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Für die größte Errungenscha� meiner Dissertationszeit.





Acknowledgments

This bi-nationally supervised doctoral dissertation contains parts of my work obtained as a PhD stu-
dent at the Institute of Communications Engineering (former Institute of Telecommunications and
Applied Information �eory) at Ulm University, Germany and in the Team Grace of INRIA–Saclay-
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Abstract and Résumé

Two challenges in algebraic coding theory are addressed within this dissertation. �e �rst one is the
e�cient hard- and so�-decision decoding of Generalized Reed–Solomon codes over �nite �elds in

Hamming metric. �e motivation for this more than 50 years old problem was renewed by the discovery
of a polynomial-time interpolation-based decoding principle up to the Johnson radius by Guruswami
and Sudan at the end of the 20th century. First syndrome-based error/erasure decoding approaches by
Berlekamp–Massey and Sugiyama–Kasahara–Hirasawa–Namekawa for Generalized Reed–Solomon
codes were described by a Key Equation, i.e., a polynomial description of the decoding problem. �e
reformulation of the interpolation-based approach in terms of Key Equations is a central topic of this
thesis. �is contribution covers several aspects of Key Equations for Generalized Reed–Solomon codes
for both, the hard-decision variant by Guruswami–Sudan, as well as for the so�-decision approach
by Kö�er–Vardy. �e obtained systems of linear homogeneous equations are structured and e�cient
decoding algorithms are developed.

�e second topic of this dissertation is the formulation and the decoding up to lower bounds on
the minimum Hamming distance of linear cyclic block codes over �nite �elds. �e main idea is the
embedding of a given cyclic code into a cyclic (generalized) product code. �erefore, we give an extensive
description of cyclic product codes and code concatenation. We introduce cyclic generalized product
codes and indicate how they can be used to bound the minimum distance. Necessary and su�cient
conditions for lowest-rate non-primitive binary cyclic codes of minimum distance two and a su�cient
condition for binary cyclic codes of minimum distance three are worked out and their relevance for the
embedding-technique is outlined. Furthermore, we give quadratic-time syndrome-based error/erasure
decoding algorithms up to some of our proposed bounds.

Deux dé�s de la théorie du codage algébrique sont traités dans ce�e thèse. Le premier est le décodage
e�cace (dur et souple) de codes de Reed–Solomon généralisés sur les corps �nis en métrique de

Hamming. La motivation pour résoudre ce problème vieux de plus de 50 ans a été renouvelée par la
découverte par Guruswami et Sudan à la �n du 20ème siècle d’un algorithme polynomial de décodage
jusqu’au rayon Johnson basé sur l’interpolation. Les premières méthodes de décodage algébrique des
codes de Reed–Solomon généralisés faisaient appel à une équation clé, c’est à dire, une description
polynomiale du problème de décodage. La reformulation de l’approche à base d’interpolation en
termes d’équations clés est un thème central de ce�e thèse. Ce�e contribution couvre plusieurs aspects
des équations clés pour le décodage dur ainsi que pour la variante décodage souple de l’algorithme de
Guruswami–Sudan pour les codes de Reed–Solomon généralisés. Pour toutes ces variantes un algorithme
de décodage e�cace est proposé.

Le deuxième sujet de ce�e thèse est la formulation et le décodage jusqu’à certaines bornes inférieures
sur leur distance minimale de codes en blocs linéaires cycliques. La caractéristique principale est
l’intégration d’un code cyclique donné dans un code cyclique produit (généralisé). Nous donnons
donc une description détaillée du code produit cyclique et des codes cycliques produits généralisés.
Nous prouvons plusieurs bornes inférieures sur la distance minimale de codes cycliques linéaires qui
perme�ent d’améliorer ou de généraliser des bornes connues. De plus, nous donnons des algorithmes
de décodage d’erreurs/d’e�acements [jusqu’à ces bornes] en temps quadratique.
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“Computer science is no more about computers than astronomy is about

telescopes.”

Edsger W. Dijkstra (1930–2002)1
Introduction

The publications of Claude E. Shannon [A-Sha48] and Richard W. Hamming [A-Ham50] marked
the advent for the theory of “reliable communication in the presence of noise” and “error correcting
codes”. Shannon developed information entropy as a measure for uncertainty and de�ned the

capacity C of a noisy channel. He showed that for any �xed rate R < C , there exist codes of rate R
with small decoding error probability. Furthermore, he showed that longer codewords are more likely to
be recovered. His theory is based on statistics and leads to information theory.

�e theory of error correcting codes can be considered as an area of combinatorial mathematics.
Hamming de�ned a notion of distance between codewords over �nite �elds—which we call now Hamming
distance—and he observed that this is a metric—the Hamming metric. Furthermore, he constructed an
explicit family of codes.

�is dissertation deals with linear block codes over �nite �elds in Hamming metric. We recommend
the tutorials of Berlekamp [A-Ber72], Sudan [O-Sud00; I-Sud01] and Costello–Forney [A-CF07], which
inspired the following paragraphs.

In 1960, Irving S. Reed and Gustave Solomon [A-RS60] de�ned a class of algebraic codes that are
probably the most extensively-used codes in practice, and as a consequence very well studied. �is is
due to several good a�ributes of Reed–Solomon (RS) codes and the fact that they lie in the intersection
of numerous code families.

RS codes are standardized for magnetic and optical storage systems like hard drives, Compact-
Discs (CDs), Digital-Versatile-Discs (DVDs), Blu-Ray-Discs (BDs) [B-Wic99], in Redundant Arrays of
Inexpensive Disks (RAID) systems (see [A-Pla97; A-BHH13] for RAID-6), in communication systems
like Digital Subscriber Line (DSL), in wireless communications standards like WiMax and broadcasting
systems like Digital Video Broadcasting (DVB), in bar-codes like the nowadays popular 2D �ick-
Response (QR) codes and in code-based crypto-systems like the McEliece public-key approach [O-
McE78]. �ey are part of several code constructions e.g., rate-less Raptor codes [A-Sho06], interleaved
and folded RS codes [A-Kra97; A-GR08] and concatenated schemes.

RS codes are Maximum-Distance-Separable (MDS) codes, i.e., they a�ain the Singleton bound with
equality. �ey belong to the class of linear codes and if they are cyclic, RS codes are the super-codes
of Bose–Ray-Chaudhuri–Hocquenghem codes [A-BRC60; A-Hoc59]. Algebraic-Geometry codes [A-
BHHW98], Reed–Muller codes [A-Ree54; A-Mul54] and ideal-based/number-�eld codes as the Chinese-
Remainder-�eorem codes [A-Man76] can be seen as generalizations of RS codes. Counterparts are
de�ned over other algebraic structures as e.g., Galois rings [A-Arm10; O-�i12] and in other metrics
as e.g., Gabidulin codes [A-Del78; A-Gab85; A-Rot91] in rank-metric, which a�ract nowadays a lot of
interest due to network-coding theory [A-KK08; A-SKK08].

Peterson [A-Pet60] developed the �rst decoding algorithm for RS codes which had cubic time complex-
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ity in code length. �e decoding method of Berlekamp [B-Ber68] and Massey [A-Mas69] scales quadratic
in time. �e Berlekamp–Massey algorithm as well as the modi�cation of the Extended Euclidean Al-
gorithm by Sugiyama–Kasahara–Hirasawa–Namekawa [A-SKHN75] became standard approaches of
decoding RS codes for decades. �e discrete Fourier transform and its inverse operation can be used
to describe elementary properties and the classic decoding of RS codes (see [B-Bla83, Chapter 8] and
[B-Bos13, Chapter 3]). Delsarte [A-Del75] extended the de�nition of RS codes to so-called Generalized
Reed–Solomon (GRS) codes, which we consider throughout this thesis.

�e discovery of a polynomial-time interpolation-based decoding principle up to the Johnson radius [A-
Joh62; A-Bas65] of Guruswami and Sudan [A-Sud97; A-GS99] for GRS and Algebraic-Geometry codes
at the end of the 20th century revived the interest in algebraic coding theory. �e simplicity of their
approach inspired many researchers to re-think about list decoding of aforementioned related code
families like Reed–Muller codes [A-FT08; A-DKT07], Hadamard codes [A-GRS00b], Chinese-Remainder-
�eorem codes [A-GRS00a; I-GSS00; I-LS12] and Gabidulin codes [A-Wac13]. �e impact of a feasible
list decoding algorithm on applications, where GRS or Algebraic-Geometry codes are used, is in the
focus of several investigations (see e.g., [O-Bar11] for the McEliece crypto-system).

Guruswami and Sudan proposed a new so�-decision decoding variant for GRS codes (and related code
families) by assigning di�erent multiplicities for the interpolation step. �eir approach was elaborated by
Kö�er and Vardy [A-KV03a] for RS codes. �e Kö�er–Vardy decoding approach is believed to provide the
best performance in terms of coding gain among all polynomial-time so�-decision decoding approaches
for GRS codes and due to complexity-reducing techniques, as the re-encoding transformation [A-KMV11],
its wide-spread deployment in practical systems is probable.

Cyclic codes were �rst introduced by Prange [O-Pra57] and the �rst di�erence to RS codes is that their
distance is not obvious from their length and dimension. �e second is that they are de�ned over the base
�eld and therefore have some advantages. Cyclic codes are o�en referred to as Bose–Ray-Chaudhuri–
Hocquenghem (BCH) codes, which is somehow misleading. �e BCH bound was the �rst lower bound
on the minimum distance of cyclic codes. �e Berlekamp–Massey as well as the Sugiyama–Kasahara–
Hirasawa–Namekawa [A-SKHN75] algorithm can be used to decode up to the BCH bound. A challenge
is to �nd good lower bounds on the minimum distance of cyclic codes and to develop e�cient, i.e., at
most quadratic-time, hard- and so�-decision decoding algorithms. Feng and Tzeng [A-FT89; A-FT91b]
generalized the approach of Berlekamp–Massey and Sugiyama–Kasahara–Hirasawa–Namekawa to
decode up to the Hartmann–Tzeng bound [A-HT72], which was the �rst generalization of the BCH
bound. Several lower bounds and decoding algorithms exist and we refer to them when appropriate.

�is dissertation is structured as follows.

In Chapter 2, we give necessary preliminaries for linear (cyclic) block codes in Hamming metric
and bivariate polynomials over �nite �elds. �e Hartmann–Tzeng bound [A-HT72] for cyclic codes
is proven. Combining methods for linear (cyclic) codes that lead to Slepian’s product codes [A-Sle60],
Forney’s concatenated codes [O-For66a] and Blokh and Zyablov’s generalized concatenation [A-BZ74]
are discussed in Chapter 2. Furthermore, we de�ne GRS codes and Interleaved GRS codes (the description
of GRS codes is close to Roth’s [B-Rot06, Chapter 5]).

Chapter 3 describes hard- and so�-decision decoding approaches for linear codes in general and GRS
codes in particular. We derive the Key Equation for syndrome-based error/erasure Bounded Minimum
Distance (BMD) decoding of GRS codes from the simplest interpolation-based approach [O-WB86]. �e
modi�cation of the Extended Euclidean Algorithm is outlined, while the Fundamental Iterative Algorithm
(FIA) is discussed extensively. Furthermore, we outline the collaborative decoding of Interleaved GRS
codes, the interpolation-based principle of Guruswami–Sudan [A-Sud97; A-GS99] and the so�-decision
variant of Kö�er and Vardy [A-KMV11] for GRS codes.

Chapters 4, 5 and 6 cover new results, in parts already published, and therefore appropriately refer-
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Two variants of Key Equations for decoding GRS codes beyond half the minimum distance are given

in Chapter 4. �e derivation of both is done in detail and the adaption of the FIA is described. �e
correctness of the FIA is proven and its complexity is analyzed. Furthermore, some future research
directions are given.

�e univariate reformulation of the bivariate Kö�er–Vardy so�-decision interpolation problem for
GRS codes is derived in Chapter 5 and the obtained set of Key Equations is given. We investigate the
re-encoding transformation [A-KMV11] and give a modi�ed set of Key Equations in Chapter 5. �e
adaption of the FIA for this case is roughly outlined.

In Chapter 6, we propose four new bounds on the minimum distance of linear cyclic codes, denoted by
bound I-a, I-b, II and III. Bound I-a is very close to bound I-b. While bound I-a is based on the association
of a rational function, the embedding of a given cyclic code into a cyclic product code is the basis of
bound I-b. �e idea of embedding a code into a product code is extended by bound II and III. We prove
the main theorems for the bounds and give syndrome-based error/erasure decoding algorithms up to
bounds I-a, I-b and II. Good candidates for the embedding-technique are discussed and, as a �rst result,
conditions for non-primitive lowest-code-rate binary codes of minimum Hamming distance two and
three are given. �e work is based on the contributions of Charpin, Tietäväinen and Zinoviev [A-CTZ97;
A-CTZ99]. Furthermore, we outline how embedding a given cyclic code into a cyclic product code can
be extended to the embedding into a cyclic variant of generalized product codes, which has not been
de�ned before.

We summarize and conclude this contribution in Chapter 7.
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“Science is facts; just as houses are made of stones, so is science made of facts; but

a pile of stones is not a house and a collection of facts is not necessarily science.”

Henri Poincaré (1854–1912)2
Linear Block Codes over Finite Fields

Necessary properties of linear block codes over �nite �elds in Hamming metric are covered in this
chapter. In the next section, we recall the Lagrange interpolation theorem and de�ne relevant
properties of bivariate polynomials over �nite �elds.

In Section 2.2, we de�ne basic properties of linear and cyclic block codes. We prove the Hartmann–
Tzeng [A-Har72; A-HTC72; A-HT72; A-HT74] bound, which was the �rst generalization of the Bose–
Ray-Chaudhuri-Hocquenghem (BCH), [A-BRC60; A-Hoc59] lower bound on the minimum Hamming
distance of a cyclic code.

�e product of linear codes is introduced in Section 2.3. Cyclic product codes and generalized
concatenated codes are special cases of product codes. We give the conditions for the product code to
be cyclic and illustrate the de�ning set with an example. In Section 2.4, we de�ne Generalized Reed–
Solomon (GRS) codes as introduced by [A-Del75] based on the work of Reed and Solomon [A-RS60].
�e notation of normalized, cyclic and primitive RS codes is given. In addition, we de�ne Interleaved
Generalized Reed–Solomon (IGRS) codes and connect them to product codes.

2.1 Basic Notations

2.1.1 Hamming Metric and Polynomials over Finite Fields
Let N denote the set of natural numbers, Z the set of integers and Fq the �nite �eld of order q. Let
Fq [X] be the polynomial ring over Fq with indeterminate X . �e polynomial ring with indeterminates
X and Y over Fq is denoted by Fq [X,Y ]. For two given integers a and b, we denote by [a, b) the set
{a, a+ 1, . . . , b− 1} and by [b) the set [0, b).

A vector of length n is denoted by a bold le�er as a= (a0 a1 . . . an−1) ∈ Fnq . An m× n matrix
is denoted by a bold le�er as A = (Ai,j)

j∈[n)
i∈[m)

in Fm×nq . A set of n elements α0, α1, . . . , αn−1 is
denoted by a capital le�er as D = {α0, α1, . . . , αn−1}.

A linear [n, k]q code of length n and dimension k over Fq is denoted by a calligraphic le�er like C.
We also use [n, k, d]q to include the minimum Hamming distance d (see De�nition 2.11). �e code-rate
is denoted by R = k/n.

We denote a univariate polynomial in Fq [X] by A(X) =
∑
i AiX

i ∈ Fq [X]. A bivariate poly-
nomial in Fq [X,Y ] is B(X,Y ) =

∑
iBi(X)Y i, where Bi(X) ∈ Fq [X]. We denote B(X,Y ) =∑

i

∑
j Bi,jX

jY i.
�e greatest common divisor of two elements a, b in a Euclidean Domain is denoted by gcd(a, b)

and their least common multiple by lcm(a, b).
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2 Linear Block Codes over Finite Fields

�e support of v ∈ Fnq is the set supp(v) = {i : vi 6= 0}. �e Hamming weight of a vector v is the
cardinality of its support and denoted by wt(v) = |supp(v)|.

De�nition 2.1 (Hamming Distance)
Given two vectors a,b ∈ Fnq , the Hamming distance d(a,b) is de�ned as:

d(a,b) = wt(a− b) =
∣∣∣{i : ai 6= bi, ∀i ∈ [n)

}∣∣∣ .
�e Hamming distance is a metric, the so-called Hamming metric, because it ful�lls for any three

vectors a,b, c ∈ Fnq :
1. d(a,b) ≥ 0,
2. d(a,b) = d(b,a),
3. d(a,b) = 0⇔ a = b,
4. d(a, c) ≤ d(a,b) + d(b, c).

�e scalar (or inner) product of two vectors a,b ∈ Fnq is:

〈 a,b 〉 = abT =

n−1∑
i=0

aibi.

2.1.2 The Univariate Lagrange Interpolation Problem

Given n distinct elements α0, α1, . . . , αn−1 in Fq . De�ne:

L(X)
def
=

n−1∏
i=0

(X − αi), (2.1)

and let

Li(X)
def
=

L(X)

X − αi
=

n−1∏
j=0
j 6=i

(X − αj). (2.2)

�e following formula was given by Lagrange in 1795 and we restrict ourselves here to points in Fq and
a univariate polynomial in Fq [X].

�eorem 2.2 (Univariate Lagrange Interpolation)
Let n < q distinct elements α0, α1, . . . , αn−1 in Fq and n (not necessarily distinct) elements
r0, r1, . . . , rn−1 ∈ Fq be given. �e unique Lagrange interpolation polynomial R(X) ∈ Fq [X] of
degree smaller than n with:

R(αi) = ri, ∀i ∈ [n)

is given by:

R(X) =

n−1∑
i=0

ri
Li(X)

Li(αi)
. (2.3)
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2.1 Basic Notations

2.1.3 Bivariate Polynomials over Finite Fields

We �rst de�ne the weighted degree of a bivariate polynomial with coe�cients in Fq .

De�nition 2.3 (Weighted Degree)
Let two integers a and b be given. �e (a, b)-weighted degree of a monomial XiY j ∈ Fq [X,Y ] is
de�ned as:

wdega,b X
iY j

def
= ai+ bj,

and the weighted degree of a bivariate polynomial Q(X,Y ) ∈ Fq [X,Y ] with Q(X,Y ) =∑
i

∑
j Qi,jX

iY j is de�ned as:

wdega,bQ(X,Y )
def
= max

(i,j),
Qi,j 6=0

(ai+ bj) .

We de�ne the Hasse derivative in the following. It is sometimes referred to as hyper-derivative.

De�nition 2.4 (Mixed Hasse Derivative [A-Has36, Equation (2)])
Let two integers a and b be given. �e (a, b)-th Hasse derivative of Q(X,Y ) =

∑
i

∑
j Qi,jX

iY j

in Fq [X,Y ] is de�ned as:

Q[a,b](X,Y )
def
=
∑
i≥a

∑
j≥b

(
i
a

)(
j
b

)
Qi,jX

i−aY j−b.

and we introduce the following short-hand notation. Let

Q[b](X,Y )
def
= Q[0,b](X,Y )

denote the b-th Hasse derivative of Q(X,Y ) with respect to the variable Y .

De�nition 2.5 (Multiplicity of a Bivariate Polynomial)
A bivariate polynomial Q(X,Y ) ∈ Fq [X,Y ] has multiplicity m at (α, β) ∈ F2

q if

Q[a,b](α, β) = 0, ∀a, b with a+ b < m.

Let us introduce Taylor’s expansion for a bivariate polynomial in Fq [X,Y ].

�eorem 2.6 (Taylor’s Formula)
Let Q(X,Y ) =

∑
i

∑
j Qi,jX

iY j ∈ Fq [X,Y ]. For any (α, β) ∈ F2
q , we have:

Q(X + α, Y + β) =
∑
a

∑
b

Q[a,b](α, β)XaY b.
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2 Linear Block Codes over Finite Fields

Proof We have:

Q(X + α, Y + β) =
∑
i

∑
j

Qi,j(X + α)i(Y + β)j

=
∑
i

∑
j

Qi,j

(
i∑

a=0

(
i
a

)
Xaαi−a

) j∑
b=0

(
j
b

)
Y bβj−b


=
∑
a

∑
b

XaY b

∑
i

∑
j

(
i
a

)(
j
b

)
Qi,jα

i−aβj−b


=
∑
a

∑
b

Q[a,b](α, β)XaY b. �

�e following corollary is a direct consequence of �eorem 2.6.

Corollary 2.7 (Multiplicity of Bivariate Polynomials)
A bivariate polynomial Q(X,Y ) =

∑
i

∑
j Qi,jX

iY j ∈ Fq [X,Y ] has multiplicity m at (α, β) ∈
F2
q if and only if the shi�ed polynomial

Q(X + α, Y + β) =
∑
i

∑
j

Q′i,jX
iY j

has no term of total degree less than m, i.e., Q′i,j = 0, if i+ j < m. Equivalently, we can say that
Q(X + α, Y + β) has multiplicity of order m at (0, 0).

�e following lemma is essential for the re-encoding transformation technique for decoding General-
ized Reed–Solomon codes (see Section 5.2).

Lemma 2.8 (Multiplicity with One Zero-Coordinate)
A bivariate polynomial Q(X,Y ) =

∑
j Qj(X)Y j ∈ Fq [X,Y ] has multiplicity m at the point

(α, 0) if and only if the univariate polynomials Qj(X) are divisible by (X − α)m−j for all j ∈ [m).

Proof �e translated bivariate polynomial is

Q(X + α, Y + 0) =
∑
j

Qj(X + α)Y j ,

and the �rst m− j − 1 coe�cients of Qj(X + α) are zero according to De�nition 2.5. In other words,
the univariate polynomialQj(X+α) has multiplicitym− j at 0. �is implies thatXm−j |Qj(X+α)
and therefore (X − α)m−j |Qj(X). �

For m ∈ Z, de�ne [m]+
def
= max(m, 0).

Corollary 2.9 (Multiplicity with One Zero-Coordinate)
A bivariate polynomial Q(X,Y ) =

∑
j Qj(X)Y j ∈ Fq [X,Y ] has multiplicities m0, m1, . . . ,

mk−1 at the points (α0, 0), (α1, 0), . . . , (αk−1, 0) if and only if the univariate polynomialsQj(X)

are divisible by
∏k−1
i=0 (X − αi)[mi−j]+ .
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2.2 Basics of Linear Block Codes and Cyclic Codes

We de�ne the inner product of two polynomials A(X) =
∑
i AiX

i and B(X) =
∑
iBiX

i in
Fq [X] as:

〈 A(X), B(X) 〉 def
=
∑
i

AiBi. (2.4)

For two bivariate polynomials A(X,Y ) =
∑
i

∑
j Ai,jX

iY j and B(X,Y ) =
∑
i

∑
j Bi,jX

iY j

in Fq [X,Y ] the inner product is

〈 A(X,Y ), B(X,Y ) 〉 def
=
∑
i,j

Ai,jBi,j . (2.5)

2.2 Basics of Linear Block Codes and Cyclic Codes

2.2.1 Basics of Linear Block Codes

De�nition 2.10 (Linear Code)
A code C over Fq is called linear if C is a linear subspace of Fnq , i.e., for any two codewords c, c′ ∈ C
and two elements α, β ∈ Fq we have

αc + βc′ ∈ C.

Let C denote such a linear [n, k]q code. �e mapping

enc: Fkq → Fnq
m 7→ enc(m) = mG

de�nes the encoding of a linear code C. �e generator matrix G = (Gi,j)
j∈[n)
i∈[k)

of C is a k × n matrix
with Gi,j ∈ Fq , whose rows form a basis of the code. �e generator matrix G is not unique and its
rank k equals the dimension of the code C. A parity-check matrix H has rank n− k and is (in most
cases) a (n− k)× n matrix over Fq such that for every:

c ∈ C ⇐⇒ HcT = 0

holds.

De�nition 2.11 (Minimum Hamming Distance of a Linear Code)
Let C be an [n, k]q linear code. �e minimum Hamming distance d of C is:

d
def
= min

c,c′∈C
c 6=c′

(
d(c, c′)

)
= min

c,c′∈C
c6=c′

(
wt(c− c′)

)
,

and due to linearity c′ = 0 ∈ C and thus

d = min
c∈C\{0}

wt(c).

We denote a linear [n, k]q code C with minimum Hamming distance d as an [n, k, d]q code.
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2 Linear Block Codes over Finite Fields

Let us de�ne the dual of a code.

De�nition 2.12 (Dual Code)
Let C be an [n, k, d]q linear code with an (n − k) × n parity-check matrix H. �e dual code of C
contains all vectors a ∈ Fnq , such that:

a · cT = 0, ∀c ∈ C. (2.6)

�en, the linear [n, n−k, d⊥]q code with generator matrix H is the dual of the code C and is denoted
by C⊥.

Note that C = (C⊥)⊥.
�e following de�nition is relevant for the description of (generalized) concatenated codes in Subsec-

tion 2.3.3.

De�nition 2.13 (Direct Sum of Linear Codes)
Let s linear [n, ki, di]q codes Ci, ∀i ∈ [s) over the same alphabet Fq and of equal length n be given.
Furthermore, let

∑s−1
i=0 ki < n and let

s−1⋂
i=0

Ci = {0}. (2.7)

�en, the direct sum code is de�ned as:

s−1⊕
i=0

Ci =

{
s−1∑
i=0

ci : ci ∈ Ci, ∀i ∈ [s)

}
. (2.8)

�e following theorem gives the essential properties of a direct sum code.

�eorem 2.14 (Linearity and Minimum Distance of a Direct Sum Code)
Let C =

⊕s−1
i=0 Ci be a direct sum of s linear [n, ki, di]q codes Ci as in De�nition 2.13. �en C is a

linear [n,
∑s−1
i=0 ki, d]q code with minimum distance:

d ≤ min
i∈[s)

(di). (2.9)

Proof Linearity follows from the de�nition. �e dimension is guaranteed by Condition (2.7), because
then the

∑s−1
i=0 ki rows of the generator matrix of C are linearly independent. �e distance follows

from the fact that every Ci is a subset of C. �

�e following corollary plays an important role for the construction of generalized concatenated codes
(see Subsection 2.3.3).

Corollary 2.15 (Direct Sum Code)
Let s linear [n, ki, di]q codes Ci, ∀i ∈ [s) with:

C0 ⊃ C1 ⊃ · · · ⊃ Cs−1
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2.2 Basics of Linear Block Codes and Cyclic Codes

be given. �en, we have

C0 = (C0\C1)⊕ (C1\C2)⊕ · · · ⊕ Cs−1.

2.2.2 Cyclic Codes
Cyclic [n, k, d]q codes are extensively discussed in the literature and they are well studied. We refer to
[B-PWBJ12, Chapter 7], [B-MS88a, Chapter 7 and 8], [O-Cha98], [B-LC04, Chapter 5], [B-PW72, Chapter
8] and [B-Bos13, Chapter 4].

For a given [n, k, d]q cyclic code C, we denote a codeword by c = (c0 c1 . . . cn−1) ∈ C and
equivalently in polynomial form by c(X) =

∑n−1
i=0 ciX

i in Fq [X]. Let us �rst de�ne a cyclic code
over Fq .

De�nition 2.16 (Cyclic Code)
A linear [n, k, d]q code C is called cyclic over Fq if every cyclic shi� of a codeword in C is also a
codeword, i.e.:

c(X) ∈ C ⇒ X · c(X) mod (Xn − 1) ∈ C. (2.10)

A linear [n, k, d]q cyclic code C is then an ideal in the ring Fq [X]/(Xn − 1) generated by g(X).
�e generator polynomial g(X) has roots in the spli�ing �eld Fql of Xn − 1, where n | (ql − 1).

De�nition 2.17 (Cyclotomic Coset and Minimal Polynomial)
Let three integers r, n, q with gcd(n, q) = 1 and r < n be given. A cyclotomic cosetM〈n〉r,q is de�ned
as:

M
〈n〉
r,q

def
=
{
rqj mod n | j ∈ [nr)

}
, (2.11)

where nr is the smallest integer such that

rqnr ≡ r mod n.

Let α be an n-th root of unity of Fql . �e minimal polynomial m〈n〉r,q (X) of the element αr is given
by:

m
〈n〉
r,q (X)

def
=

∏
i∈M〈n〉r,q

(X − αi), (2.12)

and it is well-known that m〈n〉r,q (X) ∈ Fq [X].

Let α be an n-th root of unity. �e de�ning set D of an [n, k, d]q cyclic code C is de�ned as:

D
def
=
{

0 ≤ i ≤ n− 1 | g(αi) = 0
}
. (2.13)

�erefore, we denote C(D) for a linear cyclic code C with de�ning set D. Clearly, we have

g(X) =
∏
i∈D

(X − αi)
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2 Linear Block Codes over Finite Fields

and deg g(X) = |D| = n− k. Furthermore, we introduce the following short-hand notations for a
given set D and a non-zero integer z:

(D · z)n
def
=
{

(i · z) mod n | i ∈ D
}
, (2.14)

(D + z)n
def
=
{

(i+ z) mod n | i ∈ D
}
, (2.15)

(D + z)
def
=
{

(i+ z) | i ∈ D
}
. (2.16)

Let us prove the Hartmann–Tzeng [A-Har72; A-HT72] lower bound on the minimum distance d of an
[n, k, d]q cyclic code. We present it in polynomial form, which we use later on.

�eorem 2.18 (Hartmann–Tzeng Bound [A-Har72; A-HT72])
Let an [n, k, d]q cyclic code C(D) with de�ning set D be given. Let α denote an n-th root of unity.
Let four integers f , m, δ and ν with m 6= 0 and gcd(n,m) = 1, δ ≥ 2 and ν ≥ 0 be given, such
that: (

{0,m, 2m, . . . , (δ − 2)m}

∪ {1, 1 +m, 1 + 2m, . . . ,1 + (δ − 2)m}

. . .

∪ {ν, ν +m, ν + 2m, . . . , ν + (δ − 2)m}
)
n
⊆ (D + f)n. (2.17)

�en, d ≥ d∗HT
def
= δ + ν.

Proof Equivalently, we can state that for the four parameters f ,m, δ and ν withm 6= 0, the following:

∞∑
i=0

c(αf+im+j)Xi = c(αf+j) + c(αf+m+j)X + c(αf+2m+j)X2 + . . .

≡ 0 mod Xδ−1, ∀j ∈ [ν + 1) (2.18)

holds for all c(X) ∈ C.
Let c(X) ∈ C and let Y = {i0, i1, . . . , iy−1} denote the support of c(X), where y ≥ d holds for

all codewords except the all-zero codeword. We linearly combine these ν + 1 sequences (or equations)
as in (2.18). �e scalar factors for each power series as in (2.18) is λi ∈ Fql for i ∈ [ν + 1). We obtain
from (2.18):

∞∑
i=0

ν∑
j=0

λjc(α
f+im+j)Xi ≡ 0 mod Xδ−1

∞∑
i=0

ν∑
j=0

∑
u∈Y

λj
(
cuα

u(f+im+j)
)
Xi ≡ 0 mod Xδ−1.
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We re-order it according to the codeword coe�cients:

∞∑
i=0

∑
u∈Y

ν∑
j=0

λj
(
cuα

u(f+im+j)
)
Xi =

∞∑
i=0

∑
u∈Y

(
cuα

u(f+im)
ν∑
j=0

αujλj

)
Xi

≡ 0 mod Xδ−1. (2.19)

We want to annihilate the �rst ν terms of ci0 , ci1 , . . . , ciy−1 . From (2.19), the following linear system
of equations with ν + 1 unknowns is obtained:


1 αi0 αi02 · · · αi0ν

1 αi1 αi12 · · · αi1ν

...
...

...
. . .

...
1 αiν αiν2 · · · αiνν

 ·

λ0

λ1

...
λν

 =


0
...
0
1

 , (2.20)

and it is guaranteed to �nd a unique non-zero solution, because the (ν + 1)× (ν + 1) matrix in (2.20)
is a Vandermonde matrix and therefore has full rank.

Let Ỹ def
= Y \ {i0, i1, . . . , iν−1}. �en, we can rewrite (2.19):

∞∑
i=0

∑
u∈Ỹ

cuα
u(f+im)

ν∑
j=0

αujλj

Xi ≡ 0 mod Xδ−1.

�is leads to:

∑
u∈Ỹ

cuαuf
∑ν
j=0 α

ujλj

1− αmuX
≡ 0 mod Xδ−1,

and we can bring it to the least common denominator:

∑
u∈Ỹ

(
cuαuf

∑ν
j=0 α

ujλj
∏

h∈Ỹ \{u}
(1− αmhX)

)
∏
u∈Ỹ

(1− αmuX)
≡ 0 mod Xδ−1,

where the degree of the numerator is smaller than or equal to y − 1− ν and has to be at least δ − 1.
�erefore for y ≥ d, we have:

d− 1− ν ≥ δ − 1,

d ≥ δ + ν. �

Note that for ν = 0, the Hartmann–Tzeng bound d∗HT becomes the Bose–Ray-Chaudhuri–Hocquenghem
(BCH) bound [A-Hoc59; A-BRC60] and is denoted by d∗BCH.
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2.3 Product Codes

2.3.1 Basic Principle
Elias introduced so-called i-iterated codes in [A-Eli54] that coincide for i = 2 with the established
construction of product codes. �e term “product code” was �rst used by Slepian in 1960 [A-Sle60].
Slepian used the Kronecker product to de�ne the generator matrix of a linear product code. �ey are
discussed in [B-MS88a, Chapter 18] and an overview of iterative decoding approaches for product
codes can be found in the survey paper of Kschischang [O-Ksc03]. We use cyclic product codes (see
Subsection 2.3.2) to bound the minimum distance of cyclic codes. In the following, we shortly introduce
basic properties of product codes.

In this subsection, let A denote an [na, ka, da]q code and B denote an [nb, kb, db]q code over
the same �eld Fq . For simplicity, we assume that the �rst ka and kb symbols of a codeword are the
information symbols ofA and B, respectively.

De�nition 2.19 (Product Code)
LetA be an [na, ka, da]q code with a ka × na generator matrix G〈a〉 and let B be an [nb, kb, db]q

code with a kb × nb generator matrix G〈b〉. �e code with the (kakb)× (nanb) generator matrix

G〈b〉 ⊗G〈a〉 =
(
G
〈b〉
i,jG

〈a〉
)j∈[nb)

i∈[kb)

=


G
〈b〉
0,0G

〈a〉 G
〈b〉
0,1G

〈a〉 . . . G
〈b〉
0,nb−1G

〈a〉

G
〈b〉
1,0G

〈a〉 G
〈b〉
1,1G

〈a〉 . . . G
〈b〉
1,nb−1G

〈a〉

...
...

. . .
...

G
〈b〉
kb−1,0G

〈a〉 G
〈b〉
kb−1,1G

〈a〉 . . . G
〈b〉
kb−1,nb−1G

〈a〉

 (2.21)

is called direct product code and is denoted byA⊗ B.

�erefore, the mapping:

enc-pc: Fka·kbq → Fna·nbq

m 7→ enc-pc(m) = m
(
G〈b〉 ⊗G〈a〉

)
de�nes the encoding of a product codeA⊗ B.

Notice that the Kronecker product of two matrices is non-commutative, i.e., in generalG〈b〉⊗G〈a〉 6=
G〈a〉 ⊗G〈b〉, but both matrices generate the same code. If the generator matrix of the product codes
is G〈b〉 ⊗G〈a〉, then the following encoding procedure is applied: �rst the kb rows of the kb × ka
information block are encoded kb times by the code A. A�erwards the na columns are encoded na
times by B (see Figure 2.1). �e second encoding procedure works as follows: �rst, the ka columns are
encoded ka times by B, then the obtained nb rows are encoded nb times byA. �e generator matrix
for the second encoding procedure is G〈a〉 ⊗G〈b〉.

�eorem 2.20 (Distance of a Product Code)
Let two [na, ka, da]q and [nb, kb, db]q codesA and B be given. �e product codeA⊗B over Fq as
in De�nition 2.19 has minimum distance dadb.
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∈ ∈ ∈

B B B

∈ A
∈ A

∈ A

0 1 ka-1 na-1

0

1

kb-1

kb

kb+1

nb-1

Information

Checks on rows

Checks on columns

Checks on checks

Figure 2.1: Illustration of an [nanb, kakb, dadb]q product code A ⊗ B. First the kb rows are encoded by an
[na, ka, da]q codeA and a�erwards the na columns by an [nb, kb, db]q code B.

Proof Let us w.l.o.g. assume that the �rst kb rows were encoded withA and a�erwards the na columns
are encoded with B. �en, each of the �rst kb non-zero rows of the corresponding na × nb matrix has
weight at least da. A�er encoding with B, each non-zero column has weight at least db and therefore
the minimum Hamming distance of the product code is greater than or equal to dadb. To prove the
equality, we have to show that a codeword with (exactly) weight dadb exists. Let ca ∈ A and cb ∈ B
be two codewords with weight da and db respectively. �en cTa cb ∈ Fnb×naq is a codeword of the
product codeA⊗ B and has weight dadb. �

�e simplest two-step decoding procedure decodes �rst the rows (or columns) separately and a�erwards
the columns (or rows). Clearly, the second step fails, if a decoding failure (see Chapter 3 for de�nition)
occurred in the �rst one. �ere exist error pa�erns with weight less than b(dadb−1)/2c that cannot be
corrected by this two-step approach (see one of the �rst works for decoding product codes [A-Abr68]).
Product codes are suited to be decoded by iterative methods and a variety of literature exists on it (see
e.g., [O-Ksc03]).

2.3.2 Cyclic Product Codes
Burton and Weldon [A-BW65] considered cyclic product codes �rst. �eir work was extended by and
Lin and Weldon [A-LW70]. We recall some basic properties of [A-BW65; A-LW70] in the following and
give an example.

�eorem 2.21 (Cyclic Product Code [A-BW65, �eorem I])
Let A be an [na, ka, da]q cyclic code and let B be an [nb, kb, db]q cyclic code. �e product code
C = A ⊗ B is an [nanb, kakb, dadb]q cyclic code provided that the two lengths na and nb are
relatively prime. Let the nb×na matrix M = (Mi,j)

j∈[na)
i∈[nb)

be a codeword of C (as in De�nition 2.19).
�en, the polynomial c(X) =

∑nanb−1
i=0 ciX

i ∈ Fq [X] with

ci = Mi mod nb,i mod na , ∀i ∈ [nanb)

is a codeword of the cyclic product code C, which is an ideal in the ring Fq [X]/(Xnanb − 1).
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Let us outline how the de�ning set DC of C = A⊗ B can be obtained from de�ning set DA and
DB of its component codesA and B.

�eorem 2.22 (De�ning Set of a Cyclic Product Code, [A-LW70, �eorem 4])
LetA and B be an [na, ka, da]q respectively an [nb, kb, db]q cyclic code with de�ning sets DA and
DB and generator polynomials ga(X) and gb(X). For some integers u and v, let una + vnb = 1.
�en, the generator polynomial g(X) of the cyclic product codeA⊗ B is:

g(X) = gcd
(
Xnanb − 1, ga(Xvnb ) · gb(Xuna )

)
. (2.22)

Let BA
def
= (DA · v)na and let AB

def
= (DB · u)nb as de�ned in (2.14). �e de�ning set of the cyclic

product code C is:

DC =


nb−1⋃
i=0

(BA + ina)

 ∪
{
na−1⋃
i=0

(AB + inb)

}
.

Let us consider an example of a binary cyclic product code.

Example 2.23 (Cyclic Product Code)
LetA be the binary [17, 9, 5]2 cyclic code with de�ning set

DA = M
〈3〉
17,2 = {−8 · 3,−4 · 3,−2 · 3,−1 · 3, 1 · 3, 2 · 3, 4 · 3, 8 · 3}

= {1, 2, 4, 8, 9, 13, 15, 16}.

Let B be the binary [3, 2, 2]2 single-parity check code with de�ning set DB = M
〈0〉
3,2 = {0} and let

−1︸︷︷︸
u

·17 + 6︸︷︷︸
v

·3 = 1

be a given Bézout’s relation. �e binary product code A(M
〈3〉
17,2) ⊗ B(M

〈0〉
3,2 ) is illustrated

in the following �gure. �e numbers in the symbols are the indexes of the coe�cients
ci of the univariate polynomial c(X) of the [51, 18, 10]2 cyclic product code as stated in
�eorem 2.21. As previously discussed, we encode �rst the two rows by the [17, 9, 5]2
code A and a�erwards the columns by the binary [3, 2, 2]2 single-parity check code B.

0 18 36 3 21 39 6 24 42 9 27 45 12 30 48 15 34 ∈ [17, 9]2

34 1 19 37 4 22 40 7 25 43 10 28 46 13 31 49 16 ∈ [17, 9]2

17 35 2 20 38 5 23 41 8 26 44 11 29 47 14 32 50

∈ ∈

[3, 2]2 · · · [3, 2]2
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According to �eorem 2.22, we obtain the following de�ning sets:

BA = (DA · 6)17 = {−8,−4,−2,−1, 1, 2, 4, 8} = {1, 2, 4, 8, 9, 13, 15, 16},
AB = (DB · −1)3 = {0}.

A subset of the unions of the sets BA and AB is shown in the following table.

(BA + 2 · 17) ∪BA .. � � 13 � 15 16 � 1 2 � 4 � ..

∪i∈{15,16,1,2}(AB + 3i) .. 0 � � 0 � � 0 � � 0 � � ..

DA⊗B .. 45 � 47 48 49 50 0 1 2 3 4 � ..

�e corresponding subset of the de�ning set of the [51, 18, 10]2 cyclic product code DA⊗B is
shown in the third row. �e dashed line indicates the start of a de�ning set of the [3, 2, 2]2 single-parity
check code B. �e sequence 47, 48, . . . , 4 in the de�ning set DA⊗B of the cyclic product has length
nine and is the longest consecutive one.

According to the BCH bound, the minimum distance of the cyclic product codes is then at least ten,
which is the true minimum distance of the product code. Notice that the BCH bound is not tight for
the minimum distance ofA(M

〈3〉
17,2) and gives four.

