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Introduction

Cette these porte sur les
classes de systemos

Dans le cas des mains de robots. nne littera! me tres riche est disponible dans divers do-
maines modclisation [12. 1:3. 21\. ,11\. plauilicat.ion de trajeetoires utilisant des approxi-
melt ions [11. 6:3]. de trajectoiros pour Ie modele cinemat.ique non-
holonome utilisant entrees ou coust.ant.os par morceaux [:39.5:3. 24] er stabili-
sation de lobjcr par bondage [12. 55].

dc t rnjoc-

partie de la lit.teraturc utilise des
ucs upprocnes ('Ie eommande 67]. Plusicurs

pour dim inner les oscinauons croccs
utilisent des tcchniquos (?ner,get.l'f111e~,en exptoit ant

La con(.riblll.ion de la t hcso conr-oruc- I" solut.iou
toircs, utilisant la not ion de pla.l1,lwie el lite .'11,'1,/;'//('(, loWUIHHI"t:lL. Une classillicatiolldes strucr.ures
muins-objets est
chaqne

Concernant les



fait grue pout ctrr- identifiee un pendnl« si on fixe la longueur du cabl« vertical relie
ala

_\lous considerons dubord nne methode de mcdclisation gcncmle unc class« etcndue
coinprenant en particulicr lcs inodcles des grue de la

NOliS montrons que clement de lu clusse est dillerent icllcmont

Parties de la these ont etc publiees dans [:W, :31. :)2, 33. 34, 36, 37, 38, 3G].
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Chapter 1

Introduction

This work studies the motion planning and control problems related to two classes of mechanical
systems: robotic hands and cranes.

objects. Their dext.eritv follows from
and the object in contact. hence (he

of 1hese Illations. Here. we consider the case of
contacts without between the surfaces which give rise to kinematic

constraints in model. Sinco these constraints arc nor in general. hand-object
systems belong to the larger class of nonliolorunruc mechanical systems.

behaviour.

first the choice of a rf'ference
hands. the desired objective is to

.~ l'~~"'~"""" 1'''''",''''° and orientation. For cranes. one wishes to thf'
to equilibrium which avoids t he

space. Moreover. undesirable to be damped at the final



Chapter I. Introduction

HErE. WEfirst r-onsirlor I hp 11lo(lPllillP oj a ouito ][en(;ral class ol weieht UCtlllllUl!', '~q urpn re-m.s.

including the overhead CTimE and three-dimensional models of cantilever.
We prove that all the models of this class nat and.
robotic: hands. we construct reference trajectories
load without oscillations at the final point.

the thesis.

Parts of this thesis have been published in [30.31. 32. 33. 34. 3G..37. 38. 35].



Chapter 2

Robotic manipulation with permanent
rolling contacts

The kinematics of the model includes constraints due to the rolling without as-
sumpt ions which are linear w.r.t , the time derivatives of the configuration the
system and have the form [21. 561:

A(rz)·rj=() (2.1)

where if is the vector of the configurar ion variables (see also Appendix A).

Motion be applied to a large class of dextrous
problems are using; quasi-static approximations. These
optimization in order to find contact forces. with constant velocity. based on Peshkins minimum
power principle [58].

22. 46] and Liouvillian
and extended [62] in



Chapter 2. Robotic ma,niplllatiolJ l'\!ith pctuuincnn. tolling contacts

Not.e that. the feedback
design dealt let

for the
body case. [:3. 9] with soft fingers and with uncertainties on the and

learning control scheme proposed in [55]with unknown inertia paramotcrs of the object

back to motion planning, the flatness property allows an

there
can be
number
and the additional tunctions ot the output
the flatness based approach to motion

differential equations.

We prove that the dynamic model of planar IJOSs arc flat as a consequence of the constraints
as

the position and orientation at the object and combinations 0,1 tile contact torces. In the three-

Accorcling to the dimension. the number
kinematic) we show that the HOSs can be

(i.e. dynamic or
2,1

hand structure I of fingers holonomy flatness
-

no. l.iouvillian

I 20
I

> 1 ves yes

3D 1 no

3D > I [LO ? yes

3D + symmetry > 2 no ? ves

Table 2.l: Classification of HOSs

Parts of this chapter are published in [31. 33. 34]



2.1. Modelling

2.1 Modelling

Figure 2.1. Robotic hand with the manipulated object (711 = 3)

where rn is the total number of the fingers of the hand.

Let us start. with an enumeration of (classical) assumptions.

AI. All segments of the hand and the manipulated object are rigid bodies (sec Definition 12
in Appendix A).

A2. Only the last segments of the fingers can be in contact with the manipulated object

A3. Surfaces may roll on each other without slipping.

A4. Contacts permanently maintained.

A5. The surface of the manipulated object is strictly convex everywhere. (This implies that
the radii of curvature are everywhere finite.)

A6. The surfaces of the fingers arc convex everywhere.

Remark 1. The
tad in each other
dcjormauons.

body
the case

excludes both the penetration
contacts. namely nori-oaiuslunq

bodies zn con­
surjacc« due to

Remark 2.
between the

A5 and A6 allow to clurunaic the case
object and the fingers. ilius makuu; the

contact pomis
globallyamq·ue.

abuse of vocabulary. the manipulated object will be simply referred to as object in the
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2.1.1 Geometry and kinematics

matico expressing const.ruiuts OJI

I he fingers arc needed. Thus. we first exprcss t.he geometric constraun.s and then
ones, and finally the relations with

Geometry of the contact

!{" 'vVe denote by K" the frame fixed to the
by the point 0, and by /(;1. the ['ruIllcJ fixed to

with I = L 2. , m Let us dC110te by p"
expressed in the basis of K"

the oricnuu ion of t hr- frame KO (rcsp.
A for the' definition and for 11 short

the pair

(2.2)

zivcs th« relative nosit iou (resp. relative orientation) of the object w.r.t

transformation matrices lrequent lv llsed in
vector P; is expressed in the frame /(;1

(see Figure 2,2) Tho contact point
by C,.

Figure 2,2: Contact between finger i and rhr- object

The vector Pc', of the ront act point C,. expressed ill the
basis of t he frame (2,2). these vccrors are connected by the

I The notation g", would Iw more consequent. omw" preferred to avoid double subscripts for readability',

sake.



2.1. IVlodellillg

equation

p; + S1(d:{)p~" - p~, = O.

Let CO and c~ define the boundaries of tho object and finger i
If C, is the contact point between the object and finger I

=0.

(2.:l)

A. Definition 12).

(2.4)

(2.5)

Denote by Dc the derivative of a function? C' (i.c. the function R3
---7 L(]R3, IR)). 1t bas the

local form

iOC Dc !!.::.-.,]
Dc= lili dY a::

coincide at the contart point., or
direction. Note that.

referred to as the non-penetration constraint

Kinematics of contact

The velocity state of the object w.r.t . linger i is given by the pair (v;. [w~x]) (sec also
Appendix A):

[u.!;x] =
[

0

-Wiy

-w;r]
o

This allows to calculate the relative velocity at the contact point C, (see Equation (A.5)):

2TIJisllotHtion comes from [1]

(2.7)



Cliepter 2, Rovuti(: manipulation with peruuuicsn mlling contacts

Figure' 2,3: [lolling without slipning of surfaces

Assumption A4, the geometric constraints of
in the common plane of the surfaces

rolling without read

(2.8)

Observe that t hcso constraints are' indeed linear w.r. t.. the velocities and thus have the same
form as (2,1).

Geometry of the fingers

As it has been already mentioned, the robotic hand is a set of m small with
kinematic chain:" Figure 2.4), Their modelling follows the standards robotics
ar ur« [,10. 48. ,521, segments of t.ho fingers are connected via one-degree-of-freedom joints.

Figure 2.4: The open kinematic chain of n finger of tho robotic hand

These joints can be rotational or translational to the possible relative displacement
of t he connected segments, Because of t.he openness kinematic chain. the joints of each
finger can be enumerated from I to 0., where a, is the number
coordinate of the art iculationj = L .a,) of the finger I (I = . m)
llcnce the vector '11 = I'l,. c-ontains rhe joint coordinates of linger I,.



2.1. Modelling

If the jth joint of finger i is rotational.
therefore the configuration manifold of each
and R

E lR/2rrZ. if it is translational.
is a Cartesian product of the sets

The direct geometry of finger I allow to
of the frame K,d as functions of the

For. denote by F, the list with elements lR/2rrZ and lR such that the nth element of F, is
lR (resp. lR/2rrZ) if the nth joint of finger i is translational (resp. rotational). The notation F,
will also be used to denote the Cartesian product of the elements of the list, taken in the order
imposed by the list.

Hence the direct geometry function of finger I is defined by:

d, . F, ---+ lR3 x 50(3). d,(q,) = (p~. D(</J~)). (2.9)

The function d, sums up the geometry of finger i and its explicit form can be obtained once
the Denavit-Hartenberg parameters of finger i are known. (Roughly speaking. these Denavit­
Hartenberg parameters define the homogenous transformation between K b and K~.)

Borrowing again some notations from the robotics literature. the derivative of the direct
geometry function d; is defined by

J,(.) = Dd,(.) E L(:F" JR3 x 50(3)). (2.10)

and will be referred to as the jacobian of i. Since the orientation of the frame fixed
to the fingertip in 50(3) is locally described three rotation (see Appendix A). the
local expression of the jacobian of the finger a matrix with rows and a, columns. A
configuration q, of finger i is said to be singular if

dim ImDd,(q,) < min {dimq"dim (lR3 x 50(3))} = min{a,. 6}

where ImDd,(q,) stands for the image of the linear map Dd,(q,) under F,.

Inventory of variables and constraints

To make an inventory of the variables and cemst:raints introduced tel describe the geornct.ry and
the kinematics of a HOS. we summarized them in Tables 2.2 and 2.3. m gives
the number and a, gives the number of joints of the finger I with I = 1. . m, All
entries case of three-dimensional (The two-dimensional case is
addressed in Section 2.1.6 where the entries of both are updated accordingly.)

By Table 2.2, the configuration manifold M of the HOS is defined as

x F m x 5E(3)x5E(3) x x 5E(3)x]R3 X X ]R3 x]R3 X X ]R3,
'-,,-' '-,,-'" '-v-'"

2m

where 5 E = ]R3 x 50(3) is the Euclidean group. In accordance with Table 2.2. the
vector of local coordinates in the configuration manifold M reads
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variables description D

s.. i = 1, .tn joint coordinates L~:~l Ok

po.¢o position & orientation of t he object 6
p;/, ,!)~/. 1.= 1, .m positions & orientut ious of the fingertips Gin

I = l. .'IIl relative positions & orientations 611!

Pc;',' I = 1. ,m contact. points on the object surface

I

:lm

pi." 7 = 1. .rn contact points on the fingers' surface 3m

Table 2.2: Variables

constraint type I number of equations per finger

(2,2) geometric

I

6

(2.3) geometric 3

(2,!1)-(2.5) geometric 2

(2.6) geometric 2

(2.9) geometric 6

(2.8) kinematic 2

Table 2.3: Constraints

constraints of Table 2.3 define a sub-manifold of
constraints of rolling without by

tion of ,\1;\. The 'tlllt"lJCJllUl1l6 OL'1l'l.Lll,tLl"'1l6U'''L,LIULILLUIL

directions of the HOS

2.1.2 Pivoting and autonomous motions of the object

The kinematic constraints (2.8) gi,ren in the previous section EIre obtained from Assumpt ion
and eliminated sliding motions between the object
t ions of the object ",h;,·}, nHwl", rlnclPQ;,." hlp

These motions arc the

thesE' directions. The corresponding constraints



2.1. Modelling

1. the Ve!OC1.ty 0/ the poini C naruslu:s the frame KII oc = O.

11

to rotations around an
tangent plane.

unlli the [{O

t.«
A

2. the tangent plane of the olnect at the pouit C remains uncluuiqal.

These definitions imply that # ()for any pivoting motions. The following statements can
be easily proven.

Proposition 1. Consider all.objeci. J.'f17'II'f'·/I -ncn-n t r:
in 1R6 corrcspoiuiuiq to a prooiuu; moium

there is a unique dircctiori

pomi C

the unit normal of the object surface at the point C, expressed in the
I. the tangent at the point C to surface has to

hence uf must be with I),~" i.e. WO E n·tA # 0). By
Cis given by

(2.11)

which must vanish by Definition 1. Using that [ax]b= -[bx]a. and isolating '00 we get

in ]RG corresponding to pivoting around the point C is given by
o

Proposition 2. Consider an oh]eet and two
necessa.n) and suffiC'lenl conditioti for the
pioot.nu; motzon around C1 and C2 an'

C 1 and C 2 . The
correspotuiuuj /.0 (J,

1 the surface normals nt, and n~2 are colincar.
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Proof. Since ,,;0 must
colinear. Hence e<J

0 =
satisfy the lol lowing equation obtamcd

() = [~ [~] (212)

where I is tho identity matrix of suitable dimensions. This equation has a nonzero solution if
and only if

Then we have the relation

giving a umquc directron in JIi corresponding to a pivoting mot ion around bor h points. Observe

which is
surface

to the colinearity of the normal vectors with the vector ronnerting I,he
C 1 and C2 . 0

Corollary 1. C01151.dr:r a siricth] convex object. For a set points
{C l . C2.Cd. then no ducciion In lP!.(j corrcspondinq to a piuotiru; monon G~7'01(nd ou contact
poniis.

tion.

Corollary 2. Consider a 8truJly
{C,: i = 1.2. .j}. j > :3, there IS no

Proof Consequence of Corollary 1

D

o

Remark 4. Since the otnect is euerinotierc strrctliJ'conoex tn;,1SS1(mp:twnA5.

the
object surjor»:

Remark 5. In the rase
around all su.rfare points
face pinnis,



2.1. Modelling

In the literature one calls rolling without
surfaces such that pivoting motions me
constraints (2.8).

We use Definition 2 to obtain the constraint that eliminates
the the coordinates of the contact point C, in
lrame of the outward unit normal vector:

13

relative motion of two
rolling without slipping

motions. For. recall
inertial reference

p~, = pO+ S2((j/))p~"

Definition 2 asserts rhat j)~'1 = 0 and = 0 during pivoting motions for all contact
= 1. ,m) on the surface that the second condition is equivalent to

= 0 since the contacts point ar« fixed on tho surface. Calculating these time

Lsing that [WOx] = dSld;")S2((j)°)"' and the anti-symmetry of the cross product we get

P~!l

IIDcO(PCI)lli)~'1

j)~,,,,

IIDcO(pc,,,, Jlint,

[ill] de!
cJ° ='] (2.13)

defining t he linear map '7·

According to Definition 2, the
to motions.

the vector for all and orientations
the null-space contains 8 non-null vector for a
always a unique non-null component if m = I

Denote 1L!3 (W3 E JR.G) the vector spanning the null-space of 'I. Then the non-spiuniug
constraint

(2.14)
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motion has been defined without need to consider the geometry
motions around all contact leave both t he contact

coordiuates of all ringers unchanged. Note in 1he case of most robotic
controlled variables which implies that

pivoting mot ions CEm neither be generat.ed nor eliminated by the control variables. One rnav ask
be cont~'ollec1 through the joint coordir:ates.

Thus we are naturally driven to consider a more general notion of autonomous motions of
the HOS defined as follows.

Definition 3 (autonomolls motions). Consider an
rectum TAlA corresponds to an autonomous motion
of rollnu; unihout. sltpptru; [Equation (2.8)) and has no

1,8 the number ofjoints of jinqer i ), and I = 1. . m, (m bezng the

an autonomous motion is such that the joint coordinates of the fingers do not
motions of the object around all the III contact points are also autonomous

points j = L , III - 1 do not This
multinlo contact points doesn't exclude the of the joints of

Let us turn back our attention to the inventory of the variables (Table 2.2) and that of the
constraints INc have and, by adding the non-spinning
kinematic constraint to the 2.:L (19 + 2)m + b(l - constraints.
(The function b is that b vanishes evervwhere but at (1 where it to 1.)

2.1.3 Examples

[

cos -r cos o
D((6°) = sin c cos e'

-sinR

where 0° = (-r.e,I!').

cos p sin 0 sin u: - sin <pcos '/i'

sin <psin esin Ii! + cos .pcosu;

cosesinl!J cosOCOSU)

(2.15)



2.1. Modelling

Figure 2.5: Ball rolling on the plane

1.5

The sur lace the coordinates of the contact [Joint fJ~' =
(x~", Ye', z('.) and read

(:rc.,)2 + (YC)2+ (Z~,)2 - R2 = 0 4 = o.

The dorivat ive DcO of CO is given by

DcO(pc..) = [2xc 2y'(. 2z;'.] = 2(p'h)/

Similarly,

Since all joints are translational. the direct geometry of the finger (2.9) reads

(2.16)

[If']q= 172 =p"

q:]

hence = D(rlifSl(ciJ°) D(ciJ°). Since IIDcO(pc·)11 = 2fl, Constraint (2.6) for the tangcnt

t.hp

[

- .Osin ep+ ~!}('()sep.(,().s(J]
=uJ"= ()cosep+u.'sinepcos(J

cP -J'sin()

(2.18)
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allowing to calculate (Jr" the relative velocity at the contact point:

v;; = Ji" + [uJ'x]~l((b')pc - Jid

To simplify this expression, note that by (2.3):

[
:r ~..]

pi = p~, _ O(rji')pc = )~'

Ilcuco. using (2.17) and replacing in (2.19). one gets

[

- H{)cos .p - RI!} sin cpcos e+ :'4]
- no sin .p+ flli~cos cpcos e+ iJ~,

(2.19)

the vectors w;lc = (1.0, O)T and
t.he form

(2.20)

(2.21)

The linear map II ill Equation (2.1:3) has the matrix

[~
-R

~]0

'1=

["
-2R :]2H 0

0 0 0

= (0. O.O.O.0.1)1' spans the null-space of 'I and give~ the following

= j; - ~'~ill () = 0, (2.22)

Lemma 1. The coilist.nlnition IT1 spanned by the one-forms obuuried from (2.20)-(2.21).
IW7Jwly

R(cos'{cLe+ sill,?co~()dl!')

W2 = dy1- R(sin cpdH - cos cpcos Bdl!J)

IS fully nnnholonomic. Moreou er. tlie codistrtlmt.ton TI2 obtained hy adduu; the non-pvooiuu;
constraint (2.22)

w:, =dcp-sill()cZ,ljJ.

to Wl and CU2 1.S also fully uonliolouonuc.
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constraints must be on an eight-dimensional manifold determined by
one-forms Wj, and W3 are independent because

tne components max(-.. aYr. and dcp. Let (see Definition 13)
to the TIl = I? = span{wj,wd and TI2 = = span{Wj.w2. W3}'

After some lengthy but elementary calculations. the dimensions of the codistributions in the
derived flag are {2.0} (resp. {3, 2. O}) for I? (resp. 19). Since the dimension of the last
codistribution of the derived flag is 0 in both cases. the lemma follows from Definition l4. D

The kinematics corresponding to q being trivial, we are interested asso-
ciated to the kinematic constraints (2.20)-(2.22) which evolve on a submanifold of M A •

given by the variables (/;0 = (cp.B. 1jJ). x~ and Y~'

Two driftless systems will be associated to the kinematic constraints (2.20)-(2.2]) and (2.22)
using Definition 15. The driftless system whose vector fields annihilate the one-forms given by
the constraints (2.20)-(2.21) is referred to as the case whereas the driftless system
whose vector fields annihilate all the three one-forms is to as the non-spinning case.
The linearly independent vector fields

(2.23)g3 =
1

g2= R
R
o

cos e.

sincptanB

1
gj = Ii

gives the driftless for the spinning case. For the
of the associated are only gl and The
these vector fields are u l U2= iJ~ and U3 = w'~ = .o - I'IJSill tt,

constraint (2.22) eliminates precisely U3 equaling

Example 2 (ball between two parallel planes). This example. illustrated in Figure 2.6
(together with the preceding one) is popular in the robotics literature and in the literature of
the non-holonomic systems in general [5.45.54]. 1 has the same properties as the finger
in the preceding example. Finger 2. parallel with one. has a unique translational joint
along the z axis of K b The same modelling processus is followed as in the preceding example.
The surface equations are

=0 (2.24)

and their derivatives read

1=1.2. (2.25)

The direct geometry of the fingers read

[

T 21

1T22 = p~

q21
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Figure 2.6: Ball between two parallel planes

(2.26)

(2.27)

(2.28)

1=1.2.

uon-nenet rru ron constraint (2.6) results

=0

tWs:Illc;J-rtPi.Jc')Sc;JCOSI!-r','J;'.=O.

The' relative angular velocity w' '" "'" u,cc"n'."" bor h lingers is already given by Equation (2.18)
L the

TIlP relative velocity at the contact point C2 reads

(2.29)

Using (2.3) together with (2.26). we haw

Differentiating this expression W.I'.t. the time and reporting in (2.29) get
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Since wf.c, = (LO,Of and 1I4c,= (0. L of the kinematic cons traints (2.8) rea d

19

The kinemat ic constraints

}W , oo ~ + }lw,in~,c"O +i~> ~ 0

=0,

(2.30)

(2.311

nonholonoruic because
(2.28) wit h (2.31) we

obr.a.in

.i ~, + i~, = 0

which can be integra ted as

I~,+3t = T~, (O ) + X~, (O) !J~, + Y~, = Y~ L (0) + !J~, (OJ. (2.32)

These Integrated kinematic constraint s can be used to elimina te
T hen. and with tbe twoaddittonelly obtained

",om"'i,,'oat''''''nt' whic h can be also to elim inate
= 46 - 38 - 2 = 6. Hence " ,, 10"" coord inates of a

can b e given by the q4 = ('P.&,JiJ ,X~ L ' y~" q21)

I'he rema ining two nonho lonomk- kinema tic equations on I\4A are simi lar to t hose ob tained
in th e preced ing example:

- niJ cos <p - RW>in ,ocot,e + x~, ~ 0

- HBsin<p = 0.

To add the non- pivot ing constraint we determine th e linear map T/first

(2 33)

(2.3-1-)
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The kinemat ic constraints do nOI include all the var iables of M-4 [i.e. t he variable 'h I is not
involved). T hus the associat ed dr iftless systems evolve aga in all a five-dimensional snbman ifold
of Mit an d defined by the vector fields (2.23) of Example I

T he driftless system for th e spin ning case is given by

whereas t he dnnless syst em associat ed to the non-spinnin g cast' reads

with tJ ) = It:. 111 = f/I:and 113 = w~ = .p- tVsin8 ,

Exampl e 3 ( ball be t wee n two o b liq ue p la nes}, Th e set up (set' F igure 2.7) is the sa me as
in th e preceding exampl e. but the two planes representing the fingers are no longer para llel but
oblique wit h an angle rema ining constant dur ing the man ipu lat ion.

Ftgure 2.7: Ball between two oblique planes

The surface equa tions are already given by (2.24) in the preceding exam ple toget her with
t heir derivatives (2.25). T he translat ional degree of freedom of ling!'!" 2 is parallel to ti le

v = (xt.lI.:, zt? of the plane of t he finger. We suppos e th at v is such t hat
i- 0 {note that ( I~)2 + ( y~)2 = 0 would give t he setup st udied in Exampl e 2). T he

geometry of th e fingers rends

[
~

"
J(~)'+M l '

o
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Constraint (2.6) for the second finger gives

21

(2.36)

= ~(pcJTn(Q())TI!(O~) = -De~(p~'2) = [0 0 L]

Mulr iplying both sides by RS2(r,b3)1 and taking the transpose, we get

n(d;'»)p,/-,o = -Tt»

which relation can be also read form Figure '2.7

The kinematic constraints at the contact between the object and finger J are already given
by Equations (2.27) and (2.28) (we simplify for readability's sake):

- R'.V~ = 0

+ RuJ.~ = o.
(2.37)

(2.38)

The relatiw velocity at the contact point C2 is obtained using (2.3). (2.7). and that d(!,\~)1) = 0:

W~.C2 = (0, 1.0jT

Since. by the direct geometry of the finger 2 (2.:3G) we haw

I!(O~?j)~ = (i2In(Q~)Tu = [ ;~ ]

-q21

the kinematic constraints corresponding to (2.8) for finger 2 read:

which can Iw integrated to obtain

p~.r7,z~ + p~y~z~~ + p~((.rl:)2 + (.IJ~)~) - Y~'I!J~ - .r~, x~

= p~({)):r~z~ + p~({))y~z:; + p~(O)(CT~)2 + (.IJ~)~) - .IJ[j ({))Y~ - xi:](O)xe. (2.41)

lW111Il"".! ""II \)1 U1l11Cll~1VllUlllllnA - 46-38-1 = 7
and (2.:39)
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Figure 2.8: The ball between three planes

Exa m ple 4 (ba ll be t wee n t hr ee pe r p endi cu la r p lan e s) . T he setup is illust rated in r ig.
ure 2.8. Th e fingers are again tangent planes to a bul l of rad ius R. par allel to the three respect ive
Cartesian planes of th e inert ial reference frame , defined by y6 = 0, x6 = 0 and ::6 = O. All joints
ar e t ra nslat ional and th eir disp lacements are res tr icted alo ng t he corres po ndin g direct ions.

T he frames fixed to the planes have t he sa me onenreuons as the base frame . T he posit ions
of t heir are denot ed by p1 0== (xf. y1, Z1)T I = 1. 2,3 Til l;' origm of the sphere and its
orientation given by p" = (.1'''.y'' . z'' f and $ " - (,." B,w) (RPY angles ) 3.5 in t he pre vious
exam ples. T he surface equat ions an >given as

43 = 0

and their de rivatives read

D rf>(pc, ) = 2 (Pc.)]' D4(p~, ) = (0. L O) Dc~(p~, ) = (1,0,0) UC~(P~3 ) = (0, 0, 1).

T he dir ect geome try of the fingers are given by

q, = p~ 1 = 1, 2,3,

hence n(4)~ ) = O (rpO).

Since IIUc" (p:;',l 1l= 2R for I = 1. 2, 3. Con st ra int (2.6) for the tangent planes gives

O(!P" )Pc , = - Re2. O(¢O)PCI = - Rei fl (al )pc, = - Re].

wit h el = (I, o,a f es = (O. l , OlT and ea = (D.O. If Thus th e geometric' const rai nt s co rre­
spon rling to (2.3) '

1= 1. 2. 3,

can be 'Simplified by th e \1St' of the ab ove expressions. Isolating the coor dina tes of th e or igin of
the frame fixed to t he ob ject one obta ins

XO= .I' f + L'~ ,

yO= y~ + R

ZO = zf +:::-~,

x O = x~ + R

yO= y~ +y~.

z" = :1 + Z~,

X" = I~+ X~3

!I'= yt +JIc.
z" =zg+ fl .

(2.42)
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T he relative velocity at the contac t point C, reads

I "" 1.2. 3

23

R~ + .i" - j;t=O

-Rw~ + t" - ill = 0
-~ + iJ" - yq =o

Rw~ + i" - iJ =O

-R.,)~ + j; " - ±1 = 0

Rw·~ + if' - iA = O .

