N
N

N

HAL

open science

Identification de systemes utilisant les réseaux de
neurones: un compromis entre précision, complexité et

charge de calculs.

Héctor Manuel Romero Ugalde

» To cite this version:

Héctor Manuel Romero Ugalde. Identification de systémes utilisant les réseaux de neurones: un
compromis entre précision, complexité et charge de calculs.. Autre. Ecole nationale supérieure d’arts
et métiers - ENSAM; Centro Nacional de Investigacién y Desarrollo Tecnolégico, 2013. Francais.

NNT: 2013ENAMO001 . pastel-00869428

HAL 1Id: pastel-00869428
https://pastel.hal.science/pastel-00869428
Submitted on 3 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/pastel-00869428
https://hal.archives-ouvertes.fr

Parislech ET METIERS
T RS AV QA v:iisicol

2013-ENAM-0001

Ecole doctorale n° 432 : Sciences des Métiers de 'lngénieur

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

I’Ecole Nationale Supérieure d'Arts et Métiers

Spécialité “ Automatique ”
présentée et soutenue publiquement par

Héctor Manuel ROMERO UGALDE

le 16 Janvier 2013

ldentification de systéemes utilisant les réseaux de neurones: un compromis

entre précision, complexité et charge de calculs.

Directeur de thése : Jean-Claude CARMONA
Directeur de thése : Victor ALVARADO-MARTINEZ

Jury
Pr. Germain GARCIA, Professeur des Universités, Unité de recherche LAAS, (France) Rapporteur T
Dr. Dionisio SUAREZ, Chercheur, Gestion de Surveillance des processus, IIE (Mexique) Rapporteur
Dr. Manuel ADAM MEDINA, Professeur Associé, Département Electronique, CENIDET (Mexique) Examinateur H
Dr. Victor ALVARADO-MARTINEZ, Professeur Associé, Département Electronique, CENIDET (Mexique) N
Examinateur =
Pr. Jean-Claude CARMONA, Professeur des Universités, LSIS-INSM, Arts et Métiers Paris Tech (France)
Examinateur S
=

Arts et Métiers ParisTech - Centre d’Aix-en-Provence
Nom de I'Unité de recherche

- NS '
g ET METIERS
SEP " ParisTech

Institutos Tecnolégicos

i ®
cenidet

“System identification using neural networks: a balanced
accuracy, complexity and computational cost approach.”

presented by:

Héctor Manuel Romero Ugalde

M. of Sc. in Electronic engineering

A thesis submitted to

the CENTRO NACIONAL DE INVESTIGACION y DESARROLLO
TECNOLOGICO
and
the ECOLE NATIONALE SUPERIEURE D’ARTS ET METIERS

in a total fulfillment of the requirements for the degree of

Doctor of Engineering
in
Automatic Control

Advisors:

Dr Victor ALVARADO MARTINEZ.......ooooviieiiiiiii. (CENIDET, Morelos, Mexique)

Pr Jean-Claude CARMONA..........ccooiiiiiiiii, (ENSAM, Aix en Provence, France)

January 2013

Dedicated to my family: Héctor Romero Cuervo, Martha Beatriz Ugalde Baca,
Sagrario C. Romero Ugalde (connie), Jesis Javier Romero Ugalde (javi) and Con-
cepcion Baca Vélez.

A mis padres Martha Beatriz Ugalde Baca y Héctor Romero Cuervo que me dieron la vida, por ser los mejores
padres del mundo y un ejemplo a sequir, por haberme apoyado e inculcado los valores que me regirdn toda mi
ezistencia.

A mis hermanos Sagrario C. Romero Ugalde (connie) y Jesis Javier Romero Ugalde (javi), por los grandes mo-
mentos que hemos disfrutado juntos, por orientarme cuando he estado indeciso y principalmente porque siempre
han demostrado ser mis mejores amigos.

A mi abuelita Concepcion Baca Vélez quien cuidd de mi y me oriento en los primeros afios de mi infancia.

Por ser las personas mds importantes que existen en mi vida.

Especialmente a ti senor Jesus que estas a mi lado en todos los momentos de mi vida.

GRACIAS
Héctor Manuel Romero Ugalde

Acknowledgement

This work is done in the framework of a co-direction between the Centro Nacional de Inves-
tigacion y Desarrollo Tecnolégico (CENIDET), Cuernavaca, Morelos, Mexico and the Ecole
Nationale Supérieure d’Arts et Métiers (ENSAM), Aix en Provence, France.

Foremost, I would like to express my sincere gratitude to my advisors Prof. Jean-Claude
Carmona and Dr. Victor Manuel Alvarado Martinez for the continuous support of my PhD
study and research, for their patience, motivation, enthusiasm, and immense knowledge. His
guidance helped me in all the time of research and writing of this thesis.

Besides my advisors, I would like to thank the rest of my thesis committee: Dr. Manuel
Adam Medina, Dr. Carlos Manuel Astorga Zaragoza, Dr. Carlos Daniel Garcia Beltran, Dr.
Juan Reyes Reyes, Dr. Germain Garcia, y Dr. Dionisio Sudrez, for their encouragement,
insightful comments and hard questions.

My sincere thanks also go to my fellow’s lab mates and professors of the two institutions
CENIDET and ENSAM, for offering me their knowledge and friendship.

I thank the financial support from CONACYT and EGIDE.

Thank to my friends: Mario Sotomayor, Mario J., Gary, Sandra, Gabriel C., Marinné,
Vero, Ivan H., Juan A., Miguel, Jhoel, Antoni, Aksel, Xavier, Adeline, Jose, Fany, Cecilia,
Mehdi, Amir, Zeineb, Wendole, Ruding, Christophe, Cinda, Maud, Frederic, Alek, Zongcheng,
Benjamin, Matthieu, Julien, Mikael, Aymen and Nouha for offering me very good moments.

A would like especially to thank to my girlfriend Anne-Lise Sampieri and her family, for
giving me love and a family when I was far of my country.

I do not forget all my family members, uncles, aunts, cousins and godparents. Thanks for
all your support! Thank to my grandmothers: Concha and Eva for giving me the best parents

in the world. And to my aunt Reyna, thank for help to my father during his childhood.

Finally and more important, I would like to thank my family: Héctor Romero, Martha
Ugalde, Connie, Javi and Concha for giving me their support and love throughout my life.

Contents

1 System identification using neural networks: Background
1.1 Artificial neurons
1.2 Neural network architectures and system identification
1.3 System identification using neural network: a general procedure
1.3.1 Neural networks structure selection,
1.3.2 Neural network training L o
1.3.3 Ilustrative example o L

2 A new identification oriented neural network design
2.1 Recurrent 2nn-2-1 neural network: accuracyo
2.2 Recurrent 2-1 neural network: simplicityo
2.3 Recurrent 2-2-1 neural network: computational cost

3 Formal issues: The reduction procedures
3.1 Validity assumptions L L
3.2 Model complexity reduction approach o 0oL
3.3 Computational cost reduction approach 0oL

4 A new efficient system identification methodology
4.1 The proposed system identification procedure
4.2 Example 1: Recurrent 2nn-2-1 without thresholds.
4.3 Example 2: Recurrent 2nn-2-1 with thresholds in all the layers
4.4 Example 3: Sigmoid network of the toolbox in Matlab

5 Application to complex system identification
5.1 Wiener-Hammerstein benchmark
5.1.1 Validation test
5.1.2 Experiments
5.1.3 Comments. e e
5.2 Acoustic duct identification
5.2.1 Comments. e e e
5.3 Robot arm identification Lo

6 Conclusions and perspectives
6.1 Conclusions e e e e
6.2 Perspectives L L

A Activation functions

Learning algorithms

S N CRY S

13
13
16
17

19
19
19
23

25
25
27
32
37

41
41
42
42
47
48
49
50

53
53
o4

63

65

C Objective functions 67

Choice of n,, n, and ny 69
E Learning algorithms for the proposed architectures 71
E.1 General learning algorithms o0 oL o 71
E.2 FFHI1 adaptation algorithms o 72
E.3 FFH2 adaptation algorithms 73
E.4 ARXH adaptation algorithms L. 73
E.5 NLARXH adaptation algorithms 73
E.6 FF1 adaptation algorithms o o o 74
E.7 FF2 adaptation algorithms o 74
E.8 ARX adaptation algorithms oo 74
E.9 NLARX adaptation algorithms 74
E.10 FFHH1 adaptation algorithms L oo 75
E.11 FFHH2 adaptation algorithms 75
E.12 ARXHH adaptation algorithms 76
E.13 NLARXHH adaptation algorithms 76
E.14 FFHHI1 adaptation algorithms based on Levenberg-Marquardt 7
Learning rate adaptation 7 79
F.1 Search then convergence algorithm 79
F.2 Heuristicrules L 80
Application of the proposed method to the other models 81
G.1 Model FF2 e 81
G.2 Model ARX o e 83
G.3 Model NLARX e 85
G.4 Model FF2H e 88
G.5 Model ARXH e 90
G.6 Model NLARXH e 92
G.7 Model FF2HH e 95
G.8 Model ARXHH e 97
G.9 Model NLARXHH e 100
A different way to see the contributions 103
Model reduction: generalization 107
[.1 Validity assumptions for the generalized model reduction approach 108

[.2 Generalized model complexity reduction approach 108

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
9.5

5.6
5.7
5.8
5.9
5.10

Al

D.1
D.2

I.1

a) Biological neuron. b) Artificial neuron. L.
Feedforward neural networks.o oo
Recurrent neural networks.o Lo o
Cellular neural networks. L L
Three layers perceptron. L
Neural network training. oL
Choice of number of epochs.o oo
Learning coefficient during all the epochs (n(n)).
Recurrent nn-1 neural network. Lo oo

Recurrent 2nn-2-1 neural network. L L.
Recurrent 2-1 neural network.
Recurrent 2-2-1 neural network.

Recurrent 2nn-1 neural network. L

System identification procedure.o Lo oo oL
Recurrent 2nn-2-1 neural network.
Recurrent 2nn-2-1 neural network.
Non linear ARX.

Wiener-Hammerstein system.
Circuit used to built the static nonlinear system.
Measured output vs Estimated output. L.
Output Fourier Transform. o oL
Frequency Response Function (FRF) of the nonparametric best linear approxi-
mation obtained from the test data and the estimated output.
Schematic of semi finite acoustic waves guide.
Frequency Response Function (FRF).
Flexible robot arm. e
Measured output vs. Output corrupted by outliers.
Frequency Response Function (FRF) of the nonparametric best linear approxi-
mation obtained from the test data and the estimated output..

Activation functions. e e

Choice of n, and ny with ng =10.,
Choice of ny withng, =14 and ny, =9.

Multilayer perceptron of Narendra.

iii

O 00~ W wN -

41

.2 Reduced multilayer perceptron of Narendra

List of Tables

5.1 Validation results. L 45
5.2 Validation results: Proposed approach vs toolbox of Matlab. 46
5.3 Performance measures: Gradient vs. Levenberg-Marquardt. 47
5.4 Proposed approach vs Matlab oo oo, 49
D.1 Performance measures.t e e e e e e 69

List of symbols

0 Parameter of a model.

6 Estimation of a parameter.

0* Optimal estimation of a parameter.
w; Synaptic weights.

n Number of inputs of the neuron.
Zp, Threshold or bias.

7 Model output, Neural network output.
Ng Number of pass outputs.

i Number of pass inputs.

ng Dead time in the system.

y(k) Measured or real output.

e(k) Prediction error.

k Instant of time or iteration

N Total number of data for the estimation.

R Modifies the search direction.

7 Step size or leaning rate.

E Objective function or criterion function.

¥ Number of epochs.

v* Number of epochs required for the estimation.

70 Initial value of 7.
2p Synaptic weight.
Activation function.

T Internal signal of the neural network.
Tp Internal signal of the neural network.
J Regressors vector.

nn Number of neurous.

Ju Input regressors vector.

Jg Output regressors vector.

X Synaptic weight.
Zy Synaptic weight.
Zq Synaptic weight.
Zp, Synaptic weight.
Synaptic weights.
Va; Synaptic weights.
Synaptic weights.
W,, Synaptic weights.

vil

aVecy
cVecy

Mt
St
€ERM St
ERMSe

TT
FITF
E:cl
ECL‘2

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Internal signal of the neural network.

Internal signal of the neural network.

Number of parameters of a NN times the number data required for its estimation.
Synaptic weights.

Synaptic weights.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Internal signal of the neural network.

Internal signal of the neural network.

Internal signal of the neural network.

Internal signal of the neural network.

Internal signal of the neural network.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

Synaptic weight.

The mean value of the simulation error.

The standard deviation of the error.

The root mean square (RMS) of the error for the validation data.
The root mean square (RMS) of the error for the estimation data.
Number of parameters.

Time in minutes required to obtain each model.

Percentage of the measured output that was explained by the model.
Frequency response of the measured data.

Frequency response of the estimated data.

Abbreviations

RBF
RNN
MLP
MSE
LSAD
GA
PSO
GP
SVAR
LM
MA
DE
BP
ODE
FFT
FRF

Radial basis networks.

recurrent neural networks.

Multilayer Perceptron.

Mean square error.

Least Sum Absolute Deviation.
Genetic algorithms.

Particle swarm optimization.

Genetic programming.

Singular value architectural recombination.
Levenberg-Marquardt.

Memetic Algorithms.

Differential evolution.
Backpropagation.

opposition based differential evolution.
Fast Fourier Transform.

Frequency Response Function.

General introduction

In engineering fields a model is a mathematic representation of a real system used for analysis,
supervision, fault detection, prediction, estimation of unmeasurable variables, optimization and
model-based control process,... [1, 2, 3,4, 5,6, 7, 8, 9].

Basically, a model can be constructed according two routes or a combination of them [10]
(see the figure below). One route is called physical modeling, based on the physical mechanisms
that govern the system’s behavior. The models thus obtained are adequate approximations of
the real process [11]. But, in many cases involving complex nonlinear systems, it is very difficult
or almost impossible to derive dynamic models based on all the physical phenomena involved
[12, 13, 14].

Physical
modeling

Matemathical
model

System
identification

System identification/Physical modeling.

On the contrary, the other route called “System identification” provides an alternative way to
build mathematical models to capture the system dynamics. The models are constructed based
on the input-output data obtained by the experimentation with the real system [11, 12, 13, 14].
The main advantage of this technique is the fact that no extensive knowledge on the physical
behavior of the real system is required [11, 12]. In the sequel, we shall focus on this approach.

System identification

The earliest works on system identification were mainly conducted to find the “true system”,
i.e. the model which provides exactly the output data when excited by the input data [11]. The
researchers were not concerned by the complexity of the models and the handling of the model
parameters computation ([15, 16]).

More recently, due to the critical role of system modeling in engineering fields, in particu-
lar model-based control, the goal in system identification tends to generate models with good
“quality” at a low “price” [11] (see the figure below). In the sequel, for greatest convenience we
shall denote, “quality” the balance between accuracy and complexity of the model, and “price”
the computational cost to generate it [11].

x1

General introduction

Low model High approximation
complexity accuracy

Good quality

Low computational cost

Low price

New challenge.

Several methods for system identification have been widely discussed ([5, 10, 11, 17, 18]).
But all of them are based on the following steps that define a general system identification
methodology (see figure bellow). Hereafter are the “golden steps” for system identification.

1.-

Three basis entities

— The data record. It all starts with the necessary to have a very good dataset at

our disposal. i.e. a set of data which contains the maximum information about the
system dynamics. The objective of the experiment design is thus to generate data
maximally informative.

The set of models or the model structure. A set of candidate models is obtained
by specifying within which collection of models we are going to look for a suitable
candidate. Ideally, the “true system” should belong to this model set.

Model estimation. Suppose a set of candidate models has been selected, and sup-
posed they are parametrized using a parameter vector . The search for the best
suitable model within the set, then becomes a problem of determining, or estimat-
ing 6, according to a given criterion. The better we choose both a criterion and an
optimization algorithm, the better result estimated model is.

2.- Model validation. After having settled up the preceding three choices, we have at our

disposal a candidate model, the one in the parametrized model set which describes the
best the data according to a given criterion. It is then necessary to test whether this model
is “good enough” or valid for its purpose. Such tests are known as Model validation.

The system identification loop. The system identification procedure has a natural logical
flow: first collect the data, then choose a model set and estimate the “best” model in this
set. If the model candidate does not pass the model validation, we must go back to revise
the various steps of the procedure. The model may be deficient for several reasons:

— The numerical procedure fails to find the best model candidate according to our

criterion.

— The criterion is not well chosen.

— The model set is not appropriate, in that it does not contain any “good enough”

description of the system.

xii

General introduction

— The data set is not informative enough to provide guidance in selecting good models.

Prior
knowledge

Experiment
design

Choose
model set
I

Choose
criterion
of FIT

Model computation

Not ok: Revise

Validate
model

Ok: Use it

General system identification method.

The choice of the model structure and the model estimation (criterion and optimization
algorithm) [19] certainly have a considerable effect on both the quality of the resulting estimated
model and the price to generate it [11, 20]. Hence, these parts of the system identification
procedure will be addressed in this thesis.

The choice of the model structure is often based on the intended use of the model. For
example, for applications as model-based control, in particular inverse control, accurate process
representations with a reasonable low complexity are required [3, 21]. If some physical insight is
available, it is recommended to used it in order to select a model structure with the maximum
chance of containing the “true system”. But, in the industrial fields, different process systems
show non linearities and uncertainties which can be considered as partially or totally black-box
[22]. In that cases where no physical insight is available or used, a model structure which is
known to have good flexibility and which has been successfully used in the past, should be used.
These cases, known as black box system identification, will be addressed in this thesis.

Once a set of candidate models, parametrized by the parameter vector 6, has been selected,
the model estimation consists in finding the best estimation 0. Ideally this estimation should
yield the 6 = o corresponding to the “true system”. Moreover, computational cost should be
taken into consideration. In practice, the goal is to determine 6 which leads to a model which
represents the system as accurately as possible with a low computational cost.

More precisely, this estimation consists in searching the 6 which minimizes an objective
function (criterion function). The Mean Square Error (MSE) criterion is the most commonly
used in system identification. Generally, the MSE estimation leads to significant performances
under classical assumptions. Although, sometimes the system data set contains corrupted data,
called outliers which greatly damage the MSE performances. In this case, robust estimators
using robust norms are used. See the Huber’s function, Talwars function [23].... for example.

xiii

General introduction

Once the objective function is chosen, the search for 6 which minimizes the objective function
is achieved by an optimization algorithm. The most commonly encountered in system identifi-
cation, in particular in neural networks, are the steepest descent algorithm, the Gauss-Newton
algorithm and the Levenberg-Marquardt algorithm. As a consequence, both the computational
cost and the accuracy of the obtained model depend on the learning algorithm chosen to esti-
mate the model parameters, for the same reason as the objective function and the structure of
the model.

Remember that, in order to cover the cases when no reliable physical insight is available, black
box nonlinear system identification methods will be addressed in this thesis. Recent research
results have shown, that the nice properties of universal approximation of neural networks make
them suitable for modeling complex nonlinear systems when we consider the plant as a black-
box [4, 8, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], especially those which are hard to describe
mathematically [29, 30, 32, 33]. Consequently, let us now remind the main features of this
approach.

System identification using neural networks

As presented above, two important steps in a general system identification method are: the
model structure selection and the model estimation. In neural network theory, these two steps are
addressed to as: neural network architecture selection and neural network training, respectively.

Let us remember that artificial neural networks consist in a large number of interconnected
processing elements known as neurons [32]. Depending on the way the neurons are structured,
neural networks can be classified as feedforward, recurrent or cellular neural networks [17, 23,
24, 25, 31, 34, 35].

For system identification and control, the most used architectures are feedforward and re-
current neural networks. In these type of configurations, the neurons are usually arranged in
layers. The number of layers and the number of neurons in each layer play an important role
in the neural networks design. While the number of layers and neurons increases, the approx-
imation capabilities of the model increases too. Unfortunately, the model complexity and the
computational cost correspondingly increase as well.

Within the feedforward and recurrent neural networks, the most encountered in system iden-
tification [24] are: the Single layer feedforward networks, the Multilayer feedforward networks,
the Radial basis networks (RBF) and the Dynamics or recurrent neural networks.

The Feedforward networks are suitable for the approximation of complex static functions
[31, 35]. However, the major drawback of such type of neural networks in describing dynamic
functions, is that the weights updating does not utilize information on the local date structure.
Moreover, the function approximation is sensitive to the quality of training data. Since recurrent
neural networks (RNN) incorporate feedback, they can successfully overcome these disadvan-
tages. Moreover, recent results show that RNN can outperform feedforward neural networks
such as Multilayer Perceptron (MLP) or RBF networks [36]. Even more, they can yield smaller
structures [37]. Due to its dynamic characteristics, RNN has a great potential for nonlinear
dynamic system identification and control [27, 31, 34, 37, 38, 39]. Therefore, RNN will be used
in this thesis for black box nonlinear system identification.

xiv

General introduction

Once the model structure is chosen, the next step is the estimation of the synaptic weights,
i.e. the parameter vector f. This is achieved during the training phase or model estimation
phase. Here, the idea is, as already explained, to minimize an objective function (MSE, LSAD,
Huber’s function, etc) by means of a learning algorithm. The computational bulk consequently
depends on the learning algorithm, the structure and the criterion function chosen.

Problem statement: A convenient trade-off

Lest us remember that, one of the most important advantages of black box modeling approaches
is the limited physical insight required to develop the model [40], but as a trade-off, these
techniques imply the use of model structures which are as flexible as possible. Generally, this
property leads to a high number of parameters of the structure [41].

Neural network identification techniques have the same problem: a large number of neurons
(parameters) is usually necessary to correctly describe complex nonlinear systems [28]. As
mentioned above, the number of neurons directly affects the quality (i.e. model complexity and
approximation accuracy) and the computational cost.

In order to improve the preceding characteristics, we must conveniently choose the model
structure and the model estimator (i.e. the learning algorithm). The figure below, illustrate the
different influences of the different choices we have to do.

Model estimation
(NN training)

Model structure
(NN architecture)

Model complexity Approximation accuracy Computational cost

These choices are somewhat contradictory and necessarily a good compromise should be
proposed [42, 43]. The different works in neural networks system identification dealing with
this compromise can be divided in two types. The first part is dedicated to improve the quality
of the models by means of finding a good compromise between the model complexity and the
approximation accuracy. To achieve this, the authors directly deal with the neural network
architecture (see the figure above). The second part tends to estimate accurate models with low
computational cost. In the literature, this is achieved by the choice of the learning algorithm or
by a convenient choice of the model structure.

State of art

Let us first present the works which tend to the best trade-off between the model complexity and
approximation accuracy. Trial and error is one of this techniques [44]. In this approach, the user
test different number of neurons. When the “best compromise” between the number of neurons
and the accuracy of the architecture is found, the tests are stooped. Different works based on
this approach [21, 40, 45, 46, 47, 48, 49, 50] propose models with a good quality level. Although,
this procedure is laborious and it mays not lead to the “best compromise” between the model
complexity and the approximation accuracy [40, 51]. Other techniques trying to improve the

XV

General introduction

same approach are known as pruning. Pruning based techniques have been successfully used
for structural optimization [5, 44, 52, 53, 54, 55, 56, 57, 58, 59]. Pruning methods attempt to
find a quick solution by starting with a large network architecture then reducing it according
to a subjective criterion. In this approach [60, 61], besides optimizing the number of neurons,
the connections between the neurons are also optimized. In fact, the synaptic weights which
are “not important” are eliminated, leading to models with less number of parameter. More
recently, other evolutionary techniques has been employed in order to derive “optimal” struc-
tures. For example, genetic algorithms (GAs) in [28, 30, 51, 62], dissimilation particle swarm
optimization (PSO) in [33], genetic programming (GP) in [3], a combination of GA and singular
value architectural recombination (SVAR) in [63]. As in the pruning techniques, each evolution
of the neural network is based on a criterion chosen by the designer. The previously outlined
techniques, based on the evolution of the neural network, have been successfully applied for
structural optimization, but its main disadvantage is the excessive requirement of time to find
the most convenient number of neurons, since the neural network is trained every time the model
is modified or restructured [29]. Moreover, to solve the problem of finding the best trade-off
between model complexity and model accuracy, rather subjective criterion is always used to
decide whether the evolution of the neural network is appropriate and sufficient.

Now, let us present the works devoted to improve the balance between the accuracy and
the price of the model. As mentioned above, this can be achieved by the implementation of an
efficient learning algorithm or by a convenient choice of the model structure. Different learn-
ing algorithms can be applied in order to improve the accuracy and reduce the computational
burden. In [34] a Kalman filter-based algorithm with faster convergence is proposed. Although
this algorithm is more complex than the gradient based algorithms, a decoupling technique is
used to decrease the computational burden. In [20] a combination of clustering, gradient and
Kalman filter algorithms leads to a quick and efficient approach for modeling. In [31] a Bound-
ing Ellipsoid algorithm for high computational efficiency and fast convergence is proposed. In
[64] an improved simultaneous perturbation stochastic approximation (SPSA) algorithm yields
an improved model in terms of time of convergence and a smaller identification error. In [19]
a combination of GAs and LM algorithms take advantage of the global search of GA and the
estimation ability of LM to improve the accuracy and reduce the computation time. In [65] two
Memetic Algorithms (MA), combining evolutionary algorithms (i.e. GA and Differential evolu-
tion (DE), which are global search methods)) with a backpropagation (BP) learning algorithm
are proposed. This algorithm has faster convergence in comparison with only evolutionary com-
putation and avoids the possibility of local minima normally existing in the gradient algorithms.
This result is extended in [66] where the PSO is combined to with BP. Following the same idea,
in [29] an opposition based differential evolution (ODE) algorithm combined with LM is used for
training the feed-forward neural network. These results are interesting owing to its convergences
properties. In the previous works the improvements are based on the algorithms. Even if, the
accuracy of the model, the price to generate it or both of them are improved, the computational
cost is still affected by the complexity of the model structure. In [37, 39] the improvements of the
computational cost and/or the approximation accuracy are based on the choice of a convenient
model structure, that is, by the design of the neural network.

