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- Henri Poincaré.
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Abstract

Our work is a contribution to the understanding of transport of solutes in a porous medium.
It has applications in groundwater contaminant transport, CO2 sequestration, underground
storage of nuclear waste, oil reservoir simulations. We derive expressions for the effective Tay-
lor dispersion taking into account convection, diffusion, heterogeneous geometry of the porous
medium and reaction phenomena. Microscopic phenomena at the pore scale are upscaled to
obtain effective behaviour at the observation scale. Method of two-scale convergence with drift
from the theory of homogenization is employed as an upscaling technique. In the first part of
our work, we consider reactions of mass exchange type, adsorption/desorption, at the fluid-solid
interface of the porous medium. Starting with coupled convection-diffusion equations for bulk
and surface concentrations of a single solute, coupled via adsorption isotherms, at a microscopic
scale we derive effective equations at the macroscopic scale. We consider the microscopic system
with highly oscillating coefficients in a strong convection regime i.e., large Péclet regime. The
presence of strong convection in the microscopic model leads to the induction of a large drift in
the concentration profiles. Both linear and nonlinear adsorption isotherms are considered and
the results are compared. In the second part of our work we generalize our results on single
component flow to multicomponent flow in a linear setting. In the latter case, the effective pa-
rameters are obtained using Factorization principle and two-scale convergence with drift. The
behaviour of effective parameters with respect to Péclet number and Damköhler number are
numerically studied. Freefem++ is used to perform numerical tests in two dimensions.

Keywords: Homogenization, Porous media, Periodic structures, Two-scale convergence, Dis-
persion Tensor, Reactive flows, Adsorption isotherms, Multicomponent flow.

Résumé

Ce travail est une contribution pour mieux comprendre le transport de solutés dans un milieu
poreux. Ce phénomène se rencontre dans de nombreux domaines: transport de contaminants
dans les eaux souterraines, séquestration du CO2, stockage souterrain des déchets nucléaires,
simulations de réservoirs pétroliers. On obtient la dispersion effective de Taylor en tenant compte
de la convection, de la diffusion, de la géométrie du milieu poreux et des réactions chimiques.
Le but de la théorie d’homogénéisation est, à partir d’équations microscopiques, de dériver un
modèle effectif à l’échelle macroscopique. Ici, on applique la méthode de convergence à deux
échelles avec dérive pour arriver au comportement effectif. Dans un premier temps, on considère
les réactions de type adsorption à la surface des pores. À l’échelle microscopique, le phénomène
de transport est modélisé par des équations couplées de type advection-diffusion, une pour la
concentration dans le fluide et l’autre pour la concentration à la surface de milieu poreux. Le
couplage est fait par les isothermes d’adsorption. Le système microscopique avec des coefficients
fortement oscillants est étudié dans un régime de forte convection i.e., dans un régime de grand
nombre de Péclet. La présence de forte convection dans le modèle microscopique se traduit
par l’apparition d’une large dérive dans les profils de concentrations. On considère à la fois
l’isotherme linéaire et l’isotherme non linéaire et les résultats ainsi obtenus sont comparés. Dans
la deuxième partie, on généralise nos résultats concernant le transport réactif d’un seul soluté
à ceux de plusieurs solutés dans un cadre linéaire. Dans ce cas, les paramètres effectifs sont
obtenus en utilisant le principe de Factorisation et la convergence à deux échelles avec dérive.
On étudie numériquement le comportement des paramètres effectifs par rapport au nombre de
Péclet et au nombre de Damköhler. On utilise Freefem++ pour effectuer des tests numériques
en dimension deux.

Mots clefs: Homogénéisation, Milieux poreux, Structures périodiques, Convergence à deux
échelles, Tenseur de dispersion, Écoulements réactifs, Isothermes d’adsorption.
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Chapter 1

Introduction

This thesis is a contribution to the study of reactive flows in porous media. This general intro-
duction to the thesis recalls some of the historical aspects regarding the study of the dispersion of
dissolved solutes. We present the progress that has been made in the field of reactive transport.
Some of the well known results are recounted. From Section 1.12 onwards, the contribution of
this thesis is briefly described.

1.1 Historical background

It all started with [157] where Sir Geoffrey Taylor studied the spreading of a soluble substance
dissolved in water flowing through a tube. The interplay between molecular diffusion and the
variations in fluid velocity across a cross section of the tube were studied. The phenomenon
of spreading is usually referred as “Dispersion”. Neither a simple molecular diffusion nor a
simple convection can account for the effective mixing of solutes. Fick’s law states that the
molecular diffusion is proportional to the concentration gradient i.e., the diffusive flux is always
from the region of higher concentration to that of the lower concentration. So the diffusion is
more pronounced only in presence of sharp concentration gradients. In case of pure convection,
if the velocity were constant then the solutes are transported from one region to other with
no change in distribution. In case of non constant velocity, however, the solute distribution is
distorted. Thus, the presence of both convection and diffusion makes the study of dispersion of
solutes very interesting. In [157], a fluid flowing through a tube is considered in which a solute
is dissolved. Taking u to be the concentration of the dissolved solute, we can write the following
advection-diffusion equation for the transport of solutes in the tube:

∂u

∂t
+ b(t, x) · ∇u− div(D∇u) = 0 in R+ × Ω (1.1)

where Ω is the tube, b is the fluid velocity and D is the molecular diffusion. Through some
heuristic arguments it is shown formally in [157] that the effective dispersion is given by

D = D
(
1 + cPe2

)
(1.2)

where c ≪ 1 is some positive constant, D is the molecular diffusion and Pe is a dimensionless
number called the “Péclet number”. In the context of mass transport, the Péclet number is
defined as

Pe =
LB

D
(1.3)

where L is the characteristic length of the medium, B is the characteristic velocity and D the
characteristic diffusion. The expression (1.2) for the effective dispersion suggests that for large

17



18 CHAPTER 1. INTRODUCTION

Pe the dispersion is greater than the simple molecular diffusion. In [157], a Poiseuille flow was
considered for the fluid flow in a tube and the solutes are considered to be inert i.e., absence
of chemical reactions. Taylor, in [158], has even tried to obtain expression for the effective dis-
persion upon replacing Poiseuille flow of [157] by a turbulent flow. Since the seminal works of
G.I. Taylor [157, 158, 159], the effective dispersion has come to be called “Taylor Dispersion”
in the literature (In fact it was H. Brenner, in [47], who coined the term “Taylor Dispersion”
as a tribute to the pioneering work of Taylor). As stated earlier, the results of Taylor were very
formal. R. Aris, in [30], tried to make the theory of Taylor Dispersion more mathematically
sound by using the method of moments. In the works [157, 30] of Taylor and Aris only a simple
Poiseuille flow was considered for the fluid velocity. Since their works, there have been thou-
sands of scientific articles that have been produced in relation to Taylor Dispersion owing to its
importance in many applications ranging from flow in porous media to transport in arrays of
regular convection cells, in plasma physics, and in the study of turbulence.

Solute transport in porous media is of paramount importance in chemical engineering, soil sci-
ences, petroleum engineering, geology [95, 40] e.g., groundwater contaminant transport, carbon
sequestration, underground storage of nuclear waste, oil reservoir simulations. In the 50’s as
the dispersion theory of Taylor was gaining popularity, it was adapted to study the spreading
of solutes in porous media. The porous media were modelled as networks of capillaries [146].
The geometrical characteristics of a porous medium are more complex than a simple network of
capillaries. Also the Dispersion theory due to Taylor-Aris was conceived for unidirectional flows
in a tube. P.G. Saffman in [146] applied the Taylor-Aris approach to study the dispersion of
solutes in a porous medium assuming that the local velocity field is everywhere parallel to the
mean velocity field in the domain. This is indeed the case for the Poiseuille flow in a capillary
tube. A very good discussion on the drawbacks of this approach of supposing a porous medium
as a network of capillaries is found in [47]. The study of dispersion in porous medium saw some
new directions in the 70’s and 80’s. Remarkable contributions being the method of asymptotic
analysis applied in the case of no net macroscopic convection [41] and the method of moments
(borrowed from [30]) applied to the case of spatially periodic porous medium [46, 47, 48]. The
crucial idea in the cited references being the consideration of convection-diffusion phenomena at
the pore scale and averaging them over the entire porous medium, via asymptotic expansions
in [41], and via the method of moments in [47]. This viewpoint of starting with pore scale phe-
nomena followed by an averaging technique had appeared in [163, 164] in the context of volume
averaging techniques.

1.2 Developments in Homogenization theory

The study of flows in porous media has been around for over 150 years. The first valuable
discovery was realized by H. Darcy [72]. Based on some filtration experiments with a packed
sand column, Darcy empirically formulated that the flow rate is proportional to the balance of
forces including the pressure. This observation came to be known as “Darcy’s law”. For its
enormous utility in petroleum engineering and groundwater hydrology, Darcy’s law has been
heavily used in the industry since its discovery. Even though this was just an empirical result,
only in the 60’s was some interest shown in justifying Darcy’s law via some theoretical analysis.
A significant advancement was made in this direction by S. Whitaker in [164]. The analysis in
[164] starts with a pore scale description followed by the averaging over a representative volume
of the porous medium. The equivalent description for the pore scale description was found to
be the well-known Darcy’s law. This conception of finding equivalent descriptions for highly
heterogeneous phenomena gained attention of the scientific community and since then there has
been a wave of new techniques to obtain these equivalent description in various contexts. In the
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mechanics literature, these techniques are universally nomenclatured as “upscaling techniques”.
The method of asymptotic expansions of [41] and the method of moments of [30, 47] qualify
has some of those upscaling techniques. In mathematics literature, these techniques are referred
to as “Homogenization”. Chapter 2 recounts some of the techniques in the theory of periodic
homogenization. The method of volume averaging is a formal method as there is no prescribed
rule on choosing a proper representative elementary volume. Also, during the analysis one has
to close the systems of equations through some heuristic arguments. The method of volume av-
eraging is frequently called “Representative Elementary Volume (REV) method”. This method
is very well documented in the book of S. Whitaker [165].

Another prominent upscaling technique in the periodic regime is the method of two-scale asymp-
totic expansions. Let l denote the length scale of the heterogeneities present in the medium and
L be the observation length scale. Under the assumption of scale separation, we define a scale
parameter ε = l/L ≪ 1. In a periodic setting, the period would be of O(ε). Under periodicity
assumptions, the system of equations representing the physical phenomena in a medium usually
takes the form

Lε uε = f in Ω, (1.4)

where Lε is a partial differential operator with periodic coefficients, f is a source term and uε
is the solution to the partial differential equation. As an effective equation, we wish to replace
(1.4) by a continuum model posed in an equivalent macroscopic medium:

L̄ u = f in Ω, (1.5)

where L̄ is the homogenized operator and u is the homogenized limit of uε. In a nutshell, the
method of asymptotic expansions begins with an assumption that the solution uε to the partial
differential equation (1.4) can be written in the form of an asymptotic expansion in terms of the
period ε i.e.,

uε(t, x) = u0

(
t, x,

x

ε

)
+ ε u1

(
t, x,

x

ε

)
+ ε2 u2

(
t, x,

x

ε

)
+ · · · · (1.6)

where the coefficient functions ui(t, x, y) are Y -periodic with respect to the variable y. This ap-
proach was hinted at in [147, 36, 37, 103, 41, 38]. The method of two-scale asymptotic expansions
was employed in [148, 115] to derive Darcy’s law as the effective model. Starting with steady
Stokes equations at the pore scale, Darcy’s law is derived using the formal method of asymp-
totic expansions. Like the REV method and the method of moments, the method of asymptotic
expansions is also a formal method as there is no guarantee as to why the postulated ansatz
(1.6) holds. But this method has an added advantage as the results obtained by asymptotic
expansions can be made mathematically rigorous using the theory of periodic homogenization.
In Section 2.2 of Chapter 2, the method of two-scale asymptotic expansions is briefly depicted
and is elucidated by applying it to the upscaling of steady incompressible Stokes equations in
a periodic porous medium. Proposition 2.2.2 gives the homogenization result. This is just a
reproduction of the result obtained in [148, 115].

As stated before, the formal method of asymptotic expansions can be made rigorous. L. Tar-
tar proposed the “method of oscillating test functions” [153] (English translation in [55]) as a
means to justifying the homogenization process. In loose terms this method aims at proving
the convergence of uε, the solution to (1.4), to u, solution to (1.5), in a proper function space.
It goes via choosing of proper test functions (thus the name) in the variational formulation of
the microscopic partial differential equation (1.4) and passing to the limit as ε→ 0 to arrive at
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a variational formulation for (1.5). The test functions are built using solutions to the so-called
cell problems that we encounter in the asymptotic analysis. Tartar applied his method in jus-
tifying the upscaling of steady Stokes equations to Darcy’s law in [155] with a restriction on
the solid part of the periodic porous medium that it is disconnected. G. Allaire in [3], using
Tartar’s method, generalized this result even in the presence of connected solid part in a peri-
odic porous medium. Tartar’s method, however, was introduced in the context of H-convergence
[153, 131] (English translations in [55]) and is not very specific for the upscaling problems in
periodic regimes. Any robust approach should take into account the periodic nature of the co-
efficients in (1.4). This breakthrough was found by G. Nguetseng in [132] where he introduced
a compactness phenomenon suitable for periodic homogenization. This phenomenon was coined
“Two-scale convergence” and was further developed by G. Allaire in [5]. Section 2.3 of Chapter 2
defines the notion of two-scale convergence and recalls some of the compactness results. In [115],
the homogenization of unsteady incompressible Stokes equations in a periodic porous medium
was undertaken. It was shown, formally, that the effective equation is a generalized Darcy’s
law with memory terms. This result was formal as it used the two-scale asymptotic expansions
method. G. Allaire in [4] employed the theory of “two-scale convergence” from [132, 5] to rigor-
ously justify the upscaling done in [115]. Theorem 2.3.7 recalls the result obtained in [4].

Tartar’s Energy Method was introduced in the context of H-convergence where ‘H’ stands for
Homogenization. In the literature, there has been a notion of G-convergence dedicated to the
study of convergence associated to the sequence of symmetric operators [151]. The ‘G’ in G-
convergence stands for Green as the convergence here, loosely speaking, corresponds to the con-
vergence of the associated Green functions. H-convergence is a generalization of G-convergence
to incorporate non-symmetric operators. We shall not be giving any more information on these
two notions of convergence.

Quite recently, a new notion of upscaling technique called “Periodic unfolding” has been de-
veloped [58, 60, 59]. This method uses the dilation operator defined in [29]. This dilation
operator has been employed by Lenczner and collaborators in the study of electrical networks
[112, 113]. This notion of “Periodic unfolding” and its relation to the two-scale convergence is
briefly recalled in Section 2.4 of Chapter 2.

1.3 Passive transport: Different mixing regimes

Simultaneously during all the above developments in the theory of periodic homogenization in
the context of fluid flows in porous media and elasticity, there were quite a few results that were
obtained in the theory of dispersion in porous media borrowing ideas from asymptotic analysis.
It is to be noted that S. Whitaker did apply the theory of REV to upscale the dispersion phe-
nomena in porous media [164]. The study of the dispersion of solutes can be widely categorized as

• Diffusion dominated mixing.

• Taylor dispersion mediated mixing.

• Chaotic advection.

The first category of “diffusion dominated mixing”, as the name suggests, considers the study of
physical phenomena of transport where the diffusion is more pronounced at the microscopic scale.
The second category of “Taylor dispersion mediated mixing” refers to the models where both
convection and diffusion are important at the microscopic scale. In the final category “Chaotic
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advection”, the turbulent effects at the microscopic scale for the velocity field are taken into
account. This final category is quite complicated and is not well understood. A very good survey
on the known results in the area of turbulent diffusion can be found in [120]. We shall content
ourselves with the first two regimes in relation to transport phenomena in periodic porous media.

Let Ωf denote the fluid part of the porous medium and Ωs the solid part. Using the scale
parameter ε, we define an ε-periodic porous medium as

Ωε = εΩf and ∂Ωε = ε ∂Ωs .

Let Y =]0, 1[d be the unit cell which is a disjoint union of Y 0, the fluid part, and Σ0, the solid
part.

Figure 1.1: Schematics of porous media: Left, in two dimensions; Right, in three dimensions
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Figure 1.2: Schematics of an unbounded porous medium in two dimensions

To study the transport of the dissolved solutes, we consider the following convection-diffusion
equation:





∂u

∂t
+ b · ∇u− div(D∇u) = 0 in (0, T )× Ωε,

D∇u · n = 0 on (0, T )× ∂Ωε,

u(0, x) = uin(x) in Ωε.

(1.7)

Associated with (1.7) there are the following time scales:
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τ1 =
l

B
, τ2 =

l2

D
,

τ3 =
L

B
, τ4 =

L2

D
,

(1.8)

where B is the characteristic velocity and D is the characteristic diffusion. The non dimensional
numbers, local and global Péclet numbers, are defined respectively as

Pel =
τ2
τ1
, Peg =

τ4
τ3
. (1.9)

Upon dimensional analysis, we arrive at





∂uε
∂t

+Pegbε · ∇uε − div(Dε∇uε) = 0 in (0, T ) × Ωε,

Dε∇uε · n = 0 on (0, T )× ∂Ωε,

uε(0, x) = uin(x) in Ωε,

(1.10)

where the unknown uε(t, x) = u(τ, y). The velocity field bε is governed by the Stokes equations,
upon neglecting inertial and transient terms in the Navier-Stokes equations, at the pore scale:





∇pε − ε2µ∆bε = f in Ωε,

div bε = 0 in Ωε,

bε = 0 on ∂Ωε.

(1.11)

1.4 Global Péclet regimes of O(ε) and O(1)

In the literature, different scales are considered for Peg. When Peg = O(ε) and Peg = O(1),
we are in the “diffusion dominated mixing” regime. In [33] both these cases are considered. We
shall state here a result in the regime Peg = O(ε) due to Auriault and Adler.

Proposition 1.4.1. [33] Let Peg = O(ε) in (1.10). Under the assumption (1.6) on the solute
concentration uε, the solution uε of (1.10) satisfy

uε(t, x) ≈ u0 (t, x) + εu1

(
t, x,

x

ε

)
(1.12)

where u1 can be decomposed as

u1(t, x, y) =

d∑

i=1

ωi(y)
∂u0
∂xi

(t, x)

and ωi satisfy the following cell problem





divy

(
D
(
∇yωi + ei

))
= 0 in Y 0,

D
(
∇yωi + ei

)
· n = 0 on ∂Σ0,

y → ωi(y) Y -periodic.

(1.13)

The u0 in (1.12) satisfies the following homogenized diffusion equation

∂u0
∂t

− div(D∇u0) = 0 in (0, T )× Ω. (1.14)
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The diffusion tensor D is given in terms of the cell solution ωi:

Dij =

∫

Y 0

D
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy. (1.15)

Remark that the velocity field bε in (1.10) does not appear in the cell problem (1.13), thus
implying that the velocity field doesn’t play much of a role in the transport phenomena at the
pore scale. Also, it is interesting to note that the velocity plays no role in the homogenized
equation (1.14) either. The regime Peg = O(ε) is where the diffusion is predominant. Hence we
can ignore the convection in (1.10).

Next interesting case in the category of “diffusion dominated mixing” is when Peg = O(1). As
the convection term didn’t affect the upscaling process in the previous regime (Peg = O(ε)),
we didn’t see the impact of the homogenized velocity associated at the Darcy scale for (1.11).
As both the fluid flow and the transport of solutes are coupled, we have to simultaneously
homogenize both the equations (1.10) and (1.11). Similar to the ansatz for uε from (1.6), let us
consider the following ansatz for the velocity and pressure fields.

bε(x) = b0

(
x,
x

ε

)
+ ε b1

(
x,
x

ε

)
+ ε2 b2

(
x,
x

ε

)
+ · · · · (1.16)

pε(x) = p0

(
x,
x

ε

)
+ ε p1

(
x,
x

ε

)
+ ε2 p2

(
x,
x

ε

)
+ · · · · (1.17)

We state below the upscaling result.

Proposition 1.4.2. [33] Let Peg = O(1) in (1.10). Under the assumption (1.6) on the solute
concentration uε, the solution uε of (1.10) satisfies

uε(t, x) ≈ u0 (t, x) + εu1

(
t, x,

x

ε

)
(1.18)

where u1 can be decomposed as

u1(t, x, y) =

d∑

i=1

ωi(y)
∂u0
∂xi

(t, x)

and ωi satisfy the following cell problem





divy

(
D
(
∇yωi + ei

))
= 0 in Y 0,

D
(
∇yωi + ei

)
· n = 0 on ∂Σ0,

y → ωi(y) Y -periodic.

(1.19)

The u0 in (1.18) satisfies the following homogenized convection-diffusion equation

∂u0
∂t

+ b̄ · ∇u0 − div(D∇u0) = 0 in (0, T ) × Ω, (1.20)

where

b̄(x) =

∫

Y 0

b0(x, y) dy (1.21)
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is the Darcy velocity that satisfies





b̄(x) = − 1

µ
K∇p(x) in Ω,

div b̄ = 0 in Ω,

b̄ · n = 0 on ∂Ω,

(1.22)

with p(x) ≡ p0(x, y). The diffusion tensor D in (1.20) is given in terms of the cell solution ωi:

Dij =

∫

Y 0

D
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy. (1.23)

Let us point out that the cell problem (1.19) obtained in the regime Peg = O(1) is still inde-
pendent of the convection terms. Thus the diffusion is dominant at the pore scale. Also the cell
problem (1.19) is the same as the cell problem (1.13) obtained in the regime Peg = O(ε). The
main distinction between the two regimes is with regard to the homogenized equations. The
effective equation (1.14) in the regime Peg = O(ε) is a pure diffusion equation. In the regime
Peg = O(1), however, we get a convection-diffusion equation (1.20) as a homogenized model.
The convection being contributed by the Darcy velocity (1.21). A while ago, we remarked that
the upscaling is done simultaneously. It just means that the asymptotic expansion (1.16) for bε
is plugged in (1.10) and the asymptotic analysis is carried out. The details on the upscaling of
Stokes equations (1.11) to arrive at Darcy law (1.22) is given in Section 2.2 of Chapter 2.

1.5 Global Péclet regime of O(ε−1)

In both of the two regimes (Peg = O(ε) or O(1)) considered so far, the convective terms haven’t
appeared in the cell problems i.e., at the pore scale, thus diffusion playing a dominant role. The
next regime of interest is where Peg = O(ε−1). This regime is studied in [123, 145, 124, 33]. The
contrast between the approach of [33, 124] and that of [123, 145] is the choice of the velocity fields.
As pointed out before, in the Propositions 1.4.1 and 1.4.2, the upscaling is done with a velocity
bε given by Stokes equations (1.11). So, there is a simultaneous upscaling. In [123], however, one
of the cases studied is where the velocity field is assumed to be given and purely periodic. The
governing equations for the velocity field aren’t considered. As a result of this hypothesis, the
velocity field bε(x) takes the form b(x/ε) implying no dependence on the slow variable. Consider
a convection diffusion equation in a dominant Péclet regime i.e., Peg = O(ε−1):

∂uε
∂t

+
1

ε
bε · ∇uε − div(Dε∇uε) = 0. (1.24)

Let b∗ be the average of b(y) over the fluid part of the unit cell Y 0:

b∗ =
1

|Y 0|

∫

Y 0

b(y) dy. (1.25)

In [123], an assumption is made that the velocity field b(y) is of zero mean i.e., b∗ = 0. Now we
state a result due to McLaughlin, Papanicolaou and Pironneau.

Proposition 1.5.1. [123] Under the assumption that the velocity field is of mean zero, the
solution uε of (1.24) can be approximated as

uε(t, x) ≈ u0(t, x) + ε

d∑

i=1

ωi

(x
ε

)∂u0
∂xi

(t, x) (1.26)
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where ωi satisfy the following cell problem, for every 1 ≤ i ≤ d,





b(y) ·
(
∇yωi + ei

)
− divy

(
D(y)

(
∇yωi + ei

))
= 0 in Y 0,

D
(
∇yωi + ei

)
· n = 0 on ∂Σ0,

y → ωi Y -periodic.

(1.27)

Further the zero order approximation, u0(t, x), in (1.26) satisfies the following diffusion equation:





∂u0
∂t

− div(D∇u0) = 0 in (0, T )× Rd,

u0(0, x) = uin(x) x ∈ Rd,

(1.28)

with a dispersion matrix D given in terms of the cell solutions ωi.

Note that the cell problem (1.27) has contributions both from the convective field and the diffu-
sion. The assumption that b∗ = 0 helps us deduce the solvability of the cell problem. The proof
of the above Proposition 1.5.1 can be detailed using the formal method of two-scale asymptotic
analysis. However, the mean zero condition on the fluid field is quite restrictive.

In [44], convection-diffusion equation in this regime of Peg = O(ε−1) is studied. Homogenization
procedure in [44] involves the upscaling of both the convection-diffusion equation and the fluid
equations simultaneously. The convection-diffusion equation studied in [44] is

∂uε
∂t

+ bε · ∇uε − εdiv(Dε∇uε) = 0, (1.29)

where the convection is driven by Darcy velocity bε which fluctuates according to the perme-
ability fluctuations:





bε = −K
(x
ε

)
∇pε,

div bε = 0.
(1.30)

The microscopic model (1.29) studied in [44] is quite different from the microscopic model (1.24)
studied in [123]. Starting with

∂uε
∂τ

+
1

ε
bε · ∇uε − div(Dε∇uε) = 0 (1.31)

and making the change of time variable: τ = ε−1 t, we arrive at (1.29). This enables us to
study the small time behaviour of the transport model in large Péclet regime. The classical
asymptotic expansion (1.6) for uε that we have been considering has only one time scale and
two space scales: x and y = x/ε. In [44], in addition to the two space scales, two time scales
t and τ are also considered i.e.,

uε(t, x) = u0(t, τ, x, y) + εu1(t, τ, x, y) + ε2u2(t, τ, x, y) · · · · (1.32)

Taking the following asymptotic expansion for the pressure pε in (1.30)

pε(x) = p0(x) + ε p1

(
x,
x

ε

)
+ ε2 p2

(
x,
x

ε

)
+ · · · ·,

an asymptotic expansion for the Darcy velocity bε is obtained

bε ≈ b0 + εb1 + ε2b2 + · · · · (1.33)
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We state a result from [44] that approximates the dispersion in this regime. The analysis in
[44] is quite involved as it considers the effect of boundary layers. The following statement is
intended to give a loose account of the results due to A. Bourgeat, M. Jurak and A.L. Piatnitski.

Proposition 1.5.2. [44] Let us assume the asymptotic expansion (1.32) for the solute concen-
tration uε, the solution of (1.29). The zero order concentration approximation, u0(t, x), satisfies
the following transport equation:

∂u0
∂t

+ b̄0(x) · ∇u0 = 0 (1.34)

where b̄ is the mean of the zero order Darcy velocity

b̄0(x) =

∫

Y 0

b0(x, y) dy. (1.35)

Further the sum of first two non-oscillating terms of the expansion (1.32) i.e., U(t, x; ε) =
u0(t, x) + ε ū1(t, x) satisfies

∂U
∂t

+
(
b̄0 + b̄1

)
(x) · ∇U − εdiv(D(x)∇U) = O(ε2) (1.36)

where D is given in terms of solutions to a so-called cell problem:





b0 · ∇yωi − divy

(
D
(
∇yωi + ei

))
=
(
b̄0 − b0

)
· ei in Y 0,

D
(
∇yωi + ei

)
· n = 0 on ∂Σ0,

y → ωi(y) Y -periodic.

(1.37)

Unlike the previous two regimes, the cell problem (1.37) has contributions from both convection
and diffusion. This regime falls into the category of “Taylor dispersion mediated mixing” as
we are considering the interplay between both convection and diffusion at the micro scale (pore
scale or cell problem) as was the case with Taylor’s original studies of dispersion in a tube [157].
We remark that the cell solutions ωi in (1.37) are not independent of the slow variable x. In
the regimes Peg = O(ε) and Peg = O(1), the cell solutions were depending only on the fast
variable y. The dependency of ωi on x is due to its dependence on the pressure gradient ∇p(x).
Result similar to Proposition 1.5.2 was also obtained by C.C. Mei in [124], J.L. Auriault and
P.M. Adler in [33] but in a less rigorous manner.

1.6 Scaling arguments

The approach of considering different orders of the global Péclet number, as recalled in Sections
1.4 and 1.5, is well-received in the engineering literature. The governing equations in an hetero-
geneous medium are usually derived via dimensional analysis. In mathematics, one begins with
a partial differential equation for the physical phenomena in the unit cell and via some scaling
arguments, derives the governing equations for the entire heterogeneous medium. Well known
scaling arguments are “parabolic” and “hyperbolic” scaling. These scalings are a simple change
of variables. The following is called the hyperbolic scaling:

(τ, y) → (ε−1t, ε−1x). (1.38)

It is so named because if we take a typical hyperbolic equation, say an advection equation in
(τ, y):
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∂u

∂τ
+ b · ∇yu = 0 (1.39)

and make the change of variables as in (1.38), the advection equation remains invariant i.e., we
get an advection equation in (t, x):

∂u

∂t
+ b · ∇xu = 0. (1.40)

The following is called the parabolic scaling:

(τ, y) → (ε−2t, ε−1x). (1.41)

It is so named because if we take a typical parabolic equation, say a diffusion equation in (τ, y):

∂u

∂τ
−∆yyu = 0 (1.42)

and make the change of variables as in (1.41), the diffusion equation remains invariant i.e., we
get a diffusion equation in (t, x):

∂u

∂t
−∆xxu = 0. (1.43)

Now let us consider a convection-diffusion equation in the fluid part Ωf of the porous medium.
Let the convective field b(y) be Y -periodic and the diffusion matrix D(y) be Y -periodic.

∂u

∂τ
+ b(y) · ∇yu− divy(D(y)∇yu) = 0 in (0, ζ)× Ωf . (1.44)

If we employ the hyperbolic scaling (1.38) in the above convection-diffusion equation, then we
arrive at

∂uε
∂t

+ bε(x) · ∇xuε − εdivx(Dε(x)∇xuε) = 0 in (0, T )× Ωε. (1.45)

This corresponds to the small time behaviour stated in Proposition 1.5.2. Remark that the
scaling in the space variable resulted in a scaled domain Ωε which is nothing but the ε-periodic
porous medium. Also note that the Y -periodic coefficients in (1.44) become ε-periodic in (1.45)
as the space variable is scaled. The scaling parameter ε gets next to the diffusion term. The
scaled equation (1.45) is similar to the transport equation (1.29) studied in [44]. The time scaling
in (1.38) corresponds to the study for short times. On the other hand the time scaling in (1.41)
corresponds to longer times. The scaled equation (1.45) can be homogenized by the classical
two-scale asymptotic expansions [41, 148]. The homogenized equation corresponding to (1.45)
is an advection equation of the type (1.34).

1.7 Two-scale asymptotics with drift

Let us scale the convection diffusion equation (1.44) using the parabolic change of variables
(1.41):

∂uε
∂t

+
1

ε
bε(x) · ∇xuε − divx(Dε(x)∇xuε) = 0 in (0, T ) × Ωε. (1.46)

This is indeed the convection-diffusion equation (1.31) that we considered in the dominant global
Péclet regime i.e., with Peg = O(ε−1). This regime is also referred to as the “strong convection
regime” due to the large convection term in (1.46).
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Remark 1.7.1. The final time T in (1.46) is related to the final time in (1.44) as T = ε2ζ.
Since ζ = O(ε−2), the final time T = O(1).

In Proposition 1.5.1 we cited a result from [123] treating zero mean flow fields. This situation
was generalized a little bit in [121, 76, 25] by considering incompressible periodic flows with non
zero mean i.e., we choose b(y) ∈ L∞

# (Ωf ;R
d) such that

divyb = 0 in Y 0, b · n = 0 on ∂Σ0 and b∗ =
1

|Y 0|

∫

Y 0

b(y) dy. (1.47)

Remark 1.7.2. All through this thesis, the subscript # indicates a space of Y -periodic functions.
Recall that Y 0 and Σ0 are thought as subsets of the unit cell Y , identified with the unit torus Td

i.e., Y 0 and Σ0 are periodic subsets of Rd.

It is shown in [121, 76, 25] that the convection-diffusion equation (1.46) can still be upscaled
by using a variant of the two-scale asymptotic expansions method. The authors in [121, 76, 25]
consider the following ansatz for the solution of (1.46):

uε(t, x) = u0

(
t, x− b∗t

ε
,
x

ε

)
+ ε u1

(
t, x− b∗t

ε
,
x

ε

)
+ ε2 u2

(
t, x− b∗t

ε
,
x

ε

)
+ · · · · (1.48)

If b∗ = 0 in (1.48), the above ansatz falls back to the classical asymptotic expansion. This is called
the method of “Two-scale asymptotic expansions with drift”. This method is briefly recalled in
Section 2.6 of Chapter 2 where we implement this method in the context of homogenizing the
following advection-diffusion equation in a porous medium:





∂uε
∂t

+
1

ε
b
(x
ε

)
· ∇uε − div

(
D
(x
ε

)
∇uε

)
= 0 in (0, T )× Ωε,

D
(
x
ε

)
∇uε · n = 0 on (0, T ) × ∂Ωε,

uε(0, x) = uin(x) x ∈ Ωε.

(1.49)

As in any method of asymptotic analysis, we need to plug the postulated ansatz into the partial
differential equation under consideration. While plugging (1.48), we need to keep in mind the
following chain rule for differentiation:





∂

∂t

[
φ
(
t, x− b∗

ε
t,
x

ε

)]
=
[∂φ
∂t

− b∗

ε
· ∇xφ

](
t, x− b∗

ε
t,
x

ε

)
,

∇
[
φ
(
t, x− b∗

ε
t,
x

ε

)]
=
[
∇xφ+

1

ε
∇yφ

](
t, x− b∗

ε
t,
x

ε

)
.

(1.50)

We shall state below a formal result on the homogenization of (1.49) using the method of two-
scale asymptotic expansions with drift. The details of the proof are found in Section 2.6.

Proposition 1.7.3. Under the assumption (1.48), the solution for (1.49) formally satisfies

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ ε u1

(
t, x− b∗t

ε
,
x

ε

)
(1.51)

where the first order corrector u1 can be written as

u1(t, x, y) =

d∑

i=1

ωi(y)
∂u0
∂xi

(t, x) (1.52)
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and the zero order term u0 in (1.51) satisfies the following effective diffusion equation:





|Y 0|∂u0
∂t

= div(D∇u0) in (0, T )× Rd,

u0(0, x) = uin(x) x ∈ Rd.

(1.53)

The elements of the dispersion tensor D are given by

Dij =

∫

Y 0

D(y)
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy (1.54)

where ωi in (1.54) and (1.52) satisfy the following cell problem, for each 1 ≤ i ≤ d,





b(y) ·
(
∇yωi + ei

)
− divy

(
D(y)

(
∇yωi + ei

))
= b∗ · ei in Y 0,

D(y)
(
∇yωi + ei

)
· n = 0 on ∂Σ0,

y → ωi Y -periodic.

(1.55)

As expected, both the convection and diffusion play role in the cell problem (1.55). This was
indeed the case in the cell problem (1.37). The dispersion tensor D is symmetric positive definite.

Remark 1.7.4. The asymptotic expansion (1.48) can handle the upscaling of (1.49) only if
the velocity field bε is purely periodic which in turn guarantees that the drift b∗ is a constant.
The chain rule differentiation given in (1.50) no longer holds if b∗ were not a constant. The
supposition of pure periodicity for the velocity field is quite restrictive. Stokes equations (1.11)
posed in a porous medium spits out purely periodic velocity fields only if the forces, including the
pressure gradients, remain constant over the entire domain Ωε.

Remark 1.7.5. From Proposition 1.7.3, we gather that the effective equation is a diffusion
equation. This is resulted because of our choice of the ansatz (1.48) where each of the ui’s are
written in moving coordinates with respect to the slow variable x. Let us define a new effective
concentration:

ũε(t, x) = u0

(
t, x− b∗t

ε

)
(1.56)

which satisfies the following convection diffusion equation

|Y 0|∂ũε
∂t

+ |Y 0|b
∗

ε
· ∇ũε − div(D∇ũε) = 0 in (0, T ) × Rd (1.57)

with the same initial condition as in (1.53). So the assumed ansatz (1.48) in moving coordinates
makes sure that the observer gets to see only the diffusion due to D. For a purely periodic velocity
field bε, the Darcy scale velocity is |Y 0|b∗. So the above upscaling is as though we homogenized
both the transport and fluid equations simultaneously.

This notion of taking asymptotic expansions in moving coordinates was first suggested by A.
Piatnitski in [140]. Homogenization of (1.49) with a macroscopically modulated velocity bε i.e.,
of the form b(x, x/ε) is still an open problem.
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1.8 Reactive transport: Different mixing regimes

Earlier works on Taylor Dispersion in porous media were concerned with inert solutes as was
the assumption in Taylor’s original work [157]. In many natural phenomena and industrial
applications involving transport of solutes, we have to consider the chemical reactions. The
practical applications of the reactive flows and their mathematical modeling were given by J.
Rubin in [144]. The qualitative properties of the Reaction-Diffusion equations taken from [144]
were studied in [73]. As in the study of passive scalar transport, we can consider different scales
for the different phenomena in reactive flows too. Thus the reactive flows in porous media could
also be studied under different categories.

• Diffusion dominated mixing.

• Taylor dispersion mediated mixing.

• Chaotic advection.

1.9 Diffusion dominated mixing: Adsorption reactions

The regime of “Diffusion dominated mixing” were studied in the 90’s and the theory related
to it is very well developed. Adsorption reaction represents the exchange of mass between
the fluid bulk and the surface. The adsorption reactions are characterized by the associated
isotherms. Isotherms express the relationship between the bulk concentration and the adsorbed
concentration, at a constant temperature, when the reaction is in equilibrium. Let u be the
solute concentration in the bulk and v be the adsorbed solute concentration on the surface. In
the literature, there are the following well known isotherms:





Henry’s isotherm v = K u with K > 0,

Langmuir’s isotherm v =
αu

1 + β u
with α, β > 0,

Freundlich’s isotherm v = γ uδ with γ > 0 and 0 < δ < 1.

(1.58)

Taking f(u) to be one of the isotherms in (1.58), in the non-equilibrium regime we can write
the following governing equations for the solute concentrations (u, v):





∂u

∂τ
+ b · ∇u− div (D∇u) = 0 in (0, ζ) × Ωf

−D∇u · n =
∂v

∂τ
= κ

(
f(u)− v

)
on (0, ζ)× ∂Ωs

u(0) = uin in Ωf , v(0) = vin on ∂Ωs,

(1.59)

where κ is the reaction rate. Note that an ordinary differential equation is considered for the
adsorbed concentration. In [78], the mathematical justification of the isotherms (1.58) is shown.
Travelling wave solutions are shown to exist for (1.59). Apart from the explicit expressions for
the nonlinear isotherms in (1.58), a classification of isotherms is done in [78]. They classify the
nonlinear isotherms as concave and convex isotherms. An isotherm is called “convex” if f is
strictly convex near 0. In the category of “concave isotherms”, two sub-categories are considered
namely

Langmuir type if f is strictly concave near 0 and f ′(0+) < +∞ (1.60)

and
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Freundlich type if f is strictly concave near 0 and f ′(0+) = +∞. (1.61)

The explicit expressions for Langmuir and Freundlich isotherms given in (1.58) do fall into their
respective categories. The qualitative analysis of (1.59) is also undertaken in [77, 78, 79, 80].
The study of (1.59) falls under the regime of “Diffusion dominated mixing” as only diffusion
plays a major role at the pore scales. In [97], the ordinary differential equation for v in (1.59) is
replaced by a diffusion equation, the diffusion being modelled by the Laplace Beltrami operator
on the surface. Also the linear isotherm is considered to represent the adsorption phenomenon.
The microscopic model studied in [97] is





∇pε − ε2∆bε = f in Ωε,

div bε = 0 in Ωε,

bε = 0 on ∂Ωε,

∂uε
∂t

+ bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) ×Ωε,

−Dε∇uε · n = ε gε(t, x) on (0, T ) × ∂Ωε,

∂vε
∂t

− ε2divs(Ds
ε∇svε) + aε(x) vε = gε(t, x) on (0, T ) × ∂Ωε,

u(0, x) = uin(x) in Ωε, v(0, x) = vin(x) on ∂Ωε.

(1.62)

where ∇s and divs represent the tangential gradient and tangential divergence respectively.
Taking the projection matrix on the tangent hyperplane to the surface ∂Y 0 = ∂Σ0 as

G(y) = Id− n(y)⊗ n(y), (1.63)

the tangential gradient is defined as
∇s = G(y)∇ (1.64)

and the tangential divergence for any vector field Ψ(y) : Ωf → Rd as

divsΨ = div(G(y)Ψ). (1.65)

The adsorption reaction in (1.62) is modelled as

gε(t, x) = g
(
t, x,

x

ε

)
with g(t, x, y) = c(y)u(t, x) − d(y)v(t, x). (1.66)

Remark 1.9.1. The scale parameter ε next to the boundary condition in the fifth line of (1.62)
just means that the reaction is considered to be weak in comparison to other transport phenomena
like the diffusion and convection. The ε2 next to the surface diffusion term means that it is very
small compared to the bulk diffusion.

The velocity field bε in (1.62) is governed by the steady Stokes equations. It is proved in [97]
that the effective equation corresponding to (1.62) is the following:





b0(x) = −K∇p(x) in Ω,

div b0(x) = 0 in Ω,

|Y 0|∂u0
∂t

+ b0 · ∇u0 − div(D∇u0) +
∫

∂Σ0

g(t, x, y) dσ(y) = 0 in (0, T )× Ω,

∂v0
∂t

− divs(Ds∇sv0) + a(y)v0 = g(t, x, y) on (0, T )× Ω× ∂Σ0,

(1.67)
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where the effective bulk and surface diffusions D and Ds are given in terms of the so-called cell
problems that are just diffusion equations. In (1.67) b0 is the effective Darcy velocity, K is the
permeability tensor and p(x) is the effective pressure. The zero order approximation u0(t, x) for
the bulk concentration is independent of the fast variable. But the zero order approximation
v0(t, x, y) of the surface concentration has both the slow and fast variables.

Remark 1.9.2. Note that the coupled nature of the microscopic equation (1.62) continues on
to the homogenized equation (1.67).

Tartar’s method of “oscillating test functions” is employed in [97] to arrive at the homogenized
limit. It is to be noted that the regime of “Diffusion dominated mixing” can be studied in
bounded porous media. So the microscopic equation (1.62) is supplemented with appropriate
boundary data on the exterior boundary of the porous medium. As there are sequences defined
on the porous skeleton, we have to be careful while applying the standard compactness results
of functional analysis.

[98] is another interesting reference where a similar phenomena of convection diffusion in the
bulk and diffusion on the surfaces is studied. In [98], the non-penetrating condition for the
velocity field on the porous skeleton is lifted i.e., the porous skeleton is semi-permeable. The
solutes that enter the permeable solid in the porous medium are considered to be diffusing inside
the semi-permeable solid medium. Here again, function sequences defined on surfaces have to be
considered to obtain the effective limit of the microscopic model. We remarked earlier in Section
1.2 that the Tartar’s method can be replaced by a more adapted “Two-scale convergence” in a
periodic setting. The extension of the notion of “Two-scale convergence” to function sequences
defined on periodic surfaces was achieved in [14, 134]. This extension of two-scale convergence
is recounted in Section 2.5 of Chapter 2. It is to be noted that this notion of compactness for
sequences on periodic surfaces can simplify the analysis in [97, 98] to a great extent.

It is to be noted that Cioranescu and Donato had approached the homogenization of steady
state problems in perforated domain with non-homogeneous boundary data in [61]. This article
was written before the notion of two-scale convergence appeared in the literature. In [61], they
use the variational approach via Tartar’s Energy Method. To handle the surface integral terms
in the variational formulation, they introduce an auxiliary problem which helps transform the
surface integral into a volume integral. Then, the proof of Homogenization utilizes information
from the convergence in the associated linear forms. For precise details, do refer [61].

The mathematical modelling in [98] has very close ties to the double porosity model of [29].
The double porosity model was formulated to study the flow in fractured porous media. The
transport model considered in [98] also falls under the category of “Diffusion dominated mix-
ing”. Homogenization in this regime, even in the presence of nonlinear reaction terms, is well
understood. This is demonstrated in [98] in case of semi-permeable porous media, in [81] with
regard to adsorption reactions, in [69, 68, 64] in the context of pure steady diffusion equation
with Langmuir adsorption on the surfaces. As in the case of passive transport, this regime of
“Diffusion dominated mixing” in the context of reactive flows has seen enormous progress in the
last two decades.

1.10 Reactive transport: Taylor dispersion mediated mixing

The next regime that we wish to consider is that of “Taylor dispersion mediated mixing”. We
remarked earlier in the case of passive transport, this regime is the richest regime as it takes into
account both convection and diffusion at the micro scale. In the context of reactive flows, we
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shall consider the reaction in addition to convection and diffusion at the pore scale. R. Mauri in
[122] studied the homogenization of a convection-diffusion-reaction phenomena in this regime:





∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T )× Ωε,

Dε∇uε · n+
κ

ε
uε = 0 on (0, T )× ∂Ωε,

uε(0, x) = uin(x) in Ωε.

(1.68)

The system (1.68) of [122] was generalized in [25] by considering a large lower order term in the
bulk equation representing the bulk reactions. So the new model looks like





∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) +

1

ε2
cεuε = 0 in (0, T ) × Ωε,

Dε∇uε · n+
κ

ε
uε = 0 on (0, T )× ∂Ωε,

uε(0, x) = uin(x) in Ωε.

(1.69)

The velocity field in (1.69) is considered to be periodic and no further assumptions are made.
In [25], the following spectral problem associated with (1.69) is considered:





b(y) · ∇yφ− divy

(
D(y)∇yφ

)
+ c(y)φ = λφ in Y 0,

D(y)∇yφ · n+ κφ = 0 on ∂Σ0,

y → φ(y) Y -periodic.

(1.70)

The adjoint of (1.70) is





−divy(b(y)φ
∗)− divy

(
D(y)∇yφ

∗
)
+ c(y)φ∗ = λφ∗ in Y 0,

D(y)∇yφ
∗ · n+ b(y) · nφ∗ + κφ∗ = 0 on ∂Σ0,

y → φ∗(y) Y -periodic.

(1.71)

To perform the upscaling, a slight variant of the asymptotic ansatz (1.48) for the unknown
concentration uε in (1.69) is considered:

uε(t, x) = exp (−λt/ε2)
∑

i≥0

εiui

(
t, x− b∗t

ε
,
x

ε

)
(1.72)

The homogenization result for (1.69) due to G. Allaire and A.L. Raphael is summarized below.

Proposition 1.10.1. [25] Under the assumption (1.72), the solution for the microscopic model
satisfies

uε(t, x) ≈ exp (−λt/ε2)φ
(x
ε

)(
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ωi

(x
ε

))
, (1.73)

with (λ, φ) being the first eigenpair associated with (1.70). The components (ωi)1≤i≤d satisfy the
following cell problem:





b̃(y) ·
(
∇yωi + ei

)
− divy

(
D̃
(
∇yωi + ei

))
= φφ∗b∗ · ei in Y 0,

D̃(∇yωi + ei) · n = 0 on ∂Σ0,

y → ωi Y -periodic,

(1.74)
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where the convective field b̃(y) and the diffusion matrix D̃(y) are given in terms of the original
velocity field b(y), diffusion matrix D(y) and the eigenfunctions φ(y) and φ∗(y):

b̃(y) = φφ∗b(y) + φD∇yφ
∗ − φ∗D∇yφ,

D̃(y) = φφ∗D(y).
(1.75)

The effective drift in (1.73) is given by

b∗ =

∫

Y 0

b̃(y) dy. (1.76)

Further, the zero order concentration approximation v(t, x) satisfies the following diffusion equa-
tion: 




∂v

∂t
= div(D∇u) in (0, T ) × Rd,

v(0, x) =
uin(x)

φ(x/ε)
in Rd,

(1.77)

where the dispersion matrix D is given in terms of the cell solutions:

Dij =

∫

Y 0

D̃
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy. (1.78)

We took a modified asymptotic expansion (1.72) for the unknown concentration. This idea of
performing time renormalization in terms of the first eigenvalue of the spectral problem was
identified in [12, 76]. We can also perform a change of unknowns in the spirit of Factorization
principle:

vε(t, x) = exp(λt/ε2)
uε(t, x)

φ(x/ε)
. (1.79)

Writing down the equation satisfied by vε we can perform the asymptotic analysis with “Two-
scale asymptotic expansions with drift”. The Factorization principle has been around in the
theory of homogenization since the 80’s [161]. Section 2.8 of Chapter 2 details the Factorization
principle when applied to the eigenvalue problems and also to the case of convection-diffusion
equations in strong convection regime with a bulk reaction term.

The “Two-scale convergence method” was conceived to justify the upscaling results obtained via
the formal method of two-scale asymptotic analysis. Section 2.3 of Chapter 2 explains the “Two-
scale convergence” approach in deriving effective Darcy law for the unsteady incompressible
Stokes equations. In the same spirit, a new notion of compactness was developed by Marusic-
Paloka and Piatnitski in [121]. This new conception of [121] is coined as “Two-scale convergence
with drift”. As the name suggests, it tries to justify the homogenization results obtained through
“Two-scale asymptotic expansions with drift”. We briefly explain the concepts involved with
“Two-scale convergence with drift” in Section 2.6 of Chapter 2. This notion of compactness is
used in rigorously justifying the result of the above Proposition 1.10.1 in [25].

1.11 Taylor-Aris regime: Adsorption via isotherms

In (1.69), the bulk reaction is modelled by a lower order term, cεuε, and the surface reaction
is modelled via k uε appearing as a Neumann data for the flux. The particular reactions of
adsorption type have been studied exhaustively in the regime of “Diffusion dominated mixing”.
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Very important references being [77, 97, 78, 79, 80, 81, 69, 68, 64]. In all these cited references,
except for [69, 68, 64], in order to study the adsorption models, two concentrations are intro-
duced: one for the concentration in the fluid bulk and the other for the concentration of the
adsorbed solutes on the surface. In [10, 20], coupled convection-diffusion-reaction equations are
considered for the solute concentrations (u, v):





∂u

∂τ
+ b(y) · ∇u− div (D(y)∇u) = 0 in (0, T )× Ωf ,

−D(y)∇u · n =
∂v

∂τ
= κ

(
u− v

K

)
on (0, T )× Ωs.

(1.80)

The above model is supplemented with initial data for u and v. The adsorption is modelled in
(1.80) using the linear isotherm from (1.58). Upon parabolic scaling, (1.80) leads to





∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) ×Ωε,

−1

ε
Dε∇uε · n =

∂vε
∂t

=
κ

ε2

(
uε −

vε
K

)
on (0, T ) × Ωε,

uε(0, x) = uin(x) x ∈ Ωε,

vε(0, x) = vin(x) x ∈ ∂Ωε.

(1.81)

In [10], the formal method of two-scale asymptotic expansions with drift is used to upscale the
microscopic model (1.81). Note that the governing equation for vε in the coupled system (1.81)
is just an ordinary differential equation. Consider the following asymptotic expansions for the
concentrations:

uε(t, x) =
∑

i≥0

εi ui

(
t, x− b∗t

ε
,
x

ε

)

vε(t, x) =
∑

i≥0

εi vi

(
t, x− b∗t

ε
,
x

ε

) (1.82)

Proposition 1.11.1. [10], [20] Under the assumption (1.82), the solution (uε, vε) of (1.81)
satisfies

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ ε u1

(
t, x− b∗t

ε
,
x

ε

)

vε(t, x) ≈ K u0

(
t, x− b∗t

ε

)
+ ε v1

(
t, x− b∗t

ε
,
x

ε

) (1.83)

where b∗ is the effective drift given by

b∗ =
(
|Y 0|+K|∂Σ0|

)−1
∫

Y 0

b(y) dy. (1.84)

The first order correctors u1 and v1 in (1.83) satisfy

v1(t, x, y) = K u1(t, x, y) +
K2

κ
b∗ · ∇xu0(t, x)

u1(t, x, y) =

d∑

i=1

ωi(y)
∂u0
∂xi

(t, x)

(1.85)
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where ωi satisfies, for each 1 ≤ i ≤ d,





b(y) · ∇yωi − divy(D(∇yωi + ei)) = (b∗ − b) · ei in Y 0,

−D(∇yωi + ei) · n = K b∗ · ei on ∂Σ0,

y → ωi(y) Y -periodic.

(1.86)

Further, the zero order concentration approximation u0(t, x) in (1.83) satisfies the following
diffusion equation:





(
|Y 0|+K|∂Σ0|

)∂u0
∂t

= div(D∇u0) in (0, T )× Rd,

u0(0, x) =
(
|Y 0|+K|∂Σ0|

)−1(
|Y 0|uin(x) + |∂Σ0|vin(x)

)
x ∈ Rd,

(1.87)

with the dispersion tensor D given by

Dij =
K2

κ
|∂Σ0|b∗i b∗j +

∫

Y 0

D(y)
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy. (1.88)

The above result is proved formally in [10] using the two-scale asymptotic expansions with drift.
In [20] the above result is made rigorous in the following sense.

Proposition 1.11.2. [20] The sequence {uε, vε} of solutions to (1.81) satisfies

uε(t, x) = u0

(
t, x− b∗t

ε

)
+ ruε (t, x),

vε(t, x) = K u0

(
t, x− b∗t

ε

)
+ rvε(t, x).

(1.89)

where the residual functions ruε and rvε vanish as ε → 0 and the limit u0 satisfies the effective
diffusion equation (1.87).

The cell problem (1.86) has contributions from convection, diffusion and reaction as we are in
the “Taylor dispersion mediated mixing regime”.

Remark 1.11.3. The contribution from the reaction at the pore scale is via the equilibrium
constant K and not the reaction rate κ. In the limit K → 0, we recover the cell problem and the
homogenized limit corresponding to the convection-diffusion equation in the strong convection
regime with homogeneous Neumann boundary condition on the pore boundaries. In the other
limit K → ∞, it follows from the expression for the drift velocity (1.84) that b∗ = 0.

Remark 1.11.4. The reaction rate κ does appear in the expression for the dispersion tensor
(1.88). In the limit κ → 0, the dispersion D blows up but the limit case κ = 0 in (1.81) corre-
sponds to the regime with no chemical reaction i.e., homogeneous Neumann boundary condition
on the pore boundaries. So the homogenization doesn’t commute with the limit as κ goes to zero.
On the other hand, when κ→ ∞ the first term in the dispersion (1.88) goes to zero and the limit
corresponds to the study of the adsorption phenomena in porous media which are in equilibrium.

1.12 Our contribution: Linear isotherm

The contribution of this thesis is in the context of reactive flows in the strong convection regime.
To begin with, we consider a coupled convection-diffusion equations. The coupling is through
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a reaction term similar to the one in (1.81). In (1.81), the surface concentration vε is governed
by an ordinary differential equation. As remarked earlier, in [97] surface diffusion is considered
for the adsorbed concentration. We generalize the microscopic model (1.81) by considering both
surface convection and surface diffusion for the adsorbed concentration. Taking bs(y) as a Y -
periodic velocity field on the pore surface and Ds(y) as a Y -periodic diffusion matrix associated
with surface diffusion, the model we consider is the following:





∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) ×Ωε,

−1

ε
Dε∇uε · n =

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) =
κ

ε2

(
uε −

vε
K

)
on (0, T ) × Ωε,

uε(0, x) = uin(x) x ∈ Ωε,

vε(0, x) = vin(x) x ∈ ∂Ωε.

(1.90)

To perform formal upscaling of (1.90), we postulate asymptotic expansions for the bulk and
surface concentrations uε and vε as in (1.82). The homogenization result concerning (1.90) is
given below.

Proposition 1.12.1. Under the assumption (1.82), the solution (uε, vε) of (1.90) formally
satisfy

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ εu1

(
t, x− b∗t

ε
,
x

ε

)

vε(t, x) ≈ K u0

(
t, x− b∗t

ε

)
+ εv1

(
t, x− b∗t

ε
,
x

ε

)

with the effective drift

b∗ =
(
|Y 0|+K|∂Σ0|

)−1( ∫

Y 0

b(y) dy +K

∫

∂Σ0

bs(y) dσ(y)
)

(1.91)

and u0 the solution of the homogenized problem





(
|Y 0|+K|∂Σ0|

)∂u0
∂t

− divx (D∇xu0) = 0 in (0, T ) × Rd,
(
|Y 0|+K|∂Σ0|

)
u0(0, x) = |Y 0|uin(x) + |∂Σ0|vin(x) x ∈ Rd.

(1.92)

where the dispersion tensor D is given by

Dij =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy + κ

∫

∂Σ0

(
χi −

ωi

K

)(
χj −

ωj

K

)
dσ(y)

+K−1

∫

∂Σ0

Ds(y)
(
Kei +∇s

yωi

)
·
(
Kej +∇s

yωj

)
dσ(y)

(1.93)

with (χ, ω) = (χi, ωi)1≤i≤d being the solution of the cell problem such that

u1(t, x, y) =

d∑

i=1

χi(y)
∂u0
∂xi

(t, x), v1(t, x, y) =

d∑

i=1

ωi(y)
∂u0
∂xi

(t, x) (1.94)



38 CHAPTER 1. INTRODUCTION

and the cell problem is





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

bs(y) · ∇s
yωi − divsy(D

s(∇s
yωi +Kei)) = K(b∗ − bs) · ei + κ

(
χi −K−1ωi

)
on ∂Σ0,

−D(∇yχi + ei) · n = κ
(
χi −K−1ωi

)
on ∂Σ0,

y → (χi, ωi) Y − periodic.
(1.95)

The coupling in the microscopic model (1.90) is carried on to the cell problem (1.95). In the
absence of the surface convection and surface diffusion, the first order correctors for the surface
concentration were given in terms of the first order correctors for the bulk concentration as in
(1.85). So, we would like to see if we get back the upscaling result obtained in [10, 20] in the
limit bs → 0, Ds → 0. The effective drift velocity (1.91) depends on both the bulk and surface
velocity fields. It is the weighted average of both the velocity fields with the equilibrium constant
K as the weight on the pore surface. In the limit bs → 0, the effective drift (1.91) matches with
the effective drift (1.84). The first order correctors for the concentrations uε, vε are given in
terms of solutions (χi, ωi) to a coupled steady problem in the unit cell (1.95). In the limit bs → 0
Ds → 0, we recover a decoupled cell problem only for χi as in (1.86) and the surface corrector
is given in terms of the bulk correctors via the following algebraic relation:

ωi = K χi −
K2

κ
b∗ · ei (1.96)

The above expression (1.96) is nothing but the expression for v1 in (1.85). Also the expression
for the dispersion D in (1.93) matches with that of (1.88) in the limit bs → 0 Ds → 0. Thus we
recover the results obtained in [10, 20].

When κ → 0, the equations for uε and vε are decoupled, thus making the cell problem (1.95)
ill-posed with the effective drift (1.91). So, we always assume κ > 0. Formally, when κ tends
to +∞, the two concentrations are fully coupled in the sense that vε = Kuε. On the other
hand, when K = 0, it formally yields that vε = 0 and the only remaining unknown uε satisfies a
homogeneous Neumann boundary condition on ∂Ωε. However, if K tends to +∞, then uε and
vε are again decoupled in the limit, with a Fourier-type boundary condition −Dε∇uε ·n = κuε/ε
on ∂Ωε. The governing model in this limit is actually (1.68), the one studied in [122, 25].

So our model generalizes some of the linear adsorption models that were studied in the regime of
strong convection. A formal proof, using the two-scale asymptotic expansions with drift, of the
result announced in the above Proposition 1.12.1 is found in Section 3.7 of Chapter 3. Sections
3.8, 3.9, 3.10 of Chapter 3 are concerned with the rigorous justification of the above formal
result in the sense of Proposition 1.11.2.

In the ansatz (1.82) for the unknown concentrations uε and vε, a common drift b∗ was chosen.
Even if we start off with different drifts , say b∗1 and b∗2, for the two unknowns, during the
formal upscaling procedure for (1.90) we deduce that b∗1 = b∗2. In the microscopic model (1.90),
convection-diffusion and reaction are pronounced at the pore scale as is evident from the cell
problem (1.95). Taking cues from some of the works on reactive flows in “Diffusion dominated”
regime [81, 109], we shall consider the following microscopic model where convection and diffusion
are dominant at the pore scale but not the reaction:
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



∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) × Ωε,

−1

ε
Dε∇uε · n =

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) = κ
(
uε −

vε
K

)
on (0, T ) × Ωε,

uε(0, x) = uin(x) x ∈ Ωε,

vε(0, x) = vin(x) x ∈ ∂Ωε.

(1.97)

Mathematically speaking, the above model is obtained from (1.90) upon scaling the reaction
rate as κ → ε2κ. The homogenization result concerning (1.97) is very different from the one
announced in Proposition 1.12.1. Consider two constants b∗1, b

∗
2 ∈ Rd:

b∗1 =
1

|Y 0|

∫

Y 0

b(y) dy and b∗2 =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y). (1.98)

Depending upon whether the bulk and surface drifts (1.98) are equal or not, different effective
behaviour for (1.97) is obtained. The results regarding the upscaling are found in Section 3.11 of
Chapter 3. The values of the two drifts play an interesting role in determining whether the ho-
mogenized equation of the coupled system (1.97) stays coupled or not. The two constants b∗1 and
b∗2 shall be of interest in Chapter 4 where we study the upscaling of a nonlinear adsorption model.

In the linear adsorption models (1.90) and (1.97) that we have considered so far, the velocity
fields are considered incompressible. In Section 3.12 of Chapter 3, we consider a convection-
diffusion equation with homogeneous Neumann boundary conditions and compressible velocity
fields. In the context of homogenization of convection-diffusion equations, the presence of com-
pressible flows manifests as if there were bulk reactions in the fluid. With the consideration
of the compressible flows, we have worked with all possible scenarios for a convection-diffusion-
reaction equations with periodic coefficients that model linear adsorption phenomena on the pore
boundaries. Chapter 3 contains proofs and detailed analysis of the linear adsorption models.
Some of the results from Chapter 3 are published in [17].

1.13 Our contribution: Nonlinear isotherms

In Chapter 4, we generalize our results from Chapter 3 on linear isotherms to nonlinear isotherms.
The nonlinear isotherm that we consider is the one due to Langmuir and is given by

f(u) =
αu

1 + β u
. (1.99)

The microscopic model that we consider is the following:





∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T )× Ωε,

−1

ε
Dε∇uε · n =

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) =
κ

ε2

( αuε
1 + β uε

− vε

)
on (0, T )× Ωε,

uε(0, x) = uin(x) x ∈ Ωε,

vε(0, x) = vin(x) x ∈ ∂Ωε.

