
HAL Id: pastel-00839521
https://pastel.hal.science/pastel-00839521

Submitted on 28 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for optimizing shared mobility systems
Daniel Chemla

To cite this version:
Daniel Chemla. Algorithms for optimizing shared mobility systems. General Mathematics [math.GM].
Université Paris-Est, 2012. English. �NNT : 2012PEST1066�. �pastel-00839521�

https://pastel.hal.science/pastel-00839521
https://hal.archives-ouvertes.fr


Thèse présentée pour obtenir le grade de

Docteur de l’Université Paris-Est

Spécialité : Mathématiques

par

Daniel Chemla

Ecole Doctorale : MATHÉMATIQUES ET SCIENCES ET TECHNOLOGIES DE

L’INFORMATION ET DE LA COMMUNICATION

ALGORITHMS FOR OPTIMIZING SHARED

MOBILITY SYSTEMS

Thèse soutenue le 19 octobre 2012 devant le jury composé de :

Tal Raviv Rapporteur

Louis-Martin Rousseau Rapporteur

Pierre Carpentier Examinateur

Jean-Philippe Chancelier Examinateur

Dominique Feillet Examinateur

Frédéric Semet Examinateur

Frédéric Meunier Directeur de thèse

Roberto Wolfler Calvo Directeur de thèse



2



Dedicated to my grandfathers,

Max Chemla and René Gligseliger

3



4



La revolucion es como una

bicicleta ; si deja de andar, se cae

Che Guevara

Acknowledgements

This PhD was possible thanks to the collaboration of my two advisors Frédéric Meunier at

École des Ponts ParisTech and Roberto Wolfler Calvo at Université Paris 13. It received a grant

R2DS from the Île-de-France region. I would like to thank my two advisors particularly for

their support. I was really lucky to work with them and I really enjoyed it. You were supportive

and always available when I needed it.

First of all, I would like to thank Louis-Martin Rousseau and Tal Raviv for their detailled

reviews and for coming from abroad to attend my presentation. I would like to thank Pierre

Carpentier, Jean-Philippe Chancelier, Dominique Feillet and Frédéric Semet for being part of

this jury. During these three years I had the chance to work with other researchers. I would like

to thank Aristide Mingozzi who helped me with column generation method and showed me a

bit of Emilia Romagna. I would also like to thank Michal Tzur and Tal Raviv who received me

in Tel Aviv. In all the visited laboratories I worked together with people I also would like to

thank, such as Marianne Trigalo for her comments on my dissertation, Enrico and Guillaume

for their help in the ROADEF 2010 Challenge, Antoine for his help and drive in his hippy car,

Emanuel and Marco for their helps with SCIP, Zheng for her participation in the Branch-and-

Cut algorithm, Roberto for inviting me to the basketball game, Iris, Dana and Reut in TAU

for showing me around and Mor for his biking lessons, and Alexandra for the super Canadian

TSP and her support and Noam for his computer access. At last I would like to give special

thanks to my coworkers, Djamal for having taught me “bâ tâ sâ”, Houssame for his support

and the invention of the “glandredie”, Bernat el mejoar and Paolo for their patience during the

ROADEF 2012 Challenge, Thomas the best travel agency, Rachana my movie dealer, Pauline

and Vincent for their comments. I would like to thank all the members of the CERMICS,

LVMT and LIPN departments, especially Nathalie, Catherine and Sylvie for their help. This

thesis would not have been possible without Peio who showed me the thesis announcement.

At last I would like to thank Louise, all my friends and my familly for their support. And to

my mother who wanted one of her sons to be a physician, “docteur” in French, this misunder-

standing has led me here.

5



6



Abstract

Bikes sharing systems have known a growing success all over the world. Several attempts

have been made since the 1960s. The latest developments in ICT have enabled the system to

become efficient. People can obtain real-time information about the position of the vehicles.

More than 200 cities have already introduced the system and this trend keeps on with the

launching of the NYC system in spring 2013. A new avatar of these means of transportation

has arrived with the introduction of Autolib in Paris end of 2011.

The objective of this thesis is to propose algorithms that may help to improve this system

efficiency. Indeed, operating these systems induces several issues, one of which is the regula-

tion problem. Regulation should ensures users that a right number of vehicles are present at

any station anytime in order to fulfill the demand for both vehicles and parking racks. This

regulation is often executed thanks to trucks that are travelling the city.

This regulation issue is crucial since empty and full stations increase users’ dissatisfaction.

Finding the optimal strategy for regulating a network appears to be a difficult question. This

thesis is divided into two parts. The first one deals with the “static” case. In this part, users’

impact on the network is neglected. This is the case at night or when the system is closed. The

operator faces a given repartition of the vehicles. He wants the repartition to match a target one

that is known a priori. The one-truck and multiple-truck balancing problems are addressed in

this thesis. For each one, an algorithm is proposed and tested on several instances. To deal with

the “dynamic” case in which users interact with the system, a simulator has been developed. It

is used to compare several strategies and to monitor redistribution by using trucks. Strategies

not using trucks, but incentive policies are also tested: regularly updated prices are attached to

stations to deter users from parking their vehicle at specified stations. At last, the question to

find the best initial inventory is also addressed. It corresponds to the case when no truck are

used within the day. Two local searches are presented and both aim at minimizing the total time

lost by users in the system. The results obtained can be used as inputs for the target repartitions

used in the first part.

During my thesis, I participated to two EURO-ROADEF challenges, the 2010 edition pro-

posed by EDF and the 2012 one by Google. In both case, my team reached the final phase. In

2010, our method was ranked fourth over all the participants and led to the publication of an

article [78]. In 2012, we ranked eighteenth over all the participants. Both works are added in

the appendix.

7



8



Résumé court

Les systèmes de vélos en libre-service ont connu ces dernières années un développement

sans précédent. Bien que les premières tentatives de mise en place remontent aux années 60,

l’arrivée de technologies permettant un suivi des différents véhicules mis à la disposition du

grand public et de l’état des bornes de stationnement en temps réel a rendu ces systèmes plus

attractifs. Plus de 200 villes disposent de tels systèmes et cette tendance se poursuit avec l’en-

trée en fonctionnement du système de New York prévue pour mars 2013. La fin de l’année

2011 a été marquée par l’arrivée d’un nouvel avatar de ce type de transport avec la mise en

place d’Autolib à Paris.

L’objectif de cette thèse est de proposer des algorithmes d’aide à la décision pour l’optimi-

sation de réseaux de transport en libre-service. L’exploitation de ces systèmes, qui fleurissent

actuellement un peu partout dans le monde, pose en effet de nombreux problèmes, l’un des plus

cruciaux étant celui de la régulation. Cette dernière a pour objectif de maintenir dans chaque

station un nombre de véhicules ni trop faible, ni trop élevé, afin de satisfaire au mieux la de-

mande. Cette régulation se fait souvent par le biais de camions qui effectuent des tournées sur

le réseau.

Il apparaît rapidement que la question d’une régulation optimale à l’aide d’une flotte fixée

de camions est une question difficile. La thèse est divisée en deux parties. Dans la première

partie, le cas “statique” est considéré. Les déplacements de véhicules dus aux usagers sont nég-

ligés. Cela traduit la situation la nuit ou lorsque le système est fermé à la location. L’opérateur

doit redistribuer les véhicules afin que ceux-ci soient disposés selon une répartition définie.

Les problèmes de rééquilibrage avec un ou plusieurs camions sont traités. Pour chacun des

deux cas, un algorithme est proposé et utilisé pour résoudre des instances de tailles variées.

La seconde partie traite du cas “dynamique” dans lequel les utilisateurs interagissent avec le

système. Afin d’étudier ce système complexe, un simulateur a été développé. Il est utilisé pour

comparer différentes stratégies de redistribution des véhicules. Certaines utilisent des camions

se déplaçant dans la ville pendant la journée. D’autres tentent d’organiser une régulation intrin-

sèque du système par le biais d’une politique d’incitation : des prix mis à jour régulièrement

encouragent les usagers à rendre leur véhicule dans certaines stations. Enfin, si on choisit de

ne pas utiliser de camion durant la journée, la question de la détermination du nombre optimal

de véhicules à disposer à chaque station se pose. Deux méthodes de recherche locale visant à

minimiser le temps total perdu par les usagers sont présentées. Les résultats obtenus peuvent

9



servir pour la définition des répartitions cibles de la première partie.

Durant ma thèse, j’ai pu participer à deux challenges EURO/ROADEF, celui de 2010 pro-

posé par EDF et celui de 2012 proposé par Google. Dans les deux cas, mon équipe a atteint les

phases finales. Lors de l’édition de 2010, notre méthode est arrivée quatrième et a donné lieu à

une publication [78]. En 2012, notre méthode est arrivée dix-huitième sur tous les participants.

Les travaux menés dans ces cadres sont ajoutés en annexe.

10



11



12



Contents

1 Introduction 31

1.1 Bike sharing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Research motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Routing problems and bikes balancing problems . . . . . . . . . . . . . . . . . 35

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

I The static problem 45

2 Solving the Single-Vehicle One-commodity Capacitated Pickup and Delivery

Problem 47

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.2 Notations and basic notions . . . . . . . . . . . . . . . . . . . . . . . 49

2.1.3 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Dealing with sequences and routes . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 An exact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.1 A first relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.2 A second relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Relaxation vs original problem . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.1 Separation of connectivity constraints . . . . . . . . . . . . . . . . . . 67

2.7.2 Separation of capacity constraints . . . . . . . . . . . . . . . . . . . . 67

2.7.3 Initial relaxation, separation strategy and branching rules . . . . . . . . 69

13



2.8 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.8.1 Cost of the current solution . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8.2 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.8.3 Neighborhood description . . . . . . . . . . . . . . . . . . . . . . . . 71

2.8.4 The tabu list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.8.5 The tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 The Multiple-Vehicle Balancing Problem 89

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Problem and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Dominance properties, model and method . . . . . . . . . . . . . . . . . . . . 93

3.4.1 Dominance properties . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Solving the pricing subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6.1 The GENPATH procedure . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.2 The GENROUTE procedure . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.3 Additional dominance rules in GENPATH . . . . . . . . . . . . . . . . 102

3.6.4 Lower bound lb for GENPATH . . . . . . . . . . . . . . . . . . . . . . 103

3.7 Adding cuts to increase the z(RSPF ) . . . . . . . . . . . . . . . . . . . . . . 104

3.7.1 Dual-feasible function cuts . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7.2 Dominances cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.8 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.8.1 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.8.2 Score of an individual . . . . . . . . . . . . . . . . . . . . . . . . . . 109

14



3.8.3 Cross-Over Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.8.4 Local searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.8.5 Population and selection . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.8.6 MA calls in the overall algorithm . . . . . . . . . . . . . . . . . . . . 111

3.9 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9.1 Instances and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

II The dynamic problem 119

4 Real-time shared transport system: model and simulations 121

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Shared transport system: the model . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Transportation equipment . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.2 Users behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Description of the simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.1 Evaluation of the quality of the management . . . . . . . . . . . . . . 133

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Real time optimization methods 139

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Methods using trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.2 One-step - two-step heuristics . . . . . . . . . . . . . . . . . . . . . . 145

5.2.3 One-step - two-step heuristics with forecast . . . . . . . . . . . . . . . 145

5.2.4 The Colored Cluster heuristic . . . . . . . . . . . . . . . . . . . . . . 147

5.3 Methods using incentive policy . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

15



6 The Initial Inventory Problem 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Initial Inventory Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Finding the optimal initial inventory . . . . . . . . . . . . . . . . . . . . . . . 165

6.3.1 Time driven search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3.2 Occurrence driven search . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Conclusion 175

III Appendix 187

A Challenge ROADEF 2010: Solving electricity production planning by column gen-

eration 189

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.3 Compact formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.4 Decomposition and solution method . . . . . . . . . . . . . . . . . . . . . . . 200

A.4.1 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.4.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.5 Solving the pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.5.1 Creation of a static graph . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.5.2 Weighting the arcs of a graph . . . . . . . . . . . . . . . . . . . . . . 209

A.5.3 Obtaining dual variables µw and ui . . . . . . . . . . . . . . . . . . . . 213

A.6 Solving the final master problem . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.7 Columns diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A.8 Calculate the reload and the production quantities . . . . . . . . . . . . . . . . 216

A.8.1 LP-solving for fixing reload quantities . . . . . . . . . . . . . . . . . . 216

A.8.2 Disaggregate LP-solving for every scenario and initial time steps . . . . 218

A.9 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A.9.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A.9.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 219

16



A.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B Challenge ROADEF 2012: Machine Assignment Problem 227

B.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.2 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

B.3 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17



18



Résumé de la thèse

Les systèmes de vélos en libre-service ont connu ces dernières années un développement

sans précédent. Bien que les premières tentatives de mise en place remontent aux années 60,

l’arrivée de technologies permettant un suivi des différents véhicules mis à la disposition du

grand public et de l’état des bornes de stationnement en temps réel a rendu les systèmes plus

attractifs. Plus de 200 villes du monde disposent de tels dispositifs et cette tendance se poursuit

avec l’entrée en fonctionnement du système de New York prévue pour mars 2013. La fin de

l’année 2011 a été marquée par l’arrivée d’un nouvel avatar de ce type de transport avec la mise

en place d’Autolib à Paris.

Si les nouvelles technologies ont permis d’assurer plus de fiabilité dans la localisation des

véhicules et de responsabiliser davantage les utilisateurs en traçant l’identité des utilisateurs,

elles n’ont toutefois pas résolu le problème des déséquilibres qui peuvent survenir durant la

journée. Il n’est en effet pas rare que des stations se retrouvent pleines ou vides pendant des

périodes de temps plus ou moins longues. Ces évènements diminuent l’efficacité du système

de transport, les utilisateurs se présentant à ces stations ne pouvant pas trouver de véhicules

ou de places de parking selon le cas. Le second cas de figure est bien plus préoccupant : un

utilisateur qui ne trouve pas de véhicule peut toujours emprunter un autre moyen de transport,

alors qu’abandonner son véhicule expose à des pénalités financières. Si ces incidents se re-

produisent trop souvent, les utilisateurs risquent tout simplement d’abandonner le système de

transport partagé pour lui préférer d’autres moyens de transport plus fiables. Une des difficultés

de ces déséquilibres est qu’ils peuvent survenir à différents endroits de la ville selon l’heure de

la journée. C’est en effet une conséquence des mouvements pendulaires maison-travail qui ont

lieu tous les jours : un quartier d’affaire souffrira d’un trop-plein de véhicules le matin lorsque

les employés y arrivent, et d’une pénurie le soir lorsque ces mêmes employés souhaitent rentrer

chez eux. La problématique inverse peut se produire dans les quartiers résidentiels.

Le but de cette thèse est de proposer des algorithmes permettant une meilleure gestion

19



d’un réseau de transport partagé. L’objectif de ces travaux est de limiter les évènements

“stations pleines” ou “stations vides”. Dans de nombreuses villes déjà, des investissements

ont été effectués afin de parer à ces problèmes. Une meilleure gestion des moyens déjà

déployés permettrait donc d’améliorer les résultats sans augmenter les coûts. Les problèmes

de déséquilibre sont une des principales sources de non-renouvellement des abonnements,

comme en témoignent de nombreux articles de presse, tel celui paru dans Le Figaro du 23

mars 2010 [12]. Albert Asseraf, directeur général stratégie, études et marketing de JCDecaux

y déclare qu’“il n’est statistiquement pas possible de trouver un vélo ou une place dans 100%

des cas”. Si cela reste vrai, on peut toutefois essayer par divers procédés de conserver une

bonne couverture de la ville, en évitant que des zones entières souffrent d’excédents ou de

carences en véhicules. Dans le cas des systèmes de vélos en libre-service, plusieurs camions

parcourent la ville et transportent des vélos. Dans le cas du système Autolib, plus d’une

centaine d’employés déplacent les voitures. Ces activités peuvent se faire plus facilement la

nuit du fait d’un trafic faible.

Les travaux présentés ici se regroupent en deux parties. La première partie qui regroupe

les chapitres 2 et 3 traite de la problématique rencontrée par les opérateurs de ces systèmes la

nuit : les véhicules sont répartis sur les stations, mais leur répartition peut être différente de la

répartition identifiée comme étant la plus à même de répondre aux besoins de l’heure de pointe

du matin. Dans ces deux premiers chapitres, cette répartition cible est une donnée. Le faible

nombre d’utilisateur étant présent dans le réseau, leur impact sur le système peut être négligé.

Le problème devient alors un problème de redistribution de véhicules des stations ayant un

excédent de véhicules vers celles souffrant d’une pénurie de véhicules. La seconde partie

regroupe les chapitres 4, 5 et 6. Elle porte sur les problèmes rencontrés en temps réel durant la

journée lorsque l’utilisation du système est importante. Le Chapitre 6 traite de l’identification

de la répartition permettant de minimiser le temps moyen perdu par les utilisateurs sur toute

une journée du fait de ces déséquilibres. Cela peut permettre de proposer une répartition

comme cible dans la première partie.

Le Chapitre 2 traite du problème de rééquilibrage d’un réseau avec un unique camion, prob-

lème que nous avons appelé le Single-Vehicle One-commodity Capacited Pickup-and-Delivey

Problem (SVOCPDP). Pour chaque station, le nombre de véhicules présents est donné, ainsi

que le nombre de véhicules souhaités. Cela permet de définir les stations pickup comme celles

20



ayant un excédent de véhicule, les stations delivery comme celles ayant une pénurie de véhicule

et les stations initially balanced comme celles dont le nombre de véhicules initialement présents

est égal au nombre de véhicules souhaités. Un camion se trouve initialement à un dépôt. Il a une

capacité et peut donc transporter un nombre borné de véhicules en même temps. L’objectif est

de trouver un parcours de coût minimal permettant de déplacer les véhicules des stations pickup

vers les stations delivery afin d’atteindre en chaque station le nombre souhaité de véhicule, où

le coût d’un circuit est la distance parcourue par le camion.

Dans la littérature, le swapping problem introduit par Anily et Hassin [6] présente des car-

actéristiques proches. Différents types d’objets sont disponibles à chaque nœud d’un graphe

et d’autres objets sont demandés en ces mêmes nœuds. Deux objets ne peuvent se trouver si-

multanément à un même nœud. Un unique camion de capacité unitaire peut déplacer les objets

un à un, pouvant les déposer à une station pour revenir les chercher plus tard : c’est la ver-

sion préemptive du swapping problem. Celui-ci existe aussi dans une version non-préemptive,

dans laquelle ces dépôts temporaires, appelés drop, sont interdits. Une propriété intéressante

est que le camion visite au plus trois fois chaque nœud. Cette propriété est l’idée centrale des

méthodes de résolution par algorithme de branch-and-cut proposées par Gendreau et al. pour le

résoudre dans ses versions préemptives [20] et non-préemptives [47]. Le SVOCPDP n’a qu’un

type d’objets – les véhicules – et des capacités sur chaque station ainsi que sur le camion.

La propriété du swapping problem signalée ci-dessus n’est plus valide. Hernandez Pérez et

Salazar González [66] ont introduit le One-Commodity Pickup-and-Delivery Travelling Sales-

man Problem (1PDTSP). Des objets d’un seul type se trouvent en certains nœuds d’un graphe

et doivent être amenés vers d’autres nœuds par un unique camion avec capacité. Celui-ci doit

rééquilibrer le graphe en suivant un cycle hamiltonien. Ils proposent des méthodes de résolu-

tions heuristiques [68] et une méthode exacte avec un algorithme de branch-and-cut [67].

Le SVOCPDP est proche du 1PDTSP mais il n’impose pas que la solution soit un cycle

hamiltonien. Les drops et les splits sont autorisés : la demande à un nœud peut être servie par

plusieurs visites. De plus, les stations initially balanced peuvent ne pas être visitées. Un modèle

exact est donné pour le SVOCPDP. Celui-ci requiert un grand nombre de variables et donc

n’est pas soluble. Une relaxation de ce problème est donnée. Celle-ci peut être résolue grâce

à un algorithme de branch-and-cut. Il est prouvé que vérifier si une solution de la relaxation

est aussi solution du SVOCPDP est un problème NP-complet. Toutefois, dans la majorité des

cas, il y a une solution du SVOCPDP avec un coût proche voire égal au coût de la solution de

la relaxation. Plusieurs coupes sont intégrées dans l’algorithme afin de renforcer la solution

21



linéaire. Une recherche tabou est utilisée pour trouver des solutions au SVOCPDP. Celle-ci

peut se faire en considérant exclusivement la liste des stations à parcourir et non les opérations

de chargement ou déchargement à mener à chaque arrêt. Un algorithme de flot maximum

permet en effet de reconstruire ces dernières à partir de la suite ordonnée des stations. La

recherche tabou est lancée à deux reprises, la première fois à partir d’une solution obtenue par

une méthode gloutonne, la seconde fois à partir de la solution obtenue par le branch-and-cut.

La méthode est utilisée sur des instances jusqu’à 100 stations et avec diverses valeurs pour les

demandes à chaque station. Plusieurs capacités du camion sont testées. Les instances ont été

obtenues à partir des instances du 1PDTSP. Des solutions optimales ou proches de la solution

optimale sont obtenues en des temps de calcul raisonnables jusqu’à des instances de taille

moyenne.

Le Chapitre 3 traite de la résolution du Multiple-Vehicle Balacing Problem (MVBP), ver-

sion à plusieurs camions du SVOCPDP. Une flotte homogène de camions est disponible au

dépôt. L’objectif est de donner à chaque camion une route à suivre, suite de stations à vis-

iter avec des opérations de chargements ou déchargements à effectuer. Le coût d’une route est

la distance totale parcourue par le camion. Le but est de rééquilibrer le réseau avec un coût

minimal. Afin d’éviter un déséquilibre dans les attributions aux différents camions, les routes

ont une taille limitée par un paramètre Rmax. Cela permet de s’assurer de répartir les tâches

sur plusieurs camions : en effet, il peut être plus intéressant en terme de coût de n’avoir qu’un

unique camion visitant les stations tandis que les autres resteraient au dépôt. Cette borne Rmax

marque une différence avec la version monovéhicule. Une seconde différence est l’introduction

de la convergence monotone vers l’équilibre : une station pickup ne peut que voir baisser son

nombre de véhicules ; inversement, une station delivery ne peut que recevoir des véhicules.

Cette contrainte est ajoutée pour éviter des problèmes de coordination entre plusieurs camions

où l’un d’eux arriverait à une station pour y prendre des véhicules qui ne sont plus là. Cela

interdit les drops, possibles dans la version monovéhicule, mais conserve la propriété de split.

Dans la littérature, le problème le plus proche est le Split Delivery VRP (SDVRP) intro-

duit par Dror et Trudeau [35]. L’objectif est de servir plusieurs clients à l’aide d’une flotte

homogène de camions présente à un dépôt. Les clients doivent recevoir une certaine quantité

d’un produit. Ils peuvent être servis par plusieurs camions : possibilité d’avoir des splits. Le

but est de répondre à la demande des clients tout en minimisant la distance totale parcourue par

l’ensemble des camions. Dror et Trudeau ont identifié certaines propriétés des solutions opti-

22



males. Archetti et al. proposent une recherche tabou [7] et un algorithme exact [9] qui permet

de résoudre à l’optimum des instances jusqu’à une quarantaine de clients. La méthode proposée

de résolution du MVBP est utilisée sur ces mêmes instances. Dans la littérature, on trouve aussi

le Pickup and Delivery Problem with Time Windows (PDPTW) : des objets doivent être collec-

tés à des endroits et distribués à d’autres, le tout en respectant des fenêtres de temps. Les points

de collecte et de livraison sont couplés, alors que le MVBP est un problème Many-to-Many :

tout véhicule peut aller de toute station pickup vers toute station delivery. De très nombreuses

méthodes existent pour résoudre le PDPTW. Seule celle de Baldacci et al. [10] est citée ici car

elle sert d’inspiration à celle que nous proposons pour la résolution du MVBP.

Avant de présenter un modèle pour résoudre le MVBP, certaines propriétés caractérisant

les routes d’une solution optimale sont identifiées. Elles généralisent les propriétés du SDVRP.

Ces propriétés appelées règles de dominance vont nous permettent de mieux décrire l’espace

des solutions à considérer. Ainsi le nombre d’utilisations des arcs reliant deux stations du

même type est borné ; de même, le nombre d’utilisations des arcs reliant des stations de

types différents et tels que le camion n’est pas complètement plein ou complètement vide

peut être borné. Un modèle set partitioning est ensuite explicité. Néanmoins sa taille étant

exponentielle, une méthode de génération de colonnes est mise en œuvre afin de résoudre

sa relaxation linéaire. La contrainte d’intégrité des variables de décision est relaxée et

seul un sous-ensemble de routes est considéré : c’est le problème maître. Seules les routes

susceptibles d’améliorer le coût du problème maître sont ajoutées dans le sous-ensemble des

routes considérées. Leur identification se fait par la résolution d’un problème de pricing. La

méthode utilisée s’inspire de celle de Baldacci et al. [10]. Des demi-routes aller et retour sont

générées par un algorithme d’expansion utilisant des règles de dominances entre demi-routes

et une borne de complétion. Cette borne est obtenue par programmation dynamique. Ajoutée

au coût d’une demi-route en expansion, on obtient une borne inférieure sur le coût d’une

route complète utilisant cette demi-route. Les demi-routes aller et retour compatibles sont

ensuite associées afin d’obtenir des routes complètes. Celles dont le coût réduit est négatif

sont ajoutées dans le problème maître. Lorsqu’il n’y a plus de route à coût réduit négatif, le

problème maître est résolu à l’optimum et la valeur obtenue est une borne inférieure à celle

du problème originel. Afin de rehausser cette borne inférieure, différentes inégalités valides

sont ajoutées dans la formulation du problème maître. Certaines d’entre elles proviennent de

l’utilisation de fonctions dual feasible. Ces fonctions éliminent des solutions du relâché mais

pas de solution entière. Une revue sur ces fonctions a été réalisée récemment par Clautiaux

23



et al. [26]. Quatre fonctions dual feasible sont utilisées ici : deux d’entre elles proviennent

de cet article, les deux autres sont ad hoc. D’autres inégalités introduites sont des inégalités

de cliques. Elles reprennent les propriétés de dominance mentionnées précédemment. Les

variables duales associées aux premières inégalités peuvent être introduites dans le calcul de

la borne de complétion, mais pas les secondes. Une fois toutes les inégalités valides ajoutées,

on obtient une nouvelle borne inférieure, plus proche de la solution entière. Afin d’obtenir

une borne supérieure, un algorithme mémétique avec découpe optimale est mis en œuvre.

Comme dans le cas monovéhicule, il est possible de ne considérer que les suites de stations

et de reconstruire les chargements et déchargements à chaque arrêt par un algorithme de flot

maximum, qui repose sur un graphe similaire à celui du cas précédent. La méthode de découpe

optimale est inspirée de celle de Prins [73]. Les différentes routes sont juxtaposées pour

former un grand chromosome. Les opérations de cross-over ont lieu sur ce grand chromosome.

L’algorithme de flot maximum de la version monovehicule est alors utilisé sur les nouveaux

chromosomes comme s’il s’agissait d’une unique grande tournée. Si une grande tournée n’est

pas réalisable, alors quel que soit le découpage, on ne peut pas obtenir de routes permettant le

rééquilibrage du réseau, donc le nouveau chromosome est abandonné. Sinon, on cherche à faire

un découpage optimal en prenant en compte les distances parcourues grâce à un algorithme de

programmation dynamique avec étiquettes. Ce découpage peut ne pas respecter la réalisabilité

des routes, mais avec les mouvements de voisinage on la retrouve. Ces mouvements sont des

2-OPT au sein des routes et entre les différentes routes. Une fois une borne supérieure obtenue,

on introduit toutes les routes qui sont dans le gap. Cela nous assure d’avoir la solution optimale

du problème. Des résultats sont donnés pour des instances allant jusqu’à 40 stations pour un

temps d’exécution limité à 6 heures. Les petites instances sont toutes résolues à l’optimum.

Sur les instances de taille moyenne, on trouve parfois l’optimum et parfois on ne peut obtenir

de garantie d’optimalité de la solution dans le temps imparti. Cela reste vrai sur les grandes

instances. Sur les instances du SDVRP résolues par Archetti et al. [9], l’algorithme retrouve 5

des 6 solutions optimales.

La seconde partie traite des problèmes de déséquilibre qui peuvent intervenir durant la

journée. L’évolution de la répartition des véhicules dépend fortement de l’utilisation des

stations. Par exemple, les impacts sur le réseau de la saturation d’une station sont complexes

à évaluer : un utilisateur souhaitant rendre un véhicule à une station pleine va chercher à

le restituer dans une station voisine. L’écho d’un problème de saturation ou de pénurie de

24



véhicules à une station peut ainsi se propager à tout le réseau. Herbert Simon, Prix Turing

1975 et Prix Nobel en Économie 1978, définit les systèmes complexes [81] comme « un

système [. . .] composé d’un grand nombre d’éléments qui interagissent de façon complexe ».

Un système de transport partagé entre exactement dans le cadre de ces systèmes.

Afin de pouvoir l’étudier, le Chapitre 4 décrit le simulateur OADLIBSim. Celui-ci

permet de simuler facilement l’évolution d’un tel système de transport et de tester différentes

stratégies utilisant des camions et/ou des politiques incitatives afin d’améliorer la régulation

des véhicules en temps réel. Plusieurs caractéristiques du réseau doivent être fournies au

simulateur, comme les paramètres des lois gouvernant les temps nécessaires pour rejoindre une

station à partir d’une autre suivant le moyen de déplacement, la matrice Origine-Destination

(O-D) régissant les probabilités du choix des destinations pour un utilisateur arrivant à une

station ou encore les taux d’arrivée des utilisateurs par station. Différents profils d’utilisateurs

peuvent aussi être définis selon leur patience : alors qu’un utilisateur impatient quittera le

réseau si la première station qu’il visite n’a pas de véhicule disponible, un utilisateur moins

“nerveux” pourra explorer d’autres stations environnantes dans la limite d’un nombre de

stations spécifié et d’un temps limite. Le même processus peut avoir lieu lorsqu’il s’agit de

rendre un véhicule loué. Enfin, si le choix est fait de mettre en œuvre une politique de prix

incitant les utilisateurs à rendre leur véhicule à certaines stations, des paramètres permettent

de comparer le coût enduré par un utilisateur se rendant à une station différente de celle

initialement choisie. Plusieurs types d’utilisateurs peuvent coexister à l’intérieur du simulateur,

les proportions de chacun dans le nombre total d’utilisateurs devant simplement être spécifiées.

Le simulateur propose différents indicateurs pour évaluer l’efficacité des différentes méthodes.

Les utilisateurs sont recensés selon le service reçu par le système : le nombre d’utilisateurs

ayant pu effectivement bénéficier du service dans la limite de leur patience, le nombre

d’utilisateurs perdus par manque de véhicules disponibles et ceux perdus par manque de places

aux stations visitées. Si des véhicules sont transportés, le ratio du nombre moyen d’utilisateurs

satisfaits gagnés sur le nombre de véhicules transportés est aussi calculé. Dans le cas d’une

politique incitative, le nombre d’utilisateurs préférant rendre le véhicule à leur station d’origine

et effectuer le déplacement à pied est aussi fourni. Ce simulateur programmé en C++ est simple

d’utilisation et peut être téléchargé sur le site internet du projet. Des méthodes de régula-

tion temps réel peuvent aisément être ajoutées grâce à un template guidant leur implémentation.

25



Le Chapitre 5 présente différentes méthodes de régulations. Celles-ci ont été implémentées

et comparées grâce au simulateur OADLIBSim. Avant de présenter ces méthodes, on prouve

que trouver la stratégie permettant de maximiser la probabilité de capter le prochain utilisateur

dans le cas ou il y a plusieurs stations vides est un problème NP-complet. Et cela reste vrai

si on s’intéresse aux deux prochains utilisateurs. Différentes stratégies heuristiques sont pro-

posées. Toutes fonctionnent avec la définition d’un nombre cible de véhicules pour chacune

des stations et ont pour objectif de maintenir le nombre de véhicules disponibles aux stations

proches de ce nombre cible. Les premières heuristiques proposées utilisent un camion. Celui-ci

reçoit comme mission d’aller dans les stations souffrant de déséquilibre afin d’y remédier. Les

instructions reçues peuvent être de visiter une ou deux stations selon les cas. Afin d’évaluer

les déséquilibres à venir, certaines heuristiques utilisent une prédiction du nombre de véhicules

aux stations utilisant les taux d’arrivées des utilisateurs et la matrice O-D. Une autre heuristique

recherche la politique optimale à mener afin que l’espérance de retour du système à l’équilibre

soit minimale. Le système est décrit comme une chaîne de Markov avec un très grand nombre

d’états. L’état tel que les stations sont toutes à l’équilibre peut être décrit comme l’état cible

d’un problème de plus court chemin stochastique.

Ce problème est notamment traité dans le livre de Tsitsiklis et Bertsekas [17], où ils ex-

posent un algorithme itératif de recherche de politique optimale. Cette méthode est appliquée

ici. Elle nécessite toutefois une bonne connaissance de l’évolution de la chaîne de Markov. De

façon à réduire son nombre d’états, les stations sont regroupées par cluster. Le comportement

des utilisateurs décrit précédemment est rationnel. Dans le cas où un utilisateur arrive à un sta-

tion pour louer un véhicule et que celle-ci est vide, mais qu’il y a une station pleine à côté,

la pénibilité engendrée par ce déplacement peut être négligée. Cela permet de ne plus consid-

érer toutes les stations mais seulement un nombre réduit de clusters. Par ailleurs, le nombre

exact de véhicules présents au sein d’un cluster peut aussi être négligé. Un cluster sera équili-

bré si le nombre de véhicules présents permet d’avoir en moyenne des véhicules et des places

disponibles à chaque station. Si le nombre de véhicules est faible, le cluster peut souffrir d’une

pénurie de véhicules. Inversement, si ce nombre est grand, une surabondance de véhicules

peut entraîner des difficultés pour trouver une place pour les utilisateurs souhaitant rendre leur

véhicule. Trois zones sont ainsi définies : déficit de véhicules, équilibre, excès de véhicules. Les

décisions quant aux déplacements des camions sont faîtes en regardant l’état de chaque cluster.

Le nombre d’états ayant été réduit, le simulateur OADLIBSim est utilisé afin d’approcher la

matrice de changement d’état de la chaîne de Markov.

26



Une stratégie n’utilisant pas de camion mais un système de prix sur les stations est aussi

présentée. Un prix est associé à chaque station . Un utilisateur souhaitant s’y rendre devra

s’acquitter de ce prix. Ces prix mis à jour régulièrement servent à dissuader les utilisateurs de

se diriger vers les stations déjà fortement occupées pour leur indiquer d’autres stations ayant

plus de places disponibles. Le problème de reroutage des utilisateurs est modélisé comme un

problème de transport de Monge [61]. Le choix d’utiliser les variables duales de ce problème

linéaire pour en faire les prix associés à chaque station permet d’obtenir de bons résultats.

Ces différentes stratégies sont comparées sur un jeu d’instances simulées sur des réseaux

réalistes avec un nombre de stations allant de 20 à 250. L’amélioration obtenue par la mise en

place de ces stratégies est visible en comparant les performances avec la version sans aucune

stratégie temps réel. Les résultats indiquent que dans tel un système évoluant très rapidement,

les stratégies à court terme obtiennent de meilleures performances que celles à long terme.

Cela peut être déduit en comparant les résultats des différentes méthodes, bien que la méthode

de recherche de politique optimale, gourmande en temps de calcul, pâtit aussi de la faiblesse

de l’évaluation de la matrice de passage des états de la chaîne de Markov. Par contre, la prise

en compte de la prédiction permet d’améliorer les résultats obtenus par rapport aux mêmes

méthodes ne se fiant qu’à l’état courant du réseau pour prendre des décisions. Les meilleures

performances sont obtenues par la méthode de prix, bien qu’un nombre non négligeable

d’utilisateurs préfère ne pas utiliser le système une fois les prix affichés. C’est une des limites

de la modélisation à demande inélastique qui suppose que tous les utilisateurs se présentant à

une station utilisent effectivement le système.

Le Chapitre 6 aborde la question de la détermination du nombre de véhicules à disposer à

chaque station. L’objectif est de trouver la répartition qui minimise le temps moyen perdu par

les utilisateurs du fait de problèmes de déséquilibre : un utilisateur se présentant à une station

vide pour louer un véhicule devra aller à pied à une autre station afin de trouver un véhicule

disponible. Et le même mécanisme se produit pour un utilisateur arrivant à une station pleine

souhaitant rendre son véhicule. Le temps perdu peut être mesuré comme la différence entre

le temps effectivement mis par un utilisateur pour faire un déplacement et le temps minimal

idéal qu’il aurait put mettre si le système était infaillible, le temps de trajet direct de sa station

d’origine à sa destination avec le véhicule loué. Dans ce chapitre, on suppose qu’il y aucune

politique de régulation temps réel durant toute la période de simulation. Cela peut être le cas

dans un système comme Autolib où les activités de repositionnement ont lieu principalement

27



la nuit, bien que durant la journée la régulation ait aussi lieu mais en moindre mesure. Les

taux d’arrivée à chaque station dépendent ici de la tranche horaire mais pas la matrice O-D.

La modification d’une unité du nombre de véhicules initialement disposés à une station peut

permettre de parer au premier évènement de pénurie ou d’excès en véhicules qui se produit

à la station. Deux différentes méthodes de recherche locale utilisent ce constat. La première

conserve le temps perdu à chaque station du fait des problèmes d’excès ou de déficit. La seconde

s’intéresse au nombre d’occurrences de ces problèmes. Une fois un grand nombre d’itérations

réalisé, le bilan est fait et le nombre de véhicules présent au début de la journée peut être

modifié en conséquence. Les deux méthodes sont testées sur des données d’utilisation d’une

grande ville américaine, perturbées afin d’obtenir plusieurs instances. Les deux méthodes sont

lancées à partir de plusieurs solutions initiales dont l’une est le résultat fourni par l’algorithme

de Raviv et Kolka [74] qui cherche à minimiser le nombre d’utilisateurs non satisfaits sur

chaque station, sans prendre en compte le report d’utilisateurs d’une station sur ses voisines.

Les résultats témoignent d’une robustesse des deux méthodes de recherche qui arrivent à des

résultats comparables, indépendamment de leur point de départ.

28



29



30



Chapter 1

Introduction

1.1 Bike sharing system

The urban population increases. In 2009, the level of world urbanization has crossed the

50% line and this movement keeps going on. In the annual report published by the Department

of Economic and Social Affairs of the United Nation [65], the level of world urbanization is

expected to grow up to 68.7% in 2050. In what is called the “most developed regions”, the rural

population has been decreasing for 60 years. This trend is expected to start also in the “less

developed regions” after 2025. Meantime, the growth rate of the urban population is positive in

both types of regions, though bigger in the later. Governments can try to weaken this imbalance

by using decentralization of administrations or by encouraging people and activities to move to

rural regions. But effects would only be marginal and the number of mega-cities – metropolitan

area with more than 10 billions of inhabitants – is expected to reach 29 in 2050.

As cities will extend themselves, inhabitants will have to cover larger distances to go to

the cities centers, their workplaces or leisure facilities. Easy transportation access will become

more and more an issue. It is already one in most of the big cities. Zavitsas et al. [88]

gather data obtained from 16 cities, most of which are in Europe. They show that economic

prosperity is related to efficient urban transportation system and denote problems raised by

urban transportation.

One of them is the congestion problem. Congestion has clearly a negative impact as it

diminishes the capacity of the existing network. It increases transports emissions as well as the

energy-consumption per kilometer and heightens noise pollution. The increasing number of

cities with high population density will enhance congestion problems. The authors show that

31



the average traffic speed in the Greater London has been decreasing over the last decades, and

this is not an isolated case. Congestion is partially explained by people commuting to work

or to other activities. This appears clearly as the average traffic speed is even slower during

morning and evening peaks. Commuters’ displacements provoke these peaks during which the

number of kilometers of traffic jams can be exceptionally huge.

Furthermore, environment preoccupations appeared at the end of last century. Here again,

transportation activities play a major role as they are responsible for a quarter of greenhouse

gas emissions of the 27 European Union (EU) members states. Moreover, although overall

emissions have diminished between 1990 and 2006, emissions due to transportation activities

have increased by 27% over this period. In 2009, EU countries agreed on a prospect to reduce

their greenhouse gas emission in 2020 by at least 20% below 1990 levels. This commitment

cannot be fulfilled without a cut in transportation emissions.

For all these reasons, efficient means of transportation have to be introduced in order to

limit today’s congestion and be ready to absorb the arrival of new inhabitants. An increase in

the use of personal car would not be an efficient solution as it would worsen the two former

problems. EU countries are bound to respect their greenhouse reduction engagements. The

environment-friendly Bike Sharing System (BSS) could help. If it cannot replace public

transportation, it work as an incentive to stimulate people to change their ground transportation

habits. And besides being a green transportation mean, it offers a suitable answer for part of

inner-city transportation demand and counters the “last-kilometer problem”. This expression

refers to the distance between home and the public transportation system, a distance that can

be too far to walk but could be covered by biking. This mean of transportation is not new,

however it has a growing success all over the world. Several attempts have been made since the

1960s. Shaheen et al. [80] and DeMaio [31] present a study on this mean of transportation over

time and divide the experiments into three generations. The first generation gathers systems, in

Europe mainly, where everything is free. People can use bikes and leave them once arrived at

their destination in the city centers. No stations are installed. The first realization of this system

was done in Amsterdam, Holland, in 1968. Bikes have special distinctive signs such as their

color – they usually are painted with one bright color: white in Amsterdam, Holland; yellow in

La Rochelle, France; green in Cambridge, UK. But within a few months, most of the bikes are

stolen and the others are vandalized. Almost all the experiments have failed. In La Rochelle,

France, the system introduced in 1974 met success. The system is still running though slight

32



modifications were introduced into the offer in order to trace users [16]. However, this is the

first success of bike sharing scheme in Europe. The second generation of systems includes

bikes racks. To rent a bike, a small cash deposit has to be done at the station – deposit that is

given back to the user when he parks the bike back at a rack. This coin-deposit system was

first introduce in Copenhagen, Denmark, in 1995. The deposit was about USD 3. This system

is a lot more reliable than its predecessor. However it is much more expensive as it request

stations equipments. But users are unidentified. The low price of the deposit did not deter

theft and vandalism. As a result, it was canceled in most of the places where it was started, or

modified to trace users. The third generation of BSS was enabled thanks to the development of

new Information and Communications Technologies (ICT). Bikes are parked at stations racks.

To rent a bike, users have to identify themselves by using smart technologies such as mobile

phone, membership card, or bank card – the list is not exhaustive. They are charged for the

time they use the bike, after a first period during which it is free. Increasing price encourages

them to return the bike at a station once their trip is finished. If the bike is not given back,

a high punitive cost is charged to the identified user. This generation meets a huge success.

The Vélo’v system in Lyon, France, launched in 2005, popularized it. It is the first time a BSS

is operated at a large scale: with 1′500 bikes at its start, this number has gradually increased

to reach 3′000 bikes. Following Lyon, the French capital city launched its own system,

Vélib’, in summer 2007. It immediately met a great success with almost 200′000 registered

users and more than 26 millions locations of bikes within the first year. These successes

have enhanced this trend and BSSs have appeared in more than 200 cities. This movement

keeps going on with the launching of a BSS in New York scheduled for spring 2013. The

biggest BSS is in the city of Hangzhou, China, with about 2′400 stations and up to 60′000 bikes.

However, in Paris and some other cities, the system suffers from severe vandalism. More-

over, people often find themselves unable to either rent a bike or park it at station because

there is no bike parked or no rack available. These issues led to a decrease in the number of

users as stated in “Le Figaro” article [12] in 2008 about the Parisian Vélib’ system. In Brus-

sels, the Villo! system that opened in 2009 experienced imbalance problems and the press

reported them [77]. A website was created by users to measure imbalances in the network

(http://www.wheresmyvillo.be).

To reverse this trend, operators engaged themselves to minimize vandalism by reinforcing

the equipment and to prevent stations from being full or empty by using real time regulation.

33



In the Vélib’ system, the contract that engaged JCDecaux and the city of Paris was modified to

include regulation objectives. The demand for transportation can be asymmetrical within the

day. This leads to an imbalance of bikes with areas where all stations are full while in others

there is a shortage of them. A fleet of trucks is available and turns around the city, moving bikes

from a place to another. But how to efficiently plan a regulation system ? How to manage this

fleet ? What directions to give to trucks drivers ? Could the system be regulating itself using

incentive policies for users ?

1.2 Research motives

Bike sharing problems are relatively new, but there is already an important literature, ad-

dressing them from various points of view. Lathia, Ahmad and Capra [56] adopt a statistical

approach to discuss the performances of existing systems. Vogel and Mattfeld [84] gather and

study data they obtained from the Vienna bike sharing system, and give a model that could be

used to further expand the network. Lin and Yang [57] propose a model that gives a strategic

planning of a BSS considering a service level requirement. One of the problems BSSs operators

face is to balance the network. Depending on days or on locations, some stations or areas of the

cities could gather a huge number of bikes, leaving no rack available for users to park. And in

other locations, it is the opposite with few bikes available. Moving bikes to balance the network

and avoid shortage of bikes or racks is a problem that could fit within the many-to-many pickup

and delivery problems class. However, in the daytime, the network is evolving very fast: for

example in Paris, there is about 110′000 rentals per day in average [2]. The number of bikes

present at a station may change during the time a truck drives from a station to another. The

main reason for long-term subscribers not to renew their subscription is the regulation prob-

lem. Several works on that topic have appeared recently, some of which are cited in an article

of “Le Temps” printed in 2011 [82]. Raviv et al. [76] propose several models and algorithms

to solve a bikes repositioning problem. Their objective is to find the best repositioning that can

be achieved by several trucks within time limits, neglecting the impact of users on the system.

The satisfaction function introduced by Kolka and Raviv [74] is used to evaluate the quality of

a repositioning. Rousseau et al. [27] propose to solve a dynamic public bike sharing balancing

problem.

