?

1.3.1 A definition

Systems Architecture is a generic discipline to handle systems (existing or to
be created), in a way that supports reasoning about the structural properties
of these objects.

Depending on the context, Systems Architecture can in fact refer to:

13

CHAPTER 1. INTRODUCTION

• the architecture of a system, i.e. a model to describe/analyze a system

• architecting a system, i.e. a method to define the architecture of a system

• a body of knowledge for ”architecting” systems while meeting business
needs, i.e. a discipline to master systems design.

At this point, we can only say that the ”architecture of a system” is (similarly
to the one of a building) a global model of a real system consisting of:

• a structure

• properties (of various elements involved)

• relationships (between various elements)

• behaviors & dynamics

• multiple views of elements (complementary and consistent).

We will not describe here the numerous issues raised (at every level of a com-
pany: corporate strategy, marketing, product definition, engineering, manufac-
turing, operations, support, maintenance, etc) by the design and management
of complex industrial systems. But these issues can be summarized as:

• going from local to global, i.e. mastering integration and emergence

• building an invariable architecture in a moving environment.

In this context, Systems Architecture is a response to the conceptual and
practical difficulties of the description and the design of complex industrial sys-
tems. Systems Architecture helps to describe consistently and design efficiently
complex systems such as:

• an industrial system (the original meaning of Systems Architecture)

• an IT infrastructure (Enterprise Architecture)

• an organization (Organizational Architecture)

• a business (Business Architecture).

Systems Architecture will often rely on a tool called an architecture frame-
work, i.e. a reference model to organize the various elements of the architecture
of a system into complementary and consistent predefined views allowing to
cover all the scope of Systems Architecture. Famous architecture frameworks
are for instance: DoDAF, MoDAF or AGATE4.

Finally, Systems Architecture will consider any system with a socio-technical
approach (even when dealing with a ”purely” technical system). In particular,
during the design (or transformation) of a system, the systems in the scope
of this design (or transformation) can be divided in two separated systems in
interaction:

4A good overview of these frameworks can be found on Wikipedia:
http://en.wikipedia.org/wiki/Enterprise Architecture framework

14

1.3. WHAT IS SYSTEMS ARCHITECTURE?

• the product, i.e. the system being designed or transformed

• the project, i.e. the socio-technical system (teams, tools, other resources
and their organization following strategies & methods) in charge of the
design or transformation of the product.

1.3.2 Fundamental principles

Whatever the type of system and the acception considered (model, method or
discipline), Systems Architecture is based on 9 fundamental principles:

Thinking with a systemic approach

1. the objects of the reality are modeled as systems (i.e. a box performing
a function and defined by its perimeter, inputs, outputs and an internal
state). Ex: a mobile phone is a system which takes in input a voice &
keystrokes and outputs voices & displays. Moreover, it can be on, off or
in standby. Overall, the phone allows to make phone calls (among other
functions).

Q... ... YX

2. a system can be broken down into a set of smaller subsystems, which is
less than the whole system (because of emergence). Ex: a mobile phone
is in fact a screen, a keyboard, a body, a microphone, a speaker, and
electronics. But the phone is the integration of all those elements and
cannot be understood completely from this set of separate elements.

15

CHAPTER 1. INTRODUCTION

3. a system must be considered in interaction with other systems, i.e. its
environment. Ex: a mobile phone is in interaction with users, relays (to
transmit the signal), repairers (when broken), the ground (when falling),
etc. All these systems constitute its environment and shall be considered
during its design.

S

4. a system must be considered through its whole lifecycle. Ex: a mobile
phone will be designed, prototyped, tested, approved, manufactured, dis-
tributed, sold, used, repaired, and finally eventually recycled. All these
steps are important (and not only the moment when it is used).

1 2 3 4

S(1) S(2) S(3) S(4)

Reasoning according to an architecture paradigm

5. a system can be linked to another through an interface, which will model
(when needed) the properties of the way they are linked in the reality. Ex:
when phoning, our ear is in direct contact with the phone, and there is
therefore a link between the two systems (the ear and the phone). However,
there is a hidden interface: the air! The properties of the air may influence
the link between the ear and the phone (imagine for example if there is a
lot of outside noise).

16

1.3. WHAT IS SYSTEMS ARCHITECTURE?

interface

6. a system can be considered at various abstraction levels, allowing to con-
sider only relevant properties and behaviors. Ex: do you consider your
phone as a device to make phone calls (and other functions of modern
phones), a set of material and electronics components manufactured to-
gether, or a huge set of atoms ? All these visions are realistic, but they
are just at different abstraction levels, whose relevancy will depend on the
purpose of the modeling.

abstraction

7. a system can be viewed according to several layers (typically three at
least: its purpose, its functions, and its construction). Ex: a phone is an
object whose purpose is to accomplish several missions for its environment:
making phone calls, being a fashionable object, offering various features of
personal digital assistants, etc. But it is also a set of functions organized to
accomplish these missions (displaying on the screen, transmitting signal,
delivering power supply, looking for user inputs, making noise if necessary,
etc). And finally, all these functions are implemented through physical
components organized to perform these functions.

Why ? = purpose

What ? = functions

How ? = composition

17

CHAPTER 1. INTRODUCTION

8. a system can be described through interrelated models with given seman-
tics (properties, structure, states, behaviors, datas, etc). Ex: from the
point of view of properties, the phone is a device expected to meet require-
ments like ”a phone must resist to falls from a height of one meter”. But
a phone will also change state: when a phone is off and that the power but-
ton is pressed, the phone shall turn on. Function dynamics of the phone
are also relevant: when receiving a call, the screen will display the name
and the speaker will buzz, but if the user presses no button the phone will
stop after 30 seconds... This will typically be described with diagrams in
modeling languages like UML or SysML.

9. a system can be described through different viewpoints corresponding to
various actors concerned by the system. Ex: marketers, designers, engi-
neers (in charge of software, electronics, acoustics, materials, etc), users,
sales, repairers... All these people will have different visions of the phone.
When the designer will see the phone as an easy-to-use object centered on
the user, the engineer will see it as a technological device which has to
be efficient and robust. A marketer may rather see it as a product which
must meet clients’ needs and market trends to be sold. All these visions
are important and define the system in multiple and complementary ways.

18

1.4. TOWARDS A UNIFIED FORMALISM

1.4 Towards a unified formalism

Various models & methods have been developed during the last decades to help
modeling and designing specific types of systems. The idea introduced by Daniel
Krob in [12] is that all those approaches share strong similarities at a certain
level of abstraction, and could thus be formalized in a unified framework helping
to deal with both the “big picture” and the more vertical models of systems.
It also means synthesizing the “fundamental” characteristics of what is called
systems architecting, i.e. the application of the systems approach to the design
of complex industrial systems.

From a practical point of view, our aim is to give a unified formal semantics
to the concepts manipulated on a daily basis by engineers from various fields
working together on the design of complex industrial systems. Indeed, they
need formal tools to reason on & model those systems in a unified & consistent
way, with a clear understanding of the underlying concepts5.

Of course, we do not intend to replace existing frameworks dedicated to
specific systems, as such frameworks are much more accurate when dealing
with the design of homogeneous systems. Our approach has strong benefits
when dealing with heterogeneous systems at the right level of integration. Our
aim is to give a unified formal semantics to the concepts manipulated on a
daily basis by engineers from various fields working together on the design of
complex industrial systems. Indeed, they need formal tools to reason on &
model those systems in a unified & consistent way, with a clear understanding
of the underlying concepts.

The purpose of the present work is thus to contribute to a unified formal
framework for complex systems modeling & architecture. We will model the
observational behavior of any real system through a functional machine pro-
cessing dataflows (for related work on dataflow networks, see [37, 19, 18, 17])
in a way that can be encoded by timed transitions for changing states and
outputs in instantaneous reaction to the inputs (comparable with timed Mealy
machines [46]). We show that our formalization makes it possible to model all
kinds of real systems (physical, software and human/organizational), which is
necessary in Systems Engineering.

An underlying assumption of our approach is that each system has its own
rhythm, and that this rhythm cannot be changed by an interaction with another
system, nor cause sampling problems when two systems of different time scales
are integrated together. This means that each system somehow has a set of
characteristic predefined moments of transitions that are generally based on its
internal mechanisms seen at a certain level of abstraction.

Overall, our approach towards systems modeling & architecture is simple:

• we use a unified framework where continuous & discrete times are handled

5Note thus that our purpose is not to define executable models, or an actionable formalism
with a dedicated language that can be used on the field by engineers. It clearly differentiates
our approach from many existing languages like Lustre[35], Simulink[68] or Altarica[7].

19

CHAPTER 1. INTRODUCTION

in a unified way

• we separate the behavior of systems that can be observed (outputs and
states) and their structure (how a system is built from elementary com-
ponents)

• we view all behaviors as “algorithmic”. We define and model all objects so
that a system behavior can be explained as a step-by-step transformation
of dataflows

• we model systems structure following a “Lego paradigm”. We explain the
architecture of systems through the integration of smaller building blocks,
themselves, modeled as systems

• we consider that only three actions are possible during the design process:
abstracting a system, composing together a set of systems, and verifying
if a system behavior respects a set of requirements6.

We generalize and extend the approach of the previous work in [12] (where
a unified model for continuous and discrete systems was defined by using non-
standard infinitesimal and finite time steps) by dealing with time, data, and
synchronization axiomatically, and by introducing integration operators that
were introduced in [30] for discrete systems only. Our purpose is to give a uni-
fied and minimalist semantics for heterogeneous integrated systems and their
integration. By “unified”, we mean that we propose a unified model of real
systems that can describe the functional behavior of heterogeneous systems and
that is closed under integration. By “minimalist” we mean that our formal-
ization intends to provide a small number of concepts and operators to model
the behaviors and the integration of complex industrial systems. Our work thus
allows to give a relevant formal semantics to concepts and models typically used
in Systems Engineering, where semi-formal modeling is well-spread.

To build new systems from existing systems, we will formalize two operators
that play a crucial role when modeling or designing real systems:

1. Composition operators, and

2. Abstraction operator.

Composition operators consist in building a larger system by aggregating
together smaller systems and connecting together some of the inputs and outputs
of those systems. As to the abstraction, it allows to define from a composition of
systems a more abstract system that will itself be integrated in more global ones.
In fact, abstraction aims at structuring systems at many levels of description,

6Requirements are used in Systems Engineering to define expected properties of systems,
especially regarding their behavior. They are thus logical properties on a system.

20

1.5. STRUCTURE OF THIS MANUSCRIPT

from the most concrete to the most abstract one. The purpose of the abstraction
operator is also to make easier the description of systems at more abstract levels.

In this framework, integration of real systems can be modeled as a building
a target multiscale system from elementary systems recursively composed and
abstracted at different levels.

Based on these definitions of systems and their integration, we are able to
define a minimalist systems architecture framework to deal with requirements,
systems structure, and underspecification during the design process.

1.5 Structure of this manuscript

For a better understanding, this manuscript should be better read chapter af-
ter chapter. Hence, we progressively build our framework. First, we define
heterogeneous dataflows, and then systems as step-by-step machines transform-
ing dataflows. Such systems can be integrated using operators, to build more
complex systems, so that we can handle the two dimensions of the complexity
(heterogeneity and integration). We then introduce a minimalist formalism for
systems architecture to model requirements, underspecification & structure of
systems through the design process. We finally open perspectives around sys-
tems optimization when fairness is required.

Chapter 2, Heterogeneous dataflows, introduces formal definitions of time, data
and dataflows. Our unified definition of time allows to deal uniformly with both
continuous and discrete times, while our definition of data allows to handle
heterogeneous data having specific behaviors. This makes it possible to define
heterogeneous dataflows with generic synchronization mechanisms allowing to
mix dataflows together. The deliverable is a unified and well-formalized defi-
nition of heterogeneous dataflows with properties that will be later needed to
define & integrate systems.

Chapter 3, Systems, defines a system as a mathematical object characterized by
coupled functional and states behaviors upon a time scale. This is a definition
modeling a real system as a black box with observable functional behavior and
an internal state (similarly to a timed Mealy machine). This definition is ex-
pressive enough to capture, at some level of abstraction, the functional behavior
of any real industrial system with sequential transitions. We also express the
functional behavior of systems via transfer functions transforming dataflows and
show the equivalence. The deliverable is a unified definition of a system (viewed
as a functional black box) and a proof of its equivalence with transfer functions.

Chapter 4, Integration operators, provides formal operators to integrate such
systems. Those operators make it possible to compose systems together (i.e.
interconnecting inputs and outputs of various systems) and to abstract a sys-
tem (i.e. change the level of description of a system in term of granularity of
all dataflows). We show that these operators are consistent with the natural

21

CHAPTER 1. INTRODUCTION

definitions of such operators on transfer functions. The deliverable is a set of
integration operators that are proven to be consistent and whose expressivity
allows to model systems integration. Chapters 2, 3 & 4 have been published
as a journal article Complex Systems Modeling II: A minimalist and unified se-
mantics for heterogeneous integrated systems [30] in Applied Mathematics and
Computation (Elsevier), 2012.

Chapter 5, A logic for requirements, provides a minimalist logic to express re-
quirements on systems. We first introduce an equivalent definition of systems
using coalgebraic models. Based on these models, we define logical requirements
to express properties on the observable behavior of systems. This chapter has
been published as an article: An adequate logic for heterogeneous systems [4] at
the 18th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2013).

Chapter 6, Towards a framework for systems architecture, defines a formal
framework to deal with heterogeneous integrated systems during the systems
design process. Two main problems are addressed: how to deal with the un-
derspecification of systems during their design process, and how to formalize
the structure of a system. We consider a minimalist design process, consisting
of requirements analysis and systemic recursion. We introduce the notion of
views that allow to formalize the set of interrelated models used in practice to
describe a more or less specified system at any step of the design process. We
then introduce formal definitions of the internal structure of a system. The
deliverable is a minimalist formal framework for systems architecture along the
design process, with a generic framework to model underspecification and the
structure of systems. This chapter has been accepted and presented at the 3rd
International Workshop on Model Based Safety Assessment (IWMBSA’2013)
under the title A minimalist formal framework for systems architecting [31].

Chapter 7, Fair assignments between systems, finally explores the combinato-
rial optimization between subsystems, when fairness is required (for example to
spread risk or cost between various units that should be assigned functions).
Optimization in systems architecture is key to take design decisions during the
process. Our core idea is to iterate a classical partial fairness decision criteria.
The deliverable is a new, original model for fair multi-agent optimization that
can be relevant to optimize design decisions during a systems design process.
This chapter intends to open new perspectives and is fairly independent from the
rest of the manuscript. It has been published as a paper Infinite order Lorenz
dominance for fair multiagent optimization [32] at the International Conference
Autonomous Agents and Multi-Agent Systems 2010.

22

Part I

Systems modeling

23

Chapter 2

Heterogeneous dataflows

We introduce formal definitions of time, data and dataflows. Our unified defini-
tion of time allows to deal uniformly with both continuous and discrete times,
while our definition of data allows to handle heterogeneous data having spe-
cific behaviors. This makes it possible to define heterogeneous dataflows with
generic synchronization mechanisms allowing to mix dataflows together. The
deliverable is a unified and well-formalized definition of heterogeneous dataflows
with properties that will be later needed to define & integrate systems.

2.1 Time

Most of the challenges raised by a unified definition of complex (industrial) sys-
tems are coming from time. Indeed, real systems are naturally defined according
to various times, that can typically be discrete or continuous. We must therefore
be able to define:

• a unified model of time encompassing continuous and discrete times to
later introduce a unified definition of heterogeneous systems,

• the mixture of various time scales to integrate such systems.

Unifying both discrete and continuous times is a complicated issue (see [14]
for an exhaustive survey on the subject). To reach this purpose, we propose to
extend & axiomatize the approach developed in [12] where discrete and continu-
ous times have been unified homogeneously by using techniques of non-standard
analysis [48, 54, 27]. We introduce a more generic approach and deal with time
axiomatically, that is by expressing the minimal properties that both time refer-
ences and time scales have to satisfy. That allows to consider in a same uniform
framework many different times: usual ones such as N and R, or more specific
ones such as the non-standard real numbers ∗R, or the VHDL time (see below).

25

CHAPTER 2. HETEROGENEOUS DATAFLOWS

2.1.1 Time reference

A time reference is a universal time in which all systems will be defined. It
captures the intuition we have of time: a linear quantity composed of ordered
moments, pairs of which define durations. Such a modeling of “time” will be
common to all the systems we want to integrate together.

Definition 2.1.1 (Time reference) A time reference is an infinite set T
together with an internal law +T : T × T → T and a pointed subset (T+, 0T)
satisfying the following conditions:

• upon T+:

– ∀a, b ∈ T+, a+T b ∈ T+ closure (∆1)

– ∀a, b ∈ T+, a+T b = 0T =⇒ a = 0T ∧ b = 0T initiality (∆2)

– ∀a ∈ T+, 0T +T a = a left neutrality (∆3)

• upon T :

– ∀a, b, c ∈ T, a+T (b+T c) = (a+T b) +T c associativity (∆4)

– ∀a ∈ T, a+T 0T = a right neutrality (∆5)

– ∀a, b, c ∈ T, a+T b = a+T c =⇒ b = c left cancellation (∆6)

– ∀a, b ∈ T, ∃c ∈ T+, (a+T c = b) ∨ (b +T c = a) linearity (∆7)

Elements of T are moments whilst elements of T+ are durations (i.e. dis-
tances between moments). Any duration can be considered as a moment, by
setting a conventional origin.

The properties given upon T and T+ are constraints that catch the intuitive
view that the time elapses linearly by adding successively durations between
them.

Proposition 1 (Total order on a time reference) We can define a total
order)T (later written) for convenience) on T as follows:

a)T b ⇔ ∃c ∈ T+, b = a+T c

Proof This is a classical result using ∆2, ∆4, ∆5, ∆6 and ∆7 (time references
are similar to specific semigroups, cf [24]).

)T is reflexive by ∆5, transitive by ∆4, total by ∆7. To be a total order,
it should moreover be antisymmetric. Suppose that a)T b and b)T a. Thus,
∃c, d ∈ T+ such that b = a+T c and a = b+T d. But then: a = b+T d = (a+T

c)+T d = a+T (c+T d) by associativity∆4. But by∆5, a+
T 0 = a = a+T (c+T d),

and so by ∆6, c+
T d = 0T . As c, d ∈ T+, we have by ∆2 that c = d = 0T and

finally by ∆5 again a = b.)T is antisymmetric and is therefore a total order.
!

26

2.1. TIME

Moreover, we can remark that ∆1 ensures that any element of T greater
than an element of T+ will be in T+, and ∆3 ensures that 0T is the minimum
of T+, so that the set of durations has natural properties according to)T and
can be understood as “positive” elements of T .

Example 1 In [12], the time reference is the set of non-standard real numbers
∗R defined as the quotient of real numbers R under the equivalence relation
≡⊆ RN × RN defined by:

(an)n≥0 ≡ (bn)n≥0 ⇐⇒ m({n ∈ N|an = bn}) = 1

where m is an additive measure that separates between each subset of N and its
complement, one and only one of these two sets being always of measure 1, and
such that finite subsets are always of measure 0. The obvious zero element of
∗
R is (0)n≥0,

∗
R

+ is its positive part taken here as durations, and the internal
law + is defined as the usual addition on RN, i.e.:

(an)n≥0 + (bn)n≥0 = (an + bn)n≥0

∗R satisfies all the conditions of Definition 2.1.1 and is a well-defined time
reference. Observe also that ∗R has as subset, the set of non-standard integers ∗Z

(and subsequently ∗N) where infinite numbers are all numbers having absolute
value greater that any n ∈ N. ♦

Some authors, e.g. [38], add commutativity and Archimedean properties in
the definition of a time reference. Commutativity is intuitive and the Archimede-
an property excludes Zeno’s paradox. However, they are not always satisfied
by standard models of time, as in the VHDL time used in some programming
languages.

Example 2 The VHDL time [13] V is given by a pair of natural numbers (both
sets of moments and durations are similar): the first number denotes the “real”
time, the second number denotes the step number in the sequence of compu-
tations that must be performed at the same time – but still in a causal order.
Such steps are called “δ-steps” in VHDL (and “micro-steps” in StateCharts).
The idea is that when simulating a circuit, all independent processes must be
simulated sequentially by the simulator. However, the real time (the time of
the hardware) must not take these steps into account. Thus, two events e1, e2
at moments (a, 1), (a, 2) respectively will be performed sequentially (e1 before
e2) but at a same real time a. The VHDL addition is defined by the following
rules:

(r′ .= 0) =⇒ (r, d) + (r′, d′) = (r + r′, d′)

(r′ = 0) =⇒ (r, d) + (r′, d′) = (r, d+ d′)

where r, r′, d and d′ are natural numbers and + denotes the usual addition
on natural numbers. Clearly, the internal law + above is not commutative,

27

CHAPTER 2. HETEROGENEOUS DATAFLOWS

nor Archimedean: we may infinitely follow a δ-branch by successively adding
δ-times.1 ♦

2.1.2 Time scale

Time references give the basic expected properties of the set of all moments.
Now, we want to define time scales, i.e. sets of moments of a time reference
that will be used to define a system (systems can indeed have various paces &
origin dates).

A time scale will later be used to define step-by-step behavior of system,
which makes it necessary to define it as a sequence of moments.

Definition 2.1.2 (Time scale) A time scale is any subset T of a time ref-
erence T such that:

• T has a minimum mT ∈ T

• ∀t ∈ T, Tt+ = {t′ ∈ T | t ≺ t′} has a minimum called succT(t)

• ∀t ∈ T , when mT ≺ t, the set Tt− = {t′ ∈ T | t′ ≺ t} has a maximum
called predT(t)

• the principle of induction2 is true on T.

The set of all time scales on T is noted Ts(T).

A time scale is defined so that it will be possible to make recursive con-
structions on it, and to locate any moment of the time reference between two
moments of a time scale. A time scale necessarily has an infinite number of
moments. In fact, a time scale is expected to comply with the Peano axioms3,
excepted that the succT and predT are defined for moments of T and not only
T.4

This is not equivalent: a simple counter-example on time reference R+ can show
it is possible to have pred and succ properly defined for moments of the subset
T = {1− 1

2n for n ∈ N} ∪ {1 + 1
2n for n ∈ N} whereas moment 1 has no pred or

succ in T . This fundamental property prevents Zeno’s effect on any time scale.

Most of time scales (discrete and continuous) used when modeling real sys-
tems can be defined as unified regular time scales of step τ and of minimum
m:

m m+ τ m+ 2τ m+ 3τ ...

1This is not the intended use of VHDL time, however: VHDL computations should perform
a finite number of δ-steps.

2For A ⊂ T,
(

mT ∈ A & ∀t ∈ A, succT(t) ∈ A
)

⇒ A = T.
3It can be easily checked that the above conditions imply Peano axioms.
4These specific properties will be necessary to prove that time scales are closed under finite

union.

28

2.1. TIME

Example 3 By using results of non-standard analysis, continuous time scales
can then be considered in a discrete way. Following the approach developed
in [12] to model continuous time by non-standard real numbers, a regular
time scale can be ∗Nτ where τ ∈ ∗R+ is the step, 0 ∈ ∗Nτ and ∀t ∈ ∗Nτ ,
succ

∗
Nτ (t) = t + τ . This provides a discrete time scale for modeling classical

discrete time (when the step is not infinitesimal) and continuous time (when
the step is infinitesimal). ♦

Example 4 In the VHDL time V , the internal law induces a lexicographic
ordering on N × N. Thus, let W ⊂ V such that: ∀a ∈ N, ∃Na ∈ N, ∀(a, b) ∈
W , b ≤ Na (i.e. there are only a finite number of steps at each moment of time
in W). Then W is a time scale in the VHDL time. ♦

Example 5 A time scale on the time reference R+ can be any subset A such
that: ∀t, t′ ∈ R

+, |A ∩ [t; t+ t′]| is finite. ♦

We have shown that we can accommodate heterogeneous times with our
definitions. We introduce a fundamental proposition allowing to unify different
time scales, which will be necessary for systems integration (when the systems
involved do not share the same time scales). Overall, our definition of time will
be suitable for heterogeneous integrated systems.