2.3.3 Generalized Concatenated Codes
In 1966, Forney introduced concatenated block codes in [O-For66a, Section I.2]. A so-called outer code
is concatenated with an inner code. Furthermore, the model of the super channel, i.e., the concatenation
of the inner encoder, the channel and the inner decoder (see Figure 2.2), was proposed. Basically, a

Super
Channel

Outer Encoder
[na, ka, da]ql A

Inner Encoder
[nb, kb, db]q B

Channel

Inner Decoder
for B

Outer Decoder
forA

m ∈ Fλ×ka
ql

ca ∈ Fλ×na
ql

' Fkb×naq

cb ∈ Fnb×naq

rb ∈ Fnb×naq

ra ∈ Fkb×naq

' Fλ×na
ql

m̃ ∈ Fλ×ka
ql

Figure 2.2: �e super channel in a classic concatenated code scheme with an [na, ka, da]ql outer codeA and an
[nb, kb, db]q inner code B where kb = λ · l.

concatenated code is a product code A ⊗ B, but it is assumed that the [na, ka, da]ql code A—the
row-code —is a code over an extension �eld Fql and the [nb, kb, db]q code B—the column-code—is over
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Fq . Furthermore, we require that
kb = λ · l,

where λ ≥ 0 is an integer (see Figure 2.2). In terms of the product code as in Figure 2.1, �rst the λ rows
of length ka over Fql are encoded byA and the obtained λ codewords ca,0, ca,1, . . . , ca,λ−1 are in
Fna
ql

. Each element ca,i in Fna
ql

can be represented uniquely as l × na matrix over Fq . �e obtained
λ× na code matrix

c〈a〉 = (ca,0 ca,1 . . . ca,λ−1)

in Fλ×na
ql

is equivalent to kb vectors in Fnaq . �ese vectors are then encoded column-wisely by B, the
inner code (or column code). �e obtained nb vectors cb,0, cb,1, . . . , cb,nb−1 ∈ Fnaq are transmi�ed
over the channel, then decoded separately by an inner decoder for B, represented as λ received vectors
ra,0, ra,1, . . . , ra,λ−1 ∈ Fna

ql
and decoded by an outer decoder forA.

De�nition 2.24 (Concatenated Code)
Let an [na, ka, da]ql codeA over Fql with a ka × na generator matrix G〈a〉 and an [nb, kb, db]q

code B over Fq with a kb × nb generator matrix G〈b〉 be given. Let kb = λl. �e kal × na matrix
G
〈a〉 is the ka × na matrix G〈a〉 represented over Fq . �e code with generator matrix

G = G〈b〉 ⊗G
〈a〉 (2.23)

is an [nanb, kaλl, d ≥ dadb]q concatenated code and denoted byA⊗ B.

�e mapping

enc-cc: Fkaλlq → Fnanbq

m 7→ enc-cc(m) = m
(
G〈b〉 ⊗G

〈a〉)
de�nes the encoding of a concatenated code.

Equivalently, we can represent the row-code B over the extension �eld Fql and �rst encode column-
wisely and then row-wisely byA.

�eorem 2.25 (Minimum Distance of a Concatenated Code)
LetA denote the [na, ka, da]ql row code andB denote the [nb, kb, db]q column code of a concatenated
codeA⊗ B as in De�nition 2.24. �e minimum distance ofA⊗ B is:

d ≥ dadb.

Proof �e proof is similar to the �rst part of the proof of �eorem 2.20. Two di�erent codewords ofA
di�er in at least da positions leading to at least db di�erent symbols of the column code B. �

�e counterpart concept of the super channel considers a concatenation of the outer and inner encoder
as one element—the super encoder—and the concatenation of the inner and outer decoder as super
decoder respectively.

Forney’s code concatenation [O-For66a] was generalized by Blokh and Zyablov [A-BZ74; A-ZSB99]
and a non-linear construction was proposed by Zinoviev [A-Zin76]. Generalized code concatenation
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is also referred to as multilevel code concatenation. Dumer gives an introduction in his chapter in
the Handbook of Coding �eory [O-Dum98]. In addition, Lin and Costello [B-LC04, Chapter 15] and
Bossert [B-Bos13, Chapter 9] deal with generalized code concatenation.

We give the de�nition of a generalized concatenated code, because we use it in Chapter 6 to bound
the minimum distance of cyclic codes.

De�nition 2.26 (Generalized Concatenated Code [A-Zin76])
Let s outer (or row) [na, ka,i, da,i]qli codes A0,A1, . . . ,As−1 over Fqli with ka,i × na gener-
ator matrices G〈ai〉 for all i ∈ [s) be given. Let B0,B1, . . . ,Bs−1 denote s inner (or column)
[nb, kb,i, db,i]q codes over Fq for all i ∈ [s). Furthermore let

B0 ⊃ B1 ⊃ · · · ⊃ Bs−1

as in Corollary 2.15 hold. Let G〈bi\bi+1〉 denote the (kb,i − kb,i+1) × n generator matrix of the
code Bi\Bi+1 code for all i ∈ [s− 1). Let the dimensions kb,i − kb,i+1 = λili for all i ∈ [s− 1)
and kb,s−1 = λs−1ls−1.

�e ka,ili × na matrices G〈ai〉 are the corresponding representations of G〈ai〉 in the base �eld
Fq . �en, the code with generator matrix:

G =



G〈b0\b1〉 ⊗G
〈a0〉

G〈b1\b2〉 ⊗G
〈a1〉

...

G〈bs−2\bs−1〉 ⊗G
〈as−2〉

G〈bs−1〉 ⊗G
〈as−1〉


(2.24)

is an [nanb,
∑s−1
i=0 ka,iλili]q generalized concatenated code of order s denoted by(⊕s−2

i=0

(
Ai ⊗ (Bi\Bi+1)

))
⊕ (As−1 ⊗ Bs−1).

�e mapping with G as in (2.24):

enc-gcc: F
∑s−1
i=0 ka,iλili

q → Fnanbq

m 7→ enc-gcc(m) = mG,

de�nes the encoding of a generalized concatenated code. Similar to the code concatenation, every
i-th sub-code can be equivalently formed by representing the generator matrix G〈bi\bi+1〉 over the
corresponding extension �eld Fqli and building the product code �rst column-wisely and then row-
wisely.

�eorem 2.27 (Minimum Distance of a Generalized Concatenated Code)
LetA0,A1, . . . ,As−1 be s [na, ka,i, da,i]qli inner (or row) codes and let B0,B1, . . . ,Bs−1 be s
[nb, kb,i, db,i]q outer (or column) with

B0 ⊃ B1 ⊃ · · · ⊃ Bs−1.
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Let the generalized concatenated code

C =

(
s−2⊕
i=0

(
Ai ⊗ (Bi\Bi+1)

))
⊕
(
As−1 ⊗ Bs−1

)
as in De�nition 2.26. �e minimum distance of C is:

d ≥ min
i∈[s)

(
da,i · db,i

)

Proof A codeword ai ofAi with minimal Hamming weight da,i a�ects a sub-code Bi+1 of Bi having
at least weight db,i.

We refer to [A-ZSB99; O-BGMZ99] and [O-Gri02, Chapter 2] for further information on generalized
concatenated codes and their decoding.

2.4 Generalized Reed–Solomon Codes

2.4.1 Definition and Notation
Delsarte [A-Del75] introduced Generalized Reed–Solomon codes 15 years a�er their initial de�nition by
Reed and Solomon in [A-RS60]. �ey are extensively described in [B-MS88a, Chapter 10.8], [B-Bos98;
B-Bos99, Chapter 3.1] and [B-Rot06, Chapter 5] as well as in [O-PHB98a, Section 8] and [O-Huf98,
Section 2].

Let α0, α1, . . . , αn−1 denote n < q non-zero1 distinct elements of the �nite �eld Fq and let

α = (α0 α1 . . . αn−1).

Let
υ = (υ0 υ1 . . . υn−1)

contain n non-zero (not necessarily distinct) elements of Fq . For some univariate polynomial f(X) ∈
Fq [X], let

eval: Fq [X] → Fnq

f(X) 7→ eval(f(X),υ,α) =
(
υ0f(α0) υ1f(α1) . . . υn−1f(αn−1)

) (2.25)

denote the evaluation of f(X) at all n points αi scaled by υi.

De�nition 2.28 (Generalized RS (GRS) Code)
Let α = (α0 α1 . . . αn−1) consist of n distinct non-zero elements in Fq with n < q and let
υ = (υ0 υ1 . . . υn−1) consist of n non-zero elements in Fq . An [n, k]q GRS code is given by:

GRS(υ,α, k)
def
=
{

eval(f(X),υ,α) : f(X) ∈ Fq [X] and deg f(X) < k
}
. (2.26)

1We restrict ourselves to this case, but in general the set of code locators can contain the zero-element.
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We denote GRS(υ,α, k) in the sense of a function prototype. �e vectors υ and α give indirectly
the length n of the code and the �eld size q. �erefore, the parameter n and q are not explicitly given.

�e elements α0, α1, . . . , αn−1 are also called code locators or support of an GRS code. GRS codes
are Maximum Distance Separable (MDS) codes, i.e., their minimum Hamming distance is d = n− k+ 1.
�erefore, we give only the length n and dimension k as tuple [n, k]q in the context of GRS codes
(instead of [n, k, d]q ).

�e generator matrix G ∈ Fk×nq of an [n, k]q GRS code GRS(υ,α, k) is:

G =


1 1 · · · 1
α0 α1 · · · αn−1

α2
0 α2

1 · · · α2
n−1

...
...

. . .
...

αk−1
0 αk−1

1 · · · αk−1
n−1

 ·

υ0

υ1 0
0 . . .

υn−1

 , (2.27)

and the parity-check matrix H ∈ F(n−k)×n
q is given by:

H =


1 1 · · · 1
α0 α1 · · · αn−1

α2
0 α2

1 · · · α2
n−1

...
...

. . .
...

αn−k−1
0 αn−k−1

1 · · · αn−k−1
n−1

 ·

υ0

υ1 0
0 . . .

υn−1

 . (2.28)

�e elements υ0, υ1, . . . , υn−1 of the parity-check matrix in (2.28) are the so-called column mul-
tipliers of the GRS code GRS(υ,α, k). Since GHT = 0, we can relate the column multipliers
υ0, υ1, . . . , υn−1 and the column multipliers υ0, υ1, . . . , υn−1 of the dual [n, n − k]q GRS code
GRS(υ,α, n− k)⊥ in the following lemma.

Lemma 2.29 (Column Multipliers of the Dual GRS Code)
Let GRS(υ,α, k) be an [n, k]q GRS code. �e dual (see De�nition 2.12) of GRS(υ,α, k) is an
[n, n− k]q GRS code

GRS(υ,α, n− k) = GRS(υ,α, k)⊥

with
υ−1
i = υiLi(αi), ∀i ∈ [n), (2.29)

where Li(X) is as given in (2.2).

Proof �e proof follows an idea of Hu�man’s Chapter 17 in the Handbook of Coding �eory [O-Huf98]
and in the lecture notes of Hall [O-Hal12, Chapter 5].

Let c = eval(f(X),υ,α) be a codeword of the given [n, k]q GRS code GRS(υ,α, k) code and
let c = eval(f(X),υ,α) be a codeword of the dual [n, n − k]q GRS code GRS(υ,α, n − k) as in
De�nition 2.12. �e polynomial f(X) has degree less than k and f(X) has degree less than n − k.
�erefore, the product f(X)f(X) has degree at most n− 2. �e Lagrange interpolation formula (2.3)
for f(X)f(X) gives:

n−1∑
i=0

f(αi)f(αi)
Li(X)

Li(αi)
= f(X)f(X). (2.30)
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We consider the (highest) coe�cient of Xn−1 and for the LHS of (2.30) we have:

n−1∑
i=0

f(αi)f(αi)
1

Li(αi)
=

n−1∑
i=0

υif(αi)f(αi)
1

υiLi(αi)

=

n−1∑
i=0

υif(αi)f(αi)υi

= c · cT .

�e RHS of (2.30) gives zero and therefore c ·cT is zero, too. �e condition of duality is ful�lled (see (2.6)
in the De�nition 2.12 of a dual code). �

We consider some special classes of GRS codes in the following example.

Example 2.30 (Dual of a Primitive GRS Code)
Let υ = (υ0 υ1 . . . υn−1) and letα = (α0 α1 . . . αn−1) be the code locators of an [n = q−1, k]q
primitive GRS code GRS(υ,α, k) over Fq . Let α be a primitive element in Fq and let

αi = αi, ∀i ∈ [n).

We need to calculate explicitly Li(αi) = Li(α
i) as given in (2.29). We obtain from (2.1) and (2.2):

Li(X) =
L(X)

X − αi
=
Xn − 1

X − αi
.

Applying L’Hôpital’s rule leads to:

Li(α
i) =

nαi(n−1)

1
= nα−i.

And for n = q − 1 we get:
Li(α

i) = nα−i = −α−i.

�en, the column multipliers of GRS(υ,α, k) are υi = −αi/υi. It is common to set υi = αi/υi
without the factor −1.

We de�ne normalized GRS codes in the following.

De�nition 2.31 (Normalized GRS Code)
Let the support set α = (α0 α1 . . . αn−1) consist of n distinct non-zero elements in Fq with n < q
and let 1 ∈ Fnq denote the all-one vector. An [n, k]q normalized GRS code is denoted byRS(α, k)

and de�ned byRS(α, k)
def
= GRS(1,α, k). More explicitly:

RS(α, k)
def
=
{

eval(f(X),1,α) : f(X) ∈ Fq [X] and deg f(X) < k
}
. (2.31)

Let us consider the dual of a normalized GRS code.
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2.4 Generalized Reed–Solomon Codes

Example 2.32 (Dual of a Primitive Normalized RS Code)
LetRS(α, k) be an [n = q − 1, k]q primitive RS code over Fq with support set α. Furthermore, we
have αi = αi, ∀i = [n). �e column multipliers of the dual code ofRS(α, k) are:

υi = −αi, ∀i ∈ [n).

�is follows directly from Example 2.30. Notice that the dual of a primitive normalized RS code is not
necessarily a normalized RS code.

We consider cyclic RS codes inter alia in Chapter 6 and therefore de�ne them in the following.

De�nition 2.33 (Conventional/Cyclic RS Code)
Let n be a positive integer with n|(q − 1) and let β denote the primitive element of Fq . �en, the
element:

α = β
q−1
n

is an n-th root of unity of Fq . Let b be a positive integer. �en, an [n, k]q GRS code with support
α = (α0 α1 . . . αn−1), where

αi = αi, ∀i ∈ [n),

and with column multipliers υ = (υ0 υ1 . . . υn−1), where

υi = αi(1−b), ∀i ∈ [n)

is called cyclic RS code and therefore denoted by CRS(q, n, b, k). More explicitly, we have:

CRS(q, n, b, k)
def
=
{

eval(f(X),α,υ) : f(X) ∈ Fq [X], deg f(X) < k
}
.

We denote CRS(q, n, b, k) again in the sense of a function prototype. In contrast to GRS codes,
the �eld size q, the length n is not given by the set of locators. �e characteristic parameter b is given
explicitly.

Let us investigate the cyclic property of a CRS code. According to (2.29), we obtain the following
column multipliers:

υi =
1

υ−1
i Li(αi)

=
1

n

αi

αi(1−b)
=

1

n
αib.

and therefore we have the following (n − k) × n parity-check matrix for an [n, k]q CRS code
CRS(q, n, b, k) :

H = n−1 ·


1 αb · · · α(n−1)b

1 αb+1 · · · α(n−1)(b+1)

...
...

. . .
...

1 αb+n−k−1 · · · α(n−1)(b+n−k−1)

 . (2.32)

We know that for all c ∈ CRS(q, n, b, k):

HcT = 0. (2.33)
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2 Linear Block Codes over Finite Fields

Let us associate for every codeword c = (c0 c1 . . . cn−1) ∈ CRS(q, b, n, k) a univariate polyno-
mial c(X) ∈ Fq [X] with c(X) =

∑n−1
i=0 ciX

i. Due to the special form of H as in (2.32), we can
rewrite (2.33) in polynomial form and obtain:

c ∈ CRS(q, n, b, k) ⇐⇒ c(αj) = 0, ∀j ∈ [b, b+ n− k).

and therefore, the element αb, αb+1, . . . , αb+n−k−1 are the roots of the generator polynomial g(X)
of CRS(q, n, b, k). Our presentation of normalized and cyclic RS codes is very close to the one of
Roth [B-Rot06, Chapter 5].

2.4.2 Interleaved Generalized Reed–Solomon Codes
Interleaved block codes over Fq of interleaving order s are a special case of product codes, where the
column-codeB is the trivial [s, s, 1]q code. We focus on Interleaved RS (IRS) codes. �e existing literature
of Krachkovsky [A-Kra97; I-Kra98; A-Kra03], Bleichenbacher [O-BKY03; A-BKY07] and Schmidt et
al. [A-SSB09] considers interleaved normalized RS codes (as in De�nition 2.31). Analog to them, we
introduce Interleaved GRS (IGRS) codes. We focus on IGRS codes, where each sub-code has the same
support.

De�nition 2.34 (Interleaved GRS (IGRS) Code)
Let k = (k0 k1 . . . ks−1) consist of s integers, where all ki < n. Let υ = (υ0 υ1 . . . υs−1),
where each υi contains n < q non-zero (and not necessarily distinct) elements of Fq and let α0 =
(α0 α1 . . . αn−1) of n distinct non-zero elements in Fq with n < q be given. Let α denote

α = (α0 α0 . . . α0)︸ ︷︷ ︸
s times

.

�en, an [sn,
∑s−1
i=0 ki]q IGRS code IGRS(υ,α,k) of interleaving order s is given by:

IGRS(υ,α0,k) = IGRSD(υ,α,k).

Again in the sense of a function prototype, the length n and the interleaving order s of the IGRS code
are indirectly given by the parameters υ ∈ Fsnq and k ∈ Ns.

IGRS code are called heterogeneous in general and if ki = k, ∀i ∈ [s), they can be called homoge-
neous.

Furthermore, we note that it is possible to extend the De�nition 2.34 to IGRS codes with di�erent
support sets.
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“Basic research is like shooting an arrow into the air and, where it lands,

painting a target.”

Homer Burton Adkins (1892 - 1949)3
Algebraic Decoding Principles for Linear Block
Codes

The decoding of linear block codes is a di�cult task in general, since a native decoding algorithm,
i.e., an exhaustive search, has exponential time complexity. �e de�nition of the decoding problem
is not uni�ed in the literature and many various formulations exists. In this chapter, we describe

elementary decoding principles of linear block codes in Hamming metric. �e re�nement for algebraic
block codes and in particular for GRS codes is outlined.

In a �rst step, we give relevant de�nitions for hard-decision decoding problems in Section 3.1. For
each problem, we identify when a decoder fails. In the second step, the hard-decision decoding problem
is generalized to the case where the channel, in addition to the received vector, outputs information on
the reliability of the received symbol, the so-called so�-information.

Syndrome-based hard- and so�-decision decoding approaches for GRS codes are considered in
Section 3.2. We show in Section 3.3, how the Extended Euclidean Algorithm (EEA), as originally
modi�ed by Sugiyama, Kasahara, Hirasawa and Namekawa [A-SKHN75; A-SKHN76] for Goppa codes,
can be used for error/erasure decoding of GRS codes. �e Fundamental Iterative Algorithm (FIA) of
Feng and Tzeng [A-FT85; A-FT91a] �nds the minimal number of linearly dependent columns (and the
corresponding vanishing linear combination) of a given arbitrary matrix. �e FIA can be suited to
a structured matrix like a Hankel matrix. �e homogeneous linear equations that originates from a
so-called Key Equation, i.e., a polynomial equation that connects algebraically the input and the output
of the unique decoding problem of GRS codes, is of Hankel structure. �erefore, we show the adjustment
of the FIA and prove the complexity reducing initialization rule, which is generalized in Chapter 4
and 5. We illustrate the native and the adjusted FIA, when used for Bounded Minimum Distance (BMD)
decoding of a GRS code.

In Section 3.4, collaborative decoding of IGRS codes, as de�ned in Subsection 2.4.2, is considered.
We de�ne the model of burst-errors and give the set of Key Equations for the collaborative decoding
scheme. �e de�nition of decoding failure is given and the corresponding homogeneous set of equations
is outlined.

We prove the main theorem of the interpolation-based hard-decision list decoding of GRS codes by
Guruswami and Sudan [A-Sud97; A-GS99] in Section 3.5. We show that the Johnson radius is achieved
asymptotically. Furthermore, the extension of Kö�er–Vardy [A-KV03a] to a so�-decision scenario is
discussed. �e comparison of existing realizations for the interpolation step concludes this chapter.
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3 Algebraic Decoding of Linear Block Codes

3.1 Decoding Principles and Complexity Issues

3.1.1 Hard-Decision Decoding of Linear Block Codes and Generalized
Reed–Solomon Codes

�roughout this subsection, let C ⊂ Fnq be a linear [n, k, d]q block code and let c ∈ C. Let e ∈ Fnq
denote the error with ε = wt(e). Let r = c + e denote the received word.

De�nition 3.1 (Bounded Distance Decoder)
A bounded distance decoder for a given linear block code C is a function that returns one codeword or
a decoding failure for a given decoding radius τ and a given received vector r, i.e.:

BDD: (Fnq ,N) → C ∪ {Decoding Failure}
(r, τ) 7→ BDD(r, τ).

�e bounded distance decoder returns one codeword c from a given received vector if

|Bτ (r) ∩ C| = 1, (3.1)

where Bτ (r) is the Hamming ball of radius τ around the vector r, and otherwise it declares a decoding
failure.

With De�nition 3.1, we can easily de�ne a Bounded Minimum Distance (BMD) decoder.

De�nition 3.2 (Bounded Minimum Distance (BMD) Decoder)
A Bounded Minimum Distance (BMD) decoder for an [n, k, d]q block code is a bounded distance
decoder as in De�nition 3.1 with decoding radius τ = b(d− 1)/2c.

If the number of errors ε is at most b(d− 1)/2c, a BMD decoder does not fail. For a bounded distance
decoder with decoding radius τ > b(d− 1)/2c a decoding failure can occur if ε > b(d− 1)/2c and
therefore includes cases where the number of errors is smaller than the decoding radius.

For algebraic block codes, BMD decoding was �rst realized by syndrome-based decoding algorithms.
�e �rst polynomial-time approaches were proposed by Peterson [A-Pet60], Gorenstein–Zierler [A-
GZ61] and Chien [A-Chi64]. Many e�cient BMD decoding algorithms for GRS codes exist. �e di�erent
steps for syndrome-based decoding have quadratic or even sub-quadratic time and space complexity.

We derive the Key Equation for syndrome-based BMD decoding of GRS codes as in De�nition 3.2
from the simplest interpolation-based approach in Section 3.2. It is a special case of the derivation of
the Key Equation for the Sudan principle by Roth and Ruckenstein [I-RR98; A-RR00] and resembles the
ones of Welch–Berlekamp [O-WB86] and Gao [O-Gao03]. We consider the derivation for the case of
erasures, which was not considered in [A-RR00].

A decoder capable to decode GRS codes beyond half the minimum distance is given in Section 4.1 and
was �rst developed by Schmidt, Sidorenko and Bossert [I-SSB06; O-Sch07; A-SSB10]. It is not clear if it
is a bounded distance decoder as in De�nition 3.1 or if it declares in some cases a failure even if (3.1) is
ful�lled. �e Schmidt–Sidorenko–Bossert decoding approach is based on a virtual extension of a GRS
code to an IGRS code. �erefore, we investigate �rst the collaborative decoding principle of IGRS codes
in Section 3.4.
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3.1 Decoding Principles and Complexity Issues

De�nition 3.3 (List Decoder)
A list decoder for a linear block code C is a function that returns a list of up to ` codewords or a
decoding failure for a given received vector r, i.e.:

LD: (Fnq ,N) → {C ∪ ∅}` \ {∅}` ∪ {Decoding Failure}
(r, `) 7→ LD(r, `).

�e decoding radius τ is such that
|Bτ (r) ∩ C| ≤ `,

where Bτ (r) is the Hamming ball of radius τ around the vector r. �e list decoder returns at most `
codewords c0, c1, . . . , c`−1 ∈ C from a given received vector r. If there is no codeword c, such that
d(r, c) ≤ τ holds, i.e., the list is empty, a decoding failure is declared.

Similar to a bounded distance decoder, a list decoder with decoding radius τ > b(d − 1)/2c can
return a decoding failure if ε > b(d− 1)/2c. �e decoding spheres for BMD decoder and a decoder
with higher decoding radius are shown in Figure 3.1.

d

τ0

c0 c1r

(a) BMD decoding spheres for τ0 ≤ b(d− 1)/2c

d

τ

c0 c1r

(b) Decoding spheres for τ > b(d− 1)/2c

Figure 3.1: Comparison of the decoding spheres of BMD (Sub�gure 3.1a) and a decoder with radius larger than
b(d − 1)/2c (Sub�gure 3.1b). In the case of list decoding the illustrated received vector r can be mapped to the
codewords c0 and c1 .

�e principle of list decoding was �rst considered in the work of Elias [O-Eli57] and Wozencra� [O-
Woz58]. �e �rst polynomial-time list decoder for GRS and Algebraic-Geometry codes was developed
by Sudan [A-Sud97], Shokrollahi–Wasserman [A-SW99] and extended by Guruswami–Sudan [A-GS99].
We give an introduction to their interpolation-based principle in Section 3.5.

A nearest-codeword decoder returns the closest codeword, i.e., a codeword with smallest Hamming
distance to the received word (and therefore generalizes the bounded distance decoder of De�nition 3.1).
�e de�nition of a maximum likelihood decoder coincides with the one of a nearest-codeword decoder
in Hamming metric for channels, where an error word with higher Hamming weight is less probable
than one of lower Hamming weight.

Maximum likelihood decoding of linear codes, in general, and RS codes, in particular, is NP-hard [A-
BMVT78; A-GV05]. It remains an open problem to �nd polynomial-time decoding algorithms with near
maximum likelihood performance for GRS as well as for linear block codes.
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3 Algebraic Decoding of Linear Block Codes

3.1.2 So�-Decision Decoding of Generalized Reed–Solomon Codes
So�-decision decoding algorithms process side information to recover the transmi�ed codeword c. �e
source of this additional information can be, e.g., the demodulator in a communication system or the
inner decoder in concatenated coding schemes (see Subsection 2.3.3).

�e �rst so�-decision algorithms for GRS codes used the available side information to map some
received symbols in Fq to so-called erasures (see Figure 3.2 for a q-ary symmetric error-erasure channel).
�e position of an erasure is known but the value not. BMD decoders are able to correct ε errors and ζ

0

β0

...

βq−2

0

β0

...

βq−2

?

p1

1-p1-p2

p2/(q−1)

p1

1-p1-p2

p2/(q−1)

p1

p2/(q−1)

1-p1-p2

Figure 3.2: �e q-ary symmetric error/erasure channel: �e symbols of the q-ary alphabet are mapped to a (q+1)-ary
alphabet with erasure probability p1 and with error probability p2 .

erasures as long as
2ε+ ζ < d.

�e proof is quite simple: the ζ erased positions are neglected and the decoding of a punctured GRS
code with minimum distance d − ζ is performed. Forney [A-For66b] �rst introduced a Generalized
Minimum Distance (GMD) decoder that successively erases the least reliable symbols and performs for
each step error/erasure decoding. �e principle was among others re�ned by Chase [A-Cha72]. An
overview of adaptive single- and multi-trial GMD decoding algorithms can be found in the work of
Senger [O-Sen11]. We outline the syndrome-based algebraic error/erasure decoding of GRS codes in
Section 3.2.

Another so�-decision principle for GRS codes uses the representation of r ∈ Fn
pl

over the base �eld
Fp and applies iterative algorithms (as, e.g., the belief propagation algorithm that is used originally for
the decoding of Low-Density-Parity-Check codes). �e initial work is from Jiang and Narayanan [A-JN04;
A-JN06]. See also the work of Bellorado et al. [A-BKMP10; A-BK10] on this topic.

�e interpolation-based decoding algorithm of Guruswami and Sudan [A-GS99] allows a new so�-
decision variant of decoding GRS codes, the so-called Kö�er–Vardy algorithm. We discuss the Kö�er–
Vardy principle in Section 3.5. Some simulation results can be found in [A-GKKG06] and [I-KV03b].
Furthermore, a variety of publications on an optimal weight calculation [I-Kö06; A-EKM06] and many
suboptimal Kö�er–Vardy-based algorithms exist (see e.g. [B-Che09; A-SLX12; I-NZ13]).
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3.2 Syndrome-Based Decoding of GRS Codes

3.2 Syndrome-Based Decoding of Generalized Reed–Solomon
Codes

3.2.1 Welch–Berlekamp Approach as List-One Decoder and Explicit
Syndromes

In this subsection, we derive the classical Key Equation for syndrome-based error-only decoding of
GRS codes up to half the minimum distance. �e starting point of the derivation is the simplest
interpolation-based approach, known as the Welch–Berlekamp algorithm (see [O-WB86], [A-GS92,
Problem 9], [A-YB94, Section 2], [A-DB95, Section II]) or Gao algorithm [O-Gao03]. We consider the
scenario where an [n, k]q GRS code as in De�nition 2.28 is a�ected by errors (and not by erasures). �e
algorithm is based on the following lemma (see also [B-JH04, Chapter 5.2]).

Lemma 3.4 (Welch–Berlekamp Approach as a List-One Decoder)
Let c = eval(f(X),υ,α) be a codeword of a given [n, k]q GRS code GRS(υ,α, k). Let r =
(r0 r1 . . . rn−1) = c + e be the received word with e ∈ Fnq . Let d(r, c) ≤ b(n− k)/2c. Let

Q(X,Y ) = Q0(X) +Q1(X)Y,

be a non-zero polynomial in Fq [X,Y ] such that:
C1) Q(αi, ri/υi) = 0, ∀i ∈ [n),

C2) degQ0(X) < n− τ ,
degQ1(X) < n− τ − (k − 1).

�en f(X) = −Q0(X)/Q1(X).

Proof We �rst proof the existence of a non-zero solution. From C2 we have n− τ + n− τ − k + 1
unknown coe�cients ofQ(X,Y ) and from C1 n linear constraints onQ(X,Y ). �e system of equation
has a non-zero solution if the number of unknowns is greater than the number of linear equations, i.e.:

2(n− τ)− (k − 1) > n

τ <
n− k + 1

2
.

Any interpolation polynomial Q(X,Y ) satis�es Q(αi, ci/υi) = 0 for at least n− τ positions (due to
C1). But Q(X, f(X)) has degree at most n− τ − 1 (due to C2), so Q(X, f(X)) = 0 and therefore
Q0(X) +Q1(X)f(X) = 0. To prove the uniqueness of f(X), let us consider a second interpolation
polynomial Q′(X,Y ) = Q′0(X) +Q′1(X)Y that satis�es C1 and C2. We have:

Q0(αi) +Q1(αi)
ri

υi
= 0, (3.2)

Q′0(αi) +Q′1(αi)
ri

υi
= 0, (3.3)

for all i ∈ [n). From (3.3), we have that ri/υi = −Q′0(αi)/Q
′
1(αi) and substitute this in (3.2) leads

to:

Q0(αi)Q
′
1(αi) = Q1(αi)Q

′
0(αi),
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3 Algebraic Decoding of Linear Block Codes

for all i ∈ [n). �e degree ofQ0(X)Q′1(X) is at mostn−τ−1+n−τ−k = 2n−2τ−k−1 = n−1
and due to the Lagrange interpolation theorem (see �eorem 2.2) the polynomial is unique, hence
f(X) = −Q0(X)/Q1(X) = −Q′0(X)/Q′1(X). �

Lemma 3.5 (Univariate Reformulation of Welch–Berlekamp)
Let R(X) ∈ Fq [X] with degR(X) < n be the Lagrange interpolation polynomial, such that
R(αi) = ri/υi, ∀i ∈ [n) holds (as in �eorem 2.2). Let L(X) =

∏n−1
i=0 (X − αi) as in (2.1). �en,

the interpolation polynomial Q(X,Y ) satis�es the conditions C1 and C2 of Lemma 3.4 if and only if
there exists a polynomial B(X) ∈ Fq [X] such that:

Q(X,R(X)) = B(X) · L(X), (3.4)

where degB(X) < n− k − τ holds.

Proof From C1 of Lemma 3.4 the univariate polynomialQ(X,R(X)) ∈ Fq [X] vanishes at all n points
αi and thus L(X)|Q(X,R(X)). �e degree of Q(X,R(X)) is at most degQ1(X) + degR(X)−
degL(X) < n− τ − k + 1 + n− 1− n = n− k − τ . �

We introduce the following polynomials:

R(X)
def
= Xn−1R(X−1),

L(X)
def
= XnL(X−1),

Ω(X)
def
= Xn−k−τ−1B(X−1),

Λt(X)
def
= Xn−τ−t(k−1)−1Qt(X

−1), t = 0, 1.

(3.5)

Note that, these polynomials are not necessarily the reciprocal polynomials, because, e.g., for the received
polynomial the degree can be smaller than n− 1. Inverting the order of the coe�cients of (3.4) leads to:

Xn−τ+n−k−1
(
Q0(X−1) +Q1(X−1)R(X−1)

)
= Xn−k−τ−1B(X−1)XnL(X−1).

Inserting the polynomials of (3.5), we obtain:

Xn−kΛ0(X) + Λ1(X) ·R(X) = Ω(X) · L(X).

We can consider the previous equation modulo Xn−k and obtain:

Λ1(X) ·R(X) ≡ Ω(X) · L(X) mod Xn−k. (3.6)

�e formal power series S∞(X) is de�ned as follows:

S∞(X)
def
=
∞∑
i=0

SiX
i =

R(X)

L(X)
. (3.7)

In the following lemma, we give an explicit expression for the syndromes Si ∈ Fq .
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3.2 Syndrome-Based Decoding of GRS Codes

Lemma 3.6 (Explicit Syndromes for GRS Codes)
Let GRS(υ,α, k) be an [n, k]q GRS code and let υ = (υ0 υ1 . . . υn−1) denote its column multi-
pliers as in Lemma (2.29). Let the power series S∞(X) =

∑∞
i=0 SiX

i be de�ned as in (3.7). Let
r = (r0 r1 . . . rn−1) = c + e be the received word in Fnq , where c ∈ GRS(υ,α, k). �en, the
coe�cients of S∞(X) are given by:

Si =

n−1∑
j=0

rjυjα
i
j . (3.8)

Proof �e reciprocal polynomial of R(X) is explicitly:

R(X) = Xn−1 ·R(X−1) = Xn−1
n−1∑
j=0

rj

υj
Lj(αj)

−1
n−1∏
i=0
i 6=j

(X−1 − αi)

=

n−1∑
j=0

rj

υj
Lj(αj)

−1
n−1∏
i=0
i6=j

(1− αiX). (3.9)

With υ−1
j = υjLj(αj) from (2.29) for the column multipliers, we get:

R(X) =

n−1∑
j=0

rj

υj
Lj(αj)

−1
n−1∏
i=0
i6=j

(1− αiX) =

n−1∑
j=0

rjυj

n−1∏
i=0
i6=j

(1− αiX). (3.10)

�e reciprocal of L(X) is:

L(X) = Xn · L(X−1) =

n−1∏
i=0

(1− αiX). (3.11)

�us, with (3.10) and with (3.11), we can write (3.7) more explicitly and obtain:

R(X)

L(X)
=

n−1∑
j=0

rjυj
n−1∏
i=0
i 6=j

(1− αiX)

n−1∏
i=0

(1− αiX)

=

n−1∑
j=0

rjυj

(1− αjX)
. (3.12)

And with the geometric progression, we obtain from (3.12)

R(X)

L(X)
= S∞(X) =

∞∑
i=0

SiX
i =

∞∑
i=0

n−1∑
j=0

rjυj(αjX)i.

and therefore Si =
∑n−1
j=0 rjυjα

i
j , for all i ∈ N. �
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3 Algebraic Decoding of Linear Block Codes

�us, dividing (3.6) by L(X) and with S(X)
def
≡ S∞(X) mod Xn−k , we get

Λ1(X) · S(X) ≡ Ω(X) mod Xn−k, (3.13)

which corresponds exactly to the classical Key Equation. �erefore, we denote Λ1(X) as Λ(X). Given
e ∈ Fnq , the so-called error-locator polynomial Λ(X) is the univariate polynomial in Fq [X] of minimal
degree, such that for all i ∈ supp(e)⇔ Λ(αi) = 0. For wt(e) = τ , the degree of Λ(X) is τ , and the
degree of Ω(X) is smaller than τ .

Let us at this point shortly summarize the classical derivation of the Key Equation based on the
syndrome de�nition similar to the description of [B-Rot06, Chapter 6]. From the (n−k)×n parity-check
matrix H of an [n, k]q GRS code GRS(υ,α, k) as de�ned (2.28), we know that

HcT = 0

for c ∈ GRS(υ,α, k). More explicitly, we have:

n−1∑
j=0

cjυjα
i
j = 0, ∀i ∈ [n− k).

�erefore, the syndrome expression of (3.8) simpli�es to:

Si =

n−1∑
j=0

rjυjα
i
j =

n−1∑
j=0

ejυjα
i
j =

∑
j∈E

ejυjα
i
j ,

where E = supp(e). De�ne the error-locator polynomial Λ(X) and the error-evaluator polynomial
Ω(X) in Fq [X] as follows:

Λ(X)
def
=
∏
j∈E

(1− αjX), (3.14)

Ω(X)
def
=
∑
j∈E

ejυj
∏

i∈E\{j}
(1− αiX), (3.15)

and from (3.12) we get the following relation:

S(X) ≡
n−1∑
j=0

rjυj

(1− αiX)
mod Xn−k

≡
∑
j∈E

ejυj

(1− αiX)
mod Xn−k

≡
Ω(X)

Λ(X)
mod Xn−k.

We consider only the terms of the polynomials with highest degree, when we represent (3.13) in matrix
form. From (3.13) we get the τ homogeneous linear equations of the following form:

n−τ−k∑
i=0

Λi · Sj−i = 0, j ∈ [n− k − τ, n− k). (3.16)
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3.2 Syndrome-Based Decoding of GRS Codes

Let us assume that τ = |E| = b(n− k)/2c. Reverting the coe�cients of (3.16) leads to:

n−τ−k∑
i=0

Λτ−i · Si+j = 0, j ∈ [τ),

⇐⇒


S0 S1 . . . Sτ
S1 S2 . . . Sτ+1

...
...

. . .
...

Sτ−1 Sτ . . . S2τ−1

 ·


Λτ
Λτ−1

...
Λ0

 = 0. (3.17)

�e τ × (τ + 1) syndrome matrix S = (Si+j)
j∈[τ+1)
i∈[τ)

in (3.17) is a Hankel matrix, i.e., Si,j = Si+j

holds for all i ∈ [τ + 1), j ∈ [τ).

3.2.2 Error/Erasure Decoding of Generalized Reed–Solomon Codes
We shortly outline the syndrome-based error/erasure decoding procedure for GRS codes as it was �rst
investigated by Forney [A-For65] and the modi�cation of the EEA, which was introduced by Sugiyama,
Kasahara, Hirasawa and Namekawa [A-SKHN76].

Let ? mark an erasure. For the transmission over an error/erasure channel as in Figure 3.2, the
received vector is denoted by r̃, where each r̃j is in the alphabet Fq ∪ {?}. Let

r̃(X) =

n−1∑
j=0

r̃jX
j

be the received polynomial for the error/erasure case.
Let the set E = {i0, i1, . . . , iε−1} of cardinality |E| = ε be the set of erroneous positions and let

the set Z = {j0, j1, . . . , jζ−1} of cardinality |Z| = ζ be the set of erased positions.
In the �rst step of the decoding process, the erasures in r̃(X) are substituted by an arbitrary element

from Fq . For simplicity, it is common to choose the zero-element. �us, the corresponding erasure
polynomial in Fq [X] is denoted by z(X) =

∑
i∈Z ziX

i, where ci+zi = 0, ∀i ∈ Z . Let the modi�ed
received polynomial r(X) ∈ Fq [X] be

r(X)
def
=

n−1∑
i=0

riX
i = c(X) + e(X) + z(X), (3.18)

where c(X) is a codeword of the GRS codeGRS(υ,α, k) with column multipliersυ = (υ0 υ1 . . . υn−1)
and e(X) =

∑
i∈E eiX

i in Fq [X] is the error polynomial.
�e syndrome polynomial S(X) =

∑n−k−1
i=0 SiX

i ∈ Fq [X] with

(S0 S1 . . . Sn−k−1)T = HrT

is then:

S(X)
def
=

n−k−1∑
i=0

n−1∑
j=0

rjυjα
i
jX

i. (3.19)
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3 Algebraic Decoding of Linear Block Codes

To obtain a Key Equation for error/erasure decoding, we write the syndrome polynomial as power series
expansion:

S(X) ≡
n−1∑
j=0

rjυj

(1− αjX)
mod Xn−k

as in the error-only case. In the case of errors and erasures, we obtain with (3.18) for the received
vector/polynomial:

S(X) ≡
∑

j∈E∪Z

(ej + zj)υj

(1− αjX)
mod Xn−k. (3.20)

Since we know the positions of the erasures, we can compute an erasure-locator polynomial.

De�nition 3.7 (Erasure-Locator Polynomial)
Let GRS(υ,α, k) be an [n, k]q GRS code with column-multipliers υ as in De�nition 2.28. Let the set
Z with |Z| = ζ denote the erasure set. �e erasure-locator polynomial Ψ(X) in Fq [X] is de�ned as:

Ψ(X)
def
=
∏
j∈Z

(1− αjX). (3.21)

Now, we relate the syndrome de�nition to the erasure-locator polynomial Ψ(X). From (3.20) we
obtain:

S(X) ≡
∑

j∈E∪Z

(ej + zj)υj

(1− αjX)
mod Xn−k

≡
∑
j∈E

ejυj

(1− αjX)
+
∑
j∈Z

zjυj

(1− αjX)
mod Xn−k

def
≡

Ω(X)

Λ(X)
+

Φ(X)

Ψ(X)
mod Xn−k, (3.22)

where Ω(X) is the error-evaluator polynomial as de�ned in (3.15) and Φ(X) is the erasure-evaluator
polynomial:

Φ(X)
def
=
∑
j∈Z

zjυj
∏

i∈Z\{j}
(1− αiX) (3.23)

of degree at most ζ − 1. To obtain a “combined” Key Equation, a further modi�cation is necessary. Let
us modify the syndrome polynomial.