T hese kinemat ic constraints are not fully uonho lonomlc . FOL observe that eliminating Rw~ one
gets

-t" + if = // - !If. (2.43)

Differl'nt iati ng the geometric constr aints z" = z1 + z~, and if = 14 + Y'!::, obtai ned in (2.42).
a nd repo rti ng them in (2A3) we get i.~, = -if!:., which can be integrated as z,/:: , - z,/::,(0) =

-y'l::, + !fcl( O). One may get similar relat ions by elimi nat ing .....: and ~ This gives three
integrated cons traint s:

= -1J~, + Y~J (O)

= - .r~) + x~J(O)

= -yt,~ + 11,/:::( 0)

(2. 44)

where x~,(O), X'!::2(O;. Y'!::~ (O ). Y'/::J(O). 4 , (0) and :,/::,(U) ate init ial conditi ons. Using t hese
expr ess ions together with the geometric constra ints (2.42) and the exp ression of if in t he-RPY
representa tion :2.18), the remaining kinemat ic cons tra ints read:

[

' 0
R 0 cos'f'

o sin'P

{2.45j

Since t he han d has three fingers. the condit ions of Corollary J an' sat isfied. li enee, t here are
no spinning mot ions to eliminate by add itional kinemutie const ra int

Tab les 2.2 and 2.3 show that the geome tric con straints and the integ rat.ed kinematic om's

f.:: I':.l:\~ .t~ .e;~,l~~~:~:~ ,v:;:~~IJ~sl}:t of 69. Hence.th e d imens ion of MAequ als to dim AlA =
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Lemm a 2. Thl' ('odlstnbutwlt 11. spmmed hy the one-forms obtamed from the constramts
(2.45) . namely '

tv l "" Rdep- Hsinfld lj}+ dI~,

w2 "" ReosepdO-t R sin cpcosfld1lJ + dz'f.:2

tv3 = R sin epdO - H eos cpcosf!diP+ d4,
ts fully nonholonoiru c

Proof. After the elimination of vari ables using the geometr ic a nd t he integrated kinemat ic con­
straints. tho rema ining kinemat ic constraints (2.15) must be satisfied on the nine-d imensional
manifold AlA . The one-forms tv), !V2. and tv] are linear ly independent because of the ir com ­
ponents in dy'b" dZ~" find d4t , The dimensions of the cod tstnb uno ns, in t he der ived Hag of
[J = [0 = span] !:v't , tv., tv3 } are {3.OJ, Since the d imension of t he last codis tr ibution in t he
derived Hag is 0, the claim follows from Definition 14 0

T he kinema tic constraints (2.45) involve only the first six variables of qA- Observe that t he
last th ree coordinates qt., Q21' q31 in qA dete rmtne the position of the ball, since WI"have (using
t he geometr ic constraints (2.42) and t he direct geomet ry of the fingers)

y"- 912+ R z" = qu r H.

In fact , due to t he translat ional joints of the fingers, th e transla tional motions of the ball are
docoupled from t he kinematics (2.45) which dete rmines till"orientation of the hall.

T herefore. t he associated drift less system is calcu lated on a sub memfcld M~ of M A ,

by the var iables I{). n, l/J. I~" z~" zt,. involved in the kinemat ic const raints . T he vector
an nihilating the codist ribution spanned by the one-for ms (2.46) on th e manifold AI~ are

- I - sin iptan B cos..ptll.tl f)

0 - cos,p - sin ,p

1 0 1 -~ 1 ~
9 1 =il R rn -="R 0

93 :; H
0

0 R 0

0 0 R

giving t he driftless syste m

(2.47)

where the inpu ts are U I = i:~" U2 = i~, and U3 = i ,!:,
Note tha t by Lemma 2. this syst em is locally commendable {i.e. t he involutive closure of

the distribut ion spanned by 91. 9 'l and .Q3 has dimension fi which equals to the dimens ion of
,\1.~ )
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2. 1.4 Dyn amics

25

T he nota t ions int roduc ed in Seeton 2.1.1 arc reused

'I'he dynamic equatio ns are obtained separately for each finger and the ob ject. Th ese equa­
tions !U"(' connecte d by means of the contact forces. T he contact force ap plied by th e finger I

to tl J!~ ob jec t is denoted by t he \'('C'tOI' I , E 1R"1 such that its coordinates are expressed in t he
inert ial rf'[('renee frame J(b

For the fingers, contac t forces are treuslormed to exte rior torques in the joint space (see
Figure 2.0).

illI KY ' b.
C2

I . Afg

J object

Figure 2.9: COlltad forces

Le t us introduce t he inert ial parame ters given by Table 2.4 (recall th at q, is the vector of
joint ccordlnetes of the finger I) . T he dynam ics of the object are given by the Newton- Euler

notation definition

H,(q,) inert ia matr ix of the finger l

e inert ia matrix of t he ob ject

AI mass of thf' ob ject

Tab le 24 Inertia para meter s

equati ons

Mp· ~Mg+ L>,., (2.48)

(2.49)

where 9 = (0, 0, - 9.81)7 is t he vector of gravity eccelereuon. 'I'he d ynamics of th e fingers are
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obtain ed using t he Lagran gian HO. ;)21of the corresponding manipulators;

H,(q,)ij, + h,(q"q,) = T, - T•.w ''''' I, (2.50)

when ' h, contai ns the gravitation al and quadratic terms w.r. t . the joint velocitie s

The tor'1.l1 f' .~ ri f'1in~rf'<! hy the mot ors at the joints are considered as the input variables of
the HOS. T he vecto r of t hese joint torqu es of the finger 1 is denoted by 7,. As mentioned a bove,
contact forces are t ransformed into exterior joint torques. deno ted by t he vector T' n l for the
fing er I.

In order to precise the relation between the contac t force I, and the vector of exterior
torques T"HI . we deter mine first the equivalent wrench (force and momen t take n together]
corres pond ing to the contact force at the origin of the frame f{~ , fixed to the last segment of
the finger I.

Th is transformat ion is linear for any fixed finger configurati on and contact point and given
by the relatio n

(2 51)

where JT is the transposed jaco bian of t he finger I (defined by (2.10)) and the matrix GT read s

o:_ [ -I ]
, - - [n(¢1)p~,x l

T Il(> contact is sa id to be non-singu lar if the ma trix ire: ca n be inverted. T his al lows to
eliminate t he contact forces f, an d the exter ior torques T,.~t and to report Equation s (2.50)
and (2.5 1) in the dyna mics of the obje ct resulting

,
1I1 pn "", A19 -I- ~(J;e:rl [T, - JI,Q, - h,(q"q ,)]

a
e ";"Q=~ {O(tfl°)pc, x (J,TCn-I [T, - H,q, - h,(q" q,J]} - WO x 8 ,,,,0

R emar-k 7 In the case of redundan t fi ugers (f.e. such that the num ber of jo ints exceeds three)
the p.~ e u.do -mverse of J,1'C ; ShOlllri be llsed

2. 1.5 Inequal it y co nst ru lnts

The contact forces applied to t he object by till;' fingers must or iented inwards t he object. T h is
requ irement is expressed by the inequality

(2.52)

Since we suppose permanent rollmg contac ts (Le. there is no slip, set' Assumption A 'l ), tI,e
forces must also re main inside t he so called friction cone. Supposing Cou lomb friction mo del,
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the volum e of thi s frict ion COliC is dctcnuincd b.11 the frict ion coefficient J.I. and th e correspondi ng
constraint reads:

where 1m. (resp. f ll) give th e normal (reep. tange nt) component of the contact force between
the finger 1 and the object

Other inequa lity constraint may also be presen t in order to describe the limits of t he hand's
work ing apace and to avoid collisions between the fingers. T hese const ra ints are not addresse d
here and will be relaxed in the soquel.

2 .1.6 P la na r h and-object. s t r uct ur es

Assum ptions A I -A6 remain unchanged for planar HOSs. However, important simp lifications
cnn b e mad e w.r .t . the general three-dimensional C81;e. \ Ve proceed the sa me way as for th e
mode lling of t hree-dimens ional HOSs. name ly we sta rt with the equa tions defining the geometry
an d the kinemat ics and then we cont inue with t he dyna mics

Recall th at the frames fixed to the r-th linger and to the objec-t ar e /(~ and /(0 and we
de note by the vecto r P; E iR? and by th .. angle iP~ e S their rela tive posit ion and orien tation.
Recal l a lso th at the coordinates of the cont act poin t P'c. = lxt;,. Yb.]T ) E [o. d) are expressed
in rbc fra me KOand /( : , respectively.

Since 41°a nd ¢'~ are sca lar. all orientation ma trices have the form

nib) e [COO "
sme

and we simp ly have WO '""'- Jp and w; = d>; In par ticula r. th e relative position and orien ta tion
of t he ob ject and f inger I . corresponding ro (2.2). is defined as

(2.53)

Observe t hat the geomet ry of the contact between t he object and the ath finger is defined by
the constr aints

c~ (p~J = 0 (2.54)
CO(PcJ = 0 (2.55)

p~, ~ P: - D(10 pc, .=. 0 (2.56)

del ( DC:(p~, ) ) = O. (2.57)
Dc" (Pc,J. D(¢~)T

corr espon ding to the equations respectively. These constraints
depen d excluelvclv on t he t he relati ve situation of the
object and fingr-r I.
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Since ker Dc'f(p~,) is one-dimensional. it is spanned by

w' ~ [0 -I] 1Jc"(p' )TC, I 0 -, o;

Taking into account the fact t hat the relative velocity of the object and th e finger t at t he
contact poi nt is

'Vc,= p~ + [¢.~ )( 1 (p~, - p~ )

t he kinematic cons tra int corre spond ing to (2.8) reeds

( w~,rr (v:+ [ti:xl(p~, - p~) ) = 0

where

(2.58)

To define the geomet ry of finger 1. recal l th at F, gives t he set in which the vector q, gets its
values . T he definit ion of t ile direct geometry funct ion d, of finger I in tilt' plant" is similar
to (2.9) but wit h a different range space:

d, : F , -----t IR 2
X R/211'Z, d,(q,) ....(p~,¢~) (2.59)

w e can now give the inventory of rho variables and constrain ts defining the geometry an d
t he kinemati cs of planar HOSs. similarly to Ta bles 2.2 and 2.3 referring to the genera l th ree­
d imensiona l case .

variab les I desr-r-iptio n ~

q" j - 1. , m jo int coo rdinates I:::'..I (t k

p", dP position & orientation of t he objec t 3

p~.¢~. I = I, , m positions & one nta rions of the finger tips 3m

p;.¢{ . 1 = 1, ,m relative posit ions & orie-ntation s 3m

p~, .1 = I , , m contact points on the object surface 2m

p'/: .?= 1. ,m contac t points on the fingers surface 2m

Table 2.5: Variab les in two dimensions

H.(~IIlR rk 8 . It ss shown later (see Propositsori S m Sccnon 2.2) thaI the kinemati c constnunt
15 Il lU10!l5 mte.lJ'1Yl hir I'll the pl a1lar case

T he dy namical equat ions of the object and the fingers for the two-d imensional case read

mrl = f g+ L it
1 ~1

H,(q,)q, t- h,(q,. q,) = r, i;c; t.

(2.60)

(2 61)

(2.62)
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I constrai nt type number of equat ion per finger
(2.53) geometric 3

(2.56) gecunct r tc 2

(2.5-1 )-(2.5;1) geomcmc 2

(2.57 ) geomet ric l

(2.59) geometric 3
(2.58) kinemat ic I

Table 2.6: Constra ints in two d imensions

Th e following example illustra tes th e modellin g of a.planar HaS

E xa mple 5 . Consider the 110 5 given in Figure 2.10, T he ha nd
(tr anslat iona l) joints and fingertips of rad ius r. , I .= L 2. T he
rad ius R. T he posit ion of the object is by t he coordina tes XO

its orient ation is det ermined by the

29

wit h pr ismatir­
is a disc of

poi nt () and

q"

Figure 2.10: PIMar HOS.
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The geomet ric constraints (2.54H2.57) rea d

(I~Y + (yl-Y- r? ::0 0 (2.63)

(IcY + {YcY - R' = 0 (2.64)

[g,,]_[x: -x~,] _[co.s0: -sin ~o] [xc,]~ 0
q" y" - 111., ,mo" ,O',"" Yc, (2.65)

det [ 4:, _ !/~, ] -= 0 (2.66)
IC, cos ¢ <J - YC. Sin ql' I C, sin <pc+ Y~:. cos rj)0 .

for 1 =: 1, 2. T he kinematic const raint (2.58) rends

T he dynamic equat ions of the object are given by (2.60)-(2.61), while the dy namic s of the
finger L corre spo ndin g, to (2.62) Tt'OOS

[
m d + m" 0 ] [g...,,] , [-(m" + m,,)g] ~ [Td] _ [ f,'_.' , ]

O m" g" 0 T" (- I ) I, (2.68)

where m'J gives t he mass of the jth segment of finger I .

2. 1.7 H and- o b j ect s t r uc t u r es wit h sp eci a l m orphol ogy

Conside r a robo tic hand with 3 fingers , each wit h 5 jo ints, Supp ose t hat the following propert ies
are satisfied (see FignTr 2.11),

J T he last segment s of the fingers Me spheres such that they can be ro tated aro und two
indep endent symme try axes. T hese rot ations corre spo nd to t he jo ints 4 and 5

2 For each finger, the joint coord inates corr espon ding to the joints num ber '1 a nd 5 ar e
cyclic coordi nat es [65J:

i = I. .3

where C. is t he Lagrangi an of the uh finger) .

3. T he or ient at ion of t he las t joint axis does not depend on Q' 4 (I = J, ,3)

Itt -m a rk 9 . The last con dltlOn corresponds to speCial mectuuncel de1J1ct:s. roughly ~ pt:uJ.,;l7l.q,

SimIlar- to the on es use d j or trackballs and [or the t71 fchant cal mt eqrotor presented l1i [56. Chap
Ie" i f. The resu lt s conccrm no such hand ~/.ructUT"t:s cur; be east/y extended to hlghe,. lIIJmlle,.
jiTl f]t;1'S and jornts , We have restricted oll1 .~ dt'es to the lillllp les! case fo r readability's sake .
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Figur« 2. [1. Finger with symmetries satisfying the conditions

.n

SInce the liru-nr nelocii.u Ii':~ quies the velocity of C, which 1,S also a pmnt nf the enlarged surface.
the relaiuie velocity quics

proeednrc presented at the section.

Example 6. Consider the HOS depicted in
of radius R. The coordinates
and its orient.at.ion

= 1.2.:3) give' the
to the centers of the last segmeut»

arc givell hy

2.12. The rnanipnlatcd object is a
[rarne /(0. fixed to the sphere arc

angles (i:,o =

Imse points in The
fingers. The' geometric constraints

with derivatives

DeO(p7J = 2 (Pc.,)!'
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(dd :'J.d' JI

f"'!i ", j

Figure 2.12: HOS in three dimensions

Since IIDc" (Pc,l ll = 2R and I ~ Dc~ (p~,)1I = 21",Const rain t (2.6) reads

P'b. = - ~n (,p~)p(" .

Repor tin g t his in (2.3), and multiplying both sides from left by n(4'1l we get

(270)

T he rela t ive veloci ty is now expressed in K b

multip lied from left by 0 (<14 ):
T his is s imply obt aine d if Equation (2.7) is

T he vectors spanning t he tan gent plan e at the contact po int er e wt.c. = l-z~..O , I~.V and
wt.c. = (-Yt.. ,x'b..OjT Finally, since the str ucture of the inert ia matrir-es Me not specified
neit h..r for the finge rs nor for t he object, the dyn amic equat ions of t he object and the fingenl
are giw-n ill thcir general form by (2..l8)-(2.49) and by (2.50).

2.2 Hol o n o m y, fla tness a n d Liouvilliau p r o pe r t ie s

T he nouon of holonomy is defined in Appendix A. The definit ions of (different ial) flat ness and
Liouvrllian systems are recalled here. Note t hat the r t lt order l ime derivat ive of a funct ion I (t )
of time is denoted by r rl(t) =~.
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Definition 4 (flatness). The system

.1: = f(x,u)

33

I~ 2.71)

unih :£ E Rn and u E jRm c/1JJerentwllyflat ifone can find a set of uaruibles, called fie: output,

unih r jinite mteqer. sucli that

}; = n(y,Y.;ij,

1L= (i(y,y,y,

unili q a fiiute uueqer, and sucli that the system equations

are idenucallu satisfied:

(2.72)

(2.73)

The weaker notion of l.iouvillian systems is defined in [1OJ using differential algebra. We
adopt here a slightly different definition.

Definition 5 (Liouvillian
a set oIvanables defined as

(2.74)

such that

x =n(y,tj,j).

11.=(3(y,y,j),

,ylq),(i , 1

,?/Q+l),(i,,-1
Ji;p-')

.(::" 1),
(2.75)

unib.(;,-L = (~"~,' c: 1)), and such that a and (3 ulenticolu) satisfi; the system equations:

~=f(n,.8). (2.76)

We rejicr to y as a partwlly flat outpiit and to ~, 1 = 1, . p as tntegml uariohles.
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2.2. 1 H olon omy and fla tness of pl an a r s t r uct ures

II can be shown t hat are holonomic. We also show thar.such configu -
ra tions are different ial ly with more tha n one fingers as long:as each finger bas at least two
joints.

P rop ositi on 3 . In the the txnemouc constraints between
otncct are hotononuc . planar HOSs. with an arbitrary
bolcnonuc.

It is to show tha t t he constraints arc holonomic for a single finger in contact
objec t, the subscri pt 1 correspond ing to the finger's index is omit ted in the

proof

Note that the configura tion manifold and
a finger in contact is seven-dimens ional. and
observe t hat the constraints (2,54)-(2.38) only on

T he one-form s corresponding to the geometr ic and kinemat ic cons tra ints read

i':Vj = d(cd(pi, )) = 0 (2.77)

i':V2 = d(cO(pc )) = 0 (2.78)

[::] =d (p~ ~ p' · !1(<p' )pc) = 0 (2.79)

m, ~+"(D,, (~;; IP~:&' )T)) ~ 0 12.'0)

t:V6 = (wt,r (dp' + [ddl x](p~ - p') ) = 0 (2,81)

P roposit ion 4 . Planar HOS,~ w-<th at least two fingers. each lunnnq at least two Jom ts,
dtfJerentw lly fiat

. m, a t 2: 2) th e number
tha t a flat output is

. qt,a, (i = 1. ,m) and by

y, = g,(/t , . / ",) 1 = 1, . 2m-3.
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with arbitra ry but fixed combinat ions of t he contact forces Let us denote by Y the COIT e--

:L:: I a, dimensional vector

of the finger l can be all locally calculated as

Consider the finger t: and
integrat ed to get rid of p~ and

Using Proposition 3, the kinema tic equation can be
a set of six algebraic inde pen dent

rclatrvc

Denottce bv 0'. , 'th,,,i,ctatio" and posit ion of th e frame fixed to the finger . the absolute
posit ion and orientat.ion of a ll the fingers t = 1. . In are given by

(2.82)1 =1 , .m ,

gives the contact

T he contact forces and Y. Y,Y allow t hen to calcula te the vectors of joint tor ques of the
fingers r,. (I = 1, .m) using (2.62).

Since we have shown tha t all varia bles can be expre ssed as functions of Y and its
derivat ives we have proved that a flat out put and the system is flat 0

2.2.2 F la t ness st udy of t h e kin ematics (exa m ples 1 and 2)

\Ve wish to conclude about t he
Examp les I and 2. For both
allowin g p ivoti ng n-otions . then
kinemat ics.

of the kinematics st udied in
two cases , Fist, we t he model

such motions are to the

K iuem at ics wi th p ivot ing m ot io ns

T his is the case of Examples I and 2 without the noo:pi,oci"g constraints (2.22),
same for both exampl es. Int rod uce the matr ix A and

A = [~ Hcos .p

R~i n.p

Rsi n.p cosB

-Rcos .pcos()

-1

o
(2.83)
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where, for Example 2. we identify
on the firs t Hence

1 (r eep read

A X = O

coordinate s of th e cont ac t
[resp (2.27)-( 2.28)) of

(2.8 4)

T he following dri ft.less system was associated to Equa tion (2.84) using t he vecto r fields defin ed
by (2.23),

<t=]tSin.ptMO - U3

e=~ cos .p +7;si lL 'f'

(2.85 )

ib = ti l

iJ~ = 1l2 .

P ropositio n 5.
puu: UJ = i: ~. 112

1m/It

(-= -p sin-p cos (} + iJ ~'os psina AX

Proof. Introd uce ti le variables Yl and yz as

[y,]~ A X
tn

and

(2.86)

(2.87)

' " ,m d( are fun ct.ions of t he syst em varrabies (2.S4) including t.he inputs 1<1 = I~.

Different iating ( . using (2.86) and (2.87), one ob tains

aYl + /;Y'] = (: + O,;}cos e
wit h

<I = ,p s in<pcos O+ (i l + (2 ) cos epcos {) - 2.jiJs in.psin(J + Bco s <psin(J

b = - .j!cos'P r:osB I- (.p2 T ( 2 ) sin +,cos B t- 2¢Ocos <psin 0 t 8 sin <psinB

(2.88)
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Observe now t hat (2.8B) together with (2.86) const itutes a linear system w.r.t. to the var iab les
Yl and y~

[.pS in'P COSf}: JcoslpsinB

hence Yl and 111 are obtai ned as functions of (. (, 8. O. 8. -p. .p. and ;p

In or der to obtai n Was function of (. <P. (J and the ir successive time deriva tives, WE' differ­
cntia tc Equat ion (2.87) with (2.84):

[
". ' ] - ~(AX ) - (~A) '_ [-'';' '''9+'' (';'0' 9,"" - 0"n9,,n&)]
Yl df nt A -R Orpt·os <p r <J' ( iP ~in lp COs e + e cos 'P si n l) )

thus y ielding rjJ:

~ + /1;asinep
W"" Ii .

.pcos<pcos {l- Osin ipsinO

~ - Orj;cos r.p

.ps in.pcos f}+ Ocosep sin O
(2.89)

Since we have already shown tha t Yl and Yl are func t ions of Y and its derivatives. the sa me
holds for !,V.

Fi nal ly. by (2.87). we haw

,t:~ "" Yl - R(Ocos op + wsin <prosO)

Y~ "" Y'J- R(Bsin op - IPcos.pcosO )

proving t hat I~ and 11/: are a lso funct ions of Y end its t ime rlerlvanves. Since tt l = ±'f:. tt2 "" iJ~ ,

tt 3 -:= ....,~ = .p - J.s in8. the inputs are also funct ions of l' and der tvauves wh ich ac hieves th e
~~[ . 0

Rema r k 1 1. The thl1Il component ( oJl' fJ1'1It'f1r-S qmt,. Inooltled aTldus physlcallllterpretahon
IS far Jrom obVIOUS. It has beenobtained by mt egra/l0n tecbmques whlch are no t report ed here
and tis expressio n rxpltcltly contaul.S the Input vanahles WhlCh /.S not usual. A simpler fiat
Olltput /.S not hlOum at presen t. Nonce that the flatness propert y oj the dnftless system (2 .84 )
With three m pufs reslilts (JL~o fro m a theorem of !46j.

Case w it h el imi na t ed s pt n n ln g mot io ns

T he int roducti on of the non-p ivot ing constr aint (2.22) {same for Examples I and 2) that elim­
ina tes spinning mot ions result s a different kinemat ics Let U~ de l111E't he matrix A ' as

A ' _ [ A ]
- 1 0 - ~ iH O 0 0
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T he kinema tics of this syste m reads

A' ..\, = 0 (2.00)

where A an d X have been already defined by (2.83). Using a result of [46] the non-flatn ess of
th e kinematics (2.90) can be shown.

For comp lete ness . t he following theorem of [461 is recalled .

Theorem 1. Let the codlstn butlOll n be span ned by 11 - 2 nui ependent one -forms on a mnmjoid
AI of dlm ens IOIln. Th e f/-tsoclated dnftless IS f eedback /nwanzable at ellcry pomt of an
open and dense subset If and Dilly If the of n = / 0 sousfies

dim f~=n -2- k k =O, , n - 2

T he one-forms spannmg the codlstr ibut lon defining the kinematics can bo [P ad from t he
rows of th e matri x A'

ro t = cos.pd B + sin opcos 8dt/J - dr~.

lV 2 = sin .pdO- cos <pcos {}dw - dtfc:

l:VJ = d..p- sin Odd,.

giving t he codis tri buuon

on a five-d imensiona l man ifold. hence the numbe r of inputs of the associated dr ift.lees sys tem
is two. Observe thal the one-forms &..:'\_ 0 2, and tv J me linear ly independent everywh ere since
WI 1\ W, 1\ w J ha s a co nst an t nonze ro component in dxt · 1\ d!l!: A dp. T his allows to apply
T heorem 1.

Pro p os it io n 6 . The kmemahcs defin ed by n IS not dlfJerent wlly fla t

Proof. App lying T heorem 1. the necessar y and suffir-icnt cond ition of flatness reads

d im !\;< 2 dim ,2 = L dim / J
;< 0

where I I 12 and 13 are the codt st nbuuo ns in the der ived flag of n = JfJ SinCE'ccr. 1412. and
'tVJ M t' indcl' cn dent one -Forms it is enough to consider t heir exter ior dc rivatsves

dWj = - sin.pdp A dO+ COS 8 cos vx£p1\ dlP - sin (}sin.pdO 1\ dw

dw, = cos.pd.p 1\ d8 + cos8 sin cpd..p1\ dlP+ sin 8 cos <pd(} A dl/J

dWJ = - cos 8dB1\ dw.

and observe which ones can be obtained as ext er ior products hav ing th e form 1]1 II 7/2 with
1/ 1 E III(A/) . and '12E 1° Note tha t al l exterior prod ucts having the form W II tv, (tv E II I(AI ).
t = 1. 2) have a component in A d4 or/and in 1\ dy~ . Since dm,. I = 1. 2. 3 h ave
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component nor in
1 = 1,2 , .1= 1, 2. 3). It

neither in i\ dy~ . thisimplies th at dw) ¥ tiJl\ ro, (w E AI(A!) ,
to exami ne the exterio r products cr A W3 . Since

(sin<pdO- cos<pcos fldliJ) i\ W 3 = d Ol

(- ('Ospdl) - sin <pcos Odl/J) 1\ W:l = dW2.

one gets that I J = span ('Wt. c s}, so dim It = 2

T ho precedi ng discussion has shown tha t dw, ¥ w A w, (0 E Al (AI), I = 1, 2) Hence
d'W, ¥ 0 mod I t t = t, 2, thus dim 12 = 0 ¥ 1 which shows that the necessa ry and sufficient
cond it ion of Theo rem 1 is not sat isfied and the propo sition follows. U

2.2 .3 Liouvillian kine m at ics

Let us show that all dnft.less system s obtain ed in the examples of Section 2.1.3 wh ich on.' not
flat are indeed Liouvillian

P ro po sit.ion 7 The dnjtle$s syst em

..p = 7i sin <pt.llll (I - ]j rnscp ta n (I

iJ =7i cos <p+ 7f sin <p

UI Slllcp U2COS",
1P= R CQs 8 - R cos8

I~ = II I

iJ~ = U 2.

