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Abstract

english

In the framework of rate-independent systems, an elastic-plastic-damage model,
aimed at the description of ductile fracture processes, is proposed and investigated
through a variational formulation. A cohesive, or ductile, crack occurs when the
displacement field suffers a discontinuity whilst still being associated to a non-
vanishing tensile stress. To predict and effectively describe ductile fracture phe-
nomena is a crucial task for many engineering materials (metals, polymers, ...), as
testified by the great interest of the scientific community on the subject.

Gradient damage models have been fruitfully used for the description of brittle
fractures: in such cases, once the damage level reaches its maximum value, a crack
is created where the traction between the two opposite lips immediately drops to
zero. On the other hand, the perfect plasticity model could describe the formation of
plastic slips at constant stress level. Hence, in order to describe the typical effects of
a cohesive fracture, the main idea is to couple, through a variational approach, the
perfect plasticity model and a softening gradient damage model. The use of a vari-
ational approach results in a weak and derivative-free formulation, gives effective
means to deal with the concepts of bifurcation and stability, is intrinsically discrete
and indicates a natural and rational way to define efficient numerical algorithms.

Embedding damage effects in a plasticity model is not a new idea. Nevertheless
the proposed model presents many original aspects as the coupling between plastic-
ity and damage and the way the governing equations of the variables are found. The
variational approach relies simply on three concepts: the irreversibility condition, a
global, local or differential stability condition and the energy balance. The resulting
model possesses a great flexibility in the possible coupled responses, depending on
the constitutive parameters. These various responses are first considered by investi-
gating in a one-dimensional quasi-static traction bar test a homogeneous evolution
which highlights the main features of the model. The discussion about the stability
of the homogeneous solutions leads to the existence of a critical bar length which in
turn depends on the characteristic internal material length. For bars that are longer
than this critical value the homogeneous response is proven to become unstable and
a localization must appear. A construction of localization is then proposed which
explicitly takes into account the irreversibility condition on the damage field. This
allows the non-homogeneous evolution and the global response to be investigated.
It turns out that in general a cohesive crack appears at the center of the damage
zone before the complete rupture. At this point the plastic strain localises as a Dirac
measure which becomes responsible for this cohesive crack. The associated cohe-



sive law is obtained in a closed form in terms of the parameters of the model and it
recovers the cohesive fracture law postulated by Barenblatt.

Finally, a numeric resolution scheme is proposed, which is based on an alternate
minimization algorithm, and implemented through a finite element library only for
the one-dimensional traction bar test. Although the adopted finite element spaces
do not embed discontinuities, the numeric results agree perfectly with the analytic
solutions. This is due to a kind of numeric regularisation. Nevertheless, future
developments aim to extend the simulations in a two/three-dimensional setting and
test a generalized finite element method.

italian

Nell’ambito dei sistemi rate-independent si propone un modello di plasticità e
danno basato su un approccio variazionale con lo scopo di descrivere il fenomeno
della frattura duttile. In particolare si è in presenza di una frattura coesiva o duttile
se il campo di spostamento presenta una discontinuità con una tensione all’inter-
faccia della discontinuità stessa non evanescente. Il fenomeno della frattura duttile
riguarda numerosi materiali di interesse ingegneristico (metalli, polimeri, ecc.) ed è
oggetto di numerosi studi da parte della comunità scientifica.

E’ ben noto che modelli costitutivi di danno a gradiente con risposta incrudente
negativamente sono in grado di descrivere la frattura fragile: in queste situazioni la
frattura è rappresentata dall’insieme dei punti dove la variabile di danno raggiunge
il suo valore massimo e che corrispondono a valori nulli della tensione. Il modello
di plasticità perfetta invece è in grado di descrivere delle localizzazioni di deforma-
zione nelle quali si ha uno scorrimento plastico a tensione costante. Con lo scopo di
descrivere la frattura coesiva l’idea allora è di accoppiare, per mezzo di un approccio
variazionale, il modello di plasticità perfetta con quello di danno a gradiente. L’ap-
proccio variazionale è giustificato da numerosi motivi. Esso è in grado di fornire
una formulazione per l’evoluzione svincolata da operazioni di derivazione, permet-
te di dare senso compiuto allo studi di stabilità e biforcazione materiale, nonchè,
essendo la formulazione intrinsecamente discreta, di fornire un modo razionale per
l’implementazione numerica.

Il modello così risultante risulta capace di cogliere le diverse risposte materiali
con pochi parametri materiali e di descrivere risposte nelle quali plasticitá e dan-
no evolvono contemporaneamente. La delocalizzazione della risposta é ottenuta
per mezzo dell’introduzione nel funzionale energetico di un termine funzione del
gradiente del danno. La formulazione astratta é in un contesto tri-dimensionale,
mentre su un supporto monodimensionale si é eseguito uno studio piú approfondi-
to della risposta con particolare riferimento alla stabilitá delle risposte omogenee e
della costruzione di risposte con localizzazioni. In particolare, lo studio della evolu-
zione delle localizzazioni ha mostrato l’esistenza di una risposta di frattura coesiva
rappresentativa di un modello di Barenblatt. Il modello è stato implementato nume-
ricamente dove la strategia risolutiva è basata su un algoritmo di minimizzazione
alternata.



french

Dans le cadre des systèmes rate-independent, un modèle de plasticité avec en-
dommagement, visant à la description des processus de rupture ductile, est pro-
posé et étudié par une formulation variationnelle. Une fissure cohésive, ou ductile,
se produit lorsque le champ de déplacement subit une discontinuité, tout en étant
encore associé à une contrainte de traction non nulle. Prévoir et décrire efficacement
les phénomènes de rupture ductile est une tâche cruciale pour de nombreux maté-
riaux d’ingénierie (métaux, polymères, ...), comme en témoigne le grand intérêt de
la communauté scientifique sur le sujet. Modèles d’endommagement à gradient ont
été fructueusement utilisé pour la description des ruptures fragiles : dans ce cas,
une fois que le niveau d’endommagement atteint sa valeur maximale, une fissure
est créée lorsque la traction entre les deux faces opposées tombe immédiatement
à zéro. D’autre part, le modèle de plasticité parfaite pourrait décrire la formation
de la glisse plastique au niveau constant de contrainte. Par conséquent, afin de dé-
crire les effets typiques d’une rupture cohésive, l’idée principale consiste à coupler,
par une approche variationnelle, le modèle de plasticité parfaite et un modèle d’en-
dommagement à gradient. L’utilisation d’une approche variationnelle se traduit par
une formulation faible et sans dérivées, fournit des moyens efficaces pour traiter
les notions de bifurcation et de stabilité, est intrinsèquement discret et indique une
manière naturelle et rationnelle pour définir des algorithmes numériques efficaces.

L’incorporation des effets d’endommagement dans un modèle de plasticité n’est
pas une idée nouvelle. Néanmoins, le modèle proposé présente de nombreux as-
pects originaux comme le couplage entre la plasticité et l’endommagement et la
façon avec laquelle l’évolutions des variables se trouvent. L’approche variationnelle
s’appuie simplement sur trois concepts : une condition d’irréversibilité, une condi-
tion de stabilité globale, locale ou différentielle et le bilan énergétique. Le modèle
résultant possède une grande flexibilité dans les réponses possibles couplées, en
fonction des paramètres constitutifs. Ces diverses réponses sont d’abord examinées
avec un test d’une barre unidimensionnelle en traction quasi-statique en assumant
une évolution homogène qui met en évidence les principales caractéristiques du
modèle. La discussion sur la stabilité des solutions homogènes conduit à l’existence
d’une longueur de la barre critique qui à son tour dépend de la longueur interne
caractéristique du matériel. En considérant des barres plus longues par rapport à
cette valeur critique, on démontre que la réponse homogène devient instable. Par
conséquence une localisation doit apparaitre dans la barre.

Une construction de localisation est ensuite proposée, qui prend explicitement en
compte la condition d’irréversibilité sur le champ d’endommagement. Ceci permet
d’étudier l’évolution non homogène et la réponse globale. Il s’avère que, en général,
une fissure cohésive apparaît au centre de la zone d’endommagement avant la rup-
ture. A ce stade, la déformation plastique se localise comme une mesure de Dirac
qui devient responsable de cette fissure cohésive. On obtient la loi cohésive associée
en termes de paramètres du modèle et retrouve la loi de fracture cohésive postu-
lée par Barenblatt. Enfin, un schéma de résolution numérique est proposé, qui est
basé sur un algorithme de minimisation alternée, et mis en œuvre par une librai-
rie d’éléments finis uniquement pour le test de barre en traction. Même si l’espace
d’éléments finis adoptés ne peut pas incorporer les discontinuités, les résultats nu-
mériques s’accordent parfaitement avec les solutions analytiques. Néanmoins, les



développements futurs visent à étendre les simulations dans un cadre à deux / trois
dimensions et de tester une méthode d’éléments finis généralisée.
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Summary

Motivations and Ductile Fracture Phenomenology

Fracture is one of the most important key concepts in the field of Materials Sci-
ence and Engineering, Rossmanith 1997. With the progress of technology and knowl-
edge of materials, structures are more and more harnessed in the neighbourhood
of their ultimate strength. It is precisely at failure conditions that the phenomenon
of fracture becomes crucial for the efficiency and structural safety. Although not
always noticeable, any material may be involved with fracture. Convincingly Fig. 1
shows several cracking examples in the various situations.

(a) (b) (c)

(d) (e) (f) (g)

Figure 1: (a), The 5-foot-long fuselage skin section that split open on a Southwest
Airlines Boeing 737-300 ; (b), bridge collapse in Minnesota on the Interstate 35W;
(c), particular of the gash of the Costa Concordia accident; (d), detail of break down
of the axle of the carriage for fatigue failure in the Viareggio train derailment; (e),
X-ray of a broken radial bone; (f), detail of the crack patterns on the face of Mona
Lisa portrait; (g), crack patterns in a broken glass sheet.
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The science of fracture mechanics, as it is known today, was born and came to
maturity in the 20th century. Nevertheless, the origin of this science dates back to
past centuries. A brief but interesting historical overview can be found in Cotterell
2002.

As demonstrated in the examples of Fig. 1 understanding fracture is a tall or-
der. The main issues concerning fracture are undoubtedly crack initiation, crack
path and crack bifurcation. On a macro-scale fracture is characterized by surface
discontinuities, that is discontinuities in the displacement field. The three funda-
mental fracture mechanisms are represented in Fig. 2. Mode I, II and III correspond
respectively to an opening or tensile mode, Fig. 2a, to a sliding model, Fig. 2b, and
to a tearing mode, Fig. 2c. Any other fracture mechanism is simply a combination

(a) Mode I (b) Mode II (c) Mode III

Figure 2: Elementary fracture mechanisms, Parton 1992

of these elementary modes.
On the other hand, on a micro-scale the fracture phenomenon becomes more

complicated than it appears to the human eye. The best evidence is given by Frac-
tography, Mills et al. 1987, which is the study of the fractured surfaces of materials.
A microscopic investigation of the fracture surfaces and their neighbourhood re-
veals numerous different crack states. Some of the most important are represented
in Fig. 3. Moreover, Fractography highlights how the inter-atomic structure as the
crystalline structure and the material defects crucially affects the crack mechanism.

(a) Microvoid Coalescence or
Dimple Fracture

(b) Transgranular Cleavage (c) Fatigue failure (d) Decohesive Rupture

Figure 3: Different types of fracture surface characteristics on a micro-scale; (a)-(c)
Bhattacharyya 1979 and (d) C. And Esaklul 1993

The intimate interrelation among the material, the fracture modes, the load con-
ditions and the microscopic failure mechanisms give rise to the macroscopic fracture
visible to the naked eye.
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Despite the complexity of the phenomenon, fruitful theories exist to describe
both qualitatively and quantitatively fracture based on the spirit of continuum me-
chanics where a continuous mass material is assumed as representative of the real
discrete material.

The microscopic investigation also unveils another important mechanism at the
atomic scale which may eventually occur before and/or during cracking, namely
dislocation (typical in metals).

It is then worth noting that in continuum mechanics two other phenomenological
models play a crucial role in material modelling, namely plasticity and damage the
first associated at the micro-scale to dislocations and/or crack slips while the latter
mostly to void nucleations.

Once plasticity is taken into account, it is then possible to classify the macro-
scopic description of fracture into three main groups: brittle, ductile and fatigue.
The brittle and ductile fracture involves a single load application while fatigue frac-
ture occurs for a cyclic loading. Brittle fracture and ductile fracture are fairly general
terms describing the two opposite extremes of the fracture spectrum which require
some important considerations. In general, the main difference between brittle and
ductile fracture can be attributed to the amount of plastic deformation that the ma-
terial undergoes before fracture occurs. Ductile materials exhibits large amounts of
plastic strains while brittle materials show little or no plastic strains before fracture.

However, in fracture mechanics there are many shades of gray. Fracture ex-
perimental tests on glass, Ferretti, Rossi, and Royer-Carfagni 2011, demonstrate the
existence at the crack tip of a process zone associated to the formation of microc-
racks and microvoids with plastic strains although glass is typically considered a
brittle material. It then becomes reasonable to acknowledge plasticity, damage and
fracture to be often closely related to each other.

To give credit to this last point and to highlight the ductile fracture phenomenol-
ogy it suffices to account a simple tensile test of a ductile material. For example,
in struges1997 cooper bars of different sizes are tested by means of a monotonic
increasing displacement at one bar end. Fig. 4 shows the true stress-strain curves
for different notched specimen. These responses are compared with optical mi-

(a) 4mm notched specimen (b) 2mm notched specimen (c) 1mm notched specimen

Figure 4: True stress–strain curves of cylindrical copper bars for different notched
radii, struges1997 Void nucleation: blue circle; Void coalescence; green triangle;
crack formation: red square

crographs in Fig. 5 which allow to identify the marked points (blue circle, green
triangle, red square) with the internal material state. It is then clear that during
the evolution damage (micro void nucleation Fig. 5b) and plastic strains (residual
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strains Fig. 5d) have occurred.

(a) Void nucleation

(b) Void coalescence

(c) Crack formation

(d) Final fracture

Figure 5: Micrographs images corresponding to the different points of the stress-
strain curves in Fig. 4

It is an unloading path in a stress-strain curve that could reveal the occurrence of
plasticity and damage. Focusing for example on an uniaxial test of a concrete ma-
terial, Fig. 6, the stress–strain curves in traction, Fig. 6a, and compression, Fig. 6b,
although qualitatively different, both highlight the contemporary evolution of plas-
ticity and damage by means of the unloading curves.

It can also be understood from Fig. 4 that a size effect and instabilities occur in
the phenomenon. That is, the material is characterized by an internal length scale.
The study of size effects dates back to ancient times. Leonardo da Vinci and later
Galileo Galilei were the firsts to be interested in and to start to investigate on the
relationship between the specimen strength and its actual size, see e.g. Bažant and
Chen 1997; Bažant and Planas 1997.

With the term size effects or scaling a large number of phenomena is to be un-
derstood. The subject, as testified by a wide spread scientific literature, is very wide
and complex, with different results depending on the material, the load conditions
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(a) Stress–strain curve for an uniaxial tension test (b) Stress–strain curve for an uniaxial compression test

Figure 6: Stress–strain responses of concrete specimens with unloading curves. On
the one hand the straight lines colours represent in blue the initial elastic response
and in red the evolution of plastic strains while on the other hand the triangle
colours represent in blue an elastic stiffness and in green a degraded stiffness due
to damage

and geometrical dimensions, Barenblatt 2003.
Although all these phenomena may not have the same explanation, their interpreta-
tion requires the introduction of an internal length scale. Different approaches are
possible, reviewed in Sec. 1.4, to take into account an internal length scale in the
constitutive model. Another reason exists for the introduction of an internal length
scale in a material model, which is related to the mathematical modelling of soft-
ening materials. Its aim is to avoid a localised response with vanishing dissipated
work. This point will be explained in the next chapter.

Reassembling all the highlighted features, one can state that a mathematical
model able to describe properly the ductile fracture phenomenon should:

• deal with initiation and crack propagation;

• take into account both damage and plasticity

• take into account size effects;

• rationally understand and describe material instabilities.

Cohesive fracture models and coupled plasticity-damage models are intimately
linked to each other and represents two possible ways for the description of ductile
fracture. Indeed, the former models explicitly embed a cohesive surface energy term
while the latter can often be regarded as the regularisation of the first. Nevertheless,
plasticity-damage models have their own merits and express wider capabilities.

A quick overview and discussion about the most important "classical" models is
given in Sec. 1.4, each of them with its strengths and weaknesses. The undertaken
direction is a recent variational approach which appears as the most promising for
reasons that becomes clear in the next section.



vi Summary

Outline

The main objective of this thesis is to apply the variational approach for the
description of ductile fracture, to investigate the features of the resulting model
(responses, stability analyses, . . . ) and to define an efficient algorithm in order to
perform numeric simulations.

The point of departure has been a gradient damage model, which is well known
to be able to account for the behaviour of brittle and quasi-brittle materials. This
model stems from the results of Ambrosio and Tortorelli 1990 and has been success-
fully used in the variational theory of fracture, Bourdin, Francfort, and Marigo 2008,
as a regularisation of the revisited Griffith’s law, Francfort and Marigo 1998. It turns
out that it is possible to prove that (a family of) gradient damage models converge,
in the sense of Gamma-convergence, to Griffith’s model when the internal length,
contained in those models and introduced by means of the gradient term, tends
to zero, Braides 2002; Dal Maso and Toader 2002. Nevertheless, these models have
their own merits and have been developed independently in a classical framework
without invoking an energy minimisation, Benallal and Marigo 2007; Comi 1999;
Comi et al. 2006; Lorentz, Cuvilliez, and Kazymyrenko 2011; Peerlings et al. 1998;
Pham and Marigo 2010a; Pham and Marigo 2010c.

In this variational setting the elastic solution as well as the evolution of the crack
is simply governed by three principles: irreversibility condition, stability condition
and energy balance. These are the building blocks of Mielke’s energetic formulation
for rate independent systems, Mielke 2011. Accordingly, the process of crack nu-
cleation in these gradient damage models is widely explored in Pham and Marigo
2011; Pham et al. 2011. First when the stress field reaches the critical level some-
where in the domain damage evolves. But because of the softening character of
the material behaviour, damage localises. Due to the gradient term the localisation
stems out and evolves in a non vanishing subregion and its characteristic width is
controlled by the internal length introduced precisely by the gradient term. A crack
(a discontinuity in the displacement field) appears at the center of the localisation
zone where damage reaches its ultimate value and the material stiffness drops to
zero. On the energetic point of view, during this crack nucleation process, some
energy is dissipated inside the damage localisation zone. This dissipated energy is
related to the effective surface energy of Griffith’s theory, Gc.

A well-known limit of these models is that they are not able to account for resid-
ual strains and consequently cannot be used in ductile fracture modelling. In par-
ticular there is no discontinuity of the displacement in the localisation zone before
damage has reached its maximum value and hence the loss of stiffness which is
instead peculiar of a cohesive response. In other words these models cannot lead
to the existence of surfaces where the displacement field is not continuous but the
stress is non vanishing.

The natural way to include such effects is to introduce plastic strains into the
model and to couple both plasticity and damage evolutions. Of course, this idea is
not new and a great number of damage models coupled with plasticity have been
developed from the eighties in the spirit of Lemaitre and Chaboche, Lemaitre and
Chaboche 1985, see for instance Dimitrijevic and Hackl 2011.

But the purpose of this work is to construct such models in a softening frame-
work with gradient of damage terms and to see how these models can account
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for the nucleation of cracks in presence of plasticity. To the writer knowledge, the
previous works were not able to go so far.

What actually characterised the approach and allows the original contributions
listed below is the variational framework. The adopted variational approach has
been rigorously formalised by Mielke and successfully applied in many engineering
problems. The main ingredients are:

1. the definition of two energy quantities, the elastic stored energy and the dis-
sipation potential, which depend upon the state variables: the displacement
field and the internal variable fields, namely damage and plasticity;

2. the three aforementioned principles, irreversibility, stability and energy balance
which are assumed to be sufficient to govern the evolution of the system.
In particular, the stability condition involves a functional minimisation and
provides a rational way to construct and investigate the model.

These simple ingredients establish a flexible and at the same time robust ground
over which this model has been developed. Specifically, the coupling among damage
and plasticity has been achieved by assuming an additive decomposition of the
dissipation potential, the former depending on the plastic strain rate and damage
and the latter depending on the damage rate, damage and the accumulated plastic
strain. Of course, in a particular case, aspects of the classical approach could be
retrieved as a consequences of the variational approach like yield functions and
yield stresses where the role of the various constitutive functions is revealed. With
this choice of the dissipation potential the plastic (damage) yield stress results to
be damage (plastic) dependent, that is it is possible to describe coupled effects. An
interested investigated case corresponds to plastic and damage yield stresses which
decrease with the evolution respectively of damage and the accumulated plastic
strain. Moreover the damage yield stress is assumed to be damage-softening and
damage-gradient dependent.
While mathematicians are often more interested in aspects like existence and unique-
ness here the mechanical interpretation of the results plays a central role as well as
the attention for numeric implementation.

The most important result of this thesis is the capability of the proposed coupled
model to account for cohesive or ductile fracture, that is nucleation of cracks where
the stress does not vanish.

Original Contributions

This work stems out after a historical overview from the origins of the internal
state variable theory up to the recent variational formulation for rate-independent
systems, Chap. 1. Moreover a critical analysis of the literature proposals for nonlocal
damage-plasticity models with their main features is carried out, Sec. 1.4.6. The
main original contributions to the existing literature are described in some detail at
the end of each chapter but are here summarized:

• A new variational constitutive model for the coupling of plasticity and dam-
age in a three-dimensional setting To this aim, as for the first order stability
condition, the evaluation of the Gateaux derivative of the energy functionals
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deserved some non-trivial calculations, appendix A. This is due to the fact that
the dissipated work results to be in the most common cases not a state func-
tion as it possibly depends upon the past history of the plastic strain trough
the accumulated plastic strain. Moreover, the equations resulting from the
first order stability condition and the energy balance give a deep mechanical
insight to the proposed model unveiling the coupling mechanism. The yield
functions and consistency conditions automatically descends from the varia-
tional formulation and have not to be postulated a-priori, Sec. 2.2 and Sec. 2.3.

• The thorough and complete analysis of the homogeneous responses In or-
der to understand the model capabilities its homogeneous response has been
investigated. Several conditions on the constitutive functions that determine
different evolutions has been found. These conditions dictates whether plas-
ticity, damage or both may evolve during an evolution and in which order,
Sec. 3.2.

• The material stability analysis of the homogeneous responses The stability
analysis in the one-dimensional setting of homogeneous responses allows the
interpretation of the internal length scale and furnishes the condition for the
occurrence of a non-homogeneous solution, Sec. 3.4.

• The construction of a non-homogeneous solution When the homogeneous
solution becomes unstable a non-homogeneous solution must appear, based
on a localisation. A method for the construction of a localisation is proposed
which takes explicitly into account the irreversibility condition, Sec. 4.2. It is
shown that an accumulated plastic strain localisation is associated to a discon-
tinuity in the derivative of the damage field, Sec. 4.48. This key property allows
a cohesive fracture. A straightforward analytical example of this construction
can be found in the submitted paper, Chap. B.

• The analysis of non-homogeneous responses in a one-dimensional setting
The construction of a localisation is necessary for the investigation of the global
response. Within this context it is proven the capability of the resulting model
to describe the nucleation of a cohesive fracture where a jump of the displace-
ment field occurs with a non-vanishing stress. Indeed, the fracture energy may
become a function of the jump of the displacement field by means of the accu-
mulated plastic strain, G(JuK). Moreover, since G tends towards an asymptotic
value, say Gc, when the displacement jump tends to infinity and the the plas-
tic yield stress is finite, the model describes exactly the Barenblatt’s cohesive
fracture model, Sec. 4.26.

• The development of a numerical algorithm and its application to the one-
dimensional problem One of the most important advantages of the variational
formulation is that it leads to a natural and rational numeric implementation.
Due to the convexity properties of the model an alternate minimisation algo-
rithm, which looks for a global minimum, has been developed and success-
fully applied to a sample case in a one-dimensional setting, Sec. 5.1. Although
the finite element spaces do not embed explicitly jumps the numerical results
perfectly agree with the analytical results, Sec. 5.2.



ix

Structure of the Thesis

Chapter 1. Background and state of art. This chapter is devoted to a historical review
covering the internal state variable theory, the Standard Generalised Materials
theory and the Energetic Formulation for rate independent systems. Several
classical material models are briefly compared highlighting their peculiarities
and limitations. Finally, the fracture, plasticity and damage models are singu-
larly introduced as building blocks for the coupled plasticity-damage model
proposed in Chap. 2.

Chapter 2. A variational elastic-plastic-damage model. This chapter is the core of the
present work. Here the coupled plastic-gradient damage model is developed
in a three-dimensional setting by means of the energetic formulation. The first
order stability condition furnishes some (weak) necessary inequalities which
the model has to be satisfied and from which it is possible to define in a classi-
cal sense the yield functions and disclose their (strong) expression. Neverthe-
less it is the weak form that reveals the capability of the model to describe a
cohesive fracture. From the energy balance it is possible to derive the classical
consistency conditions.

Chapter 3. Homogeneous evolutions. The great flexibility of the model is investigated
for a homogeneous evolution. This simply highlights all the possible responses
that could be expected from the model. Specifically, elastic, plastic and damage
stages occurs singularly or coupled depending on the constitutive functions of
the model and are understood by means of numerical examples. Moreover, a
stability analysis is carried out which gives a condition for the occurrence of a
localisation depending on the overall length of the bar and the internal length
parameter.

Chapter 4. Non-homogeneous evolutions. Focusing on the one-dimensional setting,
the construction of a localisation which accounts for the irreversibility con-
dition is first presented. More in detail, the damage localisation profile is
symmetric with the shape of a bell. The plastic yield criterion can be then at-
tained in one point corresponding to the center of the localisation zone where
instead plasticity localises but as a Dirac measure leading precisely to a cohe-
sive crack a la Barenblatt. Once the construction of the localisation has been
introduced, a one-dimensional traction bar test is investigated and the global
response retrieved.

Chapter 5. Numeric implementation and simulations. The variational approach leads
to a natural and rational way to define efficient numerical algorithms since its
intrinsic discrete nature. The adopted numeric scheme is an alternate minimi-
sation algorithm in a finite element framework. Numeric simulations in the
one-dimensional setting have been carried out and compared with the analyt-
ical solutions. Despite the use of C0-elements for the space approximation of
the displacement field the results are in perfect agreement with the analytical
solutions.





Chapter 1

Background and State of Art

In this chapter the main background theories leading to the adopted variational
formulation are presented through both their logical and historical interrelation.
More specifically the point of departure is the thermodynamics framework which
almost all agree any material model should respect. After having presented some
historical remarks, the attention is focused on a particular class of material mod-
els, namely the Standard Generalized Materials, where the dissipated forces are
derived from a dissipation potential. Under the assumption of rate-independence
the energetic (variational) formulation descends. The chapters finally ends with
the reference to the existing fracture, plasticity and damage model which singu-
larly establish the building blocks of the coupled model.

A substantial historical perspective covering several aspects of continuum ther-
modynamics and material modelling is given in Maugin 1992.

1.1 Continuum Mechanics with internal variables

1.1.1 Introduction

The presentation of this section is essentially driven by the works of Bataille
and Kestin 1979; Maugin 1992. The topic, in its wholeness, is very complicated and
still under debate. Many currents of thought exists and a well defined, unique
presentation is impossible. Nevertheless, it is believed that a sketch of key-concepts
is useful to understand the logical and formal developments of the present work.

The key-point of classical thermodynamics, despite the word "-dynamic", is that the
theory is concerned about systems that are in equilibrium. Therefore, many authors
prefer to refer to it with the name thermostatics. Any process is then considered
as a sequence of equilibrium states. In particular, as stated in Germain, Nguyen,
and Suquet 1983, classical thermodynamics is formally correct only if during the
process all variables have a full physical meaning, that is, the irreversible system
can be embedded in a larger one which is reversible and where the definition of an
entropy-like function is possible.

What then can be said about states outside equilibrium, that is to the term ther-
modynamics in its full sense? Answers, for dealing with states in not-equilibrium,
may come from three different point of view and approaches, as

1
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• the thermodynamics of irreversible processes;

• the thermodynamics of Colemann and Noll or rational thermodynamics;

• the thermodynamics with internal variables.

Actually, the thermodynamics with internal variables leans against the first two
approaches, although its development can be considered independent. Hence, in
order to fully justify and understand the thermodynamics with internal variables,
which is the ground for the construction of the considered constitutive problem, a
brief introduction of the first two thermodynamics theories is necessary. A more
extended survey about branches of thermodynamics can be found in the review
article Muschik 2008.

In the sections that follow the setting is those of continuum mechanics. The work
of Duhem 1911 deserves a special mention. This book highlight the role of thermo-
dynamics in continuum physics. First the main results of continuum thermostatics
are presented.

1.1.2 Fundamental laws in Continuum Mechanics

In this work it is assumed that deformations and gradient of deformations re-
main small during the whole evolution, i.e. no difference is considered between the
reference and current configuration. The strain-displacement relation becomes

ε =
1
2

(
∇u +∇uT

)
. (1.1)

The fundamental laws of continuum mechanics are

• balance of mass;

• balance of linear momentum;

• balance of angular momentum;

• balance of energy;

• etropy inequality principle.

In particular, the last two can be made to descend from the thermodynamics formu-
lation introduced in the next subsections.

The conservation of mass for a continuum reads

d
dt

∫

P(t)
ρ(x, t) dΩ = constant, (1.2)

where P ⊂ B is a generic portion of the considered body and (x, t) 7→ ρ(x, t) is the
mass density. Due to the assumption (1.1) and to the initial unitary mass density,
the balance of mass (1.2) is always satisfied.

Once the Cauchy stress tensor, or simply stress tensor, σ is introduced, the balance
of linear momentum leads to

∫

P
(divσ + b− ρẍ) dΩ = 0 (1.3)
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or in local form
divσ + b− ρẍ = 0, ∀ x. (1.4)

Moreover, from the balance of angular momentum, one obtains

σ = σT. (1.5)

The virtual power principle can be considered an equivalent formulation for (1.3) and
is widely used.

Clearly, equations (1.1), (1.4) and (1.5) are insufficient to uniquelly determine the
unknowns u, ε and σ. In particular, 6 equations are missing, namely the constitutive
equations. While the afore-mentioned formulation is valid for any materials, the
constitutive equations instead depend upon it.

As stated by Germain et al., Germain, Nguyen, and Suquet 1983, thermody-
namics furnishes a satisfactory framework with the aim of formulating consistent
constitutive equations,

“Continuum thermodynamics impose new important restrictions on
constitutive equations when a suitable generalization of the second law
is formulated. The main objective of thermodynamics is ti provide a
method to write constitutive equations that fulfil these new restrictions.”

1.1.3 Thermostatics

Usually thermostatics refers equivalently to reversible processes. Indeed, in this
case, all quantities are well defined in an equilibrium state. That is, temperature
and entropy do not affect the evolution. However they become necessary to describe
irreversible processes.

Thermostatics compares states in thermodynamic equilibrium, where a defini-
tion of temperature and entropy is possible. In order to present the first and second
law of thermostatics some fundamentals definitions are called upon. A system is
defined as a specific position of the physical universe which is a specific quantity of
matter. In the present work, in particular, a system which does not exchange matter
through its boundary is considered as a continuum with unitary density. State vari-
ables χ = (χ1, χ2, . . . , χn) are introduced to characterize the state of the system. The
change of those variables depends only on the initial and final state of the system.
About this last point a clarification should be given. In general, the identification
of the state variables of a given system is not trivial and not unique. The choice
depends upon the physical system one is interested in, Maugin and Muschik 1994.
On the other hand, having established the concept of state variables, the concept
of state function follows. A state function is a function that only depends on the
state of the system and not on the manner in which this state has been reached.
It’s worth noting that neither mechanical work nor heat are state functions, Ottosen
and Ristinmaa 2005. In particular, a thermodynamic system is in equilibrium if the
variable that describe its state χ remains unchanged in time. If the evolution is suf-
ficiently slow such that any state can be considered in thermodynamic equilibrium,
two quantities can be attached to the system. These two quantities are the internal
energy E , which represents the sum of all the microscopic forms of energy, and the ki-
netic energy K, due to the macroscopic velocity of the system constituents expressed
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in a Galilean reference. They are state functions satisfying for any transformation
the equation

dE + dK = δW + δH. (1.6)

These state functions are additive with respect to material sets. In (1.6), δW and δH
represent respectively the total amount of mechanical work and the total amount of
heat received from the external world. The sum E +K represent the stored energy
of the system while (1.6) expresses the balance of energy.

The second law of thermodynamics can be formulated in various ways, for exam-
ple remarkable are the versions of Kelvin, of Clausius, see Clausius and Hirst 1867,
and of Carathéodory, see Carathéodory 1909. By considering Clausius theorem, that
is ∮

δH
T

{
= 0 reversible process
> 0 irreversible process,

(1.7)

where T is the absolute temperature (or thermodynamic temperature) introduced by
Carnot’s theorem, another state function, the entropy S, can be introduced as

dS ≥ δH
T

. (1.8)

Both the internal energy E and the entropy S are extensive quantities1. Particular at-
tention should be paid to normal or natural state variables2. The state variables (T, χ)
are normal if for

dχ = 0 ⇒ δW = dK = T dS− δH = 0. (1.9)

Assumed normal state variables, it is possible to write then

T =
∂E
∂S

(S, χ) , X =
∂E
∂χ

(S, χ) , (1.10)

where T and X are respectively the dual variables associated with S and χ. E(S, χ)
can be regarded as a thermodynamic potential. Moreover, it can be proved that
E(S, χ) is convex with respect to S.

In continuum thermodynamics, one prefer to deal with the Helmotz’s free energy
or simply free energy Ψ which is given by the Legendre-Fenchel’s transformation, i.e.

−Ψ(T, χ) := max
S

T S− E(S, χ) = T S− E(S, χ) , (1.11)

which is still a thermodynamic potential,

S = −∂Ψ
∂T

(T, χ) , X =
∂Ψ
∂χ

(S, χ) . (1.12)

The equality in (1.11) follows from the normal state variables assumption.
To extend this formulation to continuum systems and to not-equilibrium states,

modifications to the classical theory have to be done.

1An extensive quantity, in a continuum system, is a quantity proportional to the mass of the system as
opposed to intensive quantity.

2The term normal was first introduced in Duhem 1911.
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1.1.4 The theory of irreversible processes

The theory of irreversible processes is the most standard approach to non-equilibrium
thermodynamics. An extended overview of this theory can be found in De Groot
and Mazur 2011.

For the further developments, it suffices to emphasize the fundamental role
played by the axiom of the local (equilibrium) state in the theory of irreversible pro-
cesses, which states that each part P of a material system B (P ⊂ B) can be ap-
proximately considered, at any time t, being in thermal equilibrium. This postulate,
is the basis of continuum thermodynamics. Indeed, at any material point x, time t,
temperature T and state variables χ, which in this context are assumed to be control-
lable and observable by an external observer, one can introduce a specific internal
energy e = e(x, S, χ), a specific free energy w = w(x, T, χ) and a specific entropy
s = s(x), all intensive variables, such that for any P ,

EP =
∫

P
ρ e dΩ, ΨP =

∫

P
ρ w dΩ, SP =

∫

P
ρ s dΩ, (1.13)

since energy and entropy are additive quantities. Moreover, for a continuum, the
kinetic energy is

KP =
1
2

∫

P
ρ u̇ · u̇ dΩ. (1.14)

In particular, this allows one to view a thermodynamic process close to equilibrium
as a sequence of thermostatic equilibria and thus to grant to entropy and tempera-
ture their usual thermostatic definitions. That is, at each instant there still exists a
set of normal state variables (s, χ), and a specific internal energy e(s, χ) such that
temperature T and the laws of state are given by

T =
∂e
∂s

, X =
∂e
∂χ

. (1.15)

The closeness to equilibrium is measured by the ratio of the characteristic re-
sponse time τR, which allows the thermostatic system to recover a new state of
thermostatic equilibrium, and the characteristic duration τD of the kinematic and
dynamic evolution of the medium. This ratio, defined as the time of relaxation over
the time of observation, should be small,

De =
τR
τD
� 1. (Deborah number)

This will prove to be impracticable each time that the evolution of the system is too
fast (e.g., in a shock-like evolution).

Under the assumptions of the local equilibrium state and through time deriva-
tives, one may then write locally the first law of thermostatics. To this aim, it is
sufficient to take the time derivative of (1.6). The received heat power from the body
is then defined as

δH
dt

=
∫

P
ρ h dΩ−

∫

∂P
h · n dS =

∫

P
ρ h dΩ−

∫

P
divh dΩ (1.16)

where h and h are respectively the heat source and the heat flux vector. The last
equality follows form the Gauss’s divergence theorem3. On the other hand, the

3
∫

Ω divv dΩ =
∫

∂Ω v · n dS, Spiegel and Lipschutz 2009 .



6 Background and State of Art

received mechanical external power from the body is defined as

δL
dt

=
∫

P
ρ b · u̇ dΩ +

∫

∂P
f · u̇ dS (1.17)

=
∫

P
ρ b · u̇ dΩ +

∫

P
divσ · u̇ dΩ +

∫

P
σ · ε̇ dΩ (1.18)

with b, f respectively the body force vector per unit mass and the traction vector
acting on the boundary, where for the last equation the Gauss’s divergence theorem
and the equality f = σ[n] has been used.

Inserting eqs. (1.13), (1.14), (1.16) and (1.18) in the time-derivative of eq. (1.6),
one obtains

ρ ė = σ · ε̇ + ρ h− divh, (1.19)

which is the local form of the first law of thermodynamics and where eq. (1.4) has
been used. Similarly, the second law of thermodynamics (1.8) becomes in local
differential form:

ρ ṡ− ρ h
T

+
divh

T
+ h · ∇(T−1) ≥ 0, (1.20)

called also Clausius-Duhem inequality. Assuming that e = e(s, ε, χ), where χ are other
observable state variables, one has

ė = T ṡ +
1
ρ

σ · ε̇ + 1
ρ

X · χ̇ (1.21)

that replaced into (1.20) through (1.19), furnishes the so called internal dissipated
power d as

d = −X · χ̇ + T h · ∇(T−1) ≥ 0. (1.22)

The variables χ̇ are called fluxes while the variables X forces. A relation between the
fluxes and the forces needs to be taken into account in order to solve the problem.
The most simple relation was proposed by Onsager and Casimir, osnager1931 jus-
tified by the hypothesis of small deviations from equilibrium. Once the Helmotz’s
free energy is introduced, (1.11), the Clausius-Duhem inequality becomes

d = −ρ
(
ẇ + sṪ

)
+ σ · ε̇ + T h · ∇(T−1) ≥ 0. (1.23)

1.1.5 The "Rational" Thermodynamics of Colemann and Noll

Rational thermodynamics, developed from 1960 to 1970, Coleman 1964; Coleman
and Mizel 1967; Coleman and Noll 1963; Day 1972; Gurtin 1968; Truesdell 1984, deals
with non-equilibrium systems and is based essentially on two strong assumptions:

• entropy and temperature are two primitive quantities, also existing in non-
equilibrium states;

• the Clausius-Duhem inequality (1.20) is considered as an a priori postulate.

The implications of such axiomatic theory is a field theory of “elegant formalism”
and “mathematical attractiveness”, Bataille and Kestin 1979. The constitutive equa-
tions are formulated in a functional form, where the whole past history is involved,
recovering the dynamic aspect of the process. This theory has proved capable only
of describing materials with “memory” such that one can meet in viscoelastic media.
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1.1.6 The theory of internal variables

The first formalization of the theory goes back to the watershed paper of Cole-
man and Gurtin, Coleman and Gurtin 1967. The main idea behind this theory is
that a thermodynamic state is not only characterized by the usual observable state
variables but also by internal variables α. These variables are hidden to the observer
and are considered essential for the definition of the internal structure of the mate-
rial. Actually, the fact that a variable is observable or not is mostly a matter of scale.
According to Mandel 1980, one is often able to measure these variables but not to
control them.

The definition of the dependent variables, like the stress σ, rely on both the
observable and internal variables. The crucial point is the definition of proper evo-
lution laws for the internal variables. The following sections are devoted to an
overview on how evolution laws can be properly defined.

Moreover, one can state that this theory is a synthesis of aspects of the two
previous theories. Indeed, on one hand, the past history of the process is taken
into account simply through the value of the finite number of internal variables,
representing a kind of average effect. On the other hand, the general framework
continues to remain dynamic. An extended version of the local-state axiom has to
be formulated to encompass the internal variables provided that the characteristic
times, that enter in the definition of the evolution laws, remains small compared to
the macroscopic evolution. It is remarkable to note that for a wide range of material
models, like plasticity and damage, time doesn’t matter since no time derivatives
appears in the constitutive equations. Hence, the process can be considered as rate
independent. This point will be explored deeper in the next sections.

To summarize, the theory of internal variables postulates that the thermody-
namic state of a material medium at a given point and instant is completely defined
by the knowledge of the values of a certain number of variables both observable
and hidden. Assuming that all further state variables χ are internal, the free energy
density reads

w = w(T, ε, α) . (1.24)

The state function of state, or constitutive equations are

s = −∂w
∂T

, σ = ρ
∂w
∂ε

, A = −ρ
∂w
∂α

, (1.25)

while the Clausius-Duhem inequality reads

d = A · α̇ + Th · ∇(T−1) ≥ 0. (1.26)

The choice of the evolution laws is a key point and the next section is devoted to
their formulation. In general, two main approaches are noteworthy:

• direct approach;

• potential approach.

They differ essentially from the point of view with which the second law is
considered.

Indeed, in the direct approach, the evolution laws for α̇ are postulated and the
satisfaction of (1.23) checked a posteriori. The first famous relation in this sense
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Figure 1.1: Historical summary of different roads that formulated the modern inter-
nal state variable theory, Horstemeyer and Bammann 2010

was proposed by Onsager,see Onsager 1931. It assumes a linear dependence among
forces and fluxes and hence is the simplest. Furthermore, although it automatically
fulfils the second law, it is unable to cover all physical phenomena.

The second approach assumes a relation for the evolution laws which satisfies a
priori the second law of thermodynamics (1.23).
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1.2 Generalized Standard Models

As mentioned before, once additional internal state variables are introduced,
further state laws and evolution laws have to be formulated. To this aim, a ratio-
nal and fruitful approach is given by the Generalized Standard Model, which is an
example of the previously mentioned “potential approach”. The name “General-
ized Standard Model” was first introduced by Halpphen and Nguyen 1975. Other
key-references are Germain, Nguyen, and Suquet 1983; Moreau 1970; Nguyen 2002.
From now on isothermic conditions are assumed during all processes.

By definition in Nguyen 2000, p. 37:

“A model of material behaviour is a generalized standard model if
it is defined by two potentials, the energy potential and the dissipation
potential. The energy is a function of state variables and the dissipation
potential is a convex function of flux and may eventually depend on the
present state.”

The ingredients of such model then are:

• energy potential

• dissipation potential

In particular, the energy potential W (free-energy per unit-mass, elastic energy,
stored-energy density, ecc. ecc.) is a function of state variables defined as

W(ε, α) = ρ w(ε, α) , (1.27)

and allows the following constitutive equations

σ =
∂

∂ε
W(ε, α) , A = − ∂

∂α
W(ε, α) . (1.28)

On the other hand, the dissipation potential ψ = ψ(α, α̇) ∈ R+ is a convex
function with respect to the flux α̇ and may depend on the present state through the
value of α, so that

A =
∂

∂α̇
ψ(α, α̇) . (1.29)

Moreover, in order to satisfy the second principle of thermodynamics (1.26), the
dissipation potential ψ(α, α̇) has to satisfy the following property:

0 ∈ Sα̇ :=
{

α̇ : ψ(α, α̇) ≤ m, ∀m ∈ R+
}

, (1.30)

that is, the nul vector must belong to the convex set Sα̇. The fact that energy and
dissipation potentials leads to a general framework in the study of dissipative effects
in materials and structures is explained in Germain 1973, Lemaitre 1985 and Maugin
1992.

