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AbstratThe thesis has two independent parts.The �rst part onerns the onvergene toward equilibrium of disrete gradient �ows or, withmore generality, of some disretizations of autonomous systems whih admit a Lyapunovfuntion. The study is performed assuming su�ient onditions for the solutions of theontinuous problem to onverge toward a stationary state as time goes to in�nity. It is shownthat under mild hypotheses, the disrete system has the same property. This leads to newresults on the large time asymptoti behavior of some known non-linear shemes.The seond part onerns the numerial simulation of the motion of partiles suspended in avisous �uid. It is shown that the most widely used methods for omputing the hydrodynamiinterations between partiles lose their auray in the presene of large non-hydrodynamifores and when at least two partiles are lose from eah other. This ase arises in theontext of medial engineering for the design of nano-robots that an swim. This loss ofauray is due to the singular harater of the Stokes �ow in areas of almost ontat. Anew method is introdued here. Numerial experiments are realized to illustrate its betterauray.
RésuméLa thèse omporte deux parties.La première traite de la onvergene vers l'équilibre de �ots de gradients disrets ou plusgénéralement de disrétisations d'un système autonome admettant une fontion de Lyapunov.En se plaçant dans une adre pour lequel les solutions du problème ontinu onverge versun état stationnaire en temps grand, il est démontré sous des hypothèses générale que lesystème disret a la même propriété. Ce résultat onduit à des onlusions nouvelles sur leomportement en temps grand de shémas numériques aniens.La seonde partie onerne la simulation numérique de partiules en suspension dans un �uidevisqueux. Il est montré que les méthodes utilisées atuellement pour simuler l'interationhydrodynamique entre partiules perdent de leur préision quand de grandes fores non-hydrodynamiques sont en jeu et que au moins deux partiules sont prohes l'une de l'autre. Ceas survient, dans le ontexte de l'ingénierie biomédiale, lors de la oneption de nano-robotsapables de nager. Cette perte de préision est due au aratère singulier de l'éoulementde Stokes dans les zones de presque ontat. Une nouvelle méthode est introduite ii. Desexpérimentations numériques sont e�etuées pour mettre en évidene sa grande préision.
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Chapter 1General introdution
1.1 Introdution en FrançaisCe manusrit de thèse omporte deux parties indépendantes.1.1.1 Objet de la première partieNous traiterons tout d'abord de �ots de gradient disrets et plus généralement desystèmes d'EDO autonomes qui admettent une fontion de Lyapunov strite. Nous nousintéressons au omportement en temps long de solutions disrètes de ertains shémasassoiés à de tels systèmes. Nous nous plaçons dans des onditions où le problème ontinueadmet une solution globale u(t) qui admet une limite ϕ quand le temps t tend vers l'in�ni.Nous montrerons que pour ertains shémas la solution disrète admet elle aussi une limite
ϕ∆t et que dans le as où ϕ est un point de minimum loal de la fontion de Lyapunov, ϕ∆tonverge vers ϕ quand le pas de temps ∆t onverge vers 0.Plan de la première partieLe travail présenté est onstitué d'une introdution et de la reprodution d'un artile [19℄publié onjointement ave Benoît Merlet.1.1.2 Objet de la seonde partieLa seonde partie traite de l'approximation numérique des intérations hydrostatiquesentre partiules en suspension dans un �uide visqueux. La motivation de e travail vientd'une part de l'étude de suspensions denses et d'autre part de la néessité de produire dessimulations numériques préises de miro ou nano-nageurs arti�iels. Dans le as de esderniers, omme dans le as de nano-nageurs vivants (spermatozoïdes, batéries ou alguesmon-ellulaires) l'énergie mobilisable pour la nage est relativement grande, e qui permetà deux parties du nageur qui sont à une distane très faible l'une de l'autre d'avoir desvitesses relatives sensiblement di�érentes bien que les fores hydrostatiques s'y opposent. Cessituations où deux objets à une distane d faible l'un de l'autre ont des vitesses di�érentesréent des densités de fore hydrostatique d'une part élevées et d'autre part singulières ausens où elles sont loalisées dans une région de diamètre de l'ordre de √d. Le aratèreloalisé de es densités de fore fait qu'elles sont mal approhées par les méthodes baséessur une déomposition spetrale. C'est le as en partiulier de la dynamique Stokesienne quiest la méthode la plus utilisée pour la simulation du mouvement de partiules en suspension



2 Chapter 1. General introdutiondans un �uide visqueux.Nous proposons une nouvelle méthode, plus oûteuse, mais qui permet une approximationpréise. Nous omparons les performanes de ette méthode ave la Dynamique Stokesienne.Plan de la seonde partieDans la Chapitre 3, nous présentons tous d'abord le système de Stokes ainsi que lesespaes fontionnels et les résultats théoriques standards (aratère bien posé des équations,régularité des solutions). Nous nous plaçons ensuite dans le as de N partiules sphériquesplongées dans un �uide visqueux ave des onditions de non-glissement sur le bord des par-tiules. Nous présentons la méthode d'approximation spetrale dans e adre, en partiulierla déomposition des vitesses et densités de fore dans une base d'Harmoniques SphériquesVetorielles (Chapitre 4). Nous expliquons ensuite à partir d'une étude numérique pourquoiette déompositon spetrale n'est pas e�ae dans le as où deux partiules prohes ontdes vitesses sensiblement di�érentes (Setion 5.2). La méthode de la Dynamique Stokesiennequi palie en partie à ette faiblesse est présentée dans la Setion 5.3. Nous montrons aussiles limites de ette méthodes dans le as où une troisième partiule se situe dans le voisinaged'une paire de partiules prohes. Nous présentons notre méthode et sa disrétisation dansles Setions 6.1 et 6.2. Les résultats numériques sont exposés dans la Setion 6.3. En�n,dans une dernière setion nous disutons les hoix de paramètres de disrétisation.1.2 Introdution in EnglishThis manusript is made of two independent parts whih have their own introdutions.We �rst study disrete gradient �ows and more generally disrete shemes assoiated toquasi-gradient �ows, that is autonomous systems of ODEs whih admit a strit Lyapunovfuntion. Under some general hypotheses, the ontinuous problem admits a global solution
u(t) whih onverges toward some limit ϕ as the time t goes to in�nity. We show that undersome mild hypotheses, the disrete solution assoiated to some standard shemes also admita limit ϕ∆t. We also prove that if moreover ϕ is a loal minimizer of the Lyapunov funtionthen ϕ∆t onverges to ϕ as the time step ∆t goes to 0.The seond part onerns the numerial simulation of the hydrodynami interationsbetween small partiles in a visous �uid. It is motivated by the study of dense suspensionof partiles and also by the study of the motion of living miroorganisms (sperm ells,bateria, uniellular algae) or of arti�ial miro or nanorobots. In these ases the energywhih is available for the motion is (relatively) large and the swimmers may move loseparts of their bodies with di�erent veloities even if the hydrodynami fores stronglyoppose suh movement. Suh situations where two objets at a small distane d from oneanother have di�erent veloities reate hydrostati fore densities whih on the one handhave large magnitudes in a small region with a diameter of the order of √d. Due to theirloalized nature, these fore densities are poorly approximated by methods based on aspetral deomposition (or multipole expansion). This is the ase of the Stokesian Dynamis



1.2. Introdution in English 3whih is a widely used method to simulate the motion of partiles suspended in a visous �uid.We propose a new method, whih is more expensive, but allows aurate approximations.We ompare the performane of this method with the Stokesian Dynamis.





Part IConvergene to equilibrium fordisrete gradient-like �ows





1.3. Introdution to the paper [19℄ 71.3 Introdution to the paper [19℄In this part, we onsider autonomous systems of ODE suh as
u̇ = G(u), t ≥ 0, (1.3.1)with u(t) ∈ Rd and G : U ⊂ Rd → Rd.We assume that the system admits a strit Lyapunov funtion F , that is

d

dt
[F (u)] (t) ≤ 0 for every solution and every t ≥ 0,and moreover,
d

dt
[F (u)] (t0) = 0 =⇒ u(t) = u(t0) for t ≥ t0.More preisely, we study some disretizations of the system (1.3.1) and study the asymptotibehavior as tn →∞ of the disrete solutions.The most simple situation is the ase of a gradient �ow

G = −∇F.In this ase, if F is of lass C1 and bounded from below, we have
F (u(t))

t↑∞−→ F∞ ∈ R.Moreover, the ω-limit set
ω[u] :=

{
v ∈ Rd : ∃ (tn) ↑ ∞ suh that u(tn)→ v

}is a onneted subset of the ritial points of F .We restrit our study to situations for whih F satis�es a �ojasiewiz inequality at somepoint ϕ ∈ ω[u], that is: there exists ν ∈ [0, 1/2), γ > 0 and σ > 0 suh that
|v − ϕ| < σ =⇒ |F (v) − F (ϕ)|1−ν ≤ γ|∇F (v)|. (1.3.2)This inequality implies that u has a limit at in�nity:

u(t)
t↑∞−→ ϕ, (1.3.3)and we even have the stronger result

∫

R+

|u̇| < ∞.The importane of the �ojasiewiz inequality (1.3.2) omes from a famous result by�ojasiewiz [17℄ whih states that if F : U ⊂ Rd → R is (real) analyti then suh inequalityholds in the neighborhood of any point ϕ ∈ U . (This is non-trivial only when ϕ is a ritialpoint of F ).



8 The onvergene (1.3.3) is not true in general. As a ounterexample, let us build a funtion
F : R2 → R as follows. Given a urve Γ parameterized by γ : R+ → R2,

γ(s) =

(
1 +

1

1 + s

)
(cos s, sin s) .We de�ne the tangent vetor on this urve as τ(t) = γ̇/|γ̇| and the normal unit vetor as

n(t) = (−τ2, τ1). Let us �x η > 0 small enough suh that the mapping at 0, the mapping
Φ : (t, s) ∈ R+ × (−1, 1) 7−→ γ(t) +

η

1 + t2
n(t)is one to one. We then set

F (x, y) =





g(t)ψ(s) if (x, y) = Φ(t, s) for some (t, s) ∈ R+ × (−1, 1),

0 if (x, y) 6∈ Φ(R+ × (−1, 1)).where g ∈ C∞([0,+∞], [0, 1], [0, 1]) is supported in [1/2,+∞) and g(t) = e1−t for t ≥ 1, and
ψ ∈ C∞

c (−1, 1) admits a loal minima at s = 0, with ψ(0) = 1 and ψ′(0) = ψ′′(0) = 0.We easily hek that F ∈ C∞
c (R2) and that the urve {γ(s) : s ≥ 1} is the trajetory ofa solution u of the gradient �ow u̇ = −∇F (u), in partiular ω[u] = S1, see Figure 1.1.

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
3

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

y

x

z

Figure 1.1: Counterexample. Graph of an energy funtion F with a trajetory satisfying
ω[u] = S1 (in red).



1.3. Introdution to the paper [19℄ 9When (1.3.1) is not a gradient �ow, we still have the following result.Proposition 1.3.1. Assume that there exists α > 0 suh that
(−∇F,G) ≥ α‖∇F‖ ‖G‖ in U, (1.3.4)and that u : R+ → U solves (1.3.1). If there exists ϕ ∈ ω[u] suh that F satis�es a �ojasiewizinequality in the neighborhood of ϕ, then u(t)→ ϕ as t ↑ ∞.The ondition (1.3.4) is alled the angle ondition.The disrete aseIn the paper reprodued after this introdution, we onsider the issue whether a solution ofa numerial sheme approximating (1.3.1) also satis�es these onvergene properties. Thepratial interest of this work is to establish under mild hypotheses that if ϕ = lim∞ u(t)is a loal minimizer of F and if (u∆t

n ) is a numerial approximation of u(t) obtained by astandard numerial sheme with time step ∆t > 0, then for ∆t small enough (un) onvergesand
lim
∆t↓0

[
lim
n↑∞

u∆t
n

]
= ϕ.When ϕ is not an isolated loal minimizer of F , the onlusion is not trivial and may bewrong for some numerial shemes. Even for a onverging and energy dereasing numerialsheme, the numerial solution ould slip towards another loal minimizer ϕ∆t on the sameenergy level F (ϕ∆t) = F (ϕ) and with ϕ∆t 6−→ ϕ as ∆t ↓ 0.In a preeding work [18℄, Merlet and Pierre have established that if (un) ⊂ Rd solves

un+1 ∈ Argmin {F (v) +
|v − un|2

2∆t
: v ∈ Rd

}
, for n ≥ 0,(that is (un) solves the Euler sheme with time step ∆t > 0 assoiated to the gradient �ow

u̇ = −∇F (u)) and if F ∈ C1(Rd) satis�es a �ojasiewiz inequality in the neighborhood ofsome point ϕ, with
ϕ ∈ ω[(un)] =

⋂

p≥0

{uk : p ≥ k},then un → ϕ.These authors also establish similar results for the θ-sheme for 1/2 ≤ θ ≤ 1.Here we ontinue this analysis in the ase of an autonomous system whih admits a stritLyapunov funtion F . We obtain positive results assuming (a) that F satis�es the �ojasiewizinequality, (b) that F satis�es a one-sided Lipshitz ondition (i.e. u 7→ F (u)+λ|u|2 is onvexfor λ large enough) and (c) that (1.3.4) is strengthen to an angle and omparability ondition:there exists α > 0 suh that
(−∇F,G) ≥ α

2

(
‖∇F‖2 + ‖G‖2

) in Rd.



10Assuming moreover that G is Lipshitz ontinuous, we also obtain positive results for the
θ-sheme.In all these ases, we provide expliit onvergene rates whih are similar to the ontinuousase.We also onsider the ase of an autonomous system on an embedded manifoldM⊂ Rd,i.e. we onsider autonomous systems suh that the ondition u(0) ∈ M imply u(t) ∈ M for
t ≥ 0. In general using a standard numerial sheme, the numerial solution does not satisfy
un ∈ M for n ≥ 1. For this reason, we onsider a family of projeted θ-shemes de�ned as
u0 ∈M and for n ≥ 0,





vn+1 − un

∆t
− θG(vn+1)− (1− θ)G(un) = 0,

un+1 := ΠMvn+1,where ΠM denotes the orthogonal projetion on the manifoldM.We establish onvergene to equilibrium results for suh shemes. As an illustration, weshow that they apply to some spae-time disretizations of the harmoni map �ow and of theLandau-Lifshitz equations of miromagnetism. For these �ows, the numerial solutions aresubjeted to the onstraint
un ∈ (S2)N ,where N is the number of degrees of freedom assoiated to the spae disretization.1.4 Convergene to equilibrium for disretizations of gradient-like �ows on Riemannian manifolds



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 11Di�erential and Integral Equations Volume 26, Numbers 5-6 (2013), Pages 571-602Convergene to equilibrium fordisretizations of gradient-like �owson Riemannian manifoldsBenoît Merlet Thanh Nhan Nguyen
AbstratIn this paper, we onsider disretizations of systems of di�erential equations on manifoldsthat admit a strit Lyapunov funtion. We study the long time behavior of the disretesolutions. In the ontinuous ase, if a solution admits an aumulation point for whih a�ojasiewiz inequality holds then its trajetory onverges. Here we ontinue the work startedin [18℄ by showing that disrete solutions have the same behavior under mild hypotheses.In partiular, we onsider the θ-sheme for systems with solutions in Rd and a projeted

θ-sheme for systems de�ned on an embedded manifold. As illustrations, we show that ourresults apply to existing algorithms: 1) Alouges' algorithm for omputing minimizing disreteharmoni maps with values in the sphere; 2) a disretization of the Landau-Lifshitz equationsof miromagnetism.1.4.1 IntrodutionIn this paper, we onsider time disretizations of the non-linear di�erential system,
u̇ = G(u), t ≥ 0, u(t) ∈M, (1.4.1)where M ⊂ Rd is a C2-embedded manifold without boundary and G is a ontinuous tangentvetor �eld on M . More preisely, we are interested in the long-time behavior and stabilityproperties of the global solutions of (1.4.1). If the ontinuous system (1.4.1) admits a stritLyapunov funtion F ∈ C1(M,R) and if the set of aumulation points

ω(u) := {ϕ ∈M : ∃(tn) ↑ ∞ suh that u(tn)→ ϕ}is non-empty, then t 7→ F (u(t)) in a non-inreasing funtion onverging to F (ϕ) where
ϕ ∈ ω(u).Under additional assumptions, namely if F satis�es a �ojasiewiz inequality in a neigh-borhood of ϕ and if G(u) and −∇F (u) satisfy an angle ondition, then one an prove that
u(t) does indeed onverge to ϕ (see the papers by Lageman [16℄, by Chill et al. [10℄ and



12the more reent paper by Bárta et al. [7℄). Under an additional omparability onditionbetween ‖G(u)‖ and ‖∇F (u)‖, we even have onvergene rates depending on the �ojasiewizexponent.Notie that if ϕ is an isolated loal minimizer of F , then the above onvergene propertyis almost obvious and the �ojasiewiz inequality is not required. On the other hand theseresults are not trivial (and wrong in general) when a onneted omponent of the ritialset of F does not redue to a single point. A typial example is given by the funtion
F : R2 7→ R, x 7→ (‖x‖2 − 1)2 for whih the set of minimizers is S1.If we are onerned with numerial simulations, it is of interest to know whether theabove asymptoti properties also hold for numerial solutions. Consider, for some time-step
∆t > 0, a sequene (un) ⊂ M suh that un approximates the exat solution u at time
tn = n∆t. Suh a sequene ould be built by means of any standard or reasonable numerialsheme. Mimiking the ontinuous ase, our �rst goal is to establish the following property:Result 1. If ϕ is an aumulation point of the sequene (un), then un → ϕ.When ϕ is a loal minimizer of F , we expet a more preise stability result:Result 2. Let ϕ∗ ∈ M be a loal minimizer of F . For every η > 0 there exists 0 < ε < ηsuh that

‖uN − ϕ∗‖ < ε =⇒ ‖un − ϕ∗‖ < η, ∀n ≥ N.Moreover, in this ase, the sequene (un) onverges to some ϕ ∈M .It turns out that this last property leads to a uniform onvergene result. Indeed, assumethat the exat solution u onverges to a loal minimizer ϕ∗ of F , then for T large enough,we have
‖u(t)− ϕ∗‖ < ε/2, ∀t ≥ T.If the sheme is uniformly onvergent on �nite intervals (a reasonable query) then for ∆t > 0small enough, we have,

‖un − u(tn)‖ < ε/2, for 0 ≤ tn ≤ T + 1.In partiular, ‖uN −ϕ∗‖ < ε where T ≤ N∆t < T + 1. Applying Result 2, we onlude thatfor ∆t > 0 small enough, we have
‖un − u(tn)‖ ≤ η, ∀n ≥ N.We then infer,

lim
∆t↓0

sup
n≥0
‖un − u(tn)‖ = 0.As a onsequene, denoting ϕ(∆t) := limn→∞ un, we also have ϕ(∆t) → ϕ∗ as ∆t → 0.Thus, the numerial sheme provides a method to approximate the limit ϕ∗. This propertymotivates our interest for Result 2.One the onvergene of the sequene is known, we will try to preise the onvergenerate and establish:Result 3. Let ϕ be the limit of Result 1. We have the estimate ‖un − ϕ‖ ≤ κf(tn).



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 13The funtion t 7→ f(t) should derease to 0 as t goes to +∞. Typially f is an exponentialor a rational funtion (see (1.4.12) below).As in the ontinuous ase, the bakground assumptions on (1.4.1) to obtain Results oftype 1, 2 and 3 are a �ojasiewiz inequality, the angle ondition and (for the onvergenerates) the omparability ondition that we will desribe in the next setion. For the sheme,on top of usual onsisteny property, the basi additional required assumption is that Fshould be a strit Lyapunov funtion for the sheme with an estimate of the form
F (un+1) + µ

‖un+1 − un‖2
∆t

≤ F (un), (1.4.2)for some µ > 0. In the ase of a gradient �ow G = −∇F , and if ∇F satis�es a one-sidedLipshitz ondition, this stability property is naturally satis�ed by the bakward Euler shemeand, under a regularity assumption on G, by the θ-sheme for 0 ≤ θ < 1. In this paper, wefous on these shemes and we assume that ∇F satis�es a one sided Lipshitz ondition.In a previous paper, Merlet and Pierre [18℄ (see also [8, Theorem 24℄) have studied thelong time behavior of some time-disretizations of the gradient system,
u̇ = −∇F (u), t ≥ 0, u ∈ Rd. (1.4.3)Their results have been generalized to some seond order perturbations in [13℄. A loselyrelated question onerns the onvergene of the proximal algorithm assoiated to the mini-mization of F in �nite or in�nite dimension (see [1, 6, 8℄ and referenes therein). As in thepresent work, the key assumption for onvergene results in these papers is the �ojasiewizinequality. Here we extend the results of [18℄ on gradient �ows in Rd by onsidering gradient-like systems on a manifold: we establish Results of type 1, 2 and 3 for the θ-shemes assoiatedto suh systems.The sequel is organized as follows. In the next setion, we set the notation and the mainhypotheses. We also prove the onvergene result in the ontinuous ase. Elements of thisproof are used in Setion 1.4.5.Our results onerning the θ-sheme and the projeted θ-sheme will be obtained as aonsequene of general abstrat results of type 1, 2 and 3 that we �rst establish in Se-tion 1.4.3. We will highlight there the essential hypotheses required for these onvergeneto equilibrium results. We believe that this general setting enables to quikly hek whetheronvergene to equilibrium properties in the ontinuous ase transpose to the solutions of anumerial sheme in spei� situations.In Setion 1.4.4.1, we apply the abstrat situation to the θ-shemes assoiated to (1.4.1)in the ase M = Rd.In Setion 1.4.4.2, we onsider the ase of an embedded manifold by paying attention tothe onstraint u(t) ∈ M . Of ourse, under usual hypotheses ensuring the unique solvabilityof (1.4.1) for u(0) ∈ M (e.g. assuming that G is loally Lipshitz), the trajetory of thesolution will remain on M . This is no longer true for general time disretizations. For thisreason, we introdue and study a linearized θ-sheme supplemented by a projetion step thatenfores the onstraint un ∈M .We onsider the bakward Euler sheme in the ase M = Rd in a separate part (Se-tion 1.4.5). The fat that eah step of this sheme an be rewritten as a minimization



14problem (even in the ase of the gradient-like system (1.4.1)) allows us to weaken the regu-larity hypotheses on G.Eventually, we apply our methods to some onrete problems. First, we onsider in Se-tion 1.4.6 a sheme by Alouges [3℄ designed for the approximation of minimizing harmonimaps with values in the sphere Sl−1. We establish that the sequene built by the algorithmdoes onverge to a disrete harmoni map. The original result was onvergene up to ex-tration. Then, in Setion 1.4.7, we apply our results onerning the projeted θ-shemeto a disretization of the Landau-Lifshitz equations of miromagnetism (again proposed byAlouges [4℄). These examples illustrate our general results for in both ases the trajetorieslie on a non-�at manifold ((Sl−1)N ). Moreover, in the last example, the underlying ontinu-ous system is not a gradient �ow but merely a system on the form (1.4.1) admiting a stritLyapunov funtion.1.4.2 The ontinuous aseFrom now on, M is a C2-Riemannian manifold without boundary. Without loss of gen-erality, we assume that M is embedded in Rd and that the inner produt on every tangentspae TuM is the restrition of the eulidian inner produt on Rd.We onsider a tangent vetor �eld G ∈ C(M,TM) and a funtion F ∈ C1(M,R). Weassume that −∇F and G satisfy the angle ondition de�ned below.De�nition 1.4.1. We say that G and ∇F satisfy the angle ondition if there exists a realnumber α > 0 suh that
〈G(u),−∇F (u)〉 ≥ α‖G(u)‖‖∇F (u)‖, ∀u ∈M. (1.4.4)Remark 1.4.1. In this de�nition and below, when we onsider a di�erentiable funtion

F : M → R, we write ∇MF or simply ∇F to denote the gradient of F with respet to thetangent spae of M . In partiular, ∇F (u) ∈ TuM . If the funtion F is also de�ned on aneighborhood Ω of M in Rd, the notation ∇F is ambiguous. In this ase ∇F (u) denotes thegradient of F in Rd, that is ∇F (u) = (∂x1F (u), · · · , ∂xd
F (u)) and ∇MF (u) = ΠTuM∇F (u)where ΠTuM denotes the orthogonal projetion on the tangent spae TuM ⊂ Rd.We assume moreover that F is a strit Lyapunov funtion for (1.4.1):De�nition 1.4.2. We say that F is a Lyapunov funtion for (1.4.1) if for every u ∈ M , wehave 〈G(u),−∇F (u)〉 ≥ 0. If moreover, ∇F (u) = 0 implies G(u) = 0 then we say that F isa strit Lyapunov funtion.As we already notied, the key tool of the onvergene results presented here is a �o-jasiewiz inequality.De�nition 1.4.3. Let ϕ ∈M .1) We say that the funtion F satis�es a �ojasiewiz inequality at ϕ if there exists β, σ > 0and ν ∈ (0, 1/2] suh that,

|F (u) − F (ϕ)|1−ν ≤ β‖∇F (u)‖, ∀u ∈ B(ϕ, σ) ∩M. (1.4.5)



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 15The oe�ient ν is alled a �ojasiewiz exponent.2) The funtion F satis�es a Kurdyka-�ojasiewiz inequality at ϕ if there exists σ > 0and a non-dereasing funtion Θ ∈ C(R+,R+) suh that
Θ(0) = 0, Θ > 0 on (0,+∞), 1/Θ ∈ L1

loc(R+) (1.4.6)and,
Θ (|F (u)− F (ϕ)|) ≤ ‖∇F (u)‖, ∀u ∈ B(ϕ, σ) ∩M. (1.4.7)Notie that the �rst de�nition is a partiular ase of the seond one with Θ(f) =

(1/β)f1−ν . The interest of the �rst de�nition relies on the following fundamental result:Theorem 1 (�ojasiewiz [17℄, see also [15℄). If F : Ω ⊂ Rd → R is real analyti in someneighborhood of a point ϕ, then F satis�es the �ojasiewiz inequality at ϕ.Remark 1.4.2. The �ojasiewiz inequality only provides information at ritial points of F .Indeed, if ϕ is not a ritial point of F , then by ontinuity of ∇F , the �ojasiewiz inequalityis satis�ed in some neighborhood of ϕ.It is well known that the Kurdyka-�ojasiewiz inequality implies the onvergene of thebounded trajetories of the gradient �ow (1.4.3) as t goes to in�nity. Here we state theonvergene result in the more general ase of a gradient-like system:Theorem 2. Assume that F is a strit Lyapunov funtion for (1.4.1) and that G,∇F satisfythe angle ondition (1.4.4). Let u be a global solution of (1.4.1) and assume that thereexists ϕ ∈ ω(u) suh that F satis�es the Kurdyka-�ojasiewiz inequality (1.4.7) at ϕ. Then
u(t)→ ϕ as t→ +∞.Remark 1.4.3. In many appliations, the Kurdyka-�ojasiewiz hypothesis holds at everypoint. Moreover, for �nite dimensional systems the fat that ω(u) is not empty is often theonsequene of a oerivity ondition on F ,

F (u)−→+∞, as ‖u‖ → ∞. (1.4.8)Proof. The proof stated here follows [10℄. First we write
d

dt
[F (u(t))]

(1.4.1)
= 〈G(u(t)),∇F (u(t))〉

(1.4.4)
≤ −α‖G(u(t))‖‖∇F (u(t))‖ ≤ 0,and the funtion F (u) is non-inreasing. By ontinuity of F and sine ϕ ∈ ω(u), F (u(t))onverges to F (ϕ) as t goes to +∞. Changing F by an additive onstant if neessary, wemay assume F (ϕ) = 0, so that F (u(t)) ≥ 0 for every t ≥ 0.If F (u(t0)) = 0 for some t0 ≥ 0 then F (u(t)) = 0 for every t ≥ t0 and therefore, (sine Fis a strit Lyapunov funtion), u is onstant for t ≥ t0. In this ase, there remains nothingto prove.Hene we may assume F (u(t)) > 0 for every t ≥ 0. Sine F satis�es a Kurdyka-�ojasiewiz inequality at ϕ, there exist σ > 0 and a funtion Θ ∈ C(R+,R+) satisfy-ing (1.4.6) and (1.4.7). Let us de�ne

Φ(f) =

∫ f

0

1

Θ (s)
ds, f ≥ 0. (1.4.9)



16Let us take ε ∈ (0, σ). There exists t0 large enough suh that
‖u(t0)− ϕ‖+ α−1Φ(F (u(t0))) < ε.Let us set t1 := inf{t ≥ t0 : ‖u(t) − ϕ‖ ≥ ε}. By ontinuity of u we have t1 > t0. Then forevery t ∈ [t1, t0), using the angle ondition (1.4.4) and the Kurdyka-�ojasiewiz inequality,we have

− d

dt
Φ(F (u(t))) =

〈G(u),−∇F (u)〉
Θ(F (u(t)))