Proposition 2 (Union of time scales) A finite union of time scales (on the
same time reference T) is still a time scale.

Proof The proof for two time scales is enough.

Let T1,T2 be two time scales on T . Let T = T1 ∪ T2. We want to prove
that T is a time scale.
T is a subset of T . Note that T has a minimummin

(

mT1 ,mT2
)

, and that ∀t ∈ T ,
the succ and pred functions can be obviously defined by:

• succT(t) = min
(

succT1(t), succT2(t)
)

• when t 5 mT, predT = max
(

predT1(t), predT2(t)
)

5

We need to prove that the induction principle holds on T. This can be proved
by using a lemma: if mT ∈ A & ∀t ∈ A, succT(t) ∈ A then ∀t ∈ Ti, t ∈ A ⇒
succTi(t) ∈ A for i = 1, 2. This lemma is proved using the principle of induction
in Ti on intervals of successive elements of Ti in T:

Let P (t) be a proposition such that: ∀t ∈ T, P (t) ⇒ P
(

succT(t)
)

(L0). We

want to show that: ∀t ∈ T1, P (t) ⇒ P
(

succT1(t)
)

(L1). Let t ∈ T1 and
t′ = succT1(t). If t′ = succT(t), then (L1) is true for this t by (L0). Else: let
ta = succT(t) and tb = predT(t′). Then ta, tb ∈ T2 and succT (by construction

5for convenience of writing, we assume that if predTi is not well defined for its argument,
its value is mT.

29

CHAPTER 2. HETEROGENEOUS DATAFLOWS

equals to succT2 since there is no moment of T1 between ta and tb) defines, by
induction in T2, a set of successive elements of T2 between ta and tb. If P (t) is
true, then P (ta) is true by (L0).

The principle of induction which is true in T2 can be applied to the set [ta, tb]
of moments of T1, so that P (tb) is true, and finally P (t′) = P

(

succT(tb)
)

is true
by (L0).

What means that P (t′) = P
(

succT1(t)
)

is true. Finally, we have shown
that: (L0) ⇒ (L1). We can show the same property (L’1) on T2. Applying
independently the principle of induction for proposition P on T1 and on T2 , we
have that: if P (mT) is true, P is true on T1 and P is true on T2. The proposi-
tion P is true on their union T. Therefore, the principle of induction is true on T.

Finally, T = T1 ∪ T2 satisfies the principle of induction, and thus T is a time
scale on T . !

Remark 1 It is easy to show that the union of an infinite number of time scales
can define a set of moments that is not a time scale. We recall the example
T = {1 − 1

2n for n ∈ N} ∪ {1 + 1
2n for n ∈ N} where moment 1 has no pred

or succ in T . Let define an infinite sequence of time scales: ∀n ∈ N, Tn =

{1 − 1
2n } ∪ {1 + 1

2n } ∪ N. The union T =
⋃

n∈N

Tn is not a time scale since the

moment 1 has no pred or succ in T.

In our approach of time, even if the time reference is for instance R, we
do not set a discrete time reference, so that although all time scales on R are
discrete and isomorphic to N, they are not constrained by a predefined universal
discrete time. Thus, our approach allows to define finer time scales for modeling
real systems (which can work at different rhythms or with shifts of phase) than
considering a given discrete time reference (as done for instance with reactive
systems [43], where a universal sequential clock sets a given granularity that
cannot be further refined6).

2.2 Data

Another challenge to address to model complex systems is the heterogeneity of
data (modeling any element that can be exchanged between real systems) and
of their synchronization between different time scales. We introduce datasets
that will be used for defining data carried by dataflows.

2.2.1 Datasets

Definition 2.2.1 (ε-alphabet) A set D is an ε-alphabet if ε ∈ D. For any
set B, we can define an ε-alphabet by B = B ∪ {ε}.

6However, our approach brings more complexity when modeling real systems.

30

2.2. DATA

The elements of an ε-alphabet are called data and ε is a universal blank symbol ε
accounting for the absence of data (as the blank symbol in a Turing machine)7.
An ε-alphabet can have an infinite number of data. A system dataset (also
called dataset) is an ε-alphabet with the description of the behavior of the data:

Definition 2.2.2 (System dataset) A system dataset is a pair D = (D,B)
such that:

• D is an ε-alphabet

• B, called data behavior, is a pair (r, w) with r : D → D and w : D×D →
D such that8:

− r(ε) = ε (R1)
− r

(

r(d)
)

= r(d) (R2)
− r

(

w(d, d′)
)

= r(d′) (R3)
− w

(

r(d′), d
)

= d (W1)
− w

(

w(d, d′), r(d′)
)

= w(d, d′) (W2)

Remark 2 We will sometimes use interchangeably the ε-alphabet and the dataset
in our definitions & examples if it is more convenient and when there is no am-
biguity.

B will be useful to synchronize dataflows defined on different time scales (see
Projection below). Data behaviors can be understood as the functions allowing
to read and write data in a “virtual” 1-slot9 buffer defining how this synchro-
nization occurs at each moment of time:

• when a buffer is read, what is left (depending on the nature of data, it can
partially vanish)

• when a new data is written (second parameter of w), knowing the current
content of the buffer (first parameter of w), what is the new content of
the buffer (depending on the nature of data and the new incoming data,
it can be partially or totally modified).

In this context, the conditions on r and w can be understood as follows:

• (R1): reading an empty buffer (i.e. containing ε) results in an empty
buffer

• (R2): reading the buffer once or many times results in the same content
of the buffer

7basically, introducing this blank means that a flow “transmitting nothing” at a given
moment will be coded as a flow transmitting ε at this moment.

8These axioms give a relevant semantics and are necessary to define consistent projections
of dataflows on time scales.

91-slot means that the buffer can contain only one data. This data will be used to compute
the value of a dataflow at any moment of a time scale, to be able to synchronize a dataflow
with any possible time scale.

31

CHAPTER 2. HETEROGENEOUS DATAFLOWS

• (R3): reading a buffer in which a data has just been written results in the
same content whatever the initial content of the buffer was before writing
the data

• (W1): when the buffer has just been read, the new data erases the previous
one

• (W2): when the buffer has just been written with a data, it will not be
modified if it is again written with the result of the reading function on
this same data10

• we also have by (R1) + (W1): w(ε, d) = d (W3). When an empty buffer
is written with a new data, the buffer contains this new data.

2.2.2 Implementation of standard data behaviors

There are two classical examples of data behaviors when modeling real systems:

Example 6 [Persistent data behavior] In this case, data cannot be con-
sumed by a reading, and every writing erases the previous data (this data be-
havior was the only one used in [12]):

r(d) = d and w(, d) = d

♦

Example 7 [Consumable data behavior] In this case, data is consumed by
a reading, and every writing (excepted when it is ε) erases the previous data:

r(d) = ε and w(d, d′) =

{

d if d′ = ε

d′ else

♦

We give a less classical example of data behavior that can be used to rep-
resent the ability to accumulate data received (what can be meaningful when
data are written more frequently than read). It is important to notice that the
buffer is still a 1-slot buffer and that all accumulated data will be consumed
entirely by a single reading11.

Example 8 [Accumulative data behavior] Let A be a non-empty set and D =
P(A) be the set of subsets of A. We consider that ε = ∅, so that D is an

10This rule will ensure that a dataflow projected on a finer time scale is equivalent to the
initial dataflow.

11Modeling another kind of reading shall be modeled by buffers in the system itself, this
is not the purpose of these “virtual” buffers dedicated to synchronization of data between
different time scales.

32

2.3. DATAFLOWS

ε-alphabet12. In this case, data is consumed by a reading, and every writing is
added (using internal law of D, here ∪) to the previous data:

r(d) = ε and w(d, d′) = d ∪ d′

♦

It is straightforward to check that these examples are compliant with the
axioms of data behaviors.

Remark 3 The same real data can be modeled using different behaviors: for
instance, an electric current might be measured by a number of electrons at each
step of a time scale (consumable behavior, data expressed as a natural number),
or by a continuous flow of electrons (persistent behavior, data expressed as a
real number in Amperes). Thus, a data behavior is not an intrinsic property of
the real data it models, but a modeling choice.

2.3 Dataflows

The dataflows will be used to describe variables of systems (inputs, outputs and
states). We also define the synchronization of dataflows between time scales (to
be able to properly define the integration of systems with different time scales).

2.3.1 Definition

In what follows, D will stand for a dataset of ε-alphabet D with behaviors
(rD, wD). A dataflow is a flow defined at the moments of a time scale carrying
data of a dataset. It will be used to define the evolution of states, inputs and
outputs of a system.

Definition 2.3.1 (Dataflow) Let T be a time scale. A dataflow over (D,T)
is a mapping X : T → D.

Definition 2.3.2 (Sets of dataflows) The set of all dataflows over (D,T) is
noted DT. The set of all dataflows over D with any possible time scale on time

reference T is noted DT =
⋃

T∈Ts(T)

DT.

2.3.2 Operators

We introduce an operator making it possible to project a dataflow on any time
scale. The mechanism to compute the resulting dataflow correspond to the
idea that there is an intermediary buffer which stores or outputs the values of
the initial dataflow so that they can be read according to the new time scale.
The projection of a dataflow on a time scale makes it possible to synchronize a

12We can extend this example to any unital magma of identity element ε.

33

CHAPTER 2. HETEROGENEOUS DATAFLOWS

dataflow between two different time scales, with the rule that a data arriving
at t will be read at the first next moment on the time scale of projection (the
computation of this synchronization only requires a 1-slot virtual buffer and
data behaviors). It will be essential when composing together systems using
different time scales to define the properties of the exchange of data.

Definition 2.3.3 (Projection of a dataflow on a time scale) Let X be a
dataflow over (D, TX) and TP be a time scale. Let T = TX ∪ TP . Let T′

P =
succT(TP)

13. We define recursively the buffer function b : T → D by 14:

• (P1) if t ∈ TX \ T′
P , b(t) = w

(

b(predT(t)), X(t)
)

• (P2) if t ∈ T′
P \ TX , b(t) = r

(

b(predT(t))
)

• (P3) if t ∈ TX ∩ T′
P , b(t) = X(t)

• (P4) if t ∈ TP \ (TX ∪ T
′
P), b(t) = b(predT(t))

The projection XTP
of X on TP is then the dataflow over (D, TP) defined

by setting XTP
(t) = b(t) for every t ∈ TP .

T
X

T
P

The semantics of each part of the definition is the following: (P1) occurs
when a new data is received, and when the data on the buffer has not been read
at the previous step so does not need to be processed with the reading function.
(P2) occurs when no new data is received, and when the data on the buffer has
been read at the previous step and so needs to be processed in the buffer with
the reading function. (P3) occurs when a new data is received, and when the
data on the buffer has been read at the previous step, so that the content of the
buffer is the new data, by condition (W1). Finally, (P4) occurs when no new
data is received, and when the data on the buffer has not yet been read, so that
nothing changes.

Remark 4 It is straightforward to show that the projection of a dataflow on its
own time scale does not alter the dataflow (as only P3 occurs): XTX

= X

We define equivalent dataflows as dataflows that cannot be distinguished by
any projection. It is useful to be able to compare data flows defined on different
time scales (but that will have exactly the same behavior for any given system).

13Corresponding to moments such that a data has been read at the previous moment and
shall be marked as “read”.

14By convention, b
(

predT(mT)
)

= ε, which makes it simpler to define the rules of projection

without making a special case when t = mT.

34

2.3. DATAFLOWS

Definition 2.3.4 (Equivalent dataflows) Two dataflows X and Y are equiv-
alent (noted X ∼ Y) if, and only if:

for any time scale T on T, XT = YT

Example 9 Let X be a dataflow over (D, T) where D as a persistent data
behavior and T is a regular time scale of step τ and minimum m. Let T′ be the
regular time scale of step τ/2 and minimum m. Let X ′ be the dataflow over
(D, T′) defined by: ∀t ∈ T, X ′(t) = X ′(t + τ) = X(t). Then, X ∼ X ′. The
intuition behind this result is that X ′ has 2 moments for each moment of X but
carry the same persistent data, so that they cannot be distinguished.

Definition 2.3.5 (Equivalent dataflows as far as) Two dataflows X and
Y are equivalent as far as t0 ∈ T (noted X ∼t0 Y) if, and only if:

for any time scale T on T, for all t) t0 in T, XT(t) = YT(t)

2.3.3 Consistency of dataflows

We introduce two propositions insuring the consistency of our definition of
dataflows. These propositions will be useful to prove the consistency of op-
erators we define in Chapter 4. The first proposition ensures that the way we
define the projection of a data flow on a finer time scale is consistent with the
equivalence relationship we have naturally defined on dataflows:

Proposition 3 (Equivalence of projection on a finer time scale) Let X
be a dataflow on (D, TX) and let TP be a time scale such that TX ⊆ TP . Then,
we have:

X ∼ XTP

Proof The proof uses the properties of the data behaviors and the principle of
induction on time scales to show that: ∀T ∈ Ts(T), XT = (XTP

)T, and thus
X ∼ XTP

(by definition of ∼). Let T be a time scale. We note P = XTP
and

want to prove that XT = PT.
Let bX be the buffer (defined for moments of TX ∪ T) used for defining the

projection of X on T and bP be the buffer (defined for moments of TP ∪T) used
for defining the projection of P on T. We will prove by induction on T that:
∀t ∈ T, bX(t) = bP (t).

(a) First, we want to prove that the equality is true for moments before mTX .
Let t0 ∈ T with t0 ≺ mTX (we will suppose without loss of generality15 that
mT ≺ mTX).

• XT(m
T) = ε by (P0) + (P4) to initialize the buffer.

• for P :

15We may add if necessary a smaller initial moment to T.

35

CHAPTER 2. HETEROGENEOUS DATAFLOWS

– if mT ≺ mTP , then PT(m
T) = ε by (P0) and (P4)

– else: we have ∀t ∈ TP | t ≺ mTX , P (t) = XTP
(t) = ε by (P0) and

(P4) since mT ≺ mTX . As w(ε, ε) = ε by (W3) and r(ε) = ε by (R1),
the buffer till mT in the projection of P on T is alway equal to ε and
we have PT(m

T) = ε.

• finally, XT(m
T) = PT(m

T).

• we can extend the proof by induction to any t0 ∈ T with t0 ≺ mTX since
∀t ∈ TP such that t ≺ mTX , P (t) = ε.

(b) For the case where t = mTX , we have bX(t) = bP (t) = X(mTX), which will
allow to initiate the induction.

(c) Then, we want to prove that the induction hypothesis can be used on T. Let
t0 ∈ T with t0 8 mTX such that bX(t0) = bP (t0) and t1 = succT(t0). We want
to prove that bX(t1) = bP (t1). Let A =]t0; t1] ∩ TP

16 and B =]t0; t1] ∩ TX (we
have B ⊆ A since TX ⊆ TP). Let tx = predTX

(

succTX (t0)
)

17. Three cases are
to be considered:

• (1.1) if B = ∅ and A = ∅

– for bX(t1): by (P2) we have bX(t1) = r
(

bX(t0)
)

– for bP (t1): by (P2) we have bP (t1) = r
(

bP (t0)
)

= r
(

bX(t0)
)

– and so bX(t1) = bP (t1).

• (1.2) if B = ∅ and A .= ∅, two subscases shall be considered

– (1.2.1) if tx = t0, then

∗ for bX(t1): by (P2) we have bX(t1) = r
(

bX(t0)
)

. According to

the situation: by (P3) bX(t0) = X(t0) = w
(

ε, X(t0)
)

or by (P1)

bX(t0) = w
(

. . . , X(t0)
)

. Anyway, bX(t0) = w
(

. . . , X(t0)
)

, and

by (R3) we have bX(t1) = r
(

X(t0)
)

.

∗ for bP (t1): ∀t ∈ A, P (t) = r
(

X(t0)
)

, using (P2) and (R2) in
the definition of P as the projection of X on TP . So, by (P1)
we have bP (m

A) = P (mA) = r
(

X(t0)
)

. As w
(

r(d′), d
)

= d by

(W1), we have applying (P1) for all t ∈ A, bP (t) = r
(

X(t0)
)

.

If t1 /∈ A, we apply (P4) and get: bP (t1) = r
(

X(t0)
)

, and the
result is the same if t ∈ A.

∗ and so bX(t1) = bP (t1).

– (1.2.2) if tx ≺ t0, then

16This notation is intended to capture the elements of TP greater than t0 and less than or
equal to t1.

17tx is the latest moment of TX before or at t0. It exists since t0 % mTX .

36

2.3. DATAFLOWS

∗ for bX(t1): by (P2) we have bX(t1) = r
(

bX(t0)
)

. But bX(t0)
can be, by (P2) and (P4), expressed recursively as bX(t0) =
r
(

bX(tX)
)

. Whatever the situation, as in (1.2.1) we can write

bX(tx) = w
(

. . . , X(tx)
)

and so by (R3) we have bX(t0)

= r
(

bX(tX)
)

= r
(

X(tx)
)

.

∗ for bP (t1): the proof is exactly the same as in (1.2.1).

∗ and so bX(t1) = bP (t1).

• (1.3) if B .= ∅ then A .= ∅. We show as in (1.2) that bX(mB) = bP (m
B),

and we conclude recursively that bX(t1) = bP (t1) using (W2).

(d) Finally, by induction, we have ∀t ∈ T, bX(t) = bP (t) (begining the induction
at t = mTX , the anterior t being handled by the first case (a)).

Hence, XT = PT = (XTP
)T for any time scale T. Thus X ∼ XTP

(by defi-
nition of ∼) which proves our result. !

The second proposition proves the consistency of the projection when deal-
ing with a successive refinement of time scale for a dataflow, so that using an
intermediate finer time scale does not alter the resulting projected dataflow:

Proposition 4 (Equivalence of projections on nested time scales) Let
X be a dataflow and let T ⊆ TP be two nested time scales. Then, we have:

(XTP
)T = XT

Proof (XTP
)T and XT share the same time scale T, so we need to prove that

they have the same value at each moment of T. This can be proven by induction
in a very similar way to the previous proof. !

37

Chapter 3

Systems

We define a system as a mathematical object characterized by coupled functional
and states behaviors, together with a timescale. We thus model a real system
as a black box with an observable functional behavior and an internal state
(similarly to a timed Mealy machine). This definition is expressive enough to
capture, at some level of abstraction, the functional behavior of any real system
with sequential transitions. We also express the functional behavior of systems
via transfer functions transforming dataflows and we show the equivalence of
the two formalisms. The deliverable is a unified definition of a system (viewed
as a functional black box) and a proof of its equivalence with transfer functions.

3.1 Systems

3.1.1 Definition

We view real systems as functional black boxes, transforming inputs into out-
puts, and characterized by an internal state. A system can thus be semi-formally
represented as follows:

Y(t)Q(t)X(t)

We define a system as a mathematical object (figuring a functional black
box with an internal state1), characterized by coupled functional and states
behaviors (defining step by step transitions for changing state and output in

1The properties of this internal state are decisive when studying computability.

39

CHAPTER 3. SYSTEMS

instantaneous reaction to inputs). The system transitions occur only at given
moments that form the time scale of the system.

Definition 3.1.1 (System) A system is a 7-tuple ∫ = (Ts, Input, Output, S,
q0,F ,Q) where

• Ts is a time scale called the time scale of the system,

• Input = (In, I) and Output = (Out,O) are datasets, called input and
output datasets,

• S is a nonempty ε-alphabet 2, called the ε-alphabet of states,

• q0 is an element of S, called initial state,

• F : In× S × Ts → Out is a function called functional behavior,

• Q : In× S × Ts → S is a function called states behavior.

(Input, Output) is called the signature of ∫ .

Our definition of a system can be understood as a timed Mealy machine,
i.e. a Mealy machine [46] where we have introduced time3, and where the set of
states is not supposed to be finite (what is a key point from the point of view
of computability, but outside of the scope of this work).

Ts represents the moments of “life” of the system, i.e. the moments where
state and output can change in the behavior of the system, and where input is
read by the system.

Input and Output respectively model the data that the system receives as
inputs and emits as outputs.

S models the possible states of the system, this state being all information
“inside” the system, allowing to define its instantaneous behavior according
to inputs and time. q0 is a distinguished state which will be the one used to
compute the initial state of the system at mTs .

F and Q compute respectively the output and the current state of a system,
from its last defined state, its current input and the moment of time considered.
The input can therefore have an instantaneous influence on the output, which
is the most generic definition and is useful to model systems processing without
delay the data they receive (e.g. interfaces between system that can just add
random noises to their input). Those principles of transitions are similar to
the ones of a Mealy machine (note that since we will consider the behavior of
a system within time, Moore & Mealy paradigms are not equivalent as Moore
paradigm does not allow an instantaneous influence of an input on an output).

Introducing time in the transition functions is necessary so that the system
has information about time to make transitions only at moments on its time

2Defining S as an ε-alphabet (therefore containing ε) and not just as a set will make it
possible to define a dataflow of states, what will later be convenient.

3The introduction of time is a fundamental difference and brings a lot of complexity.

40

3.1. SYSTEMS

scale. Defining the system just as a sequential behavior on its time scale (which
is only one possible time scale in the time reference) without knowledge of time
would make it difficult to compose meaningfully this system with another sys-
tem having a sequential behavior on another time scale, so that the composition
can still be expressed as a system. Indeed, when we will later define the “prod-
uct” of 2 systems with different time scales as a new system, it will require to
define them on a shared time scale, therefore disrupting the initial time scale
of each system and making it impossible to define a step by step behavior of
the resulting system without knowledge of time (or without introducing tricky
& artificial states to “count” the number of moments). This is a fundamental
characteristic of our model.

We will now define the step-by-step execution of a system within time, allowing
to transform an input dataflow into an output dataflow, while defining a state
dataflow.

3.1.2 Execution

Given an input dataflow, a system has a deterministic behavior that can be
summarized through its output dataflow and its state dataflow that describes
its output and its state at each moment of its time scale. The system reads its
input at each moment of its time scale4 ; if data arrive at moments outside of
the system time scale, they will be, by definition, synchronized with the time
scale of the system to match its rhythm, through a dataflow projection.

Definition 3.1.2 (Execution of a system) Let ∫ be a system. Let X ∈ InT

be an input dataflow for ∫ and X̃ = XTs
. The execution of ∫ on the input

dataflow X is the 3-tuple (X,Q, Y) where

• Q ∈ STs is recursively defined by5:

– Q(mTs) = Q
(

X̃(mTs), q0,m
Ts

)

– ∀t ∈ Ts, Q
(

succTs(t)
)

= Q
(

X̃(succTs(t)), Q(t), succTs(t)
)

• Y ∈ OutTs is defined by:

– Y (mTs) = F
(

X̃(mTs), q0,m
Ts

)

– ∀t ∈ Ts, Y
(

succTs(t)
)

= F
(

X̃(succTs(t)), Q(t), succTs(t)
)

X, Q and Y are respectively input, state and output dataflows.

4Buffers of the system can be defined inside the system itself if we want for instance to
model a delayed reading of the inputs.

5The ε-alphabet of states S is associated with a persistent behavior, since the state of a
system at any moment of the time reference can be obtained by considering its last defined
state.

41

CHAPTER 3. SYSTEMS

The current state of a system at a given step is defined as the state result-
ing from the transition at this step, and the input has thus an instantaneous
influence on the state at moments of the time scale of the system. In term of
modeling semantics, it is more meaningful, as the system exists not only on its
time scale but in the whole time reference. Observing the state of the system
between 2 steps must allow to see its new state (it would not be meaningful to
have to wait until the next step of the system to have its state updated). In
the case of classical Mealy machines, there is no such phenomenon since the
time is implicitly defined as a universal sequence of steps (and the exact time
of occurrence of transitions is not important to define the sequence of outputs).

We notice that because of this instantaneous influence of the input on the
state, the state of the system at mTs is not q0 but the state q1 (computed with
Q from q0 and the first input).

Thus, the transitions of a system within time can be represented as follows:

Time

x1 x2

y1 y2

q1 q2q0 ...

...

...

