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Abstract

This thesis studies the cooperation between the Coq proof assistant and external

provers through proof witnesses. We concentrate on two di�erent kinds of provers that
can return certi�cates: �rst, answers coming from SAT and SMT solvers can be checked in
Coq to increase both the con�dence in these solvers and Coq's automation; second, theorems
established in interactive provers based on Higher-Order Logic can be exported to Coq
and checked again, in order to o�er the possibility to produce formal developments which mix
these two di�erent logical paradigms. It ended up in two software: SMTCoq, a bi-directional
cooperation between Coq and SAT/SMT solvers, and HOLLIGHTCOQ, a tool importing HOL
Light theorems into Coq.

For both tools, we took great care to de�ne amodular and e�cient architecture, based
on three clearly separated ingredients: an embedding of the formalism of the external tool
inside Coq which is carefully translated into Coq terms, a certi�ed checker to establish
the proofs using the certi�cates and a Ocaml preprocessor to transform proof witnesses
coming from di�erent provers into a generic certi�cate. This division allows that a change in
the format of proof witnesses only a�ects the preprocessor, but no proved Coq code. Another
fundamental component for e�ciency and modularity is computational re�ection, which
exploits the computational power of Coq to establish generic and small proofs based on the
certi�cates.
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Résumé

Cette thèse présente une coopération entre l'assistant de preuve Coq et certains prou-
veurs externes basée sur l'utilisation de traces de preuves. Nous étudions plus partic-
ulièrement deux types de prouveurs pouvant renvoyer des certi�cats : d'une part, les réponses
des prouveurs SAT et SMT peuvent être véri�ées en Coq a�n d'augmenter à la fois la con-
�ance qu'on peut leur porter et l'automatisation de Coq ; d'autre part, les théorèmes établis
dans des assistants de preuves basés sur la Logique d'Ordre Supérieur peuvent être
exportés en Coq et re-véri�és, ce qui permet d'établir des preuves formelles mêlant ces deux
paradigmes logiques. Cette étude a abouti à deux logiciels : SMTCoq, une coopération bi-
directionnelle entre Coq et des prouveurs SAT/SMT, et HOLLIGHTCOQ, un outil important
les théorèmes de HOL Light en Coq.

L'architecture de chacun de ces deux développements a été pensée de manière modulaire

et e�cace, en établissant une séparation claire entre trois composants : un encodage en
Coq du formalisme de l'outil externe qui est ensuite traduit avec soin vers des termes Coq,
un véri�cateur certi�é pour établir les preuves, et un pré-processeur écrit en Ocaml

traduisant les traces venant de prouveurs di�érents dans le même format de certi�cat. Grâce
à cette séparation, un changement dans le format de traces n'a�ecte que le pré-processeur,
sans qu'il soit besoin de modi�er du code ou des preuves Coq. Un autre composant essentiel
pour l'e�cacité et la modularité est la ré�exion calculatoire, qui utilise les capacités de
calcul de Coq pour établir des preuves à la fois courtes et génériques à partir des certi�cats.
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Chapter 1

A matter of trust

�There has to come a point, as Multivac becomes more complex and capable, when
it can move of its accord out of our control. I may have shoved it past the point.�

�But if you have, how can we trust Multivac to � �

�We have no choice,� she said.

Isaac Asimov, The Winds of Change and Other Stories, 1983

Like human beings, automatic devices cannot be trusted unless they have given evidence
of their good faith. Unlike human beings, we have a total control on them to make them
output such evidence. Hence trusting them should be easy and even automatic itself. But
how do we trust �automatic trusters�?

1.1 Interactive theorem provers

To solve this chicken and egg dilemma, we �rst need to design an �automatic truster� whose
evidence of its good faith can easily convince anyone. Interactive theorem provers (also called
proof assistants) are good candidates for this:

• they are �trusters�: they are software aimed at helping the de�nition and the veri�cation
of formal proofs;

• they are automatic: proof checking consists in verifying the well-formedness of a deriva-
tion tree, which is a mechanical task; and proof design is also partially automatized;

• they are convincing: their trusted bases are kept as small and understandable as possible.

To achieve this last assertion, the proof checker at the heart of an interactive theorem
prover, also called the kernel, is su�ciently small so that one single person can apprehend it.
Most of the time, proof assistants are written in languages with well established semantics.
They run on large and complicated hardware, but by looking at the code, we can be reasonably
sure that they do not deliberately exploit possible �aws of the hardware. Some of them also
output proof terms, which can be checked by external tools, to enhance con�dence.

13



To make them usable, many additions are built on top of the kernel; hence they do not
belong to the trusted base. They provide for instance facilities to write terms, like standard
notations, and especially to write proofs, usually called tactics. Tactics can be very simple,
performing only one basic step of proofs, or arbitrary complicated decision procedures, as long
as they produce a valid inference tree.

Formalization of a variety of challenging problems has emphasized the capacity of interac-
tive theorem provers to handle and check large proofs. Safety-critical applications have been
proved correct, like parts of the Paris Métro Line 14 control system using the B-Method. Ad-
vanced mathematical reasoning is also welcome, as enlightened by the recent formalization in
Coq of the Feit-Thompson theorem about classi�cation of �nite groups. Proof assistants are
also well suited for theorems involving computations, like the Four Color Theorem [Gon08] or
the Kepler Conjecture, currently being studied by the Flyspeck Project1 [HHM+10].

Despite these successes, the design and the use of interactive theorem provers stagnates
at an academic level and in a very restricted community of computer scientists. The level of
detail of formal proofs is far more exigent than for paper proofs and a consequent knowledge
of the underlying formal system is often required to complete them.

Many interactive theorem provers coexist, implementing di�erent logical frameworks and
observing di�erent credos. This variety brings the opportunity to �nd provers well-suited for
di�erent kinds of problem. However, communication between proof assistants is most of the
time nonexistent and it is thus impossible to bene�t from advantages coming from two of them.
Besides, the lack of a uni�ed framework loses new users when starting a formalization [Ben06].

1.2 Trusting other automatic devices

As we argued, interactive theorem provers are one possible base to build evidence of the good
faith of more general automatic tools on top of them. In this setting, we usually consider two
kinds of evidence.

In the autarkic approach, we formally establish the behavior of a tool in a given model.
For instance, concerning software, this corresponds to proving that a program matches its
speci�cation. Establishing the behavior of a device is a di�cult task, but when done, we are
convinced once and for all of its correctness. However, if the program changes even a little,
the proof must be changed accordingly.

In the skeptical approach [HT98], we ask for the tool to justify a posteriori all its actions
and only formally check the justi�cations. This requires to check back any achievement of the
device, but it is often easier to formally check justi�cations rather than tools themselves. In
addition to require less e�ort, it is more robust to changes in the tool: as long as justi�cations
remain the same, the skeptical checker is still relevant.

1.3 Automatic theorem provers

Automatic theorem provers form a particular subset of automatic devices, aimed at establish-
ing a large variety of properties with four main goals:

1. speed: they should answer as fast as possible;

1The progress of this project is available at http://code.google.com/p/flyspeck.
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2. expressivity: they should solve as many problems as possible;

3. automation: the users should have little work to do to establish the property they are
interested in;

4. correctness: they should never give a wrong answer.

Obviously, the last goal clashes with the other three: to be fast, expressive and fully automatic,
these theorem provers are very large software that are likely to contain bugs. Contrary to proof
assistants, there is no small kernel ultimately checking the proof.

The success of automatic theorem provers relies on the rapidly expanding design of decision
procedures to quickly solve hard problems (eg. Boolean satis�ability, validity of formulas in
Presburger arithmetic. . . ) and even undecidable ones (eg. non-linear integer arithmetic,
termination of rewriting systems. . . ). They can be used both as a back-end to prove the
correctness of programs, or inside larger applications, for instance to �nd an optimal solution
satisfying a set of constraints. They are widely used in particular for critical applications,
which thus su�er from their lack of safety.

1.4 Motivations of this work

Interactive and automatic theorem proving are two rather separated worlds that could bene�t
from each other. On the one hand, proof assistants, while conserving the property of being
small and safe, would require less human work. On the other hand, the use of automatic
theorem provers would gain safety, ideally the same degree of con�dence as interactive provers.

This collaboration would be especially interesting if we make no concession on any side.
The interaction with a proof assistant should not prevent the automatic prover from being
fast and expressive. It should not increase the trusted base of the proof assistant, while being
expressive enough to solve many goals.

Cooperation between proof assistants would also be pro�table. Di�erent aspects of the
same problem could be formalized in di�erent interactive theorem provers � depending on the
possibilities they o�er, or the ease of developers for one prover or another � and then entirely
checked by one single (possibly external) prover. This would also increase con�dence between
proof assistants, if they collaborate through a skeptical approach.

Once again, we should try to conciliate the expressivity of all the proof assistants that are
working together. This may not be always possible, if their logical frameworks are incompat-
ible; in this case, concessions may have to be made depending on the features of the proofs
assistants that are really used to solve the problem we are interested in, or on the shallowness
of the obtained results.

We must also be careful to keep theorem statements intelligible: their translation in the
target prover must be formulated like one would have done directly in this prover.

This thesis explores the collaboration between the Coq proof assistant and other provers,
with a skeptical approach.

First, we study a bi-directional cooperation with some automatic theorem provers, namely
SAT and SMT solvers that decide the satis�ability of Boolean formulas, in which theory
reasoning might be needed. We provide both e�cient tools to formally check answers coming
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from SAT and SMT solvers and the possibility to enjoy the power of SAT and SMT solvers
inside Coq without compromising soundness.

The second part of this work investigates the importing of proofs coming from the HOL
Light interactive theorem prover into Coq. Great care has been taken both to be e�cient and
to obtain intelligible Coq statements from HOL Light ones, despite the di�erences between
these two provers.

The principal motivation is to bypass the problems mentioned above.
By providing a simple way to check answers given by SAT and SMT solvers, we o�er

the possibility to the large community using these provers to �nally trust them with great
con�dence, at a rather small cost. It is also a way for SAT and SMT solvers designers to �nd
bugs in a systematic way.

On the interactive theorem provers side, we bring more automation to Coq by discharging
a non trivial part of goals to SAT and SMT solvers. We expect this work to facilitate the use
of Coq and to attract new users, ideally from outside the community of proof assistants.

Importing HOL Light theorems into Coq is a �rst step towards a cooperation between
interactive theorem provers based on di�erent paradigms. The choice of HOL Light and Coq
was directed by the Flyspeck Project, whose pieces are written in HOL Light and others in
Coq. We hope it can be used one day to reconstruct the entire proof of Kepler conjecture.

We favor this direction since the logic of Coq augmented with classical axioms is expressive
enough to encode Higher-Order Logic, whereas the other direction would have required an
encoding of the Calculus of Inductive Constructions into Higher-Order Logic which would
have had a di�culty which is not required.

All these aspects share the idea that it is crucial to be able to trust automatic tools. We
o�er a basis to solve this question.

To achieve our purpose, we have to take into account that certi�cates coming from SAT
and SMT solvers and HOL Light are very large objects. We need to process them e�ciently,
both in terms of speed and memory.

All this work crucially relies on the computational power of Coq, coming from its ability
to e�ciently normalize λ-terms. Certi�cates coming from external tools are checked using
certi�ed programs in a process called computational re�ection.

The interaction with SAT and SMT solvers also fundamentally used the recent native
version of Coq [BDG11], with e�cient computation and data structures [AGST10].

We cared about modularity in many aspects, to make this work as reusable as possible. We
o�er the possibility to handle new SAT and SMT solvers by writing only an Ocaml preproces-
sor, but no Coq code nor proofs. We also provide a simple interface to enhance the expressivity
of this work with new theory decision procedures. Finally, concerning the importation of HOL
Light into Coq, we de�ned in Coq a model of HOL which is generic for any HOL-like prover
and does not depend on the format of certi�cates.

In all of this work, Coq is at the same time a tool collaborating with others and the
skeptical checker. Another approach for such a collaboration consists in using a dedicated
back-end checker, like dedukti [BCH12], instead of one of the participants. The trusted base
is likely to be smaller � a dedicated checker is simpler than a general purpose proof assistant
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� but at the cost of more numerous and complicated encodings, especially if the back-end
checker is minimalist.

To conclude, this thesis does not directly formalize new results, but formalizes tools that
will build new theorems. It proposes the theoretical foundations for an interaction between
Coq and external provers, in particular a robust, e�cient and modular architecture; and an
implementation of this architecture.

1.5 Achievements

The work realized during this thesis followed two main directions:

• a skeptical cooperation between Coq and other provers through proof witnesses relying
on computational re�ection, which ended up in two softwares: SMTCoq, a bi-directional
cooperation between Coq and SAT/SMT solvers, and HOLLIGHTCOQ, a tool importing
HOL Light theorems into Coq;

• a re�ection about the theory of parametricity inside the Calculus of Inductive Construc-
tions, the language implemented by Coq.

1.5.1 SMTCoq

The heart of SMTCoq is a modular and e�cient checker for SAT and SMT proof witnesses
written and proved correct in Coq. On top of it, we provide sets of checkers and tactics
to work with two provers: the SAT solver ZCha� and the SMT solver veriT. The checkers
provide a certi�ed way of checking ZCha� and veriT answers, thus increasing their safety. As
a complement, the tactics bring ZCha� and veriT power inside Coq, by calling them on some
goals and checking back their answers.

We were really careful to be modular, in such a way that it should be easy to work with
other provers than ZCha� and veriT and to check other theories than the one we provide
(currently, congruence closure and linear integer arithmetic). A prototype checker for Z3
strengthens this modularity.

We were also motivated by e�ciency. Experiments show that both checkers and tactics
are really e�cient and bypass the state-of-the-art [Web08, BW10, LC09].

SAT and SMT in Coq can also serve as a basis for more complex decision procedures. We
explain how SMTCoq can be used to implement a decision procedure for machine integers,
which relies on a translation into SAT (called bit-blasting) and a call to ZCha�.

SMTCoq was developed in collaboration with some members of the ANR DeCert initiative,
especially Michaël Armand and Benjamin Grégoire, with ideas by Laurent Théry.

This work was published in two peer-reviewed proceedings: the proceedings of the First
International Conference on Certi�ed Programs and Proofs (CPP'11) [AFG+11a] and the
proceedings of the International Workshop on Proof-Search in Axiomatic Theories and Type
Theories (PSATTT'11) [AFG+11b].

1.5.2 HOLLIGHTCOQ

HOLLIGHTCOQ relies on an encoding of Higher-Order Logic in Coq and its translation into
Coq terms. On top of it, we provide a checker for HOL Light proof certi�cates in the Proof
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recording format [OS06] that generates Coq �les containing encoded versions of HOL Light
theorems and their proofs. It is then su�cient to apply the translation to obtain theorems
stated and proved in Coq.

We took great care that the theorems, while generated automatically, have Coq intelligible
statements. This is realized by a judicious translation of HOL Light constants into commonly
used Coq objects.

The model of Higher-Order Logic in Coq is generic, but the choice of the proof certi�cates
greatly in�uences the design and the e�ciency of the checker. HOLLIGHTCOQ enlightens the
need to �nd a balance between the proximity of the certi�cates with respect to the model and
the e�ciency: a checker for too distant certi�cates will be hard to prove correct, but a checker
for simple certi�cates is likely to be ine�cient.

This work was published in the peer-reviewed proceedings of the First International Con-
ference on Interactive Theorem Proving (ITP'11) [KW10].

1.5.3 Parametricity

Parametricity is a branch of the theory of programming languages, informally relying on
the observation that parametric programs behave uniformly with respect to their arguments.
It has been studied for a large class of type systems, from system F [Rey83] to the recent
extension to most of the Pure Type Systems [BJP10]. Among its most popular applications,
one can cite the possibility to obtain �theorems for free� [Wad89] just by looking at the type
of some terms (and not the terms themselves), or safe program transformation in the Haskell
programming language [GLJ93].

We studied how this theory can be transposed to the Calculus of Inductive Constructions,
the language implemented by Coq, in the presence of an impredicative sort for propositions.
We proposed a slight variant of the Calculus of Inductive Constructions in which most terms
are parametric. This variant is a large subset of the Calculus of Inductive Constructions
characterized by a di�erent sort hierarchy, which syntactically separates informative terms
(for which parametricity makes sense) from non informative terms (for which parametricity is
meaningless).

We argue that parametricity in Coq has various useful consequences. First, it gives
metatheoretical results, like the independence of some formulas with the Calculus of Inductive
Constructions; in particular we give an original proof of the independence of excluded middle.
Second, �theorems for free� have practical applications in a proof assistant like Coq; we give
the example of general results that can be obtained by parametricity in the �nite group theory,
a branch of mathematics widely formalize in Coq [GMR+07].

These results can be implemented in Coq: even if parametricity is a metatheoretical result,
theorems for free can be obtained for closed terms by re�ection.

This work is a collaboration with Marc Lasson. It was published in the peer-reviewed
proceedings of the 21st Annual Conference on Computer Science Logic (CSL'12) [KL12].

For a matter of coherence, this work is not detailed in this thesis.. Indeed, while
one of its long-term applications is to add automation to Coq via free theorems, the mechanisms
involved and the background are rather far from the ones of SMTCoq and HOLLIGHTCOQ. We
preferred to produce a coherent, self-contained document about skeptical cooperation between
theorem provers; that is why we choose not to detail this aspect of this PhD. thesis work here.

18



1.6 Organization of this document

Part I presents the Coq interactive theorem prover. We especially detail one of its fundamental
features: internalizing computation inside proofs (Chapter 2). We also discuss di�erent
embeddings of �rst-order languages inside Coq (Chapter 3).

This part serves as a prerequisite for the remainder of the thesis. Parts II and III are
independent from each other.

Part II presents SMTCoq, the bi-directional cooperation between Coq and SAT and SMT
solvers. After a short introduction recalling the stakes of this cooperation, we present the SAT-
is�ability and Satis�ability Modulo Theories problems (Chapter 4). We emphasize possible
certi�cates for SAT and SMT solvers that will serve as evidence to trust them (Sections 4.1.3,
4.2.3 and 4.3). Chapter 5 details the Coq checker for SAT and SMT certi�cates which is
at the heart of SMTCoq. Its architecture is designed to be modular both in terms of provers
and theories that can be checked (Section 5.1). On top of it, we wrote utilities to achieve
our goals (Chapter 6): a certi�ed checker for SAT and SMT evidence (Section 6.1) and Coq
tactics to call external solvers (Section 6.2). Their performances are evaluated in Chapter 7.
We compare in particular with the checkers for SAT and SMT proof witnesses written in Is-
abelle/HOL by Alwen Tiu, Tjark Weber and Sascha Böhme (Section 7.1.2) and the Ergo SMT
solver written in Coq by Lescuyer et al. (Section 7.2.2). We �nally discuss the perspectives
of this work (Chapter 8). In particular, we developed the theoretical background required
for an application of SAT solvers in Coq: a decision procedure for machine integers using
bit-blasting (Section 8.2).

Part III depicts HOLLIGHTCOQ, which imports HOL Light proofs into Coq. First, a brief
introduction evokes the context of the communication between interactive theorem provers.
Chapter 9 presents the paradigms shared by provers based on Higher-Order Logic. Even if
they do not have proof objects, they can be instrumented to generate certi�cates. We compare
two existing implementations: Proof recording (Section 9.2.1) and OpenTheory (Section 9.2.2).
Chapter 10 details our model of Higher-Order Logic in Coq and its careful translation into
intelligible Coq terms. On top of it, we wrote a checker for Proof recording certi�cates, which
automatically generates at the same time Coq theorems coming from HOL Light and their
proofs. This checker is evaluated in Chapter 12 on two aspects: the intelligibility of the
generated theorems (Section 12.1) and the time and memory consumption of HOLLIGHTCOQ
(Section 12.2). We �nally discusses the perspectives of this work (Chapter 13), in particular
the changes to be made to handle more e�cient and modular certi�cates, like OpenTheory
(Section 13.2).
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Part I

Coq: an interactive theorem prover

based on Type Theory
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This part presents the Coq interactive theorem prover, concentrating on the aspects that
will be used for the remainder of the thesis.

Coq is based on the Curry-Howard correspondence: theorem statements are types and
their proofs are programs inhabiting them. The type system is the Inductive Calculus of
Constructions (CIC in short), which endows Coq with a very expressive intuitionistic logic.

Computation plays an important role in this system, since terms and types are considered
up to β-equivalence. A closed term is thus equal to its normal form. This allows to mix
computations with proofs, and even to replace proofs with computations: this is called com-
putational re�ection and is very useful to e�ciently build small proofs of complex theorems.
An example is the proof of the four-color theorem [Gon08], for which we do not know of any
proof which does not require a program enumerating hundreds of cases.

The aim of this thesis is to make Coq collaborate with external provers through proof
witnesses. To achieve this goal, we intensively exploit the computational power of Coq on two
di�erent aspects.

The �rst one appears in the formalization of the languages used by the external provers.
In Coq, we need both to be able to manipulate terms of these languages and to establish in the
end theorems stated in the Coq language. The �rst aspect corresponds to a deep embedding of
the languages of the external provers: we represent them in such a way as to have access to the
structure of the terms (usually, using inductive data types). The second aspect is a shallow
embedding of the languages, using directly Coq terms to represent the object language. To
switch between the two embeddings, we re�ect the deep terms into Coq, through computation.

We also use computational re�ection to handle the proofs coming from the external provers.
We use them as certi�cates given to a checker, which is a Coq program which guarantees the
correctness of proofs.

In Chapter 2, we explain the particularities of Coq among other interactive theorem
provers, especially about computation. We brie�y recall Coq's syntax, through examples
explaining how computation can be used to skeptically trust external tools, in an e�cient
way. E�ciency of proof checking is increased by the use of e�cient data structures; e�ciency
of proof building is enhanced by the use of the Ssre�ect plugin.

In Chapter 3, we present the di�erence between deep and shallow embeddings. We give a
systematic way to switch between them in the case of the simply typed λ-calculus with prenex
polymorphism, a language including those of SAT, SMT and HOL provers. It thus details the
theoretical basis for the developments of Parts II and III.
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Chapter 2

Proofs and computation in Coq

It is important to understand the main features of Coq and its particularities among other the-
orem provers, to fully appreciate the theoretical and implementation choices made to interface
it with external provers.

2.1 Interactive theorem proving through the ages (brief
overview)

The development of interactive theorem provers corresponds to a will to have small programs
able to check the correctness of complex proofs.

The �rst ones appeared in the early 70's, when Nicolaas Govert de Bruijn imagined Au-
tomath [dB70] and Robin Milner designed Logic for Computable Functions [Mil72] (LCF in
short). Both laid the foundations for the requirements of proof assistants: having a small
automated proof checker to verify the correctness of complex mathematical theories. Since
then, many di�erent proof assistants have been implemented, with the credo that they should
be as easy as possible to use without losing safety.

Automath and LCF also initiated the two main trends concerning the design of interactive
theorem provers.

LCF is written as a library in a functional programming language. Its safety relies on
an abstract data type for theorems, in such a way that objects of this type can be de�ned
using only the few inference rules provided by the kernel. These inference rules implement the
Classical Higher-Order Logic in a natural deduction style. Current LCF-like provers are HOL
Light, HOL4 and Isabelle.

Automath exploits the Curry-Howard correspondence: proofs are λ-terms inhabiting propo-
sitions and the kernel is a type checker. It imagined a �rst notion of dependent types, that was
since re�ned into di�erent type theories like CIC or the Computational Type Theory, whose
semantics are well understood. These logical frameworks are intentional and intuitionistic.
Nowadays provers based on Type Theory include Coq, Agda, NuPRL and Matita.

The di�erences in the design entail di�erences on many aspects. We are going to emphasize
the main particularities of provers based on Type Theory illustrated by examples in Coq. The
particularities of LCF-like provers will be presented in Part III.
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2.2 Presentation of Coq

The Calculus of Constructions is a dependently typed intuitionistic λ-calculus allowing to
express programs, speci�cations and proofs within the same language. Inductive de�nitions
o�er the opportunity to declare new data types and predicates.

Coq's language, Gallina, implements CIC. A large set of vernacular commands and tactics
completes the picture by facilitating the interaction with the system, especially the design of
proofs. We brie�y present parts of Gallina and how computation is handled in Coq.

2.2.1 Conversion

Computations are taken into account in the formalism by the conversion rule:

Γ ` t : A Γ ` B : s(CONV) if A ≡c BΓ ` t : B

In Coq (since version 8.4), the equivalence relation ≡c contains:

• the standard β and α-conversions;

• the ζ-conversion of local de�nitions (the let ... := ... in ... construction);

• the η-conversion of terms with a functional type.

Example 2.1 These two terms are convertible:

(fun (x:Type → Type) ⇒ x) (fun (z:Type) ⇒ let a := z in a)
≡c (fun (y:Type) ⇒ y)

This relation is extended when de�ning new inductive types (ι-conversion) and global
constants (δ-conversion).

Global constants

The de�nition of a new constant:

Definition c : A := body.

adds a new object c of type A in the environment and extends the computational equality by
c ≡c body. The type A can be omitted if Coq can infer it.

Example 2.2 The polymorphic identity function can be de�ned this way:

Definition identity := fun (A:Type) (x:A) ⇒ x.

or with syntactic sugar for function de�nition:

Definition identity (A:Type) (x:A) := x.