Lemma 3.8 (Modi�ed Syndrome Polynomial)
Let S(X) be the syndrome polynomial (3.19) and Φ(X) the erasure-locator polynomial (3.23). Let us
de�ne a modi�ed syndrome polynomial as:

S̃(X)
def
≡ Ψ(X) · S(X) mod Xn−k. (3.24)

�en the highest n− k − ζ coe�cients of S̃(X) depend only on the error polynomial e(X).
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3.2 Syndrome-Based Decoding of GRS Codes

Proof �e statement follows directly from (3.19) and from the degree of Ψ(X). �

Inserting (3.22) into (3.24) yields:

S̃(X) ≡ Ψ(X) · S(X) mod Xn−k

S̃(X) ≡ Ψ(X)

(
Ω(X)

Λ(X)
+

Φ(X)

Ψ(X)

)
mod Xn−k,

S̃(X) ≡
Ψ(X)Ω(X) + Φ(X)Λ(X)

Λ(X)
mod Xn−k,

and with the combined error/erasure evaluator polynomial

Ω̃(X)
def
= Ω(X)Ψ(X) + Φ(X)Λ(X),

we obtain the Key Equation for error/erasure decoding of GRS codes:

S̃(X) ≡
Ω̃(X)

Λ(X)
mod Xn−k, (3.25)

where deg Λ(X) = ε and deg Ω̃(X) ≤ ε + ζ − 1. In the erasure-free case, Ω̃(X) becomes the
error-evaluator polynomial Ω(X), with deg Ω(X) ≤ ε− 1.

3.2.3 Welch–Berlekamp-like Approach for Error/Erasure Decoding
For the interpolation-based decoding approach, the ζ positions are neglected and the reduced inter-
polation problem of n − ζ points is solved. �e evaluation polynomial f(X) of the sent codeword
c = eval(f(X),υ,α) of an [n, k]q GRS code GRS(υ,α, k) is directly obtained and therefore an
error/erasure-evaluation is not necessary.

To obtain the Key Equation (3.25) for error/erasure decoding from the interpolation-based starting
point, we have to modify the derivation as in Lemma 3.4.

Let the reciprocal of the erasure-locator polynomial as in De�nition 3.7 be

Ψ(X)
def
= XζΨ(X−1) =

∏
i∈Z

(X − αi). (3.26)

Let R(X) be the Lagrange polynomial, such that R(αi) = ri/υi for all i ∈ [n). Clearly R(X) has
multiplicity one at all erasure positions and therefore a unique polynomial R−(X) with degree less
than n− ζ − 1 exists, such that:

R(X) = Ψ(X) ·R−(X).

Furthermore, let L−(X) ∈ Fq [X] of degree n − ζ be such that L(X) = Ψ(X)L−(X). �en the
univariate reformulation of Lemma 3.5 becomes:

Q(X,R(X)) = B(X) · L(X),

Q0(X) +Q1(X)Ψ(X)R−(X) = B(X) ·Ψ(X)L−(X),
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3 Algebraic Decoding of Linear Block Codes

with degB(X) < n − k − ε and by reverting the coe�cients as previously and with R−(X)
def
=

Xn−ζ−1R−(X−1) and L−(X)
def
= Xn−ζL−(X−1), we obtain:

Λ0(X)Xn−k + Λ1(X)Ψ(X)R−(X) = B(X) ·Ψ(X)L−(X)

and withS(X) ≡ R−(X)/L−(X) mod Xn−k (that coincides with the syndrome de�nition of (3.19))
we obtain the Key Equation as in (3.25):

Λ1(X)S̃(X) ≡ B(X) ·Ψ(X) mod Xn−k, (3.27)

where the degree of B(X) ·Ψ(X) is less than n− k − ε− 1 + ζ = ε− 1 + ζ and it corresponds to
Ω̃(X) of (3.25). We use the Key Equation (3.27) in Algorithm 3.2 in the next section for error/erasure
decoding of GRS codes with the EEA.

3.3 Decoding Algorithms Based on the Key Equation

3.3.1 Overview
�e Key Equation for syndrome-based decoding of GRS codes can be solved by the well-known
Berlekamp–Massey algorithm [B-Ber68; A-Mas69] or the Sugiyama–Kasahara–Hirasawa–Namekawa
algorithm [A-SKHN75] based on the Extended Euclidean Algorithm (EEA). Several publications discuss
the parallels of these two algorithms (see [A-Dor87; A-JH00; O-AO09], [O-Hey01, Chapter 2]).

We present the Fundamental Iterative Algorithm (FIA) of Feng and Tzeng [A-FT85; A-FT91a], that
can solve a system of homogeneous linear equations. �e FIA generalizes well to a structured system of
linear equations derived from the interpolation-based algorithms of Sudan and Guruswami–Sudan (see
Chapter 4 and 5).

3.3.2 Extended Euclidean Algorithm and Error/Erasure Decoding of
Generalized Reed–Solomon Codes

�e EEA is discussed e.g., in [B-Lip81, Chapter VII], [B-GG03, Chapter 3] and [B-MS88a, Chapter 12 §8].
We present the EEA for the sake of completeness, but do not prove all necessary properties. Algorithm 3.1
is the EEA here for two elements a and b in a Euclidean domain D and the function d denotes the degree
function of D. We initialize the remainders u−1 and u0 with the elements a and b and the coe�cients
si, ti for i = −1, 0.

Algorithm 3.1: (ui−1, si−1, ti−1) = EEA(a, b, crit)

Input: Elements a, b with d(a) > d(b) in a Euclidean Domain, stopping criteria crit
Output: ui−1, si−1, ti−1

Initialize:
(
u−1

u0

)
=

(
a
b

)
and

(
s−1 t−1

s0 t0

)
=

(
1 0
0 1

)
, i = 0

1 while crit do
2 i = i+ 1

3 qi = bui−2/ui−1c

4
(
ui si ti

)
=
(
1 −qi

)
·
(
ui−2 si−2 ti−2

ui−1 si−1 ti−1

)
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3.3 Decoding Algorithms Based on the Key Equation

If the stopping criteria is crit = {ui 6= 0}, then the EEA terminates in the (i+ 1)-th step and returns
the greatest common divisor ui+1 of a and b, i.e.:

ui+1 = si+1a+ ti+1b.

For the proof of correctness of Algorithm 3.1 and the complexity analysis, the interested reader is
referred to the literature (e.g. [B-Lip81, Chapter VII]).

Algorithm 3.2 summarizes the di�erent steps for error/erasure BMD decoding of GRS codes based on
the EEA.

Algorithm 3.2: c(X) = EE-DECODER(r̃(X),υ,α, k)

Input: Received word r̃(X) ∈ Fq [X] ∪ {?}, parameters υ,α, k of GRS(υ,α, k)
Output: Estimated codeword c(X) or Decoding Failure
1 Substitute erasures from r̃(X) by zero to obtain r(X)
2 Save positions of erasures in Z = {i0, i1, . . . , iζ−1}
3 Calculate erasure-polynomial Ψ(X) as in (3.21)
4 Calculate S̃(X) as in (3.24) // Syndrome calculation
5 Set crit = {deg ui < (n− k + ζ)/2− 1}
6 ,Λ(X), Ω̃(X) = EEA

(
Xn−k, S̃(X), crit

)
7 Find all i, where Λ(γi) = 0⇒ E = {i0, i1, . . . , iε−1} // Chien-like search
8 if ε < deg Λ(X) then
9 Declare Decoding Failure

10 else
11 Determine error/erasure values ei0 , ei1 , . . . , eiε−1 and zi0 , zi1 , . . . , ziζ−1

12 e(X)←
∑
i∈E eiX

i and z(X)←
∑
i∈Z ziX

i

13 c(X)← r(X)− e(X)− z(X)

In the following, we shortly outline how to solve (3.25) by the EEA as described in [A-SKHN75; A-
SKHN76] to decode classical Goppa codes. In Line 6 of Algorithm 3.2, the EEA is called and the sign
indicates that the returned polynomial is not needed for further calculations.

�eorem 3.9 (Error/Erasure Decoding, [B-MS88a, Chapter 12, �eorem 16])
Assume ζ < n− k erasures occurred. Let S̃(X) with deg S̃(X) < n− k as in (3.24) be given. If

ε = |E| ≤
⌊
n− k − ζ

2

⌋
,

then there exists a unique solution of (3.25) and Algorithm 3.2 with the input polynomials u−1(X) =

Xn−k and u0(X) = S̃(X) determines the error-locator polynomial Λ(X) and the error/erasure-
evaluation polynomial Ω̃(X) as in (3.14). �e following stopping criteria crit for Algorithm 3.2
guarantees the correct solution:

deg ui−1 ≥
n− k + ζ

2
and deg ui ≤

n− k + ζ

2
− 1. (3.28)

�e determination of the error and erasure values as in Line 11 of Algorithm 3.2 can be done by
Forney’s formula [A-For65]. See Chapter 6 for the Forney formula in the case of error-evaluation for
decoding cyclic codes.
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3.3.3 The Fundamental Iterative Algorithm

In this subsection, we explain the basic idea of the Fundamental Iterative Algorithm (FIA) of Feng and
Tzeng [A-FT85; A-FT91a]. �e outline follows the description of [O-Kö96b, Chapter 4].

Given an arbitrary m × n matrix M = (Mi,j)
j∈[n)
i∈[m)

with n > m over Fq , the FIA outputs
the minimal number of the µ + 1 �rst linearly dependent columns together with the polynomial
T (X) =

∑µ
i=0 TiX

i in Fq [X], with Tµ 6= 0, such that

µ∑
j=0

TjMi,j = 0, i ∈ [m).

�e FIA scans the µ-th column of the matrix M row-wise in the order M0,µ,M1,µ, . . . and uses
previously stored polynomials to update the current polynomial T (X). Let µ be the index of the current
column of matrix M under inspection. Let T (X) =

∑µ
j=0 TjX

j be the current candidate polynomial
and let κ be the greatest row-index such that:

µ∑
j=0

TjMi,j = 0, ∀i ∈ [κ). (3.29)

We denote, where it is appropriate, κ(µ) for the greatest κ in column µ, such that (3.29) holds. In other
words, the coe�cients of the polynomial T (X) give us the vanishing linear combination of the matrix
consisting of the �rst κ rows and the �rst µ+ 1 columns of the matrix M. �e discrepancy

∆ =

µ∑
j=0

TjMκ,j (3.30)

for the next row κ + 1 is non-zero. In the case ∆ 6= 0 and there is no discrepancy ∆κ stored, the
current discrepancy ∆ is stored as ∆κ. �e corresponding auxiliary polynomial is stored as Tκ(X).
�en, the FIA examines a new column µ + 1. Let us de�ne the case, when the FIA examines a new
column.

De�nition 3.10 (Core Discrepancy of FIA)
Let the row κ < (m − 1) and the column µ < n of a m × n matrix M over Fq with n > m be
examined by the FIA. Let the calculated discrepancy as in (3.30) be non-zero and no other non-zero
discrepancy be stored for the row κ. �en, the FIA stores the current discrepancy ∆ as ∆κ, the current
polynomial T (X) as Tκ(X) and examines a new column µ+ 1. We call this case a core discrepancy.

If there exists a previously stored polynomial Tκ(X) and a non-zero discrepancy ∆κ ∈ Fq , which
corresponds to row κ, then the current polynomial T (X) is updated in the following way:

T (X)← T (X)−
∆

∆κ
Tκ(X). (3.31)

�e following lemma proves the proposed update rule (3.31).
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3.3 Decoding Algorithms Based on the Key Equation

Lemma 3.11 (Update Rule of the FIA)
Let the FIA examine a m× n matrix M over Fq and n > m. Let µ < n be the current column of M
under inspection and let κ be maximal such that (3.29) holds. Let Tκ(X) =

∑
i Tκ,iX

i ∈ Fq [X] and
∆κ ∈ Fq be a previously stored connection polynomial and discrepancy for row κ. Let the current
discrepancy ∆ as in (3.30) be non-zero. �en for T (X)

def
= T (X)− ∆

∆κ
Tκ(X):

µ∑
j=0

T jMi,j = 0, ∀i ∈ [κ+ 1)

holds.

Proof �e proof of the above update rule is straightforward see [A-FT91b, Lemma 1]. We have:

µ∑
j=0

T jMi,j =

µ∑
j=0

TjMi,j −
µ∑
j=0

∆

∆κ
Tκ,jMi,j

=


0−

∆

∆κ
· 0, ∀i ∈ [κ),

∆−
∆

∆κ
·∆κ, for i = κ.

�

Lemma 3.12 (Rank and Core Discrepancy of the FIA)
Let a m× n matrix M = (MT

0 MT
1 . . . MT

n−1), where each Mi ∈ Fmq , be examined by the FIA.
Let µ be an integer and µ < n. �e rank of the sub-matrix (MT

0 MT
1 . . . MT

µ ) is equal to the
number of encountered non-zero core discrepancies (as in De�nition 3.10), which the FIA has found
when examining columns 0 to µ of matrix M.

Proof See for instance [A-FT91a, Lemma 2]. Let ∆κ(0),∆κ(1), . . . ,∆κ(µ) be the stored core dis-
crepancies and let Tκ(0)(X), Tκ(1)(X), . . . , Tκ(µ)(X) be the corresponding µ+ 1 stored auxiliary
polynomials, for the rows κ(0), κ(1), . . . , κ(µ) a�er the FIA examined the �rst µ + 1 columns of a
m× n matrix M. Let the µ+ 1 vectors of length µ+ 1 be de�ned as:

Ti
def
= (Ti,0 Ti,1 . . . Ti,κ(i) 0 . . . 0), ∀i ∈ [µ+ 1).

Let the µ+ 1 vectors of length m be de�ned as:

Di
def
=
(
MT

0 MT
1 . . . MT

µ

)
Ti =

(
0 . . . 0 ∆κ(i) ? . . . ?

)T
, i ∈ [µ+ 1),
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where ? ∈ Fq . �en the (µ+ 1)× (µ+ 1) discrepancy matrix is de�ned as:

D
def
= (D0 D1 . . . Dµ) =



0 0 . . . 0
...

... ∆κ(µ)

0 ?
∆κ(0) 0

? ∆κ(1)

...
...

... ?

...
...

? ? . . . ?


. (3.32)

Since all core discrepancies occurred at di�erent rows, the columns of the discrepancy matrix D as
in (3.32) can be re-ordered into lower-triangular form and thus D has rank µ + 1. Equivalently, the
rank of the (µ+ 1)× (µ+ 1) matrix (T0 T1 . . .Tµ) is µ+ 1. From (3.32), we have:

D =
(
MT

0 MT
1 . . . MT

µ

)
(T0 T1 . . .Tµ) ,

and with

rank(D) ≤ min
(

rank
(
MT

0 MT
1 . . . MT

µ

)
, rank (T0 T1 . . .Tµ)

)
,

we conclude that the (µ + 1) × (µ + 1) sub-matrix (MT
0 MT

1 . . . MT
µ ) of M is also of full rank

µ+ 1. �

�eorem 3.13 (Correctness and Complexity)
Let the FIA examine a m × n matrix M with n > m and entries in Fq . If the last row m − 1 of
M is examined, the polynomial Tµ(X) corresponds to a valid linear combination of the �rst µ+ 1
columns of M. �e time complexity of the FIA isO(m3).

Proof �e correctness follows from Lemma 3.12. For the complexity analysis: Each discrepancy
calculation has complexity at mostO(m) and is performed at most m times in each of m columns. �

It is more di�cult to prove that the FIA returns the shortest linear combination (see [A-FT91a, �eorem
1]) and that it can be used to prove the correctness of multi-sequence shi�-register synthesis, especially
of di�erent length (see [O-Sch07, Chapter 4] and [A-SS11, Section 3.3]). We do not use this property and
therefore do not investigate it here.
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3.3 Decoding Algorithms Based on the Key Equation

Algorithm 3.3: T (X) = FIA-ONEHANKEL(S(X))

Input: Syndrome polynomial S(X) ∈ Fq [X] with degS(X) < 2τ ;
Output: Univariate polynomial T (X) ∈ Fq [X];
Data structures:

Column pointer µ ∈ [τ + 1), Row pointer κ ∈ [τ);
Array D of τ entries in Fq , Array A of τ entries in Fq [X];
Variable ∆ ∈ Fq , variable compute ∈ {true, false};

Initialize:
for every i ∈ [τ): D[i]← 0;
µ← 0, κ← 0;
T (X)← 1; compute← false;

1 while κ < τ do
2 if compute then
3 ∆← 〈Xκ · T (X), S(X)〉 // Discrepancy calculation
4 else
5 if κ < 1 then
6 T (X)← Xµ; ∆← Sµ;κ← 0
7 else
8 T (X)← X · T (X); κ← κ− 1

9 compute ← true

10 if ∆ = 0 orD[κ] 6= 0 then
11 if ∆ 6= 0 then
12 T (X)← T (X)− ∆

D[κ]
·A[κ](X) // Update

13 κ← κ+ 1

14 else // Core discrepancy ∆ 6= 0 andD[κ] = 0
15 A[κ](X)← T (X); D[κ]← ∆; µ← µ+ 1
16 compute ← false

In the following, we adjust the FIA to a Hankel matrix denoted by S instead of M. Furthermore, we
re�ne also the dimension of the matrix S to draw easily the connection to a univariate polynomial in
Fq [X]. First, we state the problem in terms of the inner product.

Problem 3.14 (Hankel Matrix System)
Let S = (Si,j)

j∈[τ+1)
i∈[τ)

be a τ × (τ + 1) Hankel matrix with entries Si,j ∈ Fq . Let S(X) =∑2τ−1
i=0 SiX

i be the associated univariate polynomial in Fq [X], such that:

Si,j = Si+j , ∀i ∈ [τ), j ∈ [τ + 1).

We search a non-zero polynomial T (X) ∈ Fq [X] that ful�lls:

〈XκT (X), S(X) 〉 = 0, ∀κ ∈ [τ),

where deg T (X) ≤ τ .

Algorithm 3.3 is the FIA adjusted to a Hankel matrix and it returns a polynomial T (X) solving
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3 Algebraic Decoding of Linear Block Codes

Problem 3.14. Similar to the formulation in Problem 3.14, the discrepancy calculation as in (3.30) for the
FIA can be given in terms of the inner product for the case of a Hankel matrix (see Line 3 of Algorithm 3.3).
�e column pointer µ indexes the column and the row pointer κ indexes the row of the Hankel matrix
S under inspection. �e variable ∆ is used to calculate the current discrepancy according to (3.30) (see
Line 3). �ese values in Fq are stored in array D and the corresponding intermediate polynomials are
stored in the array A in the case of a core discrepancy as in De�nition 3.10.

�e Boolean variable compute ∈ {true, false} in Line 2 splits the FIA into two cases. It becomes
true, when a discrepancy calculation has to be executed. �e polynomial T (X) is updated according
to (3.31) in Line 12. �e value of compute is false, when a new column (see Lines 5-8) is entered and no
computation of the discrepancy has to be executed.

�e initialization in Line 8 of Algorithm 3.3 is (besides the way of calculating the discrepancy) the
main di�erence of the FIA, adjusted to one Hankel matrix S, to the FIA for an arbitrary matrix. In the
more general case of an arbitrary matrix, the row pointer κ would be set to zero when entering a new
column. Due to the Hankel structure of the matrix S, Algorithm 3.3 can start examining the new column
at the (κ− 1)-th row. �e following lemma proves this modi�cation.

Lemma 3.15 (Initialization Rule)
Suppose Algorithm 3.3 examines column µ− 1 of a τ × (τ + 1) Hankel matrix S = (Si,j)

j∈[τ+1)
i∈[τ)

over Fq or equivalent a polynomial S(X) =
∑2τ−1
i=0 SiX

i ∈ Fq [X] with

Si,j = Si+j , ∀i ∈ [τ), j ∈ [τ + 1).

A core discrepancy was obtained in row κ. Let A[κ](X) be the previously stored polynomial for that
row κ, i.e.: 〈

XiA[κ](X), S(X)
〉

=

µ−1∑
j=0

Aj · Si+j = 0, ∀i ∈ [κ).

We can start examining the next column µ of S with the initial value T (X)← X ·A[κ](X) and set
the row pointer to κ← κ− 1.

Proof We have the following relation:〈
XiT (X), S(X)

〉
=
〈
Xi+1A[κ](X), S(X)

〉
=

µ−1∑
j=0

Aj · Si+j+1

= 0, ∀i ∈ [κ− 1). �

�e FIA, adjusted to one Hankel matrix, enters the next column by examining the row κ− 1 instead of
row 0. We summarize the properties of Algorithm 3.3 in the following theorem.

�eorem 3.16 (FIA for One Hankel Matrix)
Given a τ × (τ + 1) Hankel matrix S = (Si,j)

j∈[τ+1)
i∈[τ)

over Fq , or equivalently, the polynomial
S(X) =

∑2τ−1
i=0 SiX

i ∈ Fq [X], such that

Si,j = Si+j , ∀i ∈ [τ), j ∈ [τ + 1).
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3.3 Decoding Algorithms Based on the Key Equation

Algorithm 3.3 outputs the polynomial T (X) =
∑µ
i=0 TiX

i ∈ Fq [X] such that:

〈XκT (X), S(X) 〉 = 0, κ ∈ [τ),

with time complexityO(τ2) in Fq .

Proof �e correctness of Algorithm 3.3 follows from the correctness of the basic (unadjusted) FIA as in
�eorem 3.13 and from the initialization rule as stated in Lemma 3.15. �e proof of the complexity is as
follows. Let the triple (µ, κ, δ) consist of the column pointer µ, row pointer κ and a counter for the
number of core discrepancies δ. We distinguish two events, when Algorithm 3.3 examines a Hankel
matrix S:

1. No core discrepancy: Algorithm 3.3 remains in the same column µ, increases the row pointer κ
and the number of calculated core discrepancies δ remains unchanged. �e triple is updated as
follows:

(µ, κ, δ)← (µ, κ+ 1, δ).

2. Core discrepancy: Algorithm 3.3 enters next column µ+ 1, decreases the row pointer and the
number of calculated core discrepancies is increased. �erefore, the triple becomes:

(µ, κ, δ)← (µ+ 1, κ− 1, δ + 1).

For both cases the sum over the triple µ+ κ+ δ increases only by one (in contrast to the unadjusted
FIA). �e initial value of the triple is (0, 0, 0) and the �nal value is bounded by (τ − 1, τ − 1, τ − 1),
for a τ × (τ + 1) input Hankel matrix. �erefore, the maximal number of iterations of Algorithm 3.3 is
of orderO(τ) +O(τ) +O(τ) = O(τ). Each discrepancy calculation costs at mostO(τ) operations
and therefore the overall time complexity isO(τ2). �

Let us illustrate the discrepancy calculation of Algorithm 3.3, when it is used for BMD decoding of
GRS codes up to b(n − k)/2c errors. �e BMD error correcting radius of a [16, 4]17 GRS code is
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(b) FIA with adaption

Figure 3.3: Illustration of the row pointer κ of the classic FIA (Sub�gure 3.3a) and of the adjusted Algorithm 3.3
(Sub�gure 3.3b), when both algorithms are applied to a 6× 7 Hankel syndrome matrix of a [16, 4]17 GRS code. �e
dots indicate the calculation of a non-zero discrepancy and where an update of the interim polynomial is not possible
(core discrepancy, see De�nition 3.10). �en, both algorithms enter a new column with di�erent initialization of their
row pointers.

b(n − k)/2c = 6. �e syndrome matrix S as in (3.17) for six errors is a 6 × 7 Hankel matrix. To
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3 Algebraic Decoding of Linear Block Codes

illustrate the complexity reduction of the FIA adjusted to a Hankel matrix (compared to the original,
unadjusted FIA), we trace the examined rows for each column in Figure 3.3. Sub-�gure 3.3a shows
the values of the row pointer κ of the FIA without any adaption. �e row pointer κ of the adapted
FIA is traced in Sub-�gure 3.3b. �e points in both �gures indicate the case of a core discrepancy (see
De�nition 3.10).

3.4 Collaborative Decoding of Interleaved Generalized
Reed–Solomon Codes

3.4.1 Error Model
Let s codewords

ct
def
= eval(ft(X),υt,α), ∀t ∈ [s)

be s sub-codewords in Fnq of an IGRS code IGRS(υ,α,k) as in De�nition 2.34. �ey are corrupted
by s error words e0, e1, . . . , es−1 ∈ Fnq of weight wt(et) = εt, ∀t ∈ [s). We denote each received
word by

rt
def
= ct + et = (rt,0 rt,1 . . . rt,n−1), ∀t ∈ [s).

We associate to each received vector rt a polynomial in Fq [X] and it is denoted by

rt(X) =

n−1∑
i=0

rt,iX
i, ∀t ∈ [s),

respectively.
We assume (as usual for interleaved codes) that the channel adds so-called burst errors (see Figure 3.4).

Let
Et

def
= supp(et).

We assume that ε burst errors occurred, i.e., the union of the s sets of error positions

E
def
=

s−1⋃
t=0

Et (3.33)

has cardinality |E| = ε.
Clearly, the error–correction capability of each GRS(υt,α, kt) code is b(n− kt)/2c and successful

unambiguous decoding for an IGRS(υ,α,k) code is possible by sub-code-wise decoding if |Et| ≤
b(n− kt)/2c for all t ∈ [s).

3.4.2 Syndromes and Collaborative Decoding Algorithms
Joint or collaborative decoding of IGRS codes makes use of the special structure of the burst error. In
the �rst step, s syndrome polynomials S0(X), S1(X), . . . , Ss−1(X) ∈ Fq [X] of degree smaller than
n − k0, n − k1, . . . , n − ks−1 are calculated. �e coe�cients of St(X) =

∑n−kt−1
i=0 St,iX

i are
given in Lemma 3.6, i.e.:

St,i =

n−1∑
j=0

rt,jυt,jα
i
j , ∀i ∈ [n− kt), t ∈ [s),
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3.4 Collaborative Decoding of Interleaved GRS Codes

c0,0 c0,1 . . . c0,i−1 c0,i c0,i+1 . . . c0,n−1 ∈ GRS(υ0,α, k0)

c1,0 c1,1 . . . c1,i−1 c1,i c1,i+1 . . . c1,n−1 ∈ GRS(υ1,α, k1)

...
...

cs−1,0 cs−1,1 . . . cs−1,i−1 cs−1,i cs−1,i+1 . . . cs−1,n−1 ∈ GRS(υs−1,α, ks−1)

Burst
Error ei

Burst
Error e1

Figure 3.4: Illustration of an IGRS code IGRS(υ,α,k), where each sub-code is a GRS code GRS(υt,α, kt),
for all t ∈ [s). Two burst errors e1, ei ∈ Fsq occurred at position 1 and i. �e second burst error ei has one zero
component ei,1 .

whereυ0,υ1, . . . ,υs−1 are the column multipliers of the GRS codesGRS(υ0,α, k0),GRS(υ1,α, k1),
. . . , GRS(υs−1,α, ks−1). �ese syndromes provide s Key Equations with one common error-locator
polynomial Λ(X):

Λ(X) · St(X) ≡ Ωt(X) mod Xn−kt , ∀t ∈ [s),

where deg Ωt(X) < ε for all t ∈ [s). Similar to (3.16), let us consider only the terms with degree at
least ε:

ε∑
i=0

Λi · St,j−i = 0, ∀j ∈ [ε, n− kt), t ∈ [s). (3.34)

�e combined system of linear equations, where the coe�cients of Λ(X) = Λ0 + Λ1X + · · ·+ ΛεXε

are the unknowns, and the s Hankel matrices:

S
〈t〉
i,j

def
= St,i+j , ∀i ∈ [n− kt − ε− 1), j ∈ [ε+ 1), t ∈ [s),

or more explicitly:

S〈t〉 =


St,0 St,1 . . . St,ε
St,1 St,2 . . . St,ε+1

...
...

. . .
...

St,n−kt−ε−1 St,n−kt−ε . . . St,n−kt−1

 , ∀t ∈ [s), (3.35)

can be wri�en as follows: 
S〈0〉

S〈1〉

...

S〈s−1〉

 ·


Λε
...

Λ1

Λ0

 = 0. (3.36)
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3 Algebraic Decoding of Linear Block Codes

A unique solution of (3.36) up to a scalar factor of the system of linear homogeneous equations as in (3.36)
is given if the nullity of the syndrome matrix

(
S〈0〉 S〈1〉 . . . S〈s−1〉)T is one, i.e., the di�erence

between the number of columns and the rank of
(
S〈0〉 S〈1〉 . . . S〈s−1〉)T .

�e decoding fails if for a given ε, the syndrome matrix
(
S〈0〉,S〈1〉, . . . ,S〈s−1〉)T has not full rank.

Furthermore, we assume that all syndrome sequences are long enough to form the required rows of
length ε+ 1 of the matrices S〈0〉,S〈1〉, . . . ,S〈s−1〉 as in (3.35). We obtain for the maximal decoding
radius:

ε+ 1− rank(S) = 1

s−1∑
t=0

(n− kt − ε) = ε

sn−
s−1∑
t=0

kt = (s+ 1)ε (3.37)

⌊
s

s+ 1

(
n−

1

s

s−1∑
t=0

kt

)⌋
= ε.

We refer to [A-Kra03, �eorem 2] for further informations.
An e�cient solution of the system of equations (3.36) can be obtained by multi-sequence shi�-register

synthesis as proposed by Schmidt and Sidorenko [I-SS06] or by a generalized EEA [A-FT89; A-ZW11].

3.5 Interpolation-Based Decoding of Generalized Reed–Solomon
Codes

3.5.1 Overview

We describe the Guruswami–Sudan principle for GRS codes, as originally proposed in [A-GS99] for
GRS and Algebraic-Geometry codes as an generalization of Sudan’s original work [A-Sud97]. �e
recently published books of Roth [B-Rot06, Chapter 9], Moon [B-Moo05, Chapter 7.6], Justesen and
Høholdt [B-JH04, Chapter 12] and Kabatiansky et al. [B-KKS05, Chapter 4.5] cover the Guruswami–Sudan
procedure extensively. Furthermore, the survey papers of McEliece [I-McE03] and Augot [A-Aug04]
give a substantial introduction to the Guruswami–Sudan principle for decoding GRS codes.

We give the main theorem of the interpolation step of Guruswami–Sudan in the case where all the
points have same multiplicity m. Furthermore, we prove that the decoding radius of Guruswami–Sudan
reaches the Johnson bound asymptotically.

A modi�cation of the Guruswami–Sudan principle allows a new so�-decision variant for decoding GRS
codes which is known as Kö�er–Vardy algorithm [A-KV03a]. We give the basic idea in Subsection 3.5.3.
Recently, Kö�er and Vardy presented a generalization of the complexity-reduction technique called
re-encoding [A-KMV11]. We describe the re-encoding technique in Chapter 5.

In Sub-section 3.5.4 we summarize some existing realizations for Guruswami–Sudan and Kö�er–Vardy
and compare them.
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3.5 Interpolation-Based Decoding of GRS Codes

3.5.2 The Guruswami–Sudan Principle

We introduce the notations of the Guruswami–Sudan algorithm that are extensively used in Chapter 4
and Chapter 5.

Let us state the main theorem for the interpolation step of Guruswami–Sudan for GRS codes.

�eorem 3.17 (Guruswami–Sudan for GRS Codes [A-GS99, �eorem 8])
Let c = eval(f(X),υ,α) be a codeword of a given [n, k]q GRS code GRS(υ,α, k) over Fq . Let the
positive integers τ , m and ` be given. Let r be the received word. Let

Q(X,Y ) = Q0(X) +Q1(X)Y + · · ·+Q`(X)Y `,

be a polynomial in Fq [X,Y ] such that:
C1) Q[a,b](αi, ri/υi) = 0, ∀i ∈ [n) and ∀a, b with a+ b < m,

C2) wdeg1,k-1Q(X,Y ) < m(n− τ).
�en (Y − f(X))|Q(X,Y ).

Proof �e interpolation polynomial Q(X,Y ) satis�es Q[a,b](αi, ci/υi) = 0 for a+ b < m and for
at least n − τ positions (due to C1). According to Corollary 2.7 the polynomial (X − αi)m divides
Q(X + αi, Y + f(αi)) for these n − τ error-free positions. However, Q(X, f(X)) has degree at
most m(n− τ)− 1, so Q(X, f(X)) = 0 and therefore (Y − f(X))|Q(X,Y ). �

�ere exists a non-zero interpolation polynomial Q(X,Y ) if the number of unknowns, i.e., the number
of monomials of Q(X,Y ), is larger than the number of constraints, i.e.,

(m+1
2

)
n linear homogeneous

equation by Condition C1 of �eorem 3.17. From C2, we know that the number of monomials of each
univariate polynomial Qt(X) ∈ Fq [X] for all t ∈ [`+ 1) is at most:

Nt
def
= m(n− τ)− t(k − 1), ∀t ∈ [`+ 1). (3.38)

�e list size is the integer ` such that N` > 0 and N`+1 ≤ 0. �erefore, we can state the following
bound on the list size:

` <
m(n− τ)

k − 1
≤ `+ 1. (3.39)

Let us calculate an upper bound on the decoding radius τ of �eorem 3.17 (that coincides asymptotically
with the Johnson radius [A-Joh62; A-Bas65]).

Lemma 3.18 (�e Guruswami–Sudan Decoding Radius)
Let GRS(υ,α, k) be an [n, k]q GRS code. For a given non-zero multiplicitym, there exists a non-zero
interpolation polynomial Q(X,Y ) as in �eorem 3.17, if the normalized decoding radius is:

τ

n
< 1−

√
(k − 1)

n

(
1 +

1

m

)
.
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3 Algebraic Decoding of Linear Block Codes

Proof �e number of unknowns, i.e., the number of coe�cients of an interpolation polynomialQ(X,Y )
according to �eorem 3.17 is:

∑̀
t=0

Nt =
∑̀
t=0

m(n− τ)− t(k − 1)

= (`+ 1)

(
m(n− τ)−

1

2
`(k − 1)

)
.

With (3.39), we obtain:

∑̀
t=0

Nt >
m(n− τ)

k − 1

(
m(n− τ)−

1

2
m(n− τ)

)

≥
(m(n− τ))2

2(k − 1)
. (3.40)

�e number of unknowns as bounded in (3.40) should be greater than the constraints onQ(X,Y ) given
by �eorem 3.17:

(m(n− τ))2

2(k − 1)
>

1

2
m(m+ 1)n

⇔ (m(n− τ))2 > m(m+ 1)n(k − 1)

⇔ (n− τ)2 > n(k − 1)

(
1 +

1

m

)
. (3.41)

Dividing (3.41) by n2 leads to:(
1−

τ

n

)2
>

(k − 1)

n

(
1 +

1

m

)
,

τ

n
< 1−

√
(k − 1)

n

(
1 +

1

m

)
. (3.42)

�

Figure 3.5 shows the normalized decoding radius τ/n for the asymptotic case (n→∞) as a function of
the code-rate R = k/n. For m = 1 we obtain for τ/n with (3.42) for the normalized decoding radius
1−
√

2R and for m→∞ we get 1−
√
R.

3.5.3 So�-Decision Decoding Based on Guruswami–Sudan
�e interpolation-based decoding approach of Guruswami–Sudan can be modi�ed for the case where
so�-information is available. Guruswami and Sudan mentioned this as “weighted curve ��ing” (see [A-
GS99, Subsection III-D] and [B-Gur04, Subsection 6.2.10]). Kö�er and Vardy provided a framework to
translate the so�-information given by the channel into algebraic interpolation constraints. �erefore,
the so�-decision variant based on the Guruswami–Sudan approach is referenced to as Kö�er–Vardy
algorithm and was �rst mentioned in the preprint [O-KV00] and published in [A-KV03a].

We focus on the resulting algebraic decoding problem and state it as a generalization of �eorem 3.17.
Let α = (α0 α1 . . . αn−1) be the support of a given GRS code and let β0, β1, . . . , βq−1 denote the q
distinct elements of Fq .
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3.5 Interpolation-Based Decoding of GRS Codes
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BMD: 1− R
Sudan: 1−

√
2R

GS: 1−
√
R

Figure 3.5: Illustration of the normalized decoding radius τ/n for BMD, Sudan (m = 1) and Guruswami–Sudan
(m→∞) decoding as a function of the code-rate k/n for the asymptotic case (n→∞).

In the scenario of so�-information for Kö�er–Vardy a q × n reliability matrix P = (Pi,j)
j∈[n)
i∈[q)

,
where Pi,j is a real number between 0 and 1, is given, e.g., by the Euclidean distance of the received
symbol to other points of the modulation scheme or by the inner code in a concatenated code, instead of
“simply” a received vector with error/erasures. �e entry Pi,j gives the probability of the j-th symbol
to be equal βi ∈ Fq .

We assume that a q × n multiplicity matrix m = (mi,j)
j∈[n)
i∈[q)

with mi,j ∈ N approximates the
q×n reliability matrix given by the channel model. A native algorithm to obtain the multiplicity matrix
from the channel probabilities is e.g., [A-KV03a, Algorithm A].

�e number of constraints on the bivariate interpolation polynomial is based on the multiplicity
matrix and we de�ne the cost of such a matrix.

De�nition 3.19 (Cost of a Multiplicity Matrix)
Given a q × n matrix m = (mi,j)

j∈[n)
i∈[q)

with entries mi,j ∈ N, the cost of m is de�ned as:

Cost(m)
def
=

1

2

q−1∑
i=0

n−1∑
j=0

mi,j(mi,j + 1). (3.43)

To measure the “distance” of a received word to a codeword we introduce the score of a vector, when
a multiplicity matrix is given.
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3 Algebraic Decoding of Linear Block Codes

De�nition 3.20 (Score of a Vector)
Let β0, β1, . . . , βq−1 be the distinct elements of Fq and let v = (v0 v1 . . . vn−1) ∈ Fnq . �e score
with respect to a given q × n multiplicity matrix m = (mi,j)

j∈[n)
i∈[q)

is de�ned as:

Scorem(v)
def
=

∑
i,j:

vj=βi

mi,j . (3.44)

De�nition 3.20 is equivalent to the inner product 〈m, |v| 〉, where |v| is the q×nmatrix (vi,j)
j∈[n)
i∈[q)

,
where vi,j = 1 if vj = βi, and vi,j = 0 otherwise (see [A-KV03a, De�nition 4]).

�eorem 3.21 (Kötter–Vardy for GRS Codes [A-KV03a, �eorem 3])
Let c = eval(f(X),υ,α) be a codeword of a given [n, k]q GRS code GRS(υ,α, k) and let a q × n
multiplicity matrix m = (mi,j)

j∈[n)
i∈[q)

with mi,j ∈ N be given. Let

Q(X,Y ) = Q0(X) +Q1(X)Y + · · ·+Q`(X)Y `,

be a polynomial in Fq [X,Y ] such that:
C1) Q[a,b](αj , βi/υj) = 0, ∀i ∈ [q), ∀j ∈ [n) and ∀a, b with a+ b < mi,j ,

C2) wdeg1,k-1 Q(X,Y ) < δ + 1.
If Scorem(c) > δ, then (Y − f(X))|Q(X,Y ).

Proof Let j(i) be such that ci = βj(i)/υi for all i ∈ [n). �e interpolation polynomial Q(X,Y )

satis�es Q[a,b](αi, ci/υi) = 0 for a + b < mj(i),i for all i ∈ [n) (due to C1) and according to
Corollary 2.7 the polynomial (X − αi)mj(i),i divides Q(X + αi, Y + f(αi)). But Q(X, f(X)) has
degree at most δ (due to C2), so Q(X, f(X)) = 0 and therefore (Y − f(X))|Q(X,Y ). �

Such a non-zero interpolation polynomial exists if the number of coe�cients ofQ(X,Y ), i.e.,
∑`
t=0 δ+

1− t(k − 1), is greater than Cost(m) and similar by Lemma 3.18 a maximal radius in case of given
multiplicities mi,j can be derived (see [B-Gur04, Corollary 3.7, Section 3.4]).

With
Nt

def
= δ + 1− t(k − 1),

we get similar to �eorem 3.17 that ` is the largest integer, such that N` > 0 and N`+1 ≤ 0. �erefore,
we have:

N` > 0 ⇔ ` =

⌊
δ + 1

k − 1

⌋
.

Algorithm 3.4 is the interpolation-based so�-decision decoding variant for decoding an [n, k]q GRS
code GRS(υ,α, k) with given multiplicity matrix m. We initialize the two sets L and L̃, which store
the list of possible outputs, to zero. �e �rst calculations (Line 1-3) are as derived in �eorem 3.21. A�er
the interpolation step, we determine all roots of the polynomialQ(X,Y ) of the form Y − f(X), where
deg f(X) < k in Line 4 of Algorithm 3.4 and store them in L̃. It is guaranteed that |L̃| ≤ `.
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3.5 Interpolation-Based Decoding of GRS Codes

Algorithm 3.4: L = KOETTERVARDY(m,υ,α, k)

Input: Parameters of GRS(υ,α, k), Multiplicity matrix m = (mi,j)
j∈[n)
i∈[q)

∈ Nq×n

Output: List L = {f0(X), f1(X), . . . } or Decoding Failure
Initialize: L̃← ∅, L← ∅
1 Calculate Cost(m) according to (3.43)
2 Calculate minimal δ, such that

∑b(δ+1)/(k−1)c
t=0 Nt > Cost(m)

3 Determine Q(X,Y ) with wdeg1,k-1 < δ + 1 and
Q[a,b](αj , βi/υj) = 0, ∀j ∈ [n), ∀i ∈ [q) and ∀a, b with a+ b < mi,j

4 Find all roots (Y − fi(X))|Q(X,Y ) with deg fi(X) < k and store them in L̃
5 for f(X) ∈ L̃ do
6 if Scorem(eval(f(X),υ,α)) > δ then
7 L← L ∪ {f(X)}

8 if L = ∅ then
9 Declare Decoding Failure

�e true number of valid codewords is |L| and we need to check the Score in Line 5 and Line 7 of
Algorithm 3.4. �is corresponds to the veri�cation if

d
(

eval(f(X),υ,α), r
)
≤ τ

in the hard-decision scenario.

3.5.4 Some Realizations of Guruswami–Sudan for Generalized
Reed–Solomon Codes

Table 3.1 shows some existing realization of the interpolation step for list decoding GRS codes.
�e properties of the interpolation step are compared with the original work of Sudan [A-Sud97]

and Guruswami–Sudan [A-GS99]. �e second column indicates if the interpolation multiplicity can be
greater than one. When an adaption to di�erent multiplicities was considered, it is marked in column
three of Table 3.1. In the last column of Table 3.1, it is listed if the proposed algorithm takes advantage
of a speed-up based on the Divide-and-Conquer principle.

