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Introduction

Cette these porte sur les problemes de planification de trajectoire et de commande de deux
classes de systémes mécaniques mains de robots et engins de levage.

Les mains de robots sont utilisées pour saisir et manipuler divers objets. La dextérité des
mains de robots est la conséquence de la richesse des déplacements relatifs aux contacts entre
I"objet et les doigts. On considere ici un modele de contact ponctuel. permettant des roulements
sans glissement entre les surfaces. La condition de roulement sans glissement fait intervenir des
contraintes cinématiques qui ne sont pas intégrables en général. Par conséquent. les mains de
robots appartiennent a la classe des systemes mécaniques non-holonomes.

Les grues (ainsi que divers autres engins de levage) comprennent un ensemble de cibles et de
poulies. portés par une structure mécanique. servant  soulever et a déplacer de lourdes charges.
Comme le déplacement de la charge n'est pas actionné directement par un moteur mais par
le cable qui y est attaché. un comportement oscillant mal amorti caractérise ces mécanismes.
Ainsi. les grues appartiennent a la classe des systemes mécaniques sous-actionnés.

Le controle de ces systémes nécessite d'abord le choix d'une trajectoire de référence réalisant
Fobjectif fixé par Iutilisateur. C'est ce qu'on appelle le probléme de planification de trajectoire.
Dans le cas des mains de robots, I'objectif consiste & atteindre une orientation et une position
désirée de 1'objet. Dans le cas des grues. on veut transporter la charge a une position d’équilibre
donnée. aussi vite que possible et en évitant les oscillations a I'arrivée.

Un deuxieme aspect consiste & suivre la trajectoire de référence en présence des perturba-
tions et des incertitudes du modele

Dans le cas des mains de robots. une littérature trés riche est disponible dans divers do-
maines  modélisation [12. 13, 28. 48, 49]. planification de trajectoires utilisant des approsi-
mations quasi-statiques [11. 63 planification de trajectoires pour le modéle cinématique non-
holonome utilisant des entrées i ou constantes par morceaux [39. 53. 24] et stabili-
sation de l'objet par bouclage [12. 55).

La contribution de la these concerne la solution du probleme de la planification de tre
toires. utilisant la notion de platitude et de systéme Lwuwvillien. Une classification des structures
mains-objets est présentée avec des algorithmes de planification de trajectoires spécifiques a
chaque cas étudié.

Concernant les grues ct les engins de levage. une grande partie de la littérature utilise des
approches linéaires [8. 26, 59. 66] ou des approches de commande optimale [47. 67]. Plusieurs
méthodes sont proposées dans [23. 27. 57] pour diminuer les oscillations créées par les pertur-
bations extérieures. Les auteurs de [7. 14] utilisent des techniques énergétiques en exploitant le




fait qu'une grue peut étre identifiée & un pendule si on fixe la longueur du cable vertical relié
a la charge.

Nous considérons d'abord une méthode de modélisation générale pour une classe étendue
d'engins de levage. comprenant en particulier les modeles des ponts roulants et de la grue de la
marine américaine. Nous montrons que chaque élément de la classe est différentiellement plat
et. utilisant les méme algorithmes de planification de trajectoires que pour les mains de robots.
on peut construire des traj corl lant & des dépl rapides de la charge sans
oscillations a arrivée.

Final nous idérons le probleme de suivi qui consiste & stabiliser les trajectoi
de références calculées précédemment en n'utilisant que des mesures des positions angulaires
des moteurs et en ne disposant pas en particulier des mesures sur la position de la charge
ot les angles entre les cibles. Nous montrons d'abord que toutes les positions d'équilibre
peuvent étre globalement stabilisées par un bouclage PD sur les variables mesurées dans le
cas des grues étudiées. Pour la grue de la marine américaine. les simulations montrent. en
outre. que I'utilisation du méme bouclage PD en remplagant la référence d'équilibre par la
trajectoire de référence calculée précédemment. permet de suivre cette trajectoire en améliorant
les performances du bouclage PD globalement stable.

Le manuscrit est divisé en deux parties  la premiére est dédiée aux mains de robots
(chapitre 2) et la deuxiéme aux engins de levage (chapitre 3). Les perspectives et des problemes
ouverts qui peuvent étre les sujets de futures recherches sont résumés dans la conclusion. Une
annexe récapitulant les notions de bases de la mécanique analytique utilisées dans la these se
trouve a la fin du manuscrit.

Comme la these a été effectuée en co-tutelle A I'Ecole Nationale Supérieure des Mines de Paris
et & I'Université des Sciences Techniques et Economiques de Budapest (Hongrie), le manuscrit
est rédigé en anglais (une traduction des conclusions en francais suit le chapitre correspondant
en anglai

Parties de la these ont été publiées dans [30. 31. 32, 33. 34. 36, 37. 38, 35].
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Chapter 1

Introduction

This work studies the motion planning and control problems related to two classes of mechanical
systems: robotic hands and cranes.

Robotic hands are used to grasp and manipulate objects. Their dexterity follows from
the richness of the relative displacements of the fingers and the object in contact. hence the
importance of a good understanding of these relative motions. Here. we consider the case of
one-point rolling contacts without slipping between the surfaces which give rise to kinematic
constraints in the model. Since these constraints are not integrable in general. hand-object
systems belong to the larger class of nonholonomic mechanical systems.

Cranes (or more generally. weight handling equipments) comprise a hoisting apparatus
supported by a mechanical structure allowing to carry heavy weights. Since the load is not
directly actuated. but displaced via a rope attached to it. these devices belong to the larger
class of underactuated mechanical systems and present poorly damped and undesired oscillatory
behaviour.

The control of these mechanical systems requi
realizing the desired control obj
grasped object into a prescribed position and orientation. For cranes. one wi
load as fast as possible to a desired equilibrium along a trajectory which avoids the obsta-
cles in the working space. Moreover. undesirable oscillations have to be damped at the final
equilibrium.

first the choice of a reference trajectory

A second aspect concerns the tracking of the reference trajectory despite of external distur-
bances and model uncertainties.

As far as robotic hands are concerned. a huge literature is available on various aspects
modelling (12. 13. 28. 48. 49]. motion planning by quasi-static methods |11 63]. motion planning
with piecewise constant or idal inputs for non-holonomic models [39. 53. 24]. and feedback
stabilization of grasp [12. 55].

Our contribution here concerns solutions of the motion planning problem using flatness and
Liouvillian systems. A classification of hand-object structures according to these properties
is presented and specific motion planning algorithms are obtained in each case. We do not
work the feedback tracking aspects.

consider in this
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Concerning cranes and weight handling equipments. most of the literature refers to linear
and adaptive techniques [8. 26, 59. 66] and optimal control [47. 67]. Various anti-sway algo-
rithms are proposed in [23, 27. 57]. Some papers exploit the fact that. if the vertical rope
length is fixed. a crane can be identified to a pendulum and saturation control or energy-based
techniques can be adapted [7 14].

Here. we first consider the modelling of a quite general class of weight handling equipments.
including the overhead crane and three-dimensional models of cantilever. and US Navy cranes.
We prove that all the models of this class are flat and. using the same algorithms as for the
robotic hands. we construct reference trajectories corresponding to fast displacements of the
load without oscillations at the final point.

Finally, we consider the tracking problem where we want to stabilize the previous reference
trajectories using only motor position measurements. and in particular, without information
on the load position and the rope angles. We first prove that every equilibrium position can
be globally stabilized by a measurement feedback PD controller in the case of all studied
cranes. For the US Navy crane. simulations show that replacing the equilibrium reference by
the previously derived reference trajectory in the PD controller. the closed loop system is able
to satisfactorily track this trajectory. even improving the globally stable controller

ded into two parts  the robotic part (Chapter 2) and the crane
for future research are presented in a
mechanics is provided at the end of

The manuscript is di
part (Chapter 3). Some open problems and perspectives
concluding chapter. An appendix on basics in analyt
the thesis.

Parts of this thesis have been published in [30. 31. 32. 33, 34. 36. 37. 38. 35].




Chapter 2

Robotic manipulation with permanent
rolling contacts

We study the motion planning problem (MPP) or. roughly speaking, the open-loop trajectory
design of robotic hands manipulating objects via one-point rolling contacts without slipping. Tn
such systems all fingers’ degrees of freedom are actuated as opposed Lo the object's ones. The
control objective is to change the orientation. position and grasp of the manipulated object

The modelling of hand-object structures (HOS) and the kinematics of contact in the context
of dextrous manipulation is treated in details in the robotics literature (see e.g. [13. 48. 49, 52).
and [44. 45] including controllability aspects). An exhaustive review of static grasping methods
is presented in [61].

The kinematics of the model includes constraints due to the rolling without slipping as-
sumptions which are linear w.r.l. the {ime derivatives of the configuration variables of the
system and have the form [21. 56]:

Alg)-4=0 (2.1

where ¢ is the vector of the configuration variables (see also Appendix A).

Motion planning algorithms which can be applied (o a large class of dextrous manipulation
problems are reported in [L1. 63] using quasi-static approximations. These algorithms involve
optimization in order to find contact forces. with constant velocity, based on Peshkin's minimum
power principle [58].

Due to the constraints of rolling without slipping. general three-dimensional HOSs are non-
holonomic. The underlying MPP can be solved without quasi-static approximations by methods
reported in [39, 53] using piecewise constant or sinusoidal inputs. An explicit solution in this
framework is provided for the case of two parallel planar fingers with a symmetric object in-
cluding non-pivoting constraints by [45]. An extension of the method of [39] when fingers are
allowed to break contact with the object (i.e when the configuration space is stratified) can be
found in [24].

Our approach uses the notions of (differential) flatness [17, 18, 20, 22, 46] and Liouvillian
systems. The latter notion was defined in an algebraic context in [10] and extended [62] in a
ghtly different way than the one we propose here.

2



4 Chapter 2. Robotic manipulation with permanent rolling contacts

Note that. though flatness can be also exploited for feedback design purposes. the feedback
design and tracking aspects are not dealt with in this chapter. For the sake of completeness. let
us mention some contributions concerning feedback control of object manipulation: [13] for the
rigid body case. [3. 9] with soft fingers and with uncertainties on the Jacobian matrices. and
the learning control scheme proposed in [55] with unknown inertia parameters of the object.

Coming back to motion planning. the flatness property allows an easy parameterization of
all feasible trajectories of the system which does not require integration of differential equations
and does not restrict to quasi-static approximations. More precisely. the definition of flatness
directly implies the existence of a so-called flat output, of the same dimension as the input.
such that there is a one-to-one mapping between sufficiently smooth trajectories of the flat
output and feasible trajectories of the system, including the inputs, making the integration of
the system dynamics useless. ‘Thus, the motion planning can be done in the flat output space
using elementary interpolation methods. The Liouvillian property ding to the
we adopt here is slightly weaker. Roughly speaking. we say that a system is Liouvillian if
there exists an output of the same dimension as the input such that all the system variables
can be expressed as functions of this output. a finite number of its derivatives, and a finite
number of functions of its integrals. The output in this case is called a partially flat output.
and the additional functions of the output integrals are referred to as integral variables. Thus.
the flatness based approach to motion planning can be extended up to the computation of a
finite number of integrals of functions of time which is still simpler than integrating the system
differential equations.

We prove that the dynamic model of planar HOSs are flat as a consequence of the constraints
holonomy. Here the inputs are the joint torques of the fingers and a flat output can be chosen as
the position and orientation of the object and combinations of the contact forces. In the three-
dimensional case the rolling without slipping condition gives rise to nonholonomic constraints.
As is. nonholonomy does not exclude flatness (see for instance the examples of the car with
n-trailers or of the rolling hoop, or penny. in [46]). but in our case the kinematic equations form
a Liouvillian system.

According to the dimension, the number of fingers, and the model type (i.e. dynamic or
kinematic) we show that the HOSs can be classified as summarized in Table 2.1

hand structure no. of fingers holonomy flatness Liouvillian
2D >1 yes yes
3D 1 no yes
3D >1 no 7 yes
3D + symmetry >2 no ? yes

Table 2.1: Classification of HOSs

Parts of this chapter are published in [31. 33, 34]



2.1, Modelling 5
2.1 Modelling

We study robotic hands comprising small size manipulators with open kinematic chain.
equipped in general with three or four joints. By anthropomorphic analogy. such a small
manipulator is called a finger. The modelling of a robotic hand linked to a robot arm as the
one developed at the Budapest University of Technology and Economics [41] is not studied
here.

The model presented in this section covers all the cases dealt with in this Chapter and
inspired from earlier works [13. 12, 28]. A schematic representation of a robotic hand with a
grasped object is given in Figure 2.1. We assume that the fingers are numbered from 1 to m

finger 2

Figure 2.1. Robotic hand with the manipulated object (m = 3)
where m is the total number of the fingers of the hand.
Let us start with an enumeration of (classical) assumptions.
A1l. All segments of the hand and the manipulated object are rigid bodies (see Definition 12

in Appendix A).
. Only the last segments of the fingers can be in contact with the manipulated object

>
19

. Surfaces may roll on each other without slipping.

>
19

. Contacts are permanently maintained.
. The surface of the manipulated object is strictly convex everywhere. (This implies that
the radii of curvature are everywhere finite.)

A6. The surfaces of the fingers are convex everywhere.

A
A

s

Remark 1. The rigud body assumption A1 excludes both the penetration of the bodies m con-
tact w cach other and the case of soft contacts. namely non-vanishing contact surfaces due to

deformations.
Remark 2. Assumptions A5 and A6 allow to elmunate the case of multiple contact pownts
between the mampulated object and the fingers. thus making the contact pownt globally unague.

By abuse of vocabulary. the manipulated object will be simply referred to as object in the

sequel.



6 Chapter 2. Robotic manipulation with permanent rolling contacts
2.1.1 Geometry and kinematics

In this section we derive the contact condition equations based on Assumptions A1-A6. The
contact conditions are of two kinds: geometric. expressing constraints on positions. and kine-
matic. expressing constraints on velocities. Moreover, the relations defining the geometry of
the fingers are needed. Thus, we first express the geometric constraints and then the kinemati
ones, and finally the relations with the joint coordinates.

=

Geometry of the contact

The inertial reference frame is denoted by K" We denote by K“ the frame fixed 1o the
manipulated object at its center of mass given by the point O. and by K7, the frame' fixed to
an arbitrary point D, of the last segment of finger i. with» = 1.2, .m  Let us denote by p*
(resp. p) the coordinates of the point O (resp. D,), expressed in the basis of K"

Let us denote by the matrix (¢°) (resp. Q(f)). the orientation of the frame K° (resp.
K¢) wort. frame K” where ¢°.¢! € R®. (See Appendix A for the definition and for a short
discussion on the properties of such matrices.) Define the pair

(7. Q40" = (U7 - p). o) QA0") (2.2)

where ! (resp. ©(e")) gives the relative position (resp. relative orientation) of the object w.r.t
finger 1. (Note that such pairs define homogenous transformation matrices frequently used in
i It is clear from Equation (2.2) that vector pl is expressed in the frame A7

Consider the contact between finger + and the object (see Figure 2.2). The contact point

Contact between finger i and the object

Figure 2

The vector pZ, (resp. pf,) denotes the position of the contact point C,. expressed in the
basis of the frame K° (resp. K7). Using Equation (2.2). these vectors are connected by the

The notation K would be more consequent. but we preferred to avoid double subscripts for readability’s
sake.
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equation
P+ QAP ~ b, = 0. (2.3)

Let ¢ and ¢! define the boundaries of the object and finger i (see Appendix A. Definition 12).
If C, is the contact point between the object and finger ; we have

“(pg,) =0 (2.4)
lwt,) =0. (255)

Denote by De the derivative of a function® ¢ (i.e. the function R* — L(R* R)). 1t has the
local form
dc de de
De= | & &
¢ {az oy o]

The right null-space (or kernel) of Def(pf,) (ie. {v € R* Del(p,) - v = 0}) defines the
tangent plane to the surface of finger i at the contact point C,. Thus the transpose of Dcf(pf., )
gives the direction of the outward normal vector of the surface (expressed in the frame fixed to
the finger). The local uniqueness of the contact point reads

Def(pt,) De(pg,)Ug")"
D) T~ D)

(2.6)

Geometrically. this equation expresses the fact that the tangent planes of the surfaces in contact
coincide at the contact point, or equivalently. that the normal vectors are colinear with opposite
direction. Note that, according to the convexity assumptions A5 and A6, Equation (2.6)
implies that the surfaces in contact just touch but don’t penetrate in each other. Therefore (2.6)
is also referred to as the non-penetration constraint

Kinematics of contact

Let us introduce the vectors {wf .} spanning ker Dcf(p, ). the common tangent plane at
the contact point (see Figure 2.3). The vectors are expressed in the basis of K. The kinematic
part of the model gives constraints of type (2.1). depending on the time derivatives of alrcady
introduced variables.

The velocity state of the object w.r.t. finger i is given by the pair (uf. [wf x]) (see also
Appendix A):

0 —w, ]

A

o wix] dﬂ<¢. WOy =l w0
iy Wi 0

This allows to calculate the relative velocity at the contact point C, (see Equation (A.5)):

o] + ] XIS )P (27)

2This notation comes from [1]
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finger i

Figure 2. Rolling without slipping of surfaces

Since the contact is permanently maintained by Assumption A4, the geometric constraints of
the previous section restrict the relative velocity in the common tangent plane of the surfac
in contact, i.e. v}, € span{uwy,.wfc }. Hence the rolling without slipping constraints read

(wie) v, =0, j=1L2 (2.8)

Observe that these constraints are indeed linear w.r.t. the velocities and thus have the same
form as (2.1).

Geometry of the fingers

As it has been already mentioned. the robotic hand is a set of m small manipulators with open

kinematic chains (see Figure 2.4). Their modelling follows the standards of the robotics liter-
arure [40. 48. 52. The segments of the fingers are connected via one-degree-of-freedom join

Figure 2.4: The open kinematic chain of a finger of the robotic hand

These joints can be rotational or translational according to the possible relative displacement
of the connected segments. Because of the openness of the kinematic chain. the joints of each
finger can be enumerated from | to a, where a, is the number of joints of finger 4. The joint
coordinate of the articulation j (j = 1. .a,) of the finger + (1 = L. .m) is denoted by gq,,.
Hence the vector g, = |g.  .4ia.,]” contains the joint coordinates of finger «.
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If the jth joint of finger i is rotational. then g,, € R/27Z. if it is translational. then q, €R.
therefore the configuration manifold of each finger is a Cartesian product of the sets R/277Z
and R.

The direct geometry of finger ¢ allow 1o express the position p{ and the orientation Q(¢¢)
of the frame K as functions of the vector of joint coordinates g, of finger 1.

For. denote by F, the list with elements R/27Z and R such that the nth element of F, is
R (resp. ®R/27Z) if the nth joint of finger i is translational (resp. rotational). The notation F,
will also be used to denote the Cartesian product of the elements of the list. taken in the order
imposed by the list.

Hence the direct geometry function of finger ¢ is defined by:

di. F, =R x SO@3).  dila) = (p!. Qe1)). (2.9)

The function d, sums up the geometry of finger i and its explicit form can be obtained once
the Denavit-Hartenberg parameters of finger i are known. (Roughly speaking. these Denavit-
Hartenberg define the L ion between K" and K{.)

Borrowing again some notations from the robotics literature, the derivative of the direct
geometry function d, is defined by

J(.) = Dd,(.) € LIF.R* x SO(3)). (2.10)

and will be referred (0 as the jacobian of finger i. Since the orientation of the frame fixed
to the fingertip in SO(3) is locally described by three rotation angles (sce Appendix A). the
cobian of the finger i is a matrix with six rows and a, columns. A
s said to be singular if

local expression of the |
configuration g, of finger i i

dimImDd, (g,) < min {dim g,,dim (R® x SO(3))} = min{a,. 6}

where ImDd,(q,) stands for the image of the linear map Dd,(g,) under F,.

Inventory of variables and constraints

To make an inventory of the variables and constraints introduced to describe the geometry and
the kinematics of a HOS. we summarized them in Tables 2.2 and 2.3. Recall that m gives
the number of fingers and a, gives the number of joints of the finger : with » = 1. .m. All
entries are valid in the case of three-di i ions. (The two-di case is
addressed in Section 2.1.6 where the entries of both tables are updated accordingly.)

By Table 2.2. the configuration manifold M of the HOS is defined as
M=F x xFuxSEGB)XSE@B)x xSE@)xR*x xRxRx xR
_— S Te—— T —
2m m m

where SE = R* x SO(3) is the special Euclidean group. In accordance with Table 2.2, the
vector of local coordinates of a point in the configuration manifold M reads

(@0 am D" DL OO PPl PG, P L)
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variables description |
@ i=1.m joint coordinates
P position & orientation of the object
ploli=1 .m positions & orientations of the fingertips 6m
ploji=1  .m relative positions & orientations 6m
pei=1 .m contact points on the object surface 3m
phoa=1. .m contact points on the fingers’ surface 3m

Table 2.2:  Variables

constraint type number of equations per finger

(2.2) geometric 6

(233) geometric 3
(2.4)-(25) | geometric 2
(2.6) geometric 2
(2.9) geometric 6
(2.8) kinematic 2

Table 2.3:  Constraints

The geometric constraints of Table 2.3 define a sub-manifold of M. denoted by M. The
kinematic constraints of rolling without slipping. given by Equation (2.8) define a codistribu-
tion of My. The corresponding annihilating distribution contains the admissible displacement
directions of the HOS in the tangent space of M.

Remark 3. If the robotic hand has only one finger and the Assumptions A1-A6 are satisfied.
then the kinematic constramts (2.8) of rolling wathout slippimg are always nonholonomc (see
Appenduz A, Defintion 14 for the notion of holonomy). However. i the case of more than one
finger. the ‘ are not fully nonhol wn. general.

2.1.2 Pivoting and autonomous motions of the object

The kinematic constraints (2.8) given in the previous section are obtained from Assumption A3
and eliminated sliding motions between the object and the fingers. In this section we study mo-
tions of the object which may be undesirable. but have been not eliminated by Assumption A3.
These motions are the pivoting [45. 54] and autonomous motions of the object.

Recall that (2.8) determines the admissible directions in the tangent space of the manifold
M. defined by the geometry of the HOS. By analyzing the directions corresponding Lo pivoting
and autonomous motions in the tangent space of M. further kinematic constraints can be added
to the kinematic model in order to eliminate these directions. The corresponding constraints
are also of type (2.1).
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Considering the object, pivoting (or spinning) motions correspond to rotations around an
axis passing through a surface point and normal to the corresponding tangent plane.

Definition 1 (pivoting around a surface point). Consider an object wnth the frame K°
fized to 1t, an mertal reference frame K° and a surface point C of the object. Let (p°.Q(¢?)) €
(R?® x SO(3)) gwe the position and the orentation of the object w.r.t. K* A wvector (1v°.w°) €
R® (1°.w?) # (0.0) 15 saud to be a pwoting motion of the object of

0.

1. the veloeity of the pomnt C' vamshes i the frame K® wve. ve

2. the tangent plane of the object at the point C' remains unchanged.

Definition 2 (pivoting around multiple surface points). Consider an object unth the
frame IC° fized to 1t, an nertial reference frame K® and a sel of surface pownts {Cy. . Cy}
of the object. Let (p°.(¢%)) € (R® x SO(3)) guwe the position and the orentation of the object
wrt. K. A vector (v°.w®) € RS (v°.w°) # (0.0) s saud to be a pwoting motion around the
pounts {Cr..Cu} 1f (v°.0°) 15 @ pwoting motwon around cach Cy. 1 = 1. .m m the sense
of the Defimation 1.

These definitions imply that w® # 0 for any pivoting motions. The following statements can
be easily proven.

Proposition 1. Consider an object. For any powmnt C of ats surface. there 1s a umque direction
wm RS corresponding to a pwoting motwn of the object around the point C'

Proof. Denote by nf. the unit normal of the object surface at the point C. expressed in the
basis of K’. By Definition L. the tangent plane at the point C' to the object surface has to
remain unchanged. hence w° must be parallel with nl.. ie. w® = Ank.. (A € R\ # 0). By
(A.5). the velocity of the point C is given by

ve = v° 4 [Wx]Q(¢”)pe (2.11)

which must vanish by Definition 1. Using that [ax]b = —[bx]a. and isolating v we get

0% = [Q0°)pex ] = AP x ..

Thus the unique direction in R® corresponding to pivoting around the point C' is given by

([Q(0?)pe-x|nt. n). o

Proposition 2. Consuder an object and two dufferent pownts of tts surface: Cy and Cy. The
necessary and sufficient condition for the emstence of a direction m R corresponding lo a
pwoting motion around Cy and Cy are

1 the surface normals nl, and nf, are cohnear.

2. [nk, X]U")pE, = [nl, X]QAS°)pE,-



12 Chapter 2. Robotic manipulation with permanent rolling contacts

Proof. Since w* must be parallel both with nf, and nf.,. w? # 0 implies that nf,, and nl, are
colinear. Hence w® = Anl, . and by Definition 2. the velocity vector v” and the scalar A have to
satisfy the following equation obtained from (2.11)

T [l X%, | [
07[1 [‘n’;.lx]ﬂ(w")PZ-j [A] (2.12)

where [ is the identity matrix of suitable dimensions. This equation has a nonzero solution if
and only if

[, XIUO*WPE, = s, X]NU0°)pE,-
Then we have the relation
00 = =A[nb, x|0%)p,

giving a unique direction in R® corresponding to a pivoting motion around both points. Observe
that the second condition can be rearranged to get

[ng, X10*)we, —p2,)

which is equivalent to the colinearity of the normal vectors with the vector connecting the
surface points Cy and Cy.

0

Corollary 1. Consuder a strctly convex object. For a set of three different surface pownts
{C1.Cy.Cy}. there 1s no durection i R® corresponding to a pwoting motion around all contac:
pownts.

Proof. Suppose that (v7..°) is a possible pivoting motion around all the three surface points.
hence the conditions of Proposition 2 must be satisfied for any pair of surface points in
{Cy.C5.Cy}. This implies that nl [[n%, and n, [[n%. thus all the three surface normals must
be colinear. But this is excluded by the strict convexity assumption. thus w® = 0. a contradic-
ton.

Corollary 2. Consider a strictly convex object. For all set comprising dufferent surface pomts:
(Coii=1.2.  .j}.j>3, there is no pwoting motwon i R around all pownts of the set

Proof. Consequence of Corollary | [u]

Remark 4. Since the object 1s everywhere strictly conves by Assumption A5. the set of surface
pownts g the cond; of Proy 2 has Lebesque measure 0 in the set of all pawrs
of pownts of the obyect surface.

Remark 5. In the case of multwle surface powts, the non-emstence of a pivoting motion
around all surface pownts does not exclude the possibihty of pwoting around one of the sur-
Jace por
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Remark 6. Corollaries 1 and 2 have the follounng consequence. For all HOSs satisfying As-
sumptions A1-A6 unth at least three fingers, any change of orentation imphes pwoting around
at least one contact pownt. Thus the elmination of pwoting motions around each contact point
would block the orentation of the object.

In the literature one calls rolling without slipping and spinning the relative motion of two
surfaces such that pivoting motions are eliminated in addition to the rolling without slipping
constraints (2.8).

‘We use Definition 2 to obtain the constraint that eliminates spinning motions. For. recall
the relation giving the coordinates of the contact point C, in the basis of the inertial reference
frame K* and the definition of the outward unit normal vector:

I o\ o oy Do)
o, =0+ Q) ng, = Q¢ ),,—
[[1De(w )l
Definition 2 asserts that pf;, = 0 and a}, = 0 during pivoting motions for all contact
points C, (1 = .m) on the surface and note that the second condition is equivalent to
| De?(pg;)|itl;, = 0 since the contacts point are fixed on the surface. Calculating these time
derivatives gives

b, 17 + 2800(6%) 70 ),
D (e it SO (4°) 0% D (v, )
h, I+ S0(60) Q0 e,
IDe(e, i, ] [ 2520(0) T 0) Do, )
Using that [w*x] = 2%20(¢°)" and the anti-symmetry of the cross product we get
2 1 ~[e*)p, ¥]
1D i, | {0 =[2(e) D)) | )
_ P\ des | P .
N [ a] - [ 'wjl @1
, I I -
Ipete,ak,] L0~ Dewe,)T

defining the linear map .

According to Definition 2. the right null-space of 5 gives precisely the directions in R®
corresponding Lo pivoting motions. Corollaries 1-2 assert that this null-space contains only
the null vector for all positions and orientations (p°, (¢°)) of the object if m > 3. If m = 2.
the null-space contains a non-null vector for a set of contact point pairs of measure 0 and has
always a unique non-null component if m = 1

Denote by wy (wy € R®) the vector spanning the null-space of 7. Then the non-spinning

constraint reads
- | v
w) =
o

(2.14)
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The notion of the pivoting motion has been defined without need to consider the geometry
of the fingers. Hence. all pivoting motions around all contact points leave both the contact
points and the joint coordinates of all fingers unchanged. Note that in the case of most robotic
hands. the joint coordinates may be considered as the controlled variables which implies that
pivoting motions can neither be generated nor eliminated by the control variables. One may ask
if there exists other kinds of motions which cannot be controlled through the joint coordinates.

