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Summary

In this thesis, two new classes of phenomenological models in the framework of the continuum

thermodynamics and gradient theory are proposed. The first is Standard Gradient Constitutive Model

dealing with problems at micro-scale, the other Gradient Fatigue Criteria at small scale. Using them,

common effects not captured yet in classical mechanics but become significant at small scales, are taken

into account. Two distinct effects usually confused in the literature, "size" and gradient effects, leading

to both well-known phenomena "Smaller is Stronger" and "Higher Gradient is Stronger" are modeled.

The thesis contains two main parts, corresponding to the two new model classes as follows:

Part A- Standard Gradient Constitutive Models: Application in Micro-Mechanics

A formulation of Strain Standard Gradient Plasticity Models is proposed and numerically implemented.

The models are based on a global approach in the framework of continuum thermodynamics and gen-

eralized standard materials where the gradients of internal parameters are introduced. The governing

equations are derived from an extended version of the virtual work equation (Frémond 1985, or Gurtin

1996). These equations are also derived from the formalism of energy and dissipation potentials and

appear as generalized Biot equations. The gradient formulation established in such way is considered

a higher-order extension of the local plasticity theory, with the introduction of the material character-

istic length scale ℓ and the insulation boundary condition proposed by Polizzotto 2003. The presence

of strain gradient leads to a Laplacian equation and to non-standard boundary value problem. A

computational method based on diffusion-like problem is used. Illustrations are given and then applied

to typical problems in micro-mechanics to capture the "size" and gradient effects, thus to represent both

phenomena "Smaller is Stronger" and "Higher Gradient is Stronger". A good agreement between

numerical and reference results is found. A mesh-independence of numerical results is observed.

Part B- Gradient Fatigue Criteria: Application in Fatigue at Small Scale

A formulation of gradient fatigue criteria is proposed in the context of multiaxial high-cycle fatigue

(HCF) of metallic materials. The notable dependence of fatigue limit on some common factors not

taken into account in classical fatigue criteria, is analyzed and modeled. Three factors are intimately

interconnected, the "size", stress gradient and loading effects, are here investigated. A new class of

fatigue criteria extended from classical ones with stress gradient terms introduced not only in the normal

stress but also in the shear stress components, are formulated. Such a formulation allows to capture

both "size" and gradient effects, as well as to cover a wide range of loading mode, then can represent

both phenomena "Smaller is Stronger" and "Higher Gradient is Stronger". Gradient versions of some

classical fatigue criteria such as Crossland and Dang Van are provided as illustrations. Furthermore, for

the multiaxial low-cycle fatigue limit (LCF), some initial suggestions are also proposed.

A brief plan of the thesis:

Chapter 1 is General Introduction. Chapters 2-3 correspond to part A and Chapters 4-5 to part B. Chap-

ter 6 is General Conclusions and Perspectives. Finally, Appendix is detail of numerical implementation.

7
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CHAPTER 1

General introduction

1.1 Problematics

Part A- Standard Gradient Constitutive Models: Application in Micro-Mechanics

In recent years there has been an increased interest in modeling plastic deformations at small scales. Ex-

amples are found in microelectronic components, micro-electro-mechanical systems (MEMS) and thin

film applications. A large number of experiments have demonstrated that the length scale effect, also

called the "size effect"1, is of importance at length scales within the range from a fraction of a micron

to tens of microns (Venkatraman and Bravman 1992 [169]; Fleck et al. 1993, 1994, 1997, 2001 [52;

55; 53; 54]; Nix and Gao 1998 [124]; Stolken and Evans 1998 [159]). The common point in many

experiments appearing the "size effect" is that, the spatial strain distribution in the solid is usually not

uniform, i.e. a strain gradient is present. That implies the phenomenon associated with the "size effect"

is usually gradient effect2. Both phenomena are related to the material resistance in a visible general

correlation that, "the smaller the size, the higher the gradient, then the higher material resistance".

There are also cases where the gradient exists but independent from the size, although both influence on

material strength (e.g. residual surface stress cases). Examples about the "size effect" - also well known

under a term "Smaller is Stronger", are as follows. For the same material, geometry, loading mode

and condition boundary: tension-compression test shows an increased material strength with decreasing

radius of a specimen; decreasing thickness of the thin films gives a strengthening in bending test; thin

wire torsion exhibits an increased strength for smaller diameters of the wires; decreasing indentation

size in micro-indentation tests leads to an increased hardness, etc. For the sake of further analyses, it

requires to clarify what are sources of the size effect by isolating it from the gradient effect, for instant.

Size effect is commonly assumed related to two sources: Dislocation Starvation (DS) effect (Deshpande

et al. 2005 [46], Greer et al. 2005 [72], etc), and pure size effect (Fleck et al. 1994, 1997 [55; 53]).

The first concerning the dislocation mechanism is usually unimportant at micro scale (see Fig.2.1), and

particularly is not our object of study; the second relevant to the metallurgical defects and heterogeneity

of material, is proved also insignificant at scale considered and thus negligible (see Fig.2.2.a, or more

detail in [55; 53]). Then a preliminary qualitative remark is that, such size effect is not very significant

and thereby just is a part, but not enough to explain the experimental fact "Smaller is Stronger" discussed

above.

1significance of the notation " " will be explained later.
2It is a brief writing. In Part A, this must be understood as strain gradient effect.
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Chapter 1 : General introduction

Consider now the gradient effect as another factor which may help to interpret that fact. Examples about

gradient effect - termed here "Higher Gradient is Stronger", are the following. For the same material,

geometry, loading mode: a thin film shearing with passivated layers that constrain dislocations, gives a

higher resistance than that with unpassivated layers; a thin wire torsion with exterior surface covered by a

very thin elastic coating that blocks dislocations, has a higher strength than that with free surface, etc. For

the same material, geometry, boundary condition: the strength in bending test is larger than in tension-

compression test. Once again, sources of gradient effect must be clarified. Such gradient effect that we

can just estimate but not observe, is related to three sources: boundary condition, loading mode, and size.

The first is associated with constraints on dislocation glide (grain boundaries, interfaces, boundary layers

such as thin films, thin wires, etc. as synthesized in Kostas 2010 et al. [93]); the second concerns loading

type which decides the spatial stress distribution state in the solid (null gradient in tension-compression,

non-zero gradient in bending, etc.); the last is associated with the size (e.g. geometry and grain sizes)

and can be visibly seen via an example (see Fig.2.2.b, or [55; 53]): for the same loading mode (torsion),

condition boundary (free surface), and nominal twist imposed on exterior surface of a thin wire, the

smaller the wire radius the higher the strain gradient (and the higher the material strength). The figure

shows that, although the variation here in material strength at various radii results from both size and

gradient effects, such very clear difference is enough to conclude the dominance of the latter as the for-

mer is shown insignificant before in the case of tension test (Fig.2.2.a). Then the sources of the gradient

effect prove two things: first, the phenomenon "Smaller is Stronger" experimentally observed is mainly

attributed to the gradient effect in our cases (via its last source) - rather than totally to the size effect (DS

and pure size effects) as usually believed; second, the gradient effect, i.e. "Higher Gradient is Stronger",

is really a phenomenon different from the size effect.

All previous analyses for both the size and gradient effects imply that although the size and gradient

effects are intimately interconnected and usually confused in the literature, they are actually two distinct

phenomena. The former only contributing partially to "Smaller is Stronger" and requiring to be modeled

by other approach, is negligible compared to the latter and thus left out in the current study; whereas the

latter is not only "Higher Gradient is Stronger" but also a main factor contributing to "Smaller is Stronger"

that we observe, and is the object of study here. In brief, from phenomenological aspect, "Higher Gra-

dient is Stronger" is obviously related to the gradient effect only, while "Smaller is Stronger" is related

to both size effect (DS and pure size effects) and gradient effect where the latter is dominant. Then in

mechanical aspect, "Smaller is Stronger" here is just an "visible image" of gradient effect rather than the

size effect. However in phenomenological aspect, "Smaller is Stronger" is an experimentally observed

fact that evokes an "intuitive relation" to the size rather than the gradient. For this reason and also because

of habit, henceforth in this research, the terminology "size effect" (placed within quotes) is still used for

"Smaller is Stronger", but after a new conception, as an apparent size effect; and the terminology gra-

dient effect is used for "Higher Gradient is Stronger". In such a sense, an important conclusion drawn

is that, taking into account only gradient effect (related to all its sources) is enough to capture both

"size effect" and gradient effect on plastic behavior.

10 1.1 Problematics
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Many other experimental evidences also show that, apart from the size and boundary condition of the test

specimen as mentioned above, the microstructure of material also significantly impacts on deformation

and failure. For example, the strengthening of metal-matrix composites by a given volume fraction of

hard particles is greater for small particles than for large - for the same volume fraction of reinforcement;

fine-grained metals are stronger than those with coarse grains, etc. Again, a non-zero strain gradient is

present even in this case, as the GNDs induce strong plastic strain gradient at grain level (Section 2.4).

The phenomenon associated with the microstructure "size effect" is therefore still the gradient effect.

The idea about taking into account only the gradient effect to capture both "size" and gradient effects

may be still available as before in the case of the influence of the geometry size and boundary condition.

A brief classification about the "size" and gradient effects is the following. If one considers the all three

factors (size, boundary condition, microstructure), three groups of "size" and gradient effects commonly

discussed in the literature respectively are: the first related to the geometry size and the second to bound-

ary condition of microsystems (thin wire, micro-foil, micro-/nano-indentation or similarly micro-void,

sharp crack tip, thin film, etc.); the third to the microstructure of material (rigid particle in a metal-

matrix composite, grain structure of a polycrystal material, etc.). Among these three groups, the group 1

and 2 with problems related to microsystems will be our main objective in this study. At such a length

scale, the "size" and gradient effects obviously must be taken into account.

However, classical theories of plasticity possess no material length scale, therefore predict no "size" nei-

ther gradient effects. It leads to the need of new models to capture observed effects in micro-mechanics.

To our knowledge, all these models belong to either gradient or nonlocal class, proposed since recent

decades to overcome the lack of a material characteristic length scale in the classical plasticity. The

existing models used in micro-mechanics, after the synthesis of Voyiadjis et al. 2010 [176], comprise:

Discrete Dislocation Dynamics Simulations, Molecular Dynamics Simulations, Crystal Plasticity The-

ories, and Gradient Plasticity Theories. Thanks to its simplicity in both formulation and numerical

implementation, the gradient plasticity theory, pioneered by Aifantis 1984, 1987 [4; 5], and then devel-

oped by other authors (Fleck & Hutchinson, Muhlhaus, Voyiadjis, Gurtin, Polizzotto, de Borst, Gud-

mundson, Willis, Andrieux, Benallal, etc., and that by Q.S. Nguyen which will be used in this work),

has been largely applied. This is in turn divided in two classes: strain gradient plasticity (SGP) and

stress gradient plasticity models. In the current work, Strain Standard Gradient Plasticity (SSGP)

Constitutive Model3 proposed by many authors including Q.S. Nguyen [118; 116] will be presented

and used. In time-independent processes, two models are discussed: Gradient-Independent Dissipation

Potential (Model I), and Gradient-Dependent Dissipation Potential (Model II). The latter is the trickiest

due to the indetermination of dissipation forces for null associated fluxes and overcome with the Energy

Regularization Method proposed by Q.S. Nguyen [118].

A question posed is "Are Gradient Models effective for micromechanical plasticity behavior"? Note that

the "size effect" always exists (at least the pure size effect), while the gradient effect may be present

or not, independently. Here in this study, only cases where the gradient effect is present apart from

3henceforth briefly called "Gradient Model" in the current study, except when it must be more concretized.
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the inherent pure size effect, are considered. In this condition, the theory about "Geometrically Nec-

essary Dislocations (GNDs)" ([12; 13; 52; 55; 53; 89; 137]) can explain the mechanism of the strain

gradient effect on material strength as well as the role of material length scale in a consistent framework.

Following the theory of GNDs, Gradient Models with "gradient terms" introduced in their energy and

dissipation potentials, can capture the gradient effect. Together with such an important conclusion above,

these models are finally considered possible to capture both "size" and gradient effects to represent both

phenomena "Smaller is Stronger" and "Higher Gradient is Stronger" as seen in illustrations in this work.

Using an extended version of virtual work principle (Frémond 1985 [65], Gurtin 1996 [76]) and the

classical laws of continuum thermodynamics in the framework of the SSGP theory and the generalized

standard materials (Halphen and Q.S. Nguyen 1975 [84], Q.S. Nguyen 2000, 2005, 2011, 2012 [117;

119; 118; 116]), thermodynamically consistent equations of the "SSGP Constitutive Model" are de-

rived for the standard gradient plasticity yield criterion and associated flow rule. The gradient formulation

can be considered a higher-order extension of the classical plasticity theory. This SSGP theory still lies

within the general framework of the classical continuum thermodynamics (macro model). However, in

addition to the inherent boundary conditions of classical plasticity, secondary boundary condition (insu-

lation boundary condition, cf. Polizzotto 2003 [141]), is introduced. The introduction of strain gradients

into the local theory formulations leads to a Laplacian equation needing to be solved at global level, and

to boundary value problem governed by partial differential equations of higher order with non-standard

boundary conditions, therefore more difficult to solve. Nevertheless, these difficulties are overcome with

a computational method based on diffusion-like problem. Indeed, the Laplacian equation at global

level is here easily numerically solved with user subroutine (UMAT) built in usual available Finite Ele-

ment codes (e.g. CAST3M).

The SSGP Constitutive Model with linear or nonlinear isotropic and kinematic hardening, where the

gradient of accumulated plasticity is introduced, is here investigated as illustration. The model is used to

treat typical problems (thin wire torsion, thin film shearing, micro-void growth, etc.). The issue of nu-

merical convergence is also considered. Algorithms with implicit schemas after deformation theory are

used. A good agreement between numerical results and reference counterparts is found. Conditions for

avoiding the pathological mesh dependence are obtained. By means of numerical calculations for those

problems, upper and lower saturation bounds with respect to the specimen size out of which no change in

numerical results are found, are observed. They also present the validity limit of the model. Thus, in the

light of reference data, problems concerning the microsystems’ geometry size are successfully treated.

Those concerning the material microstructure size expected to be also done via the material character-

istic length related to the grain size, are temporarily left out. Then it is shown that, our final objective in

this thesis - capturing both "size" and gradient effects to represent both phenomena "Smaller is Stronger"

and "Higher Gradient is Stronger", is confirmed.

Part B- Gradient Fatigue Criteria at Small Scale

Similarly to modeling mechanical behaviors at micro-scale, in recent years, there has also been an in-

creased interest in establishing fatigue criteria for metals capable of dealing with particular issues related

12 1.1 Problematics
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to small scales (problems with the size effect, the high stress gradient effect as around notches, voids,

contacts..., and loading effect, etc.). At sufficiently small sizes, some factors whose effects on fatigue

limits are inherently not captured by classical fatigue criteria, become important and must be taken into

account through new criteria.

Among such factors, experimental evidences from the literature show three interconnected factors: "size

effect", gradient effect4 and loading effect (cf. [135; 131; 132; 179]). At this stage we just give some

qualitative analyses as follows (more details will be given in Chapter 5). (1) For the same nominal stress,

material and smooth geometry, spatial stress distribution in tension-compression fatigue test, the smaller

the sample size, the higher the fatigue limit. This variation in fatigue strength is attributed to the pure

size effect as the gradient is null; (2) For the same nominal stress, material and smooth geometry, the

specimen in tension-compression test sustains lower fatigue stress than in bending test. The presence

of the stress gradient in bending, but not in tension-compression, is considered beneficial effect of the

stress gradient; (3) For the same nominal stress, material and smooth geometry, and stress gradient, fa-

tigue limit in plane bending test is always higher than that in rotative bending test. This difference is

regarded as the loading mode effect; A visible general correlation between the previous factors is that,

"the smaller the size, the higher the gradient, then the higher fatigue resistance".

Similarly to Part A, it also requires to analyze again the effects just mentioned above, but now in the point

of view of fatigue resistance. Size effect in fatigue tests is actually the pure size effect which will be also

proved negligible compared to the others at scale considered (see Chapter 5); while the gradient effect

is again related to three sources: boundary condition, loading mode, and size. From the same rationale

as in Part A about the distinction between the size and gradient effects, the dominance of the gradient

effect as well as the negligibility of the pure size effect at scale considered, the new conception for "size

effect" to mention the real nature of the phenomenon "Smaller is Stronger", and noting that the loading

effect is naturally attached to the gradient effect, an important conclusion drawn is also that, taking into

account only the gradient effect (related to all its sources) is enough to capture the "size", gradient

and loading effects on fatigue limits.

Classical fatigue criteria without material length scale however predict no "size", gradient neither loading

effects. The objective is to establish a new class of fatigue criteria for considering the previous factors.

These criteria are applied to not only small devices (electronic components, electro-mechanical devices),

but also to devices in the transfer of fatigue data from laboratory specimens to components in industrial

design. Because in both cases, at sufficiently small sizes, the previous effects become important and must

be captured. In this context there have been a few existing approaches such as (cf. [131; 17; 132; 112;

179]): (i) critical layer approaches; (ii) distance approaches (e.g. effective distance approach, theory of

critical distances); (iii) nonlocal approaches (e.g. maximum stressed-strained volume, volumetric energy

based criterion; gradient method); (iv) local approaches (e.g. gradient dependent criteria, etc).

In the present investigation, a new simple gradient version of local type fatigue criteria, i.e. Gradient

Fatigue Criteria, is developed in the spirit of Papadopoulos and Panoskaltsis 1996 [135]. The main idea

4It is a brief writing. In Part B, this must be understood as stress gradient effect.
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is to maintain the general framework of the classical fatigue criteria, but to embed into it gradient terms

which enable to describe the effects concerning the stress heterogeneous distribution and loading mode.

Three steps are used: first, phenomenological analyses on dependence of fatigue limit on the previous

factors under uniaxial stress cyclic loadings; second, formulation of stress gradient fatigue criteria which

can capture the previous observed effects; and finally, a generalization to multiaxial loadings.

To confirm the effectiveness of Gradient Fatigue Criteria at small scale, similarly in Part A, note that the

"size effect" always exists, while the gradient effect may be present or not, independently. Once again,

here in this study, only cases where the gradient effect is present apart from the inherent pure size

effect, are considered. However, the notch effect,5 regarded as a particular case of the gradient effect,

will be deliberately left out in the study confined in macroscopically elastic behavior. In such a context

and along with such a notable conclusion above, Gradient Fatigue Criteria with stress gradient terms

introduced are capable to capture the "size", gradient and loading effects, and thus to reproduce both

phenomena "Smaller is Stronger" and "Higher Gradient is Stronger", as found in the applications here.

Basing on this approach, the current study re-uses the review of Papadopoulos and Panoskaltsis 1996

[135] and develop to make more clear the connection as well as the distinction between the effects by

analyzing the role of each dimension of sample in fatigue resistance (the role related to pure size effect

or gradient effect, or both?). The interpretation of [135] concluding the independence of torsion fatigue

limits from the shear stress gradient effect is re-considered. Two issues that remain, are: first, the non-

effect of the shear stress gradient on fatigue limits is only found for some metals - but not all!; second,

the influence of the stress gradient amplitude must be clarified. Gradient fatigue criteria extended from

classical ones with stress gradient terms introduced not only in the normal stress but also in the shear

stress components, are thereby proposed and validated to clarify the issues. For example, the new criteria

are shown effective when used to well reproduce the torsion tests by Massonnet [104], what are impos-

sible with [135]’s model.

Such a formulation allows new criteria to capture the "size" and gradient effect, as well as to cover a

wide range of loading effect. These are then naturally generalized to multiaxial. Gradient versions of

some classical fatigue criteria such as Crossland and Dang Van are provided as illustrations. A good

correlation between experiment results from the literature and simulation results is found. Then our final

objective here - modeling the "size", loading and gradient effects to represent both phenomena "Smaller

is Stronger" and "Higher Gradient is Stronger", is confirmed.

This work mainly deals with the multiaxial high-cycle fatigue limit (HCF). However some initial

propositions will also be given for the multiaxial low-cycle fatigue limit (LCF).

1.2 Synthesis

In the framework of micro-mechanics, two new classes of simple phenomenological model extended

from classical models, Strain Standard Gradient Constitutive Model and Gradient Fatigue Criteria,

5A very high stress concentration around notches can cause high local plastic strain here.
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are proposed in this thesis. Both model classes are based on the Continuum Thermodynamics and Gra-

dient Theory, and here generally called Gradient Models. Using them, common effects not included yet

in classical mechanics but becoming significant at sufficiently small scales, are now captured. The final

objective here is to model "size" and gradient effects, then to reproduce both well-known phenomena

"Smaller is Stronger" and "Higher Gradient is Stronger". Outstanding computational advantages of

the model classes adopted make them convenient for applications in micro-mechanics.

1.3 Thesis organization

• Summary is an abstract of the whole study dealing with the two new model classes, Standard

Gradient Constitutive Models, and Fatigue Gradient Criteria, corresponding to parts A and B.

• Chapter 1 gives a General Introduction with an overview for each part.

• Chapters 2-3 present the content of the Part A where a Literature Review is given in Chapter 2,

and Standard Gradient Constitutive Models in Chapter 3.

• Chapters 4-5 are dedicated to the content of the Part B with a Literature Review in Chapter 4, and

the Gradient Fatigue Criteria in Chapter 5.

• Chapter 6 are devoted to General Conclusions and Perspectives.

• Appendix is detail of numerical implementation by deformation plasticity methods.

1.3 Thesis organization 15
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CHAPTER 2

Literature review

2.1 Overview of micro-mechanics: plasticity at the micron scale

Material engineering has recently advanced at an ever increasing pace, and nowadays one has reached

to engineer materials at scales approaching the micro, nano, and even atomic scale. Applications of met-

als and polymers at the micron scale are multiplying rapidly. Plasticity as well as the elasticity of the

materials are important, and much efforts have been underway to model behavior at the micron scale. In

solid mechanics, one has found that constitutive models conceived for the macro scale, become increas-

ingly insufficient when approaching the micro scale. The problem lies at the fact that, over a scale which

extends from about a fraction of a micron to tens of microns, metals display a strong size-dependence

when deformed non uniformly into the plastic range. Although not always, the associated effect with the

"size effect" is usually the gradient effect. The smaller the size is, the larger the gradient is, the larger the

material strength is. A general phenomena are hence "Smaller is Stronger" and "Higher Gradient is

Stronger" associated with the "size" and gradient effects. This effect has important implications for an

increasing number of applications in electronics, structural materials and MEMS. Nevertheless plastic

behavior at this scale cannot be characterized by classical plasticity theories because they possess no

material length scale and thus predict no "size effect" neither gradient effect. The need has thereby be-

come evident about new models to capture the relevant effects in the material behavior. The complexity

of such models on the one hand is appropriate in describing the behavior, on the other hand must also be

limited, since increased complexity leads to increased computational cost. One approach, prioritized in

the present research, is to maintain the general framework of the macro-scale model (continuum thermo-

mechanics), but to embed into it micro-mechanical characteristics which enable the "composite" model

to describe the experimentally observed micro-scale effects. Moreover, while micron sized solids are too

small to be characterized by classical theory, they are usually too large to conform to approach based

on discrete dislocation mechanics. The relatively large numbers of dislocations governing plastic defor-

mation at the micron scale motivate the development of a continuum theory of plasticity incorporating

size-dependence. SGP theories have been developed for this purpose. The motivation and potential for

such theories will be discussed. Issues around the foundations of the SGP theories will also be discussed

and a few typical results are given (cf. [89; 137]).
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2.2 Bibliography on experimental results in micro-mechanics: important

effects

In addition to common effects in classical mechanics such as plasticity, viscosity, cyclicity,... effects,

at sufficiently small scale, some other relevant effects such as the size, gradient and anisotropy effects,

become important and must be taken into account.

2.2.1 Size and gradient effects

The synthesis and analysis of [52; 55; 53; 137; 89] are reported here to continue to be discussed. The

specific citations will be detailed later.

a) Distinction: difference and correlation

As partially discussed in Chapter 1, the size and gradient effects are on the one hand two distinct

phenomena, but on the other hand very closely correlative. The gradient effect concerns to three sources:

boundary condition, loading mode and size; while the size effect is commonly assumed related to two

sources: Dislocation Starvation (DS) and pure size effects; Here some experimental evidences about the

effects are given. The Dislocation Starvation (Deshpande et al. 2005 [46]) concerning dislocation mech-

anism, always exists in plasticity problems. This mechanism accounts for the size effect experimentally

observed in the cases without both pure size (i.e. material without defects) and strain gradient effects.

Another example of the DS size effect in the absence of the pure size and gradient effects, carried out

on the gold in a tension test, is also given in Fig.2.1. In view of the figure one can observe that, with

gold pillar diameters more than about a micron, DS size effect becomes insignificant, thus negligible at

micron scale. Not similarly to the size effect by Dislocation Starvation, the pure size effect is interpreted

with the theory of metallurgical defects and heterogeneity of material at small scale. The pure size effect

always exists whatever the other effects are. For example, in the uniaxial tension test (Fig.2.2.a), if not

including some experimental errors, a slight size effect (DS presumedly and pure size effects) after the

thin wire diameter is shown in the absence of the strain gradient here. In the torsion case (Fig.2.2.b), both

size and gradient effects exist where the size effect is still insignificant at scale considered (as the size

effect is loading-independent). Thereby it permits to deduce that the gradient effect is exactly dominant

factor to contribute to the phenomenon "Smaller is Stronger" experimentally observed here. A remark

drawn is that, although "Smaller is Stronger" directly related to the specimen size, this actually is the

gradient effect related to the sample size, but not totally to the size effect as commonly expected. De-

spite that real nature, a terminology "size effect" (placed within quotes) is still used for this phenomenon

because of the "intuitive" sense and habit.
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Figure 2.1 : Dislocation Starvation (DS) size effect in the absence of pure size and gradient effects:

Stress-strain behavior of <0 0 1>-oriented FIB’d gold pillars where flow stresses increase significantly

for decreasing diameters in range less than 500nm, but nearly unchange with diameters more than 1µm.

Then size effect by DS is insignificant at micron scale (cf. Greer et al. [72])

b) Classification and corresponding experimental results

At length scales within the range from a fraction of a micron to tens of microns, the size and boundary

condition of the test specimen and the material microstructure significantly impacts on deformation and

failure. Correspondingly, three groups of size as well as gradient effects commonly discussed in the

literature roughly are: the first related to the loading and geometry size and the second to boundary

condition of microsystems (first: thin wire torsion Figs. 2.3.a and 2.2, micro-foil bending Figs. 2.3.b

and 2.4; second: micro-/nano-indentation or similarly micro-void growth Figs. 2.3.c and 2.5, stress

field at the tip of a sharp crack Fig.2.3.d, thin film shearing Fig.2.6, etc.); the third associated with the

microstructure of material (rigid particle in a metal-matrix composite Fig.2.3.e, grain structure of a

polycrystal material Figs. 2.3.f and 2.7, etc.). All these groups relate to a term "micro-mechanics"

that implies mechanics at micro-scale. At such a micro-level, both "size" and gradient effects generally

become important and must be accounted for in the proposed model. Such terminology "micro" is

understood in the sense of both microsystems and microstructure where the former will be our major

object in the current study.

Group 1, 2: "size" and gradient effects related to microsystems

Once again let us come back the Fig.2.2 which corresponds to a set of experiments displaying strong

size-dependence of plastic deformation in the micron range . Annealed copper wires of diameter ranging

from 170 down to 12µm are twisted well into the plastic range. For each wire, the torque, Q, versus twist

per unit length, κ,is plotted as Q/a3 versus κa, where a is the radius of the wire (Fig. 2.2.b). Dimensional

arguments allow to directly deduce that, if the wires strength is governed by a continuum theory with no
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Figure 2.2 : Data for tension and torsion of fine polycrystalline copper wires: (a) Uniaxial tension true

stress σ versus logarithmic strain ε. Except experimental errors, a slight size effect (DS presumedly and

pure size effects) is observed as the strain gradient is absent here; (b) Torque versus twist per unit length

normalized. Both size and gradient effects exist where the latter is dominant and make largely different

between the curves. In such way, the curves with no internal constitutive length scales must fall on top

of one another. (cf. Fleck et al. [55; 53])

constitutive length parameter, the curves of Fig.2.2.b should plot on top of one another. The difference

in strength between the smaller wires over the largest wire reflects the "size effect". Besides, tensile

stress-strain data for these same wire are plotted in Fig. 2.2.a. This displays a slight pure size effect apart

from some experimental error. Accordingly, the strengthening effect at the micron scale appears to be

more strongly associated with non-uniform deformation, as will be discussed in the next section.

A second set of experiments is plastic bending of a series of micron thick nickel films as in Fig.2.4.

Strips of the film were bent around a series of fibers of different diameters. Elastic springback upon

release of the film was measured providing the moment M associated with the curvature of the fiber κ.

The bending data in Fig.2.4 is plotted as M/bh2 versus the surface strain, εb = κh/2, where h is the

film thickness and b is the strip width. As in the case of wire torsion, the bending data presented this way

should be independent of film thickness if there were no material length parameters operative. The large

apparent strengthening of the thinner films over the thicker ones is similar to that observed for the wires

in torsion.

A third set of experiments is indentation test which is a common means of assessing material yield

strength. Instruments have been developed which permit measurement of indentation hardness at the

micron and nano scales. A large size-dependence is observed in indentation tests on metals. Data for

tungsten single crystals at three orientations relative to the indenter are shown in Fig.2.5. The hardness is

defined as the indentation load divided by the area of the indent after unloading. The Vickers indenter is

relatively shallow so that the indentation depth is a fraction of the indentation diagonal plotted in Fig.2.5.

There is some dependence of hardness on crystal orientation, but the size-dependence is the predominant

effect. Indents with diagonals longer than about 100µm cease to display any size-dependence. By simple
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Figure 2.3 : Plastic strain gradients are caused by the loading and geometry of deformation (a, b), by

local boundary conditions (c, d), or by the microstructure itself (e, f). (cf. Fleck et al. [55])

dimensional arguments, it follows that any classical plasticity theory (e.g. one that does not possess a

constitutive length scale) necessarily implies indentation hardness would be size-independent. The strong

size-dependence evident at the micron scale in Fig.2.5 and in data on other metals (Atkinson 1995 [14],

Ma and Clarke 1995 [98]; De Guzman et al. 1993 [83]; McElhaney et al. 1998 [108]; Poole et al. 1996

[145]) constitutes the experimental evidence for the need of an extension of plasticity theory, i.e. SGP

theory, to the micron scale.

To imagine how is the scope of the SGP theory, three following scales are considered in the light

of dislocation theory. (i)-At the micron scale, the number of dislocations involved in the indentation

zone is usually large - too large to be amenable at the present time to quantitative analysis using discrete

dislocation mechanics. Problems in this range of length scales generally have sufficiently large numbers

of dislocations that a continuum approach is essential for quantitative modeling; (ii)-At even smaller

scales, by contrast, discrete dislocation mechanics is required to understand nucleation of dislocations
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Figure 2.4 : Normalized bending moment versus normalized curvature (εb = κh/2) for initially straight

thin films of nickel subject to bending. The data is presented in such a way that responses for materials

with no internal constitutive length scale would superimpose. In this way, the figure brings out the

strength increase of thinner films relative to thicker films in bending. (cf. Stolken and Evans [159])

at the indenter and the interaction between relatively small numbers of individual dislocations. That

means problems tend to fall into the class where dislocations must be treated as discrete entities. Recent

modeling efforts of nano scale indentation of single crystals based on discrete dislocation mechanics

appear promising (Tadmore et al. 1998 [163]); (iii)-At length scales above dozen microns, classical

plasticity theories which neglect gradient effects usually suffice.