(2.DI)

(obtam ed m Example 1 and 2 WIth the non-pnmtlll9 C01l-~tmvl t (2.22) meluded m the model and
proven to be not flat by Proposition 6) IS l.w umillan With Y = (",,0) as part~ally fiat outpu t
and x'/::. yt., 1f; as m tegml van ables

Proof. By the first two equat ions of (2.91). the inputs II J and 1t2 can be calcu lat ed from t he
t raj ecto ry of Y and Y

- ,oo(~) ,"n (B ) ] [~l
sin:l?I) 0

(2.92)

Hence, t he var iables I~ , y~. and 1Pcall be obta ined from

~ = ~ Slll<P_ ~ COS.p

R ws8 R coes
i:~ "" U l

y~ = u2.

by simple integrals prov ided that their initial condit jons an' known which proves tha t Y is a
partialfy Rat output and that :r1·,"f.. If' arc int egra l variab les. The system is thu s proven to be
LiouviUian . 0
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P ro posi tiou S. Ttic dnftlcss system

rp = -}i - ~ sin '{Jlan (}+]i C060P tau 0

0= -7i Cos.p - 7i ~in<p

tl 2sm op U3 COS <P

lP= - /i cosO+ R cos(}

i~, = U l

ii-1 = U2

i~, = UJ

lobtal1led In Rxample ./ as the
(.p, 8. w) as partIally flat OUtP1lt

to (2.45)) 1.5 LlauvllI,all with Y =

as Integral varudJles.

Proof. Th e inputs ClH ' obtai ned us funct ions of Y and Y

[",] [-IU2 = R 0

'<3 0

- cosp

- sin p

, ;nO ] [,, ]
- sin.p cos O ~

cos opcos0 lb

and the integral var iables are obtained as integrals of the inputs. o

2.2.4 Llou vilfiuu dy na m ics of hand-o bj ect struct u res wit h s p ec ia l
mor-phology

P ro posit.lon 9 . Con.Slder a HOS $uch thai Condsuons 1-3 of SectlOTI 2. 1.7 hold true IIIlth
three fingers. jit'C drgrees of freedom each. Tins syst em IS Li ouuduon and adrmt s a partwlly flat
oulpt lf

poSition and ol1cnlatuJ1l oj tI'eo 'J'" and coordvuaes oj the contact pomt s on lhe object bound-
ary;, with three combmatlons contact forces: y, = q.(/J,h , fJ ), I = 1, 2. 3. Moreover. Q,4,

q, ~ . 1 = 1, 2, 3, the last coommates oj the fingers arr mtegml Mn(ll!les.

Proof. Wit hout loss of genera lity. we may assume that each fingert ip has rad ius f

Fix t he frame J(~ to the fingert ip of the nh finger with its origin at t he cent er of the sphere.
Hence the vect or p1 giving t he origin of I<~ depends on the joint coordinate s q,l. , q,3 and
doesn 't depe nd 011the last joint coordinates q,~ and qiS' T hus the d irec t geometry (2.9) is given
by

p~ = P: (Qd . q,2,q,3 )

n (tiJ1) = n (Q' l ,Q'2. qll , Q'1, qiS)
(2.03)
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Moreo ver. due to Condlt.ion 3, the angu lar veloc ity of t he finger w~ doesn't de pend on q.~ and
qi~ (it depends on q,l, . q'3 and 4,1. ,4 '5):

12.94)

T hus the geomet ric const rai nts of the unique contact poin t between the objec t and the n h
finger (2.6) and the kinematic of rolling with out slipp ing (2.8) can be formu lated
wit hout t.he varia bles Q,4' q, ~ , and

T he geometric cons tr ai nt (2.3) expressed in the inert ial reference fra me 1\"1> reads

12.951

Rut , due to Condition L

hence (2.95) become s

, , 0 (" ) ( ° Dc"(pc, f
r

) 0
Pi - P - "" Pc, + r UD(~(p(J I I '= .

We make use of Equati on (2.4 )

(2.96)

(2.97)

Sim ilarly to the vecto rs wf.c. and w{e, Jet IlS de no te by wf.c, and wlc, the vec tors spa nning
kel lJcO(pt .,), i.e. the ta ngent plane to the object at t he contact point.

The rela ti ve velocity at t he contact poin t bet ween the nh finger and t he ob ject is ex pressed
in the basi s of K I>·

Vc, =: ve,- ll~, = pO + [w" x ]D(itl)p,!::, - p~ - [w~ x] (l1{tP")pc• ... p" - p~) (2.98)

thu s the kinematic constraints arc given by

w[c,Vc, = 0 u'ic,V(:. = 0 (2.99)

Let UI; prove th at ~c., p1. qt!' oa- q,;\,1'4 ' 1,5 call be expressed as funct ions of Y ,}'

F irst, by (2.97) and by the implicit functi on theorem. one r nn express z&. as zc, ""'­
Zc,(xc,.yc.). l '= 1, 2,3. T hen . replacm g zc. in (2.96). p1 can be ob tumed as function of
Y T he first (vectortel) equa tion of (2.93) can be locally solved for q<!. Q,2, Q'3' giving th ese
three variables as funct ions of }'

Since th e kernel of DC: is 3 function of Y the same holds t rue for wr .c" w~.c, Moreover.
by Equation (2.94) . w~ dep ends 0 11 \ ', \ ', and q,~ , q..s. Using (2.98), Equat ion (2.99) reads

(2.100)
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wit h tr = (wr c" w~,c. jT of rank 2. n the rank 2 cross prod uct matr ix'

ihl, x l ~ [ t~
- t,

-'.
o

'.
Equat ion ;2.100) can be local ly solved for qt~ and Q'5 since, accord ing to the above decc mpo­
sit ion. its J acobian has rank 2. provided tha t the J acobian of the nh finger is of full ra nk. It
results tha t 1,4 and Q'5 can be expressed as funct ions of \' , }'

Let us now prove that the vect ors of joint torques T, . I = 1,2 .3 can be obta ined as [unct.ions
ofY,} ' Y

By (2.48)-(2.'19) and using !I, = 9,(11.12./3). I = l,2 ,:l , t he vector of contact forces 11.
h. !J can be computed as funct ions of Y, Y,Y Next . by (2.51) the same holds true for T,.~"t

since J, and G, don't depend on q,~ and q,5 by Condi tion 3. Finally, since Q,4and Q'5 arc cyclic
coord inat es (Condition 2), the dynamic equations of the fingers (2.50) al low to calcu late T,.
1= J. 2, 3 as clai med.

We ha ve shown t hat all t he variables but q,4' q;5 and P'b" (/)1. t = 1. 2, 3. are funct ions of
Y an d der ivat ives . it remains to show that if ( = (Q'4, Q' 5)7 is chosen as the vector of integral
vari a bles , 1~1I the remaining syste m variables ure functions of Y . its derivatives and ( . T his is
obvious from t he second equation of (2,93) and from (2.3) which ach ieves the proo f. 0

Rem ar k 12. It can be ven fied that tne above proposuunx remanl,S valid If the number 0/ the
iouus IS mCll'a~'ed or decreased (the minimal number' being three JOints per finger) an d If the
num ber of /illgers lS lnCT'f'ased. However. deCTeast1lg the 1lumbe,- of Jomts u'Ill preuent /rom
arhllran ly modlfy mg sImultaneously the ponnon and on entattOn of the object and the posuum
of the con tact pOints on the objec/ boundary

2. 3 M o ti on p la nning

Recall, tha t for HOSs, the ft.I P P is de fined IIx a stee ring problem bet ween an initial an d a desired
final conflgur e ticn . denoted by q, and (Jr ' respectively.

All solut ions presented here are based on the fact that one can find a set of variabl es. denoted
by F an d cal led t he flat output (for I ht, dilfm:mt ially flat case ) or t he pa rt ially flat outp ut (for
the Lion vilfian cast' ). allowing to obt ain all or A. subset of var iables of the model as function s
of Y. i ' y l r ) wit h r finite integer. (g.,(. also Definitions 4 and 5.)

the Ilatn ess proper ty. the ~ l r r is equiva lent to inte rpolation problem for the
var iab les since al l var iables of the HOS are funct ions of y l r ) . For the
case. the inte gral variables cann ot be obt ained as (algebraic) funct ions of F, }', bu t
as integ rals of such a lgebraic functlou- w.rt . the t ime. In bot h cases. the mot ion plan ning
algorith ms can be div ided into the following generic steps:
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2. Set the travelling duration T between the initial and final configurations.

3. Make an interpolation for each variable :( in Y such that

x(O) = XI

X(O)=)cl

x.(1') = XF

X(1') = X!'

4. Calculate tile trajectory ot t.he rnode variables as functions of Y and its derivatives. Two
cases a.re to be

• flat case: all model variables can be obtained as (algebraic) functions of Y and its
derivatives (see of Definition

• Liouvillian case of the variables have to be calculated by nu-
merical w.r.t. the time of an expression involving Y ar;cl its
derivatives Equation (2.74) of Definition

Remark 13.
numerical

Section

th.e I:0.8e oj real-time applxcaiums. fiainess 1,05preferable to solve th.e j1;JJ)F since

time. TIns issue is also addressed
control.

Remark 14. Tlieinteqers 1'1, TF ate determined by the [ollounnq considerations:

,YIL'ltUt:ll,'''U o""'U0'UI in order to obiain

2. One cousirtiuiis on the deriuaiuies oj Y
implies huihe: order dcrroaiiues o] Y uasush

and endmg at rest ponds
=1').

To solve the interpolation problem in Step ~~, one can choose a polynomial function for each
variable X in Y

x(t)= s-» (2.101)
I~O

+ 1 Using polynomial Iunct.ions, the vector of the coefficients can be
of a linear equation

that the derivatives of Y vanish at the initial configuration, the number of coef­
can be decreased:

(
I ) r,+1 Tp ( t ) r

X(t) = X(O) + (x.(T) - X(O)) ~ ~a\-J T

The coefficients aX,) are obtained from the final configuration.

(2.102)
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The remaini ng par t of this secuc n is divided into three parts following the classification
made in Sect ion 2.2. based 0 11 t he holonomy. flat ness and Liouvillian proper ties

We treat first the MPP for planar str uctures (including Example 5), based on the flatness
property of t he mode l includ ing the dynami cs. Next . solutions for t he :\IPP are given for th l'
t hree-dimensional kinemat ic models obta ined in Examp les 1, 2. and 4. Finally. the case of
three-di mensional hand st ruc tu res with special morpho logy is studied (includin g Example 6)
where the solutio n of the MPP is given aga in for the' model includ ing the dynam ics.

2 .3 .1 l\ Io t io n pl anning for pl a na r strnct u res

Pro positi on 4 asserts that the model of plan ar HOS~ includin g 'h e dyn amics is differentially flat
and t he pos itio n and the orientation of th e ob ject arc contai ned in the flat output Y provided
t hat the hand has at. least two fingers wit h at least two joint s each. Hence. the polyn omial
interpolat ion method given by Equ ation (2.102) for t he vari ables included in Y ca n be used .
Let us give the solu tion of the Ml' P for t he two-dimensional HOS presen ted in Examp le 5.

Exam ple 7 (conti nuatio n of E xample 5 ). f irst . we show that t he kinem ati c cons t rai nt s
ar e indeed integrable by P roposit ion 3. lntrod uce lilt' following polar coordinat es for the contact
poi nts (Sf'P Figur e 2.10)'

x~. = T,COS(, :l'b, = Rcos~,

!J~, = r ,s in ( , Ye,= R sin { ,<

T hen Constraint (2.65) becomes

Q,2 + r,cos (, = J;c+ R cos({ , + ¢,o)
qll + r , sin ( , = y C + R sin({, + 0 C

)

and de veloping Constr aint (2.66) one obtains

sin(s, + ¢>c - (,) = O.

(2. 103)

(2.104)

Using (2.103)-( 2.1O4) and elimin at ing ( ,. XC- ca. jO - Q'2_yC- lJl1• and y O- q'l from (2.67) we
get. after easy ca lculat ions which nre omit ted

{, + -"-de = O.
r,+ R

T his can be integrated as

{, = -,.,: R(/P+S riI 1 = 1.2

where S,o is t he init ial cond ition for ~,. Pro posit ion 4 asserts tha t this HOS is flat I\ ..ith

as a flat ou tp ut. YI bein g defined ali Yl = .91(!J .h) where 91 is an ar bitrary but fixed comb ina t ion
of the cont ac t force components . Hen-, we choose Yl as the sum of t he sq uared norm of t he net
cont act for ces at the contact point s: 111 = \\fdl2 + Ilhf
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If we know the initial mechanica l stare of tht' HOS (XO(O). y"(D). <#'(0). ql(O), Q2 (0)) and
we are given al t ime T a desired final configurat ion of t he object (I O(T) . y"{T ). dlO{T». sinc e
the Ant out put Y irxl udes th e position and the or ientation of the object. it is enough to find
smooth function s of time connec ting (x"( O), y"(0), .p°{O)) to (zO(T), y" (T). I/lO{T) . and to
fix th e tr aj ecto ry of th e remaini ng component of the flat out pu t Yl in ord er to deduce the
corre sp ondi ng input s T,}. ( I .) .,. 1. 2) without intl:'grating t.he system. \\'e may also wish th a t
the t ime de rivatives of J;" y" and ¢o at t -= 0 and t = T vanish up to a finit e order . to
sta rt a nd ..top at rest points {i.c. wit h zero velociti es and eccelerat fons ]. Such functions for
th e t raj ectori es of t he orienta tion and posit ion of t he object CM be chos en as polynomia ls
given by Equation (2.102). wit h X E {xo. yo.¢"} . A sam ple tra jectory .....ith aero velocities a nd
ar-celera r.ions at the Initial and fina l configurat ions is given in F igure 2.13

Figure 2.13: Trajectory of t he object and the fingers.

Instead or defining an a priori
min ima l norm. to which case th e ,,,,;"o,,'of u,
and orientation of the obje ct C\.';

" 0 1111\(' 1 forces slltb fy

wish t hao the net contac t force has
from the tr a ject or y of the posi tion

to (2.60}-(2.61), the com pone nts of tht:>

and t her efore the minim um norm of the net COnL fU; L force is given hy

T he result ing configurat ions and net contact force for /'i = 4 is shown in Figure 2.14.
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F igure 2.14: T he net contact force (x and y components): til .. O.5kg

2 .3 .2 Mot .ion plannin g for ki ne m a tic mode ls (ex a m ples o f S ec­
t io n 2. 1.3)

Table 2.7 sum mar izes the results of Sect ion 2.2 concerni ng Examples 1. 2, and 4.

Examp le non-pivoting cons train t

1,2

1,2 present

"
Table 2.7: Propert ies of the examples of Section 2.1.3

The solution of t he MPP for the flet ('fISC follows the same lines as tln- (l IW prt'~'I1 tl ~ l in the
previous subsect ion for Aat pla nar structures. We address here t he \IPP for the Liouvillian
ceses. Let us consider Examples 1 and 2 first .

Mot ion p lar mlng for Exa m p les 1 a nd 2 w it h s p in n ing motions e liminated

Cons ider t he driftles s syste m obtain ed in Exam ples 1 and 2 eliminati ng t he sp inning mot ions
(i.e. two inputs)'

.p= ~sinoptan (J - 1i r o.<; opta.nO

0...}teosop+ 7isin op

Uls in<p u1eoo .p
l/l = - - - - -

R easO R cos(l
i~. = ti l

i;~ = 1t~.

By P roposition 7, thi s drifrless syste m is Llouvillian wit h Y = {<p ,O} as partially fiat outp ut.
Observe t hat Y = (..,,0) doesn 't contain all orient at ion ang les , hence one ca nnot determine
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freely the trajectory of the orientation of the ball. Neverth eless. t he following meth od may lie
used to overcome this d ifficulty.

Figure 2.15: T he »olnuon of rlu- ~I rr for the orientation angles.

CIJ()(N~ the trajec tory of ljJ as a polynomial funct ion of B:

w(l1) = oo +a\O+ azOz + a303 (2.105)

and we wish to obtai n the tra jectory of 'I' I;C; a funct ion of t he angle O. Not ing that iJ = '!&O
and JJ IE ~8 . the additional non-pivoti ng constraint. (2.22) ran be rewritten ns

d.p . eN'dO = stn8dij ' (2.106)

T his expression can be int egra ted w.r.t . B (such tha t '1'(8,) = '1',) in order to obtain the
funct ion <.p(B). Reporting (2, 105) in (2, 106). t he integra tion on the inte rva l [8/ , 0] resu lts

I{)(8) = al (cos 81 - cos s) + 2a,~ ( si n 8 - sin OJ + (h <:008/ - ocos B)

+ 3a3(8i cos 8J - 2 eos 8/ - 281sin O!- 82 coo 8 + 2C05 II+ 20 sin8) + '1'/

which is linear W.Lt. the ('Ol'f1idt'lll s of t he polynomial (2105). Hence, these coefficients have
to sa tis fy

.pro= !p(BF )

1/.'1 = ao+ aIel + a2e; + a3el
WF= <1() +-(JIO", + azO} + a30~,

(2. 107)
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where <Pl. lj!, . ()/ (reep. 'PF , J}.'F. 8F ) give the ini r.ial [resp. final) orientation of the ball. Since
we hay!' one more dcgroo of freedom to chose a const raint , we wish that the second der ivat ive
of w(B) vanish a t t he final point :

(2.108 )

T his system of equat ions given by (2.107)-(2.108) is linear in the coeffk-lents of the: po lynom ial
(2.105). Once the trajec tory of'P and '11- are given in funct ion of 0, it remains to find a
trajectory of 8 w.r .t . the time, connect ing ()/ to (Jr ' Such a t ime function ra n be obtai ned using
t he expr ession (2.102) . The input trajectories tI l and fl2 are obtained usin g (2.92) in t he proof
of Proposition 7

Remark 15 . Th e traj ect ory of the contact pomt on the plane IS gIven by the mt egral vanabk~
r c and Ye (see Proposuson 7) rmtl can bto obtam ed by mtegmtmg the mp u.t5 uir. t the nm e. Ttus
mteqrauon can he earn ed oUl1wm en cally. Note also that no deSIred final poslhon of the contact
povu ~ motion plannm g, It I.>olJtamed as the result of the nlllnencallnlegmtlOn.
Recall contrasts s19111ficrmtly the fiat case. In fact, for those sysfems . the m ohon

based of the flat ness property allows to precise Ihe deSired fin f1/configuration for al l
The proposed mohon plamll1lg methods for LIOu.t'llllan system don't allow to gltie m

advance the final values for some 11ltegral vana bles. they result fro m numencal m teqm tron.

A sa mple trajectory is shown in Figure 2.15 connec ti ng 'PI = j , Or= ~,lPr = 0 to 'Pr = ~,

@r = 0, tJ;F = ~ in 10 seconds .

Nex t we presen t a motion plan ning algori thm for Example 4 which is proven to be Liouvillian
by Proposit ion 8.

Mo t ion planning fo r E xa m ple 4

Consid er the drift less system

-jJ= -~ - 7f sin 'P tan B -I-7i cos c tan 0

iJ= -~ cos", - ]Isinop

"U2 sin op UJ COSop
l!J = - ReosO + R cosO

:t~, =u ,
::~~ = 1J2

z'f, =ltJ

which is obta ined in Exam ple 4 and proven to bt> Ltouvtllian by Proposi tion 8. the partially flat
outpu t being }' = {op, 0, w}. Here all th e orientation var iables arc included in Y T he motion
plann ing algorit hm is illust rated in th e case of a sp here of rudius R = l cm.

The tra jectory of t he orientati on of t he sp here be tween u s initi al and desired final values is
obtai ned us ing t he polynomial interpolation proposed abo ve (see Equation (2.102) and Figure
2.16). The trajectory of t he contac t points on the tangent planes ar e obta ined by num er ical
integrat ion and shown in Figure 2.17
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(2.109)

Figur e 2,16: 'Trajecto ry of the orientat ion of t he sphere (UPY ang les: <p, 0, \~ )

Figure 2.17 Traj ectory of th.. cont act points on the tangent plan es

R emark 16. Note that. due to m tegm tlOll, the fina / values of the Y1;" z1;" z& cannot be chosen
arbltronly. Sin ce In our rase we are not particularly mteres ted In the positions of the contact
points m their respective planes tlus doesn't present a major restriction.

2.3.3 Mo t ion pla nn ing for hand -o bject st r uct ures w it h sp ecia l m o r­
phology

P roposit ion 9 asserts t hat the dynamICmodels of symmet ric HOSs are Liouvillian. Nevert heless,
the inputs. t.e. t he joint torq ues ar e funct ions of the pa rtially flat out put. Y and the ir derivat ives.
hence no numerica l integ ration is needed to ob tain their tra jectory from th e trajectory of the
variables in }'

Exa m p le ~ (co nt inu a t io n of Example 6). Int roduc e t he following polar coor dina tes for
till' r-out.ae-t po ints on the object surface:

xc,= R COS {, . I C Q.5 ~, .2

Yc, = R cos CII sin C,2
lC, = R sin {,.I.
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T he dy namic equa tions of the object and the fingers ar e given by (24 8)-(2.49) and by (2.50).

Thi s HOS is Liouvillian 9 and, using t he polar coord ina tes of the
contac t points defin ed by (2.109), is given by

Y = (x", y", z", <p , (j, 1j', y" ( ,,I, ( ,,2)

but fixed combi nations of th e
intearal variables ar e Qd and '1. ,5, i = 1, 2, 3

7. that the initial mecha nical st ate of the
I~by t r -rui . "n U' I. , 'lUI. ~I 'U I .

final

F igu re 2.18: Compone nts of t he net force applied on the object by the fingers.

a pri or i, but
be minimal-

-ZCJ Ye,
o - xc,

XCl

[

m Y ]it mll
12 =

m (z" + g)Uw ' + [w' x lEV
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thus L ?Sl y, is minimal with t he conta ct forces obta ined by

[
; :] ~ DT(BBT r' [ :~ ]

m{z" +g)
t, 6..;)" + [w"x]ew"

5]

Figure 2.19: Cosine of angles between th e contac t forces and t he surface norm als

An example traj ecto ry is presented for the following numerical parameters : 111 = O.2~g.

R = O.lm. r = O.02m, dzz = a .3m, d"3 = Om, d~ 2 -= Om, dv3 = o.Sm, d. z = Om, d' 3 = Om
and = 9.81~ T he trajector y connects t he init ial po int XO( O) = u.t m. yO(O) = O.lm.

= IlIm. 'f'(0) = 0, 0(0) = 0, w(O) = 0, {1J(0) = 'If , ~dO) = - i. 61 {O) = ~.
= -~ . 6 dO) = 3' {3Z(O) = - i La a fina l point x"(T ) = 0.15m , yO(T ) -= a .15m .
= 0.2m, 'f'(T) = ~, O(T ) = f, 1P(T) = - i , ~II(T) = !t. ( d T) = -} . ~2 1 (Tl = J¥,
= -t , {31(T) =~, 6z (T ) = - ~ such that T = Is . T he compon ents of th e net cont act.

are given in Figure 2.18-

T he cos ine of the angles between normal vector s to the object sur face at the contact points
and th e contact forces applied by t he fingers is given in F igure 2.19 showing that (2.52) is
satisfied along the tra jectory. Note thet the minirnality of L~ l y, docs Dot guarantee t hat the
inequality constra ints of Subsec tion 2,1.5 Me satisfied.
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C h a p ter 3

C ran e co nt ro l

Many different types of weight handling (Wil E), and in part icular cranes, UTe used
in various industr ies including construc tion naval transport [64J. From a mechanical point
of view, cranes are typic al exam ples of under act uated mechan ical sys tem s [15. 16, 511,since
tilt' number of actuators is less than the num ber configura tion variables needed t o descri be t he
mech anical state of the system. For many WH Es, the pay load is hoisted by a rope, hence an
inherent pendu lum-like oscillatory behav iour makes difficult the precise and fas t positioning
task . Such swinging motions, which are poor ly damped in genera l. may be created by the
crane ope ra tor himself when he moves tbe load or by external disturbances like winds and
waves. Not e that t he tim e necessar y to wait the end of oscillations of the load du ring weight
ha ndling oper ation s using har bor cran es rep resents 300/0-50% of t he total ti me of opera tions
de pend ing on t he experience of t he cran e operator a nd the weat her cond itions [57].

In al l cases. t h{> operato r acts indi rectly on the motio n of the load and uses visu al feedbac k
i ll order to eliminate undesired oscillat ions. T he diff iculty of the operator's t ask is redoubled
by th e event ual presence of obs tac les and perso nnel in the cran e's workspace since th e pat h of
the load has to avoid them for ob vious security reasons. T herefore, t he aim of WHE control is
LO increase productivity and operational security by ass ist ing the huma n crane operator.

Various techniq ues have been proposed to provide such assis tan ce, the ma in objecti ve being
to at tenu ate undesired s ..... inging of the toad [23. 27, 50]. Th e ind ustrial interest to this pro blem
is at te st ed by several patents (e.g. f57j). In papers [8. 26. 59. 66]. linear methods a re used
includ ing ad aptive. rob ust or LQ techniq ues. Some authors use ener getic met hods based on
t he ana logy with othe r mechanic al syste ms. In part icu lar , the mod el of an overhead (or gan try )
crane is equi valent to th at of a cart with a pendu lum if one fixes the length of the rop e attached
to t he load and considers it as a rod [14J. Anot her meth od star ts from the analogy with t he
ball and beam example and uses passivity based techniques [66]

In t his cha pter we address the ant i-sway problem es a special Ca5C of the general trac king
problem. In fad . the elimina t ion of swinging mot ions is equivalent to t he stabilization of a
special t rajectory consist ing of an equilibr-iumof the system. A more general problem would be
the sta biliz ation of any desired tr ajectory of t he load conne ctin g two d ifferent equi libria. T his
implies t hat a motion planning t ask has to be solved before addressing the closed loop tracking
problem it self.

An add it ional objective of t his chapter is to r-over cs ma ny different \VUEs us possib le by
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includin cantilever and overhead cranes besides
last cra ne is at our dispos al a t th e

T he mot ivat ion of the generalization is t hat

Figure 3.1 Reduced size mode l of the US Navy cran e

a large class of WHEs have the "arne str uctural properti es, name ly. they can be decomposed
into a act uated, articulated mechan ical structure wit h in genera l one or two 01

freedom a cran e with a rotate or crane with a moving and a
hoist ing syst em comprising ropes, and

Our a system at ic
to show 1,0 t ra jectories
pro pert.v 20, 221of the dynamic

To th is aim. th e derived model of th e class of WHEs i na ,,~n,",~v:e~~ ,;t:~:~~;;~ t~~~~:;;:;~ :~:i~~~a~
coordina tes . T I minimal

prob lem

T hE'for m of the deduced model shows th at eecb :~:n;~::pn~~::t~l:;': i~::f~':;;,~:~IZ flat and
the coor dinate s of the load con st ir.ur.eall or par t of
on the number of mot ors , T hus the solut ion of t he
using sufficienrlv smooth functions [e.g. poly nomia ls)

contr oller.

a desi red eq uilibr ium 0 1 iI tr ajer torv
measurement s on all config ura tion
and the angles between th e ropes

\VHE exam ple presented in t his chap ter
can be globally stabiliz ed
in rh e "am ",

T he aim in closed loop is La s ta bilize
of t he load using only part ial informat ion means
variables are not availab le. In par ticu lar. t he load
an: :1.01 measure d . We show that all equilibria

ca ntile ver . overhe ad . and US
type output feedback

Itll.. rea lizat ion of till:' sma ll sizl:'model of till:' US Navy crane is financed by till:' Nonlin<:'arControl Network
funded b.v t h.. Euro pean Commisslon \ "['m ini"", and I\.lobihty of Researchers (TM R ) Programm e. Research
'cerwork 11 ERS FMR XCT ·970 \3 7
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instead of the const ant reference of the measu red components of the end point, we use (t ime­
varyi ng) reference tra jectories of the measured variables end ing at an equ ilibrium. we prove the
loca l sta bility of t he system . III feet, simulat ions show t hat putti ng toget her motion p lan ning
an d tracking results in more pred ictable transients [I.e. close to the desired reference tra jecto ry)
and in reduced oscilla tions at the fina l equilib rium.