(1.100)
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In the previous section while presenting the slow reaction model (1.97), we pointed out the
importance of the bulk and surface drifts:

b∗1 =
1

|Y 0|

∫

Y 0

b(y) dy and b∗2 =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y). (1.101)

The presence of the nonlinear term in the microscopic model (1.100) forces to assume that the
bulk and surface drifts in (1.101) are equal i.e.,

1

|Y 0|

∫

Y 0

b(y) dy =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y) = b∗. (1.102)

Such an assumption was not necessary in the linear case [10, 20, 17] but is the price to pay for
extending our previous results to the nonlinear case of the Langmuir isotherm. The upscaling
result regarding the nonlinear model (1.100) is as follows.

Proposition 1.13.1. The solution (uε, vε) of the coupled convection-diffusion-reaction system
(1.100) is approximatively given by the ansatz

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ εu1

(
t, x− b∗t

ε
,
x

ε

)
,

vε(t, x) ≈ f(u0)

(
t, x− b∗t

ε

)
+ εv1

(
t, x− b∗t

ε
,
x

ε

)
,

(1.103)

where f is the Langmuir isotherm given in (1.99) and b∗ is the effective drift given by (1.102).
Further, the zero order approximation u0 in (1.103) is the solution of the following macroscopic
nonlinear monotone diffusion equation:





[
|Y 0|+ α|∂Σ0|

(1 + βu0)2

]
∂u0
∂t

− divx(D(u0)∇xu0) = 0 in (0, T ) × Rd,

[
|Y 0|u0 +

|∂Σ0| α u0
1 + βu0

]
(0, x) = |Y 0|uin(x) + |∂Σ0|vin(x) in Rd,

(1.104)

and the correctors (u1, v1) in (1.103) are defined by

u1(t, x, y) =

d∑

i=1

χi

(
y, u0(t, x)

)∂u0
∂xi

(t, x)

v1(t, x, y) =
α

(1 + βu0(t, x))2

d∑

i=1

ωi

(
y, u0(t, x)

)∂u0
∂xi

(t, x)

(1.105)

where (χi, ωi)1≤i≤d is the solution of the cell problem:





−b∗ · ei + b(y) · (ei +∇yχi)− divy(D(ei +∇yχi)) = 0 in Y 0,

−D (ei +∇yχi) · n =
ακ

(1 + βu0)2
(χi − ωi) on ∂Σ0,

−b∗ · ei + bs(y) · (ei +∇s
yωi)− divsy(D

s(ei +∇s
yωi)) = κ (χi − ωi) on ∂Σ0,

y → (χi(y), ωi(y)) Y -periodic.

(1.106)
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The dispersion tensor D(u0) in (1.104) is given in terms of the cell solutions χi, ωi as

Dij(u0) =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy +
ακ

(1 + βu0)2

∫

∂Σ0

[χi − ωi] [χj − ωj] dσ(y)

+
α

(1 + βu0)2

∫

∂Σ0

Ds(y)
(
∇s

yωi + ei
)
·
(
∇s

yωj + ej
)
dσ(y)

+

∫

Y 0

D(y)
(
∇yχj · ei −∇yχi · ej

)
dy

+
α

(1 + βu0)2

∫

∂Σ0

Ds(y)
(
∇s

yωj · ei −∇s
yωi · ej

)
dσ(y)

+

∫

Y 0

(
b(y) · ∇yχi

)
χj dy +

α

(1 + βu0)2

∫

∂Σ0

(
bs(y) · ∇s

yωi

)
ωj dσ(y).

(1.107)

Note that the cell solution (χi, ωi) depends not only on y but also on the value of u0(t, x). Fur-
thermore, the technical assumption (1.102) is precisely the compatibility condition for solving
the cell problem for any value of u0(t, x). In the linear case, the dispersion tensor we obtain is
always symmetric and constant. But in the above nonlinear case, D(u0) is neither symmetric
nor constant. The proof of the above Proposition 1.13.1 is given in Chapter 4. Observe that
as β → 0, we fall back to the linear model and we recover the results from Chapter 4. The
requirement of the effective drift to be independent of the slow variable x results in the technical
assumption (1.102). The method of two-scale asymptotic expansions with drift cannot handle
the homogenization of (1.100) for any purely periodic velocity fields b and bs unless they satisfy
(1.102).

A rigorous justification of the above Proposition 1.13.1 is undertaken in Chapter 4 using “Two-
scale convergence with drift”. The presence of nonlinearity in (1.100) demands some strong
compactness of the sequence of solutions in order to pass to the limit. Following the ideas of
[121, 24], we first show that, in a moving frame of reference, a uniform localization of solutions
holds. Then a time equicontinuity type result allows us to gain compactness. These technical
results are not straightforward extensions of those in [121, 24]. There are a number of additional
difficulties, including the perforated character of the domain, the nonlinearity of the equations
and more importantly the fact that there are two unknowns uε and vε.

1.14 Our contribution: Multicomponent reactive flows

Chapter 5 is concerned with the homogenization of multicomponent reactive flows. We consider
the following system of convection-diffusion-reaction equations, for every 1 ≤ α ≤ N ,





ρεα
∂uεα
∂t

+
1

ε
bε · ∇uεα − div(Dε

α∇uεα) +
1

ε2

N∑

β=1

Παβu
ε
β = 0 in (0, T )× Ωε,

Dε
α∇uεα · n = 0 on (0, T ) × ∂Ωε,

uεα(0, x) = uinα (x) x ∈ Rd.

(1.108)

where the coupling matrix Π models the chemical reactions between the solutes in the fluid. The
homogenization of parabolic systems with large lower order terms was studied in [12] where the
Factorization principle is employed. We assume that the nondiagonal entries of the coupling ma-
trix Π is not positive. This assumption is borrowed from [152] and from the following references
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where neutronic diffusion problems are studied [11, 53]. We too will be using the Factorization
principle to homogenize our weakly coupled system (1.108). As usual, we pass via the associated
spectral problems. Let us consider the following asymptotic ansatz for the solution uεα:

uεα(t, x) = exp (−λt/ε2)
∑

i≥0

εiui,α

(
t, x− b∗t

ε
,
x

ε

)
for every 1 ≤ α ≤ N. (1.109)

The upscaling result linked to (1.108) can be summarized as follows.

Proposition 1.14.1. If the ansatz for the solution (uεα) of (1.108) given in (1.109) is true, then
the solution formally satisfies

uεα(t, x) ≈ exp (−λt/ε2)ϕα

(x
ε

)(
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ωi,α

(x
ε

))
, (1.110)

with (λ, ϕα) being the first eigenpair associated with a spectral cell problem. The components
(ωi,α)1≤α≤N , for every 1 ≤ i ≤ d, satisfy a so-called cell problem.





b̃α(y) ·
(
∇yωi,α + ei

)
− divy

(
D̃α

(
∇yωi,α + ei

))

+
N∑

β=1

Παβϕ
∗
αϕβ

(
ωi,β − ωi,α

)
= ϕαϕ

∗
αραb

∗ · ei in Y 0,

D̃α(∇yωi,α + ei) · n = 0 on ∂Σ0,

y → ωi,α Y -periodic,

(1.111)

where the drift velocity b∗ is given by

b∗ =
1

ρ∗

N∑

α=1

∫

Y 0

b̃α(y) dy, (1.112)

where the effective porosity, ρ∗, is given by

ρ∗ =

N∑

α=1

∫

Y 0

ϕαϕ
∗
αρα(y) dy (1.113)

with ϕ∗
α the first eigenfunction associated with an adjoint spectral cell problem. The modified

velocity fields b̃α and the diffusion matrices D̃α are given in terms of the velocity fields bα and
diffusion matrices Dα of (1.108) and the eigenfunctions (ϕα, ϕ

∗
α).

Further, v in (1.110) satisfies the following scalar homogenized equation:




ρ∗
∂v

∂t
− div(D∇v) = 0 in (0, T ) × Rd,

v(0, x) =

N∑

α=1

uinα (x)

∫

Y 0

ϕ∗
α(y) dy in Rd.

(1.114)

where D is defined by

Dij =
N∑

α=1

∫

Y 0

D̃α

(
∇yωi,α + ei

)
·
(
∇yωj,α + ej

)
dy

−1

2

N∑

α,β=1

∫

Y 0

ϕ∗
αϕβΠαβ

(
ωi,α − ωi,β

)(
ωj,α − ωj,β

)
dy.

(1.115)
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We have also worked with surface reactions in the context of multicomponent flows. The mi-
croscopic model (1.108) is slightly modified by taking the reaction term due to the coupling
matrix Π as a Neumann boundary condition on the pores boundaries. The results regarding
this boundary reaction model are found in Sections 5.7 and 5.8 of Chapter 5. Adsorption phe-
nomena are also incorporated into the multicomponent model in Section 5.9. Homogenization
of this adsorption model is undertaken in Section 5.10.
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Chapter 2

Theory of Periodic Homogenization

2.1 Introduction

In this chapter we prepare the ground work for the homogenization theory that we will be using
in the following chapters where we wish to study the upscaling of the transport equations gov-
erning the spreading of solutes dissolved in a fluid filling a periodic porous medium. More often
than not, multiscale phenomena are encountered in nature. The presence of heterogeneities in a
domain complicates the mathematical modelling of the physical phenomena present in the given
domain. Consider l to be the heterogeneities’ (microscopic) length scale and L as the observation
(macroscopic) length scale. We make the separation of scales assumption i.e., l/L = ε≪ 1. We
consider two space variables: macroscopic slow variable x and microscopic fast variable y = x/ε.
The idea of upscaling is to determine an equivalent macroscopic medium, a continuous medium
which behaves “on average” like the heterogeneities that are present. Beginning with the gov-
erning equations at the heterogeneities’s length scale, we want to replace it with a continuum
model posed in an equivalent macroscopic medium.

In the mechanics literature, Representative Elementary Volume (REV) method [165] is a popular
upscaling technique where REV is chosen of O(h) with l ≪ h ≪ L. Another popular approach
is the method of moments [46, 47]. In a periodic setting, the period is of O(ε). A well-known
technique in the periodic setting has been the multiple scale expansions [41, 148]. Heuristic
arguments to this approach were presented in [147, 103]. When the separation of scales assump-
tion isn’t met, there is a continuum of non separated length scales. Percolation Theory has been
used in this context. Percolation theory in the context of fluid mechanics in porous media is
presented by K. M. Golden in Chapter 2 of [96]. All through the thesis we will be working with
periodic porous media and transport equations with periodically oscillating coefficients. So this
chapter is dedicated to refresh some of the known theories in periodic homogenization.

Let us consider a partial differential equation with periodically oscillating coefficients of period
ε:

Lε uε = f in Ω, (2.1)

where f is the source term. The above partial differential equation is supplemented with ap-
propriate boundary conditions and initial data (in case of evolution equations). Using some
upscaling technique, the objective is to find an effective equation:

L̄ u0 = f in Ω. (2.2)

In a periodic porous medium, the system of equations representing the physical phenomena
usually takes the form (2.1). The principle of asymptotic expansion is to postulate an ansatz

45
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for the solution uε of (2.1) in terms of the period ε and Y -periodic coefficient functions in the
fast variable y:

uε(x) = u0

(
x,
x

ε

)
+ ε u1

(
x,
x

ε

)
+ ε2 u2

(
x,
x

ε

)
+ · · · ·

A classical result where this method was successfully applied is to obtain the famous Darcy’s
law starting from fluid equations in microscale. Darcy’s law is a filtration law that was em-
pirically obtained by H. Darcy [72]. Darcy’s law states that the flow rate u is proportional to
the balance of forces including the pressure. Starting with steady Stokes equations, Darcy’s law
has been derived using the formal method of asymptotic expansions in [148, 115]. In Section
2.2, we illustrate the method of two-scale asymptotic expansions applying it to the upscaling
of steady Stokes equations to arrive at Darcy’s law. This homogenization result is presented in
Proposition 2.2.2.

The method of two-scale asymptotic expansion is a formal method that can only guess the
effective behavior. To rigorously justify the Homogenization process, L. Tartar proposed the
“method of oscillating test functions” [153]. Tartar’s method is also coined as “Energy Method”
in [41]. In loose terms, Energy method is to prove the convergence of uε, the solution of (2.1),
to u0, solution of (2.2), in a proper function space. It goes via choosing of proper test functions
in the variational formulation of the microscopic partial differential equation (2.1) and passing
to the limit as ε→ 0. The test functions are built using solutions to the so-called cell problems.
Energy method was introduced in a general context of H-convergence [153, 131]. This method
isn’t very specific for the homogenization problems in periodic setting. Nguetseng introduced a
compactness phenomenon suitable for periodic homogenization in [132]. This phenomenon was
coined as “Two-scale convergence” and was further developed by G. Allaire in [5]. Section 2.3
deals with this phenomenon of two-scale convergence. We recall some of the standard results and
apply the same to homogenize unsteady Stokes equations (2.23) in a periodic porous medium.
Theorem 2.3.7 gives the homogenization result related to the Stokes equations in the unsteady
case. The effective equation is shown to be a two-scale equation (2.30). This result was obtained
formally in [115, 148, 104] and later rigorously justified in [155, 4]. In (2.32) the homogenized
equation in only slow variable is given. The homogenized equation (2.32) turns out to be an
integro-differential equation. This generalizes the usual Darcy’s law.

In Section 2.5, we present the notion of “Two-scale convergence on periodic surfaces”. This adap-
tation of two-scale convergence to function sequences defined on surfaces was done in [14, 134].
This helps us treat different kinds of boundary data and diffusion phenomena on surfaces as
illustrated in Section 2.5. As we remarked in the general Introduction (Chapter 1), there have
been other approaches to handle the function sequences on the surfaces. In [61], Cioranescu
and Donato homogenize steady state problems in perforated domains with non-homogeneous
boundary data. Loosely speaking, their approach passes via the introduction of an auxiliary
problem which helps transform surface integrals in the variational formulation into volume in-
tegrals. Please refer to [61] for precise details.

The study of convection-diffusion equations governing the movement of dissolved solutes has
been a long-standing question [157, 158, 159, 30, 46, 47, 145]. The interplay between the flow
(fluid equations), the solute transport (convection-diffusion equation) and the geometry of the
porous medium is quite a challenging problem. Let us consider the following convection diffusion
equation for the solute concentration in the fluid part Ωf of the porous medium:

∂u

∂τ
+ b · ∇u− div

(
D∇u

)
= 0.

In Section 1.6 we introduced various scaling techniques. Among them, when global Péclet
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number is of O(ε−1), the two-scale asymptotic analysis recalled in Section 2.2 isn’t able to
homogenize the above convection diffusion equation without imposing zero mean condition on
the velocity field as demonstrated in the beginning of the Section 2.6. This handicap of the
two-scale asymptotic method is overcome by the introduction of “two-scale asymptotic analysis
with drift” in (2.44). This variant introduces a drift in the second variable of the coefficient
functions in the ansatz:

uε(t, x) = u0

(
t, x− b∗

ε
t,
x

ε

)
+ ε u1

(
t, x− b∗

ε
t,
x

ε

)
+ ε2 u2

(
t, x− b∗

ε
t,
x

ε

)
+ · · · ·

This concept of effective drift in the concentration profile was first introduced in [140]. This
notion of effective drift also has appeared in the context of turbulent diffusion as “Ballistic ve-
locity” [162, 94]. Section 2.6 presents the method of two-scale asymptotic expansion with drift
via its application to upscaling the above convection-diffusion equation under the supposition
of global Péclet number being of O(ε−1). After an overview of the formal asymptotic method,
we get into the rigorous justification of using “Two-scale convergence with drift”, definition of
which is given in Definition 2.6.2. This notion was introduced in [121]. A pedagogical review of
this method is given by G. Allaire in [7] (See also [137]). Compactness results related to drift
are recalled in Section 2.6. Theorem 2.6.9 gives a rigorous justification of the homogenization
of convection-diffusion equation in large global Péclet regime. This justifies the formal homog-
enized equation (2.50) obtained in the beginning of Section 2.6.

In [58, 60, 59], a new upscaling notion of “Periodic Unfolding” has been developed. This method
is briefly recalled in Section 2.4. Taking lead from [14, 134], we generalize the notion of two-scale
convergence to function sequences defined on surfaces in Section 2.5. On same lines, we gener-
alize the notion of two-scale convergence with drift to function sequences defined on surfaces in
Section 2.7. As far as we know, this new notion of convergence in Section 2.7 is introduced for
the first time in this thesis.

In some cases we obtain two-scale homogenized equation i.e., the presence of both fast and slow
variables. This is demonstrated in Theorem 2.3.7 where we obtain a two pressure model (2.30)
as an effective model for the unsteady incompressible Stokes equations. It is of paramount
importance to eliminate the fast variable, if possible, in the homogenized model. This was
addressed by M. Vanninathan in [161] in the context of elliptic eigenvalue problems. Loosely
speaking, the idea is to factor out the oscillations from the solution sequences and then pass
to the limit. Section 2.8 recalls this “Factorization principle”. The results obtained in [161]
are presented followed by the application of the Factorization principle to convection-diffusion-
reaction equation in periodic porous media [25]. This method of factorization is quite popular
in the literature [51, 11, 53, 12, 76]. We will be using this approach in dealing with compressible
flows in Section 3.12 of Chapter 3 and in Chapter 5 in relation to spreading of multiple solutes
in periodic porous media.

2.2 Two-scale asymptotics

This formal method begins with an assumption that the solution uε to the partial differential
equation (2.1) can be written in the form of an asymptotic expansion in terms of the period ε:

uε(x) = u0

(
x,
x

ε

)
+ ε u1

(
x,
x

ε

)
+ ε2 u2

(
x,
x

ε

)
+ · · · ·

where the coefficient functions ui(x, y) are Y -periodic with respect to the variable y. We plug
the above expansion for uε in the partial differential equation (2.1) keeping in mind the following
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chain rule for differentiation:

∇
[
φ
(
x,
x

ε

)]
=
[
∇xφ+

1

ε
∇yφ

](
x,
x

ε

)
. (2.3)

Upon inserting the proposed ansatz for the solution uε in (2.1), we arrive at a cascade of equa-
tions as coefficients of different powers of ε. Usually we integrate the equation for u0 over the
unit cell Y to arrive at the homogenized equation (2.2). The form of L̄ is obtained using the
so-called cell problems posed in the unit cell Y . This formal method has been very popular
in the literature regarding the upscaling of partial differential equations. To name a few good
references, among many others, where this method is documented are [41, 148, 62, 6].

To illustrate the method of asymptotic expansions, we will be giving an example of homogenizing
the following incompressible steady Stokes equations:





∇pε − ε2µ∆uε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε,

(2.4)

where uε and pε denote the velocity and pressure fields associated with the fluid filling the porous
medium. The positive µ is the viscosity. We further assume that the porous medium Ωε is a
bounded convex domain.

Remark 2.2.1. In (2.4), the viscosity µ is scaled by ε2. As is well known from [148, 115, 4],
this is the actual scaling which gives a non zero limit for the velocity uε as ε→ 0.

We take the forcing term f ∈ L2(Ω)d. It follows, consult [160] if necessary, that the system (2.4)
admits a unique solution

uε ∈ H1
0 (Ωε)

d, pε ∈ L2(Ωε)/R. (2.5)

As explained above, we shall postulate the following ansatz for the unknowns uε and pε:

uε(x) = u0

(
x,
x

ε

)
+ ε u1

(
x,
x

ε

)
+ ε2 u2

(
x,
x

ε

)
+ · · · · (2.6)

pε(x) = p0

(
x,
x

ε

)
+ ε p1

(
x,
x

ε

)
+ ε2 p2

(
x,
x

ε

)
+ · · · · (2.7)

Proposition 2.2.2. [148, 115] The homogenized model for the Stokes problem (2.4) is given by





u(x) = 1
µK
(
f(x)−∇p(x)

)
in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω,

(2.8)

where u(x) is the homogenized velocity given as the average of the first term of the ansatz (2.6)
for uε:

u(x) =

∫

Y 0

u0(x, y) dy. (2.9)

The homogenized pressure p(x) = p0(x, y), the first term of the ansatz (2.7) for pε, independent
of y. The permeability tensor K is symmetric, positive definite and is given by

Kij =

∫

Y 0

∇ywi · ∇ywj dy (2.10)
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in terms of the solutions wi ∈ H1
#(Y

0)d to the following cell problem:





∇yqi −∆yywi = ei in Y 0,

divywi(y) = 0 in Y 0,

wi(y) = 0 on ∂Σ0,

y → wi(y) Y -periodic.

(2.11)

Furthermore, the second term in the ansatz (2.7) is given in terms of the cell pressure qi:

p1(x, y) =

d∑

i=1

qi(y)
(
f − ∂p

∂xi

)
(x). (2.12)

Proof. Plugging (2.6)-(2.7) into (2.4) yields

ε−1∇yp0

(
x,
x

ε

)
+ ε0

[
∇xp0 +∇yp1 − µ∆yyu0

](
x,
x

ε

)
+O(ε) = f(x) (2.13)

ε−1divyu0

(
x,
x

ε

)
+ ε0

[
divxu0 + divyu1

](
x,
x

ε

)
+O(ε) = 0 (2.14)

At order ε−1, the corresponding momentum equation is
{

∇yp0 = 0 in Y 0,

y → p0 Y -periodic,
(2.15)

implying that p0(x, y) is independent of y. That is, p0(x, y) = p(x).
Now, at order ε0 for the momentum equation and at order ε−1 for the incompressibility condition,
we arrive at 




∇yp1 − µ∆yyu0 = f(x)−∇xp(x) in Y 0,

divyu0 = 0 in Y 0,

u0 = 0 on ∂Σ0,

y → (p1, u0) Y -periodic.

(2.16)

By the linearity of (2.16) we deduce that

u0(x, y) =
d∑

i=1

wi(y)
(
fi −

∂p

∂xi

)
(x), p1(x, y) =

d∑

i=1

qi(y)
(
fi −

∂p

∂xi

)
(x), (2.17)

where wi, the cell velocity, and qi, the cell pressure, are solutions to the cell problem (2.11).
At order ε0, the incompressibility condition leads to

divxu0(x, y) + divyu1(x, y) = 0. (2.18)

Now we shall integrate the above equation over Y 0:

divx

(∫

Y 0

u0 dy
)
+

∫

Y 0

divyu1 dy = 0.

The term with u1 vanishes as it is periodic with respect to the y variable. Taking into consider-
ation the expression for u0(x, y) from (2.17), the above equation leads to the pressure equation:

−divx

(
K
(
∇xp− f

))
= 0,
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where

Kij = Kei · ej =
∫

Y 0

wji dy. (2.19)

This expression is equivalent to (2.10). To see that, we multiply the cell problem (2.11) for wi

by the cell solution wj :

∫

Y 0

∇yqiwj dy −
∫

Y 0

∆yywiwj dy =

∫

Y 0

wji dy.

Integrating by parts, we arrive at
∫

Y 0

∇ywi · ∇ywj dy =

∫

Y 0

wji dy,

thus the expression (2.10) for the permeability tensor. The symmetry and positive definiteness
follows. Defining the homogenized velocity as

u(x) =

∫

Y 0

u0(x, y) dy,

we arrive at the homogenized equation (2.8). As for the Neumann boundary condition, it follows
from the definition of u(x) that divxu = 0 in Ω. Application of the Stokes theorem leads to the
intended Neumann condition for u on ∂Ω as in (2.8).

Proposition 2.2.2 is a formal result as, a priori, we do not know if the assumed ansatz (2.6) and
(2.7) hold. The effective equation (2.8) is the famous Darcy’s law which was obtained empirically
by Henry Darcy [72].

2.3 Two-scale convergence

This section is about rigorously justifying the homogenization of periodic structures. In the
previous section, we managed to arrive at a homogenized equation (2.8) for the steady incom-
pressible Stokes equations (2.4) via a formal method of two-scale asymptotic expansion. This
formal approach can be made rigorous using the Energy method introduced by Tartar [153]. In
a periodic setting, we can rely on a more robust method of two-scale convergence introduced by
Nguetseng in [132] and further developed by Allaire in [5]. Recently, E. Frénod has published a
very thorough overview of the method of two-scale convergence [86]. In the sequel of chapters to
follow, we intend to work on partial differential equations of evolution type. So, in this section,
we shall be trying to prove the homogenization of unsteady incompressible Stokes equation. The
notion of two-scale convergence can be easily adopted to time dependent functions. We shall
introduce definitions and state propositions that are applicable to the time dependent case.

Definition 2.3.1. [5] A sequence of functions uε(t, x) in L2((0, T ) × Ω) is said to two-scale
converge to a limit u0(t, x, y) ∈ L2((0, T )×Ω× Y ) if, for any function φ(t, x, y) ∈ C∞

c ((0, T )×
Ω;C∞

# (Y )), we have

lim
ε→0

T∫

0

∫

Ω

uε(t, x)φ
(
t, x,

x

ε

)
dx dt =

T∫

0

∫

Ω

∫

Y

u0(t, x, y)φ(t, x, y) dy dx dt. (2.20)

We denote this convergence by uε
2scale−−−−⇀ u0.
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Please note that the time variable t is just a parameter in the above definition as we aren’t
considering any oscillations with respect to time in the test functions. The above definition
makes sense because of the following compactness result.

Proposition 2.3.2. [5] For any bounded sequence of functions uε(x) ∈ L2((0, T ) × Ω), i.e.,
satisfying

‖uε‖L2((0,T )×Ω) ≤ C,

there exists a limit u0(t, x, y) ∈ L2((0, T ) × Ω × Y ) and one can extract a subsequence (still
denoted by ε) such that this subsequence two-scale converges to u0.

In case the sequence {uε} has additional bounds, the above compactness result can be improved.

Proposition 2.3.3. [5] Let uε(t, x) be a bounded sequence in L2((0, T );H1(Ω)) that converges
weakly to a limit u0 in L2((0, T );H1(Ω)). Then,

uε
2scale−−−−⇀ u0(t, x),

∇uε 2scale−−−−⇀ ∇xu0(t, x) +∇yu1(t, x, y).
(2.21)

for some u1 ∈ L2((0, T ) ×Ω;H1
#(Y )).

Remark 2.3.4. Note that the Definition 2.3.1 of two-scale convergence is given for sequences
defined in a fixed domain Ω. But, when it comes to periodic porous media, the domain Ωε varies
with ε too. The main challenge with compactness theorems for functions sequences on Ωε is to
extend them to the full domain Ω and then apply the standard compactness results of functional
analysis. When Σ0 is strictly contained in Y i.e., isolated solid obstacles, Cioranescu and Saint
Jean Paulin in [65] solved this difficulty by giving extension operators. Acerbi et al in [1] further
solved this challenge by coming up with extension operators in general case. Here we recall that
the extension operator Eε : H1(Ωε) → H1(Ω) satisfies the following property: there exists a

constant C, independent of ε, such that, for any function uε ∈ H1(Ωε), Eεuε

∣∣∣
Ωε

= uε and

‖Eεuε‖L2(Ω) ≤ C‖uε‖L2(Ωε), ‖∇Eεuε‖L2(Ω) ≤ C‖∇uε‖L2(Ωε). (2.22)

Allaire and Murat in [21] avoided giving any sophisticated extensions. Rather, they gave a
version of Rellich compactness theorem in perforated domains. Two-scale convergence, however,
avoids the use of any sophisticated extensions. It just takes the trivial extension by zero on
the solid part of the porous medium Ω \ Ωε. Proposition 2.3.2 equally applies to a sequence
uε(t, x) ∈ L2((0, T )×Ωε), merely defined in the perforated domain Ωε, and satisfying the uniform
bound:

‖uε‖L2((0,T )×Ωε) ≤ C.

Indeed, defining an extended function Uε(t, x) = uε(t, x) in Ωε and Uε(t, x) = 0 in Ω \ Ωε, we
obtain that

T∫

0

∫

Ωε

uε(t, x)φ
(
t, x,

x

ε

)
dx dt =

T∫

0

∫

Ω

Uε(t, x)φ
(
t, x,

x

ε

)
dx dt

and the two-scale limit U0(t, x, y) of Uε vanishes in Σ0 so that

lim
ε→0

T∫

0

∫

Ωε

uε(t, x)φ
(
t, x,

x

ε

)
dx dt =

T∫

0

∫

Ω

∫

Y 0

U0(t, x, y)φ(t, x, y) dy dx dt.

We can also extend ∇uε by zero on Ω \ Ωε when we take uε ∈ H1(Ωε). Thus Proposition 2.3.3
can be applied to sequence uε ∈ L2((0, T );H1(Ωε)), merely defined in the perforated domain
Ωε. Allaire in (Section 2 of [5]) details on how this trivial extension by zero suffices to prove
compactness results on function sequences in perforated domains.
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To appreciate the method of two-scale convergence, we shall apply it to the upscaling of the
unsteady incompressible Stokes equations in a periodic porous medium:





∂uε
∂t

+∇pε − ε2µ∆uε = f in (0, T ) × Ωε,

divuε = 0 in (0, T ) × Ωε,

uε = 0 on (0, T ) × ∂Ωε,

uε(0, x) = uinε (x) in Ωε.

(2.23)

where uε and pε denote the velocity and pressure fields associated with the fluid filling the porous
medium. The viscosity scaling is the same as in the steady Stokes equations (2.4). The force
term f(t, x) ∈ L2((0, T ) × Ω)d and the initial data uinε ∈ H1

0 (Ωε)
d. Furthermore, we denote the

extension of uinε by zero on Ω/Ωε as uinε . We also assume that the extension satisfies




‖uinε ‖L2(Ω)d + ε‖∇uinε ‖L2(Ω)d×d ≤ C,

div uinε = 0 in Ω,

uinε
2scale−−−−⇀ uin(x, y).

(2.24)

The wellposedness of the unsteady Stokes system (2.23) follows from the standard theory (refer
to [160, 115]). We just state the following proposition.

Proposition 2.3.5. [4] The unsteady incompressible Stokes system (2.23) admits a unique
solution in the following energy space:

uε ∈ L2((0, T );H1
0 (Ωε)

d), pε ∈ L2((0, T );L2(Ωε)/R). (2.25)

The extension of uε by zero on Ω/Ωε satisfies the following a priori estimates:

‖uε‖L∞((0,T );L2(Ω))d + ε‖∇uε‖L∞((0,T );L2(Ω))d×d ≤ C,
∥∥∥∂uε
∂t

∥∥∥
L2((0,T )×Ω)

≤ C.
(2.26)

Further, there exists an extension for pε defined in the following way (the extension still denoted
as pε)

pε = pε in Ωε and pε =
1

|Y i
ε |

∫

Y i
ε

pε in each Σi
ε. (2.27)

The extended pressure, pε, satisfies the following a priori estimate:

‖pε‖L2((0,T );L2(Ω)/R) ≤ C. (2.28)

Now that we have a priori estimates on the velocity and pressure fields, the idea is to use
compactness theorems of the two-scale convergence to extract subsequences that converge. Here
we present a compactness lemma suitable to our a priori estimates (2.26) and (2.28) that helps
us extract convergent subsequences off the velocity and pressure sequences.

Lemma 2.3.6. [4] Let uε be a bounded sequence in L2((0, T ) × Ω)d such that its divergence in
space, div uε, is bounded in L2(Ω)d and ε∇uε is also bounded in L2(Ω)d×d. Then, there exists
u0(t, x, y) ∈ L2((0, T ) × Ω;H1

#(Y )d) such that divyu0 = 0 and




uε
2scale−−−−⇀ u0(t, x, y),

ε∇uε 2scale−−−−⇀ ∇yu0(t, x, y),

div uε
2scale−−−−⇀ divx

(∫

Y 0

u0(t, x, y) dy
)
.

(2.29)
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In [115], it was shown using the formal method of asymptotic expansions that the homogenized
equation for the unsteady Stokes system (2.23) is a Darcy’s law with memory which generalizes
the usual Darcy’s law (2.8) obtained in the previous section. Now we state the main result
regarding the homogenization of the unsteady Stokes system (2.23).

Theorem 2.3.7. [4] The solution (uε, pε) of the Stokes system (2.23) two-scale converges to the
unique solution (u0(t, x, y), p(t, x)) of the two-scale homogenized problem:





∂u0
∂t

+∇yp1 +∇xp− µ∆yyu0 = f in (0, T ) × Ω× Y 0,

divy u0 = 0 in (0, T ) × Ω× Y 0,

divx

( ∫

Y 0

u0(x, y) dy
)
= 0 in (0, T ) × Ω,

u0 = 0 on (0, T )× Ω× Σ0,
( ∫

Y 0

u0(x, y) dy
)
· n = 0 on (0, T )× ∂Ω,

u0(t = 0) = uin(x, y) in Ω× Y 0,

y → p1, u0 Y -periodic.

(2.30)

Proof. Let us consider the a priori estimates from (2.26). Then, Lemma 2.3.6 implies the
existence of u0 ∈ L2((0, T ) × Ω;H1

#(Y )d) such that the second, third and fourth lines of (2.30)
hold true. Now let us multiply the first line in (2.23) by εφ(t, x, x/ε) with φ(t, x, y) = 0 on
(0, T ) × Ω×Σ0 and integrate by parts in space leading to

T∫

0

∫

Ω

pεdivyφ
(
t, x,

x

ε

)
dx dt+O(ε) = 0.

From the a priori estimate (2.28) and the compactness Proposition 2.3.2 we have the existence
of p0(t, x, y) such that

lim
ε→0

T∫

0

∫

Ω

pεdivyφ
(
t, x,

x

ε

)
dx dt =

T∫

0

∫

Ω

∫

Y

p0divyφdy dx dt = 0. (2.31)

We deduce from the above expression that p0 is independent of the fast variable y. That is,
p0(t, x, y) ≡ p(t, x).
Next we multiply the first line in (2.23) by φ(t, x, x/ε) with further assumptions of φ(T ) = 0,
φ(t, x, y) = 0 on (0, T ) × Ω× Σ0 and divyφ(t, x, y) = 0 on (0, T ) × Ω× Y . Integrating by parts
lead to

−
T∫

0

∫

Ω

uε
∂φ

∂t
dx dt−

∫

Ω

uinε φ(0) dx −
T∫

0

∫

Ω

pεdivxφdx dt

+ε

T∫

0

∫

Ω

∇uε · ∇yφdx dt+O(ε) =

T∫

0

∫

Ω

fφ dx dt.

Taking into account (2.31) and that φ(t, x, y) = 0 on (0, T ) × Ω × Σ0, we pass to the two-scale
limit in the above expression:

−
T∫

0

∫

Ω

∫

Y 0

u0
∂φ

∂t
dy dx dt−

∫

Ω

∫

Y 0

uinφ(0) dy dx−
T∫

0

∫

Ω

∫

Y 0

p(t, x)divxφ(t, x, y) dy dx dt
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+

T∫

0

∫

Ω

∫

Y 0

∇yu0(t, x, y) · ∇yφ(t, x, y) dy dx dt =

T∫

0

∫

Ω

∫

Y 0

f(t, x)φ(t, x, y) dy dx dt.

From [154, 160], we know that the orthogonal of divergence free fields are exactly the gradients.
So, there exists p1 ∈ L2((0, T ) ×Ω;H1

#(Y
0)) such that

∂u0
∂t

+∇xp− µ∆yyu0 − f = ∇yp1 in (0, T ) ×Ω× Y 0.

Thus we have the first line of (2.30).

The above observation together with Lemma 2.3.6 leads to the homogenized system (2.30).

The homogenized system (2.30) is called a two-scaled homogenized system as there are both the
slow variable x and the fast variable y present in (2.30). This two-scale homogenized system
(2.30) is sometimes referred to as two pressures Stokes system [115]. The homogenized problem
(2.8) that we obtained in Section 2.3 for the steady Stokes system was just in the slow variable
x. This, we achieved by defining the homogenized velocity as

u(x) =

∫

Y 0

u0(x, y) dy,

thus eliminating the slow variable y. Even in case of the unsteady Stokes system, we can
arrive at a homogenized equation with only the slow variable. We shall not give the details on
eliminating the fast variable but given below is the homogenized problem that we arrive at after
some analysis:





∂u

∂t
(t, x) = uin(x) +

t∫

0

A(t− s)
(
f(s, x)−∇p(s, x)

)
ds in (0, T ) × Ω,

divxu(t, x) = 0 in (0, T ) × Ω,

u(t, x) · n = 0 on (0, T ) × ∂Ω,

(2.32)

where the initial data uin is just the average of the two-scale limit in (2.24) over Y 0, that is,

uin(x) =

∫

Y 0

uin(x, y) dy

and the pressure p(t, x) is the same as in (2.30). The kernel A(t) in (2.32) is given in terms of
the solutions to a cell problem. The explicit expression for A(t) and the cell problem can be
found in [115, 4].

2.4 Periodic unfolding

In [29], a dilation operator is utilized to study the homogenization of single phase fluid flow equa-
tions. This operator has been used in [112, 113] in relation to the study of electrical networks.
Using this dilation technique, in [58] a new notion of upscaling technique was announced. In
[58], the dilation operator is coined as the “unfolding operator”. Using this operator and incor-
porating some ideas from finite element approximations to construct scale-splitting operators, a
new kind of homogenization technique is presented in [58, 60, 59].
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Before we go any further, we shall define the unfolding operator borrowed from [58]. But, first
some notations. As usual, let Y =]0, 1[d be the unit cell. For a z ∈ Rd, let us take

[z]Y =

d∑

i

ki ei such that z − [z]Y ∈ Y, (2.33)

where ki ∈ Z. Denote the difference z − [z]Y by {z}Y . For any z ∈ Rd, ε > 0, we have

z = ε
(
[z/ε]Y + {z/ε}Y

)
. Now we are equipped to give the definition of the unfolding operator.

Definition 2.4.1. Let u ∈ L2(Ω). The unfolding operator Tε : L2(Ω) → L2(Ω×Y ) is defined as

Tε(u)(x, y) = u
(
ε[x/ε]Y + εy

)
for x ∈ Ω, y ∈ Y. (2.34)

Next we state a result from [58, 60] which sheds some light on the relationship between the
unfolding operator Tε and the two-scale convergence described in Section 2.3.

Proposition 2.4.2. Let uε be a bounded sequence in L2(Ω). The following are equivalent:
• Tε(uε)⇀ u in L2(Ω × Y )

• uε 2scale−−−−⇀ u

The proof of the above result can be found in [60]. The essence of this result being, it replaces
two-scale convergence by a weak convergence type notion with the introduction of the unfolding
operator. Another important ingredient of this method is the scale-splitting operators. Every
ϕ ∈ H1(Ω) is split as

ϕ = Qε(ϕ) +Rε(ϕ), (2.35)

where Qε doesn’t capture any micro-oscillations and the reminder Rε captures the oscillations.
Qε(ϕ) is defined similar to interpolation functions in Finite Element Method. For any sequence

{uε} ⊂ H1(Ω), weak convergence results are proved for the Qε(uε) and Tε
(
Rε(uε)

)
in [60]

which help us upscale the equations with periodically oscillating coefficients. This technique has
been further developed to handle periodic porous media and also non-homogeneous boundary
conditions in [59]. Please refer to the cited references for further information on this technique.

2.5 Two-scale convergence on periodic surfaces

In the examples (2.4) and (2.23) cited in the previous sections, we considered zero Dirichlet
conditions for the velocity field on the porous boundary. There are more complex physical
phenomena where we work with different kinds of boundary data. Some such models are studied
in [67, 63]. Let us consider an example of diffusion equation in the porous medium Ωε with
Fourier boundary condition on ∂Ωε that is studied in [14]:





−∆uε + uε = f in Ωε,

∇uε · n+ εα(xε )uε = 0 on ∂Ωε,

uε = 0 on ∂Ω,

(2.36)

where f ∈ L2(Ω) and α ≥ 0 ∈ L∞
# (Ω). Let us consider the variational formulation of (2.36) with

φ as test function:

∫

Ωε

∇uε · ∇φdx+

∫

Ωε

uεφdx+ ε

∫

∂Ωε

α
(x
ε

)
uεφdσ(x) =

∫

Ωε

fφ dx.
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If we wish to find the two-scale limit problem for (2.36) using the method of two-scale con-
vergence, we need to pass to the limit in the above variational formulation with properly
chosen test function as in the previous section. However, we have a little difficulty posed
by the third term of the left hand side in the above variational formulation. Similar surface
terms arise while studying surface diffusion and surface chemical processes as demonstrated in
[97, 98, 14, 69, 68, 64, 20, 10, 17, 18, 19]. This asks for the development of a notion of two-scale
convergence for function sequences defined on periodic surfaces like ∂Ωε. This task is achieved
in [14, 134]. Now we define the notion of two-scale convergence on periodic surfaces. This is
similar to the Definition 2.3.1.

Definition 2.5.1. [14] Let uε(x) be a sequence in L2(∂Ωε) such that

ε

∫

∂Ωε

|uε(x)|2 dσ(x) ≤ C.

The sequence {uε} is said to two-scale converge on surfaces to a limit u0 ∈ L2(Ω × ∂Σ0) if, for
any function φ(x, y) ∈ C∞

c (Ω;C∞
# (Y )), we have

lim
ε→0

ε

∫

∂Ωε

uε(x)φ
(
x,
x

ε

)
dσ(x) =

∫

Ω

∫

∂Σ0

u0(x, y)φ(x, y) dσ(y) dx. (2.37)

We denote this convergence by uε
2Sscale−−−−⇀ u0.

Remark 2.5.2. Since the (d−1)-dimensional measure of the periodic surface ∂Ωε is of O(ε−1),
a bound of the type

√
ε‖zε‖L2(∂Ωε) ≤ C means that the sequence zε is bounded on the surface

∂Ωε.

Here we state a proposition that is in the same spirit as Propositions 2.3.2 and 2.3.3 suitable for
sequences on periodic surfaces.

Proposition 2.5.3. [14] Let uε be a sequence in H1(∂Ωε) such that

ε

∫

∂Ωε

(
|uε(x)|2 + |∇suε(x)|2

)
dσε(x) ≤ C.

Then, there exist u0(x) ∈ H1(Ω) and u1(x, y) ∈ L2(Ω;H1
#(∂Σ

0)) such that

uε
2Sscale−−−−⇀ u0(x),

∇suε
2Sscale−−−−⇀ G(y)∇xu0(x) +∇s

yu1(x, y),

where ∇s = G(y)∇ is the tangential gradient with the projection operator G(y) on the tangent
plane of ∂Σ0 at the point y defined as

G(y) = Id− n(y)⊗ n(y)

where n(y) is the outward unit normal to Y 0.

With the above defined notion of two-scale convergence on periodic surfaces, we will be able to
pass to the limit in the third term of the variational formulation of the model problem (2.36).
As this approach is very well illustrated in [14], we refrain from repeating the arguments on
obtaining the homogenized limit for (2.36). The homogenized model for (2.36) turns out to be

{
−div(D∇u0) + (1 + a)u0 = f in Ω,

u0 = 0 on ∂Ω,
(2.38)
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where the diffusion matrix D is given in terms of solutions of a certain cell problem and the
constant a in (2.38) is given by

a =
1

|Y 0|

∫

∂Σ0

α(y) dσ(y).

2.6 Two-scale convergence with drift

The diffusion system (2.36) that we considered in the previous section models the diffusion of
a solute in a porous medium in presence of bulk and surface reactions. In (2.36), we didn’t
consider the influence of the convective velocity field on the transport of the dissolved solute.
Ignoring the bulk and surface reactions, just for simplicity, the convection-diffusion equation
that governs the transport of a dissolved single solute is given by





∂u

∂τ
+ b(y) · ∇yu− divy

(
D(y)∇yu

)
= 0 in (0, ζ)× Ωf ,

D(y)∇yu · n = 0 on (0, ζ)× ∂Ωs,

(2.39)

where the velocity field b(y) is assumed to be given, periodic in space and independent of time.
We also assume that the velocity field is divergence free i.e., divyb(y) = 0 in Ωf , and non
penetrating on the pore boundaries i.e., b · n = 0 on ∂Ωs. The regularity that we assume on
the velocity field is b(y) ∈ L∞

# (Ωf ;R
d). The diffusion matrix D(y) ∈ L∞

# (Ωf ;R
d×d) is assumed

to be symmetric positive definite. In the Stokes systems (2.4) and (2.23) that we studied in the
previous sections, the coefficients in the partial differential equations were just constants. The
underlying microstructure, the porous medium, was ε-periodic. The model of interest (2.39)
in this section, along with the underlying microstructure, has periodic coefficients b(y) and
D(y). So, the process of homogenization determines the interplay between the periodicity in the
microstructure and that of the partial differential equation. The equation (2.39) is posed at the
level of the fluid part in an unit cell, Y 0 = Y/Σ0. We wish to study the transport phenomena
in the ε-periodic porous medium. So, we scale the equation (2.39) in space and also in time.
We consider the “parabolic scaling” of the model (2.39). The scaled model that we wish to
homogenize is





∂uε
∂t

+
1

ε
b
(x
ε

)
· ∇uε − div

(
D
(x
ε

)
∇uε

)
= 0 in (0, T )× Ωε,

D
(
x
ε

)
∇uε · n = 0 on (0, T ) × ∂Ωε.

(2.40)

One can apply the method of two-scale asymptotics from Section 2.2 to find the homogenized
equation for the above equation. Consider the following ansatz for the solute concentration:

uε(t, x) = u0

(
t, x,

x

ε

)
+ ε u1

(
t, x,

x

ε

)
+ ε2 u2

(
t, x,

x

ε

)
+ · · · · (2.41)

Plug the above ansatz for uε in (2.40). The system that we arrive at the order ε−2:





b(y)∇yu0 − divy(D(y)∇yu0) = 0 in Y 0,

D(y)∇yu0 · n = 0 on ∂Σ0,

y → u0 Y -periodic.

(2.42)
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At the order ε−1:




b(y)
(
∇yu1 +∇xu0

)
− divy

(
D(y)

(
∇yu1 +∇xu0

))
= 0 in Y 0,

D(y)
(
∇yu1 +∇xu0

)
· n = 0 on ∂Σ0,

y → u1 Y -periodic.

(2.43)

The above system is solvable if and only if we assume that the velocity field b(y) is of zero
average. This is nothing but the Fredholm alternative:

∫

Y 0

b(y) dy = 0.

Under the assumption of zero mean velocity, the homogenization of (2.40) is very classical
[41, 101, 123]. To include more general velocity fields, a slight variant of the ansatz for uε is
proposed [137, 76, 25]:

uε(t, x) = u0

(
t, x− b∗

ε
t,
x

ε

)
+ ε u1

(
t, x− b∗

ε
t,
x

ε

)
+ ε2 u2

(
t, x− b∗

ε
t,
x

ε

)
+ · · · · (2.44)

for some constant b∗ ∈ Rd. The above asymptotic, with a drift in the concentration profile, is
called two-scale asymptotic expansion with drift. The case b∗ = 0 falls back to the classical two-
scale asymptotic method of Section 2.2. As before, we shall plug this variant ansatz (2.44) into
the convection diffusion equation (2.40). We shall use the following chain rule for the derivation
with respect to time and space:





∂

∂t

[
φ
(
t, x− b∗

ε
t,
x

ε

)]
=
[∂φ
∂t

− b∗

ε
· ∇xφ

](
t, x− b∗

ε
t,
x

ε

)
,

∇
[
φ
(
t, x− b∗

ε
t,
x

ε

)]
=
[
∇xφ+

1

ε
∇yφ

](
t, x− b∗

ε
t,
x

ε

)
.

(2.45)

Even with this new ansatz, the system at order ε−2 turns out to be the same as (2.42) which
implies that the first term of the ansatz is independent of the fast variable y. That is u0(t, x) ≡
u0(t, x, y).
At the next order of ε−1, we have the following system:





b(y) · ∇yu1 − divy

(
D(y)

(
∇yu1 +∇xu0

))
=
(
b∗ − b(y)

)
· ∇xu0 in Y 0,

D(y)
(
∇yu1 +∇xu0

)
· n = 0 on ∂Σ0,

y → u1 Y -periodic.

(2.46)

We shall apply Fredholm alternative to find the compatibility condition that guarantees the ex-
istence and uniqueness of the solution u1. (2.46) is a steady state problem. Thus the solvablility
is guaranteed if the source terms are in equilibrium i.e.,

∫

Y 0

(
b∗ − b(y)

)
dy = 0,

thus giving the value of the drift velocity which was unknown to begin with in (2.44):

b∗ =
1

|Y 0|

∫

Y 0

b(y) dy. (2.47)
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The linearity of (2.46) helps us deduce that

u1(t, x, y) = ω(y) · ∇xu0(t, x), (2.48)

where wi(y) satisfy the following cell problem for each 1 ≤ i ≤ d:





b(y) · ∇yωi − divy

(
D(y)

(
∇yωi + ei

))
=
(
b∗ − b(y)

)
· ei in Y 0,

D(y)
(
∇yωi + ei

)
· n = 0 on ∂Σ0,

y → ωi Y -periodic.

(2.49)

At the next order, we have the following system:





∂u0
∂t

− b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)− divx(D(y)(∇xu0 +∇yu1))

−divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

D(y)(∇yu2 +∇xu1) · n = 0 on ∂Σ0,

y → u2 Y -periodic.

Invoking Fredholm alternative for the solvablility of the above model for u2 leads to the following
compatibility condition:

−
∫

Y 0

∂u0
∂t

dy +

∫

Y 0

(
b∗ − b(y)

)
· ∇xu1 dy + divx

∫

Y 0

D(y)(∇xu0 +∇yu1) dy = 0.

Using the information that u0 is independent of y and the particular form of u1 from (2.48), the
above equation is equivalent to

|Y 0|∂u0
∂t

= div(D∇u0) in (0, T ) × Rd, (2.50)

where the elements of the dispersion tensor D is given by the following expression:

Dij =

∫

Y 0

D(y)ei · ej dy +
∫

Y 0

D(y)∇yωj · ei dy +
∫

Y 0

(
b∗i − bi(y)

)
ωj dy.

For any symmetric matrixA and any other matrix B, we have the following observation regarding
the inner product between matrices:

B : A = Bt : A =
1

2
(B +Bt) : A. (2.51)

We know that the Hessian matrix ∇∇u0 is symmetric. So, in (2.50) only the symmetric part of
D plays a role. Thus, symmetrizing the above expression for D:

Dij =

∫

Y 0

D(y)ei · ej dy +
1

2



∫

Y 0

D(y)∇yωj · ei dy +
∫

Y 0

D(y)∇yωi · ej dy




+
1

2



∫

Y 0

(
b∗i − bi(y)

)
ωj dy +

∫

Y 0

(
b∗j − bj(y)

)
ωi dy


 . (2.52)
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To further simplify the expression for the dispersion tensor, we shall use the information from
the cell problem (2.49). Let us multiply the first line in (2.49) for ωi by the cell solution ωj and
vice versa. Adding the thus obtained expressions lead to

∫

Y 0

D(y)∇yωi · ∇yωj dy +
1

2



∫

Y 0

D(y)∇yωj · ei dy +
∫

Y 0

D(y)∇yωi · ej dy




=
1

2



∫

Y 0

(
b∗i − bi(y)

)
ωj dy +

∫

Y 0

(
b∗j − bj(y)

)
ωi dy


 .

The convective term vanishes in the above equation as the velocity field b(y) is periodic and
assumed to be divergence free with non-penetrating boundary condition on the solid obstacle
∂Σ0: ∫

Y 0

(
b(y) · ∇yωi

)
ωj dy +

∫

Y 0

(
b(y) · ∇yωj

)
ωi dy = 0.

Hence the dispersion tensor is given by

Dij =

∫

Y 0

D(y)
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy.

We obtained a homogenized problem for our convection diffusion model (2.40) via the method
of two-scale asymptotic expansion with drift. The next step is to justify the upscaling by a
rigorous mathematical analysis. To begin with, let us derive a priori estimates for the solution
uε of the model (2.40).

Lemma 2.6.1. Let uε be a weak solution for (2.40). There exists a constant C, independent of
ε, such that we have the following a priori estimates:

‖uε‖L∞((0,T );L2(Ωε)) + ‖∇uε‖L2((0,T )×Ωε) ≤ C. (2.53)

The proof of the above lemma goes via energy estimates. This is a very standard approach
where we multiply the first line in (2.40) by uε followed by integration over the porous domain
Ωε and then integrating over the time domain (0, T ).

Let us test if the approach of two-scale convergence that we used in the previous section can
be used to upscale the convection-diffusion equation (2.40) with strong convection. The a priori
estimates (2.53) along with Proposition 2.3.3 guarantees the existence of two-scale limits. Then,
following the approach of Section 2.3, we need to pass to the limit in the variational formulation
of (2.40) with properly chosen test functions. Let us consider the variational formulation of
(2.40):

T∫

0

∫

Ωε

∂uε
∂t

φ dx dt+
1

ε

T∫

0

∫

Ωε

bε · ∇uεφdx dt+
T∫

0

∫

Ωε

Dε∇uε · ∇φdx dt = 0. (2.54)

By choosing φ(t, x) = φ(t, x, x/ε), we can try to use the method of two-scale convergence. But
we face the difficulty with the singular term (second term) in the variational formulation (2.54).
We have already noticed in the beginning of this section that we had to modify the usual asymp-
totic expansion (2.41) by the two-scale asymptotic expansion with drift (2.44) to homogenize
the convection-diffusion equation (2.40).
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The method of two-scale convergence takes cues from the two-scale asymptotic expansion. The
asymptotic expansion has coefficients of the type ui(x, x/ε). In the Definition 2.3.1 of the two-
scale convergence, the test functions are chosen to be of similar structure: φ(x, x/ε). Now, let us
consider the modified two-scale asymptotic expansion with drift that helped us formally obtain
the upscaled model for (2.40):

uε(t, x) = u0

(
t, x− b∗

ε
t,
x

ε

)
+ ε u1

(
t, x− b∗

ε
t,
x

ε

)
+ ε2 u2

(
t, x− b∗

ε
t,
x

ε

)
+ · · · ·

Thus, the possibility of defining a new notion of two-scale convergence called “Two-scale conver-
gence with drift”. Here we shall take the test functions in moving coordinates: φ(t, x−b∗t/ε, x/ε).

Definition 2.6.2. [121] Let b∗ ∈ Rd be a constant. A sequence of functions uε(t, x) in L
2((0, T )×

Rd) is said to two-scale converge with drift b∗, or equivalently in moving coordinates (t, x) →(
t, x − b∗t

ε

)
, to a limit u0(t, x, y) ∈ L2((0, T ) × Rd × Y ) if, for any function φ(t, x, y) ∈

C∞
c ((0, T ) × Rd;C∞

# (Y )), we have

lim
ε→0

T∫

0

∫

Rd

uε(t, x)φ
(
t, x− b∗

ε
t,
x

ε

)
dx dt =

T∫

0

∫

Rd

∫

Y

u0(t, x, y)φ(t, x, y) dy dx dt. (2.55)

We denote this convergence by uε
2−drift−−−−⇀ u0.

Remark 2.6.3. Definition 2.6.2 gives the compactness phenomena with test functions in moving
coordinates. To demonstrate the dependence of the two-scale limit on the chosen drift velocity,
we shall consider the following sequence of functions in C∞

c ((0, T ) × Rd):

uε(t, x) = u1

(
t, x− b∗1t

ε
,
x

ε

)
+ u2

(
t, x− b∗2t

ε
,
x

ε

)
, (2.56)

where b∗1 6= b∗2. By density arguments, the below calculations carry on to bounded sequences in
L2((0, T )× Rd). The two-scale drift limit of uε1 defined as

uε1 = u1

(
t, x− b∗1t

ε
,
x

ε

)

is indeed u1(t, x, y) by choosing b
∗
1 as the drift velocity in the Definition 2.6.2. Similarly u2(t, x, y)

is the two-scale drift limit for the below sequence with b∗2 chosen as drift velocity:

uε2 = u2

(
t, x− b∗2t

ε
,
x

ε

)
.

For the sequence uε as in (2.56), let us try to find the two-scale drift limit:

T∫

0

∫

Rd

uε(t, x)φ
(
t, x− Vt

ε
,
x

ε

)
dx dt

=

T∫

0

∫

Rd

u1

(
t, x− b∗1t

ε
,
x

ε

)
φ
(
t, x− Vt

ε
,
x

ε

)
dx dt

+

T∫

0

∫

Rd

u2

(
t, x− b∗2t

ε
,
x

ε

)
φ
(
t, x− Vt

ε
,
x

ε

)
dx dt. (2.57)
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Let us take V = b∗1 in (2.57), we get

T∫

0

∫

Rd

u1

(
t, x− b∗1t

ε
,
x

ε

)
φ
(
t, x− b∗1t

ε
,
x

ε

)
dx dt

+

T∫

0

∫

Rd

u2

(
t, x− b∗1t

ε
+

(b∗1 − b∗2)t

ε
,
x

ε

)
φ
(
t, x− b∗1t

ε
,
x

ε

)
dx dt. (2.58)

When we pass to the limit in (2.58) as ε → 0, thanks to the chosen drift velocity, we get
u1(t, x, y) as the two-scale drift limit for uε because the second term goes to zero as b∗1 6= b∗2. On
the other hand if we choose V = b∗2 in (2.57), we get u2(t, x, y) as a two-scale drift limit for
uε. Also we remark that the only possible choices for the drift velocities is either b∗1 or b∗2. Thus
the dependence of the two-scale drift limits on the choice we make on the drift velocity. This
observation will come in handy when we consider the homogenization of convection diffusion
equation in the regime of compressible fluid flows in Section 3.12.

Our next task is to prove that Definition 2.6.2 does make sense i.e., the goal is to prove that there
does exist some sequences, of which we can extract converging subsequences and the associated
two-scale limits with drift. The following proposition is in the same spirit as the Proposition
2.3.2.

Proposition 2.6.4. [121] Let b∗ be a constant vector in Rd. For any bounded sequence of
functions uε(t, x) ∈ L2((0, T ) × Rd) i.e., satisfying

‖uε‖L2((0,T )×Rd) ≤ C,

there exists a limit u0(t, x, y) ∈ L2((0, T ) × Rd;L2
#(Y )) and one can extract a subsequence, still

denoted by ε, such that

uε
2−drift−−−−⇀ u0.

The proof of the above proposition is similar to the proof of the compactness Theorem 1.2 of
[5]. The result on the oscillating test functions (Lemma 1.3 of [5]) plays a crucial role in the
proof of the Theorem 1.2 in [5]. We shall prove a lemma related to the oscillating test functions
in moving coordinates that plays a major role in the proof of Proposition 2.6.4.

Lemma 2.6.5. [7] For φ(t, x, y) ∈ L2(0, T × Rd;C#(Y )), we have

lim
ε→0

T∫

0

∫

Rd

∣∣∣φ
(
t, x− b∗

ε
t,
x

ε

)∣∣∣
2
dx dt =

T∫

0

∫

Rd

∫

Y

∣∣∣φ(t, x, y)
∣∣∣
2
dy dx dt. (2.59)

Proof. The idea is to approximate φ by step functions. Let us introduce a paving of the unit
cell Y made of nd small cells Yi of size 1/n. Let χi be the characteristic function of Yi extended
by Y -periodicity to Rd. Taking yi to be a point in Yi, we approximate φ(t, x, y) by

φn(t, x, y) =

nd∑

i=1

φ(t, x, yi)χi(y). (2.60)

We show that (2.59) holds true for (2.60). Consider

T∫

0

∫

Rd

∣∣∣φ
(
t, x− b∗

ε
t, yi

)
χi

(x
ε

)∣∣∣
2
dx dt,
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which upon the change of variable x′ = x− b∗

ε t yields

T∫

0

∫

Rd

∣∣∣φ
(
t, x′, yi

)
χi

(x′
ε
+
b∗

ε2
t
)∣∣∣

2
dx dt.

For a fixed time t, the sequence χ2
i

(
x′

ε + b∗

ε2 t
)
is a periodically oscillating function. It follows

from a well known result [39] that the periodically oscillating functions converge weakly to their
average in Y , thus leading to

lim
ε→0

T∫

0

∫

Rd

∣∣∣φ
(
t, x′, yi

)
χi

(x′
ε
+
b∗

ε2
t
)∣∣∣

2
dx dt =

T∫

0

∫

Rd

∫

Yi

∣∣∣φ
(
t, x′, yi

)
χi(y)

∣∣∣
2
dy dx dt.

Summing the above expression over 1 ≤ i ≤ nd shows that (2.59) holds true for the ap-
proximation φn by (2.60). Passing to the limit as n → ∞ yields (2.59) for all φ(t, x, y) ∈
L2(0, T × Rd;C#(Y )). The details on this limit can be found in Section 5 of [5].

The proof of Proposition 2.6.4 is similar to that of Theorem 1.2 in [5] where Lemma 2.6.5
plays an important role. In Section 2.3, we gave a result on relative compactness of sequences
when we have additional bounds on the sequences. We state a result that is similar in spirit as
Proposition 2.3.3. We avoid giving the proof as the arguments can be adapted to the case of
two-scale convergence with drift by that of Proposition 1.14 in [5].

Proposition 2.6.6. [121, 7] Let b∗ be a constant vector in Rd and let the sequence uε be
uniformly bounded in L2((0, T );H1(Rd)). Then, there exists a subsequence, still denoted by ε,
and functions u0(t, x) ∈ L2((0, T );H1(Rd)) and u1(t, x, y) ∈ L2((0, T ) × Rd;H1

#(Y )) such that

uε
2−drift−−−−⇀ u0

and

∇uε 2−drift−−−−⇀ ∇xu0 +∇yu1.

As remarked in [5], the two-scale limit of a sequence contains more information than its weak
L2 limit. Here we give a corrector result, a kind of strong convergence, when we have some
supplementary knowledge on the two-scale limit in moving coordinates. This extension to the
two-scale convergence with drift case from the two-scale convergence is borrowed from [7].

Proposition 2.6.7. [7] Let (uε)ε>0 be a sequence in L2((0, T )×Rd) which two-scale converges
with drift to a limit u0(t, x, y) ∈ L2((0, T ) × Rd;L2

#(Y )). It satisfies

lim
ε→0

‖uε‖L2((0,T )×Rd) ≥ ‖u0‖L2((0,T )×Rd×Y ).

Assume further that

lim
ε→0

‖uε‖L2((0,T )×Rd) = ‖u0‖L2((0,T )×Rd×Y ). (2.61)

Then, it is said to two-scale converges with drift strongly and it satisfies

lim
ε→0

∫ T

0

∫

Rd

∣∣∣∣uε(t, x)− u0

(
t, x− b∗

ε
t,
x

ε

)∣∣∣∣
2

dx dt = 0, (2.62)

if u0(t, x, y) is smooth, say u0(t, x, y) ∈ L2
(
(0, T ) × Rd;C#(Y )

)
.
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Now we get to the point where prove, with rigor, the upscaling of (2.40) to (2.50). Let us choose
the drift velocity b∗ to be given by (2.47) i.e.,

b∗ =
1

|Y 0|

∫

Y 0

b(y) dy.

The above choice of the drift velocity, as we will remark during the proof of the next Theorem,
guarantees the solvablility of the cell problem (2.49).