With the conviction that the improvement of the model quality and the reduction of the price
of the model, by convenience denoted in the sequel “constraints”, are directly linked to a suitable
neural network design, we decided to face to this neural network “constraints” by proposing
first a neural network (inspired in [67]) adapted to system identification purposes, secondly a

xv1

General introduction

model complexity reduction procedure and thirdly a computational cost reduction approach.
These are the main lines of our research contribution. We shall see that using this original
methodology, we provide ready-to-use accurate models with a small number of parameters at
a low price. More precisely, the main technicals issues of this thesis depend on the particular
selection of two factors: the activation functions in each layer and the initial conditions of the
synaptic weights. The model complexity reduction approach is developed in two steps: the first
step consists in training a neural network with a large enough number of neurons to provide
the intended accuracy. In the second step, an appropriate procedure significantly reduces the
number of neurons without loss of accuracy. Moreover, we show that the proposed architecture
nevertheless remains sufficiently general to provide a wide range of useful model types with
good quality at a low price. These model types are currently used in particular for model-based
control techniques [4, 5, 6, 7, 71]. The learning algorithm used to optimize the synaptic weights
is the classical steepest descent algorithm which is one of the simplest algorithms, since, in a
first time, we deliberately decide not to treat this point

In the sequel, this manuscript is organized as follows.

Chapter 1 summarizes the background on neural network which may be helpful to understand
the main components and steps for their application in system identification.

In Chapter 2, we focus on the particular design of the different architectures, which allow us
to investigate the balance complexity/accuracy and the reduction of the computational cost.

In Chapter 3, the main contributions of this thesis are presented. The theorems on which
the model reduction approach and the computational cost reduction approach are based, are
presented in details.

In Chapter 4, a methodology based on the previous approaches is described in order to yield
models with good accuracy, low complexity and low price. Moreover, the proposed method is
applied to different neural network architectures in order to demonstrate the interest of these
approaches.

Results of the identification of different systems are discussed in Chapter 5. These systems
consist in simulations ones, as the classical Wiener-Hammerstein benchmark, but also experi-
mental setups like an acoustic system, a robot arm, etc.

In Chapter 6 conclusions are given and some perspectives of the present works are drawn.

xvil

General introduction

xviil

Chapter 1

System identification using neural
networks: Background

This chapter deals with neural networks and its application for system identification. The
principle on which neural networks are based and its interesting characteristics which make
them applicable for black box system identification are presented here. Moreover, the concept
related to the structure selection such as the number of layers, the number of neurons and the
activation functions which define the structure of an identification model and its accuracy are
introduced, as well as, the concepts of learning algorithm, number of epochs, learning coefficient,
gradient and backpropagation algorithms which are related to the neural network training.
Both, the structure selection and the neural networks training are the main steps in the system
identification procedure as we will see.

1.1 Artificial neurons

Artificial neural networks are originally motivated by biological structures in the brain of humans
and animals. Functionally, the biological neurons are simple information processors containing
three main components: dendrites, axon and cell body.

‘ T Outputi
Cu, . oo
Inputs 5 Activation function
: h :

Synapse Threshold

Figure 1.1: a) Biological neuron. b) Artificial neuron.

Chapter 1: System identification using neural networks: Background

Fig. 1.1 a) shows a biological neuron. The dendrites are the input connections which conduct
the nerve impulses toward the cell body soma. The axon extends away from the cell body and
provides the path over which the information travels to other neurons. The dendrites are tube-
like extensions that branch repeatedly and form a bushy tree around the cell body (Soma).
They provide the main path on which the neurons receive coming information and the impulse
sweeps along the axon until it reaches the end. The junction point of an axon with a dendrite
of another neuron is called a synapse [17, 23, 24].

In that sense, Fig. 1.1 b) shows an artificial neuron, the input (dendrite) receives external
information or information from other neurons. This information is pondered by the synaptic
weights (synapses). Then the sum of the weighted inputs and the threshold is processed by a
function called activation function or output function (linear, sigmoid, gaussian or others, see
Appendix A), finally, the output (axon) conduces the information to other neurons or to the
outside.

The mathematical representation of the artificial neuron shown in Fig. 1.1 b) is given by
(1.1).

y=¢ <Z wiu; + 0) (1.1)
=1

where, ¢ is the activation function, w; are the inputs, w; are the synaptic weights, n is the
number of inputs of the neuron, 6 is the threshold or bias and y is the output.

1.2 Neural network architectures and system identification

Artificial neurons are the fundamental units for the operation of a neural network. In order to
reach its real potential, these neurons should be associated to others neurons, developing the
main existent neural networks architectures.

Depending on the structure in which the artificial neurons are arranged in a neural net-
work architecture, neural networks can be classified as feedforward, recurrent or cellular neural
networks [17, 23, 24, 25, 31, 34, 35].

In the feedforward or static neural networks (see Fig. 1.2), the connections between neurons
do not create feedback loops. In this kind of architectures, usually a quick response is produced.

LN [, B, P

Figure 1.2: Feedforward neural networks.

In the recurrent neural networks (RNN) (see Fig. 1.3), there are feedback loops between
neurons. In some recurrent neural networks, every input is presented in the time ¢, and the
response is produced after some iterations.

Chapter 1: System identification using neural networks: Background

u
N 1)V, -2

N

n

Figure 1.3: Recurrent neural networks.

Cellular neural networks (see Fig. 1.4) consist in the connection of many neurons specially
located, each cell is connected only to the neighboring cells, although, one cell affects to the
others indirectly, by the signal propagation during the dynamical behavior of the cellular neural
network.

N N N

N N N

Figure 1.4: Cellular neural networks.

Thanks to the following features neural networks are suitable for black-box system identifi-
cation [17, 23, 24, 25, 26, 27, 28]: approximation capability of nonlinear functions via activation
functions, ability to process many inputs and outputs and the synaptic weights are automatically
adjusted by a learning algorithm during the training.

For system identification and control, the architectures the most used are feedforward and
recurrent neural networks. In these type of configurations, the neurons are usually arranged in
layers. For example, Fig. 1.5 shows a three layers perceptron where the neurons are located in
layers sequentially connected. Each layer is numbered (0, 1, 2 or 3). The layer 0, commonly
known like input layer, feeds the layer 1 with the input signals, the layer 1 and the layer 2 are
called hidden layers, the output of each neuron in the layer 1 are the inputs of the neurons in
the layer 2. Finally, the outputs of the neurons of the layer 2 are the inputs of the neurons in
the layer 3 commonly known as output layer. The neurons in the hidden layer are called hidden
neurons, and the neurons in the input and output layers are called input and output neurons
respectively. In the sequel, in order to refer to the number of neurons in each layer, the following
notation is used ny-n9-- - --n;, where n; — 1 is the number of hidden layers, n; is the number of
neurons in the first hidden layer, no is the number of neurons in the second hidden layer and n;
is the number of neurons in the output layer.

As already mentioned, the number of layers plays an important role in neural networks
design. While the number of layers grow up, the approximation capabilities are increased, but
the model complexity and the computational cost increase as well. The number of neurons in
each layer has the same influence as the number of layers on the quality and the price of the
model. Therefore, these two aspects are considered in this work.

Chapter 1: System identification using neural networks: Background

[1]
O »Vn

Input layer Hidden layer Output layer

Figure 1.5: Three layers perceptron.

1.3 System identification using neural network: a general pro-
cedure

A general system identification procedure using neural networks is introduced in this section.
Two important steps in a general system identification method using neural networks are: the
neural network structure selection and the neural network training.

1.3.1 Neural networks structure selection

The structure selection is one of the most important step in the system identification procedure.
An important choice is the type of neural network architecture. As already mentioned, feed-
forward and recurrent neural networks are the types of architectures the most used for system
identification. Due to its advantages over the feedforward architectures, RNN are used in the
sequel for modeling dynamics systems.

Once the type of architecture is selected, important characteristics of a neural network
architecture are the number of layers, the number of neurons and the activation functions.
Usually these choices are based on a previous knowledge of the system. Since we are focused in
a black box approach, these choices depends on some criterion defined by the designer.

Intuitively, the number of layers and the number of neurons should be chosen in order to find
a good balance between the accuracy and the complexity of the obtained model. It was formally
confirmed that neural networks with at least one hidden layer, and whenever they are defined
with a sufficient number of neurons, are able to approximate a large class of systems within a
small error margin [72, 73]. Therefore, the most common practice is to manipulate a three layers
neural network [21, 74, 75]. Even though, in order to improve the accuracy of their models, some
authors use more than three layers [76] regardless the complexity of the model. However, when
the simplicity is preferred, two layers are acceptable. In the sequel, a method which provides
ready to use models, combining the simplicity of a two layer architecture and the accuracy of

4

Chapter 1: System identification using neural networks: Background

a three layers neural network is proposed. Nevertheless, different works have been achieved in
order to find the “optimal” number of neurons [3, 5, 21, 28, 29, 30, 33, 40, 44, 46, 50, 51, 52,
53, 54, 57, 60, 61, 62, 63]. The main constraint of these works, is the excessive requirement of
time to find the most convenient number of neurons. Moreover a rather subjective criterion is
always used to decide when the trade-off between the model accuracy and the model complexity
is appropriate and sufficient. Here we propose a method where the number of neurons chosen
does not affect the complexity of final models.

The activation function selection plays an important role in the approximation capabilities
and the complexity of a model. By different combinations of activations function in a neural
network architecture, several models can be derived [67, 77, 78, 79]. The combination of ac-
tivation functions, the most encountered in the literature is linear functions in the input and
output neurons and nonlinear functions in the hidden neurons [80, 81, 82, 83]. The nonlinear
activation functions are classically chosen as tanh(e) [84] because it is a saturation type and its
derivative can be expressed as a simple function of its output (1 — tanh?(e)) [17, 23, 24, 25]. As
it will be presented in the following section, this derivative is required for any gradient-based
optimization technique (see Appendix B).

Once the model structure is chosen, the next step is the adaptation of the synaptic weights
(parameters of the model). This is achieved during the training phase or model computation
phase.

1.3.2 Neural network training

The neural network training is realized in accordance to the procedure illustrated in Fig. 1.6.
The chosen neural network receives the pass inputs [u(k — 1), ..., u(k — np)] and the pass outputs
[y(k—1),...,y(k—ng)] of the real system and generates the actual estimated output (g(k)). This
output value is subtracted from the actual measured output (y(k)), to compute the prediction
error (e(k)) in the ky, iteration. The synaptic weights are adapted by a learning algorithm
depending on this prediction error.

The learning algorithm is an optimization algorithm adapting the synaptic weights of a
defined neural network architecture. The adaptation is conducted each iteration (k) in order
to minimize an objective function (MSE, LSAD, Huber’s function, etc). In effect, if the data
set used for the identification of a system is corrupted, robust functions such as the Huber’s
function is recommended regardless the computational cost required. If the data set is not
really contaminated, a quadratic criterion mays lead to a good accuracy, i.e. estimation with no
or minor bias.

More precisely, let us suppose a neuro-model parametrized by the synaptic weights w. The
special case of the quadratic criterion is given by (1.2).

e*(k,) (1.2)

DN | =

N
E N N _i
(’U),U Y)_NZ

k=1

where N is the total number of data used for the parameters estimation and the prediction error
e(k,w) is:

e(k,) = y(k) — g(k, w) (1.3)

Chapter 1: System identification using neural networks: Background

u(k) (k)
»Process N

y(k
Neural Network y(,)

A A Y A A A + y(k)

IO

e
ulk—n,) y(k—n,) .
Synaptic weigths

Learning Algorithm

ulk—n,) i ‘ ‘ ky(k—na)
u(k—2) y(k-2)
u(k—1) y(k-1)
elk)=y(k)=3(k)

Figure 1.6: Neural network training.

A general family of algorithms to adapt the synaptic weights (w) is given by (1.4).
_,0F
o

where R modifies the search direction, n is the step size known as leaning rate, g—g is the gradient
of the objective function and w(k) denotes the value of @ in the ky, iteration.

w(k +1) = (k) — n[R] (1.4)

Different algorithms (Steepest descent, Gauss-Newton, Levenberg-Marquardt, etc) can be
derived from (1.4) by conveniently choosing R (the search direction) (See Appendix B). The
simplest case where R = 1 yields one of the simplest algorithm used in neural network theory,
namely steepest descent algorithm (1.5):

)
~ o
where k increases (from 1 to N) each time a pair of data (from the set used for the training
phase “training dataset”) is processed. In order to provide more time to the learning algorithm
to compute the optimal values of the synaptic weights w, the neural network training is realized
in epochs 7. One epoch is elapsed (that is, v = v+ 1) each time k¥ = N. Once one epoch is
elapsed, the training data set is used again, that is k =1,2,---, V.

w(k + 1) = w(k)

(L.5)

The number of epochs v* required for the estimation of the synaptic weights is chosen on
the base of the mean square error (1.2) computed each epoch is elapsed.

For example, from Fig. 1.7, v = 40 is a good choice, because after 40 epochs the quadratic
error has not further significant reduction.

Chapter 1: System identification using neural networks: Background

1.6

1.4H b

1.2r 1

Error
[
T
.

0.81 b

0.4 i i i i
0 20 40 60 80 100

Epoch

Figure 1.7: Choice of number of epochs.

In (1.5), the parameter 7, commonly referred to as the learning rate or integration step size,
plays an important role in the parameters adaptation in particular the convergence speed of
the algorithm. It should be pointed out that for the discrete time steepest descent algorithm, n
should be bounded in a small range, to nevertheless ensure the stability of the algorithm. A small
1 means that the convergence to a solution is slow while a large n means a faster convergence
where oscillations may occur and stability may be lost.

In order to improve the learning algorithm, different solutions for the adaptation of n have
been implemented in this work. For example, a modification of the “search then convergence
algorithm” used in [23] is given by (1.6).

n(n) =no—- (1.6)
L+ %

where:

7o is the initial value of 7 proposed by the user.
ko = 10N
0— ~3 -
n=1,2,---,(N x) is the iteration increasing during all the training phase (all the epochs).
v=1,2,---,7* is a the number of epochs elapsed.
N is the number of data used for the neural network training.

~v* is a “optimal” number of epochs required for the adaptation of the model parameters.

Every time that one epoch has elapsed g = n(y) and v = v + 1.

Fig. 1.8 illustrates, the dynamic of 1 during the complete training phase (that is, 7* epochs
have elapsed).

Chapter 1: System identification using neural networks: Background

0.05

0.045 \

004 '\

0.035

Value of eta

0.03

~
~
~

|
|
|
|
|
|
|
|
|
|
|
|
|
~

~

0.025

I I I
I I I

I I I

I I I

I I I

I I 1

I I 1

I I 1

I I 1

I I I

I I I

I I I

I I |

I 1~ 1 I

I I T~
I I I I I
I I I

~l—

-
I I P~ N

|
I
|
I
|
I
)
\
[BN
|
I
|
I
|
I
|
I
|
I
\

, h— R . .
0 1000 2000 3000 4000 5000 6000 7000 8000 900b 10000
k=1, 2, ..., (10xN)

Figure 1.8: Learning coefficient during all the epochs (n(n)).

From (1.6) we can deduce that when n increases the value of the learning coefficient 7(k)
decreases (see Fig. 1.8). It is desirable because at the beginning of the training the synaptic
weights are supposed far of their optimal values and they should be adapted as fast as possible
(n = no). When a period of time is over (k — (N X 7)) the synaptic weights are supposed
near their optimal values. Then, the parameters should be adapted slowly (n — 0) in order to
improve the convergence.

Once all the elements required to understand the different procedures for nonlinear system
identification using neural networks have been discussed, let us now present an illustrative
example.

1.3.3 Illustrative example

The first step in system identification using neural networks is to choose and define the structure
of the model. In order to explain the development of the adaptation algorithms of the synaptic
weights, let us introduce a neural network architecture as an example.

Fig. 1.9 shows a two layers neural network with nn neurons in the first layer and one neuron
in the output layer. It is interesting to notice that the number of neurons in the first layer (nn
neurons used to process the regressors input-output vectors) is chosen by the user. This offers
to the user a possibility for choosing a balanced simplicity-accuracy structure.

The mathematical representation of such architecture is given by (1.7).

§(k) = w3(T) (1.7)
T= Z Zpp1(rp)

p=1
p = Z (wp,iu(k —1)) + Z(wp,iﬂ'y(k 7))

i=1 j=1

Chapter 1: System identification using neural networks: Background

Figure 1.9: Recurrent nn-1 neural network.

where:
U’(k - Z)a y(k _.7) ERl
Wp.q> Zp eR! are the synaptic weights.
u(k — 1) is the input delay 7 times.
y(k — j) is the input delay j times.

As already mentioned, different models could be generated by different combination of ac-
tivations functions. Let us start with the simplest of the models, that is, all the activation
functions linear ¢; (z) = ¢3(z) = z, then the model given by (1.7) becomes:

g(k) =T (1.8)
T= Z(Zprp)

p=1
rp =Y (wpsu(k — i) + Y (wpiry(k — 4))

=1 j=1

With linear activation functions in the first layer (o1 () = x) and the activation function in
the output layer nonlinear p3(x) = nonlinear, the model given by (1.7) becomes:

g(k) = @3(T) (1.9)
T= Z zp(7p)

p=1
p = Z (wp,iu(k — 1)) + Z(U’p,iﬂ'y(k 7))

i=1 j=1

Chapter 1: System identification using neural networks: Background

A different model can be contained by choosing the activation functions in the first layer
nolinear (1 (z) = nonlinear) and the activation function in the output layer linear ¢3(x) = x,
the model given by (1.7) becomes:

gk) =T (1.10)

nn
T = zpi(rp)
p=1
ng na

rp =Y (wpiu(k — i) + > (wpirjylk - j))

i=1 j=1

To be more demonstrative, let us choose the model given by (1.10). With the nonlinear
activation functions classically chosen as ¢ (z) = tanh(z) and nj, = 2 delays in the input layer,
ng = 1 delay in the output layer and nn = 2 neurons in the first layer, this model becomes:

glk) =T (1.11)

T = z tanh(r1) + 22 tanh(rs)
rp = wiu(k — 1) +wiu(k — 1) +wi 3y(k — 1) + wou(k — 1) + wopu(k — 1) + we3y(k — 1)

or
g(k) =T (1.12)
2
T= Z zp tanh(ry)
p=1
Ng+np
p = Z (wp,qJ(q))
g=1

where ¢ is the gy, element of the vector J = [u(k — 1) u(k—2) y(k—1)].

Notice that in the preceding model, by increasing the number of neurons nn or the number
of delays in the input ny or the output n, the number of parameters increase as well, so as the

model complexity.

Once the neuro-model is totally defined, the following step is the synaptic weights adapta-
tion during the training phase. Remember that in this step, an objective function has to be
minimized. For simplicity, in this example the objective function used is the MSE given by

(1.13).
1 L1
E(wP:lI?ZP) = N Z 562(kawp,tp Zp) (1.13)

where the prediction error in the ky, iteration is e(k) = y(k) — (k).

10

Chapter 1: System identification using neural networks: Background

The rules for the adaptation of the synaptic weights w,, and z,, based on the steepest
descent algorithm, which is the simplest of the gradient-based algorithms are:

0E

Wy q(k +1) =dp (k) —n Dy (1.14)
X X OFE
Zp(k+1) = Zp(k) — 07> (1.15)
P

where 7 is adapted by the algorithm (1.6) and the partial derivatives ag}f - and g—i are
computed according the chain rule as follows.

s

OE OFE Oe 0§ 0T 0ry

= Y 1.16
Qg 0€ g OT Ory Oy 4 (1.16)
OE OFE 0e 0y OT
ok _ OF de 0y oI 1.17
0z, 0¢ gy IT 0z (117)
The partial derivatives for the chosen model (1.12) are:
0E
=e(k
gz ~ k)
% _
9y
9y
71
or
T
g—rp = zpsech?(r,)
oryp
=J
Dy g (9)
or
a—zp = tanh(rp)
By substitution of the partial derivatives in (1.14) and (1.15) we obtain:
Up.q(k + 1) = iy 4 (k) + ne(k)zpsech?(r,)J (q) (1.18)
Zp(k + 1) = 2,(k) + ne(k) tanh(r,) (1.19)

It is interesting here to notice that the computational bulk of the model estimation depends
on the choice of the learning algorithm, the neural network architecture (number of neurons,
number of layers, delays in the input and delays in the output) and the criterion function.

We have presented and discussed the main issues for an efficient and complete neural network
identification methodology for complex and nonlinear systems. Now, we have to present the
particular neural networks design which allows us the reduction of the number of parameters
and the reduction in the computational cost. In this sense we shall contribute to investigate

the crux problem of the good compromise between complexity, quality and cost of the neural
network estimation.

11

Chapter 1: System identification using neural networks: Background

12

Chapter 2

A new identification oriented neural
network design

In this chapter, one of the proposed neural networks which allows us the main contributions of
this work is presented. This architecture, presented in the Section 2.1, is based on a three layers
recurrent neural network with a variable number of neurons in the first layer (2nn-2-1 recurrent
neural network). The particular configuration of such neural network, allow us to transform
(after the training phase) its structure into the simpler 2-1 architecture (see Section 2.2) pre-
serving the accuracy of the former 2nn-2-1 architecture. The computational cost required to
train the proposed neural network is reduced into the one required to train the 2-2-1 architecture
presented in Section 2.3. Let us now present the different structures neural networks an their
main goal.

2.1 Recurrent 2nn-2-1 neural network: accuracy

Fig. 2.1 shows a three layers neural network with 2 nn neurons in the input layer, two neurons
in the hidden layer and one neuron in the output layer. This architecture allows us to define
the desired level of the model accuracy.

It is interesting to notice that the number of neurons in the hidden layer is fixed and the
number of neurons in the input layer (nn neurons used to process the regressors input vector
and nn neurons used to process the regressors output vector) is chosen by the user. This special
configuration allows us to reduce the 2nn-2-1 neural network into the 2-1 architecture shown in
Fig. 2.2 keeping the same approximation accuracy of the original non reduced model. Even if this
structure is somehow particular, by different combination of activation functions, the proposed
architecture permits us to generate easily the classical models presented in ([6]). Therefore, at a
user point of view, this architecture remains sufficiently general to cover almost all its practical
needs. The mathematical representation of the proposed architecture is given by (2.1).

g(k) = Xp3(T) (2.1)
T = Zb(pg(?”(,) =+ Za(pg(?”a) + Zh

nn
Tq = Z Vai(,Ol(JgWai)
=1

13

Chapter 2: A new identification oriented neural network design

where:

u(k—1) Wb
1,1
w
b
u(k—2) 12 e V
bl
u(k—n,) Wb
1
ulk—1) W bZ’I V
r
b b b
P T LON
ulk—n,)
by, V
b
° . Zb
wnelly :
b
u(k—2) .2 e
k=) r_Xx
by &
(k)
Za
r
a
B i
V(k—n,) W
Do 4
) []
. ann
ylk=1) a
WannZ
-2 S 1
y(k—n,) Wa

Figure 2.1: Recurrent 2nn-2-1 neural network.

Jy=Tlulk—1) u(k—2) u(k —np)] € RYXM
Jy=[gk—=1) 9k—-2) ... 9(k—mny)] e RY"e
Wi, = Wh, Why oo W, 10 € R™
Wao, =Wary, Waiy o W,] € R™X!

: 1
Xa Zba Zaa ‘/bia Vaia Zh eR
X, Zy, Zg, Vb” Vais Wb“ W, and Z}, are synaptic weights.
where ¢ = 1,2, ,nn and nn is the number of neurons.

14

Chapter 2: A new identification oriented neural network design

Different models can be derived from this architecture by different combinations of activation
functions as it was presented in the illustrative example in Chapter 1. Let us denote four different
families of models developed in this thesis.

1. FF1H model:

By selecting ¢3(z) = p2(z) = z in (2.1) we obtain:

g(k) = XT (2.2)
T = Zyry + Zgre + Zp,

nn
Ty = Z Vi, 01 (JuWh,)
=1

nn
Ta = Z VaiSDl(JQWai)
i=1
Moreover, from this model we can derive models where the dependence on the past values

of the input is linear and dependence on the past values of the output is nonlinear. These kind
of models is particularly suited for nonlinear control problem [6, 65, 29, 66].

2. FF2H model:

By selecting ¢3(2) = p1(z) = z in (2.1) we obtain:

g(k) = XT (2.3)
T = Zb(pQ(Tb) + Za‘P2(Ta) + Zy,

nn
Ty = Z Vbi(']qui)
=1

Ta = Z Vai (JgWa;)
i=1

In the same way as for the model (2.2), from (2.3) we can derive models where the dependence

on the past values of the input is linear and dependence on the past values of the output is
nounlinear.

3. ARXH model:

By selecting ¢1(2) = p2(z) = p3(z) = z in (2.1) we obtain:

g(k) = XT (2.4)
T = Zyry + Zogre + Zp,

nn
Ty = Z ‘/bz (JUWbi)
=1

Ta = Z Vai (JgWa;)

1=1

The interest on these kind of models is that is a classical linear structure.

15

Chapter 2: A new identification oriented neural network design

4. NLARXH model:
By selecting ¢1(z) = p2(z) = z in (2.1) we obtain:

(k) = Xp3(T) (2:5)
T = Z(,Tb + ZaTa + Zh

nn
=y Vi, (JuWs,)
=1

ra =3 Va,(JyWa,)
i=1
The reader shall notice that, these four models found in the literature [6, 85, 65, 39, 29, 66],
represent a fairly large class of systems [85].

2.2 Recurrent 2-1 neural network: simplicity

Now we shall present the final architecture that the reduction procedure provides. Fig. 2.2
shows a two layers neural network with 2 neurons in the input layer (one neuron used to process
the regressors input vector and one neuron used to process the regressors output vector). In
fact, this architecture defines the desired complexity of the final model that the proposed system
identification method must provide.

Figure 2.2: Recurrent 2-1 neural network.

The mathematical representation of such neural network architecture is given by (2.6).

§(k) = ¢3(T) (2.6)
T = Vp1(JuWg) + Vap1 (JyWa) + H
where:
Wp = [VVBI,1 VVBI,2 WBl,nb]T e Rmx!
Wy = [VVAI,1 VVAI,2 VVALW]—r e RMaxl

Vi, V4 and H eR!

It is interesting to notice that this simple 2-1 architecture defining the complexity of the final
model, keeps the same accuracy than the 2nn-2-1 complex neural network.

