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Chapter 1

Introduction

1.1 General introduction

The main objective of any industrial production process, is that the products satisfy some
quality criteria. Other important objectives often exist, like optimized productivity or sus-
tainable production for instance. In order to reach the first one and ensure the products
match the expected quality criteria, three strategies, that are not mutually exclusive, can
be implemented:

• Accurate and reliable predictions of the production process results

• Systematic quality controls of the products

• Online monitoring of the production process

The first strategy takes place before the beginning of production and allows mastering the
product characteristics as a function of the production process parameters. It is an auto-
sufficient solution: if estimations of the products characteristics are reliable and accurate
enough, neither systematic control nor process monitoring are needed to ensure products
meets the quality requirements. However, it is not relevant for every processes because some
are difficult to model, and/or show dispersive behaviors due to their complexity and/or un-
mastered parameters changes. In some also, predictions by process models are too uncertain
to ensure a sufficient probability for the products characteristics to fall into the required tol-
erance intervals.
The second strategy takes place after the production process. Its main advantage is that it
allows avoiding the delivery of products that do not fit the quality requirements. However,
in mass production contexts or under some productivity constraints, this strategy becomes
too expensive because it can lead to the loss of numerous products due to non-quality, and
also because the time and resource consumption it implies. Moreover, it is only a control
solution and does not allow bypassing a process parameters setting phase.
The last one takes place during the production process. As it is also a control strategy,
it may lead to the loss of some products. However, online monitoring allows, in the worst
case, stopping the process just after a non-quality occurred, and avoid the use of systematic
control at the end of the production process. It is also an ideal complement to the first
strategy to deal with complex processes in order to detect unexpected behaviors due to the
aforementioned reasons, namely process complexity and dispersive behavior.
Consequently, in cases where high quality is required for products issued from complex pro-
cesses, and where productivity is also an important issue, both accurate process modeling
and online monitoring should be used together in order to achieve good production perfor-
mance. Many monitoring solutions are based on process models when available.

5
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In this work, we will focus on a high added-value production process: airframe and air-
frame substructures assembly, and, in particular, the high precision drilling operations this
kind of assemblies involve. As their number is too important to perform systematic quality
controls, and no reliable and accurate enough predictive model is available to master the
drilling process, online monitoring is the only solution to implement in order to improve the
production performance. The goal of this study is to provide guidelines for the implemen-
tation of such a drilling monitoring system.

Monitoring is a multidisciplinary activity that can take diverse forms regarding the field
of applications it concerns. In its general sense, it consists in following the state of a system,
which can be natural or artificial, alive or not, in order to ensure that no anomaly occurs.
Monitoring of industrial production systems, which is often associated with diagnos-
tics, has mainly been developed for energy and high added-value goods production systems.
In both cases, financial concerns, security issues and the impossibility to make reliable or
accurate enough models of the system have been the main motivations for the development
and implementation of such systems. They consist in sensors implemented together with
associated hardware devices and software developments, that are aimed at the detection
of eventual deviations of the monitored system from its normal functioning domain. This
information is then communicated, so preventive and/or corrective actions can be applied
either automatically or by a human operator.