Alekhnovich [I-Ale02; A-Ale05] uses a module minimization technique and applied it to the case of
di�erent multiplicities for each interpolation point.

Trifonov [A-Tri07; A-Tri10] proposed in his original work a fast iterative interpolation algorithm
for Guruswami–Sudan GRS decoding, where all points have the same multiplicity. Trifonov give the
complexity of his approach, but not how it is decreased by considering the re-encoding transformation.

Wu [A-Wu08] uses the output of the Berlekamp–Massey algorithm and formulates a trivariate
interpolation problem. For high-rate GRS codes a reduction of the necessary interpolation multiplicity,
compared to the original interpolation problem, is achieved.

Beelen et al. [A-BHNW13; O-Nie13] modi�ed Wu’s approach and used the Extended Euclidean
Algorithm as preliminary step for the rational interpolation. Lee-O’Sullivan [I-LO06; A-LO09] formulated
the interpolation problem in terms of Gröbner bases.

Beelen and Brander [O-BH08b; A-BB10b] combined the idea of using a Key Equation (based on [O-
BH08a; I-AZ08]) and Alekhnovich’s algorithm.
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3 Algebraic Decoding of Linear Block Codes

Reference Multiplicity So� Re-Encoding Divide &
m > 1 Conquer

Sudan No No No No[A-Sud97]
Guruswami–Sudan Yes (Yes) No No[A-GS99]
Alekhnovich Yes Yes No Yes[I-Ale02; A-Ale05]
Trifonov Yes No Yes No[A-Tri07; A-Tri10]
Wu Yes No No No[A-Wu08]
Beelen–Brander Yes No No Yes[O-BH08b; A-BB10b]
Lee–O’Sullivan Yes Yes No Yes[I-LO06; A-LO09]
Kö�er–Vardy Yes Yes Yes No[A-KMV11]
Roth–Ruckenstein No No No No[A-RR00]

Table 3.1: Some realizations of the interpolation step of Guruswami–Sudan for decoding GRS codes and their properties.

Kö�er and Vardy developed in [A-KMV11] (and in forgoing conference publications [I-KV03b; I-
KMVA03]) the re-encoding transformation for the scenario of di�erent multiplicities as in �eorem 3.21.
In [A-KMV11] Kö�er and Vardy adapted the so-called Kö�er algorithm [O-Kö96b; A-Kö96a], which
solves the original bivariate interpolation, for the reduced problem a�er re-encoding (see Chapter 5).

Kuijper et al. [A-KP04; A-AK11] investigated the Guruswami–Sudan principle for GRS codes from a
system-theoretic point of view and gave a Gröbner basis description.

Roth and Ruckenstein proposed in [A-RR00; O-Ruc01], besides a fast root-�nding procedure, an
Extended Key Equation for the interpolation step of multiplicity m = 1.

In Chapter 4, we generalize the idea of a Key Equation of Roth and Ruckenstein [A-RR00] to the
case of higher multiplicity. We outline the univariate reformulation in Chapter 5 for the so�-decision
scenario as in �eorem 3.21 and a�er the re-encoding transformation technique of [A-KMV11].
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“Mathematicians are a sort of Frenchmen; if you talk to them, they translate it

into their own language, and then it is immediately something quite di�erent.”

Johann Wolfgang v. Goethe (1749–1832)4
Key Equations for Decoding of Generalized
Reed–Solomon Codes Beyond Half the Minimum
Distance

We consider two di�erent approaches capable to decode GRS codes beyond half the minimum
distance in this chapter. In Section 4.1, a decoding principle for GRS codes, based on a virtual

extension to an IGRS codes, is introduced. Schmidt, Sidorenko and Bossert [I-SSB06; O-Sch07;
A-SSB10] proposed this approach in 2006 reaching a similar (but not equal) decoding radius for RS codes
as Sudan’s interpolation-based list decoding approach [A-Sud97] (multiplicitym > 1). Our contribution
covers the generalization of the algorithm to GRS codes and a small modi�cation of the bound on the
failure probability (see [I-ZWB12a]).

Further, we modify the derivation of Roth and Ruckenstein [I-RR98; A-RR00; O-Ruc01] for Sudan’s
approach in Section 4.2. Roth–Ruckenstein denoted their result “Extended Key Equation”. �is modi�ed
reformulation gives us a proper basis for a comparison to our reformulation of the Guruswami–Sudan
approach. We present the derivation of the Key Equation for m = 1 and outline the adaption of the FIA
for the corresponding non-reduced (n instead of τ ) set of homogeneous equations.

Section 4.3 covers the univariate reformulation of the interpolation-based Guruswami–Sudan approach
and the adjustment of the FIA to the obtained structured system of homogeneous linear equations. �e
univariate reformulation was �rst published in [I-AZ08] and the adjustment of the FIA in [I-ZGB09],
summarized in the journal version [A-ZGA11]. In addition, we give further directions in Section 4.4 in
order to �nd an explicit syndrome expression of the Guruswami–Sudan interpolation problem.

Beelen and Høholdt in [O-BH08a; I-HB08] used a reformulation of the Guruswami–Sudan interpolation
problem in terms of matrices. A fast algorithm, which uses Alekhnovich’s [I-Ale02; A-Ale05] module
interpretation, was given by Beelen and Brander [A-BB10b; A-BB10a; O-Bra10].

We give open research problems in Section 4.5 and conclude this chapter.

4.1 A Unique Decoding Approach for Generalized Reed–Solomon
Codes Beyond Half the Minimum Distance

4.1.1 Basic Idea
In 2006, Schmidt, Sidorenko and Bossert [I-SSB06; O-Sch07; A-SSB10] proposed an decoding approach
for RS codes with a similar decoding radius as Sudan’s interpolation-based list decoding approach. We
recall this idea in Subsection 4.1.2 and describe it for the slightly more general case of GRS codes. Clearly,
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

the presentation for GRS codes does not give new insights, but we use it as basis to draw the connection
to the univariate reformulation of Sudan’s principle by Roth and Ruckenstein in Section 4.2, which leads
to the same explicit expression for the syndromes. Furthermore, we provide a slight generalization of
the bound of the failure probability of [I-SSB06; A-SSB10].

4.1.2 Virtual Extension of a Generalized Reed–Solomon Code to an
Interleaved Generalized Reed–Solomon Code

We generalize the scheme of [I-SSB06; A-SSB10] to the case of IGRS codes (see De�nition 2.34) and
give the corresponding parameters. Let GRS(υ,α, k) be an [n, k]q GRS code with code-rateR < 1/3.
We show that GRS(υ,α, k) can be virtually extended to an IGRS code of interleaving order s > 1.
�is speci�c IGRS code is denoted by VGRS(υ,α, k, s), where υ and α are the original parameters
of the given GRS code GRS(υ,α, k) and the parameter s denotes the order of (virtual) interleaving.
Let a vector c = (c0 c1 . . . cn−1) ∈ Fnq and an integer t > 1 be given. Let the following mapping be
de�ned as:

pow : (Fnq ,N) → Fnq(
(c0 c1 . . . cn−1), t

)
7→ pow

(
(c0 c1 . . . cn−1), t

)
= (ct0 c

t
1 . . . c

t
n−1).

�e virtual IGRS code is obtained as follows.

De�nition 4.1 (Virtual Extension to an IGRS code)
Let c = eval(f(X),υ0,α) be a codeword of an [n, k]q GRS codeGRS(υ0,α, k) as in De�nition 2.28.
Let s ∈ N with s > 1 be a given (virtual) interleaving order. �en, the VGRS code is:

VGRS(υ0,α, k, s)
def
=




c
pow (c, 2)

...
pow (c, s)

 : c ∈ GRS(υ0,α, k)

 .

We derive the parameters of the speci�c IGRS code. Let υ = (υ0 υ1 . . . υs−1) ∈ Fsnq with

υt
def
= pow (υ, t+ 1) , ∀t ∈ [1, s).

Let k = (k0 k1 . . . ks−1) with

kt
def
= (t+ 1)(k − 1) + 1, ∀t ∈ [s).

�e virtually extended GRS code VGRS(υ0,α, k, s) of extension order s can be seen as a sub-code
of an IGRS code, i.e.:

VGRS(υ0,α, k, s) ⊆ IGRS(υ0,α,k),

or more explicitly:

VGRS(υ0,α, k, s) =




eval(f(X),υ0,α)
eval(f(X)2,υ1,α)

...
eval(f(X)s,υs−1,α)

 :
f(X) ∈ Fq [X]

deg f(X)t < kt
∀t ∈ [s)

 .
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4.1 A Unique Decoding Approach for GRS Codes

�e following theorem shows the relation between the scalar factors υ0,υ1, . . . ,υs−1 ∈ Fnq and
the column multipliers υ0,υ1, . . . ,υs−1 ∈ Fnq of the s GRS sub-codes of the virtually created IGRS
code.

�eorem 4.2 (Column Multipliers)
Let GRS(υ,α, k) be an [n, k]q GRS code as in De�nition 2.28 and let υ = (υ0 υ1 . . . υn−1) be the
column multipliers as in Lemma 2.29.

Furthermore, let VGRS(υ,α, k, s) be the IGRS code as in De�nition 4.1. �en, the column
multipliers of the t-th [n, t(k − 1) + 1]q sub-code GRS(υt,α, t(k − 1) + 1) are given by

υt,i =
υi

(υi)t
, ∀i ∈ [n), t ∈ [1, s). (4.1)

Proof We have for the t-th sub-codeGRS(υt,α, kt) of the virtually created IGRS codeVGRS(υ,α, k, s)
that υt,i = (υi)

t+1, ∀i ∈ [n), t ∈ [1, s). With Lemma 2.29 we get:

υt,i =
(
υt,iLi(αi)

)−1

(υi)
t+1 =

(
υiLi(αi)

)−(t+1)

⇔

υt,i =
(υi)

t+1Li(αi)
t+1

Li(αi)
= (υi)(υi)

tLi(αi)
t =

υi

(υi)t
. �

4.1.3 Decoding and Failure Probability
We consider the error-only unique decoding beyond half the minimum distance in the following. Let
r = c + e, where c = eval(f(X),υ,α) is a codeword of an [n, k]q GRS code GRS(υ,α, k) and
e ∈ Fnq . Let an integer s with s > 1 be given and we assume that (t + 1)(k − 1) + 1 < n for all
t ∈ [s). Let

rt
def
= pow (r, t+ 1) , ∀t ∈ [s), (4.2)

and e0
def
= e. With (4.2), we obtain a virtually created

1. burst error in Fsq and
2. a VIRS code as de�ned in De�nition 4.1 of interleaving order s.

More explicitly, we have with rt−1 = (rt−1,0 rt−1,1 . . . rt−1,n−1), where each component can be
decomposed as follows:

rt−1,i = rti

= (ci + ei)
t

= cti + et−1,i, ∀i ∈ [n), ∀t ∈ [1, s+ 1),

where:

et−1,i
def
=

t∑
j=1

ct−ji

(
t
j

)
eji , ∀i ∈ [n),∀t ∈ [1, s+ 1). (4.3)
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

�e virtual created error et−1,i is zero if ei is zero for all t ∈ [2, s + 1) and for all i ∈ [n) . �e
virtual burst error is (e0,i e1,i . . . es−1,i)

T ∈ Fsq . Note that e0,i 6= 0 does not imply that et,i 6= 0
for t ∈ [1, s). �e virtual burst error can be used to increase the error-correcting capability of a
given low-rate GRS codes (see [I-SSB06; A-SSB10]). �e decoding radius of a virtual created IGRS code
VGRS(υ,α, k, s) is the same as in [A-SSB10, Equation (10)] for RS codes. Let ε = wt(e) = |E| and
let:

k
def
=

1

s

s−1∑
t=0

kt =
1

s

s−1∑
t=0

(
(t+ 1)(k − 1) + 1

)
=

(k − 1)(s+ 1)

2
+ 1.

We obtain from (3.37) a maximal decoding radius:

τVGRS
def
=

⌊
s

s+ 1

(
n− k

)⌋
, (4.4)

where we choose s such that τVGRS is maximized (for detailed analysis see [A-SSB10]).
We obtain s Key Equations as in (3.13) with a common error-locator polynomial:

Λ(X) · St(X) ≡ Ωt(X) mod Xn−kt , ∀t ∈ [s), (4.5)

where deg Ωt(X) < ε holds for all t ∈ [s). �e syndromes are:

St,i =

n−1∑
j=0

rt+1
j

υj

(υj)t
αij , ∀t ∈ [s), i ∈ [n− kt). (4.6)

Let the s (n− kt − ε)× ε Hankel matrices be:

S〈t〉 =
(
S
〈t〉
i,j

)j∈[ε)

i∈[n−kt−ε)
=
(
St,i+j

)j∈[ε)

i∈[n−kt−ε)
, ∀t ∈ [s). (4.7)

Let
S

def
= (S〈0〉 S〈1〉 . . . S〈s−1〉)T

be the s(n− k − ε)× ε syndrome matrix, where each sub-matrix S〈i〉 is an (n− ki − ε)× ε Hankel
matrix as de�ned in (4.7).

We search a unique solution for the error-locator polynomial Λ(X) of the virtually extended GRS
code. �erefore, a decoding failure is declared if the system of equations (3.36) has more than one
solution. In the following, we derive an upper bound on the failure probability for s = 2, which is the
same as for the virtual extension of the RS codes used in [A-SSB10] and therefore independent of the
column multipliers of the GRS code. We consider the corresponding heterogeneous system of equation
with ε unknowns for the analysis of the failure probability.

We bound the probability that the s(n− k − ε)× ε syndrome matrix S does not have full rank ε
and denote the failure probability, if ε errors occurred, by:

Pf (ε) ≤ P
{

(rank(S) < ε)
∣∣ (|E| = ε)

}
.

Let us recall [A-SSB10, �eorem 3] as an upper bound on the failure probability for virtual interleaving
order s = 2.
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4.1 A Unique Decoding Approach for GRS Codes

�eorem 4.3 (Upper Bound on the Failure Probability [A-SSB10, �eorem 3])
Let GRS(υ,α, k) be virtually extended to an IGRS code VGRS(υ,α, k, s) of extension order s = 2
as in De�nition 4.1.

Let a codeword of a given [n, k]q GRS code GRS(υ,α, k) code be corrupted by an error of weight
ε ≤ τVGRS, where τVGRS is as in (4.4) for s = 2.

For decoding we solve the system of equations from (3.36). �e probability for a decoding failure is
upper bounded by:

Pf (ε) ≤
(

q

q − 1
+

1

q

)ε
·
q−3(τVGRS−ε)

q − 1
.

Proof As in the proof of [A-SSB10, �eorem 3], this is equivalent to the case that there exists a non-zero
vector u ∈ Fεq , such that

∃ u 6= 0 : S〈t〉 · uT = 0, ∀t ∈ [s). (4.8)
Each syndrome matrix can be decomposed into �ve matrices (in [A-SSB10], the decomposition consists
only of four matrices):

S〈t〉 = H〈t〉 · υt · F〈t〉 ·D ·V, ∀t ∈ [s),

where D and V are the same full-rank ε× ε matrices as in [A-SSB10, Proof of �eorem 3] and

H〈t〉 =



1 1 · · · 1
αj0 αj1 · · · αjε−1

α2
j0

α2
j1

· · · α2
jε−1

...
...

. . .
...

αn−kt−ε−1
j0

αn−kt−ε−1
j1

· · · αn−kt−ε−1
jε−1

 , ∀t ∈ [s),

υt = diag
(
υt,j0 , υt,j1 , . . . , υt,jε−1

)
, ∀t ∈ [s),

F〈t〉 = diag
(
et,j0 , et,j1 , . . . , et,jε−1

)
, ∀t ∈ [s),

where et,jν is as in (4.3). Since υt and F〈t〉 are both diagonal matrices, υtF〈t〉 = F〈t〉υt. �e matrices
υt, D, V are nonsingular and there is a one-to-one mapping from u to vt, where vTt = υt ·D ·V ·uT .
Hence, (4.8) is equivalent to

∃ vt 6= 0 : H〈t〉 · F〈t〉 · vTt = 0, ∀t ∈ [s). (4.9)
�

�is is similar to [A-SSB10, Proof of �eorem 3, Equation (22)] and using Lemma 4.4 for arbitrary q,
which is an extension of [A-SSB10, Lemma 4] to arbitrary �elds, the rest of the proof is analog.

Lemma 4.4 (Independence for q-ary �elds)
Let v, e, c be three non-zero elements in Fq . �en, the set

V =

{(
v · e
v · e2

)
: v, e ∈ F∗q

}
,

with e2 = 2c · e+ e2, forms the set of all full weight vectors of length two, i.e.:

V =
{
v ∈ F2

q : wt(v) = 2
}

=
(
F∗q
)2
.
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Proof It is su�cient to show that all (q − 1)2 possible vectors v ∈ V are pairwise di�erent. For any
�xed c ∈ F∗q , consider two vectors v,v ∈ V , and assume that v = v, then

v · e = v · e, (4.10)
v · e2 = v · e2. (4.11)

Dividing (4.11) by (4.10) yields:
e2

e
=
e2

e

2c · e+ e2

e
=

2c · e+ e2

e
.

�erefore, 2c+ e = 2c+ e and hence, e = e. Inserting this into (4.10), we obtain v = v. �us, for any
c, two di�erent pairs (v, e) 6= (v, e) always result in two di�erent vectors v,v. �

�us, the upper bound on the failure probability is independent of the column multipliers and in
particular independent of using GRS codes or the normalized RS codes from [A-SSB10].

4.2 Key Equation for the Sudan Principle

4.2.1 Modified Univariate Reformulation
In this section, we recall parts of the work of Roth and Ruckenstein [I-RR98; A-RR00; O-Ruc01] for
the interpolation step of the Sudan [A-Sud97] principle, i.e., a special case of �eorem 3.17 where
the interpolation multiplicity m = 1. We present here a slightly modi�ed version of [A-RR00], to
see the generalization of our reformulation of the Guruswami–Sudan case, where the interpolation
multiplicity is m > 1. As in �eorem 3.17, let c = eval(f(X),υ,α) be a codeword of an [n, k]q GRS
code GRS(υ,α, k) and let r = c + e be the received vector. �e aimed decoding radius is denoted by
τ and the corresponding list size is `.

Similar to Lemma 3.4 for BMD decoding, Roth and Ruckenstein [A-RR00] proved the following.

Lemma 4.5 (Univariate Reformulation of Sudan [A-RR00, Lemma 3.1])
Let R(X) ∈ Fq [X] be the Lagrange interpolation polynomial, such that R(αi) = ri/υi, ∀i ∈ [n)

(as in �eorem 2.2) with degR(X) < n. Let L(X) =
∏n−1
i=0 (X − αi) as in (2.1).

For given parameters n, k, `, τ , the bivariate interpolation polynomial

Q(X,Y ) =
∑̀
t=0

Qt(X)Y t

satis�es Conditions C1 and C2 of �eorem 3.17 for a multiplicity m = 1 if and only if there exists a
univariate polynomial B(X) ∈ Fq [X] of degree smaller than `(n− k)− τ , such that

Q(X,R(X)) = B(X) · L(X). (4.12)

For the proof see [A-RR00, Lemma 3.1] or the proof of �eorem 4.10 for m = 1. We modify the
reformulation in the following. Let as in (3.38) for m = 1:

Nt
def
= n− τ − t(k − 1), ∀t ∈ [`+ 1). (4.13)
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4.2 Key Equation for Sudan

De�ne the polynomials as:

R(X)
def
= Xn−1R(X−1),

L(X)
def
= XnL(X−1) =

n−1∏
i=0

(1− αiX),

B(X)
def
= X`(n−k)−τ−1B(X−1),

Λt(X)
def
= XNt−1Qt(X

−1), ∀t ∈ [`+ 1).

Note that, these polynomials are not necessarily the reciprocal polynomials, because, e.g., for the received
polynomial the degree can be smaller than n− 1.

Reverting the coe�cients of both sides of (4.12) leads to:

Xn−τ+`(n−k)−1
∑̀
t=0

Qt(X
−1)R(X−1)t = Xn−τ+`(n−k)−1B(X−1)L(X−1) (4.14)

and inserting R(X),Λ0(X),Λ1(X), . . . ,Λ`(X), L(X) and B(X) into (4.14) gives us (as in [A-
RR00]): ∑̀

t=0

Λt(X)X(`−t)(n−k)R(X)t = B(X) · L(X). (4.15)

Let the polynomials Ut(X) and Wt(X) in Fq [X] be such that:

R(X)t = Ut(X)L(X) +Wt(X), ∀t ∈ [1, `+ 1), (4.16)

where Wt(X) is the remainder of the division of R(X)t by L(X) and has degree smaller than n.
Reverting (4.16) leads to:

Xt(n−1)R(X−1)t =
(
Xn−1R(X−1)

)t
= R(X)t = Ut(X)L(X) +X(t−1)(n−1)W t(X), (4.17)

where:

Ut(X) = Xt(n−1)−nUt(X
−1), ∀t ∈ [1, `+ 1), (4.18)

W t(X) = Xn−1Wt(X
−1), ∀t ∈ [1, `+ 1). (4.19)

Now let the `+ 1 formal power series S∞0 (X), S∞1 (X), . . . , S∞` (X) be de�ned as:

S∞t (X)
def
=

W t(X)

L(X)
, ∀t ∈ [1, `+ 1), (4.20)

S∞0 (X)
def
=

Xn−1

L(X)
. (4.21)

Clearly S∞0 (X) does not depend on the received word.
�e de�nition of S∞1 (X), S∞2 (X), . . . , S∞` (X) is equivalent to the one of [A-RR00]. In the follow-

ing, we state the de�nition of the Sudan syndromes (compared to [A-RR00, Proposition 4.1.]), which we
need to solve the full system of n homogeneous linear equations.
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Lemma 4.6 (Modi�ed Syndromes for Sudan Reformulation)
Let GRS(υ,α, k) be an [n, k]q GRS code and let υ = (υ0 υ1 . . . υn−1) denote its column multipli-
ers as in De�nition 2.28. Let the ` power series

S∞t (X) =

∞∑
i=0

St,iX
i, ∀t ∈ [1, `+ 1)

be de�ned as in (4.20). Let r = (r0 r1 . . . rn−1) = c + e be the received word in Fnq , where
c ∈ GRS(υ,α, k). �en, the syndrome coe�cients are given by:

St,i =

n−1∑
j=0

rtj
υj

υt−1
j

αij , ∀i ∈ [n+Nt), t ∈ [1, `+ 1). (4.22)

Proof From (4.16) we have
R(αj)

t = rtj = Wt(αj), ∀j ∈ [n), ∀t ∈ [1, `+ 1).

and for the reciprocal ofWt(X), we obtain similar to (3.9) by standard univariate Lagrange interpolation
as in (2.1) the following explicit expression:

W t(X) =

n−1∑
j=0

(
rj

υj

)t
Lj(αj)

−1
n−1∏
i=0
i6=j

(1− αiX).

�us, the explicit form of the formal power series de�ned in (4.20) is

S∞t (X) =
∞∑
i=0

St,iX
i =

W t(X)

L(X)

=

n−1∑
j=0

(
rj
υj

)t
Lj(αj)

−1
∏n−1
i=0
i 6=j

(1− αiX)∏n−1
j=0 (1− αjX)

=
∞∑
i=0

n−1∑
j=0

(
rj

υj

)t
Lj(αj)

−1αijX
i,

and with (2.29), that is

St,i =

n−1∑
j=0

rtj
υj

υt−1
j

αij , ∀t ∈ [1, `+ 1). �

�e syndromes are exactly the same as the ones for the virtually created IGRS code as in (4.6).
Inserting (4.16), (4.20) and (4.21) into (4.15) leads to:

Λ0(X)X`(n−k)−(n−1)S∞0 (X)L(X)

+
∑̀
t=1

Λt(X)X(`−t)(n−k)
(
Ut(X)L(X) +X(t−1)(n−1)S∞t (X)L(X)

)
≡ B(X) · L(X) mod Xn−τ+`(n−k).
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4.2 Key Equation for Sudan

Simplifying, we obtain:

Λ0(X)X`(n−k)−(n−1)S∞0 (X)+
∑̀
t=1

Λt(X)X(`−t)(n−k)X(t−1)(n−1)S∞t (X)

≡ Ω̃(X) mod Xn−τ+`(n−k), (4.23)

where

Ω̃(X) = B(X)−
∑̀
t=1

Λt(X)X(`−t)(n−k)Ut(X) (4.24)

has degree smaller than Nt + (`− t)(n− k) + t(n− 1)− n = `(n− k)− τ . Instead of dividing by
X(`−1)(n−k) (as in [A-RR00]) we divide (4.23) by X`(n−k)−(n−1) and with:

(`− t)(n− k) + (t− 1)(n− 1) = `(n− k)− (n− 1) + t(k − 1),

we obtain:

Λ0(X)S0(X) +
∑̀
t=1

Λt(X)Xt(k−1)St(X) ≡ Ω(X) mod X2n−τ−1, (4.25)

where deg Ω(X) < n− τ − 1.
We omit the in�nity indexes for the syndrome polynomials, since we bound their degrees toNt+n by

De�nition 4.6. Let us draw the connection to the Extended Key Equation of Roth–Ruckenstein [A-RR00,
Equation (24)] at this point. Let us omit the n− τ highest terms of (4.25) and thus consider the equation
modulo Xn−1. �en Λ0(X)S0(X) disappears, because from (4.21) we know that Λ0(X)S0(X) is a
multiple of Xn−1.

Both sides of (4.25) are divisible by Xk−1 and we obtain [A-RR00, Equation (24)]:

∑̀
t=1

Λt(X)X(t−1)(k−1)St(X) ≡ Ω′(X) mod Xn−k, (4.26)

with deg Ω′(X) < n− τ − 1− (k − 1) = n− k − τ .
Let us go back to the full system (4.25). We consider the terms of degree higher than n− τ of (4.25)

and we obtain the following n homogeneous linear equations.

N0−1∑
i=0

Λ0,i ·S0,−i+j+
∑̀
t=1

Nt−1∑
i=0

Λt,i ·St,−t(k−1)−i+j = 0, ∀j ∈ [n−τ−1, 2n−τ−1) (4.27)

Reverting back to the originals univariate polynomials Qt(X), we obtain the following system:

N0−1∑
i=0

Q0,i · S0,i+j +
∑̀
t=1

Nt−1∑
i=0

Qt,i · St,i+j = 0, ∀j ∈ [n). (4.28)

With Qt
def
= (Qt,0, Qt,1, . . . , Qt,Nt−1)T for t ∈ [`+ 1) and with `+ 1 Hankel matrices:

S〈t〉
def
=
(
S
〈t〉
i,j

)j∈[Nt)

i∈[n)
=
(
St,i+j

)j∈[Nt)

i∈[n)
, ∀t ∈ [`+ 1),
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

we can write (4.28) in the following matrix form:

(
S〈0〉 S〈1〉 · · · S〈`〉

)
·


Q0

Q1

...
Q`

 = 0. (4.29)

In the next subsection, we describe how the FIA can be adapted to a horizontal band of `+ 1 Hankel
matrices as the homogeneous system of equations (4.29).

4.2.2 Adjustment of the Fundamental Iterative Algorithm

�e FIA can directly be applied to the n×
∑`
t=0Nt matrix

(
S〈0〉 S〈1〉 · · · S〈`〉

)
of (4.29), but if we

want to take advantage of the Hankel structure we have to scan the columns of
(
S〈0〉 S〈1〉 · · · S〈`〉

)
in a manner given by the weighted degree requirement of the interpolation problem. Let k be a positive
integer and let ≺Hk denote the ordering for the pairs {(ν, µ) | ν ∈ [`+ 1) and µ ∈ N} given by:

(ν, µ) ≺Hk (ν, µ) ⇐⇒

 ν + µ(k − 1) < ν + µ(k − 1)
or
ν + µ(k − 1) = ν + µ(k − 1) and µ < µ.

(4.30)

�e pair that immediately follows (ν, µ) with respect to the order de�ned by ≺Hk is denoted by
succ(≺Hk , (ν, µ)). �e n×

∑`
t=0Nt syndrome matrix of (4.29) is more explicitly:(

S〈0〉 S〈1〉 · · · S〈`〉
)

=(
S
〈0〉,T
0 S

〈0〉,T
1 · · · S〈0〉,TN0−1 S

〈1〉,T
0 S

〈1〉,T
1 · · · S〈1〉,TN1−1 · · ·S

〈`〉,T
0 S

〈`〉,T
1 · · · S〈`〉,TN`−1

)
,

where S
〈t〉
i is in Fnq for all t ∈ [`+ 1) and i ∈ [Nt). �e columns S〈t〉,Ti are reordered according to

≺Hk−1. �e pair (ν, µ) indexes the µ-th column of ν-th sub-matrix S
〈ν〉,T
µ . More explicitly, we obtain

the following reordered matrix:

S′
def
=
(
S
〈0〉,T
0 S

〈0〉,T
1 · · · S〈0〉,Tk−1 S

〈1〉,T
0 S

〈0〉,T
k S

〈1〉,T
1 S

〈0〉,T
k+1 · · · S

〈`−1〉,T
N`−1−1 S

〈`〉,T
N`−1

)
. (4.31)

�e corresponding homogeneous system of equations can now be wri�en in terms of the inner product
for bivariate polynomials (see (2.5) for the de�nition of the inner product).

Problem 4.7 (Reformulated Sudan Interpolation Problem)
Let the ` + 1 syndrome polynomials S0(X), S1(X), . . . , S`(X) ∈ Fq [X] be given as in (4.20)
and (4.21). Let

S(X,Y )
def
=
∑̀
t=0

St(X)Y t

be the corresponding bivariate syndrome polynomial in Fq [X,Y ]. We search a non-zero bivariate
polynomial T (X,Y ) ∈ Fq [X,Y ] such that:

〈Xκ · T (X,Y ), S(X,Y ) 〉 = 0, ∀κ ∈ [n).
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4.2 Key Equation for Sudan

Hence, the bivariate polynomial T (X,Y ) is a valid interpolation polynomial according to �eo-
rem 3.17 for an interpolation multiplicity m = 1. Each polynomial St(X), as in (4.15), has degree
smaller than Nt + n− 1. To index the columns of the rearranged n×

∑`
t=0 Nt matrix S′, let

Cν,µ
def
=
∣∣∣{(t, i) | (t, i) ≺Hk−1 (ν, µ)

}∣∣∣. (4.32)

be the �rst columns of S′ up to the column of S〈ν〉,Tµ .
Algorithm 4.1 is the modi�ed FIA for solving Problem 4.7. In contrast to the original Roth–Ruckenstein [A-

RR00] adaption we consider all n homogeneous linear equations (instead of τ ), because we need to
consider also the full system of equations for the Guruswami–Sudan case.

Algorithm 4.1: T (X,Y ) = HORIZONTAL-HANKEL(S(X,Y ))

Input: Bivariate polynomial S(X,Y ) =
∑`
t=0 St(X)Y t, with

degSt(X) < Nt + n− 1
Output: Bivariate polynomial T (X,Y )

Data structures:
Bivariate polynomial T (X,Y ) =

∑`
t=0 Tt(X)Y t ∈ Fq [X,Y ]

`+ 1 column pointers (ν, µ), where ν ∈ [`+ 1) and µ ∈ [Nν)
Row pointer κ ∈ [n), Array R of `+ 1 entries in [n)
Array D of n entries in Fq , Array A of n entries in Fq [X,Y ]
Variable ∆ ∈ Fq , variable compute ∈ {true, false}

Initialize:
for every i ∈ [n): D[i]← 0, for every i ∈ [`+ 1): R[i]← 0
(ν, µ)← (0, 0), κ← 0, compute← false

1 while κ < n do
2 if compute then
3 ∆← 〈Xκ · T (X,Y ), S(X,Y )〉 // Discrepancy calculation
4 else
5 if R[ν] < 1 then
6 T (X,Y )← Y ν ·Xµ; ∆← Sν,µ; κ← 0
7 else
8 T (X,Y )← X ·A[R[ν]](X,Y ); ∆← D[R[ν]]; κ← R[ν]− 1

9 compute ← true

10 if ∆ = 0 orD[κ] 6= 0 then
11 if ∆ 6= 0 then
12 T (X,Y )← T (X,Y )− ∆

D[κ]
·A[κ](X,Y ) // Update

13 κ← κ+ 1

14 else // Core discrepancy ∆ 6= 0 andD[κ] = 0
15 A[κ](X,Y )← T (X,Y ); D[κ]← ∆; R[ν]← κ

16 (ν, µ)← succ(≺Hk , (ν, µ))
17 compute ← false

Let the matrix
(
S〈0〉 S〈1〉 · · · S〈`〉

)
be the n×

∑`
t=0 Nt Sudan syndrome matrix, where each entry

S
〈t〉
i,j equals the coe�cient St,i+j of the polynomial St(X). �e column pointer is given by (ν, µ) and
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

indexes the column S
〈ν〉,T
µ in ≺Hk−1-ordering. �is is equivalent to scanning the rearranged matrix

S′ as in (4.31) column a�er column (see Line 16 of Algorithm 4.1). �e core discrepancy value for row
κ is stored in array D as D[κ], and the corresponding intermediate bivariate polynomial is stored in
array A as A[κ]. �e discrepancy calculation and the update rule (see (3.30) and (3.31) for the basic FIA)
are adapted to the bivariate case (see Line 12 of Algorithm 4.1). For each sub-matrix S〈ν〉, the previous
value of the row pointer κ is stored in an array R as R[ν]. We prove the initialization rule for the FIA
solving Problem 4.7 when entering a new column of in the following lemma.

Lemma 4.8 (Initialization Rule)
Assume Algorithm 4.1 examined column (ν, µ − 1) of the n ×

∑`
t=0 Nt input matrix S =(

S〈0〉 S〈1〉 · · · S〈`〉
)
, i.e., the (µ − 1)-th column of the sub-matrix S〈ν〉, as de�ned in (4.29) or

equivalently the bivariate polynomial S(X,Y ) =
∑`
t=0 St(X)Y t. Assume that a core discrepancy

was obtained in row κν and the row index was stored in the array R[ν] (see Line 15). �e vanishing
linear combination was stored in the array A[κν ](X,Y )← T (X,Y ), i.e.:

〈
XiA[κν ](X,Y ), S(X,Y )

〉
=

ν∑
t=0

µ−1∑
j=0

At,j · St,i+j = 0, ∀i ∈ [κν),

Let Algorithm 4.1 re-enter the same sub-matrix S〈ν〉.
�en Algorithm 4.1 can examine column (ν, µ) at row κν − 1 with the initial value

T (X,Y )← X ·A[R[ν]](X,Y )

instead of starting in row zero.

Proof In terms of the inner product, we have:〈
XiT (X,Y ), S(X,Y )

〉
=
〈
Xi+1A[R[ν]](X,Y ), S(X,Y )

〉
=

ν∑
t=0

µ−1∑
j=0

At,j · St,i+j+1

= 0, ∀i ∈ [κν − 1). �

Similar to the FIA for one Hankel matrix, we can start examining column µ of the same sub-matrix S〈ν〉

in row κν − 1.
�e following theorem summarizes the properties of Algorithm 4.1.

�eorem 4.9 (Correctness and Complexity of Algorithm 4.1)
Let S =

(
S〈0〉 S〈1〉 · · · S〈`〉

)
be the n×

∑`
t=0 Nt matrix as de�ned in (4.29) and S(X,Y ) the asso-

ciated bivariate syndrome polynomial for the reformulated Sudan interpolation problem. Algorithm 4.1
returns a bivariate polynomial T (X,Y ) such that:

〈XκT (X,Y ), S(X,Y ) 〉 = 0, ∀κ ∈ [n).

�e time complexity of Algorithm 4.1 isO(`n2) operations in Fq .
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4.2 Key Equation for Sudan

Proof �e correctness of Algorithm 4.1 follows from the correctness of the basic FIA (see �eorem 3.16)
and from the correctness of the initialization rule (see Lemma 4.8), because Algorithm 4.1 deals with
the column-permuted version S′ of the original matrix S =

(
S〈0〉 S〈1〉 · · · S〈`〉

)
. �e proof of the

complexity of Algorithm 4.1 is similar to the complexity analysis of the FIA adjusted for a Hankel matrix
(see proof of �eorem 3.16). We trace the triple:(

(ν, µ), (κ0 κ1 . . . κ`) , δ
)
,

where (ν, µ) is the current column pointer of Algorithm 4.1 examining the µ-th column of the ν-th
sub-matrix S〈ν〉. �e variable κ = (κ0 κ1 . . . κ`) contains the index of the last row κν reached in the
sub-matrices S〈ν〉. �ese values are stored in the arrayR in Algorithm 4.1. �e value δ is the number of
already encountered core discrepancies of Algorithm 4.1. Assume (ν, µ) is the current column pointer
of Algorithm 4.1. �e two following events in Algorithm 4.1 similar to Algorithm 3.3 can happen:

1. No core discrepancy: Algorithm 4.1 stays in the same column µ of sub-matrix S〈ν〉 and the row
pointer κν is increased by one. �e triple becomes:(

(ν, µ),κ, δ
)
←
(
(ν, µ), (κ0, κ1, . . . , κν + 1, . . . , κ`), δ

)
.

2. Core discrepancy: Algorithm 4.1 examines column (ν, µ) = succ(≺Hk , (ν, µ)) and the triple
becomes: (

(ν, µ),κ, δ
)
←
(
(ν, µ), (κ0, κ1, . . . , κν − 1, . . . , κ`), δ + 1

)
.

From (4.32), we have for (ν, µ) = succ(≺Hk , (ν, µ)) that

Cν,µ = Cν,µ + 1.

and therefore the sum

Iter
def
= Cν,µ +

(∑̀
t=0

κt

)
+ δ,

increases by one in each iteration of Algorithm 4.1. �e last value can be bounded by:

Iter < O(n) +O(`n) +O(n) ≤ O(`n).

Each discrepancy computation costs O(n) and Algorithm 4.1 does not have to examine more than
the �rst (n + 1) columns of the n ×

∑`
t=0 Nt matrix

(
S〈0〉 S〈1〉 · · · S〈`〉

)
. �us, the total cost of

Algorithm 4.1 is O(`n2). �

In the following, we illustrate the values of the row pointer κ of Algorithm 4.1, when applied to a
syndrome matrix S =

(
S〈0〉 S〈1〉 S〈2〉

)
that consists of three Hankel matrices.

4.2.3 Example: Sudan Decoding of a Generalized Reed–Solomon Code
with Adapted FIA

We consider the decoding of an [16, 4]17 GRS code as in Subsection 3.3.3. For an interpolation multiplicity
m = 1, list size ` = 2, we obtain a decoding radius τ = 7 = b(n− k)/2c + 1. �e degrees
of the three univariate polynomials Q0(X), Q1(X) and Q2(X) in F17 of the Sudan interpolation
polynomial

∑2
t=0 Qt(X)Y t are less than (N0, N1, N2) = (9, 6, 3) and we have more unknowns

than interpolation constraints N0 +N1 +N2 > n.
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Figure 4.1: Illustration of the row pointers κ0, κ1 and κ2 of Algorithm 4.1 applied to a horizontal band of three
Hankel matrices S〈0〉 , S〈1〉 and S〈2〉 . �e columns of the 16× 18 matrix

(
S〈0〉 S〈1〉 S〈2〉

)
are arranged under

≺H4−1-ordering. �e three lines trace the row pointers κ0, κ1 and κ2 for each sub-matrix S〈0〉 , S〈1〉 and S〈2〉 . �e
second axis of abscissae shows the column pointer (ν, µ) indicating the µ-th column of the sub-matrix S〈ν〉 .

Figure 4.1 illustrates the row pointer of Algorithm 4.1 when the 16× 18 syndrome matrix(
S〈0〉 S〈1〉 S〈2〉

)
is examined. �e columns of the syndrome matrix are virtually rearranged according to the ≺H4−1-
ordering and Algorithm 4.1 scans the re-arranged matrix S′ column by column.

�e three zig–zag lines in Figure 4.1 trace the value of the row pointer κ0, κ1 and κ2 for the three
Hankel sub-matrices S〈0〉, S〈1〉 and S〈2〉. �e dots indicate the case, where a core discrepancy occurs.
A�er the 4th column, the columns of the sub-matrices S〈0〉 and S〈1〉 are interleaved.

A�er column 10 of the rearranged matrix S′, the columns of S〈0〉, S〈1〉 and S〈2〉 are interleaved.
Let us investigate the three marked cases, where a core discrepancy in Algorithm 4.1 occurs.

�e �rst case is from column one to column two of S′, i.e., the column pointer (0, 1) to (0, 2).
Entering column (0, 2) allows to set the initial value to 13, because the last core discrepancy occurred
in row 14.

�e second case is from column eight to ten of S′, i.e., the column pointer (1, 2) to (1, 3). �e core
discrepancy in column (1, 2) was calculated in row two and we can start examining row one in column
(1, 3).

�e columns C0,7 = 12 and C0,8 = 15 of the re-arranged S′ in Figure 4.1 are the third case. In
between column 12 and 15 one column of the sub-matrices S〈1〉 and S〈2〉 is examined by Algorithm 4.1.
In column (0, 8), Algorithm 4.1 starts investigating the row eight, because the core discrepancy in
column (0, 7) occurred in row nine.
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4.3 Key Equations for Guruswami–Sudan

4.3 Key Equations for the Guruswami–Sudan Principle

4.3.1 Univariate Reformulation

�e Guruswami–Sudan interpolation problem for GRS codes, where the multiplicity m ≥ 1 for the n
interpolation points is reformulated. We obtain not one, but a system of m Key Equations. �e resulting
homogeneous linear system is structured and we show how to adjust the FIA for this case.

We recall that Q[b](X,Y ) denotes the b-th Hasse derivative of a bivariate polynomial Q(X,Y ) ∈
Fq [X,Y ] with respect to the indeterminate Y (see De�nition 2.3).

�eorem 4.10 (Univariate Reformulation)
Let GRS(υ,α, k) be an [n, k]q GRS code and let the received vector r = (r0 r1 . . . rn−1) =
c + e, where c ∈ GRS(υ,α, k) and e ∈ Fnq , be given. Let R(X) be the Lagrange interpolation
polynomial with degR(X) < n, such that R(αi) = ri/υi for all i ∈ [n) as in (2.3) and let
L(X) =

∏n−1
i=0 (X − αi) as in (2.1).