≥ α‖G(u(t))‖ = α‖u′(t)‖. (1.4.10)Integrating on [t0, t) for any t ∈ [t0, t1), we get
‖u(t)− ϕ‖ ≤ ‖u(t) − u(t0)‖+ ‖u(t0)− ϕ‖ ≤

∫ t1

t0

∥∥u′ (s)
∥∥ds+ ‖u(t0)− ϕ‖

≤ α−1Φ(F (u(t))) + ‖u(t0)− ϕ‖ < ε.This inequality implies t1 = +∞. Eventually, the estimate (1.4.10) yields u̇ ∈ L1(R+) andwe onlude that u(t) onverges to ϕ as t goes to in�nity.In the ase of a gradient �ow and if the �ojasiewiz inequality is satis�ed, we have anexpliit onvergene rate that depends on the �ojasiewiz exponent. In order to extend thisresult to gradient-like systems, the angle ondition is not su�ient:De�nition 1.4.4. We say that G and ∇F satisfy the angle and omparability ondition ifthere exists a real number γ > 0 suh that
〈G(u),−∇F (u)〉 ≥ γ

2

(
‖G(u)‖2 + ‖∇F (u)‖2

)
, ∀u ∈M. (1.4.11)Remark 1.4.4. Notie that this ondition implies the angle ondition (1.4.4). In fat (1.4.11)is equivalent to the fat that there exists α > 0 suh that for every u ∈M ,

〈G(u),−∇F (u)〉 ≥ α‖G(u)‖‖∇F (u)‖and
α−1‖G(u)‖ ≥ ‖∇F (u)‖ ≥ α‖G(u)‖.Theorem 3. Under the hypotheses of Theorem 2, assume moreover that ∇F and G satisfythe angle and omparability ondition (1.4.11) and that F satis�es a �ojasiewiz inequalitywith exponent 0 < ν ≤ 1/2, then there exist c, µ > 0 suh that,

‖u (t)− ϕ‖ ≤
{
c e−µt if ν = 1/2,

c t−ν/(1−2ν) if 0 < ν < 1/2,
∀ t ≥ 0. (1.4.12)Proof. By Theorem 2, we know that u(t) onverges to ϕ as t goes to in�nty. As in thepreeding proof, we may assume F (ϕ) = 0 and F (u(t)) > 0 for every t ≥ 0. Let Φ be de�nedby (1.4.9) with Θ(f) := (1/β)f1−ν and let us set H(t) = Φ(F (u(t))). In this ase, we have



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 17the expliit formula Φ(f) = (β/ν)f ν . Next let t1 ≥ 0 suh that ‖u(t) − ϕ‖ ≤ σ for every
t ≥ t1. By (1.4.10), for every t ≥ t1, we have

‖u(t)− ϕ‖ ≤
∫ +∞

t

∥∥u′(s)
∥∥ ds ≤

∫ +∞

t
γ−1H ′(s)ds = γ−1H(t). (1.4.13)Using the angle and omparability ondition (1.4.11) and the �ojasiewiz inequality (1.4.5),we ompute

−H ′(t) = β [F (u(t))]ν−1

(
− d

dt
[F (u(t))]

) (1.4.11)
≥ β [F (u(t))]ν−1 γ

2
‖∇F (u(t))‖2(1.4.5)

≥ γβ

2
[F (u(t))]ν−1 1

β2
[F (u(t))]2−2ν =

γ

2β
[F (u(t))]1−ν = λ [H(t)]

1−ν
ν .where λ = C(γ, β, ν) > 0. Summing up, we have

H ′(t) + λ [H(t)]
1−ν

ν ≤ 0, ∀t ≥ t1.In the ase ν = 1/2, we get H ′(t) + λH(t) ≤ 0. Writing H(t) = e−λtg(t) we onlude that gis non-inreasing, so H(t) ≤ c e−λt for every t ≥ t1.In the ase 0 < ν < 1/2, we set K(t) := [H(t)]−(1−2ν)/ν . This funtion satis�es K ′(t) ≥
λν/(1 − 2ν), whih implies K(t) ≥ at for some a > 0 and for t large enough. Hene
H(t) ≤ (at)−ν/(1−2ν) = ct−ν/(1−2ν).Combining this estimate with (1.4.13) ompletes the proof.In the sequel, we use some tools related to Riemannian metris on Rd that we introduehere.De�nition 1.4.5. Let g be a Riemannian metri on Rd. We reall that the gradient ∇gF (u)of F with respet to the metri g at a point u is de�ned by

〈∇F (u),X〉 = 〈∇gF (u),X〉g , ∀X ∈ RdWe write 〈., .〉g (to be preise, we should write 〈., .〉g(u)) for the inner produt on thetangent spae at the point u. We also write ‖.‖g for the indued norm.In [7℄, Bárta et al. establish the remarkable result that when (1.4.1) admits a stritLyapunov funtion then, up to a hange of metri, (1.4.1) is a gradient system. The followingtheorem is a diret orollary of Theorem 1 and Theorem 2 in [7℄.Theorem 4. Assume that F is a strit Lyapunov funtion. Then there exists a Riemannianmetri g on M̃ :=
{
u ∈ Rd : G(u) 6= 0

} suh that G = −∇gF .Moreover, if ∇F and G satisfy the angle and omparability ondition (1.4.11) then g is equiv-alent to the Eulidean metri. Namely, there exist c1, c2 > 0 suh that
c1‖X‖ ≤ ‖X‖g(u) ≤ c2‖X‖, ∀X ∈ Rd,∀u ∈ M̃ . (1.4.14)For some numerial shemes, we are able to obtain Results 1 and 2 under the followingadditional assumption:



18De�nition 1.4.6. We say that ∇F satis�es the one-sided Lipshitz ondition if there exists
c ≥ 0 suh that:

〈∇F (u)−∇F (v), u − v〉 ≥ −c‖u− v‖2, ∀u, v ∈M. (1.4.15)Let us de�ne the set of aumulation points of the sequene (un) ⊂M :
ω((un)) :=

{
ϕ ∈M : there exists a subsequene (unk

) s.t. unk
−−−→
k→∞

ϕ

}
.To end this setion, we reall the main hypotheses introdued above:

• ω(un) is not empty. (H0)(In appliations, this hypothesis is mainly a onsequene of (1.4.2) and (1.4.8).)
• The Kurdyka-�ojasiewiz inequality holds at some ϕ ∈ ω(un). (H1)
• ∇F and G satisfy the angle and omparability ondition (1.4.11). (H2)
• ∇F satis�es the one-sided Lipshitz ondition (1.4.15). (H3)For onvergene rate results, (H1) is replaed by

• The �ojasiewiz inequality holds at some ϕ ∈ ω(un). (H1')Other assumptions on the regularity of G and F will be made in the statement of the results.1.4.3 Abstrat onvergene resultsIn this setion we prove Results of type 1, 2 and 3 for abstrat sequenes (un) ⊂ Msatisfying the two additional onditions introdued below. In the ase M = Rd, Results oftype 1 and 2 are known (see Absil et al. [1℄). The proofs are idential in the ase of anembedded manifold but we provide them for ompleteness and beause we use them in theproof of Result 3.Let us introdue our �rst ondition:
∃C ≥ 0, ∀n ≥ 0, F (un)− F (un+1) ≥ C‖∇MF (un)‖‖un − un+1‖. (H4)We need moreover a disrete version of the strit Lyapunov hypothesis:

∀n ≥ 0, F (un+1) = F (un) =⇒ un+1 = un. (H5)We �rst state a Result of type 1.Theorem 5 ([1℄ Theorem 3.2). Let (un) ⊂ M . Assume that hypotheses (H0), (H1), (H4)and (H5) hold. Then the sequene (un) onverges to ϕ as n goes to in�nity.



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 19Proof. By (H4) the sequene (F (un)) is non-inreasing, so by ontinuity of F and hypothesis
(H0), we know that F (un) onverges to F (ϕ) whih an be assumed to be 0. By (H5), wemay assume that F (un) is dereasing, sine in the other ase, the sequene is onstant andthus onverge to ϕ. Sine F satis�es the Kurdyka-�ojasiewiz inequality at ϕ, there exist
σ > 0 and a non-dereasing funtion Θ satisfying (1.4.6) and (1.4.7). Let Φ be the funtionde�ned by (1.4.9). We have for n ≥ 0,

Φ(F (un))− Φ(F (un+1)) =

∫ F (un)

F (un+1)

ds

Θ(s)
≥ 1

Θ(F (un))
(F (un)− F (un+1)) .Using (H4), we obtain

Φ(F (un))− Φ(F (un+1)) ≥ C
‖∇MF (un)‖
Θ(F (un))

‖un+1 − un‖. (1.4.16)By (H0) and the onvergene of (F (un)) to 0, there exists n̄ suh that
‖un̄ − ϕ‖+

1

C
Φ(F (un̄)) < σ.Let us de�ne

N := sup {n ≥ n̄ : ‖uk − ϕ‖ < σ, ∀n̄ ≤ k ≤ n} ,and assume by ontradition that N is �nite. For every n̄ ≤ n ≤ N , we have ‖un − ϕ‖ < σ,so we an apply (1.4.7) with u = un and dedue from (1.4.16)
‖un+1 − un‖ ≤ (1/C) {Φ(F (un))−Φ(F (un+1))} , ∀n̄ ≤ n < N + 1. (1.4.17)Summing these inequalities, we get

N∑

n=n̄

‖un+1 − un‖ ≤
1

C
Φ(F (un̄)). (1.4.18)In partiular,

‖uN+1 − ϕ‖ ≤
1

C
Φ(F (un̄)) + ‖un̄ − ϕ‖ < σ,whih ontradits the de�nition of N . So N = +∞, and the onvergene of the sequenefollows from (1.4.18).We now establish a result of type 2.Theorem 6 ([1℄ Proposition 3.3). Let ϕ be a loal minimizer of F suh that F satis�es aKurdyka-�ojasiewiz inequality in a neighborhood of ϕ. Consider a sequene (un) ⊂ M andassume that (H4) holds. Then, for every η > 0 there exists ε ∈ (0, η) only depending on F ,

η and the onstant C in (H4) suh that
‖un̄ − ϕ‖ < ε =⇒ ‖un − ϕ‖ < η, ∀n ≥ n̄.Moreover, in this ase, the sequene (un) onverges.



20Proof. We assume without loss of generality that F (ϕ) = 0. Sine ϕ is a loal minimizer of
F , there exists ρ > 0 suh that

∀u ∈ Rd, ‖u− ϕ‖ < ρ ⇒ F (u) ≥ 0. (1.4.19)Moreover, sine F satis�es the Kurdyka-�ojasiewiz inequality at ϕ, there exist σ > 0 and afuntion Θ satisfying (1.4.6) and (1.4.7).Let η > 0 and let us set
η̄ := min(ρ, σ, η),We �x ε ∈ (0, η) suh that for every u ∈M

‖u− ϕ‖ < ε =⇒ ‖u− ϕ‖+ (1/C)Φ(F (u)) < η̄.Then we onsider a sequene (un) satisfying (H4) and we assume that there exists n̄ ≥ 0 suhthat ‖un̄ − ϕ‖ < ε. Then, as in the proof of the previous result, we de�ne
N := sup {n ≥ n̄ : ‖uk − ϕ‖ < η̄, ∀n̄ ≤ k ≤ n} ,and assume by ontradition that N is �nite. As in the proof of the preeding result, weestablish and sum the Kurdyka-�ojasiewiz inequalities (1.4.17) for n̄ ≤ n ≤ N to get:

N∑

n=n̄

‖un+1 − un‖ ≤
1

C
{Φ(F (un̄))− Φ(F (uN ))} .By de�nition of N and (1.4.19), we have F (uN ) ≥ 0 so that Φ(F (uN )) ≥ 0 and (1.4.18)holds. We dedue

‖uN+1 − ϕ‖ ≤
1

C
Φ(F (un̄)) + ‖un̄ − ϕ‖ < η̄,whih ontradits the de�nition of N . The onvergene of (un) then follows from (1.4.18).Remark 1.4.5. The result does not hold if we only assume that ϕ is a ritial point of F .In this ase even if un̄ is very lose to ϕ, the sequene may esape the neighborhood of ϕ bytaking values F (un) < F (ϕ). In this ase the proof is no more valid. Indeed, we still havethe key estimate

N∑

n=n̄

‖un+1 − un‖ ≤ c{Φ (F (un̄))− Φ(F (uN ))} ,but we an not bound the right hand side by cΦ(F (un̄)).In order to prove a onvergene rate result of type 3, we need to supplement (H4) withthe following hypothesis: there exists C2 > 0 suh that for every n ≥ 0,
‖un+1 − un‖ ≥ C2‖∇F (un)‖. (H6)In the ase of numerial disretizations of the gradient �ow (1.4.3) (or more generally ofa gradient-like system (1.4.1)), the quantity ‖un+1 − un‖ behaves like ∆t ‖∇F (un)‖, where

∆t is the time step. For these appliations, the onstant C2 in the above hypothesis shouldsale as ∆t: we expet C2 = C ′
2∆t. In this ontext, the fators C2n in the onvergenerates (1.4.20) below, have the form C ′

2tn. So, these rates are uniform with respet to thetime step ∆t. In fat we reover the onvergene rates of the ontinuous ase (with possiblydi�erent prefators).



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 21Theorem 7. Let (un) ⊂ M . Assume that hypotheses (H0), (H1′) and (H5) hold and thatthere exist C,C2 > 0 suh that (H4) and (H6) hold for n ≥ 0. Then there exists n̄ ≥ 0 suhthat for all n ≥ n̄
‖un − ϕ‖ ≤

{
λ1e

−λ2C2n if ν = 1/2,

λ2 (C2n)−ν/(1−2ν) if 0 < ν < 1/2.
(1.4.20)where ν is the �ojasiewiz exponent of F at point ϕ and λ1, λ2 are positive onstants dependingon C, β and ν.Proof. First let us reall some fats from the proof of Theorem 5. We know that (un)onverges to ϕ and that the sequene (F (un)) is non-inreasing and onverges to F (ϕ) thatwe assume again to be zero. Let ñ ≥ 0 suh that ‖un−ϕ‖ < σ for n ≥ ñ, we an apply (1.4.18)with n̄ = n and N = +∞ for every n ≥ ñ. Here, the funtion Φ de�ned by (1.4.9) has theexpliit form Φ(f) = (β/ν)f ν and estimate (1.4.18) yields

‖un − ϕ‖ ≤
β

Cν
[F (un)]ν , ∀n ≥ n̄. (1.4.21)Next, let us de�ne the funtion K : (0,+∞)→ (0,+∞) by

K(x) =




− lnx if ν = 1/2

1

(1− 2ν)x1−2ν
if 0 < ν < 1/2The sequene (K(F (un))) is non-dereasing and tends to in�nity. Using (H4) and (H6), wehave

K(F (un+1))−K(F (un)) =

∫ F (un)

F (un+1)

dx

x2−2ν
≥ F (un)− F (un+1)

[2F (un+1)]
2−2ν(H4)(H6)

≥ CC2‖∇F (un)‖2/ [F (un+1)]
2−2ν .Applying (1.4.7) in the right hand side of the last inequality, we get

K(F (un+1))−K(F (un)) ≥ CC2/β
2, ∀n ≥ n̄.Summing from n̄ to n− 1, we get that there exists c1 ∈ R suh that

K(F (un)) ≥ (CC2/β
2)n+ c1, ∀n ≥ n̄. (1.4.22)Now let us onsider the ase ν = 1/2, we have K(F (un)) = − ln(F (un)), so we get

F (un) ≤ λe−(CC2/β2)n, ∀n ≥ n̄,with λ = e−c1 . Realling (1.4.21), the Theorem is proved in this ase.Eventually, if 0 < ν < 1/2, (1.4.22) reads
F (un) ≤

[
1− 2ν

(CC2/β2)n + c1

]1/(1−2ν)

, ∀n ≥ n̄.Again, (1.4.21) ompletes the proof.



221.4.4 The θ-sheme and a projeted θ-shemeIn this setion, we show that the onvergene results of Setion 1.4.3 apply to somenumerial shemes assoiated to system (1.4.1) under the set of hypotheses (H0), (H1),
(H2), (H3) ((H0), (H1′), (H2), (H3) for the onvergene rate). We also need someregularity assumptions on G and F .1.4.4.1 The θ-sheme in RdWe �rst onsider the θ-sheme in the ase M = Rd. Reall that for a �xed θ ∈ [0, 1], the
θ-sheme assoiated to equation (1.4.1) reads:

un+1 − un

∆t
= θG(un+1) + (1− θ)G(un). (1.4.23)Lemma 1.4.7. Let θ ∈ [0, 1] and let (un) be a sequene that omplies to the θ-sheme (1.4.23). Assume that G is Lipshitz ontinuous and that hypotheses (H2) and(H3) hold. Then there exist µ1, µ2,∆t
′ > 0 suh that for ∆t ∈ (0,∆t′),

F (un+1) + µ1
‖un+1 − un‖2

∆t
≤ F (un), ∀n ≥ 0, (1.4.24)and

‖un+1 − un‖
∆t

≥ µ2‖∇F (un)‖, ∀n ≥ 0. (1.4.25)Proof. First we establish (1.4.25). We rewrite the θ-sheme in the form
un+1 − un

∆t
= G(un) + θ [G(un+1)−G(un)] .Denoting K ≥ 0 the Lipshitz onstant of G on Rd and using the omparability ondi-tion (1.4.11), we dedue

(1 +K∆t)
‖un+1 − un‖

∆t
≥ ‖G(un)‖

(1.4.11)
≥ γ

2
‖∇F (un)‖.So (1.4.25) holds with µ2 = γ/4 as soon as ∆t ∈ (0, 1/K).Next we prove (1.4.24). By assumption (H2) we an apply Theorem 4 and there exists ametri g on M̃ := Rd \ {v : G(v) = 0} satisfying (1.4.14) and suh that

〈−∇F (u), w〉 = 〈G(u), w〉g(u) , ∀u ∈ M̃,w ∈ Rd. (1.4.26)Let us set δn := un − un+1 and write the Taylor expansion,
F (un) = F (un+1) +

〈∫ 1

0
∇F (un+1 + tδn) dt, δn

〉

= F (un+1) + 〈∇F (un+1), δn〉+
〈∫ 1

0
∇F (un+1 + tδn)−∇F (un+1), δn

〉
dt.



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 23Applying assumption (H3) with u = un+1 + tδn and v = un+1, we get
F (un)− F (un+1)− 〈∇F (un+1), δn〉 ≥ −c

∫ 1

0
t‖δn‖2 dt,that is,

F (un+1)− F (un) ≤ 〈∇F (un+1), un+1 − un〉+ (c/2)‖un+1 − un‖2.If un+1 ∈ M̃ , then we may apply (1.4.26) with u = un+1 and get
F (un+1)− F (un) ≤ 〈G(un+1), un − un+1〉g(un+1)

+ (c/2)‖un+1 − un‖2. (1.4.27)If un+1 6∈ M̃ , then by the omparability ondition we have G(un+1) = ∇F (un+1) = 0 andthis estimate still holds if we set 〈·, ·〉g(un+1)
to be the usual salar produt. Adding the term

0 =

〈
un+1 − un

∆t
− θG(un+1)− (1− θ)G(un) , un − un+1

〉

g(un+1)to the right hand side of (1.4.27), we get
F (un+1)− F (un) ≤ −(1/∆t)‖un+1 − un‖2g(un+1) + (c/2)‖un+1 − un‖2

+ (1− θ) 〈G(un+1)−G(un), un − un+1〉g(un+1) .Combining this estimate with (1.4.14), we obtain
F (un+1)− F (un) ≤ −µ∆t

‖un+1 − un‖2
∆t

,with µ∆t := c21−∆t(c/2+(1−θ)Kc22) where K is the Lipshitz onstant of G. The parameter
µ∆t being larger than the positive onstant µ1 := c21/2 for ∆t small enough (1.4.24) isproved.Corollary 1.4.1. Let θ ∈ [0, 1] and let (un) be the sequene de�ned by the θ-sheme (1.4.23).Assume hypotheses (H2), (H3) hold, that G is Lipshitz and that ∆t ∈ (0,∆t′). Then:
• If (H0), (H1) hold, the sequene (un) onverges to ϕ.
• If F satis�es a Kurdyka-�ojasiewiz inequality in the neighborhood of some loal min-imizer ϕ then for every η > 0 there exists ε ∈ (0, η) suh that

‖un̄ − ϕ‖ < ε =⇒ ‖un − ϕ‖ < η, ∀n ≥ n̄.

• If (H0), (H1′) hold, the sequene (un) onverges to ϕ with onvergene rates givenby (1.4.20) with C2 = µ1µ
2
2∆t.Proof. From (1.4.24) and (1.4.25) of Lemma 1.4.7, we easily obtain (H4), (H5) and (H6)with C = µ1µ2 and C2 = µ1µ
2
2∆t. The result is then a onsequene of Theorems 5, 6and 7.



241.4.4.2 A projeted θ-shemeWe now onsider an embedded C2−manifoldM ⊂ Rd without boundary and with a uniformlybounded urvature. We present a simple sheme for the approximation of (1.4.1). Thissheme has two steps. The �rst step requires a family of mappings {Gu : u + TuM →
TuM}u∈M . The mapping Gu should approximate G around u. Natural hoies are

Gu(u+ v) := G(u) or Gu(u+ v) := G(u) + 〈∇G(u), v〉 ∀v ∈ TuM.Starting from un ∈M , the �rst step of the sheme is just the omputation of an approximation
vn of u̇ thanks to the lassial θ-sheme applied to the system u̇ = Gun(u). We obtain anintermediate iterate ũn+1 := un + ∆t vn whih does not belong to M in general. The seondstep onsists in projeting ũn+1 on the manifold M . Here, to �x the ideas, we only onsiderthe orthogonal projetion

ΠM (u) ∈ argmin{‖v − u‖2 : v ∈M}.Other hoies are admissible as soon as (1.4.33) holds. If M is the boundary of a onvex set
S, then ũn+1 ∈ un + TunM belongs to Rd \ S, so ΠM (ũn+1) = ΠS̄(ũn+1) and the orthogonalprojetion is uniquely de�ned. This is not true for general M . Anyway, here M is of lass C2and we assume that the projetion is uniquely de�ned as soon as d(ũn+1,M) < δ for some
δ > 0.More preisely, the projeted θ-sheme desribed above is de�ned as follows. Let ushoose a �xed parameter θ ∈ [0, 1] and let u0 ∈M . Then for n = 0, 1, 2, ...




step 1. Find vn ∈ TunM suh that
vn = θGun(un + ∆t vn) + (1− θ)Gun(un).step 2. Set un+1 := ΠM (un + ∆t vn).

(1.4.28)In this manifold ontext, we need to strengthen the previous regularity hypotheses. Wewill assume for simpliity that the family {Gu} satis�es
Gu(u) = G(u) ∀u ∈M. (1.4.29)We assume that G is bounded and that G, ∇F and the family of mappings {Gu} are uniformlyLipshitz ontinuous, i.e. there exist Q,K > 0 suh that
‖G(u)‖ ≤ Q, ∀u ∈M, (1.4.30)

‖Gu(u+ v)−Gu(u+ v′)‖ ≤ K‖v − v′‖ ∀u ∈M, ∀v, v′ ∈ TuM, (1.4.31)
‖∇F (u)−∇F (u′)‖ ≤ K‖u− u′‖ ∀u, u′ ∈M. (1.4.32)We also assume that the projetion ats only at seond order, that is there exists δ,R > 0suh that

‖ΠM (u+ v)− (u+ v)‖ ≤ R‖v‖2 ∀u ∈M, ∀v ∈ TuM suh that ‖v‖ < δ. (1.4.33)With these hypotheses, we have the analogue of Lemma 1.4.7:



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 25Lemma 1.4.8. Let θ ∈ [0, 1] and let (un) be the sequene de�ned by the projeted θ-sheme (1.4.28). Assume that (1.4.29,1.4.30,1.4.31,1.4.32) and that (H2) hold. Then thereexist µ1, µ2,∆t
′ > 0 suh that for ∆t ∈ (0,∆t′),

F (un+1) + µ1
‖un+1 − un‖2

∆t
≤ F (un), ∀n ≥ 0, (1.4.34)and

‖un+1 − un‖
∆t

≥ µ2‖∇F (un)‖, ∀n ≥ 0. (1.4.35)Proof. First we establish that the sequene (vn) is bounded. Indeed, by (1.4.29) the �rststep of the sheme reads,
vn = G(un) + θ [Gun(un + ∆tvn)−Gun(un)] ,and we dedue from (1.4.30) and (1.4.31) the estimate (1 − K∆t)‖vn‖ ≤ Q. So, for ∆t ∈

(0, 1/(2K)), we have
‖vn‖ ≤ 2Q.Next, for ∆t small enough, we have ∆t‖vn‖ < δ and the projetion step is well de�ned.Moreover, by (1.4.33), we have

vn =
un+1 − un

∆t
+ qn,with ‖qn‖ ≤ R∆t‖vn‖2, so there exists α ∈ (0, 1) suh that for ∆t small enough, we have

α‖c‖2 ≤ α 〈a, b〉 ≤ α−1‖c‖2 (1.4.36)for any triplet of vetors a, b, c in the set {vn, (1/∆t)(un+1−un)}. Similarly, we dedue fromthe angle and omparability ondition (H2), that (1.4.36) holds for any hoie a, b, c in theset
{G(un), −∇F (un), vn, (1/∆t)(un+1 − un)}.In partiular, (1.4.35) holds.Eventually, sine F is of lass C1,1, for ∆t small enough, we have

F (un)− F (un+1)

≥ ∆t 〈−∇F (un), vn〉 −H(∆t)2‖vn‖2
(1.4.36)
≥

(
α− H

α
∆t

) ‖un+1 − un‖2
∆t

,for some H > 0. Thus, for ∆t small enough, (1.4.34) holds with µ1 = α/2.Corollary 1.4.2. Let θ ∈ [0, 1] and let (un) be the sequene de�ned by the projeted θ-sheme (1.4.28). Assume that (1.4.29,1.4.30,1.4.31,1.4.32) and hypothesis (H2) hold andthat ∆t ∈ (0,∆t′). Then:
• If moreover the hypotheses (H0), (H1) hold, the sequene (un) onverges to ϕ.
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• If F satis�es a Kurdyka-�ojasiewiz inequality in the neighborhood of some loal min-imizer ϕ, then for every η > 0 there exists ε ∈ (0, η) suh that

‖un̄ − ϕ‖ < ε =⇒ ‖un − ϕ‖ < η, ∀n ≥ n̄.