Remark 2.6.8. The Definition 2.6.2 of the two-scale convergence with drift is given in the full
domain Rd. All through this thesis, we will be working with perforated domains. So, Remark
2.3.4 on the trivial extension by zero of the function sequences defined in porous media extend
to the notion of two-scale convergence with drift too. That is, defining an extended function
Uε(t, x) = uε(t, x) in Ωε and Uε(t, x) = 0 in Rd \ Ωε, we obtain that

T∫

0

∫

Ωε

uε(t, x)φ
(
t, x− b∗t

ε
,
x

ε

)
dx dt =

T∫

0

∫

Rd

Uε(t, x)φ
(
t, x− b∗t

ε
,
x

ε

)
dx dt

and the two-scale limit U0(t, x, y) of Uε vanishes in Σ0 so that

lim
ε→0

T∫

0

∫

Ωε

uε(t, x)φ
(
t, x− b∗t

ε
,
x

ε

)
dx dt =

T∫

0

∫

Rd

∫

Y 0

U0(t, x, y)φ(t, x, y) dy dx dt.

From now on, in all the compactness results that we state, we shall avoid explicitly stating that
uε is extended trivially by zero on to Rd.

Theorem 2.6.9. The sequence of concentrations {uε}, solutions of (2.40), two-scale converges
with drift b∗, as ε→ 0, in the following sense





uε
2−drift−−−−⇀ u0(t, x),

∇uε 2−drift−−−−⇀ ∇xu0(t, x) +∇y

( d∑

i=1

ωi(y)
∂u0
∂xi

(t, x)
)
,

(2.63)

where u0(t, x) is the unique solution of the following homogenized equation:





|Y 0|∂u0
∂t

= div(D∇u0) in (0, T )× Rd,

u0(0, x) = uin(x) in Rd,

(2.64)

where the elements of the dispersion tensor is given in terms of the cell solutions ωi by

Dij =

∫

Y 0

D(y)
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy, (2.65)

and the associated cell problem is (2.49).

Proof. We know from the a priori estimates (2.53) that the solutions uε are bounded L
2 in time

and H1 in space. Invoking Proposition 2.6.6, we have the existence of u0 ∈ L2((0, T );H1(Rd))
and u1 ∈ L2((0, T ) ×Rd;H1

#(Y
0)) such that

uε
2−drift−−−−⇀ u0 and ∇uε 2−drift−−−−⇀ ∇xu0 +∇yu1.
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Next, we wish to pass to the limit in the variational formulation (2.54) for the convection-
diffusion equation (2.40). The above obtained two-scale limits with drift help us choose the
proper test functions:

φε(t, x) = φ
(
t, x− b∗

ε
t
)
+ εφ1

(
t, x− b∗

ε
t,
x

ε

)
. (2.66)

The variational for (2.40) with φε as test function:

T∫

0

∫

Ωε

∂uε
∂t

φε dx dt+
1

ε

T∫

0

∫

Ωε

bε · ∇uεφε dx dt+
T∫

0

∫

Ωε

Dε∇uε · ∇φε dx dt = 0.

Upon integrating by parts, we have

−
T∫

0

∫

Ωε

uε
∂φ

∂t

(
t, x− b∗t

ε

)
dx dt+

1

ε

T∫

0

∫

Ωε

uεb
∗ · ∇xφ

(
t, x− b∗t

ε

)
dx dt

+

T∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt−

∫

Ωε

uin(x)φ(0, x) dx

−1

ε

T∫

0

∫

Ωε

uεbε · ∇xφ

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

Ωε

bε · ∇uεφ1
(
t, x− b∗t

ε
,
x

ε

)
dx dt

+

T∫

0

∫

Ωε

Dε∇uε · ∇xφ

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

Ωε

Dε∇uε · ∇yφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt+O(ε) = 0.

(2.67)
Using the two-scale limits obtained, we can pass to the limit in the above expression as ε → 0,
except for some singular terms. Let us gather the singular terms:

T∫

0

∫

Ωε

uε
b∗ − bε
ε

· ∇xφ

(
t, x− b∗t

ε

)
dx dt. (2.68)

To handle (2.68), we introduce the following auxiliary problem:





−∆yyαi(y) = b∗i − bi(y) in Y 0,

∇αi · n = 0 on ∂Σ0,

y → αi(y) is Y -periodic.

(2.69)

The scaled auxiliary problem, with y = x/ε, for αε
i (x) = αi(x/ε) is





−ε2∆xxα
ε
i (x) = b∗i − bεi (x) in Ωε,

∇αε
i · n = 0 on ∂Ωε,

x→ αε
i is ε-periodic.

(2.70)
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Using (2.70) in the singular term (2.68), we have

T∫

0

∫

Ωε

ε

d∑

i=1

∇αε
i · ∇

(
∂xi

φ

(
t, x− b∗t

ε

)
uε

)
dx dt. (2.71)

Taking φ ≡ 0 in the variational formulation (2.67), we arrive at the following variational formu-
lation just with φ1 as the test function:

T∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt+

T∫

0

∫

Ωε

bε · ∇uεφ1
(
t, x− b∗t

ε
,
x

ε

)
dx dt

+

T∫

0

∫

Ωε

Dε∇uε · ∇yφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt = 0.

Passing to the limit in the above expression leads to

−
T∫

0

∫

Rd

∫

Y 0

b∗ · ∇xu0(t, x)φ1(t, x, y) dy dx dt

+

T∫

0

∫

Rd

∫

Y 0

b(y) ·
(
∇xu0(t, x) +∇yu1(t, x, y)

)
φ1(t, x, y) dy dx dt

+

T∫

0

∫

Rd

∫

Y 0

D(y)
(
∇xu0(t, x) +∇yu1(t, x, y)

)
· ∇yφ1(t, x, y) dy dx dt = 0. (2.72)

The partial differential equation corresponding to the variational formulation (2.72) is nothing
by the system (2.46) that we had obtained in our formal approach at order ε−1. The solvablility
of (2.46) is guaranteed for the particularly chosen drift velocity (2.47). The linearity of (2.46)
helps us deduce that we can separate the slow and fast variables in u1(t, x, y) as

u1(t, x, y) =
d∑

i=1

ωi(y)
∂u0
∂xi

(t, x),

where ωi solves the cell problem (2.49).
Taking φ1 ≡ 0 in the variational formulation (2.67), we arrive at the following variational
formulation just with φ as the test function:

−
T∫

0

∫

Ωε

uε
∂φ

∂t

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

Ωε

ε
d∑

i=1

∇αε
i · ∇

(
∂xi
φ

(
t, x− b∗t

ε

)
uε

)
dx dt

+

T∫

0

∫

Ωε

Dε∇uε · ∇xφ

(
t, x− b∗t

ε

)
dx dt−

∫

Ωε

uin(x)φ(0, x) dx = 0.

Making note that ε∇αε
i (x) = (∇yαi)(x/ε), we pass to the limit in the above expression to arrive

at

|Y 0|
T∫

0

∫

Rd

∂u0
∂t

φ dx dt− |Y 0|
∫

Rd

uin(x)φ(0, x) dx+

T∫

0

∫

Rd

∫

Y 0

d∑

i,j=1

d∑

l=1

∂αi(y)

∂yl

∂ωj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dy dx dt



2.7. TWO-SCALE CONVERGENCE WITH DRIFT ON PERIODIC SURFACES 67

+

d∑

i,j=1

T∫

0

∫

Rd

∫

Y 0

Dij(y)
∂u0
∂xj

∂φ

∂xi
dy dx dt+

T∫

0

∫

Rd

∫

Y 0

d∑

i,j=1

d∑

l=1

Dil(y)
∂ωj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dy dx dt = 0.

The above expression is a variational formulation for the diffusion equation (2.64) with the
entries of the diffusion matrix given by

Dij =

∫

Y 0

D(y)ei · ej dy +
1

2



∫

Y 0

D∇yωi · ej dy +
∫

Y 0

D∇yωj · ei dy




+
1

2



∫

Y 0

∇yαi · ∇yωj dy +

∫

Y 0

∇yαj · ∇yωi dy


 . (2.73)

The diffusion matrix is symmetrized as was done before because the Hessian matrix ∇∇u0 is
symmetric. Now to arrive at the expression (2.65) for the dispersion matrix, we shall use the
auxiliary problem (2.69). Let us test the auxiliary problem (2.69) for αi by ωj and vice versa
leading to
∫

Y 0

∇yαi · ∇yωj dy +

∫

Y 0

∇yαj · ∇yωi dy =

∫

Y 0

(
b∗i − bi(y)

)
ωj dy +

∫

Y 0

(
b∗j − bj(y)

)
ωi dy. (2.74)

Using (2.74) in (2.73), we arrive at (2.52). This was the intermediate expression for the dis-
persion matrix that we had obtained in our formal analysis using the two-scale asymptotic
expansion with drift. We had used information from the cell problem (2.49) to further simplify
the expression for the dispersion matrix. As the calculations were presented before, we avoid
repeating the same calculations here. Even though Proposition 2.6.6 that we used to deduce the
existence of two-scale limits such that the sequences are relatively compact, we need to show
that the entire sequence converges to the limit. The dispersion tensor D is positive definite.
So, the homogenized equation (2.64) is wellposed. That is, there exists a unique solution to the
homogenized problem. So the entire sequence converges.

2.7 Two-scale convergence with drift on periodic surfaces

Section 2.5 was devoted to adapt the notion of two-scale convergence defined in Section 2.3 for
function sequences defined on periodic surfaces. Having defined a variant of two-scale conver-
gence called two-scale convergence with drift in Definition 2.6.2, the objective of this section is
to introduce a new notion of convergence on the sequences defined on periodic surfaces. This
notion of convergence appears for the first time in this thesis.

Definition 2.7.1. Let b∗ ∈ Rd be a constant. A sequence of functions uε(t, x) in L
2((0, T )×∂Ωε)

is said to two-scale converge with drift b∗, or equivalently in moving coordinates (t, x) →
(
t, x−

b∗t

ε

)
, to a limit u0(t, x, y) ∈ L2((0, T )×Rd × ∂Σ0) if, for any function φ(t, x, y) ∈ C∞

c ((0, T )×
Rd;C∞

# (Y )), we have

lim
ε→0

ε

T∫

0

∫

∂Ωε

uε(t, x)φ
(
t, x− b∗

ε
t,
x

ε

)
dx dt =

T∫

0

∫

Rd

∫

∂Σ0

u0(t, x, y)φ(t, x, y) dy dx dt. (2.75)

We denote this convergence by uε
2s−drift−−−−−⇀ u0.
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The above definition comes in handy to treat, for example, the convection-diffusion equation
posed on porous skeleton,





∂uε
∂t

+
1

ε
bsε · ∇suε − divs

(
Ds

ε∇suε

)
= 0 in (0, T ) × ∂Ωε,

uε(0, x) = uin(x) in ∂Ωε,

(2.76)

where the velocity field on the porous skeleton bs(y) ∈ L∞
# (∂Σ0;Rd) and is of null divergence.

The diffusion matrix Ds(y) ∈ L∞
# (∂Σ0;Rd×d) represents the diffusion process on the solid fluid

interface of the porous medium. By definition, bs = G(y)bs and Ds = G(y)DsG(y) where G(y)
is the projection matrix on the tangent hyperplane of Σ0. The diffusion matrix is assumed to be
symmetric and coercive. The initial data uin(x) ∈ H1(Rd) (chosen such that the trace exists on
the skeleton ∂Ωε). ∇s and divs represent the surface gradient and surface divergence respectively.

The a priori estimates on the solution uε for (2.76) is given by

√
ε‖uε‖L∞((0,T );L2(∂Ωε)) +

√
ε‖∇uε‖L2((0,T )×∂Ωε) ≤ C. (2.77)

Next compactness result will show that the Definition 2.7.1 does make sense.

Proposition 2.7.2. Let b∗ be a constant vector in Rd and let uε be a sequence in L2((0, T )×∂Ωε)
such that

ε

T∫

0

∫

∂Ωε

|uε(t, x)|2 dσε(x) dt ≤ C.

Then, there exists a subsequence, still denoted by ε, and a function u0(t, x, y) ∈ L2((0, T )×Rd×
∂Σ0) such that

uε(t, x)
2s−drift−−−−−⇀ u0(t, x, y).

We wish to use the notion of two-scale convergence with drift on surfaces to upscale the model
(2.76). The a priori estimates (2.77) on the solution uε has H

1 bounds. So, we state the following
generalization of Proposition 2.7.2.

Proposition 2.7.3. Let uε(t, x) ∈ L2((0, T );H1(∂Ωε)) be such that

ε

T∫

0

∫

∂Ωε

(
|uε(t, x)|2 + |∇suε(t, x)|2

)
dσε(x) dt ≤ C.

There exist u0(t, x) ∈ L2((0, T );H1(Rd)) and u1(t, x, y) ∈ L2((0, T ) ×Rd;H1
#(∂Σ

0)) such that

uε
2s−drift−−−−−⇀ u0(t, x),

∇suε
2s−drift−−−−−⇀ G(y)∇xu0(t, x) +∇s

yu1(t, x, y).

Proposition 2.6.7 gave a strong convergence (corrector type) result for sequences with respect
to the notion of two-scale convergence with drift. On similar lines, we can blend the notion of
strong two-scale convergence with drift to sequences defined on surfaces.

Proposition 2.7.4. Let (uε)ε>0 be a sequence in L2((0, T ) × ∂Ωε) which two-scale converges
with drift to a limit u0(t, x, y) ∈ L2((0, T ) × Rd × ∂Σ0). It satisfies

lim
ε→0

√
ε‖uε‖L2((0,T )×∂Ωε) ≥ ‖u0‖L2((0,T )×Rd×∂Σ0). (2.78)
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Assume further that the inequality in (2.78) is an equality. Then, uε is said to two-scale converges
with drift strongly and, if u0(t, x, y) is smooth enough, say u0(t, x, y) ∈ L2

(
(0, T )× Rd;C#(∂Σ

0)
)
,

it satisfies

lim
ε→0

ε

∫ T

0

∫

Rd

∣∣∣∣uε(t, x)− u0

(
t, x− b∗

ε
t,
x

ε

)∣∣∣∣
2

dx dt = 0.

Consider the a priori estimates (2.77) and invoking the above compactness result, we have the
existence of u0 and u1 as in Proposition 2.7.3. Having known the two-scale limits, our goal is to
pass to the limit in the variational formulation for (2.76):

ε

T∫

0

∫

∂Ωε

∂uε
∂t

φε dx dt+

T∫

0

∫

∂Ωε

bsε · ∇suεφε dx dt+ ε

T∫

0

∫

Ωε

Ds
ε∇suε · ∇sφε dx dt = 0, (2.79)

where the test function φε is chosen as in (2.66) and pass to the two-scale limit as ε → 0. The
homogenized equation for (2.76) turns out to be the similar to (2.64) only that, in this case, the
diffusion matrix D depends on the solutions of a cell problem posed on the solid surface ∂Σ0

and also it depends on the geometry of ∂Σ0.

2.8 Factorization principle

In Sections 2.2 and 2.3, while working with the upscaling of the Stokes systems (2.4) and (2.23),
we arrived at two-scale homogenized systems (2.8) and (2.30). The two-scale limit of the velocity
field, u0(x, y), had both the slow and fast variables. To eliminate the fast variable y, we averaged
u0(x, y) over the unit cell. Thus obtained average, u(x), had just the slow variable x. In order
to represent the effective behaviour of a given physical system, it is of paramount importance
to eliminate the fast variable from the effective limit and to find the upscaled equation with no
fast variable. Averaging over the unit cell is one such technique to eliminate the fast variable.
Another well known approach to eliminate the fast variable is the “Method of Factorization”.
This approach was introduced by Vanninathan in [161]. We present the essence of this approach
through an application to an example, asymptotics of the Dirichlet eigenvalue problem, the one
studied in [161]. Let us consider the following spectral problem:





Find (uε, λε) ∈ H1(Ωε)× R such that

−∆uε = λεuε in Ωε,

uε = 0 on ∂Ωε,
∫

Ωε

|uε(x)|2 dx = 1.

(2.80)

From the standard Spectral theory, there exist a sequence of eigenvalues {λiε}i∈N and a sequence
of corresponding eigenvectors {uiε}i∈N such that





0 < λ1ε < λ2ε ≤ λ3ε · · · · → ∞,

λiε is of finite multiplicity for each i ∈ N,

{uiε}i∈N form an orthonormal basis in L2(Ωε).

(2.81)
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Let us introduce a spectral problem in the unit cell:





Find (φ, λ) ∈ H1(Y 0)× R such that

−∆yφ = λφ in Y 0,

φ = 0 on ∂Σ0,
∫

Y 0

|φ(y)|2 dx = 1.

(2.82)

We consider only the first eigenpair (λ, φ) associated with (2.82). The objective of this study is
to learn the behaviour of (λiε, u

i
ε)i∈N, eigenpairs associated with (2.80), as ε→ 0.

Here we apply the method of two-scale asymptotics to upscale the spectral problem (2.80). We
propose the following ansatz for (λε, uε):

uε(x) = u0

(
x,
x

ε

)
+ ε u1

(
x,
x

ε

)
+ ε2 u2

(
x,
x

ε

)
+ · · · · (2.83)

λε = ε−2λ−2 + ε−1λ−1 + λ0 + · · · · (2.84)

The above particular form for λε follows from [161]. As usual, we plug (2.83) and (2.84) into
(2.80), identify the powers of ε. We give a formal result on the homogenization of our spectral
problem (2.80).

Proposition 2.8.1. [161] Under the assumption (2.83) and (2.84), the eigenpairs for (2.80)
satisfy

ukε(x) ≈ φ
(x
ε

)
uk(x) + ε

d∑

i=1

ψi

(x
ε

)∂uk
∂xi

(x) (2.85)

and
λkε ≈ ε−2λ+ λk + · · · · (2.86)

where (λ, φ) is the first eigenpair of (2.82) and (ψi)1≤i≤d are the solutions to the following cell
problem, for each 1 ≤ i ≤ d,





−∆yyψi(y) = λψi(y) + 2∇φ(y) · ei in Y 0,

ψi(y) = 0 on ∂Σ0,

y → ψi Y -periodic,

(2.87)

and uk(x) is the kth eigenvector associated with the following homogenized spectral problem





Find (u, λ0) ∈ H1(Ω)× R such that

−div(A∇u) = λ0u in Ω,

u = 0 on ∂Ω,

(2.88)

where the homogenized coefficients are given by

Aij = δij + 2

∫

Y 0

∇yψj · ei dy (2.89)

with Kronecker delta symbol, δij .
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The above formal result, obtained using the two-scale asymptotics, can be made rigorous using
the energy method by Tartar [153] or the two-scale convergence method by Nguetseng [132] and
Allaire [5]. Both the formal method and the energy method are employed in [161] to upscale
spectral problems with different kinds of boundary data.

In (2.85), we remark that the first term can be written as a product of an oscillating function and
an other function depending only on the slow variable x. So, there is a possibility of factoring
out the fast oscillations off u0(x, y). The idea is to redefine the unknown as

vε(x) =
uε(x)

φ(x/ε)
, (2.90)

where φ is the first eigenvector associated with the spectral cell problem (2.82). Then, the
spectral problem for vε(x) becomes





Find (vε, µε) such that

−div(φ2ε(x)∇vε(x)) = µεφ
2
ε(x)vε(x) in Ωε,

∫

Ωε

φ2ε(x)v
2
ε dx = 1,

(2.91)

where the kth eigenvalue µkε in (2.91) is related to the kth eigenvalue λkε of (2.80) as

λkε = ε−2λ+ µkε for k ≥ 1. (2.92)

Once we have obtained the spectral problem for vε, we shall employ the method of two-scale
asymptotics with the following ansatz:

vε(x) = v0

(
x,
x

ε

)
+ ε v1

(
x,
x

ε

)
+ ε2 v2

(
x,
x

ε

)
+ · · · · (2.93)

µε = µ0 + εµ1 + ε2µ2 + · · · · (2.94)

Upon some calculations, we deduce that v0(x, y) = v(x) i.e., independent of any oscillations in
the first term. Then, we derive the homogenized spectral problem for (µ0, v(x)). This approach
is called “The method of Factorization” because in the very beginning we factor out the possible
oscillations from uε by (2.90), thus simplifying the analysis. The details can be found in [161]
where the energy method is used to rigorously justify the upscaling. This Factorization princi-
ple is used in the homogenization of neutron diffusion models in steady state regimes [51, 11, 53].

It is interesting to study how the Factorization principle adapts itself in unsteady regimes. This
is demonstrated in the homogenization of a parabolic equation, convection-diffusion-reaction
equation, scaled in the parabolic regime as was done with the convection-diffusion equation
in Section 2.6. The results are documented in [23, 76]. We shall illustrate the Factorization
principle in case of the following convection-diffusion-reaction equation:





∂uε
∂t

+
1

ε
b
(x
ε

)
− div

(
D
(x
ε

)
∇uε

)
+

1

ε2
r
(x
ε

)
uε = 0 in (0, T )× Ωε,

D
(x
ε

)
∇uε · n = 0 on (0, T )× ∂Ωε,

uε(0, x) = uin(x) in Ωε.

(2.95)

As in Section 2.6, bε and Dε denote the convective velocity field and the diffusion matrix respec-
tively. The new term rε represents the reaction that might take place in the bulk of the porous
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medium. We assume it to be periodic. A generalization of (2.95) is studied in [25] along with an
added complexity of surface reaction. As in the steady state regime, we pass through eigenvalue
problems. The eigenvalue problem associated with the parabolic equation (2.95) is given by





b(y) · ∇yφ− divy

(
D(y)∇yφ

)
+ r(y)φ = r∗φ in Y 0,

D(y)∇yφ · n = 0 on ∂Σ0,

y → φ(y) Y -periodic,

(2.96)

where (r∗, φ(y)) is the first eigenpair associated with (2.96). The adjoint of the above spectral
problem is given by





−divy

(
b(y)φ∗

)
− divy

(
D(y)∇yφ

∗
)
+ r(y)φ∗ = r∗φ∗ in Y 0,

D(y)∇yφ
∗ · n+ b(y) · nφ∗ = 0 on ∂Σ0,

y → φ∗(y) Y -periodic,

(2.97)

where (r∗, φ∗(y)) is the first eigenpair associated with (2.97). The existence of the first eigenpairs
for both the spectral problems follows from the Krein-Rutman theorem [108, 152]. The common
first eigenvalue happens to be real and simple. The corresponding eigenvectors are chosen
positive.
Because of the presence of strong convection in (2.95), taking ideas from Section 2.6, we need to
postulate an ansatz for uε as a two-scale asymptotic expansion with drift. Because of the large
lower order term in (2.95), we have to modify the ansatz with respect to the time parameter.
Taking cues from [76, 25], we shall postulate the following ansatz for uε:

uε(t, x) = exp(−r∗t/ε2)
∑

i≥0

εiui

(
t, x− b∗

ε
t,
x

ε

)
. (2.98)

We can formally show that uε is approximated as

uε(t, x) ≈ exp(−r∗t/ε2)φ
(x
ε

)(
u0

(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

ωi

(x
ε

)∂u0
∂xi

(
t, x− b∗

ε
t
))
, (2.99)

where u0 satisfies a homogenized equation and ωi are solutions to a cell problem.

To rigorously justify the upscaling process, we need to pass via a priori estimates. If we start
with the given convection-diffusion-reaction equation (2.95), it is impossible to derive estimates
on uε with bounds independent of ε because of the large lower order term. Here we employ the
Factorization principle via the change the unknown:

vε(t, x) = exp(r∗t/ε2)
uε(t, x)

φ(x/ε)
. (2.100)

Then the partial differential equation satisfied by vε is





φεφ
∗
ε

∂vε
∂t

+
1

ε
b̃ε · ∇vε − div

(
D̃ε∇vε

)
= 0 in (0, T ) × Ωε,

D̃ε∇vε · n = 0 on (0, T ) × ∂Ωε,

vε(0, x) = uin(x)

∫

Y 0

φ∗(y) dy in Ωε,

(2.101)



2.9. COMMENTS 73

where the velocity field b̃(y) and the diffusion matrix D̃(y) are given in terms of the original
velocity field b(y), diffusion matrix D(y) and the eigenvectors φ(y) and φ∗(y):

b̃(y) = φφ∗b(y) + φD∇yφ
∗ − φ∗D∇yφ,

D̃(y) = φφ∗D(y).
(2.102)

The a priori estimates for the solution vε of (2.101) is given by

‖vε‖L∞((0,T );L2(Ωε)) + ‖∇vε‖L2((0,T )×Ωε) ≤ C. (2.103)

Using the above a priori estimates and invoking the compactness results of two-scale conver-
gence with drift, we extract a convergent subsequence and a two-scale limit u0 such that the
subsequence converges to u0. This two-scale limit matches with the u0 in the formal approxi-
mation (2.99). This approach by Factorization principle will be employed in Chapter 5 where
we homogenize a system of convection-diffusion-reaction equations modelling the transport of
multiple dissolved solutes in a fluid filling the porous medium.

2.9 Comments

All the averaging (homogenization) methods presented in this chapter are devoted to periodic
structures. In case there aren’t any restrictions on the structure of the heterogeneities, there are
more general approaches: Γ-convergence [74, 75]; H-convergence [153, 131]; G-convergence [151].
In case of probabilistic and stochastic heterogeneities there have been proposed approaches to
upscaling [105], Chapter 3 of [41]. The theory of periodic homogenization gets interesting as ex-
plicit expressions for the effective coefficients are obtained in terms of the microscale parameters
as is demonstrated in the expression (2.10) for the permeability tensor, (2.65) for the dispersion
tensor.

Under parabolic scaling the convection diffusion equation (2.39) that we studied in Section 2.6
is

∂u

∂τ
+ b · ∇u− div

(
D∇u

)
= 0.

As mentioned in the introduction G.I. Taylor in [157] derived explicit expression for the disper-
sion. This was an attempt to study the interplay between the fluid mechanics and the transport
experimentally studied. An aspect of paramount interest regarding the effective dispersion has
been to study it’s dependence on the molecular diffusion and the Péclet number. Some inter-
esting experimental results regarding this are documented in [150]. There have been immense
amount of work to study the small D-asymptotics (study of effective dispersion with respect to
the molecular diffusion when molecular diffusion gets smaller and smaller). For a divergence-free
velocity field b(y) with mean zero i.e.,

∫

Td

b(y) dy = 0,

the effective diffusivity satisfies the upper and lower bounds:

D|ξ|2 ≤ Dξ · ξ ≤
(
D +

C

D

)
|ξ|2, (2.104)

where C > 0 is a constant. The lower bound becomes an equality for all ξ only when b(y) ≡ 0
i.e., effective dispersion is enhanced for mean zero divergence free flows.
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However, when the fluid velocity is a potential flow i.e., b = ∇V , where V is called the potential,
the effective diffusivity satisfies

D

ZẐ
≤ Dξ · ξ ≤ D|ξ|2 where Ẑ =

∫

Td

exp(V/D) dy (2.105)

i.e., effective diffusion is always depleted when compared to molecular diffusion. The proofs of
the above two results in case of periodic velocity fields are documented in [138]. Other good
references are [85, 54]. In case of non zero drift b∗, the quantitative results similar to (2.104)
and (2.105) are very interesting depending on whether b∗ is rational or not [93, 119, 42]. Similar
study related to compressible flows are found in [162].

Constant drift velocity b∗

In the Definition 2.6.2 of two-scale convergence with drift, we chose the drift velocity b∗ to be a
constant. It should be noted that in [121], where the concept of two-scale convergence with drift
was introduced, the drift velocity can be time dependent. However, the two-scale convergence
with drift tools don’t work if we choose the drift velocity to be dependent on the slow variable
x. Even the formal two-scale asymptotic analysis with drift doesn’t work when the drift velocity
depends on x. Let us consider a function:

φε = φ
(
t, x− b∗(x)t

ε
,
x

ε

)
.

Then the chain rule for differentiation given in (2.45) doesn’t hold true anymore and the for-
mal calculations get more complicated and involved. Two-scale asymptotic analysis with drift
was introduced in Section 2.6 to handle the convection diffusion equation in the strong convec-
tion regime which couldn’t be handled by the usual two-scale asymptotics without zero mean
condition being imposed on the convective velocity field. This above observation of the drift
velocity not being dependent on x highlights the handicap of the two-scale convergence with
drift method. This will be apparent in Chapter 4 where we will try to homogenize a nonlinear
convection-diffusion-reaction model. There, for the drift velocity to be independent of x we shall
be making some assumptions on the velocity fields. This shows the need for the development of
new tools in the theory of homogenization.

Numerical Homogenization

Consider a partial differential equation with highly oscillating coefficients:

Lε uε = f in Ω, (2.106)

where ε > 0 stands for small scales. When this scale parameter is too small i.e., ε ≪ 1, the
classical finite element methods [57] can result in a good approximation only if the mesh size
h is smaller than the fine scale i.e., h ≪ ε. As the CPU time and the memory storage grow
polynomially with h−1, the numerical computation of the fine scale solution to the microscopic
problem gets costly and in some scenarios even impossible. The theoretical aspects of homoge-
nization methods have been incorporated in the numerical methods that have come to be known
as “Multiscale finite element methods”. Some of the notable references being [99, 82, 9]. The
crux of these approaches is the construction of adapted finite element basis which incorporates
the fine scales of (2.106). A very good pedagogical review of these numerical methods are found
in [83]. In this chapter, we have realized that the classical two-scale asymptotic method has
to be modified in the regime of strong convection. There have been some very recent works to
coalesce the method of “two-scale asymptotic expansions with drift” into the numerical methods
to handle transport problems [15, 136].



Chapter 3

Linear isotherm in porous media

Allaire G, Hutridurga H. Homogenization of reactive flows in porous media and competition
between bulk and surface diffusion, IMA J Appl Math., Vol 77, Issue 6, pp.788-815, (2012).

3.1 Introduction

Our objective with this chapter is to study the transport of a single solute dissolved in a fluid
filling an ε-periodic porous domain. The physical phenomena at the pore scale is modelled by a
convection-diffusion-reaction equation (3.11)-(3.13). We work with adsorption, surface reactions
of mass exchange between the fluid and the porous skeleton. As far as this chapter is concerned
we work with non-equilibrium reactions with linear isotherms (3.2). The coupled system is
scaled by “parabolic scaling”. This model is a generalization of that studied in [10, 20]: the
novelty of this work is the presence of convection and diffusion on the pores surfaces too (not
only in the bulk). In particular we study the possible competition between surface and bulk
molecular diffusion. Higher values of the surface diffusion may favor a solute transport along the
pore boundaries rather than in the bulk of the fluid. The goal is to derive the effective equation
for our pore scale model. Our main result says that the homogenized or upscaled limit of both
surface and bulk concentrations is given by the solution ũε0(t, x) of the following macroscopic
convection-diffusion equation:

Kd
∂ũε0
∂t

+
1

ε
b∗ · ∇ũε0 − div (D∇ũε0) = 0 ,

where Kd is the effective porosity, D is the effective diffusion (or dispersion) tensor and b∗/ε is
the effective velocity. Note that, as usual, ε is the small positive parameter which is the ratio
between the heterogeneities length scale and a characteristic macroscopic length scale. The
expression for b∗ is given by

Kd b
∗ =

∫

Y 0

b(y) dy +K

∫

∂Σ0

bs(y) dσ(y) ,

where K is a reaction parameter and b, bs are the bulk and surface velocity fields respectively.

The results are obtained formally by a method of two-scale asymptotic expansion with drift
in Proposition 3.7.2. The drift being equal to b∗. The same results are obtained rigorously in
Theorem 3.9.1 using two-scale convergence with drift. The relative compactness of solution se-
quences are proved in Theorem 3.8.2. We improve the result regarding compactness by proving
that the convergence is actually strong in Theorem 3.10.1. The same approach has also been

75
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employed to upscale convection-diffusion equations in [10, 20, 25, 76, 121].

A modified model is also considered with rescaled reaction rate (κ → ε2κ). In this new scal-
ing, the effective equation turns out to be a coupled convection-diffusion equation for u0, the
two-scale limit of bulk concentration uε, and v0, the two-scale limit of surface concentration vε.
Different effective equations are derived depending on the mean value of the bulk velocity field
b and that of the surface velocity field bs. Also, we study the effect of having divergent flows on
the upscaled equation. This is achieved by the method of Factorization where we factor out the
possible oscillations from the solution sequences as is done in [25].

The contents of this Chapter is the following. Section 3.2 describes the chemistry of adsorption
via a linear isotherm. Section 3.3 is devoted to the mathematical modelling of the transport
phenomenon. Section 3.4 aims at proving that the model (3.11)-(3.13) is wellposed. Section 3.5
is concerned with deriving maximum principles in the sense that the solutions remain positive
and bounded for a positive and bounded initial data. Section 3.6 derives a priori estimates on
the solutions of (3.11)-(3.13). The formal approach of obtaining effective equation is presented
in Section 3.7. The rigorous justification of the formal Proposition 3.7.2 is done through The-
orems 3.8.2, 3.9.1 in Sections 3.8 and 3.9 respectively. An improved convergence theorem (in
the strong norm) is proved in Section 3.10. A slightly modified model (with rescaled reaction
rate) is studied in Section 3.11. The divergence free condition is lifted in Section 3.12 where we
employ the method of factorization in arriving at the effective equation. Eventually, Section 3.13
is concerned with some numerical tests done in two dimensions using the FreeFem++ package
[141]. In particular we study the behavior of the cell solutions and of the homogenized dispersion
tensor with respect to variations of various microscopic parameters like the local Péclet number,
the reaction rate and the surface molecular diffusion. Finally, in Section 3.14 we comment on the
results obtained in the present chapter with emphasis on the perspectives and other directions
of study related to the reactive flows in a linear setting.

Most of the results presented in this chapter have appeared in a publication [17] mentioned in
the very beginning of this chapter. However, there are some additional results and remarks
that have been added in this chapter to those that appeared in [17]. The Sections 3.11 and
3.12 are almost entirely new even though a remark was made in [17] about the possibility of
homogenizing the mesoscale model in presence of compressible fluid fields.

3.2 Henry’s Adsorption Isotherm

In 1803, William Henry formulated one of the gas laws: “At a constant temperature, the amount
of a given gas that dissolves in a given type and volume of liquid is directly proportional to the
partial pressure of that gas in equilibrium with that liquid.” In resemblance to Henry’s law, we
have Henry’s adsorption isotherm in surface chemistry. It is stated as “The amount of surface
adsorbate is proportional to the partial pressure of the adsorbative gas” [118]. In case of liquid-
solid interface, we shall replace the partial pressure by concentration of the solute dissolved in
the liquid phase. Let u be the concentration of the dissolved solute and v be the concentration
of that adsorbed on the solid-liquid interface. We have, via linear adsorption isotherm:

v = K u , (3.1)

where K is the proportionality constant (positive) called “Henry’s Adsorption Constant” which
can be determined experimentally. Isotherms give a relation between the two concentrations at
equilibrium (i.e., when dv/dt = 0). Our goal is to study non-equilibrium reaction kinetics. Thus
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the rate of change of the adsorbed concentration at a time t is proportional to the difference
between the concentration v at time t and the concentration v at equilibrium (3.1):

dv

dt
= κ

(
u− v

K

)
, (3.2)

where the proportionality constant κ is the reaction rate of the chemical kinetics. The above
linear kinetics is the simplest form of adsorption phenomenon. There are more complicated
adsorption isotherms. Among them, are the Langmuir isotherm:

v =
αu

1 + βu
with α, β > 0 (3.3)

and the Freundlich isotherm:

v = γuδ with γ > 0 and 0 < δ < 1. (3.4)

The analysis of the above two nonlinear isotherms will be the objective of Chapter 4. It should be
noted that the expression (3.1), (3.3) and (3.4) describe adsorption of a single phase component.
When more than one component are dissolved in the fluid and in presence of bulk chemical
reactions, the functional form of Henry’s adsorption no longer holds true. In all these latter
cases, the expressions for the isotherms get more complicated. Also, these expressions aren’t
generally extensible to describe arbitrarily complex surface chemical reaction mechanisms. The
expressions representing reaction phenomena, if they exist, are often very case specific, thus
making the study of reactive flows more and more involved.

3.3 Mathematical Model

Transport of any dissolved solutes in fluid filling a porous domain are subjected to convection,
diffusion and possible reactions, in bulk or on surface, among solutes. Convection is via velocity
field of the fluid in which the solutes are dissolved in. In this chapter, except for the Section
3.11, we shall assume that the porous medium is saturated with an incompressible fluid. The
velocity of the incompressible fluid is assumed to be independent of time, periodic in space and
given. We also suppose that the fluid cannot penetrate the solid obstacles but can slip on their
surface. Therefore, we consider two periodic vector fields: b(y), defined in the bulk Ωf , and
bs(y), defined on the surface ∂Ωs and belonging at each point of ∂Ωs to its tangent hyperplane.
As we wish to work in the regime of periodic coefficients, we assume that both the velocity fields
b(y) and bs(y) are Y -periodic. Assuming that the fluid is incompressible and does not penetrate
the obstacles means that

divyb(y) = 0 in Ωf , b(y) · n(y) = 0 on ∂Ωs,

divsyb
s(y) = 0 on ∂Ωs ,

where n(y) is the exterior unit normal to Ωf . In truth, bs(y) should be the trace of b(y)
on ∂Ωs but, since this property is not necessary for our analysis, we shall not make such an
assumption. Of course, some regularity is required for these vector fields and we assume that
b(y) ∈ L∞

# (Ωf ;R
d), bs(y) ∈ L∞

# (∂Ωs;R
d) and bs = Gbs is always tangential to the surface where

G(y) is the projection matrix on the tangent hyperplane to the surface ∂Ωf = ∂Ωs defined as

G(y) = Id− n(y)⊗ n(y). (3.5)

The tangential gradient is defined as
∇s = G(y)∇ (3.6)
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and the tangential divergence for any vector field Ψ(y) : Ωf → Rd is defined as

divsΨ = div(G(y)Ψ). (3.7)

We assume that the molecular diffusion is periodic, possibly anisotropic, varying in space and
different in the bulk and on the surface. In other words, we introduce two periodic symmet-
ric tensors D(y) ∈ L∞

# (Ωf )
d×d and Ds(y) ∈ L∞

# (∂Ωs)
d×d which are assumed to be uniformly

coercive, namely there exists a constant C > 0 such that, for any ξ ∈ Rd,

D(y)ξ · ξ ≥ C|ξ|2 a.e. in Ωf , Ds(y)ξ · ξ ≥ C|ξ|2 a.e. on ∂Ωs.

Without loss of generality, we also assume that Ds acts only on the tangent hyperplane of Ωs,
i.e., Ds = GDsG.

After having introduced the velocity fields and the diffusion matrices, we write down a convection-
diffusion equation for the solute concentration in the fluid bulk:

∂u

∂τ
+ b · ∇u− div (D∇u) = 0 in (0, ζ) × Ωf . (3.8)

The above partial differential equation in the bulk has to be supplemented by the boundary
conditions on the fluid-solid interface and by an initial datum. We plan to study the surface
reaction of exchange type taking place at the interface. The expression for the non-equilibrium
adsorption given by (3.2) is used to model the reaction process. Thus, we introduce an unknown
v that represents the solute concentration on the porous skeleton. Having assumed the presence
of surface convection and the surface diffusion, we shall replace the ordinary differential equation
(3.2) for v by the following partial differential equation on the porous skeleton:

∂v

∂τ
+ bs · ∇sv − divs (Ds∇sv) = κ

(
u− v

K

)
on (0, ζ)× ∂Ωs. (3.9)

We are still to impose the boundary conditions for (3.8). Taking into consideration the surface
phenomenon modelled by (3.9), to balance the mass, we impose the right hand side of (3.9) as
the Neumann boundary condition for the solute concentration u:

−D∇u · n = κ
(
u− v

K

)
on (0, ζ) × ∂Ωs. (3.10)

We wish to study the transport of the given solute in an ε-periodic porous medium. So we
shall have to scale the coupled equation in space. In order to study the long time behavior of
our physical system, taking cues from Section 1.6, we shall employ parabolic scaling (τ, y) →
(ε−2t, ε−1x). The resulting adimensionalized coupled convection-diffusion-reaction equations for
the solute concentrations (uε, vε) is

∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T )× Ωε , (3.11)

−Dε

ε
∇uε · n =

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) =
κ

ε2

(
uε −

vε
K

)
on (0, T ) × ∂Ωε , (3.12)

uε(0, x) = uin(x) in Ωε, vε(0, x) = vin(x) on ∂Ωε , (3.13)

for some final time T = ε2ζ. As ζ = O(ε−2), the final time T is indeed of O(1). The initial data
are chosen such that uin(x) ∈ L2(Rd) and vin(x) ∈ H1(Rd) (so that its trace is well-defined on
∂Ωε). Remark that the coefficients in (3.11)-(3.12) are all ε-periodic with the following notations:
Dε(x) = D(x/ε), Ds

ε(x) = DS(x/ε), bε(x) = b(x/ε) and bsε(x) = bs(x/ε).
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Remark 3.3.1. We notice also the presence of ε−1 next to the velocity and ε−2 next to reaction
term. This means that the convection, diffusion and reaction are of same order of magnitude
at the mesoscale. This regime is also referred to as that of strong convection or that of Taylor
Dispersion mediated mixing (refer to the general introduction to this thesis (Chapter 1)) in the
literature. Homogenization of the convection-diffusion models in this regime of strong convection
has been successfully achieved quite recently (To name a few references: [121, 76, 10, 20, 17]).

3.4 Existence and Uniqueness

Proving the existence and uniqueness of the coupled parabolic equations (3.11)-(3.13) is quite
classical. One can either use the argument of Galerkin approximation followed by the a priori
estimates as in [84] or use a variant of the Lax-Milgram lemma due to Lions-Magenes. We shall
employ the latter. For easy reference, we shall state the lemma due to Lions-Magenes. The
proof of which can be found in [116].

Lemma 3.4.1. [116, 50] Let V and H be two Hilbert spaces such that V ⊂ H ⊂ V ′. Their
respective norms be ‖ · ‖V and ‖ · ‖H . For a fixed time T > 0, let us consider a bilinear form
a(t;u, v) : V × V → R defined for almost every t ∈ [0, T ] verifying the following properties:

t 7→ a(t;u, v) is measurable ∀u, v ∈ V,

|a(t;u, v)| ≤ C‖u‖V ‖v‖V ,

a(t;u, u) ≥ α‖u‖2V − β‖u‖2H .

(3.14)

Given a source term f ∈ L2(0, T ;V ′) and an initial data uin ∈ H, there exists a unique function
u such that

u ∈ L2(0, T ;V ) ∩C([0, T ];H),
du

dt
∈ L2(0, T ;V ′),

< du
dt , v > +a(t;u(t), v) =< f(t), v > a.e t ∈ [0, T ],∀v ∈ V,

u(0) = uin.
(3.15)

An application of the above lemma is demonstrated in [50]. We state the wellposedness result.

Proposition 3.4.2. Suppose the initial data (uin, vin) ∈ L2(Rd) × H1(Rd). For a fixed ε in
the scaled coupled parabolic system (3.11)-(3.13), there exists a unique solution (uε, vε) in the
following energy space:

uε ∈ L2((0, T );H1(Ωε)) ∩ C([0, T ];L2(Ωε))

and

vε ∈ L2((0, T );H1(∂Ωε)) ∩C([0, T ];L2(∂Ωε)).

Remark 3.4.3. In Proposition 3.4.2, ε is fixed. While applying Lemma 3.4.1, the constants in
(3.14) may depend on ε. We are not looking for bounds independent of ε.

Proof of Proposition 3.4.2: Let us consider the variational formulation for (3.11)-(3.13) by
taking (φε, εψε) as test function with φε ∈ H1(Ωε) and ψε ∈ H1(∂Ωε):

∫

Ωε

(∂uε
∂t

φε+
1

ε
bε·∇uεφε+Dε∇uε·∇φε

)
dx+

ε

K

∫

∂Ωε

(∂vε
∂t

ψε+
1

ε
bsε ·∇svεψε+D

s
ε∇svε·∇sψε

)
dσε(x)
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+
κ

ε

∫

∂Ωε

(
uε −

vε
K

)(
φε −

ψε

K

)
dσε(x) = 0. (3.16)

Consider V = H1(Ωε)×H1(∂Ωε) and H = L2(Ωε)× L2(∂Ωε) in the Lemma 3.4.1. The norms
associated with V and H are

‖(u, v)‖V = ‖u‖H1(Ωε) +
√
ε‖v‖H1(∂Ωε)

and
‖(u, v)‖H = ‖u‖L2(Ωε) +

√
ε‖v‖L2(∂Ωε).

Identifying (3.16) with (3.15), we shall recognize the bilinear form a(t; (uε, vε), (φε, ψε)) as

1

ε

∫

Ωε

bε · ∇uεφε +
∫

Ωε

Dε∇uε · ∇φε dx+

∫

∂Ωε

bsε · ∇svεψε

+ε

∫

∂Ωε

Ds
ε∇svε · ∇sψε dσε(x) +

∫

∂Ωε

[
κ

ε

(
uε −

vε
K

)(
φε −

ψε

K

)]
dσε(x).

(3.17)

Next task is to verify that the above expression for the bilinear form does satisfy the three
conditions in (3.14). The measurability is straightforward. The third condition in (3.14) can be
shown as follows:

a(t; (uε, vε), (uε, vε)) =

∫

Ωε

Dε∇uε ·∇uε dx+ε
∫

∂Ωε

Ds
ε∇svε ·∇svε dσε(x)+

κ

ε

∫

∂Ωε

(
uε −

vε
K

)2
dσε(x).

The convection terms in the bilinear form disappear as the velocity field is considered to be
divergence free. By the coercivity of D and Ds, we can bound the above expression from below
as

a(t; (uε, vε), (uε, vε)) ≥ α‖∇uε‖2L2(Ωε)
+ Cε‖∇vε‖2L2(∂Ωε)

= C‖(uε, vε)‖2V − ‖(uε, vε)‖2H .
Now, we need to show boundedness of the bilinear form a with respect to ‖ · ‖V . For the
convective terms in (3.17):

1

ε

∣∣∣
∫

Ωε

bε · ∇uεφε dx
∣∣∣+
∣∣∣
∫

∂Ωε

bsε · ∇svεψε dσ(x)
∣∣∣ ≤ 1

ε
‖b‖L∞‖∇uε‖L2(Ωε)‖φε‖L2(Ωε)

+
1

ε
‖bs‖L∞

√
ε‖∇svε‖L2(∂Ωε)

√
ε‖ψε‖L2(∂Ωε)

Using the boundedness property of the diffusion matrices D and Ds, for the diffusive terms in
(3.17), we have: ∣∣∣

∫

Ωε

Dε∇uε · ∇φε dx
∣∣∣+
∣∣∣ε
∫

∂Ωε

Ds
ε∇svε · ∇sψε dσε(x)

∣∣∣

≤ ‖∇uε‖L2(Ωε)‖∇φε‖L2(Ωε) +
√
ε‖∇svε‖L2(∂Ωε)

√
ε‖∇sψε‖L2(∂Ωε).

Except for the reaction term, the bounds regroup as:

≤ Cε‖∇uε‖L2(Ωε)

(
‖φε‖L2(Ωε) + ‖∇φε‖L2(Ωε)

)

+Cε

√
ε‖∇svε‖L2(∂Ωε)

(√
ε‖ψε‖L2(∂Ωε) +

√
ε‖∇sψε‖L2(∂Ωε)

)
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= Cε‖∇uε‖L2(Ωε)‖φε‖H1(Ωε) + Cε
√
ε‖∇svε‖L2(∂Ωε)

√
ε‖ψε‖H1(∂Ωε)

Using Cauchy-Schwartz inequality for the reaction term, we have

∣∣∣κ
ε

∫

∂Ωε

(
uε −

vε
K

)(
φε −

ψε

K

)
dσε(x)

∣∣∣ ≤ Cε

√
ε
∥∥∥uε −

vε
K

∥∥∥
L2(∂Ωε)

√
ε
∥∥∥φε −

ψε

K

∥∥∥
L2(∂Ωε)

≤ Cε

(√
ε‖uε‖L2(∂Ωε) +

√
ε‖vε‖L2(∂Ωε)

)(√
ε‖φε‖L2(∂Ωε) +

√
ε‖ψε‖L2(∂Ωε)

)

≤ Cε

(
‖uε‖H1(Ωε) +

√
ε‖vε‖H1(∂Ωε)

)(
‖φε‖H1(Ωε) +

√
ε‖ψε‖H1(∂Ωε)

)

= Cε

∥∥∥(uε, vε)
∥∥∥
V

∥∥∥(φε, ψε)
∥∥∥
V
,

thus the boundedness property of the bilinear form. Then, we invoke the Lemma 3.4.1 resulting
in the existence and uniqueness of solutions in the given energy space.

3.5 Maximum Principles

This section concerns itself with proving maximum principles for (3.11)-(3.13) in the sense that
starting with a non-negative bounded initial data (uin, vin), the coupled system always results in
non-negative bounded solute concentrations (uε, vε) at any positive time. We use the standard
notations h+ = max(0, h) and h− = min(0, h).

Proposition 3.5.1. Let (uε, vε) be the weak solution of (3.11)-(3.13) in the space defined by
Proposition 3.4.2. Assume that the initial data (uin, vin) satisfy 0 ≤ uin ≤M , 0 ≤ vin ≤M for
some positive constant M . Then,

{
0 ≤ uε(t, x) ≤M for (t, x) ∈ (0, T ) × Ωε,
0 ≤ vε(t, x) ≤M for (t, x) ∈ (0, T ) × ∂Ωε.

Proof. We use the standard variational approach. To begin with, we prove that the solutions
remain non-negative for non-negative initial data. Let us consider (u−ε , εv

−
ε ) as test functions in

the variational formulation of (3.11)-(3.13):

1

2

T∫

0

d

dt

∫

Ωε

|u−ε |2 dx dt+
1

2

1

ε

T∫

0

∫

Ωε

bε · ∇|u−ε |2 dx dt−
T∫

0

∫

Ωε

div (Dε∇uε)u−ε dx dt

+
ε

2

T∫

0

d

dt

∫

∂Ωε

|v−ε |2 dσ(x) dt +
ε

2

T∫

0

∫

∂Ωε

bsε · ∇s|v−ε |2 dσ(x) dt

−ε
T∫

0

∫

∂Ωε

divs
(
DS

ε ∇svε
)
v−ε dσ(x) dt −

κ

ε

T∫

0

∫

∂Ωε

(
uε − vε

)
v−ε dσ(x) dt = 0.

The convective terms in the above expression vanish due to the divergence free property of b, bs

and the boundary condition b · n = 0 on ∂Ωε. Thus, we get

1

2

∫

Ωε

|u−ε (T )|2 dx+
ε

2

∫

∂Ωε

|v−ε (T )|2 dσ(x) +
T∫

0

∫

Ωε

Dε∇u−ε · ∇u−ε dx dt
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+ε

T∫

0

∫

∂Ωε

Ds
ε∇sv−ε · ∇sv−ε dσ(x) dt +

κ

ε

T∫

0

∫

∂Ωε

(
uε − vε

)(
u−ε − v−ε

)
dσ(x) dt

=
1

2

∫

Ωε

|u−ε (0)|2 dx+
ε

2

∫

∂Ωε

|v−ε (0)|2 dσ(x).

Since the function h → h− is monotone, all terms in the above left hand side are non-negative.
The assumption on the non-negative initial data implies that the right hand side vanishes,
therefore proving that u−ε (t, x) = 0, v−ε (t, x) = 0. Thus the solutions uε and vε stay non
negative at all times.

Next, we show that the solutions stay bounded from above if we start with a bounded initial
data. We choose ((uε −M)+, ε(vε −M)+) as test functions in the variational formulation of
(3.11)-(3.13):

∫

Ωε

|(uε(T )−M)+|2 dx+ε
2

∫

∂Ωε

|(vε(T )−M)+|2 dσ(x)+
T∫

0

∫

Ωε

Dε∇(uε(T )−M)+·∇(uε(T )−M)+ dx dt

+ε

T∫

0

∫

∂Ωε

Ds
ε∇s(vε(T )−M)+ · ∇s(vε −M)+ dσ(x) dt

+
κ

ε

T∫

0

∫

∂Ωε

(
(uε −M)− (vε −M)

)(
(uε −M)+ − (vε −M)+

)
dσ(x) dt

=

∫

Ωε

((uin −M)+)2 dx+
ε

2

∫

∂Ωε

((vin −Mv)
+)2 dσ(x).

The upper bound on the initial data implies that the right hand side vanishes. The left hand
side is non-negative because h → h+ is monotone. Hence, we deduce that uε(t, x) ≤ M and
vε(t, x) ≤M .

3.6 A priori estimates

Here, we derive a priori estimates for the solute concentrations (uε, vε) based on energy equalities.
These estimates will come in handy to apply the compactness result of the two-scale convergence
in Section 3.8. The following lemma summarizes the result on the estimates.

Lemma 3.6.1. There exists a constant C, which is independent of ε, such that the solution of
(3.11)-(3.13) satisfies

‖uε‖L∞((0,T );L2(Ωε)) +
√
ε‖vε‖L∞((0,T );L2(∂Ωε))

+‖∇uε‖L2((0,T )×Ωε) +
√
ε‖∇svε‖L2((0,T )×∂Ωε)

+
√
ε‖wε‖L∞((0,T );L2(∂Ωε)) ≤ C

(
‖uin‖L2(Rd) + ‖vin‖H1(Rd)

)
(3.18)

where wε = ε−1
(
uε −K−1vε

)
.
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Proof. We first derive an energy equality for (3.11)-(3.13). We multiply (3.11) by uε and then
integrate over Ωε:

1

2

d

dt

∫

Ωε

|uε|2 dx+

∫

Ωε

Dε∇uε · ∇uε dx+
κε

ε2

∫

∂Ωε

(
u2ε −

uεvε
K

)
dσε(x) = 0, (3.19)

where the integral of the convective term has disappeared since

∫

Ωε

1

ε
bε · ∇uεuε dx =

1

2ε

∫

Ωε

div(bε|uε|2) dx =
1

2ε

∫

∂Ωε

|uε|2bε · n dσε(x) = 0.

Multiply the second equality in (3.12) by K−1εvε and integrate over ∂Ωε to get

ε

2K

d

dt

∫

∂Ωε

|vε|2 dσε(x) +
ε

K

∫

∂Ωε

Ds
ε∇svε · ∇svε dσε(x) +

εκ

ε2

∫

∂Ωε

( v2ε
K2

− uεvε
K

)
dσε(x) = 0, (3.20)

where the integral of the convective term has also disappeared since bsε is divergence free. Adding
(3.19) and (3.20) results in the following energy equality:

1

2

d

dt

∫

Ωε

|uε|2 dx+
ε

2K

d

dt

∫

∂Ωε

|vε|2 dσε(x) +
∫

Ωε

Dε∇uε · ∇uε dx

+
ε

K

∫

∂Ωε

Ds
ε∇svε · ∇svε dσε(x) +

εκ

ε2

∫

∂Ωε

(
uε −

vε
K

)2
dσε(x) = 0. (3.21)

Integrating (3.21) over the time interval (0, T ) leads to the desired estimate (3.18).

3.7 Formal asymptotics

This section and the sections to follow concentrate on the process of homogenizing our scaled
coupled equations (3.11)-(3.13). As the title of this section suggests, we shall be employing the
formal method of two-scale asymptotics with drift in arriving at the homogenized model. The
induction of drift in the concentration profiles is due the presence of strong convection. This
method has already been employed in [10, 25, 76, 137], to name a few. This approach helps
us guess the effective behavior of the scaled equations. As explained in Chapter 2, this formal
method can be rigorously justified using the method of two-scale convergence with drift. This
shall be the object of Sections 3.8 and 3.9. As per the method outlined in Section 2.6 of Chap-
ter 2, we will be assuming an asymptotic expansion for the unknowns. Upon substituting the
assumed series expansion into the given model, we identify the cascade of equations at various
powers of ε, the scaling parameter. We formulate a Fredholm type result that guarantees the
existence of solutions to the thus obtained cascade of equations under some constraints.

Let us assume that the solute concentrations uε and vε of (3.11)-(3.12) can be written in terms
of an infinite series as

uε(t, x) =
∞∑

i=0

εiui

(
t, x− b∗t

ε
,
x

ε

)
(3.22)

and

vε(t, x) =

∞∑

i=0

εivi

(
t, x− b∗t

ε
,
x

ε

)
(3.23)
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where ui(t, x, y) and vi(t, x, y) are functions of macroscopic variable x and the microscopic vari-
able y = x

ε ∈]0, 1[d. The drift b∗ ∈ Rd is unknown to start with. It shall be determined along
the process of homogenization. The idea is to plug (3.22) and (3.23) in (3.11)-(3.12) keeping in
mind the following chain rule differentiation:

∂

∂t

[
φ

(
t, x− b∗t

ε
,
x

ε

)]
=


∂φ
∂t

−
d∑

j=1

b∗j
ε

∂φ

∂xj



(
t, x− b∗t

ε
,
x

ε

)
,

∂

∂xj

[
φ

(
t, x− b∗t

ε
,
x

ε

)]
=

[
∂φ

∂xj
+

1

ε

∂φ

∂yj

](
t, x− b∗t

ε
,
x

ε

)
.

(3.24)

As the equations are coupled, it shall be interesting to look for any interactions between the
bulk and surface velocity fields and the underlying reaction via the induced drift. Now, we
shall present a lemma of Fredholm type that is very crucial in solving the cascade of equations
posed in the unit cell Y that we are going to obtain upon substitution of (3.22) and (3.23) in
(3.11)-(3.12).

Lemma 3.7.1. For f ∈ L2(Y 0), g ∈ L2(∂Σ0) and h ∈ L2(∂Σ0), the following system of
equations





b(y) · ∇yu− divy

(
D(y)∇yu

)
= f in Y 0,

−D(y)∇yu · n+ g = κ
(
u− v

K

)
on ∂Σ0,

bs(y) · ∇s
yv − divsy

(
Ds(y)∇s

yv
)
− h = κ

(
u− v

K

)
on ∂Σ0,

y →
(
u(y), v(y)

)
Y − periodic,

(3.25)

admits a solution (u, v) ∈ H1
#(Y

0)×H1
#(∂Σ

0), unique up to the addition of a constant multiple
of (1,K), if and only if ∫

Y 0

f dy +

∫

∂Σ0

(g + h) dσ(y) = 0. (3.26)

Proof. The variational formulation of (3.25) is

∫

Y 0

(b · ∇yu)φdy +

∫

Y 0

D(y)∇yu · ∇yφdy +
1

K

∫

∂Σ0

(
bs · ∇s

yv
)
ψ dy +

1

K

∫

∂Σ0

Ds(y)∇s
yv · ∇s

yψ dσ(y)

+κ

∫

∂Σ0

(
u− v

K

)(
φ− ψ

K

)
dσ(y) =

∫

Y 0

fφ dy +

∫

∂Σ0

(
gφ+

h

K
ψ

)
dσ(y).

Taking (φ,ψ) = (1,K) we find the necessary condition (3.26). Let us define the quotient space
[H1

#(Y
0) × H1

#(∂Σ
0)]/R(1,K) of functions defined in H1

#(Y
0) × H1

#(∂Σ
0) up to an additive

constant (C,KC) when C takes values in R. It is easily seen that ‖∇u‖L2(Y 0)d + ‖∇v‖L2(∂Σ0)d

is a norm for this quotient space. To show existence, we shall have to check the assumptions of
the Lax-Milgram Lemma. The left hand side of the variational formulation is coercive on the
quotient space. The right hand side of the variational formulation is a continuous linear form
on the quotient space under the assumption (3.26).

Now, we state our formal result.
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Proposition 3.7.2. Under the assumption (3.22)-(3.23), the solution (uε, vε) of (3.11)-(3.13)
formally satisfy

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ εu1

(
t, x− b∗t

ε
,
x

ε

)
,

vε(t, x) ≈ Ku0

(
t, x− b∗t

ε

)
+ εv1

(
t, x− b∗t

ε
,
x

ε

)
,

with the effective drift

b∗ =

∫

Y 0

b(y) dy +K

∫

∂Σ0

bs(y) dσ(y)

|Y 0|+K|∂Σ0|d−1

(3.27)

and, u0, the solution of the homogenized problem:





Kd
∂u0
∂t

− divx (D∇xu0) = 0 in (0, T )× Rd,

Kd u0(0, x) = |Y 0|uin(x) + |∂Σ0|d−1v
in(x), x ∈ Rd,

(3.28)

where Kd = |Y 0|+K|∂Σ0|d−1 and the dispersion tensor D is given by

Dij =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy + κ

∫

∂Σ0

(
χi −

ωi

K

)(
χj −

ωj

K

)
dσ(y)

+K−1

∫

∂Σ0

Ds(y)
(
Kei +∇s

yωi

)
·
(
Kej +∇s

yωj

)
dσ(y),

(3.29)

with (χ, ω) = (χi, ωi)1≤i≤d being the solution of the cell problem such that

u1(t, x, y) =
d∑

i=1

χi(y)
∂u0
∂xi

(t, x), v1(t, x, y) =
d∑

i=1

ωi(y)
∂u0
∂xi

(t, x) (3.30)

and the cell problem is





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

bs(y) · ∇s
yωi − divsy(D

s(∇s
yωi +Kei)) = K(b∗ − bs) · ei + κ

(
χi −K−1ωi

)
on ∂Σ0,

−D(∇yχi + ei) · n = κ
(
χi −K−1ωi

)
on ∂Σ0,

y → (χi, ωi) Y − periodic.
(3.31)

Proof. Inserting the ansatz (3.22) and (3.23) in the equations (3.11) and (3.12) yields the fol-
lowing cascade of equations:
At order ε−2:




b(y) · ∇yu0 − divy(D(y)∇yu0) = 0 in Y 0,

−D∇yu0 · n = bs(y) · ∇s
yv0 − divsy(D

s(y)∇s
yv0) = κ

(
u0 −K−1v0

)
on ∂Σ0,

y → (u0(y), v0(y)) Y − periodic.

(3.32)

From Lemma 3.7.1 we deduce that the solution of (3.32) does not depend on y and satisfy
v0(t, x) = Ku0(t, x).
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At order ε−1:




−b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 in Y 0,

−b∗ · ∇xv0 + bs(y) · (∇xv0 +∇s
yv1)− divsy(D

s(y)(∇xv0 +∇s
yv1))

= −D(y)(∇xu0 +∇yu1) · n = κ
(
u1 −K−1v1

)
on ∂Σ0,

y → (u1(y), v1(y)) Y − periodic.

(3.33)

The compatibility condition (3.26) of Lemma 3.7.1 yields the desired value (3.27) of the drift
velocity b∗ in order to solve (3.33). By linearity of (3.33) we deduce that its solution is given by

u1(t, x, y) = χ(y) · ∇xu0 and v1(t, x, y) = ω(y) · ∇xu0,

where (χ, ω) is the solution of the cell problem (3.31).
At order ε0:





∂u0
∂t

− b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)

−divx(D(y)(∇xu0 +∇yu1))− divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

∂v0
∂t

− b∗ · ∇xv1 + bs(y) · (∇xu1 +∇s
yu2)

−divx(D
s(y)(∇xv0 +∇s

yv1))− divsy(D
s(y)(∇xv1 +∇s

yv2))

= −D(y)(∇yu2 +∇xu1) · n = κ
(
u2 −K−1v2

)
on ∂Σ0,

y → (u2(y), v2(y)) Y − periodic.