Data for another common set of experiments, thin film shearing, is plotted in Fig.2.6. The normalized

plastic strain decreases with the decrease of the normalized thickness, that means the strengthening is

found. However this phenomenon is only observed if one or both surfaces of the thin film are passivated.

By contrast, the strength of unpassivated thin films is relatively independent of film thickness and yield

strength increases mainly as a result of grain size strengthening and then this belongs to the group 3 as

follows.

Group 3: size effect related to microstructure

The well-known phenomenon in micro-mechanics is the so-called "Hall-Petch effect" which states

that the yield strength of pure metals increases with diminishing grain size (see Fig.2.7).

On the other hand, after grain size, three categories of micro-grain-size materials can be enumer-

ated as in the common literature: nanocrystalline (NC) metals (< 100nm); ultra fine-grained (UFG)

metals (100nm−1µm); and microcrystalline (MC) metals (> 1µm), also called coarse-grained (CG)

metals. The last one is assumed maybe also in the validity range of the proposed model whose material

characteristic length scale ℓ is directly related to the material grain size (as an example in Fig.2.8).

A similar phenomenon as "Hall-Petch effect", but for the metal-matrix composites of a given volume

fraction of hard particles, in which the strengthening is observed with the decreased particles, as in the

case of grain size.
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Figure 2.5 : Hardness data for tungsten single crystals at three orientations relative to the Vickers

indenter. The hardness (load divided by the area of the indent) is plotted against the diagonal of the four-

sided pyramidal indent displaying the increase in hardness with decrease in indent size (cf. Stelmashenso

et al. [158])

2.2.2 Anisotropy effect

In micro-mechanics where mechanical behaviors are examined at small scales, the crystal structure

(size, order, orientation, cleavage... of crystals) is of certain importance. From a microstructural point of

view, the importance of this effect depends on the scale under consideration. In this thesis which is lim-

ited to problems related to microsystems (geometry dimension of micrometer) but not to microstructure,

the anisotropy effect is not object of study.

2.2.3 Synthesis

The size and gradient effects are two distinct phenomena although they are frequently confused in the

literature. The phenomenon "Smaller is Stronger" is attributed mainly to the gradient effect related to the

size, and just a little part to the size effect (size effect by DS and pure size effect) in our cases; whereas

"Higher Gradient is Stronger" is of course attributed to the gradient effect only. The phenomena become

pronounced when the geometry size or microstructure size (indent size, grain size or particle spacing,

etc.) lie below approximately 10µm. With the negligibility of the size effect by DS and the pure size

effect, it remains only the gradient effect to consider for both "Smaller is Stronger" and "Higher Gradient

is Stronger". In this study, only cases where the gradient effect exists are considered. Then taking

into account the gradient effect is considered enough to capture these both phenomena experimentally

observed. Although the notation "size effect" is still used for "Smaller is Stronger", it is remarked that

actually it implies gradient effect related to the size rather than the size effect.
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Figure 2.6 : Thin-film shearing test: L-film thickness, l-material length scale (cf. Voyiadjis et al. [174])

Figure 2.7 : Curves of bending force-punch displacement under different grain sizes: (a) 60µm in foil

thickness; (b) 80µm in foil thickness (cf. Shan et al. [151])

The effects discussed above may not all have the same explanation, but it is clear that all require a

length scale for their interpretation. A natural way to include "size effect" in the constitutive law is to

postulate that the yield stress depends upon gradient. This point of view will be clarified by means of a

synthesis of dislocation mechanism presented in the section 2.4 below.

2.3 Review of existing mechanical constitutive models in micro-mechanics

2.3.1 Overview

As aforementioned, when approaching sufficiently small scale, some relevant effects - especially

"size" and gradient effects, become important and must be captured in the mechanical behavior models.
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Figure 2.8 : Evolution of the characteristic length scale with grain size (cf. Haque and Saif [85])

However, classical theories of continuum plasticity possess no material length scale, thereby predict no

"size effect" neither gradient effect. Using the classical approach, the material behavior is assumed to be

the same even if its size is reduced ad infinitum. Otherwise, using this, common physical effects may be

captured, but just available for each specific microstructure (e.g. grain size), and for each specific geom-

etry, i.e. solely available at macroscopic aspect. In microscopic aspect, it requires a set of corresponding

parameters for each microscopic scale under consideration (e.g. for each grain and geometry sizes).

For example, consider a Chaboche-type elasto-visco-plastic mechanical behavior model with nonlin-

ear kinematic and isotropic hardening, accompanied with cyclic hardening, in which visco-parameters

will be set equal to zero as from the stable cycles. This is applied to nano-copper making chip-to-

package interconnections (Fig.2.9 - PhD thesis - Shubhra 2006 [155]) to predict mechanical behaviors of

the material. At macroscopic level, a good agreement between experimental-numerical results is found

(plasticity, viscosity, cyclicity, creep effects, etc.); at microscopic level, however, the need of a set of

parameters corresponding to each grain size clearly proves that the microstructural effect is not captured

and that is inherent defect of macroscopic classical models. In other word, changing the grain size (or

more generally, microstructure) is equivalent to changing the material.

Therefore it leads to the need of a new class of constitutive models to predict mechanical behaviors

at small scale. Basing on effects observed in micro-mechanics as just reviewed, a number of mod-

els/theories has been developed by many authors. In physics respect, two kinds of models have been

often discussed in the literature. The first one concerns time-independent behaviors, i.e. non-viscous

behaviors such as friction, incremental plasticity, brittle fracture or brittle damage. The other deals with

time-dependent behaviors, also called viscous behaviors of the materials and is commonly discussed in

Visco-Elasticity, Visco-Plasticity, in Phase change as in Damage Mechanics. In methodology respect,

after the synthesis of Voyiadjis [176]), a number of theories which have been proposed in the literature

for some recent decades to overcome the lack of a length scale in the classical theory of plasticity, are:

- Discrete dislocation dynamics simulations (Nicola et al. 2003 [120]; Espinosa et al. 2006 [48];
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Figure 2.9 : Chaboche-type elasto-visco-plastic cyclic mechanical behavior of nano-Cu at grain size of

50nm (cf. Shubhra [155])

Balint et al. 2008 [15]; Kochmann and Le 2008 [92]);

- Molecular dynamics simulations (Schiotz et al. 1998 [150]; Warner et al. 2006 [178]; Groh et al.

2009 [73]; Nair et al. 2008 [113]);

- Crystal plasticity theories (Voyiadjis and Huang 1996 [175]; Bittencourt et al. 2003 [29]; Ohashi et

al. 2007 [129]; Ohashi 2004, 2005 [127; 128]; Borg et al. 2008 [31]; Mayama et al. 2009 [107]; Liu et

al. 2009 [95]);

- Gradient plasticity theory including two kinds commonly discussed in the literature: strain and

stress gradient plasticity theories. In this work, a theory of Strain Gradient Plasticity (SGP) will be

presented and applied. At this stage, the synthesis about SGP theory is temporarily ignored and will be

back as well as detailed in the section (2.5) instead.

The first three classes have been termed "nonlocal models" after (Nilsson 1998 [121]; Stromberg

and Ristinmaa 1996 [160]; de Sciarra 2008, 2009 [44; 45]; Polizzotto 2009 [142]). The terminology

"nonlocal models" is here used in the sense that the evolution of a state variable (or tensor) at a particular

point in the material, is dependent not only on the internal state of the point itself, but also on the state

of the neighboring points. In general, this influence is weighed spatially, whereby the magnitude of the

influence of a neighboring point is related to the proximity of the point.

The fourth class, SGP theory (i.e. SGP Constitutive Model), is a "coarse" model that has an embed-

ded intrinsic length scale to capture discrete events that occur in the microstructure. The SGP Constitutive

Model are our proposal in the current study.
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2.3.2 Strain Gradient Plasticity (SGP) Models: promising candidate?

This subsection is devoted to answer a question "Why Gradient Constitutive Model is chosen?".

The answer lies on the fact that, among the above classes, thanks to its simplicity and effectiveness

in both mathematical formulation and numerical implementation, the SGP theory is much applied in

micro-mechanics. Indeed, the gradient formulation is actually considered a higher-order extension of the

classical plasticity theory. Thereby this still lies within the general framework of the classical continuum

thermodynamics (macro model).

2.4 Why size and gradient effects exist?

Let us recall that, the size effect relates to two sources: Dislocation Starvation and pure size effects;

while the gradient concerns three sources: boundary condition, loading mode, and size. A very brief

synthesis at this stage is that, the size effect is explained with the "Dislocation Starvation Theory" and

with "Theory of Metallurgical defects and Heterogeneity of material"; whereas the gradient effect is

interpreted by the "Crystallography Theory".

2.4.1 Dislocation Starvation Theory: not use for the SGP theory

Deshpande et al. 2005 [46] investigated the plasticity size effects in tension-compression test of

single crystals where the gradients are zero using discrete dislocation plasticity theory. Greer et al.

2005 [72] addressed the size dependence of the gold at the micron scale in the absence of gradients (see

Fig.2.1) using atomistic simulations. The same, Nix et al. 06 [125] studied the deformation at the

nanometer and micrometer length scales in the light of the effects of the gradient and the dislocation

starvation. However, as explained right from the Chapter 1, the size effect by Dislocation Starvation is

negligible at micron scale and thereby this theory will not here discussed further.

In the framework of the SGP theory that the current study focuses on, gradient-free cases will be

deliberately left out. In the next section, non-zero gradient cases will be considered from point of view

of the Crystallographic Theory.

2.4.2 Crystallographic Theory: use for the SGP theory

a) Crystallographic basis

Crystallography Mechanism helps explaining the strain gradient effect as well as the role of material

length scale in a consistent framework. A synthesis of discussions in [137; 52; 55; 53; 89] to recall

crystallographic basis is here represented in this section along with some discussions. The motivation

for the current research is provided by experimental results in the emerging fields of micro- and nan-

otechnology. In order to construct a mathematical formulation that properly models the observed effects,

it is necessary to understand the behavior of the material at the most basic level that is relevant to plastic
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deformation at this scale. In this section, we review the physical mechanism by which plastic deforma-

tion occurs. Physically, a dislocation is a crystallographic defect or irregularity in the crystal structure.

The mathematical description implies that dislocations behave as stable particles; they can move, grow

and annihilate each other. At the microscopic level, plastic deformation in metallic materials is the end

result of the collective behavior of a vast number of dislocations. Hence, crystallographic dislocation

densities are appropriate metrics of plastic deformation in metals. These densities can be defined by their

magnitude ρ and are typically measured in line length per unit volume. Plastic strain is directly related

to the motion of dislocations. Meanwhile, hardening in metals is attributed to the interaction among

dislocations and the interaction with the crystal microstructure nearby. These phenomena are driven by

dislocation multiplication mechanisms: cross-slip and double cross-slip, glide, climb, etc. Dislocations

can also form loops, aggregate at grain boundaries, and arrange themselves into varied types of substruc-

tures commonly called dislocation networks. These networks in turn constitute obstacles to the motion

of other dislocations. This effect provides the mechanism by which hardening occurs. It may therefore

be said that the ease with which dislocation are able to move, determines the degree of hardening in the

material. Hence, there are two types of dislocations which should be distinguished by even the simplest

dislocation model: mobile and immobile dislocations. These basic types of dislocations correspond to

the basic mechanics of plastic deformation, whereby plastic strain is carried by the motion of mobile dis-

locations, while plastic hardening is related to the resistance from immobile dislocations. As immobile

dislocations accumulate, the mobile dislocations interact to an increasing degree with immobile dislo-

cations and movement becomes more and more difficult. Consequently the threshold of stress required

to produce additional plastic strain is continuously raised. This phenomenon relates to "hardening" of a

material. That critical shear stress which is required to untangle the interacting dislocations and to induce

a significant plastic deformation, is defined as the Taylor flow stress τ (Taylor 1938 [167]). The Taylor

flow stress may also be viewed as the passing stress for a mobile dislocation to glide through a forest of

immobile dislocations without being trapped or pinned. The related hardening law, i.e. the Taylor hard-

ening law, relates the shear strength to the dislocation density, and provides a simple description of the

dislocation interaction process at the microscale. One form of Taylor’s hardening law which is generally

accepted in literature is:

τ = τ0 + CGb
√
ρi (2.1)

where ρi is the immobile forest dislocation density, G is the shear modulus, b is the magnitude of the

Burgers’ vector, and C is a material constant of order unity related to the crystal and grain structure and

typically ranging from 0.1 to 0.5 (Ashby 1970 [12]). Meanwhile, τ0 represents the stress extrapolated

to a dislocation density of zero. The immobile forest dislocation density ρi is generally assumed to

represent the total coupling between two types of dislocations (as elaborated later) that play significant

roles in the hardening mechanism. Deformation in metals enhances the formation, motion, and storage of

dislocations. Afterward, it is in turn storage of dislocations that is the cause of hardening in the material.

On the two types of dislocations, they contain: stored dislocations which are generated by trapping each

other in a random way are commonly referred to as statistically stored dislocations (SSDs); whereas
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stored dislocations that maintain the plastic deformation incompatibilities within the polycrystal caused

by nonuniform dislocation slip, are called geometrically necessary dislocations (GNDs). The presence

of GNDs causes additional storage of metallurgical defects and increases the resistance to deformation

by acting as an obstacle to the SSDs ([12]). A connection of SSDs to hardening by plastic strain, and of

GNDs to that by plastic strain gradient which is regarded as the origin of the gradient effect (including

"Smaller is Stronger" that is always confused as a "size effect"), will be analyzed in the next section.

b) Connection with SGP theory, size and gradient effects

The main physical arguments for a size effect within the context of continuum plasticity have already

been presented by Fleck and Hutchinson 1993 [52] and Fleck et al. 1994 [55], and only a brief sum-

mary is reported here. The underlying idea is that material flow strength (or material hardening, more

precisely) is controlled by the total density of dislocations stored ρi, part of which derives from, and is

directly proportional to, the gradient of strain. This part is our main interest in the framework of SGP

theory. In this approach, the size-dependence yield strength displayed in each of the cases-studies above

is believed to be associated with GNDs generated by non-uniform (non-zero gradient) straining. The

distinction between dislocations stored during uniform straining (i.e. SSDs) and those necessitated by

gradients of strain (i.e. GNDs) is as follows. Attention is directed to distributions of large numbers of

dislocations, and not with individual dislocation interactions.

Dislocation theory suggests that the plastic flow strength of a solid depends on strain gradients in

addition to strains (as explained later). Hardening is due to the combined presence of GNDs associated

with a plastic strain gradient, and SSDs associated with plastic strain. In general, strain gradients are

inversely proportional to the length scale over which plastic deformations occur. Thus, gradient effects

become important for plastic deformations taking place at small scales. Experimental evidence suggests

that flow strength increases with diminishing size, at length scales on the order of several microns or less

(as analyzed below by means of the data in Fig.2.10).

When a plastic crystal is deformed, dislocations are generated, move, and are stored; the storage

causes the material to work harden. According to the Crystallographic Theory, dislocations are stored

for two reasons:

(i) In principle, uniform straining of a single crystal could occur without any dislocations being

stored. However dislocations do accumulate by random trapping each other due to statistical interaction

with one another and with the microstructural features such as precipitates. These are referred to as SSDs

whose density, ρS , increases with strain in a complex manner (Ashby 1970, 1971 [12; 13]). As yet, there

is no simple theory to predict the density ρS as a function of strain, although it has been measured by

numerous investigators (see, e.g. Basinski and Basinski 1966 [20]).

(ii) When a crystal is subjected to nearly any gradient of plastic strain, apart from SSDs, GNDs

must be stored for compatible deformation of various parts of the crystal. That means GNDs results

from gradients of plastic strain which appear either because of the geometry of the solid, or because

the material itself is plastically inhomogeneous (containing non-deforming phases, e.g.). As examples:
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in the plastic twisting of a cylinder or bending of a beam, the strain is finite at the surface but zero

along the axis of twist or of bending [Fig.2.3(a, b)]; in the hardness test the strain is large immediately

beneath the indenter but zero far from it; and in the plastic zone at the tip of a crack in an elastic medium

steep gradients of plastic strain appear [Fig.2.3(c, d)]; in the deformation of plastic crystals containing

hard, non-deforming particles local strain gradients are generated between particles; and in the plastic

deformation of polycrystals, the mismatch of slip at the boundaries of the grains can induce gradients of

plastic strain there [Fig.2.3(e, f)]. In approximate terms, the magnitude of the plastic strain gradient is of

the order of the average shear strain in the crystal divided by the local length scale λ of the deformation

field. The density of GNDs, ρG, is directly proportional to this plastic strain gradient, and in principle,

can be calculated if the gradient of plastic slip on crystal planes is known. In brief, strain gradients

require, for compatibility reasons, the presence of GNDs of density ρG in addition to that of SSDs,

where (cf. [12]):

ρG ≈ 4γ

bλ
(2.2)

Here, γ is the macroscopic plastic shear strain and b is again the magnitude of the Burger’s vector.

Some illustrations of the calculation of ρG in which each type of dislocation storage mechanism

operates can be found at ([55; 53] (e.g. uniaxial straining of a metallic single-crystal bar, plastic bending

of an initially straight single-crystal beam to a macroscopic curvature κ, etc.).

It is assumed that the flow strength for a single-slip system of a single crystal depends upon the sum

of the densities SSDs, ρS , and GNDs, ρG, i.e upon ρi = ρS+ρG. The simplest possible dimensionally

correct relationship between the flow strength τγ on the slip plane and total dislocation density is, in

accord with Taylor’s relation (eq. 2.1),

τγ = CGb
√
ρS + ρG (2.3)

where G,C, b as defined before, but C here is taken to be 0.3 by Ashby 1970 [12].

Other couplings between ρS and ρG to form ρi are possible, but anyway the contribution of each one

is impossible to deny. And it is now worthy to recall that, among two components of ρi, the density of

dislocations ρS is inherently and always already included in the classical plasticity theory as well-known.

Hence, in the case where the length scale λ of deformation field is large enough such that the gradient

of plastic strain is small enough, and as a result ρG≪ ρS , the classical plasticity theory is still valid. In

other word, classical plasticity laws tacitly assume that ρG≪ρS and no length scale enters. Otherwise a

modified plasticity theory is then needed to include the important contribution of ρG, i.e. of the plastic

strain gradient. Accordingly we must now determine in what case the density ρG associated with the

plastic strain gradient becomes important and must be considered too.

Consider now the order of λ in comparing the magnitudes of ρS and ρG. In the torsion test, λ is

simply the radius of the cylinder; in bending it is the half thickness of the beam; in the hardness test

it is related to the indent size; at the crack tip, to the plastic zone size; and in metals containing non-

deforming particles λ is related to the particle separation, approximately r/f , where r is the radius and f

is the volume fraction of the particles. In polycrystals one might expect it to be related to the grain size.

32 2.4 Why size and gradient effects exist?



Chapter 2 : Literature review

Figure 2.10 shows a comparison of ρS and ρG as a function of shear strain γ for a variety of mi-

crostructural length scales λ for pure copper. The shaded band marked "Single Crystal" is the measured

density ρS in single crystal copper, oriented for (initial) easy glide, with three stages as represented in

([55]). In polycrystals, stages I and II are absent as shown in the shaded band labeled "Polycrystal". It is

to be emphasized that these are the densities of dislocations which characterize macroscopically uniform

deformation - that is, one in which no gradients of strain are imposed. When gradients are present, ad-

ditional dislocations are required to accommodate them. The figure shows this contribution, calculated

from eq. (2.2) for various length scales λ set, as explained, by the particular aspect of geometry (wire

radius or beam thickness), imposed displacements (the hardness test) or microstructural feature (parti-

cles or grain boundaries) which induce them. We note that at 10% strain ρG ≫ ρS for λ < 50µm in

single crystals and for λ < 20µm in polycrystals. Thus, there exists a threshold where the density of

GNDs swamps the SSDs and hardening is strongly dependent upon strain gradient effects. The smaller

the length scale λ of the gradients, the more important the effects become. Finally, the fact that the order

of length scale is roughly micron is now confirmed.

Figure 2.10 : The density of SSDs ρS , and GNDs ρG plotted against shear strain. The single crystal

density ρS (shaded band) is taken from the experimental data (cf. Basinski and Basinski [20]); that for

polycrystals is inferred from stress-strain curves. The density ρG is shown as a set of parallel lines for

assumed values of microstructural length scale λ, using eq. (2.2) (cf. Fleck et al. [55])

2.4.3 Synthesis

- Methodology of theory: The main idea here is to develop a continuum theory of plasticity which

assures a transition from a behavior independent from strain gradients to that dominated by strain gradient

effects. Only non-zero gradient cases are considered, thereby Crystallographic Theory is applied. There
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have been attempts to include strain gradients within a plasticity formulation. An approach usually

used is to bring in a length scale associated with localization phenomena. To the best of the authors’

knowledge, the theories proposed until now have not directly involved GNDs, but are mainly based upon

ideas on the thermally activated diffusion of dislocations under a potential gradient. Here we will take the

same idea by introducing some gradient hardening terms into the expression of the energy and dissipation

potentials as seen in the Chapter 3.

- Validity range of theory: Phenomenological theories of SGP reported in this work are intended for

applications to materials and multilayers, whose dimensions controlling plastic deformation fall roughly

within the range from a tenth of a micron to ten microns. Problems in this range of length scales gen-

erally have sufficiently large numbers of dislocations so that a continuum approach is appropriate for

quantitative modeling. At smaller scales, problems tend to fall into the class where dislocations must

be treated as discrete entities (e.g. discrete dislocation mechanics). At length scales of dozen microns,

classical plasticity theories which neglect gradient effects usually suffice.

2.5 Survey of existing typical SGP Constitutive Models

2.5.1 Overview

Pioneered by Aifantis throughout 1984-2009 with typical works 1984 [4] and 1987 [5], the gradient

plasticity theory has been much developed and largely applied by many other authors. It involves typical

authors who have developed the theory for a long time such as Fleck and Hutchinson et al. 1993-2009

[52; 55; 53; 54; 56; 57], Gurtin et al. 2000-2010 with typical ones [76; 80], Voyiadjis et al. 2001-2011

with [176; 174], Polizzotto et al. 1998-2011 with [141; 144], Willis 1996-2011, Gudmundson et al.

2004-2009 with [74], de Borst and Muhlhaus [43], Q.S. Nguyen 2000-2012 [117; 119; 118; 116], etc.

In this section, reviews of Pekmezi 2008 [137], Voyiadjis et al. 2010 [176] and Fleck 2001 [54] are

here reported to present in a consistent view the state of the art of the gradient plasticity theory.

The gradient formulation may be considered an extension of the local plasticity theory. The intro-

duction of strain gradients into the local theory formulations leads to boundary value problems governed

by partial differential equations of higher order with non-standard boundary conditions. There are essen-

tially two strategies for the strain gradient theory formulations: (1)- one consists in heuristically intro-

ducing the gradient dependence directly into the constitutive equations of the local-type material. This

framework of SGP theories does not involve the higher-order stress, and requires no additional boundary

conditions. The plastic strain gradient comes into play through the incremental plastic modulus. Exam-

ples in this class include the works by (Acharya 2000 [1], Acharya and Beaudoin 2000 [2], Acharya et

al. 2004 [3], Dai and Parks 1997 [40]). It was concluded that the only possible formulation is a flow

theory with strain gradient effects represented as an internal variable which acts to increase the current

tangent hardening modulus. These theories are straightforward to implement in standard FE codes. This

particular approach was used in predicting polycrystal size effect and cleavage/orientation dependence in

the fracture of ductile single crystals. However, criticism has been directed on the model’s capability due
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to the nonstandard boundary conditions (Niordson and Hutchinson 2003 [122], Volokh and Hutchinson

2002 [170]) and the lack of systematic construction of the tangent modulus (Gao et al. 1999 [69]). (2)- In

another class of SGP theory, formulations are derived by means of suitable energy arguments. A classical

example of this strategy is the second strain gradient elasticity theory by Mindlin 1964 [109] in which

the higher order stresses are defined as the work conjugate of strain gradient by implying the virtual

work principle and a strain energy potential incorporating the strain gradients. Along with the standard

equilibrium equations, higher order nonlocal micro force balance equations are retrieved from the vari-

ational formulation of the virtual work principle. This additional equation requires the extra boundary

conditions. Examples in this class include the works of Fleck and Hutchinson 1997 [53], Fleck and

Hutchinson 2001 [54] and Fleck et al. 1994 [55] where experimentally observed size effects have been

modeled successfully. From a dimensional, an internal constitutive length parameter was introduced to

scale the rotational gradient terms in the couple stress theory of the SGP. The physical basis of the length

scale is connected to the storage of GNDs (Ashby 1970 [12], Nye 1953 [126]).

Chen and Wang 2002 [38] proposed a new strain gradient theory, based on the general concept of

couple stress theory. They implemented their new formulation to solve thin metallic wires in torsion and

ultra thin metallic beam bending problems. It was concluded that if the boundary conditions are properly

taken in their new theory, the results of the solution will predict the experimental findings provided by

Fleck et al. 1994 [55] and Stolken and Evans 1998 [159]. Still for problems related to the boundary

condition, Xiang et al. 2006 [181] used Fleck et al. 1994 [55] SGP to capture the Bauschinger effect that

is observed in the experimental investigations on Cu thin films with a passivated layer. From these ex-

periments they found that thin films yield strength increased significantly with decreasing film thickness

if one or both surfaces are passivated. By contrast, unpassivated thin films are relatively independent of

film thickness and yield strength increases mainly as a result of grain size strengthening, a manifestation

of Hall-Petch effect.

Gao et al. 1999 [69], and Huang et al. 2000 [88] proposed a Taylor based nonlocal theory of plasticity

to account for the size dependency of the plastic deformation at the micron and submicron scales. The

length scale is related to the density of the GNDs as introduced into the constitutive equations via the

nonlocal variables which are expressed as an integral of local variables over all material points in the

body. Gao and Huang 2001 [68], Zhang et al. 2007 [183], and Shi et al. 2008 [154] applied this

theory to micro- bending, micro tension, void growth, cavitations’ instabilities and particle reinforced

composites. Their analyses results in identical predictions as in the mechanism-based strain gradient

(MSG) plasticity. This higher order strain gradient theory is established from a multiscale, hierarchical

framework to connect with the Taylor model in dislocation mechanics (Taylor 1934, 1938 [166; 167]).

Results obtained using the MSG model agrees well with the work of McElhaney et al. 1998 [108] on

micro-indentation experiments of bulk copper, Gao et al. 1999 [69] and Saha et al. 2001 [149] on

indentation experiments of aluminum thin film on a glass substrate, Fleck et al. 1994 [55] on micro-

torsion, Stolken and Evans 1998 [159] on micro-bending experiments (see Gao et al. 1999 [69]), and on

metal-matrix composites (Xue et al. 2002 [182]). It has also been successfully applied to study a few
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important problems at the micron and submicron scales, including micro-electro-mechanical systems

(Saha et al. 2001 [149]), plastic flow localization (Shi et al. 2000 [152]), and fracture (Jiang 2001 [91];

Lu et al. 2000 [164]).

Shi and Gao 2001 [153] recently used the singular perturbation method to investigate a solid sub-

jected to a constant body force, and showed that the effect of the higher-order stresses is significant only

within a thin layer near the boundary of the material. Comparing the material length scale used in strain

gradient theories, the thickness of the boundary layer is much smaller and is on the order of 10nm. These

results are interpreted by Huang et al. 2000 [88] and Saha et al. 2001 [149] as the higher-order stress has

little or essentially no effect on material properties that represent an average over the micron scale and

above, such as the micro-indentation hardness. Therefore, they distinguished the effect of higher-order

stress from the strain gradient effect by defining the former is within a thin boundary layer (thickness

on the order of 10nm) and the latter comes from the Taylor dislocation model and is important at the

micron scale. As part of this separation they concluded that the effect of higher-order stress is negligible

away from the thin boundary layer, and argued the possibility to develop a SGP theory based on the

dislocation model to incorporate the strain gradient effects without the higher-order stress. The reason

to eliminate the effect of higher order stress from the governing equations in such a theory is to avoid

from the additional boundary conditions and to have essentially the same boundary conditions as in the

classical plasticity theories.

Gurtin 2004 [78] developed a gradient theory of small deformation viscoplasticity based on the sys-

tem of micro forces consistent with its peculiar balance, a mechanical version of the second law and

a constitutive theory that includes Burgers vector through a free energy dependence on where repre-

sents the plastic part of the elastic plastic decomposition of the displacement gradient. Later Anand

et al. 2005 [10] studied the one dimensional theory of the SGP by performing analytical and numeri-

cal analyses by means of nonlocal finite element on three distinct physical phenomena such as internal

variable hardening, energetic hardening with back stress associated with plastic strain gradient and dissi-

pative strengthening associated with plastic strain rate and resulting in a size dependent increase in yield

strength.

Gudmundson 2004 [74] formulated the small SGP for isotropic materials based on the balance law

and dissipation inequality. He addressed boundary conditions and concluded that there is a close con-

nection between surface energy of an interface and boundary conditions in terms of plastic strain and

moment stress. A simple version of the theory was applied to a few examples such as biaxial loading of

a thin film on thick substrate, torsion of thin wire and spherical void under remote hydrostatic tension

in order to investigate the effect of varying length scales. This formulation is later used to analyze the

size dependent yield strength of thin films by Fredriksson and Gudmundson 2005 [63]. The results of

their numerical analysis from these studies reveals that boundary layer is developed in the thin film for

both biaxial and shear loading giving rise to size effects. These size effects are strongly connected to

the buildup of surface energy at the interface. These effects of interface surface energy on the plastic

deformation at the micron scale were motivated by Fredriksson and Gudmundson 2007 [64] in order
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to conduct a detailed study on modeling of the interface between a thin film and a substrate. They ad-

dressed this issue within the framework of SGP and proposed two kinds of interface models for isotropic

materials. First kind is based on the assumption that plastic work at the interface is completely stored

as a surface energy and no dissipation occurred due to plasticity at the interface. In the second type it

is assumed that the plastic work is completely dissipated and there is no build up of a surface energy.

Two types of length scales are introduced, one is for the behavior of the bulk material the other is for the

interface. Their model can be considered in the same class of the existing interface models proposed by

Cermelli and Gurtin 2002 [37], Gurtin and Needleman 2005 [82], Sun et al. 2000 [161], Gurtin 2008

[79], and Borg and Fleck 2007 [30]. Gurtin and Needleman 2005 [82] and Cermelli and Gurtin 2002

[37] addressed in their work the application of SGP for the case of crystal plasticity. In the case of Gurtin

and Needleman 2005 [82] they assumed continuity of the conjugate higher-order stresses on both sides

of the interface. However, Cermelli and Gurtin 2002 [37] assumed a jump at the interface of the con-

jugate higher order stresses. Both Gurtin and Needleman 2005 [82] and Cermelli and Gurtin 2002 [37]

used dissipative mechanisms to model the interface (grain boundaries) using a viscoplastic model that

involved plastic slip rates at both sides of the interface as well as conjugate higher order stresses on both

sides of the interface. In both cases they included discontinuities in plastic strains over the interface.