Manufacturing industry increasing needs of quality, productivity and flexibility coupled
with costs reduction objectives made monitoring of complex production means a subject of
major importance. Such monitoring systems have to perform despite flexible operating con-
ditions, harsh environments and complex decision making situations. These constraints make
the design of robust monitoring systems a difficult task. It requires multidisciplinary skills
going from devices behavior modeling to artificial intelligence techniques, passing through
signal processing and decision theory [9]. Moreover, because of the limited availability of
precise information about the status of these systems and the lack of knowledge in under-
standing exactly the physical phenomena for unanticipated events, decisions have sometimes
to be made under some degree of uncertainty [8].
Machining , which encompasses various operation of cutting or grinding on a workpiece,
represents an important part of manufacturing operations. As it is an expensive process, its
use is preferred for the fabrication of high added-value products where the apparitions of
defects is therefore to avoid. The optimal use of consumables (cutting tools) and production
means is also an important financial concern. In this context, monitoring systems able to
detect process dysfunctions and to provide the user up-to-date information about the pro-
duction system state would be of great interest.
Following the definition given by Teti et al. in [7], the typical machining process mon-
itoring system operates according to the following scheme. In the cutting region there
are several process variables, such as cutting forces, vibrations, acoustic emission, noise,
temperature, surface finish, etc., that are influenced by the cutting tool state and the ma-
terial removal process conditions. Variables that are prospectively effective for machining
process monitoring can be measured by the use of appropriate sensors. Signals detected by
these sensors are subjected to signal conditioning and processing with the aim to generate
functional signal features correlated (at least potentially) with tool state and/or process con-
ditions. Sensor signal features are then fed to and evaluated by cognitive decision making
support systems for the final diagnosis. This can be communicated to the human operator
or fed to the machine tool numerical controller in order to suggest or execute appropriate
adaptive/corrective actions.
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Drilling represents an important part of machining operations linked with assembly of
manufactured products. Due to the high number of operations and the constantly increas-
ing need of productivity, drilling has become an important research field. This is particularly
true within the aeronautical industry where drilling is the basis of numerous assemblies and
where quality is primordial due to the added-value of concerned structures. Moreover, the
continuous introduction of new materials presenting higher mechanical properties, but lower
machinability, makes the mastering of drilling operations a concern in constant evolution.
Drilling is a complex machining operation because of the cutting speed variation along the
drill cutting edges. One of the major difference with other classical machining operations is
the fact that drilling is a complex three dimensional material removal operation, unlike the
relatively simple cases of orthogonal and oblique cutting. Drills also have vastly different
geometries than turning or face milling tools for example [6]. Moreover, as the operation is
confined, experimental studies are made difficult, and complexity is added to the study of
phenomena linked with material cutting by the tribological and thermal aspects this con-
finement provokes. By now, a generic model allowing to simulate drilling operations that
takes all influences parameters and quantities into account does not exist. This forbids the
use of the only first strategy presented in order to guarantee products quality.
Importance of drilling operations in the aeronautical industry implies that a special atten-
tion is given on the quality of bores and on the optimization of productivity. The absence
of theoretical model allowing to estimate the impact of the different parameters leads to
the use of heuristic methods for their identification. Although they are widely used, those
methods do not address all requirements of industrial production. First, they are not generic
regarding the drilling process parameters, that is in contradiction with the increasing need
of flexibility of production processes. Then, they only allow estimating the drilling process
performances a priori, without taking into account neither external events and perturbations
that could happen during the on-going drilling process, nor its dispersive behavior. This
implies the use of additional monitoring means and the use of important security margins
on process parameters in order to avoid eventual failures.
On-line monitoring methods are aimed at addressing these issues: by monitoring the process
in real-time with the use of sensors, process failures should be quickly detected and iden-
tified, and security margins should be reduced for an optimal use of the production mean
and consumables. However, their application to drilling monitoring often lead to mitigated
results in industrial contexts. Indeed, sensed quantities, or features, linked with cutting
phenomena that are usually used for drilling monitoring are subject to dispersions. The
origin of these dispersions is the multiplicity of parameters, mastered or not, that possess
influence at different scales. One direct consequence of this issues is the impossibility to
implement generic monitoring systems, or even that perform in an acceptable manner for
operations that seem similar a priori. By now, to the author knowledge, no reliable drilling
monitoring system has been implemented in aeronautical assembly plants.

Several research fields face the same kind of problems: to establish a diagnostic from
recent data and prior knowledge , knowing that these data can be not exactly similar
to those that allowed building prior knowledge. Tracks proposed to answer this challenge,
which are very active research fields, concentrate around the modeling of uncertain informa-
tion, information fusion, and sometimes artificial intelligence. Only few or partial attempts
of using these paradigms have been done for drilling monitoring.