(3.34)

On identifying (3.34) with (3.25) we get the following right hand sides:





f = (b∗ − b) · ∇xu1 + divx(D(∇xu0 +∇yu1))−
∂u0
∂t

+ divy(D(∇xu1)) in Y 0,

g = −D∇xu1 · n on ∂Σ0,

h = −∂v0
∂t

+ b∗ · ∇xv1 − bs · (∇xu1) + divx(D
s(∇xv0 +∇s

yv1)) + divsy (D
s∇xv1) on ∂Σ0.

(3.35)
According to Lemma 3.7.1, there exists a solution (u2, v2) provided (3.26) holds true. This
compatibility condition leads to the homogenized problem:

Kd ∂tu0 = divx (D∇xu0) in (0, T )× Rd,

where Kd = |Y 0|+K|∂Σ0|d−1 and the entries of the dispersion tensor D are given by

Dij =

∫

Y 0

Dei · ej dy +
1

2



∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy




+K

∫

∂Σ0

Dsei · ej dσ(y) +
1

2



∫

∂Σ0

Ds∇s
yωj · ei dσ(y) +

∫

∂Σ0

Ds∇s
yωi · ej dσ(y)




+
1

2



∫

Y 0

(b∗i − bi(y))χj(y) dy +

∫

Y 0

(
b∗j − bj(y)

)
χi(y) dy



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+
1

2



∫

∂Σ0

(b∗i − bsi (y))ωj(y) dσ(y) +

∫

∂Σ0

(
b∗j − bsj(y)

)
ωi(y) dσ(y)


 .

Remark that we have symmetrized the dispersion tensor D since only its contraction with the
(symmetric) Hessian matrix ∇2u0 plays a role in the homogenized equation. In other words
its antisymmetric part (if any) cannot be deduced from the above method of obtaining the
homogenized equation. Testing the cell problem (3.31) for (χi, ωi) by (χj , ωj) and vice-versa
leads to the following relationship:

∫

Y 0

D∇yχi · ∇yχj dy +
1

K

∫

∂Σ0

Ds∇s
yωi · ∇s

yωj dσ(y) + κ

∫

∂Σ0

[
χi −

ωi

K

] [
χj −

ωj

K

]
dσ(y)

+
1

2



∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy


+

1

2



∫

∂Σ0

Ds∇s
yωj · ei dσ(y) +

∫

∂Σ0

Ds∇s
yωi · ej dσ(y)




=
1

2



∫

Y 0

(b∗i − bi(y))χj(y) dy +

∫

Y 0

(
b∗j − bj(y)

)
χi(y) dy




+
1

2



∫

∂Σ0

(b∗i − bsi (y))ωj(y) dσ(y) +

∫

∂Σ0

(
b∗j − bsj(y)

)
ωi(y) dσ(y)


 .

Adding the above equality to the previous expression for D yields the desired formula (3.29).
To obtain the initial condition of the homogenized equation we use a conservation property in
the unit cell which says that

∫

Y 0

u0(0, x) dy +

∫

∂Σ0

v0(0, x) dy =

∫

Y 0

uin(x) dy +

∫

∂Σ0

vin(x) dy,

which leads to the desired initial condition upon recalling that v0 = Ku0.

3.8 Two-scale compactness

Previous section is about formally deriving the the effective equation for our coupled convection-
diffusion-reaction model. This formal method can be justified mathematically using the notion
of “Two-scale convergence with drift”, a variant of “Two-scale convergence”. This justification
shall be the objective of the next section. In order to be able to pass to the limit in the vari-
ational formulation, we need to have some compactness results for the solution sequences {uε}
and {vε}. The a priori estimates (3.18) along with the compactness theorems from Chapter 2
shall aid us in proving the existence of limits for the sequences {uε}, {vε} and for the sequence

{wε} with wε =
1

ε

(
uε −

vε
K

)
.

Eventually we state a technical lemma which will play a key role in the convergence analysis.

Lemma 3.8.1. Let φ(t, x, y) ∈ L2((0, T ) × Rd × ∂Σ0) be such that

∫

∂Σ0

φ(t, x, y) dσ(y) = 0 ∀ (t, x) ∈ (0, T ) ×Rd. (3.36)
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There exist two vector fields θ(t, x, y) ∈ L2((0, T )×Rd × Td)d and Θ(t, x, y) ∈ L2((0, T )×Rd ×
∂Σ0)d such that

divyθ = 0 in Y 0,

θ · n = φ on ∂Σ0,

divsyΘ = φ on ∂Σ0.

(3.37)

Proof. We choose θ = ∇yξ with ξ ∈ H1
#(Y

0) a solution to

{
∆yξ = 0 in Y 0,

∇yξ · n = φ on ∂Σ0,
(3.38)

which admits a unique solution, up to an additive constant, since the compatibility condition
of (3.38) is satisfied. On similar lines, we choose Θ = ∇s

yψ where ψ is the unique solution in
H1

#(∂Σ
0)/R of ∆s

yψ = φ on ∂Σ0, the solvability of which is guaranteed by (3.36).

Theorem 3.8.2. Let {uε} and {vε} be the sequence of bulk and surface concentrations, solutions
of system (3.11)-(3.13). There exist limit functions u0 ∈ L2((0, T );H1(Rd)), u1 ∈ L2((0, T ) ×
Rd;H1

#(Y
0)) and v1 ∈ L2((0, T )×Rd;H1

#(∂Σ
0)) such that the sequences two-scale converge with

drift b∗, as ε→ 0, in the following sense:





uε
2−drift−−−−⇀ u0(t, x)

vε
2s−drift−−−−−⇀ Ku0(t, x)

∇uε 2−drift−−−−⇀ ∇xu0(t, x) +∇yu1(t, x, y)

∇svε
2s−drift−−−−−⇀KG(y)∇xu0(t, x) +∇s

yv1(t, x, y)
1

ε

(
uε −

vε
K

)
2s−drift−−−−−⇀ u1(t, x, y)− v1(t, x, y)

(3.39)

Proof. Consider the a priori bound on uε from Lemma 3.6.1. Invoking the compactness re-
sult of two-scale convergence with drift, Proposition 2.6.6, we have the existence of u0(t, x) ∈
L2((0, T );H1(Rd)) and u1(t, x, y) ∈ L2((0, T ) × Rd;H1(Td)) such that

uε
2−drift−−−−⇀ u0

and

∇uε 2−drift−−−−⇀ ∇xu0 +∇yu1,

up to a subsequence. Now for the second and fourth lines in (3.39). We have from the a priori
estimate (3.18):

ε

∫

∂Ωε

(
uε −

vε
K

)2
≤ Cε2,

implying that the two-scale limits of {uε} and {vε/K} match. For the fourth line, we shall
use the a priori bound for vε from Lemma 3.6.1, thus we have the existence of v1(t, x, y) ∈
L2((0, T ) × Rd;H1

#(∂Σ
0)) such that

vε
2s−drift−−−−−⇀Ku0

and

∇svε
2s−drift−−−−−⇀KG(y)∇xu0 +∇s

yv1.
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The only limit that deserves some attention is that for wε =
1

ε

(
uε −K−1vε

)
. From Lemma

3.6.1, we know that it satisfies the uniform estimate:

ε

T∫

0

∫

∂Ωε

|wε(t, x)|2 dσε(x) dt ≤ C,

from which, by virtue of Proposition 2.7.2, we deduce, for a subsequence, that wε
2s−drift−−−−−⇀

q(t, x, y) for some q(t, x, y) ∈ L2((0, T ) × Rd;L2
#(∂Σ

0)). Let us choose a test function φ as in

Lemma 3.8.1 i.e.,

∫

∂Σ0

φ(t, x, y) dσ(y) = 0. To pass to the limit in

lim
ε→0

ε

T∫

0

∫

∂Ωε

wε(t, x)φ

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt,

we separate wε in a difference of two terms. In view of (3.37), the first one is

ε

T∫

0

∫

∂Ωε

1

ε
uεφ

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt =

T∫

0

∫

Ωε

div

(
uεθ

(
t, x− b∗t

ε
,
x

ε

))
dx dt

=

T∫

0

∫

Ωε

[
∇uε · θ

(
t, x− b∗t

ε
,
x

ε

)
+ uε (divxθ)

(
t, x− b∗t

ε
,
x

ε

)]
dx dt

2−drift−−−−⇀
T∫

0

∫

Rd

∫

Y 0

[
(∇xu+∇yu1) · θ + udivxθ

]
dy dx dt

=

T∫

0

∫

Rd

∫

∂Σ0

u1θ · n dσ(y) dx dt =
T∫

0

∫

Rd

∫

∂Σ0

u1φdσ(y) dx dt.

Now, the second term is

ε

T∫

0

∫

∂Ωε

1

Kε
vεφ

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt =

1

K

T∫

0

∫

∂Ωε

vε
(
divsyΘ

)(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt

=
ε

K

T∫

0

∫

∂Ωε

vε

[
divs

(
Θ

(
t, x− b∗t

ε
,
x

ε

))
− divx (GΘ)

(
t, x− b∗t

ε
,
x

ε

)]
dσε(x) dt

=
ε

K

T∫

0

∫

∂Ωε

[
−Θ

(
t, x− b∗t

ε
,
x

ε

)
· ∇svε − divx (GΘ)

(
t, x− b∗t

ε
,
x

ε

)
vε

]
dσε(x) dt

2s−drift−−−−−⇀ 1

K

T∫

0

∫

Rd

∫

∂Σ0

[
−Θ ·

(
KG(y)∇xu0 +∇s

yv1
)
− divx (G(y)Θ)Ku0

]
dσ(y) dx dt
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=
1

K

T∫

0

∫

Rd

∫

∂Σ0

v1div
s
yΘ dσ(y) dx dt =

1

K

T∫

0

∫

Rd

∫

∂Σ0

v1φdσ(y) dx dt.

Subtracting the two terms, we have shown that

T∫

0

∫

Rd

∫

∂Σ0

qφ dσ(y) dx dt =

T∫

0

∫

Rd

∫

∂Σ0

(
u1 −

v1
K

)
φdσ(y) dx dt,

for all φ such that
∫

∂Σ0

φdy = 0. Hence,

q(t, x, y) = u1(t, x, y)−
v1(t, x, y)

K
+ l(t, x)

for some function l(t, x) which does not depend on y. Since, u1 and v1 are also defined up to the
addition of a function solely dependent on (t, x), we can get rid of l(t, x) and we recover indeed
the last line of (3.39).

3.9 Proof of the homogenization result

Now, the moment to characterize the two-scale limits obtained in Theorem 3.8.2. This result
shall be the rigorous justification of the formal result obtained in Proposition 3.7.2.

Theorem 3.9.1. The two-scale limit u0 of Theorem 3.8.2 satisfies the homogenized equation
(3.28) and the limits u1 and v1 satisfy

u1(t, x, y) =

d∑

i=1

χi(y)
∂u0
∂xi

(t, x) and v1(t, x, y) =

d∑

i=1

ωi(y)
∂u0
∂xi

(t, x).

The functions (χi, ωi)1≤i≤d satisfy the cell problem (3.31).

Proof. The idea of the proof is to pass to the limit in the coupled variational formulation of
(3.11)-(3.13):

T∫

0

∫

Ωε

[
∂uε
∂t

φε +
1

ε
bε · ∇uεφε +Dε∇uε · ∇φε

]
dx dt (3.40)

+ε

T∫

0

∫

∂Ωε

1

K

[
∂vε
∂t

ψε +
1

ε
bsε · ∇svεψε +Ds

ε∇svε · ∇sψε

]
dσε(x) dt

+
κ

ε

T∫

0

∫

∂Ωε

(
uε −

vε
K

)(
φε −

ψε

K

)
dσε(x) dt = 0,

with the test functions

φε = φ

(
t, x− b∗t

ε

)
+ εφ1

(
t, x− b∗t

ε
,
x

ε

)
,

ψε = Kφ

(
t, x− b∗t

ε

)
+ εψ1

(
t, x− b∗t

ε
,
x

ε

)
.
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Here φ(t, x), φ1(t, x, y) and ψ1(t, x, y) are smooth compactly supported functions which vanish
at t = T . Let us consider the convective terms in (3.40) and perform integrations by parts:

T∫

0

∫

Ωε

(
∂uε
∂t

+
1

ε
bε · ∇uε

)
φε dx dt+ ε

T∫

0

∫

∂Ωε

1

K

(
∂vε
∂t

+
1

ε
bsε · ∇svε

)
ψε dσε(x) dt

= −
T∫

0

∫

Ωε

uε
∂φ

∂t

(
t, x− b∗t

ε

)
dx dt+

1

ε

T∫

0

∫

Ωε

uεb
∗ · ∇xφ

(
t, x− b∗t

ε

)
dx dt

+

T∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt−

∫

Ωε

uin(x)φ(0, x) dx +O(ε)

−1

ε

T∫

0

∫

Ωε

uεbε · ∇xφ

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

Ωε

bε · ∇uεφ1
(
t, x− b∗t

ε
,
x

ε

)
dx dt

−ε
T∫

0

∫

∂Ωε

vε
∂φ

∂t

(
t, x− b∗t

ε

)
dσε(x) dt +

T∫

0

∫

∂Ωε

vεb
∗ · ∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt

+
ε

K

T∫

0

∫

∂Ωε

vεb
∗ · ∇xψ1

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt− ε

∫

∂Ωε

vin(x)φ(0, x) dσε(x) +O(ε)

−
T∫

0

∫

∂Ωε

vεb
s
ε · ∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt+

ε

K

T∫

0

∫

∂Ωε

bsε · ∇svεψ1

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt.

We cannot directly pass to the two-scale limit since there are terms which apparently are of
order ε−1. We, thus regroup them:

T∫

0

∫

Ωε

uε
b∗ − bε
ε

·∇xφ

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

∂Ωε

vε (b
∗ − bsε) ·∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt (3.41)

=

T∫

0

∫

Ωε

uε
b∗ − bε
ε

· ∇xφ

(
t, x− b∗t

ε

)
dx dt+K

T∫

0

∫

∂Ωε

uε (b
∗ − bsε) · ∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt

+Kε

T∫

0

∫

∂Ωε

1

ε

(
uε −

vε
K

)
(bsε − b∗) · ∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt.

We introduce an auxiliary problem:





∆αi(y) = bi(y)− b∗i in Y 0,

∇αi · n = K(b∗i − bsi (y)) on ∂Σ0,

αi is Y − periodic,

(3.42)



92 CHAPTER 3. LINEAR ISOTHERM IN POROUS MEDIA

which admits a unique solution (up to an additive constant) since, by definition of b∗, the source
terms in (3.42) are in equilibrium. Defining αε(x) = α(x/ε), thanks to (3.42), the ε−1-order
term (3.41) is equal to

T∫

0

∫

Ωε

ε
d∑

i=1

∇αε
i · ∇

(
∂xi
φ

(
t, x− b∗t

ε

)
uε

)
dx dt

+Kε

T∫

0

∫

∂Ωε

1

ε

(
uε −

vε
K

)
(bsε − b∗) · ∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt,

for which we can pass to the two-scale limit.

In a first step, we choose φ ≡ 0 i.e., we consider only the terms involving φ1 and ψ1 in the
variational formulation (3.40):

T∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt+

T∫

0

∫

Ωε

bε · ∇uεφ1
(
t, x− b∗t

ε
,
x

ε

)
dx dt

+

T∫

0

∫

Ωε

Dε∇uε · ∇yφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt+

ε

K

T∫

0

∫

∂Ωε

vεb
∗ · ∇xψ1

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt

+
ε

K

T∫

0

∫

∂Ωε

bsε·∇svεψ1

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt+

ε

K

T∫

0

∫

∂Ωε

Ds
ε∇svε·∇s

yψ1

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt

+ε

T∫

0

∫

∂Ωε

κ

ε

(
uε −

vε
K

)(
φ1 −

ψ1

K

)
dσε(x) dt = 0.

Passing to the two-scale limit with drift, we obtain

−
∫

Rd

∫

Y 0

b∗·∇xu0(t, x)φ1(t, x, y) dy dx dt+

∫

Rd

∫

Y 0

b(y)·(∇xu0(t, x) +∇yu1(t, x, y)) φ1(t, x, y) dy dx dt

−
∫

Rd

∫

Y 0

divy (D(y) (∇xu0(t, x) +∇yu1(t, x, y)))φ1(t, x, y) dy dx dt

−
∫

Rd

∫

∂Σ0

b∗ · ∇xu0(t, x)ψ1(t, x, y) dσ(y) dx dt

+
1

K

∫

Rd

∫

∂Σ0

bs(y) · (KG∇xu0(t, x) +∇sv1(t, x, y))ψ1(t, x, y) dσ(y) dx dt

− 1

K

∫

Rd

∫

∂Σ0

divsy (D
s(y) (KG∇xu0(t, x) +∇sv1(t, x, y)))ψ1(t, x, y) dσ(y) dx dt

+

∫

Rd

∫

∂Σ0

κ
(
u1 −

v1
K

)(
φ1 −

ψ1

K

)
dσ(y) dx dt = 0
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The above expression is precisely the variational formulation of (3.33). For easy reference, let
us state the coupled partial differential equation for (u1, v1).





−b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 in Y 0,

−b∗ · ∇xv0 + bs(y) · (∇xv0 +∇s
yv1)− divsy(D

s(y)(∇xv0 +∇s
yv1))

= −D(y)(∇xu0 +∇yu1) · n = κ
(
u1 −K−1v1

)
on ∂Σ0,

y → (u1(y), v1(y)) Y − periodic.

The linearity of the above coupled system helps us deduce that

u1(t, x, y) =
d∑

i=1

χi(y)
∂u0
∂xi

(t, x) and v1(t, x, y) =
d∑

i=1

ωi(y)
∂u0
∂xi

(t, x).

which leads to the cell problem (3.31).
In a second step we choose φ1 ≡ 0 and ψ1 ≡ 0 in (3.40), i.e., we consider only the terms involving
φ

−
T∫

0

∫

Ωε

uε
∂φ

∂t

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

Ωε

Dε∇uε · ∇xφ

(
t, x− b∗t

ε

)
dx dt

−ε
T∫

0

∫

∂Ωε

vε
∂φ

∂t

(
t, x− b∗t

ε

)
dσε(x) dt+ ε

T∫

0

∫

∂Ωε

Ds
ε∇svε · ∇sφ

(
t, x− b∗t

ε

)
dσε(x) dt

+

T∫

0

∫

Ωε

ε

d∑

i=1

∇αε
i · ∇

(
∂xi
φ

(
t, x− b∗t

ε

)
uε

)
dx dt

+Kε

T∫

0

∫

∂Ωε

1

ε

(
uε −

vε
K

)
(bsε − b∗) · ∇xφ

(
t, x− b∗t

ε

)
dσε(x) dt

−
∫

Ωε

uin(x)φ(0, x) dx − ε

∫

∂Ωε

vin(x)φ(0, x) dσε(x) = 0.

Taking into account formula (3.30) for u1 and v1, passing to the two-scale limit with drift yields

|Y 0|
∫

Rd

∂u0
∂t

φ dx dt+

∫

Rd

∫

Y 0

d∑

i,j=1

Dij(y)
∂u0
∂xj

∂φ

∂xi
dx dt

−|Y 0|
∫

Rd

uin(x)φ(0, x) dx +

∫

Rd

∫

Y 0

d∑

i,j=1

d∑

l=1

Dil(y)
∂χj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dx dt

+K|∂Σ0|
∫

Rd

∂u0
∂t

φ dx dt+K

∫

Rd

∫

∂Σ0

d∑

i,j=1

d∑

l=1

Ds
il(y)Glj(y)

∂u0
∂xj

∂φ

∂xi
dσ(y) dx dt

−|∂Σ0|
∫

Rd

vin(x)φ(0, x) dx +

∫

Rd

∫

∂Σ0

d∑

i,j=1

d∑

l=1

Ds
il(y)

∂sωj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dσ(y) dx dt
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+K

∫

Rd

∫

∂Σ0

d∑

i,j=1

(
χj −

ωj

K

)
(bsi (y)− b∗i )

∂u0
∂xj

∂φ

∂xi
dσ(y) dx dt

+

∫

Rd

∫

Y 0

d∑

i,j=1

d∑

l=1

∂αi(y)

∂yl

∂χj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dy dx dt = 0.

Introducing Kd = |Y 0| + K|∂Σ0|d−1, the above equation is just the variational formulation of
the homogenized problem





Kd ∂tu0 = divx (D∇xu0) in (0, T )× Rd

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|d−1v
0(x), x ∈ Rd

with the expression for D given by

Dij =

∫

Y 0

Dei · ej dy +
1

2



∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy




+K

∫

∂Σ0

Dsei · ej dσ(y) +
1

2



∫

∂Σ0

Ds∇s
yωj · ei dσ(y) +

∫

∂Σ0

Ds∇s
yωi · ej dσ(y)




+
1

2



∫

Y 0

∇yαi · ∇yχj dy +

∫

Y 0

∇yαj · ∇yχi dy




+
K

2



∫

∂Σ0

(
χj −

ωj

K

)
(bsi (y)− b∗i ) dσ(y) +

∫

∂Σ0

(
χi −

ωi

K

) (
bsj(y)− b∗j

)
dσ(y)




Now we need to recognize that the above cell average for D coincides with formula (3.29).
To check this point, we shall make the following observation. Let us test the boundary value
problem (3.42) for αi by χj which yields

∫

Y 0

d∑

l=1

∂αi(y)

∂yl

∂χj(y)

∂yl
dy =

∫

Y 0

(b∗i − bi(y))χj(y) dy +K

∫

∂Σ0

(b∗i − bsi (y))χj(y) dσ(y).

Using the above information, the expression for D is updated as

Dij =

∫

Y 0

Dei · ej dy +
1

2



∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy




+K

∫

∂Σ0

Dsei · ej dσ(y) +
1

2



∫

∂Σ0

Ds∇s
yωj · ei dσ(y) +

∫

∂Σ0

Ds∇s
yωi · ej dσ(y)




+
1

2



∫

Y 0

(b∗i − bi(y))χj(y) dy +

∫

Y 0

(
b∗j − bj(y)

)
χi(y) dy



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+
1

2



∫

∂Σ0

(b∗i − bsi (y))ωj(y) dσ(y) +

∫

∂Σ0

(
b∗j − bsj(y)

)
ωi(y) dσ(y)


 (3.43)

Testing the cell problem (3.31) for (χi, ωi) by (χj , ωj) and vice-versa leads to the following
relationship

∫

Y 0

D∇yχi · ∇yχj dy +
1

K

∫

∂Σ0

Ds∇s
yωi · ∇s

yωj dσ(y) + κ

∫

∂Σ0

(
χi −

ωi

K

)(
χj −

ωj

K

)
dσ(y)

+
1

2



∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy


+

1

2



∫

∂Σ0

Ds∇s
yωj · ei dσ(y) +

∫

∂Σ0

Ds∇s
yωi · ej dσ(y)




=
1

2



∫

Y 0

(b∗i − bi(y))χj(y) dy +

∫

Y 0

(
b∗j − bj(y)

)
χi(y) dy




+
1

2



∫

∂Σ0

(b∗i − bsi (y))ωj(y) dσ(y) +

∫

∂Σ0

(
b∗j − bsj(y)

)
ωi(y) dσ(y)


 (3.44)

Using (3.44) in (3.43), leads to the expression for the dispersion tensor D given in (3.29). Finally,
although we proved convergence only for a subsequence, the uniqueness of the homogenized
solution u0(t, x) to (3.28) implies that the entire sequence {uε, vε} converge.

3.10 Strong convergence

In the previous section, we proved the (weak) two-scale convergence with drift of (uε, vε) to
(u0,Ku0). In this section, we improve Theorem 3.9.1 by proving that the convergence is actually
strong, in a sense which is made precise in the following Theorem.

Theorem 3.10.1. Let (uε, vε) be the solution to (3.11)-(3.13). Then, uε(t, x)1IΩε strongly two-
scale converges with drift towards 1IY 0u0(t, x) and vε(t, x)1I∂Ωε

strongly two-scale converges with
drift on surfaces towards K1I∂Σ0u0(t, x), in the sense that

lim
ε→0

∥∥∥∥uε(t, x)− u0

(
t, x− b∗

ε
t

)∥∥∥∥
L2((0,T )×Ωε)

= 0,

lim
ε→0

√
ε

∥∥∥∥vε(t, x)−Ku0

(
t, x− b∗

ε
t

)∥∥∥∥
L2((0,T )×∂Ωε)

= 0.

(3.45)

Proof. To begin with, we treat the case of well-prepared initial data, that is, v0(x) = Ku0(x) ∈
H1(Rd). Later we shall consider more general initial data. The energy equality of (3.11)-(3.13)
for a time interval (0, t) is

1

2

[
‖uε(t)‖2L2(Ωε)

+
ε

K
‖vε(t)‖2L2(∂Ωε)

]
+

t∫

0

∫

Ωε

Dε∇uε(s, x) · ∇uε(s, x) dx ds

+
ε

K

t∫

0

∫

∂Ωε

Ds
ε∇svε(s, x) · ∇svε(s, x) dσε(x) ds
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+
εκ

ε2

t∫

0

∫

∂Ωε

(
uε(s, x)−

vε
K

(s, x)
)2

dσε(x) ds =
1

2

[
‖u0‖2L2(Ωε)

+
ε

K
‖v0‖2L2(∂Ωε)

]

Following the lead of [20] we do not expect a point wise (in time) strong convergence of the
sequence (uε, vε). Thus, we integrate once more with respect to time the above energy equality
to obtain

1

2

T∫

0

[
‖uε(t)‖2L2(Ωε)

+
ε

K
‖vε(t)‖2L2(∂Ωε)

]
dt+

T∫

0

t∫

0

∫

Ωε

Dε∇uε(s, x) · ∇uε(s, x) dx ds dt

+
ε

K

T∫

0

t∫

0

∫

∂Ωε

Ds
ε∇svε(s, x) · ∇svε(s, x) dσε(x) ds dt

+
εκ

ε2

T∫

0

t∫

0

∫

∂Ωε

(
uε −

vε
K

)2
dσε(x) ds dt =

T

2

(
‖u0‖2L2(Ωε)

+
ε

K
‖v0‖2L2(∂Ωε)

)

In the previous section, we established that all terms in the above formula have actually (weak)
two-scale limits. Since the corresponding norms are lower semi-continuous with respect to the
(weak) two-scale convergence, we deduce

lim inf
ε→0

1

2

T∫

0

[
‖uε(t)‖2L2(Ωε)

+
ε

K
‖vε(t)‖2L2(∂Ωε)

]
dt ≥ 1

2

(
|Y 0|+K|∂Σ0|

)
‖u0‖2L2(Rd×(0,T )),

lim inf
ε→0

T∫

0

t∫

0

∫

Ωε

Dε∇uε(s, x) · ∇uε(s, x) dx ds dt

≥
T∫

0

t∫

0

∫

Rd

∫

Y 0

D(y)|∇xu0(s, x) +∇y (χ(y) · ∇xu0(s, x)) |2 dy dx ds dt,

lim inf
ε→0

ε

K

T∫

0

t∫

0

∫

∂Ωε

Ds
ε∇svε(s, x) · ∇svε(s, x) dσε(x) ds dt

≥ 1

K

T∫

0

t∫

0

∫

Rd

∫

∂Σ0

Ds(y)|KG(y)∇xu0(s, x) +∇s
y (ω(y) · ∇xu0(s, x)) |2 dσ(y) dx ds dt,

lim inf
ε→0

εκ

ε2

T∫

0

t∫

0

∫

∂Ωε

(
uε −

vε
K

)2
dσε(x) ds dt

≥ κ

T∫

0

t∫

0

∫

Rd

∫

∂Σ0

|
(
χ(y)−K−1ω(y)

)
· ∇xu0(s, x)|2 dσ(y) dx ds dt.

On the other hand we have

lim
ε→0

(
‖u0‖2L2(Ωε)

+
ε

K
‖v0‖2L2(∂Ωε)

)
= |Y 0|‖u0‖2L2(Rd) +

|∂Σ0|
K

‖v0‖2L2(Rd).
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Summing up those limits and recognizing the formula for D yields the inequality

1

2

(
|Y 0|+K|∂Σ0|

)
‖u0‖2L2(Rd×(0,T )) +

T∫

0

t∫

0

∫

Rd

D∇xu0(s, x) · ∇xu0(s, x) dx ds dt

≤ T

2

(
|Y 0|‖u0‖2L2(Rd) +

|∂Σ0|
K

‖v0‖2L2(Rd)

)
. (3.46)

However, if we write the same type of time integral of the energy equality for the homogenized
equation (3.28), we get an equality with the same left hand side but a different right hand side

1

2

[
|Y 0|+K|∂Σ0|

]
‖u0‖2L2(Rd×(0,T )) +

T∫

0

t∫

0

∫

Rd

D∇u0(s, x) · ∇u0(s, x) dx ds dt

=
T

2(|Y 0|+K|∂Σ0|)‖|Y
0|u0 + |∂Σ0|v0‖2L2(Rd). (3.47)

It is easy to check that the two right hand sides in (3.46) and (3.47) coincide if and only if

‖u0 −K−1v0‖2L2(Rd) = 0,

which is precisely our assumption of well prepared initial data. Therefore, under this assumption
we deduce that (3.46) is not an inequality but rather an equality, which in turn implies that all
the previous lower semi-continuity of norm sequences are actually exact convergence. We can
thus apply Proposition 2.6.7 and conclude to the strong convergence (see Section 2.6 of Chapter
2 for details if necessary).
We now turn to the case of general initial data (u0, v0) ∈ L2(Rd) × H1(Rd). Let us consider
a small δ0 > 0, to be chosen precisely at the end of the proof. Due to Lemma 3.6.1 on a
priori estimates, by a contradiction argument, it follows that there exists a time sequence {δε},
δ0/2 ≤ δε ≤ δ0, converging to some limit δ, δ0/2 ≤ δ ≤ δ0, and a positive constant C, which
does not depend on δ0 or on ε (but only on the initial data), such that





‖uε(., δε)‖2H1(Ωε)
≤ C/δ0, ε‖vε(., δε)‖2H1(∂Ωε)

≤ C/δ0,

ε‖Kuε(., δε)− vε(., δε)‖2L2(∂Ωε)
≤ Cε2/δ0.

(3.48)

We now follow an idea of [20] which amounts to consider system (3.11)-(3.13) on a smaller time
interval (δε, T ) where δε ≥ δ0/2 > 0 is such that the initial data at this time should be almost
well-prepared because of parabolic dissipation on the earlier time interval (0, δε). We decompose
the solution (uε, vε) of (3.11)-(3.13) as

uε(t, x) = u1,ε(t, x) + u2,ε(t, x) and vε(t, x) = v1,ε(t, x) + v2,ε(t, x),

in such way that the initial data are well prepared for the first problem while the solution of the
second one will converge strongly to zero





∂u1,ε
∂t

+
1

ε
bε · ∇u1,ε − div (Dε∇u1,ε) = 0 in (δε, T )× Ωε,

−Dε

ε
∇u1,ε · n =

∂v1,ε
∂t

+
1

ε
bsε · ∇sv1,ε − divs (Ds

ε∇sv1,ε) on (δε, T )× ∂Ωε,

−Dε

ε
∇u1,ε · n =

κ

ε2

(
u1,ε −K−1v1,ε

)
on (δε, T )× ∂Ωε,

u1,ε(δε, x) = uε(δε, x), v1,ε(δε, x) = Kuε(δε, x),

(3.49)
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and




∂u2,ε
∂t

+
1

ε
bε · ∇u2,ε − div (Dε∇u2,ε) = 0 in (δε, T )× Ωε,

−Dε

ε
∇u2,ε · n =

∂v2,ε
∂t

+
1

ε
bsε · ∇sv2,ε − divs (Ds

ε∇sv2,ε) on (δε, T )× ∂Ωε,

−Dε

ε
∇u2,ε · n =

κ

ε2

(
u2,ε −K−1v2,ε

)
on (δε, T )× ∂Ωε,

u2,ε(δε, x) = 0, v2,ε(δε, x) = vε(δε, x)−Kuε(δε, x).

(3.50)

Since (3.50) is similar in structure to (3.11)-(3.13), the standard a priori estimate of Lemma
3.6.1, together with estimate (3.48) for the initial data at time δε, yields for any t ≥ δε

‖u2,ε(., t)‖2L2(Ωε)
+ ε‖v2,ε(., t)‖2L2(∂Ωε)

≤ Cε2/δ0.

Thus, the sequence (u2,ε, v2,ε) strongly converges to 0. The initial data in (3.49) are well prepared
but we cannot apply directly our previous results because the initial time δε 6= 0 is varying with
ε. The new difficulty is to prove that the initial data of (3.49) strongly two-scale converge with
drift to some limit.
Let us recall the existence of a uniformly bounded extension operator [1] from H1(Ωε) into
H1(Rd). Thus, the sequence uε(δε, x) can be thought of being defined in the whole space Rd

and, by virtue of (3.48) it satisfies the bound ‖uε(δε, x)‖2H1(Rd)
≤ C/δ0. Shifting the sequence

does not change its bound, so we have

‖uε(δε, x+ (b∗/ε)δε)‖2H1(Rd) ≤ C/δ0. (3.51)

Together with Lemma 3.10.2 which says that the L2-norm of uε(δε, x+(b∗/ε)δε) does not escape
at infinity, we deduce from (3.51) that this sequence is (pre-)compact in L2(Rd). Therefore, up
to a subsequence, uε(δε, x+ (b∗/ε)δε) converges strongly to some limit ũ0(x) in L2(Rd).
Thus we can use the same arguments as in the case of well-prepared initial data to conclude that
u1,ε and v1,ε strongly two-scale converge with drift to ũ(t, x) and Kũ(t, x) respectively where ũ
satisfies the following limit equation of (3.49)

{
Kd ∂tũ = divx (D∇xũ) in (δ, T )× Rd

Kd ũ(δ, x) = |Y 0|ũ0(x) + |∂Σ0|d−1ũ
0(x), x ∈ Rd

(3.52)

where Kd = |Y 0|+K|∂Σ0|d−1 and D is given by (3.29). In particular,

lim
ε→0

‖u1,ε‖2L2((δε,T )×Ωε)
= |Y 0|‖ũ‖2

L2((δ,T )×Rd)

and
lim
ε→0

ε‖v1,ε‖2L2((δε,T )×∂Ωε)
= K2|∂Σ0|‖ũ‖2

L2((δ,T )×Rd)
.

Of course, since uε was converging weakly to u0, we deduce that ũ(t, x) = u0(t, x) for t ≥ δ, and

lim
ε→0

‖uε‖2L2((δε,T )×Ωε)
= |Y 0|‖u0‖2L2((δ,T )×Rd)

lim
ε→0

ε‖vε‖2L2((δε,T )×∂Ωε)
= K2|∂Σ0|‖u0‖2L2((δ,T )×Rd)

.
(3.53)

Now, let us assume that there is a lack of strong two-scale convergence for (uε, vε), namely that
the L2-norm of this sequence is not continuous (as required by (??) in Proposition 2.6.7). In
other words, either

lim
ε→0

‖uε‖2L2((0,T )×Ωε)
> |Y 0|‖u0‖2L2(Rd×(0,T )) (3.54)
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or
lim
ε→0

ε‖vε‖2L2((0,T )×∂Ωε)
> K2|∂Σ0|‖u0‖2L2(Rd×(0,T )). (3.55)

Lemma 3.6.1 implies that ‖uε(t)‖2L2(Ωε)
+ ε‖vε(t)‖2L2(∂Ωε)

≤ C uniformly in time. So, we can
find a small δ0 > 0 such that, the same strict inequalities hold true on a smaller time interval,
namely, either

lim inf
ε→0

‖uε‖2L2((δ,T )×Ωε)
> |Y 0|‖u0‖2L2((0,T )×Rd) for any 0 < δ < δ0, (3.56)

or
lim inf
ε→0

ε‖vε‖2L2((δ,T )×∂Ωε)
> K2|∂Σ0|‖u0‖2L2((0,T )×Rd) for any 0 < δ < δ0. (3.57)

Obviously, (3.56) or (3.57) contradicts (3.53). Therefore, there must be continuity of the L2-
norm of (uε, vε) and both (3.54) and (3.55) must be equalities. Thus, we have proved the strong
two-scale convergence with drift in case of a general initial data.

Lemma 3.10.2. Let uε(t, x) be the solution of (3.11)-(3.13). For any δ > 0 there is R(δ) > 0
such that, for any t ∈ [0, T ],

∥∥∥uε
(
t, x+

b∗

ε
t
)∥∥∥

L2(Ωε∩{x≥R(δ)})
≤ δ.

Proof. We again follow an idea of [20]. Let φ ∈ C∞(R) be a cut–off function such that 0 ≤
φ(r) ≤ 1, φ = 0 for r ≤ 1, φ = 1 for r ≥ 2. For x ∈ Rd, denote φR(x) = φ(|x|/R) and
φεR(t, x) = φR(x − b∗t/ε). In the variational formulation (3.40) of system (3.11)-(3.12) we
take the test function {uε(t, x)φεR(t, x), vε(t, x)φεR(t, x)} and we integrate by parts the time and
convective derivatives (calculations are shown one term at a time)

2

t∫

0

∫

Ωε

∂uε
∂t

(s, x)uε(s, x)φ
ε
R(s, x) ds dx =

t∫

0

∫

Ωε

b∗

ε
· ∇φεR(s, x)(uε(s, x))2 ds dx

+

∫

Ωε

φεR(t, x)(uε(t, x))
2 dx−

∫

Ωε

φR(x)(u
0(x))2 dx,

2

t∫

0

∫

Ωε

bε
ε
· ∇uε(s, x)uε(s, x)φεR(s, x) ds dx = −

t∫

0

∫

Ωε

bε
ε
· ∇φεR(s, x)(uε(s, x))2 ds dx,

2ε

K

t∫

0

∫

∂Ωε

∂vε
∂t

φεRvε ds dσ(x) =

t∫

0

∫

∂Ωε

b∗

K
· ∇φεR(vε)2 ds dσ(x)

+
ε

K

∫

∂Ωε

φεR(vε)
2 dσ(x)− ε

K

∫

∂Ωε

φR(x)(v
0(x))2 dσ(x),

2

K

t∫

0

∫

∂Ωε

bsε · ∇svεvεφ
ε
R ds dσ(x) = − 1

K

t∫

0

∫

∂Ωε

(vε)
2bsε · ∇sφεR ds dσ(x).

This yields

1

2

∫

Ωε

φεR(t, x)(uε(t, x))
2 dx+

t∫

0

∫

Ωε

Dε∇uε · ∇uεφεR ds dx
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+
ε

2K

∫

∂Ωε

φεR(t, x)(vε(t, x))
2 dσ(x) +

ε

K

t∫

0

∫

∂Ωε

Ds
ε∇svε · ∇svεφ

ε
R ds dσ(x)

+
κε

ε2

t∫

0

∫

∂Ωε

φεR
(
uε −K−1vε

)2
ds dσ(x)

= −
t∫

0

∫

Ωε

uεDε∇uε · ∇φεR ds dx− ε

K

t∫

0

∫

∂Ωε

vεD
s
ε∇svε · ∇sφεR ds dσ(x)

+

t∫

0

∫

Ωε

1

ε
(bε − b∗) · ∇φεR (uε)

2ds dx+
1

2

∫

Ωε

φR(x)(u
0(x))2 dx

+

t∫

0

∫

∂Ωε

1

K
(bsε − b∗) · ∇sφεR(vε)

2ds dσ(x) +
ε

2K

∫

∂Ωε

φR(x)(v
0(x))2 dσ(x) (3.58)

Due to the a priori estimate of Lemma 3.6.1 and the definition of φR, the first and second
integrals on the right hand side of (3.58) are uniformly bounded by C/R. The terms involving
the initial data (u0(x), v0(x)) do not depend on ε and tend to zero as R tends to ∞. To get a
bound on the remaining (convective) terms on the right hand side of (3.58), we rely again on the
auxiliary problem (3.42) which allows us to remove the ε−1 singularity of the convective terms

t∫

0

∫

Ωε

1

ε
(bε − b∗) · ∇φεR(uε)2ds dx+

t∫

0

∫

∂Ωε

1

K
(bsε − b∗) · ∇sφεR(vε)

2ds dσ(x) (3.59)

= ε
d∑

i=1

t∫

0

∫

Ωε

∇αε
i · ∇

(
(uε)

2∂xi
φεR

)
ds dx+K

t∫

0

∫

∂Ωε

∇φεR ·
(
b∗ − bsε

) (
(uε)

2 −K−2(vε)
2
)
ds dσ(x).

Since (u2ε − K−2v2ε) = (uε + K−1vε)(uε − K−1vε) and ε∇αε
i (x) = (∇yαi) (x/ε), the a priori

estimates of Lemma 3.6.1 imply that (3.59) is uniformly bounded by C/R too, which yields the
desired statement.

3.11 Slow reaction

We shall consider a different scaling for the reaction as is done in [81], [109]. It should be noted,
however, that the scaling considered in [81] and [109] isn’t in the strong convection regime. We
shall only be scaling the reaction parameter by κ → ε2κ in (3.11)-(3.13). In other words, the
reaction is considered to be small. As far as this section is considered, we shall be working with
the following coupled parabolic equations in the ε-periodic porous domain.

∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) × Ωε, (3.60)

−Dε

ε
∇uε · n =

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) = κ
(
uε −

vε
K

)
on (0, T )× ∂Ωε, (3.61)

uε(0, x) = uin(x) in Ωε, vε(0, x) = vin(x) on ∂Ωε. (3.62)

Under this scaling, the homogenization result is very different from the one obtained in the
previous sections.
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Lemma 3.11.1. There exists a constant C, independent of ε, such that

‖uε‖L∞((0,T );L2(Ωε)) +
√
ε‖vε‖L∞((0,T );L2(∂Ωε))

+‖∇uε‖L2((0,T )×Ωε) +
√
ε‖∇svε‖L2((0,T )×∂Ωε)

+
√
ε
∥∥∥uε −

vε
K

∥∥∥
L∞((0,T );L2(∂Ωε))

≤ C
(∥∥uin

∥∥
L2(Rd)

+ ‖vin‖H1(Rd)

)
,

(3.63)

Proof. As usual, the approach we shall take to derive the a priori estimates is via energy esti-
mates. Let us multiply (3.60) by uε and integrate over Ωε

1

2

d

dt

∫

Ωε

|uε|2 dx+

∫

Ωε

Dε∇uε · ∇uε dx+ κε

∫

∂Ωε

(uε − vε) uε dσ(x) = 0.

Then, let us multiply the second part of (3.61) by εvε and integrate over ∂Ωε

ε

2

d

dt

∫

∂Ωε

|vε|2 dσ(x) + ε

∫

∂Ωε

Ds
ε∇svε · ∇svε dσ(x)− κε

∫

∂Ωε

(uε − vε) vε dσ(x) = 0.

Adding the above two equations results in the energy equality

1

2

d

dt

∫

Ωε

|uε|2 dx+

∫

Ωε

Dε∇uε · ∇uε dx+
ε

2

d

dt

∫

∂Ωε

|vε|2 dσ(x)

+ε

∫

∂Ωε

Ds
ε∇svε · ∇svε dσ(x) + κε

∫

∂Ωε

(uε − vε)
2 dσ(x) = 0

Integrating the above energy equality with respect to time on the time interval (0, T ) yields the
a priori estimates as in (3.63).

In the homogenization result regarding (3.11)-(3.13) given by the Proposition 3.7.2, the induced
drift b∗ in the concentration profiles was given by (3.27). Both the bulk velocity field b and the
surface velocity field bs contributed to the drift b∗ as suggested by the expression (3.27). Also,
the drift velocity happened to be the same for both the bulk and surface concentrations. The
two-scale limits for both {uε} and {vε} were given by u0 which is characterized by the single
effective diffusion equation (3.28). Here the situations is different. We consider different drift
velocities for the two concentrations.

uε(t, x) =

∞∑

i=0

εiui

(
t, x− b∗1t

ε
,
x

ε

)
(3.64)

and

vε(t, x) =

∞∑

i=0

εivi

(
t, x− b∗2t

ε
,
x

ε

)
(3.65)

Proposition 3.11.2. Define two constants b∗1, b
∗
2 ∈ Rd by

b∗1 =
1

|Y 0|

∫

Y 0

b(y) dy and b∗2 =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y). (3.66)

Then the solution (uε, vε) for (3.60)-(3.62), under the assumption (3.64)-(3.65), formally satisfy

uε(t, x) ≈ u0

(
t, x− b∗1t

ε

)
+ εu1

(
t, x− b∗1t

ε
,
x

ε

)
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vε(t, x) ≈ v0

(
t, x− b∗2t

ε

)
+ εv1

(
t, x− b∗2t

ε
,
x

ε

)
.

In case the drift velocities b∗1 = b∗2 = b∗ (say), the zero order approximations u0, v0 satisfy the
following coupled effective equations





|Y 0|∂u0
∂t

+ κ|∂Σ0|
(
u0 −

v0
K

)
= div(A∗∇xu0) in Rd × (0, T ),

|∂Σ0|∂v0
∂t

− κ|∂Σ0|
(
u0 −

v0
K

)
= div(B∗∇xv0) in Rd × (0, T )

(3.67)

with the dispersion tensors A∗ and B∗ given by

A∗
ij =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy (3.68)

B∗
ij =

∫

∂Σ0

Ds(y)
(
∇s

yωi + ei
)
·
(
∇s

yωj + ej
)
dσ(y) (3.69)

with (χ, ω) = (χi, ωi)1≤i≤d being the solution of the cell problem such that

u1(t, x, y) =

d∑

i=1

χi(y)
∂u0
∂xi

(t, x) v1(t, x, y) =

d∑

i=1

ωi(y)
∂v0
∂xi

(t, x). (3.70)

and the cell problem satisfied by (χi, ωi), for every 1 ≤ i ≤ d, is




b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

−D(∇yχi + ei) · n = 0 on ∂Σ0,

y → χi(y) Y − periodic.

(3.71)

and the surface cell problem satisfied by ωi is
{
bs(y) · ∇s

yωi − divsy(D
s(∇s

yωi +Kei)) = (b∗ − bs) · ei on ∂Σ0,

y → ωi(y) Y − periodic.
(3.72)

In case the drift velocities b∗1 6= b∗2, the zero order approximations u0 and v0 satisfy the following
homogenized equations.

{
|Y 0|∂u0

∂t
+ κ|∂Σ0|u0 = div(A∗∇xu0) in Rd × (0, T ) (3.73)

{
|∂Σ0|∂v0

∂t
+
κ

K
|∂Σ0|v0 = div(B∗∇xv0) in Rd × (0, T ) (3.74)

The dispersion tensors A∗ and B∗ are given by (3.68) and (3.69) respectively which are in terms
of the solutions (χi, ωi) for the cell problems





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗1 − b) · ei in Y 0,

−D(∇yχi + ei) · n = 0 on ∂Σ0,

y → χi(y) Y -periodic.

(3.75)

{
bs(y) · ∇s

yωi − divsy(D
s(∇s

yωi +Kei)) = (b∗2 − bs) · ei on ∂Σ0,

y → ωi(y) Y -periodic.
(3.76)
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Proof. Case I: b∗1 = b∗2 = b∗

Plugging the expressions for uε and vε from (3.64)-(3.65) into the coupled equations (3.60)-(3.62),
we identify the cascade of equations as the coefficients of various powers of ε.

At order ε−2: 



b(y) · ∇yu0 − divy(D(y)∇yu0) = 0 in Y 0,

−D∇yu0 · n = 0 on ∂Σ0,

bs(y) · ∇s
yv0 − divsy(D

s(y)∇s
yv0) = 0 on ∂Σ0,

y → (u0(y), v0(y)) Y − periodic.

(3.77)

From (3.78), it follows that (u0, v0) are independent of the fast variable y. Note that there is no
contribution from the reaction in (3.77) because of the chosen scaling for the reaction rate.
At order ε−1:





−b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 in Y 0,

−D(y)(∇xu0 +∇yu1) · n = 0 on ∂Σ0,

−b∗ · ∇xv0 + bs(y) · (∇xv0 +∇s
yv1)− divsy(D

s(y)(∇xv0 +∇s
yv1)) = 0 on ∂Σ0,

y → (u1(y), v1(y)) Y − periodic.

(3.78)

By linearity of (3.78) we deduce that

u1(t, x, y) = χ(y) · ∇xu0 and v1(t, x, y) = ω(y) · ∇xv0

where χi and ωi are the solutions of the cell problems (3.71) and (3.72) respectively. The
compatibility condition for the well-posedness of the cell problems give the expressions for the
common drift velocity b∗ given by (3.66).

At order ε0:





∂u0
∂t

− b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)

−divx(D(y)(∇xu0 +∇yu1))− divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

−D(y)(∇yu2 +∇xu1) · n = κ
(
u0 −

v0
K

)
on ∂Σ0,

∂v0
∂t

− b∗ · ∇xv1 + bs(y) · (∇xu1 +∇s
yu2)− divx(D

s(y)(∇xv0 +∇s
yv1))

−divsy(D
s(y)(∇xv1 +∇s

yv2)) = κ
(
u0 −

v0
K

)
on ∂Σ0,

y → (u2(y), v2(y)) Y − periodic.

(3.79)

The compatibility conditions for the well-posedness of (3.79) for (u2, v2) results in the coupled
homogenized equation (3.67).

Case II: b∗1 6= b∗2

Now let us analyse the case where the bulk drift and the surface drift don’t match. Upon
plugging in (3.64)-(3.65) into the coupled equations (3.60)-(3.62), we find the same system as
(3.77) at order ε−2. Also at order ε−1, we find a system similar to (3.78) except for the different
drifts in the bulk and on the surface of the pore. The system we get is the following.
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



−b∗1 · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 in Y 0,

−D(y)(∇xu0 +∇yu1) · n = 0 on ∂Σ0,

−b∗2 · ∇xv0 + bs(y) · (∇xv0 +∇s
yv1)− divsy(D

s(y)(∇xv0 +∇s
yv1)) = 0 on ∂Σ0,

y → (u1(y), v1(y)) Y -periodic.

(3.80)

The values of b∗1 and b∗2 from (3.66) guarantee the well-posedness of the above system. By
invoking linearity of (3.80), we deduce that the first order correctors u1 and v1 can be decomposed
in terms of the cell solutions and the gradient of the zero order approximation as in (3.70). The
cell problems corresponding to this case of different bulk and surface drift velocities are (3.75)
and (3.75).
Next, at the order ε0 we recognize the following equations for u2 and v2.





∂u0
∂t

− b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)

−divx(D(y)(∇xu0 +∇yu1))− divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

−D(y)(∇yu2 +∇xu1) · n = κu0 on ∂Σ0,

y → u2(y) Y -periodic.

(3.81)





∂v0
∂t

− b∗ · ∇xv1 + bs(y) · (∇xu1 +∇s
yu2)− divx(D

s(y)(∇xv0 +∇s
yv1))

−divsy(D
s(y)(∇xv1 +∇s

yv2)) = − κ

K
v0 on ∂Σ0,

y → v2(y) Y -periodic.

(3.82)

Notice that the coupling terms haven’t appeared in the above two equations (3.81) and (3.82).
The compatibility condition for the well-posedness of (3.81) for u2 results in the homogenized
equation (3.73) and the compatibility condition for the well-posedness of (3.82) for v2 results in
the homogenized equation (3.73).

Now, we state a result that justifies the upscaling done formally in Proposition 3.11.2.

Proposition 3.11.3. Assume that

b∗1 =
1

|Y 0|

∫

Y 0

b(y) dy =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y) = b∗2 = b∗(say).

There exists u0, v0 ∈ L2((0, T );H1(Rd)), u1 ∈ L2((0, T ) × Rd;H1
#(Y

0)) and v1 ∈ L2((0, T ) ×
Rd;H1

#(∂Σ
0)) such that the solution sequences {uε} and {vε}, two-scale converge with drift b∗,

in the following sense.





uε
2−drift−−−−⇀ u0(t, x)

vε
2s−drift−−−−−⇀ v0(t, x)

∇uε 2−drift−−−−⇀ ∇xu0(t, x) +∇yu1(t, x, y)

∇svε
2s−drift−−−−−⇀ ∇xv0(t, x) +∇s

yv1(t, x, y)(
uε −

vε
K

)
2s−drift−−−−−⇀ u0(t, x)−

v0
K

(t, x)

(3.83)
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The two-scale limits u0 and v0 satisfy the following coupled effective equations.





|Y 0|∂u0
∂t

+ κ|∂Σ0|
(
u0 −

v0
K

)
= div(A∗∇xu0) in Rd × (0, T ),

|∂Σ0|∂v0
∂t

− κ|∂Σ0|
(
u0 −

v0
K

)
= div(B∗∇xv0) in Rd × (0, T )

(3.84)

The dispersion tensors A∗ and B∗ are given by (3.68) and (3.69) respectively which are in terms
of the solutions (χi, ωi) for the cell problem





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

−D(∇yχi + ei) · n = 0 on ∂Σ0,

bs(y) · ∇s
yωi − divsy(D

s(∇s
yωi +Kei)) = (b∗ − bs) · ei on ∂Σ0,

y → (χi(y), ωi(y)) Y − periodic.

(3.85)

In case the drift velocities b∗1 6= b∗2, the two-scale limits as given in (3.83) hold except for the last
line. The homogenized equations satisfied by u0 and v0 are decoupled.

{
|Y 0|∂u0

∂t
+ κ|∂Σ0|u0 = div(A∗∇xu0) in Rd × (0, T ) (3.86)

{
|∂Σ0|∂v0

∂t
+
κ

K
|∂Σ0|v0 = div(B∗∇xv0) in Rd × (0, T ) (3.87)

The dispersion tensors A∗ and B∗ are given by (3.68) and (3.69) respectively which are in terms
of the solutions (χi, ωi) for the cell problems





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗1 − b) · ei in Y 0,

−D(∇yχi + ei) · n = 0 on ∂Σ0,

y → χi(y) Y − periodic.

(3.88)

{
bs(y) · ∇s

yωi − divsy(D
s(∇s

yωi +Kei)) = (b∗2 − bs) · ei on ∂Σ0,

y → ωi(y) Y − periodic.
(3.89)

Proof. Suppose b∗1 = b∗2 = b∗ ∈ Rd. The compactness of the sequences in (3.83) follow di-
rectly from the a priori estimates (3.63) and the compactness results of Propositions 2.3.3, 2.7.3
from Chapter 2. let us consider the variational formulation for (3.60)-(3.62) by test functions
(φε, εK

−1ψε):

φε(t, x) = φ
(
t, x− b∗t

ε

)
+ ε φ1

(
t, x− b∗t

ε
,
x

ε

)

and

ψε(t, x) = ψ
(
t, x− b∗t

ε

)
+ εψ1

(
t, x− b∗t

ε
,
x

ε

)
.

T∫

0

∫

Ωε

[
∂uε
∂t

φε +
1

ε
bε · ∇uεφε +Dε∇uε · ∇φε

]
dx dt

+
ε

K

T∫

0

∫

∂Ωε

[
∂vε
∂t

ψε +
1

ε
bsε · ∇svεψε +Ds

ε∇svε · ∇sψε

]
dσε(x) dt
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+εκ

T∫

0

∫

∂Ωε

(
uε −

vε
K

)(
φε −

ψε

K

)
dσε(x) dt = 0.

We shall use the auxiliary problem (3.42) to take care of the singular terms in the above vari-
ational formulation as is done in Section 3.9. Taking (φ,ψ) ≡ 0, we shall pass to the limit in
the above variational formulation taking into account (3.83) resulting in the cell problem (3.85).
Then we take (φ1, ψ1) ≡ 0 in the variational formulation followed by passing to limit in arriving
at a variational formulation for the coupled effective equations (3.84).

Now for the case b∗1 6= b∗2. Taking the test functions with different drifts as

φε(t, x) = φ
(
t, x− b∗1t

ε

)
+ ε φ1

(
t, x− b∗1t

ε
,
x

ε

)

and

ψε(t, x) = ψ
(
t, x− b∗2t

ε

)
+ εψ1

(
t, x− b∗2t

ε
,
x

ε

)
.

The calculations carry on as before except for the coupled term

κε

T∫

0

∫

∂Ωε

(
uε −

vε
K

)(
φ
(
t, x− b∗1t

ε

)
− ψ

K

(
t, x− b∗2t

ε

))
dσε(x) dt

2s−drift−−−−−⇀ κ

T∫

0

∫

Rd

∫

∂Σ0

u0(t, x)φ(t, x) dσ(y) dx dt +
κ

K2

T∫

0

∫

Rd

∫

∂Σ0

v0(t, x)ψ(t, x) dσ(y) dx dt

as the two-scale limit for uε vanishes for the test functions with drift b∗2 and the two-scale limit
for vε vanishes for the test functions with the drift b∗1. Taking into consideration the above
two-scale limit and redoing the calculations as in the proof of the homogenization process of
Section 3.9, we arrive at the homogenized equations (3.86) and (3.87) for u0 and v0 respectively.
Also, the cell problem isn’t coupled anymore.

3.12 Compressible flows

Until now, we have had the assumption of null divergence on the velocity fields b and bs. In
this section, we shall be ignoring this assumption. We shall, however, leave the assumption of
periodicity. We present the analysis for a convection-diffusion equation of a single solute in the
absence of reactions. The model we wish to analyze is the following.

∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) × Ωε, (3.90)

−Dε∇uε · n = 0 on (0, T ) × ∂Ωε, (3.91)

uε(0, x) = uin(x) in Ωε (3.92)

We make the regularity assumption b ∈ L∞
# (Ωf ;R

d) on the velocity field. Also, we assume that
div(b) ∈ L∞

# (Ωf ;R) although this regularity can be slightly weakened. We also assume that
b(y) · n ∈ L∞

# (∂Ωs;R). Let us derive energy estimates for our model. Multiplying (3.90) by the
solution uε

1

2

d

dt

∫

Ωε

|uε|2 dx+
1

2ε

∫

Ωε

bε · ∇|uε|2 dx+

∫

Ωε

Dε∇uε · ∇uε dx = 0
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After an integration by parts

1

2

d

dt

∫

Ωε

|uε|2 dx− 1

2ε

∫

Ωε

div(bε)|uε|2 dx− 1

2ε

∫

∂Ωε

bε · n|uε|2 dσ(x) +
∫

Ωε

Dε∇uε · ∇uε dx = 0

which implies

1

2

d

dt
‖uε‖2L2 +

∫

Ωε

Dε∇uε · ∇uε dx =
1

2ε

∫

Ωε

div(bε)|uε|2 dx+
1

2ε

∫

∂Ωε

bε · n|uε|2 dσ(x) (3.93)

We have the following Poincaré type inequality (proved in [67])

ε

∫

∂Ωε

|uε|2 dσ(x) ≤ δε

∫

Ωε

|∇uε|2 dx+
1

δε

∫

Ωε

|uε|2 dx (3.94)

for some positive constant depending on ε. Using (3.94), we can bound the right hand side of
(3.93) by

≤ 1

2ε

∥∥∥div(bε)
∥∥∥
L∞

∥∥∥uε
∥∥∥
2

L2
+

1

δε

∥∥∥bε
∥∥∥
L∞

∥∥∥uε
∥∥∥
2

L2
+ δε

∥∥∥∇uε
∥∥∥
2

L2

=⇒ 1

2

d

dt
‖uε‖2L2 ≤ 1

2ε

(
‖div(bε)‖L∞ +

1

δε
‖bε‖L∞

)
‖uε‖2L2

Thus by Gronwall’s inequality

‖uε‖2 ≤ ‖uin‖2 exp
( t∫

0

(1
ε
‖div(bε)‖L∞ +

1

δε
‖bε‖L∞

)
ds
)

=⇒ ‖uε‖2 ≤ exp
( t
ε
‖div(bε)‖L∞ +

t‖bε‖L∞

εδε

)
‖uin‖2

So, it is not possible to derive a priori estimates for uε with constant independent of ε. However,
for a fixed ε, we have the following estimates.

‖uε‖L2((0,T );H1(Ωε)) ≤ Cε (3.95)

To upscale the model at hand, we tend to employ the method of two-scale convergence. As
Propositions 2.6.4 and 2.6.6 suggest, we need uniform estimates independent of ε. But the
constant Cε in (3.95) isn’t independent of ε. So we cannot straightaway apply the compactness
results of Chapter 2. Here we shall take cues from [25] where a method of Factorization is
employed in arriving at a homogenized equation for a convection-diffusion-reaction equation
with a divergent velocity flow.
The principle of the Factorization method is quite simple as explained in Section 2.8 of Chapter
2. In the formal analysis of Section 3.7, we deduced that the first term in the ansatz for the
solute concentration uε is independent of the fast variable y. In case of some partial differential
equations, however, the oscillations are present even in the first term of the ansatz. There
are examples where one can factor out the oscillations from the solutions. This method was
introduced in [161]. The oscillations that we factor out comes off as a eigenfunction for a
spectral problem.





b(y) · ∇yϕ− divy

(
D(y)∇yϕ

)
= λϕ in Y 0,

−D(y)∇yϕ · n = 0 on ∂Σ0,

y → ϕ(y) Y -periodic.

(3.96)
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The adjoint of the above spectral problem.




−divy(b(y)ϕ
∗)− divy

(
D(y)∇yϕ

∗
)
= λϕ∗ in Y 0,

D(y)∇yϕ
∗ · n+ b(y) · nϕ∗ = 0 on ∂Σ0,

y → ϕ∗(y) Y -periodic.

(3.97)

The existence of the first simple eigenvalue λ > 0 and the first eigenfunctions ϕ > 0 and ϕ∗ > 0
for the spectral and the adjoint spectral problem (3.96)-(3.97) follows from the Krein-Rutman
Theorem [108], [152]. The uniqueness follows from the chosen normalization.

∫

Y 0

ϕ(y)ϕ∗(y) dy = 1. (3.98)

Using the eigenfunction associated with both the direct and the adjoint spectral cell problems
(3.96) and (3.97), we define modified velocity field and diffusion matrix as

b̃(y) = ϕϕ∗b(y) + ϕD(y)∇yϕ
∗ − ϕ∗D(y)∇yϕ (3.99)

and
D̃(y) = ϕϕ∗D(y) (3.100)

We consider the following ansatz for uε

uε(t, x) = exp(−λt/ε2)
∑

i≥0

εiui

(
t, x− b∗t

ε
,
x

ε

)
. (3.101)

Proposition 3.12.1. If the ansatz for the solution uε of (3.90)-(3.92) in (3.101) is true, then
the solution formally satisfies

uε(t, x) ≈ exp(−λt/ε2)ϕ
(x
ε

)[
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ωi

(x
ε

)]
(3.102)

where ωi(y), for every 1 ≤ i ≤ d, satisfy a so called cell problem.




b̃(y) ·
(
∇yωi + ei

)
− divy

(
D̃(y)

(
∇yωi + ei

))
= ϕϕ∗b∗ · ei in Y 0,

−D̃(y)(∇yωi + ei) · n = 0 on ∂Σ0,

y → ωi(y) Y -periodic

(3.103)

and the effective drift is given by

b∗ =

∫

Y 0

b̃(y) dy. (3.104)

Further, v in (3.102) satisfies the following homogenized equation:




∂v

∂t
− div(D∇v) = 0 in (0, T ) ×Rd,

v(0, x) = uin(x)

∫

Y 0

ϕ∗(y) dy in Rd.
(3.105)

where D is defined by

Dij =

∫

Y 0

D̃(y)
(
∇yωi + ei

)
·
(
∇yωj + ej

)
dy. (3.106)
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We refrain from proving the above formal result as the needed arguments shall be given in the
Chapter 5 on upscaling multicomponent flows where we will be employing again the method of
factorization. Now we shall present the rigorous approach. Let us make the following change of
unknown.

uε(t, x) = exp(−λt/ε2)ϕ
(x
ε

)
vε(t, x) (3.107)

Using (3.107) in the (3.90)-(3.92), we write down the partial differential equation for vε.