• If the hypotheses (H0), (H1′) hold, the sequene (un) onverges to ϕ with onvergenerates given by (1.4.20) with C2 = µ1µ
2
2∆t.Proof. The proof is the same as the proof of Corollary 1.4.1, simply replae Lemma 1.4.7by Lemma 1.4.8.1.4.5 The Bakward Euler Sheme in R

dThe results of the previous setion are easily extended to general Runge-Kutta shemes.The ounterpart of this generality is that quite strong regularity assumptions are made on F, Gu or G. Here, we show that these assumptions may be relaxed in the ase of the bakwardEuler sheme in the ase M = RdWe assume M = Rd. Reall that the bakward Euler sheme assoiated to equa-tion (1.4.1) reads:
un+1 − un

∆t
= G(un+1), n ≥ 0, (1.4.37)where u0 ∈ Rd is the initial ondition and ∆t > 0 is the time step. We establish onvergeneResults of type 1 and 2 and a onvergene rate result for these shemes under a �ojasiewizinequality (H1) (or (H1′)), the angle and omparability ondition (H2), and (as uniqueregularity assumption) the one sided Lipshitz ondition (H3). These results extend Theorem2.4 and Proposition 2.5 in [18℄ to gradient-like systems.As a �rst step, we use Theorem 4 to show that the solution of the sheme (1.4.37) anbe interpreted as a minimizer.Lemma 1.4.9. Assume that ∇F and G satisfy the angle and omparability ondition (H2)and that F satis�es the one sided Lipshitz ondition (H3). There exists ∆t∗ > 0 suh thatfor ∆t ∈ (0,∆t∗), if (un) ⊂ Rd omplies with the bakward Euler sheme (1.4.37), then forevery n ≥ 0, un+1 is the unique minimizer of the funtional

En(v) := F (v) +
‖v − un‖2g(un+1)

2∆t
,where g is the Riemannian metri provided by Theorem 4.Remark 1.4.6. The above funtional En depends on the point un+1 through the loal met-ri g(un+1) so (for a non-onstant metri) the minimization problem an not be used as ade�nition of the sheme.Proof. Sine F is a strit Lyapunov funtion, we may apply Theorem 4. Let g be theRiemannian metri on M̃ = {u ∈ Rd : G(u) 6= 0} provided by this Theorem. For any u ∈ M̃ ,



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 27the map (X,Y ) ∈ Rd×Rd 7→ 〈X,Y 〉g(u) is a oerive symmetri bilinear form, so there existsa d× d symmetri positive de�nite matrix A(u) suh that
〈X,Y 〉g(u) = 〈A(u)X,Y 〉 , ∀X,Y ∈ Rd.With this notation, the gradient of En reads
∇En(v) = ∇F (v) + (1/∆t)A(un+1)(v − un).Thus, for every u, v ∈ Rd, 〈∇En(u)−∇En(v), u − v〉

= 〈∇F (u)−∇F (v) + (1/∆t)A(un+1)(u− v) , u− v〉
= 〈∇F (u)−∇F (v) , u− v〉+ (1/∆t)‖u − v‖2g(un+1).Using the one-sided Lipshitz ondition (1.4.14) and (1.4.15), we get
〈∇En(u)−∇En(v), u− v〉 ≥ (c21 − c∆t)‖u− v‖2/∆t.So En is strongly onvex for all ∆t < ∆t∗ := c21/c. Hene, it admits a unique minimizer vn+1haraterized by ∇En(vn+1) = 0, that is:

0 = ∇F (vn+1) + (1/∆t)A(un+1)(vn+1 − un)

= A(un+1) [−G(vn+1) + (1/∆t)(vn+1 − un)] ,whih is equivalent to the fat that vn+1 solves (1.4.37). Consequenlty un+1 = vn+1 isuniquely de�ned as the unique minimizer of En as laimed.Notie that Lemma 1.4.9 implies that for ∆t < ∆t∗, if G(uN ) = 0 for some N ≥ 0, then
un = uN for every n ≥ N . In suh a ase, there is nothing to prove onerning onvergene.In the sequel, we assume G(un) 6= 0 (that is un ∈ M̃) for every n ≥ 0.We now state Result 1 for the bakward Euler sheme.Theorem 8. Assume the set of hypotheses (H0), (H1), (H2), (H3), let ∆t ∈ (0,∆t∗),where ∆t∗ is as in Lemma 1.4.9, and let (un)n≥0 be a sequene de�ned by (1.4.37), then thesequene (un) onverges to ϕ as n goes to in�nity.Proof. Assume ∆t < ∆t∗, by Lemma 1.4.9, we have En(un+1) ≤ En(un), that is

‖un+1 − un‖2g(un+1)

2∆t
+ F (un+1) ≤ F (un) (1.4.38)Thus, the sequene (F (un)) is non-inreasing. We assume again without loss of generalitythat F (ϕ) = 0, so F (un) ↓ 0 as n up∞.Next, sine F satis�es the Kurdyka-�ojasiewiz inequality at ϕ, there exist σ > 0 anda funtion Θ satisfying (1.4.6) and (1.4.7). Let us �x n ≥ 0 and onsider the ontinuousproblem

v(0) = un, v̇ = −∇F (v)From the study of the ontinuous ase, we know that if ‖un − ϕ‖ < ε < σ/2, with ε smallenough then v(t) remains in B(ϕ, σ/2) for any time t > 0. Moreover, v(t) onverges to



28
v∗ ∈ B(ϕ, σ) as t tends to in�nity. At the limit, we have ∇F (v∗) = 0 and by the Kurdyka-�ojasiewiz inequality, this leads to F (v∗) = 0. Now, sine F (un+1) ≥ 0, there exists
T ∈ (0,+∞] suh that F (v(T )) = F (un+1). Then, from the optimality of un+1, we have
‖un+1−un‖g(un+1) ≤ ‖v(T )−un‖g(un+1). By (1.4.14), this leads to ‖un+1−un‖ ≤ c2/c1‖v(T )−
un‖.On the other hand, using the notation and omputations of the proof of Theorem 2(see (1.4.9), (1.4.10)), we have,

Φ (F (un))− Φ (F (un+1)) = Φ (F (v(0))) − Φ (F (v(T )))

= −
∫ T

0

d

ds
[Φ (F (v(s)))] ds

(1.4.10)
≥ α

∫ T

0
‖v̇(s)‖ds = α‖v(T ) − un‖.Therefore, if ‖un − ϕ‖ < ε < σ/2, with ε small enough then

‖un+1 − un‖ ≤ c1/(c2α) (Φ (F (un))− Φ (F (un+1))) . (1.4.39)Finally, using (1.4.39) and summation, we onlude as in the proof of Theorem 5 that thesequene (un) onverges to ϕ.As in Setion 1.4.3, we also have a result of type 2:Theorem 9. Assume that hypotheses (H2) and (H3) hold and let ϕ be a loal minimizer of
F suh that F satis�es a Kurdyka-�ojasiewiz inequality in a neighborhood of ϕ.Then, for every η > 0 there exists ε ∈ (0, η) suh if ∆t ∈ (0,∆t∗), where ∆t∗ is as inLemma 1.4.9, and if (un) is a solution of the sheme (1.4.37), we have

‖un̄ − ϕ‖ < ε =⇒ ‖un − ϕ‖ < η, ∀n ≥ n̄.Proof. Theorem (9) is proved along the lines of Theorem 6. We do not repeat the arguments.Eventually, if the �ojasiewiz inequality holds then we an estimate the onvergene ratein Theorem 8.Theorem 10. Assume that the set of hypotheses (H0), (H1′), (H2), (H3) holds, let ∆t ∈
(0,∆t∗) and let (un) ⊂ Rd be a solution of (1.4.37). There exist n̄ ≥ 0 and λ1, λ2 > 0 suhthat for all n ≥ n̄

‖un − ϕ‖ ≤
{
λ1e

−λ2n∆t if ν = 1/2

λ2 (n∆t)−ν/(1−2ν) if 0 < ν < 1/2where ν is the �ojasiewiz exponent of F at the point ϕ.Proof. The proof is the same as the proof of Proposition 2.5 in [18℄.



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 291.4.6 Harmoni maps and harmoni map �owIn this setion, we onsider a disretization of the following problem: given Ω ⊂ Rd abounded domain with a Lipshitz boundary and given g ∈ H1/2(∂Ω, Sl−1), �nd a ritialpoint of the Dirihlet energy
D(u) :=

1

2

∫

Ω
|∇u|2,under the onstraint

u ∈ H1
g (Ω, Sl−1) :=

{
v ∈ H1(Ω,Rl) : v = g on ∂Ω, |v(x)| = 1 a.e. in Ω

}
.Remark 1.4.7. For d = 3 and l = 2, the energy D appears as a simpli�ed model for theOseen-Frank energy of nemati liquid rystals. In this ontext the mapping u : Ω → S2represents the orientation of the moleules.It is well known that suh maps exist (for example, we may solve the minimizationproblem by onsidering a minimizing sequene and using the relative weak ompatness ofbounded subsets of H1

g ). Suh maps are alled harmoni maps with values in Sl−1. They areharaterized by the following ondition: u ∈ H1
g (Ω, Sl−1) satis�es the non- linear system:

−∆u = |∇u|2u in D′(Ω). (1.4.40)During the preeding deades, many authors have onsidered existene and regularity prob-lems related to these harmoni maps (see e.g. [9, 11, 14, 20℄ and a rather omplete overviewin [12℄).F. Alouges proposed in [2, 3℄ an e�ient algorithm for �nding numerial approximationsof minimizing harmoni maps. In the ontinuous ase, the algorithm reads as follows: Givenan initial guess u0 ∈ H1
g (Ω, Sl−1), ompute for n = 0, 1, · · ·




step 1. Find vn minimizing v 7→ D(un + v) in Kun with
Ku :=

{
v ∈ H1

0 (Ω,Rl), u(x) · v(x) = 0 for a.e. x ∈ Ω
}
.step 2. Set un+1(x) :=

un(x) + vn(x)

‖un(x) + vn(x)‖ ∀x ∈ Ω.

(1.4.41)By onstrution, we have D(un + vn) ≤ D(un) so the energy dereases during the �rst step.Notie that for every x ∈ Ω, ‖un(x) + vn(x)‖2 = 1 + ‖vn(x)‖2 ≥ 1, so, the seond step is theprojetion of un(x)+vn(x) on the losed unit ball of Rl. This ball being onvex, this projetionis a ontration and we have D(un+1) ≤ D(un + vn). Consequently D(un+1) ≤ D(un) andthe algorithm is energy dereasing. It is also established in [3℄ that, up to extration, thesequene (un) weakly onverges to a harmoni map in H1(Ω).Let us now disretize in spae. As in [3℄, we hoose a �nite di�erene approximation.Let us �x h > 0 and a �nite subset Ωh of hZd whih stands as the disrete domain. Theorresponding disrete energy is
Dh(uh) :=

hd

4

∑

x,y∈Ωh, ‖x−y‖=h

‖uh(x)− uh(y)‖2
h2

,



30de�ned for any mapping uh ∈ Hh := (Rd)Ω
h . The disrete boundary is supposed to be anon-empty subset Γh of Ωh suh that every point x ∈ Ωh is onneted to Γh by a �nite pathin Ωh, i.e.there exist x = xh

0 , x
h
1 , · · · , xh

p ∈ Ωh with ‖xh
i − xh

i−1‖ = h and xh
p ∈ Γh. (1.4.42)The disrete boundary ondition is a given funtion gh : Γh → Sl−1.Our disrete problem is then: �nd minimizers or ritial points of Dh in the manifold

Mh
gh :=

{
uh ∈ Hh : uh(x) = gh(x),∀x ∈ Γh ; ‖uh(x)‖ = 1, ∀x ∈ Ωh

}
.Let us haraterized these ritial points. For this, we ompute the di�erential of Dh at somepoint uh : Ωh → Rl. Let uh, vh : Ωh → Rl, we have Dh(uh + vh) =

Dh(uh) + hd
∑

x∈Ωh

〈
1

h2

∑

x,y∈Ωh,‖x−y‖=h

(uh(x)− uh(y)) , vh(x)

〉
+Dh(vh),so if we introdue the salar produt

〈
vh, wh

〉
Hh

:= hd
∑

x∈Ωh

〈
vh(x) , wh(x)

〉
, vh, wh : Ωh → Rl,we have by de�nition,

[
∇HhDh(uh)

]
(x) =

1

h2

∑

y∈Ωh, ‖x−y‖=h

(uh(x)− uh(y)) ∀x ∈ Ωh. (1.4.43)Let us onsider a point uh ∈Mh
gh . The tangent spae TuhMh

gh at this point is
Kh

uh := {vh ∈ Hh
0 : vh(x) · uh(x) = 0, ∀x ∈ Ωh \ Γh},where we have set

Hh
0 :=

{
vh ∈ Hh : vh(x) = 0, ∀x ∈ Γh

}
.Taking into aount the onstraint uh(x) ∈ Sl−1 for every x ∈ Ωh, we see that uh ∈Mh

gh is aritial point of Dh in Mh
gh if and only if there exists λh : Ωh \ Γh → R suh that

[
∇HhDh(uh)

]
(x) + λh(x)uh(x) = 0, ∀x ∈ Ωh \ Γh. (1.4.44)De�nition 1.4.10. If uh ∈Mh

gh satis�es (1.4.44), we say that it is a disrete harmoni map.The salar produt 〈 , 〉Hh is onsistent with the L2-salar produt in the spae L2(Ω,Rl).Another interesting bilinear form on Hh, assoiated to the energy, is
〈
vh , wh

〉
Dh

:=
hd

2

∑

x,y∈Ωh, ‖x−y‖=h

〈
vh(x)− vh(y)

h
,
wh(x)−wh(y)

h

〉
.



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 31With this de�nition, we have ‖uh‖2
Dh = 2Dh(uh) for any uh ∈ Hh. Under the onnetivity as-sumption (1.4.42), this bilinear form de�nes a salar produt on the subspae Hh

0 . Eventually,notie that a disrete integration by parts yields
〈
∇HhDh(vh) , wh

〉
Hh

=
〈
vh , wh

〉
Dh
, ∀vh, wh ∈ Hh

0 . (1.4.45)The disretized version of (1.4.41) reads: Given an ininitial guess uh
0 ∈Mh

gh , ompute for
n = 0, 1, · · · 



step 1. Find vh
n minimizing vh 7→ Dh(uh

n + vh
n) in Kh

uh
n
.step 2. Set uh

n+1(x) :=
uh

n(x) + vh
n(x)

‖uh
n(x) + vh

n(x)‖ ∀x ∈ Ωh.

(1.4.46)Let us state some relevant properties of this algorithm.Theorem 11 ([2, 3℄).1) The algorithm (1.4.46) is well de�ned. We have for n ≥ 0,
0 ≤ Dh(uh

n+1) ≤ Dh(uh
n + vh

n) ≤ D(uh
n), ∀n ≥ 0. (1.4.47)In partiular the sequene (Dh(uh

n)) is non-inreasing and onvergent.Moreover, if equality ours in one of the above inequalities, then vh
p = 0 for every p ≥ 0and un is a disrete harmoni map. Conversely, if (uh

n) is a disrete harmoni map, then
vh
n = 0 and the sequene (uh

n) is stationary.2) There exists λh
n : Ωh \Γh → R, suh that the inrement vh

n satis�es the Euler-Lagrangeequation, [
∇Dh(uh

n + vh
n)
]
(x) = λh

n(x)uh
n(x), ∀x ∈ Ωh \ Γh. (1.4.48)In partiular, we have

Dh(vh
n) = Dh(uh

n)−Dh(uh
n + vh

n), (1.4.49)so that ∑

n≥0

Dh(vh
n) ≤ Dh(uh

0)− lim
n→∞

Dh(uh
n) ≤ Dh(uh

0 ), (1.4.50)and onsequently vh
n → 0 as n goes to in�nity.3) Up to extration, the sequene (uh

n) onverges to a disrete harmoni map.Proof. The proof of all these results an be found in [3℄. However, for ompleteness, weestablish (1.4.47,1.4.48,1.4.49,1.4.50), that turn out to be useful to our purpose.The seond inequality of (1.4.47) is obvious by de�nition of vh
n. Now, notie, that if

uh
n(x) ∈ Sl−1 and vh

n(x) · uh
n(x) = 0, then ‖uh

n(x) + vh
n(x)‖2 = 1 + ‖vh

n(x)‖2 ≥ 1. So, theseond step of the algorithm is the projetion of uh
n(x) + vh

n(x) on the losed unit ball of Rd.By onvexity of this ball, this projetion is a ontration for the Eulidian distane in Rd, sofor every x, y ∈ Ωh, we have
‖un+1(x)− un+1(y)‖ ≤ ‖(un + vn)(x)− (un + vn)(y)‖,and the �rst inequality of (1.4.47) follows from the very de�nition of the energy Dh.



32 Next, for every n ≥ 0, vh
n minimizes the quadrati funtional vh 7→ Dh(uh

n + vh) in thespae Kh
uh

n
, so it satis�es the Euler equation (1.4.48) for some λh

n : Ωh \ Γh → R. We easilyompute
D(uh

n)−D(uh
n + vh

n) = −
〈
∇Dh(uh

n + vh
n) , vh

n

〉
Hh

+Dh(vh
n)

(1.4.48)
= Dh(vh

n).Summing on n = 0, · · · , and using (1.4.47), we obtain (1.4.50). The onvergene of (vh
n) to 0then follows from the fat that √D is a norm on Mh

0 (reall that Γh satis�es (1.4.42)).We an now use the result of Setion 1.4.3 to improve the onvergene result Theorem 113/ by showing that the whole sequene onverges.Theorem 12. The sequene (uh
n) built by the algorithm (1.4.46) onverges to some disreteharmoni map ϕh. Moreover there exists ν ∈ (0, 1/2] and onstants λ1, λ2 > 0, suh that forevery n ≥ 1,

‖un − ϕ‖Hh ≤
{
λ1e

−λ2n if ν = 1/2,

λ1n
−ν/(1−2ν) if 0 < ν < 1/2.Proof. We want to apply Theorems 5 and 7 to the sequene (un) := (uh

n), the manifold
M := Mh

gh ⊂ Hh and the funtion F := Dh
|M . First, reall that we use the salar produt

〈·, ·〉Hh in the Eulidian spae Hh. Sine the manifold M is analyti and F is a polynomialfuntion, we dedue (using analytial loal harts ofM) from Theorem 1 that F satis�es the�ojasiewiz inequality in the neighborhood of any point ofM . The sequene (uh
n) is boundedin the Eulidian spae Hh so it admits an aumulation point ϕh ∈M . In order to onlude,we only have to hek that (H4) and (H6) hold.By (1.4.47) and (1.4.48), we have

F (uh
n)− F (uh

n+1) ≥ (1/2)‖vh
n‖2Dh . (1.4.51)Next, using the linearity of ∇F , we ompute for every wh

n ∈ Kh
uh

n
,

〈
∇F (uh

n) , wh
n

〉
Hh

=
〈
∇HhDh(uh

n + vh
n) , wh

n

〉
Hh
−
〈
∇HhDh(vh

n) , wh
n

〉
Hh

.The �rst term vanishes by (1.4.48) and using (1.4.45), we get
〈
∇F (uh

n) , wh
n

〉
Hh

=
〈
vh
n , w

h
n

〉
Dh
.In partiular, hoosing wh

n = ∇F (uh
n) and using the equivalene of the norms in �nite dimen-sion, there exists α > 0 suh that

‖∇F (uh
n)‖Dh ≤ α ‖vh

n‖Dh ,So (1.4.51) implies
F (uh

n)− F (uh
n+1) ≥

1

2α
‖∇F (uh

n)‖Dh‖vh
n‖Dh . (1.4.52)Eventually, we know from (1.4.50) that vh

n tends to 0. Sine
uh

n+1(x) = uh
n(x) + vh

n(x) +O(‖vh
n(x)‖2),



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 33we have for n large enough
2‖vn‖Hh ≥ ‖un+1 − un‖Hh .The onditions (H4) and (H6) then follow from (1.4.52), (1.4.51) and the equivalene of thenorms.Remark 1.4.8. The preeding method also applies to the disretization of the harmoni map-�ow for funtions u ∈ L2((0,+∞),Mg) :

∂tu−∆u− ‖∇u‖2u = 0 t ≥ 0, u(0, t) = u0 ∈ H1(Ω, Sl−1).The orresponding algorithm reads: Given an initial data uh
0 ∈ Mh

gh and a time step ∆t,ompute for n = 0, 1, · · ·



step 1. Find vh
n minimizing vh 7→ ∆t

2
‖vh

n‖2Hh +Dh(uh
n + ∆tvh

n) in Kh
uh

n
.step 2. Set uh

n+1(x) :=
uh

n(x) + ∆tvh
n(x)

‖uh
n(x) + ∆tvh

n(x)‖ ∀x ∈ Ωh.

(1.4.53)Remark 1.4.9. We do not know wether Theorem 12 still holds in the ontinuous ase. Infat, in order to reprodue the proof above in the ontinuous ase, we should establish thefollowing �ojasiewiz inequality
|D(u)−D(ϕ)|1−ν ≤ β‖∆u+ ‖∇u‖2u‖L2(Ω),in the H1-neighborhood of any harmoni map ϕ. This is an open issue.1.4.7 Appliation to the Landau-Lifshitz equationsIn this setion, we show that our results onerning the abstrat projeted θ-sheme ofSetion 1.4.4 apply to some disretization of the Landau-Lifshitz equations. These equationsdesribe the evolution of the magnetization m : Ω × (0,+∞) → S2 inside a ferromagnetibody oupying an open region Ω ⊂ R3. This system of equations reads

α∂tm−m× ∂tm = (1 + α2)(∆m− |∇m|2m), in Ω, (1.4.54)where α > 0 is a damping parameter and ′×′ denotes the three dimensional ross produt.It is supplemented with initial and boundary onditions




∂m

∂n
= 0 on ∂Ω

m(x, 0) = m0(x) ∈ S2.Notie that, at least formally, this evolution system preserves the onstraint |m(x, t)| =

1,∀x ∈ Ω.We will onsider a disretization of the following variational formulation of (1.4.54),
α

∫

Ω
∂tm · ψ −

∫

Ω
m× ∂tm · ψ = −(1 + α2)

∫

Ω
∇m · ∇ψ, (1.4.55)



34for every ψ ∈ H1(Ω,R3) whih furthermore satis�es ψ(x).m(x) = 0 a.e. in Ω. It is knownthat for every initial data m0 ∈ H1(Ω, S2), this variational formulation admits a solution forall time (see [5℄).Before oming to disretization, let us show that, formally, the Dirihlet energy D(m) =

(1/2)
∫
Ω |∇m|2 is a Lyapunov funtion for (1.4.55). Indeed, onsidering a smooth solution

m(x, t), we ompute,
d

dt
D(m(·, t)) =

∫

Ω
∇m · ∇∂tm(x, t) dx.Sine, for every x ∈ Ω, t 7→ ‖m(x, t)‖2 is onstant, we have ∂tm(x, t) ·m(x, t) = 0. So, wean hoose ψ = ∂tm(·, t) in (1.4.55) and dedue,

d

dt
D(m(·, t)) = − α

1 + α2

∫

Ω
‖∂tm‖2(x, t) dx ≤ 0,as laimed.1.4.7.1 Spae disretizationWe disretize the problem in spae using P1-Finite Elements. Let us introdue somenotation. Let (τh)h be a regular family of onformal triangulations of the domain Ω param-eterized by the spae step h. Let (xh

i )i be the verties of τh and (φh
i )1≤i≤N(h)

the set ofassoiated basis funtions of the so-alled P 1(τh) disretization. That is to say the funtions
(φh

i )i are globally ontinuous and linear on eah triangle (or tetrahedron in 3D) and satisfy
φh

i (xh
j ) = δij . We de�ne

V h :=

{
m =

Nh∑

i=1

miφ
h
i : ∀i,mi ∈ R3

}
, Mh :=

{
m ∈ V h : ∀i,mi ∈ S2

}
.Notie that Mh is a manifold isomorphi to (S2)Nh . For any m =

N∑
i=1

miφ
h
i ∈ Mh, weintrodue the tangent spae

TmhMh =

{
v =

N∑

i=1

vh
i φ

h
i : ∀i,mh

i · vh
i = 0

}
.The spae disretization of the variational formulation (1.4.55) reads,





mh(0) = mh
0 ∈Mh, and ∀ψh ∈ Tmh(t)M

h, ∀t > 0,

α

∫

Ω
∂tm

h.ψh −
Nh∑

i=1

(mn
i × ∂tm

h
i ) · ψh

i

∫

Ω
φh

i = −(1 + α2)

∫

Ω
∇mh.∇ψh.

(1.4.56)Remark 1.4.10. We have replaed the term ∫
Ω (mn × pn) · ψh in the original sheme of [4℄by

Nh∑

i=1

(mn
i × pn

i ) · ψh
i

∫

Ω
φh

i .



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 35This modi�ation is equivalent to using the quadrature formula:
∫

Ω
f dx ≃

Nh∑

i=1

f(xh
i )

∫

Ω
φh

i ,for the omputation of this integral. The onvergene to equilibrium results below are stilltrue with an exat quadrature formula, but the proof is slightly more ompliated, see Re-mark 1.4.11.We now interpret this variational formulation as a gradient-like di�erential system of theform (1.4.1). For this we introdue the Lyapunov funtional F : Mh ⊂ H1(Ω,R3) → Rde�ned by
F (mh) =

1

2

∫

Ω
|∇mh|2.As usual, the gradient of this funtional is qh = ∇F (mh) = Ahmh, where Ah is the rigiditymatrix assoiated to the P1-FE disretization:

〈
qh, ψh

〉
L2

=

∫

Ω
∇mh · ∇ψh =

∑

i,j

mh
i ψ

h
j

∫
∇φh

i · ∇φh
j =:

〈
Ahmh, ψh

〉
L2
. (1.4.57)We also introdue the setion G : Mh → TMh de�ned by G(mh) := ph where ph ∈

TmhMh solves: ∀ψh ∈ TmhMh,
α

∫

Ω
ph · ψh −

Nh∑

i=1

(mh
i × ph

i ) · ψh
i

∫

Ω
φh

i = −(1 + α2)

∫

Ω
∇mh · ∇ψh. (1.4.58)The funtion G is well de�ned. Indeed, it is su�ient to hek that the bilinear form bmhde�ned on TmhMh × TmhMh by

bmh(ph, ψh) = α

∫

Ω
ph · ψh −

Nh∑

i=1

(mh
i × ph

i ) · ψh
i

∫

Ω
φh

i (1.4.59)has a positive symmetri part. Using ph
i × ph

i = 0, we see that bmh(ph, ph) = α‖ph‖2L2(Ω)2and bmh is oerive on TmhMh × TmhMh. So, by de�nition, mh ∈ C1(R+,M
h) solves thevariational formulation (1.4.56) if and only if

d

dt
mh = G(mh) ∀t > 0, mh(0) = mh

0 .We now hek that the hypotheses of Theorem 3 hold.Lemma 1.4.11. The funtions G and ∇F de�ned above satisfy the angle and omparabil-ity ondition (1.4.11). Moreover, the Lyapunov funtion F satis�es a �ojasiewiz inequal-ity (1.4.5) in the neighborhood of any point mh of the manifold M = Mh.



36Proof. For the �rst point, let us �x mh ∈ Mh and write ph = G(mh) and qh = ∇F (mh).Choosing ψh = qh in (1.4.58) and using (1.4.57), we obtain
α
〈
ph , qh

〉
L2

= −
Nh∑

i=1

(mh
i × ph

i ) · qh
i

∫

Ω
φh

i − (1 + α2)‖qh‖2L2 .Then the Cauhy-Shwarz inequality, the identities ‖mh
i ‖ = 1 and the equivalene of normsin �nite dimension yield

‖qh‖L2 ≤ C‖ph‖L2 .On the other hand, hoosing ψh = ph in (1.4.58), we get
α‖ph‖2L2 = −(1 + α2)

∫

Ω
∇mh · ∇ph = −(1 + α2)

〈
qh , ph

〉
L2
.So, we have 〈

−qh , ph
〉

L2
≥ γ

2

(
‖ph‖2L2 + ‖qh‖2L2

)
,with γ = α/(C(1 + α2)): i.e. the pair (−∇F,G) satis�es the tangential angle ondition andomparability ondition (1.4.11).For the seond point, F (mh) is a polynomial funtion of (mh
i )1≤i≤Nh

∈ (S2)Nh , heneit is analyti. The manifold Mh = (S2)Nh being analyti, we an use an analyti hart ϕ(for example a produt of stereographi projetions) de�ned in a neighborhood of mh. Weapply Theorem 1 to the analyti funtion F ◦ ϕ−1 and dedue that it satis�es a �ojasiewizinequality in the neighborhood of ϕ(mh).We dedue from the lemma:Corollary 1.4.3. Assume mh(t) is a solution of (1.4.56). Sine M = Mh is ompat ω(mh)is not empty. Consequently there exists ϕ ∈Mh suh that u = mh satis�es all the onlusionsof Theorems 2, 3.1.4.7.2 Time-spae disretization of the Landau-Lifshitz equationsWe now onsider the θ-sheme proposed by F.Alouges in [4℄:




m0 ∈Mh

For n = 0, 1, ...


Find pn ∈ TmnMh suh that ∀ψh ∈ TmhMh,

α

∫

Ω
pn · ψh −

Nh∑

i=1

(mn
i × pn

i ) · ψh
i

∫

Ω
φh

i

= −(1 + α2)

∫

Ω
∇(mn + θ∆t pn) · ∇ψh.