The possibility to use these novel methods in the frame of monitoring of drilling
automated operations will be assessed in this manuscript. In particular, the development of
a robust monitoring methodology facing ’natural’ dispersions of the drilling operation and
eventual external perturbations (harmful environment for measurement, sensors failures, ...)
will be tackled in an attempt to palliate, in some extent, to the lack of generality that suffer
existing drilling monitoring systems. This approach only makes sense if theoretical devel-
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opments are coupled with representative experiments, and assessed in industrial production
conditions.
If this work is aimed at demonstrating the potential improvements that could be
achieved in monitoring of drilling operations by using multisensor fusion and associ-
ated recent theoretical developments about uncertainty modeling and handling, the proposed
methodology could be applied to a broader scope of applications, including most complex
manufacturing automated operations. Efficient monitoring of complex systems is also an
indispensable prior step to adaptive process control, which is an important research trend
in the advanced manufacturing community.

1.2 Context & objectives of the study

The goal of this section is, in its first part, to present the industrial context of the study
in order to underline the potential benefits that could be achieved by the implementation
of a robust drilling monitoring system in the manufacturing of aircraft elementary parts
and subassemblies. The second part will describe the scientific and technical challenges it
implies, in order to serve as a basis for this manuscript organization.

1.2.1 From an industrial use case...

The different assembly stages of large airframe production will first be presented. In a
second part, the typical operations of assembly processes used for airframe assembly will be
described, with special emphasis on drilling operations. Levers of productivity enhancement
concerning drilling operations will be detailed in a third part. Then, attention will be focused
on existing automated solutions for drilling: the applicative scope of automated drilling
devices, their expected benefits, but also the challenges their implementation imply will be
evoked. Solutions to tackle those issues will then be assessed. Of the three aforementioned
strategies to meet quality requirements in manufacturing industry, only the implementation
of robust monitoring systems will be shown to be economically viable for large airframe
assembly.

1.2.1.1 Description of the different stages of large airframe assembly

Usually, three stages are differentiated when considering large airframes assembly. If they
all uses similar basic assembly processes, they differ by the size of the parts to be assembled,
and consequently the means that are used.
The first assembly stage is dedicated to the building of elementary parts that are mainly
composed by the skin, plus the frames and stringers that are used to stiffen it. Such
assemblies are usually of reasonable dimensions (order of magnitude: 1m).
The second stage concerns subassemblies. Elementary parts are the basic components of
what will become subsections of the airframe. Subsections are then assembled to form
complete sections (e.g. nose fuselage, wings,...). Dimensions of subassemblies increase all
along this stage, orders of magnitude going from 1m to 10m.
Finally the final assembly stage consists in putting together all the sections that have been
previously assembled to obtain the complete airframe.

1.2.1.2 Description of the basic airframe assembly process

As described above, the assembly process of the airframe goes from building parts, to sub-
assemblies, to the complete airframe. Typical operations used for the assembly of aero-
nautical structures will be summarized in this section. Other operations (e. g. sealant
application, temporary fastening) and/or assembly types (e. g. friction steer welding) exist
that will not be presented here, but, by now, most of airframe assembly processes integrate
operations presented in the following.
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(a) Elementary part made of
aluminum skin, stringers
and frames

(b) Elementary part made of
composite materials skin,
stringers and frames

Figure 1.1 – Typical structures of aeronautical elementary parts: the skin is stiffened with
stringers and frames

(a) Nose fuselage subsection
subjected to robotized
drilling operations

(b) Fuselage subsection made of
composite materials

Figure 1.2 – Examples of aeronautical subassemblies

Pre-assembly consists in putting the parts (or previously assembled structures) to be
assembled into fixtures that will hold the parts in position through the assembly process.
Drilling operations are then performed on the pre-assembled structure. As the goal is to
assemble together structures, mainly stacks of different parts have to be drilled. As aeronau-
tical drilling standards are very tight in order to ensure assemblies strength and resistance
to fatigue, a reaming operation is sometimes necessary after the drilling process. However,
many drills now allow ensuring both the drilling and reaming operation in the same process.
Dimensional specifications on aeronautical holes are given hereafter and described in figure
1.4(a).