Thus we are naturally driven to consider a more general notion of autonomous motions of
the HOS defined as follows.
Definition 3 (autonomous motions). Consider an object in contact wath m fingers. A di-
rection i TMy corresponds to an autonomous motion of 1t satusfies the kimematic constramnts
of rolling unthout slipping (Equation (2.8)) and has no component . 52 with j = L, (a,
15 the number of jowts of finger i), and 1= 1. .m, (m bemng the number of fingers).

Clearly. an autonomous motion is such that the joint coordinates of the fingers do not
change. Pivoting motions of the object around all the m contact points are also autonomous
motions but pivoting around j contact points j = l.  .m—1 do not belong to this class. This
is because pivoting around multiple contact points doesn't exclude the motion of the joints of
the remaining fingers.

Let us turn back our attention to the inventory of the variables (Table 2.2) and that of the
constraints (Table 2.3). We have 18m +6-+ 37", aj variables, and. by adding the non-spinning
kinematic constraint (2.14) to the constraints of Table 2.3. (19 4+ 2)m + 6(1 — m) constraints.
(The function 6 is defined such that 6 vanishes everywhere but at 0 where it equals to 1.)

2.1.3 Examples

The following four simple examples illustrate the modelling procedure of the geometry and
the kinematics. Their simplicity allows easy elimination and hence an immediate choice of the
variables determining the local chart on M4. The modelling is based on Section 2.1.1 and thus
follows a systematic procedure. The existence of pivoting motions around all contact points is
also investigated for each example.

Example 1 (ball on the plane). The object is a ball with radius 7 and the last segment of
the unique finger is a plane. parallel with the zy-plane of the reference frame K*. (The index
i is omitted since the setup has a unique finger.) The finger has three degrees of freedom. all
translational along the three coordinate axes of K” (F = {R.R.R}). The setup is illustrated
in Figure 2.5. The axes of the frame fixed to the fingertip are parallel with those of K*. The
RPY angles (sce also Appendix A) are chosen to describe locally the orientation of the ball.
The corresponding orientation matrix reads

cospcosf  cospsinfsiny —singcosw  cosysing cos v + sinpsin v
Q(0”) = |singcosf  singsinfsinw +cospcosy  sinysinf cos w — cos@sinw
—sin@ cos fsin cosf cos
(2.15)

where ¢° = (p.0.v).
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spinning
-3

finger

Figure 2.5:  Ball rolling on the plane

The surface equations (2.4)-(2.5) (satisfied by the coordinates of the contact point pg. =
(2% Y2 2¢.) and by pl = (2. yl. z8). respectively) read

(@2) + We) + (2
The derivative Dc® of ¢° is given by

De*(p) = (22 2y

(2.16)

Similarly.
Del(ply =10 0 1]

Since all joints are translational. the direct geometry of the finger (2.9) reads

o 10 0
qg=|g|=p" 0 1 0| =9,
o 0 0 1

hence Q(o") = Q(¢7)7Q(6°) = Q(¢°). Since || De?(pg.)|| = 2R. Constraint (2.6) for the tangent
planes reads:

U e o

FPOA =0 0 —1] (217)

Using the fact that [w' x] = £0(¢") - Q(¢")" (see Appendix A). the relative angular velocity of
the ball w.r.t. to the finger (i.e. w.r.t. the inertial reference frame K* too) reads

—0sinp + wcospcosf
cos + i sinp cosf (2.18)

p—ising
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allowing to calculate vf.. the relative velocity at the contact point:
v = 17+ (W x]Q(@)pg — B (2.19)
To simplify this expression. note that by (2.3):
P=pl = QoW = |yl
R
Hence, using (2.17) and replacing in (2.19). one gets
—Rcosp — Rusin pcos + i
v = | —Rfsing + Ricos p cos 0 + i
0

Since the tangent plane at the contact point C is spanned by the vectors w{ . = (1.0.0)7 and
wd - = (0.1.0)7 the rolling without sliding constraints (2.8) have the form

— R cosg — Rwsinpcosd + i (2.20)

— Résing + Ribcos p cosd + i (2.21)

The lincar map 7 in Equation (2.13) has the matrix

0 -R 0

7 R 0 0

)= 0 0 0
0 -2R 0
0 2R 0 0

0 0 0

It is easy to see that ws = (0.0.0.0.0.1)" spans the null-space of 7 and gives the following
constraint of non-spinning:

(2.22)

Observe that Equations (2.20)-(2.22) involve only the variables ¢° = (p.6.0). 1 and yg.
Using Tables 2.2 and 2.3. the dimension of My equals to dim M, = 27 — 19 = 8. Thus a
possible choice of the local coordinates of the manifold M, is given by g4 = (¢, 0. . 2. y. q).
Lemma 1. The codistribution Ty spanned by the one-forms obtamed from (2.20)-(2.21).
namely

w, = dzl, — R(cos pdf + sin g cos §dw)
wy = dy- — R(sinpdf — cos p cos 0dv))

15 fully nonholonomic. Morcover. the codistribution Ty obtaned by adding the non-pwoting
constramt (2.22)

w3 = dp — sin fdw.

to @, and s 1s also fully nonholonomc.
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Proof. For both cases. the same geometric constraints are used to eliminate variables. hence the
kinematic constraints must be satisfied on an eight-dimensional manifold determined by zd,
yé. q. and ¢° = (p.0.v). The one-forms @,. @y, and w; are linearly independent because of
the components in drf.. dyg.. and dy. Let us calculate first the derived flags (see Definition 13)
associated to the codistributions I1, = I = span{my. @} and Iy = I{ = span{w,. wy. @y }.
After some lengthy but elementary calculations. the dimensions of the codistributions in the
derived flag are {2.0} (vesp. {3.2.0}) for I{" (resp. I9). Since the dimension of the last
codistribution of the derived flag is 0 in both cases. the lemma follows from Definition 14. O

The kinematics corresponding to ¢ being trivial. we are interested in driftless systems asso-
ciated to the kinematic constraints (" 20) (2. "2] which evolve on a submanifold of M, of M.
given by the variables 0° = (2.6, v, & and .

Two driftless systems will be associated to the kinematic constraints (2.20)-(2.21) and (2.22)
using Definition 15. The driftless system whose vector fields annihilate the one-forms given by
the constraints (2.20)-(2.21) is referred to as the spinning case whereas the driftless system
whose vector fields annihilate all the three one-forms is referred to as the non-spinning case.
The linearly independent vector fields

sinptan f —cosptanf 1

L | cose L sing 0
n=3z = e2=45 s g3= |0 (2:23)

R 0 0

0 R 0

gives the driftless system for the spinning case. For the non-spinning case. the vector fields
of the associated driftless system are only g, and g; The generalized velocities associated to
these vector fields are u; = .. uy = & and us = w? = ¢ — Usinf. Note that the non-spinning
constraint (2.22) eliminates precisely uz equaling it “identically 1o zero. -

Example 2 (ball between two parallel planes). This example. illustrated in Figure 2.6
(together with the preceding one) is popular in the robotics literature and in the literature of
the non-holonomic systems in general [5. 45. 54. Finger | has the same properties as the finger
in the preceding example. Finger 2. parallel with the first one, has a unique translational joint
along the 2 axis of K The same modelling processus is followed as in the preceding example.
The surface equations are

(2 + (we) + (28) — R =0 2 =0 (2.24)
and their derivatives read
(pz,) = 202" D) =0 0 (=1)"] =12 (2:25)
The direct geometry of the fingers read
qu T21
Q2| =t 1=9(e) roo| =1 1= Q(a5).
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pivoting

finger 2

finger |

Figure 2.6: Ball between two parallel planes

hence Q(of) = Q(¢) = Q(¢°). The parameters 2, and 1y are geometric constants of the hand.
Using the fact that || De*(pg, )| = 2R. the non-penetration constraint (2.6) results

1

ﬁ(p‘él)Tﬂ(o")T =0 0 (-1)] =12 (2.26)

The relative angular velocity w” of the ball w.r.t. both fingers is already given by Equation (2.18)
of the preceding example, and since w = 0 for i = 1.2 we have o} = w} = " For finger 1. the
kinematic constraints (2.8) are the same as in the preceding example:

— R cos p — Rusin pcos b + il (2.27)
— Résing + Ricospcosl + g, = (2.28)
The relative velocity at the contact point C; reads
0
Ve, = P+ (Wi XJURIPE, = Py + [Wix] | 0 (2.29)
R
Using (2.3) together with (2.26). we have
2, 0
Py = Pl — ARPE, = |vd,| - |0
0 R

Differentiating this expression w.r.t. the time and reporting in (2.29) we get
Rl cos o+ Rusinpcosf + if,
vg, = | Résing — Ricos p cosf + i,
0
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Since w{ ¢, = (1,0.0)" and w§, = (0.1,0)7 the kinematic constraints (2.8) read
Rfjcosp + Rusinpcosf + if, =0 (2.30)
Résing — Ricospcos + g, = 0. (2.31)

The kinematic constraints (2.27)-(2.28) and (2.30)-(2.31) are not fully nonholonomic because

some of them are integrable. Tn fact, summing up (2.27) with (2.30) and (2.28) with (2.31) we
obtain

i, + il =

d o d
Ye, T e,

which can be integrated as

al, + ¢, = 18,(0) + 22,(0) v, + U, = Y&, (0) + ¥, (0). (2.32)

These integrated kinematic constraints can be used to eliminate zf, and yg,. as functions of
1"(:, and yg-l ‘Then, using again Tables 2.2 and 2.3 together with the two additionally obtained
geometric constraints (2.32), which can be also used to eliminate variables, the dimension of
M 4 can be calculated as dim M,y = 46 — 38 — 2 = 6. Hence the local coordinates of a point of
My can be given by the variables g4 = (¢.6, %, 7%, v, .q21)

The ining two s
in the preceding example:

ic equations on My are similar to those obtained

— Récosy - Rusingpcosd + i, =0 (2.33)
— Résing + Ricospcosd + i, = 0. (2:34)

To add the non-pivoting constraint we determine the linear map 7 first:

0 -R
A
0 0 o
0 2R 0
0 & 0 o0
- 0o 0 o
K 0 R 0
I R 0 0
0 0 o
0 2R 0
0o |2 0 o
0o 0 o

The null-space of this matrix is agam given by w* = (0,0.0,0.0,1)” hence one obtains the same
non-spinning constraint (2.22) as in the preceding example. Since the kinematic constraints
are similar to those obtained in Example 1, Lemma 1 remains valid for this example.
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The kinematic constraints do not include all the variables of My (i.e. the variable gs; is not
involved). Thus the associated driftless systems evolve again on a five-dimensional submanifold
of M, and defined by the vector fields (2.23) of Example |

The driftless system for the spinning case is given by
Ga = guur + 92wz + gaus.
whereas the driftless system associated to the non-spinning case reads
4a = giwn + goun.

with u; = i, up = Y& and uz = ¥ —wsin. -

Example 3 (ball between two oblique planes). The setup (see Figure 2.7) is the same as
in the preceding example, but the two planes representing the fingers are no longer parallel but
oblique with an angle remaining constant, during the manipulation.

Figure 2.7: Ball between two oblique planes

The surface equations are already given by (2.24) in the preceding example together with
their derivatives (2.25). The translational degree of freedom of finger 2 is paralle) to the
unit normal v = (a8.y4,25)7 of the plane of the finger. We suppose that v is such that
(28)2 + ()7 # 0 (note that (z5)? + (32)% = 0 would give the setup studied in Example 2). The
direct geometry of the fingers reads

an| =7t 1=9(¢) ratqn-v=p§
» Lot e
[y VT h?
b vizh G = Q). (2.35)
R [@ R w o

0 -VET+ W) -2
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Constraint (2.6) for the second finger gives

L
FUB) )0 = D) = [0 0 1]

SR =
Multiplying both sides by RQ(¢%)" and taking the transpose. we get
Qo”)pe, = —Rv (2.36)
which relation can be also read form Figure 2.7

The kinematic constraints at the contact between the object and finger I are already given
by Equations (2.27) and (2.28) (we simplify for readability’s sake):

i = Rwg =0 (2.37)
it + R = 0. (2.38)
The relative velocity at the contact point C; is obtained using (2.3). (2.7). and that %0 — ;

o = )7 — ) + D)

. dSZ

Q(05)" Q5)pe, = AT - pl) +
a(el) "X oyt ), W, = QoD [(5° = 5) + [0 x]Q)pe,]

The vectors w{ ¢, and wf ¢, spanning the tangent plane are expressed in the frame fixed to the
finger by convention:

wie, = (1.0.0) wic, = (0.1.0)"
Since. by the direct geometry of the finger 2 (2.35) we have
0
Qof)PS = anQep) v =| 0
—G21

the kinematic constraints corresponding to (2.8) for finger 2 read:

— Py + Pyl +Hu"r”z"+l?w;'t/:§~v Ru2((ah)? +(/')‘1) =0 (2.39)
Pl + pueat + () + (h)?) + Rdyl — Ruwgal = 0. (2.40)

There is no non-spinning constraint. since the null-space of 7 contains only the null vector.
Observe that the last constraint (2.40). combined with Equations (2.37) and (2.38) gives

+ W07 — byl — bl =0

Pl + Bl + ()" +

which can be integrated to obtain

P+ pjulzt + p2()” + (1)) *y%.uﬁ—-r

4
2(0)zh 20 + py(O)ye) + p2A0) (@) + (10)°) — we, (0)y — 2, ()} (2.41)
climinating one of the kinematic constraint. Thus we are left (using again the Tables 2.2 and 2.3
to count variables and constraints) with a manifold M4 of dimension dim M4 = 46—-38—1 =T
wWith g, = . 0. ¥, p2p. p2. 4, and the kinematics is given by the equations (2.38) and (2.39)

(2.40). -
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finger 2

} 1

g 1
Ki \ o

|

\
&
Y % G
K finger3
kv 5
b

Figure 2.8: The ball between three planes

Example 4 (ball between three perpendicular planes). The setup is illustrated in Fig-
ure 2.8. The fingers are again tangent planes to a ball of radius R. parallel to the three respective
Cartesian planes of the inertial reference frame, defined by 3 = 0,2% = 0 and z* = 0. All joints
are translational and their displ are restricted along the corresponding directions.

The frames fixed to the planes have the same orientations as the base frame. The positions
of their origins are denoted by pf = (z¢,y%, 2¢)” ¢ = 1.2,3. The origin of the sphere and its
orientation is given by p° = (2%.4%2°)7 and ¢° = (9,6, v) (RPY angles) as in the previous
examples. The surface equations are given as

(@8)" + (u8)" + (:6)" — K2 =0 vt =0 at, =

2 =0
and their derivatives read
Do) =2(p)" Defipty) = (0.1.0) Do) = (1.0.0) Despty) = (0.0.0).
The direct geometry of the fingers are given by
a=p 1=9(p) 1=1,2,3,
hence Q(¢]) = Q(¢°).
Since [\ De?(p,)I| = 2R for v = 12,3, Constraint (2.6) for the tangent planes gives
Qe*)pg, = —Rea. Q¢°)pe, = —Rey Q0°)p, = —Rea.
with e; = (1,0,0)7 e, = (0.1,0)7 and e3 = (0.0.1)7 Thus the geometric constraints corre-
sponding to (2.3):
pE, = (0° = pl) + QAW 1=1.2,3,
can be simplified by the use of the above expressions. lsolating the coordinates of the origin of
the frame fixed to the object one obtains
2% =2 + 2, ®=1§+R

v =yi+ R v =yt g, (242)
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The relative velocity at the contact point C, reads

Ox|QA)pg, + 5 — =0 1= 12,3

The vectors spa.nnmg the tangent planes of the fingers are wic, = wic, = €1, wi e, = wic, =
€, and wf,, = wde, = es. Reporting this in the expression (2.8) of the kinematic constraint

and using the fact (see (A.4)) that

0 g Wy
lwox] = | w? 0
A 0
we get.
Rw?+° i =0 ~Re+ i~ =0 —Rug+i° =0
RS+ -4=0 Ro2+3 — i = 0.
These ki i ints are not fully hol ic. For, observe that eliminating Rw? one
gets

(2.43)

Differentiating the geometric 2+ 24, and y° = y§ + ¢, obtained in (2.42),
and reporting them in (2.43) we get %, = —g¢, which can be integrated as z¢, — z{ (0) =
~y#, + y,(0). One may get similar relations by eliminating w¢ and w?. This gives three

integrated constraints:

2, = 28,(0) = —yZ, + ¥, (0)
&, = 24,(0) = —af, +3%,(0
o, =, (0) = —v, + v, (0)

(2.44)

where 2z, (0), z,(0). v, (0). & (0). 2 (0) and 2¢,(0) are initial conditions. Using these

expressions together with the geometric ints (2.42) and the ion of w° in the RPY
p ion (2.18), the remaining kinematic read:
10 ~sinf ) i,
R|0 cosy sinp cos 6 o+ |z, | =0 (2.45)
0 sing —cosycosf| |4 8,

Since the hand has three fingers, the conditions of Corollary 1 are satisfied. Hence, there are
110 spnning motions to eliminate by additional k

Tables 2.2 and 2.3 show that the geometric constraints and the integrated kinematic ones
(2.44) allow 1o eliminate 60 variables out of 69. Hence, the dimension of Ma equals to dim M =
9,04 = 9. 8,02l 2t 28 G0 G 0
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Lemma 2. The codistribution [1. spanned by the one-forms obtamned from the constramnts
(2.45). namely:

@1 = Rdp — Rsinfdv + dzf;,
@ = Reosypdf + Rsingpcosfdy + dzf, (2.46)
w3 = Rsinypdf — R cosp cos bdw + dzf,,

1 fully nonholonomc.

Proof. After the elimination of variables using the geometric and the integrated kinematic con-
straints. the remaining kinematic constraints (2.45) must be satisfied on the nine-dimensional
manifold M. The one-forms @, @,. and @ are linearly independent because of their com-
ponents in dyé,. dz¢,, and dz¢,. The dimensions of the codistributions in the derived flag of
1 = I° = span{w:, @,, ws} are {3,0}. Since the dimension of the last codistribution in the
derived flag is 0, the claim follows from Definition 14. a

The kinematic constraints (2.45) involve only the first six variables of q4. Observe that the
last three coordinates gi2, ¢21.q33 in ga determine the position of the ball, since we have (using
the geometric constraints (2.42) and the direct geometry of the fingers)

=gn+R ¥ =g+ R 2 =qx +R.
In fact. due to the translational joints of the fingers, the translational motions of the ball are
decoupled from the kinematics (2.45) which determines the orientation of the ball.

Therefore, the associated driftless system is calculated on a submanifold M} of M, given
by the variables @, 6, v,z , 2¢,, 2 . involved in the kinematic constraints. The vector fields
annihilating the codistribution spanned by the one-forms (2.46) on the manifold M’ are

-1 —sinptanf cos p tan

0 —cosy —sing
Lo IR Lo
2=%|p n=% B 5y
0 R 0
0 0 R

giving the driftless system
) r
[p 0 v it 2 ] =owm+ gt g (2.47)

’

where the inputs are uy = £, up = ¢, and ug =

Note that by Lemma 2. this system is locally commandable (i.e. the involutive closure of
the distribution spanned by g1, g» and g3 has dimension 6 which equals to the dimension of

M), -
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2.1.4 Dynamics

The notations introduced in Section 2.1.1 are reused.

The dynamic equations are obtained separately for each finger and the object. These equa-
tions are connected by means of the contact forces. The contact force applied by the finger 1
to the object is denoted by the vector f, € R such that its coordinates are expressed in the
inertial reference frame K"

For the fingers, contact forces are transformed to exterior torques in the joint space (see

Figure 2.9).
. o
C 7 q
7
Q@/ c, C/ .
- — Tiaext
Ly Mg
cl\_///

object

K
Figure 2.9: Contact forces

Let us introduce the inertial parameters given by Table 2.4 (recall that g, is the vector of
joint coordinates of the finger ¢). The dynamics of the object are given by the Newton-Euler

notation definition
H(a) inertia matrix of the finger ¢
<) inertia matrix of the object
M mass of the object

Table 2.4: Inertia parameters
equations
m
My = Mg+ J, (2.48)
=t

00 = S (U)W, x £) ~ w° x Ow° (2.49)

NgE

where g = (0,0,—9.81)7 is the vector of gravity acceleration. The dynamics of the fingers are
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obtained using the L 40. 52] of the con

Hy()G: + (g 6) = T = Toear =1, .m (2.50)

where h, contains the gravitational and quadratic terms w.r.t. the joint velocities.

The torques delivered by the motors at the joints are considered as the input variables of
the HOS. The vector of these joint torques of the finger 1 is denoted by 7,. As mentioned above,
contact forces are transformed into exterior joint torques. denoted by the vector 7, . for the
finger &.

In order to precise the relation between the contact force f, and the vector of exterior
LOrques 7. We determine first the equivalent wrench (force and moment taken together)
corresponding to the contact force at the origin of the frame K¢, fixed to the last segment of
the finger 2.

This transformation is linear for any fixed finger configuration and contact point and given
by the relation

Toeat = JTGT S, (2.51)

where J7 is the transposed jacobian of the finger : (defined by (2.10)) and the matrix G” reads

=TI
ar=
[*[Q(d):’wé Xl]
The contact is said to be non-singular if the matrix J7G7 can be inverted. This allows to

eliminate the contact forces f, and the exterior torques 7, ., and to report Equations (2.50)
and (2.51) in the dynamics of the object resulting

s
My = Mg+ Y (JTCT) ™ r — Hiay — hu(gn, )]

s
007 = > {0(e)p%, x (JTGD)r = Hidy = hu(an )]} - w° x Ow°

=
Remark 7 In the case of redundant fingers (1.e. such that the number of joints exceeds three)
the pseudo-mverse of JYGT should be used.

2.1.5 Inequality constraints

The contact, forces applied to the object by the fingers must oriented inwards the object. This
qui is expressed by the i i

De°(pg, ) f < 0. (2.52)

Since we suppose permanent rolling contacts (i.e. there is no slip, see Assumption A4), the
forces must also remain inside the so called friction cone. Supposing Coulomb friction model,
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the volume of this friction cone is determined by the friction coefficient x and the corresponding
constraint reads:

ILfell

e R
[l funll
where fi, (resp. fu) give the normal (resp. tangent) component of the contact force between
the finger ¢ and the object
Other inequality constraint may also be present in order to describe the limits of the hand's
working space and to avoid collisions between the fingers. These constraints are not addressed
here and will be relaxed in the sequel.

2.1.6 Planar hand-object structures

A1-A6 remain for planar HOSs. However, important simplifications
can be made w.r.t. the general three-dimensional case. We proceed the same way as for the
modelling of three-dimensional HOSs, namely we start with the equations defining the geometry
and the kinematics and then we continue with the dynamics.

Recall that the frames fixed to the i-th finger and to the object are K? and K° and we
denote by the vector p] € R and by the angle ¢/ € S their relative position and orientation.
Recall also that the coordinates of the contact point pf, = [22,.y5 " J € {0.d} are expressed
in the frame K° and K7, respectively.

Since ¢° and ¢ are scalar, all orientation matrices have the form

Qo) = o€ {e. ¢}

cos¢  —sind
sing cos ¢

and we simply have w® = ¢° and w] = ¢ In particular, the relative position and orientation
of the object and finger 7, corresponding to (2.2), is defined as

(. 0) = () (2° - p1), 6 — o). (2.53)

Observe that the geometry of the contact between the object and the 1th finger is defined by
the constraints

e =0 (2.54)
“(pg,) =0 (2.55)
e, — P — g, =0 (2.56)

Dei(pt) ) _ @57

det
(DC"(PZ«‘) QUAST
corresponding to the equations (2.4), (2.5), (2.3) and (2.6). respectively. These constraints

depend exclusively on the variables (pg,.pf,,p].]). describing the relative situation of the
object and finger ¢
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Since ker Dcf(p, ) is one-dimensional. it is spanned by
0 -1
wf, = De(pg,)"
()
Taking into account the fact that the relative velocity of the object and the finger ¢ at the
contact point is
[+ 1601 (08, - 71)
the kinematic constraint corresponding to (2.8) reads
)" (3 + 8% (8, ~ 90)) =0 (2.58)

\ [

[ix]=| '

% 0
To define the geometry of finger ¢, recall that J, gives the set in which the vector g, gets its
values. The definition of the direct geometry function d, of finger 1 in the plane is similar

to (2.9) but with a different range space:
d: F, = R2x R/2nZ,  di(q.) = (0%, ¢%). (2.59)

v, =

where

We can now give the inventory of the variables and constraints defining the geometry and
the kinematics of planar HOSs. similarly to Tables 2.2 and 2.3 referring to the general three-
dimensional case.

variables description

Goi=1 .m joint coordinates e ak
»°0° position & orientation of the object 3
plod =1, ,m | positions & orientations of the fingertips 3m
pogli=1, .m relative positions & orientations 3m
pe.r=1 m contact points on the object surface 2m
phoa=1__ .m contact points on the fingers' surface 2m

Table 2.5: Variables in two dimensions

Remark 8. It 1s shown later (see Proposition 3 i Section 2.2) that the kinematic constraint
15 always mtegrable i the planar case.

The dynamical equations of the object and the fingers for the two-dimensional case read

mp = fy+ Y fi (2.60)
=
04" =3 Q¢)pe, < f. (2.61)

Hi(a)a Fhlgnd) =1 JIGT fu (2:62)
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constraint, type number of equation per finger

(253) geometric 3
(2.56) geometric 2
(2.54)-(2.55) | geometric 2
(2.57) geometric L
(2.59) geometric 3
(2.58) kinematic 1

Table 2.6:  Constraints in two dimensions

The following example illustrates the modelling of a planar HOS.

Example 5. Consider the HOS given in Figure 2.10. The hand has two fingers with prismatic
(translational) joints and fingertips of radius r,, 7 = 1.2. The manipulated object is a disc of
radius R. The position of the object is given by the coordinates z° and 3° of the point O and
its orientation is determined by the angle ¢°

Figure 2.10: Planar HOS.
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The geometric constraints (2.54)-(2.57) read

@)+ W) =t =0 (2.63)
(22, + ( 2)—R*=0 (2.64)
2] _ [o7—at] [cose® -sine’] [a5]
L“] L/o — 4 sing® coso? | |ve| 0 (2.65)
z d
C. ye, =0. (2.66)

t
%, c05¢° — Y& sing®  1Z, sind° +yg, cos ¢°

for 2 = 1,2. The kinematic constraint (2.58) reads

= g 2t -2+ g2
—yé, zd L feex] [T 21 =o0. 2.67
[ te. C’] ¥ —du (o] Y& — Y+ (2:67)
The dynamic equations of the object are given by (2.60)-(2.61). while the dynamics of the
finger 1. corresponding to (2.62) reads

mytme 0| |G —(ma+ma)g| _ || _ fou
0 mlj L}J*[ 0 ] [TJ L_I)HIXJ (2.68)

where m,, gives the mass of the jth segment of finger .. -

2.1.7 Hand-object structures with special morphology

Consider a robotic hand with 3 fingers, each with 5 joints. Suppose that the following properties
are satisfied (see Figure 2.11).

The last segments of the fingers are spheres such that they can be rotated around two
independent symmetry axes. These rotations correspond to the joints 4 and 5.

B4

For each finger, the joint coordinates corresponding to the joints number 4 and 5 are
eyclic coordinates [65]:

oL, _ oL,

=0 .3
O g
where £, is the Lagrangian of the 1th finger).
3. The orientation of the last joint axis does not depend on g (1 =1, ,3).

Remark 9. The last condition corresponds to special mechamcal deuvices. mughly speaking,
sumalar lo the ones used for kballs and for the h d mn [56. Chap
ter 1]. The results concermng such hand structures can be easily extended to higher number
fingers and jownts. We have restricted ourselves to the simplest case for readability’s sake.
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é \
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U

Figure 2.11. Finger with symmetries satisfying the conditions

Remark 10. Let us gwe a of the above cond: Ad that the
last segments of the fingers have all radwus v (these radu may be different for the general case).
one can virtually enlarge the volume of the conves object by constructing a new surface which ws
at distance r from the original one w the durection of the corresponding finger. It 1s casy to see
that the centers of the last segments are always on this enlarged surface as far as the contact
15 mantamed. Lel this powt of the enlaryed surface be denoted by C, for the finger ¢ and let
th= G,C.. (Notuce that the direction of t* 15 normal to both surfaces at C, and C,.) Dznotc the
limear (resp. angular) velocity of the last segment (ve. the sphere) of the finger i by vl (resp.
wis). Then the rolling unthout shpping constrami at the real contact pownt C, reads

0.

v, = vl + Wil Xt = (57 + [ X)), )
Since the imear velocity vl guwes the velocaty of C, which 15 also a pownt of the enlarged surface.
the relatwe velocity at C, gwes
v, = v = (57 + x| (M, — 1)) = [(@° —wis)x] £

which 1s different from zero as far as w° — w5 # 0. Thercfore. the orgm of the last segment
(e. that of the sphere) slides on the enlarged surface of the object. The equabity w° — iy = 0
corresponds Lo pure relatwe rotatwons at the powmt C, of the object and the finger 1.