• It’s implementation is systematic;

• It can be generalized to any kind of thermomechanical behaviour;

• It does not disagree with well established thermodynamical principles and
even permits to automatically satisfy the second law;
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• It agrees with the most usual constitutive relations;

• It generally leads to "nice" initial-boundary value problems with "good" math-
ematical properties.

The issue about boundary conditions for the internal state variables is still under
debate. Different assumptions in that sense can lead to very different solutions. This
point will be further explored in the next sections.

1.2.1 Sub-differential formulation

In case of time-independent irreversible processes, like plasticity, the dissipation
potential is no longer differentiable in the origin. A generalized differentiation in
the sense of sub-gradient of a convex function can be introduced and the notion
of potential for non-differentiable functions preserved, Ekeland and Téman 1999;
Moreau 1970. In addition, assuming the positively 1-homogeneous and lower semi-
continuity properties for the dissipation potential, the dependence between force
and flux can be then written as

A = ∂α̇ ψ(α, α̇) . (1.31)

Condition (1.31) was introduced by Moreau 1970 and is called normal dissipation
hypothesis.

Sometimes it is straightforward to use the dual dissipation potential ψ∗ obtained
by the Legendre-Fenchel’s transformation

ψ∗(α, A) = max
α̇

A α̇− ψ(α, α̇) , (1.32)

so that the complementary laws become

α̇ = ∂Aψ∗(α, A) . (1.33)

Obviously the property (1.30) turns out to be

0 ∈ SA =
{

A : ψ∗(α, A) ≤ m, ∀m ∈ R+
}

. (1.34)

Figure 3.2 shows some examples about common standard generalized models.

ψ(α, α̇)

α̇

0

(a) visco-elastic

ψ(α, α̇)

α̇

0

(b) plastic

ψ(α, α̇)

α̇

0

(c) visco-plastic

ψ(α, α̇)

α̇

0

+∞

(d) damage

Figure 1.2: Examples of common dissipation potentials in mechanics
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1.2.2 Standard dissipative system: Biot’s equation

Once a standard generalized model is adopted the internal variable evolution
can be obtained from a differential equation

∂αW + ∂α̇ψ = 0, α(0) = α0 (1.35)

known as Biot’s equation, Biot 1965. Moreover, if inertia J = J(ü) is considered and
the dissipation potential also depends on the displacement rate as in viscous mate-
rials ψ = ψ(u̇, α, α̇), then the equation

J +
∂W
∂u

+
∂ψ

∂u̇
= 0 (1.36)

together with (1.35) and the boundary conditions constitute a so called standard
dissipative system.

1.2.3 Rate-independence

In this work the material response taken into account is rate-independent. This
means that the response is linearly proportional to the adopted time scale. For
example, plasticity, damage and dry-friction are rate-independent or non-viscous
irreversible processes.

In the framework of standard generalized materials, rate-independence for irre-
versible processes means that the dissipation potential is positively homogeneous of
degree 1 with respect to α̇,

ψ(α, λ α̇) = λ ψ(α, α̇) ∀ λ > 0. (1.37)

In the models that follow, the dissipation potential is always considered as a
convex, positively homogeneous of degree 1 function such that condition (1.30)
is satisfied. Under the hypothesis of rate-independence, it is possible to consider
equivalent formulations for describing the constitutive equations for standard gen-
eralized materials. A different approach is given by the variational formulation or
the energetic formulation explored in Sec. 1.3 which results to be more flexible and
less demanding.

1.2.4 Equivalent formulations

Focusing only on rate independent phenomena, like plasticity or damage, equiv-
alent constitutive formulations for standard generalalized materials exists beyond
the sub-differential formulation 1.2.1. These are summarized in the following.

1.2.4.1 KKT - yield surface

One of the most widely used methods is based on the definition of a yield func-
tion f , depending on invariants of the dual internal variables and on the present
state by means of α, which defines an elastic region SA and a yield surface ∂SA,

SA = SA(α, A) = {A : f (α, A) ≤ 0} , ∂SA = ∂SA(α, A) = {A : f (α, A) = 0} .
(1.38)
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The equivalent formulation is obtained once an associated flow rule is adopted, that
is the considered yield surface is convex and the flux collinear to the unit exterior
normal to ∂SA, namely





α̇ = 0, f (α, A) < 0

α̇ = λ̇
∂

∂A
f (α, A) , f (α, A) = 0,

(1.39)

where λ̇ ≥ 0 expresses essentially the flux rate. In expression (1.39) is implicitly
assumed smoothness of the yield surface. Indeed, if the yield surface has corner
points, normal cones have to be considered at the same points.

The system (1.39) can then be rewritten through a set of Karush-Kuhn-Tucker con-
dition 4 , that is,

λ̇ ≥ 0, f ≤ 0, λ̇ f = 0 (1.40)

with the normal flow rule

α̇ = λ̇
∂

∂A
f (α, A) . (1.41)

It is worth mentioning a more general choice for (1.41) which does not fit the gen-
eralized standard framework, namely the non-associated flow rule. A non-associated
flow rule is obtained by replacing the yield function f in (1.41) by another function
g, still a potential, such that

α̇ = λ̇
∂

∂A
g(α, A) . (1.42)

A non-associated flow rule does not respect the normality rule and hence does not
fall into a generalized standard model. First applications of this method can be
traced in Melan 1938 and later by Prager 1949.

1.2.4.2 Normality rule

The following approach, based on the normality rule, has already been men-
tioned in the sub-differential formulation 1.2.1. The origin can be found in the
works of Moreau, see Moreau 1970, and is thoroughly detailed in Han and Reddy
1999; Nguyen 2000. This theory has stemmed out from the mathematical convex
analysis framework. The normality rule was introduced in the setting of plasticity
and can be extended to rate-independent processes.

With (1.37) in mind, a convex domain with the null element of admissible forces
is introduced through the sub-gradient of the dissipation potential,

EA = ∂α̇ψ(α, 0) . (1.43)

In particular, EA represents the elastic domain. The dual dissipation potential ψ∗ is
in this case the indicator function of EA,

ψ∗(α, A) = IEA(α, A) . (1.44)

4The Karush-Kuhn-Tucker condition, Karush 1939; Kuhn 1982, arise in seeking an optimal solution in
the field of nonlinear programming. The KKT approach can be regarded as an extension of the method
of Lagrange multipliers in presence of inequality constraints.
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Hence, the force-flux relationship α̇ = ∂Aψ∗(α, A) can be written as

α̇ ∈ NEA(α, A) (1.45)

which states that α̇ must be an external normal to the admissible domain at the
present state of the force A.

1.2.4.3 Principle of maximum dissipation

The principle of maximum dissipation, also known by different names such as Hill-
Mandel maximal-dissipation principle or simply Hill’s principle, was first introduced by
Onsager 1931 for heat conduction and Onsager 1945 for diffusion. Later on this
principle was introduced in the plasticity context by Hill in Hill 1948 and prop-
erly formalised by Rice 1970 or Eve, Reddy, and Rockafellar 1990. The principle of
maximum dissipation states that

(A− A∗) : α̇ ≥ 0 ∀ A∗ ∈ EA. (1.46)

Then the associated dissipation potential nothing but

ψ(α, α̇) = max
A∗∈EA

A∗ : α̇. (1.47)

The equivalence between this principle and the normality rule (1.45) is straightfor-
ward.

1.2.5 Drucker-Ilyushin’s postulate

The Drucker-Ilyushin postulate also deserves to be mentioned, although it does
not fit the generalized standard material framework, at least for some models. As
pointed out in Marigo 2002, the restriction given by the generalized standard theory
is too strong with respect to usual universal principles, like material frame indiffer-
ence or the second law of thermodynamics. Between the two extremes stands the
Drucker-Ilyushin’s postulate.

In the fifties Drucker Drucker 1959, 1951 formulated this postulate in order to re-
strict the possible constitutive relations in plastic theory. He introduced his stability
postulate in terms of stress cycles and of strain work. Specifically denoting by σ0
and σ the initial and current stresses of the material element, the postulate requires
that ∮

σ
(σ − σ0) : dε ≥ 0 (1.48)

in any stress cycle, that is along a path starting and ending at σ0. Some years later,
Ilyushin Ilyushin 1961 formulated the stability postulate in terms of strain cycles
and the total strain work by requiring that

∮

ε
σ : dε ≥ 0. (1.49)

It has been shown, Marigo 2002, that Ilyushin’s version is more easily extended in
general thermodynamical systems and that Drucker’s version would lead to unsat-
isfactory results for some classes of materials and behaviours like stress softening,
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see Ottosen and Ristinmaa 2005. Moreover, an interesting appraisal about Ilyushin’s
work is given in Maugin 2010.

The relationship between Ilyushin’s, Drucker’s and the above formulations was
investigated by several authors, for example Marigo 2002, 2001; Maugin 1992. In the
lengthy and detailed analysis of Manville Manville 1927, the thougths of Duhem
where transcribed mathematically in the inequality

∮
A : α̇ dt ≥ 0 (1.50)

which is a kind of extension of (1.49). Actually the names of Drucker and Ilyushin
should then be put side by side with Duhem’s name.

1.3 Energetic Formulation (Variational Formulation)

The previous formulations summarised in section 1.2 implies in a certain sense
the explicit integration of the evolution laws (1.29) and (1.33). Beside these another
possible formulation of the constitutive problem, called hereafter energetic formu-
lation, is possible set in a variational framework. That is, the solution (energetic
solution) of the problem is obtained through a minimum principle.

In the evolution of rate-independent systems solutions are expected to develop
jumps. Hence it is desirable to find a weaker formulation avoiding derivatives. The
energetic formulation provides a very weak, derivative-free form for the determi-
nation of the evolution. It is based on a global stability condition and an energy
balance. Using time-incremental minimization problems, which allow for the usage
of the rich theory in the direct method of the calculus of variations, it is possible to
establish general and abstract existence results as well as convergence properties for
numerical approximations.

A mathematical formalization of the energetic formulation about rate-independent
systems is essentially due to Mielke, see Mielke 2011; Mielke 2006a,b. In particular,
the lecture notes in Mielke 2011 furnish a straightforward classification about pos-
sible solutions compared to regularity assumptions for rate-independent processes.
Without lose of generality one can state that, once state variables, energy function-
als and load conditions are defined, the energetic formulation in its weakest form is
essentially based on two concepts:

• (global) stability condition (ST)

• energy balance (EB).

The mathematical setup of the problem is given in Mielke 2011.
It is worth preliminary to highlight strengths and virtues of such a formulation,

compared to those previously explored:

• the energetic formulation is totally derivative free. No derivatives are involved
in its most general setting, neither for the constitutive equations;

• everything is based on functionals defined through domain integrals so that
powerful mathematical tools as the direct method in calculus of variations can
be used in order to face the issues of existence and uniqueness;
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• boundary conditions for the internal variables descend automatically from the
formulation;

• it provides an insight for the concepts of bifurcation and stability and gives
tools to tackle them;

• it furnishes a natural and rational way to define efficient numerical algorithms.

Nevertheless, also some drawbacks are present, Mielke 2006a:

• the energetic formulation offers only few results on uniqueness of solutions,
see Brokate, Krej, and Schnabel 2004; Mielke and Theil 2004. The main dif-
ficulties depends on the lack of mathematical tools belonging to the field of
functional analysis and calculus of variation;

• the stability condition involves global minimisation although for a better phys-
ical modelling and for numeric implementation it would be desirable to be able
to consider local stability. In this sense, first attempts have been made even if
a general theory is still missing.

1.3.1 State variables and energy functionals

The body Ω ⊂ Rd, with d ∈ {1, 2, 3} is assumed to be open, bounded and
with a Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN such that integration by parts and
Sobolev embeddings are available. On the boundaries ∂ΩD and ∂ΩN are prescribed
respectively Dirichlet and Neumann boundary conditions.

Being interested in continuum mechanics applications, the only variables that
are considered in this general presentation of the energetic formulation are

u displacement field5

α set of generic internal variables

where the displacement u ∈ F (Ω, F) and u(x, t) : (Ω, [0, T]) → F ∈ Rd while the
internal variables α ∈ Z(Ω, Z) with α(x, t) : (Ω, [0, T]) → Z ∈ Rm. Both F and
Z can be assumed to be simply Banach spaces although topological vector spaces
suffices for the general theory. The prescribed displacements ū are applied on ∂ΩD.
Once the states space has been introduced, two functionals have to be defined,

• the energy functional,

• the dissipation distance,

global quantities which are involved in the next developments. In the setting of
continuum mechanics, the energy functional equals the total potential energy P :
[0, T]×F×Z → R, defined by means of an energy density e : [0, T]×F×Z → R∞,
which has the same meaning as the stored-energy density introduced in (1.27), while

5One could assume as state variable the deformation gradient F which relies on the deformation ϕ,
but since the theory is applied in case of infinitesimal strains, the kinematic description through the
displacement field is preferred.
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the global dissipation distance D : Z×Z → R, whose definition is less obvious, is
defined by means of the dissipation distance density d : Z×Z → R+

∞.6

The total potential energy is the sum of two contributions. The stored internal
energy E and the potential energy of external forces −L, which respectively reads
as

E := E(t, u, α) =
∫

Ω
e(∇u, α) dΩ, (1.51)

L := L(t, u) =
∫

Ω
b(t) · u dΩ +

∫

∂Ω
f (t) · u dS. (1.52)

Obviously, in the definition (1.52) the internal product · has been introduced. The
vector functions b and f are respectively the body force density and the traction forces
applied on the boundary. The traction forces are in turn divided into f a, the active
forces on ∂ΩN , and f r, the reactive forces ∂ΩD. Henceforth this distinction will be
explicitly omitted but still considered.
A common classification of external inputs is given in Tab. 1.1.

choices description




b 6= 0 in Ω
f 6= 0 on ∂ΩN

ū = 0 on ∂ΩD

soft devices





b = 0 in Ω
f = 0 on ∂ΩN

ū 6= 0 on ∂ΩD

hard devices





b 6= 0 in Ω
f 6= 0 on ∂ΩN

ū 6= 0 on ∂ΩD

mixed devices

Table 1.1: Classification of the possible external imputs.

The total potential energy then reads

P = P(t, u, α) = E(t, u, α)−L(t, u) (1.53)

For what concerns the dissipation distance density d, one assumes:

(i) ∀ α1, α2, α3 ∈ Z : d(α1, α3) ≤ d(α1, α2) + d(α2, α3) ∀x ∈ Ω;

(ii) ∀ α1, α2 ∈ Z : d(α1, α2) = 0⇐⇒ α1 = α2, ∀x ∈ Ω;

(iii) d : Z×Z → R+
∞ is lower semicontinuous.

Condition (i) is simply the subadditivity property or triangle inequality, condition
(ii) is the identity of indiscernibles, or coincidence axiom while condition (iii) allow
the dissipation distance to achieve the value ∞. Assumptions (i) and (ii) together

6It is worth nothing the duality with the standard generalized materials framework in the introduction
of section 1.2.
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assert that the dissipation distance d is non-symmetric, ∀ α1, α2 ∈ Z d(α1, α2) 6=
d(α2, α1). The non-symmetric property permits to consider variables which are con-
strained to an irreversibility condition, such as damage. The dissipation distance is
hence an extended quasi-distance.7 It is convenient sometimes to explicitly consider
the irreversibility condition and in addition to assume the symmetry property for
the dissipation distance.

The dissipation distance d can be as well introduced through a dissipation potential
ψ : TZ → R+

∞, which is a Finslerian metric8, (Finsler 1918); (Bao, Chern, and Shen
2000), such that

d(α0, α1) = inf
{∫ 1

0
ψ
(

β (s) , β̇ (s)
)

ds : β∈C1(Z , [0, 1]) , β(0) = α0, β(1) = α1

}
.

(1.54)
In the following, the formulation through the dissipation potential will be preferred
for its connection with the classical approaches. The assumptions for the dissipation
potential are then

(a) ∀ λ ∈ [0, 1], ∀ (α, α̇1) , (α, α̇2) ∈ TZ :

ψ(α, λα̇1 + (1− λ)α̇2) ≤ λψ(α, α̇1) + (1− λ)ψ(α, α̇2) ;

(b) ∀ (α, α̇) ∈ TZ , ψ(α, α̇) ≥ 0 and ψ(α, α̇) = 0⇐⇒ α̇ = 0;

(c) ψ : TZ → R+
∞ is lower semicontinuous.

Condition (a) expresses the convexity property. Instead conditions (b) expresses the
non-negativeness of the dissipation potential and property (1.30). It is straightfor-
ward to check that such hypotheses satisfy the requirements (i), (ii) and (iii) for the
dissipation distance density mentioned above.

The dissipation distance D defined over all the domain Ω is hence given by

D = D(α0, α1) =
∫

Ω
d (α0, α1) dΩ. (1.55)

Moreover, one is now able to define the dissipated work or dissipated energy D
along an arbitrary path α : [0, T]→ Z as

DD(α, [s, t]) = sup

{
n

∑
j=1

D
(
α
(
tj−1

)
, α
(
tj
))
| n ∈N, s ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ t

}
.

(1.56)
Equation 1.56 can be regarded as the length needed to reach a state α(t) from an
initial state α(0) through the curve α(s).

For further developments, in case of local models, the introduction of a dissi-
pated energy density δ could be useful. In particular

δ(α, [s, t]) = sup

{
n

∑
j=1

d
(
α
(
tj−1

)
, α
(
tj
))
| n ∈N, s ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ t

}

(1.57)
7Extended because infinite value can attained and quasi because of the lack of symmetry.
8TZ stands for the tangent space
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so that
DD(α, [s, t]) =

∫

Ω
δ(α, [s, t]) dΩ. (1.58)

In case of smooth evolutions, the dissipated energy turns to be equal to

DD(α, [s, t]) =
∫

Ω

∫ t

s
ψ(x, α(τ) , α̇(τ))dτ dΩ. (1.59)

Observe that the dissipated energy owns the additive property, that is

DD(α, [r, t]) = DD(α, [r, s]) +DD(α, [s, t]) , ∀ r < s < t. (1.60)

Now that all ingredients of the energetic formulation has been established, one
is able to introduce the two key conditions on which the energetic formulation relies
on: the stability condition and the energy balance.

1.3.2 Stability condition

Different versions of the Stability condition could be given depending on the
topology richness and smoothness properties of both the functionals and evolution,
namely

• global stability condition;

• local stability condition through the introduction of a convenient topology;

• differential stability condition.

Of course under suitable convex and regularity properties these different versions
equals each other.

1.3.2.1 Global stability condition

A process (u, α) : [0, T] → F×Z satisfies the global stability condition if, for all
t ∈ [0, T], the following condition holds:

P(t, u, α) ≤ P(t, ũ, α̃) + D(α, α̃) ∀ (ũ, α̃) ∈ F ×Z (ST)

where (ũ, α̃) is a different state. Clearly, the global stability condition (ST) does
not request neither a topology over the state spaces nor regularity properties of the
energy functional. Therefore, the global stability is the weakest and more general
condition, able to deal with discontinuous evolutions and irregular functional.

1.3.2.2 Local stability condition

As pointed out in Mielke 2006a, p. 354, although (ST) results in great flexibility,
an inconvenience is that it involves a global minimisation while a local minimisation
would be more physical. Nevertheless, in order to introduce a local condition and
to express “locality” one needs to specify a topology such that a neighbourhood of
the candidate solution state can be defined. From (ST), a local minimization can be
expressed as

P(t, u, α) ≤ P(t, ũ, α̃) + D(α, α̃) , ∀ (ũ, α̃) ∈ F ×Z : ‖ (u, α)− (ũ, α̃) ‖ < δ (st)
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with δ > 0 and where ‖ · ‖ denotes a suitable norm.
One could observe that in an infinite vector space, not all norms are equivalents.
Hence, the local states of (st) could be different, depending on the choice of the
norm ‖ · ‖.

Motivated by the previous remark and for further developments, a directional
local stability condition is defined as follows. At every instant t, a state (u, α) is
directionally stable, if for every available direction9 exists a different state with an
equal or greater energy level. To put it better, the state (u, α) ∈ F ×Z is directionally
stable if

∀ (ũ, α̃) ∈ F̃×Z̃ , ∃ h̄ > 0 | ∀ h ∈
[
0, h̄
]

,

P(t, u, α) ≤ P(t, u + hũ, α + hα̃) + D(α, α + hα̃) . (st-d)

which relies on the usual R-norm. In (st-d) F̃ and Z̃ are respectively the func-
tion space of the displacement variations defined as F̃ := {a ∈ F : a = 0 on ∂ΩD}
while Z̃ is the function space of internal variables variations which may embed
irreversibility conditions.
The directional stability condition (st-d) is more suitable compared to (st) when
an explicit irreversibility condition and a symmetric dissipation distance is given.
Indeed, in that case, it is simpler to define available directions as shown in (1.4.3).

1.3.2.3 Differential or n-order stability condition

For sufficiently regular energy functionals, namely directional derivable or Gateaux
differentiable, the condition (st-d) and (st) becomes equivalent to n-th differential
stability conditions.

Indeed, by expanding the right-hand side of (st-d) around h = 0 and without
expressing explicitly the evolution variable t, one obtains

P(u + hũ, α + hα̃) + D(α, α + hα̃) =

P(u, α) +
(
P ′(u, α)(ũ, α̃) + D′(α)(α̃)

)
h+

+
1
2
(
P ′′(u, α)(ũ, α̃) + D′′(α)(α̃)

)
h2 + w

(
h2). (1.61)

Condition (st-d) then becomes

0 ≤
(
P ′(u, α)(ũ, α̃) + D′(α)(α̃)

)
h+

+
1
2
(
P ′′(u, α)(ũ, α̃) + D′′(α)(α̃)

)
h2 + w

(
h2) (1.62)

for every sufficiently small h. In (1.62), P ′(α)(β) is the Gateaux derivative of P ′
at α with respect to the direction β while D′(α)(β) = limh→0 (1/h) (D(α, α + hβ)) .
Condition (1.62) expresses two differential inequalities since the expansion has ben
taken up to the second order.
Then, from (1.62), a necessary (sufficient) condition for the stability of the state
(u, α) ∈ F ×Z , in sense of (st-d), is the first order stability condition

P ′(u, α)(ũ, α̃) + D′(α)(α̃) ≥ (>) 0. (st-1D)
9 The available directions embed explicitly the irreversibility condition.
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Clearly, the condition (st-1D) becomes sufficient for the global stability (ST) in case
of opportune convex properties.
When (st-1D) occurs with an equality, the sign of the second order term in (1.62) has
to be inspected. In this case, the second order stability condition states that a necessary
(sufficient) condition for stability becomes

P ′′(u, α)(ũ, α̃) + D′′(α)(α̃) ≥ (>) 0. (st-2D)

Furthermore, if condition (st-2D) is satisfied as an equality, the sign of higher order
terms, descending from (1.61), have to be taken into account. One then has to
consider n-differential inequalities up to the first strictly positive inequality.

As one will appreciate later, the second order stability condition becomes fun-
damental for ascertain bifurcations in the response of the system. From (st-2D) the
model internal length and its role in the definition of stable bifurcated branches will
after emerge.

With opportune caution it can be stated that these stability conditions are in-
creasingly weak, in sense that

global stability =⇒ local stability =⇒ first order stability. (1.63)

The converse is of course not always true.

1.3.3 Energy balance

The other key concept in the energetic formulation is the energy balance. As for
the stability condition, two versions of the energy balance could be given depending
on the regularity assumption:

• (global) energy balance;

• regular (or local or differential) energy balance.

1.3.3.1 Weak energy balance

Recalling the definition of the dissipated work (1.56) or (1.59), the energy balance
in its most general form states

P(t, u, α) +DD(α, [0, t]) = P(t, u0, α0) +
∫ t

0
∂tP(t, u) dτ (EB)

where
∂tP(t, u) =

∫

Ω
ḃ · u dΩ +

∫

∂ΩN

ḟ · u dS. (1.64)

Condition (EB) is essentially the mechanical form of the first law of thermodynamics
with internal variable (1.19) descending from (1.6).

1.3.3.2 Regular energy balance

Under regularity assumptions on both the evolution of the state variables and
the energy functionals, the energy balance condition EB turns into the following
differential form. Differentiating EB with respect to time

d
dt

(
P(t, u, α) +DD(α, [0, t])−P(t, u0, α0)−

∫ t

0
∂tP(t, u, α) dτ

)
= 0, (1.65)
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one obtains

∂P(t, u, α)

∂u
· u̇ +

∂P(t, u, α)

∂α
· α̇ +

∫

Ω
ψ(α, α̇) dΩ + ∂tP(t, u) = 0, ∀ t. (1.66)

1.3.4 Irreversible phenomena

For irreversible phenomena, irreversibility can be moved from the definition of
the dissipation potential to the definition of the admissible function spaces as a
restriction of the accessible states.
A typical dissipation potential for a homogeneous material and for a process with a
kind of irreversibility is defined as ψ(α, α̇) : Z× Z → R+

∞,

ψ(α, α̇) =

{
< +∞ if α̇i ≥ 0
+∞ if α̇i < 0

∀ α, α̇ ∈ Z (1.67)

where the reference to α̇i with i ≤ m means that irreversibility is prescribed only
on some components of the internal variable vector. If for an evolution there exists
an instant where α̇i < 0, then the energy balance could not be satisfied since the
dissipated work goes to infinity.

The same result can be achieved moving the irreversibility condition on the func-
tion space and the space of admissible variations, namely (1.67) can be replaced by

ψ(α, α̇) : Z× Z+ → R+ (1.68)

where Z+ = {β ∈ Z : βi ≥ 0} becomes the space of available rates or admissible
variations for the internal states variables.

Henceforth this kind of approach will be followed being more suitable for dam-
age problems as shown in subsection 1.4.3.

For gradient internal variables the presented energetic formulation changes only
slightly in its formalism but not in its intimate meaning.

A proof of the equivalence between energetic formulation and classic formula-
tion could be found in Mielke 2003 and Engelen, Geers, and Baaijens 2003 at least
for some meaningful material models.

1.4 Fracture, Plasticity and Damage: local and non-local
models

This section is devoted to a brief introduction to fracture, plasticity and damage
models. Particular emphasis is given on non-local models. These models are the
building blocks and the main ingredients of the next developed coupled model,
object of this survey.

In order to be able to take into account size-effects in phenomena like fracture,
plasticity and damage, an internal length has to be introduced in the constitutive
model as already discussed in the Summary. To this aim, several approaches are
possible. Moreover, in case of stress softening materials, the introduction of an
internal length scale becomes also necessary to overcome the ill-posedeness of the
associated boundary value problem.
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1.4.1 Fracture models

In continuum mechanics, fracture means a (strong10) discontinuity of the dis-
placement field in some parts of the domain.

A proper description of the complex cracking phenomena observed in a wide
range of materials and structures demands to correctly deal with complex crack
geometries, crack nucleation, and evolution, which eventually may turn out to be
non-smooth in space-time, Summary.

1.4.1.1 Classical formulations

These aforementioned issues (crack geometries, crack nucleation, crack evolu-
tion) are known to be hard difficulties for the classical approach to fracture. Mostly,
classical theory relies on the concepts of stress singularity and stress intensity factors
KI , KI I and KI I I , see Maugin 1992. Several efforts have been made in the framework
of the classical approach since the pioneering works of Griffith without a complete
success.

Few are the models which attempt to face the issue of the crack path. Gener-
ally, the crack path is prescribed and the crack evolution is governed by a scalar
parameter, say `, the length of the crack.

brittle fracture The most simple fracture propagation criterion is due to Irwin and
Kries Irwin and Kries 1951 which reads

{
if K < Kc, ˙̀ = 0 no propagation
if K = Kc, ˙̀ ≥ 0 the crack might evolve (also ˙̀ = 0 is admissible)

(1.69)
where Kc represent the tenacity or fracture toughness of the material and K a stress
intensity factor.
The more important criterion for the developments of the fracture theory is un-
doubtedly Griffith’s criterion, Griffith 1921. Once the energy release rate has been
defined, Maugin 1992, as

G = −∂P
∂`

(1.70)

the criterion states
{

if G < Gc, ˙̀ = 0 no propagation
if G = Gc, ˙̀ ≥= 0 the crack might evolve (also ˙̀ = 0 is admissible)

.

(1.71)
where Gc represents the surface fracture energy density. A relation between the en-
ergy release rate and the stress intensity factors can be established. A well known
drawback of Griffith’s theory is the inability to describe crack initiation. This draw-
back can be overcome by considering a cohesive fracture model.

10The word strong is opposed to the word weak, the former refers to a discontinuity of a function while
the latter to its derivative
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cohesive fracture In a cohesive fracture model, the surface fracture energy φ is
not immediately all released at the occurrence of a crack but it depends on the
amplitude of the crack itself, φ = φ(JuK). Two models are remarkable, Barenblatt’s
model, see Barenblatt 1962, and Dugdale’s model, see Dugdale 1960. In Barenblatt’s
model the surface fracture energy monotonically increases with the crack opening
up to an asymptotic finite value,

φ(0) = 0, φ(JuK) ≥ 0 when JuK > 0, φ(∞) = Gc. (1.72)

Instead the surface fracture energy in Dugdale’s model is a piecewise linear func-
tion where the second line starts for a finite value of the crack opening JuKc and is
constant with value Gc. In formulas

φ(JuK) =





Gc

JuKc
JuK, JuK ≤ JuKc

Gc, JuK > JuKc

(1.73)

1.4.1.2 Variational formulations

The advantages of a variational formulation has been already discussed. The
translation of the brittle fracture problem into a variational setting is due to Francfort
and Marigo, see Francfort and Marigo 1998. A main convenience with respect to
Griffith’s theory is that in the variational approach the fracture onset and evolution
are obtained without assuming any pre-existing defect, any pre-destined rupture
surface in the body, and without any ad hoc evolution criterion for the fracture.
The core of such formulation is the capability to regularise the fracture problem,
a mathematical free-discontinuity problem, into a more simple one where a new
variable, damage like, is introduced but without the occurrences of discontinuities
in its trend. In the following the main steps leading to the regularised formulation
are summarised. Although a wide literature exists an exhaustive survey can be
found in Bourdin 2000; Bourdin, Francfort, and Marigo 2008, the approximation
idea in Ambrosio and Tortorelli 1990, the discretisation and quasi-static evolution in
Giacomini 2005. Several details are omitted since the aim is only to give an overview
and the main ideas of the subject.

Griffith revisited The first step is a revisitation of Griffith’s criterion in a three-
dimensional variational framework based on a irreversibility condition, a sta-
bility condition and a energy balance. Having introduced Griffith’s criterion
(1.71), the variational formulation reads

irreversibility: ˙̀(t) ≥ 0,

stability: G(t) ≤ Gc,

energy balance: (G(t)− Gc) ˙̀(t) = 0.

(1.74)

Fracture as free-discontinuity problem The problem was regarded in Francfort and
Marigo 1998 as a mathematically so called free-discontinuity problem. The
main idea was to abolish the path constraint of Griffith’s formulation and to
reformulate the problem as a time discrete minimization problem where both
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the displacement field u and the fracture path Γ are unknowns. Without en-
tering into details, the problem becomes to find, for a time step t, ut and Γt as
minimizer (u, Γ) of

min
{∫

Ω\Γ
e(∇u)dΩ−L(t, u) +Hn−1(Γ) : Γ ⊂ Γt−1 = Γt−1 ∈ Ω,

u ∈ H1(Ω \ Γ) , u = g(t) on ∂ΩD \ Γ
}

. (1.75)

This problem is often called strong variational evolution, Bourdin, Francfort, and
Marigo 2008.

Change of function space (SBD) The strong variational evolution is still too hard
to be resolved with ease. Through various contributions, Ambrosio, Fusco,
and Pallara 2000 for a review, it has been proven that the the strong variational
evolution problem is equivalent to a weak variational evolution problem once the
function space SBV11 has been introduced . That is, ut is a u of

min
{∫

Ω\Γt−1

e(∇u)dΩ−L(t, u) +Hn−1(S(u) ∩ (Ω \ Γt−1))

u ∈ SBD(Ω \ Γt−1) , u = g(t) on ∂ΩD \ (S(u) ∪ Γt−1) \ Γ} (1.76)

where S(u) is the set of Lebesgue points of u and Γt = Γt−1 ∪ S(u). Roughly
speaking the main difference between the strong and the weak problem is to
have transfer the singularity from the domain to the displacement function.
Apparently this effort seems not of value. Actually it is crucial since it allows
the use an important regularization result.

Regularization of the problem through Γ-convergence The weak problem (1.75) can
be then approximate12 by an Γ-converging elliptic functional, say Fε(u, α). The
involved elliptic functional is

Fε(u, α) =
∫

Ω

((
1− α2

)
+ kε

)
e(∇u)dΩ−L(t, u) + G

∫

Ω

(
α2

4ε
+ ε‖∇α‖

)
dΩ.

(1.77)
This form allows for efficient numerical implementation and an interesting
mechanical interpretation, that is α can be regarded as a damage variable,
Sicsic and Marigo 2012.

1.4.2 Plasticity models

Plasticity has been in the past, (and is still often today) the driving force and
source of mathematical material modelling. For this reason an extreme rich and a
wide literature as well as numerous monographs exists about this topic. For the aim
of this work the worth noting references are:

• Lubliner 2008 for plasticity phenomenology and its modelling;

11The space of bounded variations
12The approximation stands for the convergence of minima and minimizers as a small parameter ε

tends towards 0
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• Fuchs and Seregin 2000; Han and Reddy 1999; Nguyen 2000; Temam 1985 for
a mathematical overview of the problem;

• Simo and Hughes 1998 for the numerical implementation.

From the didactic point of view, plasticity is often presented following Sec. 1.2.4.1
where a yield surface is first introduce. Of course, different choices are possible.
Nevertheless, for the developments of the next chapters it suffices to introduce only
the well-known Von Mises yield criterion and some energetic quantities.

The Von Mises yield function depends on the deviatoric part of the stress and
reads for a perfect plastic model

fp = fp(σd) := ‖σd‖ −
√

2
3

σP ≤ 0. (1.78)

where σP is a positive constant value which represents the plastic yield stress. More-
over, in order to take isotropic and kinematic linear hardening effects into account
it suffices respectively to add the term −K εp in the norm and −

√
2I p/

√
3 in the

expression (1.78). The yield function then becomes fp = fp
(
εp, p, σd

)
. In this last

expression R+ 3 p =
∫ t

0 ‖ε̇p‖ dτ represents the accumulated plastic strain.
In the perfect plasticity model, the displacement function space belongs to the

special bounded deformations space, namely

u(x, t) ∈ F ≡ SBD((Ω, [0, T]) , F) . (1.79)

The space of special bounded deformations SBD coincides, for d = 1, with SBV.
More details about this function space can be found in Simo, Oliver, and Armero
1993; Suquet 1981.
Focusing on the infinitesimal strain gradient theory, the additive decomposition of
the total strain is commonly accepted,

ε = εel + εp. (1.80)

The next chapter extends the discussion about the function spaces.
The stored elastic energy, (1.51), is defined as

E
(
u, εp

)
=
∫ L

0
e
(
ε, εp

)
dx =

∫ L

0

1
2

C0
[
ε− εp

]
:
(
ε− εp

)
dx +H

(
εp, p

)
. (1.81)

where H
(
εp, p

)
corresponds to hardening (or softening) effects. In particular, a

linear isotropic hardening and a linear kinematic hardening correspond respectively to
H
(
εp, p

)
= 1

2 I p2 and H
(
εp, p

)
= 1

2 K εp : εp. The tensor C0 is the 4-th order elastic
tensor which for isotropic linear elastic materials reads

C0[ε] = λ tr ε I + 2µ ε (1.82)

with λ and µ the Lamé parameters. On the other hand, an example of the dissipation
potential (Von Misses model) is

ψ
(
ε̇p
)
=

√
2
3

σP‖ε̇p‖ (1.83)
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where no hardening effects has been taken into account. The dissipated work in
a time interval [0, t] is then given, in case of sufficiently continuous evolutions, by
(1.59):

DD
(
εp, [0, t]

)
=

√
2
3

σP

∫ t

0

∫

Ω
‖ε̇p‖ dΩ dτ =

√
2
3

σP

∫

Ω
p dΩ. (1.84)

In the framework of the energetic formulation plasticity has been widely ex-
ploited, Dal Maso, De Simone, and Mora 2006; Francfort and Giacomini 2011; Mielke,
Rossi, and Savaré 2008; Mielke, Rossi, and Savaré 2012.

Besides local models, many non-local models exits. Some references are given in
Sec. 1.4.5 and in Tab. 1.2.

1.4.3 Damage models

As well as plasticity many research efforts has been spent in the understand-
ing and modelling of damage. As already discussed in the Summary the damage
phenomenology is mostly related to the nucleation of microvoids and microcracks.
Kachanov 1986; Krajcinovic 1996; Lemaitre and Chaboche 1985 represent surveys
about damage mechanics while Krajcinovic and Mastilovic 1995 highlights some
fundamental issues as the parameter choice (scalar, second-, fourth-, ecc. order ten-
sor) for the damage modelling.
Moreover, Lemaitre’s description and point of view has been determinant for the
interpretation of the damage phenomenon. The strain equivalence hypothesis play a
crucial role in the definition of the damage variable. The strain equivalence hypoth-
esis states that the strain associated with a damage state under the applied stress
is equivalent to the strain associated with its undamaged state under the effective
stress. This means that the constitutive equations of a damaged material are the
same of those of the virgin one with no damage where the stress is simply replaced
by the effective stress, Bonora 1997.

Hereafter damage is described only through a single scalar variable just for sim-
plicity and Kachanov’s phenomenlogical approach is followed. An extension to
more complex physical descriptions do not represent a conceptual obstacle.
Different choices are possible for the range of the damage variable even though
all choices become equivalent, through a change of variable, see Pham and Marigo
2010a. Hence, the scalar damage variable α is here chosen such that

α ∈ [0, 1] . (1.85)

The state α = 0 corresponds to a sound material while the state α = 1 corresponds
to a full damaged material where a loss of stiffness occurs. Similarly to plasticity, in
a classical approach a yield stress function is often postulated,

fd = fd(σ, α) := g(σ)− σD(α) ≤ 0 (1.86)

where g(σ) is the scalar equivalent stress and σD(α) the yield stress possibly de-
pending on damage. Since a material capable to restore its internal structure during
the evolution is excluded, an irreversibility condition is explicitly assumed for the
damage variable, that is

α(t1) ≤ α(t2) , ∀ t1 < t2. (1.87)



1.4 Fracture, Plasticity and Damage: local and non-local models 27

The stored elastic energy, (1.51), is defined as

E(u, α) =
∫ L

0
e(ε, α) dx =

∫ L

0

1
2

C(α)[ε] : ε dx, (1.88)

where C(α) is the 4-th order elastic tensor whose components depends on the dam-
age variable. Different damage models are possible depending on the degradation
of the elastic tensor. In the most simple case, that is of an isotropic material with an
isotropic damage,

C(α) = f (α)C0, (1.89)

where f (α) : C → [0, 1]. It is then reasonable to describe a typical mechanical be-
haviour of a damaging material by requiring

f (0) > 0, f ′(α) < 0, ∀ α ∈ [0, 1) , f (1) = f ′(1) = 0. (1.90)

On the other hand, a simple example of dissipation potential is

ψ(α, α̇) = ∂t w(α) . (1.91)

In (1.91), the function w(α) is defined as w(α) : C → R+
∞. Motivated by physical

reasons as the fact for a positive dissipated power, it is assumed

w(0) = 0, w′(α) > 0, ∀ α ∈ [0, 1) , w(1) < +∞. (1.92)

This allows the dissipated work (1.59) in a time interval [0, t], in case of sufficiently
continuous evolutions, to simply be

DD(α, [0, t]) =
∫ t

0

∫

Ω
∂t w(α) dΩ dτ =

∫

Ω
w(α(x, t)) dΩ (1.93)

where one has assumed w(α(x, 0)) = 0.
In the model proposed by Marigo, see Pham and Marigo 2010c, which is part

of the variational formulation, the explicit dependence of the damage gradient is
assumed for the dissipation potential,

ψ(α,∇α, α̇,∇α̇) = ∂t w(α) + ∂t

(
1
2

η2(α)∇α · ∇α

)
. (1.94)

1.4.4 Uniqueness, stability and bifurcation

Before the introduction of non-local models, it is worth to introduce the key
concepts of uniqueness, stability and bifurcation in the infinitesimal strain theory.
The matter is very complex and detailed. A general discussion can be found in
Bigoni and Zaccaria 1992; Ottosen and Ristinmaa 2005 concerning elasto-plasticity.
The global uniqueness condition is

∫

Ω
∆ε̇ : ∆σ̇ dΩ > 0 (1.95)

Clearly, a necessary condition for a unique response is that the constitutive tensor
C, possibly inelastic, is positive definite, that is

ε̇ : C[ε̇] > 0, ∀ε̇ adm. (1.96)
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which is equivalent to requiring that the determinant of the symmetric part of the
constitutive tensor is positive,

det Csym > 0. (1.97)

On the other hand, when uniqueness is lost, more solutions are possible and
apart from the fundamental solution, bifurcations may occur. These bifurcations can
manifest themselves in terms of continuous bifurcations or discontinuous bifurcations
(strain localizations).

Continuous bifurcations, like necking in plasticity, are associated to loss of strong
ellipticity of the boundary value problem. Strong ellipticity means

n · C[g ⊗ n] g > 0, ∀ n, g (1.98)

where n denotes the normal to the surface of discontinuity and g = Ju̇,nK the jump
of the normal derivative of u̇. Condition (1.98) equivalently corresponds to the loss
of positive definiteness of the symmetric part of the acoustic tensor, namely

detAsym > 0 (1.99)

where Asym is the symmetric part of the acoustic tensor A = n · C[n]. This conditions
are obtained trough Hadamard’s compatibility condition.

Discontinuous bifurcations or strain localizations, like shear bands, are under-
stood as the appearance of a discontinuities in strain rates which mark the onset
of non-uniform responses. They are also related to stationary acceleration waves.
Discontinuous bifurcations associated to loss of ellipticity of the boundary value
problem. Ellipticity means

C[g ⊗ n] n 6= 0, ∀ n, g (1.100)

which is equivalent to the condition

detA 6= 0 (1.101)

in the direction of the discontinuity. This criterion is also known as Rice criterion.
Physically, condition (1.101) indicates the existence of a discontinuity in the velocity
gradient in direction n. Ellipticity is a necessary condition for well-posedness of the
rate boundary value problem, in the sense that a finite number of linearly indepen-
dent solutions are admitted, continuously depending on the data and not involving
discontinuities.

For the most general materials, the loss of uniqueness precedes continuous bifur-
cations (loss of strong ellipticity) which in turn precedes discontinuous bifurcation
(loss of ellipticity).

1.4.5 Non-local models overview

Generally speaking, constitutive models are mainly divided into local and non-
local. While local models are good for hardening behaviours, they result to fail in
case of softening behaviours. The resulting boundary value problem is mathemati-
cally ill-posed Comi and Perego 1996; Lasry and Belytschko 1988 in the sense that
it admits as infinite number of linearly independent solutions, Benallal and Marigo
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2007 for more details. This correspond equivalently to the loss of ellipticity of the
boundary value problem, to the singularity of the acoustic tensor in some direc-
tion and some points or to the dynamic problem where the wave speeds becomes
imaginary and the dynamic problem from elliptic to hyperbolic. The response is
associated with a strain localization of an arbitrarily narrow zone which result in a
vanishing dissipated work, clearly a physically wrong result. Furthermore numeri-
cal simulation with local models using the finite element method are strongly mesh
sensitive Bažant, Belytschke, and Chang 1984; De Borst and Mahlhaus 1992.