16

Chapter 2: A new identification oriented neural network design

2.3 Recurrent 2-2-1 neural network: computational cost

Finally, let us present the architecture that helps us to define the desired computational cost
our approach has to satisfy, generating ready to use models.

Figure 2.3: Recurrent 2-2-1 neural network.

Fig. 2.3 shows a three layers recurrent neural network with two neurons in the first layer, 2
neurons in the second layer and one neuron in the output layer. The mathematical representation
of such neural network is given by (2.7).

g(k) = Xs3(T) (2.7)
T = Zppa(rp) + Zap2(ra) + Zn

rp = nn X Vy, o1 (JuWh,)

rq = nn X Vo, p1(JgWa,)

where:

Wi = [Woy Wiy o Wi,]T € R
Weo, =[Way Way .. Wa]T € RMax!
Xa Zba Zaa ‘/bla Vala Zh ERl

It is interesting to notice that the 2nn-2-1 model, defining the accuracy of the final model
(Eq. 2.1), contain more parameters than the 2-2-1 architecture defining the computational cost
(Eq. 2.7). This ensure the interest on training the simplest model which required a lower com-
putational cost. Moreover, thanks to the design conditions presented in the following chapter,
both models, (2.7) and (2.1) are equivalents.

Above, we have define the main performances in terms of accuracy, complexity and compu-
tational cost which the proposed nonlinear system identification methodology aims to satisfy.
More precisely, this results constitute the main contribution of this work: generate a model

17

Chapter 2: A new identification oriented neural network design

combining the simplicity of the neural network of Fig. 2.2 (Eq. (2.6)), the approximation capa-
bilities of the architecture shown in Fig. 2.1 (Eq. (2.1)) and the computational cost of the 2-2-1
architecture shown in Fig. 2.3. This is achieved by two reduction approaches, one reducing the
number of parameters and the second reducing the computational cost of the 2nn-2-1 architec-
ture. Both reduction approaches are achieved under two reasonable assumptions as we will see
in the following chapter.

18

Chapter 3

Formal issues: The reduction
procedures

The main contributions of this thesis, already published in [68, 69, 70], are presented in this
chapter. The proposed model complexity reduction approach allows us to reduce the number of
parameters of a 2nn-2-1 architecture into the number of parameters of a 2-1 neural network. A
computational cost reduction approach, allows us to reduce the computational bulk required to
train a 2nn-2-1 architecture into the one required to train a 2-2-1 neural network. In fact, we
avoid the cost corresponding to the training of the complex architecture without loss of accuracy.

3.1 Validity assumptions

These two reduction procedures provide models of relevant quality and low price, under the
following two simple assumptions whose purpose is to achieve two design conditions. The first
one is a neural architecture design condition and the second one is a training design condition.
The reader shall notice that Assumption 2, represents the originality of this work.

Assumption 1: At least one layer should have all its activation functions chosen as linear, that
is, p1(T) =T or po(T) =T or p3(T) =T in Fig. 2.1.

The reader shall notice that Assumption 1 is not very restrictive, since it is a classical way
to choose the activation functions in neural networks.

Assumption 2: The designer should select the initial condition of the synaptic weights equals
group by group, i. e., V4, (0) =V}, (0), V4, (0) = V4, (0), Wy, (0) = Wy, (0) and Wy, (0) = W, (0)
with 7 =2,3,---,nn.

Even if this is not a classical way to choose the initial conditions of the synaptic weights,
full experiments, detailed in Chapter 5 and presented in [68], will definitely convince the user of
their validity.

3.2 Model complexity reduction approach

Theorem 1: Consider the neural network whose architecture 2nn-2-1 is expressed in (2.1) and
depicted in Fig. 2.1, if the assumption 1 and the assumption 2 are fulfilled, then such neural
network can be reduced into a 2-1 equivalent architecture (see Fig. 2.2).

Proof. Let us consider the architecture of Fig. 2.1 corresponding to a three layers neural
network, with the input-output mapping given by (2.1). For better understanding we decide to

19

Chapter 3: Formal issues: The reduction procedures

divide the model transformation in the two following steps.

Step 1.- Neural network training under the proposed assumptions.

In order to satisfy the assumption 1 in the theorem, let us select ¢3(z) = p2(z) = z and
©1(z) = tanh(z) in (2.1). It comes:

g(k) = X(T) (3.1)
T = Zy(ro) + Za(ra) + Zn
ry = Z Vi, tanh(J, Wy,)

=1

nn
ro =Y Va, tanh(J;Wy,)
i=1
According to assumption 2, Vy, (0) = V3, (0), V4, (0) = V4, (0), Wy, (0) = W, (0) and Wy, (0) =
Wq,; (0) with j =2,3,---,nn.

The adaptation laws of the synaptic weights, derived according to the steepest descent algo-
rithm (see Appendix B) are:

X(k+1)=X(k)+ne(k)T (3.2)
Zn(k +1) = Z,(k) + ne(k) X (3.3)
Zy(k + 1) = Zy(k) + ne(k) Xy (3.4)
Zo(k +1) = Z,(k) + ne(k)Xrq (3.5)
Vo, (k 4 1) = Vi, (k) + ne(k) X Zy tanh (J, Wy,) (3.6)
Vi, (k +1) = Vo, (k) + ne(k) X Z, tanh(Jy Wy,) (3.7)
Wy, (k + 1) = Wy, (k) + ne(k) X Zy Vi, sech? (Ju Wy,) Ju (3.8)
W, (k + 1) = Wy, (k) + ne(k) X Z,Va, sech® (J;Wa,) J; (3.9)

where 1 =1,2,---,nn.

Once the neural network model given by (3.1) is trained under these 2 assumptions, we
obtain:

(k) = X*T (3.10)
T =2Zyro+ Z,re + Zp

nn
Ty = Z Vy: tanh(J, W)

=1

nn
ro =Y Vi tanh(J;Wy)
i=1
Since the initial condition of the synaptic weights are chosen equals group by group (see
Assumption 2) and each group (Va,, Vi, Wi, and W,,) is trained by the same adaptation
rule (see (3.6), (3.7), (3.8) and (3.9) respectively), the final values of the synaptic weights are:
Vi = V};;,, Vo, =Va,, Wy, = Wb*; and W5, = Wg, with j =2,3,--- nn.

20

Chapter 3: Formal issues: The reduction procedures

Step 2.- Model transformation.

Let us remember that the synaptic weights are computed during the neural network training.
We can now develop the model transformation.

Layers reduction. In (3.10), it is indeed possible to make the following algebraic operations:

H* = X*x 7}
Vi, = X" x Z7 x V'
Vi =X"xZ;x V]

where V3 = ng and Vi = V;{j (with j =2,3,---,nn) due to Assumption 2 (see Step 1).

Then, the three layers model (Fig. 2.1, Eq. (3.10)) is redefined as a two layers neural network
(Fig. 3.1, Eq. (3.11)). It is important to remark that the model is always the same (we only
change its notations in order to reduce the number of parameters), thus the neural network
keeps its approximation accuracy.

Wb”
wlk=2) 2)
ulk=n,) wa
ulk=1) b VB
1
W 1
b
ulk=2) 22 (=)
ulk—n,) sz,m . VB:
ulk— .
(=) b .1 L]
anil

S
=
T

Figure 3.1: Recurrent 2nn-1 neural network.

21

Chapter 3: Formal issues: The reduction procedures

gk) =T (3.11)
T=ry+re+H"

ry =YV, tanh(J, W)
=1
nn

ro =Y _ Vi tanh(J; W)
i=1

Neurons reduction. A supplementary transformation is achieved in order to change the 2nn-1
neural network, containing 2 X nn neurons in the first layer (Fig. 3.1), into a model of 2 neurons
in the first layer (Fig. 2.2).

From Assumption 2 and after “Layers reduction” we have Vg = VB?‘J_, Vi = ij, Wy, = Wb*j
and W3, =Wy, (with j =2,3,---,nn) in (3.11).

The following algebraic operations can be done:

> Vi, tanh(J, Wy) = Vi tanh(J,W5)
=1

nn

> Vi, tanh(J; W) = Vi tanh(J,, W)
i=1

where:

Vi =nnx Vg
Vi=nnxVj
WE’ = Wl;kl
Wi =Wg

The resulting model after the “neurons reduction” has the following mathematical form:
y(k) = Vg tanh(J,Wg) + Vi tanh(J;W}) + H* (3.12)

Finally, this shows that, by applying the step 1 and the step 2, the complex 2nn-2-1 model
(Fig. 2.1) is reduced to a 2-1 model (Fig. 2.2) with the same accuracy as the complex model.
This completes the proof. g

Remark 3: It is important to insist in the fact that (3.12) is entirely equivalent to the complex
model (3.10). Consequently, these two equivalent models have the same accuracy. And no
computational cost is carried out during the step 2, that represents the main interest of our
solution.

Remark 4: Notice that the 2nn-2-1 model (3.1) has (nn x (ny)) + (nn % (n,)) synaptic weights
in the first layer, the number of synaptic weights in the second layer is (2 x nn) and the third

22

Chapter 3: Formal issues: The reduction procedures

layer has only one neuron with 4 synaptic weights. As a result, the neural network has (((nn x
(np)) + (nn x (ng))) + (2 x (nn)) + (4)) synaptic weights. However the 2-1 reduced neuro
model (3.12) which yields from theorem 1, has (nj, + n,) synaptic weights in the first layer
and 3 synaptic weights in the second layer. Consequently, the reduced 2-1 neural network has
((ng + np) + 3) synaptic weights. In order to illustrate the interest of the application of this
theorem, let us consider the experiment 1 that will be developed in Section 5.1.2 where we
train the 2nn-2-1 model (3.1) where nn = 40, n, = 4 and n, = 7. This complex model has
((40 x (7)) + (40 x (4)) +2 x (40) + 4 = 524) synaptic weights. Theorem 1 yields a reduced 2-1
neuro model (3.12) with just ((4 + 7) + 3 = 14) synaptic weights.

Even if the final model achieved by the proposed model reduction approach has a reduced
number of parameters, the computational complexity depends on the training time required to
adapt the complex model. More precisely, (((nn x ny) + (nn X ng)) + (2 x nn) + (4)) synaptic
weights should be adapted each iteration. Then, if NV iterations are required to adapt the synaptic
weights, the computational complexity to generate the model is given by (O(2nn —2 — 1) =
(((nn x np) + (nn X ng)) + (2 x nn) + (4)) x N). In order to improve the computational cost,
the following theorem is proposed.

3.3 Computational cost reduction approach

Theorem 2: Counsider the neural network whose architecture 2nn-2-1 is expressed in (2.1).

g(k) = X3(T)
T = Zypa(rp) + Zapa(ra) + Zp
Ty = Z W?i(:ol(‘]uwbi)

=1

nn
ra = Va1 (JyWa,)
i=1
If the assumption 1 and the assumption 2 are fulfilled, then the computational cost required
to adapt the parameters of such neural network (O(2nn —2 —1) = (((nn X np) + (nn X ng)) +
(2 x nn) 4+ (4)) x N) can be reduced into the one required to adapt the parameters of a 2-2-1
equivalent architecture (O(2 —2 —1) = (ny +ng +4) x N).

Proof. Let us consider the 2nn-2-1 neural network with the input-output mapping given by
(2.1).

Remember that the synaptic weights (V;%, Vo', Wy and Wy) with i = 1,2,---,nn of this
architecture are adapted by (3.6), (3.7), (3.8) and (3.9) respectively, that is, for each synaptic
weight, the computational complexity is given by O(Wj,) = N x (nn xny), O(W,,) = N X (nn X
na)s O(Vi,) = N x (nn), O(Va,) = N x (nn).

As it has been demonstrated in the proof of the theorem 1, once the neural network model
given by (2.1) is trained under Assumption 1 and Assumption 2, we obtain (3.10) where the
final values of the synaptic weights are: V| = V};;, Vo, =Va,, Wy, = Wb*j and W, = Wy with
J=2,3,--,nn. Since, V| = Vb’;, Ve = Va*;, Wy, = Wb*j and Wy, = W;j. Then we can change
the model (3.10) into the following model:

23

Chapter 3: Formal issues: The reduction procedures

g(k) = X*T (3.13)
T = Zyry+ Zyre + Zj,

ry = nn X Vy tanh(J, Wy))

rq = nn x V; tanh(J; W)

with the synaptic weights (V3,, Va,, W3, and W,) adapted as follows:

Vo, (k + 1) =V, (k) + ne(k) X Zy tanh(J, Wy,) (3.14)

Vo, (b 4+ 1) = Vo, (k) + ne(k) X Z, tanh(J;Wy,) (3.15)

Wiy (k + 1) = Wi, (k) + ne(k) X Zy Vi, sech? (T, Wa,) Ju (3.16)

Wa, (k + 1) = Way (k) + ne(k) X Zy Vo, sech® (JyWa,) Jy (3.17)

Let us notice that the model 2-2-1 given by (3.13) with the synaptic weights X*, Z}, Z,

Zy, Vi, Vi, Wy and Wy adapted by (3.2), (3.3), (3.4), (3.5), (3.14), (3.15), (3.16) and (3.17)

respectively, is totally equivalent to the 2nn-2-1 model given by (3.10) with the synaptic weights

(X™, Zy, Z3, Zy, Vi, Vg, Wy and W) adapted by (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8)

and (3.9), respectively. The computational cost to adapt the synaptic weights X*, Z, Z», Z; is

O(X) =N, O0(Z,) =N, O(Z,) = N and O(Z,) = N for both architectures. The only difference

is that, to adapt the synaptic weights V3, V,,, W}, and W,, we only require O(Wy,) = N X ny,

O(Wy,) = Nxng, O(Vy,) =N, O(Vg,) = N computations instead of the O(Wp,) = N x (nnxny),

O(W,,) = N x (nn x ng), O(Vy,) = N x nn, O(Vy,) = N x nn computations required to adapt
the synaptic weights V;,., Vg,, Wp, and W,,.

Then, the computational cost required to train the 2nn-2-1 model (O(2nn —2—1) = (((nn x
np) + (nn x ng)) + (2 x nn) + (4)) x N) is reduced to (O(2 -2 —1) = (ny + ng +4) x N). This
completes the proof. g

The reader shall notice that O(2nn —2 —1) and O(2 — 2 — 1) are a measured of the number
of parameters times the number data required for its estimation (n, x N).

In application, a comparison in terms of the time required to compute all the parameters
of a model estimated by both, a classical way and the proposed approach (Theorem 2) is done
in Chapter 5 (see Section 5.1.2, Table 5.1), where the classical training takes 12.78min and
Theorem 2 leads 2.85min, it shows, the interest of the proposed approach.

To conclude, following the proof of the theorems, we have a method to generate mathematic
models with the simplicity of the 2-1 architecture presented in Fig. 2.2, the accuracy of the
2nn-2-1 neural network depicted in Fig. 2.1 and the computational complexity of the 2-2-1
neural network shown in Fig. 2.3, this methodology in presented in the following chapter.

24

Chapter 4

A new efficient system identification
methodology

In this chapter Theorem 1 and Theorem 2 previously established are used to propose an efficient
system identification method. Since the proposed procedure follows the same steps as the proof
of the theorems, this approach yields to accurate mathematical models with a reduced number
of parameters and a reduced computational cost: the so-called quality/cost balance. In order
to provide to the reader different examples, this original procedure is applied to some of the
proposed neural network architectures in Chapter 2. Moreover, we shall take the opportunity
to apply this new methodology to a neural network corresponding to the sigmoid estimator of
the toolbox for nonlinear system identification in Matlab.

4.1 The proposed system identification procedure

Let us first introduce the proposed methodology which naturally resume the fundamental steps
classically defined by Fig. 4.1, where we partially focus on the points referred to as “Choose
model set” and “Model computation”.

Prior
knowledge

Experiment
design

Choose

model set
I

Choose
criterion
of FIT

A r

Model computation F

Not ok: Revise

Validate
model

Ok: Use it

Figure 4.1: System identification procedure.

25

Chapter 4: A new efficient system identification methodology

e Choice model set: As mentioned in the general introduction, a set of candidate models is
defined by specifying within which collection of models we are going to look for a suitable
candidate. In order to achieve accurate models, with a reduced number of parameters
and at a low computational cost (the so-called quality/cost balance), the neural network
architecture (structure of the model set) should be chosen according to Assumption 1, i.e.,
to choose at least all the activation functions of one layer as linear, that is, ¢; (7)) =T or
w2(T) =T or ¢3(T") =T in the neural network structure presented in Chapter 2.

e Improved model computation: As already presented in the general introduction, once
the set of candidate models has been established, the search for the best suitable model
within the set becomes a problem of determining, or estimating the model parameters
(synaptic weights) according to a given criterion.

The reader shall notice that, we are proposing an improved procedure based on the demon-
stration of the theorems presented in Chapter 3:

Step 1.- Neural network training under particular assumptions

Once the neural network structure is established according to Assumption 1, the
designer should satisfy Assumption 2, that is, to select the initial conditions of the
synaptic weights equals group by group, i. e., V;,(0) = V;,(0), V4, (0) = V4, (0),
Wi, (0) = Wy, (0) and W, (0) = W, (0) with j = 2,3,---,nn.

Then, the neural network must be trained following the proof of Theorem 2, that is,
to apply the proposed “computational cost reduction approach” presented in Section
3.3.

Step 2.- Model transformation

Once the 2nn-2-1 neural network is trained under the specified assumptions, its repre-
sentation is transformed into the 2-1 architecture as presented in the proof of Theorem
1, that is, to apply the proposed “model complexity reduction approach” presented
in Section 3.2.

Since the model transformation is done by algebraic operations (change in notation)
and after the training phase (see Section 1.3.2), no computational cost and no loss of
accuracy are carried out during Step 2.

It is interesting to notice that, by following these improved system identification procedure,
i.e. choice of model structure according to Assumption 1 and model estimation by following
the step 1 and the step 2 presented above, we derive accurate models with a reduced number
of parameters and at a low computational cost. In fact, we are improving the classical
model computation by applying the theorems proposed in Chapter 3.

26

Chapter 4: A new efficient system identification methodology

Once the two main steps of the proposed system identification procedure are established,
let us now present three examples of the application of the proposed method to different neural
network architectures. These architectures will be used for the identification of different systems
in Chapter 5. Let us now see that concretely it works.

4.2 Example 1: Recurrent 2nn-2-1 without thresholds

Let us take as a first example the recurrent 2nn-2-1 neural network of Fig. 4.2, the reader shall
notice that this architecture has the same structure of the neural network shown in Fig. 2.1,
but this architecture has not thresholds in any of its layers.

ulk=1) Wb
W 1,1
b
ulk—2) =) %
bl
ulk=n,) Wbl,n,
ulk—1) Wb
2,1
b22 b2 rb
(i) ® ()
u(k—n,) sz'n °
°
. VA
b
ul(k—1) Wb,m | bem
w
b
u(k*Z) nn.2 9
T X
u(k—n,) Wb"n ” e A (k
s oW
W 1,1
s e NS], z
al a
$(k—n,) W"Ln.,
Slk-1) WW%1 v .
a a a
iz @2) 4>
$lk=n,) W"z,ﬂ .
°
°
$lie=1) Wann.l Va,,,,
(k-2) Wann,Z
s ®
Plk—n,) Wa

Figure 4.2: Recurrent 2nn-2-1 neural network.

27

Chapter 4: A new efficient system identification methodology

The mathematical representation of the such 2nn-2-1 neural network is given by (4.1).

g(k) = X3(T) (4.1)
T = Zypa(rs) + Zap2(ra)

nn
Ty = Z Vi, 01 (JuWh,)

=1
nn
Ta = Z Vai o1 (J3Wa,)
=1
where:
Jy=[ulk—1) wu(k—2) w(k —ny)] € RU™
Jp=[9(k—1) g(k—2) .. §(k—ng)] e RV™
Wbi = [Wbi,l I/Vbl,2 Wbi,nb]T e Rmwx1
W, = [Wai,l I/Vai,2 Wai,na]T € RMax1

X7 Zb7 Za7 V;)“VaiERl
X, Zy, Zay Vi, Vays Wy, and W, are the synaptic weights.
with 2 =1,2,---,nn and nn is the number of neurons.

Let us follow the proposed system identification procedure:

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1. Different models can be
derived in order to satisfy this assumption. Let us name the following model families.

Model FF1: By selecting p3(z) = p2(2) = z and @i (z) = nonlinear in (4.1) we obtain:

§(k) = XT (4.2)
T = Zyry + Zgrg

nn
Ty = Z Vbi‘pl(‘]uwbi)
=1

Ta = Z Vai‘Pl(JQWai)

=1

Model FF2: By selecting p3(z) = ¢1(2) = z and py(z) = nonlinear in (4.1) we obtain:

j(k) = XT (4.3)
T = Zb(pg(Tb) + Za‘PQ(Ta)
Ty = Z V;};(Jquz)
=1
nn
Tq = ZVai(JQWai)
=1

28

Chapter 4: A new efficient system identification methodology

Model ARX: By selecting ¢3(z) = p2(z) = p1(2) = z in (4.1) we obtain:

g(k) = XT (4.4)
= Zg(rb) + Za(ra)
nn
ry = Vo (JuW,)
1=1
ro =3 Va,(JyWa,)
=1

Model NLARX: By selecting p2(z) = ¢1(2) = 2z and @3(z) = nonlinear in (4.1) we
obtain:

(k) = X3(T) (4.5)
= Zg(rb) + Za(ra)
= Vo (JuWs,)

=1

nn
Ta = Z Vai (JgWa;)

1=1

In the sequel, without loss of generality we choose to develop the computation step only
for the model FF1 given by (4.2). The application of Theorem 1 and Theorem 2 to the
rest of the models is presented in Appendix G.

e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows V;, (0) = V4, (0), Vg, (0) = V4, (0), W;, (0) = W, (0)
and Wy, (0) = Wy, (0) with j =2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (4.6):

g(k) = XT (4.6)
T =Zyry + Zgrg

rp = nn X Vi, o1 (JuWy,)

rq = nn X Vo, 01(JgWa,)

29

Chapter 4: A new efficient system identification methodology

with the synaptic weights computed as follows:

X(k+1)=X(k)+ne(k)T

Zy(k + 1) = Zy(k) +ne(k) Xy

Zo(k + 1) = Zo(k) + ne(k) X,

Vi, (k+1) = l(k) + ne(k) X Zy tanh(J, Wy,

Vau (k + 1) = Vy, (k) + ne(k) X Z, tanh(J; W,,)

Wy, (k + 1) = Wy, (k) + ne(k) X ZyVy, sech®(J W,) Ju
W, (k + 1) = Wa, (k) + ne(k) X Z,Vy, sech® (J; W,) J;

Once the neural network model given by (4.2) is trained under these two assumptions,

we obtain:
g(k) = X*T (4.7)
T =2Zyry+ Z;rq
=Y Vi (JuWy)
i=1

Z ce1 (W)

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptlc weights are: V' = V;) Vo, = Va*j, Wy = Wb*j and W, = W;j
with 7 =2,3,---,nn.

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy = Wb*;,
Vi = V};;_, Wi, = Wb*h]_, wg W;j, Ve, = Va*j and W, = W(;‘hj with 7 =

a1
2,3,---,nn. Then, in (4.7) it is indeed possible to make the following algebraic
operations:

Vg, = X" x Zy x V!
Vi =X"xZ; xV;

where Vi = V];‘,j, Vi = VA*j (with j =2,3,---,nn) due to Assumption 2 (Step 1).

Then, the 2nn-2-1 neuro-model given by (4.7) becomes:

glk) =T (4.8)
T=ry+r,
r= > Ve (JuWs)
i=1
nn
ra =Y Vie(JyWe)
=1

30

Chapter 4: A new efficient system identification methodology

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (4.8) into a 2-1 representation by the following algebraic operations:

nn

N Vo1 (W5 = Vie1 (L)
=1

nn
> Vi1 (Wi = Vie(Jy, W3)
=1

where:

ngnnng‘,i
* *
VA—nnXVAi
* *
WB_Wbl
* *
WA_Wal

The resulting model after the model transformation has the following mathematical
form:

§(k) = V1 (JuWp) + Vaer (3 W3) (4.9)

In this example, both the model complexity reduction approach and the compu-
tational cost reduction approach were applied to one of the four possible models,
although, since the four models FF1, FF2, ARX and NARX (see (4.2), (4.3), (4.4)
and (4.5) respectively) satisfy Assumption 1 and can be trained as proposed in The-
orem 2 under Assumption 2, we can apply the proposed model reduction approach
(see Appendix G), in order to generate the following ready-to-use models:

FF1 after model reduction:
§(k) = Vo1 (JuWp) + Vie (J;W3a) (4.10)
FF2 after model reduction:
§(k) = Ve (JuWp) + Vipe(J;Wai) (4.11)
ARX after model reduction:
g(k) = JWg + J;Wi (4.12)
NLARX after model reduction:

g(k) = X p3(JWp + J3W}) (4.13)

It is interesting to notice that, the reduced models keep the same accuracy as their original
non reduced models, by this way, we yield balanced accuracy/complexity/cost models.

31

Chapter 4: A new efficient system identification methodology

4.3 Example 2: Recurrent 2nn-2-1 with thresholds in all the
layers

It seem necessary to proof that our approach also work when using model structures with
thresholds. Therefore, let us take as an example the 2nn-2-1 recurrent neural network of Fig.
4.3, notice that this architecture has the same structure of the neural networks shown in Fig.
2.1 and Fig. 4.2, but this architecture have thresholds in all its layers.

ulk=1)
u(k—2)
ulk—n,)
ulk=1)
u(k—2)

u(k—n,)

u(k—1)

Za
r VA
a h
=
y(k—n,) W
°
1 Tam, I/Vah2 ° Va,m
°
Plk=1) a,, 1
Wa
= 1, 2 9
V
(k=) ah
lk—n, Wa
1 — W, 1

Figure 4.3: Recurrent 2nn-2-1 neural network.

32

Chapter 4: A new efficient system identification methodology

The mathematical representation of the proposed recurrent architecture is given by (4.14).