The modelling of HOSs including a robotic hand satisfy
procedure presented at the beginning of this section.

ing Conditions 1-3 follows the general

Example 6. Consider the HOS depicted in Figure 2.12. The manipulated object is a sphere
of radius R. The coordinates of the origin of the frame K°. fixed to the sphere are (12 y°. 2°)
and its orientation is represented by the RPY angles 6° = (.0. ). The vectors (dp. dy.. o)’
(1 = 1.2.3) give the coordinates of the finger base points in the frame K The frames K¢ are
fixed to the centers of the last segments of the fingers. The geometric constraints (2.4)-(2.5)
are given by

(22,)* + () + (28 = R* =0 (2d )P+ )P + ()P =2 =0 i=1.2.3. (269
with derivatives

D) =2(p,)" Del(pt) =2 (o) "
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(dg.dyydyy)
i

finger 3

v
dyydypdey)

=00, =00

Figure 2.12:  HOS in three dimensions

Since || De°(p, )|| = 2R and || Def(p¢, )|| = 2r, Constraint (2.6) reads
Tl
pe, = ~pUSPE,

Reporting this in (2.3), and multiplying both sides from left by Q(¢¢) we get

iz + da,

o T OV

G rd | =9 = (14 ) Qe = 0. (2.70)

G+ da
The relative velocity is now expressed in K¢ This is simply obtained if Equation (2.7) is
multiplied from left by (e¢):

G 0 0 s @3+ dn
v, = 10+ WOXIUSWE, — Jd| — | O 0 —du| [ QAW+ [gotdy
G —Gis qu 0 qu

The vectors spanning the tangent plane at the contact point are wf o = [~z .0.24]7 and
wie, = [—y[v’.z"cv,o]T Finally, since the structure of the inertia matrices are not specified
neither for the fingers nor for the object, the dynamic equations of the object and the fingers
are given in their general form by (2.48)-(2.49) and by (2.50). .

2.2 Holonomy, flatness and Liouvillian properties

The notion of holonomy is defined in Appendix A. The definitions of (differential) flatness and
Liouvillian systems are recalled here. Note that the rth order time derivative of a function f(t)
of time is denoted by (1) = £L2.
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Definition 4 (flatness). The system

&= f(z.u) (2.7
with = € R* and u € R™ 15 differentially flat of one can find a set of varuables, called flat output.

y=hzuii L u®), yER™ (2.72)
wnth v fimte mteger, such that

r=a(y.g.9.  Y)
w=By. 9.9, ,y) 73
with q o finite integer, and such that the system equations

da

(a+1)
i )

wod. ¥ = flalagd W) B Y
are wdentically satisfied.

The weaker notion of Liouvillian systems is defined in [10] using differential algebra. We
adopt here a slighuly different definition.

Definition 5 (Liouvillian system). The system (2.71) 1s saud to be Loumlhan of there ezsts

a set of varables defined as (2.72), and a fimte number of varwables &. €, gwen by
£ =y (g ¥ =1 p (2.74)
such that
T =alyg.g, y@Ent e
(v, y Y, ./( ”17 LY . (275)
w=By. 9,9 Y &N
wnth &7 = (6,6, €% V), and such that & and § wdentically satisfy the system equations:
do
G =), (2.76)

We refer to y as a partwlly flat output and to & 1 =1, . p as wntegral varwables.

Let us insist on the fact that the differential equations (2.74). satisfied by the integral
variables &, only depend on the partially flat output y. Therefore, once we choose a smooth
trajectory ¢ — y(t), the RHS® of (2.74) becomes a function of ¢ only, which justifies the fact
that &, are called integral variables. The remaining part of this section is devoted to the study
of these properties in the case of HOSs. General results are obtained for the planar case and for
HOSs with symmetries, whose models were presented in Sections 2.1.6 and 2.1.7, respectively.
The rest of the results deal with the examples treated in Section 2.1.3. The solutions for the
MPP of HOSs, presented in Section 2.3. are based on the propositions of this section.

3Right Hand Side
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2.2.1 Holonomy and flatness of planar structures

It can be shown that all planar configurations are holonomic. We also show that such configu-
rations are differentially flat with more than one fingers as long as each finger has at least two
joints.

Proposition 3. In the planar case. the kinematic constramts between every finger and the
object are holonomac. Consequently. planar HOSs, wth an arbitrary number of fingers, are
holonomac.

Proof. 1t is enough to show that the constraints are holonomic for a single finger in contact
with the object, hence the subscript i corresponding to the finger's index is omitted in the
proof.

Note that the configuration manifold describing the relative situation of the object and
a finger in contact is seven-dimensional, parameterized by the variables (p%.pZ, . pl.¢]) and
observe that the constraints (2.54)-(2.58) depend only on these variables.

The one-forms corresponding to the geometric and kinematic constraints read

@ = d(c(p)) = 0 (2.77)
@y = d(c"(p)) =0 (2.78)
Zj] =d (e -p - 0e)E) =0 (2.79)
_ De(p _
ws=d (den (Dc"(p‘}) . Q(W)T)) =0 (2.80)
w5 = ()T (dp' + [dg7 <] (p% — 7)) = 0 (2:81)

where (2.77)-(2.80) are the exterior derivatives of the constraints (2.54)-(2.57). The one-form
ws comes from the constraint corresponding to the vanishing relative velocity of the surfaces
(curves) in contact at the contact point (see Equation (2.58)). These 6 one-forms span a
codistribution. Their independence can be checked by lengthy calculations that are omitted
here. Nevertheless, this property is easily interpreted in geometric terms by the fact that the
independence of the first five equations is a consequence of the opposite convexities of the
boundaries of the object and the finger with uniqueness of the contact point and thus the
coincidence of the common tangents. Moreover, the last equation is the only one involving the
covectors dp', d@" without dependence on dpft, dpg. Since the six one-forms are independent on
a manifold of dimension 7, the system is always locally integrable which proves holonomy. [

Proposition 4. Planar HOSs with at least two fingers, each having at least two jownts, are
differentually flat.

Proof. Let m denote the number of fingers (m > 2) and a, (1 = 1, .m, a, > 2) the number
of joints of finger 1. We thus have Y™ a, independent inputs. We claim that a flat output is
given by the following 3+ Y a, — 2m variables: p° ¢° gia.  .qua, (i=1, .m)and by

w=alfi.  fm) =1 2m-3
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with g, arbitrary but fixed combinations of the contact forces. Let us denote by Y the corre-
sponding Y_7" | a, dimensional vector-

Y =@ ¢" @3 Qo Gma o Gmane Ve Yom-3)

Consider the finger ¢ and the object. Using Proposition 3, the kinematic equation can be
integrated to get rid of 7 and ¢! and (2.54)-(2.58) become & set of six algebraic independent
equations depending on seven variables. Therefore, the coordinates of the contact point and the
position and orientation of the finger 2 can be all locally calculated as functions of the relative
orientation ¢]

Denoting by o7, p! the orientation and position of the frame fixed to the finger. the absolute

position and orientation of all the fingers 2 = 1., m are given by

di(q,) = (p° = AP, ¢° - ¢]) =1 .m, (2.82)
using (2.53) and the direct geometry of the fingers, defined by (2.59). We thus have 3m
independent equations with the 3 + 3.7 a, + m variables: ¢° p° qu, ,Gua, &L, L.
(2 =1, .m). Note that the inequality 3+ >_|", a, + m > 3 + 3m is always satisfied, since

@>20@=1.,m).

This shows that the knowledge of ¢° and p° the orientation and position of the object,
together with g3, 4.4, allows to calculate ¢, g1, gafor 1 = 1, .m, using Equation (2.82).
At this point it is shown that all variables of the kinematics (see Table 2.5) are obtained as
functions of the variables in ¥’

The dynamic equations of the object (2.60)-(2.61) together with y, € Y (1 = 1, 2m ~3)
gives the contact forces f, (1 =1,  .m) as functions of V.Y and Y’

The contact forces and Y. ¥, Y allow then to calculate the vectors of joint torques of the
fingers 7., (1 = 1, .m) using (2.62).

Since we have shown that all system variables can be expressed as functions of ¥ and its
derivatives we have proved that Y is a flat output and the system is flat. o

2.2.2 Flatness study of the kinematics (examples 1 and 2)

We wish to conclude about the (differential) flatness property of the kinematics studied in
Examples | and 2. For both examples we distinguish two cases. Fist, we study the model
allowing pivoting motions, then the constraints eliminating such motions are added to the
kinematics.

Kinematics with pivoting motions

This is the case of Examples | and 2 without considering the non-pivoting constraints (2.22),
same for both examples. Introduce the matrix A and the vector X defined by

A |0 Reosp  Rsinpcosd -1 o]

P
X =[p.0,0,28. 2 2.83
0 Rsing —Rcospcosd 0 -1 [eatat] sy
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where, for Example 2. we identify 2, and y¢ with 2, and yZ, (the coordinates of the contact,
point on the first, finger). Hence kinematic constraints (2.20)-(2.21) (resp. (2.27)-(2.28)) of
Example | (resp. Example 2) read

AX =0 (2.84)

The following driftless system was associated to Equation (2.84) using the vector fields defined
by (2.23):

u
R
using  upcosy

U
p= E’sm,atemﬂ—%ccsvbanﬁ%»u;
0

+ ug .
cosy + =2 sin
o+ psing

U= Reosd  Reosh (285)
it =w
9E = u

Recall that the vector fields multiplied by the generalized velocity inputs u;, us and uz an
nihilates the codistribution spanned by the rows of the matrix A, defined by (2.83). (These
vector fields are already calculated in Example 1.) Recall also that the velocity u; corresponds
precisely to the angular velocity of spinning, i.e. u; = ¢ — tsinf = w?

Proposition 5. The kinematics gwen by (2.84) (or the driftless system (2.85) with three in-
puts: wy = i uy = Y. us = w?) 15 differentially flat. The flat output Y s guwen by

P
Y=o
¢
with
r
(o [ pompcostricospsng ], 28)
—pcospcosf + Osinpsinf
Proof. Introduce the variables y, and y, as
{y‘} —AX (2.87)
v

Note that y,. y and ¢ are functions of the system variables (2.84) including the inputs u; = &,
wp = Yo ug = WP
Differentiating ¢, using (2.86) and (2.87), one obtains
ayy + bys = ¢+ 0% cos b (2.88)
with
a = singcosd+ (9 +0%) cospcosd — 200 sin psinf + f cos psin g
b= —pcospcosh = (% +6%)sinpcosd + 240 cospsing | Gsinypsind
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Observe now that (2.88) together with (2.86) constitutes a linear system w.r.t. to the variables
v and

_ <

B L‘ +04" cos s}

[¢sin pcosh+fcospsind  —pcospcosh + ésinvsiné‘:, I:yl]
a b Y2

hence , and y; are obtained as functions of ¢, ¢, 6. 6. 6, o, ¥, and .

Tn order to obtain ¢ as function of ¢, y, § and their successive time derivatives, we differ-
entiate Equation (2.87) with (2.84):

0]y - (EA) n —B\pslnw+w((jﬁcoswcosef.ﬂsimpsin@
9| ot dt O cosp + 1 (¢sin¢cos€+9f:oswsin9)

thus yielding y:

y—h:+5¢sin\o %79¢cosw

p= - = - . 2.89
peosgcosl ~ Osingsing  psingcosf + 0 cospsind ( )

Since we have already shown that y; and y, are functions of Y and its derivatives, the same
holds for w.

Finally, by (2.87). we have
Ié =y — R(fcosy + sinpcosb)
Y& = y2 — R(Bsinp — v cos pcosb)

proving that z¢ and y¢ are also functions of Y and its time derivatives. Since uy = &, up = .
uz = w2 = ¢ — ¥sinb, the inputs are also functions of ¥ and derivatives which achieves the
proof.

Remark 11. The thud component ¢ of Y appears quite involved and 1ts physical interpretation
15 far from obwous. It has been obtained by integration techmques which are not reported here
and 1its expression exphertly contamns the wnput varables whach s not usual. A sumpler flat
output 15 not known at present. Notwce that the flatness property of the driftless system (2.84)
wnth three mputs results also from a theorem of [46].

Case with eliminated spinning motions

The introduction of the non-pivoting constramnt (2.22) (same for Examples | and 2) that elim-
inales spinning motions results a different kinematics. Let us define the matrix A’ as

A
A=
10 —sind 0 0
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The kinematics of this system reads
A X =0 (2.90)

where A and X have been already defined by (2.83). Using a result of [46] the non-flatness of
the kinematics (2.90) can be shown.

For completeness, the following theorem of [46] is recalled
Theorem 1. Let the codistribution I1 be spanned by n —2 mdependent one-forms on a mansfold

M of dimension n. The associated driftless system s feedback hinearizable at every pont of an
open and dense subset if and only 1f the derwed flag of T = I° satisfies

dim*=n-2-k k=0, ,n-2

The one-forms spanning the codistribution defining the kinematics can be read from the
rows of the matrix A’
@, = cos pdf + sin p cos Oy — dal.
@z = sin pdf — cos p cos fdv> — dyl:
w3 = dyp — sin Odi,
giving the codistribution

11 = span {1, @, @5}

on a five-dimensional manifold, hence the number of inputs of the associated driftless system
is two. Observe that the one-forms @, @,, and @ are linearly independent everywhere since
@, A wy A ws has a constant nonzero component in dzf A dy& A dp. This allows to apply
Theorem 1.

Proposition 6. The kmematics defined by T1 s not differentially flat.

Proof. Applying Theorem L, the necessary and sufficient condition of flatness reads
dmI'=2 dim/?=1 dm/=0

where I* I? and I® are the codistributions in the derived flag of Il = [° Since @,. @, and
@ are independent one-forms it is enough to consider their exterior derivatives

dw; = —sinpdp A df + cosf cospdp A dyp — sin sinpdd A dw
dwoy = cospdp A df + cos 8 sinpdp A dip + sin 6 cos df A dif
dwy = —cos 8df A du.
and observe which ones can be obtained as exterior products having the form ny A 7, with

m € A'(M). and 7, € I Note that all exterior products having the form @ Aw@, (w € A} (M),
1 = 1.2) have a component in A daf or/and in A dyf.. Since dw,, @ = 1.2,3 have
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component nor in A dzf neither in A dyf, this implies that dw, # w A w, (@ € A!(M).
1=1,2,7 =1,2.3). It remains to examine the exterior products w A w;. Since
(sin wdf — cosp cos Bdw) A wy = dw,
(= cos df — sin  cos ) A w3 = dzo.
one gets that [' = span {w. @}, so dim ' = 2.

The preceding discussion has shown that de, # @ A @, (@ € AY(M), 1 = 1,2). Hence
dw, # 0mod I' v = 1,2, thus dim /2 = 0 # 1 which shows that the necessary and sufficient
condition of Theorem 1 is not satisfied and the proposition follows. &)

2.2.3 Liouvillian kinematics

Let us show that all driftless systems obtained in the examples of Section 2.1.3 which are not
flat are indeed Liouvillian.

Proposition 7 The driftless system

n‘b:%smwmnﬂf%coswan
. u u
6= ﬁcos¢+ﬁsm¢

_wsing  wcosyp
Y= Reos6  Rcosh
g

uy

e = .

(obtained in Ezample 1 and 2 with the non-pwoting constramnt (2.22) mcluded in the model and
proven to be not flat by Propositon 6) 1s Lownlhan with Y = (p,8) as partally flat output
and . y. ¥ as integral varables.

Proof. By the first two equations of (2.91), the inputs u; and uy can be calculated from the
trajectory of Y and Y’

]:m]_ 1 [sm[\p)can(ﬂ) 7«)5(«;);@(9@ H (20

uy|  tanf | cos(yp) sin(p) [

Hence, the variables . y&. and ¥ can be obtained from

wsing  uscosy@

" Rcosl  Rcosf

Yo = vz,

by simple integrals provided that their initial conditions are known which proves that Y is a
partially fat output and that z, yZ, ¥ are integral variables. The system is thus proven to be
Liouvillian. o



40 Chapter 2. Robotic manipulation with permanent rolling contacts

Proposition 8. The driftless system
. u Uy .
$= »E‘ - E’smwwnwr %coswaue
6= —Iﬁcos - %sm
RV RSN
_Upsing | uscosy
Rcosf " R cosh

it =
sd

2, = Uz
L -
o =Us

(obtained in Ezample 4 as the associated driftless system to (2.45)) 1s Lwouwvilhan unth Y =
(,0.%) as partally flat output and z¢,, 2¢,, and 2¢, as integral varwables.

Proof. The inputs are obtained as functions of ¥ and ¥

uy -1 0 sinf )
u| =R |0 —cosp -sinpcosf| |6
Uy 0 —sing cospcosf| |
and the integral variables are obtained as integrals of the inputs. a

2.2.4 Liouvillian dynamics of hand-object structures with special
morphology

Proposition 9. Consider a HOS such that Conditions 1-3 of Section 2.1.7 hold true with
three fingers, five degrees of freedom each. This system 1s Liouvlhan and admuts a partially flat
output

Y = (p°.6°. 22, Y&, . 1. Y2 Us).

positon and orienlation of the object and coordinates of the contact pownts on the object bound-
ary, unth three combnations of the contact forces: y, = g,(f1, fa, f3), 1 = 1,2.3. Moreover. q,a.
Qs 1= 1.2.3, the last two jowt coordimates of the fingers are integral variables.

Proof. Without loss of generality, we may assume that each fingertip has radius 7

Fix the frame K to the fingertip of the ith finger with its origin at the center of the sphere.
Hence the vector p? giving the origm of K¢ depends on the joint coordinates ¢,. ¢ and
doesn’t depend on the Jast joint coordinates gy and g;5. Thus the direct geometry (2.9) is given
by

P = P00, 0)

2.93
Q¢) = Aqu, G2 03, s Gis) (29%)
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Moreover, due to Condition 3, the angular velocity of the finger w! doesn’t depend on g4 and
@5 (it depends on ¢, g3 and Gu. .\ Gis):

Wi = 0 (gu. Gi2s Qs G- G- i3 e Gus) (2.94)

Thus the geometric constraints of the unique contact point between the object and the ith
finger (2.6) and the kinematic condition of rolling without slipping (2.8) can be formulated
without the variables .. g5, and pg: .

The geometric constraint (2.3) expressed in the inertial reference frame K* reads

P° = + Qe")py, — Uepg,- (2.95)
But, due to Condition L.
Deo(pg,)"
QINE, = ~rio oA
09 = T D T
hence (2.95) becomes
De(pe.)"
= "*Q¢°(°v+r*')=0. 2.96
A R (299)
‘We make use of Equation (2.4).
(pg) =0. (2.97)

Similarly to the vectors w{ ¢, and w§, let us denote by w ¢, and w, the vectors spanning
ker De?(p, ), i.e. the tangent plane to the object at the contact point.

The relative velocity at the contact point between the :th finger and the object is expressed
in the basis of K-
v, = 0, = v, = 1+ (WX, — B = i X] (U, + 7 - ) (298)
thus the kinematic constraints are given by
wlcvp, =0 whevg, = 0. (2.99)

Let us prove that 2, pf. qu. @2. @3, dua. dis can be expressed as functions of ¥,V

First, by (2. 97) and by the implicit function Lheorem one can express 22, as 2% =
22,(2%,.92,). v = 1,2,3. Then, replacing #&, in (2.96), p{ can be obtained as function of
Y The first, (vectorial) equation of (2.93) can be locally solved for g, gi», 3. giving these
three variables as functions of Y/

Since the kernel of Dc} is a function of Y the same holds true for w{ . ws Moreover,
by Equation (2.94), w? depends on Y, Y and g, ¢s. Using (2.98), Equation (2.99) reads

WO = W (5o + [0 x]Q(°)pg, — 5Y) (2.200)
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with W = (wf ¢ wge,)T of rank 2. Q the rank 2 cross product matrix:

0 ~t. t
Q=ltx]=| t. 0 —t| with t=[t,| =Q(e°)pg +p°—p’#0.
—t,  ts 0 [

Equation (2.100) can be locally solved for g4 and gis since, according to the above decompo-
sition, its Jacobian has rank 2, provided that the Jacobian of the ith finger is of full rank. It
results that g,4 and g,s can be expressed as functions of Y,V

Let us now prove that the vectors of joint torques 7,, 2 = 1,2.3 can be obtained as functions
of VY Y

By (2.48)-(2.49) and using v, = g.(/1. far f3). 1 = 1.2,3, the vector of contact forces f,
f2, f3 can be computed as functions of Y,Y.,Y Next, by (2.51) the same holds true for 7, e,
since J, and G, don’t depend on g, and g5 by Condition 3. Finally, since g,4 and g,5 are cyclic
coordinates (Condition 2), the dynamic equations of the fingers (2.50) allow to calculate 7,
+=1.2,3 as claimed.

We have shown that all the variables but g., gis and pf,. ¢f. 1 = 1.2,3. are functions of
Y and derivatives. It remains to show that if ¢ = (gu.qs)” is chosen as the vector of integral
variables, all the remaining system variables are functions of Y, its derivatives and ¢. This is
obvious from the second equation of (2.93) and from (2.3) which achieves the proof. ()

Remark 12. It can be verified that the above proposition remains vahd of the number of the
jownts 15 increased or decreased (the minimal number bewng three jownts per finger) and of the
number of fingers 15 creased. However, decreasing the number of jounts will prevent from
arbitrarily modifying sumultaneously the position and orentation of the object and the position
of the conlact points on the object boundary.

2.3 Motion planning

Recall, that for HOSs, the MPP is defined as a steering problem between an initial and a desired
final configuration. denoted by g; and g, respectively.

All solutions presented here are based on the fact that one can find a set of variables, denoted
by Y and called the flat output (for the differentially flat case) or the partially flat output (for
the Liouvillian case), allowing to obtain all or a subset of variables of the model as functions
of V.Y Y with r finite integer. (See also Definitions 4 and 5.)

Using the flatness property. the MPP is equivalent to an interpolation problem for the
variables Y since all variables of the HOS are functions of Y.¥,  ¥'"). For the Liouvillian
case, the integral variables cannot be obtained as (algebraic) functions of Y.Y, Y, but
as integrals of such algebraic functions w.r.t. the time. In both cases. the motion planning
algorithms can be divided into the following generic steps:

I Calculate Y;.Y;, YO0 andYe,Yp.  YUP usingqrd  .¢)" andgr.dr  .q0"
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o

. Set the travelling duration T between the initial and final configurations.

3. Make an interpolation for each variable y in ¥ such that
x(0) = xs xX(T) = xr
X(0) =X X(T) = xr
X9(0) = XO(T) = X

~

Calculate the trajectory of the model variables as functions of Y and its derivatives. Two
cases are to be distinguished:

o flat case: all model variables can be obtained as (algebraic) functions of Y and its
derivatives (see Equation (2.73) of Definition 4),

o Liouvillian case: the trajectory of the integral variables have to be calculated by nu-
merical integration w.r.t. the time of an (algebraic) expression involving Y and its
derivatives (see Equation (2.74) of Definition 5).

Remark 18. In the case of real-time applications, flatness 1s preferable to solve the MPP. since
numerical itegration 1s a heavy task wn terms of processing time. Thas 1ssue s also addressed
i Section 3.9 dealing with motion planning . the case of crane control.

Remark 14. The wntegers 1y, rp are d red by the followng

1. By Defimtions 4 and 5, the tragectory of Y must be sufficiently smooth in order to oblamn
continuous trajectories of = and u wn Equations (2.73) and (2.75)

2. One mmposes constramts on the derwatwes of Y (e.g. starting and ending at rest pownts
mplies that hugher order derwatwes of Y vamsh att =0 and t = T).

To solve the interpolation problem in Step 3. one can choose a polynomial function for each
variable y in Y

X(t) =yt (2.101)
=0
where k = r; + 7 + 1. Using polynomial functions, the vector of the coefficients a, , can be
obtained as a solution of a linear equation.
Assuming that the derivatives of Y vanish at the initial configuration, the number of coef-
ficients in (2.101) can be decreased:

x(t) = x(0) + (x(T) - x(0)) (%)”“ YZ:,““ (%)7 (2.102)

The coefficients a,, are obtained from the final configuration.
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The remaining part of this section is divided into three parts following the classification
made in Section 2.2, based on the holonomy, flatness and Liouvillian properties.

We treat first the MPP for planar structures (including Example 5), based on the flatness
property of the model including the dynamics. Next, solutions for the MPP are given for the
three-dimensional kinematic models obtained in Examples 1, 2, and 4. Finally. the case of
three-dimensional hand structures with special morphology is studied (including Example 6)
where the solution of the MPP is given again for the model including the dynamics.

2.3.1 Motion planning for planar structures

Proposition 4 asserts that the model of planar HOSs including the dynamics is differentially flat
and the position and the orientation of the object are contained in the flat output Y provided
that the hand has at least two fingers with at least two joints each. Hence, the polynomial
interpolation method given by Equation (2.102) for the variables included in ¥ can be used.
Let us give the solution of the MPP for the two-dimensional HOS presented in Example 5.

le 7 (continuation of 5). First, we show that the kinematic constraints
are indeed integrable by Proposition 3. Introduce the following polar coordinates for the contact
points (see Figure 2.10):
2, =r.c05¢ 1% = Reosé,
yé, =rsinG yg, = Rsing,.

Then Constraint (2.65) becomes

Q2+ cés( z: + chs(& + ¢:) (2.103)
G +rsinG = 1% + Rsin(&, + ¢°)
and developing Constraint (2.66) one obtains:
sin(§ +¢° = ¢) =0 (2.104)

Using (2.103)-(2.104) and eliminating ¢,. #° = gi2. #° = Gu2, ¥° — qu1. and 3° — g1 from (2.67) we
get, after easy calculations which are omitted

A
E.+r'+R¢ 0.

This can be integrated as

o,
=- 0 1=1.2
& ,+Rv) Hoo 1

where &g is the initial condition for &. Proposition 4 asserts that this HOS is flat with
Y = (%9 6" m)

as a flat output, y; being defined as y; = g1(fy. f2) where g; is an arbitrary but fixed combination
of the contact force components. Here, we choose y; as the sum of the squared norm of the net
contact forces at the contact points: ¥ = || fi[I? + || fal|?
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Tf we know the initial mechanical state of the HOS (2°(0), y°(0), ¢°(0). (0), ¢2(0)) and
we are given al time T a desired final configuration of the object (2°(T). y(T). ¢°(T)). since
the flat output Y includes the position and the orientation of the object, it is enough to find
smooth functions of time connecting (2°(0), y°(0), ¢°(0)) to (z°(T), y*(T). ¢°(T)). and to
fix the trajectory of the remaining component of the flat output y; in order to deduce the
corresponding inputs 7,,, (1.7 = 1,2) without integrating the system. We may also wish that
the time derivatives of ° y° and ¢° at ¢t = 0 and ¢ = T vanish up to a finite order, to
start and stop at rest points (i.e. with zero velocities and accelerations). Such functions for
the trajectories of the orientation and position of the object can be chosen as polynomials
given by Equation (2.102), with x € {°.3° ¢°}. A sample trajectory with zero velocities and
accelerations at the initial and final configurations is given in Figure 2.13.

initial configuration final configuration

Figure 2.13; Trajectory of the object and the fingers.

Instead of defining an a priori trajectory of y; we may wish that the net contact force has
minimal norm, to which case the trajectory of y; is deduced from the trajectory of the position
and orientation of the object as follows: according to (2.60)-(2.61), the components of the
contact forces satisfy

f 0o 1 0 ?“ mi®
B[f‘} I S B M e P )
R R op’
.

and therefore the minimum norm of the net contact force is given by

mi®
v =|[BT(BBN) |m(i - 9)
o¢°

The resulting configurations and net contact force for & = 4 is shown in Figure 2.14. -
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4w metforce (N) inz direction vt force (N) in x direction
o2
o 015,
sos o
ocs
s o
e o

“®%5 G102 63 G4 65 6 07 68 65 1 162 63 64 65 08 07 08 0%

time (sec) time (sec)
Figure 2.14:  The net contact force (z and y components): m = 0.5kg

2.3.2 Motion planning for kinematic models (examples of Sec-

tion 2.1.3)
Table 2.7 summarizes the results of Section 2.2 concerning Examples 1, 2, and 4.
Example non-pivoting constraint property Proposition
1,2 none flat 5
1.2 present Liouvillian 7
4 none Liouvillian 8

Table 2.7 Properties of the examples of Section 2.1.3

The solution of the MPP for the flat case follows the same lines as the one presented in the
previous subsection for flat planar structures. We address here the MPP for the Liouvillian
cases. Let us consider Examples | and 2 first.

Motion planning for Examples 1 and 2 with spinning motions eliminated

Consider the driftless system obtained in Examples 1 and 2 eliminating the spinning motions
(i.e. two inputs):

u
» %simptanﬁ - Beosptand

u u

8= — cosp+ — sin
RCEOTRINY

v= wsing  upcosy
Rcos6 R cost

i =u

U = ua.

By Proposition 7, this driftless system is Liouvillian with Y = {y, 0} as partially flat output.
Observe that Y = (p.6) doesn’t contain all orientation angles, hence one cannot determine
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freely the trajectory of the orientation of the ball. Nevertheless, the following method may be
used to overcome this difficulty.

0] LIC] w(t)
- : ; P
i
. o o

time (sec) time (sec) "

angle (130)
angle (rad)
2 e .