Set mn+1 :=
Nh∑
i=1

mn
i + ∆t pn

i

|mn
i + ∆t pn

i |
φh

i , and iterate. (1.4.60)



1.4. Convergene to equilibrium for disretizations of gradient-like �ows onRiemannian manifolds 37Let us rewrite this sheme as a projeted θ-sheme of the form (1.4.28). For this we introduethe family of mappings {Gmh : mh + Tmh → TmhMh
} de�ned by Gmh(uh) = ph where ph ∈

TmhMh solves the variational formulation ∀ψh ∈ TmhMh,
α

∫

Ω
ph · ψh −

Nh∑

i=1

(uh
i × ph

i ) · ψh
i

∫

Ω
φh

i = −(1 + α2)

∫

Ω
∇uh · ∇ψh.Notie that Gmh only depends on mh through the spae of test funtions TmhMh. As above,we see that ph is well de�ned and uniquely de�ned by this variational formulation throughthe oerivity of the bilinear form bmh (see (1.4.59)).Lemma 1.4.12. Let mn, pn be de�ned in the sheme (1.4.60). Then,

pn = θGmn(mn + ∆tpn) + (1− θ)Gmn(mn). (1.4.61)Proof. Let us set qh = Gmn(mn+∆tpn), rh = Gmn(mn). By de�nition of Gmn and linearity,we see that the funtion ph = θqh + (1− θ)rh satis�es
α

∫

Ω
ph · ψh −

Nh∑

i=1

(mh
i × ph

i ) · ψh
i

∫

Ω
φh

i − θ∆t
Nh∑

i=1

(pn
i × rh

i ) · ψh
i

∫

Ω
φh

i

= −(1 + α2)

∫

Ω
∇(mh + θ∆t pn) · ∇ψh, ∀ψh ∈ TmhMh.We see that in the third term of the left hand side, the triple produt (pn

i × rh
i ) ·ψh

i vanishes.Indeed, the three vetors pn
i , r

h
i , ψ

h
i belong to the two dimensional tangent spae {vh

i ∈ R3 :

vh
i · mh

i = 0}. So, it turns out that ph and pn solve the same (well-posed) variationalformulation. We onlude that ph = pn as laimed.Remark 1.4.11. If we had used the original variational formulation, with obvious hangesin the de�nition of Gmh , then the term θ∆t
∫
Ω (pn × rh) · ψh would not vanish in general andthe identity (1.4.61) would be wrong. In this ase, we an not link the sheme of [4℄ to ourprojeted θ-sheme. However, this term is of small magnitude and using the present ideas, itis not di�ult to establish that Theorems 5, 6 and 7 apply to this sheme and onlude tothe onvergene to equilibrium of the sequene (mn).This di�ulty does not appear if we onsider a Finite Di�erene disretization as inSetion 1.4.6.Lemma 1.4.13. The funtions F , G and {Gmh} satisfy hypotheses (1.4.29,1.4.30,1.4.31,1.4.32). Moreover, the projetion ΠMh(zh) :=

Nh∑
i=1

zh
i∣∣zh
i

∣∣φ
h
i , satis�es (1.4.33).Proof. First, the identity (1.4.29) is obvious. Next, for mh ∈ Mh and ph = G(mh), using

ψh = ph in (1.4.58), we obtain
α‖ph‖2L2 ≤ (1 + α2)‖∇mh‖L2 ‖∇ph‖L2 ,



38and we onlude from the equivalene of the norms in �nite dimensional spaes, that Gis bounded on the ompat manifold Mh (that is (1.4.29) holds). The Lipshitz esti-mate (1.4.31) is also a onsequene of this fat and of the uniform oerivity of the bilinearforms bmh . The Lipshitz estimate (1.4.32) on ∇F is also obvious sine F is smooth on theompat manifold Mh.Eventually, we easily see that (1.4.33) holds. Indeed, if vh ∈ TmhMh, then |mh
i + vh

i |2 =

|mh
i |2 + |vh

i |2 ≥ 1, so ΠMh(mh + vh) is just the L2- projetion of (mh
i + vh

i ) on the produtof balls (B(0, 1))Nh ⊂ (R3)N
h .The previous Lemmas 1.4.12 and 1.4.13 show that the sequene (un = mn) satis�es allthe hypotheses for Corollary 1.4.2. Hene, we have:Corollary 1.4.4. There exists ∆t′ > 0 suh that if ∆t ∈ (0,∆t′) and (mn) ⊂ Mh is asequene that omplies to the sheme (1.4.60), then there exists ϕ ∈ Mh suh that (mn)onverges to ϕ. Moreover, there exist C3 > 0 and ν ∈ (0, 1/2] depending on ϕ suh that theonvergene rate given by (1.4.20) holds with C2 = C3∆t.
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Part IIAn aurate method for the motion ofsuspended partiles in a Stokes �uid





Chapter 2Introdution - Motivation
Aording to the fundamental relation of dynamis, the motion of a solid partile is given by

m
d2

dt2
v = F, I

d

dt
ω = T ,where m is the mass of the partile, I is its matrix of inertia, v is the veloity of the enter ofmass of the partile and ω is its angular veloity. The soures of the hanges of the motionare total fore F and total torque T exerted on the solid.When we study the motion of very small (say nano-saled) objets in suspension in avisous �uid, it is usual to neglet the inertia e�ets whih are small ompared to the hydro-dynami fores. The fundamental relation of dynamis then reads

F = 0, T = 0.The fores exerted on the solid deompose in the hydrodynami fores whih are surfae foresexerted by the �uid and other fores, suh as gravity (and buoyany) fores, eletrostatifores, magneti fores, . . .We write
F = Fhydro + Foth = 0, T = Thydro + Toth = 0.The hydrodynami omponents depend on the position p and orientation Ω of the solid butalso of its instantaneous veloity and angular veloity of the solid. So these equations amountsto solve the system

Fhydro(v, ω ; p,Ω) = −Foth(p,Ω), Thydro(v, ω ; p,Ω) = −Toth(p,Ω).Solving this 6× 6 system, this allows us to determine v and ω in the ase of a single solid.If we onsider N suspended objets oupying the domains Bi, i = 1, · · · , N , the di�erentsolids interats through the �uid and we have to solve a 6N × 6N system:
{
Fhydro(v1, · · · , vN , ω1, · · · , ωN ; p1, · · · , pN ,Ω1, · · · ,ΩN ) = −Foth(pi,Ωi),

Thydro(v1, · · · , vN , ω1, · · · , ωN ; p1, · · · , pN ,Ω1, · · · ,ΩN ) = −Toth(pi,Ωi).
(2.0.1)The next task is to determine the oe�ients of suh systems, that is ompute the hydrody-nami fores and torques given the positions and the veloities of the solids. Sine we onsidersmall sales and small veloities, we assume that the �uid solves the Stokes equations in the�uid domain Ω, {

−∆u +∇p = 0 in Ω,

∇ · u = 0 in Ω.



44 Chapter 2. Introdution - Motivationwhere u and p are the veloity and pressure in Ω. For simpliity we assume that the �uid �llsthe whole spae: Ω = R3 \S with S = ∪N
i=1Bi. The onditions at in�nity are u(r), p(r)→ 0as r ↑ ∞ and we onsider no-slip boundary onditions on the surfae of the solid:

u(r) = vi + ωi × (r− ri), for r ∈ ∂Bi, i = 1, · · · , N.where ri is an arbitrary point, vi is the veloity of the frame attahed to Bi at point ri and
ωi is the angular veloity of this frame. Denoting by ni the exterior unit normal to Ω on ∂Bi,the surfae density of hydrodynami fores is then given (up to a multipliative oe�ientharaterizing the visosity of the �uid) by

f(r) = pni − (∇u +∇uT )ni, for r ∈ ∂Bi, i = 1, · · · , N,and the total hydrodynami fore and torques exerted on Bi are:
Fhydro(v1, · · · , vN , ω1, · · · , ωN ; p1, · · · , pN ,Ω1, · · · ,ΩN ) =

∫

∂Bi

f ,

Thydro(v1, · · · , vN , ω1, · · · , ωN ; p1, · · · , pN ,Ω1, · · · ,ΩN ) =

∫

∂Bi

(r− ri)× f .From the linearity of the Stokes equations and of the fore density with respet to (u, p),we obtain a 6N × 6N frition matrix F = F(p1, · · · , pN ,Ω1, · · · ,ΩN ) whih relates thehydrodynami interations to the veloities and angular veloities of the partiles:
(Fhydro,Thydro) = F(v, ω).We see that (2.0.1) is a linear system. In the physial ommunity whih study the inter-ations of a large number of suspended (spherial) partiles, the favorite numerial methodfor omputing F is the so alled Stokesian Dynamis introdued by Brady and Bossis in1988 [5, 6℄. This method is based on the expansion of the fore density and of the veloityon ∂S2 in vetorial spherial harmonis (also alled moments or multipoles in the physialliterature). In pratie, the series of vetorial spherial harmonis are trunated at rank L toobtain an approximate frition matrix FL. The Stokesian Dynamis method only involves six(F-T method) or eleven (F-T-S method) harmonis. Later, arbitrary values of the trunationorder L has been proposed in the so alled multipole methods [15, 7℄.One of the main hallenges in the simulation of large numbers of partiles in Stokes �owis the treatment of lose partiles with di�erent veloities. If we onsider two isolated ballsseparated by a small gap d whih are moving toward one another, the main part of thehydrodynami fores is loalized in a region of radius O(

√
d). For suh loalized densities, alarge trunation number is required in order to apture the relevant phenomenon: we need

L ≫
√

1/d, whih lead to onsider Ndof ≫ 1/d degrees of freedom. To avoid using largetrunation orders, the idea of Brady and Bossis [6℄ is to orret the frition matrix by usingexat values of the hydrodynami interations between eah pair of lose balls.
FL

SD = FL +Fpairs −FLpairsThe matrix Fpairs is the sum of the interations between (Bi, Bj) where (Bi, Bj) rangesover the set of pairs of lose balls (de�ned by the ondition d(Bi, Bj) < dlose). The last



45term −FLpairs is the substration of the poor rank L approximations of these interationswhih were already present in FL.With the above orretion, the Stokesian Dynamis and multipole methods are verye�ient and aurate in many ases of interest. However, we notie that the orretionsonly onern pairs of lose partiles: a third partile in the neighborhood of two lose balls isnot a�eted by the orretions of the hydrodynami interations between the two �rst partileand we may think that it should be a�eted. It turns out that the frition matries shouldbe a�eted with oe�ients of the order of
c = O(1).We see that there are di�erent situations depending on the order of the magnitude of thenon-hydrodynamial fores. Let us say that the entries of the right hand side of the linearsystem (2.0.1) are of order of O(K). When we onsider two lose partiles B1, B2 with

d(B1, B2) = d then it is known that the hydrodynami fores assoiated to the motion ofthese partiles toward one another with veloity v are of the order of
Fhydro = O(v/d).In view of (2.0.1), this leads to
v = O(dK).Let us assume that the trunating order L is small (L ≪ √

1/d) so that the approximatefrition matrix FL is oblivious of the �ne hydrodynami phenomenons with spae sale √dbetween the balls B1, B2. In this ase the error indued by this lak of auray on a thirdball B3 lose to B1 ∪B2 is of the order of
err = O(cv) = O(cdK) = O(dK).Hene, if the external fores are not too large, so that we an assume dK ≪ 1, the Stokesiandynami method is relevant and provides aurate results. This situation ours for instanewhen we onsider the sedimentation of small partiles in water (or larger partiles in amore visous �uid). On the other hand, this method may be not adapted when largenon-hydrodynamial fores are onsidered. Suh (relatively) large fores our when weonsider nano-sale swimmers, suh as sperm ells, swimming bateria or uniellular algae.This is also true for arti�ial nanosale swimmers designed to deliver mediation fromnanosized medial devies (see e.g. [9℄ as an example of the biomedial engineering ativityin this area). In these ases, there is a need for a new numerial method whih is aurateeven in the presene of large fores. The objet of the present work is to present a �rstattempt in this diretion in the ontext of N idential spherial shaped partiles. In fat,this work is motivated by the numerial simulation of theoretial arti�ial swimmers madeof a �nite number of balls introdued and studied in [4, 3℄.The new method that we present is designed for obtaining aurate results even inthe presene of large non-hydrodynamial fores. Roughly speaking it is based on a



46 Chapter 2. Introdution - Motivationdeomposition of the veloities and angular veloities between a singular part whih isresponsible of the small sale interations and a regular part whih ideally reates smoothfore densities. The main di�erene with the Stokesian Dynamis is that this new methodtakes into aount the in�uene of the singular fore densities between two losed partileson the neighboring partiles. For this reason, it allows us to obtain a degree of auray notpossible with previous methods. For this reason also, the omputational ost is larger.This work is a joint work with Aline Lefebvre-Lepot and Benoît Merlet.In the sequel, we �rst reall well known fats about the Stokes equations (Chapter 3).Then we present the spetral approximation of the hydrodynami interations using Veto-rial Spherial Harmonis in Chapter 4. We propose numerial evidenes of the di�ultiesand singularities arising in the ase of lose partiles (Chapter 5, Setion 5.1). This moti-vates a desription, via asymptoti analysis of the interations of two isolated lose partilesin Setion 5.2. The Stokesian dynamis is presented in Setion 5.3 together with its draw-baks as disussed above. Eventually, in the last Chapter, we desribe suessively our newmethod and its disretization in Setions 6.1 and 6.2. The numerial results are presented inSetion 6.3. In Setion 6.4, we disuss the hoie of the disretization parameters.



Chapter 3The Stokes problem in an exteriordomain
Contents3.1 Origin of the equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2 Funtion spaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.1 Spaes assoiated to a bounded domain. . . . . . . . . . . . . . . . . . . 493.2.2 Pressure �elds. Homogeneous Sobolev spaes in an exterior domain . . . 503.2.3 Homogeneous Sobolev spaes of veloity �elds in exterior domains . . . 513.3 Well-posedness and regularity results . . . . . . . . . . . . . . . . . . 523.3.1 The fundamental solution and the Stokes equations in R3 . . . . . . . . 533.3.2 Loal regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.3.3 Asymptotis as |x| → ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.4 Dirihlet-to-Neumann and Neumann-to-Dirihlet operators . . . . . 543.4.1 The Dirihlet to Neumann operator in a bounded domain . . . . . . . . 553.4.2 The Dirihlet to Neumann operator in an exterior domain . . . . . . . . 573.4.3 Jump of fores through an interfae. A new Neumann to Dirihlet operator 59In this setion, we present the Stokes equations posed either a bounded subset of R3 orin the omplement of ompat subset of R3. We reall the basi well posedness and reg-ularity results in these situations. Our referene for this part is mainly the book of Galdi [12℄.3.1 Origin of the equationsWe onsider a visous, inompressible and Newtonian �uid moving in a domain Ω of R3.The motion of the �uid is given by the momentum equation,

ρ(∂tu + u · ∇u) = µ∆u−∇π + F in Ω× (0, T ), (3.1.1)and the ontinuity equation for an inompressible �uid,
∇ · u = 0 in Ω× (0, T ), (3.1.2)



48 Chapter 3. The Stokes problem in an exterior domainHere ρ > 0 denotes the density of the �uid, µ > 0 is the visosity onstant and
F = F(t, x) ∈ R3 is a given density of non-hydrodynami fores exerted on the �uid.The unknowns of the problem are the veloity �eld u(t, x) ∈ R3 and the pressure �eld
π(t, x) ∈ R.The pressure �eld represents a Lagrangian multiplier assoiated to the onstraint (3.1.2).The system (3.1.1), (3.1.2) is the so alled Navier-Stokes system. In this form, it isinde�nite and must be omplemented with an initial ondition u(0, x) = u0(x) and boundaryonditions.Let us introdue a typial length L and a typial veloity V of the �ow. Performing thehange of variables, x = Lx̃, t = L/V t̃, u = V ũ we obtain the non-dimensional form of theequations,

∂t̃ũ + ũ · ∇̃ũ =
1

Re
∆̃ũ− ∇̃p̃+ F̃, (3.1.3)where p̃ = π/ρV 2, F̃ = FL/ρV 2 and the Reynolds number is

Re = ρLV/µ.We are interested in the limit of small Reynolds numbers Re ↓ 0 where we an neglet theinertia e�ets. This limit may desribe the motion of a �uid around small suspended partilesor even the motion of bateria and other miro-organisms. The limit system is given by
−∆u +∇p = F in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ).We see that the time derivative has disappeared in these equations of motion. The �elds
(u, p)(t) only depend on the fore density and boundary onditions at time t. In partiular,we do not need any initial ondition and we an �x the time t in the study.The unkowns u = u(x), p = p(x) now solve the Stokes equations,

−∆u +∇p = F in Ω, (3.1.4)
∇ · u = 0 in Ω, (3.1.5)supplemented by boundary onditions and, if neessary, by onditions at in�nity.The set Ω will be an open and onneted subset of R3 (a domain). We onsider twoases: either Ω is a smooth bounded domain, either Ω is the omplement in R3 of a smoothompat set K. That is K = Ωc ⊂ B(0, R) for some large radius R > 0. In this latter ase,we assume that the �uid is at rest at in�nity,

u(x) → 0, p(x) → 0 as |x| → ∞. (3.1.6)On ∂Ω, the veloity of the �uid is presribed,
u = g on ∂Ω, (3.1.7)



3.2. Funtion spaes 49where g : ∂Ω→ R3 is given. The boundary data g aounts for the displaement and shapevariations of the partiles oupying K.Of partiular interest are the fores exerted by the �uid on the partiles. Denoting by nthe exterior normal on ∂Ω, the density of the fores exerted by the �uid on ∂Ω is given by
f = σ · n on ∂Ω,where σ is the stress tensor. Sine we onsider a Newtonian �uid, this stress tensor is relatedto the veloity and pressure �elds by

σ := ∇u +∇uT − pId,where Id denotes the 3 × 3 identity matrix. Hene, the fore density on the surfae of thebody K is given by
f = (∇u +∇uT − pId) · n = n · ∇u +∇u · n− pn. (3.1.8)Remark 3.1.1. Let us notie here that, sine u is assumed to be divergene free, the mo-mentum equation (3.1.4) rewrites as
∇ · σ = ∇ · (∇u +∇uT − pId) = 0 in Ω.3.2 Funtion spaesThe Sobolev spaes whih are relevant for the Stokes problem desribed above have twopartiular features. First, when the domain is an exterior domain (i.e. R3 \ Ω is ompat)we have to pay attention to the behavior at in�nity of the funtions. Seond, the veloity�elds are solenoidal vetor �elds: ∇ · u ≡ 0.3.2.1 Spaes assoiated to a bounded domain.Sine we onsider linear problems, we only introdue L2-based Sobolev spaes. Let Ω ⊂ R3be a smooth bounded domain (in partiular, Ω is onneted). We de�ne
D1,2(Ω) :=

{
v ∈W 1,2(Ω,R3) : ∇ · v ≡ 0 in Ω

}
.Let us disuss the boundary ondition

u = g on ∂Ω. (3.2.1)Sine Ω is a bounded and onneted domain, the divergene free ondition implies
0 =

∫

Ω
∇ · u =

∫

∂Ω
g · n =: Φ.



50 Chapter 3. The Stokes problem in an exterior domainIn this ase, the ondition of vanishing total �ux Φ ≡ 0 is a neessary ondition for theexistene of a solution of the Stokes problem in Ω with boundary ondition (3.2.1). In fat,if g is smooth enough, it is also a su�ient ondition.Let us introdue the frational Sobolev spae:
W 1/2,2(∂Ω,R3) :=

{
g ∈ L2(∂Ω) : g is the trae on ∂Ω of some v ∈W 1,2(Ω ∩B(0, R),R3)

}
,endowed with the inner produt

(g,h)W 1/2,2 := (g,h)L2 +

∫

∂Ω×∂Ω

(g(x) − g(y)) · (h(x)− h(y))

|x− y|3 dσ(x) dσ(y),

W 1/2,2(∂Ω,R3) is a Hilbert spae.Under the ondition Φ ≡ 0, we an �nd a lifting of g ∈W 1/2,2(∂Ω,R3) in D1,2(Ω).Proposition 3.2.1. Let Ω ⊂ R3 be a smooth bounded domain (we an in fat only assumethat Ω has Lipshitz regularity). For any g ∈W 1/2,2(∂Ω,R3) suh that Φ(g) = 0, there exists
u ∈ D1,2(Ω) suh that (3.2.1) holds. Moreover, there exists a onstant C = C(Ω) suh that

‖u‖W 1,2 ≤ C‖g‖W 1/2,2 .The pressure �eld assoiated to the Stokes problem in a bounded domain is not unique.If the pair (u, p) solves the Stokes equation then (u, p+ c) is also a solution for any onstant
c ∈ R. To �x this onstant, we will impose ∫Ω p = 0. For this, we introdue the spae

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω
q = 0

}
.

3.2.2 Pressure �elds. Homogeneous Sobolev spaes in an exterior domainLet us now onsider that Ω is a smooth exterior domain of R3. In partiular, Ω is onnetedand there exists R > 0 suh that Ωc ⊂ B(0, R). We set
D1,2 = D1,2(Ω) :=

{
q ∈ L2

loc(Ω) : ∇q ∈ L2(Ω)
}
.The funtions of D1,2 admit a limit at in�nity. More preisely, for every q ∈ D1,2, thereexists a real number q0 suh that for every r > R,

∫

S2

|q(rσ)− q0|2) dσ ≤
1

r

∫

|x|>r
|∇q|2 → 0 as r ↑ ∞. (3.2.2)We onsider the subspae D̂1,2 of D1,2 formed by funtions q ∈ D1,2 suh that q0 = 0. Thespae D̂1,2(Ω) equipped with the inner produt (q, q′)D1,2 :=

∫
Ω∇q · ∇q′ is a Hilbert spae.



3.2. Funtion spaes 51By de�nition, the elements of D̂1,2 satisfy (3.2.2) with q0 = 0. We also have, for every
q ∈ D̂1,2,

q

|x| ∈ L2
(
R3 \B(0, R)

) with ∫

R3\B(0,R)

(
q

|x|

)2

≤ 4

∫

R3\B(0,R)
|∇q|2 . (3.2.3)Moreover, by Gagliardo-Nirenberg estimate, for every q ∈ D̂1,2,

q ∈ L6(Ω) with ‖q‖L6 ≤ C(Ω)‖q‖D1,2 . (3.2.4)Notie that the spae D̂1,2 is stritly larger that W 1,2(Ω). For example, if Ω = R3 \B(0, 1),then x 7→ |x|−α ∈ D̂1,2(Ω) \ L2(Ω) for every α > 1/2. The onditions (3.2.3) or (3.2.4)haraterize D̂1,2(Ω):
D̂1,2(Ω) =

{
q ∈ L1

loc(Ω), ∇q ∈ L2(Ω), q/
√

1 + |x|2 ∈ L2(Ω)
}

=
{
q ∈ L1

loc(Ω), ∇q ∈ L2(Ω), q ∈ L6(Ω)
}
.3.2.3 Homogeneous Sobolev spaes of veloity �elds in exterior domainsWe now onsider solenoidal vetor �elds v : Ω → R3. The veloity �elds solving the aboveStokes equations will lie in the following spae:

D1,2(Ω) :=
{
v ∈ D̂1,2(Ω)3 : ∇ · v ≡ 0 in Ω

}
.Let us introdue the inner produt

(v,w)D1,2 :=

∫

Ω
∇v : ∇w .The spae (D1,2(Ω), (·, ·)D1,2) is a Hilbert spae.As in the salar ase, we have the following equivalent de�nitions,

D1,2(Ω) =
{
v ∈ L1

loc(Ω,R
3) : ∇ · v ≡ 0, ∇v ∈ L2(Ω), v/

√
1 + |x|2 ∈ L2(Ω)

}

=
{
v ∈ L1

loc(Ω,R
3) : ∇ · v ≡ 0, ∇v ∈ L2(Ω), v ∈ L6(Ω)

}
.For further use we also introdue the spae D1,2

0 (Ω) de�ned as the losure of ompatlysupported smooth vetor �elds in D1,2(Ω).Let us now onsider the boundary ondition (3.2.1). In the ase of an exterior domainthe total �ux ∫∂Ω g · n = Φ may be arbitrary. For instane, if Ω is the omplement of thelosed unit ball, the veloity �eld de�ned, in spherial oordinates, by
v(r) := r−2er,solves the Stokes equations (3.1.4)(3.1.5)(3.2.1) with p ≡ 0, F ≡ 0 and boundary ondition

g = er. Moreover, we have v(r)→ 0 as r→ 0 and
v ∈ D1,2(Ω).



52 Chapter 3. The Stokes problem in an exterior domainWe easily see that the total �ux on the boundary of Ω does not vanish. We have Φ = −4π(and by onservation of the �ux, for every r > 1, ∫∂B(0,r) v · er = 4π).Let us return to the ase of a general smooth exterior domain Ω. The more generalboundary onditions that we will onsider are given by the traes of the element of D1,2(Ω).
{
g ∈ L2(∂Ω) : g is the trae on ∂Ω of some v ∈ D1,2(Ω)

}The linear onstraint ∇ · v ≡ 0 does not play any role here. We have:Proposition 3.2.2. Let Ω ⊂ R3 be a smooth exterior domain (we an in fat only assumethat Ω has Lipshitz regularity). For any g ∈ W 1/2,2(∂Ω,R3) there exists u ∈ D1,2(Ω) suhthat (3.2.1) holds. Moreover, there exists a onstant C = C(Ω) suh that
‖u‖D1,2 ≤ C‖g‖W 1/2,2 .Proof. To establish this proposition, we �rst invoke the fat that there exists u1 ∈ W 1,2(Ω)ompatly supported in B(0, R) ∩ Ω suh that u1 = g on ∂Ω and

‖u1‖W 1,2 ≤ C ′(Ω)‖g‖W 1/2,2 .By Theorem III.3.4 in [12℄, there exists w ∈ D1,2
0 (Ω) satisfying ∇ · w = −∇ · u1 in Ω withthe estimate

‖w‖D1,2 ≤ C ′′(Ω)‖∇ · u1‖L2 .The vetor �eld u = u1 + w then satis�es the requirements of the proposition with C =

C ′ + C ′′.3.3 Well-posedness and regularity resultsWe onsider the Stokes problem (3.1.4)(3.1.5) in a smooth domain Ω ⊂ R3 with om-pat boundary ∂Ω, i.e. Ω is either a bounded domain or an exterior domain. In the lastase, we impose the ondition at in�nity (3.1.6). In both ases, we onsider the boundaryondition (3.1.7). We assume that g ∈ W 1/2,2(Ω,R3) with Φ = 0 if Ω is bounded and that
F ∈ D−1,2(Ω,R3) :=

[
D1,2(Ω,R3)

]′. We look for a solution of the variational formulation:Find v ∈
{
w ∈ D1,2(Ω) : w = g on ∂Ω

} (3.3.1)suh that ∫

Ω
∇v : ∇w −

∫

Ω
F ·w = 0 ∀w ∈ D1,2

0 (Ω). (3.3.2)or equivalently, using the divergene free ondition,
1

2

∫

Ω
(∇v +∇v)T : (∇w +∇wT ) −

∫

Ω
F ·w = 0 ∀w ∈ D1,2

0 (Ω).Using the lifting u of g provided by Proposition 3.2.1 or by Proposition 3.2.2, the existeneof a unique solution v of the variational formulation follows from the Lax-Milgram Theorem.



3.3. Well-posedness and regularity results 53The existene of a pressure �eld then follows from an instane of De Rham Theorem. Thepressure �eld is unique up to a onstant. In order to �x this onstant, we impose
p ∈

{
L2(Ω), when Ω is an exterior domain,
L2

0(Ω) :=
{
q ∈ L2(Ω) :

∫
Ω q = 0

}
, when Ω is a bounded domain.Theorem 13. Given Ω, F and g as above, there exists a unique solution to the variationalformulation (3.3.1)(3.3.2). Moreover there exists a unique pressure p in the spae L2(Ω)(or L2

0(Ω) if Ω is bounded) suh that the momentum equation (3.1.4) holds in the sense ofdistributions in Ω. Eventually, there exists C = C(Ω) suh that
‖v‖D1,2 + ‖p‖L2 ≤ C (‖g‖W 1/2,2 + ‖F‖D−1,2) .3.3.1 The fundamental solution and the Stokes equations in R

3In the ase Ω = R3, we have an expliit formula for the solution v ∈ D1,2(R3) of thevariational formulation and the assoiated pressure �eld:
v(r) =

∫

R3

G(r− r′)F(r′) dr′, p(r) =

∫

R3

Π(r− r′) ·F(r′) dr′, (3.3.3)where
G(r) :=

1

8πr
(Id+ er ⊗ er)is the fundamental solution of the Stokes problem, and

Π(r) :=
1

4πr2
er.From these formulas, we dedue as in the ase of the Laplae equation, the following regularityresult:Theorem 14. Let F ∈ Wm,2(R3), then the assoiated solution of the Stokes problem givenby (3.3.3) satisfy v ∈ Wm+2,2

loc (R3), p ∈ Wm+1,2
loc (R3). Moreover, for 0 ≤ l ≤ m, Dl+1v ∈

D1,2(R3), Dlp ∈ D̂1,2(R3), with the estimates
‖Dl+2v‖L2 + ‖Dl+1p‖L2 ≤ C‖DlF‖L2 .3.3.2 Loal regularityUsing trunation arguments, and Theorem 14, we an derive interior estimates for solu-tions of the Stokes problem in Ω ⊂ R3. For regularity results up to the boundary, we anrely on the Nirenberg translation method (see Temam [18℄) or apply the general regularitytheory for ellipti problems of Agmon, Douglis and Nirenberg [1, 2℄. In [12℄, the boundaryregularity is obtained by �rst studying the Stokes problem in R2 ×R+.