§(k) = X3(T) (4.14)
= Zpp2(r) + Zaw2(ra) + Z

nn
ry = Vor + > Vo1 (JuW, + Wip,)

i=1
nn
ra =Van + > Varor(JgWa, + Wan,)
i=1
where:
Ju=[ulk—1) u(k—2) .. ulk—mny)] e R
Jy=gk—-1) G(k—-2) .. 9(k—n,)] € RN
Wy, = [We,y We, - Wbi,nb]T e RmMx!
Wa, = Way Way o Wa,, 1T € RMWX!
Xa Zba Zaa ‘/bia Vaia thia Wahia ‘/bha Vaha Zh eRl

X, Zy, Zay Vs Vay, Wo, Ways Woni, Wanys Vin, Van and Zj, are synaptic weights.

with ¢ =1,2,---,nn and nn is the number of neurons.
Let us follow the proposed system identification procedure:

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1. Different models can be
derived in order to satisfy this assumption. Let us name the following model families.

FF1HH model: By selecting ¢3(z) = p2(z) = z in (4.14) we obtain:

g(k) = XT (4.15)
= Zyry + ZagTo + Zp,

nn

= Von + Y Vo, 01(JuWo, + Won,)
i=1

ra =Van + > Va1 (JgWa, + Wan,)
i=1

~—

FF2HH model: By selecting ¢3(z) = ¢1(2) = z in (4.14) we obtain:

i(k) = XT (4.16)
T = Zypa(re) + Zap2(ra) + Zn,
ry=Von + > Vo, (JuWs, + Win,)

i=1

nn
ra=Van+ Y Va; (J3Wa; + Wan,)
i=1

33

Chapter 4: A new efficient system identification methodology

ARXHH model: By selecting ¢1(2) = p2(z) = ¢3(2) = z in (4.14) we obtain:

g(k) = XT (4.17)
T = ZbTb + ZaTa + Zh

~—

= Von + Y Vo, (JuWo, + Wap,)
i=1

nn
ro=Van+ 3 Va,(JgWa, + Wan,)

=1

NLARXHH model: By selecting ¢1(z) = p2(z) = z in (4.14) we obtain:

(k) = X3(T) (4.18)
T = Zyry + Zgre + Zp,

nn

ry = Von + > Vo (Ju W, + Won,)
i=1
nn

ra =Van + Y Vi (J3Wa, + Wan,)
i=1

In the sequel, without loss of generality we choose to develop the computation step only
for the model FFHHI given by (4.15). The application of Theorem 1 and Theorem 2 to
the rest of the models is presented in Appendix G.

e Model computation: Let us follow the improved procedure:
Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group, for this architecture that is: W, (0) = W, (0), Wy, (0) =
Waj (0)7 Vi, (0) - W?j (0)7 Va, (0) - Vaj (0)7 Whh, (0) - thj (0) and Wan, (0) - Wahj (0)
with 7 =2,3,---,nn.

Then, we have to train the proposed neuro-model by the computational cost reduction
approach as presented in Theorem 2, that is, to train the equivalent model given by
(4.19).

(k) = XT (4.19)
T = Zyry + Zgre + Zp

7y = Vo +nn x V01 (Ju W, + Wep,)

rqa = Van +nn x Vg 01 (JygWa, + Wan,)

with the synaptic weights adapted as follows:

34

Chapter 4: A new efficient system identification methodology

X(k+1)=X(k)+ne(k)T
Zn(k +1) = Zp(k) + ne(k) X
Zp(k + 1) = Zy(k) + ne(k) Xy

Zo(k +1) = Zo(k) + ne(k) Xrq

Von(k + 1) = Vin (k) + ne(k) X Z,
Van(k + 1) = Van(k) + ne(k) X Z,
Vi, (k + 1) =V, (k) + ne(k) X Zy tanh(J, Wy, + Wyp,)
Vo, (k +1) = Vo, (k) + ne(k) X Z, tanh(JQWal + Wan,)
Wi, (k + 1) = W, (k) + ne(k) X ZyVy, sech? (T, Wy, + Win,)
Wan, (b + 1) = Wap, (k) + ne(k) X Zo Va, sech*(JgWa, + Wan,)

Wi, (k + 1) = Wy, (k) + ne(k) X Z, Vi, sech?® (J, Wy, + Win,) Ju
W, (k + 1) = Wy, (k) + ne(k) X Zy Va, sech? (JyWay + Wany) J;

Once the training process is completed, we have the trained model given by:
g(k) = X*T (4.20)
T=2Ziro+ Z)rq + Z),

nn

ry = Vi + > Vo1 (JuWy, + Wi,
=1
nn

To = Vop + Z Va1 (JgWa, + Wap,)
=1

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy = Wb*;,

Vi = V};;,, Wy, = Wb*hj, Wg = W, Vg, = Vg, and Wy, = ;hj with j =
2,3,--+-,nn. Then, in (4.20) it is indeed possible to make the following algebraic
operations:

Zh = X* x 7}

Vi = X* X 2y x Vi,
Vig=X*x Z:x V3
Vi = X" x Z; x V'
Vi =X"xZ;xV;

where V5 = Vg,]_, Vi = Vj]_ (with 7 =2,3,---,nn) due to Assumption 2 (see Step
1). Then, the 2nn-2-1 neuro-model given by (4.20) becomes:

gk) =T (4.21)
T=ry+r.+Z5
nn
ry=Viu + > Vo1 (JuWs + W)
T
ro = Vi + Y Vier(yWe + W)
=1

35

Chapter 4: A new efficient system identification methodology

A supplementary transformation is achieved in order to change the redefined 2nn-1

model (4.21) by the following algebraic operations:

nn

> Vo1 (LW + W) = Ve (S + W)
=1

S Vi1 We, + W) = Vier(Jy, Wi + Wig)
=1
where:

Vi =nnx Vg
Vi=nnxVj

Wi =Wy,

Wi=W

Wi = Wi,

Wi = W:hl

H* =75 +Vey +Vig

The resulting model after the “neurons reduction” has the following mathematical

form:

g(k) = Vo1 (JuWp + Wgy) + Vipr(JgWi + Wig) + H

(4.22)

Since the four models FFHH1, FFHH2, ARXHH and NARXHH (see (4.15), (4.16),
(4.17) and (4.18) respectively) satisfy Assumption 1 and can be trained as proposed
in Theorem 2 under Assumption 2, we can apply the proposed model reduction
approaches (see Appendix G), in order to generate the following ready-to-use models:

FFHH1 after model reduction:

§(k) = Vo1 (JuWp + W) + Vie(JygWi + Way) + H”

FFHH? after model reduction:

§(k) = Zpp2(JWp5 +Wgy) + Zapa(JyWa + Wiay) + H”

ARXHH after model reduction:

4(k) = (JuWg) + (JgWZ) + H*

NLARXHH after model reduction:

g(k) = X 03((JuWp) + (JyW3) + HY)

(4.23)

(4.24)

(4.25)

(4.26)

36

Chapter 4: A new efficient system identification methodology

We shall conclude that our approach treats with the same equivalent manner neural network
structures with or without thresholds.

Two examples of the application of the proposed reduction procedures have been presented,
in both cases the proposed reduction approaches are applied to the particular designs developed
in this thesis (one architecture without thresholds and one architecture with thresholds in all the
neurons of the neural network). In a third example, the proposed model reduction approach is
applied to a classical architecture, in order to show that the proposed model reduction approach
is relevant to all the neural networks which accomplish the two assumptions.

4.4 Example 3: Sigmoid network of the toolbox in Matlab

In this example, the proposed model reduction approach is applied to other neural network
architecture. Here, we will answer to the following question: For any reason, I choose a different
type of neuro-model set. Can I nevertheless use the model reduction approach?.

Let us take the sigmoid neural network used for the estimation of the Nonlinear ARX model
shown in Fig. 4.4. This architecture, was reproduced in the thesis ([86]) and correspond to the
sigmoid estimator of the non linear system identification toolbox in Matlab.

Nonlinear block

Linear block

Figure 4.4: Non linear ARX.

37

Chapter 4: A new efficient system identification methodology

Let us follow the proposed system identification procedure:

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

The mathematical representation of the sigmoid network used in this example (Fig. 4.4)
is given by (4.27)).

§(k) =ynL +yL (4.27)
ynz = tanh(ynpi)aVec

ynrol = ynr2bMat 4 cVec

ynr2 = UnQ
yr =yl +d
yr1 = UnP

where:
Uy € RI*(natnb) ig the regression vector.

and the parameters of the model (synaptic weights) are:

Q € R(na-+nb)x(na+nb)
bMat € R(natnb)xnn
aVec € R*1

cVec € RIxmn

P ¢ R(na-+nb)x(na+nb)
[€ R(natnb)x1

deR

Notice that, this model (4.27) consists on two neural networks (one linear and the other
one nonlinear) and each architecture directly satisfies Assumption 1. Therefore, it is
not necessary to change the activation functions of this model. We can apply the system
identification procedure proposed in this thesis, since we consider the complete architecture
satisfies Assumption 1.

e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial condition of the synaptic weights are chosen
equals group by group, i.e. Q1. = Q(j.1), P, = Pj.1), with j = 2,---,ng + np and
bMatL; = bMati,;, Ll,; = Li,; with ¢ = 2, e, nn.

Once Assumption 1 and Assumption 2 are fulfilled, the neural is trained. For this
architecture, the adaptation of the synaptic weights is achieved according to the

38

Chapter 4: A new efficient system identification methodology

original algorithms presented in the thesis ([86]), therefore the computational cost
reduction approach is not applied for this example.

§(k) =ynL +yL (4.28)
ynr = tanh(ynpi)aVec”
yYNL1 = yYnr2bMat® 4+ cVec*

ynr2 = UNQ*
yr =y L +d*
yr1 = UnP*

It is interesting to remark that, even if the adaptation of the synaptic weights is
achieved by the original algorithms used in the thesis ([86]), the final values of the
synaptic weights of the trained model given by (4.28) are equals group by group:
Q.= QZ‘j:,l), Py = P(*j;,1)= with j =2, ,ng +np and bMat] , = bMat;, L7, = L;
with 1 =2,---,nn.

Step 2.- Model transformation

Once the neural network is trained under Assumption 1 and Assumption 2, in (4.28)
it is indeed possible to make the following algebraic operations.

leQ*bMat
P =PxL

Then, the model is redefined as:
g(k) =yni +yrL (4.29)

ynL = tanh(ynri)aVec
YNL1 = Ynr2 +cVec

ynr2 = UnQq
yr =yr1 +d
yr1 = UnPy

where:

P e R(na +np)x1
Ql c R(na+nb)><nn
with Q1] , = Qlfj:,n with j =2, ,nn.

Finally, in (4.29) it is indeed possible to make the following operations:

Q2 = Q(:,1)
cVeey = cVee(l)
aVec; =nn*aVec(l)

39

Chapter 4: A new efficient system identification methodology

Then, the model given by (4.29) becomes (4.30):

§(k) =y~ +yL (4.30)
ynr = tanh(JQ2 + cVecy)aVec,
yp=J* P +d

(4.31)

where:

Qs € R(1a+ns)x1
cVec, € R
aVec, € R!

Then, by using the proposed model reduction approach, a model with ((na + nb) x
(na+nb))+((na+nb) xnn)+(nnx1)+(1xnn)+((na+nb) x (na+mnb))+((na+nb) x 1)+
(1) parameters is reduced to a model with ((ng+mnp) x1)4+(1)+(1)+((rg+mnp) x1)+(1)
parameters.

Interesting results have been obtained by the application of the reduction procedures to the
different neural network presented in the preceding examples. Our goal clearly was to show that

our model reduction procedures preserving the estimation accuracy was applicable to the widest
model rage possible.

In the following chapter, these architectures are applied to the identification of different
systems.

40

Chapter 5

Application to complex system
identification

In the sequel, we applied the previous methodology to both simulation examples and real exper-
iment setups, in order to validate the preceding results. Simulation is run on the unavoidable
Wiener-Hammerstein benchmark. On the other hand, our methodology is also applied for data
coming from real experimental set ups like flexible robot arm and an acoustic duct.

5.1 Wiener-Hammerstein benchmark

Let us start with the Wiener-Hammerstein benchmark proposed in [87]. The DUT is an elec-
tronic nonlinear circuit with a Wiener-Hammerstein structure (see Fig. 5.1).

) = G(5) | FLD s Gls) [ol

Figure 5.1: Wiener-Hammerstein system.

The first filter G1(s) is designed as a third order Chebyshev filter (pass-band ripple of 0.5dB
and cut off frequency of 4.4kHz). The second filter Go(s) is designed as a third order inverse
Chebyshev filter (stop-band attenuation of 40dB starting at 5kH z). The static nonlinearity F[.]
is built using a diode circuit (Fig. 5.2).

1kQ
N\ :

IN4148

10kQ

Figure 5.2: Circuit used to built the static nonlinear system.

The system is excited with a band-limited filtered Gaussian excitation signal and a dataset
of 188000 data is generated, corresponding to 3.6719s at the sampling frequency of 51200H z.
Further details are available in ([87]).

41

Chapter 5: Application to complex system identification

5.1.1 Validation test

The data set available for the benchmark is gathered in two records: the system is identified
using the “estimation data” (u(t),y(t) for ¢ =1,2,---,100000). Then, the model is simulated to
estimate the output §(¢) of the system, using no more than the input data at the span of time
of the “test data” set (¢ = 100001, - - - 188000).

The benchmark established the basis to enable the comparison of the models quality. The
quality assessment comprises four performance statistical indicators:

e The mean value of the simulation error:

188000

1
Mt = 37000 t:;wm esim (t)- (5.1)
e The standard deviation of the error:
Fm S () (5.2)
87000 ,_ {57001
e The root mean square (RMS) of the error:
Chnst = - 18?:00 (esim())? (5.3)
87000 ,_ {5001

In Eqgs. 5.1-5.3, the sum is started at ¢ = 101001 instead of ¢ = 188000 to eliminate the
influence of transient errors at the beginning of the simulation.

The root mean square (RMS) value of the error for the estimation data (¢ € [1001, 100000]):

100000

1
MSe = momr sim (1)) 5.4
eRMSe 99000 t_zl(;]l(e 2 ()) ()

5.1.2 Experiments

In order to validate the proposed system identification approach, the following experiments are
conducted:

Experiment 1.-The system is identified with the complex 2nn-2-1 model given by (3.1) with
the nonlinear function classically chosen as ¢;(z) = tanh(z) ([84]), nn = 40, n, =4, np =17
and ny = 4. One thousand training runs are conducted using the estimation data (u(t),y(t)
fort =1,2,---,100000) each time with different initialization values, but satisfying Assumption
2 (Initial weights equals group by group). Once the 1000 models are obtained, we choose
the best one according to the validation error p; (model FFHI1) and the best one according
to the validation error eppg; (model FFH2). For the model FFHI the validation results are
pe = 0.00471 x 1073, s; = 56.71 x 1073, eppmrse = 56.71 x 1072 and egprrge = 56.03 x 1073
and for the model FFH2 the validation results are p; = —5.635 x 1073, 5, = 50.20 x 1073,
ermst = 50.51x 1073 and eparse = 49.74x 1073, Notice that these two non reduced models have

42

Chapter 5: Application to complex system identification

524 parameters and the computational complexity is O(FFH1) = O(FFH2) = (((40x7)+(40x
4))+ (2 x 40) +(4)) x 100,000 = 52.4x 10°. In order to show the interest of our model complexity
reduction approach, we apply this reduction approach (theorem 1) to both models FFH1 and
FFH2, lets us name these models as “FFH1a” and “FFH2a” respectively. As demonstrated in
the proof of the theorem 1, the complex models FFH1 and FFH2 are equivalent to the reduced
models “FFH1a” and “FFH2a” respectively, and consequently the validation results are the
same. The main advantage with this reduction approach is that, the reduced models have only
14 parameters instead of 524. But the computational complexity for the reduced models, is the
same as for the complex models, that is O(FFH1la) = O(FFH2a) = 52.4 x 10°.

Experiment 2.-In order to validate the improvements on the computation time, the model
given by (3.1) is trained with the same initial conditions which conduct to the models FFH1a
and F'F H2a, this time the training is developed as presented in the proof of Theorem 2. Then,
we apply Theorem 1 to each model in order to obtain two reduced models, let us name these
two reduced models as FFH1b and FFH2b respectively. As demonstrated in the proof of
Theorem 2, the final values of the parameters of the reduced models when we train the complex
2nn-2-1 architecture by the classical way (FFH1la and FFH2a) and the final values of the
parameters of the reduced models when we train the complex 2nn-2-1 architecture as presented
in the proof of Theorem 2 (FFH1b and FFH?2b) are equals respectively. The advantage of the
models F'FH1b and FF H2b is that the computational complexity (O(FFH1b) = O(FFH2b) =
(((7) + (4)) + (2) + (4)) x 100,000 = 1.7 x 10°), is lower (1.7 x 10°% vs. 52.4 x 10° operations).

After applying Theorem 1 and Theorem 2, we have two models of the form of (5.5).

§(k) = Vg tanh(J Wy + Wgy) + V) tanh(JyW3 + Wihg) + H (5.5)
where:
Ju=ulk=1) ulk-2) ... ulk—"7)]
Jy=[k—=1) g(k-2) .. Gk—4)]

and the 14 parameters characterizing the system are:

FFHla=FFHI1b:

Wi =1[0.10752 0.0548 0.0017 — 0.0495]

W5 =1[0.0142 —0.0035 0.0140 0.0245 0.0033 —0.0152 0.0435]
Vi =8.1996, Vj; = 0.4842

H* = —0.0022

FFH2a=FFH2b:

W5 =[0.164176 0.0932 0.00979 — 0.08208]

W5 =[0.01011 —0.0054 —0.0096 0.0176 0.0158 —0.0326 0.02411]
Vi = 5.04290, V;; = 2.5643

H* = —0.0020

For comprehensive reasons, we can not present the 524 parameters of the non reduced models
FFH1 and FFH2 described above.

43

Chapter 5: Application to complex system identification

Experiment 3.-In a third experiment, we investigate the possibility to generate models with
the same architecture and accuracy of the reduced models FFH1b and FFH2b by directly training
the 2-1 model given by (3.12). The nonlinear function is classically chosen as ¢;(z) = tanh(z)
([84]), ng = 4, ny = 7 and ny = 4. One thousand training runs are conducted using the
estimation data (u(t),y(t) for ¢ =1,2,---,100000) each time with different initialization values.
Once the 1000 models are obtained we choose the best one according to the validation error py
(model FFH3) and the best one according to the validation error egpss: (model FFH4). These
two models have the same architecture of the models FFH1a and FFH2a (see (3.12)) where the
14 parameters characterizing the system are:

FFH3:

Wi =1[0.90585 0.1782 0.0715 — 0.34546]
Wpg =10.1166 0.2003 0.19789 0.18499 —0.06139 0.2379 0.4065]
Vi =1.1957, V5 = 0.0279, H* = —0.0020

FFH4:

Wi =1[0.5259 0.6859 —0.0497 — 0.4054]
Wg5 =10.06179 0.0847 0.2830 —0.0110 0.1595 —0.0633 0.4174]
Vi =1.2582, Vi =0.0466, H* = —0.0024

For the model FFH3 the validation results are pu; = 0.07221 x 1073, 5, = 91.62 x 1073,
ermst = 91.62 x 1073 and epprse = 93.01 x 1072 and for the model FFH4 the validation results
are p; = —0.9493 x 1073, 5; = 80.29 x 1073, eparss = 80.30 x 1073 and epyrse = 81.41 x 1073,
The computational complexity for the models FFH3 and FFH4 is O(FFH3) = O(FFH4) =
(ng +np+4) x N = (44 7+4) x 100000 = 1.4 x 105.

Experiment 4.-In this experiment, in order to measure the impact of Assumption 2, the
system is identified with the complex 2nn-2-1 model given by (3.1) with same characteristics
as in the first experiment (the nonlinear function classically chosen as p;(z) = tanh(z) ([84]),
nn = 40, ng = 4, n, = 7 and ngy = 7). One thousand training runs are conducted using the
same data as in the first experiment (estimation data (u(t),y(t) for ¢ = 1,2,---,100000)) each
time with different initialization values but this time without satisfying Assumption 2 (that is,
all the initial weights random). Once the 1000 models are obtained, we choose the best one
according to the validation error p; (model FFH5) and the best one according to the validation
error egpyrse (model FFH6). Notice that, since the models FFH5 and FFH6 do not satisfy
Assumption 2, it is not possible to apply the proposed model reduction approach. Consequently,
these models have the same number of parameters (524) as the non reduced models FFHI and
FFH2 but with different validation results. For the model FFH5 the validation results are
pi = —0.0103 x 1073, s; = 55.49 x 1073, epprsy = 55.49 x 1072 and egprse = 54.70 x 1073
and for the model FFH6 the validation results are p; = —4.05 x 1073, s; = 53.23 x 1073,
erms: = 53.39 x 1072 and eryse = 52.61 x 1073. The computational complexity for the
models FFH5 and FFH6 is the same as for the model FFH1, FFH2, FFH1a and FFH2a, that
is, O(FFH5) = O(FFHG6) = 52.4 x 10°.

In order to follow the validation tests proposed in ([87]), we arranged the validation results of
the proposed models in Table 5.1 where n,, is the number of parameters, O is the computational
complexity or number of adaptations required to obtain each model, measured as presented in
Chapter 3 and T'T" is the time in minutes required to obtain each model.

44

Chapter 5: Application to complex system identification

Table 5.1: Validation results.

Model | O | TT |np | 5 €RMSt €RMSe

(x10%) (x1073)[(x1073)| (x1073) | (x1073)
FFH1 | 52.4 [12.78(524(0.00471 | 56.71 56.71 56.03
FFHla| 52.4 |12.78|14 |0.00471 | 56.71 56.71 56.03
FFH1b| 1.7 3.85 |14]0.00471 | 56.71 56.71 56.03
FFH2 | 52.4 |[12.78(524|—-5.635 50.20 50.51 49.74
FFH2a | 52.4 |12.78|14 |—5.635 50.20 50.51 49.74
FFH2b| 1.7 3.85 |14 |—5.635 50.20 50.51 49.74
FFH3 1.4 3.55 |14 10.07221 | 91.62 91.62 93.01
FFH4 14 3.55 |14 |—0.9493| 80.29 80.30 81.41
FFH5 | 52.4 [12.78(524|—0.0103| 55.49 55.49 54.70
FFHG6 | 52.4 [12.78(524|—4.05 53.23 53.39 52.61

To complete the exposition of results for best model in terms of u; (FFH1b) in the required
form, we also present the estimated output in the time domain (Fig. 5.3), as well as the fast
Fourier transform (FFT) of the estimated output signal (Fig. 5.4). Further information is given
through the frequency response function (FRF) of the nonparametric best linear approximation
obtained from the test data and the estimated output (see. Fig. 5.5) which is mainly appreciated

by the users in practical applications.

Amplitude

—— W-H system
FFH1

x FFH1 after reduction
-0.8] - - -FFH3

3.3125 3.313 3.3135 3.314 3.3145 3.315

Time (s)

Figure 5.3: Measured output vs Estimated output.

Amplitude

|— W-H system
~o FRH1

0.1

0.2 0.3

Normalized frequency

0.4

0.5

Figure 5.4: Output Fourier Transform.

45

Chapter 5: Application to complex system identification

0
_20,
S -0t
El
2
£ 60!
_80, B
—— W-H system
————— FFH1
-100 : :
0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Figure 5.5: Frequency Response Function (FRF) of the nonparametric best linear approximation
obtained from the test data and the estimated output.

Naturally we have to compare the our approach with other black box system identification
techniques. For example, the same system is identified with the nonlinear system identification
toolbox in Matlab 2011. Here, the identification model used is the NLARX model, the nonlin-
earity estimator is the sigmoid network and the parameters of the model are estimated by using
the Levenberg-Marquardt algorithm, let us name this algorithm “MATLAB”. The comparison,
realized in terms of the number of parameters np, the time in minutes required to obtain each
model T'T and the validation results proposed in [87], are summarized in Table 5.2.

Table 5.2: Validation results: Proposed approach vs toolbox of Matlab.

Ref. TT | ny [t 5 €RM St €RMSe
(x1073)[(x1073)| (x1073) | (x1073)

FFH1b [3.85| 14 [0.00471 | 56.71 56.71 56.03
MATLAB|1.52|691| —1.44 | 19.28 19.34 19.26

As already mentioned, the learning algorithms used to adapt the synaptic weights of the
proposed neuro-models are based on the steepest descent algorithm. Although, the Levenberg-
Marquardt algorithm was implemented in one of the proposed neural networks in order to analyze
the compromise accuracy-computational cost. This is tested in the following experiment.

Experiment 5.-The system is identified with the complex 2nn-2-1 model (FFHH1) given by
(4.15) presented in the example 2 in Chapter 4. The nonlinear function is classically chosen
as ¢1(z) = tanh(z) ([84]), nn = 40, n, = 4, n, = 7 and n;y = 4. Two training runs are
conducted using the estimation data (u(t),y(t) for ¢ = 1,2,---,100000) in both cases satisfying
Assumption 2 (Initial weights equals group by group). In a first training, the parameters are
estimated by using the steepest descent algorithm, let us name this model “FFHH1-GRA”. In
a second training, the parameters are estimated by using the Levenberg-Marquardt algorithm,
let us name this model “FFHI1-LM”. In order to follow the validation tests proposed in ([87]),
the validation results of the proposed “FFHHI1-GRA” and “FFH1-LM” models are arranged
in Table 5.3 where a comparison between the two neuro-models is done according the time in
minutes required to obtain each model (7'T") and the accuracy of each model.

46

Chapter 5: Application to complex system identification

Table 5.3: Performance measures: Gradient vs. Levenberg-Marquardt.

Model TT |np| 5 €RMSt €RMSe
(x1073) [(x1073)| (x1073) | (x1073)

FFHH1-GRA| 3.69 |16 | 2.9 46.25 46.35 45.61
FFHHI-LM [21.82]16 |—15.32 | 43.26 45.89 45.16

5.1.3 Comments

Fig. 5.3 exposes the relevant performance of the proposed neuro-model FFH1b with respect
to the real system behavior, particularly if the number of model parameters are taking into
consideration. Here it seems remarkable that with only 14 parameters the proposed model
provides a significant level of accuracy.