2

e &

angle (rad) - e

Figure 2.15: The solution of the MPP for the orientation angles.
Choose the trajectory of ¥ as a polynomial function of :
W(0) = ap + .10 + az6® + az6° (2.105)

and we wish to obtain the trajectory of  as a function of the angle §. Noting that ¢ = %24
and ) = 920, the additional non-pivoting constraint (2.22) can be rewritten as

dp _ . di

2 =0 (2.106)
This expression can be integrated w.r.t. 6 (such that (/) = ¢;) in order to obtain the
function ¢(f). Reporting (2.105) in (2.106), the integration on the interval (87, 0] results

©(0) = ar(cosf; — cos ) + 2az(sinf — sin by + 6 cosf; — b cos )
+ 3a3(0} cos B — 2cos Oy — 20y sinb; — 6 cos B + 2cos§ + 20sin6) + p;

which is linear w.r.t. the coefficients of the polynomial (2.105). Hence, these coefficients have
to satisfy

=ag + a,0; + ax67 + as6] (2.107)
Ur = ag + mlp + 0% + az6%
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where @, ¥, 0; (resp. wp, Yp. Or) give the initial (resp. final) orientation of the ball. Since
we have one more degree of freedom to chose a constraint, we wish that the second derivative
of ¥(#) vanish at the final point:

0= ay + 3as6p. (2.108)

This system of equations given by (2.107)-(2.108) is linear in the coefficients of the polynomial
(2.105). Once the trajectory of ¢ and % are given in function of 6, it remains to find a
trajectory of § w.r.t. the time, connecting 6 to 0. Such a time function can be obtained using
the expression (2.102). The input trajectories u; and uy are obtained using (2.92) in the proof
of Proposition 7

Remark 15. The trajectory of the contact point on the plane ws gwen by the integral variables
z¢ and yc (see Proposition 7) and can be obtained by integrating the inputs w.r.t the time. This
wntegration can be carried out numerically. Note also that no deswred final position of the contact
pownt 15 gwen for the motion planning, 1t 15 obtamed as the result of the numerical integration.
Recall that this contrasts sigmficantly the flat case. In fact, for those systems, the motion
planning based of the flatness property allows to precise the deswed final configuration for all
varables. The proposed motwon planning methods for Liouwnilhan system don’t allow to gwe in
advance the final values for some integral varwables, they result from numerical integration.

A sample trajectory is shown in Figure 2,15 connecting ¢y = I, 0 = %, ¥ = 0 t0 o = T,
9 =0, wp = T in 10 seconds.

Next we present a motion planning algorithm for Example 4 which is proven to be Liouvillian
by Proposition 8.

Motion planning for Example 4

Consider the driftless system
uy u
o= 7% - ﬁzsmptanﬁ + E“coswanl)
6= —uicos - Esinw
RYTR
up sing . U3 €08
Rcosf R cosf

od
To, =
i, =u
i =us

which is obtained in Example 4 and proven to be Liouvillian by Proposition 8. the partially flat
output being ¥ = {(p,6,1}. Here all the orientation variables are included in ¥ The motion
planning algorithm is illustrated in the case of a sphere of radius R = lem.

The trajectory of the orientation of the sphere between its initial and desired final values is
obtained using the polynomial interpolation proposed above (see Equation (2.102) and Figure
2.16). The trajectory of the contact points on the tangent planes are obtained by numerical
integration and shown in Figure 2.17
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trajectory of the angle @ trajectory of the angle 0 N trajectory of the angle y

_ angle(rad)

fime(sce]

Cuimetsed) " Mimetsed)

Figure 2.16: Trajectory of the orientation of the sphere (RPY angles: ¢, 6. v/)

contact point in the yz plane  contact point in the xz plane contact point in the xy plane

em)

I R

Figure 2.17- Trajectory of the contact points on the tangent planes

Remark 16. Note that. due lo integration, the final values of the yg,, 2¢,, 22, cannot be chosen
arbitrarily. Since i our case we are not particularly interested m the positons of the contact
pownts wn thewr respectwe planes this doesn't present a major restriction.

2.3.3 Motion planning for hand-object structures with special mor-
phology

Proposition 9 asserts that the dynamic models of symmetric HOSs are Liouvillian. Nevertheless,
the inputs, i.e. the joint torques are functions of the partially flat output ¥ and their derivatives,
hence no numerical integration is needed to obtain their trajectory from the trajectory of the
variables in Y

le 8 i ion of 6). Introduce the following polar coordinates for
the contact points on the object surface:

g, = Reos§,coskyn
y% = Reos&siné,z (2.109)
22 = Rsin&,.
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The dynamic equations of the object and the fingers are given by (2.48)-(2.49) and by (2.50)

This HOS is Liouvillian according to Proposition 9 and, using the polar coordinates of the
contact points defined by (2.109), the partially flat output is given by

Y = (2°9°, 2% 0. 0.0, 3, &1, 602)

with 2 = 1.2,3 and y, = ¢,(/1, /. f3) where g, are arbitrary but fixed combinations of the
contact, forces. Here, we choose y, = ||fi]|? The integral variables are gy and g5, i = 1,2.3.

Suppose. as in Example 7, that the initial mechanical state of the system is given at ¢ = 0
by (2°(0), °(0). 2°(0), ¢(0), 6(0). ¥(0). £.1(0), £2(0), 4.(0)), + = 1.2, 3, and that we are given
at time ¢ = T a desired final position and orientation of the object (z°(T), y°(T). 2°(T), o(T).
6(T). w(T)) and final position of the contact points, (€.1(T), &2(T)) on the object boundary.

Then, due to Proposition 9, the motion planning is reduced to an interpolation problem for
the components of ¥ using polynomials given by (2.102) with the same number of initial and
final conditions on each component, of ¥’

foree (N)

chEEE gEEE

A /]

Figure 2.18: Components of the net force applied on the object by the fingers

Once again, as in the Example 7, the trajectories of y1, 2, ¥ are not defined a priori, but
determined such that the sum of the squared norms of the contact forces 3 o, y, be minimal:
according to (2.48)-(2.49) the contact force components satisfy

I 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 mi°
B ];Z @ 0 0 1 0 0 1 0 0 10 2 _ T}yv
I3 0 =28 ¥ 0 =% w0 =2 WG ||p _m(z +9)
2 0 —xp 2, 0 -—zg 2, 0 —a, 0 + [wx]Ow?

Y & 0 —Yg G 0 g, 3% O
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thus 3°2_ 3 is minimal with the contact forces obtained by

g, mi°®
| o
= BT(BBT)"' my
B ZBEET o)
E 0 + [wox]|Ouw’,
finger | finger 2 finger 3 N
D > NN
b [ \
o i \
i - o
| -l \_
R I R R

time (sec)

Figure 2.19: Cosine of angles between the contact forces and the surface normals.

An example trajectory is presented for the following numerical parameters: m = 0.2kg.

R = 0.Im, 7 = 0.02m, dy2 = 0.3m, dy3 = 0m, dyp = Om, dy3 = 0.3m, d.5 = Om, d.3 = Om

981%} The trajectory connects the initial point z°(0) = 0. lm 2°(0) = 0.1m,

Ulm (0) = 0, 6(0) =0, %(0) = 0, &n(0) = T, £(0) = =%, &n(0) = 4=,

T &n(0) = L. &n(0) = —% Lo a final point 2°(T) = o.15m y( ) = 0.15m.

Zm »(T) o(T) () = —§ &u(T) = . €o(l) = —§. &(T) = 1§,

2, &u(T) = 5. &(T) % such that T = 1s. The components of the net contact
force are given in Figure 2.18.

The cosine of the angles between normal vectors to the object surface at the contact points
and the contact forces applied by the fingers is given in Figure 2.19 showing that (2.52) is
satisfied along the trajectory. Note that the minimality of 3°°_, 3, does not guarantee that the

inequality constraints of Subsection 2.1.5 are satisfied. -
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Chapter 3

Crane control

Many different types of weight handling equipment (WHE), and in particular cranes, are used
in various industries including construction and naval transport [64]. From a mechanical point
of view, cranes are typical examples of underactuated mechanical systems [L5, 16, 51], since
the number of actuators is less than the number configuration variables needed to describe the
mechanical state of the system. For many WHES, the payload is hoisted by a rope, hence an
inherent pendulum-like oscillatory behaviour makes difficult the precise and fast positioning
task. Such swinging motions, which are poorly damped in general. may be created by the
crane operator himself when he moves the load or by external disturbances like winds and
waves. Note that the time necessary to wait the end of oscillations of the load during weight
handling operations using harbor cranes represents 30%-50% of the total time of operations
depending on the experience of the crane operator and the weather conditions [57].

In all cases, the operator acts indirectly on the motion of the load and uses visual feedback
in order to eliminate undesired oscillations. The difficulty of the operator’s task is redoubled
by the eventual presence of obstacles and personnel in the crane’s workspace since the path of
the load has to avoid them for obvious security reasons. Therefore, the aim of WHE control is
to increase productivity and operational security by assisting the human crane operator.

Various techniques have been proposed to provide such assistance, the main objective being
to attenuate undesired swinging of the load [23, 27, 50]. The industrial interest to this problem
is attested by several patents (e.g. [57)). In papers [8, 26, 59, 66]. linear methods are used
including adaptive, robust or LQ techniques. Some authors use energetic methods based on
the analogy with other mechanical systems. In particular, the model of an overhead (or gantry)
crane is equivalent o that of a cart with a pendulum if one fixes the length of the rope attached
to the load and considers it as a rod [14]. Another method starts from the analogy with the
ball and beam example and uses passivity based techniques [66].

In this chapter we address the anti-sway problem as a special case of the general tracking
problem. 1In fact, the elimination of swinging motions is equivalent to the stabilization of a
special trajectory consisting of an equilibrium of the system. A more general problem would be
the stabilization of any desired trajectory of the load connecting two different equilibria. This
implies that a motion planning task has to be solved before addressing the closed loop tracking
problem itself.

An additional objective of this chapter is to cover as many different WHES as possible by
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the analysis, allowing different geometries and including cantilever and overhead cranes besides
the US Navy crane example. The small size model’ of this last crane is at our disposal at the
Centre Automatique et Systémes (see Pigure 3.1). The motivation of the generalization is that

motors with!
sensors and
winches

Figure 3.1, Reduced size model of the US Navy crane

a large class of WHEs have the same structural properties, namely, they can be decomposed
into a fully actuated, articulated mechanical structure with in general one or two degrees of
freedom (e.g. a crane with a rotate platform or a gantry crane with a moving bridge), and a
hoisting system comprising ropes, winches, and pulleys.

Our goal is to give a systematic way to obtain dynamic models of a class of WHESs and
to show how to find trajectories connecting two equilibria of the load exploiting the flatness
property |19. 20. 22| of the dynamic model.

To this aim. the derived model of the class of WHESs involves Lagrange multipliers associated
10 geometric constraints on the generalized coordinates. This contrasts with choosing a minimal
number of coordinates and eliminating the constraints.

The form of the deduced model shows that each member of the class is differentially flat and
the coordinates of the load constitute all or part of the components of a flat output, depending
on the number of motors. Thus the solution of the MPP becomes an interpolation problem
using sufficiently smooth functions (e.g. polynomials).

The aim in closed loop is 1o stabilize asymptotically a desired equilibrium or a trajectory
of the load using only partial information. This means that measurements on all configuration
variables are not available. In particular, the load position and the angles between the ropes
are not measured. We show that all equilibria of each WHE example presented in this chapter
(3D cantilever, overhead, and US Navy cranes) can be globally stabilized using proportional-
derivative type output feedback controllers. [f, in the same proportional-derivative controller,

Uthe realization of the small size model of the US Navy crane is financed by the Nonlinear Control Network
funded by the European Commission’s Training and Mobility of Researchers (TMR) Programme, Research
Newwork # ERB FMRXCT-970137
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instead of the constant reference of the measured components of the end point. we use (time-
varying) reference trajectories of the measured variables ending at an equilibrium, we prove the
local stability of the system. In fact, simulations show that putting together motion planning
and tracking results in more predictable transients (i.e. close to the desired reference trajectory)
and in reduced oscillations at the final equilibrium.

The remaining part of the chapter starts with the study of the small size model of the US
Navy crane (2D and 3D versions). Section 3.2 introduces a general method of WHE modelling
which can be applied to a large class of systems. Three examples of this class are treated in
details: the 3D cantilever, the 3D overhead, and the 3D US Navy cranes. It is also shown that
all WHES of the class are differentially flat.

Motion planning is addressed in Section 3.3 including the problem of obstacle avoidance and
actuator dimensioning, the latter being an interesting application of motion planning aiming
to find suitable supporting fast displ

The last two sections of the chapter address the closed loop control of WHEs. The global
stabilization of load equilibria is treated first for the different models of the US Navy crane and
for the other examples (overhead and cantilever cranes). The last section studies the case where
the PD controller uses time-varying feasible reference trajectories connecting load equilibria.
These references are obtained using the motion planning method presented in Section 3.3

Parts of this chapter have been published in [36. 38, 35].

3.1 Small size model of the US Navy crane

The model of the planar US Navy crane, described in [43, 42], is recalled first. This model is
then extended to the case where the mass of the free (or mobile) pulley (see Figure 3.1) cannot
be neglected w.r.t. the mass of the transported load. This is the case when the crane moves
without load for example.

The three-dimensional model is presented next for the case with neglected and nonzero free
pulley mass. The flatness property of each model is proven.

3.1.1 Crane in the plane

Let us start with the description of the crane in the plane, illustrated in Figure 3.2. The setup

comprises:

o A boom making a fixed angle @ w.r.t. the vertical, equipped with three winches: one
located at the point P, a second one at the point A. at a fixed distance ! from P and a
third one at the point S. at fixed distance s from P

o A free pulley located at the point B.

« A vertical rope of variable length R. starting from P whose upper part makes an angle
8 with the boom, passing through the free pulley. The lower part of the rope connecting
the points B and C makes an angle 0 with the vertical. The length of the upper part
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ion of the crane

Figure 3.2: Planar ve

connecting the points B and P is denoted by Ly and the one of the lower part by Lj.
Denoting the total length of the rope by R, we have R = Ly + Lg.

o A horizontal rope of variable length L; relating the winch A to the pulley B.
e« A suspension rope for the free pulley of variable length L, starting from S, ending at B.

o A load with mass m attached to the vertical rope at the point C, located at a distance
Ls from the free pulley B.

The winches at points P, A and S have radii p;. ps, and ps, respectively, and they are
torque controlled using electric motors with incremental encoders on their axes.

Note that for the real crane, the hoising winches are not located at the points P, A and S.
only pulleys are fixed to the boom at those points. However, since the rope lengths between
these pulleys and the hoisting winches are constant, the pulleys at the points P A, and S
can be considered directly as actuated winches winding up the corresponding ropes. When
calculating the rotating inertia along a rope, the inertia of the winch is summed up with the
inertia of the intermediate pulley(s).

All cables are supposed to be rigid (i.e. without elasticity). The plane of the boom and
the ropes comcides with the z2-plane of the reference frame whose origin is at the point O (see
Figure 3.2). The coordinates of the load at the point C are given by (z,z)”T The coordinates
of the free pulley at the point B are given by (z5.25)7

The inertial parameters are summarized in Table 3.1
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notation definition
m mass of the load
mo mass of the free pulley
Ji inertia of the winch at the point 4
Iy inertia of the winch at the point P
J3 inertia of the winch at the point S

Table 3.1:  Inertia parameters

The rope tensions are illustrated in Figure 3.3. The direction of the tension vectors
ti.ta, 5., in the corresponding ropes are given by the geometry, thus the tensions in the
ropes can be represented by the scalar variables Ty, T, Ty and T,. The sign conventions agree
with that of Figure 3.3. Because of the neglected elasticity of the ropes we have

T =Ty

Two cases are distinguished: mg = 0 and mg > 0.

Neglected free pulley mass (mo = 0)

This case is also treated in [42. 43] and repeated here for completeness, since planar results and
calculations are also used in order to prove the flatness of the three-dimensional models. The
model is obtained by supposing mg = 0 (i.e. no dynamics associated to the free pulley) and
suppressing the winch at the point S together with the corresponding rope and rope tension
(t; =0).

The geometric relations read:

-] o
] [ehem o
R - 29
][
[ obme] - [

The equilibrium of forces (tensions) at the free pulley (at the point B, see Figure 3.3) reads

titly—t3=0
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Figure 3.3: Rope tensions (at the free pulley)

or

0= —Tysin(y +60) + Ti(sin(a — B) +sin8)

0= T cos(y +6) + Ts(cos(a — B) — cosh). (2)

The dynamics of the load is given by

m H -7 [’Ciﬂ m m (3.3)

and those of the winches (see Figure 3.4) read

Jy .
”—IL =Tipr+m(Li. L) —w (3.4)

J; ; . .

oLe+ L) = Taps (Lo + Loy Lo + L) = o (3.5)

where uy (resp. up) is the torque developed by the motor driving the winch at the point A
(resp. P). The functions 7, give the friction torques. The proof of the flatness property relies
on the following proposition.
Proposition 10. The following properties hold true for the two-dimensional model of the
crane:
(1) The vectors (x — 2,2 — 25)7 and (i.% + g)T are parallel:
T-zp i

z2—23 Z+g

(3.6)

(u) The section AB 1s the bisector of the angle CBP:

4= %(7{+B—(n+9)). 3.7)
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Figure 3.4: Torques at the winches

Proof. For part (i), Equation (3.3) gives

m| & _ | —sin®
Ty |:4g| | cosh

showing that the vector (i, # + )7 is parallel with the vector (—sinf.cosf)” On the other
hand, from the geometry we have

_l z—ap| _ |-sind
Ly|z=z25| | cost
i.e. the vector (z — zp,z — 25)7 is also paralle] to (—sin@,cosf)” This proves ().

To prove part (1), consider Equation (3.2). Multiplying the first equation by cos(y + 6),
the second one by sin(y + #) and summing them up, one gets

sin(y 460 +a — f) = sin(m - ),
giving (3.7) by isolating . o

Proposition 11. The planar crane model gwen by Equations (3.1)-(3.5) 1s dufferentially flat
with (z,z) as a possible choice of the flat output.

Proof. The proof consists of giving the calculations necessary to obtain the trajectory of all
variables as functions of z,4,4,2®. 2% and z, 2.2, 2. 2(9. Fist. we have from (3.3) that

nanH:—m. Ty = m((% + g) cos b — Zsin#). (3.8)
Let the point D be the intersection between the boom (section OP) and the line connecting,
the points C and B (see Figure 3.5). We have
z+(d—k-l)sina _ &
z+(d—k—-lcosa Zi+g
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Figure 3.5: Geometry of the planar crane

which allows to express the distance d (see also Figure 3.5):

d— i(z = (k+1)cosa) = (£ + g)(z — (k + )sina)

(2 +g)sina — zcosa . (9
Elementary geometric relations in the triangles PAB, PDB and DAB give
sinf_siny _ sin(y - §)
oL (3.10a)
sin 3 sin2y  sin(a +6)
= =— 3.10b
0BT~ d L (3105)
sinfa +6) _ siny _ sin(y — )
I =11 [pB]" (3.10¢)

Tsolating L, from the first and the last equations and equating the results we get

L _ b (l+d)w
Siny siny
hence, provided that siny # 0, we can express sin 3:
. d
sng=(1-%)sina +6)

allowing to caleulate 3 in the interval (0,a) as function of 0 and d which have been already
expressed as functions of ,&,%, 2,4, The angle v is obtained from (3.7). Using Equation
(3.10¢) we get

sin 3

e )
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and the rope lengths L; and L result from (3.10a), allowing to calculate the position (zg, z5)
of the free pulley using (3.1c). The length Lg is given by

1i=(z~ 25+ (z = )

and note that Lz > 0. Then. from the equilibria of the rope tensions at the pulley (Equation
(3.2)). the tension of the horizontal rope attached to the free pulley is

T} = 2Ty cos . (3.11)
hence the motor torques uy and u; are obtained from the dynamics of the winches (Equations

(3.4)-(3.5)). Since we have shown that all variables of the crane model are functions of z, z.
and their ive time derivatives, the p; follows. o

Remark 17 Note that the geometric varwables and the rope tenswons are functions of x, z and
derwatwes up to the second order, and the ezpressions allowing to obtawn the trajectory of the
geometric varwables don't depend on the wertial parameters (qwen n Table 3.1). However. one
needs derwatwes of z and z up to order four to obtain the motor torques u, and us.

Nonzero free pulley’s mass (mg > 0)

The free pulley mass is no more neglected and the winch at the point S is added to the model
studied in the preceding paragraph. The additional geometric constraints read (see Figure 3.3):

zs| _ [(k+l+3s)sina
25| |(k+1+s)cosa
zp|
28|

where  is the angle between the boom and the rope sustaining the free pulley at the point B.
The dynamics of the free pulley is given by

(3.12b)

(k+1+5) cosa — Lycos(o — )

(k+1+s)sina — Lysin(a — m]

moip = —Tysin(y + ) + Tx(sin(a — B) + sinh) + Tysin(a — ) (3.13)
mo(zs +g) = Ti cos(y +0) + Tx(cos(a — B) — cos§) + T cos(a — 1) 1558)
where the relation T, = Ty is already used. The dynamics of the additional winch at the point
S reads

Js .
p—:L = Tops +ma(Ls) — ug (3.14)

Note that the main difference w.r.t. model of the preceding paragraph is the loss of the
bisector property of Proposition 10. Moreover, the number of inputs is increased by one. the
new input us being the torque of the motor hoising the suspension rope of the free pulley.
Nevertheless, is it easy to prove that the flatness property is conserved.
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Proposition 12. The planar crane model gwen by Equations (3.1)-(3.5) and (3.12)-(3.14) 1s
differentrally flat unth (z, 2, Ls) as a chowe of the flat output.

Proof. We proceed as in the proof of Proposition 11. First. § and Tj are expressed by Equa-
tion (3.8). The coordinates of the pulley are calculated as

B x mLy | —sind
4 0

25 z Ty | cost
showing that zp and zp are functions of z, 2, Lz, T3, and 6, the last two variables being
functions of z, z, &, and 2. The rope lengths L), Ly, and L, are obtained by expressing the
distances between the free pulley and the corresponding winches. Knowing the side lengths of
the triangles ABP and ABS, the corresponding angles 7. 3 and y can be calculated.

Noting again that T, = T3, the remaining rope tensions (T, and 7}) are expressed us-

ing (3.13):

o moip — Tysin(a — B) +sin 6
mg(Zp + g) — T3(cos(a — B) — cosf)

T,| _ [sinfa—p) —sin(y+6)
Ty| ~ |cos(a —p)  cos(y +06)

The motor Lorques are obtained, as before, using the dynamic equations (3.4)-(3.5) and (3. 14)
of the winches.

Remark 18. Note that for the model with nonzero free pulley mass, one needs derivatives up
to the fourth order of the trajectory of the load to obtain the rope tensions. This contrasts to
the case mo = 0 (see Remark 17) where the expression of the rope tensions involved only second
order time derwatwes of the flat output.

Remark 19. One may consiuder the bisector law as a “natural* way to gwe the trajectory of
the free pulley during the motion. We can use the additwonal degree of freedom corresponding
to the thurd component of the flat output to make the bisector property (3.7) respected. For, we
choose

y=r+0-(a+0) -2y

as the third flat output wnstead of Ly and set 1t wdentically to zero.

Remark 20. The state equations are not gwen exphcitly. although they can be calculated by

the geometric The state-space thus obtamned 1s sur-dumensional (three
degrees of freedom) of the free pulley mass s neglected and ewght-dimensional (four degrees of
freedom) if mo > 0.
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b il

Figure 3.6: Crane in three dimensions

3.1.2  Crane in three dimensions

The 3D setup of the US Navy crane is depicted in Figure 3.6.

In three dimensions, additional variables are needed to describe the mechanical state of
the crane. The origin of the inertial reference frame. denoted by K, is fixed again at O and
its z-axis coincides with the vertical rotation axis of the crane. We introduce two additional
frames, all having the origin at the point O:

1. The frame K is chosen such that the points P, A, and B determine its zz-plane. Note
that the point C (i.e. the load) remains also in this plane if the free pulley (at the point
B) has no mass.

2. The frame K9 is chosen such that the z-axis of the frame K and the point P determine
its 292%-plane.

The transformation between these frames (also illustrated in Figure 3.6) can be obtained by
elementary rotations. We denote by £ the rotation angle around the z* axis of the frame K*
that transforms K? to K?. The rotation angle around the OP axis allowing to transform K9
to K is denoted by .
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The corresponding transformation matrices read

cos§  —siné 0

Qegs(§) = [sin€  cos& 0 (3.15)
0 0 1
sin®a(l —cosyp) +cosyp  —cosasing sinacosa(l — cosy)
Qior(p) = cosasing cosp —sinasing (3.16)
sinacosa(l — cosp) sinosing  cos’a(l — cosp) + cosyp

such that the coordinate transformation between the frames K and K" is given by
Quorc = Qpcoics - sk
The additional inertial parameter is the rotational inertia of the platform which is denoted
by M The cases with mo = 0 and mq > 0 are considered again separately.
Neglected free pulley mass (mp = 0)

Recall that the load remains in the plane determined by the points P A, and B. The dynamics
of the load are given by

Ed —Tssinf
m| | = Qeks - o 0 (3.17)
4g Tscos

such that @ gives the angle between the rope section BC and the z-axis of the frame K (this
angle is also given in Figure 3.2. The force equilibrium at the free pulley reads

titts—t; =0 (3.18)
and we have again T, = T5. The dynamic equations of the winches at the points A and P are
already given by Equations (3.4) and (3.5).

To obtain the dynamics of rotation of the platform, recall that the rope tensions generate
torques rotating the platform. Hence the corresponding dynamic equation reads

Jyg = prog.s (PO x (~ta) + PAx (=) = ma(€.6) + e (3.19)

where x is the usual cross product in R® and the operator prog.s(.) gives the projection of a
vector to the 2* axis of the frame K® The function 7, gives the friction torques.



3.1. Small size model of the US Navy crane 65

The geometric constraints are expressed using the transformations (3.15)-(3.16):

EA (k+1)sina — Lysin(a — 8)
Y| = Qoo - Qoxc 0 (3.208)
25 (k+1)cosa — Lycos(a — 3)
2t —aly Lysind
¥ = | = Ueones - Ao 0 (3.20b)
22 —Lscos b
24 — ksina Lysin(0 +7)
vh = Qo - Qorc 0 (3.20¢)
2 — kcosar Ly cos(f +7)

Note that setting £ and ¢ to zero we have Qyugo - Qxax = I and one gets back the geometric
constraints obtained for the planar case.

Proposition 13. The follounng two properties are vertfied.

(1) The vectors (x* — z%, y* — yly. 2 — 25)T and (8.5, 3 + g)T are parallel, v.e.

ab -zl i i
Doz By Ao Pig
(1) AB busects the angle CBP:
1
w=§(w+ﬁ—(a+€)> (3.21)

Proof. Rearranging (3.17) and (3.20b) one gets

y .
! —sinf
T T
b | =20 .Q, =22
¥ e Skex 0 pe
*ig cosf

zt -zl —sin@
v —uh| = —La- Qoo Qs | 0 =-L3-v
-2 cos

These equations show that the vectors (z° — a5, 3" — yh. 2" — 25)T and (3%.4%, 2° + ¢)7 are
both parallel to the vector v, hence (1) follows. To verify (u2). it is enough to note that
transforming (3.18) in the frame K gives Equation (3.2), thus the property follows from the
second part of Proposition 10. [m]

Proposition 14. The th I model of the crane gwen by the Equations (3.17),
(3.18), (3.20), (8.4), (3.5), and (3.19) 1s dufferentrally flat, a possible chowce of the flat output
15 (24,38, 2?)
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Proof. In view of the proof of Proposition 11, it is enough to show that the angles & and v
are functions of (z%,3%, z¢) and their time derivatives. In fact. if the trajectories of & and ¢ are
known, the transformations Qe and Qs x» are also known, thus the trajectory of the load in
the zy-plane of the frame K can be calculated, hence the elements of the proof of Proposition 11
can be used.

Since the points A, B. P and C are in the same plane, there is an intersection between
the lines determined by the sections PA and CB. Let this intersection be denoted by D (see
Figure 3.6).

‘The coordinates of the point D depend on the angle £ and on the distance h = k +{ — d:

23] [hsinacose
yh| = |hsinasing
25 hcosa

Since the point D is on the line determined by the section CB. the vector DB is parallel with
(z%.4, 2% + )T Hence, using Proposition 13. we get:

b b

b

hsinasing

hcosa Htg

 — hsinacos§ _ &

hcosa (322)

2

b

giving two equations to determine £ and h as functions of z°, &%, 2, y*. 9%, i/, 2%, 2, 2*  Elimi-

nating h we get an equation of type

Asiné + Beos§ = D (3.23)
where
A=sina(z+ g)(3%° — 2(z* + g))
B =—sina(2 + g)(#"2" - 4"(:* +9))
D =i cosa(i®z — 2°(:* + g)) - #* cosa(i’2’ — y*(z* + 9)).