• Hole diameter dh must be comprised into a tolerance interval depending on the material

• Countersink diameter dc, angle αc and depth hc must be comprised into tolerances
intervals ensuring accordance with a maximum authorized mismatch between the part
surface and the rivet head once it has been installed (see figure 1.4(b)). The maximum
authorized mismatch depends of the location of the part on the aircraft due to different
aerodynamic constraints.

• Normality αh of the hole regarding the surface of the drilled part must be comprised
into a tolerance interval
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Figure 1.3 – Example of an aeronautical final assembly line (FAL)

αh

αc hc

dh

dc

(a) Dimensional specifications of a hole and countersink
(a typical stack drilling configuration is depicted)

(b) A rivet (blue) is inserted in a
coutersinked hole: a mismatch
is visible between its head and
the part surface

Figure 1.4 – Dimensional specifications of aeronautical drillings (a) and picture of a rivet
inserted in a hole (b)

Holes are also subject to damage-related requirements:

• Surface finish (Ra) must be under a certain level inside both hole and countersink

• Entry and exit burrs (see figure 2.19) in metallic materials must be under a certain
height

• Delamination (see figure 2.11(b)) in composite materials must be under a certain limit
of surface size

• No uncut fibers at hole entry or exit (see figure 2.11(a)) are allowed in composite
materials

• Materials mechanical properties changes due to the heat provoked by the drilling
operation must be under a certain limit

These numerous and tight specifications make drilling a strategic stage of the assembly pro-
cess: due to their number and the quality requirements they are subjected to, the good
progress of drilling operations is essential for the productivity of aircraft assembly plants.
Deburring , consists in removing burrs after the drilling process occurred, if any. As it
is a manual operation, it is very time consuming. Moreover, if the parts in a stack were
not clamped enough during the drilling operation, burrs could have appear at the interface
between parts, as well as chips produced during the drilling operation could have slip in. As
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burrs and chips at the interfaces of material stacks drastically reduce assemblies mechanical
properties, parts have then to be disassembled in order to remove them, which is very time
consuming too. Deburring is mainly performed when drilling are made manually, whereas
automated drilling solutions often allow applying a sufficient clamping force for the appari-
tion of interface burrs and chips to be avoided.
Fastening is the last step of the assembly process. Either rivets, screw or bolts can be used
to fasten parts together as a function of the mechanical properties needs for the assembly.
Some fasteners, blind rivets, do not requires intervention at each side of the assembly, and
are then particularly interesting for automated assembly purpose. However, their use is
restricted to low strength assemblies.

As holes concentrate numerous tight requirements and can be at the origin of time con-
suming operations in case of non-quality, the mastering of hole quality represents a strong
lever of aeronautical assembly plants productivity.

1.2.1.3 Presentation of developments axes for aeronautical drilling operations

Drilling operations are key elements that have to be considered in order to optimize the
aeronautical assembly processes. Gains could be obtained on three principal axes:

• Quality improvements

– Decrease of the number of scrap parts

– Decrease of unexpected manual interventions on workpieces due to non-quality

– Decrease of the number of quality control operations

• Resources utilization improvements

– Optimization of consumables

– Application of a targeted maintenance

• Automation increase

Concerning the first axis, high quality tools and drilling equipment are used and processes
are carefully designed in order to reduce the non-quality impact and occurrence; however,
as failures are always possible, especially because of the high variability of the process, time
consuming and expensive quality control processes are generally used in order to ensure the
process specifications. Thus, online process quality estimation and failure detection could
dramatically reduce the non-quality and control related costs.
As for the second axis, the principal resources concerning drilling operations are the cutting
tools and the drilling devices. Drills are considered as consumables. The cutting tools
replacement strategy is based on a statistical estimation of the tools life, which often shows
a significant dispersion. This leads to the use of large security margins, which became a very
expensive approach since the massive introduction of new materials. In particular, titanium
alloys and carbon fiber reinforced plastics (CFRP) present properties that reduce drills life
drastically because of the rapid tool wear they induce. Therefore, cutting tools replacement
strategies should be based on their online estimated condition in order to reduce costs and
go towards a more efficient production process.
The third axis, automation, is an old trend in manufacturing industry. However, due to
the high quality requirements, the processes complexity and structures dimensions, most of
the holes drilled on airframes are made by highly-skilled human operators equipped with
portable drilling machines. However, more than only assisting humans to perform laborious
operations, automated solutions can provide operators better working conditions by reducing
their use of vibrating and noisy portable drilling devices, their contact with harmful products
like sealants, adhesives, solvents or carbon dust, and avoiding them working in difficult-to-
access parts of the structures that favor accidents. Of course, productivity gains are also
expected.
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1.2.1.4 On the potential of automated solutions for aeronautical drilling oper-
ations