Willis and co-workers (Aifantis and Willis 2005 [7], Aifantis et al. 2006 [6]) modeled the interface by

a surface contribution to the strain energy that depends on the plastic strain at the interface. The distinct

feature of this formulation is to introduce an interfacial yield stress that allows the interface to follow

its own yield behavior. This interfacial yield stress is then described via dislocation transfer phenomena

where its physical justification is made from observations of the nano-indentation near grain boundaries

of body-centered cubic (bcc) metals. The main distinction of the work of Willis and co-workers from

that of Gurtin and coworkers is that Willis and co-workers assumed a continuity in the plastic strain over

the interface with a jump in the conjugate higher-order stresses.

One of the open issues of the SGP is the ongoing discussion of the energetic and dissipative nature

of the dislocation network that accounts for many plasticity phenomena. Gurtin argued that the density

of geometrically necessary dislocations is quantified by Nye’s tensor, which leads to an increase in the

free energy. However, Fleck and Willis 2009a,b [56; 57] discussed this issue by questioning whether

the additional strengthening is mainly energetic or dissipative. They assumed that the core energy of

dislocations stored during plastic deformation is much smaller than the plastic work dissipated during

dislocation motion. Based on this observation they concluded that both SSDs stored and GNDs contribute

more to the plastic dissipation than to a change in energy. Bardella 2006, 2007 [18; 19]pointed out that

modeling involving only energetic material length scales may not be sufficient to describe the size effects

exhibited in metals. He reasoned the fact that energetic length scales, defined through a function of Nye’s

dislocation density tensor, allows the description of the increase in strain hardening accompanied with

diminishing size, but they do not help in capturing the related strengthening.

Recently, Gurtin and Anand 2009 [81] revisited the theories of Aifantis and Fleck and Hutchinson

to discuss the physical nature of their flow rules based on thermodynamic principles. In their study they
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arrived to the following conclusions: (i) the flow rule of the Aifantis theory obeys the thermodynamic

constraints if the nonlocal term, which was defined as the Laplacian of the accumulated plastic strain

is energetic; (ii) the flow rule of Fleck and Hutchinson 2001 [54] is inconsistent with thermodynamics

unless its nonlocal term is ignored. Voyiadjis and Deliktas 2009a,b [172; 173] investigated the interfacial

effect in parallel with the works of Willis and coworkers (Aifantis and Willis 2005 [7]; Fleck and Willis

2009a,b [56; 57]) and Gudmunsond and coworkers (Gudmundson 2004 [74]; Fredriksson and Gudmund-

son 2005 [63]; Fredriksson and Gudmundson 2007 [64]) by using the higher-order gradient dependent

plasticity theory (AbuAl-Rub et al. 2007 [8]; Voyiadjis and Abu Al-Rub 2007 [171]) where microstress

boundary conditions at the interface and free surfaces are enforced. In these works (Voyiadjis and Delik-

tas, 2009a,b [172; 173]) they assumed that the total strain energy stored at the interface can be expressed

in terms of the plastic strain state at the interface (Gudmundson 2004 [74]; Gurtin 2002 [77]; Benallal

1995, 2001, 2007 [27; 25; 26], Fredriksson and Gudmundson 2007 [64]; Gurtin and Anand 2009 [81];

Fleck and Willis 2009a,b [56; 57]).

2.5.2 Typical works

It can be listed here some typical works until now such as:

- Gradient-dependent plasticity model: de Borst and Muhlhaus 1992 [43];

- A reformulation of strain gradient plasticity: Fleck and Hutchinson 2001 [54];

- A unified treatment of strain gradient plasticity: Gudmundson 2004 [74];

- Strain gradient plasticity with strengthening effects and plastic limit analysis: Polizzotto 2010 [144];

- Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening: Voyiadjis et al. 2010

[176];

- Nonlocal continuum effects on bifurcation in the plane strain tension-compression test: Benallal and

Tvergaard 1995 [27];

- Standard Gradient Models and Gradient Plasticity: Q.S. Nguyen 2005, 2011, 2012 [119; 118; 116];

- And many other works...;

2.6 Strain Standard Gradient Plasticity (SSGP) Constitutive Model

2.6.1 Why SSGP Constitutive Model? Formulation and numerical implementation

In the same spirit as in the section 2.3.2, it needs to make clear "Why Standard Gradient Constitutive

Model is chosen?". The reason again lies on its simplicity and effectiveness in both formulation and

numerical implementation aspects.

Among SGP theories inherently based on classical laws of continuum thermodynamics, the SSGP

theory is built in the framework of the generalized standard materials (Halphen and Q.S. Nguyen 1975

[84], Q.S. Nguyen [117]) using an extended version of virtual work principle (Frémond 1985 [65] or

Gurtin 1996 [76]) and the development of Q.S. Nguyen 2005, 2011, 2012 ([119; 118; 116]). The standard
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gradient of internal parameters are directly introduced in the energy and dissipation potentials of the

model. The thermodynamically consistent equations of the "SSGP Constitutive Model" or briefly

Gradient Model, are derived for the standard gradient plasticity yield criterion and associated flow rule.

The Gradient Model of such formulation is considered a higher-order extension of the classical plasticity

theory, then still lies within the general framework of the classical macro model. This therefore possesses

the simplicity as well as effectiveness in both formulation and numerical implementation, then is chosen

in the thesis.

Apart from the characteristics as in classical models, there are also obviously some new features,

actually some difficulties. That is, in addition to the inherent boundary conditions of classical plasticity,

secondary boundary condition (insulation boundary condition, cf. Polizzotto 2003 [141]), is introduced.

The introduction of strain gradients into the local theory formulations leads to a Laplacian equation

solved at global level, and to boundary value problem governed by partial differential equations of higher

order with non-standard boundary conditions, therefore much more difficult to solve. However, these

difficulties are treated with a computational method based on diffusion like-problem spirit. Indeed,

the Laplacian equation at global level is here easily solved numerically with UMATs built in usual

available FE codes (cf. CAST3M for example).

The thesis actually discusses not only the standard gradient plasticity theory but also higher-gradient

version where the presence of higher gradients of the internal parameters can also be taken into account

(∇φ,∇∇φ, etc.). However the numerical implementation of the latter is ignored and its effectiveness is

still and open question.

2.6.2 Framework

In this work, only cases with the presence of the gradient effect besides the inherent pure size effect,

are considered. Cases without gradient effect are here not our object of study. In such a condition,

the SSGP model is considered enough to capture the "size" and gradient effects as principles stated in

Section (2.4) and as proved via a good validation in Section (3.2.2).

The size effect in gradient-free cases may be taken into account not via SSGP theory, but via other

theories such as discrete dislocation plasticity theory Deshpande et al. 2005 ([46]), atomistic simulations

Greer 2005 et al. ([72], Nix et al. 2006 [125]), etc.

Besides, basing on available reference data, the "size" and gradient effects concerning the microsys-

tems’ geometry size (groups 1,2) will be confirmed to be successfully and directly captured with the

adopted models. As for those concerning the material microstructure size (group 3), it is assumed that

these effects may be also captured by the models thanks to the presence of the material internal length

scale related to the microstructure size. Nevertheless, the validation for these cases has been left out due

to the lack of experimental database.
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2.6.3 Application

In this thesis, the Gradient Model is used to examine the three first ones of some typical problems for

the gradient theory. Those are:

1. Micro-void growth test under remote spherically symmetric tension/pressure (plotting curves of

"remote spherically symmetric tension versus volume expansion of a micron spherical void", and

of "plastic shear versus radius of the micron spherical void") ([54] and [74]).

2. Thin wire torsion test (plotting curves of "torque versus twist of a micron solid cylindrical wire",

and of "plastic shear versus radius of the micron solid cylindrical wire") ([54] and [74]).

3. Thin film shearing test, some typical problems as follows:

- Biaxial/shear loading of a thin film on a substrate (plotting curves of "biaxial/shear plastic strain

across the thin film thickness", "biaxial/shear stress across the thin film thickness", "average biax-

ial stress versus biaxial strain of the thin film", and of "average biaxial stress versus normalized

length scale of the thin film") ([176]);

- Shear loading of a thin film sandwiched between two substrates (plotting curves of "distribution

of plastic shear strain across the thickness of thin film", and of "shear stress versus shear displace-

ment of the thin film") ([54]).

4. Micro-indentation test (plotting a curve of "hardness versus diameter of micron indenter") ([93],

[23], [89], [180]).

This problem is actually very related to the micro-void growth. In the literature, one even uses

micro-indentation problem result as approximate result of the micro-void growth problem.

5. Micro-bending test of thin beams or thin metal sheets/foils (plotting a curve of "normalized bend-

ing moment versus the normalized curvature") ([159], [177], [90], [143], [151]).

It will be shown in this study that, using the Gradient Model for these problems, the "size" and gra-

dient effects are well captured to represent both phenomena "Smaller is Stronger" and "Higher Gradient

is Stronger".

2.7 Conclusion

At small scales, some effects such as the size, gradient,...and anisotropy effects become important and

must be taken into account. Only the size and gradient effects at the micron scale are here investigated

in the context that the pure size effect, the size effect by DS are negligible; and the anisotropy effect

is ignored. Experimental evidences show that the size and gradient effects are actually two distinct

phenomena. There is also a correlation between them in many cases. The phenomenon "Higher Gradient

is Stronger" is related to the gradient effect only, while "Smaller is Stronger" is related to both size and

gradient effects where the latter is dominant. Taking into account only the gradient effect (related to all
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its sources) is enough to capture both "size" and gradient effects on plastic behavior, thereby capture both

"Higher Gradient is Stronger" and "Smaller is Stronger". Three groups of the "size" and gradient effects

commonly discussed are: the first associated with the loading mode and geometry size, and the second

with boundary condition of microsystems; the third related to the microstructure of material and left

out in this work.

Classical theories of continuum plasticity predict however no "size effect" neither gradient effect. It

leads to the need of a new class of constitutive models to predict mechanical behaviors at small scale.

A number of theories has been developed by many authors (discrete dislocation dynamics simulations,

molecular dynamics simulations, etc.). Among these theories, the SGP theory, is chosen because of its

simplicity and effectiveness in both formulation and numerical implementation. The gradient formula-

tion is in fact an extension of the classical plasticity theory and still lies within the general framework of

the classical continuum thermodynamics.

The effectiveness of the SGP Model in capturing the "size" and gradient effects whereby both phe-

nomena "Smaller is Stronger" and "Higher Gradient is Stronger" are captured, lies on the mechanism

of these phenomena. This mechanism states that material hardening is due to the combined presence of

GNDs associated with a plastic strain gradient, and SSDs associated with plastic strain. The role of SSDs

is already taken into account in classical models, but that of GNDs is just captured with the new model

by means of the gradient terms and the internal length scale. With such an approach, SGP Constitutive

Model is only used to treat the non-null gradient problems.

Among SGP theories, the SSGP theory is chosen also due to its most simplicity and similarity to

classical continuum thermodynamics ones. Although there are also some difficulties, the final equation

i.e. Laplacian equation at global level, can be numerically solved based on diffusion like-problem

spirit.

Only the "size" and gradient effects concerning the microsystems are considered here. A few appli-

cations (thin wire torsion, thin film shearing, micro void growth) are given.
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CHAPTER 3

Standard Gradient Constitutive Models

The outline of the work is as follows. In Section (3.1), formulation, variational inequality and some

applications of SSGP Constitutive Models are given; Section (3.2) is devoted to numerical implementa-

tion; Sections (3.3) are conclusions and comments; and finally, more details about numerical implemen-

tation are given in Appendix .1

3.1 Standard Gradient Models: formulation, variational inequality and

application

3.1.1 Introduction

The introduction of the gradients of the state variables such as the strain, the internal parameter and

even the temperature in Solid Mechanics has been much discussed in the literature since the pioneering

works of Mindlin and Toupin in second-gradient elasticity. Especially, in the two last decades, standard

gradient theories has been considered in many papers, cf. for example [65], [67], [106], [76], [141], [60],

for the modeling of phase change and solids with microstructures. In particular, in Frémond or Gurtin’s

approach (cf. [65], [76]), the governing equations have been originally derived from an additional virtual

work equation. These models have been applied in various applications such as gradient plasticity and

gradient damage.

The developments undertaken in this section are based on Q.S. Nguyen published works [119; 118]

and private communication [116]. A particular case of Gradient Model of accumulated plasticity γ with

isotropic and kinematic hardening [116] will be focused on.

The objective of this work is to revisit the proposed approach by Q.S. Nguyen 2005 and 2011 (cf.

[119] and [118]). Using the formalism of the generalized standard materials, a dissipation analysis is

considered in order to derive the general expression of the governing equations for the internal parameters

in terms of the energy and dissipation potentials. Gradient and higher-gradient models can be discussed

in the same spirit. In particular, the governing equations for the Standard Gradient Models can be written

as a generalized Biot equation.

For a time-independent behavior such as incremental plasticity or brittle fracture or brittle damage,

our attention is focussed on the derivation of some theoretical results, which are well known in classical

plasticity, such as the governing equations of the global response and the determination of the rate re-

sponse and the associated variational principles. After all, a consistent mathematical description of the
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theory of Gradient Plasticity is proposed and is illustrated with some particular cases in the application

section.

3.1.2 Standard Gradient Models

In the internal variable framework, the thermo-mechanical response of a solid V in a reference con-

figuration is described by the fields of displacement u, internal parameter φ and temperature T . The

internal parameter is a scalar or a tensor and represents physically hidden parameters such as micro-

displacements or phase proportions or inelastic strains, etc.

Standard Gradient Models for the internal parameter assume that the set of state variables (∇u, φ,∇φ, T )

is necessary and sufficient to describe the material behavior. The constitutive equations can be given in

the following way (cf. Fremond , Gurtin,...) in an isothermal transformation.

a) Generalized Forces and Virtual Work Equation

It is first accepted that the state variables (∇u, φ, ∇φ) are associated with the generalized forces

σ, X,Y such that a generalized virtual work equation holds:

Pi + Pj = Pe ∀ δu, δφ (3.1)

with 



Pi =
∫
V (σ · ∇δu+X · δφ+ Y · ∇δφ) dV

Pj =
∫
V ρü · δu dV

Pe =
∫
V (fvu · δu+ fvφ · δφ) dV +

∫
∂V (fsu · δu+ fsφ · δφ) da

(3.2)

where (fvu, fsu) and (fvφ, fsφ) are respectively external body and surface forces associated with the

displacement and the internal parameter. This leads, after integration by parts, to the mechanical equilib-

rium equation (also called the Biot equilibrium equation [28]) and the associated boundary condition

equations: 


∇ · σ + fvu = ρü on V (a)

σ · n = fsu on ∂Vfu, u = ud on ∂Vu; ∂Vfu ∩ ∂Vu = ∂V (b)
(3.3)

and the following constitutive equilibrium equations (also termed the extended Biot equilibrium equa-

tion) together with the corresponding boundary condition, holding for internal parameter:




∇ · Y −X + fvφ = 0 on V (a)

Y · n = fsφ on ∂V (b)
(3.4)

These equations are easily understood when Y is a micro-stress, φ is a micro-displacement and X is then

an internal volume force, homologous with the stress σ, displacement u and external body force fvu.
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b) Energy and Dissipation Potentials: State and Complementary Laws

Standard Gradient Models also assume that there exists an energy potential W (∇u, φ,∇φ) and a dis-

sipation potential D(∇u̇, φ̇,∇φ̇,∇u, φ) per unit reference volume. The energy potential W (∇u, φ,∇φ)

gives the state law, i.e. the non-dissipative thermodynamic forces associated with the state variables.

The dissipation potential D(∇u̇, φ̇,∇φ̇,∇u, φ) brings the complementary law i.e. the dissipative ther-

modynamic forces associated with the state variables rates. These equations are written as:




W = W (∇u, φ,∇φ), D = D(∇u̇, φ̇,∇φ̇,∇u, φ)

σ = σe + σd, σe = W,∇u, σd = D,∇u̇

X = Xe +Xd, Xe = W,φ, Xd = D,φ̇

Y = Ye + Yd, Ye = W,∇φ, Yd = D,∇φ̇

(3.5)

where: the low indexes "e" and "d" imply elastic (non-dissipative rather) and dissipative forces. When

the potentials W and D are smooth functions of their arguments (the dissipation potential may be state-

dependent via the current value of the variable φ), the relationships Xd = D,φ̇ , Yd = D,∇φ̇ describe

a time-dependent behavior of the materials and are commonly discussed in Visco-Elasticity, Visco-

plasticity, Phase change as Damage Mechanics.

The case of convex but non-smooth dissipation potentials is also interesting. For example, D is

a convex, positive homogeneous of degree 1 in time-independent processes such as friction, plasticity,

brittle fracture and brittle damage. This case will be further discussed.

c) Governing Equations

The equations (3.3), (3.4), ( 3.5) are the governing equations of a Standard Gradient Model. In terms

of the two potentials, the governing equations for the fields of unknown u,φ are:




∇ · (w,∇u+D,∇u̇ ) + fvu = ρü ∀x ∈ V (a)

(w,∇u+D,∇u̇ ) · n = fsu ∀x ∈ ∂Vfu , u = ud ∀x ∈ ∂Vu (b)

∇ · (w,∇φ+D,∇φ̇ )− w,φ− D,φ̇+ fvφ = 0 ∀x ∈ V (c)

(w,∇φ+D,∇φ̇ ) · n = fsφ ∀x ∈ ∂V (d)

(3.6)

These equations describe the response of the solid from an initial position of state and velocity. The

forces fvφ and fsφ appears as physical data. In this spirit, the condition fvφ = 0 and fsφ = 0 has been

denoted as the constitutive insulation condition following a terminology due to Polizzotto [141]. The

response of a solid under insulation condition has been discussed by several authors, cf. [65], [141], [60],

[96].

3.1.3 Generalized Standard Formalism

The governing equations (3.6) can be also derived directly from the formalism of generalized stan-

dard materials [84]. This formalism states that the dissipative forces, obtained from the expression of the
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dissipation, are also derived from the dissipation potential.

a) Dissipation Analysis

Indeed, the solid V admits as energy and dissipation potentials:

W(U) =

∫

V
W (∇u, φ,∇φ) dV , D(U̇,U) =

∫

V
D(φ̇,∇φ̇, φ) dV (3.7)

where U = (u,φ) denotes the fields of displacement and internal parameter. Under the applied forces 1

F · δU =

∫

V
fvu · δu dV +

∫

∂V
fsu · δu da (3.8)

and insulation condition, the dissipation of the solid is by definition the unrecoverable part of the received

energy per unit time

DV = F · U̇− d

dt

(
W(U) +Kt

)
(3.9)

where Kt =
∫
V

1
2ρu̇

2 dV denotes the kinetic energy. As the dissipation is positive, taking account of

the fundamental law of dynamics leads to:

DV =

∫

V
((σ − w,∇u ) : ∇u̇− w,φ ·φ̇− w,∇φ ·∇φ̇) dV ≥ 0 (3.10)

b) Generalized Standard Formalism

The dissipation DV is a product of forces and fluxes. For any field of fluxes (δu, δφ) defined on V ,

the power of the dissipative forces Fd is:

Fd · δU =

∫

V

(
(σ − w,∇u ) : ∇δu− w,φ ·δφ− w,∇φ ·∇δφ

)
dV (3.11)

The generalized standard formalism consists of admitting that

Fd · δU = D,
U̇
· δU ∀ δU (3.12)

Thus 



∫
V (D,∇u̇ ·∇δu+ (D,φ̇−∇ ·D,∇φ̇ ) · δφ) dV +

∫
∂V n ·D,∇φ̇ · δφ da

=
∫
V ((σ − w,∇u ) : ∇δu− (w,φ · − ∇ · w,∇φ ) · δφ ) dV+

−
∫
∂V n · w,∇φ · δφ da ∀ δu, δφ

(3.13)

It results from a classical argument (Haar lemma in Variational Calculus) 2 that the following equa-

tions hold: 



∇ · (σ − w,∇u −D,∇u̇ ) = 0

w,φ −∇ · w,∇φ +D,φ̇ −∇ ·D,
∇φ̇ = 0 ∈ V, and

(σ − w,∇u −D,∇u̇ ) · n =0 ∀x ∈ ∂Vfu , u = ud ∈ ∂Vu

(w,∇φ +D,
∇φ̇ ) · n = 0, ∈ ∂V

(3.14)

1Bold face letters for φ or u refer to fields whereas normal letters φ and u refer to local values. This convention is just

available for φ and u
2 For any tensor fields F and G, the variational condition

∫
V
(F · δφ+G : ∇δφ) dV = 0 for all δφ, which can be written

as
∫
V
(F−∇ · G) · δφ dV +

∫
∂V

(G · n) · δφ da = 0 for all δφ, implies after Haar lemma that F−∇ · G=0 in V and that

G · n = 0 on ∂V
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It is then clear that the governing equations (3.6) are recovered.

c) Generalized Extended Biot Equation

In the same spirit but more general, the current work will present a Gradient Model in which the

presence of standard and higher gradients of the internal parameter are taken into account in governing

equations. For example, if the expression of the energies include the standard and second gradients,

i.e the energy potential W (∇u, φ,∇φ,∇∇φ) and the dissipation potential D(∇u̇, φ̇,∇φ̇,∇∇φ̇,∇u, φ),

then the generalized version of the Biot equilibrium (Eq. 3.3) and of the extended ones (Eq. 3.4) can be

written under the local form:




• ∀x ∈ V

δW
δu + δD

δu̇ = fvu − ρü, after (3.6.a)

δW
δφ + δD

δφ̇
= fvφ, after (3.6.c)

• ∀x ∈ ∂V : appropriate condition after (3.6.b) and (3.6.d)

(3.15)

with the popular notation (notation of variational derivation):

δG

δx
= G,x −∇ ·G,∇x +∇∇ ·G,∇x − . . . (3.16)

Using the notation (3.16) and the state and complementary laws (3.5), to consider for example the

case of standard gradient of the internal parameter, the following extended forces Aφ
e and Aφ

d are defined:




Aφ

e = δW
δφ = W,φ −∇ ·W,∇φ = Xe −∇ · Ye

Aφ
d = δD

δφ̇
= D,φ̇ −∇ ·D,∇φ̇ = Xd −∇ · Yd

(3.17)

Using (3.15) together with the constitutive insulation condition after Polizzotto fvφ=0, the relation-

ship between two extended forces Aφ
e and Aφ

d can be made:

Aφ
e +Aφ

d = fvφ = 0 =⇒ (Xe −∇ · Ye) + (Xd −∇ · Yd) = 0 (3.18)

On the other hand, in terms of the global energy function W(U) and of the global dissipation function

D(U̇,U), the global form of (3.15) for the displacement and the internal parameter of the solid subjected

to a loading path F(t)=
(
fvu(t), fsu(t)

)
, is given:

W,U + D,U̇ = F (3.19)

These have been derived under the assumption of smoothness of the two potentials with respect to

their arguments and are thus available only to time-dependent processes. However, time-independent

behavior such as plasticity and brittle damage are associated with a dissipation potential D which is

convex but positively homogenous of degree 1 of the rates U̇, i.e:

D(µU̇,U) = µD(U̇,U), ∀µ ≥ 0 (3.20)
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thus non-differentiable at U̇ = 0. In this case, the function D is also called a pseudo-potential and the

governing equations in terms of the global energy functions can be written again, in the most general

form, with a bit change compared to the previous one (3.19):

W,U + ∂D
U̇
= F (3.21)

where ∂D
U̇

denotes a sub-gradient of the convex function D at point U̇.

3.1.4 Time-Dependent Processes

The considered governing equations are derived under the assumption of smoothness of the two po-

tentials. Gradient Models have been much considered in visco-plasticity as well as in damage mechanics,

cf. [4], [43], [53], [57], [96; 97], [80], [99]. In particular the phase-field method, which is very popular in

the study of different phenomena of diffusion and phase change, deals principally with gradient models

of visco-elasticity, cf. for example [86]. Many discussions have been devoted to the problem of strain

localization and fracture, especially in the numerical computation of elastic-plastic solids. These works

principally address the insulation case fvφ = 0 and fsφ = 0 because of the difficulty to define physi-

cally these actions. Some interesting discussions from the literature are reported here in order to obtain

some examples on the physical nature of the internal parameters and on the practical interest of Gradient

Models in the modeling of multi-physics phenomena in solids.

The modeling of the damage of an elastic solid is an important subject in Solid Mechanics, cf. for

example [117], [162], [24], [42], [94]. In particular, the case of viscous damage is here reported because

of its connection with the problem of strain localization and with the phase field method, cf. [32], [62],

[86].

As an example, we consider the case of damage, with an internal parameter φ, 0 ≤ φ ≤ 1 represent-

ing the damage proportion. φ= 0 if no damage and φ= 1 if full damage. A simple viscous model of

damage is obtained with the following expression of the energy and of the dissipation potentials:

w(∇u, φ,∇φ) = (1− φ) weℓ(∇u) +
h

2
φ2 +

g

2
|∇φ|2, D(φ̇) =

1

2
ξφ̇2 +

1

2
η∇φ̇2

where weℓ is the classical elastic energy, h, g and ξ, η are constants. The governing equations for the

variation of the damage are:

(ξI − η∆) φ̇ = −hφ+ g∆φ+ weℓ(∇u) ∀ x ∈ V and φ,n= 0 ∀x ∈ ∂V

In particular, a full-equilibrium state for the solid under a displacement control loading is a stationary

point of the energy functional, cf. [117]. The model is particularly interesting when h= Gc

2ε , g=Gc ε, cf.

[32]. For vanishing ε, the search for full-equilibrium states has a strong connection with the apparition

of Griffith cracks of surface energy Gc. This model gives an interesting method to detect the apparition

of Griffith cracks as the limit of damage zones, cf. [32], [66], [97].
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3.1.5 Time-Independent Processes and Gradient Plasticity

For time-independent processes such as friction, plasticity, brittle fracture, and brittle damage, the

dissipation potential D is convex, positively homogeneous of degree 1 of the rates φ̇.

D(µφ̇, µ∇φ̇, φ) = µD(φ̇,∇φ̇, φ) ∀ µ > 0. (3.22)

Because of the loss of differentiability with respect to (φ̇,∇φ̇)=(0, 0), the sub-gradient is used to define

the forces Xd and Yd appearing in Eq. (3.6), by :

Xd=∂φ̇D and Yd=∂∇φ̇D

a) Force-Flux Relationships

1/ Model I: Gradient-independent pseudo-potential

The case of particular models admitting a gradient-independent dissipation potential

D = D(φ̇, φ) (3.23)

is first considered. In this case, the force-flux relationship, in the sense of sub-gradient, cf. [111],

[70], [117], is:

Xd = ∂φ̇D(φ̇, φ) , Yd = 0 (3.24)

This means that the force Xd must belong to a convex domain of admissible forces CXd;φ and that

the normality law is satisfied by the rate φ̇. Although Xd cannot be uniquely determined at (φ̇, φ)=(0, φ)

directly via (3.24.a), there is no indetermination difficulty as, from (3.24.b) and (3.4), or more precisely,

from (3.18), Xd=−Xe+∇·Ye is still known at the present state. Such a particular model will be denoted

as model I.

For example, if a process described with a dissipation potential

D(φ̇, φ) = k(φ)‖φ̇‖ (3.25)

then the set of admissible forces is described by the plastic criterion

f(Xd, φ) = ‖Xd‖ − k(φ) ≤ 0 (3.26)

and the rate φ̇ must satisfy the normality law:

φ̇ = λ
∂f

∂Xd
with λ ≥ 0 , λf = 0 (3.27)

2/ Model II: Gradient-dependent pseudo-potential

In the general case (models II), D=D(φ̇,∇φ̇, φ) and the force-flux relationship can be written as

Xd = ∂φ̇D(φ̇,∇φ̇, φ) , Yd = ∂∇φ̇D(φ̇,∇φ̇, φ) (3.28)
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This means that the force (Xd,Yd) must belong to a convex set of admissible forces Cφ(Xd,Yd, φ)

and that the normality law is satisfied by the rates (φ̇, ∇φ̇).

For example, if

D = k(φ)‖φ̇‖+ κ(φ)‖∇φ̇‖ (3.29)

then the convex of admissible forces is given by two inequalities

f(Xd, φ) = ‖Xd‖ − k(φ) ≤ 0 , ϕ(Yd, φ) = ‖Yd‖ − κ(φ) ≤ 0 (3.30)

and the rates φ̇, ∇φ̇ must satisfy the normality law

φ̇=λ
∂f

∂Xd
with λ ≥ 0 , λf=0 , ∇φ̇=µ

∂ϕ

∂Yd
, µ ≥ 0 , µϕ=0 (3.31)

The force pair (Xd, Yd) cannot be uniquely determined at (φ̇, ∇̇φ) = (0, 0) directly via (3.28).

From (3.4), or more precisely from (3.18), these forces must also satisfy the constitutive equilibrium

equations (Xe + Xd) − ∇·(Yd + Ye) = 0 and appropriate boundary conditions. However, even these

relationships are still not enough to determine (Xd,Yd) at (φ̇,∇φ̇) = (0, 0), even if the present state is

known. This indetermination is the main difficulty of the models II, but that can be overcome by Energy

Regularization method proposed by Q.S. Nguyen [116], as discussed in section 3.1.6.e.

The following case is also considered in the literature, cf. for example [54], [57]

D = k(φ)(‖φ̇‖2 + ℓ2‖∇φ̇‖2)1/2 (3.32)

and leads to a Mises-like plastic criterion and the normality law:




f = (‖Xφ
d ‖2 +

1

ℓ2
‖Y φ

d ‖2)1/2 − k(φ)

φ̇ = λ
∂f

∂Xd
, ∇φ̇ = λ

∂f

∂Yd

f ≤ 0 , λ ≥ 0 , fλ = 0 (3.33)

It is classical that the dissipation potential is obtained from the elastic domain by the maximum

dissipation principle

D = D(φ̇,∇φ̇, φ) = max
(X∗

d
,Y ∗

d
)∈Cφ

{X∗
d · φ̇+ Y ∗

d · ∇φ̇} (3.34)

b) Governing Equations

Under the insulation condition, the governing equations, given by (3.1), (3.4), (3.28), are




σ = W,∇u , Xe = W,φ , Ye = W,∇φ

X = Xe +Xd , Y = Ye + Yd , (Xd,Yd) = ∂D(φ̇,∇φ̇, φ)

Pi + Pj = Pe ∀ δu, δφ

Pi =
∫
V (σ · ∇δu+X · δφ+ Y · ∇δφ) dV

Pj =
∫
V ρü · δu dV

Pe =
∫
V fvu · δu dV +

∫
∂V fsu · δu da

(3.35)
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3.1.6 Gradient Plasticity and Evolutionary Variational Inequality

In quasi-static transformations, a variational form of the governing equations also exists and is given

by the following evolutionary variational inequality, as in Classical Plasticity, cf. for example [47], [117],

[61].