Lemma 3.12.2. The unknown vε from (3.107) satisfy





ϕϕ∗ ∂vε
∂t

+
1

ε
b̃ε · ∇vε − div

(
D̃ε∇vε

)
= 0 in (0, T ) ×Ωε,

vε(0, x) = uin(x)

∫

Y 0

ϕ∗(y) dy in Ωε.
(3.108)

Proof. Definition of the change of unknown (3.107) makes sense due to the positivity of ϕ, the
eigenfunction for the spectral problem (3.96). In order to plug the expressions (3.107) in (3.90),
we shall use the following chain rule formulae

∂uε
∂t

(t, x) =
−λ
ε2

exp(−λt/ε2)ϕ
(x
ε

)
vε(t, x) + exp(−λt/ε2)ϕ

(x
ε

)∂vε
∂t

(t, x),

∇
(
uε(t, x)

)
=

1

ε
exp(−λt/ε2)vε(t, x)

(
∇yϕ

)(x
ε

)
+ exp(−λt/ε2)ϕ

(x
ε

)
∇xvε(t, x).

Upon substitution, we shall multiply the thus obtained system by the adjoint eigenfunction ϕ∗

to arrive at (3.108).

We remarked earlier in (3.95) that the estimates on uε weren’t uniform in ε. The divergence
of b being non zero prevented us from having uniform estimates. The modified velocity field b̃
appearing in (3.108) is however of divergence zero.

−divy

(
b̃(y)

)
= −divy

(
ϕϕ∗b(y)

)
− divy

(
ϕD(y)∇yϕ

∗
)
+ divy

(
ϕ∗D(y)∇yϕ

)

= −ϕ∗
(
b(y) · ∇yϕ− divy

(
D(y)∇yϕ

))
+ ϕ

(
− divy

(
ϕ∗b(y)

)
− divy

(
D∇yϕ

∗
))

= 0. (3.109)

where we used information from the spectral cell problem (3.96) and its adjoint spectral cell
problem (3.97).

Lemma 3.12.3. Let vε be a weak solution of (3.108). There exists a constant C, independent
of ε, such that

‖vε‖L∞((0,T );L2(Ωε)) + ‖∇vε‖L2((0,T )×Ωε) ≤ C‖vin‖L2(Rd) (3.110)

Proof. To derive the a priori estimates, we shall multiply (3.108) by vε and integrate over Ωε to
arrive at the following energy estimate.

1

2

d

dt

∫

Ωε

ϕϕ∗|vε|2 dx+

∫

Ωε

D̃ε∇vε · ∇vε dx = 0.

We shall now integrate over (0, T ). The positivity of the eigenfunctions ϕ and ϕ∗ and the
coercivity of D̃ leads to the a priori estimate (3.110).
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Theorem 3.12.4. There exists v ∈ L2((0, T );H1(Rd)) and v1 ∈ L2((0, T ) × Rd;H1
#(Y

0)) such

that the sequence of concentrations {vε} ∈ L2((0, T );H1(Ωε)), solutions of (3.108), two-scale
converge with drift b∗, up to a subsequence, as ε→ 0, in the following sense

vε
2−drift−−−−⇀ v, ∇vε 2−drift−−−−⇀ ∇xv +∇yv1. (3.111)

The two-scale limit v solves the homogenized diffusion equation (3.105) with the expression for
the dispersion tensor given by (3.106) in terms of the solutions ωi of the cell problem (3.103).
Also the two-scale limit v1 is written in terms of the cell solutions as

v1(t, x, y) =

d∑

i=1

ωi(y)
∂v0
∂xi

. (3.112)

The existence of two-scale limits follow from the compactness results of two-scale convergence
with drift. The arguments to show that the limits satisfy the homogenized equation and the cell
problem are similar to the ones done in the proof of Theorem 3.9.1. We shall not be repeating
them here.

3.13 Numerical study

This section is devoted to the numerical computation of the cell problems and of the homoge-
nized coefficients, given by Proposition 3.7.2, and to the study of their variations according to
various parameters in the microscopic model. We have used the Freefem++ package [141] to
perform some numerical tests in two dimensions. We have used Lagrange P1 finite elements
with 33586 vertices (degrees of freedom) with characteristic Galerkin method for the convective
term. The periodicity cell is the unit square and the solid obstacle is a disk. Table 3.1 gives the
adimensionalized values of the parameters utilized in our simulations.

Parameters Values

Radius of the obstacle r 0.2

Equilibrium constant K 1

Porosity : |Y 0| = 1− r2π 0.874357

Tortuosity : |∂Σ0| = 2πr 1.25664

Kd factor : |Y 0|+K|∂Σ0| 2.13099

Surface velocity bs 0

Mean velocity

∫

Y 0

b(y) dy (0.0385,−2.67 × 10−5)

Adsorption rate κ0 1

Bulk molecular diffusion D 1

Surface molecular diffusion Ds 1

Table 3.1: Parameter values

The velocity profile b(y) is generated by solving the following Stokes problem in the fluid part
Y 0 of the unit cell. 




∇yp−∆yb = e1 in Y 0,
divyb = 0 in Y 0,
b = 0 on ∂Σ0,
p, b Y -periodic.

(3.113)
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where e1 is the unit vector (1, 0). The drift velocity b∗ is then calculated using (3.27): we found

b∗ = (0.0180,−1.25 ∗ 10−5). (3.114)

In a first experiment we study the behavior of the longitudinal dispersion with respect to the
local Péclet number Peloc (we simply multiply the velocity field b(y) by an increasing factor) for
various values of Ds (see Figure 3.1). As can be expected the dispersion increases with Peloc.
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Figure 3.1: Behavior of the longitudinal dispersion with respect to Peloc for various values of
the surface molecular diffusion DS .

Clearly the dispersion increases with Ds too. However, as shown by Figure 3.2, the dispersion
reaches a limit as Ds goes to infinity. This can be explained formally by the fact that, in such a
case, the cell solution satisfies in the limit that (ωi +Kyi) is constant on the pore surface ∂Σ0.
In this limit, the bulk correctors χi satisfy the following limit problem





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

−D(∇yχi + ei) · n+Kb∗i =

κ

(
χi + yi − |∂Σ0|−1

∫

∂Σ0

(χi + yi)dσ(y)

)
on ∂Σ0,

y → χi(y) Y -periodic.

(3.115)
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Figure 3.2: Behavior of the effective dispersion with respect to Ds: longitudinal dispersion (left),
transverse dispersion (right).

In a second experiment we study the behavior of the longitudinal dispersion with respect to
the reaction rate κ. Interestingly enough, we observe an inversion phenomenon on the bulk
corrector χ1 (see Figures 3.3 and 3.4 where the grey scale goes from smaller values in white
to larger values in black). A similar inversion is exhibited by χ2 too. However, this inversion
phenomenon doesn’t appear in the absence of surface molecular diffusion, i.e., when Ds = 0.
For a given positive value of Ds, increasing κ implies that it may be more favorable for the
solute to “travel” close to the pore surface by using the surface diffusion. Therefore, the solid
pores may be seen as obstacles for small κ or attractors for large κ. It is probably easier to
interpret this inversion phenomenon on the “reconstructed” solution (χ1(y) + y1) rather than
on just on the cell solution χ1(y) (see Figures 3.5 and 3.6). Indeed, (χ1(y) + y1) corresponds
to a local linearization of the two first terms of the ansatz of uε as given in Proposition 3.7.2.
As the reaction rate increases, the isolines of this reconstructed concentration start to grace
off the obstacle, which implies that the orthogonal current lines of the concentration flux are
more and more attracted by the obstacle. It should be remarked here that this is a handicap
of performing only 2D numerical simulations. Indeed, it is only in 3D that both the fluid phase
and the solid structure can be connected, which only permits a fair comparison between surface
and bulk molecular diffusions.

Figure 3.3: The cell solution χ1: Left, reference value κ = κ0; Right, κ = 5κ0.
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Figure 3.4: The cell solution χ1: Left, κ = 6κ0; Right, κ = 8κ0.

Figure 3.5: The reconstructed solution χ1(y)+y1: Left, Reference value κ = κ0; Right, κ = 6κ0.

Figure 3.6: The reconstructed solution χ1(y) + y1: Left, κ = 12κ0; Right, κ = 19κ0.

In Figures 3.7 and 3.8 we plot the dispersion in two asymptotic regimes: κ → 0 and κ → ∞.
Once again when κ → ∞ we get an asymptote for the dispersion, corresponding to a limit cell
problem where Kχi = ωi. In this limit, the corresponding system satisfied by the bulk corrector
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χi is 



b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

−K−1D(∇yχi + ei) · n+ (b∗ − bs) · ei =

bs(y) · ∇s
yχi − divsy(D

s(∇s
yχi + ei)) on ∂Σ0,

y → χi(y) Y -periodic.

(3.116)

Of course, the transverse dispersion is always smaller than the longitudinal dispersion. Figures
3.7 and 3.8 show the blow-up behavior of both longitudinal and transverse dispersions when
κ→ 0. This is due to the ill-posedness of the cell problem (3.31) in the limit κ→ 0.
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Figure 3.7: Behavior of the longitudinal dispersion with respect to κ: when κ goes to 0 (left),
when κ goes to infinity (right).
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Figure 3.8: Behavior of the transverse dispersion with respect to κ: when κ goes to 0 (left),
when κ goes to infinity (right).

3.14 Comments

Locally periodic coefficients

In this chapter we have analysed the reactive transport of a single solute in presence of adsorp-
tion reaction on the pore boundaries. Bulk and solute concentrations were governed by coupled
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partial differential equations (3.11)-(3.13) with purely periodic coefficients i.e., bε(x) = b(x/ε),
Dε(x) = D(x/ε). The obvious question would be:

Is it possible to relax the pure periodicity assumption on the coefficients in (3.11)-(3.13) and
still homogenize the microscopic model ?

We can give a partial answer to this question. As far as the diffusion matrices D and Ds go, we
can consider them to be locally periodic i.e., Dε(x) = D(x, x/ε), Ds

ε(x) = Ds(x, x/ε) and still
the homogenization techniques used in this chapter to arrive at the effective equations apply.
The dispersion D that we found in Section 3.7 is symmetric and constant. We symmetrized
the expression for the dispersion during the process of upscaling as the Hessian matrix ∇2u0 is
symmetric. In case of locally periodic diffusion matrices, however, we shouldn’t symmetrize the
expression for D.

So there is a possibility of relaxing the pure periodicity assumption on the diffusion coefficients
in (3.11)-(3.13). This doesn’t extend to the velocity fields in (3.11)-(3.13). We are working in the
strong convection regime. As we explained in Section 2.6 of Chapter 2, the classical two-scale
asymptotic expansion method had to be modified by taking large drift in the slow variable. This
method of two-scale asymptotic expansions with drift considers only constant values for drift.
In the expression for the effective drift (3.27), if we blindly relax the pure periodicity conditions
on the velocity fields then the drift velocity b∗ isn’t a constant and this is not admissible. This is
one of the main technical reasons. Also the chain rule differentiation formulae (3.24) that we use
while performing the formal calculations do not hold true anymore if b∗ weren’t a constant. It
is to be noted that under special assumptions on the coefficients, G. Allaire and R. Orive in [22]
have shown that a new localization phenomenon can occur which is completely different from
the asymptotic behaviour proved in this Chapter. This highlights the need for the developments
of new tools in the theory of periodic homogenization.

Quantitative analysis

Quantification of the dispersion tensor is of crucial importance. In the regime of “strong con-
vection”, some of the results on deriving upper and lower bounds for the dispersion tensor can
be found in [138]. In this Chapter we have found expressions for different effective parameters
in terms of the local parameters. Even though in Section 3.13, we have attempted to study the
behaviour of those effective parameters with respect to local ones, it can be of value to pursue
the analysis to find optimal bounds on the effective parameters. There have been some astonish-
ing works in this regard in the absence of chemical reactions [93], [119]. In the cited references,
for example, it is proved that the dispersion increases or diminishes depending on whether the
mean value of the velocity field is rational or irrational. We could try to analyze if we arrive
at those results in the limit of reaction rate going to zero. In the general introduction to this
thesis (Chapter 1), we gathered some results on the upscaling of reactive flows in “Diffusion
dominated regime” [77], [97], [78], [79], [80], [81], [69], [68]. We could compare the effective
parameters obtained in that regime with those obtained in this Chapter.

Random porous media

All through this Chapter we have worked with only periodic porous medium and periodic co-
efficients. A. Bourgeat, A. Mikelić and S. Wright in [45] adapted the “two-scale convergence
method” of periodic regime to random regimes under some suitable stationarity assumptions. In
the large Péclet regime, we have learnt the need to modify the method of two-scale convergence
by the introduction of large drift in the slow variable. We can try to adapt this new notion of
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“two-scale convergence with drift” to random regimes in the spirit of [45]. If successful, we will
be able to find effective dispersion in large Péclet regime in random porous media. J. L. Auriault
in [32] argues that the random and periodic media present similar macroscopic description, when
it exists. So, the analysis of the system with randomly oscillating coefficients gets interesting.

Conclusions

Finally, this Chapter has analyzed all possible scenarios for the reactive transport of single solute
in periodic regime in presence of linear reaction terms. We have also seen that we recover the
previous results in this regime of “strong convection” in various asymptotic regimes. In the next
Chapter we move on to the homogenization problem related to a nonlinear adsorption isotherm.



Chapter 4

Langmuir isotherm in porous media

4.1 Introduction

As in Chapter 3, this chapter is devoted to the study of an adsorption process occurring at the
solid-fluid interface in an ε-periodic rigid porous medium. The novelty of the mesoscale model
considered in this chapter is the presence of nonlinear terms modelling the adsorption process as
opposed to the linear case studied in Chapter 3. We will be working with a convection diffusion
equation for the solute concentration in the bulk and a convection diffusion equation for the
adsorbed concentration on the pores surface, both being coupled by a nonlinear reaction term
modeling the adsorption phenomena at the solid fluid interface. We shall get into the modelling
and scaling aspects of the governing equations in Section 4.3. The presence of nonlinear terms
always gets interesting in the homogenization process. Starting with a linear coupled convec-
tion diffusion reaction equations in Chapter 3, we arrived at a scalar linear diffusion equation
in moving coordinates. In this chapter too, we shall be employing the method for two-scale
convergence with drift [121] (recalled in Section 2.6) to derive the effective equation. It would
be of interest to study how the nonlinearities are going to affect the homogenization result. The
drift velocity b∗ associated with the linear model (3.11)-(3.13) was shown to be equal to (3.27):

b∗ =

∫

Y 0

b(y) dy +K

∫

∂Σ0

bs(y) dσ(y)

|Y 0|+K|∂Σ0|d−1

.

The nonlinear isotherm (4.2) with which we will be working all through this chapter is that given
by Langmuir. An interesting exercise would be to derive an expression for the drift velocity
associated with the convection diffusion adsorption equations with the nonlinear isotherm (4.2).
In Section 2.9, we remarked that the drift velocity b∗ in the method of two-scale convergence
with drift has to be independent of the slow variable x. This handicap of the method necessitates
a technical assumption, in the current case of Langmuir adsorption, on the velocity fields which
amounts to say that the bulk and surface drifts are equal (their common value being called b∗

in the sequel)

1

|Y 0|

∫

Y 0

b(y) dy =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y) = b∗, (4.1)

where b(y) is a Y -periodic velocity field in the bulk Ωf and bs(y) is a Y -periodic velocity field on
the pores surface ∂Ωs. Such an assumption was not necessary in the linear case [10], [20], [17]
but is the price to pay for extending our previous results to the nonlinear case of the Langmuir
isotherm.

117
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Our main result (Theorem 4.8.1) says that the solution (uε, vε) of the coupled convection diffusion
reaction system (4.12)-(4.14) is approximatively given by the ansatz

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ εu1

(
t, x− b∗t

ε
,
x

ε

)
,

vε(t, x) ≈ f(u0)

(
t, x− b∗t

ε

)
+ εv1

(
t, x− b∗t

ε
,
x

ε

)
,

where f is the Langmuir isotherm given in (4.2) and u0 is the solution of the following macro-
scopic nonlinear monotone diffusion equation





[
|Y 0|+ α|∂Σ0|

(1 + βu0)2

]
∂u0
∂t

− divx(D(u0)∇xu0) = 0 in (0, T ) × Rd,

[
|Y 0|u0 +

|∂Σ0| α u0
1 + βu0

]
(0, x) = |Y 0|uin(x) + |∂Σ0|vin(x) in Rd,

and the correctors (u1, v1) are defined by

u1(t, x, y) =
d∑

i=1

χi

(
y, u0(t, x)

)∂u0
∂xi

(t, x)

and

v1(t, x, y) =
α

(1 + βu0(t, x))2

d∑

i=1

ωi

(
y, u0(t, x)

)∂u0
∂xi

(t, x)

where (χi, ωi)1≤i≤d is the solution of the cell problem





−b∗ · ei + b(y) · (ei +∇yχi)− divy(D(ei +∇yχi)) = 0 in Y 0,

−D (ei +∇yχi) · n =
ακ

(1 + βu0)2
(χi − ωi) on ∂Σ0,

−b∗ · ei + bs(y) · (ei +∇s
yωi)− divsy(D

s(ei +∇s
yωi)) = κ (χi − ωi) on ∂Σ0,

y → (χi(y), ωi(y)) Y − periodic.

Note that the cell solution (χ, ω) depends not only on y but also on the value of u0(t, x).
Furthermore, the technical assumption (4.1) is precisely the compatibility condition for solving
the cell problem for any value of u0(t, x). In Chapter 3, the effective dispersion that we obtained
was a constant and our upscaling method could only capture the symmetric part of the dispersion
matrix. In the nonlinear case, however, the effective diffusion (or dispersion) tensor D(u0) is
given by

Dij(u0) =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy +
ακ

(1 + βu0)2

∫

∂Σ0

[χi − ωi] [χj − ωj] dσ(y)

+
α

(1 + βu0)2

∫

∂Σ0

Ds(y)
(
∇s

yωi + ei
)
·
(
∇s

yωj + ej
)
dσ(y)

+

∫

Y 0

D(y)
(
∇yχj · ei −∇yχi · ej

)
dy

+
α

(1 + βu0)2

∫

∂Σ0

Ds(y)
(
∇s

yωj · ei −∇s
yωi · ej

)
dσ(y)

+

∫

Y 0

(
b(y) · ∇yχi

)
χj dy +

α

(1 + βu0)2

∫

∂Σ0

(
bs(y) · ∇s

yωi

)
ωj dσ(y)
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which is neither symmetric nor constant. The presence of nonlinear terms in the mesoscopic
equation has led to an effective behavior where the cell problem and the homogenized equation
are explicitly coupled as shown by the above given expressions.

This chapter is outlined as follows. Section 4.2 introduces the Langmuir isotherm extensively
used in surface chemistry and also recalls Freundlich isotherm. Having introduced the relevant
isotherm that governs the chemical phenomena, in Section 4.3 we take up the task of mathe-
matical modeling. The equations that govern the coupled phenomena of interest are rescaled to
arrive at the mesoscopic system (4.12)-(4.14). Section 4.4 deals with the maximum principles
(see Proposition 4.4.1) and a priori estimates for (4.12)-(4.14) which are obtained via energy
estimates (see Lemma 4.4.2). Section 4.5 concerns itself with the wellposedness nature of the
system (4.12)-(4.14). Finite dimensional Galerkin approximation method is employed in show-
ing the existence of the solutions (uε, vε) for (4.12)-(4.14). The main result of Section 4.5 is
Proposition 4.5.1, the proof of which goes via various lemmata that are proved in Section 4.5
and relies on the monotone character of the nonlinear Langmuir isotherm. After the qualitative
analysis of Sections 4.4 and 4.5, we shall get into the crux of the objective i.e., the homoge-
nization of the mesoscopic model (4.12)-(4.14). The nonlinearity of (4.12)-(4.14) requires some
strong compactness of the sequence of solutions in order to pass to the limit. This shall be the
goal of Section 4.6. The needed strong compactness result is obtained in Corollary 4.6.7 which is
the most technical result of the present chapter. Following the ideas of [121], [24], we first show
that, in a moving frame of reference, a uniform localization of solutions holds (Lemma 4.6.1).
Then a time equicontinuity type result (Lemma 4.6.2) allows us to gain compactness. These
technical results are not straightforward extensions of those in [121], [24]. There are a number
of additional difficulties, including the perforated character of the domain, the nonlinearity of
the equations and more importantly the fact that there are two unknowns uε and vε. Section
4.7 is dedicated to the extraction of converging subsequences of the solution sequences. In this
section, we intensely use the relative compactness results of Sections 2.6 and 2.7 from Chapter
2. The derivation of the homogenized equation is left to Section 4.8 (Theorem 4.8.1) using the
method of two-scale convergence with drift [121], [7]. Theorems 4.7.2 and 4.8.1 give a result of
weak convergence of the sequence (uε, vε) to the homogenized limit (u0, v0 = f(u0)). Although
the previous Corollary 4.6.7 gives some strong compactness in the L2-norm, there is still room
to improve the strong convergence, notably for the gradients of uε and vε. This is the purpose
of Section 4.9 where we establish a strong convergence result (Theorem 4.9.1) for well prepared
initial data. Eventually, Section 4.10 is devoted to some 2D numerical simulations using the
FreeFem++ package [141]. In the 2D setting, assumption (4.1) implies that the homogenized
drift vanishes, i.e., b∗ = 0. We study the behaviour of the homogenized dispersion tensor with
respect to variations of the magnitude of u0, the reaction rate κ and the surface molecular
diffusion Ds. We also plot the homogenized solution u0 and the reconstructed solution

ũε(t, x) = u0(t, x) + ε

d∑

i

χi

(x
ε
, u0

)∂u0
∂xi

(t, x)

to see the importance of the corrector term. Finally, in Section 4.11, we make some observations
on the calculations done along this chapter and compare the results obtained in this chapter
with those of Chapter 3 in the linear setting.

4.2 Langmuir’s adsorption isotherm

Upon presenting the Henry’s adsorption isotherm (linear) in Section 3.2, we did give expressions
for a couple of known nonlinear isotherms (3.3) and (3.4). One among them is the following
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Langmuir isotherm.

f(u) =
αu

1 + βu
with α, β > 0 (4.2)

The primitive of the Langmuir isotherm (4.2) is given by

F (uε) =
α

β

[
uε −

1

β
log(1 + βuε)

]
(4.3)

The primitive (4.3) vanishes at zero. In [111], Langmuir gave a description of the equilibrium
between a single component gas and the adsorbed species at a surface. He gave a relationship
between the fraction of the surface covered by adsorbed species, θg , and the partial pressure of
the single component gas exposed to the surface, pg.

θg =
αpg

1 + βpg
(4.4)

The above expression can be obtained by the mass-action kinetics as demonstrated in Chapter
11 of [102]. In case of liquid-solid interface, we shall replace the partial pressure by concentration
of the solute dissolved in the liquid phase and the surface fraction by the concentration of the
adsorbed solute. Let u be the concentration of the dissolved solute in the bulk and v be the
concentration of the same solute in the adsorbed state in the interface. Then, at chemical
equilibrium we have

v = f(u). (4.5)

As the interest is to study the non equilibrium reactions, we consider the following ordinary
differential equation for the adsorbed concentration.

dv

dt
= κ(f(u)− v) with κ a positive constant. (4.6)

Another popular adsorption isotherm considered in the chemistry literature is due to Freundlich
[88].

f(u) = αuβ with α > 0 and 0 < β < 1. (4.7)

The expressions (4.2) and (4.7) for the two isotherms have been used quite extensively in the
literature. However, the determination of the reaction coefficients is quite tedious and very case
specific. In order to simplify the mathematical analysis, there was an attempt made in [78] to
justify these two isotherms and generalize their notions. According to the cited reference, there
are two kinds of concave isotherms : Langmuir and Freundlich. A function f(u) is said to be of
“Langmuir type” if it is strictly concave near u = 0 and f ′(0+) < +∞. The isotherm expression
given in (4.2) indeed falls into this category. On the other hand, f(u) is said to be of “Freundlich
type” if it is strictly concave near u = 0 and f ′(0+) = +∞. An example of one such isotherm
is (4.7).

4.3 Mathematical model

Let us consider an ε-periodic porous medium saturated with an incompressible fluid. Solutes
of a kind are assumed to be dissolved in the fluid. The objective is to study the transport of
the dissolved solutes. As in Chapter 3, we shall be considering transport both in the bulk of
the fluid and on the porous skeleton.So we introduce two velocity fields: b(y) in the bulk of the
fluid Ωf and bs(y) on the surface of the pores ∂Ωs. We shall not be analyzing any governing
equations for these two velocity fields. Our hypothesis on these incompressible velocity fields
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is that they are given, independent of time and Y -periodic. The incompressibility condition on
both the velocity fields means

divy b(y) = 0 and divsyb
s(y) = 0. (4.8)

We make the following regularity assumption on both velocity fields: b(y) ∈ L∞
# (Ωf ;R

d), bs(y) ∈
L∞
# (∂Ωs;R

d) and bs = Gbs is always tangential to the surface whereG(y) is the projection matrix
on the tangent hyperplane to the surface ∂Ωf = ∂Ωs. The molecular diffusion associated with
the dissolved solute is assumed to be periodic and different in bulk and on the surface. So, two
periodic symmetric tensors D(y) ∈ L∞

# (Ωf )
d×d and Ds(y) ∈ L∞

# (∂Ωs)
d×d which are assumed to

be uniformly coercive, namely there exists a constant C > 0 such that, for any ξ ∈ Rd,

D(y)ξ · ξ ≥ C|ξ|2 a.e. in Ωf , Ds(y)ξ · ξ ≥ C|ξ|2 a.e. on ∂Ωs.

are introduced. The solutes in the bulk of the fluid are subjected to transport via the convective
field b(y) and they diffuse in the bulk, thanks to the associated diffusion matrix D(y). The
equation that models this combined phenomena is the following convection diffusion equation
for u, the solute concentration in the fluid bulk.

∂u

∂τ
+ b · ∇u− div (D∇u) = 0 in (0, ζ)× Ωf (4.9)

As recalled in the introduction, we wish to study the transport of the adsorbed concentration
too as in Chapter 3. Let v to the concentration of the adsorbed solutes in the interface. In
Section 4.2, we have introduced an ordinary differential equation (4.6) that represents the non
equilibrium chemical phenomena in terms of an isotherm. The presence of surface convective
field bs and the surface diffusion Ds associated with the solute modify (4.6) into the following
partial differential equation.

∂v

∂τ
+ bs · ∇sv − divs (Ds∇sv) = κ

( αu

1 + β u
− v
)

on (0, ζ) × ∂Ωs. (4.10)

To balance the mass of the system, we shall impose the right hand side of (4.10) as Neumann
boundary data for u on the skeleton ∂Ωs.

−D∇u · n = κ
( αu

1 + β u
− v
)

on (0, ζ)× ∂Ωs (4.11)

The above system (4.9)-(4.11) is also supplemented with initial data. Our goal is to study the
homogenization problem in the strong convection regime. So, we shall parabolically scale the
system (4.9)-(4.11) i.e., by making the following change of variables: (τ, y) → (ε−2t, ε−1x). The
resulting adimensionalized coupled convection diffusion reaction equations for the new unknowns
uε(t, x) = u(τ, y) and vε(t, x) = v(τ, y) are given by

∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T ) × Ωε (4.12)

−Dε

ε
∇uε · n =

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) =
κ

ε2

( αuε
1 + βuε

− vε

)
on (0, T ) × ∂Ωε (4.13)

uε(0, x) = uin(x) in Ωε, vε(0, x) = vin(x) on ∂Ωε (4.14)

for some final time T = ε2ζ. As ζ = O(ε−2), the final time T is indeed of O(1). The initial data
are chosen such that uin(x) ∈ L2(Rd) and vin(x) ∈ H1(Rd) (so that its trace is well-defined on
∂Ωε). Remark that the coefficients in (4.12)-(4.13) are all ε-periodic with the following notations:
Dε(x) = D(x/ε), Ds

ε(x) = Ds(x/ε), bε(x) = b(x/ε) and bsε(x) = bs(x/ε).
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4.4 Maximum principles and a priori estimates

We use the standard notations h+ = max(0, h) and h− = min(0, h). Recall that the function
f(u) = αu/(1 + βu) is one to one and increasing from R+ to [0, α/β]. Although the function
f(u) is not defined for u = −1/β, and since we are interested only in non negative values of
u, we can modify and mollify f(u) as we wish for u < 0 so that it is an increasing function
on R and all computations below make sense for negative values of u. Next, we give a result
in the spirit of proving some maximum principles for (4.12)-(4.14). This result is analogous to
Proposition 3.5.1 of Chapter 3. The objective of the next result is to assert that the solution
(uε, vε) to (4.12)-(4.13) remains non negative and bounded if one prescribes non negative and
bounded initial data (uin, vin) in (4.14).

Proposition 4.4.1. Let (uε, vε) be a weak solution of (4.12)-(4.14). Assume that the initial
data (uin, vin) satisfy 0 ≤ uin ≤ Mu, 0 ≤ vin ≤ Mv for some positive constants Mu and Mv

(without loss of generality consider f(Mu) < Mv).

If Mv < α/β, then

{
0 ≤ uε(t, x) ≤ mu = f−1(Mv) for (t, x) ∈ (0, T ) × Ωε,
0 ≤ vε(t, x) ≤Mv for (t, x) ∈ (0, T ) × ∂Ωε.

(4.15)

If Mv ≥ α/β, then there exist three positive constants τ , M(τ) and M̃v < α/β, independent of
ε, such that {

0 ≤ uε(t, x) ≤M(τ) for (t, x) ∈ (0, ε2τ)× Ωε,
0 ≤ vε(t, x) ≤Mv for (t, x) ∈ (0, ε2τ)× ∂Ωε,

(4.16)

and {
0 ≤ uε(t, x) ≤ m̃u = f−1(M̃v) for (t, x) ∈ (ε2τ, T )× Ωε,

0 ≤ vε(t, x) ≤ M̃v for (t, x) ∈ (ε2τ, T )× ∂Ωε.
(4.17)

Proof. As was done in the proof of Proposition 3.5.1, we shall be using a variational approach.
To begin with, we prove that the solutions remain non negative for non negative initial data.
Let us consider (f(uε)

−, εv−ε ) as test functions in the variational formulation of (4.12)-(4.14).

T∫

0

d

dt

∫

Ωε

F (u−ε ) dx dt+
1

ε

T∫

0

∫

Ωε

bε · ∇F (u−ε ) dx dt−
T∫

0

∫

Ωε

div (Dε∇uε) f(uε)− dx dt

+
ε

2

T∫

0

d

dt

∫

∂Ωε

|v−ε |2 dσ(x) dt+
ε

2

T∫

0

∫

∂Ωε

bsε · ∇s|v−ε |2 dσ(x) dt

−ε
T∫

0

∫

∂Ωε

divs (Ds
ε∇svε) v

−
ε dσ(x) dt −

κ

ε

T∫

0

∫

∂Ωε

[f(uε)− vε] v
−
ε dσ(x) dt = 0 (4.18)

where f and its primitive F are defined by (4.2) and (4.3) respectively. The divergence free
assumption on the velocity fields b, bs and the non-penetrating boundary conditions for b on the
porous skeleton result in the vanishing of the convective terms in the variational formulation
(4.18). Thus, we get

∫

Ωε

F (u−ε )(T ) dx+
ε

2

∫

∂Ωε

|v−ε (T )|2 dσ(x) +
T∫

0

∫

Ωε

f ′(u−ε )Dε∇u−ε · ∇u−ε dx dt
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+ε

T∫

0

∫

∂Ωε

Ds
ε∇sv−ε · ∇sv−ε dσ(x) dt+

κ

ε

T∫

0

∫

∂Ωε

(
f(uε)− vε

)(
f(uε)

− − v−ε

)
dσ(x) dt

=

∫

Ωε

F (u−ε )(0) dx +
ε

2

∫

∂Ωε

|v−ε (0)|2 dσ(x) (4.19)

The function h → h− is monotone and we know that f ′(u) > 0. So, each one of the terms on
the left hand side of (4.19) are positive. The assumption of the non negative initial data implies
that the right hand side of (4.19) vanishes thus resulting in

u−ε (t, x) = 0 and v−ε (t, x) = 0 for all times t ∈ (0, T ]. (4.20)

Next, we show that the solutions stay bounded from above if we start with a bounded initial
data. The boundedness property of f adds an additional difficulty prompting us to consider two
cases as below.
Case I. Assume Mv < α/β so we can define mu = f−1(Mv) > Mu.
We choose ((f(uε)−Mv)

+, ε(vε−Mv)
+) as test functions in the variational formulation of (4.12)-

(4.14). Introducing the primitive function F such that F ′(u) = (f(u)−Mv)
+ and F(0) = 0, we

get

∫

Ωε

F(uε)(T ) dx +
ε

2

∫

∂Ωε

|(vε −Mv)
+|2 dσ(x) +

T∫

0

∫

Ωε

f ′(uε)Dε∇(uε −mu)
+ · ∇(uε −mu)

+ dx dt

+ε

T∫

0

∫

∂Ωε

Ds
ε∇s(vε −Mv)

+ · ∇s(vε −Mv)
+ dσ(x) dt

+
κ

ε

T∫

0

∫

∂Ωε

(
(f(uε)−Mv)− (vε −Mv)

)(
(f(uε)−Mv)

+ − (vε −Mv)
+
)
dσ(x) dt

=

∫

Ωε

F(uin) dx+
ε

2

∫

∂Ωε

((vin −Mv)
+)2 dσ(x), (4.21)

because ∇(f(uε) −Mv)
+ = f ′(uε)∇(uε −mu)

+. The upper bound on the initial data implies
that the right hand side in (4.21) vanishes. The left hand side is non-negative because h→ h+ is
monotone and f ′(uε) ≥ 0. Since F(u) = 0 if and only if u ≤ mu, we deduce (4.16) that uε ≤ mu

and vε ≤Mv.
Case II. Assume Mv ≥ α/β.
The argument in Case I fails here because f−1(Mv) is not well defined. The idea is to first prove
that there exists τ > 0 such that, after a short time ε2τ , the solution vε reduces in magnitude
and is uniformly smaller than α/β. Then by taking ε2τ as a new initial time we can repeat the
analysis of Case I. Whatever the value of uε, equation (4.13) implies the following inequality on
the boundary ∂Ωε

∂vε
∂t

+
1

ε
bsε · ∇svε − divs (Ds

ε∇svε) ≤
κ

ε2

(α
β
− vε

)
. (4.22)

Choosing qε =

(
vε −

α

β

)
exp(tκ/ε2) we get

∂qε
∂t

+
1

ε
bsε · ∇sqε − divs (Ds

ε∇sqε) ≤ 0
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with the initial data

qε(0) = vin − α

β
.

Then, the maximum principle implies (see [143] for details)

qε(t) ≤ max
x∈∂Ωε

qε(0) ≤Mv −
α

β
,

which yields the following upper bound

vε(t) ≤ exp(−tκ/ε2)Mv +
(
1− exp(−tκ/ε2)

)α
β
. (4.23)

Unfortunately (4.23) is too crude a bound which cannot reduce the initial boundMv to a number
smaller than α/β. At least, (4.23) yields vε(t) ≤ Mv. We are going to use this upper bound in
the equation for uε in order to improve (4.23).

Equations (4.12) and (4.13) give the following equation for uε




∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in Ωε,

−Dε

ε
∇uε · n =

κ

ε2

( αuε
1 + βuε

− vε

)
=

κ

ε2
gε on ∂Ωε,

(4.24)

with gε satisfying, thanks to (4.23), the bound |gε| ≤Mv. Let us introduce an auxiliary problem
in the unit cell





b(y) · ∇yΨ− divy(D(y)∇yΨ) = κMv |∂Σ0|/|Y 0| in Y 0,

−D(y)∇yΨ · n = κMv on ∂Σ0,

y → Ψ(y) is Y -periodic,

(4.25)

where the compatibility condition for the existence and uniqueness (up to an additive constant)
of Ψ is satisfied. The scaled function Ψε(x) = Ψ(x/ε) satisfies





1

ε
bε · ∇Ψε − div(Dε∇Ψε) =

κMv

ε2
|∂Σ0|/|Y 0| in Ωε,

−1

ε
Dε∇Ψε · n =

κMv

ε2
on ∂Ωε.

(4.26)

Let us define a function

pε = Ψε + uε −
(κMv

ε2
|∂Σ0|/|Y 0|

)
t (4.27)

Then, pε satisfies





∂pε
∂t

+
1

ε
bε · ∇pε − div (Dε∇pε) = 0 in (0, T )× Ωε,

−1

ε
Dε∇pε · n =

κ

ε2
(gε +Mv) ≥ 0 on (0, T ) × ∂Ωε,

pε(0, x) = Ψε(x) + uin(x) in Ωε.

(4.28)

Then, the maximum principle yields (again see [143] if necessary)

pε(t) ≤ max
Ωε

(Ψε + uin) ≤Mu + ‖Ψ‖L∞(Y 0). (4.29)
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From the definition (4.27) of pε we deduce

uε(t) ≤Mu + 2‖Ψ‖L∞(Y 0) +
κMv

ε2
|∂Σ0|/|Y 0|t, (4.30)

which implies that, for any τ > 0, we have

max
0<t<ε2τ

uε(t) ≤M(τ) =Mu + 2‖Ψ‖L∞(Y 0) + κMv |∂Σ0|/|Y 0|τ, (4.31)

where M(τ) does not depend on ε and is an affine function of τ . Hence

max
0<t<ε2τ

f(uε(t)) ≤ f(M(τ)) =
αM(τ)

1 + βM(τ)
<
α

β
(4.32)

and (4.22) can be improved as

∂vε
∂t

+
1

ε
bSε · ∇Svε − divS

(
DS

ε ∇Svε
)
≤ κ

ε2

(
f(M(τ))− vε

)
for 0 < t < ε2τ.

The same argument leading to (4.23) now gives that, for any τ > 0 and 0 < t < ε2τ ,

vε(t) ≤ exp(−κτ)Mv +
(
1− exp(−κτ)

)
f(M(τ)), (4.33)

where f(M(τ)) < α
β − C

τ for some positive constant C > 0. Thus, choosing τ large enough, we

deduce that there exists M̃v (equal to the right hand side of (4.33)) which does not depend on
ε such that

max
0<t<ε2τ

vε(t) ≤ M̃v <
α

β
. (4.34)

Choosing M̃u =M(τ), we obviously have f(M̃u) < M̃v and we can repeat the argument of Case
I with the new initial time ε2τ .

Proposition 4.4.1 implied that the solutions to (4.12)-(4.14) are bounded in the L∞-norm. This
information shall come in handy while deriving a priori estimates on the solution (uε, vε). Next,
we state a lemma that gives the a priori estimates on the solution to our mesoscopic model.

Lemma 4.4.2. Let (uε, vε) be a weak solution of (4.12)-(4.14) and the initial data (uin, vin) be
such that 0 ≤ uin ≤Mu, 0 ≤ vin ≤Mv. There exists a constant C that depends on Mu and Mv

but not on ε such that

‖uε‖L∞((0,T );L2(Ωε)) +
√
ε‖vε‖L∞((0,T );L2(∂Ωε))

+‖∇uε‖L2((0,T )×Ωε) +
√
ε‖∇svε‖L2((0,T )×∂Ωε)

+
√
ε‖wε‖L∞((0,T );L2(∂Ωε)) ≤ C

(∥∥uin
∥∥
L2(Rd)

+ ‖vin‖H1(Rd)

)
,

(4.35)

where wε = ε−1

(
αuε

1 + βuε
− vε

)
.

Proof. To obtain an energy equality we multiply (4.12) by f(uε) and integrate over Ωε

d

dt

∫

Ωε

F (uε) dx+

∫

Ωε

f ′(uε)Dε∇uε · ∇uε dx+
κ

ε

∫

∂Ωε

(f(uε)− vε) f(uε) dσ(x) = 0,
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where F is the primitive of f , defined by (4.3), which satisfies F (u) ≥ 0 for u ≥ 0. We next
multiply (4.13) by εvε and integrate over ∂Ωε

ε

2

d

dt

∫

∂Ωε

|vε|2 dσ(x) + ε

∫

∂Ωε

Ds
ε∇svε · ∇svε dσ(x)−

κ

ε

∫

∂Ωε

(f(uε)− vε) vε dσ(x) = 0.

Adding the above two expressions leads to the following energy equality

d

dt

∫

Ωε

F (uε) dx+
ε

2

d

dt

∫

∂Ωε

|vε|2 dσ(x) +
∫

Ωε

f ′(uε)Dε∇uε · ∇uε dx

+ε

∫

∂Ωε

Ds
ε∇svε · ∇svε dσ(x) +

κ

ε

∫

∂Ωε

(f(uε)− vε)
2 dσ(x) = 0. (4.36)

Recalling that, because of the maximum principle of Proposition 4.4.1, F (uε) ≥ 0 and f ′(uε) ≥ 0,
and integrating over time yields

‖F (uε)‖L∞((0,T );L1(Ωε))
+ ε‖vε‖2L∞((0,T );L2(∂Ωε))

+ ε

∥∥∥∥
1

ε
(f(uε)− vε)

∥∥∥∥
2

L2(∂Ωε×(0,T ))

+
∥∥∥
√
f ′(uε)∇uε

∥∥∥
2

L2(Ωε×(0,T ))
+ ε‖∇svε‖2L2(∂Ωε×(0,T )) ≤ C

(∥∥F (uin)
∥∥
L1(Rd)

+ ‖vin‖2H1(Rd)

)

(4.37)
A second-order Taylor expansion at 0 yields F (u) = 1

2u
2f ′(c) for some c ∈ (0, u). By the

maximum principle we have 0 ≤ uε ≤M so that

0 <
α

1 + βM
≤ f ′(uε) ≤ α, (4.38)

and
∥∥F (uin)

∥∥
L1(Rd)

≤ C
∥∥uin

∥∥2
L2(Rd)

while

‖F (uε)‖L∞((0,T );L1(Ωε))
+
∥∥∥
√
f ′(uε)∇uε

∥∥∥
2

L2(Ωε×(0,T ))
≥ C

(
‖uε‖2L∞((0,T );L2(Ωε))

+ ‖∇uε‖2L2(Ωε×(0,T ))

)

(4.39)
from which we deduce (4.35).

4.5 Existence and uniqueness

Establishing the wellposedness of the coupled system (4.12)-(4.14) follows by the arguments
of the finite dimensional Galerkin approximations [110], [114], [115], [84]. We shall be taking
some cues from [127] where an adsorption/desorption model is studied in a different geometric
and chemical setting. The method of finite Galerkin approximations, as the name suggests,
is to construct finite dimensional approximations to the solution. After constructing the finite
dimensional approximations, we shall tend the dimensions of the approximation spaces to infinity
hoping to find a limit. The next step shall be to show that the limit does exist. The final step
would be to prove that the limit is, indeed, the solution that we are looking for. The presence
of the nonlinear terms in (4.12)-(4.14) dictate the need for strong compactness type results in
order to pass to the limit. Additional difficulty arises due to the unbounded nature of our porous
domain Ωε as the Rellich’s theorem doesn’t apply. So we shall construct a sequence {uN,A

ε } of
finite dimensional approximations to the solution where A is the size of a bounded cube in
Rd and N is the dimension of the finite dimensional approximation space. As a first step, we
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shall keep A fixed and prove that uN,A
ε attains a limit uAε as N → ∞. To this effect, we shall

derive a priori estimates on the time derivative of the approximate solutions in order to apply
Aubin’s lemma [31], [114]. Our next step would be to consider the sequence {uAε } and prove
that it is relatively compact in L2((0, T ) × Ωε). As the ε-periodic porous medium Ωε that we
are considering is unbounded, we need to prove a localization result in the following sense: for
a given δ > 0, we can find a cube QR(δ) =] − R(δ),+R(δ)[d⊂ Rd such that the L2-norm of uAε
is inferior to δ outside the cube QR(δ) for every A > R(δ). After obtaining the compactness
of the sequence of approximate solutions, we pass to the limit in the variational formulation as
A → ∞. Thus, we will be able to prove the wellposedness result for (4.12)-(4.14). Proposition
4.5.1 states this result on existence and uniqueness of the solution.

The limits considered in this section are N → ∞ and A→ ∞ where N is the dimension of the
finite dimensional approximation space and A is the size of a bounded cube in Rd. In the present
section the scale parameter ε is fixed. The compactness is obtained in a fixed frame of reference.
Section 4.6 is concerned with the study of the limit ε → 0 where we obtain compactness result
in a moving frame of reference. It is to be noted that the results in this section and the next
section may look similar at a passing glance. But both are, in essence, quite different.

Proposition 4.5.1. Assume that the initial data (uin, vin) belong to the space L2(Rd)∩L∞(Rd)×
H1(Rd) ∩ L∞(Rd) and are non negative. For any given ε > 0, there exists a unique solution
(uε, vε) of (4.12)-(4.14) in the energy space, namely

uε ∈ L∞((0, T );L2(Ωε)), ∇uε ∈ L2((0, T ) × Ωε),

and

vε ∈ L∞((0, T );L2(∂Ωε)), ∇svε ∈ L2((0, T ) × ∂Ωε).

Before we give the proof for the Proposition 4.5.1, we shall prepare the ground work for the
proof. To begin with, we shall adopt an approach from (Chapter 1, Section 6 of [114]) in the
context of proving existence of solutions for unsteady Navier-Stokes equations. Let us consider
the following spectral problem

{ −∆ϕ+ ϕ = λϕ in Ωε ∩QA

−∇ϕ · n = 0 on ∂Ωε ∩QA

(4.40)

with periodic boundary conditions on ∂QA where QA =] − A,+A[d⊂ Rd is a cube. Associ-
ated with (4.40) we have a sequence of eigenfunctions {ϕε

j}j∈N corresponding to a sequence of
eigenvalues {λj}j∈N:

∫

Ωε∩QA

(
∇ϕε

j · ∇θ + ϕε
jθ
)
dx = λj

∫

Ωε∩QA

ϕε
jθ dx for θ ∈ H1

#(Ωε ∩QA), λj > 0. (4.41)

We shall be using {ϕε
j}j∈N as basis functions to construct finite dimensional approximation

spaces for the bulk concentration uε. As done in (4.40) and (4.41), we shall be introducing
another set of basis eigenfunctions with the help of Laplace Beltrami operator to approximate
the surface concentration vε. Consider the sequence of eigenfunctions {ψε

j}j∈N corresponding to
a sequence of eigenvalues {νj}j∈N obtained via

∫

∂Ωε∩QA

(
∇sψε

j · ∇sΘ+ ψε
jΘ
)
dσ(x) = νj

∫

∂Ωε∩QA

ψε
jΘ dσ(x) for Θ ∈ H1

#(∂Ωε ∩QA), νj > 0.

(4.42)
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Let us consider the following finite dimensional subspaces of H1(Ωε ∩QA)

DN
ε = span{ϕε

1, ϕ
ε
2, · · · , ϕε

N} (4.43)

and that of H1(∂Ωε ∩QA)
BN

ε = span{ψε
1, ψ

ε
2, · · · , ψε

N}. (4.44)

Consider the L2 projection PN from H1(Ωε ∩QA) to D
N
ε i.e.,

PNw =

N∑

i=1

( ∫

Ωε∩QA

wϕε
i dx

)
ϕε
i for w ∈ H1(Ωε ∩QA). (4.45)

Similarly consider the L2 projection PN from H1(∂Ωε ∩QA) to B
N
ε i.e.,

PNw =
N∑

i=1

(
ε

∫

∂Ωε∩QA

wψε
i dx

)
ψε
i for w ∈ H1(Ωε ∩QA). (4.46)

Thanks to the orthonormal property of ϕε
j in L2, the operator norm of the projection PN

‖PN‖L(H1,DN
ε ) = inf

w 6=0

‖PNw‖L2

‖w‖H1

≤ 1. (4.47)

We define (uN,A
ε (t), vN,A

ε (t)) ∈ DN
ε × BN

ε an approximate solution of order N to (4.12)-(4.14)
posed in (0, T )× Ωε ∩QA as

uN,A
ε (t, x) =

N∑

j=1

cN,A
j (t)ϕε

j(x), vN,A
ε (t, x) =

N∑

j=1

dN,A
j (t)ψε

j (x), (4.48)

∫

Ωε∩QA

∂uN,A
ε

∂t
u dx+

1

ε

∫

Ωε∩QA

bε · ∇uN,A
ε u dx+

∫

Ωε∩QA

Dε∇uN,A
ε · ∇u dx

+ε

∫

∂Ωε∩QA

∂vN,A
ε

∂t
v dσ(x) +

∫

∂Ωε∩QA

bsε · ∇svN,A
ε v dσ(x)

+ε

∫

∂Ωε∩QA

Ds
ε∇svN,A

ε · ∇sv dσ(x) +
κ

ε

∫

∂Ωε∩QA

(
f(uN,A

ε )− vN,A
ε

)(
u− v

)
dσ(x) = 0 (4.49)

for every (u, v) ∈ DN
ε × BN

ε . The Fourier coefficients cN,A
j and dN,A

j in (4.48) do depend on
the scaling parameter ε. As far as the purpose of the wellposedness result (Proposition 4.5.1)
is concerned, we have a fixed ε > 0. Not to complicate the notation for the Fourier coefficients,
we shall not mention explicitly their dependence on ε but shall admit that they do. The above
Cauchy problem (4.49) is supplemented with initial data that are nothing but the projections
of the initial data (uin, vin) on to the finite dimensional space:

uN,A
ε (0) = PNu

in and vN,A
ε (0) = PNv

in. (4.50)

Upon applying the classical Cauchy-Lipschitz-Picard theorem [66], the existence of a continu-
ously differentiable solution (cN,A

j (t), dN,A
j (t)) on [0, Tm] for the Cauchy problem (4.49) follows.

The interval of existence [0, Tm] as given by the Cauchy-Lipschitz-Picard theorem forces us to
show that Tm is indeed T . The maximum principles that we obtained on the weak solutions
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of (4.12)-(4.14) in Proposition 4.4.1 carry on to the approximate solutions (uN,A
ε , vN,A

ε ) as well.
Next, we shall state a lemma giving a priori estimates on the finite dimensional approximations
(uN,A

ε , vN,A
ε ). The proof follows line to line the same arguments as in Lemma 4.4.2 where we ob-

tained the a priori estimates on the solution (uε, vε). As usual variational approach is employed
and the proof goes via the derivation of the energy estimate. So, we will simply state the result
giving the a priori estimates on the approximations with no proof.

Lemma 4.5.2. Let {(uN,A
ε , vN,A

ε )}N∈N be the finite dimensional approximations to the solution
(uε, vε) for (4.12)-(4.14) posed in (0, T ) × Ωε ∩QA. Let us choose the initial data (uin, vin) to
be non negative and bounded. Then, there exists a constant C depending on the bounds of the
initial data but not on N such that

‖uN,A
ε ‖L∞((0,T );L2(Ωε∩QA)) +

√
ε‖vN,A

ε ‖L∞((0,T );L2(∂Ωε∩QA))

+‖∇uN,A
ε ‖L2((0,T )×Ωε∩QA) +

√
ε‖∇svN,A

ε ‖L2((0,T )×∂Ωε∩QA)

+
√
ε‖wN,A

ε ‖L∞((0,T );L2(∂Ωε∩QA)) ≤ C
(∥∥uin

∥∥
L2(Rd)

+ ‖vin‖H1(Rd)

)
,

(4.51)

where wN,A
ε = ε−1

(
αuN,A

ε

1 + βuN,A
ε

− vN,A
ε

)
.

The a priori estimates (4.51) imply that the energy associated with (4.49) is bounded and any
possibility of a blow up of the solutions at time Tm doesn’t arise. Thus the existence of solution
(cN,A

j (t), dN,A
j (t)) on [0, T ] for any time T <∞. As explained in the beginning of this section the

idea here is to tend N towards infinity in order to arrive at a solution (uε, vε) of (4.12)-(4.14).
The estimates from (4.51) helps us extract convergent subsequences off {uN,A

ε } and {vN,A
ε }. But

the presence of the nonlinear term f in (4.49) demands strong compactness for uN,A
ε . So, in

addition to the a priori estimates (4.51), we shall look for an a priori estimate on the time
derivative of {uN,A

ε }. As only uN,A
ε appears as an argument in the nonlinear term of (4.49), we

shall try to obtain a strong compactness result for {uN,A
ε }N∈N. So let us take the test function v

to be zero in (4.49). Then using the projection PN , the Cauchy problem (4.49) can be rewritten
as ∫

Ωε∩QA

∂uN,A
ε

∂t
PNu dx+

1

ε

∫

Ωε∩QA

bε · ∇uN,A
ε PNu dx

+

∫

Ωε∩QA

Dε∇uN,A
ε · ∇PNu dx+

κ

ε

∫

∂Ωε∩QA

(
f(uN,A

ε )− vN,A
ε

)
PNu dσ(x) = 0

for u ∈ H1(Ωε) which implies

∫

Ωε∩QA

∂P ∗
Nu

N,A
ε

∂t
u dx = −1

ε

∫

Ωε∩QA

bε · ∇uN,A
ε PNu dx

−
∫

Ωε∩QA

Dε∇uN,A
ε · ∇PNu dx− κ

ε

∫

∂Ωε∩QA

(
f(uN,A

ε )− vN,A
ε

)
PNu dσ(x) (4.52)

Let us integrate (4.52) over the time interval (0, T ) leading to

T∫

0

∫

Ωε∩QA

∂P ∗
Nu

N,A
ε

∂t
u dx = −1

ε

T∫

0

∫

Ωε∩QA

bε · ∇uN,A
ε PNu dx
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−
T∫

0

∫

Ωε∩QA

Dε∇uN,A
ε · ∇PNu dx− κ

ε

T∫

0

∫

∂Ωε∩QA

(
f(uN,A

ε )− vN,A
ε

)
PNu dσ(x) (4.53)

Using the hypothesis that b, bs ∈ L∞ and that the nonlinear term has at most a linear growth
i.e., f(uN,A

ε ) ≤ αuN,A
ε , the projection PN has bounded norm (4.47) and invoking the Trace

theorem for the coupled term we can bound the right hand side of (4.53) as follows

∣∣∣1
ε

T∫

0

∫

Ωε∩QA

bε · ∇uN,A
ε PNu dx

∣∣∣+
∣∣∣

T∫

0

∫

Ωε∩QA

Dε∇uN,A
ε · ∇PNu dx

∣∣∣

+
∣∣∣κ
ε

T∫

0

∫

∂Ωε∩QA

(
f(uN,A

ε )− vN,A
ε

)
PNu

∣∣∣

≤ Cε‖b‖L∞‖∇uN,A
ε ‖L2(Ωε∩QA)‖u‖H1(Ωε∩QA) + C‖∇uN,A

ε ‖L2(Ωε∩QA)‖u‖H1(Ωε∩QA)

+
κ

ε2

(
‖uN,A

ε ‖H1(Ωε∩QA) +
√
ε‖vN,A

ε ‖L2(∂Ωε∩QA)

)
‖u‖H1(Ωε∩QA) (4.54)

From (4.54) we have shown that, for every u ∈ H1(Ωε ∩QA),

∣∣∣
T∫

0

∫

Ωε∩QA

∂P ∗
Nu

N,A
ε

∂t
u dx

∣∣∣ ≤ C. (4.55)

From (4.55), we deduce that

∥∥∥∂u
N,A
ε

∂t

∥∥∥
L2((0,T );H−1(Ωε∩QA))

≤ C. (4.56)

Now, we consider the a priori estimates from (4.51) and the estimate obtained on the first order
time derivative (4.56). It follows from Aubin’s lemma [31], [114] that {uN,A

ε }N∈N is relatively
compact in L2((0, T )× (Ωε ∩QA)). That is, there exists a u

A
ε ∈ L2((0, T )× (Ωε ∩QA)) such that

lim
N→∞

T∫

0

∫

Ωε∩QA

∣∣∣uN,A
ε − uAε

∣∣∣
2
dx dt = 0. (4.57)

Similarly we have the existence of vAε ∈ L2((0, T ) × (∂Ωε ∩QA)) such that

lim
N→∞

ε

T∫

0

∫

∂Ωε∩QA

∣∣∣vN,A
ε − vAε

∣∣∣
2
dx dt = 0. (4.58)

So far we have shown the compactness of {uN,A
ε }N∈N in a cube QA. Next we shall prove a

localization result for (uAε , v
A
ε ). This result is essential to prove compactness of the solution

sequence {uN,A
ε } as our domain Ωε is unbounded.

Lemma 4.5.3. Let {(uAε , vAε )} be the limit of the approximate solutions {(uN,A
ε , vN,A

ε )} of (4.12)-
(4.14) in the cube QA. Fix a final time T < +∞. Then, for any δ > 0, there exists R(δ) > 0
such that, for all A > R(δ) and for any t ∈ [0, T ],

∥∥uAε (t, x)
∥∥
L2(Ωε∩Qc(R(δ)))

≤ δ (4.59)

√
ε
∥∥vAε (t, x)

∥∥
L2(∂Ωε∩Qc(R(δ)))

≤ δ (4.60)

where Qc
R(δ) is the complementary of the cube QR(δ) =]−R(δ),+R(δ)[d⊂ Rd.
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Proof. The proof will take into consideration the structure of (4.12)-(4.14) of which (uN,A
ε , vN,A

ε )
is supposed to be a finite dimensional approximation of the solution. As the goal is to derive a
localization result, let φ ∈ C∞(R) be a smooth cut-off function such that

0 ≤ φ(r) ≤ 1, φ = 0 for r ≤ 1, φ = 1 for r ≥ 2.

For x ∈ Rd, denote φR(x) = φ(|x|/R) with R << A. Consider the variational formulation
of (4.49) in the full domain with (f(uAε )φR, εv

A
ε φR) as test functions. The choice of the test

functions suggest that the cut-off function φR(x) appear as weight.

t∫

0

d

dt

∫

Ωε∩QA

F (uAε )(s, x)φR(x) ds dx+
1

ε

t∫

0

∫

Ωε∩QA

bε · ∇F (uAε )(s, x)φR(x) dx ds

−
t∫

0

∫

Ωε∩QA

div
(
Dε∇uAε (s, x)

)
f(uAε )(s, x)φR(x) dx ds +

ε

2

t∫

0

d

dt

∫

∂Ωε∩QA

|vAε (s, x)|2φR(x) ds dσ(x)

+
1

2

t∫

0

∫

∂Ωε∩QA

bsε · ∇s|vAε (s, x)|2φR(x) ds dσ(x)

−ε
t∫

0

∫

∂Ωε∩QA

divs
(
Ds

ε∇svAε (s, x)
)
vAε (s, x)φR(x) dσ(x) ds

+
κ

ε

t∫

0

∫

∂Ωε∩QA

(
f(uAε )− vAε

)2
(s, x)φR(x) dσ(x) ds = 0

Upon integration by parts, we arrive at

∫

Ωε∩QA

F (uAε )(t, x)φR(x) dx +

t∫

0

∫

Ωε∩QA

f ′(uAε )(s, x)Dε∇uAε (s, x) · ∇uAε (s, x)φR(x) dx ds

+
ε

2

∫

∂Ωε∩QA

φR(x)|vAε (t, x)|2 dσ(x) + ε

t∫

0

∫

∂Ωε∩QA

Ds
ε∇svAε (s, x) · ∇svAε (s, x)φR(x) dσ(x) ds

+
κ

ε

t∫

0

∫

∂Ωε∩QA

(
f(uAε )− vAε

)2
(s, x)φR(x) dσ(x) ds

=

∫

Ωε∩QA

F (uin)φR(x) dx +
ε

2

∫

∂Ωε∩QA

φR(x)|vin(x)|2 dσ(x)

+
1

ε

t∫

0

∫

Ωε∩QA

bε · ∇φR(x)F (uAε )(s, x) dx ds +
1

2

t∫

0

∫

∂Ωε∩QA

|vAε (s, x)|2bsε · ∇sφR(x) ds dσ(x)
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−
t∫

0

∫

Ωε∩QA

f(uAε )(s, x)Dε∇uAε (s, x) · ∇φR(x) dx ds

−ε
t∫

0

∫

∂Ωε∩QA

vAε (s, x)D
s
ε∇svAε (s, x) · ∇sφR(x) dσ(x) ds

(4.61)

To arrive at the result, we need to bound the right hand side terms in the relation (4.61). The
first two terms in (4.61), involving the initial data (uin, vin), tend to zero as R tends to ∞. Now
let us turn our attention to the last two terms in (4.61). Recall that f(uAε ) ≤ αuAε . By definition
of φR we have ‖∇φR‖L∞(Ωε) ≤ C/R, so last two terms in (4.61) are bounded by

C

R

(
‖uAε ‖L2((0,T )×Ωε∩QA)‖∇uAε ‖L2((0,T )×Ωε∩QA)

+ε‖vAε ‖L2((0,T )×∂Ωε∩QA)‖∇svAε ‖L2((0,T )×∂Ωε∩QA)

)
≤ C

R

(4.62)

by virtue of Lemma 4.5.2. Finally, the second and the third terms in (4.61). The primitive F
has quadratic growth for a bounded uAε which is guaranteed by the maximum principles. Next
we invoke the a priori estimates from Lemma 4.5.2 which result in a bound similar to (4.62) for
the second and third terms in (4.61).So, for any given δ > 0, we can always choose a R(δ) ∈ R,
large enough, such that we have, for any t ∈ [0, T ] and for all A > R(δ),

‖uAε ‖L2(Ωε∩Qc
R(δ)

) ≤ δ and
√
ε‖vAε ‖L2(∂Ωε∩Qc

R(δ)
) ≤ δ,

This observation is nothing but the assertions (4.59) and (4.60).

We have laid out enough ground work through Lemmata 4.5.2, 4.5.3 to prove that the compact-
ness of the sequence {uAε }.