54 Chapter 3. The Stokes problem in an exterior domainTheorem 15 (Sobolev regularity). If Ω is of lass Cm+2, if F ∈Wm,2
loc (Ω), g ∈Wm+3/2,2

loc (Ω)and (v, p) is a weak solution of the Stokes equations (3.1.4),(3.1.5) and (3.2.1) in Ω, then
v ∈ Wm+2,2

loc (Ω) and p ∈ Wm+1,2
loc (Ω). Moreover, for r′ > r > 0 there exists C = C(r, r′,Ω)suh that, noting Ωs = Ω ∩B(0, s), we have

‖Dm+2v‖L2(Ωr) + ‖Dm+1p‖L2(Ωr)

≤ C
(
‖DmF‖L2(Ωr′ )

+ ‖Dm+1g‖W 1,2(∂Ω∩B(0,r′)) + ‖Dm+1v‖L2(Ωr′ )
+ ‖Dmp‖L2(Ωr′)

)
.In partiular, if F ∈ C∞

c (Ω) and g ∈ C∞(∂Ω), the variational solution (v, p) of the Stokesequations is smooth in Ω.3.3.3 Asymptotis as |x| → ∞In the sequel, we are mainly interested by the ase of an exterior domain with F ≡ 0 or
F ompatly supported. In this ase the behavior at in�nity of v and p follows the behaviorof the fundamental solution of the Stokes problem in R3 and global regularity results followfrom loal regularity and the following deay estimates.Theorem 16. Let Ω ⊂ R3 be a smooth exterior domain, let g ∈ W 1/2,m(∂Ω) and F ∈
D−1,2(Ω) be ompatly supported in Ω. Let (v, p) ∈ D1,2(Ω) × L2(Ω) be the variationalsolution of (3.1.4),(3.1.5),(3.2.1), then

v(x) = G(x)F0 + v1(x), p(x) = Π(x)F0 + p1(x),with
F0 =

∫

Ω
F−

∫

∂Ω
(∇v +∇vT − pId) · n ∈ R3.and for every α ∈N3,

|Dαv1(x)| ≤ Cα|x|−(2+|α|), |Dαp1(x)| ≤ C ′
α|x|−(3+|α|).3.4 Dirihlet-to-Neumann and Neumann-to-Dirihlet opera-torsLet us onsider a variational solution (u, p) of the homogeneous Stokes equations in asmooth domain Ω with non-homogeneous boundary ondition u = g on ∂Ω. If (u, p) issu�iently smooth, the surfae density of fores applied by the boundary of Ω on the �uid isde�ned as

f = (∇u +∇uT − pId) · n. (3.4.1)The purpose of this setion is to extend this de�nition to the ase of general variationalsolutions and to desribe some properties of the Dirihlet to Neumann operators g 7→ f . Inthe next two parts, we onsider suessively the ase of a bounded domain and the ase of anexterior domain. In the third part, we onsider the ase of the whole spae R3 with exteriorfores applied on a losed surfae of Γ ⊂ R3.



3.4. Dirihlet-to-Neumann and Neumann-to-Dirihlet operators 553.4.1 The Dirihlet to Neumann operator in a bounded domainLet Ω ⊂ R3 be a smooth and bounded domain (reall that Ω is onneted) and let
g ∈ W 1/2,2(∂Ω,R3) suh that ∫

∂Ω
g · n = 0. Let (u, p) be the assoiated solution of thehomogeneous Stokes problem provided by Theorem 13. If (u, p) are su�iently smooth, say

(u, p) ∈ W 2,2(Ω,R3)×W 1,2(Ω), the traes of ∇u and p on ∂Ω are well de�ned and we anuse formula (3.4.1) to de�ne the density of surfae fores.In order to extend the notion of surfae fore density to weaker solutions, we proeed byduality. Let us introdue h ∈ W 1/2,2(∂Ω,R3) and let us hoose an arbitrary lifting ϕ ∈
W 1,2(Ω,R3) of h subjeted to the onstraint that ∇ · ϕ is onstant in Ω. Suh lifting doesexist. Indeed, let Φ :=

∫
∂Ω h · n and let us set h0(x) := h(x)− (Φ/3|Ω|)x. We have

∫

∂Ω
h0 · n = Φ

(
1− 1

3|Ω|

∫

∂Ω
x · n

)
= Φ

(
1− 1

3|Ω|

∫

Ω
∇ · x

)
= 0.Hene, by Proposition 3.2.1, there exists ϕ0 ∈ D1,2(Ω) suh that ϕ0 = h0 on ∂Ω. We onludeby setting ϕ(x) = ϕ0(x) + (Φ/3|Ω|)x. We have ϕ = h on ∂Ω and ∇ · ϕ = Φ/|Ω| is onstantin Ω. Notie also that with this onstrution, we have

‖∇ϕ‖L2(Ω) ≤ C(Ω)‖h‖W 1/2,2 .Let us now return to the de�nition of the fore density. Taking the dot produt of f with hand integrating on ∂Ω we set
aint(g,h) :=

∫

∂Ω
f · h.Integrating by parts, we ompute

aint(g,h) =

∫

∂Ω
(∇u +∇uT − pId) : (n⊗ h) =

∫

Ω
∇ ·
[
(∇u +∇uT − pId)ϕ

]
.Expending this expression, and using the fat that u solves the Stokes equations, we obtain,

aint(g,h) =

∫

Ω

(
∇u +∇uT

)
: ∇ϕ−

(∫

Ω
p

)
∇ · ϕ.Sine ∫Ω p = 0, the last term vanishes. Symmetrizing the expression, we end with

aint(g,h) =
1

2

∫

Ω

(
∇u +∇uT

)
:
(
∇ϕ+∇ϕT

)
. (3.4.2)Consequently,

aint(g,h) ≤ 2‖∇u‖L2(Ω)‖∇ϕ‖L2(Ω) ≤ C(Ω)‖g‖W 1/2,2(∂Ω)‖h‖W 1/2,2(∂Ω).Hene aint extends as a ontinuous bilinear form on
{
g ∈W 1/2,2(∂Ω,R3) :

∫

Ω
g · n = 0

}
×W 1/2,2(∂Ω,R3).From the de�nition aint(g,h) =

∫
∂Ω f · h, we dedue the following result.



56 Chapter 3. The Stokes problem in an exterior domainProposition 3.4.1. Let Ω ⊂ R3 be a smooth and bounded domain. There exists a linear andontinuous mapping,
DNint :

{
g ∈W 1/2,2(∂Ω,R3) :

∫

Ω
g · n = 0

}
−→ W−1/2,2(∂Ω,R3),

g 7−→ f .whih extends the lassial de�nition of surfae fore density. Namely, if g is smooth and if
f is de�ned by (3.4.1), we have

〈DNint g ; h〉W−1/2,2,W 1/2,2 =

∫

∂Ω
f · h for every h ∈W 1/2,2(∂Ω,R3).The mapping DNint is not one to one. Indeed, from the identity

〈
DNint g ; v|∂Ω

〉
W−1/2,2,W 1/2,2 =

∫

Ω
(∇u +∇uT ) · ∇v, for every v ∈ D1,2(Ω),we see that DNint g = 0 if and only if ∇u +∇uT vanishes on Ω, that is, by Korn inequality,if and only if u is the veloity �eld of a rigid motion. We onlude that

ker (DNint) =
{
g : ∂Ω→ R3 : g(x) = e + ω × x for some e, ω ∈ R3

}
.Let us now ompute the range of DNint. First, we notie that for every

g ∈
{
h ∈W 1/2,2(∂Ω,R3) :

∫

Ω
h · n = 0

}
,we have 〈

DNint g ; v|∂Ω

〉
W−1/2,2,W 1/2,2 = 0,for every veloity �eld v orresponding to the ombination of a rigid displaement and anexpansion v(x) = λx + e + ω × x. Indeed, we have in this ase ∇v +∇vT = 2λId and wededue from the above omputation,

〈
DNint g ; v|∂Ω

〉
W−1/2,2,W 1/2,2 =

1

2

∫

Ω
(∇u +∇uT ) · (∇v +∇vT ) = λ

∫

Ω
∇ · u = 0.Consequently,Range (DNint) ⊂ R :=

{
f ∈W−1/2,2(∂Ω,R3) : 〈f ; v〉W−1/2,2,W 1/2,2 = 0for test funtions of the form: v(x) = x, v(x) = e ∈ R3 and v(x) = ω × x, ω ∈ R3

}
.Conversely, let f ∈ R and let us onsider the homogeneous Stokes equations with non-homogeneous �Neumann" boundary onditions:





−∆u +∇p = 0 in Ω,

∇ · u = 0 in Ω,

(∇u +∇uT − p Id) · n = f on ∂Ω.

(3.4.3)



3.4. Dirihlet-to-Neumann and Neumann-to-Dirihlet operators 57The solution of this problem, if it exists, is not unique. Indeed, we an add to the veloity anyveloity �eld orresponding to a rigid displaement. To enfore uniqueness of the veloity,we impose the onditions, ∫

Ω
u(x) =

∫

Ω
x× u(x) = 0. (3.4.4)From (3.4.2), we see that a natural variational formulation for this problem is : �nd u ∈

D1,2(Ω) satisfying (3.4.4) suh that
1

2

∫

Ω
(∇u +∇uT ) : (∇v +∇vT ) =

〈
f ; v|∂Ω

〉
W−1/2,2,W 1/2,2 ∀v ∈ D1,2(Ω). (3.4.5)Thanks to the Korn inequality, this variational formulation admits a unique solution u in

E :=

{
v ∈ D1,2(Ω) :

∫

Ω
v(x) =

∫

Ω
x× v(x) = 0

}
.The identity (3.4.5) holds for every v ∈ E and sine u ∈ E and f ∈ R, this identity also holdsfor every v ∈ D1,2(Ω). In partiular,

∫

Ω
∇u : ∇v = 0 for every v ∈ D1,2(Ω) ∩ C∞

c (Ω).By de Rham's Theorem, there exists a unique pressure p ∈ L2
0(Ω) suh that

−∆u +∇p = 0 in the sense of distributions in Ω.This solution de�nes the Neumann to Dirihlet operator
NDintf := u|∂Ω ∈W 1/2,2(Ω,R3).By onstrution, we see that the omposition DNint ◦ NDint is the identity operator on R.We have established:Proposition 3.4.2. The operator DNint de�nes a ontinuous isomorphism from

S =

{
g ∈W 1/2,2(∂Ω,R3) :

∫

∂Ω
g · n = 0,

∫

∂Ω
g =

∫

∂Ω
x× g = 0

}onto R ⊂W−1/2,2(∂Ω,R3).3.4.2 The Dirihlet to Neumann operator in an exterior domainWe onsider the orresponding operators in the ase of an exterior domain Ω ⊂ R3.Let g ∈ W 1/2,2(∂Ω,R3) and let (u, p) ∈ D1,2(Ω) × L2(Ω) be the variational solution of theStokes problem. For every h ∈ W 1/2,2(Ω,R3), there exists a lifting ϕ of h in D1.2(Ω) (seeProposition 3.2.2). The bilinear form
aext(g,h) =

∫

Ω
(∇u +∇uT ) : ∇ϕ



58 Chapter 3. The Stokes problem in an exterior domainis well de�ned. Indeed, for every v ∈ D1.2
0 (Ω), we have ∫Ω(∇u+∇uT ) : ∇v = 0, so the abovequantity does not depend on the partiular lifting ϕ. We have

aext(g,h) ≤ 2‖∇u‖L2 ‖∇ϕ‖L2 ≤ C‖g‖W 1/2,2 ‖h‖W 1/2,2 .Hene there exists a ontinuous linear operator DNext : W 1/2,2(∂Ω,R3)→W−1/2,2(∂Ω,R3)suh that
〈DNext g ; h〉W−1/2,2,W 1/2,2 = aext(g,h) ∀g,h ∈W 1/2,2(∂Ω,R3).When g ∈W 3/2,2(∂Ω,R3), D2u and ∇p belong to L2(Ω) and the surfae fore density

f = (∇u +∇uT − p Id) · n (3.4.6)is well de�ned on ∂Ω, with f ∈ W 1/2,2(∂Ω,R3). In this ase, we have, as in the ase of abounded domain, ∫

∂Ω
f · h =

∫

Ω
(∇u +∇uT ) : ∇ϕ −

∫

Ω
p∇ · ϕ.Sine ϕ ∈ D1,2(Ω,R3), the last term vanishes and we see that

∫

∂Ω
f · h = 〈DNext g ; h〉W−1/2,2,W 1/2,2 .We have established:Proposition 3.4.3. For any smooth exterior domain Ω ⊂ R3, there exists a ontinuousDirihlet to Neumann operator DNext : g ∈ W 1/2,2(∂Ω,R3)→ f ∈W−1/2,2(∂Ω,R3) whihextends the de�nition of surfae fore density (3.4.6).For every g ∈W 1/2,2(∂Ω,R3), we have

〈DNextg ; g〉W−1/2,2,W 1/2,2 =
1

2

∫

Ω
|∇u +∇uT |2.By Korn's inequality, the right hand side is bounded from below by (1/C(Ω))‖∇u‖2L2 . Hene,

〈DNextg ; g〉W−1/2,2,W 1/2,2 ≥ (1/C(Ω))‖g‖2
W 1/2,2 .We dedue from the Lax Milgram Theorem that the operator DNext is one to one and onto.Proposition 3.4.4. For any smooth exterior domain Ω ⊂ R3, the Dirihlet to Neumann op-erator DNext is a linear ontinuous isomorphism from W 1/2,2(∂Ω,R3) onto W−1/2,2(∂Ω,R3)and we denote by NDext its inverse.It is easy to hek that the inverse operator satis�es NDextf = u|∂Ω where u ∈ D1,2(Ω)is the unique solution of the variational formulation

∫

Ω
(∇u +∇uT ) : ∇v −

〈
f ; v|∂Ω

〉
W−1/2,2,W 1/2,2 = 0 ∀v ∈ D1,2(Ω).



3.4. Dirihlet-to-Neumann and Neumann-to-Dirihlet operators 593.4.3 Jump of fores through an interfae. A new Neumann to DirihletoperatorLet us now onsider an open set Ω ⊂ R3 whih is the union of a �nite number of smoothbounded domains Ω1, · · · ,ΩN . We assume moreover that the losures Ωi are pairwise disjoint.We note Γi the boundary of Ωi and Γ = ∂Ω = ∪iΓi. We denote by n : Γ → S2 the unitexterior normal to Ω and ni its restrition on Γi. We onsider Dirihlet boundary data in thespae,
H =

{
g ∈W 1/2,2(Γ,R3) : suh that gi = g|Γi

satis�es ∫
Γi

gi · ni = 0 for i = 1, · · · , N
}
.Eventually, we de�ne Ω0 as the exterior domain,

Ω0 := R3 \ Ω.Let g ∈ H, for i = 0, · · · , N , we denote by ui ∈ D1,2(Ωi) the unique solution of thevariational problem: ui = gi on Γi if i ≥ 1 or u = g on Γ if i = 0 and
∫

Ωi

(∇ui +∇uT
i ) : ∇v = 0 ∀v ∈ D1,2

0 (Ωi).We denote by p0 ∈ L2(Ω0) and pi ∈ L2
0(Ωi), i = 1, · · · , N the orresponding pressure �elds.We de�ne the following operator as

[DNΓ g]|Γi
:= DNint gi + [DNext g]|Γi

, for i = 1, · · · , N.This de�nes a ontinuous linear operator from H in W−1/2,2(Γ,R3).Alternatively, we an de�ne this operator without expliit referene to the operatorsDNintand DNext. For every g ∈ H, we an de�ne u ∈ D1,2(R3) as the the unique solution of thevariational problem u = g on Γ and
∫

Ω
∇u : ∇v = 0 for every v ∈ D1,2(R3) suh that v|Γ ≡ 0.Obvioulsy, we have u|Ωi

= ui for i = 0, · · · , N . Then, for h ∈ H, we hoose a lifting ϕ of hin D1,2(R3) and we set:
aΓ(g,h) :=

∫

R3

∇u : ∇ϕ.The bilinear form aΓ is ontinuous on H ×H and sine we an hoose ϕ as the variationalsolution of the Stokes equations in R3 \ Γ with boundary ondition ϕ = h on Γ, we see that
aΓ is symmetri and nonnegative. Let us onsider an element L ∈ H ′ and let us extend it on
W 1/2,2(Γ,R3) by setting

L

(
h +

N∑

i=1

ci1|Γi
ni

)
= L(h) for every h ∈ H, c1, · · · , cN ∈ R.There exists a unique f ∈W−1/2,2(Γ,R3) suh that

L(h) = 〈f ;h〉W−1/2,2,W1/2,2 for every h ∈W 1/2,2(Γ,R3).



60 Chapter 3. The Stokes problem in an exterior domainChoosing h = 1|Γi
ni, we see that 〈f ;ni〉W−1/2,2,W1/2,2 = 0 for i = 1, · · · , N and it turns outthat we an make the identi�ation

H ′ =
{
f ∈W−1/2,2(Γ,R3) : 〈f ;n〉W−1/2,2,W1/2,2 = 0

}
.Applying this to the linear form L(h) = aΓ(g,h), there exists a unique f ∈ H ′ suh that

〈f ;h〉W−1/2,2,W1/2,2 = aΓ(g,h) for every h ∈W 1/2,2(Γ,R3).We set
DNΓ g := f . (3.4.7)Eventually, for every g in H, we have with obvious notation,

aΓ(g,g) = 〈DNΓ g ; g〉W−1/2,2,W1/2,2 =

∫

R3

|∇u|2.We see that aΓ is oerive on H. Hene, the linear operator DN Γ : H → H ′ is a ontinuouslinear isomorphism.Proposition 3.4.5. Let Ω = ∪N
i=1Ωi be a �nite union of smooth open subsets of R3 suhthat the Ωi are pairwise disjoint. Let Γ = ∂Ω. The operator DN Γ de�ned by (3.4.7) is aontinuous linear isomorphism from

H =

{
g ∈W 1/2,2(Γ,R3) :

∫

∂Ωi

g · ni = 0, for every i = 1, · · · , N
}onto H ′ where we identify H ′ with the losure of H in W−1/2,2(Γ,R3).Now, let us onsider the inverse problem. Let f ∈ H ′, and let us onsider the solution

u ∈ D1,2(R3) of the variational problem
∫

R3

∇u : ∇v =
〈
f ; v|Γ

〉
W−1/2,2,W 1/2,2 ∀v ∈ D1,2(R3).Notie that the linear form v ∈ D1,2(R3) 7→

〈
f ; v|Γ

〉
W−1/2,2,W 1/2,2 is ontinuous. Hene,the existene of a unique solution to the variational formulation relies on Theorem 13. Wealso know that this solution is obtained by onvolution with the fundamental solution of theStokes equations in R3:

u(x) = 〈f ; G(· − x)〉W−1/2,2(Γ),W 1/2,2(Γ) , for x ∈ R3.Identifying f with the distribution ϕ ∈ C∞
c (R3,R3) 7→

〈
f ; ϕ|Γ

〉
W−1/2,2(Γ),W 1/2,2(Γ)

, this for-mula rewrites as
u = G ⋆ f ,where we reall the de�nition of the Stokeslet,

G(r) =
1

8πr
(Id+ er ⊗ er) .



3.4. Dirihlet-to-Neumann and Neumann-to-Dirihlet operators 61Now we de�ne
NDΓ f := [G ⋆ f ]|Γ .This operator maps H ′ in H and we easily see that NDΓ ◦DN Γ = IdH . We see that u solvesthe variational formulation u = NDΓ f on Γ and

∫

R3

∇u : ∇v = 0 for every v ∈ D1,2(R3) suh that v|Γ ≡ 0.By de�nition, we have DN Γ[NDΓ f ] = f . Hene NDΓ is the inverse of DN Γ.Proposition 3.4.6. Let Ω = ∪N
i=1Ωi be a �nite union of smooth open subsets of R3 suhthat the Ωi are pairwise disjoint. Let Γ = ∂Ω. The �Neumann to Dirihlet" operator de�nedas

NDΓ f = [G ⋆ f ]|Γ for every f ∈ H ′is the inverse of the �Dirihlet to Neumann" operator DNΓ.
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4.1 The hydrodynami interations4.1.1 Setting of the problemWe onsider N non interseting partiles immersed in a visous �uid. For simpliity,the partiles are idential balls B1, B2,...,BN with radius 1 and enters z1, z2, ..., zN ∈ R3,respetively. We assume that the losed balls Bi do not interset and that the �uid �lls therest of the spae. The �uid oupies the domain

Ω := R3\
(

N⋃

i=1

Bi

)
.We assume moreover that the �uid inertia e�ets are negligible ompared to the visosity(i.e. the Reynolds number is very small Re ≪ 1) so that the veloity u and the pressure psolve the stationary Stokes equations in the �uid domain,

{
∇ · σ = 0 in Ω,

∇ · u = 0 in Ω,
(4.1.1)where σ = ∇u +∇uT − pId is the stress tensor in the �uid and Id is the identity matrix.
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Figure 4.1: Example with three partiles.On the surfaes of the partiles, we onsider a no-slip ondition,
u = ui on ∂Bi, i = 1, 2, ..., N.where the veloity ui orresponds to a rigid displaement. It is haraterized by the veloity

Ui at the enter zi of the ball Bi and by the angular veloity ωi (Ui, ωi ∈ R3),
ui(r) := Ui + ωi × (r− zi), for r ∈ R3, i = 1, 2, ..., N. (4.1.2)We are interested in solutions u whih deay at in�nity, i.e., whih ful�lls

u(r)→ 0, as |r| → ∞.As realled in the preeding setion, the existene and uniqueness of a solution to (4.1.1) islassial in the Hilbert spae
D1,2(Ω) :=

{
u ∈ D′(Ω,R3) : ∇u ∈ L2(Ω),

u√
1 + r2

∈ L2(Ω),∇ · u = 0 in Ω

}
,endowed with the salar produt

(u,v)D :=

∫

Ω
∇u : ∇v.



4.1. The hydrodynami interations 65The surfae density of fore exerted on the �uid at some point r of the surfae ∂Bi is givenby
fi(r) =

(
∇u +∇uT − pId) .ni, (4.1.3)where ni denotes the exterior normal on the surfae of the i-est partile Bi.The total fore and total torque exerted by the partile Bi on the �uid are given by thefollowing formulas,

Fi =

∫

∂Bi

fi(r)dS(r),

Ti =

∫

∂Bi

(r− zi)× fi(r)dS(r).The main goal of our work is to propose a numerial method for omputing aurateapproximations of the frition operator,
F : (R3)2N −→ (R3)2N , (Ui, ωi)1≤i≤N 7−→ (Fi,Ti)1≤i≤N ,whih desribes the hydrodynami interations between the partiles.4.1.2 The boundary integral methodLet us �rst make a ruial remark: any veloity �eld assoiated to a rigid displaement

w(r) = U + ω × r solves the Stokes equations with a onstant pressure �eld p = p∞ ∈ R.Indeed, diret omputations show that ∇ ·w(r) = 0 and that the stress tensor σ redues tothe uniform tensor −p∞Id. Hene, it is reasonable to extend the veloity and pressure �eldsinside the partiles by setting,
u(r) := ui(r) and p(r) := pi =

1

4π

∫

∂Bi

p(r′)dS(r′), for r ∈ Bi, i = 1, 2, ..., N.The extended �elds solve
∇ · σ = 0 in R3 \ ∪∂Bi, ∇ · u = 0 in R3, (4.1.4)with the jump ondition,

[σ] · ni = f̃i on ∂Bi, i = 1, 2, ..., N, (4.1.5)where f̃i is a surfae density of fores on ∂Bi. These fore densities do not identify with thesurfae density fi introdued in (4.1.3). In fat, we have for r on the surfae of ∂Bi,
f̃i(r) = [σ(r; Ω)− σ(r;Bi)] · ni(r) = fi − σ(r;Bi) · ni(r),with σ(r;Bi) = ∇ui +∇uT

i − piId. However, sine this stress tensor orresponds to a rigidmotion, it does not ontribute to the total fore and torque exerted by the surfae of Bi, thatis ∫

∂Bi

σ(r;Bi) · ni(r)dS(r) =

∫

∂Bi

ni(r)× [σ(r;Bi) · ni(r)]dS(r) = 0.



66 Chapter 4. Spetral disretization of the hydrodynami interationsHene, the total fores and torques an be rewritten as follows
Fi =

∫

∂Bi

f̃i(r)dS(r), Ti =

∫

∂Bi

ni × f̃i(r)dS(r). (4.1.6)The unique solution u ∈ D1,2(R3) of (4.1.4), (4.1.5) is given by onvolution of the surfaedensity fores f̃i with the Green tensor assoiated to the Stokes equations in R3,
u(r) =

N∑

i=1

∫

∂Bi

G(r− r′) · f̃i(r′)dS(r′), r ∈ R3, (4.1.7)where the tensor G is the Stokeslet
G(r) :=

1

8π

( Id
r

+
r⊗ r

r3

)
.The expliit formula (4.1.7) gives the veloity �eld everywhere as soon as the fore densities

f̃i are known. However, the data of the problem are the veloity �elds ui, not these fore den-sities. We are then led to onsider the following �Neumann to Dirihlet� operator introduedin Setion 3.4:
ND : H

−1/2
0 (∂B1)× ...×H−1/2

0 (∂BN ) −→ H
1/2
0 (∂B1)× ...×H1/2

0 (∂BN )

(f̃1, ..., f̃N ) 7−→ (u|∂B1
, ...,u|∂BN

),where for every i = 1, .., N , the spaes H1/2
0 (∂Bi) and H−1/2

0 (∂Bi) are de�ned by
H

1/2
0 (∂Bi) =

{
g ∈ H1/2(∂Bi) :

∫

∂Bi

g · ni = 0

}
,

H
−1/2
0 (∂Bi) =

{
f ∈ H−1/2(∂Bi) : 〈f ,1∂Bi

ni〉 = 0
}
.This operator is positive and symmetri, its inverse is the orresponding �Dirihlet to Neu-mann� operator,

DN := ND−1 : H
1/2
0 (∂B1)× ...×H1/2

0 (∂BN ) −→ H
−1/2
0 (∂B1)× ...×H−1/2

0 (∂BN )

(u|∂B1
, ...,u|∂BN

) 7−→ (f̃1, ..., f̃N ).In the initial problem, we only need to ompute approximations of this operator when
(ui|∂Bi

)1≤i≤N is a �nite sequene of rigid motions. Moreover we do not need a ompletedesription of (f̃i)1≤i≤N but only the projetions of these fore densities given by (4.1.6).In short, we only need a projetion of the operator DN on a �nite dimensional spae ofdimensions 6N , that is a 6N × 6N matrix. This operator,
F : R6N −→ R6N , (Ui, ωi)1≤i≤N 7−→ (Fi,Ti)1≤i≤Nis alled the frition operator and its representation in a basis of translations and rotationsof individual partiles is alled the frition or resistane matrix. The inverse of this matrixis alled the mobility matrix
M : R6N −→ R6N , (Fi,Ti)1≤i≤N 7−→ (Ui, ωi)1≤i≤N .



4.1. The hydrodynami interations 67Unfortunately, we do not have a nie expliit expression for DN suh as (4.1.7). To omputeaurate approximations of F starting from (4.1.7), the naive method onsists in 1/ approx-imating ND by a �nite dimensional disrete operator, 2/ inverse this approximate operator,3/ projet this inverse on the spae of rigid motions. In the next setion we desribe this ideain the ase of a spetral disretization.4.1.3 Spetral approximationTo approximate the operator ND, we use a Galerkin method. For this, let us rewrite thisoperator in variational form. For simpliity, let us de�ne
H

1/2
0 (∂Ω) := H

1/2
0

(
∂B1,R

3
)
× ...×H1/2

0

(
∂BN ,R

3
)
,

H
−1/2
0 (∂Ω) := H

−1/2
0

(
∂B1,R

3
)
× ...×H−1/2

0

(
∂BN ,R

3
)
.Given ui := u|∂Bi

∈ H1/2
0

(
∂Bi,R

3
), for i = 1, 2, ..., N , we de�ne for f ,g ∈ H−1/2

0 (∂Ω) thebilinear form
a(f, g) =

N∑

i=1

N∑

j=1

∫

∂Bi

∫

∂Bj

gT
i (r) ·G(r− r′) · fj(r

′)dS(r′)dS(r),and the linear form,
L(g) =

N∑

i=1

∫

∂Bi

gT
i (r) · u(r)dS(r).In partiular, a(·, ·) is a bounded and oerive bilinear form (see Setion 3.4) and L is abounded linear funtional on H−1/2

0 (∂Ω).The surfae density fores f̃ =
(
f̃1, ..., f̃N

) in H−1/2
0 (∂Ω) solves the problem:Find f ∈ H−1/2

0 (∂Ω) suh that: a(f, g) = L(g), ∀g ∈ H−1/2
0 (∂Ω). (4.1.8)Therefore we an approximate the solution of equation (4.1.8) by a Galerkin method.For i = 1, ..., N , hoose subspaes V K

i ⊂ H
1/2
0

(
∂Bi,R

3
) of dimension K and then solve theprojeted problem on V K

i :Find fK ∈ V K
1 ×...×V K

N suh that: a
(
fK, gK

)
= L

(
gK
)
, ∀gK ∈ V K

1 ×...×V K
N . (4.1.9)Let {φi,α}α=1,...,K be a basis of V K

i , for i = 1, ..., N . The unknown fK = (fK
1 , ..., f

K
N )an be deomposed as fK

i =
∑K

α=1 F
K
i,αφi,α. The disrete problem (4.1.9) an be rewrittenin the matrix form
AKFK = LK ,where

AK
i,α,j,β =

∫

∂Bi

∫

∂Bj

φT
j,β(r) ·G(r − r′) · φi,α(r′)dS(r′)dS(r), (4.1.10)

LK
i,α = ui,α, with i, j ∈ {1, ..., N}, and α, β ∈ {1, ...,K}. (4.1.11)



68 Chapter 4. Spetral disretization of the hydrodynami interationsThe �rst di�ulty is that the integral in (4.1.10) is singular if i = j. In order to overomethis problem, it is onvenient to use a spetral deomposition method. More preisely, forevery i = 1, ..., N , we hoose the �nite dimensional subspae V h
i to be the spae generatedby the �rst eigenvetors of the following operator,

Gi : H−1/2(∂Bi,R
3) −→ H1/2(∂Bi,R

3)

φ 7−→
∫

∂Bi

G(.− r′) · φ(r′)dS(r′).In other words, for i = 1, ..., N and α = 1, ...,K, φi,α satis�es
∫

∂Bi

G(r− r′) · φi,α(r′)dS(r′) =
1

λα
φi,α(r), for all r ∈ ∂Bi. (4.1.12)Using this spetral deomposition, self interations are diagonal and the other terms do notinlude singular integrals. Indeed, by (4.1.12), when i = j the formula (4.1.10) beomes

Ah
i,α,i,β =

δαβ

λα
.Moreover, when i 6= j the integrals in (4.1.10) do not inlude singular integrals, sine

|r− r′| ≥ d(Bi, Bj) > 0, ∀r ∈ ∂Bi, ∀r′ ∈ ∂Bj .It turns out that the basis {φi,α}α=1,...,K is a basis of vetorial spherial harmonis assoiatedto the sphere. We desribe this basis and the deomposition of the Dirihlet to Neumannoperator DN in the next setion.4.2 Deomposition in vetorial spherial harmonisIn this setion we desribe the basis of vetorial spherial harmonis. We follow thenotation of Nédéle in [17℄ where these objets are introdued in the ontext of ele-tromagnetism. Then we present the deomposition of the solution of the Stokes problemand of the orresponding Dirihlet to Neumann operator DN in vetorial spherial harmonis.4.2.1 The basis of vetorial spherial harmonis4.2.1.1 Spherial harmonisLet us reall the de�nition and some properties of vetorial spherial harmonis. Weonsider the unit sphere S2 in R3. The ase of a sphere of arbitrary radius follows by ahange of sale. In this geometry, it is natural to de�ne a point of R3 by its spherialoordinates (r, θ, ϕ), where r is the radius and θ, ϕ the two Euler angles. These oordinatesare related to the eulidean oordinates (x1, x2, x3) by




x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ.