Proposition 1 The response U(t) of a solid under a quasi-static loading F(t) is a solution of the

evolutionary variational inequality (cf. [116])

W,U ·(δU− U̇) +D(δU,U)−D(U̇,U)− F · (δU− U̇) ≥ 0 ∀ δU (3.36)

From the expression (3.22) of the dissipation, this variational inequality can be written in the form of

a mechanical energy balance and a minimum principle





∫
V (w,∇u : ∇δu− fvu · δu) dV −

∫
∂V fsu · δu da = 0

∫
V (Xe · φ̇+ Ye · ∇φ̇+D(φ̇,∇φ̇, φ)) dV = 0

= minδΦ
∫
V (Xe · δφ+ Ye · ∇δφ+D(δφ,∇δφ, φ)) dV

(3.37)

a) Minimum Principle and Admissible Rates

For a given couple of non-dissipative forces (Xe,Ye), let us consider the solutions of the minimum

problem

m = min
r

L(r) , L(r) =

∫

V
(Xe · r + Ye · ∇r +D(r,∇r, φ)) dV (3.38)

where r is an arbitrary rate of internal parameter. It is clear that

i- When m = 0, if ro 6= 0 is a solution then a ro is also a solution for all number a > 0.

ii- If ro 6= 0 and r
′
o 6= 0 are two different solutions, then αro + (1−α)r′o is also a solution since D is a

convex function.

From (3.37), it is also clear that Φ̇ must belong to the set R of solutions of (3.38) with m = 0.

The proof of Proposition 1 is straightforward for the particular case of models I. The dissipation

potential D(φ̇, φ) leads to a convex elastic domain C in the force space Xd and the associated minimum

principle is

m = min
r

{∫

V
(Xe −∇ · Ye) · r +D(r, φ)) dV +

∫

∂V
(Ye · n) · r da

}
(3.39)

Thus the minimum m is



m=−∞ if Xd = Xe−∇·Ye /∈ C ∀ x ∈ V or Ye ·n 6= 0 ∀ x ∈ ∂V

m=0 if Xd = Xe−∇·Ye ∈ C ∀ x ∈ V and Ye ·n = 0 ∀ x ∈ ∂V
(3.40)

It is clear that the set R of solutions is composed of admissible rates defined on the current plastic zone.

For example:

Ω =
{
x ∈ V | f(Xd(x), φ(x)) = 0

}
(3.41)
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when the elastic domain C is defined by the criterion f(Xd, φ) ≤ 0.

For models II, the proof of Proposition 1 is also straightforward in the sense ⇒, a solution of the

governing equations is a solution of the evolutionary variational inequality. In the inverse sense ⇐, some

open questions remain concerning the dissipative forces outside the present plastic zone.

Since the integrants in (3.38) consists of linear or degree-1 functions, it is interesting to compute the

value m1 of the quotient

m1 = max
r

∫
V −(Xe · r + Ye · ∇r)∫

V D(r,∇r, φ)) dV

It follows that if m1 < 1, then m = 0 and r = 0 is the only solution. If m1 = 1, then m = 0 and one or

many solutions ro 6= 0 exist. If m1 > 1, then m = −∞ and there is no solution. Thus, if m1 < 1, then

Φ̇ = 0 and the incremental behavior is purely elastic. If m1 > 1, the non-dissipative forces (Xe,Ye)

are not allowable by the constitutive equations. If m1 = 1, the response Φ̇ is to be found in R, the set of

solutions of the minimum principle.

The model (3.32) is considered here for example. Let ro 6= 0 be a solution of the minimum principle

and Vro the loading zone associated with this solution:

x ∈ Vro ⇔
(
ro(x),∇ro(x)

)
6= (0, 0) (3.42)

and V p the reunion of all loading zones associated with the solutions of the minimum principle:

V p =
⋃

ro∈S

Vro (3.43)

Since the criterion (3.32) is strictly convex, the following proposition holds

Proposition 2 The dissipative forces (Xd,Yd) are uniquely defined in V p, the reunion of all loading

zones associated with the solutions of the minimum principle and satisfy in V p the local equation X−
∇ · Y = 0 (cf. [116]).

The proof is quite simple as in rigid plasticity, cf. Mandel [103], and based upon the strict convexity

of the elastic domain C. As in rigid plasticity however, it is not clear that an extension of these forces

could exist in V −V p satisfying the constitutive equilibrium equations (3.4) and the strict inequality of

the plastic criterion f(Xd,Yd, φ) < 0.

The set R can also be described in the following way:

By definition, a rate δΦ is admissible if locally, (δφ,∇δφ) belongs to the normal cone of the elastic

domain C at (Xd,Yd) for all x ∈ Ω

δΦ admissible ⇔
(
δφ(x),∇δφ(x)

)
∈ NC(Xd,Yd) ∀ x ∈ V p (3.44)

For example, in terms of the criterion f(Xd,Yd, φ) ≤ 0



δΦ admissible ⇔ δφ = λ ∂f

∂Xd
, ∇δφ = λ ∂f

∂Xd

f ≤ 0, λ ≥ 0, λ f = 0 ∀ x ∈ V p
(3.45)
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The following statement holds:

Proposition 3 An admissible rate is a solution of the minimum principle (cf. [116])

δΦ admissible ⇔ δΦ ∈ R (3.46)

Indeed, from (i) and (ii), it is possible to combine different solutions ro to construct a solution ϕ such

that ϕ 6= 0 for all x ∈ V p. This solution admits as loading zone V p and the forces (Xd,Yd) can be

completed in V −V p to obtain an admissible force system (Xd,Yd) in the whole volume V since ϕ is a

solution. This system of force (Xd,Yd) is associated with any admissible rate δΦ. It is clear that V p can

be identified as the current plastic zone, where the criterion of plasticity is satisfied f(Xd,Yd, φ) = 0.

b) Rate Problem: Rate Equations

It is however necessary to check that equations (3.36) defines effectively an incremental process for

a solid submitted to a loading path. At a current time t, if the present state (u,Φ) is assumed to be

known, it must be possible to determine the rate of the unknowns (displacement and internal parameter)

(u̇, Φ̇) in terms with the rate of the data Ḟ = (ḟvu, ḟsu). This is a necessary condition in order to follow

step-by-step the response of the solid along the loading path.

The rate equations describe the system of equations satisfied by the rate of the unknowns (displace-

ment and internal parameter) (u̇, Φ̇) in terms with the rate Ḟ. The following statement holds:

Proposition 4 The rate response U̇ = (u̇, Φ̇) is a solution of the variational inequality (cf. [116])




W,UU [U̇, δU− U̇] + U̇ ·

(
D,U (δU,U)−D,U (U̇,U)

)

−Ḟ · (δU− U̇) ≥ 0 ∀ admissible rates δU
(3.47)

This proposition shows how the rate (u̇, Φ̇) can be selected among the admissible rates. For this, the

definitions u̇ = lim∆t→0
∆u

∆t
and Φ̇ = lim∆t→0

∆Φ

∆t
must be introduced.

The proof of this proposition can be obtained for example from (3.36) by an implicit time-discretization.

The present state is assumed to be given, an increment of the response ∆U = U̇∆t associated with an

increment of load must satisfy (3.36) at the next step:




W,U (U+∆U)·(δU−∆U) +D(δU,U+∆U)−D(∆U,U+∆U)

−F+∆F · (δU−∆U) ≥ 0 ∀ δU
(3.48)

with 


W,U (U+∆U) = W,U (U) +W,UU (U) ·∆U + h.o.t.

D(δU,U+∆U) = D(δU,U) +D,U (δU,U) ·∆U + h.o.t.
(3.49)

The special choice ∆U and δU are admissible rates ensures that

W,U (U) · δU+D(δU,U)− F · δU = 0 ∀ δU admissible
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In (3.48), the first order term is zero thus the second order terms must be positive and the variational

inequality (3.47) follows.

Since D = D(φ̇,∇φ̇, φ), this variational inequality can be detailed as





W,uu [u̇, δu] +W,uΦ [Φ̇, δu]− Ḟ · δu = 0 ∀ δu

W,Φu [u̇, δΦ− Φ̇] +W,ΦΦ [Φ̇, δΦ− Φ̇]

+Φ̇ ·
(
D,Φ (δΦ,Φ)−D,Φ (Φ̇,Φ)

)
≥ 0

∀ δΦ admissible

(3.50)

The variational inequality (3.47) is symmetric if the following symmetry

δU ·D,U (Φ̇,U) = U̇ ·D,U (δΦ,U) (3.51)

is satisfied. In this case, it is also equivalent to an extremum principle since the following statement

holds:

Proposition 5 Under the assumption of symmetry, the rate U̇ = (u̇, Φ̇) minimizes the rate-functional

H(δU) among the admissible rates (cf. [116])

H(δU) =
1

2
W,UU [δU, δU] + δU ·D,U (δU,U)− Ḟ · δU (3.52)

when the following condition of positivity holds

W,UU [δU, δU] + δU ·D,U (δU,U) > 0 ∀ δU admissible (3.53)

Indeed, for any admissible field δU,




H(δU)−H(U̇) = W,UU [δU− U̇, δU− U̇] + (δU− U̇) ·D,U (δU− U̇,U)

+W,U ·(δU− U̇) +D(δU,U)−D(U̇,U)− F · (δU− U̇) ≥ 0

The rate U̇ is also unique if the quadratic form (3.53) is strictly positive on the linear space generated by

the admissible rates.

In particular, when the dissipation potential is state-independent, the strict convexity of the energy

potential ensures the uniqueness of the rate response.

In the same spirit as in Classical Plasticity, the description of the rate problem leads naturally to the

study of the stability of an equilibrium position and the bifurcation of a quasi-static response, [87]. For

example, the same strictly positive condition on the set of admissible rates is a criterion of stability of

the present equilibrium, cf. [87], [117].

From a criterion of plasticity f(Xd,Yd, φ) ≤ 0, with the notation α=(φ̇,∇φ̇) and A=(Xd,Yd), the

expression

D(α, φ) = max
f(A∗,φ)≤0

(
A∗ · α = A · α− λf(A, φ)

)
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gives 


δφ ·D,φ (α, φ) = δA · (α− λf,A )− λf,φ δφ− δλ f

= µf,Xd
·f,φ λ with δφ = µf,Xd

Thus the symmetry is ensured and the rate U̇ satisfies





∫
V ∇δu · (w,∇u ∇u ·∇u̇+ w,∇uφ ·φ̇) dV − Ḟ · δu = 0
∫
V (δφ− φ̇) · (w,∇uφ ·∇u+ w,φφ ·φ̇) + (µ− λ)f,Xd

·f,φ λ ≥ 0

∀ δu , δΦ admissible , δφ = µf,Xd

The rate U̇ minimizes the functional H(δU) in R:




H(δU) =

∫
V

1
2(∇δu · w,∇u ∇u ·∇δu+ 2 δφ · w,∇uφ ·∇δu+ δφ · w,φφ ·δφ

+f,Xd
·f,φ µ2) dV − Ḟ · δu

More generally, the considered symmetry is equivalent to the symmetry of the interaction matrix hij =

f i,Xd
·f j ,φ in the case of multiple plastic criterion f i(Xd,Yd, φ) ≤ 0 , i = 1, n

c) Example of Gradient Model of Plasticity with Isotropic-Kinematic Hardening

In small transformation, an interesting model of plasticity with isotropic-kinematic hardening con-

sists of internal variable φ=(εp, γ) with γ =
∫ t
0

√
2
3ε

p :εp dτ being accumulated plastic strain, of energy

W = We(ε− εp) +Wc(ε
p) +Wi(γ) +Wg(∇γ) (3.54)

and a Mises-like criterion of plasticity of the form

f(Xp
d , X

γ
d ,Y

γ
d ) = ‖Xp

d‖+
1

ℓ
‖Y γ

d ‖+Xγ
d − k ≤ 0 (3.55)

where k is a positive constant. The dissipation potential and the normality law are

D(ε̇p, γ̇,∇γ̇) = max
f(Xp∗

d
,Xγ∗

d
,Y γ∗

d
)≤0

{Xp∗
d · ε̇p + Y

γ∗
d · ∇γ̇ +Xγ∗

d γ̇}





ε̇p = λ ∂f
∂Xp

d

= λ
X

p
d

‖Xp
d
‖

γ̇ = λ ∂f
∂Xγ

d

= λ

∇γ̇ = λ ∂f
∂Y γ

d

= 1
ℓλ

Y
γ
d

‖Y γ
d
‖

f ≤ 0 , λ ≥ 0 , f λ = 0 (3.56)

γ is thus the equivalent plastic strain and the dissipation is d = X
p
d · ε̇p + Y

γ
d · ∇γ̇ +Xγ

d γ̇ = k λ

d) Example of Uniqueness of the Response

The response of a solid of governing equation (3.36) under a given loading path and insulation con-

dition is considered from a given initial state in isothermal transformation. Let Ui, i=1, 2 denote two
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possible solutions, if the dissipation potential is state-independent, then the combination of the governing

equations associated with these solutions gives

(W,U2
−W,U1

) · (U̇2 − U̇1) ≤ 0

If the energy W(U) is a quadratic functional, since

d

dt

(
W(U2 −U1)

)
= 2(W,U2

−W,U1
) · (U̇2 − U̇1) ≤ 0

there is a contraction of the energy distance between two responses. It follows that

W
(
U2(t)−U1(t)

)
≤ W

(
U2(0)−U1(0)

)
= 0

The positivity condition

W(U) ≥ a‖U‖2

ensures then U2(t)=U1(t) for all t ≥ 0. Thus, the following statement holds:

Proposition 6 The uniqueness of the response is ensured if the energy potential is quadratic and

strictly positive and if the dissipation pseudo-potential is state-independent (cf. [116]).

For example, in linear isotropic-kinematic hardening with





W = We +Wc +Wi +Wg;

We =
1
2 (ε− εp) : L : (ε− εp) , Wc =

1
2H εp : εp ,

Wi =
1
2J γ2 , Wg = 1

2G ∇εp
...∇εp

f = (‖Xp
d‖2 + 1

ℓ2
‖Y p

d ‖2)1/2 +Xγ
d − k ≤ 0

(3.57)

the response in stress and strain of a solid from a given initial state under a given loading path is unique

when G > 0 even when H=J=0, in contrast with the well known phenomenon of localization obtained

in perfect plasticity (where G=H=J=0). A discussion on existence and uniqueness of a solution has

been recently given by Giacomini & Musesti [71] in linear isotropic hardening (H=0, G=0, J > 0).

At finite strain, several models of gradient plasticity have been proposed cf. Gurtin [80], using the

classical multiplicative decomposition ∇u=FeFp where Fe and Fp are the elastic and plastic transfor-

mation gradients, the internal parameter is Fp:

W (∇u, Fp,∇Fp) = We(∇u, Fp) +Wc(Fp) +Wg(Fp, CurlFp)

Some mathematical results on the question of existence and uniqueness of a solution have also been

given for the models I, cf. Mainik & Mielke [99].
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e) Energy Regularization

The following approach is proposed to avoid the indetermination difficulty aforementioned in section

3.1.5. The idea is to recover the model I case by energy regularization, thanks to the introduction of an

additional internal parameter β and of an additional energy. For example, an additional term of the form

1/2 r‖β−∇φ‖2 can be included in the energy while ∇φ̇ is replaced by β̇ in the dissipation potential.

The coefficient of rigidity r is positive. This leads to a model I of potentials W ∗ and D∗ with internal

parameters φ, β:




W ∗(∇u, φ,∇φ,β) = W (∇u, φ,∇φ) + 1

2 r‖β −∇φ‖2

D∗(φ̇, β̇, φ) = D(φ̇,∇φ̇, φ)
(3.58)

For the regularized model, the governing equations (3.35) lead to the same elastic domain C in the

force space (Xφ
d ,X

β
d ) and the normality law for (φ̇, β̇).

For example, the model described with (3.32) and (3.33), using the transformation (3.58), leads to:




f∗ = (‖Xφ
d ‖2 + 1

ℓ2
‖Xβ

d ‖2)1/2 − k(φ)

φ̇ = λ ∂f

∂Xφ
d

, β̇ = λ ∂f

∂Xβ
d

, f ≤ 0 , λ ≥ 0 , fλ = 0

Xφ
d = −Xφ

e +∇·Y φ
e + r∆φ− r∇·β , X

β
d = r (∇φ− β)

(3.59)

Thus β approaches ∇φ and X
β
d plays the role of Y

φ
d when the coefficient of rigidity r is high enough.

In the same spirit, the Gradient Model of isotropic and kinematic hardening described with a Mises-

like plastic criterion of the forms (3.54) and (3.55), respectively, leads to a regularized model defined

by: 



f∗ = ‖Xp
d‖+Xγ

d + 1
ℓ ‖X

β
d ‖ − k ≤ 0

ε̇p = λ ∂f
∂Xp

d

, γ̇ = λ ∂f
∂Xγ

d

= λ , β̇ = λ ∂f

∂Xβ
d

f ≤ 0 , λ ≥ 0 , fλ = 0

X
p
d =σ−Hεp , Xγ

d =−W ′
i + G∆γ +∇·r (∇γ−β) , Xβ

d = r (∇γ−β)

(3.60)

3.1.7 Gradient Model of accumulated plasticity γ with isotropic-kinematic hardening

a) State and complementary laws

In small transformation, a Gradient Model of accumulated plasticity γ with isotropic-kinematic hard-

ening consists of the internal variable φ = (εp, γ), which represents the plastic strain and the equivalent

plastic strain, such that ε
p
kk = 0 (plastic incompressibility) and γ ≥ 0 (accumulated plastic strain), and

of the following energy and dissipation potentials (started with the case of linear hardening)




W = W (ε, εp, γ,∇γ) = We +Wc +Wi +Wg

= 1
2(ε−εp) : L : (ε−εp) + 1

2ε
p : H : εp + 1

2Jγ2 + 1
2G∇γ ·∇γ (3.61a)

D = D(ε̇p, γ̇,∇γ̇, εp, γ) ⇐⇒ gradient-dependent (model II) (3.61b)
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and under the regularized form:





W ∗ =W ∗(ε, εp, γ,β) = W (ε, εp, γ,∇γ) + 1
2 r (β −∇γ)2

= 1
2(ε−εp) :L : (ε−εp) + 1

2ε
p :H :εp + 1

2Jγ2 + 1
2G∇γ · ∇γ + 1

2 r (β−∇γ)2 (3.62a)

D∗ =D∗(ε̇p, γ̇, β̇, εp, γ) ⇐⇒ gradient-independent (model I) (3.62b)

State and complementary laws after (3.5) offer the non-dissipative forces in this case:





X
p
e = W ∗

,εp = −σ +H : εp Y
p
e = W ∗

,∇εp = 0

Xγ
e = W ∗

,γ = Jγ Y
γ
e = W ∗

,∇γ = G∇γ − r (β −∇γ)

X
β
e = W ∗

,β = r (β −∇γ) Y
β
e = W ∗

,∇β = 0

(3.63)

and the dissipative forces:





X
p
d = ∂D∗

ε̇p
6= 0 Y

p
d = ∂D∗

∇ε̇p
= 0

Xγ
d = ∂D∗

γ̇ 6= 0 Y
γ
d = ∂D∗

∇γ̇ = 0 (actually substituted with X
β
d )

X
β
d = ∂D∗

β̇
6= 0 Y

β
d = ∂D∗

∇β̇
= 0

(3.64)

Applying generalized local equilibrium equation after (3.18) for extended forces associated with εp,

γ and β yields:





(Xp
e −∇·Y p

e ) + (Xp
d −∇·Y p

d ) = 0 =⇒ Xp
e +X

p
d = 0 (3.65a)

(Xγ
e −∇·Y γ

e ) +Xγ
d = 0 (i.e, it comes back model I) (3.65b)

(Xβ
e −∇·Y β

e ) + (Xβ
d −∇·Y β

d ) = 0 =⇒ Xβ
e +X

β
d = 0 (3.65c)

and then to express the dissipative forces as:





X
p
d = −Xp

e = σ −H : εp (3.66a)

Xγ
d = −Xγ

e +∇·Y γ
e = −Jγ + G∇2γ − r (∇·β −∇2γ)

= −Jγ + (G + r)∇2γ − r∇·β (3.66b)

X
β
d = −Xβ

e = r (∇γ − β) (3.66c)

b) Plastic criterion

Mises-like plastic criterion (by means of loading functions) of the form, as (3.60.a)

f = f(Xp
d , X

γ
d ,X

β
d ) = ‖Xp

d‖+Xγ
d +

1

ℓ
‖Xβ

d ‖ − k ≤ 0 (3.67)

is considered.

where ℓ is defined here as a material characteristic length parameter. The micro-experiments are

used to identify ℓ. According to the literature, ℓ is roughly of micrometer or sub-micrometer order, and

actually reflects mechanical behavior at micro scale.
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c) Evolution laws (normality laws)





ε̇p = λ
∂f(Xp

d
,Xγ

d
,Xβ

d
)

∂Xp
d

= λ
X

p
d

‖Xp
d
‖

γ̇ = λ
∂f(Xp

d
,Xγ

d
,Xβ

d
)

∂Xγ
d

= λ

β̇ = λ
∂f(Xp

d
,Xγ

d
,Xβ

d
)

∂Xβ
d

= 1
ℓ λ

X
β
d

|Xβ
d
|

where: λ ≥ 0; f ≤ 0; λf = 0 (3.68)

The additional boundary condition (3.14.d) in this case is:

Y γ ·n=0, (3.63) & (3.64) =⇒ Y γ=Y
γ
e +Y

γ
d =Y

γ
e =

(
G∇γ−r (β−∇γ)

)

thus
(
G∇γ − r (β −∇γ)

)
· n =

(
(G + r)∇γ − rβ

)
· n = 0 (3.69)

Finally, for a solid V subjected to a classical loading path and a controlled displacement on a por-

tion of its boundary, in small and quasi-static transformation from a given initial state uo, fo, under the

constitutive insulation condition following Polizzotto, the governing equations are:

• ∀x ∈ V

Xp
e = −σ +H : εp Y p

e = 0

Xγ
e = Jγ Y γ

e = G∇γ − r (β −∇γ)

Xβ
e = r (β −∇γ) Y β

e = 0

X
p
d = σ −H : εp Y

γ
d = 0

Xγ
d = −Jγ + (G + r)∇2γ − r∇·β Y

γ
d = 0

X
β
d = r(∇γ − β) Y

β
d = 0

X
β
d used to replace the role of Y

γ
d in loading functions as well as

flow laws of model II, thus leading to model I problem.

f = f(Xp
d , X

γ
d ,X

β
d ) = ‖Xp

d‖+Xγ
d +

1

ℓ
‖Xβ

d ‖ − k ≤ 0;

ε̇p = λ
∂f(Xp

d , X
γ
d ,X

β
d )

∂Xp
d

= λ
X

p
d

‖Xp
d‖

γ̇ = λ
∂f(Xp

d , X
γ
d ,X

β
d )

∂Xγ
d

= λ where λ ≥ 0; f ≤ 0;λf = 0

β̇ = λ
∂f(Xp

d , X
γ
d ,X

β
d )

∂Xβ
d

=
1

ℓ
λ
X

β
d

|Xβ
d |

∇·σ + fvu = 0

• ∀x ∈ ∂V

σ · n = fsu on ∂Vfu, u = ud on ∂Vu, ∂Vfu ∩ ∂Vu = ∂V
(
(G + r)∇γ − rβ

)
· n = 0 on ∂V
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3.1.8 Gradient Model of plasticity ε
p with isotropic and kinematic hardening

a) State and complementary laws

Similarly, in small transformation, a Gradient Model of the total plasticity εp with isotropic-kinematic

hardening is now considered in the context of the linear hardening and model I, for the sake of simplicity:





W = W (ε, εp,∇εp, γ) = We +Wc +Wi +Wg

= 1

2
(ε−εp) : L : (ε−εp) + 1

2
εp : H : εp + 1

2
Jγ2 + 1

2
G∇εp

... ∇εp (3.71a)

D = D(ε̇p, γ̇) ⇐⇒ gradient-independent function (model I) (3.71b)

For example, a dissipation potential of the form D = k(γ)
∥∥φ̇

∥∥ can be assumed.

Using (3.5) with φ = (εp, γ) and (3.17), the state and complementary laws and extended forces

expressions yield:





σe= W,ε = L : (ε− εp) = σ − σd = σ, σd = ∂Dε̇ = 0

Xεp
e = W,εp =−L : (ε−εp) +H :εp =−σ+H :εp Xεp

d = ∂Dε̇p 6=0

Y εp
e = W,∇εp = G∇εp Y εp

d = ∂D∇ε̇p =0

Aεp
e = W,εp−∇ ·W,∇εp = −σ +H : εp − G∇2εp, Aεp

d = −Aεp
e

Aγ
e = W,γ = Jγ, Aγ

d = −Aγ
e

(3.72)

in which Aεp

d and Aγ
d are the dissipative forces associated with εp and γ respectively. The constitutive

equations under insulation condition leads to a Mises-like plastic criterion for the force (Aεp

d , Aγ
d) as

follows:

b) Plastic criterion

A Mises-like plastic criterion (loading functions) is of the form:

f(Aεp

d , Aγ
d) =

∥∥Aεp

d

∥∥
eq

+Aγ
d − k(γ) ≤ 0 (3.73)

∥∥Aεp

d

∥∥
eq

=

√
3

2
dev(Aεp

d ) : dev(Aεp
d ), dev(Aεp

d ) = s−H : εp + G∇2εp

The condition f(Aεp

d , Aγ
d) ≤ 0 defines the convex domain C of admissible forces Aεp

d and Aγ
d .

c) Evolution laws (normality laws)

• Dual dissipation potential D∗ with the help of the indicator function I:

D∗ = D∗(Aεp

d , Aγ
d) = I (

∥∥Aεp

d

∥∥+Aγ
d − k(γ) ≤ 0)

• Plastic strain and equivalent plastic strain rates:





ε̇p = NC(A
εp

d ) = λ
∂f(Aεp

d ,Aγ
d
)

∂Aεp

d

γ̇ = NC(A
γ
d) = λ

∂f(Aεp

d ,Aγ
d
)

∂Aγ
d

f ≤ 0, λ ≥ 0, f λ = 0 (3.74)
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The additional boundary condition from (3.14.d), using (3.72), gives:

Y · n = Ye · n = G∇εp · n, ⇐⇒ εp,n = 0 (3.75)

Finally, for a solid V subjected to a classical loading path and a controlled displacement on a portion of its

boundary, in small and quasi-static transformation from a given initial state uo, fo, under the constitutive

insulation condition after Polizzotto, the governing equations are here reported:

• ∀x ∈ V

σ = σe = W,ε = L : (ε− εp) σd = 0

Xεp

e = −σ +H : εp Xεp

d 6= 0

Y εp

e = G∇εp Y εp

d = 0

Aεp

e = −σ+H :εp− G∇2εp Aεp

d = −Aεp

e

Aγ
e = Jγ Aγ

d = −Aγ
e

∥∥Aεp

d

∥∥
eq

=

√
3

2
dev (Aεp

d ) : dev (Aεp
d )

f(Aεp

d , Aγ
d) =

∥∥Aεp

d

∥∥
eq

+Aγ
d − k(γ); f ≤ 0, λ ≥ 0, f λ = 0

ε̇p = λ
∂f(Aεp

d , Aγ
d)

∂Aεp
d

= λ

√
3

2

Aεp

d∥∥Aεp
d

∥∥

γ̇ = λ
∂f(Aεp

d , Aγ
d)

∂Aγ
d

= λ =

√
2

3

∥∥ε̇p
∥∥

∇·σ + fvu = 0

• ∀x ∈ ∂V

σ · n = fsu on ∂Vfu, u = ud on ∂Vu, ∂Vfu ∩ ∂Vu = ∂V

εp,n = 0 on ∂V

3.1.9 Discussion

In this section, the constitutive equations of Standard Gradient Models are conveniently described

from the expressions of the energy and dissipation potentials. Our attention is focussed on the derivation

of the governing equations as a generalized Biot equation, on the formalism of generalized standard ma-

terials and on time-independent processes such as incremental plasticity and brittle damage. In particular,

the theoretical difficulty concerning the case of gradient-dependent dissipation (Models II) is underlined.

In the next section, as example, illustrations for several common cases are shown, and one of them,

a Gradient Model of accumulated plasticity with linear or nonlinear isotropic-kinematic hardening, is
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also detailed in the computational aspect. And finally this will be applied to represent, via some typical

problems, the well-known micro-mechanical phenomenon called the effect "smaller is stronger".

3.2 Numerical implementation

3.2.1 Gradient Model of accumulated plasticity γ with isotropic and kinematic harden-

ing

This section is devoted to the numerical implementation of the proposed Gradient Model, in which

the deformation plasticity method (deformation theory) is used. The model II is considered for the sake

of generality as the model I can be easily obtained from that by just imposing r=0. On the other hand, in

the present work, only materials with spatially isotropic behavior are considered. First, a linear hardening

is examined and then the generalization for nonlinear hardening is treated.

a) Governing equations

1. von Mises-like plastic criteria (3.67):





f = f(Xp
d , X

γ
d ,X

β
d ) = ‖Xp

d‖+Xγ
d +

1

ℓ
‖Xβ

d ‖ − k ≤ 0 (3.77a)

with: ‖Xp
d‖ =

√
3

2
(ξ : ξ) =

√
3

2

∥∥ξ
∥∥

ξ = dev(Xp
d ) = dev(σ −Hεp) = s−Hεp (H: 4-order tensor)

Xγ
d = −Jγ + (G + r)∇2γ − r ∇·β (3.77b)

X
β
d = r(∇γ − β) (3.77c)

thus f=

√
3

2

∥∥ξ
∥∥−Jγ + (G+r)∇2γ−r ∇·β+1

ℓ

∣∣r(∇γ−β)
∣∣−k ≤0 (3.77d)

2. Evolution laws (3.68), with the boundary conditions as in (3.70):





• ε̇p = λ
∂f(Xp

d
,Xγ

d
,Xβ

d
)

∂Xp
d

= λ
√

3
2

ξ
‖ξ‖

• γ̇ = λ
∂f(Xp

d
,Xγ

d
,Xβ

d
)

∂Xγ
d

= λ

• β̇ = λ
∂f(Xp

d
,Xγ

d
,Xβ

d
)

∂Xβ
d

= 1
ℓ λ

X
β
d

|Xβ
d
|

• Boundary conditions as in (3.70)

where: λ ≥ 0; f ≤ 0;λf = 0 (3.78)

From the last incremental equations, an associated model of deformation plasticity (Hencky) can

be defined by replacing ε̇p, γ̇ and β̇ by εp, γ and β. Thus, the associated Hencky model equations

are:
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



• εp = λ

√
3

2

ξ

‖ξ‖ (3.79a)

• γ = λ where: λ ≥ 0; f ≤ 0;λf = 0 (3.79b)

• β =
1

ℓ
λ
X

β
d

|Xβ
d |

(3.79c)

• Boundary conditions as in (3.70) (3.79d)

The next item is devoted to numerical integration of the deformation theory in which an 1-step

schema is used (Hencky algorithm). The inherent nature of this method, by means of the passage

from (3.78) to (3.79), makes it an implicit algorithm.

b) Algorithm (implicit schema)

The case of deformation plasticity is thus obtained from the incremental description by a 1-step

increment from the initial state. However, the problem is solved by iterations in which the total forces

are updated as F tot=F ext
d +F p(εp) after the value of εp of the previous iteration; F ext

d are the external

forces and F p(εp) the plastic forces associated with εp.

For each iteration, all quantities u, ε, γ, εp,σ, etc, are re-calculated from the initial state 0, using the

updated total forces F tot.

All the following quantities are understood corresponding to the last increment with regard to the

considered problem, therefore accompanied without any iteration index.