As mentioned above, automated drilling solutions can bring many advantages, and several
solutions have been integrated in productions plants. No standard exists for automated
drilling devices in the aeronautical industry, and dedicated machines have been developed
to realize drilling -as well as riveting- operations for the three assembly stages presented
above. A review of these machines is available in [3]. However, automated solutions im-
plementations are very limited for the final assembly stage of large airframes due to their
dimensions.
As the assembly processes present important similarities whatever the considered assembly
stage, expectations for an automated drilling system are comparable, even if the machines
structures are very different due to the various shapes and dimensions of parts they have to
perform drillings on.
One of the main objectives of an automated system compared with human operators is
achieving costs reductions by productivity improvement, or at least maintenance. This can
be achieved by the combination of the maintenance of quality level reached by humans oper-
ators with the reduction of necessary resources, and/or reduction of time needed to perform
operations. This last point is difficult to ameliorate as a drilling duration is determined by
the process parameters (cutting speed, feed rate) that are similar for a human operator and
a machine.
As for quality, as holes have to be drilled in the same locations of the assemblies, with the
same drills and parameters, it should be similar, even if the use of different devices can
provoke changes that significantly affect hole quality regarding the tight requirements they
have to meet. The main difference is that a human operator can detect, to some extent, the
apparition of defects and take the decision to stop the process and/or to engage corrective
actions in order to avoid drilling holes that will necessitate repairs, or will make the part
unusable. Most machines do not possess such perception and decision abilities dedicated to
quality control, that can lead to costly degradations of assemblies.
Concerning the resource management question, that mainly consist in cutting tool replace-
ment strategy for drilling applications, the same statement is still valid: if a highly-skilled
human operator can evaluate the tool wear by several sensory means (by looking at it,
progress of the drilling operation, ...), and make a decision about the behavior to adopt, a
machine without perception and decision ability dedicated to the monitoring of the process
state cannot.
The economical viability of replacement of skilled human operators by automated machines
is not obvious due to the complexity of the task and their absence of perception and detec-
tion abilities. On the other hand, continuous improvements have been made since 40 years
on sensor technology, data acquisition and processing possibilities, but also in the field of
machine intelligence that allow one thinking that perception and decision making abilities
that are necessary for their economical viability and their integration in aeronautical assem-
bly plants could be integrated on drilling machines. If, by now, their economical interest
has not been totally proven in comparison with human operators ones, automated drilling
solutions present an important progression margin by integration of perception and decision
making abilities dedicated to monitoring of drilling operations.

1.2.1.5 On the interest of online monitoring system for drilling productivity
improvement

Considering both the first development axes for the enhancement of drilling operation pro-
ductivity, namely quality of the product and optimization of the use of resources, the 3 afore-
mentioned strategies to meet quality requirements could theoretically be applied. However,
systematic control of the products or production resources is too expensive in the context
of aeronautical assembly, and no reliable model is available neither for the complex drilling



1.2. CONTEXT & OBJECTIVES OF THE STUDY 13/244

operations nor the evolution of production resources states (cutting tools, spindle, robot...).
If much research effort has been and is done concerning these issues, one can reasonably
think that no such model will be reliable enough to be used in production plants within
the 10 next years. Therefore, the only remaining solution is online monitoring. The need
of drilling monitoring systems has been emphasized for automated drilling devices in the
previous section: due to the highly constrained context, perception and decision making
abilities are needed to meet productivity requirements. This is also the case, to another
extent, concerning portable drilling devices used by human operators in order to detect
unexpected events that are not perceptible by human operators. Consequently, the whole
range of drilling-based assembly operations done within the assembly of airframes are sus-
ceptible to be enhanced by the integration of online monitoring solutions.
If no reliable drilling monitoring system exist by now, literature present many encouraging
attempts, and the rapid development of sensors, data acquisition possibilities and decision
making techniques should make one optimistic concerning the rapid improvement of such
systems.