Input/Output

Transition

dependencies

Figure 3.1: State transitions of a system within time (with dependencies)

3.1.3 Examples & expressivity

We give examples of modeling in our formalism of the three elementary kinds
of real systems mentioned in the introduction (physical, software and human),
as well as a hybrid system.

Example 10 (Software system) A software system can be modeled as a
Turing machine with input and output, whose transitions are made following
a time scale. In our model, the state of a system contains the memory of the
Turing machine, its logical state, and its RW-head’s position.

We consider a classical Turing machine with input and output. Let QTur

be the finite, nonempty set of logical states of the Turing machine, qTur0 be the
initial logical state, Σ be the ε-alphabet of internal tape symbols, In and Out be
the sets of input and output, and δ : QTur×Σ×In → QTur×Σ×Out×{−1, 0, 1}
the transition function (separated into 4 projections δ1, δ2, δ3, δ4 respectively
on QTur, Σ, Out and {−1, 0, 1}).

We define the system ∫ = (Ts, Input, Output, S, q0,F ,Q) simulating this
Turing machine by:

42

3.1. SYSTEMS

• Ts = N

• Input = (In, I) where I is any data behavior on dataset In

• Output = (Out,O) where O is any data behavior on dataset Out

• S = ΣZ ×QTur × Z 6

• q0 = (ε, qTur0, 0)

• F
(

x, (tape, qTur, i), t
)

= δ3(k) where k = qTur , tape[i], x ∈ QTur × Σ× In

• Q
(

x, (tape, qTur, i), t
)

=
(

tape
[

i ← δ2(k)
]

, δ1(k), i + δ4(k)
)

7

This system simulates the initial Turing machine. Thus, our model contains
Turing-like models of software systems.8

This system is also a good illustration of why introducing t in the behavior
functions of a system is necessary. If we were defining this Turing machine in
the time reference R, the resulting system should “know” at which moments of
time it should make a transition, which would require a knowledge of time (it
can here be understood as a clock). ♦

Example 11 (Human system) A basic example of a human system may be
an individual, John, in the context of its work. In our modeling, John has
two states (“normal” or “tired”). He can receive requests (by phone) from its
colleagues (he must answer them by “Yes” or “No”) and can also receive energy
(when eating for example, what makes him normal if he was tired). Lastly, John
can become tired after receiving too many requests from its colleagues. John is
a very helpful guy always ready to help people, but when he is tired, he only
helps urgent requests.

In the scope of our story, John can be modeled as the following system:

• we choose Ts = N (each unit of time being a second)9

• Input = (In, I) with In = {Urgent request, Request, ε}× {Energy, ε}×
{Too many, ε} and I being the consumable behavior associated to In.
Too many is an event to model nondeterministic behaviors of the system
at this abstraction level10

6In ΣZ, ε is the sequence (ε)Z.
7Where tape

[

i ← x
]

means replacing in the sequence tape the ith symbol with x, and δi(k)

is the ith element of n-uple k.
8This example makes it clear that what we call Q in our model of systems is actually the

product of the logical state, the head position and the internal memory in a Turing machine.
9The choice of the time scale will be especially important when composing this system

with other systems having their own time scales. The hidden assumption here is that John
cannot receive more than one phone request each second.

10The nondeterminism allows to express in this high-level modeling the fact that John will
become tired when having received “too many” requests (what cannot be expressed precisely
at this abstraction level).

43

CHAPTER 3. SYSTEMS

• Output = (Out,O) with Out = {Y es,No, ε} and O being the consumable
behavior

• S = {T ired,Normal, ε} and q0 = Normal

• F
(

(x1, x2, e), q, t
)

=

Y es if x1 = Request & q = Normal
or x1 = Urgent request

No if x1 = Request & q = T ired
ε else (i.e. x1 = ε)

• Q
(

(x1, x2, e), q, t
)

=

T ired if e = Too many
or q = T ired & x2 .= Energy

Normal else

The main benefit of such a modeling is to be able to explain at high level
what the meaningful states and behavior of a person can be, so that they will
be taken into account in the design process of other parts of the system. ♦

Example 12 (Physical system) It has been proved that any Hamiltonian
system can be modeled within the framework introduced in [12]. As our def-
inition of system generalizes this previous work11, we will recall a simplified
example of a Water Tank given in [12], which is a well-known example of the
hybrid systems and control theory literature.

We work in the time reference ∗R of nonstandard real numbers. Let us fix
first some regular continuous time scale T with infinitesimal time step τ . We
consider a water tank where water arrives at a variable rate wi(t) ≥ 0 (with
t ∈ T) through one single pipe. The water leaves through an output pipe (of
maximal throughput capacity C) at rate wo(t) (with t ∈ T) controlled by a
valve whose position is given by v(t) ∈ [0, 1] (with t ∈ T), 0 and 1 modeling
respectively here the fact that the valve is closed or open. The valve is controlled
by a sensor measuring the level l(t) of water in the tank, which aims at keeping
this level in a given interval [L1, L2] (the initial water tank level L0 belongs
therefore to this interval). The water tank can be modeled as a system, taking
on input the current values of the incoming water flow wi(t) and the position
v(t) of the valve and sending on its output the corresponding output water flow
wo(t) and water level l(t) according to the following equations:

wo(0) = C V0, wo(t+ τ) = C v(t) for every t ∈ T∗,
l(0) = L0, l(t+ τ) = l(t) + (wi(t)− wo(t)) τ for every t ∈ T∗ .

The input and output spaces of the system are thus InT = [0, C] × [0, 1]
and OutT = [0, C]× [L1, L2]. This illustrates the modeling of a simple physical
system in our framework. Modeling of more complex physical systems can be
found in [12]. ♦

11As seen in Chapter 2, non-standard time scales defined in [12] are still time scales in our
new model.

44

3.2. TRANSFER FUNCTIONS

Example 13 (Hybrid system) We define a classical system modeling the
physical behavior of a lamp, with a continuous output signal representing the
output lamp brightness, evolutions of which have an inertia and can be described
by differential equations. The lamp can be modeled as a system, taking on input
the information on whether the button is pressed or released b(t), and sending
on its output the new output lamp brightness energy y(t), while having an
internal state

(

m(t), s(t)
)

composed of a mode (“On” or “Off”) and the current
brightness of the lamp. The input of the system will be B = {ρ,π} (where ρ

and π respectively model the fact that the button is either pressed or released),
the outputs will be Y = R+ and the states will be M × S = {On,Off}× R+.
To model such a system, we work in the time reference ∗

R of nonstandard real
numbers and set a continuous regular time scale T with infinitesimal time step
τ . We then define the following transition functions (one for each part of the
state, and one for the output):

m(0) = Off

m(t+ τ) =

Off if (m(t) = On and b(t+ τ) = ρ) or
(M(t) = Off and b(t+ τ) = π)

On if (m(t) = On and b(t+ τ) = π) or
(m(t) = Off and b(t+ τ) = ρ)

s(0) = 0

s(t+ τ) =

{

s(t) + (e− s(t))τk if m(t+ τ) = On
s(t)− (e− s(t))τk if m(t+ τ) = Off

y(t) = s(t)

where e is the maximal brightness of the lamp, and k is a parameter to
express the speed of evolution of the lamp brightness within time after a mode
shift (therefore modeling the inertia of the lamp). Note that in the recursive
definition of the output, s(t) replaces the term y(t) of the differential equation,
since the part S of the state of the lamp is used to store the current brightness
of the lamp12.

♦

3.2 Transfer functions

Functional behaviors (between inputs and outputs) of systems induce “causal”
functions transforming dataflows, i.e. functions whose behavior is deterministic
and do not depend on data received in the future13.

12It is the usual way to transform a differential equation into transition functions, as it is
not possible to define the new output based on the previous output.

13Indeed, switching from defining a step by step behavior to a transformation of dataflows
makes it necessary to introduce this constraint, as a function transforming dataflow might

45

CHAPTER 3. SYSTEMS

3.2.1 Definition

Definition 3.2.1 (Transfer function) Let Input and Output be two datasets
and let Ts be a time scale. A function F : InputT → OutputTs is a transfer

function on time scale Ts of signature (Input,Output) if, and only if it is
causal, i.e.:

∀X,Y ∈ InputT , ∀t ∈ T,
(

XTs
∼t YTs

)

⇒
(

F (X) ∼t F (Y)
)

X(t) Y(t)Transfer function F

T Ts

Figure 3.2: A transfer function

Corollary 1 A transfer function cannot distinguish equivalent dataflows:

X ∼ Y ⇒ F (X) = F (Y)

Proof X ∼ Y implies that XTs
= YTs

. So that ∀t ∈ T, XTs
∼t YTs

, which by
definition of a transfer function means that F (X) ∼t F (Y), so that F (X) =
F (Y) as they share the same time scale Ts. !

A transfer function is a classical and “universal” representation (see [60, 21])
of any functional behavior (i.e. an object that receives and sends data within
time). We will show that every system induces a transfer function, and later that
integration operators defined on systems are consistent with the corresponding
integration operators that can naturally be defined on transfer functions.

We define equivalent transfer functions as transfer functions which cannot be
distinguished in term of dataflow transformation:

Definition 3.2.2 (Equivalence of transfer functions) Let F1 and F2 be two
transfer functions sharing the same signature. F1 and F2 are equivalent (noted
F1 ∼ F2) if, and only if:

∀X ∈ InputT , F1(X) ∼ F2(X)

induce non-causal behavior where the resulting dataflow would be different at a given moment
when a future value in the input dataflow is changed!

46

3.2. TRANSFER FUNCTIONS

Remark 5 There is a particular transfer function: the only one from ∅ to ∅14,
which is called closed transfer function (corresponding to closed systems, i.e.
systems without interactions with their environment). However, it is impor-
tant to realize that a system with a closed transfer function isn’t empty, since
its internal state contains information describing the temporal evolution of the
system15. Moreover, it may be possible to decompose a closed system into sub-
systems with non-closed transfer functions.

3.2.2 Transfer function of a system

A unique transfer function can be associated with any system. It describes the
functional behavior of this system.

Theorem 1 (Transfer function of a system) Let ∫ be a system. There ex-
ists a unique16 transfer function F∫ , called the transfer function of ∫ and
such that: for all input dataflow X of ∫ , F∫ (X) is the output dataflow in the
execution of ∫ .

Proof Let F∫ : InT → OutTs be the function defined by setting for every

X ∈ InT , F∫ (X) as the unique output dataflow Y ∈ OutTs corresponding to
the input dataflow X in the execution of ∫ . We want to prove that it is causal.
Let X,Y ∈ InT be two input dataflows for the system ∫ . If X ∼t0 Y for some
t0 ∈ T , then by definition we have XTs

(t) = YTs
(t) for every t) t0 in Ts. The

execution of a system for an input dataflow only depends on the projection of
this dataflow on the time scale of the system. By definition of the execution of
a system, the output of this system at t only depends on inputs received until
t (included), and so F∫ (X) ∼t0 F∫ (Y). Thus, F∫ is causal. !

A system can then be represented as in Figure 3.3 (where the white squares
on the left account for “virtual” buffers projecting the input dataflow on the
time scale Ts of the system).

14this function is unique, and it is an initial object in the category of sets
15moreover, the very first step of the 3-layer architectural analysis (operational, functional,

constructional) of a system consists in finding a closed greater system containing the system
to be sure to capture all interactions between the system and its environment

16Unique on time scale Ts, and up to equivalence on all time scales.

47

CHAPTER 3. SYSTEMS

X(t) Y(t)Transfer function: F

Transitions

functions

Q(t)

T

Ts
Time shift inside

X(t)
~

Figure 3.3: A system

In practice, nontrivial transfer functions are very difficult to specify as they
are not a step by step definition of dataflow transformation, but a function of
dataflows themselves. But we will use the correspondence between systems and
transfer functions for a key matter: proving the consistency of the integration
operators we will define in the following chapter.

Remark 6 The relationship between systems and transfer functions can also be
conversely understood: a system is the step-by-step algorithmic specification of a
transfer function, and its states are the equivalence classes induced by the equiv-
alence relationship defined on prefix dataflows such that two prefix dataflows X1

and X2 are equivalent if the output dataflows resulting from the transformation
of any dataflow beginning with Xi are equivalent for the part of the dataflow
occurring from the last moment of Xi.

48

Chapter 4

Integration operators

We now introduce formal operators to integrate systems1. These operators
make it possible to compose systems together (i.e. interconnecting inputs and
outputs of various systems) and to abstract a system (i.e. changing the level
of description of a system in term of granularity of dataflows). We show that
these operators are consistent with the natural definitions of those operators
on transfer functions, and that our definition of system is closed under those
operators. The deliverable is a set of integration operators that are proven to
be consistent and whose expressivity allows to model systems integration.

4.1 Composition

Composition consists in aggregating systems together in an overall greater sys-
tem where some inputs and outputs of the various systems have been intercon-
nected (it is thus directly related to the definition of the internal structure of
the system). Composition requires to have a definition of the synchronization of
dataflows between the different time scales of the systems considered, what has
been introduced in Chapter 2. An important point is the transmission of data
between systems is instantaneous through the composition operators (any delay
is a modeling choice that should be defined through an intermediary system
called interface).

1We will consider in what follows that all time scales are defined within the same time
reference T . Note that this could be a restrictive assumption when considering systems like
GPS satellites that leverage general relativity principles, what would typically require different
time references in our formalism.

49

CHAPTER 4. INTEGRATION OPERATORS

Figure 4.1: Composition of systems

We define two operators for basic systems composition: the product (allow-
ing to define a new overall system from a set of systems, without interconnecting
them2) and the feedback (allowing to define a new system by interconnecting an
input and an output of the same system). Dividing composition into two steps
allows to distinguish between the aggregation of systems, and the interconnec-
tions within the new overall system, and makes it easier to prove theorems by
induction.

4.1.1 Timed extension

We first introduce a “technical” operator called extension that will facilitate
the definition of the product by allowing to define on a shared time scale a
finite3 number of systems. The extension concentrates all technical difficulties
(which are resulting from the introduction of time) in defining the composition
of systems.

We define instantaneous behaviors transition functions associated with a
system. They will make it possible to extend the transition functions of a
system to any moment of time, by the introduction of virtual extension buffers
for input and output in the state (so that the new state is augmented with a
data of input and a data of output, memorizing respectively the data to be
received and emitted, in a similar way that we have defined the projection for
data flows).

Definition 4.1.1 (Instantaneous behaviors transition functions) Let ∫ =
(Ts, Input, Output, S, q0,F ,Q) be a system. We note wi the writing function
for Input and ri, ro the reading functions for Input and Output. Writing
x′ = wi(bi, x)

4, we define the instantaneous behaviors transition func-

tions of a system:

2In spite of its appearing simplicity, defining the product is not straightforward as all
systems do not share the same time scale.

3Since it is not possible, in a generic time reference, to ensure that an infinite union of
time scales will still be a time scale, in particular because of Zeno’s paradox.

4x′ thus corresponds to the data to be read on the input.

50

4.1. COMPOSITION

F̃ : In× (S × In×Out)× T −→ Out
(

x, (q, bi, bo), t
)

=−→

{

F
(

x′, q, t
)

if t ∈ Ts

ro(bo) else

and

Q̃ : In× (S × In×Out)× T −→ S × In×Out
(

x, (q, bi, bo), t
)

=−→

{

Q(x′, q, t), ri(x
′),F(x′, q, t) if t ∈ Ts

(

q, x′, ro(bo)
)

else

The new transition functions F̃ and Q̃ are defined for every moment of the
time reference T and work with extended states containing virtual extension
buffers allowing to synchronize inputs and outputs with the time scale of the
system. These new transition functions can be restricted to any time scale T,
noted F̃T and Q̃T.
The extension of a system consists in defining it on a finer time scale (making
it possible to define a finite number of systems on a shared time scale, i.e. the
union of their time scales).

Definition 4.1.2 (Extension of a system) Let ∫ be a system of time scale
Ts. Let T be a time scale such that Ts ⊆ T. The extension of ∫ to T is the
new system5:

∫T =
(

T, Input, Output, S × In×Out, (q0, ε, ε), F̃T, Q̃T

)

X(t)

T

Y(t)

T's

Q'(t)

Figure 4.2: Extension of a system

5S × In×Out is considered as an ε-alphabet whose blank symbol is (ε, ε, ε).

51

CHAPTER 4. INTEGRATION OPERATORS

If a system has been extended several times, the input dataflow will be pro-
jected in several sequential virtual extension buffers (as much as the dataflows
gets into the different layers of the nested extended systems) till reaching the
initial time scale of the system.

Theorem 2 (Equivalence of a system by extension) Let ∫ be a system
and ∫T be its extension to a finer time scale. Then ∫ and ∫T have equivalent
transfer functions:

F∫ ∼ F∫T

Moreover, the state dataflows in their execution are equivalent when projected
on the initial ε-alphabet of states S.

Proof Let X be an input dataflow for ∫ and ∫T. The execution of ∫ will be
defined on the projected dataflow XTs

and the execution of ∫T will be defined on
the projected dataflowXT. But F̃T and Q̃T are defined to simulate the following
behavior during their execution: they project the dataflow XT on the time scale
Ts, then compute the transitions for the system ∫ and finally project the output
dataflow of time scale Ts on the finer time scale T. Thus, ∫T will in fact compute
F∫T(X) =

(

F∫

(

(XT)Ts

))

T
, which by Proposition 4 is in fact F∫ (XTs

)T. But as
Ts ⊆ T, by Proposition 3, F∫ (XTs

)T ∼ F∫ (XTs
). But since F∫ (XTs

) = F∫ (X),
we finally have that F∫ ∼ F∫T .

The proof for the equivalence of the state dataflows (projected on the initial
ε-alphabet of states S) is straightforward as S is associated with a persistent
behavior. !

4.1.2 Product

We now define the product of transfer functions and of systems, and show
that they are mutually consistent. We first define the associative product ⊗ of
datasets.

Definition 4.1.3 (Product of datasets) Let D1 =
(

D1, (r1, w1)
)

and D2 =
(

D2, (r2, w2)
)

be two datasets. D1 ⊗ D2 =
(

D, (r, w)
)

is a new dataset called
product of D1 and D2 and defined by6:

• D = D1 ×D2
7

• r
(

(d1, d2)
)

=
(

r1(d1), r2(d2)
)

• w
(

(d1, d2), (d
′
1, d

′
2)
)

=
(

w(d1, d
′
1), w(d2, d

′
2)
)

This product of datasets is associative and allows to define an associative
product of dataflows.

6It is easy to show that the new reading and writing functions comply with the axioms of
a data behavior.

7(ε, ε) is considered as the blank symbol ε.

52

4.1. COMPOSITION

Definition 4.1.4 (Product of dataflows) Let X be a dataflow on (DX , TX)
and Y be a dataflow on (DY , TY). The product X ⊗ Y of X and Y is the
dataflow on (DX ⊗DY , TX ∪ TY) defined by:

∀t ∈ TX ∪ TY , X ⊗ Y (t) =
(

XTX∪TY
(t), YTX∪TY

(t)
)

We define the projection of a dataflow on a dataset, allowing to consider
only a part of the aggregated datasets of the dataflow.

Definition 4.1.5 (Projection of a dataflow on a dataset) Let D = D1 ⊗
D2 be a dataset. Let X ∈ DT be a dataflow of time scale TX . The projection

of X on Di (i = 1, 2) is the dataflow XDi
on (Di,TX) defined by:

∀t ∈ TX , XDi
(t) = di where X(t) = (d1, d2) ∈ D1 ⊗D2.

We can now define the product of transfer functions:

Definition 4.1.6 (Product of transfer functions) Let F1 : Input1
T →

Output1
T1 and F2 : Input2

T → Output2
T2 be two transfer functions. The

product of F1 and F2 is the function F1 ⊗ F2 : (Input1 ⊗ Input2)
T

→

(Output1 ⊗Output2)
T1∪T2 defined by:

∀X ∈ (Input1 ⊗ Input2)
T
, F1 ⊗ F2(X) = F1(XInput1)⊗ F2(XInput2)

We have a straightforward and useful property of the product of datasets
and dataflows:

Proposition 5 (Decomposability of dataflows) Let D = D1 ⊗ · · ·⊗ Dn

be a product of n datasets. Let X ∈ DT be a dataflow. Then:

X = XD1 ⊗ · · ·⊗XDn

We also introduce a Lemma used in the proof of the next proposition.

Lemma 1 (Decomposability of dataflows for equivalence as far as) Let
D = D1 ⊗ · · ·⊗Dn be a dataset. Let X,Y ∈ DT be two dataflows. Then:

∀t ∈ T :
(

X ∼t Y
)

⇔
(

∀i, XDi
∼t YDi

)

We can then show that this product defines a transfer function and is asso-
ciative:

Proposition 6 (Closure and associativity of the product) F1 ⊗ F2 is a
transfer function and ⊗ on transfer functions is associative.

Proof Let D = D1 ⊗D2 be a dataset. Let X,Y ∈ DT be two dataflows. Then
by the previous lemma: ∀t ∈ T :

(

X ∼t Y
)

⇔
(

∀i, XDi
∼t YDi

)

. Since transfer

functions are causal: ∀t ∈ T :
(

X ∼t Y
)

⇒
(

∀i, Fi(XDi
) = Fi(YDi

)
)

and thus
F1 ⊗ F2(X) = F1 ⊗ F2(Y), which means that F1 ⊗ F2 is a transfer function. !

53

CHAPTER 4. INTEGRATION OPERATORS

We finally define the product of n systems (sharing the same time scale) as
the new system resulting from the aggregation of those systems (called “subsys-
tems” of the new system)8.

Definition 4.1.7 (Product of systems sharing the same time scale) Let
(∫ i)i = (Ts, Inputi, Outputi, Si, q0i,Fi,Qi)i be n systems of time scale Ts. The
product ∫1 ⊗ · · ·⊗ ∫n is the system

(

Ts, Input, Output, S, q0,F ,Q
)

where:

• Input = Input1 ⊗ · · ·⊗ Inputn and Output = Output1 ⊗ · · ·⊗Outputn

• S = S1 × · · ·× Sn and q0 = (q01, . . . , q0n)

• F
(

(x1, . . . , xn), (q1, . . . , qn), t
)

=
(

F1(x1, q1, t), . . . ,Fn(x1, q1, t)
)

• Q
(

(x1, . . . , xn), (q1, . . . , qn), t
)

=
(

Q1(x1, q1, t), . . . ,Qn(x1, q1, t)
)

The product is easily generalized to systems with different time scales thanks
to the extension: we first extend the systems to the union of their time scales
(which is a time scale since there are a finite number of time scales), and then
we make the product following our definition of the product for systems defined
on a shared time scale:

Definition 4.1.8 (Product of systems) Let (∫ i)i = (Ti, Inputi, Outputi, Si,
q0i,Fi,Qi)i be n systems. Let T = T1∪· · ·∪Tn be the union of their time scales.
The product ∫1 ⊗ · · ·⊗ ∫n is the system (∫1)T ⊗ · · ·⊗ (∫n)T

Y''(t)

T

Ts

Time shift inside

X''(t) Q''(t)

Figure 4.3: Product of systems

8Defining the product of n systems (and not just 2) is useful to give a semantics to the
notion of subsystem, since defining it only for 2 would make it necessary to make sequential
products of 2 systems to simulate the product of n systems, therefore making it difficult to
define the notion of “subsystem” of a given system.

54

4.1. COMPOSITION

Theorem 3 (Consistency of the product of systems) The transfer func-
tion of the product of n systems (∫i) is equivalent to the product of their transfer
functions:

F∫1⊗···⊗∫n ∼ F∫1 ⊗ · · ·⊗ F∫n

Proof If the n systems share the same time scale, the proof is straightforward by
definition of the product of systems (and the equivalence is in fact an equality).
If not: we consider the extension of the n systems to the union of their time
scales. By Theorem 2, the corresponding transfer functions are equivalent, and
finally the equivalence stated in this Theorem is straightforward. !