An interpolation polynomial Q(X,Y ) ∈ Fq [X,Y ] satis�es Conditions C1 and C2 of �eorem 3.17
for an interpolation multiplicity m, decoding radius τ , and list size `, if and only if there exist
polynomials Bb(X) ∈ Fq [X], for b ∈ [m), such that

Q[b](X,R(X)) = Bb(X) · L(X)m−b, (4.33)

and degBb(X) < `(n− k)−mτ + b.

�e following lemma is needed to prove �eorem 4.10.

Lemma 4.11 (Univariate Reformulation of Guruswami–Sudan)
Let αi, ri ∈ Fq be given, and let R(X) ∈ Fq [X] be any polynomial such that R(αi) = ri. A
polynomial Q(X,Y ) ∈ Fq [X,Y ] has multiplicity at least m at (αi, ri) if and only if

(X − αi)m−b|Q[b](X,R(X)), ∀b ∈ [m).

Proof A�er translation to the origin, we have (αi, ri) = (0, 0), and thereforeR(0) = 0, i.e.,X|R(X).
Let Q(X,Y ) =

∑
bQb(X,Y ), where Qb(X,Y ) is homogeneous of degree b. We �rst suppose that

Q(X,Y ) has at least a multiplicity m at (0, 0), i.e., Qb(X,Y ) = 0, for b ∈ [m). Hence, we have

Q[b](X,R(X)) =
∑

i≥m−b
Q

[b]
i (X,R(X)).

For b < m, the polynomials Q[b]
i (X,Y ) have no terms of degree less than m− b, and with X|R(X),

we have
Xm−b|Q[b]

i (X,R(X)).

It follows, that Xm−b divides Q[b](X,R(X)) for all b ∈ [m) as in Corollary 2.7.
For the converse assume that Xm−b|Q[b](X,R(X)), ∀b ∈ [m). �at is, Q[b](X,R(X)) =

Xm−bZb(X), for some polynomials Z0(X), Z1(X), . . . , Zm−1(X). Using Taylor’s formula with
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the Hasse derivatives, we have:

Q(X,Y ) =
∑
b

Q[b](X,R(X)) · (Y −R(X))b

=
∑
b<m

Q[b](X,R(X)) · (Y −R(X))b +
∑
b≥m

Q[b](X,R(X)) · (Y −R(X))b

=
∑
b<m

Xm−bZm−b(X) · (Y −R(X))b +
∑
b≥m

Q[b](X,R(X)) · (Y −R(X))b.

Now, (Y − R(X))b has only terms of degree at least b, since X|R(X). �us, we have no terms of
degree less than m in Q(X,Y ). �

Proof (of Theorem 4.10) From the previous lemma, we know that (X−αi)m−b dividesQ[b](X,R(X))
for all b ∈ [m) and i ∈ [n). Since all polynomials (X − αi) are distinct, the Chinese Remainder
�eorem for univariate polynomials implies that L(X)m−b|Q[b](X,R(X)). �e degree condition is:

degBb(X) < degQ[b](X,R(X))− degL(X)m−b

= m(n− τ) + `(n− k)− b(n− 1)− (m− b)n
= `(n− k)−mτ + b. �

We rewrite the m equations of (4.33) more explicitly:

∑̀
t=b

(
t
b

)
Qt(X)R(X)t−b = Bb(X) · L(X)m−b, ∀b ∈ [m). (4.34)

Recall from (3.38) that
Nt

def
= m(n− τ)− t(k − 1), ∀t ∈ [`+ 1). (4.35)

De�ne the polynomials as:

R(X) = Xn−1 ·R(X−1),

L(X) = Xn · L(X−1) =

n−1∏
i=0

(1− αiX),

Bb(X) = X`(n−k)−mτ−b−1 ·Bb(X−1), ∀b ∈ [m),

Λt(X) = XNt−1 ·Qt(X−1), ∀t ∈ [`+ 1).

Note that, these polynomials are not necessarily the reciprocal polynomials, because, e.g., for the received
polynomial the degree can be smaller than n− 1.

Reverting both sides of (4.33) and inserting the previously de�ned reciprocal polynomials leads to:

∑̀
t=b

(
t
b

)
Λt(X)X(`−t)(n−k)R(X)t−b = Bb(X) · L(X)m−b, ∀b ∈ [m). (4.36)

Similar to the Sudan case in (4.16), let:

R(X)t−b = U
〈b〉
t (X)L(X)s−b +W

〈b〉
t (X), ∀b ∈ [m), t ∈ [b+ 1, `+ 1), (4.37)
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4.3 Key Equations for Guruswami–Sudan

where W 〈b〉t (X) is the remainder of the division of R(X)t−b by L(X)m−b and has degree smaller
than (m− b)n. Reverting (4.37) leads to:

R(X)t−b = U
〈b〉
t (X)L(X)m−b +X(t−b)(n−1)−(m−b)n+1W

〈b〉
t (X), (4.38)

where:

U
〈b〉
t (X) = X(t−b)(n−1)−(m−b)nU

〈b〉
t (X−1), ∀b ∈ [m), t ∈ [b+ 1, `+ 1), (4.39)

W
〈b〉
t (X) = X(m−b)n−1W

〈b〉
t (X−1), ∀b ∈ [m), t ∈ [b+ 1, `+ 1). (4.40)

Now let the
∑m−1
b=0 (`+ 1− b) formal power series S〈b〉,∞t (X) be de�ned as:

S
〈b〉,∞
t (X)

def
=

W
〈b〉
t (X)

L(X)m−b
, ∀b ∈ [1,m), t ∈ [b+ 1, `+ 1), (4.41)

S
〈b〉,∞
b (X)

def
=

X(m−b)n−1

L(X)m−b
, ∀b ∈ [m). (4.42)

Clearly the m power series S〈0〉,∞0 (X), S
〈1〉,∞
1 (X), . . . , S

〈m−1〉,∞
m−1 (X) as in (4.42) do not depend

on the received word. Inserting the syndrome polynomials of (4.41) and (4.42) into (4.36) leads to:

Λb(X)X(`−b)(n−k)−((m−b)n−1)S
〈b〉,∞
b (X)L(X)m−b

+
∑̀
t=b+1

(
t
b

)
Λt(X)X(`−t)(n−k)

·
(
U
〈b〉
t (X)L(X)m−b +X(t−b)(n−1)−(m−b)n+1S

〈b〉,∞
t (X)L(X)m−b

)
= Bb(X) · L(X)m−b, ∀b ∈ [m). (4.43)

�is can be simpli�ed to:

Λb(X)X(`−b)(n−k)−((m−b)n−1)S
〈b〉
b (X)

+
∑̀
t=b+1

(
t
b

)
Λt(X)X(`−t)(n−k)X(t−b)(n−1)−(m−b)n+1S

〈b〉
t (X)

≡ Ω̃b(X) mod Xm(n−τ)+`(n−k)−b(n−1), ∀b ∈ [m), (4.44)

where

Ω̃b(X) = Bb(X)−
∑̀
t=b+1

(
t
b

)
Λt(X)X(`−t)(n−k)U

〈b〉
t (X),

with deg Ω̃b(X) < Nt + (`− t)(n− k) + (t− b)(n− 1)− (m− b)n = `(n− k)−mτ + b. �e
modulo corresponds to the degree of degQ[b](X,R(X)), since we limit the degree of the power series
of the syndromes and therefore denote them without the in�nity sign.

Furthermore with:

(`− t)(n− k) + (t− b)(n− 1)− (m− b)n+ 1 = `(n− k)−mn+ bk + 1(t− b)(k − 1),
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and

m(n− τ) + `(n− k)− b(n− 1) = `(n− k)−mn+ bk + 1 +m(2n− τ)− bd− 1,

we can divide both sides of (4.44) by X`(n−k)−mn+bk and we obtain:

Λb(X)S
〈b〉
b (X)+

∑̀
t=b+1

(
t
b

)
Λt(X)X(t−b)(k−1)S

〈b〉
t (X)

≡ Ωb(X) mod Xm(2n−τ)−bd−1, ∀b ∈ [m), (4.45)

where deg Ωb(X) < `(n− k)−mτ + b− (`(n− k)−mn+ bk+ 1) = m(n− τ)− b(k− 1)− 1.
Let us outline a possible reduction of (4.45) similar to the one for the Sudan case from (4.25) to (4.26).

We can consider (4.45) modulo X(m−b)n−1 and due to (4.42), the term Λb(X)S
〈b〉
b (X) disappears.

Furthermore, we can divide (4.45) by Xk−1 and obtain:

∑̀
t=b+1

(
t
b

)
Λt(X)X(t−b−1)(k−1)S

〈b〉
t (X) ≡ Ω′b(X) mod X(m−b)n−k, ∀b ∈ [m), (4.46)

where deg Ω′b(X) < m(n− τ)− b(k − 1)− 1− (k − 1) = m(n− τ)− k − b(k − 1).
However, the number of homogeneous linear equations, i.e., the di�erence between the highest

considered term (m− b)n− k and the degree of Ω′b(X) is:

(m− b)n− k −
(
m(n− τ)− k − b(k − 1)

)
= mτ − b(n− k + 1) = mτ − bd.

�e valuemτ−bd can be negative and therefore we do not apply this reduction here (see Subsection 4.3.4
for further details).

Let us go back to the unreduced form as in (4.45). We obtain (m− b)n homogeneous linear equations
from (4.45), when considering the coe�cients of the terms of degree higher than m(n− τ)− b(k− 1).
More explicitly, we have:

Nb−1∑
i=0

Λb,i · S
〈b〉
b,−i+j +

∑̀
t=b+1

Nt−1∑
i=0

Λt,i · S
〈t〉
−(t−b)(k−1)−i+j

= 0, ∀j ∈ [m(n− τ)− b(k − 1)− 1,m(2n− τ)− bd− 1), ∀b ∈ [m). (4.47)

Reverting back to the original univariate polynomials Q0(X), Q1(X), . . . , Q`(X) we obtain the
following system of homogeneous linear equations:

Nb−1∑
i=0

Qb,i · S
〈b〉
b,i+j +

∑̀
t=b+1

Nt−1∑
i=0

Qt,i · S
〈b〉
t,i+j = 0, ∀j ∈ [(m− b)n), b ∈ [m). (4.48)

With Qt
def
= (Qt,0, Qt,1, . . . , Qt,Nt−1)T for t ∈ [`+1) and with

∑m−1
b=0 (`+1−b) Hankel matrices:

S〈b,t〉
def
=
(
S
〈b,t〉
i,j

)j∈[Nt)

i∈[(m−b)n)
=
(
S
〈b〉
t,i+j

)j∈[Nt)

i∈[(m−b)n)
, ∀b ∈ [m), t ∈ [b, `+ 1),
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4.3 Key Equations for Guruswami–Sudan

we can write (4.48) in the following matrix form:


S〈0,0〉 S〈0,1〉 . . . . . . . . . S〈0,`〉

0 S〈1,1〉 . . . . . . . . . S〈1,`〉

...
. . .

...

0 . . . 0 S〈m−1,m−1〉 . . . S〈m−1,`〉




Q0

Q1

...
Q`

 = 0. (4.49)

All matrices depend on the received vector r except the ones on the diagonal: S〈b,b〉, b ∈ [m) which
depend only on the support α of the GRS code GRS(υ,α, k), the interpolation multiplicity m and the
parameter b.

�e
(m+1

2

)
n×

∑`
t=0Nt syndrome matrix in (4.49) consists of m bands of b horizontally arranged

zero matrices and `+1− b Hankel syndrome matrices for b ∈ [m). �is matrix is a called Block-Hankel
matrix. �e adjustment of the FIA for this Block-Hankel matrix is shown in Subsection 4.3.2.

�e explicit expression for the syndromes S〈b〉t,i is di�cult to obtain. We compute S〈b〉t,i directly by the
power series expansion of

S
〈b〉,∞
t (X) =

W
〈b〉
t (X)

L(X)m−b
,

as in (4.41) and (4.42). For further discussion on the explicit syndromes see Section 4.4.

4.3.2 The Fundamental Iterative Algorithm for a Block-Hankel Matrix

�e extension of the FIA for the case of a Block-Hankel was hinted in Ruckenstein’s thesis [O-Ruc01,
Section 5.2]. First of all, let us express the m Key Equations of (4.45) in terms of the inner product of
bivariate polynomials.

Problem 4.12 (Reformulated Guruswami–Sudan Problem)
Let the m bivariate polynomials S〈0〉(X,Y ), S〈1〉(X,Y ), . . . , S〈m−1〉(X,Y ) ∈ Fq [X,Y ] be
de�ned as:

S〈b〉(X,Y )
def
=
∑̀
t=b

Nt+(m−b)n−1∑
i=0

S
〈b〉
t,i X

iY t, ∀b ∈ [m), (4.50)

where the coe�cients S〈b〉t,i are given by the power series of (4.41) and (4.42). We search a non-zero
bivariate polynomial T (X,Y ) ∈ Fq [X,Y ] that ful�lls:〈

XκT (X,Y ), S〈ϑ〉(X,Y )
〉

= 0, ∀ϑ ∈ [m), κ ∈ [(m− ϑ)n).

We adjust the FIA as an algorithm on a row- and column-interleaved version of the
(m+1

2

)
n ×∑`

t=0Nt Block-Hankel matrix S of (4.49).
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Algorithm 4.2: T (X,Y ) = BLOCK-HANKEL(S〈0〉(X,Y ), . . . , S〈m−1〉(X,Y ))

Input: Bivariate polynomials S〈b〉(X,Y ) =
∑`
t=b S

〈b〉
t (X)Y t, b ∈ [m)

Output: Bivariate polynomial T (X,Y )

Data structures:
Bivariate polynomial T (X,Y ) =

∑`
t=0 Tt(X)Y t, where Tt(X) ∈ Fq [X]

`+ 1 column pointers (0, µ0), (1, µ1), . . . , (`, µ`) where µt ∈ [Nt)
Row pointer (ϑ, κ), where ϑ ∈ [m) and κ ∈ [(m− ϑ)n)

Array A[(i, j)] of
(m+1

2

)
n entries in Fq [X,Y ] indexed by the row pointer (ϑ, κ)

Array D[(i, j)] of
(m+1

2

)
n entries in Fq indexed by the row pointer (ϑ, κ)

Array R of `+ 1 entries to store the row pointer (ϑ, κ)
Variable ∆ ∈ Fq , variable compute ∈ {true, false}

Initialize:
Initialize arrays A, D and C to zero
(ν, µ)← (0, 0) and (ϑ, κ)← (0, 0)
compute← false

1 while (ϑ, κ) < (m, 0) do
2 if compute then
3 ∆← 〈Xκ · T (X,Y ), S〈ϑ〉(X,Y )〉 // Discrepancy calculation
4 else
5 if R[ν] < 1 then
6 T (X,Y )← Y ν ·Xµ; ∆← S

〈0〉
ν,µ; (ϑ, κ)← (0, 0)

7 else
8 T (X,Y )← X ·A[R[ν]](X,Y ); ∆← D[R[ν]]; (ϑ, κ)← R[ν]
9 if κ = 0 then

10 (ϑ, κ)← (ϑ− 1, n)
11 ∆← 0

12 κ← κ− 1

13 compute ← true

14 if ∆ = 0 orD[(ϑ, κ)] 6= 0 then
15 if ∆ 6= 0 then
16 T (X,Y )← T (X,Y )− ∆

D[(ϑ,κ)]
·A[(ϑ, κ)](X,Y ) // Update

17 (ϑ, κ)← succ(≺Vn , (ϑ, κ))

18 else // Core discrepancy ∆ 6= 0 andD[κ] = 0
19 A[(ϑ, κ)](X,Y )← T (X,Y ); D[(ϑ, κ)]← ∆; R[ν]← (ϑ, κ)

20 (ν, µ)← succ(≺Hk , (ν, µ))
21 compute ← false

Let us �rst de�ne an ordering to describe the vertical rearrangement of the rows of the syndrome matrix
S as in (4.49). Let n be a positive integer and let ≺Vn denote the ordering indexed by pairs (ϑ, κ), such
that:

(ϑ, κ) ≺Vn (ϑ, κ) ⇐⇒

 κ+ ϑn < κ+ ϑn,
or
κ+ ϑn = κ+ ϑn and ϑ < ϑ.

(4.51)
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4.3 Key Equations for Guruswami–Sudan

Let succ(≺Vn , (ϑ, κ)) denote the pair that immediately follows (ϑ, κ) with respect to order de�ned by
≺Vn and let pred(≺Vk , (ϑ, κ)) denote the pair that immediately precedes (ϑ, κ) with respect to order
de�ned by ≺Vn . Furthermore, let:

Rϑ,κ
def
=
∣∣∣{(t, i) | (t, i) ≺Vn (ϑ, κ)

}∣∣∣, (4.52)

which we use to index the rows of the virtually rearranged matrix (similar to Cν,µ as in (4.32) for the
horizontal case) and we have

R
pred(≺Vk , (ϑ, κ))

= Rϑ,κ − 1.

In the following, S′ denotes the rearranged version of the matrix S of (4.49), where the columns are
ordered under ≺Hk−1- and the rows under ≺Vn -ordering. Algorithm 4.2 is the FIA tailored to a Block-
Hankel matrix as in (4.49). Similar to the reformulated Sudan interpolation problem, the columns of the
Block-Hankel matrix S are indexed by a pair (ν, µ), where ν ∈ [`+ 1) and µ ∈ [Nν). Furthermore,
the rows are indexed by a couple (ϑ, κ), where ϑ ∈ [m) and κ ∈ [(m− ϑ) · n).

Now, the arrays storing the discrepancies and the intermediate polynomials are still indexed by
rows, but the indexes of the rows are two-dimensional, leading to two-dimensional arrays. �e two-
dimensional array A stores the intermediate bivariate polynomials and the two-dimensional array
D, stores the discrepancy values. Both arrays A and D are indexed by the row pointer (ϑ, κ). �e
discrepancy calculation (see Line 16 of Algorithm 4.2) is adjusted to a Block-Hankel matrix where each
sub-horizontal band of Hankel matrices is represented by a bivariate polynomial.

�e intermediate bivariate connection polynomial T 〈ϑ,κ〉(X,Y ) of Algorithm 4.2 examining the κ-th
row and the µ-th column of the (ν, ϑ)-th sub-matrix S〈ν,ϑ〉, gives us the vanishing linear combination of
the sub-matrix consisting of the �rstRϑ,κ rows and the �rst Cν,µ columns of the rearranged syndrome
matrix S′.

�e row pointer of the sub-block
(
S〈ν,0〉 S〈ν,1〉 · · · S〈ν,m−1〉)T is stored in the array R[ν]. We

need to store `+ 1 row pointers of the form (ϑ, κ).
�e adjusted initialization rule of Algorithm 4.2 examining the Block-Hankel syndrome matrix as

de�ned in (4.49) is stated in the following lemma (see Lines 12, 17 and 20 of Algorithm 4.2).

Lemma 4.13 (Initialization Rule)
Assume Algorithm 4.2 examined column (ν, µ − 1) of the

(m+1
2

)
n ×

∑`
t=0Nt Block-

Hankel syndrome matrix S as de�ned in (4.49) or equivalently the m bivariate polynomials
S〈0〉(X,Y ), S〈1〉(X,Y ), . . . , S〈m−1〉(X,Y ) of Problem 4.12.

Assume that a core discrepancy was obtained in the (ϑ, κ) row of the sub-block(
S〈ν,0〉 S〈ν,1〉 · · · S〈ν,m−1〉)T , i.e., the κ-th row of the sub-matrix S〈ν,ϑ〉. �e row index (ϑ, κ)ν

was stored in the array R[ν] ← (ϑ, κ)ν . �e corresponding vanishing linear combination in form
of the bivariate polynomial T (X,Y ), was stored in the array A[(ϑ, κ)ν ](X,Y ) ← T (X,Y ) (see
Line 19), i.e.:〈

Xi1A[(ϑ, κ)ν ](X,Y ), S〈i2〉(X,Y )
〉

=

ν∑
t=0

µ−1∑
j=1

At,j · S
〈i2〉
t,i1+j

= 0, ∀(i2, i1) ≺Vn (ϑ, κ)ν .

Let Algorithm 4.2 re-enter the same sub-matrix S〈ν,ϑ〉.
We can start examining column (ν, µ) of S at row (ϑ, κ− 1)ν with the initial value T (X,Y )←

X ·A[(ϑ, κ)ν ](X,Y ).
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Proof In terms of the inner product, we have:〈
Xi1T (X,Y ), S〈i2〉(X,Y )

〉
=
〈
Xi1+1A[R[ν]](X,Y ), S〈i2〉(X,Y )

〉
=

ν∑
t=0

µ−1∑
j=1

At,j · S
〈i2〉
t,i1+j+1

= 0, ∀(i2, i1) ≺Vn (ϑ, κ− 1). �

�eorem 4.14 (Correctness and Complexity of Algorithm 4.2)
Let S be the

(m+1
2

)
n×

∑`
t=0Nt syndrome Block-Hankel matrix of the reformulated Guruswami–

Sudan interpolation problem as in (4.49) and let S〈b〉(X,Y ), ∀b ∈ [m) be the corresponding bivariate
syndrome polynomials as de�ned in Problem 4.12. �en Algorithm 4.2 outputs a bivariate polynomial
T (X,Y ) such that:〈

XκT (X,Y ), S〈ϑ〉(X,Y )
〉

= 0, ∀ϑ ∈ [m), κ ∈ [(m− ϑ)n).

�e time complexity of Algorithm 4.2 isO(`m4n2) in Fq .

Proof �e correctness follows from the fact that we deal with the row- and column-permuted version
S′ of the Block-Hankel matrix S and that the initialization rule is correct.

In the following, we analyze the complexity of Algorithm 4.2. As in proof of �eorem 4.9, we describe
the state of Algorithm 4.2 with the following triple:(

(ν, µ), ([ϑ, κ]0, [ϑ, κ]1, . . . , [ϑ, κ]`), δ
)
, (4.53)

where (ν, µ) is the current column pointer of Algorithm 4.2, when examining the µ-th column of
the horizontal band of m vertically arranged Hankel matrices

(
S〈ν,0〉 S〈ν,1〉 · · · S〈ν,m−1〉)T . �e

index [ϑ, κ]ν is the last considered row in the horizontal band of m sub-matrices
(
S〈ν,0〉 S〈ν,1〉 · · ·

S〈ν,m−1〉)T . �ese values are stored in the array R of Algorithm 4.2. As for Algorithm 4.1, δ denotes
the number of already encountered core discrepancies. Assume (ν, µ) is the current column pointer of
Algorithm 4.2. �e same two cases as for Algorithm 4.1 can happen:

1. No core discrepancy: Algorithm 4.2 remains in the same column (ν, µ) of the sub-matrices(
S〈ν,0〉 S〈ν,1〉 · · · S〈ν,m−1〉)T and the triple becomes:(

(ν, µ), ([ϑ, κ]0, . . . , [ϑ, κ]`), δ
)
←(

(ν, µ), ([ϑ, κ]0, . . . , next[≺Vn , ([ϑ, κ]ν)], . . . , [ϑ, κ]`), δ
)
,

2. Core discrepancy: �e triple becomes:(
(ν, µ), ([ϑ, κ]0, . . . , [ϑ, κ]`), δ

)
←(

succ(≺Hk , (ν, µ)), ([ϑ, κ]0, . . . , prev[≺Vn , ([ϑ, κ]ν)], . . . , [ϑ, κ]`), δ + 1
)
.
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4.3 Key Equations for Guruswami–Sudan

In both cases, the sum Iter of the triple is:

Iter = Cν,µ +

 ∑
t∈[`+1)

R[ϑ,κ]t

+ δ,

when Algorithm 4.2 examines the (ν, µ)-th column of the Block-Hankel matrix S of (4.49) and it
increases by one in each iteration. �e initial value of Iter is zero, and the �nal value can be bounded by

Iter ≤
(
m+ 1

2

)
n+

∑̀
t=0

(
m+ 1

2

)
n+

(
m+ 1

2

)
n

≤ O(`m2n).

�e number of iterations of Algorithm 4.2 is bounded byO(`m2n).
�is gives a total ofO(`m4n2), since the discrepancy calculation requiresO(m2n). �

4.3.3 Example: Guruswami–Sudan Decoding of a Generalized
Reed–Solomon Code with Adapted FIA

As in Subsection 4.2.3, we consider the decoding of an [16, 4]17 GRS code. For interpolation multiplicity
m = 2, list size ` = 4, the decoding radius is now τ = 8. �e degrees of the univariate polynomi-
als Q0(X), Q1(X), . . . , Q4(X) are (N0, N1, N2, N3, N4) = (16, 13, 10, 7, 4). �e Block-Hankel
syndrome matrix:

S =

(
S〈0,0〉 S〈0,1〉 S〈0,2〉 S〈0,3〉 S〈0,4〉

0 S〈1,1〉 S〈1,2〉 S〈1,3〉 S〈1,4〉

)
is a (3n = 48) × (

∑4
t=0Nt = 50) matrix. It consists of nine non-zero Hankel matrices and one

all-zero matrix S〈1,0〉 arranged in two horizontal bands of �ve Hankel matrices.
�e values of the row pointer (ϑ, κ) of Algorithm 4.2 for the Block-Hankel matrix are traced in

Figure 4.2. �e �ve zig–zag lines in Figure 4.2 trace the row pointer (ϑ, κ), when Algorithm 4.2 examines
the �ve sub-blocks (

S〈0,0〉 S〈1,0〉
)T
,
(
S〈1,0〉 S〈1,1〉

)T
, . . . ,

(
S〈4,0〉 S〈4,1〉

)T
.

Additionally to the horizontal ordering ≺Hk−1 of the columns (as in the Sudan case), now the rows
are ordered according to ≺Vn . Let us consider three cases, where a core discrepancy in Algorithm 4.2
occurred. �e �rst case are the most le� two points in Figure 4.2. �e value of the column pointer (ν, µ)

is (0, 2) and (0, 3). Algorithm 4.2 examines the �rst band of the two Hankel matrices
(
S〈0,0〉 S〈1,0〉

)T .
For the �rst pair no columns were virtually interchanged and the horizontal distance is one.

�e second two points with the values of the column pointer (0, 5) and (0, 6) indicate a core
discrepancy of Algorithm 4.2, when the second band of the two Hankel matrices

(
S〈0,1〉 S〈1,1〉

)T is
examined. �e values are traced by the do�ed line in Figure 4.2. For the second pair ((0, 5),(0, 6)), the
columns of the �rst and second vertical band of Hankel matrices are mixed and therefore the horizontal
distance is two. �e third considered case, where a core discrepancy occurs, are the most right two
points in Figure 4.2 indicated by values (1, 9) and (1, 10) of the row pointer (ϑ, κ). Algorithm 4.2
examined column 42 and a core discrepancy occurred at row (1, 9). In column 43 at row (1, 10) another
core discrepancy was examined, and we investigate column 48 (that corresponds to the same sub-matrix
as column 43) and run Algorithm 4.2 until the last row.
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49
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(4, 3)

S〈ϑ,0〉
S〈ϑ,1〉
S〈ϑ,2〉
S〈ϑ,3〉
S〈ϑ,4〉

0 ≤ ϑ ≤ 1

Figure 4.2: Illustration of the row pointer (ϑ, κ) of Algorithm 4.2 applied to a 48× 50 Block-Hankel matrix S. �e
matrix consists of two vertically arranged bands of �ve horizontally arranged Hankel matrices. �e �rst band consists
of 32 rows and the second one of 16. �e plo�ed matrix S′ consists of the rearranged columns and rows of the matrix
S under≺Hk−1- respective≺Vn -ordering. �e mixture of rows of the two vertical lines starts in line 16 (marked by
the do�ed horizontal line). �e �ve zig–zag lines trace the row pointer for the �ve sub-blocks

(
S〈0,0〉 S〈1,0〉

)T ,(
S〈1,0〉 S〈1,1〉

)T , . . . ,
(
S〈4,0〉 S〈4,1〉

)T of two vertically arranged Hankel matrices. �e second axis of abscissae
shows the column pointer (ν, µ) indicating the µ-th column of the sub-block

(
S〈0,ν〉 S〈1,ν〉

)T .
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4.3 Key Equations for Guruswami–Sudan

4.3.4 Reduced Set of Equations
Let us consider the univariate reformulation as in (4.46). �e degree of the polynomial Ω′b(X) can be
greater than (m − b)n − k and it is not clear how to properly truncate this identity, as in [A-RR00;
O-Ruc01] for the list decoder with multiplicity m = 1 or as in the case of the classical Key Equation
(see Section 3.2) for BMD decoding.

Lemma 4.15 (Reduced Set of Equations for Guruswami–Sudan)
Let d = n− k + 1 be the minimum distance of the considered [n, k]q GRS code. Let b be such that
mτ − bd ≥ 0. If Λb+1(X),Λb+2(X), . . . ,Λ`(X) is a solution of (4.46), then there exists Λb(X)
such that Λb(X),Λb+1(X), . . . ,Λ`(X) is a solution to (4.44).

Proof Let us consider (4.34). We isolate Qb(X) and get

Qb(X) +
∑̀
t=b+1

(
t
b

)
Qt(X) ·R(X)t−b = Bb(X) · L(X)m−b. (4.54)

and thus Qb(X) is the remainder of the Euclidean division of

∑̀
t=b+1

(
t
b

)
Qt(X)R(X)t−b

by L(X)m−b, as long as degQb(X) < degL(X)m−b, which gives

m(n− τ)− b(k − 1) ≤ (m− b)n
mτ − bd ≥ 0. �

We denote b0 = b(mτ)/dc. Actually, we can consider (4.36) and substitute the Λb(X), for all b ∈
[b0 + 1), successively. �is is possible for the case of the �rst order system (m = 1). In the Guruswami–
Sudan case (m > 1), we can obtain a reduced system with Λb0+1(X),Λb0+2(X), . . . ,Λ`(X), but it
seems that this reduced system lost its Block-Hankel structure.

A future direction is to �nd a proper reduced polynomial description, i.e., a Key Equation, that leads
to a structured set of

b0∑
b=0

mτ − bd+

m−1∑
b=b0+1

(m− b)n

homogeneous equations and
∑`
t=b0+1 Nt unknowns.

Example 4.16 (Reduced Set of Guruswami–Sudan)
Let us calculate the dimension of the reduced set for the previously investigated [16, 4]17 GRS code
with minimum Hamming distance d = 13. For an interpolation multiplicity m = 2, list size ` = 4
a decoding radius τ = 8 is obtained. �e full matrix system has

(2+1
2

)
16 = 48 equations and∑`

t=0 Nt = 50 unknowns.
We obtain b0 = 1 and the reduced system consists of

∑1
b=0(sτ − bd) = 19 homogeneous

equations and with
∑4
t=2Nt = 21 unknowns. �e polynomials Q0(X) and Q1(X) of degree

smaller than 16 and 13 can be obtained via (4.54).
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

4.4 Explicit Guruswami–Sudan Syndromes and Hermite
Interpolation

4.4.1 Univariate Hermite Interpolation
�e basis for the univariate reformulation of the interpolation problem of Guruswami and Sudan
considered in the previous sections was the univariate Lagrange interpolation polynomial R(X). �e
univariate Hermite [A-Her78] interpolation of 1878 generalizes the Lagrange interpolation. An explicit
expression of the univariate Hermite interpolation was �rst given by Spitzbart [A-Spi60]. Let us consider
the simplest case, where we take the �rst derivative into consideration.

Let two vectors r, r2 ∈ Fnq be given. �en, we have a unique polynomial R(X) ∈ Fq [X] with
degR(X) smaller than 2n, such that

R(αj) = rj and R[1](αj) = r2,j , ∀j ∈ [n),

with:

R(X) =

n−1∑
j=0

rjAj(X) +

n−1∑
j=0

r2,jBj(X), (4.55)

where:

Aj(X) =
(

1− 2(X − αj)L
[1]
j (αj)

)
· Lj(X)2, ∀j ∈ [n),

Bj(X) = (X − αj)Lj(X)2, ∀j ∈ [n),
(4.56)

where Lj(X) is as in (2.2).
�e polynomials Aj(X) and Bj(X) are such that:

Aj(αj) = 1 and A
[1]
j (αj) = 0,

Bj(αj) = 0 and B
[1]
j (αj) = 1, ∀j ∈ [n).

�e approach can be generalized to an integer m > 1 and we explicitly assign values n to each of the
�rst m− 1 derivatives of the Hermite interpolation polynomial. �is polynomial has degree smaller
than mn (see [A-Spi60]).

4.4.2 Modified Reformulation for Guruswami–Sudan
Let Rm(X) ∈ Fq [X] be the Hermite interpolation polynomial for the n points of degree smaller than
or equal to mn− 1 such that:

Rm(αj) = rj , ∀j ∈ [n) (4.57)

R
[b]
m (αj) = rb,j , ∀j ∈ [n), b ∈ [1,m). (4.58)

In the following we are interested in the degree constraints, if we modify the univariate reformulation
of �eorem 4.10 as follows.
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4.4 Explicit Guruswami–Sudan Syndromes and Hermite Interpolation

Lemma 4.17 (Univariate Reformulation with Hermite)
Let Rm(X), Rm−1(X), . . . , R1(X) be the m univariate Hermite interpolation polynomials as
de�ned in (4.57) and (4.58). �en a Guruswami–Sudan interpolation polynomial Q(X,Y ) (similar to
�eorem 4.10) with the parameters n, k, m, `, τ exists if and only if there exist a Bb(X) ∈ Fq [X]
such that:

degQ[b](X,Rm−b(X)) = Bb(X) · L(X)m−b, ∀b ∈ [m), (4.59)

where:

degBb(X) < degQ[b](X,Rm−b(X))− (m− b)n
< m(n− τ) + (`− b)

(
(m− b)n− 1

)
+ `(1− k)− (m− b)n

< (`− b)
(
(m− b)n− 1

)
+ `(1− k) + bn−mτ.

Proof �e proof is analog to the proof of �eorem 4.10 and is independent of the values R[b]
m (αi) of

Rm(X) for all b ∈ [1,m). �e degree conditions follows immediately. �

Reverting the coe�cients of (4.59) is as follows:

Xm(n−τ)+(`−b)
(
(m−b)n−1

)
+`(1−k)−1

·
∑̀
t=b

(
t
b

)
Qt(X

−1)Rm−b(X
−1)t−b = Bb(X) · L(X)m−b.

Substituting the reciprocal polynomials leads to:

Λb(X)X(`−b)((m−b)n−k)

+
∑̀
t=b+1

(
t
b

)
Λt(X)X(`−t)((m−b)n−k)Rm−b(X)t−b = Bb(X) · L(X)m−b. (4.60)

With:

Rm−b(X)t−b = U
〈b〉
t (X)L(X)m−b +W

〈b〉
t (X), ∀b ∈ [m), t ∈ [b+ 1, `+ 1), (4.61)

whereW 〈b〉t (X) is the remainder of the division ofRm−b(X)t−b byL(X)m−b and has degree smaller
than (m− b)n. Reverting (4.61) leads to:

Rm−b(X)t−b = U
〈b〉
t (X)L(X)m−b +X(t−b−1)((m−b)n−1)W

〈b〉
t (X), ∀b ∈ [m),

where

U
〈b〉
t (X) = X(t−b)((m−b)n−1)−(m−b)nU

〈b〉
t (X−1), ∀b ∈ [m), t ∈ [b+ 1, `+ 1),

W
〈b〉
t (X) = X(m−b)n−1W

〈b〉
t (X−1), ∀b ∈ [m), t ∈ [b+ 1, `+ 1).

Now, we de�ne the syndrome polynomials as in (4.41) and (4.42):

S
〈b〉,∞
t (X)L(X)m−b = W

〈b〉
t (X), ∀b ∈ [1,m), t ∈ [b+ 1, `+ 1), (4.62)

S
〈b〉,∞
b (X)L(X)m−b = X(m−b)n−1, ∀b ∈ [m). (4.63)
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Inserting the syndrome de�nitions of (4.62) and (4.63) into (4.60) and with:

=
(
`− t

)(
(m− b)n− k

)
+ (t− b− 1)

(
(m− b)n− 1

)
−
(

(`− b)
(
(m− b)n− k

)
− (m− b)n− 1

)
= (b− t)

(
(m− b)n− k

)
+ (t− b)

(
(m− b)n− 1

)
= (t− b)(k − 1).

Dividing the b-th Key Equation by X(`−b)
(
(m−b)n−k

)
−(m−b)n+1 of (4.60) leads to:

∑̀
t=b

(
t
b

)
Λt(X)X(t−b)(k−1)S

〈b〉
t (X)

≡ Ω(b)(X) mod Xm(2n−τ)−bd−1, ∀b ∈ [m), (4.64)

where:

deg Ωb(X) < degBb(X)−
(

(`− b)
(
(m− b)n− k

)
− ((m− b)n− 1

)
< m(n− τ)− b(k − 1)− 1.

4.4.3 Explicit Syndromes

Let us repeat (4.61):

Rm−b(X)t−b = U
〈b〉
t (X)L(X)m−b +W

〈b〉
t (X), ∀b ∈ [m), (4.65)

where degW
〈b〉
t (X) is smaller than (m− b)n. �e explicit form ofW 〈b〉t (X) respectively it reciprocal

counterpart are essential for an explicit expression of the syndromes of the modi�ed Guruswami–Sudan
reformulation. As for the Sudan case, we can easily get n constraints onW 〈b〉t (X) from (4.65). We have
that:

R(αi)
t−b = rt−bi = W

〈b〉
t (αi),

and by considering the b− 1 �rst Hasse derivatives of (4.65), we obtain the other missing (m− b− 1)n

constraints to determine W 〈b〉t (X).
It seems to be fruitful to obtain a closed-form expression of explicit syndromes with a reformulation

based on polynomials as in (4.57) and (4.58). It is natural to consider a univariate Hermite interpolation
polynomial if the multiplicity is greater than one. It is not clear, if a polynomial description of the
reduced set as outlined in Subsection 4.4 can be directly obtained with the Hermite-based reformulation.
�e question remains if the so obtained reduced set is structured. From the complexity point of view it
is favorable to adapt an algorithm (as the FIA in Algorithm 4.2) for a larger structured set of equations
than to a smaller unstructured one.

We proved the correctness of Algorithm 4.2 and analyzed its complexity based on univariate Key
Equations (4.45) for the Guruswami–Sudan interpolation problem for GRS codes.
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4.5 Conclusion and Future Work

4.5 Conclusion and Future Work

In Section 4.1 and 4.2, we gave two Key Equations for decoding GRS codes beyond half the minimum
distance. �e �rst one is based on the previous work of Schmidt, Sidorenko and Bossert (Section 4.1) and
our new contribution is small compared to the original work. We described it for GRS codes and could
slightly generalize the bound on the failure probability in �eorem 4.3. We recapitulated the work of Roth
and Ruckenstein in Section 4.2 in a slightly di�erent manner to bridge it to the univariate reformulation
of the general interpolation problem, where the multiplicity is larger than one (see Lemma 4.5 and
�eorem 4.9). In addition, the adaption of the FIA for the obtained Block-Hankel matrix system was
described, its correctness proven in �eorem 4.2 and the complexity was analyzed. Furthermore, we
showed that a reduction of equations is possible in Lemma 4.15, but it is unclear if this reduced form can
be represented in polynomial form, i.e., in terms of a reduced set of Key Equations. In our opinion, the
most promising direction is the adaption of the univariate reformulation as outlined in Section 4.4.

Several open research problems exist. A profound comparison between the two approaches of
Section 4.1 and Section 4.2 can give new insight and probably some bounds are then transferable. Other
algorithmic modi�cations as e.g., an EEA-like algorithm for the reformulated Sudan and Guruswami–
Sudan Key Equation(s), are another future direction. Due to the binomial coe�cients, every second
Hankel sub-matrix of (4.49) is zero, if we consider GRS codes over the binary extension �eld. For �elds
with characteristic two a further reduction of complexity seems possible.

�e main challenge is an explicit expression of the Guruswami–Sudan syndromes. �is probably
allows the formulation of a unique decoding algorithm beyond the radius of the one presented in
Section 4.1. �e univariate reformulation can also be applied to other related code constructions as
folded Reed–Solomon codes [B-Gur07], derivative Reed–Solomon codes [A-GW12] and related code
families like Hermitian codes [A-O’S02].
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“Do not worry about your di�culties in Mathematics. I can assure you mine are

still greater.”

Albert Einstein (1879–1955) and shown on a sign above the elevator of

the Institute of Information Transmission Problems (IITP)5
Key Equations for Interpolation-Based
So�-Decision Decoding of Generalized
Reed–Solomon Codes

One main challenge for interpolation-based so�-decision decoding of GRS codes à la Kö�er–
Vardy [O-KV00; A-KV03a], as outlined in Subsection 3.5.3, is the reduction of the complexity

of the interpolation step. Kö�er et al. proposed �rst in [I-KV03b; I-KMVA03] the re-encoding
transformation technique for this purpose. �e main idea is to re-encode the k coordinates with highest
multiplicity. �e obtained codeword is subtracted from the received word. �e modi�ed interpolation
problem a�er re-encoding has k zero-coordinates and leads—loosely formulated—to the substitution
of the factor n by n − k (which is small for high-rate codes) for the complexity analysis. Kö�er et
al. [I-KV03b; I-KMVA03] obtained a (1,−1)-weighted degree rational interpolation problem a�er the
re-encoding transformation. �e adaption of the original Kö�er algorithm for this rational problem is
extensively explained in [A-KMV11] as well as the reduction on the root-�nding step.

From a �rst glance it does not seem very fruitful to reformulate the interpolation-based so�-decision
approach of Kö�er and Vardy [O-KV00; A-KV03a] in terms of Key Equations as in Section 4.3, but we
show that the univariate reformulation a�er the re-encoding technique of [A-KMV11] leads to a simpler
reduced problem than the rational one obtained in [A-KMV11]. Our re-encoding transformation using
Key Equations leads to the same reduction of linear equations as in [A-KMV11], but we do not pass to a
rational interpolation problem due to the univariate reformulation.

In Section 5.1, we derived the non-re-encoded univariate reformulation of the Kö�er–Vardy approach
as in �eorem 3.21. In addition, the possible adaption of the FIA is outlined. In Section 5.2, we cover the
reformulation of the re-encoded problem in terms of Key Equations. Both approaches of Section 5.1
and 5.2 were not published yet. A short conclusion and future work is given in Section 5.3.