(4.2.1)
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Figure 4.2: Coordinate systems.The orresponding moving frame is {~er, ~eθ, ~eϕ}, where the unitary vetors ~er, ~eθ and ~eϕan be determined as
~er = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

~eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ) ,

~eϕ = (− sinϕ, cosϕ, 0) .In these oordinates, the surfae gradient of the funtion u, denoted ∇S2u, is de�ned as
∇S2u =

1

sin θ

∂u

∂ϕ
~eϕ +

∂u

∂θ
~eθ. (4.2.2)Let H1(S2) denotes the Hilbert spae

H1(S2) =
{
u ∈ L2(S2,C) : ∇S2u ∈

(
L2(S2)

)3}
,with its hermitian produt

(u,v)H1(S2) =
1

4

∫

S2

uv̄dσ +

∫

S2

∇S2u · ∇S2v̄dσ.More generally, for n ≥ 0, we denote by
Hn(S2) =

{
u ∈ L2(S2,C) : ∇k

S2u ∈ L2(S2) for 0 ≤ k ≤ n
}
.



70 Chapter 4. Spetral disretization of the hydrodynami interationsThe Laplae operator has the expression
∆u =

1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2

(
1

sin2 θ

∂2u

∂ϕ2
+

1

sin θ

∂

∂θ
(sin θ

∂u

∂θ
)

)
.We will denote by ∆S2 the Laplae-Beltrami operator on the unit sphere S2, de�ned as

∆S2u =
1

sin2 θ

∂2u

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
.The area element on the sphere is: dσ = sin θdθdϕ. The operator ∆S2 is self-adjoint for thehermitian produt in L2(S2) given by

∫

S2

uv̄dσ =

∫ 2π

0

∫ π

0
u(θ, ϕ)v̄(θ, ϕ) sin θdθdϕ.This an be seen using an integration by parts

∫

S2

∆S2uv̄dσ = −
∫ 2π

0

∫ π

0

(
1

sin θ

∂u

∂ϕ

∂v̄

∂ϕ
+ sin θ

∂u

∂θ

∂v̄

∂θ

)
dθdϕ

= −
∫ 2π

0

∫ π

0

(
1

sin θ

∂u

∂ϕ

1

sin θ

∂v̄

∂ϕ
+
∂u

∂θ

∂v̄

∂θ

)
sin θdθdϕ

=

∫

S2

u∆S2v̄dσ.The following Green's formula holds
∫

S2

∇S2u.∇S2 v̄dσ = −
∫

S2

∆S2uv̄dσ for u ∈ C2(S2), v ∈ C1(S2).By density this formula also holds for u ∈ H2(S2) and v ∈ H1(S2).The Laplae-Betrami operator is self-adjoint in the spae L2(S2) and it is oerive on thespae H1(S2)∩L2
0(S

2). It admits a family of eigenfuntions whih onstitutes an orthogonalHilbert basis of the spae L2(S2). This basis is also orthogonal for the salar produt in
H1(S2). These eigenfuntions are alled spherial harmonis. They are desribed in Theo-rem 4.2.1.Let Hl be the spae of homogeneous polynomials of degree l in three variables that aremoreover harmoni in R3, i.e., that satisfy

∆P = 0.Let Yl be the spae of the restritions to the unit sphere S2 of polynomials in Hl.Theorem 4.2.1 ([17℄). Let Y m
l , −l ≤ m ≤ l, denote an orthonormal basis of Yl for thehermitian produt of L2(S2). The funtions Y m

l , for l ≥ 0 and −l ≤ m ≤ l, form anorthogonal basis in L2(S2), whih is also orthogonal in H1(S2). Moreover, Yl oinides withthe subspae spanned by the eigenfuntions of the Laplae-Beltrami operator assoiated withthe eigenvalue −l(l + 1), i.e.,
∆S2Y m

l + l(l + 1)Y m
l = 0.The eigenvalue −l(l + 1) has multipliity 2l + 1.



4.2. Deomposition in vetorial spherial harmonis 71For s ≥ 0, we have
Hs(S2) =



Y =

∑

l,m

cl,mY
m
l : |Y |2Hs(S2) =

∑

l,m

{l(l + 1)}s|cl,m|2 <∞



 .By Theorem 4.2.1 and the above Green's formula, we have

‖∇S2Y m
l ‖2L2 = l(l + 1).4.2.1.2 Legendre polynomialsWe onsider the segment [−1, 1] and the spae L2([−1, 1]). The Legendre polynomials

Pl are the orthogonal polynomials de�ned on this segment for the usual salar produt in
L2([−1, 1]) and onstruted with the Gram-Shmidt orthonormalization proess, when start-ing form the usual basis 1, x, x2, .... The usual normalization onsists in �xing Pl(1) = 1. TheRodrigues formula then gives the expression of the Legendre polynomial Pl:

Pl(x) =
(−1)l

2ll!

dl

dxl
(1− x2)l.The assoiated Legendre funtions P

m
l , for 0 ≤ m ≤ l, are given by

P
m
l = (−1)m(1− x2)m/2 d

m

dxm
Pl(x).The spherial harmonis of order l are the 2l+1 funtions whih are given by: for l ≥ 0,−l ≤

m ≤ l

Y m
l (θ, ϕ) =

√
2Cm

l P
m
l (cos θ) cos(mϕ), if m > 0,

Y m
l (θ, ϕ) =

√
2Cm

l P
|m|
l (cos θ) sin(|m|ϕ), if m < 0,

Y m
l (θ, ϕ) = Cm

l P
0
l (cos θ), if m = 0,where

Cm
l =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)! .4.2.1.3 Vetorial spherial harmonisTo desribe the spaes L2(S2,R3) or H1(S2,R3) we ould simply use the basis given by

Y m1
l1

e1 + Y m2
l2

e2 + Y m3
l3

e3, l1, l2, l3 ≥ 0, |mi| ≤ li.However in the ontext of the Maxwell equations and of the Stokes equation (see [13℄), itis more onvenient to use di�erent ombinations of the salar spherial harmonis alledvetorial spherial harmonis.



72 Chapter 4. Spetral disretization of the hydrodynami interationsLet l ≥ 0 and H ∈ Hl, we de�ne
HA(x) := ∇H(x) ∧ x,
HB(x) := ∇H(x),

HC(x) := −|x|2∇H(x) + (2l + 1)H(x)x.We show that HA ∈ Hl(R
3,R3) for l ≥ 0, HB ∈ Hl−1(R

3,R3) for l ≥ 1 and HC ∈
Hl+1(R

3,R3) for l ≥ 0. First, we hek immediately that HA is a homogeneous polynomialof degree l and we ompute
∆HA(x) = ∇∆H(x)∧x+2

3∑

n=1

∇∂xnH(x)∧∂xnx+∇H(x)∧∆x = 2

3∑

n=1

∇∂xnH(x)∧∂xnxThen, for 1 ≤ k ≤ 3 and using the three-dimensional antisymmetri Levi-Civita symbol εijkto express the ross produt, we ompute
[∆HA]k (x) = 2


 ∑

1≤i,j,n≤3

εijk∂xi∂xnH(x)∂xnxj




k

= 2


 ∑

1≤i,j,n≤3

εijk∂xi∂xjH(x)




k

εijk=−εjik
= 0.Clearly, HB is a homogeneous polynomial of degree l − 1 and ∆HB = 0. Finally, HC is ahomogeneous polynomial of degree l + 1 and we have

∆HC(x) = −6∇H(x)− 4(x · ∇)∇H + 2(2l + 1)∇H.But sine ∇H is a homogeneous polynomial of degree l− 1, we have (x ·∇)∇H = (l− 1)∇Hand we obtain ∆HC = 0.For x ∈ S2, we respetively de�ne Tl,m, Il,m, Nl,m as the traes on S2 of the harmoni poly-nomials {Hl,m}A, {Hl+1,m}B and {Hl−1,m}C :
Tl,m(x) := {Hl,m}A(x), −l ≤ m ≤ l, l ≥ 1,

Il,m(x) := {Hl+1,m}B(x), −l− 1 ≤ m ≤ l + 1, l ≥ 0,

Nl,m(x) := {Hl−1,m}C(x), −l + 1 ≤ m ≤ l − 1, l ≥ 1.Notie that by onstrution the omponents of Tl,m, Il,m, Nl,m belong to Yl, that is
∆S2Y + l(l + 1)Y = 0, for Y = Tl,m, Il,m, Nl,m.Using the tangential gradient de�ned by (4.2.2) and the Euler relation for the normal deriva-tives, we obtain
Tl,m(x) = ∇S2Yl,m(x) ∧ x =: ∇⊥

S2Yl,m(x) ∈ TS2, (4.2.3)
Il,m(x) = ∇S2Yl+1,m(x) + (l + 1)Yl+1,m(x)x, (4.2.4)
Nl,m(x) = −∇S2Yl−1,m(x) + lYl−1,m(x)x. (4.2.5)



4.2. Deomposition in vetorial spherial harmonis 73Theorem 4.2.2 ([17℄). For eah l ≥ 0, the family {(Tl,m)|m|≤l; (Il,m)|m|≤l+1; (Nl,m)|m|≤l−1

}forms an orthogonal basis of (H1(S2)
)3 and of (L2(S2))3. Further, they satisfy

∫

S2

|Tl,m(x)|2dσ = l(l + 1),

∫

S2

|Il,m(x)|2dσ = (l + 1)(2l + 3),

∫

S2

|Nl,m(x)|2dσ = l(2l − 1).In summary, let u ∈ L2(S2,R3), then u deomposes as
u(x) =

∑

l≥1

l∑

m=−l

il,mTl,m(x) +
∑

l≥0

l+1∑

m=−l−1

jl,mIl,m(x) +
∑

l≥1

l−1∑

m=−l+1

kl,mNl,m(x),and for s ≥ 0 we have
‖u‖2s :=

∑

l≥1

l∑

m=−l

[l(l + 1)]sl(l + 1)|il,m|2 +
∑

l≥0

l+1∑

m=−l−1

[l(l + 1)]s(2l + 3)(l + 1)|jl,m|2

+
∑

l≥1

l−1∑

m=−l+1

[l(l + 1)]sl(2l − 1)|kl,m|2.

4.2.2 The Stokes problem in a ball or in the omplement of a ballWe now show that the vetorial spherial harmoni basis diagonalizes the operator NDde�ned on a single partile. For this, we onsider the Stokes problem in the domain Ω0 ∪
B(0, 1) where Ω0 := R3 \B(0, 1). Given a veloity �eld g de�ned on S2 := ∂B(0, 1), we seekthe veloity and pressure �elds (u, p) satisfying





−∆u +∇p = 0 in Ω0 ∪B(0, 1),

∇ · u = 0 in Ω0 ∪B(0, 1),

u = g on S2.

(4.2.6)
4.2.2.1 Deomposition of veloity and pressure �eldProposition 4.2.1. Let g ∈ H1/2

0 (S2,R3) and let (u, p) be the variational solution of (4.2.6)(u ∈ D(Ω0 ∪ B(0, 1)), p ∈ L2(Ω0 ∪ B(0, 1)) and ∫B(0,1) p = 0). If the deomposition of g inthe basis of vetorial spherial harmonis reads
g(x) =

∑

l≥1

l∑

m=−l

gT
l,mTl,m(x) +

∑

l≥0

l+1∑

m=−l−1

gI
l,mIl,m(x) +

∑

l≥1

l−1∑

m=−l+1

gN
l,mNl,m(x), (4.2.7)



74 Chapter 4. Spetral disretization of the hydrodynami interationsthen we obtain the deompositions of the veloity �eld u and of the pressure �eld p in vetorialspherial harmonis for r > 1, as follows,
u(x) =

∑

l≥1

l∑

m=−l

gT
l,mr

−(l+1)Tl,m +
∑

l≥0

l+1∑

m=−l−1

gI
l,mr

−(l+1)Il,m

+
∑

l≥1

l−1∑

m=−l+1

[
(2l − 3)(l − 1)

2l
gI
l−2,m(r2 − 1) + gN

l,m

]
r−(l+1)Nl,m, (4.2.8)

p(x) =
∑

l≥1

l∑

m=−l

(2l − 1)l

l + 1
gI
l−1,mr

−(l+1) [Il1,m(x/r) +Nl+1,m(x/r)] · er. (4.2.9)Proof. Sine ∆p = 0, we put
p(x) =

∑

l≥0

l∑

m=−l

αl,mr
−(l+1)Yl,m(x/r).We deompose u in the form

u(x) =
∑

l≥1

l∑

m=−l

il,m

(
r−(l+1)Tl,m(x)

)
+
∑

l≥0

l+1∑

m=−l−1

jl,m

(
r−(l+1)Il,m(x)

)

+
∑

l≥1

l−1∑

m=−l+1

kl,m

(
r−(l+1)Nl,m(x)

)
.This form is hosen beause r−(l+1)Tl,m(x), r−(l+1)Il,m(x) and r−(l+1)Nl,m(x) are harmonis.Using (4.2.3), (4.2.4), (4.2.5) and the formuladiv(aer) = ∂ra+ (2/r)a,we obtain divu(x) =

∑

l≥0

l+1∑

m=−l−1

(l + 1)r−(l+2)
(
rj′l,m − (2l + 1)jl,m

)
Yl+1,m

+
∑

l≥1

l−1∑

m=−l+1

lr−(l+1)k′l,mYl−1,m.Sine divu = 0, we dedue
k′1,0 = 0, (4.2.10)

(l + 1)
(
r2j′l,m − r(2l + 1)jl,m

)
+ (l + 2)k′l+2,m = 0, l ≥ |m| ≥ 0. (4.2.11)



4.2. Deomposition in vetorial spherial harmonis 75We now deompose the �rst relation of equations (4.2.6). We have by (4.2.5),
∇p(x) =

∑

l≥0

l∑

m=−l

αl,mr
−(l+2) (∇S2Yl,m(x/r)− (l + 1)Yl,m(x/r)er)

=
∑

l≥1

l∑

m=−l+1

(−αl−1,m)r−(l+1)Nl,m(x/r),and
∆u(x) =

∑

l≥1

l∑

m=−l

r−(l+2)
(
ri′′l,m − 2li′l,m

)
Tl,m

+
∑

l≥0

l+1∑

m=−l−1

r−(l+2)
(
rj′′l,m − 2lj′l,m

)
Il,m

+
∑

l≥1

l−1∑

m=−l+1

r−(l+2)
(
rk′′l,m − 2lk′l,m

)
Nl,m.Identifying these expansions in vetorial spherial harmonis, we obtain

ri′′l,m − 2li′l,m = 0, l ≥ 1, |m| ≤ l, (4.2.12)
rj′′l,m − 2lj′l,m = 0, l ≥ 0, |m| ≤ l + 1, (4.2.13)

rk′′l,m − 2lk′l,m = −αl−1,mr, l ≥ 1, |m| ≤ l − 1. (4.2.14)We dedue from (4.2.12), (4.2.13), the boundary ondition u = g on ∂Ω0 and the onditionof deay at in�nity that
il,m(r) = gT

l,m, l ≥ 1, |m| ≤ l,
jl,m(r) = gI

l,m, l ≥ 0, |m| ≤ l + 1.The relations (4.2.10), (4.2.11) lead to
k1,0 = gN

1,0, α0,0 = 0,

kl,m =
(2l − 3)(l − 1)

2l
gI
l−2,m(r2 − 1) + gN

l,m, l ≥ 2, 0 ≤ |m| ≤ l − 1.From (4.2.14) we get
αl,m =

(2l + 1)(2l − 1)l

l + 1
gI
l−1,m, l ≥ 1, 0 ≤ |m| ≤ l.Eventually, with the onvention gI

−1,0 = 0 and all of the above equalities, we obtain thedeompositions of p and u in vetorial spherial harmonis as in (4.2.9) and (4.2.8).



76 Chapter 4. Spetral disretization of the hydrodynami interations4.2.2.2 Deomposition of Neumann to Dirihlet operatorProposition 4.2.2. Let g ∈ H1/2(S2,R3) and let (u, p) be a solution of (4.2.6). Thenthe vetorial spherial harmoni basis diagonalizes the Neumann to Dirihlet operator NDde�ned on ∂B(0, 1).In partiular, if the deomposition of g in the basis of vetorial spherial harmonis isgiven by (4.2.7), then we have
NDg =

∑

l≥1

l∑

m=−l

1

2l + 1
gT
l,mTl,m +

∑

l≥0

l+1∑

m=−l−1

l + 2

4l2 + 8l + 3
gI
l,mIl,m

+
∑

l≥1

l−1∑

m=−l+1

l − 1

4l2 − 1
gN
l,mNl,m. (4.2.15)Proof. Let us �rst deompose the following operator

DN jumpg :=
[
−er ·

(
∇u +∇ut

)
+ per

]
|S2 .We have

DN jumpg = DN extg +DN intg, (4.2.16)where DN ext and DN int orrespond to the exterior and interior solutions.Let us �rst deompose DN ext. We have
DN ext =

[
−er ·

(
∇u +∇ut

)
+ per

]
|S2

ext
.For x ∈ S2, we ompute

−(∇u · er)(x) =
∑

l≥1

l∑

m=−l

(l + 1)gT
l,m(Tl,m · er)er +

∑

l≥0

l+1∑

m=−l−1

(l + 1)gI
l,m(Il,m · er)er(4.2.17)

+
∑

l≥1

l−1∑

m=−l+1

[
−(2l − 3)(l − 1)

l
gI
l−2,m + (l + 1)gN

l,m

]
(Nl,m · er)er

−
∑

l≥1

l∑

m=−l

gT
l,m{∇S2Tl,m} · er −

∑

l≥0

l+1∑

m=−l−1

gI
l,m{∇S2Il,m} · er

−
∑

l≥1

l−1∑

m=−l+1

gN
l,m{∇S2Nl,m} · erTo redue the three �rst terms, we use (4.2.3), (4.2.4) and (4.2.5) and obtain

Tl,m · er = 0, Il,m · er = (l + 1)Yl+1,m, Nl,m · er = lYl−1,m.For the three remaining terms, we remark that for a regular vetor �eld V of TS2 and aspherial harmoni Y of S2 in R3, we have
{∇S2V } · er = −V, {∇S2(Y er)} · er = ∇S2Y.



4.2. Deomposition in vetorial spherial harmonis 77Combining to (4.2.3), (4.2.4) and (4.2.5), it leads
{∇S2Tl,m} · er = −Tl,m,

{∇S2Il,m} · er = l∇S2Yl+1,m,

{∇S2Nl,m} · er = (l + 1)∇S2Yl−1,m.The equality (4.2.17) then beomes
−(∇u · er)(x) =

∑

l≥0

l+1∑

m=−l−1

(l + 1)2gI
l,mYl+1,mer −

∑

l≥2

l−1∑

m=−l+1

(2l − 3)(l − 1)gI
l−2,mYl−1,mer

+
∑

l≥1

l−1∑

m=−l+1

(l + 1)lgN
l,mYl−1,mer +

∑

l≥1

l∑

m=−l

gT
l,mTl,m

+
∑

l≥0

l+1∑

m=−l−1

(−l)gI
l,m∇S2Yl+1,m +

∑

l≥1

l−1∑

m=−l+1

(−l − 1)gN
l,m∇S2Yl−1,m.After simlifying and using again (4.2.3), (4.2.4) and (4.2.5), we obtain,

−(∇u · er)(x) =
∑

l≥1

l∑

m=−l

gT
l,mTl,m −

∑

l≥0

l+1∑

m=−l−1

lgI
l,mIl,m +

∑

l≥1

l−1∑

m=−l+1

(l + 1)gN
l,mNl,m.With the same kind of omputation, we obtain (see L. Halpern in [13℄)

Λg(x) =
∑

l≥1

l∑

m=−l

(l+1)gT
l,mTl,m +

∑

l≥0

l+1∑

m=−l−1

3(l + 1)2

l + 2
gI
l,mIl,m +

∑

l≥1

l−1∑

m=−l+1

(l+1)gN
l,mNl,m,where Λg(x) :=

(
−er · ∇ut + per

)
|S2

ext
. Eventually, we get

DN extg(x) =
∑

l≥1

l∑

m=−l

(l + 2)gT
l,mTl,m +

∑

l≥0

l+1∑

m=−l−1

2l2 + 4l + 3

l + 2
gI
l,mIl,m

+
∑

l≥1

l−1∑

m=−l+1

2(l + 1)gN
l,mNl,m, (4.2.18)To deompose DN int, we solve the interior problem (4.2.6) in the unit ball B(0, 1) with

g = Tl,m, g = Il,m and then g = Nl,m.For g = Tl,m, sine x 7→ rlTl,m(x/r) is harmoni and divergene free, we have a solutionof the form u = rlTl,m(x/r) and p = 0. Using the above formulas, it is easy to hek that
per − (∇u +∇uT ) · er = (l − 1)Tl,m.For g = Il,m, we still have a solution of the form u = rlIl,m(x/r) and p = 0. Similarly, wealulate
per − (∇u +∇uT ) · er = 2lIl,m.



78 Chapter 4. Spetral disretization of the hydrodynami interationsFor g = Nl,m, the mapping x 7→ rlNl,m(x/r) is not divergene free. Proeeding as in the aseof the exterior domain, we look for a solution of the form,
u = rlNl,m + αrl−2(1− r2)Il−2,m, p = βrl−1Yl−1,m.The ondition ∇ · u = 0 yields

α =
l(2l + 1)

2(l − 1)
.Using the �rst equation of (4.2.6), we get

β = −2(2l − 1)α = − l(4l
2 − 1)

l − 1
.Then we ompute

per − (∇u +∇uT ) · er =
2l2 + 1

l − 1
Nl,m.We remark that the oe�ient of N1,0 is zero.Eventually, DN int writes as:

DN intg(x) =
∑

l≥1

l∑

m=−l

(l−1)gT
l,mTl,m+

∑

l≥0

l+1∑

m=−l−1

2lgI
l,mIl,m+

∑

l≥1

l−1∑

m=−l+1

2l2 + 1

l − 1
gN
l,mNl,m.(4.2.19)Finally, the deomposition of the Dirihlet to Neumann operator is obtained by (4.2.16),(4.2.18) and (4.2.19),

DN jumpg(x) =
∑

l≥1

l∑

m=−l

(2l + 1)gT
l,mTl,m +

∑

l≥0

l+1∑

m=−l−1

4l2 + 8l + 3

l + 2
gI
l,mIl,m

+
∑

l≥1

l−1∑

m=−l+1

4l2 − 1

l − 1
gN
l,mNl,m. (4.2.20)This is de desired deomposition.4.2.3 Pratial implementation of the boundary integral method in thebasis of vetorial spherial harmonnis4.2.3.1 Trunation order LmaxFirstly, we rewrite the problems (4.1.1) as the boundary integral problems (4.1.4), (4.1.5),whose unknowns are the surfae fore densities f̃i on the boundary of the partiles. Let usde�ne the basis of vetorial spherial harmonis V SHi assoiated to the sphere ∂Bi as follows:

V SHi =
{
(T i

l,m)|m|≤l; (Ii
l,m)|m|≤l+1; (N i

l,m)|m|≤l−1

}
l≥0, i=1,2,...,N

.



4.2. Deomposition in vetorial spherial harmonis 79Noting that by Theorem 4.2.2 the solution satisfy (f̃i, T
i
0,0) = 0, so we ignore the T i

0,0 fromthe basis. Then, the six �rst terms of this basis are
Ii
0,−1(zi + x) =

1√
4π
ey, Ii

0,0(zi + x) =
1√
4π
ez , Ii

0,1(zi + x) = − 1√
4π
ex, (4.2.21)

T i
1,−1(zi + x) =

√
3

8π
ey × x, T i

1,0(zi + x) =

√
3

8π
ez × x, T i

1,1(zi + x) = −
√

3

8π
ex × x,(4.2.22)where ex, ey, ez denote three unit normal vetors of oordinates system.We deompose the unknown f̃i in V SHi as,

f̃i =
∑

l≥1

l∑

m=−l

fT,i
l,mT

i
l,m +

∑

l≥0

l+1∑

m=−l−1

f I,i
l,mI

i
l,m +

∑

l≥1

l−1∑

m=−l+1

fN,i
l,mN

i
l,m. (4.2.23)The disretization step onsists in trunating the series (4.2.23) up to order l = Lmaxwhih we all the trunation order in this thesis. The elements Ii

0,m, for m = −1, 0, 1,in (4.2.21) orrespond to the omponents of the total fores and T i
1,m, for m = −1, 0, 1,in (4.2.22) orrespond to the omponents of the total torques. Hene the total fore andtorque exerted by the partile Bi on the �uid are obtained by projetion of the fore density

f̃i on the spae generated by {Ii
0,m, T

i
1,m : |m| ≤ 1

}. The disretization proposed by Durlofskyand Brady [10, 11℄ was a trunation of the series (4.2.23) up to order l = 1, inluding 11terms: total fores, torques and the stresslets Ii
1,m, |m| ≤ 2. To improve the auray of themethod, other authors [15℄, [7℄ have onsidered trunations up to arbitrary order.4.2.3.2 Computation of disrete Neumann to Dirilet matrix NDLmaxIt is onvenient to rewrite the basis V SHi with the notation V SHi = (φi,α)α≥0,i=1,...,N .The omponents of the operator ND in the Hilbert basis V SHi are given by

NDi,α;j,β =

∫

∂Bj

∫

∂Bi

φT
i,α(x) ·G(x− y) · φj,β(y)dS(y)dS(x).In fat, the veloity �eld uj,β(x) =

∫
∂Bj

G(x − y) · φj,β(y) generated by a fore distribution
φi,β is expliitly known so the above formula simpli�es to

NDi,α;j,β =

∫

∂Bi

φT
i,α(x) · uj,β(x)dS(x). (4.2.24)The nie feature of the vetorial spherial harmonis basis is that it diagonalizes self intera-tions: we have, for i = 1, 2, ..., N ,

NDi,α;i,β = δα,βλα. (4.2.25)The sequene of positive real numbers (λα)α≥0 is the list of the eigenvalues of the Neumannto Dirihlet operator orresponding to an isolated spherial partile in R3.



80 Chapter 4. Spetral disretization of the hydrodynami interationsReall that the disretization onsists in trunating the series up to some trunation order
l = Lmax. Correspondingly, we denote by Mmax the number of vetorial spherial harmonisin the disrete basis. In fat, up to the trunation order Lmax, the number of vetorialspherial harmonis are determined exatly,

Mmax = 3 (Lmax + 1)2 − 1.The disrete matrix of the Neumann to Dirihlet operator NDdis. omputed in the basis
(φi,α)1≤α≤Mmax,1≤i≤N an be written as N ×N bloks as follows,

NDLmax
dis. =




NDLmax
1,1 NDLmax

1,2 · · · NDLmax
1,N

NDLmax
2,1 NDLmax

2,2 · · · NDLmax
2,N... ... . . . ...