4.1.3 Feedback

The feedback consists in defining a new system by connecting one of the output
of a system to one of the input of the same system, when it is possible (e.g. the
input and the output share the same dataset9). However, it is not always possi-
ble to feedback an output on an input of same dataset: to define recursively the
feedback of a system in a constructive way and express it as a new system with
transition functions, it is necessary to establish the noninstantaneous influence
of the input on the output concerned.

The feedback introduces indeed troubles because it is no more possible, when
computing the output of a system, to consider the input, since both are con-
nected together in a loop. To define the feedback, it is therefore necessary to
establish the existence10 and unicity11 of the mathematical object resulting from
the feedback of one output to one input of a given system.

We first introduce a natural definition of the feedback on transfer functions
as a fixed point of dataflows, and show later that it captures the constructive
feedback we define on systems.

Definition 4.1.9 (Feedback of a transfer function) Let F be a transfer
function of time scale T on signature (D⊗A,D⊗B), such that: ∀X ∈ AT , ∃! YX ∈
DTs , F

(

YX⊗X
)

D
= YX . The feedback of F on D is the new transfer function

fb(F,D) of time scale Ts on signature (A,B) defined by:

∀X ∈ AT , fb(F,D)(X) = F
(

YX ⊗X
)

B

This definition of the feedback captures formally the notion of feedback
introduced above.

Proposition 7 (Equivalence of feedback on a finer time scale) Let F be
a transfer function and FT be an extension of F to a finer time scale T (i.e.

9Sharing only the same ε-alphabet is not enough since having different data behaviors
would make different resulting feedbacked systems according to the extension considered for
the initial system.

10i.e. in spite of the chicken/egg problem induced by the loop, it is possible to define a
consistent dataflow of the loop, and therefore we can describe a consistent evolution of the
new system with the input and the output connected being equals at any time

11i.e. there is only one consistent evolution of the initial system with the feedback

55

CHAPTER 4. INTEGRATION OPERATORS

TF ⊂ T). Then, fb(F,D) exists if, and only if fb(FT,D) exists, and in this case
we have:

fb(F,D) ∼ fb(FT,D)

Proof As F ∼ FT and as the feedbacked input and output share the same data
behaviors, YX for F will work for FT by considering

(

YX

)

T
, and conversely. !

We now define the feedback of a system in a constructive way:

Definition 4.1.10 (Feedback of a system) Let ∫ =
(

Ts, (D × In, I), (D ×

Out,O), S, q0,F ,Q
)

be a system such that there is no instantaneous influence
of dataset D from the input to the output12, i.e. ∀t ∈ Ts, ∀x ∈ In, ∀d ∈
D, F

(

(d, x), q, t
)

D
= F

(

(ε, x), q, t
)

D
. The feedback of D in ∫ is the system

∫FB(D) =
(

Ts, (In, I
′), (Out,O′), S, q0,F

′,Q′
)

with:

• I ′ is the restriction of I to In, and O′ is the restriction of O to Out

• F ′(x ∈ In, q ∈ S, t) = F
(

(dx,q,t, x), q, t
)

Out

• Q′(x ∈ In, q ∈ S, t) = Q
(

(dx,q,t, x), q, t
)

where dx,q,t stands for F
(

(ε, x), q, t
)

D
.

X(t)

T

Ts

Figure 4.4: Feedback of a system

A well-spread practice in Systems Engineering is to feedback a system with
an interface to model properties of the real link (delay of transmission, errors,
etc).

Theorem 4 (Consistency of the feedback on systems) The transfer func-
tion of the feedback of a system (when it exists) is the feedback of the transfer
function of this system:

F∫FB(D)
= fb(F∫ ,D)

12As explained informally before, this condition makes it possible to define a unique feed-
back, in a constructive way, i.e. without having to solve a fixed point equation that could lead
to zero or multiple solutions whose construction is not mechanistic.

56

4.2. ABSTRACTION

Proof We easily show by induction that the feedbacked dataflow constructed
in the definition of a feedbacked system is a fixed point for the initial transfer
function. !

Together, product & feedback allow to compose 2 systems together by in-
terconnecting their inputs & outputs:

~~

4.2 Abstraction

The abstraction allows to define from a system a more abstract system, so that
it can be integrated into more global ones. Abstraction allows to consider the
right systemic level to describe a system, according to modeling needs, and is
thus a fundamental tool to deal with the complexity of systems by hiding un-
necessary low-level details related to the behavior of the system. It helps people
to better understand a system and makes easier the formal analysis by working
on abstraction of systems (see [25] for abstract interpretation which is a well-
known example of abstraction), but it can also be necessary for computational
complexity matters or mathematical reasons.

The abstraction can be understood as a “zoom out” from the point of view of
datasets (considering higher level datas for inputs, outputs and states, and even-
tually merging different dataflows), time (considering intervals of time instead
of moments) and overall behavior. For instance, a computer may be considered
as an electronic device with electrical signals. However, we generally abstract
this electronic device into a more abstract device able to process complex data
as emails.

Abstraction is fundamental for Systems Engineering: it allows to consider
the right systemic level to describe a system on given aspects. It is a fundamen-
tal tool to deal with the complexity of systems. Abstraction makes it possible
to simplify time, states, data, multiple inputs/outputs, and behaviors of a sys-
tem. It is especially necessary when a system is hard to describe because it is
resulting from the composition of numerous subsystems. The reverse process,
i.e. concretization, allows to describe first the system from a high level point
of view, and progressively to detail the analysis and the decomposition of the
dataflows and behaviors of the system (what is generally correlated with de-
composition, i.e. the inverse operator of composition to break down a system
into subsystems).

57

CHAPTER 4. INTEGRATION OPERATORS

Before defining abstraction, we need to explain how to deal in a simple way
with nondeterminism in our framework, since abstraction can bring nondeter-
minism to originally deterministic systems, and we want to ensure the closure
of our definition of systems under all integration operators.

4.2.1 Nondeterminism

Nondeterministic behaviors can be modeled in a system in the minimalist way
that follows: one of the input E can be used as an oracle (or a dataflow of
events), i.e. an input giving information to the system to make its transitions
(functional and states).

X(t)

Events

Figure 4.5: A nondeterministic system within our formalism

It can simulate classical nondeterminism of Mealy machines (where func-
tional and states behaviors have their value in nonempty subsets of the target
datasets of their deterministic version) by indicating at each step which element
to chose within this subset (so that the nondeterministic behavior is simulated
by a dataflow of events within a deterministic system). This flow can also be
understood as the formalization of the imperfection/underspecification of any
deterministic model13. It is therefore possible to take into account this imperfec-
tion by considering that transitions can be influenced by specific events carried
by the oracle.

This kind of “events dataflow” typically corresponds to the events used in
States diagrams in modeling languages like SysML (where an event as “the
water tank is full” will in fact correspond to expressing in a deterministic way
a nondeterministic event that cannot be computed from the current input or
state of the system).

Note that we are only focusing on a minimalist introduction of nondetermin-
istic behaviors corresponding to the one needed to be able to properly define
abstraction of systems, which generates such behaviors..

13Note that this imperfection & underspecification can be on purpose, to define a simpler
system. In practice, the possibility to model deterministic behaviors of a real system is often
restricted by the limited grain of description of the real system state observed.

58

4.2. ABSTRACTION

4.2.2 Abstraction

The abstraction of a dataflow consists in defining a new dataflow on a more
abstract dataset and on a more abstract time scale (typically with a larger
step).

Definition 4.2.1 (Abstraction/concretization of dataflows) An abstrac-

tion of dataflows is a surjective function A : Dc
Tc → Da

Ta which is causal:

∀X,Y ∈ Dc
Tc , ∀t ∈ T,

(

X ∼t Y
)

⇒
(

A(X) ∼t A(Y)
)

The associated concretization is the function C : Da
Ta → P

(

Dc
Tc

)

defined by
C(X) = A−1({X}).

We remark that an abstraction/concretization of dataflows is in fact a par-
tition of the concrete dataflows whose elements are indexed by the abstract
dataflows.

Example 14 We can take the example of a computer whose LAN connection
is described by an input dataflow of bits on a regular time scale of step 10−6

sec, i.e. Dc = {0, 1, ε} and Tc = τN with τ = 0.000001. We can abstract this
dataflow to a higher-level dataflow onDa = {email, file, picture, video, html, ε}
on time scale Ta = τ ′N with τ ′ = 0.01. ♦

The abstraction of a transfer function is a new transfer function work-
ing on abstract dataflows, with nondeterministic behaviors modeled by events
dataflows (explained below in Example 15).

Definition 4.2.2 (Abstraction of a transfer function) Let F : InputT →
OutputTs be a transfer function. Let Ai : Input

Ts → Inputa
Ta be an abstraction

for input dataflows and Ao : OutputTs → Outputa
Ta an abstraction for output

dataflows. The abstraction of F for input and output abstractions (Ai, Ao)
with events E is the new transfer function

Fa : (Inputa ⊗ E)T → Outputa
Ta

defined by:

∀X ∈ InputT , ∃E ∈ ETa , Fa

(

Ai(XTs
)⊗ E

)

= Ao

(

F (X)
)

59

CHAPTER 4. INTEGRATION OPERATORS

Abstract transfer function F

Y'(t)X'(t)

A A

a

oi

-1

Figure 4.6: Abstraction of a transfer function

Thus, the following diagram commutes (we dismiss events here):

InputTs
F

−−−−→ OutputTs

Ai

,

,
Ao

Inputa
Ta −−−−→

Fa

Outputa
Ta

We now define the abstraction of a system.

Definition 4.2.3 (Abstraction of a system) Let ∫ =
(

Ts, Input, Output, S,

q0,F ,Q
)

be a system. ∫ ′ =
(

Ta, Inputa ⊗ E , Outputa, Sa, qa0,Fa,Qa

)

is an
abstraction of ∫ for input and output abstractions (Ai, Ao) if, and only if:
∃Aq : STs → Sa

Ta , for all execution (X,Q, Y) of ∫ , ∃E ∈ ETa ,
(

Ai(XTs
) ⊗

E,Aq(Q), Ao(Y)
)

is an execution of ∫ ′. Conversely, ∫ ′ is a concretization of
the system ∫ .

Indeed, an abstraction consists in abstracting inputs, states and outputs
dataflows in the execution of a system, and to define on these abstract dataflows
a new system that will have abstract behaviors corresponding to the initial
behaviors of the initial system. A good abstraction will be based on dataflows
abstraction which will define consistent transitions in the abstract system for
states and outputs. However, nondeterministic behaviors (modeled by events
dataflow E) will generally appear in the abstract system. It is a consequence of
regrouping states and input/output data in more abstract ε-alphabets, making
it impossible to express the abstract behaviors as deterministic transitions on
those ε-alphabets (for instance, one abstract data may correspond to several
concrete data sometimes resulting in several behaviors of the concrete system,
and the same may occur for the states). The abstraction of a deterministic
system may thus result in nondeterministic behaviors, what does not mean

60

4.3. INTEGRATION OF SYSTEMS

that the real system modeled is nondeterministic. Actually, determinism is not
an intrinsic property of a system, it depends on the level of description of its
behavior. It is thus important to understand that determinism is a property of
a model, not of a real object, and that various consistent models modeling the
same real system may not be all deterministic or nondeterministic.

Example 15 [Nondeterministic behaviors of the abstraction of systems] We
consider a glass whose state is described by an integer between 0 and 100 mod-
eling the solidity of the glass (0 means broken). This glass can receive physical
forces which lower its solidity till it is broken. At this level, the glass is described
as a deterministic system. If we consider an abstraction of this model, we may
consider the glass has being broken or not (two states) and receiving a shock
(i.e. a sequence of physical forces) or nothing. When the glass, not broken yet,
receives a shock, it will sometimes become broken, and sometimes remain not
broken, depending of the previously received shocks. Therefore, at this level of
abstraction, the glass has nondeterministic behaviors (since a shock may break
it, with parameters that cannot be explained at this abstraction level). ♦

Theorem 5 (Consistency of the abstraction of a system) The transfer
function of the abstraction of a system is the abstraction of the transfer function
of this system.

Proof The proof is straightforward since the abstraction of a system is defined
exactly as abstracting the transfer function of the initial system. !

4.3 Integration of systems

The integration is a recursive mechanism to build a system through the synthesis
of smaller subsystems working together.

4.3.1 Composition & abstraction

The integration of systems in our framework consists in composing together
a finite set of systems, with product (P) and feedback (F), then applying the
abstraction (A) to describe the resulting system at a more abstract level, and re-
peating those steps recursively till reaching the target overall system. We believe
that the recursive integration of real systems (as done in Systems Engineering)
can be modeled consistently as the corresponding integration of systems in our
framework, using only P/F/A. We thus introduce a modeling postulate:

Postulate 1 (Real integration can be modeled with P/F/A) Any real
system ∫ r resulting from the “real” integration of elementary real systems (∫ ri)
can be consistently modeled as a system ∫ resulting from recursive applications
of operators P/F/A on the elementary systems (∫i) (modeling the elementary
real systems (∫ ri)).

61

CHAPTER 4. INTEGRATION OPERATORS

One can remark that we only provided operators to integrate systems to-
gether. In reality, systems design involves mixing both bottom-up and top-down
approaches. However, the same operators still hold, as the top-down approach
can be interpreted as finding the right subsystems that, integrated together, are
equivalent to the higher level system.

We will introduce in the Chapter 6 a formalism to capture the internal
structure of a system induced by those integration operators.

4.3.2 Example

We now give an example of an integrated system resulting from the integration
of elementary systems (i.e. components). We will here work on simple transfer
functions that can be naturally expressed as systems.

Example 16 [Integrated system] It has been shown in the paper [12] that
any Hamiltonian system can be modeled within the framework introduced in
this paper. We recall the example of a Water Tank given in [12] and already
introduced in Chapter 3. We will show how to define a model of a water tank
from the integration of elementary systems.

We work in the time reference ∗R of nonstandard real numbers. Let us fix
first some regular continuous time scale T with infinitesimal time step τ that
will be used to define all the systems of our example.

We shall therefore consider the system consisting of a water tank where water
arrives at a variable rate wi(t) ≥ 0 (with t ∈ T) through one single pipe. The
water leaves through another (output) pipe at rate wo(t) (with t ∈ T) controlled
by a valve (see Figure 4.7-a) whose position will be given by v(t) ∈ [0, 1] (with
t ∈ T), 0 and 1 modeling respectively here the fact that the valve is closed or
open. The initial position at time t = 0 of the valve is equal to some constant
v(0) = V0. The maximal throughput capacity of the output pipe is C, thus its
actual throughput at each moment t ∈ T is C v(t). The valve is controlled by a
sensor measuring the level l(t) of water in the tank, which aims at keeping this
level in a given interval [L1, L2] (the initial water tank level L0 belongs therefore
to this interval). For simplicity, we assume that there is always enough water in
the tank to saturate the output pipe and that the incoming flow does not exceed
the output pipe’s capacity, i.e. that one has always max(wi(t), t ∈ T) ≤ C.

62

4.3. INTEGRATION OF SYSTEMS

L1

L2
!

❄

sensor

✲
wi

✲
wo Valve Sensor

Tank
✲

wi
✲

wo

!

✲

l
✲

v

! dv

(a) (b)

Figure 4.7: The Water Tank (a) and an associated simplified system (b).

The overall system has the input space In = [0, C] (incoming flow rate) and
the output space Out = [0, C] × [L1, L2] (output flow rate and current water
level in the tank). It can be modeled as the composition of the three following
systems (see Figure 4.7-b) working on datasets of persistent behaviors:

1. The tank transfer function, T , taking on input the current values of the
incoming water flow wi(t) and the position v(t) of the valve and sending
on its output the corresponding output water flow wo(t) and water level
l(t) according to the following equations:

wo(0) = C V0, wo(t+ τ) = C v(t) for every t ∈ T
∗,

l(0) = L0, l(t+ τ) = l(t) + (wi(t)− wo(t)) τ for every t ∈ T∗ .

The input and output spaces of T are then InT = [0, C] × [0, 1] and
OutT = [0, C]× [L1, L2]× [L1, L2] (one of the output is duplicated).

2. The sensor transfer function, S, taking on input the water level l(t) and
sending on its output a valve position adjustment dv(t) defined from some
given equation as follows 14 :

dv(0) = 0, dv(t+ τ) = sign

(

l(t)−
L1 + L2

2

)

τ for every t ∈ T
∗ .

The input and output spaces of S are then InS = [L1, L2] and OutS =
{−τ, 0, τ}.

3. The valve transfer function, V , taking on input the adjustment dv(t) and
providing on its output v(0) = V0 at time t = 0 and the value v(t) given
by the following formula:

v(t+τ) =

{

v(t) + dv(t) if v(t) + dv(t) ∈ [0, 1] ,
v(t) if v(t) = 0 ∧ dv(t) = −τ or v(t) = 1 ∧ dv(t) = τ,

14 Where sign denotes the function from R into {−1, 0, 1} defined by setting sign(0) = 0,
sign(x) = 1 for every x > 0 and sign(x) = −1 for every x < 0.

63

CHAPTER 4. INTEGRATION OPERATORS

for t ∈ T∗. The input and output spaces of V are then InV = {−τ, 0, τ}
and OutV = [0, 1].

As one can see on Figure b, the transfer function of the full tank water system
can be obtained from:

• the product P = T ⊗ S ⊗ V of signature
(

[0, C] × [0, 1] × [L1, L2] ×

{−τ, 0, τ}, [0, C]× [L1, L2]× [L1, L2]× {−τ, 0, τ}× [0, 1]
)

• the feedback F1 = fb
(P,[L1,L2])

of signature
(

[0, C]×[0, 1]×{−τ, 0, τ}, [0, C]×

[L1, L2]× {−τ, 0, τ}× [0, 1]
)

• the feedback F2 = fb(F1,{−τ,0,τ}) of signature
(

[0, C]×[0, 1], [0, C]×[L1, L2]×

[0, 1]
)

• the feedback F3 = fb(F2,[0,1])
of signature

(

[0, C], [0, C]× [L1, L2]
)

, result-

ing in the final overall target system.

♦

64

Part II

Systems architecture

65

Chapter 5

A logic for requirements

Requirements are a key part of systems architecture. They are used to define ex-
pected properties of systems behaviors1, and can be defined as a logical formula
using systemic variables & time. In this chapter, we introduce an example of a
logic to model such requirements, based on a coalgebraic definition of systems.
Defining the logic on coalgebras makes it possible to introduce classic results
(like bissimulation and adequacy) and makes the subsequent proofs easier.

5.1 A coalgebraic definition of systems

We first introduce another way to define systems via coalgebras. This definition
is just the expression using coalgebraic formalism & notations of our functional
definition of systems introduced in Chapter 3. We will use it to define a logic
on coalgebraic systems.

5.1.1 Preliminaries

We will use many terms and notations from the coalgebraic theory. To help the
intuition, we recall in this subsection some coalgebraic notions that will be used
in this chapter. A coalgebra can be seen as an abstraction of transition systems
(i.e. automatas) of all kinds. A coalgebra consists of a set S equipped with a
transition function α : S → F(S) where F : Set → Set is an endofunctor on
the category Set of sets, defining the signature of the co-algebra α. Hence, α
provides the set of states S with some structures. Unlike algebraic operations
that enable to recursively build complex objects from basic objects given by
signatures, coalgebraic operations are means to observe system states. More
formally, we have:

Definition 5.1.1 (Coalgebra) Let F : Set → Set be an endofunctor, called
signature functor. A coalgebra for F or F-coalgebra, is any pair (S,α)
where:

1We are thus dealing here with what is generally called functional requirements.

67

CHAPTER 5. A LOGIC FOR REQUIREMENTS

• S is a set, elements of which are called states,

• α : S → F(S) is a mapping, called transition mapping.

Coalgebras are well-adapted to define infinite data structures such as streams
and infinite lists over an alphabet A, as well as all kinds of automatas. Hence,
coalgebras for the signature functors A × : S =→ A × S and A × + 1 : S =→
A× S + 1 are respectively streams and infinite lists over an alphabet A, whilst
coalgebras for the signature functors O× I : S =→ O×SI , (O×)I : S =→ (O×S)I

and (2)I : S =→ (2S)I are respectively Moore, Mealy and nondeterministic
automatas.

Definition 5.1.2 (Coalgebra morphism) Let (S,α) and (S′,α′) be two coal-
gebras over a same signature functor F . A coalgebra morphism is a mapping
f : S → S′ such that the following diagram commutes:

S
f

−−−−→ S′

α

,

,α′

F(S) −−−−→
F(f)

F(S′)

Given a signature functor F , F -coalgebras and coalgebra morphisms clearly
form a category noted CoAlg(F).

An important notion in the categorical theory of coalgebras is the characteriza-
tion of the final coalgebra that contains all systems behaviors (i.e. traces).

Definition 5.1.3 (Final coalgebra) A final F-coalgebra (Γ,π) is a F-coal-
gebra such that for every F-coalgebra (S,α) there is a unique coalgebra morphism
!α : (S,α) → (Γ,π), that is:

S
!α−−−−→ Γ

α

,

,

π

F(S) −−−−→
F(!α)

F(Γ)

A final coalgebra, when it exits2, is unique up to isomorphism. A final coalgebra
can be seen as a maximal representation of a system, that is which contains all
system behaviors.

2It has been shown in [55] that every signature functor that is built from both constant
and identity functors and is closed under sum and product of functors, function space functor
(F (S) = SA) and finite powerset functor (F (X) = 2X) has a final coalgebra.

68

5.1. A COALGEBRAIC DEFINITION OF SYSTEMS

5.1.2 Transfer functions via coalgebras

Given a timescale, let us define the mapping T : T → T that from d ∈ T yields

the latest d′ ∈ T such that d 8 d′. Hence, dT is defined by:

{

d if d ∈ T

predT(d) otherwise

The following definition means that dataflows can be observed at any instant
of time although their values only change at instants in their time scale.

Definition 5.1.4 (Snapshots) Let T be a time reference and T ⊆ T be a time
scale. Let f be a T-dataflow over A and let d ∈ T be an instant. The snapshot
of f at time d, denoted f :: d, is the element f(dT) of A.

Similarly to Rutten’s work in [56], we will show that the behavior of systems
can be characterized by causal functions mapping infinite inputs to infinite
outputs sequences. Hence, observable behaviors of systems are given by causal
transfer functions (equivalent to the transfer functions defined in Chapter 3):

Definition 5.1.5 (Transfer function) Let In and Out be two datasets denot-
ing, respectively, the values in input and in output. Let T be a time reference.
Let T ⊆ T be a time scale. A function F : InT → OutT is a transfer function
if, and only if it is causal, that is:

∀d ∈ T, ∀f, g ∈ InT , (∀d′) d ∈ T, f :: d′ = g :: d′) ⇒ F(f) :: d = F(g) :: d

Then, let us define the mapping T : T → T that from d ∈ T yields the least

d′ ∈ T such that d′ 8 d. Hence, dT is defined by:

{

d if d ∈ T

succT(d) otherwise

We introduce the technical notions of derivative dataflow and derivative
function that will be useful to build final systems.

Definition 5.1.6 (Derivative dataflow) Let T be a time reference. Let T ⊆
T be a time scale. Let f be a T-dataflow over a set A. Let d ∈ T be a moment.
The T-dataflow fd derivative of f at d is defined by:

• ∀d′ ≺ dT ∈ T, fd(d
′) = f(d′)

• ∀d′ 8 dT ∈ T, fd(d
′) = f(succT(d′))

Definition 5.1.7 (Derivative function) Let F : InT → OutT be a transfer
function. For every input i ∈ In and every time d ∈ T, we define the derivative
function F(i,d) : In

T → OutT for every dataflow f : T′ → In with T′ ⊆ T by:

F(i,d)(f) = F((i, d) : f)d

where (i, d) : f : T′ → In is the dataflow defined from f as follows:

• ∀d′ ≺ dT′ ∈ T′, (i, d) : f(d′) = f(d′)

• (i, d) : f(dT′) = i

69

CHAPTER 5. A LOGIC FOR REQUIREMENTS

• ∀d′ 5 dT′ ∈ T′, (i, d) : f(d′) = f(predT
′

(d′))

Proposition 8 For every transfer function F : InT → OutT, F(i,d) is a trans-
fer function.