T he remainin g par t of the cha pter sta rts wit h the study of t he sma ll size model of t he US
Navy crane (2D and 3D versions]. Section 3.2 introduces a general method of W HE modelling
which can be ap plied to Ii la rge-class of syste ms. T hree examples of t his class ar e tre ated in
derails : the 3D cantilever, t he 3D overhead, and th e 3D US Navy cranes. It is also sho wn t hat
aJI \VIIEs of the class are different ially flat.

Mot ion planning is add ressed in Sect ion 3.3 including th e proble m of obstacle avoidance and
ac tua tor d imensioning. the Jeu er being an interest ing ap plication of motion planning aiming
to find suit able actuators supporting fas t displacements .

T he las t two sections of t he chapte r address the closed loop control of WHEs _ T he global
st abilizat ion of load eqnilib rla is trea ted first for the different models of the US Navy crane and
for t he ot her exam ples (overhead and can tile ver cranes) . The last section st udies t he case where
the PO controller uses time-varying feasible reference trajectories load
Th ese references are obta ined using the motion planning method presented

Par ts of this chapt er have been published in [36, as. a5]

:1.1 Sm a ll size model of t he US N avy crane

T he model of the planar US Navy crane , described in [43. 42]. is recalled first . T his model is
t hen exte nded to the case where the mass of the free (or mobile) pulley (see Figure 3,1) cannot
be neglocie d w.r.t. tho 1JlIl S S of t.lw transported load . T his is the case when the crane moves
with out load for exam ple.

Th e three-dimensiona l model is presented next for the case with neglected auf! nOn7.l'TO free
pulley mass. T he flatne ss property of each mood is proven.

:1.1. 1 Cra ne in t he pl a ne

Let us star t with the description of t he crane in the plane , illustrated in Figure 3.2. T he setup
comp rises:

• A boom mak ing a fixed angle Q w.r.t. th e verti cal, equip ped with th ree winches: one
loca ted at t he point P, a second one at the point A. at a fixed distance I from P and a
t hird one at th e po int S. at fixed distanc e s from P

• A free pu lley located at the point B .

• A vertical rope of variab le length R, st art ing Irom P whose upper part makes an a ngle'
13 with the boom. passi ng thr ough the free pulley. T he lower part of the rope connecting
the points Band C makes an angle 8 with the vertical. T he lengt h of t he upper part
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;//;"

1,1
,I f-:-
, , I ~c
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K 0 x

Figure 3.2: P lanar version of t h.. crane

con nect ing the poin ts Band P is denot ed by 1'2 and the one of the lower part by L3

Denoting the total length of th e rope by R, we have R "" /"1+ LJ .

• r\ horizontal rope of variable length £ 1 relating the winch A to the pulley B

• A suspension rope for the free pulley of var iab le length L• . star ting from S , ending at B

• A load wit h mass m atta ched to t he ver tical rop e at the point C. located at a d ist a nce
LJ from the free pulley B

T hE:' winches III points P, A and S have radi i PI, frl. and {J'J, respectively , and th ey are
torque r-ont.rolled using r-tectnc motors with incremental encoders on t heir axes.

Note that for tllt' real cra ne, t he hoisin g winches are not located at the points P , A and S.
only pull eys are fixed to lilt' boom at thos e poin ts . However, since the rope lengths be tween
these pulley s and the hoisti ng winches are consta nt. the pulleys at the points P A, and S
can be consi dere d d irectly as act uat ed winches winding up t he corresponding ropes . When
ca lcu lati ng the rotati ng inertia along a rope, the inerti a of t he winch is summ ed up with the
inert ia of t he intermed iate pu lley(s).

All cables are su pposed to he rigid (i.e. without elas ticity). T he plane of t he boom and
the ropes comcjdes with the a e-plone of the reference frame whose origin is at th e poi nt 0
FIgure 3.2 ). T he coordinates of t he load at t he point C are given by (x, z jT Th e
of the free pulley at the point Bare given by ( X B .lD)T

The inertial par am eters are summariz ed in Tab le 3.1
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notation definition

~
mass of the load

mass of the free pu lley

iner tia of the winch at the point A

I
~ner tia of the winch at t he point P
inert ia of the winch at th e point S

Ta ble 3.1: Inert ia para meters

T wo cases are disun guished- rno = 0 and rna> 0

N eglected fr ee pulley m a ss (rna = 0)

Thi s case is also trea ted in
calculat ions are also used
mo de] is obtained by
su pp ressing t he winch at
It. ~ O) .

Th e geometric rela t ions read :

[X' ] ~ rbi,,"]
2 4 ccos o

[xP] ~ [Iu n'inn]
2 p (k +l)cosa

[,n] [lk +I) ,in O- L"inlo-O) ]
28 = (k + l)coso - ('2cos(a- f3)

[

X - xn] ~ [ Lx,ine ]
2 - ZB - l, 3 cos {I

[xB- bino] [L"in(6+1)]
ZB - ke os O; = - L\ cos{O+ ,)

The
and

(3. la )

(3. lb )

(3.1(')

13.] d)

(3.1e)

Th e equilibrium of forces (te nsions) at the Iree pu lley (at the poi nt B , see F igure 3.3) reads

t 1 + t2 - t J = 0
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;4
'-"
", B

I -I )

i-' . ' :.
Figure 3.3: ItOPI ~ te-nsions (Ill t he fn'(' pull ey )

0 = - T1sinb + 8) + TJ(sin(o - OJ + sin 8)

0 = T, cosh + 0) + T)(cos:a -13) - coes).

T he dyn am ics of t he load is given by

a nd those of t he winches (see Figure 3.4) read

:!!. t l = T IP, + TJdL"L d - U l
p,

:2. (~ + 1.3) = TJ P1+ 'l/2(L 2 + £3 , i; + L3) - 112

'"

(3.2)

(3.3)

(H )

(3.5)

where Ul (resp. U2) is t he torque developed by the motor dr iving t he winch at t he point A
(resp. P ). Th e funct ions 1'/. giv(' the frict ion tor ques. Th e proof of the flat ness prope rty relics
Oil the following proposit ion

P ro p os it ion 10. The / 011011I11I9 properties hold true for the lw o-d lmen$l(m al model of the
crane:

(l) Th e vectors (I - I n, Z - In )T lind (x, i + g)T are pamll el:

I -XS=~.

z - z~ i + 9

(u] The sect lOll ::rHJ$ the bt~ec tor of the angle CliP:

1 -; 4(11"+11 - (0 + 9))

(3.0)

(3.7)
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Figur e 3.4 Torq ues at the winches

['7'001. For par t (i). Equezion (3.3) gives

m[ ., [-,'n']T; Z + 9 = cose

showing tha t the vect or (i'. z + 9)7 is par allel with the vector (- sin e.('o s/)) T On the other
hand , from t he geometry we have

_~ [x-xu]= [-,'n ']
L3 Z - ZB cos O

i.e. the vector (x - Xu.Z - zBf is also parallel to {- sin8 .cos8)T This proves [t] .

To prove pa rt (il). consider Equa tion (3.2). Multlplylng t he first equation by cos h + 8),
the second one by sinh + 8) and summin g them Up. one get s

sinh + /)+ 0 - 13)= !linCII" - ..,).

giving (3.7) by isolat ing ..,. o

l'rop os iti on 11. The planar crone mode/gwen by Eqtlatlon.~ (3.1)-{3.5) 15 differentially fia C
With (x . z ) as a po,~., ililf chOIce of the fiat output.

Proof. T Il{' proof consists of giving th e calcul at ions necessar y to obtain t he t ra jec tory of all
variables as funct ions of x . i:. i , x (3).x{~ l uud z, i . i. z(J). z( ~ l. Fist , we haw from (3,3) that

tan8 = -~., + g
T3 = m((i + g ) c~ 8 - i sin8 ]. (3.8)

Let the point V be the inte rsect ion between t he boom (sect ion OP ) a nd t he line co nnec ting
the points C and n (see Figure 3.5). We have

x + (d - k - l)si no x
z+(d k l ) coso z + g
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Figure 3.5: Geometry of the planar crune

which allows to express the d istan ce d (sec also Figure 3.5):

Chflp tt'f 8. Creue control

d = i (! - (k + I) cos o ) - (i + 9: (X - (k + l) :;in o )
(i + g) sin o reos Ct .

Elemen tar y geometric relations in rhr- tr iangles PAD, PDB and DII B give

sinB sin') sinh - B)
£;""";1 =--L,-

sin /3 sin 2) sin(a+O)iIDsli ~ --;r ~ - -,,-
sio(a + 0) sin v sin (-y- 13)
- L-,- ~ f=d ~ 1iD8iI.

Isolating L\ from the first and t he last equa t ions and equating t he resu lts we get

L
I
= ls~n/3 = ( l + d) sin (~ t o)

Sill') Sill )

hence. provided t hat sin "r oj O. WIi' ca n expr ess sin B:

. ( d) .smO = 1 - / sm(o +B)

(3.9)

(3.LOn}

(3 lOb)

(3.10,)

allowing to calculate IJ in the interval (0,0) ID; function of 0 and d which have been a lready
expressed as functions of r,x,i, z, i, i:. T he angle') is obta ined from (3.7) Using Equa tion
(3.1l)(:) wf'get

IIDBII=d~
sm(o + 8 - (3)
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and the rope lengths L , and L2 result from (3.lOa), allowing to calculate the posi tion (X B , ZB )

of t he fl ee pulley using (3.1c). T he length LJ is given by

and note tha t "3> O. T hen. from the equilibria of the rope tensions at the pulley (Equation
(3.2)), the tension of the hor izontal rope att ached to the free pulley is

(3.11)

hence the motor torques U j and u~ are obtained from the dyna mics of t he winches (F..quntions
(3.4)- (3.5)). Since we haw' shown that all var iables of t he crane model are functio ns of r, z,
a nd t heir successive t ime derivati ves, the proposition follows. 0

Hc mark 17 Note that the qeomrtru: vana bles and the rope tcnswns oi x, Z (Iud
denvatllJes up to the second order, and the allounnq to obtam tm) ectory of the
geometnc vanables don 't depen d on the (glVn l m Table 3. 1). However. fine

needs denvat lVes of x and z up to order f our to the motor torques til and U2.

No nze ro free pu lley 's mass (m(l > 0)

The free pulley mass is no more neglecte d and th e winch at the point 5 is added to the model
st udied in the preceding paragraph. T he add it ional geomet ric constraints read (see FigUIC3.:1):

[X' ] = [Ik+ I +*;nn]
rs (k + I + S) COf;O:

[
XB] = [(k+IHl'ino- L" in(O- "l]
Z8 (k + / + s) cosa- L. cos(a- p.)

(3.1211.)

(3.12b)

where 11is the angle between t he boo m and t he-rope sustaining t he fret' pulley at the point li.
T he d ynamics of t he free pulley is given by

maIo = -T1sin(, + 0) + T3(sin(o - {3)+ si n O) + T. sin (Q;- p.}

ma(iB + g) = 1'1cosh + 0) + T3(eoo(Q; - 0 ) - cos O) + 7~ cos (o - JI)
(3.10)

where t he relation T~ ",. T] is already used . T he dynamic s of th .. add itionnl winch at the point

S read s

(3.14)

Note that the main difference w.r.t . rnode! of the precedin g par agraph is th e loss of the
bisecto r property of P roposit ion 10. :\ loro~)v. ·r , t.hc number of inputs il; increased by O Il C . the
new input UJ being t he tor que of th e mot or hoisiug the suspension rope of til l" free pulley,
Neverthel ess. is i t easy to prove that t he flatn ess propert y is conserved
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P roposi t ion 12 . The planar crane model gnoen by EqlUltlflTlS (3.1)-( 3.5) end (3.12). (3.14) IS

different ially fint with (x, z, £3) as a choicr of the flat output.

Proof. WE'proceed as in the proof of Prop osition II. First. fJand T3 are expressed by Equ a ­
tion (3.8). The coordinates of the pulley arc calculated 8.5

[IB] = [xl + mL, [- s;ne]
ZB z T3 cos o

showing, th at In and Z8 arc (unct ions of x. Z. £3. T3. and 0, t he last two variables being
functions of I , z, .i, and z. T he rope lengths £ 1. L~ . and L. are obtain ed by expressing t he
distance s betw een the free pulley and t he correspond ing winches. Knowing the side k-ngth s of
r.hc tr iangles ARP and AB S , t he correspo nding angles 1. 13and p. can becalculated.

Noting again tha t T2 "" 13. the! remaining rope tensions (T l an d T, ) are expressed lIS­

ing(3. 13}:

n ]- i'lin(,+ I1) m{lxB-T3sin(a - O) + sin fJ

cosh + 11 ) ,rt()(ZjJ+ g) - l i (cos(o - OJ - cos 11 )

The motor torque s ar e obtai ned, as before, using t ill' dynam ic equat ions (3.4)-:3 ..'») ftnd (3.14)
of the winches 0

Rem a rk IS . Note that [or lhe model wIth nonzero iree pulley mass , one needs derine tn-es tip

to th e j01'1"th order of the trUJed011loj the lood to obtam the rope tensIOns. Th is contra sts to
th e case rno = 0 (see Remark 17) where th e erprcsston of the rope tensions Involvd only second
order ume den vat lVes ojlhe fiat out llUt.

Remark I u . One moy aneider th e Insect or· law as a "natu ml" way to gIve thl : tmj~to,y oj
the free pull ey dunng ttie monon . ~Ve can use the addlhonal dCgTl'f' of freedom <.Vm~ ~pondmg

to the th mi com ponent oj the flat output to mak e lhe Im ed or property (3.7) JY'.~lH,dnl For, WI'
choose

Y3 = rr+ f3 - (n +B ) - 21

as th e thmi fla t output mstend of [ ' 3 nnd set It !den tu ally to zero.

Rem ark 20. Th e stat e ccuanons are not gIVen e3.'1!hclt ly, although they ccn be calcu lated by
ellmm ah ng the qeom rtrt c cons tram ts. Th e state.since thus oblam ed lS stI -dlme n.nOl1al ( th.ree
d''!IIH:s oj f 'f'('I-dom) 1f th e fr ee pulley m ass IS TlI.'Y/l.'dl.'d (HId eight-dimenSional (Jour degrees of
freedom ) if mo > o.
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0 '

Figure 3.6: Cran e in three dimensions

3 .1. 2 Crane in t h ree dimensions

63

The 3D set up of t ill' US Navy crane is de picte d in Figu re 3.6

In three dimension s, add it ional variables are needed to rir-scribc t he mec han ical st at e of
th e crane. The origin of t he inertia l reference frame. denoted by K b

• is fixed again at 0 and
its a-axis coincides with tile vert ical rota tion axis of the crane. We introd uce two ad dit ional
fram es, all having the origin nt th e point 0 :

1. T he frame K is cho sen such th at th e points p . A. and B dete rmine its xz -plane. Note
th at the point C [i.e. the load ) rema ins also in thi s plane j f the free pulley (at the point
B ) has no mass.

2 T he frame K g is chosen such tha t th e .:lb- ax is of the fram e [( b an d t.he poin t P de te rmine
its x9'z9. plane.

T he t ra ns form atio n between these Frames (also illustra ted in Figure 3.6 ) can be obtained by
d emen tal 'y rotations. W(' denote by ( the rota tion angle arou nd t he Zb axis of t he fr-am e K b

t hat tr ansforms K~ to K 9. T he rot ation angle ar ound the M axis allowing to t rans form K 9
to [( IS denot ed by .p
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T he corresponding tr ansforrmulon matri ces read

[
",, ~ -,i"( O~]

01(.1(, (0 = Si~ { ~{

[

Sin 2 0 (1 - COS,pl + COl3 ,p

nl\'J«("" ) = cos c ein e
sln o cos o j l c- COSIp)

-COS Ct Slll <{J

COS""

sin o sin c

(3. 15)

smc ccsc ft c-cos c ) ]
-c stn c sln c (3.16)

ms 2 o(1 - cos'P ) + COS ""

such thu t t he coordin at.. transformation between t he frame s l\ and F\' ~ is given by

T he add itiona l inertial parameter is the rotational inert ia of th e plat form which is denote d
by AI T he cases with mo = 0 and frio > 0 are considered again separately.

Neg tec n-d fr ee p ulley m as s (mo = 0)

Recall t hat the load remains in the plane determ ined by the point s P A. and B. T he dy namics
of the load are given by

(3.17)

such that egives the angle between t he rope section Be and the e-ex!s of t he frame F'" (t his
angle is also given ill Figure 3.2. Tile force equ ilibrium at th e free pIIHc}' reads

(3.18)

and we have again T2 = T3• Th e dy namic equations of the winches at the points A and P are
alr eady gtvon by Eq uations (3.4) and (3.5)

To obtain the dynamics of rotat ion of the platform. recall that the rope tensions generate
to rques rot atin g t he plat form. Hence t he correspond ing dynam ic equation reads

where x is th e usual cross prod uct in Ra and t he operator prO)._( . ) gives the pro jection of a.
vector to the ;:h axis of the frame f{~ T he func tion TN gives t he frict ion torques.
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Th e geometric constraints arc exp ressed using the transformat ions (3.15)-( 3.16) :
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(3.20a)

(3.206)

(3 20c)

Now t ha t setti ng { and '-Pto zero we have O/\'Kt . O/\' K :: I a nd one gets back th e geometric
constraints obtained for t he planar case.

P r op os it ion 13. The Jollow mg two properties are I'enfi fd .

(u) AS blSeCt5 the angle CiiP:

1 = ~ (IT+8- (0 + IJ»
Proof. Rearran ging (:1.17) and (3.20b) Dill' gets

(3.21)

The se equations show that the vectors (x~ - x~,yb - ~, zb _ z~)T and (ib,il, ;:b + g)T a re
both par a llel to t he vector 1' , hence (l) follows. To verify (n). it is enough to note that
transform ing (3, 18) in t he frame J{ gives Equa tion (3.2) , thus t he proper ty follows from the
second par t of P roposit ion 10. 0

P ro po sit ion 14 . The thrce-done nsional model of the crane gIVen the Eqcauo ns (3.17),
(3. lS), (3.20), (3.4), (3.5), and (3.19) 19 dlfferen twllyfiat , a po.ssl,lJle oJ the. fiat outp ut
IS (xb. yb. zb)
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Proof- In view of t he proof of Pro posit ion II. it is enough to show that t he angles ~ an ti -p

are funct ions of (xb ,if, ::6) and t heir t ime deri vatives. In fact. if the tra jectories of ~ an d 'P art'
known , the t ransformati ons 11/(. /( an d nK . /( . art' also known, t hus th e trajecto ry of t he load in
the' xy-p lane of the fram e' K can be calc ula ted . hence th e element s of t ill;'proof of P ropositi on 11
ta n be used .

Since the po ints A. B. P and C are in the same plane . there is an intersect ion between
th e lines de termined by the secti ons PA and Cli . Let t his inte rsect ion be denoted by D (see
Figur e 3.6 ).

T he coordinates of tltl;'po int D depend on t ilt' ang le ~ and on the d is tance h = 1.: + 1~ d:

[
x'D] [hsin0'O'~]
1I'D = " sin() s in ~

z~ ncos c

Since the point D is on the line determined by the section CE. the vector DB is par al lel wit h
(xb.jl, i b+ g )T Hence, using Propo sition 13. we get:

1 - h sin a sin ~ if
-zh- h cos o = i b + 9

(3.22)

giving two equatio ns to den-r mlne ~ and h as func t ions of xb, t b, i b,yb, yb, i/ , Zb,1;b. i b E lim i­
nating It we get an equation of ty pe

where

Asin~ + H cos E = D (3.23)

A "" sin (\' (i~ + g)(ibz b_ xb(i b+ g))

B "" - sinn(i b + g)(ybzb~ l (i b+ 9))

D = it ('Of; u (i bzb- xb(i b+ 9)) - i b('O.H l (j/Z'b - rl (i b+ ,q)).

Equat ion (3.23) gives two sofuuons for ~ in t he interv al [- 'If. +1T) . T hen h can be calculated
from one of t he following n-lazion s

h(i bCOSQ - sin o COS ~ (zb +g) ) = ibz b- xb{zt' t- g)

h(i!('(}l';a - s i n o sin~ (ib + g)) = !/Zb _ y~ ( zb + g )

where one may chose the numerically more precise exp ression [i.e. the more stable division ).

It remai ns to find the trajecto ry of t he variable ..pas function of xb • y~ , z~ and denveuves
Since ~ is expressed as funct ion of t he fla t out put and der-ivat ives, the sa me is true for t he
tra nsfor mation nKo/(¥ and t hus for the coord inates of the vector DC in t he frame IU

By t he definit.ion of t he fram e K g, the y-coordinat e of the vect or DC vanish. Bence

( [
X' -'''iOO])

prO)" nr'K Y' = O.
Z l - hcoso



3. /. SmiJ.1l size model of the US Navy crone

Using t he exp ression (3.16) of t he rrnnsforrnerion nK • K this gives

sin ,p(Z9 sin 0 - x9coso ) + y'Jcos e = 0
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a llowing to calcu late <p in the inte rval (- ~ 11" : ! 11" ).

Now, it. is possible to ca lculate t he tra jectory of t he load in the z a-plan e of the fram e K
and to reuse the element s of the proof of Proposit ion 11 Final ly. t he tr ajectory of the inp ut
'1~3 is obt ained using Equatio n (3. 19). 0

R e ma r k 21. Equ atwrl (3.22) glUes the vuersectxon of a lut e, determined by the acceleratIOn
load, and a cone . gw en by the posstb/r POSl tlO tiS of the boom. Ttus geom etric

two or two real solut ions . Co mplex solutions m ean tha t the recusred ""xl,,"''''''
canTiol be the cran e at ail (rw lIlt ersect lOn ponit nol all
values of h are phystCally realizable. For, note that tf 11IS r)1;/. ' 1 I," ranqc (k, H I ) . at lfa st one

tension. becomes ucgatwe whi ch IS nut excl uded fro m the m odel. phYSically

No nz ero free pull ey m a ss (rno > 0)

The main consequence of a nonzero free pulley mass is that the load at the point C is no longer
const rai ned to evolve in the plane determined by the boom a nd by t he Iree pulley at the point
B (see Figure 3.7). Recall tha t the coordinates of the free pulley in the frame J{~ 8J:edenoted
by (I~ . y~, z~)T 'The dynamics of the 10M read

(3.24)

T he geomet ric const ra ints for the rope sections Pli. AB are already given by Eq ua tion (3.20).
T he geometric constra int for t he rope section SJj reads (sec also Figur e 3.6)

(325)

lnstcud of intr od ucing two an gles in order to give t he orienta tion of the rope sect ion ffC, we
simple add a new quad ra tic expression to th e constraints

(3.26)

Hf'mark 22 . One TllIly reptace all geometnc constram ts mt roouced so j ar by quad ratic ones
Slm t J,-t r In Equation (3.26) . Th e advanta ge of th IS kmd of ccnstrc mrs M th at they elirmnct e
the '11.,1: IIf angles Iletwcen th e seceo us as van ables . The sustem uuc m odd lm g
procedure 1)1'1'.>I'nl d If! Section quadmtfr cons tronus (3.26 ).
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Figure 3.7: Crane in three dimens ions
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Th e force equilibrium nt lht' free pulley is expressed by

me [ ~ ] - t t + 12 - t,l + l•.

z~+!7

(3.27)

The dynamics of t he thr ee winches [located at the point s A. P and S) are already given
by Equat ions (3.4)-(3.5) and (3.14). Th e dyn amics associated to the rotation of the platforms
an " eas ily obtained from (3.19) by adding rhe torq ue generated by t . :

P roposi t io n 15. The 3D model of the cnmt such that 'no > 0, g l tl(' 11 by Equahons (3.24) .
(3.2Oa), (3 2Oc). (3.25)-(3.27), (3A)-(J .5), (3. 14), (3.28) ,,~ diff erentially Jlat. A pombk ChOiCe
0/ the fiat OIl/put IS gIVen by Xl if ~ ~ and L].

Proof. Takin g t he norm of bot h sides of (3.24) and using the geometric constr aint (3.26) , the
rope te nsions in the main rope attached to the load can he obraln od as

(3.29)
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Figure 3.8: Rope te nsions
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T his al lows to express the coor dina tes of t he free pulley as function of .r'.T' if, if Z6, i' LJ ·

Intro duce the tension t as

['0] [ i'. ]t = t ~ = lJ+mR ~.f!'tJ
s, -e + 9

From Equat ion (3.27). we have

Since t l . tJ and t. are in t he plant>dete rmined by t he points P. .4 and B. t must also be in t he
sarue plane. Hence, the line detern uned by the vector t intersec ts the boom I\t a point denoted
h~" lY which is at a distance d' from P (set' Figure 3.8).

To calculate the position of t he inte rsectio n point D' on t he boom, one- obta ins similar
''( / lI l1t ions to (3.22) with unknowns ~ and h' = k +1 - d

I~ - h ' sino (;os ~ t.
z~- h' cos o = t;

(3.30)

E'uuinating h' . one gets again an equ a t ion of type A' sin ~ + B' cos{ = lY with

A' = t , (t ,.4 - .r~t , } sm a

B' "'"- t. ( t,z~ - !ft,t.) sin o

D' =1, COI'lt(t,.zt - ::r~ t. ) - t,. co,<; f)(t, zt - yt t,).
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two solutions for ~ in the interval [-7f, +7f). The variable hi can be obtained from anv

h'(tx coso - sino cos~tz)

hi(t y cos 0 - sin 0 sin E,tz)

choosing the numerically more stable division.

( [
.);~ - hi sin Ct])

PTOJy D~9K c y~ . = O.
z~ - h'cosCt

Using the expression (3.16) of the transformation DK 9[( this gives

sin 'P(z~ sin a - x~ cos o ) + y~ cos 'P = 0,

Remark 23. A
stance. the heIght

FOT'1n­

clioice.

Remark 25. It is no
rope lengths) are

true that the
of the mass load.

of the qeometru: uariables (z.e. angles.
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3.2 A ge neral m odelling m et h od for a cl ass of we ight
handl in g eq u ip m ents

Nonce t hat most WilEs (set" [64)) use ropes and winches to displace the load. T h is hci sing
system is mounte d OIL a mechan ical str uctur e with one or two articu lati ons [e.g . rotate platform
or moving bridge). T hese common charac teristics, which will be defined more precise ly late r
in t his sect ion, lead to a general modelling process. Th E'interest of this generaliz atio n is that
prop er t ies, in par ticular flat ness, ca n be verified for a larger class of similar equipments

To moti vate fur ther the interes t of th e generalization. consider the examples depicte d in
F igures 3,9,3. 10, 3.11, and 3,12, representing a 20 overhead . a 3D cantilever, a 3D over head ,
and a 3D US Navy cra ne. respecti vely. Let us enu mera te t heir common characteristi cs and
intro duce some notat ions:

• T he load moves in a working space of either d imension p =:: 2 such as th e overbeAd.crane of
Figure 3,9 , or p "" 3 as port rayed in F igures 3.10. 3.11. and 3.12.