The aim of this thesis is to study efficient algorithms and methods that could be used in

operating BSSs and more generally any shared transport system. The focus point is the imbal-

34



ances problems as it appears to be a major issue for users. The dissatisfaction of roaming to find

a bike or a rack is obvious. The work is separated between the static problem and the dynamic

problem. Static problem means that users effect on the system is neglected. It could be the case

if the service is closed or overnight when the system is nearly idle as there is almost no users.

Note here that several systems around the world are closed during a few hours every days for

maintenance and regulation operations. For instance, in Denver, US, the system [3] runs from

Mars to December, from 5a.m. to 12a.m. The objective is then to use one or several trucks

to balance the system. The problems addressed in the first part belong to the Vehicle Routing

Problems class, which is detailed in the next section. On the opposite, dynamic problem refers

to the balancing problem when users are in the system and modify the number of vehicles at

stations. The question that has to be addressed is how to direct the trucks drivers to have the

system providing a good level of service to the users. This is the problem faced at daytime by

the operators of these systems. In most of the cities having a BSS, trucks are driving through

the city bringing bikes from stations to others. Another problem that popped up is to find the

best initial distribution of vehicles to minimize users’ dissatisfaction. Indeed, the trucks impact

on the system efficiency can be marginal when a good repartition of the vehicles in the morning

could help to reduce dissatisfaction.

1.3 Routing problems and bikes balancing problems

Routing problems gather operational problems faced in the management of distribution

tasks. The field of transportation has been one of the major focus of the Operation Research

(OR) community. The interest in this topic arose very early. At first, only the savings that can

be achieved have motivated to better schedule transportation activities. Growing environment

concerns have then enhanced the attractiveness of this field of research. The first and original

problem studied is the well-known Travelling Salesman Problem (TSP). Signs of the TSP are

found as early as the 1830s in Germany in [19], though this article contains no mathematical

treatment. It was named after the problem faced by travelling salesmen who have to visit several

cities and so to plan a closed trail – cycle. But to save time or money, they want to find the

cycle that would be the less costly for them. The first trace of mathematicians’ interests for the

TSP are in the 1930s when it seems to be studied both in Germany and the US. It became in the

1950s and 1960s a very popular topic for researchers.

In its formal definition, the objective is to plan a closed trail visiting once several cities

35



while minimizing the total number of kilometers travelled. The distance matrix is given. In

1954, Dantzig et al. [29] presented the optimal cycle linking 49 American cities, one per state

+ Washington D.C.. They were the first to present a integer linear program and to propose a

cutting plane method. This process was later extended with the introduction of branch-and-cut

algorithms. In 1962, the society Procter and Gamble ran a contest for finding the optimal

cycle reaching 33 American cities. With no surprise, American researchers in OR were listed

among the winners. In 1962, Held and Karp [50] presented a dynamic programming approach

that successfully solves small size instances. The TSP was proven to be NP-hard in 1972

after Karp proved the NP-completeness of finding an Hamiltonian cycle in a graph, where

an Hamiltonian cycle in a graph is a closed trail that visits all vertices once. Since then, the

size of instances optimally solved have increased to reach today optimal solution for almost

90′000 cities. Huge size instances come from very-large-scale integration problem where a

huge amount of transistors have to be taken to put them into chips.

Other Vehicle Routing Problems (VRPs) have been defined since the Fifties. More complex

than the TSP, they enabled to model and to study different real life transportation problems

where other constraints appear. These different features lead to the definition of variants of the

TSP, some of them are reported below. The asymmetric TSP is the same problem but where

the distance matrix is asymmetric. In the sequential ordering problem, there are precedence

constraints on the cities: some cities have to be visited before others.

In the Capacitated Vehicle Routing Problem (CVRP), a fleet of capacitated vehicles is avail-

able and to each cities – or customers – a demand is attached. The objective is to find the

collection of closed trail such that every customer is visited once and that his demand is satis-

fied without exceeding the vehicle capacity. The CVRP first defined in [30] is one of the most

studied variant on the TSP. It is a generalization of the TSP. Indeed, the TSP corresponds to an

instance with a single vehicle available at the depot which capacity is greater than the sum over

the demand of all customers, the depot being the initial city of the tour.

Multiple variants exist on the CVRP or the TSP, adding complications on the tour of the

vehicle. In the CVRP case, see [83] for a list of them. Here we give a list of some of them that

are relevant with regard to this thesis.

– Associating time windows to customers restrains the visit to occur within time limits.

– Enabling the customers to be visited by several vehicles by splitting his demand.

– Having pickup or delivery operations at the vertices; objects have to be picked up or

36



delivered at vertices. It could be the same or different commodities.

Split means that the demands may be satisfied by several vehicles. The Split Delivery

VRP (SDVRP) was first introduced by Dror and Trudeau [35]. As in the CVRP, each

customer has a demand that has to be served by capacitated vehicles that are parked at a

depot. But vehicles can serve only part of the demand of a customer. Dror and Trudeau

proved that the split dimension of the problem could lead to huge savings in term of the

objective function [34]. The split component of the problem increases the complexity of

the algorithm [8]. However, they found a property that limits the number of solutions to

consider. If the costs satisfy the triangle inequality, then there exists an optimal solution to

the SDVRP where no two routes have more than one customer with a split delivery in common.

Having pickup and delivery requests at vertices leads to different problems depending on

specific characteristics. Laporte et al. [15] sort the different Pickup and Delivery Problems

(PDPs) that were introduced by different authors. They are sorted with respect to how pickup

and delivery vertices are paired or not. Here we will focus on the many-to-many problems.

Many-to-many means that pickup and delivery points are not paired. An object picked up at

a vertex can be delivered to any other vertex that has a demand for this type of object. Three

different problems are in this class.

In the swapping problem, a single vehicle has to move unitary objects from a vertex to

another. There are m different types of objects and the vehicle has a unitary capacity: it can

only move one object at the time. Each vertex is associated with the type of object currently

present at it, if any, and the desired object type, if any. For each type of object, the total demand

is assumed to be equal to the total supply. The objective is to find a tour for a unique unit

capacity vehicle at the end of which all objects are brought at a vertex where there is a request

for an object of their type. This problem was introduced by Anily and Hassin in [6]. They

showed that a vertex could be visited at most three times in the optimal solution. The problem

has a preemptive version and a non-preemptive version. In the preemptive version, an object

can be dropped at a vertex that is not its destination vertex to be collected later on by the vehicle

when it comes back.

The second problem in this category is the One-Commodity Pickup-and-Delivery Travel-

ling Salesman Problem (1PDTSP). It was first introduced by Hernández-Pérez and Salazar-

González in [66]. Vertices are divided into pickup and delivery vertices. There is only one

type of commodity. To each vertex is associated a non-zero demand, that is the amount of the

37



commodity to either pickup or deliver at the corresponding customer, respectively to its sign.

A capacitated vehicle is given at a depot. The objective is to find the minimum Hamiltonian

tour that visits once each customer and brings the commodities from pickup vertices to delivery

ones. This Hamiltonian tour has to respect the capacity of the vehicle.

The Q-Delivery Travelling Salesman Problem (Q-DTSP) is a special case of the 1PDTSP

where all the demands are unit demands. In this case, the demand at pickup or delivery vertices

is only one unit of the commodity. It was introduced before the latter in 1999 by Motwani

and Chalasani in [63]. Here again, the solution is an Hamiltonian tour. They propose an

approximation algorithm to solve it. The same problem was studied at the same time by Anily

and Bramel. In [5] they introduce the Capacitated Travelling Salesman Problem with Pickup

and Delivery (CTSPPD) as an extension of the swapping problem with one commodity and a

capacitated vehicle.

Balancing a shared transport system enters clearly in the many-to-many pickup and

delivery problems class. Vehicles have to be moved from stations with an excess of vehicles

to stations with a shortage of them. At first glance, the 1PDTSP could model this problem.

But there is no reason for not allowing multiple visit at stations. For instance, assume that

there is a pickup station where 6 vehicles need to be taken out and that a truck is nearby but

has room for only 3 vehicles. Then it could load 3 bikes and come back later to load the

others 3. In addition, central stations may be used as buffer where vehicles can be dropped to

be recollected later. The 1PDTSP does not allow such operations to occur as its solution is

required to be an Hamiltonian cycle. A consequence is also that unfeasible instances of the

1PDTSP could be solved if multiple visits were authorized.

In real time, there are additional constraints on the ways to manage the system. First, the

number of bikes changes within the system; second, the computational time of the methods

has to be very short to enable to quickly obtain instructions. The VRPs mentioned formerly

deal with the static situation. To deal in real time with the dynamic problem faced by a shared

transport system operator is another problem. The literature is less developed than in the static

case. However, several works have been done on the topic. George and Xia [48] propose a

modeling using closed queuing networks. Having an exact model of the system is not an easy

task. The latest work using queuing model are done by Fricker and Gast [44]. Pesach et al. [71]

propose an dynamic programming algorithm to find the best actions in order to minimize the

38



number of unserved users. They use a rolling horizon and launch their program regularly. The

work of Contardo et al. [27] formerly mentioned aims also at minimizing the sum of unserved

users. They introduce a time-discretized model of the system and use columns generation to

obtain in short time instructions to give to the trucks. Here again the method is run regularly.

1.4 Thesis overview

This thesis is organized in two parts and five chapters followed by a chapter containing

concluding remarks. Part I consists of chapter 2 and 3 and deals with the static problems.

Part II includes chapter 4, 5 and 6 and deals with with the dynamic problems.

In Part I, the static problem is introduced. It is a many-to-many PDPs where the demand

at vertices can be split. As stated before, authorizing multiple visits at stations could lead to

huge savings in term of the objective function, but it increases the complexity of the problem.

Two static problems are formally presented. In this part, the problem is to balance the system

during the night with one or several capacitated trucks. These problems suit more to a BSS

than a car sharing system. The commodity to move is called bike, and the word vehicle refers

to the truck. The Single-Vehicle One-Commodity Pickup and Delivery Problem (SVOCPDP)

is the single-vehicle version of the balancing problem. Bikes are initially distributed among the

vertices of a graph. To each vertex is associated its initial state, and its target state, where state

indicates the number of bikes parked at the vertex. A preliminary discussion with theoretical

results such as special polynomial cases or approximation algorithms can be found in the paper

by Benchimol et al. [14]. Three types of stations appear; stations which initial state are strictly

lower ( respectively greater) than target state are called pickup (respectively delivery) stations;

stations which initial state is equal to target state are called initially balanced stations. A

capacitated vehicle aims at redistributing the bikes in order to reach a target states distribution.

Each vertex can be visited several times and can be moreover used as a buffer in which bikes

are stored for a latter visit. The last property allows drops. This many-to-many PDP gathers

features from both the 1PDTSP and the swapping problem. The second static problem that is

introduced is a multiple-vehicle variant of the latter. It is called Multiple-Vehicle Balancing

Problem (MVBP). A fleet of capacitated vehicles is available at a depot. Bikes are distributed

over all stations. A target state is given for each station. In the MVBP case, convergence to

the target distribution is monotonous: only loading (resp. unloading) operations can occur at

39



pickup (resp. delivery) vertices. This last property forbids drops to occur. The objective is

to find the set of instructions to give to vehicle drivers that bring the system to its target state

while dispatching the tasks to be done over several vehicles and while minimizing the total

distance driven.

In Chapter 2 the SVOCPDP is studied. Its differences with the swapping problem and

the 1PDTSP are explained in detail. A first exact arc-oriented mixed integer programming

formulation (MIP) is given. This MIP introduces four sets of variables, some of which

are indexed with four indices. The linear relaxation of this model could be very weak and

therefore useless, and moreover the model can be intractable. Two consecutive relaxations

of the problem are then proposed. They are proven to be equivalent. The meaning of this

relaxation is explained, showing that it is a good relaxation, as in most experimental cases,

an optimal solution of the relaxation is a solution for the original problem. Several results

on the NP-completeness of deciding whether a solution of the relaxation is a solution of the

original problem are given. But the last relaxation needs only one set of integer variables,

which are the number of times an arc is used. The interest of solving this relaxation appears

then clearly. This is solved thanks to a branch-and-cut algorithm. For the branch-and-cut,

three separation procedures are used. An upper bound of the optimal solution of the problem

is obtained by a tabu search algorithm [49], which is based on some theoretical properties of

the solution, once fixed the sequence of the visited stations. It is proven that a solution can be

rebuilt knowing only the sequence of visited vertices: bike load can be found using a max-flow

algorithm. Computational results are then given for instances with up to 100 vertices, and

different capacities for the vehicle. Tests are also done on instances such that the demand at

some stations can exceed the vehicle capacity.

Chapter 3 is devoted to the MVBP. Its differences with other pickup and delivery VRPs are

emphasized. Several dominances rules and properties of the optimal solutions of the problems

are proven. A set partitioning-like model with binary variables is given on the set of all the

routes. A route is a tour starting from the depot visiting a subset of vertices with logistic

operations to handle at each stop and ending at the depot. The fact that such a model with

binary variables exists is not obvious. We can prove that the model is still exact thanks to the

dominances aforementioned. However, its linear relaxation is solved with a column-and-cut

generation algorithm, since its size being exponential in the size of the instances. The

40



relaxation is solved on a subset of variables also called columns. A pricing subproblem is

solved to add columns that may improve the cost of the linear relaxation. For that purpose, a

two-phase method using dynamic programming is explained. When no more negative reduce

cost column can be added, cuts are added to enhance the linear relaxation of the original

problem. Once neither cuts nor routes are to be added, a lower bound on the original problem

is obtained. A memetic algorithm [62] provides an upper bound on the problem. Then, we

add into the subset all columns candidate for being in the optimal solution. They are identified

thanks to their reduced cost value. In that case, the original model solved on the subset of

routes gives the optimal solution of the original problem. Results are given for instances with

up to 40 stations.

Part II deals with the dynamic problem. It refers to the balancing problem in real time. It

models the real life problem faced by the operators in the daytime while the system is open.

This part is relevant for any shared transport system, so the word vehicle refers this time to

the commodity that is shared – bikes in a BSS, cars in a car sharing system – while the word

truck is used to represent the regulation activities. In this case, decisions have to be taken

regarding balancing vehicles in an uncertain environment. For that purpose, a simulator of

shared transport system is described. It models users’ actions on the system. This simulator is

used to compare different strategies designed for improving users’ satisfaction. Some of them

give instructions to truck driving around the city on where to go and how many vehicles to

load or unload at stations. Other strategies use incentives to have the system regulating itself

without any truck. Another problem that is studied is the Initial Inventory Problem (IIP). In

the IIP, the objective is to find the number of vehicles to deploy in the city and where to deploy

them in order to minimize the time users would “lose” using the system, if no regulation

activities were done during a time period – a day, a morning.

Chapter 4 describes the simulator OADLIBSim that was developed to model users’ actions

in a shared transport system. At first, this mean of transportation is described with its model.

The time needed by a vehicle, a truck or a pedestrian to go from vertex i to vertex j are

random variables. Users arrive at stations with respect to a Poisson law whose parameters

are given. They choose their destination with respect to an O-D matrix. In case users do not

find any vehicle at their depart station or any parking place at their destination one, they roam

the nearby stations knowing the number of vehicles parked there. Different types of users

41



can be defined, with different acceptance thresholds for roaming after which the user leaves

the system unsatisfied. Users willingness to pay for modifying their destination can also be

precised in the case of a pricing strategy. Thanks to this simulator, different indicators can

easily be computed to estimate the system efficiency.

Chapter 5 presents different real time strategies that have been tested to improve the level

of service of a shared transport system. These methods are heuristics and are divided into

those using trucks for regulating the system in real time and those using incentives to have

users parking their vehicles at a different station from their initial destination. Three main

methods are presented. The first one simply sends trucks at most unbalanced stations to try

to regulate them. There are several ways for evaluating the imbalances, leading to different

algorithms using either the current number of vehicles or the forecast number of vehicles. This

forecast can be calculated using the O-D matrix and the mean number of users showing up at

stations. The second method uses an optimal policy algorithm [17] and runs off line. Its results

are used to give instructions to trucks drivers. The latter method needs a good knowledge of

the system and its behaviour. The last method uses an incentive strategy, associating prices to

each station. Knowing their destination and the prices, users can chose either to go to their

destination or to a nearby station and pay the price to park there, or to leave the system and

walk to their destination. However, modifying their destination does not ensure them to find an

available parking place once they get to the station. The prices associated to stations are found

thanks to a linear model. Its translation into money is done using the mean value associated to

one hour in Western countries.

Chapter 6 deals with another problem that is finding the IIP. In the IIP, a network is given

with its stations and their capacities. Users are showing up at stations with respect to a Poisson

law which parameters change over time. They choose their destination with respect to a given

O-D matrix. The ideal time they would spend in the simulator is the time for a vehicle to go

from their origin station to their destination. However, because of capacity issues, they may

have to roam for finding a vehicle or an available parking place, leading to a time loss. The

objective is to find how many vehicles to put at each station before the simulation starts in order

to minimize the total time lost by all users. For that purpose, two local searches are outlined

and compared. Both use the simulator OADLIBSim to find at which stations problems occur

and to modify the initial number of vehicles in an appropriate way.

42



43



44



Part I

The static problem

This part gathers works done in collaboration with Frédéric Meunier and Roberto Wolfler

Calvo.

Chapter 2 has an article version [24] that was submitted to Discrete Optimization and was

accepted up to minor revisions.

Chapter 3 was presented at ROADEF 2012 and ODYSSEUS 2012 conferences. A journal

version of this chapter is in preparation [23].

45





Chapter 2

Solving the Single-Vehicle One-commodity

Capacitated Pickup and Delivery Problem

2.1 Introduction

The Single-Vehicle One-commodity Capacitated Pickup and Delivery Problem

(SVOCPDP) represents the problem faced by an operator of a BSS during the night

when the number of moving bikes is negligible and when the city is divided into districts. Each

district is covered by a single vehicle that has to redistribute the bikes in order to respond to

the morning peak at best. To get an idea of the size of such a system, the numerical features

of the Vélib’ system in Paris are presented: this transit system offers more than 20′000 bikes

deployed in about 1′400 stations that are in Paris and its border cities and twenty three trucks

of capacity equal to 20 are used to move bikes during the day to match the demand. If the city

is divided into areas on which only one vehicle operates, then each one would have to cover

about 60 stations. The question that is here addressed is how to deal with a part of the city

assigned to a single vehicle.

The problem can be formalized as follow. Let G = (V,A) be a complete oriented graph

where V = {0, . . . , n} is the vertex set composed by n + 1 vertices, the vertices in {1, . . . , n}

representing the stations and the vertex 0 representing the depot and where A is the set of arcs.

For each arc (i, j) ∈ A, we denote by cij the cost of the arc (i, j). The cost is assumed to

satisfy the triangular inequality (i.e. cij + cjk ≥ cik for all i, j, k ∈ V ). Each vertex i has

a capacity Ci ∈ Z+. For each vertex i ∈ V , its initial state in bikes is defined by pi ∈ Z+

and its target, or final, state by qi ∈ Z+. A vertex is in excess (resp. in default ) if pi > qi

47



(resp. pi < qi). Some vertex can be initially balanced i.e. pi = qi. Moreover, throughout the

chapter the imbalance ei = pi − qi is used and the depot is always assumed to have no bike:

C0 = p0 = q0 = 0 and e0 = 0. The vehicle has also a capacity K.

A feasible solution for the SVOCPDP, also called a route, is a sequence of vertices, starting

and finishing with the depot 0, together with bike displacements within the limits of capacity

constraints, at the end of which the system is balanced: each vertex i has been brought from its

initial state pi to its target state qi. In this case, the sequence of vertices is said to be induced

by the route. The cost of the route is defined as the total travelled distance while following

its sequence. The goal of the SVOCPDP is to find the minimal cost route. Note that the

convergence for each vertex from pi to qi is not required to be monotonous: bikes can be

loaded from vertices in default or unloaded at vertices in excess and transfers can take place at

initially balanced vertices. Figure 2.1 shows an example of instance with 9 vertices (the depot

and 8 stations) including one initially balanced vertex. A pair of values representing (pi, qi) is

displayed next to each vertex and the capacity of the vehicle is equal to 8. Figure 2.2 shows a

feasible solution.

(4; 10)

(6; 7)

(5; 5)

(3; 7)

(15; 11)

(18; 12)
(10; 8)

(5; 6)

0

1

2

3

4

5

6

7

8

Figure 2.1: Example of an instance.

2.1.1 Complexity

The SVOCPDP isNP-hard since it containsNP-hard problems as special cases. It is easy

to see it, but details are given for sake of completeness. The Travelling Salesman Problem

(TSP) is obviously one of them. Set pi = 0 and qi = 1 for all vertices i ∈ {1, . . . , n− 1}, and

48



(4; 10) (5; 5)

(3; 7)

(15; 11)

(18; 12)
(10; 8)

(5; 6)

0

1

2

3

4

5

6

7

8

(6; 7)

0

2

8

4

8

7

1

0

Figure 2.2: Example of a feasible solution (i.e. a route), when Kgeq2

set pn = n − 2 and qn = 0. Add a depot at distance 0 from the vertex n. Set K = n − 2. The

optimal solution of the SVOCPDP coincides with the optimal TSP solution. The 2-partition

problem is another special case. Let b1, . . . , bn be n non-negative integers (w.l.o.g. we assume

that
∑

i bi is even). Define m = 1
2

∑n
i=1 bi. Take the complete graph with n + 3 vertices: n

vertices with pi = bi and qi = 0; 2 vertices with pi = 0 and qi = m and the depot. Define the

cij to be 1 for each arc (i, j) and the capacity of the vehicle equal to m. The optimal solution of

the SVOCPDP problem is equal to n + 3 if and only if there is a subset I ⊆ {b1, . . . , bn} such

that
∑

i∈I bi = m.

Moreover, an optimal route of the SVOCPDP problem may not have an encoding that is

polynomial in the size of the input. The simple case with three vertices – the depot 0, one

vertex 1 with p1 = B and q1 = 0 and one vertex 2 with p2 = 0 and q2 = B – is enlightening.

Assuming that K = 1, the optimal sequence of vertices is 0, 1, 2, 1, 2, . . . , 0, with a number of

terms = 2B + 2, although the input is in O(log2 B).

2.1.2 Notations and basic notions

We define for all subsets S ⊆ V :

– S̄ = V \S

– δ+(S) := {(i, j) ∈ A : i ∈ S; j ∈ S̄}

– δ−(S) := {(i, j) ∈ A : i ∈ S̄; j ∈ S}

– δ(0) := δ+({0}) ∪ δ−({0})

49



– e(S) =
∑

j∈S ej

– µ(S) is equal to 1 whenever there is at least one initially non-balanced vertex in S, 0

otherwise.

Given z ∈ R
A
+, G[z] is the directed graph obtained from G by deleting the arcs a with

za = 0. This graph is called the support graph of z.

A notion used several times in this chapter is the one of a b-flow. A b-flow is an usual notion

if combinatorial optimization (see for instance [79, 55]). Given a directed graph D = (U,A′),

a value b ∈ R
U , and capacities l, u ∈ R

A′

with l ≤ u, a b-flow is a map f : A′ → R such that

la ≤ f(a) ≤ ua for all a ∈ A′ and
∑

a∈δ+(v) f(a) = bv +
∑

a∈δ−(v) f(a) for all v ∈ U . If it

exists, a b-flow can be computed in strongly polynomial time. Moreover, when all the bv and

the la, ua are integral, if a b-flow exists, there is an integral one.

2.1.3 Plan

In Section 2.2, differences between the SVOCPDP and problems in the literature are out-

lined. Section 2.3 presents the proposition that enables to find in polynomial time the operations

that bring the system to the possible state nearest to the target state, given a fixed sequence of

vertices visited by the vehicle. An exact model of the problem is given in (Section 2.4), and a

relaxation is presented in Section 2.5. In Section 2.6, we prove that deciding whether a solu-

tion of the relaxation problem is a feasible solution for the SVOCPDP is NP-complete. The

Section 2.7 contains the description of the branch-and-cut algorithm that is used to solve the

relaxation. The proposition of Section 2.3 is used in Section 2.8 for deriving a tabu search.

Finally, Section 2.9 presents the computational results on instances from the literature with a

slight adaptation in order to fit the SVOCPDP’s features.

2.2 Literature review

In the literature, similar problems are the One-commodity Pickup-and-Delivery Travelling

Salesman Problem (1PDTSP) studied by Hernandez Pérez and Salazar González [67] and the

swapping problem defined by Anily and Hassin [6]. This latter has been solved by [20, 47]

in its preemptive and its non-preemptive versions. As for the 1PDTSP, several papers have

been appeared recently in the literature which propose different exact and heuristic algorithms

(see [68], [69] and [70]). Since these two problems present several similarities with our

50



problem, more details about them are given in the next paragraph. Raviv et al. [76] discuss

different variants of the problem of repositioning the bikes which are modeled by mixed linear

programs and solved using CPLEX. For some variants, they are able to solve several instances

to optimality (up to 60 stations and 2 vehicles for their so-called “Arc-Indexed” variant). Our

model is close to their “Sequence-Indexed” variant (see Section 3.4 of [76]), but instead of

computing a minimum cost route with fixed target states, they try to find the best repartition

of bikes that can be achieved by one or several vehicles within a time limit. Moreover, in the

Sequence Index formulation given by [76], drops are not allowed, a thing that will be fixed in

an upcoming version by [75].

The SVOCPDP gathers aspects from both the swapping problem and the 1PDTSP but dif-

fers by main features. In the swapping problem, a single vehicle has to move unitary objects

from a vertex to another. There are m different types of objects and the vehicle has a unitary ca-

pacity: it can only move one object at the time. Shoshana Anily and Refael Hassin [6] showed

that a vertex could be visited at most three times in the optimal solution. This theorem was

the starting point of the work of Bordenave et al. [20, 47] for solving the swapping problem

with a branch-and-cut algorithm. The SVOCPDP is different since there is only one type of

object (bikes), but the supply and the demand are greater than one and the vehicle capacity is

K. Therefore, Anily and Hassin’s theorem does not hold anymore: for example in the trivial

instance with one pickup vertex with pi = 5K and qi = 0 and one delivery vertex with pi = 0

and qi = 5K, the vehicle has to do five round trips between the two vertices.

The main difference with the 1PDTSP is that in the SVOCPDP a vertex can be visited

several times. The solution of the 1PDTSP is a feasible solution for the SVOCPDP, but the

SVOCPDP can have a lower-cost optimal solution. Moreover, the 1PDTSP may have instances

without feasible solutions (the instance of Figure 2.3, with K = 3, is an example), something

that can not happen for the SVOCPDP.

The fact that one can get better solutions in routing problems when customers are allowed

to be visited several times has already be noticed in other works. Note for instance the work

by Archetti et al. [7], in which a split delivery problem is solved through a tabu search. In the

problem we are dealing with any vertex can be used as a buffer where bikes can be indifferently

temporary loaded or unloaded before being moved to their final destination. In particular,

initially balanced vertices are not required to be visited, but may act as temporary depot in

some optimal solutions.

51



The buffers can improve the optimal solution in some instances such as shown in the exam-

ple given in Figure 2.3 and in Figure 2.5. In Figure 2.3 the square with the 0 inside is the depot

and its distance with vertex 1 is null. For any other vertex i, (pi; qi) is given. The capacity of

the vehicle is K = 3 and the distances between all the peripheral vertices to the central one

is 1. We draw here the optimal solution, whose value is equal to 10. In this solution a bike

is temporary unloaded at the central vertex 6 and then reloaded on the vehicle. The optimal

solution is equal to 12, if drop is forbidden because one of the odd number vertices would have

to be visited twice.

(2; 0)

0

(2; 0)

(2; 0)

(0; 3)(0; 3)

(0; 0)

2

0

00

0

0

2

0

33

1 31

3

2 4

6

5

Figure 2.3: Star-framed network: example of how drops can help optimality

Figures 2.4 and 2.5 present a situation where the non-monotonous convergence of the load

of the stations improves the solution. Figure 2.4 shows the best solution of the 1PDTSP. The

two first vertices with initial and target states (K; 0) and (0;K) (K being the capacity of the

vehicle) are here to prevent a use of the unlimited number of bikes in an optimal solution, avail-

able in the depot for the 1PDTSP. Figure 2.5 represents the optimal solution for the SVOCPDP.

In both figures, the square with 0 is the depot, as in Figure 2.3. In Figure 2.5, the vehicle takes

a bike from the left-corner vertex of the square, increasing momentary the deficit in bikes, be-

fore coming back with the two missing bikes. With Euclidean distance, the solution of the

SVOCPDP is better than the one of the 1PDTSP.

52



0

(0; 1)

(3; 0)

3
0

0
(K, 0) (0;K)

K

(2; 3)

(2; 3)

1

2

0

Figure 2.4: Square-framed network: an optimal solution for the 1PDTSP

0

(0; 1)

(3; 0)

1
0

32

0

0
(K, 0) (0;K)

K 0

(2; 3)

(2; 3)

Figure 2.5: Square-framed network: an optimal solution for the SVOCPDP, the non-

monotonous convergence helps

53



2.3 Dealing with sequences and routes

Recall that a route is a sequence of vertices, together with bike displacements within the

limits of capacity constraints, at the end of which the system is balanced: each vertex i has

been brought from its initial state pi to its final state qi. The difficulty of the SVOCPDP is that

a feasible solution is identified by both a sequence of vertices and a set of numbers of bikes

carried on arcs. The following proposition (and its companions Propositions 2.3.2 and 2.3.3)

enables us to work only with sequences of vertices. It will be particularly useful in Section 2.8

when we will design a local search for the SVOCPDP.

Proposition 2.3.1. Let i1, i2 . . . , ik be a sequence of vertices, starting and finishing at the depot,

0 = i1 = ik being the depot. There is a polynomial algorithm finding new initial and target

states (p′i, q
′
i) for each vertex i and a route inducing this sequence of vertices and satisfying

these new states such that

– 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i

–
∑

i p
′
i =

∑
i q
′
i

– the quantity
∑

i∈V p′i is maximal.

In particular, it is possible to decide in polynomial time whether a sequence of vertices is

induced by a route (in this later case, p′i = pi for each vertex i).

1

1′

1′′

2

2′

3

3′

s

t

Figure 2.6: Example of the graph used in the algorithm of Proposition 2.3.1

54



The proposition says roughly speaking that it is possible to find the best bike displacements

compatible with the sequence of vertices. The quantity
∑

i∈V (qi − q′i) can be interpreted as a

kind of “degree of infeasibility” of a sequence and the proposition shows how to minimize it

polynomially.

Proof. Let us build an oriented graph D = (U,A′) as follows. U has k + 2 elements: each

vertex ij (make as many copies of a vertex i of G as there are occurrences of i in the sequence)

and two more vertices s and t. The arcs in A′ are of four types:

1. one arc between s and the first occurrence of each vertex i in the sequence, with capacity

pi,

2. one arc (ij, ij+1) for each j = 1, . . . , k − 1, with capacity K,

3. one arc between the rth occurrence of each vertex i and its (r + 1)th occurrence, if there

is one, with capacity Ci,

4. one arc between the last occurrence of each vertex i in the sequence and t, with capacity

qi.

See Figure 2.6 for an illustration with the sequence

0→ 1→ 2→ 3→ 1→ 3→ 1→ 2→ 0. Computing a maximum s-t flow in this graph leads

to the proposition. Indeed, any s-t flow on D encodes possible bike displacements compatible

with the given sequence of vertices. The numbers of bikes to be moved while going from ij to

ij+1 are given by the flow on arc (ij, ij+1) (arcs defined in 2.); the number of bikes remaining

in a vertex i after the rth visit of the vehicle is given by the flow on arc between the rth

occurrence of vertex i and its (r + 1)th occurrence (arcs defined in 3.); the initial and final

numbers of bikes in a vertex i are given respectively by the flows on arcs defined in 1. and 4.

And conversely, any bike displacements compatible with the given sequence of vertices induce

an s-t flow.

p′i is then the value of the flow in the arc between s and the first occurrence of i, and q′i the

value of the flow in the arc between the last occurrence of i and t. If a vertex i is not present in

the sequence, then we set p′i = q′i = min(pi, qi).

In the case that all Ci are sufficiently large, Proposition 2.3.1 has a nice and maybe quite

unexpected corollary, formalized by the following proposition. If we are not allowed to change

the initial states, but only the final ones, the solution given by Proposition 2.3.1 is a route with

new final states closest to the original ones.

55



Proposition 2.3.2. Assume that we have Ci = +∞ for all vertices i. Let 0 = i1, i2 . . . , ik = 0

be a sequence of vertices. Consider the problem of finding bike displacements along this se-

quence leading to the final state q̃ closest to q when starting from the initial state p, where

“closest” means the state that minimizes the L1 norm ||q̃ − q||1 =
∑

i∈V |q̃i − qi|.

The bike displacements given by Proposition 2.3.1 for this sequence are precisely the solu-

tion of this problem.

Proof. Denote byQ the set of all target states q̃i such that there exists a route for initial states pi

and target states q̃i inducing the sequence. We are interested in the solution of minq̃∈Q ||q̃−q||1.

We first show that for any solution of minq̃∈Q ||q̃ − q||1, there is a route for new initial and

target states p′i and q′i, with

– 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i

–
∑

i p
′
i =

∑
i q
′
i

and such that ||q̃ − q||1 = 2
∑

i∈V (pi − p′i).

We have the following central observation: let q̃′ ∈ Q; there exists q̃ ∈ Q such that

||q̃ − q||1 ≤ ||q̃
′ − q||1 and such that, on each vertex i, there are at least max(0, q̃i − qi) bikes

that have not been moved. Indeed, for each vertex i, choose max(0, q̃′i − qi) bikes among the

q̃′i bikes at the end of the route. Consider now the solution q̃ obtained with the same bike dis-

placements except for these bikes, which are not allowed to leave their initial vertices. Denoting

by p̄i the number of bikes on vertex i that are not allowed to move, we have

∑

i

p̄i =
∑

i: qi<q̃′i

q̃′i − qi

and

q̃i =





q̃′i + p̄i for each vertex i such that qi ≥ q̃′i

qi + p̄i for each vertex i such that qi < q̃′i

Note that p̄i ≥ q̃i − qi. The distance to q is equal to

||q̃−q||1 =
∑

i: qi≥q̃′i

|q̃i−qi|+
∑

i: qi<q̃′i

|q̃i−qi| ≤
∑

i: qi≥q̃′i

|q̃′i−qi|+
∑

i: qi≥q̃′i

p̄i+
∑

i: qi<q̃′i

p̄i =
∑

i

|q̃′i−qi| = ||q̃
′−q||1.

We can therefore choose the target states q̃ minimizing ||q̃ − q||1 such that at least

max(0, q̃i − qi) bikes have not been moved for each vertex i. Let us now define, for the route

with these target states, pMi the number of bikes that have left vertex i and qMi the number of

bikes that have been brought to vertex i. Note that according to our choice for q̃, we have

56



qMi ≤ qi (and of course pMi ≤ pi). We have

||q̃ − q||1 =
∑

i∈V

|q̃i − qi| =
∑

i∈V

|pi − pMi + qMi − qi|. (2.1)

Let δi := min(pi − pMi , qi − qMi ) and define p′i := pMi + δi and q′i := qMi + δi for each vertex i.

Note that the initial and target states p′i and q′i are feasible in the sense of Proposition 2.3.1.

According to Equation (2.1), we have ||q̃ − q||1 =
∑

i∈V |pi − p′i + q′i − qi|. Using the fact that

for each i, at least one of pi−p′i and qi−q
′
i is equal to 0, we get that ||q̃−q||1 = 2

∑
i∈V (pi−p

′
i).

Conversely, assume that we have a route for initial and target states p′i and q′i, with

– 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i

–
∑

i p
′
i =

∑
i q
′
i

– the quantity
∑

i∈V p′i is maximal.

We now show that there is a solution of minq̃∈Q ||q̃ − q||1 such that

||q̃ − q||1 = 2
∑

i∈V (pi − p′i).

Since C = +∞, if p′i < pi and q′i < qi, we could have taken into account one

more bike on i (increasing by one p′i), which would have not left vertex i. Therefore, for

each i, we have at least one of pi − p′i and qi − q′i that is equal to 0 and thus, we have

2
∑

i∈V (pi − p′i) =
∑

i∈V |pi − p′i + q′i − qi|. Let us now consider what we have as a final

state when we start with pi and make the same bike displacements as in the route: we get

q̃i := pi − p′i + q′i bikes on each vertex i, for which we have ||q̃ − q||1 = 2
∑

i∈V (pi − p′i) as

required.

As a by-product of the proof of Proposition 2.3.1, we get

Proposition 2.3.3. Assume that we have a feasible solution to the SVOCPDP with fractional

numbers of bikes carried during some moves. Then there is also a feasible solution of the same

cost with only integral numbers of bikes carried during the moves.

Thanks to this proposition, we can “forget” the integrality constraint without changing the

cost of the optimal solution.

2.4 An exact model

The exact model is based on the assumption that for each vertex i is given a constant βi,

which is an upper bound of the number of times the vehicle has to visit i in any optimal solution.

57



For instance, given an upper bound (i.e. a feasible solution) with total cost O, we can set

βi := O/minj 6=i cij ([60]). The linear relaxation of this model could be very weak and therefore

useless, and moreover the model can be intractable, since βi computed in this way can be quite

huge and the model involves variables with four indices. It would be interesting to compute a

tighter βi, which would reduce the size of the exact model, but whether it is possible from a

priori considerations remains an open question.

We introduce the following variables. xi,t takes the value 1 only if vertex i is visited at

least t times. zi,t,i′,t′ takes the value 1 only if the vehicle visits vertex i′ for the t′th time just

after having visited i for the tth time, and yi,t,i′,t′ is then the number of bikes that is carried by

the vehicle during this move. The variables y are not required to be integral since, according

to Proposition 2.3.3, it does not change the optimal value of the linear program. ui,t,i′,t′ is a

variable which takes the value 1 if the t′th visit of vertex i′ comes in the route after the tth time

of vertex i (but not necessarily right after). Then we can write the model as follows:

(P ) z(P ) =min
∑

(i,i′)∈A

βi∑

t=1

β
i′∑

t′=1

c(i,i′)zi,t,i′,t′

s.t.

xi,t ≤ xi,t−1 ∀i ∈ V, ∀t ∈ {2, . . . , βi} (2.2)

∑

i′∈V \{i}

β
i′∑

t′=1

zi,t,i′,t′ = xi,t ∀i ∈ V, ∀t ∈ {1, . . . , βi} (2.3)

∑

i′∈V \{i}

β
i′∑

t′=1

zi′,t′,i,t = xi,t ∀i ∈ V, ∀t ∈ {1, . . . , βi} (2.4)

∑

i∈V \{0}

βi∑

t=1

z0,1,i,t = 1 (2.5)

ui,t,i′,t′ ≥ ui,t,i′′,t′′ + zi′′,t′′,i′,t′ − 1 ∀i, i′, i′′ ∈ V, (2.6)

∀t ∈ {1, . . . , βi},

∀t′ ∈ {1, . . . , βi′},

∀t′′ ∈ {1, . . . , βi′′}

ui,t,i′,t′ ≥ zi,t,i′,t′ ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t
′ ∈ {1, . . . , βi′}

(2.7)

ui,t,i,τ = 0 ∀i ∈ V, ∀t, τ ∈ {1, . . . , βi} with τ ≤ t

(2.8)

∑

i∈V \{0}

βi∑

t=1

y0,1,i,t = 0 (2.9)

58



yi,t,i′,t′ ≤ Kzi,t,i′,t′ ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t
′ ∈ {1, . . . , βi′}

(2.10)

0 ≤
∑

i′∈V \{i}

t∑

τ=1

β
i′∑

τ ′=1

(yi′,τ ′,i,t − yi,t,i′,τ ′) + pi ≤ Ci ∀i ∈ V, ∀t ∈ {1, . . . , βi} (2.11)

∑

i′∈V \{i}

βi∑

τ=1

β
i′∑

τ ′=1

(yi′,τ ′,i,t − yi,t,i′,τ ′) + pi = qi ∀i ∈ V (2.12)

zi,t,i′,t′ , ui,t,i′,t′ ∈ {0, 1} ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t
′ ∈ {1, . . . , βi′}

(2.13)

yi,t,i′,t′ ∈ R+ ∀i, i′ ∈ V, ∀t ∈ {1, . . . , βi}, ∀t
′ ∈ {1, . . . , βi′}

(2.14)

xi,t ∈ {0, 1} ∀i ∈ V, ∀t ∈ {1, . . . , βi} (2.15)

A solution of the SVOCPDP can be seen as an elementary circuit in the directed graph D

whose vertices are the (i, t) with i ∈ V and t ∈ {1, . . . , βi} and the arcs are the ((i, t), (i′, t′)).

Going through (i, t) means for the SVOCPDP going through i for the tth time.

Constraints (2.2) are logical constraints implied by the definition of xi,t. Con-

straints (2.3), (2.4) and (2.5) and and (2.9) ensure that we get in D a collection of vertex-

disjoint circuits, at least one of which going through (0, 1) (the vehicle leaves the depot at least

once with an empty load). Constraints (2.6), (2.7) and (2.8) ensure that the circuit in D is

coherent with the t index: the tth visit of vertex i comes after the τ th visit, for any τ < t. Note

that we get for free that we have only one circuit in D: constraints (2.6) imply that the t visit of

i must be strictly after the tth visit of i, a contradiction.

Constraints (2.10) limit the number of bikes transshipped on an arc at each move to the

capacity of the vehicle. Constraints (2.11) bound the number of bikes parked at a vertex i at

any time step between 0 and its maximal capacity Ci. Constraints (2.13), (2.14) and (2.15)

ensure that the vertices have all reached their target endowment at the end of the route.

Remark

The coherence on the t indices implied by the variables ui,t,i′,t′ and the con-

straints (2.6), (2.7) and (2.8) in (P ) can alternatively be obtained by the introduction of vari-

ables hi,t ∈ {1, . . . ,
∑n

i=1 βi} encoding the instant of tth passage on vertex i and the use of

“big-M” constraints, in a similar spirit as for the TSP with time windows, see for instance [33].

59



2.5 Relaxations

This section presents two equivalent mixed integer linear programming problems. They

represent a relaxation of the original problem, since even solved to optimality they produce a

lower bound of the optimal solution of the problem.

2.5.1 A first relaxation

Using the variables of the exact model (P ) of Section 2.4, a relaxation for the SVOCPDP

can be obtained by defining z(i,i′) =
∑βi

t=1

∑βi′

t′=1 zi,t,i′,t′ , which represents the number of times

the arc (i, j) ∈ A is traversed in the solution, and by defining y(i,i′) =
∑βi

t=1

∑βi′

t′=1 yi,t,i′,t′ ,

which represents the total number of bikes transported on it.

The relaxation is:

(RP1) z(RP1) = min
∑

(i,j)∈A

cijzij (2.16)

s.t.
∑

j∈V

zij =
∑

j∈V

zji ∀i ∈ V (2.17)

∑

i∈V \{0}

z0i = 1 (2.18)

∑

i∈V \{0}

y0i = 0 (2.19)

pi +
∑

j∈V \{i}

yji = qi +
∑

j∈V \{i}

yij ∀i ∈ V (2.20)

∑

(i,j)∈δ+(S)

zij ≥ µ(S) S ⊆ V \ {0} (2.21)

0 ≤ yij ≤ Kzij ∀(i, j) ∈ A (2.22)

zij ∈ Z+, ∀(i, j) ∈ A (2.23)

Again, requiring that the yij are integral does not improve the value of the relaxation. In-

deed, whenever the values of the zij are fixed, the variables yij are solutions of a b-flow problem,

and hence, since the pi, qi and K are integer numbers, there is an optimal solution with integral

values for the yij .

60



Constraints (2.17) and (2.18) come from the constraints (2.3), (2.4) and (2.5). Con-

straints (2.19), (2.20) and (2.22) come from the constraints (2.10) and (2.11). Finally, con-

straints (2.21) ensure the connectivity of the solution, while initially balanced vertices might be

skipped in an optimal solution.

The proposed relaxation does not take into account the evolution on the number of bikes on

each vertex at each time-step: all the moves are considered simultaneously and so the sequential

dimension of the problem disappears. Therefore, it is worth nothing saying that a solution of the

original problem SVOCPDP provides a solution of (RP1). Nevertheless, a solution of model

(RP1) might not be a solution of the SVOCPDP, as shown by the example given in Figure 2.7.

In this example the values (pi; qi) are displayed next to each vertex, K ≥ 2 and the optimal

solution of (RP1) is represented: each arc a in the figure corresponds to za = 1, the others za

being equal to 0 and the numbers near each arc are the ya. The optimal solution satisfies model

(RP1), but violates SVOCPDP: the vehicle would have to take one bike from the first vertex

that is not yet arrived there.

However, the solution of the previous linear program is often a solution to the SVOCPDP

as illustrated in the computational results section (Section 2.9).

0

0 0

1

(0; 1)

0

(2; 0) (0; 2)

2

0

(1; 0)

1

(0; 0)

Figure 2.7: A solution of (RP1) that is not a solution of the SVOCPDP

61



2.5.2 A second relaxation

The former integer linear program requires two families of variables zij and yij . Linear

program solvers are sensitive to the number of variables, and even if the yij can be assumed to

be real, (RP1) is too big to be solved by standard solvers. A way to get a tractable formulation

consists in reducing the number of variables. Therefore, we now define a new linear program

which contains only the zij variables and we show that solving the new integer linear program

model is equivalent to solving the former one.

(RP2) z(RP2) = min
∑

(i,j)∈A

cijzij (2.24)

s.t.
∑

j∈V

zij =
∑

j∈V

zji ∀i ∈ V (2.25)

∑

i∈V \{0}

z0i = 1 (2.26)

∑

(i,j)∈δ+(S)

zij ≥ µ(S), ∀S ⊆ V \ {0} (2.27)

∑

(i,j)∈δ+(S)\δ(0)

zij ≥

⌈
e(S)

K

⌉
∀S ⊆ V (2.28)

zij ∈ Z+, ∀(i, j) ∈ A (2.29)

Any feasible solution of the SVOCPDP induces zij that satisfy the constraints of program

(RP2). Constraints (2.25), (2.26) and (2.27) are similar to those of the first relaxation (RP1).

Constraints (2.28) are the capacity constraints saying that, for any subset S ⊆ V , the vehicle

must goes at least
⌈
|e(S)|
K

⌉
times into S. The absolute value | · | is useless in (RP2). Indeed, if

e(S) ≥ 0, it is not necessary. If e(S) < 0, (2.28) are redundant and in anyway, when (2.28) is

written with S̄, we obtain precisely what would have been obtained with the |.| for S.