Proof Let d1 ∈ T , let f, g ∈ InT such that for every d2) d1 ∈ T , f :: d2 = g ::
d2. By construction, we also have that ((i, d) : f) :: d2 = ((i, d) : g) :: d2. As F
is causal, we can then write that F((i, d) : f) :: d1 = F((i, d) : g) :: d1.
Here, two cases have to be considered:

1. d1 .= d. In this case, we can directly conclude by F((i, d) : f)|d :: d1 =
F((i, d) : g)|d :: d1.

2. d1 = d. By construction, ((i, d) : f) :: d = ((i, d) : g) :: d, and ((i, d) :
f) :: succT(d) = ((i, d) : g) :: succT(d) since f :: d1 = g :: d1. We can
then conclude F((i, d) : f) :: succT(d) = F((i, d) : g) :: succT(d), i.e
F((i, d) : f)|d :: d1 = F((i, d) : g)|d :: d1.

!

5.1.3 Systems as coalgebras

We now rewrite our definition of systems from Chapter 3 using our coalgebraic
formalism:

Definition 5.1.8 (Systems) Let In and Out be two datasets denoting, respec-
tively, the values in inputs and outputs. Let T be a time reference. A system S
is defined by a coalgebra (S,α) for the signature H = (Out×)In×T : Set → Set
where T ⊆ T is the time scale of S, together with a distinguished element q0
denoting the initial state of the system S. A system S is called a pre-system
when its initial state is removed.

Any deterministic Mealy machine can be represented in our formalism. In-
deed, given a Mealy machine (S,α) with α : S → (Out × S)In, we can define
the equivalent pre-system S = (S,α′) over the signature (Out ×)In×ω by:
∀n < ω, ∀i ∈ In, ∀q ∈ Q,α′(q)(i, n) = α(q)(i). More generally, all examples of
systems from Chapter 3 can be easily translated to our coalgebraic formalism.

In the following, given a system ((S,α), qo) over a signature H = (Out×)In×T,
we will note α(q)(i, d)1 (resp. α(q)(i, d)2) the resulting output value (resp. re-
sulting state) of the pair α(q)(i, d).

Definition 5.1.9 (Category of systems) Let S = ((S,α), q0) and S ′ =
((S′,α′), q′0) be two systems over H. A system morphism h : S → S ′ is a
coalgebra homomorphism h : (S,α) → (S′,α′) such that h(q0) = h(q′0).
We note Sys(H) (resp. PSys(H)) the category of systems (resp. of pre-
systems) over H.

70

5.1. A COALGEBRAIC DEFINITION OF SYSTEMS

Below, we give a classical result over category of systems: the existence of a
terminal system. This last point will be useful to give a trace model to systems
via transfer functions.

Theorem 6 Let H = (Out ×)In×T be a signature. Let Γ be the set of all
transfer functions F : InT → OutT. Let π : Γ → (Out × Γ)In×T defined for
every F : InT → OutT and every i ∈ In and every d ∈ T by π(F)(i, d) =
(F((i, d) : f)(d),F(i,d)) where f ∈ InT is arbitrary3. Then, the pre-system
(Γ,π) is the final coalgebra in PSys(H), that is for every pre-system (S,α)
there exists a unique homomorphism !α : (S,α) → (Γ,π).

Proof For every pre-system (S,α), we define the function !α : S → Γ which
for every q ∈ S associates the transfer function !α(q) : In

T → OutT defined as
follows. Let d ∈ T, and let (mT, d1, . . . , dn) such that for every i, 0 ≤ i < n,
di+1 = succT(di) with d0 = mT and dn = d. Then, for every f : T′ → In ∈ InT ,
!α(q)(f)(d) equals:
α(α(. . . (α(α(q)(f :: mT,mT)2)(f :: d1, d1T)2)

(f :: d2, d2T)2 . . .)(f :: dn−1, dn−1T)2)(f :: dn, dnT)1
It is not very difficult to verify that !α(q) is causal, and the function !α is a
homomorphism which is further unique. !

We call the transfer function !α(q) above the behavior of q, and then !α(q0)
will be the behavior of the system ((S,α), q0). This result is the coalgebraic
equivalent of Theorem 1.

Conversely, given a transfer function F ∈ Γ, we can build the minimal system
<F> the behavior of which is F as follow:

• F is the initial state.

• <F > is the set of transfer functions of Γ that contains F and is closed
under transitions in (Γ,π) for any inputs and times.

• αF :<F >→ (Out× <F >)In×T is the mapping that associates to every
F ′ ∈<F>, every i ∈ In and every d ∈ T the pair π(F ′)(i, d).

Proposition 9 <F > is the minimal system (i.e. it has the smallest number
of states) such that !αF

(F) = F .

Proof The fact that !αF
(F) = F follows from the identity IdΓ which is the

unique homomorphism over Γ. To show that <F> is minimal, let us consider
a system ((S,α), q0) such that !α(q0) = F . Let us define <q0> the subsystem
((S′,α′), q′0) of ((S,α), q0) as follow:

• q′0 = q0

• S′ is the set of states of S that contains q0 and is closed under transitions
in (S,α) for any inputs and times.

3This is correct because transfer functions are causal.

71

CHAPTER 5. A LOGIC FOR REQUIREMENTS

• α′ : S′ → (Out × S′)In×T is the mapping that associates to every q ∈ S′,
every i ∈ In and every d ∈ T the pair α(q)(i, d).

As !α is a homomorphism, it directly follows that the image !α(S) is a sub-
presystem of (Γ,π). Moreover, by definition we have that !α(S) =!α(< q0 >
) =<!α(q0)>=<F> whence we can conclude that <F> is the minimal system
such that !αF

(F) = F . !

By Theorem 6 and Proposition 9, we will talk about systems and transfer
functions indifferently.

5.2 A logic for system requirements

We present in this section a logic L whose the interpretation will be over sys-
tems. L is a slight extension of µ-calculus to input and output values and times.
The interest of µ-calculus is its greats increase in expressive power. Indeed, it
includes many of modal logics commonly used in verification of reactive and dis-
tributed systems. We will then use this logic to define requirements expressing
properties on the behavior of systems.

5.2.1 Definition

The logic L being an extension of µ-calculus that is known to subsume most
of modal and temporal logics, it will allow to express standard properties over
systems such as reactiveness, liveness, safety, etc. Now, time being explicit in
our framework, L must also allow to express both real-time properties on the
production time of output values from input ones, and properties on the input or
output value reading from both dataflow and moment. This requires a language
to express time expressions. By our axiomatization, it is natural to define such
expressions as first-order terms with variables over the mono-sorted first-order
signature Σ = (F,R) where the set of function names F = {succ1, pred1,+2} ∪
{d0|d ∈ T } and the set of predicates R = {≺2,)2} for T a time reference. 4

Hence, time terms will be elements in the set TΣ(V) which is the set of all terms
freely generated from the signature Σ and a set V of time variables. A model
for Σ or Σ-model is any first-order structure (T, succT, predT,+T,≺T,)T) where
T ⊆ T is a time scale, +T : (d, d′) =→ (d +T d′)T, ≺

T=≺T
|T

and)T=)T
|T
. In the

following, this model will simply note T when this does not raise ambiguity.
Given an interpretation of variables ι : V → T and a time term t ∈ TΣ(V)
variables of which are among {x1, . . . , xn}, the evaluation of t for ι in T, noted
!t"Tι , is the evaluation of ι(t) by interpreting succ, pred, +, ≺ and) by succT,
predT, +T, ≺T and)T, respectively, and every constant d by dT.

5

4The exponents attached to function and predicate names indicate their arity. Hence, any
moment d ∈ T is considered as a constant function.

5ι(t) is the term obtained from t by replacing every variable xi by its value ι(xi) taken as
a constant.

72

5.2. A LOGIC FOR SYSTEM REQUIREMENTS

In the next definition, we need a set of supplementary variables, called fixed
point variables, to express formulas in µ-calculus that denote recursion on states.
To differentiate these variables with those in V , we will denote in the following
variables in V by the letters x, x′, x1, x2, . . . , y, y

′, y1, y2, . . . whilst fixed point
variables will be denoted by x, x′, x1, x2, . . . , y, y

′, y1, y2,

Definition 5.2.1 (Input and output terms) Let T be a time reference. Let
V be a set of time variables. Let H = (Out×)In×T be a signature with T ⊆ T .
Input terms (resp. output terms) over H are all inputs in In (resp. outputs
in Out) and all expressions of the form ::In t (resp. ::Out t) where t ∈ TΣ(V).

Input expressions ::In t (resp. ::Out t) denote the content of input (resp.
output) dataflows at the moment t.

Definition 5.2.2 (System requirements formulas) Let T be a time refer-
ence. Let V be a set of time variables. Let X be a set of fixed points variables.
Let H = (Out ×)In×T be a signature with T ⊆ T . System requirements
formulas are defined as follows:

ϕ := Θ| E = E′ | i ↓t o| x | [(i, t)]ϕ|¬ϕ|ϕ1 ∧ ϕ2|∃x.ϕ|νx.ψ

where Θ is a first-order formula built over the signature Σ = (F,R) and the set of
variables V , E and E′ are either both input terms or both output terms, i ∈ In,
t ∈ TΣ(V), x ∈ V , x ∈ X and ψ is a formula that may contain occurrences of
the variable x provided that every free occurrences of x occurs positively in ψ,
i.e. within the scope of an even number of negations 6.
A formula ϕ is closed when every time variable x and every fixed point variable
x are in the scope of a quantifier ∃x and an operator νx, respectively.

Intuitively, atoms of the form E = E′ check the content of input or output
dataflows at different moments, and atoms of the form i ↓t o stand for output
formula and check that it is possible to produce the output o after performing
the input i at the moment t. A formula of the form [(i, t)]ϕ stands for a state
formula, and states that after performing an input i at the moment t, all reach-
able states satisfy ϕ. Finally, a formula of the form νx.ψ stands for a formula
that expresses a recursion on states and is defined semantically as a function
with fixpoints. More precisely, a formula ϕ of the logic can be semantically
defined by a function fϕ : P(S)n → P(S) where occur freely the fixed point
variables x1, . . . , xn in ϕ, that given n subsets S1, . . . , Sn yields the set of states
that satisfy ϕ. Therefore, a formula ϕ of the form νx.ψ that can be seen as a
”looping”, denotes the greatest fixpoint of the function fϕ : P(S) → fψ (see
below). It is well-known that such a fixpoint exists when f is monotonic on
P(S). The condition that every free occurrences of x occurs positively in ψ,
ensures monotonicity [16].

The least fixpoint operator µ is obtained standardly:

6The notions of free and bound variables are usual where ν is the only binding operator.

73

CHAPTER 5. A LOGIC FOR REQUIREMENTS

¬νx.ϕ ⇔ µx.¬ϕ′

where ϕ′ is the formula obtained from ϕ by substituting ¬x for x in all free
occurrences of x in ϕ.

Standardly, the universal quantifier is defined:

¬∃.ϕ ⇔ ∀x.¬ϕ

5.2.2 Examples of requirements

We have defined a logic on systems that is expressive enough to model func-
tional requirements.

We propose to model a very simplified toothbrush viewed as a system:

Example 17 [Toothbrush] We set R as our time reference and work on the
regular time scale Nτ where the step τ stands for a hundredth of second.

The toothbrush has 2 input flows, B and E , modeling respectively the button
to control the toothbrush and the electricity coming by the power supply of the
toothbrush.

The input B can take two values: 1 or 0, according to the state of the button
(pressed or released). The input E can also take the two values 1 or 0, according
to the presence or not of electricity allowing to supply the toothbrush.

Our toothbrush is modeled with one single output R figuring the rotation
of the head designed to brush the teeth. The output R can take values in
{0, 1, 2, 3, 4} according to the speed of rotation (0 meaning no rotation and 4
being the highest speed of the head).

Electrical toothbrush

E

B

R

An oversimplified specification of the transfer function of the toothbrush can
be the following:

• the toothbrush has 5 states: 0, 1, 2, 3, 4

• whatever the state of the system:

– when E = 0, then R = 0 and the system returns to the state 0.

74

5.2. A LOGIC FOR SYSTEM REQUIREMENTS

– when E = 1 and B = 0 at any moment, then at the next step the state
decreases of 1 (or 0 if it was 0), and R takes the value corresponding
to the state.

– when E = 1 and B = 1 at any moment, then at the next step the
state increases of 1 (or remains to 4 if it was 4), and R takes the
value corresponding to the state.

More formally, the system S = ((S,α), q0) is:

• S = {0, 1, 2, 3, 4}

• q0 = 0

• α : S → (Out×S)In×Nτ with Out = {0, 1, 2, 3, 4} and In = {0, 1}× {0, 1}
is defined by: ∀q ∈ {0, 1, 2, 3, 4}, ∀d ∈ Nτ

– α(q)((0,), d) = (0, 0)

– α(q)((1, 0), d) =

{

(q − 1, q − 1) if q ∈ {1, 2, 3, 4}
(0, 0) if q = 0

– α(q)((1, 1), d) =

{

(q + 1, q + 1) if q ∈ {0, 1, 2, 3}
(4, 4) if q = 4

♦

We now propose to express the following requirement, insuring that the
toothbrush reacts quickly to a pressure on its button: (Reactiveness) when the
button is pressed and that there is electricity powering, the toothbrush modifies its
output within 0.1 second except if it is already at the highest speed. In this case,
it remains to this highest speed while the button is pressed. This requirement
can be expressed as follows in our framework:

::In x = (1, 1) ∧ ¬(::Out x = 4)
⇒ ∃y. y ≤ 10 ∧ ¬(::Out (x + y) = ::Out x)

::In x = (1, 1) ∧ ::Out x = 4 ⇒

(∀y.y 8 x ⇒

µx. ::In y = (, 0)
∨

([((1, 1), y)]x ∧ ::Out succ(y) = 4))

We propose to model another requirement, imposing that the toothbrush
would stop rapidly if the electricity supply is stopped: (Inertia) when there is
no power supply, the toothbrush’s head stops its rotation within 1 second. This
requirement can be expressed as follows:

::In x = (0,) ⇒ ∃y. y ≤ x+ 100 ∧ ::Out y = 0

We introduce a last requirement constraining the speed of the toothbrush
when it is working: (Performance) when the toothbrush is used, the speed of
rotation must be 1, 2, 3 or 4. This requirement can be expressed as follows:

75

CHAPTER 5. A LOGIC FOR REQUIREMENTS

::In x = (1, 1) ⇒
∨

1≤i≤4

::Out x = i

These 3 requirements are typical properties expected to be verified from systems,
and illustrate the expressivity of our logic.

5.2.3 Adequacy of the logic

This subsection is not necessary for our framework, but proves an important
property of our logic: adequacy.

We define the notion of bisimulation over which we will show the adequate-
ness of our logic. Systems being defined by using coalgebraic notations, we
define bisimulations for systems following notations in [2, 55]. Hence, a bisimu-
lation between two systems is a transition structure respecting relation between
sets of states.

Definition 5.2.3 (Bisimulation) Let S1 = ((S1,α1), q
1
0) and S2 = ((S2,α2), q

2
0)

be two systems over a signature H = (Out ×)In×T. A subset R ⊆ S1 × S2

is a bisimulation if, and only if (q10 , q
2
0) ∈ R and there exists a mapping

αR : R → H(R) such that both projections from R to S1 and S2 are coalge-
bra morphisms:

S1
π1←−−−− R

π2−−−−→ S2

α1

,

,

αR

,

α2

H(S1)
H(π1)
←−−−− H(R)

H(π2)
−−−−→ H(S2)

S1 and S2 are said bisimilar if, and only if there exists a bisimulation between
them.

All the basic facts on bisimulations remain true in our framework. Among
others, the greatest bisimulation between S1 and S2, noted ∼S1,S2 or simply ∼
when the context is clear, exists and is defined as the union of all bisimulations
between S1 and S2.

Definition 5.2.4 (Input output terms evaluation) Let H = (Out×)In×T

with T ⊆ T . Let V be a set of time variables. Let ι : V → T be a time variable
valuation. Let f : T′ → In be an input dataflow in InT . Let E be an input term
over H. The evaluation of E for f , noted !E"T

′

(ι,f) is defined on the structure
of E as follows:

• !i"T
′

(ι,f) = i for i ∈ In

• ! ::In t"T
′

(ι,f) = f(!t"T
′

ι).

76

5.2. A LOGIC FOR SYSTEM REQUIREMENTS

Let g : T → Out be an output dataflow. Let E be an output term over H.
The evaluation of E for g, noted !E"T(ι,g) is defined on the structure of E as
follows:

• !o"T(ι,g) = o for o ∈ Out

• ! ::Out t"
T

(ι,g) = g(!t"Tι).

Classically, the semantics of µ-calculus formulas is standardly defined by
associating to each formula ϕ the set of states for which ϕ is true7. This kind
of semantics can be easily extended to our logic equivalently to Definition 5.2.5
just below. However, Definition 5.2.5 is a more classical definition of satisfaction
|= defined as a binary relation between systems and formulas.

Definition 5.2.5 (Satisfaction) Let H = (Out ×)In×T be a signature with
T ⊆ T . Let S = ((S,α), q0) be a system over H. Let ϕ be a formula over H.
For every valuation λ : X → P(S), every interpretation of variables ι : V → T ,
every state q ∈ S and every input dataflow f : T′ → In ∈ InT . S satisfies for
f , q, ι and λ the formula ϕ, noted S |=f,q,ι,λ ϕ if, and only if:

• if ϕ is a first-order formula Θ over Σ, then S |=f,q,ι,λ Θ iff T |=ι Θ.

• if ϕ is an atom of the form E = E′ where E and E′ are input terms, then
S |=f,q,ι,λ E = E′ iff !E"T

′

(ι,f) = !E′"T
′

(ι,f).

• if ϕ is an atom of the form E = E′ where E and E′ are output terms,
then S |=f,q,ι,λ E = E′ iff !E"T(ι,!α(q)(f)) = !E′"T(ι,!α(q)(f)).

• if ϕ is an atom of the form i ↓t o, then S |=f,q,ι,λ i ↓t o iff α(q)(i, !t"Tι)1 =
o. 8

• if ϕ is a fixed point variable x, then S |=f,q,ι,λ x iff q ∈ λ(x).

• if ϕ = [(i, t)]ϕ′, then S |=f,q,ι,λ [(i, t)]ϕ′ iff S |=(i,!t"T′
ι
):f,q′,ι,λ ϕ′ and

q′ = α(q)(i, !t"Tι)2.

• if ϕ = νx.ψ, then S |=f,q,ι,λ νx.ψ iff ∃S′ ⊆ S, q ∈ S′ and ∀q′ ∈ S′,
S |=f,q′,ι,λ[S′/x ψ.
Here, λ[S′/x] is the valuation such that λ[S′/x](x) = S′ and λ[S′/x](x′) =
λ(x′) for every x′ .= x.

• propositional connectors and first-order quantifier are handled as usual.

S satisfies a formula ϕ, noted S |= ϕ, if, and only if for every f ∈ InT , every
ι : V → T and every valuation λ : X → P(S), S |=f,q0,ι,λ ϕ.

7returning equally to define a function fϕ : P(S)n → P(S) as previously where n is the
set number of free fixed point variables in ϕ.

8Similarly, we could also write that S |=f,q,ι,λ ϕ iff !α(q)((i, !t"T
′

ι) : f)(!t"Tι) = o.

77

CHAPTER 5. A LOGIC FOR REQUIREMENTS

From Definition 5.2.5, it is obvious to show that for every closed formula ϕ,
every state q ∈ S and every input dataflow f ∈ InT ,

∀λ : X → P(S), ∀ι : V → T,S |=f,q,ι,λ ϕ ⇔ S |=f,q,∅ ϕ

where ∅ : X → P(S) is the valuation that associates to every x ∈ X the
emptyset ∅.

Let us show that L is expressive enough to characterize bisimilarity, that is
two systems S1 and S2 are bisimilar when they are elementary equivalent and
vice versa, where elementary equivalence means that:

∀ϕ,S1 |= ϕ ⇔ S2 |= ϕ

Theorem 7 Let S1 = ((S1,α1), q
1
0) ad S2 = ((S2,α2), q

2
0) be two systems over

(Out ×)In×T. Then, S1 and S2 are elementary equivalent if, and only if they
are bisimilar.

Proof To prove the only if implication, let us suppose that q10 ∼ q20 . Let
λ2 : X → P(S2). Let us define λ1 : X → P(S1) by:

λ1(x) = {q1|∃q2 ∈ λ2(x), q1 ∼ q2}

It is quite obvious to show by structural induction on formulas that for every
ϕ,

S1 |=f,q10 ,ι,λ1
ϕ ⇔ S2 |=f,q20 ,ι,λ2

ϕ

We can apply the same reasoning from any valuation λ1 : X → P(S1).

For the converse (the if part), let us define the relation ≡⊆ S1 × S2 as
follows: q ≡ q′ iff for every f ∈ InT , every ι : V → T and every λ : X → P(S1),

∀ϕ,S1 |=f,q,ι,λ ϕ ⇔ S2 |=f,q′,ι,λ′ ϕ

where λ′ : X → P(S2) is the mapping that associates the set {q′|∃q ∈
λ(x), q ≡ q′} to each x ∈ X . Let us show that ≡⊆∼. Let us suppose
that q ≡ q′. By definition, this means for every i ∈ In and every d ∈ T
that α1(q)(i, dT)1 = α2(q

′)(i, dT)1. It remains to prove that α1(q)(i, dT)2 ≡
α2(q

′)(i, dT)2. Let us suppose the opposite. This means there exists a formula
ψ, a dataflow f : T′ → In ∈ InT , a variable interpretation ι : V → T and a valu-
ation λ : X → P(S) such that S1 |=f,α1(q)(i,dT)2,ι,λ ψ and S2 .|=f,α2(q′)(i,dT)2,ι,λ′ψ.
By definition of satisfaction, ψ can be considered as a formula that does not
contain first-order formulas and atoms of the form E = E′ because their sat-
isfaction does not bring into play states. Therefore, we can write equivalently
that S1 |=(i,d

T′):f,α1(q)(i,dT)2,ι,λ ψ and S2 .|=(i,d
T′):f,α2(q′)(i,dT)2,ι,λ′ψ, whence we

conclude S1 |=f,q,ι,λ [i, d]ψ and S2 .|=f,q′,ι,λ′ [i, d]ψ what is not possible as q ≡ q′.

The same reasoning can be carried out for ≡−1. !

This result proves the adequacy of the logic we have defined, giving it the
minimal expected properties to be a “good” logic for system requirements.

78

Chapter 6

Towards a framework for

systems architecture

We have introduced a unified model for heterogeneous integrated systems and
their integration, and a formalism to express requirements on systems. Our
definition of system captures the behavior of a real system that can be observed
(functional and states behavior, called together systemic behavior). However,
our definition of a system has two fundamental limitations from a systems ar-
chitecture point of view: it requires to fully specify the functional and states
behaviors, and it gives no information on what the system is composed of1.

We thus introduce a formal framework to deal with the architecture of sys-
tems during the design process. The two main limitations above are addressed:

• how to deal with the underspecification of systems during the design pro-
cess? (i.e. the fact that we are unable to define completely a system
during its design, whose precise goal is to define the system completely,
so we are constantly working on a partly defined object)

• how to formalize the internal structure of a system? (i.e. how to for-
mally express the fact that a system is in fact a multiscale object obtained
through the recursive integration of smaller systems).

We consider a minimalist design process, consisting of requirements analysis
and systemic recursion. The only possible actions are:

1. breaking a system into a set of smaller systems (and conversely composing
together a set of systems)

2. “concretizing” a system into a finer grain system (and conversely “ab-
stracting” a system)

1the integration operators we have introduced do not allow to model the structure of a
system, as they do not “remember” the systems they have integrated and just define the
resulting system.

79

CHAPTER 6. TOWARDS A FRAMEWORK FOR SYSTEMS
ARCHITECTURE

3. expressing requirements on a system (and conversely checking if a system
verifies such requirements).