Proposition 4.5.4. There exists a subsequence, still denoted by A, such that

lim
A→∞

T∫

0

∫

Ωε

∣∣∣uAε (t, x)− uε(t, x)
∣∣∣ dx dt = 0 (4.63)

Proof. As a consequence of the localization lemma 4.5.3, for a given δ > 0, there exists a R(δ)
such that, for all A > R(δ), we have

∥∥∥uAε (t, x) − uAε (t, x)χQ(R(δ))

∥∥∥
L2((0,T )×Ωε)

≤ δ

2
(4.64)

From (4.51) we have that {uAε } is relatively compact in L2((0, T )×Ωε∩QA). Thus, by choosing
big enough R(δ), if necessary, we have

∥∥∥uAε (t, x)χQ(R(δ)) − uε(t, x)
∥∥∥
L2((0,T )×Ωε)

≤ δ

2
(4.65)

Telescoping through the inequalities (4.64)-(4.65), we indeed arrive at (4.63).

Let us denote the limit of vAε by vε obtained by the a priori estimates (4.51). It turns out that
the solutions envisaged in Proposition 4.5.1 turn out to be the two limits (uε, vε). Now, we shall
give the proof of the Proposition 4.5.1.
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Proof of Proposition 4.5.1. We have the strong compactness result for the sequence uN,A
ε from

Proposition 4.5.4. Let us consider (4.49) and integrate it over time interval (0, T ) to arrive at

T∫

0

∫

Ωε∩QA

∂uN,A
ε

∂t
u dx dt+

1

ε

T∫

0

∫

Ωε∩QA

bε · ∇uN,A
ε u dx dt+

T∫

0

∫

Ωε∩QA

Dε∇uN,A
ε · ∇u dx dt

+ε

T∫

0

∫

∂Ωε∩QA

∂vN,A
ε

∂t
v dσ(x) dt +

T∫

0

∫

∂Ωε∩QA

bsε · ∇svN,A
ε v dσ(x) dt+

ε

T∫

0

∫

∂Ωε∩QA

Ds
ε∇svN,A

ε ·∇sv dσ(x) dt+
κ

ε

T∫

0

∫

∂Ωε∩QA

(
f(uN,A

ε )−vN,A
ε

)(
u−v

)
dσ(x) dt = 0 (4.66)

Now we need to tend N and A towards infinity. Thanks to our compactness result, Proposition
4.5.4, we can pass to the limit in the variational formulation (4.66) as N → ∞ and A→ ∞. The
limit variational formulation that we arrive at shall be a variational formulation for (4.12)-(4.14)
with the limit (uε, vε) as the solution. Thus the existence of the solutions.

We are still left to prove the uniqueness of the solution. On the contrary, let us suppose that
there are at least two solutions to our coupled convection diffusion reaction equations (4.12)-
(4.14), say u1,ε, u2,ε two bulk concentrations and v1,ε, v2,ε two surface concentrations. Let us
denote the differences by Uε and Vε respectively for bulk and surface concentrations. We shall
write down the coupled equations satisfied by the differences (Uε, Vε).

∂Uε

∂t
+

1

ε
bε · ∇Uε − div (Dε∇Uε) = 0 in (0, T ) × Ωε (4.67)

−Dε

ε
∇Uε · n =

∂Vε
∂t

+
1

ε
bsε · ∇sVε − divs (Ds

ε∇sVε)

=
κ

ε2

((
f(u1,ε)− v1,ε

)
−
(
f(u2,ε)− v2,ε

))
on (0, T )× ∂Ωε

(4.68)

Uε(0, x) = 0 in Ωε, Vε(0, x) = 0 on ∂Ωε (4.69)

The initial data are zero by construction. This approach is very classical. The idea is to derive
the energy estimate for the above system. To that effect, let us multiply (4.67) by Uε followed
by an integration over Ωε and multiply the second part of 4.68 by εVε followed by an integration
over ∂Ωε. The resulting expression is

d

dt

∫

Ωε

|Uε|2 dx+

∫

Ωε

Dε∇Uε · ∇Uε dx+
d

dt
ε

∫

∂Ωε

|Vε|2 dσ(x) + ε

∫

∂Ωε

Ds
ε∇sVε · ∇sVε dσ(x)+

κ

ε

∫

∂Ωε

((
f(u1,ε)− v1,ε

)
−
(
f(u2,ε)− v2,ε

))(
Uε − Vε

)
dσ(x) = 0 (4.70)

The term of interest in (4.70) is the coupled term.

κ

ε

∫

∂Ωε

((
f(u1,ε)−v1,ε

)
−
(
f(u2,ε)−v2,ε

))(
Uε−Vε

)
dσ(x) =

κ

ε

∫

∂Ωε

(
f ′(Ū )Uε−Vε

)(
Uε−Vε

)
dσ(x)

(4.71)
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for some u1,ε(t, x) ≤ Ū(t, x) ≤ u2,ε(t, x). As the first derivative of f is bounded, the coupled
term (4.71) in the variational formulation (4.70) is can be bounded from above as

∣∣∣κ
ε

∫

∂Ωε

((
f(u1,ε)−v1,ε

)
−
(
f(u2,ε)−v2,ε

))(
Uε−Vε

)
dσ(x)

∣∣∣ ≤ κ

ε

∫

∂Ωε

(
|Uε|+ |Vε|

)2
dσ(x) (4.72)

Now let us integrate (4.70) over (0, T ). Considering the inequality (4.72) for the coupled term
and a simple application of Young’s inequality leads to

∫

Ωε

|Uε(T, x)|2 dx+ε
∫

∂Ωε

|Vε(T, x)|2 dσ(x)+
T∫

0

∫

Ωε

Dε∇Uε·∇Uε dx dt+ε

T∫

0

∫

∂Ωε

Ds
ε∇sVε·∇sVε dσ(x) dt

≤ 3κ

2ε

T∫

0

∫

∂Ωε

U2
ε (t, x) dσ(x) dt +

3κ

2ε

T∫

0

∫

∂Ωε

V 2
ε (t, x) dσ(x) dt (4.73)

Thanks to the inequality (4.73). We can apply Gronwall’s lemma to deduce that Uε(t, x) = 0
and Vε(t, x) = 0 for almost every (t, x). Hence the unicity follows.

4.6 Localization in moving coordinates and compactness

Our objective is to find the effective behavior of our convection diffusion reaction model (4.12)-
(4.14). This can be achieved, as explained in Chapter 2, by tending the heterogeneities’ length
scale ε to zero. As we are in the strong convection regime, we take cues from Section 2.6 to employ
the method of two-scale convergence with drift. The a priori estimates of Lemma 4.4.2 allow us
to extract weakly converging subsequences but they do not give any strong compactness for the
sequence (uε, vε) since a priori estimates on their time derivatives are lacking. Passing to the limit
in system (4.12)-(4.14), which is nonlinear, requires some strong compactness. Furthermore,
since Ωε is unbounded, Rellich theorem does not hold in Ωε and a localization result is thus
required to get compactness. This is the goal of the results to follow for the rest of this section
which culminate in Corollary 4.6.7. Their proof rely on the use of the equations (4.12)-(4.14).
Similar results were obtained for a sequence of approximate solutions in Section 4.5 where we
wished to pass to the limit when the dimension of the approximation spaces tends to infinity.
In the regime ε→ 0, there is however one additional hurdle which is the large convective terms
of order ε−1. In order to compensate this large drift, following the lead of [121], we shall prove
these compactness and localization results, not for the original sequence (uε, vε), but for its
counterpart defined in a moving frame of reference. For ϕε(t, x), let us define its counterpart in
moving coordinates as

ϕ̂ε(t, x) = ϕε

(
t, x+

b∗t

ε

)
and ϕ̌ε(t, x) = ϕε

(
t, x− b∗t

ε

)
, (4.74)

where b∗ is the effective drift defined by (4.1). Of course, definition (4.74) is consistent with the
notion of two-scale convergence with drift which is briefly recalled in Section 2.6 of Chapter 2.
As we consider functions in moving coordinates, the underlying porous domain Ωε does move
with the same velocity. Let us define

Ω̂ε(t) =
{
x+

b∗t

ε
: x ∈ Ωε

}
. (4.75)

The following first lemma of this section gives the localization in space for the solution sequences
in moving coordinates.
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Lemma 4.6.1. Let (uε, vε) be the solution of (4.12)-(4.14). Fix a final time T < +∞. Then,
for any δ > 0, there exists R(δ) > 0 such that, for any t ∈ [0, T ],

∥∥∥ûε(t, x)
∥∥∥
L2(Ω̂ε(t)∩Qc

R(δ)
)
≤ δ,

∥∥∥v̂ε(t, x)
∥∥∥
L2(∂Ω̂ε(t)∩Qc

R(δ)
)
≤ δ,

where Qc
R(δ) is the complementary of the cube QR(δ) =]−R(δ),+R(δ)[d in Rd.

Proof. We rely on an idea of [121], [24]. The proof runs almost similar to the proof of Lemma
4.5.3 except for the construction of the test functions. Attributing to the inevitable large drift,
we shall take the test functions in the moving coordinates as defined in (4.74). Let φ ∈ C∞(R)
be a smooth cut-off function such that

0 ≤ φ(r) ≤ 1, φ = 0 for r ≤ 1, φ = 1 for r ≥ 2.

For x ∈ Rd, denote φR(x) = φ(|x|/R). Let us consider the variational formulation of (4.12)-
(4.14) with test functions (f(uε)φ̌R, εvεφ̌R) where the .̌-notation is defined by (4.74). Upon
integration by parts in time, the first bulk term is

t∫

0

∫

Ωε

∂uε
∂t

(s, x)f(uε)(s, x)φ̌R(s, x) dx ds =
1

ε

t∫

0

∫

Ωε

F (uε)(s, x)b
∗ · ∇φ̌R(s, x) dx ds

+

∫

Ωε

F (uε)(t, x)φ̌R(t, x) dx−
∫

Ωε

F (uin)(x)φR(x) dx,

while, by integration by parts in space, the convective term is

1

ε

t∫

0

∫

Ωε

bε · ∇uεf(uε)φ̌R dx ds = −1

ε

t∫

0

∫

Ωε

F (uε)bε · ∇φ̌R dx ds,

and the diffusive term is

−
t∫

0

∫

Ωε

div(Dε∇uε)f(uε)φ̌R dx ds =
t∫

0

∫

Ωε

f ′(uε)Dε∇uε · ∇uεφ̌R dx ds

+

t∫

0

∫

Ωε

f(uε)Dε∇uε · ∇φ̌R dx ds+
κ

ε

t∫

0

∫

∂Ωε

(f(uε)− vε)f(uε)φ̌R dx ds.

On the other hand, the surface terms are

2ε

t∫

0

∫

∂Ωε

∂vε
∂t

φ̌Rvε ds dσ(x) =

t∫

0

∫

∂Ωε

b∗ · ∇φ̌R|vε|2 ds dσ(x)

+ε

∫

∂Ωε

φ̌R(t, x)|vε(t, x)|2 dσ(x) − ε

∫

∂Ωε

φR(x)|vin(x)|2 dσ(x),

2

t∫

0

∫

∂Ωε

bsε · ∇svεvεφ̌R ds dσ(x) = −
t∫

0

∫

∂Ωε

|vε|2bsε · ∇sφ̌R ds dσ(x),
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and

−ε
t∫

0

∫

∂Ωε

divs(Ds
ε∇svε)vεφ̌R dσ(x) ds = ε

t∫

0

∫

∂Ωε

Ds
ε∇svε · ∇svεφ̌R dσ(x) ds

+ε

t∫

0

∫

∂Ωε

vεD
s
ε∇svε · ∇sφ̌R dσ(x) ds −

κ

ε

t∫

0

∫

∂Ωε

(f(uε)− vε)vεφ̌R dσ(x) ds.

Adding these terms together yields

∫

Ωε

F (uε)(t, x)φ̌R(t, x) dx+

t∫

0

∫

Ωε

f ′(uε)Dε∇uε · ∇uεφ̌R dx ds

+
ε

2

∫

∂Ωε

|vε(t, x)|2φ̌R(t, x) dσ(x) + ε

t∫

0

∫

∂Ωε

Ds
ε∇svε · ∇svεφ̌R dσ(x) ds

+
κ

ε

t∫

0

∫

∂Ωε

φ̌R (f(uε)− vε)
2 dσ(x) ds

= −
t∫

0

∫

Ωε

f(uε)Dε∇uε · ∇φ̌R dx ds − ε

t∫

0

∫

∂Ωε

vεD
s
ε∇svε · ∇sφ̌R dσ(x) ds (4.76)

+
1

ε

t∫

0

∫

Ωε

F (uε) (bε − b∗) · ∇φ̌R dx ds+
t∫

0

∫

∂Ωε

|vε|2 (bsε − b∗) · ∇sφ̌R dσ(x) ds (4.77)

+

∫

Ωε

F (uin)(x)φR(x) dx +
ε

2

∫

∂Ωε

φR(x)|vin(x)|2 dσ(x). (4.78)

To arrive at the result, we need to bound the right hand side terms. Recall that f(uε) ≤ αuε.
By definition of φR we have ‖∇φ̌R‖L∞(Ωε) ≤ C/R, so that the first and second terms in (4.76)
are bounded by

C

R

(
‖uε‖L2((0,T )×Ωε)‖∇uε‖L2((0,T )×Ωε) + ε‖vε‖L2((0,T )×∂Ωε)‖∇svε‖L2((0,T )×∂Ωε)

)
≤ C

R
(4.79)

by virtue of Lemma 4.4.2. The two last terms in (4.78), involving the initial data (uin, vin), do
not depend on ε and tend to zero as R tends to ∞. In the proof of Lemma 4.5.3, we bounded
the terms similar to (4.77) just by using the regularity hypothesis on the velocity fields and the
a priori estimates (4.51) as the ε factor in (4.61) was a constant. In (4.77), however, we cannot
argue the same way. To cope with the terms in (4.77), we introduce two auxiliary problems





−∆ξi(y) = b∗i − bi(y) in Y 0,

−∇ξi · n = 0 on ∂Σ0,

y → ξi(y) is Y -periodic,

(4.80)

{ −∆sΞi(y) = b∗i − bsi (y) on ∂Σ0,

y → Ξi(y) is Y -periodic,
(4.81)
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which both admit a unique solution (up to an additive constant) since, by definition (4.1) of
b∗, the source terms in (4.80) and (4.81) are in equilibrium. Substitution of the above auxiliary
functions in (4.77) and integration by parts yields

d∑

i=1

t∫

0



∫

Ωε

ε∇ξεi · ∇
(
F (uε)∂xi

φ̌R

)
dx+ ε

∫

∂Ωε

ε∇sΞε
i · ∇s

(
|vε|2∂xi

φ̌R

)
dσ(x)


 ds.

Since ε∇ξεi (x) = (∇yξi) (x/ε) and ε∇sΞε
i (x) =

(
∇s

yΞi

)
(x/ε), using again the fact that F (uε)

has quadratic growth for bounded uε, the a priori estimates from Lemma 4.4.2 imply that (4.77)
is bounded by a term similar to (4.79). A final change of frame of reference and letting R go to
infinity leads to the desired result.

We now prepare the ground for the final compactness result by proving some type of equicon-
tinuity in time. The next result tries to obtain some type of equicontinuity in time in order
to prove relative compactness in L2 for the Fourier coefficients. Again, the following lemma
considers the concentration sequences in moving coordinates as opposed to the fixed frame of
reference in Section 4.5. Let us introduce an orthonormal basis {ej}j∈N ∈ L2((0, 1)d) such
that {ej} ∈ C∞

0 ([0, 1]d). Then the functions {ejk}j∈N,k∈Zd , where ejk(x) = ej(x − k), form an

orthonormal basis in L2(Rd).

Lemma 4.6.2. Let h > 0 be a small parameter representing time translation. There exists a
positive constant Cjk independent of ε and h such that

∣∣∣
T−h∫

0

{ ∫

Ω̂ε(t+h)

(
ûε + ηf(ûε)

)
(t+ h, x)ejk(x) dx−

∫

Ω̂ε(t)

(
ûε + ηf(ûε)

)
(t, x)ejk(x) dx

}
dt
∣∣∣

≤ Cjk

(√
h+ ε

)
(4.82)

where η = |∂Σ0|/|Y 0|.

Proof. We compute the difference
(
ûε(t+ h, x), ejk(x)

)
L2(Ω̂ε(t+h))

−
(
ûε(t, x), ejk(x)

)
L2(Ω̂ε(t))

+ε
(
v̂ε(t+ h, x), ejk(x)

)
L2(∂Ω̂ε(t+h))

− ε
(
v̂ε(t, x), ejk(x)

)
L2(∂Ω̂ε(t))

=

t+h∫

t

d

ds

{ ∫

Ω̂ε(s)

ûε(s, x)ejk(x) dx+ ε

∫

∂Ω̂ε(s)

v̂ε(s, x)ejk(x) dσ(x)
}
ds

=

t+h∫

t

d

ds

{∫

Ωε

uε(s, x)ějk(x) dx + ε

∫

∂Ωε

vε(s, x)ějk(x) dσ(x)
}
ds

=

t+h∫

t

∫

Ωε

{∂uε
∂s

(s, x)ějk(x)−
b∗

ε
· ∇ějk(x)uε(s, x)

}
dx ds

+

t+h∫

t

ε

∫

∂Ωε

{∂vε
∂s

(s, x)ějk(x)−
b∗

ε
· ∇ějk(x)vε(s, x)

}
dσ(x) ds
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=
1

ε

t+h∫

t

∫

Ωε

{(
bε − b∗

)
· ∇ějk(x)uε(s, x)−Dε∇uε(s, x) · ∇ějk(x)

}
dx ds

+ε

t+h∫

t

∫

∂Ωε

{1
ε

(
bsε − b∗

)
· ∇ějk(x)vε(s, x)−Ds

ε∇svε(s, x) · ∇sějk(x)
}
dσ(x) ds (4.83)

In (4.83), we have terms similar to (4.77). We handled those singular terms in (4.77) with the
introduction of two auxiliary problems (4.80) and (4.81). We shall use the auxiliary problems
to handle the problematic terms in (4.83) too. Then (4.83) becomes

t+h∫

t

∫

Ωε

{
ε∆ξεi (x)∂xi

ějk(x)uε(s, x)−Dε∇uε(s, x) · ∇ějk(x)
}
dx ds

+

t+h∫

t

∫

∂Ωε

{
ε2∆sΞε

i (x)∂xi
ějk(x)vε(s, x)− εDs

ε∇svε(s, x) · ∇sějk(x)
}
dσ(x) ds

= −
t+h∫

t

∫

Ωε

{
∇yξ

ε
i (x) · ∇

(
∂xi

ějk(x)uε(s, x)
)
+Dε∇uε(s, x) · ∇ějk(x)

}
dx ds

−ε
t+h∫

t

∫

∂Ωε

{
∇s

yΞ
ε
i (x) · ∇s

(
∂xi
ějk(x)vε(s, x)

)
+Ds

ε∇svε(s, x) · ∇sějk(x)
}
dσ(x) ds ≤ Cjk

√
h.

The above bound follows from the a priori estimates (4.35). By the definition of wε, we have
v̂ε = f(ûε)− εŵε. Substituting for v̂ε in the above inequality yields

∣∣∣
(
ûε(t+ h, x), ejk(x)

)
L2(Ω̂ε(t+h))

+ ε
(
f(ûε)(t+ h, x), ejk(x)

)
L2(∂Ω̂ε(t+h))

−
(
ûε(t, x), ejk(x)

)
L2(Ω̂ε(t))

− ε
(
f(ûε)(t, x), ejk(x)

)
L2(∂Ω̂ε(t))

∣∣∣

≤ Cjk

√
h+

∣∣∣ε2
(
ŵε(t+ h, x), ejk(x)

)
L2(∂Ω̂ε(t+h))

∣∣∣+
∣∣∣ε2
(
ŵε(t, x), ejk(x)

)
L2(∂Ω̂ε(t))

∣∣∣.

We now replace the boundary integrals involving the nonlinear term with volume integrals. We
achieve this with the help of an auxiliary problem.





divyΥ(y) = η = |∂Σ0|/Y 0 in Y 0,

Υ · n = 1 on ∂Σ0,

y → Υ(y) is Y − periodic,

(4.84)

which admits a smooth Y -periodic vector solution Υ. Then,

ε

∫

∂Ω̂ε(t)

f(ûε)(t, x)ejk(x) dσ(x) = ε

∫

∂Ωε

f(uε)(t, x)ějk(x) dσ(x)

= ε

∫

∂Ωε

f(uε)(t, x)ějk(x)
(
Υε(x) · n

)
dσ(x)
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= ε

∫

Ωε

div
(
f(uε)(t, x)ějk(x)Υ

ε(x)
)
dx = ε

∫

Ωε

f ′(uε)(t, x)∇uε(t, x) ·Υε(x)ějk(x) dx+

ε

∫

Ωε

∇ějk(x) ·Υε(x)f(uε)(t, x) dx + η

∫

Ωε

ějk(x)f(uε)(t, x) dx.

The above calculation leads to

∣∣∣
t+h∫

t

d

ds

∫

Ω̂ε(s)

(
ûε + ηf(ûε)

)
(s, x)ejk(x) dx ds

∣∣∣ ≤ Cjk

√
h

+
∣∣∣ε2

∫

∂Ωε

wε(t+ h, x)ejk

(
x− b∗(t+ h)

ε

)
dσ(x)

∣∣∣ +
∣∣∣ε2

∫

∂Ωε

wε(t, x)ejk

(
x− b∗t

ε

)
dσ(x)

∣∣∣

+
∣∣∣ε
∫

Ωε

f ′(uε)(t, x)∇uε(t, x) ·Υε(x)ejk

(
x− b∗t

ε

)
dx
∣∣∣+
∣∣∣ε
∫

Ωε

∇ejk
(
x− b∗t

ε

)
·Υε(x)f(uε)(t, x) dx

∣∣∣

+
∣∣∣ε
∫

Ωε

f ′(uε)(t, x)∇uε(t, x) ·Υε(x)ejk

(
x− b∗(t+ h)

ε

)
dx
∣∣∣

+
∣∣∣ε
∫

Ωε

∇ejk
(
x− b∗(t+ h)

ε

)
·Υε(x)f(uε)(t, x) dx

∣∣∣.

We integrate the above inequality over (0, T − h). As 0 ≤ f(uε) ≤ αuε and 0 ≤ f ′(uε) ≤ α, the
a priori estimates in (4.35) lead to (with a possibly different constant Cjk)

T−h∫

0

∣∣∣∣∣∣∣

t+h∫

t

d

ds

∫

Ω̂ε(s)

(
ûε + ηf(ûε)

)
(s, x)ejk(x) dx ds

∣∣∣∣∣∣∣
dt ≤ Cjk

(√
h+ ε

)

which is nothing but (4.82).

To prove the compactness of uε, an intermediate result is to prove the compactness of the
sequence zε defined by

zε(t, x) = uε(t, x) + ηf(uε)(t, x) for (t, x) ∈ (0, T )× Ωε. (4.85)

In view of the a priori estimates (4.35), zε satisfies the following estimates

∫

Ωε

|zε|2 dx ≤
∫

Ωε

(1 + ηα)2|uε|2 dx ≤ C ∀ t ∈ (0, T ),

T∫

0

∫

Ωε

|∇zε|2 dx =

T∫

0

∫

Ωε

(1 + ηf ′(uε))
2|∇uε|2 dx ≤ C.

(4.86)

We recall that the extension operator Eε : H1(Ωε) → H1(Rd) of [1] satisfies the following
property: there exists a constant C, independent of ε, such that, for any function φε ∈ H1(Ωε),

Eεφε

∣∣∣
Ωε

= φε and

‖Eεφε‖L2(Rd) ≤ C‖φε‖L2(Ωε), ‖∇Eεφε‖L2(Rd) ≤ C‖∇φε‖L2(Ωε). (4.87)
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As we are proving compactness in moving coordinates, we consider the sequences ẑε and Êεzε
where the .̂-operator is defined by (4.74). The decomposition of these two functions in terms of
the orthonormal basis {ejk} of L2(Rd) yields

ẑε(t, x) =
∑

j∈N

∑

k∈Zd

µεjk(t)ejk(x) with µεjk(t) =

∫

Ω̂ε(t)

ẑε(t, x)ejk(x) dx, (4.88)

Êεzε(t, x) =
∑

j∈N

∑

k∈Zd

νεjk(t)ejk(x) with νεjk(t) =

∫

Rd

Êεzε(t, x)ejk(x) dx, (4.89)

where µεjk(t) and ν
ε
jk(t) are the time dependent Fourier coefficients.

Lemma 4.6.3. Let {µεjk}ε be the Fourier coefficients defined in (4.88). There exists a subse-
quence, still denoted by ε, such that

µεjk → µjk in L2(0, T ) ∀j ∈ N, k ∈ Zd,

for some µjk ∈ L2(0, T ). Further, the function

z0(t, x) =
∑

j∈N

∑

k∈Zd

µjk(t)ejk(x) (4.90)

is an element of L2((0, T ) × Rd).

Proof. From Lemma 4.6.2, we have

T−h∫

0

∣∣∣µεjk(t+ h)− µεjk(t)
∣∣∣ dt ≤ Cjk

(√
h+ ε

)
. (4.91)

Inequality (4.91) is a variant of the Riesz-Fréchet-Kolmogorov criterion for (strong) compactness
in L1(0, T ) (see e.g. [50], page 72, Theorem IV.25), the variant being caused by the additional
ε-term in the right hand side. It is not difficult to check that the proof of compactness is still
valid with this additional term. Therefore, for any j ∈ N, k ∈ Zd, there is a subsequence εjk → 0
and a limit µjk ∈ L1(0, T ) such that

µ
εjk
jk → µjk in L1(0, T ).

A diagonalization procedure yields another subsequence ε such that the above convergence in
L1 holds for all indices j, k. The a priori estimates (4.35) on uε in turn implies that the Fourier
coefficients are bounded in L∞(0, T ) too. Thus, the above strong compactness property is true
in every Lp, 1 ≤ p < +∞, and, in particular, in L2(0, T ). The assertion that z0 ∈ L2((0, T )×Rd)
follows from the observation that

∥∥∥z0
∥∥∥
2

L2((0,T )×Rd)
=
∑

j∈N

∑

k∈Zd

T∫

0

|µjk(t)|2 dt

≤
∑

j∈N

∑

k∈Zd

lim inf
ε→0

T∫

0

|µεjk|2 dt ≤ lim inf
ε→0

∥∥∥ẑε
∥∥∥
2

L2((0,T )×Ω̂ε(t))
<∞.
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The next result states that there is not much difference between the time Fourier coefficients of
ẑε (defined in the perforated domain Ω̂ε(t)) and of its extension Êεzε.

Lemma 4.6.4. Let θ = |Y 0|/|Y | ∈ (0, 1). There exists a constant Cjk independent of ε such
that ∣∣∣µεjk(t)− θνεjk(t)

∣∣∣ ≤ Cjkε. (4.92)

Proof. By definition of the Fourier coefficients (4.88)-(4.89), we have

µεjk(t)− θνεjk(t) =

∫

Ω̂ε(t)

ẑε(t, x)ejk(x) dx − θ

∫

Rd

Êεzε(t, x)ejk(x) dx

=

∫

Rd

Eεzε(t, x)ějk(x)
(
χ(x/ε) − θ

)
dx

(4.93)

where χ(x/ε) is the characteristic function of Ωε, or equivalently χ(y) is the characteristic
function of Y 0. Let us introduce the following auxiliary problem

{ −divy(∇yΦ(y)) = χ(y)− θ in Y,

y → Φ(y) is Y -periodic.
(4.94)

Using (4.94) in (4.93) leads to

∣∣∣µεjk(t)− θνεjk(t)
∣∣∣ ≤ ε

∫

Rd

∣∣∣∇yΦ(x/ε) · ∇
(
Eεzε(t, x)ějk(x)

)∣∣∣ dx.

The properties (4.87) of the extension operator Eε and the estimates (4.86) lead to (4.92).

A last technical result is the possibility of truncating the modal series (with respect to j) of a
sequence which is bounded in L2(0, T ;H1(Rd)). This result has also appeared in [121], [27], [28].
Here we give a proof of the same as it hasn’t been fully done in the references cited.

Lemma 4.6.5. Let φε(t, x) be a bounded sequence in L2(0, T ;H1(Rd)). For any δ > 0, there
exists a J(δ) such that for all ε

∥∥∥φεχQR(δ)
−

∑

|k|≤R(δ)

∑

|j|≤J(δ)

λεjk(t)ejk(x)
∥∥∥
L2((0,T )×Rd)

≤ δ, (4.95)

where QR(δ) is the cube defined in Lemma 4.6.1 and λεjk(t) are the time dependent Fourier
coefficients of φε defined as

λεjk(t) =

∫

Rd

φε(t, x)ejk(x) dx. (4.96)

Proof. As QR(δ) is a bounded domain, the expansion of φεχQR(δ)
in the basis {ejk} can be

truncated in k with |k| ≤ R(δ) and is still exact. Let us consider the unit ball

B = {v ∈ H1(QR(δ)) : ‖v‖H1(QR(δ))
≤ 1}.

We know that H1(QR(δ)) is pre-compact in L2(QR(δ)) [50]. Hence for a given δ > 0 and for all
v ∈ B, there exists J(δ) such that

∥∥∥
∑

|k|≤R(δ)

∑

j>J(δ)

(v, ejk)L2(QR(δ))
ejk

∥∥∥
2

L2(QR(δ))
≤ δ
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Now, given φε ∈ L2(0, T ;H1(QR(δ))), we have φε(t) ∈ H1(QR(δ)) for almost every t ∈ (0, T ).
Thus for a given δ > 0, there exists a J(δ) such that

∥∥∥
∑

|k|≤R(δ)

∑

j>J(δ)

(φε(t), ejk)L2(QR(δ))ejk

∥∥∥
2

L2(QR(δ))
≤ δ‖φε(t)‖2H1(QR(δ))

for almost every t ∈ (0, T ). Integrating the above expression over (0, T ), we arrive at

∥∥∥
∑

|k|≤R(δ)

∑

j>J(δ)

(φε(t), ejk)L2((0,T )×QR(δ))ejk

∥∥∥
2

L2(QR(δ))
≤ δ‖φε(t)‖2L2(0,T ;H1(QR(δ)))

,

which implies the result (4.95).

We are now ready to state the compactness of the sequence zε. Note that the limit is not z0
but z0/θ since z0 was the limit of the sequence zε extended by zero outside the porous domain
Ω̂ε(t).

Theorem 4.6.6. There exists a subsequence ε such that

lim
ε→0

T∫

0

∫

Ω̂ε(t)

∣∣∣ẑε(t, x)− θ−1z0(t, x)
∣∣∣
2
dx dt = 0 (4.97)

where zε is defined in (4.85).

Proof. The estimates (4.86) for {ẑε}, being similar to (4.35), imply that the localization principle,
Lemma 4.6.1, holds true for the sequence {ẑε} too. Thus, for a given δ > 0, there exists a
R(δ) > 0 big enough such that

∥∥∥ẑε − ẑεχQR(δ)

∥∥∥
L2((0,T )×Ω̂ε(t))

≤ δ

5
. (4.98)

Applying Lemma 4.6.5 to ÊεzεχQR(δ)
, for any δ > 0, there exists J(δ) such that, for any small

ε > 0, ∥∥∥ÊεzεχQR(δ)
−

∑

|k|≤R(δ)

∑

|j|≤J(δ)

νεjk(t)ejk(x)
∥∥∥
L2((0,T )×Rd)

≤ δ

5
. (4.99)

As Êεzε is an extension of ẑε, we deduce from (4.99) that

∥∥∥ẑεχQR(δ)
−

∑

|k|≤R(δ)

∑

|j|≤J(δ)

νεjk(t)ejk(x)
∥∥∥
L2((0,T )×Ω̂ε(t))

≤ δ

5
. (4.100)

From Lemma 4.6.4, for a given δ > 0 and ε small enough, we have

∥∥∥
∑

|k|≤R(δ)

∑

|j|≤J(δ)

νεjk(t)ejk(x)−
1

θ

∑

|k|≤R(δ), |j|≤J(δ)

µεjk(t)ejk(x)
∥∥∥
L2((0,T )×Ω̂ε(t))

≤ δ

5
. (4.101)

Lemma 4.6.3 asserted that the Fourier coefficients are relatively compact in L2(0, T ). Thus, for
ε small enough, we have

∥∥∥
∑

|k|≤R(δ)

∑

|j|≤J(δ)

µεjk(t)ejk(x)−
∑

|k|≤R(δ), |j|≤J(δ)

µjk(t)ejk(x)
∥∥∥
L2((0,T )×Ω̂ε(t))

≤ θ
δ

5
. (4.102)



4.7. TWO-SCALE COMPACTNESS 143

By Lemma 4.6.3 we know that z0 ∈ L2((0, T ) × Rd) so, by choosing a large enough J(δ), we
have ∥∥∥

∑

|k|≤R(δ)

∑

|j|≤J(δ)

µjk(t)ejk(x)− z0(t, x)
∥∥∥
L2((0,T )×QR(δ))

≤ δ

5
(4.103)

Thus summing up (4.98), (4.100), (4.101), (4.102) and (4.103) we arrive at

∥∥∥ẑε(t, x)− θ−1z0(t, x)
∥∥∥
L2((0,T )×Ω̂ε(t))

≤ δ (4.104)

which is (4.97).

Eventually, we deduce the desired compactness of the sequence uε from that of zε.

Corollary 4.6.7. There exists a subsequence ε and a limit u0 ∈ L2((0, T ) × Rd) such that

lim
ε→0

T∫

0

∫

Ω̂ε(t)

|ûε(t, x) − u0(t, x)|2 dx dt = 0. (4.105)

Proof. Since the nonlinear isotherm f is bounded and monotone, the application (I + ηf) is
globally invertible with linear growth. We have uε(t, x) = (I+ηf)−1zε(t, x) and the compactness
property of {ẑε}, as stated in Theorem 4.6.6, immediately translates to {ûε} by a standard
application of the Lebesgue dominated convergence theorem.

Compactness results are crucial in nonlinear parabolic equations. Another approach sharing
some similarities with us can be found in [28]. A standard approach in proving compactness
for sequences defined in porous domains is to make use of the extension operators of [1]. This
approach has been employed, for example, in [28] with regard to homogenization of nonlinear
degenerate parabolic convection diffusion equation for the water saturation in the study of two-
phase flows. Our approach deviates from this standard approach.

4.7 Two-scale compactness

This section is concerned with obtaining the two-scale limits for the the solutions sequences {uε},
{vε} and the coupled sequence {wε} with wε =

1

ε

(
f(uε) − vε

)
where f is given by (4.2). The

two-scale convergence with drift is a weak type of convergence for the sequences since it relies
on the use of test functions. However, by virtue of Corollary 4.6.7 the convergence is strong for
uε in the sense that

lim
ε→0

∥∥∥∥uε(t, x)− u0

(
t, x− b∗

ε
t

)∥∥∥∥
L2((0,T )×Ωε)

= 0.

We still have to find the two-scale with drift limits of {vε} and {wε}. In Section 3.8 of Chapter
3 we managed to find the two-scale with drift of a coupled sequence, thanks to the auxiliary
problem (3.36) introduced in Lemma 3.8.1. We shall be using the same lemma here to find the
limit of the coupled sequence {wε}. For easy reference we shall restate the Lemma 3.8.1, the
proof of which can be found in Section 3.8.

Lemma 4.7.1. Let φ(t, x, y) ∈ L2((0, T ) × Rd × ∂Σ0) be such that
∫

∂Σ0

φ(t, x, y) dσ(y) = 0 for

a.e. (t, x) ∈ (0, T ) × Rd. There exist two periodic vector fields θ(t, x, y) ∈ L2((0, T ) × Rd × Y )d
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and Θ(t, x, y) ∈ L2((0, T ) × Rd × ∂Σ0)d such that





divyθ = 0 in Y 0,

θ · n = φ on ∂Σ0,

divsyΘ = φ on ∂Σ0.

(4.106)

We now apply the compactness results on two-scale convergence with drift from Chapter 2 to
the homogenization of (4.12)-(4.14) to deduce our main result.

Theorem 4.7.2. Under assumption (4.1) which defines a common average value b∗ for the
bulk and surface velocities, the sequence of bulk and surface concentrations (uε, vε), solutions of
system (4.12)-(4.14), two-scale converge with drift b∗, as ε→ 0, in the following sense





uε
2−drift−−−−⇀ u0(t, x)

vε
2s−drift−−−−−⇀ f(u0)(t, x)

∇uε 2−drift−−−−⇀ ∇xu0(t, x) +∇yu1(t, x, y)

∇svε
2s−drift−−−−−⇀ f ′(u0)G(y)∇xu0(t, x) +∇s

yv1(t, x, y)
1
ε (f(uε)− vε)

2s−drift−−−−−⇀ f ′(u0)u1(t, x, y) − v1(t, x, y)

(4.107)

where f is the Langmuir isotherm defined in (4.2), the two-scale limit u0 ∈ L2((0, T );H1(Rd))
and the corrector terms u1 ∈ L2((0, T ) × Rd;H1

#(Y
0)) and v1 ∈ L2((0, T ) × Rd;H1

#(∂Σ
0)).

Proof. Lemma 4.4.2 furnishes a priori estimates so that, up to a subsequence, all sequences
in (4.107) have two-scale limits with drift, thanks to the Propositions 2.6.6, 2.7.2 and 2.7.3 in
Chapter 2. The first task is to identify those limits. Similar computations were performed in
the proof of Theorem 3.8.2 in Chapter 3 and in [20], so we content ourselves in explaining how
to derive the limit of the most delicate term, that is wε = 1

ε (f(uε)− vε), assuming that the
other limits are already characterized. As opposed to the proof of Theorem 3.8.2 in Chapter
3 and the calculations in [20], where only linear terms were involved, we have to identify the
weak two-scale drift limit of f(uε). In view of Corollary 4.6.7 which states the compactness of
ûε(t, x), and since f(u) ≤ αu, it is easily deduced that f(uε) two-scale converges with drift to
f(u0).
Let us denote by q(t, x, y) the two-scale drift limit of wε and let us choose a test function φ as

in Lemma 4.7.1, i.e.,

∫

∂Σ0

φ(t, x, y) dσ(y) = 0. By Definition 2.7.1

lim
ε→0

ε

T∫

0

∫

∂Ωε

wε(t, x)φ

(
t, x− b∗t

ε
,
x

ε

)
dσ(x) dt =

T∫

0

∫

Rd

∫

∂Σ0

qφ dσ(y) dx dt.

Replacing wε by the difference between f(uε) and vε we get a different two-scale limit which
will allows us to characterize q(t, x, y). In view of (4.106), we first have

ε

T∫

0

∫

∂Ωε

1

ε
f(uε)φ

(
t, x− b∗t

ε
,
x

ε

)
dσ(x) dt =

T∫

0

∫

Ωε

div

(
f(uε)θ

(
t, x− b∗t

ε
,
x

ε

))
dx dt,

=

T∫

0

∫

Ωε

[
f ′(uε)∇uε · θ

(
t, x− b∗t

ε
,
x

ε

)
+ f(uε) (divxθ)

(
t, x− b∗t

ε
,
x

ε

)]
dx dt,
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which, using again the compactness of Corollary 4.6.7, converges, as ε goes to 0, to

T∫

0

∫

Rd

∫

Y 0

f ′(u0)
[
(∇xu0 +∇yu1) · θ + f(u0)divxθ

]
dy dx dt

=

T∫

0

∫

Rd

∫

∂Σ0

f ′(u0)u1θ · n dσ(y) dx dt =
T∫

0

∫

Rd

∫

∂Σ0

f ′(u0)u1φdσ(y) dx dt. (4.108)

On the other hand, the second term is

ε

T∫

0

∫

∂Ωε

1

ε
vεφ

(
t, x− b∗t

ε
,
x

ε

)
dσ(x) dt =

T∫

0

∫

∂Ωε

vε
(
divsyΘ

)(
t, x− b∗t

ε
,
x

ε

)
dσ(x) dt

= ε

T∫

0

∫

∂Ωε

vε

[
divs

(
Θ

(
t, x− b∗t

ε
,
x

ε

))
− divx (GΘ)

(
t, x− b∗t

ε
,
x

ε

)]
dσ(x) dt

= −ε
T∫

0

∫

∂Ωε

[
Θ

(
t, x− b∗t

ε
,
x

ε

)
· ∇svε + divx (GΘ)

(
t, x− b∗t

ε
,
x

ε

)
vε

]
dσ(x) dt

which converges, as ε goes to 0, to

−
T∫

0

∫

Rd

∫

∂Σ0

[
Θ ·
(
G(y)∇xf(u0) +∇s

yv1
)
+ divx (G(y)Θ) f(u0)

]
dσ(y) dx dt

=

T∫

0

∫

Rd

∫

∂Σ0

v1div
s
yΘ dσ(y) dx dt =

T∫

0

∫

Rd

∫

∂Σ0

v1φdσ(y) dx dt. (4.109)

Subtracting the two limit terms (4.108) and (4.109), we have shown that

T∫

0

∫

Rd

∫

∂Σ0

qφ dσ(y) dx dt =

T∫

0

∫

Rd

∫

∂Σ0

(
f ′(u0)u1 − v1

)
φdσ(y) dx dt,

for all φ such that

∫

∂Σ0

φdy = 0. Thus,

q(t, x, y) = f ′(u0)(t, x)u1(t, x, y)− v1(t, x, y) + l(t, x)

for some function l(t, x) which does not depend on y. Since, u1 and v1 are also defined up to the
addition of a function solely dependent on (t, x), we can get rid of l(t, x) and we recover indeed
the last line of (4.107).
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4.8 Proof of the homogenization result

This section tries to characterize the two-scale limits obtained in Theorem 4.7.2. Chapter 3 had
a separate section, Section 3.7, dedicated to the formal derivation of the homogenized equation
using the method of two-scale asymptotic expansions with drift. In the present chapter, we
shall avoid the details on the formal derivation. The calculations are almost similar to the ones
found in Section 3.7. Our mesoscopic equation (4.12)-(4.14) has got a zero order nonlinear term.
As usual in the two-scale asymptotic analysis with drift, consult Section 2.6 and Section 2.7 if
necessary, we start with an assumption that the solutions can be written as an ansatz

uε(t, x) =
∑

i≥0

εiui

(
t, x− b∗t

ε
,
x

ε

)
. (4.110)

As uε enters as an argument of the nonlinear term, the formal idea would be to approximate
the nonlinear term by it’s Taylor expansion.

f(uε) = f(u0) + εf ′(u0)u1 + ε2
(
u2f

′(u0) +
u21
2
f ′′(u0)

)
+O(ε) (4.111)

We shall use the proposed ansatz (4.110) for uε (a similar ansatz for the surface concentration
vε) and use (4.111) in place of the nonlinear term and perform the asymptotic analysis as in
Section 3.7. Now we shall state a result that gives the effective behavior of the mesoscopic model
(4.12)-(4.14) in terms of the two-scale limits (4.107).

Theorem 4.8.1. The two-scale drift limit u0 of Theorem 4.7.2 satisfies the following nonlinear
effective diffusion equation





[
|Y 0|+ |∂Σ0|f ′(u0)

] ∂u0
∂t

− divx(D(u0)∇xu0) = 0 in (0, T )× Rd,

[
|Y 0|u0 + |∂Σ0|f(u0)

]
(0, x) = |Y 0|uin(x) + |∂Σ0|vin(x) in Rd,

(4.112)

where the dispersion tensor D is given by its entries

Dij(u0) =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy +
ακ

(1 + βu0)2

∫

∂Σ0

[χi − ωi] [χj − ωj] dσ(y)

+
α

(1 + βu0)2

∫

∂Σ0

Ds(y)
(
∇s

yωi + ei
)
·
(
∇s

yωj + ej
)
dσ(y)

+

∫

Y 0

D(y)
(
∇yχj · ei −∇yχi · ej

)
dy

+
α

(1 + βu0)2

∫

∂Σ0

Ds(y)
(
∇s

yωj · ei −∇s
yωi · ej

)
dσ(y)

+

∫

Y 0

(
b(y) · ∇yχi

)
χj dy +

α

(1 + βu0)2

∫

∂Σ0

(
bs(y) · ∇s

yωi

)
ωj dσ(y)

(4.113)
with (χ, ω) = (χi, ωi)1≤i≤d being the solution of the cell problem




−b∗ · ei + b(y) · (ei +∇yχi)− divy(D(ei +∇yχi)) = 0 in Y 0,

−D(y) (ei +∇yχi) · n = κf ′(u0) (χi − ωi) on ∂Σ0,

−b∗ · ei + bs(y) · (ei +∇s
yωi)− divsy(D

s(ei +∇s
yωi)) = κ (χi − ωi) on ∂Σ0,

y → (χi(y), ωi(y)) Y -periodic.

(4.114)
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Before proving Theorem 4.8.1 we establish the well-posed character of the homogenized equation
(4.112) and cell problems (4.114).

Lemma 4.8.2. For any given value of u0(t, x) ≥ 0, the cell problem (4.114) admits a unique
solution (χi, ωi) ∈ H1

#(Y
0) × H1

#(∂Σ
0), up to the addition of a constant vector (C,C) if and

only if the drift velocity is chosen from (4.1)
The homogenized problem (4.112) admits a unique solution

u0 ∈ C([0, T ];L2(Rd)) and ∇u0 ∈ L2((0, T ) × Rd)d.

Proof. The variational formulation of (4.114) is

∫

Y 0

(
b(y) · ∇yχi

)
ϕdy +

∫

Y 0

D(ei +∇yχi) · ∇yϕdy + f ′(u0)

∫

∂Σ0

(
bs(y) · ∇s

yωi

)
ψ dσ(y)

+f ′(u0)

∫

∂Σ0

Ds(ei +∇s
yωi) · ∇s

yψ dσ(y) + κf ′(u0)

∫

∂Σ0

(χi − ωi)(ϕ− ψ) dσ(y)

=

∫

Y 0

(
b∗ − b(y)

)
· eiϕdy + f ′(u0)

∫

∂Σ0

(
b∗ − bs(y)

)
· eiψ dσ(y). (4.115)

Given the drift velocity b∗ is (4.1), the Lax-Milgram lemma can be easily applied.
Upon symmetrization, the dispersion tensor D takes the following form

Dsym
ij (u0) =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy

+f ′(u0)

∫

∂Σ0

Ds(y)
(
∇s

yωi + ei
)
·
(
∇s

yωj + ej
)
dσ(y)

+κf ′(u0)

∫

∂Σ0

(χi − ωi) (χj − ωj) dσ(y)

(4.116)

Since f ′(u0) ≥ 0, (4.116) implies that D(u0) ≥
∫

Y 0

D(y) dy and thus the dispersion tensor is

uniformly coercive. On the other hand, since f ′(u0) ≤ α, D(u0) is uniformly bounded from
above. Then, it is a standard process to prove existence and uniqueness of (4.112) (see [110] if
necessary).

Proof of Theorem 4.8.1. The proof is to show that u0(t, x) is the solution of the homogenized
equation (4.112). For that goal, we shall pass to the limit in the coupled variational formulation
of (4.12)-(4.14),

T∫

0

∫

Ωε

[
∂uε
∂t

φε +
1

ε
bε · ∇uεφε +Dε∇uε · ∇φε

]
dx dt (4.117)

+ε

T∫

0

∫

∂Ωε

[
∂vε
∂t

ψε +
1

ε
bsε · ∇svεψε +Ds

ε∇svε · ∇sψε

]
dσ(x) dt

+
κ

ε

T∫

0

∫

∂Ωε

(f(uε)− vε) (φε − ψε) dσ(x) dt = 0,
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with the test functions

φε = φ

(
t, x− b∗t

ε

)
+ εφ1

(
t, x− b∗t

ε
,
x

ε

)
,

ψε = φ

(
t, x− b∗t

ε

)
+ εψ1

(
t, x− b∗t

ε
,
x

ε

)
.

Here φ(t, x), φ1(t, x, y) and ψ1(t, x, y) are smooth compactly supported functions which vanish
at t = T . Let us consider the convective terms in (3.40) and perform integrations by parts:

T∫

0

∫

Ωε

(
∂uε
∂t

+
1

ε
bε · ∇uε

)
φε dx dt+ ε

T∫

0

∫

∂Ωε

(
∂vε
∂t

+
1

ε
bsε · ∇svε

)
ψε dσ(x) dt

= −
T∫

0

∫

Ωε

uε
∂φ

∂t

(
t, x− b∗t

ε

)
dx dt+

1

ε

T∫

0

∫

Ωε

uεb
∗ · ∇xφ

(
t, x− b∗t

ε

)
dx dt

+

T∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(
t, x− b∗t

ε
,
x

ε

)
dx dt−

∫

Ωε

uin(x)φ(0, x) dx +O(ε)

−1

ε

T∫

0

∫

Ωε

uεbε · ∇xφ

(
t, x− b∗t

ε

)
dx dt+

T∫

0

∫

Ωε

bε · ∇uεφ1
(
t, x− b∗t

ε
,
x

ε

)
dx dt

−ε
T∫

0

∫

∂Ωε

vε
∂φ

∂t

(
t, x− b∗t

ε

)
dσ(x) dt+

T∫

0

∫

∂Ωε

vεb
∗ · ∇xφ

(
t, x− b∗t

ε

)
dσ(x) dt

+ε

T∫

0

∫

∂Ωε

vεb
∗ · ∇xψ1

(
t, x− b∗t

ε
,
x

ε

)
dσ(x) dt − ε

∫

∂Ωε

vin(x)φ(0, x) dσ(x) +O(ε)

−
T∫

0

∫

∂Ωε

vεb
s
ε · ∇xφ

(
t, x− b∗t

ε

)
dσ(x) dt + ε

T∫

0

∫

∂Ωε

bsε · ∇svεψ1

(
t, x− b∗t

ε
,
x

ε

)
dσ(x) dt.

We cannot directly pass to the two-scale limit since there are terms which apparently are of
order ε−1. We thus regroup them and, recalling definition (4.74) of the transported function φ̌
and using the two auxiliary problems (4.80) and (4.81), we deduce

T∫

0

∫

Ωε

uε
b∗ − bε
ε

· ∇xφ̌ dx dt+

T∫

0

∫

∂Ωε

vε (b
∗ − bsε) · ∇xφ̌ dσ(x) dt

= ε

d∑

i=1

T∫

0

∫

Ωε

uε∆ξ
ε
i ∂xi

φ̌ dx dt+ ε2
d∑

i=1

T∫

0

∫

∂Ωε

vε∆Ξε
i∂xi

φ̌ dσ(x) dt

= −ε
d∑

i=1

T∫

0

∫

Ωε

∇ξεi · ∇
(
uε∂xi

φ̌
)
dx dt− ε2

d∑

i=1

T∫

0

∫

∂Ωε

∇Ξε
i · ∇

(
vε∂xi

φ̌
)
dσ(x) dt,
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for which we can pass to the two-scale limit. The above simplification of the singular terms
already appeared in the proof of the localization result, Lemma 4.6.1, in Section 4.6 where the
auxiliary problems (4.80) and (4.81) were introduced.
In a first step towards obtaining the homogenized result, we choose φ ≡ 0 and we pass to the
two-scale limit with drift in (4.117). It yields

T∫

0

∫

Rd

∫

Y 0

u0(t, x) b
∗ · ∇xφ1(t, x, y) dy dx dt

+

T∫

0

∫

Rd

∫

Y 0

b(y) · (∇xu0(t, x) +∇yu1(t, x, y))φ1(t, x, y) dy dx dt

+

T∫

0

∫

Rd

∫

Y 0

D(y) (∇xu0(t, x) +∇yu1(t, x, y)) · ∇yφ1(t, x, y) dy dx dt

+

T∫

0

∫

Rd

∫

∂Σ0

f(u0) b
∗ · ∇xψ1(t, x, y) dσ(y) dx dt

+

T∫

0

∫

Rd

∫

∂Σ0

bs(y) ·
(
f ′(u0)G∇xu0(t, x) +∇s

yv1(t, x, y)
)
ψ1(t, x, y) dσ(y) dx dt

+

T∫

0

∫

Rd

∫

∂Σ0

Ds(y)
(
f ′(u0)G∇xu0(t, x) +∇s

yv1(t, x, y)
)
· ∇s

yψ1(t, x, y) dσ(y) dx dt

+κ

T∫

0

∫

Rd

∫

∂Σ0

(
f ′(u0)u1 − v1

)
(φ1 − ψ1) dσ(y) dx dt = 0,

which is nothing but the variational formulation of




−b∗ · ∇xu0 + b · (∇xu0 +∇yu1)− divy(D(∇xu0 +∇yu1)) = 0 in Y 0,

−D (∇xu0 +∇yu1) · n =
κ

(1 + βu0)2
(
αu1 − (1 + βu0)

2v1
)

on ∂Σ0,

−b∗ · α∇xu0 + bs(y) · (α∇xu0 + (1 + βu0)
2∇s

yu1)

−divsy(D
s(α∇xu0 + (1 + βu0)

2∇s
yv1)) = κ

(
αu1 − (1 + βu0)

2v1
)

on ∂Σ0,

y → (u1(y), v1(y)) Y -periodic,

(4.118)

which implies that

u1(t, x, y) =
d∑

i=1

χi(y)
∂u0
∂xi

(t, x) and v1 = f ′(u0)
d∑

i=1

ωi(y)
∂u0
∂xi

(t, x)

where (χi, ωi)1≤i≤d is the solution of the cell problem (4.114).
In a second step, we choose φ1 ≡ 0, ψ1 ≡ 0 and we pass to the two-scale limit with drift in
(4.117). It yields

|Y 0|
∫

Rd

∂u0
∂t

φ dx dt+

d∑

i,j=1

∫

Rd

∫

Y 0

Dij(y)
∂u0
∂xj

∂φ

∂xi
dx dt
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−|Y 0|
∫

Rd

uin(x)φ(0, x) dx +

∫

Rd

∫

Y 0

d∑

i,j=1

d∑

l=1

Dil(y)
∂χj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dx dt

+|∂Σ0|
∫

Rd

f ′(u0)
∂u0
∂t

φ dx dt+

∫

Rd

∫

∂Σ0

d∑

i,j=1

d∑

l=1

f ′(u0)D
s
il(y)Glj(y)

∂u0
∂xj

∂φ

∂xi
dσ(y) dx dt

−|∂Σ0|
∫

Rd

vin(x)φ(0, x) dx +

∫

Rd

∫

∂Σ0

d∑

i,j=1

d∑

l=1

f ′(u0)D
s
il(y)

∂u0
∂xj

∂sωj(y)

∂yl

∂φ

∂xi
dσ(y) dx dt

+

∫

Rd

∫

Y 0

d∑

i,j=1

d∑

l=1

∂ξi(y)

∂yl

∂χj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dy dx dt

+

∫

Rd

∫

∂Σ0

d∑

i,j=1

d∑

l=1

f ′(u0)
∂sΞi(y)

∂yl

∂sωj(y)

∂yl

∂u0
∂xj

∂φ

∂xi
dσ(y) dx dt = 0,

which is precisely the variational formulation of the homogenized problem (4.112) where the
elements of D are given by

Dij =

∫

Y 0

Dei · ej dy +
∫

Y 0

D∇yχj · ei dy + f ′(u0)

∫

∂Σ0

Dsei · ej dσ(y) + f ′(u0)

∫

∂Σ0

Ds∇s
yωj · ei dσ(y)

+

∫

Y 0

∇yξi · ∇yχj dy + f ′(u0)

∫

∂Σ0

∇s
yΞi · ∇s

yωj dσ(y) (4.119)

It remains to prove that formula (4.119) is equivalent to that announced in (4.113). Note that we
haven’t symmetrized the expression for the dispersion tensor. In Section 3.7 we did symmetrize
the homogenized matrix as the dispersion matrix (3.29) was a constant matrix. Our upscaling
method could recognize the role played only by the symmetric part of the dispersion matrix. In
the current case, however, the dispersion matrix depends on the homogenized solution u0 and
the observation (2.51) we made in Chapter 2 is no longer valid. So, the non-symmetric nature of
the dispersion matrix in (4.113). In (4.119) we recognize the solutions to the auxiliary problems
(4.80) and (4.81) that we used to take care of the singular terms in the variational formulation
(4.117). So the two auxiliary problems (4.80) and (4.81) have to be used for transforming (4.119)
into (4.113). Let us test (4.80) for ξi by the cell solution χj followed by testing (4.81) for Ξi by
f ′(u0)ωj . Adding the thus obtained expressions leads to

∫

Y 0

∇yξi ·∇yχj dy+f
′(u0)

∫

∂Σ0

∇s
yΞi ·∇s

yωj dσ(y) =

∫

Y 0

(b∗i − bi)χj dy+f
′(u0)

∫

∂Σ0

(b∗i − bsi )ωj dσ(y)

(4.120)

Next, in the variational formulation (4.115) for (χi, ωi), we shall replace the test functions by
(χj , ωj) leading to

∫

Y 0

(b∗i − bi(y))χj(y) dy + f ′(u0)

∫

∂Σ0

(b∗i − bsi (y))ωj(y) dσ(y)

=

∫

Y 0

D(y)∇yχi · ∇yχj dy + f ′(u0)

∫

∂Σ0

Ds(y)∇s
yωi · ∇s

yωj dσ(y) +

∫

Y 0

D∇yχj · ei dy
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+f ′(u0)

∫

∂Σ0

Ds∇s
yωj · ei dσ(y) + κf ′(u0)

∫

∂Σ0

(χi − ωi) (χj − ωj) dσ(y). (4.121)

Finally, using (4.120) and (4.121) in (4.119) shows that both formulas (4.119) and (4.113) for the
dispersion tensor D are equivalent. Therefore, we have indeed obtained the variational formula-
tion of the homogenized problem (4.112) which, by Lemma 4.8.2, admits a uniqueness solution.
As a consequence of uniqueness, the entire sequence converges, not merely a subsequence.

4.9 Strong convergence

Theorem 4.7.2 gives a weak type convergence result for the sequences uε and vε in the sense of
two-scale convergence with drift. Thanks to the strong compactness of Corollary 4.6.7 it was
immediately improved as a strong convergence result for uε in the L2-norm.

lim
ε→0

∥∥∥∥uε(t, x)− u0

(
t, x− b∗

ε
t

)∥∥∥∥
L2((0,T )×Ωε)

= 0.

In the present section, we recover this result and additionally prove the strong convergence of
vε and of their gradients, up to the addition of some corrector terms. The main idea is to show
that the energy associated with (4.12)-(4.14) converges to that of the homogenized equation
(4.112). This is shown to work under a specific constraint on the initial data (uin, vin) which
must be well prepared (see below). Then, our argument relies on the notion of strong two-scale
convergence which is recalled in Proposition 2.6.7 of Chapter 2. Theorem 4.9.1 is the main result
of the section. Following ideas of [20], [17], its proof relies on the lower semicontinuity property
of the norms with respect to the (weak) two-scale convergence. The additional difficulty is the
nonlinear terms which arise in the energy equality (4.36). Lemma 4.9.3 is a technical result of
strong two-scale convergence adapted to our nonlinear setting.

Let us explain the assumption on the well prepared character of the initial data and its origin.
We denote by u00(x) the initial data of the homogenized problem (4.112), which is defined on Rd

by

|Y 0|u00 + |∂Σ0|f(u00) = |Y 0|uin + |∂Σ0|vin. (4.122)

Since f is non negative and increasing, (4.122) uniquely defines u00 as a nonlinear function of
(uin, vin). It will turn out that, passing to the limit in the energy equality, and thus deducing
strong convergence, requires another constraint for u00 which is

|Y 0|F (u00) +
1

2
|∂Σ0|f2(u00) = |Y 0|F (uin) + 1

2
|∂Σ0|(vin)2, (4.123)

where F is the primitive of f . In general, (4.122) and (4.123) are not compatible, except if the
initial data (uin, vin) satisfies a compatibility condition which, for the moment, we admittedly
write as a nonlinear relationship

H(uin, vin) = 0. (4.124)

Typically, if uin is known, (4.124) prescribes a given value for vin. Lemma 4.9.4 will investigate
the existence and uniqueness of a solution vin in terms of given uin. In the linear case, namely
f(u) = αu, (4.124) reduces to the explicit relationship vin = αuin which was indeed the object
of Theorem 3.10.1 of Section 3.10 in Chapter 3.
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Theorem 4.9.1. Let the initial data (uin, vin) satisfy the nonlinear equation (4.124). Then the
sequences uε(t, x) and vε(t, x) strongly two-scale converge with drift in the sense that

lim
ε→0

∥∥∥∥uε(t, x)− u0

(
t, x− b∗

ε
t

)∥∥∥∥
L2((0,T )×Ωε)

= 0,

lim
ε→0

√
ε

∥∥∥∥vε(t, x)− f(u0)

(
t, x− b∗

ε
t

)∥∥∥∥
L2((0,T )×∂Ωε)

= 0.

(4.125)

Similarly, the gradients of uε(t, x) and vε(t, x) strongly two-scale converge with drift in the sense
that

lim
ε→0

∥∥∥∥∇uε(t, x)−∇u0
(
t, x− b∗

ε
t

)
−∇yu1

(
t, x− b∗

ε
t,
x

ε

)∥∥∥∥
L2((0,T )×Ωε)

= 0, (4.126)

with u1(t, x, y) = χ(y) · ∇xu0(t, x), and

lim
ε→0

√
ε

∥∥∥∥∇Svε(t, x)−G
(x
ε

)
∇f(u0)−∇s

yv1

(
t, x− b∗

ε
t,
x

ε

)∥∥∥∥
L2((0,T )×∂Ωε)

= 0. (4.127)

with v1(t, x, y) = ω(y) · ∇xf(u0)(t, x).

Remark 4.9.2. If the well prepared assumption (4.124) is not satisfied we believe that strong
convergence, in the sense of Theorem 4.9.1, still holds true. This was indeed proved for the linear
case in [20], [17] (details of which can be found in Theorem 3.10.1 of Section 3.10 in Chapter
3). The mechanism is that, after a time t0 as small as we wish, diffusion relaxes any initial
data to an almost well prepared solution (uε(·, t0), vε(·, t0)) which can serve as a well prepared
initial data starting at time t0. There are technical difficulties for proving such a result in the
nonlinear case which we are unable to overcome.

To prove Theorem 4.9.1 we need the notion of strong two-scale convergence which was originally
introduced in Theorem 1.8 in [5]. It was further extended to the case of sequences on periodic
surfaces in [14] and to the case of two-scale convergence with drift in [7] (Proposition 2.6.7).
Of course, we can blend these two ingredients and extend the notion of strong convergence to
sequences defined on periodic surfaces. This was done in 2.7.4.
We now prove a technical result which amounts to say that the L2-norm can be replaced by a
convex functional in the criterion of strong two-scale convergence (2.61) of Proposition 2.6.7.

Lemma 4.9.3. Let A : R → R be a strongly convex function in the sense that there exists a
constant a > 0 such that, for any u, v ∈ R and any θ ∈ [0, 1], it satisfies

A (θu+ (1− θ)v) ≤ θA(u) + (1− θ)A(v)− a

2
θ(1− θ) |u− v|2 .