Constraints (2.28) are well-known in the Capacitated Vehicle Routing Problem (CVRP)

context and it is still an open question if a polynomial algorithm separating these constraints

exists (see for example [64]). In Subsection (2.7.2), we explain how to deal with them.

Variables yij disappear in (RP2). However, for any feasible solution zij of (RP2), there

is a feasible solution to (RP1) with the same zij (and hence the same value of the objective

function), and conversely. This fact is summarized in the following proposition.

62



Proposition 2.5.1. Let y, z be a feasible solution of (RP1). Then z is a feasible solution of

(RP2). Conversely, let z be a solution of (RP2). Then there exists y such that y, z is a feasible

solution of (RP1).

This property is also proven by [66] when z encodes an Hamiltonian circuit. Here the

proposition is proven in a more general case, and the proof is maybe slightly simpler since it

does not involve Bender’s decomposition but the cut condition for b-flows.

Proof. Take a feasible solution y, z of (RP1). We show that the zij satisfy (RP2). The only thing

that has to be checked is that the zij satisfy Constraints (2.28). Let S ⊆ V . Using Constraints

(2.19) and (2.22), aggregated over (i, j) ∈ S we get

∑

(i,j)∈δ+(S)\δ(0)

zij ≥
1

K

∑

(i,j)∈δ+(S)

yij.

Hence
∑

(i,j)∈δ+(S)\δ(0)

zij ≥
1

K


 ∑

(i,j)∈δ+(S)

yij −
∑

(i,j)∈δ−(S)

yij


 .

Since

∑

(i,j)∈δ+(S)

yij −
∑

(i,j)∈δ−(S)

yij =
∑

i∈S


 ∑

j∈V \{i}

yij −
∑

j∈V \{i}

y(j,i)


 ,

we get with the help of constraints (2.20) that

∑

(i,j)∈δ+(S)\δ(0)

zij ≥
1

K
e(S).

Conversely, take a feasible solution z of (RP2). The only thing that has to be checked is

that there exists a non-negative b-flow y with b(i) = pi − qi for all i ∈ V with a capacity equal

to Kzij on each arc (i, j). But constraints (2.28) are precisely the well-known cut condition for

flows on networks (see for instance [45]). The integrality is a consequence of the integrality of

b(i).

Note that the two programs (RP1) and (RP2) are NP-hard, since they obviously contain

the TSP as a special case. Moreover, the continuous relaxation of (RP2) provides a better lower

bound than the continuous relaxation of (RP1) thanks to ⌈·⌉ in Constraints (2.28).

63



2.6 Relaxation vs original problem

The hardness of SVOCPDP, already emphasized in Subsection 2.1.1, appears also through

the following four propositions, which show that even if we have a feasible solution or an

optimal solution of (RP1) or (RP2), it is an NP-complete problem to decide whether this

solution is induced by a feasible solution for the SVOCPDP.

Proposition 2.6.1. Let y, z be a feasible solution of (RP1). Deciding whether there is a feasible

solution of the SVOCPDP inducing y, z is NP-complete.

Proof. Let b1, . . . , br be r non-negative integers (w.l.o.g. we assume that
∑

l bl is even). Define

m = 1
2

∑r
l=1 bl. Consider then the graph of Figure 2.8. It encodes a feasible solution y, z of

program (RP1): each arc (i, j) has zij = 1 and each number next to it is the corresponding

value for yij . Assume that the capacity of the vehicle is m + 1. We are going to prove now

that there is a route inducing such yij , zij if and only if there is a subset I ⊆ {1, . . . , r} such

that
∑

l∈I bl = m, whence showing that deciding whether such a route exists is NP-complete.

Note that there are exactly 2m+ 1 bikes in the network.

Assume that such a route exists. Consider again Figure 2.8 and the following instant: the

vehicle takes arc (u, u′). At this time, the vehicle carries m+1 bikes. Therefore, it has already

taken the arc (s, u) (in order to have m bikes) and exactly one of the arcs (v, v′) (in order to

get the remaining bike). It cannot have already taken the other arc (v, v′), otherwise it should

go back to the depot. It has not taken the arc (u′, s) yet. Thus, m+ 1 bikes among the 2m+ 1

are on the vehicle, and m bikes are on vertex v′: there is no bike left on vertex s. When the

vehicle goes back to vertex s, using arc (u′, s), it carries exactly m bikes. These m bikes

have to be carried to vertex v, using arcs (s, v). Hence, the algorithm has to identify a subset

I ⊆ {1, . . . , r} such that
∑

l∈I bl = m.

Conversely, assume that a subset I such that
∑

l∈I bl = m has been identified. The sequence

starting with the depot, then going through s, u, s in this order, then going back and forth be-

tween s and v, using the arcs indexed by I , to carry m bikes to v, then going through v′, u, u′, s

in this order, then using the remaining arcs between s and v, and finally going through v, v′ in

order to finish again at the depot is a route.

Proposition 2.6.2. Let z be a feasible solution of (RP2). Deciding whether there is a feasible

solution of the SVOCPDP inducing z is NP-complete.

64



s

m

m

0
(2m; 0) (0; 0) (0; 1)

1

0

(0; 0)

m

m

(1; 2m)v′

0

v

0

u u′

m+ 1

b1
b2

br
. . .

0 0. . .

r − 2 arcs

Figure 2.8: Proof of NP-completeness

ya

a

(0; ya) (m+ 1; 0) (0;m+ 1) (ya; 0)

ua va v′a u′
a

Figure 2.9: Construction of G′ in the proofs of Propositions 2.6.2, 2.6.3, 2.6.4

65



Proof. The proof is very similar to the one of Proposition 2.6.1. Again, we work with a re-

duction from the 2-partition problem and with the graph of Figure 2.8. In order to adapt the

proof for (RP2), we simulate the yij by subdividing each arc a = (i, j) in five arcs, introducing

four new vertices ua, u′a, va and v′a, with pua
= 0, qua

= yij , pva = m + 1, qva = 0, pv′a = 0,

qv′a = m + 1, pu′
a
= yij , qu′

a
= 0. Figure 2.9 illustrates this transformation. The capacity

of the vehicle is set to m + 1. The vertices of this new graph G′ provide an instance of the

SVOCPDP, and the arcs encode a feasible solution of (RP2) for this instance. The solution

satisfies constraints (2.28) since there are values yij satisfying constraints (2.20).

Because of the construction, these values yij are unique and entirely determined by the

initial and target states on each vertex. If there is a route on the new graph, it will induce a

route on the original graph of Figure 2.8. This route will imply the existence of a 2-partition,

for the same reasons as those exposed in the proof of Proposition 2.6.1. Conversely, if there is

a 2-partition, it implies a route for the original graph, which will in turn implies a route for the

new graph.

Those two propositions deal with feasible solutions of programs (RP1) and (RP2). Now,

even if we have a special solution, especially the optimal one, the question whether it is in-

duced by an optimal one of the SVOCPDP is NP-complete. We have indeed the following

propositions.

Proposition 2.6.3. Let z∗ be an optimal solution of (RP2). Deciding whether there is a feasible

solution of the SVOCPDP inducing z∗ is NP-complete.

Proof. We can force the solution built in the proof of Proposition 2.6.2 to be optimal, and then

the same proof does the job. To force the solution to be optimal, we consider now the graph G′

obtained in the proof of Proposition 2.6.2 by subdividing each arc in five new arcs. We assume

that the cost to traverse each of these arcs is 1. Now, we build from this graph a complete graph

for which each arc (i, j) gets for cost the cost of a shortest path between i and j. This complete

graph provides an instance of the SVOCPDP. The arc of G′ encodes a solution z for (RP2),

which is optimal since each new vertex ua, u
′
a, va, v

′
a has to be visited.

Proposition 2.6.4. Let y∗, z∗ be an optimal solution of (RP1). Deciding whether there is a

feasible solution of the SVOCPDP inducing y∗, z∗ is NP-complete.

Proof. There is only one solution for y once z has been defined according to the proof of

Proposition 2.6.2, whence the same proof as for Proposition 2.6.3 works.

66



2.7 Lower bound

The integer linear program (RP2) has an exponential number of capacity and connectivity

constraints. The problem is solved through a branch-and-cut algorithm. At each node of the

branch-and-cut tree the continuous relaxation of the problem (RP2) is solved, but only a subset

of constraints (2.27) and (2.28) are activated. The continuous optimal solution z̄ is checked by

different routines that try to determinate violated constraints. If a violated constraint is found,

it is added into the linear relaxation which is again optimally solved. If no violated constraint

is found, but z̄ is still fractional, branching starts.

If the solution is integer, then it is a feasible solution of (RP2). Its value is kept and can

be used as an upper bound on the optimal value of (RP2). When the algorithm reaches the

end, updating the upper bound during the branch-and-cut process gives at the end the optimal

solution of (RP2). If it stops before (for instance if there is a time limit), we get at the end

the best feasible solution encountered during its exploration and a lower bound on the optimal

solution value, used for calculating the gap.

2.7.1 Separation of connectivity constraints

Given a fractional solution z̄, computed at a node of the branch-and-cut tree, we check that

constraints (2.27) are satisfied as follows. We consider the support graph G[z̄] together with a

capacity equal to z̄ij on each arc (i, j). For each unbalanced vertex i, we compute the minimum

cut δ+(S) separating i from the depot 0 (with the algorithm by [38]). If this minimum cut has

a value strictly lower than 1, then we add the corresponding constraint to the linear program.

2.7.2 Separation of capacity constraints

As already noted when we have defined (RP2), there is no known polynomial algorithm

that checks the capacity constraints (2.28).

The following constraints are less tight but can be separated in polynomial time.

∑

(i,j)∈δ+(S)\δ(0)

zij ≥
e(S)

K
, (∀S ⊆ V ) (2.30)

These constraints are the relaxation of the constraints (2.28) in (RP2). They are called

“relaxed capacity constraints”. A method for finding violated relaxed capacity constraints for

67



the CVRP is proposed by [64]. In the SVOCPDP the difference is that a vertex can either be in

excess or in default. Therefore their method has been adapted to fit the specific characteristics

of the SVOCPDP. The two arcs connecting the vertex 0 with the other vertices are deleted and

two new vertices s and t are added. Vertex s is linked to all vertices in excess with the capacity

κsi = ei
K

for each arc whereas all vertices in default are linked to vertex t with the capacity

κit =
−ei
K

. The capacity is equal to z̄ij on the original arcs (i, j).

We compute an s-t min-cut (again with the Edmonds-Karp algorithm [38]). Let X be the

subset of vertices such that δ+(X) is the s-t min-cut. s is in X and we define S := X \ {s}.

We still define S̄ as V \ S, where V is the vertex set of the original graph, and contains neither

s nor t.

capacity of δ+(X) =
∑

i∈S\{0},j∈S̄\{0}

z̄ij +
∑

i∈S̄\{0}

κsi +
∑

i∈S\{0}

κit (2.31)

=
∑

(i,j)∈δ+(S)\δ(0)

z̄ij −
e(S)

K
+

∑

i∈V : ei>0

ei
K

. (2.32)

If the capacity of δ+(X) minus
∑

i∈V : ei>0
ei
K

(which is a fixed value) is less than 0, it means

that a relaxed capacity constraint is violated and the corresponding constraint are added to the

linear relaxation. Otherwise, there is no violated relaxed capacity constraint as shown in Figure

2.10, which presents a possible solution of the linear relaxation when solving the instance

presented in Figure 2.2, but the capacity of the vehicle is K = 10. The fractional value of each

arc is given next to it.

When relaxed capacity constraints are respected a second procedure runs looking for vio-

lated capacity constraints. The interest to look for these constraints in addition to the former is

to increase the speed of the general algorithm. Indeed, we get in this case tighter constraints.

The used procedure is again an heuristic presented in [64], since there is no known polynomial

algorithm. It is a tabu search that tries to find a subset S violating the constraints. A short

explanation of the tabu search method is done later in Section 2.8. The main idea is starting

from a subset S of vertices, vertices are either added to S or removed from S in order to find a

new subset where capacity constraints are violated. Roughly speaking, the vertex that is added

to or removed from the subset is kept in a tabu list and cannot be used for a given number of

iterations. If the procedure finds a violated capacity constraint, it is added to the linear program.

68



(4; 10)

(5; 6)

(10; 8)

0

0.1

(5; 5)

(3; 7)

(18; 12)

(6; 7)

0.1

0.4

(15; 11)

0.2

0.6

0.4

0.6

1

1

1

1

1

1

s

t

Figure 2.10: Construction of the new graph from the graph of Figure 2.2 to check the relaxed

capacity constraints

2.7.3 Initial relaxation, separation strategy and branching rules

The initial relaxation solved is (RP2) without (2.27) and with (2.28) only for S = {i} for

all i ∈ V . The separation routines are called with respect to the following order:

– connectivity constraints (2.27)

– relaxed capacity constraints (2.30)

– capacity constraints (2.28)

The branch-and-bound tree framework SCIP has been used for the computational results.

It proposes several branching rules which are explained in [4]. Several tests have been done on

the different instances but there is no rule that seems to be more effective than the others. So

the used branching rule is the reliability branching rule defined in their paper.

For the node selector, the rule is the best estimate search rule, which is the default rule of

SCIP.

2.8 Upper bound

The algorithm chosen for computing an upper bound of the optimal value is a tabu search.

Several problems like job shop scheduling, graph coloring, travelling salesman problem and

69



other vehicle routing problems have been successfully tackled by the tabu search and for an

introduction to this method see for instance [49]. While a greedy local search stops when no

improving move is found in the neighborhood N(s) of the current solution s, the basic principle

of a tabu search is to continue the search by allowing non-improving moves. To avoid cycling

on the same solution, the last ℓ moves are kept in the tabu list that is updated at each iteration.

Its size ℓ is a parameter.

Various stopping criteria can be used, such for example: the predetermined number of

iterations with no improvement, the maximum number of iterations, the maximum amount of

time spent in the method. To define a tabu search properly we have to describe how to compute

the cost of the current solution, the neighborhood, the way to encode the tabu list, a heuristic to

build the first current solution and the stopping criterion.

2.8.1 Cost of the current solution

Proposition 2.3.1 allows to encode the solution as a sequence of vertices, starting and

ending with the depot 0, without specifying bike displacements. The score of a sequence

i1 → i2 . . .→ ik is the cost of the travelled distance
∑k−1

j=1 cijij+1
to which we add a penalty

when the sequence is infeasible, i.e. when there is no route inducing this sequence. The feasi-

ble sequence space may be disconnected, whence to explore efficiently the used neighborhood

is enlarged allowing the tabu in visiting unfeasible solutions. Then, the infeasibility is penalized

in the objective function. Thanks to Proposition 2.3.1 we are able to evaluate the infeasibility

of any sequence indicated in the following with s. It is the “degree of infeasibility” we have

defined in Section 2.3. The relaxed constraints are (2.11) and (2.12) and the resulting cost

function f(s) defined in (2.33) is inspired by the one proposed by [46] for the CVRP and is the

following:

f(s) =
k−1∑

j=1

c(ij ,ij+1) + γ
∑

i∈V

(pi − p′i) (2.33)

where γ is a positive constant and the p′i are computed through the max-flow algorithm of

Proposition 2.3.1, which imposes that p′i ≤ pi.

In our experiment we have defined γ as 10 times the mean distance of a direct trip from the

depot to a vertex. This choice is a way to convert at the right scale in term of cost the number

of bikes that remain to be displaced (and was experimentally tuned).

70



2.8.2 Initial solution

We propose two distinct methods to compute the initial sequence needed for the tabu search.

Greedy heuristics

The method first tries to close vertices. Closing a vertex means bringing a vertex from

its original state to its target state qi in one move. The first criteria used, for deciding which

vertex visit first, consists in ranking the unbalanced vertices with respect to their distance from

the vehicle position and then in choosing the nearest node it can close. If it is impossible to

close any vertex, then for each vertex the number of bikes the vehicle can load or unload is

computed and the vehicle is driven toward the vertex with the highest number of bikes that can

be exchanged: either loaded or unloaded. In case of equality between several vertices, it goes

to the nearest one. With this method, we are sure to start from a feasible sequence.

The solution of (RP2)

A solution z of relaxation (RP2) of Section 2.5 is such that G[z] is an Eulerian graph.

A closed Eulerian path in the supported graph G[z] provides a sequence of vertices that can

be used as an initial solution of the tabu search. To compute such a closed Eulerian path

various classical methods are available (see for instance page 31 of the book by [55]). Since

the relaxation is quite good, this sequence is often not too far from an optimal solution. Note

that if the sequence is feasible for the SVOCPDP, it is an optimal solution. Unfortunately, even

if we have an instance for which the relaxation is tight, there is no polynomial algorithm for

finding the optimal solution of the original problem (Proposition 2.6.3 above, Section 2.6).

2.8.3 Neighborhood description

At each iteration the whole neighborhood is explored. The definition of neighborhood is

essential, since different neighborhoods offer different ways to explore the solution space but

require different computational efforts. For solving the addressed problem, four different moves

have been defined and used in the tabu search framework. Note that any time a vertex appears

two consecutive times in a sequence one of the occurrences can be removed.

Let k denote the length of the sequence and note that k >> n, therefore is k instead of n

that will be used for computing the complexity. To illustrate the different moves the solution

displayed on Figure 2.2 will be used each time as initial solution.

71



0→ 7→ 6→ 4→ 5→ 2→ 8→ 1→ 0

Following this sequence, the vehicle leaves the depot to go to vertex 7. Then it goes on with

vertex 6 and so on until vertex 1 from where it goes back to the depot.

2-OPT

This move is classical for routing problems. A pair of non-consecutive arcs are removed

from the sequence and two new arcs are inserted. They link the two tails and the two heads

of the removed arcs and therefore the travelling direction of the subset of nodes between the

two removed arcs is reversed to obtain a new sequence. An example of 2-OPT is obtained

by removing arcs (0,7) and (5,2), by inserting arcs (7,2) and (0,5) and reversing the sequence

5, 4, 6, 7, therefore the following sequence is obtained:

0→ 5→ 4→ 6→ 7→ 2→ 8→ 1→ 0

This move is tested for each pair of edges in the sequence. It takes O(k2) to test all the

moves of this type.

Suppression

This move tries to delete a vertex in the sequence. If in the example of Figure 2.2 we delete

vertex 4, we obtain

0→ 7→ 6→ 5→ 2→ 8→ 1→ 0

This move is tested for each vertex in the sequence. It takes O(k) to test all moves of this

type.

Add unbalanced vertex

This move is active when the current sequence is infeasible. All the vertices are checked

and both the most unbalanced vertex i in excess and the most unbalanced vertex j in default are

selected (vertices for which |(qi − q′i) − (pi − p′i)| are maximal). One neighbor is obtained by

adding, just after i in the sequence, the moves→ j → i→. The other neighbor is obtained by

adding the moves→ i → j → in the sequence just after j. If neither i nor j are present in the

72



sequence, then there is only neighbor obtained by adding→ i→ j at the end of the sequence.

Testing all moves of this type takes O(k2).

Once more with the example reported in Figure 2.2, if the capacity of the vehicle is lower

than 8, the vertices are not balanced at the end of the sequence. Let K = 6, the vehicle cannot

bring vertices 1, 6 and 8 to their target state: 2 bikes need to be loaded from 6 while 1 bike is

requested by both node 1 and node 8. The moves→ 8→ 6 are tried to be added and we obtain

the following sequence

0→ 7→ 6→ 8→ 6→ 4→ 5→ 2→ 8→ 1→ 0

This sequence is a feasible solution (i.e. a route).

Add buffer vertex

This move tries to add a second time a vertex in the sequence. The second copy of a vertex

can be used as buffer vertex, since in the buffer vertex bikes are either delivered or picked up.

Thus, if a vertex is used as a buffer vertex it has to be visited at least twice. Every vertex can

be used as buffer vertices. The sequence is traversed and at each position each vertex, that is

already present, is tried to be inserted. If a vertex is not present in the sequence (for example

the initially balanced vertices), then it is inserted twice.

This move is very time consuming and testing all moves of this type takes O(k3). Thus it

is not called at each iteration but in 20% of the cases.

2.8.4 The tabu list

The fact that arcs could be used more than once leads to a management of the tabu list

slightly different from the classical one used, for example, for solving the classical routing

problem. When a move is made, some arcs leaves the solution and others enter the solution.

Each exiting arc is kept in the tabu list along with the position of its occurrence in the last

solution. This arc is forbidden for ℓ iterations, but it is allowed to be reinserted in a different

position.

The tabu list is kept using the multimap structure in the STL of C++, which ensures a

quick access.

73



2.8.5 The tabu search

The components previously described are integrated in the general algorithm summarized in

Algorithm 1. The following notations are used in the pseudo-code: s is the current solution; s∗

is the best feasible solution encountered from the beginning of the tabu search. f(s) is the value

of the objective function for the solution s; NbIterMax is the maximum number of iterations

done before the tabu search stops. i is the current iteration; s̄X is the best solution encountered

using the move X; s# is the best solution in the whole neighborhood. a is a random variable

uniformly distributed between 0 and 1.

2.9 Computational study

The algorithms have been coded in C++, embedded into SCIP (a Constraint Integer Pro-

gramming framework, see [4]) and tested on a PC AMD Athlon 5600+ clocked at 2.8 GHz, with

16 GB RAM. The following Subsection 2.9.1 presents how the instances have been created, the

results obtained are reported in Subsection 2.9.2 while Subsection 2.9.3 reports a discussion on

the results.

2.9.1 Instances

The instances are taken from [67] which defines, for various values of n, 10 instances named

from A to J, with an imbalance ei between −10 and 10 for each vertex i. We work on these

instances with n ∈ {20, 40, 60, 100}. In order to get an initial state pi and a target state qi

for each vertex i, as required for the SVOCPDP, the demands have been modified. We do it

twofold. A first set of instances has been obtained by setting pi = 10, qi = 10+ ei and Ci = 20

for each vertex i. We refer to these instances by the indication p̄i = q̄i = 10 (average state). A

second set of instances is obtained by setting pi = 30, qi = 30 + 3 × ei and Ci = 60 for each

vertex i. We refer to these instances by the indication p̄i = q̄i = 30 (average state).

2.9.2 Computational results

The proposed algorithms have been tested on these instances for all K ∈ {10, 30, 45, 1000}.

Note that even with huge capacity for the vehicle our problem is not a TSP with pickup and de-

livery. Initially balanced vertices can be skipped, nevertheless visiting a vertex several times can

improve the cost of the solution (see for example the solution reported in Figures 2.4 and 2.5).

74



Algorithm 1 Tabu search algorithm
1: s← ComputeInitialSolution()

2: s∗ ← s

3: i← 0

4: while i ≤ NbIterMax do

5: s̄2OPT ← Explore2OPT(s)

6: s̄Sup← ExploreSuppresion(s)

7: s# ← argmin(f(s̄2OPT ), f(s̄Sup))

8: if s is not a route then

9: s̄AddUnb ← ExploreAddUnbalanced(s)

10: if f(s#) > f(s̄AddUnb) then

11: s# ← s̄AddUnb

12: end if

13: end if

14: a← Random()

15: if a ≤ 0.2 then

16: s̄AddBuf ← ExploreAddBuffer(s)

17: if f(s#) > f(s̄AddBuf ) then

18: s# ← s̄AddBuf

19: end if

20: end if

21: s← s# and Update the tabu list

22: if s is a route and f(s) < f(s∗) then

23: s∗ ← s

24: end if

25: i← i+ 1

26: end while

75



0 1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

(10; 17)

(10; 9)

(10; 15)

(10; 14)
(10; 7)

(10; 8)

(10; 3)

(10; 9)

(10; 6)
(10; 16)

(10; 6)

(10; 13)

(10; 6)

(10; 11)

(10; 18)

(10; 1)

(10; 10)

(10; 14)

(10; 14)

(10; 3)

1

2

6

0
1

10

7

2

5

9

8

0

7

3

5

1

0

7

4
8

Figure 2.11: An optimal solution already found by the branch-and-cut for the instance n20G,

with K = 10 and p̄i = q̄i = 10

76



0 1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

(30; 51)

(30; 27)

(30; 45)

(30; 42)
(30; 21)

(30; 24)

(30; 9)

(30; 27)

(30; 18)
(30; 48)

(30; 18)

(30; 39)

(30; 18)

(30; 33)

(30; 54)

(30; 3)

(30; 30)

(30; 42)

(30; 42)

(30; 9)

Figure 2.12: An optimal solution already found by the branch-and-cut for the instance n20G,

with K = 10 and p̄i = q̄i = 30

77



The algorithms tested are the tabu search initialized with the greedy heuristics from Subsection

2.8.2, the branch-and-cut of Section 2.7 which provides a lower bound for the problem, and the

tabu search initialized with the solution of the branch-and-cut as explained in Subsection 2.8.2.

The results are given in Tables 2.1, 2.2, 2.3 and 2.4. For each pair n,K, we have kept only

the results for three instances: the best one, the worst one and the median one, with respect

to the final gap. We have treated the results for n = 100 in distinct tables since the results

obtained for such dimensions are less good than those obtained with n < 100.

The results achieved by all our algorithms when used for solving the generated instances are

reported respectively in Tables 2.1, 2.3, 2.5 and 2.7. The tabu search initialized with the greedy

heuristic (indicated in the following with TS1) has the following set of parameters: maximum

number of iterations = 1′000, the size of the tabu list (i.e. ℓ) = 30 and the maximum amount

of time = 1′000 seconds. The method also stops when no improvement has been done for 80

consecutive iterations. The branch-and-cut algorithm (indicated in the following with B&C)

with the solution of TS1 for upper bound has for time limit 10′000 seconds. The tabu search

initialized with the solution obtained by the branch-and-cut B&C (indicated in the following

with TS2) has the following parameters: the tabu list size is set to 3, the maximal number

of iteration to 50 and the maximal amount of time to 300 seconds. The research is stopped

whenever 15 consecutive iterations did not improve the best solution or if a solution is found

with a cost equal to the lower bound obtained by the branch-and-cut. The abbreviations used

in these tables are the following:

n is the number of vertices.

K is the vehicle capacity.

UB1 is the value obtained by TS1.

Time is the cpu time (in seconds) used by the Tabu Search TS1.

Iter. is the number of iterations.

UB2 is the best solution obtained by the tabu searches TS1 and TS2.

T.t. is the cpu time (in seconds) elapsed for executing TS1+B&C+TS2.

LB is the best lower bound found by the branch-and-cut.

Gap % is the percentage gap between the previous LB and UB2.

The results achieved by the branch-and-cut alone are reported respectively in Tables 2.2,

2.4, 2.6 and 2.8. The abbreviations used in these tables are the following:

78



n is the number of vertices.

K is the vehicle capacity.

UB-BC is the best solution found by the branch-and-cut.

LB is a lower bound on the optimal solution of the relaxation.

LBr is the lower bound that has been found at the root node.

Gap % is the percentage gap between UB-BC and LB.

Time is the computational time.

# Nodes is the number of nodes of the branch-and-cut tree.

Figure 2.11 gives the solution for the instance n20G with K = 10, and an average number

of bikes per station equaling 10. The depot appears as a square with a 0 and next to each

vertex (pi, qi) is given in parenthesis. The solution displayed is the one obtained at the end of

the following sequence of algorithms. The tabu search first, then the branch-and-cut with the

result of the tabu search result as upper bound. Finally, the tabu search which starts from the

solution given by the branch-and-cut. The cost of this route is displayed in the upper box. In

this example the route displayed is exactly the solution of the branch-and-cut. It is the optimal

solution even if a vertex (vertex 18) is visited twice. Compare with Figure 2.12. It is the same

instance, but this time with an average number of bikes per station equaling 30. Again, the

branch-and-cut was able to find the optimal solution. Interestingly, we can see that, with an

increasing average number of bikes but with the same vehicle capacity, optimal solutions may

visit vertices several times.

2.9.3 Conclusion

As expected the computational time and the number of nodes of the branch-and-cut algo-

rithm increase with the number of vertices and decrease with the capacity of the vehicle. In

Tables 2.2, 2.4, 2.6 and 2.8, the number of nodes used in the branch-and-cut could seem really

huge. However, since variables are integers (not binary), several branchings must be done on

the same variable before obtaining the optimal solution. Except for the large instances with

100 vertices, the results reported in Tables 2.1 and 2.5 show that the distance between the best

upper bound found and the lower bound is really small. The gap is on average less that 5%. The

local search is very efficient on small and medium instances (up to 60 vertices) and becomes

79



Table 2.1: Performance of the overall method for p̄i = q̄i = 10, less than 60 vertices, and a

vertex capacity equal to 20
Instance name n K UB1 Time Iter. UB2 T.t. LB Gap %

n20A 20 10 4897 6 104 4702 7 4702.00 0.00

n20C 20 10 6188 12 214 6013 14 6012.00 0.02

n20B 20 10 5009 8 149 4769 8 4769.00 0.00

n20A 20 30 3583 3 89 3583 4 3583.00 0.00

n20E 20 30 4556 4 88 4556 5 4299.00 5.98

n20F 20 30 4422 5 97 4108 5 4108.00 0.00

n20A 20 45 3583 4 89 3583 4 3583.00 0.00

n20C 20 45 4045 6 87 4045 7 3891.00 3.96

n20B 20 45 3792 6 108 3792 6 3792.00 0.00

n20A 20 1000 3583 4 89 3583 4 3583.00 0.00

n20C 20 1000 4045 4 87 4045 5 3891.00 3.96

n20J 20 1000 3801 7 138 3650 7 3650.00 0.00

n40E 40 10 6870 208 112 6424 2253 6424.00 0.00

n40F 40 10 7234 460 243 7095 10509 6760.00 4.96

n40J 40 10 7228 144 95 6268 10067 6267.00 0.02

n40A 40 30 5419 176 104 4949 178 4949.00 0.00

n40C 40 30 4806 409 217 4692 450 4644.00 1.03

n40B 40 30 5272 296 167 5110 301 5110.00 0.00

n40E 40 45 5378 184 123 5069 188 5069.00 0.00

n40H 40 45 5008 174 120 5006 207 4772.00 4.90

n40D 40 45 5604 297 166 5202 326 5195.00 0.13

n40A 40 1000 5042 144 90 4949 153 4949.00 0.00

n40C 40 1000 4763 246 142 4656 284 4522.00 2.96

n40B 40 1000 5297 153 90 5110 159 5110.00 0.00

n60H 60 10 10126 1039 60 8208 11328 7707.44 6.49

n60B 60 10 9382 975 33 8723 11312 7508.53 16.17

n60A 60 10 9500 1006 42 8010 11349 7276.80 10.08

n60G 60 30 6626 988 47 6360 1264 6360.00 0.00

n60I 60 30 7242 984 55 6766 8234 6390.00 5.88

n60H 60 30 6578 1037 41 6081 1835 5992.00 1.49

n60J 60 45 6601 1002 44 6374 1112 6374.00 0.00

n60D 60 45 6866 988 56 6462 1335 6252.00 3.36

n60B 60 45 7098 1015 32 6132 1321 6054.00 1.29

n60D 60 1000 6903 1049 41 6223 1395 6223.00 0.00

n60F 60 1000 6524 975 37 6136 1540 5778.00 6.20

n60C 60 1000 6258 988 48 6218 1285 6114.00 1.70

80



Table 2.2: Performance of the branch-and-cut cited in Table 2.1
Instance name n K UB-BC LB LBr Gap % Time # Nodes

n20A 20 10 4702 4702.00 4618.10 0.00 1.43 165

n20C 20 10 6012 6012.00 5833.33 0.00 1.54 199

n20B 20 10 4769 4769.00 4735.00 0.00 0.58 29

n20A 20 30 3583 3583.00 3583.00 0.00 0.10 1

n20E 20 30 4299 4299.00 4299.00 0.00 0.17 1

n20F 20 30 4108 4108.00 4108.00 0.00 0.13 1

n20A 20 45 3583 3583.00 3583.00 0.00 0.10 1

n20C 20 45 3891 3891.00 3891.00 0.00 0.04 1

n20B 20 45 3792 3792.00 3792.00 0.00 0.13 1

n20A 20 1000 3583 3583.00 3583.00 0.00 0.13 1

n20C 20 1000 3891 3891.00 3891.00 0.00 0.12 1

n200J 20 1000 3650 3650.00 3650.00 0.00 0.28 1

n40E 40 10 6424 6424.00 5968.25 0.00 2044.07 124799

n40F 40 10 7102 6760.00 6558.40 5.06 10000.00 688473

n40J 40 10 6267 6267.00 5655.58 0.00 9894.40 704853

n40A 40 30 4949 4949.00 4934.50 0.00 1.91 13

n40C 40 30 4644 4644.00 4644.00 0.00 1.17 1

n40B 40 30 5110 5110.00 4941.63 0.00 4.47 84

n40E 40 45 5069 5069.00 5032.50 0.00 4.12 32

n40H 40 45 4772 4772.00 4754.00 0.00 1.47 3

n40D 40 45 5195 5195.00 5195.00 0.00 1.90 1

n40A 40 1000 4949 4949.00 4922.00 0.00 3.47 7

n40C 40 1000 4522 4522.00 4522.00 0.00 2.42 1

n400B 40 1000 5110 5110.00 5040.50 0.00 5.56 47

n60H 60 10 8208 7707.44 7606.03 6.49 10000.02 133440

n60B 60 10 9367 7508.53 7370.35 24.75 10000.00 128883

n60A 60 10 8397 7276.80 7195.56 15.39 10000.01 119974

n60G 60 30 6360 6360.00 6212.40 0.00 266.02 4727

n60I 60 30 6390 6390.00 6042.50 0.00 6954.05 138870

n60H 60 30 5992 5992.00 5665.75 0.00 514.69 8615

n60J 60 45 6374 6374.00 6246.81 0.00 103.94 1139

n60D 60 45 6252 6252.00 6213.40 0.00 166.21 1574

n60B 60 45 6054 6054.00 6018.50 0.00 17.28 76

n60D 60 1000 6223 6223.00 6177.33 0.00 339.27 320

n60F 60 1000 5778 5778.00 5726.00 0.00 258.91 534

n60C 60 1000 6114 6114.00 6068.50 0.00 25.02 27

81



Table 2.3: Performance of the overall method for p̄i = q̄i = 10 and 100 vertices of capacity 20
Instance name n K UB1 Time Iter. UB2 T.t. LB Gap %

n100E 100 10 16086 1125 5 12895 11333 10175.27 26.73

n100C 100 10 20152 971 2 16239 11234 11707.18 38.71

n100H 100 10 15951 949 3 14507 11367 10985.15 32.06

n100A 100 30 11962 1331 5 8245 11596 7575.25 8.84

n100D 100 30 13013 1075 1 12284 11290 7913.46 55.23

n100J 100 30 11113 1056 1 8863 12511 7447.41 19.01

n100G 100 45 10956 1052 1 7909 8149 7860.00 0.62

n100J 100 45 9644 1071 1 8539 11334 7159.86 19.26

n100C 100 45 9688 1215 4 8630 11465 7779.75 10.93

n100E 100 1000 8636 1681 10 8065 12488 7680.50 5.01

n100B 100 1000 8940 1153 3 8940 11368 7159.50 24.87

n100D 100 1000 9067 1603 7 7958 11900 7294.00 9.10

Table 2.4: Performance of the branch-and-cut cited in Table 2.3
Instance name n K UB-BC LB LBr Gap % Time # Nodes

n100E 100 10 13449 10175.27 10168.96 32.17 10000.01 28483

n100C 100 10 18107 11707.18 11691.72 54.67 10000.03 21190

n100H 100 10 15752 10985.15 10978.65 43.39 10000.01 29422

n100A 100 30 8133 7575.25 7504.21 7.36 10000.00 38885

n100D 100 30 9420 7913.46 7887.63 19.04 10000.04 34007

n100J 100 30 9136 7447.41 7409.02 22.67 10000.07 39026

n100G 100 45 7860 7860.00 7696.40 0.00 6855.28 26349

n100J 100 45 8026 7159.86 7063.07 12.10 10000.01 35323

n100C 100 45 8458 7779.75 7751.26 8.72 10000.05 31024

n100E 100 1000 8006 7680.50 7672.21 4.24 10000.35 1527

n100B 100 1000 8619 7159.50 7153.19 20.39 10002.70 864

n100D 100 1000 8054 7294.00 7280.96 10.42 10000.90 863

82



Table 2.5: Performance of the overall method for p̄i = q̄i = 30, less than 60 vertices and a

vertex capacity equal to 60
Instance name n K UB1 Time Iter. UB2 T.t. LB Gap %

n20B 20 10 9888 70 182 9883 71 9883.00 0.00

n20C 20 10 14127 52 101 14040 137 14039.00 0.01

n20D 20 10 15365 160 136 14925 247 14925.00 0.00

n20B 20 30 4808 15 222 4769 16 4769.00 0.00

n20C 20 30 6362 19 233 6013 23 6012.00 0.02

n20D 20 30 6252 15 216 5989 16 5989.00 0.00

n20B 20 45 4175 6 98 4174 6 4174.00 0.00

n20C 20 45 5295 6 89 5295 9 5113.00 3.56

n20D 20 45 5533 8 99 5446 12 5446.00 0.00

n20B 20 1000 3792 6 102 3792 6 3792.00 0.00

n20C 20 1000 4098 8 133 4045 9 3891.00 3.96

n20J 20 1000 3763 8 174 3650 8 3650.00 0.00

n40E 40 10 13708 1013 46 13159 1786 13159.00 0.00

n40F 40 10 15448 1011 53 15410 11309 14456.90 6.59

n40I 40 10 15722 989 66 14849 2531 14849.00 0.00

n40E 40 30 6670 271 152 6424 1024 6424.00 0.00

n40F 40 30 7653 209 114 7240 10239 6571.83 10.17

n40I 40 30 7045 342 175 6901 2144 6901.00 0.00

n40A 40 45 6484 182 95 6059 492 6059.00 0.00

n40B 40 45 5665 345 191 5319 357 5319.00 0.00

n40C 40 45 6095 245 142 5912 477 5912.00 0.00

n40B 40 1000 5253 215 148 5110 221 5110.00 0.00

n40C 40 1000 4684 418 269 4656 439 4522.00 2.96

n40E 40 1000 5441 217 136 5069 228 5069.00 0.00

n60F 60 10 23791 1133 4 17696 11414 16925.71 4.55

n60A 60 10 24684 904 1 18755 11075 15789.56 18.78

n60J 60 10 28130 915 1 17462 11136 15774.62 10.70

n60H 60 30 8980 1036 47 8120 11334 7608.96 6.72

n60C 60 30 10367 992 61 9818 11227 8313.06 18.10

n60J 60 30 9049 1072 54 8407 11357 7642.33 10.01

n60H 60 45 7333 998 55 6743 2986 6743.00 0.00

n60D 60 45 9084 1009 58 8778 11298 7631.48 15.02

n60F 60 45 8804 986 58 7134 11310 6731.50 5.98

n60D 60 1000 6685 993 90 6223 2390 6223.00 0.00

n60F 60 1000 6539 989 63 6136 1266 5778.00 6.20

n60A 60 1000 5982 1028 49 5889 1191 5740.00 2.60

83



Table 2.6: Performance of the branch-and-cut cited in Table 2.5
Instance name n K UB-BC LB LBr Gap % Time # Nodes

n20B 20 10 9883 9883.00 9872.33 0.00 0.32 9

n20C 20 10 14039 14039.00 13783.63 0.00 73.23 33867

n20D 20 10 14925 14925.00 14594.67 0.00 86.23 58991

n20B 20 30 4769 4769.00 4698.00 0.00 1.36 37

n20C 20 30 6012 6012.00 5750.00 0.00 3.50 375

n20D 20 30 5989 5989.00 5968.25 0.00 1.05 25

n20B 20 45 4174 4174.00 4174.00 0.00 0.22 1

n20C 20 45 5113 5113.00 5035.00 0.00 2.92 423

n20D 20 45 5446 5446.00 5174.00 0.00 3.01 381

n20B 20 1000 3792 3792.00 3792.00 0.00 0.15 1

n20C 20 1000 3891 3891.00 3891.00 0.00 0.09 1

n20J 20 1000 3650 3650.00 3650.00 0.00 0.44 1

n40E 40 10 13159 13159.00 12575.48 0.00 761.07 59441

n40F 40 10 15448 14456.90 14256.09 6.86 10000.00 723945

n40I 40 10 14849 14849.00 14386.27 0.00 1531.88 115415

n40E 40 30 6424 6424.00 6075.50 0.00 751.60 40129

n40F 40 30 7239 6571.83 6348.80 10.15 10000.00 702288

n40I 40 30 6901 6901.00 6447.67 0.00 1801.81 119722

n40A 40 45 6059 6059.00 5807.12 0.00 305.81 23153

n40B 40 45 5319 5319.00 5211.50 0.00 11.00 462

n40C 40 45 5912 5912.00 5530.60 0.00 231.63 14986

n40B 40 1000 5110 5110.00 5040.50 0.00 5.28 33

n40C 40 1000 4522 4522.00 4522.00 0.00 2.27 1

n40E 40 1000 5069 5069.00 5032.50 0.00 11.44 55

n60F 60 10 18098 16925.71 16889.78 6.93 10000.00 176987

n60A 60 10 19403 15789.56 15691.49 22.88 10000.00 134007

n60J 60 10 17929 15774.62 15674.85 13.66 10000.00 175201

n60H 60 30 8378 7608.96 7411.93 10.11 10000.02 134581

n60C 60 30 10185 8313.06 8211.90 22.52 10000.02 156541

n60J 60 30 8408 7642.33 7518.03 10.02 10000.00 132487

n60H 60 45 6743 6743.00 6544.58 0.00 1979.12 29674

n60D 60 45 9061 7631.48 7534.96 18.73 10000.00 128581

n60F 60 45 7202 6731.50 6688.64 6.99 10000.00 166326

n60D 60 1000 6223 6223.00 5868.42 0.00 1394.29 3364

n60F 60 1000 5778 5778.00 5726.00 0.00 112.45 343

n60A 60 1000 5740 5740.00 5607.25 0.00 58.04 99

84



Table 2.7: Performance of the overall method for p̄i = q̄i = 30 and 100 vertices of capacity 60
Instance name n K UB1 Time Iter. UB2 T.t. LB Gap %

n100B 100 10 47117 2937 1 32891 62810 27359.37 20.22

n100H 100 10 44434 1427 1 34989 98532 26254.29 33.27

n100F 100 10 43570 1112 1 28673 55675 23402.08 22.52

n100A 100 30 15403 1867 6 12996 25638 10177.64 27.69

n100I 100 30 19164 651 1 16190 29729 11567.98 39.96

n100G 100 30 16233 1069 3 13472 26420 10251.04 31.42

n100A 100 45 12615 1617 4 10374 22850 8321.17 24.67

n100B 100 45 16118 1398 2 12726 26505 9185.89 38.54

n100H 100 45 13349 1419 8 12037 23518 9221.84 30.53

n100E 100 1000 9067 969 2 8071 19351 7700.00 4.82

n100A 100 1000 9550 1441 2 8822 11595 6969.00 26.56

n100J 100 1000 8178 1532 7 8138 19357 6918.68 17.62

Table 2.8: Performance of the branch-and-cut cited in Table 2.7
Instance name n K UB-BC LB LBr Gap % Time # Nodes

n100B 100 10 34964 27359.37 27295.96 27.80 10000.02 15032

n100H 100 10 37156 26254.29 26213.62 41.52 10000.04 14142

n100F 100 10 30489 23402.08 23365.92 30.28 10000.10 22153

n100A 100 30 13686 10177.64 10171.43 34.47 10000.01 24026

n100I 100 30 17210 11567.98 11522.04 48.77 10000.15 26068

n100G 100 30 14087 10251.04 10234.99 37.42 10000.01 30956

n100A 100 45 10744 8321.17 8260.51 29.12 10000.06 29399

n100B 100 45 12624 9185.89 9141.17 37.43 10000.04 31747

n100H 100 45 12645 9221.84 9212.68 37.12 10000.02 42640

n100E 100 1000 7700 7700.00 7498.67 0.00 1256.14 4477

n100A 100 1000 8747 6969.00 6957.76 25.51 10000.00 1065

n100J 100 1000 8178 6918.68 6911.71 18.20 10000.90 1643

85



less effective for larger instances. This is probably a consequence of the size of the neighbor-

hood, which can be quite huge when the vehicle has to make several visits at some vertices.

For n = 100, the second tabu search makes sometimes only one or two iterations.

Note also that the smaller is the capacity, the harder is the problem. It is in accordance

with the intuition, since for instances with small vehicle capacity, the mean number of visits by

vertex increases. Instances n20A and n40E in Table 2.1 are illustrations for such a phenomenon:

compare the optimal results for K = 10 and K = 45. We have also such a phenomenon for

n20B and n40E in Table 2.5 for K = 10 and K = 30.

If we go back to the size of the Vélib’ system in Paris (one truck of capacity 20 for 60

vertices of capacity 30), the instances that are close to these numerical features are the instances

n60G, n60H, n60I of Table 2.1 with n = 60 and K = 30 and the instances n40E, n40F, n40I of

Table 2.5 with n = 40 and K = 30. We get solutions that have most of time a gap smaller than

2%. It would certainly be possible to improve the time consumption of the flow algorithm in the

tabu search. Stopping the branch-and-cut after a fixed time would also be a reasonable solution

to reduce the total time to get a good solution. However, we see that 50% of the instances of

this size can already be solved within optimality gap of 2% in less than 40 minutes.

86



87



88



Chapter 3

The Multiple-Vehicle Balancing Problem

3.1 Introduction

The Multiple-Vehicle Balancing Problem (MVBP) is the multiple-vehicle variant of the

SVOCPDP. Here also users’ impact on the system is neglected and the objective is to move

bikes from stations to other in order to fit a given repartition which is known for being suitable

to answer the morning peak. To that purpose, several vehicles are available and the operator

has to provide instructions to the drivers in order to bring the system to the target repartition

while minimizing the total distance travelled by the whole fleet of vehicles. This problem has

similarities with pickup-and-delivery problems and with the Split Delivery Vehicle Routing

Problem (SDVRP) as explained in detail in Section 3.3.