We introduce the notion of views that allow to formalize the set of interre-
lated models used in practice to describe a more or less specified system at any
step of the design process2. We then introduce formal definitions to be able to
define the internal structure of a system. The deliverable is a minimalist formal
framework for systems architecture along the design process.

6.1 Handling underspecification

We will now give formal definitions of objects used during the systems architect-
ing process to take into account the need to handle underspecified systems while
defining their expected behavior. Indeed, one hardly manipulates fully-specified
systems during the design phase3.

Definition 1 (Systemic signature) A systemic signature is a 4-tuple (X,
Y,Q,T) where X, Y and Q are datasets (respectively called input values, output
values and states) and T is a time scale.

YQX

T

Figure 6.1: Illustration of a systemic signature

Remark 7 A system naturally induces a systemic signature.

We introduce a generic definition of system requirements, used to describe
logical properties on the functional and states behavior a system (and whose
a formalization on coalgebraic systems has been introduced in the previous
chapter):

Definition 2 (Requirement) Let (X,Y,Q,T) be a systemic signature. A re-
quirement on (X,Y,Q,T), is a logical formula expressing properties on the
behavior of any system of systemic signature (X,Y,Q,T). The set of all possi-
ble requirements on this systemic signature is noted Req(X,Y,Q,T).

2We do not deal here with the concept of layers of a system that allow to describe the same
system at a given level through different perspectives (e.g. functional and physical layers).

3This problem is for example addressed in B-method through the refinement of an abstract
machine [1].

80

6.1. HANDLING UNDERSPECIFICATION

During the design process, most of the time we deal with objects that are not
fully specified. The typical object manipulated at high-level during the design
phase to model a system is a fuzzy description of this system through a systemic
signature, together with a set of expected properties. We thus define a notion
that captures such underspecified objects:

Definition 3 (Box) A box is a 5-uplet (X,Y,Q,T, r) where:

• (X,Y,Q,T) is a systemic signature

• r ∈ Req(X,Y,Q,T)

We note BB(X,Y,Q,T) the set of boxes of systemic signature (X,Y,Q,T).

YQX

T

r

Figure 6.2: Illustration of a box

Remark 8 We only consider one requirement in our definition of a box, which
is equivalent to a finite set of requirements.

A box induces a set of systems whose systemic signature matches the one
from the box, and that verify the requirement of the box:

Definition 4 (Realization of a box) Let B = (X,Y,Q,T, r) be a box. A
realization of B is any system S of systemic signature (X,Y,Q,T) such that
S # r 4. When such a system exists, B is said to be realizable.

X(t) Y(t)

Q(t)

T

r

Figure 6.3: Illustration of the realization of a box

4which means that the functional and states behaviors of the system S verify the require-
ment r.

81

CHAPTER 6. TOWARDS A FRAMEWORK FOR SYSTEMS
ARCHITECTURE

Remark 9 One of the challenge of systems design, in this framework, is to be
able to define only realizable boxes at each level. In practice, this is an iterative
process with trial & error. Note that, in real life, the requirement associated
with a box will constrain its behavior, but also express constraints related to
cost, time, feasability & other business metrics.

A key property in systems architecture is the ability to change the granularity
of description of a model through mechanisms of abstraction and concretization.
We naturally extend such mechanisms from systems to boxes:

Definition 5 (Concretization of a box) Let Bc ∈ BB(Xc, Yc, Qc,Tc) (called
concrete box). Let Ba ∈ BB(Xa, Ya, Qa,Ta) (called abstract box). Let α :
(Xc, Yc, Qc,Tc) → (Xa, Ya, Qa,Ta) be an abstraction mechanism. We say that
Bc concretizes Ba via α if and only if: for any system Sc that is a realization
of Bc, α(Sc) is a realization of Ba

5.

T

r
X (t)

Q (t)

Y (t)

⇒

r
a

T

X (t)
c

Q (t)
c

Y (t)
c

c)(α
Figure 6.4: Illustration of the concretization of a box

We can now deal with underspecification:

• a systemic signature is the most underspecified object

• a box is a systemic signature, with expected properties on the systemic
behavior

• a system is the algorithmic specification of a box.

5This (only) means that α(Sc) verifies the requirement of Ba. Still, is a very strong property
and means that the requirement on the concrete system is “strong” enough to ensure that the
requirement of its abstraction will be verified.

82

6.2. MODELING RECURSIVE STRUCTURE

We will now introduce a formalism to deal with the structure of systems.
This formalism will also model the fact that, during the design process, real
systems are in fact modeled using boxes.

6.2 Modeling recursive structure

The goal of this section is to deal with the structure of more or less specified
objects through the design process. We have defined integration operators for
systems and transfer functions, but those operators do not allow to model the
internal structure. We thus first introduce an object that formalizes a finite
sequence of products and feedbacks on a finite set of systems:

Definition 6 (Composition plan) Let S0, . . . , Sn−1 be n systems. A com-
position plan for S0, . . . , Sn−1 is a set C ⊂ {0, . . . , n− 1}2 of pairs where:

• ∀
(

(a, b), (c, d)
)

∈ C2,
[

(a .= c) ∧ (b .= d)
]

∨
[

(a = c) ∧ (b = d)
]

• ∀ (a, b) ∈ C, output Ya of Sa and input Xb of Sb have the same dataset.

More informally, C is a set of links between outputs and inputs of S0, . . . , Sn−1

such that each input (resp. output) is linked to at most one output (resp. input).
We thus write C(S0, . . . , Sn−1) for the system resulting from the composition of
these n systems according to C.

Remark 10 The definition of a composition plan for systems can easily be
extended to boxes (using their systemic signatures) and systems with multiple
inputs and outputs.

A key element in systems architecture is the ability to refine a system by
breaking it down into smaller subsystems. We introduce a definition that make
it possible to express such process on boxes, working on a single time scale:

Definition 7 (Refinement of a box) Let B ∈ BB(X,Y,Q,T). For all i ∈
{0, . . . , n − 1}, let Bi ∈ BB(Xi, Yi, Qi,T). Let C be a composition plan for
B0, . . . , Bn−1. (B0, . . . , Bn−1, C) is a refinement of B iff the systemic signa-
ture of C(B0, . . . , Bn−1) is (X,Y,Q,T).

We give a first formalization to the systemic recursion by combining a box
together with a refinement:

Definition 8 (View) A view is a pair
(

B, (B0, . . . , Bn−1, C)
)

:

• B is a box

• (B0, . . . , Bn−1, C) is a refinement of B.

83

CHAPTER 6. TOWARDS A FRAMEWORK FOR SYSTEMS
ARCHITECTURE

1

2

r
0

r
1

r
2

r

Figure 6.5: Illustration of a view

Remark 11 The time reference is unique in a view. Changes of time reference
are only possible through abstraction/concretization mechanisms.

A view is thus a formal object that models the ability to refine a box through
a set of interrelated boxes. We then naturally extend the notion of concretization
of a box to a view:

Definition 9 (Concretization of a box by a view) Let V =
(

Bc, ,
)

be a
view. V is a concretization of a box Ba via an abstraction α iff Bc concretizes
Ba via α.

As for boxes, the existence of systems realizing the back boxes of a view in
a consistent way is key6:

Definition 10 (Realization of a view) Let V =
(

B, (B0, . . . , Bn−1, C)
)

be
a view. A realization of V is any realization S0, . . . , Sn−1 of B0, . . . , Bn−1

such that C(S0, . . . , Sn−1) is a realization of B. In this case, C(S0, . . . , Sn−1) is
called composition of S0, . . . , Sn−1 according to V , and V is said to be realizable.

However, a view only captures one level of systemic recursion. We thus
introduce a new object capturing a finite number of systemic recursions and
allowing the use of abstractions, so that at each systemic level, all systems re-
sulting from the composition of lower level subsystems are brought to a common
level of abstraction through individual abstractions:

Definition 11 (Multiscale view) A multiscale view W is a tree such that:

• every node of W is labeled with a view

6It is very difficult in a design process to define such views because many interrelated
elements must be consistent. That’s a reason why the design process is iterative in practice,
and why verification is needed after integration (no correctness-by-construction). Note also
that their is no “mechanistic” bottom-up implication: it is possible (and even likely!) to have
realizations of the boxes of a view whose composition is not a realization of the main box.

84

6.2. MODELING RECURSIVE STRUCTURE

• every edge e of W from a parent node Vp =
(

, (B0, . . . , Bn−1,)
)

to a child
node Vc is labeled with a pair (k,α) where:

– k ∈ {0, . . . , n− 1} is called the index of the edge e

– α is an abstraction such that Vp concretizes Bk via α

• for a parent node Vp =
(

, (B0, . . . , Bn−1,)
)

, there is at most one edge of
index k ∈ {0, . . . , n− 1}.

0

B1

B2

B

r
0

r
1

r
2

r

α
0

α
2

B3

B4

B5

B'

r
3

r
4

r
5

r'

...

α
4

...

Figure 6.6: Illustration of a multiscale view

85

CHAPTER 6. TOWARDS A FRAMEWORK FOR SYSTEMS
ARCHITECTURE

Remark 12 For any node N from a multiscale view W , the subtree of W with
root N naturally induces a new multiscale view.

Thus, a multiscale view is a tree of views, such that a box in a view is either
concretized (by another multiscale view), or “free”:

Definition 12 (Free box) Let W be a multiscale view. Let V be a view la-
beling a node of W . A free box of W is any box B of V such that: B is
not concretized by any child of V in W . We write freebox(W) for the finite
sequence of free boxes of W , enumerated in depth-first order.

Remark 13 For any view V labeling a leaf of a multiscale view W , all the boxes
of V are free boxes of W .

Definition 13 (Valuation) Let W be a multiscale view. Let V be a view la-
beling a node of W and let B be a box of V . The valuation vW (B) ∈ N of B
in W is defined as follows:

• vW (B) = 1 when B is a free box of W

• vW (B) =
∣

∣freebox(WB))
∣

∣ else, where WB is the multiscale view concretiz-
ing B in W .

To define a system from a multiscale view, the free boxes need to be specified:

Definition 14 (Integration tree according to a multiscale view) LetW

be a multiscale view and let freebox(W) = Bf
0 , . . . , B

f
n−1 be its free boxes, such

that all free boxes of W are realizable. Let S0, . . . , Sn−1 be n systems respectively
realizing Bf

0 , . . . , B
f
n−1. The integration tree of (S0, . . . , Sn−1) according to

W , which we note I
(

W, (S0, . . . , Sn−1)
)

, is a tree (whose nodes are labelled with
systems) recursively defined as follows:

let V =
(

B, (B0, . . . , Bp−1, C)
)

be the label of the root node of W . ∀i ∈

{0, . . . , p}, let xi =
∑i−1

j=0 vW (Bj)
7. ∀i ∈ {0, . . . , p− 1}, we define Mi as:

• when Bi ∈ freebox(W), Mi is a single node labeled with Sxi

• when Bi /∈ freebox(W), we define M ′
i = I

(

Wi, (Sxi
, . . . , Sxi+1−1)

)

8, where
Wi is the multiscale view concretizing Bi in W following αi. Mi is a tree
consisting in a root node labeled by αi

(

root(M ′
i)
)

and with a unique child
M ′

i .

7as the free boxes are in depth-first order, xi represents the index of the first free box of
W which is a free box of Bi

8such tree is well-defined because: 1) the free boxes are enumerated in depth-first order 2)
the recursion is applied to a strictly smaller multiscale view (it ensures that the recursion will
terminate).

86

6.2. MODELING RECURSIVE STRUCTURE

We then define I
(

W, (S0, . . . , Sn−1)
)

as the tree composed of p subtrees M0, . . . ,
Mp−1 children of a root labelled by the composition of the systems labeling the
roots of M0, . . . ,Mp−1, i.e. C

(

root(M0), . . . , root(Mp−1)
)

.

The integration tree is consistent iff the system labeling each node verifies
the requirement of its associated box.

We can now define the system resulting from the integration of a sequence
of systems following a multiscale view:

Definition 15 (Integration according to a multiscale view) Let W be a

multiscale view and let freebox(W) = Bf
0 , . . . , B

f
n−1 be its free boxes, such that

all free boxes of W are realizable. Let S0, . . . , Sn−1 be n systems respectively
realizing Bf

0 , . . . , B
f
n−1. The integration according to W of S0, . . . , Sn−1 is

the system labeling the rood node of I
(

W, (S0, . . . , Sn−1)
)

. An integration is
consistent iff the corresponding integration tree is consistent.

As for views, the existence of systems realizing a multiscale view in a con-
sistent way is key:

Definition 16 (Realization of a multiscale view) Let W be a multiscale
view. Let S0, . . . , Sn−1 be n systems. (S0, . . . , Sn−1) is a realization of W
if it is a consistent integration according to W . In this case, W is said to be
realizable.

We finally introduce a model of systems where the structure is described. A
multiscale system describes the structure of a system in terms of successive com-
positions and abstractions allowing to build a system from a set of elementary
systems:

Definition 17 (Multiscale system) A multiscale system is a tree where:

• all leaves are labelled with a system

• internal nodes with an even depth are labelled with a pair (S,C), where S
is a system and C is a composition plan

• internal nodes with an odd depth are labelled with a pair (S,α), where S
is a system and α is an abstraction function

• for each even node (S,C) of children (S0,), . . . , (Sn−1,); we have: S =
C(S0, . . . , Sn−1)

• for each odd node (S,α), its unique child (S′,) is such that: S = α(S′).

87

CHAPTER 6. TOWARDS A FRAMEWORK FOR SYSTEMS
ARCHITECTURE

α α
2

X(t) Y(t)

Q(t)

T

X1(t) Y1(t)

Q1(t)

T

X2(t) Y2(t)

Q2(t)

T

Y (t)

T

1 2

1c

1c

Q (t)
1c

X (t)
1c

Y (t)

T2c

2c

Q (t)
2c

X (t)
2c

X3(t) Y3(t)

Q3(t)

T

X4(t) Y4(t)

Q4(t)

T
2c

2c

3 4

Figure 6.7: Illustration of a multiscale system

Remark 14 The integration of a sequence of systems according to a multiscale
view naturally induces a multiscale system.

We thus have introduced a formalism allowing to define underspecified sys-
tems (with boxes), to define a recursive structure on them (through multiscale
views), and finally to define fully specified systems with a recursive structure
(through multiscale systems). Altogether, they form a minimalist framework
for systems architecture in our formalism.

88

Chapter 7

Fair assignments between

systems

This chapter intends to open new perspectives and is fairly independent from
the rest of the manuscript. Optimization is a very important topic in systems
architecture. We will introduce a model that allows to compute fair assign-
ments, what can be very relevant to take structural decisions during the design
process on how to allocate functions to different subsystems, or what is the best
systemic decomposition to maintain an optimal homogeneity between subsys-
tems, when fairness of a given quantity is required (for example to spread risk
or cost between various subsystems).

We study fair assignment problems in decision contexts involving multiple agents
(e.g. systems). In such problems, each agent (or system) has its own evalua-
tion of costs and we want to find a fair compromise solution between individual
points of views. Lorenz dominance is a standard decision model used in Eco-
nomics to refine Pareto dominance while favoring solutions that fairly share
happiness among agents. In order to enhance the discrimination possibilities
offered by Lorenz dominance, we introduce here a new model called infinite
order Lorenz dominance. We establish a representation result for this model
using an ordered weighted average with decreasing weights. Hence we exhibit
some properties of infinite order Lorenz dominance that explain how fairness
is achieved in the aggregation of individual preferences. Then we explain how
to solve fair assignment problems of m items to n agents, using infinite order
Lorenz dominance and other models used for measuring inequalities. We show
that this problem can be reformulated as a 0-1 nonlinear optimization prob-
lem that can be solved, after a linearization step, by standard LP solvers. We
provide numerical results showing the efficiency of the proposed approach on
various instances of the paper assignment problem.

The deliverable is a new, original model for fair multiagent optimization that

89

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

can be relevant to optimize design decisions during a systems design process
when fairness is required.

7.1 Introduction

Fairness of decision procedures is often considered as an important issue in
decision problems involving multiple agents. Although not always formalized
precisely, this normative principle generally refers to the idea of favoring solu-
tions that fairly share happiness or dissatisfaction among agents. More formally,
when comparing two cost vectors x and y (one component by agent), claiming
that “x is more fair than y” bears to the vague notion that the components of
x are “less spread out” or “more nearly equal” than the components of y are.
This intuitive notion leaves room for many different definitions. The field has
been explored by mathematicians who developed a formal theory of majoriza-
tion [44] and by economists who studied the axiomatic foundations of inequality
measures (for a synthesis see [47, 58]).

This body of knowledge has now a significant impact in computer sciences
where many optimization problems require to incorporate the idea of fairness
or equity in the definition of objectives. Let us mention for example multiagent
job-shop scheduling problems, knapsack sharing problems, equitable approaches
to location problems [49], fair bandwidth assignment, or any other resource
allocation problem. This is also the case in the field of Artificial Intelligence
where the notions of fairness and envy-freeness appear in various multiagent
problems such as fair division of indivisible goods and combinatorial auctions
[15, 22], paper assignment problems [33], marriage problems in social networks
[29].

Example 1 Let us consider a simple fair division problem where 5 items must
be assigned to 5 agents. Every item is assigned to exactly one agent and each
agent is assigned exactly one item. We want to find an assignment that fairly
shares costs between agents, the costs being given by the following matrix of
general term cij representing the cost of assigning item j to agent i:

C =

5 8 (4) 9 7
1 (3) 2 7 8
(3) 9 2 9 5
10 1 3 (3) 4
5 1 7 7 (3)

Any solution to this problem is a permutation that can be characterized by a
square matrix Z of size 5 containing boolean variables zij where zij = 1 if and
only if item j is assigned to agent i, Z having exactly one 1 in each row and col-
umn. To solve this multiagent assignment problem using standard optimization
techniques, we could be interested in minimizing the average level of dissatis-
faction among individuals, or equivalently the sum of individual dissatisfactions
where the dissatisfaction of agent i is defined by xi =

∑

j cijzij . This amounts

90

7.1. INTRODUCTION

to minimizing the linear function
∑

i

∑

j cijzij , a classical matching problem
which can be solved in polytime with the Hungarian method. Here the optimal
solution is given by setting to 1 variables zij corresponding to costs cij in bold
in the C matrix. The associated dissatisfaction vector is given by (7, 1, 2, 3, 1)
which yields 14 as overall cost. However, this solution does not seem very fair.
Although the average cost is below 3, one agent receives 7 whereas another gets
1.

If we consider now another permutation given by numbers into brackets in
the cost matrix, we get a much preferable dissatisfaction profile regarding equity.
For a slightly higher overall cost (16), we indeed obtain a significantly better
balanced dissatisfaction profile: (4, 3, 3, 3, 3). This solution actually minimizes
the dissatisfaction of the least satisfied agent (min-max criterion) and the solu-
tion is here fully satisfactory. However, focusing on the least satisfied agent is
not always convenient. It provides a pessimistic view on agents’ satisfactions;
moreover it is not very discriminating since multiple solutions remain equivalent
from a worst case analysis point of view, even if they offer different perspectives
to all but the least satisfy agent. The worst case can even mask very different
situations as shown by this second example:

Example 2 We consider an assignment problem with the following cost matrix:

C′ =

9 10 (9) 9 10
1 (4) 2 7 8
(4) 9 2 9 5
10 1 3 (2) 4
5 1 7 7 (4)

Here, the optimal solution obtained with respect to the min-max criterion
is given by numbers into brackets in the matrix. The associated dissatisfaction
vector is (9, 4, 4, 2, 4). However, in this case, the min-max solution might not
be the best one. We could prefer sacrificing the least satisfied agent (who is
apparently difficult to satisfy) so as to get better costs for the other agents. Hence
vector (10, 1, 2, 2, 1) that derives from positions in bold in matrix C′ should be
preferred to the previous one.

These examples show that simple objectives like min-sum or min-max are not
perfectly suited to fair optimization problems. We will propose a more sophis-
ticated model that attaches more importance to least satisfied agents without
forgetting the other agents. It is based on an extension of a partial dominance
concept known as Lorenz Dominance in Social Choice Theory and used for the
measurement of inequalities. Our aim is to introduce this model and its main
properties, and then elaborate a computationally efficient procedure using this
model to generate fair solutions in multiagent assignment problems. For appli-
cation purpose, we will consider one to one assignment problems as in Examples
1 and 2, but also many to many assignment problems such as conference paper
assignment problems. The multiagent problems discussed in this chapter con-
cern the case of centralized information. We assume that a central authority is

91

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

responsible of computations and assignment of items. This is the case in various
auctions problems and in conference paper assignment problems. It would also
be interesting to study similar problems in decentralized contexts where the
final assignment emerges from a sequence of local decisions of uncoordinated
agents having only a partial view on the problem [22, 34]. Such problems are
beyond the scope of our work.

This chapter is organized as follows: in Section 7.2 we recall some basic con-
cepts used in Social Choice theory for the measurement of inequalities. In order
to minimize agents’ dissatisfaction while preserving fairness in assignment, we
introduce the notion of infinite order Lorenz dominance as a refinement of Pareto
and Lorenz dominance concepts. Then we establish a representation result for
infinite order Lorenz dominance in Section 7.3, and we present some axiomatic
properties of this model. The use of this model in multiagent assignment prob-
lems in presented in Section 7.4. In particular we formulate such problems
as nonlinear 0-1 optimization problems, we study the problem complexity and
present an approach to solve it using mixed integer linear programming. Finally
numerical results showing the efficiency of our approach on randomly generated
instances are presented, including a model of the paper assignment problem
solved for realistic sizes.

7.2 Inequality measurement with Lorenz domi-

nance relations

7.2.1 Notations and definitions

Considering a finite set of agents N = {1, . . . , n}, any solution of a multiagent
combinatorial problem can be characterized by a cost vector x = (x1, . . . , xn) in
Rn

+ whose ith component represents the cost of solution x with respect to agent
i. Hence, the comparison of solutions reduces to the comparison of their cost
vectors. In this framework, the following definitions are useful:

Definition 18 The Weak-Pareto dominance relation on cost vectors of Rn
+ is

defined, for all x, y ∈ Rn
+ by:

x $P y ⇐⇒ [∀i ∈ N, xi ≤ yi)]

The Pareto dominance relation (P-dominance for short) on cost vectors of Rn
+

is defined as the asymmetric part of $P :

x ≺P y ⇐⇒ [x $P y and not(y $P x)]

Remark that x ≺P y means that x is preferred to y (x is less costly than y)
since x and y are cost vectors representing individuals’ dissatisfactions. Within
a set X we say that x is P-dominated when y ≺P x for some y in X , and
P-nondominated when there is no y in X such that y ≺P x.

In order to decide whether a solution is better than another, we have to
define a transitive preference relation $ on cost vectors such that x $ y when

92

7.2. INEQUALITY MEASUREMENT WITH LORENZ DOMINANCE
RELATIONS

cost vector x is preferred to cost vector y. Let us introduce now the minimal
requirements that such a relation $ should satisfy to be seen as a reasonable
synthesis of agents’ opinions, favoring both efficiency and equity in comparisons.
Firstly, we assume that all agents have the same importance. Hence, the fol-
lowing axiom formalizes the fact that all agents are treated equivalently:

Symmetry. For all x ∈ Rn
+, for any permutation π of {1, . . . , n}:

(xπ(1), . . . , xπ(n)) ∼ (x1, . . . , xn), where ∼ is the indifference relation defined as
the symmetric part of $.

In relation $ we both want to capture the ideas of fairness and efficiency in
cost-minimization. For this reason, $ is expected to satisfy the following ax-
ioms:

P-Monotonicity. For all x, y ∈ Rn
+, x $P y ⇒ x $ y and x ≺P y ⇒ x ≺ y,

where 5 is the strict preference relation defined as the asymmetric part of $.
P-monotonicity is a natural unanimity principle enforcing consistency with P-
dominance.

Now the idea of fairness in comparisons is based on the following transfer
principle:

Transfer Principle. Let x ∈ Rn
+ such that xi > xj for some i, j. Then for all

ε such that 0 < ε < xi − xj , x− εei+ εej ≺ x where ei (resp. ej) is the vector
whose ith (resp. jth) component equals 1, all others being null.