From Table 5.1, comparing the best models according to the validation error pu, (FFHI,
FFH3 and FFH5), the validation results s;, erarse, €rmse of the complex models FFH1 and
FFHS5 given by (3.1) are almost the same. In the same way, comparing the best models according
to the validation error egps; (FFH2, FFH4 and FFH6), the validation results of the complex
models FFH2 and FFH6 given by (3.1) are almost the same too. On the contrary, if we train
directly the simpler 2-1 neural network models (FFH3 and FFH4), the accuracy of the obtained
models is degraded. Since the 2nn-2-1 models given by (3.1) with nn = 40 have more neurons
and one extra layer than the 2-1 model given by (3.12), these results are somehow natural. As
mentioned above more neurons presume a better approximation.

Comparing in terms of the number of parameters n, (see Table 5.1), for the models FFHI1,
FFH2, FFH5 and FFHG it is substantially larger, 524 vs the 14 parameters of the models FFH3
and FFH4. But, after applying the proposed model reduction approach to the complex models
FFH1 and FFH2 (524 parameters), we have the models FFH1b and FFH2b (14 parameters
only) with the same accuracy as the previous models FFH1 and FFH2. These results confirm
the theorem 1. Since models FFH5 and FFH6 do not satisfy Assumption 2, it is impossible to
apply the model complexity reduction approach.

The reader shall notice that, as already announced, there is no loss of accuracy during
the reduction approaches: see performances of FFH1, FFH1la and FFH1b (respectively FFH2,
FFH2a and FFH2b).

From Table 5.2, confronting the two black box models, the deviation errors (s;, egrrg¢ and
ermse) and the time T'T of the Matlab model are two or three times better, but the number of
parameter is substantially larger (14 vs 691). Conversely, the proposed model FFH1a leads to a
iy much better despite the use of a simple gradient training algorithm. Remember that we do
not pretend to give to the user the reduced order architecture with best performance possible.
A lot of high level works exist in the literature. We only propose to the user a rather simple and
efficient way to find a good balance between accuracy and complexity. The users must ponder
accuracy against complexity, according to their own modeling needs.

From Table 5.3, comparing both models, the one obtained by the steepest descent algorithm
(FFHH1-GRA) and the one obtained by the Levenberg-Marquardt algorithm (FFHH1-LM), the
validation results are almost the same, but comparing in terms of the time required to obtain
each model, the FFHH1-LM model requires seven times more time than the FFHH1-GRA model.

47

Chapter 5: Application to complex system identification

5.2 Acoustic duct identification

This experimental device is an acoustic waves guide made of Plexiglas, used to develop an active
noise control (see Fig. 5.6). One end of the duct is almost anechoic and the other end is
opened. The identification input signal is a pseudo random binary sequence (PRBS) with a
length L = 2'° — 1 and level +3V sufficiently exciting applied to the control loudspeaker. The
sampling period is 7'S' = 500us. In order to model, the first propagative modes of the waves
guide (also called the secondary path) which lye in the frequency range [0; 1000H z]. We shall
use several data set of the same length namely 1024, measured by the output microphone. A
prior measurement of the propagation delay confirms the analytical value 7 =~ 77T'S.

Open
end

JOutput \:/ Control __/ |Anechoic

microphone A Loudspeaker end
(secondary path)

Disturbance

Loudspeaker
Power (primary path)
i
Supply
| Ampli _
and e
filters

Figure 5.6: Schematic of semi finite acoustic waves guide.

This system is identified with the complex 2nn-2-1 FF1 model given by (4.2) with the non-
linear function classically chosen as ¢;(z) = tanh(z) ([84]), nn = 10, n, = 13, ny = 11 and
np = 7. In order to fulfill Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group, since the proposed model satisfies the two assumptions, the proposed
model reduction approach is applied in order to obtain a model of the form of (5.6), let us name
this model “FF1r”.

y(k) = Vg tanh(J,Wg) + Vi tanh(J;W}) (5.6)
where:
Jy=lulk—-1) wlk-2) .. u(k-—11)]
Jy=lok=1) 9k—2) .. g(k—13)]

and the 26 parameters characterizing the system are:

Wi =1[0202 —0.192 0.157 0261 —0.038 0.041 0.089 0.011 —0.029 0.072 0.074 0.029 —0.008]
W5 =[-0.158 0.077 0.117 0.0373 0.087 —0.017 0.038 —0.024 —0.023 —0.007 — 0.088]
Vi = —2.7027 and Vj; = 1.4493

Naturally the proposed approach have to be compared with other black box system identi-
fication technique. Therefore, the same acoustic system is identified with the nonlinear system
identification toolbox in Matlab 2011. Here, the identification model used is the NLARX model,
the nonlinearity estimator is the sigmoid network with 20 units. The 1385 parameters of the

48

Chapter 5: Application to complex system identification

Matlab model are estimated by using the default learning algorithm. The comparison, realized
in terms of the number of parameters np and the frequency Response function (FRF) (see. Fig.
5.7) which is mainly appreciated by the users in practical applications.

0

10

10

Amplitude

Acoustic system
----- Toolbox Matlab
102H — = = FF1 model

0 0.1 0.2 0.3 0.4 0.5
Normalized frequency

Figure 5.7: Frequency Response Function (FRF).

In order to establish a numerical comparison, the following measured (FITF) is computed
from Fig. 5.7:

FITF =100 (1 — 1Bz = Pael (5.7)
[By — En |

where:

FITF is the percentage of the measured output that was explained by the model.
E,;1 is the frequency response of the measured data.
E,» is the frequency response of the estimated data.

The FITF is computed for both, the proposed model (FF1) and the model obtained by the
nonlinear system identification toolbox of Matlab (Matlab), these results are arranged in Table

5.4.

Table 5.4: Proposed approach vs Matlab
Model |FITF| ny,
Matlab| 93.95 |1385
FF1 90.9 | 528
FF1r | 90.9 | 26

5.2.1 Comments

Fig. 5.7 illustrates the relevant performance of both, the proposed neuro-model FFH1r and the
Matlab model, with respect to the real system behavior. But, if the number of model parame-
ters is taking into consideration, it seems remarkable that with only 26 parameters the proposed
model provides a significant level of accuracy.

49

Chapter 5: Application to complex system identification

From Table 5.4, comparing the proposed model (FF1r) and the model obtained by using the
toolbox of Matlab both models almost have the same accuracy, but once again, the number of
parameters of the Matlab model is substantially larger (1385 vs 26). Then, we are proposing
to the user a system identification approach with results comparable to the powerful toolbox of
Matlab, but with a smaller number of parameters.

5.3 Robot arm identification

The idea here is to test the efficiency of our method in the case, frequently encountered, of
identification with corrupted data. In fact, we take the opportunity to check the robustness
of our estimation procedure even if we do not pretend to exhaustively study this nevertheless
interest configuration.

As similarly, in this work both the classical MSE criterion and a robust criterion known as
Huber’s function are implemented for the adaptation of the synaptic weights, these criteria are
tested in this experiment.

The data comes from a flexible robot arm, the arm is installed on an electrical motor. The
applied persisting exciting input, corresponding to the reaction torque of the structure on the
ground is a periodic sine sweep. The output of such system, is the acceleration of the flexible
arm. This system identification case is issued from a example through DalSy (Database for the
Identification of Systems) ftp://ftp.esat.kuleuven.be/pub/SISTA /data/mechanical.

Motor Link
torque Acceleration
(N.m) (radls®)

Figure 5.8: Flexible robot arm.

In order to test the performances of the proposed objective functions, i.e. MSE and Huber
functions, two outliers with random levels and time steps are deliberately inserted in the dataset
as presented in Fig. 5.9.

Once the outliers were inserted in the dataset, the system is identified with the proposed
neuro-model NARX given by (4.5) with the nonlinear function classically chosen as ¢1(z) =
tanh(z) ([84]), nn = 40, n, =8, ny = 7 and ny = 1. In a first test, the system is identified by
using the classical MSE criterion, let us call this model “NLARX-MSE”. In a second test, the
Huber function is used as objective function, let us name this model “NLARX-HUBER”.

50

Chapter 5: Application to complex system identification

Once the models are trained under Assumption 1 and Assumption 2, Theorem 1 (reduction
approach) and Theorem 2 (computational cost reduction approach) are applied in order to
generate two models of the form of (5.8).

-1+ LI}
Ty
L
° -2 1y
E i
= L |
S 3r 1y
£ 'y
-4} L |
L |
(|
-5F (|
|
-6 I
Measured output !
Bl Measured output+ouliers|))
0 200 400 600 800 1000

Pair of data

Figure 5.9: Measured output vs. Output corrupted by outliers.

(k) = X* tanh(J, W}, + J;W5) (5.8)

where the 16 parameters characterizing the system are:

NLARX-HUBER model:

Wp =[-0.2955 0.4292 —0.1253 —0.1296 0.1434 0.1353 —0.1988]
Wi =[1.0192 —0.2565 —0.1988 —0.2512 0.1184 0.1909 0.0515 —0.3213]

X" =1.3320

NLARX-MSE model:

W5 =1[0.3025 —0.4034 0.0652 0.1589 —0.1102 —0.2060 0.2388]
Wi =[-0.6727 —0.2074 0.3380 0.4301 —0.1481 —0.4000 0.1048 0.2999]

X* = -1.4704

In order to compare the performances of both models, the frequency Response function
(FRF) which is mainly appreciated by the users in practical applications is computed from the
measured data and the estimated output of both, the NLARX-MSE model and the NLARX-
HUBER model (see Fig. 5.10).

Comments

Fig. 5.10 exposes the interest of the implementation of the Huber function, since in the presence
of outliers, the performance of the model estimated by using the steepest descent algorithm
(NLARX-MSE) is degraded. On the contrary the model NLARX-HUBER, accurately represent
the system behavior, in particular in low frequency where generally the control objectives are
attended.

o1

Chapter 5: Application to complex system identification

In this chapter, we have shown how practically the user may apply our new identification
methodology, both on simulation application and real experiment one. Moreover, we have shown
the interest of applying this method to various configurations, covering nonlinear complex system
identification as well as robust system identification.

The quality of the results presented validates the performance of our new complex system
identification methodology in terms of our non announced motivation: the search of the best
compromise between accuracy, complexity and computational cost.

10
10°
[}
=
= -1
£ 10}
£
<
1072} :
- - = NARX-HUBER
- - = NARX-MSE
s Robot Arm
10 : :
0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Figure 5.10: Frequency Response Function (FRF) of the nonparametric best linear approxima-
tion obtained from the test data and the estimated output.

92

Chapter 6
Conclusions and perspectives

6.1 Conclusions

This thesis is based on a work done in the framework of a co-direction between the Centro
Nacional de Investigacién y Desarrollo Tecnolégico (CENIDET), Cuernavaca, Morelos, Mexico
and the Ecole Nationale Suprieure d’Arts et Mtiers (ENSAM), Centre d’Aix en Provence, France.
The report concerns the research topic of black box nonlinear system identification entering into
the academic collaboration between these two institutions.

In effect, among all the various and numerous techniques developed in this field of research
these last decades, it seems still interesting to investigate the neural network approach in complex
system model estimation. Obviously neural networks represents a powerful tool since numerous
years for black box nonlinear system identification. Even if accurate models have been derived,
the main drawbacks of these techniques remain the large number of parameters required and,
as a consequence, the important computational cost necessary to obtain the convenient level of
the model accuracy desired. Therefore, neural networks are still often considered as complex
and hard to implement in real applications.

Hence, motivated to address these drawbacks, we achieved a complete and efficient system
identification methodology providing balanced accuracy/complexity/cost models. In effect, it is
well known that trying to improve one of the three preceding items implies a significant deteri-
oration of the two other ones. In this work, we demonstrated that it is possible to obtain such
a good compromise by the development of, firstly, new neural network structures particularly
adapted to a very wide use in practical nonlinear system modeling, secondly, a simple and ef-
ficient model reduction technique, and, thirdly, a computational cost reduction procedure. It
is important to notice that these last two reduction techniques can be applied to a very large
range of neural network architectures under two simple specific assumptions which are not at
all restricting. In effect, the first assumption which is related to the choice of the activation
functions is classical in the neural network theory. Concerning the second assumption, this is
an original idea which allows to achieved the two reduction procedures proposed in this thesis,
as it has been shown by experiments, this assumption does not affect the accuracy of the neural
network.

Moreover, the proposed model complexity reduction procedure does not carry along a loss
of accuracy during the model transformation, as it classically happens when other traditional
techniques are used. Even more, the accuracy thus obtained remains significantly better than
the one obtained by directly estimating, in the same conditions, a model with a comparable low
complexity.

53

Chapter 6: Conclusions and perspectives

In particular, due to the originality of this approach, the number of neurons initially chosen
to identify a system, does not affect the complexity of the obtained reduced models. In effect, the
first training determines the parameters of the model and the model accuracy as a consequence,
so that no additional criterion is required to stop the model simplification and no further loss
of accuracy occurs.

Moreover, the proposed computational cost reduction approach leads to a very significant
decrease of the calculation bulk classically needed. Since, in this approach, the computational
cost does not depend on the number of neurons chosen by the designer as it happens when
classical techniques are used.

Concerning the optimization techniques used for the parameters estimation, the synaptic
weights adaptation rules are based on the steepest descent algorithm. Even if the Levenberg-
Marquardt algorithm has been tried for at least one architecture, the application examples
demonstrate that the compromise between accuracy and the computational cost remains better
when the steepest descent algorithm is used.

Concerning the choice of the optimization criterion, the classical MSE and the robust Huber
M-estimate criteria were checked. The main reason was that in applications where data are
significantly corrupted, the performances of the MSE estimator are classically degraded. In
these cases, the resort of the Huber’s approach is always recommended regardless the slight
extra computational cost required.

Furthermore, application examples driven in simulation or on a real process, satisfactorily
validate all the preceding results, confirming all the interest of such a new nonlinear identification
methodology.

To summarize, we proposed a new complete identification methodology using a neural net-
work approach for complex systems guaranteeing a good compromise between model accuracy,
model complexity and model computational cost. The main contributions of this work is firstly
an original choice of the parameterized model set within which the estimation of the candidate
model is performed. The second important contribution is the improved model computation,
where the neural network training is achieved with an original and efficient reduction procedure.
Finally, the last important contribution of this work is to have shown that this estimation phase
can be achieved in a robust framework if the quality of identification data compels it.

6.2 Perspectives

During our investigations, we noticed an interesting reduction of the number of epochs required
to train the neural network, mainly due to a particular selection of the initial conditions of the
synaptic weights. This choice depends on the estimation dataset and on the neural network
architecture chosen. It seems interesting to investigate this point more formally.

Another research direction to be more finally investigated is the choice of the scaling factor
of the robust M-estimator used in case of corrupted data. In particular, the influence of this
tuning constant defining the ratio of estimation errors treated by the L1-norm w.r. the estimation
errors treated by the classical L2-norm, on the global identification performances such as model
accuracy, model complexity and model computational cost might be developed in a next future.

54

Bibliography

[1]

2]

[10]

[11]

[12]

K. Hangos, J. Bokor and G. Szederknyi. Analysis and control of nonlinear process systems.
Springer, 2004.

P. Aadaleesan, N. Miglan, R. Sharma and P. Saha. Nonlinear system identification using
wiener type laguerre-wavelet network model. Chemical Engineering Science, 63(15)(2008)
3932-3941, http://dx.doi.org/10.1016/j.ces.2008.04.043.

L. Coelho and M. Wicthoff. Nonlinear identification using a b-spline neural network and
chaotic immune approaches. Mechanical Systems and signal Processing, 23(8)(2009) 2418
2434, http://dx.doi.org/10.1016/j.ymssp.2009.01.013.

F. Farivar, M. A. Shoorehdeli and M. Teshnehlab. An interdisciplinary overview and in-
telligent control of human prosthetic eye movements system for the emotional support by
a huggable pet-type robot from a biomechatronical viewpoint. Journal of the Franklin
Institute, 349(7)(2012) 22432267, http://dx.doi.org/10.1016/j.jfranklin.2011.04.014S.

M. Noorgard, O. Ravn, N. K. Poulsen and L. K. Hansen. Neural Networks for Modelling
and Control of Dynamic Systems. 1st ed., Springer-Verlag, London, Berlin, Heidelberg,
Great Britain,2000.

K. Narendra and K. Parthasarathy. Identification and control of dynamical systems using
neural networks. IEEE Transactions on Neural Networks, 1 (1990) 4-27.

Z. Yan,L. Xiuxia,Y. Peng,C. Zengqiang and Y. Zhuzhi. Modeling and control of nonlinear
discrete-time systems based on compound neural networks. Chinese Journal of Chemical
Engineering,17 (3) (2009) 454-459 http://dx.doi.org/10.1016/S1004-9541(08) 60230-X.

S.C. Tong,Y.M. Li and H.G. Zhang. Adaptive neural network decentralized backstepping
output-feedback control for nonlinear large-scale systems with time delays. IEEE Transac-
tions on Neural Networks, 22 (7) (2011) 1073-1086.

S.C. Tong,X.L.. He and H.G. Zhang. A combined backstepping and small-gain approach to
robust adaptive fuzzy output feedback control. IEEE Transactions on Fuzzy Systems, 17
(5) (2009) 1059-1069.

R. Isermann and M. Munchhof. Identification of Dynamic Systems, An Introduction with
Applications. Springer-Verlag, 2011.

L. Ljung. System Identification Theory For The User. PTR Prentice Hall, 1999.

L. dos Santos and M. Wicthoff. Nonlinear model identification of an experimental ball-and-
tube system using a genetic programming approach. Mechanical systems and signal, 23 (8)
(2009) 24182434, http://dx.doi.org/10.1016/j.ymssp.2009.01.013.

95

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[24]

[25]

[26]

[27]

L. dos Santos and M. Wicthoff. Noulinear system identification and fault detection us-
ing hierarchical clustering analysis and local linear models. Mediterranean Conference on
Control and Automation., Athens 2007, http://dx.doi.org/10.1109/MED.2007.4433938.

W. Luyben. Process, Modeling, Simulation and Control for Chemical Engineers. McGraw
Hill Chemical Engineering Series, 2nd edition, 1996.

B. Anderson, J. Moore and R. Hawkes. Model approximation via prediction error identifica-
tion. Automatica, 14 (6) (1978) 615-622 http://dx.doi.org/10.1016,/0005-1098(78)90051-1.

L. Ljung and P. Caines. Asymptotic normality of prediction error es-
timators for approximative system models. Stochastics, 17 (1979) 29-46
http://dx.doi.org/10.1109/CDC.1978.268066.

O. Nelles. Nonlinear System Identification. Springer-Verlag, Berlin, Heidelberg New York,
Germany, 2001.

J. Jang, C. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing. Prentice-Hall, Upper
Saddle River, NJ 07458, 1997.

Hua Bai, Pei Zhang, and Venkataramana Ajjarapu. A novel parameter identification ap-
proach via hybrid learning for aggregate load modeling. IEEE Transactions on Power
Systems, 24 (3)(2009) 1145-1154, http://dx.doi.org/10.1109/TPWRS.2009.2022984.

Jose de Jesus Rubio and Jaime Pacheco. An stable online clustering fuzzy neural network
for nonlinear system identification. Neural Computing and Applications, 18 (2009) 633-641.

W. Yu and A. Morales. Gasoline blending system modeling via static and dynamic neural
networks. International journal of modeling and simulation, 24(3) (2004) 151-160.

X. Han, W. Xie, Z. Fu, and W. Luo. Nonlinear systems identification using dy-
namic multi-time scale neural networks. Neurocomputing, 74(17) (2011) 3428-3439
http://dx.doi.org/10.1016/j.neucom.2011.06.007.

A. Cichocki and R. Unbehauen. Neural Networks for Optimization and Signal Processing.
1st edition, John Wiley and Sons Ltd, Baffins Lane, Chichester, West Sussex, England,
1993.

A. Poznyak, E. Sanchez, and W. Yu. Differential Neural Networks for Robust Nonlinear
Control. 1st edition, World Scientific Publishing Co. Pte. Ltd, Singapore, 2001.

E. Fieser and R. Beale. Handbook of Neural Computation. Institute of Physics Publishing
and Oxford University Press, New York, 1997.

G. Cybenko. Neural networks in computational science and engineering. Neural Network
in CSE, 3 (1996) 36-42.

H. Ge, W. Du, F. Qian, and Y. Liang. Identification and control of nonlinear sys-
tems by a time-delay recurrent neural network. Neurocomputing, 72 (2009) 2857-2864,
http://dx.doi.org/10.1016/j.neucom.2008.06.030.

S. Tzeng. Design of fuzzy wavelet neural networks using the ga approach for function
approximation and system identification. Fuzzy Sets and Systems, 161 (19) (2010) 2585-
2596, http://dx.doi.org/10.1016/j.fss.2010.06.002.

56

BIBLIOGRAPHY

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Subudhi and D. Jenab. A differential evolution based neural network approach
to nonlinear system identification. Applied Soft Computing, 11 (1) (2011) 861-871,
http://dx.doi.org/10.1016/j.as0c.2010.01.006..

W. Xie, Y. Zhu, Z. Zhao, and Y. Wong. Nonlinear system identification using
optimized dynamic neural network. Neurocomputing, 72 (13-15) (2009) 32773287,
http://dx.doi.org/10.1016 /j.neucom.2009.02.004.

W. Yu and Jose de Jesus Rubio. Recurrent neural networks training with stable bound-
ing ellipsoid algorithm. IEEE Transactions on Neural Networks, 10 (6) (2009) 983-991,
http://dx.doi.org/10.1016/10.1109/TNN.2009.2015079.

G. Khalaj, H. Yoozbashizadeh, A. Khodabandeh and A. Nazari Artificial neural network to
predict the effect of heat treatments on vickers microhardness of low-carbon nb microalloyed
steels. Neural Computing and Applications, (2011) 1-10, http://dx.doi.org/10.1007/s00521-
011-0779-z.

H. Ge, F. Qian, Y. Liang, W. Du and L. Wang. Identification and control of
nonlinear systems by a dissimilation particle swarm optimization-based elman neu-
ral network. Nonlinear Analysis: Real World Applications, 9 (4) (2008) 1345-1360,
http://dx.doi.org/10.1016/j.nonrwa.2007.03.008.

Jose de Jesus Rubio and W. Yu. Nounlinear system identification with recurrent neural
networks and dead-zone Kalman filter algorithm. Neurocomputing, 70 (2007) 24602466,
http://dx.doi.org/10.1016/j.neucom.2006.09.004,

Xueli Wu, Jianhua Zhang and QuanminZhu. A generalized procedure in
designing recurrent mneural network identification and control of time-varying-
delayed nonlinear dynamic systems. Neurocomputing, 73 (79) (2010) 1376-1383,
http://dx.doi.org/10.1016/j.neucom.2009.12.002.

D. P. Mandic and J. A. Chambers. Recurrent Neural Networks for Prediction: Learning
Algorithms, Architectures and Stability. John Wiley and Sons, Inc. New York, NY, USA
2001.

Haiquan Zhao, Xiangping Zeng, and Zhengyou He. Low-complexity nonlinear adaptive
filter based on a pipelined bilinear recurrent neural network. IEEE Transactions on Neural
Networks, 22(9) (2011) 1494-1507.

Jeen-Shing Wang, Yu-Liang Hsu, Hung-Yi Lin, and Yen-Ping Chen. Minimal model dimen-
sion/order determination algorithms for recurrent neural networks. Pattern Recognition
Letters, 30:812 — 819, 2009.

Haiquan Zhao and Jiashu Zhang. Nonlinear dynamic system identification using pipelined
functional link artificial recurrent neural network. Neurocomputing, 72 (1315) (2009)
30463054, http://dx.doi.org/10.1016 /j.neucom.2009.04.001.

M. Witters and J. Swevers. Black-box model identification for a continuously variable,
electro-hydraulic semi-active damper. Mechanical Systems and Signal Processing, 24 (1)
(2010) 4-18, http://dx.doi.org/10.1016/j.ymssp.2009.03.013.

J. Paduart, L. Lauwers, R. Pintelon, and J. Schoukens. Identification of a Wiener-
Hammerstein system using the polynomial nonlinear state space approach, in: Proceed-
ings of the 15th IFAC Symposium on System Identification, Saint-Malo, France, 2009,
http://dx.doi.org/10.3182/20090706-3-FR-2004.00179.

o7

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[52]

[53]

[54]

[55]

L. Ljung. Perspectives on system identification. In Plenary Talk at the 17th IFAC World
Congress. July 2008.

L. Ljung. Perspectives on system identification. Annual Reviews in Control, 34 (1) (2012)
1-12, http://dx.doi.org/10.1016/j.arcontrol.2009.12.001.

G. Bebis and M. Georgiopoulos. Feed-forward neural networks: why network size is so
important. IEEE Potentials, 13 (4) (1994) 27-31.

W. Yu and X. Li. Fuzzy identification using fuzzy neural networks with stable
learning algorithms. IEEE Transactions on Fuzzy Systems, 12 (3) (2004) 411-420,
http://dx.doi.org/10.1109/ TFUZZ.2004.825067.

Jinzhu Peng and Rickey Dubay. Identification and adaptive neural network control of a dc
motor system with dead-zone characteristics. ISA Transactions, 50 (4) (2011) 588 — 598,
http://dx.doi.org/10.1016/j.isatra.2011.06.005.

J. de Jesus Rubio, P. Angelov and J. Pacheco. Uniformly stable backpropagation algorithm
to train a feedforward neural network. IEEE Transactions on Neural Networks, 22 (3)
(2011) 356-366, http://dx.doi.org/10.1109/TNN.2010.2098481.

J. de Jesus Rubio, J. Humberto Perez-Cruz, A. Y. Alanis and Jaime Pacheco. System
identification using multilayer differential neural networks: A new result. Journal of Applied
Mathematics, (2012), http://dx.doi.org/10.1155/2012/529176.

H. Zhang, W. Wu, and M. Yao. Boundedness and convergence of batch back-propagation
algorithm with penalty for feedforward neural networks. Neurocomputing, 89 (2012) 141-
146, http://dx.doi.org/10.1016/j.neucom.2012.02.029.

S.-K. Oh and W. Pedrycz Genetic optimization-driven multi-layer hybrid fuzzy neu-
ral networks. Simulation Modelling Practice and Theory, 14 (5) (2006) 597-613,
http://dx.doi.org/10.1016/j.simpat.2005.10.009.

S. Loghmanian, H. Jamaluddin, R. Ahmad, R. Yusof and M. Khalid. Structure optimization
of neural network for dynamic system modeling using multi-objective genetic algorithm.
Neural Computing and Applications, (2011) 1-15.