Equation (3.23) gives two solutions for £ in the interval [—7.+7). Then h can be calculated
from one of the following relations

h(i’cosa — sinacosé(2! + g)) = &%2° — 2*(* +g)
h(i cosa — sinasin&(z* + g)) = y'2* — y*(3" + g)
where one may chose the numerically more precise expression (i.e. the more stable division).
It remains to find the trajectory of the variable o as function of z%,3”, 2 and derivatives.
Since € is expressed as function of the flat output and derivatives, the same is true for the
transformation Qs s and thus for the coordinates of the vector DC in the frame K9

By the definition of the frame K9, the y-coordinate of the vector DC' vanish. Hence
¢ — hsina

progy | Qsxc v =0
29 — hcosa
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Using the expression (3.16) of the transformation Qs this gives
sin (27 sina — 27 cos @) + y? cosp = 0

allowing to caleulate  in the interval (—1m: ir).

Now. it is possible to calculate the trajectory of the load in the zz-plane of the frame K
and to reuse the elements of the prool of Proposition 11 Finally. the trajectory of the input
ug is obtained using Equation (3.19).

Remark 21. Equation (3.22) gwes the twon of a lne, determined by the l

of the load, and a cone, gwen by the possible positions of the boom. This geometric problem
has two complex or two real solutions. Complex solutions mean that the required acceleration
cannot be reahzed by the crane at all (no intersection pownt D). Even for real solutions, not all
values of h are physically realizable. For, note that of h 1s out of the range (k, k1), at least one
rope tension becomes negatwe which s not excluded from the model, but cannot be physically
reahzed.

Nonzero free pulley mass (mg > 0)

The main consequence of a nonzero free pulley mass is that the load at the point C' is no longer
constrained to evolve in the plane determined by the boom and by the free pulley at the point
B (see Figure 3.7). Recall that the coordinates of the free pulley in the frame K* are denoted
by (2%.9%, 25)" The dynamics of the load read

it al—a*
b L b

mi g =g |veY (3:24)
Pig 2y —2°

The geometric constraints for Lhe rope sections PB. AB are already given by Equation (3.20).
The geometric constraint for the rope section SB reads (see also Figure 3.6)

A (k+1+s)sina — Lysin(a — )
vy | = Querco - Queoxc 0 (3.25)
2 (k +1+s)cosa — Ly cos(a — B).

Instead of introducing two angles in order to give the orientation of the rope section BC, we
simple add a new quadratic expression to the constraints:

L3 = (ah - ) + (W — ¥ + (25 — ) (3.26)

Remark 22. One may replace all ge d so far by quadratic ones
simlar to Equation (3.26). The advantage of this kind of constrawnts 1s that they ehmmate
the use of angles between the rope sections as varwables. The general and systematic modelling
procedure presented in Section 3.2 uses quadratic constrants hke (3.26).
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Figure 3.7: Crane in three dimensions

The force equilibrium at the free pulley is expressed by
i
mp | iy | =titl—tit+ts (3.27)
ity
The dynamics of the three winches (located at the points A, P and S) are already given

by Equations (3.4)-(3.5) and (3.14). The dynamics associated to the rotation of the platforms
are easily obtained from (3.19) by adding the torque generated by L:

Jugf = projis (OF x (=) + DA x (=t0) + 08 x (=) = m(€,6) + . (3.28)
Proposition 15. The 3D model of the crane such that mg > 0, gwen by Equations (3.24),

(3.20a), (3.20c), (3.25)-(3.27), (3.4)-(3.5), (3.14), (3.28) 1s dufferentrally flat. A possible choce
of the flat output 1s gwen by 2 y* 2* and L;.

Proof. Taking the norm of both sides of (3.24) and using the geometric constraint (3.26), the
rope tensions in the main rope attached to the load can be obtained as

m | (@it 2+ 9)" =T (3.20)
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N
o2

Figure 3.8: Rope tensions

This allows to express the coordinates of the free pulley as function of z°.% 32,4 2%, 2% Lg:

b b b
x x a
Sl mis |,
yp| = Y|t | W
b b Tg zb
24 2 *tg
Introduce the tension ¢ as
t, i,
t=|t,| =ts+mp| i
t. H+g

From Equation (3.27), we have
=1t +ty+1t,.

Since 1. t; and ¢, are in the plane determined by the points P, A and B, t must also be in the
same plane. Hence, the line determined by the vector ¢ intersects the boom at a point denoted
by I’ which is at a distance d’ from P (see Figure 3.8).
To calculate the position of the intersection point D’ on the boom, one obtains similar
equations to (3.22) with unknowns € and k' = k+1—d"
2~ Wsinacost _t, yh — Wsinasing _t,
Zp—HWceosa  t. 2 —HWcosa

5

(3.30)

Eliminating A', one gets again an equation of type A’sin€ + B'cos¢ = D' with
A =t (ty2 — abt.)sine
B' = —t,(t,2% — yt:)sina
D' =t,cosalt.zh — alpt.) — tecosalt,zh — yht.).
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giving two solutions for € in the interval [~,+7). The variable A’ can be obtained from any
of the following relations:

R(tzcosa — sinacosét.) = t25 — alyt,

K(t,cosa —sinasinét,) = t,2% — yht.,
choosing the numerically more stable division.

To find the trajectory of the variable ¢ as function of z%,3?, 2%, L3, and derivatives, observe
that by the definition of the frame K9, the y coordinate of the vector D'B vanish. Hence
% — W'sina
progy | Qo ) =0.

29
25— W cosax

Using the expression (3.16) of the transformation Qs this gives

sinp(zf sina — 2% cosa) + yh cosp =0,
allowing to calculate y in the interval (—4m; ). This makes possible to calculate the angles 3,
. and g in the PAB-plane together with the rope lengths Ly, Lo, and L,. using the geometric
constraints (3.20a), (3.20c) and (3.25).

Finally, the dynamics of the winches (3.4)-(3.5). (3.14) and the dynamics of the rota-
tion (3.28) give the motor torques uy, u, ua, and ug, respectively. a

Remark 23. A different choice of the fourth flat output (Ls) can be also enwsaged. For -
stance. the hewght of the free pulley 2% (or any of its coordinates) 1s also a possible choice.

Remark 24. Note that the bisector property has no meaning in thas framework since the points
P A, B, and C are no longer wn the same plane.

However, one may wsh to find a tragectory that respects this property as closely as possible
wn an intwtwe way. Gwen a trajectory of the load. this 1s carred out by choosing the trajectory
of the fourth varwable of the flat output (e.g. Ly or %) by calculating 1t from the tragectory of
the load as o the free pulley's mass were neglected (v.e. using the calculations described mn the
proof of Proposition 14). Then, the trajectory thus obtawned gwes the trajectory of the fourth
varable wn the flat output, and 1t can be used for further calculations.

Remark 25. It 15 no longer true that the trajectories of the geometric varwables (v.e. angles,
rope lengths) are independent of the mass of the load.
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3.2 A general modelling method for a class of weight
handling equipments

Notice that most WHEs (see [64]) use ropes and winches to displace the load. This hoising
system is mounted on a mechanical structure with one or two articulations (e.g. rotate platform
or moving bridge). These common characteristics, which will be defined more precisely later
in this section, lead to a general modelling process. The interest of this generalization is thal
properties, in particular flatness, can be verified for a larger class of similar equipments.

To motivate further the interest of the ion, consider the les depicted in
Figures 3.9, 3.10, 3.11, and 3.12, representing a 2D overhead, a 3D cantilever, a 3D overhead,
and a 3D US Navy crane, respectively. Let us enumerate their common characteristics and
introduce some notations:

o The load moves in a working space of either dimension p = 2 such as the overhead crane of

Figure 3.9, or p = 3 as portrayed in Figures 3.10, 3.11. and 3.12.

o All considered WHEs comprise the following elements:

o A working load of mass m whose coordinates are z,. i = 1, ,p.

e A hoisting system composed of ropes, pulleys, and winches. The motors actuating the
winches are supposed to be torque controlled and each one delivers a force noted by T,
where j numbers the winch. The different rope lengths are denoted by L,

o A fully articulated mechanical structure on which are attached the winches winding the
ropes. For the overhead crane depicted in Figure 3.9 it is a rail structure without articulation
and for the 3D cranes of Figures 3.10 and 3.12 it corresponds to a boom that can rotate
under motor actuation (the mechanical structure has one articulation with one actuator).

e A free or main pulley which guides the rope attached to the load. Its coordinates are
denoted by zo. 1= 1. ,p.

o A rail constraining the movement of the free pulley might (see the 2D and 3D overhead
crane and the cantilever crane in Figures 3.9, 3.11, and 3.10, respectively) or might not (see
the 3D US Navy crane in Figure 3.12) be present.

rail

mobile pulley’
(xw)

Figure 3.9: 2D overhead crane



72 Chapter 3. Crane control
3.2.1 Weight handling equipment definition and modelling

Let p be the dimension of the working space with p € {2.3}. The definition of a WHE is as
follows.

Definition 6 (WHE). A WHE 1s constituted by the followng elements:

a migd articulated actuated mechancal structure with d € {0.1} degrees of freedom.

. motors (urnches).

. ropes.
w. pulleys.

a load.

=

and enjoys the followng lopographuc properties:

~

. There 1s at least one motor fized on the articulated structure. Let s+ 1 be the number of
such motors, 5 > 0.

e

There are as many ropes as motors fizved on the articulated mechanical structure.

=

Each motor us linked to a pulley or to the load wnth a rope.

s ropes end on a umque pulley. called the free pulley. If s = 0 there 15 no free pulley. All
pulleys but the free pulley are fized to the structure.

A

@

. There 1s a umique rope going through the free pulley and ending on the load.

=

Between the load and the free pulley there 1s no other pulley.

Moreover. the following physical property 1s assumed. The free pulley moves m a manafold of
dimension n € (p—1.p). This manifold s determned thanks to the constrawnts imposed by the
ropes and by possibly restricting the free pulley Lo move along a rail. Ifn =p— 1 the manifold
15 transversal Lo the gramtational field.

Let us enumerate and order the fixed pulleys on the structure along each rope starting from
the motor winding the rope (i.e. from the winch) to the free pulley or to the load. This is
possible due to the previous definition. Denote by r, the number of fixed pulleys along the ith
rope (1= 1. .s+1).

We present here a Lagrangian approach to the WHE modelling. Hence. we start with the
choice of generalized coordinates. then express the Lagrangian and the geometric constraints.
The model is given in Theorem 2 below.

Consider an inertial base frame such that its pth axis is pointed in the direction opposite
to g. the gravity acceleration. We introduce the following coordinates:

L. position of the working load: (z1. ).
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position of the free pulley (if it exists): (zo1. . Zop),
positions of the motors winding ropes: (7., .z,p) for1=1. .s+1,
positions of the fixed pulleys: (wyr.  .wyp) fore =1, ,s+landj=1, .r.

rope lengths: L, forv=1, .s+1,

EEC O

rope length Lo between the free pulley (if it exists) and the motor hoisting the load.

The following inertia parameters are introduced. Let m denote the load mass and mq the
free pulley mass. Denote by J,, 2 = 1. .5+ 1. the inertia of the winches hoisting the ropes
(including the inertia of the motors) and let J,,, 2 =1, ,s+ 1,7 =1, ,r, denote the
inertia of the fixed pulleys along the ropes. Moreover, denote by p, and by p,,, © s+
J=1. ,m, the radii of the winches and the fixed pulleys, respectively.

Since all winches and fixed pulleys are located on the moving part of the mechanical structure
the rope distances between them are constant. This implies that all fixed pulleys can be virtually
eliminated from the model by placing the winches at the positions of the last fixed pulleys (the
r.th one) along the ropes. Each rope length is then reduced by the sum of the constant rope
distances between the pulleys removed along that rope. For notational convenience we keep
the notation L, for the new rope lengths. The rotating inertia are then summed up along each
rope to obtain

R
m=2g Y2 =1, ,s+1
o
associated to the rope length L,, 7 =1, .s+1. Note that no inertia parameter is associated

to the rope length Lg since the corresponding rope section is part of the rope attached to the
load with total length L,_,

Let my. be the mass of the moving part of the mechanical structure comprising the mass
of all winches and fixed pulleys. Denote by Jy. the corresponding rotating inertia w.r.t. the
joint axis in the case of a rotational joint. Define M as

mg.  for translational articulation
M=
=X for rotational articulation
where 7 is the distance between the joint axis and the winch of the rope of length Ly;, The
inertia parameter M is not defined if the mechanical structure has no articulation, i.e. if d = 0.
Let us make the following assumptions which are satisfied by most of the WHEs used in
practice. These assumptions also allow further notational simplification which do not impart
on generality.

A1l. The free pulley is present. Consequently, s > |
A2. The crane has no redundant actuator or motor: s =p —d —c.

A3. If d = 1. the origin of the base frame is on the joint axis of the articulated mechanical
structure. The articulated mechanical structure consists of either a rotational joint, to
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which case the joint axis is colinear with g, or a translational joint, to which case the joint
axis is orthogonal to g. This assumption eliminates the variable z(s,y),. (The vertical
position of the motor winching the load remains constant.)

4. The angular velocities of the fixed pulleys are small enough to neglect their quadratic
effects (if any) w.r.t. the motions of the mechanical structure. Note that no such quadrasic
effect appears in our examples.

13

. If the free pulley moves along a rail, the rail is then fixed to the moving part of the
structure. We suppose that the line determining the direction of the rail passes through
the winch hoisting the load (with coordinates (@(s11)1.  ,Z(s41) ) and a point given by
the vector vrau:

Vratt = Praw - (Tss11e 1 Tor0p)” + Prau # (Tisr1,  » Tesri)p)” (3.31)

where P,y is a constant parameter matrix and p,.. a constant parameter vector. The
veetor (T(ssiy1e » T(s+1)p)? —Vrau # 0 gives the direction of the rail. Moreover, introduce
a parameter ¢ such that ¢ = 1 if the rail is present and ¢ = 0 otherwise.

6. We suppose that all the winches hoisting ropes are located on the moving part of the
structure along a line such that
0, (T(ernn Tiai )T ife=0
[ L L s10p . J=l s
Vra + 0 (Tepnn  Tesp) = vran)  fe=1

i.e. the winches are situated along the rail if it is present.

Table 3.2: Parameter values compatible with the assumptions

The number of actuators (i.e. the actuator of the articulated structure and the motors

winding ropes taken together) equals to d + s + 1. Table 3.2 gives the possible values of the

pal

rameters: p (dimension of the working space). d (number of articulations of the mechanical

structure), ¢ (presence of a rail system), and s (number of ropes attached to the free pulley)
compatible with the assumptions.

nu

The elimination of the fixed pulleys from the model and the above assumptions reduced the
mber of variables, thus the vector of the generalized coordinates reads

r
g= (21, TpTor,  Top Tsrure  T(srnp-1) Loy Lay Lewr) (3.32)



3.2. A general modelling method for a class of weight handling equipments 75

Using these lized di the L ian of a WHE in the sense of Definition 6
which is subject to the above assumptions reads:

1 L S s
5(”223””02 G MY i+ D miLl | - g(mz, +mozo,).  (3.33)
= = = =

Let us study next the constraints on the variables in g. Constraints on the rope lengths are
present either due to ropes terminating at the free pulley:

Cy(@or.  ,Top T(santy  »Tstip-1,L;) =0 i=1l s (3.34)

or due to the rope terminating at the working load. Two constraints are obtained for the
latter rope, one for the length between the free pulley and the corresponding winch fixed to the
structure (denoted by Lo) and one for the length between the load and the free pulley:

Conr(zor.  \Zop Z(s+1s > T(stip-1-Lo) =0 (3.35)
Cuaa(or,  Top 71+ @p Lo, Leia) = 0. (3.36)

An additional constraint is imposed by the motion compatible with the degree of freedom of
the structure if d = 1. In view of the above assumptions, this constraint exists only if p = 3
(see Table 3.2):

Cats(@ssnre T(sinp-1) =0 (3.37)
‘The motion constraint of the free pulley along the rail (if it is present) is of the form:
CorpaklTor,  Top sty T(sap-1) =0 k=1 .p=1 (3.38)

Denote by I the total number of constraints. If the rail (i.e. Constraint (3.38)) is present,
=5+ 2p—1andl=s+p otherwise.

Here, C;,  .C} are at most quadratic functions of all their arguments (note that this also
allows linear terms). Moreover, Ci, Ciup contain no nested product involving L, and z,,
‘The exact form of the constraints is not needed in the sequel (nevertheless they are explicitly
given in Remark 27 below).

In place of obtaining an explicit differential model, we prefer an implicit formulation with
additional variables, known as Lagrange multiphers.

Theorem 2. Assume that the constraints are independent in an open subsel of the generahzed
ds space. The d; [ model d to a WHE ding to Definition 6
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reads:

9Cs...

mi, = Ao a;‘ 2 _ 5,mg =1 .p (3.39a)
'

; ac
modo, = Z g = Sy » (3.30b)
0= Z JaL (3.39¢)
m,L, —Z,\,E»rT 1=1, s+l (3.39d)
Mo, = ZA +F(Tisa) i=1 -l (3.39€)

732mm

subject to Constramts (3.34)-(3.38), where 8, = | 1f 1 = p and 6, = 0 otherwrse. Ty, . Tuj,
are the torques produced by the motors on the structure and Tsyo the one produced by the
structure actuator. Fy, ,F,_, are the generahzed external forces depending on the torque
delwered by the structure actuator and the \, denote the Lagrange multiphers.

Proof. We compute

where 7, are the constraint forces and
Fp=(0. 0T, T Fi(Ta). Fpn(Tu))"
2p+1

gives the external forces.
Taking total differential of the constraints leads to

that virtual displ are in ker DC(q) where DC(q) is the matrix whose entries
are 9. Since the constraint forces compatible with the virtual displacements are workless, we

have z;‘;m idg, = 0. Therefore, T = (Ti.  Tumy) is a linear combination of the lines of
DC(q):

'
_ZAJ 2 1=1, .dimg (3.40)
=

and the theorem is proved. o
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Remark 26. Note that the LHS & 9‘ of the model (3.39) s independent of the specific topog-

raphy of the WHE, whereas the RHS‘ consists of the exterior forces Fy plus grawity terms ﬂ
and the terms gwen by (3.40) which sum up the topographic specificaty.
Remark 27 The exact form of the constramnts C,, j =1, 1 are:
2
¢ = 22%—;,, —;:o 1=1 s (3.41a)
184 3
Coi=3 Z o = Te )t = 5 =0, (3.41b)
NS (Loss = Lo)?
Cusa = 52 w0 - ) “7“ =0, (310)
L a? 0 or rotational jount
Co = i e f J (3.41d)
a;rmm = T(s-tyitaz =0 for prismatic jownt,
»
= D (T0 — Tsn)ow = 0 k=1 .p-1 (3.41¢)
=
where t, = (tar,  ,tap)T 18 the vector of the jownt ams of the articulated structure and o, =
(ok1, o))" #0, k=1, ,p—1 are orthogonal vectors to (Tissnys, T (ss1p)” = Vrau

which gwes the direction of the rail as defined in A5. Note that these formulae are not needed
to state and prove our mamn results.
3.2.2 Flatness

Assume that we exclude free fall trajectories of the load, namely such that i, = g (here g
stands for the norm of the gravity acceleration) and such that ag;y =0

Theorem 3. WHEs defined by Defimtion 6 and satisfying A1-A5 of Section 8.2.1 are duffer-
entally flat. The flat output, denoted by Y wn the sequel, can be chosen as (z),  .z,), the
coordinates of the load, and s+ 1+ d — p coordimates of the free pulley.

Proof. In view of the assumptions we need Lo distinguish the four cases of Table 3.2. We provide
the proof for p = 3, the simplest cases with p = 2 can be dealt in a similar way. (Recall that
p =2 implies that d = 0).

Assume first that s =p—1and consider Y = (z;.  .Zp Zop) as a candidate flat
output. Combining the pth equation of (3.30a) and (3.36) and the fact that the C,’s contain
1o cross-terms involving Lo, Ly, by assumption, one obtains s as a function of z,, £, and
Zop since ﬂ:l # 0. Next. as long as A,.2 # 0 which is guaranteed by the assumptlon that
&, # —g, the p — 1 first equations of (3.39a) express the remaining coordinates zo;
as functions of ,, #,, 7 = L, ,p, and Zo,. Next, we use the 2p + | equations (% 35 (3 37)

2Left Hand Side
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and (3.30b)-(3.30¢) to express the 2p + J variables Lo, Lop1, Tspiis  +Zanpots At 5 Ap
as functions of Zo1,  Zop T1.  +Tp, Asyz and derivatives up to order 2 which in turn can
be expressed as functions of ¥ and derivatives up to order 4. Now. by (3.34). one can express
Ly, L, as functions of variables which are already expressed as functions of the flat output
and its derivatives. By (3.39d), Ty,  .T}, are also obtained as functions of the previous ones
and derivatives of ¥ up to order 6, and finally, T\, and \,.3 are obtained in a similar way by
(3.39%) which proves that Y = (21, ,Z,.%gp) is a flat outpur.

Consider now the case with s = ¢ = 1 (i.e. the rail constraints (3.38) are present) and let
Y = (21. .z,) be the candidate flat output. First, we use the 2p equations (3.37)-(3.38)
and (3.39) to express 2p variables @o1,  Zop Aotz Z(s-i1e  Z(s41p-1 &S functions of z,,
#,7 =1, .p. We proceed using equations (3.34)-(3.36) and (3.39c) to express the rope
lengths Lo. Ly, Ly and Ay, as functions of ¥ V' Next, we use Equation (3.39b) to obtain

Ao Astps 1 Aaipsa 28 functions of Y = (z;, ) and its derivatives up to order 4. Finally. we
use equations (3.39d) and (3.3%) to express Ty, . Tesz and Mg as functions of ¥’ and their
derivatives up to order 6 which proves that Y = (z1. ) is indeed a flat output. u]

3.2.3 Numerical simulation of the dynamics

The simulation of a dynamical system consists of numerically integrating its state equations.
For the cranes we advocate to integrate the equations of the implicit model without reducing

these equations by choosing a particular set of inds d di and eliminating the
rest. The system to be integrated (3.39) being affine wr.t. A = (A, . \)7 the vector of
Lagrange multipliers, is of the form

G = F(q.9)A + Fo(q, ) (3.42)

where g stands for the vector of generalized coordinates given by (3.32). For this system to be
well determined, expressions of A, as functions of ¢ and ¢ need to be obtained. To do so, we
differentiate twice the constraints C)(g). j = L. .l which gives, in matrix form

L, 00
Alg.q) + g 1=0

) 2 (PG (PO T
Ala,q) = (q’ ( aq,‘) [N (WQ') q)

We then replace j by its expression given by (3.42) to yield

with

ac ac
S Flg,9)A = —Alg.q) — 2= Folq,d).
% (2,9)A (a.9) % v(9.9)
It can be shown that $€F(g.4) is always an invertible matrix and thus

ac ' e} )

A=-|+Flg.q Alg.4) + == Folg. 4 3.43

(Fraa) (aad+5 A0 343)

Equation (3.42) with A replaced by (3.43) is then integrated using a standard algorithm. Nu-

merical simulations show that the constraints are satisfied throughout the integration process
once the initial condition satisfy them.
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3.2.4 Examples of weight handling equipment modelling

Let us illustrate the general modelling approach by giving the resulting equations for the 3D
cantilever, 3D overhead, and 3D US Navy cranes (the latter being the subject of Section 3.1.2).

Example 9. 3D Cantilever Crane. The crane depicted in Figure 3.10 comprises a trolley
restricted to move along arail. The trolley is considered as a free pulley. The rail rotates around
a vertical axis together with the winches no.1 and no.2 whose coordinates are (11, 17, 713)
and (T2, T29, 723)7 respectively. Winch no.2 hoists the load and winch no.1 moves the trolley.
The winches are located on a line passing through the origin of the base frame, thus 21, = a;2,,.
7=1, 3. Since the rail passes through the origin of the base frame, one can choose v,qy = 0
(i.e. the Poy = 0 and p,qu = 0 in Equation (3.31)), hence the direction of the rail is simply
given by the vector (221, oo, Z23)"  All assumptions are satisfied. thus the crane fits the general
modelling setup with the following parameters: n =2, p=3.d=s=c=1

Let the vectors p; and g,. both orthogonal to the direction of the rail, be chosen as g, =
(0,0.1)T and g, = (—222,22:.0)T The generalized coordinates are

T
g = (21,22, T3, To1. T22. Tor. Zoo, Lo, L, La)

where zo3 is omitted since it equals to zero. Note that this also makes trivial the constraint
corresponding to g, in Equation (3.41e). The constraints, obtained using (3.41), read

-

(Ko Xy X2)
Tom,

(X X2 %)
T.m,

o Koy Xos)

rail
mobile pulley

|
|
’/L,-Lﬂ

m

(x,%,)

Figure 3.10: 3D Cantilever crane
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Cilg) = 5 (o1 = 0120)* + (202 — 1722)* = L) = 0 (3.44a)
Calg) = % (w01 = 222)* + (To2 = 222)* = L}) =0 (3.44b)
% (@0 = 21)? + (200 — 22)? + 22 — (L — Lo)?) = 0 (3.44¢)
Cilg) = %(121 +ap—r?) =0 (3.44d)
C5(q) = 201722 + Tooxy = 0. (3.44¢)
Define the set
§={(¢,9) €R* Clg)=0.=1 .5} (3.45)

The dynamics of the cantilever crane evolve on S by construction. The model is obtained using
Theorem 2. The kinetic and potential energies are defined by

3 2 2

Wy = % Z %Z (moid, + Mi3) + é ;m,[f (3.46)

and the Lagrangian reads £ = Wy — Wj,. Thus the dynamics are given by
miy = —Xg(zo1 — 1) (3.47a)
mis = =gz — 72) (3.47b)
miy = ATy — mg (3.47c)
mozor = Aa(Tor — 1) + Mi(Zor — 1) + Ao(Tor — Z21) ~ AsTa (3.47d)
moio = As(Toz = 2) + Mi(Toz — 1) + Ao(Zo2 — T22) + AsTon (3.47€)
0= X3(La — Lo) = AeLo (3.470)
mLy=-\Li+ Ty (3.47g)
mala = =Xg(La = Lo) + T (3.47h)
My = —Men(zor — 1z21) = Mooy — T21) + Moy + Aszo2 — Tyzan (3.471)
Miiyy = =X ja1(To2 — Qriag) — Ao(Toz — T22) + Naoo — Asor + Taor. (3.47j)

Using Theorem 3, a possible flat output is given by Y = (z,, 2, 73)7 the position of the load.

The dynamics and the constraints have the same expressions if we rotate the base frame
by any fixed angle around its vertical axis which coincides with the rotation axis of the crane.
This invariance property will be used in Section 3.4.3 to show our stability results in closed
loop. -

Example 10. 3D Overhead Crane. The crane is depicted in Figure 3.11. In contrast to the
cantilever crane of Example 9. the rail with the trolley (free pulley) cannot be rotated but
translated. The axis of the corr ling joint of the ical structure is given by the
vector t, = (0.1,0)7 Winch no.1, whose coordinates are (z1;,712.213)7 moves the trolley
along the rail and winch no.2, whose coordinates are (72, %29, 223)7 hoists the load. The
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choice of the origin of the base frame is such that zo3 = x5 = 23 = 0. The rail passes
through the winch no.2 and the point of coordinates vray = (22— 1, %22,0)7 (i.e. Prgy = [ and
Prau = (—1,0,0)T in Equation (3.31)). Let us choose g; = (0,0,1)” and g5 = (0,1,0)7 = t,.
The constraint along p; is again trivial since zg3 = 0 by the choice of the base frame. The
parameters aren =2, p=3,d =1, c= 1, and s = 1. The generalized coordinates read

(3, X, %)

Figure 3.11: 3D Overhead crane

T
q = (21,22, T3. %21, 222, T01. o2, Lo, L1, L)

and the constraints are given by

1

Cilg) = 5 (w1 —zm +1 - 0)* + (202 — 722)” —
1

Cala) = 5 ((xon = 22)* + (202 = 222)" = L§) = 0
1

Gl =35 (o = 22)? + (o2 = 22)° + 75 — (L2 = Lo)?) =0

Cylg) =22 =0
Cs(q) = 02 — T2 = 0.