• All considered WHEs comprise the following elements:

• A working load of mass m whose coord inat es arc r.. i = I. . p.
• ;\ hoisting system com posed of ropes. pulleys, and winches , The moto rs ac t ua ting t he

winches are supposed t o be torque contro lled and each one delivers a force noted by T]
where j numbers t he winch. T he differ('nt rope lengt hs ere denoted by L] .

• A fully ar t iculated mechanical str ucture on which are att ached t he winches winding th e
ropes . f or t he overhead crane depicted in Figure 3.9 it is a nul str ucture wit hout.a rt icula tion
and for the 3D cranes of Figures 310 and 3.12 it corresponds to a boom t ha t can rotate
under motor act uation (t he mechan ical stru ctur e has one art iculati on with one actu at or).

• A free or main pulley which guides the rope at tached to the load . Its coord ina tes are
de noted by XOt' l =:: L . p.

• A ra il constraining the movement of t he free pulley might (see th e 2D and 3D overhead
cra ne and the cant ilever cran e in Figur es 3,9. 3.11, and 3.10. respecti vely) or might not (St'f'

t he 3D US Navy crane in f igure 3.12) be present .

Figure 3.9: 2D overhead crane
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3.2.1 Weight handling equipment definition and modelling

Lel [J he the dimension of the working space with p E {2,3}. The definition of a '-'VIlE is as
follows.

Definition 6 (WHE). A WHE '/.5 constituied by the [ollounnq elements:

I. a ngld articulated actuated mecluinical structure with d E {O.1} degrees of [reed.om:

motors (unnches],

in. ropes.

pulleys.

v. a. load.

and C1lJOYS the followzng lopoqraph.u: properties:

1. There 1.S at least one motor .fi.Ted on the articuiaicd structure. Let 8 + J be the number of
such motors. s 2> O.

2. Then' are as many ropes as motors fixed on the articulated mcclunucol structure.

S. b'ach motor is luikcd to a pulley or to the load unili a rope.

4. s called the [ree pulles). if s = 0 there 1.05 no [rce pulley. All
to the structure.

5. There 1,09 a unique rope going throuqli the free pulley and ending on the load.

6. Between the load and the free pulley ilicvc no other pulley.

of
the

Hence, we start with the
the geometric' constraints.

axis is pointed in the direction opposite

1. position oft he working load: (:rl' ,.r p ) .
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2. posi t ion of the free pulley (if it exist s): ( X O] . , xop ) ,

3. pos itions of the motors winding ropes (Xd , ,x,p)for l =l , ,$ -1 1,

4. positi ons of t he fixed pulleys: (W'll' , w'JP) for ! = 1, , 5+ J a nd ) = l , .r.,

5. rope leng ths: L, for I = J, . 5 + 1.

6. rope length Lo between the free pulley (if it exists) and the moto r hoistin g the loan .
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The following inertia param et ers are introd uced. Let m denote the load mass and mo t he
free pulley mass, Denote by J" ! -' 1. , s + L the inertia of the winches hoistin g the ropes
(ind ud ing the inert ia of the moto rs) and let .I" , I = 1. ,5 + I , J = 1, ,r" deno te the
iner t ia of t he fixed pulleys along the rope s. Moreover , denote by p, and by p,], I = I . .5+ 1,
) = 1. , t'" t he rad ii of the winches and t he fixed p ulleys. respectively.

Since all winches and fixed pulleys are locat ed on the moving pan of the mecha nical structure
th e rope dis tances be tween t hem lUI' constant . T his implies that all fixed pulleys can be virt ually
elim inat ed from the model by plac ing the winches at the positions of the last fixed pu lleys [the
r,th one) alon g the rope s. Each rope length is then reduced by t he sum of the constant rope
dist an ces between t he pulleys removed along that ro pe. For nota tiona l co nvenience WI" keep
the not ati on I., for the new rope lengt hs. T he rota ting inert ia are then summ ed up along each
rope to ob tai n

1 = 1, , s+ 1

asso ciated to t he TOpelengt h L" 1 = J. , S + 1. Note that no inertia parameter is essoctated
to the rope length Lo since the corresponding rope sect ion is part of the rope attached to the
load with tot al length L. _1

Let m .te 1)(' the mass of the moving pert of the mechan ical structure com prising the mass
of all winches and fixed pulleys. Denot e by JOIC the corr esponding rotat ing inert ia w.r .t . t he
jo int axi s in t he case of a rotational joint. Define At as

for tra nslat ional art icu lation

for rot at ional art iculatio n

where r is the distance bet ween t he jo int ax is and t he winch of the rope of lengt h LH 1 T he
inertia parame ter Al is not defined if the mechan ical st ruct ure has no ar ticu la t ion. i.e. if d = 0

Let us make the following ass umptio ns which are sa tisfied by most of the \VHF,I'> used in
prac tice. T hese assu mptio ns also allow furthe r nota tion al simplificat ion which do not impart
on generality,

A 1. T he free pulley is presen t. Consequ ent ly. j ?: J

A 2 . The crane has no redu ndant actuator or motor; s ... p - d - c.

:\ 3 . 1£d = 1. the origin of the base frame is on the join t ax is of th e art.iculeted mechan ical
st ruc ture. T he articulat ed mechan ical s tructure consist s of eithe r Il. rot at ional joint , to
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axis is ort hogonal to
position of t he motor

A4 The
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A5, If th e free the rail is t hen fixed to the moving par t of th e
str uct ure. that line d irect ion of the rail passes
the winch t.orsr.mc t heload (with coordinates ( XI. H ) !> ,X (H IJp) ) and a point given
t he vector V rm/ :

aparameLN

A6, We suppos e that all the winches hoisting ropes an' locate d on the moving par t of the
structure along a line such that

ifc = O

i f c = I
i » 1,

i.e. t .he winches are situ ated along the rai l if it is present

p d c s d+ s+ l

2 0 0 2 3

2 0 j I 2

3 1 0 2 4

3 j j 1 3

Table 3.2: Parameter values compat ible with the assumptions

T he numb er of a<:t UIH OfS the actuator of the art iculated st ructu re and r.he motors
windin g ropes taken equals to d + s + 1. Tabl e 3.2 th e values of the
para mete rs p (dim ension of 'h e d (numb er mechan ical
stru cture). c of rop es at tached to the free pulley ]
com pat ible th e ass umptions.

T he elimination of the fixed pulleys from the mod el and the above assumpt ions reduced t he
num ber of variab les. thu s the vecto r coordinates read s
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Using thes e generalized coordina tes , t he Lagra ngian of a \ VIIE in the sense o f Definition 6
which is subj ect to th e ab ove ass umptions reads:

j

(

' , H .n )· 2 ·2 4 -c . 2 ......... ·2
C = 2" m ~x,+mO ~ Io. +Mf Z(H l ) I +S m,L I - g(m I tl+ TnOI Op). (3.33)

Let us study next the constraints on the variab les in q. Constraints on t he ro pe lengt hs are
present eit her d ue to ropes te rminating at the free pulley '

j = 1. .s. 13.34)

or d ue to th e rope ter mina ting at the working land. T wo constr aints are ob tai ned for the
latt er ro pe. one for the leng th bet ween the free pulley and the corresp ondin g winch fixed to the
st ruct ure (deno ted by £0) and one for th e length between the load and the free pulley:

C.+J(XOJ . .XOp, X ( J+ I )I . , I(.H}p · I· Lo) =0

CJ+2(ZOj, , I Op, II . ,I" 1.0,L'H) = 0

An additional constr aint is imposed by t he motion cornparible with the
nhe structure if d = 1. In view of the above assum ptio ns, t his constr aint
(see Tabl e 3.2):

(3.35)

(3.36 )

of freedom of
only if p = 3

(3.31)

Th e mot ion const raint of the free pu lley along th e ra il (if it is presen t) is of t he form'

t:= 1, . p - J (3.38)

Denote by I the tot al number of constraints . If the ra il [Le. Const ra int (3.38)) is present.
1= s +2p -l and l = s+ p ot herwise.

Here, C j , ,Cl are at most quadratic funct ions of a ll their ar guments (note that thi s also
al lows linear te rms). Moreover. C\, CH 2 contain no nested pro duc t Involving L , and x,)
T he exac t form or the cons train ts is no t needed in the seque l [nevertheless they are explicitly
given in Remar k 27 below).

In place of obiaining a n ex plicit differential mod el. we prefer an implicit. formulation with
addit iona l vari ables, known as Lagrange mull tpln'1s.

Theorem 2 . Assume that the constmmts are Independent 1Il an open subset oj the genem1ued
coordina te space. The dynal1uc.al model a5,~oClated to /I WHE corresponding to Dcfimtwn (j
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1= I ,

,tI + 11=1.

mi , _ ..\. ~ 2 ~;~2 - b,,,mg

. ,"" '!S"'<IXa. = ;:.; A, 8xo. - 6,,,rIlu9

0 ..: ,.!...... ;.. QS
~ JfJLo

' acm,L. = L A'ar + 70,.., '

._ _ .!...... &CJ
,\IX(h ill - ~ ..\ ' aI( ' '' I ) ' + F,(TH ,,)

1 = I.

1 = L

. p

.p

. p - I

(3.39.)

(3.3% )

(3.39(')

(3.39d)

(3 .30.)

subj ect to COJlstra11lts (3.~) ·(3.3S). U"I~ 6" = I II I = P dfld 6" = 0 othl.'nt 'w~ . 1'" •T H 1
are the tonru t's produ«d by !he meters Q fl the srrecrure and T. n the Om' produced by the
structure actuator. PI. • F, _l lire lhe gmernlued aternal Jorct s depend11l9 on the torque
ddn'en:d by the sf""ctl.lll! actuato r and th e A, derwte the Lagrange mlJ1hpllers.

Proof. We compute

where Tf are rhe ronstrain t forces and

F, = (~,Th . 1'....1. FI(T. ...,). . Ft,,_Il(T.._,»T
2p+ I

gives t he ex tern al forces.

Tak ing total d ifferent ial of th e co nstraints lead s to

1= I. .1.

exp ressing that vir tua l d isplacements au' in ker DC (q) where DC (q) is the mat rix whoseentries
are f;. Since the const raint forces l·ollLpH.tiblt·wit h t he virtual displacem ents er e workles s. we

have L.?~~qT,dq, = O. T herefo re, T .. (rr. Td'm q) is a linear com binati on of the lines of
ocu:

and t he t heor em is proved.

1= 1. . di m q {3.40l

o
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Rema r k 26 . Note thaI the L1fS! ;t-~ of the model (3.39) 15m dependent of the specific topog­

raphy of the WHE, whereas the RHS COrLS15ts of ti lt: exte n or forces Fq plus gmmty terms ~
and the t erm..~ gIVen by (3.40) whtch sum up the topoqmphlc specifiCIty.

R em a r k 27 The exact form of the constramts C l , ) = 1, , I are:

J = 1, ,I>. (3.418)

1 \.~ :1 L3
CH I = '2 :S- (XOt- X( 8~ Ll.) -"2 -=O. (3 .41 b )

CH 2 = ~ t (xo> - X,)2 _ (L.+I ; LO
) 2 = 0, (3.41c)

C _ { ~ L:'~: xlf+I), - r 2 = 0 for rotatw nal )oltll
's _3 - ta I I (f+ l) :1 - X(8_11 l ta 2 = 0 [or prumauc )om!. (3.4 Jd)

,
C,_p.t = :L) Xo. - X( s"'I) ,) .Q,t, = 0 k = 1. .p - 1 (3.4 Ie),.,

where ta = (tal, J.S the vector of the jomt czss of the articulat ed st ruc ture and {!I, =

({!u, , &I~pjT f = 1, ,p - J a n' otthoqonal vecto rs to (X(Hl)l, ,X\ Hllp)T - t' rad

whIch swes the dU'ectJonof the rUlI as defined In AS Note that these fonnulae are not needed
to state and prove our mam results .

:1.2.2 F ta t ness

Assume that we exclude free fall t rajectories of th e loud, nam ely such t ha t xI'= 9 (he re 9

sta nds for the norm of the gravity accelerati on) and such t hat ~ = O.

T h eo rem 3. WHEs defined by Defimhon 6 and sahsfylng A I - AS of Section 3.2.1 are differ ­
entlally fiat. The flat output. denoted by Y in the sequel. can be chosen as (Xl , • X, ), the
coord11lates of the load. and s + 1 + d - p coordmates of the free pulley.

Proof. In view of the assum pt ions we need to disti nguish th e four cases of Table 3,2.
the pro of for p = 3, the simp lest cases wit h p = 2 can be dealt in a.similar Wf\Y. t hal
p = 2 implies dIa l d = 0) .

Assume- first that s = 2 = p - 1 and consider}' = (XI . .£p,xOp) as a candidate flat
ou tput. Combining t he pth equation of (3.39a.) and (3.36 ) and the fact th at the c.·s contain
no cros s-term s involving Lo, L ...1 by assumption. one obtains ~.+2 as a function of xI" xI'and
xop since~ =I O. Next. as long ns ~ '+ 2 =I0 which is guaranteed by the assu mp t ion that
i p =I- g, the p - llirst equa t ions of (3,39a) express the remaining coord inat es
as funr tlon s of x" i J . J = I. ,p, and .1'01" Next , we use th e 2p + J equations

2Left Ha lld Sid",
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and (3.39b)-( 3.39c) to express t he 2p + ) var iables Lo, L H 1 , t"(H l ) J . , I (H l )p_ J . ), 1. , Ap

as functions of L Ot> , Zo" X I. ' Xl'" ), 1+2 and de rivative s up to old er 2 which in turn can
be expressed as funct ions of Y and deriva tives up to orde r 4. Now. by (3.34) . one can exp ress
L I , , L. as functions of variab les which an' already expressed as funct ions of the fla t out put
and its derivat ives. By (3.39d), 'Ii . . Tp are also obtained as functions of the previous ones
a nd de rivatives of Y up to order 6, and finally, T'+2 and AhJ are obtai ned in a similar way by
(3.3ge) which pro ves that r = (Xl, , I p. XOp) is a flat out pu t .

Cons ide r now the case with s = c = I [i.e. t he rail constr aints (3.38) are present ) and let
Y = (:1'1 . .xp ) be the cand idate f1al out pu t . F irst , we use th e 2p equations (3.37)-( 3,38)
and (3.39a) to 2p var iables IOl> , X (. H )p _1 as func t ions of II '
i; . J = 1. .p. proceed using equat ions and (3.39c) to express the- rope
length s Lo. [ 1. £2 and -' '1 1 as functions of Y we use Equa tion (3.39b) to obt ai n
-',.-'HPi t. -' .~P+2 as functions of Y = (Xl> oI , ) and iLSder ivat ives up to order 4. Fin ally, we­
usc equat ions (3.39d ) and (3.3ge) to exp ress T l • • T>t2 and -' 0+3 as funct ions of Y and t hei r
derivatives up to order 6 which proves that Y = (XI . •x,) is indeed a flat out put. 0

:~ . 2.3 N u m er ica l sim ulat io n of t he dyn amics

The simulat ion of a dy nam ical system consis ts of numeri cally integrat ing its stat e equ ati ons .
Fur t he cranes we ad vocate to integra te the equa tions of the imp licit model with out red ucing
the~e eq ua t ions by choosing a parti cular se-t of ind ependent coor din ate s and eliminating the
H' St. T he syst em to be integrated (3.a9) being affine w.r.t . A = (,\\' .-'dT th e vector of
Lagrange multi pliers . is of the form

ij = F iq, q)A + Fo(q. ql (3.42)

where q stands for t he vector of gene ralized coord inates given by (3.32) . For th is syst em U) be
well de te rmin ed. ex pressions of -', as Iunc t.ions of q and q need to be ob tained. To do so. we
differentia te twice t he const raints CJ(q). j = L .1 which gives. in ma trix form

A(q.q} +~q = 0,

wit h

I » (.T(8'C,) . , ("'C,).)'Aq,q = 1 7iq2 q. , 1 8q2 q

' ''''e t hen replace ij by its expression given by (3.42) to yield

~F(q,q )A "':' - A( q.q) - ~Fo(q,q) .

It can be shown t ha t ~F(q. q) is always an invertible mat rix and thus

(~ .) ' ( . ~ .))1\ = - aqP(q,q) A (q.q ) + a;;F[)(q,q (3.43)

Eq uat ion (3.42) with f\ by (3.43) is then integra ted using a sta ndard algor it hm. Nu-
meri cal simulations show t he constrai nt s arc satisfie d th roughout the integr at ion process
once the initial condi tion satisfy them .
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3 .2.4 E xa mples of wei ght handling eq u ipm en t m ode llin g
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Let us Illust rat e the gene ral modelling approac h by giving the result ing equat ions for the 3D
can tilever. 3D overhead, and 3D US Nevy cranes (t he latt er being the subject of Sect ion 3.1.2).

Exam pl e 9 . 3D Conuiever Cnme . The cran e dep icted in Figure 3.10 comp rises a trolley
restr icted to move along a rail. T he trolley is consider ed as a free pulley. T he rail ro tates around
a vert ica l axis together with t he winches no.1 and 1L0.2 whose coord inates are ( X U, II2.Xu )T

and (X 2h X22 , X23 )T respectively. \Vinch no.2 hoists the load and winch no.I moves t he t rolley
T he winches all' located on a line pass ing t hrough the origin of th e base frame. thus X I] = Clt I 2.1'

J = I , ,3 , Since the rai l passes thr ough the origin of the bas!' frame, one can choose VTa,1 = 0
(i.e. t be P" a,1 = 0 end P r al l = 0 ill Equation (3.31)) . hence the d irection of the rai l is simply
given by the vector ( X21, I n . I2;\)1' All assumptions are satis f ied . thu s t he cra ne fits the genera l
modelling setup with the following parameters: 11 = 2, p = 3. d = s = c _ 1

Let t he vector s fh and {h . bot h orthogonal to t he direction of the rail, be chosen as QI =
(O,O. l ;T and Q2 = (- X22,X21 .of Th e general ized coordina tes are

where rea is omitt ed since it equals to zero. Xorr- that thi s also makes tr ivial the constr aint
corres ponding to PI in Equat ion (:H 1e). 1'111'constraints. obtai ned using (3.1 1), read

Figure 3.10' 3D Cantile ver cra ne
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C j(Q) = ~ ((.l:Ol - OlI 2d 2+ (X02- OlX:n)' - LD= 0 (3.4411.)

C2 (q) = ~ «(XOI- x,d' + ( X02 - xnf - L~) = 0 (3.41b)

Cl (q) = ~ «(XOI - I l ll + (roo - X2)2+ x~ - (L2 - LO}2) = 0 (3.4.Jc)

G.1(q) = ~ (I~l + xb - r
2

) = 0 (3.44d)

C~ (q) = -XOIIn + .rOOI, ] = O. (3.44e)

S = {(q,lj ) E IR20 C,(q)= O,t =L ,5} (3.45 )

(3.46)

Th e dynamic s of the cantileve r crane evolve on S by cons truct ion. Th e model is obtained using
T heorem 2. The kinetic and potenriei energtes are defined by

I J 1 2 1 ~ .
W~ = :2~mI~ + 2~ (mo.i&+ .u.c~ ) + "2~ lII I L?

and the Lagrangia n reads £ = IV4 - Wp . Thus th e dynam ics are given by

mil -= - -'3(XO! - Xl) (3.47<1.)

mi, = - A3 (X02 - X2) (3.47b)

m~ ='\3x3 -~ (3.4k)
moXol = AJ(XOI - Xl ) + -'dI o)- O,I 2d + )., (IOI - I 2d - >'~In (3.47d)

moI02 = )..3(X 02 - Il) + Aj(X02- OlIn ) + >'2(XO'l - zca] + '\~X2 1 (3.H e)

0 = A3(Lz - Lu) - A2Lo (3.47f )

m 1Ll = - AILl + T, (3.·17g)

m 2 i z = -Al{f'2 - [,0) + Tz (3.·17h)

A1xn = - )'l t1"I (I OI - OlIn ) - Az( I Ol - Izd -t-A~X2J + ASXO'l - TJx n (3.47 i)

M i n = - )"IO'I (XOZ - OlIn ) - AZ(X 02 - xd + A4Xn - ),, ~IO I + '/ iIzl . (3.47j)

Using T heorem 3. fI. possible flat output is given by }' = (X j,Xt , Xl )T t he position of the load

T he dynamics and the constraints have t he same expressions if we rotate the base frame
by any fixed angle arou nd its vertical axis which coincides wit h the rotation axis of the crane.
Thi s invariancc p roper ty will be used in Sect ion 3.4.3 to show our st ability result s in dosed
loop

Ex a m ple 10 . 3D Overhead Crane. T he crane is depic ted in Figure 3,11. In cont rast to the
cantilever crane of Example 9. t he rail with the trolley {Iree pulley) cann ot be rotated but
t ranslated. T he axi s of t he corresponding joint of the mechanical structure is given by the
vector ta = (0. LO )T Wi nch no.I , whose coord inates are ( X \I , X IZ. I IJ) T mow's the t rolley
along the rai l and winch no.z . whose coord inates are ( XZl. In. x ZJ)T hoists t he load . T he
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choice of the or igin of t he base frame is such th at I 03 "" Xu "" IZ3 = O. Th E' rai l p.;lSSCS

through the winch no.2 and t he point of coordin ates l". 11 "" (X'I - 1.I2".! ,OJT [ I.e. Pr,uJ. "" I and
P,. J "" (- I, D.of in Equ ation (3.31»). Let USchoose PI = (0. 0. If and Q2 "" (0. 1.0)T = t •.

The const raint along £11 i! again trivial since I 03 = 0 by the choice of t he base fram e T he
par ameters are 11 "" 2. p = 3, d = 1. c = 1. and 5 = I. Th E" gf'neral iU"dcoordinat es read

Figure 3.11: 3D Overhead cram'

and t he co nstraints are given by

CI( q) "" ~ «(XOI - .l 11 + 1 - oil' + (X02- In )' - l.,D= 0

C, (q) = ~ (( X(I! - .2'11) ' + ( %<J1 - .2'n)2 - L~) =0

C,( q) "" ~ «(Xtll - I I )' .. (xm - x, )' + r~ - (L, - Lo)' ) = 0

C. (q) "" r ' l "" 0
Cs(q) "" I1)2 - xn "" O.

T hE" las t t w-o const rain ts are linear , hence they can be used to elim inate th e coo rdi na tes I'l

and .2'22 in a straightforward way. Th E" remain ing generaliz ed coordinates read

q = (XI. X1. X), XOI ' X02.1.0' L l • &:z)T

and t he remaini ng constraints are

G\(q) = ~ ((XOI t· J - (1 )' - I.f) = 0 (3.4811)

C, (q) = ~ (X~I - L~) = 0 l3.48b)

C, (q) "" ~ ( (X OI - I ll' + (Io1 - I~)' + J'~ - ( l,q - l.ol') = 0 (3.4&)

Due to these const raints. t he dynamic's of the 3D overhead crane evolve on th e set

S _ { (q.q ) E Rib C,(q) "" 0.1 - L . 3} (H 91
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Th e kinetic and poten tia! energies are given by

, 1 ~ . 2 1
2

.2 1 .2 1
2

.
H' k = 2" L:mx, + "2 L m aXCh + 2 Afxo2+ ;;L m,L;

, . I ;=1 - ,= 1

Th en we use T heorem 2 to obtain the dynamics;

mil = - '\3(XOI - xd
miz = - >'3 ( X 02 - ,( 2 )

m.X3 = A:1X3 - Tng

Trt(lX Ol = AJ( XOI + 1 - Q j ) t " ZX O!

(rna + A1)i 02 = " S(X M - X 2) + T3

0 = - )..2L O + ),3(L2 - La)

m i L l = - >'lL 1+ T1

m.2LZ= - >d L2 - LoJ+ T2

Chapter 3. Crane cont rol

(3.50)

(3.5 1a)

(3.51b)

(3.51e)

(3.51d)

(3.51e )

(3.5lf)

(3.5 1g)

(3.51h )

A possib le flat outpu t is given by the posit ion of t he load : Y = (Xl , X2 . X3)T

cran e a mong th e examp les without a
since two ropes terminate on the free

T:'~,:t::,: :l~:~~~t~~,~::i;:::~>:no:,,;a';h;~~:;::~;: Figure3.12with the notations
re 3.1. param eters are: p= 11 = 3, d = 1, c = 0

8 = 2. T he vector of generaliz ed coordinates is

(3.52)

T he constra ints read:

Cdq ) "'"~ ( (XOI - C'lI 3J? + ( X 02 - Q j Xn) 2 + (XOJ - Q1 X33 )2 - Li) = 0 (3.53a )

C 2 (q) = ~ ( (XOJ - O'zx3d2 + (x m - Q2X~l2 ) 2 + (X OJ - Q ZX3J ) 2 - q ) = 0 (3.53b )

C3 (q) = ~ ((XOl - x3d 2 + (r w - xJz? + ( XOJ - X 33 )2 - L~) = 0 (3.53cl

C4(q) = ~ ((XOI - II? + (X02 - x2f + (xos - I S? - (L3 - Lof ) = 0 (3.53d)

C~ (q) = ~ (x;] + X;2 - 1'2)= 0 (3.53e)

T he 3D US Navy cran e may evolve on the set

S= { (q,q)E IR24 C,(q) = 0,1 = I. .5 } (3.51)

T he kinetic and pot entia l energies Me defined by

H'k= ~ t (m:t; + moi 5,) + ~ t M:ti,+ ~ tm,i; lV p = mgX3 + m09x03 (3.55)
- .=1 ,=1 ._1



3.3. Motion pla nnin g

T he Lagran gian reads C = W~ - Wp . T he dynamics are given by T heorem 2
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m i l = ->'4(XO\ - xd (3.56a )

m i 1 = - >'4(X01 - I1 ) (3.5Gb)

m X3 = - >'4(Xro - X3) - my (3.5& )

ll l-Qi OI = >'4(I OI - xt} +- ..\) (X01 - Q) X J1) + "\2 ( XOI - Q2x311 + >':I(XOI - IJd (3.56d)

7TlOi 01 = "\'1( X02 - X2) + >'1(X02 - CtlX32) + "\2(X01 - 02In ) + >'j{xm - X31) (3.5&-)

m.oiro = "\4 (X 03 - Il) + "\ 1(XO:1 - ClIX33) + >'2(XOJ- 02X33 ) + >'3(.1'03 - X33 ) - m og (3.56f)
0 = >"1(L3 - Lo) - >'3LO (3.56g)

mILl = - >'I L 1 + T1 (3.56h)

m2 "L2 = - ..\2 L2 + T2 (3,56i)

m 3"L J = ->'4 (L 3 - La}+ 1"3 (3.56j)

Ali31 = ->'lQ \ ( XOI - O tX;l1 ) - "\202 (XOI - a2IJl ) - AJ{XOI - X31) + >'3I3 1 - 14.1'.12 (3.50k)

AJiJ 2 = - A]01(Io2 - 01.1'l2) - >'20 2(X02 - 02.1'n) - >'3(X02 - In ) + >'3.1'32 + T4X31' (3.561)

On e can prove using T heorem 3 t hai the coordi nates of th e load and the height of th e fr<:,1:'
pull ey form a Aat out put: Y = (Xt , X2, J':l , XOO )T

(X21,Xn .X2) )

(xJ I,x u .x n )

Figur e 3.12' 3D US Navy cran e

T he model of this crane [l.e. the dynam ic equations (3.56) an d the const ra ints (3.53)) i ~

invariant w.r. t . t he rotat ion of t he base frame around it s vertical axis by any fixed angle. T his
will be used in Sect ion 3 ,4

3 .3 Mot.io n pla nn ing

To motivate th e necessity of the motio n plan ning, recallfi rst t.hat undesired osc illations of t he
load are created in part by t he crane operator himse lf. In fact , when the operator wishes to
dis plac e the load to a desired equilibrium position along a. traject ory Iwoid illg oh Htadcs in t he
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cra ne's workspace, he man ipulates t he load indirect ly by act ing on motors rotatin g winches.
Hence the op era tor tr ies to find th e tra jectory of the motor forces corresponding to the desired
trajectory of t he load . This is considered to be a difficult task even for exper ienced crane
operato rs since it requ ires simultaneous act ions on severa l ac tuators (e.g. Iour winches for t he
3D L:S Navy crane).