For each iteration, one has to:

1. Calculate u, ε as elastic solution

2. Compute γ and β by solving a Laplacian equation of unknown γ after an explicit schema with

internal iterations between γ and β:

• Calculate β:

From (3.79c), β is collinear with X
β
d ; combining with (3.77c) and noting the positivity of r,

β is also collinear with ∇γ. Finally one gets:

β =
γ ∇γ

ℓ |∇γ| = β(γ) (3.80)

• Calculate γ:

ξ= s−Hεp = 2µ e− (H+ 2µ)εp (3.81)

where s=dev(σ); σ=λL tr(ε−εp)1+ 2µ(ε−εp); and e=dev(ε). Here λL and µ are

Lamé coefficients.

Hεp = Hεp for a spatially isotropic material (H: hardening modulus).
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From (3.79a), ξ and εp are collinear. Combining with (3.81), ξ and e are collinear too.

Therefore the last allows to write:

‖ξ‖ = 2µ ‖e‖ − (H + 2µ)‖εp‖ = 2µ ‖e‖ − (H + 2µ)λ

√
3

2
(3.82)

Thus (3.77d) follows, with the mind that γ = λ:

− ℓ2f1(1+f2)∇2γ +

(
J+1.5H+r/ℓ2

2µ
+
3

2

)
γ=

√
3

2
‖e‖ − k + r

(
∇·β+|∇γ|/ℓ

)

2µ
(3.83)

Two coefficients f1 and f2, defined by G=2µℓ2f1 and r= f2G are used instead of G and r to

make more flexible for the modules’ magnitude.

For example, a particular case, the non-Gradient Model (r = 0) with linear isotropic hardening,

i.e. J(γ) = Jγ, gives:

γ =
2µ

J + 3µ

〈√
3

2
‖e‖ − k

2µ

〉

+

(3.84)

〈
·
〉
+

denotes the positive part.

Consequently, (3.83) in a more familiar form, is:





−K∇2γ + cγ = fimp

K = ℓ2f1(1 + f2) and c =
(J + 1.5H

2µ
+

3

2

)

fimp =

〈√
3

2
‖e‖ − k

2µ

〉

+

− r
(
∇·β + |∇γ|/ℓ

)

2µ

Boundary conditions as in (3.70)

(3.85)

With a given deformation field, fimp = f(γ) is a function of γ as it includes β which is a

nonlinear function with respect to γ due to the expression (3.80).

The second of the boundary conditions in (3.70) in this case, is:

[(G + r)∇γ − rβ ] · n = 0 ⇐⇒
[
ℓ2f1(1 + f2)∇γ − ℓ2f1f2β

]
· n = 0

=⇒ K∇γ · n =
rβ

2µ
· n = Φd; Φd defined for use later in (3.91) (3.86)

In the more general case, a Gradient Model with nonlinear isotropic and kinematic hardening, the

corresponding energy potential parts Wi and Wc in (3.61a) are no longer so simple, they are only

known under their derivative forms W ′
i = J(γ) and W ′

c = H(εp) (instead of Jγ and Hεp as before).

J(γ) and H(εp) are nonlinear functions with respect to their arguments.

For example, a function of isotropic hardening J(γ) can be deduced from a given Ramberg-Osgood

uniaxial tensile stress-strain curve whose form, denoting E as Young modulus, is:

ε

ε0
=

σ

σ0
+

(
σ

σ0

)n

, n = 5÷ 10, ε0, σ0 are material parameters, ε0=
σ0
E

(3.87)
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Or, a more simple and popular form of isotropic hardening J(γ) is an exponential function with

two material parameters J∞ and b:

J(γ) = J∞(1− e−bγ) (3.88)

In this work, the second form of J(γ) is used because it offers an easy and rapid numerical conver-

gence. The first one even causes divergence in some cases (see details in the next section).

Then (3.83) becomes:

−ℓ2f1(1+f2)∇2γ +
( r

2µℓ2
+

3

2

)
γ =

√
3

2
‖e‖ − k+J(γ)+1.5H(εp)+r

(
∇·β+|∇γ|/ℓ

)

2µ

And (3.85) becomes:





−K∇2γ + cγ = fimp

K = ℓ2f1(1 + f2) and c =
3

2

fimp =

〈√
3

2
‖e‖ − k

2µ

〉

+

− J(γ)+1.5H(εp)+r
(
∇·β + |∇γ|/ℓ

)

2µ

Boundary conditions still as in (3.70) which second one is (3.86) too

(3.89)

Note that ξ and e are collinear and that e is known, (3.79a) allows to express:

εp = λ

√
3

2

ξ

‖ξ‖ = γ

√
3

2

e

‖e‖ = εp(γ) (3.90)

Then H(εp)=H
(
εp(γ)

)
, a nonlinear function with respect to γ.

Thus fimp is a nonlinear function of γ, including the nonlinear terms ∇·β(γ), J(γ), H
(
εp(γ)

)
,

|∇γ|, not only ∇·β(γ) as before. Once fimp is known (via the value of γ know from the previous

iteration), a familiar diffusion-like equation is found which can be classically solved in global way.

Eq. 3.89 is thus solved by a Newton method, using internal iterations. See details in the appendix

.1.

Finally, (3.85) or (3.89) are the constitutive equations which give γ and εp in terms of ε (or e

rather) as the solution of a diffusion problem in which the right member fimp is assumed known.

Hence, an explicit schema is needed where fimp = f(γ) of the current iteration is known via the

value γ from the previous internal iteration; and then the Laplacian equation (3.85) or (3.89) are

solved as in diffusion problem.

The principal steps for the internal iterations (index "i" is assigned to the ith iteration) are:

• Initializing γ1=0 for the 1st internal iteration.

• Calculating for the ith internal iteration the value of fiimp=f(γi−1).
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• Calculating γi by solving the laplacian equation (as thermal problem) with fiimp known.

• Repeating the above steps (steps 2nd, 3rd) until the convergence of γ.

Finally after calculating γ and then the other quantities such as β (with the help of (3.80)),

εp,σ, ..., and F tot=F ext
d +F p(εp) is updated for the next global iteration.

3. Restart a new global iteration until the convergence.

c) Numerical implementation

By finite elements (FE), the following Galerkin representation is considered:

u(x) = umUm(x); γ(x) = γnNn(x)

The nodal values um and γn lead to column matrices [u] and [γ] while ε, εp and σ are fields defined

numerically at Gauss points.

For a given field of plastic strain εp, the equilibrium equations under a given loading and plastic

strain lead to a global matrix equation for the displacement u.

[
K
]
{U} = F ext

d + F p(εp)

where
[
K
]

denotes the elastic stiffness matrix.

For a given displacement [u], the associated fields of εp and σ and the equivalent plastic [γ] are

determined by a diffusion-like problem since (3.85) or (3.89) depending on the case of linear or nonlinear

hardening, respectively.

As in diffusion problem, matrix equations are:





[
[K] + [C]

]
{γ} = {F}

[K]=

∫

V
{∇Ni}TK {∇Nj} dV and [C]=

∫

V
{Ni}Tρc {Nj} dV

{F} =

∫

V
{Nj} fimp dV +

∫

∂Vq

{Nj}Φd dΓ

(3.91)

where K, c and fimp can be directly found at (3.85) or (3.89), Φd as roughly mentioned in (3.86) or more

detailed in Appendix (10). A clear distinction with the non-gradient model can be seen by means of

the expression of {F}. The presence of the second term here corresponding to the additional boundary

condition (insulation condition by Polizzotto) which only exists in the gradient model.

This equation is similar to classical diffusion equation found in computer FE codes, cf. CAST3M for

example. The presence of nonlinear term H
(
εp(γ)

)
, J(γ),β(γ), |∇γ| in the expression of fimp and Φd

is dealt by Newton method. The positive condition γ ≥ 0 leads finally to the following algorithm, in the
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general case of nonlinear hardening:





[
[K] + [C]

]
{γ∗} = {F}

γ = 0 if ‖e‖ <

√
2

3

k

2µ
or γ∗ < 0, after (3.89)

γ = γ∗ otherwise

Details of the numerical implementation are given in Appendix (.1).

3.2.2 Applications

Here are some most typical examples in applying SSGP models for mechanical problems at micro

scale. The gradient plasticity model with isotropic-kinematic hardening is used.

All the following results are numerical simulations of the reference counterparts in [53; 54]. The

numerical results of Fleck and Hutchinson in [54] are obtained from flow and deformation theories.

All quantities (stress, strain, torque, twist, displacement, volume change, film thickness, radius of wire,

of void...) are plotted in diagrams with their respective normalized values concerning the well-known

parameters (σ0, ε0) of the Ramberg-Osgood uniaxial tensile stress-strain curve in (3.87).

Three problems are computationally solved in this section: (1) shearing of a thin film layer sand-

wiched between two substrates, (2) thin wire torsion, and (3) expansion of a spherical micro void (simi-

lar to the role of indenter size in micro-indentation). These typical problems permit to draw conclusions

about the effective of Gradient Model as well as the role the material length parameter ℓ plays. In each

study, a Ramberg-Osgood curve characterizing the uniaxial tensile stress-strain relation of the solid, is

replaced by an equivalent exponential curve.

Every numerical result shows a rather good accordance with the reference counterparts in which the

effect "Smaller is Stronger" at sufficiently small scale is found. Moreover, apart from the numerical

curves of the proposed model corresponding to different specimen size, the upper and lower saturation

bounds about the specimen size are also found and presented. They define the range of validity of the

model.

a) Thin film shearing: the role of film thickness

Consider the typical shearing problem of a thin film layer. An infinite elastic plastic film layer is

sandwiched between two substrates rigid enough, −∞ ≤ x1 ≤ ∞, of height 2L, −L ≤ x2 ≤ L, where

each face is bonded to a rigid substrate. The substrates are displaced such that top and bottom of the

layer undergo relative shearing displacements, u1=U and u1=−U at x2=±L, respectively. The only

non-zero displacement is u1(x2), which is assumed to be independent of x1.

The "size effect" is here taken into account by the help of two factors. The first, as the inherent

nature of Gradient Model adopted, is the presence of the "gradient term" in governing equations; and

the second, just appearing in the "inclusion/interface problems" because of a supplementary boundary

condition called (nonstandard boundary or interface conditions), is the presence of the constrained
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plastic flow within the "inclusion/interface layer". In this specific case, the shearing of a thin film blocked

between two substrates rigid enough, such an additional condition is to ensure the vanishing of plastic

strain, i.e. εp =0, γ =0, at the boundary of thin film. These conditions using classical models without

SSGP term are not enough to offer a good numerical result especially in the case the "inclusion" scale is

more and more smaller. Thus, a model with both factors included (the presence of SSGP term and the

complementary boundary condition concerning the constrained plastic flow within "inclusion/interface")

is necessary in this case.

��

��

Figure 3.1 : Thin film shearing simulation: (a) deformation; (b) accumulated plasticity (cf. Fleck and

Hutchinson [54])

Numerical results are plotted on diagrams as in Fig.3.2 and Fig.3.3. The role of passivated film

thickness is: the smaller the film thickness, the higher the material resistance.

A procedure to validate the reference numerical results of Fleck & Hutchinson 2001 is given in Ap-

pendix (.2). A very brief procedure is summarized here by means of the thin film case as illustration. The

set of parameters to identify is ε0, σ0, ℓ. Their calibration is performed using the following procedure:

for a given film thickness, we seek for the parameters giving the same curves as the ones of FH (Fleck

and Hutchinson). The length scale ℓ obtained here is a half the FH’s one. Then, shearing of thin films of

various thicknesses continues to be simulated. A rather good agreement between numerical results and

counterparts is shown. The same procedure is applied for the following other tests.
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Figure 3.2 : Thin film shearing simulation: distribution of plastic shear strain across the upper half of

the sheared layer at U/(ε0L)=10 for various values of ℓ/L (cf. Fleck and Hutchinson [54])

b) Thin wire torsion: the role of wire size

A solid cylindrical wire of radius R is subjected to torsion. A cylindrical coordinate system (r, θ, z)

is employed. When the wire of isotropic material is twisted monotonically, the total shear strain is

εs=αr where α is the twist per unit length. The case-study is without constraint to the plastic flow at the

surface of the wire (constraint-free surface). 3 Simulation results are presented in Fig.3.4. A very close

accordance between numerical results and counterparts is shown. The role of wire size is: the smaller

the radius of the wire, the higher the material resistance.

c) Micro-void growth: the role of void size

Micro-void growth problem has been intensively studied in damage mechanics to interpret a com-

mon fracture mechanism of ductile metals which is nucleation, growth, and coalescence of voids (e.g.

Rice and Tracey 1969 [147]; Gurson 1977 [75]; Needleman et all. 1992 [114]; Tvergaard 1990 [168]).

However, none of those widely used for void growth problems from the literature involve any depen-

dence on void size, even though they are sometimes applied to voids of micron or even sub-micron size.

There is some indirect evidence that voids in the micron to sub-micron size range are less susceptible to

growth at a given stress state than larger voids. Nowadays more and more experimental examinations of

this issue were carried out. Theoretically, N.A. Fleck and J.W. Hutchinson (cf. Fleck 1997 [53], Fleck

3If the surface of the wire is covered by a very thin elastic coating that blocked dislocations, a supplementary boundary

condition must be ε̇p=0.
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Figure 3.3 : Thin film shearing simulation: effect of the material length parameter ℓ on the overall

relation between the shear traction and the shearing displacement for the elastic-plastic layer (cf. Fleck

and Hutchinson [54])

01 [54]) are ones of the pioneers with their first work presented in [53] and a reformulation later in [54].

It is interesting to study theoretically the effect of void size upon void growth and within the context of

the present class of SSGP theory. Moreover, as often discussed in the literature, void growth phenomena

may provide a robust means for confronting strain gradient plasticity predictions with experiment. Void

growth mechanism is of the same nature as that of micro-indentation and the results of one of both can

be used for the other.

Let us consider a sphere of initial radius R in an infinite solid subject to a remote spherically sym-

metric tension σ∞. Numerical results obtained with the model proposed show a very good agreement

with the corresponding counterparts from Fleck and Hutchinson [54] as in Fig.3.5. The role of void size

is: the smaller the radius of void, the harder the stretch.

d) Micro-indentation: the role of indenter size

Indentation tests are a common means of assessing the hardness of material. The indenter is either a

rigid cone with angle β or a rigid sphere of radius R, and is loaded with a normal force P. The hardness

is defined as H =
P

πa2
, where a is the radius of contact of the indenter (cf. Wei 2003 [180], Fleck 1997

[53]). The "size effect" has been found in indentation hardness testing for long time, similarly to the void

growth problem. A lot of factors can give rise to a hardness measurement such as the indentation shape

and size, surface effects, and the absence of nearby dislocation sources for micro/nano-scale indents, etc.

However, it seems clear about a strong dependence on indentation size in the range of micron to sub-
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Figure 3.4 : Thin wire torsion simulation: torque versus twist for a solid wire of radius R (cf. Fleck

and Hutchinson [54])

micron indents. That dependence is attributed to the increasing dominance of Geometrically Necessary

Dislocations compared to Statistically Stored Dislocations when indents become smaller (Poole et al.

1996 [145]; Stelmashenko et al. 1993 [158]; Ma and Clarke 1995 [98]; Nix 1988 [123]). The indentation

test is a good manner for measuring the material length scale ℓ in the strain gradient constitutive model.

Further, this problem is actually very related to the micro-void growth problem because of the same

mechanism for both. In the literature, one even uses micro-indentation problem result as approximate

result for the micro-void growth problem, or vice versa. For this reason, this work does not dedicate

longer to that case-study.

3.2.3 Discussion

a) Procedure to calibrate the experimental results

Detail of procedure to validate the reference numerical results of Fleck & Hutchinson 2001 can be

found in Appendix (.2). In the same spirit with a bit change, a method to calibrate the adopted model via

the experimental results requires to:

• carry out experiments to draw the uniaxial tensile stress-strain curve of the considered material.

• carry out experiments to draw the experimental curves similar to those in [54], such as curves "Nor-

malized remote stress against normalized volume expansion of micro-void" for example. They are

corresponding to various radii in a certain consistent ration between each other, for example, by
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Figure 3.5 : Micro-void growth simulation: remote stress as a function of normalized volume expansion

for a spherical void subject to hydrostatic tension σ∞ at infinity (cf. Fleck and Hutchinson [54])

always keeping Rexp
i+1/R

exp
i = 2, i= 1÷4. These radii are real values of specimen tests. Hence

that is not the same situation as the validation of the reference numerical results in ([54]) where

the radii just play "symbolic" role (see Appendix).

• identify a set of parameters (J∞, b) of the exponential uniaxial tensile stress-strain curve after the

experimental data.

• identify a set of parameters (G or f1, r or f2,...), and ℓ in order that simulated curves fit as well as

possible experimental ones, provided that the radii used in simulation are the same as experimental

ones. To do so, the following process is performed:

- For each set of parameters of the model adopted excluding ℓ, try to find ℓ in order that the first

simulated curve (curve 1) fits well the experimental curve 1.

- With that value of ℓ then Ri/ℓ already known at the moment for any of i, other parameters also

known, thereby remaining simulated curves (i = 2, 3...) are easily drawn on the same plot.

- Try these steps a number of times with various sets of parameters. Among them, find out an

optimal set of parameters including ℓ which is the one giving a good agreement not only for the

curve 1 as first supposed, but also for the other curves 2, 3,...

Remark: The length ℓ is in principle a material intrinsic quantity, so independent from the load

level and geometry dimension. That means, that value of ℓ experimentally determined can be re-used to
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predict mechanical behavior for any load level of the same loading mode, and for any dimension of the

same material (any radius R of micro-void, for example).

b) Comments

(i) Comparison between Model-I or Model-II

Numerical results of the cases considered show that there is no too much difference between simu-

lations by Model I and Model II. An preliminary conclusion is that, at least for the problems related to

microsystems (thin film, micro-void, micro wire, etc.), the Model I is favored thanks to its simplicity as

compared to the Model II, and enough to predict mechanical behaviors in micro-mechanics.

For the problems concerning material microstructure (grain size, reinforcement size), such a conclu-

sion is left out due to the lack of experimental data.

(ii) Advantage of the model adopted

The model proposed is rather simple, but rather well reproduces the "size effect" in microsystems

problems, at least for some typical case-studies in [54] which are well-known and acknowledged by

many other authors as reference data.

Numerical calculation also shows the meshing-independent property as expected.

(iii) Limit of the model: order of the material intrinsic length ℓ

Computation shows that the "size effect" is captured only within a certain range of the ratio R/ℓ, out

of which the numerical results tend to be unchanged. More concretely, the simulation for some typical

case-studies displays the ratio R/ℓ lies within roughly 0.01 up to 100 (most frequently 0.1÷ 10). On the

other hand, the magnitude order of the "basic dimension" of this kind of micromechanical problems (radii

R of micro-void or thin wire, thickness L of thin film, for example), from the literature, is only about

micron or sub-micron ([53; 54]). Consequently the value of ℓ here, which needs to be experimentally

determined, is theoretically estimated about (0.1÷ 10) µm, that means in micron also.

Using the Gradient Models adopted, both lower and upper saturation bounds about specimen size are

observed. Using the models for specimen size out of the interval delimited by the two thresholds, the

numerical results seems not to be changed. The results corresponding to specimen size as from the upper

threshold are similar to those by classical models.

To sum up, the preliminary conclusion is that: the scope of the model adopted lies within micron

or sub-micron scale, i.e, micro-mechanics, not smaller. A nano-scale, for example, it requires other

approaches.

3.3 Conclusion

The present work presents a simple formulation of gradient plasticity model extending the classical

standard plasticity model. The objective is to predict both "size" and gradient effects, not included yet

in the classical mechanics but become important in micro-mechanics, by taking into account just the
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gradient effect4. A new class of SSGP 5 Constitutive Models in the context of the micro-mechanics,

continuum thermodynamics and generalized standard materials, are proposed. Both formulation

and numerical implementation are addressed. The constitutive equations are conveniently described from

the expressions of the energy and the dissipation potentials, or from a generalized Biot equation using

an extended version of virtual work principle. The attention is focussed on time-independent processes

such as incremental plasticity and brittle damage. In particular, the theoretical difficulty concerning the

case of gradient-dependent dissipation is underlined.

The presence of strain gradient in the local formulation leads to a Laplacian equation needing to be

solved at global level, and insulation boundary condition to non-standard boundary value problem.

A computational method based on diffusion-like problem is used. Some illustrations are given, including

SSGP Model of accumulated plasticity with linear or nonlinear isotropic and kinematic hardening. The

model well reproduces both phenomena "Smaller is Stronger" and "Higher Gradient is Stronger"

concerning the microsystems’ geometry size for some available reference data. In this work, the nature

of these two phenomena is also clarified. "Higher Gradient is Stronger" is only related to the gradient

effect, while "Smaller is Stronger" is related to both the pure size and gradient effects where the latter

is dominant - rather than totally to the pure size effect as usually believed. Finally consulting the value

of the material length scale ℓ from literature and basing on the simulation for some typical problems, a

conclusion drawn is that, the scope of the model proposed with respect to specimen size is about micron

or sub-micron.

The formulation simplicity and distinct computational advantages of the class of models adopted make

it convenient for applications in micro-mechanical problems.

In this study, apart from microsystems problems well treated, microstructure problems (concerning

the material grain size) are expected to be also done with the model adopted due to the material charac-

teristic length related to the grain size. Because of lack of experimental data, validation for this case is

left for a further work.

4Let us recall that in this study, the gradient effect has to be present as prerequisite, whereas the pure size effect is proved

unimportant, and the size effect by Dislocation Starvation is left out at micron scale; then taking into account the gradient effect

is enough to model both gradient effect and "size effect" which actually is rather the gradient effect related to the size.
5Strain Standard Gradient Plasticity
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CHAPTER 4

Literature review

The synthesis and analysis of [131; 17; 132; 179; 112] together with some comments is represented

in this chapter. The specific citations will be detailed later.

4.1 Problematic introduction: fatigue at small scale

Fatigue criteria for metals under multiaxial cyclic loadings at small scales have taken interest more

and more in mechanics communities. The need derives from the appearance of small components in

the industrial domain such as electronic components, electro-mechanical devices, etc. In addition, a

reliable design of industrial parts against high-cycle multiaxial fatigue requires fatigue criteria capable

of predicting as much as possible important effects at small scale such as the size, gradient (volumetric

distribution of stresses), load type (loading mode), machining (residual stress state, defect distribution)

effects, etc. These effects are very important in the transfer of fatigue data from laboratory specimen to

component, or from one components to an other. Indeed, the fatigue data transferability is often very

difficult due to the previous effects which are not considered in the conventional fatigue criteria. In

literature, experimental evidences show the influence of these factors on the fatigue strength via a typical

example of round specimens with different diameters resulting in difference fatigue limits. In addition,

the same phenomenon can be seen with the material specimens including notches with different sizes

and geometries, or those possessing different residual stress states. All these are useful for demonstrating

tendencies; but in most cases, components have much more complex shape, notches, and residual stress

state, etc, so that the data transfer seems to be impossible. Furthermore, for the same size and geometry

of a specimen or a component it is well known that the load type has an influence on the fatigue limit

(difference between torsion, tension, rotative bending and plane bending). To design against fatigue, it is

necessary to take into account the effects of the previous factors (cf. [131]).

4.2 Important effects on fatigue limit at small scale

4.2.1 Size effect and Gradient effect: difference and correlation

It has been known for a long time that fatigue limit depends on the spatial stress distribution (vol-

umetric stress distribution) and also on the size of the component. Nevertheless, the so-called "stress
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gradient effect" 1 and "size effect" are very closely linked and make confused; distinguishing them more

clearly is necessary here for the further development of the study. A good review of these two effects

was proposed by Papadopoulos and Panoskaltsis [135], and will be more analyzed in the Chapter 5. Fur-

thermore, to study the stress gradient effect, studying the fatigue strength of notched components is not

suitable because the presence of a notch produces in many cases high stress-strain concentrations and so

local plastic strains. Pure stress gradient effect needs to be separated from the local plastic strain effect to

avoid unnecessary confusion. The present investigation will be limited to macroscopically elastic behav-

ior of components. In [135], the authors review a lot of experiments in tension, plane and rotative bending

with smooth cylindrical specimens in different diameters and different lengths. For example, results from

Pogoretskii and Karpenko [140] and from Pavan [136] show a decrease of the fatigue limit with the in-

crease of the specimen diameter and with its length also. By noting that the moment in the four-point

plane bending is independent of the specimen length, the Papadopoulos and Panoskaltsis explain that the

dependence on the length of constant moment fatigue limits is a pure size effect; the gradient of normal

stress is not length dependent. Fatigue data from [140] prove that the influence, on the fatigue limit, of

the specimen diameter is an order of magnitude higher than the effect of its length. Experiments from

Phillips and Heywood [138] under fully reversed tension show a very small size effect. Similarly, Weber

in his work [179] synthesized results of Massonnet [104] to represent a very slight increase tendency

in tension-compression fatigue limit with the decrease of specimen radius. This very slight variation is

considered as a pure size effect because of the absence of stress gradient in that case. About the torsion

fatigue, experiments of Massonnet [104] on specimens of different radii shows a decrease of the fully

reversed torsion fatigue limits with the increase of the radius. Not the same as before, this variation is

rather significant which is partially attributed to the pure size effect as usual, and in addition, the possible

effect of the amplitude of the shear stress gradient which must be clarified further in this work.

Some following key points are synthesized (cf. [131; 17], along with the analyzes in Chapter 1):

• Similarly to the Part A dealing with constitutive models, in the Part B devoted to fatigue criteria

here, the size and gradient effects will be also proved to be two distinct phenomena, although they

are very confused in the literature because of their very close connection. Two well-known phe-

nomena corresponding to them are clarified as follows: "Higher Gradient is Stronger" is only

attributed to the gradient effect, whereas "Smaller is Stronger" in our cases actually is mainly

attributed to the gradient effect related to the size - rather than totally to the pure size effect as

usually believed. The size effect (at least pure size effect) always exists, while the gradient effect

may be present or not, independently.

• On the one hand, it requires to consider that, taking into account the volumetric stress distribution

1The notion of "stress gradient" is incorrect and less strict than that of "spatial stress distribution" as two different volumetric

stress distributions can have identical gradients at certain points. For example, in plane and rotating bending test of cylindrical

specimens, both stress instant gradients are identical but volumetric stress distributions are not. However, this improper term

will be kept in the thesis as it has been largely used.
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in calculating fatigue life is generally more important than pure size effect. On the other hand,

the pure size effect may be still not negligible in certain cases. This effect is also linked with

the process used for machining components and for finishing their surface (grinding, polishing,...)

as mentioned below. From probabilistic point of view of fatigue damage, the pure size effect

inherently concerning material defects should be treated in probabilistic approach. In this thesis

for cases considered, it will be shown that this effect can be negligible compared to the others.

In the next chapter (Chapter 5), we will return these issues to make more clear about these effects as well

as corresponding phenomena in fatigue.

4.2.2 Loading effect

It is well known in high cycle fatigue, that the load type, i.e. the mode of loading on the object,

has a significant influence on the fatigue strength. Different load types result in different stress states

for components. For example, the volumetric stress distribution states in torsion, tension and bending

tests are different. Even in bending test, although the stress gradient (or more precisely, stress instant

distribution) in rotative bending and plane bending is the same, the volumetric stress distributions all

over the loading cycle are not the same. Therefore, different load types lead to different fatigue strengths

for components of the same geometry and material. Basing on the analyzes in Chapter 5, loading effect

is shown naturally attached to the gradient effect.

4.2.3 Other factors

According to the synthesis of [17; 179; 112] and many other authors, some following factors also

play particular role with respect to the fatigue of the metals.

• Machining: The machining process also has an important effect on fatigue strength because fa-

tigue crack nucleation depends on the finishing state of the component surface (grinding, polishing,

etc...). In this paper, this "technological effect" is not considered. The surface layer and roughness

of both laboratory specimen and real industry component (with residual stresses if any) are pre-

sumed to be identical. If the states of the surface layers are not equal, the differences must be in

principle taken into account in a suitable manner (empirical rules in general).

• Notches: The presence of notches causes high stress-strain concentrations and local plastic strain.

Pure stress gradient effect has to be separated from the local plasticity effect for which a cyclic-

plastic material behavior law must be considered to compute, by finite element analysis, the real

stress-strain distributions. This is a complicated subject needing to be thoroughly treated in another

framework of study.

• Defects (cf. [112]): Similarly to the presence of notches, that of defects causes a locally high

stress concentration state and a high plasticity around here. In the material, the set of points

where the equivalent stress is higher than a certain threshold (which value depends on each fatigue
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criterion), can participate in fatigue crack nucleation because the stress level is high enough to

allow microcracks and microdefects to grow up to a macrocrack. This is physical interpretation of

the influence of defects. A probabilistic approach could be imagined to consider the distribution

of defects in the volume influencing fatigue crack initiation.

• Inclusions: The presence of inclusions inside the material also causes a high stresses distribution

and also leads to the supplementary boundary condition. Hence this is also a separate subject

needing to be thoroughly treated in another framework of study.

• Environment (temperature variation, corrosion, etc.): the environment effect is left out in the

present study.

4.2.4 Discussion

In the current study, three common effects ("size", gradient and loading effects) which are intimately

correlative, will be investigated in order to be in some measure taken into account in the new models. In

the next chapter, we will propose that the three effects are not necessary to be modeled in qualitative way

for each one, but are modeled in the manner that, the pure size effect is proved negligible, loading mode

is attached to gradient effect, and then the last is the only effect to be accounted for.

4.3 Brief review of conventional fatigue criteria: inefficacy at small scale

Many high-cycle multiaxial fatigue criteria for metals are proposed in the literature. After the brief

classification by Banvillet 2003 [17], four categories of fatigue criteria can be distinguished. First, until

the end of the fifties several empirical formulae were proposed to synthesize many fatigue data (Haigh,

Gerber, Marin, Gough and Pollard, etc...). Second, from the observation that after nucleation a micro-

crack propagates first along a shear plane, many authors assumed that crack initiation is governed by

the shear stress (McDiarmid, Findley) or by the second invariant of the deviatoric stress tensor (Sines,

Crossland). Third, after the criterion proposed by Dang Van [41], other micro-macro approaches ap-

peared (Papadopoulos, Deperrois, Morel). They consider that elastic shakedown is the condition needed

to avoid fatigue crack initiation in unfavorably oriented grains. Fatigue crack initiation in polycrystalline

metal is determined from the critical plane containing the easiest slip directions of the grain and ex-

periencing the largest shear strain amplitude. Finally, some fatigue criteria are based on global energy

quantities: elastic, plastic or total strain energy density. These approaches do not predict crack orienta-

tion, but the computation time of such a model is shorter than for critical plane criteria. All the above

proposals are based on the stress (or strain) tensor at a critical point. Therefore none of them, after simple

dimensional arguments, is able to predict the "size" and gradient effects, nor the load type effect (they

treat indifferently the endurance limits in tension and in bending tests [22; 133]).
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4.4 Survey of existing non-conventional fatigue criteria

4.4.1 Brief review

As said above, the conventional fatigue criteria do not capture the previous effects. Hence, it leads

to the need of a new class of fatigue criteria to predict fatigue behaviors at small scale. This is the

reason why, from about twenties years ago, a few fatigue criteria aim at modeling the previous effects.