Y. Le Cun, J. Denker and S.A. Solla. Optimal brain damage. Neural Information Processing
Systems-2, (1990) 598 — 605.

B. Hassibi, D. G. Stork and G. J.Wolff. Optimal brain surgeon and general net-
work pruning. IEEE International Conference on Neural Networks, 1 (1993) 293 — 299,
http://dx.doi.org/10.1109/ICNN.1993.298572.

R. Reed. Pruning algorithms—a survey. IEEE Transactions on Neural Networks, 4(5) (1993)
740-747.

Wen Yu, F. O. Rodriguez, and M. A. Moreno-Armendariz. Hierarchical fuzzy cmac for
nonlinear systems modeling. IEEE Transactions on Fuzzy Systems, 16(5) (2008) 1302—
1314, http://dx.doi.org/10.1109/ TFUZZ.2008.926579.

J. de Jesus Rubio. Sofmls: Online self-organizing fuzzy modified least-
squares network. IEEE Transactions on Fuzzy Systems, 17(6) (2009) 1296-1309,
http://dx.doi.org/10.1109/ TFUZZ.2009.2029569.

o8

BIBLIOGRAPHY

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Zhaozhao Zhang and Junfei Qiao. A node pruning algorithm for feedforward neu-
ral network based on neural complexity. in:Proceedingsofthe2010 International Confer-
ence on, Intelligent Control and Information Processing (ICICIP), Dalian, China, 2010,
http://dx.doi.org/10.1109/ICICIP.2010.5564272.

P. Angelov. Fuzzily connected multimodel systems evolving autonomously from data
streams. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
41(4) (2011) 898-910, http://dx.doi.org/10.1109/TSMCB.2010.2098866.

A. Lemos, W. Caminhas, and F. Gomide. Multivariable gaussian evolving fuzzy
modeling system. IEEE Transactions on Fuzzy Systems, 19 (1) (2011) 91-104,
http://dx.doi.org/10.1109/TFUZZ.2010.2087381.

Liu Biao, Lu Qing-chun, Jin Zhen-hua, and Nie Sheng-fang. System identifica-
tion of locomotive diesel engines with autoregressive neural network. 4th IEEE
Conference on Industrial Electronics and Applications ICIEA Xi’an, CHINA, 2009,
http://dx.doi.org/10.1109/ICIEA.2009.5138836.

Christian Endisch, Peter Stolze, Peter Endisch, Christoph Hackl, and Ralph Ken-
nel. Levenberg-marquardt-based obs algorithm using adaptive pruning interval for
system identification with dynamic neural networks. IEEE International Confer-
ence on Systems, Man and Cybernetics SMC San Antonio, Texas, USA, 2009,
http://dx.doi.org/10.1109/ICSMC.2009.5346186.

S.-K. Oh and W. Pedrycz. Genetic optimization-driven multi-layer hybrid fuzzy neu-
ral networks. Simulation Modelling Practice and Theory, 14 (5) (2006) 597-613,
http://dx.doi.org/10.1016/j.simpat.2005.10.009.

C. K. Goh, E.J. Teoh, and K.C. Tan. Hybrid multiobjective evolutionary design for artificial
neural networks. IEEE Transactions on Neural Networks, 19 (9) (2008) 15311548.

Ahmad T. Abdulsadda and Kamran Igbal. An improved spsa algorithm for system identifi-
cation using fuzzy rules for training neural networks. International Journal of Automation
and Computing, 6 (3) (2011) 333-339, http://dx.doi.org/10.1007/s11633-011-0589-x.

B. Subudhi, D. Jena and M.M. Gupta. Memetic differential evolution trained neural net-
works for nonlinear system identification. 2008 IEEE Region 10 Colloquium and the Third
International Conference on Industrial and Information Systems Kharagpur, INDIA, 2008,
http://dx.doi.org/10.1109/ICIINFS.2008.4798417.

B. Subudhi and D. Jenab. Nonlinear system identification using memetic differen-
tial evolution trained neural networks. Neurocomputing, 2 (1315) (2009) 3277-3287,
http://dx.doi.org/10.1016/j.neucom.2009.02.004.

H. Romero. Identificacin de sistemas utilizando redes neuronales. Master’s thesis, Centro
Nacional de Investigacin y Desarrollo Tecnolgico, 2008.

H. M. Romero Ugalde, J.-C. Carmona, V. M. Alvarado, and J. Reyes-Reyes. Neu-
ral network design and model reduction approach for black box nonlinear system iden-
tification with reduced number of parameters. Neurocomputing, 101 (2013) 170-180,
http://dx.doi.org/10.1016/j.neucom.2012.08.013.

99

BIBLIOGRAPHY

[69]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

H. M. Romero Ugalde, J.-C. Carmona, and V. M. Alvarado. 1/2 Nonlinear system identi-
fication: a balanced accuracy/complexity neural network approach. in: 2nd International

Conference on Communications Computing and Control Applications Marseille, France,
2012.

H. M. Romero Ugalde, J.-C. Carmona, and V. M. Alvarado. 2/2 Training time optimization
for balanced accuracy/complexity neural network models. in: 2nd International Conference
on Communications Computing and Control Applications Marseille, France, 2012.

S.Q. An, T. Lu and Y.J. MA. Simple adaptive control for siso nonlinear systems using
neural network based on genetic algorithm. IEEE Proceedings of the Ninth International
Conference on Machine Learning and Cybernetics, Qingdao, China, 2010.

T. Fukuda and T. Shibata. Theory and application of neural networks for industrial control
systems. IEEE Transactions on Industrial Electronics, , 39 (6) (1992) 472-489.

R. Lippman. An introduction to computing with neural nets. IEEE ASSP Magazine, 4
(1987).

0. Jovanovic. Identification of dynamic system using neural network. The scientific Journal,
Architecture and Civil Engineering, 1(4)(1998) 525-532.

G. Rajesh and S. Bhattacharyya. System identification for nonlinear maneuvering of large
tankers using artificial neural network. Applied Ocean Research, 30 (2008) 256—263.

E. I. Gaura, N. Steele, and R. J. Rider. A neural network approach for the identification
of micromachined accelerometers. In: Proceedings of the Second International Conference
on Modeling and Simulation of Microsystems, 1999.

F. Guerra and L. dos Santos. Multi-step ahead nonlinear identification of lorenzs
chaotic system using radial basis neural network with learning by clustering and
particle swarm optimization. Chaos, Solitons € Fractals, 35 (5) (2008) 967-979,
http://dx.doi.org/10.1016/j.chaos.2006.05.077.

F. Mohamed and H. Koivo. Modelling of induction motor using non-linear neural network
system identification. SICE Annual Conference in Sapporo, Control Eng. Lab. Sapporo,
August 2004.

Y.G. Lee. Three phese active rectifier power conditioning using neural network system
identification. IEEE, Detarment of Electrical Engineering, INHA Technical College. Korea,
1998.

D. Hyland, E. Collins, W. Haddad, and D. Hunter. Neural network system identification
for improved noise rejection. In American Control Conference Seattle, Washington, 1995.

L. Kiong, M. Rajeswari, and M. Rao. Nonlinear dynamic system identification and control
via constructivism inspired neural network. Applied Soft Computing, 3 (3) (2003) 237-257,
http://dx.doi.org/10.1016/S1568-4946(03)00037-1.

N. Messai, B. Riera, and J. Zaytoon. Identification of a class of hybrid dynamic systems with
feed-forward neural networks: About the validity of the global model. Nonlinear Analysis:
Hybrid Systems, 2 (3) (2008) 773-785, http://dx.doi.org/10.1016/j.nahs.2007.11.008.

60

BIBLIOGRAPHY

[83]

[84]

[85]

[86]

[87]

S. Mohanty. Artificial neural network based system identification and model predic-
tive control of a flotation column. Journal of Process Control, 19 (6) (2009) 991-999,
http://dx.doi.org/10.1016 /j.jprocont.2009.01.001.

S. Curteanu and H. Cartwright. Neural networks applied in chemistry. i. determination of
the optimal topology of multilayer perceptron neural networks. Journal of Chemometrics,
25 (10)(2011) 527-549, http://dx.doi.org/10.1002/cem.1401.

S. Purwar, ILN. Kar, and A.N. Jha. On-line system identification of complex sys-
tems using chebyshev neural networks. Applied Soft Computing, 7 (2007) 362 — 372,
http://dx.doi.org/10.1016 /j.as0c.2005.08.001.

U. Flores. Identificacin de sistemas no lineales mediante las estructuras narx y hammerstein-
wiener. Master’s thesis, Centro Nacional de Investigacin y Desarrollo Tecnolgico, 2011.

J. Schoukens, J. Suykens, and L. Ljung. Wiener-hammerstein benchmark. in:15th IFAC
Symposium on System Identification Saint-Malo, France, 2009.

61

BIBLIOGRAPHY

62

Appendix A

Activation functions

Name Function Range

. ¢(z)=z 4
Linear 7, z [—o0, 4 o0]
o) A
| o(z)=signo(z) T 1t
Signo ¢(z)=H(z) - (0,+1]

=1, if z<l
olz)=z, if +i<z<-—I
+1, if z>+1

\
o(z)
—1
w1
1 @(z)
Sigmoid vlz)= lte - . [0,+1]
¢(z)=tanh(z) [—1,+1]

Gaussian @ (z):A e*BZZ le [0,+1]

Piecewise

Linear [—1,+1]

Sinusoidal ¢(z)=4sin(wz) [—1,+1]

Figure A.1: Activation functions.

The most popular activation function in bibliography is the function tanh(e) due to it is a
saturation type function and have the interesting property that its derivative can be expressed
as a simple function of its output 1 — tanh?(e) [17, 23, 24, 25]. This derivative is required in any
gradient-based optimization technique.

63

Appendix A: Activation functions

64

Appendix B

Learning algorithms

The learning algorithm is an optimization algorithm used to adapt the synaptic weights of a
defined neural network architecture. The goal of this adaptation is to minimize an objective
function (MSE, Huber’s function, etc). As mentioned above, if the data set used for the identi-
fication of a system is contaminated with outliers, robust functions such as the Huber’s function
is recommended regardless the computational cost required. If the data set is not contaminated,
the quadratic criterion mays lead to a good accuracy.

Let us suppose a neuro-model parametrized by the synaptic weights w. The special case of
the quadratic criterion is given by (1.2).

e2(k,w) (B.1)

M| =

N
E N N_i
(’U),U Y)_NZ

k=1

where N is the total number of data used for the parameters estimation and the prediction error
e(k,w) is:

e(k,w) =y(k) — §(k,) (B.2)
A general family of algorithms to adapt the synaptic weights (w) is given by (B.3).

OE
ow

where R modifies the search direction, 7 is the step size known as leaning rate, g—g is the gradient
of the objective function and w(k) denotes the value of w in the k&, iteration.

w(k +1) =w(k) —n[R] ! (B.3)

Here different algorithms (Steepest descent, Gauss-Newton, Levenberg-Marquardt, etc) can
be derived in order to estimate the model parameters w.

The simplest selection R = 1 yields the steepest descent algorithm (B.4):

)
90

Here, the parameter 7 is commonly referred to as the learning rate or integration step size.
It should be pointed that for the discrete time steepest descent algorithm, n should be bounded
in a small range, to ensure the stability of the algorithm. It should be noted that a small 7
means that the convergence to a solution is slow while a large 1 means that the oscillations may
occur and stability may be lost.

Ok +1)=0(k) —n

(B.4)

65

Appendix B: Learning algorithms

The choice R = E" (&) produces the damped Gauss-Newton algorithm (B.5).

0’E] " OE
bk + 1) = (k) — it B.
alk+) =) - |5 2] 52 (B.5)
Here, the particular choice of n = 1 leads the Gauss-Newton algorithm (B.6).
O’E] " OE
pk+1) =ak) — | 22| & B.
al+ 1) =) - [52] 52 (B.)

The Levenberg-Marquardt procedure is achieved by choosing n =1 and R = E" (&) — M in
(B.3), where A is a positive scalar that is used to control the convergence in the iterative scheme
rather than the step size parameter (), and I is the identity matrix.

1 oE
9w

0*E
i

Notice that with A = 0 we have the gauss newton case (B.6).

(B.7)

Wk +1) = b(k) — [—)\I]

66

Appendix C

Objective functions

Let us suppose a neuro-model parametrized by the synaptic weights w. As mentioned above, the
adaptation rules of the synaptic weights depends on a objective function (or criterion) where the
derivative is required by the gradient-based algorithms. This functions and the corresponding
derivatives are:

Mean Square Error (C.1):

E(w,k) = %ez(k,w) (C.1)
MSE derivative:
OF
— = 2
= e(w,) (€2)

Huber’s function (C.3):

%eQ(w,k) if |e(w,k) | B,

E(w, k) = 32 (C.3)
Ble(wk) | == if [e(wk)[>p
Huber derivative:
8E e(w7k) JZf | e(w7k) |§ /87
0 B ,if |e(w,k)|>8 and e(wk)>1 (C.4)
—p yif le|>p and e(w,k) <1

67

Appendix C: Objective functions

68

Appendix D

Choice of ny, n, and n;

The choice of the number pass outputs n,, the number pass inputs n;, and the number of input
samples that occur before the input affects the output ny (also called the dead time in the
system) are an important step in the system identification procedure. In this work, these orders
are estimated by trial and error approach, depending on the evaluation of the criterion function
each time a combination of ng,, n, and n; is used.

The idea is first to chose a random value for n, then with the fixed value of ny, (i.e. ng = 10),

test different combinations of n, and ny, for example 12 < n, << 14 and 8 < n;, < 10, in order
to generate 24 different models (see Table D.1).

Table D.1: Performance measures.

Model|ng | np | 1
1 12 8 |10
2 (1219110
3 [12]10|10
4 112|11|10
5 13| 810
6 13|19 (10
7 |13]|10(10
8 [14]11|10
9 14|18 (10
10 |14(9 |10
11 |14(10|10
12 |14(11|10
13 |15 8|10
14 |15(9 |10
15 |15(10|10
16 |15(11|10

Finally all the models are estimated and evaluated according to a chosen criterion, (for this
example the RMSE).

69

Appendix D: Choice of ny, n, and ny

0.94

0.92

0.9

0.88

RMSE

0.86

0.84

0.82

0.8 | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Model

Figure D.1: Choice of n, and n, with n, = 10.

From Fig. D.1 the model 10 corresponding to n, = 14 and n, = 9 (see Table D.1) is the
one which present the smaller error RMSE. Remember that these values of n, and n;, were
computed with a random value of ng. In a second computation, the values of n, = 14 and
ny = 9 are fixed and ny is variable between a range of values, i.e 1 < ny < 10.

1.2

1.15F N

11

1.05

RMSE
=

0.95

0.9

0.85

0.8
1

Model

Figure D.2: Choice of nj; with n, = 14 and n;, = 9.

From Fig. D.1 the model 7 corresponding to ny = 7 is the one which present the smaller
error RMSE.

Then, by following this approach we found that the “optimal” number of pass outputs ng,
pass inputs ny and dead time in the system ny are n, = 14, np, = 9 and ny = 7.

70

Appendix E

Learning algorithms for the

proposed architectures

In this Appendix, the adaptation algorithms for the adaptation of the synaptic weights of the
proposed architectures are presented. This algorithms are obtained based on a classical back-

propagation algorithm.

E.1 General learning algorithms

First of all, let us present the general rules to adapt the synaptic weights of the proposed
architecture, as already mentioned, this rules are based on the discrete time steepest descent
algorithm which is the most used in neural network.

where 1 =1,2,---,nn.

X(k+1) = X(k) — ng—)E(

Zu+ 1) = Za(k) —

2ok +1) = Z() =
Zalk+ 1) = Zu(k) — 5
Vin(k + 1) = Vi (k) — 7788731
Van(k +1) = Vou(k) — Uaavfh
Vi + 1) = Vi, (k) —ng—g
Vol 1) = Vi (8) = 52
Win; (k + 1) = Wi, (k) — Uaa/Ebhi
Wan; (k +1) = Wap, (k) — Ua‘ifhi
Wi,k + 1) = W () = n 50
W,k + 1) = Wa, (k) — 1 :Vii

71

(E.1)
(E.2)
(E.3)
(E.4)
(E.5)
(E.6)
(E.7)
(E.8)
(E.9)

(E.10)

(E.11)

(E.12)

Appendix E: Learning algorithms for the proposed architectures

In these general adaption rules, the partial derivatives define the adaptation algorithms of
each architecture. These partial derivatives are computed by the chain rule as follow:

OF OF Oe 0
X %8—?38—)((E.13)
OE OF Oe 04 OT
O—Zh = %B_QB_TB—Zh (E.14)
OE OE de 0§ OT
8—Z(, = %8_@878—&, (E.15)
OFE OF Oe 0y 0T
0Z, e 0§ 0T 0Z, (E.16)
0B _ 09 0y IT Oy (E.17)
OV, 0e 0y 0T Ory OV, '
OF _ OF Oe 0§ OT Ora (E.18)
WV, Oe 07 OT Org OV, '
OB _ 0B e 0) 0T o, (E.19)
Vi, e 04 OT Ory OV, '
OE OE de 0§ OT Or,
Wai = %@O—Ta—mavm (E.20)
9B _ 9B de 9 T 0 Ea1)
Bthi Oe 8@ orT 87“1, Bthi

0B H_E%@H_T rq (E 22)
8Wah de 0§ OT Orq OW g, '
OB 0E de 03 9T Ony. (5.23)
BWbi de By orT 87“1, 8Wb

oF — B_E@@B_T Orq (E.24)

OW,, _ e 0§ 0T Ory OW,,

As already mentioned, the learning rule for the adaptation of each synaptic weights of each
architecture, depends on the particular structure of a proposed neuro-model. Let us now present
the learning rules for the adaptation of the synaptic weights of the neural architectures presented
in this thesis.

E.2 FFH1 adaptation algorithms

X(k+1) = X(k)+ne(k)T (E.25)
Zn(k+1) = Zy(k) + ne(k) X (E.26)

Zy(k + 1) = Zy(k) + ne(k) Xry (E.27)
Zo(k +1) = Z,(k) + ne(k)Xr, (E.28)
Vi, (k + 1) = Vi, (k) + ne(k) X Zy tanh(J, Wy,) (E.29)
Vi, (k +1) = Vo, (k) + ne(k) X Z, tanh(Jy Wy,) (E.30)
Wy (k + 1) = Wy, (k) + ne(k) X Zy Vi, sech? (J,Wy,) Ju (E.31)
W, (k +1) = Wy, (k) + ne(k) X ZyVy, sech®(J;Wa,) J; (E.32)

72

Appendix E: Learning algorithms for the proposed architectures

E.3 FFH2 adaptation algorithms

X(k+1) = X(k) +ne(k)T
Zp (k) + ne(k) X

Zp(k+1) =

Zy(k +1) = Zy(k) + ne(k) Xtanh(ry)
Zo(k +1) = Zy(k) + ne(k) Xtanh(r,)
Vi, (k + 1) = V3. (k) + ne(k) X Zysech? (ry) J, W,
Vo, (k + 1) = Vo, (k) + ne(k) X Zgsech®(rq) JWa,
Wy, (k + 1) = Wy, (k) + ne(k)Xstech2(rb)V},iJu
W, (k+1) = Wy, (k) + ne(k)XZasech2(ra)Vai Jy

E.4 ARXH adaptation algorithms

X(k+1)=X(k) +ne(k)T
Zn(k) + ne(k) X

Zp(k+1) =

Zp(k + 1) = Zy(k) + ne(k)Xry

Zo(k+ 1) = Zy(k) + ne(k) Xr,

Vi, (k + 1) = Vi, (k) + ne(k) X Zy J, W,
Vo, (k 4+ 1) = Vy, (k) + ne(k) X Zg Jy W,

)
Wi (4 1) = Wi, (K) + 7e(K) X Z,Vi, o
Wai(k + 1) = Wa (k) + ne(k)XZaVaiJg)

E.5 NLARXH adaptation algorithms

X(k+1) = X(k) + ne(k) tanh(T)

Zn(k +1) = Zy(k) + ne(k) X sech?(T)

Zy(k + 1) = Zy(k) + ne(k) X sech?(T)ry

Zo(k 4+ 1) = Zy(k) + ne(k) X sech?(T)r,

Vi, (k + 1) = Vi, (k) + ne(k) X sech? (T) ZyJu W,
Vo, (k +1) = Vo, (k) + ne(k)X360h2 (1) Zo W,

Wb(k-i-) Wb
W, (k+1) = W,

(k) + ne(k) X sech® (T) Zy Vi, Ju
(

k) + ne(k) X sech*(T) ZoVa, 3

73

Appendix E: Learning algorithms for the proposed architectures

E.6 FF1 adaptation algorithms

X(k+1)=X(k)+ne(k)T (E.57)
Zy(k + 1) = Zy(k) + ne(k) Xy (E.58)
Zo(k +1) = Z,(k) + ne(k)Xrq (E.59)
Vi, (k + 1) = V3, (k) + ne(k) X Zy tanh(J, Wy,) (E.60)
Vai (k +1) = Vo, (k) + ne(k) X Z, tanh(J;Wq,) (E.61)
Wi, (k + 1) = Wa, (k) + ne(k) X Zy Vo, sech® (J,Ws,) J, (E.62)
W, (k + 1) = Wy, (k) + ne(k) X Z,Vy, sech? (J;Wy,) J; (E.63)

E.7 FF2 adaptation algorithms

X(k+1)=X(k)+ne(k)T (E.64)
Zy(k + 1) = Zy(k) + ne(k) X tanh(ry) (E.65)
Zo(k + 1) = Z,(k) + ne(k) Xtanh(ry) (E.66)
Vi, (k4 1) = Vi (k) + ne(k) X Zysech? (ry) J, W, (E.67)
Vo, (k + 1) = Vo, (k) + ne(k) X Zgsech®(rq) J;Wa, (E.68)
Wy, (k + 1) = Wy, (k) + ne(k) X Zysech? (ry) Vi, Ju (E.69)
W, (k +1) = Wy, (k) + ne(k) X Zysech? (ro) Va, Jy (E.70)

X(k+1) = X(k) +ne(k)T (E.71)
Zy(k + 1) = Zy(k) + ne(k) Xy (E.72)
Zo(k +1) = Z,(k) +ne(k)Xrq (E.73)
Vi, (5 + 1) = Vi (k) + ne(k) X Zy J W), (E.74)
Vi, (k + 1) = Vi, (k) + ne(k) X Zo J; W, (E.75)
Wy + 1) = Wi (k) + ne(k) X ZVi, /o (E.76)
W, (ki + 1) = Wa, (k) + ne(k) X ZyVa, Iy (E.77)

E.9 NLARX adaptation algorithms

X(k+1) = X(k) + ne(k) tanh(T")
Zy(k + 1) = Zy(k) + ne(k) X sech? (T)ry

Zo(k + 1) = Zy(k) + ne(k) X sech®(T)rq E.80
Vi, (B + 1)
Vo, (k + 1) = Vo, (k) + ne(k) X sech*(T) Zo JyWa, E.82

Wy, (k + 1) = Wy, (k) + ne(k) X sech?
Wa, (k +1) = W, (k) + ne(k) X sech?

) Zp Vi, Ju

(E.78)

(E.79)

(E.80)

= Vp, (k) + ne(k) X sech? (T) Zy Ju W, (E.81)
(E.82)

(E.83)

T)ZoVa, Jy ()

(T
(

74

Appendix E: Learning algorithms for the proposed architectures

E.10 FFHHI1 adaptation algorithms

X(k+1)=X(k)+ne(k)T
Zp(k + 1) = Zp(k) + ne(k) X
Zy(k +1) = Zy(k) + ne(k) Xy

Zo(k +1) = Za(k) + ne(k)Xrq
Vo (k + 1) = Vi (k) + ne(k) X Z,
Van(k + 1) = Von(k) + ne(k) X Z,
Vi, (k + 1) = Vi (k) + ne(k) X Zy tanh(J, Wy, + Wiy,
Vi, (k +1) = Vo, (k) + ne(k) X Zg tanh(Jy W, + Wap,)
Win, (k + 1) = Wi, (k) + ne(k) X Zy Vi, sech? (T, Wy, + Wi,
Wan, (k + 1) = Wap, (k) + ne(k) X Z,Va, sech® (JyWa, + Wan,)
Wy, (k + 1) = Wy, (k) + ne(k) X Zy Vi, sech® (T, Wy, + Wan,) Ju

W, (k +1) = Wy, (k) + ne(k) X Z,Va, sech®*(J;Wa, + Wan,)J;

FFHH2 adaptation algorithms

X(k+1) = X(k) +ne(k)T
Zp(k + 1) = Zy(k) + ne(k) X
Zy(k + 1) = Zy(k) + ne(k) X tanh(ry)

Zy(k+ 1) = Z,(k) + ne(k)X tanh(r,)
Vin(k + 1) = Vin (k) + ne(k) X Zysech? (ry)
Van(k + 1) = Vo (k) + ne(k) X Zysech®(r,)
Vi, (k + 1) = Vi, (k) + ne(k) X Zysech? (ry) J, Wi,
Vo, (k + 1) = Vo, (k) + ne(k) X Zgsech®(rq) Jy W,
Wi, (k + 1) = Wy, (k) + ne(k) X Zysech?(ry) Vi,
Wan, (k+1) = Wah (k) + ne(k) X Zysech? (rq)Va,
Wy, (k + 1) = Wy, (k) + ne(k) X Zysech? (1) Vi, Ju
W, (k + 1) = Wy, (k) + ne(k) X Zgsech® (rq)Va, Jj

7

75

Appendix E: Learning algorithms for the proposed architectures

E.12 ARXHH adaptation algorithms

X(k+1)=X(k)+ne(k)T

Zn(k +
Zy(k +
Zalk +

1) = Zn(k) + ne(k) X
1) = Zy(k) + ne(k) X
1) = Zo(k) + ne(k) Xrq

Vin(k + 1) = Vin (k) + ne(k) X Z,
Van(k +1) = Van(k) + ne(k) X Z,

Vbz(k + 1) = ‘/bz(k) + ne(k)XZbJqui
Vi, (+ 1) = Va (k) + ne(k) X Zy Jy W,

7

Wi, (k +1) = th (k) + ne(k) X Zp Vs,

Wan; (k+ 1) = Wap, (k) +ne(k) X Z,Vy,
Wi, (k+1) = () +ne(k) X Zp Vi, Ju
W, (k + 1) = We, (k) + ne(k) X Z,Va, Jy

E.13 NLARXHH adaptation algorithms

X(k+1)=
Zn(k+1) =
Zy(k+1) =

Zy(k+1) =

Von(k +1) =
Vah(k-l-l) =
%i(k_'_l) =

= X (k) + ne(k) tanh(T")

Z (k) + ne(k) X sech?(T)
Zy(k) + ne(k) X sech?(T)ry

= Z,(k) + ne(k)Xsech2 (T)r,

Vin (k) + ne(k) X sech®(T) Zy
Van (k) 4 ne(k) X sech? (T) Z,
Vi, (k) + ne(k) X sech? (T) Zy J, Wh,

Vo, (k + 1) = Va, (k) + ne(k) X sech*(T) Zo Jy W,

thi(k + 1)

Wahi(k + 1) =
Wbi(k + 1) =
= W,, (k) + ne(k) X sech®(T) ZVa, I

W, (k + 1)

= Wi, (k) + ne(k) X sech? (T) Zy Vi,

Wi, (k) + ne(k) X sech®(T) ZyVy, J,

Wan, (k) + ﬁe(k)Xé‘eChQ (1) Z4 Ve,

As already mentioned, the LM algorithm was implemented for estimation of the parameters

of the FFHH1 neuro-model.