We propose to assist r.he crane opera tor by wivin g the MPr correspoudlng to his des ired
displacement . More precisely, t he human operator gives the desired equilibrium position of the
load and t he mot ion planning a lgorithm calculates t he corres pond ing trajectory of the moto r
forces. Th is requir es the knowledge of the para meters of th e model.

Th e motion pla nning algorit hm is based on the flatne ss pro perty of the \.VII!::s (sec The ­
orem 3). Assume th at t ht' pos ition. velocity, accele ration . jerk. and all derivat ives up to the
6th order of th e flat output (includ ing the position of the load ) Me given a t the sta rt ing t ime

t, by (Y" }'" V,. )~,m y/6l) and the desir ed fina l configuration of the flat. output and its

succe ssive t ime derivat ives are ( YP' ~·P . Yp. Yj M y~.6 ) ) et t ime IF.

T he flatn ess property implies that for any tra jectory connec t ing t he initial a nd final points.
the mot or torques call be calculated without integrat ion of the model equations. It is enough
to follow the st eps of the proof of T heorem 3. T he trajectory can beob tain ed using poly nomial
interpol ation as it has been alrea dy pro posed in Chap te r 2.

To sec this, suppose tha t _~he initial and final conditio ns correspond to two different equi libria
of the load : Yl = 'VI, }'r = Y, = = YP ) = y? l = 0 and )".... = YF , ~;" = YF = = l~\5 ) =

yt ' = O. Note tha t denvativos up to the 6th order arc needed to calculate t he reference inpu ts
[l.e . motor forces). To sat isfy these const ra ints with the traj ectory of the flat output, we ca n
constr uct a 13th degree polynomial

(" )' " (")"-"\ ,,(t ) =\)+ C\£-X/) t r -- : , L>J t".--:,,., (3.57)

where \ r(t ) is the reference trajectory of a variable of t he nat out put Y (using similar notatio n
as in Sec t ion 2,3). Th is polynomial sat isfies all init ial cond itions and the coefficients aJ are
comp uted by solving a linear equa tion , independent of YJ • ) ' ..... t l and t ..... In fact. t he numer ica l
values of th ese coefficients are

a13 = 924
all = 16380

0:9 = 2002C

a 7 = 1716.

al1 = - 6006
al o ;; - 21024

a~ = - 9009

Usmg such polynomials for each variab le of the flat out put Y we get a straight line tra jecto ry
of t he load in th e workspac e of the cran e' connectin g the two equilibri a

R em a rk 28 . The off -line calculatiOns of the coelfi ctents are
e pphcatums whn -e the deSired end-point of the trajectory 18
operator

~n the case of real-time
contm1J. ll.11yby the hllman
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Let us illustrat e the solut ion3 of t he MPP for t he 3D US Navy crane modelled in fo;xam plo;' 11
T he par ame ters lIS~ are that of a red uced size model ( I:RO)realized in the Cen tre Automanq nr­
et Syatem es of the Ecole Nat ionale Superie ure des Mines de Pari s. depicted in Figur e 3. 1. Th e
mass of the load is 250[gJ. Recal l t hat , by Propositio n 14 (or by T heorem 3), t he fiat out pu t
includes the coord inates of t he load, l.e. {XI.X 'l,X3} c )' and t hat we wish to find an idle to
idle tra jec tory for the load implying t hat t be reference trajectory will have no sway at the fina l
eq uilibrium

r.
I .~ -.

.,,, .' ,m,

I .

Figure 3.13' Horizont al displacement of the load

T he t rajectory deplet ed ill Figur e 3.13 is a horizont al idle to of the load
obtained using polynomial interp olation as in Equation (3.57) Some t he corre spond ing
motor to rques are given ill Figure 3.14.

O bs t nc !e av o ida nce

Th e Harness propert y furnishes an easy way to find traject ories avoiding obstacles present in
the cra ne's workspace. Suppose t hat the positions of the obstacles arc known in t he base frame
T he geome try of a trajectory avoiding the obstacle can be given by the funct ions

where t he variables X2 and X3 depend on the tra jectory of X l The geometry of the traj ectory
can be also spec ified by

XI = XIP·) X2= X2{>') X3= X3(>')

with >'(0) = O. Here >'(T ) is the length of the trajectory between the initial end final equilibna
and T is the tr avelling du rat ion. Th us. given the time function xd t) or >'(t ) (for t hl' [nttr-r. .\
gives the velocity along the trajectory ), the other variables ar e given a" t.heir funct ions. Fo r
t he vari ab les X t or >., the polynomial interpolat ion of Equation (3.57) ClU J be IISed .

For cranes. para bolic trajectories are natu ral to avoid obstacles. Such a tra jec to ry. connect ­
ing the same two equilibr ia of the load as t he straight line tra jectory depicted in Figure 3.13 is
prese nted in Figure 3.15. The corres pond ing motor tor ques are given in Figure 3.16

3AlIcaiculations arc made using Matlab
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Pigure 3.14 Motor torques generating the horizontal dis placement: see Figure ,'1.12for the
notations T" T3 and T4

Actu a to r d im e ns ioni ng

Flatness based mot ion plannir.g was used for dimensioning t he act uat ors {i.e. DC motors) of
t he sma ll size mod el of the 3D US Navy crane, Th e problem of act uator dimens ioning in our
case consisted of finding the ch aracte rist ics of Hie DC moto rs wind ing the ropes and rotating
the pla tform wit h the boom such that sufficiently high masses (say up to one kilogram ) can be
disp laced at. a sufficiently high velocity.

A possible solut ion consists of calcul atin g the static tensions corres pondi ng to some equili b­
rium of the load with the maximal mass. multiplying ehe obramed values by a. number estimeting
t he necessary overload dur ing dynamic displacements, and finally choosing the motor-gear box
pair wit h the su itable power. T he cruci al point of thi s method is t he estimation of t he forces
which are necessary to overcome t he dyna mic effect s along t he trajectory. It t urns ou t that
one has a cer tain tendency to u nderestimate t hese dynamic effects, in part icu lar for t he motor
wind ing the horizontal rope attached to t he free pulley and for the motor rotat ing the platfo rm,
since these motors deliver low (or zero) tor ques if t he load is in eq uilibrium.

Based on t ile flat ness proper ty and the above presented mot ion planni ng algorit hm. one ca n
calc ulate t he necessary motor torq ues for an y load trajectory together wit h r.he correspond ing
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Figure 3.15: Parabolic displacement of tilt;' load

velociti es of the motor axes. T his allows to consider the maxi mum values along any kind of
traj ectory and to find the satisfac tory motor -gear box combinations with out und erest ima t ing
the dyn amic effects. For dis placements considered to be fas t . simula tions show tha t th e dyn am ic
effects overcome largely the static effects as shown in Ftgures 3.21. 3.18. and 3.16. T his holds
true Loth for the presented straight line and parabolic displacement s.

3 .4 G lobal measurement feedba ck stab ilizat io n

The aim of th e closed loop control is to stabi lize an equilib rium or a reference Irajeotory of
th e load . Th is section deals wit h the sta bilizatio n of an equ ilibrium. the closed loop t racking
pro blem is st ud ied in ti ll' next sect ion.

For real cranes . measureme nts of all configuration var iables are not available. In par t icular .
there is no d irect informatio n abo ut t he posit ion of the 1000 and the ang les bet ween cbe rope
sect ions beca use of the lack of sufficiently robus t sensors resisting to shocks. d ust . oil, and
ab rupt changes of the environme nt (e.g. an art ificial vision system providing informa tion about
the position of the load , or more precisely abou t t he position of the hook. should deliver
exact measu rements in a ll weather an d lightenin g cond itions ). The uncompleteness of t he
meas urement informat ion obstr ucts the USl' of state feed back tech niques.

Neverth eless, robust sensors are mou nted on the axes of t he motors ac t uati ng the moving
part of t h.. mechan ical structure and the winches. T hese sensors measure the ang ular positions
of the motor axes and/o f t heir velocities. In t he sequel we suppose tha I the angul ar posit ions
and velocities of all motor s are measured

One of the "sim plest ,. regulators which can be const ruct ed from t hese measurements is a
linear proportional-derivarlve type contro ller on the rope lengths and the posi t ion of the moving
part of t he mechan ical structure. We show that this regula tor is able to globa lly st ab ilize any
desired equil ibriu m of t he loed. OUf notio n of globa l stabi lity assures the convergence to t he
desired eqnllib rhnn in closed loop from most initial configurat ions in the crane's workspace with
pu lling tension in the ropes.
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f igure 3.16: Motor torques generating the pa rebclic tra jectory ; see Figure 3.12 for the nota­
tions T1 , T3 and T4

Some stabilit y definit ions and theorems art' recalled first. Next , we show that any equi lib­
rium in th e workspace of the 20 model of the US Navy cra ne (stud ied in Sect ion 3.1.1) can be
globally stabilized using PD cont rollers, Finally, globa l stabi lity in closed loop is a lso shown
for all 3D exam ples of Section 3.2.4, including the 3D US Navy crane .

3 .4 .1 Stability d efi n itions a nd t.heo re m s

T his material is standard and repeated here for completeness. More detai ls can be found in [291.
COilslder the system

x = f (x ) , X E R"

1(0) ~ 0

[3.58)

where f(x) is Lipschi tz cont inuous and let x{ t , xo) denote the unique solutio n of t he abo ...e
syste m wit h initi al condit ion x(O)= Xo

Deffnltlon 7 [s t uhi llty), TIle z = 0 of (3.58) 1$ sta ble If for all f > O. there
eI1sls a 6 > O. such that IITO =:- 11 x (l,xo) 11< e, for all t 2:: 0
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Figur e 3.17: Straight line d isplacement in three dimensions
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Doft ni t ion R (asy mp tot ic stahili ty ). The eqmllbnum x = 0 of (3.58) IS asym ptotICally sta­
ble 4 ft ts stable and

}~~ x (t ,XO) = o.

A sufficient sta bility cond itio n is given by t he following theorem

T heo rem 4 (Lyap u nov's secon d met h od). If there is afunr:tlOn V (x) such that

1. V (x»O. \fX EU CIPI." ,x -#O

2. LfV (x ) < 0, 't .r E U c R" . « #-0 (mil £IV (O) = 0

where U ss a, 7;:~~:"::::::;~,~O . then 0 ts locally
and V (x) as TG i.e. V (x ) ---? 00 us x

= IR"

vanishes for a set of point s inc!uding t he origin then t he of the origin is
In order to deal with th is case one needs som e additional definit ions.

D efiniti o n H (invariant se t ) . A set 1 said to be mua ruint WIth respect to (3.58) If.

Vxo E T x(t . xo)E l . VtER

D e ftn fr ton 10 (p osit ively invaria nt se t) . A set I IS sm d to be posttwdy m uariant unth rc
sped to (3.58) If,

Vr o E I x( t , xol E I , 'It 2:0

De fin it ion 11 (a p p ro a ch in g a se t). We that a eotuuon x(t) of (3.58) approaches a set
Ai as t: ---? ox , Jf for each ( > 0, there IS a T > such that

1:'-L IIx(l) - 1: I I<~, 1ft > T
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Figure 3. 18: T he rpm (revolution s per minu te ) and the torque de livered hy the four t h motor
(rotat ing t he platform with the boom ), correspo ndi ng to the traj ector y illustrated in Figure 3.17
(travell ing dur at ion equals to 0.8 sec)

T heorem 5 (La Sa lle's l nvartance Theo r e m ). Let C c u c: R" hi' /I com pact set that 15

posltwcly mtlana nt io.r.t . (3.58). Let V U -+ R be a CQll t l1lUously differentiable funcuo ti such
that LfV (x ) ::;O for all x E U . Let N be the set oi all potnts t1l C where L, V (x) = O. Let M
be the largest m van ant set In ~V Then , every solutton startmg In C approaches M ast -+ 00.

3 .4 .2 PD co nt ro lle r for the 20 U S Navy crane

T he mod elling of t he 20 US Navy cran e has been undertaken in Secrlon 3.1.1 unci an implicit
model given by Equations ( :J .l)-(~ . 5 ) has been obtai ned. Recal l that (x , zl ere the coordinates
of the load at the point C . T he messes of the ropes arc neglected and the rope s ar e ass umed
unstretchable, hence T2 = Tl •

Tie information provided by the sensors al low to calcula te {alte r a su itable initi alization
prnress) the rope lengt hs L ] and R. We consider abo lhl:'velocity of these varia bles as measu red.

Not e t hat Equations (3.k).(3.1e) ca n be rewrit ten as

(X R - (k + I)s inQ )2 + (Z R - (k + l) cosof - L~ = 0 (3.590.)

(I D -:ll + (Z R - <:)2- L~ = 0 (3,59b)

(I B - hill O)2 + (Zb'- k m <;n)2 - n = O. (3 59c)

T hese equa tions have t he sa me form as the geometric constrai nts i l l Sect ion 3.2 and will he
used in t he sta bility ana lysis.

T he planar US Navy cran e has th ree degrees of freedom, hence t he minimal number of
genera lized coord inates is thr ee. A possib le choice \s q = h, L 1 • R)T includ ing th e meas ured
var iab les L ] and R. All remaining variab les (' lUJ be expressed as funct ions of q using the
geometry of the crane given by (3.1). T he only ex ternal efforts are t he torques u, a nd U2
delivered by the DC motors hoisting the ropes.
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Let (1", i) denote an op..n-locp equilib rium position of the load. The il. one may calcu late
th e equ ilibrium of the remaining variables using the following relations:

0 =0 s j n,O = i-~sina i' =~(1T + f3 - a )

R = I (t - coste - OJ) fljn~~l~,O) + (k + l) cos o - z (3.60)

I I = l::~~ 7'2=T3= rIIi/ 1'1= 2mgcos1·

Notice t hat due to the geometry of the crane . l' e (T' j ], hence sin i > 0

Remar k 29. The open-loop eqUlhbna gIVen by (3.60) are not lSolau d pom ts m tile configura·
uon spare of the model, they fo1Y1l a lwo-dlmenslonal mum/old.

T he aim of the closed loop control is to sta bilize the load at a given equilibrium (x.Z) such
that (x,I) is a point under t he boom. WI' cla im that this can be achieved using (linear ) PO
controllers, provided th at t he friction terms I}) and 1}2, which are assumed to de pe nd only 0 11

t he measured variables L(, L 1> R , R, are exactly compensa ted , namely

(3,61)

(See Remarks 31 and 32 concerning the methods used to compensate friction effects for exper­
iment s on the small size model). The PD controllers read

U( = Pl (1'1+ k,u"L I + kpt,t (LI - La))

'i2 = P2 (-r1+ k.JRR + kpR{R - m)
(3,62)

(3 631

where t he a pn on rope tensions t l and r;are dete rmined using Equat ion (3.60) a nd kpL" kpR•
kdL , . and kdR are constant ga ins to be determined to achieve sati sfactory perfor mance

The crane has, in t he absence of t he controllers. kinetic and poten t ial energy due to the load
wit h mess m and kinet ic energy due to the inertia J l a nd J2 of t he winches. Let YV. den ote th e
total kinet ic energy and Wp the potential gravitati onal energy. Extra energy can be stored in
t he contr oller in closed loop. due lo the constant n priori and proportional term s. T his energy
will be denot ed by W",,/.

Th us. the energy function W consists of thr ee terms'

{3.64}

with

1 ( " " J , " J , ")Wt = - mx + z ) + ""'::5 L\+2 R
2 P I P2

~Vp = m9z

H '<tTI = ~kp/<, (L ( - Ld2+ TILl + ~4R(R - R)2 + 1'2R.
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Since I a nd z can be expressed as funct ions of the generalized coordinates as

sillb - arcs in(-~.L..~m» , ( . (LSiIl1 ) )
x=(k + l)sino - l . I sin o- arcslII -'- -t-

sm1 1

( R _ l
sin (1- a:~~i~ (~)) ) sin (If _2-r _ 0 + arcsin (Ll ~in ')) )

:; =( k + /) cos o _ {sin (,. - a.r~ in (~)) cos (0_ercsln (Ll Sin,. ) ) _
8m ,. I

(
R _ l sin h - arCSin (~)) ),~ ( 11" _ 2,. _ 0 + arcs in ( L1Slti/' ))

siu ,. /

the crane dyn amic s in closed loop can be obtained by app lying

~~ - ~ := }~. 1 = 1, , 3

where C.= IV ql = ,. , (J2 = £'1> 13 = N. and "-'"is the associa ted generalized force . i.e F1 =O.
PR = k~RR. a nd Fe, = kdL, L I due to the deri vative terms in the contro llers. Notice t hat, t he
proportional terms and the constant a priori forces are al ready in the funct ion W due to t he
te rm IeVct , ,, and th us absent in the Fq, . Notice also t ha t the actu al choice of the generalized
coordi nates does not lead to the most compact formulat ion of the dynamics, but will make t he
der ivat ion of t he necessa ry lemmas easy.

The proof of the global sta bility of the equ ilibrium (.f, i ) in closed loop uses LaSalle\
I nve r te nce Theo rem. Its applicatio n needs to prove some prepara tory lemmas.

Lemma 3. The ume derusetsue 0/ the energy jllncllOn t.~

~ = - kdL1i i - kdRiP

Proof. Th e easy ada ptation of deri vations appearing in most text books on classical
mechanics prove energy conserva tion in syst ems d issipa tion)
[25, 65J. Here extra terms are present d ue to the controller. D

Let us now charac terize the tra jectories of the closed
i , = 0, [i.e. !tW = 0). Note that the use of x(t) sa x means the variable x stays for all
times at the value x and t hat bar red variables refer to t he desired equ ilibr ium to be st.ahilized ,
determined from (x , i ) using Equat ion (3.60)

Le mma 1 . The lHnque mvan ant tmJeci ory in closed loop along wInch ~ = 0, namely n= °
awl i , = 0 , 15 the desired eqmlJbnu m . i.e . x(t) :=h , z (t):= z .

Proof. First , let us show t hat k = t.,= 0 implies tha t the closed loop is at it s equilib-
rium. T he inp ut to rques u \ and U 2 drive directl y the dyn amics of the wind ing ropes
of lengt hs L l and R and generat e the rope tensions, From Equat ions (3.4)-( 3,5) we have

Ul := l ip l - :!.! L1
p,

fl 2 = T2pz - :!'! k
'"
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(recall t hat t he frictio n ter ms 11land 'n are compens ate d). App lying the PO feed back law, given
by Equa t ion (3.62) and (3.63) where 1'1 and 1':2are th e forces corr espondin g to t ht' equ ilibr ium
position (t ,z), determin ed by Equation (3,60), we get

PI (Ii + kdl.!LJ + J.:pL, (L j - Ld) = T1Pl - ~il

P2(t2 + kdRi?+ kpH;(R - m) = '/2P2 - ~ R.

Stnce R = i , = 0 by assu mption, denot e the consta nt values of I I and R by i; k. ( n is
the d~sued equili brium and Ii is the real equilib rium . We wish to show precise ly that these
equilibria coinclde. ] This yields .

11 = TI +J.:pL,(i'l - I II='F1

T2 = T2 + kpR(R - fl.) = ii,
(3.65)

(3 66)

sho wing that the motors delive r constant torques. Notice t hat by Equat ion (3.11) we have t hat

2cOO1{t ) = ~~i : ~ .

Since Td t ) == t , and T2(t ) == T2 are constant , so must be 1(1) := i thus r is also constant. But
th is she .....'s that all configuration variables are constant if L1 = 0 and Il= O. It follows that all
va riables of t he system are consta nt , hence the only tra je-ctory compatibl e wit h ~ = 0 is an
equ ilihrium of the system.

It remains to show that the equ ilibr ium charac te rized by the hatt ed variables colnctdes with
th e desired equilibr ium given by the barr ed variabl es. First , observe that for cverv equil ibrium
position of the load T2 = T2 = mg (see Equation (3.60)). Repor ting this in (3.66) ....-eget

and we concl ude that R= fl.. The equalities Lt = L and ')-= i ....-illbe proved by contradiction
(see F igure 3.19). For, suppose that ') > i , Recal l that 8 = e= O. t hus (3.7) impl ies jj > iJ
Since i ,"'iE (¥, iJ it is easily verified that

L
I

= Is~nP = [sin(21.- :" + Q)
sm, sm r

is a st rictly increasin g functi on of its argum ent , rhua we conclude th at /. 1 > L, Not.k-lnu
tha t kpL , > 0 and using (3.65) we have tha t T1 > t. . But t hen the relations 'n= 2mgcos t
and i , = 2mgcos i imply that i < 1',a contradictio n. One arr ives to a simi lar con tradiction
supposing t hat r < i thus we conclude thut 'Y= l' and L 1 = i t. Since th e equilibria of t he
configuration variable s coincide, t he same holds true for all varia bles of t he system, and in
par ticul ar for the positio n of the load es claimed . U

Le m ma 5 . The jtm ctlOn W defined by (3.61) IS bounded from below, I . e . then; eXists a real
number c such that IV > c
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Figu re 3.19 T he two equil ibria coincide: rea soning by contradict ion

Proof. All quadratic terms in W are bounded from below. The terms t i Ll and T 2 U are also
bounde d from below since bot h LI , R, and f " I "" I, 2, are pos itive . It remains to show that the
term 1ngz is do minate d if z ..... - 00 . For, observe tha t Equ at ions (3.59a) and (3.59b) im plies
that L2 or [' J te nds to +00 if z --. -00. Since R "" L2 + L3• all rope lengt h be ing positi ve,
this implies th at R goes to +00 if z goes to - 00. Rut t hen the quadr at ic te rm ~ kpR (R _ R)2
d omina tes the term mgz and thus lt" is bounded from below. 0

Le mm a 6. Cons td er the set U In the configura /Jon space defin ed by H' :::; C With C E R suc h
that C > c. c being the lower bound of W All stat e van ables ale bounded on U

Proof. From the definition of W a nd since W is bounded from below by Lemma 5, it is clear
that i:, Z. ii , R, 1.1 , and R an' bounde d on U But , using t he quad rat ic relat ion give n by
Equation (3.59c) . LB and LB are also boun ded. and using (3.59b), the same hold s t rue for L

and z, Thu s, by t he geometric constr a int s. ') and "'Iare also bounded 0

T he mai n stability theor em for the
PD contro llers given by Equations

model of t he US Navy cran e together with t he
is as follow s,

T h POfC IJl c. Tne eqmhbrrum (x . z ) o/the two-dlm ensw nal US Navy crone l.$ globally as ympt ot­
ICally stablh;;ed HI closed loop us ing the PD cont rollers (3.62)-(3.63) with lJO oS ltlve bue otnervnse
arbitrary 91l1ns kpl., , k ,II.!, kpR . kdR and lL'ith fnctwn compe nsatio n (3.6 1).

Proof. C hoose 11 sufficiently larg e C such that. for both the init ial condit ion (in t he cr ane 's
workspac e with pulling rope tensions) and the equi librium. W < C with W bein g the funct ion
de fined ill (3.6'1). Define t he set C..: { (q,q) W(q.q) :s;G}. Using Lemm a 3. we get ~ =
- kdRk~ - A:dl . ! i. ~ . Since ~ :s; 0, the sys tem 's trajectories s tay in C, henc e C is positively
invarian t. fly Lemma 6, t he set C is compac t . Lemma 4 characte rizes the set M "" {(q. q)
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~ = O} as beil!/!.the equi librium point (x , f) 1.0 be stabilized. T he claim follows by app lying
Th eorem 5 with t he previously defined sets C and Ai , and V = W 0

R e m a r-k :m. Nonce that the model mas obtam ed under the hypo thes'lS that the cables were n gid
and thus c01d d transrmt posl h w and negatIVefo rces to the wmc hes which 'IS no t the case fo r real
cranes. As long as 0 < ') < ~ , T\ IS guarant eed to be posuwe and the force can be tmns nutte d.

Sim ula tio n st udy

Note th a t, though the PO controller presented in t he previous sect ion (and it s 3D version,
stud ied in the next one) has been success fully experimented on the reduced size mod el of t he
US Navy crane, we can only prese nt simulat ion resul ts ! since we do not have sensors LO meas ure
th e positi on of the load or the ang les of the ropes and to record t hem. Such meas ureme nts
should be mad e possible in t he fut ure by processing the images of a camera .

T he cra ne model is simulated using the following parameters: m \ = 0.2 [kg), J J = J2 =
6.2510. 3 [kgjm 2], 1= 0.35 Q == 0.445 [rad]. These parameters correspon d to the [:80 smal l
sca le model of a real US crane at disposal at t he Cent re Automat ique et Syst emes.

The equilibrium posit ion is set to i = - 0.1 [m] and z = -0.5[mJ. The simu lati on res ults
are given in Figure 3.20. T he tuning of t he gains has been done in simula tion an d thl:' gains
have been set to kpR = 20, kp L 1 = 10, kdR = 10 and kdL, = 20. Note that the globa l stab ility of
the regu lator is not sensit ive to t he values of the design param eters as shown by T heor em 6.

Fri ctio n co m p ens at io n for real ex pe r im en t s

T he following two remarks are in order about the methods and results concerning friction
compensation on t he motor axes

Remark 31. For the real closed loop erpe n mcnts on ttie small SlZf model of tile US l'liavy
crone , the compcnsat um of [n cno« rehes on a simpl e [ncnon m odel mcludl1lg I.:m et!c. ncgalw e
tltSCOUS {Strt beck Effect). Gnd t'iSCOUS[n ctsons (sec Nf). The C07H\IIKmdtng coefficients are
uient sfied expellmentally . Moreover. smau nmplstud e sinusouint ezcua uo ns (m tensions] are
applied pt rTlUlnently on the mo tor's 111 order' to atlOtd as mu ch as possible the reoum of sm all
eerocrnes.