We model this problem as an integer program (IP) whose variables encode the selection of

possible routes. The relaxation of the program – called the master problem – is solved with a

column generation method. Such a method is often used to solve problems with a huge number

of variables. Instead of considering all of them, the original problem is only solved on a subset

of variables - or columns - forming the restricted master problem. A pricing subproblem uses

the dual variables of the restricted master problem and is solved to obtain the columns that

improve the value of the objective function of the restricted master problem. Once we know

how to solve the restricted master problem, there are two ways for solving the original IP. The

first one is to perform a branch-and-price algorithm (see for example [13] for a survey on this

topic). The second one is to add all columns that may play a role in the optimal of the IP. These

“columns in the gap” can be identified thanks to their reduce costs. They are then added and

the resulting integer program is solved with the help of CPLEX (see for example [11] for a

89



reference on this approach). This method requires to have a good feasible solution. Since we

have chosen to follow such an approach, we have designed an efficient memetic algorithm to

perform this task. This algorithm is based on a combinatorial encoding of the solutions which

does not need to specify the loading and unloading operations, and uses the “giant tour” idea

proposed by Prins [73].

The problem is described in Section 3.2. A short overview of the literature devoted to this

topic is presented in Section 3.3. The next section – Section 3.4 – is devoted to the modelling

of the problem. Some dominances are proven allowing to derive a set partitioning-like model.

Section 3.5 focuses on the relaxation and formalizes the master problem as well as the pricing

subproblem. Section 3.6 explains how to solve the pricing subproblem. In Section 3.7, with the

help of dual-feasible functions, additional cuts are defined to enhance the linear relaxation of

the model. The memetic algorithm finding a good feasible solution is described in Section 3.8.

Computational results are given in Section 3.9.

3.2 Problem and notations

3.2.1 Problem definition

The problem, which we call the Multiple-Vehicle Balancing Problem can be formalized as

follows: let G = (V,A) be a complete directed graph in which V = {0, . . . , n} is the vertex set

composed by n+1 vertices, the vertices in {1, . . . , n} representing the stations and the vertex 0

representing the depot and A is the set of arcs. For each arc (i, j) ∈ A, we denote by cij the

cost of the arc (i, j). Each arc corresponds to the shortest path between its tail vertex and its

head vertex. The cost is assumed to satisfy the triangular inequality (i.e. cij + cjk ≥ cik for

all i, j, k ∈ V ). Each vertex i has a capacity Ci ∈ Z+. For each i ∈ V , we define its initial

state by pi ∈ Z+ and its target state qi ∈ Z+, with pi ≤ Ci, qi ≤ Ci and
∑

i∈V pi =
∑

i∈V qi.

Throughout the chapter we use the demand di = |pi − qi|, number of bikes to be either bring

or taken from a vertex. The depot is always assumed to have no bike: p0 = q0 = 0 and d0 = 0.

When pi > qi (resp. pi < qi) the vertex is a pickup (resp. delivery) vertex. Vertices such

that pi = qi are called initially balanced vertices. Pi denotes the set of pickup vertices and

De the set of delivery vertices. For all vertices i, j ∈ V such that neither i nor j are initially

balanced vertices, (i, j) is either a pickup-to-pickup, delivery-to-delivery, pickup-to-delivery or

delivery-to-pickup arc with respect to the type of vertices i and j are. A homogeneous fleet of

90



M vehicles with a capacity K ∈ Z+ is given. Each vehicle leaves the depot, visits a sequence

of vertices where it performs pickup or delivery services and returns to the depot. Each vehicle

leaves at most once the depot. The objective is to redistribute the bikes in order to reach the

target state priorly defined while minimizing the total distance travelled by the whole fleet of

vehicles.

We assume moreover that there is a bound on the number of arcs each vehicle traverses.

This bound is denoted Rmax ∈ Z+. This bound enables to limit the duration of a tour. This is

all the more true if the loading and unloading time is important with respect to the travel time,

which occurs often in practice. Tasks have to be distributed among vehicles. Without such

a bound, it would not be rare to face optimal solutions with only one vehicle operating: for

instance, if the depot is far away from the other vertices. Note that if Rmax <
∑

i∈V di
MK

, there is

no feasible solution to the problem.

To avoid logistic problem, the convergence to the target state is required to be monotonous:

bikes can only be picked-up (resp. delivered) at pickup (resp. delivery) vertices. In particular,

drops are not allowed. Without monotonous convergence, situations where a vehicle arrive

at an empty vertex where it is supposed to load bikes could occur. This requirement enables

to deal with each tour independently. One vertex can still be visited several times by the same

vehicle or by different vehicles. Note that another consequence of the convergence requirement

is that initially balanced vertices are not visited by any vehicle and so from now on they are not

considered.

The MVBP contains the Travelling Salesman Problem (TSP), and is therefore NP-hard.

Indeed, if Rmax = n + 1, K = n and there is a unique pickup vertex at a distance 0 from the

depot with an excess of n − 1 bikes and all the n − 1 other vertices are delivery ones with a

demand of 1 bike, then the solution of the TSP on the n − 1 delivery vertices to which a first

stop at the pickup vertex is added to load all the bikes is the optimal solution of the MVBP.

Moreover it contains the SDVRP which is known to be harder than the TSP. In the SDVRP,

goods have to be distributed to several customers. A fleet of vehicles is available at a depot

with a given capacity. The objective is to find a collection of routes to fulfill each customer’s

demand while minimizing the total distance travelled by all vehicles. Customers can be visited

by several vehicles as their demand can be satisfied in one or more visits. If there is an instance

with only one pickup vertex at zero-distance from the depot with all the bikes and such that all

the other vertices are delivery vertices and if Rmax ≥ K + 1, then the SDVRP on the delivery

vertices to which is added a stop at the pickup vertex for each route is equivalent to the MVBP.

91



3.2.2 Notations

Let R be the set of all routes. A route r ∈ R is a sequence of visited vertices associated

with the number of picked up or delivered bikes at each stop. It is referred to as a couple

(sr, lr), where sr = (s1r, . . . , str) is the sequence of visited vertices and lr = (l1r, . . . , ltr) the

number of picked up or delivered bikes at each stop, with t < Rmax. The cost of the route cr

is defined as the total travelled distance while following its sequence. To each route r ∈ R and

each vertex i ∈ V is associated bir ∈ Z+, the total number of bikes picked up or delivered at

vertex i in route r. Note that according to the convergence requirement, we necessarily have

bir ≤ di for all i ∈ V, r ∈ R. Figure 3.1 shows an example whith 4 vertices and a depot.

Vertices 1 and 3 (respectively 2 and 4) are pickup vertices (resp. delivery vertices). A truck

following the route r displayed starts from the depot and first visits vertex 1 where 3 bikes are

loaded, visits then vertex 4 where 2 bikes are unloaded, goes back to vertex 1 to load 2 other

bikes before getting to vertex 2 to unload 3 bikes and driving back to the depot. The number of

bikes loaded at each vertex appears next to the arrow (if this number is negative, it means that

bikes are unloaded). In that case, we have for this route sr = (1, 4, 1, 2) and lr = (3, 2, 2, 3),

b1r = 5, b2r = 3, b3r = 0 and b4r = 2. Note lri ≥ 0 for all i < Rmax: bikes are loaded or

unloaded with respect to the type of the vertex because of the monotonous convergence.

1

2 3

4
+3

+2

−2

−3

Figure 3.1: Example of the route

3.3 Literature

The MVBP has some similarities with the SDVRP – as it has already been noted at the

end of the Section 3.2.1. Dror and Trudeau [35] are the first to introduce this problem, They

prove that the split dimension of the problem could lead to huge savings in term of the ob-

jective function. They show that some properties hold for the optimal solution of the SDVRP

92



(dominances). However, the split component of the problem increases the complexity of the

algorithm as explained by Archetti and Speranza [8]. Archetti et al. [7] present a tabu search

algorithm to solve this problem. A few years after, Archetti et al. [9] propose an exact column

generation method. Their branch-and-price-and-cut algorithm manage to find the optimal solu-

tion for medium size instances. Beside one with 144 vertices, they manage to find the optimal

solution for instances with up to 48 vertices in 6 hours. These instances can be solved with the

method we propose for the MVBP, as explained at the end of the former section. In Section

3.9, the method is tested on some of the instances solved by Archetti et al. [9].

Problems presenting similar features with ours are pickup-and-delivery problems, for which

an extensive literature exist. One of the most powerful exact approach for a version with time

windows (PDPTW) is the one proposed by Baldacci et al. [10]. The bound Rmax is reminis-

cent of these time windows as it prevents the assignment of all tasks to a unique vehicle, and

their approach will be used as a backbone for our method.

3.4 Dominance properties, model and method

3.4.1 Dominance properties

“Dominance properties” are properties satisfied by some optimal solutions. Translating

them as new constraints for the problem does not modify the optimal value but reduces the

number of feasible solutions.

Proposition 3.4.1. Any optimal solution with a minimal number of vertex visits is such that,

for any pair of vertices {i, j} with i and j both pickup vertices or both delivery vertices, the

number of times arc (i, j) is used plus the number of times arc (j, i) is used is at most one.

Say that there is a traversal of {i, j} each time there is a traversal of (i, j) or of (j, i) by a

route. Proposition 3.4.1 states that the total number of traversals by all routes for such solutions

on any {i, j} with i and j of same type is at most 1.

Proof of Proposition 3.4.1. Let i and j be two pickup vertices.

Suppose that we have an optimal solution a minimal number of vertex visits and at least

two traversals of {i, j}. Number these two traversals 1 and 2. Denote a1 (resp. a2) the number

of bikes loaded at i during traversal 1 (resp. 2). Denote b1 (resp. b2) the number of bikes loaded

at j during traversal 1 (resp. 2). Two cases have to be considered.

93



• Case a2 ≥ b1. We can take a1 + b1 bikes at i instead of taking only a1 bikes and avoid

j for traversal 1. The remaining of the solution does not change (vertices visited and

actions remain the same) except for traversal 2: we take a2 − b1 bikes on i and b1 + b2

bikes on j.

• Case a2 < b1. We can take a1 + a2 bikes at i instead of taking only a1 bikes and take

b1− a2 bikes at j for traversal 1. The remaining of the solution does not change (vertices

visited and actions remain the same) except for traversal 2. We avoid then i, goes directly

to j where we load a2 + b2 bikes.

In both cases, we are able to reduce by one the number of traversals on {i, j} without

changing the remaining of the solution. This is in contradiction with its minimality.

The conclusion is similar if both i and j are delivery vertices.

Let us consider the following two properties a solution may satisfy.

Property 1. For any pickup-to-delivery arc (i, j), there is at most one route and at most one

traversal of this arc by the route with a load strictly less than K.

For any delivery-to-pickup arc (i, j), there is at most one route and at most one traversal of

this arc by the route with a load strictly greater than 0.

Property 2. For any pickup vertex i and any delivery vertex j, if there is at least one traversal

of (i, j) and one traversal of (j, i), then all traversals of (i, j) are done with K bikes.

p d

7

9

9

−4

−3
6

6 +3

+2

5

Figure 3.2: Assume K = 10. The solid line route and the dotted line route are both having a

vehicle travelling the arc (p, d) without being full. Transferring one picked-up bike from one

of the route to the other, we see that a move between p and d can be done with 10 bikes – which

is the vehicle capacity – and the other with 8 bikes without changing the impact on the vertices

Proposition 3.4.2. Given an optimal solution with a minimal number of vertex visits, either

it satisfies simultaneously Property 1 and Property 2, or there is another one with the same

sequence of vertices satisfying simultaneously Property 1 and Property 2

94



Proof. The proof consists in showing that one can modify the load of the trucks in any route of

an optimal solution locally, without changing the remaining, in order to satisfy each of the two

properties. Let us consider an optimal solution with a minimal number of vertex visits.

Property 1

Let i be a pickup vertex and j be a delivery one. Assume that the solution visits at least

twice the arc (i, j), each time with strictly less than K bikes. Transferring bikes between these

two traversals provides a traversal with K bikes (we can not get a feasible solution with 0 bike

on one of these traversals since the solution is assumed to be optimal). See Figure 3.2 for an

illustration.

We get a similar conclusion if i is a delivery vertex and j a pickup one.

Property 2

We assume that the optimal solution satisfies Property 1. Suppose that there is a traversal

of (i, j) with strictly less than K bikes and a traversal of (j, i), with i a pickup vertex and j

a delivery vertex. The solution being optimal, during the traversal (j, i), there is at least one

bike unloaded on j and one bike loaded on i. This bike could be taken from i and unloaded on

j during the unsaturated traversal of (i, j). We can repeat this remark until there are K bikes

carried during the traversal of (i, j).

3.4.2 The model

We recall that a route is the sequence of visited vertices with the loading and unload-

ing operations at each vertex. Given the set of all routes R, we can write the following set

partitioning-like formulation of the problem (SPF ):

z(SPF ) =min
∑

r∈R

crzr (3.1)

s.t.
∑

r∈R

birzr = di ∀i ∈ V (3.2)

∑

r∈R

zr ≤ M (3.3)

zr ∈ {0, 1} ∀r ∈ R (3.4)

95



where zr is a binary variables equal to 1 if route r ∈ R is in the solution, 0 otherwise.

At first glance, zr might take values equal to or larger than 2 in an optimal solution: a route

may be selected several times. However, according to Section 3.4.1, we see that if di ≤ K for

all i, we may assume that each route is taken at most once. Indeed, Proposition 3.4.1 shows that

two distinct routes present in an optimal solution can not use both the same pickup-to-pickup

or delivery-to-delivery arc. Thus, if a route is used several times in an optimal solution, then

it consists in a alternate sequence of pickup and delivery vertices. Proposition 3.4.2 shows

moreover that such a route has a load of the vehicle equal to K for a pickup-to-delivery arc and

equal to 0 for a delivery-to-pickup arc. Therefore, if di ≤ K for all i, such a route can be used

at most once.

If there are vertices i with di > K, we could split them into as many vertices as necessary

to get all vertices with di ≤ K.

3.4.3 Method

The whole method for solving (SPF ) goes as follows.

First, we compute a good feasible solution using a memetic approach, see Section 3.8. This

enables to find a first upper bound value on the problem.

Second, we solve the relaxation of (SPF ) with the help of a column generation method, the

set R being exponential, see Section 3.5. The way to compute the columns follows a scheme

developed by Baldacci et al. [11]. It provides a lower bound. This iterative method is called

several times. At each time, at most 200 negative reduce cost columns are added.

Third, the memetic algorithm is used again using the rounded up solution obtained by solv-

ing the relaxation of (SPF ). This second call improves the upper bound found at the first

step.

Fourth, still following Baldacci et al. [11], all columns that may play a role in an optimal

solution, “columns in the gap”, are added and the MIP is solved with the help of CPLEX. The

fact that a column may play a role in an optimal solution can be checked with its reduced cost.

Let g be the gap between the upper and lower bounds obtained so far. A solution containing a

column whose reduced cost is strictly greater than g has a cost strictly greater than the upper

bound. Columns in the gap are added and the MIP is solved. If all the columns in the gap have

been added, the solution of the MIP is optimal (see discussion in Section 3.5).

96



3.5 Relaxation

The linear relaxation of (SPF ) where constraints (3.4) are relaxed gives a lower bound on

the value of the original problem. We obtain the following linear problem (RSPF ).

z(RSPF ) =min
∑

r∈R

crzr (3.5)

s.t.
∑

r∈R

birzr≥ di ∀i ∈ V (3.6)

∑

r∈R

zr ≤ M (3.7)

zr ≥ 0 ∀r ∈ R (3.8)

Note that in (RSPF ), constraints (3.6) are inequalities whereas in (SPF ) constraints (3.2)

are equalities. This operation enables to obtain signed dual variables and is done for stabiliza-

tion of the algorithm. It may weaken the quality of the relaxation. However, in comparison

with a more stable algorithm, it is worthwhile, and experiments shows that in general, it does

not change the value of the relaxation, see Section 3.9.

As the set of routesR is exponential in the number of stations and bikes to move, we work

with a column generation method. ForR ⊆ R, we define (RSPF ).

z(RSPF ) =min
∑

r∈R

crzr (3.9)

s.t.
∑

r∈R

birzr ≥ di ∀i ∈ V (3.10)

∑

r∈R

zr ≤ M (3.11)

zr ≥ 0 ∀r ∈ R (3.12)

The dual program (D) of (RSPF ) is the following one.

z(D) = max
∑

i∈V

λidi − νM (3.13)

s.t.
∑

i∈V

λibir + ν ≤ cr ∀r ∈ R (3.14)

97



λi ∈ R+, ν ∈ R− ∀i ∈ V (3.15)

λi ∈ R+ (resp. ν ∈ R−) are the dual variables associated to constraints (3.10) (resp. (3.11)).

Columns generation method aims at adding only routes whose reduced cost

cr = cr −
∑

i∈V λibir − ν is negative. Indeed, according to the theory of linear programming,

these are the only routes that may improve the value of the objective function.

The pricing subproblem consists, givenR, λ and ρ ∈ R, in finding a route r such that

cr −
∑

i∈V

λibir − ν ≤ ρ and r ∈ R \ R. (3.16)

To keep full generality, we have replaced the right hand side by an arbitrary real number ρ.

When computing the lower bound, we will set ρ := 0. As outlined in Section 3.4.3, once a

lower and an upper bounds are computed, we get the gap g between upper and lower bounds

and we add all columns that may play a role in an optimal solution, in order to find this latter.

Such columns have positive reduced costs less than g, and the method we present now is able

to deal with such a case too by setting ρ := g.

The way to proceed to solve this subproblem is explained in the following section.

Remark Since the reduced costs are computed according to (RSPF ) and not with the most

natural relaxation of (SPF ) where (3.2) would still be an equality, it might happen that some

routes playing a role in the optimal solution of (SPF ) are missed. Nevertheless, in practice,

such a situation never happens. It is consistent with the fact already noticed that the solutions

of the relaxations experimentally coincide (and therefore the dual solutions and the reduced

costs).

3.6 Solving the pricing subproblem

Pricing subproblem (3.16) can be expressed as a kind of Elementary Shortest Path with

Resource Constraints (see for example [51]). The resource is here understood as the number of

arcs traversed. We follow a method inspired by the one of Baldacci et al. [10]. They propose

a column generation method to solve the PDPTW. Their procedure for finding negative reduce

cost routes is divided into two phases.

First, half routes are computed. These half routes are either forward paths or backward

paths: forward paths are directed paths starting at the depot and ending at a vertex after having

98



visited a subset of vertices; backward paths are directed paths starting at a vertex and visiting a

subset of vertices before ending at the depot. This computation is done with a procedure called

GENPATH.

Second, forward and backward paths are combined, while respecting compatibility con-

straints. Compatibility refers to the respect of precedence constraints or capacity for instance.

This combination is done with a procedure called GENROUTE.

We follow this GENPATH-GENROUTE scheme. This method enables to consider all the

routes and generate only the ones that may improve the value of the solution, identified by their

negative reduce cost, if any exists. If this method fails to find any such a route, we know that

there is no negative reduce cost route and we have solved the relaxation.

Forward and backward paths are also introduced but modified in order to fit the MVBP

features. The main additional requirement is that the number of bikes to be loaded or unloaded

at each stop has to be decided: vertices may be visited several times and pickup and delivery

operations are not paired.

A forward path (resp. backward path) P is a sequence

sP = (s1P , s2P , . . . , stP )

for some t < ⌊Rmax
2
⌋ (resp. t < ⌈Rmax

2
⌉) of visited vertices and a sequence

lP = (l1P , l2P , . . . , ltP )

of numbers of loaded or unloaded bikes at each stop. A forward path starts at the depot,

s1P = 0, and ends at a vertex denoted e(P ) ∈ V , with a load on the vehicle denoted ℓ(P ) ≤ K.

A backward path ends at the depot, skP = 0, and starts at a vertex denoted e(P ) ∈ V , with a

load on the vehicle denoted ℓ(P ) ≤ K. The cost of a path P is

cP =
t∑

k=1

(cskP sk+1P
− λskP lskP )−

ν

2

As for the routes, we define biP to be the number of bikes loaded or unloaded following P on

a vertex i.

We define
−→
P (resp.

←−
P ) as the set of all such forward paths (resp. backward paths), with

cost equal to or less than ρ and that satisfy the dominance rules of Section 3.4.1. These sets

are generated in the GENPATH algorithm described hereafter (see Section 3.6.1), and they are

used afterwards in the GENROUTE algorithm (see Section 3.6.2) to build routes by matching

compatible forward and backward paths.

99



A forward path P and a backward path P ′ are said to be compatible if e(P ) = e(P ′),

ℓ(P ) = ℓ(P ′), biP + biP ′ ≤ di for all i ∈ V , |P | ≤ ⌊Rmax
2
⌋ and |P ′| ≤ ⌈Rmax

2
⌉, and the route

obtained by gluing them together on e(P ) = e(P ′) satisfies the dominance rules.

Note that in an optimal solution, the first (resp. last) vertex to be visited by a route has to

be a pickup one (resp. a delivery one). This remark is used in GENPATH.

3.6.1 The GENPATH procedure

The algorithm consists in an exploration of the set of possible paths, while using dominance

rules and lower bounds to avoid the systematic enumeration of all paths. We explain it for

forward paths, the adaptation for the backward case being straightforward.

Let P and P̃ be two forward paths with |P |, |P̃ | ≤ ⌊Rmax
2
⌋. We say that P dominates

P̃ if e(P ) = e(P̃ ), ℓ(P ) = ℓ(P̃ ), biP ≤ biP̃ for all i ∈ V and cP ≤ cP̃ . The idea behind

this definition is the following. Any backward path compatible with P̃ is also compatible with

P . As the cost of P is smaller than the cost of P̃ , discarding P̃ does not prevent of finding a

negative reduced cost route, if there is one.

Three ideas are used in GENPATH. First, only paths satisfying the dominance rules of Sec-

tion 3.4.1, and an additional dominance rule described hereafter in Section 3.6.3, are generated.

Second, a lower bound lb(P ) on the cost of any backward path completing a forward path P is

computed. If cP + lb(P ) > ρ, path P is discarded. See Section 3.6.4. Third, if a forward path

P is dominated by a path already in
−→
P , it is not added. If P is not dominated, then it is added

to
−→
P and all forward paths in this set dominated by P are deleted.

The procedure GENPATH is described in Algorithm 2.

Remark When the pricing subproblem is solved for finding routes with positive reduced costs

(“columns in the gap”, for finding the optimal solution of (SPF )), the notion of dominance

described above is weakened and, instead, biP = biP̃ is required for all i ∈ V . Indeed, no

column that may play a role in the optimal solution must be missed.

3.6.2 The GENROUTE procedure

We say that r ∈ R dominates r̂ ∈ R if bir = bir̂ for all i ∈ V and if cr ≤ cr̂. There is

obviously no interest to keep a route that is dominated by another one. The procedure GEN-

ROUTE is explained in detail in Algorithm 3. This method takes as an input a threshold ρ and

100



Algorithm 2 GENPATH for forward paths: return forward paths with cost ≤ ρ

Step 1: Create the empty path P0 with c(P0) = 0, e(P0) = 0, T = {P0} and
−→
P = ∅

Step 2:

if T = ∅ then

STOP

end if

Step 3: P ∗ = argmin{lb(P ), P ∈ T }

T = T \ {P ∗}

Insert in
−→
P forward path P ∗

if |P ∗| =
⌊
Rmax

2

⌋
then

Return to Step 3

end if

for i ∈ V and δ ∈ {−K, . . . ,K} do

Expand P ∗ from e(P ∗) to vertex i with new load ℓ(P ∗) + δ to obtain P̂

cP̂ = cP ∗ + ce(P ∗)i − λiδ

Compute lb(P̂ )

if Dominance rules or capacity constraints not satisfied, lb(P̂ ) > ρ or there is already a

path that dominates P̂ then

Reject P̂

else

Remove all forward paths in T dominated by P̂

Insert P̂ in T

end if

end for

Step 4: return to Step 2

101



all the forward paths and backward paths that were created by GENPATH. The set
−→
P (resp.

←−
P ) of forward (resp. backward) paths is assumed to be partitioned into sets

−→
P iw (resp.

←−
P iw)

of forward (resp. backward) paths P with ℓ(P ) = w and e(P ) = i.

Algorithm 3 GENROUTE procedure: return a setR of routes with cost ≤ ρ

R = ∅

for i ∈ V and w ∈ {0, . . . , K} do

for P ∈
−→
P iw and P ′ ∈

←−
P iw do

R← P ∪ P ′

if R is a feasible and not dominated inR then

Add R toR

Delete fromR all routes dominated by R

end if

end for

end for

To increase the speed of the algorithm,
−→
P iw and

←−
P iw are sorted according to the costs,

before running GENROUTE: one can make i← i+ 1 when P and P ′ are such that the sum of

their costs is strictly greater than ρ.

3.6.3 Additional dominance rules in GENPATH

The following remark helps to cut routes while trying to find routes with cost strictly less

than 0 (and not when ρ ≥ 0). Note that these dominance rules use the dual values λ.

If there is a sequence visiting s → sp → sd → s′ such that sp ∈ Pi a pickup vertex

from where w bikes are loaded and sd ∈ De a delivery one where w′ are unloaded, then a new

solution with the same sequence but skipping either sp either sd or both of them could have a

lower cost in the following cases:

if (w < w′) and (cssd + w(λsp + λsd)− (cssp + cspsd) < 0) the forward path skipping sp and

unloading only (w′ − w) bikes at sd has a lower cost

if (w = w′) and (css′ + w(λsp + λsd)− (cssp + cspsd + csds′) < 0) the forward path skipping

both sp and sd has a lower cost

if (w > w′) and (csps′ + w′(λsp + λsd)− (cspsd + csds′) < 0) the forward path skipping sd

and loading only (w − w′) bikes at sp has a lower cost

102



A similar remark leads to similar conclusions when the sequence is s → sd → sp → s′,

with sd ∈ De and sd ∈ Pi.

s sp sd s′

+w −w′

−(w′ − w)

Figure 3.3: New forward path when w < w′ and when the cost of the forward path skipping sp

is lower than the one of the original

3.6.4 Lower bound lb for GENPATH

GENPATH procedure needs an idea of the cost that a forward path (respectively a backward

path) would have if completed. For that purpose, a lower bound on the cost of returning to the

depot from a given vertex with a given load on the vehicle (resp. going at a given vertex with a

given load) is computed. A dynamic programming method to compute such a lower bound is

exposed hereafter.

Let G = (V ,A) be an acyclic oriented graph where

V = {(i, w, a) : i ∈ V, w ∈ {0, . . . , K}, a ∈ {0, . . . , Rmax− 1}} .

A vertex (i, w, a) represents a vehicle at station i with w bikes loaded on it after having traversed

a arcs in G from the depot.

An arc in G links (i, w, a) to (i′, w′, a′) when it encodes a possible transition, that is when

– a′ = a+ 1

– i 6= i′

– w′ − w ≤ min{di′ , K − w} if i′ ∈ Pi

– w − w′ ≤ min{w, di′} if i′ ∈ De.

The cost of an arc linking (i, w, a) to (i′, w′, a′) is defined as:

c̃(i,w,a),(i′,w′,a′) = cii′ − λi′ |w
′ − w|.

The cost of shortest path
−→
f (i, w, a) reaching (i, w, a) from (0, 0, 0) through dynamic pro-

gramming.

103



−→
f (0, 0, 0)= 0 (3.17)
−→
f (i, w, a) = min

(i′,w′,a−1)∈V s.t. ((i′,w′,a−1),(i,w,a))∈A
{
−→
f (i′, w′, a− 1) + c̃(i′,w′,a−1),(i,w,a)} (3.18)

This value is a strict lower bound because the history is not kept: there is no trace of the total

number of bikes loaded or unloaded. It may happen that the number of bikes moved at some

vertices while following this shortest path exceeds their demand.

Define
−→
F (i, w) = mina∈{1,...,Rmax−1}

−→
f (i, w, a). This value is the minimum of all the

shortest paths going from the depot to a vertex i with w bikes loaded on the vehicle within

strictly less than Rmax arcs. It is a lower bound on the cost of any forward path going from

the depot to i and finishing with w bikes.

A similar method using an acyclic graph leads to the calculus of
←−
F (i, w) that is the mini-

mum of all the shortest paths going from vertex i with load w to the depot within strictly less

than Rmax arcs. It provides a lower bound on the cost of any backward path going from a

vertex i to the depot and starting with w bikes.

Finally, the lower bound lb(P ) on the cost to complete a path P , used in Section 3.6.1, is

lb(P ) :=





←−
F (e(P ), ℓ(P )) if P is a forward path.
−→
F (e(P ), ℓ(P )) if P is a backward path.

3.7 Adding cuts to increase the z(RSPF )

Adding new constraints to the primal problem leads to new dual variables. Reduced cost of

routes are modified accordingly. For each type of cuts, its implications on the reduced cost is

briefly explained and their influences in the reduce cost of the route are taken into account in

both procedures GENPATH and GENROUTE.

Two types of cuts are added. A first family of cuts – dual-feasible function cuts – is obtained

through dual-feasible functions, some of them are taken from [26] and the other are special-

purposed ones. A second family – dominance cuts – comes from the generalization of some of

the dominance rules of Section 3.4.1 to the pool of routes.

3.7.1 Dual-feasible function cuts

Dual-feasible functions are added to enhance the model. Three different types have been

added: the Fekete-Schepers functions (f)kFS,1 and the Carlier et al. function (f)kCCM,1, see

104



[22, 40, 26] and the other are special-purposed ones. Here we expose the special-purposed

ones and how their influence in the reduce cost is taken into account.

Let k ≤ d be two positive integers. We define for x ∈ [0, d] the map

Fk,d(x) :=





2j if x ∈
(

jd
k
, (j+1)d

k

)

2j − 1 if x = jd
k

where j = {0, . . . , k − 1}

Proposition 3.7.1 (Superadditivity of Fk,d). For all x, y ∈ [0, d] such that x+ y ≤ d, we have

Fk,d(x) + Fk,d(y) ≤ Fk,d(x+ y).

Proof. Three cases have to be checked. For each of them, the inequality is straightforward.

– x = jxd
k

and y = jyd

k
: indeed 2jx − 1 + 2jy − 1 ≤ 2(jx + jy)− 1.

– x ∈
(

jxd
k
, (jx+1)d

k

)
and y = jyd

k
: indeed, 2jx + 2jy − 1 ≤ 2(jx + jy).

– x ∈
(

jxd
k
, (jx+1)d

k

)
and y ∈

(
jyd

k
, (jy+1)d

k

)
: indeed, 2jx + 2jy ≤ 2(jx + jy)

For k ≤ di, we apply Fk,di on
∑

r∈R birzr = di. With the supperadditivity of Fk,di , we get

that ∑

r∈R

Fk,di(bir)zr ≤ Fk,di(di)

is a valid inequality. Denote µk,i ≤ 0 the dual variable associated to this inequality. The pricing

subproblem (3.16) becomes

cr −
∑

i∈V

(λibir + µk,iF (bir)) ≤ ρ r ∈ R \ R. (3.19)

GENPATH can be adapted to deal with these new constraints. For forward paths, we will get

something like

cP = cP −
∑

i∈V

(λibi(P ) + µk,iFk,di(bi(P ))).

And for backward paths

cP = cP −
∑

i∈V

(λibi(P ) + µk,iFk,di(bi(P ))).

Using the superadditivity of Fk,di , we have

cP +cP = cr−
∑

i∈V

(λibir+µk,i(Fk,di(bi(P ))+Fk,di(bi(P )))) ≤ cr−
∑

i∈V

(λibir+µk,iFk,di(bir)).

GENPATH won’t miss routes whose reduced cost is under ρ. The computation of the lower

bound lb can be similarly straightforwardly adapted again because of the superadditivity of the

Fk,di’s. In practice, see Section 3.9, the maps Fk,d are used for k = 2 and k = 3.

105



3.7.2 Dominances cuts

The second type of cuts are obtained thanks to the dominances formerly defined in Sec-

tion 3.4.1. Proposition 3.4.1 implies that an edge connecting two pickup vertices or two deliv-

ery vertices is used in at most one route. It provides “clique-type” constraints of the following

form ∑

r∈R1
i,j

zr ≤ 1 i, j vertices of same type (3.20)

where R1
i,j is the set of all feasible routes containing the arc (i, j) or the arc (j, i).

Proposition 3.4.2 implies similar constraints of the following form
∑

r∈R2
i,j

zr ≤ 1 i, j vertices of distinct type (3.21)

where R2
i,j is the set of all feasible routes containing the arc (i, j) with a load strictly less than

K or strictly greater than 0 according to the type of vertices i and j.

These constraints can easily be checked while building the paths and the routes. However,

they can not be taken into account in the lower bound lb (dynamic programming has no mem-

ory). It is not too problematic since the lower bound computed without them remains valid.

3.8 Upper bound

To obtain an upper bound on the value of the solution, a Memetic Algorithm (MA) is

used. MA have been introduce by Moscato [62]. As in the genetic algorithm, a population

of individuals is kept. A score is associated to each individual. The objective is to find the

minimal cost individual. For that purpose, the population is subject to several transformations:

individuals are crossed together to create new individuals; local searches are performed on

individuals to have a population of local minima. To define the MA, we have to describe the

individuals and its score, the cross-over operations, the local searches and the management of

the population.

3.8.1 Individuals

In the one-vehicle version of the balancing problem, a polynomial algorithm has been pro-

posed to check whether there are bike displacements compatible with a given sequence of

vertices that bring the system to its target state (see Section 2.3 in the former chapter). The al-

gorithm uses a flow representation. Such an algorithm is useful since it allows to work only with

106



sequences of vertices when exploring the solution space, instead of working with sequences of

vertices and bike displacements between the vertices. In this section, we show that such an

algorithm exists also for the case with many vehicles. Note that in the SVOCPDP, drops were

allowed, which is not the case in the MVBP. At first glance, it seems that the flow algorithm

cannot be adapted. However, a simple trick provides a way to forbid drop in the flow modelling.

Proposition 3.8.1. Let 0 = iµ1 , i
µ
2 . . . , i

µ
tµ = 0 be a collection of sequences of vertices for

µ = 1, . . . ,M , the integer tµ being the length of the µth sequence. There is a polynomial

algorithm finding new initial and target states (p′i, q
′
i) for each vertex i and M routes inducing

these sequences of vertices and bringing the system from (p′i) to (q′i) such that

– 0 ≤ p′i ≤ pi and 0 ≤ q′i ≤ qi for each vertex i

–
∑

i p
′
i =

∑
i q
′
i

– the quantity
∑

i∈V p′i is maximal.

In particular, it is possible to decide in polynomial time whether a collection of M sequences

of vertices is induced by M routes at the end of which the system is at its target state (in this

later case, p′i = pi for each vertex i).

Proof of Proposition 3.8.1. For each µ = 1, . . . ,M , we build an oriented graph Dµ =

(Uµ, Aµ) as follows. Uµ has tµ elements: each vertex iµk (make as many copies of a vertex

i of G as there are occurrences of i in the sequence). The arcs in Aµ are of two types:

1. one arc (iµk , i
µ
k+1) for each k = 1, . . . , tµ − 1, with capacity K, and

2. one arc between the bth occurrence of each vertex iµ and its (b+1)th occurrence, if there

is one, with capacity +∞,

This graph Dµ is more or less the one used in the case with one vehicle of Figure 2.6 of the

former chapter. Now, we put an arc between the last occurrence of a vertex in Dµ with its first

occurrence in Dµ+1 (or Dµ+2 etc. – choose the first Dµ′

with µ′ > µ with an occurrence of this

vertex if there is one).

Finally, we add two special vertices s et t (the source and the sink). There is an arc from s to

each first occurrence of a pickup vertex in
⋃M

µ=1 D
µ and there is an arc from the last occurrence

of each delivery vertex to t. Their capacities are respectively pi and qi.

Denote by D this graph. Note that it has each of the Dµ has a subgraph.

Any s-t flow on D encodes possible bike displacements compatible with the given se-

quences of vertices. The numbers of bikes to be moved by vehicle µ while going from iµk to

iµk+1 are given by the flow on arc (iµk , i
µ
k+1) (arcs defined in 1.); the number of bikes remaining

107



f g

f ≥ g

g

h

f := h+ g ≥ g

g

Figure 3.4: How to impose an inequality between the entering and the leaving flows in a vertex

in a vertex i after the bth visit of the vehicle µ is given by the flow on the arc between the bth

occurrence of the vertex i and the (b+1)th occurrence (arcs defined in 2. or arcs between a Dµ

and a Dµ′

with µ′ > µ if there is no next occurrence of this vertex for vehicle µ).

The initial number of bikes in a vertex i is given by the flow on the arc between s and the

first occurrence of the vertex in D. The final number of bikes in a vertex i is given by the flow

on the arc between its last occurrence and t.

And conversely, any bike displacements compatible with the given sequences of vertices

induce an s-t flow.

Now, there is still a constraint missing: we must forbid drops. It means that between the

flow f on arc (iµj , i
µ
j+1) and the flow g on arc (iµj+1, i

µ
j+2), as defined in 1., there must be an

inequality: f ≤ g if iµj+1 is a pickup vertex and f ≥ g if it is a delivery vertex. There is an easy

way for forcing this kind of inequality in a flow problem, by changing the origin of an arc and

adding a new vertex (see Figure 3.4 for which one requires f ≥ g).

p′i is then the value of the flow in the arc between s and the first occurrence of i, and q′i the

value of the flow in the arc between the last occurrence of i and t. If a vertex i is not present in

any sequences, then we set p′i = q′i = min(pi, qi).

This result enables to consider only sequences of vertices, forgetting the logistic operations

to be done at each vertex. For a given sequence, the max-flow algorithm used in the proof of

Proposition 3.8.1 allows to recover the number of bikes to be loaded or unloaded at each vertex.

The individual is encoded as a M ×Rmax matrix, each line referring to a distinct route.

108



3.8.2 Score of an individual

The score of an individual is the total length of all its routes plus a penalty proportional to

the number of bikes that are misplaced at the end of them. The number of misplaced bikes is

computed with the help of Proposition 3.8.1.

3.8.3 Cross-Over Operation

To perform the cross-over operations, we adapt the route-first, cluster-second method of

Prins [73]. To that purpose, a giant route is defined as the sequence of routes sticked together

without trip delimiters. When performing the cross-over, two individuals are selected and

transformed into giant routes. The giant routes are recombined together as follows: a cut is

drawn at random; the first part of the first giant route is selected and completed by the second

part of the second giant route, and vice-versa. To be sure to visit all vertices at leasts once, if

some of the vertices are not visited once the recombination is done, they are introduced at the

cut with respect to their order in the original giant routes.

Once a new giant route is created, the original one-vehicle version [24] of Proposition 3.8.1

is used as a preliminary test: If the new giant route is not feasible for the one-vehicle version,

no division of the giant routes into M routes gives a feasible solution for the MVBP and the

new giant route can be discarded. However, if it is feasible for the one-vehicle version, it does

not necessary imply the feasibility for the MVBP.

In the case the preliminary test is successful, the new giant route is divided with the pro-

cedure of Prins [73] using an acyclic directed graph D. The vertices of D are the vertices of

the giant route (with repetitions). An arc is created between two vertices if there are at most

(Rmax − 3) vertices between them on the giant route. In this way, the sequence between the

two endpoints of such an arc can lead to a route for a vehicle. Moreover, the following con-

ditions are also required to create an arc (u, v) as they are natural conditions for an optimal

route.

– u is a pickup vertex.

– v is a delivery vertex.

– The depot is not between u and v in the giant route.

– There are no consecutive occurences of the same vertex between u and v in the giant

route.

An arc (u, v) of D gets as a weight the length of the closed path starting and ending with the

109



depot and going through the sequence of vertices between u and v on the giant route. The

division is obtained thank dynamic programming: we look for a directed path in D of minimal

weight, using at most M arcs. The minimization is over the sum of the lengths, which is not

the exact objective as we aim at balancing the network. However, the local searches presented

in the following paragraph are here to compensate this effect.

3.8.4 Local searches

Three local searches are performed on the individuals in order to find local minima. The

first one is a 2-OPT within a route – line of the matrix representing the individual. The second

is a 2-OPT between two routes – two lines of the matrix.

A third local search is tried when the individual is not feasible in the sense of Proposi-

tion 3.8.1 aiming at decreasing the penalty (see Section3.8.2). Stations are browsed to identify

the unbalanced vertices. Then, if a route traverses Rmax arcs, it tries to add unbalanced ver-

tices as follows:

– If any unbalanced pickup vertex is visited, it tries to add any delivery vertex after this

visit

– If any unbalanced delivery vertex is visited, it tries to add any pickup vertex before this

visit

– Otherwise, if two new stops can be added, it tries to add an unbalanced pickup vertex

and an unbalanced delivery vertex at any point of the route, the former being before the

latter.

Only the move that provides the best improvement is done. After a move, a cleaning oper-

ation is performed. It enables to ensure that the natural conditions for a route are satisfied (see

the conditions of existence of arc (u, v) in the previous subsection).

3.8.5 Population and selection

At each iteration, the new individuals are scored and if their scores are lower than the one

of the worst individuals, they are inserted into the population while the latter are erased. The

size of the population is kept constant over time.

The selection of the individuals for the crossing-over is not uniform over all the population:

the first one is chosen with a greater probability on the lowest score individuals, the second

individual probability is uniform over all the population without the first individual.

110



3.8.6 MA calls in the overall algorithm

This MA is used twice in the overall algorithm (see Section 3.4.3). For the first call, two

individuals are created using greedy heuristics. The first one is to use the solution of the

SVOCPDP as a giant route (see former Section 3.8.1). The second uses a method similar

to the one used in the SVOCPDP and explained in Section 2.8.2. The others are randomly

generated. This call is used to build the first setR of feasible routes.

The second call is performed after having computed a lower bound, in order to get a good

upper bound. For that call, the population is enriched by a solution obtained by rounding up

some of the zr solution of the relaxation and solving it again until all zr are integers.

3.9 Computational study

All the algorithms have been coded in C++ and tested on a PC AMD Athlon 5600+ clocked

at 2.8 GHz, with 16 GB RAM. CPlex 12 is used.

3.9.1 Instances and results

The column generation algorithm runs for 6 hours. M is set to 5 and Rmax to 10. The

time limit on the first call of the MA was set to 300 seconds. The algorithm was tested on two

sets of instances.

The first set of instances are those used for the SVOCPDP, completed with other instances

with 10 stations. They latter were created from the 20 stations instances of the SVOCPDP split

into two parts. The vehicles capacity K is set to 10 in all the instances. Table 3.1 shows the

results obtained on instances with up to 30 stations. Experiments have been done for di ≤ K.

The name of an instance is of the form “nαqβX” where α is the number of stations and β is the

capacity of the vehicle. It is shown in the first column. The second column gives the number

of non initially balanced vertices. The third columns presents d =
∑

i∈V di which is twice the

number of bikes to move. Columns LB and LBc show the lower bound obtained, respectively

before and after having added the cuts of Section 3.7. These cuts are not initially added in

the linear program. At first, the linear problem (RSPF ) is solved to optimality without any

cuts added. Then we enter a second phase during which we follow the same framework but

we can add at each iteration columns and cuts, if any violated cut is found. The sixth column

111



LBSV gives the lower bound obtained solving the SVOCPDP, which is also a relaxation of the

multiple vehicle problem. The number of dual-feasible function cuts (FC) and of clique cuts

(CC) used for computing LBc are shown in the two following columns.

The final upper bound (UB) obtained when the algorithm stops after a time limit is given in

the nineth column. A star ∗ is added when the UB is in fact the optimal value. The fact that it

is the optimal value is proven a posteriori by checking that the values of the relaxations – the

one with the equality as in (3.2) and the one with the inequalities as in (3.6) – are the same (see

discussion in Section 3.5). The gap presented in the tenth column is computed using the former

value and the best lower bound obtained, in the case LBc and LBSV exist. Otherwise, LBSV is

used. UBMA gives the value obtained after the first call to the memetic algorithm. The two last

columns give the time spent by the whole method and the final number of columns.

The MA has moreover been experimented on the 30 and 40 stations instances of this first

set. Table 3.2 shows the results on these instances when the MA is run for 2 hours instead of

300 seconds. The first column gives the name of the instance, the second columns LB# gives

the best lower bound obtained. For the 30 stations instances, it is the higher value between

LBc and LBSV when the latter is found in Table3.1. For the 40 stations instances, it is the

lower bound obtained for the SVOCPDP. The third column UB#
MA shows the final value ob-

tained at the end of the memetic call. The last column is the gap between the two former values.

The second set of instances are the SDVRP instances taken from [9] that were modified as

follows: for these nine instances, the capacity of the vehicles was set to 100 and the demand

of the station are either 90 or 60. All the former numbers are divided by 10 since it does not

change the optimal solution on the instances. The bound Rmax can then be 10 as it is the

capacity of the vehicle: no route can be longer than the vehicle capacity. For these instances,

M is set to infinity since in the SDVRP the number of vehicles is unbounded and therefore

the constraints (3.3), (3.7) and (3.11) are forgotten. To match with the MVBP, a pickup vertex

at a zero-distance from the depot receives all the commodities to be delivered at all the other

vertices.

Table 3.3 shows the results obtained running the method explained here on these instances.

The first column shows the name of the instance. The second gives the number of unbalanced

vertices in the instances. LBc shows the lower bound obtained after dual-feasible function cuts

and clique cuts are added. UB is the upper bound obtain at the end of the method and the

column “Gap” informs on the gap between UB and the best lower bound obtained. Here again

112



a star ∗ is added when the UB is the optimal value. Column “Time” presents the time spent by

the method. The two last columns give respectively the lower bound and upper bound obtained

on these instances in [9]. When these two values are equal, the value is then the one of the

optimal solution, and it is marked with a star ∗.

3.9.2 Conclusion

The optimal solutions are found for all the instances with 10 vertices and in very short time.

For the instances with 20 stations, the optimal solution is found in some cases. In the other

cases, the gap is quite small, except in one case, the instance n20q10H. Note that there can

be an irreducible gap between the lower bound computed from the relaxation and the optimal

solution, as it appears in the 10 stations instances. This gap would be the gap at the root node if

any branching were performed. For the 30 stations instances, the gap increases a lot. In some

cases, the lower bounds LB or LBc are not found, in which case the mark “-” is written in the

corresponding cell of Table 3.1.