To overcome these limits several approaches exist all based more or less evi-
dently on the introduction of an internal length in the constitutive model and can be
considered as a regularization of local models. The regularisation effect in non-local
models is mostly to stretch the localisation bands up to a finite region. Moreover
the regularisation may involve either the primal variables as the strain or the dual
variables as the internal variables. An extended survey about non-local theories of
material media can be found in Rogula 1982.
The most adopted classical formulations are summarised in the following:

nonlocal integral formulation Generally speaking, the nonlocal integral approach
consists in replacing a certain variable by its nonlocal counterpart obtained by
weighted averaging over a spatial neighbourhood of each point under consid-
eration. If f (x) is some “local” field in a solid body occupying a domain Ω,
the corresponding nonlocal field, f̄ (x), is defined by

f̄ (x) =
∫

Ω
f (ζ)a(x, ζ)dζ (1.102)

where a(x, ζ) is nonlocal weight function. In applications to softening materi-
als, it is often required that the nonlocal operator should not alter a uniform
field, which means that the weight function must satisfy the normalising con-
dition ∫

Ω
a(x, ζ)dζ = 1, ∀x ∈ Ω. (1.103)

Clearly, this approach discards the principle of local action of the classical con-
tinuum mechanics theory. For a complete survey about integral-type nonlocal
models one can refer to Bažant and Jirasek 2002.

additional variables In this approach additional primal variables are considered.
Typical example are the micropolar continua of Cosserat’s kind.

implicit gradient (or strongly nonlocal) formulation Implicit gradient models in-
cludes in the formulation, for example in the yield stress function, a non-local
field f̄ (x) deduced from the dual local field f (x) by means of the following
differential relation of Helmotz type,

f̄ (x)− c(`)∇2 f̄ (x) = f (x), in Ω (1.104)

where ∇2 is the Laplace operator and ` the internal material length. The
implicit gradient formulation can be show to be equivalent to the integral-type
formulation with special weight functions used for the weighted averaging.

To uniquely specify f̄ , (1.104) must be supplemented by appropriate boundary
conditions. The precise form of these conditions is not obvious, but seems
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reasonable to require that the transformation should not alter a constant field.
If f (x) = f0 = const., then f̄ (x) = f0 satisfy the differential equation (1.104),
and it should also satisfy the boundary conditions, indipendently of the value
of f0. Clearly it is not possible to use the Dirichlet boundary conditions, but
every constant field satisfies the homogeneous Neumann boundary conditions

n · ∇ f̄ = 0, on ∂Ω. (1.105)

explicit gradient (or weakly nonlocal) formulation Similar to the implicit gradient
formulation a non-local field f̄ (x) is used in the constitutive model instead of
the dual local field f (x). The non local field is simply obtained by considering
gradient terms of the local field. An example is

f̄ (x) = f (x) + c(`)∇2 f (x) + w
(
∇2 f

)
, in Ω. (1.106)

In the explicit gradient formulation the non-local variable can depend only
upon even powers of the gradient of the local variable, Engelen, Geers, and
Baaijens 2003. Here, however, with explicit gradient formulations are meant
models which includes directly gradient terms of some variables not necessar-
ily descending from (1.104).

Tab. 1.2 gives examples of the aforementioned formulations separately for plasticity
and damage models and with respect to the involved variable in the regularization
(primal or dual).

primal variables internal variables

integral type
• Eringen 1983

• Bažant and Lin 1988a

• Bažant and Lin 1988b

• Bažant and Pijaudier-Cabot
1988

additional

• Cosserat and Cosserat
1909

• Eringen 1964

• dell’Isola, Sciarra, and
Vidoli 2009

-

implicit gradient
• Pamin, Askes, and Borst

2003

• Peerlings et al. 1996

• Geers 2004

• -

explicit gradient
• Qiu et al. 2003

• -

• Comi and Perego 1996

• Comi 1999

Table 1.2: Non-local formulations with references to plasticity (red) and damage
(green) models

1.4.6 Coupled plasticity-damage models

A large quantity of materials exhibit a strong interaction between plastic flows
and microcracks or microvoids growth at failure conditions. Several works aimed to
combine plasticity and damage in a constitutive framework.



1.4 Fracture, Plasticity and Damage: local and non-local models 31

Usually the problem is formulated in perfect analogy to plasticity models, with
the introduction of a damage yield function which is allowed to vary during the
damage evolution. A common feature of these elastic-plastic-damage constitutive
models is the concept of effective stress (or effective strain), Lemaitre and Chaboche
1985, which enables the plastic and damage internal mechanisms to be coupled
with each other. However a drawback is that in general this approach leads to
non-symmetric tangent stiffness matrices.

An alternative approach to this coupling problem stems from the consideration
that the coupling between the internal plastic and damage mechanisms should more
consistently be realized through the internal variables themselves, rather than the
external variables like stresses, or strains.

One way to achieve this goal within continuum thermodynamics is to let the
a convex damage and plastic yield surface being affected by all the internal state
variables. This has several beneficial consequences on the description of the mate-
rial behaviour; namely, i) the tangent stiffness matrix is symmetric; ii) the softening
behaviour can be reproduced as the consequence of the material degradation due
to damage, rather than a "negative" hardening (often introduced in the realm of
plasticity), which is more adherent to the physics of the material; iii) it is possible
to reproduce experimental diagrams and in particular to account for the stress re-
laxation phenomenon exhibited by a bar specimen subjected to strain-driven load
cycles; iv) anisotropic elastic degradation can be accounted for by properly defining
the material free energy parameters. It is then clear that a great variability in the
modelling exists.

In the following a short literature review about coupled plasticity-damage mod-
els is reported. The purpose is not to be exhaustive since the argument is boundless
but only to highlight some features of classical approaches. Within local continuum
formulations several theories coupling damage and plasticity exists. They differs for
numerous aspects. Any model is hereafter shortly described and labelled by means
of the differences in Tab. 1.3.

strain
amplitude

constitutive
variables

constitutive
modelling

regularization
technique

• small strains (SS)

• large strains (LS)

• effective
stress/strain (ES)

• dependence on all
internal state vari-
ables (IV)

• postulate of yield
functions (YF)

• postulate of poten-
tials (P)

• any (NR)

• integral (IN)

• gradient of external
variables (GE)

• gradient of internal
variables (GI)

Table 1.3: Differences and underlying approaches of coupled plasticity-damage
models

Lemaitre and Chaboche 1985 - (SS), (ES), (YF/P), (NR) The concept of effective stress
is introduced (Lemaitre 1984) together with the normal dissipation hypothesis.
This model was presented in Lemaitre 1985.

Mazars and Pijaudier-Cabot 1989 - (SS), (ES), (YF), (NR) It covers different dam-
age models like one-parameter, two-parameters and anisotropic models;
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Simo and Ju 1987, (SS), (ES), (NR) ;

Pamin 1994, (SS), (ES), (YF), (GE) Regularization is achieved by an implicit second-
order scheme over the total strain;

Hansen and Schreyer 1994 - (SS), (ES), (YF), (NR) An associative plastic law is con-
sidered while the principle of maximum entropy provides the evolutionary
relations;

Doghri 1995 - (SS) Several non-linear hardening effects are taken into account by
means of Chaboche-Marquis plastic model and Lemaitre-Chaboche ductile
damage model;

Bonora 1997 - (SS), (ES), (P), (NR) ;

De Sciarra 1997 - (ES), (P) The paper aims to develop some of the most common
models of coupled elasto-plasticity with damage into a unitary framework.
The coupling between plasticity and damage is based on the concept of ef-
fective stress and on the definition of a convex elastic-damage domain and a
convex damage domain;

Borst, Pamin, and Geers 1999 - (SS), (ES), (YF), (GI) This work covers several cou-
pled models where regularization is achieved either by considering the gradi-
ent of some plastic variables or the gradient of damage variables;

Al-Rub and Voyiadjis 2003 - (SS), (ES), (P), (NR) In this model both damage and
plastic hardening effects are taken into account. Damage is considered anisotropic;

Grassl and Jirásek 2006 - (SS), (ES), (P), (IN) A local-nonlocal damage variable is
considered in the coupling with plasticity;

Einav, Houlsby, and Nguyen 2007 - (SS), (IV), (P), (NR) It is shown that the entire
constitutive knowledge of the coupled model can be expressed by means of the
definition of two potentials dependent on all the state variables. Non-locality
is not faced;

Belnoue et al. 2010 - (SS), (IV), (YF), (IN) Regularization effects are obtained by con-
sidering in the yield functions a local-nonlocal equivalent plastic strain by a
weighted integral;

Dimitrijevic and Hackl 2009 - (SS), (IV), (P), (GI) ;

Simo and Ju 1989 - (ES) The basic feature of this strain-based constitutive model
is an additive split of the stress tensor into the initial elastic and the plastic
relaxation parts. Such a split enables one to incorporate a simple strain-based
continuum damage model capable of predicting so-called splitting modes (see
also Ortiz 1985). Additive splits of the stress tensor has been proposed in Simo
(1986) for finite strain viscoelasticity, and in Simo and Ju 1987 for infinitesimal
damage-elastoplasticity.

Lubarda 1994; Voyiadjis and Kattan 1992; Zysset and Curnier 1996 - (LS) ;

Areias, César de Sá, and Conceição António 2003 - (ES), (IV), (P), (GE) :
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Soyarslan and Tekkaya 2010 - (FS), (EF), (YF), (NR) The formulation framework is
in the principal stress space.

Articles which cover comparisons about the previous articles are:

Lämmer and Tsakmakis 2000

Nguyen 2005 - (SS), (ES), (YF) It resumes several coupled models for the descrip-
tion of concrete.

Interesting models able to describe ductile fracture are those where coupling be-
tween plasticity and damage is obtained by considering only a single yield function,
see Gurson 1977; Hesebeck 2001.

Some observations In order to achieve a coupled response in the constitutive
equations it is possible to

• consider the concept of effective stress (or effective strain) in the single yield
functions

• let depend the yield functions on all the internal variables rather than external
variables (like effective stresses)





Chapter 2

A variational plastic-damage
model

This chapter is the core of the present work. Here the coupled plastic-gradient
damage model is developed in a three-dimensional setting by means of the energetic
formulation introduced in the previous Chapter, in particular Sec. 1.3. The first order
stability condition furnishes some (weak) necessary inequalities which the model
has to be satisfied and from which it is possible to define in a classical sense the
yield functions and disclose their (strong) expression. Nevertheless it is the weak
form that reveals the capability of the model to describe a cohesive fracture. From
the energy balance it is possible to derive the classical consistency conditions.

2.1 Model assumptions

Both plasticity and damage are here considered as rate-independent processes.
Hence, the thermodynamic framework with internal variables, Sec. 1.1.6, could ap-
ply motivated by the fact that in each instant equilibrium is assured. Moreover, in
the context of isothermal processes, the energetic formulation is adopted in order to
describe the evolution of the system. A continuous body B is considered, embed-
ded in an Euclidean space of dimension d (1, 2, 3) and represented by its geometrical
domain Ω with a sufficiently smooth1 boundary ∂Ω. For simplicity, deformations
gradient is assumed "small" so that the infinitesimal elasticity theory can be applied.
The evolution is governed by a "time" parameter t starting from t = 0. The dissi-
pation is only due to two phenomena, plasticity and damage while regular energy
functionals are also assumed in order to obtain results in closed form. Although
not necessary, the material will be always considered initially unstretched, not plas-
ticised and undamaged.

2.1.1 State variables and Function Spaces

Throughout the following the definitions of the state variables together with their
function spaces are given. A list of the considered state variables with a brief de-

1To be more precise: Lipschitz continuous

35
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state variable type

u(x, t) displacement observable
ε(x, t) total strain observable, dependent
εp(x, t) plastic strain internal, reversible
p(x, t) accumulated plastic strain internal, irreversible, dependent
α(x, t) damage internal, irreversible
∇α(x, t) gradient of damage internal, dependent

Table 2.1: State variables. The dependence on the position x is not formally correct
for some variables since measures are involved as explained in the sequel

scription is given in Tab. 2.1. Moreover also the space of accessible states and the
space of the variations will be specified for any state variable. These definitions play
a crucial role respectively in the expression of the global stability condition and of
the local stability condition, Sec. 1.3.2. For what concerns the global stability con-
dition, while for the displacement and plastic strain fields the function spaces are
the same as the one for the accessible states this holds not more true for the damage
field because of irreversibility, Sec. 1.3.4. The accessible states then has to be explic-
itly defined for the damage field. On the other hand for the local stability condition,
while the function space of the plastic strain field is the same as its variation space
this holds not more true for the displacement and damage fields because respec-
tively of the boundary conditions and irreversibility. The variations space then has
to be explicitly defined for the displacement and damage field.

The displacement and the total strain are maps defined as

u(x, t) : (Ω, [0, T])→ F ≡ Rd,

ε(x, t) : (Ω, [0, T])→ S :=
{

a ∈ Rd×d : εT = ε
}

,
(2.1)

with ε(x, t) = ε(u(x, t)) by means of the strain-diplacement relation (1.1). The
proper function space of the displacement field is

u ∈ F ≡ SBD((Ω, [0, T]) , F) (2.2)

where SBD is the space of special bounded deformations, the proper space for the
description of fracture or perfect plasticity problems2, Temam and Strang 1980 for
details. The displacement variations are then defined as

ũ ∈ F̃ ≡ {a ∈ F : a = 0 on ∂ΩD} . (2.3)

The space F coincides also with the space of accessible states needed in the global
stability condition.

The plastic and accumulated plastic strains are maps defined as

εp(x, t) : (Ω, [0, T])→ Q :=
{

a ∈ Rd×d : tr a = 0 and aT = a
}

,

p(x, t) : (Ω, [0, T])→ R ≡ R+
∞,

(2.4)

2Clearly SBV(Ω) ⊇ SBD(Ω) where the equality holds only for one-dimensional domains.
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with

p(x, t) =
∫ t

0
‖ε̇p(x, τ) ‖ dτ. (2.5)

The proper function space of the plastic strain field is

εp ∈ Q ≡ SBM((Ω, [0, T]) , Q) , (2.6)

where SBM is the space of special bounded measures3. The function space for
the accumulated plastic strain p is consequently defined. Both the accessible states
and the variations space of the plastic strain coincides with the function space Q.
Therefore

ε̃p ∈ Q̃ ≡ Q. (2.7)

Moreover, in order to have a finite elastic energy, one assumes

ε− εp ∈ L2
(
(Ω, [0, T]) , Rd×d

)
. (2.8)

The damage and gradient of damage are maps defined as

α(x, t) : (Ω, [0, T])→ C ≡ [0, 1]

∇α(x, t) : (Ω, [0, T])→ G ≡ Rd (2.9)

while the proper function space of the damage field is

α ∈ C ≡ H1((Ω, [0, T]) , C) . (2.10)

The damage variations are then defined as

α̃ ∈ C+ ≡ {a ∈ C : a ≥ 0} (2.11)

which embed the irreversibility condition (1.87) that impose

α(t1) ≤ α(t2) , ∀ t1 < t2. (2.12)

When dealing with the global stability condition the accessible states for damage
are state dependent and needs to be specified due to irreversibility. The accessible
states then are state dependent,

ᾱ ∈ C(α) ≡ {a ∈ C : α ≤ a ≤ 1} . (2.13)

The explicit dependence of the state variables on both the position x and the
time t will be omitted in the sequel for clarity of exposition if no source of confusion
occurs. Eventually the time dependence is made explicit through a subscript.

2.1.2 Energy functionals and constitutive assumptions

According to the energetic formulation of Sec. 1.3.1 the total potential energy and
the dissipation distance, are here defined as well as some constitutive assumptions.

3An example of a special bounded measure is the Dirac measure.
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To this aim, it is reasonable to assume the stored elastic energy (1.51) as:

E
(
u, εp, α

)
=
∫

Ω
e
(
ε, εp, α

)
dΩ =

∫

Ω

1
2

C(α)
[
ε− εp

]
:
(
ε− εp

)
dΩ. (2.14)

This is motivated by the fact that (2.14) simply merges the stored elastic energies of
the perfect plastic and the damage models already introduced respectively in (1.81)
and (1.88).n Once (2.14) has been introduced, the stress tensor σ is given by the state
law (1.28), hence

σ =
∂e
(
ε, εp, α

)

∂ε
= C(α)

[
ε− εp

]
. (2.15)

The potential energy of external forces is simply given by minus (1.52).
In order to define the dissipation distance, an appropriate dissipation potential is

first introduced. For the dissipation potential, an additive decomposition is assumed
such that

ψ(p, α,∇α, ṗ, α̇,∇α̇) := ψp(α, ṗ) + ψd(p, α,∇α, α̇,∇α̇) (2.16)

where

ψp(α, ṗ) := σP(α) ‖ε̇p‖, (2.17)

ψd(p, α,∇α, α̇,∇α̇) := ∂t w(α) + ∂t

(
1
2
(η(α))2∇α ·∇α

)
− q(p)m(α) α̇. (2.18)

The dissipation potential involves coupled terms. The coupling is achieved by let-
ting the plastic (damage) dissipation potential (1.83) ((1.91)) depend explicitly on
damage (plasticity) by means of α (p). In particular, the plastic yield stress be-
comes a function of the damage level in the plastic dissipation potential while a
term depending on the accumulated plastic strain is added to the damage dissipa-
tion potential. Of course different choices could have been done for the dissipation
potential. Nevertheless, as will be revealed in the sequel, the choice (2.16) turned
out to be worthy of consideration.

In the proposed model, the material is identified by the choice of six constitutive
functions,

C(α) , σP(α) , w(α) , η(α) , m(α) , q(p) . (2.19)

Hereafter, the following assumptions are made, motivated either by physical reasons
or for simplicity. In the elastic energy (2.14), the simplest choice for the elastic tensor
corresponds to an isotropic medium such that

C(α) = f (α)C0, (2.20)

with f (α) : C → [0, 1] and where the function f satisfies the same assumptions as
in (1.90). C0 is the isotropic elastic tensor already defined in (1.82). In the following
the compliance function, defined as S(α) = (C(α))−1, will be also considered. The
function σP(α) is identified with the plastic yield stress. Hence, one requires

σP(α) : C → R+, σ′P(α) < 0, ∀ α ∈ [0, 1) σP(1) = 0. (2.21)

The function definition (2.21)1 allows the plastic dissipation potential to be positive.
Condition (2.21)2 is necessary to trigger plasticity in a damaging material while
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condition (2.21)3 is a natural request. Instead, the function w(α) is associated to a
dissipated work contribution which depends only on the level of damage. The same
conditions expressed and motivated in (2.22) are assumed to be valid. For simplicity,
the function η(α) related to the internal length of the material model is assumed to
be constant, η ≥ 0. A vanishing η let to recover a homogeneous model. Finally for
the last two functions in (2.19), defined as m(α) : C → R+ and q(p) : R → R+ one
requires

m(α) > 0, ∀ α ∈ [0, 1) and q(p) > 0, ∀ p ∈ (0, ∞), q(0) = 0 (2.22)

As will become clearer in the following, these are necessary to trigger damage once
plasticity occurs. A very important remark has be done about the function q(p).
In order to be the dissipation distance finite and since p belongs to the space of
bounded measures, q(p) must be a sublinear function, that is q(x) = O(x).

A stress-softening behaviour is achieved if

d
dα

(
S′(α)

2 (w′(α)− q(p)m(α))

)
≥ 0, lim

α→1

(
S′(α)

2 (w′(α)− q(p)m(α))

)
= +∞. (2.23)

Another strong requirement would be to avoid snap-back phenomena in the re-
sponse. To obtain a strain-hardening behaviour in the homogeneous response with
respect to damage one must assume

d
dα

( −C′(α)
2 (w′(α)− q(p)m(α))

)
≤ 0. (2.24)

but this be not always assumed. Both conditions (2.24) and (2.23) will be justified
in Sec. 2.2.

With this preliminary statements the total potential energy then reads

P
(
t, u, εp, α

)
= E

(
u, εp, α

)
−L(t, u) (2.25)

where E and L are respectively given by (2.14) and (1.52). Once the dissipation
potential (2.16) has been introduced the dissipation distance D is given. For the
investigated model, the dissipated distance density (1.54) reads

d
((

εp0, α0,∇α0
)

,
(
εp1, α1,∇α1

))
= (w(α1)− w(α0))+

1
2

η2 (∇α1 ·∇α1 −∇α0 ·∇α0)

+ inf

{∫ 1

0

(
σP(β) q̇− q(q)m(β) β̇

)
ds : (r, β)∈C1(Q×C, [0, 1]) ,

q = p(t) +
∫ s

0
‖r(τ)‖dτ, β̇ ≥ 0, (r(0) , β(0)) =

(
εp0, α0

)
, (r(1) , β(1)) =

(
εp1, α1

)
}

(2.26)

where, for simplicity, the variable s has been omitted in the functions q and β in the
integral and p(t) =

∫ t
0 ‖εp0‖ dτ. It is worth noting that in (2.26) the first two terms

are path independent while the third term needs the evaluation of the infimum of
the integral, because of the particular definition of the dissipation potential. Never-
theless, for some particular constitutive choices as in the particular model of Sec. 2.4
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all the terms in the dissipation distance can be considered path independent. It is
then possible to introduce a total energy as a state function and to consider the sta-
bility condition only on such functional, Nguyen 2000. In this case, the crucial issue
is to define how the accumulated plastic strain p varies as a result of the variation
of the plastic strain εp.

Once the dissipation distance (1.55) has been introduced, the dissipated work
(1.56) along a process is immediately defined and reads, for smooth evolutions
(1.59), as

DD
((

εp, α
)

, [0, t]
)
=
∫

Ω

(
w(α(t)) +

1
2

η2∇α(t) ·∇α(t)
)

dΩ+

+
∫

Ω

∫ t

0

(
σP(α(τ)) ‖ε̇p(τ) ‖ − q(p(τ))m(α(τ)) α̇(τ)

)
dτ dΩ. (2.27)

An important condition is the dissipated power being non-negative at any instant
of the evolution, that is

DD
((

εp, α
)

, [0, t1]
)
≤ DD

((
εp, α

)
, [0, t2]

)
∀ t1 < t2, (2.28)

or for smooth evolutions

d
dt
DD
((

εp, α
)

, [0, t]
)
≥ 0. (2.29)

which in local form becomes

ψ(p, α,∇α, ṗ, α̇,∇α̇) ≥ 0, ∀ x ∈ Ω. (2.30)

This last condition will be proven, at least for continuous evolutions, to be always
true for the particular constitutive functions of a specific model assumed at the end
of Sec. 2.2.1.

2.2 Stability condition

In this and forth coming sections the theoretical results introduced in Sec. 1.3 are
applied to the plastic-damage model. To highlight the capabilities of the model only
the differential stability condition Sec. 1.3.2.3 is considered. On the other hand, the
global stability condition is in a certain sense preferred for numeric implementations
as discussed in Chap. 5.

2.2.1 First order stability condition

First of all, the first-order stability condition (st-1D) is considered for the inves-
tigated plastic-damage model. To this aim, the first variation of the potential energy
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in direction
(
ũ, ε̃p, α̃

)
reads by standard arguments as

P ′
(
u, εp, α

)(
ũ, ε̃p, α̃

)
=
∫

Ω
σ :

(
ε(ũ)− ε̃p

)
dΩ−

∫

Ω
b · ũ dΩ−

∫

∂ΩN

f a · ũ dS+

+
1
2

∫

Ω
S′(α)[σ] : σ α̃ dΩ

=−
∫

Ω
(divσ + b) · ũ dΩ +

∫

∂ΩN
(σ[n]− f a) · ũ dS+

−
∫

Ω
σ : ε̃p dΩ +

1
2

∫

Ω
S′(α)[σ] : σ α̃ dΩ.

(2.31)
The evaluation of the first variation of the dissipated distance (1.55) requires a

more careful treatment. The delicate issue is due to the variation with respect to
plasticity because of the path dependent state variable p. In order to evaluate the
variation of terms containing the accumulated plastic strain p, which depends on the
past history of εp, the non-trivial definition of (1.54) has to be taken into account,
leading to

D′
(
εp, p, α

) (
ε̃p, p̃

(
ε̃p
)

, α̃
)
=
∫

Ω
σP(α) ‖ε̃p‖ dΩ

+
∫

Ω

((
w′(α)− q(p) m(α)

)
α̃ + η2∇α ·∇α̃

)
dΩ

=
∫

Ω
ψ
(

p, α,∇α, ε̃p, α̃,∇α̃
)

dΩ.

(2.32)

The proof of (2.32) can be found in appendix A.
Since (st-1D) must be valid for all

(
ũ, ε̃p, α̃

)
∈ F̃×Q̃×C+ the following results

hold:
For ε̃p = 0 and α̃ = 0, one obtains

−
∫

Ω
(divσ + b) · ũ dΩ +

∫

∂ΩN
(σ[n]− f a) · ũ dS ≥ 0. (2.33)

Since ũ is totally arbitrary, the inequality must hold as an equality. Hence,

divσ + b = 0, ∀ x ∈ Ω (2.34)

are the strong equilibrium equations while

σ[n] = f a , ∀ x ∈ ∂ΩN , (2.35)

are the associated Neumann boundary conditions.
For ũ = 0 and α̃ = 0, one gains

∫

Ω

(
σP(α) ‖ε̃p‖ − σ : ε̃p

)
dΩ ≥ 0. (2.36)

Noting that σP(α) ‖ε̃p‖ > 0, the maximum positive value admissible for σ : ε̃p is
clearly equal to ‖σd‖‖ε̃p‖. The minimum value in (2.36) is achieved once the de-
viatoric part of the stress is taken collinear to the variation of the plastic strain.
Therefore, the condition

fp(α, σd) = ‖σd‖ − σP(α) ≤ 0, ∀ x ∈ Ω (2.37)
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follows and can be interpreted as a Von Mises yield criterion (1.78). The function
fp(α, σd) has then the usual meaning of a plastic yield function.

Finally, for ũ = 0 and ε̃p = 0, one obtains

∫

Ω

(
−1

2
S′(α)[σ] : σ + w′(α)− q(p)m(α)

)
α̃ + η2∇α · ∇α̃ dΩ ≥ 0, (2.38)

which represents the weak form of the damage yield criterion. As better explained
later for the 1D-model in Ch. 4, a strong form of (2.38) could be obtained once the
damage field is assumed to belong to a more regular space, say

C ≡ H2((Ω, [0, T]) , C) . (2.39)

For the pure damage model this last (2.39) becomes a necessary condition for the
stability, Pham and Marigo 2011. On the other hand, for the coupled plasticity-
damage model this is no longer true since plasticity could allow the damage profile
to suffer jumps in its derivatives.
Integrating by parts (2.38) with respect to α one finds

∫

Ω

(
−1

2
S′(α)[σ] : σ + w′(α)− q(p)m(α)− η2div∇α

)
α̃ dΩ

+
∫

∂Ω
η2(α)∇α · n α̃ dS ≥ 0, (2.40)

where n is the outward normal to the boundary ∂Ω. The inequality (2.40) leads to
the bulk condition

fd(p, α,∇α, σ) =
1
2

S′(α)[σ] : σ − w′(α) + q(p)m(α) + η2(α)div∇α ≤ 0,

∀ x ∈ Ω (2.41)

which again can be understand as a classical damage yield condition (1.86). The
function fd(p, α,∇α, σ) then has the usual meaning of a damage yield function.
Moreover, the first order stability condition also furnishes the damage boundary
conditions

∇α · n ≥ 0. (2.42)

Here, it is remarkable to notice that the boundary conditions for the internal vari-
ables descend naturally from the variational approach while for classical approaches
they have in a certain sense to be postulated.

The fact that the dissipated power is not negative is here proven for time contin-
uous evolutions. The total time derivative of (2.27) reads

Ḋ
((

εp, α
)

, [0, t]
)
=

∫

Ω

(
w′(α) α̇− q(p)m(α) α̇ +

1
2

η2∇α ·∇α̇

)
dΩ +

∫

Ω
σP(α) ‖ε̇p(τ) ‖ dΩ. (2.43)

Since α̇ ∈ C+ and εp ∈ Q̃ the two terms in (2.43) are positive, the first because of the
result (2.38) descending from the first order stability condition, the latter because of
the constitutive assumptions (2.21).



2.2 Stability condition 43

2.2.2 Second order stability condition

Clearly the first order stability condition is only a necessary condition for stabil-
ity when it is satisfied as an equality. In this section it is assumed that both (2.36) and
(2.38) are satisfied as an equality. The case when one between the plasticity yield
condition and the damage yield condition is still a strictly inequality is not con-
sidered since the study becomes simpler then in the presented general case. More
specifically, the elastic-perfect plastic problem is always indefinite stable, see Fuchs
and Seregin 2000; Temam 1985, while the stability of the elastic-damage model has
been already extensively studied, for example in Pham 2010.

In order to achieve a sufficient condition it is essential to investigate the sign of
the higher order terms in (1.61) as the second order one. To this aim, refering to
Sec. 1.3.2.3, the second variation of the potential energy and the dissipation distance
are necessary to express the second-order stability condition (st-2D). The second
variation of the potential energy then reads

P ′′
(
u, εp, α

)(
ũ, ε̃p, α̃

)
=
∫

Ω
C(α)

[
ε̃− ε̃p

]
:
(
ε̃− ε̃p

)
dΩ

+
∫

Ω
2 C′(α)

[
ε− εp

]
:
(
ε̃− ε̃p

)
α̃ dΩ

+
∫

Ω

1
2

C′′(α)
[
ε− εp

]
:
(
ε− εp

)
α̃2 dΩ

=
∫

Ω
C(α)

[(
ε̃− ε̃p

)
− S(α)[σ] α̃

]
:
((

ε̃− ε̃p
)
− S′(α)[σ] α̃

)
dΩ

−
∫

Ω

1
2

S′′(α)[σ] : σ α̃2 dΩ

(2.44)
while the second variation of the total dissipation distance, through the same rea-
sonings adopted for (2.32), is

D′′
(
εp, p, α

) (
ε̃p, p̃

(
ε̃p
)

, α̃
)
=
∫

Ω

(
σ′P(α)− q′(p) m(α)

)
‖ε̃p‖ α̃ dΩ

+
∫

Ω

(
w′′(α)− q(p) m′(α)

)
α̃2 dΩ

+
∫

Ω
η2∇α̃ ·∇α̃ dΩ.

(2.45)

The study of the sign of P ′′ + D′′ becomes equivalent to the study of the minimum
of the associated Raiyleigh ratio R : F̃×Q̃×C+ → R+

0 defined as

R
(
ũ, ε̃p, α̃

)
=
RN
RD

(2.46)

where RN and −RD collect respectively the positive and negative contributions
of P ′′ + D′′, namely (2.44) and (3.65). To consider the Rayleigh ratio is more con-
venient since the sum P ′′ + D′′ could not be bounded from below. The explicit
dependence of the present state

(
u, εp, p, α

)
in the Rayleigh ratio, (2.46), has been

omitted just for readability. In particular,

RN =
∫

Ω
C(α)

[(
ε̃− ε̃p

)
− S(α)[σ] α̃

]
:
((

ε̃− ε̃p
)
− S′(α)[σ] α̃

)
dΩ

+
∫

Ω
η2∇α̃ ·∇α̃ dΩ (2.47)
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while

RD =
∫

Ω

(
1
2

S′′(α)[σ] : σ − w′′(α) + q(p) m′(α)
)

α̃2 dΩ

−
∫

Ω

(
σ′P(α)− q′(p) m(α)

)
‖ε̃p‖ α̃ dΩ. (2.48)

Here, the last term in (2.44) is considered negative, hence belonging to (2.48), be-
cause of assumptions (2.23).

In the most general case the second order stability condition then becomes a
global minimization problem of the Rayleigh ratio. The state

(
u, εp, p, α

)
is stable if

(only if)
min
F̃×Q̃×C+

R
(
ũ, ε̃p, α̃

)
> (≥) 1. (2.49)

The proof of the existence of a minimum is assured by compactness and lower
semi-continuity properties. A complete proof requires technical mathematical tools
of functional analyses and therefore it is left out here.

An efficient procedure for the minimization problem (3.68) in case of an homo-
geneous state is suggested in Kohn 1991 and successfully applied for example in
Pham 2010 for an elastic-damage model.

2.3 Energy balance

Once the total potential energy (2.25) and the dissipated work (2.27) have been
introduced, the energy balance is immediately defined by (EB). The energy balance
express the fact that the total energy must remain constant along the evolution.

In particular, by assuming smooth evolutions, equ. (1.66) gives

−
∫

Ω
(divσ + b) · u̇ dΩ +

∫

∂Ω
(σ[n]− f ) · u̇ dS +

∫

Ω
(σP(α)− ‖σd‖) ‖ε̇p‖ dΩ

+
∫

Ω

(
−1

2
S′(α)[σ] : σ + w′(α)− q(p)m(α)

)
α̇ dΩ

+
∫

Ω
η2(α)∇α · ∇α̇ dΩ = 0, (2.50)

where the same remarks as in Sec. 2.2 has been adopted. Clearly, because of the
first order stability condition, the equality (2.50) must hold for any

(
u̇, ε̇p, α̇

)
.

Hence, for ε̇p = 0 and α̇ = 0 and through the results (2.66) and (2.35), one simply
obtains

σ[n] = f r(t) , ∀ x ∈ ∂ΩD (2.51)

which states the equilibrium of the internal forces with the external reactions at the
constrained Dirichlet boundary ∂ΩD .

For u̇ = 0 and α̇ = 0 one gains the local condition

(σP(α)− ‖σd‖) ‖ε̇p‖ = 0, ∀ x ∈ Ω (2.52)

and σd collinear with ε̇p which essentially expresses the associative character of the
underlying plasticity model.
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Finally, for u̇ = 0 and ε̇p = 0 one finds either the weak condition
∫

Ω

(
−1

2
S′(α)[σ] : σ + w′(α)− q(p)m(α)

)
α̇ + η2∇α · ∇α̇ dΩ = 0, ∀ x ∈ Ω

(2.53)
or, in the case that α ∈ H2, the strong local condition
(
−1

2
S′(α)[σ] : σ + w′(α)− q(p)m(α)− η2(α)div∇α

)
α̇ = 0, ∀ x ∈ Ω. (2.54)

Moreover further damage boundary conditions also follows,

∇α · n α̇ = 0, ∀ x ∈ ∂Ω. (2.55)

Merging together (2.42) and (2.55) one obtains the final boundary conditions for the
damage field which read

∇α · n = 0, ∀ x ∈ ∂Ω. (2.56)

2.4 A particular model

In this section a particular elastic-plastic-damage model is considered descend-
ing from the more general one of the previous sections. This model is simply ob-
tained by considering

m(α) = −σ′P(α) and q(p) = p, (2.57)

which clearly satisfy the two assumptions (2.22). The dissipation potential (2.16) can
then be rewritten as

ψ(p, α,∇α, ṗ, α̇,∇α̇) = ∂t

(
σP(α) p + w(α) +

1
2

η2∇α ·∇α

)
(2.58)

being ∂t (σP(α) p) = σP(α) ‖ε̇p‖+ p σ′P(α) α̇.
The main advantage of this choice consists that the resulting dissipation distance

allows the dissipated work to be a state function. Indeed, the dissipation distance
density d becomes

d((p0, α0,∇α0) , (p1, α1,∇α1)) = d((0, 0, 0) , (p1, α1,∇α1))− d((0, 0, 0) , (p0, α0,∇α0))
(2.59)

where d((0, 0, 0) , (p, α,∇α)) is simply given by

d((0, 0, 0) , (p, α,∇α)) = σP(α) p + w(α) +
1
2

η2∇α ·∇α. (2.60)

The dissipated work then becomes a state function defined as

DD(p, α) =
∫

Ω

(
σP(α) p + w(α) +

1
2

η2∇α ·∇α

)
dΩ. (2.61)

In such framework it is possible to reformulate the variational problem by simply
introducing a unique energy functional, namely the total work (or total energy) T of
the system which turns out to be a state function. The total work then reads

T
(
t, u, εp, p, α

)
= P

(
t, u, εp, α

)
+DD(p, α) (2.62)



46 A variational plastic-damage model

For this particular model, one could have postulated directly the total energy
functional. The global stability condition (ST) changes in

T
(
t, u, εp, p, α

)
≤ T

(
t, ũ, ε̃p, p + ‖ε̃p‖, α̃

)
, ∀

(
ũ, ε̃p, α̃

)
∈ F×Q×C(α) . (2.63)

It is worth noting in (2.63) that one has assumed as variation for the accumulated
plastic strain the state corresponding to a linear monotonic path,

p̃ = p + ‖ε̃p‖. (2.64)

While this last choice is fully justified for the general model where a dissipation
metric has been introduced, in this model and approach it becomes an assumption.
Both the local and differential stability condition follows from the global stability
condition. On the other hand the energy balance (EB) becomes

T
(
t, u, εp, p, α

)
−
∫ t

0
∂τT

(
τ, u, εp, p, α

)
dτ = constant. (2.65)

2.5 Conclusions and perspectives

Let here briefly recall the main results of the previous sections obtained through
the energetic formulation. Results are divided with respect to the state variables.
For what concerns the variable u one has found

divσ + b = 0, ∀ x ∈ Ω; σ[n] = f , ∀ x ∈ ∂Ω, (2.66)

which corresponds to the local equilibrium equations in classical Continuum Me-
chanics for small strains.
With regards to plasticity, one has recovered the classical local KKT system (1.40)
with the plastic strain rate collinear to the deviatoric part of the stress (associative
plasticity), namely

fp(α, σd) ≤ 0, λ ≥ 0, fp(α, σd) λ = 0, ∀ x ∈ Ω, (2.67)

with
ε̇p = λ

∂

∂σ
fp(α, σd) . (2.68)

Finally, for what concerns damage, in case of regular fields, say α ∈ H2, one has
recovered the classical local KKT system (1.40) as

fd(p, α,∇α, σ) ≤ 0, α̇ ≥ 0, fd(p, α,∇α, σ) α̇ = 0, ∀ x ∈ Ω, (2.69)

with the following boundary conditions

∇α · n = 0, ∀ x ∈ ∂Ω. (2.70)

Moreover, if α ∈ H1, then the damage yield condition fd ≤ 0 has to be understood
in its weak form (2.38).

The variational formulation allows rationally to deal with weak solutions. This
will be crucial to catch particular material responses like a cohesive fracture, other-
wise difficult to be described.

This chapter opens several directions for further investigations:
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Enrichment of the dissipation potential Letting the dissipation potential (2.16) de-
pending on the plastic strain εp would extend the range of possible models.
This choice has not been taken into account here but could be an interesting
point of departure for models whose behaviours depends on the plastic strain;

Plasticity hardening or softening effects The introduction of hardening or soften-
ing effects in the elastic potential energy E is worthy of being deepened;

Different choices for the regularization Different regularisation techniques are wor-
thy to be investigated. Motivated by Chap. 4 the most appealing different
choice seems to be to include terms depending on the gradient of plastic
terms in the dissipation potential. As example on could add the the accumu-
lated plastic strain gradient term (∂t

(
1
2 `

2∇p ·∇p
)

) to the dissipation potential
(2.16) by eventually replacing it with the damage gradient term.

Different models in the variational setting Another straightforward step would be
to consider, in the variational setting, different underlying models for plastic-
ity and damage as for example the Gurson-Tvergaard model, often use in the
description of ductile fracture, see Gurson 1977; Tvergaard 1981, 1982, and
anysotropic damage models.





Chapter 3

Homogeneous evolution

In this chapter a one-dimensional model is investigated for a homogeneous evo-
lution. The model descends from the general three-dimensional model of the previ-
ous chapter. After the introduction of the reduced model, a one-dimensional traction
bar test is first considered for a prescribed monotonic increasing displacement at the
right bar end which is equivalent to consider a material point response under an im-
posed monotonic increasing strain. Different responses are investigated which are
able to highlight the main features of the proposed model. Then, numeric examples
for the particular model are shown. Different examples can be found in the submit-
ted article in Chap. B. Finally, attention is given to the stability of the homogeneous
responses. Once the gradient model is recovered, a stability analysis is carried on
leading to conditions for which the homogeneous solutions become unstable and
hence localizations may appear with respect to plasticity and/or damage.

3.1 Introduction to the 1D model

In this section the one-dimensional plastic-damage model is introduced descend-
ing from the more general three-dimensional model of the previous chapter.
In this context, the physical domain is a closed subset of the real line of length L,

Ω = [0, L]. (3.1)

For simplicity, only hard devices, Tab. 1.1, are taken into account. Hereafter one can
assume, without lose of generality, that

u(0) = 0, u(L) = U(t) , (3.2)

where t ∈ [0, T] is the time-evolution parameter. The statements (3.1) and (3.2)
represent nothing but a 1D traction bar test, Fig. 3.1. Throughout the following, an

L

U(t)

x

Figure 3.1: 1D bar traction test

49
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initially unstretched, unplastified and undamaged state is always considered,

u(x, 0) = 0, εp(x, 0) = 0, p(x, 0) = 0, α(x, 0) = 0. (3.3)

The stored elastic energy reads

E
(
u, εp, α

)
=
∫ L

0
e
(
ε, εp, α

)
dx =

∫ L

0

1
2
E(α)

(
ε− εp

)2 dx, (3.4)

from which the stress σ is simply given by

σ = E(α)
(
ε− εp

)
. (3.5)

The elastic tensor now reduces to a scalar function E : [0, 1]→ R+ with the following
properties,

E(0) = E0, E(1) = 0, E′(1) = 0 (3.6)

and
E(α) > 0, E′(α) < 0, ∀ α ∈ [0, 1). (3.7)

Therefore, the compliance modulus S(α) : [0, 1]→ R+, is defined as

S(α) =
1

E(α)
, S′(α) = − E′(α)

E(α)2 , S′′(α) = 2
E′(α)

E(α)3 −
E′′(α)

E(α)4 . (3.8)

Assumptions (3.6) and (3.7) are a consequence of (1.90). Moreover, all the conditions
in Sec. 2.1.2 about the three-dimensional model are properly still considered valid
for the 1D model. The stress-displacement relation becomes

σ =
1

∫ L

0
S(α) dx

(
U(t)−

∫ L

0
εp dx

)
(3.9)

The potential of external work reads

L(t, u) = fr(L) U(t) . (3.10)

For what concerns the dissipation potential, the further assumptions are made

q(p) = p, η(α) = η, (3.11)

where (3.11)1 has been already motivated about the particular model in Sec. 2.4.
A clearer explanation of (3.11) will be given in the next section about the homoge-
neous responses. The expression of the dissipation potential follows from (2.16) and
becomes

ψ
(

p, α, α′, ṗ, α̇, α̇′
)
= ψp(α, ṗ) + ψd

(
p, α, α̇, α̇′

)

:= σP(α) ṗ + ∂t w(α)− pm(α) α̇ + ∂t

(
1
2

η2α′2
)

.
(3.12)

Once the dissipation potential is given both the dissipation distance and the dissi-
pated work are defined. Qualitative trends of the plastic and damage dissipation
potentials are illustrated in Fig. 3.2. The yield stresses are related to the slope of
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ψp

ε̇p

α

σP

σP

σP

(a) plastic dissipation potential

ψd

α̇

p

σD

σD

σD

(b) damage dissipation potential

Figure 3.2: Qualitative admissible trends for the plastic and damage dissipation
potentials with respect to the internal variables

the curves. For the damage dissipation potential only positive damage rates are
accessible due to irreversibility. Not that the trends are exacly those of a positively
one-degree homogeneous functions.

Having assumed sufficiently regular evolutions the results of Sec. 2.5 can be
used.
Hence the governing equations become:

σ′ = 0,
∫ L

0
u′ dx = U(t)

;





fp(σ, α) ≤ 0

λ ≥ 0

fp(σ, α) λ = 0

ε̇p = sign(σ) λ

;





fd(σ, p, α, α′′) ≤ 0

α̇ ≥ 0

fd(σ, p, α, α′′) α̇ = 0

(3.13)

where fp in (2.37) and fd in (2.41) change as follows

fp(σ, α) := |σ| − σP(α) ≤ 0, (3.14)

fd
(
σ, p, α, α′

)
:=

1
2
S′(α) σ2 + pm(α)− w′(α) + η2α′′ ≤ 0. (3.15)

Clearly, as previously mentioned, conditions (3.13)3 must to be replaced by their
weak form in cases where the derivative of the damage field suffers jumps, α ∈ H1.
The yield functions (3.14) and (3.15) allow for the following yield stresses

σP(α) , σD
(

p, α, α′′
)

:=

√
2 (w′(α)− pm(α)− η2α′′)

S′(α)
, (3.16)

where the coupling between the two phenomena is clearly noticeable, Fig. 3.3.
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σP

α

p

(a) plastic dissipation potential

σD

α

p

(b) damage dissipation potential

Figure 3.3: Qualitative admissible trends for the plastic and damage yield stresses

3.2 The abstract homogeneous evolutions

In this section the homogeneous response is investigated. The response is con-
sidered homogeneous if the state variables are constant in space at any instant t.
Clearly in this setting

α′(x) = 0, (3.17)

and the dependence α′ or α′′ has to be omitted in all the defined quantities, like the
yield functions or yield stresses. Moreover, the non-local model is reduced to a local
one where all variables becomes independent with respect to the abscissa x.