The last two constraints are linear, hence they can be used to eliminate the coordinates z;

and s in a strai ‘ward way. The ining generalized d read
¢ = (21.72.23,T01. T2 Lo. L1, L2)"
and the remaining constraints are
) = 5 (@ +1 =0 = L (3.48)
Calg) = é (a3~ L3) =0 (3.48b)
Ool0) = 3 (20 = 70+ (3 = 22+ 33 = (la = L)) = 0. (3480

Due to these constraints, the dynamics of the 3D overhead crane evolve on the set

S={(¢.9) €R® Clg)=0.=1 .3} (3.49)
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The kinetic and potential energies are given by
I L 18 [ PIPR N
:il;mx EZ zm+§Mzm+§Zm,L, W, = mgz,
. =1 =
Then we use Theorem 2 to obtain the dynamics:
miy = —As(To — 1)
miy = —A3(zoy — 72)
Nyzs —mg
moFor = Ai(zor +1 — a1) 4 Aoy
(mo + M)io = Aa(z02 — 72) + T
0= —X3Lo + A3(Lz — Lo)
ML+ T,
As(Ly — Lo) + To.

miy

mily

maLy =

A possible flat output is given by the position of the load: ¥ = (z,. 25, 23)7

(3.50)

(3.51a)
(3.51b)
(351c)
(3.51d)
(3.51e)
(3.51f)
(3.51g)
(3.51h)

Example 11. 3D US Navy Crane. This is the only crane among the examples without a
rail system. Instead. the number of winches is increased since two ropes terminate on the free
pulley. The detailed description of this type of crane, depicted in Figure 3.12 with the notations
used here, has been already given in Section 3.1. The parameters are: p=n=3,d =1, ¢ =0

(there is no rail system), and s = 2. The vector of generalized coordinates is
¢ = (1. %2, T3, T31. T32. To1, Zo2, Tog, Low Ly La, Ly)T
The constraints read:
(201 — a1231)” + (202 — 1732)? + (03 — wag)” = LF) =0
To1 — 0o31) + (To2 — 0o732)” + (203 — a753)* — L3) =0

(

(¢

((zo1 — za1)? + (To2 — 732)° + (T03 — 733)* — L) = 0
((w0r — 20)% + (302 — 72)% + (303 — 73)% — (Lg — Lo)?) =0
(

m\~N\>—w\~m\.—m|»—-

Cslq) = 5 (23 + a5, —1%) =0.
The 3D US Navy crane may evolve on the set
s={(@deR" Cl)=01=1. .5}

The kinetic and potential energies are defined by

s 2 s
1 1
W= % 3 (mi? 4 moid) + 5 30 Mk, + 52 L2 W, = mgzs + mogzon.

=1

(3.52)

(3.532)
(3.53b)
(3.53¢)
(3.53d)

(3.53¢)

(3.54)

(3.55)
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The Lagrangian reads £ = Wy — W,. The dynamics are given by Theorem 2:

miy = —g(zo1 — 21) (3.56a)
miy = —Ai(zo2 — 2) (3.56b)
miz = —\y(T03 — T3) — Mg (3.56¢)
mofor = M(Tor — 1) + Ay (z01 = @1Zn1) + Aa(Tor — @231) + Ns(z0y — Z31) (3.56d)
mofor = Ai(Te2 — T2) + Mi(T02 — a132) + Aa(Zo2 — @2T32) + Ns(To2 — T32) (3.56¢)
mofog = Aa(Zo3 — 23) + A1(T0s — 01233) + Ao(T03 — A2233) + Ng(T03 — T33) — mog  (3.56f)
0= N(Ls = Lo) = AsLo (3.56g)
mly=-\NL+ T (3.56h)
maly = =MoLy + Ty (3.561)
maly = ~M(Ly— Lo) + Ty (3.56)
Mig = =My (201 — 0nZs) = Maoa(or — aaw31) = Ag(Zo1 — 1) + sy — Tizsn  (3.56k)

Mg = —Ao (202 — a1232) — Aara(T02 — aZa2) — As(Toz — T32) + Aswzo + Tywgy.  (3.561)
One can prove using Theorem 3 that the coordinates of the load and the height of the free
pulley form a flat output: Y = (2,22, 73, 203)"

Tym,
Tymy

(x21,%22,%23)
(¥31,%32,%33)

Tym,
\;

(va-‘oz;*'os)r .
LyLy

(x),X,X3) @ m

Figure 3.12: 3D US Navy crane

The model of this crane (i.e. the dynamic equations (3.56) and the constraints (3.53)) is
invariant w.r.t. the rotation of the base frame around its vertical axis by any fixed angle. This
will be used in Section 3.4. -

3.3 Motion planning

To motivaie the necessity of the motion planning, recall first that undesired oscillations of the
load are created in part by the crane operator himself. In fact, when the operator wishes to
displace the load to a desired equilibrium position along a trajectory avoiding obstacles in the
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crane’s workspace, he manipulates the load indirectly by acting on motors rotating winches.
Hence the operator tries to find the trajectory of the motor forces corresponding to the desired
trajectory of the load. This is considered to be a difficult task even for experienced crane
operators since it requires simultaneous actions on several actuators (e.g. four winches for the
3D US Navy crane).

We propose to assist the crane operator by solving the MPP corresponding to his desired
displacement. More precisely, the human operator gives the desired equilibrium position of the
load and the motion planning algorithm calculates the corresponding trajectory of the motor
forces. This requires the knowledge of the parameters of the model.

The motion planning algorithm is based on the flatness property of the WHEs (see The-
orem 3). Assume that the position, velocity, acceleration, jerk, and all derivatives up to the
6th order of the flat output (including the position of the load) are given at the starting time
trby (¥i¥i,¥r. Y% ¥[%) and the desired final configuration of the fiat output and its

successive time derivatives are (Vi Ve Ve, Y% V(%) at time .

The flatness property implies that for any trajectory connecting the initial and final points,
the motor torques can be calculated without integration of the model equations. It is enough
to follow the steps of the proof of Theorem 3. The trajectory can be obtained using polynomial
interpolation as it has been already proposed in Chapter 2.

To see this, suppose that the initial a.nd ﬁnal conditions correspond to two different ethbrm
of theload: ¥/ =Yy, Vi=Vi= =Y =¥ =0andYr=Vp, Vr=Vr= =V®=
¥:” = 0. Note that derivatives up to the 6th order are needed to calculate the reference inputs
(i.e. motor forces). To satisfy these constraints with the trajectory of the flat output, we can
construct a 13th degree polynomial

Xelt) = % + (X = X1) ( L )Vi:a, ( - )(H) (3.57)
p=

tp =t tr—11

where yc(t) is the reference trajectory of a variable of the flat output ¥ (using similar notation
as in Section 2.3). This polynomial satisfies all initial conditions and the cocfficients a, are
computed by solving a linear equation. independent of Y}, Yp, t; and tg. In fact, the numerical
values of these coefficients are

ajy =924 = —6006
ay = 16380 ayp = —24024
ag = 20020 as = —9009

a7 = 1716.

Using such polynomials for each variable of the flat output Y we get a straight line trajectory
of the load in the workspace of the crane connecting the two equilibria

Remark 28. The off-hne calculations of the coefficients are of wnterest in the case of real-time
apphcations where the desired end-pownt of the trajectory 15 modsfied contmually by the human
operator
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Let us illustrate the solution® of the MPP for the 3D US Navy crane modelled in Example 11
The parameters used are that of a reduced size model (1:80) realized in the Centre Automatique
et Systémes of the Ecole Nationale Supérieure des Mines de Paris, depicted in Figure 3.1. The
mass of the load is 250[g]. Recall that, by Proposition 14 (or by Theorem 3), the flat output
includes the coordinates of the load, i.e. {z).75,73} C Y and that we wish to find an idle to
idle trajectory for the load implying that the reference trajectory will have no sway at the final
equilibrium.

motion in the honzontal plane x-y 2 coordnate of the load

i
T o — ’J” R L

im sec

Figure 3.13: Horizontal displacement of the load

The trajectory depicted in Figure 3.13 is a horizontal idle 1o idle displacement of the load
obtained using polynomial interpolation as in Equation (3.57). Some of the corresponding
motor torques are given in Figure 3.14.

Obstacle avoidance

The flatness property furnishes an easy way to find trajectories avoiding obstacles present in
the crane’s workspace. Suppose that the positions of the obstacles are known in the base frame.
The geometry of a trajectory avoiding the obstacle can be given by the functions
T2 = T3(21) 73 = z3(21)
where the variables z; and z3 depend on the trajectory of z; The geometry of the trajectory
can be also specified by
z=z(\) T2 = a5()) 73 = x3())

with A(0) = 0. Here A(T) is the length of the trajectory between the initial and final equilibria
and T is the travelling duration. Thus. given the time function z,(t) or A(t) (for the latter, A
gives the velocity along the trajectory), the other variables are given as their functions. For
the variables z1 or A, the polynomial interpolation of Equation (3.57) can be used.

For cranes, parabolic trajectories are natural to avoid obstacles. Such a trajectory, connect-
ing the same two equilibria of the load as the straight line trajectory depicted in Figure 3.13 is
presented in Figure 3.15. The corresponding motor torques are given in Figure 3.16.

3All calculations are made using Matlab
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ot Moltor torque Ty g’ Motor torque T

[Nm]

o dT ez 63 G 9 s os e

Lx10% _ MotortorqueTs

Figure 3.14:  Motor torques generating the horizontal displacement; see Figure 3.12 for the
notations 7}, T3 and T

Actuator dimensioning

Flatness based motion planning was used for dimensioning the actuators (i.e. DC motors) of
the small size model of the 3D US Navy crane. The problem of actuator dimensioning in our
case consisted of finding the characteristics of the DC motors winding the ropes and rotating
the platform with the boom such that sufficiently high masses (say up to one kilogram) can be
displaced at a sufficiently high velocity.

A possible solution consists of calculating the static tensions corresponding to some equilib-
rium of the load with the maximal mass. multiplying the obtained values by a number estimating
the necessary overload during dynamic displacements, and finally choosing the motor-gearbox
pair with the suitable power. The crucial point of this method is the estimation of the forces
which are necessary to overcome the dynamic effects along the trajectory. It turns out that
one has a certain tendency to underestimate these dynamic effects, in particular for the motor
winding the horizontal rope attached to the free pulley and for the motor rotating the platform,
since these motors deliver low (or zero) torques if the load is in equilibrium.

Based on the flatness property and the above presented motion planning algorithm. one can
calculate the necessary motor torques for any load trajectory together with the corresponding
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moton n the horizontal plane x-y 2 coordinate of the load

B N e S T 1 S S L T
) sec]

Figure 3.15: Parabolic displacement of the load

velocities of the motor axes. This allows to consider the maximum values along any kind of
trajectory and to find the satisfactory motor-gearbox ik ions without underesti

the dynamic effects. For displ. to be fast, simulations show that the dynamic
effects overcome largely the static effects as shown in Figures 3.14, 3.18, and 3.16. This holds
true both for the presented straight line and parabolic displacements.

3.4 Global measurement feedback stabilization

The aim of the closed loop control is to stabilize an equilibrium or a reference trajectory of
the load. This section deals with the stabilization of an equilibrium. the closed loop tracking
problem is studied in the next section.

For real cranes, measurements of all configuration variables are not available. In particular,
there is no direct information about the position of the load and the angles between the rope
sections because of the lack of sufficiently robust sensors resisting to shocks, dust, oil, and
abrupt changes of the environment (e.g. an artificial vision system providing information about
the position of the load, or more precisely about the position of the hook. should deliver
exact measurements in all weather and lightening conditions). The uncompleteness of the
measurement information obstructs the use of state feedback techniques.

Nevertheless, robust sensors are mounted on the axes of the motors actuating the moving
part of the mechanical structure and the winches. These sensors measure the angular positions
of the motor axes and/or their velocities. In the sequel we suppose that the angular positions
and velocities of all motors are measured.

One of the "simplest" regulators which can be constructed from these measurements is a
linear proportional-derivative type controller on the rope lengths and the position of the moving
part of the mechanical structure. We show that this regulator is able to globally stabilize any
desired equilibrium of the load. Our notion of global stability assures the convergence to the
desired equilibrium in closed loop from most initial configurations in the crane’s workspace with
pulling tension in the ropes.
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xi0 Motor torque T ) x10% Motor torque Ta

Motor torque Ts

e

Figure 3.16: Motor torques generating the parabolic trajectory; see Figure 3.12 for the nota-
tions Ty, T3 and T}

Some stability definitions and theorems are recalled first. Next, we show that any equilib-
rium in the workspace of the 2D model of the US Navy crane (studied in Section 3.1.1) can be
globally stabilized using PD controllers. Finally, global stability in closed loop is also shown
for all 3D examples of Section 3.2.4, including the 3D US Navy crane.

3.4.1 Stability definitions and theorems

This material is standard and repeated here for completeness. More details can be found in [29].
Consider the system

zeR (3.58)

where f(z) is Lipschitz continuous and let z(,2,) denote the unique solution of the above
system with initial condition (0) = zo.

Definition 7 (stability). The equibbrum © = 0 of (3.58) s stable of for all € > 0, there
emsts a 8 > 0, such that || zo ||< 6 =|| 2(t,20) ||< €, for allt > 0.
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Figure 3.17: Straight line displacement in three dimensions
Definition 8 (asymptotic stability). The equibrum x = 0 of (3.58) 15 asymptotically sta-
ble 1f 1t 15 stable and

lim z(t, z0) = 0.
(=00

A sufficient stability condition is given by the following theorem.

Theorem 4 (Lyapunov’s sccond method). If there 1s a function V(x) such that
1 V(z)>0.VoeU CR T #0
2 L;V(z) <0,¥z €U CR 2 #0 and LV(0) =0

where U 15 a newghborhood of 0. then 0 1s locally asymptotucally stable. Moreover, of U = R™
and V(z) 1s radwally unbounded, v.e. V(z) — 00 as || @ |- oo, then 0 1s globally stable.

If LV (z) vanishes for a set of points including the origin then the stability of the origin is
not guaranteed. In order to deal with this case one needs some additional definitions.

Definition 9 (invariant set). A set T us saud to be mvariant wnth respect to (3.58) of,

Voo €I  xz(t.zo) €I, VtER.
Definition 10 (positively invariant set). A set T ws saud to be positwely mvariant with re
spect to (3.58) of,

VroeT z(t.zo) €Z, YL >0.
Definition 11 (approaching a set). We say that a solutwon z(t) of (3.58) approaches a set
M as t — 00, of for each ¢ > 0, there 15 a T > 0 such that

inf lz() -z ll<e Ve>T
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velocity of the fourth motor axis

i torgue delvered by motor 4
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Figure 3.18: The rpm (revolutions per minute) and the torque delivered by the fourth motor
(rotating the platform with the boom), corresponding to the trajectory illustrated in Figure 3.17
(travelling duration equals to 0.8 sec)

Theorem 5 (LaSalle’s Invariance Theorem). Let C C U C R™ be a compact set that s
postwely mvarant w.r.t. (3.58). Let V. U — R be a continuously differentiable function such
that LV (x) < 0 for allz € U. Let N be the set of all pownts i C where L;V(z) = 0. Let M
be the largest wnvarant set mm N Then, every solution starting in C approaches M as t — oco.

3.4.2 PD controller for the 2D US Navy crane

The modelling of the 2D US Navy crane has been undertaken in Section 3.1.1 and an implicit
mode] given by Equations (3.1)-(3.5) has been obtained. Recall that (z,z) are the coordinates
of the load at the point C. The masses of the ropes are neglected and the ropes are assumed
unstretchable, hence 75 = Ts.

The information provided by the sensors allow to calculate (after a suitable initialization
process) the rope lengths L; and R. We consider also the velocity of these variables as measured.

Note that Equations (3.1c)-(3.1e) can be rewritten as

(zp — (k+1)sina)? + (zp — (k+1)cosa)? = L3 =0 (3.59a)
(zp—a)’+ (25 —-2)* - L2=0 (3.59b)
(z5 — ksina)? + (25 — kcosa)? — L2 = 0. (3.59¢)

These equations have the same form as the geometric constraints in Section 3.2 and will be
used in the stability analysis.

The planar US Navy crane has three degrees of freedom, hence the minimal number of
generalized coordinates is three. A possible choice is g = (7, Ly. R)” including the measured
variables L, and R. All remaining variables can be expressed as functions of g using the
geometry of the crane given by (3.1). The only external efforts are the torques u; and s
delivered by the DC motors hoisting the ropes.
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Let (Z,2) denote an open-loop equilibrium position of the load. Then, one may calculate
the equilibrium of the remaining variables using the following relations:

h=0 sinf = 2= hoine 5=2(x+0-a)

. Ay sin(y - B) .
R=1(1-cos(a—B)) siny + (k+1)cosa—z (3.60)
. sinf - = -

L= Ty=Ty=mg T, = 2mgcos.

Notice that due to the geometry of the crane, v € (%32, 7], hence sin¥ > 0.
Remark 29. The open-loop equilibria gwen by (3.60) are not 1solated powts m the configura-
twon space of the model, they form a two-dimensional manifold.

The aim of the closed loop control is Lo stabilize the load at a given equilibrium (Z, Z) such
that (z,2) is a point under the boom. We claim that this can be achieved using (linear) PD
controllers, provided that the friction terms 7, and 7,, which are assumed to depend only on
the measured variables Ly, L1, R, R, are exactly compensated, namely

iy =w —m(Ly L) @ =us— (R, R). (3.61)
(See Remarks 31 and 32 concerning the methods used to compensate friction effects for exper-
iments on the small size model). The PD controllers read
i =py (7"1 + kary Ly + bty (L — i:)) (3.62)
@ = p2 (Ta+ hanR + kon(R — B)) (363)
where the a prior: rope tensions T, and 7 are determined using Equation (3.60) and Ky, kpa.
kat,. end kqp are constant gains to be determined to achieve satisfactory performance.

‘The crane has, in the absence of the controllers, kinetic and potential energy due to the load
with mass m and kinetic energy due to the inertia J; and J; of the winches. Let Wy denote the
total kinetic energy and W, the potential gravitational energy. Extra energy can be stored in
the controller in closed loop, due to the constant a priori and proportional terms. This energy
will be denoted by W,

Thus, the energy function W consists of three terms:

W = Wy + Wy + Wty (364)

with

W, = mgz
1 - 1 .
Weirt = Skpr (L1 = Li)* + T Ly + Shor(R— R)? + ThR.
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Since z and z can be expressed as functions of the generalized coordinates as

o ham :
—(k 4 ) sina — Sy~ aresin (B37)) (a _ aresin (@)) .

siny
i . i Lysin .
(,g _sin o - arcsin (B2)) 4—"‘))) (27 0 i (2322))
siny —
sin (7 — arcsin .
qk+ucma_zgll__f_____lc%(a_amﬂn(Lﬁmw))7
siny 7

in (~ Lysny .
(R - ls—m O at.csm ))) cos (n — 2y — a +arcsin (Ll S"”))
siny ]

the crane dynamics in closed loop can be obtained by applying
Ea_(;,'a_%:“- =1, .3

where £ =W g1 =19, q:= Ly, g3 = R. and F, is the associated generalized force, i.e. F, =
Fg = kapR. and Fy, = de,L, due to the derivative terms in the controllers. Notice that the
proportional terms and the constant a priori forces are already in the function W due to the
term Wy, and thus absent in the F,. Notice also that the actual choice of the generalized
coordinates does not lead to the most compact formulation of the dynamics, but will make the
derivation of the necessary lemmas easy.

The proof of the global stability of the equilibrium (Z, %) in closed loop uses LaSalle's
Invariance Theorem. Its application needs to prove some preparatory lemmas.

Lemma 3. The tume derwatwe of the energy function 1s

aw iy b2
g = “haLi~ kar R
Proof. The proof is an easy adaptation of derivations appearing in most textbooks on classical
mechanics that prove energy conservation in purely Lagrangian systems (without dissipation)
[25., 65]. Here extra terms are present due to the derivative components in the controller. I

Let us now characterize the trajectories of the closed loop system such that R = 0 and
Ly = 0. (ie. W =0). Note that the use of z(t) = Z means thal the variable z stays for all
times at the value # and that barred variables refer to the desired equilibrium to be stabilized,
determined from (z, Z) using Equation (3.60).

Lemma 4. The unique invarant trajectory m closed loop along which % =0, namely R =0
and Ly = 0, 15 the desired equilibrium, ve. x(t) = 7. 2(t) = z.

Proof. First, let us show that R = L, = 0 implies that the closed loop system is at its equilib-
vium. The input torques u; and up drive directly the dynamics of the winches winding ropes
of lengths Ly and R and generate the rope tensions. From Equations (3.4)-(3.5) we have
. Jiy
W =Ty — 2L
1= Tip = 2L

S i
=Ty — 20
202 "
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(recall that the friction terms 7, and 7 are compensated). Applying the PD feedback law, given
by Equation (3.62) and (3.63) where T and T, are the forces corresponding to the equilibrium
position (Z, z). determined by Equation (3.60), we get

o i ( 7 iy
o1 (Ti K by by (B - 1)) = Tupy = 21
P
02 (T + kant + ky(R = R)) = Topo — 2.
P2
Since R = L; = 0 by assumption, denote the constant values of L, and R by Li. R (Ris
the desired equilibrium and R is the real equilibrium. We wish to show precisely that these
equilibria coincide.) This yields,

=Ty +kyr, (L — L) =T, (3.65)
T, =Ts+ kpr(R— R) = T, (3.66)

showing that the motors deliver constant torques. Notice that by Equation (3.11) we have that

2c0s7(1) = %—8;

Since T(t) = T) and T(t) = T are constant, so must be y(L) = 4 thus  is also constant. But
this shows that all configuration variables are constant if L; = 0 and R = 0. It follows that all
variables of the system are constant, hence the only trajectory compatible with 4% = 0 is an
equilibrium of the system.

1t remains to show that the equilibrium characterized by the hatted variables coincides with
the desired equilibrium given by the barred variables. First, observe that for every equilibrium
position of the load T, = T; = myg (see Equation (3.60)). Reporting this in (3.66) we get

0=R-R
and we conclude that R = R. The equalities L, = Ly and y = 4 will be proved by contradiction

(see Figure 3.19). For, suppose that 5 > 4. Recall that 6 = = 0. thus (3.7) implies § > G.
Since 4,7 € (52, 5] it is easily verified that

L _ 0B _ sin(2i=7+a)
P iy siny

is a strictly increasing function of its argument. thus we conclude that Ly > L, Noticing
that kyz, > 0 and using (3.65) we have that Ty > T, But then the relations 73 = 2mgcosy
and T} = 2mgcos imply that § < 4, a contradiction. One arrives to a similar contradiction
supposing that v < 4 thus we conclude that 5 = % and L, = Ly. Since the equilibria of the
configuration variables coincide, the same holds true for all variables of the system, and in
particular for the position of the load as claimed.

Lemma 5. The function W defined by (3.64) 15 bounded from below, we. there exsts a real
number ¢ such that W > c.
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Figure 3.19: The two equilibria coincide: reasoning by contradiction

Proof. All quadratic terms in W are bounded from below. The terms 7L, and T5R are also
bounded from below since both Ly, R, and T, 7 = 1,2, are positive. It remains to show that the
term gz is dominated if 2 — —oo. For, observe that Equations (3.59a) and (3.59b) implies
that Ly or Lz tends to +oo if z — —oco. Since R = Ly + Lg, all rope length bemg positive,
this implies that R goes to +co if 2 goes to —co. But then the quadratic term 3k,r(R — R)?
dominates the term mgz and thus I is bounded from below. a

Lemma 6. Consiuder the set U wn the configuration space defined by W < C with C € R such
that C > c. ¢ being the lower bound of W All state variables are bounded on U

Proof. From the definition of W and since W is bounded from below by Lemma 5, it is clear
that &, 2, Ly, R, Ly, and R are bounded on U But, using the quadratic relation given by
Equation (3.59¢). zp and zp are also bounded, and using (3.59b). the same holds true for
and 2. Thus, by the geometric constraints, v and 4 are also bounded. ]

The main stability theorem for the planar model of the US Navy crane together with the
PD controllers given by Equations (3.62)-(3.63) is as follows.

Theorem 6. The equilibraum (z. %) of the two-dimensional US Navy crane s globally asymptot-
scally stabihzed wn closed loop using the PD controllers (3.62)-(3.63) unth positwe but otherunse
arbitrary gans kpe,, kar,, kpr. kar and with friction compensation (3.61).

Proof. Choose a sufficiently large C' such that, for both the initial condition (in the crane’s
workspace with pulling rope tensions) and the equilibrium. W < C with W being the function
defined in (3.64). Define the set C = {(3,d) W(g.4) < C}. Using Lemma 3, we get 4% =
—karR® — ka, L3. Since 4% < 0, the system’s trajectories stay in C, hence C is puamvcly
invariant. By Lemma 6, the set C is compact. Lemma 4 characterizes the set M = {(q, )
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4% — 0} as being the equilibrium point (z,Z) to be stabilized. The claim follows by applymg
"I heolem with the previously defined sets C and M, and V = W

Remark 30. Notice that the model was obtaned under the hypothesis that the cables were rigid
and thus could transmat positwe and negatwe forces to the winches whch s not the case for real
cranes. As long as 0 <~y < %, Ty 15 guaranteed Lo be positwe and the force can be transmatted.

Simulation study

Note that, though the PD controller presented in the previous section (and its 3D version,
studied in the next one) has been successfully experimented on the reduced size model of the
US Navy crane, we can only present simulation results® since we do not have sensors to measure
the position of the load or the angles of the ropes and to record them. Such measurements
should be made possible in the future by processing the images of a camera.

The crane model is simulated using the following parameters: m; = 0.2 [kg], J; = Jo =
6.25107% [kg/m?], | = 0.35 [m]. a = 0.445 [rad]. These parameters correspond to the 1:80 small
scale model of a real US Navy crane at disposal at the Centre Automatique et Systémes.

The equilibrium position is set to # = —0.1 [m] and z = —0.5[m]. The simulation results
are given in Figure 3.20. The tuning of the gains has been done in simulation and the gains
have been set to kyp = 20, kpz, = 10, kar = 10 and kaz, = 20. Note that the global stability of
the regulator is not sensitive to the values of the design parameters as shown by Theorem 6.

Friction compensation for real experiments

The following two remarks are in order about the methods and results concerning friction
compensation on the motor axes.

Remark 31. For the real closed loop experiments on the small size model of the US Navy
crane, the compensation of friction relies on a sumple friction model including kinetic, negatwe
mscous (Stribeck Effect). and wiscous frictons (see [4]). The corresponding coefficients are
wdentified experimentally. Moreover, small amplitude sinusordal excitatwons (in tensions) are
appled permanently on the motors n order to avowd as much as possible the region of small
velocaties.

Remark 32. [t has been observed during the experiments on the small size model of the US
Navy crane that a residual, poorly damped oscillation, which remains msude a vertical cone, 15
present due to the d (or under- ) [riction effects. In fact, the residual
frictions make unobservable these oscillations since they "dissipate “ completely the correspond-
wng tension varwations in the ropes. Moreover, the amphtude of the residual oscillation depends
on the mass of the load since oscillations with higher amplitudes of a load with less mass result
wdentac varations of the tensions in the ropes as lower amplhtude oscillations with higher mass
Nevertheless, during the experiments, the residual oscillations remained always small w.r.t. the
oscillations generated by external disturbances.

" Some camera recorded experiences can be downloaded at the site of the Centre Automatique et Systémes
(http://cas.ensmp.fr).
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Figure 3.20: Closed-loop behaviour under PD control

3.4.3 PD controller for the 3D examples of Section 3.2.4

‘We show in this section that for all cranes, studied in Section 3.2.4, any equilibrium of the load
can be globally stabilized using PD controllers.

Recall that global stability means convergence to the desired equilibrium in closed loop
from almost all initial configurations in the crane’s workspace with pulling rope tensions (this
is precisely defined in the theorem on closed loop stability). Recall that pushing tensions in
the ropes have no physical meaning for real cranes.

All proofs use LaSalle’s Invariance Theorem, given in Section 3.4.1. For each example we
start with the formulae giving the equilibrium values of all variables corresponding to the desired
equilibrium of the load and give the expression of the PD controller. Then we construct and
energy function W to be used in the stability proof. In all cases. the proof of the main global
stability theorem relies on a series of lemmas as in the previous subsection. The first lemma
shows that the time derivative of W along the integral curves in closed loop is negative or zero.
Next we show that the equilibrium to be stabilized is one of the finite isolated equilibria in
closed loop. This is followed by the characterization of the trajectories along which the time
derivative of W vanish. Finally, the boundedness of the level sets of W is shown on S, the set
on which the considered crane may evolve.

The proofs of similar lemmas may be identical or may differ only in some details of calcu-
lations. In those cases the proof is presented for only one of the three studied cranes.
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3D cantilever crane

The model of this crane is given in Example 9. We wish to stabilize the load equilibrium
(d@1,72.%3)" such that ¥} + 73 # 0 and Z3 < 0 (i.e. the load is under the rotating rail at
a nonzero distance from the rotation axis). Setting to zero the LHS of the dynamics given
by Equation (3.47) and using the constraints (3.44). one can calculate the equilibria of all
configuration variables, all Lagrange multipliers, and all input forces, denoted by g, A, 2 =
1. .5.and T, 1=1. .3, respectively:
T =31 T =2 i = e

in=ﬁf;§ Lo=r+iZ+3 Li=ar+ B+

[ T - m o m 3.67
Ly=r+\HB+8 - A\ vy A2 Wﬁj (3.67)

do = Sy = Umeims 3s=0

Ty =mg T, =-mg Ty =0.

The sensors are mounted on the motor axes and measure the angular positions and velocities,
hence the rope lengths L1, L», and the rotation angle of the rail, defined as

a.rclan(ﬁ“) if 791 >0
&= —m+arctan(2%) if 2o <0and 22 <0 (3.68)
m+arctan(32)  if 2o < 0 and 732 > 0,

such that & € (—,+], can be calculated together with the corresponding velocities Ly, Lo,
and £. Define the error variables as €, = g, —q, where g, stands for the 1th component of g and
g, for its equilibrium value. Moreover, define similarly e = £ — €. Consider the following PD
controller:

Ty =T + karér, + kpieg,

Ty = To + kasér, + kper, (3.69)

Ty = kasée + kpee

where ky, and kg, v =1, 3 are positive numbers and according to the fact that T = 0. Let

1

denote the "potential* energy stored in the controller and define the following energy-like
function:

p 2
kyie?, + k,,gr?eg) +3 Tew, (3.70)
T =

W = Wi + W, + Wen (3.71)
where Wj, and W, are defined by (3.46) and Wiy by (3.70).
Lemma 7 The derwatwe of W along the closed loop trajectories of the system s gwen by

aw

ki 2,2
T = ~hnéh, — kaé}, - ke
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Proof. Differentiating W and replacing the closed loop accelerations obtained from Equation
(3.47) using (3.69) of the PD controller, we get

dW
Z A dtc L kai L2 + kas (0172 — dmozm) + kyseg(inan — dnizas — 1%€).