These two terms are convertible:

(identity (Type → Type)) (identity Type) ≡c (fun (y:Type) ⇒ y)
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If giving the λ-term using the Definition ... := ... syntax is appropriate to de�ne
terms with a computational content (like the identity function), it is not suited to build proofs.
To achieve this, we rather use tactics that change the goal step-by-step until it is proved.

Example 2.3 A proof of the identity theorem can be described by a functional de�nition:

Definition id1 : forall (A:Prop), A → A := fun A H ⇒ H.

or using tactics (here, intros and exact):

Lemma id2 : forall (A:Prop), A → A.
intros A H.
exact H.

Qed.

In the latter case, we usually use the Lemma keyword instead of Definition.

Tactics internally build a λ-term whose type should be the lemma and Qed actually calls Coq
type checker to validate it and �nally de�ne the constant.

Inductive de�nitions

Inductive de�nitions add new types and constructors in the global context. Objects of an
inductive type can be destructed using pattern matching, which extends conversion. We
present the syntax for an example.

Example 2.4 We can de�ne the type F of formulas built with ⊥, ∨ and variables (represented
by natural numbers):

Inductive F : Set :=
| Bottom : F
| Var : nat → F
| Or : F → F → F.

A function counting the number of connectives in a formula is:

Fixpoint connectives f :=
match f with

| Bottom ⇒ 1
| Var _ ⇒ 0
| Or f1 f2 ⇒ (connectives f1) + (connectives f2) + 1

end.

We can now make clear that computations are taken into account in the conversion relation.
For instance, these two terms are convertible:

connectives (Or Bottom (Var 0)) ≡c 2

The previous example can be written in general purpose functional programming lan-
guages. Coq o�ers more possibilities with dependent types.

Example 2.5 We can de�ne an inductive predicate distinguishing the ground formulas:
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Inductive ground : F → Prop :=
| Ground_bottom : ground Bottom
| Ground_or : forall f1 f2, ground f1 → ground f2 → ground (Or

f1 f2).

Moreover, the return type of a pattern matching can di�er in the di�erent branches: this
is called dependent pattern matching. We illustrate this possibility on our running example.

Example 2.6 We start with de�ning a function deciding the predicate of the previous example
(this function does not require dependent pattern matching):

Fixpoint ground_dec f : Prop :=
match f with

| Bottom ⇒ True
| Var _ ⇒ False
| Or f1 f2 ⇒ (ground_dec f1) ∧ (ground_dec f2)

end.

We can prove the correctness of this function using dependent pattern matching:

Fixpoint ground_dec_correct f : ground_dec f → ground f :=
match f return ground_dec f → ground f with

| Bottom ⇒ fun _ ⇒ Ground_bottom
| Var _ ⇒ fun h ⇒ match h with end
| Or f1 f2 ⇒ fun h ⇒
match h with

| conj h1 h2 ⇒ Ground_or f1 f2 (ground_dec_correct f1
h1) (ground_dec_correct f2 h2)

end
end.

where conj is the constructor of the ∧ connective. The return statement makes it clear
that the return type of the function depends on the object that is matched.

The return type of a pattern matching may also depend on the parameters and arguments of
the inductive type, as illustrated by the following example.

Example 2.7 We can prove the completeness of the ground_dec function this way:

Fixpoint ground_dec_complete f (h : ground f) : ground_dec f :=
match h in ground f return ground_dec f with

| Ground_bottom ⇒ I
| Ground_or f1 f2 h1 h2 ⇒ conj (ground_dec_complete f1 h1)

(ground_dec_complete f2 h2)
end.}

The in and return statements make it clear that the return type of the function depends on
the type of the object that is matched.

For soundness reasons, inductive de�nitions and pattern matching must be restricted, but
we are not going to detail it here (see Section 4.5 of the Coq's manual [Tea11] for details).
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2.2.2 Computational re�ection

A direct consequence of the conversion rule is that computation does not appear in proofs:
two convertible propositions have exactly the same proofs. For instance, in Example 2.5,
even (connectives (Or Bottom (Var 0))) and even 2 have the same proofs.

The length of proofs can thus be reduced by maximizing the computational part: this
principle is called computational re�ection. Reducing the length of proofs is crucial for large
developments, since proofs are stored in memory.

The idea of computational re�ection, as proposed in [ACHA90], is to turn the proof search
that is traditionally performed by tactics into an internal computation, performed by programs
that evaluate within the logic of Coq.

To give a concrete example, let us explain how Coq manages to prove ring equalities
automatically. Consider the equality (x + y) − x = y where x and y are two variables that
run over Z. A dedicated data-structure in Coq represents ring expressions. It is composed
of the operators mult for multiplication, plus for addition, minus for subtraction and var
for variables, indexed by integers. Associated with the data-structure, there are two functions
that are computable inside the logic. First, the interpretation function [•]ρ that maps the
abstract datastructure to a concrete domain, where ρ explains the mapping of the variables.
So we have for example:

[minus (add (var 0) (var 1)) (var 0)]{0→x,1→y} ≡c (x+ y)− x

Second, the normalization function normalize computes a normal form. So, we have:

normalize (minus (add (var 0) (var 1)) (var 0)) ≡c var 1

Its correctness lemma normalize_correct states that terms with equal normalizations
have equal interpretations:

forall ρ, e1, e2, normalize e1 = normalize e2 → [e1]ρ = [e2]ρ

With these two functions and the correctness lemma, it is possible to give directly the proof
of our initial equality:

normalize_correct {0→ x, 1→ y}
(minus (add (var 0) (var 1)) (var 0))
(refl_equal (normalize (var 1)))

where refl_equal corresponds to the re�exivity of equality. It is then the task of the proof
checker of Coq to verify that this proof term is valid. We notice that the length of this proof
is linear in sum of the lengths of the terms that are normalized.

In this example, like in most applications using computational re�ection, the computation
inspects the structure of the considered terms (here, plus, var, . . . ) and interprets them
into Coq terms (here, [•]ρ). We will explore in details inChapter 3 how to de�ne and compute
these structure and interpretation, for the languages of terms used in Parts II and III.

2.2.3 Propositions versus Booleans

In Coq, propositions are objects of type Prop, the dedicated sort of propositions. For instance,
ground f of Example 2.5 and ground_dec f of Example 2.6 are propositions.

If propositions are the standard way of stating properties and theorems in Coq, they are
not well suited for computation. If we come back to Example 2.6, we have that
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ground_dec (Or Bottom Bottom) ≡c conj True True

but

conj True True 6≡c True

because conj: Prop → Prop → Prop cannot be de�ned as a function that would inspect
the truth of its arguments. It implies that given a closed term of type Prop, we do not have
the property that it is convertible to either True or False.

If we are interested in computing with formulas, we need to switch to the set of Booleans,
de�ned in Coq as an inductive data-types:

Inductive bool : Set :=
| true : bool
| false : bool.

which do have a computational content: it enjoys the property that any closed term of type
bool is convertible to either true or false.

Example 2.8 The function deciding if a formula is ground of Example 2.6 can return a
Boolean instead of a proposition:

Fixpoint ground_dec_bool f : bool :=
match f with

| Bottom ⇒ true
| Var _ ⇒ false
| Or f1 f2 ⇒ andb (ground_dec_bool f1) (ground_dec_bool f2)

end.

where andb is the function computing the conjunction of two Booleans.

We have that:

ground_dec_bool (Or Bottom Bottom) ≡c true

This data structure with a computational content is really suited to write decision proce-
dures (like ground_dec_bool), which can in particular be used in computational re�ection
(whereas functions returning propositions cannot).

Example 2.9 Like ground_dec, ground_dec_bool can be proved correct:

Definition ground_dec_bool_correct f : ground_dec_bool f = true
→ ground f := ...

With this lemma, for any Coq closed term f : F, a re�exive proof of ground f is:

ground_dec_bool_correct f (refl_equal true)

In Part II, we use a Boolean decision procedure to re�exively check certi�cates coming
from SAT and SMT solvers.

The Ssre�ect plugin [GM08] gives (among other features) a small scale re�ection from
bool to prop, which is useful to transparently manipulate Booleans like propositions.
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2.3 About e�ciency

Computational re�ection makes proofs small, but at the cost of lots of computation. Hence
computation must be e�cient. Recent developments have improved Coq with both e�cient
reduction and e�cient data structures.

2.3.1 Di�erent computation implementations in Coq

There are three di�erent reduction mechanisms implemented in Coq's kernel:

• the default reduction that uses a call-by-need evaluation [Bar99], that we call the internal
reduction;

• a reduction that uses an optimized call-by-value evaluation bytecode-based virtual ma-
chine [Gré03], that we call the VM reduction;

• a machine-based reduction, available through the Ocaml's compiler [BDG11], that we
call the native reduction.

Internal and VM reductions are available in the standard distribution of Coq; the native
reduction is still experimental and is available in the development version of Coq.

The internal reduction is well-suited for conversion in usual Coq proofs. On the contrary,
the VM and native reductions are very e�cient to fully evaluate algebraic objects. This is
what we need to do computational re�ection. Experiments show that the native reduction is
most of the time more e�cient than the VM, despite the entry cost of compilation to machine
code [BDG11].

2.3.2 E�cient data structures

A complementary approach to improve e�ciency is to have access to low-level destructive data
structures supporting primitive operations, that can be computed very quickly by processors.

A �rst work extended the VM reduction with machine integers [Spi06]. These are integers
between 0 and 231−1, taken modulo 231, and are directly manipulated by the machine. It gives
access to a large set of constants whose manipulation is e�cient. In particular, some objects
can be encoded using binary integers, in such a way that operations on them correspond to
bitwise operations.

The native reduction is well suited to handle imperative data structures, since we directly
use Ocaml terms. A recent work [AGST10] extends Coq with machine integers and arrays
for the native reduction; it is available in native-coq [Dén], a fork of the development version
of Coq. The interface of arrays is persistent, as presented in [Bak91]: accessing the latest
updated array is done in constant time and accessing the history of updates is done in linear
time. Having a functional interface does not compromise Coq's soundness and we have the
same e�ciency as with destructive arrays as long as we do not want to access the history. This
extension of course increases the trusting base, but at very precise places and for the bene�t
of e�ciency (as we will evaluate on Section 7.3).

2.4 Impact on the work presented in this thesis

The particularities of Coq presented in this chapter have entailed both theoretical and imple-
mentation choices for the remaining of the thesis.
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On a theoretical point of view, the external tools we interface with Coq implement exten-
sional and classical logics, so we had to imagine an integration that �ts Coq's behaviour.

All the developments are based on computational re�ection. As we argued, while giving
generic proof tools, it reduces memory consumption while being e�cient since we use VM or
native reduction and imperative data structures. Part III also uses the Ssre�ect tactics and
libraries package to ease the development, hence the comprehension of the code.
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Chapter 3

Embedding logical frameworks in Coq

We argued that computational re�ection required (among others) two components: a Coq
data-structure representing the terms we manipulate, and a Coq interpretation function map-
ping these terms to their concrete Coq counterparts. In the case of an interaction with external
provers, the terms are formulas belonging to the logical frameworks of these provers.

The Coq data-structure representing the terms is called a deep embedding of the logical
framework: we de�ne in Coq a data type representing the formulas, with the possibility to
manipulate them within Coq. On the other side, the concrete Coq counterpart is called a
shallow embedding : there is no intermediate data-structure. These two notions have been
originally introduced for hardware description languages in HOL [BGG+92], and are now
commonly applied to any kind of embedding.

In this chapter, we explain the distinction between these two possible embeddings and how
to write the interpretation function as a Coq program. We also study the reverse operation
that extract the structure from a shallow Coq term, called rei�cation. We illustrate this in the
case of the simply-typed λ-calculus with prenex polymorphism, a language expressive enough
to contain both underlying languages of SAT and SMT solvers and Higher-Order Logic.

3.1 Deep and shallow embeddings

In order to represent terms from one logical framework A inside another formalism B, we have
two possible ways:

• a deep embedding: de�ne data-types in B that represent types and terms of A; we can
then de�ne, inside B, what it means to be provable in A;

• a shallow embedding: represent types and terms of A using their counterparts in B; this
translation must preserve provability.

Example 3.1 Type F of Example 2.5 is a deep embedding of propositions built with ⊥, ∨
and variables. The proposition x ∨ ⊥ is represented by Or (Var 0) Bottom in this deep
embedding, with the integer 0 representing x. Its shallow representation in Coq is x ∨ False
with x : Prop.
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The deep embedding gives access to the structure of the terms of the language. As we
noticed in Section 2.2.2, this is very useful to use computational re�ection. The main drawback
is that, for each deep embedding, a user must rede�ne the behavior of the terms with respect
to standard operations like substitution, which can be really painful.

On the contrary, the shallow embedding does not give access to the structure of terms, but
o�ers the possibility to use some aspects of the meta-language (here, Coq), like substitution,
binders. . . for free.

In the developments presented in this thesis, we want to prove Coq theorems using external
tools, by computational re�ection. Theorem statements are naturally formulated with Coq
terms, in a shallow embedding. Computational re�ection requires an access to the structure
of terms, thus a deep embedding. It implies that we need to switch between the two repre-
sentation. In fact, the deep embedding represents an interface between Coq and the external
tools, as illustrated by Figure 3.1.

Deep
terms

Shallow
terms

Coq

Deep
terms

OCamlExternal tool
(blackbox)

rei�cation

interpretation

Figure 3.1: Use of deep and shallow embeddings in an interaction with external tools

Such a translation between one level of language to another is studied in particular for nor-
malization by evaluation [BS91], a way of computing normal forms of an object language using
the normalizer of the target language. In particular, it has been implemented for the simply
typed λ-calculus (STLC in short) with named variables in Coq by Garillot and Werner [GW07].

As shown on Figure 3.1, computational re�ection is performed inside Coq, so the interpre-
tation function is written in Coq, like in [GW07]. We thus extend this work to write our own
interpretation function.

However, rei�cation can be used as an oracle without compromising soundness (see Sec-
tion 6.2.2), so we can write it directly at the ML level, as suggested by Figure 3.1. Rei�cation
of Coq terms is not documented; the only reference we know explaining rei�cation in the
purpose of implementing new Coq tactics is a code-oriented tutorial by Braibant and Boutil-
lier1. We will brie�y complement and illustrate it for the purpose of the embedding of logical
frameworks.

1A tutorial on how to write OCaml tactics for the Coq proof assistant, available on github https://
github.com/braibant/coq-tutorial-ml-tactics.

34

https://github.com/braibant/coq-tutorial-ml-tactics
https://github.com/braibant/coq-tutorial-ml-tactics


The remaining of this chapter is dedicated to interpretation and rei�cation. For interpre-
tation, we focus on the simply-typed λ-calculus with prenex polymorphism, which contains
the languages of SAT and SMT solvers and HOL provers. We illustrate this translation with
many examples. In the last section, we present rei�cation at the ML level on a toy example,
to give a general overview of the manner to do it for Coq.

3.2 From deep to shallow: interpretation

Going from the deep to the shallow embedding consists in interpreting, or compiling, the terms
of the source language into their Coq counterparts. We consider the simply typed λ-calculus
with prenex polymorphism; since it is included in CIC, the semantics of the interpretation
function is simply an injection.

As we argued, we want to formalize this injection as a Coq program, which is not trivial.
In particular, this function must handle deep terms which have di�erent types in STLC and
thus whose interpretations have di�erent Coq types: the return type of the interpretation
function actually depends on its argument. [GW07] solves this issue for the simply-typed
λ-calculus with named variables; we extend it to locally-nameless variables [ACP+08] and
prenex polymorphism.

3.2.1 General idea

We adopt the following syntax for the simply-typed λ-calculus with named variables:

A,B , o | A ↪→ B

u, v , xA | λxA.u | u v

Variables are typed, both in their use and in their abstraction. For the moment, there are no
type variables nor polymorphism; we will handle this in Section 3.2.4.

De�ning an interpretation function for types [•] respecting the equations

[o] = Prop
[A ↪→ B] = [A]→ [B]

is straightforward. This is not the case of the interpretation function for terms |•|I . Informally,
it must satisfy the equations

|xA|I = I(xA)
|λxA.u|I = z 7→ |u|I(xA←z)
|u v|I = |u|I(|v|I)

where I is an environment interpreting the free variables, and recursively enriched when
interpreting abstractions. The di�culty is to type this function: its codomain depends on its
argument. More precisely, it depends on the deep type of its argument, in this way:

if ` t : A in STLC, then ` |t| : [A] in CIC

.
The idea of [GW07] is to use an intermediate interpretation function | • |′I that takes into

account the deep types of terms: it does not only compute its interpretation, but also its
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deep type. It thus re�nes the typing function of STLC: it returns a dependent pair whose
�rst component is the deep type of the argument (like the typing function) and whose second
component is the actual interpretation. The true interpretation function can be easily written
by returning the second component. For ill-typed terms, the function simply returns an error
(using the option type).

The typing function and its re�nement can be described by these equations:

infer(xA) = A
infer(λxA.u) = A ↪→ infer(u)

infer(u v) =

{
B if infer(u) = A ↪→ B and infer(v) = C and A = C
fails otherwise

|xA|′I = (A, I(xA))
|λxA.u|′I = (A ↪→ U, z 7→ i) if |u|′I(xA←z) = (U, i)

|u v|′I =

{
(B, i j) if |u|′I = (A ↪→ B, i) and |v|′I = (C, j) and A = C
fails otherwise

(3.1)

which highlight the correspondence between the two.
Returning the deep type for the intermediate function is fundamental to compute the

interpretation of an application: we need not only to check that the type of the domain of the
function is the type of the argument, but also to coerce j : [C] into j : [A] in order for i j to
be well typed in CIC. [GW07] gives also an original way to perform this coercion in Coq, that
we present in the next section.

3.2.2 Coq formalization

We now formalize this idea in Coq, as presented in [GW07].

Embeddings

The de�nition of types and terms is straightforwardly written in Coq:

Inductive type : Set :=
| o : type
| a : type → type → type.

Local Notation "A−→B" := (a A B) (at level 50).

Inductive term : Set :=
| Var : nat → type → term
| Lam : nat → type → term → term
| App : term → term → term.

We de�ne the syntactic Boolean equality between two types, written A == B.

Type inference

Type inference is transposed in Coq using the option type to represent failures.
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Fixpoint infer (t:term) : option type :=
match t with

| Var _ A ⇒ Some A
| Lam _ A u ⇒
match infer u with
| Some B ⇒ Some (A−→B)
| _ ⇒ None

end
| App u v ⇒

match infer u, infer v with
| Some (A−→B), Some C ⇒
if A == C then Some B else None

| _, _ ⇒ None
end

end.

We de�ne a relation stating that a term t is well-typed of type A in a context g if the
inference function returns Some A:

Definition wt (t: term) (A: type) : Prop := infer t = Some A.

Type coercion

To infer the type of an application, we observed that a Boolean equality between the domain
of the function and the type of its argument is su�cient. However, we explained that we need
more information for the interpretation function, in particular a coercion between these two
types. This informative data type can be written in Coq as:

Inductive cast_result (A: Type) (n m: A) : Type :=
| Cast (k: forall P, P n → P m)
| NoCast.

where Cast contains a coercion function (which is the elimination principle for equality) when
n and m are equal. This idea was suggested by Georges Gonthier.

For Coq terms with a decidable equality, we can at the same time prove the decidability
and build the coercion. This is the case for the deep types of STLC:

Fixpoint cast (A B: type) : cast_result type A B :=
match A, B return cast_result type A B with
| o, o ⇒ idcast
| C−→D, E−→F ⇒

match cast C E, cast D F with
| Cast k1, Cast k2 ⇒

let k P :=
let Pb G := P (G−→D) in let Pc G := P (E−→G) in
fun x ⇒ k2 Pc (k1 Pb x)

in Cast k
| _, _ ⇒ NoCast

end
| _, _ ⇒ NoCast
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end.

This function enjoys a property equivalent to the axiom K in this decidable context: when
applied to the same objects, it returns the identity coercion.

Lemma cast_same : forall A, cast A A = Cast A A (fun _ x ⇒ x).

Interpretation

We are now prepared to write the interpretation functions. We start with types:

Fixpoint interp_type (A:type) : Type :=
match A with

| o ⇒ Prop
| B−→C ⇒ (interp_type B) → (interp_type C)

end.

The environments to interpret free variables are total functions mapping a pair of a variable
and a type to its interpretations:

Definition sem_env := nat → forall A:type, interp_type A.

When we will interpret abstractions, the environments will be extended, as presented in equa-
tions 3.1. We thus de�ne a function to extend them:

Definition extend_env (I:sem_env) x A a : sem_env :=
fun y B ⇒

if y == x then
match cast A B with
| Cast k ⇒ k a
| _ ⇒ I y B

end
else I y B.

The intermediate interpretation function for terms expects a term and returns a dependent
pair composed of a deep type A and a function mapping an environment to the interpretation
of the term; its return type is thus option {A:type & sem_env → interp_type A}
using the Coq notation { • & •} to represent dependent pairs (its constructor is existT):

Fixpoint interp_aux (t:term) : option {A:type & sem_env →
interp_type A} :=

match t with
(* Variables: we use the environment *)
| Var x A ⇒ Some (existT A (fun I ⇒ I x A))

(* Abstraction: we extend the environment in the recursive
call *)

| Lam x A u ⇒
match interp_aux u with

| Some (existT U c) ⇒
Some (existT (A−→U) (fun I z ⇒ c (extend_env I x A

z)))
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| _ ⇒ None
end

(* Application: we have to apply a coercion when the types
of the codomain and the argument match *)

| App u v ⇒
match interp_aux u, interp_aux v with

| Some (existT (A−→B) b), Some (existT C c) ⇒
match cast C A with

| Cast k ⇒ Some (existT B (fun I ⇒ (b I) (k (c I))))
| _ ⇒ None

end
| _, _ ⇒ None

end
end.

Coercions appear to interpret applications (as we said) and to type the extend_env function.
We can de�ne the true interpretation function using dependent pattern matching to return

the second projection:

Definition interp t :=
match interp_aux t as p return
match p with

| Some (existT A _) ⇒ option (sem_env → interp_type A)
| None ⇒ option Prop

end
with
| Some (existT A b) ⇒ Some b
| None ⇒ None

end.

Remark 1 It is crucial that interp_aux has type option {A:type & sem_env →
interp_type A}, rather than sem_env → option {A:type & interp_type A}
which seems more natural. In the second case, it would be impossible to do the recursive
call for abstractions: we have nothing to extend I with at this stage.

Adequacy of type inference

The fact that interpretation is a re�nement of type inference entails that terms are well-typed
if and only if they have an interpretation:

Lemma infer_interp : forall t A,
infer t = Some A <→ exists b, interp_aux t = Some (existT _ A

b).

3.2.3 Locally nameless variables

If one wants to implement standard operations on deep terms, for instance comparison or
substitution, named variables are painful since terms have to be considered up to α-conversion
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and variable capture may happen. The locally nameless representation for variables [ACP+08]
avoids these pitfalls without the negative e�ects of de Bruijn indices. The key idea is to name
free variables, but to represent bound variables by de Bruijn indices: a bound variable is the
number of abstractions between it and its binder.

The syntax of terms is added a second representation for variables and the type of the
abstraction is consequently changed:

u, v , xA | n | λA.u | u v

Note that we do not require de Bruijn indices to come with their types anymore: since we are
sure that these variables are bound, we are able to �nd their types in their abstractions.

Environments cannot be managed as before. Now, the environment for named variables I
can be �xed once and for all, since it will not change during interpretation. However, to type
and interpret bound variables, we need a context g, which is a list of deep types, recursively
enriched when interpreting abstractions.

Let us start with the typing function. The context to type bound variables is the list of the
types previously encountered in abstractions. Typing the de Bruijn index n is thus returning
the nth element of the context, if it exists. The recursion starts with an empty context, since
a well-formed term must be closed for de Bruijn indices.

infer'g(xA) = A
infer'g(n) = g[n]

infer'g(λA.u) = A ↪→ infer'A::g(u)

infer'g(u v) =

{
B if infer'g(u) = A ↪→ B and infer'g(v) = C and A = C
fails otherwise

infer(t) = infer'[ ](t)

The interpretation of a context g, named G, is a function that maps an integer n to some
object belonging to the interpretation of g[n]. Hence, the interpretation of a de Bruijn index
n is G(n). Interpretation is thus described by these equations:

|xA|′I,g,G = (A, I(xA))

|n|′I,g,G = (g[n],G(n))

|λA.u|′I,g,G = (A ↪→ U, z 7→ i) if |u|′I,A::g,G(0←z,p+1←G(p)) = (U, i)

|u v|′I,g,G =

{
(B, i j) if |u|′I,g,G = (A ↪→ B, i) and |v|′I,g,G = (C, j) and A = C

fails otherwise

Note than when interpreting an abstraction, both the context and its interpretation must be
enriched. For this latter, we must shift all the interpretations.

To implement this idea, the only di�culty is to convince Coq that G(n) has type [g[n]]:
once more, we need to use dependent pattern matching to type the interpretation of de Bruijn
indices.

The syntax of terms is added a new constructor:

Inductive term : Set :=
| Var : nat → type → term
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| Dbr : nat → term
| Lam : type → term → term
| App : term → term → term.

The typing function is extended using an auxiliary function returning the nth element of
a list, if it exists:

Definition context := list type.

Fixpoint opt_nth (g:context) n :=
match g,n with
| nil, _ ⇒ None
| t::_, O ⇒ Some t
| _::q, S p ⇒ opt_nth q p

end.