Recall from �eorem 3.21 that for a given [n, k]q GRS code GRS(υ,α, k) and q × n multiplicity
matrix m, we search a bivariate interpolation polynomial Q(X,Y ) ∈ Fq [X,Y ] with (1, k − 1)-
weighted degree smaller than δ + 1 and Y -degree `, such that:

Q[a,b](αj , βi/υj) = 0, ∀a, b with a+ b < mi,j , i ∈ [q), j ∈ [n),

where β0, β1, . . . , βq−1 denotes all distinct elements of Fq .
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5 Key Equations for Interpolation-Based So�-Decision Decoding of GRS Codes

5.1 Key Equations for the Kö�er–Vardy Algorithm

5.1.1 From the Multiplicity Matrix to Univariate Polynomials
Let c be a codeword of an [n, k]q GRS code GRS(υ,α, k) and let, as mentioned in Subsection 3.5.3,
the multiplicity matrix m = (mi,j)

j∈[n)
i∈[q)

with nonnegative entries mi,j be given. �e support of
GRS(υ,α, k) consists of n distinct elements α = (α0 α1 . . . αn−1) and the q elements of Fq are
denoted by β0, β1, . . . , βq−1, where β0 = 0.

Let the received vector be r = c+e, where e ∈ Fnq . �e multiplicitymi,j is related to the probability
that the j-th symbol rj is βi ∈ Fq .

In practical scenarios, the q × n multiplicity matrix m is sparse and not all qn points (αj , βi) ∈
{α0, α1, . . . , αn−1} × Fq need to be considered for the interpolation. We can describe our univariate
reformulation for all qn points and set where appropriate the multiplicity to zero.

Let the q maps be given:

pi : {0, 1, . . . , n− 1} → {0, 1, . . . , q − 1}
j 7→ pi(j), ∀i ∈ [q),

with pi1 (j) 6= pi2 (j) for all j ∈ [n) and i1, i2 ∈ [q) with i1 6= i2. Let the q sets P0,P1, . . . ,Pq−1

of n points be de�ned as follows:

Pi
def
=
{

(α0, βpi(0)), (α1, βpi(1)), . . . , (αn−1, βpi(n−1))
}
, ∀i ∈ [q), (5.1)

where (αj , βpi(j)) ∈ {α0, α1, . . . , αn−1} × Fq and the set P of qn points is de�ned as:

P def
= P0 ∪ P1 ∪ · · · ∪ Pq−1. (5.2)

Due to the de�nition the maps p0, p1, . . . , pq−1, the sets P0,P1, . . . ,Pq−1 are disjoint. Now, we
reformulate the interpolation problem of �eorem 3.21 in a univariate way, as we did it for the classical
Guruswami–Sudan problem in Section 4.3.

Recall that [a]+ denotes max{a, 0}. Let the maximal multiplicity out of the n points in Pi of a given
multiplicity matrix m be:

mi
def
= max

j∈[n)
mpi(j),j , ∀i ∈ [q). (5.3)

De�ne univariate polynomials in Fq [X] as:

L〈i,b〉(X)
def
=

n−1∏
j=0

(X − αj)[mpi(j),j
−b]+

, ∀b ∈ [mi), i ∈ [q), (5.4)

with degree:

di,b
def
= degL〈i,b〉(X) =

n−1∑
j=0

[mpi(j),j − b]
+, ∀b ∈ [mi), i ∈ [q). (5.5)

�e q unique polynomialsR0(X), R1(X), . . . , Rq−1(X) ∈ Fq [X] denote the Lagrange interpolation
polynomials of the n points in P0,P1, . . . ,Pq−1 such that:

Ri(αj) =
βpi(j)

υj
, ∀j ∈ [n), i ∈ [q), (5.6)
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5.1 Key Equations for the Kö�er–Vardy Algorithm

as given in (2.3).
We illustrate the univariate interpolation polynomials of (5.6) and the multiplicity matrix m in

Figure 5.1.

m0,0 m0,1 m0,2 · · · m0,n−1

m1,0 m1,1 m1,2 · · · m1,n−1

m2,0 m2,1 m2,2 · · · m2,n−1

...
...

...
. . .

...
mq−1,0 mq−1,1 mq−2,2 · · · mq−1,n−1





R0(X)

R1(X)

...

Rq−1(X)

Figure 5.1: �e q × n multiplicity matrix m = (mi,j)
j∈[n)

i∈[q) of the Kö�er–Vardy [A-KV03a] algorithm and the q
univariate polynomialsR0(X), R1(X), . . . , Rq−1(X) ∈ Fq [X].

Lemma 5.1 (Univariate Reformulation of Kötter–Vardy)
Let the parameters of an [n, k]q GRS code, the multiplicity matrix m, the point setsP0,P1, . . . ,Pq−1

as in (5.1) and the maximal multiplicities m0,m1, . . . ,mq−1 as in (5.3) be given. Let the q Lagrange
interpolation polynomials R0(X), R1(X), . . . , Rq−1(X) ∈ Fq [X] as in (5.6) be given.

�e bivariate polynomial Q(X,Y ) is a solution to �eorem 3.21 for given parameters n, k, list
size `, multiplicity matrix m and of wdeg1,k-1Q(X,Y ) < δ+ 1 if and only if there exist

∑q−1
i=0 mi

polynomials B〈i〉b (X) ∈ Fq [X] such that:

Q[b](X,Ri(X)) = B
〈i〉
b (X) · L〈i,b〉(X), ∀b ∈ [mi), i ∈ [q), (5.7)

where L〈i,b〉(X) with di,b = degL〈i,b〉(X) is de�ned as in (5.4) and with

degB
〈i〉
b (X) < δ + `(n− k)− b(n− 1)− di,b, ∀b ∈ [mi), i ∈ [q). (5.8)

Proof From Lemma 4.11, we know that both directions hold for one point (αi, ri) with multiplicity m.
We conclude that

(X − αj)[mi,j−b]+ | Q[b](X,Ri(X)), ∀j ∈ [n), b ∈ [mi), i ∈ [q).

�en, the Chinese Remainder �eorem implies that

L〈i,b〉(X) | Q[b](X,Ri(X)), ∀b ∈ [mi), i ∈ [q).

�e degree condition of (5.8) follows directly. �

From Lemma 5.1, we obtain q Guruswami–Sudan-like Key Equations as in Section 4.3, which provide:

q−1∑
i=0

mi−1∑
b=0

di,b =
1

2

q−1∑
i=0

n−1∑
j=0

mi,j(mi,j + 1)

homogeneous linear equations.

99



5 Key Equations for Interpolation-Based So�-Decision Decoding of GRS Codes

5.1.2 Block–Hankel Structure and Fundamental Iterative Algorithm

With Lemma 5.1 we obtain 1/2
∑q−1
i=0

∑n−1
j=0 mi,j(mi,j + 1) homogeneous linear equations on the

interpolation polynomial Q(X,Y ) and we can use a generalization of the FIA to solve it e�ciently as
in Section 4.3. Let Q(X,Y ) =

∑`
t=0

∑Nt−1
i=0 Qt,iX

iY t be a solution as in �eorem 3.21. �en, we
obtain q Guruswami–Sudan-like Key Equations and consider only the terms of highest degree, i.e.:

∑̀
t=b

Nt−1∑
j=0

(
t
b

)
Qt,j · S

〈i,b〉
t,j+u = 0, ∀b ∈ [mi), u ∈ [di,b), i ∈ [q), (5.9)

where S〈i,b〉t (X) ∈ Fq [X] are the syndrome polynomials as in (4.41) and (4.42), which depend on the
polynomials

R0(X), R1(X), . . . , Rq−1(X) as in (3.2) and

L〈0,0〉(X), L〈1,0〉(X), . . . , L〈q−1,mq−1〉(X) as in (5.4).

Let Qt = (Qt,0, Qt,1, . . . , Qt,Nt−1)T be the vector that contains the coe�cients of the polynomial
Qt(X) ∈ Fq [X] for all t ∈ [`+ 1). �e homogeneous linear equations of (5.9) can be wri�en in matrix
form as follows: 

S〈0〉

S〈1〉

...

S〈q−1〉

 ·

Q0

Q1

...
Q`

 = 0, (5.10)

where each sub-matrix

S〈i〉 =


S〈i,0,0〉 S〈i,0,1〉 . . . . . . . . . S〈i,0,`〉

0 S〈i,1,1〉 . . . . . . . . . S〈i,1,`〉

...
. . .

...

0 . . . 0 S〈i,mi−1,mi−1〉 . . . S〈i,mi−1,`〉


is a 1/2

∑n−1
j=0 mi,j(mi,j + 1)×

∑`
t=0Nt Block-Hankel matrix for all i ∈ [q). �e coe�cients of

the Hankel sub-matrix S〈i,b,t〉 are given by:

S
〈i,b,t〉
j,u = S

〈i,b〉
t,j+u, ∀b ∈ [mi), t ∈ [`), i ∈ [q), j ∈ [di,b), u ∈ [Nt).

Let us shortly describe how the FIA, as explained in Subsection 4.3.2 for one Block-Hankel matrix, can be
adapted to a matrix, which consists of q vertically arranged Block-Hankel matrices. We need q column
and row pointers as in Algorithm 4.2 to index the columns and rows of the di�erent q sub-Block-Hankel
matrices. Equivalently the arrays that store the discrepancies and the intermediate polynomials need to
be suited for q Block-Hankel matrices. Probably, if the rows of the matrix(

S〈0〉S〈1〉 · · ·S〈q−1〉)T
are interleaved in a similar manner as the rows of each sub-matrix S〈i〉, a complexity-reducing initial-
ization of the FIA is possible. �e time complexity is probably increased by a factor of q compared to a
single Block-Hankel matrix. If the FIA is not adapted than the increase of the time complexity is by factor
q2 instead of q. �e space complexity is clearly increased by factor q. �e main advantage of the FIA is
its applicability for the reduced set of homogeneous equations a�er the re-encoding transformation as
explained in next section.
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5.2 Re-Encoding Transformation with Key Equations

5.2 Re-Encoding Transformation with Key Equations

5.2.1 Ordering of Multiplicities
We show that the univariate reformulation a�er the re-encoding transformation leads to a reduced
system of homogeneous linear equations. �e matrix consists of q vertically aligned Block-Hankel
matrices as in (5.10), where the reduction through re-encoding concerns only one out of the q Block-
Hankel matrices. Algorithm 4.2 can be applied and does not need to be changed fundamentally as, e.g.,
the Kö�er interpolation algorithm [O-Kö96b; A-Kö96a] has to be adapted for the (1,−1)-weighted
degree interpolation problem, which was obtained through the re-encoding transformation as shown
in [A-KMV11, Section IV.C].

Let α = (α0 α1 . . . αn−1) be the support of a given [n, k]q GRS code GRS(υ,α, k) and let
Fq = {β0, β1, . . . , βq−1}, where β0 = 0.

De�nition 5.2 (Column Leader)
Let m0,m1, . . . ,mn−1 ∈ Fqq denote the n columns of a given q × n multiplicity matrix

m =
(
mT

0 mT
1 . . . mT

n−1

)
.

Let the point (αj , βi) with maximal multiplicity maxi∈[q)mi,j in one column mT
j be the column

leader.

We assume that the �rst k columns mT
0 ,m

T
1 , . . . ,m

T
k−1 are the columns that contain the k column

leaders with the greatest multiplicity among the n column leaders of m.
Furthermore, let the map p0 be such that the �rst k points

(α0, βp0(0)), (α1, βp0(1)), . . . , (αk−1, βp0(k−1))

are the �rst k column leaders, i.e.:

mp0(j),j = max
i∈[q)

mi,j , ∀j ∈ [k).

Let, as in Section 5.1, the q Lagrange interpolation polynomials R0(X), R1(X), . . . , Rq−1(X) be
such that Ri(αj) = βpi(j)/υj , for all j ∈ [n), i ∈ [q).

�e �rst k column leaders as in De�nition 5.2 are the basis for the re-encoding transformation.
Let h(X) ∈ Fq [X] be the unique Lagrange polynomial of degree smaller than k such that the �rst k

column leaders are interpolated, i.e.:

h(αi) =
βp0(i)

υi
, ∀i ∈ [k). (5.11)

Clearly, eval(h(X),υ,α) is a codeword of the given GRS code GRS(υ,α, k).
�en, the q sets P̂0, P̂1, . . . , P̂q−1 a�er the re-encoding transformation, where each set contains n

distinct interpolation points, are:

P̂0
def
=
{(
α0, 0

)
, . . . ,

(
αk−1, 0

)
,
(
αk, βp0(k) − h(αk)

)
, . . . ,

(
αn−1, βp0(n−1) − h(αn−1)

)}
,

P̂j
def
=
{(
α0, βpj(0) − h(α0)

)
, . . . ,

(
αn−1, βpj(n−1) − h(αn−1)

)}
, ∀j ∈ [1, q).
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5 Key Equations for Interpolation-Based So�-Decision Decoding of GRS Codes

�e q Lagrange interpolation polynomials are now R̂0(X), R̂1(X), . . . , R̂q−1(X) ∈ Fq [X] for the n
points in P̂0, P̂1, . . . , P̂q−1 are:

R̂j(X) = Rj(X)− h(X). (5.12)

Clearly, there exists a polynomial K0(X) ∈ Fq [X] with degree smaller than n− k, such that:

R̂0(X) =

k−1∏
i=0

(X − αi) ·K0(X). (5.13)

Let the q maps

p̂i : {0, 1, . . . , n− 1} → {0, 1, . . . , q − 1}
j 7→ p̂i(j), ∀i ∈ [q),

be de�ned such that:
βp̂i(j) = βpi(j) − h(αj), ∀j ∈ [n), i ∈ [q).

�en, the re-encoded multiplicity matrix is:

m̂ =
(
m̂i,j

)j∈[n)

i∈[q)
=
(
mp̂i(j),j

)j∈[n)

i∈[q)
. (5.14)

Equivalently to (5.3), de�ne
m̂i

def
= max

j∈[n)
mp̂i(j),j , ∀i ∈ [q). (5.15)

�e �rst k column leaders have multiplicity mp0(0),0,mp0(1),1, . . . ,mp0(k−1),k−1 or equivalently
a�er the re-encoding transformation m̂0,0, m̂0,1, . . . , m̂0,k−1. For ease of notation let as [A-KMV11]:

νi
def
= m̂0,i, ∀i ∈ [k).

Let us recall [A-KMV11, �eorem 3]. For the proof see [A-KMV11, �eorem 3].

�eorem 5.3 (Re-Encoding Transformation [A-KMV11, �eorem 3])
A polynomial Q(X,Y ) is a solution to �eorem 3.21 for a given q × n multiplicity matrix m if and
only if the polynomial

P (X,Y ) = Q(X,Y + h(X))

is a solution according to �eorem 3.21 with multiplicity matrix m̂ as in (5.14).

Clearly, the Y -degree ` and the weighted degree are identical for both polynomials Q(X,Y ) and
P (X,Y ).

From Corollary 2.9, we know that P (X,Y ) =
∑`
t=0 Pt(X)Y t that interpolates the k re-encoded

points of P̂0 with multiplicity ν0, ν1, . . . , νk−1 holds if and only if Pt(X) are divisible by
∏k−1
i=0 (X−

αi)
[νi−t]+ . Let the `+ 1 polynomials P 0(X), P 1(X), . . . , P `(X) such that

Pt(X) =

k−1∏
i=0

(X − αi)[νi−t]+P t(X).
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5.2 Re-Encoding Transformation with Key Equations

We have:

degP t(X) < degQt(X)−
k−1∑
i=0

[νi − t]+

< δ + 1− t(k − 1)−
k−1∑
i=0

[νi − t]+, t ∈ [`+ 1),

and Q(X,Y ) =
∑`
t=0Qt(X)Y t is a solution of the original interpolation problem with multiplicity

matrix m.

5.2.2 Reduced Set of Univariate Equations

Let

L̂〈0,b〉(X)
def
=

n−1∏
j=k

(X − αj)[m̂p̂0(j),j−b]
+

, ∀b ∈ [m̂0), (5.16)

L̂〈i,b〉(X)
def
=

n−1∏
j=0

(X − αj)[m̂p̂i(j),j
−b]+

, ∀b ∈ [m̂i), i ∈ [1, q), (5.17)

with degree:

d̂0,b
def
= deg L̂〈0,b〉(X) =

n−1∑
j=k

[m̂p̂0(j),j − b]+, ∀b ∈ [m̂0), (5.18)

d̂i,b
def
= deg L̂〈i,b〉(X) =

n−1∑
j=0

[m̂p̂i(j),j − b]
+, ∀b ∈ [m̂i), i ∈ [1, q). (5.19)

Lemma 5.4 (Univariate Reformulation a�er Re-Encoding)
Let the q×nmultiplicity matrix m̂, the multiplicities m̂0, m̂1, . . . , m̂q−1 as in (5.15), the q Lagrange
interpolation polynomials

R̂0(X) =

k−1∏
i=0

(X − αi)K0(X),

R̂1(X), . . . , R̂q−1(X) as in (5.12) and the polynomials

L̂〈0,0〉(X), L̂〈0,1〉(X), . . . , L̂〈q−1,m̂q−1〉(X)

as in (5.16) and (5.17) be given a�er the re-encoding transformation. �en, the interpolation polynomial
in Fq [X,Y ]

P (X,Y ) =
∑̀
t=0

(
P t(X)

k−1∏
i=0

(X − αi)[νi−t]+
)
Y t (5.20)
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5 Key Equations for Interpolation-Based So�-Decision Decoding of GRS Codes

is a solution to �eorem 3.21 for the multiplicity matrix m̂ and parameters ` and δ if and only if there
exist

∑q−1
i=0 m̂i polynomials B̂〈i〉b (X) ∈ Fq [X] such that:

∑̀
t=b

((
t
b

)
P t(X)

k−1∏
i=0

(X − αi)[t−νi]+
)
K0(X)t−b

= B̂
〈0〉
b (X)L̂〈0,b〉(X), ∀b ∈ [m̂0) (5.21)∑̀

t=b

((
t
b

)
P t(X)

k−1∏
i=0

(X − αi)[νi−t]+
)
R̂j(X)t−b

= B̂
〈j〉
b (X)L̂〈j,b〉(X), ∀b ∈ [m̂j), j ∈ [1, q), (5.22)

with
deg B̂

〈j〉
b (X) < δ + `(n− k)− b(n− 1)− d̂i,b, ∀j ∈ [q), b ∈ [m̂j).

Proof �rough the re-encoding transformation, we have k points with multiplicities ν0, ν1, . . . , νk−1

and with a zero Y -coordinate. From Corollary 2.9, we know that this holds if and only if the univariate
polynomials Pt(X) are divisible by

∏k−1
i=0 (X − αi)[νi−t]+ . �erefore, the statement for the q − 1

Guruswami–Sudan-like reformulations (5.22) directly follows from Corollary 2.9 and Lemma 5.1.
Let us investigated the reduced reformulation (5.21). From Lemma 5.1, we know that P (X,Y ) is

a solution if and only if there exist m̂0 polynomials B̂〈0〉0 (X), B̂〈0〉1 (X), . . . , B̂〈0〉
m̂0−1

(X) ∈ Fq [X]

such that:
P [b](X, R̂0(X)) = B̂

〈0〉
b (X) · L̂〈0,b〉(X), ∀b ∈ [m̂0).

We substitute (5.13) into (5.20) and obtain:

P [b](X, R̂0(X)) =
∑̀
t=b

(
t
b

)(
P t(X)

k−1∏
i=0

(X − αi)[νi−t]+
)
R̂0(X)t−b

=
∑̀
t=b

(
t
b

)(
P t(X)

k−1∏
i=0

(X − αi)[νi−t]+
k−1∏
i=0

(X − αi)t−b
)
K0(X)t−b.

With [νi − t]+ + t− b = νi − b+ [t− νi]+ (note that t ≥ b), we obtain:

P [b](X,R(X)) =

(
k−1∏
i=0

(X − αi)[νi−b]+
)

·
(∑̀
t=b

(
t
b

)(
P t(X)

k−1∏
i=0

(X − αi)[t−νi]+
)
K0(X)t−b

)
, (5.23)

for all b ∈ [m̂0). �

We �nd the univariate polynomials P 0(X), P 1(X), . . . , P `(X) with reduced degree degP t(X) <

δ + 1− t(k − 1)−
∑k−1
i=0 [νi − t]+ a�er the re-encoding transformation by solving (5.21) and (5.22).

�e solution of the reduced interpolation problem is obtained by summing up:

P t(X) ·
k−1∏
i=0

(X − αi)[νi−t]+ · Y t
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5.2 Re-Encoding Transformation with Key Equations

for all t ∈ [`+ 1).

5.2.3 Reduced Set of Homogeneous Equations in Block-Hankel Form
In this subsection, we outline the basic step to get from (5.21) and (5.22) to a reduced set of homogeneous
linear equations. De�ne:

N̂t = Nt −
k−1∑
i=0

[νi − t]+, ∀t ∈ [`). (5.24)

From (5.21) and (5.22), we obtain the following linear homogeneous set of equations:

∑̀
t=b

N̂t−1∑
j=0

(
t
b

)
P t,j · S̃

〈0,b〉
t,j+u = 0, ∀b ∈ [m̂0), u ∈ [d0,b),

∑̀
t=b

N̂t−1∑
j=0

(
t
b

)
P t,j · Ŝ

〈i,b〉
t,j+u = 0, ∀b ∈ [m̂i), u ∈ [di,b), i ∈ [1, q),

where S̃〈0,b〉t,j are the coe�cients of the power series of

K0(X)t−b
∏k−1
i=0 (X − αi)[t−νi]+

L̂〈0,b〉(X)

and Ŝ〈i,b〉t,j are the coe�cients of the fraction

R̂i(X)t−b

L̂〈i,b〉(X)

for all i ∈ [1, q).
Let Pt = (P t,0, P t,1, . . . , P t,N̂t−1

)T be the vector that contains the coe�cients of the polynomial
P t(X) ∈ Fq [X] for all t ∈ [`+ 1).

S̃〈0〉

Ŝ〈1〉

...

Ŝ〈q−1〉

 ·


P0

P1
...
P`

 = 0. (5.25)

Each matrix Ŝ〈i〉 is a 1/2
∑n−1
j=0 m̂i,j(m̂i,j + 1)×

∑`
t=0 N̂t for all i ∈ [1, q) Block-Hankel matrix.

�e Block-Hankel matrix S̃〈0〉 is a 1/2
∑n−1
j=k m̂0,j(m̂0,j + 1)×

∑`
t=0 N̂t matrix.

�e di�erence of the number of columns of the (S̃〈0〉 Ŝ〈1〉 . . . Ŝ〈q−1〉)T compared to the matrix
(S〈0〉 S〈1〉 . . .S〈q−1〉)T of (5.25) is

∑̀
t=0

k−1∑
i=0

[νi − t]+,

and equals the reduction of homogeneous linear equations.
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5 Key Equations for Interpolation-Based So�-Decision Decoding of GRS Codes

5.3 Conclusion and Future Work

We proposed the univariate reformulation of the bivariate interpolation problem of Kö�er–Vardy for so�-
decision decoding GRS codes in Lemma 5.1. �e obtain polynomial expression are q Guruswami–Sudan
like Key Equations in Section 5.1. �e univariate reformulation a�er the re-encoding transformation
was stated in Lemma 5.4 and described in Section 5.2.

We gave the complete algebraic description for both univariate reformulations and proved the main
theorems. We shortly outlined the adaption of the FIA for the obtained set of homogeneous equations
and roughly estimates its space and time complexity. �e adaption of the FIA (or similar algorithm)
for the vertically arranged Block-Hankel matrices is an open issue. Furthermore, the re-encoding
transformation in general can be applied to related code families as Chinese-Remainder-�eorem or
Algebraic-Geometry codes.
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“We must not forget that when radium was discovered no one knew that it would

prove useful in hospitals. �e work was one of pure science. And this is a proof

that scienti�c work must not be considered from the point of view of the direct

usefulness of it. It must be done for itself, for the beauty of science, and then

there is always the chance that a scienti�c discovery may become like the

radium a bene�t for humanity.”

Marie Curie (1867–1934)6
Bounding the Minimum Distance of Cyclic Codes

Although cyclic codes were developed at the end of the 1950s by Prange [O-Pra57], they still play
a central role in (distributed) storage and communication systems. However, determining their
minimum distance from a given de�ning set is an open research problem. Vardy [A-Var97]

showed that determining the minimum distance of binary linear codes is NP hard (and probably this holds
for linear codes over any alphabet size). Dumer et al. [A-DMS03] showed the hardness of approximating
the minimum distance of linear codes. �erefore, several lower bounds on the minimum distance of
linear (cyclic) codes and e�cient decoding algorithms up to these bounds exist. �is chapter deals with
lower bounds on the minimum distance of linear cyclic codes over Fq .

In the 1970s, Hartmann and Tzeng [A-Har72; A-HT72; A-HTC72; A-HT74] generalized the well-
known bound by Bose, Ray-Chaudhuri [A-BRC60] and Hocquenghem [A-Hoc59], abbreviated BCH.
Feng and Tzeng [A-FT89; A-FT91a] extended the BCH decoding algorithms of Berlekamp–Massey [B-
Ber68; A-Mas69] and Sugiyama et al. [A-SKHN75; A-SKHN76] to decode in quadratic-time up to the
Hartmann–Tzeng bound. Further extensions of the BCH bound were inter alia developed by Roos [A-
Roo82; A-Roo83], van Lint and Wilson [A-LW86] (denoted as AB or shi�ing method), Schaub and
Massey [O-MS88b; O-Sch88], Duursma and Kö�er [A-DK94; O-Kö96b; O-Duu93], Shen [A-SWTS96],
Augot and Levy-dit-Vehel [A-AL96], Boston [A-Bos01], Duursma and Pellikaan [A-DP06] as well as
Be�i and Sala [A-BS06].

An extensive discussion can be found in van Lint’s book [B-Lin99, Chapter 6], in the preliminary
version of Pellikaan et. al. [B-PWBJ12, Chapter 7], Charpin’s chapter [O-Cha98] in the Handbook
of Coding �eory, Blahut’s book [B-PHB98b, Chapter 19], Peterson and Weldon [B-PW72, Chapter
8] and in the book of MacWilliams and Sloane [B-MS88a, Chapter 7]. �e survey paper of Augot et
al. [O-ACS91] also gives an overview on the existing bounds.

Although these improved bounds show that for many codes the actual distance is higher than the
BCH bound, there is no general decoding algorithm up the actual distance of cyclic codes.

Hartmann and Tzeng [A-Har72; A-HT74] proposed two variants of an iterative decoding algorithm
up to their bound. However, these algorithms require the calculation of missing syndromes and the
solution of non-linear equations. An approach for decoding all binary cyclic codes up to their actual
minimum distance of length less than 63 was given by Feng and Tzeng [A-TF94]. �ey use a generalized
syndrome matrix and �t the known syndrome coe�cients manually for each code into the structure of
the matrix. Various other decoding variants exist.

�is chapter covers parts of the published work [I-ZWB11; I-ZB12c; A-ZWB12b; A-ZB12a; I-ZB12b;
I-ZWZGB13] and unpublished one (especially Section 6.4).

We provide a homepage [O-ZJ12] with numeric results for cyclic code over F2,F3,F5 and F7.
In Section 6.1, we use rational functions to bound the minimum distance of cyclic codes. For this
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approach, we give an error-only syndrome-based decoding algorithm and derive a generalized Forney
formula for the error-evaluation. �e bound is denoted by d∗I-a and is also considered in [I-ZWB11;
A-ZWB12b]. It is very close to the one proposed in Section 6.2, which is therefore denoted by d∗I-b. It
is based on the embedding of a given cyclic code into a cyclic product code (see Subsection 2.3.2) and
is discussed in [I-ZB12c; A-ZB12a; I-ZB12b]. Furthermore, the idea is extended to two other bounds,
which are denoted by d∗II and d∗III. While the bound d∗II is straight forward and in the sense of embedding
a cyclic code into a cyclic product code, the theorem on the bound d∗III shows a new direction (see
also [I-ZWZGB13]).

Good candidates, which can be associated to a given linear cyclic code to bound its minimum distance,
are identi�ed in Section 6.3. We give necessary and su�cient conditions for lowest-rate non-primitive
binary cyclic codes of minimum distance two. Furthermore, a su�cient condition for non-primitive
binary cyclic codes of minimum distance three is derived.

In Section 6.4, we de�ne a cyclic generalized product code and give the basic properties. �e possible
embedding of a given code into a cyclic generalized product code is outlined.

We conclude and give further research directions in Section 6.5.

6.1 Bounding the Minimum Distance by Rational Functions

6.1.1 Overview
�is approach originates from decoding Goppa codes [A-Gop70; A-Gop71] and their generalizations [I-
BS97; A-SM81]. We match the roots of an [n, k, d]q cyclic code to non-zeros of the power series
expansion of a rational function. �is allows to formulate a new lower bound on the minimum distance
of cyclic codes. We identify some classes of cyclic codes and re�ne the bound on their distance. Our
approach covers the class of reversible codes [A-Mas64]. �e proposed new lower bound is be�er than
the BCH bound and for most codes also be�er than the Hartmann–Tzeng bound (see �eorem 2.18).
Moreover, we generalized some Boston [A-Bos01] bounds.

In addition, we give an e�cient decoding algorithm up to our new bound. �is decoding algorithm is
based on a generalized Key Equation, a modi�ed Chien search and a generalized Forney’s formula [A-
For65] for the error evaluation. �e time complexity of the whole decoding procedure is quadratic with
the length of the cyclic code.

6.1.2 More Preliminaries on Cyclic Codes

Lemma 6.1 (Cardinality of Coset)
Let s be the smallest integer such that the length n divides (qs − 1), then the cardinality of the
cyclotomic coset M〈n〉r,q as in De�nition 2.17 is |M〈n〉r,q | = s if gcd(n, r) = 1.

Proof �e cyclotomic coset M〈n〉r,q has cardinality |M〈n〉r,q | = j if and only if j is the smallest integer
such that

r · qj ≡ r mod n

⇐⇒ r · (qj − 1) ≡ 0 mod n.

Since gcd(n, r) = 1, this is equivalent to n | (qj − 1). Since s is the smallest integer such that the
length n divides (qs − 1), j equals s and hence, |M〈n〉r,q | = s. �
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6.1 Bounding the Minimum Distance by Rational Functions

Let us state some preliminaries on rational functions.

De�nition 6.2 (Period of a Power Series)
Let a formal power series a(X) =

∑∞
j=0 ajX

j with aj ∈ Fq be given. �e period p(a(X)) of the
in�nite sequence a(X) is the smallest p, such that

a(X) =

∑p−1
j=0 ajX

j

−Xp + 1
.

�roughout this section, we use the power series expansion of the fraction of two polynomials h(X)
and f(X) in Fq [X] with

v
def
= deg h(X) < u

def
= deg f(X). (6.1)

Let α be an n-th root of unity in some extension �eld Fql . We require that:
C1) deg gcd(h(X), f(X)) = 0, and

C2) deg gcd(f(Xαi), f(Xαj)) = 0, ∀i, j ∈ [n) with i 6= j,
to prove our main theorem on the minimum distance.

�e following lemma establishes a connection between the length n of the code and the period of the
power series of h(X)/f(X), such that C2) is ful�lled.

Lemma 6.3 (Code Length, Period of a Power Series)
Let α be an n-th root of unity of Fql , where n|(ql − 1). Let h(X), f(X) ∈ Fq [X] with
deg gcd(h(X), f(X)) = 0 and degree as in (6.1) be given. �e formal power series over Fq is
de�ned as:

∞∑
j=0

ajX
j def

=
h(X)

f(X)
, (6.2)

with period p = p
(
h(X)/f(X)

)
as in De�nition 6.2.

If gcd(n, p) = 1, then

deg gcd
(
f(Xαi), f(Xαj)

)
= 0, ∀i, j ∈ [n) with i 6= j.

Proof From De�nition 6.2, we have

h(X)(−Xp + 1) = f(X)(a0 + a1X + . . .+ ap−1X
p−1),

and from deg gcd(f(X), h(X)) = 0, it follows that −Xp + 1 ≡ 0 mod f(X). Hence, for two
di�erent polynomials f(Xαi) and f(Xαj), for any i, j ∈ [n) with i 6= j:

Xpαip − 1 ≡ 0 mod f(Xαi) and (6.3)

Xpαjp − 1 ≡ 0 mod f(Xαj). (6.4)

Assume there is some element β ∈ F∗qus , such that

f(βαi) = f(βαj) = 0,
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6 Bounding the Minimum Distance of Cyclic Codes

i.e., gcd
(
f(Xαi), f(Xαj)

)
≡ 0 mod (X − β).

Equation (6.3) and (6.4) give the following:

βpαip − 1 = 0 and βpαjp − 1 = 0 .

�erefore, βpαip = βpαjp, and αip = αjp, hence, α(i−j)p = 1. For any i 6= j, i, j ∈ [n), this can
be true only if gcd(p, n) > 1. �

6.1.3 Bound I-a: Rational Functions
We directly state the bound on the minimum distance of an [n, k, d]q cyclic code.

�eorem 6.4 (Bound I-a)
Let C be an [n, k, d]q cyclic code and let α denote an n-th root of unity in some extension of Fq . Let
two co-prime polynomials h(X) and f(X) in Fq [X] with degrees v and u and with

gcd

(
n, p

(
h(X)

f(X)

))
= 1 and

∞∑
j=0

ajX
j =

h(X)

f(X)

be given. Let a non-zero integer m with gcd(m,n) = 1 be given and let the power series be de�ned
as:

a(f, αimX)
def
= αif

∞∑
j=0

aj(α
imX)j =

αfih(αimX)

f(αimX)
.

Let the integers f , δ with δ ≥ 2 be given, such that for all c(X) ∈ C:

∞∑
j=0

ajc(α
f+jm)Xj ≡ 0 mod Xδ−1. (6.5)

�en, the minimum distance d of C satis�es the following inequality:

d ≥ d∗I-a
def
=

⌈
δ − 1− v

u
+ 1

⌉
. (6.6)

Proof With c(X) =
∑
i∈Y ciX

i, we can rewrite (6.5):

∞∑
j=0

ajc(α
jm+f )Xj =

∞∑
j=0

∑
i∈Y

ajciα
i(jm+f)Xj .

Interchanging the summation gives us:

∞∑
j=0

∑
i∈Y

ajciα
i(jm+f)Xj =

∑
i∈Y

ci

( ∞∑
j=0

ajα
i(jm+f)Xj

)

=
∑
i∈Y

ci

( ∞∑
j=0

ajα
if (αimX)j

)
.
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6.1 Bounding the Minimum Distance by Rational Functions

We write the power-series as fraction and obtain:∑
i∈Y

ci

( ∞∑
j=0

ajα
if (αimX)j

)
=
∑
i∈Y

ci
αifh(αimX)

f(αimX)

≡ 0 mod Xδ−1. (6.7)

From Lemma 6.3 and with gcd(m,n) = 1, we know that deg gcd
(
f(αimX), f(αjmX)

)
= 0, ∀i 6=

j. We obtain from (6.7):∑
i∈Y

(
ci · αif · h(αimX) ·

∏
j∈Y
j 6=i

f(αjmX)
)

∏
i∈Y f(αimX)

≡ 0 mod Xδ−1. (6.8)

Let |Y | = d. �e degree of the denominator in (6.8) is ud and the degree of the numerator in (6.8) is at
most (d− 1)u+ v and has to be greater than or equal to δ − 1, i.e.,

(d− 1)u+ v ≥ δ − 1

d ≥
⌈
δ − 1− v

u
+ 1

⌉
. �

Let us describe �eorem 6.4. According to (6.5), we search the longest “sequence”

a0c(α
f ), a1c(α

f+m), . . . , aδ−2c(α
f+(δ−2)m),

that is a zero-sequence, i.e., the product of the coe�cient aj and the evaluated codeword c(αf+jm)
gives zero for all j ∈ [δ− 1). We require a root αjm of the code C, if the coe�cient aj−f of the power
series a(f, αjmX) is non-zero.

Example 6.5 (Binary Cyclic Code)
Consider the [17, 9]2 cyclic code C with de�ning set

D = M
〈17〉
1,2 ={1, 2, 4, 8, 16, 15, 13, 9}

≡{1, 2, 4, 8,−1,−2,−4,−8} mod 17.

Let f = −4, m = 1, h(X) = X + 1 and f(X) = X2 + X + 1 ∈ F2[X] be given. �en,
a(−4, αiX) has period three according to De�nition 6.2. We have (a0 a1 a2) = (1 0 1) for the �rst
three coe�cients, which are repeated periodically.

�e following table illustrates how we match the roots of the generator polynomial of C to the
zeros of the power series expansion a(−4, αiX). In the �rst row, the de�ning set D is shown. �e �
marks elements that are not necessarily roots of the code. In the second row of the table, the power
series expansion a = (a0 a1 a2 a0 a1 . . . ) is shown for the considered interval:

D -4 � -2 -1 � 1 2 � 4
a 1 0 1 1 0 1 1 0 1

We have aj · c(αj−4) = 0, ∀j ∈ [9), and for all c(X) ∈ C. �e zero-sequence is of length δ− 1 = 9
and therefore with �eorem 6.4 that d ≥ d∗I-a = 5. �is is the actual distance d of C.

In the next section, we see that C of Example 6.5 belongs to the class of reversible codes and we can
associate this rational function to the whole class of these codes.
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6 Bounding the Minimum Distance of Cyclic Codes

6.1.4 Some Classes of Cyclic Codes
We classify [n, k, d]q cyclic codes by subsets of their de�ning set D and their length n. We specify
our new lower bound (�eorem 6.4) on the minimum distance for some classes of codes. Additionally,
we compare it to the BCH [A-Hoc59; A-BRC60] and the Hartmann–Tzeng [A-HT72] bound as in
�eorem 2.18, which we denote by d∗BCH and d∗HT, respectively. We use the following power series
expansions 1/f(X) over Fq with period p, where a = (a0 a1 . . . ap−1) denotes the coe�cients:

• 1/(X2 +X + 1) over Fq with a = (1 -1 0) and p = 3,
• 1/(X3 +X2 +X + 1) over Fq with a = (1 -1 0 0) and p = 4,
• 1/(X3 +X + 1) over F2 with a = (1 1 1 0 1 0 0) and p = 7,
• 1/(X4 +X + 1) over F2 with a = (1 1 1 1 0 1 0 1 1 0 0 1 0 0 0) and p = 15.

We match a power series expansion a(f, αimX) to the roots of the generator polynomial, such that
the bound of �eorem 6.4 is maximized. �roughout this section, we assume due to Lemma 6.3 that
gcd(n, p) = 1 and we use �eorem 6.4 to state the lower bound d∗I-a on the distance of the codes.

Table 6.1 shows several power series expansions and their denominator h(X) and numerator f(X).
First, we apply our approach to the wide class of reversible codes. A�erwards, we show how our

(a0 a1 . . . ap−1) f(X) h(X)

(1 -1 0) 1 +X +X2 1

(-1 0 1) 1 +X +X2 −1−X
(0 1 -1) 1 +X +X2 X

(1 -1 0 0) 1 +X +X2 +X3 1
(0 1 -1 0) 1 +X +X2 +X3 X

(0 0 1 -1) 1 +X +X2 +X3 X2

(-1 0 0 1) 1 +X +X2 +X3 −1−X −X2

Table 6.1: Power series (a0 a1 . . . ap−1) for some rational functions h(X)/f(X) over F2 .

principle can equivalently be used for non-reversible codes.

6.1.5 Reversible Codes
In this subsection, we show how our approach can be applied for a large class of cyclic codes, the class
of reversible codes [A-Mas64; B-MS88a]. An [n, k, d]q code C with de�ning set D is reversible if for
any codeword

(c0 c1 . . . cn−1) ∈ C =⇒ (cn−1 cn−2 . . . c0) ∈ C

holds. A cyclic code is reversible if and only if the reciprocal of every zero of the generator polynomial
g(X) is also a zero of g(X), i.e.,

D = {i1, i2, . . . , i`,−i1,−i2, . . . ,−i`}. (6.9)

A special class of reversible codes, which we call symmetric reversible codes is given based on the
following lemma.
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6.1 Bounding the Minimum Distance by Rational Functions

Lemma 6.6 (Symmetric Reversible Codes)
Let n and q with gcd(n, q) = 1 be given. Any union of cyclotomic cosets M〈n〉i,q is a de�ning set of a
reversible code if and only if n | (qm + 1), for some m ∈ N.

Proof Any union of cyclotomic cosets de�nes a reversible code if and only if any coset is reversible,
i.e., if for all r and some integer m:

M
〈n〉
r,q = {r, r · q, . . . , r · qm−1,−r,−r · q, . . . ,−r · qm−1}.

�erefore for all r, the following has to hold:

r · qm ≡ −r mod n

⇐⇒ r · (qm + 1) ≡ 0 mod n.

Since r = 1 always de�nes a cyclotomic coset, (qm + 1) ≡ 0 mod n has to hold. �is is ful�lled if
and only if n | (qm + 1) and in this case also r · (qm + 1) ≡ 0 mod n holds for any r. �

Moreover, the following lemma provides the cardinality of all cyclotomic cosets if n | (qm + 1).

Lemma 6.7 (Cardinality of Symmetric Reversible Codes)
Let m be the smallest integer such that n divides (qm + 1), then the cardinality of the cyclotomic
coset M〈n〉r,q is

|M〈n〉r,q | = 2m

if gcd(n, r) = 1.

Proof Since n | (qm + 1), it follows also that n | (qm + 1)(qm − 1) = (q2m − 1). Since m is the
smallest integer such that n divides (qm+1), also s = 2m is the smallest integer such that n | (qs−1).
With Lemma 6.1, we obtain |M〈n〉r,q | = s if gcd(n, r) = 1. �erefore, |M〈n〉r,q | = s = 2m. �

In order to illustrate our bound, we �rst restrict ourselves to binary codes. To give a new bound on the
minimum distance, we �rst use the rational function a(X) = h(X)/f(X) with f(X) = X2 +X+ 1,
where p(a(X)) = 3. For a binary symmetric reversible code C, we know from (6.9) that each cyclotomic
coset is symmetric. �erefore, if {1} ⊆ D, we know that {−4,−2,−1, 1, 2, 4} is a subset of the
de�ning set D. Let us use the (cyclically shi�ed) power series expansion a = (−1 0 1 . . . ). According
to Table 6.1, we have h(X) = −1 − X . We match the roots of C for f = −4 and m = 1, to a
zero-sequence of length δ − 1 = 9. �erefore our bound provides d ≥ d∗I-a = 5.