76

Appendix E: Learning algorithms for the proposed architectures

E.14 FFHHI1 adaptation algorithms based on Levenberg-Marquardt

X(k+1)=X(k)+ [\ te(k)T ()
Zn(k+1) = Zn(k) + [N e(k)X ()
Zy(k +1) = Zy(k) + [N "e(k) X, ()
Zo(k +1) = Za(k) + [N " e(k) Xrq ()
Vin(k +1) = Vin (k) + [N\ "' e(k) X 2y (E.137)
Van(k +1) = Van (k) + [\ " e(k) X Z, (E.138)
Vi (k + 1) = Vi, (k) + [N~ e(k) X Zy tanh(J, Wy, + Wip,) (E.139)
Vi, (k +1) = Vo, (k) + [N e(k) X Z, tanh(JgWai + Wan,) ()
()

()

()

()

7

Win, (k + 1) = W,,h (k) + [Hw,, + N\ e(k) X ZyVi, sech?(J Wy, + Wy,) (E.141
Wan, (k + 1) = W, (k) + [Hw,, + N te(k) X Z,Vy, sech? (JyWa, + Wap,) (E.142
Wy, (k+1) = () + [Hw, + A te(k) X Zy Vi, sech®(J Wy, + Wi,)Juw (E.143
W, (k+1) = Wy, (k) + [Hw, + N te(k) X Zy Vi, sech?(JyWa, + Wan,)Jy (E.144

where:

e

= e(k)X ZyVisech?(Ju Wy, + Wiy (2 tanh(J, Wy + W) JE T, — 1) ()

(k)X ZoVasech? (J;Wa + Wap) (2tanh(JyWe + Wen)JE J; — 1) (E.146)
k)X ZyVy2sech? (J, Wy, + Wyy,) tanh(J, Wy, + Wyy,) ()
k)X Z,Vo2sech? (JyW, + Wyp) tanh(Jy W, + Wy, ()

Hth = ¢(
(

HWah =€

7

Appendix E: Learning algorithms for the proposed architectures

78

Appendix F

Learning rate adaptation 7

The learning rate or integration step size, plays an important role in the parameters adaptation
in particular the convergence speed of the algorithm. It should be pointed out that for the
discrete time steepest descent algorithm, n should be bounded in a small range, to nevertheless
ensure the stability of the algorithm. A small 7 means that the convergence to a solution is slow
while a large n means a faster convergence where oscillations may occur and stability may be
lost.

In order to improve the learning algorithm, different solutions for the adaptation of n have
been implemented in this work.

F.1 Search then convergence algorithm

Let us start with a modification of the “search then convergence algorithm” used in [23] is given
by (F.1).

1

n(n) = 1mo——="
1+ 2

where:

7o is the initial value of n proposed by the user.
k[] _ 10N

3
n=1,2,---,(N x) is the iteration increasing during all the training phase (all the epochs).

v=1,2,---,7* is a the number of epochs elapsed.
N is the number of data used for the neural network training.

v* is a “optimal” number of epochs required for the adaptation of the model parameters.

Every time that one epoch has elapsed 7y = n(y) and v =y + 1.

From (1.6) we can deduce that when n increases the value of the learning coefficient n(k)
decreases (see Fig. 1.8). It is desirable because at the beginning of the training the synaptic
weights are supposed far of their optimal values and they should be adapted as fast as possible
(n = no). When a period of time is over (k — (N X 7)) the synaptic weights are supposed
near their optimal values. Then, the parameters should be adapted slowly (n — 0) in order to
improve the convergence.

79

Appendix F: Learning rate adaptation 7

F.2 Heuristic rules

A different algorithm based on evaluation of the objective function each iteration is presented
in [18]. Here, the adaptation of the learning rate is based on the following heuristic rules:

e [f the objective function undergoes 4 consecutive reductions then:

n=mn+(0.1%n)

e If the objective function undergoes 2 consecutive combinations of one increase and one
reduction:

n=mn-—(0.1x%n)

80

Appendix G

Application of the proposed method
to the other models

Let us follow the proposed system identification procedure:

G.1 Model FF2

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model FF2: By selecting p3(z) = ¢1(2) = z and p3(z) = nonlinear in (4.1) we obtain:

§k) = XT (D
T = Zypa(rs) + Zaw2(ra)

nn

s = Z Vbz (JUWbi)
=1

Ta = Z Va; (JgWa,)
i=1

e Model computation: Let us follow the improved procedure:
Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows V;, (0) = V4, (0), Va, (0) = V4, (0), Wy, (0) = W, (0)
and W, (0) = Wy, (0) with j = 2,3, nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

81

Appendix G: Application of the proposed method to the other models

To train the equivalent model given by (G.2):

g(k) = XT

T = Zypa(rp) + Zatp2(ra)
rp =nn X Vy, (JuWp,)

rq = nn X Vq, (JgWa,)

with the synaptic weights computed as follows:
X(k+1)=X(k)+ne(k)T

Zb(k + 1) = Zb(k) + 776()Xtanh(rb)
Zo(k+1) = Z,(k) + ne(k) Xtanh(r,)

Vi, (k+1) = Vb, (k) + ne(k)XZb560h2

(G.2)

(rb)Jqul

Var (k + 1) = Vo, (k) + ne(k) X Zgsech? (rq) J;Wa,
Wy, (k + 1) = Wy, (k) + ne(k) X Zysech? (ry) Vi, Ju
W, (k + 1) = Wy, (k) + ne(k) X Zysech® (rq)Va, J;

Once the neural network model given by (G.1) is trained under these two assumptions,

we obtain:
g(k) = X*T
T = Zya(ry) + Zyp2(ra)
nn
= Vo (W)

1=1

ra = Va(JyWy)
=1

(G.3)

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptlc weights are: V' = Vb Vo, =V, Wy, = Wb*j and Wg, = Wy

with 7 =2,3,---,nn.

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: W, = W,
1 J

Vi = Vb s Wo, =W, and V) = Vo with j = 2,3,- -+, nn.

possible to make the following algebraic operations:

7= X* X 7}
Zh = X* X 7}
W, =Vy, x Wy,
W3 = Vi x W,

where W5 = Wl’g,]_ and Wi = W;;J_ (with j = 2,3,---
(Step 1).

Then, in (G.3) it is indeed

,nn) due to Assumption 2

82

Appendix G: Application of the proposed method to the other models

Then, the 2nn-2-1 neuro-model given by (G.3) becomes:

gk =T (G4
T = ZB(,OQ(T(;) + ZA‘P2(7”a)

nn

=y (JWE,)

=1

nn
Tq = Z (JQWZz)
=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.4) into a 2-1 representation by the following algebraic operations:

> (JuWg) =nnx (JJW5)
=1
nn
> (JyWi,) =nn x (J, W3)
=1
where:
Wi =W,
Wi =Wji,

The resulting model after the model transformation has the following mathematical

form:

§(k) = Zpp2(JuWg) + Zip2(JyW3) (G.5)

G.2 Model ARX

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model ARX: By selecting ¢3(2z) = p2(2) = ¢1(2) = z in (4.1) we obtain:

83

Appendix G: Application of the proposed method to the other models

e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows V;, (0) = V4, (0), Ve, (0) = V4, (0), Wy, (0) = W, (0)
and W, (0) = W, (0) with j = 2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.7):

§(k) = XT (G.7)
T = Zy(rp) + Zy(ra)

rp = nn X Vi, (JuWs,)

rq =nn X Vo, (JyWa,)

with the synaptic weights computed as follows:

X(k+1)=X(k)+ne(k)T

Zy(k +1) = Zp(k) + ne(k) Xy

Zo(k +1) = Zu(k) +ne(k)Xr,

Vo, (k + 1) = Vi, (k) + ne(k) X Zy J Wy,

(k4 1)
(k+1)
b (K + 1) = Wy, (k) + ne(k) X Z, Vi, Ju

Wo, (k + 1) = Wy, (k) + ne(k)XZaVaiJzi

(2

i = Val(k) + ne(k)XZaJQWai

S S

Once the neural network model given by (G.6) is trained under these two assumptions,
we obtain:

glk) = X*T (G.8)

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptlc weights are: V! = Vb Vo, =V Wy, = Wb*j and Wg, = Wy
with 7 = 2,3, -, nn.

84

Appendix G: Application of the proposed method to the other models

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy = Wb*;,
Vi = Vb , Wa, =Wg and V| =V with j = 2,3,---,nn. Then, in (G.8) it is indeed
possible to make the’ followmg algebralc operations:

Wg = X" X Zy x Vi x Wy

Wi =X" X Zy x Vg x Wy,

where Wg = ng and Wj = W;‘lj (with j = 2,3,---,nn) due to Assumption 2
(Step 1).

Then, the 2nn-2-1 neuro-model given by (G.8) becomes:

gk) =T (G.9)
T=ry+r,
nn
ry = (JJW5,)
=1
re =Y (J;Wi)
=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.9) into a 2-1 representation by the following algebraic operations:

nn

> (JuWg) =nn x (JLW5)

=1
nn
> (Wi, = nm x (JyW3)
=1
where:
Wi =W,
Wi =Wj,

The resulting model after the model transformation has the following mathematical
form:

§(k) = (JuWpg) + (J3W2) (G.10)

G.3 Model NLARX

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model NLARX: By selecting p2(z) = ¢1(2) = 2z and ¢3(z) = nonlinear in (4.1) we
obtain:

85

Appendix G: Application of the proposed method to the other models

§(k) = X3(T) (G.11)
T = Zy(rp) + Za(ra)
ry = Vo (JuWs,)
=1
ra =3 Va,(JyWa,)
=1

e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows V;, (0) = V4, (0), Ve, (0) = V4, (0), Wy, (0) = W, (0)
and W, (0) = W, (0) with j = 2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.12):

g(k) = X3(T) (G.12)
T = Zy(rp) + Zo(14)

rp = nn X Vi, (JuWhs,)

rq =nn X Vo, (JyWa,)

with the synaptic weights computed as follows:

X(k+1) = X(k) + ne(k) tanh(T)

Zy(k + 1) = Zy(k) + ne(k) X sech? (T)r,

Zo(k +1) = Zy(k) + ne(k) X sech®(T)r,

Vi, (k +1) = Vi, (k) + ne(k) X sech? (T) Zy Ju W,
Vo, (k + 1) = Vo, (k) + ne(k) X sech*(T) Zo JyWa,

Wi, (k + 1) = Wy, (k) + ne(k) X sech®(T) Zy Vi, J.
W, (k+1) = Wy, (k) + ne(k) X sech®(T)ZaVa; Iy

7

Once the neural network model given by (G.11) is trained under these two assump-
tions, we obtain:

(k) = X"p3(T) (G.13)

86

Appendix G: Application of the proposed method to the other models

Step

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptic weights are: V| = V};;_, Ve = Va*j, Wy, = Wb*j and Wy, = W;j
with 7 =2,3,---,nn.

2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: W = Wb*;,
Vi = Vb’;, Wk = W;j and V! = Va*; with j = 2,3,---,nn. Then, in (G.13) it is

a1
indeed possible to make the following algebraic operations:

W* = 7* * W
B; — Zb x ‘/bl x b;
W* = 7* * W

A, — Za X Vai X a;

where W5 = = ng and Wi = W;;J_ (with j = 2,3,---,nn) due to Assumption 2
(Step 1).

Then, the 2nn-2-1 neuro-model given by (G.13) becomes:

§(k) = X" p3(T) (G.14)
T=ry+r,
ry =Y (JW5,)

=1

roe =Y (JyWi)
=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.14) into a 2-1 representation by the following algebraic operations:

nn

> (LWg) =nnx (JJWE)
=1

> (Wi,) = nn x (J, W3)
=1

where:
Wi =W,
Wi =Wj,

The resulting model after the model transformation has the following mathematical
form:

§(k) = X7p3((JuWp) + (J5W2)) (G.15)

87

Appendix G: Application of the proposed method to the other models

G.4 Model FF2H

e Choice of model structure: The first step in the proposed system identification method

is to choose the activation functions according to Assumption 1.

Model FF2H: By selecting ¢3(z) = ¢1(2) = z and ¢3(2z) = nonlinear in (2.1) we obtain:

§(k) = XT
T = Zypa(re) + Zatp2(ra) + Zp
= Z Vo, (JuWp,)
=1

nn
ra =Y Vo, (JyWa,)

i=1
e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions

(G.16)

According to Assumption 2, the initial conditions of the synaptic weights are chosen

equals group by group as follows V;, (0) = V4, (0), Ve, (0) = V4, (0), Wy, (0)

and W, (0) = W, (0) with j = 2,3,---,nn.

= ij (0)

Then, the proposed neuro-model is trained following the computational cost reduction

approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.17):

g(k) = XT

T = Zypa(ry) + Zap2(ra) + Zn
rp = nn X Vi, (JuWy,)

rqe = nn x Vy, (JgWa,)

with the synaptic weights computed as follows:

X(k+1) = X(k) +ne(k)T

Zp(k +1) = Zy(k) + ne(k) X

Zy(k + 1) = Zy(k) + ne(k) X tanh(ry)
Zo(k+1) = Z,(k) + ne(k) Xtanh(r,)

Vi, (k +1) = Vi, (k) + ne(k) X Zysech? (ry) J, Wy,
Vo, (k+1) =V, (k) +ne(k)XZa;?echZ(7”,1)JgWa1
Wy, (k +1) = Wy, (k) + ne(k) X Zysech? (ry) Vo, Ju

Wa, (k+1) = W, (k) + ne(k)XZasech2(ra)Vang

(G.17)

Appendix G: Application of the proposed method to the other models

Once the neural network model given by (G.16) is trained under these two assump-
tions, we obtain:

(k) = X*T (G.18)
T = Zya(ry) + Zgp2(ra) + Zp,

nn

=1

ZV* (W)

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptlc weights are: V| = Vb Vo, =V, Wy, = Wb*j and Wy, = W5
with 7 = 2,3, -, nn.

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy = Wb*;,
Vo = Vb’;, wr W;j and V| = Va*; with j = 2,3,---,nn. Then, in (G.18) it is

a1
indeed possible to make the following algebraic operations:

H* = X* x Z}
Zhy = X* X Zf
74 = X*x 2}

Wi, = Vg x Wy,
W3 = Vi x W,

where Wg = ng and Wj = W;‘lj (with j = 2,3,---,nn) due to Assumption 2
(Step 1).

Then, the 2nn-2-1 neuro-model given by (G.18) becomes:

G(k) =T (G.19)
T = Zppa(ry) + Zhpa(re) + H

nn

Ty = Z (JuWEl)

=1

nn
Ta = Z (JQW:&)
=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.19) into a 2-1 representation by the following algebraic operations:

89

Appendix G: Application of the proposed method to the other models

nn

> (JuWE,) = nn x (JuW5)

=1
nn
> (JyWi,) =nn x (J, W3)
=1
where:
Wi =W,
Wi =Wj,

The resulting model after the model transformation has the following mathematical

form:

§(k) = Zpp2(JuWg) + Zhpa(J;Wh) + H (G.20)

G.5 Model ARXH

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model ARXH: By selecting ¢3(z) = p2(z) = ¢1(2) = z in (2.1) we obtain:

g(k) = XT (G.21)
T = Zy(rv) + Za(ra) + Zn

ry =Y Vo (JuWy,)

i=1
nn
Ta = Z Vai (J5Wa;)

1=1

~—

e Model computation: Let us follow the improved procedure:
Step 1.- Neural network training under particular assumptions
According to Assumption 2, the initial conditions of the synaptic weights are chosen

equals group by group as follows V;, (0) = V4, (0), Ve, (0) = V4, (0), Wy, (0) = W, (0)
and W, (0) = W, (0) with j = 2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

90

Appendix G: Application of the proposed method to the other models

To train the equivalent model given by (G.22):

g(k) = XT (G.22)
T = Zy(ry) + Zo(ra) + Zn

rp = nn X Vy, (JuWh,)

rq = nn X Vo, (JgWa,)

with the synaptic weights computed as follows:

X(k+1)=X(k)+ne(k)T
Zn(k+1) = Zy(k) + ne(k) X

Zy(k + 1) = Zy(k) + ne(k)Xry
Zo(k +1) = Zy(k) + ne(k)Xr,
Vo, (k + 1) = Vi, (k) + ne(k) X Zy Ju Wi,
Vi (k4 1) = Vo, (k) + ne(k) X Z, JyW,,

Wbi(k +) = Wbl(k) + ne(k)XZbei Ju
We,(k+1) = Wy, (k) + T]e(k)XZaVaiJg

(2

Once the neural network model given by (G.21) is trained under these two assump-
tions, we obtain:

(k) = X*T (G.23)
T = Zy(ry) + Z4(ra) + 2y

nn
Ty = Z VI:(JUWI:)

=1

nn
ra =3 Vi(JyWi)
i=1
Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptlc weights are: V' = Vb Vo, =V Wy, = Wb*j and Wg, = Wy
with 7 =2,3,---,nn.

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: W = Wb*;,
Vi = Vl;;v W, = W;j and V! = Va*; with j = 2,3,---,nn. Then, in (G.23) it is
indeed possible to make the following algebraic operations:

H* = X*x Zy
Wg =X X Zy x Vi x Wy
Wi, =X" X Zy x Vg x Wy,

where W5 = ng and Wi = W;;J_ (with j = 2,3,---,nn) due to Assumption 2
(Step 1).

91

Appendix G: Application of the proposed method to the other models

Then, the 2nn-2-1 neuro-model given by (G.23) becomes:

gk) =T (G.24)
T=ry+r,+H"
ry = (JW5,)

=1

Tq = Z (‘]Z}WZz)
=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.24) into a 2-1 representation by the following algebraic operations:

nn
> (LWE,) =nn x (JJWp)
=1
> (JgWi,) =nn x (Jy, W3)
=1
where:
Wi =W,
Wi =W3,

The resulting model after the model transformation has the following mathematical

form:

§(k) = (JuWp) + (JyW3) + H* (G.25)

G.6 Model NLARXH

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model NLARX: By selecting p2(z) = p1(2) = z and ¢3(z) = nonlinear in (2.1) we
obtain:

g(k) = Xp3(T) (G.26)
T = Z;;(?"b) + Za(Ta) + Zp,

nn
ry =Y Vo (JuWy,)

=1
nn

Ta = Z Vo, (JyWa,)

=1

e Model computation: Let us follow the improved procedure:

92

Appendix G: Application of the proposed method to the other models

Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows V;, (0) = V4, (0), Vg, (0) = V4, (0), W;, (0) = W, (0)
and Wy, (0) = Wy, (0) with j =2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.27):

g(k) = X3(T) (G.27)
T = Zy(ry) + Za(ra) + Zp,

rp = nn X Vy, (Ju,Wp,)

rq = nn X Vo, (JgWa,)

with the synaptic weights computed as follows:

X(k+1) = X(k) + ne(k) tanh(T)
Zn(k +1) = Zy(k) + ne(k) X sech?(T)
Zy(k + 1) = Zy(k) + ne(k) X sech? (T)ry

Zo(k +1) = Zy(k) + ne(k) X sech®(T)r,
Vi, (k + 1) = Vi, (k) + ne(k) X sech®(T) ZyJ, W,
Vo, (k + 1) = Vo, (k) + ne(k) X sech® (T) Zo JyW,

Wi, (k + 1) = Wa, (k) + ne(k) X sech® (T) Zy Vs, Ju
W, (k + 1) = Wy, (k) + ne(k) X sech? (T) ZoVa, J

7

Once the neural network model given by (G.26) is trained under these two assump-

tions, we obtain:

g(k) = X" p3(T) (G.28)
T = Z;(ry) + Z:(ra) + Z}

nn

= Vo (JWy)

=1

ra—ZV* (JWa)

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptlc weights are: V! = Vb Vo, =V, Wy, = Wg‘j and Wy, = W,
with 7 =2,3,---,nn.

93

Appendix G: Application of the proposed method to the other models

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy = Wb*;,
Vi = Vb’;, Wr = W;j and V;, = Va*j with 5 = 2,3,---,nn. Then, in (G.28) it is

a1
indeed possible to make the following algebraic operations:

H* =27}
W5 =2y x Vi x Wy
Wi, =2, x Vg, x Wg,

where W5 = Wl’g,]_ and Wi = W;;J_ (with j = 2,3,---,nn) due to Assumption 2
(Step 1).

Then, the 2nn-2-1 neuro-model given by (G.28) becomes:

§(k) = X"p3(T) (G.29)
T=ry+r,+H*

nn

Ty = Z (JuWEl)

1=1

ra=Y_(J3W4)
=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.29) into a 2-1 representation by the following algebraic operations:

in: (JuWEZ) =nn X (J,Wp)
i=1
i”: (JgW},) =nn x (Jy, W)
i=1

where:
Wi =Wg,
Wi=Wj

The resulting model after the model transformation has the following mathematical
form:

§(k) = X" o3((JuWp) + (JyWa) + HY) (G.30)

94

Appendix G: Application of the proposed method to the other models

G.7 Model FF2HH

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model FF2HH: By selecting p3(z) = ¢1(2) = z and @2(z) = nonlinear in (4.14) we
obtain:

g(k) = XT (G.31)
T = Zyoa(rp) + Zapa(ra) + Zn

~—

nn
ry=Von + > Vo, (JuWs, + Win,)
i=1

nn
ra =Van + Y Vi (J3Wa, + Wan,)
i=1

e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions

According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group, for this architecture that is: W, (0) = W,,(0), Wy, (0) =
W, (0), Vi (0) = Vi, (0), Vi, (0) = Vi, (0), Wi (0) = Wiy, (0) and Wi, (0) = W, (0)
with 7 =2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.32):

g(k) = XT (G.32)
T = Zypa(rp) + Zap2(ra) + Zn

7y = Vo +nn x Vi, (JuWs, + Wi,)

rq = Van +nn x Vo, (JgWa, + Wap,)

with the synaptic weights computed as follows:

X(k+1)=X(k)+ne(k)T

Zn(k+1) = Zp(k) + ne(k) X

Zy(k + 1) = Zy(k) + ne(k)X tanh(ry)
Zo(k+1) = Z,(k) + ne(k)X tanh(r,)

95

Appendix G: Application of the proposed method to the other models

Step

Vin(k + 1) = Vi (k) + ne(k) X Zysech?(ry)

Van(k 4 1) = Vop (k) + ne(k) X Zysech?(r,)

Vi, (k 4+ 1) = Vi, (k) + ne(k) X Zysech? (ry) Ju Wi,
Vo, (k + 1) = Vy, (k) + ne(k) X Zysech® (rq) Jy W,
Wi, (k + 1) = Wi, (k) + ne(k) X Zysech? (ry) Vi,
Wan, (k + 1) = Wap. (k) + ne(k) X Zgsech?(rq) Va,
Wy, (k + 1) = Wy, (k) + ne(k) X Zysech®(ry) Vi, Ju

Wy
W, (k + 1) = Wy, (k) + ne(k) X Zgsech? (rq) Vo, Jg

Once the neural network model given by (G.31) is trained under these two assump-
tions, we obtain:

(k) = X*T (G.33)
T = Zya(ry) + Zyp2(ra) + 25,

nn

ry = Vi + > Vi (L5, + Wi,
=1

Tq = Va*h -+ Z Va*i (JgW(;kl -+ ;h,z)

=1

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptic weights are: Wy, = Wb*;, Vi, = Vbj,, Wy, = Wb*hjv Wy, = W;j,
Ve, = Va*; and Wp, = W:h]_ with 7 =2,3,---,nn.

2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy = Wb*;,
Vi, = Vbj,, Wy, = Wb*hj, Wy = WJJ_, Vi = Va*j and Wp, = W;hj with 7 =

2,3,--+-,nn. Then, in (G.33) it is indeed possible to make the following algebraic
operations:

H* = X* X Z}
Zhy = X* X I
74 = X*x 2}

Wi, = Vi < W
Wi = Vi x W
Wiy, = Vi, X Wi,
Wi, = Va X Wa,

where W, = Wi, Wi = Wi, Wiy, = Wiy and Wi, = Wi, (with j =
2,3,--+,nn) due to Assumption 2 (Step 1).

Then, the 2nn-2-1 neuro-model given by (G.33) becomes:

96

Appendix G: Application of the proposed method to the other models

gk =T (G.34)
= Zpp2(re) + Zapa(re) + H

ry=Vih + Y (JuWh + W)

i=1
nn
ra = Vo + > (JiWh + Wiy,
i=1
A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.34) into a 2-1 representation by the following algebraic operations:

Vi + O (W, + Wiy) = Vi + (nm x (LW + Wiy,))

1=1
nn
Y (Wi + Wig,) = Vi, + (nn < (JyW5 + Wig,))
=1
where:
Wg = W,’;l
Wi = W;‘h

The resulting model after the model transformation has the following mathematical

form:
G(k) = Zpoo(J W5 +Wiy) + Zhoe(JyWi + Wiy) + H (G.35)
with:

WE'H = Vin + WE'Hl
Wing = Van + Wig,

G.8 Model ARXHH
e Choice of model structure: The first step in the proposed system identification method

is to choose the activation functions according to Assumption 1.