Fixpoint infer_aux (g:context) (t:term) : option type :=
match t with

| Var _ A ⇒ Some A
| Dbr n ⇒ opt_nth g n
| Lam A u ⇒

match infer_aux (A::g) u with
| Some B ⇒ Some (A−→B)
| _ ⇒ None

end
| App u v ⇒

match infer_aux g u, infer_aux g v with
| Some (A−→B), Some C ⇒

if A == C then Some B else None
| _, _ ⇒ None

end
end.

Definition infer := infer_aux nil.

As we explained, the interpretation of a context g is a function that maps an integer n to
some object belonging to the interpretation of the nth type of g:

Definition interp_context (g: context) : Type :=
forall (n: nat), match opt_nth g n with

| Some A ⇒ interp_type A
| _ ⇒ unit

end.

We de�ne functions that remove or add an element at the beginning of the interpretation of
a context, shifting the other elements:

Definition interp_tail A g (f: interp_context (A::g)) :
interp_context g :=

fun n ⇒ f (S n).

41



Definition interp_cons A g (f: interp_context g)
(a: interp_type A) : interp_context (A::g) :=
fun n ⇒ match n with

| O ⇒ a
| S n ⇒ f n

end.

and a function that interprets an empty context:

Definition interp_nil : interp_context nil := fun _ ⇒ tt.

The only obstacle is to type in Coq the interpretation of de Bruijn indices. We must
recursively explore the context and its interpretation:

Fixpoint interp_dbr (g:context) (n:nat) {struct n} :
option {A: type & interp_context g → interp_type A} :=
match g,n return

option {A: type & interp_context g → interp_type A} with
| nil, _ ⇒ None
| A::g, O ⇒ Some (existT A (fun f ⇒ f O))
| A::g, S n ⇒

match interp_dbr g n with
| Some (existT B b) ⇒

Some (existT B (fun f ⇒ b (interp_tail f)))
| _ ⇒ None

end
end.

which is �nally used to de�ne the whole interpretation function:

Variable I : sem_env.

Fixpoint interp_aux (g:context) (t:term) :
option {A:type & interp_context g → interp_type A} :=
match t with

(* Named variables: nothing changed *)
| Var x A ⇒ Some (existT A (fun _ ⇒ I x A))

(* Indices: we use the function above *)
| Dbr n ⇒ interp_dbr g n

(* Abstractions: we use interp_cons instead of extend_env *)
| Lam A u ⇒

match interp_aux (A::g) u with
| Some (existT U c) ⇒ Some (existT (A−→U) (fun f z ⇒ c

(interp_cons f z)))
| _ ⇒ None

end
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(* Applications: nothing changed *)
| App u v ⇒

match interp_aux g u, interp_aux g v with
| Some (existT (A−→B) b), Some (existT C c) ⇒
match cast C A with

| Cast k ⇒ Some (existT B (fun f ⇒ (b f) (k (c f))))
| _ ⇒ None

end
| _, _ ⇒ None

end
end.

Definition interp t :=
match interp_aux nil t as p return
match p with

| Some (existT A _) ⇒ option (interp_type A)
| None ⇒ option Prop

end
with
| Some (existT A b) ⇒ Some (b interp_nil)
| None ⇒ None

end.

Remark 2 At �rst reading, one might think that de�ning the interpretation of contexts as
Definition interp_context := list {A:type & interp_type A} would sim-
plify this development, especially the interp_dbr function. This is indeed the case, but
at the expense of the interp_aux function. This latter would then have type term →
interp_context → option {A:type & interp_type A} which is impossible as we
explained in Remark 1.

3.2.4 Prenex polymorphism

Prenex polymorphism can be easily implemented in STLC by adding named type variables,
which are implicitly universally quanti�ed. This does not complicates term equality: terms
di�ering by type variables are considered as di�erent.

This addition is quite transparent for interpretation: we just have to add an environment
for type variables behaving exactly like sem_env, at the type and the term levels.

3.3 From shallow to deep: rei�cation

Rei�cation computes the deep representation of a concrete term, by extracting its structure.
Contrary to interpretation, non-trivial rei�cation functions cannot be implemented in CIC. We
must use an oracle that returns a deep term and the only thing that we can check is that its
interpretation is indeed the original concrete term.
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3.3.1 The quote tactic

Coq provides the quote tactic, that is able to perform simple rei�cation when the source
language has named variables, no binders and is mono-sorted, like in Example 2.5. Once
written, the deep embedding (using primitives given by quote to represent the variables)
and the interpretation function, quote transforms any goal g into the interpretation function
applied to the deep representation of g.

Example 3.2 We give an example of the quote tactic applied to Example 2.5. We �rst
need to use the primitive index provided by quote to represent free variables:

Inductive F : Set :=
| Bottom : F
| Var : index → F
| Or : F → F → F.

and varmap to interpret them:

Fixpoint interp (rho:varmap Prop) F :=
match F with

| Bottom ⇒ False
| Var x ⇒ varmap_find True x rho
| Or a b ⇒ (interp rho a) ∨ (interp rho b)

end.

We can for instance use the tactic on the following goal:

Parameter P: Prop.
Goal False ∨ P ∨ True.

quote interp.

which transforms the goal into:

interp
(Node_vm True (Node_vm P (Empty_vm Prop) (Empty_vm Prop))

(Empty_vm Prop))
(Or Bottom (Or (Var (Left_idx End_idx)) (Var End_idx)))

Environments are represented using balanced trees. True is rei�ed as a variable since it
does not belong to the source language.

3.3.2 More complex rei�cation

quote is a very useful tactic, but it works only for simple cases. In the developments presented
in this thesis, we need to reify languages whose terms have di�erent types and with sharing
(see Part II).

There is currently no generic tool in Coq to do this, so we have to get our hands a little
dirty by writing case-by-case rei�cation functions at the ML level, manipulating the Ocaml
type for Coq terms: constr.

The idea is quite simple: in Ocaml, the constr type can be inspected to get back the
structure of shallow Coq terms. However, the manipulation of Coq terms at the ML level is
not documented yet. This section brie�y explains the key points needed for rei�cation, hoping
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that a generic documentation will appear in the future. We illustrate this on Example 2.5

for the sake of clarity (the techniques are the same for a more complex language).

In Coq, we have a deep embedding term of some source language and an interpretation
function interp_term : sem_env → term → Type. We want to write a tactic that,
given a goal, computes I and t to change it into interp_term I t. t must be maximally
rei�ed: variables are only parts of the goal that do not belong to the source language.

In Ocaml, we need to de�ne:

• the deep embedding term of the language;

• a hash table valuation : (constr, nat)Hashtbl.t to associate a variable to
each subterm that cannot be rei�ed further;

and use them to write our main function: reification : constr → term. This func-
tion tries to recursively recognize terms of our source language; when it reaches an atomic
subexpression, it returns a variable and adds the correspondence in valuation.

We �nally need a function mapping Ocaml deep terms onto Coq deep terms
make_constr : term → constr and another one mapping our valuation onto a Coq en-
vironment for the interpretation function make_valuation : unit → constr, to build
our tactic.

We present the code when the source language is Example 2.5.

Example 3.3 We �rst recall the terms of Example 2.5 and give a way to interpret them
where the environment is a list of propositions:

Inductive term : Set :=
| Bottom : term
| Var : nat → term
| Or : term → term → term.

Section Interpretation.

Variable valuation : list Prop.

Let rho x :=
match opt_nth valuation x with

| Some P ⇒ P
| None ⇒ False

end.

Fixpoint interp_term F :=
match F with

| Bottom ⇒ False
| Var x ⇒ rho x
| Or a b ⇒ (interp_term a) ∨ (interp_term b)

end.
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End Interpretation.

The deep embedding in Ocaml is very similar (we also have to embed natural numbers):

type nat = O | S of nat

type term =
| Bottom
| Var of nat
| Or of term * term

We de�ne the hash table and a function to get the next available variable:

let valuation : (Term.constr, nat) Hashtbl.t = Hashtbl.create 17
let current_nat = ref O
let next_nat () =

let res = !current_nat in
current_nat := S !current_nat;
res

In Ocaml, we have access to Coq's constants by �nding them in the modules in which they
are de�ned. For instance, the False constant is de�ned in the Coq.Init.Logic module
and can be accessed like this:

let cFalse = lazy (Coqlib.gen_constant_in_modules "Reification"
[["Coq";"Init";"Logic"]] "False")

For every constant CST we need, we access it in Ocaml and call it cCST.
The rei�cation function is just a recursive match of a constr against the constants it

could be:

let rec reification t =
(* Decomposing the term into a function applied to (possibly

zero) arguments *)
let c,args = Term.decompose_app t in

(* If the function is False... *)
if c = Lazy.force cFalse then (
Bottom

(* If the function is or... *)
) else if c = Lazy.force cor then (

match args with
| [a;b] → Or (reification a, reification b)
| _ → assert false

(* Otherwise we return a variable *)
) else (

let n =
try

Hashtbl.find valuation t
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with
| Not_found →

let n = next_nat () in
Hashtbl.add valuation t n;
n in

Var n
)

We de�ne the make_constr : term → constr and make_valuation : unit
→ constr functions in a straightforward recursion. Coq applications can be built using the
Term.mkApp : constr → constr array → constr function.

We �nally build the tactic by putting everything altogether:

let reify gl =
(* Initialization of the hash table *)
Hashtbl.clear valuation;
current_nat := O;

(* Extraction of the conclusion of the goal *)
let concl = Tacmach.pf_concl gl in

(* Reification and construction of the new conclusion *)
let r = reification concl in
let c = make_constr r in
let v = make_valuation () in
let concl’ = mkApp (Lazy.force cinterp_term) [|v;c|] in

(* Finally changing the conclusion *)
Tactics.change_in_concl None concl’ gl

and extend Coq's tactics with this new one (this is camlp5 syntax):

TACTIC EXTEND reify
| [ "reify" ] → [ reify ]
END

We can for instance use the tactic on the following goal:

Parameter P: Prop.
Goal False ∨ P ∨ True.

reify.

which transforms the goal into:

interp_term (True :: (P :: nil)%list) (Or Bottom (Or (Var 1)
(Var 0)))

True is rei�ed as a variable since it does not belong to the source language.
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Part II

Cooperation with automatic theorem

provers: SMTCoq, collaborating with

SAT and SMT solvers through proof

witnesses
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This part of the thesis explores the communication between Coq and SAT and SMT solvers.
SAT and SMT solvers are modern automated provers, especially successful nowadays

thanks to both their performance and their expressivity: many decision and optimization
problems can be encoded into their logic. As we argued in the introductory chapter, their
e�ciency is at the cost of unsafety: as they grow on performance and complexity, it is well
established that they are likely to contain bugs [BB09].

We investigate here a skeptical cooperation between SAT, SMT solvers and Coq: in addi-
tion to yes/no answers, the involved SAT and SMT solvers must return proof witnesses that
justify these answers and that can be checked e�ciently in Coq. This certi�ed Coq checker
serves as a basis to SMTCoq, a collection of tools that makes concrete the possibilities o�ered
by such a cooperation: increasing the trust in SAT and SMT solvers and enjoying their power
in Coq. In addition to the straightforward automation they bring, they can be used inside
more complex decision procedures.

In Chapter 4, we formalize SAT and SMT problems, and discuss possible certi�cates for
them. A Coq checker of the certi�cates of unsatis�ability is presented in Chapter 5, which is
at the heart of SMTCoq (Chapter 6): a set of commands and tactics to check SAT and SMT
answers and to enjoy automation in Coq. We then compare SMTCoq with existing tools in
Coq and Isabelle in Chapter 7. We �nally discuss the perspectives of this work (Chapter 8),
notably a direct application of SMTCoq: the SAT part can be used to de�ne a new decision
procedure for machine integers, using bit-blasting.
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Chapter 4

The SATis�ability and Satis�ability

Modulo Theories problems

4.1 SAT solvers

4.1.1 The SAT problem

The Boolean Satis�ability Problem (SAT in short) is the problem of determining whether there
exists an assignment of the Boolean variables appearing in a formula in conjunctive normal
form (CNF in short) to > or ⊥ such that this formula is true. Solving this problem has
been an active research area for long, since many classes of decision problems can be encoded
into SAT. Among them, one can cite formal hardware veri�cation [CTVW04], RNA structure
prediction [GOS+12], decision procedures for bit-vectors using bit blasting [KS08]. . . (this list
is far from being exhaustive).

Historically, SAT is the �rst known example of a NP-complete problem [Coo71]. Nonethe-
less, e�cient algorithms have been developed that can solve problems containing thou-
sands of variables and constraints in reasonable time. Most of them are extensions of the
Davis�Putnam� Logemann�Loveland algorithm, also known as DPLL [DP60, DLL62], but
others are based on survey propagation [BMZ05] or binary decision diagrams [Bry86]. Some
of these algorithms can be easily instrumented to produce proof witnesses [NOT06]. Here we
are only interested on the structure of proof witnesses in order to check them, but not on the
way they are produced (one may refer to [NOT06] for their production).

We recall basic de�nitions and notations.

De�nition 4.1 (Literal, clause, formula) We consider a countable set of variables V. Lit-
erals l and clauses C are given by the following grammar:

l ::= v|v̄

C ::= �|l ∨ C
where v ∈ V, � stands for the empty clause and •̄ represents the involutive boolean negation.
Clauses are considered up to associativity and commutativity of ∨. If a clause is nonempty,
� is omitted.

A formula in CNF, also called SAT instance, is a �nite set of clauses S, seen as their
conjunction.
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De�nition 4.2 (Valuation, satis�ability) A valuation is a function ρ : V → {>,⊥} asso-
ciating a Boolean to each variable.

We de�ne the associated interpretation of formulas in CNF into {>,⊥} by induction:

• for literals: |v|ρ = ρ(v) and |v̄|ρ = ¬ρ(v);

• for clauses: |�|ρ = ⊥ and |l ∨ C|ρ = |l|ρ ∨ |C|ρ;

• |S|ρ is the conjunction of the interpretations of its clauses, with the usual convention
that |∅|ρ = >.

A set of clauses S is satis�able if and only if there exists a valuation ρ such that |S|ρ = >.
Conversely, S is unsatis�able if and only if for any valuation ρ, |S|ρ = ⊥.

Here are basic examples of satis�able or unsatis�able sets of clauses.

Example 4.1 The following sets of clauses are satis�able:

∅ {x} {x ∨ x̄} {x ∨ ȳ, x̄ ∨ y}

The following sets of clauses are unsatis�able:

{�} {x, x̄} {x∨ y, x̄, ȳ} {x∨ y, x̄∨ y, ȳ}

We can now de�ne the SAT problem:

De�nition 4.3 (SAT problem) A SAT problem consists in deciding if a formula in CNF
is satis�able or not.

The pigeon-hole problems are well-known unsatis�able SAT problems:

Example 4.2 The pigeon-hole problem of length n, called Hn, is the problem to know whether
it is possible to put n+ 1 pigeons in n holes, such that each hole contains at most one pigeon.

It can be encoded in SAT in the following way. We consider n(n + 1) variables
(xi,j)(i,j)∈J1,n+1K×J1,nK, representing the fact that the ith pigeon is in the jth hole. We have
two sets of constraints:

• every pigeon must be in a hole: ∀i, xi,1 ∨ · · · ∨ xi,n;

• a hole contains at most one pigeon: ∀j,∀i 6= i′, x̄i,j ∨ x̄i′,j.

4.1.2 Input

The input problem is a formula in CNF. SAT solvers share a common input format called
the DIMACS format (named after the SAT challenge proposed by the Center for Discrete
Mathematics and Theoretical Computer Science in 1992). It is very simple: after a heading
stating the numbers of variables and clauses, the clauses are listed, separated by �0� (and,
usually, a carriage return). These clauses are lists of literals separated by spaces. Positive
(resp. negative) literals are represented by positive (resp. negative) non-zero integers. It is
possible to add comments, on lines starting with c.

Example 4.3 The set of clauses {x ∨ y, x̄ ∨ y, ȳ} is encoded in DIMACS as:
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c A toy example
p cnf 2 3
1 2 0
-1 2 0
-2 0

where 1 represents x and 2 represents y.

Since there is an agreement on the input format, it is possible to share easily SAT examples
and benchmarks. A large set of benchmarks is available from the di�erent SAT competitions
(the last one was the SAT Challenge 20121).

4.1.3 Certi�cates

Satis�ability

The class of satis�able problems has an obvious certi�cate: a valuation. It is small (linear in
the number of variables), easy to check (it is su�cient to compute the interpretation of the set
of clauses given this valuation) and e�cient to check (computing the interpretation is linear
in the length of the initial problem).

Example 4.4 We consider the following set of clauses: S = {x∨y, x∨ȳ, x̄∨z}. S is satis�able
and a certi�cate is {x 7→ >, y 7→ ⊥, z 7→ >}.

Notice that there is no uniqueness of the certi�cate: we could have chosen {x 7→ >, y 7→
>, z 7→ >}.

Unsatis�ability

Certi�cates for the class of unsatis�able problems are not obvious, though. The simplest would
be truth tables, but they are of course exponential in the number of variables and thus at
least as long to check as to produce. The other certi�cates that have been imagined include:

• proofs of a contradiction by resolution;

• Frege systems, which are Hilbert-style propositional proof systems for reasoning with
propositional formulas;

• cutting planes [CK05] and other geometric systems.

The idea that has received the most attention and which is implemented by many solvers is
to return a proof by resolution.

Let �rst recall the resolution rule, introduced by Robinson [Rob65].

De�nition 4.4 (Resolution rule) The resolution rule builds the clause C ∨ D from two
clauses v ∨C and v̄ ∨D, where no variable appear with one polarity in C and the other in D:

v ∨ C v̄ ∨D
C ∨D

The variable v is called the resolution variable. A comb tree of resolutions is a resolution
chain.

1The SAT Challenge 2012: http://baldur.iti.kit.edu/SAT-Challenge-2012.
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It is straightforward that resolution builds a clause that is equisatis�able with the two
initial clauses:

Lemma 1 (Correctness) We take two clauses C and D such that no variable appear with
one polarity in C and the other in D.

For any valuation ρ, |v ∨ C|ρ = > and |v̄ ∨D|ρ = > if and only if |C ∨D|ρ = >.

This rule has also been shown to be refutationally complete [Rob65]:

Lemma 2 (Completeness) Given any unsatis�able set of clauses S, there exists a proof by
resolution of the empty clauses whose leaves belong to S.

It entails that proofs by resolution are theoretically possible certi�cates. Moreover, they
have shown to be rather compact in practice, especially for some classes of problems [DT10,
MT12] (even if other kinds of problems do not have polynomially long resolution proofs, eg.
pigeon-hole problems presented in Example 4.2). Extensions have also been considered, like
adding symmetry detection steps [ASM06].

Checking proofs by resolution is polynomial in their lengths and can be done very e�ciently
as the remaining of Part II will show. Finally, they are easy to produce from SAT solvers
reasoning [NOT06]. All these fact certainly explain their success in modern SAT solvers.

Let illustrate these certi�cates.

Example 4.5 We consider the following set of clauses: S = {x ∨ y, x ∨ ȳ ∨ z, x̄ ∨ z, z̄}. S is
unsatis�able and a certi�cate is:

x ∨ y
x ∨ ȳ ∨ z z̄

x ∨ ȳ
x

x̄ ∨ z z̄

x̄

�

Like for satis�ability, there is no uniqueness of proofs by resolution.

4.2 SMT solvers

Given the success of SAT solving, it has been extended to decide problems de�ned in more
expressive systems. In particular, the Satis�ability Modulo Theories Problem (SMT in short)
is the problem of determining if a formula is satis�able with respect to combinations of back-
ground theories. SMT solvers also have a large amount of applications, from type infer-
ence [RKJ08] to software synthesis [KMPS10]. This problem is decidable under some condi-
tions (see [NO79] for instance), but may be undecidable otherwise. A usual extension is to
allow quanti�ers in the formulas, which is in general a source of undecidability.

The basic algorithm behind an SMT solver is an interaction between a SAT solver and deci-
sion procedures for conjunctions of formulas for each theory supported by the solver [NOT06].
Starting from a propositional abstraction of the initial problem � which consists in replacing
all the atoms of theories by fresh variables � the SAT solver generates models and the theory
solvers try to refute them. When a SAT model is consistent with all the theories, the initial
problem is found satis�able. Otherwise, a new clause corresponding to a theory lemma is
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added to the SAT problem in order to rule out the model. The SAT solver can then be called
again to generate another model. Since there are only a �nite number of SAT models, this
enumeration eventually terminates. If the empty clause is derived by the SAT solver, the
initial problem is unsatis�able. Large e�orts are made to make this interaction as e�cient
as possible and to design e�ective decision procedures. Once again our goal is to understand
possible SMT certi�cates and how they can be formally checked.

4.2.1 The SMT problem

We start by de�ning our notion of theory and give some examples.

De�nition 4.5 (Theory) A signature is the data of:

• a set of types ST ;

• a set Sf of function symbols with given arity and type;

• a set SP of predicate symbols with given arity and type.

Given a signature Σ, terms t and atoms a are typed objects constructed by the following
grammars:

t ::= x|f(t1, . . . , tn)

a ::= P (t1, . . . , tm)

where x is a variable, f ∈ Sf has arity n and P ∈ SP has arity m such that types are respected.

A many-sorted theory (abbreviated as theory) T is a subset of the set of �rst-order formulas
built on top of terms. Elements of a theory are called theory lemmas.

We de�ne the interpretation of a signature by:

• interpreting each type variable;

• interpreting each function symbol f : A1 → · · · → An → A by a function |f | : |A1| →
· · · → |An| → |A|;

• interpreting each predicate symbol P : A1 → · · · → Am → Bool by a predicate |P | :
|A1| → · · · → |Am| → bool;

We give two common examples of theories: congruence closure and linear integer arith-
metic.

Example 4.6 The theory of congruence closure TEUF is de�ned by the signature containing:

• one type, written U ;

• function symbols of type U → · · · → U ;

• predicate symbols of type U → · · · → U → Bool and one particular predicate symbol
=: U → U → Bool for equality.
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Two examples of atoms of this theory are f(x, g(y)) = e and P (f(z, e)) where x, y, z : U are
variables, e : U, f : U → U → U, g : U → U are function symbols and P : U → Bool is a
predicate symbol.

The theory lemmas are the formulas constructed by the closure of re�exivity, symmetry
and transitivity of equality and congruence of functions and predicates with respect to equality.
An example of a theory lemma is e = f(x, g(y))⇒ P (f(z, e))⇒ P (f(z, f(x, g(y)))).

Example 4.7 The theory of linear integer arithmetic TLIA is de�ned by the signature con-
taining:

• one type, written I;

• function symbols 0 : I, S : I → I, P : I → I, + : I → I → I, − : I → I → I

• predicate symbols =: I → I → Bool, <: I → I → Bool, 6: I → I → Bool, >: I → I →
Bool, >: I → I → Bool

Two examples of atoms of this theory (using the standard notations) are 3x + 2y = −1 and
−7 6 −4 where x, y : I are variables.

The theory lemmas are the formulas whose standard interpretation in Z are provable. Two
examples of theory lemmas are 3x+ 2y = −1⇒ −x+ y = −3⇒ x = 1 and −7 6 −4.

We now consider that we work within a combination C of many-sorted theories T1, . . . , T n.
In this setting, we can de�ne the notion of SMT instance.

De�nition 4.6 (SMT instance) An SMT instance is a SAT instance in which some
Boolean variables are replaced by �rst-order formulas over atoms of C.

This de�nition introduces a strati�cation: an SMT instance is a formula in CNF built
on top of �rst-order formulas, which themselves contain terms of C. It implies that we have
two levels of propositional connectives: conjunction, disjunction and negation used to de�ne
the formula in CNF, written using the notations of De�nition 4.1 (ie. ∨ for disjunction and
using a set for conjunction) opposed to the connectives used in �rst-order formulas, written
with di�erent symbols to avoid the confusion (eg.

∨
for disjunction and

∧
for conjunction).

We illustrate this by an example.

Example 4.8 An example of an SMT instance in the theory TLIA is

{x > 7
∧
y 6 −4, x > 2 ∨ y < 3}

It contains two clauses: x > 7
∧
y 6 −4 and x > 2∨ y < 3. The �rst clause contains only one

positive literal and the second clause contains the negative literals x > 2 and y < 3.

Starting from interpretations for the signatures of T1, . . . , T n, a notion of satis�ability
entails.

De�nition 4.7 (Satis�ability) A valuation assigns, for each variable v : T of some theory,
a term t : |T |.

Given a valuation ρ, we de�ne the interpretation of SMT instances by the standard inter-
pretation of formulas in CNF over �rst-order formulas, using the interpretation of signatures
to interpret symbols.
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An SMT instance S is satis�able if there exists a valuation ρ such that |S|ρ is valid. It is
unsatis�able otherwise.

Here are basic examples of satisable or unsatisable SMT instances, in the combination of
TEUF and TLIA.

Example 4.9 The following instances are satis�able:

{x = y} {x > 3} {g(0) = g(x− x)}

The following instances are unsatis�able:

{x = y, f(x) 6= f(y)} {x > 3, x < −2} {g(1) = g(x− x), g(0) 6= g(1)}

We can now de�ne the SMT problem:

De�nition 4.8 (SMT problem) An SMT problem consists in deciding if an SMT instance
is satis�able or not.