Re m ark 32. It hns been observed dun ng the erpecvnens» fin thl' "m all .~tz r. mod el of th e US
Na t'Y crane that a I"eSldual, poorly damped oSC111atlO!l, wlllch rema ins msvi e a verttcil l cone, 1$

present due to the uncompensated (or under· compen sated) [ricuo n eft t>.c ts. In. fact, the residlln.l
[ncuons mak e unobsen lable these oscll/atlO1lSsin ce they "dissipate" completely th e CO rTf...pend­
mg tensIOn vanallOm m the ropes, Moreover, the amplitu de of the reSidual oSCIllaf!(ill depends
on the ma ss of the load smce OSCillatiOns 'Wlth hlglwr amplitudes of a loud with less mll.~ ,~ 1"I'SItIt

Iden tiC vanahon.~ 0/ the tenSiOns m the ropes as lower amplitu de OSCillatIOns With higher mass .
Nevertheless. dUllng the e~rllnents, the reSIdual o$clllatlQns rema ined always small w.r.t. the
oSCIllahoflS generated by ezternal disturban ces.

"Some ca.me ra recorded t'Xpe rienc<:"8 ca.n be downlo'l<ted at t h" sit" of the (' ...nl r'" A" toml\t;(I"" I't Syst/om{'&
(htt p ://cllS_,,nsmp.ft).
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trajcctor y 01tt10 load A (Ieogth of the vertical rope)·"E 1 0

= IE:':-= I.:::h I
e ss I ""~

.0' -0.05 0 O'~'o 2 sec. 6

::lB'~"'~ ct ,"' h";"""''''''') ::[ -=3"",'.9
E ~~I ~ ~ ~ .

00 ' 0 2

003 ' 0 3

0.020 2 • 6 .0 . 0 2 • 6

Figure 3.20; Closed-loop behaviour under PD control

aA. :\ P D controller fo r t he :lD exam p les of Sect.ion 3.2.4

WI"show in thi s section that for all crane s, studied in Section 3.2.4. any equilibrium of the load
can be global ly stabi lized using PO contr ollers

Reca ll that global stab ility mean s convergence to t he desired equil ibrium in closed loop
from almost all initi al configurat ions in the cran e's workspace wit h pnlllng rope tensions (thi s
is precisely defined in the theore m on closed loop stability ). Recall that pushing tensio ns in
the- ropes have no physical meaning for real cranes

All proofs use La.Sal leos Invar iance Theo rem. given in Sect ion 3.4.1. For each exa mp le we
star t with the formulae giving th e equ ilibrium values of al l variables corres pondi ng to the desired
eqnlhhnum of t he load a nd give the exp ression of t he PO contro ller. Then we const ruct an d
energy function \1' to be used in t he stability proof. In all cases. the proof of the main global
stability t heorem relies on a series of lemmas as in the previous subsect ion . The first lemma
shows t hat the time deriva tive of n: along the integr al cur ves in closed loop is negat ive or zero
:-Zext we show that the equilibr ium to be stabili zed is one of t he finite isolated equi libria in
closed loop . T his is followed by the charac te riza tion of the t rajectories along which the t ime
derivat ive of W vanish. Fmal ly. the boun dedness of t he level sets of \I' is shown on S . t he set
o n which the considered crane may evolve

The proofs of similar lemmas may be identi cal or may differ only in some detai ls of calcu ­
lat ions. In those cases th e proof ill prese nted for only one of t he thr ee stud ied cranes.
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3D canti lev er crane

The mod el of th is cra ne is given in Examp le 9
(;1\, I2' X.1)T such that If + f~ f. 0 and -: 0
a nonzero d istance from th e rotation
by Eq uati on (3.47) and using the
configurat ion var iables. all Lagran ge multip liers,
L ,5. and T" t "" 1. . 3, respect ively:

97

We wish to stabiliz e t he load equilibr ium
the load is under t he rotnti ng rail a t

to zero the LHS of t he dyna mics given
one can calculate the equili bria of all

all input forces, denoted by e. X"

i22 ""~

L2 = T+~- :i']

~]= ~

11 = mg

X 02 = I 2

Lo-=r +~

XI = ,...._~~ I f ~
~~=~
12 = -mg

X21=~

L1 = Cl lT + Vf~ + :t ~

>'2 = -,.;.~

.x~ = 0

TJ = 0.

(3.67)

13 68)

(3 .69)

T he sensors are mounted on t he moto r axes and measure the angu lar pos it jons and velocities,
hence t he rope lengths L" L2 , and the rotatio n ang le of the rail, defined as

{

arc tan (~) if I 21 ::: 0

( = - Tr + a.rc tan ( ~ ) i f X tl <OandXt 2 <0

1I"+ arc tan ( ~) If X t l < O andXt2 ::::0,

such th at ( E (- 11",+11"1 , can he calculat ed toget her with the corre sponding veloctue s i t, Lt ,

and t,. Define t he error variab les as eq, = q, - q, where q, stands for the rth compo nent of q an d
q, for its equilibrium value. Moreover, define similarly e~ = ~ - ~ . Conside r ti le following PO
cont roller:

TI = t ,+ k<fleL\ + k"leL,

T2 = 'F2 + krneL2 + k,.,2et.,

T3 =;- kdJe( +kpJe~

where k", and k<fl' I = I, ,3 fire posit ive numb ers and according to tile fad that 73 = O. Let

(3.70)

denote the "potentinl '' energy stored in the contro ller and define the following energy-like
funct ion

(3.71)

where H'k and ~\/" arc defined by (3.46) and H'ctr/ by (3.70).

L em m a 7 Th e derroauv e of H~ along the closed loop trajecto ries of Ihe systtm 1S gIVe n by

~ = - kd, eL - kd 2el2 - k<fJT2e~ .
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];V and replacing the closed loop accelerations obtained from Equation
PD controller, we get

(3.72)

Differentiating Equation (3.6S) and using Constraint (3.44c) we have

this expression in (3.72) and noting that itC,(q) = 0, ~ = 1, ,5, the lemma
D

Lemma 8, Consider the closed system
controller (3.69). Ii has two equilibria. one

the dynamzcs
bezng gwen by

untli the PD

PTOOf. Let a. closed loop
The vector q satisfies the

of the system be denoted by q and assume that < O.
set of equations:

o= -~3(X01 - xtl (3.73a)

o= -~3(X02 - 1:2) (373b)

o= ~3X3 - mg (3.73c)

o= ~3(XOI - xr) + ~l(XOl - OrX2rl + ~2(i01 - X21)- ~5X22 (3.73d)

o = ~3(i02 - .f2) + ~l(X02 - 01X22)+ ~2(io2 - X22)+ ~5i21 (3.73e)

o= ~3(L2 - Lo) - ~2Lo (3.73f)

o= -~J"] + mg + kp1(L] - Lrl (3.73g)

0= -/\3(L2 - Lo) - mg + kp2 (L2 - L) (3.73h)

o= -~101(iol - Ltl:r21) - ~2(X01 - X21) + >"i.[2J + ~5i02 - kp3([ - €)X22 (3.73i)

o= -~JCYl(X02 - 0']X22)- ~2(i02 - i 22)+ ~4i22 - ~5iol + kp3([ - €)i 21 (3.73j)

t.ogether with Constraints (3.44).
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Conside r now t he oppos ite c8.!'c i 3 > 0, Since L2 - to must be posit ive and according
to Con strai nt 3Alc. .1:3 = L 2 - Lo. Repor ting this re lation and t he resu lts of t he previous
d iscussion in (3.73), the remaining nont rivial equat ions [1.1'('

O= 2mg + l.:pd Lj - i ll

0 .,." -'2 mg + kp2(i 2 - i 2)

0 = (0 1 - J)mg+ )q r

(3.74)

which allo ws to calculate the equ ilibriu m values £10 £2 and ~4. different from t he desired
equilibriu m and the lemma follows. []

R e mar k 33 . Notic e that , m the case 1:3 > 0, tne lond ,l fnnli~ above the trolley and the resulting
tensIOn of the rope attac hed to the load IS I i + kp1 (L I - £d = mg - 2m g = - m y < 0 wh~ch

m eans that th e rope IS pushed, a highly unreousnc situation rn pmcnce.

Lemma 9, 7 = 0 1mplt es that the .~ ys t em f1l closed loop is In eqUllibnum

P roof. We need to show th at all variab les are constant if ~ = O. Accord ing to Le mma 7

~ = 0 im plies that all measured variab les are in equilibrium i.e. i., = 0, £ 2 = 0 and ~ = 0

Denote t he equilibrium values of these variables by a hat. i.e. L l = Ll . DJ = £ 2, a nd { =~ .
Since t he RHS of Equat ion (3.69) is constant , the same holds true for the mot or forces. Let U~

denote their constant values by f l . f 2 • and f l , respectively.

Ob ser ve th at ( = 0 impl ies tha t i n = :in = 0 Cons tr aint (34 4d) implies that X2lI2 1 ­
X22I 11 = 0 and. together with r 2( = i:nx~ ] - X21I n = 0, which proves tha t i 21 = L12 = O. or
X1l = X2 1 an d X22 = i n· Further. using Constrai nts (3 4 4a ) and (3.44e), we get t ha t .TOl an d
X02 are con stan t . namely T OI = £01 and .Too = roo and. by (3.4-1b) , we immed iate ly ded uce that
Lo is const an t , i.e. 4J = Lo.

We next prove t hat Al is constant by remar king that (3.47&) read s 0 = - >'IL I +T, + kpl(l_l ­

i d. t hus >'1 = '\ 1' Ac-cordingly, since (3.47h) read s 0 = - >,J( /.2 - 4) + t 1 + kp1(l2- /'2), we
have >'3 = ).3 and . by (3.47f), >'2= ~2 . Now. (3,47i) and (3,47j) read

o = - ~l OI(iol - Ct-1i 21) - ).2(i Oi - i 21) + >' ~i 2 1 + >.\i oo- kp3({ - ( )in

o= - ~l OI(i02 - Ct- 1in ) - .\2(i 02 - i n ) + A4i n - A~ill l + kp3({ - ( )i 21

(
i " i O» - -

which proves , by remark ing that det "" = - 1:2d ol( 1 + tan 20 #-0, tha t ..\~ = ..\4 and
In XOI

A\ = '\\. Final ly, using (3.47d) and (3.47e). t he same ar gum ent yields X l = Xl a nd X2 = i 2

an d. combined with (3,44<:), X 3 = X3 which achieves to prove t he Lemm a 0

Le m m a 10 , The juncuon W defin ed by (3.71) t.S bounded from below on S (defin ed by (3.45)),
e.e. there eruts a finite real number c such that c :sW {q.q) l or all (q. ti) E S
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Proof. Since tV = I V~ + O kp1ei, + Ti eL,) + (1kp2eL + T2e L , + ffl.QX J ) and since IV.. ;?: 0 and

!kp1et, + r ieL, "" !k,1(et . +!;f - ~. W~ have IV 2: + (!kp2eL+ T2eL, + mg:c3)
But, tak ing into account (3.44c), we have J:~ = (L2 - - X l ? - (xoo - X2)2 :5
(L2 - 1.0)2 :5 L~ and since xJ :50, we get XJ :::: - L2. Th ug m.q.TJ - mgL 2 = mg eLl - mgL 2

and !k p2eL +T2eL, + mgXJ ~ ! kp2eL +(T2 +mg )eL, - m gl,:z= ~ kp2 +~)2_1'\::2)1 _
mg L2• Using th e fac t that 1'2 = - m g. we have pr oved that VV 2: - S~ - mg l'2 = c and the
lemma follows 0

Lemm a 11. Et 'ery lellel set W (q ,!j) = c:OTi S. WIt" C > C, c bemg the lower bound of IV on
S , IS bounded.

Proo]. Assume t ha t W = C. Following the same lines as in the previou s lemma, we get :

I 1? - , 1 ( T,)2 I :1 r
2

:1
C = C + 241 +mg L2 2: Il l. + 2kpl eL , + k;; + 2k,neC.. + 2k,.Je(

wit h

w..= ~ [tm,x? +t(mBi~ + Mx~) + t m, i~]

From the inequal ity (3.75) , we immed iately deduce that

x? s Ci.l i:~ ::;:CU) , x~ s CU , L~ s Cu , 1 = 1.2 i: ~ ::;:C1.3

and

(3 75)

where CI.,. C1,o., Cl,z,. Cu,. Cit Cz, C~ are suitable
( are bo unded L I • Lz and (are also hounded . Now.
X~2 .::; r 2 Next. using Const rai nt (3.14a), we obt ain
const a nts COl. C O'l. It follows, using Cons tra int
( ~ - 1'0)2 ::;: CL20. by (3A1c). we get xi:s C; . x~

o~ X3 ~ - L2 which achieves to prove that If and are

constants and since L], L2 , and
(3,44d ) yields X~ l ::;: r 2 an d

X~2 ::;: CO2 for suit ab le
::;: CLO and , aga in . since

we have already proved t hat
o

Theo rem 7 Denote by ij the eqmlrbnum diff erent from ij . the destred equrilbn um gIven by
the o] the load (.r l! . i:~, J:3)T Th ere ensts a POSltJw> numlJE,r C such tha t jor all uu/w. I

(ql , qj ) E S with W (q" ih ) < 6 thr tHlJf.ctOlY of the closed loop system converg es
ta q

Recal l first th at W (q. O) = mgx:! < °by const ruct ion. Let C = W (q, O). Using the
of IV (Equa t ion (3.7 1») we have

a ,
c = ~ ~ 4,( L, - L , )2 + 8 T,(f.• - i ,)+mgiJ . (3.76)
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Observe th~t 7'1 = mg and ! 2 = ,-mg.by Equation (3.67), and further. by Equation (3.74). WI"

haw" /' 1 - L I = -'!f;: and L2 - L2 = ~~, By the proof of Lemma 8. : hc equi librium ri is such

that 3:3> 0, Replacing in (3.76) we get C = m gi 3. hence H'(q ,0) < C

Define the set S6 = { (q,q) E S IV (q.q ) < C} By tile preceding discussion . th e set Se
conr.ains t he equilibrium g. Moreover, Sc is bou nded by Lemma 11 and posit ively invaria nt by
Lemma 7. Applying Laga lle's lnvana nce Theorem, all t rajectories star t ing in Sf! app roach q as
/ --00. 0

R e m ark 34 . The set S(: ronnot /l(' easily descnbed by a St t oj mequalltles on the components
oj q an d q. However. It can be seen that 11 contalflS all feasible confi.qumtwns where the lood IB

under the crone at the cOlldltWTl that the mtt lal tleloCity IS small enough If the m tlal dis'tarlce
to the cqiuhbr vum point t.S large,

:\D overhead cr an e

The model of t his crane is obtai ned in Example 10. The control objective is t he same as for
the cant ilever crane of tile preceding subsection: tile sta bilization of a load equilibrium given
by (Xl, x2, .f3f such that.t3 < O. From the dynamics (3.5l) . the equilibrium values of t he
remai ning var iables can be obtained as

i0'2 = i 2

L] = XI -+ 1 - aj

~2 = -~

11= - mg

to! = Xl

L2 = - X3 + X I

-'3= 7;
73 -= o.

i o = XI

>,j =~

TJ = m g
13.77)

T he measured va riables are LJ, ~. and X02, t he position of t he moving part of the structu re
[i.e. the bridge with t he rail) . Defining t he error variables as in t he preceding subsection. the
PD controll er reads

T1 = t, + kdJfl., + k"lE'L,

T2 = T2 + kd2Cl" + /';1'2('1..,

T3 = kdJ c ,.01 + l.:p3(' r o, '

(3.78)

with kd , and kp, . I = l, , 3, real positive numbers a nd using that 7'3 = 0 by (3.77). Let the
potentia l energy stored in t he a bove PO contr oller be defined as

and introd uce

(3.79)

where Wk and WI' are defined by Equation (3.50). We ran now stat e similar lemmas as for th e
3D cantilover crune ill th e pr t-'c"di np, paragrap h wit h similar proofs which are omitted
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Lemma 12 . The den vatlVc of W along the closed loop tmJectones of the syst em u gIVen by

~ = - kd1d. , - kd2eL- kdJe~02 '

Le m m a 13 . Con sider the closed loop system ob/am cd from the dynami cs (3.5 1) WIth the f'J)

controller (3.78) . It has two isolated eqiuhbria . one alwhlch tS gwen by {x1>i2. xJ)T

Lem m a 14 . ~ = 0 imptses that the system In closed loop U lfl "qull,bnum

Lem m a ):1. The [un ction.IV defin ed by (3.79) IS boundedfmm below on S (the setS rs defined
by (3.49)) , r.e. there e.usts a jinue real nUTIIOCrc such: that c S iV (q.q) for all (Q,4) E s .

Lemma 16. ConsIder a level set of lV (q,q) on 5 , such that H! "'" C, wllere C > c, c bemg
the lower bound of lV on S . Ttus level set IS bounded

T heorem 8. Denote by ij the equllibrmm dlfferentfromq. For ail india! c01ll1Jtw ns (q,.q/ ) E S
such that H' (q/ , 'lJ ) < W (q.O) = C. the closed loop trajectories approach the desired eqUll1bnum
q, gwen by the posltwn oi the lood (Xl' i2 , X3)T

Note that Remar k 34 also ap plies here .

3D US Navy cra ne

T he mode l of th e 3D US Navy cra ne is presented in Exam ple I I. 'vVe wish to sta bilize th e

equilibr ium (x l. X2. i 3. i 03Y such t hat a ir <~ < r and e, < XOJ < ~XJJ [l.e.
both th e Iree pulley and the load are unde r t he boom ). T he equilibria of t he configuratio n
var iables. Lagrange multipliers. and input forces are

132=~ £0= J(I3J -.rOJ)~+(r-~)2

LI =~ -1'(13)2 + (Olr- ~)2

l~ "" V (02IJJ - XroP + (a'll"" ~~j2

LJ = iro - IJ + / (X33 - XOO) 2 + (a2 l"" _~)2

X3] =~

>'4= - J-i{'..7";

1'3 = - m g

>' 3 = -~

7'4= 0

(3 ,80)

(Recal l t hat X3J is a geometric parameter and not a configura tio n varia ble , hence it has no
equllibrtum value.} Th e equilibrium values XI, X2• '\ s. Ti. and "Ii can be obtained by solv ing
th e {linear ] Equations (3.5Gh), (3.56i), (3.56f). (3.56d), and (3.56k) Equat ions (3.56h).
(3.56i). (3.56f). (3.561'). and (3.561)) if Xl f 0 (resp. X] = 0) with LHS
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Moreo ver. define the rotat ion angle of the platform as

{

arctan(~) if X 3J > 0

( = ~7I" + a;:~an(~) ~f X31 ~ 0 and X 32 < 0

11"+ arctan{;;; ) If X~l1 < 0 and X3 2 ;::-:0
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(3.81)

which is similar to (3.68). Let the error variables be calculat ed the same way as for th e can tilever
crane (includ ing e{ ). T he PD controll er reads .

T1 = TJ + k'tleL, + kp 1e/ . ,

T2 = T2 + k,f2eL, + kp2 eL .

T3 = f 3 + kdJ eL, + k.,..1eL,
Tl = T~ + kl14 i { +~e(

an d the potent ial energy sto red in the controller is given by

Introd uce th e funct ion

where Wk and Wp are defined by (3.55) and Weld by (3.83).

(3.82)

(3.83)

(3.84)

Lemma 17 The den l'atlUe of W along the closed loop traj ectories of the syst em 19 gwen by

Proof. Simple ada pta tion of the proof of Lemma 7 0

Lemma 18 . CO'lSlder the closed l oop system obtamed the dYllamtes (3.56) WIth the
PD controller (3.82). It has a {lmt l? numbe r f qlll libn <1 . 0"" of which IS gwen by
( 1'I. i' 2.i3)T and 1'03

Proof. Reca ll th at al l rope length s Ll> £ 2, L 3 , and [' 3 - Lo are assumed to be pos it ive. Denote
by q an equilibr-ium of t he dosed loop system and by .x,. I = I. . 5, t he t>quilibria of the
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correspond ing Lagrange multi pliers. Then q and -\, satisfy

o= - ~4(IOI - ia) (3.85a)

0= - ).4(i o2 - X2) (3.85 b)

o = -~4(iOJ - i 3 ) - mg (3.SSe)

o= ~~ ( i'o l - i t>+ ).J(i 01 - OIXll ) + ).2(i 01 - Q2i31J + ).3(i01 - I31) (3.85d )

0 = ).4(iw - £2) + ),j (iO'l - olin) + ).2(i o2 - Q2i.u) + ).3(£02- in) (3.S5e)

0= ).4(:i:03- i 3 ) + >' di o3 - OIIl3) + )'z(iOJ - (};2.r33) + >'.1(i;OJ - .1:33) - mog (3 .85£)

0= ).4(L3 - t o)- >'~Lo (3 85g)

0 = - >' ]11 + T1 + k"l(l'1 - Ld (3.8Sh)

0 = - 5.) "2+12+ kp2(L2 - L2) (3.85i)

0 = - ).\(L3 - t ol + 13+ kp3(l'J - La) (3.85j)

0 = -). IUI (£OI- OjX311- ).2Q2(i ol - 02X3d - ).J(i Ol- X;U)+ ).si 31- kp4«( - ~)i32 (3.8Sk)

o= ->'10 1 ( io2 - Ct' J i J2 ) - >' 2a2 (i02 - Q2in) - >'J (i02 - in) +~i32+ klN «( -{)iJ I (3.851)

A similar proof to the ones of th e prev ious exam ples. roughl y speaking using elimina t ion argu­
ments. can be done here. However , to break the monotony. we now propose a d ifferent proof
based on more physica l and geometr ic Idees .

From Eq uat ion (3.85<') we have th at .\4 t- 0 and 1:3 - Too t- 0, hence it follows From
Eq uat ions (3.85a )-(3.85b) t hat i l = .TOI and .T2 = ill"!. Le. t.he rope section between the free
pulley and the load is vertic al . T he equilibrium implies that t he net force at the free pu lley is
zero, hence t he resultant force transmitted by t he ropes of lengths {' I and {'2, and by t he rope
section of lengt h Lomust bealso vertic al. Since t hese rope sect ions are coplanar , their common
plane is again ver-tical . Hence both t he free pulley and the load are in the same vert ical plane
which is deter mined by the boom.

\\'ithout loss of generality, we may ass ume thut the choice of the base fram e is such that
i 02 = i 2 = in = 0. Reporting this in Equat ion (3.851), we have th at

0 = kp4(( - ~ ) :hl

hence ( = { (since kp4 > 0 and t- 0). Using Constrai nt (3.53e) and the definition of the
rot ati on an gle f. (Equation we have that hi ...i J ), and by th e choke of the base fra me
IJ2 = X02 = 1'2 = O. Thus we conclude again (as for the 3D cantilever cra ne) that for all
equilib ria in closed loop, the or ientation of the boom wit h t he winches coincide wit h its desired
posit ion

For the equilibr ia posit ions of the free pulley and t he load in t he vertica l plene determined
by t he boom. one ca n d istin guish four cases to obt a.in four different equilibr ia·

1. i J < X OJ < ~X3J : th e equilibrium qcoincides with q

2. Xl > i OJ and -iua < ~XJJ (t he load is higher t han the tree pulley): q differs from Ii

3. i J < f ro and Xro .> ~X3J (the free pulley is over the boom ): qdiffers from q
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4. X3 > X03 and X()'1 > ~I3.1 (t he free pulley is over the boom and the load is higher tha n
the free pulley): qd iffers from q

T he last thr ee equi libria exist matbeumt lcally hilt have no physical mean ing for ree l crane s
because they imply pushing forces along one ore more rope sect ions 0

Le m m a 19 . ~ = 0 tmpues that the syst em m d osed loop IS J1j equ/[lbn1l11l.

PIVOf. ~ = 0 implies tha t £1 = £2 = 1,3= ( = 0 using Lemma 17, hence t he rope length s L"
t = 1. . 3, are constant. Denote the constant values by a hat so that I. ,(t ) =: j" and ~(t) :=; ~

The cons tant rope lengths L, also imply that Lo is constan t since the rope sections of lengt h
L1• L~. and Lo terminate a ll on the free pulley. th us LoU) =: Lo. Prom the expr ession of th e
PD controller (3.82), we have th at T,(/) =: 1;. I = L .1.

T he constant rope lengths imply t hat the LHS of equations (3.56h)-(3.56j) vanish an d the

Lagrange m~lti plicrs AI, '\2, and A, are constant, their CO~Slant values bein g ~ 1 :. C' ~2 = f~.

and A4 = ~. Then Equation (3.56g) gives ~3 = ~4?'

Now, let us use the fact that f. is also constant which implies, using it s defini tion (3.8 1) and
Constraint (3.53e), that X 31 and Xn are const ant . Denote their cons tant values by 2:31 and i 32.
Without loss of genera lity, we may chose t he or ientatio n of th e base frame such t ha t X32 = 0
T hen Equa tion (3.561) can be rewrit ten as

0= - xo2{A]OI + ~202 + A3 ) + t~X31,

hence X02(t) sa Xt.2 Wit-h a different choice of the orientation of the base fram e, such that
.T3l= 0, we have similar result for XOI. thus xol(l ) ::::i ol_ (T he const-ant values of t.hcse variables
are di fferent for different orientations of t he base frame . However. to prove t he lemma. i t is
un necessary to give the equi libria values, it is enough to show tha t t hese va riables remai n
constent .) Next . replacing in Equation (3.5Gk) or in Equation (3.561). al l var iab les are constant
except ..\S which implies '\ s(t ) =: .xs.

Replaci ng in Constrain t (3.53a) :

~ ( (XO] - X31f + (i02- X32f + (X03 - I33)2 - i.~) = 0,

it follows th at Ioo{t ) =: .fcc since all variab les are shown to he const ant except. .T03. Then the
LHS of equations (3.56rl)-(3.56f) van ish and t he only variables which are not proven to be
constant. on the R HS of t hese equ at ions axe .rr, X2 , an d X3. Hence x,( t ) =:;: x" I = 1. 3 and
the Lemma follows. 0

Le m m a 20 . The /1mctlon W dtfined by (3.81) lS bounded from below on S (the set S IS defined
by (3.54»), t.e. there ensu a finite rral number c such that c ~ W (q, q) for all (q, q) E S .

Proof. Wl ~ 0 by construction. Before studyi ng t he terms H~<.lrl + WI" observe th at Con­
s train t (3.53a) implies (X03 - OI I33 )2 = Lt - ( XOl - Ctjx3d2 - (I ro - CtI X32)2 ~ Li , hence,
X33 being constant , CtjI33 - L I ~ X03. Similarly. using Const raint (3.53c) we obtain that
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X.11 - 1'0 S sea S I J J + L(j. FUrther. using this inequality together wit h Constra int (:.1..1.1<1). we
get. Xl - L3 S XJ S Xl + LJ . (T his inequali ty is also cleargeome trically, since the load can not
be lowered , from th e winch of its rope. more than the corresponding rope length.) Let us use
now these inequa lities to find t he lower bound of Wet d + \\;,,;

a

WctTl + tvp = L,-,

hence ~F is bounded from bellow.