Let {Uε(t, x)} be a sequence that two-scale converges with drift to U0(t, x, y). If

lim
ε→0

‖A(Uε)(t, x)‖L1((0,T )×Ωε)
= ‖A(U0) (t, x, y)‖L1((0,T )×Rd×Y 0) (4.128)

then

lim
ε→0

∥∥∥∥Uε(t, x)− U0

(
t, x− b∗

ε
t,
x

ε

)∥∥∥∥
L2((0,T )×Ωε)

= 0. (4.129)

Proof. SinceA is convex and proper (finite), it is continuous and thus, up to an additive constant
which plays no role, non negative. The strong convexity of A yields

A
(
θUε(t, x) + (1− θ)U0

(
t, x− b∗t

ε
,
x

ε

))
≤ θA(Uε)(t, x)
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+(1− θ)A(U0)

(
t, x− b∗t

ε
,
x

ε

)
− a

2
θ(1− θ)

∣∣∣∣Uε(t, x)− U0

(
t, x− b∗t

ε
,
x

ε

)∣∣∣∣
2

.

Taking θ = 1
2 and integrating over Ωε × (0, T ), we get

T∫

0

∫

Ωε

A
(
Uε(t, x) + U0

(
t, x− b∗t

ε ,
x
ε

)

2

)
+
a

8

T∫

0

∫

Ωε

∣∣∣∣Uε(t, x)− U0

(
t, x− b∗t

ε
,
x

ε

)∣∣∣∣
2

≤ 1

2

T∫

0

∫

Ωε

A(Uε)(t, x) +
1

2

T∫

0

∫

Ωε

A(U0)

(
t, x− b∗t

ε
,
x

ε

)
. (4.130)

Because of the lower semi-continuity property of convex functions with respect to the weak
two-scale convergence with drift, we have

T∫

0

∫

Rd

∫

Y 0

A(U0)(t, x, y) ≤
T∫

0

∫

Ωε

A
(
Uε(t, x) + U0

(
t, x− b∗t

ε ,
x
ε

)

2

)
.

Upon passing to the limit, as ε → 0, the right hand side of (4.130) is exactly equal to the left
hand side of the above inequality because of our hypothesis (4.128) on A(Uε), which yields the
desired result (4.129).

The criterion (4.128) is that in the context of convex functional to (2.61) in the L2 setting
(Proposition 2.6.7). This adoption to convex functional is called for as we encounter nonlinear
terms in the energy estimate (4.36) of (4.12)-(4.14). We now are ready to prove the main result
of this section.

Proof of Theorem 4.9.1. Following an idea from [17], [20], we prove that the energy associated
with (4.12)-(4.14) converges to the that of the homogenized equation (4.112) under assumption
(4.124). Integrating the energy equality (4.36) over (0, t) yields

∫

Ωε

F (uε)(t) dx +
ε

2

∫

∂Ωε

|vε(t)|2 dσ(x) +
t∫

0

∫

Ωε

f ′(uε)Dε∇uε · ∇uε dx ds

+ε

t∫

0

∫

∂Ωε

Ds
ε∇svε · ∇svε dσ(x) ds + κε

t∫

0

∫

∂Ωε

(wε)
2 dσ(x) ds =

∫

Ωε

F (uin) dx+
ε

2

∫

∂Ωε

|vin|2 dσ(x),

with wε = (f(uε) − vε)/ε. Since two-scale convergence with drift holds only in a time-space
product interval, we integrate again the above expression over (0, T ) to get

T∫

0

∫

Ωε

F (uε)(t) dx dt +
ε

2

T∫

0

∫

∂Ωε

|vε(t)|2 dσ(x) dt+
T∫

0

t∫

0

∫

Ωε

f ′(uε)Dε∇uε · ∇uε dx ds dt

+ε

T∫

0

t∫

0

∫

∂Ωε

Ds
ε∇svε · ∇svε dσ(x) ds dt + κε

T∫

0

t∫

0

∫

∂Ωε

(wε)
2 dσ(x) ds dt

= T

∫

Ωε

F (uin) dx+
Tε

2

∫

∂Ωε

|vin|2 dσ(x). (4.131)
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We pass to the two-scale limit in all terms of the left hand side of (4.131) by using the lower
semi-continuity property of norms and of the convex function F . The only delicate term is the
third one, involving the nonlinear term f ′(uε), where we use again the compactness of Corollary
4.6.7. Passing to the limit yields the following inequality

|Y 0|
T∫

0

∫

Rd

F (u0) dx dt +
1

2
|∂Σ0|

T∫

0

∫

Rd

(f(u0))
2 dx dt

+κ

T∫

0

t∫

0

∫

Rd

∫

∂Σ0

| (χ(y)− ω(y)) · ∇xf(u0)(s, x)|2 dσ(y) dx ds dt.

+

T∫

0

t∫

0

∫

Rd

∫

Y 0

f ′(u0)D(y)|∇xu0(s, x) +∇y (χ(y) · ∇xu0(s, x)) |2 dy dx ds dt.

+

T∫

0

t∫

0

∫

Rd

∫

∂Σ0

Ds(y)|G(y)∇xf(u0)(s, x) +∇s
y (ω(y) · ∇xf(u0)(s, x)) |2 dσ(y) dx ds dt

≤ T |Y 0|
∫

Rd

F (uin) dx+
T

2
|∂Σ0|

∫

Rd

|vin|2 dx.

Recognizing formula (4.116) for Dsym leads to

|Y 0|
T∫

0

∫

Rd

F (u0) dx dt+
1

2
|∂Σ0|

T∫

0

∫

Rd

(f(u0))
2 dx dt+

T∫

0

t∫

0

∫

Rd

Dsym(u0)∇xu0 · ∇x(f(u0)) dx ds dt

≤ T |Y 0|
∫

Rd

F (uin) dx+
T

2
|∂Σ0|

∫

Rd

|vin|2 dx. (4.132)

As we are dealing with the energy estimates, the non symmetric part of D doesn’t play any role
in the left hand side of the inequality (4.132). So we can replace Dsym in the third term of the
left hand side of (4.132). This leads to

|Y 0|
T∫

0

∫

Rd

F (u0) dx dt+
1

2
|∂Σ0|

T∫

0

∫

Rd

(f(u0))
2 dx dt+

T∫

0

t∫

0

∫

Rd

D(u0)∇xu0 · ∇x(f(u0)) dx ds dt

≤ T |Y 0|
∫

Rd

F (uin) dx+
T

2
|∂Σ0|

∫

Rd

|vin|2 dx. (4.133)

We now compare inequality (4.133) with the (time integral of the) energy equality for the
homogenized equation (4.112) with f(u0) as a test function

|Y 0|
T∫

0

∫

Rd

F (u0) dx dt+
1

2
|∂Σ0|

T∫

0

∫

Rd

(f(u0))
2 dx dt+

T∫

0

t∫

0

∫

Rd

D(u0)∇xu0 · ∇x(f(u0)) dx ds dt

= T |Y 0|
∫

Rd

F (u00)(x) dx +
T

2
|∂Σ0|

∫

Rd

(f(u00))
2(x) dx. (4.134)
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The right hand side in (4.133) and (4.134) are equal precisely when (4.123) holds true. Together
with the definition (4.122) of the initial condition of the homogenized problem (4.112), it is
equivalent to our assumption (4.124). In such a case, the inequality (4.133) is actually an
equality, meaning that the lower semi continuous convergences leading to (4.133) were exact
convergences. Then, applying Lemma 4.9.3 for the convex functionals and Proposition 2.7.4 for
the sequences on periodic surfaces gives the result (4.125).

Next, we prove a result giving the solvability of the nonlinear relation (4.124).

Lemma 4.9.4. For any given uin ≥ 0 there always exists a unique solution vin ≥ 0 of the
nonlinear equation (4.124), H(uinit, vinit) = 0.

Proof. Define η = |∂Σ0|/|Y 0|. Since 0 ≤ f(u) ≤ αu, the function u → u + ηf(u) is monotone
and invertible on R+. Therefore, (4.122) uniquely defines the homogenized initial data as

u00 = (I + ηf)−1 (uin + ηvin
)
. (4.135)

To satisfy the additional relation (4.123) is equivalent to solve the nonlinear equation (4.124)
where H is defined by

H(uin, vin) = F (uin) +
1

2
η(vin)2 −

(
F +

1

2
ηf2
)
(u00), (4.136)

where u00 is defined by (4.135). For a given uin ≥ 0, let us differentiate H with respect to vin

∂vinH(uin, vin) = ηvin − (f(u00) + ηf(u00)f
′(u00))∂vinu

0
0. (4.137)

Differentiating (4.122) with respect to vin leads to

(1 + ηf ′(u00))∂vinu
0
0 = η, (4.138)

implying that ∂vinu
0
0 > 0. Using (4.138) in (4.137) simplifies the derivative of H with respect to

vin as
∂vinH(uin, vin) = ηvin − ηf(u00). (4.139)

Since f ≥ 0, we have
∂vinH(uin, 0) = −ηf(u00) ≤ 0.

Also since f ≤ α/β, we have

lim
vin→+∞

∂vinH(uin, vin) = +∞.

Let us differentiate (4.139) with respect to vin

∂2vinH(uin, vin) = η − ηf ′(u00)∂vinu
0
0. (4.140)

Using (4.138) in (4.140) leads to

∂2vinH(uin, vin) = ∂vinu
0
0 > 0.

Thus, for a fixed uin, vin → ∂vinH(uin, vin) is continuous monotone increasing function so there
exists a unique vin∗ such that ∂vinH(uin, vin∗ ) = 0. By (4.139) we have vin∗ = f(u00) and from
(4.122) we deduce uin = u00. Plugging these values in (4.135) implies that H(uin, vin∗ ) = 0. Since
the function vin → H(uin, vin) is decreasing from 0 to vin∗ and then increasing, vin∗ is the only
possible root for H.
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4.10 Numerical study

This section is devoted to the numerical computations of the cell problem and the effective
dispersion, given in Theorem 4.8.1. All our numerical tests are done in two dimensions. The
unit periodicity cell is the unit square ]0, 1[×]0, 1[ and the solid obstacle is a disk of radius 0.2
centered at (0.5, 0.5). The periodic porous medium that we have considered is again ]0, 1[×]0, 1[
with periodically arranged circular disks of radius 0.05 with period ε = 0.25. The periodic
porous medium is just the unit periodicity cell scaled by 0.25 and repeated in ]0, 1[×]0, 1[ with
period 0.25. FreeFem++ package [141] is used to perform all the numerical simulations. We
have used Lagrange P1 finite elements with 21416 vertices (degrees of freedom). We have taken
the reaction parameters α, β to be unity.

In all our computations, we have taken a zero drift velocity

b∗ = 0. (4.141)

This is actually a necessary condition for the present geometrical setting of isolated solid obsta-
cles. Indeed, recall our assumption (4.1) on the velocity fields b, bs:

b∗ =
1

|Y 0|

∫

Y 0

b(y) dy =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y).

Since the surface velocity field bs is divergence free, an integration by parts shows that

∫

∂Σ0

ek · bs(y) dσ(y) = −
∫

∂Σ0

ykdiv
sbs(y) dσ(y) = 0.

(It is only in the case of a connected solid part, which can happen only in dimension d ≥ 3, that
one can have b∗ 6= 0.) For simplicity we have taken bs = 0 on ∂Σ0. We have computed the mean
zero velocity field b in Y 0 by taking b = curl ψ = (−∂x2ψ, ∂x1ψ), with





−div(M(y)∇ψ) = 1 in Y 0,
ψ = 0 on ∂Σ0,
ψ Y − periodic.

(4.142)

where M is a 2 × 2 matrix. We can choose the velocity field b to be either symmetric or non-
symmetric. For example, taking M to be an identity matrix we obtain a symmetric matrix. On
the other hand, taking M to be a variable diagonal matrix with the following diagonal elements
we obtain a non-symmetric velocity field.

M11 =

{
0.01 + (0.5 ∗ y1) if y1 < 0.5
0.26 + (y1 − 0.5) otherwise

M22 = cos(y1)

Thus obtained velocity fields are shown in Figure 4.1.
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Vec Value
0
0.151196
0.302393
0.453589
0.604786
0.755982
0.907178
1.05837
1.20957
1.36077
1.51196
1.66316
1.81436
1.96555
2.11675
2.26795
2.41914
2.57034
2.72154
2.87273

Vec Value
0
0.246187
0.492373
0.73856
0.984747
1.23093
1.47712
1.72331
1.96949
2.21568
2.46187
2.70805
2.95424
3.20043
3.44661
3.6928
3.93899
4.18517
4.43136
4.67755

Figure 4.1: Left: Symmetric velocity field in the unit cell, Right: Non-symmetric velocity field
in the unit cell.

The expression for the dispersion matrix given in (4.113) implies that the dispersion tensor
depends on the homogenized solution. In a first experiment, we study the behaviour of D11 and
D22 with respect to the magnitude of u0 when the velocity field b is symmetric. Figure 4.2 shows
the results obtained
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Figure 4.2: Dispersion w.r.t the magnitude of u0.

In our second experiment, we take the velocity field b to be non-symmetric and study the
behaviour of D11 and D22 with respect to the magnitude of u0. Figure 4.3 shows the results
obtained.
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Figure 4.3: Dispersion w.r.t the magnitude of u0.

As seen in Figures 4.2 and 4.3, in the limit u0 → ∞, both horizontal and vertical dispersions
attain a limit. In this limit, the cell problem (4.114) gets decoupled. The equation for χi is
given by





−b∗ · ei + b(y) · (ei +∇yχi)− divy(D(ei +∇yχi)) = 0 in Y 0,

−D (ei +∇yχi) · n = 0 on ∂Σ0,

y → χi(y) Y -periodic.

(4.143)

The cell solution χi from (4.143) acts as a source term for the cell solution on the surface
governed by the following equation.

−b∗ · ei + bs(y) · (ei +∇s
yωi)− divsy(D

s(ei +∇s
yωi)) + κωi = κχi on ∂Σ0

In our case, we have taken the velocity field bs to be zero and also the drift b∗ is zero. Thus, the
above equation for ωi is a simple elliptic equation.

In Figure 4.4 we plot the horizontal dispersion with respect to Ds.
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Figure 4.4: Horizontal Dispersion w.r.t surface molecular diffusion.

Clearly the dispersion increases with Ds. However, as shown by Figure 4.4, the dispersion
reaches a limit as Ds goes to infinity. This can be explained formally by the fact that, in such
a case, the cell solution satisfies in the limit that (ωi + yi) is constant on the pore surface ∂Σ0.
In this limit, the bulk correctors χi satisfy the following limit problem





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

−D(∇yχi + ei) · n+ b∗i =
ακ

(1 + βu0)2

(
χi + yi − |∂Σ0|−1

∫

∂Σ0

(χi + yi)dσ(y)

)
on ∂Σ0,

y → χi(y) Y -periodic.

(4.144)

In Figure 4.5 we plot the horizontal dispersion with respect to κ.
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Figure 4.5: Horizontal Dispersion w.r.t reaction rate.

In the limit κ→ ∞, we get an asymptote for the dispersion, corresponding to a limit cell problem



160 CHAPTER 4. LANGMUIR ISOTHERM IN POROUS MEDIA

where χi = ωi. In this limit, the corresponding system satisfied by the bulk correctors χi is





b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

−D(∇yχi + ei) · n+ (b∗ − bS) · ei =
bS(y) · ∇S

yχi − divSy (D
S(∇S

yχi + ei)) on ∂Σ0,

y → χi(y) Y -periodic.

(4.145)

Unlike (4.144), the limit cell problem corresponding to the infinite reaction limit is no longer
dependent on the homogenized solution u0.

In the final experiment, we wish to compare the homogenized solution u0(t, x) and the recon-
structed solution ũε(t, x) in the periodic porous medium of period ε = 0.25 where the recon-
structed solution ũε(t, x) is given by

ũε(t, x) = u0(t, x) + ε
(
χ1(x/ε)∂x1u0(t, x) + χ2(x/ε)∂x2u0(t, x)

)
(4.146)

The solutions to the cell problem (χ1, χ2) are computed in the unit cell. Figure 4.6 depicts the
cell solutions χ1 and χ2. Then, they are copied to each cell in the periodic domain where the
cells are of size (0.25)2.

IsoValue
-0.13506
-0.120865
-0.106669
-0.092474
-0.0782787
-0.0640833
-0.0498879
-0.0356925
-0.0214971
-0.00730167
0.00689373
0.0210891
0.0352845
0.0494799
0.0636753
0.0778707
0.0920661
0.106262
0.120457
0.134652

fonction cellule-1
IsoValue
-0.134855
-0.120656
-0.106457
-0.092258
-0.0780589
-0.0638597
-0.0496606
-0.0354614
-0.0212623
-0.00706316
0.00713598
0.0213351
0.0355343
0.0497334
0.0639325
0.0781317
0.0923308
0.10653
0.120729
0.134928

fonction cellule-2

Figure 4.6: Left: Cell solution χ1 in the unit cell, Right: Cell solution χ2 in the unit cell.

The next task is to compute the homogenized solution to the effective equation (4.112). We
have taken the initial data, (uin, vin), such that the initial data to the homogenized equation
has a compact support in the periodic domain. The well-prepared initial data that we have
considered are

uin = 103 ∗max(0.0, x1 − 0.2) ∗ (−min(0.0, x1 − 0.8)) ∗max(0.0, x2 − 0.2) ∗ (−min(0.0, x2 − 0.8))

and vin = αuin.
We employ Rothe’s method where we discretize the time derivative in the effective diffusion
equation followed by Newton’s method to solve the resulting elliptic equation. Since we are
working with bounded domain, we need to provide boundary conditions on the exterior boundary
of ]0, 1[×]0, 1[. As working with Dirichlet boundary data may lead to boundary layers, we have
taken periodic boundary conditions. Once we have computed the homogenized solution, we can
calculate the reconstructed solution using (4.146). Figures 4.7, 4.8, 4.9 refer to the evolution of
the exact solution, homogenized solution and reconstructed solution respectively in the periodic
porous domain.
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Figure 4.7: Exact Solutions: Left, Time instant 0.001; Middle, Time instant 0.005; Right, Time
instant 0.01.

Figure 4.8: Homogenized Solutions: Left, Time instant 0.001; Middle, Time instant 0.005; Right,
Time instant 0.01.

Figure 4.9: Reconstructed Solutions: Left, Time instant 0.001; Middle, Time instant 0.005;
Right, Time instant 0.01.

We remark that there isn’t a very good agreement between the exact solution (Figure 4.7) and
with the reconstructed solution (4.9). We believe it is due to the fact that we have taken the
periodicity to be 0.25 which might be too big to appreciate the homogenization results.
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4.11 Comments

The comments on the locally periodic coefficients in Section 3.14 of Chapter 3 do hold true for
the nonlinear model considered in this chapter.

Constraints on the velocity fields

The presence of the nonlinear term in (4.12)-(4.14) forced us to impose a constraint that the
bulk and surface drifts are the same i.e.,

1

|Y 0|

∫

Y 0

b(y) dy =
1

|∂Σ0|

∫

∂Σ0

bs(y) dσ(y) = b∗. (4.147)

We are unable to upscale, even formally, the microscopic equations (4.12)-(4.14) unless the
constraint (4.147) holds true. The main reason for imposing this equal drift constraint is the
inability of the method of two-scale convergence with drift to handle non constant drifts. We
remarked in Section 4.10 that, in two dimensions, the constraint (4.147) translates as b∗ = 0.
Only for d ≥ 3 we can have a non zero drift under the assumption (4.147). This difficulty in
handling, at least purely periodic velocity fields, in presence of nonlinear isotherms emphasize
the need for generalizing the method of two-scale convergence with drift to non constant drift
scenarios.

Let us consider the following two-scale asymptotic expansions with drift.

uε(t, x) =
∑

i≥0

εiui

(
t, x− b∗t

ε
,
x

ε

)
. (4.148)

The above ansatz (4.148) can be rewritten in the following manner

uε(t, x) =
∑

i≥0

εiui

(
t,X(−τ, x), x

ε

)
(4.149)

where X(τ, x) with τ = ε−1t is the solution of





dX

dτ
= b∗

X(0) = x.

(4.150)

In [87], the following singularly perturbed convection equation is studied.

∂uε
∂t

+ a · ∇uε +
1

ε
b · ∇uε = 0. (4.151)

There are no fast oscillating coefficients in (4.151) i.e., a = a(t, x) and b = b(t, x). It is shown in
[87] that uε admits the following asymptotic expansion.

uε(t, x) =
∑

i≥0

εiui

(
t, τ, x

)
(4.152)

where ui(t, τ, x) are 2π periodic in τ = ε−1t. The authors of [87] consider





dX

dτ
= b(t,X)

X(0) = x.

(4.153)
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An assumption is made on the velocity b such that τ → X(τ ; t, x) is 2π periodic in τ . Denote
the Jacobian matrix of x→ X(τ ; t, x) by ∇X(τ ; t, x). It is proved in [87] that the first term of
(4.152) is given by

u0(t, τ, x) = v0(t,X(−τ ; t, x)) (4.154)

where v0 satisfies

∂v0
∂t

+ ã0 · ∇v0 = 0 in (0, T )× Rd. (4.155)

and u0 satisfies

∂u0
∂t

+ a0 · ∇v0 = 0 in (0, T )× Rd. (4.156)

with a0 and ã0 given by the following expressions

a0(t, x) =
1

2π

2π∫

0

∇X(τ ; t, x)−1a(t,X(τ ; t, x)) dτ, (4.157)

ã0(t, x) =
1

2π

2π∫

0

α(t, τ, x) dτ, (4.158)

with

α(t, τ, x) = ∇X(τ ; t, x)−1
(
a(t,X(τ ; t, x)) − ∂X

∂t
(τ ; t, x)

)
. (4.159)

Remark the similarities between (4.149) and (4.154). Once again, it should be noted that the
problem studied in [87] has no fast oscillating coefficients in (4.151). We hope that a careful
adaptation of some of the results from [87] can result in a generalization of the method of two-
scale asymptotic with drift by replacing the constant drift b∗ in (4.150) by a variable. Of course,
the approach of [87] makes certain assumptions on the velocity field b (please refer to [87] for
details) in order to guarantee 2π periodic solutions for (4.153). Asymptotic expansions similar
to the ones used in [87] had appeared earlier in [123] in the context of Euler equations with
rapidly varying initial data.

Conclusions

This Chapter considered the upscaling of reactive flow equations with Langmuir isotherm in
periodic porous media. The lack of technical tools in the theory of homogenization has restricted
the analysis as can be gathered by the equal drifts assumption (4.147). In Section 3.12 of
Chapter 3, we considered compressible flows. We had used Factorization principle to homogenize
the model. The presence of the nonlinear term in the present chapter has restricted us from
relaxing the incompressibility condition on the velocity fields as is not clear as to the approach
of the principle of Factorization adapted to the nonlinear setting. So, there is a lot of room
for improvement with regard to the homogenization of the current nonlinear adsorption model.
Even though we have demonstrated the calculations for the Langmuir isotherm, the result of
homogenization holds to in case of Freundlich isotherm too. However, the technical details get
more involved in the latter case. In the previous and the current chapters, we studied single
component flows. The next Chapter aims at generalizing the results to the multicomponent
flows.
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Chapter 5

Multicomponent flows

5.1 Introduction

Chapters 3 and 4 were dedicated to the study of reactive transport of a single dissolved solute in a
fluid filling the porous medium, the type of reaction considered being the adsorption/desorption
type. In Section 3.12 of Chapter 3, we even remarked that the presence of a compressible
fluid is equivalent to the study of convection diffusion reaction equation in the fluid bulk. This
Chapter tries to generalize the results obtained previously to the transport of multiple solutes
in porous media. In presence of multiple components, one approach would be to consider
transport equations for each of the scalar quantities with no coupling terms. The approach
of decoupled system is simple. In the present work, we study a system of convection-diffusion
equations coupled through a zero order term. As in all homogenization problems, we scale the
adimensionalized system. The scaling considered is parabolic i.e., (τ, y) → (ε−2t, ε−1x). Homog-
enization of parabolically scaled scalar parabolic equation with a zero order term was studied
in [76] where they showed the induction of a large drift in the concentration profiles of the ho-
mogenized solution. In [25] the results of [76] are adopted in the case of transport phenomena
in porous media. In [25], reactions are considered both in the bulk (zero order term) and on the
surface of the porous skeleton (non-homogeneous Neumann boundary condition). This Chapter
generalizes the results in [76] to a multicomponent flow in porous media. The reaction among
multiple solutes can be modelled mathematically via a coupling matrix (linear model). In [98], a
coupled system of convection-diffusion-reaction systems are considered. The problem addressed
in [98] is in a porous medium with semi-permeable porous skeleton using the double-porosity
model [29]. The system they study, however, is under different scaling (Diffusion dominated
regime) which avoids the phenomena of drift in the concentration profiles.

The motivation for the choice of scaling to be parabolic is to study the long term behaviour of
the system. It is to be noted that there are other scaling techniques available. One such among
them is the hyperbolic scaling where the space variable is scaled as in the parabolic scaling
whereas the time variable is scaled as τ → ε−1t. In other words, for shorter times. In [139] and
[128] hyperbolic scaling is considered in connection to the study of motor proteins.

Starting with a Cauchy problem for a coupled convection-diffusion-reaction system of which uεα
are solutions, we show in Proposition 5.4.1 that they admit a representation, for 1 ≤ α ≤ N ,

uεα(t, x) ≈ exp (−λt/ε2)ϕα

(x
ε

)(
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ωi,α

(x
ε

))

where (λ, ϕα) is the first eigenpair associated with an eigen cell problem. The drift velocity b∗ is

165
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given in term of the microscopic velocity fields, diffusion matrices and the eigenfunctions of the
same eigen cell problem and its adjoint. v is the solution of the following scalar homogenized
diffusion equation.

ρ∗
∂v

∂t
− div(D∇v) = 0.

Making the change of functions: ṽ(t, x) = exp (−λt/ε2)v(t, x − b∗

ε t), we remark that ṽ indeed
satisfies the following scalar convection-diffusion-reaction equation.

ρ∗
∂ṽ

∂t
+ ρ∗

b∗

ε
· ∇ṽ − div(D∇ṽ) + ρ∗

λ

ε2
ṽ = 0.

Proposition 5.4.1 has close resemblance with the results obtained in [139], [128]. Their approach
is to use the classical exponential transformation uεα = exp(−Rα/ε) and to study an averaged
Hamilton-Jacobi equation satisfied by the common limit R of Rα in the Crandall-Lions viscosity
sense. The result of the non-stationary problem studied in [128] is that

uεα(t, x) ≈ φα

(x
ε

)
δ(x− b∗t)

where a Dirac mass appears instead of our homogenized solution v. The drift velocity b∗ =
∇H(0) with H being the effective Hamiltonian. The absence of the exponential term in their
results is because 0 happens to be the first eigenvalue of the associated cell eigen problem.
Proposition 5.4.1 uses a formal approach to upscale the system. We use two-scale asymptotic
expansions with drift where we assume that uεα has an the asymptotic expansion in ε where
we insert the large drift b∗/ε only in the macroscopic variable of the coefficients. This formal
method of two-scale asymptotics with drift has been recalled in Section 2.6 of Chapter 2. Also,
we multiply the asymptotic expression with exp (−λt/ε2) to get rid of any exponential growth.
This method of Factorization is detailed in Section 2.8 of Chapter 2. This formal method of
obtaining the homogenized equation will be made rigorous in Sections 5.5 and 5.6 where we
derive compactness of the solution sequences (uεα)1≤α≤N in the moving coordinates x + b∗

ε t.
Then, using the compactness results of Chapter 2, we can pass to the limit in the variational
formulation of the original problem to arrive at the homogenization result. This concept of drift
has been used in the asymptotic analysis literature for some time now. In case of a stationary
elliptic eigenvalue problem, the concept of drift was used in [51], [53] via θ-exponential eigenvalue
problems. This approach via θ-exponential eigenvalue problems has also been applied in the
context of multigroup neutronic diffusion models of evolution type in [52]. The drift in the non
stationary parabolic equations was used in [76].
In Section 5.7, we consider a multicomponent flow model where the zero order coupling term
appears as a Neumann condition on the pore boundaries. The homogenization result concerning
this boundary reaction model is given in Section 5.8. Adsorption isotherm that we studied
in Chapter 3 is also incorporated into a multicomponent flow model in Section 5.9 where each
component is allowed to adsorb/desorb on to the porous skeleton followed by a diffusive reaction
among the adsorbed quantities on the boundary.

5.2 Mathematical model

Let us consider N components dissolved in a fluid filling a porous medium. Denote by uα, the

concentration of the αth component. Consider a system of weakly coupled linear convection
diffusion reaction equations. The weak coupling is in the sense that the coupling is via zero
order terms.

ρα
∂uα
∂τ

+ bα · ∇uα − div(Dα∇uα) +
N∑

β=1

Παβuβ = 0 in (0, ζ) × Ωf for each 1 ≤ α ≤ N, (5.1)
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where ρα is the porosity, bα is the fluid velocity, Dα for each 1 ≤ α ≤ N are the diffusion matrices
associated with the solutes and the coupling matrix Π models the possible bulk reactions. In
reality there is only one velocity field, bα = b present in (5.1) as part of a convection term. As
our analysis works for N velocity fields, one for each of the components, we have considered N
velocity fields (bα)1≤α≤N . To complete (5.1), we have to supplement it with initial and boundary
data. The boundary data we consider is of Neumann type, i.e., zero flux condition on the surface
of the pores.

Dα∇uα · n = 0 on (0, ζ)× ∂Ωs for each 1 ≤ α ≤ N. (5.2)

We assume that the coefficients in (5.1) are all Y -periodic. The porosity coefficients ρα(y), for
every 1 ≤ α ≤ N , are assumed to be strictly positive. The velocity fields are assumed to be
independent of time and given. We don’t impose any constraint of incompressibility. In the
linear single solute case studied in Chapter 3 we observed, in Section 3.12, that the condition
of incompressibility on the fluid field can be relaxed. However, this wasn’t the case in Chapter
4 where a convection diffusion reaction equation was studied with a zero order nonlinear term.
Of course, some regularity is required for the fluid velocity and we assume that

bα(y) ∈ L∞(Y 0;Rd). (5.3)

Associated with N solutes, we have N diffusion matrices Dα(y), each of which are assumed to
be in L∞(Y 0), symmetric and uniformly coercive. That is, there exists a positive constant C
such that, for any ξ ∈ Rd,

Dα(y)ξ · ξ ≥ C|ξ|2 a.e. in Y 0. (5.4)

Now, the assumptions on the constant coupling matrix (Παβ)1≤α,β≤N . For the wellposedness of
the system (5.1)-(5.2), we make the following assumption on the coupling matrix:

Παβ ≤ 0 for α 6= β, (5.5)

we also assume that the coupling matrix Π is irreducible i.e.,

{1, · · · , N} 6= B ∪ B′, B ∩ B′ = ∅ such that Παβ = 0 for α ∈ B, β ∈ B′. (5.6)

The hypothesis (5.5)-(5.6) are borrowed from [152], [11], [53] where systems of elliptic and
parabolic equations are studied. A matrix satisfying (5.5) is sometimes referred to as “cooper-
ative matrix” or “essentially positive matrix”.

In order to study the system (5.1)-(5.2) in an ε-periodic porous medium, we need to scale it on
to the underlying microstructure. As the system under consideration is of evolution type, we
need to scale the time variable too. The scaling that we employ shall be “parabolic scaling” in
order to study the long time behavior of the considered transport phenomena. Upon parabolic
scaling (τ, y) → (ε−2t, ε−1x), (5.1)-(5.2) yields, for each 1 ≤ α ≤ N ,

ρεα
∂uεα
∂t

+
1

ε
bεα · ∇uεα − div(Dε

α∇uεα) +
1

ε2

N∑

β=1

Παβu
ε
β = 0 in (0, T ) × Ωε, (5.7)

Dε
α∇uεα · n = 0 on (0, T )× ∂Ωε, (5.8)

uεα(0, x) = uinα (x) x ∈ Rd. (5.9)

As usual upon rescaling, the Y -periodic coefficients of the adimensionalized system turn out to be

ε-periodic in the dimensionalized system. So, ρεα(x) = ρα

(
x
ε

)
, bε(x) = b

(
x
ε

)
, Dε

α(x) = Dα

(
x
ε

)

are all ε-periodic coefficients.
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5.3 Qualitative analysis

The microscopic model (5.7)-(5.9) models the transport of dissolved solutes in presence of con-
vection diffusion and reaction. In Section 2.8 of Chapter 2, while recapping the Factorization
principle, we illustrated the method via a parabolically scaled scalar convection diffusion reaction
equation (2.95). The present model (5.7)-(5.9) is a generalization to the transport of N solutes.
The assumption (5.5) on the coefficients Παβ in the zero order term doesn’t help us obtain a
priori estimates on (uεα)1≤α≤N . In the absence of a priori estimates, it would be impossible to
apply the compactness results from Homogenization theory of Chapter 2. This difficulty with
partial differential equations with large lower order terms has been long recognized [100], [106],
[76], [25]. The idea is to pass through spectral cell problems associated with (5.7)-(5.8).





bα(y) · ∇yϕα − divy

(
Dα∇yϕα

)
+

N∑

β=1

Παβϕβ = λραϕα in Y 0,

Dα∇yϕα · n = 0 on ∂Σ0,

y → ϕα(y) Y − periodic.

(5.10)

In general we have no maximum principles for systems, thus making Krein-Rutman theorem
[108] inapplicable. However in [152] it is shown that the first eigenvalue λ for systems similar
in structure to (5.10) is positive, real and simple. And the first eigenfunction can be chosen
positive. Let us denote the first eigenpair for (5.10) by (λ, ϕα). The first eigenvalue λ measures
the balance between convection-diffusion and reaction. The spectral cell problem (5.10) isn’t
self-adjoint. The associated adjoint problem is





−divy(bαϕ
∗
α)− divy

(
Dα∇yϕ

∗
α

)
+

N∑

β=1

Π∗
αβϕ

∗
β = λραϕ

∗
α in Y 0,

Dα∇yϕ
∗
α · n+ bα(y) · nϕ∗

α = 0 on ∂Σ0,

y → ϕ∗
α(y) Y -periodic,

(5.11)

where Π∗ is the transpose of Π. Again by [152] it follows that the first eigenvalue λ for (5.11) is
the same as that for (5.10). And the first eigenfunction for (5.11) can be chosen positive. The
uniqueness of the eigenfunction of (5.11) is up to a chosen normalization. The normalization
that we consider is the following

N∑

α=1

∫

Y 0

ϕαϕ
∗
α dy = 1. (5.12)

Let us denote the first eigenpair for (5.11) by (λ, ϕ∗
α). As explained in [12, 76, 25] the first

eigenvalue of the spectral cell problem λ governs the time decay of the solution uεα. So, as is
done in the references cited, we perform time renormalization in the spirit of the factorization
principle. Also the first eigenfunction ϕα is factored out of uεα. The idea is to make the following
change of unknowns

vεα(t, x) = exp (λt/ε2)
uεα(t, x)

ϕα

(
x
ε

) . (5.13)

With the above change of unknowns, we will be able to overcome the inability we had with the
derivation of a priori estimates. Now we state a result that gives the system satisfied by the new
unknown (vεα)1≤α≤N .
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Lemma 5.3.1. The system (5.7)-(5.9) is equivalent to

ϕαϕ
∗
αρ

ε
α

∂vεα
∂t

+
1

ε
b̃εα ·∇vεα−div

(
D̃ε

α∇vεα
)
+

1

ε2

N∑

β=1

Παβϕ
∗
αϕβ(v

ε
β − vεα) = 0 in (0, T )×Ωε, (5.14)

D̃ε
α∇vεα · n = 0 on (0, T )× ∂Ωε, (5.15)

vεα(0, x) =
uinα (x)

ϕα

(
x
ε

) x ∈ Rd, (5.16)

for each 1 ≤ α ≤ N , where the components of (vεα)1≤α≤N are defined by (5.13). The convective

velocity, b̃εα(x) = b̃α

(
x
ε

)
, in (5.14) is given by

b̃α(y) = ϕαϕ
∗
αbα + ϕαDα∇yϕ

∗
α − ϕ∗

αDα∇yϕα for every 1 ≤ α ≤ N (5.17)

and the diffusion matrix, D̃ε
α(x) = D̃α

(
x
ε

)
, in (5.14)-(5.15) is given by

D̃α(y) = ϕαϕ
∗
αDα for every 1 ≤ α ≤ N. (5.18)

Proof. We shall plug the expression (5.13) in (5.7)-(5.9) while keeping in mind the following
chain rule formulae




∂uεα
∂t

(t, x) =
−λ
ε2

exp (−λt/ε2)ϕα

(x
ε

)
vεα(t, x) + exp (−λt/ε2)ϕα

(x
ε

)∂vεα
∂t

(t, x),

∇
(
uεα(t, x)

)
=

1

ε
exp (−λt/ε2)vεα(t, x)

(
∇yϕα

)(x
ε

)
+ exp (−λt/ε2)ϕα

(x
ε

)
∇xv

ε
α(t, x).

(5.19)
Using the spectral cell problem (5.10) and its adjoint (5.11) and identifying the expressions (5.17)
and (5.18), the calculations simplify to yield the system of equations (5.14)-(5.16) satisfied by
(vεα)1≤α≤N .

Lemma 5.3.2. The divergence of the convective fields b̃α satisfy

divy b̃α =
N∑

β=1

Π∗
αβϕαϕ

∗
β −

N∑

β=1

Παβϕ
∗
αϕβ (5.20)

Proof. Let us take the divergence of the convective fields b̃α given in (5.17), we arrive at

divy b̃α = ϕα

(
divy(bαϕ

∗
α) + divy(Dα∇yϕ

∗
α)
)
+ ϕ∗

α

(
bα · ∇yϕα − divy(Dα∇yϕα)

)
(5.21)

Using information from the spectral cell problem (5.10) and its adjoint (5.11), we have

divy b̃α = −λϕαϕ
∗
α +

N∑

β=1

Π∗
αβϕαϕ

∗
β + λϕαϕ

∗
α −

N∑

β=1

Παβϕ
∗
αϕβ

Thus we arrive at the result (5.20).

From the expression for the divergence derived in (5.20), it follows that

N∑

α=1

divy b̃α = 0. (5.22)

By the definition (5.17) of b̃α, it follows that

b̃α · n = 0 on ∂Σ0. (5.23)
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Lemma 5.3.3. Let (vεα) be a weak solution of (5.14)-(5.16). There exists a constant C, inde-
pendent of ε, such that

N∑

α=1

∥∥∥vεα
∥∥∥
L∞((0,T );L2(Ωε))

+

N∑

α=1

∥∥∥∇vεα
∥∥∥
L2((0,T )×Ωε)

+
1

ε

N∑

α=1

N∑

β=1

∥∥∥vεα − vεβ

∥∥∥
L2((0,T )×Ωε)

≤ C
N∑

α=1

‖vinα ‖L2(Rd)

(5.24)

Proof. To derive the a priori estimates, we shall multiply (5.14) by vεα and add the thus obtained
expressions followed by integrating over Ωε.

1

2

d

dt

N∑

α=1

∫

Ωε

ϕαϕ
∗
αρ

ε
α|vεα|2 dx− 1

2ε

N∑

α=1

∫

Ωε

div(b̃εα)|vεα|2 dx

+

N∑

α=1

∫

Ωε

D̃ε
α∇vεα · ∇vεα dx+

1

ε2

N∑

α=1

N∑

β=1

∫

Ωε

Παβϕ
∗
αϕβ(v

ε
β − vεα)v

ε
α = 0 (5.25)

To derive the energy estimate for (5.14)-(5.16), the spectral cell problem (5.10) and its adjoint
(5.11) come in handy. Let us consider the bulk equation in (5.10) and multiply it by ϕ∗

α(v
ε
α)

2

followed by integration over the fluid part Y 0.

∫

Y 0

bα·∇yϕαϕ
∗
α(v

ε
α)

2 dy−
∫

Y 0

divy

(
Dα∇yϕα

)
ϕ∗
α(v

ε
α)

2 dy+
N∑

β=1

∫

Y 0

Παβϕ
∗
αϕβ(v

ε
α)

2 dy−
∫

Y 0

λραϕαϕ
∗
α(v

ε
α)

2 dy

(5.26)

= −
∫

Y 0

divy(bαϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

ϕαϕ
∗
αbα · ∇y(v

ε
α)

2 dy +

∫

Y 0

ϕ∗
αDα∇yϕα · ∇y(v

ε
α)

2 dy

+

∫

Y 0

(vεα)
2Dα∇yϕα · ∇yϕ

∗
α dy +

N∑

β=1

∫

Y 0

Παβϕ
∗
αϕβ(v

ε
α)

2 dy −
∫

Y 0

λραϕαϕ
∗
α(v

ε
α)

2 dy

= −
∫

Y 0

divy(bαϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

ϕαϕ
∗
αbα · ∇y(v

ε
α)

2 dy +

∫

Y 0

ϕ∗
αDα∇yϕα · ∇y(v

ε
α)

2 dy

−
∫

Y 0

ϕαDα∇yϕ
∗
α · ∇y(v

ε
α)

2 dy +

∫

Y 0

ϕαDα∇yϕ
∗
α · ∇y(v

ε
α)

2 dy

+

∫

Y 0

(vεα)
2Dα∇yϕα · ∇yϕ

∗
α dy +

N∑

β=1

∫

Y 0

Παβϕ
∗
αϕβ(v

ε
α)

2 dy −
∫

Y 0

λραϕαϕ
∗
α(v

ε
α)

2 dy

= −
∫

Y 0

divy(bαϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

divy(Dα∇yϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

λραϕαϕ
∗
α(v

ε
α)

2 dy (5.27)

−
∫

Y 0

ϕαϕ
∗
αbα · ∇y(v

ε
α)

2 dy +

∫

Y 0

ϕ∗
αDα∇yϕα · ∇y(v

ε
α)

2 dy −
∫

Y 0

ϕαDα∇yϕ
∗
α · ∇y(v

ε
α)

2 dy (5.28)

+

N∑

β=1

∫

Y 0

Παβϕ
∗
αϕβ(v

ε
α)

2 dy = 0. (5.29)
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In the above simplified form, we recognize the adjoint cell problem (5.11) in (5.27). We also
recognize the expression for b̃α in (5.28). Taking all these contributions into account, (5.27)-
(5.28)-(5.29) result in

−
N∑

β=1

∫

Y 0

Π∗
αβϕ

∗
βϕα(v

ε
α)

2 dσ(y) −
∫

Y 0

b̃α · ∇y(v
ε
α)

2 dy +

N∑

β=1

∫

Y 0

Παβϕ
∗
αϕβ(v

ε
α)

2 dσ(y) = 0 (5.30)

Summing (5.30) over α leads to

N∑

α=1

∫

Y 0

divy b̃α(v
ε
α)

2 dy = 0. (5.31)

Using the above observation (5.31) in the expression (5.25) results in the following energy esti-
mate.

1

2

d

dt

N∑

α=1

∫

Ωε

ϕαϕ
∗
αρ

ε
α|vεα|2 dx+

N∑

α=1

∫

Ωε

D̃ε
α∇vεα · ∇vεα dx+

1

ε2

N∑

α=1

N∑

β=1

∫

Ωε

Παβϕ
∗
αϕβ |vεα − vεβ|2 = 0

(5.32)
Integrating the energy estimate (5.32) over (0, T ) yields the a priori estimates (5.24).

In the above Lemma 5.3.3, we have derived a priori estimates for the solution sequences of
(5.14)-(5.16) obtained upon performing a change of unknowns (5.13). Now we state a result
asserting the well-posedness of the system of equations (5.7)-(5.9).

Proposition 5.3.4. Assume that the initial data uinα belongs to L2(Rd) ∩ L∞(Rd) for every
1 ≤ α ≤ N . For any given ε > 0, there exists a unique solution uεα of (5.7)-(5.9) in the
following energy space

uεα ∈ L∞((0, T );L2(Ωε)); ∇uεα ∈ L2((0, T ) × Ωε) for every 1 ≤ α ≤ N. (5.33)

Further if the initial data uinα ≥ 0 in Ωε, then the solution uεα(t, x) ≥ 0 in (0, T ) × Ωε.

We avoid the proof of the Proposition 5.3.4. The arguments of the proof are similar to the
existence results and maximum principles proved in [152], [129], [43].

5.4 Formal asymptotics

This section is concerned with finding the effective behaviour of (5.7)-(5.9). We shall be employ-
ing a formal method of asymptotic expansions. We consider the following time renormalized
asymptotic ansatz for the solution uεα.

uεα(t, x) = exp (−λt/ε2)
∑

i≥0

εiui,α

(
t, x− b∗t

ε
,
x

ε

)
for every 1 ≤ α ≤ N. (5.34)

Proposition 5.4.1. If the ansatz for the solution (uεα) of (5.7)-(5.9) given in (5.34) is true,
then the solution formally satisfies

uεα(t, x) ≈ exp (−λt/ε2)ϕα

(x
ε

)(
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ωi,α

(x
ε

))
, (5.35)
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with (λ, ϕα) being the first eigenpair associated with (5.10). The components (ωi,α)1≤α≤N , for
every 1 ≤ i ≤ d, satisfy a so called cell problem.





b̃α(y) ·
(
∇yωi,α + ei

)
− divy

(
D̃α

(
∇yωi,α + ei

))

+
N∑

β=1

Παβϕ
∗
αϕβ

(
ωi,β − ωi,α

)
= ϕαϕ

∗
αραb

∗ · ei in Y 0,

D̃α(∇yωi,α + ei) · n = 0 on ∂Σ0,

y → ωi,α Y -periodic,

(5.36)

where the drift velocity b∗ is given by

b∗ =
1

ρ∗

N∑

α=1

∫

Y 0

b̃α(y) dy (5.37)

where ρ∗ is the effective porosity given by

ρ∗ =

N∑

α=1

∫

Y 0

ϕαϕ
∗
αρα(y) dy (5.38)

with ϕ∗
α the first eigenfunction associated with the adjoint spectral cell problem (5.11).

Further, v in (5.35) satisfies the following scalar homogenized equation:





ρ∗
∂v

∂t
− div(D∇v) = 0 in (0, T ) × Rd,

v(0, x) =
N∑

α=1

uinα (x)

∫

Y 0

ϕ∗
α(y) dy in Rd.

(5.39)

where D is defined by

Dij =

N∑

α=1

∫

Y 0

D̃α

(
∇yωi,α + ei

)
·
(
∇yωj,α + ej

)
dy

−1

2

N∑

α,β=1

∫

Y 0

ϕ∗
αϕβΠαβ

(
ωi,α − ωi,β

)(
ωj,α − ωj,β

)
dy.

(5.40)

In the expression (5.37) for the effective drift, remark the possibility of having a non zero drift
even in the absence of microscopic convective velocity field. This is sometimes referred to as
“Reaction induced convection” in the literature. Before we give the proof of Proposition 5.4.1,
we shall state and prove some results that fill in the calculations for the formal asymptotic
analysis with the assumed ansatz (5.34).

Lemma 5.4.2. Each of the zero-order terms in the postulated ansatz (5.34), u0,α(t, x, y), can be
expressed as a product of a purely periodic function and a macroscopic function not depending on
the fast variable y. The purely periodic function turns out to be the first eigenfunction associated
with the spectral cell problem (5.10).
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Proof. Upon plugging (5.34) into (5.7)-(5.9), we identify the system at order ε−2, for each
1 ≤ α ≤ N ,





bα(y) · ∇yu0,α − divy

(
Dα∇yu0,α

)
+

N∑

β=1

Παβu0,β = λραu0,α in Y 0,

Dα∇yu0,α · n = 0 on ∂Σ0,

y → u0,α Y -periodic.

(5.41)

The above system is a spectral problem same as (5.10) of which λ is the first eigenvalue and ϕα

is the first positive eigenfunction. Thus, we deduce that there exists a function v independent
of y such that

u0,α(t, x, y) = ϕα(y)v(t, x) for every 1 ≤ α ≤ N. (5.42)

Lemma 5.4.3. The first order correctors in the postulated ansatz (5.34), u1,α(t, x, y), can be
decomposed as a product of the derivatives of the zero order term and periodic functions satisfying
a system of stationary convection-diffusion-reaction equations in a unit cell which we call the
cell problem.





b̃α(y) ·
(
∇yωi,α + ei

)
− divy

(
D̃α

(
∇yωi,α + ei

))

+
N∑

β=1

Παβϕ
∗
αϕβ

(
ωi,β − ωi,α

)
= ϕαϕ

∗
αραb

∗ · ei in Y 0,

D̃α(∇yωi,α + ei) · n = 0 on ∂Σ0,

y → ωi,α Y -periodic,

(5.43)

for every 1 ≤ i ≤ d and for every 1 ≤ α ≤ N . The unknown drift velocity b∗ in the ansatz (5.34)
is given by (5.37).

Proof. As with the analysis of asymptotic analysis, we identify the coefficients at different orders
of ε upon substituting (5.34) in (5.7)-(5.9). In the proof of Lemma 5.4.2, we identified the system
at order ε−2. In the current proof, we shall identify the system that we obtain at order ε−1.





bα · ∇yu1,α − divy

(
Dα∇yu1,α

)
+

N∑

α=1

Παβu1,β − λραu1,α

=
(
ραb

∗ − bα

)
· ∇xu0,α + divy

(
Dα∇xu0,α

)
+ divx

(
Dα∇yu0,α

)
in Y 0,

Dα(∇yu1,α +∇xu0,α) · n = 0 on ∂Σ0,

y → u1,α Y -periodic.

(5.44)

Since we know the form of u0,α from (5.42), the linearity of (5.44) help us deduce that

u1,α(t, x, y) =
d∑

i=1

∂v

∂xi
(t, x)ϕα(y)ωi,α(y) for every 1 ≤ α ≤ N. (5.45)

By taking ϕα(y)ωi,α(y) = ζi,α(y), for every 1 ≤ α ≤ N , we shall write the following system for
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(ζi,α)1≤i≤d:





bα(y) · ∇yζi,α − divy

(
Dα∇yζi,α

)
+

N∑

β=1

Παβζi,β − λραζi,α

= ϕα

(
ραb

∗ − bα

)
· ei + divy

(
ϕαDαei

)
+Dα∇yϕα · ei in Y 0,

Dα(∇yζi,α + ϕαei) · n = 0 on ∂Σ0,

y → ζi,α Y -periodic.

(5.46)

Invoking Fredholm alternative we know that the compatibility condition for the existence of first
eigenpair for the above system is that the right hand side of (5.46) is orthogonal to (ϕ∗

α)1≤α≤N ,
i.e.,

N∑

α=1

( ∫

Y 0

ϕ∗
αϕα

(
ραb

∗ − bα

)
· ei dy +

∫

Y 0

divy

(
ϕαDαei

)
ϕ∗
α dy

+

∫

Y 0

ϕ∗
αDα∇yϕα · ei dy −

∫

∂Σ0

ϕ∗
αϕαDαei · n dσ(y)

)
= 0

which is nothing but

N∑

α=1

( ∫

Y 0

ϕ∗
αϕα

(
ραb

∗ − bα

)
· ei dy +

∫

Y 0

divy

(
ϕαϕ

∗
αDαei

)
dy −

∫

Y 0

ϕαDα∇yϕ
∗
α · ei dy

+

∫

Y 0

ϕ∗
αDα∇yϕα · ei dy −

∫

∂Σ0

ϕ∗
αϕαDαei · n dσ(y)

)
= 0

Using the divergence theorem and identifying the expression for b̃α from (5.17), we have

b∗ =
1

ρ∗

N∑

α=1

∫

Y 0

b̃α(y) dy.

Thus the expression for the drift velocity coincides with (5.37). Now to derive the cell problem
(5.43), we shall substitute for (ζi,α) in (5.46) in terms of the eigenfunction (ϕα) and the cell
solutions (ωi,α).





ϕαbα · ∇yωi,α − divy

(
ϕαDα∇yωi,α

)
−Dα∇yϕα · ∇yωi,α +

N∑

β=1

Παβϕβ

(
ωi,β − ωi,α

)

= ϕα

(
ραb

∗ − bα

)
· ei + divy

(
ϕαDαei

)
+Dα∇yϕα · ei in Y 0

ϕαDα

(
∇yωi,α + ei

)
· n = 0 on ∂Σ0,

y → ωi,α Y -periodic.
(5.47)

The simplifications to arrive at (5.47) are possible because of the spectral problem (5.10). Now,
let us multiply (5.47) by (ϕ∗

α) both in the fluid and on the solid part. A little algebra will thus
yield (5.43).
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Before we proceed with the proof of Proposition 5.4.1 let us consider the variational formulation
for the cell problem (5.36) with (φα)1≤α≤N as test functions.

N∑

α=1

∫

Y 0

(
b̃α · ∇yωi,α

)
φα dy +

N∑

α=1

∫

Y 0

D̃α

(
∇yωi,α + ei

)
· ∇yφα dy

+

N∑

α=1

N∑

β=1

∫

Y 0

Παβϕ
∗
αϕβ

(
ωi,β − ωi,α

)
φα dy =

N∑

α=1

∫

Y 0

(
ϕαϕ

∗
αραb

∗ − b̃α

)
· eiφα dy. (5.48)

Proof of Proposition 5.4.1. From Lemma 5.4.2 we have found the structure (5.42) of the zero
order term in (5.34) and from Lemma 5.4.3 we have the structure of the cell problem (5.43).
Continuing the identification of the coefficients, the system corresponding to the coefficients of
ε0 among the cascade is





bα · ∇yu2,α − divy

(
Dα∇yu2,α

)
+

N∑

β=1

Παβu2,β − λραu2,α = −ρα
∂u0,α
∂t

+
(
ραb

∗ − bα

)
· ∇xu1,α + divx

(
Dα

(
∇xu0,α +∇yu1,α

))
+ divy

(
Dα∇xu1,α

)
in Y 0,

Dα

(
∇yu2,α +∇xu1,α

)
· n = 0 on ∂Σ0,

y → u2,α Y -periodic.
(5.49)

The solvability of the above eigenvalue problem follows from the Fredholm alternative. The
compatibility condition being that the right hand side of (5.44) is orthogonal to (ϕ∗

α)1≤α≤N . We
shall compute term by term.

−
N∑

α=1

∫

Y 0

ραϕ
∗
α

∂u0,α
∂t

dy = −∂v
∂t

N∑

α=1

∫

Y 0

ϕαϕ
∗
αρα dy = −ρ∗∂v

∂t
, (5.50)

N∑

α=1

∫

Y 0

ϕ∗
α(ραb

∗ − bα) · ∇xu1,α dy =
∂

∂xi

{ N∑

α=1

∫

Y 0

ϕαϕ
∗
αωj,α(ραb

∗ − bα) · ei dy
} ∂v

∂xj
, (5.51)

N∑

α=1

divx

∫

Y 0

ϕ∗
αDα∇xu0,α dy =

∂

∂xi

{ N∑

α=1

∫

Y 0

D̃αej · ei dy
} ∂v
∂xj

, (5.52)

N∑

α=1

divx

∫

Y 0

ϕ∗
αDα∇yu1,α dy =

∂

∂xi

{ N∑

α=1

∫

Y 0

D̃α∇yωj,α · ei dy
} ∂v

∂xj

+
∂

∂xi

{ N∑

α=1

∫

Y 0

(ωj,αϕ
∗
αDα∇yϕα · ei dy

} ∂v
∂xj

, (5.53)

N∑

α=1

∫

Y 0

divy(Dα∇xu1,α)ϕ
∗
α dy = −

N∑

α=1

∫

Y 0

Dα∇xu1,α · ∇yϕ
∗
α dy +

N∑

α=1

∫

∂Σ0

ϕ∗
αDα∇xu1,α · n dσ(y)
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= − ∂

∂xi

{ N∑

α=1

∫

Y 0

ωj,αϕαDα∇yϕ
∗
α · ei dy

} ∂v
∂xj

. (5.54)

The boundary integrals disappear in (5.54) as they cancel off with the terms due to the Neumann
condition in (5.49). Adding the terms (5.50) through (5.54), we arrive at an equation of the
form

ρ∗
∂v

∂t
− div(D∇v) = 0 (5.55)

with the elements of D given by

Dij =

N∑

α=1

∫

Y 0

D̃αej · ei dy +
1

2

{ N∑

α=1

∫

Y 0

(
D̃α∇yωi,α · ej + D̃α∇yωj,α · ei

)
dy
}

+
1

2

{ N∑

α=1

∫

Y 0

(
ωi,α(ϕαϕ

∗
αραb

∗ − b̃α) · ej + ωj,α(ϕαϕ
∗
αραb

∗ − b̃α) · ei
)
dy
}

(5.56)

In the expression (5.56) for D, the dispersion tensor is symmetrized. The observation (2.51) that
we made in Chapter 2 implies that the non symmetric part of the dispersion matrix D doesn’t
contribute to the homogenized equation (5.55) as the Hessian matrix ∇∇v is symmetric. The
expression (5.56) for D is given in terms of the cell solutions (ωi,α)1≤i≤d;1≤α≤N . To obtain
the expression for the elements of D given in (5.40), we shall use information from the cell
problem (5.36). Let us consider the variational formulation (5.48) for (ωi,α) in (5.36) with
test function (φα)1≤α≤N = (ωj,α)1≤α≤N . Then the one for (ωj,α) in (5.36) with test function
(φα)1≤α≤N = (ωi,α)1≤α≤N . This leads to

1

2

{ N∑

α=1

∫

Y 0

(
ωi,α(ϕαϕ

∗
αραb

∗ − b̃α) · ej + ωj,α(ϕαϕ
∗
αραb

∗ − b̃α) · ei
)
dy
}

=

N∑

α=1

∫

Y 0

D̃α∇yωi,α · ∇yωj,α dy +
1

2

{ N∑

α=1

∫

Y 0

(
D̃α∇yωi,α · ej + D̃α∇yωj,α · ei

)
dy
}

−1

2

{ N∑

α=1

∫

Y 0

ωi,αωj,αdivy b̃α dy
}

+
1

2

{ N∑

α=1

N∑

β=1

∫

Y 0

(
Παβϕ

∗
αϕβ(ωi,β − ωi,α)ωj,α +Παβϕ

∗
αϕβ(ωj,β − ωj,α)ωi,α

)
dy
}
. (5.57)

Lemma 5.3.2 gives an expression for the divergence of the convective field b̃α in (5.20) which
will lead us to conclude that the right hand side of (5.57) is same as

N∑

α=1

∫

Y 0

D̃α∇yωi,α · ∇yωj,α dy +
1

2

{ N∑

α=1

∫

Y 0

(
D̃α∇yωi,α · ej + D̃α∇yωj,α · ei

)
dy
}

−1

2

N∑

α=1

N∑

β=1

∫

Y 0

ϕ∗
αϕβΠαβ

(
ωi,α − ωi,β

)(
ωj,α − ωj,β

)
dy (5.58)
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Using information from (5.57) and (5.58) in the expression for D in (5.56) leads to a compact
expression for the dispersion matrix.

Dij =

N∑

α=1

∫

Y 0

D̃α

(
∇yωi,α + ei

)
·
(
∇yωj,α + ej

)
dy

−1

2

N∑

α=1

N∑

β=1

∫

Y 0

ϕ∗
αϕβΠαβ

(
ωi,α − ωi,β

)(
ωj,α − ωj,β

)
dy

Lemma 5.4.4. The dispersion matrix D given by (5.40) is symmetric positive definite.

Proof. The symmetric part is obvious because of the way we derived the expression for D. By the
hypothesis on the coupling matrix and the positivity of the first eigenvector functions, the factor
Παβϕ

∗
αϕβ is always negative. We have also chosen the diffusion matrices Dα to be coercive. For

ξ ∈ Rd, we shall define

ωαξ =
d∑

i=1

ωi,αξi

Then,

Dξ · ξ ≥
N∑

α=1

cα

∫

Y 0

∣∣∣∇yωαξ + ξ
∣∣∣
2
dy +

N∑

α=1

N∑

β=1

cαβ

∫

Y 0

∣∣∣ωαξ − ωβξ

∣∣∣
2
dy ≥ 0.

Now, we need to show that Dξ · ξ > 0 for all ξ 6= 0. Suppose that Dξ · ξ = 0 which in turn
implies that

ωαξ + ξ · y ≡ Cα, ωαξ − ωβξ ≡ Cαβ

for some constants Cα, Cαβ . As the cell solutions (ωi,α) are Y−periodic, it cannot be affine.
Thus the above equalities are possible only when ξ = 0. Thus implying the positive definiteness
of D.

5.5 Two-scale compactness

This section is devoted to finding two-scale limits with drift for the sequence of solutions for the
microscopic model (5.7)-(5.9). We prove a theorem which is in the same spirit as Theorem 3.8.2
of Chapter 3 and Theorem 4.7.2 of Chapter 4. As before, the a priori estimates on the solutions
come in handy.

Theorem 5.5.1. Let b∗ ∈ Rd be given by (5.37). There exists v ∈ L2((0, T );H1(Rd)) and
(v1,α) ∈ L2((0, T ) × Rd;H1(Y 0)), for each 1 ≤ α ≤ N , such that the sequence of concentrations
(vεα)1≤α≤N ∈ L2((0, T );H1(Ωε))

N , solutions of system (5.14)-(5.16), two-scale converge with
drift b∗, up to a subsequence, as ε→ 0, in the following sense

vεα
2−drift−−−−⇀ v, ∇vεα

2−drift−−−−⇀ ∇xv +∇yv1,α,
1

ε

(
vεα − vεβ

)
2−drift−−−−⇀ v1,α − v1,β,

(5.59)
for every 1 ≤ α, β ≤ N .
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Proof. Consider the a priori bounds (5.24) on vεα obtained in Lemma 5.3.3. It follows from
Proposition 2.6.4 of Chapter 2 that there exist two-scale limits, say vα ∈ L2(0, T ;L2(Rd)) such
that

vεα
2−drift−−−−⇀ vα (5.60)

for every 1 ≤ α ≤ N . Also from the a priori estimates (5.24) we have

N∑

α=1

N∑

β=1

T∫

0

∫

Ωε

(
vεα − vεβ

)2
dx dt ≤ Cε2. (5.61)

The estimate (5.61) implies that the limits obtained in (5.60) do match i.e., vα = v for every
1 ≤ α ≤ N . The H1 a priori estimate in space as in (5.24) does imply that v ∈ L2(0, T ;H1(Rd))
and that there exist limits v1,α ∈ L2(0, T ×Rd;H1(Y 0)) such that

∇vεα
2−drift−−−−⇀ ∇xv +∇yv1,α (5.62)

for every 1 ≤ α ≤ N . However, the limit of the coupled term isn’t straightforward. Since
1

ε
(vεα−vεβ) is bounded in L2((0, T )×Ωε), we have the existence of q(t, x, y) ∈ L2((0, T )×Rd×Y 0)

such that

lim
ε→0

T∫

0

∫

Ωε

1

ε
(vεα − vεβ)φ

(
t, x− b∗

ε
t,
x

ε

)
dx dt =

T∫

0

∫

Rd

∫

Y 0

q(t, x, y)φ(t, x, y) dy dx dt (5.63)

Taking Ψ ∈ L2((0, T ) × Rd × Y 0)d, let us consider

T∫

0

∫

Ωε

(
∇vεα −∇vεβ

)
·Ψ
(
t, x− b∗

ε
t,
x

ε

)
dx dt =

−
T∫

0

∫

Ωε

(
vεα−vεβ

)
divxΨ

(
t, x− b∗

ε
t,
x

ε

)
dx dt−

T∫

0

∫

Ωε

1

ε

(
vεα−vεβ

)
divyΨ

(
t, x− b∗

ε
t,
x

ε

)
dx dt (5.64)

Upon passing to the limit in (5.64) as ε→ 0, the first term on the right hand side vanishes as the
limits of vεα and vεβ match and the second term on the right hand side as in (5.63). Considering
the limit (5.62), upon passing to the limit as ε→ 0 in (5.64) we have

T∫

0

∫

Rd

∫

Y 0

∇y

(
v1,α − v1,β

)
·Ψ(t, x, y) dy dx dt = −

T∫

0

∫

Rd

∫

Y 0

q(t, x, y)divyΨ(t, x, y) dy dx dt (5.65)

From (5.65) we deduce that (v1,α − v1,β) and q(t, x, y) differ by a function of (t, x), say l(t, x).
As v1,α and v1,β are also defined up to the addition of a function solely dependent on (t, x), we
can get rid of l(t, x) and we recover indeed the following limit

1

ε

(
vεα − vεβ

)
2−drift−−−−⇀ v1,α − v1,β.
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5.6 Proof of homogenization result

This section is dedicated to the rigorous justification of the formal result, Proposition 5.4.1, that
we have obtained in Section 5.4. The following theorem characterizes the two-scale limits found
in Theorem 5.5.1.