4.2.2 Input

While many SMT solvers implement their own input format, most of them also implement
subsets of a common format: SMT-LIB v2 [BST10]. This format allows to describe any
�rst-order formula of the combination of many theories like TEUF and TLIA, but also arrays,
bit-vectors... One may refer to the SMT-LIB v2 documentation for more details; we just give
an example.

Example 4.10 The SMT problem {g(0) = g(x− x)} is encoded in SMT-LIB v2 as:

(set-logic QF_UFLIA)
(declare-fun g (Int) Int)
(declare-fun x () Int)
(assert (= (g 0) (g (- x x))))
(check-sat)
(exit)

We �rst set the logic we consider (here, the quanti�er free combination of TEUF and TLIA),
before declaring variables with their types. We then assert the problem and ask if it is satis�able
or not.

Like for SAT, having a common format is useful to design a set of examples and bench-
marks. Such benchmarks are given by the SMT competitions2 and the SMT-LIB.

4.2.3 Certi�cates

Satis�ability

Like for the SAT case, valuations are small and e�cient certi�cates for the class of satis�able
problems. We give an example in TLIA.

Example 4.11 We consider the following set of clauses: S = {x > 7
∧
y 6 −4, y < 2}. S is

satis�able and a certi�cate is {x 7→ 9, y 7→ −4}.
2The SMT-COMP 2012: http://smtcomp.sourceforge.net/2012.
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Unsatis�ability

If for the SAT problems, despite the di�erent possible certi�cates for unsatis�ability, SAT
solvers seem to agree on one of them, the output format for SMT solver vary widely from one
prover to another, both in the syntax and in the spirit. The most used SMT solvers that give
proof witness are Z3 [dMB08], CVC3 [BT07] and veriT [BdODF09] (some other solvers provide
less informative witnesses). Since we want to support di�erent solvers (possibly returning
completely di�erent formats of proof witnesses) in a generic way, we de�ne here our own

notion of certi�cates, into which the proof witnesses of the di�erent SMT solvers can be
translated. These certi�cates correspond to a proposal from the ANR DeCert initiative for a
common output format (see Section 8.1.1) and are close to the format of the output of veriT.

To also share the code with the SAT checker, we chose certi�cates that extend SAT cer-
ti�cates, in such a way that they remain compact and quite easy to check: it is still a proof
tree of the empty clause, with additional rules.

A rule takes a set of clauses as hypotheses and returns a clause which is implied. The set
of hypotheses might be empty, in which case the returned clause must be a tautology. There
are three kinds of rules, relying on the strati�cation of SMT instances:

• resolution still handles the propositional reasoning at the level of formulas in CNF;

• CNF rules handle the propositional reasoning at the level of �rst-order formulas of
theories: combined with resolution, they transform �rst-order formulas into conjunctive
normal form;

• theory rules handle the theory reasoning at the level of terms: each theory T has a set
of rules de�ning the deductions in this particular theory.

The following example illustrates CNF and theory rules; they are detailed in the description
of the Coq checker in the next chapter.

Example 4.12 CNF rules include:

P
∧
Q

P
CNF

P
∧
Q ∨ P

CNF

We give examples of rules for the theories TEUF and TLIA:

x = y ∨ P (f(x)) ∨ P (f(y))
EUF

x > 7 ∨ x > 2
LIA

It is important that each theory rule deals only with one theory, since it allows to use
dedicated decision procedures, instead of a combination of decision procedures, even if the
initial problem relies on a combination of theories. Moreover, since we separated CNF com-
putation from theory reasoning, the decision procedures for theories will not need to handle
propositional reasoning.

The following example illustrates these three levels of deduction.
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Example 4.13 We consider the following SMT problem: S = {x > 7
∧
y 6 −4, x > 2}. S is

unsatis�able and a proof witness is:

x > 7
∧
y 6 −4

x > 7
CNF

x > 7 ∨ x > 2
LIA

x > 2

x > 7
Reso

�
Reso

The next chapter will emphasize the modularity of this certi�cate format: it is easy to
add new theories to the checker. Besides, theories can be considered in the broader sense: for
instance, we present in Section 5.3.4 a way to handle silent simpli�cations performed by SMT
solvers that �ts in this model.

4.3 Conclusion on certi�cates

When a problem is satis�able, a certi�cate is an assignment of the variables present in the
problem. Checking such a certi�cate is very easy in Coq: one has to replace each variable by
its assignment, in order to obtain a closed term, that can be computed into > or ⊥.

Unfortunately, we are far more interested by unsatis�ability: as we will see in Chapter 6,
provability problems can be encoded into unsatis�ability ones. That is why, in the remaining
of this part, we emphasize the design of an unsatis�ability checker and its applications.

For unsatis�ability, we presented a very generic format for certi�cates: we work with
clauses and resolution; theories are separated from one another and appear only on speci�c
points of the certi�cate. This genericity will help us de�ne a checker both e�cient and modular,
in the next chapter.

Our certi�cate format is di�erent from answers returned by automatic provers: it corre-
sponds to objects that are checked in Coq and a translation must be done to actually verify
concrete proof witnesses. We thus distinguish these two notions in the remaining of Part II,
using the following vocabulary:

• certi�cates are the formal objects presented in this chapter;

• proof witnesses are the concrete objects returned by SAT and SMT solvers.
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Chapter 5

An e�cient and modular Coq checker

for SAT and SMT

We want to exploit the genericity of our certi�cate format to design a modular checker on two
aspects:

• it must be easy to support new provers in the processus. This is why we distinguished
the notions of proof witness from certi�cate: the checker works with certi�cates and, to
add a new prover, one only has to write an unproved preprocessor encoding its speci�c
format of proof witness into our format of certi�cate;

• it must be easy to support and check new theories. Our certi�cates facilitate this:
since theory lemmas are pure (the theory rules belong only to one theory), there is no
interaction between theories, so we can add a new one independently from what already
exists. Communication between them is ensured by the generic resolution rule.

Note that SMT solvers are most of the time also designed to be modular in terms of theory
solvers: for instance, the Nelson-Oppen algorithm [NO79] allows to combine independent
theory solvers as long as they agree on the equality predicate. However, this process is complete
only under certain restrictions that the Coq checker presented here does not require.

This chapter presents the implementation of a Coq checker for the certi�cates presented
in the previous chapter achieving these goals.

5.1 Architecture of the Coq checker

The Coq checker, presented in Figure 5.1, is a certi�ed Coq program checking if a certi�cate
proves the unsatis�ability of a given input problem. It is proved to be correct, but it is not
complete: this means that whenever it answers �yes�, we are sure that the initial problem is
indeed unsatis�able; but otherwise, we do not know. Since we do not have control on the SAT
or SMT solver, we cannot consider being complete. The best we can do is solving as many
problems as possible on the set of existing benchmarks, as we will see in Chapter 7.

In our SAT/SMT certi�cates, new clauses are generated until reaching the empty clause.
Small checkers are dedicated to the computation of these clauses, each of them in one par-
ticular domain. The role of the main checker is to dispatch pieces of the certi�cate (called
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Figure 5.1: Architecture of the Coq checker

steps) to the corresponding small checkers and to check that the last computed clause is the
empty clause.

Small checkers are independent from one another: they only need to share the representa-
tion of clauses and (a part of) the set of clauses computed so far. We will see how to choose
this in order to be e�cient, in time and in space. For the moment, we consider the theoretical
representations of clauses C and sets of clauses S de�ned in Chapter 4. We call states the
di�erent sets of clauses appearing during computation. We note step the type for steps.

De�nition 5.1 (Small checker) A small checker is the data of:

• a function sc : S → step → S

• a proof of correctness of this function sc_ok : ∀(s:S)(c:step)I,|s|I →
|sc s c|I

where | • |I is the interpretation function for states as presented in Section 3.2.

sc_ok expresses the fact that sc transforms a satis�able state into a satis�able one: the
result is a consequence of the argument. After many applications of such small checkers, if the
empty clause belongs to the �nal state, it thus mean that the initial state was unsatis�able.

Notice that if the step given as input of a small checker is wrong, the checker must all the
same return an implied clause. In this case, it returns a clause containing only one literal whose
interpretation is always >, so that the correctness property is preserved whatever the

small step is.
This presentation emphasizes the second aspect of modularity: adding a new theory is just

giving a new small checker, with the lightweight interface presented above.
Now that we presented the general ideas behind SMTCoq, we shall enter into the details

of its implementation.

64



5.2 The main checker

5.2.1 Representation of states

To sum up, the main checker:

• de�nes a state containing the initial clauses;

• successively calls the small checkers on steps, which produces new clauses added to the
state;

• checks that the last clause that was added to the state is empty.

In this process, it appears crucial to access and add clauses in the state e�ciently. To do so,
we rely on Coq's persistent arrays presented in Section 2.3.2: a state is an array of clauses.
It is important to keep this array as small as possible, by re-using a cell as soon as the clause
it holds is known to be not used anymore for further computations. This allocation will be
computed upstream, by what we call the output preprocessor (see Section 6.1.1).

5.2.2 A piece of code

It must now be clear that, given a small checker for any possible step of certi�cates, the main
checker is really easy to write and to prove correct. We illustrate this by giving the Coq code
for the main checker.

We currently have small checkers for the following steps:

• sc_res for resolution;

• sc_cnf for CNF computation;

• sc_euf for congruence closure;

• sc_lia for linear integer arithmetic;

• sc_spl for simpli�cations (we will see in Section 5.3.8 that, in the actual proof witnesses
returned by most SMT solvers, some simpli�cation steps are omitted, which are handled
by this small checker)

and the associated correctness proofs. We also have types for the corresponding steps
(step_res, step_cnf, . . . ).

The step type is thus the following inductive:

Inductive step : Set :=
| Res : step_res
| Cnf : step_cnf
| Euf : step_euf
| Lia : step_lia
| Spl : step_spl.

and a step is checked by this straightforward function:
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Definition step_checker (s:state) (st:step) : state :=
match st with
| Res st’ ⇒ sc_res s st’
| Cnf st’ ⇒ sc_cnf s st’
| Euf st’ ⇒ sc_euf s st’
| Lia st’ ⇒ sc_lia s st’
| Spl st’ ⇒ sc_spl s st’

end.

We now have all the ingredients to de�ne the main checker. It takes three arguments: the
initial state, containing the initial set of clauses; the certi�cate, which is an array of steps; and
the index in the state where to look for the empty clause in the end of the process. It returns
a Boolean. The correctness of this main checkers guarantees that when this Boolean is true,
the initial set of clauses was unsatis�able.

Definition main_checker
(input:state) (certif: array step) (confl:int) : bool :=
let s := Array.fold_left

(fun s st ⇒ step_checker s st) input certif in
is_false (get s confl).

Lemma main_checker_correct : forall input certif confl,
checker input certif confl = true →
forall I, ∼(valid I input).

(* Easy proof: application of the correctness of the small
checkers *)

Adding a new small checker is thus straightforward. The only di�culty is to write the
decision procedure, but integration is easy: we just have to make its internal representation
of terms coincide with the one of states.

5.3 The small checkers

5.3.1 Representation of atoms, terms and formulas

For the moment, the logic we consider is QF_UFLIA, the quanti�er free logic with unin-
terpreted functions and linear integer arithmetic. The underlying language is a multi-sorted
�rst-order language without binders, but with term and type variables. This logical framework
can be deeply and shallowly embedded in Coq, with a re�ection between the two, as presented
in Chapter 3.

We explained in Section 4.2.3 that certi�cates are strati�ed accordingly to the notion of
SMT. The deep terms are accordingly strati�ed: clauses are built on top of formulas (which
represent Boolean expressions), which are themselves built on top of terms and atoms of the
theories. This strati�cation does not limit expressivity (as we will see in Section 5.3.6) and
makes things easier and more e�cient for small checkers: the resolution checker only needs
to know about clauses, the CNF checker and some simpli�cations go down to the level of
formulas and only theory checkers need to look at the structure of terms.

The deep terms are also maximally shared: every subexpressions of formulas and atoms
are stored in an array and referred to by a number. It makes the terms smaller and the small
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checkers more e�cient: it allows the work done on a given subterm be performed only once.
This process is similar to hash-consing [FC06].

For a matter of clarity, we do not give the full deep embedding now, but re�ne it as we go
along small checkers.

5.3.2 Resolution chains

The �rst small checker we present is a resolution checker. Given a list of clauses, it returns the
clause obtained by successively resolving these clauses with one another. Before explaining
its working, we detail the deep representation of literals and clauses, which play an important
role in the e�ciency.

Representation of literals and clauses

The e�cient treatment of resolution chains requires a careful encoding of clauses and literals.
First, propositional variables are encoded as 31-bit integers (we will see in the next section
what they represent).

Since the resolution checker needs to deduce an implied clause even when the certi�cate
is not correct (see Section 5.1), we need to have a deep clause whose interpretation is always
true. This is done by having the convention that the location 0 represents the constant >;
hence, each environment I is now such that I(0) = >, and consequently the interpretation of
the clause containing only this literal is always true.

Literals are either variables or their negation. They can be easily encoded from variables
using the parity: the positive literal associated to i is 2i and the negative one is 2i+ 1. Their
interpretation is thus:

|l|I =

{
I(l/2) if l is even
¬I((l − 1)/2) if l is odd

This representation is very e�cient since parity check and division by two are very fast: they
are directly performed by machine integer operations as explained in [AGST10].

To be able to represent all the literals, the number of variables is restricted to 230− 1; but
this is not a strong restriction since current solvers are far away from solving such problems
in general.

Finally, clauses are represented as sorted lists of integers without redundancy.
Table 5.1 sums up our representation of terms so far.

Term Representation
> 0

variable x ∈ J1; 230 − 1K
positive literal 2x
negative literal 2x+ 1

clause sorted list of literals

Table 5.1: Representation of terms from the point of view of the resolution checker

Example 5.1 We represent the variable x by 1, y by 2 and z by 3 (remember that 0 represents
>). The clause x ∨ ȳ ∨ z is represented by the list [2; 5; 6]: 2 is the positive literal associated
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to the variable 1 representing x, 5 the negative literal associated to 2 representing y and 6 the
positive literal associated to 3 representing z.

The small checker for resolution chains

A resolution step is a piece of certi�cate pointing to an array of clauses that can be successively
resolved with one another. In our Coq representation, it consists in a data type containing
two pieces of information:

• an array of integers representing the successive index in the state where to look for the
clauses to resolve � this is the second argument of the constructor below;

• the cell of the state where to put the resulting clause (Section 6.1.1 explains how it is
computed) � this is the �rst argument of the constructor below.

It is thus de�ned by:

Inductive step_res : Type :=
| Res : int → array int → step_res.

The following example illustrates this encoding.

Example 5.2 We consider the certi�cate of Example 4.5. First, we encode the variables
by 31-bits integers: x is represented by 1, y by 2 and z by 3. Second, we �ll the initial state
with the input {x ∨ y, x ∨ ȳ ∨ z, z̄, x̄ ∨ z}, which can be represented by the array of four cells:

0 1 2 3

x ∨ y x ∨ ȳ ∨ z z̄ x̄ ∨ z
[2;4] [2;5;6] [7] [3;6]

The last object to encode is the certi�cate. It can be decomposed into the following two
resolutions chains:

x ∨ y
x ∨ ȳ ∨ z z̄

x ∨ ȳ
x

x̄ ∨ z z̄

x̄
(1)

�

and

x ∨ y
x ∨ ȳ ∨ z z̄

x ∨ ȳ
x

x̄ ∨ z z̄

x̄
(2)

�

and thus the whole certi�cate is an array of two cells, one containing each resolution step:

(1) (2)

Res 0 [|1;2;0|] Res 0 [|3;2;0|]

68



The �rst step means that the main checker must call the resolution checker (since it is a
resolution) successively on the clauses present in the cells 1, 2 and 0 of the current state, and
put the resulting clause in the cell indexed by 0. Its application thus updates the initial state
into:

0 1 2 3

x x ∨ ȳ ∨ z z̄ x̄ ∨ z
[2] [2;5;6] [7] [3;6]

Similarly, the second step means that the main checker must call the resolution checker (since
it is a resolution) successively on the clauses present in the cells 3, 2 and 0 of the current

state, and put the resulting clause in the cell indexed by 0. Its application thus updates the
state into:

0 1 2 3

� x ∨ ȳ ∨ z z̄ x̄ ∨ z
[] [2;5;6] [7] [3;6]

It remains for the main checker to verify that the clause at position 0 is indeed the empty
clause.

Let us now detail the algorithm implemented by the small checker for resolution chains.
The representation of clauses we chose allows to compute resolution linearly: we run through
both lists until we �nd the resolution variable. This algorithm is very similar to the fusion
of two sorted lists used in merge sort. If no resolution is possible, the checker returns the
union of the two clauses; if more than one resolution are possible, the resolution computed is
trivially true. It ensures the correctness of this (very simple) small checker.

5.3.3 CNF computation

With our previous small checker, proof witnesses for SAT problems in CNF can be checked in
Coq. The next step is to be able to verify the transformation of a formula into an equisatis�able
formula in CNF. In refutation based on resolution, this is usually done using a technique
proposed by Tseitin [Tse70]. This involves generating a new variable for every subterm of the
formula; with these new variables, the CNF transformation is linear. It is this idea that we
are going to implement in our setting.

Representation of Boolean formulas

In the previous section, we said that variables were represented by integers. Actually, those
integers are the Tseitin variables associated to the input formula: each sub-formula is shared
and put in an array, and an integer i represents the sub-formula contained in the ith cell.

The Coq type that represent formulas is:

Inductive form : Type :=
| Fatom (_:int)
| Ftrue
| Ffalse
| Fand (_:array int)
| For (_:array int)
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| Fimp (_:array int)
| Fxor (_ _:int)
| Fiff (_ _:int)
| Fite (_ _ _:int)
| Fnot2 (_:int).

where connectives are either >, ⊥, conjunction, disjunction, implication, exclusive or, equiv-
alence and Boolean branching (the if ... then ... else ... construction when the
return type is a Boolean). The integers that some constructors take as arguments are literals:
this encodes the negation so there is no constructor for it. However, double negation is explicit
(this is the constructor Fnot2), in order to represent the formula ¬¬x faithfully. Note that
the connectives Fand and For are n-ary operators which allows a more e�cient subsequent
computation. The base case of formulas are Fatom, in the perspective of the de�nition of
terms and atoms in the next section; once more, these atoms are encoded by integers.

As we announced in Section 5.3.1, the formulas are maximally hashed. This is visible in
the type de�ned above by the fact that it is not a proper recursion: we would expect the type
of formulas to be a tree, but the nodes here take integers as arguments instead of formulas.
This is because this type actually represents a formula only when it comes with an array
containing all its sub-formulas, named t_form. In this case, the integers represent the literal
associated to the cell of t_form where to look for the sub-formula.

This representation takes little memory since it implements maximal sharing. It also
has the advantage to match exactly the notion of Tseitin variables, since any sub-formula is
encoded by an integer. Finally, it also has the property that the equality between two formulas
can be computed in constant time, by an integer comparison.

Table 5.2 sums up our representation of terms so far.

Term Representation
atom x ∈ J0; 231 − 1K

formula t_form.[y] where y : int
positive literal 2y
negative literal 2y + 1

clause sorted list of literals

Table 5.2: Representation of terms from the point of view of the CNF checker

To ensure the invariant on environment (that literal 0 is always valuated to >), the �rst
cell of the table must contain Ftrue.

We illustrate this encoding by the following example.

Example 5.3 The formula (x
∧
y)
∨
x
∧
y can be encoded by the literal 9 using the formula

table:

t_form =
> x y x

∧
y (x

∧
y)
∨
x
∧
y

Ftrue Fatom 0 Fatom 1 Fand [|2;4|] For [|6;7|]

with the interpretation for atoms de�ned by I(0) = x and I(1) = y.
We notice that the sub-formula x

∧
y appears twice in the formula but is shared in the table

(at location 3): this representation allows maximal sharing.
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To ensure that our table does not contain in�nite terms so that formulas can be interpreted,
we preserve some well-formedness condition on the table: if a literal m appears in the formula
stored at location n, we always have m/2 < n. With this condition, we can de�ne the Boolean
interpretation |f |I recursively over the formula f , where I is the interpretation of the atoms.

In Coq, this condition could be stated using dependent types: a hash-table of variables
could be a dependent pair composed of a an array and a proof that this array is well-formed.
In this case, Coq's type system would have ensured that hash-tables are always well-formed.

Nonetheless, automatically constructing dependent pairs can be di�cult, whereas it is not
needed in our particular case of writing a Boolean checker: instead of returning true if the
certi�cate if the proof of the input, it returns true if the hash-table is well-formed and the
certi�cate is a proof of the input. Hence there is no need to state this condition at all, it will
be part of the job of the checker to verify it.

The small checker for CNF transformation

Tseitin identi�es around 40 generic tautology schemes that give the meaning of connec-
tives [Tse70]. Instantiated with the variables appearing in a given formula F , it forms a
set of clauses which is in CNF and is equisatis�able with F . We are not going to give them
all, since they are quite generic and the essence can be understood on the example of the
conjunction:

Example 5.4 Tseitin tautologies for the
∧

connective are:

x1
∧
· · ·
∧
xn ∨ xi

AndNegi

(x1
∧
· · ·
∧
xn) ∨ x̄1 ∨ · · · ∨ x̄n

AndPos

In addition to these tautologies, we can also consider direct implications, which are not
su�cient to perform a full CNF transformation, but avoid unnecessary resolution steps when
possible.

Example 5.5 The implications corresponding to the tautologies of Example 5.4 are:

x1
∧
· · ·
∧
xn

xi
ImmAndPosi

x1
∧
· · ·
∧
xn

x̄1 ∨ · · · ∨ x̄n
ImmAndNeg

The rules and their names are directly inspired by the proof witness speci�cation of veriT.
The step for CNF transformation in the certi�cate is an algebraic data type containing a

list of cases to check instantiations of these tautologies and implications:

Inductive step_cnf : Type :=
| AndNeg (pos:int) (_:int) (_:int)
| AndPos (pos:int) (_:int)
| ImmAndPos (pos:int) (_:int) (_:int)
| ImmAndNeg (pos:int) (_:int)
| ...

In each small step, pos is the index of the cell in the state in which the resulting clause is
put. The other arguments are:
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• for AndNeg (and similar rules for other connectives): the position of the formula
x1
∧
· · ·
∧
xn in t_form and the index i of the projection;

• for AndPos (and similar rules for other connectives): the position of the formula
x1
∧
· · ·
∧
xn in t_form;

• for ImmAndPos (and similar rules for other connectives): the position of the clause
containing only the literal representing x1

∧
· · ·
∧
xn in the state and the index i of the

projection;

• for ImmAndNeg (and similar rules for other connectives): the position of the clause
containing only the literal representing ¬(x1

∧
· · ·
∧
xn) in the state.

We illustrate this encoding on an example.

Example 5.6 The following certi�cate proves the unsatis�ability of a
∧
ā:

ImmAndPos1

a
∧
ā

a

a
∧
ā

ā
ImmAndPos2

�
Res

.
First, we need to de�ne the array of formulas t_form. We can choose the following

representation if the variable a is encoded by 0:

> a a
∧
ā

Ftrue Fatom 0 Fand [|2;3|]

Second, we encode the initial state, which is an array of two cells �lled with the input (the
second cell will be used later):

0 1

a
∧
ā -

[4] -

Finally, we encode the certi�cate. It can be decomposed into three steps: the two CNF
steps ImmAndPos1 and ImmAndPos2 and the resolution step. It is thus the following array
of three steps:

(1) (2) (3)

ImmAndPos 1 0 1 ImmAndPos 0 0 2 Res 0 [|0;1|]

The step ImmAndPos 1 0 1 is sent to the small checker for CNF, and means: �put at
position 1 in the state, the clause obtained from the formula at position 0 in the current state,
by taking the �rst projection�. It thus updates the state into:

0 1

a
∧
ā a

[4] [2]

Similarly, the step ImmAndPos 0 0 2 is then sent to the small checker for CNF. This time,
it computes the second projection, and put it at position 0 in the state, which results into:
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0 1

ā a

[3] [2]

Finally, the step Res 0 [|0;1|] is sent to the small checker for resolution, which will result
into (as we saw in the previous section):

0 1

� a

[] [2]

The algorithm implemented by the small checker is straightforward: it looks at the head
symbol of the given sub-formula, and computes the corresponding tautology or implication if
possible � otherwise, it returns the clause [0] which is always true. In the implementation, the
type step_cnf is less verbous that what we presented here, since similar steps for di�erent
connectives can be grouped together and the small checker can distinguish them regarding the
head connective of the sub-formula taken as an argument.

Remark 3 The combination of resolution with small steps for CNF transformation is a vari-
ant of the extended resolution [Tse70] proof system.

5.3.4 Theories

Representation of terms and atoms

To handle the theories, we now need to re�ne the representation of terms and atoms. The
di�erence with the terms we manipulated so far is that they are not only Booleans anymore,
but can have other simple types. So we also need to be able to represent the types and the
interpretation function for terms will rely on deep types as presented in Chapter 3.

The deep terms are those of the theories currently handled by our checker: congruence
closure and linear integer arithmetic. We thus have three kinds of base types: uninterpreted
� which are indexed by machine integers � integers (corresponding to Z) and Booleans:

Inductive type :=
| Tindex : int → type
| TZ : type
| Tbool : type.

There are possibly di�erent uninterpreted types: this allows to deal with Coq terms containing
many di�erent types not handled by the SMT solvers we consider, like user de�ned or higher-
order types, without losing the information that they are actually di�erent.