The MA enables to find very good solution in the 10 stations instances, as in most of the

case UBMA is the optimal solution. In 6 cases out of 20, it is near the optimal solution. In the

20 stations instances, UBMA and UB are very close except in one case, the same instance as

before. When the optimal solution is found at the end, it was already found by the memetic

algorithm. As for the 30 stations instances, the method does not improve the solution obtained

by the MA in some case, because of the time limit. The gap is then more significant. Table 3.2

shows the result of the memetic algorithm alone. Run with more time, the memetic algorithm

improves the quality of the solution: for all the 30 stations instances, UB#
MA ≤ UBMA. For

the 40 stations instances, the gap is bigger. Note that the only available lower bound is the

one of the SVOCPDP. This bound could be quite loose when the number of stations increases.

Indeed the distance between LBc and LBSV is smaller in the 10 stations instances than in the

30 station ones.

For the SDVRP instances, Table 3.3 shows that 5 out of the 6 optimal solutions found by

Archetti et al. [9] are obtained with the method exposed in this chapter. In the other cases, the

upper bound is equal or near to the value already found. The lower bound is much lower than

the one found by Archetti et al. [9]. This is expected as the MVBP is more general. Special

cuts suitable for the SDVRP may be used to enhance this value.

113



The computation time and the size of the problem solved do not enable to plan to use this

algorithm for solving the MVBP at a city scale: even small BSS have a few dozens of stations,

and this number can exceed 1′400 as in Paris. However, in some systems, the number of stations

requiring at least one visit per day is much smaller: for instance, in the Brussel Villo! system,

there are about forty of them [21] while the whole system has 180 stations. The method outlined

in this chapter could then be used for solving a reduced problem on the subset of problematic

stations.

114



Instance |Pi|+ |De| d LB LBc LBSV # FC # CC UB Gap % Time UBMA |R|

n10q10A 10 52 3049.21 3055.00 2994 0 1 3055* 0.00 188.93 3130 955

n10q10a 10 48 3572.09 3611.25 3483 2 6 3719* 2.98 294.35 3719 1273

n10q10B 10 60 3619.95 3631.95 3671 1 5 3704* 0.89 342.18 3704 2629

n10q10b 10 32 3026.00 3114.50 3122 5 4 3192* 2.24 248.44 3192 1072

n10q10C 10 64 3133.38 3258.00 3316 4 16 3392* 2.29 2441.71 3392 6556

n10q10c 10 44 4239.00 4239.00 4226 0 0 4239* 0.00 191.43 4239 929

n10q10D 10 54 3109.18 3147.33 3071 0 6 3199* 1.64 1205.95 3273 1834

n10q10d 10 42 4002.05 4206.83 4238 4 9 4497* 6.11 359.88 4497 17523

n10q10E 10 58 4680.66 4857.29 4828 1 8 4876* 0.38 469.50 4921 5589

n10q10e 10 58 3627.29 3675.60 3816 2 10 3823* 0.18 948.44 3823 23537

n10q10F 10 50 3685.60 3794.88 3758 1 7 3796* 0.02 226.16 3836 9297

n10q10f 10 36 3208.44 3283.46 2908 0 6 3468* 5.62 276.07 3468 950

n10q10G 10 52 3713.89 3735.61 3325 2 8 3973* 6.35 716.29 4151 2445

n10q10g 10 34 4020.38 4075.20 3685 0 5 4179* 2.54 285.94 4179 1084

n10q10H 10 48 3710.95 3772.06 3790 2 7 3959* 4.45 1705.69 3959 4265

n10q10h 10 62 3995.12 4043.89 3960 2 8 4168* 3.06 5292.60 4168 4713

n10q10I 10 44 3604.02 3711.20 3138 1 10 3963* 6.78 361.36 4026 1802

n10q10i 10 60 2614.47 2632.50 2390 1 3 2645* 0.47 9663.33 2645 824

n10q10J 9 56 3117.00 3125.00 3060 0 1 3125* 0.00 909.75 3125 2488

n10q10j 10 42 3329.06 3392.40 3139 3 9 3453* 1.78 223.70 3453 2099

n20q10A 17 88 4679.25 4758.00 4702 4 12 4826* 1.42 2547.20 4826 3917

n20q10B 18 80 4994.09 5051.63 4769 3 10 5460 8.08 34244.00 5751 337467

n20q10C 20 108 6214.24 6317.00 6012 3 16 6509 3.03 22747.00 6723 138115

n20q10D 19 118 6136.87 6208.00 5989 7 8 6208* 0.00 1122.67 6208 3723

n20q10E 18 112 6124.96 6217.29 6245 6 17 6520 4.40 22209.00 6535 303986

n20q10F 20 90 5085.13 5162.82 4717 6 15 5222* 1.14 1610.25 5222 3506

n20q10G 19 86 5437.96 5466.29 5070 7 13 5795 6.01 21912.50 5795 17679

n20q10H 18 100 5643.31 5824.36 5542 5 24 6582 13.00 161890.00 6583 115217

n20q10I 19 102 4788.49 4879.42 4576 0 20 5225 7.08 23419.00 5333 249917

n20q10J 16 92 4476.65 4545.00 4070 12 9 4545* 0.00 2154.61 4545 3360

n30q10A 29 140 6527.70 6637.53 6236 6 20 7265 9.45 23803.00 7712 204394

n30q10B 25 124 6528.49 6676.48 6308 8 22 7041 5.45 23370.10 8081 25938

n30q10C 28 152 - - 6335 - - 8050 27.07 21600.00 8050 -

n30q10D 28 146 6596.43 6729.89 6076 5 26 8127 20.75 36449.20 8127 6519

n30q10E 26 132 6363.72 6497.71 5877 5 22 7507 15.53 22099.00 7532 205270

n30q10F 29 130 6329.06 6450.86 5695 4 20 7335 13.70 22990.00 7335 110319

n30q10G 27 162 8721.26 8879.59 8891 7 28 10011 12.59 38467.00 10011 114893

n30q10H 27 136 6431.10 6640.81 5884 6 27 7464 12.39 21906.00 7464 94038

n30q10I 27 144 5760.94 5974.50 5430 4 31 6923 15.87 50727.40 6923 3371

n30q10J 27 138 - - 5764 - - 7672 33.10 21600.00 7672 -

Table 3.1: Results on the instances with up to 30 stations and di ≤ 10

115



Instance LB# UB#
MA gap %

n30q10A 6637.53 7166 7.96

n30q10B 6676.48 6939 3.93

n30q10C 6335.00 7575 19.57

n30q10D 6729.89 7543 12.08

n30q10E 6497.71 7209 10.94

n30q10F 6450.86 6715 4.09

n30q10G 8891.00 9693 9.02

n30q10H 6640.81 7069 6.44

n30q10I 5974.50 6339 6.10

n30q10J 5764.00 6953 20.62

n40q10A 6711.66 9675 44.15

n40q10B 5949.00 9012 51.48

n40q10C 7237.00 8258 14.10

n40q10D 7692.00 9488 23.34

n40q10E 6424.00 8595 33.79

n40q10F 6651.54 9552 43.60

n40q10G 7384.00 9933 34.52

n40q10H 6556.00 9339 42.44

n40q10I 6901.00 9540 38.24

n40q10J 5989.20 8297 38.53

Table 3.2: Results of the memetic on the instances with up 30 and 40 stations

Inst. n LBc UB gap % time (s) z∗ z∗

SD1 9 21555.60 22828* 5.90 52 22828* 22828*

SD2 17 66476.00 70828* 6.54 1018 70828* 70828*

SD3 17 42844.00 43044* 0.46 249 43044* 43044*

SD4 25 62895.60 63062* 0.26 400 63062* 63062*

SD5 33 132515.00 138994 4.88 20229 137325 138994

SD6 33 82988.90 83086* 0.11 1717 83086* 83086*

SD7 41 345261.00 366000 0.06 21600 363844 364000

SD8 49 486218.00 514046 5.72 28115 506828* 506828*

SD9 49 197319.00 206519 4.66 17767 202808 204288

Table 3.3: Results on the SDVRP instances with up to 50 stations

116



117



118



Part II

The dynamic problem

Chapters 4 and 5 gather works done in collaboration with Frédéric Meunier, Roberto

Wolfler Calvo, Houssame Yahiaoui and Thomas Pradeau. Houssame Yahiaoui implemented

the simulator presented in Chapter 4 and I helped to build its model. Thomas Pradeau and

Frédéric Meunier initiated the work on the complexity study of Chapter 5 which I completed.

I worked on the real time regulation algorithms. This work was presented at the INFORMS

2011 and ROADEF 2012 conferences, and a journal version of this work is in preparation [25].

Chapter 6 presents results of a common work in collaboration with Tal Raviv and Michal

Tzur. A journal version of this chapter is in preparation.

119





Chapter 4

Real-time shared transport system: model

and simulations

4.1 Introduction

Shared transport systems gather different means of transportation with common features.

The idea is to share vehicles between several users. In car sharing and bike sharing systems,

the vehicles are not owned by users. A fleet of vehicles are available. As stated in Chapter

1, the third generation of these transportation solutions is the focus of this work. In this case,

cities are equipped with stations. The number of stations depends on the size of the city. In the

BSSs existing already, this number goes from few stations to several thousands of stations in

the extreme cases. The stations are located in order to cover all the city, preventing imbalances

in catchment areas. Each station has a capacity in vehicles, depending on the number of parking

places installed. For instance in Paris there is a Vélib’ station every 300 meters on average and

the number of bike racks per station goes from a dozen to over sixty. The main feature of these

means of transportation is that they authorize users to use vehicles spontaneously – without

notifying the system operator in advance – to complete a one-way trip. Vehicles are taken at

any station and returned at any station: when a user rents a vehicle at a station, he does not have

to inform the operator about where and when he intends to return the vehicle. In exchange, he

is not ensured to find a place to park his vehicle at his target station anytime.

The huge flexibility enabled by such means of transportation leads to imbalances in the

vehicles repartition over the days. Some areas of the cities could suffer from a shortage of

parking places, while in others users hardly find vehicles at stations. These imbalance issues

121



can occur in different places of the city depending on the time of the day.

Herbert Simon, 1975 Turing Prize and 1978 Nobel Prize in Economics, gives [81] a

definition of a complex system in 1962 as a system “made up of a large number of parts which

interact in a nonsimple way. In such systems, the whole is more than the sum of the parts,

not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the

properties of the parts and the laws of their interaction, it is not a trivial matter to infer the

properties of the whole”. Shared transport systems fit perfectly into the former definition:

vehicles are moved by users, modifying the repartition of them in the network; interactions

between users cannot be modeled in a tractable way: a user’s decision to rent a vehicle at a

specified station obviously impacts on the number of vehicles at this stations, but not only: if

he takes the last vehicle, the station is empty. A future user arriving at this station would then

have to roam through neighboring stations to find a vehicle. This shows that a user’s decision

does not impact only on his departure and arrival stations, but may affect events over the entire

network: another decision would not have created this shortage of vehicles. The way a single

user’s decision echoes on other stations is a complex process. Thus, the need of a simulator

appears clearly. It enables to model the shared transport system and to compare different

strategies to cut the number of shortages or excess problems, plugging them into the simulator.

Regulation operations could help preventing such events to occur. Two types of operations

are distinguished:

– The operator introduces a way to move vehicles from a station to another. In the case of

a bike sharing system, bikes can be transported by trucks with a capacity on the number

of bikes they can move at the same time. In the case of a car sharing system, employees

could move a car from a station in excess to a station with a shortage of car. Such em-

ployees could be seen as “unit-capacity trucks”. Instructions are given to these “trucks”

on where to go and what to do. In Brussels Villo! system, 3 trucks are driven through the

city during daytime, operating on the 180 stations.

– The operator does not plan to add any balancing operations which would need external

factors. Incentive policies are considered to encourage users to regulate the system, pre-

venting stations from being full or empty. In the Vélib’ system, such system is already

partially set up, since users who park their vehicles at specified stations receive free bik-

ing time. These stations are mainly situated on hills or at the periphery. For a car sharing

122



system, the solution of having drivers balancing the system seems to be very costly so

other means to improve the system efficiency are relevant.

The first type of regulation strategies are easy to be implemented, while the second is harder.

Operators attach importance to the KISS – Keep It Simple & Stupid – principle. It means that

these means of transportation have to be easy to use. To a certain extend, having prices which

change regularly could be seen as sticking out the former law.

The model of a shared transport system is described in Section 4.2. The simulator which

was implemented is outlined in Section 4.3. Note that further instructions on how to download,

install and use the simulator are available on the website later quoted.

4.2 Shared transport system: the model

In this section, the model used to represent a shared transport system is presented. In

Subsection 4.2.1, the transportation offer is outlined. It refers to all the physical parameters of

the system. The different features of the two types of regulation operations formerly mentioned

are depicted. Subsection 4.2.2 describes how the users behave within the system.

4.2.1 Transportation equipment

A city with n ∈ Z+ stations is represented as a complete directed graph G = (V,A) in

which V = {1, . . . , n} is the vertex set, each vertex representing one of the n stations, and A is

the set of arcs representing the shortest path in the city. The total number of vehicles is denoted

by N ∈ Z+. Each vertex i has a capacity Ci ∈ Z+ in vehicles, which is the capacity of the

station it represents. At each station the number of vehicles and parking places available over

all the stations of the network are displayed. The time needed by a vehicle (resp. by walking)

to go from vertex i to vertex j is a random variable T v
ij (resp. Tw

ij ), whose law depends on the

context. The time needed to rent or to park a vehicle at a vertex is assumed to be negligible.

In the case regulation using trucks is tried, a fleet of M ∈ Z+ trucks is available to load or

unload vehicles at the stations. Each of them has a capacity K ∈ Z+. These trucks are waiting

for instructions from the operator. These instructions should include both the station where to

go and the number of vehicles to load or unload there. Here again the time needed by a truck to

drive from a vertex i to a vertex j is a random variable T t
ij whose law depends on the context.

The time needed to load or to unload vehicles at a vertex is assumed to be negligible.

123



In the case of a regulation without trucks, we assume that users have access to a reliable

information system. The system displays prices which are updated regularly. These prices

correspond to the incentive policies mentioned earlier. A user who parks his vehicle at a station

will be charged this extra cost. The price a user will pay once he parks is the price he saw when

he rents the vehicle: prices are frozen for a given time. Note here that users can also decide

not to take the vehicle and to walk to their target vertex. Moreover, if prices are negative, the

user will gain money – or free using time. The idea is to deter people from parking their rented

vehicle at stations which are full or nearly full. Each user arriving at vertex i has a target vertex

j. When he rents the vehicle, he is made aware of the prices over all the stations and could

choose to park to another vertex rather than his target one. This choice is the result of an inner

“thinking process” outlined in the following subsection.

4.2.2 Users behaviour

The users are assumed to arrive independently at a vertex i according to a Poisson process

of parameter λi ∈ R+. The parameters of this law are assumed to be homogeneous over time.

Each user arriving at vertex i has a target vertex j drawn at random with probability pij . These

probabilities are kept in the Origin-Destination (O-D) matrix.

ji

k

k′

k′′

Figure 4.1: Choosing an alternative starting station

124



When a user arrives at an empty station to rent a vehicle, he is made aware of the state of

each station in the system. He chooses to explore the station having vehicles that minimizes

its total journey time, hoping to find a vehicle there, as it has been noted by [75] confirmed by

practical studies. Figure 4.1 shows an example where a user shows up at station i willing to

find a vehicle to go to station j. As station i is empty, he walks to station k where he knows

there is an available vehicle. He hopes to find it once he arrives there to continue his trip to his

destination. He is not going to station k′ though it is closer to station i as he knows there is no

vehicle available there. He is not going to station k′′ because walking to k′′ to rent a vehicle to

finish the trip to j would result in a lengthier trip. The same behaviour occurs when looking for

a parking place. Users choose to explore nearby stations with available parking places.

To avoid having users endlessly roaming through the city, two bounds are given for these

two exploration phases. When he is looking for a vehicle, a user has a maximum number of

vertices he is willing to explore and a limit on the time this exploration can last, after what he

leaves the system unsatisfied. A similar two-bound limit is set for the exploration phase in the

case he does not find a parking place. In the case a user leaves the system because he did not

succeed in finding an available parking place within the limits of his exploration “patience”,

the vehicle is “lost”. These two bounds are introduced with the intention of having a realistic

system. Users who cannot find a vehicle after having explored a few stations opt for another

transportation mean. If they cannot find a parking place, they leave the system with their

vehicle, decreasing the total number of vehicles available within the system. This is indeed the

case in Paris where after 4 years, none of the available vehicles are original ones [39]. These

bounds on the exploration enables also to compute indicators – see Section 4.3.1.

When there is a pricing strategy, we have at time t a price cj(t) ∈ R attached to each

vertex j, which is the cost of parking a rented vehicle at the station. When a user starts to travel

from a vertex i to a target vertex j at time t, he chooses an intermediate target vertex k ∈ V

which minimizes the next quantity that computes the disutility of his trip:

disk = PRICEVHC × E(T v
ik) + PRICEWALK × E(Tw

kj) + ck(t)

where E is the expected value of the transportation time. The coefficients PRICEVHC and

PRICEWALK monetize the cost assumed by a user for using a vehicle or walking for a time

period. They define the user’s willingness to pay for saving time by using a vehicle. If the disu-

tility is minimum for k = j, the user does not modify his target station. If the minimal disutility

is achieved when the intermediate vertex k is the departure vertex i, the user walks to the target

125



vertex and rejects the system. However the number of rejections have to be carefully taken into

account. Figure 4.2 illustrates the former thinking process. Solid line arrows correspond to trip

ji

k

Figure 4.2: Choosing an alternative destination station

using a vehicle while dotted line arrows to walking. Assume a user shows up at station i where

there is a vehicle available and wants to reach station j. Three alternatives are open for him.

There are here listed and the price he would pay for it is given.

– The user rents a vehicle at i and directly goes to station j. The disutility is then

disj = cj + PRICEVHC × dij .

– The user rents a vehicle at i and goes to an alternative arrival sta-

tion k /∈ {i, j} from where he walks to station j. The disutility is then

disk = ck + PRICEVHC × dik + PRICEWALK × dkj .

– The user decides not to rent the vehicle and walks to station j. The disutility is

disi = ci + PRICEWALK × dij .

It seems that users who do not rent any vehicle should not pay any price ci. However,

the λi assume that all users actually rent a vehicle. This is the limit of the former method:

it cannot be used to compare with other transportation means such as subway, taxi or walk.

The calculated prices ck only have meanings when comparing them together. The results are

obtained give-or-take a translation on all the values. Adding EUR 1000 to all prices does

not change the number of rejections. Therefore, OADLIBSim is unable to evaluate modal

switching. Translating these penalties into “real prices” to compare the shared transport

solution with other means of transportation would be a socio-economical topic.

All these parameters define different profiles of users. Several profiles can exist simultane-

126



ously. The proportion of each profile of users is specified. For instance, Table 4.1 describes

four profiles of users. “Nervous” users explore only 2 stations and spend 2 minutes maximum

to find both a vehicle or a parking place, while “Patient” users can visit up to 8 stations (re-

spectively 10 stations) and spend up to 20 minutes (resp. 25 minutes) to find a vehicle (resp. a

parking place).

Type of Proportion Max # st. Time lim. for a Max # st. Time lim. for a

user (in %) for a vehicle vehicle (in min) for a parking parking (in min)

Nervous 30 2 2 2 2

Impatient 20 2 2 4 8

Reasonable 10 4 10 7 15

Patient 40 8 20 10 25

Table 4.1: Example of different user profiles in the simulator

All the former features need to be taken into account in the simulator. Its objective is to

offer simple methods to add both type of strategies and to test them over several instances. The

issue of how to evaluate the performance of a system has also to be taken into account.

4.3 Description of the simulator

In this section, the simulator is presented and the question of finding appropriate indicators

is addressed. The simulator takes as input all the parameters described before and enables to

compare the performances of different management strategies. It copes with huge dimensions.

Several relevant indicators to evaluate the performances of the system.

The simulator OADLIBSim utilizes OMNeT++, a discrete event simulation environment.

It enables to successfully simulate complex systems. Its flexibility made it a useful tool in other

areas such as queuing network. The different components are programmed in C++. OADLIB-

Sim runs on all platforms. It presents a user friendly interface. OADLIBSim is freely available

on the website of the project : http://cermics.enpc.fr/∼meuniefr/home.html/OADLIBSim_Site

To simulate a shared transport system, one needs to specify the system characteristics to

OADLIBSim. These characteristics are formed by a set of values, which gather the system

parameters. There are simple values such as the number of stations or vehicles, and matrices

such as the O-D matrix or the mean travel time to go from a station to another.

127



Additionally, one must enter the set of regulation methods to be tested. Default behaviour

for OADLIBSim is to launch regulation-free simulations. By using the simulation inputs, regu-

lation methods can be enforced using trucks, prices or both. These methods can be easily added

into the simulator. They have to be programmed in C++. A template for each type of methods

guides the implementation of a new component.

The simulation inputs are defined using a single parameter file (usually named with the

file extension .ini), and a set of .csv files. The .ini file contains all simulations single-valued

parameters such as for example size, vehicles and parking number. . . It indicates the .csv files

to be used for matrices parameters. Table 4.2 lists all the input information with respect to the

order they appear in the .ini file. The three last inputs are not mandatory. If not precised, default

parameters are taken to compute the truck travel times and to define a user’s profile. Stations

coordinates are used only to show a coherent display in the graphical interface. Then, a boolean

value indicates whether log files are needed or not. They are mandatory in the case we want to

draw figures such as those shown later in this section.

Another software can be used to generate inputs. CityBuilderGui is its graphical front-

end. It allows the specification of all the needed data to generate a city. It enables to view the

produced network so to check the quality of the stations distribution.

Different regulation strategies can be easily added and programmed in C++. Each strategy

is a subclass of a virtual class, either the one using trucks or the one with prices. When pro-

gramming a new strategy, one has to give a name to this subclass and to implement the few

methods which have to be written thanks to the template formerly mentioned. In the case of a

truck regulation strategy, missions are given to the trucks. A mission is a sequence of stations

to visit with logistic operations to complete. Two types of missions can be given to trucks:

default mission instructions are “Drive to station s and load t vehicles there”. The truck drives

to the station where it would try to load the ordered number of vehicles, whatever the number

of vehicles parked at the station. If this number is less or equal to t, the trucks empties the

station; objective driven mission instructions are “Drive to station s and move the number of

parked vehicles as close to an objective o as possible”. The truck travels to the station where it

tries to equal the number of parked vehicles with o, leading to loading or unloading operations.

To add regulation methods, further information has to be specified in the .ini file. They are

listed in Table 4.3. Note that pricing and truck regulation methods can be used at the same time.

Once all parameters loaded by OADLIBSim, one has to specify which regulation strategy to

use. The strategy to be tested has to be chosen within the list showing up as in Figure 4.3. The

128



Name of the inputs Description of the input

Simulation time limit the limit on the simulation time can be expressed in hours,

minutes and seconds

Number of repeat the simulation can be repeated several times with a different

seed in order to test the robustness of the strategies

Seeds for the different

random components

OMNeT++ simulation enables to have different seeds for

different components simulating discrete events that are not

linked

Number of stations number of stations present in the system

Number of vehicles the number of vehicles initially present in the system; when

the simulation begins, they are all parked at stations and

their initial repartition is uniform over all the stations

Number of parking the total number of parking places

Number of trucks the total number of trucks

Capacity of a truck maximum number of vehicles on a truck

Vehicle travel time file name of the .csv file keeping the mean vehicle travel time

matrix; the mean time to walk from a vertex to another is

taken as the mean time spent by a vehicle for the same dis-

placement multiplied by a constant factor

OD file name of the .csv file keeping the O-D matrix

Arrival rate file name of the .csv file keeping the station client arrival rates.

They are homogeneous

Station capacity file name of the .csv file keeping the capacity of each station

Station coordinates file name of the .csv file giving the three coordinates (x, y, z) of

each station

Truck travel time file name of the .csv file keeping the mean truck travel time ma-

trix

Client categories file name of the .csv file keeping the different user profiles and

their proportions

Table 4.2: Inputs of OADLIBSim

129



Name of the inputs Description of the input

TrucksManagerVersion name of the class used for the regulation method

TrucksRequestMission boolean indicates whether the truck request mission

or not; once a mission is finished, the truck can either

request a new mission or wait for the operator to send

him a new mission

TrucksMissionObjectiveDriven boolean indicates whether the truck mission type is

default or objective driven

UnrequestedMissionInterval time after what a new mission is given to trucks; in the

case this optional input is activated, new missions are

given to trucks at each time slot; in the case a truck

already has a mission, its old mission is erased and

the truck follows the updated instructions

PricingEnforcement boolean indicates a pricing strategy exists

PricingUpdatePeriod time between two successive updates on the prices

PricingManagerVersion name of the C++ class of the strategy

Table 4.3: Further inputs for regulation method

130



default strategy named “TruckMissionBuilderDummy” does not give any instruction. Trucks

do not interfere with the system. Vehicles are neither loaded nor unloaded.

Figure 4.3: Interface: choosing the strategy

Then, the system is loaded and by clicking on the Play button, the simulation starts.

“Events” are created. An event is the arrival of a user at a station, looking for a vehicle or

a parking place. A user that is able to find a vehicle is then sent in the “Itinerary Manager”

during the time of his trip. This is shown in Figure 4.4 where a bike logo leaves a station for

the logo representing the “Itinerary Manager”, in the bottom right. In this case the network has

only five stations and the user takes a vehicle at station 2. When the user arrives at his final

destination station, the same bike leaves the “Itinerary Manager” to go to the corresponding

station. Figure 4.5 illustrates this case with a network of 125 stations. If he does not manage to

park there and that the user roams, the bike returns to the “Itinerary Manager”.

When the regulation strategy uses trucks, they also follow the same trail: when leaving a

station for another one, a truck is sent to the “Itinerary Manager” during the time he needs to

drive to his destination. Figure 4.6 shows an example with the five station network.

Note that the time elapsed for the regulation strategy to complete is inserted in the simula-

tion. In the case of regulation using trucks, when a truck has no instruction, the method is run

to provide him new instructions. Before calling the method, the simulation is stopped. Then, if

the computing time is a minute, the simulation is run for a minute during which the truck does

131



Figure 4.4: Interface: simulating a trip leaving station 2

Figure 4.5: Interface: arriving at a station

132



not move. After a minute in the simulation time, the truck receives his new instructions and

starts to complete them. This ensures to take into account the time needed by the regulation

methods.

Figure 4.6: Interface: regulation using trucks

4.3.1 Evaluation of the quality of the management

Our purpose is to compare different strategy to enhance the system efficiency by improving

regulation strategies. In the present subsection, we want to design various indicators allowing

to evaluate and compare management strategies and algorithms. We emphasize that in our

model, the demand is inelastic: the parameters of the Poisson laws λi and the O-D matrix pij

are independent of the quality of the management strategies. It is of course an approximation,

which is classical in such context, especially in transportation science. Global modelling is

more or less out of reach. We can think for instance about the four-step model in transportation:

the last one – traffic assignment – which has received a lot of attention – works often with a

predetermined demand.

During the simulation, information is kept and they can be displayed at the end of the

simulation. For instance, Figure 4.7 displays the evolution of the vehicles when there is no

regulation. The network has 125 stations each of which has 20 parking places. Initially 1250

133



vehicles are available. After a short transition period, half of the vehicles seems to be in use

anytime. The third curve which is slowly increasing is the number of “lost vehicles”. In that

example, about 100 vehicles are lost. In that simulation, users are all chosen to have 0 patience:

whenever they do not find an available parking place at their target station, they leave the

system with their vehicle. Information can also be displayed per station. Figure 4.8 shows the

evolution of available parking and vehicles at the station 6 in the former network case. These

two curves are symmetric. The third curve represents the number of vehicles lost at the station.

This curve increases at the end of the simulation period. With no surprise, it increases when the

station is full. Users arriving at the station at this time cannot park their vehicles and so they

leaves the system with it. At the end of the simulation, 7 vehicles are lost at this station.

Figure 4.7: Example of the type of output for the network

Indicators have to be defined to compare the performances of the different strategies. They

should answer the two following question: how many users have found a vehicle ? How many

users have found a place to leave their vehicle ? As the objective is to measure the system

efficiency with respect to the service is to count the number of satisfied users. A user is said to

be satisfied when he manages to rent a vehicle at a station and park it at a station. If he roams

to find a vehicle or a parking within his patience limits, he is still considered as satisfied. The

log files produced at the end of the simulation enable to discriminate between the number of

exploration steps users have to do before finding a vehicle or a parking.

134



Figure 4.8: Example of the type of output for a station

If there is a regulation strategy using trucks, the efficiency of the strategy could be measured

comparing the number of satisfied users obtained with this regulation with the number of them

without regulation. The gain of satisfied users divided by the total number of vehicles moved

by the trucks during the simulation could give a measurement of the average impact of moving

a vehicle. One can think that this ratio is bounded by 2, as moving a vehicle from a station to

another would enable one user to park its rented vehicle at the departure station, and another

user to rent the unloaded vehicle. However this idea is not completely correct. Figure 4.9 shows

part of a network, with k + 2 stations. The values of the O-D matrix pij are displayed next to

each arc. For any t ∈ {1, . . . , k − 1}, we assume that pstst+1 = 1. Assume that vehicles are

initially parked at station p. The thick arrow stands for a trip made by the truck moving vehicles

back from station d to station p. Each vehicle brought back would cause in average a gain of

0.7 + 0.3k satisfied users. When k increases, this average gain exceeds 2.

If there is a pricing strategy, an indicator is the maximal magnitude of the prices while

regulating the system. In that case, the users that rather walk from their initial station to their

destination are counted separately.

135



70%

100%

100%

k

30%

s1 s2 sk

d

p

Figure 4.9: Indicator: about the efficiency ratio

4.4 Conclusion

In this chapter, we presented the model of shared transports used and also the simulator

OADLIBSim. This simulator can be downloaded at the website of the project. It enables people

to easily tune the simulation environment by specifying the network scheme and parameters and

the users behaviour in input. New management strategies can quickly be added in the simulator

and tested. The different indicators which can be computed to estimate the performances of

these strategies are given.

136



137



138



Chapter 5

Real time optimization methods

5.1 Introduction

In the Parisian Vélib’ system, several methods have been used since the system started in

2007. 23 trucks and 3 buses are operating in the city days and nights. Incentive policies with

the V+ stations were also introduced to encourage users to return their rented vehicles at some

stations regularly suffering from a shortage of bikes. Users obtained a compensation – free

riding time – when bringing a bike from a “normal” station to one of these stations, that are

mostly situated on hills or at the periphery.

Despite all the means that were introduced, imbalance problems keep occurring in network.

In “Le Figaro” article [12] in 2008, Albert Asseraf, Strategy and Marketing France Chief

Executive at JCDecaux in Paris confesses that it is statistically impossible to be sure to find a

bike or a parking place in 100% of the cases. It is difficult to figure out a way to ensure to

all users that they will be able to find a bike in their departure station or a rack in their target

station. A good regulation method should have bikes or racks reachable in reasonable time,

if not available everywhere. To that purpose, the instructions which are given to the drivers

of the trucks have to be cleverly chosen. A system in which all truck drivers would take their

own decisions would highly depend on their experiences and may end up with more imbalance

problems. Moreover, if their actions are not coordinated and they take their decision looking

at a map showing the current situation in the network, they could play one against the others:

for example, if two drivers see a station nearly empty, they both drive there to unload vehicles;

or if a driver sees a station nearly empty and drives there and unload vehicles, another driver

could then see the same station now supplied with vehicles as nearly full and drives there to

139



load the vehicles the first driver has just unloaded; or if a driver chooses to drive to an empty

station in the network, but by the time it arrives the station is full. These examples show the

need for a unique and central monitor center.

The objective is to find algorithms for providing instructions to drivers to improve the level

of service. Two types of methods are experimented: the first one gathers algorithms using

trucks, the second one uses a pricing strategy. In this chapter, different heuristic methods are

presented. All of them are objective driven missions (see Section 4.3 of the former chapter): for

each station, a target occupation level is determined by the operator. The problem of computing

this value is not addressed here. In Section 5.2, all the methods use trucks. Section 5.3 proposes

a method using only incentive policy and no truck. Section 5.4 enables to compare the different

results obtained running these different methods on the same instances. Comments are added

to explain the performances of each of the method. At last, Section 5.5 proposes a conclusion

on this chapter.

Before starting the description of the different methods, few definitions that are used

throughout this chapter are given. Finding the optimal action to give to the trucks drivers

should take into account all the system, leading to a huge number of variables to take into ac-

count as it is discussed in Subsection 5.2.4. This is not feasible in real time where instructions

should be quickly given. Two alternatives can then be followed: either the number of variables

are reduced, or we fix short-term objectives. For that purpose, we introduce for each vertex

i ∈ V its target occupation level θi ≤ Ci. In all the method presented here, the objective is to

have the level of occupation of the stations staying around these values. Recall that λi is the

parameter of the Poisson law representing the user arrival, and that pij is the probability for a

user who arrives at station i to have station j for destination. The pij are kept in the O-D matrix.

The number of vehicles parked at a station i is denoted as xi, with 0 ≤ xi ≤ Ci. If forecasts

are done on the future number of vehicles, it is denoted with x̃i with 0 ≤ x̃i ≤ Ci.

5.2 Methods using trucks

5.2.1 Preliminaries

In 2010, George and Xia [48] proposed the following model. The system is seen as a single-

class closed queuing network whose nodes are of two types: the station-nodes, representing the

140



stations, and the trip-nodes, representing the trips between the stations. Each station-node i

is connected to all trip-nodes (i, j) and each trip-nodes (i, j) is connected to station j. In this

queuing network, the customers are the vehicles, which have to be distinguished from the users.

A station-node i is a M/M/1/Ci queue with service rate equal to λi: vehicles are served by

the users. A trip-node (i, j) is a M/G/∞ queue with service time T v
ij .

Note that in this model, if a vehicle arrives at a station i with no empty rack, it disappears

from the system. A way to circumvent this drawback consists in deleting the capacity Ci in

each station i, but this time, each station gets an infinite capacity. An exact model, taking into

account the rerouting of the users when they do not find vehicles or parking places in a purely

mathematical model is anyway out of reach.

Regulation using trucks is the easiest one to introduce in cities. This explains the fact that

it is widely spread over all the BSSs. However, finding good regulation methods is a ceaseless

worry of the operators. In some cities, these trucks operate 24 hours per day. In this section,

we propose now some simple heuristics. More sophisticated algorithms are not tested since

between two tasks of a truck, the system is assumed to change quite a lot. All of them give

missions to truck drivers. Once they are done with their mission, they ask the central monitor

for a new one. They all work with objective driven missions (see Chapter 4.3).

Before describing these heuristic methods, we give a few results to show the complexity of

the problem.

Proposition 5.2.1. If the arrivals follow exponential laws and there is only one truck, the

problem of finding the action of the truck maximizing the probability for the first user to find a

vehicle is NP-hard.

Proof. Let G = (V,E) be a graph, |V | = n ∈ Z+. Define G′ = (V ′, E ′) another graph such

that V ′ = V ∪ {o} the vertices and E ′ = E ∪ {(o, v), v ∈ V } the edges. G′ is G to which a

vertex o is added and linked to all the vertices of G. Assume that a truck is initially parked at

o with n vehicles loaded. V is the set of stations, which are all initially empty. Users arrive at

each station with respect to a Poisson process with a parameter λ ∈ R+. It takes exactly one

unit of time to traverse any edge of the graph G′. Assume that we are able to maximize the

probability to catch the first user, where catching a user means that there is a vehicle available

at the station where he shows up.

Dealing with n independent Poisson processes with parameter λ is equivalent to deal with a

unique Poisson process of parameter nλ giving the arrival of a client in the system, followed by

141



the selection of a station uniformly at random. We will here prove that if there is an Hamiltonian

chain in the graph, the strategy maximizing the probability to catch the first user consists in

following this Hamiltonian path. Any other choice would lead to a lower probability to catch

the first user.

Suppose there is an Hamiltonian chain in the graph G, then, following this chain, the truck

can unload 1 vehicle at each time step. The probability that the first arrival time ta is lower or

equal to any t ∈ R+ is P[ta ≤ t] = 1− e−nλt. If the first user arrives before 1 (ta < 1) he is not

served for sure as the truck would not have had enough time to reach any station. If 1 ≤ ta < 2,

the truck would have only had time to visit one station. So in n − 1 out of n cases, he is not

served. Repeating the argument, we obtain that the probability of missing the first user while

following the Hamiltonian chain is:

P (n, λ) =
n−1∑

k=0

n− k

n
P[k ≤ ta < k + 1] (5.1)

=
n−1∑

k=0

n− k

n

(
e−nλk − e−nλ(k+1)

)
(5.2)

=
n−1∑

k≥0

αkβk (5.3)

where αk = n−k
n

is the ratio of unvisited station at time step k over all stations and

βk = e−nλk − e−nλ(k+1) is the probability for the first arrival to occur between k and k + 1.

If there is no Hamiltonian chain, then we cannot visit a new station at each time step. With

the same lines of reasoning, we get a probability P ′(n, λ) =
∑∞

k=0 α
′
kβk with α′k ≥ αk for all k

and α′k > αk for at least one k0. Thus P ′(n, λ) > P (n, λ).

We have then proven that there is an Hamiltonian chain in G if and only if the minimum

value of the probability of missing the first user is equal to the value P (n, λ). As the problem

of determining whether it exists an Hamiltonian chain in a graph is NP-complete, the one of

finding the strategy maximizing the probability to catch the first user is NP-hard.

Proposition 5.2.1 proves the difficulty of ensuring to an operator that the proposed solution

is the best one. If now the objective is not to find the first user, but several users, the problem

is not a repetition of the former problem. The case the objective is to find the strategy which

maximizes the probability to catch the two first users is outlined below. Here also catching a

user means that the station where he arrives has an available vehicle. First, we explain why

this problem is not the same as finding the strategy which maximizes the probability to catch

142



the first user used twice. To that purpose, assume that there is a network of n stations of unit

capacity with n − 1 stations gathered together – the “central” stations – and a last station far

from the others. Assume that the truck is initially at a depot near to the central stations, and

that it takes exactly one time unit to the truck to traverse any edge but those having the isolated

station for endpoint, in which case the travel time is substantially longer. Lastly, assume that

the truck has visited the n− 1 central stations, where it has unloaded one vehicle, and that the

first user is still not arrived. If the objective is to maximize the probability to catch the first user

only, the truck is sent to the last isolated station. If the objective is to maximize to probability

to catch the two first users, it could be better to have the truck staying around the group of

central stations waiting for the first user’s arrival. If the first user arrives at one of these station

and rents a vehicle, the truck travels there to unload a vehicle before going to the last isolated

station. If he arrives at the empty isolated station, he cannot be served. The probability that

he would arrives at the isolated station is low ( 1
n

). Depending on the mean arrival rate λ with

respect to the travel time, this strategy can be better.

To deal with the two first user case, several definitions need to be given. Let G = (V,E) be

a graph and |V | = n. G is said to have an Updatable Hamiltonian Chain (UHC) if G has an

Hamiltonian chain c = v1, v2, . . . , vn such that, for any 1 ≤ j < i ≤ n, the graph (Vi,j, E[Vi,j])

where Vi,j = {vj} ∪ {(vt), t ≥ i} has an Hamiltonian chain. In a graph, a vertex is said to be

complete if there is an edge linking it to all the vertices of the graph. We have now the two

following lemmas:

Lemma 5.2.2. A chain c = v1, v2, . . . , vn is an UHC if and only if c is an Hamiltonian chain

and vn is a complete vertex.

Proof. If c = v1, v2, . . . , vn is an Hamiltonian chain, and vn is a complete vertex, then for any

1 ≤ j < i ≤ n, the chain vi, vi+1, . . . , vn, vj is an Hamiltonian chain in Vi,j . Then it is an UHC.

Conversly, taking i = n and any j ≤ n − 1, vn has to be linked with all vertices of the graph,

so it is a complete vertex.

Lemma 5.2.3. Determining whether an Hamiltonian chain exists in a graph without any com-

plete vertex is NP-complete.

Proof. Assume there is a polynomial algorithm A that determines if there is an Hamiltonian

chain in a graph without complete vertices. We are going to prove that for any graph G =

(V,E) the same algorithm A decides whether there is an Hamiltonian chain or not. Define

V = V ′∪V C , where V C is the subset of complete vertices of V in G, and V ′ = {v1, v2, . . . , vk}

143



the other vertices. If the graph G is a clique, then V ′ is empty and so there is an Hamiltonian

chain. Otherwise, for i ≤ k, let Gi = (Vi, Ei) be a graph such that Vi = V ∪ {o} and

Ei = E ∪ {(o, vi)}. Gi has no complete vertex. So algorithm A can be run. Two possibilities

can be faced:

– if there is an i ≤ k such that A(Gi) returns “true”, there is an Hamiltonian chain on

Gi. By construction vertex o has to be an endpoint of the chain. If it is erased, the same

sequence of vertices would be an Hamiltonian chain on G, so it means that there is an

Hamiltonian chain in G;

– if, for all i ≤ k, A(Gi) returns “false”, it means that there is no Hamiltonian chain in G.

Indeed assume there is one. If one endpoint is not complete, then theA(Gi0) should have

returned “true” where vi0 is the endpoint. If both endpoints of the Hamiltonian chain are

complete vertices, then they are linked by an edge and there is an Hamiltonian chain

following the same edges starting from any vertex vi0 that is not complete. In that case,

A(Gi0) should have given true.

We have proven that if such an algorithm exists, it can also determine if there is an Hamil-

tonian chain in the general case. This proves that determining whether an Hamiltonian chain

exists in a graph without complete vertices is an NP-complete problem.

Lemma 5.2.4. Determining whether an UHC exists in a graph is NP-complete.

Proof. Assume that such a polynomial algorithm exists. It is able to determine whether there

is an Hamiltonian chain in a graph G = (V,E) without any complete vertex. Let G′ = (V ′, E ′)

be a graph such that V ′ = V ∪{o} and E ′ = E∪v∈V {(o, v)}. Vertex o is a complete vertex, it is

is the only one in G′. Thanks to Lemma 5.2.2 it is proven that any UHC finishes at a complete

vertex. So if there is a UHC in G′, it ends at o. The rest of the UHC is then an Hamiltonian

path in G a graph without any complete vertex. So finding an UHC in G′ is equivalent of

finding an Hamiltonian chain in G that has no complete vertex. The latter problem is proven

to be NP-complete in Lemma 5.2.3. So finding an UHC in a graph is also an NP-complete

problem.

Proposition 5.2.5. If the arrival follow exponential laws and there is only one truck and all

the station capacities are unit, the problem of finding the action of the truck maximizing the

probability for the two first users to find a vehicle is NP-hard.

Proof. Taking the same graph G as in the proof of Proposition 5.2.1, the best strategy appears

to be a UHC. Indeed, the best the truck can do is to put one vehicle at each time step at a

144



new station. If the first user arrives at a station that was visited by the truck, but before it

has completed its tour, the UHC ensures that there is an Hamiltonian chain on the remaining

stations and the now empty station. If the first user arrives after the truck has visited all the

stations, it waits at the last vertex, which is a complete vertex according to Lemma 5.2.2. Once

the first user has shown up, the truck drives to the now empty station in one time step to be sure

to catch the second user.

If the truck follows an Hamiltonian chain but not an UHC and the first user shows up at a

station visited by the truck before he finished its tour, it is not sure that the truck could visit

all the remaining stations and the now empty station following an Hamiltonian chain, and so

a station would stay empty longer than in the UHC case. The probability of losing the second

user would then be higher. So any other strategy would end with a greater probability to lose

the two first users.

If we had a way to find the strategy maximizing the probability of catching the two first

users, we then would know if the corresponding graph has an UHC. So this problem is NP-

hard according to Lemma 5.2.4.

We have then proven that finding the action to execute to catch the first or the two first users

areNP-hard problems. We conjecture that it is stillNP-hard for more than the two first users.

In the remaining of this section, heuristic methods are outlined.

5.2.2 One-step - two-step heuristics

A truck is at a station with a certain load. When it asks for a mission, the algorithm looks

for the two most unbalanced stations (i.e. the ones with the greatest excess and the one with the

greatest deficit with respect to their objectives θi). The truck is then sent to these two stations,

depending on its current load. If the load on the truck is lower than a given threshold, the

truck is sent to the station where vehicles are to be loaded and then to the station with a deficit.

Otherwise, it visits the two stations in the reverse order. In the one-step heuristic, only the first

move is sent to the trucks, which will ask for a new mission once the move realized.

5.2.3 One-step - two-step heuristics with forecast

The former method does not take into account any forecasts on the number of vehicles that

are expected to be present at the stations once reached by the truck. It only uses the current

145



number of vehicles parked at a station. Simple techniques could give an hint on the number of

vehicle arriving in our case computing the average return rate µj at a station j as follows:

µj =
∑

i∈V

λipij (5.4)

In the stationary state, the continuous arrival of users at stations to rent vehicles leads to a

continuous flow of users returning vehicles. These µj give us the number of vehicles returned

per minute at each station. Therefore, the number of vehicles expected at a station j, denoted

x̃j , once a truck leaving i would reach it is computed as follows:

x̃j = Proj[0,Cj ]

(
xj +

1

10
E(T t

ij)× (µj − λj)

)
(5.5)

where T t
ij is the time needed by a truck to drive from vertex i to vertex j and Proj[a,b] is

the projection operator from R on the interval [a, b]: if x < a (respectively x > b), then

Proj[a,b](x) = a (resp. Proj[a,b](x) = b). Otherwise, if x ∈ [a, b], Proj[a,b](x) = x. The

decisions are then made with the corrected number of vehicles at stations.

The 1
10

factor seems to perturb the evaluation of the future number of vehicles present at the

station. However, it seems that in practice the formula without this factor tends to over-evaluate

the number of vehicles to be returned or rent at a station. This factor was tuned with respect to

several experiments.

Three methods using the mean return rate per station µi: the one-step heuristic with forecast

method, the two-step heuristic with forecast method and the two-step one-stop heuristic with

forecast method.

One-step heuristic with forecast

For the one-step heuristic with forecast, the former formula is appropriate as it takes the

expected time to reach the station. It is used to evaluate the imbalances at any stations. The

two most unbalanced stations are kept and depending on the load of the truck, it is sent to the

station expected to suffer from the most excess or deficit in vehicles.