The local model is able to describe some key behaviours of the plastic-damage
model like the conditions under which one or both phenomena are triggered or
when coupled responses occur. To highlight such behaviours it is sufficient to ana-
lyze the response of a single material point subjected to a prescribed strain, which
assumes the meaning of an external action. The applied strain is assumed to be lin-
early increasing with t, Fig. 3.4, since the process is rate independent. For simplicity

ε(t) = t (3.18)

is assumed.

t

ε(t)

0
0

Figure 3.4: The strain load history for the homogeneous evolution

The most simple but meaningful qualitative evolutions expected from the re-
sponse are summarized in Fig. 3.5. A deep analysis of these is the main subject
of this chapter. Each of them owns a purely elastic phase. After one yield limit is
reached, evolution may continue either with a plastic phase or a damage phase. If
a second yield point occurs, then a coupled evolution of plasticity and damage is
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possible1. All these scenarios will be now investigated. More complicated evolu-
tions, like an alternate of dissipation phenomena, are here not taken into account
since they do not add significant aspects to the response. Hereafter the first instant
where plasticity (damage) occurs is called tP (tD). On the other hand, tI denotes the
first yield instant, hence tI = min(tP, tD), while tI I denotes the second yield instant
with tI I = max(tP, tD).

0

t

tI = tP or tD tI I = tD or tP

elasticity plasticity or damage plasticity and/or damage

Figure 3.5: The main model responses for the general elastic-plastic-damage evolu-
tion

In general, the possible evolutions can be divided in two groups depending on
whether plasticity or damage occurs first:

• Plasticity as first dissipation phenomenon (E-P-* model)2;

• Damage as first dissipation phenomenon (E-D-* model).

Clearly they depend on the initial yield stresses:

E-P-* ⇐⇒ σP(0) < σD(0, 0) ,

E-D-* ⇐⇒ σP(0) > σD(0, 0) .

Hereafter the exposition proceeds for each phase (elastic, first dissipation phe-
nomenon, second dissipation phenomenon) and bifurcates in parallel when differ-
ences between the E-P-* and E-D-* sequences arise.
The following passages rely on the explicit evaluation of the consistency condition
both for plasticity and damage. Hence, assuming here without loss of generality,
σ ≥ 0 and as state variables ε, εp, p and α on has:

ḟp(σ, α) =E(α) (1− ε̇p) +
(
E′(α) (t− εp)− σ′P(α)

)
α̇ (3.19)

ḟd(σ, p, α) =− E′(α) (t− εp)(1− ε̇p) +m(α) |ε̇p| (3.20)

−
(

1
2
E′′(α) (t− εp)

2 − pm′(α) + w′′(α)
)

α̇.

3.2.1 Elastic phase (t < tI)

The elastic phase is common to any response. In such phase,

σ < min (σP(0) , σD(0, 0)) ,

1 Clearly considering further yield points where the coupled response changes is of any interest under
the mathematical point of view.

2From here on the "*" symbol stands for the special character in regular expressions. In information
technology it is used to match any character(s)
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or equivalently
fp(σ, 0) < 0, fd(σ, 0, 0) < 0,

with
σ = E0 ε(t) .

Since the stress is linearly increasing and since the yield functions tends to infin-
ity as long as the stress tends to infinity, admitting a sufficiently large T, an instant
tI clearly always exists.
The elastic phase then ended when the instant tI is reached. Whether the plastic or
damage yield limit is reached first the response falls into a E-P-* sequence or a E-D-*
sequence:

E-P-* sequence:

The first yield instant corresponds to

tI = tP,

where

σ = σP(0) < σD(0, 0)

and

tI =
σP(0)
E0

. (3.21)

E-D-* sequence:

The first yield instant corresponds to

tI = tD,

where

σ = σD(0, 0) < σP(0) ,

and

tI =

√
2w′(0)
−E′(0) . (3.22)

The elastic response for both sequences is represented with the trends of the stress
yield limits in Fig. 3.6.

t

tP0

σD

σP

σ

arctanE0

(a) E-P-* sequence

t

tD0

σD

σP

σ

arctanE0

(b) E-D-* sequence

Figure 3.6: Elastic response

3.2.2 First dissipation phase (tI ≤ t < tI I)

At this point it is necessary to remark that the existence of a finite value for tI I
is not always ensured. So, at this stage, it may be infinite.

In the following the analysis is carried on first for the E-P-* responses and then
for the E-D-* responses.
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E-P-* sequence (tP ≤ t < tD)

All the possible evolutions in such phase have to be investigated. Observing that at
t = tP {

fp(σ, 0) = 0
fd(σ, 0, 0) < 0

, (3.23)

the evolutions to be analysed, dictated by the KKT conditions (3.13), are:
{

ε̇p = 0
α̇ = 0

1 elastic evolution ⇒ ḟp|tP<t<tD ≤ 0

{
ε̇p 6= 0
α̇ = 0

2 plastic evolution ⇒ ḟp|tP<t<tD = 0

To find out the right evolution one observes that

1 - elastic evolution An elastic evolution occurs if

ḟp|tP≤t<tD = E0 ≤ 0 (3.24)

which is impossible;

2 - plastic evolution A plastic evolution occurs if

ḟp|tP≤t<tD = E0
(
1− ε̇p

)
= 0 (3.25)

which is admissible, leading to

εp = t− σP(0)
E0

, ∀ t > tP. (3.26)

E-D-* sequence (tD ≤ t < tP)

All the possible evolutions in such phase have to be investigated. Observing that at
t = tD {

fp(σ, 0) < 0
fd(σ, 0, 0) = 0

, (3.27)

the evolutions to investigate, dictated by the KKT conditions (3.13) are:
{

ε̇p = 0
α̇ = 0

1 elastic evolution ⇒ ḟd|tD<t<tP ≤ 0

{
ε̇p = 0
α̇ > 0

2 damage evolution ⇒ ḟd|tD<t<tP = 0

To find out the right evolution one observes that

1 - elastic evolution An elastic evolution occurs if

ḟd|tD≤t<tP = −E′(α) t ≤ 0 (3.28)

which is impossible;
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2 - damage evolution A damage evolution occurs if

ḟd|tD≤t<tP = −E′(α) t−
(
E′′(α) t2 + w′′(α)

)
α̇ = 0 (3.29)

which is admissible provided that

E′′(α) t2 + w′′(α) > 0 (3.30)

which is satisfied since it correspond to the strain-hardening property assumed
in (2.24). In such case α = α(t) is the solution of the ordinary differential
equation 3.29.

The evolution is the solution of the following equations,

E-P-* sequence:

Evolution of the plastic dissipation
phase:





εp = p = t− σP(α0)

E(α0)

α = 0,

with

σ = σP(0) < σD(p, 0) . (3.31)

E-D-* sequence:

Evolution of the damage dissipation
phase:





εp = p = 0,

α = given by 3.29.

with

σ = σD(0, α) < σP(α) . (3.32)

which are respectively represented in Fig. 3.7.

t

tP tD0

σD

σP

σ

(a) The E-P-* sequence

t

tD tP0

σD

σP

σ

(b) The E-D-* sequence

Figure 3.7: First dissipation reponse

Whether a second yield point exists depends on the following conditions.
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E-P-* sequence:

The second yield instant, which always
exists, corresponds to

tI I = tD

where:

σ = σP(0) = σD
(
εp, 0

)

and

tI I =

√
2 (w′(0)− pm(0))

−E′(0) + εp. (3.33)

E-D-* sequence:

The second yield instant

tI I = tP

exists if t 7→ α(t) given by (3.29) is such
that:

σ = σD(0, α) = σP(α) .

In this case

tI I =
σP(α)

E(α)
. (3.34)

3.2.3 Second dissipation phase (tI I ≤ t)

If a second dissipation instant exists, where the yield condition of the inactivated
dissipation phenomenon occurs, t = tI I , then from that point different evolutions
are possible. The analysis carried out in the following leads to different response
sequences depending on the constitutive functions.

The instant t = tI I , if it exists, means for any sequence that

E-P-* sequence (t = tD = tI I)

{
fp(σ(tI I) , 0) = 0
fd(σ(tI I) , p(tI I) , 0) = 0

; (3.35)

E-D-* sequence (t = tP = tI I)

{
fp(σ(tI I) , α(tI I)) = 0
fd(σ(tI I) , 0, α(tI I)) = 0

. (3.36)

In principle from the instant tI I , regardless to the previous response, several differ-
ent evolutions are possible,

{
ε̇p = 0
α̇ = 0

1 elastic evolution ⇒
{

ḟp|tI I≤t ≤ 0
ḟd|tI I≤t ≤ 0

{
ε̇p 6= 0
α̇ = 0

2 plastic evolution ⇒
{

ḟp|tI I≤t = 0
ḟd|tI I≤t ≤ 0

{
ε̇p = 0
α̇ 6= 0

3 damage evolution ⇒
{

ḟp|tI I≤t ≤ 0
ḟd|tI I≤t = 0

{
ε̇p 6= 0
α̇ 6= 0

4 pl.-dam. evolution ⇒
{

ḟp|tI I≤t = 0
ḟd|tI I≤t = 0
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Which type of evolution may appear is discussed in the following by assuming,
without loss of generality and for simplicity, that the present state is given by the
state variables ε, εp, p and α regardless to the previously considered sequence E-P-*
or E-D-*:

1 - elastic evolution An elastic evolution occurs if

ḟp|tI I≤t = E(α) ≤ 0, (3.37)

ḟd|tI I≤t = −E′(α)
(
t− εp

)
≤ 0, (3.38)

which is impossible because E(α) > 0, ∀ α < 1.

2 - plastic evolution A plastic evolution occurs if

ḟp|tI I≤t = E(α)
(
1− ε̇p

)
= 0, (3.39)

ḟd|tI I≤t = −E′(α)
(
t− εp

) (
1− ε̇p

)
+m(α) |ε̇p| ≤ 0. (3.40)

Condition (3.39) gives ε̇p = 1. Hence, the inequality 3.40 is valid if m(α) ≤ 0,
which is in contrast with the assumption (2.22). In fact, the condition for
reaching the second yield point states m(α) ≥ 0, as evident in (3.33).
Then a plastic evolution without damaging is impossible once the damage
criterion has been attained at least in a past instant.

3 - damage evolution A damage evolution occurs if

ḟp|tI I≤t = E(α) +
(
E′(α)

(
t− εp

)
− σ′P(α)

)
α̇ ≤ 0, (3.41)

ḟd|tI I≤t = −E′(α)
(
t− εp

)
−
(

1
2
E′′(α)

(
t− εp

)2 − pm′(α) + w′′(α)
)

α̇ = 0.

(3.42)

In such case the discussion becomes straightforward. It is useful to preliminary
define from both relations (3.41) and (3.42) the quantities

R :=− E′(α)
(
t− εp

)
+ σ′P(α) > 0, (3.43)

S :=
1
2
E′′(α)

(
t− εp

)2 − pm′(α) + w′′(α) > 0. (3.44)

The functions R and S are introduced because several properties, like stability,
rely on them. In particular, the meaning of R = R(α) is related to the decreas-
ing rate with respect to damage of the stress σ and the plastic yield stress σP.
Indeed, considering σ = σ(α) = E(α)

(
t− εp

)
one has

{
σ′(α) < σ′P(α) , R > 0,
σ′(α) > σ′P(α) , R < 0.

(3.45)

Figure 3.8 represents condition (3.41).

From equation (3.42)

α̇ =
−E′(α)

(
t− εp

)

H
. (3.46)
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α0 1

σ(α)

σP(α
∗) = σD(p, α∗)

α∗

σP(α)

σ

impossible R < 0

Figure 3.8: Condition R > 0 for allowing a damage evolution without plastic evolu-
tion from the second yield instant on

Replacing the obtained damage rate α̇ in 3.41 gives:

E(α) S + E′(α)
(
t− εp

)
R ≤ 0. (3.47)

Finally, the previous condition can be posed as

0 < S ≤ −E
′(α)

(
t− εp

)

E(α)
R =: T (3.48)

where the first inequality descends from the strain-hardening assumption (2.24)
and where the last term is clearly always positive .

4 - plastic and damage evolution A coupled plasticity-damage evolution occurs,
if

ḟp|tI I≤t =E(α) (1− ε̇p) +
(
E′(α) (t− εp)− σ′P(α)

)
α̇ = 0, (3.49)

ḟd|tI I≤t =− E′(α) (t− εp)(1− ε̇p) +m(α) |ε̇p| (3.50)

−
(

1
2
E′′(α) (t− εp)

2 − pm′(α) + w′′(α)
)

α̇ = 0.

Through (3.49) one has

1− ε̇p =
R

E(α)
α̇ (3.51)

that replaced in (3.50) gives
(
−E′(α)

(
t− εp

)

E(α)
R− S

)
α̇−m(α) |ε̇p| = 0 (3.52)

and finally
−E′(α)

(
t− εp

)

E(α)
R− S < 0. (3.53)

The evolution condition then becomes

S > T > 0. (3.54)
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sequence label condition figure

E-P-* ⇒





E-P-D,

E-P-DP,

S ≤ T 3.9a

S > T 3.10a

E-D-* ⇒





E-D,

E-D-PD,

S ≤ T 3.9b

S > T 3.10b

Table 3.1: The four simplest and most meaningful considered evolutions

Tab. 3.1 summarise the simplest but most meaningful possible evolutions.
The state variables evolutions for responses where plasticity and damage never

evolve together are found as follows,

E-P-D sequence:

For t > tI I = tP the plastic and damage
evolutions correspond to

{
εp = tI I − tI

α = ( fd(σ, p(tI I) , α))−1

where tI and tI I are respectively given
by (3.21) and (3.33) with

σ = σD(p(tI I) , α) < σP(α) (3.55)

and
σ = E(α)

(
t− εp(tI I)

)
.

E-D sequence:

For t > tI I = tP the plastic and damage
evolutions correspond to





εp = p = 0,

α = ( fd(σ(t) , 0, α))−1

with

σ = σD(0, α) < σP(α) (3.56)

and
σ = E(α) t.

Both these responses are qualitatively represented in Fig. 3.9.

t

tP tD0

σD

σP

σ

(a) E-P-D sequence.

t

tD0

σD

σP

σ

(b) E-D sequence.

Figure 3.9: Evolutions where at each instant only a dissipation phenomenon occurs.

The state variables evolutions for responses where a coupling between plasticity
and damage occurs are found as follows,
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E-P-DP sequence and E-D-PD sequence

εp, α→ given by (3.51) and (3.52)

where the proper boundary condition, that is p(tI I), εp(tI I) and α(tI I) has to be
considered. For t ≥ tI I

fd(σ, p, α) = fp(σ, α) = 0

with
σ = σP(α) = σD(p, α) (3.57)

and
σ = E(α)

(
t− εp

)
.

Both these responses are represented in Fig. 3.10.

t

tP tD0

σD

σP

σ

(a) E-P-* sequence.

t

tD tP0

σD

σP

σ

(b) E-D-* sequence.

Figure 3.10: Second dissipation phenomenon with coupled evolution

The assumptions (2.21) and (2.22) should now be clear and motivated respec-
tively in Tab. 3.3 and Tab. ??.

σ′P(α) > 0
equivalent plastic stress
increasing with damage
(unrealistic)

σ′P(α) = 0
damage that doe not af-
fect the plasitc yield crite-
rion

σ′P(α) < 0
equivalent plastic stress
decreasing with damage
(realistic)

α

σP(α)

0 1

σP(0) σ′P(α) = 0

σ′P(α) > 0

σ′P(α) < 0

Table 3.2: Motivation for the assumption for the function α 7→ σP(α)

3.3 Analytic examples

In this section a simple and straightforward analytical homogeneous 1D model
is presented capable of highlighting all meaningful sequences already introduced
in Tab. 3.1.
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m(α) > 0
damage yield stress in-
creasing with plasticity
(unrealistic)

m(α) = 0
plasticity that does not af-
fect the damage yield cri-
terion

m(α) < 0
damage yield stress de-
creasing with plasticity
(realistic)

α

m(α)

0 1

m′(α) = 0

m′(α) > 0

m′(α) < 0

0

Table 3.3: Motivation for the assumption for the function α 7→ m(α)

Simple analytical expressions are chosen for the constitutive functions in (3.4)
and (3.12), namely

E(α) = E0 (1− α)2 , w(α) = w0 α, σP(α) = σP0 (1− α)γ , m(α) = −σ′P(α) ,
(3.58)

which depends upon three real positive parameters and one exponent, that is

E0 > 0, w0 > 0, σP0 > 0, γ ≥ 1. (3.59)

The initial yield stresses for plasticity and damage are respectively

σD0 = σD(0) =
√

E0 w0, and σP0, (3.60)

while the dissipated work density (1.57) is given by

δ(p, α) = w(α) + p σP(α) . (3.61)

Tab. 3.4 shows different constitutive parameters able to describe the possible re-
sponses of Tab. 3.1. Moreover the trends of the constitutive functions are shown
in Fig. 3.11.

sequence E0 w0 σP0 γ

E-D 1 1 1.5 1

E-P-D 1 1.7 1 1

E-P-DP 1 2 1 2

E-D-PD 1 2 2 2

Table 3.4: Constitutive parameters for the homogeneous evolution examples

3.3.1 Example: E-D sequence

For such a model, the yield stresses becomes

σP(α) = σP0 (1− α) , σD(p, α) =
√

E0
(
w0 − σP0 p

)√
(1− α)3. (3.62)
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(a) E-D sequence
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(b) E-P-D sequence
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(c) E-P-DP sequence

1

0
10

α

(d) E-D-PD sequence

Figure 3.11: Consitutive functions trends for the considered examples: E(α) (solid
blue line); w(α) (solid red line); σP(α) (solid green line)

Since σP(0) > σD(0, 0), after the elastic phase a damaging phase occurs. Moreover
for any damage level one has σP(α) > σD(0, α) and hence a second yield instant
does not exist. Then the response is an E-D sequence.
The complete evolution is simply given by

• E stage, t ∈ [0,
√
w0/E0):

p(t) = 0, α(t) = 0 σ(t) = E0 t;

• D stage, t ∈ [
√
w0/E0, ∞):

p(t) = 0, α(t) = 1− w0

E0

1
t2 σ(t) =

w2
0

E0

1
t3 ;

and shown in Fig. 3.16. Specifically in Fig. 3.16a the stress strain response is repre-
sented with the trends of both the yield stress limits and the internal state variables.
One could appreciate the nonexistence of a second yield point since the yield stresses
never intersect. Fig. 3.16b highlights through the unloading curves the evolution of
damage as decrease of stiffness. Any residual strain appears by unloading since
plasticity does not evolve. Finally, Fig. 3.16c represents the energy density contribu-
tions where the dissipation is only due to damage. Fig. 3.12 shows the stress yield
limits 3.12a and the load path 3.12b in the state variable space (σ, p, α).
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0

1 0

0

11
σ

α

pσD

σP

(a) yield stress limits

0

1 0

0

1

1

σ

α

p
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Figure 3.12: E-D sequence: the green and red surfaces represent respectively the
damage and plastic yield stress while the blue path represents the material response

3.3.2 Example: E-P-D sequence

For such model, the yield stresses are the same as in (3.62). Since σP(0) <
σD(0, 0), a plastic phase occurs after the elastic phase.
When p(tI I) = w0/σP0 − σP0 /E0 a second yield point exists. From that instant on,
one has σP(α) > σD(p(tI I) , α) and therefore only damage evolves leading to a E-P-D
sequence in the response.
The complete evolution is given by

• E stage, t ∈ [0, σP0 /E0):

p(t) = 0, α(t) = 0 σ(t) = E0 t;

• P stage, t ∈ [σP0 /E0,w0/σP0):

p(t) = t− σP0

E0
, α(t) = 0 σ(t) = σP0 ;

• D stage, t ∈ [w0/σP0 , ∞):

p(t) = p̄ =
w0

σP0

− σP0

E0
, α(t) = 1−

σ2
P0

E2
0

1

(t− p̄)2 σ(t) =
σ4
P0

E3
0

1

(t− p̄)3 ;

and shown in Fig. 3.17. Specifically in Fig. 3.17a the stress strain response is repre-
sented with the trends of both the yield stress limits and the internal state variables.
Fig. 3.17b highlights the evolution of both plasticity as residual strain and damage
as decrease of stiffness through the unloading curves. Finally, Fig. 3.17c represents
the energy density contributions. Fig. 3.13 shows the stress yield limits, Fig. 3.13a,
and the load path ,Fig. 3.13b, in the state variable space (σ, p, α).
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Figure 3.13: E-P-D sequence: the green and red surfaces represent respectively the
damage and plastic yield stress while the blue path represents the material response

3.3.3 Example: E-P-DP sequence

For such model, the yield stresses are

σP(α) = σP0 (1− α)2 , σD(p, α) =
√

E0
(
w0 − σP0 p

)√
(1− α)3. (3.63)

Since σP(0) < σD(0, 0), after the elastic phase a plastic phase occurs.
When p(tI I) = w0/σP0 − σP0 /E0 the second yield point exists. Since, in that instant,
σP(α) < σD(p(tI I) , α) both plasticity and damage evolves. Then the response is an
E-P-DP sequence.
The complete evolution is given by

• E stage, t ∈ [0, σP0 /E0):

p(t) = 0, α(t) = 0 σ(t) = E0 t;

• P stage, t ∈ [σP0 /E0,w0/σP0):

p(t) = t− σP0

E0
, α(t) = 0 σ(t) = σP0 ;

• PD stage, t ∈ [w0/σP0 , ∞):

p(t) = t− σP0

E0
, α(t) = 1− w0

σP0

1(
2 t− σP0 /E0

) σ(t) =
w2

0
σP0

1
(
2 t− σP0 /E0

)2 ;

and is shown in Fig. 3.18. Specifically in Fig. 3.18a the stress strain response is
represented with the trends of both the yield stress limits and the internal state
variables. Fig. 3.18b highlights the evolution of both plasticity as residual strain
and damage as decrease of stiffness through the unloading curves. After the second
yield point, the contemporary evolution of plasticity and damage is remarkable.
Finally, Fig. 3.18c represents the energy density contributions. Fig. 3.14 shows the
stress yield limits, Fig. 3.14a, and the load path, Fig. 3.14b, in the state variable space
(σ, p, α).
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Figure 3.14: E-P-DP sequence: the green and red surfaces represent respectively the
damage and plastic yield stress while the blue path represents the material response

3.3.4 Example: E-D-PD sequence

For such model, the yield stresses are the same as in (3.63). Since σP(0) >
σD(0, 0), a damaging phase occurs after the elastic phase.
When α(tI I) = 1− w0E0/σ2

P0
the second yield point exists. Since, from that instant,

tI I = σP0 /E0, σP(α) < σD(0, α) both plasticity and damage evolves. The response is
then an E-D-PD sequence.
The complete evolution is given by

• E stage, t ∈ [0,
√
w0/E0):

p(t) = 0, α(t) = 0 σ(t) = E0 t;

• D stage, t ∈ [
√
w0/E0, σP0 /E0):

p(t) = 0, α(t) = 1− w0

E0

1
t2 σ(t) =

w2
0

E0

1
t3 ;

• PD stage, t ∈ [σP0 /E0, ∞):

p(t) = t− σP0

E0
, α(t) = 1− w0

σP0

1(
2 t− σP0 /E0

) σ(t) =
w2

0
σP0

1
(
2 t− σP0 /E0

)2 ;

and represented in Fig. 3.19. Specifically in Fig. 3.19a the stress strain response is
represented with the trends of both the yield stress limits and the internal state
variables. Fig. 3.19b highlights the evolution of both plasticity as residual strain
and damage as decrease of stiffness through the unloading curves. After the second
yield point, the contemporary evolution of plasticity and damage is remarkable.
Finally, Fig. 3.19c represents the energy density contributions. Fig. 3.15 shows the
stress yield limits, Fig. 3.15a, and the load path, Fig. 3.15b, in the state variable space
(σ, p, α).
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Figure 3.15: E-D-PD sequence: the green and red surfaces represent respectively the
damage and plastic yield stress while the blue path represents the material response
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Figure 3.16: Homogeneous response of the E-D sequence
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Figure 3.17: Homogeneous response of the E-P-D sequence
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Figure 3.18: Homogeneous response of the E-P-DP sequence
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Figure 3.19: Homogeneous response of the E-D-PD sequence
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3.4 The stability of homogeneous states

This section is devoted to the issue of stability, crucial in softening responses. In
order to study the stability of the homogeneous response, the 1D domain is again
considered. The stability analysis involves exactly the same response sequences
analyzed in the preceeding section about the homogeneous solutions. Since any
state satisfies the first-order stability condition, the investigation of the second-order
stability condition becomes necessary by means of the study of the sign of the second
variation of the potential energy and the dissipation distance or of the minimization
of the Rayleigh-ratio introduced in (2.46). For the homogeneous model, the second
variation of the total potential energy reads

P ′′
(
u, εp, α

)(
ũ, ε̃p, α̃

)
=

=
∫ L

0

(
E(α)

(
ũ′ − ε̃p

)2
+ 2E′(α)

(
u′ − εp

) (
ũ′ − ε̃p

)
α̃ +

1
2
E′′(α)

(
u′ − εp

)2
α̃2
)

dx =

=
∫ L

0

(
E(α)

((
ũ′ − ε̃p

)
− S(α) σ α̃

)2 − 1
2
S′′(α) σ2 α̃2

)
dx (3.64)

while the second variation of the total dissipation distance, through the same rea-
sonings as for (2.32), is

D′′
(
εp, α

) (
ε̃p, α̃

)
=
∫ L

0

(
σ′P(α)−m(α)

)
|ε̃p| α̃ dx

+
∫ L

0

(
w′′(α)− pm′(α)

)
α̃2 dx +

∫ L

0
η2 α̃′2 dx.

(3.65)

3.4.1 Elastic phase (t < tI)

In this phase, if ε̃p 6= 0 or α̃ 6= 0 then the first order-stability condition is satisfied
as an inequality. Clearly, the study of the sign of the second variation of the total
energy is necessary only when ε̃p = 0 and α̃ = 0. Since

P ′′(u, 0, 0)(ũ, 0, 0) = E0 ũ′2 > 0 (3.66)

the elastic phase is always stable.

3.4.2 First dissipation phase (tI ≤ t < tI I)

A distintion between the E-P-* or E-D-* sequence have to be made.

E-P-* sequence

For any variation with α̃ 6= 0 the state is stable because of the first-order stability
condition. Then the study of the sign of the second variation of the sum of the
potential energy and the dissipation distance becomes necessary only when α̃ = 0.
Since

P ′′
(
u, εp, 0

)(
ũ, ε̃p, 0

)
= E0 (ũ′ − ε̃p)

2 ≥ 0 (3.67)
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the elastic-plastic response is stable. To be more precise, the state is indefinitely
stable, since any higher order variation of the total potential energy vanishes. More-
over, it is easy to proof that in reality not only the homogeneous response is sta-
ble but also a non-homogeneous one, including solutions with plastic localizations
(slips). This indeterminate behaviour is typical of the perfect-plasticity model and
disappears once hardening effects are taken into account. This point will be deeper
examined in the next chapter about non-homogeneous evolutions.

E-D-* sequence

For any variation such that ε̃p 6= 0, the state is stable because of the first-order
stability condition. Clearly, the study of the sign of the second variation of the total
energy is necessary only when ε̃p = 0. In this case, following the steps suggested in
Pham 2010, the minimization of the Rayleigh ratio (3.68) for the 1D model reduces
to

min
F̃×C+

R(ũ, α̃) (3.68)

where R(ũ, α̃) = R(ũ, 0, α̃) and

R(ũ, α̃) =

∫ L
0 E(α) (ũ′ − S′(α) σ α̃)2 dx + η2

∫ L
0 α̃′2 dx

∫ L
0

(
1
2S
′′(α) σ2 − w′′(α)

)
α̃2 dx

(3.69)

One can eliminate the dependence of the field ũ by minimizing the Rayleigh ratio R
with respect to ũ at fixed εp and α̃. The associated optimality condition reads then

R′(ũ, α̃)
(
˜̃u, 0
)
= 0, namely

∫ L

0
E(α)

(
ũ′ − S′(α) σ α̃

) ˜̃u′ dx = 0 ∀ ˜̃u ∈ F0. (3.70)

Integrating with respect to ũ and considering the boundary conditions ˜̃u(0) =
˜̃u(L) = 0, one obtains

∫ L

0

d
dx
(
E(α)

(
ũ′ − S′(α) σ α̃

)) ˜̃u dx +
[(
E(α)

(
ũ− S′(α) σ α̃

)) ˜̃u
]L

0
= 0 (3.71)

Hence
E(α)

(
ũ′ − S′(α) σ α̃

)
= constant (3.72)

Integrating (3.85) and considering the boundary conditions, one obtains

ũ′(x) = S′(α) σ α̃−
∫ L

0 (S′(α) σ α̃) dx
∫ L

0 S(α) dx
S(α) (3.73)

which furnishes the optimal displacement variation profile

ũ(x) =
∫ x

0

(
S′(α) σ α̃

)
dx−

∫ L
0 (S′(α) σ α̃) dx
∫ L

0 S(α) dx

∫ x

0
S(α) dx. (3.74)
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Eq. (3.87) is then an optimality condition for the Rayleigh ratio. Inserting equation
(3.74) in (3.69) leads to

R∗(α̃) =

∫ L
0 E(α)

(
−
∫ L

0 (S′(α) σ α̃) dx∫ L
0 S(α) dx

S(α)

)2
dx + η2

∫ L
0 α̃′2 dx

∫ L
0

(
1
2S
′′(α) σ2 − w′′(α)

)
α̃2 dx

=

1∫ L
0 S(α) dx

(∫ L
0 (S′(α) σ α̃) dx

)2
+ η2

∫ L
0 α̃′2 dx

∫ L
0

(
1
2S
′′(α) σ2 − w′′(α)

)
α̃2 dx

(3.75)

It is convenient for the next developments to normalise the position variable as

x̂ = x/L, dx̂ = dx/L, with x̂ ∈ [0, 1] , (3.76)

and to rename some quantities as follows:

x = x̂, a = η2/L2, b =
1∫ 1

0 S(α)dx
, c = S′(α) σ, m =

1
2
S′′(α) σ2 − w′′(α) .

(3.77)
Then the Rayleigh ratio gets the following expression

R∗(α) =
a
∫ 1

0 α′2 dx + b c2
(∫ 1

0 α dx
)2

m
∫ 1

0 α2 dx
. (3.78)

The condition for which the homogeneous evolution becomes unstable and hence
allows for a non-homogeneous solution is given by the minimization of the Rayleigh
ratio (3.78), specifically





min
C+
R∗(α) > 1, stable state

min
C+
R∗(α) < 1, unstable state

(3.79)

The exact solution of the minimization of (3.78), as well the procedure to obtain
it, is given in the appendix of Pham 2010 and reads

min
F̃×C+

R(ũ, α̃) = min
C+
R∗(α) = min

(
b c2

m
,
(
a b2 c4π2

m3

)1/3)
. (3.80)

This last equation involves the length of the bar since a depends upon the ratio
between the parameter η and the length of the bar L itself. Accordingly, each ho-
mogeneous state is stable if the length of the bar is lesser than a critical value and
unstable otherwise. More precisely the state is stable if (only if)

L2 < (≤)b
2 c4π2

m3 η2. (3.81)

This last is obtained by observing that the first term in the minimum (3.93) is greater
than one.
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3.4.3 Second dissipation phase (tI I ≥ t)

It is of interest to establish the condition wheter the homogeneous evolution is
stable during a plastic-damaging phase (P-D stage).
The study consists then in seeking a variated state

(
ũ, ε̃p, α̃

)
such that P ′′ + D′′ is

minimum.
It is worth to remember that due to (2.36) only positive values for the plastic

strain variations lead to an indetermination of the first order stability condition
since the stress is positive. That is only variations where ε̃p ≥ 0 regardless to ũ and
α̃ needed to be studied. Hereinafter one defines Q+ := {a ∈ Q : a ≥ 0} such that
ε̃p ∈ Q+. With this remark in mind the minimum value of P ′′ + D′′ is explored by
considering again the Rayleigh (2.46) ratio R, which reads in this case

R
(
ũ, ε̃p, α̃

)
=

∫ L
0 E(α)

((
ũ′ − ε̃p

)
− S′(α) σ α̃

)2 dx + η2
∫ L

0 α̃′2 dx
∫ L

0

(
1
2S
′′(α) σ2 − w′′(α) + pm′(α)

)
α̃2 dx−

∫ L
0

(
σ′P(α)−m(α)

)
ε̃p α̃ dx

(3.82)
One first shows that R is positive on F̃×Q+×C+, the space of admissible vari-

ations. The Rayleigh ratio is clearly non negative. In order to R = 0, one should
have α(x) = α = const and u′(x) = εp(x) + S′(α) σ α(x). Then in such case, since
u(0) = u(1) = 0, one obtains both εp(x) = 0 and α = 0 which is ruled-out. There-
fore R

(
u, εp, α

)
> 0 for every

(
u, εp, α

)
∈ F̃×Q+×C+.

Going ahead as the previous section, one can eliminate the dependence of the
field ũ by minimizing the Rayleigh ration R with respect to ũ at fixed ε̃p and α̃. The

associated optimality condition is then R′
(
ũ, ε̃p, α̃

)(˜̃u, 0, 0
)
= 0, namely

∫ L

0
E(α)

((
ũ′ − ε̃p

)
− S′(α) σ α̃

) ˜̃u′ dx = 0 ∀ ˜̃u ∈ F0, (3.83)

which integrated with respect to ũ leads to

∫ L

0

d
dx
(
E(α)

((
ũ′ − ε̃p

)
− S′(α) σ α̃

)) ˜̃u dx

+
[(
E(α)

((
ũ′ − ε̃p

)
− S′(α) σ α̃

)) ˜̃u
]L

0
= 0. (3.84)

and finally to the condition

E(α)
((

ũ′ − ε̃p
)
− S′(α) σ α̃

)
= constant. (3.85)

Integrating (3.85) and considering the boundary conditions ũ(0) = ũ(L) = 0, one
obtains

ũ(x) = S′(α) σ α̃ + ε̃p −
∫ L

0

(
S′(α) σ α̃ + ε̃p

)
dx

∫ L
0 S(α) dx

S(α) (3.86)

which furnishes the optimal displacement variation profile

ũ(x) =
∫ x

0

(
S′(α) σ α̃ + ε̃p

)
dx−

∫ L
0

(
S′(α) σ α̃ + ε̃p

)
dx

∫ L
0 S(α) dx

∫ x

0
S(α) dx. (3.87)
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Inserting equation (3.87) in (3.82) leads to

R∗
(
ε̃p, α̃

)
=

∫ L
0 E(α)

(
−
∫ L

0 (S
′(α) σ α̃+ε̃p) dx
∫ L

0 S(α) dx
S(α)

)2

dx + η2
∫ L

0 α̃′2 dx
∫ L

0

(
1
2S
′′(α) σ2 − w′′(α) + pm′(α)

)
α̃2 dx−

∫ L
0

(
σ′P(α)−m(α)

)
ε̃p α̃ dx

=

1∫ L
0 S(α) dx

(∫ L
0

(
S′(α) σ α̃ + ε̃p

)
dx
)2

+ η2
∫ L

0 α̃′2 dx
∫ L

0

(
1
2S
′′(α) σ2 − w′′(α) + pm′(α)

)
α̃2 dx−

∫ L
0

(
σ′P(α)−m(α)

)
ε̃p α̃ dx

.

(3.88)
As done in the previous section it is convenient for the next developments to nor-
malise the position variable as

x̂ = x/L, dx̂ = dx/L, with x̂ ∈ [0, 1] , (3.89)

and to rename some quantities as follows:

x = x̂, a = η2/L2, b =
1∫ 1

0 S(α)dx
, c = S′(α) σ,

m =
1
2
S′′(α) σ2 − w′′(α) + pm′(α) , n = −1

2
(
σ′P(α)−m(α)

)
.

(3.90)

The Rayleigh ration (3.88) changes to

R∗
(
εp, α

)
=

a
∫ 1

0 α′2 dx + b
(∫ 1

0 εp dx
)2

+ 2 b c
∫ 1

0 εp dx
∫ 1

0 α dx + b c2
(∫ 1

0 α dx
)2

∫ 1
0

(
m α2 + 2 n εp α

)
dx

.

(3.91)
From (3.88) or (3.91) and the calculations in the appendix A.2, one deduces that the
minimum of the Rayleigh ratio is attained if

(
ε̃p, α̃

)
∈ L2×H2(0, 1) ⊂ Q̃×C+. The

condition for which the homogeneous evolution becomes unstable and hence allows
for a non-homogeneous solution is given by the minimization of the Rayleigh ratio
(3.91), specifically

{
minQ̃×C+ R

∗(εp, α
)
> 1, stable state

minQ̃×C+ R
∗(εp, α

)
< 1, unstable state

(3.92)

As a result of the minimization (3.78) one obtains

min
F̃×Q̃×C+

R
(
u, εp, α

)
= min
Q̃×C+

R∗
(
εp, α

)
= min

(
b c2

m
, 4b

cn−m

n2 ,
(
a b2 c4π2

m3

)1/3)
.

(3.93)
The non-trivial proof with all passages of this last result could be found in ap-
pendix A.2. The result is that with respect to solution (3.93) an additional term
4b (cn−m) /n2 which is not length dependent appears.

3.5 Conclusions and perspectives

In this section a fruitful application of the energetic formulation has been shown.
After a deep investigation of the homogeneous response it has been given the guide-
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lines for dealing with the issue of stability and the arise of multiple solution, ex-
tremely important in softening materials. Indeed in case of smooth evolutions the
first-order stability condition allows to identify different possible solution while the
second- or higher-order stability condition provides a selection criterion of these
different solutions.

The analysis has been here limited to the study of the stability homogeneous
solution. It has been found the conditions for which the homogeneous response
becomes unstable and non-homogeneous solutions may appear. This condition de-
pends as expected on the length of the bar and the characteristic internal length
proportional to the parameter η. It is worth to remark that the presented analyses
do not rely on the monotonic character of the loading. Cycles or different load path
can be taken into account with the same ease.

The proposed model has highlighted several features and opened different per-
spectives:

Plasticity and damage coupling The order with which plasticity and damage suc-
ceeded allows to describe a high variety of material responses. More in detail,
the E-P * response is interesting for different reasons: (i) it seems to be a good
point of departure to the understanding and modelling of plastic cyclic fail-
ure; (ii) it resemble qualitatively the response of ductile fracture. The E-D
response is strongly related to the brittle fracture problem. Nevertheless the
similar response E-D-PD owns a small difference, the contemporary evolution
of plasticity with damage, that is crucial, as will be clear in the next section,
for the description of cohesive fracture.

Stability of a three-dimensional model An interesting and important development
would be to investigate the stability of an homogeneous response in a three-
dimensional setting. Such studies has been already accomplished for an elastic-
damage model with a gradient regularization in Pham and Marigo 2012, 2010b;
Pham 2010.

Parameters identification An essential aspect is to figure out how the constitutive
parameters could be identified for a given material through simple experi-
mental tests. While for some of them like the elastic modulus this should be
a simple task the same cannot be said for the other parameters. To this aim it
is fundamental to be able to reproduce an homogeneous response in a given
material specimen.

The next chapter is devoted to the construction of non-homogeneous solutions.
The issue of stability of non-homogeneous responses is not trivial and can be faced
only through numerical approaches, see Beaurain 2011.





Chapter 4

Non-homogeneous evolutions

In the previous chapter it has been proven that the homogeneous response could
become unstable and hence not admissible for a sufficiently long bar. This means
that a different solution exists, clearly non-homogeneous. This chapter is exactly
devoted to the description of non-homogeneous evolutions in the one dimensional
setting where localizations arise. Moreover different aspects will be covered like: (i)
a procedure for the construction of localizations; (ii) the global response; (iii) ana-
lytical examples. Moreover it is proven that the global response is able to describe a
cohesive fracture a la Barenblatt.

4.1 Introduction to non-homogeneous evolutions

Throughout the following plasticity is mostly supposed to evolve uniformly in
space, when not coupled with damage. The case where a damage localization arises
in a support with a non uniform distribution of accumulated plastic strain, is only
outlined at the end of the Sec. 4.2.

4.1.1 The setting of the problem

The mathematical setting of the problem in which non-homogeneous evolutions
are considered is the same as Sec. 3.1. The domain is the closet subset of the real
line of length L,

Ω = [0, L] (4.1)

while
u(0) = 0, u(L) = U(t) . (4.2)

To simplify the presentation but without loss of generality one assumes that
the global state field ξ =

(
u, εp, p, α

)
is piecewise smooth and its singular part is

localized on a ξ-dependent set S(ξ) which contains a finite number of points in Ω.
Further, singular points are not allowed on the boundary ∂Ω.

Referring to the function spaces of the state variables in Chap. 2, in particular
both to the space of special bounded deformation SBD for the displacement field
(2.2) and the space of special bounded measure SBM for the plastic strain field (2.6),

79
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an additive decomposition of the the associated state variables can be done splitting
the regular part from the singular part.
More specifically for the one-dimensional setting, a variable m belonging to the SBD
space like the plastic or accumulated plastic strain can be considered as a measure
for which one assumes to be decomposed into its regular and singular parts where:
(i) the regular part is denoted m(x)dx, where x 7→ m(x) is at least an integrable
function (in practise, a piecewise continuous function) and dx is the Lebesgue mea-
sure; (ii) the singular part is a linear combination of Dirac measures centered on a
finite number of singular points with some weight M(xi) at point xi. This leads to
the following notation:

m = m(x)dx + ∑
i∈S(m)

M(xi) δxi . (4.3)

Considering the previous discussion, the displacement field can then be repre-
sented as

u = ū(x) + ∑
xi∈S(ξ)

JuK(xi) Hxi (4.4)

where the first and second term are respectively the continuous and discontinu-
ous part. More specifically in (4.4) ū ∈ C1([0, L]) and Hxi is the Heaviside func-
tion. Here it is assumed that a jump of a function f (xi) is evaluated as J f K(xi) =
limx→x+i

f (x)− limx→x−i
f (x) which defines the term JuK(xi).

Since u′ ∈ SBM, the (total) strain field can be decomposed by means of (4.3) as

u′ = ε = ū′(x)dx + ∑
xi∈S(ξ)

JuK(xi) δxi (4.5)

where the first and second term are respectively the regular and singular part of the
total strain.

In order to let the elastic energy being finite, the plastic strain field has the same
singular part as the strain field and hence can be seen as the following measure

εp = ε̄p(x)dx + ∑
xi∈S(ξ)

JuK(xi) δxi (4.6)

where the first and second term are respectively the regular and singular part of the
plastic strain as in (4.3).

Similarly by means of (4.3) the accumulated plastic strain field is decomposed in
a regular and singular part as follows

p = p̄(x) + ∑
xi∈S(ξ)

P(xi) δxi . (4.7)

Moreover one has

P(xi) =
∫ t

0
|Ju̇K(xi)| dτ. (4.8)

Referring to the general plastic-damage gradient model (2) with the constitutive
assumption (3.11) and once the previous state variable decomposition has been es-
tablished one can introduce the energy functionals and the dissipation potential, the
ingredients of the variational formulation.
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The elastic stored energy then reads

E
(
u, εp, α

)
=
∫ L

0
e
(
ε, εp, α

)
dx =

∫ L

0

1
2
E(α)

(
ū′(x)− ε̄p(x)

)2 dx (4.9)

while the dissipation potential

ψ
(

p, α, α′, ṗ, α̇, α̇′
)
=∂t w(α(x)) + ∂t

(
1
2

η2α′(x)2
)
+ σP(α(x)) ṗ− pm(α(x)) α̇(x)

=∂t w(α(x)) + ∂t

(
1
2

η2α′(x)2
)
+ σP(α(x)) ˙̄p(x)− p̄(x) m(α(x)) α̇(x)

+ ∑
xi∈S(ζ)

(
σP(α(x)) Ṗ(xi)− P(xi) m(α(x)) α̇(x)

)

(4.10)
The dissipation distance D and dissipated work DD are consequently defined.