NDLmax
N,1 NDLmax

N,2 · · · NDLmax
N,N



.The N diagonal bloks NDLmax

i,i , for i = 1, 2, ..., N , are expliitly known diagonal matriesgiven by (4.2.25),
NDLmax

i,i =




λ1 0 · · · 0

0 λ2 · · · 0... ... . . . ...
0 0 · · · λLmax


 .For the extra-diagonal bloks NDLmax

i,j (i 6= j), we use formula (4.2.24). We have tested twomethods to approximate the integrals on the spheres in the right hand side of (4.2.24): �rstis using the quadrature formula of Hannay and Nye in [14℄, seond is using the quadratureformula of Lebedev in [16℄.4.2.3.3 The disrete frition and mobility matriesThe 6N×6N disretized frition matrix Fdis. is obtained by inversing the matrix NDLmax
dis.and then extrating the entries with indies (i, α; j, β) for 1 ≤ α, β ≤ 6, 1 ≤ i, j ≤ N :

(Fdis.)i,α;j,β :=

([
NDLmax

dis.

]−1
)

i,α;j,β

.As the de�nition of the mobility matrix in Setion 4.1.2, the disrete mobility matrix
Mdis. is de�ned as the inverse of the disrete frition matrix Fdis.,

Mdis. := F−1
dis..Throughout this thesis, the method for approximating the total fores and torques usingthis disrete approximation of the mobility matrix is alled the diret method. In the nextsetion, we perform some numerial tests to illustrate the performane of this method.
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5.1 First numerial tests. Di�ulties for lose partilesFor a �xed position of the partiles, the spetral deomposition method has a very goodbehavior as we send the trunating order to in�nity. Indeed, the fore distribution f̃i aresmooth and the spetral expansion has an exponential rate of onvergene.On the ontrary, if we onsider a sequene of on�gurations with at least two partiles
Bi, Bj getting loser and loser (d(i,j) → 0) and with di�erent presribed veloities ui 6= uj ,the distributions of fores f̃i, f̃j onentrate near the ontat points. In this ase theonvergene of the spetral expansion degenerates. The goal of this setion is to illustratethis phenomenon.Let us onsider a simple ase with two idential spheres ∂B1, ∂B2 of unit radius. Wedenote by d the distane between these partiles. We assume that the two enters lie on thevertial axis with oordinates z1 = (0, 0,−1− d/2) and z2 = (0, 0, 1+ d/2). The veloity andpressure u, p in the surrounding �uid solve the Stokes equations





−∆u +∇p = 0 in Ω := R3 \ (B1 ∪B2),

∇ · u = 0 in R3 \ (B1 ∪B2),

u = ui on ∂Bi, i = 1, 2,

u, p → 0 at ∞. (5.1.1)
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Figure 5.1: The presribed veloities of two lose partiles.We onsider the ase of opposite translational motions along the vertial axis, i.e, thepresribed veloities of the two balls are respetively u1 = −ez,u2 = ez (see Figure 5.1). Inylindrial oordinates (r, θ, z), the veloity has the form
u = urer + uθeθ + uzez.For ρ > 0 small, we onsider the domain (see Figure 5.2)

Ωρ := {(r, θ, z) : |z| < 1 + d/2, r < ρ} ∩Ω.The boundary of this domain an be deomposed in three parts as follows
∂Ωρ = Γ ∪ C1 ∪C2, (5.1.2)where

Γ = {(r, θ, z) : |z| < 1 + d/2, r = ρ} ,
C1 =

{
(r, θ, z) : z = −d/2− 1 +

√
1− r2, r < ρ

}
,

C2 =
{

(r, θ, z) : z = d/2 + 1−
√

1− r2, r < ρ
}
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x1

x3

x2

Ωρ

Γ

C2

C1Figure 5.2: The domain Ωρ.Let us de�ne the mean value of ur on Γ by ūr(ρ),
ūr(ρ) :=

1

|Γ|

∫

Γ
ur,where |Γ| denotes the area of the surfae Γ. We want to show that

ūr(ρ) ≃
ρ

d+ ρ2
, for ρ .

√
d≪ 1. (5.1.3)First, the area |Γ| an be estimated as

|Γ| = 2πρ.2

(
d

2
+ 1−

√
1− ρ2

)
≃ 2πρ(d + ρ2).Next, from the onservation of matter, we have

∫

∂Ωρ

u · n =

∫

Ωρ

∇ · u = 0. (5.1.4)We thus have ∫

Γ
u · n +

∫

C1

u · n +

∫

C2

u · n = 0. (5.1.5)



84 Chapter 5. The Stokesian dynami method for lose partilesSine the veloities on C2 and C1 are respetively ±ez, by symmetry we obtain that
∫

C2

u · n =

∫

C1

u · n = −|C1| = −πρ2.
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Figure 5.3: Behavior of spetral expansion of fore density: the blue line presents the spetraloe�ients of f1, the red line presents 1/
√
d.Therefore, the mean value ūr satis�es

ūr(ρ) ≃
2πρ2.1

2πρ (d+ ρ2)
.Hene, ūr ≃

ρ

d+ ρ2
, as laimed. This formula implies that if ρ ∝ √d then ūr ∝

1√
d
. Inview of this asymptoti behavior and taking into aount the boundary ondition u = 0 on
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C1 and C2, we expet

∂

∂z
ur ∝

1

d3/2
and ∂2

∂2z
ur ∝

1

d2
.Using the Stokes momentum equations, we dedue

∂

∂r
p ∝ 1

d2
.Hene, a natural ansatz is to assume that the leading part of the �ow in the region r .

√
d,

|z| . d is given by:
ur =

1√
d
Ur

(
r√
d
,
z

d

)
; uz = Uz

(
r√
d
,
z

d

)
; p =

1

d2
P

(
r√
d
,
z

d

)
.Under this ansatz, the surfae density of fore sales as

f ∝ d−2φ

(
r√
d

)
. (5.1.6)Aording to this formula, when we onsider a �nite element approximation fh of f , thisapproximation ould be aurate only if the step size of the mesh is substantially smallerthan √d. This leads to expensive omputations in the ase of a small gap d.In order to hek the validity of the formula (5.1.6), we have performed numerial simu-lations and ompute aurate spetral expansions of f for various gaps d. The results givenin Figure 5.3 and Figure 5.4 on�rm that the fore density onentrates on a region of radiusof order √d near the ontat points. Sine the density f is de�ned on a surfae, this meansthat for an approximation based on the �nite element or a spetral deomposition, at least

O(1/d) = O

(
1√
d
× 1√

d

) degrees of freedom are required.
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Figure 5.4: Magnitude of fore near the ontat point on ∂B1 in natural units (left) and inresaled units (right).



86 Chapter 5. The Stokesian dynami method for lose partilesThe singular behavior of the fore density an not be negleted. Indeed, the leading partof the total hydrodynami fores omes from the small region r .
√
d and the resulting totalfore is large: ∫

∂B1

f · ez ∝
A

d
.This singular behavior only depends on the relative positions and relative motions. It ausesslow onvergene of the multipole approximation of the matrix F . Of ourse, this problempersists for N -partiles. The singular behavior of the lubriation fores and torques in thelimit of small gaps between partiles auses a slow onvergene of the spetral deomposition.We establish asymptoti formulas for the total fores and torques for lose partiles in thenext setion.5.2 Asymptotis for two lose partilesIn this setion, we give asymptoti formulas for the fores and torques of two lose partilesas the gap d tends to 0. These results are taken from [8℄.Let us onsider the problem (5.1.1), with presribed veloities orresponding to rigiddisplaements:

ui(x) = Ui + ωi × (x− zi), for i = 1, 2, (5.2.1)where Ui, ωi are respetively the veloities and angular veloities of Bi.5.2.1 Deomposition of the motionWe deompose these displaements as follows:
u1(x) =

U1 + U2

2
+

U1 −U2

2
+
ω1 + ω2

2
× (x− z1) +

ω1 − ω2

2
× (x− z1),

u2(x) =
U1 + U2

2
+

U2 −U1

2
+
ω1 + ω2

2
× (x− z2) +

ω2 − ω1

2
× (x− z2),To lighten motion, let us introdue the mean values:

Ū :=
U1 + U2

2
, ω̄ :=

ω1 + ω2

2
, z̄ :=

z1 + z2

2
.The two rigid veloities u1 and u2 an be deomposed as sums of singular and regular partas follows

ui(x) = urigid(x) + u
singular
i (x), for i = 1, 2, (5.2.2)where

urigid(x) = Ū + ω̄ × (x− z̄),

u
singular
1 (x) =

U1 −U2

2
+ ω̄ × z2 − z1

2
+
ω1 − ω2

2
× (x− z1),

u
singular
2 (x) =

U2 −U1

2
− ω̄ × z2 − z1

2
+
ω2 − ω1

2
× (x− z2).



5.2. Asymptotis for two lose partiles 87It is onvenient to set V =
U1 −U2

2
+ ω̄ × z2 − z1

2
and ω =

ω1 − ω2

2
, then the singular partsof the veloities rewrite as

u
singular
1 (x) = V + ω × (x− z1),

u
singular
2 (x) = −V − ω × (x− z2).By linearity, the orresponding fore densities are given by

fi = f rigid + f
singular
i .We note that in the deomposition (5.2.2), sine the �rst term urigid orresponds to a rigiddisplaement of the objet formed by the two balls, we do not expet it to lead to a singularfore density. We have f rigid = O(1). For simpliity, we assume urigid = 0, that is:

ui(x) = ±V± ω × (x− zi). (5.2.3)Let us onsider the total fore F and torque T exerted by the �uid on the �rst partile. Thetotal fore and torque on the other partile are obtained by symmetry. Reall that F and Tare given by
F =

∫

∂B1

f1dS, T =

∫

∂B1

n× f1dS. (5.2.4)where n is the unit normal to the surfae and dS is the element of area of the surfae.The main goal of this setion is to establish the following asymptoti formulas for thetotal fore and torque given by (5.2.4),
F asympt

1 = 2πV1 ln d+O(d0),

F asympt
2 = 2πV2 ln d+O(d0),

F asympt
3 = −3πV3d

−1 +O(ln d),

T asympt
1 =

(
−2πV2 +

6π

5
ω1

)
ln d+O(d0),

T asympt
2 =

(
2πV1 +

6π

5
ω2

)
ln d+O(d0),

T asympt
3 = O(d0).To do this, we �rst expand the veloity u and pressure p in the power series of the distane

d. Next, we form the equations of the leading terms based on a deomposition into inner andouter region of expansion. By linearity of the equations, we deompose the total fore (torque)as a sum of several fores (torques) whih orrespond to simple motions. The detailed proessis desribed in the two next setions.5.2.2 Inner and outer region of expansionIt is known that the expansions of veloity u and pressure p are singular in terms of thedistane d. So we onsider two regions of expansion. An outer region of expansion is de�ned



88 Chapter 5. The Stokesian dynami method for lose partilesusing the outer variables (x1, x2, x3) in eulidean oordinates. In these oordinate systems,the veloity u and the pressure p have the forms
u = (u1(x), u2(x), u3(x)) and p = p(x),with x = (x1, x2, x3). The system of equations (4.1.1) is valid in this region. For some verysmall distanes d ↓ 0, the partiles are almost in ontat and the point of ontat will be asingular point for the �ow. So it is neessary to build a new oordinates system for innerregion of expansion.As the disussion in Setion 5.1, the variations in the inner region of expansion are de-sribed using the inner variables (x̃1, x̃2, x̃3):

x̃′ = d−1/2x′, x̃3 = d−1x3,where x′ = (x1, x2), x̃
′ = (x̃1, x̃2). In this oordinate system, the veloity and pressure �eldsare given by
ũ1(x̃) = d1/2−ku1(x), ũ2(x̃) = d1/2−ku2(x),

ũ3(x̃) = d−ku3(x), p̃(x̃) = d2−kp(x),where x = (x1, x2, x3), x̃ = (x̃1, x̃2, x̃3) and k is a real onstant whih is de�ned later. Wehave
∇xu =



dk−3/2∇x̃ũ1

dk−3/2∇x̃ũ2

dk−1∇x̃ũ3


 ·



d1/2 0 0

0 d1/2 0

0 0 1


 .From the saling relations between inner and outer variables we have:

∇xp =
(
dk−5/2∂x̃1 p̃, d

k−5/2∂x̃2 p̃, d
k−3∂x̃3 p̃

)T
,

∆xu1 = dk−3/2∇2
x̃′ũ1 + dk−5/2∂

2ũ1

∂x̃2
3

,

∆xu2 = dk−3/2∇2
x̃′ũ2 + dk−5/2∂

2ũ2

∂x̃2
3

,

∆xu3 = dk−1∇2
x̃′ũ3 + dk−2∂

2ũ3

∂x̃2
3

.We then expand formally ũ and p̃ on the forms
ũ = ũ0 + dũ1 + d2ũ2 + ...

p̃ = p̃0 + dp̃1 + d2p̃2 + ...Plugging these expansions in (4.1.1) and identifying the terms of the power series in di,
i = k − 5/2, k − 2, k − 3/2, ..., we obtain that the �ow �eld (ũ0, p̃0) satis�es

∂2ũ0
1

∂x̃2
3

− ∂p̃0

∂x̃1
= 0,

∂2ũ0
2

∂x̃2
3

− ∂p̃0

∂x̃2
= 0,

∂p̃0

∂x̃3
= 0,

∂ũ0
1

∂x̃1
+
∂ũ0

2

∂x̃2
+
∂ũ0

3

∂x̃3
= 0. (5.2.5)



5.2. Asymptotis for two lose partiles 89The �ow �eld (ũ1, p̃1) satis�es
∂2ũ1

1

∂x̃2
3

− ∂p̃1

∂x̃1
= −∇2

x̃′ũ0
1,

∂2ũ1
2

∂x̃2
3

− ∂p̃1

∂x̃2
= −∇2

x̃′ũ0
2,

∂p̃1

∂x̃3
=
∂2ũ0

3

∂x̃2
3

,
∂ũ1

1

∂x̃1
+
∂ũ1

2

∂x̃2
+
∂ũ1

3

∂x̃3
= 0.(5.2.6)There is no di�ulty in priniple whih prevents us from now proeeding to alulate furtherterms in the expansion, but for the purpose of the analysis, we only need to onsider theleading order given by (5.2.5).Now, it is onvenient to hange variables

y1 = x̃1, y2 = x̃2, y3 = x̃3 +
1

2
+

1

2

(
x̃2

1 + x̃2
2

)
.The surfaes of the partiles near the ontat point respetively satisfy

∂Binner
1 : y3 = O(d), (5.2.7)

∂Binner
2 : y3 = 1 + y2

1 + y2
2 +O(d) =: h(y1, y2) +O(d). (5.2.8)For x̃ = (x̃1, x̃2, x̃3) and y = (y1, y2, y3), let us set

v(y) := ũ0(x̃), q(y) := p̃0(x̃).With these new variables and v(y) = (v1(y), v2(y), v3(y)), the equation (5.2.5) reads as follows
∂2v1
∂y2

3

− ∂q

∂y1
= 0,

∂2v2
∂y2

3

− ∂q

∂y2
= 0,

∂q

∂y3
= 0, (5.2.9)

∂v1
∂y1

+
∂v2
∂y2

+
∂v3
∂y3

+ y1
∂v1
∂y3

+ y2
∂v2
∂y3

= 0. (5.2.10)Let us onsider the fore F and torque T exerted by the �uid on the �rst partile. The foreand torque on the other partile an be obtained by symmetry. In inner variables, the unitnormal n to the surfae and the element of area of the surfae dS are given by
n =

(
d1/2y1 +O(d), d1/2y2 +O(d), 1 +O(d)

)
,

dS = d.dy1dy2(1 +O(d)).We note that the singular terms of fore and torque are ontained in the leading term of theinner expansion. Moreover the asymptoti formulas of fore Fasympt and torque T asympt atsmall gaps are only generated on the area of surfae around the ontat points. Hene wemay ompute Fasympt and T asympt on the small surfae {x ∈ ∂B1 : x2
1 + x2

2 ≤ ε2
}, where εis a small real number. In inner variables, this surfae beomes

Sε =
{
y ∈ ∂Binner

1 : y2
1 + y2

2 ≤ d−1ε2
}
.Then we obtain

F asympt
1 = dk−1/2

∫

Sε

(
−y1q +

∂v1
∂y3

)
dy1dy2 +O(dk),

F asympt
2 = dk−1/2

∫

Sε

(
−y2q +

∂v2
∂y3

)
dy1dy2 +O(dk),

F asympt
3 = dk−1

∫

Sε

(−q) dy1dy2 +O(dk), (5.2.11)
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T asympt

1 = dk−1/2

∫

Sε

(
−∂v2
∂y3

)
dy1dy2 +O(dk),

T asympt
2 = dk−1/2

∫

Sε

(
∂v1
∂y3

)
dy1dy2 +O(dk),

T asympt
3 = dk

∫

Sε

(
y1
∂v2
∂y3
− y2

∂v1
∂y3

)
dy1dy2 +O(dk+1/2). (5.2.12)The boundary onditions for v in inner variables read

v1 = V1d
1/2−k − ω3y2d

1−k +O(d3/2−k),

v2 = V2d
1/2−k + ω3y1d

1−k +O(d3/2−k),

v3 = V3d
−k + (ω1y2 − ω2y1) d

1/2−k, on ∂Binner
1 , (5.2.13)and

v1 = −V1d
1/2−k + ω3y2d

1−k +O(d3/2−k),

v2 = −V2d
1/2−k − ω3y1d

1−k +O(d3/2−k),

v3 = −V3d
−k − (ω1y2 − ω2y1) d

1/2−k, on ∂Binner
2 , (5.2.14)where V and ω in (5.2.3) have omponents V = (V1, V2, V3) and ω = (ω1, ω2, ω3).5.2.3 Asymptoti formulas of the total fore and torqueSine (v, q) linearly depends on V and ω, we may deompose the veloity �eld (v, q) inthree parts

v = vA + vB + vC , q = qA + qB + qC ,where the �rst part (vA, qA) is the �ow resulting from the translational motion of surfaesalong the vertial axis, the seond part (vB , qB) is the �ow resulting from the tangential androlling motion of surfaes and the last part (vC , qC) is the �ow resulting from the rotationalmotion of surfaes about normal. More preisely, three �ow �elds (vA, qA), (vB , qB) and
(vC , qC) satisfy (5.2.9), (5.2.10) with the following boundary onditions

(vA)1 = (vA)2 = 0, (vA)3 = ±V3d
−k on ∂Binner

i , (5.2.15)
(vB)1 = ±V1d

1/2−k +O(d3/2−k), (vB)2 = ±V2d
1/2−k +O(d3/2−k),

(vB)3 = ± (ω1y2 − ω2y1) d
1/2−k on ∂Binner

i , (5.2.16)
(vC)1 = ∓ω3y2d

1−k, (vC)2 = ±ω3y1, (vC)3 = 0 on ∂Binner
i , (5.2.17)From the boundary ondition (5.2.15), (5.2.16) and (5.2.17) we dedue that in order toalulate (vA, qA) one must take k = 0, k = 1/2 for (vB , qB) and k = 1 for (vC , qC). Nextwe build the asymptoti formulas of fore and torque whih are orrespondingly deomposedas

Fasympt = FA + FB + FC , T asympt = TA + TB + TC .



5.2. Asymptotis for two lose partiles 915.2.3.1 Translation motion of spheresSine (vA, qA) satis�es (5.2.9), (5.2.10), we obtain
qA = qA(y1, y2), (vA)1 =

1

2

∂qA
∂y1

+Ay3 + C, (vA)2 =
1

2

∂qA
∂y2

+By3 +D,where A,B,C and D are arbitrary funtions of y1 and y2. These terms may be determinedfrom the above boundary onditions of vA as
A = −1

2

∂qA
∂y1

h(y1, y2), B = −1

2

∂qA
∂y2

h(y1, y2), C = D = 0. (5.2.18)Hene, (vA)1 and (vA)2 beome
(vA)1 =

1

2

(
y2
3 − y3h

) ∂qA
∂y1

, (vA)2 =
1

2

(
y2
3 − y3h

) ∂qA
∂y2

. (5.2.19)Substituting the expressions of (vA)1, (vA)2 given by (5.2.19) into (5.2.10) and then integrat-ing with respet to y3 we get
(vA)3 = −1

6

(
∂2qA
∂y2

1

+
∂2qA
∂y2

2

)
y3
3−

1

2

(
∂A

∂y1
+
∂B

∂y2
+ y1

∂qA
∂y1

+ y2
∂qA
∂yy

)
y2
3−(Ay1+By2)y3+E,(5.2.20)where E is an funtion of y1 and y2. Sine (vA)3 = −V3 on the surfae y3 = 0 in the limit of

d ↓ 0, it follows that E = −V3. Similarly, sine (vA)3 = 1 on the surfae y3 = h, we get
−2V3 = −1

6

(
∂2qA
∂y2

1

+
∂2qA
∂y2

2

)
h3 − 1

2

(
∂A

∂y1
+
∂B

∂y2
+ y1

∂qA
∂y1

+ y2
∂qA
∂y2

)
h2 − (Ay1 +By2)h,After substituting the values of A and B from (5.2.18) into the above equality and thensimplifying we obtain

∇.
(
h3∇qA

)
= −24V3. (5.2.21)In order to solve this equation, we use the polar oordinates

y1 = r̂ cos θ, y2 = r̂ sin θ,so that the equation (5.2.21) takes the form
r̂2
∂2qA
∂r̂2

+
∂2qA
∂θ2

+

(
r̂ +

6r̂3

1 + r̂2

)
∂qA
∂r̂

=
−24V3r̂

2

(1 + r̂2)3
. (5.2.22)If we assume that qA is of order r̂n as r̂ →∞, then (vA)1, (vA)2 are O(r̂n−1) and (vA)3 is ofthe form −1 +O(r̂n) as r̂ →∞. By expressing these qualities in outer variables and notingthat the pressure and veloity in the outer region of expansion an not ontain any termswhih tend to in�nity as d tends to 0, this shows that n ≤ −4. Hene

qA = O(r̂−4) as r̂ →∞.The solution of (5.2.22) whih satis�es the above ondition ould be
qA =

3

(1 + r̂2)2
+O(d). (5.2.23)



92 Chapter 5. The Stokesian dynami method for lose partilesThe error term of order d in the expression of qA arises from the fat that the expressionsgiven in the boundary onditions have an error of order d.From (5.2.11) and (5.2.12), the asymptoti formulas FA and TA generated from the �ow�eld (vA, qA) are given by
(FA)1 = d−1/2

∫

Sε

(
−y1qA +

∂(vA)1
∂y3

)
dy1dy2 +O(d0),

(FA)2 = d−1/2

∫

Sε

(
−y2qA +

∂(vA)2
∂y3

)
dy1dy2 +O(d0),

(FA)3 = d−1

∫

Sε

(−qA) dy1dy2 +O(d0),and
(TA)1 = d−1/2

∫

Sε

(
−∂(vA)2

∂y3

)
dy1dy2 +O(d0),

(TA)2 = d−1/2

∫

Sε

(
∂(vA)1
∂y3

)
dy1dy2 +O(d0),

(TA)3 =

∫

Sε

(
y1
∂(vA)2
∂y3

− y2
∂(vA)1
∂y3

)
dy1dy2 +O(d1/2).We an see that if y1, y2 are replaed by −y1,−y2 respetively, the value of qA given by (5.2.23)is unhanged whereas (vA)1, (vA)2 given by (5.2.19) beome −(vA)1,−(vA)2 respetively.Hene the fore FA and TA an be estimated by

(FA)1 = O(d0), (FA)2 = O(d0), (FA)3 = d−1

∫

Sε

(−qA) dy1dy2 +O(ln d), (5.2.24)and
(TA)1 = O(d0), (TA)2 = O(d0), (TA)3 =

∫

Sε

(
y1
∂(vA)2
∂y3

− y2
∂(vA)1
∂y3

)
dy1dy2+O(d1/2).(5.2.25)Substituting the formula of qA given by (5.2.22), we have

(FA)3 = −d−1

∫ d−1/2ε

r̂=0

∫ 2π

θ=0
r̂qAdr̂dθ +O(ln d)

= 6πd−1

∫ d−1/2ε

r̂=0
r̂(1 + r̂2)−2dr̂ +O(ln d).Moreover, we have

∫ d−1/2ε

r̂=0
r̂(1 + r̂2)−2dr̂ =

1

2

(
1− 1

1 + d−1ε

)
→ 1

2
, as d tends to 0.It implies

(FA)3 = 3πd−1 +O(ln d).



5.2. Asymptotis for two lose partiles 93Substituting (vA)1 and (vA)2 given by (5.2.19) into the expression of TA in (5.2.25), we get
(TA)3 =

∫

Sε

h

(
y2
∂qA
∂y1
− y1

∂qA
∂y2

)
dy1dy2 +O(d0).Using polar oordinates y1 = r̂ cos θ, y2 = r̂ sin θ, we obtain

(TA)3 =
1

2

∫ d−1/2ε

r̂=0

∫ 2π

θ=0
r̂(1 + r̂2)O(d)dr̂dθ +O(d0) = f(ε) +O(d0),where f(ε) tends to 0 as ε tends to 0. Therefore we get (TA)3 = O(d0).5.2.3.2 Tangential and rolling motion of spheresSine (vB , qB) satis�es (5.2.9) and (5.2.10), we an do similar to the previous setion, thevalue of the �ow �eld (vB , qB) is given by

qB = qB(y1, y2), (vB)1 =
1

2

∂qB
∂y1

y2
3 +Ay3 + V1, (vB)2 =

1

2

∂qB
∂y2

y2
3 +By3 + V2,(5.2.26)

(vB)3 = −1

6

(
∂2qB
∂y2

1

+
∂2qB
∂y2

2

)
y3
3 −

1

2

(
∂A

∂y1
+
∂B

∂y2
+ y1

∂qB
∂y1

+ y2
∂qB
∂y2

)
y2
3

− (Ay1 +By2)y3 + ω1y2 − ω2y1, (5.2.27)where A,B are the funtions of y1, y2 and are given by
A =

−2V1

h
− 1

2

∂qB
∂y1

h, B =
−2V2

h
− 1

2

∂qB
∂y2

h.Substituting the value of (vB)3 into the last boundary ondition we obtain
∇ · (h3∇qB) = 24(ω2y1 − ω1y2), (5.2.28)We use the polar oordinates again, the above equation has the form

r̂2
∂2qB
∂r̂2

+
∂2qB
∂θ2

+

(
r̂ +

6r̂3

1 + r̂2

)
∂qB
∂r̂

= 24 (ω2cosθ − ω1sinθ)
r̂3

(1 + r̂2)3
. (5.2.29)Here we just need the asymptoti expansion of qB for large r̂, so we only requires the formof qB by using the limiting form of (5.2.29), we have

r̂2
∂2qB
∂r̂2

+
∂2qB
∂θ2

+ 7r̂
∂qB
∂r̂

= 24 (ω2cosθ − ω1sinθ) r̂
−3. (5.2.30)Similar to the ase of qA, we requires qB to satisfy

qB = O(r̂−3) as r̂ →∞. (5.2.31)



94 Chapter 5. The Stokesian dynami method for lose partilesThe solution of (5.2.30) satisfying (5.2.31) is
qB = −12

5
r̂−3 (ω2cosθ − ω1sinθ) . (5.2.32)Due to the approximation in (5.2.30) that r̂ was very large, (5.2.32) for qB gives really the�rst term in the asymptoti expansion of qB for large r̂. Also sine the expressions in theboundary ondition have an error of order d, so qB is given by

qB = −12

5
r̂−3 (ω2cosθ − ω1sinθ) +O(r̂−2) +O(d). (5.2.33)If we replae y1, y2 by −y1,−y2 respetively or equivalently θ by π+ θ, the value qB beomes

−qB, whilst (vB)1 and (vB)2 are unhanged. Using these symmetri properties of the �ow, thefore FB and torque GB on ∂B1 generated by the �ow (vB , qB) are alulated from (5.2.11)and (5.2.12) as
(FB)1 =

∫

Sε

(
−y1qB +

∂(vB)1
∂y3

)
dy1dy2 +O(d1/2),

(FB)2 =

∫

Sε

(
−y2qB +

∂(vB)2
∂y3

)
dy1dy2 +O(d1/2),

(FB)3 = O(d0),and
(TB)1 =

∫

Sε

(
−∂(vB)2

∂y3

)
dy1dy2 +O(d1/2),

(TB)2 =

∫

Sε

(
∂(vB)1
∂y3

)
dy1dy2 +O(d1/2),

(TB)3 = O(d0). (5.2.34)Substituting the values of (vB)1 and (vB)2 from (5.2.26) into these expressions, we obtain
(FB)1 =

∫

Sε

(
−y1qB +

−2V1

h
− 1

2
h
∂qB
∂y1

)
dy1dy2 +O(d1/2),

(FB)2 =

∫

Sε

(
−y2qB +

−2V2

h
− 1

2
h
∂qB
∂y2

)
dy1dy2 +O(d1/2). (5.2.35)These integrals an be evaluated by hanging from (y1, y2) to polar oordinates (r̂, θ) and bysubstituting the value of qB from (5.2.33), the above expression for (FB)1 beomes

(FB)1 =
π

2

∫ d−1/2ε

0

(
24ω2

5
r̂−1 − 8V1

r̂

1 + r̂2
− 24ω2

5

1 + r̂2

r̂3

)
dr̂ +O(d0). (5.2.36)So we get the asymptoti form of (FB)1 as

(FB)1 = 2πV1 ln d+O(d0).By performing the similar omputations for (FB)2, (TB)1, and (TB)2, we also obtain
(FB)2 = 2πV2 ln d+O(d0),
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(TB)1 =

(
−2πV2 +

6π

5
ω1

)
ln d+O(d0),

(TB)2 =

(
2πV1 +

6π

5
ω2

)
ln d+O(d0).