We can build types of a given arity on top of this, represented as a curry�ed codomain
and a domain:

Definition ftype := list type * type.

Since functions are always fully applied in this language, there is no need for a function type,
so this is a simpli�cation of Chapter 3.

Like formulas, terms are maximally hashed and come with an array of sub-terms t_atom.
They are (possibly empty in the case of constants) applications of either interpreted (Aop) or
uninterpreted (Aapp, indexed by machine integers) functions:
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Inductive atom : Type :=
| Aop (_ : op) (_: list int)
| Aapp (_ : int) (_: list int).

where interpreted operators are:

Inductive op : Type :=
| Zcst (_ : Z) | Zle | Zlt | Zplus | ...
| Eq (_ : type).

where Z is the Coq type of binary integers. Once more, the arguments of functions are
machine integers encoding the index of the corresponding sub-atom in t_atom. Note that
the constructor Zcst embedding the constants of Z takes a binary integer as an argument �
this does not have harmful e�ects on e�ciency since no operation is performed on them.

We illustrate this encoding by the following example.

Example 5.7 We consider the formula f(x) < 1
∨
g(y + 1) < 1, where the variable x has an

uninterpreted type. We encode the variable x by 0, y by 1, f by 2 and g by 3. The formula
then can be represented by the literal 6 with the following tables (written from left to right then
top to bottom):

t_atom =

x y 1

Aapp 0 [] Aapp 1 [] Aop (Zcst 1)[]

f(x) y + 1 f(x) < 1

Aapp 2 [0] Aop Zplus [1;2] Aop Zlt [3;2]

g(y + 1) g(y + 1) < 1

Aapp 3 [4] Aop Zlt [6;2]

t_form =
> f(x) < 1 g(y + 1) < 1 f(x) < 1

∨
g(y + 1) < 1

Ftrue Fatom 5 Fatom 7 For [|2;4|]

Table 5.2 sums up our �nal representation of terms.

Term Representation
variable x ∈ J0; 231 − 1K

atom t_atom.[z] where z : int
formula t_form.[y] where y : int

positive literal 2y
negative literal 2y + 1

clause sorted list of literals

Table 5.3: Representation of terms from the point of view of the theory checkers

The small checker for congruence closure

The congruence closure checker has three possible steps, corresponding to instantiating one of
these tautologies:
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• transitivity: x1 6= x2 ∨ · · · ∨ xn−1 6= xn ∨ x1 = xn

• function congruence: x1 6= y1 ∨ · · · ∨ xn 6= yn ∨ f x1 . . . xn = f y1 . . . yn

• predicate congruence: x1 6= y1 ∨ · · · ∨ xn 6= yn ∨ ¬P x1 . . . xn ∨ P y1 . . . yn

In these clauses, the equality is understood up to symmetry and re�exivity of equality. For
instance, y 6= x∨f x z = f y z is a valid instantiation of the function congruence rule, instead
of the expected x 6= y ∨ z 6= z ∨ f x z = f y z. At small cost for the checker, it gives more
compact certi�cates, since there is no step for re�exivity nor symmetry and it also avoids
consequently resolutions.

The Coq type for step is thus simply:

Inductive step_euf : Type :=
| EqTr (pos:int) (_:clause)
| EqCgr (pos:int) (_:clause)
| EqCgrP (pos:int) (_:clause).

where the �rst argument is � as before � the index of the state where to put the resulting
clause, and the second argument is the resulting clause obtained by the instantiation of the
corresponding rule.

This format is inspired by veriT's proof format for congruence closure. For SMT solvers
that do not give such details, we will need to �nd them when preprocessing the proof witness.

Example 5.8 The certi�cate proving the unsatis�ability of {x = y, z = y, g(x) 6= g(z)} given
at the top of Figure 5.2 can be encoded using the array of atoms

t_atom =

x y

Aapp 0 [] Aapp 1 []

z x = y

Aapp 2 [] Aop (Eq (Tindex 0))[0;1]

z = y x = z

Aop (Eq (Tindex 0))[2;1] Aop (Eq (Tindex 0))[0;2]

g(x) g(z)

Aapp 3 [0] Aapp 3 [2]

g(x) = g(z)

Aop (Eq (Tindex 0))[6;7]

the array of formulas

t_form =
> x = y z = y x = z g(x) = g(z)

Ftrue Fatom 3 Fatom 4 Fatom 5 Fatom 8

and the initial state:

0 1 2 3

x = y z = y g(x) 6= g(z) -

[2] [4] [9] -
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as:

(1) (2) (3) (4)

EqTr 3 [3;5;6] Res 0 [|0;3;1|] EqCgr 3 [7;8] Res 0 [|0;3;2|]

We detail only step (1): the main checker sends this step to the small checker for congruence
closure, which checks that the clause represented by [3;5;6] (which is x 6= y∨y 6= z∨x = z)
is a valid instantiation of the transitivity rule. Since it is, it puts it at position 3 in the state,
giving:

0 1 2 3

x = y z = y g(x) 6= g(z) x 6= y ∨ y 6= z ∨ x = z

[2] [4] [9] [3;5;6]

Implementing a checker for these certi�cates is straightforward. For instance, to check
the transitivity rule, we compare all the intermediate terms, possibly twice if there is a silent
application of symmetry. This is done e�ciently since the comparison between terms can be
done in constant time: here sharing is absolutely crucial.

The small checker for linear integer arithmetic

Coq has already three decision procedures that suit linear integer arithmetic: Omega, a solver
for problems in Presburger Arithmetic (see Chapter 20 of [Tea11]); ROmega, a variant of
Omega with re�exive traces; and Micromega, a set of tactics for solving arithmetics goals over
ordered rings [Bes06]. After making informal experiments on arithmetic goals coming from
SMT benchmarks, it appeared that the lia tactic of Micromega was much faster than omega
and romega, and e�cient enough to be integrated into our SMT checker. As a result, we
decided to use it instead of having detailed certi�cates, contrary to congruence closure.

This decision procedure also has a design which is really suited to be used as a small
checker. Like SMTCoq, it calls an external solver that produces a certi�cate. It is associated
to a Coq checker for this certi�cate. It is thus easily integrated in three steps:

• we translate our terms into Micromega's representation;

• the external solver is called upstream from the checker (during preprocessing, see Sec-
tion 6.1.1);

• the Micromega Coq checker is called for each arithmetic step.

Thus, for the linear arithmetic checker, there is only one step, that contains the resulting
clause and the Micromega certi�cate:

Inductive step_lia : Type :=
| Lia (pos:int) (cl:clause) (c:list ZMicromega.ZArithProof)

We give an example:

Example 5.9 The certi�cate proving the unsatis�ability of {x 6 1, 1 6 x, g(x) 6= g(1)} given
at the bottom of Figure 5.2 can be encoded using the array of atoms
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t_atom =

x 1 x = 1

Aapp 0 [] Aop (Zcst 1)[] Aop (Eq TZ)[0;1]

g(x) g(1) g(x) = g(1)

Aapp 1 [0] Aapp 1 [1] Aop (Eq (Tindex 0))[3;4]

x 6 1 1 6 x
Aop Zle [0;1] Aop Zle [1;0]

the array of formulas

t_form =
> x = 1 g(x) = g(1) x 6 1 1 6 x

Ftrue Fatom 2 Fatom 5 Fatom 6 Fatom 7

and the initial state

0 1 2 3

x 6 1 1 6 x g(x) 6= g(1) -

[6] [8] [5] -

as:

(1) (2) (3) (4)

EqCgr 3 [3;4] Res 2 [|2;3|] Lia 3 [2;7;9] c Res 0 [|3;0;1;2|]

The certi�cate c appearing in the Lia step is pre-computed by the external solver of Mi-

cromega. When the main checker reaches step (3), it gives it to the LIA checker, which itself
calls the Micromega checker to be sure that c actually proves the clause [2;7;9]; if it is the
case, it puts this clause at position 3 in the state.

5.3.5 Interpretation of terms

Terms (that is to say clauses, formulas and atoms) are interpreted as presented in Section 3.2,
in particular using the trick of the intermediate function returning the deep type of the term.
We have two environments:

• ρT for type variables, that return a Coq type;

• ρV for atom variables, that return both a type A and a Coq term whose type is [A]ρT .

The only di�erence with Section 3.2 is that, as terms are hashed instead of being inductively
de�ned, the recursion in the interpretation function must be unfolded.

5.3.6 Remark on expressivity

The terms are strati�ed between atoms and terms of the theories, formulas and clauses. This
simpli�es the small checkers that do not need to know about formulas or atoms (and make
them more e�cient). Compared to the current logic we implement (called QF_UFLIA in
the SMT-LIB, for Quanti�er Free with Unintepreted Functions and Linear Integer Arithmetic
logic), the only kind of terms we cannot represent is branching with a type di�erent from
Boolean. For instance, if x = 3 then y+2 else y-2 cannot be written directly in our
representation of terms.
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However, general branching can be encoded by adding a new variable representing its re-
sult. On the example above, it consists in replacing each occurrence of if x = 3 then y+2
else y-2 by a new variable z and adding the clause if x = 3 then z = y+2 else
z = y-2.

Using this trick, we do not lose expressivity compared to QF_UFLIA.

5.3.7 Remark on modularity about theories

Finally, to handle a new theory, it is su�cient to augment the type op with the operators of
this new theory, to consequently extend the interpretation with them and to give the small
checker together with a proof of its correctness.

We can even go further when the theory do not share symbols with other theories: we have
to change neither op nor its interpretation. Indeed, as formulas appearing in the certi�cate are
pure, the atoms of the new theory can appear as variables in the t_atom array and only the
new small checker needs to access their contents (for instance, using another array of hashed
terms). The environment for atom variables ρV will then be the interpretation function of the
new theory.

5.3.8 Towards concrete proof witnesses: a small checker for silent simpli-

�cations

So far, we presented a checker for certi�cates in the logic QF_UFLIA. However, this is not
su�cient to handle proof witnesses coming from actual SMT solvers, even for this logic:
formulas are likely to be silently �simpli�ed�, in various ways � arithmetic operations may be
simpli�ed (eg. 2 + x+ 3 is transformed into x+ 5), associativity and commutativity may be
applied, n-ary operations may be �attened. . . . Unjusti�ed simpli�cations most often appear at
the beginning: the formula for which a proof witness is output is not the original formula. This
is of course a major problem when integrating SMT solvers into Coq through proof witnesses;
we propose a solution, implemented as a small checker, which appears to work correctly on
most tests.

The problem posed by the simpli�cation process can be stated as follows: we are given
two terms and we need to prove that their interpretations are equivalent. The major issue is
that we do not know at all the nature of the simpli�cations and to which theories they belong.
We followed two approaches.

The �rst approach is a syntactical one: we perform a simultaneous descent in the two terms
and check equivalences at each level. This can be used to check simpli�cations associated to
associativity and commutativity, erasure of double negation, simple rewriting of arithmetic
equations (eg. a < b ≡ b > a ≡ ¬a > b). . . It is limited to very simple simpli�cations, but one
major advantage is that it mixes various theories.

To check more complicated simpli�cations, we also follow a semantical approach: we send
the equivalence between the two terms to one of the small checkers. The choice of this small
checker is done by looking at the head symbol of the terms. It can perform non trivial
simpli�cations, as for instance 3 + x+ y + 7 + x = 2x+ 10 + y. The drawback is that it does
not mix theories; if we have simpli�cations with di�erent theories at the same time, we would
need to decompose into many steps of simpli�cations.

Hence, the type of simpli�cation steps is:

Inductive step_spl : Type :=
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| SplSyntactic (pos:int) (orig:int) (res:int)
| SplArith (pos:int) (orig:int) (res:int) (l:list

ZMicromega.ZArithProof)
| ...

As usual, the constructors take as a �rst argument the position in the state where the resulting
clause should be put. The next two arguments are the position in the state of the initial clause
and the literal that must be equivalent. SplArith takes also a Micromega certi�cate.

We give an example of the syntactic approach:

Example 5.10 This certi�cate proving the unsatis�ability of {x > 7
∧
y 6 −4, x < 2}:

x > 7
∧
y 6 −4

x > 7
CNF

x > 7 ∨ x > 2
LIA

x < 2

x > 2
Simp

x > 7
Reso

�
Reso

can be encoded using the array of atoms

t_atom =

x y −4

Aapp 0 [] Aapp 1 [] Aop (Zcst (-4))[]

2 7 x < 2

Aop (Zcst 2)[] Aop (Zcst 7)[] Aop Zlt [0;3]

x > 2 x > 7 y 6 −4

Aop Zge [0;3] Aop Zge [0;4] Aop Zle [1;2]

the array of formulas

t_form =
> x < 2 x > 2 x > 7 y 6 −4 x > 7

∧
y 6 −4

Ftrue Fatom 5 Fatom 6 Fatom 7 Fatom 8 Fand [|6;8|]

and the initial state

0 1 2

x > 7
∧
y 6 −4 x < 2 -

[10] [2] -

as:

(1) (2)

ImmAndPos 0 0 0 SplSyntactic 1 1 5

(3) (4)

Lia 2 [7;4] c Res 0 [|2;1;0|]

The fact that we can handle silent simpli�cations using a small checker that �ts in our
model emphasizes that it is well suited to check certi�cates in an extendable way.

80



Chapter 6

SMTCoq: certi�ed checker and

tactics

Around the checker presented in the previous chapter, we have developed a set of straightfor-
ward applications to make its use possible and, we hope, easy.

The �rst aim of this work is to have a certi�ed checker for SAT/SMT answers. It can be
used both in Coq and in general programming languages.

The second aim is to enjoy the power of SAT and SMT inside Coq. To achieve this, we
have designed tactics that, given a Coq goal, call external provers and check their answers.
We will explain the possibilities o�ered by these tactics and how they could be improved.

At the present time, these two applications can handle two provers: the SAT solver ZCha�
and the SMT solver veriT. We will explain what has to be done to deal with other provers. We
also make clear the parts that need to be changed to add new theories than the one presented
in the previous chapter.

6.1 Certi�ed checker

The most straightforward application is the direct use of the Coq checker to check SAT/SMT
answers. This corresponds to the diagram given in Figure 6.1. To check the answers given by
SAT and SMT solvers, we need three components:

• the Coq checker presented in the previous chapter, which is certi�ed (green color);

• parsers for SAT and SMT inputs (DIMACS or SMT-LIB), written in Ocaml. They are
not certi�ed and thus belong to the trusted base (red color). The code of the SMT-LIB
parser is taken from the Alt-Ergo SMT solver, written by Sylvain Conchon, Evelyne
Contejean, Stephane Lescuyer, Mohamed Iguernelala and Alain Mebsout;

• parsers and preprocessors for SAT and SMT answers, written in Ocaml. Their main
role is to transform concrete proof witnesses coming from all the di�erent provers into
certi�cates in our common language. They are not certi�ed, but this has no impact on
soundness (blue color): if they go wrong, in the end the checker will fail. (Nonetheless,
it would have an impact on completeness, if we were interested in this aspect.)
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Coq checker

input parser output parser + preprocessor

SAT/SMT input file SAT/SMT proof witness

yes no

input certificate

Figure 6.1: Architecture of the vernacular commands of SMTCoq

This architecture emphasizes the �rst aspect of the modularity of SMTCoq (as presented in
the beginning of Chapter 5): to add a new SAT or SMT solver, one has only to write
a new Ocaml preprocessor, but no Coq code nor proofs. The di�culty of writing such a
preprocessor depends on the distance between the proof witnesses given by the new prover
and our certi�cates. As we said, we currently have preprocessors for ZCha� and the quanti�er
free part of veriT, whose proof witnesses are easy to translate into certi�cates. A preliminary
work investigated the preprocessing of Z3 proof witnesses, which are rather di�erent [Gil12].

We �rst detail the role and the implementation of the preprocessors, before explaining the
di�erent uses that can be done from this architecture.

6.1.1 Output preprocessors

There are three main actions that a preprocessor should do:

• translate the terms used to state and solve the problem in our representation (see Sec-
tion 5.3.4);

• translate the proof witness into a certi�cate;

• eventually perform some optimizations on the certi�cate.

To be e�cient, the generation of terms and certi�cates should be done at the ML level. That
is to say, the preprocessors do not generate a Coq source �le, but rather de�ne Coq terms using
the Ocaml representation (the constr type presented in Section 3.3.2) and communicate with
proof scripts through vernacular commands and tactics (see below). This avoids the Coq terms
to be parsed and is also more natural for the user's point of view, since it is interactive.

Generation of terms

We give a simple and modular presentation of SAT and SMT terms. We keep the same
strati�cation as before: we have two module interfaces, one for atoms (called ATOM) and the
other for formulas (called FORM). We give one functorial implementation of the interface for
formulas:
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module Make (Atom:ATOM) : FORM with type hatom = Atom.t

and, currently, two implementations of ATOM, one for SAT solvers (for which atoms are only
variables) and one for SMT solvers (with the representation of atoms detailed in Section 5.3.4).
This way, to add new theories, one has only to re�ne the SMT implementation of ATOM, but
everything else is unchanged. There is nothing to do to add new provers.

Let us now enter into details. The ATOM interface is:

module type ATOM = sig
type t
val equal : t → t → bool
...
val to_coq : t → constr * constr
...

end

It is the data of a type, some functions to work with this type (like equality) and functions to
export atoms into Coq terms. Notice that we do not impose anything on the type of atoms:
in this way, any combination of theories is an implementation of this interface.

On the contrary, since formulas are implemented once and for all, we impose the type of
formulas in the FORM interface:

module type FORM = sig
type hatom
type t
type pform =
| Fatom of hatom
| Ftrue
| Ffalse
| Fand of t array
| ...

val equal : t → t → bool
...

val get : pform → t
...

val to_coq : t → constr * constr
...

end

This interface features three types: hatom is the type of atoms, t is the internal type of
hashed formulas and pform is the type of nodes of the formulas. We have di�erent kind of
functions to work with this:

• standard functions, like equality testing;

• functions to generate hashed formulas from their expression;

• functions to export hashed formulas and sub-formulas arrays into Coq terms.

83



The SAT implementation of ATOM is very straightforward, since atoms are only variables.
Concerning the Make functor and the SMT implementation of ATOM, we need to compute
maximal sharing and store sub-terms in arrays. This is an adaptation of hash-consing [FC06].

Generation of certi�cates

The type of certi�cates is mostly a tree, whose nodes correspond to steps of the small checkers:

type ’hform step =
| Resolution of ’hform clause list
| AndNeg of ’hform clause * int
| AndPos of ’hform clause
...
| EqTr of ’hform list
...
| Lia of ’hform list * Certificate.Mc.zArithProof list
...

and ’hform clause = {
id : int;

mutable kind : ’hform step;
mutable pos : int option;
mutable used : int;
mutable prev : ’hform clause option;
mutable next : ’hform clause option;

value : ’hform list option
}

It is parameterized by a type ’hform of formulas, which is meant to be instantiated with
some implementation of FORM.t. The steps are the straightforward enumeration of the steps
of the small checkers. In the case of linear integer arithmetic, we provide the certi�cate given
by Micromega.

It relies on an intermediate record type for clauses which, in addition to allowing sharing,
contains information to facilitate cell allocation (and optimizations, as we will see in the next
subsection). Indeed, as we explained in Section 5.2, in the Coq certi�cate the intermediate
clauses are going to be stored in an array, so we need to allocate clauses in this array when
exporting certi�cates to Coq. This is simply computed by a linear traversal of certi�cates and
a greedy allocation, which seems to produce an e�cient allocation in practice. The pos �eld
stores this allocation.

As we previously explained, to add a new prover, one has to translate the new proof
witnesses into this type. Coq exportation, with clauses allocation, can be entirely reused.

To add a new theory, it is su�cient to add the corresponding steps to this type and
accordingly change the exportation functions.

Optimizations

Reducing the length of proofs by resolution is an active research area [Cot10, FMP11]. Some
optimizations are already implemented in SAT and SMT solvers.

We implemented very simple improvements to reduce the length of certi�cates:
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• the removal of unused clauses;

• the sharing of common pre�xes of resolution chains.

The clause type presented in the above section has a �eld name used which is used to
record the number of uses of each intermediate clause, in order to be able to remove unused
clauses very easily.

These optimizations transform certi�cates and thus can be totally reused when adding
new provers. They must be extended when adding new theories.

6.1.2 A Coq checker

Vernacular commands

The �rst way to use SMTCoq as a proof checker is through two sets of Coq vernacular com-
mands.

The �rst set of commands call the checker on given input �le and proof witness:
Zchaff_Checker and Verit_Checker, one for each prover. Their goal is to be able
to check SAT and SMT answers inside Coq. For instance, the command Verit_Checker
"file.smt2""file.log". returns a Boolean; if it is true, we are sure that file.log is
a proof of file.smt2.

We also implemented two commands that allow to import SAT/SMT theorems inside Coq:
Zchaff_Theorem and Verit_Theorem. For instance, the command Verit_Theorem
theo "file.smt2""file.log". de�nes a new Coq term theo whose type is the problem
posed by file.smt2, if file.log is correct (otherwise it fails). This could be useful if one
wants to import, in a Coq development, di�erent results that can be established by SAT or
SMT solvers.

The performance of the �rst two vernacular commands are evaluated in Section 7.1.

Direct use

If one wants to use our checker in a large development, it can also be called directly, either
at the Coq or at the Ocaml level. The main di�culty is that it requires to manipulate our
representation of terms, but this should be made easier by the e�ort we put in making the
code simple and functorial.

6.1.3 An extracted checker

One useful aspect of computational re�ection is that our Coq certi�ed checker can be extracted
to a more general programming language. The extraction mechanism of Coq can produce
Ocaml or Haskell code from our checker. It gives SAT and SMT users the possibility to use
this certi�ed tool without installing Coq, but in a general purpose language.

Regarding reliability, it adds the extraction mechanism of Coq to the trusted base. Cur-
rently, this mechanism has been shown to be sound on paper [Let04] and is being formally
certi�ed as well [Glo09].

We did not evaluate the performance of our extracted checker. However, the Ocaml ex-
tracted code compiled into native code should perform the same as our Coq vernacular com-
mands, since we already use the native version of Coq with e�cient data structures.
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6.2 Tactics

A more interesting application for Coq users is to build tactics on top of this checker: it gives
automation without compromising soundness. We added two tactics to Coq: zchaff and
verit, that call the corresponding provers.

6.2.1 Practical use

Both tactics apply to goals of the form forall x1 . . . xn, b1 = b2 where b1 and b2 are
two Coq terms of type bool. The tactics either solve the goal, or fail.

zchaff solves goals that involve only Boolean reasoning. verit combines Boolean rea-
soning, equality and linear arithmetic. It thus can be seen as a combination of the tactics
tauto, lia and a part of congruence, applied to Boolean goals. It does not fully imple-
ment congruence, since there is no special reasoning about inductive data types (we ignore
injectivity and discrimination of constructors).

Users might be disconcerted by the use of Booleans instead of propositions, which are more
common in Coq. We work with Booleans because we want to enjoy the power of SAT and
SMT without requiring classical logic. The use of SMTCoq jointly with the Ssre�ect plugin
would help working with Booleans.

6.2.2 Architecture

An overview of the architecture of both tactics is given in Figure 6.2. Like on Figure 6.1,
green indicates the certi�ed part and blue shows the parts that are not certi�ed, but without
jeopardizing soundness. Here, the whole process can be trusted without compromising Coq:
if something goes wrong during rei�cation, solver, parser or preprocessor, the tactic will fail
and the possibly wrong goal will not be solved. If it solves the goal, we are guarantied that it
is correct.

reification + preprocessor

SAT/SMT solver

output parser + preprocessor

Coq checker

Coq goal

goal solved failure: counter-
example or unknown

input proof witness

certificate

Figure 6.2: Architecture of the tactics of SMTCoq
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The parser, second preprocessor and checker have been presented in Chapter 5 and at
the beginning of this chapter. The new step is rei�cation and �rst preprocessing.

6.2.3 Rei�cation and �rst preprocessing

As we saw in Section 3.3, rei�cation is performed by an Ocaml program that computes the deep
representation of a Coq term t. The deep representation was given throughout Chapter 5.

The rei�cation must compute:

• an integer, representing some literal l;

• an atom table and a formula table;

• two environments ρT and ρV

such that |l|ρT ,ρV ≡c t.
Once the goal is rei�ed, it could be directly sent to the chosen automatic solver. However,

the prover will be able to solve it only if it is formulated in a way that it understands: for
instance, SAT solvers expect problems in CNF. Since we do not want Coq users to be aware
of the working of the automatic solvers, we prefer to preprocess the goal before sending it to
the prover. Of course, each step of preprocessing must be justi�ed in the �nal certi�cate.

First, we compute the Tseitin CNF transformation of goals given to ZCha�. This is
justi�ed using the already existing steps for the small checker for CNF. We also apply some
syntactical simpli�cations, like �attening the associative logical connectives, which are treated
more e�ciently by SAT and SMT solvers. This is justi�ed by the certi�cates for simpli�cations.

Many other improvements could be implemented in this preprocessing. In particular, a
future work is to improve expressivity by encoding some aspects peculiar to Coq or higher-
order into �rst-order logic, like polymorphism and inductive de�nitions. This could be done
by merging with the dp tactic [AF06], that encodes lots of Coq features into �rst-order logic
before calling SMT solvers, but do not check their answers. It relies on the back-end of the
Why program veri�cation tool [FM07].