Theorem 5.6.1. Let v ∈ L2((0, T );H1(Rd)) and v1,α ∈ L2((0, T ) × Rd;H1(Y 0)) for every 1 ≤
α ≤ N be the limits obtained in (5.59). The two-scale limits v1,α admit an explicit representation
given by

v1,α(t, x, y) =
d∑

i=1

∂v

∂xi
(t, x)ωi,α(y) for every 1 ≤ α ≤ N (5.66)

where (ωi,α)1≤i≤d satisfy the cell problem (5.36). Further, the two-scale limit v(t, x) is the unique
solution of the homogenized problem (5.39) with the elements of the dispersion matrix D given
by (5.40).

Proof. The idea is to test the bulk equation (5.14) in the factorized system (5.14)-(5.16) with

φεα = φ

(
t, x− b∗t

ε

)
+ εφ1,α

(
t, x− b∗t

ε
,
x

ε

)
. (5.67)

Here φ(t, x) and φ1,α(t, x, y) are smooth compactly supported functions which vanish at the final
time T .

N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
α

∂vεα
∂t

φεα dx dt+
1

ε

N∑

α=1

T∫

0

∫

Ωε

b̃εα · ∇vεαφεα dx dt+
N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα · ∇φεα dx dt

+
1

ε2

N∑

α=1

N∑

β=1

T∫

0

∫

Ωε

Παβϕ
∗
αϕβ(v

ε
β − vεα)φ

ε
α = 0. (5.68)

Substituting for φεα from (5.67) in the variational formulation (5.68) and integrating by parts
lead to

−
N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
αv

ε
α

∂φ

∂t

(
t, x− b∗

ε
t
)
dx dt+

1

ε

N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
αv

ε
αb

∗ · ∇xφ
(
t, x− b∗

ε
t
)
dx dt

−1

ε

N∑

α=1

T∫

0

∫

Ωε

div
(
b̃εα

)
vεαφ

(
t, x− b∗

ε
t
)
dx dt− 1

ε

N∑

α=1

T∫

0

∫

Ωε

vεαb̃
ε
α · ∇xφ

(
t, x− b∗

ε
t
)
dx dt

+

N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα ·∇xφ

(
t, x− b∗

ε
t
)
dx dt+

1

ε2

N∑

α=1

N∑

β=1

T∫

0

∫

Ωε

Παβϕ
∗
αϕβ(v

ε
β−vεα)φ

(
t, x− b∗

ε
t
)
dx dt

+
N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
αv

ε
αb

∗ ·∇φ1,α
(
t, x− b∗

ε
t,
x

ε

)
dx dt+

N∑

α=1

T∫

0

∫

Ωε

(
b̃εα ·∇vεα

)
φ1,α

(
t, x− b∗

ε
t,
x

ε

)
dx dt

+

N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα · ∇yφ1,α

(
t, x− b∗

ε
t,
x

ε

)
dx dt
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+
1

ε

N∑

α=1

N∑

β=1

T∫

0

∫

Ωε

Παβϕ
∗
αϕβ(v

ε
β − vεα)φ1,α

(
t, x− b∗

ε
t,
x

ε

)
dx dt+O(ε) = 0. (5.69)

Taking φ ≡ 0 in (5.69), we arrive at a variational formulation involving only φ1,α.

N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αv

ε
αρ

ε
αb

∗ ·∇φ1,α
(
t, x− b∗

ε
t,
x

ε

)
dx dt+

N∑

α=1

T∫

0

∫

Ωε

(
b̃εα ·∇vεα

)
φ1,α

(
t, x− b∗

ε
t,
x

ε

)
dx dt

+

N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα · ∇yφ1,α

(
t, x− b∗

ε
t,
x

ε

)
dx dt

+
1

ε

N∑

α=1

N∑

β=1

T∫

0

∫

Ωε

Παβϕ
∗
αϕβ(v

ε
β − vεα)φ1,α

(
t, x− b∗

ε
t,
x

ε

)
dx dt = 0. (5.70)

Passing to the limit in (5.70) as ε→ 0 yields

−
N∑

α=1

T∫

0

∫

Rd

∫

Y 0

ϕαϕ
∗
αραb

∗ · ∇xv(t, x)φ1,α(t, x, y) dy dx dt

+

N∑

α=1

T∫

0

∫

Rd

∫

Y 0

b̃α ·
(
∇xv(t, x) +∇yv1,α(t, x, y)

)
φ1,α(t, x, y) dy dx dt

−
N∑

α=1

T∫

0

∫

Rd

∫

Y 0

divy

(
D̃α

(
∇xv(t, x) +∇yv1,α(t, x, y)

))
φ1,α(t, x, y) dy dx dt

+

N∑

α=1

N∑

β=1

T∫

0

∫

Rd

∫

Y 0

Παβϕ
∗
αϕβ

(
v1,β(t, x, y)− v1,α(t, x, y)

)
φ1,α(t, x, y) dy dx dt = 0. (5.71)

The above expression (5.71) is the variational formulation for





b̃α ·
(
∇yv1,α +∇xv

)
− divy

(
D̃α

(
∇yv1,α +∇xv

))

+
N∑

β=1

Παβϕ
∗
αϕβ(v1,β − v1,α) = ϕαϕ

∗
αραb

∗ · ∇xv in Y 0,

D̃α

(
∇yv1,α +∇xv

)
· n = 0 on ∂Σ0,

y → v1,α Y -periodic.

(5.72)

for every 1 ≤ α ≤ N . By Fredholm alternative we have the existence and uniqueness of
v1,α ∈ L2(0, T ×Rd;H1(Y 0)/R) if and only if the drift velocity b∗ satisfies (5.37) which is indeed
the value we chose for the drift velocity in Theorem 5.5.1. Also by linearity of (5.72), we deduce
that we can separate the slow and fast variables in v1,α as in (5.66) with ωi,α satisfying the
coupled cell problem (5.36).
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As a next step, we shall choose φ1,α ≡ (0, 0) in the variational expression (5.69). This gives us
a variational formulation involving only φ.

−
N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
αv

ε
α

∂φ

∂t

(
t, x− b∗

ε
t
)
dx dt+

1

ε

N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αv

ε
αρ

ε
αb

∗ · ∇xφ
(
t, x− b∗

ε
t
)
dx dt

−1

ε

N∑

α=1

T∫

0

∫

Ωε

div
(
b̃εα

)
vεαφ

(
t, x− b∗

ε
t
)
dx dt− 1

ε

N∑

α=1

T∫

0

∫

Ωε

vεαb̃
ε
α · ∇xφ

(
t, x− b∗

ε
t
)
dx dt

+

N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα·∇xφ

(
t, x−b

∗

ε
t
)
dx dt+

1

ε2

N∑

α=1

N∑

β=1

T∫

0

∫

Ωε

Παβϕ
∗
αϕβ(v

ε
β−vεα)φ

(
t, x−b

∗

ε
t
)
dx dt = 0.

(5.73)
Thanks to the expressions for the divergence of b̃α in (5.20) as they help us get rid of the terms
of order ε−2 in the variational formulation (5.73). There are still some problematic terms of
order ε−1 in the variational formulation (5.73). To simplify them we shall introduce an auxiliary
problem which is well-posed, thanks to the expression for the drift velocity b∗ from (5.37).





−∆Ξ =

N∑

α=1

ϕαϕ
∗
αραb

∗ − b̃α in Y 0,

−∇Ξ · n = 0 on ∂Σ0,

y → Ξ(y) is Y -periodic.

(5.74)

The scaled auxiliary problem associated with (5.74) shall be





−ε2∆Ξε(x/ε) =

N∑

α=1

ϕαϕ
∗
αρ

ε
αb

∗ − b̃εα in Ωε,

−ε∇Ξε(x/ε) · n = 0 on ∂Ωε,

x→ Ξε is ε− periodic.

(5.75)

Now, let us regroup the problematic terms from (5.73) as we are equipped to handle them.

1

ε

N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
αv

ε
αb

∗ · ∇xφ
(
t, x− b∗

ε
t
)
dx dt− 1

ε

N∑

α=1

T∫

0

∫

Ωε

vεαb̃
ε
α · ∇xφ

(
t, x− b∗

ε
t
)
dx dt

= −ε
2

ε

T∫

0

∫

Ωε

∆Ξε
i

∂φ

∂xi
vεα dx dt+

1

ε

N∑

β=1

T∫

0

∫

Ωε

ϕβϕ
∗
βρ

ε
β(v

ε
β − vεα)b

∗ · ∇xφdx dt

+
1

ε

N∑

β=1

T∫

0

∫

Ωε

(vεα − vεβ)b̃
ε
β · ∇xφ

(
t, x− b∗

ε
t
)
dx dt

= ε

T∫

0

∫

Ωε

∇Ξε
i · ∇

( ∂φ
∂xi

)
vεα dx dt+ ε

T∫

0

∫

Ωε

∇Ξε
i · ∇vεα

( ∂φ
∂xi

)
dx dt
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+
1

ε

N∑

β=1

T∫

0

∫

Ωε

ϕβϕ
∗
βρ

ε
β(v

ε
β−vεα)b∗ ·∇xφdx dt+

1

ε

N∑

β=1

T∫

0

∫

Ωε

(vεα−vεβ)b̃εβ ·∇xφ
(
t, x− b∗

ε
t
)
dx dt (5.76)

Using (5.76) in (5.73) we write down the final variational formulation where we can pass to the
limit as we know the two-scale limits of all the sequences involved.

−
N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
αv

ε
α

∂φ

∂t

(
t, x− b∗

ε
t
)
dx dt+

N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα · ∇xφ

(
t, x− b∗

ε
t
)
dx dt

+ε

T∫

0

∫

Ωε

∇Ξε
i · ∇

( ∂φ
∂xi

)
vεα dx dt+ ε

T∫

0

∫

Ωε

∇Ξε
i · ∇vεα

( ∂φ
∂xi

)
dx dt

+
1

ε

N∑

β=1

T∫

0

∫

Ωε

ϕβϕ
∗
βρ

ε
β(v

ε
β − vεα)b∗ ·∇xφdx dt+

1

ε

N∑

β=1

T∫

0

∫

Ωε

(vεα − vεβ)b̃εβ ·∇xφ
(
t, x− b∗

ε
t
)
dx dt = 0.

(5.77)
Passing to the limit as ε→ 0 in (5.77) we have

T∫

0

∫

Rd

ρ∗
∂v

∂t
φ dx dt+

T∫

0

∫

Rd

∫

Y 0

∇yΞi ·∇yv1,α
∂φ

∂xi
dy dx dt+

N∑

α=1

T∫

0

∫

Rd

∫

Y 0

D̃α

(
∇v+∇yv1,α

)
·∇xφdx dt

+

N∑

β=1

T∫

0

∫

Rd

∫

Y 0

ϕβϕ
∗
βρβ

(
v1,β−v1,α

)
b∗ ·∇xφdy dx dt+

N∑

β=1

T∫

0

∫

Rd

∫

Y 0

(
v1,α−v1,β

)
b̃β ·∇xφdy dx dt = 0.

(5.78)
We know the representations for v1,α from (5.66) in terms of the cell solutions. We shall substi-
tute them in the limit equation (5.78).

T∫

0

∫

Rd

∂v

∂t
φ dx dt−

∑

i,j

T∫

0

∫

Rd

∂v

∂xj

∂φ

∂xi

∫

Y 0

(
∆yΞi

)
ωj,α dy dx dt

+
N∑

α=1

∑

i,j

T∫

0

∫

Rd

∂v

∂xj

∂φ

∂xi

∫

Y 0

D̃α

(
∇yj +∇yωj,α

)
· ∇yi dy dx dt

+

N∑

β=1

∑

i,j

T∫

0

∫

Rd

∂v

∂xj

∂φ

∂xi

∫

Y 0

ϕβϕ
∗
βρβ

(
ωj,β − ωj,α

)
b∗ · ∇yi dy dx dt

+
N∑

β=1

∑

i,j

T∫

0

∫

Rd

∂v

∂xj

∂φ

∂xi

∫

Y 0

(
ωj,α − ωj,β

)
b̃β · ∇yi dy dx dt = 0. (5.79)

The expression (5.79) is a variational formulation of the homogenized equation (5.39). Using
the auxiliary problem (5.74) we shall give the elements of D

Dij =

N∑

α=1

∫

Y 0

D̃α

(
∇yj+∇yωj,α

)
·∇yi dy+

N∑

α=1

∫

Y 0

ϕαϕ
∗
αραωj,αb

∗ ·ei dy−
N∑

α=1

∫

Y 0

ωj,αb̃α ·ei dy. (5.80)
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The non symmetric part of D doesn’t play the role in the homogenized equation (5.39) as
explained in Section 5.4. The dispersion matrix D in (5.80) upon symmetrizing leads to

Dij =

N∑

α=1

∫

Y 0

D̃αej · ei dy +
1

2

{ N∑

α=1

∫

Y 0

(
D̃α∇yωi,α · ej + D̃α∇yωj,α · ei

)
dy
}

+
1

2

{ N∑

α=1

∫

Y 0

(
ωi,α(ϕαϕ

∗
αραb

∗ − b̃α) · ej + ωj,α(ϕαϕ
∗
αραb

∗ − b̃α) · ei
)
dy
}
. (5.81)

The symmetric expression in (5.81) is the same as the one obtained in (5.56) via the formal
method in Section 5.4. We can redo the calculations that followed (5.56) using the cell problem
(5.36) to arrive at

Dij =
N∑

α=1

∫

Y 0

D̃α

(
∇yωi,α + ei

)
·
(
∇yωj,α + ej

)
dy

−1

2

N∑

α=1

N∑

β=1

∫

Y 0

ϕ∗
αϕβΠαβ

(
ωi,α − ωi,β

)(
ωj,α − ωj,β

)
dy.

Remark 5.6.2. The irreducibility assumption (5.6) on the coupling matrix Π ensures micro-
scopic equilibrium among solutes resulting in a single homogenized concentration v(t, x) i.e., if
the coupling matrix Π ≡ 0 (say), we get N different homogenized concentrations.

5.7 Boundary reaction: Model and qualitative analysis

In this Chapter, so far we have studied a system of convection diffusion reaction equations
(5.7)-(5.9) where the bulk reactions are considered and the reaction terms appear as a zero
order term in (5.7). Now, we shall slightly modify the reaction model. Let us consider surface
reaction terms, similar to the bulk reaction term in (5.7). This model is very close to (5.7)-(5.9)
except for the reactions on the boundary and absence of bulk reactions, for each 1 ≤ α ≤ N ,

ρα
∂uα
∂τ

+ bα(y) · ∇uα − div(Dα∇uα) = 0 in (0, ζ)× Ωf , (5.82)

−Dα∇uα · n =
N∑

β=1

Παβuβ on (0, ζ)× Ωs. (5.83)

We will be working with the same hypothesis on all the coefficients as before. Upon parabolic
scaling, (5.82)-(5.83) yields

ρεα
∂uεα
∂t

+
1

ε
bεα · ∇uεα − div(Dε

α∇uεα) = 0 in (0, T ) × Ωε, (5.84)

−Dε
α∇uεα · n =

1

ε

N∑

β=1

Παβu
ε
β on (0, T ) × ∂Ωε, (5.85)

uεα(0, x) = uinα (x) x ∈ Rd. (5.86)

In Section 5.3 we remarked that the difficulty in arriving at the a priori estimates for (5.7)-(5.9)
could be overcome by spectral cell problems associated with (5.7)-(5.9) followed by a factorization
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principle. We shall employ the same approach to treat the current model too. Let us consider
the spectral and its adjoint cell problems, for each 1 ≤ α ≤ N ,





bα(y) · ∇yϕα − divy

(
Dα∇yϕα

)
= λραϕα in Y 0,

−Dα∇yϕα · n =

N∑

β=1

Παβϕβ on ∂Σ0,

y → ϕα(y) Y -periodic.

(5.87)





−divy(bαϕ
∗
α)− divy

(
Dα∇yϕ

∗
α

)
= λραϕ

∗
α in Y 0,

−Dα∇yϕ
∗
α · n− bα(y) · nϕ∗

α =
N∑

β=1

Π∗
αβϕ

∗
β on ∂Σ0,

y → ϕ∗
α(y) Y -periodic.

(5.88)

Proposition 5.7.1. The system (5.84)-(5.86) is equivalent to

ϕαϕ
∗
αρ

ε
α

∂vεα
∂t

+
1

ε
b̃εα · ∇vεα − div

(
D̃ε

α∇vεα
)
= 0 in (0, T )× Ωε, (5.89)

−D̃ε
α∇vεα · n =

1

ε

N∑

β=1

Παβϕ
∗
αϕβ(v

ε
β − vεα) on (0, T )× ∂Ωε, (5.90)

vεα(0, x) =
uinα (x)

ϕα

(
x
ε

) x ∈ Ωε, (5.91)

for each 1 ≤ α ≤ N . The components of (vεα)1≤α≤N are defined by

uεα(t, x) = exp (−λt/ε2)ϕα

(x
ε

)
vεα(t, x) (5.92)

The convective velocity, b̃εα(x) = b̃α

(
x
ε

)
, in (5.89) is given by

b̃α(y) = ϕαϕ
∗
αbα + ϕαDα∇yϕ

∗
α − ϕ∗

αDα∇yϕα for every 1 ≤ α ≤ N (5.93)

and the diffusion matrix, D̃ε
α(x) = D̃α

(
x
ε

)
, in (5.89)-(5.90) is given by

D̃α(y) = ϕαϕ
∗
αDα for every 1 ≤ α ≤ N, (5.94)

where (λ, ϕα) is the first eigenpair for the spectral cell problem (5.87) and (λ, ϕ∗
α) is the first

eigenpair for the adjoint spectral cell problem (5.88).

The proof of Proposition 5.7.1 is straightforward upon using the chain rule for differentiation
(5.19).

Lemma 5.7.2. Let (vεα) be a weak solution of (5.89)-(5.91). There exists a constant C such
that

N∑

α=1

∥∥∥vεα
∥∥∥
L∞((0,T );L2(Ωε))

+

N∑

α=1

∥∥∥∇vεα
∥∥∥
L2((0,T )×Ωε)

+

N∑

α=1

N∑

β=1

√
ε
∥∥∥1
ε
(vεα − vεβ)

∥∥∥
L2((0,T )×∂Ωε)

≤ C

N∑

α=1

‖vinα ‖L2(Rd)

(5.95)
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Proof. To derive the a priori estimates, as is done with parabolic equations, we shall multiply
(5.89) by vεα and add the thus obtained expressions followed by integrating over Ωε.

1

2

d

dt

N∑

α=1

∫

Ωε

ϕαϕ
∗
αρ

ε
α|vεα|2 dx− 1

2ε

N∑

α=1

∫

Ωε

div(b̃εα)|vεα|2 dx

+
N∑

α=1

∫

Ωε

D̃ε
α∇vεα · ∇vεα dx+

1

ε

N∑

α=1

N∑

β=1

∫

∂Ωε

Παβϕ
∗
αϕβ(v

ε
β − vεα)v

ε
α = 0

which is the same as

1

2

d

dt

N∑

α=1

∫

Ωε

ϕαϕ
∗
αρ

ε
α|vεα|2 dx− 1

2ε

N∑

α=1

∫

Ωε

div(b̃εα)|vεα|2 dx

+
N∑

α=1

∫

Ωε

D̃ε
α∇vεα · ∇vεα dx−

N∑

α=1

N∑

β=1

ε

∫

∂Ωε

1

ε2
Παβϕ

∗
αϕβ(v

ε
α − vεβ)

2 = 0 (5.96)

To arrive at the energy estimate, we shall make use of the spectral cell problem (5.87) and its
adjoint (5.88). To begin with, let us test the bulk equation in (5.87) by ϕ∗

α(v
ε
α)

2 and integrate
over Y 0. We shall compute term by term.

∫

Y 0

bα · ∇yϕαϕ
∗
α(v

ε
α)

2 dy = −
∫

Y 0

divy(bαϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

ϕαϕ
∗
αbα · ∇y(v

ε
α)

2 dy, (5.97)

−
∫

Y 0

divy

(
Dα∇yϕα

)
ϕ∗
α(v

ε
α)

2 dy =

∫

Y 0

ϕ∗
αDα∇yϕα · ∇y(v

ε
α)

2 dy +

∫

Y 0

(vεα)
2Dα∇yϕα · ∇yϕ

∗
α dy

+

N∑

β=1

∫

∂Σ0

Παβϕ
∗
αϕβ(v

ε
α)

2 dσ(y)

=

∫

Y 0

ϕ∗
αDα∇yϕα · ∇y(v

ε
α)

2 dy −
∫

Y 0

ϕαDα∇yϕ
∗
α · ∇y(v

ε
α)

2 dy +

∫

Y 0

ϕαDα∇yϕ
∗
α · ∇y(v

ε
α)

2 dy

+

∫

Y 0

(vεα)
2Dα∇yϕα · ∇yϕ

∗
α dy +

N∑

β=1

∫

∂Σ0

Παβϕ
∗
αϕβ(v

ε
α)

2 dσ(y)

which implies

−
∫

Y 0

divy

(
Dα∇yϕα

)
ϕ∗
α(v

ε
α)

2 dy =

∫

Y 0

ϕ∗
αDα∇yϕα · ∇y(v

ε
α)

2 dy −
∫

Y 0

ϕαDα∇yϕ
∗
α · ∇y(v

ε
α)

2 dy

−
∫

Y 0

divy(Dα∇yϕ
∗
α)ϕα(v

ε
α)

2 dy −
N∑

β=1

∫

∂Σ0

Πβαϕαϕ
∗
β(v

ε
α)

2 dσ(y) +
N∑

β=1

∫

∂Σ0

Παβϕ
∗
αϕβ(v

ε
α)

2 dσ(y),

(5.98)

−
∫

Y 0

λϕαϕ
∗
αρα(v

ε
α)

2 dy, (5.99)
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Adding (5.97), (5.98) and (5.99) we arrive at

−
∫

Y 0

divy(bαϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

divy(Dα∇yϕ
∗
α)ϕα(v

ε
α)

2 dy −
∫

Y 0

λϕ∗
αϕαρα(v

ε
α)

2 dy

−
∫

Y 0

(
ϕαϕ

∗
αbα + ϕαDα∇yϕ

∗
α − ϕ∗

αDα∇yϕα

)
· ∇y(v

ε
α)

2 dy

−
N∑

β=1

∫

∂Σ0

Πβαϕαϕ
∗
β(v

ε
α)

2 dσ(y) +

N∑

β=1

∫

∂Σ0

Παβϕ
∗
αϕβ(v

ε
α)

2 dσ(y) = 0 (5.100)

Identifying the expression for b̃α from (5.93) in (5.100) and the information from the adjoint
spectral cell problem (5.88), we simplify (5.100) as

−
∫

Y 0

b̃α · ∇y(v
ε
α)

2 dy −
N∑

β=1

∫

∂Σ0

Πβαϕαϕ
∗
β(v

ε
α)

2 dσ(y) +

N∑

β=1

∫

∂Σ0

Παβϕ
∗
αϕβ(v

ε
α)

2 dσ(y) = 0 (5.101)

Summing (5.101) over α leads to

N∑

α=1

∫

Y 0

divy b̃α(v
ε
α)

2 dy = 0. (5.102)

Scaling (5.102) and using it in (5.96) results in

1

2

d

dt

N∑

α=1

∫

Ωε

ϕαϕ
∗
αρ

ε
α|vεα|2 dx+

N∑

α=1

∫

Ωε

D̃ε
α∇vεα ·∇vεα dx−

N∑

α=1

N∑

β=1

ε

∫

∂Ωε

1

ε2
Παβϕ

∗
αϕβ(v

ε
α− vεβ)2 = 0

(5.103)
which is the needed energy equality for (5.89)-(5.91) as Παβ ≤ 0 for α 6= β. Integrating (5.103)
over (0, T ) will lead to the a priori estimates (5.95).

Now we shall state a result on the well-posedness of the system . This result is similar to
Proposition 5.3.4 of Section 5.3.

Proposition 5.7.3. Assume that the initial data uinα belongs to L2(Rd) ∩ L∞(Rd) for every
1 ≤ α ≤ N . For any given ε > 0, there exists a unique solution uεα of (5.84)-(5.86) in the
following energy space

uεα ∈ L∞((0, T );L2(Ωε)); ∇uεα ∈ L2((0, T ) × Ωε) for every 1 ≤ α ≤ N. (5.104)

Further if the initial data uinα ≥ 0 in Ωε, then the solution uεα(t, x) ≥ 0 in (0, T ) ×Ωε.

Here too we shall avoid the proof of the Proposition 5.7.3. The arguments of the proof can be
adapted from the existence results and maximum principles proved in [152], [129], [43].

5.8 Boundary reaction: Homogenization

Let us define drift velocity b∗ ∈ Rd as

b∗ =
1

ρ∗

N∑

α=1

∫

Y 0

b̃α(y) dy (5.105)
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where the convective velocity b̃α is given by (5.93) in terms of the first eigenfunctions associated
with the spectral cell problem (5.87) and its adjoint (5.88). In Chapters 3 and 4 we had a priori
estimates on the boundary similar to the ones in (5.95). The two-scale limits of the coupled
term

Theorem 5.8.1. Let b∗ ∈ Rd be given by (5.105). There exists v ∈ L2((0, T );H1(Rd)) and
ωi,α ∈ H1

#(Y
0)), for each 1 ≤ α ≤ N and for each 1 ≤ i ≤ d, such that the sequence of

concentrations (vεα)1≤α≤N ∈ L2((0, T );H1(Ωε))
N , solutions of system (5.89)-(5.91), two-scale

converge with drift b∗, up to a subsequence, as ε→ 0, in the following sense




vεα
2−drift−−−−⇀ v,

∇vεα
2−drift−−−−⇀ ∇xv +∇y

( d∑

i=1

ωi,α
∂v

∂xi

)
,

1

ε

(
vεα − vεβ

)
2s−drift−−−−−⇀

d∑

i=1

(
ωi,α − ωi,β

) ∂v
∂xi

,

(5.106)

for every 1 ≤ α, β ≤ N . The two-scale limit v(t, x) in (5.106) satisfies the following homogenized
equation 




ρ∗
∂v

∂t
− div(D∇v) = 0 in (0, T )× Rd,

v(0, x) =

N∑

α=1

uinα (x)

∫

Y 0

ϕ∗
α(y) dy in Rd.

(5.107)

where the dispersion tensor D is given by

Dij =

N∑

α=1

∫

Y 0

D̃α

(
∇yωi,α + ei

)
·
(
∇yωj,α + ej

)
dy

−1

2

N∑

α,β=1

∫

∂Σ0

ϕ∗
αϕβΠαβ

(
ωi,α − ωi,β

)(
ωj,α − ωj,β

)
dy

(5.108)

and the components (ωi,α)1≤α≤N , for every 1 ≤ i ≤ d, satisfy a so called cell problem.





b̃α(y) ·
(
∇yωi,α + ei

)
− divy

(
D̃α

(
∇yωi,α + ei

))
= ϕαϕ

∗
αραb

∗ · ei in Y 0,

D̃α(∇yωi,α + ei) · n =
N∑

β=1

Παβϕ
∗
αϕβ

(
ωi,β − ωi,α

)
on ∂Σ0,

y → ωi,α Y -periodic.

(5.109)

Further the effective porosity in (5.107) is given by

ρ∗ =

N∑

α=1

∫

Y 0

ϕαϕ
∗
αρα(y) dy. (5.110)

Proof. The relative compactness results from Section 2.6 of Chapter 2 are of importance in
arriving at the two-scale limits (5.106). Let us consider the a priori estimates (5.95). It fol-
lows from Proposition 2.6.4 of Chapter 2 that there exist two-scale limits, say (vα)1≤α≤N ∈
L2(0, T ;L2(Rd))N such that

vεα
2−drift−−−−⇀ vα (5.111)
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for every 1 ≤ α ≤ N . For w ∈ H1(Ωε), consider the following Poincaré type inequality derived
in [67].

‖w‖2L2(Ωε)
≤ C

(
ε2‖∇w‖2L2(Ωε)

+ ε‖w‖L2(∂Ωε)

)
(5.112)

Taking w =
1

ε

(
vεα − vεβ

)
, we deduce from (5.112) and a priori estimates (5.95) that

d∑

α=1

d∑

β=1

‖vεα − vεβ‖L2((0,T )×Ωε) ≤ C ε. (5.113)

The estimate (5.113) implies that the limits obtained in (5.111) do match i.e., vα = v for every
1 ≤ α ≤ N . The H1 a priori estimate in space as in (5.95) does imply that v ∈ L2(0, T ;H1(Rd))
and that there exist limits v1,α ∈ L2(0, T ×Rd;H1(Y 0)) such that

∇vεα
2−drift−−−−⇀ ∇xv +∇yv1,α (5.114)

for every 1 ≤ α ≤ N .
To handle the two-scale limit of the coupled term in (5.106), we shall be using the technical
Lemma 3.8.1 that we used in Section 3.8 of Chapter 3. Lemma 3.8.1 states that for a function
φ(t, x, y) ∈ L2((0, T ) × Rd × ∂Σ0) be such that

∫

∂Σ0

φ(t, x, y) dσ(y) = 0 ∀ (t, x) ∈ (0, T )× Rd. (5.115)

There exists a vector field θ(t, x, y) ∈ L2((0, T ) × Rd × Td)d such that




divyθ = 0 in Y 0,

θ · n = φ on ∂Σ0,

y → θ Y -periodic.

(5.116)

Taking φ from (5.115) as the test function, consider the following expression with the coupled
term.

ε

T∫

0

∫

∂Ωε

1

ε

(
vεα − vεβ

)
φ

(
t, x− b∗t

ε
,
x

ε

)
dσε(x) dt =

T∫

0

∫

Ωε

div

(
(vεα − vεβ)θ

(
t, x− b∗t

ε
,
x

ε

))
dx dt

=

T∫

0

∫

Ωε

[(
∇vεα −∇vεβ

)
· θ
(
t, x− b∗t

ε
,
x

ε

)
+
(
vεα − vεβ

)
(divxθ)

(
t, x− b∗t

ε
,
x

ε

)]
dx dt

2−drift−−−−⇀
T∫

0

∫

Rd

∫

Y 0

(
∇yv1,α −∇yv1,β

)
· θ dy dx dt

=

T∫

0

∫

Rd

∫

∂Σ0

(
v1,α − v1,β

)
θ · n dσ(y) dx dt =

T∫

0

∫

Rd

∫

∂Σ0

(
v1,α − v1,β

)
φdσ(y) dx dt.

The idea is to test the bulk equation (5.89) in the factorized system (5.89)-(5.91) with

φεα = φ

(
t, x− b∗t

ε

)
+ εφ1,α

(
t, x− b∗t

ε
,
x

ε

)
. (5.117)
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Here φ(t, x) and φ1,α(t, x, y) are smooth compactly supported functions which vanish at the final
time T .

N∑

α=1

T∫

0

∫

Ωε

ϕαϕ
∗
αρ

ε
α

∂vεα
∂t

φεα dx dt+
1

ε

N∑

α=1

T∫

0

∫

Ωε

b̃εα · ∇vεαφεα dx dt+
N∑

α=1

T∫

0

∫

Ωε

D̃ε
α∇vεα · ∇φεα dx dt

+
1

ε

N∑

α=1

N∑

β=1

T∫

0

∫

∂Ωε

Παβϕ
∗
αϕβ(v

ε
β − vεα)φ

ε
α = 0. (5.118)

As the rest of the proof proceeds as in Theorem 5.6.1 using the two-scale limits found in the
beginning of this proof, we shall avoid the details on passing to the limit as ε → 0 in the
variational formulation (5.118).

5.9 Adsorption: Model and qualitative analysis

In this section we would like to incorporate the adsorption models that we studied in Chapters 3
and 4 into the multiple component models that we have been working on in this chapter. Let uα
be the bulk concentration of the αth component and vα be its adsorbed surface concentration.

∂uα
∂τ

+ bα · ∇uα − div(Dα∇uα) = 0 in (0, ζ)× Ωf , (5.119)

−Dα∇uα · n =
∂vα
∂τ

− div(Dα∇vα) +
N∑

β=1

Παβvβ = κα

(
uα − vα

)
on (0, ζ)× Ωs. (5.120)

As we wish to work in the strong convection regime, we shall perform parabolic scaling. That
leads to

∂uεα
∂t

+
1

ε
bεα · ∇uεα − div(Dε

α∇uεα) = 0 in (0, T ) ×Ωε, (5.121)

−1

ε
Dε

α∇uεα·n =
∂vεα
∂t

−div(Dε
α∇vεα)+

1

ε2

N∑

β=1

Παβv
ε
β =

κα
ε2

(
uεα−vεα

)
on (0, T )×∂Ωε. (5.122)

For simplicity, let us work with two component model. Let u
(1)
ε , u

(2)
ε denote the bulk concen-

trations of the solutes and v
(1)
ε , v

(2)
ε denote the adsorbed surface concentrations.

∂u
(1)
ε

∂t
+

1

ε
b(1)ε · ∇u(1)ε − div

(
D(1)

ε ∇u(1)ε

)
= 0 in (0, T )× Ωε (5.123)

∂u
(2)
ε

∂t
+

1

ε
b(2)ε · ∇u(2)ε − div

(
D(2)

ε ∇u(2)ε

)
= 0 in (0, T )× Ωε (5.124)

∂v
(1)
ε

∂t
+

1

ε2

(
m11v

(1)
ε −m12v

(2)
ε

)
= −1

ε
D(1)

ε ∇u(1)ε ·n =
κ1
ε2

(
u(1)ε − v(1)ε

)
on (0, T )×∂Ωε (5.125)

∂v
(2)
ε

∂t
+

1

ε2

(
m22v

(2)
ε −m21v

(1)
ε

)
= −1

ε
D(2)

ε ∇u(2)ε ·n =
κ2
ε2

(
u(2)ε − v(2)ε

)
on (0, T )×∂Ωε (5.126)

u(1)ε (0, x) = u
(1)
init(x), u(2)ε (0, x) = u

(2)
init(x) x ∈ Ωε. (5.127)

v(1)ε (0, x) = v
(1)
init(x), v(2)ε (0, x) = v

(2)
init(x) x ∈ ∂Ωε. (5.128)
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where b
(1)
ε , b

(2)
ε are ε-periodic velocity fields. In the previous sections we remarked that there

is no need to make any further assumptions on the velocity fields (like incompressibility or no

penetration conditions on the obstacles). D
(1)
ε , D

(2)
ε are ε-periodic symmetric coercive diffusion

matrices. The coupling matrix (
m11 −m12

−m21 m22

)

is such that mij ≥ 0 for i 6= j. This assumption on the coupling matrix mij is the same as the
one on Π that we have been using all through this chapter. In order to obtain a priori estimates,
we need to factorize possible oscillations from the solutions of (5.123)-(5.128) as suggested by
the Factorization principle. So, we shall introduce the following spectral cell problem associated
with (5.123)-(5.128).





b(1)(y) · ∇yψ
(1) − divy

(
D(1)∇yψ

(1)
)
= λψ(1) in Y 0,

−D(1)∇yψ
(1) · n = κ1(ψ

(1) − φ(1)) = m11φ
(1) −m12φ

(2) − λφ(1) on ∂Σ0,

b(2)(y) · ∇yψ
(2) − divy

(
D(2)∇yψ

(2)
)
= λψ(2) in Y 0,

−D(2)∇yψ
(2) · n = κ2(ψ

(2) − φ(2)) = m22φ
(2) −m21φ

(1) − λφ(2) on ∂Σ0,

y →
(
ψ(1), ψ(2), φ(1), φ(2)

)
Y -periodic.

(5.129)

The adjoint of the eigenvalue problem (5.129) is the following





−divy(b
(1)ψ(1)∗)− divy

(
D(1)∇yψ

(1)∗
)
= λψ(1)∗ in Y 0,

−D(1)∇yψ
(1)∗ · n− b(1) · nψ(1)∗ = κ1(ψ

(1)∗ − φ(1)∗) = m11φ
(1)∗ −m21φ

(2)∗ − λφ(1)∗ on ∂Σ0,

−divy(b
(2)ψ(2)∗)− divy

(
D(2)∇yψ

(2)∗
)
= λψ(2)∗ in Y 0,

−D(2)∇yψ
(2)∗ · n− b(2) · nψ(2)∗ = κ2(ψ

(2)∗ − φ(2)∗) = m22φ
(2)∗ −m12φ

(1)∗ − λφ(2)∗ on ∂Σ0,

y →
(
ψ(1)∗, ψ(2)∗

)
and y →

(
φ(1)∗, φ(2)∗

)
Y -periodic.

(5.130)

The existence of the first simple positive eigenvalue λ for (5.129) and (5.130) follow from the
results in [152]. Using the first eigenfunctions ψ(1), ψ(2), φ(1), φ(2), we shall make the following
change of unknowns

u(1)ε (t, x) = e−λt/ε2ψ(1)
(x
ε

)
U (1)
ε (t, x); u(2)ε (t, x) = e−λt/ε2ψ(2)

(x
ε

)
U (2)
ε (t, x) (5.131)

v(1)ε (t, x) = e−λt/ε2φ(1)
(x
ε

)
V (1)
ε (t, x); v(2)ε (t, x) = e−λt/ε2φ(2)

(x
ε

)
V (2)
ε (t, x), (5.132)

Now we state a result that gives the system of equations satisfied by
(
U

(1)
ε , U

(2)
ε , V

(1)
ε , V

(2)
ε

)

Lemma 5.9.1. Upon making the change of unknowns as in (5.131) and (5.132), we arrive at

the following coupled system for
(
U

(1)
ε , U

(2)
ε , V

(1)
ε , V

(2)
ε

)
.

ψ(1)ψ(1)∗ ∂U
(1)
ε

∂t
+

1

ε
b̃(1)ε · ∇U (1)

ε − div
(
D̃(1)

ε ∇U (1)
ε

)
= 0 in (0, T )× Ωε (5.133)
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ψ(2)ψ(2)∗ ∂U
(2)
ε

∂t
+

1

ε
b̃(2)ε · ∇U (2)

ε − div
(
D̃(2)

ε ∇U (2)
ε

)
= 0 in (0, T )× Ωε (5.134)

−1

ε
D̃(1)

ε ∇U (1)
ε · n = ψ(1)∗φ(1)

κ1
ε2

(
U (1)
ε − V (1)

ε

)
on (0, T ) × ∂Ωε (5.135)

−1

ε
D̃(2)

ε ∇U (2)
ε · n = ψ(2)∗φ(2)

κ2
ε2

(
U (2)
ε − V (2)

ε

)
on (0, T ) × ∂Ωε (5.136)

φ(1)φ(1)∗
∂V

(1)
ε

∂t
+

1

ε2
m12φ

(1)∗φ(2)
(
V (1)
ε − V (2)

ε

)
= φ(1)∗ψ(1)κ1

ε2

(
U (1)
ε − V (1)

ε

)
on (0, T )× ∂Ωε

(5.137)

φ(2)φ(2)∗
∂V

(2)
ε

∂t
+

1

ε2
m21φ

(1)φ(2)∗
(
V (2)
ε − V (1)

ε

)
= φ(2)∗ψ(2)κ2

ε2

(
U (2)
ε − V (2)

ε

)
on (0, T )× ∂Ωε

(5.138)
where b̃(1) is given by an expression similar to that of b̃α in (5.17) in terms of the bulk eigen-
function ψ(1), the velocity field b(1) and the diffusion matrix D(1). Similar expression for b̃(2)

too. The D̃(1) is given by an expression similar to that of D̃α in (5.18) in terms of the bulk
eigenfunction ψ(1) and the diffusion matrix D(1). Similar expression for D̃(2) too.

The proof of Lemma 5.9.1 is straightforward upon using the chain rule for differentiation (5.19).

Our next task is to derive a priori estimates for the solutions of (5.133)-(5.138).

Lemma 5.9.2. Let (U
(1)
ε , U

(2)
ε , V

(1)
ε , V

(2)
ε ) be a weak solution of (5.133)-(5.138). Then we have

the following a priori estimates.





∥∥∥U (1)
ε

∥∥∥
L∞((0,T );L2(Ωε))

+
∥∥∥U (2)

ε

∥∥∥
L∞((0,T );L2(Ωε))

+
√
ε
∥∥∥V (1)

ε

∥∥∥
L∞((0,T );L2(∂Ωε))

+
√
ε
∥∥∥V (2)

ε

∥∥∥
L∞((0,T );L2(∂Ωε))

+
∥∥∥∇U (1)

ε

∥∥∥
L2((0,T )×Ωε)

+
∥∥∥∇U (2)

ε

∥∥∥
L2((0,T )×Ωε)

+
√
ε
∥∥∥1
ε

(
U (1)
ε − V (1)

ε

)∥∥∥
L2((0,T )×∂Ωε)

+
√
ε
∥∥∥1
ε

(
U (2)
ε − V (2)

ε

)∥∥∥
L2((0,T )×∂Ωε)

+
√
ε
∥∥∥1
ε

(
V (1)
ε − V (2)

ε

)∥∥∥
L2((0,T )×∂Ωε)

≤ C.

(5.139)

Proof. We shall follow the standard approach of deriving a priori estimates for parabolic systems.

Let us multiply (5.133) by U
(1)
ε and (5.134) by U

(2)
ε followed by integration over Ωε. Let us then

multiply (5.137) by V
(1)
ε and (5.138) by V

(2)
ε followed by integration over ∂Ωε. Adding the thus

obtained expressions lead to

1

2

d

dt

∫

Ωε

ψ(1)ψ(1)∗|U (1)
ε |2 dx+

1

2

1

ε

∫

Ωε

b̃(1)ε · ∇|U (1)
ε |2 dx+

∫

Ωε

D̃(1)
ε ∇U (1)

ε · ∇U (1)
ε dx

+
1

2

d

dt

∫

Ωε

ψ(2)ψ(2)∗|U (2)
ε |2 dx+

1

2

1

ε

∫

Ωε

b̃(2)ε · ∇|U (2)
ε |2 dx+

∫

Ωε

D̃(2)
ε ∇U (2)

ε · ∇U (2)
ε dx

+
1

2

d

dt
ε

∫

∂Ωε

φ(1)φ(1)∗|V (1)
ε |2 dσ(x) + 1

2

d

dt
ε

∫

∂Ωε

φ(2)φ(2)∗|V (2)
ε |2 dσ(x)

+
κ1
ε

∫

∂Ωε

(
ψ(1)∗φ(1)U (1)

ε − φ(1)∗ψ(1)V (1)
ε

)(
U (1)
ε − V (1)

ε

)
dσ(x)
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+
κ2
ε

∫

∂Ωε

(
ψ(2)∗φ(2)U (2)

ε − φ(2)∗ψ(2)V (2)
ε

)(
U (2)
ε − V (2)

ε

)
dσ(x)

+
1

ε

∫

∂Ωε

(
m12φ

(1)∗φ(2)V (1)
ε −m21φ

(1)φ(2)∗V (2)
ε

)(
V (1)
ε − V (2)

ε

)
dσ(x) = 0. (5.140)

To obtain energy estimates, we need to first show that the terms on the left hand side of (5.140)
are positive. Here the cell eigenvalue problems (5.129) and (5.130) come to our rescue. To better
understand the difficulties at hand, let us regroup the problematic terms from (5.140).

−1

2

1

ε

∫

Ωε

div
(
b̃(1)ε

)
|U (1)

ε |2 dx− 1

2

1

ε

∫

Ωε

div
(
b̃(2)ε

)
|U (2)

ε |2 dx (5.141)

+
κ1
ε

∫

∂Ωε

(
ψ(1)∗φ(1)U (1)

ε − φ(1)∗ψ(1)V (1)
ε

)(
U (1)
ε − V (1)

ε

)
dσ(x) (5.142)

+
κ2
ε

∫

∂Ωε

(
ψ(2)∗φ(2)U (2)

ε − φ(2)∗ψ(2)V (2)
ε

)(
U (2)
ε − V (2)

ε

)
dσ(x) (5.143)

+
1

ε

∫

∂Ωε

(
m12φ

(1)∗φ(2)V (1)
ε −m21φ

(1)φ(2)∗V (2)
ε

)(
V (1)
ε − V (2)

ε

)
dσ(x) (5.144)

Let us test the bulk equations in the spectral cell problem (5.129) by
(
ψ(1)∗

(
U

(1)
ε

)2
, ψ(2)∗

(
U

(2)
ε

)2

and integrate over Y 0. Then, test the surface equations in the spectral problem (5.129) by

φ(1)∗
(
V

(1)
ε

)2
, φ(2)∗

(
V

(2)
ε

)2)
and integrate over ∂Σ0.

∫

Y 0

b(1) · ∇yψ
(1)ψ(1)∗

(
U (1)
ε

)2
dy−

∫

Y 0

divy

(
D(1)∇yψ

(1)
)
ψ(1)∗

(
U (1)
ε

)2
dy−

∫

Y 0

λψ(1)ψ(1)∗
(
U (1)
ε

)2
dy

+

∫

Y 0

b(2) ·∇yψ
(2)ψ(2)∗

(
U (2)
ε

)2
dy−

∫

Y 0

divy

(
D(2)∇yψ

(2)
)
ψ(2)∗

(
U (2)
ε

)2
dy−

∫

Y 0

λψ(2)ψ(2)∗
(
U (2)
ε

)2
dy

+

∫

∂Σ0

(
m11φ

(1) −m12φ
(2) − λφ(1) − κ1(ψ

(1) − φ(1))
)
φ(1)∗

(
V (1)
ε

)2
dσ(y)

+

∫

∂Σ0

(
m22φ

(2) −m21φ
(1) − λφ(2) − κ2(ψ

(2) − φ(2))
)
φ(2)∗

(
V (2)
ε

)2
dσ(y) = 0 (5.145)

After integration by parts and using information from the spectral cell problem (5.129) and its
adjoint (5.130), the above equation (5.145) is equivalent to

∫

Y 0

{
− divy(b

(1)ψ(1)∗)− divy

(
D(1)∇yψ

(1)∗
)
− λψ(1)∗

}
ψ(1)

(
U (1)
ε

)2
dy

−
∫

Y 0

b̃(1) · ∇y

(
U (1)
ε

)2
dy + κ1

∫

∂Σ0

(
U (1)
ε

)2(
ψ(1)φ(1)∗ − ψ(1)∗φ(1)

)
dσ(y)

+

∫

Y 0

{
− divy(b

(2)ψ(2)∗)− divy

(
D(2)∇yψ

(2)∗
)
− λψ(2)∗

}
ψ(2)

(
U (2)
ε

)2
dy
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−
∫

Y 0

b̃(2) · ∇y

(
U (2)
ε

)2
dy + κ2

∫

∂Σ0

(
U (2)
ε

)2(
ψ(2)φ(2)∗ − ψ(2)∗φ(2)

)
dσ(y)

+

∫

∂Σ0

{
m11φ

(1)∗ −m21φ
(2)∗ − λφ(1)∗

}
φ(1)

(
V (1)
ε

)2
+m21φ

(1)φ(2)∗
{(
V (1)
ε

)2
−
(
V (2)
ε

)2}
dσ(y)

+

∫

∂Σ0

{
m22φ

(2)∗ −m12φ
(1)∗ − λφ(2)∗

}
φ(2)

(
V (2)
ε

)2
+m12φ

(1)∗φ(2)
{(
V (2)
ε

)2
−
(
V (1)
ε

)2}
dσ(y)

−κ1
∫

∂Σ0

(ψ(1) − φ(1))φ(1)∗
(
V (1)
ε

)2
dσ(y)− κ2

∫

∂Σ0

(ψ(2) − φ(2))φ(2)∗
(
V (2)
ε

)2
dσ(y) = 0. (5.146)

In (5.146), we recognize the adjoint spectral cell problem (5.130). Upon using information from
(5.130), we deduce that (5.146) is equivalent to the following.

−
∫

Y 0

b̃(1) · ∇y

(
U (1)
ε

)2
dy + κ1

∫

∂Σ0

(
U (1)
ε

)2(
ψ(1)φ(1)∗ − ψ(1)∗φ(1)

)
dσ(y)

−
∫

Y 0

b̃(2) · ∇y

(
U (2)
ε

)2
dy + κ2

∫

∂Σ0

(
U (2)
ε

)2(
ψ(2)φ(2)∗ − ψ(2)∗φ(2)

)
dσ(y)

+κ1

∫

∂Σ0

(
ψ(1)∗φ(1) − ψ(1)φ(1)∗

)(
V (1)
ε

)2
dσ(y) + κ2

∫

∂Σ0

(
ψ(2)∗φ(2) − ψ(2)φ(2)∗

)(
V (2)
ε

)2
dσ(y)

+

∫

∂Σ0

m21φ
(1)φ(2)∗

{(
V (1)
ε

)2
−
(
V (2)
ε

)2}
dσ(y)+

∫

∂Σ0

m12φ
(1)∗φ(2)

{(
V (2)
ε

)2
−
(
V (1)
ε

)2}
dσ(y) = 0.

(5.147)
Rescaling the above equation (5.147) onto Ωε and using them in the problematic terms (5.141)-
(5.142)-(5.143)-(5.144), we can show that the problematic terms (5.141) through (5.144) con-
tribute as

κ1
ε

1

2

∫

∂Ωε

(
ψ(1)φ(1)∗ + ψ(1)∗φ(1)

)(
U (1)
ε − V (1)

ε

)2

+
κ2
ε

1

2

∫

∂Ωε

(
ψ(2)φ(2)∗ + ψ(2)∗φ(2)

)(
U (2)
ε − V (2)

ε

)2

+
1

ε

1

2

∫

∂Ωε

(
m12φ

(1)∗φ(2) +m21φ
(1)φ(2)∗

)(
V (1)
ε − V (2)

ε

)2
(5.148)

Using (5.148) for the problematic terms in (5.140), we arrive at the following energy estimate.

1

2

d

dt

∫

Ωε

ψ(1)ψ(1)∗|U (1)
ε |2 dx+

∫

Ωε

D̃(1)
ε ∇U (1)

ε · ∇U (1)
ε dx

+
1

2

d

dt

∫

Ωε

ψ(2)ψ(2)∗|U (2)
ε |2 dx+

∫

Ωε

D̃(2)
ε ∇U (2)

ε · ∇U (2)
ε dx

+
1

2

d

dt
ε

∫

∂Ωε

φ(1)φ(1)∗|V (1)
ε |2 dσ(x) + 1

2

d

dt
ε

∫

∂Ωε

φ(2)φ(2)∗|V (2)
ε |2 dσ(x)
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+
κ1
ε

1

2

∫

∂Ωε

(
ψ(1)φ(1)∗ + ψ(1)∗φ(1)

)(
U (1)
ε − V (1)

ε

)2

+
κ2
ε

1

2

∫

∂Ωε

(
ψ(2)φ(2)∗ + ψ(2)∗φ(2)

)(
U (2)
ε − V (2)

ε

)2

+
1

ε

1

2

∫

∂Ωε

(
m12φ

(1)∗φ(2) +m21φ
(1)φ(2)∗

)(
V (1)
ε − V (2)

ε

)2
= 0. (5.149)

Integrating (5.149) over time interval (0, T ) leads to the a priori estimates (5.139).

5.10 Adsorption: Homogenization

In this section, we shall give the homogenization result concerning the microscopic model (5.123)-
(5.128). Consider the following asymptotic expansions for the solutions of (5.123)-(5.128).

u(1)ε (t, x) = e−λt/ε2
∑

i≥0

εiu
(1)
i

(
t, x− b∗t

ε
,
x

ε

)
u(2)ε (t, x) = e−λt/ε2

∑

i≥0

εiu
(2)
i

(
t, x− b∗t

ε
,
x

ε

)
.

(5.150)

v(1)ε (t, x) = exp (−λt/ε2)
∑

i≥0

εiv
(1)
i

(
t, x−b

∗t

ε
,
x

ε

)
v(2)ε (t, x) = exp (−λt/ε2)

∑

i≥0

εiv
(2)
i

(
t, x−b

∗t

ε
,
x

ε

)
.

(5.151)

Proposition 5.10.1. If the asymptotic expansions for the solutions of (5.123)-(5.128) as given
in (5.150) and (5.151) hold true, then the solutions can be approximated as

u(1)ε (t, x) ≈ exp (−λt/ε2)ψ(1)
(x
ε

)[
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ω
(1)
i

(x
ε

)]
(5.152)

u(2)ε (t, x) ≈ exp (−λt/ε2)ψ(2)
(x
ε

)[
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
ω
(2)
i

(x
ε

)]
(5.153)

v(1)ε (t, x) ≈ exp (−λt/ε2)φ(1)
(x
ε

)[
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
χ
(1)
i

(x
ε

)]
(5.154)

v(2)ε (t, x) ≈ exp (−λt/ε2)φ(2)
(x
ε

)[
v
(
t, x− b∗

ε
t
)
+ ε

d∑

i=1

∂v

∂xi

(
t, x− b∗

ε
t
)
χ
(2)
i

(x
ε

)]
(5.155)

with the effective drift b∗ given by

b∗ =

∫

Y 0

(
b̃(1) + b̃(2)

)
dy, (5.156)

λ > 0 is the first eigenvalue of the spectral cell problems (5.129) and (5.130) with (ψ(1), ψ(2))
and (φ(1), φ(2)) are the associated first eigenvector functions.
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The (ω
(1)
i , ω

(2)
i , χ

(1)
i , χ

(2)
i ) in the above approximations satisfy the following coupled cell problem.





b̃(1)(y) ·
(
∇yω

(1)
i + ei

)
− divy

(
D̃(1)

(
∇yω

(1)
i + ei
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(5.157)
Further, the zero order non-oscillating term v(t, x) in the above approximations satisfy the fol-
lowing scalar diffusion equation.

∂v

∂t
= div(D∇v) in (0, T ) × Rd. (5.158)

The expression for the effective dispersion D in (5.158) is given in terms of the solutions to the
cell problem (5.157) as follows


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(k)
i
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(5.159)

We shall avoid the proof of Proposition 5.10.1 as the details of the proof are almost similar to the
ones found in Section 5.4 where we formally obtained the effective equation using Factorization
principle and two-scale asymptotic expansions with drift. We can also justify the above formal
result using the notion of two-scale convergence with drift. This approach has been applied to
two different models in this chapter alone (Sections 5.5, 5.6, 5.8). Using the a priori estimates
from Lemma 5.9.2, we will be able to prove relative compactness property of the solution se-
quences. These compactness results shall be helpful while passing to the limit as ε → 0 in the
variational formulation. This being the recipe for all homogenization problems via two-scale
convergence, we shall skip the proof.

Conclusions

All the multicomponent models studied in this chapter are linear models. There is a work
underway to model nonlinear reactions in multicomponent flows. We are taking cues from [92]
to incorporate the aspects of thermodynamics into the reactive transport models. The analysis
at this moment are quite formal. We hope to come up with a framework to handle more complex
systems and means to upscale them.
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[20] Allaire G., Mikelić A., Piatnitski A. Homogenization approach to the dispersion theory for
reactive transport through porous media, SIAM J. Math. Anal., Vol 42 No.1, pp.125-144,
(2010).

[21] Allaire G., Murat F. Homogenization of the Neumann problem with nonisolated holes,
Asymptotic Anal., Vol 7, No. 2, pp.81-95, (1993).

[22] Allaire G., Orive R. Homogenization of periodic non self-adjoint problems with large drift
and potential, COCV, Vol 13, pp.735-749, (2007).

[23] Allaire G., Piatnitski A. Uniform Spectral Asymptotics for Singularly Perturbed Locally
Periodic Operators, Com. in PDE, Vol 27, Issues 3-4, pp.705-725, (2002).

[24] Allaire G., Piatnitski A. Homogenization of nonlinear reaction-diffusion equation with a
large reaction term, Annali dell’Universita di Ferrara, Vol 56, pp.141-161, (2010).

[25] Allaire G., Raphael A.L. Homogenization of a convection diffusion model with reaction in
a porous medium, C. R. Math. Acad. Sci. Paris, Vol 344 No.8, pp.523-528, (2007).

[26] Alt H.W., Luckhaus S. Quasilinear elliptic-parabolic differential equations, Math. Z., Vol 3,
pp.311-341, (1983).

[27] Amaziane B., Antontsev S., Pankratov L., Piatnitski A. Homogenization of Immiscible
Compressible Two-Phase Flow in Porous Media: Application to Gas Migration in a Nuclear
Waste Repository, SIAM J. Multiscale. Model. Simul., Vol 8, No.5, pp.2023-2047, (2010).

[28] Amaziane B., Pankratov L., Piatnitski A. Homogenization of immiscible compressible two-
phase flow in highly heterogeneous porous media with discontinuous capillary pressures,
Preprint.

[29] Arbogast T., Douglas J., Hornung U. Derivation of the double porosity model of single phase
via homogenization theory, SIAM J. Math. Anal., Vol 21, pp.823-836, (1990).



BIBLIOGRAPHY 199

[30] Aris R. On the dispersion of a solute in a fluid flowing through a tube, Proc. Royal Soc.
London, Ser. A, Vol 235, pp.67-77, (1956).
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pliquées pour la Mâıtrise, Masson, Paris, (1983).

[51] Capdeboscq Y. Homogenization of a diffusion equation with drift, C. R. Acad. Sci. Paris
Sér. I Math. Vol 327, No.9, pp.807-812, (1998).

[52] Capdeboscq Y. Homogenization of neutronic multigroup evolution model, Asymptotic Anal-
ysis, Vol 24, pp.143-165, (2000).

[53] Capdeboscq Y. Homogenization of a neutronic critical diffusion problem with drift, Proc.
Roy. Soc. Edinburgh Sect. A, Vol 132, No.3, pp.567-594, (2002).

[54] Campillo F., Piatnitski A. Effective diffusion in vanishing viscosity, Nonlinear Partial Dif-
ferential Equations and Their Applications, Collège de France Seminar Volume XIV. D.
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Abstract

Our work is a contribution to the understanding of transport of solutes in a porous medium.
It has applications in groundwater contaminant transport, CO2 sequestration, underground
storage of nuclear waste, oil reservoir simulations. We derive expressions for the effective Tay-
lor dispersion taking into account convection, diffusion, heterogeneous geometry of the porous
medium and reaction phenomena. Microscopic phenomena at the pore scale are upscaled to
obtain effective behaviour at the observation scale. Method of two-scale convergence with drift
from the theory of homogenization is employed as an upscaling technique. In the first part of
our work, we consider reactions of mass exchange type, adsorption/desorption, at the fluid-solid
interface of the porous medium. Starting with coupled convection-diffusion equations for bulk
and surface concentrations of a single solute, coupled via adsorption isotherms, at a microscopic
scale we derive effective equations at the macroscopic scale. We consider the microscopic system
with highly oscillating coefficients in a strong convection regime i.e., large Péclet regime. The
presence of strong convection in the microscopic model leads to the induction of a large drift in
the concentration profiles. Both linear and nonlinear adsorption isotherms are considered and
the results are compared. In the second part of our work we generalize our results on single
component flow to multicomponent flow in a linear setting. In the latter case, the effective pa-
rameters are obtained using Factorization principle and two-scale convergence with drift. The
behaviour of effective parameters with respect to Péclet number and Damköhler number are
numerically studied. Freefem++ is used to perform numerical tests in two dimensions.

Keywords: Homogenization, Porous media, Periodic structures, Two-scale convergence, Dis-
persion Tensor, Reactive flows, Adsorption isotherms, Multicomponent flow.

Résumé

Ce travail est une contribution pour mieux comprendre le transport de solutés dans un milieu
poreux. Ce phénomène se rencontre dans de nombreux domaines: transport de contaminants
dans les eaux souterraines, séquestration du CO2, stockage souterrain des déchets nucléaires,
simulations de réservoirs pétroliers. On obtient la dispersion effective de Taylor en tenant compte
de la convection, de la diffusion, de la géométrie du milieu poreux et des réactions chimiques.
Le but de la théorie d’homogénéisation est, à partir d’équations microscopiques, de dériver un
modèle effectif à l’échelle macroscopique. Ici, on applique la méthode de convergence à deux
échelles avec dérive pour arriver au comportement effectif. Dans un premier temps, on considère
les réactions de type adsorption à la surface des pores. À l’échelle microscopique, le phénomène
de transport est modélisé par des équations couplées de type advection-diffusion, une pour la
concentration dans le fluide et l’autre pour la concentration à la surface de milieu poreux. Le
couplage est fait par les isothermes d’adsorption. Le système microscopique avec des coefficients
fortement oscillants est étudié dans un régime de forte convection i.e., dans un régime de grand
nombre de Péclet. La présence de forte convection dans le modèle microscopique se traduit
par l’apparition d’une large dérive dans les profils de concentrations. On considère à la fois
l’isotherme linéaire et l’isotherme non linéaire et les résultats ainsi obtenus sont comparés. Dans
la deuxième partie, on généralise nos résultats concernant le transport réactif d’un seul soluté
à ceux de plusieurs solutés dans un cadre linéaire. Dans ce cas, les paramètres effectifs sont
obtenus en utilisant le principe de Factorisation et la convergence à deux échelles avec dérive.
On étudie numériquement le comportement des paramètres effectifs par rapport au nombre de
Péclet et au nombre de Damköhler. On utilise Freefem++ pour effectuer des tests numériques
en dimension deux.

Mots clefs: Homogénéisation, Milieux poreux, Structures périodiques, Convergence à deux
échelles, Tenseur de dispersion, Écoulements réactifs, Isothermes d’adsorption.