(3.72)
Differentiating Equation (3.68) and using Constraint (3.44c) we have
7% = (227 ~ dmz20)
Reporting this expression in (3.72) and noting that $Ci(g) = 0.2 = 1, .5, the lemma
follows. m]

Lemma 8. Consuder the closed loop system obtaned from the dynamics (3.47) wath the PD
controller (3.69). It has two 1solated equilibra, one of which being gwen by (Z1, T, &3).

Proof. Let a closed loop equilibrium of the system be denoted by § and assume that @3 < 0.
The vector § satisfies the following set of equations:

0= —A3(or — &) (3.73a)
0 = —As(dz — 2) (3.73b)
0 = Aaits —mg (3.73¢)
0= Ag(dor — &) + Ao — ) + (o — &) = dodz (3.73d)
0= Mgz — £2) + M (02 — 0roa) + Aoldo2 — F22) + Asian (3.73¢)
0= Ag(La — Lo) = AoLo (3.73f)
0= ALy +mg+kp(Ly — L) (3.73g)
0= —Ag(La — Lo) = mg + k(Lo — L2) (3.73h)
0= Aoy (@0 — ardn) = AalGor - &21) + M + Asor — iy (€ — )i (3.73i)
0= =Mooz — 0z) = Aaldon — £22) + Maior — Asion + kpa(€ — €)1 (3.73))

together with Constraints (3.44).

We proceed as in (3.67). Considering (3.73a). (3.73b), (3.73¢) with #; < 0, and (3 44d).
(3.44e). we have &, = G0, 0 = 1.2, Ay = B oy = — B, i = 7% and. according

o (3.44a)~(3.44c), Lo = 7 + VT + 33, L= ayr + /2] + 73 and Lz T+ /3T + 13 — i3,
‘Then using (3.73d)~(3.730). we get Ay = 0 and A, = i e = i Asan,
according to (3.731), (3.73j), we obtain €€ = 0 and Ay = =% Thus, comparing the latter
expression of Ly with (3.73g), we conclude that L, = L. Again, comparing the expression of
Ly with (3.73h), we conclude that L, = L. It results that &, 1= 1,2, G =T2,1= 1.2,
A =A.21=1, ,5and & = &; which achieves to prove that § = 7 if &3 < 0.
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Consider now the opposite case &5 > 0. Since Ly — Lo must be positive and according
to Constraint 3.44c, &5 = Ly — Lo. Reporting this relation and the results of the previous
discussion in (3.73), the remaining nontrivial equations are

0=2mg + kp(Ly — Ly)
0= —2mg + kpa(Ly — Lo) (3.74)
0= (a) = )ymg+ Aar

which allows to calculate the equilibrium values Ly, Ly and A, different from the desired
equilibrium and the lemma follows. 0

Remark 33. Noluwe that, in the case &3 > 0, the load stands above the trolley and the resulting
tension of the rope attached to the load 1s Ty + ky (Ly — Ly) =mg~ 2mg = —mg < 0 which
means that the rope 1s pushed, a hghly unreahstic situation wn practice.

Lemma 9. %Y =0 mmphes that the system n closed loop 1s wn equalibroum.

Proof. We need to show that all variables are constant if 4 = 0. According to Lemma 7
“W = 0 implies that all measured variables are in ethbnum ie Ly =0,Ly=0and£=0.
Denote the equilibrium values of these variables by a hat. ie. L; = L, Ly = Ly, and £ = €.
Since the RHS of Equation (3.69) is constant, the same holds true for the motor forces. Let us
denote their constant values by 7}. Tz, and Ty, respectively.

Observe that & = 0 implies that @ = 422 = 0 Constraint (3.44d) implies that o z9) ~
d9pZy> = 0 and, together with r?¢ = 299, — d21222 = 0, which proves that dsy = 2y = 0, or
Ty = @9y and Ty = dpp. Further, using Constraints (3.44a) and (3.44e), we get that zq; and
20y are constant, namely Ty = &) and oz = &z and, by (3.44b), we immediately deduce that
Lo is constant, i.e. Lo = Lo.

We next prove that A, is constant by remarking that (3.47g) reads 0 = =X\, Ly + T +ky (L1 —
Ly). thus A; = Ay. Accordingly, since (3.47h) reads 0 = —Xo(Ly — Lo) + T + kyo(Lz — Lo), we
have A3 = Ag and, by (3.47f), A; = As. Now, (3.47i) and (3.47j) read

0= %0 (F0r — anon) — Aolior — 1) + Aaon + Asion — ks (€ = )
0= —Aa(Fo2 — ardae) — Ao(Fop — F20) + Aeoz — Asor + kpa(é — €)dm

Za1 T2

which proves, by remarking that det
T2 To1

) = —&@0 (1 +tan?€) # 0, that Ay = Ay and
As = As. Finally, using (3.47d) and (3.47¢), the same argument yields z; = &, and 5 = i

2
and, combined with (3.44c), z3 = 3 which achieves to prove the Lemma. o

Lemma 10. The function W defined by (3.71) 1s bounded from below on S (defined by (3.45)),
ve. there emsts a fintte real number ¢ such that ¢ < W(q.q) for all (q.) € S.
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Proof. Since W = Wy + (3knei, + Tiew,) + (3kped, + Trer, +mgas) and since Wy > 0 and
- . 2
Yued, + Trer, = Mo (o0, + ,{—;) - AL we have W > L 4 (ko + Toey, + moas)
But, taking into account (3.44c), we have 13 = (Ly — Lo)® — (201 — 11)° — (zop — 75)2 <
(L2 = Lo)* < L3 and since z3 < 0, we get 23 > —Ly. Thus mgzs > —mgLy = mgey, — mgL,
, . N 2 = el
and Lpaed, +Toer, +mgas > Shyaed, +(Ty+mg)er, ~mgEy = Shyn (eL, +Tytme) " (Tetmal
mgL,. Using the fact that T = —mg. we have proved that W > — i —mgL, = ¢ and the
lemma follows. o

Lemma 11. Every level set W(q,q) = C on S. with C > ¢, ¢ being the lower bound of W on
S, 15 bounded.

Proof. Assume that W = C. Following the same lines as in the previous lemma, we get:

T\ 1 [
=C+ m +mgla > Wi + k,,‘ (eb. + a) + Elc,ﬂe}z + gkpgef (3.75)

with
1T P 2
=3 [Z mid? + > (modd, + Mif,) + Zm,L}]
= = =1
From the inequality (3.75), we immediately deduce that

P2<C, @5, <Co 45, <Cla LI<Cin 1=12 <G,

T 2
<5L| + k—‘) <G ,<0 <G
-

where Ci,, C1.0, Cr2i. Crpae C1, Ca, C are suitable positive constants and since Ly, L, and
£ are bounded L,. L, and £ are also bounded. Now, Constraint (3.44d) yields 23, < 7* and
23, < 77 Next. using Constraint (3.44a). we obtain 23, < Cy and z, < Cos for suitable
constants Coy.Co. It follows, using Constraint (3.44b), that L3 < Cpo and, again, since
(Ly — Lo)? < Crap. by (3.44c), we get x2 < Cj. 23 < C3. Finally, we have already proved that
0> 13 > — L, which achieves to prove that ¢ and ¢ are bounded. o

Theorem 7 Denote by § the equiibrium different from q. the deswed equilibrium gwen by
the position of the load (1, %2, @3)T There emsts a positwe number C such that for all matial
conditions (qr,41) € S with W(qr.4;) < C the trajectory of the closed loop system converges
to .

Proof. Recall first that W(;

4.0) = mgZ; < 0 by construction. Let C' = W(4,0). Using the
definition of W (Equation (3.71

)) we have

JU _
C:EZI;,,,(L,»L, ZT (L, — L) + mgs (3.76)
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Observe that Ty = mg and T, = —mg by Equation (3.67), and further, by Equation (3.74), we
have Ly = Ly = =324 and Ly — Ly = §2. By the proof of Lemma 8, the equilibrium ¢ is such
that 23 > 0. Replacing in (3.76) we get C = mgds, hence W(g,0) < C'

Define the set ¢ = {(4,4) €S W(g.) < C} By the preceding discussion, the set S
contains the equilibrium ¢. Moreover. Sg is bounded by Lemma 11 and positively invariant by
Lemma 7. Applying LaSalle’s Invariance Theorem, all trajectories starting in S approach 7 as
t — oo. o

Remark 34. The set Sg. cannot be easily described by a set of mequalities on the components
of q and . However, 1t can be seen that it contans all feasible configurations where the load s
under the crane at the condition that the wmtwal velocity 1s small enough if the wntwal distance
to the equilibrium point 1s large.

3D overhead crane

The model of this crane is obtained in Example 10. The control objective is the same as for
the cantilever crane of the preceding subsection: the stabi of a load equilibrium given
by (.2, %3)7 such that 73 < 0. From the dynamics (3.51). the equilibrium values of the
remaining variables can be obtained as

Lo=1
Z A =it
L S +L-01 (3.77)
%o = - Ro= 12 T, =mg

2
Ty=-mg Ty = 0.
The measured variables are L;, L. and zg,. the position of the moving part of the structure
(i.e. the bridge with the rail). Defining the error variables as in the preceding subsection. the
PD controller reads
Ti =T+ kaér, + kpier,
Ty = T3+ kazér, + kpaer, (3.78)
Ty = a3z, + Kpseaoss

with kg and kp. 2 =1, .3, real positive numbers and using that Ty = 0 by (3.77). Let the
potential energy stored in the above PD controller be defined as

> >
1 ) i
Wan = 5 (‘Z‘: ke, + kpaém) + ;T.ew
and introduce

W = Wy + Wy + Wen (3.79)

where W and W, are defined by Equation (3.50). We can now state similar lemmas as for the
3D cantilever crane in the preceding paragraph with similar proofs which are omitted.
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Lemma 12. The derwatwe of W along the closed loop trajectores of the system 15 gren by

aw
dt

2
202"

L 52 22 5
—karéd, — kil — kasé

Lemma 13. Consuder the closed loop system obtained from the dynamics (3.51) with the PD
controller (3.78). It has two wsolated equilbria, one of which 1s gwen by (%, F,. 735)T

Lemma 14. 4% = 0 wmphes that the system n closed loop 1s 1 equilibrium.

Lemma 15. The function W defined by (3.79) s bounded from below on S (the set S s defined
by (3.49)), we. there emsts a finute real number ¢ such that ¢ < W(q.q) for all (g.4) € S.

Lemma 16. Consuder a level set of W(q,) on S, such that W = C, where C' > ¢, ¢ bemng
the lower bound of W on S. This level set 15 bounded.

Theorem 8. Denote by g the equilibrium different from q. For all matial condations (gr.dr) € S
such that W (gr, 1) < W(G.0) = C, the closed loop trajectories approach the desired equilibrium
4, qwen by the position of the load (Zy. %, 73)T

Note that Remark 34 also applies here.

3D US Navy crane

The model of the 3D US Navy crane is presented in Example 11. We wish to stabilize the

B
equilibrium (2. Z2, 45, 5os)7 such that ayr < /7T + 23 < r and &5 < Foy < L gy, (ie.
both the free pulley and the load are under the boom). The equilibria of the configuration
variables, Lagrange multipliers, and input forces are:

I =71 T2 = T2 T3y =
13217% Lo= /(2 — 20 + (r = VB + 1) A= —5%

T3
L = a1z = 700)* + oar — VT 5)? Ty = —mg (8:80)
Ly = \[(00z3s — T0)* + (cor — /33 + 25)? A=

Ly = Fo3 — 23 + \/ (233 — T0a)? + (2

(Recall that z33 is 2 geometric parameter and not a configuration variable, hence it has no
equilibrium value.) The equilibrium values Xy, X2, As, Ti. and T5 can be obtained by solving
the (linear) Equations (3.56h), (3.56i), (3.56f), (3.56d), and (3.56k) (resp. Equations (3.56h),
(3.561), (3.56f), (3.56e), and (3.561)) if © # O (resp. #; = 0) with vanishing LHS
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Moreover, define the rotation angle of the platform as

arcna.n(f;—]z) if 23, > 0
E=¢ -1 +axctan(}:‘2) if 23 <0 and 23 < 0 (3.81)

m+arctan(22) if 23y < 0 and 73 > 0

which is similar to (3.68). Let the error variables be calculated the same way as for the cantilever
crane (including ¢¢). The PD controller reads

Ty =T, + kaér, + kpe,
T =T+ kanéy, + kpoer,

e . 3.82
Ty = Ts + kazéry + kpaery (382)
Ty =T + kasée + kpaee
and the potential energy stored in the controller is given by
Al 3
War =5 (Z ke, + W'kaei) + 3 Ter,. (3.83)
=1 ey
Introduce the function
W = Wi + Wy + Wen (3:84)

where Wy and W, are defined by (3.55) and Wi, by (3.83).

Lemma 17 The derwatwe of W along the closed loop trajectories of the system s gien by

dw . R R .
= —ka€}, — karél, — kasé], — kaar?é}.
Proof. Simple adaptation of the proof of Lemma 7 [m]

Lemma 18. Consuder the closed loop system obtawned from the dynamics (3.56) with the
PD controller (3.82). It has a finite number of wsolated equilibria, one of which 1s gwen by
(Z1.%2.33)7 and Zog.

Proof. Recall that all rope lengths Ly, Ly, L3, and Ly — Lo are assumed to be positive. Denote
by ¢ an equilibrium of the closed loop system and by A,. ¢ = 1. .5, the equilibria of the
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corresponding Lagrange multipliers. Then ¢ and A, satisfy

0= —As(do — 31) (3.852)

Aa(Zoz — 22) (3.85b)
0= —Xy(Zo3 — &3) —mg (3.85¢)
0= Ml — &) + M (@01 — arar) + Aa(dior — Qodiar) + Ag(dor — 3a1) (3.85d)
0= Ay(doz — £2) + M B0z — a1gn) + (02 — a2sa) + As(dio2 — Z32) (3.85¢)
0= Aa(ftos — &3) + Mi(f0s — 01233) + Ao(fos — A33) + As(dios — Zaa) — mog (3.85f)
0=Aa(Ls — Lo) = AsLo (3.858)
0= ML+ T+ k(L - Ly) (3.85h)
0= ALy +To+ kp(La — Lo) (3.85i)
0= —Xi(Ls — Lo) + Ts + kys(Ls — Ls) (3.85))
0 = —hiay(f01 —endar) = Aoaa(For —andar) ~Aa(dor —da1) +Astn k(- E)a  (3.85K)
0 = —Aseu(#02 @ d) = haao(Boa—Gaitan) —Aa(Boa o) +Astar +hpa(€— )i, (3.85])

A similar proof to the ones of the previous examples, roughly speaking using elimination argu-
ments, can be done here. However, to break the monotony, we now propose a different proof
based on more physical and geometric ideas.

From Equation (3.85¢) we have that Ay # 0 and & — g3 # 0, hence it follows from
Equations (3.85a)-(3.85b) that &) = &q, and &, = &g, i.e. the rope section between the free
pulley and the load is vertical. The equilibrium implies that the net force at the free pulley is
zero, hence the resultant force transmitted by the ropes of lengths L; and L, and by the rope
section of length Lo must be also vertical. Since these rope sections are coplanar, their common
plane is again vertical. Hence both the free pulley and the load are in the same vertical plane
which is determined by the boom.

Without loss of generality, we may assume that the choice of the base frame is such that
o2 = 3 = 32 = 0. Reporting this in Equation (3.851), we have that

0= k(€ i
hence & = £ (since k> 0 and &3, # 0). Using Constraint (3.53¢) and the definition of the
rotation angle & (Equation (3.81)), we have that &3, = Z3;, and by the choice of the base frame
#p = Tz — Iz = 0. Thus we conclude again (as for the 3D cantilever crane) that for all
equilibria in closed loop, the orientation of the boom with the winches coincide with its desired
position.

For the equilibria positions of the free pulley and the load in the vertical plane determined
by the boom. one can distinguish four cases to obtain four different equilibria:

i3 < &o3 < Wz the equilibrium § coincides with ¢

. &3 > do3 and o3 < ?}fzn (the load is higher than the free pulley): ¢ differs from g

o

w

5 < &3 and Zog > 2lagy (the free pulley is over the boom): ¢ differs from ¢
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4. &3 > Zoz and Zog > J‘*I;u (the free pulley is over the boom and the load is higher than
the free pulley): § differs from ¢

The last three equilibria exist mathematically but have no physical meaning for real cranes
because they imply pushing forces along one ore more rope sections.

Lemma 19. %% = 0 wmplies that the system i closed loop vs . equilibrium.

Proof. & = 0 implies that Ly = L, = Ly = £ = 0 using Lemma 17, hence the rope lengths L,
1=1, 3, areconstant. Denote the constant values by a hat so that L,(t) = L, and () .
The constant, rope lengths L, also imply that Ly is constant since the rope sections of length
Ly. Ly, and Lo terminate all on the free pulley, thus Lo(t) = Lo. From the expression of the
PD controller (3.82), we have that Ty(t) = T, 0 = 1. 4.

The constant rope lengths imply that the LHS of equations (3.56h)-(3.56]) vanish and the
Lagrange multipliers A, s, and A4 are constant, their constant values being A

and A, = z{la Then Equation (3.56) gives Ay = A¢fazle

Now, let us use the fact that £ is also constant which implies, using its definition (3.81) and
Constraint (3.53e), that z3; and 23, are constant. Denote their constant values by 3, and 2.
Without loss of generality, we may chose the orientation of the base frame such that 3, = 0.
Then Equation (3.561) can be rewritten as

0= —zoa(Aay + hoca + Ag) + Taa,

hence zg(t) = Zpo. With a different choice of the orientation of the base frame, such that
31 = 0, we have similar result for 2oy, thus 7y (£) = Zo1. (The constant values of these variables
are different for different orientations of the base frame. However, to prove the lemma. it is
unnecessary to give the equilibria valucs, it is enough to show that these variables remain
constant.) Next, replacing in Equation (3.56k) or in Equation (3.561), all variables are constant
except As which implies Ag(£) = As.

Replacing in Constraint (3.53a):
L 2 V2 4 (4 PRV 2 _ j2
3 ((Im = 31)” + (Zo2 = F32)° + (203 — 733)" — Lu) =0,

it follows that zo3(t) = o3 since all variables are shown to be constant except zp3. Then the
LHS of equations (3.56d)-(3.56f) vanish and the only variables which are not proven to be
constant on the RHS of these equations are xy, 3, and z3. Hence z,(t) = &,,2 = 1. 3 and
the Lemma follows. [m]

Lemma 20. The function W defined by (3.84) s bounded from below on S (the set S 1s defined
by (3.54)), 1.e. there emsts a fimte real number ¢ such that ¢ < W(g,q) for all (¢,4) € S.

Proof. Wy, > 0 by construction. Before studying the terms Wy + Wj. observe that Con-
straint (3.53a) implies (Zo3 — @1233)2 = L% — (To1 — 01231)? — (To2 — a1232)? < L3, hence,
I35 being constant, ayzs — Ly < zgs. Similarly, using Constraint (3.53¢) we obtain that
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@33 — Lo < @03 < Ts3 + Lo. Purther, using this inequality together with Constraint (3.53d), we
get w3 — Ly < w3 < 3+ Ly (This inequality is also clear geometrically, since the load cannot
be lowered, from the winch of its rope, more than the corresponding rope length. ) Let us use
now these inequalities to find the lower bound of Wy, + W

3
1 2 5 1
Wort + Wy =y (Ek,ne;,, + T,e:..) + T’ik,,.ef + mgzos +mgas

=1

1 _ _
Zikm?_, + Ther, + mgonasy — mgLy +mgly — mgLy +

i 1 _ R _

Shwiel, + Toevs + ghwel, + Tyery + mgzsy — mgLy +mgLy —mgLy

Tng)’_ (Ti +mg)*
3

T mg(ayzas — Ly) + (3.86)

1

=3kn (EL.+
L \?
(v i) -
1 Ty +mg\’ (Ty+mg)?
3t (*T) T

2

7}

+

+mg(zs; — Ls)

(Ty + mg)* ; 3 (Ty+mg)? =
> 1T oy - -2 3T -
> T +mg(enzgs — L) T T mg(zss — Lg).
hence W is bounded from bellow. o

Lemma 21. Consuder a level set of W(q,q) on S, such that W = C, where C > c. ¢ being
the lower bound of W on S. Ths level set s bounded.

Proof. Let W = C Using the proof of the previous lemma (see (3.86)) we have that

C'=C+ % —mglonay — L) + % + % —mg(z33 — Lg)
SW+ %k,. (eL, + T‘k;p:"g)z + ém (eh + k%)? n (3.87)
o (s B0)
where W, is defined by (3.55). It follows that
#<C,  #,<Co LI<Cu 1=1, 3 #,<Ca =12
S (e BzmY con (e +2) <Cn (et TEm) <o d<c

where .. Cron Cuit=1. .3, Cig. i = 1.2 Cpy. Cra, Crs, and Cg are suitable positive
constants. Since L,. 2 =1, .3. and £ are constant, the variables L,, 1 = 1, 3. and € are
bounded. By Constraint (3.53), we have that 23, < r for i = 1.2
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We use Constraints (3.53) to show that the remaining variables are bounded. For. observe
that by Constraint (3. 535) there exist positive constants Coy. Cos, and Copz such that 3 <
Cor. 73, < Con, and z3y < Cos. Hence Lo is also bounded by (3.53¢): L3 < Cyo. The
variables 1. 2. and z3 are then bounded by (3.53d). The boundedness of Ly follows by
differentiating (3.53c).

Theorem 9. There ests a positwe number C such that for all matial conditions (qr. e
wnth W (qr, 4r) < C the closed laup trajectories approach the deswred equibbrium §, gwen by the
position of the load (%), %5, 33)" and by the hewght of the free pulley To.

Proof. Denote by gy, G2, and s the equilibria different from the desired equilibrium g, and
let C, = W(4,0), v = 1.2,3. Define C by C' = min{Cy,Cs,Cs}. Define the set Sp =
{@ies W< O}, The set S is bounded by Lemma 21 and positively invariant by
Lemma 17 Applying LaSalle’s Invariance Theorem, all trajectories starting in Sg approaches
qast— oo.

Note again that Remark 34 applies here.

3.5 Local tracking with measurement feedback

The stability of the controllers presented in the previous section makes possible to displace the
load from an initial equilibrium g/ Lo a desired new one, denoted by Gr. by simply changing
the references of the measured variables and the input forces in the controller. However, doing
so. the path followed by the load approaching the new equilibrium cannot be predicted. and
undesired transient motions may occur before the stabilization. Such unpredictable transients
are unacceptable if the crane operates in a congested environment.

Therefore, it would be preferable to influence the trajectory of the load between the two
equilibria by assuring the tracking of a desired path. The problem of planning such trajectories
has been undertaken in Section 3.3. The solution presented there allows to calculate a trajectory
qc(t) of the configuration variables. its derivatives, and the corresponding motor forces T..
1=1, .d+s+1(d+s+ 1 gives the number of motors), such that g.(t;) = gr and g.(tr) = g,
with ¢; < tp. Because of the unavailability of measurements on the load position, the initial
equilibrium @, for the motion planning can be calculated using only the measured variables
(positions of the motor axes), by supposing that the load is close to an equilibrium. Hence,
there is a difference between the real initial configuration ¢((;) and the initial configuration g,
used for the motion planning.

We investigate in this section the closed loop behavior of the 3D US Navy crane (see Ex-
ample 11) using the same PD controller as for stabilization. but with time-varying references
qc(t) and T (t). 2 =1, 4. For, we replace in the controller the equilibrium references of the
measured variables and the input forces by their trajectories connecting the two equilibria of
the load.
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To construct the tracking PD controller, define ¢, = q. — q where g is given by (3.52) and
let ¢ = & - & using (3.81). The tracking PD controller is given by
Ty = The + karér, + kpier,
Ty = Too + kanésy + ke,
Ty = Tao + hasér, + ez,
Ty = Te + kasée + hpace.

(3.88)

Theorem 10. Consuder a reference trajectory qc(1) for the 3D US Navy crane connecting two
equilibria: gq(t/) and qc(tr) with —co < t; < tp < 0o and such that W(q.,¢.) < C for all
t € (ty.tr) (C being defined in the proof of Theorem 9). Use the PD controller (3.88) to close
the loop. For any such trajectory qc(t), there exsts an open neighborhood V of q.(tr) such that
all tragectory wn closed loop, emanating from V at time Ly, converge to q.(tF) as L — co.

Proof. Note that for ¢ > tp, the PD controller coincides with the one given by Equation (3.82)
with = g:(tr) and T, = Tu(tr). 2 = 1, 4. By Theorem 9, g.(tr) is stabilized in closed
loop for t > tp, provided that W(g(ts). §(tr)) < C with W defined by (3.84). Hence, we have
to show that there exists an open neighborhood V of g.(t;) such that g(t,;) € V implies that
W{q(tr).(tr)) < C._ Observe that g.(t/) = q(t;) implies that q(t) = g.(t) for all ¢ > ¢, and
thus W(q(t), §(t)) < C forall t. ¢/ < t < Lp, by the motion planning. Moreover, ¢ and § remain
bounded along the trajectory g(t). Thus the neighborhood V' exists by the continuity of the
system equations in closed loop. [u]

The theorem doesn’t, provide information about the local (or eventually global) stability of
the trajectory itsell, i.e. about the convergence of the error variables €, along the trajectory,
i.e. during the interval ¢ € [f;,tp]. Note that the use of the energy function (3.84) in order to
conclude about the stability applying LaSalle’s Theorem is difficult since the derivatives of g.
and T, 0 =1, .4, appear in ‘%. hence the energy function should be modified in a suitable
but yet undiscovered way.

‘Theorem 10 states that the stability of the final equilibrium is preserved if the initial equi-
librium used for the motion planning is known with a small error. Simulations show that the
application of the time-varying reference connecting the two equilibria together with the track-
ing PD controller stabilizes the desired trajectory even if the initial position is known with a
relatively high uncertainty. This allows to reduce the transients and oscillations around the
final equilibrium and to follow a path avoiding obstacles.

As a conclusion to this section, let us compare the behavior of the stabilizing PD controller
and the tracking PD controller for the 3D US Navy crane.

Comparison of the tracking and the stabilizing controllers by simulation (3D US
Navy crane example)

Consider the reference trajectory starting from the equilibrium z,; = 14.2, 2o = 1.5, 23 = —5
[em]® at ¢/ = 0 and finishing at the equilibrium 3¢ = 0.4. Zor = 16 and zgr = —5 [cm] at

5The small distances are due to the fact that the controllers are experimented on the reduced size model of the
US Navy crane and the simulator uses the physical parameters of this 1:80 model. Since precise measurements
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Figure 3.21: Closed-loop tracking behavior under PD control. Trajectories of the load in the
horizontal and vertical planes: i) stabilizing equilibrium controller (hashed line); 12) tracking
controller with motion planning; 111) reference to steer to equilibrium along a straight line
(dotted).

Horzontal epe lengin Ly ot longih L of ihe man rope

Figure 3.22: Closed-loop tracking behavior under PD control. ‘Trajectory of the rope lengths:
1) stabilizing equilibrium controller (hashed line); ii) tracking controller with motion planning;
12) reference to steer to equilibrium along a straight line (dotted).

tp=25]s].

Figures 3.21-3.24 show the results of the simulation. The stabilizing controller shows a large
error with respect to the reference trajectory and the load approximately stops at the end point
after more than 3 periods of oscillations. On the contrary, the locally tracking controller shows
a much smoother behaviour concerning both tracking and oscillations at the end point. With
this tracking controller, the load needs less than 2 periods to get & comparable behavior. This is
due to the fact that the reference trajectory arrives at the endpoint with vanishing derivatives
up to order 6 and that the deviation with respect to this reference along the trajectory remains
much smaller than the deviation with respect to the endpoint. Thus, the feedback (3.88) yields
smaller accelerations and consequently smaller oscillations, though the rate of decay of the
energy is the same in both cases.

The settling time of the locally tracking controller is approximately 2.5 [s], almost the same

of the load positions are unavailable, no experimental results are presented For more details. please refer to
the videos available at http://cas.ensmp.fr
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Figure 3.23: Closed-loop tracking behavior under PD control. Trajectory of the angles: )
stabilizing equilibrium conuroller (hashed line): 1) tracking controller with motion planning;
1) reference to steer to equilibrium along a straight line (dotted).
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Figure 3.24: Closed-loop tracking behavior, motor torques: i) stabilizing equilibrium controller
(hashed line); u2) tracking controller with motion planning; 1) reference to steer to equilibrium
along a straight line (dotted).

as the prescribed travelling duration ¢y — t; of the reference trajectory, whereas the settling
time of the global stabilizing controller is about 5 [s] in the same conditions.
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Conclusions

The motion planning problem has been studied in this thesis for two classes of mechanical
systems, namely hand-object structures and weight handling equipments (cranes). We have
shown that simple solutions can be obtained when they enjoy flatness or Liouvillian properties,
without restricting to quasi-static motion or to specific input signals.