4.1.2 The governing equations

4.1.2.1 Irreversibility

The irreversibility condition is given in (2.12). It involves only the damage field
and can be expressed as

α(x, t1) ≤ α(x, t2) , t1 ≤ t2, ∀x ∈ [0, L] (4.11)

for discrete evolutions or as

α̇(x) ≥ 0, ∀x ∈ [0, L] . (4.12)

for damage smooth evolutions.

4.1.2.2 Stability condition

In order to define the stable states of the system, the variations of the state vari-
ables have to be defined. According to Sec. 4.1.1 the variated global state is

ξ̃ =
(
ũ, ε̃p, |ε̃p|, α̃

)
∈ F̃×Q×Q+×C+. (4.13)

Non-homogeneous solutions will be constructed starting from the first order sta-
bility condition. To achieve this aim, it is important to specify the variations for
the displacement and plastic fields. Accordingly to (4.5), the displacement variation
ũ ∈ F̃ kinematically admissible is

ũ = ũ + h ∑
xi∈S(ũ)

JũK(xi) Hxi . (4.14)

where S (ũ) is the set of points where ũ is discontinuous. The weak derivative
of the displacement variation, that is the variated total strain, follows from (4.14)
consequently.
Similarly, the plastic strain variations becomes

ε̃p = ε̃p + h ∑
xi∈S(ũ)

JũK(xi) δxi . (4.15)
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Clearly in general S (ξ) 6= S (ũ).
Referring to the previous definitions, the first order stability condition (st-1D)

reads

0 ≤
∫

Ω\S(ũ)

(
σ
(

ũ′ − ε̃p

)
+ σP(α) |ε̃p|

)
dx + ∑

xi∈S(ũ)
σP(α) |JũK(xi)|

+
∫

Ω\S(ũ)

((
−1

2
S′(α) σ2 + w′(α)− pm(α)

)
α̃ + η2 α′ α̃′

)
dx

− ∑
xi∈S(ũ)

m(α) P(xi) α̃(xi) (4.16)

which must valid for any admissibele ζ̃. In (4.16) the new definitions for the vari-
ations of the displacement (4.14) and plastic strain (4.15) fields has been adopted.
Since this last inequality (4.16) must hold for all admissible ξ̃ the following results
state:

1. Equilibrium equation. Taking ε̃p = 0, α̃ = 0 and S (ũ) = ∅ one easily obtains
that the stress field is constant in space i.e.

σ(x) = σ, ∀ x ∈ Ω. (4.17)

2. Plasticity yield condition. Taking ũ = 0 and α̃ = 0 the first order stability
condition (4.16) results in

∫

Ω\S(ũ)

(
σ
(

ũ′ − ε̃p

)
+ σP(α) |ε̃p|

)
dx + ∑

xi∈S(ũ)
σP(α) |JũK(xi)| ≥ 0 (4.18)

leading to
σ ≤ σP(α(x)) , ∀ x ∈ Ω (4.19)

regardless to the domain S(ũ).

3. Damage yield condition. Finally, taking ũ = 0 and ε̃p = 0 the first order stability
condition (4.16) becomes

∫

Ω\S(ũ)

((
−1

2
S′(α) σ2 + w′(α)− pm(α)

)
α̃ + η2 α′ α̃′

)
dx

− ∑
xi∈S(ũ)

m(α) P(xi) α̃(xi) ≥ 0 (4.20)

Integrating by parts the term α′ α̃′ one obtains by standard arguments of Cal-
culus of Variations the following conditions on both the regular part of the
domain Ω \ S(ξ) and the singular parts S(ξ),

−1
2
S′(α) σ2 + w′(α)− pm(α)− η2 α′′ ≥ 0, ∀ x ∈ Ω \ S(ξ) (4.21a)

−m(α) P(xi)− η2Jα′K ≥ 0, ∀ x ∈ S(ξ) (4.21b)

α′(0) ≤ 0, α′(L) ≥ 0. (4.21c)
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It is worth noting that the condition (4.21b) allows the derivative of the damage
field to suffer jumps if and only if plasticity occurs with a singularity. Clearly, since
the bulk damage criterion (4.21a) relies on the accumulated plastic strain p, if the
damage field is continuous in a point at a certain instant, by virtue of (4.8), this point
could never have been a singular point before.

Noting that ũ(0) = ũ(L) = 0 implies

∫

Ω\S(ũ)
ũ′ dx + ∑

xi∈S(ũ)
JũK(xi) = 0, (4.22)

one easily verifies that the equilibrium equation (4.17), the plasticity yield condition
(4.19) and the damage yield criterion represented by (4.21a)-(4.21c) are sufficient to
satisfy local stability (4.16) at first order.

4.1.2.3 Energy balance

Referring to the general definition (2.50) the regular energy balance for the in-
vestigated model reads

0 =
∫

Ω\S(ũ)

(
σ
(
u̇′ − ˙εp

)
+ σP(α) | ˙εp|

)
dx

+
∫

Ω\S(ũ)

(
−1

2
S′(α) σ2 + w′(α)− pm(α)

)
α̇ + η2 α′ α̇′ dx

+ ∑
xi∈S(ũ)

(σP(α) |Ju̇K(xi)| −m(α) P(xi) α̇(xi))− σ(L) U̇ (4.23)

Using the identity (4.22) given by the boundary conditions and integrating by parts
the term α′ α̇′, (4.23) leads to

0 =
∫

Ω\S(ũ)

(
σP(α) | ˙εp| − σ ˙εp

)
dx

+
∫

Ω\S(ũ)

(
−1

2
S′(α) σ2 + w′(α)− pm(α)− η2 α′′

)
α̇ dx

+ ∑
xi∈S(ũ)

(
−m(α) P(xi)− η2 Jα′K

)
α̇(xi) + ∑

xi∈S(ũ)

(
σP(α) |Ju̇K(xi)| − σ Ju̇K(xi)

)

+ η2 (α′(L) α̇(L)− α′(0) α̇(0)
)

. (4.24)

Using the plasticity yield criterion (4.19), the damage yield criteria (4.21a)–(4.21c)
and the irreversibility condition (4.12), one finally obtains the consistency relations
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and the plastic flow rules:
(
−1

2
S′(α) σ2 + w′(α)− pm(α)− η2 α′′

)
α̇ = 0, ∀ x ∈ Ω \ S(ξ) (4.25a)





˙εp ≥ 0 if σ = σP(α)
˙εp ≤ 0 if σ = −σP(α)
˙εp = 0 if |σ| < σP(α)

, ∀ x ∈ Ω \ S(ξ) (4.25b)

(
−m(α) P(xi)− η2 Jα′K

)
α̇(xi) = 0, ∀ x ∈ S(ξ) (4.25c)





Ju̇K ≥ 0 if σ = σP(α)

Ju̇K ≤ 0 if σ = −σP(α)

Ju̇K = 0 if |σ| < σP(α)

, ∀ x ∈ S(ξ) (4.25d)

α′ α̇ = 0, x = {0, L} . (4.25e)

Note that the consistency equation and the plasticity flow rule hold on the singular
set too.

4.1.3 The general assumptions

With regard to the previous Chapter when the homogeneous solution is (or be-
comes) not stable a non-homogeneous solution must appear. Nevertheless, limited
to the first order stability condition, the homogeneous solution is still admissible.
Obviously, non homogeneous solutions involve localizations of the state functions
and must satisfy at least the first order stability condition (4.16) too. In the next
section attention is given to the construction of a single localization regardless of
the global response which is investigated in a later section.

4.2 The construction of localizations

In this section a procedure for the construction of a single localization zone is
shown for several different cases depending on the constitutive parameters and re-
flecting the order in which plasticity and damage occur. The global response is
instead obtained in the consecutive section. Nevertheless, one attributes the study
to four meaningful cases, the same already introduced in the previous chapter. All
other possible localized evolutions simply become a combination of such fundamen-
tal cases. These can be classified depending on whether an initial plastic or damage
phase occurs:

• damage localization zone with initial vanishing plasticity (E-D-* phase);

• damage localization zone with initial non vanishing plasticity (E-P-* phase);

or whether plasticity evolves during the evolution of the localization zone:

• evolution of the damage localization without a plastic evolution (*-D);

• evolution of the damage localization with a plastic evolution (*-PD);



4.2 The construction of localizations 85

The attention is here limited on the formation and evolution of only one internal
localized damaged zone, thus excluding from the analysis damage localizations near
the boundaries and the interactions between multiple damage profiles. Obviously,
with respect to the homogeneous case, the damage gradient term in the dissipation
potential plays a crucial role since the damage yield condition becomes a differential
equation in α from which the damage profile is constructed.

The analysis starts when the damage yield criterion is satisfied somewhere in the
bar as an equality. This instant tD corresponds either to the end of an elastic phase
if σD(0, 0) < σP(0) or at the end of a plastic phase σD(0, 0) ≥ σP(0, 0). When t > tD

it is assumed that the stress σt is monotonically decreasing from σtD to 0 because of
the softening properties of the model.

Starting from an undamaged and not plasticised state, the purpose is to de-
termine the damaged localization profile α(x) and the corresponding plastic strain
fields εp(x) and p(x). This aim is achieved by controlling the stress σ: once the
critical value σ = σD(p, 0) is reached, the material softening response is investigated
by decreasing the stress continuously from σD(p, 0) to 0.
In particular, an abstract sequence of the necessary steps for the construction of a
single localization is listened below:

1. A homogeneous undamaged state, where σ = σD, is chosen to start with;

2. The strong form (4.21a) of the the damage yield condition, a differential equa-
tion in α, is initially used to determine the damage profile as σ is decreased. At
this stage no singular points are assumed, S(ξ) = ∅. This analysis produces
a function σ → ασ(x) mapping any stress level in the damage profile at con-
stant plasticity (ṗ = 0) . The damage irreversibility condition is then explicitly
considered.

3. The violation of the plastic yield condition is checked for all σ. A violation may
occur if in some point σ > σP(ασ). In this case, singular points may appear,
S(ξ) 6= ∅, and all conditions (4.21a)-(4.21b) must be used together with the
plastic criterion (4.19) to modify the construction and fulfil all the conditions.

Thus, the problem reduces at this stage to the study of one localized zone only, say
the fields (u, εp, p, α) in the domain S = (x̄− D, x̄ + D). Here and in the following,
D and x̄ denote respectively half the size of the localization zone and the position
of its center.
Hereafter, if there is no risk of confusion, the explicit dependence on time t of the
state fields will be omitted.

4.2.1 E-D-* case

In this case, the instant where a localization may appear corresponds to the end
of the elastic phase. Since σD(0, 0) < σP(0) no plasticity has occurred before, hence
tyI = tD. The starting state for the construction of a localisation is homogeneous,

u(x) =
σD(0, 0)

E0
x, εp = p = α = 0, at t = tyI. (4.26)

The analysis is traced by the studies carried out in Pham, Marigo, and Maurini 2011
and Pham and Marigo 2011. Here, in addition, the irreversibility condition will also
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be explicitly considered. Initially no singular points are considered inasmuch the
plastic criterion is not attained. The localization process is then governed by the
damage yield criterion,

− 1
2
S′(α) σ2 + w′(α)− η2 α′′ = 0, in S . (4.27)

This last autonomous second order differential equation is an Euler-Lagrange equa-
tion which admits a first integral,

− S(α) σ2 + 2w(α)− η2 α′2 = C, ∀ x in S . (4.28)

The constant C is determined by the boundary conditions which depend on the
irreversibility condition. In the most general case one has

η2 α′(x)2 = H(σ, α(x) , C) , ∀ x in S (4.29)

where H : [0, σD(0)]×[0, 1)×R→ R and

H(σ, α, C) := −S(α) σ2 + 2w(α)− C. (4.30)

For the determination of the constant C two different situations are possible.
Regardless of irreversibility if one assumes initially as boundary conditions for

the damage profile the matching conditions with the elastic zone

α(x̄± D) = α′(x̄± D) = 0 (4.31)

then obtains
C(σ) = −S(0) σ2 + 2w(0) . (4.32)

In this case, for assigned values of σ, one notes that H(σ, 0, C(σ)) = 0. If the
function H(σ, ·, C(σ)) does not have any other zero, then, considering the bound-
ary conditions, equ. (4.29) has only the trivial solution α(x) = 0. However, the
assumptions (2.23) ensure that H(σ, ·, C(σ)) has at least one non-vanishing zero,
say 0 < α∗(σ) < 1. Since α ≥ 0 and ηα′ = ±

√
H(σ, α, C(σ)), by standard arguments

the damage profile has a maximum in x̄ such that α(x̄) = α∗(σ) and α′(x̄) = 0. It is
then possible to construct the damage profile in the localization zone by means of

ηα′ = sign(x− x̄)
√

H(σ, α, C(σ)), ∀ x in S . (4.33)

The damage field is symmetric with respect to x̄ where damage attains its maximum
value, α∗(σ). By separating the variables x and α in (4.33) one gets the damage field
ασ(x) in an implicit form,

x− x̄ = η
∫ α∗

α

1√
H(σ, β, C(σ))

dβ. (4.34)

Thus one has drawn the damage field with respect to the stress level. The obtained
damage field ασ(x) depends on the stress. The half-damage support D becomes a
function of σ an from (4.58) simply reads

D(σ) = η
∫ α∗

0

1√
H(σ, β, C(σ))

dβ. (4.35)

The question is now whether the constructed map σ → ασ(x) satisfies at any
point x ∈ S the irreversibility condition or not:
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x̄x̄− D(σ2) x̄ + D(σ2)

ασ2

ασ1

α∗(σ2)

α∗(σ1)

0

1

Figure 4.1: Admissible and not-admissible evolutions for the damage profile. The
black, thick curve represents an admissible evolution while the dashed curve vio-
lates the irreversibility condition in the red part and hence represents a not admis-
sible evolution

1. If for any σ the damage field σ → ασ(x) satisfies the irreversibility condition,
that is

∀ σ2 < σ1, ασ2(x) ≥ ασ1(x) , ∀x ∈ Sσ1 , (4.36)

the construction is admissible. In this last relation Sσ1 = (x̄− D(σ1) , x̄ + D(σ1));

2. On the contrary, if a σ2 < σ1 exists such that in a subset of S the damage field
decreases, that is

∃ σ2 < σ1, ⇒ ασ2(x) < ασ1(x) , for some x ∈ Sσ1 , (4.37)

the solution is not admissible and a different construction is proposed.

Both these situations are represented in Fig. 4.1.
If the irreversibility is no longer satisfied from a certain stress level on, a different

construction is proposed. Let α0(x) be the last damage profile for the given stress
σ0 which satisfies the irreversibility condition. The aim becomes to find for a σ < σ0
a new damage profile which satisfies the irreversibility condition and the first order
stability condition, and hence is continuous with a continuous space derivative. This
can only be achieved if one admits that only a subset S ⊃ Ŝ =

(
x̄− D̂, x̄ + D̂

)
with

D̂ < D(σ0) continues to evolve while the remainder of the damage field is subjected
to an elastic unloading.
To obtain the new profile, a different constant C in (4.30) has to be found through
different boundary conditions. The problem is to find α̂σ(x), the damage profile that
continues to evolve and D̂ where the profiles α̂ and α0 match.
The new constant Ĉ is given by

Ĉ
(
σ, D̂

)
= −S

(
α̂0
(

x̄− D̂
))

σ2 + 2w
(
α̂0
(
x̄− D̂

))
− η2 α̂2

0
(

x̄− D̂
)

(4.38)

so that the new maximum damage level reads

α∗
(
σ, D̂

)
: H
(
σ, α, Ĉ

(
σ, D̂

))
= 0. (4.39)



88 Non-homogeneous evolutions

α∗0

x̄x̄− D x̄ + D

α

α̂

α̂∗

0

1

α0

x̄ + D̂x̄− D̂

Figure 4.2: The solid black thick line represent the modified construction that satis-
fies irreversibility. The solid red branch is the profile which does not evolve because
subjected to an elastic unloading while the blue branch represents a still evolving
profile. The solid gray curves represent the past damage evolution for a decreasing
stress.

The unknown D̂ is found forcing the center of the localization to remain the same
for symmetric reasons, namely

D̂ : D̂− x̄ = η
∫ α∗(σ,D̂)

α(x̄−D̂)

1√
H
(
σ, β, Ĉ

(
σ, D̂

)) dβ. (4.40)

Most of the time this last relation cannot be resolved explicitly and a numeric scheme
has to be adopted. A numeric implementation has been carried out though the soft-
ware Mathematica R©. Once the new damage support D̂ has been found the damage
profile in the evolution domain Ŝ is given by the implicit relation

α̂σ(x) : x− x̄ = η
∫ α̂∗

α̂

1√
H
(
σ, β, Ĉ

) dβ, (4.41)

that combined with the damage profile subject to the elastic unloading α0 gives the
overall damage evolution,

ασ(x) =

{
α̂σ(x) , ∀ x ∈ Ŝ
α0(x) , ∀ x ∈ S \ Ŝ .

(4.42)

This last construction is depicted in Fig. 4.2.
Now that one is able to construct damage evolutions which can satisfy the irre-

versibility and are based on the first order stability condition another question arise.
Namely if during such evolution σ→ ασ the plastic yield criterion is attained or not.
Two cases are possible:

1. During all the evolution the plastic criterion is never attained,

σ < σP(ασ(x)) , ∀x ∈ S ; (4.43)
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2. During the evolution it exist a stress level σ and at least one point x where the
plastic yield condition is violated,

∃ x ∈ S , σ > 0, such that σ ≥ σP(ασ(x)) ; (4.44)

In case 1 the solution is admissible and the damage process becomes a candidate for
the global response since it fulfils all the requirements of the first order stability. On
the other hand, case 2 realises a process which at a certain stress level violates the
plastic criterion. Hence the process becomes no more stable and a new solution has
to be found. In this last case, a different construction is proposed. More specifically
all conditions (4.21a)-(4.21b) has to be taken into account and singular points may
arise leading to an evolution in the process zone of both damage and plasticity.

One can preliminary identify the evolutions corresponding to the case 1 with an
E-D response while the case 2 with E-D-PD response.

4.2.1.1 E-D-PD case

If during the construction of the localization exposed in the previous section the
plastic criterion is violated, say at t = tP = tyII, a singular point appears exactly in
the center of the damage profile which corresponds to its maximum value. In this
section it is assumed for sake of simplicity that the presence of this singular points
is ensured for any t > tP.

More specifically the plastic yield condition could be attained only in x̄ since
the damage profile has only one maximum in x = x̄ and α 7→ σP(α) is mono-
tonically decreasing. The critical stress level where the plastic criterion is violated
is σ̄ = σP(ασ(x̄)) . This means that in the construction of a localization the maxi-
mum value of the damage field is not anymore dictated by the condition α′(x̄) = 0
where H = 0 but by

ασ(x̄) = ᾱ(σ) = σ−1
P (σ) . (4.45)

Moreover the derivative of the damage profile must suffer a jump in the same point;
Indeed, for any σ ≤ σ̄ the center of the localization becomes a singular point S(ξ) =
{x̄}. Since the damage profile in the connected sub-regions Ω \ S(ξ) is still governed
by (4.21a) and the accumulated plastic strain is zero in S \ {x̄} the damage field is
given by

x− x̄ = η
∫ ᾱ(σ)

α

1√
H(σ, β, C(σ))

dβ, (4.46)

where ᾱ is given by (4.45). Clearly the damage profile is still symmetric with respect
to the center x̄ but its derivative is not anymore continuous. A jump Jα′K must occur
in x̄. Its value reads by means of (4.29)

Jα′K(x̄) = − 2
η

√
H(σ, α∗, C(σ)), (4.47)

from which one deduces through (4.21b) the coefficient (4.8) of the accumulated
plastic strain Dirac measure as

P(x̄) =
σ′P(α) Jα′K(x̄)

η2 . (4.48)
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α∗0

x̄x̄− D x̄ + D

αα̂

α̂∗

0

1

α0

x̄ + D̂x̄− D̂

ᾱ

Figure 4.3: The solid black thick line represent the modified construction that satis-
fies irreversibility. The solid red branch is the profile which does not evolve because
subjected to an elastic unloading while the blue branch represents a still evolving
profile with a jump in its derivative in x̄. The solid gray curve represent the damage
evolution if there was not plasticity.

In the most general case, where irreversibility has to be taken into account, the
problem becomes for an assigned stress σ < σ̄ to find D̂ given by

D̂ : D̂− x̄ = η
∫ ᾱ

α(x̄−D̂)

1√
H
(
σ, β, Ĉ

(
σ, D̂

)) dβ. (4.49)

The constant Ĉ
(
σ, D̂

)
is the same as (4.38).

The damage profile in Ŝ is given in this case by

α̂σ(x) : x− x̄ = η
∫ ᾱ

α̂

1√
H
(
σ, β, Ĉ

) dβ, (4.50)

and the overall damage function reads

ασ(x) =

{
α̂σ(x) , ∀ x ∈ Ŝ
α0(x) , ∀ x ∈ S \ Ŝ .

(4.51)

The damage construction for a E-D-PD evolution is shown in Fig. 4.3.
The global evolution of the localization is

σ ≥ σ̄: {
ασ(x) given in (4.42);
p = εp = 0

(4.52)

σ < σ̄: 



ασ(x) given in (4.51);

p = εp =

{
0, ∀ x ∈ S \ {x̄}
P(x̄) δx̄ given in (4.48);

(4.53)
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4.2.2 E-P-* case

The instant tyI, when the first dissipation phenomenon is triggered, corresponds
in this section to the instant when the plastic yield criterion is attained as an equality,
tyI = tP. From that instant on t ≥ tyI, since the underlying plasticity model is a
perfect plasticity model, a spatially indefinite plastic strain distribution could be
expected varying from a uniform plastic distribution to a single point localization.
For sake of simplicity it is assumed first that plasticity evolves for tyI ≤ t ≤ tyII

uniformly along the bar, say p(x) = p̄
(
t− tyI

)
/
(
tyII − tyI

)
. The case with a non

uniform plastic evolution deserves a more careful treatment although the difficulty
is not conceptual but only in the calculations.

Since p 7→ σD(α, p) is a decreasing function with respect to plasticity and limp→∞ σD(α, p) =
0 it exists necessarily a second instant tyII where the damage criterion is reached,
t = tyII. Clearly a pure plastic evolution for t ≥ tyII is impossible and either the evo-
lution continues only with a damaging phase corresponding to an E-P-D response
or with a coupled plasticity-damaging phase corresponding to an E-P-DP response.
Which evolution will actually take place depends on the constitutive functions. In
the following both cases are investigated and the relative localization constructions
explained.

Moreover it is assumed that once a response is triggered it persists during all
the evolution, that is alternate phases of a pure damage evolution and coupled
plasticity-damage evolutions are excluded.

Focusing on the construction of localized solutions, for both cases the starting
state is homogeneous while the state variables read

u(x) =
σD(0)
E0

x, εp(x) = p(x) =
w′(0)− S′(0) (σP(0))

2

2m(0)
, α(x) = 0, (4.54)

at t = tyII and ∀x ∈ [0, L].

4.2.2.1 E-P-D case

In this case during the localization process plasticity stops and does not evolve
anymore. No singular points occurs, S(ζ) = ∅, and the damage evolution is dictated
as for the E-D response by the damage yield criterion (4.21a) where in this case an
initial uniform plastic distribution has to be taken into account,

− 1
2
S′(α) σ2 + w′(α) + pm(α)− η2 α′′ = 0, ∀ x in S , (4.55)

From now on, the procedure for the construction of the damage curves is the same
as Sec. 4.2.1 except the presence of the term pm(α). The first integral (4.28) changes
into

− S(α) σ2 + 2 (w(α) + pM(α))− η2 α′2 = C, ∀ x in S ., (4.56)

while the function H in (4.29) becomes also a function of the accumulated plastic
strain such that H : [0, σD(0)]×[0, ∞)×[0, 1)×R→ R and

H(σ, p, α, C) := −S(α) σ2 + 2 (w(α) + pM(α))− C. (4.57)

In this last definition the only difference with Pham and Marigo 2011 is represented
by the additional term pM(α) which however is decisive in the characterization of
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the response. With such a change the damage field ασ(x) is given in the implicit
form

x− x̄ = η
∫ α∗

α

1√
H(σ, p, β, C)

dβ. (4.58)

Clearly (4.58) refers to the case where irreversibility is automatically fulfil. On the
contrary one has to modify the construction as in case 2 on page 87 where a con-
struction that accounts for irreversibility is investigated and proposed. In this last
case the constant C and the width D of half a localization change respectively to
Ĉ and D̂. The damage profile evolution is given by (4.42) coherently changed with
the just introduced new definitions and the plastic strain remains constant both in
time and space, that is equal to p given by (4.54). Fig 4.2 is still representative of the
E-P-D evolution.

It is worth noting that the initial width D of the localization is greater for
the E-P-D response compared to the E-D response. Indeed, for equal damage
terms, H(σ, p, α, C) ≥ H(σ, 0, α, C) = H(σ, α, C).

4.2.2.2 E-P-DP case

With respect to the previous analyses, in this case after the instant tyII = tD

has been reached, plasticity must continue to evolve since the damage profile, con-
structed by assuming no singular points, violates the plastic criterion. That is, ασ(x)
in (4.58) is such that σP(α) < 0 somewhere. Clearly the first point where the plastic
criterion is attained is the center of the localization zone. Then as candidate for
a stable solution is to take the center of the localization zone as a singular point
where plasticity can localise. Besides, it is assumed for sake of simplicity that plas-
ticity continues to evolve during all the process so that intervals where plasticity
alternatively evolves or not are excluded.

The passages that follows are the same as in Sec. 4.2.1.1 except for the presence
of an initial uniform accumulated plastic strain in the governing equations which
slightly modifies the results. The center of the localization zone x̄ becomes a singular
point, S(ζ) = {x̄}, and the maximum damage level, attained in x̄, is dictated for a
given stress by (4.45). In the region S \ {x̄} the damage profile descends from (4.21a)
leading to the implicit definition

x− x̄ = η
∫ ᾱ(σ)

α

1√
H(σ, p, β, C)

dβ, (4.59)

where H(σ, p, β, C) is the same function and the same meaning as (4.57). By the same
line of reasoning of Sec. 4.2.1.1 the damage profile suffers a jump in its derivative
in x̄ given in (4.47) while the coefficient (4.8) of the accumulated plastic strain Dirac
measure is (4.48). In case where during the localization process irreversibility is not
satisfied, the same changes in the construction of the damage profile of Sec. 4.2.1.1
have to be adopted. The damage profile evolution is given by (4.51) coherently
modified with the just introduced new definitions while the global evolution of the
localization reads

σ = σ̄: {
ασ(x) = 0;
p = εp = p̄

(4.60)
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x̄x̄− D x̄ + D

α

α̂

0

1

α0

x̄ + D̂x̄− D̂

ᾱ

Figure 4.4: The solid black thick line represent the modified construction that satis-
fies irreversibility. The solid red branch is the profile which does not evolve because
subjected to an elastic unloading while the blue branch represents a still evolving
profile. The solid gray curves represent the past damage evolution for a decreasing
stress. It is worth to remark the damage derivative jumps at the tip of the profiles
from the very beginning of the evolution and the initial finite support.

σ < σ̄:




ασ(x) given in (4.51);

p = εp =

{
p̄, ∀ x ∈ S \ {x̄}
p̄ + P(x̄) δx̄ given in (4.48);

. (4.61)

Figure 4.5: Example of the function H.
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4.2.3 Incipient damage phase

With regard to the introduced responses, it is interesting and important to study
the limit behaviour of the damage profile (4.58) and its support 2 D for an incipient
localisation, namely for ᾱ→ 0 and σ→ σD(0, p̄). To this aim, one expands up to the
second order the function H(σ, α, p̄) near α = 0:

H(σ, α, p̄) = A1 α− A2 α2 + o
(

α2
)
' A2 α (α∗ − α) , (4.62)

where

α∗ = A1/A2, A1 := S′(0) (σD(0, p̄)2 − σ2), (4.63)

A2 := S′′(0) σ2
D(0, p̄) /2− w′′(0)− p̄m′′(0) > 0. (4.64)

Clearly the constant C in H is given in the most general case by (4.56). The condition
for a positive A2 follows from (2.23)1. Consequently, the limit value of the half
support D0( p̄) is explicitly evaluated to be

D0( p̄) = lim
ᾱ→0

D(ᾱ, σD(0, p̄) , p̄) '
√

η2

A2
lim
ᾱ→0

∫ ᾱ

0

1√
β (α∗ − β)

dβ

=

√
η2

A2
lim
ᾱ→0

[
2 arctan

(√
β

α∗ − β

)]ᾱ

0

.

(4.65)

For any examined response one then obtains:

E-D-* response In this case

2 D0 = D0(0) = π η

(
1
2
S′′(0) σ2

D(0, 0)− w′′(0)
)−1/2

(4.66)

since the the zero α∗ of the H function does coincide with the maximum value
ᾱ of the damage profile. Solution (4.66) corresponds to the one given in Pham
and Marigo 2011;

E-P-D response In this case

D0 = D0( p̄) = π η

(
1
2
S′′(0) σ2

D(0, p̄)− w′′(0)− p̄m′′(0)
)−1/2

(4.67)

for the same reasonings as the previous cases. A remark is that the support
D0( p̄) of the localization profile of a plasticized bar can be bigger or smaller
than D0(0) depending on the assumed sign of p̄m′′(0) in A2.

E-P-DP response In this case the limit in (4.65) becomes

lim
ᾱ→0

[
2 arctan

(√
β

α∗ − β

)]σ−1
P (σD(ᾱ,p̄))

0

= χπ (4.68)



4.2 The construction of localizations 95

where χ ∈ [0, 1]. The maximum damage value is not α∗ but a fraction of it
dictated by the plastic yield criterion. Hence

D0 = D0( p̄) = χπ η

(
1
2
S′′(0) σ2

D(0, p̄)− w′′(0)− p̄m′′(0)
)−1/2

(4.69)

for the same reasonings as the previous cases.

Twice the length D0 physically represents the minimal length of the bar in order
to develop a damage localization profile provided the boundary conditions α(0) =
α(L) = 0.

Finally note that, under the same hypothesis of incipient damage allowing the
Taylor expansion of the H function near α = 0, the dependence of α(x) in (4.58) can
be made explicit:

α(x) =
S′(0)

(
σ2
D − σ2)

A2
cos2 π (x− x̄)

2 D0( p̄)
. (4.70)

4.2.4 The case of non-uniform plastic strains

In the previous two subsections, the analysis has been limited to the study of
damage profiles in presence of an initially uniform accumulated plastic strain. As
only perfect plasticity is considered, the occurrence of such a uniform plastic field
p (x) = p̄ is only one out of infinite admissible solutions for p(x). Indeed it is
well-known the non-uniqueness of the problem of a perfectly plastic bar under trac-
tion. In this section, is is briefly discuss how such loss of uniqueness affects the
contemporary evolution of damage and plasticity.

A first important consideration is the following: the presence of a damage yield
stress, σD(p, α) depending on both the accumulated plastic strain and the damage
level, induces the existence of a critical value pc such that

σP(α = 0) = σD(pc, α = 0) . (4.71)

Indeed, if in some point p reaches the critical value pc, a further evolution of plas-
ticity alone violates the damage yield condition (4.21b)1 being p 7→ σD(p) strictly
decreasing, the damage yield stress, with α remaining vanishing, becomes bigger
than the current stress value. Hence, if one has an initial non uniform accumu-
lated plastic distribution p(x) < pc, clearly the admissible evolutions allow only the
growth of p. However, if the accumulated plasticity reaches the critical value in a
set of points, say p(x) = pc for x ∈ Sc, then several bifurcations of the equilibria are
possible.

A first bunch of possibilities arises if within the set Sc there is a connected region
of diameter larger than 2 D0(pc); in this case the analyses carried on in the previous
sections are valid as the critically plasticized zone is wider than the minimal support
requested for a stemming damage profile. Nevertheless one could also increment the
accumulated plastic strain outside Sc: only when the whole bar has been plasticised,
i.e. Sc → [0, L] the evolution of damage evolution becomes necessary, Fig. 4.6.

Another set of different equilibria, satisfying the yield conditions, are possible if
the set Sc cannot contain a whole damage profile. Indeed one could again increment
the accumulated plastic strain outside Sc without allowing damage evolution; in
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this case the set Sc can only grow until containing the minimal support 2 D0(pc).
However it is remarkable that the damage yield condition (4.21a), dictating the shape
of the damage profile when p(x) is considered spatially constant, could still be
solved as an equation for a non-uniform accumulated plastic strain. Clearly, this
involves the solution of an ordinary differential equation with variable coefficients.

All these equilibria are not necessarily local minima; checking the associated
second-order stability conditions is however beyond the current aims.

0 L

pc

p

Sc

Figure 4.6: Non-uniform plastic distribution example and possibly its evolution

4.3 The global response

Starting from the construction of the various possible localizations, this section
focuses on aspects for recovering the global response. It turns out that a cohesive
fracture can be described. Roughly speaking a cohesive fracture response is achieved in
the bar if a jump of the displacement occurs and, nevertheless, the bar still sustains
a non vanishing stress. In the presented model, this kind of response relies on the
coupling between the evolutions of damage and plasticity driven by the equations
of Sec. 4.1.

The global response relies on the construction of a localisation. Due to the com-
plexity of the model this last step has mostly to be solved numerically. Nevertheless
a special case allows an analytical solution that gives a deep insight in the model.
Examples based on the numeric construction of the localisation are investigated in
the following section while a the analytic solution is presented in the submitted
paper, Chap. B.

Having in the previous section constructed the damage profiles and examined
the evolution of the accumulated plastic strain for all the values of σ during the
localisation process, one is finally able to recover the global response in terms of
stress-displacement and to discern the response through the energy contributions.

It is important to note that once a localized damage profile appears, the rest of
the bar is elastically unloaded; this is due to σ being constant along the bar and to
the softening material behaviour. Hence the global response for given constitutive
parameters depends upon the length of the bar.

Since in the one dimensional setting the position where a localization appears
is arbitrary and since no localizations at the boundaries are taken into account the
localization zone is assumed to be placed at the center of the bar. Such choice clearly
does not affect the global response of the bar. Hereafter only a single localization is
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assumed in the bar for simplicity.
The only load conditions considered in this section are those of a tearing test (soft

devices). Nevertheless in case where snap-back phenomena occurs the response
becomes stress driven. Hence, the global response referring to a traction bar test
is assembled in two steps: first the right bar end is monotonically teared up to the
instant t ≤ tD; then from that instant on, since a snap-back phenomenon may occur
and due to the softening behaviour of the damage model, the response is obtained
by decreasing the stress and assuming the evolution of a localized zone.

First the stress-displacement response is investigated. The response is after char-
acterized by means of the energy contributions. In case where a singular point
appears a cohesive fracture model is retrieved.

4.3.1 Stress-displacement response

Under the aformentioned assumptions, the stress-displacement relation simply
reads

u(x) =





∫ x

0

σ

E(α(s))
ds, for x < x̄,

∫ x

0

σ

E(α(s))
ds + JuKx̄, for x > x̄.

(4.72)

Moreover, the cohesive fracture response is described by the stress depending on the
displacement jump amplitude by means of the accumulated plastic strain, namely

σ = σ(JuK) . (4.73)

An analytical example of this relation can be found in equations (71) and (75) of
the submitted paper, Chap. B, while is numerically retrieved in the forthcoming
sections.

4.3.2 Cohesive fracture and energy contributions

The elastic stored energy is given for the one dimensional setting by (3.4). The
total dissipated work instead descends from (2.27). For the particular choice of the
constitutive functions the dissipated DD is a function of state and reads

DD
(

p, α, α′
)
=
∫ L

0

(
w(α(x)) + p̄(x) σP(α(x)) +

1
2

η2 (α′(x)
)2
)

dx + P(x̄)σP(α(x̄)) .

(4.74)
The total dissipated work could be split into more contributions without an univocal
partition. It is reasonable for example to assume DD = Dp + Dd corresponding
respectively to the work dissipated by plasticity and the work dissipated by damage.
More specifically

Dp( p̄) =
∫ L

0
p̄(x) σP(0) dx (4.75)

which corresponds to the plastic dissipated work accomplished by the regular part
of the accumulated plastic strain before damage is triggered. Instead the value

G = DD
(

p, α, α′
)
−Dp( p̄) (4.76)
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may be associated to the work dissipated by plasticity and damage in the localization
zone. Such contribution can be identified with the fracture energy, Pham et al. 2011.
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4.4 Non-homogeneous evolution examples

The aim of this section is to highlight through simple examples the virtues of the
proposed model and to give an overview on the wide range of possible responses
capable to be described. Both these analytical and numerical examples, which rely
on the construction of the localisation proposed in Sec. 4.2, are based on simple
but rather general constitutive choices. While the former examples are extensively
presented in the submitted article of Chap. B, the latter are hereafter investigated
with the following constitutive assumptions

E(α) = E0 (1− α)2 , w(α) = w0 α, σP(α) = σP0 (1− α)γ , m(α) = −σ′P(α) ,
(4.77)

which has already introduced for the homogeneous evolution, (3.58). The different
responses are obtained by considering slightly different numerical values for the
constants as shown in Tab. 4.1.

sequence w0/E0 σP0 /E0 γ

E-P-D
√

2 1 1

E-P-DP 2 1 2

E-D-PD 0.5 2 2

Table 4.1: Constitutive parameters for the non-homogeneous evolution examples

First, the construction of the damage profiles for the coupled model is compared
with the associated damage model where no plasticity has been taken into account.
Then, the global response of the various models is obtained by considering a bar
of length one and half the width of the first damage profile. The position of the
localization along the bar is indifferent with respect to the global response and hence
is assumed to be always centred in the middle.

In the following diagrams the gradient temperature colours correspond to a de-
creasing stress level from the maximum value (blue) down to the minimum value
(red).

max (σP(0) , σD(0, 0)) 0
σ

Figure 4.7: Legend for the stress values. Blue correspond to the maximum stress
level sustained by the bar while red stands for a vanishing stress

4.4.1 E-D response

This response corresponds to the pure damage model and has been already ex-
tensively detailed in several works, as Benallal and Marigo 2007; Pham 2010; Pham
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and Marigo 2011. Moreover, it has been demonstrated the inability of this response
to describe cohesive fracture, Sicsic and Marigo 2012.

4.4.2 E-D-PD response

This response involves the nucleation of a cohesive crack (PD stage) after an
initial purely damaging phase (D stage). Fig. 4.8 focuses on the construction of
the damage profiles and compares the coupled model Fig. 4.8b with the associated
damage model Fig. 4.8a. Several comments could be done about the construction.
First, irreversibility has been taken into account only for the coupled response using
the procedure exposed in (4.2) and not for the "pure" damage model. The initial half-
width D of the localization support is clearly the same for both models. Moreover,
the trends in Fig. 4.8b highlights the nucleation of a cohesive crack that arises when
a non-homogeneous damaging phase has already occurred. The initial smoothness
of the damage profiles is witness of the absence of plastic strain localizations. The
point where the damage profile starts to suffer a jump in its derivative corresponds
to a singular point and hence to a cohesive crack. Furthermore, for a given stress
level, the damaging state is sensible lesser in the coupled model than in the “pure”
damage model since plasticity dictates the maximum damage level.

Sm1 S0 S1

W1

W0

xDtD

Alpha

(a) Associated E-D response without damage irreversibil-
ity and plasticity

Sm1 S0 S1

W1

W0

xDtD

Alpha

(b) E-D-PD response with damage irreversibility. From a
damage level on, a jump of the damage derivative occurs

Figure 4.8: The construction of the damage profiles

The localization evolution can be also appreciate in the phase diagram α − α′,
Fig. 4.9. The phase diagram stands out the merging points of the evolving damage
curves with the unloading zones, necessary to guarantee irreversibility, as well as
the derivative jumps at the damage profiles tip.
Fig. 4.10 is representative of the spatial distribution of the damage profiles in the
one-dimensional bar.
Since the damage profiles suffer a jump in their derivative from a given stress level
on, a jump in the displacement field occurs which is represented with respect to the
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Figure 4.9: The phase diagrams α− α′ associated to the damage profiles in Fig. 4.8b.
The dashed gray curves represent the hypothetical damage profiles not constrained
partially excluded by the plastic limit
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xBoxD0

Alpha

Figure 4.10: The damage profiles evolution in a one-dimensional bar

stress level in Fig. 4.11. The stress vanishes only for a infinite jump of the displace-
ments. As a result this behaviour describes a cohesive fracture of Barenblatt’s type,
Barenblatt 1959.

Fig. 4.12 shows the evolution of the displacement fields along the bar. It is worth
noting the non vanishing elastic energy with the contemporary presence of a fracture
represented respectively by a non vanishing slope in the curves and a jump in the
displacement fields.

The global stress-displacement response is shown in Fig. 4.13 together with the
plastic and damage stress limits. The snap-back behaviour, typical for the associated
damage model, Benallal and Marigo 2007, stops when plasticity is triggered.

The energy contributions to the fracture energy are represented in Fig. 4.14 with re-
spect to the displacement jump. An initial fracture energy barrier occurs associated
with the evolution of only damage. Except for this barrier, the response represents
exactly a Barenblatt’s fracture model, Sec. 1.4.1 and (1.72). This last property will be
deepen after the next section in Sec. 4.4.4.
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Figure 4.11: Amplitude of the displacement jump at the damage profile tip with
respect to the stress level
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Figure 4.12: The displacement field evolution for different stress levels with a cohe-
sive fracture in the middle of the bar

4.4.3 E-P-D response

In the E-P-D response plasticity occurs only before the localization process.
A part the initial plastic phase the behaviour is quite similar to the E-D response, at
least qualitatively. Fracture occurs only at α = 1 and hence the can be considered
brittle. Nevertheless plasticity changes slightly the response compared to an equiv-
alent damage model. For example Fig. 4.15 shows the evolution of damage profiles
for the coupled plastic-damage model and the associated damage model where the
abscissa has been normalised with respect to the half width of the initial profile of
the damage model. In this case irreversibility has not affected in both cases the con-
struction. The coupled model shows a larger support of the damage profiles from
the very beginning of the evolution . In this case, plasticity increases the damaging
zone.