6.2.4 Modus operandi

We now explain how satis�ability solvers can be used to solve provability problems. It relies
on the observation that ∀~x, b1 = b2 is provable if and only if b1 6= b2 is unsatis�able.

Figure 6.3 details the modus operandi of the tactics. Given the goal ∀~x, b1 = b2, we �rst
reify the Coq term b1 6= b2 into a deep term. This deep term is written in an input �le for the
chosen prover (DIMACS for SAT solvers and SMT-LIB for SMT solvers). Three possibilities
may occur:

• in the ideal case, the prover answers that the problem is unsatis�able and gives a correct
proof witness of this unsatis�ability. In that case, the proof witness is translated into a
certi�cate and the goal can be solved by an application of the correctness of the checker
(see below);

• the prover may also return that the problem is satis�able and give an assignment of
the variables. In that case, the tactics fails, but gives an informative error message by
providing the counter example given by the assignment;
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• otherwise, the solver might not know or give a wrong proof witness, in which case the
tactic fails without the possibility to help the user.

goal

error message

goal solved

formula

counter ex.

checker call

translation

assignment

proof witness

set of clauses

SAT

UNSAT

reification

Coq

OCaml SAT/SMT solver

Figure 6.3: Modus operandi of the tactics

Let us observe what happens in the ideal case. We recall the statement of the correctness
of the checker:

Lemma main_checker_correct : forall input certif confl,
checker input certif confl = true →
forall I, ∼(valid I input).

We proved the following corollary:

Corollary main_checker_correct_eq : forall l l1 l2 certif confl,
is_equiv l l1 l2 = true →
checker l certif confl = true →
forall I, |l1|I = |l2|I.

where is_equiv checks that l is a literal corresponding to the equivalence between the
literals l1 and l2.

This corollary directly applies to our goals: a proof of forall x1 . . . xn, b1 = b2 is a
term of the form fun x1 . . . xn ⇒ main_checker_correct_eq l l1 l2 certif
confl (refl_equal true) (refl_equal true) I where l, l1, l2 and I are terms
and valuation generated by rei�cation and certif and confl are the certi�cates prepro-
cessed from the prover's proof witness. The most important point here is to notice that
the proofs of is_equiv l l1 l2 = true and checker l certif confl = true are
just re�exivity: since l, l1, l2, certif and confl are closed terms, Coq's type checker
can compute the result of the applications of is_equiv and checker. This is the essence
of computational re�ection. Since computation does not appear inside proofs, the length
of the �nal proof is the length of the certi�cate.
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To be e�cient, especially since we use arrays and machine integers, this computation is
performed using the native computation in Coq.
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Chapter 7

Evaluation of SMTCoq

SMTCoq was designed, among other things, to be e�cient both as a proof checker and as a
Coq tactic. In this chapter, we try to evaluate this claim against two di�erent approaches: the
veri�cation of ZCha� proof witnesses [Web08] and Z3 proof witnesses [BW10] in Isabelle/HOL,
and Ergo in Coq [LC09]. We also qualitatively highlight the di�erences with existing tools.
The quantitative experiments we will present here all have been conducted in 2011 on an Intel
Quad Core processor with 2.66GHz and 4Gb RAM, running Linux.

7.1 Evaluation of the checker

7.1.1 Qualitatively

Several SAT and SMT checkers have been integrated in LCF style interactive theorem
provers including checkers for CVC Lite in HOL Light [MBG06], MiniSat and ZCha� in Is-
abelle/HOL [Web08], haRVey in Isabelle/HOL [FMM+06], Z3 in HOL and Isabelle/HOL [BW10],
SAT solvers in Coq [DFMS10]. To our knowledge, no SAT nor SMT checker have been certi�ed
by other means than interactive theorem provers.

We observe that a new checker has been written for every prover. SMTCoq tends to avoid
this thanks to its modularity: it can handle both SAT and SMT solvers and great care has
been taken to make it easily extendable. It should be small work to write preprocessors for our
certi�cates compared to proving the correctness of a new checker (this seems to be con�rmed
by the preliminary preprocessor for Z3 proof witnesses [Gil12]).

Moreover, the implementation of SMTCoq in a proof assistant based on Type Theory
makes it extractable as a certi�ed checker. This should favor its deployment among the users
of SAT and SMT solvers, even when they are not familiar with Coq.

7.1.2 Performance

We warn that fairly evaluating the performances of interactive theorem prover like Coq and
Isabelle (which run in languages that use garbage collection) in applications that call external
tools is a very di�cult task and a comparison between both is even more risky, even if we took
care to conduct the experiments in the best conditions as possible.
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Resolution

We �rst look at the performance of the combination of the main checker with the small checker
for resolution chains, which is always widely used since resolution is central in both SAT and
SMT certi�cates. We took a set of 151 unsatis�able industrial benchmarks from SAT Race'06
and '08, which range from 300 to 2.3 million variables and from 1, 800 to 8.9 million clauses.
On each benchmark:

• we run ZCha� 2007.3.12 (with proof witness generation) on these benchmarks with a
timeout of 300 seconds;

• when ZCha� succeeded, we run SMTCoq (using the vernacular command
Zchaff_Checker, thus with preprocessing and in native-coq (not extracted)) on the
proof witness with a timeout of 300 seconds.

Table 7.1 presents the number of benchmarks solved by ZCha� and, among them, the
number of proof witnesses successfully checked by SMTCoq. The proof witnesses given by
ZCha� have size from 41Kb to 205Mb. The times are the mean of the times for the 79
benchmarks on which ZCha� succeeded, in seconds.

ZCha� SMTCoq

# % Time # % Time
79 52 70.2 79 52 21.5

Table 7.1: Standalone evaluation of the resolution checker

ZCha� was able to solve 79 benchmarks in the given time, which represents 52%. We
�rst notice that SMTCoq was able to check all the proof witnesses given by ZCha�. We also
observe that SMTCoq was much faster to check the certi�cate than ZCha� to compute it.

As a conclusion, ZCha� proof witnesses can be e�ciently veri�ed by SMTCoq, at small
time cost. It does not add a bottleneck, since it is faster than ZCha�.

We want to make a comparison with the state-of-the-art Isabelle/HOL checker for ZCha�
proof witnesses written by Alwen Tiu and Tjark Weber [Web08]. We take the same bench-
marks as before and, when ZCha� succeeded, we run the Isabelle/HOL checker on the proof
witness with a timeout of 300 seconds. We use Isabelle 2009-1 (running with Poly/ML 5.2).

Table 7.2 extends the previous table with the Isabelle/HOL results we obtained. Now, the
times are the mean of the times for the 57 benchmarks on which the Isabelle/HOL checker
succeeded, in seconds.

ZCha� SMTCoq Isabelle/HOL checker
# % Time # % Time # % Time
79 52 51.9 79 52 17.5 57 38 100.

Table 7.2: Comparison with Isabelle/HOL resolution checker

It appears on these experiments that Isabelle/HOL can check less proof witnesses in the
given time than SMTCoq and takes more time (and even more time than ZCha�). However,
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these results have to be taken with great care, since they disagree with the experiments
conducted by Tjark Weber [Web08], which showed that the Isabelle/HOL checker was faster
than ZCha�. A discussion with Tjark Weber is in progress to understand these di�erences.
Possible explanations are:

• we do not conducted the experiments the right way, since we are not familiar with
Isabelle/HOL;

• ZCha� and Isabelle/HOL might have evolved since Weber's experiment was conducted
(in 2008);

• our set of benchmark is di�erent and larger than the one taken in [Web08].

All the results for resolution are summarized in Figure 7.1, which presents the number of
benchmarks solved through time. The steepening of the Coq curve enhances the e�ciency
of SMTCoq: the time curve is of course exponential since the length of certi�cates grows
exponentially, but the exponential behavior starts later than for ZCha� and Isabelle/HOL.
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Figure 7.1: Evaluation of the resolution checker
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Whole checker

We now evaluate the whole SMTCoq checker. We took a database of 2377 unsatis�able
industrial benchmark from the SMT-LIB1 for theories QF_UF (congruence closure), QF_IDL
(di�erence logic, a subset of linear integer arithmetic with polynomial decision procedures)
and QF_LIA (linear integer arithmetic). On each benchmark:

• we run the development version of veriT (with proof witness generation) on these bench-
marks with a timeout of 300 seconds;

• when veriT succeeded, we run SMTCoq (using the vernacular command
Verit_Checker, thus with preprocessing and in native-coq (not extracted)) on
the proof witness with a timeout of 300 seconds.

Table 7.3 presents the number of benchmarks solved by veriT and; among them, the number
of proof witnesses successfully checked by SMTCoq. The times are the mean of the times for
the benchmarks on which both veriT and SMTCoq succeeded, in seconds.

Benchmarks veriT SMTCoq

Logic # # % Time # % Time
QF_UF 1852 1816 98 7.2 1804 97 1.5
QF_IDL 409 368 90 11.1 349 85 54.3
QF_LIA 116 98 84 15.5 98 84 4.2

Table 7.3: Standalone evaluation of SMTCoq

veriT solved a large set of benchmarks in rather short time; unsolved benchmarks are mainly
due to timeouts or to unknown answer (since veriT was not complete for QF_LIA when these
experiments where conducted). SMTCoq was able to check most of the certi�cates, faster
than veriT produced them for logics QF_UF and QF_LIA, but slower for logic QF_IDL.
This might be explained by the fact that we do not use a special small checker for this logic
but the LIA small checker; as a consequence, we do not bene�t from fast decision procedures
known for QF_IDL.

As a conclusion, veriT proof witnesses can be e�ciently veri�ed by SMTCoq, most of the
time at small time cost. It would be an interesting improvement to write in Coq a decision
procedure for di�erence logic.

It is even more di�cult to compare SMTCoq with other tools, since none can check veriT
proof witnesses. Nonetheless, we can try to compare the combination of veriT and SMTCoq
with the combination of Z3 and the Isabelle/HOL checker [BW10] written by Sascha Böhme
and Tjark Weber. We take the same benchmarks as before:

• we run Z3 2.19 (with proof witness generation) on these benchmarks with a timeout of
300 seconds;

• when Z3 succeeded, we run the Isabelle/HOL checker on the proof witness with a timeout
of 300 seconds.

1The SMT-LIB benchmarks are available at http://smtlib.org.
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Table 7.4 extends the previous table with the Z3 and Isabelle/HOL results we obtained.
Now, the times are the mean of the times for the benchmarks on which the four tools succeeded
(whereas for Table 7.3 it was the (most numerous) benchmarks on which veriT and SMTCoq
succeeded), in seconds.

Benchmarks veriT SMTCoq

Logic # # % Time # % Time
QF_UF 1852 1816 98 6.5 1804 97 1.4
QF_IDL 409 368 90 6.3 349 85 37.8
QF_LIA 116 98 84 11.6 98 84 3.1

Benchmarks Z3 Isabelle/HOL checker
Logic # # % Time # % Time

QF_UF 1852 1834 99 2.5 1775 96 25.8
QF_IDL 409 402 98 0.6 190 46 55.2
QF_LIA 116 107 92 0.7 96 83 46.6

Benchmarks veriT + SMTCoq Z3 + Isabelle/HOL

Logic # # % Time # % Time
QF_UF 1852 1804 97 7.9 1775 96 28.3
QF_IDL 409 349 85 44.1 190 46 55.8
QF_LIA 116 98 84 14.7 96 83 47.3

Table 7.4: Comparison with Isabelle/HOL checker

The top table presents individual results. We can observe that Z3 is faster than veriT, but
as we said, we cannot say anything about SMTCoq and Isabelle/HOL, since they do not check
the same proof witness.

However, we can compare the combination of veriT and SMTCoq with the combination of
Z3 and Isabelle/HOL as a posteriori certi�ed solvers. This is presented in the bottom table.
The combination veriT + SMTCoq appears to solve more goals and to be faster than the
combination Z3 + veriT. This may be explained by the fact that the Isabelle/HOL checker has
more work to do than SMTCoq, since Z3 proof witnesses lack more information than veriT's.
This should encourage the generalization of our certi�cates: they are easier to check with a
small generation additional cost.

The results for QF_IDL are summarized in Figure 7.2, which presents the number of
benchmarks solved through time.

7.2 Evaluation of the tactics

7.2.1 Qualitatively

Many interactive theorem provers implement automatic tactics using the skeptical approach.
The external prover can be either a di�erent tool we do not control, like SMTCoq, or a tool
done on purpose, like the external provers of the Coq Micromega set of tactics or of the
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Isabelle/HOL blast (a tableau prover) and metis (a resolution prover) tactics. The most
impressive approach is Sledgehammer [BBP11], a Isabelle/HOL utility that combines calls to
di�erent external solvers. Most of these solvers are used as oracles for the internal prover
metis, and ZCha� and Z3 proof witnesses are directly reconstructed, as explained above.
Sledgehammer is far more powerful than our tactics currently, especially since it does not
only send the goal to the prover, but also a well chosen bunch of lemmas from Isabelle/HOL
standard library. We could not do this until we handle quanti�er instantiation.

The autarkic approach is often considered as being unrealistic considering the complexity
of modern automatic solvers. Nonetheless, if the objective is to have a certi�ed automated
prover for a proof assistant rather than a very e�cient prover for industrial benchmarks, it
must be conceivable to implement it directly in the proof assistant. This approach was followed
for the SMT solver Ergo implemented and proved correct in Coq [LC09]. Contrary to SMTCoq,
it currently cannot handle integer inequalities, but it is complete for the logic QF_UFLIA
without them (while SMTCoq cannot be complete without guaranties on the external tools it
uses).

7.2.2 Performance

We can compare the performance of our zchaff and verit tactics with the re�exive tactics
dplln and cc of Ergo. To do so, we use the same formulas that are presented in Section 11.2
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of [LC09]:

• for SAT:

� the pigeon hole problems (see Example 4.2);

� the de Bruijn formulas: debn = ∀x0, . . . , x2n, (x2n ↔ x0) ∨
2n−1∨
i=0

(xi ↔ xi+1)

• for EUF:

� the formulas FP (n,m, k) = ∀fx, fn(x) = x → fm(x) = x → fk(x) = x which are
true for any n,m, k such that k is a multiple of gcd(n,m)

� the formulas Dn =

∀f,

(
n−1∧
i=0

(xi = yi ∧ yi = f(xi+1)) ∨ (xi = zi ∧ zi = f(xi+1))

)
→ x0 = fn(xn)

Table 7.5 presents the time taken by the tactics, in seconds.

dplln zchaff
H7 28.0 0.2
H8 262.7 1.2
H9 - 1.6
H10 - 6.7

dplln zchaff
deb700 111.5 0.8
deb800 147.9 1.0
deb900 201.6 1.2
deb1000 260.4 1.5

cc verit
F (13, 5, 8) 0.5 0.1
F (25, 13, 1) 1.3 0.1
F (25, 15, 5) 0.5 0.2
F (25, 24, 24) 16.9 0.1

cc verit
D5 2.3 0.3
D8 24.9 1.1
D10 118.7 2.2
D15 - 45.7

Table 7.5: Comparison between Ergo and SMTCoq

We see that our zchaff and verit tactics here clearly outperform dplln and cc. This
is not surprising since ZCha� and veriT have more e�cient algorithms than Ergo. Note it may
be di�cult to change Ergo's algorithm since it would involve redoing many correctness proofs;
the certi�cate approach is more �exible here. If we store proof witnesses, zchaff and verit
would get faster at rather small storage cost: in our examples, the largest proof witness is
41Mb large for D15.

Regarding other existing Coq tactics, zchaff is far faster than tauto and verit is
similar to congruence. However, these latter ones do not solve the same goals, since verit
can solve goals including congruence and propositional reasoning, while congruence can
deal with inductive data-types.

7.3 About data structures

In this section, we evaluate the importance of native data structures in terms of e�ciency.
We implemented a small variant of SMTCoq: the only di�erence is that the state of the main
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checker (see Section 5.2.1) is not a native array anymore, but a �nite map using AVL trees

(implemented in the Coq library FMapAVL). Other structures using native arrays or 31-bit
integers are unchanged. We compare it with the standard SMTCoq, on the SAT benchmarks
of Section 7.1.2.

Table 7.6 sums up the results. The times are the mean of the times for the 79 benchmarks
on which the three tools succeeded, in seconds.

ZCha� SMTCoq SMTCoq +FMapAVL
# % Time # % Time # % Time
79 52 70.2 79 52 21.5 79 52 79.3

Table 7.6: Evaluation of native data structures

We observe that the variant of SMTCoq was far less e�cient than the standard SMTCoq:
it took between 3 and 4 more time to check the certi�cates, which is also a little longer
than for ZCha� to produce them. This is a large loss in e�ciency, but it remains a�ordable.
Since the representation of states is the place where native data structures theoretically play
the more important role, SMTCoq would be sustainable without them at all, but with bad
performances.

As a conclusion, at the cost of extending a bit Coq's kernel by a process rather well
understood [AGST10], we can signi�cantly improve the e�ciency of Coq programs involving
lots of computations, in particular accesses and replacements in some structure.
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Chapter 8

Future directions

8.1 Spreading SMTCoq

Version 1.0 of SMTCoq was released in 2012 as free software (under the CeCILL-C license) and
thus can be freely used to certify ZCha� and veriT answers, or inside other Coq developments.
For instance, the prototype implementation of a checker for SAT certi�cates [AGST10] that
was the prelude to SMTCoq has been used to implement a Nelson-Oppen theory combiner in
Coq [BCP11].

SMTCoq is now ready to a confrontation with applications external to the Coq or the SAT
and SMT community and collaborations with potential users are bene�cial to fully understand
their requirements. Collaborations that are currently under inspection include:

• a certi�cation of the SMT calls performed by the Liquid Type checker [RKJ08], a type
checker for an ML programming language with re�ned types;

• the use of the tactics in a Coq formalization of some conjectures in chess by Predrag
Janicic and Marko Malicovi¢, which involve many easy-to-automate proofs combining
propositional reasoning with linear integer arithmetic;

• an integration in theWhy3 platform [BFMP11] for deductive program veri�cation, which
delegates proof obligations coming from annotated programs to a wide range of provers,
in particular SMT solvers.

Considering all these possible applications, we thought about many improvements that have
to be brought to SMTCoq to be confronted to the real world.

8.1.1 Generic certi�cates

We argued that interfacing SMTCoq with a new proof-producing prover only requires to write
an Ocaml preprocessor translating the proof witnesses of this new prover into our certi�cates.
This is particularly interesting for solvers developers, which do not need to write Coq code to
integrate their tools in SMTCoq.

Nonetheless, we think that it would be really pro�table if the SMT community could agree
on an output format, in the same way that they currently agree on the input format. The
certi�cates used here correspond to a proposal from the ANR DeCert initiative for a common
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output format. The work presented in this thesis show that this format has an appropriate level
of details to be checked really e�ciently in Coq at a small generation cost (see Section 7.1.2).
We thus expect other provers to implement it as well.

A longer term perspective is to understand how SMT proof witnesses can be included
in more general purpose certi�cates, like the broad spectrum certi�cates proposed by
Miller [Mil11] or the input format of dedukti [BCH12].

8.1.2 Quanti�ers

We also argued that SMTCoq could easily be instrumented with decision procedures for new
decidable �rst-order theories. Nonetheless, in addition to decidable theories, many applications
would bene�t from quanti�er instantiation, for instance:

• it is a common way to de�ne new interpreted symbols: universally quanti�ed axioms
provide the semantics to these symbols and have to be instantiated to obtain the �nal
proof (this appears often in program veri�cation for instance);

• the Coq tactics could rely on previously proved lemmas which are universally quanti�ed,
which is absolutely needed in even small Coq developments.

Handling quanti�ers (even only for lemma instantiation) in SMTCoq do require much
e�orts. The main current limitation is that quanti�ers cannot be de�ned in the set of Booleans,
so we need to switch to an interpretation of formulas into the sort of propositions.

It implies that we have to handle classical logic, which is widely used in CNF computation
(see Section 5.3.3 and [LC09]). The simplest way to do this would be to assume the axiom
of excluded middle. We could also use a translation from classical to intuitionistic logic, as
proposed in Ergo [LC09]. However, we can avoid this in many cases of SMT solving: most of
the time, the excluded middle is not applied to a Boolean variable, but to a proposition in
some theory in which excluded middle is constructively valid (like linear arithmetic).

8.1.3 Tactics

We just explained how handling quanti�er instantiation would increase the power of the tactics.
The side e�ect of switching to the sort Prop would be pro�table as well: we are currently
limited to goals of the form b1 = b2 where b1 and b2 are Booleans, whereas it is far more
common to use propositions in Coq.

The tactics can be improved in many other ways.
First, we can enhance speed e�ciency, by storing the certi�cates. Currently, when inter-

preting twice the same proof script, everything is computed again. If we store the certi�cates,
we would avoid doing proof search and proof preprocessing twice, which can be very important,
especially for proof search. This is for instance done by the Micromega set of tactics.

To make the tactics more useful, we could also consider the possibility to simplify the goal
instead of solving it or fail. For instance, this could be very useful to integrate theories for
which we do not have decision procedures in Coq: we could just simplify the goal and let the
user prove the theory lemmas that cannot be proved automatically in Coq.

Finally, we do not do much encoding of Coq goals before sending them to the automatic
provers, which means that the quanti�er-free parts of the goals must be direct instances of the
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QF_UFLIA logic to be solved by the SMT solver. To be usable, the tactics should encode
inductive de�nitions and some higher-order aspects of Coq into �rst-order logic, before sending
the problem to the automatic solver. This aspect �ts in an integration with theWhy3 platform,
which already handles such encodings, but without formal certi�cation.

8.2 Application to a decision procedure for machine integers

Many decision procedures are based on a SAT encoding of the initial problem: hardware
veri�cation and bounded model checking [BCC+99], propositional planning [RGPS08], su-
doku [Web05]. . . . Enjoying the power of SAT in Coq allows to write decision procedures for
this kind of problems that are reducible to SAT.

In this section, we discuss about the theoretical foundations for a Coq decision procedure
for 31-bit integers based on a SAT reduction. Bounded unsigned integers are isomorphic to bit-
vectors, whose theory can be encoded in SAT using bit-blasting (also called �attening [KS08]).
It relies on a binary encoding of integers: we associate 31 Boolean variables to each integer,
representing its digits, and translate the common operators into a set of constraints that the
Boolean variables must satisfy.

Example 8.1 For each integer variable x, we associate (xi)i∈J0,30K Boolean variables (x0 rep-
resents the least signi�cant bit). We can encode the bitwise disjunction as follows:

x = y|z is encoded as (x0 ⇔ y0||z0) ∧ · · · ∧ (x30 ⇔ y30||z30)

Constraints associated to bitwise operators are straightforward. For arithmetic opera-
tors, usual encodings follow their implementation as circuits [KS08], which is experimentally
a�ordable for modern SAT solvers.

A decision procedure for machine integers in Coq would be really useful, since modulo
arithmetic proofs often involve burdening extra-work to show that we do not exceed the
capacity limitation. There are mainly two possibilities to implement such a decision procedure
relying on SMTCoq: either by using SMTCoq as a black-box, or by a deeper integration in the
checker.

8.2.1 Using SMTCoq as a black-box

A decision procedure relying on SMTCoq as a black-box works in two steps:

1. encode the problem into a set of SAT constraints using a dedicated tool (this encoding
must be certi�ed);

2. use SMTCoq to call ZCha� on the obtained problem.

This method presents the advantage not to require any knowledge about SMTCoq. How-
ever, as we took great care to be modular, we think that a deeper integration is possible with
only a high level understanding of SMTCoq and is likely to be more e�cient.

8.2.2 Deeper integration in SMTCoq

We noticed that step 1, that encodes the problem in SAT, relies on mechanical operations that
can be certi�ed using a small checker as presented in Section 5.3. It is indeed rather similar
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to CNF computation (see Section 5.3.3): we can maximally hash the atoms of this theory and
de�ne a bunch of certi�cates for each operator on 31-bit integers.

Example 8.2 The clausal tautologies associated with the y|z subterm are:

¬(y|z)i ∨ yi ∨ zi
BorNegi

(y|z)i ∨ ¬yi
BorPos1i

(y|z)i ∨ ¬zi
BorPos2i

We can also de�ne the corresponding implications:

(y|z)i
yi ∨ zi

ImmBorPosi

¬(y|z)i
¬yi

ImmBorNeg1i

¬(y|z)i
¬zi

ImmBorNeg2i

This is an example of a theory checker that can been added without changing the repre-
sentation of atoms, as mentioned in Section 5.3.7.

8.2.3 Perspectives

Future work consists in implementing this small checker and use it to de�ne a tactic solving
goals involving modulo arithmetic on 31-bit integers. We should be careful to develop a generic
framework that can be re-used for other decision procedures based on SAT encodings.
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Part III

Cooperation with interactive theorem

provers: importing HOL Light into

Coq
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Cooperation between proof assistants is a hot topic, as their number is increasing while
their logical frameworks diverge. Even if they have similar theoretical expressivities, they
are not practically suited for the same formalizations. An illustration is the Flyspeck
Project1 [HHM+10], aiming at a formal proof of the Kepler Conjecture: some parts involve
mathematical analysis, a domain widely explored by HOL Light; others are proved by the
check of certi�cates provided by oracles, which would be e�ciently done by computational
re�ection in Coq.