5.2.3.3 Rotational motion of spheresAs in two previous setions, sine (vC , qC) satis�es (5.2.9), and (5.2.10) we obtain
qC = qC(y1, y2), (vC)1 =

1

2

∂qC
∂y1

y2
3 + Ay3 − ω3y2, (vC)2 =

1

2

∂qC
∂y2

y2
3 + By3 − ω3y1,(5.2.37)

(vC)3 = −1

6

(
∂2qC
∂y2

1

+
∂2qC
∂y2

2

)
y3
3 −

1

2

(
∂A

∂y1
+
∂B

∂y2
+ y1

∂qC
∂y1

+ y2
∂qC
∂y2

)
y2
3 − (Ay1 +By2)y3,(5.2.38)where A and B are funtions of y1, y2 and are given by

A =
2ω3

h
y2 −

1

2

∂qC
∂y1

h, B = −2ω3

h
y1 −

1

2

∂qC
∂y2

h.Using the last boundary ondition on (vC)3 we obtain an equation for qC as follows
∇ · (h3∇qC) = 0. (5.2.39)This implies that qC = O(d). Hene, we an see that the fore FC and torque TC are nolonger singular being of order d0, it means

FC = O(d0), TC = O(d0).Combining with the results in Setion 5.2.3.1 and Setion 5.2.3.2, we obtain the asymptotiformulas of the fore F and torque T on ∂B1 as laimed.5.3 Stokesian Dynami methodIn this setion, we �rst summarize the Stokesian dynami method whih is developed byDurlofsky and Brady in [10, 11℄. This is a general method to alulate the frition matrix forthe lubriation e�ets. Then we perform some numerial tests to illustrate the e�ieny andto show a limitations of this method.



96 Chapter 5. The Stokesian dynami method for lose partiles5.3.1 Main ideaThe method assumes that, in the ase of two spherial partiles the frition matrix isknown exatly. This is not true, we do not have any expliit analyti formula for the fritionmatrix. In pratie, we an ompute aurate approximations of the frition matrix for twoballs at di�erent values of the distane d ∈ {d0, λd0, λ
2d0, ...} for some small d0 and some

λ > 1. For this we use a number of vetorial spherial harmonis in order to reah a givenauray. We also know the asymptoti bebavior of the frition matrix as d ↓ 0. Tabulatingthese data and using an interpolation method, we an indeed assume that the frition matrixfor two partiles is known within a given auray.For a larger number N of partiles, we need to make some approximations. Startingfrom the fundametal solution of the Stokes equations, the frition matrix FLmax is built byexpanding the fore density on the surfae of eah partile in a series of vetorial spherialharmonis trunated at level Lmax. The Stokesian dynamis onsists in modifying the fritionmatrix by adding the �exat� lubriation fores F̃p between eah pair of lose partiles. Thefrition matrix already ontained a poor approximation of these short range interations. Inorder to avoid ounting these interations twie, we substrat a poor approximation Fp,Lmax ,
FSt.Dyn. = FLmax +

∑

p

(
F̃p −Fp,Lmax

)
.This two-sphere frition matrix Fp,Lmax is omputed with the trunation order Lmax as FLmax .In Stokesian dynamis, the short range interations are exat for two spheres. However,by onstrution, the orretion F̃p −Fp,Lmax only modi�es the interation between the ballsof the pair p = (B1, B2). If the third ball B3 is lose to one of the balls B1, B2 then thefat that B1 and B2 are lose also a�ets the hydrodynami interations B1 ←→ B3 and

B2 ←→ B3. The Stokesian dynami orretions are oblivious of these seondary lubriatione�et. In the next setion, we expose numerial evidenes of this fat.
5.3.2 Limitation of the Stokesian DynamisLet us onsider three partiles B1, B2 and B3. We assume that their enters lie on thevertial axis with the oordinates z1 = (0, 0, 0), z2 = (0, 0, 2+d) and z3 = (0, 0, 4+2d), where
d is the distane between two onseutive partiles. We assume moreover that these partilestranslate along the vertial axis with veloities u1 = −ez, u2 = u3 = ez (see Figure 5.5).
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Figure 5.5: Example with three partiles.
We ompute approximations of the total fores exerted by the surfae of the partiles onthe �uid. We use and ompare two methods: the diret method (spetral disretization ofthe Neumann to Dirihlet operator) and the Stokesian dynami method as desribed above.As expeted (see Figure 5.6) the Stokesian dynami method provide a good approximationof the fore exerted by B1: the main part of this fore oming from the singular part due tothe di�erene between the veloities u1 and u2.On the other hand, B2 and B3 have the same veloity and the fore densities in areabetween B2 and B3 are smooth. In this ase we see that the Stokesian dynami orretiondoes not lead to any improvement (see Figure 5.7). In fat, the behavior of the approximatedfore using both methods is exatly the same. Here the Stokesian Dynamis only modi�esthe interations between B1 and B2.
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Figure 5.6: The total fores on B1 omputed by the Stokesian Dynamis (blue line) anddiret method (red line) with d = 0.05.
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5.3. Stokesian Dynami method 99the other hand, the method is oblivious to the in�uene of the loseness of B3. We observethe same order of magnitude for the error on the fore exerted by B2 as for the fore exertedby B3 (see Figure 5.8).
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6.1 Singular-regular splitting of the hydrodynami interationsWe onsider N partiles as desribed in Setion 4.1.1. Let us start with some notation.Firstly, let us introdue a ut-o� distane δ > 0. Denoting by d(i,j) the distane between twopartiles Bi and Bj , d(i,j) = |zi − zj | − 2, the set of pairs of lose partiles is de�ned as

P =
{
(i, j) ∈ {1, ..., N}2, i 6= j : d(i,j) < δ

}
.Our method onsists in taking advantage of the linearity of the Stokes equations forrewriting the �elds (u, p) as a superposition

u = u0 +
∑

c∈P

uc, p = p0 +
∑

c∈P

pc,where eah ouple (u0, p0) solves the Stokes equations in Ω and (uc, pc) solves the Stokesequations in the �titious �uid domain:
Ωc = R3 \ {Bi ∪Bj} , for c = (i, j) ∈ P.The ouple (uc, pc) handle the large variations of (u, p) loalized in the small gap between

Bi and Bj whih are due to the di�erene between the presribed veloities on ∂Bi and ∂Bj .Preisely, for c = (i, j) ∈ P, we introdue the veloity �eld
wc(x) :=

1

2
[uj(x)− ui(x)],



102 Chapter 6. The orretion methodwhih vanishes if and only if the solid Bi ∪ Bj follows a rigid motion. The �singular� �eld
(uc, pc) are de�ned as the unique solution of the problem





−∆uc +∇pc = 0 in Ωc,

∇ · uc = 0 in Ωc,

uc = −wc on ∂Bi,

uc = wc on ∂Bj ,

uc(x)→ 0, pc(x)→ 0 as |x| → +∞.

(6.1.1)By linearity, the remaining part (u0, p0) solves the Stokes problem in Ω. The boundaryonditions u0 for this problem are set so that the total veloity �eld satis�es the boundaryonditions ui spei�ed in the original problem




−∆u0 +∇p0 = 0 in Ω,

∇ · u0 = 0 in Ω,

u0 = w0 on ∂Bi, i = 1, 2, ..., N,

u0(x)→ 0, p0(x)→ 0 as |x| → +∞,

(6.1.2)with,
w0(x) := ui(x)−

∑

c∈P

uc(x) for x ∈ ∂Bi, i = 1, 2, ..., N. (6.1.3)At the end we aggregate the di�erent ontributions. With obvious notation,
Fk = F 0

k +
∑

c∈P

F c
k , Tk = T 0

k +
∑

c∈P

T c
k , k = 1, 2, ..., N.Notie that the singular solution (uc, pc) assoiated to a pair of lose partiles c = (i, j) ∈ Pdo not ontribute to the fores and torques exerted by the surfae of a third partile Bk,

k /∈ {i, j} : we have F c
k = T c

k = 0. Indeed, in this ase, Bk ⊂ Ωc, so that by the Stokesformula,
F c

k =

∫

∂Bk

σc(x) · nk(x)dS =

∫

Bk

∇ · σc(x)dx = 0.Similarly, using the Levi-Civita antisymmetri symbol εαβγ and Einstein summation onven-tion on greek indies, we ompute,
T c

k =

∫

∂Bk

nk(x)× (σc · nk(x)]dS

= εαβγ

∫

∂Bk

nβσ
c
γζnζdS = εαβγ

∫

Bk

∂

∂xζ

[
(x− zi)βσ

c
γζ

]
dx

= εαβγ

∫

Bk

(x− zi)β (∇ · σc)γ︸ ︷︷ ︸
=0

dx+

∫

Bk

εαβγσ
c
γβ︸ ︷︷ ︸

=0

dx = 0.As a onsequene, the total fore and torque exerted by the partile Bk on the �uid are givenby
Fk = F 0

k +
∑

c=(i,j)∈P,
k∈{i,j}

F c
k , Tk = T 0

k +
∑

c=(i,j)∈P,
k∈{i,j}

T c
k . (6.1.4)



6.1. Singular-regular splitting of the hydrodynami interations 103The advantage of deomposing the solution resides in the possibility of using di�erentmethods for solving problems (6.1.1) and (6.1.2). The singular parts are solution of theStokes equations (6.1.1) around only two solid partiles. We will approximate these singularparts by interpolating in pre-omputed tables. The remaining parts solves the Stokes equa-tions (6.1.2) in the original domain but with modi�ed boundary onditions whih do notneessarily orrespond to rigid motions of the partiles. The remaining regular part may beapproximated by using any standard numerial method.Let us �rst onsider problem (6.1.1). For c = (i, j) ∈ P, by hanging oordinates, we mayassume that zi = −(1 + dc/2)ez and zj = (1 + dc/2)ez . In the new oordinates, the veloity
wc uniquely deomposes as

wc(x) = U c
zez + U c

xye1 + ωc
zez × x+ ωc

xye2 × x,where e1 and e2 are two unit vetors orthogonal to ez. Hene, the solution of (6.1.1) an bedeomposed as
(uc, pc) = U c

z (uA, pA) + U c
xy(uB , pB) + ωc

xy(uB′ , pB′) + ωc
z(uC , pC), (6.1.5)where, for Z = A,B,B′, or C, the ouple (uZ , pZ) solves the Stokes equations in the domain

Ωdc := R3 \
[
Bdc

+ ∪Bdc
−

]
, (6.1.6)where Bdc

± denotes the solid sphere with unit radius and enter ±(1+dc/2)ez . The di�erenebetween these problems omes from the spei� boundary onditions,
uZ = wZ on ∂Bdc

+ ∪ ∂Bdc
− ,where wZ are de�ned as follows, for x ∈ ∂Bdc

± ,
wA(x) := ±ez, wB(x) := ±e1, wB′(x) := ±e2 × x, wC(x) := ±ez × x. (6.1.7)When solving independently the seond or the third problem, we may rotate the frame sothat e1 or e2 oinide with ex. We end with four family of problems only depending on thedistane dc. More preisely, in view of (6.1.4), we need approximations of

FZ(dc) :=

∫

∂Bdc
+

σZ(x) · n(x)dS(x), (6.1.8)
TZ(dc) :=

∫

∂Bdc
+

n(x)× [σZ(x) · n(x)]dS(x). (6.1.9)Using the symmetries of the problems, the orresponding total fores and torques on
∂Bdc

− are dedued from the former. For the omputation of the boundary onditions (6.1.3)satis�ed by the remaining �regular part� (u0, p0), we also need approximations of
vZ(x, dc) := uZ(x), for x ∈ Ωdc and Z = A,B,B′, C.In the next setion, we desribe a proedure for omputing these quantities. The methodis based on known asymptoti as dc → 0, diret omputations and interpolation in theparameter dc.



104 Chapter 6. The orretion methodLet us now onsider problem (6.1.2). It is of the same nature as the original problem:solve the Stokes equations in the �uid domain surrounding the partiles. The new problemlooks even more omplex sine we have substituted the funtion w0 for the simple rigidmotions ui that an be desribed with 6N parameters. However, by onstrution, (u0, p0) isa very regular vetor �eld, even in the limit of touhing partiles. As a onsequene, applyingstandard numerial methods to problem (6.1.2), we an ompute approximations of (u0, p0)with an auray that does not depend on the distane dc between lose partiles.6.2 DisretizationAs in the previous setion, we split the solution into a regular and a singular �eld. In thissetion, we desribe a proedure for omputing the approximations of the singular part andthe boundary ondition for the regular part. The main idea is to interpolate the needed quan-tities into a grid of known values whih has been omputed one for all during a preproessingstep.6.2.1 The interpolation method for omputing the singular �eldsAs explained in the disussions at the end of Setion 6.1, for eah c = (i, j) ∈ P, thesingular part (uc, pc) an be deomposed as a ombination of four parts (uZ , pZ) whih aresolutions of four family of problems only depending on the distane dc,
{
−∆uZ +∇pZ = 0, ∇ · uZ = 0 in Ωdc ,

uZ = wZ on ∂Ωdc ,
(6.2.1)where Ωdc and wZ are given by (6.1.6) and (6.1.7) respetively. Reall that the �uid domain

Ωdc only depends on the distane dc. We need to ompute approximations of FZ and TZgiven by (6.1.8), (6.1.9). Our method is based on asymptoti formulas for the total fore andtorque at small distane, diret omputations and interpolation in the parameter dc.In a preproessing step, we deompose (f̃Z)k and (wZ)k, for k = Bdc
− , B

dc
+ , in the basis ofvetorial spherial harmonis as follows,

(f̃Z)k =
∑

α≥0

fZ
k,αφk,α,

(wZ)k =
∑

α≥0

wZ
k,αφk,α.By trunating the above series up to order Mmax, with Mmax large, the disrete Neumannto Dirihlet matrix NDZ,dis. is omputed as desribed in Setion 4.2.3.2. Then we omputeaurate approximations of the surfae fore density fdis.

Z by solving the linear problem,
NDZ,dis..f

dis.
Z = WZ ,where WZ =

(
wZ

i,α

)
k=i,j,α=1,...,Mmax

. By this diret method, we may ompute fdis.
Z as afuntion of dc for a �nite number of distanes, say dc ∈ Ddis := {d0, λd0, λ

2d0, ...} for some



6.2. Disretization 105small d0 and some λ > 1. Combining the expliit asymptoti formula of the fore densitywith this disrete set of aurately omputed values, we obtain approximations of fdis.
Z (dc)by interpolation for every 0 < dc < δ.For instane, let us onsider the �rst problem Z = A. We are interested in the totalfore and torque exerted by the �rst partiles Bdc

− . In this ase, from the symmetries and theasymptoti formulas given in Setion 5.2, we have,
FA(dc) =

(
3π

dc
+O(ln dc)

)
ez, and TA(dc) = 0,We guess that FA(dc) expands as

FA(dc) =

[
3π

dc
+C1 ln dc + C2 + C3(dc ln dc) + C4dc +RA(dc)

]
ez .The onstants C1, C2, C3 and C4 are then determined by using a least square approximationbased on highly aurate numerial simulations performed for a small number of small valuesof dc. The Figure 6.1 shows the behavior of the rest term RA(dc).
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Figure 6.1: The term RA(dc) in a funtion of dc.Table 6.1: The absolute errors of interpolation.
dc 0.475 0.355 0.275 0.135 0.0135
Lmax 50 50 50 70 150absolute error (total fore) 4.4e-13 2.2e-12 3.5e-12 7.4e-12 3.1e-10In a seond step we build a table of values of RA(dc) for dc ranging in a �nite subset of

(0, δ). These values are obtained by the diret method with a very large Lmax.In pratie, we have preformed aurate simulations with the following distanes:
dc = 0.001, 0.002, ..., 0.009, 0.01, 0.02, ..., 0.5.



106 Chapter 6. The orretion methodThis ends the preproessing step.Eventually, when needed, we use the ubi spline interpolation method to estimateRA(dc) forany non-tabulated distane dc ∈ (0, δ) from the tabulated values. In Table 6.1, we show theresult of some numerial tests realized in order to estimate the error due to the interpolationmethod.6.2.2 Computation of orretion veloitiesIn this setion, we present the interpolation method to ompute the oe�ients of theorretion veloities.We onsider again the problem (6.2.1). Let BR be the ball of radius R = 3 entered atthe origin of the oordinate system. This ball ontains the two balls Bdc
− and Bdc

+ . We wantto determine the veloity UZ(r, dc) for r ∈ R3 \BR.We �rst ompute the fore densities on the boundary of Bdc
+ and Bdc

− using the diretmethod with a large trunating order. Then, we an dedue the veloity �eld UZ everywhereusing the expliit formula (4.1.7). On the other hand, we know that the veloity �eld in
R3 \BR reads

UZ(r, dc) =
∑

l≥1

l∑

m=−l

gT
Z,l,m(dc)r

−(l+1)Tl,m +
∑

l≥0

l+1∑

m=−l−1

gI
Z,l,m(dc)r

−(l+1)Il,m

+
∑

l≥1

l−1∑

m=−l+1

[
(2l − 3)(l − 1)

2l
gI
Z,l−2,m(dc)(r

2 − 1) + gN
Z,l,m(dc)

]
r−(l+1)Nl,m, (6.2.2)
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Figure 6.2: The oe�ients gI
Z,0,0(dc) (left) and gN

Z,5,0(dc) (right) in funtions of dc in thease Z = A.We then only have to tabulate the oe�ients gT
Z,l,m, g

I
Z,l,m, g

N
Z,l,m. These oe�ients areobtained by projeting UZ(·, dc) on the basis of resaled vetorial spherial harmonis on
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∂BR. In a last step, we use (6.2.2) to obtain the orresponding oe�ients in the vetorialspherial harmoni basis on ∂B(0, 1).In pratie, the series (6.2.2) is trunated at some order L̃max. We all L̃max the orretiontrunation order. Notie that this trunation order may be di�erent than Lmax de�ned inSetion 4.2.3.1. The hoie of L̃max will be disussed in Setion 6.4.
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Figure 6.3: The absolute errors of interpolation orrespond to the oe�ients gI
Z,0,0(dc) (left)and gN

Z,5,0(dc) (right) in funtion of dc in the ase Z = A.Finally, using a polynomial interpolation of these omputed oe�ients, we an estimatethe oe�ients of the orretion veloities on the unit sphere for any dc ∈ Ddis.These oe�ients are omputed as funtions of the distane dc in the four ases orre-sponding to Z = A,B,B′, C. As an example, we show the behavior of gI
Z,0,0(dc) and gN

Z,5,0(dc)in the ase Z = A in Figure 6.2. The absolute errors of the polynomial interpolation orre-sponding to these oe�ients are also shown (Figure 6.3).6.3 Numerial resultsIn this setion, we perform some numerial tests to ompare the three methods: the diretmethod, the Stokesian Dynamis and the orretion method. Reall that in the ase of twopartiles, the orretion method and the Stokesian Dynamis are exatly the same. Henewe just onsider the ases with more than two partiles.6.3.1 Three partilesLet us again onsider three spheres with di�erent veloities as deribed in Setion 5.3.The Stokesian Dynamis and the orretion method are really better than the diret methodas shown by the representation of the approximation of the fores F1,F2,F3 applied by theballs B1, B2, B3 on the �uid using the three di�erent methods (see Figure 6.4).
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Stokesian Dynamic methodFigure 6.4: Comparison of the three methods with 3 partiles: B1 (�rst), B2 (seond) and

B3 (third) with d = 0.05.
Zooming on the results of the Stokesian Dynamis and the orretion method (see Fig-ure 6.5), we see that the latter has a better behavior. With Lmax = 8, the relative errorfor the orretion is 6.10−6. So we onlude that even in the presene of several partilesthe orretion method also improves the approximation of the interations with neighboringpartiles.
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Stokesian Dynamic methodFigure 6.5: Comparison of the Stokesian Dynamis and of the orretion method with 3partiles: B1 (�rst), B2 (seond) and B3 (third) with d = 0.05.Let us state again the main di�erene between these methods. The Stokesian Dynamismodi�es the interation of eah pair of lose partiles independently. The orretion methodalso modi�es the interations with neighboring partiles. Hene at the same level of trunationorder, the omputational time of the orretion method is larger. But the orretion methodonverges very fast and requires a small level of trunation order to get an aurate result.6.3.2 Four partilesWe perform some numerial test in a more ompliated on�guration. We onsider fourpartiles suh that their enters are not on a straight line. These enters are respetively

z1 = 0, z2 = (2 + d)ea, z3 = z2 + (2 + d)eb, z4 = z3 + (2 + d)ec,



110 Chapter 6. The orretion methodwhere d = 0.05 is the distane of partiles and ea, eb, ec are unit vetors as follows
ea =

(
1√
3
,

1√
3
,

1√
3

)
, eb =

(
1√
4
,

1√
5
,

√
11

20

)
, ec =

(
1√
2
,

1√
6
,

1√
3

)
.The rigid displaements ui are given by (4.1.2), where the orresponding veloities Ui andangular veloities ωi are given by

U1 = (1,−2, 3), U2 = (−2, 3, 0), U3 = (3, 0,−1), U4 = (−1,−1, 1),

ω1 = (2, 0,−3), ω2 = (−1,−2, 0), ω3 = (2, 1,−2), ω4 = (−1,−1, 1).As in the previous setion, we show the numerial results in two steps: �rst we ompare thethree methods in Figure 6.6 and then we ompare the two best methods in Figure 6.7.
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Figure 6.6: Fores on the four partiles in z diretion omputed with the three methods: B1(�rst), B2 (seond), B3 (third) and B4 (fourth). d = 0.05.
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Stokesian Dynamic methodFigure 6.7: Fores on the four partiles in z diretion omputed with the Stokesian Dynamisand the orretion method: B1 (�rst), B2 (seond), B3 (third) and B4 (fourth). d = 0.05.The results are similar to the three sphere ase. The orretion method provides anaurate result for Lmax = 8.6.4 Numerial determination of the trunation ordersIn the orretion method, when we approximate the orretion w0 determined by (6.1.3)and the Neumann to Dirihlet matrix DN , we have to hoose two trunating parameters:

Lmax for approximating the Neumann to Dirihlet matrix and L̃max for approximating theveloity orretions. These quantities presribe the number of vetorial spherial harmonisused for the disretization. The natural question is how an we hoose these parameters suhthat the solution has a given auray? How do they depend on the distanes between thepartiles? In this setion, we present a numerial estimation of these parameters.



112 Chapter 6. The orretion method6.4.1 Corretion trunation orderLet us onsider the problem (4.1.1) with three unit balls. We assume that their enterslie on the vertial axis with orresponding oordinates z1 = (0, 0, 0), z2 = (0, 0, 2 + d), and
z3 = (0, 0, 4+d+D). We assume moreover that the two �rst balls translate along the vertialaxis with opposite veloities and that the third partile moves with the same veloity of theseond one, i.e., the given veloities of three balls are respetively u1 = −ez and u2 = u3 = ez .
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Figure 6.8: Example with three partiles.Firstly, we write the surfae densities as funtions of the distanes between the partilesand of the trunating parameters
fdis. = fdis.

(
d,D,L, L̃

)
,where L and L̃ are respetively the trunation orders used for approximating the Neumannto Dirihlet matrix and for the veloity orretions.Sine the orretion method onverges very fast, we may �x a large enough value of thetrunation order L = L0 for estimating L̃max. In numerial tests we hoose L0 = 20. Then



6.4. Numerial determination of the trunation orders 113for every L̃ ∈ [1, L̃∞

), we de�ne the error for the surfae density as follows
Err

(
d,D, L̃

)
:=

∣∣∣fdis.
(
d,D,L0, L̃

)
− fdis.

(
d,D,L0, L̃∞

)∣∣∣ ,where L̃∞ is very large.Given a real small number ε > 0, the trunation order L̃max is hosen as follows
L̃max(d,D) := min

{
L̃ ∈

[
1, L̃∞

)
: Err

(
d,D, L̃

)
< ε
}
.In our numerial experiments, we set ε = 10−6. Moreover, we only onsider d < δ, where

δ = 2 is the ut-o� distane de�ned in Setion 6.1. Then we numerially alulate L̃max(d,D)as a funtion of d and D (see Figure 6.9).
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Figure 6.9: L̃max(d,D).Figure 6.9 shows that the trunation order L̃max for omputing the veloity orretionmainly depends on D. This trunation order an be used to estimate the other trunationorder Lmax in the next setion.Here we perform the tests with D varify from 0.1 to 5. We an hoose
L̃max(D) =





10 for D ≥ 3,

12 for 2 ≤ D < 3,

14 for 1.5 ≤ D < 2,

16 for 0.7 ≤ D < 1.5,

18 for 0.6 ≤ D < 0.7,

22 for 0.3 ≤ D < 0.6,

24 for 0.1 ≤ D < 0.3.



114 Chapter 6. The orretion method
6.4.2 Trunation order for solving the problemWe now onsider the same three-sphere on�guration as in the previous setion. Foromputational time problem, we ould not alulate fdis.

(
d,D,L, L̃max

) for very large valuesof L. The error on the surfae fore density is estimated by the di�erene between twoonseutive values of L with L̃max determined in the previous setion. For every L ≥ 1, wede�ne
Err (d,D,L) :=

∣∣∣fdis.
(
d,D,L, L̃max(D)

)
− fdis.

(
d,D,L− 1, L̃max(D)

)∣∣∣ , (6.4.1)The trunation order Lmax is hosen as follows, for a given small real number ε > 0,
Lmax(d,D) := min {L ∈ [1,∞) : Err (d,D,L) < ε} .In fat, the trunation order Lmax an be also estimated with another de�nition of thedensity error,

Ẽrr (d,D,L) =
∣∣∣fdis.

(
d,D,L, L̃∞

)
− fdis.

(
d,D,L− 1, L̃∞

)∣∣∣ ,where L̃∞ is very large. The two errors are very lose in the numerial omputation. Hene,it is more onvenient to use the �rst de�nition (6.4.1).We also hoose ε = 10−6 and the ut-o� distane δ = 2. We onsider two ases: D > δand D < δ.
• The �rst ase: D = D0 > δ,
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Figure 6.10: Lmax(d,D) for D ≥ δ = 2.



6.4. Numerial determination of the trunation orders 115In this ase, the trunation order mainly depends on the distane d. We onludethat for isolated pairs of partiles D ≥ δ, we see that the ritial trunation level is amonotoni inreasing funtion of d.We an hoose
Lmax(d) =





10 for d ≥ 0.5,

11 for 0.2 ≤ d < 0.5,

12 for 0.18 ≤ d < 0.2,

13 for 0.15 ≤ d < 0.18,

14 for 0.1 ≤ d < 0.15,

15 for 0.01 ≤ d < 0.1.We made these tests with d varying from 0.01 to 0.5. Even for d = 0.01, the trunationorder Lmax = 15 lead to an error smaller than ε = 10−6 (see Figure 6.10).
• The seond ase: D = D0 < δ,
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Figure 6.11: Lmax(d,D) for D ≤ δ = 2.In this ase, the optimal trunation order depends on both d and D. This trunationorder tends to in�nity as both d and D go to 0.In pratie, we see on the graphi that we an hoose Lmax as an a�ne funtion of
log10D and log10d in the region of [Lmax,opt ≥ 40] (see Figure 6.11).



116 Chapter 6. The orretion method6.5 Conlusions and perpetivesIn onlusion, we have proposed an aurate method for the omputations of hydrody-nami fores between spherial partiles suspended in a Stokes fuild. The main improvementof this new method ompared with the Stokesian Dynamis is that the in�uene of the singu-lar fore densities between two losed partiles on the neighboring partiles is also omputed.For this reason, the omputational ost for this method is larger. The main part of theomputational time is due to the omputation of the orretion veloities and their proje-tion on the vetorial spherial harmonis basis. On the other hand, these omputations areindependent from one sphere to another and ould be easily parallelized. This should solvethe main drawbak of the method.In this thesis, we only onsider spherial partiles. The main advantage of this shape isthat the omputation an be based on the vetorial spherial harmonis basis. The methodsgeneralize to arbitrary smooth partiles. In this ase, we should use a boundary �nite elementmethod instead of the deomposition in vetorial spherial harmonis.Our method is just built for some very speial domains for whih the minimal �titioussphere enlosing two neighboring partiles does not interset any other partile. We have notyet a de�nite method for treating the general ase.
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