This axiom captures the idea of fairness as follows: if xi > xj for some cost vector
x ∈ Rn

+, slightly improving (here decreasing) component xi to the detriment of
xj while preserving the mean of the costs would produce a better distribution of
costs and consequently improve the overall cost of the solution for the collection
of agents. For example if y = (9, 10, 9, 10) and x = (11, 10, 7, 10) then the
transfer principle implies y ≺ x. Vector y is preferred because there exists a
transfer of size ε = 2 to pass from x to y. Note that using a similar transfer of
size greater than 11 - 7 = 4 would increase inequality in terms of costs. This
explains why the transfers must have a size ε < xi − xj . Such transfers are
said to be admissible in the sequel. They are known as Pigou-Dalton transfers
in Social Choice Theory, where they are used to reduce inequality of income
distributions over a population (see [58] for a survey).

Note that the transfer principle possibly provides arguments to discrimi-
nate between vectors having the same average cost but does not apply in the
comparison of vectors having different average costs. Hopefully, the possibility
of discriminating is improved when combining the Transfer Principle with P-
monotonicity. For example, to compare w = (8, 10, 9, 10) and z = (11, 10, 7, 12)
we can use vectors x and y introduced above and observe that w ≺ y (P-
Monotonicity), y ≺ x (Tranfer Principle explained above) and x ≺ z (P-
Monotonicity). Hence w ≺ z by transitivity. In order to better characterize
those vectors that can be compared using combinations of P-monotonicity and
Transfer Principle we recall the definition of Generalized Lorenz vector and re-
lated concepts:

93

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

Definition 19 For all x ∈ Rn
+, the Generalized Lorenz Vector associated to x

is the vector:

L(x) = (x(1), x(1) + x(2), . . . , x(1) + x(2) + . . .+ x(n))

where x(1) ≥ x(2) ≥ . . . ≥ x(n) represents the components of x sorted by decreas-

ing order. The jth component of L(x) is Lj(x) =
∑j

i=1 x(i).

Definition 20 The Generalized Lorenz dominance relation (L-dominance for
short) on Rn

+ is defined by:

∀x, y ∈ Rn
+, x $L y ⇐⇒ L(x) $P L(y)

Within a set X , element x is said to be L-dominated when y ≺L x for some y
in X , and L-nondominated when there is no y in X such that y ≺L x.

The notion of Lorenz dominance was initially introduced to compare vectors
with the same average cost and its link to the transfer principle was established
by Hardy, LittleHood and Polya [44]. The generalized version of L-dominance
considered here is a classical extension allowing vectors with different averages
to be compared (see [59]). In order to establish the link between Generalized
Lorenz dominance and preferences satisfying combination of P-Monotonicity,
Symmetry and Transfer Principle we recall a result of Chong [23] (see also [44]
and [59]):

Theorem 1 For any pair of distinct vectors x, y ∈ Rn
+, if x ≺P y, or if x

obtains from y by a Pigou-Dalton transfer, then x ≺L y. Conversely, if x ≺L y,
then there exists a sequence of admissible transfers and/or Pareto-improvements
to transform y into x.

For example we have: L(w) = (10, 20, 29, 37) ≺P L(z) = (12, 23, 33, 40) which
directly proves the existence of a sequence of Pareto improvements and/or ad-
missible transfers passing from z to w. This theorem establishes L-dominance as
the minimal transitive relation (with respect to set inclusion) satisfying simul-
taneously P-Monotonicity, Symmetry and the Transfer Principle. Hence, the
subset of L-nondominated elements defines the best candidates to optimality in
fair optimization problems.

Due to P-monotonicity, the set of L-nondominated elements is included in the
set of Pareto optimal vectors. Unfortunately, in multi-objective combinatorial
optimization problems, the set of L-nondominated solutions can be huge (see
[51]). This problems occurs also in multiagent assignment problems. As we will
see later in Example 5, there exists family of instances where the number of
L-nondominated cost vectors grows exponentially with the size of the problem.
This is the reason why we introduce in the next section more discriminating
dominance concepts that extend L-dominance to richer preference structures.

Other attempts in this direction have been proposed in Social Choice Theory.
The most common way is resorting to a Schur-convex function ψ to construct
a weak-order defined by x $ y ⇔ ψ(x) ≤ ψ(y). A Schur-convex function
(also known as order-preserving function) is a function ψ : Rn → R such that

94

7.2. INEQUALITY MEASUREMENT WITH LORENZ DOMINANCE
RELATIONS

∀x, y ∈ Rn, x $L y =⇒ ψ(x) ≤ ψ(y). For example, every function that is convex
and symmetric is also Schur-convex. Well known examples of such functions are
S-Gini indices and more generally instances of Yaari’s model [64] of the following
form:

Example 3 The Yaari’s Social Welfare Functions of the following form are
Schur-convex:

Wf (x) =

n
∑

i=1

[

f

(

n− i+ 1

n

)

− f

(

n− i

n

)]

x(i) (7.1)

where f is a strictly increasing continuous function such that f(0) = 0 and
f(1) = 1. S-Gini indices are particular instances obtained for f(z) = zδ, δ > 1,
see [28]. Note that when f(z) = z2 the absolute inequality index G(x) = 1 −
Wf (x) x̄ is nothing else but the so-called Gini index.

There are other ways of refining Lorenz dominance. We can import some
ideas from the literature on Decision Making under risk, where people are in-
terested in comparing probability distributions in terms of risk. In this context,
the counterpart of Lorenz dominance is the second-order stochastic dominance
(SSD for short) that defines a partial order on probability distributions. The
SSD model does not permit to compare any pair of distributions, but it can
be refined by stochastic dominances of higher orders, each of them refining
the previous one. The ultimate result of this process is named infinite order
stochastic dominance (see [40]). The next subsection proposes the construction
of progressive refinements of L-dominance using similar mechanisms.

7.2.2 Infinite order Lorenz dominance

Refinement of Lorenz dominance can be obtained by iterating L(.) transfor-
mation so as to define higher order L-dominance relations. Observing indeed
that P-monotonicity holds for L-dominance (see Theorem 1), L-dominance ap-
pears as a refinement of Pareto dominance. Whenever x and y cannot be
compared in terms of P-dominance we compare instead L(x) and L(y). If no
Pareto dominance holds, the indetermination might be solved by comparing
L2(x) = L(L(x)) and L2(y) = L(L(y)). This process can be iterated mechan-
ically to higher levels with the aim of reducing incomparability. This leads to
consider kth order Lorenz vector Lk(x) defined by:

Lk(x) =

{

x if k = 0
L(Lk−1(x)) if k > 1

and the kth order Lorenz dominance defined by:

∀x, y ∈ R
n
+, x $k

L y ⇐⇒ Lk(x) $P Lk(y)

95

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

Then we define strict infinite order dominance (strict L∞-dominance for short)
as follows1:

≺∞
L =

⋃

k≥1

≺k
L

Note that, ≺0
L and ≺1

L correspond to P-dominance and L-dominance respec-
tively. Then, due to P-monotonicity, x ≺k

L y ⇒ x ≺k+1
L y for any k and relations

≺k
L form a nested sequence of strict partial orders. This suggests that ≺∞

L might
be computed, for any pair x, y ∈ Rn

+ by Algorithm 1 given below:

Algorithm 1: Testing strict L∞-dominance
u ← x;
v ← y;
while [not(u ≺P v or v ≺P u)] do

u ← L(u);
v ← L(v);

end
if (u ≺P v) then x ≺∞

L y;
if (v ≺P u) then y ≺∞

L x

For example, consider a 4 agents problem with 3 Pareto optimal feasible
vectors x = (3, 2, 3, 2), y = (3, 3, 3, 0) and z = (1, 3, 2, 4). We have L(x) =
(3, 6, 8, 10), L(y) = (3, 6, 9, 9) and L(z) = (4, 7, 9, 10). Hence we get x ≺∞

L z
and y ≺∞

L z. We need to go one step ahead to compare x and y. We get
L2(x) = (10, 18, 24, 27) and L2(y) = (9, 18, 24, 27), therefore y ≺∞

L x.
Note that our definition of infinite order Lorenz dominance assumes that the

vectors to be compared are cost vectors. It does not fit for utility vectors. A
simple way of adapting our approach to compare two utility vectors (u1, . . . , un)
and (v1, . . . , vn) according to infinite order dominance is to check whether (M −
u1, . . . ,M − un) ≺

∞
L (M − v1, . . . ,M − vn) for an arbitrary M chosen greater

than all ui and vi, i = 1, . . . , n. This adaptation is consistent with the definition
of ≺∞

L for cost vectors and does not depend on the choice of M .
Algorithm 1 tries to discriminate between vectors that were not discrimi-

nated by Lorenz dominance. However, nothing proves that the algorithm ter-
minates for all pairs of vectors. Moreover the mechanical iteration of Lorenz
dominance used to introduce the model is not easy to manipulate when we
study the properties of the model. We need another characterization of ≺∞

L

to be able to propose a fully operational decision procedure and to be able to
better understand the role of each agent in the decision process. For this reason,
in the following section, we characterize the vectors that can be discriminated
by Algorithm 1. We also provide a direct mathematical definition of strict L∞-
dominance making it possible to compare any pair of vectors in O(n log(n)).

1Although L-dominance can be seen as a particular instance of second order stochastic
dominance (assuming a uniform probability distribution on agents), the notion of infinite
order Lorenz dominance we introduce here must not be confused with infinite order stochastic
dominance that results from a different construction.

96

7.3. PROPERTIES OF INFINITE ORDER LORENZ DOMINANCE

7.3 Properties of infinite order Lorenz dominance

7.3.1 A representation theorem

In this section, we establish a representation result for strict L∞-dominance.
We present an algebraic reformulation of Lorenz vectors and establish technical
lemmas; the main result will follow immediately.

For x ∈ Rn
+, we define x

↑ as the vector resulting from sorting the components
of x in increasing order, that is: x↑ = (x(n+1−i))i=1...n since we have defined
(.) as the permutation sorting the components of x in decreasing order. As the
definition of L(.) respects the Symmetry Axiom, we have: L(x↑) = L(x). We
now introduce the n× n matrix:

L =

0 · · · 0 1
..
. . .

.
.

0 . .
.

1
1 · · · · · · 1

defined by: lij = 1 if i+ j > n, 0 otherwise.

Proposition 1 For x ∈ R
n
+, ∀k, L

k(x) = Lk.x↑

Schetch of the proof. For a vector y whose components are sorted in increasing
order, it is immediate to verify that L(y) (the Lorenz vector of y) is equal to
L.y (product of the matrix L and the vector y). Therefore, for any vector x, we
have: L(x) = L(x↑) = L.x↑. As L(x) is a vector whose components are sorted
in increasing order, the equality holds at any order: ∀k, Lk(x) = Lk.x↑ !

L being a symmetric real matrix, the finite-dimensional spectral theorem
applies and we can find P , an orthogonal matrix (such that tP = P−1) and n
real eigenvalues λ1 . . .λn (duplicated according to their multiplicity, with |λ1| ≥
|λ2| ≥ ... ≥ |λn|) such that: L = tP Diag(λ1 . . .λn) P and therefore Lk =
tP Diag(λk

1 . . .λ
k
n) P , Diag(a1 . . . an) being the diagonal matrix of elements

a1, a2, ..., an.
Let w = π

2n+1 :

Lemma 1 The n eigenvalues of L are λk = (−1)k+1

2 sin
(

(2k−1)w
2

) for k ∈ [1;n], with

eigenvectors Vk =
(

sin
(

i(2k − 1)w
)

)

i=1...n

Schetch of the proof. We introduce A = 2 Id−L−2, which is classical to diag-
onalize (L−2 is the square of the inverse matrix of L). The n eigenvalues of A
are 2 cos((2k− 1)w), k = 1 . . . n, with eigenvectors

(

sin
(

i(2k− 1)w
)

)

i=1...n
. These

n eigenvalues of A are in (0, 2) and have different absolute values. Using the
relation between A and L, we are able to determine the eigenvalues of L and its
eigenvectors. !

Decomposing Lk into n lines Lk
1 . . .L

k
n, we have:

97

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

x $k
L y ⇔ Lk.x↑ $P Lk.y↑ ⇔

Lk
1 .x

↑ ≤ Lk
1 .y

↑

...
Lk
n.x

↑ ≤ Lk
n.y

↑

Thus, the kth order Lorenz dominance can be rewritten as the intersection
of n orders. To determinate ≺∞

L , we will express these n orders and prove that
they are equivalent when k → ∞, and that this equivalent admits a limit when
k → ∞, limit that can be rewritten as the strict order induced by an OWA
function.

Definition 21 OWA means ordered weighted average. It is a family of aggre-
gators introduced by Yager [65] characterized by W (x) =

∑n
k=1 wkx(k). W is

a symmetric function of its arguments. The weights wk do not represent the
importance of agents but the attention we pay to agents depending on their rank
in the satisfaction order.

Let Ei be the square matrix of dimension n with all values to 0, excepted a
1 in position (i, i). Let Pi be the ith line of matrix P and Ai =

tPiPi. We have:

Lk = tP

(

n
∑

i=1

λk
iEi

)

P =

n
∑

i=1

λk
i (

tPiPi) =

n
∑

i=1

λk
iAi

Lemma 2 For x ∈ Rn
+, L

k(x) ∼ λk
1

tP1×W(x) where W is the OWA function
whose weights are the components of P1 in reverse order and ∼ is the relation
of asymptotical equivalence.

Proof By Lemma 1 giving the eigenvalues of L, we have |λ1| > |λ2| > ... > |λn|.
Moreover, the eigenvector associated to the greatest eigenvalue λ1 being V1 =t

P1 =
(

sin(iw)
)

i=1...n
> 0, we have tP1P1 > 0 and therefore, when k → +∞,

we have (since for 1 < i ≤ n, λk
i = o(λk

1) when k → +∞): Lk ∼ λk
1

tP1P1 so
that we can write: Lk(x) ∼ λk

1
tP1(P1.x

↑). P1.x
↑ is a weighted average of the

components of the increasing vector x↑. It can be rewritten as an OWA on x,
since if we define W as the OWA criterion whose weights are the components
of P1 in reverse order, we have: W(x) =

∑n
i=1(P1)n+1−i x(i) = P1.x

↑. We
finally obtain the following equivalent of the iteration of Lorenz dominance
when k → ∞: Lk(x) ∼ λk

1
tP1 ×W(x) !

Lemma 3 For x, y ∈ Rn
+, W(x) < W(y) ⇒ x ≺∞

L y.

Proof If W(x) < W(y), then, as Lk(x) ∼ λk
1

tP1 × W(x) (by Lemma 2), we
have for k large enough: Lk(x) 5P Lk(y), so x 5k

L y, and therefore x ≺∞
L y. !

Lemma 4 For x, y ∈ R
n
+, if W(x) = W(y), then x and y are incomparable by

≺∞
L .

98

7.3. PROPERTIES OF INFINITE ORDER LORENZ DOMINANCE

Proof The equivalent of Lk(x) of Lemma 2 cannot discriminate between two
vectors x and y when W(x) = W(y). We need to use the other eigenvalues of
L to try to discriminate between these two vectors. As W(x) = W(y), we can
write, according to the result of Proposition 1:

Lk(y)− Lk(x) =

n
∑

i=2

λk
i

tPiPi(y
↑ − x↑)

If for all j, Pj(y
↑ − x↑) = 0, then P (y↑ − x↑) = 0 and x↑ = y↑ (P being an

invertible matrix), and therefore there is no strict ≺∞
L -dominance between x

and y, since L(x) = L(y), and they are incomparable by ≺∞
L .

Else, let j be the first index such that Pj(y
↑ − x↑) .= 0. As tPP = Id, for

i > 1, tP1Pi = 0. But since Pi .= 0 (P being an invertible matrix) and P1 > 0,
Pi must have a component i1 strictly positive and another i2 strictly negative
to verify tP1Pi = 0. But we have, for any component i:

Lk
i (y)− Lk

i (x) ∼ λk
j

t(Pj)i(Pj(y
↑ − x↑))

so for k sufficiently large, the component i1 of Lk(y) − Lk(x) is strictly posi-
tive and i2 stricly negative; thus 5k

L-dominance cannot hold and x and y are
incomparable by ≺∞

L . !

We are now in position to formulate our main result:

Theorem 2 The strict L∞-dominance has a direct numerical representation
using the following ordered weighted average:

W(x) =

n
∑

k=1

sin

(

(n+ 1− k)π

2n+ 1

)

x(k)

This representation is given by the following property:

∀x, y ∈ R
n
+, x ≺∞

L y ⇐⇒ W(x) < W(y)

Proof ⇒: if x ≺∞
L y, then x and y are not incomparable by ≺∞

L . Therefore, the
contrapositive of Lemma 4 ensures that W(x) .= W(y). But then, as x ≺∞

L y,
we cannot have W(x) > W(y) (since Lemma 3 would apply and imply that
y ≺∞

L x). We finally must have W(x) < W(y).
⇐: the proof is straightforward by Lemma 3. !

Actually, to compare two vectors x and y according to strict L∞-dominance,
we do not need to run Algorithm 1. We compute instead W(x) and W(y) in
O(n log(n)). IfW(x) .= W(y), the vector having the smallest score byW strictly
L∞-dominates the other. Hence, Algorithm 1 would stop after a sufficiently
large number of iterations. Whenever W(x) = W(y), no strict dominance holds
at any order of the iteration of Lorenz dominance. This shows that Algorithm
1 would never terminate in this case. This illustrates the meaning and utility
of our representation result.

99

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

The weights of W are strictly decreasing. This is a typical feature of OWA
operators compatible with the transfer Principle [49]. Attaching more impor-
tance to less satisfied agents seems natural to model fairness. Another by-
product of Theorem 2 is to explain how we could choose the weights of the
OWA operator to model fairness, instead of using arbitrary strictly decreasing
weights.

The last remark deals with vectors incomparable by strict L∞-dominance:
the relation “is incomparable with” is a relation of equivalence (since it means
having the same value by function W). Therefore, it is natural to extend the
strict L∞-dominance to a weak order as follows:

Definition 22 The L∞-dominance is a weak order extending strict L∞-domi-
nance as follows:

∀x, y ∈ R
n
+, x $∞

L y ⇐⇒ W(x) ≤ W(y)

This numerical representation of L∞-dominance is very helpful to analyze
the axiomatic properties of the model. The fact that W(x) is an ordered
weighted average (OWA) with positive and strictly decreasing weights wk as
k increases makes sense. It means that all agents play a role in the evaluation of
solutions but, when evaluating a given solution, we attach more importance to
least satisfied agents. This is in accordance with the intuitive idea of fairness pre-
sented in the introduction. In particular we have (4, 3, 3, 3, 3) ≺∞

L (7, 1, 2, 3, 1)
and (10, 1, 2, 2, 1) ≺∞

L (9, 4, 4, 2, 4) as desired in Examples 1 and 2, which out-
performs the possibilities of min-sum and min-max criteria.

7.3.2 Main properties of L∞-dominance

We first exhibit two important propositions concerning W(x), the main prop-
erties satisfied by $∞

L will then derive immediately.

Proposition 2 W(x) can be expressed as a linear combination of the compo-
nents of L(x) using only strictly positive coefficients. We have:

W(x) =
∑n−1

k=1 (wk − wk+1)Lk(x) + wnLn(x) = w′.L(x)
with w′ = (w1 − w2, w2 − w3, . . . , wn−1 − wn, wn).

Proof Remarking that x(1) = L1(x) and x(k) = Lk(x) − Lk−1(x) for k =
2, ..., n., it is sufficient to make the substitution to get the desired linear com-
bination with weights w′

k = wk − wk+1 > 0 for k < n and w′
n = wn > 0.

!

Proposition 3 W is a Schur convex function.

Proof We have to prove that x $L y ⇒ W(x) ≤ W(y). If x $L y then by
definition we have L(x) $P L(y). Hence, considering the positive weighting
vector w′ used in the proof of Proposition 2, we have w′

k.Lk(x) ≤ w′
k.Lk(y)

for k = 1, ..., n. After summing these n equalities, we get the result using
proposition 2. !

100

7.3. PROPERTIES OF INFINITE ORDER LORENZ DOMINANCE

This shows that $∞
L is based on a Schur-convex function, like S-Gini indices

and Yaari’s model introduced in Example 3. As recalled before, Schur convex
functions are known as convenient tools to measure inequalities in majorization
theory (see [44]). We present now five properties satisfied by $∞

L which are
consequences of Proposition 3. Property P1 shows that all vectors having the
same Lorenz vector are treated equivalently:

P1: Neutrality. For all x, y in X , L(x) = L(y) ⇒ x ∼∞
L y.

Property P2 makes explicit the fact that≺∞
L is a refinement of Lorenz-dominance.

P2: Strict L-Monotonicity. x ≺L y ⇒ x ≺∞
L y.

Then we introduce 3 axioms that better explain how $∞
L works with Lorenz

vectors.

P3: Complete weak-order. $∞
L is reflexive, transitive and complete.

P4 Continuity. Let x, y, z be 3 cost-vectors such that x ≺∞
L y ≺∞

L z. There
exists α,β ∈]0, 1[such that:

αx+ (1 − α)z ≺∞
L y ≺∞

L βx + (1− β)z.

Proof We have indeed x ≺∞
L y ≺∞

L z ⇒ W(x) < W(y) < W(z). Whenever
α → 1 then the sequence of vectors of general term αx + (1 − α)z tends to x
and, by continuity of W , W(αx + (1 − α)z) → W(x). Hence for α sufficiently
close to 1, W(αx+(1−α)z) is sufficiently close to W(x) to be inferior to W(y).
Hence αx + (1 − α)z ≺∞

L y. We deliberately omit the other part of the proof
that works similarly with β → 0. !

The last property is a restriction to comonotonic vectors of the so-called
independence axiom proposed by Von Neumann and Morgenstern [63] in the
framework of utility theory. Comonotonicity of vectors is defined as follows:

Definition 23 Two cost vectors x and y are said to be comonotonic if xi > xj

and yi < yj for no i, j ∈ {1, . . . , n}.

Two solutions having comonotonic cost vectors satisfy the agents in the same
order. It is useful to remark that, for any pair (x, y) of comonotonic vectors,
there exists a permutation π of {1, . . . ,m} such that xπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(m)

and yπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(m). Consequently, W(αx + (1 − α)y) = αW(x) +
(1− α)W(y). We can now establish our last property:

P5 Comonotonic Independence. Let x, y, z 3 comonotonic cost vectors.
Then, for all α ∈]0, 1[:

x ≺∞
L y =⇒ αx + (1− α)z ≺∞

L αy + (1− α)z.

Proof We have x ≺∞
L y ⇒ W(x) < W(y). Hence W(αx) < W(αy) and

W(αx) +W((1−α)z) < W(αy) +W((1−α)z). Since x and z are comonotonic
we have W(αx) + W((1 − α)z) = W(αx + (1 − α)z). Moreover, y and z are
comonotonic; hence we have W(αy)+W((1−α)z) = W(αy+(1−α)z). Finally
we get W(αx+ (1− α)z) < W(αy + (1− α)z) and therefore αx+ (1− α)z ≺∞

L

αy + (1− α)z. !

101

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

Note that the restriction to comonotonic vectors is necessary within an in-
dependence axiom used for the measurement of inequalities [64]. If we forget
it in the premisses of P5, we obtain a property which is incompatible with the
Strict L-monotonicity axiom, as shown by the following:

Example 4 Let us consider x = (24, 24), y = (22, 26) and z = (26, 22) which
are not comonotonic. Due to Strict L-monotonicity x ≺∞

L y. Hence, usual
independence would imply (25, 23) = 1

2x + 1
2z ≺∞

L
1
2y + 1

2z = (24, 24) which is
in contradiction with (24, 24) ≺L (25, 23).

The above properties exhibit nice features of L∞-dominance and underline
some relationships with Yaari’s model introduced in Example 3. This is natural
because all these models are based on OWA operators with decreasing weights.