To translate proofs from one formalism to another, most approaches de�ne an intermediate
language for proofs, in the objective that we �rst translate the source language into this one,
which is then translated into the target language. If the intermediate language is generic
enough, the process is modular; current propositions often highly mimic the source language,
though. A recent work [Mil11] proposes theoretical broad spectrum intermediate certi�cates,
in a long term cooperation perspective; but there is no implementation for the moment.

Another approach, followed in particular by the dedukti project [BCH12], is to make provers
communicate inside a back-end universal checker. An interest is that the dedicated checker
can be really small and thus the trusted base also.

In this part of the thesis, we present a translation of proofs from HOL Light into Coq, using
an intermediate proof format close to natural deduction in Higher-Order Logic. This work
is built upon a model of Higher-Order Logic inside Coq and a good translation of HOL Light
statements, in the sense that they remain intelligible and can be incorporated into further
developments made in Coq.

After presenting the paradigms of HOL theorem provers and two possible formats of
certi�cates for Higher-Order Logic (Chapter 9), we implement the model of HOL in Coq
(Chapter 10): a deep embedding (Section 10.3) and an interpretation into Coq (Section 10.4).
Upon this generic model, we implemented HOLLIGHTCOQ, an importer of HOL Light theo-
rems into Coq (Chapter 11). Chapter 12 evaluates this importer, both in terms of the
quality of the obtained theorems (Section 12.1) and of e�ciency (Section 12.2). We �nally
discuss possible improvements and perspectives (Chapter 13).

1The progress of this project is available at http://code.google.com/p/flyspeck.

105

http://code.google.com/p/flyspeck


106



Chapter 9

HOL-like theorem provers

9.1 Philosophy and presentation

Like all proof assistants, HOL-like theorem provers (like HOL Light, Isabelle/HOL and HOL4)
implement an expressive logical framework in which theorems can be constructed only by the
combination of low-level well-understood rules. The way they are guaranteed as well as the
logical framework di�er from Coq.

9.1.1 Correctness

The kernel of a HOL prover is an abstract data type for theorems, together with a few inference
rules allowing to build objects of this abstract type. The typing system of the language in
which it is implemented thus guarantees that theorems can only be built at runtime using the
few inference rules that were given in the kernel. As a consequence, each session of such a
prover starts by evaluating from scratch the de�nition of all the theorems (it may be possible
to save the prover's state to avoid this step, but this is just for a matter of convenience: in
the end everything must be checked from the beginning).

A consequence is that there is no actual need for proof terms in HOL provers: when a
theorem is built using inference rules, the only important thing to recall is that it actually has
the abstract data type of theorems, but we can forget how it has been proved. Contrary to
provers based on Type Theory, what matters is the existence of a proof, but we do not care
about its low-level content.

9.1.2 Logical framework

HOL-like theorem provers implement the following version of Higher-Order Logic. The lan-
guage of terms is the simply-typed λ-calculus with prenex polymorphism, with some distin-
guished constants cA ∈ C (we will explain later what these constants may be):

A,B , bool | A→ B | α
t, u , xA | λxA.t | t u | cA

A proposition is a λ-term of type bool. A theorem is a pair made up of a �nite set of
propositions Γ and a proposition φ:

Γ ` φ
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obtained by applying some inference rules presented in a natural deduction style.
There are mainly two presentations for the inference rules [LS88], depending on the choice

of the distinguished constants: an intentional presentation of Higher-Order Logic based on
implication and universal quanti�cation

C = {⇒bool→bool→bool,∀(α→bool)→bool}

(implemented for instance in Isabelle/HOL) and an extensional presentation based on equality

C = {=α→α→bool}

(implemented for instance in HOL Light). For each presentation, it is possible to de�ne the
standard logical connectives as shortcuts for some λ-terms and to derive their introduction
and elimination rules from the existing rules.

We are more interested in the second presentation, since it is the one used by HOL Light
and by proof certi�cates for HOL (see Section 9.2). The inference rules and de�nitions of
connectives are given in [Har06], we recall six of them on Figure 9.1.

REFL ` t : A` t =A t
ASSUME ` p : bool

{p} ` p

BETA

` (λx.t) x = t
Γ ` s = t

ABS x 6∈ FV(Γ)
Γ ` (λx.s) = (λx.t)

Γ ` s = t ∆ ` u = v
MK_COMB

Γ ∪∆ ` s(u) = t(v)

Γ ` p⇔ q ∆ ` p
EQ_MP

Γ ∪∆ ` q

Figure 9.1: Six inference rules of the Higher-Order Logic

For all the rules, we adopt the same notations as in [Har06]. We give an example of a
proof tree in this logical framework.

Example 9.1 A HOL Light proof of symmetry of equality is:

REFL

` (• = •) = (• = •)
ASSUME

y = x ` y = x
MK_COMB

y = x ` (y = •) = (x = •)
REFL

` y = y
MK_COMB

y = x ` (y = y) = (x = y)
REFL

` y = y
EQ_MP

y = x ` x = y

It entails from the inference rules that terms are not dynamic: there is no conversion
rule and β-equivalent terms can only be proved equal, as we can see in the BETA rule. There
is no computational re�ection in HOL (contrary to Coq and other systems based on Martin-Löf
Type Theory). From our point of view in this part, where we want to embed a HOL system
in Coq, this is rather an advantage: we do not have to write a normalizer for the terms of this
language, which would have been very di�cult since its termination is not obvious.

In addition to the inference rules, most HOL systems, in particular HOL Light, add to the
set of constants the Hilbert operator ε(α→bool)→α and two axioms:
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• an axiom asserting that ε is a choice operator: ` Px⇒ P (ε(P ));

• an axiom of eta-conversion ` (λx.t x) = t.

This logical framework is non-constructive in at least two aspects. First, we can derive
propositional extensionality, stating that two equivalent propositions are equal, and functional
extensionality, which are not derivable in intuitionistic logic. Second, the axiom asserting that
it ε is a choice operator makes the system fundamentally classical: in presence of extensionality,
this axiom is equivalent to the Axiom of Choice [Dia75].

9.1.3 Constants de�nitions

Since there is no dynamics, the de�nition of new terms and types must also be handled
di�erently than in systems with computation like Coq.

Terms de�nitions are just shortcuts for some λ-terms. De�ning c = t where c is some fresh
name and ` t : A has no free term variables, adds cA to the set of constants and the new
inference rule

` c = t

Once again, a constant is provably equal to its de�nition, but there is no convertibility.

The types that can be de�ned are non-empty subtypes of existing types, using the schema
of speci�cation. If A is a type and P : A→ bool is a predicate satis�ed by at least one term t,
then we can de�ne the subtype B (which must be a fresh name) of the terms of A satisfying
P :

B = {x : A|P x}

The type A may contain type variables, in which case they are considered as arguments of
B. Such a de�nition adds the new type name B to the system, as well as new term constants
rep : B → A and abs : A→ B without computational content and the new inference rules:

` abs (rep a) = a ` P r = (rep (abs r) = r)

The term rep can be understood as the canonical injection from B to A and abs as the injection
from A to B whose behavior is speci�ed only for terms satisfying P .

P needs to be satis�ed at least for one term in order to guarantee that all types are
non-empty. This is fundamental in order to make the ε operator a total function.

Some implementations of HOL also o�er the possibility to de�ne inductive data types. In
HOL Light, these de�nitions are just particular cases of the general types de�nitions presented
here, so they are handled at this low level.

We will see that the absence of computation in de�nitions are again also welcome when
formalizing Higher-Order Logic in Coq, since we can freely translate constants into the desired
Coq terms to get intelligible statements.

109



9.1.4 High level rules and tactics

Sections 9.1.2 and 9.1.3 presented the HOL Light kernel. On top of it, more complex rules
are derived, standard de�nition mechanisms are implemented, as well as a large set of tactics,
from simple to fully automatized. The important point is that these high level constructions
are only combinations of the base rules, de�nitions and axioms. In consequence, they can be
traced back to the kernel primitives, which guarantees correctness and o�ers the possibility to
instrument the proof assistant in order to generate low level certi�cates, even if there are no
built-in proof objects.

9.2 Proof certi�cates for HOL provers

Since a �rst proposal for HOL by Denney [Den00], di�erent proof formats have been imagined.
The more widespread are Proof recording by Obua [OS06] and more recently OpenTheory by
Hurd [Hur09]. We are going to present and compare them, illustrated by the proof of symmetry
of equality given in Example 9.1.

9.2.1 Proof recording

Proof recording [OS06] was introduced to import HOL4 and HOL Light into Isabelle/HOL and
has been implemented for both provers1. It is currently not developed anymore.

Proof recording records the skeleton of the proof in natural deduction. It is a tree of
HOL inference rules, but labeled only with the names of the rules and some of their arguments
and not the intermediate theorems produced at each step nor the side conditions (like the
freshness condition of the ABS rule of Figure 9.1). This is su�cient to automatically build the
complete derivation when it exists, by inductively decorating the skeleton with the statements.

Example 9.2 The skeleton of the proof of Example 9.1 is:

REFL(• = •)
` y = y

ASSUME(y = x)

` y = y
MK_COMB

` y = y
REFL(y)

` y = y
MK_COMB

` y = y
REFL(y)

` y = y
EQ_MP

` y = y

These proofs are too large to be exported as such. Proof recording introduces two mecha-
nisms to reduce the size of proofs.

The �rst one is sharing, at the levels of types, terms and theorems: types and terms
appearing in a theorem are maximally hashed; concerning theorems, common subproofs are
recorded as intermediate lemmas. This drastically reduces the length of certi�cates, but
at the cost of modularity: since the intermediate lemmas are created regarding the whole
development, it generates so much dependencies that the certi�cates coming from di�erent
parts of the development cannot be checked separately.

The second (less crucial) improvement for the size of proofs is the possibility to consider
more inference rules than the ten rules given by the kernel, in particular the introduction and
elimination rules of connectives. Since these rules are more familiar than the kernel rules, they

1Proof recording for HOL Light is freely distributed with HOL Light at http://code.google.com/p/
hol-light.
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are more likely to be used; Obua noticed in consequence that it was a waste of memory to
expand them.

In practice, the proofs are exported as XML �les, one for each theorem (de�ned by the
user or stemming from sharing), divided into four parts:

• the hashed list of types appearing in the theorem (subtypes are referred to by their
locations in the list), enclosed by the tylist tag;

• the hashed list of terms appearing in the theorem (subterms are referred to by their
locations in the list), enclosed by the tmlist tag;

• the skeleton itself, possibly referring to other �les by their names;

• the conclusion of the theorem, enclosed by the tmi tag.

Example 9.3 The XML �le generated by the proof of Example 9.1 is:

<proof>
<!-- List of types -->
<tylist i="4">

<tyv n="A"/>
<tyc n="bool"/>
<tya><tyc n="fun"/><tyi i="0"/><tyi i="1"/></tya>
<tya><tyc n="fun"/><tyi i="0"/><tyi i="2"/></tya>

</tylist>
<!-- List of terms -->
<tmlist i="7">

<tmc n="=" t="3"/>
<tmv n="y" t="0"/>
<tma f="0" a="1"/>
<tmv n="x" t="0"/>
<tma f="2" a="3"/>
<tma f="0" a="3"/>
<tma f="5" a="1"/>

</tmlist>
<!-- Skeleton -->
<peqmp>

<pcomb>
<pcomb>

<prefl i="0"/>
<phyp i="4"/>

</pcomb>
<prefl i="1"/>

</pcomb>
<prefl i="1"/>

</peqmp>
<!-- Conclusion -->
<tmi i="6"/>

</proof>
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9.2.2 OpenTheory

The goal of OpenTheory [Hur09] is to share proofs between HOL-like provers and to build a
standard library of formalizations done in these provers. An implementation exists for HOL
Light2 and the OpenTheory website3 makes built libraries available. This is recent software
and still in development.

Each library is presented as a package, containing:

• a theory �le: a text �le describing package information (name, dependencies from other
packages, . . . ) and a logical theory Γ � ∆ constructed from proof article �les and other
theory packages, meaning that the theorems in ∆ logically derive from the assumptions
in Γ (free variables are implicitly universally quanti�ed);

• some proof article �les: the actual certi�cates proving Γ � ∆.

The package presentation is really meant to be modular and dependencies are clearly estab-
lished.

Articles contain commands intended to be processed by a stack-based virtual

machine to build types, terms and theorems: for instance, the command refl pops a term
t from the stack and pushes the theorem ` t = t. To provide sharing, the machine uses a
dictionary containing the terms and theorems that are used multiple times (�lled by the
command def), which can then be referred to by integers (using the command ref). The
machine �nally outputs the two sets Γ and ∆, that are �lled respectively by the commands
axiom and thm. A complete description of the commands can be found online4.

Example 9.4 Above is the article �le generated by the proof of Example 9.1. When pro-
cessing it, in the end, we obtain Γ = ∅ and ∆ = {y = x ` x = y}.

"="
const
0
def
"→"
typeOp
1
def
"A"
varType
2
def
1
ref
2
ref
"bool"

typeOp
3
def
nil
opType
4
def
nil
cons
cons
opType
5
def
nil
cons
cons
opType

6
def
constTerm
7
def
refl
8
def
7
ref
"y"
2
ref
var
9
def
varTerm

10
def
appTerm
11
def
"x"
2
ref
var
12
def
varTerm
13
def
appTerm
14
def

2The OpenTheory recorder for HOL Light is available at http://src.gilith.com/hol-light.html.
3The OpenTheory project is available at http://www.gilith.com/research/opentheory.
4A description of the OpenTheory article �le format is available at http://www.gilith.com/research/

opentheory/article.html.
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assume
15
def
appThm
16
def
10
ref
refl

17
def
appThm
18
def
17
ref
eqMp
19

def
14
ref
nil
cons
7
ref
13
ref

appTerm
20
def
10
ref
appTerm
21
def
thm

9.2.3 Comparison

The two formats are similar in terms of lengths of certi�cates. It is a known fact that HOL
proofs are likely to be rather huge, since no computation occur inside them.

However, OpenTheory seems more adapted to post-checking: in particular, its modularity
allows to check di�erent theories independently from one another. The data structures involved
(stacks, arrays) might also be more compact and e�cient than the ones involved in Proof
recording (trees). Finally, OpenTheory is still being developed and improved, as opposed to
Proof recording. The drawback is that the OpenTheory format is still subject to small changes,
which implies to change OpenTheory checkers as well.

The development presented in Chapters 11 and 12 started in 2009, before OpenTheory
became a spread standard. The checker is thus based on Proof recording, but the embedding
of Higher-Order Logic in Coq is generic (Chapter 10). We discuss in Section 13.2 how we
could possibly switch to OpenTheory and the possible consequences on performance.
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Chapter 10

A model of HOL in Coq

The main perspective of this work is to mix theorems coming from HOL-like theorem provers,
in particular HOL Light, with Coq proofs. An important consequence is that theorem state-
ments should not be �obfuscated�: they should be written as one would have done directly
in Coq, in particular in a shallow embedding. However, Wiedijk [Wie07] observed that trans-
lating directly HOL theorems into a shallow encoding was di�cult to automate, while giving
awkward statements. To solve this crucial problem, we propose to use a deep embedding as
an intermediate step, which will be interpreted into a shallow one to obtain Coq theorems in
the end, using the techniques presented in Chapter 3. This idea was suggested by Carlos
Simpson. The key point is to obtain intelligible statements through a careful translation
of HOL constants.

Using this now familiar translation process will allow us to check HOL Light's certi�cates
using computational re�ection in the next chapter and thus e�ciently deal with huge proofs.

This time we do not only embed the underlying language of HOL but also its inference
rules. In addition to clearly establishing the HOL framework, this has two purposes:

• a theoretical one: by proving that the inference rules are correct with respect to the
interpretation, we establish in Coq the correctness of the HOL kernel;

• a practical one: it is a simple way to handle the sharing between the proofs (an aspect
which was absent in Part II).

As we explained in the previous chapter, the underlying language is a simply-typed λ-
calculus with prenex polymorphism. We embed it using a locally-nameless representation,
which corresponds exactly to our illustration of deep and shallow embeddings in Chapter 3.
The additional features are the constants, either distinguished � easily translated to their
Coq counterparts � or user de�ned � which must be translated carefully in order to obtain
intelligible Coq theorems, as we will detail in Section 10.2. We need also to understand how
to deal with the classical aspects of HOL (see Section 10.1).

Since HOL terms are static, we do not need to implement a normalizer � which would have
been di�cult in Coq, which requires to be convinced that all functions terminate. Nonetheless,
we cannot avoid to implement substitutions and variable freshness (Sections 10.3.2 and 10.3.3),
used in some HOL inference rules (Section 10.3.4).

We �nally interpret types and terms into Coq and show the adequacy of derivations with
respect to this interpretation (Section 10.4).
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The model presented in this chapter is generic and does not depend on a

particular format for certi�cates.

10.1 Classical logic

We described a Higher-Order Logic which is fundamentally extensional and classical: we can
derive the Axiom of Choice and the extensionality of functions and of propositions. It entails
that, to embed this language into Coq, it is not su�cient to use Coq Booleans instead of
propositions. Instead, we have three possibilities:

• add these three axioms to Coq; or

• use some translation transforming the theorem statements into some others provable in
Coq's logic; or

• try to recognize intuitionistic and intentional facts and import only these.

Since our main objective is to obtain intelligible statements in order to communicate with Coq
terms, we choose the �rst solution: the second would obfuscate a lot the statements and the
third one is very di�cult to initiate at the cost that some developments cannot be imported.
Adding these three axioms does not break consistency and is completely satisfactory for our
main application: if parts of a formal developments are written in HOL Light, it means that
we assume classical logic, even if other parts are written in Coq.

Practically, adding the three axioms to Coq is done by importing the
FunctionalExtensionality and ClassicalEpsilon libraries (which are parts
of the standard distribution of Coq) and assuming propositional extensionality. These axioms
have been shown as consistent with the logic of Coq.

10.2 Constant de�nitions

The more straightforward way to handle types and terms de�nitions in the importation would
be to add the same de�nitions to Coq. For instance, when a new term constant c is de�ned
with content t, we could add in Coq a new constant hol_c with content |t|I .

This approach does not ful�ll our objective to obtain intelligible statements: it would
duplicate already existing Coq objects into new ones nobody knows about, possibly with
other names and de�nitions. For instance, for any proposition A, ¬A would be translated
into:

((fun f ⇒ f A’ (fun p ⇒ p = (fun _ ⇒ ((fun p ⇒ p) = (fun p ⇒
p))))) = (fun f ⇒ f ((fun p ⇒ p) = (fun p ⇒ p)) ((fun p ⇒ p)
= (fun p ⇒ p)))) = A’

where A’ is the translation of A, which is completely unreadable, whereas we simply expect
∼A’!

To avoid this pitfall, our solution is to somehow forget about the HOL de�nition of con-
stants and allow the user to give custom translations, provided that for every constant, its
type is the translation of the type of the constant. With this requirement, we obtain readable
statements and ¬ is indeed translated into ∼. We can even go further: this approach gives the
possibility to translate for instance HOL Light unary integers into Coq binary integers, which
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may be interesting (see Section 12.1). This method is safe if the user also gives a proof that
the custom translation he gave is equivalent to the HOL de�nition.

The de�nitions of constants thus do not appear in the deep embedding, but only their
names: they are embedded like variables. The di�erence appears during the translation:
variables are translated using some environment and constants using another environment
ful�lled with the Coq terms given by the user. We will see in the next chapter how the user
practically gives custom translations.

10.3 Deep embedding

We are now ready to de�ne the deep embedding, before giving its interpretation. The deep
embedding for types and terms is similar to the one presented in Section 3.2, with additional
constructors for constants, either distinguished or de�ned by the user. For e�ciency rea-
sons, variables (and constants) are not represented using nat, but binary natural numbers
positive. We recall that constants' de�nitions are not given in the deep embedding.

10.3.1 Types, terms and sets of terms

A previously de�ned type is accessed through its name and the list of its arguments (its
de�nition is used only when interpreting). Lists of types are mutually inductively de�ned
with types, to ease the generation of Coq induction principles.

Inductive type : Type :=
| TVar : positive → type (* Type variables *)
| TDef : positive → list_type → type

(* User defined constants, possibly applied *)
| Bool : type

(* The type of propositions *)
| Arrow : type → type → type

(* The type of functions *)

with list_type : Type := (* Lists of types *)
| Tnil : list_type
| Tcons : type → list_type → list_type.

The distinguished term constants are the ε operator and equality.

Inductive term : Type :=
| Dbr : nat → term (* Bound variables *)
| Var : positive → type → term (* Named variables *)
| Equ : type → term (* Equality *)
| Eps : type → term (* Hilbert epsilon *)
| Def : positive → type → term (* User defined constants *)
| App : term → term → term (* Application *)
| Abs : type → term → term. (* Abstraction *)

Two named variables with the same name but with di�erent types are considered di�erent
and similarly for user de�ned constants.

We lighten the notations of function type and equality:
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Notation "A ’−→’ B" := (Arrow A B).
Notation equ := (fun A a b ⇒ App (App (Equ A) a) b).

Since HOL judgments are relations between a �nite set of propositions and one proposi-
tion, we also de�ne hyp_set, the type of �nite sets whose elements have type term, built as
an instance of the FSets functorial library. It automatically generates standard set opera-
tions, like the union of two hyp_sets (written hyp_union) or the empty hyp_set (written
hyp_empty).

We also de�ne the type inference function and the wt relation of Section 3.2.2.

10.3.2 Substitutions

Type substitutions straightforwardly replace a type variable with a type inside a term. There
are two kinds of term substitutions in a locally nameless STLC [ACP+08]:

• named substitutions that replace a named variable with a term;

• abstraction opening and variable closing, which respectively instantiate a bound variable
with a term and replace a named variable with a bound variable.

The implementation of these substitutions is detailed in [ACP+08] and is rather easy in a
locally nameless representation: we avoid both capture variable that would occur in a named
representation and the lift needed in a de Bruijn representation. Here we consider parallel
type and named substitutions, whose de�nition directly entails from pointwise substitutions.
In consequence, we only give the prototype of the Coq functions.

Parallel type substitutions

Parallel type substitutions are de�ned as a list of pairs containing the name of a variable and
the type by which it is substituted:

Definition substitution_idt := list (positive * type).

The subst_idt function applies it to a term:

Definition subst_idt : term → substitution_idt → term.

Its extension to sets of terms is called hyp_subst_idt.

Parallel named substitutions

Parallel named substitutions are de�ned as a list of pairs containing a variable (its name and
its type) and the term by which it is substituted:

Definition substitution_idv := list ((positive * type) * term).

To be well de�ned, a named substitution should only substitute a variable xA by a closed term
of type A. This is veri�ed by the wf_substitution_idv function:

Definition wf_substitution_idv : substitution_idv → bool.

The subst_idv function applies a named substitution to a term:

Definition subst_idv : term → substitution_idv → term.

Its extension to sets of terms is called hyp_subst_idv.
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Abstraction opening and variable closing

The prototypes of abstraction opening and variable closing are:

Definition close : term → positive → type → term.
Definition open : term → term → term.

close t x A abstracts xA in the term t. open t u replaces in t every de Bruijn index 0
with u.

10.3.3 Variable freshness

We also de�ne a Boolean function checking if some variable xX does not appear free in the
term t:

Definition is_not_free (x: idV) (X: type) (t: term) : bool.

Its extension to sets of terms is called hyp_is_not_free.

10.3.4 Derivations

HOL judgments Γ ` φ can be deeply embedded as an inductive data type relating the set of
propositions Γ to the proposition φ:

Inductive deriv : hyp_set → term → Prop :=
| Drefl : forall t A, wt nil t A → deriv hyp_empty (heq A t t)
| Dassume : forall t, wt nil t Bool → deriv (hyp_singl t) t
| Dbeta’ : forall t u X A, wt (X::nil) t A → wt nil u X → deriv

hyp_empty (heq A (App (Abs X t) u) (open t u))
| Dabs’ : forall h u v (L: list positive) A X, (forall x,

(forallb (fun y ⇒ y != x) L) → deriv h (heq A (open u (Var x
X)) (open v (Var x X)))) → deriv h (heq (X−→A) (Abs X u)
(Abs X v))

| ... (* Other HOL rules and axioms except INST and INST_TYPE *)
| Dweak : forall h1 h2 t, hyp_subset h1 h2 → deriv h1 t → deriv

h2 t.

This type does not exactly model the HOL logical framework. First-order rules, like REFL
and ASSUME, are faithfully encoded: we just need to type check some terms to ensure that
we derive only well-typed propositions. However, rules involving abstraction, like BETA and
ABS, are not straightforward. One would rather expect:

| Dbeta : forall x t X A, wt nil t A → deriv hyp_empty (heq A
(App (Abs X (close t x X)) (Var x X)) t)

| Dabs : forall h x u v A X, hyp_is_not_free x X h → deriv h
(heq A u v) → deriv h (heq (X−→A) (Abs X (close u x X))
(Abs X (close v x X)))

We prefer the �rst formulation since it confers deriv a stronger induction principle,
which is required to prove the adequacy with the semantics in Section 10.4.2. In particular,
the co�nite quanti�cation [ACP+08] over any list not containing x in the Dabs’ rule will
supply as many fresh variables as we need. The co�nite de�nitions are equivalent to the
�paper presentation� of HOL rules [ACP+08].
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The second di�erence is that we added a weakening rule. It allows us to �nally derive
Dbeta and Dabs from Dbeta’ and Dabs’. In this context, the substitution rules are also
derivable [ACP+08]:

Lemma Dinsttype : forall h c S, deriv h c → deriv
(hyp_subst_idt h S) (subst_idt c S).