The phase diagram Fig. 4.16 is smooth since the plastic criterion is never attained
during the damage evolution. No singular points exits along the bar at any instant.
Fig. 4.17 and Fig. 4.18 represent respectively the damage and displacement evolution
in the bar. Clearly, since no plastic localizations occur the displacement field is
smooth without jumps.
In the stress-displacement response, Fig. 4.19, one can observe the interruption of
plasticity when damage starts to evolve since from that point on the plastic yield
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Figure 4.13: The stress-displacement diagram for the E-D-PD response: the elastic
phase (blue); the damaging phase (solid green); the coupled plasticity-damaging
phase (solid red); the damage yield stress (dashed green) and plastic yield stress
(dashed red) at the center of the localization zone
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Figure 4.14: The total fracture energy (blue) with the contribution of the damage
terms (green) and plasticity term (red) in (4.76)

criterion is never attained anymore. During the damaging phase a snap-back phe-
nomenon appears due to the instability of such model at t = tyII.
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(a) The construction of the damage profiles in case where
plasticity has not been taken into account
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(b) The construction of the damage profiles for the coupled
model

Figure 4.15: The construction of the damage profiles. For both cases irreversibility
is automatically satisfied
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Figure 4.16: The phase diagrams α − α′ associated to the damage profiles in
Fig. 4.15b

4.4.4 E-P-DP response

Like the E-D-PD response in Sec. 4.4.2 also the current response involves the
nucleation of a cohesive crack (PD stage) although it is preceded by a homogeneous
plastic phase. The ductile fracture starts from the very beginning of the localization
process. This model seems to own all the feature for describing ductile fracture in
metals where first a plastic phase occurs.
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Figure 4.17: The damage profiles evolution in a one-dimensional bar
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Figure 4.18: The displacement field evolution for different stress levels without frac-
ture but only damage
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Figure 4.19: The stress-displacement diagram for the E-P-D response: the elastic
phase (blue); the damaging phase (solid green); the coupled plasticity-damaging
phase (solid red); the damage yield stress (dashed green) and plastic yield stress
(dashed red) at the center of the localization zone

Fig. 4.20 compares the construction of the damage profiles of the coupled model
Fig. 4.20b with the associated damage model Fig. 4.20a. While for the damage model
the irreversibility condition is violated during the evolution, in the coupled model
irreversibility is automatically fulfilled. Moreover, in this case, the nucleation of a
cohesive fracture starts from the very beginning testified by the discontinuities of
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(a) The construction of the damage profiles in case where
plasticity has not been taken into account
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(b) The construction of the damage profiles where irre-
versibility is automatically fulfilled and a jump of the
derivatives occurs from the very beginning of the evolu-
tion

Figure 4.20: The construction of the damage profiles

the damage profiles during all the evolution of the process zone.
The evolution of the damage profiles and their derivative jumps at the center of

the localization zone are more appreciable in the phase diagram α− α′, Fig. 4.21.
Fig. 4.22 and Fig. 4.24 represent respectively the damage and displacement evolution
in the bar. Accordingly to the plastic localization, the displacement field suffers a
jump from the very beginning of the localization process. It is worth noting the non
vanishing elastic energy with the contemporary presence of a fracture represented
respectively by a non vanishing slope in the curves and a jump in the displacement
field.
Since the damage profiles suffer a jump in their derivatives from the maximum
admissible stress level on, a jump in the displacement field occurs which is repre-
sented with respect to the stress in Fig. 4.23. The stress vanishes only for a infinite
jump of the displacements. Hence this behaviour describes a cohesive fracture of
Barenblatt’s type, Sec. 1.4.1 and (1.72).
Fig. 4.25 represents the stress-displacement response. After the second yield instant
tyII both plasticity and damage evolves together at the center of the localization zone.
The fracture energy can be expressed in terms of the displacement jump JuK, Fig. 4.26.
The response is exactly the same as the Barenblatt model for cohesive fracture where
all the fracture energy is spent only for an infinite value of the displacement jump
as already pointed out by Fig. 4.23.
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Figure 4.21: The phase diagrams α − α′ associated to the damage profiles in
Fig. 4.20b. The dashed gray curves represent the hypothetical damage profiles not
constrained by the plastic limit
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Figure 4.22: The damage profiles evolution in a one-dimensional bar
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Figure 4.23: Amplitude of the displacement jump at the damage profile tip with
respect to the stress level
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Figure 4.24: The displacement field evolution for different stress levels with a cohe-
sive fracture in the middle of the bar
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Figure 4.25: The stress-displacement response for the E-P-DP response: the elastic
phase (blue); the damaging phase (solid green); the coupled plasticity-damaging
phase (solid red); the damage yield stress (dashed green) and plastic yield stress
(dashed red) at the center of the localization zone

4.5 Conclusions and perspectives

Having given a deep insight on the potentiality of the proposed plastic-gradient
damage model, one is in position to draw some conclusions:

Barenblatt’s cohesive fracture response The proposed model allows to recover the
Barenblatt’s cohesive fracture response for a simple and robust choice of the
constitutive parameters. While damage is responsible for the localization by
means of its gradient and for the degradation of the material stiffness, plastic-
ity is responsible for the cohesive behaviour since plastic strains localise as a
Dirac measure leading to a jump in the displacement field with a non vanish-
ing stress;

Wide range of possible responses By tuning conveniently the constitutive param-
eters it is possible to obtain a wide range of material responses depending on
how plasticity, damage or both succeeds.
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Figure 4.26: The total fracture energy (blue) with the contribution of the damage
terms (green) and plasticity term (red) in (4.76)

Of course the current analysis opens many perspectives:

Non-uniform plasticity It could be worth to investigate deeper the case of a non-
uniform plastic distribution at the stemming instant of a localization zone. The
limit behaviour of a localized plastic response before damage is also of interest.
It must be said however that although the perfect plastic model allows in the
one-dimensional setting infinite solutions, this is not often the case in many
higher dimensional problems since a structural positive hardening effect may
occur, Sec. 1.4.1.

Dugdale fracture model It has been proven that the proposed model is able to de-
scribe Barenblatt’s fracture model. It would be of interest to try to find ap-
propriate constitutive functions, evidently less regular, in order to reproduce
a Dugdale’s cohesive fracture which has a bilinear curve representing the re-
leased energy with respect to the crack amplitude.

Stability of the localized solutions An open and interesting question would also
be whether the constructed localized solutions are stable in sense of the second
order stability condition. Clearly the appropriate ground to face this task
seems to be only the numeric one since the problem becomes mathematically
extreme difficult.





Chapter 5

Numeric implementation and
simulations

In this section a numeric implementation of the non-homogeneous coupled model
introduced in Chap. 4 is proposed taking advantage of the energetic formulation
which is in and of itself discrete. The numeric simulations cover the most delicate
aspect of the problem, that is the ability of the algorithm to understand and describe
the plastic localization and the cohesive response. Although the finite element func-
tion spaces do not embed the capability to describe jumps, surprisingly a numerical
delocalisation effect appears where the mesh size h owns the role of a regularization
parameter. The adopted numerical approach is derived from the one detailed in
depth in Bourdin 2000; Bourdin, Francfort, and Marigo 2008 which stems out from
the regularization of the brittle fracture model.

Although numerical simulations are presented only for the one-dimensional trac-
tion bar test, the algorithm is also suited for further extensions in two-dimensional
or three-dimensional settings and different load scenarios.

These first numerical attempts fave been performed through the scalable finite
element library FENICS1.

5.1 The implementation

The numerical implementation takes its advantage from the variational formu-
lation. Indeed, the stability condition is reflected into the numerical strategy which
is essentially based on looking for (global) minimzizer of an appropriate energy
functional. There is always a debate surrounding global minimality as the proper
framework. In short, global minimality may sometimes lead to nonphysical evo-
lutions, but local minimality typically forbids crack initiation without singularities,
the essence of the one-dimensional model, see Bourdin, Francfort, and Marigo 2008.

For simplicity no external loads are taken into account in the numeric simula-

1http://fenicsproject.org/
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tions. Hence, instead of the total energy T , the internal workW is here considered,

W
(
u, εp, p, α

)
=
∫ L

0

1
2
E0

(
(1− α(x))2 + rs

) (
u′(x)− εp(x)

)2 dx

+
∫ L

0

(
σP0 p(x) (1− α(x))2 + w0 α(x) +

η2

2
(
α′(x)

)2
)

dx
(5.1)

which descends from assumptions (4.77) and is close to the one used in Bourdin
2000 apart the presence of plasticity.

The last two terms in (5.1) resemble the fracture regularization term in Bourdin,
Francfort, and Marigo 2008

Gc

(α

`
+ `

(
α′
)2
)

, (5.2)

with an appropriate change of the constants w0 and η. The material parameter rs
has the meaning of a residual stiffness. It is justified by the regularisation process
through Γ-convergence of the variational fracture problem, Sec. 1.4.1, and gains an
important role also for numerical reasons. A rs = 0 would lead to numerical insta-
bility while a too big rs would add some artificial rigidity worsening the accuracy
of the solution. On the other hand, the parameter η controls the width of the lo-
calization zone which tends towards zero as η → 0. Its physical meaning can be
associated to an internal material length, see Pham, Marigo, and Maurini 2011.

It is worth noting that the energy functional (5.1) is non-convex although it is
separately convex in any variable, Bourdin 2000. This remark gives a hint to the
numerical solution strategy. Indeed, seeking a global minimum for the solution and
taking advantage of this last property, it seems reasonable to adopt as descending
algorithm an alternate minimization respectively in the variables u, εp and α2.

The minimization of W with respect u at fixed εp and α is a straightforward
unconstrained optimization problem solved as an elastic problem with prescribed
boundary conditions.

The minimization with respect εp at fixed u and α is a nonlinear constrained
problem. Since no space derivatives involves the field εp the optimality condition is
local although non linear. Parallelization of the solution algorithm follows naturally
in this case since any point is independent from its neighbourhood. A solution
procedure can be found in Simo and Hughes 1998 which involves a standard return
mapping algorithm. Moreover this allows plasticity to evolve homogeneously along
the bar before damage is triggered.

The minimization with respect α at fixed u and εp is a box constrained quadratic
optimisation problem.

It is well known that such an algorithm applied to a non-convex energy may not
converge to a global minimizer but only to a critical point. This can be alleviated
by implementing a backtracking algorithm, relying on a necessary condition for op-
timality with respect to the time evolution, Bourdin, Francfort, and Marigo 2008.
In the current situation, when the competition between the three variables in the
energy takes place, a similar optimality condition can be imposed, but the construc-
tion of an evolution satisfying it is not as straightforward. Thus, in the sequel the
backtracking algorithm is not used.

2The adopted alternate minimization method is similar to the relaxation algorithm in the domain of
quadratic programming
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Another drawback of the alternate minimization algorithm is that no conver-
gence criteria are available. Nevertheless, a convergence criterion has to be adopted
with some caution. The convergence criterion is far from unique and well deter-
mined. In this case, several choices are possible which influence the accuracy of
the solution and the calculation speed. Different convergence criterions could be
considered, depending:

• on the choice of the tested quantity: variables or energies;

• possibly on the norm adopted for the convergence check;

• on the kind of tolerance: relative or absolute;

Convergence criterions based on the energy lead to inaccurate solutions. Both the
three variables u, p and α with their respectively L2, L2 and Linf norms were taken
into account for the convergence criterion. Moreover, the convergence has been con-
sidered passed at a given time step if the single variables has passed singularly a
relative fixed tolerance at a given iteration step of the alternate minimisation algo-
rithm 3. In addition to force an absolute tolerance turned out to an unaffordable
increase of alternate minimisation iterations for a given time step which turns out to
an increasing of the calculation time. Indeed, as will be immediately clear, plasticity
localises in few points and grows inversely proportional to the mesh size.

The numerical solution scheme for the one-dimensional traction bar test is sketched
in Fig. 1 where a time discretisation, related to the right-end imposed displacement,
has been assumed. Time and space discretisations are examined in the next section.

5.1.1 Time and space discretisation

While for the time discretisation the procedure is standard, the space discretisa-
tion of the variables fields requires a more delicate discussion.

The time analysis period [0, T] is discretised into N + 1 intervals of uniform or
not-uniform amplitude. The i-th time step ti ∈ (t0 = 0, t1, . . . , tN−1, tN = T), can be
meant as the evolution parameter once related to the active action. For the con-
sidered one-dimensional traction bar test the right-end of the bar is prescribed as
u(L) = U(t) = t.

The function spaces are discretised through finite elements over the domain.
Both the displacement and damage fields are projected over a piecewise affine finite
element space (1-Lagrange elements) over the same triangulation domain. Moti-
vations for not using higher degree finite elements can be found for example in
Bourdin 1998. Conversely, the plastic strain field εp is projected over a discrete dis-
continuous space (Quadrature elements) due to the locality of the minimisation.
These points correspond to the Gauss integration points although different choices
are possible. For the one-dimensional case these correspond to the center of the
finite elements.

3 Here, as absolute and relative tolerances λabs and λrel for a variable x, the below conditions are
respectively meant,

|xi − xi−1| ≤ λabs,
∣∣∣∣

xi − xi−1

xi−1

∣∣∣∣ ≤ λrel
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Data: the load steps ti (i = 0, . . . , N) with t0 = 0, tN = T and the constitutive
parameters;

Result: the fields u, εp and α at any load step ti;
1 initialisation to an unstretched, not plasticised and undamaged state;
2

i = 0, u0 = 0, εp0 = 0, p0 = 0, α0 = 0;

for i ∈ (1, . . . , N) do
3 alternate minimization algorithm: initialisation;
4

k = 0, u0
i = ui−1, εp

0
i = εpi−1, p0

i = pi−1, α0
i = αi−1;

while

‖uk−1
i − uk

i ‖2 > λ and ‖εp
k−1
i − εp

k
i ‖2 > λ and ‖αk−1

i − αk
i ‖inf > λ

(relative convergence criterion) do
5 k = k + 1;

6 compute uk
i := arg min

u
W
(

u, εp
k−1
i , pk−1

i , αk−1
i

)
with u(L) = U(ti);

7 compute εp
k
i := arg min

εp

W
(

uk
i , εp, pk−1

i + |εp − εp
k−1
i |, αk−1

i

)

8 and pk
i = pk−1

i + |εp
k
i − εp

k−1
i |;

9 compute αk
i := arg min

α
W
(

uk
i , εp

k
i , pk

i , α
)

with α(x) ≥ αi−1;

10 end while
11

ui = uk
i , εpi = εp

k
i , pi = pk

i , αi = αk
i ;

12 end for
Algorithm 1: Numerical solution scheme. Lines 5–9 corresponds to the core of
the procedure, the alternate minimization algorithm

Two aspects in the time and a finite element discretisation have to be taken into
account in the given model:

1. the proof of the convergence of the minimizer and the minimum of a dis-
cretized energy functional towards the original energy (5.1);

2. the capability of the discretized fields to grab the plastic localisation predicted
by the analytical model;

Regarding the first point, no attempt is made to prove rigorously the convergence
of the discretized model towards the continuous evolution. This complicated task is
out of the scope of the present work since high mathematical tools, still investigated,
are needed.

As for the second point it would seem that no chance exists to describe displace-
ment jumps and plastic singularities leading to a cohesive response since the chosen
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finite element spaces do not own the capability to describe such solution. Neverthe-
less and quite surprisingly this kind of response is picked up from the simulations.
The reason depends on how plasticity is implemented. Although plasticity is de-
fined over discrete points the contribution of any point is spread over the entire
finite element of size h. That is, the numerical approximation has the effect to reg-
ularize the displacement and plastic field while the mesh size h plays the role of a
convergent parameter. This aspect of the response is explored with the analyses of
the next section where the responses are compared for meshes of different sizes.

5.2 Analyses

This section is devoted to some numerical simulations. The aim is only to give
sense and glimpse the potentiality and conceptual simplicity of the implementation
of the variational approach. Because one focuses on a one-dimensional traction-bar
test, the numerical experiments do not illustrate one of the strength of the varia-
tional approach, that is the ability to handle complicated crack paths. For simplicity
only analyses concerning the E-P-DP response are presented. Nevertheless, the E-P-
DP response is the most complete and challanging material behaviour for a numeric
simulation.

This first numerical attempts are addressed to (i) the comparison with the ana-
lytic solution; (ii) show the capability in catching and describing the plastic locali-
sation with respect to the mesh size. Analyses for different convergence tolerances
has also been done but are not presented. Also a full parametric investigation is
missing.

5.2.1 Analyses setting

A one-dimensional traction bar test is considered where the left-end is fixed and
on the right-end a monotonically increasing displacement is prescribed, u(L) = t.
The bar is initially unstreched, not plasticized and undamaged, that is,

u0(x) = 0, εp0 = 0, p0 = 0, α0 = 0. (5.3)

Moreover, the bar is assumed to be of unitary length, L = 1. The constitutive
functions considered for the model are the same as (3.58) while the constant values
are given in Tab. 5.1.

sequence E0 w0 σP0 γ η

E-P-DP 1 2 1 2 0.3

Table 5.1: Constitutive parameters for the numeric examples

With the previous analytical results of Chap. 4 in mind and for the assumed
constitutive functions, the response listed below is expected:
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elastic phase (E): The elastic phase lasts until the plastic yield condition is reached,
that is, at the time instant tyI = tP = 1

u(x) = x, εp(x) = p(x) = 0, σ = σP(0) = 1. (5.4)

plastic phase (P): Subsequently, plasticity is triggered. The plastic phase lasts until
the damage yield criterion is reached, that is, at the time instant tyII = tD = 1.5

εp(x) = p(x) = 0.5, u(x) = 1.5x, σ = σP(0) = σD(0.5, 0) = 1. (5.5)

It is worth noting that although infinite solutions exists for such phase, due to
the returning mapping algorithm the plastic strain field evolves uniformly in
space.

plastic-damage phase (PD): After the instant tyII damage must evolve together with
plasticity. At the center of the localisation zone a singular point is expected
where the plastic field suffers a singularity and the displacement field a jump
of finite amplitude. The analytic evolution for such phase has been described
in Sec. 4.2.2.2.

For what concern the time discretisation several partitions have been considered.
The result is that for the one-dimensional case only around the second yield point
tyII a fine discretisation is needed while in any other circumstance coarser partitions
are sufficient and do not affect significantly the solution. The analyses shown below
refers to the load step partition of Fig. 5.1 where the thick black points concerns the
load steps of the further displayed graphics corresponding also to Tab. 5.2.

S1S2S3S4S5 S18 S31 S44
W0

W1

W151

W1861

W2641

W5381

steps

t

Figure 5.1: The load steps

With the purpose of focusing on the capability of the numeric implementation
to catch and describe the localisation, different mesh sizes have been compared,
Tab. 5.3. The compared meshes seems to be coarse but, as the results will testify,
absolutely coherent for an accurate solution, also with a relative tolerance which has
been assumed not too restrictive, λrel = 0.01.
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load step 1 2 3 4 5 18 31 44

load t 0 1 1.499 1.501 1.537 1.862 2.636 5.382

Table 5.2: Considered load steps for the displayed responses

n. elements 20 50 100 200 analytic

graphic stroke
dotted,
gray

dot-
dashed,
gray

dashed,
gray

solid,
gray

solid,
black

Table 5.3: Compared mesh sizes and respective graphic stroke

5.2.2 Analyses results

This set of analyses have the aim to compare the solution for different mesh
sizes. Although the finite element spaces are not able to deal with singularities
the solution nevertheless approximates quite well the predicted analytic response as
shown by the following results.

Fig. 5.2 shows the evolution of the damage profiles of the discretized and analytic
models for the last four load steps of Tab. 5.2. A more detailed comparison is shown
in Fig. 5.3 where a striking matching and convergence towards the analytic solution
is undeniable. Just not far away from the profiles tip (one element) the slope of the
profiles of the numeric solution equals the slope of the analytic profile.

This agreement in the responses is confirmed by the comparison of the evolutions
of the displacement profiles represented in Fig. 5.4 and more clearly from the detail
of the center of the bar, Fig. 5.5. Although the displacement finite element function
space does not embed jumps, the numeric profiles tends actually to the expected
jump with more evidence as the mesh becomes finer. Nevertheless also the coarse
mesh predicts the jump amplitude compatibly to the mesh size, that is with the
distance of two finite elements.

The observations made on the damage and displacement profiles call for inves-
tigate the profiles of the plastic location from which the global response strongly
depends. To this aim Fig. 5.6 represents the accumulated plastic profiles for dif-
ferent time steps. The analytic response predicts a Dirac measure at the center of
the bar, which hence is not possible to represent in the figure. But what one can
be observe is that the area included by the profiles and the x-axis is approximately
constant at any load step, Fig. 5.6a–5.6d, regardless to the mesh size. Of course for
the figures a linear interpolation has been adopted. The question that spontaneous
arises is:

Does the the area below the accumulated plastic strain profile equal the coefficient of the
Dirac measure (4.8) predicted by the analytical solution?

The answer is affirmative and to be convinced it is sufficient to pay the attention on
the graphic of Fig. 5.7 which compares exactly these quantities.

The rate of convergence with a finer mesh can be appreciated in a detail, Fig. 5.8
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S0 S2 S4 S6 S8 S11
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Figure 5.2: The damage field evolution along the bar corresponding to last four load
steps of Tab. 5.2
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Figure 5.3: Detail of the damage profiles evolution at the center of the localisation
zone for the same curves as in Fig.5.2
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W0

W11

W21

W31

W41

W51

xL

u

Figure 5.4: The displacement field evolutions along the corresponding to the load
steps of Tab. 5.2
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Figure 5.5: Particular of the displacement field evolution at the center of the locali-
sation zone

A certain approximation of the response occurs for the stress profiles. As pointed
out in Fig. 5.9, for higher load steps the stress tends to be no more constant so that
the equilibrium equation is not satisfied. The reasons are double:

1. First the alternate minimisation algorithm stops with the optimisation with
respect to the damage variable. Hence the equilibrium equation is not the last
condition to be fulfilled;

2. Secondly this depends how plasticity is implemented. Indeed, the plastic cri-
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(a) t = 1.537 (i = 5)
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(b) t = 1.862 (i = 18)
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(c) t = 2.636 (i = 31)
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(d) t = 5.382 (i = 44)

Figure 5.6: The accumulated plastic strain profiles for different meshes and load
steps. The stroke of the profiles pertinent to the different meshes is defined in
Tab. 5.3 while load steps referred to are the last four of Tab. 5.2
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t
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Figure 5.7: Comparison between the integral of the accumulated plastic strain for
the different meshes net of the uniform plastic strain distribution occurred before
tyII and the plastic Dirac measure coefficient defined in (4.8)

terion is verified only at the Gauss points which are positioned, in this simu-
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Figure 5.8: A detail of Fig. 5.7

lations, at the center of the elements. Since the damage profile attains its max-
imum in one node, at the Gauss point next to this node the value of damage
pick from the plastic criterion is interpolated with the opposite node value of
damage which is not maximum. This mismatch alters the stress limit. Several
workaround are possible but has been not yet investigated.

S0 S2 S4 S6 S8 S11
W0

W5m1

W1

W15

W2

W25

xL

Sigma

Figure 5.9: The stress field evolution along the bar corresponding to last four load
steps of Tab. 5.2

Once the state variables fields have been investigated the global response can be
retrieved. Fig. 5.10 and Fig. 5.11 represent respectively the global stress-displacement
response and the energy contributions with respect to the load parameter and com-
pare the analytic solution with the numeric ones for the four mesh sizes of Tab. 5.3.
An impressive agreement already for coarse meshes (50 elements) confirms the ef-
fectiveness of this first numeric implementation attempt.
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S0 S11 S21 S31 S41 S51

W0

W2

W4

W6

W8

W11

t

Sigma

Figure 5.10: Stress displacement response for the numeric (different mesh sizes,
Tab. 5.3) and analytic responses
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Figure 5.11: The various energy contributions: the total work (black) splited between
the elastic energy (blue) and the dissipated work (gray) which in turn is the sum of
the dissipated work repectively done by plasticity (red) and damage (green)

5.3 Conclusions and perspectives

An impressive agreement for still coarse meshes (50 elements) confirms the ef-
fectiveness of this first numeric implementation attempt although several improve-
ments could be done. Some of them are listed below. One of the strength of the
variational approach is that it leads to a natural and rational way for a numerical
implementation. It overcomes easily obstacle like initiation, bifurcation and evolu-
tion paths. However this last feature has not been possible to highlight through the
one dimensional model.
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Several improvements could be done for the numerical simulations. Let focus on
some of them:

2D and 3D simulations A natural and interesting extension of the numeric model
would be to implement some 2D or 3D problems. No beforehand difficulties
occur to this purpose except for the computational efficiency. But since the
adopted finite element libraries relies on turn on parallel and scalable linear
algebra libraries (PETSc)4 acceptable efficiency should be preserved.

Plasticity implementation step Another improvement could derive by changing the
way how plasticity is implemented like, for example, considering different
points in the element where the plastic criterion is checked or by taking di-
rectly in the plastic criterion for an element the most strict damage value of
the element nodes itself.

Extended finite elements What also could be done is to embed in the finite element
function spaces functions capable to describe singularities and discontinuities
of the response. That is, extending the displacement and plastic strain field
to deal with singularities, for example by enriching the function space with
discontinuous functions (XFEM).

4http://www.mcs.anl.gov/petsc/index.html

http://www.mcs.anl.gov/petsc/index.html




Appendix A

Partial results

A.1 Gateaux derivative of the dissipation distance

The first-order stability condition (st-1D) requires the evaluation of the Gateaux
derivative of the dissipation distance D in direction

(
ε̃p, α̃

)
. This last, however, is

path-dependent and is not a state functional as the stored elastic energy; hence, with
respect to the model adopted for brittle fracture, Bourdin, Francfort, and Marigo
2008, or damage, Pham and Marigo 2011, non standard arguments are required.

To be more precise since the dissipation distance depends on the equivalent
plastic strain and not directly on the plastic strain, the definition of the variated
state deserves caution. In particular, one wants to evaluate explicitly

D′(p, α)( p̃, α̃) = lim
h→0

1
h

D((p, α) , (p + h p̃, α + h α̃)) . (A.1)

But p̃ is not unique since all the admissible paths from
(
εp, ·

)
to the new variated

state
(
εp + h ε̃p, ·

)
lead to infinite possible values for the vairiated state (p + hp̃).

The non-trivial definition of the dissipation distance D in (1.54) becomes necessary
to evaluat (A.1). One can state that

p̃ ∈
[
‖ε̃p‖,+∞

)
(A.2)

and hence

D′(p, α)( p̃, α̃) = lim
h→0

1
h

∫

Ω
inf

{∫ 1

0

(
∂s

(
w(β) +

1
2

η2∇β :∇β

)
+

σP(β) q̇− q(q)m(β) β̇

)
ds

}
dΩ (A.3)

where the variables in the integral are constrained to start at s = 0 from the state
(p, α), to arrive at s = 1 in the state (p + hp̃, α + hα̃) and to be sufficiently smooth, see
(1.54) or (2.26). Clearly, the first and second addend in (A.3) are path independent
and are easily evaluated to get

D′1,2 =
∫

Ω

(
w′(α) α̃ + η2 ∇α :∇α̃

)
dΩ. (A.4)
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In order to evaluate D′ one must add D′3,4 = limh→0 D3,4/h to D′1,2, where

D3,4 =
∫

Ω
inf

{∫ 1

0

(
σP(β) q̇− q(q)m(β) β̇

)
ds

}
dΩ. (A.5)

To estimate D′3,4 one can find two functions m(h) and M(h) such that

lim
h→0

1
h

m(h) ≤ D′3,4 ≤ lim
h→0

1
h

M(h) (A.6)

and show that the two limits, in (A.6), converge to the same value.

In particular, since β 7→ σP(β) is decreasing, β̇ ≥ 0 and q 7→ q(q) m(β) is increas-
ing, the function m(h) can be chosen as

m(h) :=
∫

Ω
inf
(

σP(α + hα̃)
∫ 1

0
q̇(s)ds−

(
p +

∫ 1

0
q̇(s)ds

) ∫ 1

0
∂sM(β(s))ds

)
dΩ =

=
∫

Ω
inf
(

σP(α + hα̃) p̄− (p + p̄) (M(α + hα̃)−M(α))

)
dΩ ≤ D3,4

(A.7)
where M is the indefinite integral of m. The background idea essentially correspond
to have assumed for m(h) the sum of the “inf” of the two terms in (A.5) singularly.
Note that p̄ ∈

[
h ‖ε̃p‖,+∞

)
and hence can not be less than h ‖ε̃p‖ since this lower

bound corresponds to the shortest distance between the states εp and εp + hε̃p.

The infimum in the definition of m(h) can be evaluated once the derivative

∆(h) :=
d F
dp̄

(h) = σP(α + hα̃)− (M(α + hα̃)−M(α)) (A.8)

is considered, where F corresponds to the argument of the infimum in (A.7). Indeed,
if ∀ p̄ ∈ [h ‖ε̃p‖, ∞) the derivative ∆(h) is non-negative then the infimum is attained
in p̄ = h ‖ε̃p‖ and its value is

µ(h) := σP(α + h α̃) h ‖ε̃p‖ − q
(

p(t) + h ‖ε̃p‖
)
(M(α + hα̃)−M(α)) . (A.9)

Instead, if the derivative ∆(h) can be negative, the infimum can be attained in
p̄ ≥ h ‖ε̃p‖ and its value can be finite or not. Once estimated the behaviour of
the infimum, one can observe that, in the limit for h → 0, the derivative ∆(h) is
non-negative ∀ p̄, as it tends to σP(α). Therefore, the infimum is µ(h) and

lim
h→0

1
h

m(h) = lim
h→0

1
h

∫

Ω
µ(h) dΩ =

∫

Ω

(
σP(α) ‖ε̃p‖ − q(p)m(α) α̃

)
dΩ. (A.10)

To define the function M(h) one can choose, as admissible path, a linear inter-
polation, for s ∈ [0, 1], between the states, i.e. q(s) = p(t) + s h ‖ε̃p‖ and β(s) =
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α(t) + s h α̃. With such a choice, q̇ = h ‖ε̃p‖, β̇ = h α̃ and hence

D3,4 ≤
∫

Ω

∫ 1

0

(
σP(β(s)) q̇−

(
p(t) +

∫ s

0
q(τ)dτ

)
∂sM(β(s))

)
ds dΩ

=
∫

Ω

∫ 1

0

(
σP(α(t) + s h α̃) h ‖ε̃p‖ −

(
p(t) + s h ‖ε̃p‖

)
∂sM(α(t) + s h α̃)

)
ds dΩ

≤
∫

Ω

∫ 1

0

(
σP(α(t)) h ‖ε̃p‖+ q(p(t)) ∂sM(α(t))

)
ds dΩ

=
∫

Ω

(
σP(α(t)) h ‖ε̃p‖ − q(p(t)) (M(α(t) + h α̃)−M(α(t)))

)
dΩ =: M(h) .

(A.11)
Passing to the limit, one obtains

lim
h→0

1
h

M(h) =
∫

Ω

(
σP(α) ‖ε̃p‖ − q(p)m(α) α̃

)
dΩ. (A.12)

Recalling (A.5) and (A.6), the Gateaux derivative of the dissipation distance D
then reads

D′(p, α)
(

p̃
(
ε̃p
)

, α̃
)
=
∫ L

0

(
w′(α) α̃ + η2 ∇α :∇α̃ + σP(α) ‖ε̃p‖ − q(p)m(α) α̃

)
dx.

(A.13)
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A.2 Rayleigh ratio minimization: 1D case

The aim of this section is to evaluate the minimum of the Rayliegh ratio

R
(
εp, α

)
=

a
∫ 1

0 α′2 dx + b
(∫ 1

0 εp dx
)2

+ 2 b c
∫ 1

0 εp dx
∫ 1

0 α dx + b c2
(∫ 1

0 α dx
)2

∫ 1
0

(
m α2 + 2 n εp α

)
dx

(A.14)
over the domain V = SBV(0, 1)×H1

+(0, 1), where a, b, c, m and n are all positive
constants.

Without going into details the minimum exists (in the sense that is reached by
an admissible pair

(
εp, α

)
by virtue of the compactness V and by th weak lower-

semicontinuity of a semi-norm.
Let

(
εp∗, α∗

)
then be a minimizer and R∗ = R∗

(
εp∗, α∗

)
the minimum. Since V

is not a linear space, but only a convex set, the minimizer has to satisfy the following
variational inequality, Nguyen 2000,

R′
(
εp∗, α∗

)(
ε̃p − εp∗, α̃− α∗

)
≥ 0, ∀

(
ε̃p, α̃

)
∈ V . (A.15)

The previous inequality, (A.15), is equivalent to imposing

R′
(
εp∗, α∗

)(
εp∗, α∗

)
= 0 (A.15a)

R′
(
εp∗, α∗

)(
ε̃p, α̃

)
≥ 0, ∀

(
ε̃p, α̃

)
∈ V . (A.15b)

Condition (A.15a) equals
∫ 1

0

(
bc
∫ 1

0
α∗ dx + b

∫ 1

0
εp∗ dx−R∗n α∗

)
εp∗ dx = 0 (A.17a)

∫ 1

0

(
bc
∫ 1

0
εp∗ dx + bc2

∫ 1

0
α∗ dx−R∗

(
mα∗ + nεp∗

))
α∗ dx + a

∫ 1

0

(
α′∗
)2 dx = 0

(A.17b)

while condition (A.15b) equals
∫ 1

0

(
bc
∫ 1

0
α∗ dx + b

∫ 1

0
εp∗ dx−R∗n α∗

)
ε̃p dx ≥ 0 (A.18a)

∫ 1

0

(
bc
∫ 1

0
εp∗ dx + bc2

∫ 1

0
α∗ dx−R∗

(
mα∗ + nεp∗

))
α̃ dx + a

∫ 1

0
α′∗ α̃′ dx ≥ 0

(A.18b)

It is then possible to prove that α∗ ∈ H2(0, 1) but the technical proof is omit-
ted and it is assumed that this smoothness property holds. Accordingly, after an
integration by parts, (A.17b) and (A.18b) become
∫ 1

0

(
2bc

∫ 1

0
εp∗ dx + 2bc2

∫ 1

0
α∗ dx− 2aα′′∗ −R∗

(
2mα∗ + nεp∗

))
α∗ dx + 2a

[
α′∗α∗

]1
0 = 0

(A.19a)
∫ 1

0

(
2bc

∫ 1

0
εp∗ dx + 2bc2

∫ 1

0
α∗ dx− 2aα′′∗ −R∗

(
2mα∗ + nεp∗

))
α dx + 2a

[
α′∗α
]1

0 ≥ 0

(A.19b)



A.2 Rayleigh ratio minimization: 1D case 129

By standard arguments, since εp∗ ≥ 0 and α∗ ≥ 0, we get the following strong
field equations with the associated boundary conditions
(

2bc
∫ 1

0
εp∗ dx + 2bc2

∫ 1

0
α∗ dx− 2aα′′∗ −R∗

(
2mα∗ + nεp∗

))
α∗ = 0 in (0, 1),

(A.20)

α′∗ (1) α∗ (1) = α′∗ (0) α∗ (0) = 0, (A.21)

2bc
∫ 1

0
εp∗ dx + 2bc2

∫ 1

0
α∗ dx− 2aα′′∗ −R∗

(
2mα∗ + nεp∗

)
≥ 0 in (0, 1),

(A.22)

α′∗ (1) ≥ 0, α′∗ (0) ≤ 0. (A.23)

Therefore, if α∗ (0) > 0, then α′∗ (0) = 0. If α∗ (0) = 0, since α∗ ≥ 0, one must have
necessary α′∗ (0) ≥ 0. But since α′∗ (0) ≤ 0 the fact that α′∗ (0) = 0 follows. Similary
α′∗ (1) = 0. Accordingly, the minimizer is an element of SBV(0, 1)×H2(0, 1) which
satisfies
(

2bc
∫ 1

0
α∗ dx + 2b

∫ 1

0
εp∗ dx−R∗nα∗

)
εp∗ = 0 in (0, 1),

(A.24a)
(

2bc
∫ 1

0
εp∗ dx + 2bc2

∫ 1

0
α∗ dx− 2aα′′∗ −R∗

(
2mα∗ + nεp∗

))
α∗ = 0 in (0, 1)

(A.24b)

2bc
∫ 1

0
α∗ dx + 2b

∫ 1

0
εp∗ dx−R∗nα∗ ≥ 0 in (0, 1),

(A.24c)

bc
∫ 1

0
εp∗ dx + 2bc2

∫ 1

0
α∗ dx− 2aα′′∗ −R∗

(
2mα∗ + nεp∗

)
≥ 0 in (0, 1),

(A.24d)

α′∗ (1) = α′∗ (0) = 0. (A.24e)

Figure A.1 shows an example qualitatively the admissible variations for
(
ε̃p, α̃

)
.

ε̃p

α̃

0 1

Figure A.1: Example of admissible variations

For sake of clarity the calculations that follow are divided into four steps. The
point of departure are equ. (A.24a)–(A.24d).
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step 1

From (A.24c) follows that α∗ is bounded from above, namely

α∗(x) ≤ αm =
bc
∫ 1

0 α∗(x)dx + b
∫ 1

0 εp∗ (x)dx
nR∗

≤ 1. (A.25)

Condition (A.24c) gives

R∗ ≤
bc
∫ 1

0 α∗ dx + b
∫ 1

0 εp∗ dx
n α∗

(A.26)

Before going on, it is convenient to identify some subspaces of the domain L = [0, 1]
as follows





L0 = {x ∈ [0, 1] : α∗(x) = 0} ,
Lc = {x ∈ [0, 1] : α′∗(x) = 0 and 0 < α∗(x) < αm} ,
Lm = {x ∈ [0, 1] : α∗(x) = αm} ,
Lv = L∩ L0 ∩ Lc ∩ Lm.

(subdomains)

The various identified domains are shown as example in Fig. A.2.

10

αm

α∗

Lv L0 Lv Lc Lv Lm Lv

Figure A.2: The function α∗ and the domain decomposition (example)

step 2

Through (A.24a) and refering to the introduced subdomains further specification
on the plastic strain εp∗ field follows:





L0

Lc

Lv





α < αm =⇒ εp∗(x) = 0

Lm α = αm =⇒ εp∗(x) 6= 0

(A.27)
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step 3

Considering now A.24b, the results of step2 and through simple calculations one
can conclude that




L0 : =⇒ α∗(x) = 0

Lc : =⇒ α∗(x) = α∗c =
bc
∫ 1

0 εp∗ dx + bc2
∫ 1

0 α∗ dx
R∗m

(constant)

Lv : =⇒ α∗(x) = A cos

√
mR∗
a

x + B sin

√
mR∗
a

x +
bc2

mR∗
∫ 1

0 α∗(x)dx

Lm : =⇒ εp∗(x) = εp∗c =
2bc

∫ 1
0 εp∗ dx + 2bc2

∫ 1
0 α∗ dx− 2R∗mαm

R∗n
(constant)

(A.28)
In particular, the last equation becomes

εp∗c =
2bcLmεp∗c + 2bc2

∫ 1
0 α∗ dx− 2R∗mαm

R∗n
(A.29)

and hence

εp∗c =
2bc2

∫ 1
0 α∗ dx− 2R∗mαm

R∗n− 2bcLm
. (A.30)

Considering A.25 one has

∫ 1

0
α∗(x)dx =

nR∗αm − 2bLmεp∗c
2bc

(A.31)

that inserted in the preceding equation leads to

εp∗c =
2bc2 nR∗αm−2bLmεp∗c

2bc − 2R∗mαm

R∗n− 2bcLm

=
cnR∗αm − 2bcLmεp∗c − 2R∗mαm

R∗n− 2bcLm

(A.32)

and hence to
εp∗c =

cn− 2m
n

α∗. (A.33)

Clearly for this last result
cn− 2m > 0 (A.34)

must hold. An example of εp∗ and α∗ variations is shown in Fig. A.3.

step 4

In this step the last condition A.24d is taken into account leading to:

over L0 :

bc
∫ 1

0
α∗ dx + b

∫ 1

0
εp∗ dx ≥ 0 (A.35)

trivially always satisfied;
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10

αm

α∗

Lv L0 Lv Lc Lv Lm Lv

εp∗

Figure A.3: α∗ and εp∗ trends (example)

over Lc:

2bc
∫ 1

0
α∗ dx + 2b

∫ 1

0
εp∗ dx−R∗nα∗c ≥ 0 (A.36)

and hence to

α∗c ≤
2bc

∫ 1
0 α∗ dx + 2b

∫ 1
0 εp∗ dx

R∗n
= αm. (A.37)

Comparing the obtained expressions for α∗c and αm

α∗c < αm (A.38)

bc
∫ 1

0 εp∗ dx + bc2
∫ 1

0 α∗ dx
R∗m

<
2bc

∫ 1
0 α∗ dx + 2b

∫ 1
0 εp∗ dx

R∗n
(A.39)

which leads to the following inequality

c n− 2m < 0 (A.40)

that compared to A.34 gives as result that µ(Lc) µ(Lm) = 0, namely that a
constant damage variation cannot subsist with a constant maximum damage
value.

With these previous results in mind different possibilities are examined:

Case 1 (α∗(x) = constant): Two sub cases are then considered:

Case 1a L = Lc, (α∗(x) = α∗c): in this case, integrating the second equation in
A.28 one obtains

R∗(α∗) =
bc2

m
; (A.41)

Case 1b L = Lm, (α∗(x) = αm): In this case εp∗ 6= 0. Inserting A.25 into A.33
one obtains

αm =
2bc αm + 2b (cn−2m)

n αm

nR∗
,

n2R∗αm = 2bcn αm + 2b (cn− 2m) αm,

(A.42)



A.2 Rayleigh ratio minimization: 1D case 133

and hence finally

R∗(α∗) = 4b
cn−m

n2 with cn−m > 0. (A.43)

Case 2 L = L0 ∪ Lv: the analysis is essentially the same of the case where of a
damage model, Pham 2010. The minimum is

R∗(α∗) = min
(
bc2

m
,

1
m

(
π2a

)1/3 (
bc2
)2/3

)
(A.44)

and is attained for

α∗(0) =
2bc2

mR∗

∫ 1

0
α∗ dx ≤ 2bc

nR∗

∫ 1

0
α∗ dx = αm (A.45)

constrained to the following condition

cn−m ≥ 0. (A.46)

Case 3 L = L0 ∪ Lv ∪ Lm: trough translations of the single subdomains and their
relative function trend it is always possible to bring back the problem to
the situation where in a subdomain of L, the three considered subdo-
mains appear in an arbitrary order with their relative solution. In this
case

α∗(x) = A cos

√
mR∗
a

x +
bc2

mR∗

∫ 1

0
α∗(x)dx, (A.47)

α′∗ (x) =−A

√
mR∗
a

sin

√
mR∗
a

x (A.48)

and by the same arguments of the case of a pure damage model, Pham
2010, one obtains




L0 : =⇒ α∗(x) = 0

Lv : =⇒ α∗(x) =
bc2D2

π2a

(
1 + cos π

x
D

) ∫ 1
0 α∗ dx =

bc2

mR∗
(

1 + cos π
x
D

) ∫ 1
0 α∗ dx

Lm : =⇒ α∗(0) = αm =
2bc2D2

π2a

∫ 1
0 α∗ dx =

2bc2

mR∗
∫ 1

0 α∗ dx

(A.49)

with D =
√

π2a
mR∗ . For sake of simplicity the discussion does not cover the

issue of the alternation of different subdomains since the analysis leads
to the same results.

From the integration of the damage profile α∗ one obtains

∫ 1

0
α∗ dx = n

∫ D

0
α∗(x)dx + Lm αm

= n
2bc2

mR∗

√
π2a

mR∗

∫ 1

0
α∗ dx +

2bc2Lm

mR∗

∫ 1

0
α∗ dx

(A.50)
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By expressing
∫ 1

0 α∗ dx with respect to αm

∫ 1

0
α∗ dx =

(
nR∗
2bc
− Lm + Lm

2m
cn

)
αm =

(
nR∗
2bc
− Lm + Lm

2m
cn

)
2bc2

mR∗

∫ 1

0
α∗ dx

(A.51)
one can conclude with the following equations system





mR∗ = 2nbc2

√
π2a

mR∗
+ 2bc2Lm,

mR∗ = 2bc2
(
nR∗
2bc
− Lm + Lm

2m
cn

)
.

(A.52)

From the first equation one has

Lm =
mR∗
2bc2 − n

√
π2a

mR∗
(A.53)

which replaced in the second equation of (A.52) gives

mR∗ = 2bc2


nR∗

2bc
− mR∗

2bc2 + n

√
π2a

mR∗
+


mR∗

2bc2 − n

√
π2a

mR∗


 2m

cn




= cnR∗ −mR∗ + 2bc2


n

√
π2a

mR∗
+


mR∗

2bc2 − n

√
π2a

mR∗


 2m

cn


 .

(A.54)
Dividing this last equation by R∗

2m− cn− 2m2

cn
= 2bc2n

√
πa

m
(R∗)− 2

3

(
1− 2m

cn

)
(A.55)

and expressing R∗ as

(R∗) 2
3 =

2bc2n
√

πa

m

(
1− 2m

cn

)

2m− cn− 2m2

cn

(A.56)

finally follows

cn− 2m > 0 and 2m− cn− 2m2

cn
> 0 (A.57)

which of course is not possible since A.34 must hold. Then

µ(Lv) µ(Lm) = 0 (A.58)

and a subdomain Lm cannot subsists with a subdomain Lv.

The last significant case becomes then
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Case 4 L = L0 ∪ Lc ∪ Lv: with similar reasoning as the previous case, both Lc and Lv
cannot subsist simultaneously,

µ(Lv) µ(Lc) = 0. (A.59)

Summarising all previous results one can conclude that

R∗
(
εp∗, α∗

)
= min

(
bc2

m
, 4b

cn−m

n2 ,
1
m

(
π2a

)1/3 (
bc2
)2/3

)
(A.60)

which is the sought result.
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Nucleation of cohesive cracks in gradient damage models coupled with
plasticity
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Abstract

In the framework of rate-independent systems, a family of elastic-plastic-damage models is proposed through
a variational formulation. Since the goal is to account for softening behaviors until the total failure, the
dissipated energy contains a gradient damage term in order to limit localization effects. The resulting model
owns a great flexibility in the possible coupled responses, depending on the constitutive parameters. More-
over, considering the one-dimensional quasi-static problem of a bar under simple traction and constructing
solutions with localization of damage, it turns out that in general a cohesive crack appears at the center of
the damage zone before the rupture. The associated cohesive law is obtained in a closed form in terms of
the parameters of the model.