Lemma 21 . COTlsldera letid set
the lower bound of IV on S . Ttns

(3.86)

o

on S . such that tv = C, where C > c. c bemg
ts bounded

Proof. Let W = C U~in& t he proof of the previous lemma (sec (3.86)) we han' tha t

C' =c + !!,+ mg)2 _ mg: olxJJ _ [.1) + .!.L + (t J + mg)2 - mg(z33- I 3)
2kp1 2kp2 21..".1

? Wl + ~kpl (eL ' + T
1 ~lmg) 2 + ~ kp2 (e L• +~) 2 +

] ( Tl+ mg)2 21 2
"2kpJ ec, +~ + r "2kp4C{

where {Fk is defined by (3.55) . It follows t hat

(3.8 7)

:i::::; CJ., 1'&' '5C 1.0.

~kpl(e L, +~r ~CLl
;~::::: CUI 1= I ,

(eL1+er ::; G£2
. 3 :i:~,::;CJ3' 1 = 1.2

(e L . +~r :::: C£l els C{

where C L I' C L O " CU". ~ = 1. .3. C1.J1• i = 1.2. CLl. Cr.2 ' GLJ. and c, are suita ble posi ti ve
consta nts Since i ,. 1 = I. .3 . and t; are cons tant, the var iables L" t = L, ,3. and {art'
bounded . By Const rai nt ( 3.53~ ). we have th at x;, ::; T for i = L 2.
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We use Cons trai nts (3.53) to show that the remaining variab les ar e bou nded For. observe
th at b}; Constraint (3.53:) there exist positi ve constants CO!. CO2. and em such t hat LJI :5
Co~ . II» :5 CO2, and Xo,l :5 em. Hence £0 is also bo unded by (3.53c): L.J :5 e LO_ The
variab les Xl. I2. and I3 ere the n bounded by (3.53d). The boundedness of Lo follows by
d ifferentiati ng (3.5.'k). 0

T he o rem 9 . There ensu (j posJtlVe num ber t suc h. that for all tn ll1al condi tions (Qf ,1d € S
WIth W (qf,r,i,) < C the close d loop t lil]ectone s approach the aeevea eqtllllbnum ij , g rv tll by the
]JOSli lO ll 0/ th e load (iI, X2, x3f and lIy the height of the fr ee pulley £00'

Denote by 1j, 12, and .]3 the eq uilibria different from the des ired equilibrium ij, and
let = I-V( q" 0), I = 1,2,3. Define (; by c = min{CI ,C2,C3 } . Define the set 56 =
{ (q.q) E S W (IJ,r,i) :5t }. T Il(' S('L SC is boun ded by Lemm a 21 and posit ively iuvariant by

Lemm a 17 Applying LnSnllc 's lnvariancc Th eorem , all t raj ectorie s starti ng in Sc approaches
rjas t -+ oo. 0

Note again that Remar k 34 applies here.

3 .5 Lo ca l t ra cki ng wi th m easureme nt feedba ck

T he stability of the cont rollers presented in the previous sectio n makes possible to d isplace the
load from an init ial equilibr iu m iif to a des ired new one, de noted by qr , by sim ply changing
t he references of the me asu red var iables and the inpu t forces in the controll er. However. doing
so. the path followed by t he load approaching t he new eq uilibrium can not be predicted. and
un desi red t ransient mot ions mar occ ur before t he stabiliza tion . Such unpredictable transients
are unac cep table if the crane operates in a congested enviro nment.

Therefore. it would be pre ferab le to influence t he t rajecto ry of the load betwee n me t wo
equilibr ia by assu ring the tracking of a des ired pat h. T he pro blem of plan ning su ch trajecto ries
has been undert aken ill Sect ion 3.3 . T he solution presented there allows to calc ulate a t ra jec tory
qc(t ) of the configu ratio n variables . its deriva tives. and the corres ponding moto r forces T",.
i = 1, , 11+s + 1 (d + s + I gives t he number of motors), such t hat qo(lf ) = q/ and qc(tF ) = qF
with t f < I F . Because of the unavailab ility of measu rements on the load posi tio n . the initi al
equ ilibrium iiJ for t he motion plan ning can be calc ula ted only th e measur ed var iables
(positions of t he motor axes), by supposi ng that the load is to an equilibr ium . Hence,
ther e is a d ifference between the real in itial configuration q(t ,) and th e initial configurat ion iiL
used for the motion planning

We Invest.iga te in th is sec tio n the closed loop be havi or uf the 3D US Navy crane Ex-
11) using th e sa me PO controller as for s tabilization, b ur with ti me-varyi ng

and T",(t ). I = L , 4. For, we repl ace in t he controller the equilibrium reff' rf' n~f'~ of t he
meas ur ed vari ab les and t he input forces by their t raj ectories connecting t he two eq uil ibr ia of
th e load
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T1 = r.,+ kdJcL l + kp1E£1

T2 = T2c + kd2 EL 2 + kp2 l L 2

13= T3c + kd3f £3 + kp~jCL3

Tj = T1c + kd4E( + kp4cC

Chapter 3. Crane control

where q is given by (3.52) and
by

(3.88)

desired trajectory even if the
This allows to reduce the transients

a path avoiding obstacles

As a conclusion to this section, let behavior of the stabilizing PD controller
and the tracking PD controller for the 3D crane.

Comparison of the tracking and the stabilizing controllers by simulation (3D US
Navy crane example)
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f igure 3.21: Closed-loop tracking behavior under PD contr ol. Trajectories of t he load in the
horizont al a nd vert.lea l planes: i) sta bilizing equilibrium contr oller (has hed line ); u] tracking
controller wit h moti on planning; 111) reference to steer to equ ilibr ium efoeg a str aight line
(dott ed).

Figur e 3,22' Closed-loop tracking behavior under PD control. Tra jectory of t h.. rope lengths:
I) sta bilizing equ ilibrium contro ller (hashed line); 1i) t racking cont roller wit h mot ion plannin g;
ttl) reference to steer to equ ilibriu m along a stra ight line (dot ted) .

t F = 2.5 Is]
F igures 3.21-3.24 show tilt' results of the simulation. T he stabilizing controller shows f], large

error with respect to the referen ce tra jectory and the load approxima te ly sto ps at th e end point
after more than 3 periods of oscilla tions. On the conrrery. the locally tracking cont roller shows
a much smoother behaviou r concerning both t racking and oscillat ions at the end point . With
t his trac king contr oller. the load needs less than 2 periods to get a comparab le behavior. T his is
due to the fact that the reference trajectory ar rives at the endp oint with van ishing derivat ives
up to orde r 6 and t hat the deviation with respect to th is reference along t he traje ct ory remain s
milch sma ller tha n t he devia tion with respec t to the end point. T hus. the feedback (3.88) yields
sma ller accele ratio ns and conseque ntly sma ller oscillations. th ough the rate of decay of t he
energy is the same in both cases

T he settli ng time of the locally tracking controller is approxima tely 2.5 [8J, almost the same

of t he load posit ions are llnavailabl<>. no E'xp<'riu,..nt al rpsull.!lar" pr_ute.:! For more dl'lail s. pl.-are refer to
the videQ& .wail "blE'at hl tp :! !c as.ensm p.lr
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Figure 3.23: Closed -loop tr acking behavior unde r P D cont rol. Traj ectory of t he an gles : I)
sta bilizin g equilibriu m cont roller (hashed line): Ii ) t racking con tr olle r with moti on planni ng:
1II) reference to st eer to equili brium a long a straight line (dott ed ).

',~ ll--- !'-.'~",:
!.j!:, ..... \\:':~:_,-,' !'.

.- .. ~~~
Figure 324 Closed- loop t racking behavior . mot or to rq ues: i ) stabilizing equili brium cont roller
(hashed tracking controlle r with motion planning: m ) reference to steer to equilibr ium
along [dotted }.

f1S the prescribed travelli ng d urat ion I F - tl of the refere nce trajec tory, whereas the set tling
time of the global stab ilizing cont roller is about.') [51 in the same condi tions
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C onclusions

The mot ion planning problem has been studied in this t hesis for two classes of mechan ical
systems, namely hand -object struc tures and weight ha ndling equipmenta (cranes). We have
shown that simple solut ions call be obtai ned when t hey enjoy flat ness or Liouvill ian p roperties.
without restr icting to quasi-static motion or to specific input signals.

In t he case of cranes, we haw also proved a globa l sta bilization result of an a rbitrary equi­
librium point by measurement feedback PD controller and shown in simulat ions tha t it could
be extended to track t he reference tra ject ories com puted by our mot ion planning al gor ithm .

T he classi ficat ion of HQSs W.Lt. t he flatness and Llouvillian propert ies , however. is not
com plete. The exte nsion of thes e propert ies to larger class es of HOSs. which would enlar ge the
applic ability of t he prese nted mot ion planning met hods. remains an open problem.

It would be also interesting to analyze t his problem in the sett ing of Lagran gian sys tems
and to be ab le to detect th e flat ness or Liouvillian prop erty di rectly on the Lagra ngian as we
have done for cranes. This cou ld be also motivated by the fact that the flat and Liouvillian
a pproaches are not affected by the presence of system dri ft which ap pear s once the dynamics an'
consid ered in the model. T his is not straightforward for methods exp loit ing the Lie algeb raic
st ruc t ure of dr ift.less syste ms [24, 39. 45. 5.31. Note nevertheless that geometric cons tr aint s have
th e sa me stru ct ure for all cran es allo wing to conclu de that all t hese mechani sms are flat . For
HOSs. the geometric and kinematic const ra ints depe nd on th e surface geomet ry of the fingers
and the object which makes genera l sta tements more d ifficu lt to obtai n.

T he closed loop co ntro l of HOSs allowing to sta bilize the tr a jectories calcu lated by t he
prop osed mot ion plann ing algor ithm s is 1I0t addressed in this work. it s study should be th e
subjec t of future resear ch.

For t he cran es considered in t his thesi s. the flatnes s property has been shown for all elements
in a class, and the closed loop control , more precise ly with meas uremen t feedback, is addressed
for some exam ples in the class. Tho ugh t he sta bility resul ts seem to be fairl y general. t heir
proof must be adapted in each case to cope with the specific geometry of each ki nd of cra ne.

A nat ural field of ap plica t ion of t he motion plan ning for bo th classes of mechan ical system s
is teleoperat.ion or remote cont rol. T he oper ator . supervising the scene t hank s to cam eras . gives
t he tr a jectory of the dlataru object , for 1I0 Ss, e.g. by man ipula t ing a vir tual objec t t hrough a
glove equipped wit h suit ab le sensor s. or t hat of the dis tant load. for cra nes, using for inst anc e
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adap ted to
theop-­

final sta te and the new tra jectory must the refore
of the object or t he load. with nonzero velocity,

and possibly must respect ad dit ional cons traints on

to

a joystick or a gamepad.

Note that the mot ion planning
include d isplacements between
erator may
start from t he instan taneous transient

accelerati on. and hi~'~~" ;:~:~'~:';;;::iit~:~:'~e::~;:::,:,~':o:::~:::~,:;j::::~~n~~:~:~::;~:': i~~variables.
pro fit of the cameras . to obta in such informat ion on-line

Once t he reference trajectories of the actua tors and the measured varia bles are calculated.
they are tran smitt ed using u network connect ion (or anot her of ielecornmu-
nication channel) to the local controller. means here the is loca ted at
the same terminat ion of the link as t he mechan ical syst.em.) The aim of the
local contro ller as in this to stab ilize the reference Note t hat th e visua l
informat ion may used as well the distan t operato r for feedback, for on-line
motion planning an d in ti le local loop

Such a remote control scheme fits well with th e met hods developed in this work and might
be implemented on the reduced size mode l of the US Navy crane.



C on cl usions

Le problem a de la planiflcation de tra ject oires a etr etud ie dans cet te these pour deux classes
de sys tem cs meca nlquos structures mai ns-obj ets et cnglns de levap;e (gru ce). NOllS avons
ob ten u des solutions simples pour les system<>s plats et Liouvilliens . sans se restreic dre a des
deplucements qu asi-statiques ou a l'ut illsatton de signaux d'e nt rees particuliers.

Dans te cas des grues, nous aeons e ussl preuve un resultat cit> stabilisation globule d' un poin t
d'equilibre arbitraire par boudage P O par retour de sorti e et montre en simulat ion que l'on
pcuvait l'e tendre au cas de la poursuite des tr aj ectoires de reference ob tenues par planification
de trajectoire .

La class ification des st ruct ures main s-objet s selon leurs prc prietes d'e tre platsou Liouv illiens
n 'erant p;i..'; comp lete, l'ex tension de ces proprietes a une clessc plus large de stru ct ures mains ­
ob jet s res te ouverte. Cela pourrait egalf'ment elargi r Ie champ d'appllcatlon des algori th mes
de pla nificatlon de traj ectoires presen tee

II sere u en outre rnteressenc d'analyser ces proprietes dans le cad re des systemes Leg ren ­
giens. approche que nous avons utl lisee pour les engins de levage. Une telle dem arche pou t
etr« motiv e- par le fait que lee algonthmes de pla nifioation de trajectoircs presentes pour les
systc mee plat s ou Licuvilliens ne sen t pas limites aux syetemes sans derive et pe uven t ei nsi
er re uullses pou r les modeles avec dynami que . Ce la est motns cvidem s! on utilise les methodes
qui exploite nt Ie str ucture d'elgebre de Lie des champs de vecteu rs des systemes sa ns der ive
)39, 45, 53. 211. n fau t cependant noter que les contrai ntes geometriques on l Ill.meme struct ure
pour reus les engins de Ievege. Dans le cas des st ructures mai ns-objets, au contraire . les
contralntes dependent de lc geometr ic des surfaces des doigt s et de l'obj et , re Qui nc permet
pas d'envi sager facilement des resultats plus generuux.

L(' probleme de la comma nde en boucle fcrmee des main s de robots n'esc pas aborde d ans
cctte these et la sta bilisation des trujectoires peu t faire l'objet de future s rech erches.

Concernant It's engins de levege, In plati tude a He moru ree pour une classc ete ndue de
mcc anis mcs. La boucle Ierm ee. ou plus precisement 1£1. commandc par retour de sor tie. a e tt>
l~t\ld i{'e sur quelques exem plcs de cette clesse. Blen que les rcsult ats de stabilue semb lent et re
d'une porte rela t.ivement genernle. leur preuve dolt etrc ndaptee dans chaq ue cas de grue pour
tcutr com pte de sa geome trie specifique

Une appl ication na t urelle des algorlthmes de planlficati on de t ra jectoires presen tee dans
cette these est la tele operenon ou la comm ande a distance . L'npera teur , sur veilla nt lSI. scene .il.
I'aide de ca meras, donn e la tr aj ectoire dc l'objer disra nt., dans lc cas de le manip ula tion. par
exemple a l'aide d'un ge nt equipe de capteurs edepres . ou de le char ge dlsra nte, dall s )e cas de
Ia comma nde des gr ues, en ut ilisa nt un "joystick" ou u ne "ga mepad"
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Une telle configura t ion pou r It1commande a d istance pose un probleme de plan ificat ion de
trej ectoire iegeremcnt different de celui qui est abord e dans ce travail. pour des tr ajectoires entre
deux points qui fie sont plus necessaire ment des points d'equilibre. En effet , l'opera teur peut it
tout instant vouloir modifier lc point final a atteindre. et la nouvelle tra jectoirc, qui repart. de
Ia pos ition act uelle, hers de l'equilibre, doit prendre co compte une vitesse , accelera tio n, etc..
initiales instantnnces non nullea, et respecter d'eventuelles conrrain tes sur les entrees. Ce calcul
en ligne necessi te des mesures sup plem ent eirce. par exemple par t rai te mcnt. d'I mages pou r l ifer
profit des cameras.

Les t .ra jectcires de referen ce sour ensutte tran smlses au contrclcur local par un reeea u ou
par une llgne de commu nicatio n differente. (Le mot local destgnc ici I'emplacement phys ique
du comr oleur dont on suppose qu'il "I" t rouvc au meme nceud de conncxion que If> systome
iJ.piloter.} Le but de ce controleur est , comme dans ce travail. de sta blliser la t rajectoi re
de reference . Norons l'informatio n visuelle peu t etre unlts ee aussi bien po ur la boucle
visuelle reebs ee par que pour la planificat ion de tra jectoir e en-Hgne, ou Ill. boucl e
de ret roact ion locale.

Un te l scheme de commande ad ista nce peut etre envisage dans lc cadr e des met hodes que
nous avons developpees et devr ait et re teste sur la maq uet .te de grue de Ja marine americaine.
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Appendix A

So m e n otions of a naly t ica l m echanics

For the read er 's convenience. we recal l here some basic notions , essentially (but not exclusive ly)
used in Chapter 2. T he reader can find a deta iled presentat ion of the subj ect in recen t books
[52, 60] as well as in classical treat ment s such as [2. 651. We focus our attention on two subjects'
rigid body motions and nonholonornic mechanical syste ms

Not at ions from different ial geometry are used [I. 6]. \~'e denote by T.\l t he tan gent bundle
of a man ifold M . and by T' ,'0,1 its cotan gent bund le. dw deno tes the exter ior deri vativ e of t he
form r::::J on M . and <, "> stands for the duality produ ct betwee n TAt and PM T he wedge
produ ct of two forms. W I and wz. is denoted by tvl II tv2'

n ip;id ho dy mot ions

T he motions of a rigid body in mechanics is dcscrib ..d by the mot ions of a frame fixed to it.
T hus we start with the definit ion of a rigid body and that of the frame fixed to it , an d then we
derive the rela t ions on t he velocities.

De fin it ion 12 (r ig id b o d y wit h co nve x reg ula r s u r fa ce). Let c ntJ ..... IR: be c .511100tll
[unct ion. {i.e. of class COO). We say thai 0 is a og! d body 1f

IO = {P E R3Ic(P ) :::O; O}

2 . C IS a convex [unc ti on

Accord ing to this definit ion, the surface DO of fl. rigid body is defined by the poin ts such
th at the funct ion c : R3 .....R vanish, namely DO = c- 1 (0)

T hroughout the text , the expression "ri gid body" stands for ' rigid body wit h convex regu lar
surface"

A frame KG in the Euclidean space R-l is given by

• a point A in]R 3 (origin of t he fra me)

• un ordered set of three orthog onal vectors {e~ .e~, e;} with unit length such that e'l x e2=

eJ, referre d to as the basis of K~

121



122 Appf>Jl di x A . Some not ions of a.nalytical rnechemcs

Here x stands for th e usual cross produ ct in Ji{J Conside r a point. P in RJ and a fra me K a
One can write

and we My that t he vec to r

(A I)

is the pos it ion vector of the poi nt P in the basis of /(0 whose eleme nts aJ"C the coordin a tes of
the point Pin A'''

One d ist ingu ish es a special frame, denoted J( b and referred to as the inertial reference
frame . For any frame K" different from K b the posit ion vector of its orig in A
in the basis of 1( 6

A frame K " is said to be fixed to a rigid body at a A (note th at A is not necessarily
a poin t of the bod y itself ) if ali point s of the rigid body fixed coordinate; W,Lt. t he ba se
e ~ , e2•ej end t he point A coincides wit h t he origin of K O Hence, for all po ints P of t.he sur face
of the rigid bod y, the expression of the func tion c in the frame [(a denoted by c" satis fies

The exp ress ion of t he funct ion c is different for different frames fixed to the same rigid body .

Since th e position of all po ints of the rigid body is fixed in the besis of J( D. . their positions
in the bas is of J( b are given if the sit uati on of J<" w.r.t. J<6 is known. By the de finition of the
fr...me K", th is relat ive situation is given by the coordinetes of the vector pO and by t he vectors
ej ,ei.ej . both expressed in the basis of f{ b

Intr oduc e t he matrix n. calle d ol"l en/a/lOn ffla/nx, defined by

By construc tion. the matrix 0 sat isfies OTO = OOT "" I and de r 0 "" 1 and t hus is an
element of the S1J£cwl Ol"lent atlOu Lie group 5 0 (3 ), Th e word ol1enlallOn comes from the ffU't
t ha t th e scalar product (e~f e~ is eq ual to th e cosine of the angle bet ween the vecto rs e~ and
e~ , for every i,j "" 1.2,3.

Consider now a point P of t he rigid bod y. Its coord ina tes IU"<' given by fA,I ). T he vector of
coord inat es of the same point. expressed in t he basis of K 6 are denoted by pt = (J'} ,yt, 4 )T
By construct ion of t he ma trix 0 and by th e de finit ion of p" t he following relation can be
est ab lished for these two vectors '

(A.2)

Th e vector p" describes the posuion of the rigid bod y and n gives its orieruatum w.r.t , the
inertial reference frame }( b, T herefore t he possible positions and t he orientations of a rigid
body W.Lt , l( ~ form the st't JR. J )( 50(3) = SE (3;. referred to as the special Eucl Idean group,
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which is also B Lie group. Th is manifold is six-dimensional and ca n be locall y represent ed by six
real sca lar variables (p. ~ ) such that p E R3 gives the positi on and ¢ E N;3gives t he orie ntation
of t he rigid body.

Several local representa tions are used (in particu lar in robo tics] for t he 80(3) group
(see [60]). Exam ples are the Euler ang les. RPY (Roll. P itc h. Yaw) angles . et c. For each choice,
t he elemen ts of t he vector ¢ correspond 10 th ree successive rotat ions allowing to make coincide
the orienta t ions of Kb and the (ram", fixed to the rigid bod y. For inst ance. the orientation
matr ix nRP\' correspondi ng to the-RPY ang les (j) = ('P.e. 1/.». is given by:

[

COS epCOS 8 cos ",s in Osln tP- sin 'Pcos » cos r; sin OeaS1/!+ sin .psin lIJ]
nR PY (¢ ) = sin -,pcos O sin r.p sin Osin !/!+ cos ;pcos if sin 'Psin0 cos 1}J - cos opsin 1/1

-sln 8 cooOsln W ~O~1/!

(A.3)

Th roughout the thesis, t he flPV representat ion is used , t hus t he subscript RPY is omitted

Rigid bod ie-sevolve in time w.r .t . t he iner tial reference frame I( ~ and th eir mot ions can be
insta ntaneously decomposed into a change of pos itio n and a change of orientation .

Consider a frame K Qfixed to fl. rigid body at a point A. Let the tr ajector y of t he posit ion
and orientat ion of the frame given by th e functions and n Q(t) = n (,pQ(t )) , respectiv sfy
Ob serve th at for any curve 11"(t) in 50( 3), ~(nQV is antisym metr ic (th is can
be seen by different iat ing nQ (t)S1"(t)l' == l) and introduce the following notat ion '

[w'x J ~ [~:
-w:

w" ]_~ =~(n") T
:r lit

o
(AA )

Thi s nota t ion is mot iva ted by the fact that for any vector a. t he linear t ransformati on
is equiva lent (.0 the st andard cross produ ct w x a. Let us now define v" ;;::!r p" = ii ' t Ill"
velocity and wQ the angular velocity of t he frame K O

Consider an ar bitrar y point P of t he rigid body. B)' t he definit ion of the frame K " fixed to
the rigid body we have that Pp = O. Differentiat ing (A.2) w.r.t. t , we get the instanta neous
velocit y of the point P expressed in g O

~(t) ;;:: ~(t) + ~(t)Pp = jf(t ) +~(t)n"(tfoQ (t }pp = va + [.....Qx )O..{t )pp (A.S)

p~ = u" + [wa x ](p~ _ pal.

T hus, to calculate the velocity of any of th e rigid body. it is ..nough to know t he trans -
leuonal velocity va a nd the angular wQ of the frame fixed to it. Recall t hat VO and w"
are both expressed in J( ~ by definition

K in e m a t ic co nstrai nt s a nd non ho lo no rny o f mechruucul ~y~t.e llls

The mechan ical sta te of a syste m composed by a collection of rigid bod ies is determined by
a finite number of variab les. called generalized coordinate s, denoted by th e vector q T he
ad missible values of q define the configurat ion mani fold M of t ho mechan ical sys tem.
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Const rain ts Oil t he configuration man ifold of a mechemcal system involving t he genera !
ized coord inate s and the ir first order time deriva tives (velocities) are referred to as kinemat ic
constr aints and assumed to be linear w.r.t. the veloch ies. T hey arc given in the form "

A lq ) · q = O. (A.G)

when" we suppose t hat the rows of A (q) are linear ly independent for all q. Roughly speak­
ing. t hese constra ints restrict the possible direct ions of motion at each configurat ion q of the
mechanic al system. T he ad missible motion s are in t he right null-space of the matrix A (q).

Each row of the mat rix A(q) defines a one-form on the configuration mani fold AI

a , = L a,; (q}dq) .

where a,) (q ) is t he )th element of t he rth row of rbe ma tr ix A (q). Th e one-forms o, define a
codis tribuuo n on M , denoted by Fl. Let m bo the dimension of the manifold .U . an d let p

be the number of the rows of A (q). assumed to be linearly independent, and let us deno te by
A1(M ) the set of all one-forms on M

T heorem I I (Fr obe nlu«). A codtstnl:mt lOn n on a m rml/o ld M lS m tegrable Iff the extenor
denvMltJ e of' aI/ one·f arms ro HI Il can Ix wn tlen as

d 1ZJ = Q I\ {j

If the codis tribunon n is not integrable, one can look for th e largest imegrabie codistribution
contained in Il. denoted by Fl' The constr uct ion of Il- can be done according to the not ion of
the derived flag.

Dettn tr.lon 13 (deri ved flag ). The denved flaq 0/ the codlstn bUllOTin lS .lJltJen by the f ollow­
Ing sequence of codlStnbl Jhons :

t' =n It+1d:J {ro Ell: do= n A!J wtlha E A1( Ml. !J E: l k
}

Tt usconstructIOn tn m tn ate.' at some N when IN = I N , I

By definit ion , t he sequence of t he codistriburions 1° 11, . I N is such that I I- :J 1*+1 an d
by Frobenius' t heorem, TN gives the largest integr able codist rib utton contai ned in Fl.

D e fin it ion l ,j {ho lo no mic a nd fu lly non ho lon o m ic m echa n ica l sys t e m) . Consider a
mecharucal system evolvl1lg on a mam/old M of dun rnsion m . Lei Ihe kznematic const riunt s
be q lt'€11 by a set of md rpendent one-forms { u:JI ' • , o , } on M WIth P < m. spanmng
the codlstn bj.tton Il . CalC1Jlale the dent'ed fl ag of Il using Defi nlt lO1I J.' and denote by r­

Ihe dsm eosum of IN The mechaTHcal sys tem IS said to be bolonorme 1/ r = p and fully
no nbotonomic 1/ r _ 0

W". say that a dlstrtbut.ion .6. is t he annih ilator of the eodls t rib ut icn IT 011 t he mani fold .\ 1
if for all point s q of hi , for all covector s v E Fl. and for all vectors t' E ti wt> haw < /I . V >= 0
T his is also denoted by < Fl. ti > = 0

Note that if the syst..m is holonomic then there exists an m - p d imensiona l suhmanitold
N of M such t hai .6 = T N . Thi s implies that kinema tic constraints involving velociti es of th e
configuration variables can be tra nsformed into p geomet ric constra ints defining precisely t he
submanifold N of M
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Definition 15 (associated drift less system). Consider the kmemaiics gwen by
Define 6 k = m as the anruiultiior of n. the
system is snoen

k

q= Lg,(Q)1i, (A.?)
1=1

where 11" I = 1. .k: are th.e control mputs.

For ncnholonomic mechanical systems. the inputs 11, of (A.?) are referred to as generalized
velocities.

can be using the
of the II. Note

the drift less system (A.?) is equivalent to the full
(A.6) (see e.g. [46]).