Examples are found, on the one hand in notches and fretting problems [9; 11; 139; 146; 101], and

on the other hand in problems related to small electronic components and electro-mechanical devices.

Existing approaches dealing with such problems are, (cf. syntheses of [131; 17; 132; 112; 179]): (1)-

critical layer of Flavenot and Skally 1983 [51]; (2)- distance approaches such as: effective distance

approach of Pluvinage 1997 [139], Qylafku and al. 1999 [146]; theory of critical distances Arauio 2007

[11]; (3)- nonlocal approaches such as: maximum stressed-strained volume V 90% by Sonsino and al.

1997 [157]; energy based criterion (dealing with the volume V ∗ influencing fatigue crack initiation) of

Palin-Luc and Lasserre 1998a [133]; volumetric energy based criterion of Banvillet and al. 2003 [17]

and Palin-Luc 2004 [132] developed from Palin-Luc and Lasserre 1998a; gradient method proposed by

Brand and Sutterlin 1980, 1981 [34; 33]; (4)- local approaches such as: the gradient dependent criterion

of Ngargueudedjim and Robert and al. 2001 [115]; gradient dependent criterion of Papadopoulos and

Panoskaltsis 1996 [135]; and serval derivatives based on the work of Papadopoulos and Panoskaltsis

1996 proposed by Weber 1999 [179] (gradient version of the criterion of Robert 1992 [148], and that of

Fogue 1985, 1987 [59; 58]), etc.

Interesting literature reviews of such models are presented in [112; 132; 179]. It is reported in the

next section the advantages and the limits of these methods concerning their capacity for predicting the

"size", gradient and loading effects on high cycle multiaxial fatigue, are discussed.

In summary, a rough classification of fatigue criteria, after N. Caillet 2007 in his thesis [35], is given

in the figure Fig. 4.1

4.4.2 Discussion

The fatigue criteria mentioned before illustrates different types of calculation methods available to

predict the "size" and gradient effects in high cycle fatigue. Although this review is not exhaustive, one

can notice that two ways are used in establishing non-conventional fatigue criteria. First, some criteria,

are based on a characteristic length of the material such as the critical layer and the effective distance.

Secondly, three-dimension approaches consider a real volume whose size is non-zero stress/strain state

zone (e.g. the W90% and W∗ methods).

Except the highly stressed volume W90% criterion, the size effect is not predicted by almost these

methods. The effects of material machining (residual stresses, roughness of the surface layers...), notches,

inclusions, defects,...are not predicted neither.

The pure gradient effect is considered by all the previous methods except by the critical layer one.

The last approach do not predict the experimental difference between the fatigue limits in tension and in
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Figure 4.1 : Classification of different fatigue criteria (cf. Caillet [35])

bending. According to the effective distance approach, this difference can be predicted but the choice

of the weight function is not clear. The W90% and W∗ methods predict the differences between the

endurance limits in tension and in bending but the distinction between plane and rotative bending is only

predicted by the W∗ criterion; while the other considers that this difference is due to a higher proba-

bility to find a material defect in rotative bending than in plane bending because of a larger maximum

stressed/strained volume.

According to the authors of each proposal, there is a good agreement between experiments and

predictions but there is no systematic study yet to compare their accuracy. Moreover, the effect of mean

load is not always clear or can not be predicted by these gradient fatigue criteria. Almost the methods are

tacitly limited to fully reversed multiaxial loadings. Publications on the effective distance criterion do

not explain how to take into account mean loads. For the W90% criterion a mean stress correction has

to be done, but in literature there is not many explanations on this. The critical layer is the only method

with a direct mean stress consideration by using Dang Van’s criterion.

Papadopoulos and Panoskaltsis 1996 gradient fatigue criterion and its derivatives later, introduce the

gradient term into only the hydrostatic stress component of the conventional criteria. This approach is

based on the well-established experimental fact for some metals, of the beneficial effect of the normal
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stress gradient and the non-effect of the shear stress gradient, on fatigue limit. However, this has not

enough the generality for all metals. Furthermore, in such a way, this excludes the possible role of the

amplitude of the shear stress gradient.

In summary, among non-conventional fatigue criteria aforementioned, it seems that the criterion

proposed by Palin-Luc and Lasserre [133] as well as its evolution later by Banvillet et al. [17] possess

the most advantages and allow to almost capture the three important effects at small scale (size, gradient

and loading effects). Therefore we do not have ambition in the thesis to develop such a kind of criterion,

or even one more effective. The our main object here is just to establish another simple class of fatigue

criteria extended from conventional ones, which are capable to model the some most important effects

on fatigue at small scale.

4.5 Gradient Fatigue Approach proposed

Using as a basis the idea presented in the work of Papadopoulos and Panoskaltsis 1996 [135], we

develop here a simple and phenomenological method to formulate an extension of conventional fatigue

criteria in order to capture the previous effects.

With the presence of the unique gradient term in the hydrostatic stress part as proposed by Pa-

padopoulos and Panoskaltsis 1996, the gradient fatigue criteria can successfully represent the difference

between the fatigue limits in bending and in tension-compression tests. It is also expected to predict

the fatigue limit in any other case providing the gradient of the normal stress is present. However, in

the case of zero-gradient of normal stress (i.e. pure torsion), such a formulation is unable to represent

the experimental results as the possible influence of shear gradient amplitude is ignored. An example is

given in Fig.5.6 for the pure torsion test by Massonnet [105]. Differences in fatigue limit at various radii

of the specimen are not reproduced using the criterion Papadopoulos and Panoskaltsis 1996.

This leads to the need of establishing a new class of gradient fatigue criteria where the presence of

the gradient term in the shear stress part of any conventional local type criterion (Crossland, Sines, Dang-

Van,...) is considered. In this way, we here propose a new class of fatigue criteria with the gradient term

introduced not only in the normal stress part but also in the shear stress part. This spirit is elaborated in

Chapter 5 followed with some typical application to show a good validation with experiment results.

4.6 Conclusion

At small scale, the previous effects on fatigue become important and must be taken into account. It is

performed either by formulating new fatigue criteria, or extending conventional criteria where the latter

is our objective in the present work. Among these effects, predicting the effects of manufacturing is a

very important challenge and will be left out. In this thesis, a new class of gradient fatigue criteria are

proposed to capture the three important effects ("size", gradient and loading effects), thereby to represent

both well-known phenomena "Smaller is Stronger" and "Higher Gradient is Stronger".
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CHAPTER 5

Gradient Fatigue Criteria: formulation

and application

5.1 Introduction

In recent years there has been an increasing interest in developing fatigue criteria for metals capable

of dealing with high stress gradient (around notches, voids, contacts, etc.) and particular issues related

to small scales. Examples are found, on the one hand in notches and fretting problems [9; 165; 11;

139; 146; 101], and on the other hand in problems related to small electronic components and electro-

mechanical devices. At sufficiently small sizes, some factors (size, gradient and loading effects) which

effects on fatigue limits are inherently not captured by classical fatigue criteria, become important and

must be taken into account through new criteria. Among them, experimental evidences show three in-

terconnected ones: size effect, gradient effect1 and loading effect (cf. [135; 131; 17; 132; 112; 179]).

A visible general correlation between these factors is that, "the smaller the size, the higher the gradient,

then the higher fatigue resistance". There are also cases where the gradient exists but independent from

the size, although both influence on material strength (e.g. residual surface stress cases). For the sake of

further analyses, it requires to clarify what are the sources of the size effect by isolating it from the gradi-

ent effect. Size effect is commonly considered as the pure size effect related to the metallurgical defects

and heterogeneity of material, and is proved insignificant compared to the other at the considered scale

(e.g. tension-compression fatigue test in Fig. 5.5, [138; 135]). Then a preliminary qualitative remark is

that, such a pure size effect just is a part, but not enough to explain the fact well known as "Smaller is

Stronger" that we observe in fatigue tests.

The gradient effect is another factor which may help to interpret that fact. Such effect, termed here

"Higher Gradient is Stronger", is roughly related to three sources: boundary condition, loading mode

and size. The first is associated with constraints on dislocation glide (passivated surfaces and interfaces,

boundary layers, etc.); the second concerns loading type which decides the spatial stress distribution state

in the solid (null gradient in tension-compression, non-zero gradient in bending, etc.); the last is asso-

ciated with the size (e.g. geometry and grain sizes). For instance, in bending test, the smaller the beam

radius the higher the stress gradient (and the higher the fatigue limit). Experimental results [140; 135]

on the variation in fatigue strength at various radii conclude to the dominance of the gradient effect upon

the pure size effect. Then the sources of the gradient effect prove two things: first, "Smaller is Stronger"

1In the current work, this must be understood as stress gradient effect.
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experimentally observed is mainly attributed to the gradient effect in the cases considered here, rather

than totally to the pure size effect as usually believed; second, the gradient effect, i.e. "Higher Gradient

is Stronger", is really a phenomenon different from the size effect.

All previous analyses for both the size and gradient effects imply that although the size and gradient

effects are intimately interconnected and usually confused in the literature, they are actually two distinct

phenomena. The former only contributing in part to "Smaller is Stronger" and requiring to be modeled

by other approach, is negligible compared to the latter and thus left out in the current study; whereas

the latter is not only "Higher Gradient is Stronger" but also a main factor contributing to "Smaller is

Stronger" that we observe, and is the object of study here. In brief, from phenomenological aspect,

"Higher Gradient is Stronger" is naturally related to the gradient effect only, while "Smaller is Stronger"

is related to both pure size and gradient effects where the latter is dominant. Then "Smaller is Stronger"

here is just a "visible image" of gradient effect rather than the size effect from mechanical point of view.

From phenomenological point of view, "Smaller is Stronger" is however an experimentally observed fact

that evokes an intuitive relation to the size rather than the gradient. For this reason, henceforth in this

research, the terminology "size effect" (placed within quotes) is still used for "Smaller is Stronger", but

as an apparent size effect; and the terminology gradient effect is used for "Higher Gradient is Stronger".

In such a sense, an important conclusion drawn is that, taking into account only gradient effect (related

to all its sources) is enough to capture both "size effect" and gradient effect on fatigue resistance.

In this study, only cases where the gradient effect is present apart from the inherent pure size effect, are

considered. As in [135], the notch effect - regarded as a particular case of the gradient effect, is left out

in the study restricted to macroscopically elastic behavior or stabilized elastic shakedown state [102]. In

such a context and along with the notable conclusion above, Gradient Fatigue Criteria with stress gra-

dient terms introduced are capable to capture the "size", gradient and loading effects, and thus to model

both phenomena "Smaller is Stronger" and "Higher Gradient is Stronger", as found in the applications

considered here.

Classical fatigue criteria without material length scale predict no size, gradient neither loading effects.

The objective is to establish a new class of fatigue criteria for considering the previous factors. Existing

approaches dealing with such problems are (cf. [131; 17; 132; 112; 179]): (i) critical layer of Flavenot

and Skally [51]; (ii) distance approaches such as: effective distance approach of Pluvinage [139], Qy-

lafku et al. [146]; theory of critical distances, Taylor [165], Araujo et al. [11]; (iii) nonlocal approaches

such as: maximum stressed-strained volume by Sonsino et al. [157]; energy based criterion of Palin-

Luc and Lasserre [133]; volumetric energy based criterion of Banvillet et al. [17] and Palin-Luc [132];

gradient method proposed by Brand and Sutterlin [34; 33]; (iv) local approaches such as: gradient depen-

dent criterion of Papadopoulos and Panoskaltsis [135]; that of Ngargueudedjim et al. [115], and several

derivatives based on this work [135] proposed by Fouvry et al. [9; 49] and Weber [179] (gradient version

of the criterion of Robert [148], and that of Fogue [59; 58]), etc.

The review of Papadopoulos and Panoskaltsis [135] is re-used and developed to make more clear the

connection as well as the distinction between the effects by analyzing the role of each dimension of
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specimen in fatigue resistance. It is shown that two issues remain: first, the non-effect of the shear stress

gradient on fatigue limits is only found for some metals - but not all; second, the influence of the stress

gradient amplitude must be clarified. Thereby, in the spirit of [135], gradient fatigue criteria extended

from classical ones with stress gradient terms are proposed and validated to clarify the issues. The main

idea is to maintain the general framework of the classical fatigue criteria, but to embed into it gradient

terms which enable to describe the effects concerning the stress heterogeneous distribution. Three steps

are done: first, the dependence of fatigue limit on the previous factors in the cases of uniaxial stress

cyclic loadings is phenomenologically analyzed; second, the stress gradient fatigue criteria which cap-

ture the previous factors are established; and finally, a generalization to multiaxial loadings is performed

and some applications are provided.

The outline of the work is as follows. Section (5.2) focuses on re-analyzing existing experiments on gra-

dient, size and loading effects; in Section (5.3), basing on these analyses as well as notable observations

and using as a basis classical fatigue criteria in the spirit of [135], new criteria with stress gradient terms

entering not only in the normal stress but as well in the shear stress parts, are proposed in the context

of macroscopic elasticity. Such a formulation allows the new criteria to capture the phenomena2 only

by means of gradient terms. These criteria are generalized under multiaxial loadings to be a new class

of stress gradient multiaxial fatigue criteria; in Section (5.4) and (5.5), some classical fatigue criteria

such as Crossland and Dang Van are extended within such framework; Formulation of gradient fatigue

criteria for low-cycle fatigue (LCF) is given in Section (5.6); Section (5.7) is devoted to their numerical

implementation; and finally, Sections (5.8) and (5.9) are discussions and conclusions. This work mainly

deals with the multiaxial high-cycle fatigue limit (HCF). However some initial propositions will also be

given for the multiaxial low-cycle fatigue limit (LCF).

5.2 Analyses of gradient fatigue tests: size, gradient and loading effects

In this section, analyses on single component zero and non-zero gradient fatigue tests from the lit-

erature, including two groups, uniaxial normal stress and shear stress tests, are made to clarify the size,

stress gradient and loading effects on fatigue limits. The tests exempt from the size and gradient ef-

fects, are used as reference. A special attention is also paid on the interpretation of the three effects and

their relation as well as the capacity of either eliminating or integrating them into "gradient terms" for

some cases. Analyses and preliminary conclusions drawn here for single component fatigue tests are

generalized to formulate new gradient fatigue criteria under multiaxial cyclic loadings.

5.2.1 Uniaxial normal stress cyclic loading

a) Experimental observations and interpretation of stress gradient effect

Some analyses of [135] and [179] are reported here on fatigue endurance of metals in bending or

tension-compression tests. Two respective distinct groups of results, uniaxial normal cyclic stress states

2In this study, these effects are captured in the sense that the gradient effect has to be present as prerequisite - to which the

loading effect is naturally attached, whereas and the pure size effect is proved unimportant compared to the others.
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b)a)

σmax

b)a)

d)c)

σmaxσmax

Figure 5.1 : Stress distribution types in fatigue tests of the same specimen: (a) tension-compression vs.

bending tests; (b-c-d) tension-compression vs. rotative bending vs. plane bending (cf. Weber [179])

with non-zero and zero normal stress gradients, respectively, allow to draw some comments about the

normal stress gradient effect and about the possibility of integrating the loading effect into gradient ef-

fect. In the first example, a well-established experimental fact is always found: for the same smooth

geometry and material, and the same nominal stress σmax (Fig. 5.1(a)), the specimen in fully reversed

tension-compression test sustains lower nominal fatigue stress than in fully reversed bending test. Or

similarly but in another observation [130; 179; 135]: a large number of experiments proved that the fully

reversed bending fatigue limit f−1 (rotative bending, or plane bending) is always higher than the homo-

logue σ−1 in fully reversed tension-compression test for smooth samples with the same geometry and

material (Tab. 5.1). This experimental fact is attributed to the "beneficial gradient effect" [135], which

exists in bending but not in tension. The second experimental example illustrates and makes more clear

Materials
ND σ-1

f-1
(rotative bending)

Difference between
 -1 and f-1Materials

ND

(cycles)
-1

(MPa)
(rotative bending)

(MPa)
 σ-1 and f-1

(%)

Steel 30NCD16 106 560 658 +17.5

Steel XC18 106 273 310 +13.6

Iron cast GS61 106 245 280 +14.3

Steel 35CD4 107 558 581 +4.1

Table 5.1 : Comparison between the fully reversed tension-compression and rotative bending fatigue

limits of smooth specimens with the same geometry and material, for different materials (Results of

Palin-Luc [130], synthesized by Weber [179])

the point of view "beneficial gradient effect" and also roughly deals with the size effect discussed more

in detail in the next analyses. Fig. 5.2 presents the experimental results obtained on smooth circular

tubes subjected to tension-compression or rotating bending. In tension-compression the stress gradient
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is zero, the results exhibit a slight increase tendency in fatigue limit when the radius of test specimens

decreases. Because of the absence of stress gradient, this variation of the fatigue limit may be considered

as a pure size effect analyzed later. With the counterparts in rotative bending, however, a strong increase

tendency in fatigue limit with decreasing radius and an asymptotic value when the radius increases, are

found. Apart from the pure size effect as in the tension-compression case, this strong increase tendency

of fatigue limit with the small radius as well as the saturation or insensitivity tendency with the large

enough radius again, can be only attributed to the beneficial gradient effect which increases as the radius

decreases and vice versa. The two examples above only sketched the influence of the pure size and gradi-
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Figure 5.2 : Evolution of the fully reversed tension-compression and rotative bending fatigue limits of

smooth specimens with the same geometry and material according to their radii (Results of Massonnet

[104], synthesized by Weber [179])

ent effects on fatigue limits. Besides these two factors, it remains the loading effect within the context of

the current treatment. The study of the loading effect needs to be now put into the consistent framework

with the previous others, to thoroughly examine all of three, from probabilistic point of view of fatigue

damage related to metallurgical defects. Indeed, the difference in fatigue limit in the various test cases

of the above examples can be explained from a statistical point of view: the larger these volumes are, the

larger the number of defects, i.e. the more the probability of fatigue damage of the specimen is.

First, consider the pure size effect through constant moment tests on samples of the same material, bend-

ing moment and radius - i.e. the same nominal maximum stress σ and stress gradient, but different

lengths (data of [140], represented by [135]). As shown in Fig. 5.4(a), the bending fatigue limit always

increases with the decrease in the specimen length. For the same radius, the volume of the most loaded

zone decreases with the decrease in the length. Hence, a conclusion drawn about the "pure size effect"

is: for the same instant stress distribution as well as nominal maximum stress and material, the smaller

the sample size is, the smaller the volume of the most stressed zone is, the higher the fatigue limit is.

Second, three types of tests, in tension-compression, rotative bending and plane bending, for the smooth
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specimens with the same geometry and material, subjected to the same nominal maximum stress σmax,

are now examined (Fig. 5.1(b-c-d)) in order to make clear the stress gradient effect. The fatigue limits

[104] are respectively decreasing as as reported in Fig. 5.2 and Tab. 5.2, [179]. For materials with

defects, this phenomenon can be explained from a probabilistic point of view. In fact, the common fea-

ture of the three tests is, the critical points on their cross-section are subjected to the same stress state.

However, the volumes of the most loaded zones are different. In descending volume order, they are

tension-compression, rotative bending and plane bending, corresponding to increasing order of fatigue

limits. The stress gradient leads to a disparity of the stress distribution, and with the same nominal max-

imum stress, that also leads to the diminution of the volumes of the most stressed zones, i.e. to the raise

of fatigue resistance. The stress gradient is then a quantity able to represent and model all those informa-

tions, notably fatigue resistance. Another explanation is related to the average stress in a representative

volume element (RVE) [101], which is different between the three tests for the critical point, during a

fatigue cycle. This stress is equal to the maximum stress for the tension-compression tests, whereas it

is reduced by the presence of a gradient for the bending tests. Therefore, the maximum stress in the

RVE and the stress gradient are two relevant quantities for the fatigue resistance; they will be used in the

formulation of fatigue criteria taking these phenomena into account.

Third, the loading effect implies the influence of loading mode on fatigue limit. For instance, for

the same geometry, material and nominal maximum stress, plane bending and rotative bending give

different fatigue limits. In fact, the rotative bending induces a more important circumferential stress

gradient due to rotation. The loading effect of the rotative bending, as just explained, can be captured by

using probabilistic approach or possibly by averaging stresses on a relevant RVE.

To summarize, the pure size, stress gradient and loading mode are three factors influencing on fatigue.

Their close connection can be interpreted either under the probabilistic failure aspect as just discussed,

or under the average stress in the RVE, although their manifestations are not totally identical. In this

study, gradient approaches will be developed to represent some of these phenomena.

Materials
ND

f-1
rotative

(rotative bending)
f-1

plane

(plane bending)

Difference between
 f rotative and f planeMaterials

ND

(cycles) (rotative bending)
(MPa)

(plane bending)
(MPa)

 f-1
rotative and f-1

plane

(%)

Steel 30NCD16 106 658 690 +4.9

Steel XC18 106 310 332 +7.1

Iron cast GS61 106 280 294 +5.0

Steel 35CD4 107 581 620 +6.7

Table 5.2 : Comparison between the fully reversed rotative bending and plane bending fatigue limits

for different metals of smooth specimens of the same geometry and material (Results of Palin-Luc [130],

synthesized by Weber [179])
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b) Typical fatigue tests

The differences between four-point bending tests and cantilever bending experiments allow to point

out the distinction between pure size and gradient effects. In the former, the bending moment is the same

at any time in the interval L ≤ x ≤ L+l and equal to M =FL (Fig. 5.3(a)). The bending stress σ and

its gradient Y for L ≤ x ≤ L+l and −R ≤ y ≤ R are then:

y

z

F F F

x x

L l L

M(x) = FL,      L = x = L+l M(x)  = -F(L-x)

Bending Moment Diagram Bending Moment Diagram

a) b)

Figure 5.3 : Four-point bending (constant moment) and cantilever bending tests: (a) four-point bend-

ing; (b) cantilever bending [135].

σ = σxx ex⊗ex , σxx =
FL

I
y (5.1)

Y = ∇σ with σxx,x = 0 , σxx,y =
FL

I
=

σxx
R

, σxx,z = 0 (5.2)

in which Eq. (5.2) is written for the most stressed points, i.e. points located at L ≤ x ≤ L+ l and at

y=±R. In both Eqs. (5.1) and (5.2), all components not mentioned are null. The notations σxx,x, σxx,y

and σxx,z mean partial derivative of σxx relative to respectively x, y and z.

In the cantilever bending test the bending moment is: M =−F (L−x) (Fig. 5.3(b)). The bending stress

and its gradient for 0 ≤ x ≤ L and −R ≤ y ≤ R are given by:

σ = σxx ex⊗ex , σxx =
−F (L− x)

I
y (5.3)

Y = ∇σ ; σxx,x=
F

I
y =

−σxx
L

, σxx,y=
−F (L− x)

I
=
σxx
R

, σxx,z=0 (5.4)

Eq. (5.4) is written for the critical points, i.e. those at x=0 and y=±R.

In their work, [135] did distinguish clearly the pure size and gradient effects on fatigue limits, and both

obviously concern the specimen size in diverse manners. Now it is worthy recalling and making more

clear the role each specimen size (such as the length L and radius R of the beam) plays in the pure size

and gradient effects on fatigue strength. The aim of such analysis is to answer to a question: "Is it possible

to formulate fatigue criteria which can include these both effects in a certain sense just by introducing in

classical criteria appropriate "gradient terms"? As well-known, according to many authors the pure size

effect should be addressed within the context of statistical approaches. To answer to the question, the
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role of each sample dimension must be clarified. First of all, it is confirmed that both length and radius

of specimens affect on the fatigue limit (Fig. 5.4): the larger the radius and/or the length, the lower

the fatigue endurance. But a more important question is: by means of which effect they influence on

the fatigue resistance (through the pure size effect, or the gradient effect, or even both simultaneously)?

On the one hand, the influence of L on the fatigue limit is a well-established experimental fact after the

results of [140] synthesized by [135] in Fig. 5.4(a). On the other hand, in view of Eq. (5.2) showing

the independence of the normal stress gradient on L, thus the role of L in the fatigue limit in four-point

bending is clearly realized through solely the pure size effect not gradient effect.

Figure 5.4 : Constant moment bending fatigue limit data: (a) constant radius R; (b) constant length L

(Results of Pogoretskii and Karpenko [140], represented by Weber [179])

On the contrary, apart from the pure size effect, the gradient effect is present as the normal stress

gradient is not zero and is also R dependent (Eq. 5.2).

The quantitative estimate of the contribution of the pure size effect made in [135], using the results of

the constant moment tests on specimens of the same radius but different lengths, is recalled and used.

The slope of the linear trend observed for the (fatigue limit-R) data in Fig. 5.4(a) is much higher than

the one for the (fatigue limit-L) data in Fig. 5.4(b). This shows that the gradient effect is an order of

magnitude higher than the pure size effect. It eventually results in, for the case of constant moment

tests, a preliminary conclusion that, an appropriate introduction of the normal stress gradient terms in the

expression of fatigue criteria is enough to reproduce the experimental results.

The influence of L and R on the fatigue limit are now realized by means of the inherent pure size effect

and the gradient effect as both the length L and the radius R are present in the expression of the normal

stress gradient (Eq. 5.4). From the previous observations, one can conclude that a presence of normal

stress gradient terms in the formula of fatigue criteria, such as Eq. (5.4), is enough to accurately model

these fatigue tests.

Besides this analysis, the experiments of [138], performed under fully reversed tension-compression

on specimens of various sizes, manifested a negligibly small pure size effect on the observed fatigue

limits. These experimental data are depicted in Fig. 5.5 for cylindrical specimens of a mild steel and a

nickel-chromium steel, where the observed fatigue limits are plotted against the specimen radii. It seems
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that no systematic pure size effect related to R exists. In another class of results, Fig. 5.2 indicates a

slight increase tendency of tension-compression fatigue limit with the decrease in specimen radius. A

conclusion drawn from these results is, the pure size effect is negligible, at least within the size range

under consideration.
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Figure 5.5 : Fully reversed tension-compression fatigue limit data (Results of Phillips and Heywood

[138], represented by Papadopoulos and Panoskaltsis [135])

5.2.2 Shear stress cyclic loading

Cyclic torsion tests (fully reversed and/or asymmetrical torsion tests) from the literature are exam-

ined in this section. Torsion tests intrinsically exhibit shear stress gradients, which are therefore always

present in the cases considered here. The comparison of the torsion fatigue limit between different super-

imposed mean torque tests, i.e. different mean shear stresses as well as its gradients for the same smooth

geometry and material, is re-analyzed.

The experimental result, clearly demonstrated by the compilation in [156], is that the fatigue limit in

torsion is the same in fully reversed and in any asymmetrical torsion tests for the same smooth geometry

and material. Basing on this fact, [135] did conclude the independence of the fatigue limit from the

shear stress gradient effect for some metals. In view of this, [135] did not introduce any gradient term

concerning shear stresses in their fatigue criteria. Departing from this result, we add the argument that

such an independence of the fatigue limit does not ensure a similar independence from the amplitude of

the shear stress gradient. Thus, the amplitude of the shear stress gradient is introduced in the relevant

component of fatigue criteria (sec. 5.4.3).

To consider this capability, the shear stress state and its gradient in torsion tests for −R ≤ r ≤ R, are

written down:

σ = σxz (ex⊗ez + ez⊗ex); σxz =
M

I
r =

M

I

√
x2 + y2 (5.5)

Y =∇σ ;

[
σxz,x=

M

I

x√
x2+y2

=σxz

x

R2
, σxz,y=

M

I

y√
x2+y2

=σxz

y

R2
, σxz,z=0

]
(5.6)

where Eq. (5.6) is written for the maximum strained points, i.e. r=R.

The influence of R on the fatigue limit, experimentally observed as in Fig. 5.6 after [104] is concretized
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through the pure size effect and the shear stress gradient amplitude effect presumably. According to

the previous analyses, the pure size effect concerning R is regarded as negligible compared to the lat-

ter. Therefore the introduction of a shear stress gradient amplitude term is sufficient to reproduce the

experimental results.

5.2.3 Discussion

Analyses in the section 5.2.1 show that: (i) the gradient effect on four-point bending fatigue limits

related to the length is null whereas the pure size effect related to the length is negligible compared to

both pure size and gradient effects related to the radius. (ii) the gradient effect on tension-compression

fatigue limits related to all dimensions is null whereas the pure size effect related to the radius can also be

negligible, at least within the radius size range under consideration. Analyses in the section 5.2.2 prove

that: (iii) for the considered metallic materials, the shear stress gradient effect on torsion fatigue limits

through all dimensions is null and the role of the stress gradient amplitude effect is possible.

These estimations allow to preliminarily confirm the possibility to formulate new gradient fatigue

criteria well reproducing the analyzed experimental results. In brief, the above indepth comparative

analysis demonstrates the negligibility of the pure size effect, whereas affirms the strong influence of

the normal stress gradient as well as the non-influence of the shear stress gradient, and especially allows

supposing the possible role of the shear stress gradient amplitude. Indeed, a dependence of the pure

torsion fatigue limit of a cylinder on its radius is only attributed to the shear stress gradient amplitude

effect as both normal and shear stress gradient effects are here null while the pure size effect is always

insignificant. Hence, apart from a gradient term introduced into the normal stress component as proposed

in [135], another term of gradient amplitude into the shear stress component of any fatigue criterion is

indispensable (most visibly for the case of the pure torsion). The rationale of introducing a gradient term

into the shear stress part is more reinforced if one notes that the non-effect of the shear stress gradient on

fatigue interpreted by [135] is only found for some metals considered, but not meaning for all, thus such

a presence of gradient is generally reasonable.

5.3 Formulation of gradient multiaxial high-cycle fatigue criteria

5.3.1 General form of the classical fatigue endurance criteria

A general form of the fatigue limit criteria can be written as follows:

f
(
Ca(n

∗), Na(n
∗), Nm(n∗)

)
≤ 0 (5.7)

f is a function, chosen in many cases as linear; and n∗ is the normal vector of the "critical plane"; and

Ca(n
∗), Na(n

∗), Nm(n∗) are the amplitudes of shear stress and normal stress, and the mean value of

normal stress, respectively. The shear stress generally appears in fatigue criteria through its amplitude

Ca(n
∗), due to the independence of the fatigue limit with respect to the mean shear stress for a large
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number of metallic materials. And if one considers that the amplitude and the mean value of normal

stress appear in form of their sum, i.e. Nmax(n
∗), (5.7) can be rewritten:

f
(
Ca(n

∗), Nmax(n
∗)
)
= Ca(n

∗) + aNmax(n
∗)− b ≤ 0 (5.8)

with a, b being two material parameters.

5.3.2 General form of the stress gradient fatigue criteria

The classical criteria (Crossland, Dang Van, . . . ) will now be modified to include the "size effect" 3

experimentally observed and beneficial influence of the stress gradient in the cases analyzed and corre-

sponding to the surface fatigue and "decreasing stress gradient". At this stage it is reminded two crucial

points. First, even if the torsion fatigue limit is generally independent from the shear stress gradient, it is

not sure that it is also independent from the amplitude of the last. Second, the small pure size effect and

the influence of the normal stress gradient on the bending fatigue limit show that adding only gradient

terms could allow to model the fatigue tests results. Basing on these analyses, under multiaxial loading

a generalization of the above experimental fact will be done.