Two-step heuristic with forecast and two-step one-stop heuristic with forecast

In this case, the expected number of vehicles at the two stations depends on the order they

are visited. The truck is at a station i ∈ V . It could first go to station k ∈ V among the n − 1

stations for the first stop, and from there to station j ∈ V among the n − 2 remaining stations

for the second stop (it is not allowed to come back to its origin station i).

146



At each stop, the objective is to bring the number of vehicles closer to the station target

θi. As the initial load on the truck l is known, the action to be achieved at each stop can be

anticipated. If for instance x̃k is larger (respectively smaller) than θk, the truck load after the

first stop would be l′ = l + αk (resp. l′ = l − αk), where αk = min{K − l, x̃k − θk} (resp.

max{l, θk − x̃k}). At the second stop, the number of expected vehicles at station j is evaluated

as follow:

x̃j = Proj[0,Cj ]

(
xj +

1

10
E(T t

ik + T t
kj)× (µj − λj)

)

where the time takes into account the first stop at station k. The expected action to be achieved

there can then be evaluated with the same reasoning. By summing αk and αj , we obtain the

total number of vehicles expected to be moved with respect to a sequence of station. The

instruction sent to the truck is to follows the sequence of stations maximizing αk + αj .

In the two-step heuristic with forecast method, the truck is given the sequence of stations

and complete both visits. In the two-step one-stop heuristic with forecast method, the truck is

only sent to the first stop. The second stop is used to make the decision, but the length of the

truck mission is only one. It is a way to take into account the future state of the network in the

decision.

5.2.4 The Colored Cluster heuristic

This method aims at finding the optimal instruction to give to truck drivers at a certain

point knowing the system. Even if the results are not satisfying, we put it here since it contains

ideas that may help in others methods as it takes into account several important features of

the problem. We first give some hints on the method applied here, the optimal policy iteration

algorithm which can be used to solve the Stochastic Shortest Path Problem (SSPP). The SSPP is

one of the subjects treated in Tsitsiklis and Bertsekas book [17]. This problem and its resolution

method are presented in the next subsection. To use this method, several approximation are

outlined, so it is a heuristic method.

Stochastic Shortest Path Problem

We introduce here some notations. If we have a discrete-time Markov chain, E represents

the states of the system. At each state i ∈ E , a control has to be chosen within a given finite

set U(i). The choice of a control u ∈ U(i) at a state i ∈ E specifies the transition probability

147



lij(u) to the next state j. For each couple of state i, j ∈ E and for each policy u ∈ U(i), lij(u)

gives the probability to reach state j from state i when applying control u.

A policy π = {u0, u1, . . .} is a sequence of control, where each uk is a function from the

space state to the controls, with uk(i) ∈ U(i) for each k ≥ 0. Let denote by ik the state at

time k. Once a policy is fixed, the sequence of ik becomes a Markov chain with transition

probability:

P(ik+1 = j|ik = i) = lij(uk) (5.6)

∑

j∈S

lij(u) = 1 for all u ∈ U(i) (5.7)

Note that Equation (5.6) shows that the transition probability depends only on the policy chosen

at the state, while Equation (5.7) ensures that the sum over all the states is equal to 1. Stationary

policies are policies of the form π = {u, u, u, . . .}. At any time, the same control are used for

each state. Lastly, a cost function g represents the cost of a transition from state i to state j

under control u noted g(i, u, j) ∈ R.

In the SSPP, we assume there is one absorbing state 0, which is a cost-free termination state.

More formerly, the Markov chain has a state 0 ∈ E such that l00(u) = 1 and g(0, u, 0) = 0 for

any u ∈ U(0). Given an initial state, the objective is to find a stationary policy which minimizes

the expected cost to reach the termination state 0. The method can be extended to the case with

several absorbing states.

We define the cost-to-go vector as the expected cost to reach absorbing states starting from

any state, with respect to a policy π = {u0, u1, . . .} as:

Jπ(i) = lim
N−>∞

E

[N−1∑

k=0

g(ik+1, uk, ik)

∣∣∣∣i0 = i

]
(5.8)

The limit defining the cost-to-go vector Jπ exists and is finite thanks to a set of assumptions

explained in Chapter 2 of [17]. The optimal policy u∗ is such that for each state i ∈ E , the

optimal cost-to-go vector associated to the optimal policy J∗ respects the following system of

equations:

J∗(i) = minu(i)∈U(i)

∑
j∈E lij(u)

(
g(i, u, j) + J∗(j)

)
for all i ∈ E

=
∑

j∈E lij(u
∗)
(
g(i, u∗, j) + J∗(j)

)
for all i ∈ E

(5.9)

Using a classical dynamic programming (see Chapter 2 of [17]), it is possible to compute

the optimal policy u∗.

148



How to apply the method to the vehicle balancing problem

The available information when a truck is asking the central monitor for a mission is the

following:

– the number of vehicles parked at each station

– the position of each truck

– the number of vehicles carried by each truck

A state of the system should keep all the former information. The optimal policy to give to

a driver would then be the station he should drive to. Note that the number of vehicles to load

or unload at each stop is not to be decided as the objective is to bring the number of vehicles as

closed to the station objective θi as possible.

Let n ∈ Z+ be the number of stations and N ∈ Z+ the number of vehicles. Even if there is

only a unique truck, the number of states is huge, as a simple calculation shows. Assume that

the capacity of the truck and the capacity of each station are equal to C, (K = C and Ci = C

for all i ∈ V ), the number of states with a total of k ≤ N vehicles parked is the number of

compositions of k + n with summands bounded in number (n+ 1 summands) and size (lower

or equal to C +1) multiplied by the number of positions for the truck. Using the formula given

in the note I.15 page 45 of Philippe Flajolet and Robert Sedgewick’s book [42], we get that

this number of compositions is equal to [zk]
(
z 1−zC+1

1−z

)(n+1)

, where [zk] means that we take

the coefficient of zk in the Taylor expansion of the formula given afterwards. So we have the

following number of states:

number of states = n×
N∑

k=0

[zk]
(
z
1− zC+1

1− z

)(n+1)

However this formula is not helpful for easily computing the number of these states, but

suits more asymptotic studies. Forgetting the capacity, it is well-known that the number of

compositions with summands bounded in number only is equal to
(
k+n
n

)
. Multiplying this

number by n, it gives an upper bound on the number of states such that k vehicles are parked.

A lower bound can also easily be obtained as follows: choose the first ⌊n+k−1
C+1
⌋ points regularly

over all the integers from 0 to k+n. Then, choose the others among the remaining points. The

difference of two consecutive points is then lower or equal to C + 1. This difference gives the

number of vehicles parked at each station, plus one. Following this method, no station can be

assigned more than C vehicles. So the lower bound on the number of states such that k vehicles

149



are parked is then

lower bound on the number of states = n×
N∑

k=0

(
k + n− ⌊n+k−1

C+1
⌋

n− ⌊n+k−1
C+1
⌋

)

The number of states increases exponentially. For instance, if the network has only 3 stations of

capacity 5, and that there is a unique truck of capacity K = 5 and that 10 vehicles are present

in the network, the number of states is 2163.

Let assume that the probability matrix to go from a state to another one is known. We define

that a state such that the number of vehicles parked at each station is equal to its objective num-

ber, whatever the truck position and load, is an absorbing state. We correct the corresponding

transition probability. This assumption is false in practice but enables to use the SSPP method.

It was done as this method aims at reaching a situation such that all stations are at their target

state θi as fast as possible. Otherwise, the system would not have any absorbing state. A sim-

ilar method could be then used, adding a discount factor in the computation of the cost-to-go

vector of Equation (5.8). The policy that would then be obtained would the optimal policy for

maintaining the system near to its target states.

Locally unbalanced, but globally balanced

The huge number of states makes any implementation of the former method prohibitive.

Indeed even for small networks, the number of states would explode. However we can reduce

the number of states to consider. Indeed, knowing the situation at each station may be pointless.

As the objective is to model a real shared transport system, any user that shows up at an empty

station to rent a vehicle and sees a station on the other side of the street which is full would

be able to cross the street to rent a vehicle. The same behavior holds for a user returning a

vehicle at a station which is full. Moreover, knowing the exact number of vehicles at each

station at each time may be useless. Indeed, if there are 2 or 3 vehicles at a station, it may not

drastically change the action to take in a state, as the corresponding station will anyway be seen

as suffering from a shortage of vehicles. The same note applies to the truck load.

It leads to consider clusters of stations instead of all stations, where clusters are built via

distance consideration. Each cluster gathers stations that are nearby. Moreover, the exact num-

ber of vehicles in each cluster or on the vehicle can be “forgotten”. Three cases are considered,

depending on the average level of occupation per cluster. Three zones – or colors – are defined

as follows:

150



– a cluster is said to be blue if its average level of occupation is below a given threshold; in

practice, it means that vehicles need to be brought because there is a shortage of them

– a cluster is said to be red if its average level of occupation is above a given threshold; in

practice, it means that vehicles need to be taken out from this cluster because there are

too many of them

– otherwise a cluster is said to be white; in practice, it means that some stations may be

full and other empty, but they compensate each other and in the cluster are available a

number of vehicles that is near the sum of the objectives of its stations

This color system is also used for the trucks. The exact number of vehicles carried is neglected.

The cluster partition and the color division enable to cut drastically the number of state to be

considered. And in practice they seem relevant, as having a truck sent to balance stations that

are less than 300 meters away would be nonsense.

From now on, a state is the color of each cluster, the color of the vehicle and its position.

With 4 clusters, the number of considered states is then 34 × 3 × 4 = 942, which makes

the reduction relevant. The issue of clustering is not addressed here. The method we used

is the Dunn fuzzy c-means algorithm [37], simplified by Bezdec [18]. The method which is

implemented takes in input the number of clusters and build the number of requested clusters,

gathering stations such that each station is closest to the centroid of the cluster it belongs to

than to any other centroid.

We define the target color of a cluster as the color it would have if all the stations it repre-

sents are at their objective θi. We define as the absorbing states the states such that each cluster

is at its target color. Assume that clusters 1 and 2 are located in residential areas gathering

stations with high target levels, clusters 3 is a workplace area containing stations with low tar-

get levels and cluster 4 contains stations having both high and low target levels. If we want

to find the optimal solution the goal would then be to reach a state such that the cluster colors

are (blue, blue, red, white). Such states would enable people to go from there home to their

workplace. Another advantage of this method is that all the computation work would have been

done off line. In real time, the order will be given to the vehicle directly. Once the driver is

told the cluster he has to drive to, the exact logistic operations to execute at his destination are

calculated thanks to the former two-step heuristic method (Subsection 5.2.2), computed only

over the destination cluster stations.

151



Let define a distance between two colors as follows:

Distance between col1 and col2 =





0 if col1 = col2;

1 if col1 6= col2 and one of the two is white;

2 otherwise.

The cost function g that is used here is the sum of all the distance between the cluster color of

the current state and the one of the target state. First experiences have been done taking into

account the distance driven by trucks, but it seems quite irrelevant: in real time, the objective

is not to minimize the distance as trucks will drive through the city anyway, so the objective

should not be to try to minimize the length of their journey but to maintain the regulation of the

system. The color distance objective fits better the objective of service quality.

The probability matrix is assumed to be known in the former method. In our problem the

evolution of the system is complex and we do not have it. However, thanks to the simulator

outlined in Chapter 4, we can estimate them by running a huge number of experiences without

trucks and stopping them after a given time which is an average time for a trip to occur in

the city, and see the new repartition of vehicles. This enables us to evaluate the lij formerly

mentioned, though the truck action is neglected.

5.3 Methods using incentive policy

In this section, the outlined method does not include the use of trucks. A price is attached

to each station. These prices are updated regularly and aim at deterring users from parking at

stations that are already nearly full. Users would have incentive to park to other stations that

have a greater number of available parking places. They can yet follow their original demand

and try to park at their original target station. But they would have to pay the price announced

and are not sure to find an available parking place there. If they modify their trip and try to

park at another station with a lower fee – meaning the station is quite empty – they are still not

ensured to find an available parking place. However if prices are well-estimated, it should be

quite unlikely.

The idea which is behind the heuristic is the resolution of Monge’s transportation

problem first introduced by Gaspard Monge in 1791 [61]. Assume users can decide to

stop at a different vertex than their original target one. They would have to undergo

an extra cost for walking from the intermediate vertex to their target one. Let have

152



eijk := E(PRICEVHC × T v
ik + PRICEWALK × Tw

kj − PRICEVHC × T v
ij), which models the ef-

fort provided by a user choosing an intermediate target vertex k on which he leaves his vehicle

instead of going directly from i to j. PRICEVHC and PRICEWALK factors represent the prices

users are willing to pay for using a vehicle (see Subsection 4.2.2 in the former chapter). Assume

that to each station a price tk ∈ R is associated. This cost has to be paid by any user parking

his vehicle at station k. The total cost undergone by a user renting a vehicle at station i to go

to station j but parking his vehicle at an intermediate target vertex k is then: cijk = eijk + tk.

Users behave rationally, so they choose for intermediate target vertex the one that minimizes

the former cost. The objective here is to find the prices tk ∈ R to associate to each station to

maintain the number of vehicles at each station close to its target occupation level θi.

Let xijk ≥ 0 be the number of users that want to go from vertex i to vertex j and choose

station k as intermediate target vertex. We would like to have the following equations satisfied:

∑

(i,j)∈V 2

xijk = Tk for all k ∈ V

∑

k∈V

xijk = λipij for all (i, j) ∈ V 2

xijk ≥ 0 for i, j, k ∈ V such that k = argmink′∈V eijk′ + tk′

xijk = 0 for i, j, k ∈ V such that k 6= argmink′∈V eijk′ + tk′

(5.10)

where Tk has to be proportional to max{0, θk−xk} is the number of vehicles to bring at station

k per unit of time. The first equations of (5.10) ensure that the number of vehicles brought at

any station matches this number, while the second one certify that the sum over all the stations

is equal to the expected number of users to show up in the system.

Considering the following linear program

min
∑

i∈V

∑

j∈V

∑

k∈V

eijkxijk

s.t.
n∑

i=1

n∑

j=1

xijk = Tk for k ∈ V

n∑

k=1

xijk = λipij for i, j ∈ V

xijk ≥ 0 for i, j, k ∈ V

(5.11)

and its dual

max
n∑

i=1

n∑

j=1

λipujωij +
∑

k∈V

Tkµk

s.t. µk + ωij ≤ eijk for i, j, k ∈ V

(5.12)

153



Proposition 5.3.1. Let ω∗ij et µ∗k be the optimal solutions of the linear program (5.12). Setting

tk = −µ
∗
k for each vertex k ensures that Equation (5.10) has a solution.

Proof. We want to prove that for such tk’s, program (5.10) has a solution. We will prove that

actually the optimal solution x∗ijk of program (5.11) is a solution of program (5.10).

The x∗ijk’s satisfy all equations of the system (5.10), except maybe the last one.

Consider a pair i, j ∈ V . If λipij = 0, then for all k we have x∗ijk = 0, and all such xijk’s

satisfy also the last equation. If λipij > 0, then x∗ijk > 0 for at least one k. By the complemen-

tary slackness, we have for such a k the equality µ∗k + ω∗ij = eijk. Hence ω∗ij ≤ eijk − µ∗k with

equality when k is argmink′∈V {eijk′ − µ∗k′}, i.e. ω∗ij = mink′∈V {eijk′ − µ∗k′}. Now, take a k

such that eijk−µ∗k is not minimum. Then ω∗ij < eijk−µ
∗
k and still by complementary slackness,

we have x∗ijk = 0.

Therefore, setting tk = −µ∗k for each vertex k makes x∗ijk a solution of the system (5.10).

Note that the value ω∗ij in the proof above is the cost experienced by users showing up at

station i and having for target station j when the prices are set to −µ∗k.

5.4 Computational study

5.4.1 Instances

In this section, the results that were obtained using all the former methods are given. The

instances we used are available on the website of the project. Two cities were built – Edoras and

Hyrule – using the CityBuilder tool mentioned in the Chapter 4. They were chosen for having

a good repartition of the stations over the city space. The O-D matrix was built with respect to

a gravity model. Four sizes were tested – with 20, 50, 100 and 250 stations. Moreover, in all

cases, three different types of demand are possible:

– In the “low demand case” a user is showing up at each station in average every 5 minutes

– In the “medium demand case” a user is showing up at each station in average every 2.5

minutes

– In the “high demand case” a user is showing up at each station in average every 1.5

minutes

The simulation time is set to four hours. For each case, a simulation with 10 replications

using different randomly generated demand realizations are run. When the system starts, all the

154



vehicles are parked at stations. All the driving/walking/riding time from a station to another are

deterministic. They all were run with one truck of capacity 20. As for the objective occupation

level of stations θi, it is taken as 0.7 its capacity. For the Colored Cluster heuristic method, the

threshold for the blue (respectively red) color is 0.2% (resp. 0.8%) of a cluster capacity. In the

Pricing method, prices are updated every 15 minutes. Only one profile of user is present in the

simulator with the following value for parameters: PRICEVHC= 1 and PRICEWALK= 5; users

are willing to explore one station and spend 600 seconds maximum to find a vehicle, one station

and 900 seconds maximum to find a parking place. If in a real system users would be willing

to explore more stations, especially to find a parking place, these limits were knowingly taken

low in order to be able to compare the results of the different methods. When the simulation

starts, no vehicle are in use. The regulation methods start after 30 minutes to compare their

performances on a running system.

5.4.2 Results

Tables 5.1, 5.2 and 5.3 respectively gather the results obtained running the methods on the

Edoras instances. The figures correspond to the percentage of each category of users. A user is

satisfied when he successfully rents a vehicle and returns it, within the limits of his patience if

exploration occurs. The category “No vehicle” stands for users who did not succeed in renting

a vehicle. The category “No parking” corresponds to the users who could not return their rent

vehicle at their target station and did not find available parking place. Lastly, the “Rejection”

category, which only exists in the case when the price method is used, is the percentage of users

who chose to walk to their target station instead of paying a fee. The “Empty” columns show

the results of the system without any regulation. “1SH” columns stand for the one-step heuris-

tic method. “1SHF” columns give the results of the one-step heuristic with forecast method.

“2SH” columns correspond to the results obtained by the two-step heuristic method. “2SHF”

and “2S1SHF”columns respectively stand for the two-step heuristic with forecast method and

the two-step one-stop heuristic with forecast method. Columns named “CC” show the results of

the Colored Cluster heuristic method. The last columns show the performances of the pricing

method – without trucks. Table 5.4 shows the ratio measuring the average number of satisfied

users gained per vehicle moved (see Subsection 4.3.1 of the former chapter).

155



Size Ind Empty 1SH 1SHF 2SH 2SHF 2S1SHF CC Pricing

Satisfied 70 99 99 98 95 98 72 84

20 No vehicle 12 1 1 0 3 1 12 0

No parking 18 0 0 2 2 1 16 0

Rejection 16

Satisfied 80 92 94 90 88 92 83 91

50 No vehicle 13 5 4 5 9 5 11 0

No parking 7 3 2 5 3 3 6 2

Rejection 7

Satisfied 62 67 67 66 66 67 65 81

100 No vehicle 26 23 23 23 23 22 23 10

No parking 12 10 10 11 11 11 12 0

Rejection 9

Satisfied 63 65 65 65 65 65 66

250 No vehicle 26 25 25 25 25 25 24

No parking 11 10 10 10 10 10 10

Table 5.1: Comparison between performances of the different methods for Edoras in the low

case demand

156



Size Ind Empty 1SH 1SHF 2SH 2SHF 2S1SHF CC Pricing

Satisfied 59 91 93 85 82 88 59 80

20 No vehicle 31 7 5 10 15 10 31 4

No parking 10 2 2 5 3 2 10 1

Rejection 15

Satisfied 75 84 86 82 81 83 78 86

50 No vehicle 19 13 11 14 15 14 17 7

No parking 6 3 3 4 4 3 5 0

Rejection 7

Satisfied 50 54 55 54 54 54 51 69

100 No vehicle 41 38 37 38 38 38 40 22

No parking 9 8 8 8 8 8 9 1

Rejection 8

Satisfied 46 47 47 47 47 47 48

250 No vehicle 47 46 46 46 46 46 45

No parking 7 7 7 7 7 7 7

Table 5.2: Comparison between performances of the different methods for Edoras in the

medium case demand

157



Size Ind Empty 1SH 1SHF 2SH 2SHF 2S1SHF CC Pricing

Satisfied 46 80 82 72 71 76 46 72

20 No vehicle 47 18 16 24 26 21 47 13

No parking 7 2 2 4 3 3 7 1

Rejection 14

Satisfied 68 77 78 75 73 76 69 78

50 No vehicle 27 21 20 22 24 22 27 16

No parking 5 2 2 3 3 2 4 0

Rejection 6

Satisfied 39 43 42 42 42 44 40 57

100 No vehicle 55 51 52 52 52 51 54 35

No parking 6 6 6 6 6 5 6 1

Rejection 7

Satisfied 32 33 33 33 33 33 34

250 No vehicle 63 63 63 63 63 63 62

No parking 5 4 4 4 4 4 4

Table 5.3: Comparison between performances of the different methods for Edoras in the high

case demand

158



Size Demand 1SH 1SHF 2SH 2SHF 2SH1SF CC

Low 1.17 1.17 1.33 1.13 1.16 0.20

20 Medium 1.85 1.93 2.22 1.88 1.87 0.00

High 3.11 3.22 3.58 3.30 3.08 1.44

Low 1.23 1.24 1.38 1.03 1.27 0.37

50 Medium 1.80 2.20 1.94 1.83 1.77 0.81

High 2.75 3.31 3.15 3.03 2.01 1.00

Low 1.69 2.20 1.77 1.60 1.67 0.99

100 Medium 2.62 3.20 2.76 2.65 2.73 0.90

High 4.00 4.08 4.07 3.78 3.90 0.73

Low 2.31 2.92 2.37 1, 89 2.28 1.87

250 Medium 1.50 4.30 3.35 3.11 3.17 2.71

High 3.57 4.65 3.69 3.48 3.43 3.30

Table 5.4: Ratio users gained per vehicle moved for the different methods run on all Edoras

instances

5.4.3 Discussion

The results show that with no doubt adding regulation improve the system level of service.

The method using trucks that obtains the best results is the one-step heuristic with forecasts.

Taking into account the forecasts improve the results in term of percentage of satisfied users

whatever the demand for the instances with up to 100 stations. This could be done compar-

ing the versions without and with forecast of the one-step and the two-step heuristic methods.

Taking into account the future arrival of users improve the quality of the regulation. In term of

the ratios, the values are slightly lower when taking into account the forecasts. The number of

vehicles moved stays around the same value but the impact is better, as the value of the ratio

decreases. The performances of the 2S1SHF is always better than the one of the 2SHF. The

variation of the system being quick, using long planning horizon gives poorer performances as

the second move may be done though the network differs strongly from the forecasts. Thus,

short-term horizon, such as the one-step methods and the two-step one-stop heuristic with fore-

cast method are more suitable. It is confirmed with the weak results of the CC method, though

it is also due to the low quality of evaluation of probabilities of the transition in the Markov

chain.

159



When the network is too big, one truck is not enough. Especially in the case of high

demand. This enhances the idea of having the city divided into clusters with a reasonable

number of stations in each of them, and having a truck devoted to balance operations in each

one.

The method that seems to give the best results in term of user satisfaction is the pricing

method. As for the prices, to make the conversion, we take EUR 8 = 1 hour. It is a reasonable

conversion for the value of travel time in a Western city (see [28]). The maximal magnitudes

are about EUR 7 for 20 stations, EUR 10 for 50 stations and EUR 16 for 100 stations, these

later values obtained only during a few minutes. In average, the magnitude is lower.

5.5 Conclusion

We have here presented different heuristic methods and implemented them in the simulator

that was outlined in the previous chapter. Most of the method use trucks. One other proposes

an incentive policy which updates prices to each station every 15 minutes. The methods

are run on different instances with different sizes and demands. The results are gathered in

tables and compared in the last section. The impact of forecasting the future state of the

system is outlined. The diversity of the methods tested proves the versatility of the simulator

OADLIBSim.

We can also make concrete recommendations.

– Simple short-term methods seems to be more efficient than long-term planning. This is

due to the limited impact of the truck. It is true whatever the size or the demand of the

network. As the system is evolving quickly, strategies should be evaluated continuously

to correct them in the case a better action can be executed.

– Clustering the city could help. Having one truck regulating more than 50 stations dimin-

ishes clearly the performances that can be obtained.

– To enhance the regulation, having a good knowledge of the system enables to make

accurate forecasts on the future state of the stations. This underlines the importance of

having statistics on the system behaviour and to use them.

– The pricing strategy seems to be very promising with respect to its results. However it

still needs to be addressed with socio-economical aspects.

160



161



162



Chapter 6

The Initial Inventory Problem

6.1 Introduction

In the former chapters, methods for real time repositioning were presented. They aim at

improving the system efficiency by deploying vehicles from congested stations or areas of

stations to others which are suffering from a shortage of vehicles. The two types of outlined

methods use trucks to move vehicles or associate dynamic prices to stations to encourage users

to self-regulate the network. Methods using trucks are possible and already in use in several

BSSs. In Paris, Vélib’ trucks are large enough to carry 20 bikes and the buses more than

60. Nevertheless, redeployment activities during the day participate in city congestion. This

backfires on the efficiency objective as these trucks contribute to pollution when one of the

objective of shared transport was to reduce greenhouse gas emission. Moreover, driving time

are highly uncertain within the day, so the stations they are supposed to bring vehicles to can

stay empty for a while. Furthermore, with a car sharing system such as Autolib, the limits

of such operations appear clearly: having trucks driving around to move cars from stations to

others is not likely to happen. Employees are brought to overloaded areas to move cars to areas

suffering from shortage.

Conversely to day time, traffic in the city is nearly idle for a few hours overnight. Thus,

repositioning activities can be achieved much more quicker. Night repositioning is indeed more

efficient as trucks can balance twice more stations within an hour than they can during the day

[21]. In the case of Autolib, a few hundreds of employees move cars from full stations to empty

ones in the night. They started the system without planning on day repositioning activities [1],

a choice that was modified after a few months. Most of the repositioning activities are yet still

163



done at night. Having night repositioning activities only presents another significant advantage

that is trucks do not contribute to the day congestion. If the choice is made not to use trucks

during day but only by night, a question is still to be addressed. If the users arrival rates per

time slot at each station and the O-D matrix are known, what is the best quality of service

which could be achieved? How many vehicles should be introduced in the system in order to

minimize users’ dissatisfaction? Raviv and Kolka [74] propose an algorithm to find the best

initial inventory for one station in a BSS. Users who want to rent or park a vehicle arrive at

each station according to non-homogeneous Poisson processes. When they cannot be served,

they leave the system unsatisfied. The authors propose a convex function to model the total

dissatisfaction with respect to the initial number of vehicles parked at a station. It enables to find

the initial inventory that minimizes the users’ dissatisfaction per station. In a shared transport

network, users who cannot find a vehicle or a parking place at a station would try their luck

in the neighboring stations, modifying the number of users arriving at the other stations. This

report is not taken into account in their model. The idea of having most of the repositioning

activities occurring at night is studied by Raviv et al. [76]. In their work, the dissatisfaction

function introduced by Raviv and Kolka is used. One or several trucks are given a time window

to achieve the best repositioning with respect to this users’ dissatisfaction function. Several

mathematical models are outlined and algorithm to solve them are presented.

The focus of this chapter is to find the best initial inventory at each station to get a better

quality of service without using trucks during the day. This problem is called the Initial Inven-

tory Problem (IIP). It is formally defined in Section 6.2, together with the way the performance

of each initial inventory is measured. Section 6.3 outlines the method used to improve the per-

formances of the system. Section 6.4 gives results that were obtained from realistic instances

created thanks to data on an American city.

6.2 Initial Inventory Problem

As stated before, computing the evolution of a shared transport system with respect to

independent users’ decisions is a complex system. Thus, the simulator described in Chapter 4

is used to solve the IIP. The inputs are the same as those described in Section 4.2 of this chapter

with the only difference that arrival processes of users are non-homogeneous Poisson: for each

station, its mean arrival rate of clients per time slot is known and can change. The chosen time

slot length is one hour. Simulation lengths are set to one day, starting at 12a.m. The O-D matrix

164



is homogeneous over time and gives the probability pij for a user arriving at station i ∈ V to

go to station j ∈ V , with
∑

j∈V pij = 1. The shared transport system here is seen as a mode of

transport exclusively (pii = 0 for all i ∈ V ).

In the IIP, the number of vehicles initially present in the network and their repartition have

to be determined. The objective function to be minimized which measures the performance of

an initial inventory is the total time lost by all users within the system because of inabilities to

find a vehicle and/or a parking place. The simulator enables to compute the lost time as follows:

when a user shows up, his departure station and target station are known. If everything runs

perfectly for him, the ideal time he would spend within the simulator is the time for him to reach

his target station with a vehicle leaving from his departure station. However, due to shortage

of vehicles or parking places, it may happen that instead of starting from his departure station

he starts from another one and/or that he parks at another station than his target one. These

inconveniences extend the duration of his trip. This extra time can be measured by subtracting

the real duration of his trip with the ideal one. The objective function is the sum over all the

users of this extra time. Here, settings are such that no user abandons the system because of

shortages of parking places or vehicles and they explore the system until they find either a

vehicle or a parking place.

When users explore new stations to find a vehicle (respectively a parking place), the walking

time (resp. time needed by the vehicle to go) from their current station to the station they choose

to explore is added into the sum. In case a user arrives at his target station by walking, he leaves

the system whether there is vehicles at his target station or not. When a user is expected to

arrive at a station to rent or park a vehicle after the end of the simulation time, he is assumed

to complete the rest of his trip without any further troubles. This assumption does not really

impact the results presented in Section 6.4 as the instances that were used are realistic, and

when simulations end, it is night time and very few users are actually using the system, with

respect to the number of users over the day. The users’ behaviour for choosing the stations to

explore is the same as the one described in Chapter 4. At the end of the simulation, the ideal

time is subtracted to the measured one to get the extra time

6.3 Finding the optimal initial inventory

In this section, two methods are outlined for solving the IIP. The idea of both methods is

to run a large number of simulations with respect to an initial inventory and to check for each

165



station of the network if any problem occurs. By problem is meant that a user shows up and

cannot find either a vehicle or a parking. The number of vehicles initially present at each station

is then modified to try to prevent these users from being unsatisfied.

From now on, for each station, its load curve denotes the evolution of the number of vehicles

parked at the station. Figure 6.1 illustrates the load curve at a station which capacity is 20. In

the upper-line case, the station is full for about an hour around 6 p.m. If a user tries to return

a rented vehicle during this time at the station, he would not succeed. If the initial number of

vehicles initially present had been smaller, the station would not have been completely full, and

such a user would park his vehicle successfully, as in the bottom-line case shows.

As the redeployment activity is supposed to be run once during the night, the only effect

one can have is on the first problem that will occur at a station. Indeed, if a shortage of vehicles

happens in the morning at a station and an excess in afternoon, adding or removing vehicles at

the station cannot modify the excess to occur. Figures 6.2 and 6.3 show that in the case there

is more than a few users unsatisfied during the first problematic period, the second periodic

problem is unchanged. Modifying the initial number of vehicles does not have any impact on

the evolution after the first problem happens, whether the successive problems are of the same

type or not.

20

0
8 10 12 14 16 18 20 22 24 2

Figure 6.1: Load curve at a station with respect to its initial inventory

Both methods are local searches which modify the number of vehicles initially present.

From an iteration to the next one, the initial number of vehicles at a station can vary by ±1.

Let us define two parameters MaxChange ∈ Z+ and MaxIter ∈ Z+. MaxChange gives

the maximum number of stations where the initial number of vehicles can be modified. This

166



20

0
8 10 12 14 16 18 20 22 24 2

Figure 6.2: Example of how modifying the initial inventory could solve the first problem when

a second same problem occurs

number is divided by two each time no improvement was found after MaxIter consecutive

iterations. The local search runs again starting from the best encountered solution. The ex-

pected gain that could be achieved by modifying the number of vehicles at a station can be

roughly evaluated in the two methods. Stations are ranked with respect to this evaluation. When

MaxChange < n (n the total number of stations in the network), only the MaxChange top

ranked stations undergo changes.

6.3.1 Time driven search

Now it is settled that changing the number of vehicles initially parked at station can only

influence the first problem. In this method, multiple simulations are run. When a problem

occurs at a station which has never experienced one, the extra time caused by the problem and

its type are kept. At the end of all the simulations, for each station, the extra time caused by

shortage and excess problems over all the simulations are compared. If the former is greater

(resp. lower) than the later, adding (resp. removing) a vehicle at the start of the simulation

could help to reduce the total extra time of the simulation. The difference between these two

values enables us to roughly measure the potential gain that could be achieved.

At the end, all the stations are sorted with respect to their potential gain. Note that if a

station does not encounter any problem, this gain is 0 and so it is left aside of the former

list. The first MaxChange stations – if there is a sufficient number of them – see their initial

number of vehicles modified by one when possible. Indeed, if for instance the station is initially

167



20

0
8 12 14 16 18 20 22 24 210

Figure 6.3: Example of how modifying the initial inventory could solve the first problem when

a second different problem occurs

full, we cannot add any vehicle at it.

6.3.2 Occurrence driven search

In this method, the idea is not to focus on the extra time caused by a problem, but to study

the load curve. Let assume that the load of a station goes down to zero before increasing again

up to its capacity. If no user shows up to rent a vehicle while the station is empty, but at least one

tries to park its rented vehicle when it is full, the problem that will first appear is the shortage of

parking place. The former local search method could lead us to decrease the initial number of

vehicles at the station. However one can understand that it will cause another “first problem”

to occur, a shortage of vehicles, without solving the second problem anyway, as illustrated in

Figure 6.4. The upper load curve is the original simulation. At about 11a.m., the station is

empty and we assume no one arrives to rent a vehicle before one is returned to the station. At

9p.m., the station is full for about 30 minutes. Here we assume that at least one user tries to

return his rented vehicle. Decreasing the initial number of vehicle by one would not impact

on the fact the station is full in the evening. Moreover, it would cause a shortage problem at

11a.m., as shown by the fact the second line gets to null before the upper one.

To try to handle the situations when the load curve gets to zero or to the station capacity,

six different types of events are distinguished. Running several simulations, the number of

occurrences of each event for each station is kept in the following variables:

– #away: the load curve stays away from both limits

168



20

0
8 12 14 16 18 20 22 24 210

Figure 6.4: Decreasing the number of vehicles when the load curve gets to null

– #loadFactorup: the load curve reaches the station capacity without any problem to occur

– #excess: the load curve reaches the station capacity and an excess of vehicles type of

problem occurs

– #loadFactordown: the load curve is empty without any problem to occur

– #shortage: the load curve is empty and a shortage of vehicles type of problem occurs

– #loadFactorboth: the load curve bumps into both limits without any problem to occur

This discrimination between these events enables to roughly evaluate the consequences of

adding or removing a vehicle in term of the number of occurrences of events as follows:

– Adding a vehicle at a station could cause a gain of

#shortage− (#excess+#loadFactorup +#loadFactorboth)

Indeed shortage events may decrease, but the excess events will not. Moreover the

loadFactorup and loadFactorboth events would then become excess events.

– Removing a vehicle could cause a gain of

#excess− (#shortage+#loadFactordown +#loadFactorboth)

Indeed excess events may decrease, but the shortage events will not. Moreover the

loadFactordown and loadFactorboth events would then become shortage events.

The away events play no role in the evaluation. Modifying the number of vehicles initially

present would either make them stay away events or bump into one of the limits, turning them

into loadFactordown or loadFactorup events. At the end of all the simulations, for each station,

169



the former gains over all the simulations are evaluated and sorted, and as previously the first

MaxChange operations are executed.

Although this method does not take into account the extra time, which is the objective

function, the idea is that by minimizing the number of occurrences of problem events, the

objective function value will decrease. Moreover this could help us to prevent from wrongly

trying to solve problem such as illustrated by Figure 6.4.

6.4 Results

The experiments were done on modified data obtained from a big American city. The BSS

has n = 104 stations, and a total of 3′084 parking places for the vehicles. The simulation time

is set to 24 hours, with new renters arrival rate at each station each hour. Instances were created

in order to fit the problem features. All of them represent the same network. The differences

come from the arrival rates. Arrival rates are computed from the one used in [74]. For each

instance and for each station, a random value from 1 to 4 was drawn and its arrival rates over

the day are multiplied by this value. In the simulations, in case of roaming, users’ patience

limits are set to 5 stations and 15 minutes, whether they are looking for a vehicle or a parking.

This enables to have almost no clients leaving the system unsatisfied because of they could not

find a vehicle or a parking place.

MaxIter is set to 10 and MaxChange is initially set to n. Table 6.1 sums up the results

obtained by the both methods. For each case, a simulation with 100 replications using different

randomwly generated demand realizations are run. Over the 100 replications, more than 30′000

users show up in the system.

In table 6.1, the first column gives the number of the instance. The second column gives the

initial repartition of vehicles used to run the search. Four different initial solutions are tested.

The first one named “MINSINGLE” is the repartition obtained by Raviv and Kolka [74]. In the

second case, the station are initially half-full. In the third case, they are all two-third-full. In

the last case, the station initial number of vehicles is randomly chosen. The third and fourth

columns show the initial number of vehicles and the initial amount of extra time. The fifth

and sixth (respectively eight and ninth) columns give the final number of vehicles and mean

extra time at the end of the time driven (resp. occurrence driven) search and the seventh (resp.

tenth) columns show the mean extra time on 100 simulation changing the seed and starting

from the initial inventory found by the time driven search (resp. occurrence driven search). All

170



the values are given in seconds.

Instance Initial solution Initial Veh. Initial extra Time driven Time driven Time driven Occ. driven Occ. driven Occ. driven

type number time Veh. number final time test time Veh. number final time test time

MINSINGLE 1627 63547 1520 53875 54991 1566 55789 57119

Instance HALF 1542 117722 1509 53974 54948 1565 55982 57524

0 TWO − THIRD 2056 201449 1626 54026 55328 1680 55838 57594

RANDOM 1522 227498 1512 54039 55303 1566 56493 58054

MINSINGLE 1588 132537 1488 117019 116030 1542 122891 121950

Instance HALF 1542 231999 1508 117330 116131 1554 123335 122206

1 TWO − THIRD 2056 330863 1620 117096 115963 1660 123273 122051

RANDOM 1517 276846 1485 116960 115818 1532 123412 122413

MINSINGLE 1564 94384 1495 88432 88624 1548 90631 90989

Instance HALF 1542 175725 1485 89163 89391 1545 91896 92205

2 TWO − THIRD 2056 282181 1584 88969 88944 1630 91838 92220

RANDOM 1497 272356 1458 89478 89736 1519 92172 92711

MINSINGLE 1611 87402 1527 76165 78905 1576 79757 82635

Instance HALF 1542 172125 1563 76385 79373 1604 80347 83548

3 TWO − THIRD 2056 270476 1635 76233 79368 1687 80421 83373

RANDOM 1640 250023 1533 76753 79908 1576 80234 83373

MINSINGLE 1528 111551 1458 104669 104055 1510 107168 107248

Instance HALF 1542 240496 1473 104571 103614 1527 107657 107754

4 TWO − THIRD 2056 342756 1566 104627 103931 1620 107579 107928

RANDOM 1524 274125 1445 104576 103978 1505 107798 108064

Table 6.1: Performances of both local searches

Both searches lead to similar results but the time driven search gives better results than the

occurrence driven one. In both cases, a local minimum is found. The search is robust as the

objective function values are very close, whatever the initial solution. The initial inventory

proposed by Raviv and Kolka algorithm is better than the other initial starts.

In each of the five instances, the initial inventories that are obtained are quite similar for

most stations, with an initial number of vehicles varying around the same values. However for

few stations, the difference can be higher. These stations are the major source of the variations

in the time lost and the total number of vehicles initially displayed in the system. This could

show that some stations are critical, while in others the initial inventories are less important.

Figure 6.5 shows the values of the standard deviations measured on the computed initial inven-

tories for Instance 0. The values goes from 0 to a little more than 7, and the mean standard

deviation is equal to 1.19. We see that 85% of the stations have a standard deviation on their

initial inventory that is lower than 2. Similar results are obtained looking at the other instances.

171



Figure 6.5: Repartition of the standard deviation on the computed initial inventories over the

stations for Instance 0

6.5 Conclusion

In this chapter, a new problem is outlined. Chapters 2 and 3 addressed the issue of balancing

a network with one or several trucks, taking as an input the initial number of vehicles to park

at each station. Solving the IIP completes them by proposing a simple model to obtain a good

initial repartition of the vehicles. The two local searches which are presented are quite simple

and give satisfying results as the objective function value is divided by up to 4 when starting

from random distribution or by 2 when starting from half-filled stations. When starting from

the initial inventory obtained by Raviv and Kolka [74], the results can be improved to a certain

extent only.

A trail for improving the search could be to combine both methods, changing the one used

when local minima is found. Another work could be to try to have balancing operations twice

a day – at night and in the beginning of the afternoon for instance. Running twice the method

could help to reduce the value of the objective function and to enhance the system ability to

answer users’ demand. Last, the number of vehicle initially parked may differ by a few dozens

without a real impact on the results. Another idea could be to find the best initial inventory

using the smallest number of vehicles.

Once all vehicle renting and returning operations are known, an open question is to compute

a lower bound on the extra time. Indeed, the lower bound used here – the ideal time – assumes

that all trips can be satisfied. However if at a station of capacity 20, more than 20 users show

up in a row without any vehicle being returned, whatever the initial inventory of the station, the

last users cannot find any vehicles and they have to roam. Computing the value of this lower

172



bound could provide a more accurate estimation of the performance of the method.

173



174



Chapter 7

Conclusion

The object of this thesis is shared transport systems, with a focus on bikes sharing systems.

The exploitation of such means of transportation induces several problems. In this thesis, im-

balance problems are more specifically addressed from an OR point of view. The technical

difficulties or vandalism are not treated. Imbalances are a tangible issue and it seems that im-

provements can be achieved without requiring huge investments. Various problems have been

addressed: the Single-Vehicle One-Commodity Pickup and Delivery Problem (SVOCPDP), the

Multiple-Vehicle Balancing Problem (MVBP), and the Initial Inventory Problem (IIP) which

are related to night balancing activities mainly; to deal with the daytime issue, the simulator

OADLIBSim was developed and several real-time methods were tested and compared. For each

problem, exact algorithms and heuristics were outlined. Their performances were evaluated on

a set of instances.

Chapter 2 is devoted to the SVOCPDP. A heuristic tabu search method is proposed to solve

it. A branch-and-cut algorithm was presented for solving a relaxation on the initial problem.

Although the relaxation is tight, building a real solution from an optimal solution of the relax-

ation is proven to be an NP-hard problem. The overall algorithm is divided into three phases:

at first, the tabu search is run starting from a greedy-made first solution. Then, the branch-and-

cut algorithm runs with a time limit. At last, the best solution of the branch-and-cut algorithm is

set up as a starting point of the tabu search. Several cuts are checked to enhance the relaxation.

In most of the instances with up to 60 stations and a truck capacities over 20, the solution is

less than 5% above the optimal solution.

For the MVBP of Chapter 3, a column generation approach is presented. Once the problem

was defined and compared with other problems in the literature, a mathematical set partitioning-

175



like model is given. Because of an exponential number of variables, a column-and-cut genera-

tion method is proposed. The pricing subproblem is solved thanks to an enumeration enhanced

by several dominance rules. A lower bound on the completion of half-paths is obtained with

a dynamic programming algorithm. The linear relaxation is enhanced thanks to several cuts,

some of them are dual feasible functions, others come from the dominances properties satisfied

by optimal solutions. An memetic algorithm is used to obtain an upper bound on the origi-

nal problem. The method is tested on instances with up to 40 stations and on the instances of

the Split Delivery Vehicle Routing Problem (SDVRP), since the latter one is a special case of

our problem when all the pickup activities are to be done at the depot. The optimal solutions

are found for all 10 stations instances and some of the 20 stations instances. On the SDVRP

instances, 5 of the 6 optimal solution found by Archetti et al. are obtained with our method.

To deal with real time balancing issues, Chapter 4 presents the simulator OADLIBSim.

It enables to reproduce the evolution of a shared transport system. OADLIBSim offers the

possibility to easily experiment regulation methods using trucks or affecting prices to each sta-

tions. Several indicators automatically computed measure the efficiency of different methods.

In Chapter 5, a few of these heuristic methods are presented. Most of them use trucks. There

is also a method using prices and based on duality and the Monge’s transportation problem.

They were all tested on a set of instances with different sizes and demand rates. The short-term

methods seem to obtain better results than long-term ones. The method using the prices gets

the best results, though it is the most complex to introduce in a real shared transport system.

For the IIP outlined in Chapter 6, OADLIBSim was used. Only night repositioning opera-

tions are done. The objective is to find the initial number of vehicles to put at each station in

order to minimize the overall time lost by all users within the system. Modifying this number

by one at a station could prevent a shortage or an excess of vehicles event to occur. We prove

that such a shift in the number of vehicles may only impact the first “problem” which occurs

within the day and propose two different local searches. They are then tested on instances that

come from data obtained on an American city. The results show that the overall lost time can

be divided by up to 4 starting from random initial repartitions but that it could even be reduced

starting from the solution obtained by the algorithm of Raviv and Kolka which tries to minimize

the number of unsatisfied users per station but does not take into account the roaming between

stations.

176



177



178



Bibliography

[1] Autolib’ dans la dernière ligne droite. Le Parisien, November 2011.

[2] Vélib’ et moi, http://blog.velib.paris.fr/blog/2011/06/30/la-regulation-succes-et-

ambitions, June 2011.

[3] Denver b-cycle, http://denver.bcycle.com, 2012.

[4] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited.

Operations Research Letters, 33(1):42–54, 2005.

[5] Shoshana Anily and Julien Bramel. Approximation algorithms for the capacitated trav-

eling salesman problem with pickups and deliveries. Naval Research Logistics (NRL),

46(6):654–670, 1999.

[6] Shoshana Anily and Refael Hassin. The Swapping problem. Networks, 22:419 – 433,

1992.

[7] Claudia Archetti, Maria Speranza, and Alain Hertz. A Tabu Search Algorithm for the

Split Delivery Routing Problem. Transportation Science, 40, 2006.