Model ARXH: By selecting p3(z) = ¢2(2) = ¢1(2) = 2z in (4.14) we obtain:

(k) = XT (G.36)
T = Zyry + Zgre + Zp,

nn
ry=Von + > Vo, (Ju Wy, + Win,)
i=1

~—

ra =Van + Y Va, (JsWa, + Wan,)

=1

97

Appendix G: Application of the proposed method to the other models

e Model computation: Let us follow the improved procedure:

Step 1.- Neural network training under particular assumptions
According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows W, (0) = W, (0), W, (0) = W, (0), V4, (0) = V4, (0),
Va, (0) = Va]. (0), Whh, (0) = thj (0) and Wan, (0) = Wahj (0) with 7 =2,3,---,nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.37):

g(k) = XT (G.37)
T = Zyry + Zgre + Zp,

ry = Vo +nn x Vi, (JuWe, + Wep,)

rq = Van +nn x Vo, (JgWa, + Wap,)

with the synaptic weights computed as follows:

X(k+1)=X(k)+ne(k)T

Zp(k + 1) = Zp(k) +ne(k) X
Zy(k +1) = Zy(k) + ne(k) Xy

Zo(k +1) = Zo(k) + ne(k) X,
Vo (k + 1) = Vin(k) + ne(k) X Z,
Van(k +1) = Van(k) + ne(k) X Z,
Vo (k +1) = Vi, (k) + ne(k) X Zy Ju W,
Va, (k+1) = Vo, (k) +ne(k) X Zy JyW,,

Wi, (k + 1) = Wy, (k) + ne(k) X Zy Vs,

Won, (k + 1) = Wep, (k) + ne(k) X ZgVa,
Wy, (k+ 1) = Wy, (k) + ne(k) X Zy Vi, J,
W, (k + 1) = Wq, (k) + ne(k) X ZyVa, Jy

Once the neural network model given by (G.36) is trained under these two assump-
tions, we obtain:

g(k) = X*T (G.38)
T =2Zyro+ Z,re + Zp,

nn
ry = Vi + Y Vi (JuWy + Wi,
=1

nn
= Vo > Ve (lWer, + W)
i=1

98

Appendix G: Application of the proposed method to the other models

Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final

values of the synaptic weights are: W, = Wb*;, Vi = V};;_, Wi, = Wb*hj, W,

Vo, =V, and W, =W,

ah;

with 7 =2,3,---,nn.

Step 2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: Wy

_ *
=Wy,

— *
= Wy,

Vi, = Vbj,, Wy, = Wb*hj, Wy = WJJ_, V) = Va*j and Wg, = W;hj with j =
2,3,---,nn. Then, in (G.38) it is indeed possible to make the following algebraic

operations:

Zy =X"x 17}

Vi = X* X 2 x Vi,

Vig =X*"xZ; x V3

Wiy, = X" X Zy x Vi x Wy,
Wip, = X" X Zg X Vi x W
Wg, =X" X Zg x Vi x Wy
Wi, =X X Zg x Vi x Wy,

where W5 = Wl’g,]_, Wi = WZ]_, Wig, = W;;Hj and Wiy = W;;H]_ (with j =

2,3,--+,nn) due to Assumption 2 (Step 1).

Then, the 2nn-2-1 neuro-model given by (G.38) becomes:

=1
nn

ro =Vig + Y (JiWh +Wig,)

=1

(G.39)

A supplementary transformation is achieved in order to change the redefined 2nn-1

model (G.39) into a 2-1 representation by the following algebraic operations:

Vg + > (JWi, +Wiy) = Vig + (nn x (LWh + Wiy,))
=1

Vig + Y (Wi, + Wig) = Vig + (nn x (Jy, Wi + Whp,))

=1
where:

Wg =Wg,
Wi=W}

99

Appendix G: Application of the proposed method to the other models

The resulting model after the model transformation has the following mathematical

form:

4(k) = (JuWg) + (J;W3) + H (G.40)
with:

H* = Z}fl + VEH + VA*H + (nn X (VVBH1 + WAHI))-

G.9 Model NLARXHH

e Choice of model structure: The first step in the proposed system identification method
is to choose the activation functions according to Assumption 1.

Model NLARX: By selecting p2(2) = ¢1(2) = 2z and ¢3(2) = nonlinear in (4.14) we
obtain:

(k) = Xp3(T) (G.41)
T = Z;;(?"b) + Za(Ta) + Zp

nn
ry=Von + > Vo, (JuWh, + Won,)

i=1

ra =Van + Y Vi (J3Wa, + Wan,)

i=1
e Model computation: Let us follow the improved procedure:
Step 1.- Neural network training under particular assumptions
According to Assumption 2, the initial conditions of the synaptic weights are chosen
equals group by group as follows W, (0) = W, (0), W, (0) = Wy, (0), V4, (0) = V4, (0),

Va1 (0) = Vaj (0), thl (0) = thj (0) and Wah1 (0) = Wahj (0) Withj = 2, 3, e, nn.

Then, the proposed neuro-model is trained following the computational cost reduction
approach presented in the proof of Theorem 2, that is:

To train the equivalent model given by (G.42):

§(k) = Xo3(T) (G.42)
T = Zb(rb) + Za(ra) + Zp,

rp = Von, +nn X Vi, (Ju Wy, + Whp,)

rq = Von +nn X Vai(JgWai + Wahi)

with the synaptic weights computed as follows:

100

Appendix G: Application of the proposed method to the other models

Step

X(k+1) = X(k) + ne(k) tanh(7T)

Zn(k +1) = Zy,(k) + ne(k) X sech®(T)

Zy(k + 1) = Zy(k) + ne(k) X sech? (T)ry

Zo(k + 1) = Zy(k) + ne(k) X sech®(T)r,

Vin(k + 1) = Vin (k) + ne(k) X sech®(T) Zy

Van(k + 1) = Vo (k) + ne(k) X sech®(T) Z,

Vi, (k + 1) = Vi, (k) + ne(k) X sech® (T) ZyJ, W,
Vo, (k + 1) = Va, (k) + ne(k) X sech*(T) Zo JyWa,
Win, (k + 1) = W, (k) + ne(k) X sech® (T) Zy Vs,
Wan, (k + 1) = Wan, (k) + ne(k) X sech®(T) ZoVa,
Wy, (k + 1) = Wy, (k) + ne(k) X sech®(T) Zy Vi, J.,
W, (k + 1) = Wy, (k) + ne(k) X sech? (T) ZoVa, J

) =
) =

i

Once the neural network model given by (G.41) is trained under these two assump-
tions, we obtain:

§(k) = X*p3(T) (G.43)
T = Zy(ro) + Zo(ra) + Z,

nn
ro = Vpp + Z Vi (JuWy, + Wi,)
i—1

nn
ra = Vo + 2 Ve (JyWe + W)
i=1
Since the initial conditions of the synaptic weights are chosen equals group by group
(see Assumption 2), and each group is trained by the same adaptation rule, the final
values of the synaptic weights are: Wy, = Wb*;, Vi = V};;_, Wi, = Wb*hj, Wy, = W;j,
V= Va*]_ and W, = W;hj with 7 =2,3,---,nn.

2.- Model transformation

According to Theorem 1, the final values of the synaptic weights are: W = Wb*;,
Vi = V;;;_, Wy, = Wb*hj, Wg = Wa, Vi, =V, and W, = ;h]_ with 7 =
2,3,---,nn. Then, in (G.43) it is indeed possible to make the following algebraic
operations:

Ve = Zy x Vi,

VXH = Z; x a*h

Wi, = 25 % Vit x Wy,
Wiy, = Zi x Vi x Wiy,
Wi, =2 x Vi x W,
Wi = Zr x Vi x W,

where Wi, = Wi, Wi, = Wi, Wiy, = Wiy and Wiy, = Wiy (with j =
2,3,--+,nn) due to Assumption 2 (Step 1).

101

Appendix G: Application of the proposed method to the other models

Then, the 2nn-2-1 neuro-model given by (G.43) becomes:

(k) = X"p3(T) (G.44)

T=ry+re+ Zp

nn

= Viu + Y (JuWh, + Whi,)
i=1

nn
T =Viy + Z (JyWa, + Wag,)

=1

A supplementary transformation is achieved in order to change the redefined 2nn-1
model (G.44) into a 2-1 representation by the following algebraic operations:

Vin + > (JWg, + W) = Vi + (nn x (W5 + Why,))
=1

Vin + > (JyWi, + Wig,) = Vig + (nn x (Wi + Wig,))

1=1
where:
* *
WB - WBl
* *
WA - WA1

The resulting model after the model transformation has the following mathematical

form:

9(k) = X" o3((JuWp) + (JyWa) + HY) (G.45)

with:

H* = Zy + Vg -I—WEHl + Vag + VVZH1

102

Appendix H

A different way to see the

contributions

In Chapter 2, three different neural networks were presented. A 2nn-2-1 architecture (Fig. 2.1),
a 2-2-1 architecture (Fig. 2.3) and a 2-1 neural network (Fig. 2.2). Following Theorem 1 and
Theorem 2, an efficient system identification method is proposed in Chapter 4. The models
derived by this method have the accuracy of the 2nn-2-1 architecture, the complexity of the 2-1
neural network and the computational bulk of the 2-2-1 architecture.

According to the system identification method, the idea is the following:

First, we propose a neural network architecture, more precisely we propose a 2nn-2-1 neural
network with the activation functions according to Assumption 1 and the initial conditions of
the synaptic weights according to Assumption 2.

Let us take for this example the FF1 model given by (H.1) presented in Chapter 4.

§(k) = XT (H.1)
T = Zyry + Zgr,,

nn

Ty = Z ‘/biSOI(JUWbi)

1=1

Ta = Z VaiSOI(JQWai)

1=1

This model satisfies Assumption 1. Now, following the method proposed in Chapter 4 we
establish the initial conditions according to Assumption 2. Classically, the synaptic weights are

computed as follows.

Wy, (k+1) =W,
W, (k+1)

with¢=1,---,nn.

X (k) + ne(k)T (H.2)
Zy(k) + ne(k)Xry (H.3)
Zo(k) +ne(k)Xr, (H.4)
Vi, (k) + ne(k) X Zy, tanh (J, Wy,) (H.5)
Va, (k) + ne(k) X Z, tanh(J;W,,) (H.6)

k) + ne(k) X Zy Vi, sech® (J Wy,) J (H.7)
W, (k) + ne(k) X ZyVa, sech? (J;Wa,) J; (H.8)

103

Appendix H: A different way to see the contributions

Once the neural network is trained, we obtain the following model:

J(k) = X*T (H.9)
T = Z;(T‘b + Z;T‘a

nn
ry =Y Vi1 (L)

i=1
nn
ra =Y Voo (;Wy)
i=1
where the final values of the synaptic weights after the training are: V' = Vbj_, Ve = Va*;,

Wy, = Wb*; and W;, = W;j with 7 =2,3,---,nn.

From this result an idea arises, that is, to adapt Vj,, Vi, W}, and W, only one time.
According to the above the synaptic weights are adapted as follows:

X(k+1)=X(k)+ne(k)T (H.10)
Zy(k + 1) = Zy(k) + ne(k) Xry (H.11)
Zo(k+1) = Z,(k) + ne(k)Xr, (H.12)
Vo, (k + 1) =V, (k) + ne(k) X Zy tanh(J, Wy,) (H.13)
Vo, (b +1) = Vg, (k) + ne(k) X Z, tanh(J;Wy,) (H.14)
Wi, (s + 1) = Wa, (5) + (k)X Z Vi, sech?(J, Wi,) T (H.15)
W, (k + 1) = Wa, (k) + ne(k) X Z, Vy, sech® (J; W,) J; (H.16)
and the model (H.1) should be redefined:
g(k) = XT (H.17)

T = Zyry + Zgrg

nn
Ty = Z Vbl()ol(‘]qul)
=1
nn

Tq = Z Va1 (JQWm)
=1

Notice that, since the arguments of the sums are the same, i.e.

nn
Ty = Z ‘/bl(‘pl(JUWbl)
=1

Ta = Z Varp1(JyWa,)

=1

this model (H.17) can be redefined again as:

104

Appendix H: A different way to see the contributions

(k) = XT (H.18)
T = Zyry + Zgrg

rp = nn X Vi, 01 (JuWp,)

rq = nn X Vo, 01(JgWa,)

Once this neural network is trained we have:

g(k) = X*T (H.19)
T = Z;;Tb + Z;Ta

ry = nn X Vo1 (JuWy)

rq =nn x Vg o1(JgWy))

Following Theorem 1 this model becomes:

g(k) = V1 (JuWp) + Vapr (3 W3) (H.20)

From these model transformations different questions may arise.
Why do not to train directly the model (H.20)?

Complete experiments developed in Chapter 5 shown that if we train directly the 2-1 model
(H.20) we do not reach the same accuracy as when the 2nn-2-1 neuro-model (H.1) is trained.
This is somehow natural, is well known in neural network theory that more neurons lead a better
accuracy.

On the contrary, if we start training the 2-2-1 neural network depicted in Fig. 2.3, and we
improve the adaptation algorithms by the introduction of the parameter nn, then it is possible to
reach the same accuracy as the one achieved by training first the complex 2nn-2-1 architecture.

Notice that, this parameter nn comes from the complex 2nn — 2 — 1 neural network archi-
tecture.

In order to demonstrate the above mentioned, let us take the 2-2-1 architecture corresponding
to the FF1 model:

g(k) =XT (H.21)
T = Zyry + Zgrq

ry = Vo, 01 (JuWhs,)

Ta = Val‘Pl(Jg}Wal)

The learning algorithms for the adaptation of the synaptic weights of such model are:

X(k+1) = X(k) +ne(k)T (H.22)
Zy(k + 1) = Zy(k) + ne(k)Xry (H.23)

105

Appendix H: A different way to see the contributions

Zo(k+1) = Zy(k) + ne(k)Xr, ()
Vo (b +1) = Vbl(k) + ne(k) X Zy tanh(J, Wy,) (H.25)
Vi (k + 1) = Vo, (k) +ne(k) X Z, tanh(J; Wy,) (H.26)
Wy, (k + 1) = Wy, (k) + ne(k) X Zy Vi, sech? (T, Wy,) Jy ()
Wa, (k + 1) = Wa, (k) + ne(k) X ZoVa, sech®(J;Wa,) Jy (H.28)

Notice that the adaption algorithms of the model (H.21) and (H.18) are the same. Never-
theless, both models are different and therefore the accuracy reached is not the same.

In order to reach the same accuracy we have to introduce the parameter nn (named number
of neurons) to the model (H.21). Then the model given by (H.21) becomes (H.18).

Notice that, trained in a classical way the parameters of the model (H.18) should be computed
as follows:

X(k+1) = X(k) +ne(k)T ()
Zy(k + 1) = Zy(k) + ne(k) Xy (H.30)
Zo(k +1) = Zy(k) + ne(k) X7 ()
Vi, (k + 1) =V, (k) + ne(k)nnX Zy tanh(J, Wy,) (H.32)
Va (K + 1) = Vo, (k) + ne(k)nnX Z, tanh(Jy W,) ()
Wy, (k + 1) = Wy, (k) + ne(k)nnX ZyVy, sech? (J Wy,) Ju (H.34)
W, (k + 1) = Wy, (k) + ne(k)nnX Z,Vy, sech®(J;Wa,) J; (H.35)

We can see that, the algorithms (H.25), (H.26), (H.27) and (H.28) are different (see nn)
to the algorithms (H.32), (H.33), (H.34) and (H.35), hence the accuracy of the estimation is
different.

From these reflexions, we can conclude that we can reach the same accuracy as the 2nn-2-
1 model of Fig. 2.1 by training directly the 2-2-1 neural network of Fig. (2.3) if we add the
parameter nn (number of neurons) to the model given by (H.21) and we compute the parameters
of such model according to (H.22), (H.23), (H.24), (H.25), (H.26), (H.27) and (H.28). In fact, we
add the parameter nn to the model and we develop the learning algorithms as if the parameter
does not exist.

Here it is interesting to notice that, we can see the main contributions of this thesis in two
different ways:

1) As presented in Chapter 4, that is, a model complexity and computational cost reduction
procedures, where we start with a complex 2nn-2-1 neural network architecture (Fig. 2.1),
and then, thanks to Assumption 1 and Assumption 2 we can reduce both the complexity
and the computational cost.

2) As presented in this appendix, that is, a 2-2-1 architecture (Fig. 2.3) with an optimized
learning algorithm (to add the parameter nn to the model and develop the learning algo-
rithms as if the parameter does not exist).

106

Appendix I

Model reduction: generalization

The main contributions of this thesis were presented in Chapter 3. The proposed model complex-
ity reduction approach allows us to reduce the number of parameters of a 2nn-2-1 architecture
into the number of parameters of a 2-1 neural network. A computational cost reduction ap-
proach, allows us to reduce the computational bulk required to train a 2nn-2-1 architecture into
the one required to train a 2-2-1 neural network.

Notice that, these contributions are presented as theorems, which are defined based on a
particular architecture proposed in this thesis. In this section, these theorems are generalized
in order to be applicable for a more general type of neural network architecture, i. e. the three
layers perceptron presented in [6], depicted in Fig. 1.1 with the mathematical representation
given by (I.1).

Input | Hidden P Hidden P Output
pattern layer ; layer ; layer

Figure 1.1: Multilayer perceptron of Narendra.

107

Appendix [: Model reduction: generalization

Y= f3, (

B
Il <
—

(wlngk)> (I.1)

P
2h = fog | D (w}‘;,ivi)>
i=1
n
vi = fii (wijus)
j=1
with j =1,---,nand [=1,---,m, where n is the number of inputs, p is the number of neurons

in the first hidden layer, ¢ is the number of neurons in the second hidden layer and m is the
number of outputs.

I[.1 Validity assumptions for the generalized model reduction
approach

As same as for Theorem 1 and Theorem 2, two simple assumptions whose purpose is to achieve
two design conditions should be satisfied. The first one is a neural architecture design condition
and the second one is a training design condition. The reader shall notice that Assumption 4,
represents the originality of this work.

Assumption 3: All the activation functions of each layer of the neural network should be
chosen equals, that is, f1,1(T) = fix(T), with k =2,---,p, fo1(T) = fo; with | =2,---,¢q and
f3.1(T) = f3;(T) with j =2,---,m in Fig. L.1.

Notice that, p is the number of neurons in the first hidden layer, ¢ is the number of neurons
in the second hidden layer and m is the number of outputs.

Assumption 4: The designer should select the initial condition of the synaptic weights equals
group by group, i. e., wij(O) = wil’j(O), withi =2,---,pand j = 1,---,n, wil(O) = w,%yi(O),
withi=1,---,pand k=1,---,q, wil(O) :wik(O), withk=2,---,gand [=1,---,m.

I.2 Generalized model complexity reduction approach

Theorem 3: Consider the neural network whose architecture n-p-q-m is expressed in (I.1) and
depicted in Fig. 1.1, if Assumptions 3 and 4 are fulfilled, then such neural network can be
reduced into a n-1-1-m equivalent architecture (see Fig. 1.2).

Proof. Let us consider the architecture of Fig. 1.1 corresponding to a three layers neural
network, with the input-output mapping given by (I.1). For better understanding we decide to
divide the model transformation in the two following steps.

Step 1.- Neural network training under the proposed assumptions.

The activation functions of the neural network model given by (I.1) are chosen according to
Assumption 3. Then (I.1) becomes:

108

Appendix [: Model reduction: generalization

Input | Hidden | Hidden | | Output
pattern | layer | layer | layer

— — — —) — — —) — — —

Figure 1.2: Reduced multilayer perceptron of Narendra.

Y= f31 <Z (w?kzk)> (I1.2)
k=

The initial condition of the synaptic weights are chosen according to Assumption 4.

Notice that, by choosing the initial condition according to Assumption 4, all the neurons of
the first hidden layer receive the same inputs:

n

vi = f11 Z (wr juj) (1.3)

j=1
with ¢ = 1,-- -, p, therefore, the outputs of the neurons of the first hidden layer are the same:
v] = v; (L.4)

Following the same idea, we can deduce that the outputs of the neurons of the second hidden
layer are equals:

21 = Zk (1.5)
where k£ = 2,---,¢. Finally this output is weighted by the different synaptic weights of the
outputs neurons in order to generate the different outputs of the neural network:

y = fs1 (w)121)

where [= 2,---,m. Since the initial conditions of the synaptic weights are set according to
Assumption 4 and it has been shown that all the neurons in the hidden layers receive the same
inputs, we can deduce that the final values of the synaptic weights are equals group by group, i.

e.,w%*j:wil’;,withi:2,---,pandj:1,---,n,wi*1:w,%*i,withi:1,---,pandk:1,---,q,
w?,*i:wi’,‘c, withk=2,---,gandl =1,---,m.

109

Appendix [: Model reduction: generalization

Step 2.- Model transformation.

Once the neural network model given by (I.2) is trained under these two assumptions, we
obtain:

g
= f31 <Z W}k 2k) (1.6)

k=1
p
2 = f21 <Z (wii“ivi)) (L7)
i=1
n
vi = f11 Z (wil”;u]-) (L.8)
i=1
Since wi*; = ”, withi=2,---,pand j =1,---,n (I.8) can be redefined as:
n
v =v; = f11 (w%j}uy) (L.9)
j=1

and (L.7) becomes:

P
2 = f2,1 <Z (wﬁfm)) (1.10)

=1

Since w%*l = w* Gywithi=1,---,pand k=1,---,4q, (I.10) becomes:
P
Z1 =2 = f2,1 (Z (’w%ﬁ’vﬂ) = f271 (p X (wi*lvl)) (Ill)
i=1
Since wf’j = wl?’jw with k=2,---,gand [=1,---,m, (1.6) becomes:

q
Y= J3a <Z wiiz1) = f31 (g % (w}iz1)) (L12)
k=1

Finally we have transformed the n-p-g-m model given by (1.2) into the following reduced
model:

= f31 (g x (w?jzl)) (L.13)
z1 = fa1 (P X (w%,*ﬂ)l))
v1 = f1,1 ((wi¥uy)
j=1

This completes the proof. g

Remark 5: As well as for Theorem 1, the non reduced n-p-q-m model (I.2) and the reduced
n-1-1-m model (I.13) are equivalents, therefore the reduced model keeps the same accuracy as
the complex one.

110

IDENTIFICATION DE SYSTEMES UTILISANT LES RESEAUX DE NEURONES: UN
COMPROMIS ENTRE PRECISION, COMPLEXITE ET CHARGE DE CALCULS.

RESUME : Ce rapport porte sur le sujet de recherche de l'identification boite noire des
systémes non linéaires. Parmi toutes les techniques nombreuses et variées développées dans
ce domaine de recherche ces derniéres décennies, il semble toujours intéressant d'étudier
I'approche réseau de neurones dans I'estimation de modéles de systémes complexes. Méme si
des modeéles précis ont été obtenus, les principaux inconvénients de ces techniques restent le
grand nombre de parametres nécessaire et, en conséquence, le colt important de calcul pour
obtenir en pratique, le niveau de précision requis du modele estimé. Par conséquent, motivés
pour remédier a ces inconvénients, nous proposons une méthodologie compléte et efficace
d'identification de systémes non linéaires offrant un équilibre quasi optimal entre précision,
complexité et colt, en proposant, d'une part, de nouvelles structures de réseaux de neurones
particulierement adaptées a une utilisation trés large en matiére de modélisation systémes non
linéaires, et d'autre part, une simple et efficace technique de réduction de modele, et, enfin, une
procédure de réduction du colt de calcul. Il est important de noter que ces deux derniéres
techniques de réduction peuvent étre appliquées a une trés large gamme d'architectures de
réseaux de neurones sous deux simples hypothéses spécifiques qui ne sont pas du tout
contraignantes ni restrictives en pratique. Enfin, la derniere contribution importante de ce travalil
est d'avoir montré que cette phase d'estimation peut étre obtenue dans un cadre robuste si la
qualité des données d'identification le nécessite. Afin de valider la procédure d'identification
proposée, des exemples d'application en simulation et sur un procédé réel, ont permis de
valider de maniére satisfaisante les propositions de cette thése, confirmant tout l'intérét de ce
travail.

Mots clés : identification de systéme, modeéles boite-noire, non linéaire, réseaux de neurones,
estimation robuste.

SYSTEM IDENTIFICATION USING NEURAL NETWORKS: A BALANCED ACCURACY,
COMPLEXITY AND COMPUTATIONAL COST APPROACH.

ABSTRACT: This report concerns the research topic of black box nonlinear system
identification. In effect, among all the various and numerous techniques developed in this field
of research these last decades, it seems still interesting to investigate the neural network
approach in complex system model estimation. Even if accurate models have been derived, the
main drawbacks of these techniques remain the large number of parameters required and, as a
consequence, the important computational cost necessary to obtain the convenient level of the
model accuracy desired. Hence, motivated to address these drawbacks, we achieved a
complete and efficient system identification methodology providing balanced accuracy,
complexity and cost models by proposing, firstly, new neural network structures particularly
adapted to a very wide use in practical nonlinear system modeling, secondly, a simple and
efficient model reduction technique, and, thirdly, a computational cost reduction procedure. It is
important to notice that these last two reduction techniques can be applied to a very large range
of neural network architectures under two simple specific assumptions which are not at all
restricting. Finally, the last important contribution of this work is to have shown that this
estimation phase can be achieved in a robust framework if the quality of identification data
compels it. In order to validate the proposed system identification procedure, application
examples driven in simulation and on a real process, satisfactorily validated all the contributions
of this thesis, confirming all the interest of this work.

Keywords : System identification, black-box models, nonlinear, neural networks, robust
estimation.

INSTITUT DES SCIENCES ET TECHNOLOGIES
PARIS INSTITUTE OF TECHNOLOGY

et METIERS ParisTech

	couvertureTheseAMP8
	ROMERO UGALDE Hector Manuel-These
	couvertureTheseAMP7
	blanc
	Thesis_corregida_pappendix
	blanc
	quatrieme_de_couverture_ROMERP