With the presence of the unique gradient term (e.g. in Pmax as Papadopoulos’ proposal), the gradient

fatigue criteria successfully represent the difference in the fatigue limit of uniaxial normal stress cyclic

loadings, between fully reversed bending tests and fully reversed tension-compression tests. However,

because of the vanishing of the gradient term of the model [135] in the case of pure torsion, such a

formulation with the unique gradient term is not able to represent the possible influence of shear stress

gradient amplitude and the "size effect" on the fatigue limit in torsion. For example, for torsion tests

performed on specimen with various radii, the fatigue between the "reference test" (without any effect)

and test at a certain radius is found identical using such an approach, which is contrary to experimental

facts. The criterion adopted in [135] with only one stress gradient term in the normal stress part can

describe gradient effects for tension-compression loadings with non zero hydrostatic stress, but not for

shear stress loadings. Thus it leads to the necessity of adding a second gradient term to the shear stress

part. Besides the stress gradient term appearing in the normal stress part in form of G=∇σkk, another

gradient term, the gradient of stress tensor (or alternatively of deviatoric stress tensor) ‖Y ‖,a=‖∇σ‖,a,

is added to the shear stress part. Basing on all these analyses a new form of fatigue criteria taking into

account gradient effects, is proposed:

f
(
C̃a(n

∗), Ñmax(n
∗)
)
= C̃a(n

∗) + aÑmax(n
∗)− b ≤ 0 (5.9)

where C̃a(n
∗) and Ñmax(n

∗) are extended definitions of the counterparts in the classical criteria. We

propose the following forms for these quantities:

C̃a(n
∗) = Ca(n

∗)fc

(
l∗τ

‖Y ‖,a
Ca(n∗)

)
(5.10)

3in the sense as discussed right from the introduction, actually it implies rather the gradient effect related to the size.

5.3 Formulation of gradient multiaxial high-cycle fatigue criteria 95



Chapter 5 : Gradient Fatigue Criteria: formulation and application

Ñmax(n
∗) = Nmax(n

∗)fn

(
l∗σ
maxt

∑3
k=1 n

∗
i n

∗
j n

∗
k Yijk

Nmax(n∗)

)
(5.11)

The two functions fc and fn including the stress gradient terms, can have the following forms :

fc

(
l∗τ

‖Y ‖,a
Ca(n∗)

)
=

√
1−

(
l∗τ

‖Y ‖,a
Ca(n∗)

)nτ

(5.12)

fn

(
l∗σ
maxt

∑3
k=1 n

∗
i n

∗
j n

∗
k Yijk

Nmax(n∗)

)
=

√

1−
(
l∗σ
maxt

∑3
k=1 n

∗
i n

∗
j n

∗
k Yijk

Nmax(n∗)

)nσ

(5.13)

Note that fc could alternatively be function of the gradient of the stress deviator. These expressions will

be specified for the two criteria considered in the next sections. l∗τ and l∗σ are two material characteristic

lengths; nτ and nσ are two material characteristic exponents, or actually gradient-amplifying exponents

introduced to get a more flexibility in capturing any large experimental data class.

To sum up, it is clear to confirm the necessity of the simultaneous presence of the two gradient terms in

fatigue criteria, one for the normal stress part through G and the other for the shear stress part through

‖Y ‖,a. These criteria are used to describe fatigue limits under different kinds of loading (loading effect)

in which the gradient effect is taken into account and the pure size effect is insignificant compared to the

other. After all, using as a basis the classical fatigue criteria for formulating the stress gradient dependent

fatigue criteria after the above methodology, some illustrations will be made in the following, one for

Crossland criterion and the other for Dang Van criterion. The same approach could be in principle applied

to other classical fatigue criteria.

5.4 Gradient Crossland criterion

5.4.1 Classical Crossland criterion

The Crossland criterion [39] is used as a basis for the development of a gradient dependent criterion.

The classical Crossland criterion defines the fatigue limit of metallic specimens subjected to multiaxial

in-phase cyclic stress states as, cf. [134]:

√
J2,a + αcPmax ≤ γc (5.14)

where αc and γc are material parameters,
√
J2,a is the amplitude of the square root of the second invariant

of the stress deviator tensor and Pmax is the maximum hydrostatic stress during a loading cycle.

The amplitude of the square root of the second invariant of the stress deviator can be defined, in

general case, as the half-length of the longest chord of the deviatoric stress path by :

√
J2,a=

1

2
√
2
max
t1

{
max
t2

∥∥s(t2)−s(t1)
∥∥
}
=

1

2
√
2
max
t1

{
max
t2

√(
s(t2)−s(t1)

)
:
(
s(t2)−s(t1)

)}
(5.15)

or as the radius of the smallest hypersphere circumscribed to the deviatoric stress path by :

√
J2,a=

1√
2
min
s1

{
max

t

∥∥s(t)−s1
∥∥
}
=

1√
2
min
s1

{
max

t

√(
s(t)−s1

)
:
(
s(t)−s1

)}
(5.16)
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The maximum value that the hydrostatic stress reaches during the loading cycle is:

Pmax = max
t

{
1

3
tr
(
σ(t)

)}
=

σkk
3

(5.17)

In these equations, the summation convention over repeated indices holds and s and p are respectively

the deviatoric and spherical part of the stress tensor:

p(t) =
1

3
tr
(
σ(t)

)
and s(t)=σ(t)−p(t)I (5.18)

and I is the second order unit tensor.

The material parameters αc and γc can be related to the fully reversed tension-compression fatigue

limit, denoted by sref , and to the torsion fatigue limit, denoted by tref , by:

γc = tref ; αc =
3tref

sref
−

√
3 (5.19)

As well-known, to obtain the observed detrimental effect of a tensile mean stress state, the parameter αc

in Eq. (5.19), must be positive, and therefore: tref >sref/
√
3.

Furthermore, since the "size" and gradient effects are not captured in the classical Crossland criterion, it

is only valid for the specimen large enough and smooth enough. For this reason, the subscript "ref" used

for the fatigue limits sref and tref means material constants independent of the "size" and gradient effects

which will be used as references for other case-studies. Concretely, in the case where these effects could

be important, new fatigue criteria to include them are required. As well for this reason, in Eq. (5.19)

just sref is chosen instead of f because in size range under consideration where the gradient effects can

be significant, just sref is regarded as a characteristic constant intrinsic to material but not f in the sense

that only that is exempt from the gradient effect.

5.4.2 Formulation of the gradient Crossland criterion

Using as a basis the classical Crossland criterion, Eq. (5.14) and the general framework for the

development of a gradient dependent fatigue limit criterion (Eq. 5.9), a new version can be written in the

form: √
J̃2,a + αgP̃max ≤ γg (5.20)

From the classical expression of
√
J2, a new form embedded with gradient term is proposed:

√
J̃2 =

√√√√1

2
‖s‖2

[
1−

(
lτ
‖Z‖
‖s‖

)nτ

]
=

√
J2

√
1−

(
lτ
‖Z‖
‖s‖

)nτ

(5.21)

lτ is a material characteristic length, and nτ is a material characteristic exponent. The quantity ‖Z‖ =

‖∇s‖ is used as an indicator of the influence of the gradient of the stress deviator which reflects the

spatial non-uniform distribution of stress state. Similarly to [135], the ratio of the norm ‖Z‖ over the

norm ‖s‖ is called reduced gradient too. However in the current work that is more exactly understood as
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the shear reduced gradient of the new fatigue criterion.

Eq. (5.21) can be found in more familiar and visible way when setting nτ =2:

√
J̃2 =

√
1

2

[
‖s‖2 − l2τ‖Z‖2

]
(5.22)

which is similar to the expression of plasticity criteria within the framework of gradient dependent mod-

els, see e.g. [118]. However, the present study will not fix nτ = 2 but let it be a material parameter to

calibrate experimentally.

In the spirit of Eq. (5.22), and taking account of the recent proposition of Amargier et al [9] which

expression includes the product of
√
J2,a and a function of the hydrostatic stress gradient, we define the

following amplitude

√
J̃2,a which combines

√
J2,a and the full stress gradient ‖Y ‖,a is the form:

√
J̃2,a =

√
J2,a

√
1−

(
lτ
‖Y ‖,a
‖s‖,a

)nτ

(5.23)

For the sake of illustration, the following treatment is performed for in-phase loading where simple

expressions can be obtained. The stress state at a point is written as:

σij(t) = σ̂ij sin(ωt) + σij , i, j = x, y, z, (5.24)

where σ̂ij is the amplitude of the (ij) stress component oscillating around a σij- mean value and over T-

the loading period.

The expression of the third order tensor Y and the amplitude of its norm ‖Y ‖,a are elaborated in the

present case-study, as Eq. (5.25) or (5.26):

Y (t)=∇σ(t) =⇒ Yijk(t) = σij,k(t) = σ̂ij,k sin(ωt) + σij,k, i, j, k = x, y, z,

‖Y ‖,a=min
Y1

{
max

t

∥∥Y (t)−Y1

∥∥
}

= min
Y1

{
max

t

√(
Y (t)−Y1

)
•
(
Y (t)−Y1

)}
(5.25)

or ‖Y ‖,a = max
t1

{
max
t2

√(
Y (t2)−Y (t1)

)
•
(
Y (t2)−Y (t1)

)}
=

√
4ŶijkŶijk (5.26)

with Ŷijk= σ̂ij,k, and the product definition: Y • Y = YijkYijk.

Thus, from Eq. (5.16) with the expression of
√
J2,a and of ‖s‖,a =

√
4ŝij ŝij , and Eq. (5.25) with the

expression of ‖Y ‖,a,

√
J̃2,a is elaborated as Eq. (5.23):

√
J̃2,a =

√√√√√1

2
ŝij ŝij

[
1−

(
lτ

√
ŶijkŶijk√
ŝij ŝij

)nτ

]
(5.27)

With respect to P̃max, the same form as the one of [135] is proposed:

P̃max = Pmax

[
1−

〈
lσ

‖G‖
Pmax

〉nσ

]
(5.28)
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with G, the gradient of Pmax being the vector:

G = ∇Pmax = T
[
Pmax,x, Pmax,y, Pmax,z

]
(5.29)

which norm ‖G‖ is:

‖G‖ =
√

(Pmax,x)2 + (Pmax,y)2 + (Pmax,z)2 (5.30)

The norm of the gradient of Pmax, i.e. ‖G‖, is used as an indicator of the influence of the normal

stresses gradient. One more again, the ratio of the norm ‖G‖ over Pmax is called here hydrostatic

reduced gradient.

Moreover, in Eq. (5.28), lσ and nσ are also material characteristic parameters with the same signification

as lτ and nτ . as in [135], to avoid the degradation in the case of null value of Pmax but non-zero value

of its gradient, an extended definition of the McCauley bracket
〈
◦
〉

is adopted:

〈
lσ

‖G‖
Pmax

〉
= lσ

‖G‖
Pmax

if lσ
‖G‖
Pmax

>0, and

〈
lσ

‖G‖
Pmax

〉
=0 if lσ

‖G‖
Pmax

≤0 (5.31)

〈
lσ

‖G‖
Pmax

〉
=0 if Pmax = 0

The properties expressed by Eq. (5.31) have been used to deliberately neglect the gradient effect in the

case of a fully compressive cycle of the hydrostatic stress (i.e. Pmax < 0). This assumption can be

disregarded if experimental facts show that it is irrelevant.

Finally, the criteria written as:

√
J2,a

√
1−

(
lτ
‖Y ‖,a
‖s‖,a

)nτ

+ αgPmax

[
1−

〈
lσ

‖G‖
Pmax

〉nσ

]
− γg < 0 (5.32)

has six materials parameters (αg, γg, lτ , lσ, nτ , nσ) to be identified experimentally.

5.4.3 Calibration of the material parameters

As the proposed criterion reduces to the classical Crossland one in the absence of "size" and gradient

effects, the parameters αg et γg are the same as those in the classical version, and given by γg=γc= tref ,

and αg=αc=
3tref

sref
−
√
3.

A procedure for obtaining the parameters from fully reversed torsion and fully reversed constant moment

bending tests is detailed hereafter.

a) Fully reversed torsion tests

The criterion described by Eq. (5.20) is applied, first, to the case of fully reversed torsion tests. Let

us denote by t(R) the fatigue limit of a specimen of radius R. Considering the critical points (located at

r=±R), their relevant quantities are:

σ= σ̂xθ sin(ωt) (ex⊗eθ + eθ⊗ex)= t(R) sin(ωt) (ex⊗eθ + eθ⊗ex)
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ŝij ŝij = 2
(
t(R)

)2
and Ŷijk Ŷijk = 2

( σ̂xθ
R

)2
= 2

(
t(R)

R

)2

P̃max = 0 and

√
J̃2,a = t(R)Lτ (R) (5.33)

with Lτ (R)=
√

1−(lτ/R)nτ : shear reduced gradient (5.34)

And using Eqs. (5.33) the proposed fatigue criterion, Eq. (5.20), leads to:

t(R) =
tref√

1− (lτ/R)nτ
(5.35)

This formula is used to calibrate the three material parameters τref , lτ and nτ , using the experiment curve

relating the fatigue limit t(R) to the radius of the specimen. The material parameters are then calibrated

using the least square method on the tests points; and therefore the optimal parameters (i.e. the values

which minimize the scatter between the predicted and experimental points) for the criterion are obtained.

As an illustration, the torsion fatigue tests given by Massonnet [104] are used to identify τref , lτ and nτ ,

as shown in Fig. 5.6. A visual image of tref aforementioned is as well found in this graph. The values

obtained are: τref = 115MPa, lτ = 1.6mm and nτ = 0.5.
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Figure 5.6 : Fully reversed torsion fatigue limit of smooth cylindrical samples (cf. Massonnet [105])

We notice that the fatigue limit tends toward infinity as the radius tends toward the characteristic

length lτ . It defines the limit of the model. Nevertheless, it indicates a tendency consistent with the fact

"Smaller is Stronger".
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b) Fully reversed constant moment bending tests (four-point bending tests)

To calibrate the other parameters (lσ, nσ) the criterion Eq. (5.20) is now applied to the case of

fully reversed four-point bending tests. The fatigue limit of a specimen of radius R is denoted f(R).

Considering the most stressed points, i.e. points lying at L ≤ x ≤ L + l and at y = ±R, relevant

quantities, in particular

√
J̃2,a, calculated by Eq. (5.27) are given by:

σ=σxx ex⊗ex= σ̂xx sin(ωt) ex⊗ex= f(R) sin(ωt) ex⊗ex

√
J̃2,a =

f(R)√
3
Lτf (R) (5.36)

with Lτf (R) =
√

1−(3/2)nτ/2 (lτ/R)nτ = Lτf (Lτ ) (5.37)

Similarly, with the help of Eq. (5.28), P̃max can be elaborated, in this case-study, as:

Pmax =
σ̂xx
3

=
f(R)

3
and P̃max =

f(R)

3
Lσf (R) (5.38)

with Lσf (R) = 1− (lσ/R)nσ : normal reduced gradient (5.39)

and G=

[
Pmax,x=0, Pmax,y=

σ̂xx,y
3

=
F̂L

3I
=
σ̂xx
3R

=
f

3R
,Pmax,z=0

]
(5.40)

and ‖G‖ =
f

3R
(5.41)

Finally, the fatigue criterion (5.20), lead to the following expression of the fatigue limit f:

f(R) =
sref

1− lσR−nσ

(
1− sref√

3 tref

)
− sref√

3 tref

(
1− Lτf (R)

) ≥ sref (5.42)

As previously, this formula is used to calibrate the three material parameters sref , lσ and nσ, using the

experiment curve relating the fatigue limit f(R) to the radius of the specimen. The material parameters

are calibrated using the least square method on the tests points to obtain the optimal parameters. As an

illustration, the four-point bending tests given by Pogoretskii [140] are used to identify sref , lσ and nσ

assuming that tref and Lτf (R) are known from the previous calibration. The result is shown in Fig.

5.7d. A visual image of sref aforementioned is as well found in this graph.

c) Application to the fully reversed cantilever bending tests

It is of more interest to apply the criterion Eq. (5.20) to the case of fully reversed cantilever bending

tests to see, besides the well-known role of R, the role of L. The difference and similarity in fatigue limit

between two kinds of bending, i.e. four-point bending and cantilever bending is analyzed. Let us denote

the corresponding fatigue limit f ′(R). Considering the most stressed points, i.e. points at x=0 and at

y=±R (Fig. 5.3), again, respective quantities and then

√
J̃2,a determined by Eq. (5.27) are given:

σ=σxx ex⊗ex= σ̂xx sin(ωt) ex⊗ex=f ′ sin(ωt) ex⊗ex (5.43)
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√
J̃2,a =

f ′(R)√
3

Lτf ′(R,L) (5.44)

with Lτf ′(R,L) =

√

1− (3/2)nτ/2 (lτ/R)nτ

(
1 +

R2

L2

)nτ/2

(5.45)

Similarly, with the help of Eq. (5.28), P̃max can be evaluated for this case:

G =

[
Pmax,x=

σ̂xx,x
3

=
−f ′(R)

3L
,Pmax,y=

σ̂xx,y
3

=
f ′(R)

3R
,Pmax,z=0

]
(5.46)

‖G‖ =
f ′(R)

3R

√
1 +

R2

L2
(5.47)

P̃max =
f ′(R)

3
Lσf ′(R,L) (5.48)

with Lσf ′(R,L) = 1− (lσ/R)nσ

(
1 +

R2

L2

)nτ/2

(5.49)

Finally, from Eq. (5.20), f ′ is obtained as:

f ′(R) =
sref

Lσf ′(R,L)− sref√
3 tref

(
Lσf ′(R,L)− Lτf ′(R,L)

) ≥ sref (5.50)

Using the Eq. (5.50), a class of experimental data of the cantilever bending fatigue tests are successfully

reproduced, as shown in Fig. 5.7(a-c).

On the other hand, for specimens with R≪L, the ratio (R2/L2) is negligible. Under these circumstances

the fatigue limit in fully reversed constant moment and cantilever bending of specimens of the same

radius, coincide and are related to the tension-compression fatigue limit by Eq. (5.42). Using this

assumption an important number of bending fatigue limits has been analyzed. It turned out that the value

1/2 for the exponents nτ and nσ brought adequate predictions for the experiments studied. The criterion

is then:

√
J2,a

√

1−
(
lτ
‖Y ‖,a
‖s‖,a

)1/2

+ αgPmax

[
1−

√
lσ

〈 ‖G‖
Pmax

〉]
− γg < 0 (5.51)

with four materials parameters (αg, γg, lτ , lσ) to be identified experimentally.

Figure 5.7 shows some test results of rotating bending fatigue limits from the literature in which the

fatigue limits are plotted against the specimen radii. Figures 5.7(a-c) are related to cantilever bending

tests and Fig. 5.7(d) depicts constant moment tests. The solid curves in these graphs present the simula-

tion with the proposed criterion, where the value n=1/2 has been assumed. As shown, the accordance

with the experimental data is satisfactory.

d) Application to the fully reversed combined bending-twisting tests

The criterion (5.20) is now applied to the case of fully reversed in-phase bending and torsion fatigue

tests [135]. Specimens of toroidal shape are usually used for these tests. Considering the most stressed

102 5.4 Gradient Crossland criterion



Chapter 5 : Gradient Fatigue Criteria: formulation and application

�� ��

���������������

� � �� �� �� �� ��

f' (MPa)

R (mm)

Carbon steel 
Rotating Cantilever Bending
(data from Massonet 1955) ����������	�
���
�����
����
�������
�����
�������
�
�
�
��
����
�����������
�	�
���
�����
������������
�����
��
�� 
����
����������������������ref ������������

� � �� �� �� ��

f' (MPa)

R (mm)

SAE 1220 steel (as rolled)
Rotating Cantilever Bending

(data from Moore 1944) ����������	�
���
�����
����
�������
�����
�������
�
�
�
��
����
�����������
�	�
���
�����
������������
�����
��
�� 
����
����������������������ref

�� ��

���������������

� � �� �� �� ��

f' (MPa)

R (mm)

SAE 1035 steel 
Rotating Cantilever Bending 

(data from Moore 1944) ����������	�
���
�����
����
�������
�����
�������
�
�
�
��
����
�����������
�	�
���
�����
������������
�����
��
�� 
����
����������������������ref ���������������

� � �� �� �� ��

f (MPa)

R (mm)

40Kh steel 
Rotating Constant Moment Bending

(data from Pogoretskii 1965) ����������	�
���
�����
����
�������
�����
�������
�
�
�
��
����
�����������
�	�
���
�����
������������
�����
��
�� 
����
����������������������ref

�� ��

Figure 5.7 : Fully reversed bending fatigue limits of cylindrical specimen (Massonnet [104], Moore &

Morkovin [110], Pogoretskii & Karpenko [140], Papadopoulos & Panoskaltsis [135])

points, i.e. points at y=±R, z = 0 and denoting by σa and τa the limit amplitudes of the normal and

shear stresses respectively, related quantities especially

√
J̃2,a, by Eq. (5.27), are given:

σ=σa sin(ωt) ex⊗ex + τa sin(ωt) (ex⊗eθ + eθ ⊗ex)

√
J̃2,a=

√
σ2
a

3
+τ2a Lτc(σa, τa, R) (5.52)

with:

Lτc(σa, τa, R) =
√

1−(lτc/R)nτ with lτc = lnτ
τ

(
3σ2

a + 6τ2a
2σ2

a + 6τ2a

)nτ/2

(5.53)

For the maximum hydrostatic stress P̃max, the same expression as the case of bending tests, Eq. (5.38),

is here given:

P̃max =
σa
3
Lσc(R) with Lσc = 1− (lσ/R)nσ = Lσf (5.54)
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The criterion is therefore expressed as:

√(
σ2
a

3
+τ2a

)
Lτc + αg

σa
3

Lσc < γg , or more concretely,

√(
σ2
a

3
+τ2a

)√

1− (lτ/R)nτ

(
3σ2

a + 6τ2a
2σ2

a + 6τ2a

)nτ/2

+ αg
σa
3

(
1− (lσ/R)nσ

)
< γg (5.55)

Comparison with classical and Papadopoulos results

The application of the classical Crossland criterion in the case of fully reversed in-phase combined

tension-compression and torsion fatigue tests gives the following "ellipse arc equation":

(
τa

tref

)2

+

(
2 sref√
3 tref

− 1

)(
σa
sref

)2

+

(
2− 2 sref√

3 tref

)(
σa
sref

)
≤ 1 (5.56)

which delimits in the σa−τa plane the safe domain. Eq. (5.56) shows high discrepancies between pre-

dictions and experiments for the fatigue limit in combined bending-twisting with the "size" and gradient

effects (Fig. 5.8). As in [135], to bypass this trouble, modified material parameters αg and γg related to

the bending fatigue limit f(R) and torsion fatigue limit t(R) (instead of sref and tref ), experimentally

determined on specimens (radius R) of the same geometry as used for the combined tension-compression

and torsion tests, can be used. Two things different from [135] are, first, the use of f(R) and t(R) de-

termined at the specific radius R of specimens under consideration, and second, the substitution of both

sref and tref by f(R) and t(R), instead of only one sref by f. Then γg= t(R) and αg=
3t(R)

f(R)
−
√
3, and

the application of the Crossland criterion using these new values of αg and γg leads to the new ellipse

arc equation:

(
τa

t(R)

)2

+

(
2 f(R)√
3 t(R)

− 1

)(
σa

f(R)

)2

+

(
2− 2 f(R)√

3 t(R)

)(
σa

f(R)

)
≤ 1 (5.57)

It is noticed that this formula is very similar to the well known ellipse arc formula of Gough and Pollard.

In the following, we show that Eq. (5.55) obtained with the proposed criterion, reduces to Eq. (5.57)

for certain values of the material parameters. Indeed, first let us review the constant moment bending

case. Assuming nτ = 0.5 as validated by a large number of experiment, Eq. (5.37) yields:

Lτf (R) ≈
√

1− (lτ/R)nτ = Lτ (5.58)

Resulting from Eqs. (5.35, 5.34) and (5.42, 5.39), the expressions of Lτ and Lσf are reported below for

completeness:

Lτ =
tref

t
; Lσf =

1/f − 1
/√

3 t

1/sref − 1
/√

3 tref
(5.59)

And second, consider now again the combined bending-twisting case by evaluating the function h(τa) =
(3σ2

a + 6τ2a
2σ2

a + 6τ2a

)nτ/2
to get an approximation for Lτc and lτc defined in Eq. (5.53). Again, for nτ = 0.5

assumed before, h(τa) is in the interval [1, 1.1), we take h(τa)≈1, so that lτc ≈ lnτ
τ . Therefore,

Lτc(R) =
√

1−(lτc/R)nτ ≈ Lτ (5.60)
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Finally, replacing Lτc and Lσc in Eq. (5.55) by their approximations, with the help of Eq. (5.59), Eq.

(5.57), is recovered.

In Fig. 5.8 the test results of bending-twisting conducted by [50] on SAE4340 steel, are depicted.

In the same figure, the Crossland analytical ellipse arc based on the sref−tref fatigue limits, Eq. (5.56),

is plotted too. As we can see, all the test points fall considerably outside this analytical ellipse arc. This

demonstrates the effect of the normal stress gradient, as the analytical ellipse arc (Eq. 5.56) is obtained

with zero normal stress gradient, whereas the experimental data for combined bending-twisting tests

have a non-zero stress gradient. Furthermore, it is interesting to re-consider some analyses of [135] when

stated that "the higher the normal stress due to bending, the higher the difference between test points and

Crossland ellipse arc, whereas the higher the shear stress, the smaller the difference between test points

and Crossland ellipse arc becomes...". First, the difference between test points and classical Crossland

ellipse arc near the x-axis where the normal load is predominant, is a proof of the beneficial "size" and

gradient effects. Indeed, the difference between two kinds of fatigue test can be clearly seen: the bending

test (test points) includes the beneficial effects of the normal stress gradient; the tension-compression test

(Crossland ellipse arc) excludes these effects due to the gradient-free stress state. Second, the coincidence

between test points and Crossland ellipse arc near the y-axis with predominant shear stress is actually

natural due to the fact that tref used to depict the Crossland ellipse arc after Eq. (5.56) and corresponding

test point on the y-axis are actually the same, thus this coincidence really does not reflect the "lack of

sensitivity of the limiting fatigue stress on the gradient of the shear stress" [135] due to the fact that the

"size" and gradient effects in torsion test were not accounted for. Third, to account for the "size" and

shear gradient amplitude effect, a clear distinction must be made between tref determined at the radius

R∞ of specimen large enough and t(R) determined at the radius R of the considered specimen. Then all

these above analyses affirm, first, the "size effect" on fatigue limits (Smaller is Stronger) as well as the

beneficial effect of the normal stress gradient (Higher Gradient is Stronger), and second, the necessity

of a distinction between tref = t(R∞) and t(R)) when applied to the classical Crossland criterion and

the new gradient criterion, respectively. With all such conceptions, the experimental data now agree very

well with the ellipse arc based on the f−t limits of the new criterion proposed (Eq. 5.57), as plotted in Fig.

5.8. It is also recalled [135] that the substitution of the material parameters by the bending and torsion

limits is an unorthodox way to bypass the above described problems for classical criterion. The same

ellipse formula is obtained in a more intrinsic way using the proposed criterion. The same approach can

be applied to any other classical fatigue criterion.

5.5 Gradient Dang Van criterion

A stress gradient dependent version of Dang Van criterion is proposed here in the same spirit as that

of Crossland.
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Figure 5.8 : Fully reversed combined bending-twisting fatigue limit data (Findley et al. [50], Pa-

padopoulos and Panoskaltsis [135])

5.5.1 Classical Dang Van criterion

The Dang Van criterion presented in [16] is expressed as:

max
t

{
τ(t) + aD P (t)

}
≤ bD (5.61)

τ(t) denotes the mesoscopic shear stress amplitude and is obtained from a mesoscopic stress tensor σ̂

defined by:

σ̂(t) =
(
σ(t)− s∗

)
(5.62)

s∗ is the center of the smallest hypersphere circumscribed to the loading path in deviatoric stress

space. It is obtained by solving a "min-max" problem as follows:

s∗ = arg min
s1

{
max

t
‖s(t)− s1‖

}
(5.63)

In the case of fully reversed loading, the value s∗=0 can be directly deduced without solving the "min-

max problem" as in general case.

Denoting by σ̂III(t) ≤ σ̂II(t) ≤ σ̂I(t) the principal stress values of stress tensor σ̃, one gets the ampli-

tude of shear stress by:

τ(t) =
1

2
(σ̂I(t)− σ̂III(t)) (5.64)

P (t) is the hydrostatic stress as a function of the time, given by:

P (t) =
σkk(t)

3
(5.65)
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The material characteristic parameters aD and bD of the Dang Van criterion, can be related to the fully

reversed bending (or tension-compression because of the same stress state between them) fatigue limit ,

denoted by fref (or sref ), and to the torsion fatigue limit, denoted by tref ,

aD =
3tref

sref
− 3/2; bD = tref (5.66)

5.5.2 Formulation of gradient Dang Van criterion

Using as a basis the classical Dang Van criterion, Eq. (5.61), along with the general spirit, Eq. (5.9),

for the development of a gradient version as below:

max
t

{
τ̃(t) + agP̃ (t)

}
≤ bg (5.67)

The material parameters ag, bg are actually equal to aD, bD respectively, as was the case of the gradient

Crossland criterion (sec. 5.4.2).

Using τ(t) as a basis, a new form τ̃(t) embedded with gradient term is proposed:

τ̃(t) = τ(t)

[
1−

(
lτ
‖Y (t)‖
τ(t)

)nτ

]
(5.68)

where Y (t)=∇σ(t) and the definitions as well as significance of nτ , lτ are the same as for the case of

the Crossland (sec. 5.4.2). For P̃ (t), the same form as that of [135] is proposed again:

P̃ (t) = P (t)

[
1−

〈
lσ
‖G(t)‖
P (t)

〉nσ

]
(5.69)

with the expressions of G(t), ‖G(t)‖ similar to Eqs. (5.29, 5.30), the McCauley bracket
〈
◦
〉

similar to

Eq. (5.31), and the definitions as well as significance of nσ, lσ are the same.

The proposed criterion has six materials parameters (ag, bg, lτ , lσ, nτ , nσ) to be identified experi-

mentally.