[8] Claudia Archetti and Maria Grazia Speranza. An overview on the split delivery vehicle

routing problem. In Karl-Heinz Waldmann and Ulrike M. Stocker, editors, Operations

Research Proceedings 2006, Operations Research Proceedings, pages 123–127. Springer

Berlin Heidelberg, 2007.

[9] Claudia Archetti, Nicola Bianchessi Maria Garzia Speranza, and Alain Hertz. A column

generation approach for the split delivery vehicle routing problem. NETWORKS, 2011.

[10] Roberto Baldacci, Enrico Bartolini, and Aristide Mingozzi. An exact algorithm for the

pickup and delivery problem with time windows. Operations Research, 59(2):414–426,

March/April 2011.

179



[11] Roberto Baldacci, Nicos Christophides, and Aristide Mingozzi. An exact algorithm for

the vehicle routing problem based on the set partitioning formulation with additional cuts.

Math. Program., pages 351–385, 2008.

[12] Elsa Bambaron. Vélib’ peine à trouver un second souffle. Le Figaro, Mars 2010.

[13] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,

and Pamela H. Vance. Branch-and-Price: Column Generation for Solving Huge Integer

Programs. Operations Research, 46:316–329, 1996.

[14] Mike Benchimol, Pascal Benchimol, Benoît Chappert, Arnaud De La Taille, Fabien

Laroche, Frédéric Meunier, and Ludovic Robinet. Balancing the stations of a self-service

bike hire system. RAIRO-Operations Research, 45(1):37–61, January 2011.

[15] Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert Laporte.

Static pickup and delivery problems: a classification scheme and survey. TOP: An Of-

ficial Journal of the Spanish Society of Statistics and Operations Research, 15(1):1–31,

July 2007.

[16] Benoid Beroud. Les expériences de vélos en libre service en Europe. Transports urbains,

111, September 2007.

[17] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-

entific, 1st edition, 1996.

[18] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer

Academic Publishers, Norwell, MA, USA, 1981.

[19] B.Fr, Voigt, and Ilemerau. Der Handlungsreisende – wie er sein soll und was er zu thun

hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiß

zu sein – von einem alten Commis-Voyageur. 1832.

[20] Charles Bordenave, Michel Gendreau, and Gilbert Laporte. A branch-and-cut algorithm

for the preemptive swapping problem. Networks, 59(4):387–399, 2012.

[21] Villo! Brussels Bike Sharing System Operator. personnal communication, 2012.

[22] Jacques Carlier, François Clautiaux, and Aziz Moukrim. New reduction procedures and

lower bounds for the two-dimensional bin packing problem with fixed orientation. Com-

puters and Operations Research, 34:2223–2250, 2007.

[23] Daniel Chemla, Frédéric Meunier, and Roberto Wolfler Calvo. The multiple-vehicle bal-

ancing problem. Working Paper, 2012.

180



[24] Daniel Chemla, Frédéric Meunier, and Roberto Wolfler Calvo. Bike hiring system: solv-

ing the rebalancing problem in the static case. Discrete Optimization, in revision.

[25] Daniel Chemla, Frédéric Meunier, Thomas Pradeau, Roberto Wolfler Calvo, and Hous-

same Yahiaoui. Bike sharing system: simulation, repositioning, pricing. Working Paper,

2012.

[26] François Clautiaux, Claudia Alves, and José Valério de Carvalho. A survey of dual-

feasible and superadditive functions. Annals of Operations Research, 179:317–342, 2010.

[27] Claudio Contardo, Catherine Morency, and Louis-Martin Rousseau. Balancing a Dy-

namic Public Bike-Sharing System. Technical report, March 2012.

[28] Yves Crozet. Le temps et le transport de voyageurs. Technical report, European Confer-

ence of Ministers of Transport, 2005.

[29] George B. Dantzig, Ray Fulkerson, and Selmer M. Johnson. Solution of a large-scale

traveling salesman problem. Operations Research, 2:393–410, 1954.

[30] George B. Dantzig and J. H. Ramser. The truck dispatching problem. Management

Science, 6(1):80–91, 1959.

[31] Paul deMaio. Bike-sharing: History, Impacts, Models of Provision, and Future. Journal

of Public Transportation, page 41–56, 2009.

[32] Guy Desaulniers, Jacques Desrosiers, and Marius M.Solomon; GERAD. Column Gener-

ation. Springer, 2005.

[33] Martin Desrochers and Gilbert Laporte. Improvements and extensions to the miller-

tucker-zemlin subtour elimination constraints. Operations Research Letters, 10:27–36,

1991.

[34] Moshe Dror and Pierre Trudeau. Savings by split delivery routing. Transportation Sci-

ence, 23(2):141–145, May 1989.

[35] Moshe Dror and Pierre Trudeau. Split delivery routing. Naval Research Logistics,

37:383–402, 1990.

[36] Louis Dubost, Robert Gonzalez, and Claude Lemaréchal. A primal-proximal heuris-

tic applied to the French unit-commitment problem. Math. Program., 104(1):129–151,

September 2005.

[37] Joseph C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters. Journal of Cybernetics, 3(3):32–57, 1973.

181



[38] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency

for network flow problems. Journal of the ACM, 19:248–264, 1972.

[39] Pierrick Fay. Vélib’, un système qui peut coûter cher. Europe 1, Avril 2011.

[40] Sándor P. Fekete and Jörg Schepers. New classes of fast lower bounds for bin packing

problems. Mathematical Programming, 91:11–31, 2001.

[41] Erlon C. Finardi, Edson L. da Silva, and Claudia Sagastizàbal. Solving the unit com-

mitment problem of hydropower plants via lagrangian relaxation and sequential quadratic

programming. Computational & Applied Mathematics, 24:317 – 342, 12 2005.

[42] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University

Press, 2009.

[43] Antonio Frangioni, Claudio Gentile, and Fabrizio Lacalandra. Solving unit commitment

problems with general ramp constraints. International Journal of Electrical Power; En-

ergy Systems, 30(5):316 – 326, 2008.

[44] Christine Fricker and Nicolas Gast. Incentives and regulations in bike-sharing systems

with stations of finite capacity. Working Paper, 2012.

[45] Tibor Gallai. Maximum-minimum theorems for networks. Technical report, 1957.

[46] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for the vehicle

routing problem. Management Science, 40:1276 – 1290, 1994.

[47] Michel Gendreau, Gilbert Laporte, and Charles Bordenave. A branch-and-cut algorithm

for the non-preemptive swapping problem. Naval Research Logistics, 2009.

[48] David K. George and Cathy H. Xia. Fleet-sizing and service availability for a vehicle

rental system via closed queueing networks. European Journal of Operational Research,

211(1):198 – 207, 2011.

[49] Fred W. Glover and Manuel Laguna. Tabu Search. Kluwer Academic, 1997.

[50] Michael Held and Richard M. Karp. A dynamic programming approach to sequencing

problems. Journal of the Society for Industrial and Applied Mathematics, 10:196–210,

March 1962.

[51] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints.

Columns Generation, pages 33–65, 2005.

[52] Josef Kallrath, Panos M.Pardalos, Steffen Rebennack, and Michel Scheidt. Optimization

in the Energy Industry. 2009.

182



[53] Spiridon A. Kazarlis, Anastasios Bakirtzis, and Vassilios Petridis. A genetic algorithm

approach to solve the unit commitment problem. IEEE Transactions on Power Systems,

11:83 – 92, February 1996.

[54] Mohand I. Khemmoudj, Marc Porcheron, and Hachémi Bennaceur. When constraints

programming and local search solve the scheduling problem of edf nuclear power plant

aoutages. 12th Internationnal Conference on Principles and Practice of Constraint Pro-

gramming, pages 271–283, 2006.

[55] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer, 2nd edition, 2002.

[56] Neal Lathia, Saniul Ahmad, and Licia Capra. Measuring the impact of opening the london

shared bicycle scheme to casual users. In Transportation Research Part C, 2012.

[57] Jenn-Rong Lin and Ta-Hui Yang. Strategic design of public bicycle sharing systems with

service level constraints. Transportation Research Part E: Logistics and Transportation

Review, 47(2):284 – 294, 2011.

[58] Marco E. Lubbecke and Jacques Desrosiers. Selected topics in column generation. Oper-

ations Research, pages 1007–1023, November-December 2005.

[59] Richard Lusby, Laurent Flindt Muller, and Bjorn Petersen. A solution approach to the

roadef/euro 2010 challenge based on benders decomposition. Technical report, November

2010.

[60] Aristide Mingozzi. personnal communication, 2010.

[61] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. page 666–704, 1781.

[62] Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts -

towards memetic algorithms, 1989.

[63] Rajeev Motwani and Prasad Chalasani. Approximating capacitated routing and delivery

problems. SIAM Journal on Computing, 28, 2009.

[64] Denis Naddef, Philippe Augerat, José M. Belenguer, Enrique Benavent, and Angel Cor-

béran. Separating capacity constraints in the cvrp using tabu search. European Journal of

Operational Research, 106(2–3):546 – 557, 1998.

[65] United Nations Department of Economic and Social Affairs/Population Division. World

urbanization prospects: The 2009 revision, 2010.

183



[66] Hipólito Hernandez Pérez and Juan-José Salazar González. The one-commodity pickup-

and-delivery travelling salesman problem. Lecture Notes in Computer Science, 2570:89

– 104, 2002.

[67] Hipólito Hernandez Pérez and Juan-José Salazar González. A branch-and-cut algorithm

for a traveling salesman problem with pickup and delivery. Discrete Applied Mathematics,

145:126 – 139, 2004.

[68] Hipólito Hernandez Pérez and Juan-José Salazar González. Heuristics for the one-

commodity pickup-and-delivery traveling salesman problem. Transportation Science,

38:245–255, 2004.

[69] Hipólito Hernandez Pérez and Juan-José Salazar González. The one-commodity pickup-

and-delivery travelling salesman problem: inequalities and algorithms. Networks, 4:258–

272, 2007.

[70] Hipólito Hernandez Pérez, Inmaculada Rodriguez Martin, and Juan-José Salazar

González. A hybrid grasp/vnd heuristic for the one-commodity pickup-and-delivery trav-

eling salesman problem. Computers and Operations Research, 36:1639–1645, 2009.

[71] Dana Pesach, Tal Raviv, and Michal Tzur. Dynamic Repositioning in a Bike-Sharing

System Models and Solution Approaches. Working Paper, 2011.

[72] Marc Porcheron, Agnès Gorge, Olivier Juen, Tomas Simovic, and Guillaume Dereu ; EDF

R&D. Challenge roadef/euro 2010 :a large-scale energy management problem with varied

constraints. February 2010.

[73] Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing

problem. Computers & Operations Research, 31(12):1985 – 2002, 2004.

[74] Tal Raviv and Ofer Kolka. Optimal inventory management of a bike-sharing station.

Working Paper, 2011.

[75] Tal Raviv and Michal Tzur. personnal communication, 2011.

[76] Tal Raviv, Michal Tzur, and Iris Forma. Static repositioning in a bike-sharing system:

Models and solution approaches. ODYSSEUS IV, 2009.

[77] R.M. A la recherche désespérée de villo. La Libre, September 2010.

[78] Antoine Rozenknop, Roberto Wolfler Calvo, Laurent Alfandari, Daniel Chemla, and Lu-

cas Létocart. Solving eletricity production planning by column generation. Journal of

Scheduling, 2012.

184



[79] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,

2003.

[80] Susan A. Shaheen, Stacey Guzman, and Hua Zhang. Bikesharing in Europe, the Amer-

icas, and Asia: Past, Present, and Future. Transportation Research Record, 2143:159 –

167, 2010.

[81] Herbert A. Simon. The architecture of complexity. In Proceedings of the American

Philosophical Society, volume 106, pages 467–482, December 1962.

[82] Laura Spinney. Les maths au secours du “vélopartage”. Le Temps, May 2011.

[83] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. 2002.

[84] Patrick Vogel and Dirk C. Mattfeld. Anticipating usage patterns in the design of bike-

sharing systems. In INFORMS 2011; Shared Mobility Systems, 2011.

[85] Albert Wagelmans, Stan van Hoesel, and Antoon Kolen. Economic lot sizing: An o(n

log n) algorithm that runs in linear time in the wagner-whitin case. Operations Research,

40:145–156, January-February 1992.

[86] Harvey M. Wagner and Thomson M. Whitin. Dynamic version of the economic lot size

model. Management Science, 5:89 – 96, October 1958.

[87] Laurence A. Wolsey. Integer Programming. 1998.

[88] Konstantinos Zavitsas, Ioannis Kaparias, and Michael G.H. Bell. Transport problems in

cities. Technical report, 2010.

185



186



Part III

Appendix

This part gathers the work done in the two ROADEF challenges.

Chapter A is the article [78] published following the 2010 edition presenting the work done

with Roberto Wolfler Calvo, Antoine Rozenknop, Laurent Alfandari and Lucas Létocart.

Chapter B presents briefly the method used to solve the 2012 edition. This work was done

with Bernat Gacias and Paolo Gianessi.

187





Appendix A

Challenge ROADEF 2010: Solving

electricity production planning by column

generation

This work has been done together with Antoine Rozenknop, Roberto Wolfler Calvo, Lau-

rent Alfandari and Lucas Létocart.

A.1 Introduction

Optimization in the energy sector is a large subject. With the raise of raw materials prices

and the growing awareness for environment concerns, energy consumption must be considered

in a less greedy way in order to save resources. For years, several researchers have worked on

optimizing the energy industry. In [52], the authors gather such type of problems, one of which

is the electricity production planning. Electricity can be produced through different ways: nu-

clear and other thermal energies are the major part of production, but hydraulic energy or other

renewable energies have sometimes a significant role (in Norway almost all the production is

done using hydraulic energy). Producers can mix these different production resources in order

to satisfy the energy demand while decreasing their costs and/or their impact on the environ-

ment. Electricity companies look for effective optimization tools since even small percentages

of gain through optimization translate into large savings. The problem of optimizing energy

production planning has several difficulties, one of which is that the exact amount of the future

demand and the exact price of raw materials are unknown. This difficulty naturally increases

189



with the length of the time horizon, which can be in some cases very large.

A typical energy production planning problem with a short-term horizon is the Unit Com-

mitment Problem (UCP). In the UCP, several generators are available for producing energy.

Costs and constraints are associated with generators depending on their type: nuclear and other

thermal units, hydraulic energy, wind turbines. For example, in a short-term horizon, the level

of water in dams has to stay above some threshold. A forecast of the demand over a period

of time is given. The objective is to find the best production assignment in order to satisfy the

demand while minimizing production costs. Kazarlis et al. [53] propose a genetic algorithm to

solve the UCP. Claudia Sagastizàbal et al. [41] present a Lagrangian relaxation method. Fran-

gioni et al. in [43] extend Lagrangian relaxation methods to the UCP with ramping constraints,

i.e., constraints that bound the difference of production of thermal units from one time step to

the next. Claude Lemaréchal et al. [36] also studied UCP in the French context.

In long-term planning, typical constraints on energy production relate to maintenance op-

erations that have to be executed periodically on nuclear plants. No production can be planned

during these maintenance periods. The problem of scheduling the shut down of nuclear power

plants for refueling and maintenance (see for example [54]) has been proposed as subject of

the EURO/ROADEF 2010 challenge. EDF power generation facilities in France stand for a

total of 98.8 GW of installed capacity and mix thermal energy (90 % in 2008, among which

86 % is produced by nuclear power and the rest by coal, fuel oil and gas), hydraulic and other

renewable energies. The research project consists in modeling the electricity production assets,

finding an optimal schedule of outages for each nuclear plant over a given time horizon, and

determining an optimal production plan to satisfy demand. Moreover, in long-term electric-

ity production planning, numerous uncertainties have to be taken into account, such as demand

variation, generation units availability, spot market prices, quantities that can be bought or sold.

This uncertainty leads to consider multiple scenarios and asks for a robust outage schedule that

has to be feasible for every scenario. The scheduling of nuclear plant outages has to comply

with various safety constraints and limitations on resources which are necessary to perform

refueling and maintenance operations. The production planning fixes the quantity of energy to

be produced by each plant at each time step for each scenario, and is also subject to technical

constraints. The objective of the problem is to minimize the expected production cost over all

scenarios. The proposed approach is based on mathematical programming and problem de-

composition. An other approach used for solving the challenge ROADEF, based on a different

decomposition method has been proposed by Lubsy et al. [59].

190



In this paper a column generation method (see [32] and [58] for surveys on this approach)

is proposed to solve it. Column generation is often used to solve large-scale optimization

problems when the problem can be formulated as a mixed integer linear program with a huge

number of variables, or columns – called the master problem – as it is the case in the EDF prob-

lem. Creating and keeping all variables is not possible and useless as most of them would not

enter the optimal solution. A restricted master problem is then defined, where instead of solv-

ing the problem on all its solution space, only a subset of variables (or columns) is considered.

The column generation method iterates between two different problems: the restricted master

problem and a pricing subproblem. The pricing subproblem aims at looking for new columns

with negative reduced cost to add to the restricted master problem to improve its optimal value.

Even if the set of columns of the original master problem has a huge or exponential size, it is

often possible to find the minimum reduced cost column in short or polynomial time, depending

on the structure of the pricing problem. The method stops when no more negative reduced cost

column is produced by the pricing subproblem, which means that the linear relaxation of the

original master problem is solved to optimality. Nevertheless, in the case of integer variables

the optimal solution of the linear relaxation could be far away from the optimal solution of the

original master problem. In this case it is necessary either to start a branch-and-price algorithm

(see for example [13] for a survey on this topic) or to have a complete pricing of the whole set

of columns candidate to be in the optimal solution (see for example [11] for a reference on this

topic).

Our approach is a heuristic method since only a subset of the whole set of possible columns

are implicitly considered, due to the time limit imposed by the competition. This method is

indeed heuristic for several reasons. The first reason is that production levels are discretized

over time periods. This implies that the pricing subproblem is approximately solved using

a shortest path algorithm in a graph with a finite number of nodes associated with production

levels, which is much faster than solving it with continuous variables. The second reason is that

scenarios are aggregated into a single mean scenario. Finally, the column generation method

leads to find the optimal solution of the relaxed problem on the subset of columns that could

be produced with respect to the discretization considered. A branch-and-price algorithm was

not envisaged due to the time limits. At the end of the column generation process, once the

outages have been scheduled, two linear programming problems are solved to optimality for

deciding the quantity of fuel and the optimal production planning over all scenarios for this set

of outages.

191



The main contributions of this paper are the following:

– an original set partitioning-like reformulation of the problem;

– a pricing subproblem solved by shortest path computations on a particular state graph;

– a diversification method that changes the objective function, adding columns that may

have a positive reduced cost;

– two linear programming problems solved to optimality for deciding the quantity of fuel

and the production planning for the selected set of outages.

The discriminant strategy chosen for our approach is to spend time to generate a single high-

quality schedule of outages, guided by the cost objective of column generation, rather than

enumerating several schedules of outages in a shorter time.

This paper is organized as follow. The electricity production planning problem is presented

in Section A.2. Section A.3 introduces the mathematical model that formulates the problem.

Section A.4 explains the decomposition applied and describes the overall column generation

method used to solve it. Section A.5 describes the formulation of the pricing subproblem and

its resolution method. Section A.6 gives the model of the final master problem that is solved

for fixing dates of outages and critical stock-level periods, ending the first stage of the method.

Section A.7 shows how to improve the pricing subproblems in order to generate a greater

number of columns with higher diversity. Section A.8 presents the second-stage process used

for fixing reload and production quantities for each plant. Section A.9 gathers the numerical

results obtained on the test instances while Section A.10 concludes the paper.

A.2 Problem statement

The notations used in this paper mix the notations used in the ROADEF/EURO 2010 Chal-

lenge document [72] and notations issued from the paper by Lubsy et al. [59]. The various in-

dexes used are scenarios s ∈ S, time steps t ∈ T={1, . . . , |T |}, weeks w ∈ W = {1, . . . , |W |},

non-nuclear plants j ∈ J , nuclear plants i ∈ I and production cycles k ∈ Ki = {1, . . . , |Ki|}

for each nuclear power plant i, |Ki| being the maximum number of cycles that can start during

the considered period. The decision variables introduced in the Challenge document are:

– haik : week of cycle k during which nuclear plant i goes offline (i.e. week of decoupling)

– pjts : production of non-nuclear plant j during time step t over scenario s

– pits : production of nuclear plant i during time step t over scenario s

– rik : reload performed during the outage of cycle k of nuclear plant i

192



– xits : stock of fuel of nuclear power plant i at the beginning of time step t over scenario s

Variables ha are integer, all other variables are continuous variables.

The objective function is:

min
∑

i∈I

∑

k∈K

Cikrik +
1

|S|

∑

s∈S

(∑

t∈T

∑

j∈J

CjtspjtsD
t −
∑

i∈I

Cf
i x

f
is

)

where Cik is the proportional cost of fuel during cycle k for nuclear plant i, Cjts is the propor-

tional production cost for time t and scenario s for non-nuclear plant j, Cf
i is the selling price

(or the gain) for the remaining fuel xf
is and Dt is the length of time step t.

The set of constraints is the following, taking the same numbering as in the Challenge

document. Some notations used throughout the paper are introduced with these constraints,

amongst which :

– TW is the set of time steps contained in a set of weeksW ,

– Lik is the length of an outage (defined in constraint [CT13] but used before).

[CT1] Demand satisfaction:

∑

j∈J

pjts +
∑

i∈I

pits = DEMt,s ∀s, t

[CT2] For non-nuclear plants, we only have minimum and maximum production constraints:

P jts ≤ pjts ≤ P jts ∀t, s, j

where P jts and P jts are the minimum and maximum production for non-nuclear plants

j on time step t for scenario s.

[CT3] Offline power: if the nuclear power plant is offline the production must be 0

t ∈ T[haik,haik+Lik[ ⇒ pits = 0 ∀t, s, j

[CT4] Minimum power: if the nuclear power plant is online the production must be greater

or equal than 0

pits ≥ 0 ∀i, t, s

[CT5] Maximum power before activation of imposition of power profile constraint

if (t ∈ T[haik+Lik,hai(k+1)[) and xits ≥ BOik ⇒ pits ≤ P it ∀i, t, s, k

where BOik is a bound on stock of fuel that activates the imposition of power profile

during cycle k, and P it is the maximum power of plant i during time step t

193



[CT6] Maximum power after activation of imposition of power level constraint :

if t ∈ T[haik+Lik,hai(k+1)[ and xits < BOik then



if xits ≥ (PBik(xits)× P it)×Dt

then pits
PBik(xits)×P it

∈ [1− ǫ, 1 + ǫ]

else pits = 0





∀s, t, i, k,

where PBik(xits) is an imposed decreasing production profile during the production cam-

paign of cycle k (piecewise linear function dependent on the level of fuel), and ǫ is a

tolerance parameter. It is important to point out that these constraints are non linear.

[CT7] Bounds on refueling for scheduled outages k:

Rik ≤ rik ≤ Rik ∀i, k

where Rik and Rik are the minimum and maximum quantity that can be refueled, respectively.

[CT8] Initial fuel stock :

xi0s = XIi ∀(i, s)

[CT9] Fuel stock variation during a production campaign

t ∈ T[haik+Lik,hai(k+1)[ ⇒ xi(t+1)s = xits − pits ×Dt ∀s, t, i, k,

[CT10] Fuel stock variation during an outage. If t is the first time step of haik then

xi(t+1)s = ((Qik − 1)/Qik)(xits − BOi(k−1)) + rik +BOik ∀i, t, s, k

where Qik is a refueling coefficient during the outage of cycle k

[CT11] Fuel stock variation during an outage

t is the first time step of haik ⇒ xits ≤ Aik, xi(t+1)s ≤ Sik ∀s, t, i, k,

where Aik (resp. Sik) is the maximum bound on stock of fuel at the time of outage (resp.

during production campaign) of cycle k

[CT12] Constraint on maximum modulation over a cycle

∑

t∈T[haik+Lik,hai(k+1)[
and xits≥BOik

(P it − pits).D
t ≤ M̄ik ∀s, i, k

where M̄ik is the maximum modulation over the production campaign of cycle k. These

constraints state that the gap between total production and production capacity, during a

production campaign staying above the BO stock threshold, should not be too high.

194



[CT13] Earliest and latest date of outage

hai(k+1) ≥ haik + Lik ∀i, k

T o
ik ≤ haik ≤ T a

ik ∀i, k

where Lik is the number of weeks (length) of outage k. These constraints bound the

earliest and the latest date of an outage for each cycle k ∈ Ki of each plant i.

[CT13bis] No outage k ∈ Ki could be skipped as soon as it has a last possible week T a
i,k

defined.

In the next series of constraints: Nxx
m are number of weeks associated to constraint m ∈

Mxx and Qxx
m represent quantities.

[CT14] Minimum spacing and maximum overlapping between outages of i and i′

haik−hai′k′−Li′k′ ≥ N14
m or hai′k′−haik−Lik ≥ N14

m ∀(i, k), (i′, k′) ∈ G14
m , ∀m ∈M14

[CT15] Minimum spacing and maximum overlapping between outages during a specific

period. Let’s define with [bm, em] a time interval, then

if

(bm − Lik + 1 ≤ haik ≤ em) and (bm − Li′k′ + 1 ≤ hai′k′ ≤ em)

then

haik−hai′k′−Li′k′ ≥ N15
m or hai′k′−haik−Lik ≥ N15

m ∀(i, k), (i′, k′) ∈ G15
m , ∀m ∈M15

[CT16] Minimum spacing between decoupling dates

|haik − hai′k′ | ≥ N16
m ∀(i, k), (i′, k′) ∈ G16

m , ∀m ∈M16

[CT17] Minimum spacing between coupling dates

|haik + Lik − hai′k′ − Li′k′ | ≥ N17
m ∀(i, k), (i′, k′) ∈ G17

m , ∀m ∈M17

[CT18] Minimum spacing between coupling and decoupling dates

|haik + Lik − hai′k′ | ≥ N18
m ∀(i, k), (i′, k′) ∈ G18

m , ∀m ∈M18

[CT19] Resource constraints on outages. Let define with

195



– wm
ik represents the start of using the resources for the outage, expressed in terms of

number of weeks after the beginning of the outage.

– imik the number of weeks during with the resources are not available for the next outage

– Q19
m quantity of available resources

∑

(i,k)∈G19
m

δ(t, i, k) ≤ Q19
m ∀t ∈ T ∀m ∈M19

where δ(t, i, k) = 1 if haik + wm
ik ≤ t ≤ haik + wm

ik + imik

[CT20] Maximum number of overlapping outages during a specific week wm

∑

(i,k)∈G20
m

δ(wm, i, k) ≤ Q20
m ∀m ∈M20

where Q20
m is the maximum number of outages at week wm and δ(w, i, k) = 1 if haik ≤

w < haik + Lik

[CT21] Maximum offline power capacity of a set of power plants during a time period. For

a given time period [bm, em] the power capacity of a subset of plants C21
m that are offline

is bounded by a maximal quantity Q21
m

∑

i∈C21
m

∑

k

δ(w, i, k)P it ≤ Q21
m ∀m ∈M21, ∀w ∈ [bm, em], ∀t ∈ Tw

A.3 Compact formulation

The solution approach is based on mathematical programming. Our compact formulation is

inspired from [59]. However, we provide a complete compact formulation as some constraints

([CT6] and [CT12]) were not directly modeled in [59]. Before defining the Mixed Inte-

ger Programming (MIP) model, we introduce some additional notations, sets, constants and

variables.

Sets and data

– w(t) : week containing time step t

– Tw : set of timesteps in week w

– qik =
Qik−1
Qik

the ratio of fuel kept from a cycle to the next one

196



Variables

Variables rik, pjts are the same as defined before, but new binary variables are introduced

and variables xits are splitted as described below.

– yiwk (binary): = 1 if cycle k for plant i begins in week w ∈ W , 0 otherwise,

– Yik (binary): = 1 if cycle k is used for plant i, 0 otherwise,

– x1
iks : fuel stock of nuclear power plant i at the beginning of cycle k (i.e. before refueling)

over scenario s

– x2
iks : fuel stock of nuclear power plant i after refueling at cycle k over scenario s

– xf
is : final stock for plant i over scenario s

– xikts : fuel stock of nuclear power plant i during time step t ∈ T of cycle k over scenario

s

– pikts : production of nuclear plant i during time step t of cycle k over scenario s

– zikts (binary) : = 1 iff xikts ≤ BOik (used for modeling [CT6] and [CT12])

– ξikts (binary) : = 1 iff PBik(xikts)P itD
t ≤ xikts (used for [CT6])

As in [59] we introduce intermediate variables η(i, w, k) =



1−
∑

w′≤w yiw′2 k = 1
∑

w′≤w−Lik
yiw′k k = |Ki|

∑
w′≤w−Lik

yiw′k −
∑

w′≤w yiw′(k+1) otherwise

This binary variable indicates whether week w is a production week in cycle k for plant i.

Note that haik can be rewritten as haik =
∑

w∈W wyiwk.

z = min
∑

i∈I

∑

k∈K

Cikrik +
1

|S|

∑

s∈S


∑

t∈T

∑

j∈J

Cjtspjts −
∑

i∈I

C
f
i x

f
is


 (A.1)

s.t.
∑

i∈I

∑

k∈Ki(w(t))

pikts +
∑

j∈J

pjts = DEMts, ∀t ∈ T, s ∈ S

(A.2)

P jts ≤ pjts ≤ P jts ∀j ∈ J, t ∈ T, s ∈ S

(A.3)
∑

(iwk)∈G

yiwk ≤ αG ∀G ∈ G

(A.4)

T o
ik ≤

∑

w∈W

wyiwk ≤ T a
ik ∀i ∈ I, k ∈ Ki

(A.5)

197



pikts ≤ P itη(i, w(t), k), ∀i ∈ I, k ∈ Ki, t ∈ T, s ∈ S

(A.6)

Yik =
∑

w∈W

yiwk ∀i ∈ I, k ∈ Ki

(A.7)

RikYik ≤ rik ≤ RikYik ∀i ∈ I, k ∈ Ki

(A.8)

Yi(k−1) ≥ Yik ∀i ∈ I, ∀k ∈ Ki \ {1}

(A.9)

x1
i(k+1)s = x2

iks −
∑

t∈T

piktsD
t ∀i ∈ I, k ∈ Ki, s ∈ S

(A.10)

x2
iks =

[
qik(x

1
iks − BOi(k−1)) + rik + BOik

]
Yik + x1

iks(1− Yik) ∀i ∈ I, k ∈ Ki, s ∈ S

(A.11)

x1
iks ≤ Aik + (1− Yik)N ∀i ∈ I, k ∈ Ki, s ∈ S

(A.12)

x2
iks ≤ Sik + (1− Yik)N ∀i ∈ I, k ∈ Ki, s ∈ S

(A.13)

x
f
is =

∑

k∈Ki

xi(k+1)s(Yik − Yi(k+1)) ∀i ∈ I, s ∈ S

(A.14)

xikts = x2
iks −

∑

t′≤t

pikt′sD
t ∀i ∈ I, k ∈ Ki, t ∈ T, s ∈ S

(A.15)
∑

t∈T

(P it − pikts)D
t(1− zikts) ≤M ik ∀i ∈ I, k ∈ Ki

(A.16)

(1− ǫ)ξiktszitks ≤
pikts

PBik(xikts)P it

ξiktszitks ≤ (1 + ǫ)ξiktszitks ∀i ∈ I, k ∈ Ki, t ∈ T, s ∈ S

(A.17)

η(i, w, k)(BOik − xitks)zikts ≥ 0, ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T, ∀s ∈ S

(A.18)

η(i, w, k)(xitks −BOik)(1− zikts) ≥ 0, ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T, ∀s ∈ S

(A.19)

(PBik(xitks)P itDt − xitks)ξitks ≤ 0 ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T, ∀s ∈ S

(A.20)

(xitks − PBik(xitks)P itDt)(1− ξitks) ≤ 0 ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T, ∀s ∈ S

(A.21)

198



yiwk, Yik ∈ {0, 1} ∀i ∈ I, ∀k ∈ Ki, ∀w ∈W

(A.22)

zikts, ξikts ∈ {0, 1} ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T, ∀s ∈ S

(A.23)

pikts, pjts, x
1
iks, x

2
iks, x

f
is, xikts ≥ 0 ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T, ∀s ∈ S

(A.24)

The objective function (A.1) minimizes the sum of the total reload cost and the average pro-

duction cost (reduced by the profit value of remaining fuel) over all scenarios. Constraints (A.2)

specify that the total quantity produced by nuclear power plants and thermal power plants must

be equal to the energy demand for each period and scenario. Constraints (A.4) are a general

way of writing constraints [CT14] to [CT21]. The right hand side αG is an integer num-

ber, generally equal to one (corresponding then to incompatibility constraints between dates

of outages). Constraints (A.5) ensure that outages start in the imposed intervals of [CT13].

Constraints (A.3) and (A.6) limit the production of thermal and nuclear power plants. Equal-

ity constraints (A.7) define the binary variables Yik that indicate whether cycle k is selected

or not in the schedule. Constraints (A.8) bound the reloaded amount of fuel in a cycle. Con-

straints (A.9) say that when a cycle k is selected, then all cycles before k are also selected in

the schedule. Constraints (A.10) say that the level of fuel stock at the end of cycle k (i.e., at the

beginning of cycle k+1) is the level of stock after refueling minus the total production of cycle

k. Constraints (A.11) express that the level of fuel stock after refueling is equal to the level

before refueling (i.e., at the beginning of cycle k), plus a function of the reload quantity ac-

cording to constraint [CT10]. The two levels of stock after and before refueling are bounded

in constraints (A.12) and (A.13), corresponding to constraints [CT11]. N > 0 is a very big

parameter so that no bound holds if Yik = 0, similarly to [59]. The computation of the final

level of fuel at the end of the time horizon is made in constraint (A.14). In these constraints,

only one term in the right-hand-side sum will be non-zero by (A.9) and will correspond to the

final stock. Constraints (A.15) define the level of stock during a production time step as the

stock level after reload minus the total production of the campaign up to this step. The mod-

ulation constraints [CT12] are expressed in (A.16). Constraints (A.17) [CT6] impose the

piecewise linear decreasing production profile as soon as PBik(xikts)P itD
t ≤ xikts < BOik,

which implies ξiktszikts = 1 via constraints (A.18-A.21), or no production otherwise. Both

later constraints use variables zikts that are forced to 0 as soon as xikts ≥ BOik by constraints

(A.18), and to 1 otherwise by constraints (A.19). Constraints (A.20) and (A.21) ensure that the

199



level of fuel is enough to start the BO profile. Constraints (A.22), (A.23) and (A.24) define the

range of the variables.

The complexity of the model is mainly due to the combinatorial choice for binary variables

yiwk, zitks and ξitks, and the nonlinearity of constraints (A.11), (A.14) and (A.16) - (A.21).

A.4 Decomposition and solution method

This Section presents how the proposed approach can be derived and explained on the basis

of the compact formulation and the outline of the complete solution method.

A.4.1 Decomposition

The set of constraints can be decomposed in two sets. The global constraints are demand

constraints (A.2) and incompatibility constraints (A.4) which link all power plants, and con-

straints (A.3) that bound the production in thermal plants. The local constraints (A.5)-(A.21)

can be decomposed by each nuclear power plant i.

Assume that we are able to find for each nuclear power plant i the set of all possible pro-

duction plans (i.e., feasible values of pikts, ∀t ∈ T , outages and reload quantities). Define P

as the index set of all feasible production plans for the set of nuclear power plants, and let Pi

be the subset of production plans associated to nuclear power plant i. Therefore, we can write

a set partitioning-like reformulation (i.e., a set partitioning model with some more constraints)

of the original problem where binary variables yℓ indicates whether production plan ℓ ∈ Pi

is selected for plant i, and variables pjts represent the thermal energy used for each scenario

s ∈ S and each period of time t ∈ T .

(F ) z(F ) = min
∑

i∈I

∑

ℓ∈Pi

cℓyℓ +
1

|S|

∑

s∈S

∑

t∈T

∑

j∈J

Cjtspjts (A.25)

s.t.
∑

i∈I

∑

ℓ∈Pi

pℓtsyℓ +
∑

j∈J

pjts = DEMts, ∀t ∈ T, ∀s ∈ S (A.26)

∑

ℓ∈Pi

yℓ = 1 ∀i ∈ I (A.27)

P jts ≤ pjts ≤ P jts, ∀j ∈ J, ∀t ∈ T, ∀s ∈ S (A.28)

200



∑

ℓ∈P

aℓGyℓ ≤ αG, ∀G ∈ G

(A.29)

yℓ ∈ {0, 1} ∀ℓ ∈P, (A.30)

pjts ≥ 0 ∀j ∈ J, ∀t ∈ T, ∀s ∈ S (A.31)

where pℓts is the quantity produced in plan ℓ in time step t over scenario s, and aℓG are 0-1

coefficients associated with plan ℓ in constraint set G.

Equation (A.25) is the resulting objective function to be minimized. Constraints (A.26)

specify that the energy demand of each period t ∈ T and for each scenario s ∈ S must be

satisfied. Constraints (A.27) impose that for each nuclear power plant one and only one column

(refuel and production plan) must be chosen. Constraints (A.28) bound the quantity of energy

that a thermal power plant can produce each time period. Constraints (A.29) limit the number

of nuclear power plants that can stop together. Constraints (A.30) and (A.31) define the range

of the variables.

Note that constraints (A.26), (A.28) and (A.29) correspond to constraints (A.2), (A.3) and

(A.4).

A.4.2 Solution method

The efficiency of the approach largely depends on the tractability of problem (F) and the

|I| subproblems associated with each nuclear power plant. These problems have very large

scale given the number |S| of scenarios and the number T of time steps. To deal with this

complexity, we chose to simplify the original set of data by aggregating the S scenarios into a

single average scenario s̄, and the time steps t = 1, . . . , T into weeks w = 1, . . . ,W . We note

for every week w ∈ W :

DEMw =
1

|S|

∑

s∈S

∑

t∈Tw

Dt. DEMts

Cjw =
1

|S|

∑

s∈S

|W |

|T |

∑

t∈Tw

Cjts

Ejw =
1

|S|

∑

s∈S

∑

t∈Tw

Dt. P jts

Ejw =
1

|S|

∑

s∈S

∑

t∈Tw

Dt. P jts

201



Eiw =
∑

t∈Tw

P it . D
t

From now on, production quantities stand for each week w ∈ W , and we use notations

eℓw for the production of column ℓ ∈ Pi in week w, and production variables ejw (resp. eikw)

for thermal (resp. nuclear) power plants. Recall that the energy is related to the power by the

formula : Ew =
∑
t∈Tw

ptD
t. Therefore the problem (F ) to solve becomes

(F̄ ) z(F̄ ) = min
∑

i∈I

∑

ℓ∈Pi

cℓyℓ +
∑

w∈W

Cjwejw (A.32)

s.t.
∑

i∈I

∑

ℓ∈Pi

ewℓyℓ +
∑

j∈J

ewj = DEMw ∀w ∈ W (A.33)

∑

ℓ∈Pi

yℓ = 1 ∀i ∈ I (A.34)

Ejw ≤ ejw ≤ Ejw ∀j ∈ J, ∀w ∈ W (A.35)
∑

i∈I

∑

ℓ∈Pi

aℓGyℓ ≤ αG ∀G ∈ G (A.36)

yℓ ∈ {0, 1} ∀ℓ ∈P (A.37)

ejw ≥ 0 ∀j ∈ J, w ∈ W (A.38)

Formulation (F̄ ) is impractical to solve even for instances of moderate size, since the num-

ber of variables is typically exponential, which justifies a column generation approach. We

define a linear relaxation (LF̄ ) of (F ):

(LF̄ ) z(LF̄ ) = min
∑

i∈I

∑

ℓ∈Pi

cℓyℓ +
∑

w∈W

Cjwejw (A.39)

s.t.
∑

i∈I

∑

ℓ∈Pi

eℓwyℓ +
∑

j∈J

ejw = DEMw ∀w ∈ W (A.40)

∑

ℓ∈Pi

yℓ = 1 ∀i ∈ I (A.41)

Ejw ≤ ejw ≤ Ejw ∀j ∈ J, w ∈ W (A.42)

0 ≤ yℓ ≤ 1 ∀ℓ ∈P, (A.43)

ejw ≥ 0 ∀j ∈ J, ∀w ∈ W (A.44)

When passing from (F ) to (LF̄ ), constraints (A.36) have been removed since their dual

variables are hard to compute in the pricing problem within the limited computational time

202



imposed by the competition. For compensation we allow to add to problem (LF̄ ) some columns

with positive reduced costs as described in Section A.7. The solution of problem (LF̄ ) provides

the dual variables µw and ui associated with constraints (A.33) and (A.34), respectively. The

pricing problem exploits them for generating the column(s) with minimum reduced cost:

ℓ∗ = argmin
ℓ∈P

c̄ℓ with c̄ℓ = cℓ −
∑

w∈W

eℓwµw − ui (A.45)

The pricing subproblem (Pi) associated with each nuclear power plant i ∈ I can be written

as follows, given the decomposition previously described and aggregation of time steps into

weeks. Indexes of various scenarios have disappeared and the t indexes have been replaced by

w indexes in data and variables.

(Pi) min
∑

k∈Ki

Cikrik − C
f
i x

f
i −

∑

w∈W,k∈Ki(w)

eikwµw − ui (A.46)

s.t. eikw ≤ Eiwη(i, w, k), k ∈ Ki, w ∈W (A.47)

Yik =
∑

w∈W

yikw ∀k ∈ Ki (A.48)

RikYik ≤ rik ≤ RikYik ∀k ∈ Ki (A.49)

Yi(k−1) ≥ Yik ∀k ∈ Ki \ {1} (A.50)

x1
i(k+1) = x2

ik −
∑

w∈W

eikw ∀k ∈ Ki (A.51)

x2
ik =

[
qik(x

1
ik − BOi(k−1)) + rik + BOik

]
Yik + x1

ik(1− Yik) ∀k ∈ Ki (A.52)

x1
ik ≤ Aik + (1− Yik)N ∀k ∈ Ki (A.53)

x2
ik ≤ Sik + (1− Yik)N ∀k ∈ Ki (A.54)

x
f
i =

∑

k∈Ki

x1
i(k+1)(Yik − Yi(k+1)) (A.55)

∑

w∈W ′

ik

(Eiw − eikw)zikw ≤M ik ∀k ∈ Ki (A.56)

(1− ǫ)ξiktzitk ≤
pikt

PBik(xikt)P it

ξiktzitk ≤ (1 + ǫ)ξiktzitk ∀i ∈ I, k ∈ Ki, t ∈ T (A.57)

η(i, w, k)(BOik − xikt)zikt ≥ 0, ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T (A.58)

η(i, w, k)(xikt −BOik)(1− zikt) ≥ 0, ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T (A.59)

(PBik(xikt)P itDt − xikt)ξitk ≤ 0 ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T (A.60)

(xikt − PBik(xikt)P itDt)(1− ξitk) ≤ 0 ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T (A.61)

xikt = x2
ik −

∑

τ<t

pikτD
τ ∀k ∈ Ki, ∀t ∈ T (A.62)

∑

t∈Tw

piktDt = eikw
∑

w′≤w

(yikw′ − yi(k+1)w′) ∀k ∈ Ki, ∀w ∈W (A.63)

203



yiwk, Yik, zikt, ξikt ∈ {0, 1} ∀k ∈ Ki, ∀w ∈W, ∀t ∈ T (A.64)

eikw, pikt, x
1
ik, x

2
ik, x

f
i , xikt ≥ 0 ∀k ∈ Ki, ∀w ∈W, ∀t ∈ T (A.65)

The Pricing problem (P ) consists in optimizing every problem (Pi) for i ∈ I and output the

column with best optimal value (minimum reduced cost). The columns with negative reduced

cost output by (P ) are added to problem (LF̄ ) and the process iterates between (LF̄ ) and (P )

until (P ) finds no more negative reduced cost column. As we mentioned in Section A.1, the

proposed column generation method is a heuristic scheme. Indeed, due to the time constraints

imposed by the competition, only an approximation of the pricing problem P is solved at each

iteration. This holds because the pricing subproblem is a shortest path problem solved on a

graph whose paths do not explicitly represent all feasible plans, as explained in Section A.5. At

the end of the column generation, the set of columns forms a relaxed restricted master program

which is called the Restricted LF̄ (RLF̄ ), and solved to optimality as explained in Section A.6.

The obtained optimal solution is a set of columns and variables pwj satisfying constraints

(A.40)-(A.42) at minimum cost. Each column is a production plan containing the dates for the

outages and the periods when stock reaches a critical level equal to BOik (if such periods exist

for a given nuclear plant). Therefore the solution obtained at the end of the first phase is used

for fixing the decision variables on the outages and the date when the BO-threshold is attained.

The advantage is to avoid to deal explicitly with non linear constraints, since once one has fixed

BO, the corresponding decreasing profile is completely defined for the successive periods until

the next outage.

The only decisions that remain to be made in the second phase are the reload variables rik

and the production variables pikts , which are easier to settle once the binary outage variables

yiwk have been fixed. For setting the values of pikts, pjts and rik, it is necessary to use the whole

model with all time steps t = 1, . . . , T and all scenarios s ∈ S. Since it has no more binary

variables, it can be solved efficiently by Linear Programming.

The two-stage method is stated below.

Phase 1 Fixing dates for outages and BO stock-level periods

subphase 1 Solve the aggregate set partitioning-like formulation (LF̄ ) by column gen-

eration

– Aggregate data, passing from |T ×S| = (5000× 500) to |W ×{s̄}| = (260× 1)

– Create an acyclic graph Gi, for each nuclear power plant i

204



– Repeat until a time limit is elapsed or no new column of negative reduced cost

exists

– Solve a shortest path subproblem in Gi, for each nuclear power plant i

– Add the new columns (corresponding to shortest paths) to the (LF̄ ) master

problem and solve it by the Simplex method

subphase 2 Give the final restricted master problem to a MIP solver adding all the

clique-like inequalities (A.36), exploiting the fact that only a small number of nu-

clear power plants can be refueled at the same time. Outputs are the dates for

outages and BO stock-level periods.

Phase 2 Solve LP problems for defining the reload level for each date of outages and optimiz-

ing the production planning for each power plant and each scenario.