Let the de�ning set D of the binary symmetric reversible code C additionally include 5. �en we
obtain for f = −6 and m = 1 a sequence of length δ − 1 = 13, which results in d∗I-a = 7.

In the same way, if {1, 5, 7} ⊆ D, we obtain δ − 1 = 21 with f = −10 and m = 1 and thus,
d∗I-a = 11. �ese parameters are shown in Table 6.2 and compared with the BCH and Hartmann–Tzeng
bound.

As mentioned before, reversible codes are de�ned such that the reciprocal of each root of the generator
polynomial is also a root. �erefore, a de�ning set where r ⊆ D, and also −r ⊆ D de�nes a reversible
code if gcd(r, n) = 1 and gcd(−r, n) = 1. �e conditions are necessary to guarantee that both
cyclotomic cosets have the same cardinality (compare Lemma 6.1) and hence each reciprocal root is also
in the de�ning set. �e second row of Table 6.2 shows the required subsets of the de�ning set in order to
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6 Bounding the Minimum Distance of Cyclic Codes

Binary {1} ⊆ D {1, 5} ⊆ D {1, 5, 7} ⊆ D
Symmetric
Reversible k ≥ n− ` k ≥ n− 2` k ≥ n− 3`

Binary {-1, 1} ⊆ D {-5,-1, 1, 5} ⊆ D {-7,-5,-1,
Reversible 1, 5, 7} ⊆ D

k ≥ n− 2` k ≥ n− 4` k ≥ n− 6`
General {-4,-2,-1, 1, {-5,-4,-2,-1, 1, {-10,-7,-5,-4,-2,-1,
q-ary 2, 4} ⊆ D 2, 4, 5} ⊆ D 1, 2, 4, 5, 7, 10} ⊆ D
BCH

c(αf1 ), . . . ,
c(αf1+(δ−2)m1 )

d∗BCH = 4
f1 = −4
m1 = 3

d∗BCH = 5
f1 = −5
m1 = 3

d∗BCH = 8
f1 = −10
m1 = 3

Hartmann
–Tzeng

c(αf1 ), . . .
c(αf1+(δ−2)m1+νm2 )

d∗HT = 5
f1 = −4
m1 = 3
m2 = 2
δ = 4
ν = 1

d∗HT = 6
f1 = −5
m1 = 3
m2 = 1
δ = 5
ν = 1

d∗HT = 9
f1 = −10
m1 = 3
m2 = 2
δ = 8
ν = 1

Fractions
a0c(αf ), . . .

aδ−2c(α
f+m(δ−2))

d∗I-a = 5
f1 = −4
m = 1
δ = 10
a = (-1 0 1)

d∗I-a = 7
f1 = −6
m = 1
δ = 14
a = (0 0 -1)

d∗I-a = 11
f1 = −10
m = 1
δ = 22
a = (-1 0 1)

Table 6.2: Comparison of the BCH and the Hartmann–Tzeng bounds on the minimum distance of q-ary cyclic codes
of length n with gcd(n, 3) = 1. �e denominator of the rational fraction is f(X) = X2 +X + 1.

obtain the same parameters as for binary symmetric reversible codes. Note that l is the smallest integer
such that the length n divides ql − 1.

�e third row of Table 6.2 gives these results in general. In Table 6.2, gcd(n, p = 3) = 1 has due to
Lemma 6.3.

Example 6.8 (Binary Symmetric Reversible Code)
�e binary [17, 9, 5]2 cyclic code C from Example 6.5 is a symmetric reversible code since Lemma 6.6
is ful�lled. If {1} ⊆ D, then

D = {1, 2, 4, 8, 16, 15, 13, 9}
≡ {1, 2, 4, 8,−1,−2,−4,−8} mod 17

and we obtain d∗I-a = 5.

For this class of binary cyclic codes, the bound d ≥ 5 on the minimum distance can be also obtained
by another way. With f = −4 and m = 3 we know from the BCH bound that the minimum
distance is at least four. A binary cyclic code of even weight codewords has the zero in the de�ning
set and we would obtain �ve consecutive zeros (resulting in a minimum distance of at least six). �is
implies that a codeword of weight four can not exists and therefore a binary cyclic code C(D), where

114



B
ou

nd
in

g
D

is
ta

nc
e

6.1 Bounding the Minimum Distance by Rational Functions

{−4,−2,−1, 1, 2, 4} ⊆ D, has at least minimum distance �ve.
In Table 6.3, we list some classes of cyclic codes where the denominator f(X) of the rational function

αifh(αimX)/f(αimX) has degree three and the period is p(1/(X3 + X2 + X + 1)) = 4. �e

Binary {3, 5} ⊆ D {3, 5, 11} ⊆ D {3, 5, 11, 13} ⊆ D
Symmetric
Reversible k ≥ n− 2` k ≥ n− 3` k ≥ n− 4`

Binary {-5,-3, 3, 5} ⊆ D {-11,-5,-3, 3, {-13,-11,-5,-3,
Reversible 5, 11} ⊆ D 3, 5, 11, 13} ⊆ D

k ≥ n− 4` k ≥ n− 6` k ≥ n− 8`
General {-6,-5,-3, {-11,-6,-5,-3, {-13,-11,-6,-5,-3,
q-ary 3, 5, 6} ⊆ D 3, 5, 6, 11} ⊆ D 3, 5, 6, 11, 13} ⊆ D

BCH
c(αf1 ), . . . ,

c(αf1+(δ−2)m1 )

d∗BCH = 3
f1 = −6
m1 = 1

d∗BCH = 3
f1 = −6
m1 = 1

d∗BCH = 4
f1 = −13
m1 = 1

Hartmann
–Tzeng

c(αf1 ), . . .
c(αf1+(δ−2)m1+νm2 )

d∗HT = 3
f1 = −6
m1 = 1
m2 = 0
δ = 3

d∗HT = 5
f1 = −11
m1 = 8
m2 = 6
δ = 4
ν = 1

d∗HT = 6
f1 = −13
m1 = 8
m2 = 2
δ = 5
ν = 1

Fractions
a0c(αf ), . . .

aδ−2c(α
f+m(δ−2))

d∗I-a = 4
f1 = −9
m = 2
δ = 11
a = (0 0 1 -1)

d∗I-a = 5
f1 = −11
m = 2
δ = 13
a = (0 0 1 -1)

d∗I-a = 7
f1 = −17
m = 2
δ = 19
a = (0 0 1 -1)

Table 6.3: Comparison of the BCH and the Hartmann–Tzeng bounds on the minimum distance of q-ary cyclic codes
of length n with gcd(n, 4) = 1. �e denominator of the rational fraction is f(X) = X3 +X2 +X + 1.

power series expansion is 1/(X3 +X2 +X + 1) = (1−X)/(−X4 + 1). Let us consider the second
class, where in the case of a binary symmetric reversible code the set {3, 5, 11} must be in the de�ning
set of the code. �e Hartmann–Tzeng bound gives the same lower bound on the minimum distance as
our approach d∗HT = 5.

Example 6.9 (Binary Cyclic Code)
�e binary [45, 31, 4]2 cyclic code C(D) with {−5,−3, 3, 5} ⊆ D has the following de�ning set

D = {3, 5, 6, 10, 12, 20, 21, 24, 25, 33, 35, 39, 40, 42}.

�e code C(D) belong to the class of codes in the �rst column of Table 6.3. We obtain d∗I-a = 4, which
is the actual distance of the code. Note that 3 divides 45 and therefore we cannot use Table 6.2.
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6 Bounding the Minimum Distance of Cyclic Codes

6.1.6 Non-Reversible Codes

In this subsection, we use our principle equivalently for non-reversible codes. Some classes of binary
cyclic codes are given. �e power series expansion of the polynomial f(X) = X3 + X + 1 over
F2[X] has period p = 7. To obtain a bound on the minimum distance, we consider the case of
binary cyclic codes, where the de�ning set D contains the 0. Assume that {−3, 0, 1, 7} ⊆ D. �e
sequence of zeros of the binary code can be matched to the rational function for f = −4 and m = 1.
�e corresponding distance is then d∗I-a = 5. �is and some other combinations of subsets of D
are shown in Table 6.4. Another class of binary cyclic codes can be identi�ed using the polynomial

Binary {−3, 0, 1, 7} {−3, 0, 1, 7, 9} {−3, 0, 1, 7, 9, 11}
Codes ⊆ D ⊆ D ⊆ D

k ≥ n− 4` k ≥ n− 5` k ≥ n− 6`

BCH
c(αf1 ), . . . ,

c(αf1+(δ−2)m1 )

d∗BCH = 4
f1 = -3
m1 = 5

d∗BCH = 4
f1 = -3
m1 = 5

d∗BCH = 4
f1 = -3
m1 = 5

Hartmann
–Tzeng

c(αf1 ), . . .
c(αf1+(δ−2)m1+νm2 )

d∗HT = 4
f1 = -3
m1 = 5
m2 = 0
δ = 4

d∗HT = 4
f1 = -3
m1 = 5
m2 = 0
δ = 4

d∗HT = 4
f1 = -3
m1 = 5
m2 = 0
δ = 4

Fractions
a0c(αf ), . . .

aδ−2c(α
f+m(δ−2))

d∗I-a = 5
f1 = -4
m = 1
δ = 14
a = (100110)

d∗I-a = 6
f1 = -4
m = 1
δ = 16
a = (100110)

d∗I-a = 7
f1 = -4
m = 1
δ = 19
a = (100110)

Table 6.4: Comparison of the BCH and the Hartmann–Tzeng bounds on the minimum distance of q-ary cyclic codes
of length n with gcd(n, 7) = 1. �e denominator of the rational fraction is f(X) = X3 +X + 1.

f(X) = X4 + X + 1 with p(1/f(X)) = 15. We use the shi�ed power series expansion such that
a = (1 0 0 1 0 0 0 1 1 1 1 0 1 0 1).

As required by Lemma 6.3, we only consider lengths n, such that gcd(n, p = 15) = 1. We can
match a concatenation of a to the roots of the generator polynomial for f = −6 and m = 1 if
{1, 3, 9,−3} ⊆ D. Our bound on the distance yields d∗I-a = 6, since deg f(X) = 4, whereas the BCH
and the Hartmann–Tzeng bound give d∗BCH = d∗HT = 5.

6.1.7 Generalizing Boston’s Bounds

Boston gave ten bounds, denoted by d∗BO, on the minimum distance of an [n, k, d]q cyclic code in [A-
Bos01]. He uses algebraic geometry for the proof. �ese bounds are each for a speci�c subset of the
de�ning set and do not consider whole classes of codes. In this section, we show how our approach
generalizes some of these bounds.

Six of Boston’s ten bounds are given as follows.
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6.1 Bounding the Minimum Distance by Rational Functions

�eorem 6.10 (Boston Bounds, [A-Bos01])
�e following bounds on the minimum distance of an [n, k, d]q cyclic code C with de�ning set D
hold:

B1) If 3 - n and {0, 1, 3, 4} ⊆ D, then d∗BO = 4,
B2) If {0, 1, 3, 5} ⊆ D, then d∗BO = 4,
B5) If 3 - n and {0, 1, 3, 4, 6} ⊆ D, then d∗BO = 5,
B6) If 4 - n and {0, 1, 2, 4, 5, 6, 8} ⊆ D, then d∗BO = 6,
B7) If 3 - n and {0, 1, 3, 4, 6, 7} ⊆ D, then d∗BO = 6,

B10) If 3 - n and {0, 1, 3, 4, 6, 7, 9} ⊆ D, then d∗BO = 7.

We use again two power series expansions 1/f(X). �e �rst power series expansion is 1/(X2 +
X + 1) of period p = 3 with (a0 a1 a2) = (1 -1 0). �e second considered power series expansion
1/(X2 + 1) has period p = 4 with (a0 a1 a2 a3) = (1 0 -1 0). Note that the la�er is actually a special
case of the BCH bound. Table 6.5 shows the six Boston bounds. Boston’s bounds B1 B2, B5, B6 and B7
are special cases of our bound. However, for Boston’s bound B10, our approach gives a worse result.
Moreover, Boston raised the following question [A-Bos01]:

No I = f(X) a d∗I-a Conditions
1 [-1, 5] X2 +X + 1 (0 1 -1 . . . ) 4 gcd(n, 3) = 1
2 [0, 6] X2 + 1 (0 1 0 -1 . . . ) 4 gcd(n, 2) = 1
5 [-1, 6] X2 +X + 1 (0 1 -1 . . . ) 5 gcd(n, 3) = 1
6 [-1, 8] X2 + 1 (0 1 0 -1 . . . ) 6 gcd(n, 2) = 1
7 [-1, 8] X2 +X + 1 (0 1 -1 . . . ) 6 gcd(n, 3) = 1
10 [-1, 9] X2 +X + 1 (0 1 -1 . . . ) 6 gcd(n, 3) = 1

Table 6.5: Some of Boston’s bounds [A-Bos01] on the minimum distance compared to our approach.

�estion 6.11 (Boston’s �estion, [A-Bos01])
Let 3 - n and the set T = {0, 1, 3, 4, 6, 7, 9, 10, . . . , r} ⊆ D. Is the minimum distance d then
d ≥ d∗BO = |T |?

Counter-examples show that Boston’s conjecture is not true (see Example 6.12), since the actual
distance of such codes is not always d∗BO = r + 1. However, using the power series expansion of
1/(X2 +X + 1) with a = (0 1 -1 . . . ) we obtain δ− 1 = r+ 2. �e minimum distance of such codes
can be bounded by d∗I-a = d(r + 1)/2 + 1e with u = deg f(X) = 2 and v = h(X) = 1.

Example 6.12 (Ternary Cyclic Code of Length 20)
Let

D = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18}

be the de�ning set of a [20, 6]3 cyclic code. For Boston’s scheme, we can use T =
{0, 1, 3, 4, 6, 7, 9, 10, 12} with |T | = 9. �e actual distance is d = 8 and therefore, Boston’s
conjecture is not true. �e BCH bound yields d∗BCH = 6. Our new bound is tight and with r = 12, we
obtain d∗I-a = d(r + 1)/2 + 1e = 8.
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6 Bounding the Minimum Distance of Cyclic Codes

6.1.8 Generalized Key Equation and Decoding Algorithm
An e�cient error-only decoding algorithm up to the bound d∗I-a of �eorem 6.4 based on a generalized
Key Equation is considered in this subsection.

Let c(X) be a codeword of a given [n, k, d]q code C. Let r(X) = c(X) + e(X) be the received
polynomial, where e(X) =

∑
i∈E eiX

i ∈ Fq [X] is the error word and E = {j0, j1, . . . , jε−1} ⊆
{0, 1, . . . , n − 1} is the set of error positions of cardinality |E| = ε. Let the integers f , m with
gcd(m,n) = 1, δ ≥ 2 and the two polynomials h(X), f(X) ∈ Fq [X] with deg f(X) = u <
deg h(X) = v be given as in �eorem 6.4 for d∗I-a. We de�ne the syndrome polynomial S(X):

S(X) ≡
n−1∑
i=0

ri
αifh(αimX)

f(αimX)

=
∑
i∈E

ei
αifh(αimX)

f(αimX)
mod Xδ−1. (6.10)

�us, with
∑∞
j=0 ajX

j = h(X)/f(X) the explicit form of the syndrome polynomial can be wri�en
as:

S(X) =

δ−2∑
j=0

ajr(α
f+jm)Xj =

δ−2∑
j=0

aje(α
f+jm)Xj . (6.11)

We introduce a generalized error-locator polynomial Λ(X) and error-evaluator polynomial Ω(X) and
relate it to the syndrome de�nition of (6.10). Let E denote the set of error positions and let ε = |E|.
We de�ne Λ(X) as:

Λ(X)
def
=
∏
i∈E

f(αimX). (6.12)

Let
Ω(X)

def
=
∑
i∈E

(
ei · αif · h(αimX) ·

∏
j∈E
j 6=i

f(αjmX)
)
, (6.13)

and we obtain with (6.11) a generalized Key Equation:

Λ(X) · S(X) ≡ Ω(X) mod Xδ−1 with
deg Ω(X) ≤ (ε− 1)u+ v < deg Λ(x) = εu,

(6.14)

since v < u.
�e main step of our decoding algorithm is to determine Λ(X) and Ω(X) if S(X) is given. �e

following lemma shows that there is a unique solution for Λ(X) if the number of errors is not too big.

Lemma 6.13 (Solving the Key Equation)
Let S(X) with degS(X) = δ − 2 be given as in (6.11). If

ε = |E| ≤
⌊
d∗I-a − 1

2

⌋
, (6.15)

there is a unique solution (up to a scalar factor) of the Key Equation (6.14) with deg Ω(X) ≤ (ε−
1)u + v < deg Λ(X) = εu. We can �nd this solution by the EEA, i.e., Algorithm 3.1 with input
polynomials Xδ−1 and S(X) and stopping criteria crit = {ui < δ/2− 1}.
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6.1 Bounding the Minimum Distance by Rational Functions

Proof For the explicit proof we refer to [B-MS88a, �eorem 16, p. 367], where it is shown that there is
a unique solution of the generalized Key Equation (6.14) and that the EEA �nds it if

deg Λ(X) = εu ≤
⌊
δ − 1

2

⌋
,

and therefore
ε ≤

⌊
δ − 1

2u

⌋
=

⌊
(d∗I-a − 1)u+ v

2u

⌋
=

⌊
(d∗I-a − 1)

2

⌋
, (6.16)

since v/2u < 1/2. �

�en, we obtain the unique (except for a scalar factor) solution for Λ(X) and Ω(X) of (6.14), if (6.15)
holds.

�e Key Equation (6.14) can be wri�en as a linear system of equations, with εu+ 1 coe�cients of
Λ(X). If we consider only the equations which do not depend on Ω(X), we obtain:

S0 S1 . . . Sεu
S1 S2 . . . Sεu+1

...
...

. . .
...

Sδ−εu−2 Sδ−εu−1 . . . Sδ−2

 ·


Λεu
Λεu−1

...
Λ0

 = 0. (6.17)

�ere is a unique solution up to a scalar factor if and only if the rank of the syndrome matrix is εu. One
coe�cient of Λ(X) can be chosen arbitrarily (here Λ0 = 1), since a scalar factor does not change the
roots. From this we obtain the same condition on the decoding radius as in Lemma 6.13.

If we have found Λ(X), we can determine its factors f(αimX), where i ∈ E. �ese factors are
disjoint since

deg(gcd(f(αimX), f(αjmX))) = 0, ∀i 6= j

and therefore these factors provide the error positions. We calculate only one root βi of each f(αimX)
in a preprocessing step. To �nd the error positions if Λ(X) is given, we perform a Chien search with
β0, β1, . . . , βn−1. �is is shown in Algorithm 6.1 and �eorem 6.15 proves that each βi uniquely
determines f(αimX).

For the non-binary case, we have to calculate the error values at the error positions. �is can be done
by a generalized Forney’s formula [A-For65]. In order to obtain this error evaluation formula, we use
the explicit expression for Ω(X) from (6.13). As mentioned before, the preprocessing step calculates n
values β0, β1, . . . , βn−1 such that

f(αiβi) = 0, ∀i ∈ [n) and

f(αjβi) 6= 0, ∀j 6= i.

�e evaluation of Ω(X) at β`, ` ∈ E, yields:

Ω(β`) =
∑
i∈E

(
ei · αif · h(αimβ`) ·

∏
j∈E
j 6=i

f(αjmβ`)
)
.

With f(α`β`) = 0, the product
∏
j∈E
j 6=i

f(αjβ`) is zero if ` ∈ E\{i} and non-zero only if ` = i.

Hence, we obtain
Ω(β`) = e` · α`f · h(α`mβ`) ·

∏
j∈E
j 6=`

f(αjmβ`). (6.18)
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6 Bounding the Minimum Distance of Cyclic Codes

�is derivation provides the following lemma.

Lemma 6.14 (Generalized Error Evaluation)
Let α be an n-th root of unity. Let the integersm, f and the polynomials h(αiX), f(αiX), Λ(X) =∏
i∈E f(αimX) and Ω(X) from (6.13), for all i ∈ [n) with deg(gcd(f(αiX), f(αjX))) = 0 be

given. �en, the error values e` for all ` ∈ E are given by

e` =
Ω(β`)

α`f · h(α`mβ`)
∏
j∈E
j 6=`

f(αjmβ`)

=
Ω(β`) · f ′(α`mβ`)

α`f · h(α`mβ`) · Λ′(β`)
, (6.19)

where f ′(αiX) and Λ′(X) denote the �rst derivatives of f(αiX) and Λ(X) respectively.

Proof �e lemma follows from (6.18) and the fact that

Λ′(X) =
∑
i∈E

f ′(αimX)
∏
j∈E
j 6=i

f(αjmX)

and therefore

Λ′(β`) = f ′(α`mβ`)
∏
j∈E
j 6=`

f(αjmβ`m). �

�e classical Forney formula [A-For65], is obtained from (6.19) for

a(f, αimX) =
αif

1− αimX
.

�e decoding approach is summarized in Algorithm 6.1 and its correctness is proved in �eorem 6.15.
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6.1 Bounding the Minimum Distance by Rational Functions

Algorithm 6.1: c(X) = DECODEFRACTION(r(X), f(X), h(X), f,m, δ)

Input: Received word r(X), f(X), h(X), Parameters f , m and δ
Output: Estimated codeword c(X) or Decoding Failure
Preprocessing:

for all i ∈ [n): calculate one root βi of f(αiX)

1 Calculate S(X) by (6.11) // Syndrome Calculation

2 Set crit = {deg ui < δ/2− 1}

3 ,Λ(X),Ω(X) = EEA
(
Xδ−1, S(X), crit

)
// Modified Euclidean Algorithm

4 Find all i, where Λ(βi) = 0⇒ E = {i0, i1, . . . , iε−1} // Chien-like search

5 if εu < deg Λ(X) then
6 Declare Decoding Failure
7 else
8 Determine error values ei0 , ei1 , . . . , eiε−1 by (6.19)

9 e(X)←
∑
`∈E e`X

`

10 c(X)← r(X)− e(X)

�e sign in Line 3 of Algorithm 6.1 indicates that the returned polynomial is not needed for further
calculations.

�eorem 6.15 (Correctness and Complexity of Algorithm 6.1)
Let r(X) be the received word and let

d(r(X), c(X)) ≤ b(d∗I-a − 1)/2c

for some codeword c(X) ∈ C, then Algorithm 6.1 returns c(X) with complexityO((deg f(X) · n)2)
operations in Fql .

Proof Let the syndrome polynomial S(X) be de�ned by (6.11). As shown in Lemma 6.13, we can
then solve the Key Equation uniquely for Λ(X) if ε ≤

⌊
(d∗I-a − 1)/2

⌋
. �erefore, we obtain Λ(X) =∏

i∈E f(αiX) with deg Λ(X) = εu as in Line 3 of Algorithm 6.1 and also the error-evaluator
polynomial Ω(X) from Algorithm 3.2 with stopping criteria crit = {ui < δ/2− 1}.

To explain the preprocessing and the Chien search, we recall that for each polynomial a(X) of degree
u de�ned over Fql there exists a spli�ing �eld, i.e., an extension �eld Fqus of Fqs , in which a(X)

has u roots. �erefore, each f(αiX) can be decomposed into u = deg f(αiX) linear factors over
a �eld Fqus . �ese factors are disjoint since deg(gcd(f(αiX), f(αjX))) = 0 and hence, one root
of f(αiX) uniquely de�nes f(αiX) and i. Hence, Λ(βj) = 0 if and only if j ∈ E and in Line 4 of
Algorithm 6.1 the error positions are correctly identi�ed.

Lemma 6.14 proves the generalized error evaluation and therefore, if

d(r(X), c(X)) ≤ b(d∗I-a − 1)/2c

for some codeword c(X) ∈ C, Algorithm 6.1 returns c(X), otherwise a decoding failure.
To prove the complexity, we note that the input polynomials S(X) and Xδ−1 of the EEA have

degrees at most δ − 2 and δ − 1, respectively. �erefore, the complexity of the EEA is quadratic in δ,
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6 Bounding the Minimum Distance of Cyclic Codes

i.e.,O(δ2) ≈ O((u · d∗I-a)2). �e Chien search and the generalized error evaluation require the same
complexity as for the classical case, which isO(n2). �erefore, we can upper bound the complexity of
Algorithm 6.1 by

O((u · n)2) = O((deg f(X) · n)2). �

We consider the [17, 9, 5]2 code from Example 6.5 to illustrate Algorithm 6.1 in the following.

Example 6.16 (Decoding Binary Cyclic Code of Length 17)
We consider again the [17, 9, 5]2 cyclic code as in Example 6.5. �e associated power series
a(−4, αiX) up to the δ − 2 coe�cient is:

a(−4, αiX) =
αi13 · h(αiX)

f(αiX)

=
α13i + α14iX

1 + αiX + α2iX2

= α13i + α15iX2 + α16iX3 + αiX5 + α2iX6 + α4iX8 + . . . . (6.20)

For the syndrome polynomial, we obtain with δ − 1 = 9 and (6.10), (6.11) and (6.20):

S(X) =

n−1∑
i=0

ei · (α13i + α15iX2 + · · ·+ α4iX8)

=
∑
i∈E

(α13i + α15iX2 + · · ·+ α4iX8)

= r(α13) + r(α15)X2 + · · ·+ r(α4)X8

= S0 + S2X
2 + S3X

3 + S5X
5 + S6X

6 + S8X
8.

As in Algorithm 6.1, we call the EEA with the above syndrome polynomial as follows:

EEA
(
X9, S(X), {ui < 4}

)
.

Assume, two errors occurred, then we obtain Λ(X) with deg Λ(X) = εu = 2 · 2 = 4.
Using the EEA is equivalent to solving the following system of equations for Λ(X)

S0 0 S2 S3 0
0 S2 S3 0 S5

S2 S3 0 S5 S6

S3 0 S5 S6 0

 ·


Λ4

Λ3

...
Λ0

 = 0,

and with both approaches, Λ(X) has the roots f(αiX) = 1+αiX+(αiX)2, ∀i ∈ E. We know that
each f(αiX) = 1+αiX+(αiX)2 has two roots in F28 which are unique. We have a look-up-table
with one root βi of each f(αiX) and we perform a Chien search for Λ(X) with β0, β1, . . . , βn−1.
Since this is a binary code, we do not need an error evaluation and can reconstruct the error.
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

6.2 Bounding Minimum Distance by Embedding a Cyclic Code
Into a Cyclic Product Codes

6.2.1 Bound I-b: Basic Idea
We embed a given cyclic code into a cyclic product code, as de�ned in Section 2.3.2, to bound its minimum
distance. �e results are similar to those obtained in Section 6.1, but we think it is more elegant and
gives new insights. �e bound derived in this section coincides in several cases with d∗I-a. �erefore, it is
denoted by d∗I-b.

To see the connection, let us prove the following lemma.

Lemma 6.17 (Rational Function and Evaluated Codeword Sequence)
Let c(X) =

∑
i∈Y ciX

i be a codeword of a given [n, k, d]q cyclic code C. Let α denote an n-th root
of unity in some extension �eld of Fq and let f and m be two integers with gcd(m,n) = 1. �en,
the power series

∞∑
i=0

c(αf+im)Xi (6.21)

equals the one of �eorem 6.4 with

a(f, αjmX) =
αjfh(αjmX)

f(αjmX)
, (6.22)

where:

h(αimX) =
∑
j∈Y

cjα
fj
∏
`∈Y
` 6=j

(1− αm`X),

f(αimX) =
∏
j∈Y

(1− αmjX).

Proof Let us write (6.21) more explicitly:

∞∑
i=0

c(αf+im)Xi =
∞∑
i=0

∑
j∈Y

cjα
(f+im)jXi =

∑
j∈Y

∞∑
i=0

cjα
(f+im)jXi

=
∑
j∈Y

∞∑
i=0

cjα
fjαmjiXi =

∑
j∈Y

∞∑
i=0

cjα
fj(αmjX)i.

Using the geometric series, we obtain:

∑
j∈Y

∞∑
i=0

cjα
fj(αmjX)i =

∑
j∈Y

cjα
fj

1− αmjX

=

∑
j∈Y cjα

fj
∏
` 6=j(1− αm`X)∏

j∈Y (1− αmjX)
. �
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6 Bounding the Minimum Distance of Cyclic Codes

Let us restate [A-ZB12a, �eorem 2] on the minimum distance of cyclic codes using cyclic product codes.

�eorem 6.18 (BCH Bound Generalization — Bound I-b)
Let an [na, ka, da]q cyclic code A and a second [nb, kb, db]q cyclic code B with gcd(na, nb) = 1
be given. Let α be an element of order na in Fqla and β of order nb in F

qlb
respectively. Let �ve

integers f1, f2, m1, m2, δ with m1 6= 0, m1 6= 0, gcd(na,m1) = gcd(nb,m2) = 1 and δ ≥ 2 be
given, such that:

∞∑
i=0

a(αf1+im1 ) · b(βf2+im2 )Xi ≡ 0 mod Xδ−1 (6.23)

holds for all codewords a(X) ∈ A and b(X) ∈ B . �en, we have:

da ≥ d∗I-b =

⌈
δ

db

⌉
.

�e polynomial of (6.23) has coe�cients in Fql [X], where l = lcm(la, lb).
Proof From �eorem 2.21 we know that (6.23) corresponds to δ − 1 consecutive zeros in the de�ning
set D of C = A⊗ B and therefore its distance d = dadb is greater than or equal to δ according to the
BCH bound. �

Moreover, this yields the following explicit relation.

Lemma 6.19 (Explicit Relation for Bound I-b )
Let the integers f1, f2,m1,m2, δ withm1 6= 0,m2 6= 0, gcd(na,m1) = gcd(nb,m2) = 1, δ ≥ 2
and the two cyclic codesA and B be given as in �eorem 6.18. Furthermore, let two integers u and v
be given, such that una + vnb = 1. �en, the two integers:

f = f1 · v2 · nb + f2 · u2 · na, and

m = m1 · v2 · nb +m2 · u2 · na,

denote the parameters such that:

∞∑
i=0

c(γf+im)Xi ≡ 0 mod Xδ−1 (6.24)

holds for all c(X) ∈ A⊗ B, where γ is an element of order nanb in Fql .

Proof Let ga(X) be the generator polynomial ofA and gb(X) that of B. From �eorem 2.21 we know
that ifαi is a root of ga(X), then γvi is a root of g(X) as in (2.22) and γui is a root of g(X) if βi is a root
of gb(X). �erefore we want f + im ≡ v(f1 + im1) mod na and f + im ≡ u(f2 + im2) mod nb
and the Chinese Remainder �eorem gives the result. �

Example 6.20 (BCH Bound of the Cyclic Product Code)
LetA be the binary reversible [17, 9, 5]2 code as in Example 6.5 with de�ning set:

DA = {1, 2, 4, 8,−8,−4,−2,−1},
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

and let B denote the binary [3, 2, 2]2 single parity check code with DB = {0}. Let α ∈ F28 and
β ∈ F24 denote elements of order 17 and 3, respectively. �en, we know that for f1 = −4, f2 = −1
and m1 = m2 = 1 �eorem 6.18 holds for δ = 10 and therefore da ≥ 5, which is the true minimum
distance ofA.

Since −1 · 17 + 6 · 3 = 1, according to �eorem 2.22 the de�ning set of the cyclic product code
A⊗ B is:

DA⊗B =
{
{3, 5, 6, 7, 10, 11, 12, 14} ∪ {20, 22, 23, 24, 27, 28, 29, 31}∪

{37, 39, 40, 41, 44, 45, 46, 48} ∪ {0} ∪ {3} ∪ · · · ∪ {48}
}

=
{

0, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 18, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33,

36, 37, 39, 40, 41, 42, 44, 45, 46, 48
}
,

and Lemma 6.19 gives f = 10 and m = 23.

6.2.2 Syndrome-Based Error/Erasure Decoding Approach up to Bound I-b

Let the set E = {i0, i1, . . . , iε−1} with cardinality |E| = ε be the set of erroneous positions. �e
corresponding error polynomial is denoted by e(X) =

∑
i∈E eiX

i. Let ? mark an erasure and let the
set Z = {j0, j1, . . . , jζ−1} with cardinality |Z| = ζ be the set of erased positions. Let the received
polynomial

r̃(X) =

n−1∑
i=0

r̃iX
i

with r̃i ∈ Fq ∪ {?} be given.
In the �rst step of the decoding process, the erasures in r̃(X) are substituted by an arbitrary element

from Fq . For simplicity, it is common to choose the zero-element. �us, the corresponding erasure
polynomial in Fq [X] is denoted by

z(X) =
∑
i∈Z

ziX
i,

where r̃i + zi = ai + zi = 0, ∀i ∈ Z . Let the modi�ed received polynomial r(X) ∈ Fq [X] be

r(X) =

n−1∑
i=0

riX
i = a(X) + e(X) + z(X), (6.25)

where a(X) ∈ A.

De�nition 6.21 (Syndromes for Bound I-b)
Let an [na, ka, da]q cyclic code A and a second [nb, kb, db]q code B with gcd(na, nb) = 1 be
given. Furthermore, let the �ve integers f1, f2, m1, m2, δ and the second code B be given, such that
�eorem 6.18 holds. Let the modi�ed received polynomial r(X) ∈ Fq [X] as in (3.18) be given. Let
b(X) ∈ B denote a codeword of weight db.
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6 Bounding the Minimum Distance of Cyclic Codes

�en, we de�ne a syndrome polynomial S(X) ∈ Fql [X] as follows:

S(X)
def
≡
∞∑
i=0

r(αf1+im1 ) · b(βf2+im2 )Xi mod Xδ−1 (6.26)

=

δ−2∑
i=0

(
e(αf1+im1 ) + z(αf1+im1 )

)
· b(βf2+im2 )Xi. (6.27)

Since we know the positions of the erasures, we can compute an erasure-locator polynomial similar
to the error/erasure decoding of GRS codes as discussed in Subsection 3.2.2.

De�nition 6.22 (Erasure-Locator Polynomial)
Let the set Z with |Z| = ζ and a codeword b(X) =

∑
i∈W biX

i ∈ B with weight db be given.
�en we de�ne an erasure-locator polynomial Ψ(X) ∈ Fql [X] as follows:

Ψ(X)
def
=
∏
i∈Z

∏
j∈W

(
1−Xαiβj

) . (6.28)

Note that Ψ(X) has degree ζ · db. As for the GRS approach in Lemma 3.8, we de�ne a modi�ed
syndrome polynomial S̃(X) and point out (in the following lemma), which coe�cients of S̃(X) depend
only on the error ei0 , ei1 , . . . , eiε−1 .

Lemma 6.23 (Modi�ed Syndrome Polynomial)
Let the erasure-locator polynomial Ψ(X) of De�nition 6.22 and the syndrome polynomial S(X) of
De�nition 6.21 be given. �en the highest δ − 1− ζ · db coe�cients of

S̃(X)
def
≡ Ψ(X) · S(X) mod Xδ−1 (6.29)

depend only on the error polynomial e(X).

Proof From (6.26), we have:

∞∑
i=0

r(αf1+im1 ) · b(βf2+im2 )Xi

≡
∞∑
i=0

(
e(αf1+im1 ) + z(αf1+im1 )

)
b(βf2+im2 )Xi mod Xδ−1

≡
∞∑
i=0

∑
j∈E

ejα
j(f1+im1) +

∑
j∈Z

zjα
j(f1+im1)

 b(βf2+im2 )Xi mod Xδ−1,
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

and with (6.22) for b(X) =
∑
i∈W biX

i, we can write:

S(X) ≡
∑
i∈E

eiα
f1+im1

∑
j∈W

bj

1−Xαiβj
+

∑
i∈Z

ziα
f1+im1

∑
j∈W

bj

1−Xαiβj
mod Xδ−1

≡
∑
i∈E

eiα
f1+im1

∑
j∈Z

(
bj
∏
`∈Z
` 6=j

(1−Xαiβ`)
)

∏
j∈Z

(
1−Xαiβj

) +

∑
i∈Z

ziα
f1+im1

∑
j∈Z

(
bj
∏
`∈Z
6̀=j

(1−Xαiβ`)
)

∏
j∈Z

(
1−Xαiβj

) mod Xδ−1,

and �nally, we obtain:

S(X) ≡

def
= Ω(X)︷ ︸︸ ︷∑

i∈E

(
eiα

f1+im1
∑
j∈W

(
bj
∏
`∈W
` 6=j

(1−Xαiβ`)
) ∏
m∈E
m 6=i

∏
s∈W

(1−Xαmβs)
)

∏
i∈E

( ∏
j∈W

(
1−Xαiβj

)) +

def
= A(X)︷ ︸︸ ︷∑

i∈Z

(
ziα

f1+im1
∑
j∈W

(
bj
∏
`∈W
` 6=j

(1−Xαiβ`)
) ∏
m∈Z
m 6=i

∏
s∈W

(1−Xαmβs)
)

∏
i∈Z

( ∏
j∈W

(
1−Xαiβj

)) mod Xδ−1,

where A(X) has degree at most db · (ζ − 1) + db − 1 = db · ζ − 1. �

Similar to the erasure-locator polynomial, we de�ne an error-locator polynomial as follows:

Λ(X)
def
=
∏
i∈E

( ∏
j∈W

(
1−Xαiβj

) )
. (6.30)

Let Ω̃(X)
def
= Ω(X) ·Ψ(X) +A(X) · Λ(X) and with (6.29) and (6.30), we obtain the following Key

Equation:

S̃(X) ≡
Ω̃(X)

Λ(X)
mod Xδ−1, with deg Λ(X) = ε · db

deg Ω̃(X) ≤ (ε+ ζ) · db − 1.
(6.31)

Note that in the erasure-free case Ω(X) is the error-evaluator polynomial with deg Ω(X) ≤ ε · db − 1.
�e following lemma is similar to �eorem 3.9 and is stated without proof.
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Lemma 6.24 (Solving the Key Equation for Error/Erasure Decoding)
Assume ζ < d∗I-b − 1 erasures occurred. Let S̃(X) with deg S̃(X) ≤ δ − 2 as in (6.29) be given. If

ε = |E| ≤
⌊
d∗I-b − 1− ζ

2

⌋
,

then there exists a unique solution of (6.31). Recall that Algorithm 3.1, that calculates ui+1, si+1 and
ti+1, such that:

ui+1 = si+1a+ ti+1b

holds in every step for the input a and b. We use Algorithm 3.1 with the input polynomials Xδ−1

and S̃(X) to determine the error-locator polynomial of (6.31). Furthermore, we have the following
stopping rule crit of Algorithm 3.1. We stop, if the remainder polynomial ui(X) in the i-th step of
the EEA, i.e., Algorithm 3.1, ful�lls:

deg ui−1(X) ≥
δ − 1 + ζ · db

2
and deg ui(X) ≤

δ − 1 + ζ · db
2

− 1. (6.32)

�en, Algorithm 3.1 returns the error-locator polynomial Λ(X) as in (6.30) and the error/erasure-
evaluation polynomial Ω̃(X) = Ω(X) ·Ψ(X) +A(X) · Λ(X) as in (6.31).

Furthermore, we know from the EEA that for ε ≤ b(d∗I-b − 1− ζ)/2c a unique solution Λ(X) exists.
We can use the error-evaluation of Lemma 6.14. �erefore, let the two polynomials f(X), h(X) ∈

Fql [X] be de�ned as follows:

f(X)
def
=
∏
j∈W

(
1−Xβj

)
, (6.33)

h(X)
def
=
∑
j∈W

(
bj
∏
`∈W
6̀=j

(1−Xβ`)
)
. (6.34)

Due to gcd(na, nb) = 1, we have gcd(f(Xαi), f(Xαj)) = 1, ∀i 6= j and therefore each of the na
polynomials f(Xα0), f(Xα1), . . . , f(Xαna−1) can be identi�ed by one root similar to the rational
approach presented in Section 6.1. Let κ ∈ W . �en, we have f(β−κ) = 0. Furthermore, let na
distinct roots γ0, γ1, . . . , γna−1 be de�ned as:

γi
def
= β−κα−i, i ∈ [na). (6.35)

�en, each γi is a root of f(Xαi). Note that each polynomial f(Xαi) has |W | = db roots, but we
need only one of them.

6.2.3 Bound II: Generalized Hartmann–Tzeng Bound Using Cyclic
Product Code

In this section, we consider the �rst generalization of �eorem 6.18, where the bound d∗I-b was proven.
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

�eorem 6.25 (Bound II: Generalized Hartmann–Tzeng Bound)
Let A be an [na, ka, da]q cyclic code and B an [nb, kb, db]q with gcd(na, nb) = 1. Let α be an
element of order na in Fqla , β of order nb in F

qlb
, respectively. Let six integers f1, f2, m1, m2, δ, ν

with m1 6= 0, m2 6= 0, gcd(na,m1) = gcd(nb,m2) = 1, δ ≥ 2 and ν ≥ 1 be given, such that:

∞∑
i=0

a(αf1+im1+j) · b(βf2+im2+j)Xi ≡ 0 mod Xδ−1, ∀j ∈ [ν + 1) (6.36)

holds for all codewords a(X) ∈ A and b(X) ∈ B. �en, the minimum distance da of A is lower
bounded by:

da ≥ d∗II
def
=

⌈
δ + ν

db

⌉
. (6.37)

Proof From the generator polynomial of the cyclic product codeA⊗ B (see �eorem 2.22) we know
that whenever a(X) ∈ A or b(X) ∈ B have a zero, then a codeword of the cyclic product codeA⊗B
is also zero at the evaluated point (as stated in Lemma 6.19). �erefore, δ + ν is the Hartmann–Tzeng
bound (see �eorem 2.18) ofA⊗ B and therefore dadb ≥ δ + ν. �

6.2.4 Bound III: Using a Second Cyclic Code
In this section, we consider the second generalization of �eorem 6.18, where the bound d∗I-b was
proposed. �e proof of the statement is more involved.