Keywords: variational approach, ductile fracture, strain localization

1. Introduction

It is now well established that gradient damage models are very efficient to account for the behavior of
brittle and quasi-brittle materials. Indeed, from the idea of Ambrosio and Tortorelli (1990), they have been
used in the variational theory of fracture Bourdin et al. (2000, 2008) as a regularization of the revisited
Griffith’s law Francfort and Marigo (1998). In this approach, the evolution of cracks is governed by a
principle of least energy (called global stability condition in the present paper) and it turns out that it is
possible to prove that (a family of) gradient damage models converge (in the sense of Gamma-convergence)
to Griffith’s model when the internal length contained in those models goes to zero Braides (2002); Dal-
Maso and Toader (2002). But these models have their own merit and have been developed independently
Peerlings et al. (1998); Comi (1999); Comi et al. (2006); Benallal and Marigo (2007); Pham and Marigo
(2010a,b); Lorentz et al. (2011). In fact, they are able to account for the nucleation of cracks without
invoking global minimization. Their basic ingredients are: (i) a decreasing dependency of the stiffness E(α)
on the damage variable α; (ii) no more rigidity at the ultimate damage state (say E(1) = 0); (iii) a critical
stress σc; (iv) a softening behavior with a decrease of the stress from σc to 0 when the damage goes to 1; (v)
a gradient damage term in the energy which necessarily contains an internal length ` and which limits the
damage localization. Accordingly, the process of crack nucleation is as follows Pham et al. (2011a); Pham
and Marigo (2012): (i) a first damage occurs when the stress field reaches the critical stress somewhere in
the body; (ii) then, because of the softening character of the material behavior, damage localizes inside a
strip the width of which is controlled by the internal length `; (iii) the damage grows inside this strip, but
not uniformly in space (the damage is maximal at the center of the strip and is continuously decreasing to
0 so that to match with the undamaged part of the body at the boundary of the strip); (iv) a crack appears
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Email addresses: roberto.alessi@uniroma1.it (Roberto Alessi), marigo@lms.polytechnique.fr (Jean-Jacques Marigo),
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at the center of the strip when the damage reaches there its ultimate value (say α = 1). During this crack
nucleation process, some energy is dissipated inside the damage strip and this dissipated energy involves
a quantity Gc which can be considered as the effective surface energy of Griffith’s theory. Therefore, Gc

becomes a byproduct of the gradient damage model which can be expressed in terms of the parameters of
the model (specifically, Gc is proportional to σ2

c `/E(0) Pham and Marigo (2012)).
However, this type of “quasi-brittle” models are not able to account for residual strains and consequently

cannot be used in ductile fracture. Moreover there is no discontinuity of the displacement in the damage
strip before the loss of rigidity at its center, i.e. before the nucleation of a crack. In other words such a
model cannot account for the nucleation of cohesive cracks, i.e. the existence of surface of discontinuity of
the displacement with a non vanishing stress. The natural way to include such effects is to introduce plastic
strains into the model and to couple their evolution with damage evolution. Of course, this idea is not new
and a great number of damage models coupled with plasticity have been developed from the eighties in the
spirit of Lemaitre and Chaboche (1985), see for instance Dimitrijevic and Hackl (2011). But our purpose
is to construct such models in a softening framework with gradient of damage terms and to see how these
models can account for the nucleation of cracks in presence of plasticity. In our knowledge, the previous
works are not able to go so far. Here we will adopt a variational approach in the spirit of our previous works
Bourdin et al. (2008); Pham and Marigo (2010a,b); Pham et al. (2011a); Sicsic and Marigo (2012). The
main ingredients are the following ones: (i) one defines the total energy of the body in terms of the state
fields which include the displacement field and the internal variable fields, namely the damage, the plastic
strain and the cumulated plastic strain fields; (ii) one postulates that the evolution of the internal variables
is governed by the three principles of irreversibility, stability and energy balance. In particular, the stability
condition is essential as well for constructing the model in a rational and systematic way as for obtaining
and proving general properties. Besides, we have the chance that the variational approach works and has
been already developed both in plasticity and in damage mechanics, even though only separately up to now.
So, it “suffices” to introduce the coupling by choosing the form of the total energy to obtain, by virtue of
our plug and play device, a model of gradient damage coupled with plasticity. A part of our paper will
be devoted to this task. Specifically, our model, presented here in a one-dimensional setting only, contains
three state functions, namely E(α), d(α) and σ̄P(α) which give the dependence of the stiffness, the local
damage dissipated energy and the plastic yield stress on the damage variable. So, our choice of coupling
is minimalist in the sense that it simply consists in introducing this dependence of the yield plastic stress
σP(α) on the damage variable (with the natural assumption that σP(α) goes to 0 when the damages goes to
1). In turn, by virtue of the variational character of the model, the product σ′P(α)p̄ of the derivative of the
state function σP(α) by the cumulated plastic strain p̄ enters in the damage criterion and this coupling plays
a fundamental role in the nucleation of a cohesive crack.

Specifically, the paper is organized as follows. In Section 2, we first recall separately the perfect plasticity
model and the gradient damage model. Then, using the fact that those classical models can also be formu-
lated in a variational form, we construct the model which couples damage with plasticity by postulating the
form of the energy. At this stage, the gradient of damage is not still introduced because one only considers
the local behavior of the material. In Section 3, we study the response of the volume element submitted to a
uniaxial monotonic stretching test. It is necessary to proceed in several steps because of the great variety of
possible cases. This local analysis is finally illustrated by considering a family of models which contains two
fundamental parameters and by plotting the associated local material behavior in a stress-strain diagram. In
Section 4, we introduce the gradient of damage term into the energy and we set the problem which governs
the evolution of the damage and the plastic strain in a one-dimensional bar under traction. Since we are
interested by non homogeneous solutions with possible concentrations of the plastic strain, that needs to
consider singular fields and hence to treat separately the singular points. Here the variational approach
is particularly interesting for deriving in a rational way all the conditions that the evolution must satisfy.
Section 5 is devoted to the construction of non homogeneous responses of the bar. We consider a particular
family of models so that we can obtain the solution in a closed form. After distinguishing three different
cases according to the parameters of the model, we are able to construct a solution with localization of
damage up to the rupture of the bar in the spirit of what was already made for quasi-brittle materials. In
two cases out of the three, we show that the coupling of damage with plasticity forces the plastic strain

2



to be concentrated to the center of the damage zone. Consequently a cohesive crack is generated and we
are able to obtain the cohesive law in a closed form. All the results are summarized and commented in a
conclusion where we also present some natural extensions of the present work. The paper finishes by an
appendix which contains the technical proofs of the main properties of the model presented in Sections 2
and 3. Throughout the paper, the following notations are used: the dependence on the time parameter t
is indicated by a subscript whereas the dependence on the spatial coordinate x is indicated classically by
parentheses, e.g. x 7→ ut(x) stands for the displacement field at time t. In general, the state functions or
the material parameters are represented by sans serif letters, like E, E(α) or S(α). The prime denotes either
the derivative with respect to x or the derivative with respect to the damage parameter, the dot stands for
the time derivative, e.g. u′t(x) = ∂ut(x)/∂x, E′(α) = dE(α)/dα, u̇t(x) = ∂ut(x)/∂t.

2. Construction of the local model

In this section we first present the basic ingredients of the model before to illustrate it by considering the
response of the volume element under an uniaxial test. Since all the global analysis which follows in Sec-
tions 4-5, will be made in a one-dimensional setting of a bar under traction, we do not attempt to formulate
the model in a general three-dimensional setting. Accordingly, all the usual mechanical quantities are scalar
ones : the stress σ, the total strain ε, the plastic strain p and the cumulated plastic strain p̄. Moreover,
the damage variable α is also assumed to be a scalar. The model is constructed gradually: we first recall
separately the standard models of perfect plasticity Germain et al. (1983) and of brittle damaging materials
Marigo (1981) before to introduce the coupling between damage and plasticity. Moreover, the emphasis is
laid on the variational character of such standard constitutive laws, this approach being fundamental when
we will introduce in Section 4 the gradient damage regularizing terms. Throughout this section and the
next one, we consider a volume element and describe its uniaxial behavior assuming that the time evolution
of the strain, i.e. t 7→ εt, is given. When there is no risk of confusion, the explicit reference to the current
time t is omitted.

2.1. Perfect plasticity model

In a pure uniaxial setting, the standard model of perfect plasticity consists in the three following items

Stress-strain relation : σ = E(ε− p), (1)

Plasticity yield criterion : |σ| ≤ σP, (2)

Plasticity flow rule : ṗ





≥ 0 if σ = +σP

= 0 if |σ| < σP

≤ 0 if σ = −σP
, (3)

where σ, ε and p stand for the stress, the strain and the plastic strain, respectively. In (1) E > 0 denotes the
Young modulus and in (2) σP > 0 represents the plastic yield stress, both are positive material constants.
The last two items which govern the evolution of the plastic strain p can also be seen as a stability criterion
and an energy balance principle. We reestablish below this variational property by following the presentation
of Francfort and Giacomini (2012) which, in our simple context, does not require to use all the machinery
of Mielke (2005).

Let us denote by p̄t the cumulated plastic strain up to time t, i.e.

p̄t = p̄0 +

∫ t

0

|ṗs| ds, (4)

where p̄0 represents the plastic strain cumulated before time 0. Defining the state variables of the volume
element at time t as the triple (εt, pt, p̄t), then the current total energy density of the volume element Wt is
given by the following function of state WP:

Wt = WP(εt, pt, p̄t) (5)
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with

WP(ε, p, p̄) :=
1

2
E(ε− p)2 + σPp̄. (6)

The first term on the hand right side of (6) is the elastic energy density while the second term can be con-
sidered as the density of energy dissipated during all the plastic process up to the current time. Accordingly,
the perfect plastic model can be equivalently formulated in a variational form as it is stated in the following
Proposition the proof of which is given in the appendix.

Proposition 1. The three items (1)–(3) characterizing a perfect plasticity model are equivalent to the three
following conditions

Stress-strain relation : σ =
∂WP

∂ε
(ε, p, p̄), (7)

Stability condition : WP(ε, p, p̄) ≤WP(ε, p∗, p̄+ |p∗ − p|), ∀p∗ ∈ R, (8)

Energy balance : Ẇ = σε̇. (9)

By virtue of (9), the total energy density Wt represents the strain work up to time t. As far as the
stability criterion is concerned, it consists in requiring that, at a given time t, the true total energy density
Wt be less than that one obtained by changing instantaneously, at time t, the true plastic strain pt by any
arbitrary one p∗. (By virtue of (4), the cumulated plastic strain is then increased by |p∗ − pt|.) Let us note
that the stability condition is global in the sense that it is true for arbitrary changes of the plastic strain
and not only for small changes.

Remark 1. In the case of an uniaxial monotonic test where the volume element starts from the state
p0 = p̄0 = 0 and is submitted to an increasing strain, ε growing from 0 to infinity, the response is unique.
That response is given by p̄ε = pε = 0 for ε ∈ [0, σP/E] and by p̄ε = pε = ε− σP/E otherwise.

2.2. Brittle damage model

Following the formulation first proposed by Marigo (1981), the standard model of brittle damage in a
uniaxial setting consists in the four following items

Stress-strain relation : σ = E(α)ε, (10)

Irreversibility condition : 0 ≤ α ≤ 1, α̇ ≥ 0, (11)

Damage yield criterion : −1

2
E′(α)ε2 ≤ d′(α), (12)

Consistency equation :

(
1

2
E′(α)ε2 + d′(α)

)
α̇ = 0. (13)

Here α denotes the scalar damage variable which is chosen in such a manner that it grows from 0 to 1,
α = 0 corresponding to the undamaged state and α = 1 to the completely damaged state. The smooth
monotonically decreasing state function α 7→ E(α) gives the evolution of the Young modulus of the material
with its damage state. Specifically, we assume that

E(0) = E0 > 0, E′(α) < 0, ∀α ∈ [0, 1), E(1) = E′(1) = 0. (14)

Accordingly, we adopt the following hypotheses in terms of the compliance state function α 7→ S(α) =
1/E(α):

S(0) = 1/E0 > 0, S′(α) > 0, ∀α ∈ [0, 1), S(1) = S′(1) = +∞. (15)

As we will see below, the smooth monotonically increasing state function α 7→ d(α) gives the evolution of
the dissipated energy density by the material with its damage state. Specifically, we assume that

d(0) = 0, d′(α) > 0, ∀α ∈ [0, 1), d(1) = d1 < +∞. (16)
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The damage law is standard in the sense that the damage yield criterion is stated in terms of the elastic
energy release rate − 1

2E
′(α)ε2. This type of criterion can be justified in a full three-dimensional setting by

invoking Drucker-Ilyushin postulate, see Marigo (1989). In our uniaxial context, (12) can also read as

|ε| ≤ εD(α) :=

√
2d′(α)

|E′(α)| . (17)

Accordingly, the set of admissible strain states is an interval which depends on the damage state. We will
assume that this interval grows when the damage grows. That leads to the following

Strain hardening condition : α 7→ d′(α)

|E′(α)| is monotonically increasing. (18)

This condition will allow us to obtain a unique response in uniaxial test under controlled strain path. Note
that εD(1) := limα→1 εD(α) = +∞ if d′(1) > 0 but εD(1) can be finite when d′(1) = 0. In the latter case the
material element will be totally damaged when the strain will reach the finite value εD(1) whereas in the
former case α = 1 is not reached at finite strain.

The damage yield criterion (12) can be expressed in terms of the stress σ and read as

|σ| ≤ σD(α) :=

√
2d′(α)

S′(α)
. (19)

Since we are only interested by the case of softening behaviors, i.e. the case when σD(α) is a monotonically
decreasing function of α, we adopt the following

Stress softening condition : α 7→ d′(α)

S′(α)
is monotonically decreasing. (20)

Note that, by virtue of (15)-(16), σD(1) = 0 and hence the material cannot sustain any stress when it is
completely damaged.

Let us now show that the damage model can be also formulated in a variational form. Defining the state
variables of the volume element at time t as the pair (εt, αt), then the current total energy density of the
volume element Wt is given by the following function of state WD:

Wt = WD(εt, αt) (21)

with

WD(ε, α) :=
1

2
E(α)ε2 + d(α). (22)

Hence, as for the perfect plastic model, the total energy density is the sum of the elastic energy and the
dissipated energy. Accordingly, the brittle damage model can be equivalently formulated in a variational
form as it is stated in the following Proposition the proof of which is given in the appendix.

Proposition 2. Under the hypotheses (14)–(18) on the state functions α 7→ E(α) and α 7→ d(α), the four
items (10)–(13) characterizing a brittle damage model are equivalent to the four following conditions

Stress-strain relation : σ =
∂WD

∂ε
(ε, α), (23)

Irreversibility condition : 0 ≤ α ≤ 1, α̇ ≥ 0, (24)

Stability condition : WD(ε, α) ≤WD(ε, α∗), ∀α∗ ∈ [α, 1], (25)

Energy balance : Ẇ = σε̇. (26)
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Comparing with Proposition 1 shows that the variational formulation for the damage model has the
same structure as for the plasticity model. Specifically, by virtue of (26), the total energy density Wt still
represents the strain work up to time t. As far as the stability criterion is concerned, it consists in requiring
that, at a given time t, the true total energy density Wt be less than the energy obtained by changing
instantaneously, at time t, the true damage αt by any arbitrary greater one α∗. The fact that we have only
to compare with greater damage states comes from the irreversibility condition, condition that the plastic
strain has not to satisfy. The stability condition is, here also, global in the sense that it is true for arbitrary
amplitude of the virtual damage growth and not only for small changes. This global stability property is
essentially due to the strain hardening condition (18) (see the proof in the appendix). Let us note that it
remains valid in the case of softening behaviors.

Remark 2. In the case of an uniaxial monotonic test where the volume element starts from the damage
state α0 = 0 and is submitted to a strain increasing from 0 to infinity, the response is unique as long as
αε < 1. It is given by αε = 0 for ε ∈ [0, εD(0)] and by αε = ε−1

D (ε) for ε ∈ (εD(0), εD(1)).

2.3. Damage-plasticity coupled model

To construct the coupled model, the procedure is reversed in the sense that we start from the variational
formulation to finally obtain the constitutive relations. Accordingly, we consider that the state variables
of the volume element at time t is now the quadruple (εt, αt, pt, p̄t) and we assume that the current total
energy density of the volume element Wt is given by the following function of state WDP:

Wt = WDP(εt, αt, pt, p̄t) (27)

with

WDP(ε, α, p, p̄) :=
1

2
E(α)(ε− p)2 + d(α) + σP(α)p̄. (28)

In (28), the state functions α 7→ E(α) and α 7→ d(α) are the same as in the brittle damage model and hence
satisfy the properties (14)-(16) as well as the damage strain hardening condition (18) and the damage stress
softening condition (20).

But the plastic yield stress now depends on the damage state and is given by the smooth state function
α 7→ σP(α). Since we focus on softening behaviors, we assume the following properties for α 7→ σP(α):

Plastic yield stress softening : σP(0) = σ̄P > 0, σ′P(α) < 0, ∀α ∈ [0, 1), σP(1) = 0, σ′P(1) ≤ 0. (29)

Hence the plastic yield stress is monotonically decreasing until 0 when the damage grows from 0 to 1.
Accordingly, our model is quite different of Ambrosio et al. (2012); Del Piero et al. (2012) even if those
models have also the goal for coupling fracture with plasticity by using a variational approach.

Let us now establish the constitutive relations which govern the behavior of the material point in the
case of an uniaxial strain controlled test.

1. Stress-strain relation. The current stress σ is given in terms of the current state by

σ =
∂WDP

∂ε
(ε, α, p, p̄) = E(α)(ε− p). (30)

2. Irreversibility condition. The damage variable is still a non decreasing function of time and must
remain in the interval [0, 1]. In other words, α has still to satisfy (11).

3. Stability conditions. We distinguish three degrees of stability: global stability, local stability and first
order stability conditions.

Definition 1. A state (ε, α, p, p̄) ∈ R × [0, 1] × R × R+ of the material point is said either globally
stable or locally stable or stable at the first order according to that state satisfies the corresponding
following condition:
(a) Global stability condition:

∀(α∗, p∗) ∈ [α, 1]× R, WDP(ε, α, p, p̄) ≤WDP(ε, α∗, p∗, p̄+ |p∗ − p|). (31)
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(b) Local stability condition: For all (α∗, p∗) ∈ [α, 1]× R there exists h̄ > 0 such that

∀h ∈ [0, h̄], WDP(ε, α, p, p̄) ≤WDP(ε, α+ h(α∗ − α), p+ h(p∗ − p), p̄+ h |p∗ − p|). (32)

(c) First order stability conditions:





α = 1 or
∂WDP

∂α
(ε, α, p, p̄) ≥ 0,

∂WDP

∂p
(ε, α, p, p̄)q +

∂WDP

∂p̄
(ε, α, p, p̄) |q| ≥ 0, ∀q ∈ R.

(33)

One immediately sees that these stability conditions are increasingly weak in the sense that

Global Stability =⇒ Local stability =⇒ First order stability

Indeed, the first condition in (33) is deduced from (32) by choosing, when α < 1, p∗ = p and α∗ = α+β
with β > 0 and small enough, by then dividing by h and by passing to the limit when h→ 0. In the
same way, the second condition in (33) is deduced from (32) by setting α∗ = α and p∗ = p + q, by
dividing then by h and by passing to the limit when h→ 0.
The converse implications are not always true but require that the state functions E, d and σP satisfy
additional conditions that we will discuss in Section 3.4. Accordingly, we first consider the first order
stability conditions which, by virtue of (28), can read as

Damage yield criterion : −1

2
E′(α)(ε− p)2 − d′(α)− σ′P(α)p̄ ≤ 0 if α < 1, (34)

Plasticity yield criterion : E(α) |ε− p| − σP(α) ≤ 0. (35)

4. Energy balance. The total energy density Wt still represents the strain work up to time t and hence
(26), must hold true. As long as α < 1, using (28) and the chain rule give

(
1

2
E′(α)ε2 + d′(α) + σ′P(α)p̄

)
α̇+ σP(α) |ṗ| − σṗ = 0.

Then, by virtue of (34) and (35), one obtains separately the damage consistency equation and the
plasticity flow rule:

Damage consistency equation :

(
1

2
E′(α)ε2 + d′(α) + σ′P(α)p̄

)
α̇ = 0; (36)

Plasticity flow rule : ṗ





≥ 0 if σ = +σP(α)

= 0 if |σ| < σP(α)

≤ 0 if σ = −σP(α)

. (37)

Remark 3. A direct consequence of the damage consistency equation is that the dissipated energy is actually
a non decreasing function of time. Indeed, considering that the density of dissipated energy at time t, say
Dt, is the complementary part of the elastic energy in the total energy Wt, Dt reads as

Dt = d(αt) + σP(αt)p̄t.

Differentiating with respect to t and taking into account (36) lead to

Ḋt = −1

2
E′(αt)ε

2
t α̇t + σP(αt) |ṗt| (38)

where the first term on the hand right side is non negative by virtue of the decreasing of the rigidity and the
irreversibility condition. Hence Ḋt ≥ 0. Moreover (38) shows that the dissipated power is the sum of the
elastic energy release rate and the plastic power.
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3. Uniaxial responses

3.1. General properties

Let us study the response predicted by the damage-plasticity coupled model when the material point
is submitted to a monotonic uniaxial test. Specifically, we assume that the material point is at time 0 in
the unstrained, unstressed and undamaged state, i.e. (ε0, α0, p0, p̄0) = (0, 0, 0, 0), and then is submitted to
an increasing uniaxial stretching where ε grows from 0 to +∞. Accordingly, we can assimilate the time
parameter with the strain, i.e. ε = t. The problem is to find the evolution of (α, p, p̄) with ε. That evolution
is assumed to be smooth, in the sense that ε 7→ (αε, pε, p̄ε) are at least absolutely continuous, and governed
by the stress-strain relation (30), the damage irreversibility condition (24), the damage and plasticity yield
criteria (34)-(35), the damage consistency equation (36) and the plasticity flow rule (37). While the study is
trivial in the case of uncoupled models, see Remarks 1 and 2, it becomes much more difficult in the case of
a coupling. In particular, the existence of the response is not ensured in the whole range of strains without
introducing additional assumptions on the constitutive relations. Moreover, one can obtain a great variety
of responses according to the values of the material parameters entering in the model. Accordingly, the
analysis must be made in several steps. We first establish some general properties the proof of which are
given in the appendix.

Proposition 3. Under the condition that the states functions α 7→ E(α), α 7→ d(α) and α 7→ σP(α) satisfy
(14), (16), (18), (20) and (29), any response to a monotonically increasing uniaxial stretching test, i.e. any
ε 7→ (αε, pε, p̄ε) absolutely continuous which starts from (0, 0, 0) and satisfies (24), (30), (34)–(37),enjoys
the following properties:

1. Elastic stage: The response remains purely elastic at the beginning of the test, i.e.

∀ε ∈ [0, ε̄I], αε = 0, pε = p̄ε = 0,

where

ε̄I = min{ε̄D, ε̄P}, ε̄D := εD(0) =

√
2d′(0)

|E′(0)| , ε̄P :=
σP(0)

E(0)
=
σ̄P
E0
.

2. Plastic strain monotonicity: As soon as ε > 0 and as long as αε < 1, the stress is positive, σε > 0.
Hence the plastic strain pε cannot decrease and 0 ≤ p̄ε = pε < ε. Accordingly, the damage and plastic
yield criteria can read as:

fD(ε, αε, pε) :=
1

2
|E′(αε)| (ε− pε)2 + |σ′P(αε)| pε − d′(αε) ≤ 0 if αε < 1,

fP(ε, αε, pε) := E(αε)(ε− pε)− σP(αε) ≤ 0,

3. Inelastic stage: As soon as ε > ε̄I and as long as αε < 1, the response is no more elastic and at least
one of the two yield criteria are satisfied as an equality, i.e.

∀ε ≥ ε̄I such that αε < 1, fP(ε, αε, pε) = 0 or fD(ε, αε, pε) = 0.

4. Onset of damage: The damage yield criterion is necessarily reached at a finite strain εd ≥ ε̄I, i.e.

∃εd ∈ [ε̄I,+∞), ∀ε ∈ [0, εd), fD(ε, 0, pε) < 0, fD(εd, 0, pεd) = 0.

5. Damage growth: As soon as ε ≥ εd and as long as α < 1, the damage yield criterion is satisfied as an
equality, i.e.

∀ε ≥ εd such that αε < 1, fD(ε, αε, pε) = 0.

6. Full damage state: Damage will grow until α = 1, i.e. limε→∞ αε = 1.
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3.2. The different possible stages

These properties allow us to distinguish the different possible stages of the response. That leads to the
following definitions:

• Elastic stage: it is the interval E = [0, ε̄I) during which fP < 0 and fD < 0;

• Plastic stage: it is an interval of ε, denoted P, during which fP = 0, fD < 0 and α < 1;

• Damage stage: it is an interval of ε, denoted D, during which fP < 0, fD = 0 and α < 1;

• Damage-Plastic stage: it is an interval of ε, denoted DP, during which fP = fD = 0 and α < 1;

• Final stage: it is an interval of ε, denoted F, during which α = 1.

The P, D and DP stages are intervals of the form (ε0, ε1) or [ε0, ε1) or [ε0, ε1] with 0 ≤ ε0 < ε1 ≤ +∞ and
we will say that the stage starts at ε0 and finishes at ε1. By definition, α remains constant during the E and
P stages while p remains constant during the E and D stages. By virtue of Proposition 3, if ε̄P < ε̄D, then
the response starts by the sequence E–P with E = [0, ε̄P) and will continue either by a D stage or by a DP
stage or by a sequence of alternate D and DP stages, but a P stage will exist never again. On the other
hand, if ε̄P > ε̄D, then E = [0, ε̄D) will be followed by a D stage or a DP stage or by a sequence of alternate
D and DP stages, hence a P stage never exists. However, Proposition 3 gives only necessary conditions
that a response must satisfy when it exists. It contains no existence and uniqueness result. To obtain such
a result, we have first to study the P, D and DP stages. That leads to the following

Proposition 4. Let α 7→ εP(α), α 7→ πD(α), α 7→ πDP(α) and α 7→ εDP(α) be defined for α ∈ [0, 1) by

εP(α) =
σP(α)

E(α)
, πD(α) =

d′(α)

|σ′P(α)| πDP(α) = πD(α)

(
1− εP(α)2

εD(α)2

)
, εDP(α) = πDP(α) + εP(α),

where εD(α) is defined in (17). The P, D and DP stages enjoy the following properties:

1. P stage: a plasticity stage exists if and only if ε̄P < ε̄D. In such a case, the P stage is the interval
[ε̄P, ε̄P + πDP(0)) where the evolution is αε = 0 and pε = ε− ε̄P. The stress remains constant, σε = σ̄P.

2. DP stage: in such a stage starting at ε0 and finishing at ε1, the strain, the plastic strain and the
damage are related by

ε = εDP(αε), pε = πDP(αε),

whereas the stress is given by σε = σP(αε) and hence is monotonically decreasing.
Accordingly, α 7→ εDP(α) is necessarily monotonically increasing and α 7→ πDP(α) is necessarily non
decreasing and non negative in the interval [α0, α1] where α0 and α1 are such that ε0 = εDP(α0) and
ε1 = εDP(α1).
Consequently, for a given damage state α0 such that σP(α0) ≤ σD(α0), a unique DP stage can starts
at ε0 = εDP(α0). This stage can continue as long as α 7→ εDP(α) is increasing, α 7→ πDP(α) is non
decreasing and αε < 1.

3. D stage: a D stage necessarily starts at ε̄D when ε̄D < ε̄P. In such a case the plastic strain and the
damage are given by

αε = ε−1
D (ε), pε = 0,

whereas the stress is given by σε = σD(αε) and hence is monotonically decreasing. This stage can
continue as long as σD(α) < σP(α).
Any other D stage starts at ε0 ≥ εDP(0) with a initial plastic strain p0 and a initial damage α0 such
that p0 = πDP(α0) and ε0 = εDP(α0). The strain, the plastic strain and the damage are related by

pε = πDP(α0), ε = πDP(α0) + eD(πDP(α0), αε)

with

eD(p, α) = εD(α)

√
1− p

πD(α)
,
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whereas the stress is given by σε = E(αε)eD(πDP(α0), αε).
Accordingly, α0 is necessarily such that σP(α0) ≤ σD(α0) whereas α 7→ eD(πDP(α0), α) is necessarily
monotonically increasing and πDP(α) < πDP(α0) < πD(α) for α ∈ (α0, αε1).
Consequently, for a given damage state α0, a unique D stage can starts at ε0 = εDP(α0). This stage
can continue as long as α 7→ eD(πDP(α0), α) is increasing and πDP(α) < πDP(α0) < πD(α).

Proof. We only give a sketch of the proof of each property.

1. It is a direct consequence of the definition of a P stage and of the properties 3–5 of Proposition 3.

2. By definition, during a DP stage, fD(ε, αε, pε) = fP(ε, αε, pε) = 0. After some easy calculations,
one obtains from the two criteria ε = εDP(αε) and pε = πDP(αε). The monotonicity properties are
direct consequences of the irreversibility condition for ε 7→ αε and the monotonicity of ε 7→ pε. The
uniqueness of αε comes from the monotonicity of εDP.

3. If ε̄D < ε̄P, then a D stage follows the E stage and during this stage p remains equal to 0. This stage
can continue as long as fP(εD(α), α) < 0 which is equivalent to σD(α) < σP(α). Any other D stage will
start at the end of the P stage or at the end of a DP stage. Therefore, the initial state of such a D
stage is the one given in the statement. By definition and by continuity, pε remains equal to πDP(α0)
and fD(ε, αε, πDP(α0)) = 0 for ε ∈ D̄. After easy calculations, one obtains the relation between ε and
αε given in the statement. The inequality πDP(α0) < πD(α) is necessary in order that eD(πDP(α0), α) be
defined and increasing with α. The inequality πDP(α0) ≥ πDP(α) is equivalent to fP(ε, α, p0) ≤ 0 and,
by definition of a D stage, the equality can hold only at the ends of the stage.

Remark 4. During a DP stage, the stress decreases since σP is decreasing. When there does not exist a P
stage, the stress decreases during the D stage which starts after the E stage since σD is decreasing. However,
during a D stage which starts after the P stage or a DP stage, the stress is not necessarily decreasing
because of the presence of the initial plastic strain πDP(α0).

We are now in a position to obtain a uniqueness result.

Proposition 5. As long as a response exists and α < 1, this response is unique.

Proof. The response is unique as long as ε ≤ εd. Hence, if there exists several responses, then they must
bifurcate at some ε = εb ≥ εd. By continuity, all bifurcated branches start from the same state (αb, pb) at
εb. For h > 0 small enough, the interval (εb, εb + h) of any branch must belong to a D or a DP stage. But,
by virtue of Proposition 4 (property 2), a unique DP stage can start at εb with α = αb, and, by virtue
of Proposition 4 (property 3), a unique D stage can start at εb with α = αb and p = pb. So, the unique
possibility is that one branch corresponds to a DP stage and the other to a D stage. But then, on one
hand, one should have pb = πDP(αb) < πDP(α) for α in some interval (αb, αb + η) by virtue of the properties
of the DP stages, while, on the other hand, one should have pb = πDP(αb) > πDP(α) for α in some interval
(αb, αb + η) by virtue of the properties of the D stages. Hence, there is no bifurcation.

3.3. Examples

We finish this section by some examples of damage-plasticity coupled models with the associated response
in a monotonic uniaxial stretching test. All these models belong to the same family which contains three
dimensionless parameters, namely k > 1, θ > 0 and n > 0. Specifically, the state functions E, d and σP are
given by

E(α) =
1− w(α)

1 + (k− 1)w(α)
E0, d(α) =

kσ̄2
D

2E0
w(α), σP(α) = (1− w(α))nθσ̄D, (39)

where
w(α) = 1− (1− α)2. (40)
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In (39), σ̄D represents the critical stress σD(0), the associated critical strain is ε̄D = σ̄D/E0 where E0 is the
Young modulus of the sound material. Moreover,

d1 := d(1) =
kσ̄2

P

2E0
.

Thus the state functions depend in fact on the variable ω = w(α) which grows from 0 to 1 as α does. The
other state functions read as

εD(α) = (1 + (k− 1)w(α))ε̄D, σD(α) = (1− w(α))σ̄D, εP(α) = (1 + (k− 1)w(α))(1− w(α))n−1θε̄D,

πD(α) =
kε̄D

2nθ(1− w(α))n−1
, πDP(α) =

kε̄D
2nθ

(
1

(1− w(α))n−1
− θ2(1− w(α))n−1

)
,

eD(p, α) = ε̄D(1 + (k− 1)w(α))

√
1− 2nθp

kε̄D
(1− w(α))n−1,

εDP(α) =
kε̄D

2nθ(1− w(α))n−1
− (1− w(α))n−1

( k

2n
− 1− (k− 1)w(α)

)
θε̄D.

The conditions (14) and (16), the strain hardening condition (18), the softening condition (20) and the plastic
yield softening condition (29) are automatically satisfied. Note that εD(1) = kε̄D is finite. The parameter θ
represents the ratio between ε̄P and ε̄D (or equivalently between σ̄P and σ̄D). The limit case where θ = +∞
would correspond to a pure damage model without plasticity. It corresponds to the type of damage models
which is used in the variational approach to fracture, see Amor et al. (2009); Pham et al. (2011a,b); Sicsic
and Marigo (2012), and is close to those used in Lorentz et al. (2011) for quasi-brittle materials.

1. Case θ > 1 and n > 1. Since ε̄P > ε̄D there exits no P stage. The E stage is followed by a D stage
which ends when ε = εDP(α0) with α0 such that σD(α0) = σP(α0). That leads to

α0 = 1− θ 1
2(1−n) , ε0 =

(
k− (k− 1)θ

1
1−n

)
ε̄D.

Since εDP and πDP are monotonically increasing, a DP stage starts at ε = ε0. Since limα→1 εDP(α) = +∞,
the DP stage continues up to infinity. Thus, the evolution consists in the sequence E–D–DP with

E = [0, ε̄D), D = [ε̄D, ε0), DP = [ε0,+∞),

see Figure 1(left).

2. Case θ > 1 and n ≤ 1. Since ε̄P > ε̄D there exits no P stage. The E stage is followed by a D stage.
Since σD(α) < σP(α) for all α ∈ [0, 1), the D stage ends only when α = 1, i.e. when ε = εD(1) = kε̄D.
Therefore, the evolution consists in the sequence E–D–F with

E = [0, ε̄D), D = [ε̄D, kε̄D), F = [kε̄D,+∞),

see Figure 1(right). Note that the plasticity yield criterion is never reached and hence θ and n do not
appear in the response.

3. Case θ < 1 and n > 1. Since ε̄P < ε̄D there exits a P stage. Since both εDP and πDP are monotonically
increasing, the P stage is followed by a a DP stage and, since limα→1 εDP(α) = +∞, the DP stage
continues up to infinity. Thus, the evolution consists in the sequence E–P–DP with

E = [0, θε̄D), P = [θε̄D, εDP(0)), DP = [εDP(0),+∞),

and

εDP(0) = θε̄D +
k(1− θ2)

2nθ
ε̄D,

see Figure 2(left).
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σ

ε
ε̄D

E0ε̄D

ε0

E0ε̄D

σ

ε
ε̄D kε̄D

Figure 1: Response of the volume element in the case θ > 1. Left: for n > 1, the response corresponds to the sequence
E–D–DP; Right: for n ≤ 1, the response corresponds to the sequence E–D–F. The thick curve corresponds to the response
under a monotonic increasing stretching test. The thin lines would correspond to the responses associated with unloading and
reloading tests, they are useful to represent the evolution of the Young modulus and the plastic strain.

4. Case θ < 1 and n = 1. Since ε̄P < ε̄D there exits a P stage. Since εDP is monotonically increasing
whereas πDP is constant, the P stage is followed by a DP stage. However, it is a limit case of DP stage
where fP = 0 but p does not evolve. It could be considered as a D stage. Since εDP(1) <∞, this stage
ends at ε1 = εDP(1) when α = 1. Thus, the evolution consists in the sequence E–P–DP–F with:

E = [0, θε̄D), P = [θε̄D, εDP(0)), DP = [εDP(0), ε1), F = [ε1,+∞)

and

εDP(0) = θε̄D +
k(1− θ2)

2θ
ε̄D, ε1 =

k(1 + θ2)

2θ
ε̄D,

see Figure 2(right).

σ

ε
θε̄D εDP(0)

θE0ε̄D

σ

ε
θε̄D

θE0ε̄D

εDP(0) ε1

Figure 2: Response of the volume element in the case θ < 1. Left: for n > 1, the response corresponds to the sequence
E–P–DP; Right: for n = 1, the response corresponds to the sequence E–P–D–F.

5. Case θ < 1 and n < 1. Since ε̄P < ε̄D there exits a P stage and P=[θε̄D, εDP(0)). Since πDP is
monotonically decreasing, a DP stage cannot starts at εDP(0). Since πD is monotonically decreasing
and πD(1) = 0, α 7→ eD(πDP(0), α) is necessarily monotonically decreasing when α is greater than some
value αM ∈ [0, 1). Therefore a D stage starts at εDP(0) but will end at εM = πDP(0) + eD(πDP(0), αM ).
Hence εM corresponds to a limit point after which no response exists under monotonically increasing
strain. Specifically, if one considers the response given by ε = πDP(0) + eD(πDP(0), α), p = πDP(0) and
σ = E(α)eD(πDP(0), α) for α ≥ 0, that response corresponds to a snap-back in the σ − ε plane as soon
as α > αM , see Figure 3. This part of the response cannot be observed under controlled increasing
strain.
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σ

θE0ε̄D

θε̄D εDP(0) εM
ε

Figure 3: Response of the volume element in the case θ = 2/3, n = 2/3 and k = 4. The response corresponds to the sequence
E–P–D until the limit point εM where a snap-back occurs.

3.4. The issue of the global stability

The responses above have been obtained by only considering the first order stability conditions. It
remains to see whether, at each time ε, the state (ε, αε, pε, p̄ε) is globally stable in the sense of (31). This
verification is delicate in the general case and requires additional properties for the state functions. We
merely give a partial result in the following proposition:

Proposition 6. Provided that α 7→ πD(α) is non decreasing, the response given by the first order stability
conditions satisfies, at each time when that response exists, the following global stability properties:

{
WDP(ε, αε, pε, p̄ε) ≤WDP(ε, αε, pε + q, p̄ε + |q|) , ∀q ∈ R
WDP(ε, αε, pε, p̄ε) ≤WDP(ε, α∗, pε, p̄ε) , ∀α∗ ∈ [α, 1].

Thus, we are only able to prove that, at given damage state, the current state is globally stable with
respect to any perturbation of the plastic strain, and, symmetrically, at given plastic strain state, the current
state is globally stable with respect to any perturbation of the damage. The proof is given in the appendix.
Note that these global stability properties hold true for the family of models considered in the previous
subsection when n ≥ 1.

4. Introduction of the gradient of damage and the global one-dimensional problem

Throughout this section and the next one we consider a one-dimensional body called the bar whose
reference configuration is the interval Ω = (0, L). Its end x = 0 is fixed and the end x = L is submitted to a
time dependent displacement Ut with U0 = 0. The bar is made of a material whose local behavior is given
by one of the plasticity-damage models described in the previous section. The purpose of these sections is
first to set the problem which governs the evolution of the bar with time and then to solve this problem in
some particular cases. Specifically, that consists in constructing and solving the system of equations giving
t 7→ (ut, αt, pt, p̄t) for t ≥ 0, where ut, αt, pt and p̄t denote now, respectively, the displacement field, the
damage field, the plastic strain field and the cumulated plastic strain field of the bar at time t. We assume
that, at time t = 0, the bar is sound and was never plasticized so that α0 = p0 = p̄0 = 0 everywhere in Ω.

4.1. Introduction of the gradient of damage

It is well known that if one uses local damage models with softening to address the problem of the
damage evolution in a whole body and no more for the volume element only, then that leads to a ill-posed
mathematical problem which admits an infinite number of solutions Benallal and Marigo (2007). Moreover,
in the present context of a bar under traction, if one tries to select the solutions which correspond to stable
states at each time, it turns out that no solution satisfies the stability criterion formulated in terms of the
total energy of the body Pham and Marigo (2013). The reason is that it is always possible to find a state
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more damaged and close to the tested state which decreases the energy of the bar. Roughly speaking, it is
possible to break the bar without spending any energy. To overcome this pathological effect, it is necessary
to regularize the model by penalizing the too localized damage fields. For that, we follow the procedure of
Benallal and Marigo (2007); Pham and Marigo (2010a,b) by introducing a damage gradient term into the
total energy density. Specifically, one considers that the state of the volume element is now the quintuple
(ε, α, α′, p, p̄), where α′ denotes the gradient of damage, and that the total energy density reads as

W(ε, α, α′, p, p̄) =
1

2
E(α)(ε− p)2 + d(α) + σP(α)p̄+ d1`

2α′2. (41)

In (41), ` > 0 represents the internal length of the material. We assume that ` is a given constant,
independent of α, which is always possible by a change of the damage variable, see Pham and Marigo
(2010b); Pham et al. (2011b). Accordingly, the total energy of the bar is the following functional of the
quadruple ξ = (u, α, p, p̄), called the global state field, made of the displacement field u, the damage field α,
the plastic strain field p and the cumulated plastic strain field p̄:

E(u, α, p, p̄) =

∫

Ω

W(u′(x), α(x), α′(x), p(x), p̄(x))dx

where the prime denotes the derivative to respect to x. The above expression of the energy makes sense
provided that the global state field ξ is smooth enough. As long as the damage field is concerned, the
gradient term requires that α ∈ H1(Ω) so that the total energy be finite and hence, in our one-dimensional
setting, α ∈ C0(Ω̄). But, as long as the displacement and the plastic strain fields are concerned, it turns
out that it is not always possible to find smooth evolutions because of the localization of the deformation
induced by the softening character of the model. Indeed, the natural space for the displacement field is the
space BV (Ω) of functions of bounded variations while the natural space of the plastic strain field is the
space Mb(Ω) of the measures with bounded variations, Evans and Gariepy (1992). However, to simplify
the presentation, we will consider a less general framework where any global state field ξ = (u, α, p, p̄) is
piecewise smooth and its singular part is localized on a ξ-dependent set S(ξ) which contains a finite number
of points of Ω. (For a sake of simplicity again, we assume that the ends x = 0 and x = L are not singular
points.)

Accordingly, we will use the following assumption: (i) any (extended signed) measure m is decomposed
into its regular and singular parts; (ii) the regular part is denoted m(x)dx, where x 7→ m(x) is at least an
integrable function (in practice, a piecewise continuous function) and dx is the Lebesgue measure; (iii) the
singular part is a linear combination of Dirac measures concentrated on the finite number of singular points
S(m) with some weight M(xi) at point xi. That leads to the following notation:

m = m(x)dx+
∑

xi∈S(m)

M(xi)δxi .

When m is applied to a function ϕ continuous on Ω̄, one gets

m(ϕ) =

∫

Ω\S(m)

m(x)ϕ(x)dx+
∑

xi∈S(m)

M(xi)ϕ(xi).

Specifically, we assume that the displacement field u is continuously differentiable on Ω\S(ξ) and admits
a jump discontinuity on S(ξ) ⊂ Ω. Therefore, the strain field ε associated with u can be seen as the following
measure

ε = u′(x)dx+
∑

xi∈S(ξ)

[[u]](xi)δxi .

In order that the elastic energy be finite, the plastic strain field p has the same singular part as the strain
field and hence can be seen as the following measure

p = p(x)dx+
∑

xi∈S(ξ)

[[u]](xi)δxi
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where x 7→ p(x) is at least continuous on Ω \ S(ξ). In the same manner, the cumulated plastic strain field
is decomposed into regular and singular parts as follows

p̄ = p̄(x)dx+
∑

xi∈S(ξ)

P̄ (xi)δxi .