Phase 2 is described in Section A.8. Sections A.5 and A.6 detail the first phase of the

method. In phase 1, for every nuclear plant i ∈ I , two decisions are fixed: dates for outages

respecting the scheduling constraints on outages and periods when stock reaches the BOik

level, with imposed non linear decreasing power profile on the following periods. This step is

the most time-consuming step of the method.

A.5 Solving the pricing problem

The pricing problem (Pi) consists in finding a reload and production plan for each nuclear

power plant i. The problem contains a lot sizing problem and therefore can be solved by a

shortest path algorithm in a graph (see for example [85], [86] and [87]). The main point is how

to build the graph. The difficulty of this step is that the decision variables are a combination of

continuous and binary variables. The binary variables define the possible outage dates while

the continuous variables define the quantity of fuel that must be reloaded and the production for

each time step. The further difficulty is due to the BO piecewise non linear function. Last but

not least comes from the limited computational time imposed by the competition. Therefore, in

the proposed approach, we chose to design a graph in which a production plan would be made

of a relatively small number of arcs, each production campaign being represented by at most

two arcs, and in such a way that cost computations of each arc could be managed efficiently.

For efficiency reasons, we made the simplification of discretizing the possible fuel stock levels

at the beginning of outages, so that the stock level could be fixed once for all at both ends of

205



each arc of the graph. In the construction of the graph constraints (A.47) to (A.61) are taken

into account either when a node is defined or either when an arc is defined, such that any path

on this graph represents a feasible solution.

The pricing problem has been implemented as a three-step process:

Algorithm 4 The pricing algorithm
for all nuclear power plants i do

1) create an acyclic static stock graph Gi = (Ni, Ai);

2) for each arc a ∈ Ai compute weight c̄a (optimal reduced cost on the arc);

3) generate a new column by finding in Gi a path of minimum weight.

end for

Step 1 is quite time consuming but occurs only once at the beginning of the whole pro-

cess. Steps 2 and 3 are light processes and can be serialized with the computation of new dual

variables µw.

A.5.1 Creation of a static graph

Description of the graph. Each node n ∈ Ni in graph Gi represents a possible state of power

plant i and is characterized by a 4-tuple (typen, xn, wn, kn), where:

– wn is the week associated with n ;

– xn is the fuel stock of power plant i at the beginning of week wn ;

– kn is the id of the campaign in which the power plant will be during week wn ;

– typen is the node type. There are two main types of nodes:

– an “OUTAGE” node n marks the start of a new production campaign and wn is the

week during which the outage occurs ;

– a “BO” node n marks the start of a time period during which the fuel stock will be lower

than BOikn and the power level will be imposed by constraint [CT6] ; the stock xn of

a BO node is indeed a little higher than BOikn , but ensures that BOikn can be reached

during week wn by imposing the maximal power production of constraint [CT5] at

the beginning of the week. In the model, it corresponds to setting the constraints

(A.57)-(A.63).

Besides, two nodes with special types are added, corresponding to the initial and

final states of a power plant.

206



Each arc a = (n1, n2) ∈ Ai in graph Gi represents a possible direct transition from state n1

to n2.

– If n1 is an OUTAGE node, this means that it is possible to reach state n2 by proceeding to

an outage on week wn1 followed by a production campaign, without need for any other

outage and without reaching the BO stock level during the time interval [wn1 , wn2 ]. Note

that n2 can be either a BO node or an OUTAGE node. If it is a BO node, then kn2 = kn1;

else kn2 = kn1 + 1. Arcs leaving from OUTAGE nodes will be referred to as OUTAGE

arcs.

– If n1 is a BO node, this means there exists a production plan leading from n1 to n2 that

respects the imposed profile of constraint [CT6] with the acceptable ǫ tolerance. Note

that here n2 has to be an OUTAGE node and thus kn2 = kn1 + 1. Arcs leaving from BO

nodes will be referred to as BO arcs.

Furthermore, arcs are constructed so as to guarantee that technical constraints [CT3] to

[CT13bis] (eq. (A.47) to (A.56)) can be respected for any path from the initial to the

final node of Gi.

Building the graph. We build graph Gi in the following way:

Algorithm 5 Creation of graph Gi

1: create the initial node at week 1

2: for week w = 1 to |W | do

3: for all previously created nodes n with wn = w do

4: create new nodes n′ with wn′ > w so that there exists a production plan lead-

ing the power plant from state n to state n′ without violating constraints [CT3] to

[CT13bis]

5: end for

6: end for

In order to find new nodes (step 4 of Algorithm 5), we follow the beam of possible stock

interval(s) over time from a node n, as stated in Algorithm 6:

207



Algorithm 6 Creation of new nodes in Gi from n = (typen, xn, wn, kn)

1: for week w = wn + 1 to |W | do

2: compute the possible stock interval [xminn,w
, xmaxn,w

] of power plant i at the beginning

of week w

3: if the outage of campaign kn + 1 is allowed at week w according to constraint CT13

then

4: compute the intersection of [xminn,w
, xmaxn,w

] with [0, Aikn+1]

5: create new nodes n′ = (OUTAGE, xn′ , w, kn+1) with xn′ in this intersection (constraint

CT11)

6: end if

7: if BOikn ∈ [xminn,w
, xmaxn,w

] then

8: create new nodes n′ = (BO, xn′ , w−1, kn) with xn′ ∈ [xminn,w−1 , xmaxn,w−1 ] computed

so that if the power plant follows the imposed profile of [CT6] during week w − 1,

its stock will fall under BOikn at the beginning of week w

9: end if

10: end for

For steps 5 and 8 of Algorithm 6, we discretize the interval [xminn,w
, xmaxn,w

] of possible

stocks of fuel at week w by a fixed amount of fuel ∆i. New nodes are only created when needed,

so as to ensure that there will be a node in every non-empty intervals [xminn,w
, xmaxn,w

]∩ [x, x+

∆i], for all x ∈ R+. We compute ∆i relatively to the mean capacity of powerplant i after

choosing a priori a global discretisation parameter ρ :

∆i = ρ .

∑
w∈W Eiw

|W |

Step 2 of Algorithm 6 depends on the node type.

– If typen = BO, we follow the imposed profile of constraint [CT6, i.e. (A.57)] with the

authorized ǫ-deviation, counted positively for xminn,w
and negatively for xmaxn,w

.

– If typen = OUTAGE, we use [CT10, i.e. (A.52)] to compute stock variation during

the outage, [CT7,(A.49)] (bounds on refueling) and [CT11,(A.53)-(A.54)] (maxi-

mum stock after refueling) to compute the interval after refueling ; when the produc-

tion campaign starts, xmaxn,w
is computed using the maximum allowed modulation of

[CT12,(A.56)] – and xminn,w
using no modulation at all.

The node creation process is illustrated by figure A.1 for the second case (starting from an

OUTAGE node).

208



fuel stock xw

weeks w

xn

Rik

Rik

Mik

BOik
Aik+1

wn

eaik

Toik+1 Taik+1

Sik

xn

Figure A.1: Creating new nodes from an OUTAGE node n of campaign k in graph Gi inside

the beam of possible stock intervals. Stars inside the beam correspond to the creation of new

OUTAGE nodes associated with campaign k + 1, whereas circles are new BO nodes associated

with campaign k. Note that no BO node is created at week T a
i(k+1), because the paths that would

go through such a node would violate constraint CT13bis.

When all nodes have been created by the process of Algorithm 5, a second pass takes place

in order to create the arcs of the graph between all nodes that can be connected.

A.5.2 Weighting the arcs of a graph

The goal of this graph is to compute a production plan ℓ ∈ Pi for power plant i with

minimal reduced cost c̄ℓ, which amounts to find according to equation (A.45) :

min
r,e,xf

i

∑

k∈K

Cikrik − Cf
i x

f
i −

∑

w∈W

µwew − ui

where

– xf
i is the quantity of remaining fuel at the end of the timeline in the aggregated scenario ;

– ew is the energy produced at week w in production plan ℓ ;

– µw is the dual variable associated to constraint (A.33) ;

– ui is the dual variable associated to constraint (A.34)

Let us recall that a production plan is supported by some unique path Aℓ ⊂ Ai in graph Gi,

and that each campaign k in a production plan is carried either by a single OUTAGE arc, or by

209



an OUTAGE arc followed by a BO arc.

It comes that the previous expression can be rewritten as:

min c̄ℓ =
∑

a=(n,n′)∈Aℓ


Ciknra − Cf

i x
f
a −

∑

w∈W (a)

µwew


− ui

where:

– ra is the refuel quantity at the beginning of arc a, i.e. :

ra =





rikn if a is an OUTAGE arc

0 if a is a BO arc

– xf
a is the remaining fuel at the end of the timeline if a is the final arc in path Aℓ, i.e. :

xf
a =





xf
i if typen′ = FINAL

0 otherwise

– W (a) = [wn, wn′ [ is the set of weeks spanned by arc a.

With this rewriting, we see that each variable that plays a part in the reduced cost of path

Aℓ is uniquely linked with a variable associated with some arc of ℓ.

Let us call the reduced cost of arc a ∈ Ai the value ca defined by:

c̄a = min
r,e,xf

a

Ciknra − Cf
i x

f
a −

∑

w∈W (a)

µwew (A.66)

While ensuring that constraints of (P ) hold true for every path in ℓ, we can easily find the

production plan with minimum reduced cost by solving a shortest path in the graph. The

reduced cost of this production plan is obtained by substracting ui from the minimum weight

path value.

Determining the weight of a BO arc is straightforward because there is no refuel at the

beginning of such an arc (ra = 0) and the productions e(W (a)) are fixed for each timestep by

constraint [CT6, i.e. (A.57)], if we disregard the allowed deviation ǫ. If the arc is FINAL, we

can compute xf
a by substracting the productions from its initial fuel stock. The weight of a BO

arc a is given by the following expressions, where everything is known:

c̄a =




− Cf

i .
(
xn −

∑
w∈W (a) ew

)
−
∑

w∈W (a) µw . ew if a is FINAL

−
∑

w∈W (a) µw . ew otherwise
(A.67)

210



Determining the weight of a non final OUTAGE arc is more intricate because the allowed

modulation gives some latitude to productions e(W (a)). However, the campaign kn, the produc-

tion weeks W (a) = [wn, wn′ [ and the levels of fuel (xn, xn′) at the beginning and at the end of

the arc are known.

Following equation (A.52), let x̄n =
(

Qikn−1

Qikn
(xn − BOikn) + BOikn−1

)
. The problem can

then be stated as follows:

(LPa) c̄a = min
ra,e(W (a))

Ciknra −
∑

w∈W (a)

µwew (A.68)

s.t. x̄n + ra = xn′ +
∑

w∈W (a)

ew [from(A.51)] (A.69)

0 ≤ ew ≤ Eiw ∀w ∈ W (a) [from(A.47)] (A.70)

Rikn ≤ ra ≤ Rikn [from(A.49)] (A.71)

x̄n + ra ≤ Sikn [from(A.54)] (A.72)
∑

w∈W (a)

(Eiw − ew) ≤M ikn [from(A.56)] (A.73)

We can use (A.69) to rewrite ra and remove it from the problem. It comes that we are

looking for the minimum under constraints (A.70) to (A.73) of:

c̄a = Cikn (xn′ − x̄n) +
∑

w∈W (a)

(Cikn − µw) ew

As the first part of the sum is known for each arc, we only have to find the productions ew

that minimize
∑

w∈W (a) (Cikn − µw) ew. We tried two methods to achieve this goal:

The exact solution is obviously given by the Simplex method, since (LPa) is a linear pro-

gram, or by Algorithm 7 below, where nullify has to be understood as “set as close to zero as

possible without violating constraints (A.70) to (A.73)”:

211



Algorithm 7 Exact algorithm for minimizing arc weight

set all ew to Eiw

order the set of weeks by decreasing values of (Cikn − µwm
) : w1, w2 . . .

start with m = 1

while constraints (A.70) to (A.73) are not satisfied do

nullify ewm

increment m

end while

while (Cikn − µwm
) > 0 and constraints (A.70) to (A.73) can be satisfied do

nullify ewm

increment m

end while

However, we encountered two problems with the exact method:

– the overall column generation process was converging too fast, and no new column was

generated after about two or three iterations ; this can be overcome however by the di-

versification strategy exposed in Section A.7 ;

– this method was 3 to 10 times slower than the heuristic exposed below (depending on the

instances), because it has to walk through the ordered set of weeks for each arc. Thus, on

some instances, we were not able to produce enough columns in the imposed time and

ended with no valid solution when using this exact algorithm.

We used a heuristic to obtain a good solution, even if not optimal: we chose to spread the

modulation on all weeks proportionally to Eiw, but with a different factor whether the reduced

unit cost c̄ikw = Cik − µw is positive or negative. For that purpose, we split the set of weeks

into two sets: W+
k = {w ∈ W s.t. Cik − µw > 0} and W−

k = {w ∈ W s.t. Cik − µw ≤ 0}.

Then, when looking for the minimal reduced cost of our arc a, we consider two variables αa

and βa in the [0, 1] interval and we set the values of ew from these variables:

∀w ∈ W (a) ∩ W+
kn
, ew = αa . Eiw

∀w ∈ W (a) ∩ W−
kn
, ew = βa . Eiw

The problem becomes: find the factors αa and βa that minimize the expression:

212



αa




∑

w∈W (a) ∩ W+
kn

(Cikn − µw)Eiw


+ βa




∑

w∈W (a) ∩ W−

kn

(Cikn − µw)Eiw




The parenthesized expressions do not have to be computed for each arc. Instead, we can

compute them in advance for each (k, [w,w′[)w<w′ couple. Similarly, the constraints (A.70)

to (A.73) can be rewritten as linear constraints on αa and βa and we save a lot of comput-

ing overhead by precomputing
∑

w∈[w,w′[ ∩ W−

k
Eiw for each couple (k, [w,w′[)w<w′ and their

counterparts on W+
k .

As it reduces the number of variables to a couple, this heuristic has proven to be more effi-

cient and effective than looking for the exact solution, when placed in the context of this column

generation problem : even if the minimum reduced cost is not reached by this computation, the

induced time savings allow the production of a greater set of columns amongst which better

combinations can be found.

A.5.3 Obtaining dual variables µw and ui

At each iteration we solved RLF̄ to optimality and the dual variables µw and ui are re-

spectively associated with constraints (A.33) and (A.34). For the first run the variables are

arbitrarily chosen as follows: ui = 0 for all i ∈ I and µw = maxi∈I,k∈Ki
{Cik + 1} so that

W+
k = W for all power plants. This will create a first pool of production plans where nuclear

power plants are used at their maximal capacity.

A.6 Solving the final master problem

Once LF̄ has been solved to optimality by the Column Generation process, the following

last restricted F̄ is solved to optimality

(RF̄ ) z(F̄ ) = min
∑

i∈I

∑

ℓ∈P̂i

cℓyℓ +
∑

w∈W

Cjwejw (A.74)

s.t.
∑

i∈I

∑

ℓ∈P̂i

yℓeℓw +
∑

j∈J

ejw = DEMw ∀w ∈ W (A.75)

∑

ℓ∈P̂i

yℓ = 1 ∀i = 1, . . . , I (A.76)

213



Ejw ≤ ejw ≤ Ejw ∀j ∈ J, ∀w ∈ W (A.77)

I∑

i=1

∑

ℓ∈P̂i

aℓGyℓ ≤ αG ∀G ∈ G (A.78)

yℓ ∈ {0, 1} ∀ℓ ∈ P̂ (A.79)

ejw ≥ 0 ∀j ∈ J, ∀w ∈ W (A.80)

where P̂ contains the subset of production plans generated from the beginning. This MIP in-

cludes constraints (A.78) which are the incompatibility constraints for some subsets P̂ of pro-

duction plans, corresponding to constraints [CT14-21] on the scheduling of outages. These

constraints are generated dynamically during the column generation process. All of them are

based on the same principle: given a set of columns, it is possible to build an incompatibility

graph and we look for the maximal clique on this graph. The graph has a node for each column

and an edge between any pair of incompatible columns (i.e. columns that cannot be at the same

time in the optimal solution due to constraints [CT14-21]).

If ℓ ∈Pi denotes the column selected for each nuclear plant i in the optimal MIP solution,

then the variables yiwk, zitks and ξitks, representing the dates of outages, the dates when the

stock reaches the BO-level and the corresponding imposed decreasing profile for the following

weeks, are fixed for the rest of the whole method.

A.7 Columns diversification

The main difficulty encountered with the method described so far comes when solving the

MIP for column selection since constraints [CT14-21] are not part of the column generation

process. We are not able to find a proper subset of columns that satisfies these constraints, most

of the time. To overcome this problem, we used an alternate scheme for weighting the columns:

instead of using weights c̄a given by equations (A.67) and (A.68), we compute and use weights

c̄′a in the following way:

c̄′a =





0 for BO arcs

nbConflicts(a, col) for OUTAGE arcs
(A.81)

where nbConflicts(a, cols) heuristically figures out the current number of (column, con-

straint) couples that would conflict with a new column going through arc a.

More precisely, we compute c̄′a with the following algorithm:

214



Algorithm 8 Alternate weight computation during a diversification pass for an OUTAGE arc

a = (n, n′)

c̄′a ← 0

for all existing column ℓ ∈ ∪i Pi do

for all constraint m of type [CT14] to [CT18] do

if column ℓ conflicts with an outage of power plant ia starting at week wn by constraint

m then

c̄′a ← c̄′a + 1

end if

end for

for all constraint m of type [CT19] do

if for some outage k of ℓ, (ia, ka) and (iℓ, k) are part of set G19
m and wn is interval

[haiℓk + wm
iℓk
− wm

iaka
, haiℓk + wm

iℓk
− wm

iaka
+ imiℓk] then

c̄′a ← c̄′a +
1

Q19
m

end if

end for

for all constraint m of type [CT20] concerning week wm do

if wm ∈ [wn, wn + Liaka ] ∩ [haiℓk, haiℓk + Liℓk] for some outage k of column ℓ then

c̄′a ← c̄′a +
1

Q20
m

end if

end for

end for

for all constraint m of type [CT21] concerning time period [bm, em] such that ia ∈ C21
m do

c̄′a ← c̄′a+ max
w∈[wn,wn+Liaka ]∩[bm,em]

(
∑

(ℓ,k)∈∪i(Pi×Ki) / ia 6=iℓ ∧ iℓ∈C21
m ∧ w∈[haiℓk,haiℓk+Liℓk

]∩[bm,em]

P iℓw

Q21
m

)

end for

Note that c̄′a only depends on the power plant ia, the week of outage wa and the campaign

ka ; furthermore, when new columns are generated, they only modify weights c̄′a by an additive

value, independently of other columns. These facts allow major factorizations in the algorithm.

This method is called each time negative reduced cost columns are found through finding

the shortest path on the former graph. Then, when no more negative reduced cost columns are

found with the shortest path algorithm, only the diversification method is processed and the

minimum path algorithm is not ran unless zero reduced cost columns are added by diversifica-

215



tion. Indeed, their addition could modify the value of the dual variables though not decreasing

the value of the dual problem. Note that this diversification method creates positive reduced

cost columns that are added if not already present.

A.8 Calculate the reload and the production quantities

Once the dates for outages and BO-profiles have been fixed as described in Section A.6, it

is still possible to improve the value of the optimal solution by looking for the optimal value

of the remaining variables which are continuous. In other words, we have to determine the

optimal reload quantities rik during each outage k for every nuclear plant i, and the optimal

production values pjts and pits for non-nuclear and nuclear plants, and finally the optimal stock

values pits for time steps t and scenario s such that the stock level is over the BO threshold.

A.8.1 LP-solving for fixing reload quantities

The reload quantities rik are determined by solving a partially-disaggregated LP where

every scenario s is considered instead of the average scenario s̄, but time steps t are still aggre-

gated into weeks w so as to accelerate solving. The optimal reload quantities rik are found by

solving a linear program (LPR) with CPLEX, where non-negative decision variables are reload

variables rik, production variables ejws and eiws, and stock variables xiWs. The constraints in

this LP are all constraints [CT1-12], but for weeks w instead of time steps t. Let us define

the binary values η#(i, w, k) and Y #
ik as the values of η(i, w, k) and Yik after they have been

fixed at the end of Phase 1.

Since the two former values are known, now the outage periods have been fixed.

Let us also define the energy demand for week w ∈ W for scenario s ∈ S as

DEMws =
∑

t∈Tw

Dt. DEMts

and the maximum production for power plant i ∈ I over week w ∈ W as

Eiw =
∑

t∈Tw

P
t

i . D
t

and the maximum and minimum productions for power plant in j ∈ J and scenario s ∈ S over

the week w ∈ W as

Ejws =
∑

t∈Tw

P jts . D
t

216



and

Ejws =
∑

t∈Tw

P jts . D
t

and

Cjws =
|W |

|T |

∑

t∈Tw

Cjts

the mean cost of thermal energy production over a week w ∈ W for j ∈ J and s ∈ S.

The objective function is thus the following:

z(LPR) =min
∑

i∈I

∑

k∈K

Cikrik +
1

|S|

∑

s∈S


∑

w∈W

∑

j∈J

Cjwsejws −
∑

i∈I

C
f
i x

f
is




s.t.
∑

i∈I

∑

k∈Ki

eikws +
∑

j∈J

ejws = DEMws, ∀w ∈W, ∀s ∈ S

(A.82)

eiws ≤ eiw
∑

k∈Ki

η#(i, w, k), ∀i ∈ I, w ∈W, ∀s ∈ S

(A.83)

Ejws ≤ ejws ≤ Ejws, ∀j ∈ J,w ∈W, s ∈ S

(A.84)

RikY
#
ik ≤ rik ≤ RikY

#
ik ∀i ∈ I, k ∈ Ki

(A.85)

x1
i(k+1)s = x2

iks −
∑

w∈W ′

ik

eiws ∀i ∈ I, k ∈ Kis ∈ S

(A.86)

x2
iks =

[(
Qik − 1

Qik

)
(x1

iks − BOi(k−1)) + rik + BOik

]
Y

#
ik + x1

iks(1− Y
#
ik ) ∀i ∈ I, k ∈ Ki, s ∈ S

(A.87)

x1
iks ≤ Aik + (1− Y

#
ik )N ∀i ∈ I, k ∈ Ki, s ∈ S

(A.88)

x2
iks ≤ Sik + (1− Y

#
ik )N ∀i ∈ I, k ∈ Ki, s ∈ S

(A.89)

x
f
is =

∑

k∈Ki

xi(k+1)s(Y
#
ik − Y

#
i(k+1)) ∀i ∈ I, s ∈ S

(A.90)
∑

w∈W ′

ik

(Eiw − eiws) ≤M ik ∀i ∈ I, k ∈ Ki, s ∈ S

(A.91)

ejws, eikws, rik, x
1
iks, x

2
iks, x

f
is ≥ 0 (A.92)

217



This linear problem LPR is solved for the different combinations of columns that produce

the optimal value of the restricted master problem RF̄ and the combination that gives the lowest

value is kept to go to the next step where the original problem will be solved with outage periods

and reload quantities fixed.

A.8.2 Disaggregate LP-solving for every scenario and initial time steps

At this final step, for every scenario s ∈ S, we go back to time steps t. Therefore, S Linear

Programs (LPs) are solved where decision variables are:

(i) the production variables pjts and pits for thermal and nuclear plants, respectively,

(ii) the stock variables xits for time steps t such that the stock level is over the BO threshold

(for the other time steps, the stock level is already fixed as imposed by the decreasing

profile)

Constraints are the same as in the previous step, i.e. constraints [CT1-12], but for time steps

t now, i.e. original constraints [CT1-12]. The objective functions are the total production

cost for each scenario s, reduced by the objective value of remaining fuel:

z(LPs) = min
∑

t∈T

∑

j∈J

CjtspjtsD
t −
∑

i∈I

Cf
i x

f
is

The final objective value z is the refueling cost and the average total production cost reduced

by the objective value of remaining fuel over all S scenarios:

z = min
∑

i∈I

∑

k∈Ki

Cikrik +
1

|S|

∑

s∈S

(∑

t∈T

∑

j∈J

CjtspjtsD
t −
∑

i∈I

Cf
i x

f
is

)
(A.93)

A.9 Computational results

All algorithms described in this paper were coded in C++ and compiled with the gcc (De-

bian 4.4.4-8) 4.4.5 compiler. CPLEX 12.1 was used as the LP solver and as the integer pro-

gramming solver. The experiments were performed on a Squeeze-x64-64 (image based on

Debian version sid for AMD64/EM64T) Bi AMD Opteron Dual core 3,2 Ghz with 16 GB of

physical memory and 16 GB of swap memory.

218



A.9.1 Instances

In our computational experiments, we considered 16 instances given by EDF during the

Challenge (see [72]). Almost all of them ask for a planification of 6 campaigns for a time

period of 5 years. The instances have been partitioned into the following three classes.

Class 1. A set of 6 instances (A0-A5) used for the qualification phase. In these instances

the number of different scenarios is at most 30 for about 20 nuclear plants and 30 other thermic

power plants. The time step is the day and there are less than 27 constraints linking the nuclear

power plants.

Class 2. A set of 5 instances (B6-B10) used for the second phase. In these instances the

number of different scenarios considered can rise up to 121. There are about 50 nuclear plants

and 20 other thermic power plants. The time step is 8 hours and there are about 140 constraints

linking the nuclear power plants. There are between 114 and 235 constraints [CT13] on the

dates of the outages.

Class 3. A set of 5 instances (X11-X15) used for the final ranking with the 5 former

instances. They were not released until the end of the challenge. In these instances the number

of different scenarios are 50 or 121. There are about 50 nuclear plants and 20 other thermic

power plants. The time step is 8 hours and there are about 140 constraints linking the nuclear

power plants. There are between 207 and 260 constraints [CT13] on the dates of the outages,

which is the only noticeable difference with the class 2 instances.

A.9.2 Results and discussion

In table A.1, the best results that were obtained and published on the website of the Chal-

lenge are given in the first column whereas the second column displays the ones obtained by the

current method. All teams were ranked by the Challenge organizers and with the former results

our method ranked 4th although we were penalized by the fact that the method was not able to

give answers for three of the instances. It is interesting to point out that among the first five

methods proposed, our method is the only one, as far as we know, having some mathematical

programming foundations.

The third column gives the best results we found since then, after the few bugs were cor-

rected. The last column gives the parameter ρ that was chosen to obtain the former result, i.e.,

the parameter used to build the graphs to solve the LF̄ .

Tables A.2 and A.3 show several results about the method:

219



Data ROADEF best our ROADEF best found ρ

number found results results results since factor

A0 8.73099e+12 8.73623e+12 8.73696e+12 0.9

A1 1.69538e+11 1.70030e+11 1.69902e+11 0.449

A2 1.46048e+11 1.46409e+11 1.46435e+11 0.9

A3 1.54430e+11 1.54711e+11 1.54747e+11 0.9

A4 1.11591e+11 1.12808e+11 1.12528e+11 0.45

A5 1.25822e+11 1.28366e+11 1.26932e+11 0.449

B6 8.34247e+10 8.47093e+10 8.46439e+10 0.5

B7 8.11742e+10 8.18391e+10 8.18501e+10 0.45

B8 8.19262e+10 8.29770e+10 8.29548e+10 0.449

B9 8.17509e+10 8.36228e+10 8.29290e+10 0.5

B10 7.77670e+10 7.87302e+10 7.88065e+10 0.449

X11 7.91168e+10 TIMEOUT 8.00418e+10 3.0

X12 7.75899e+10 7.81931e+10 7.81252e+10 0.45

X13 7.64492e+10 INFEASIBLE 7.67848e+10 0.45

X14 7.61730e+10 TIMEOUT 7.69035e+10 0.449

X15 7.51014e+10 7.51014e+10 7.49233e+10 0.449

Table A.1: Results of the ROADEF challenge

– The first column specifies the considered instance ;

– The second column shows the optimal result of the LRF̄ ;

– The third column gives the iteration at which the former value is reached: the following

iterations do not decrease the former value ;

– The fourth column shows the total number of iterations of the algorithm ;

– The fifth column gives the final number of plans that have been computed at the end ;

– The sixth column gives the final number of constraints [CT14-21] that have been

added to the MIP ;

– The seventh column gives the value of MIP when it is called at the end of the column

generation process ;

– The eigth column gives the value of LPR ;

– The ninth column gives the result of z defined in equation (A.93) ;

– The last column gives the elapsed time for the whole algorithm

The value of the relaxation of the master problem decreases as negative reduced cost

columns are added. As the lowest value is reached in a few dozens of iterations and the columns

added afterwards do not change this value, the optimal value of the restricted linear F̄ (RLF̄ )

is reached then. The number of columns generated is smaller than |I|xTot It and as expected it

decreases with the number of iterations.

220



Data RLF̄ It to LB Tot It Pl Nb Cs Nb MIP LPR z Time (s)

A0 8.73548e+12 4 24 32 40 8.73696e+12 8.73696e+12 8.73696e+12 0

A1 1.52339e+11 8 149 540 1106 1.52489e+11 1.68891e+11 1.69978e+11 11

A2 1.45276e+11 18 449 2111 1947 1.45745e+11 1.45747e+11 1.46435e+11 224

A3 1.52835e+11 8 764 1 929 1753 1.53190e+11 1.54055e+11 1.54747e+11 34

A4 1.02524e+11 18 461 2617 2626 1.02974e+11 1.11857e+11 1.12558e+11 157

A5 1.19655e+11 18 521 3226 3020 1.20145e+11 1.26698e+11 1.27744e+11 165

B6 7.75175e+10 22 761 6642 5630 7.90051e+10 8.16399e+10 8.48905e+10 287

B7 7.48221e+10 348 1094 8437 6105 7.57638e+10 7.87608e+10 8.21897e+10 896

B8 7.35414e+10 22 406 3256 7497 7.60027e+10 7.95534e+10 8.32061e+10 366

B9 7.31604e+10 28 372 3630 7477 7.56930e+10 7.96609e+10 8.34030e+10 512

B10 7.03327e+10 36 3075 11157 5944 7.13487e+10 7.52558e+10 7.90224e+10 1053

X11 7.34759e+10 40 1239 9061 5719 7.45279e+10 7.71169e+10 8.00708e+10 1533

X12 7.17523e+10 44 1958 10869 5640 7.22878e+10 7.49525e+10 7.82294e+10 737

X13 6.98451e+10 34 409 6299 6687 7.07385e+10 7.39050e+10 7.69910e+10 501

X14 6.92277e+10 40 611 7961 6911 6.99999e+10 7.36125e+10 7.69212e+10 1112

X15 6.73328e+10 44 935 10026 5955 6.78149e+10 7.13536e+10 7.50613e+10 676

Table A.2: Performance of the overall method with ρ = 0.9

Data RLF̄ It to LB Tot It Pl Nb Cs Nb MIP LPR z Time (s)

A0 8.73548e+12 4 24 32 40 8.73698e+12 8.73698e+12 8.73698e+12 0

A1 1.52342e+11 8 58 269 1072 1.52536e+11 1.68836e+11 1.69962e+11 7

A2 1.45284e+11 20 391 1614 1931 1.45769e+11 1.46151e+11 1.46840e+11 286

A3 1.52830e+11 8 776 1735 1694 1.53188e+11 1.54089e+11 1.54777e+11 33

A4 1.02543e+11 22 625 2687 2632 1.03002e+11 1.12506e+11 1.13198e+11 217

A5 1.19685e+11 18 367 2903 3059 1.20247e+11 1.27393e+11 1.28352e+11 173

B6 7.75271e+10 22 740 6283 5637 7.88730e+10 8.15095e+10 8.47410e+10 465

B7 7.48317e+10 38 661 9574 6130 7.55816e+10 7.85357e+10 8.19583e+10 936

B8 7.36053e+10 20 350 3311 7401 7.76852e+10 8.13098e+10 8.51822e+10 355

B9 7.31967e+10 30 1419 6187 7544 7.53907e+10 7.90747e+10 8.27811e+10 607

B10 7.03706e+10 34 3320 11417 5928 7.13445e+10 7.51940e+10 7.89976e+10 762

X11 7.34802e+10 38 1232 9508 5690 7.45335e+10 7.70939e+10 8.00418e+10 1563

X12 7.17785e+10 50 975 10821 5687 7.22479e+10 7.48730e+10 7.81379e+10 905

X13 6.98541e+10 24 535 6529 6667 7.08168e+10 7.38722e+10 7.68983e+10 575

X14 6.92260e+10 36 713 8243 6870 6.99515e+10 7.36255e+10 7.69829e+10 1122

X15 6.73713e+10 40 1032 11123 5977 6.78117e+10 7.12779e+10 7.49589e+10 690

Table A.3: Performance of the overall method with ρ = 3

221



Note that the number of lines (Cs Nb) and variables (Pl Nb) has the same order of mag-

nitude. It means that both the rows and columns generation processes are necessary to find

quickly the integer solution of the RLF̄ .

The value of RLF̄ is always lower of the value of MIP (i.e., RF̄ ) as expected since

z(RLF̄ ) ≤ z(RF̄ ), but it is not true that z(RLF̄ ) ≤ z(F ) ≤ z since it is not a lower bound for

the original problem.

Nevertheless, it interesting to note that the value of the objective function reported in col-

umn MIP is always smaller than the one reported in column LPR which is always smaller

than the value reported in the column z. It is clear that this is due to the approximations that

have been done for solving F̄ . The increase in the objective function between MIP and (LPR)

can be explained by the fact that MIP uses an average scenario instead of the whole set of

scenarios. Therefore, when problems (LPR) are solved with the dates of outage and BO fixed,

can happen that for satisfying scenarios with a demand greater than the average it is necessary

to use more expensive source of energy.

Less intuitive is the explanation of why the values reported in LPR is smaller than z. This

difference is due to the modulation. In fact, when the model considers the demand aggregated

over a week it applies a certain quantity of modulation. Nevertheless, can happen that when the

time interval considered is the time step it is impossible to maintain the same modulation and

therefore more expensive source of energy must be used for satisfying the excess of demand.

Table A.4 gives CPU time in seconds of the method:

– The first column specifies the considered instance ;

– The second column shows the time to read the input and to write the output ;

– The third column gives the time to build the graph for the pricing problem ;

– The fourth column shows the total time of column generation ;

– The fifth column gives the time to solve the integer master problem obtained at the end

of the column generation process ;

– The sixth column gives the time of the reload phase ;

– The seventh column gives the time of the production phase ;

– The last column gives the elapsed time for the whole algorithm

Actually the whole method never reaches the set time limit (3600 seconds). It can be used,

for example, as a very good initial solution which could be a starting point for a local search

procedure. The most time-consuming phase is the MIP phase at the end of the column gener-

ation process. The reload phase is more time consuming than the production phase due to the

222



Data Read/Write Graph CG MIP Reload Production Total

A0 0 0 0 0 0 0 0

A1 1 0 1 5 3 1 11

A2 4 173 15 12 19 1 224

A3 3 1 6 8 15 1 34

A4 8 95 12 12 28 2 157

A5 7 26 76 25 28 3 165

B6 56 5 27 93 94 12 287

B7 52 18 122 543 152 9 896

B8 60 48 94 101 45 18 366

B9 143 66 164 52 65 22 512

B10 136 8 104 576 209 20 1053

X11 48 537 152 577 199 10 1533

X12 53 11 76 434 155 8 737

X13 143 126 57 102 42 31 501

X14 139 76 129 643 104 21 1112

X15 132 8 54 193 267 22 676

Table A.4: CPU Time (s)

multiple resolutions for the different combinations of columns that produce the MIP . We can

notice that the time taken by the input and output is not negligible due to the large size of the

files to read and write.

A.10 Conclusion

We presented a mathematical formulation for the EDF (Électricité De France) electricity

production planning problem submitted as subject of the ROADEF/EURO 2010 Challenge,

and a heuristic method based on column generation. To the best of our knowledge this is the

first ranked method using mathematical formulation among the final results of the Challenge.

The method proceeds in two stages : first we fix dates for outages for each nuclear plant on

aggregated data, and in a second step we determine the reload and production quantities for

each plant and each scenario. Computational results show the effectiveness of the proposed

approach, given that the method was far from using all the time allowed in the Challenge.

Indeed, part of the time is kept for solving the (LPR) and the (LPs) problems which may be

time consuming. Thus, the first stage of the method is stopped after a time limit which has

been experimentally set to 30 minutes. Nevertheless, in some case it stops before, since no

more columns are produced.

223



Amongst possible future improvements of the proposed approach and therefore future di-

rections of research, it could be interesting, once a real lower bound is obtained, to add more

positive reduced cost columns which are in the gap. The current shortest path solving algo-

rithm is not suited to that, since it produces columns with minimal reduced costs. A further

improvement could consist in generating more sets of schedules for the outages using the local

search on the set of outage dates found in the first phase of the method. Last but not least, it

would be interesting to improve the method by entering the clique-like constraints (A.36) into

the pricing problem. Therefore the associated dual variables could be included in the pricing

subproblem. Introducing them could improve the number of columns found by the current

shortest path method and alleviate the need for our diversification algorithm.

Acknowledgment

We wish to thank anonymous reviewers for fruitful suggestions which help improve a previ-

ous version of this paper. Moreover, we would like to thank Aristide Mingozzi and Guillaume

Turri for their useful help and/or comments they gave at the beginning of this project.

224



225



226



Appendix B

Challenge ROADEF 2012: Machine

Assignment Problem

This work has been done together with Bernat Gacias and Paolo Gianessi.

Introduction

More and more information is available on the web. To help users finding the piece of

information they need, several web search engines were created. The competition between

them is tough as users want both accurate and quick results. A wide field of study concerns

the design of algorithms able of promptly providing relevant results to users. The quickness of

engines based on these methods relies on their design, but also on the availability of resources

to assign them to. This need for huge amounts of resources – such as CPU or RAM – leads

to the construction of computer clusters; but then, finding a good assignment of all the tasks

to the different available machines is a key factor to improve the overall efficiency. Finding an

optimal assignment in such a context is the subject of the challenge proposed by Google for the

next ROADEF/EURO Conference. Its whole description can be found in [1].

An instance of the proposed problem is made up by a set of processes, each one with spe-

cific resources consumption profiles. A set of machine is given with their resources capacities.

An initial feasible assignment is provided. Processes can be moved from their initial assign-

ment to a different machine leading to a new cost for the solution. However these moves must

respect numerous hard constraints. Some constraints can be independently checked such as

capacity constraints, but others link all the processes together in case of dependency between

227



processes or restrictions due to potential conflicts. The new processes assignment must min-

imize a given cost function, which depends on machines load, resources usage balance and

process displacement costs.

In the following, we briefly describe the method used to solve the problem. Section B.1

presents the MILP program that was used to model the problem; Section B.2 describes the

method used; Section B.3 gives the results obtained on the two sets of instances that were

released by the organizers.

B.1 The model

In this section, we give a MILP program which models the problem. The notations that are

used are the same as those introduced in in [1]. Otherwise they are introduced in the following

subsections. The model is then given in two parts: first the objective function that is composed

by five different costs; then the constraints. The constraints are of two kinds: those given by

the problem and others logical constraints.

Parameters

– nm = |M|: number of machines

– ns: number of processes per service s ∈ S

– nl: number of machines per location l ∈ L

Variables

– xpm: binary variable indicating if process p ∈ P is assigned to machine m ∈M

– ysl: binary variable indicating if service s ∈ S is present at location l ∈ L

– zrm: integer variable measuring the excess of the safety capacity of resource r ∈ R at

machine m ∈M

– tbm: integer variable computing the result of the balance cost triple b ∈ B at machine

m ∈M

– smcV ar: integer variable measuring the service move cost

228



Objective function

totalCost =
∑
r∈R

weightloadCost(r) · (
∑

m∈M

zrm)

+
∑
b∈B

weightbalanceCost(b) · (
∑

m∈M

tbm)

+
∑
p∈P

∑
m∈M

x0
mp · (1− xmp) · PMC(p) · weightprocessMoveCost

+ smcV ar · weightserviceMoveCost

+
∑
p∈P

∑
(m1,m2)∈M2,m1 6=m2

MMC(m1,m2)x
0
m1p

xm2p · weightmachineMoveCost

Constraints

∑
p∈P

xpmR(p, r) ≤ C(m, r) ∀m ∈M, r ∈ R (i)

∑
p∈s

xpm ≤ 1 ∀m ∈M, s ∈ S (ii)

∑
l∈L

ysl ≥ spreadMin(s) ∀s ∈ S (iiia)

ysl ≥

∑
p∈s,m∈l

xpm

min{nm,ns,nl}
∀s ∈ S, l ∈ L (iiib)

ysl ≤
∑

p∈s,m∈l

xpm ∀s ∈ S, l ∈ L (iiic)

ysl ∈ {0, 1} ∀s ∈ S, l ∈ L (iiid)
∑

pa∈sa

∑
m∈n

xpam − nsa
∑

pb∈sb

∑
m∈n

xpbm ≤ 0 ∀n ∈ N , pa ∈ sa

sa dep. on sb (iv)
∑
p∈P

(x0
pm + (1− x0

pm) · xpm) ·R(p, r) ≤ C(m, r) ∀m ∈M, r ∈ R (v)

Constraints (i) ensure the respect of the capacity constraints. Constraints (ii) assure that there

is no two processes of the same service at the same machine. Constraints (iiia) to (iiid) assure

the respect of the spread constraints. Constraints (iv) stand for the dependency constraints.

Constraints (v) ensure the transient usage constraints. Additional logical constraints have to be

229



added:

zrm ≥ 0 ∀r ∈ R,m ∈M

zrm ≥
∑
p∈P

xpm ·R(p, r)− SC(m, r) ∀r ∈ R,m ∈M

tbm ≥ 0 ∀b ∈ B,∈M

tbm ≥ target ·

((
C(m, r1)− C(m, r2)

)

−
( ∑

p∈P

xpm · (R(p, r1)−R(p, r2))
))

∀b ∈ B,m ∈M

smcV ar ≥ 0

smcV ar ≥
∑

m∈M,p∈s

x0
mp · (1− xmp) ∀s ∈ S

B.2 The method

The former model is an exact model. However it is not tractable to run it within the time

limit imposed by the challenge, even on the small instances. To obtain good solutions, three

different methods are used. The third method is designed to cope with the B instances, which

size exceeds 5′000 processes.

The local search The local search is based on two simple moves: shift and swap. Both moves

browse all processes and/or machines. For the B instances, only a randomly chosen subset of

processes or machines are browsed because of their size. Note here that because of transient

usage constraints, some processes cannot be assigned to some machines.

With the shift move, we try to move each process p ∈ P to another machine m ∈ M,m 6=

M(p), where M(p) is its current assignment. If this move improves the objective function

cost and is valid, it is kept in memory. Once all the machines are tested, the best move for

the process is kept in a stack of promising moves. The size of the stack is limited by a value

Nbshift keeping only the best processes to move sorted in a decreasing order of the gain in the

cost function.

With the swap move, we try to swap a process p ∈ P with another process p′ ∈ P such that

M(p′) 6= M(p). If this move improves the objective function cost and is valid, then it is kept

in memory. Here also once all the processes p′ are tested, the best swap for p is kept in a stack

of promising moves. The size of the stack is limited by a value Nbswap keeping only the best

processes to swap, sorted again in a decreasing order of the gain in the cost function.

230



In both cases, once all the promising moves are found, we build a solution with all these

moves sequentially realized. We start from the first one of the stack. Then, following their

position in the stack, the others are tried. For each move in the stack, if the new solution is still

valid and improves the solution, the move is then performed.

The MILP driven search on increasing solution space The solution obtained by the local

search is then used to provide a warm start to the MILP model to further improve the cost

of the new process assignment. However, since solving the exact model would be too time

consuming, only a small model is built. To each machine is associated the sum of its balance

cost and its load cost. Then only the 2m machines having the lowest and the greatest costs are

selected. The processes that are assigned to them can be moved, while the others are frozen at

their current machine. If time enables, the solver is run several times increasing m and the size

of the model. Between two calls to this method, the former local searches are performed for 10

iterations on the solution obtained.

The Super Process: aggregating processes Although the former method enables to deal

with the A1 and A2 instances, the B instances size does not allow to consider all the processes

while calling the model. For that purpose, processes are aggregated to form super processes.

These structures are then used in the MILP program rewritten to use super process instead

of process as variables. This reduces the number of variables and so the new MILP program

can be solved. These super processes have for resource consumption the sum of the resource

consumptions of the processes it represents, and gather several services. The combination of

services enables to solve some of the dependency constraints. The creation of these super

process changes from a call to another, in order to enable diversity. The number of processes in

a super process is between 1 and 20, depending on the size of the instances. There are created

by taking into account the repartition of the process services in the current solution. When a

super process is moved from a machine to another, all the processes it represents are moved.

B.3 The results

Here we give the results. The machine used has a Pentium(R) Dual-Core E5500 2.80GHz

with 3.8Go RAM on Debian version 64 version 7. The parameters Nbshift is set to 50 and

Nbswap to the number of processes. The initial local search is run for 100 seconds, then the

231



MILP driven search is called, possibly several times. When the remaining time is less than 60

seconds before the end, the local search is run starting from the best solution encountered.

Instance Initial solution Final solution Deviation (%) CPU time (s)

a1_1 49528750 44306501 89.4561 0.12

a1_2 1061649570 780581762 73.5254 489.32

a1_3 583662270 583006017 99.8876 421.25

a1_4 632499600 274364352 43.3778 516.01

a1_5 782189690 727578309 93.0181 510.24

a2_1 391189190 4168765 1.0657 525.90

a2_2 1876768120 895761559 47.7289 526.38

a2_3 2272487840 1399146389 61.5689 492.88

a2_4 3223516130 1773997601 55.0330 530.36

a2_5 787355300 529941864 67.3066 554.12

b_1 7644173180 3554115209 46.4944 543.72

b_2 5181493830 1019623424 19.6782 554.68

b_3 6336834660 172170487 2.7170 512.84

b_4 9209576380 4677870607 50.7935 467.04

b_5 12426813010 931854930 7.4987 522.15

b_6 12749861240 9525873556 74.7174 517.03

b_7 37946901700 14990130791 39.5029 488.07

b_8 14068207250 1215576946 8.6406 508.28

b_9 23234641520 15885583344 68.3703 514.53

b_10 42220868760 18099987199 42.8698 470.32

Table B.1: Results on the released instances

232



Bibliography

[1] “Google ROADEF/EURO challenge 2011–2012: Machine reassignment”, 2011.

233