�eorem 6.26 (Bound III)
LetA be an [na, ka, da]q cyclic code and B a second [nb, kb, db]q cyclic code with gcd(na, nb) = 1.
Let α be an element of order na in Fqla , β of order nb in F

qlb
respectively. Let six integers f1, f2,

m1,m2, δ, ν withm1 6= 0,m2 6= 0, gcd(na,m1) = gcd(nb,m2) = 1, δ ≥ 2 and ν ≥ 1 be given,
such that:

∞∑
i=0

a(αf1+im1+j) · b(βf2+im2 )Xi ≡ 0 mod Xδ−1, ∀j ∈ [ν + 1) (6.38)

holds for for all codewords a(X) ∈ A and b(X) ∈ B.
�en, the minimum distance da ofA is lower bounded by:

da ≥ d∗III
def
=

⌈
δ

db
+ ν

⌉
. (6.39)

Proof Let

a(X) =
∑
i∈Y

aiX
i with Y = {i0, i1, . . . , iy−1} and

b(X) =
∑
i∈Z

biX
i with Z = {j0, j1, . . . , jz−1}.
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6 Bounding the Minimum Distance of Cyclic Codes

We combine the ν + 1 equations of (6.38), i.e., multiplying each of it by λi ∈ Fqla . �is is similar to
the explicit proof of the Hartmann–Tzeng bound of �eorem 2.18. We obtain:

∞∑
i=0

(
λ0

∑
`∈Z

b`β
`(f2+im2)(ai1α

i1(f1+im1) + · · ·+ aiyα
iy(f1+im1))+

λ1

∑
`∈Z

b`β
`(f2+im2)(ai1α

i1(f1+im1+1) + · · ·+ aiyα
iy(f1+im1+1)) + · · ·+

λν
∑
`∈Z

b`β
`(f2+im2)(ai1α

i1(f1+im1+ν) + · · ·+ aiyα
iy(f1+im1+ν))

)
Xi

≡ 0 mod Xδ−1.

Simpli�ed, this results in:

∞∑
i=0

b(βf2+im2 )

(∑
`∈Y

a`α
`(f1+im1)(λ0 + α`λ1 + . . .+ α`νλν)

)
Xi

≡ 0 mod Xδ−1. (6.40)

We want to annihilate the �rst ν terms and guarantee that the linear combination is nonzero. �e
corresponding heterogeneous system of ν + 1 equations is:

1 αi0 αi02 · · · αi0ν

1 αi1 αi12 · · · αi1ν

...
...

...
. . .

...
1 αiν αiν2 · · · αiνν



λ0

λ1

...
λν

 =


0
...
0
1

 , (6.41)

and has a unique nonzero solution due to the full rank of the square Vandermonde matrix of order ν + 1
generated by the distinct elements αi0 , αi1 , . . . , αiν .

Let Ỹ def
= Y \ {i0, i1, . . . , iν−1} and (6.40) leads to:

∞∑
i=0

b(βf2+im2 )
(∑
`∈Ỹ

aiα
`(f1+im1)(λ0 + α`λ1 + · · ·+ α`νλν)

)
Xi ≡ 0 mod Xδ−1.

�is leads to (for the ease of notation, we let m1 = m2 = 1):

∑
i∈Ỹ

(
aiα

if1
∑
j∈Z

(
bjβ

jf2
∏
`∈Z
6̀=j

(1−Xαiβ`)
) ∏
h∈Ỹ
h 6=i

∏
p∈Z

(1−Xαhβp)
)

∏
i∈Ỹ

( ∏
j∈Z

(1−Xαiβj)
) ≡ 0 mod Xδ−1,

where the numerator is a nonzero linear combination of the polynomials
∏

(h,l)6=(i,j)(1−Xαhβl).
It is easily shown that all of those polynomials are distinct and linearly independent if and only if
gcd(na, nb) = gcd(na,m1) = gcd(nb,m2) = 1. Hence, the numerator is a nonzero polynomial
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

and its degree is smaller than or equal to z− 1 + z(y− ν)− 1 = −1 + zy− νz = z(y− ν)− 1 and
with da ≥ y and db ≥ z, we obtain:

db · (da − ν)− 1 ≥ δ − 1

da ≥
⌈
δ

db
+ ν

⌉
. �

6.2.5 Decoding up to Bound II
Let r(X) = a(X) + e(X) be the received polynomial, where e(X) =

∑
i∈E eiX

i ∈ Fqla [X] is the
error word and E = {j0, j1, . . . , jε−1} ⊆ {0, . . . , na − 1} is the set of error positions of cardinality
|E| = ε and a(X) is a codeword of a given [na, ka, da]q codeA.

We describe how to decode up to the generalized bound from �eorem 6.25. �erefore, we want to
decode ε ≤ τ errors, where

τ ≤
d∗II − 1

2
=
δ + ν − 1

2db
. (6.42)

Let b(X) ∈ B be of weight db and α ∈ Fqla , β ∈ F
qlb

and the integers f1, f2,m1 6= 0,m2 6= 0 be
given such that �eorem 6.25 for δ and ν holds. Denote l = lcm(la, lb). We de�ne ν + 1 syndrome
polynomials:

Sj(X)
def
≡
∞∑
i=0

r(αf1+im1+j) · b(βf2+im2+j)Xi mod Xδ−1

=

δ−2∑
i=0

e(αf1+im1+j) · b(βf2+im2+j)Xi, ∀j ∈ [ν + 1). (6.43)

�is generalizes our previous approach of Section 6.2 to ν + 1 syndrome sequences of length δ − 1.
Hence, we obtain ν + 1 Key Equations with a common error-locator polynomial Λ(X) ∈ Fql [X] of
degree dbε (compare also [A-ZWB12b, Equation (20)]):

Λ(X) · Sj(X) ≡ Ωj(X) mod Xδ−1, j ∈ [ν + 1),

where the degree of all Ω0(X),Ω1(X), . . . ,Ων(X) is less than dbε. �is is similar to the collaborative
decoding of Interleaved GRS codes as discussed in Section 3.4.

�e syndrome calculation results in ν+ 1 syndrome sequences of the same length δ− 1 to determine
one common Λ(X) ∈ Fql [X]. Solving these ν + 1 Key Equations jointly is a multi-sequence shi�-
register synthesis problem for sequences of equal length; for e�cient algorithms see e.g., [A-FT89;
A-FT91a; A-SS11; A-ZW11].

�e basic task is to solve the following heterogeneous linear system of equations for Λ(X) =
Λ0 + Λ1X + · · ·+ ΛdbεX

dbε, which we normalize such that Λ0 = 1:
S〈0〉

S〈1〉

...

S〈ν〉

 ·


Λdbε
...

Λ2

Λ1

 =


T〈0〉

T〈1〉

...

T〈ν〉

 , (6.44)
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6 Bounding the Minimum Distance of Cyclic Codes

where each sub-matrix S〈j〉 is a (δ − 1− dbε)× (dbε) matrix and T〈j〉 is a column vector of length
δ − 1− dbt as follows:

S〈j〉 =


S
〈j〉
0 S

〈j〉
1 . . . S

〈j〉
dbε−1

S
〈j〉
1 S

〈j〉
2 . . . S

〈j〉
dbε

...
...

. . .
...

S
〈j〉
δ−2−dbε

S
〈j〉
δ−1−dbε

. . . S
〈j〉
δ−3

 (6.45)

and T〈j〉 = (S
〈j〉
dbε

S
〈j〉
dbε+1 . . . S

〈j〉
δ−2)T . In the following, denote

S
def
= (S〈0〉,T S〈1〉,T . . . S〈ν〉,T )T .

We consider again the heterogeneous system. In order to guarantee unique decoding, we have to prove
that the syndrome matrix S from (6.44) has full rank if (6.42) is ful�lled. For simplicity, we consider only
db = 2, where B is a single parity check code. In the following, we analyze the rank of this syndrome
matrix if the condition on the decoding radius (6.42) is ful�lled.

�eorem 6.27 (Decoding up to Bound II for db = 2)
Let B be an [nb, nb − 1, 2]q single parity check code with db = 2 and let gcd(na, nb) =
gcd(na,m1) = gcd(nb,m2) = 1 hold. Moreover, let (6.42) be ful�lled and let ν + 1 syndrome
sequences of length δ − 1 be de�ned as in (6.43). �en, the syndrome matrix S with the sub-matrices
from (6.45) has rank(S) = 2ε.

Proof Let us w.l.o.g. assume that b(X) = 1 + X and f1 = f2 = 0. �en, the ν + 1 syndrome
polynomials in Fql [X] are

Sj(X) =

δ−2∑
i=0

e(αim1+j)(1 + βim2+j)Xi, ∀j ∈ [ν + 1).

Similar to [A-FT91a, Section VI], we can decompose the syndrome matrix into three matrices as follows.

S =


S〈0〉

S〈1〉

...

S〈ν〉

 = X ·Y ·X =


X〈0〉

X〈1〉

...

X〈ν〉

 ·Y ·X,

where X is a (ν + 1)(δ − 1− 2ε)× 2ε matrix over Fql and Y and X are 2ε× 2ε matrices over Fq
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

and Fql , respectively. �e decomposition provides the following matrices with κ = δ − 2− 2ε:

X〈j〉 =

αj0(j) αj1(j) . . . αjε−1(j)

αj0(j+m1) αj1(j+m1) . . . αjε−1(j+m1)

...
...

. . .
...

αj0(j+m1κ) αj1(j+m1κ) . . . αjε−1(j+m1κ)

βjαj0(j) βjαj1(j) . . . βjαjε−1(j)

βj+m2αj0(j+m1) βj+m2αj1(j+m1) . . . βj+m2αjε−1(j+m1)

...
...

. . .
...

βj+m2κεαj0(j+m1κ) βj+m2κεαj1(j+m1κ) . . . βj+m2κεαjε−1(j+m1κ)


,

and Y = diag(ej0 , ej1 , . . . , ejε−1 , ej0 , ej1 , . . . , ejε−1 ) and

X =



1 αj0m1 . . . αj0m1(2ε−1)

1 αj1m1 . . . αj1m1(2ε−1)

...
...

. . .
...

1 αjε−1m1 . . . αjε−1m1(2ε−1)

1 βm2αj0m1 . . . (βm2αj0m1 )(2ε−1)

1 βm2αj1m1 . . . (βm2αj1m1 )(2ε−1)

...
...

. . .
...

1 βm2αjε−1m1 . . . (βm2αjε−1m1 )(2ε−1)


.

Since Y is a diagonal matrix, it is non-singular. From

gcd(na, nb) = gcd(na,m1) = gcd(nb,m2) = 1

we know that X is a Vandermonde matrix and has full rank. Hence, Y ·X is a non-singular 2ε× 2ε
matrix and therefore rank(S) = rank(X). In order to analyze the rank of X, we proceed similar as in
[A-FT91a, Section VI] and use the following corollary, which follows directly from [A-LW86, �eorem
4].

Corollary 6.28 (LW-Matrix Product and Rank)
Let the following matrix operation be de�ned as in [A-LW86]:

X = A ∗B =


a0,0b0 a0,1b1 . . . a0,2ε−1b2ε−1

a1,0b0 a1,2b1 . . . a1,2ε−1b2ε−1

...
...

. . .
...

aν,0b0 aν,2b1 . . . aν,2ε−1b2ε−1

 ,

where A is a (ν + 1)× 2ε matrix, B is a (δ− 1− 2ε)× 2ε matrix and bi denotes the ith column of
B, and X has 2ε columns. If rank(A) + rank(B) > 2ε, then rank(X) = 2ε.
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We use the matrix operation from Corollary 6.28 to rewrite X = A ∗B, where

A =


1 1 . . . 1 1 1 . . . 1
αj0 αj1 . . . αjε−1 βαj0 βαj1 . . . βαjε−0

αj02 αj12 . . . αjε−12 (βαj0 )2 (βαj1 )2 . . . (βαjε−1 )2

...
...

. . .
...

...
...

. . .
...

αj0ν αj1ν . . . αjε−1ν (βαj0 )ν (βαj1 )ν . . . (βαjε−1 )ν

 ,

and B = X〈0〉.
Since gcd(na, nb) = gcd(na,m1) = gcd(nb,m2) = 1, both matrices A and B are Vandermonde

matrices of ranks:

rank(A) = min{ν + 1, 2t}, rank(B) = min{δ − 1− 2t, 2t}.

Note that w.l.o.g. we can always de�ne m1,m2, δ and ν such that ν + 1 ≤ δ − 1. �erefore, from
(6.42) we obtain:

t ≤
d∗II − 1

2
=
δ + ν − 1

2db
≤

2(δ − 1)− 1

2db
<
δ − 1

db
. (6.46)

Hence, investigating all possible four cases of rank(A) + rank(B) gives:

2t+ 2t = 4t > 2t,

2t+ ν + 1 > 2t,

δ − 1− 2t+ 2t = δ − 1 > 2t,

δ − 1− 2t+ ν + 1 ≥ 2dbt− 2t+ 1 = 2t+ 1 > 2t,

where the last two above inequalities used (6.46) and db = 2. �us, rank(A) + rank(B) > 2t. With
Corollary 6.28, we proved the statement. �

�erefore, the Key Equation (6.44) has a unique solution, which can be found by any multi-sequence
shi�-register synthesis algorithm withO(sn2) operations over Fql [A-FT89; A-FT91a; A-ZW11]. �e
extension of the proof for decoding up to ε ≤ τ errors as in (6.42) to other associated codes B with
db ≥ 2 is straight-forward. �e decomposition of the syndrome matrices can be done similarly and we
can prove that the syndrome matrix S has rank dbε.

6.3 Lowest-Code-Rate Binary Cyclic Codes with Minimum
Distance Two and Three

6.3.1 Motivation and Previous Work
To obtain a huge family of cyclic codes for the bounds I-b (�eorem 6.18), II (�eorem 6.25), III (�e-
orem 6.26), the cardinality of the required subset of their de�ning set should be small. �is implies a
high cardinality of the de�ning set DB of the associated second code B. On the one hand, we need
a low-rate kb/nb which implies a high |DB|. On the other hand, the minimum distance db should
be small to obtain a good bound for all three cases I-b, II and III. �is motivates the investigation of
small-minimum-distance cyclic codes with lowest code-rate.

Primitive binary cyclic codes with minimum distance three were investigated by Charpin, Tietäväinen
and Zinoviev in [A-CTZ97; A-CTZ99]. We generalize the results of [A-CTZ97] to binary cyclic codes of
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6.3 Lowest-Code-Rate Binary Cyclic Codes with Minimum Distance Two and �ree

arbitrary length and show a�erwards the implications, when we want to use them to bound the minimum
distance of a given cyclic code as in �eorem 6.18. We derive necessary and su�cient conditions for
binary non-primitive cyclic codes with minimum distance two and a su�cient condition for minimum
distance three. For the case of minimum distance two, we show the de�ning set of codes of lowest
code-rate. Parts of these result were published in [A-ZB12a, Section 5].

Lemma 6.29 (Primitive Binary Cyclic Codes with d = 2 [A-CTZ97, Lemma 1])
Let i, j with 0 ≤ i < j ≤ n− 1 be two arbitrary integers that do not belong to the same cyclotomic
coset modulo n. �en the binary [n, k]2 cyclic code C with generator polynomial

g(X) = M
〈n〉
i,2 (X) ·M〈n〉j,2 (X)

has minimum distance two if and only if gcd(n, i, j) > 1.

Proof Let α be an n-th root of unity. A binary cyclic code C with generator polynomial

g(X) = M
〈n〉
i,2 (X) ·M〈n〉j,2 (X)

of length n has minimum distance two if there exist a binomial c(X) = Xk +X` that ful�lls

c(αi) = c(αj) = 0.

�is holds if and only if
αki = α`i and αkj = α`j

or, equivalently,
(k − `)i ≡ (k − `)j ≡ 0 mod n.

Both congruences are valid if and only if n/ gcd(n, i, j) divides k − `. �erefore, such k and ` exist if
and only if gcd(n, i, j) > 1. �

�eorem 6.30 (Primitive Binary Cyclic Codes with d = 2 [A-CTZ97])
Let i1, i2, . . . , is with 0 ≤ i1 < · · · < is ≤ n− 1 be s arbitrary integers that do not belong to the
same cyclotomic coset modulo n. �en the binary [n, k]2 cyclic code C with generator polynomial

g(X) =

s∏
j=1

M
〈n〉
ij ,q

(X)

has minimum distance two if and only if gcd(n, i1, i2, . . . , is) > 1.

We skip the proof of �eorem 6.30, because it is straightforward to the proof of Lemma 6.29.
�e following lemma is a generalization of [A-CTZ97, �eorem 1] to binary cyclic codes of arbitrary

length with minimum distance three.

Lemma 6.31 (Binary Cyclic Codes with d = 3)
Let i, j with 0 ≤ i < j ≤ n− 1 be arbitrary integers that do not belong to the same cyclotomic coset
modulo n. Let g be such that 2g − 1 divides n. If there exists an integer r with 0 < r < 2g − 1,
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6 Bounding the Minimum Distance of Cyclic Codes

where gcd(r, 2g − 1) = 1, such that both i and j are in M〈2
g−1〉

r,2 , then the binary [n, k]2 cyclic
code C with generator polynomial

g(X) = M
〈n〉
i,2 (X) ·M〈n〉j,2 (X)

has minimum distance d ≤ 3. If, moreover, gcd(n, i, j) = 1, then d = 3.

Proof Let γ be a primitive element of F2s , let z = (2s − 1)/n and let α = γz . Let u = n/(2g − 1),
then β = αu = γ(2s−1)/(2g−1), is a primitive element of F2g . Let b be an integer in the interval
[1, 2g − 2] such that:

1 + β + βb = 0.

De�ne
c(X) = 1 +Xu(1/r) +Xu(b/r),

where the quotients 1/r and b/r are calculated in the ring Z2g−1 of integers modulo 2g − 1. For
i ∈M〈2

g−1〉
r,2 , two non-negative integers k and ` exist such that

i = `(2g − 1) + 2kr.

�us,

c(αi) = 1 + αui(1/r) + αui(b/r)

= 1 + βi(1/r) + βi(b/r)

= 1 + β2kr(1/r) + β2kr(b/r)

= 1 + β2k + βb2
k

= (1 + β + βb)2k

= 0.

�erefore, the code C has minimum distance d ≤ 3. If gcd(n, i, j) = 1 as in Lemma 6.29, then the
minimum distance is unequal two and therefore three. �

Note that in [A-CTZ97] the length of the cyclic code was n = 2s − 1 and u = (2s − 1)/(2g − 1).
Lemma 6.29 and �eorem 6.32 can be generalized to cyclic codes, where the generator polynomial g(X)
is a product of several minimal polynomials.

�eorem 6.32 (Binary Cyclic Codes with d = 3)
Let i1, i2, . . . , is with 0 ≤ i1 < · · · < is ≤ n− 1 be s arbitrary integers that do not belong to the
same cyclotomic coset modulo n. Let g be such that 2g − 1 divides n. If there exists an integer r with
0 < r < 2g − 1, where gcd(r, 2g − 1) = 1, such that all s integers i1, i2, . . . , is are in M〈2

g−1〉
r,2 ,

then the binary [n, k]2 cyclic code C with generator polynomial

g(X) =
s∏
j=1

M
〈n〉
ij ,2

(X)

has minimum distance d ≤ 3. If, moreover, gcd(n, i1, . . . , is) = 1, then d = 3.
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6.3 Lowest-Code-Rate Binary Cyclic Codes with Minimum Distance Two and �ree

We skip the proof of �eorem 6.32, because it is straightforward to the proof of Lemma 6.31. Let us
consider an example of a non-primitive binary cyclic code with minimum distance three.

Example 6.33 (Non-primitive Binary Cyclic Code with d = 3)
Let n = 119 = (23 − 1) · 17. In this case g = 3 (see �eorem 6.32). �en {1, 11, 51} belong to
M
〈7〉
1,2 and we have gcd(1, 11, 51) = 1. �erefore, the binary cyclic code of length n = 119 with

generator polynomial

g(X) = M
〈119〉
1,2 (X) ·M〈119〉

11,2 (X) ·M〈119〉
51,2 (X),

has dimension k = 68 and minimum distance d = 3.

6.3.2 Implications for Bounding the Minimum Distance
We consider lowest-code-rate binary cyclic codes of minimum distance two and three. �ey are good
candidates for bounding the minimum distance as discussed in the previous section.

We �rst consider lowest-code-rate binary cyclic codes of minimum distance two. As previously, the
sign � marks a non-zero in the de�ning set.

Proposition 6.34 (Lowest-Code-Rate Binary Cyclic Codes with d = 2)
Let a > 1, g > 1 and n be three integers, such that n = ag. Let g be in the de�ning set D. �en the
binary [n, k]2 cyclic code C with de�ning set:

D = {0,�, . . . ,�, g,�, . . . ,�, 2g,�, . . . ,�, (a− 1)g,�, . . . ,�}

is the binary cyclic code of smallest dimension k = a(g − 1), lowest code-rate R = (g − 1)/g and
minimum distance two.

Proof We want to maximize |D| while keeping the minimum distance d of C at two. �erefore, we
select for a given g every cyclotomic coset M〈n〉i,2 with gcd(i, g) > 1 for all i ∈ [n) to be in D with
aimed minimum distance two. One the one hand, this guarantees the maximization of |D| and therefore
the minimization of the code-rate. On the other hand, due to the condition gcd(i, g) > 1 (�eorem 6.30)
the minimum distance of C remains two. �

�e de�ning set of Proposition 6.34 is equal to the de�ning set of a cyclic product code A⊗ B as in
�eorem 2.21, whereA is a [g, g − 1, 2]2 cyclic single-parity check code with de�ning set {0} and B is
a trivial [a, a, 1]2 code.

A direct consequence of Proposition 6.34 is that we do not need to investigate these binary cyclic
codes of minimum distance two any more. We obtain the same result when we select a [g, g − 1, 2]2
single-parity check code as associated code B.

Conjecture 6.35 (Lowest-Code-Rate Binary Cyclic Codes with d = 3)
Let a > 1, g > 1 and n be three integers, such that n = a(2g − 1). Let r be an integer with
0 < r < 2g − 1, where gcd(r, 2g − 1) = 1. Let r be in the de�ning set D. �en the binary cyclic
code C with distance three of length n with de�ning set:

D = {r · i mod n | i =j(2g − 1) + 1, j(2g − 1) + 2, j(2g − 1) + 4, . . . ,

j(2g − 1) + 2g−1 ∀j ∈ [a)}
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6 Bounding the Minimum Distance of Cyclic Codes

is the binary cyclic code with the smallest dimension k = a(2g − 1 − g), lowest code-rate R =
(2g − 1− g)/(2g − 1) and minimum distance three.

Similar to the proof of Proposition 6.34, we can reasoning Conjecture 6.35. We want to maximize
|D| while keeping d of C at three. For a given r and for (2g − 1)|n, we select every cyclotomic coset
M
〈n〉
i,2 for all i ∈ [n) to be in the D of C with aimed minimum distance three, such that i ∈M〈2

g−1〉
r,2 .

One the one hand, this guarantees the maximization of |D| and therefore the minimization of the code-
rate. On the other hand, due to the condition that M〈n〉i,2 should be selected such that i ∈ M〈2

g−1〉
r,2

(�eorem 6.32) the minimum distance of C remains three.
Lemma 6.31 gives only a su�cient and not as �eorem 6.30 for distance two a necessary and su�cient

condition. It is an open problem to prove Conjecture 6.35.

Note 6.36 (Connection to Binary Hamming Code)
Let r = 1 in Proposition 6.35. �en

M
〈2g−1〉
1,2 = {1, 2, 4, . . . , 2g−1}

is the cyclotomic coset of a binary Hamming code of length 2g−1. �e de�ning set of the corresponding
lowest-code-rate binary cyclic code is a “repetition” of the de�ning set of the Hamming code of length
2g − 1.

Example 6.37 (Non-primitive Binary Cyclic Code with d = 3 and Lowest Code-Rate)
Let us again consider Example 6.33 with n = 119 = (23 − 1) · 17 and k = 68. �e binary cyclic
code of length n = 119 with generator polynomial

g(X) = M
〈119〉
1,2 (X) ·M〈119〉

11,2 (X) ·M〈119〉
51,2 (X)

and with minimum distance three has lowest code rate R = (23 − 1− 3)/(23 − 1) = 68/119. Its
de�ning set D is:

D = {�, 1, 2,�, 4,�,�,�, 8, 9,�, 11,�,�,�, 15, 16,�, 18,�,�,�, 22, . . . , 116,�,�}.

�e de�ning set of Proposition 6.35 is equal to the de�ning set of a cyclic product codeA⊗ B as in
�eorem 2.21, whereA is for r = 1 a [2g − 1, 2g − 1− g, 3]2 cyclic Hamming code with de�ning set
{1, 2, . . . , 2g−1} and B is a trivial [a, a, 1]2 code.

6.4 Cyclic Generalized Product Codes

6.4.1 Related Work and Basic Idea
A linear generalized concatenated code as in De�nition 2.26, where the s outer (or row) codesA0,A1,
. . . , As−1 and the inner (or column) codes B0, B1, . . . , Bs−1 are de�ned over the same alphabet,
is called generalized product code. �is class of linear block codes was—independently of Blokh and
Zyablov’s work [A-BZ74]—considered before by Marchukov [A-Mar68] and Gore [A-Gor70]. We consider
the cyclic variant of generalized product codes and give explicitly the de�ning set, respectively the
generator polynomial, which was not done so far.
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6.4 Cyclic Generalized Product Codes

In contrast to this, many publications cover the cyclic variant of generalized concatenated codes (see
Berlekamp and Jensen [A-BJ74], Jensen [A-Jen85] and de Rooij–van Lint [A-RL91]). It is possible to
construct cyclic generalized concatenated codes by a quasi-cyclic outer code and a inner cyclic code
(see Jensen [A-Jen92]). A�er the basic properties of generalized product codes, we outline how cyclic
generalized product codes can be used—similar to cyclic product codes—to bound the minimum distance
of a cyclic code.

6.4.2 Definition and Defining Set
Let us �rst determine the generator polynomial of a cyclic code that is the direct sum as in De�nition 2.13
of several cyclic codes.

�eorem 6.38 (Generator Polynomial of a Cyclic Direct Sum Code)
Let s [n, ki]q cyclic codes Ci for all i ∈ [s) with

∑s−1
i=0 ki < n and with generator polynomials

gi(X) ∈ Fq [X],∀i ∈ [s) be given. �en, the polynomial:

g(X) = gcd
(
g0(X), g1(X), . . . , gs−1(X)

)
(6.47)

is the generator polynomial of the cyclic direct sum code
⊕s−1
i=0 Ci.

Proof For every c(X) ∈
⊕s−1
i=0 Ci, the greatest common divisor gcd

(
g0(X), g1(X), . . . , gs−1(X)

)
divides c(X). For the converse, we know that the EEA returns a relation, such that:

s0(X)g0(X) + s1(X)g1(X) + · · ·+ ss−1(X)gs−1(X) = gcd
(
g0(X), g1(X), . . . , gs−1(X)

)
and therefore gcd

(
g0(X), g1(X), . . . , gs−1(X)

)
∈
⊕s−1
i=0 Ci and thus is the generator polynomial

of the cyclic direct sum code
⊕s−1
i=0 Ci. �

Corollary 6.39 (De�ning Set of a Cyclic Direct Sum Code)
Let s [n, ki]q cyclic codes Ci for all i ∈ [s) with

∑s−1
i=0 ki < n and with de�ning sets Di,∀i ∈ [s)

be given. �e de�ning set of C =
⊕s−1
i=0 Ci is:

DC =

s−1⋂
i=0

Di.

�e following lemma is essential for the construction of cyclic generalized product codes and is the
cyclic pendant to Corollary 2.15.

Lemma 6.40 (Generator Polynomials for a Partition Chain)
Let s [n, ki]q cyclic codes Ci for all i ∈ [s) with

∑s−1
i=0 ki < n and with generator polynomial

gi(X) ∈ Fq [X],∀i ∈ [s) be given. �en,

C0 ⊃ C1 ⊃ · · · ⊃ Cs−1 (6.48)

holds if and only if
gi(X) | gi+1(X), ∀i ∈ [s− 1).
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6 Bounding the Minimum Distance of Cyclic Codes

Proof �en, all codewords of Ci+1, which are a multiple of gi+1(X), are then a multiple of gi(X)
and therefore codewords of Ci. For the converse, the subset of the codewords of Ci which are multiples
of gi+1(X) are codewords of Ci+1. �

A generalized product code is a generalized concatenated code as in De�nition 2.26, where the outer (or
row) code is over the same alphabet as the inner (or column) code. Let us prove the equality for the
minimum distance in the following.

Lemma 6.41 (Distance of Generalized Product Code)
Let s outer (or inner) [na, ka,i, da,i]q codesAi for all i ∈ [s) with

∑s−1
i=0 ki < n be given. Let Bi

denote [nb, kb,i, db,i]q codes for all i ∈ [s). Furthermore, let

B0 ⊃ B1 ⊃ · · · ⊃ Bs−1

as in Corollary 2.15 hold. Let

k =

s−2∑
i=0

(
ka,i(kb,i − kb,i+1)

)
+ ka,s−1kb,s−1.

�en, the [nanb, k, d]q generalized product code
(⊕s−2

i=0 (Ai ⊗ Bi\Bi+1)
)
⊕ (As−1 ⊗ Bs−1)

has minimum distance
d = min

i∈[s)

(
da,i · db,i

)
.

Proof Similar to the proof of �eorem 2.27. A codeword ai ofAi with minimal Hamming weight da,i
a�ects a sub-code Bi+1 of Bi having at least weight db,i. For each sub-product code such a codeword
exist and therefore the equality holds. �

In contrast to generalized concatenated codes as in De�nition 2.26, the minimum distance of generalized
product codes equals the minimum of the product of all minimum distance of the sub-codes. �is is
similar to the fact, that the distance of a product code equals the product of the minimum distances of
its sub-codes, whereas the minimum distance of a generalized concatenated code as in De�nition 2.24
can be greater than the product of the minimum distances of the sub-codes.

Let us re�ne the conditions such that the generalized product code is cyclic.

De�nition 6.42 (Cyclic Generalized Product Code)
Let s outer (or row) [na, ka,i, da,i]q cyclic codesAi for all i ∈ [s) with de�ning sets DAi be given.
Let Bi denote [nb, kb,i, db,i]q cyclic codes with de�ning set DBi for all i ∈ [s). Let

B0 ⊃ B1 ⊃ · · · ⊃ Bs−1.

Furthermore, let una + vnb = 1 for some integers u and v.
De�ne the sets:

BAi
def
= (DAi · v)na , ∀i ∈ [s),

ABi\Bi+1

def
=
(

(DBi\DBi+1
) · u

)
nb
, ∀i ∈ [s− 1)

ABs−1

def
= (DBs−1

· u)nb ,

where the operations on the set are as de�ned in (2.14), (2.15) and (2.16).
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6.4 Cyclic Generalized Product Codes

�e de�ning set of the i-th cyclic product sub-codeAi ⊗ (Bi\Bi+1) is:

DAi⊗(Bi\Bi+1) =

{ nb−1⋃
j=0

(BAi + jna)

}
∪


na−1⋃
j=0

(ABi\Bi+1
+ jnb)

 , ∀i ∈ [s− 1).

�e de�ning set of the s-th cyclic product sub-codeAs−1 ⊗ Bs−1 is:

DAs−1⊗Bs−1
=

{ nb−1⋃
j=0

(BAs−1
+ jna)

}
∪


na−1⋃
j=0

(ABs−1
+ jnb)

 .

�e set

DC =

(
s−2⋂
i=0

DAi⊗(Bi\Bi+1)

)
∩DAs−1⊗Bs−1

is the de�ning set of a cyclic generalized product code C =
(⊕s−2

i=0 (Ai ⊗ Bi\Bi+1)
)
⊕ (As−1 ⊗

Bs−1) of order s. �e generator polynomial is:

g(X) = gcd
(
Xnanb − 1, gA0

(Xbnb )gB0\B1 (Xana ), gA1
(Xbnb )gB1\B2 (Xana ),

. . . , gAs−1
(Xbnb )gBs−1

(Xana )
)
.

6.4.3 Example of a Cyclic Generalized Product Code
Let na = 5 and nb = 7. We consider a cyclic generalized product code of order s = 2 and length
nanb = 35. Let u = 3 and v = −2 be the coe�cients of a Bézout relation.

�e two outer (row) codes are the [5, 1, 5]2 cyclic repetition codeA0 and the [5, 4, 2]2 cyclic single-
parity check codeA1 with de�ning sets:

DA0
= {1, 2, 3, 4} and DA1

= {0}.

Let B0 be the single codeword [7, 0,∞]2 with de�ning set DB0 = {0, 1, 2, 3, 4, 5, 6}. Let B1 be the
[7, 4, 3]2 cyclic Hamming code B1 with de�ning setDB1 = {3, 5, 6}. �en, the �rst inner code B0\B1

is the [7, 3, 4]2 cyclic code with de�ning set

DB0\B1 = {0, 1, 2, 4}.

According to De�nition 6.42, we obtain the following shi�ed de�ning set:

BA0 = (DA0 · −2)5 = {1, 2, 3, 4},
BA1

= (DA1
· −2)5 = {0},

AB0\B1 = (DB0\B1 · 3)7 = {0, 3, 5, 6},

AB1 = (DB1 · 3)7 = {1, 2, 4}.

�e shi�ed sets (according to De�nition 6.42) are shown in row one, two, six and seven in the Table 6.6.
�e two rows with the symbol ⊗ in the �rst column are the de�ning sets of the corresponding cyclic
product sub-codesA0⊗ (B0\B1) andA1⊗B1. �e row in the middle, that has a⊕ in the �rst column,
is the de�ning set of the cyclic generalized product code (A0 ⊗ (B0\B1))⊕ (A1 ⊗ B1).
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6 Bounding the Minimum Distance of Cyclic Codes

BA0
� 1 2 3 4 � 1 2 3 4 � 1 2 3 4 � 1 2 3 4 � 1 2 3 4 � 1 2 3 4 � 1 2 3 4

AB0\B1 0 � � 3 � 5 6 0 � � 3 � 5 6 0 � � 3 � 5 6 0 � � 3 � 5 6 0 � � 3 � 5 6

⊗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 � 16 17 18 19 20 21 22 23 24 � 26 27 28 29 � 31 32 33 34

⊕ 0 1 2 � 4 5 � � 8 9 10 11 � � � � 16 � 18 � 20 � 22 23 � � � � � 29 � � 32 � �

⊗ 0 1 2 � 4 5 � � 8 9 10 11 � � � 15 16 � 18 � 20 � 22 23 � 25 � � � 29 30 � 32 � �

BA1
0 � � � � 0 � � � � 0 � � � � 0 � � � � 0 � � � � 0 � � � � 0 � � � �

AB1 � 1 2 � 4 � � � 1 2 � 4 � � � 1 2 � 4 � � � 1 2 � 4 � � � 1 2 � 4 � �

Table 6.6: Illustration of the de�ning set of a cyclic generalized product code
(
A0 ⊗ (B0\B1)

)
⊕ (A1 ⊗ B1) of

order two. �e �rst three rows give the summation of the �rst cyclic product sub-codeA0 ⊗ (B0\B1). �e last three
rows give the summation of the second cyclic product sub-codeA1 ⊗ B1 . In row four the de�ning set of the cyclic
generalized product code is formed by the direct sum of row three and �ve.

�e cyclic generalized product code is an [35, 19, d]2 code with distance (according to �eorem 2.27):

d = min
(
da,0 · db,0, da,1 · db,1

)
= min

(
5 · ∞, 2 · 3

)
= 6.

�e de�ning set of the cyclic generalized product code (A0 ⊗ (B0\B1))⊕ (A1 ⊗ B1) is the union of
M
〈35〉
0,2 ∪M

〈35〉
1,2 ∪M

〈35〉
5,2 .

6.4.4 Using Cyclic Generalized Product Codes for Bounding the
Minimum Distance

Similar to the approach in Section 6.2, we think it is possible to embed a given [n, k, d]q cyclic code C
into a cyclic generalized product code to give a lower bound on its minimum distance d. In contrast to
(cyclic) generalized concatenated codes, the minimum distance of (cyclic) generalized product codes is
given by equality (see Lemma 6.41) and therefore a similar approach as in Section 6.2 seems possible.
Let us assume the �rst product sub-code is used as the approach in Section 6.2. �en the other s− 1
product sub-codes of the cyclic generalized product code of order s would add “non-zeros” and therefore
the obtained bound on the distance of the cyclic generalized product would hold for a wider class of
cyclic codes than the one that uses only the product code as in �eorem 6.18.

6.5 Conclusion and Future Work

In this chapter, we presented two new approaches for bounding the minimum distance of linear cyclic
codes. �e �rst bound I-a is based on the association of a rational function to the sequence of zeros
of a given cyclic code and is proven in �eorem 6.4. We gave the proof and a syndrome-based error
decoding algorithm based on the Extended Euclidean Algorithm in �eorem 6.15. An error-evaluation
strategy based on a generalization of Forney’s formula was developed in Section 6.1.

�e other three bounds I-b (�eorem 6.18), II (�eorem 6.25) and III (�eorem 6.26) are based on the
association of another cyclic code. We propose a syndrome-based error/erasure decoding algorithm and
an error-evaluation for bound I-b. �e correctness of the error-only decoding approach for bound II was
also proven in Section 6.2. A decoding method for bound III is an open task.

�e de�ning sets of non-primitive binary lowest-code-rate cyclic codes of minimum distance two and
of low-rate cyclic codes with minimum distance three are given in Proposition 6.34 and 6.35. We conclude
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6.5 Conclusion and Future Work

that it corresponds to the de�ning sets of cyclic product codes in Section 6.3. �e relevance of these
codes for our approach of embedding a cyclic code into another cyclic product code was demonstrated.

In Section 6.4, we de�ned linear cyclic generalized product codes and proved their main properties.
We outline how they can be used in a similar way as linear cyclic product codes to bound the minimum
distance of a given linear cyclic code.

Besides this, several future research directions are possible. One issue for the approach of Section 6.2
is the complexity of the decoding algorithm when associating a second code. �e order of the common
extension �eld in�uences the decoding complexity directly, since all operations are done in this extension
�eld.

�e concept of Section 6.2 can be extended to several associated codes, that form then a linear cyclic
product code of order s ≥ 2. A deeper comparison to existing bounds should be carried out. Furthermore,
conditions for non-binary lowest-rate cyclic code with distance two and three can be worked out. Similar
results as the one for the binary cyclic codes of Section 6.3 are expected.

�e approach as for the three bounds I-b, II and III can be extended to cyclic generalized product codes
(see Section 6.4). Probably, also cyclic generalized concatenated codes can be used in a similar manner.
Is it not excluded that these approaches can be used for linear (non-cyclic) codes, too. In principal every
existing lower bound on the minimum distance of cyclic codes can be generalized as the BCH bound in
�eorem 6.18 and the Hartmann–Tzeng bound in �eorem 6.25.

We provide a homepage [O-ZJ12] with numeric results for cyclic code over F2,F3,F5 and F7.
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“�anks for showing interest in the preliminary version of my book. It was

halted for a year, since I had to do research and publish papers. A book counts

for only one item!”

Ruud Pellikaan (born 1953) via email7
Concluding Remarks

W ithin this dissertation, new algebraic so�- and hard-decision decoding approaches for
Generalized Reed–Solomon and linear cyclic codes, both de�ned over �nite �elds and in

Hamming metric, were developed.

We reformulated the bivariate interpolation problem of Guruswami–Sudan and Kö�er–Vardy (see
Chapter 4 and Chapter 5 respectively) and obtained a generalization of the classical Key Equation,
which is the basis for the established syndrome-based unique Bounded Minimum Distance decoding
approaches as the Berlekamp–Massey and the Sugiyama–Kasahara–Hirasawa–Namekawa algorithm.
Based on the previous work of Roth and Ruckenstein for the Sudan algorithm (multiplicity one for all
n points), a set of Key Equations for both cases, the Guruswami–Sudan approach, where all n points
are interpolated with the same multiplicity (hard-decision) and the Kö�er–Vardy extension, where the
interpolation is based on a q × n multiplicity matrix (so�-decision), was derived. We obtained two
systems of homogeneous linear equations, where the matrices are structured, i.e., a Block-Hankel matrix
and a vertical band of Block-Hankel matrices respectively.

Both systems can be solved e�ciently. We adapted the Fundamental Iterative Algorithm, that goes back
to the work of Feng and Tzeng, for both cases. For the case of the hard-decision variant of Guruswami–
Sudan (same multiplicity for all n points), we proposed the complexity-reducing initialization rule and
proved the correctness of the Fundamental Iterative Algorithm. In addition, we analyzed its complexity.
�e reduction of equations and an explicit syndrome expression remain an open task. We showed that
in the case of di�erent multiplicities (Kö�er–Vardy) and a�er re-encoding transformation, the univariate
reformulation leads to a set of Key Equations over the polynomial ring. In addition, the reduced set
of linear homogeneous equations consists still of vertically arranged Block-Hankel matrices, but with
reduced dimensions.

In Chapter 6, we proposed two new techniques for bounding the minimum Hamming distance of a
linear cyclic code. �e �rst one used rational functions to �ll missing zeros in the de�ning set of a given
cyclic code. We identi�ed several classes of codes and showed the connection to some existing bounds.
Based on a new syndrome de�nition, a Key Equation with a generalized error-locator polynomial was
derived. We adapted the Extended Euclidean Algorithm—similar to the approach of Sugiyama–Kasahara–
Hirasawa–Namekawa—and proved a generalization of the Forney formula. �e second technique embeds
a given linear cyclic code into a linear cyclic product code. We prove the main theorems on the minimum
distance that generalizes the Bose–Ray-Chaudhuri–Hocquenghem and the Hartmann–Tzeng bound.
Probably, several other bounds on the minimum distance of linear cyclic codes can be extended in the
same way. Similar to the rational function approach, a Key Equation for syndrome-based error/erasure
decoding up the generalization of the Bose–Ray-Chaudhuri–Hocquenghem bound was given. Further,
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7 Conclusion

we proved the error-only syndrome-based decoding up to the generalized Hartmann–Tzeng bound.
Necessary and su�cient conditions for lowest-code-rate non-primitive binary cyclic codes of minimum

distance two and a su�cient condition for binary cyclic codes of minimum distance three were given.
We shown their relevance for the embedding technique. A further extension of the embedding-technique
to cyclic generalized product codes was discussed and their basic properties were outlined.

Several open research directions were identi�ed at the end of each chapter.
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