5.5.3 Calibration of the material parameters

As previously, a procedure for obtaining the parameters from fully reversed torsion and fully reversed

constant moment bending tests is detailed hereafter.

a) Fully reversed torsion tests

Applying first the gradient version described by Eq. (5.67) to the case of fully reversed torsion tests

on specimen of radius R, with the fatigue limit denoted by t(R) and considering the most stressed points,
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relevant quantities are:

σ(t)=σxθ(t) (ex⊗eθ+ eθ⊗ex) = t(R) sin(ωt) (ex⊗eθ+ eθ⊗ex)

σ̂I = t(R)
∣∣sin(ωt)

∣∣, σ̂II = 0, σ̂III = −t(R)
∣∣sin(ωt)

∣∣

τ(t) =
1

2
(σ̂I − σ̂III) = t(R)

∣∣sin(ωt)
∣∣

Yijk Yijk= 2
( t(R)sin(ωt)

R

)2
and ‖Y (t)‖=

√
2

t(R)

R

∣∣sin(ωt)
∣∣

τ̃(t) = t(R)
∣∣sin(ωt)

∣∣ Lτ (R) (5.70)

P̃ (t) = 0 (5.71)

with: Lτ (R)=1−2nτ/2(lτ/R)nτ (5.72)

And using Eqs. (5.70, 5.71), the proposed fatigue criterion yields:

t(R) =
bD

Lτ (R)
≈ tref

1− (lτ/R)nτ
(5.73)

between two kinds of fatigue test can be clearly seen. As for the gradient Crossland criterion, this formula

is used to calibrate the three material parameters τref , lτ and nτ , using the experiment curve relating the

fatigue limit t(R) to the radius of the specimen. The material parameters are then calibrated using the

least square method on the tests points; and therefore the optimal parameters (i.e. the values which

minimize the scatter between the predicted and experimental points) for the criterion are obtained. As

an illustration, the torsion fatigue tests given by Massonnet [104] are used to identify τref , lτ and nτ ,

as shown in Fig. 5.6. A visual image of tref aforementioned is as well found in this graph. The values

obtained are: τref = 115 MPa, lτ = 9.8 10−1mm and nτ = 0.5.

b) Fully reversed cantilever bending tests

With the same notation and most stressed points to consider as in Sec. (5.4.3.c), all quantities are

given by:

σ(t)=σxx(t) ex⊗ex =f ′(R) sin(ωt) ex⊗ex

‖Y (t)‖ =
f ′(R)

R

∣∣sin(ωt)
∣∣
√

1 +
R2

L2

τ̃(t) =
f ′

2

∣∣sin(ωt)
∣∣ Lτf ′(R,L) (5.74)

with: Lτf ′(R,L)=1−2nτ (lτ/R)nτ
(
1+

R2

L2

)nτ/2
(5.75)

Similarly, using Eq. (5.69):

P̃ (t)=
f ′(R)

3
sin(ωt) Lσf ′(R,L) (5.76)

with: Lσf ′(R,L)=1−(lσ/R)nσ
(
1+

R2

L2

)nτ/2
(5.77)
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Finally, from Eq. (5.67), an equation with respect to the variable f ′ is solved to give:

f ′(R) =
sref

Lσf ′ − sref
2 tref

(Lσf ′ − Lτf ′)
≥ sref (5.78)

The fatigue limit of four-point bending tests f(R) can be directly obtained by imposing L large enough

such that R2

L2 in Eq. (5.78) is negligible and then f ′(R) ≡ f(R).

5.6 Formulation of the gradient dependent multiaxial low-cycle fatigue

criteria

In addition to what are dealt with before for HCF case, now some development will be made for

the multiaxial low-cycle fatigue case which does not require a macroscopically elastic stress state as in

HCF case. Thus the application is larger, even to notched specimen fatigue problems in principle. The

following will be confined in some proposals and without any validation because of lack of experimental

data.

5.6.1 Strain gradient dependent Manson-Coffin fatigue criterion

The classical Manson-Coffin fatigue criterion relates the number of cycle in fatigue rupture NR to

the amplitude of plastic strain in stabilized cycle Ep
a = ∆εp/2 according to the formula (cf. [100]):

Ep
a =

∆εp

2
= ε

/
f (NR)

c (5.79)

where the exponent c varies between 0.5−0.7 whereas the ductility coefficient in fatigue ε
/
f for most

metals, is equal to the elongation in fatigue.

With a general extension of the plastic strain in the case of multiaxial loading defined as,

Ep=

√
2

3
‖εp‖2 =

√
2

3
‖εp‖ (5.80)

an extension of this criterion can be made using a general extension of the amplitude of the plastic strain

defined as the radius of the smallest hypersphere circumscribed to the plastic strain path by:

Ep
,a=

√
2

3
min
εp
1

{
max

t

∥∥εp(t)−εp1
∥∥
}
= min

εp
1

{
max

t

√
2

3

(
εp(t)−εp1

)
:
(
εp(t)−εp1

)}
(5.81)

or as the half-length of the longest chord of the plastic strain path by:

Ep
,a=

1

2

√
2

3
max
t1

{
max
t2

∥∥εp(t2)−εp(t1)
∥∥
}
=
1

2
max
t1

{
max
t2

√
2

3

(
εp(t2)−εp(t1)

)
:
(
εp(t2)−εp(t1)

)}
(5.82)

Using as a basis the classical criterion, eq. (5.79), for the development of the gradient version, yields:

Ẽp
a =

∆ε̃p

2
= ε

/
f (NR)

c (5.83)
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where the gradient dependent modified versions of Ep and Ep
a , denoted as Ẽp and Ẽp

a , respectively, is

introduced by taking inspiration from eqs. (5.21) and (5.23):

Ẽp =

√√√√2

3
‖εp‖2

[
1− l

(‖∇εp‖
‖εp‖

)n
]
= Ep

√
1− l

(‖∇εp‖
‖εp‖

)n

(5.84)

Ẽp
a = Ep

a

√
1− l

(‖∇εp‖a
‖εp‖a

)n

(5.85)

5.6.2 Strain gradient dependent fatigue energy criterion

A second family of LCF criterion relating an energy calculated at stabilized cycle WR to the number

of cycle in fatigue rupture, cf. [100], and its corresponding gradient version, are given below:

wR = C(NR)
−γ , =⇒ w̃R = C(NR)

−γ (5.86)

where C and γ are two characteristic constants intrinsic to materials. Several expressions for wR were

proposed, in which the two followings are rather common:

• Plastically dissipated energy on stabilized cycle:

wR=∆Wp=

∫

stabilized cycle
σ : ε̇pdt, =⇒ w̃R=

∫

stabilized cycle
σ̃ : ˜̇εpdt (5.87)

• Sum of plastically dissipated energy and elastic energy in tension phase of stabilized cycle:

wR = (∆Wp +∆W+
e )/A+B, =⇒ w̃R =

(
∆̃Wp + ∆̃W+

e

)
/A+B (5.88)

where ∆W+
e is the elastic energy accumulated during tension phase of stabilized cycle; AandB are two

characteristic constants intrinsic to materials. Again taking inspiration from eqs. (5.21) and (5.23), the

proposals for σ, ε̇p can be:

ε̃p = εp

[
1− l

(‖∇εp‖
‖εp‖

)n
]
, σ̃ = σ

[
1− l

(‖∇σ‖
‖σ‖

)n
]

5.7 Numerical implementation

The stress gradient Crossland criterion, Eqs. (5.20), is considered as an illustration. The calculation

of

√
J̃2,a, as described by Eq. (5.23), with the help of Eq. (5.16) or Eq. (5.15) for

√
J2,a, and of Eq.

(5.25) or (5.26) for
∥∥Y (t)

∥∥
,a

, is "min-max" or "max-max" problems in a 5-dimension space for
√
J2,a

and 18-dimension space for ‖Y ‖,a. Therefore, in numerical aspect, the calculation of

√
J̃2,a is actually

"min-max" or "max-max" problems with 23 variables. It is solved using user-written program under

Matlab. It remains P̃max which evaluation through Eq. (5.28) is straightforward. Just using suitable

operators in any available finite element code (i.e. Cast3M, [36]), the quantities G=∇Pmax after Eq.
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(5.29) and then ‖G‖ after Eq. (5.30) are estimated quickly.

So the proposed gradient fatigue criteria, Eqs. (5.20) and (5.67), can be numerically implemented within

any available finite element code along with a user-written program to solve "min-max" or "max-max"

problems.

5.8 Discussion

Remark 1 (Gradient terms) Limits of classical fatigue criteria in the literature are that the "size", gra-

dient and loading effects are not captured. Even in the gradient fatigue criterion proposed by a number of

authors such as the typical work of [135], the role of the shear stress gradient as well as the shear stress

gradient amplitude in fatigue strength has not been made clear and thereby temporarily still neglected.

In [135], the role of the shear stress gradient which is inherently assumed null only for some metals

considered, but has been generally omitted even when applied to any other metal.

This study, as reasoned in the section 5.3.2, show that in some special cases where just one kind of load

appears (e.g. pure torsion test, pure bending test), a unique gradient term is enough to model the gradi-

ent and loading effects. This is introduced either in the normal stress component of the classical fatigue

criterion as [135] proposed, or in the shear stress part as presented in the current work. However, in

multiaxial fatigue tests, concomitant two types of stress gradient terms are in principle indispensable to

capture the previous effects.

Remark 2 (Material characteristic length scale ℓ) The values of ℓ of the model proposed extend from

several hundredths of a millimeter to about a millimeter for cases considered, while the one of the model

proposed very recently by Ferré et al. 2013 [49] takes about a micron. The very difference between them

is physically explained by the following reason: we study here the fatigue endurance of macroscopic

specimens and components for which the crack initiation is generally detected by loss of stiffness corre-

sponding to crack length which can reach a millimeter; whereas Ferré et al. consider crack nucleation in

the scale is few dozen microns.

Remark 3 (Insensitive threshold of effects) The dependence of fatigue limits on both "size" and gradi-

ent effects according to the specimen size (e.g. L,R) has a "saturated" or "insensitive" threshold. That

means, there always exists a certain "saturated" value for the specimen size (L∞, R∞) from which the

fatigue behavior is insensitive to both effects and the proposed criteria exactly reduce to the respective

classical ones.

Remark 4 (Approximation of some formulae) In the illustration through Crossland criterion, using a

priori the exponent n = 0.5 for some approximations (Eqs. (5.37), (5.53)) results in the very simple

formulas for relevant quantities, especially in the combined bending-twisting case. This value of n was

afterwards affirmed reasonable through very good validation with some experimental classes. In the

general case, however, n could have another value for other experimental classes, then the proposed
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criteria may require to use the exact formulae, Eqs. (5.75, 5.77) e.g., to express consistently all relevant

quantities (such as Lτf , Lτf ′ , Lσf , Lσf ′ ...) in any case of test according to their analogues in calibration

tests (torsion and bending tests).

5.9 Conclusion

The present study develops a simple formulation of gradient multiaxial fatigue criteria extending the

classical HCF criteria. The objective is to model the "size", surface gradient and loading effects, not

included yet in classical mechanics but become important at small scale, by taking into account just the

gradient effect.

Basing on some experimental observations, and departing from classical fatigue criteria, new class of

criteria with stress gradient terms entering not only in the normal stress but also in the shear stress

amplitude, are proposed. Such a formulation allows the new criteria to capture the "size" and gradient

effects, and to cover a large range of loading mode (traction, bending, shearing). These new criteria

are then generalized to multiaxial cases to capture both well-known phenomena "Smaller is Stronger"

and "Higher Gradient is Stronger" and thus can reproduce fatigue experimental data even at small scale.

Here in this work, the nature of these two phenomena is also clarified. "Higher Gradient is Stronger" is

only related to the gradient effect, while "Smaller is Stronger" is related to both pure size and gradient

effects where the latter is dominant - rather than totally to the pure size effect as usually believed.

Extensions of some classical fatigue limit criteria such Crossland and Dang Van are done as illustrations.

The proposed criteria shown a good agreement with a number of experiments from the literature. A

more comprehensive validation for complex loading (real multiaxial loads) could be perspective for this

research direction.

Nevertheless, in this work only cases with critical points located at the specimens surfaces have been

examined. In these cases, the gradient is such that it has a beneficial effect on fatigue. However, cases

where the effect can be presumably negative, especially with the presence of residual stresses, can be

encountered. A reexamination of the approach will be the object of the further work. Besides, for

notched fatigue problems, this approach may be still applicable.

In conclusion, the extension of classical fatigue criteria embedding into them two gradient terms, one

corresponds to normal stress part, the other to shear stress part, leads to new versions able to describe

common effects on multiaxial fatigue endurance.
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CHAPTER 6

General conclusions and perspectives

6.1 Conclusion

The work deals with two grand classes of gradient models: elastoplastic constitutive models and

high/low cycle fatigue (HCF/LCF) models. Its main motivation is that the micro- and nanomechanical

issues are becoming increasingly important in MEMS engineering and technologies. For problems at

these small scale, "size"1 and gradient effects become significant. Taking them into account in the design

and therefore in models of mechanical behavior and fatigue life is necessary for a good estimation of the

reliability of such devices. This thesis is devoted to study on the one hand gradient models of elastoplastic

behavior in a generalized standard framework, on the other hand the possibility of extending the classical

HCF/LCF criteria. These two themes consist of two parts (A and B) of the thesis, respectively.

Part A- Standard Gradient Constitutive Models: Application in Micro-Mechanics

After an analysis of the abundant literature on the gradient theories of elastoplastic behavior, those pro-

posed by QS Nguyen (2000, 2005, 2011 and 2012) has chosen to develop. It is based on a consistent

global approach, implemented in the generalized standard framework (from the thermodynamic poten-

tial and the dissipation potential). It allows obtaining the constitutive equations, evolution and associated

variational principles. The framework also makes it easy to address issues relating to the uniqueness

of solutions. Gradient elastoplastic models considered include different types of hardening (kinematic

and isotropic). When the dissipation potential depends on the gradient of the internal variables, the nu-

merical implementation of these models present difficulties. A method of regularization energy allow to

overcome them. The presence of the gradient leads to a non-standard evolution problem with a Laplace

equation and boundary conditions governed by differential equations of second order. The resolution

method chosen and implemented in the CAST3M code is similar to that used for diffusion problems.

Some typical examples as illustration are then processed and compared to reference results from the

literature to show the relevance of the models. These are the problems of thin wire torsion, thin film

shearing and microvoid growth. Using the model, "size" and gradient effects are taken into account and

both well-known phenomena "Smaller is Stronger" and "Higher Gradient is Stronger" are reproduced.

Part B- Gradient Fatigue Criteria at Small Scale

The effects of the "size", gradient and loading mode, are well known in the research of material fatigue.

They are often highlighted in the notches, fretting fatigue problems and micromechanics. If there is a

1in the sense that it mainly results from the gradient effect related to the size rather than the size effect by Dislocation

Starvation and the pure size effect by material metallurgical defects-heterogeneity which are negligible.
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large number of fatigue criteria, very few of them are able to capture these effects. A relevant work is

that done by Papadopoulos and Panoskaltsis in 1996. From an analysis of fatigue experiment data in the

literature, they made clear the pure size and gradient effect and proposed a fatigue criterion taking into

account only the hydrostatic stress gradient. Such a model does not cover large enough loading cases

(rotative bending and torsion left), i.e. loading effect is not captured. The work in the thesis departs

from this analysis and formulates gradient multiaxial fatigue criteria in more general framework where

the loading mode (except rotative bending) is included. The idea is to introduce the stress gradients into

two main components of the criteria (one related to the amplitude of the shear stress and the other to

the hydrostatic stress) by defining the gradient versions of both shear stress amplitude and hydrostatic

stress. In this way, the loading effect is naturally directly attached to the gradient effect, whereas the pure

size effect is insignificant and thus negligible, and then three factors, "size", gradient and loading effects,

are taken into account. Two classical criteria widely used, Crossland and Dang Van, are particularly

formulated in the new framework to their give gradient versions. A validation of these proposals is

then made using the experiment results from the literature. A very good correlations are obtained. Two

well-known phenomena "Smaller is Stronger" and "Higher Gradient is Stronger" are reproduced.

The above is a very brief conclusion of the work. More detailed conclusions for each part (A and B)

are also given at the end of each one.

6.2 Perspectives

For both classes of models:

The pure size effect has not been really included yet, thus maybe make trouble if this effect is con-

siderable in certain cases. Another approach, or even a certain approach combined with the method

presented in this work, can be a solution.

The validity range of the gradient models adopted is micron or sub-micron for the constitutive model

and about millimeters for fatigue model, not smaller. At smaller scale other approaches are required.

6.2.1 Standard Gradient Constitutive Model

The "size" and gradient effect concerning specimen size (microsystems problems) are affirmed to be

modeled with the model adopted. Those concerning the material grain size (microstructure problems)

are expected to be also captured via the material characteristic length related to the grain size. However,

validation for these problems are temporarily left out for a further work. Moreover, since the SGP model

in general and the SSGP model in particular are based on the strain gradient plasticity, they are not usable

in purely elastic cases. In this kind of problems, a class of models based on stress gradient approach or,

equivalently, total strain gradient approach (as it is linear problem), may be valid instead. It suggests

that a class of models based on total strain gradient approach, could be more general to deal with both

plastic and purely elastic problems.
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6.2.2 Gradient Fatigue Criteria

In methodological aspect, gradient approach just allow modeling the volumetric stresses instant dis-

tribution (related to loading case such as: tension-compression, torsion, plane bending), not volumetric

stresses distribution all over the loading cycle (related to rotative bending). Thus the adopted criteria

indifferently deal with the plane bending and the rotative bending tests, although their fatigue limits are

actually different.

Fatigue problems concerning other factors (machining, notches, defects, inclusions, corrosion, etc.) have

been left out in this approach and need another approach to address. In particular for notched fatigue

problems, this approach may be still applicable. A validation by means of experimental data is needed

to examine this possibility.

Cases with critical points located inside specimens where the gradient effect can be presumably negative

on fatigue resistance, for instance those with presence of residual stresses, can be encountered and have

not examined yet. A reexamination of the approach will be the object of the further work.
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Appendix

.1 Numerical implementation

.1.1 Parameters of material

k, κ,H, J,G, r are known through experiments (identification experiments).

.1.2 Initiation for quantities

The Hencky algorithm is an 1-step increment schema with regard to a given load. A certain number

of mechanical iterations will be necessary until the numerical convergence of the solutions.

But in the case of needing to draw the evolution of certain quantities versus load, the algorithm would

be used many times, independently, corresponding to many different loading levels (i.e. to independent

problems). For such each time of using Hencky algorithm, an 1-step increment schema is obviously still

available.

At a certain loading level n, with the notation k assigned to the mechanical iteration and t to the list

of loading time of the whole problem, the initiation of quantities in a series of mechanical iterations will

be: 



k = 1

F
ext (n)
d = t(n) F ext

d (F ext
d -total load, i.e final load, putting on the object)

W (k=1) = 0 (total free energy stocked in the considered system)

Other quantities: x
(n)
(k=1) =

(
ε
p (n)
1 , γ

(n)
1

)
= 0

The maximum number of mechanical iterations for each loading level, denoted as kmax, is necessary to

reasonably chose in advance. If the computer code could not attain its convergence for each loading step,

then it must be raised kmax.

.1.3 Calculation via LOOPs: Algorithm schema (Fig.1)

The following schema is established for a general case where the algorithm will be used many times,

independently, corresponding to many different loading levels, to draw the evolution of certain quantities

against load. Index nmax corresponds to the final loading level.
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..initializing

model
.

elasticity calculation

(directly calculate values at "k" sate)

W previous = W current (storing the current value as

the previous one with respect to the incoming iteration)

F
tot (n)
k =

(
F ext(n) or F∆U(n)

)
+ F

p(n)
k(

new force, in which F
p(n)
k = F

p(n)
k (ε

p(n)
k−1)

)

u∗ = u
(n)
k = RESO

(
F

tot (n)
k /L

)
(elastic solution)

ε∗ = ε
(n)
k = EPSI

(
δu

(n)
k

)
(elastic solution)

.

"Black box"

(UMAT)

.

Convergence?

(via W , or f ...)

.

n = nmax?

.

iterative loop return

if k = kmax then exit program

and raise kmax. Else:

k = k + 1

F
p(n)
k = F p

∗

.

loading-increment loop return

n = n+ 1; k = 1

F ext(n)= t(n)F ext

.

Stop and give final output

(for "k" state of final loading level)

u=u∗; ε=ε∗; γ=γ∗,β=β∗

εp=εp∗;σ=σ∗; ...

.

n, ε
(n)
k

.

γ∗,β∗, ε
p
∗, σ∗ at "k" state

F p
∗ =BSIG (2µεp∗),W

.

yes

.

yes

.

no

.

no

Note: see more detailed about UMAT at Fig 2 (a user code for mechanical behavior model).

Figure 1 : Calculation via LOOPs - Algorithm schema
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.1.4 Detail of UMAT in CAST3M (Fig.2)

..
Input (CAST3M)

(data of "k" state)

n, ε
(n)
k

.

Essential equations

(calculate directly values at "k" sate)

(omit index "n")

1/ [K]{Uk} = F tot = F ext
d + F p

k (ε
p
k−1) (elastic problem)

2/ εk = EPSI (Uk)

3/ ek = dev(εk)

4/ Calculate the coefficients of thermal equation: − K∇2γk + c γk = fimp

K = ℓ2f1(1 + f2)
(

conductivity matrix (CND)
)

c =
3

2

(
caloric capacity matrix (CPA)

)

fimp=

〈√
3

2
‖ek‖−

k

2µ

〉

+

− J(γk)+1.5H
(
εpk(γk)

)
+ r

(
∇·βk(γk)+|∇γk|/ℓ

)

2µ

Φd =
rβ(γk)

2µ
· n

5/ Solve the thermal equation below to get γk by internal iteration algorithm

as the presence of γk needing to find in the expression of r = fimp and Φd:

−K∇2γk + c γk = fimp

in which r = fimp is the thermal source and Φd is the flux, and an internal

relation between βk and γk is :

βk =
γk ∇γk
ℓ |∇γk|

6/ Finally:

βk = the last βk after the internal relation above between βk and γk

εpk = γk

√
3

2

ek

‖ek‖
σk = σelastic

k − 2µ εpk

.

Output results for "k" state

γ∗,β∗, ε
p
∗, σ∗, ...

.

Outside of UMAT

F p
∗ = BSIG (2µεp∗),W

Figure 2 : Detail of UMAT in CAST3M (for implicit schema)
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.1.5 Implementation in CAST3M

1. Calculation operators

Calculate fimp at global level using operators in CAST3M such as:

div V = tr (grad V) = (grad V)xx + (grad V)yy + (grad V)zz

where V is a 1-order tensor, i.e a vector, and grad V is considered gradient operator for a displace-

ment vector field in CAST3M (vector u)

2. Global solution for Laplace equation

Solve at global level the Laplace equations (3.85) or (3.89) with the boundary condition in (3.70)

which is rewritten under a more familiar form:



−K∇2z + c z = fimp, (z = γk = λ), ∀x ∈ V

−appropriate boundary conditon (it will be clarified later)
(1)

Solve (1) by taking spirit of the thermic problem in CAST3M [21]-page 14:




−K ∇2T + ρ c
∂T

∂t
= r ∀x ∈ V

(K ∇T ) · n = Φd ∀x on ∂Vq

T = Td ∀x on ∂VT

or under the form:




−div (K ∇T ) + ρ c Ṫ = r ∀x ∈ V

(K ∇T ) · n = Φd ∀x on ∂Vq

T = Td ∀x on ∂VT

(2)

The same spirit as that of quasi-harmonic equations allows to obtain the weak formulation as

below:

Find T such that T = Td on ∂VT in order that:

−
∫

V
δTdiv (K ∇T ) +

∫

V
δTρ c Ṫ =

∫

V
δT r (3)

∀δT such that δT =0 on ∂VT

Note that:

div (δT .K ∇T ) = δT . div (K ∇T ) + K ∇T · ∇δT

So (3) can be rewritten:

−
∫

V
div (δT .K ∇T ) +

∫

V
K ∇T · ∇δT +

∫

V
δTρ c Ṫ =

∫

V
δT r (4)

∀δT such that δT =0 on ∂VT
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Green theorem brings:

∫

V
div (δT .K ∇T ) =

∫

∂V
δT .K ∇T · n

=

∫

∂Vq

δT .K ∇T · n+

∫

∂VT

δT .K ∇T · n =

∫

∂Vq

δT .K ∇T · n

=

∫

∂Vq

δT .Φd (thanks to (2.b) and δT = 0 on ∂VT )

Finally (4) can be expressed:

∫

V
(∇δT )T · K ∇T +

∫

V
δTρ c Ṫ =

∫

V
δT r +

∫

∂Vq

δT .Φd (5)

∀δT such that δT =0 on ∂VT

Temperature field is estimated within each element V e of the mesh and every moment from the

values in nodes associated with this element at this time. The temperature is approached in the

following manner via nodal values:

T (X, t) =
{
N e(X)

}
.
{
T e(t)

}

The application of the nodal approximations in the problem (5) allows to obtain (after discretized):

∫

V e

δT e
h ∇Ne

j K ∇Ne
i T

e
h dV +

∫

V e

Ne
j δT

e
h ρ c Ne

i Ṫ
e
h dV

=

∫

V e

Ne
j δT

e
h r dV +

∫

∂V e
q

Ne
j δT

e
h Φd dΓ ∀ δT e

h

Or under the matrix form:

(∫

V e

{∇Ne
i}T K {∇Ne

j} dV
)
{T e}+

(∫

V e

{Ne
i}T ρ c {Ne

j} dV
)
{Ṫ e}

=

∫

V e

{Ne
j} r dV +

∫

∂V e
q

{Ne
j} Φd dΓ

As well known in thermal problem, one defines:





[Ke] =

∫

V e

{∇Ne
i}T K {∇Ne

j} dV conductivity matrix (CND)

[Ce] =

∫

V e

{Ne
i}Tρ c {Ne

j} dV caloric capacity matrix (CPA)

{Fe} =

∫

V e

{Ne
j} r dV +

∫

∂V e
q

{Ne
j}Φd dΓ thermal force/source

(6)

Finally after assembling the element matrix, the considered problem becomes:

[K]{T}+ [C]{Ṫ} = {F} (7)
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with:





[K] =
∑m

e=1 [A
e]T [Ke] [Ae]

[C] =
∑m

e=1 [A
e]T [Ce] [Ae]

{F} =
∑m

e=1 [A
e]T {Fe}

(8)

Note that calculation of these above matrix CND, CPA and {F} is available without any difficulty

in CAST3M in the framework of thermic problem.

Return now to (1) which really must be solved for our mechanic problem.

The same approach as in thermal problem but much more simple because of the presence of the

variable z instead of ż, all (1), (2) and (7) lead to (9) which is a linear form (after discretized) of

the considered eq. (1) and easy to solve:

[
[K] + [C]

]
{Z} = {F} (9)

where {F} is determined after (6.c) with r replaced with fimp and Φd needing to be determined

after the boundary condition of (1).

Comparing (3.86) with (2.b), Φd necessary for the calculation of {F} in (6.c) to solve (9) and also

(1), is:

Φd = K∇z · n =
[
ℓ2f1f2β

]
· n =

rβ

2µ
· n (10)

Such a Φd can be easily calculated by the operator "FLUX" in CAST3M for example.

Therefore finally, the considered Laplace equation (1) can be solved in implicit way under the lin-

ear form (9) at global level of the system.

Comment on the boundary condition (see eq. (2.b)):

Some particular cases are now discussed.

1/ For the Mode-I problem (r = 0, that means f2 = 0):

The boundary condition (2.b) at the mechanical iteration ”k” after (10) becomes:

Φd = K∇z · n = K∇γk · n (after the definition in (2.b))

= 0 (after (10) with f2 = 0)

Hence it follows that K∇γ . n = 0 (because K∇γk . n = 0 ∀k), that means γ,n = 0 on ∂V , and

the familiar boundary condition of Mode-I problem is then recovered as expected.

2/ For the classical problem (ℓ=0, that means G=0, r=0):

Naturally Φd=K∇z · n=K∇γk · n=0 (because K=0) and the boundary condition (2.b) do not

result in γ,n=0 which is really logical with a classical problem as expected too.
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.1.6 Remarks on the algorithm schemata used; Numerical convergence question

It is noteworthy to distinguish algorithm schemata used in both mechanical and numerical aspects.

• In mechanical aspect:

In the present work, the deformation plasticity method with the implicit algorithm is used, and as

aforementioned (page 119).

• In purely numerical aspect:

An explicit schema (actually internal iteration algorithm), as presented in the page 117, is required

to numerically solve the nonlocal Laplace equation in which the variable γ also appears in the right side.

• Numerical convergence question:

The difficulty in convergence when dealing with the nonlinear hardening problem is that, once a

functional of uniaxial tensile stress-strain such as Ramberg-Osgood is used, it may sometimes cause non-

convergence due to its very sharp slope around the zone close to co-ordinate origin where the uniaxial

strain is very tiny. In order to overcome this inconvenience, a smoother functional as an exponential

type as presented in (3.88), is strongly recommended. Even though an available referencial/experimental

database would be given in terms of a Ramberg-Osgood curve, an equivalent conversion to an exponential

hardening functional is still recommended thanks to the identification between them (see Fig. 3). This

conversion does not considerably affect the final result because the segment different between each other

lies within the zone where the uniaxial strain is very tiny. That also means, a priority for the range

of strain predicted for the problem under consideration, while identifying two curves, is really more

important. This conversion was carried out in Section "Applications" as commented in (.2)- page 124.

�
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Figure 3 : Conversion of a "uniaxial tensile stress-strain curve" of Ramberg-Osgood to an exponential

curve (cf. Fleck and Hutchinson 2001 [54])
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.2 Procedure to validate the reference numerical results of Fleck & Hutchinson 2001

First of all, here are some conventions for what follows:

- The following presentation takes micro-void growth test as typical example. Thereby the corresponding

notions do not need to be mentioned again.

- The basic dimension of microsystems means the key size of the problem under consideration. These are

the radius R of micro-void, the thickness L of thin film, or the radius R of thin wire, etc.

The reference numerical results in [54] are obtained basing on the Ramberg-Osgood uniaxial tensile

stress-strain curve in which the set of parameters (σ0, ε0, n) are determined from the uniaxial tensile

experiment. However, this curve causes numerical non-convergence sometimes, as aforementioned in

(.1.6), thus the model proposed uses the exponential uniaxial stress-strain curve with its set of parame-

ters (J∞, b) as a substitution. Therefore it requires first of all to identify the latter after the former, that

means (J∞, b) after (σ0, ε0, n).

All results of [54] plotted on diagrams are actually normalized by the values of (σ0, ε0, n), then the spe-

cific values of these parameters are not important. They can take any values and then the corresponding

load assumed to be used in [54] (pressure p in micro-void growth test) can be deduced after such a set of

(σ0, ε0, n) already chosen.

This load is then used again in the model proposed, with the set of parameters (J∞, b) identified before.

The simulation results by the adopted model is in reality only dependent on the ratio of the basic di-

mension against the material intrinsic length (R/ℓm) but not on their proper specific values. In order

to numerically function the model, it needs to temporarily take a certain value for ℓm (with order of

micrometer, normally). This chose does not affect on the final results.

Denote (Ri/ℓr) as the ratio of the ith curve of [54], and (Ri/ℓm) the ratio of the ith curve by the model.

It requires to find an optimal set of parameters (G or f1, r or f2,...) in order that the "mod" curves fit as

well as possible the "ref" ones, provided that the proportions between (Ri+1/ℓm) and (Ri/ℓm) have to

be equal to those between Ri+1/ℓr) and (Ri/ℓr) respectively, with any of i. That means (Ri/ℓm) is not

obligatory to be equal to (Ri/ℓr), but just their proper proportions when varying i must be equal. In that

way the micro-void growth is simulated for all Ri.

In summary, three steps are performed to validate reference results of [54]:

• Determine a set of (J∞, b) of the exponential curve after a set of (σ0, ε0, n) of Ramberg-Osgood curve.

• Determine the corresponding load p assumed to be used in [54].

• Identify an optimal set of parameters for the model such that the simulation curves fit as well as possi-

ble those of the reference where the ratios between Ri+1/ℓ and Ri/ℓ are preserved from the one to the

other of "ref" and "mod" curves for any ith.

The simulation results prove a good agreement with those of the reference and the set of parameters

identified in such way shows that the values of (σ0, ε0), n, ℓm and even R only play the role "symbolic",

not really important to the final results. It is the ratio Ri/ℓm which really play an important role as it

decides simulation curves.
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