Lemma Dinst : forall h c s, wf_substitution_idv s → deriv h c →
deriv (hyp_subst_idv h s) (subst_idv c s).

which is why they do not appear in the de�nition of the inductive deriv.
This data type is extremely wordy and cannot be reasonably considered as proof certi�-

cates. The Proof recording format corresponds to the skeleton of this type, in which all the
information that can be computed during checking do not appear, as we will see in Section 11.1.

10.4 Interpretation

10.4.1 Types, terms and sets of terms

Chapter 3 explained how to write Coq functions interp_type and interp_aux interpret-
ing the types and the terms of this language. In the particular embedding of HOL presented
in this chapter, we dispose of four environments:

• two environments IV : EV and iv : eV respectively interpret type and term vari-
ables;

• two others IC : EC and ic : ec respectively interpret type and term constants, by
associating to them the Coq terms speci�ed by the user (see Section 10.2).

Bool is translated into Prop, as explained in Section 10.1. Equ is translated into Coq's
standard equality (which behaves as HOL Light's equality since we added classical axioms)
and Eps is translated into the ε operator given in the library ClassicalEpsilon.

We must take care of the fact that all the types are non-empty to faithfully translate the
ε operator. This is done by interpreting a HOL type not as a Coq type, but as a dependent
pair containing a Coq type and one element of this type:

Record type_translation : Type := mkTT
{ ttrans :> Type;
tinhab : ttrans }.

The type of interp_type and interp_aux are thus:

Definition interp_type : EV → EC → type → type_translation.
Definition interp_aux : forall (IV :EV ) (IC:EC),

eV → eC → context → term →
option {A:type & interp_context g → interp_type IV IC A}.

Propositions are locally closed terms of type Bool. They can be interpreted directly to
Coq propositions by the following function:

Definition has_sem IV IC iV iC (t: term) : Prop :=
match interp_aux IV IC iV iC nil t with

| Some (existT Bool b) ⇒ b (interp_nil IV IC iV iC)
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| _ ⇒ False
end.

which is a variant of the interp function interpreting only propositions. It can be extended
to sets of propositions, which are interpreted as the conjunction of all their elements:

Definition hyp_sem IV IC iV iC (h: hyp_set) :=
hyp_For_all (has_sem IV IC iV iC) h.

10.4.2 Adequacy of derivations

Using the previous lemma, we can �nally establish the adequacy of the derivations with respect
to the interpretation:

Theorem deriv_interp : forall (h: hyp_set) (t: term),
deriv h t → forall IV IC iV iC,
hyp_sem IV IC iV iC h → has_sem IV IC iV iC t.

The proof of this theorem is an induction on the proof of deriv h t and relies on:

• the de�nition of the interpretation: for instance, the adequacy of the EQ_MP rule is trivial
since |p⇔ q|I ≡ |p|I ↔ |q|I ;

• the adequacy of the close and open substitutions.

Remark 4 The conclusion of the adequacy theorem is the shallow Coq version of the HOL
theorem h ` t. In consequence, to obtain intelligible Coq theorems in the end, we just apply
the adequacy theorem to a proof of deriv h t, obtained by computational re�ection as we
will see in the next chapter, and the environments.
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Chapter 11

HOLLIGHTCOQ: Coq theorems

built from HOL Light proofs

Using the model of the previous chapter, we implemented HOLLIGHTCOQ, an automatic
importer of HOL Light theorems into Coq based on Proof recording certi�cates. Figure 11.1
depicts its architecture.

Coq checker

Proof recording

Adequacy theorem

HOL Light theorem

Coq theorem

failure

certificate

derivation

Figure 11.1: Architecture of HOLLIGHTCOQ

Proof recording was instrumented to generate Coq �les (instead of XML �les) containing:

• a bunch of lemmas whose statements are of the form deriv h t for some closed h
and t, and whose proof consists in an application of the checker of Section 11.2 to a
certi�cate in the format presented in Section 11.1;

• the environments to interpret variables and constants (see Section 11.4).
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The user can then apply the adequacy theorem to some automatically generated lemmas and
the environments to establish the desired theorems (see Remark 4).

The variant of Proof recording directly generating Coq �les is distributed with HOL Light
source code1. HOLLIGHTCOQ is freely available2.

After presenting the Coq version of Proof recording certi�cates (Section 11.1) and how they
can be translated into correct derivations when possible (Section 11.2), we describe the Coq
�les that are generated by HOLLIGHTCOQ (Sections 11.3 and 11.4).

11.1 Coq version of Proof recording certi�cates

The certi�cates are a puri�ed version of HOL Light derivations, containing only the skeleton:

Inductive proof : Type :=
| Prefl : term → proof
| Passume : term → proof
| Pbeta : positive → type → term → proof
| Pabs : proof → positive → type → proof
| ... (* Other HOL Light rules *)
| Poracle : forall h t, deriv h t → proof.

The additional Poracle constructor refers to results that were previously established, by the
user or by sharing.

11.2 Transformation into derivations

This structure is too loosely to guarantee the correctness: some objects of type proof do not
correspond to actual proofs. For instance, Passume (Dbr 0) is not valid since Dbr 0 is
not locally closed. It is however su�cient to reconstruct a complete derivation when it exists,
by making the necessary veri�cations. This is the job of the proof2deriv function:

Fixpoint proof2deriv (p: proof) : option (hyp_set * term) :=
match p with

(* rule REFL *)
| Prefl t ⇒

match infer nil t with
| Some A ⇒ Some (hyp_empty, equ A t t)
| None ⇒ None

end

(* rule ASSUME *)
| Passume t ⇒

match infer nil t with
| Some Bool ⇒ Some (hyp_singl t, t)
| _ ⇒ None

end

1HOL Light source code is available at http://code.google.com/p/hol-light.
2HOLLIGHTCOQ is freely available at http://www.lix.polytechnique.fr/~keller/Recherche/

hollightcoq.html.
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(* rule BETA *)
| Pbeta x X t ⇒
match infer nil t with
| Some A ⇒ Some (hyp_empty,
equ A (App (Abs X (close t x X)) (Var x X)) t)

| None ⇒ None
end

(* rule ABS *)
| Pabs q x X ⇒

match proof2deriv q with
| Some (App (App (Equ A) t1) t2, t) ⇒
if hyp_is_not_free x X h then

Some (h, equ (X−→A) (Abs X (close t1 x X)) (Abs X
(close t2 x X)))

else
None

| None ⇒ None
end

(* Other HOL Light rules *)
| ...

end.

which is proved to be correct when it actually returns a judgment:

Lemma proof2deriv_correct : forall p,
match proof2deriv p with
| Some (h,t) ⇒ deriv h t
| None ⇒ True

end.

11.3 Generation of lemmas

The generated Coq �les are divided into two parts:

• the �rst part contains the de�nition of types and terms appearing in the lemmas, using
maximal sharing like in the original Proof recording;

• the remaining (and largest part) contains, for each lemma h ` t: the de�nition of the
set h, the de�nition of t and the lemma of type deriv h t whose proof relies on
proof2deriv_correct.

Example 11.1 The �le generated by the Coq exportation of Example 9.1 looks like:

Definition hollight_type_0 := Bool.
Definition hollight_term_0 := Equ hollight_type_0.
Definition hollight_term_1 := Dbr 0.
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Definition hollight_term_2 := App hollight_term_0
hollight_term_1.

Definition hollight_term_3 := App hollight_term_2
hollight_term_1.

Definition hollight_term_4 := Abs hollight_type_0
hollight_term_3.

... (* Many other HOL types and terms *)

Definition hollight_0_h := nil.

Definition hollight_0_t := hollight_term_106.

Lemma hollight_0_lemma : deriv hollight_0_h hollight_0_t.
Proof.
vm_cast_no_check (proof2deriv_correct (Prefl

hollight_term_105)).
Qed.

Definition hollight_SYM_h := (cons hollight_term_103 nil).

Definition hollight_SYM_t := hollight_term_107.

Lemma hollight_SYM_lemma : deriv hollight_SYM_h hollight_SYM_t.
Proof.
vm_cast_no_check (proof2deriv_correct (Peqmp (Pmk_comb

(Pmk_comb (Prefl hollight_term_101) (Passume
hollight_term_103)) (Poracle hollight_0_lemma)) (Poracle
hollight_0_lemma))).

Qed.

The tactic vm_cast_no_check t solves the current goal without any veri�cation, but
tells the system to use the VM reduction when verifying that t is indeed the proof of the goal
during the Qed step. The lemmas are proved by computational re�ection and the length of the
proof is the length of the Proof recording certi�cate.

We observe that proofs that are used many times can be proved only once, and referred to
using the Poracle constructor.

When exporting non trivial developments, we cannot generate one single Coq �le, which
would be too large to be fed to Coq's compiler. We studied the possibility to generate smaller
�les as independent as possible from one another, but the sharing performed by Proof recording
makes it impossible to check di�erent parts independently (see Section 9.2.1). We thus decided
to linearly generate the lemmas such that dependencies are respected, with the empirical
heuristic of one hundred lemmas a Coq �le. We will see in the next chapter that this absence
of modularity is a drawback for memory consumption, but it is unavoidable without at least
changing the sharing paradigm.
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11.4 Generation of environments

An additional Coq �le is generated to de�ne the interpretation environments, in particular
using the text �le given by the user to interpret constants.

11.4.1 Variables

Conventionally, the meaning of free variables in theorems is to be implicitly universally quan-
ti�ed. To reproduce this in Coq, we de�ne a Coq parameter for each term and type variable,
which will be the interpretation of the HOL Light variable.

An improvement would be to use the section mechanism of Coq to avoid the addition of
top-level parameters.

11.4.2 Constants

We explained in Section 10.2 how to safely interpret constants, by translating them to Coq
terms of the same type which can be proved to be equivalent to the original de�nition. This is
not completely implemented yet in the current version of HOLLIGHTCOQ: the user must give
well-typed custom interpretation of constants, but axioms are added to justify the equivalence.
We discuss in Section 13.1.1 how to faithfully implement constant translation without adding
axioms.

The interpretation for constants is given in a text �le containing pairs of lines: the �rst
line is the HOL Light name of the constant, and the second line is a Coq term which is its
interpretation. If the constant is a type, the Coq term must have type type_translation
(see Section 10.4.1).

Example 11.2 In HOL Light, the unit type is written 1 and its element is written one. To
translate them into their Coq counterparts (respectively unit and tt), the �le must contain:

...
1
mkTT unit tt
one
tt
...

We provide such a �le to translate HOL Light's standard library.
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Chapter 12

Evaluation of HOLLIGHTCOQ

We evaluate HOLLIGHTCOQ on two aspects that were at the heart of this work:

• the possibility to make HOL Light and Coq theorems interact inside Coq;

• the e�ciency of the whole process (lemmas generation and compilation), in terms of
time and memory.

These two goals must be achieved to check in Coq the current formalization of the Flyspeck
project.

The quantitative experiments have been conducted in 2010 on a virtual machine that is
installed on a DELL server PowerEdge 2950, with 2 processors Intel Xeon E5405 (quad-core,
2GHz) and 8 Gb RAM, with CentOS (64 bits).

12.1 Qualitative interaction between HOL Light and Coq

The care we took when interpreting constants o�ers the possibility to obtain intelligible Coq
theorems that can easily interact with other theorems proved by hand in Coq.

We give an example from integer arithmetic. Coq and Ssre�ect provide vast libraries about
arithmetic for unary integers, but not for binary integers. We propose to import a HOL Light
arithmetic theorem, to interpret it in the set of Coq binary integers and to prove a corollary
that would have required e�orts using only Coq libraries.

We import the theorem MOD_EQ_0 from HOL Light, mapping HOL Light's constants as
stated in Table 12.1. HOLLIGHTCOQ automatically generates source �les containing the deep
version of theorem MOD_EQ_0, called hollight_MOD_EQ_0_lemma. Applying it to the
adequacy theorem, we can prove the shallow version of MOD_EQ_0 in Coq:

Theorem MOD_EQ_0 : forall x x0 : N, x0 <> 0 →
x0 | x = (exists a : N, x = a * x0).

Proof.
vm_cast_no_check (deriv_interp hollight_MOD_EQ_0_lemma IV IC

iV iC (hyp_sem_empty IV IC iV iC)).
Qed.

where a|b is the usual notation to say �a divides b�:
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Environments IC iC
HOL Light num + * DIV MOD

Coq N Nplus Nmult Ndiv Nmod

Table 12.1: Mapping HOL Light de�nitions about integers into their Coq binary representations

Notation "a|b" := (Nmod b a = 0).

We can combine it with Coq theorems like Nmult_assoc to prove the following corollary:

Lemma div_mult : forall a b, a <> 0 → a | b → forall k, a | k*b.

The proof is only �ve lines long.
Here, the possibility to interpret HOL Light integers as Coq binary integers augmented Coq

with a new theorem, which would not have been the case if HOL Light integers were translated
into nat once and for all.

12.2 Performance

We tested the time and memory performance of HOLLIGHTCOQ on three HOL Light develop-
ments:

• HOL Light's standard library (what is loaded by default when launching HOL Light);

• a proof of consistency and soundness of HOL Light in HOL Light [Har06], distributed
with HOL Light in the Model directory;

• the elementary linear algebra tools developed in Multivariate/vectors.ml.

The results are summed up in Table 12.2. For each benchmark, we report the number of
theorems that were exported, the number of lemmas generated by sharing, the time to interpret
theorems and record their proofs in HOL Light, the time to export theorems to Coq, the time
of compilation in Coq, the size of the generated Coq �les, the maximal virtual memory used by
Ocaml during exportation and the maximal virtual memory used by Coq during compilation.

Bench.
Number Time Memory

Theorems Lemmas Rec. Exp. Comp. H.D.D. Ocaml Coq

Stdlib 1,726 195,317 2 min 30 6 min 30 10h 218 Mb 1.8 Gb 4.5 Gb
Model 2,121 322,428 6 min 30 29 min 44h 372 Mb 5.0 Gb 7.6 Gb
Vectors 2,606 338,087 6 min 30 21 min 39h 329 Mb 3.0 Gb 7.5 Gb

Table 12.2: Quantitative evaluation of HOLLIGHTCOQ
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12.2.1 Time and memory in Coq

As we explained, the sharing of Proof recording has the major drawback to lead to a complete
blow-up of the number of exported statements, as the �rst two columns of Table 12.2 attest.
When the generated Coq �les are compiled, all these statements need to be kept in memory
because all the theorems depends on one another, which explains why Coq's compiler requires
so much virtual memory. Note that the proofs (and thus the certi�cates) are not kept in
memory, only the statements.

It has also an impact on the time of Coq's compilation: it thus cannot be less than
quadratic in the number of Coq �les, since compiling the (n+ 1)th �le imports �les 1 to n.

The other operations that are expensive in time are:

• the parsing of the proof objects;

• the evaluation of the computationally re�exive proofs.

The �rst item could be avoided if we do not generate intermediate Coq �les, as we will discuss
in Section 13.1.2. Concerning this last item, it is important to notice that Coq's virtual
machine can run such a big computation. This is another example showing that computational
re�ection is appropriate to import large proofs in Coq.

As long as it remains reasonable, the compilation time is not as restrictive as memory
consumption, since the incoming theorems have to be compiled once and for all. Moreover, it
requires far less human work to automatically export some theorems and compile it with our
tool than to prove them from scratch in Coq.

Memory is a large limitation for users though, since they need to import in memory all
the Coq �les even to use only the last theorem. It would be convenient to be able not to
load the intermediary lemmas, but it does not seem possible with our present proof objects
implementation.

In other words: this kind of sharing limits the memory consumed by proof objects, but the
resulting number of statements then becomes a problem.

12.2.2 Memory in Ocaml

The virtual memory needed to record and export HOL Light's theorem is also rather huge.
The fact that proofs are kept is not the only limiting factor: during exportation, we create
big hash-tables to perform hash-consing and to remember theorem statements. If we keep the
present proof format, we de�nitely would have to reduce the extra-objects we construct for
exportation.

12.3 Conclusion of the experiments

The current version of HOL Light already allows to import non trivial HOL Light developments
into Coq intelligible theorems, but at a virtual memory cost which corresponds to the limit
a�ordable by nowadays computers. Larger developments, in particular Flyspeck, cannot be
quantitatively handled.
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Hence the next step is to switch to a more compact proof format. We think in particular
of OpenTheory [Hur09], whose format seems well adapted to an e�cient proof checking by
computational re�ection like the one used by SMTCoq, as we will discuss in Section 13.2. It is
important to notice that changing the format of certi�cates only a�ects what was presented in
Chapter 11, since we took care to design generic model and interpretation of Higher-Order
Logic in Coq in Chapter 10.
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Chapter 13

Future directions

We �rst propose possible improvements that are independent from the format of certi�cates,
before discussing the work required to switch to OpenTheory certi�cates.

13.1 Improvements of the current version of HOLLIGHTCOQ

13.1.1 Generation of constants environments

The idea to let the user prove the equivalence between its interpretation of constants and HOL
Light's de�nitions must be implemented to avoid adding axioms when importing HOL Light
theorems into Coq (see Sections 10.2 and 11.4.2). To be able to do this, we need to understand
how these equivalence proofs, which are stated in shallow terms, will be integrated in the whole
system.

Our proposition consists in lifting Coq propositions that correspond to the interpretation
of HOL Light terms at the deep level. A possible implementation would be to add a constructor
to the inductive deriv:

Inductive deriv IV IC iV iC : hyp_set → term → Prop :=
| ... (* The same constructors as before *)
| Dshallow : forall t, has_sem IV IC iV iC t → deriv nil t.

The non minor drawback that appears is that deriv now requires additional parame-
ters: the environments used for interpretation. The adequacy theorem remains valid, but the
environments must be known in the derivation:

Theorem deriv_interp :
forall (h: hyp_set) (t: term) IV IC iV iC,
deriv IV IC iV iC h t → hyp_sem IV IC iV iC h →
has_sem IV IC iV iC t.

There is not a clear distinction between the syntactically generated lemmas and their in-
terpretations in Coq anymore. However, it should not a�ect computation: the proof2deriv
function still does not need to know about the interpretation. This is what makes us think
this would be a reliable solution to safely handle constants.
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13.1.2 Removal of intermediate �les

The fact that HOLLIGHTCOQ generates Coq �les that are then compiled by Coq is an impor-
tant loss of e�ciency: it is space consuming and the proofs need to by parsed by Coq. Since
HOL Light and Coq are both written in Ocaml, it would be easy to have a �synchronized�
communication: Coq terms can be directly generated by Proof recording at the Ocaml level
using the method described in 3.3.2 and implemented in SMTCoq.

13.1.3 Working with deep embeddings in Coq

A longer term perspective is to establish a generic way to de�ne deep embeddings of logical
frameworks or programming languages into proof assistants like Coq. Each time, the same
work has to be redone to de�ne standard function on terms like substitutions or variable
freshness. A �rst step towards genericity could be to provide for Coq a tool similar to Cαml1

for Ocaml, that allows to manipulate deep terms modulo α-conversion in a rather concise style
and automatically de�nes substitution functions.

13.2 Switching to OpenTheory

OpenTheory proof certi�cates correspond to the state-of-the-art in terms of certi�cates ded-
icated to proofs in Higher-Order Logic, and as such are good candidates to improve HOL-
LIGHTCOQ's e�ciency, modularity and expressivity (since certi�cates can be generated by
other HOL-like provers than HOL Light). Holide2 uses this format to import HOL Light and
HOL4 theorems into dedukti [BCH12].

13.2.1 Light approach

Since we took care to be modular, a simple approach to switch to OpenTheory consists in
writing an Ocaml preprocessor that translates an OpenTheory certi�cate into a bunch of Proof
recording certi�cates (since a single OpenTheory witness potentially establishes several theo-
rems).

It would already bring the OpenTheory modularity to HOLLIGHTCOQ: each library can be
exported and checked separately; the dependencies are handled by checking that the assump-
tions of one library are established by the conclusions of another one. We would also bene�t
from the fact that OpenTheory recorders have been implemented for other provers than HOL
Light.

13.2.2 Deeper approach

To also bene�t from the e�ciency inherent to the OpenTheory format, we need to change
Coq's checker as well (but the embedding of Higher-Order Logic can remain the same). In this
approach, OpenTheory certi�cates can be handled in Coq in a similar way than Proof recording
certi�cates:

• de�ne a Coq representation of the certi�cates (similar to proof);

1Cαml is available at http://cristal.inria.fr/~fpottier/alphaCaml.
2Holide is available at https://www.rocq.inria.fr/deducteam/Holide/index.html.
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• de�ne a Coq function that reconstructs the logical theory Γ�∆ from a certi�cate (similar
to proof2deriv);

• prove its correctness (similar to proof2deriv_correct).

The adequacy theorem then must be generalized to a logical theory Γ�∆ instead of only
one derivation, but this is easy. The di�cult part is the transformation of proof2deriv
and proof2deriv_correct: if these function and proof were straightforward to de�ne
for Proof recording, since the certi�cates were close to the derivations, their implementations
require more work for OpenTheory. In particular, proof2deriv for Proof recording was
a simple traversal of an inductive data type, whereas its OpenTheory variant consists in a
stack-based machine relying on a dictionary.

Even if it is more di�cult to establish the correctness of a stack-based virtual machine,
proof2deriv is likely to be more e�cient than before: the data structures that are involved
can be encoded using native arrays, since the maximal lengths of the stack and the dictionary
can be preprocessed.
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Conclusion

This thesis explored the communication between Coq and external provers, namely SAT and
SMT solvers and interactive theorem provers based on Higher-Order Logic, in the perspective
of a safe and e�cient cooperation that uses the strengths of the di�erent tools. The communi-
cation is based on a careful embedding of the involved logical frameworks in Coq, that allows
at the same time automation, sharing and intelligibility, and computational re�ection, which
e�ciently and automatically proves concrete theorems in the end.

This work ended up in two implementations: SMTCoq, which carries out e�cient certi�ed
a posteriori checkers for SAT and SMT solvers and automated Coq tactics calling these solvers,
and HOLLIGHTCOQ, an importer and checker for HOL Light theorems into Coq.

This work clearly establishes that a cooperation between Coq and external tools through
proof witnesses is possible: the expressivity and the computational power of Coq together
with its user interface makes it an excellent system to model logical frameworks, implement
certi�cates checkers and establish their correctness, with high guarantees of safety. They also
make clear that it is pro�table for all the tools: Coq gains in automation and external provers
can bene�t from safety and computation.

Indubitably, SMTCoq and HOLLIGHTCOQ must be improved in many ways to be fully us-
able. Nonetheless, this thesis establishes a general methodology for a communication between
proof assistants and external provers, principally based on two ingredients: computation and
certi�cates.

Computation in proof assistants

Computation in Coq is employed for two di�erent purposes:

• computational re�ection is used to check that certi�cates actually prove deeply embedded
theorems;

• the interpretation of the deeply embedded theorems into Coq terms is performed by a
Coq function.

It is the combination of the two that give an e�cient communication in which Coq has a
global �understanding� of the other tools. It also o�ers the possibility to extract the di�erent
components, in particular the checkers.

Other developments use computation in Coq to formalize properties about programs that
can actually be executed [Gon08, Ler09] and extracted [Ler09, Dar09, Bar99].
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Undoubtedly, computation enlarges the proof assistant and in particular its trusted base:
its correctness relies on the strong normalization of the reduction, which is particularly non-
trivial in presence of �xpoints and coinduction. Nonetheless, it confers a high �exibility and
a large set of possibilities to the interactive theorem prover, of which only a small part was
made visible in this thesis.

Cooperation through certi�cates

In the early days of computers, the most spread image of the future of computer installations
was simple terminals all over the world connected to one single omniscient computer, as
suggested by Grosh's law and Isaac Asimov and Douglas Adams novels. The reality appeared
to be rather di�erent, with billions of small computers distributed over all kinds of systems,
some of them being general and others being dedicated to a single task and thus pretty good
at this task (this phenomenon is called downsizing in France).

When talking about integrating a prover into another one, the �rst model rather corre-
sponds to an autarkic approach: one single tool learns a new way of proving theorems in order
to be self-contained. Conversely, the skeptical approach seems more suited to a distributed
world and can bene�t from the experience of the dedicated tools in particular domains. In
this representation, certi�cates correspond to protocols required for participants to understand
each other.

The work presented here established that the distributed model was reliable and robust
for theorem proving. At the cost of completeness and as long as a posteriori certi�cation is
su�cient, a cooperation through certi�cates is adaptable enough to exploit the advantages of
all the participants, once a good balance between generation and checking has been found.
It is also less a�ected by minor changes. We presented all along the documents other works
based on proof witnesses, sometimes with di�erent approaches.

However, even if we took care to make the largest part of the implementations independent
from the choice of certi�cates, they directed nontrivial fragments of the developments and
changing their formats implies to change these fragments as well. Besides, since we considered
two di�erent kinds of theorem provers, we noticed that the certi�cates are rather di�erent in
spite of the fact that they are both based on a similar �rst-order framework. A perspective
would be to �nd more general certi�cates and a starting step may be to unify SMTCoq and
HOLLIGHTCOQ as most as possible. In a di�erent approach, we can also imagine generating
at the same time formats for certi�cates and dedicated checkers for them at a meta-level.
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