We have shown that fair optimization in multiagent problems can reasonably
be formulated as minimizing function W(x) over feasible cost vectors. However
W(x) is not a linear function since, for non-comonotonic vectors x, y, W(x +
y) .= W(x) + W(y) in general. Hence minimizing W(x) requires non-linear
optimization. The next section is devoted to this point in the context of many
to many multiagent assignment problems.

7.4 Solving multiagent assignment problems

The general many to many multiagent assignment problem we are considering
can be stated as follows: we want to assign m items to n agents. The number of
items assigned to agent i is restricted to interval [li, ui], i = 1, . . . , n. Item j must
be assigned to a number of agents restricted to the interval [l′j , u

′
j], j = 1, . . . ,m.

A n×m matrix gives the cost cij of assigning item j to agent i.
This general problem occurs in many contexts such as paper assignment

problems, social meeting on the web, resource allocation, transportation prob-
lems. The possible solutions are characterized by a n × m matrix of booleans
zij representing the possibility of assigning item j to individual i. Hence the
problem can be formalized as a multiobjective 0-1 linear optimization problem:

Min xi =
m
∑

j=1

cijzij , i = 1, . . . , n

s.t.

l′j ≤
∑n

i=1 zij ≤ u′
j j = 1, . . . ,m

li ≤
∑m

j=1 zij ≤ ui i = 1, . . . , n

zij ∈ {0, 1} ∀i, ∀j

This general multiobjective program fits to many different situations involv-
ing multiple agents. For example, in fair allocation of indivisible goods, we
set l′j = u′

j = 1, j = 1, . . . ,m. This is the case when we have to distribute
presents to kids as in the Santa Claus problem [9], or in some auctions prob-
lems. Alternatively, the multiobjective problem can easily model a conference

102

7.4. SOLVING MULTIAGENT ASSIGNMENT PROBLEMS

paper assignment problem. In this case l′j = u′
j = 3, j = 1, . . . ,m (a paper must

be reviewed by 3 PC members) and ui (resp. li) represent the maximal (resp.
minimal) number of papers we want to assign to reviewer i. In this case, xi

represents the overall charge or dissatisfaction of agent i.
In such multiagent combinatorial problems, the number of Pareto-optimal

solutions and L-nondominated solutions can be large, as illustrated in the fol-
lowing example.

Example 5 Consider a particular instance of the above problem with m items
to be assigned to 2 agents (n = 2). Assume that l1 = l2 = 0, u1 = u2 = n,
l′j = u′

j = 1, j = 1, . . . ,m with costs c1j = 2j and c2j = 2j−1, j = 1 . . .m − 1,
c1m = 4m, c2m = 2m + 1. This gives 2m distinct feasible assignments. The
half of them assigns item m to agent 1 which is prohibitive. All of them are
L-dominated. The other half produces cost vectors {(2k, 3 × 2m−1 − k), k ∈
{0, . . . , 2m−1 − 1}. Note that 3 × 2m−1 − k > 2k. Consequently, the associate
Lorenz vectors are {(3×2m−1−k, 3×2m−1+k), k ∈ {0, . . . , 2m−1−1}}. No P-
dominance holds between these Lorenz vectors because their sum of components
is constant. Hence we have 2m−1 L-nondominated solutions.

In this family of instances, the number of L-nondominated feasible cost vectors
grows exponentially with m. Even if we want only one feasible solution for each
distinct cost vector, the size of the output set remains exponential in m. Clearly,
L∞-dominance can help to reduce the set of optimal solutions.

7.4.1 Fair multiagent optimization

Using the result established in Theorem 2, the search of an optimal many to
many assignment problem with respect to L∞-dominance can be formulated as
the following 0-1 nonlinear optimization problem (Π):

Min W(x) =

n
∑

k=1

sin

(

(n+ 1− k)π

2n+ 1

)

x(k) (7.2)

(Π) s.t.

xi =
∑m

j=1 cijzij i = 1, . . . , n

l′j ≤
∑n

i=1 zij ≤ u′
j j = 1, . . . ,m

li ≤
∑m

j=1 zij ≤ ui i = 1, . . . , n

zij ∈ {0, 1} ∀i, ∀j

(7.3)

Proposition 4 The problem Pα consisting in deciding whether there exists an
assignment with cost W(x) ≤ α is an NP-complete decision problem for any
fixed positive α.

Proof Pα is clearly in NP. To establish NP-completeness, we reduce the NP-
complete Partition Problem to our problem. The Partition Problem is stated
as follows:
Instance: finite set A = {a1, . . . , am} of items and a size s(a) ∈ N for each
a ∈ A.

103

CHAPTER 7. FAIR ASSIGNMENTS BETWEEN SYSTEMS

Question: is it possible to partition A into two sets of objects of equal weights?
From an instance of Partition Problem, we construct in polynomial time an
instance of Pα with n = 2, l1 = l2 = 0, u1 = u2 = m, l′j = u′

j = 1, and
c1j = c2j = s(aj), j = 1, . . . ,m. Moreover we set α = (w1 + w2)β with
β =

∑

a∈A s(a)/2. Hence, the answer to Pα is YES if and only if the answer
to the partition problem is YES. Indeed, if there is a solution to the partition
problem, then there exists an assignment with cost (β,β) and W(β,β) = α.
Moreover, if the answer to the partition problem is NO, then any partition of
A into two subsets is unfair and the corresponding assignment leads to a cost
vector of type (β − ε,β + ε), ε ∈ (0,β]. Since (β,β) ≺L (β − ε,β + ε) we have
W(β− ε,β+ ε) > W(β,β) = α. So there is no assignment such that W(x) = α;
the answer to Pα is NO. !

7.4.2 Linearization of the problem

Thanks to Proposition 2, Π rewrites:

(Π′) Min W(x) =

n
∑

k=1

w′
kLk(x) s.t. (7.3)

with w′ = (w1 −w2, w2 −w3, . . . , wn−1−wn, wn). Following an idea introduced
in [50], we express the kth component Lk(x) of the Lorenz vector L(x) as the
solution of the following linear program:

Max
(

n
∑

i=1

αikxi

)

s.t.

{ ∑n
i=1 αik = k

0 ≤ αik ≤ 1 i = 1 . . . n

Its optimal value is clearly the sum of the k greatest components of x, that is
Lk(x). This is also the optimal value of the dual problem:

Min
(

k rk +

n
∑

i=1

bik

)

s.t.

{

rk + bik ≥ xi i = 1 . . . n
bik ≥ 0 i = 1 . . . n

We can therefore combine the linear program above with Π′ (since both are
in minimization and w′ > 0) and rewrite our problem Π as the following mixed
integer linear program:

Min

n
∑

k=1

w′
k

(

k × rk +

n
∑

i=1

bki

)

(Γ) s.t.

l′j ≤
∑n

i=1 zij ≤ u′
j j = 1, . . . ,m

li ≤
∑m

j=1 zij ≤ ui i = 1, . . . , n

rk + bik ≥
∑m

j=1 cijzij ∀i, k = 1, . . . , n

bik ≥ 0 ∀i, ∀k
zij ∈ {0, 1} ∀i, ∀j

Γ has 2(n2 + m + n) constraints, nm 0-1 variables, and n2 + n continuous
variables.

104

7.4. SOLVING MULTIAGENT ASSIGNMENT PROBLEMS

7.4.3 Numerical tests

We present here numerical tests2 performed on random instances of one-to-
one and many-to-many multiagent assignment problems. To solve the mixed
integer linear program Γ, we used ILOG CPLEX 11.100 on a computer with
4 Go of memory and an Intel Core 2 Duo 2.66 GHz processor. Table 1 (resp.
Table 2) gives the results obtained for the assignment of m objects to n = m
agents, with li = l′i = ui = u′

i = 1 and costs randomly generated in [1, 1000]
(resp. [1, 20]). Table 3 is the test on the paper assignment problem modeled as
follows: n = m/4, each reviewer receives at most 9 papers (li = 0 and ui = 9),
a paper has to be reviewed by exactly 2 reviewers (l′j = u′

j = 2), and a reviewer
expresses his preferences for reviewing a paper with a number between 0 and 5
(i.e. costs are in [0, 5]). The computation times expressed in seconds represent
average solution times over 20 random instances of the same size m (number of
objects) with a timeout set to 1000 seconds.

m t

10 .01
20 .09
30 .33
40 1.52
50 5.14
60 16.1
70 34.0
80 81.8
90 136
100 275

m t

100 .93
200 3.65
300 17.4
400 52.8
500 104
600 161
700 390
800 482
900 843
1000 >1000

m t

200 3.51
300 5.63
400 13.9
500 35.7
600 79.4
700 148
800 303
900 478
1000 904
1100 >1000

1. Costs in [1, 1000] 2. Costs in [1, 20] 3. Paper Assignment

So, it is possible to find a fair solution to the paper assignment problem
with realistic parameters for a standard conference within a reasonable time.
The approach presented here remains valid for finding fair assignments by opti-
mization of S-Gini indices and other instances of the Yaari’s model. Indeed, as
ordered weighted averages, such indices can be linearized similarly as W . We
have performed tests showing that solution times using such criteria are in the
same order of magnitude.

Our results can be extended to the case of weighted agents (which occurs,
for example, in resource allocation problems, where agents can have exoge-
nous rights represented by individual weights). It is possible to show that the
weighted extension of L-dominance converges by iteration towards a weighted
extension of OWA. The associate optimization problem can be solved efficiently
by slightly modifying the mixed integer linear program Γ.

2We wish to thank Julien Lesca (LIP6-UPMC) for his participation to numerical tests.

105

Chapter 8

Conclusion

We have defined a minimalist & unified semantics for complex industrial sys-
tems and their architecture. Our aim is to give a unified formal semantics to
the concepts manipulated on a daily basis by engineers from various fields work-
ing together on the design of such systems. Indeed, they need formal tools to
reason on & model those systems in a unified & consistent way, with a clear
understanding of the underlying concepts.

We have first introduced a definition of time unifying both continuous and dis-
crete times. We have also defined data and dataflows, which are the fundamen-
tal objects for computation and communication between systems. Systems have
then been defined as algorithmic transformations of dataflows, in a way that is
equivalent to transfer functions. Our definition of systems captures two very im-
portant properties of complex industrial systems: heterogeneity (being able to
deal with various types of systems naturally modeled with heterogeneous time
& data) and recursive integration (taking into account the integrative dimension
of such systems that are build recursively with multiple levels of subsystems).
Three operators on systems have allowed us to define the integration of such
systems: product, feedback & abstraction.

To handle the underspecification of systems during the design process and to
model the internal structure of a multiscale system resulting from the recursive
application of integration operators on elementary systems, we have introduced
a logic on systems to express requirements, and a formalism to define a mini-
malist systems architecture framework. We have finally presented an original
fair optimization model & algorithm that can be relevant to make architecture
choices when designing systems.

Still, the subject of complex systems architecture is tremendously complex.
We thus want to outline some limits of our approach & formalism:

1. A strong assumption in our work is that each system has its own rhythm,
and that this rhythm cannot be disrupted by an interaction with another

107

CHAPTER 8. CONCLUSION

system. It could lead to modeling artefacts when integrating systems with
different time scales (since in our model we synchronize the data flows
through a projection).

2. Also, we assume that systems live according to a static time scale that
cannot be modified during the execution. It would be meaningful to ex-
tend our definition of systems to dynamic time scales progressively defined
during the execution of the system (e.g. according to the events occurring
during the execution, but still avoiding Zeno’s effect).

3. We do not directly model nondeterministic behavior. However, the more
complex the systems are, the more important nondeterminism is1. Also,
the very mechanical description of system behavior is of limited practical
use when we intend to consider systems at a rather high level of abstrac-
tion (and not a a level at which their concrete behavior is meaningful).
Extending our formalism to event-based approaches could be an elegant
solution to both issues, to define systems in practice in a more simple &
actionable way2.

4. Parts I & II have not be proven consistent, and some key results of equiva-
lence are missing between our formalisms. The Chapter 6 should especially
be more closely linked to the previous ones.

5. We consider that the internal structure of a system does not vary in time,
what may not be the case for distributed systems and systems of systems.
Being able to model such phenomenas would improve the expressivity of
our formal framework.

6. It is possible to express different kinds of systems in our formalism. How-
ever, this “expressivity” does not mean that, in practice, it is really pos-
sible to use our formalism to model the full range of such systems in a
natural, non-artificial way (there is a substantial difference between ex-
pressivity in theory and in practice, as the ability to model naturally a
system in a given language or formalism is key in practice).

7. We did not compare our dataflow-centric formalism with the underlying
semantics of synchronous languages like Lustre or Simulink, which use
similar concepts.

This work is the theoretical part of a broader project aiming at building a
science for systems design & architecture, extending and generalizing the models
& methods existing, for instance, for software design. Within the last years, we

1In practice, a limit of our descriptive, mechanistic approach is also the sensibility to initial
conditions (especially for physical systems that exhibit chaotic behavior).

2it also means that to turn our formalism into a usable modeling language, time should be
rather considered as more abstract than the logical time we have defined.

108

have applied our framework to several real industrial cases from various indus-
tries (aeronautics, defence, banking, nuclear engineering, automotive), allowing
to strengthen our model and assess its relevancy & genericity.

We believe that the following topics are promising directions & subjects to
explore to go beyond the present work and contribute to build this science:

• We are willing to provide a formal framework to describe a design process
using our semantics, providing a formalization of design approaches mixing
top-down and bottom-up approaches to explore the recursive structure of
integrated systems being designed. As we have seen in Chapter 6, taking
into account the design process has significant impacts on the models we
define, so that they can be meaningful & useful in real world situations.
This is a significant challenge.

• An architecture framework is very rich, with for instance several layers
that we have not taken into account in the present work. It would be
of great interest to extend our minimalist formalism to all aspects of an
architecture framework.

• In-depth case studies are needed to show how our approach & formalism
helps on real industrial projects.

• The most complicated integration operator, i.e. abstraction, should be
refined by different operators performing specialized kind of abstractions
on systems, consistently with the reality of the specialized and meaningful
abstractions encountered in Systems Engineering. It would make it more
actionable in practice.

• Computability is a key topic for computer scientists. The properties of the
internal state are decisive to study computability, and our model should
also be compared from the point of view of computability on dataflows
with other models of systems3.

Thank you for reading this manuscript! Hoping that you have enjoyed this
formal riddle in the stunning world of complex systems modeling & architecture!

And this is just the beginning...

3The strength of our model is that it handles both heterogeneity and integration of sys-
tems. Still, it would be interesting to compare our approach to the one consisting in defining
integration operators & an architecture framework upon standard models of hybrid systems
(possibly slightly modified if necessary).

109

Bibliography

[1] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cam-
bridge University Press, 2005.

[2] P. Aczel and N. Mendler. A final coalgebra theorem. In D.-H. Pitt, D.-
E. Ryeheard, P. Dybjer, A.-M. Pitts, and A. Poigne, editors, Proceedings
category in computer science, Lecture Notes in Computer Science, pages
357–365. Springer-Verlag, 1989.

[3] M. Aiguier, F. Boulanger, and B. Kanso. A formal abstract framework
for modeling and testing complex software systems. Theoretical Computer
Science, 455:66–97, 2011.

[4] M. Aiguier, B. Golden, and D. Krob. An adequate logic for heterogeneous
systems. In 18th IEEE International Conference on Engineering of Com-
plex Computer Systems, 2013.

[5] E. Alaksen and R. Belcher. Systems Engineering. Prentice Hall, 1992.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theor. Comp. Sci., 138:3–34, 1 1995.

[7] André Arnold, Gérald Point, Alain Griffault, and Antoine Rauzy. The
altarica formalism for describing concurrent systems. Fundam. Inf., 40(2-
3):109–124, November 1999.

[8] J. Bacon and J. Van Der Linden. Concurrent Systems: An Integrated Ap-
proach to Operating Systems, Distributed Systems and Database. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[9] N. Bansal and M. Sviridenko. The santa claus problem. In STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium on Theory of com-
puting, pages 31–40, 2006.

[10] G. Berry. The foundations of Esterel. MIT Press, 2000.

[11] B.-S. Blanchard and W.-J. Fabrycky. Systems engineering and analysis.
Prentice Hall, 1998.

111

BIBLIOGRAPHY

[12] S. Bliudze and D. Krob. Modelling of complex systems: Systems as dataflow
machines. Fundamenta Informaticae, 91:1–24, 2009.

[13] IEEE Standards Board. IEEE Standard VHDL Language Reference Manual
(IEEE Std. 1076-1993). IEEE, June 1994.

[14] O. Bournez and M.-L. Campagnolo. New Computational Paradigms.
Changing Conceptions of What is Computable, chapter A Survey on Con-
tinuous Time Computations, pages 383–423. Springer-Verlag, 2008.

[15] S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of
indivisible goods. In Proceedings of IJCAI, 2005.

[16] J. Bradfield and C. Stirling. Modal mu-calculi. In P. Blackburn, J. van
Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 721–756.
Elsevier, 2007.

[17] M. Broy. Refinement of time. Theor. Comput. Sci., 253(1):3–26, February
2001.

[18] M. Broy and G. Stefănescu. The algebra of stream processing functions.
Theor. Comput. Sci., 258:99–129, May 2001.

[19] M. Broy and K. Stølen. Specification and development of interactive sys-
tems: focus on streams, interfaces, and refinement. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2001.

[20] P. Caspi and M. Pouzet. Synchronous kahn networks. SIGPLAN Not.,
31(6):226–238, June 1996.

[21] D. Cha, J. Rosenberg, and C. Dym. Fundamentals of Modeling and
Analysing Engineering Systems. Cambridge University Press, 2000.

[22] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Negotiating over small
bundles of resources. In Proceedings of AAMAS, pages 296–302, 2005.

[23] K. M. Chong. An induction theorem for rearrangements. Canadian Journal
of Mathematics, 28:154–160, 1976.

[24] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups.
Math. Surveys 7, Amer. Math. Soc., R.I., 1961.

[25] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM Symposium on
Principles of Programming Languages, 1977.

[26] J. B. Dennis. First version of a data flow procedure language. In Pro-
gramming Symposium, Proceedings Colloque sur la Programmation, pages
362–376, London, UK, UK, 1974. Springer-Verlag.

112

BIBLIOGRAPHY

[27] F. Diener and G. Reeb. Analyse Non Standard. Hermann, 1989.

[28] T. Gajdos. Single crossing lorenz curves and inequality comparisons. Math-
ematical Social Sciences, 47(3):21–36, 2004.

[29] I. P. Gent, R. W. Irving, D. F. Manlove, P. Prosser, and B. M. Smith. A
constraint programming approach to the stable marriage problem. In In
CP01, pages 225–239. Springer, 2001.

[30] B. Golden, M. Aiguier, and D. Krob. Modeling of complex systems ii:
A minimalist and unified semantics for heterogeneous integrated systems.
Applied Mathematics and Computation, 218(16):8039–8055, 2012.

[31] B. Golden and Y. Hourdel. A minimalist formal framework for systems
architecting. In 3rd International Workshop on Model Based Safety As-
sessment, 2013.

[32] B. Golden and P. Perny. Infinite order lorenz dominance for fair multiagent
optimization. In AAMAS, pages 383–390, 2010.

[33] J. Goldsmith and R. Sloan. The conference paper assignment problem. In
Proc. AAAI Workshop on Preference Handling for Artificial Intelligence,
2007.

[34] M. Guo and V. Conitzer. Undominated VCG redistribution mechanisms.
In Proceedings of AAMAS’08, pages pp. 1039–1046, 2008.

[35] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language lustre. In Proceedings of the IEEE, volume 79,
1991.

[36] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science, LICS ’96,
pages 278–, Washington, DC, USA, 1996. IEEE Computer Society.

[37] G. Kahn. The semantics of a simple language for parallel programming. In
J. L. Rosenfeld, editor, Information processing, pages 471–475, Stockholm,
Sweden, Aug 1974. North Holland, Amsterdam.

[38] P. Kosiuczenko and M. Wirsing. Timed rewriting logic with an application
to object-based specification. Science of Computer Programming, 28(2–
3):225–246, 1997.

[39] D. Krob. Modelling of complex software systems: a reasoned overview. In
Proceedings of the 26th IFIP WG 6.1 international conference on Formal
Techniques for Networked and Distributed Systems, FORTE’06, pages 1–22,
Berlin, Heidelberg, 2006. Springer-Verlag.

[40] H. Levy. Stochastic dominance and expected utility: Survey and analysis.
Management Science, 38(4):555–593, 1992.

113

BIBLIOGRAPHY

[41] J. Lygeros. Lecture notes on hybrid systems. In Notes for an ENSIETA
Workshop, 2004.

[42] M.-W. Maier and E. Rechtin. The art of system architecturing. CRC Press,
2002.

[43] L. Mandel and M. Pouzet. ReactiveML, a Reactive Extension to ML. In
ACM International Conference on Principles and Practice of Declarative
Programming (PPDP), Lisboa, July 2005.

[44] W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its
Applications. Academic Press, London, 1979.

[45] P. Marwedel. Embedded System Design. Kluwer, 2003.

[46] G. H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal 34, 1955.

[47] H. Moulin. Axioms of cooperative decision making. Monograph of the
Econometric Society. Cambridge University Press, 1988.

[48] E. Nelson. Internal set theory: a new approach to nonstandard analysis.
Bulletin of the American Mathematical Society, 83:1165–1198, 1977.

[49] W. Ogryczak. Inequality measures and equitable approaches to location
problems. European Journal of Operational Research, 122:374–391, 2000.

[50] W. Ogryczak and T. Sliwinski. On solving linear programs with the ordered
weighted averaging objective. European Journal of Operational Research,
148(1):80–91, 2003.

[51] P. Perny and O. Spanjaard. An axiomatic approach to robustness in search
problems with multiple scenarios. In Proceedings of the 19th conference on
Uncertainty in Artificial Intelligence, pages 469–476, 2003.

[52] A. Rabinovitch. Automata over continuous time. Theor. Comput. Sci.,
300:331–363, 2003.

[53] F. Robert. Les systèmes dynamiques discrets. Mathématiques et Applica-
tions, 19, 1994.

[54] A. Robinson. Non-standard analysis. American Elsevier, 2nd. ed. edition,
1974.

[55] J.-M.-M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.
Sci., 249(1):3–80, 2000.

[56] J.-M.-M. Rutten. Algebraic specification and coalgebraic synthesis of mealy
automata. In International Workshop on Formal Aspects of Component
Software (FACS 2005), volume 160 of Electronic Notes in Computer Sci-
ence, pages 305–319. Elsevier, 2006.

114

BIBLIOGRAPHY

[57] A.-P. Sage and J.-E. Amstrong. Introduction to system engineering. John
Wiley, 2000.

[58] A. Sen. On economic inequality. Clarendon Press, expanded edition edition,
1997.

[59] A.F. Shorrocks. Ranking income distributions. Economica, 50:3–17, 1983.

[60] E. Sontag. Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems, volume 6 of Textbooks in Applied Mathematics. Springer-
Verlag, 1998.

[61] B.A. Trakhtenbrot. Understanding basic automata theory in the continuous
time setting. Fundam. Inform., 62, 2003.

[62] W.-C. Turner, J.-H. Mize, K.-E. Case, and J.-W. Nazemeth. Introduction
to industrial and systems engineering. Prentice Hall, 1993.

[63] J. von Neumann and O. Morgenstern. Theory of games and economic
behavior. 2nd Ed. Princeton University Press, 1947.

[64] M.E. Yaari. The dual theory of choice under risk. Econometrica, 55:95–115,
1987.

[65] R.R. Yager. On ordered weighted averaging aggregation operators in mul-
ticriteria decision making. In IEEE Trans. Systems, Man and Cybern.,
volume 18, pages 183–190, 1998.

[66] J. Zaytoun. Systèmes dynamiques hybrides. Hermes, 2001.

[67] B. P. Zeigler, H. Praehofer, and K. T. Gon. Theory of Modeling and Sim-
ulation — Integrating Discrete Event and Continuous Complex Dynamic
Systems. Academic Press, 2000.

[68] Changyan Zhou and Ratnesh Kumar. Semantic translation of simulink dia-
grams to input/output extended finite automata. Discrete Event Dynamic
Systems, 22(2):223–247, June 2012.

115