In the case of cranes, we have also proved a global stabilization result of an arbitrary equi-
librium point by measurement feedback PD controller and shown in simulations that it could
be extended to track the reference trajectories computed by our motion planning algorithm.

The classification of HOSs w.r.t. the flatness and Liouvillian properties, however, is not
complete. The extension of these properties to larger classes of HOSs, which would enlarge the
applicability of the presented motion planning methods, remains an open problem.

Tt would be also interesting to analyze this problem in the setting of Lagrangian systems
and to be able to detect the flatness or Liouvillian property directly on the Lagrangian as we
have done for cranes. This could be also motivated by the fact that the flat and Liouvillian
approaches are not affected by the presence of system drift which appears once the dynamics are
considered in the model. This is not straightforward for methods exploiting the Lie algebraic
structure of driftless systems [24, 39, 45, 53]. Note nevertheless that geometric constraints have
the same structure for all cranes allowing to conclude that all these mechanisms are flat. For
HOSs. the geometric and kinematic constraints depend on the surface geometry of the fingers
and the object which makes general statements more difficult to obtain.

The closed loop control of HOSs allowing to stabilize the trajectories calculated by the
proposed motion planning algorithms is not addressed in this work. Tts study should be the
subject of future research.

For the cranes considered in this thesis, the flatness property has been shown for all elements
in a class, and the closed loop control, more precisely with measurement feedback, is addressed
for some examples in the class. Though the stability results seem to be fairly general. their
proof must be adapted in each case to cope with the specific geometry of each kind of crane.

A natural field of application of the motion planning for both classes of mechanical systems
is teleoperation or remote control. The operator, supervising the scene thanks to cameras, gives
the trajectory of the distant object, for HOSs, e.g. by manipulating a virtual object through a
glove equipped with suitable sensors, or thal, of the distant load, for cranes, using for instance
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a joystick or a gamepad.

Note that the motion planning problem studied in this thesis may be slightly adapted to
include displacements between two points which are not necessarily equilibrium points the op-
erator may want to modify on-line the desired final state and the new trajectory must therefore
start from the instantaneous transient position of the object or the load, with nonzero velocity,
acceleration, and higher order derivatives, and possibly must respect additional constraints on
the input variables. This requires additional measurements, for instance using image processing,
to take profit of the cameras, to obtain such information on-line.

Once the reference trajectories of the actuators and the measured variables are calculated,
they are transmitted using a network connection (or eventually another type of telecommu-
nication channel) to the local controller. (Local means here that the controller is located at
the same termination of the i link as the h | system.) The aim of the
local controller is, as in this thesis, to stabilize the reference trajectory. Note that the visual
information may be used as well by the distant operator for his visual feedback, for on-line
motion planning and in the local feedback loop.

Such a remote control scheme fits well with the methods developed in this work and might
be implemented on the reduced size model of the US Navy crane.




Conclusions

Le probleme de la planification de trajectoires a été étudié dans cette thése pour deux classes
de systemes i tructur biets et engins de levage (grues). Nous avons
obtenu des solutions simples pour les systémes plats et Liouvilliens, sans se restreindre & des
déplacements quasi-statiques ou a I'utilisation de signaux d'entrées particuliers.

Dans le cas des grues, nous avons aussi prouvé un résultat de stabilisation globale d’un point
d’équilibre arbitraire par bouclage PD par retour de sortie et montré en simulation que l'on
pouvait I’étendre au cas de la poursuite des trajectoires de référence obtenues par planification
de trajectoire.

La classification des structures mains-objets selon leurs propriétés d’étre plats ou Liouvilliens
nétant pas complete, lextension de ces propriétés a une classe plus large de structures mains-
objets reste ouverte. Cela pourrait, également élargir le champ d'application des algorithmes
de planification de trajectoires présentés.

11 serait en outre intéressant d'analyser ces propriétés dans le cadre des systémes Lagran-
giens, approche que nous avons utilisée pour les engins de levage. Une telle démarche peut
étre motivée par le fait que les algorithmes de planification de trajectoires présentés pour les
systémes plats ou Liouvilliens ne sont pas limités aux systémes sans dérive et peuvent ainsi
étre utilisés pour les modeles avec dynamique. Cela est moins évident si on utilise les méthodes
qui exploitent le structure d’algebre de Lie des champs de vecteurs des systémes sans dérive
[39, 45, 53, 24]. Il faut cependant noter gue les contraintes géométriques ont la méme structure
pour tous les engins de levage. Dans le cas des structures mains-objets, au contraire, les
contraintes dépendent de la géométrie des surfaces des doigts et de I'objet, ce qui ne permet
pas d’envisager facilement des résultats plus généraux.

Le probleme de la commande en boucle fermée des mains de robots n’est pas abordé dans
cette thése et la stabilisation des trajectoires peut faire I'objet de futures recherches.

Concernant les engins de levage, la platitude a été montrée pour une classe étendue de
mécanismes. La boucle fermée, ou plus précisément la commande par retour de sortie. a été
étudiée sur quelques exemples de cette classe. Bien que les résultats de stabilité semblent étre
d’une porté relativement générale, leur preuve doit étre adaptée dans chaque cas de grue pour
tenir compte de sa géométrie spécifique.

Une application naturelle des algorithmes de planification de trajectoires présentés dans
cette these est la téléopé ou la a distance. L'opé , surveillant la scéne &
J'aide de caméras, donne la trajectoire de I'objet distant, dans le cas de la manipulation. par
exemple a I'aide d'un gant équipé de capteurs adaptés, ou de la charge distante, dans le cas de
la commande des grues, en utilisant un “joystick” ou une “gamepad”
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Une telle configuration pour la commande & distance pose un probleme de planification de
trajectoire légerement différent de celui qui est abordé dans ce travail, pour des trajectoires entre
deux points qui ne sont plus nécessairement des points d’équilibre. En effet, I'opérateur peut a
tout instant vouloir modifier le point final & atteindre, et la nouvelle trajectoire, qui repart de
la position actuelle, hors de I’équilibre, doit prendre en compte une vitesse, accélération, etc..
initiales instantanées non nulles, et respecter d'éventuelles contraintes sur les entrées. Ce calcul
en ligne nécessite des mesures supplémentaires, par exemple par traitement d'images pour tirer
profit des caméras.

Les trajectoires de référence sont ensuite transmises au contréleur local par un réseau ou
par une ligne de communication différente. (Le mot local désigne ici 'emplacement physique
du controleur dont on suppose qu'il se trouve au méme nceud de connexion que le systéme
a piloter.) Le but de ce controleur est, comme dans ce travail, de stabiliser la trajectoire
de référence. Notons que linformation visuelle peut étre utilisée aussi bien pour la boucle
visuelle réalisée par I'opérateur, que pour la planification de trajectoire en-ligne, ou la boucle
de rétroaction locale.

Un tel schéma de commande & distance peut étre envisagé dans le cadre des méthodes que
nous avons développées et devrait étre testé sur la maquette de grue de la marine américaine.



Bibliography

11

[10]

(11

(12

R. Abraham, J.E. Mardsen, and T. Ratiu. Manifolds, Tensor Analysis, and Apphcatons.
Applied Mathematical Sciences. Springer ~ Verlag, 1988.

P. Appell. Traité de Mécanique Rationnelle. Jacques Gabay, Sceaux, France, 6ieme edition,
1991.

S. Arimoto, P.T.A. Nguyen, H.Y. Han, and Z. Doulgeri. Dynamics and control of a set of
dual fingers with soft tips. Robotica, 18:71-80, 2000.

B. Armstrong-Hélouvry. Control of Machines with Friction. Kluwer Academic Publisher
Boston/Dordrecht /London, 1991

A. Bicchi and A. Marigo. Rolling contacts and dextrous manipulation. In Proceedings
of the IEEE International Conference on Robotics and Automation, pages 282-287, San
Francisco, CA, April 2000.

R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths. Exterior
Dyfferential Systems. Springer-Verlag, 1991.

T. Burg. D. Dawson, C. Rahn, and W. Rhodes. Nonlinear control of an overhead crane
via the saturating control approach of Teel. In Proceedings of the Internationl Conference
on Robotics and Automation, pages 3155-3160, 1996.

H. Butler, G. Honderd. and J. Van Amerongen. Model reference adaptive control of a
gantry crane scale model. /EEE Control System Magazme, pages 57-62, January 1991,

C.C. Cheah, S. Kawamura, H.Y. Han, and S. Arimoto. Grasping and position control of
multi-fingered robot hands with uncertain jacobian matrices. In Proc. of the IEEE Int
Conf. on Robotics and Automation, pages 2403-2408, May 1998.

A. Chelouah. Extensions of differential flat fields and Liouvillian systems. In Proceedings
of the IEEE Conference on Decision and Control, pages 4268-4273, San Diego, CA. USA,
December 1997

M. Cherif and K.K. Gupta. Planning quasi-static motions for re-configuring object with
a multi-fingered robotic hand. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 986-991. Albuquerque, New Mexico, USA. April 1997

A. A. Cole. J. E. Hauser, and S. S. Sastry. Kinematics and control of multifingered hands
with rolling contact. IEEE Transactions on Automatic Control, 34(4):398-404. April 1989.

1R



116

(13
[14]

18]

[16]

(17)

(18]
[19]

20]

[21]

122]

23]

[24)

2]
[26]

127]

Bibliography

A. A. Cole. P. Hsu, and S. S. Sastry. Dynamic control of sliding by robot hands for
vegrasping. IEEE Transactions on Robotics and Automation, 8(1):42-52. February 1992.

J. Collado, R. Lozano, and 1. Fantoni. Control of a convey-crane based on passivity. In
Proceedings of the American Control Conference, pages 1260-1264, 2000.

B. D’Andréa-Novel and J. Lévine. Modelling and nonlinear control of an overhead crane.
In M.A. Kaashoek, J.H. Van Schuppen, and A.C.M. Ran. editors, Robust Control of Linear
Systems and Nonhnear Control, pages 523-529. Birkhauser, Boston, 1989.

B. D'Andréa-Novel, P. Martin, and R. Sépulchre. Full linearization of a class of mechan-
ical systems via dynamic state feedback. In H. Kimura and S. Kodama, editors, Recent
Advances 1 Mathematical Theory of Systems. Control, Networks and Signal Processing,
11, pages 327-332. Mita Press, Osaka, 1991.

M. Fliess, J. Lévine, Ph. Martin, F Ollivier, and P. Rouchon. Controlling nonlinear
systems by flatness. [n C.I. Byrnes. editor Systems and Control wn the Twenty-First
Century. pages 137-154, Boston, 1997

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Sur les systémes non linéaires
différentiellement plats. C.R. Acad. Sci. Pars, 1-315:619-629, 1992.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Linéarisation par bouclage dynamique
et transformations de Lie-Biicklund. C.R. Acad. Ser. Pars, 1-317:981-986, 1993.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and defect of nonlinear systems:
introductory theory and examples. International Journal of Control, 61(6):1327-1361
1995.

M. Fliess, J. Lévine, Ph Martin, and P. Rouchon. Deux applications de la géométrie locale
des diffiétés. Ann. Inst. Henr Pomncaré, 66(3):275-292, 1997

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. A Lie-Bicklund approach to equivalence
and flatness of nonlinear systems. [EEE Transactions on Automatic Control, 38:700-716,
1999.

D. Fragopoulos, M.P. Spathopoulos, and Y Zheng. A pendulation control system for
offshore lifting operations. In Proceedings of the 14th IFAC Triennial World Congress,
pages 465-470, Beijing, P.R. China, 1999.

B. Goodwine. Control of Stratsfied Systems with Robotic Applications. PhD thesis, Cali-
fornia Institute of Technology, 1998.

D. T. Greenwood. Classical Dynamucs. Prentice-Hall, Englewood Cliffs, N.J., 1977

T. Gustafsson. On the design and implementation of a rotary crane controller. European
Journal of Control. 2(3):166-175, March 1996.

K.S Hong, J.H. Kim, and K.I Lee. Control of a container crane: Fast traversing, and
residual sway control from the perspective of controlling an underactuated system. In
Proceedings of the American Control Conference, pages 1294-1298, Philadelphia, PA, June
1998.



Bibliography 17

28]
29]

(50

(31

[32)

33]

341

35]

(36]

37

38]

39]

40]
[41]

J.B. Kerr. An Analysis of Multifingered Hands. PhD thesis, Dep. Mech. Eng. Stanford
University, 1984.

H. K. Khalil. Nonlmnear Systems. Prentice-Hall, Englewood Cliffs, N.J., second edition,
1996.

B Kiss and J. Lévine. On the control of a reduced scale model of the US Navy cranes. In
Proceedings of the IEEE International Conference on Intelhgent Systems, pages 127-132,
Stard Lesnd, Slovakia, November 1999.

B. Kiss. J. Lévine, and B. Lantos. Trajectory planning for dextrous manipulation with
rolling contacts. In Proc. of the 38th IEEE Int. Conf. on Decision and Control. pages
2118-2119, Phenix. Arizona. 1999.

B. Kiss, J. Lévine, and B. Lantos. Trajectory planning for dextrous manipulation with
special robotic hand structures. In Proceedings of the IEEE International Conference on
Intellgent Systems. pages 133-138, Staré Lesnd, Slovakia, November 1999.

B. Kiss, J. Lévine, and B. Lantos. Object reconfiguration with rolling contacts using dif-
ferentially flat robotic hand structures. In Proceedings of the 6th International Conference
on Control, Automation, Robotics and Vision, pages on CD-ROM. ISBN981-04-2445-6,
Singapore, 5-8 December 2000.

B. Kiss, J. Lévine, and B. Lantos. On motion planning for robotic manipulation with rolling
contacts. In Proceedings of the 6th International IFAC on Robot Conrol, pages
639-644, Vienna, Austria, 21-23 September 2000.

B. Kiss, J. Lévine, and Ph. Mullhaupt. Modelling, flatness and simulation of a class of
cranes. Perodica Polytechnca. 43(3):215-225, 1999.

B. Kiss, J. Lévine. and Ph. Mullhaupt. Control of a reduced size model of US Navy crane
using only motor position sensors. In A. Tsidori, F. Lamnabhi-Lagarrigue, and W. Re-
spondek, editors, Nonlnear Control wn the Year 2000, volume 2. pages 1-12. Springer.
2000.

B. Kiss, J. Lévine, and Ph. Mullhaupt. Modeling and motion planning for a class of weight
handling equipments. In Proceedings of the 1jth International Conference on Systems
Engineering, Coventry, UK. September 2000.

B Kiss, J. Lévine, and Ph. Mullhaupt. A simple output feedback PD controller for nonlinear
cranes. In Proceedings of the 39th Conference on Decision and Control, Sydney, Australia,
12-15 December 2000.

G. Lafferriere and H.J. Sussmann. Motion planning for controllable systems without drift.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages
1148-1153, Sacramento, CA, USA, 1991.

B. Lantos. Robot Control. Hungarian Academic Press, Budapest, 1991

B. Lantos, P. Klatsmanyi, L. Ludvig. and F. Tél. Intelligent control system of a robot with
dextrous hand. In Proceedings of the IEEE INES 97, pages 129-134. Budapest. 1997



18

[42]

[43]

[44]

4]

[46]

47

48]

[49]

50]

51]

(52)

53]

[54]

&

55]

[56]

Bibliography

J. Lévine. Are there new industrial perspectives in the control of mechanical systems ?
In Paul M. Frank, editor, Advances in Control. pages 195-226. Springer-Verlag. London.
1999.

J. Lévine, P. Rouchon, G. Yuan, C. Grebogi, B.R. Hunt. E. Kostelich. E. Ott, and J. Yorke.
On the control of US Navy cranes. In Proceedings of the European Control Conference,
pages N-217, Brussels, Belgium, July 1997

Z. Li, J. F. Canny, and S. S. Sastry. On motion planning for dextrous manipulation. In
Proceedings of the IEEE Conference on Robotics and Automation. pages 775-780, 1989.

Al ango and A. Bicchi. Rolling bodies with regular surface: Controllability theory and
EEE T on A Control, 45(9):1586-1599, September 2000.

Ph. Martin and P. Rouchon. Feedback linearization and driftless systems. Mathematics of
Control. Signals, and Systems, 7(3):235-254, 1994.

S.C. Martindale, D.M. Dawson. J. Zhu, and C. Rahn. Approximate nonlinear control for
a two degree of freedom overhead crane: Theory and experimentation. In Proceedings of
the American Control Conference, pages 301-305. 1995.

M.T. Mason and J.K. Salisbury. Robot Hands and the Mechanics of Mampulation. MIT
Press. 1985.

D. Montana. The kinematics of contact and grasp. [nternational Journal of Robotics
Research, 7:17-31, 1988.

K.A.F Moustafa. Reference trajectory tracking of overhead cranes. Journal of Dynamic
Systems, Measurement, and Control, 123:139-141, March 2001

Ph. Mullbaupt. Anahsys and Control of Us d Mech ! Phase
Systems. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne. Suisse, 1999.

R.M. Murray, Z. Li, and S.S. Sastry. A Math. [ Introd: to Robotac
CRC Press, 1994.

R.M. Murray and S.S. Sastry. Nonholonomic motion planning: steering using sinusoids.
IEEE Transactions on Automatic Control, 38(5):700-716, May 1993.

R. Muszyniski and K. Tchorn. Singularities and mobility of nonholonomic systems: The
ball rolling on a plane. In Proceedings of the 6th IFAC Symposwm on Robot Control, pages
259-264, Vienna, Austria. September 2000.

T. Naniwa, S. Arimoto, and K. Wada. A learning control method for coordination of
multiple manipulators holding a geometrically constrained object. Advanced Robotics,
13(2):132-151, 1999.

Ju.l. Neimark and N.A. Fufaev. Dynamics of Nonholonomic Systems. American Mathe-
matical Society. Providence. Rhode Island, 1972.



Bibliography 119

57

58]

59]

60]
61]

[62]

63]

64)

[65]

6]

67)

R.H. Overton. Anti-sway control system for cantilever cranes. United States Patent, June
1996. Patent No. 5,526,946.

M.A. Peshkin and A.C. Sanderson. Minimization of energy in quasi-static manipulation.
IEEE Transactions on Robotics and Automation, 5(1):53-60, 1989.

Y. Sakawa and H. Sano. Nonlinear model and linear robust control of overhead travelling
cranes. Nonlnear Analysis, 30(4):2197-2207 1997

J.M. Selig. Geometrical Methods wn Robotics. Springer, 1996.

K.B. Shimoga. Robot grasp synthesis algorithms: A survey. International Journal of
Robotics Research, 16(1):230- 266, Feb 1997

H. Sira-Ramirez. On the control of the variable length pendulum. In Proceedings of the
IEEE International Conference on Decision and Control, pages 1188-1189. 1999.

G. Vass, S. Payandeh, and B. Lantos. On controlled manipulation of objects within multiple
dexterous agents. In Proceedings of the 10th Congress on the Theory of Machines and
Mechanisms, Oulu, Finland, 1999.

Weight handling  equipment handbook. Available on  the internet:
http://ncc.naviac.navy.mil/ 1998, MIL-HDBK-1038.

E.T Whittaker. A Treatise on the Analytical Dynamacs of Particles & Rugid Bodies.
Cambridge University Press, 1993.

K. Yoshida and H. Kawabe. A design of saturating control with guaranteed cost and
its application to the crane control system. [EEE Transactions on Automatic Control,
37(1):121-127, 1992.

J. Yu, F.L. Lewis. and T Huang. Nonlinear feedback control of a gantry crane. In
Proceedings of the American Control Conference, pages 4310-4315, 1995.



120

Bibliography



Appendix A

Some notions of analytical mechanics

For the reader’s convenience, we recall here some basic notions, essentially (but not exclusively)
used in Chapter 2. The reader can find a detailed presentation of the subject in recent books
52, 60] as well as in classical treatments such as (2, 65]. We focus our attention on two subjects:
rigid body motions and nonholonomic mechanical systems.

Notations from differential geometry are used [1. 6]. We denote by TM the tangent bundle
of a manifold M, and by T*M its cotangent bundle. dw denotes the exterior derivative of the
form @ on M, and <,> stands for the duality product between TM and T*M The wedge
product of two forms, @; and w,, is denoted by @ A ws.

Rigid body motions

The motions of a rigid body in mechanics is described by the motions of a frame fixed to it.
Thus we start with the definition of a rigid body and that of the frame fixed to it, and then we
derive the relations on the velocities.

Definition 12 (rigid body with convex regular surface). Let ¢ R® — R be a smooth
function (v.e. of class C®). We say that O 1s a rugid body 1f

1 O={PeR¥c(P) <0}

2. ¢ 15 a conves function

According to this definition, the surface 9O of a rigid body is defined by the points such
that the function ¢ : R® — R vanish, namely 90 = ¢~1(0).

Throughout the text, the expression "rigid body* stands for “rigid body with convex regular
surface”’

A frame K° in the Euclidean space R? is given by

e apoint A in R® (origin of the frame)

« an ordered set of three orthogonal vectors {e?. 3, ¢4} with unit length such that ef x e§ =
€9, referred to as the basis of K*
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Here x stands for the usual cross product in R* Consider a point P in R? and a frame K@
One can write

AP = z3€] +ypes + 256l
and we say that the vector
Ph = (2h.yp.28)" (A1)
is the position vector of the point P in the basis of K whose elements are the coordinates of
the point P in K°
One distinguishes a special frame, denoted by K* and referred to as the inertial reference
frame. For any frame K° different from K® we denote by p° the position vector of its origin A
in the basis of K*

A frame K is said to be fixed to a rigid body at a point A (note that A is not necessarily
a point of the body itself) if all points of the rigid body have fixed coordinates w.r.t. the base
¢f,e5,e§ and the point A coincides with the origin of K Hence, for all points P of the surface
of the rigid body, the expression of the function ¢ in the frame K® denoted by ¢* satisfies

(2. yp.2p) = 0.
The expression of the function ¢ is different for different frames fixed to the same rigid body.

Since the position of all points of the rigid body is fixed in the basis of K®, their positions
in the basis of K are given if the situation of K® w.r.t. K is known. By the definition of the
frame K. this relative situation is given by the coordinates of the vector p® and by the vectors
€9, e8. 5. both expressed in the basis of K”

Introduce the matrix ©, called orentation matriz, defined by
(et

= (e
o

t

(e

el (@) e ()T &
T () e () &
e (D) e ()T ¢

By construction. the matrix Q satisfies Q7Q = QQT = I and detQ = | and thus is an
element of the special orentation Lie group SO(3). The word orientation comes from the fact
that the scalar product (¢f)” ¢! is equal to the cosine of the angle between the vectors ef and
eb, for every i,j = 1,2.3.

Consider now a point P of the rigid body. [ts coordinates are given by (A.1). The vector of
coordinates of the same point, expressed in the basis of K? are denoted by p} = (v, 9%, 25)7
By construction of the matrix Q2 and by the definition of p° the following relation can be
established for these two vectors:

Ph=p"+Q-ph (A2)

The vector p* describes the positaon of the rigid body and © gives its orentation w.r.t. the
inertial reference frame K®. Therefore the possible positions and the orientations of a rigid
body w.r.t. K® form the set R® x SO(3) = SE(3), referred to as the special Euchdean group,
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which is also a Lie group. This manifold is six-dimensional and can be locally represented by six
real scalar variables (p, @) such that p € R® gives the position and ¢ € R® gives the orientation
of the rigid body.

Several local representations are used (in particular in robotics) for the SO(3) group
(see [60]). Examples are the Euler angles, RPY (Roll. Pitch, Yaw) angles, etc. For each choice,
the elements of the vector ¢ correspond to three successive rotations allowing to make coincide
the orientations of K” and the frame fixed to the rigid body. For instance. the orientation
matrix Qppy corresponding to the RPY angles ¢ = (ip.6.1), is given by:

cospcosf  cospsinfsiny —singcosy  cossinf cosw + sin@sin v

Qrpy(¢) = |sinpcosd  sinpsinfsiny +cospcosy  sinysinf cosy ~ cospsiny

—sinf cosfsiny cos 0 cos v
(A3)
Throughout the thesis. the RPY” representation is used. thus the subscript RPY is omitted.

Rigid bodies evolve in time w.r.t. the inertial reference frame & and their motions can be
instantaneously decomposed into a change of position and a change of orientation.

Consider a frame K* fixed to a rigid body at a point A. Let the trajectory of the position
and orientation of the frame given by the functions p®(t) and Q%(t) = Q(¢%(t)), respectively.
Observe that for any curve Q°(t) in SO(3), the expression %(ﬂ“)r is antisymmetric (this can
be seen by differentiating Q°(t)Q%(t)7 = I) and introduce the following notation:

0 -w? i
: dQ*
ixl= w0 | = (@) (A.4)
et e
y e

This notation is motivated by the fact that for any vector a, the linear transformation [wx]a
is equivalent 1o the standard cross product w X a. Let us now define v* = %p" = p* the linear
velocity and w® the angular velocity of the frame K*

Consider an arbitrary point P of the rigid body. By the definition of the frame K* fixed to
the rigid body we have that p% = 0. Differentiating (A.2) w.r.l. {, we get the instantaneous
velocity of the point P expressed in K*

" o o @

By = B0 4 Tl = 50 + SO0 OTOORE = + XIS (A5)

or

P =" + [ x](ph - p*).
Thus, to calculate the velocity of any point of the rigid body. it is enough to know the trans-
lational velocity v* and the angular velocity w® of the frame fixed to it. Recall that v* and w®
are both expressed in K by definition.

Ki i ints and hol of ical systems

The mechanical state of a system composed by a collection of rigid bodies is determined by
a finite number of variables, called generalized coordinates, denoted by the vector g. The
admissible values of ¢ define the configuration manifold M of the mechanical system.
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Constraints on the configuration manifold of a mechanical system involving the general
ized coordinates and their first order time derivatives (velocities) are referred to as kinematic
constraints and assumed to be linear w.r.t. the velocities. They are given in the form:

Alg)-4=0, (A.6)
where we suppose that the rows of A(g) are linearly independent for all g. Roughly speak-
ing. these constraints restrict the possible directions of motion al each configuration ¢ of the
mechanical system. The admissible motions are in the right null-space of the matrix A(g).

Each row of the matrix A(g) defines a one-form on the configuration manifold M

a =Y a,(g)dg,.
7

where a,,(q) is the 3th element of the :th row of the matrix A(g). The one-forms a, define a
codistribution on M. denoted by TI. Let m be the dimension of the manifold M. and let p
be the number of the rows of A(q). assumed to be linearly independent. and let us denote by
AY(M) the set of all one-forms on M

Theorem 11 (Frobenius). A codistrabution [1 on a manifold M 1s wntegrable off the exterior
derwatwe of all one-forms w wn 11 can be written as

dw=aApB aell, BeA (M)

If the codistribution [T is not integrable, one can look for the largest integrable codistribution
contained in II, denoted by IT* The construction of IT* can be done according to the notion of
the derived flag.

Definition 13 (derived flag). The derwed flag of the codistribution 11 1s gwen by the follow-
wng sequence of codistributions:

= Y (et dw=anButhae N(M),Be ¥}
This construction termunates at some N when [V =N}

By definition, the sequence of the codistributions I° I*, IV is such that I* 5 I*+! and
by Frobenius' theorem, IV gives the largest integrable codistribution contained in 1.
Definition 14 (hol ic and fully i ical system). Consider a
mechancal system evolving on a mansfold M of d m. Let the k
be qwen by a set of idependent one-forms {w1. ..wp} on M wnth p < m. spanning
the codistribution I1.  Calculate the derwed flag of 11 using Defimation 13 and denote by v
the dimension of IV The mechamcal system 15 said to be holonomic of r = p and fully
nonholonomac of r = 0.

We say that a distribution A is the annihilator of the codistribution IT on the manifold M
if for all points g of M, for all covectors v € II. and for all vectors v € A we have < v.v >= 0.
This is also denoted by < II,A >=0.

Note that if the system is holonomic then there exists an m — p dimensional submanifold
N of M such that A = T'N. This implies that kinematic constraints involving velocities of the
configuration variables can be transformed into p geometric constraints defining precisely the
submanifold N of M
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Definition 15 (associated driftless system). Consuder the kmematics gwen by Equation
(A6). Define A =span{gy. ,gc}. k = m — p as the largest anmhalator of TI. Then the
dniftless system associated to the kmematics (A.6) s guwen by

k
Dol (A7)
=

where w,, ¢t =1, .,k are the control inputs.

For nonholonomic mechanical systems. the inputs u, of (A.7) are referred to as generalized
velocities.

Controllability properties of (A.7) can be analyzed using the Lie-algebra generated by the
vector fields g, or by the derived flag of the codistribution [1. Note that by Definition 14,
the controllability of the driftless system (A.7) is equivalent to the full nonholonomy of the
kinematic constraints (A.6) (see e.g. [46]).