Finally, the total energy of the bar in the global state ξ = (u, α, p, p̄) can read as

E(u, α, p, p̄) =

∫

Ω\S(ξ)

(
1

2
E(α(x))

(
u′(x)− p(x)

)2

+ d(α(x)) + σP(α(x))p̄(x) + d1`
2α′(x)2

)
dx

+
∑

xi∈S(ξ)

σP(α(xi))P̄ (xi). (42)

In (42), the singular part of the cumulated opening only appears in the dissipated energy, because α and α′

are not singular whereas ε and p have the same singular part.

4.2. The one-dimensional evolution problem

The problem giving the evolution of the state of the bar, namely t 7→ ξt = (ut, αt, pt, p̄t), will be
constructed by using, like in the case of the volume element, the three conditions of irreversibility, stability
and energy balance. Assuming that the evolution t 7→ ξt is smooth, t 7→ p̄t is obtained from t 7→ pt by

˙̄pt(x) = |ṗt(x)| ∀x ∈ Ω \ S(ξt),
˙̄Pt(xi) = |[[u̇t]](xi)| ∀xi ∈ S(ξt).

Note that t 7→ S(ξt) is not decreasing, i.e. the number of singular points can only increase. Indeed, if a
jump discontinuity of the displacement appears at a point xi at some time ti, then P̄t(xi) > 0 for all t ≥ ti.
Therefore those points are material points and their position does not depend on time, but their number can
increase because new points can appear all along the evolution. Accordingly, using the initial conditions,
we can set

p̄t(x) =

∫ t

0

|ṗs(x)| ds, ∀x ∈ Ω \ S(ξt) and P̄t(xi) =

∫ t

0

|[[u̇s(xi)]]| ds, ∀xi ∈ S(ξt). (43)

4.2.1. The irreversibility condition

It is essentially the same as the local one and requires that

α̇t(x) ≥ 0, 0 ≤ αt(x) ≤ 1, ∀x ∈ Ω. (44)

4.2.2. Stability condition

To simplify the presentation, we will only consider the evolution before the rupture of the bar, i.e. we
consider the times t such that maxx∈Ω αt(x) < 1. Let ξt = (ut, αt, pt, p̄t) be the state of the bar at such a
time and let ξ∗ = (u∗, α∗, p∗, p̄∗) be the following virtual state ξ∗ = ξt + h(v, β, q, |q|) where h is a positive
constant. In order that u∗ be kinematically admissible, the field v must be such that v(0) = v(L) = 0.
Moreover, the field v is assumed, like ut, piecewise smooth and we denote by S(v) the set of points where v
is discontinuous. Thus the strain field ε∗ associated with u∗ can be seen as the following measure

ε∗ = εt + hv′(x)dx+ h
∑

xi∈S(v)

[[v]](xi)δxi .

In order that the elastic energy associated with ξ∗ be finite, the virtual plastic strain field p∗ must have the
same singular part and hence is the following measure

p∗ = pt + hq(x)dx+ h
∑

xi∈S(v)

[[v]](xi)δxi .
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Therefore the singular set of ξ∗ is S(ξ∗) = S(ξt) ∪ S(v). Finally in order that αt ≤ α∗ < 1 and that
α∗ ∈ H1(Ω), it is necessary and sufficient that β ≥ 0, β ∈ H1(Ω) and h be small enough. A triple of fields
(v, β, q) which satisfies the above conditions will be called an admissible direction of perturbation. We are
now in a position to define the condition of stability.

Definition 2. The state (ut, αt, pt, p̄t) of the bar at a time t before rupture is said locally stable if, for every
admissible direction of perturbation (v, β, q), there exists h̄ > 0 such that for all h ∈ [0, h̄]

E(ut + hv, αt + hβ, pt + hq, p̄t + h |q|) ≥ E(ut, αt, pt, p̄t). (45)

Dividing (45) by h and passing to the limit when h→ 0 yields the first order stability conditions:

d

dh
E(ut + hv, αt + hβ, pt + hq, p̄t + h |q|)

∣∣∣∣
h=0

≥ 0, ∀(v, β, q) admissible.

Using the definition (42) of the energy and the assumed forms of the field leads to

0 ≤
∫

Ω\S(v)

(
σt(x)(v′(x)− q(x)) + σP(αt(x)) |q(x)|

)
dx+

∑

xi∈S(v)

σP(αt(xi)) |[[v]](xi)|

+

∫

Ω\S(ξt)

((
− 1

2
S′(αt(x))σt(x)2 + d′(αt(x)) + σ′P(αt(x))p̄t(x)

)
β(x) + 2d1`

2α′t(x)β′(x)

)
dx

+
∑

xi∈S(ξt)

σ′P(αt(xi))P̄t(xi)β(xi) (46)

where σt(x) = E(αt(x))(u′t(x)− pt(x)) denotes the stress field at time t. The inequality (46) must hold for
all v such that v(0) = v(L) = 0, all β ≥ 0 and all q. Let us derive the different local conditions which are
given by (46).

1. Equilibrium equation. Taking first β = q = 0 and S(v) = ∅, one easily obtains that the stress field is
constant, i.e.

σt(x) = σt, ∀x ∈ Ω. (47)

2. Plasticity yield criterion. Taking v = β = 0 and using the equilibrium equation, (46) gives

∫

Ω

(
σP(αt(x)) |q(x)| − σtq(x)

)
dx ≥ 0, ∀q smooth,

from which one immediately deduces that the stress must satisfy the plasticity yield criterion at every
point of the bar, i.e.

|σt| ≤ σP(αt(x)), ∀x ∈ Ω. (48)

3. The damage yield criteria. Taking v = q = 0, (46) becomes

0 ≤
∫

Ω\S(ξt)

((
− 1

2
S′(αt)σ

2
t + d′(αt) + σ′P(αt)p̄t

)
β + 2d1`

2α′tβ
′
)
dx+

∑

S(ξt)

σ′P(αt)P̄tβ, ∀β ≥ 0,

where the dependence on x of the fields is omitted. Integrating by parts the term in α′tβ
′, we obtain

by classical arguments of Calculus of Variations the following damage yield criteria in the regular part,
the singular part and the ends of the bar:

In Ω \ S(ξt) : −1

2
S′(αt)σ

2
t + d′(αt) + σ′P(αt)p̄t − 2d1`

2α′′t ≥ 0; (49)

On S(ξt) : σ′P(αt)P̄t − 2d1`
2[[α′t]] ≥ 0; (50)

On ∂Ω : α′t(0) ≤ 0, α′(L) ≥ 0. (51)
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In the case where σP does not depend on α, we recover the damage yield criteria obtained in Pham
and Marigo (2010b); Pham et al. (2011a,b) by the same variational approach and in Comi (1999). But
note that here, because of the coupling term between damage and plasticity, the localization of the
plastic strain will in general induce a discontinuity of the gradient of damage and vice versa. More
precisely, if α′ is continuous at some point and some time, then (50) implies that P̄ = 0 at that point
and that time and hence, by virtue of (43), this point was never a singular point before that time.

4. Noting that v(0) = v(L) = 0 implies
∫

Ω\S(v)
v′(x)dx+

∑
xi∈S(v)[[v]](xi) = 0, one easily verifies that the

equilibrium equation (47), the plasticity yield criterion (48) and the damage yield criteria (49)-(50)
are sufficient so that (46) be satisfied.

4.2.3. Energy balance

Following the presentation of Pham and Marigo (2010b); Pham et al. (2011b), the energy balance prin-
ciple in our one-dimensional setting reads as

d

dt
E(ut, αt, pt, p̄t) = σt(L)U̇t

and hence requires that the variation of the total energy of the bar be equal to the power of the external
force at L. Using the equilibrium equation and expanding the time derivative of the energy, the energy
balance becomes

0 =

∫

Ω\S(ξt)

(
σt(u̇

′
t − ṗt) + σP(αt) |ṗt|+

(
d′(αt) + σ′P(αt)p̄t −

1

2
S′(αt)σ

2
t

)
α̇t + 2d1`

2α′tα̇
′
t

)
dx

+
∑

S(ξt)

(
σ′P(αt)P̄tα̇t + σP(αt) |[[u̇t]]|

)
− σtU̇t.

Integrating by parts the term in α′tα̇
′
t and using the identity

∫
Ω\S(ξt)

u̇′tdx +
∑
S(ξt)

[[u̇t]] = U̇t given by the

boundary conditions lead to

0 =

∫

Ω\S(ξt)

(
σP(αt) |ṗt| − σtṗt)

)
dx+

∫

Ω\S(ξt)

(
d′(αt) + σ′P(αt)p̄t −

1

2
S′(αt)σ

2
t − 2d1`

2α′′t
)
α̇tdx

+
∑

S(ξt)

(
σ′P(αt)P̄t − 2d1`

2[[α′t]]
)
α̇t +

∑

S(ξt)

(
σP(αt) |[[u̇t]]| − σt[[u̇t]]

)
+ 2d1`

2
(
α′t(L)α̇t(L)− α′t(0)α̇t(0)

)
.

Using the plasticity yield criterion (48), the damage yield criteria (49)–(51) and the irreversibility condition
(44), one finally obtains the consistency equations and the plasticity flow rules:

In Ω \ S(ξt) :
(
d′(αt) + σ′P(αt)p̄t −

1

2
S′(αt)σ

2
t − 2d1`

2α′′t
)
α̇t = 0; (52)

In Ω \ S(ξt) : ṗt ≥ 0 if σt = σP(αt), ṗt ≤ 0 if σt = −σP(αt), ṗt = 0 if |σt| < σP(αt); (53)

On S(ξt) :
(
σ′P(αt)P̄t − 2d1`

2[[α′t]]
)
α̇t = 0; (54)

On S(ξt) : [[u̇t]] ≥ 0 if σt = σP(αt), [[u̇t]] ≤ 0 if σt = −σP(αt), [[u̇t]] = 0 if |σt| < σP(αt); (55)

On ∂Ω : α′tα̇t = 0. (56)

Note that the consistency equation and the plasticity flow rule hold on the singular set too.
We can summarize our construction of the global evolution problem by the following

Proposition 7. A smooth evolution t 7→ ξt = (ut, αt, pt, p̄t) satisfies the irreversibility condition, the first
order stability condition and the energy balance if and only if the cumulated plastic strain relations (43),
the local irreversibility condition (44), the equilibrium equation (47), the plasticity yield criterion (48),
the damage yield criteria (49)–(51), the consistency conditions and the plasticity flow rules (52)–(56) are
satisfied at every instant t.
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5. One-dimensional non homogeneous responses

It is easy to check that the homogeneous response, i.e. the response such that ut(x) = Utx/L, αt(x) = αt
and pt(x) = pt for all x ∈ Ω, is still possible. In the case where Ut = tL, i.e. for a monotonically increasing
traction test, the homogeneous response is precisely that obtained in the previous section for the volume
element. This evolution satisfies the irreversibility condition, the first order stability conditions and the
energy balance because, in particular, the gradient of damage vanishes and S(ξt) = ∅. However, we are no
more ensured that it is the unique solution. Moreover, we are not ensured that the local stability condition
(45) is satisfied by the homogeneous response. If we refer to what happens in the case of gradient damage
models with softening (without plasticity), we know that the homogeneous response is unique and stable
if and only if the length L of the bar is sufficiently small by comparison with the internal length ` of the
material Pham et al. (2011b); Pham and Marigo (2013). When the length of the bar is large enough, the
homogeneous response is not stable and it is possible to construct non homogeneous responses. (It is even
possible in general to construct an infinite number of responses Benallal and Marigo (2007).) Accordingly,
we propose here to follow the same procedure and, assuming that L is sufficiently large by comparison with
`, to construct a response where the damage, when it appears, remains localized on a time-dependent part of
the bar. To construct such an evolution, we follow the method proposed in Pham et al. (2011b); Pham and
Marigo (2012) and the reader must refer to these papers to have some details or proofs which are omitted
here.

5.1. General assumptions

To simplify the presentation and to prevent from considering too many cases, we construct such non
homogeneous responses for the family of models considered at Section 3.3 only. Therefore, E, d and σP are
given by (39)-(40). The analysis starts at a time when the damage yield criterion is reached somewhere in
the bar. This time tc corresponds to the end of the E stage or of a P stage according to whether θ > 1
or θ < 1. In the former case, when θ > 1, there is no plasticity before tc, the state of the bar at tc is
ξtc = (ε̄Dx, 0, 0, 0), the stress is σtc = σ̄D and hence the damage yield criterion is reached at every point
of the bar. In the latter case, when θ < 1, a P stage occurs before tc and we will assume to simplify the
presentation that the plastic strain field and the cumulated plastic strain field are uniform at tc. (This
property is not ensured because we are in a perfect plasticity setting and hence the uniqueness of the plastic
strain field is not guaranteed.) Hence, the state of the bar at tc is ξtc = (εDP(0)x, 0, πDP(0), πDP(0)), the stress
is σtc = θσ̄D and the damage yield criterion is also reached at every point of the bar. When t > tc, we
assume that σt is monotonically decreasing from σtc to 0. We seek for non homogeneous evolutions such
that the damage zone is the interval (x1−∆t, x1 + ∆t) where x1 is an arbitrary point of the bar sufficiently
far from its ends so that 0 < x1−∆t ≤ x1 +∆t < L. Thus, we exclude the case where the damage zone is at
the boundary. The half width ∆t of the damage zone, which can depend on time, has to be determined. We
will assume that the center x1 of the damage zone is the unique possible singular point, i.e. S(ξt) = ∅ or
S(ξt) = {x1}. (This property could be deduced from some natural assumptions on the form of the response.)
The analysis is made by discriminating different cases and, when there is no risk of confusion, we do not
explicit the dependence on time t of the fields.

5.2. Cases where θ > 1

At the beginning of the localization process, damage grows without plasticity. We are in the situation
studied in Pham et al. (2011b); Pham and Marigo (2012), there is no singular point and, by hypothesis,

−S′(α)σ2 + 2d′(α)− 4d1`
2α′′ = 0 in I = (x1 −∆, x1 + ∆)

with α(x1 ± ∆) = α′(x1 ± ∆) = 0. The autonomous second order differential equation for α above is an
Euler-Lagrange equation which admits a first integral. Indeed, multiplying the equation by α′ gives

−S(α(x))σ2 + 2d(α(x))− 2d1`
2α′(x)2 = C, ∀x ∈ I,
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and the constant C is obtained from the boundary conditions at x1 ± ∆. Hence, C = −S(0)σ2. Using
(39)-(40) and making the change of variable α→ ω = w(α), the first integral becomes

`2ω′2 = 4ω(ω̄σ − ω) in I,

where

ω̄σ = 1− σ2

σ̄2
D

. (57)

Hence, in the normalized phase plane (ω, `ω′/2), the first integral is a circle of center ω̄σ/2 and radius ω̄σ/2.

Setting ω(x) = ω̄σ cos2 ϕ(x)
2 gives `2ϕ′2 = 4 and hence `ϕ(x) = 2(x1 − x). Therefore, the half width ∆ of

the damage zone is

∆ =
π

2
`.

So, it is independent of σ and proportional to the internal length. For a given σ, the damage profile in the
damage zone is given by

α(x) = 1−
√

1− ω(x) = 1−
√

1− ω̄σ cos2
x− x1

`
.

Thus, the profile is symmetric, α is maximal at the center x1 of the zone where it is equal to ᾱσ = 1−σ/σ̄D.
This evolution with localization of damage and without plasticity remains admissible as long as the

plasticity yield criterion is satisfied everywhere in the bar, i.e. as long as σ ≤ σP(α(x)) for all x ∈ Ω. Hence,
since α 7→ σP(α) is decreasing and since the damage field is maximal at x1, this evolution is admissible as
long as σ ≤ σP(ᾱσ). By virtue of (39), this inequality reads as

θ
( σ
σ̄D

)2n−1

≥ 1 (58)

and one has to discriminate two cases according to n ≤ 1/2 or n > 1/2.

5.2.1. Case I: θ > 1 and n ≤ 1/2, damage localization until rupture without plasticity

In that case, (58) is automatically satisfied for all σ ≤ σ̄D. There is no plasticity and the previous analysis
remains true until σ = 0. The damage profile at a given σ and its evolution with σ are given in Figure 4.

α

x1

1

x1 −
π

2
� x1 +

π

2
�

Figure 4: Case I: θ > 1 and n ≤ 1/2, evolution of the damage profile from the nucleation up to the rupture

When σ = 0, then α(x1) = 1, a crack appears and the displacement is discontinuous at that point. The
damage profile itself becomes singular in the sense that α′ is discontinuous at x1. This final damage profile
is given by

α(x) = 1− sin
|x− x1|

`
for x ∈ I, when σ = 0.
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As long as the dissipated energy in the bar during the damage process is concerned, we have

Dσ :=

∫ x1+∆

x1−∆

(
d(α) + d1`

2α′2
)
dx = `

√
2d1

∫ ᾱσ

0

4d(α)− (S(α)− S(0))σ2

√
2d(α)− (S(α)− S(0))σ2

dα.

Therefore, the energy Gc which is dissipated during all the damage process until rupture is given by

Gc := D0 =
πk

2

σ̄2
D`

E0
. (59)

Thus Gc is proportional to ` and involves all the material constants but those concerning the plastic behavior,
i.e. θ and n.

5.2.2. Case II: θ > 1 and n > 1/2, damage localization with nucleation of a cohesive crack before rupture

In that case, the condition (58) is satisfied as long as σ ≥ σ0 with

σ0 = θ−1/(2n−1)σ̄D.

At σ = σ0, the plasticity yield criterion is reached at the center x1 of the damage zone. At that time, the
damage profile reads as:

ασ0(x) = 1−
√

1− ωσ0(x), ωσ0(x) =
(

1− θ− 2
2n−1

)
cos2

(x1 − x
`

)
.

Then, when σ < σ0, the equality σ = σP(α(x)) is satisfied only at the points where α is maximal and all
these points have the same damage state α∗σ,

α∗σ = 1−
√

1− ω∗σ, ω∗σ = 1−
( σ

θσ̄D

)1/n

.

Since α∗σ < ᾱσ, a part of the damage zone I is necessarily unloaded and the damage does not grow in that
unloaded zone. Accordingly, we search a solution of the following form:

(i) the damage is maximal at x1 only, i.e. at the center of the damage zone;

(ii) the still damaging zone is the interval Iσ = (x1 − ϕσ`/2, x1 + ϕσ`/2) where ϕσ (to be determined) is
increasing when σ decreases;

(iii) the remaining part of the damage zone I \ Iσ is unloaded and α remains equal to ασ0 .

The above conditions could be deduced from weaker assumptions, but we start here from them to simplify
the presentation. By virtue of (i), plasticity can only occur at x1 and we will see that it is the case. So, x1

is a singular point at σ < σ0 and, since the damage grows at x1, (43), (54) and (55) give

σ′P(α∗σ)[[u]](x1) = 2d1`
2[[α′]](x1). (60)

In other words, a cohesive crack has nucleated and the cohesive law relating [[u]] and σ will be obtained
once the jump of α′ will be found. In I \ Iσ, the plasticity criterion (48) and the damage criterion (50) are
automatically satisfied because σ < σ0, σP is decreasing and ασ0

< α∗σ. At the ends of Iσ, α and α′ must be
continuous. The continuity of α′ follows from (50) and the irreversibility condition. Indeed, let us consider
the point x′ = x1 − ϕσ`/2. Since there is no plasticity at this point, (50) gives [[α′]](x′) ≤ 0. On the other
hand, since α′σ0

is continuous and since α can only grows on the right hand side of x′, one has [[α′]](x′) ≥ 0.
Hence [[α′]](x′) = 0. The same argument holds at the other end x1 + ϕσ`/2. Therefore, the set of equations
giving the damage field in Iσ is the following one:

−S′(α)σ2 + 2d′(α)− 4d1`
2α′′ = 0 in Iσ \ {x1} (61)

α = ασ0
, α′ = α′σ0

at ∂Iσ (62)

α = α∗σ at x1 (63)
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Introducing the variable ω, one still deduces from (61) that there exists a first integral and that the curve
in the (ω, `ω′/2) plane is still a circle. But the constant has changed and the first integral reads now

`2

4
ω′

2
= r2

σ − (ω − cσ)2 in Iσ \ {x1} (64)

where the center cσ and the radius rσ of the circle are related to the stress by

σ2

σ̄2
D

= (1− cσ)2 − r2
σ. (65)

(Note that the constant is the same on both parts of Iσ by symmetry.) The first integral gives

ω = cσ + rσ cosψ, `2ψ′
2

= 4 in Iσ \ {x1}. (66)

The continuity conditions (62) give

rσ sinψσ =
1

2

(
1− σ2

0

σ̄2
D

)
sinϕσ, cσ + rσ cosψσ =

1

2

(
1− σ2

0

σ̄2
D

)
(1 + cosϕσ), (67)

where ψσ = ψ(x1 − ϕσ`/2) = −ψ(x1 + ϕσ`/2), see Figure 5. Finally, the plasticity condition (63) at x1

reads as

1−
( σ

θσ̄D

)1/n

= cσ + rσ cos(ψσ − ϕσ). (68)

Thus, (65), (67) and (68) constitute a set of four (non linear) equations for the four unknowns cσ, rσ, ϕσ

ωcσ

rσϕσ
ϕσ

ψσ

ω̄σ0/2 ω∗
σ 1

�ω�

2

Figure 5: Construction of the solution in the phase plane at a given stress σ < σ0. The thin circle represents the damage field
at σ0 (its dashed part corresponds to the interval Iσ where the damage has already evolved), the thick circle gives the new
damage field at σ in Iσ , the dashed line corresponds to the jump of ω′ at the center of the damage zone.

and ψϕ. It turns out that it can be solved in a closed form and after tedious calculations one eventually
obtains that the size of the still damaging zone is given by

tan2 ϕσ
2

=
1−

( σ
σ0

)1/n

( σ
σ0

)1/n

−
( σ
σ0

)2

σ2
0

σ̄2
D

(69)
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Passing to the limit when σ ↑ σ0 and using l’Hopital’s rule, one sees that ϕσ tends to a finite limit, say ϕσ0 ,
given by

tan2 ϕσ0

2
=
θ−2/(2n−1)

2n− 1
,

which means that a finite part of but not the whole damage zone is unloaded when the plasticity occurs.
Then ϕσ is increasing when σ decreases. When σ goes to 0, ϕσ tends to π and the whole initial damage
zone is damaging again.

The evolution of the center cσ of the circle is given by

2cσ = 1−
( σ
σ0

)2

+
(

1− σ2
0

σ̄2
D

)( σ
σ0

)1/n

. (70)

Therefore, using (64) and (65), one obtains

`

2
ω′(x1±) = ∓σ0

σ̄D

(
1−

( σ
σ0

)1/n
)1/2(( σ

σ0

)1/n

−
( σ
σ0

)2
)1/2

which proves that ω′ is discontinuous at the center x1 of the damage zone and hence that a cohesive crack
has really be created. Inserting into (60) gives the cohesive law

[[u]] =
k

n
ε̄D`

(
1−

( σ
σ0

)1/n
)1/2((σ0

σ

)(2n−1)/n

− 1

)1/2

. (71)

This law involves all the parameters of the model (the parameter θ entering in the definition of σ0) and
kε̄D` plays the role of a characteristic length which gives the order of magnitude of the crack opening. Note
that [[u]] increases from 0 to infinity when σ decreases from σ0 to 0, and hence σ = 0 is only reached
asymptotically, see Figure 6.

σ

[[u]]

σ0

σ̄D

kε̄D�

Figure 6: Case II with θ = 3/2, n = 1 and k = 4: the cohesive law giving the relation between the stress and the jump of the
displacement at the center of the damage zone once the plasticity occurs and remains concentrated at that point.

Finally the evolution of the damage field follows from (66). Indeed, ψ can read as ψ(x) = ψσ − ϕσ +
2 |x− x1| /` and hence

α(x) = 1−
√

1− cσ − rσ cos

(
ψσ − ϕσ +

2 |x− x1|
`

)
, ∀x ∈ Iσ,

where rσ and ψσ can be obtained from (65) and (67). The final expression is too long to be reproduced
here, but one can see the evolution of the damage field in Figure 7 where the irreversibility condition α̇ ≥ 0
can be checked.
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At σ = 0, i.e. when the rupture occurs, ϕ0 = ψ0 = π, c0 = r0 = 1/2 and we recover the final damage
field

α(x) = 1− sin
|x− x1|

`
for x ∈ I

as in the case I. Accordingly, the total dissipated energy is also the same and equal to Gc given by (59).
Indeed, the contribution to the damage field is the same since α is the same and the contribution of the
cohesive crack goes to 0 when σ tends to 0. This latter point comes from

σP(α(x1)) = σP(α
∗
σ) = σ, P̄ (x1) = [[u]] ≈ k

n
ε̄D`
(σ0

σ

)1−1/2n

and hence limσ→0 σP(α(x1))P̄ (x1) = 0.

ω
ω̄σ0 1

�ω�

2
1

x1

α
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π

2
�x1 −

π

2
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Figure 7: Case II with θ = 3/2, n = 1 and k = 4: evolution of the damage after the plasticity has occured at the center. On
the left, evolution in the phase plane (ω, `ω′/2); on the right, evolution in the physical space. The presence of a cohesive crack
can be seen through the jump of ω′ in the phase space or the jump of α′ in the physical space.

5.3. Cases where θ < 1

We treat this case in a complete way only when n = 1 because the solution can be obtained in a closed
form and all the steps for constructing the solution are easier. The other cases will be briefly discussed at
the end of the section.

5.3.1. Case III: θ < 1 and n = 1, plasticity stage followed by damage localization with nucleation and growth
of a cohesive crack

Accordingly, the state function σP reads here as

σP(α) = θ(1− α)2σ̄D.

The damage localization process is preceded by a plasticity stage. Assuming that the plastic strain field is
uniform during this stage, one has at the end of the plastic stage

α(x) = 0, p(x) = p̄(x) = πDP(0) =
(1− θ2)kε̄D

2θ
, σ = θσ̄D.

When σ decreases from θσ̄D to 0, we search an evolution such that the damage grows in an interval centered
at x1, with the damage field maximal at x1 and with x1 as the unique possible singular point. Therefore,
the plasticity can only evolve at x1 by virtue of (48) and remains equal to πDP(0) otherwise. Accordingly,
by virtue of (52), the damage field must satisfy when 0 < σ < θσ̄D:

−S′(α)σ2 + 2d′(α) + 2σ′P(α)πDP(0)− 4d1`
2α′′ = 0 in Iσ \ {x1}, (72)
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and
α(x1 ±∆σ) = α′(x1 ±∆σ) = 0, (73)

where Iσ = (x1−∆σ, x1+∆σ) denotes the damage zone and ∆σ is its half-width which has to be determined.
The conditions at x1 depends on whether x1 is singular or not, but in any case the plasticity criterion requires
that

σ ≤ σP(α(x1)) = θ(1− α(x1))2σ̄D. (74)

Multiplying (72) by 2α′, one obtains a first integral with the constant given by (73). Specifically, one gets

2d1`
2α′2 = 2d(α)− 2(σP(0)− σP(α))πDP(0)− (S(α)− S(0))σ2 in Iσ \ {x1}.

This property holds for any plasticity-damage model. In the case of the models given by (39)-(40) with
n = 1, after introducing the variable ω, the first integral reads as

`2ω′2 = 4θ2ω(ω̄σ − ω) where ω̄σ = 1− σ2

θ2σ̄2
D

.

ω̄σω̄σ/2 ω∗
σ 1

ϕσ

ω

�ω�

2θ

Figure 8: Case III: θ < 1 and n = 1, construction of the solution in the phase plane at a given stress σ < θσ̄D. The circle
represents the damage field and the dashed line corresponds to the jump of ω′ at the center of the damage zone.

Hence, in the normalized phase plane (ω, `ω′/2θ), the first integral is a circle of center ω̄σ/2 and radius
ω̄σ/2. The plasticity criterion (74) requires that

ω(x1) ≤ ω∗σ := 1− σ

θσ̄D

.

But since ω∗σ < ω̄σ as soon as σ < θσ̄D, ω′ is necessarily discontinuous at x1 and hence x1 is a singular point,
see Figure 8. Therefore, a cohesive crack appears as soon as σ < θσ̄D and, by virtue of (54)-(55), one must
have

ω(x1) = ω∗σ, σ′P(α∗σ)[[u]](x1) = 2d1`
2[[α′]](x1).

Setting ω(x) = ω̄σ cos2 ϕ(x)
2 gives `2ϕ′2 = 4θ2. Therefore, the half width ∆σ of the damage zone is given

by

∆σ = (π − ϕσ)
`

2θ
with ϕσ = arccos

θσ̄D − σ
θσ̄D + σ

.
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So ∆σ increases from π`/4θ to π`/2θ when σ goes from θσ̄D to 0. For a given σ, the damage profile in the
damage zone is given by

α(x) = 1−
√

1− ω(x) = 1−
√

1− ω̄σ cos2

(
ϕσ
2

+
θ |x− x1|

`

)
in Iσ.

Since ω̄σ is increasing and ϕσ is decreasing (when σ decreases), the damage grows at given x and hence the
irreversibility condition is satisfied. The damage evolution is represented on Figure 9 for θ = 2/3.

�ω�

2θ

ω
1

x1 −
π�

2θ
x1 +

π�

2θ
x1

1

α

Figure 9: Case III with θ = 2/3, n = 1 and k = 4: evolution of the damage after the plasticity stage. On the left, evolution in
the phase plane (ω, `ω′/2θ); on the right, evolution in the physical space. The presence of a cohesive crack from the beginning
of the damage process is visible on both spaces.

As long as the cohesive law is concerned, one gets

[[u]] = kε̄D`

(√
θσ̄D

σ
−
√

σ

θσ̄D

)
(75)

which is similar to that obtained in case II, see (71). However, the difference is that here the cohesive crack
appears as soon as the damage starts.

When σ = 0, then ϕ0 = 0, ω̄0 = 1 and α(x1) = 1. A true crack has nucleated at x1 and the damage
profile is

α(x) = 1− sin

(
θ |x− x1|

`

)
in

(
x1 −

π`

2θ
, x1 +

π`

2θ

)
, when σ = 0. (76)

That final profile differs from those obtained in the previous cases only by the size of the damage zone. The
dissipated energy inside the damage zone at the end of the damage localization process, i.e. when σ = 0 is
given by

D0 =

∫ x1+∆0

x1−∆0

(
d(α(x)) + σP(α(x))πDP(0) + d1`

2α′(x)2
)
dx

with α given by (76). A part, namely 2σP(0)πDP(0)∆0, was dissipated during the P stage. So, if we define
Gc as the dissipated energy due to the damage process alone, then we obtain

Gc :=

∫ x1+∆0

x1−∆0

(
d(α(x)) + (σP(α(x))− σP(0))πDP(0) + d1`

2α′(x)2
)
dx.

After some calculations, one gets

Gc =
πk

2

θσ̄2
D

E0
`

and hence this value differs from that of cases I and II by the factor θ only, see (59). (However, the fact
that n = 1 plays a role.) Note that this value of Gc involves all the parameters of the model.
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5.3.2. Other cases with θ < 1

For n > 0, at σ = θσ̄D, the initial plastic strain πDP(0) reads as

πDP(0) =
kε̄D
2n

1− θ2

θ
.

For σ < θσ̄D, the damage field is still governed by the first integral

2d1`
2α′2 = 2d(α)− 2(σP(0)− σP(α))πDP(0)− (S(α)− S(0))σ2 in Iσ \ {x1}

which reads now in terms of the variable ω as

`2ω′2 = 4Fσ(ω)

with

Fσ(ω) := ω
(

1− σ2

σ̄2
D

− ω
)
− 1− θ2

n
(1− ω)(1− (1− ω)n). (77)

One easily checks that Fσ(0) = 0 and Fσ is positive in an interval (0, ω̄σ) where ω̄σ < 1 is the (first) positive
zero of Fσ. This root depends both on n, θ and σ and must be obtained in general by a numerical procedure.

Moreover the plasticity criterion requires that

ω(x1)) ≤ ω∗σ := 1−
( σ

θσ̄D

)1/n

. (78)

Accordingly, x1 is a singular point (and hence a cohesive crack nucleates) if ω∗σ < ω̄σ for some σ < θσ̄D. On
the other hand, if ω∗σ ≥ ω̄σ for all σ ≤ θσ̄D, then damage will localize around x1 up to the rupture without
concentration of the plastic strain at x1. When n = 1 we are in the first situation and even ω∗σ < ω̄σ for all
σ ∈ (0, θσ̄D). In the other cases, for discriminating between the two possibilities, one must carefully study
the dependence of ω̄σ on n, θ and σ. It is outside the scope of this paper.

6. Review and Perspectives

Let us first recall the main ingredients of our models and the main properties which result. By virtue of
our variational approach, all comes from the form of the total energy

W(ε, α, α′, p, p̄) =
1

2
E(α)(ε− p)2 + d(α) + σP(α)p̄+ d1`

2α′2

and the assumed properties of the state functions E(α), d(α) and σP(α). The first important parameter of
those models is the ratio between the critical damage stress σ̄D (which is given in terms of E(0), E′(0) and
d′(0)) and the critical plastic stress σ̄P = σP(0). When σ̄P < σ̄D plasticity precedes damage whereas when
σ̄D < σ̄P damage occurs first. However, the situation is not symmetric because damage necessarily happens
in any case whereas it is possible that plasticity never occurs. Specifically, the stress softening assumption
and the hypothesis that σP(α) goes to 0 when α goes to 1 play an essential role in the qualitative properties
of the model. Since both assumptions force the stress to decrease once the first damage occurs, homogeneous
solutions are unstable and the damage will localize as for quasi-brittle materials. But here, because of the
coupling with plasticity, there exists a competition between the plasticity criterion and the damage criterion.
If the decrease of σP(α) to 0 is not sufficiently fast, then damage localizes without plasticity (case I) and we
recover the same results as for quasi-brittle materials. On the other hand, if the decrease of σP(α) to 0 is
sufficiently fast, then the plasticity criterion plays a role during the localization process (cases II and III).
In this latter situation, the localization process of damage up to the rupture is quite different from that of
quasi-brittle materials because a cohesive crack is necessarily created. The first cause is the stress softening
condition which forces the damage to be non homogeneous and maximal at the center of the damage zone.
In turn, plasticity can only evolve at that point and, since our model allows the plasticity to be concentrated

26



(it is the concept of measure or equivalently of shear band like in perfect plasticity), then plasticity really
localizes at the center of the damage zone. Consequently, a jump of the displacement occurs whereas the
damage as not reached its ultimate value and the stress is not zero. It is important to note that the value of
the jump of the displacement (and hence the cohesive law) is obtained in terms of the jump of the gradient
of damage by virtue of the coupling term. This situation is really new by comparison with quasi-brittle
materials and specific to our model which couples damage with plasticity. Moreover, it suffices to read the
different steps of the construction of the solution to see the importance of the variational approach.

Let us finish now by some perspectives.

1. We have chosen here a form of the total energy which is the simplest one to couple damage with
plasticity. Moreover we have considered almost all the cases that one can encounter with this type
of energy. On one hand many other choices are possible and on the other hand some cases have no
practical interest. (For instance, is the case σ̄D < σ̄P really interesting?) Consequently, the natural
task should be to propose a method of experimental identification of the different parameters of the
model or more generally of the different state functions.

2. Even if the model has been presented here in a one-dimensional framework only, there is no difficulty
to extend it in 3D. Indeed, it suffices to propose a form of the total energy which works in a vectorial
setting. A natural extension could be to define W by

W(ε, α,∇α,p, p̄) =
1

2
E(α)(ε− p) · (ε− p) + d(α) + σP(α)p̄+ d1`

2∇α · ∇α

where E(α), ε and p stand now for the stiffness tensor, the strain tensor and the plastic strain tensors,
respectively. The state functions d and σP remain unchanged, p̄ still denotes the cumulated plastic
strain but is now defined by ˙̄p =

√
2ṗ · ṗ/3 whereas ∇α represents the gradient of damage. If one

adopts the plastic incompressibility hypothesis, i.e. tr p = 0, then the stability condition will give at
the first order the Von Mises plastic yield criterion

√
3

2
σD · σD ≤ σP(α),

where σD stands for the deviator of the stress tensor σ = E(α)(ε − p). We will also obtain the
equilibrium equations and the damage yield criterion will read as

1

2
E′(α)(ε− p) · (ε− p) + d′(α) + σ′P(α)p̄− 2d1`

2∆α ≥ 0,

where ∆ stands for the Laplace operator. So, the three-dimensional model is a simple extension of
the one-dimensional one. Of course, the properties of this model in 3D will be much more difficult to
establish.

7. Conclusions

An important challenge in the variational approach to fracture is to propose a regularization of Dugdale-
Barenblatt models (Dugdale (1960); Barenblatt (1962)) in the same manner as gradient damage models were
proposed for regularize Griffith’s model. It is really interesting from a numerical point of view to find such
regularizations. Indeed, once this is done, it is no more necessary to consider discontinuous displacement
fields across free surface of discontinuities. The jumps are replaced by high gradients and one can use
the classical finite element method. Unfortunately, gradient damage models alone are not able to give
rise to true cohesive cracks. Symmetrically, perfect plasticity models give rise to shear bands where the
displacement is discontinuous, but the shear stress remains constant and hence these shear bands cannot
be considered as true cohesive cracks. Our study shows that, by coupling damage with plasticity, the
nucleation of a “Griffith’s crack” is in general preceded by the nucleation of a true cohesive crack at the
center of the damage zone since both the displacement is discontinuous and the stress progressively decreases
to 0. Accordingly, gradient damage models coupled with plasticity could be good candidates. This favorable
impression must be confirmed by further theoretical works and by numerical tests.
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Appendix A. Proof of Propositions 1, 2, 3, 6

Proof of Proposition 1. Noting that the stress-strain relation (1) is equivalent to (7), let us first prove
that (7)–(9) imply (2)–(3).

1. Take p∗ = p ± h with h > 0 and insert it in (8). Dividing by h and passing to the limit when h goes
to 0 give ±σ ≤ σP which is precisely (2).

2. By virtue of (7) and (4), developing (9) by using the chain rule of differentiation of composite functions
leads to −σṗ+σP |ṗ| = 0. Hence ṗ = 0 if |σ| < σP and sign ṗ = signσ if |σ| = σP which are precisely (3).

Let us now prove that (1)–(3) imply (8)–(9).

1. Using (1), (4), (6) and the chain rule give Ẇ − σε̇ = −σṗ+ σP |ṗ|. Then (3) leads to (9).

2. Let p∗ ∈ R. After easy calculations, one deduces from (6) that

WP(ε, p∗, p̄+ |p∗ − p|)−WP(ε, p, p̄) =
1

2
E(p∗ − p)2 − σ(p∗ − p) + σP |p∗ − p|

and (8) follows from (2) and the positivity of E. �

Proof of Proposition 2. Noting that the stress-strain relation (10) is equivalent to (23), let us first
prove that (23)–(26) imply (12)–(13). The case when α = 1 being trivial, we can assume that 0 ≤ α < 1.

1. Take α∗ = α+h with h > 0 small enough and insert it in (25). Dividing by h and passing to the limit
when h goes to 0 give (12).

2. By virtue of (21), (22) and (23), developing (26) with the chain rule of differentiation of composite
functions gives (13).

Let us now prove that (10)–(13) imply (25)–(26).

1. Using (10), (22) and the chain rule gives Ẇ − σε̇ =
(

1
2E
′(α)ε2 + d′(α)

)
α̇. Then (13) leads to (26).

2. One deduces from (22) that

WP(ε, α∗)−WP(ε, α) = d(α∗)− d(α)− ε2

2

(
E(α)− E(α∗)

)
. (A.1)

By virtue of (14) and (18), 2d′(β) ≥ −εD(α)2E′(β) for α ≤ β ≤ α∗. Integrating this inequality over
[α, α∗] gives 2(d(α∗) − d(α)) > εD(α)2(E(α) − E(α∗)). Inserting into (A.1) and using both (14) and
(17) give (26). �

Proof of Proposition 3 We only detail the proofs of the most delicate parts.

1. By virtue of the initial condition and by continuity, neither the plastic strain nor the damage evolve
at the beginning of the test. When ε̄D > ε̄P the plastic yield criterion is reached the first, when ε̄D < ε̄P
the damage yield criterion is reached the first and when ε̄D = ε̄P both criteria are reached at the same
time.

2. It suffices to prove that there does not exist ε0 > ε̄I such that αε0 < 1 and σε0 = 0. Assume that there
exist εi > ε̄I such that σεi = 0. By continuity of ε 7→ σε the set of such εi is closed and hence admits
an infimum, say ε0. If αε0 = 1, then there is nothing to prove by virtue of the irreversibility condition.
Consider the case αε0 < 1. Then ε0 = pε0 . By continuity, there exists an interval (ε0 − h, ε0) with
h > 0 such that σP(αε) > σε > 0 for all ε in that interval. By virtue of the plasticity rule, pε remains
constant in this interval and hence equal to pε0 = ε0. But, in the interval (ε0 − h, ε0), we should have
both σε > 0 and σε = E(αε)(ε− ε0) < 0 which is impossible. Hence either αε0 = 1 or there does not
exist a time where σ vanishes.
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3. Let us prove the property by contradiction. Assume there exists ε > ε̄I such that αε < 1 with both
fD(ε, αε, pε) < 0 and fP(ε, αε, pε) < 0. Then, by continuity, that remains true in an interval (ε0, ε1).
Consequently, (αε, pε) = (αε0 , pε0) during this interval. Taking for ε0 the greatest lower bound, then
necessarily fD(ε0, αε0 , pε0) = 0 or fP(ε0, αε0 , pε0) = 0. But since

∀ε > ε0, fD(ε, αε0 , pε0) > fD(ε0, αε0 , pε0), fP(ε, αε0 , pε0) > fP(ε0, αε0 , pε0),

at least one yield criterion is violated in the interval (ε0, ε1), which is a contradiction.

4. Also by contradiction. If the damage yield criterion was never reached, we should have αε = 0 for all
ε ≥ 0. Then fP(ε, 0, pε) ≤ 0 gives pε ≥ ε− ε̄P. Consequently, fD(ε, 0, pε) ≥ −d′(0) + |σ′P(0)| (ε− ε̄P) and
hence fD(ε, 0, pε) > 0 for ε large enough, which is a contradiction.

5. Still by contradiction. Assume there exists ε > εd such that αε < 1 and fD(ε, αε, pε) < 0. Then,
by continuity, that remains true in an interval (ε0, ε1). Taking for ε0 the greatest lower bound, then
necessarily fD(ε0, αε0 , pε0) = 0. Moreover αε = αε0 and, by virtue of Property 3, fP(ε, αε0 , pε) = 0 in
the interval (ε0, ε1). Hence pε = ε− σP(αε0)/E(αε0) for ε ∈ (ε0, ε1). Consequently,

∀ε ∈ (ε0, ε1), fD(ε, αε0 , pε) = |σ′P(αε0)| (ε− ε0) > 0,

which is a contradiction.

6. Let αm = limε→∞ αε, by the irreversibility condition we have 0 ≤ αε ≤ αm for all ε ≥ 0. If αm < 1,
then we should deduce from the damage and the plasticity yield criteria that pε and ε−pε are uniformly
bounded:

∀ε ≥ 0, pε ≤ max
α∈[0,αm]

d′(α)

|σ′P(α)| , ε− pε ≤ max
α∈[0,αm]

σP(α)

E(α)
.

Hence ε should be bounded, which is a contradiction. So αm = 1. Note that, according to some
particular properties of the state functions E, d and σP, α = 1 could be reached at a finite strain εr.
In such a case, αε = 1 , σε = 0 and pε remains undetermined for ε ≥ εr.

Proof of Proposition 6. The proof is a simple adaptation of the proofs of Propositions 1 and 2. At given
αε, it suffices to use Proposition 1 to obtain the desired inequality. At given pε, one can repeat the proof
of Proposition 2 with d(α∗) + σP(α

∗)pε instead of d(α∗). The key point in the proof is the strain hardening
condition which reads now

α 7→ d′(α) + σ′P(α)pε
|E′(α)| must be monotonically increasing.

By definition of πD, one gets

d′(α∗) + σ′P(α∗)pε
|E′(α∗)| =

d′(α∗)
|E′(α∗)|

(
1− pε

πD(α∗)

)

and hence the monotonicity property is ensured by (18) provided that πD is non decreasing.
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