1.2.1.6 Descriptions of challenges linked the implementation of a drilling mon-
itoring system in the aeronautical industry

In order for a drilling monitoring system to be useful in industry, it must meet some re-
quirements. First, the information that it will provide must be accurate enough to be
useful, meaning that its estimations capabilities have to be high, even in absence of theo-
retical models. Then, it must be robust facing the dispersive behavior of the process, the
external perturbations due to the harsh industrial environment, and the need of flexibility
that production constrains impose. Finally, it must not be intrusive: no perturbations of
the production process due to the monitoring system are acceptable. This is linked with
robustness in some extent as is encompasses hardware reliability and false alarm rate for
instance.
Although easy to identify, these requirements necessitate great efforts in terms of sensor inte-
gration, signal processing and feature extraction techniques implementation, and estimation
and decision making algorithms development. Scientific challenges implied are presented in
the next section.

1.2.2 ... To scientific challenges

Since more than 30 years, that brought important improvements in sensor and data process-
ing technologies, a vast amount of work has been done in the field of drilling monitoring,
concerning both hole quality and tool wear estimation. First, many approaches using a
single sensor implementation have been developed. If some studies achieved reasonable suc-
cess, they often have been done considering only narrow ranges of operating parameters,
leading to a lack of flexibility when implemented in industrial environment. Other attempts
gave mitigated results, especially concerning tool wear monitoring, because inadequate sen-
sor information and process models have been used which did not satisfactorily reflect the
process complexity. One reason is that the use of a single sensor signal in the development
of a tool condition monitoring system fails to recognize the complex and diverse nature of
the cutting process [5]. Many monitoring systems described in these studies are unlikely
to leave the labs, as they were often considered difficult to implement, unreliable or not
viable economically [2]. Moreover, neither the problem of sensor dysfunction nor the one of
industrial environment impact on signals have been addressed.
To be efficiently introduced in aircraft structural assembly plants, a monitoring system have
to meet requirements that are linked with scientific and technical challenges to address.
Their causes can be summarized as follow:
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• Inaccessibility of the phenomena of interest

• Complexity of the phenomena of interest

– Dispersive behavior of the machining system and workpiece

– Absence of reliable model for drilling operations

• Variability of the process parameters

– Different operating conditions may be needed

– Different behaviors as a function of machining system used or structure concerned

• Hostility of the environment for sensing applications

Although all these causes are specific, they raise a generic problematic. The sensing, data
processing, estimation and decision making steps necessary to establish a diagnostic con-
cerning the state of the process or of the production mean, will have to be performed
under uncertainty. This statement is at the basis of the scientific positioning of this work:
conversely to the majority of studies that have been done concerning drilling monitoring,
uncertainty about process parameters, sensors condition and data quality will be taken into
account from the early steps of design step of the monitoring system. Consequently, new
constraints, but also new possibilities, will appear, that makes this work original in our
opinion.

Solutions exist to tackle the problems raised by these requirements. Previous studies
gave essential information on the type of sensors and signal processing techniques to be
integrated in order to implement an efficient monitoring system. However, it is now gener-
ally acknowledged in the field of manufacturing technology that reliable process condition
monitoring based on a single signal feature is not feasible [7, 4, 1]. The use of multiple
sensors systems together with intelligent information processing techniques should improve
reliability and flexibility of tool condition monitoring systems. Moreover, several studies
showed that it allowed a better handling of the drilling process complexity that gave rise
to an increase of performances in monitoring of complex phenomena. However, this has
mainly been done under steady process conditions and in sensor-friendly lab environments,
and neither issues about the variability of the operating conditions, nor quality of input data
have been tackled.
This last issue is of great importance for an industrial monitoring system: the use of multiple
sensors, or information sources, follows the absence of precise or sure enough data coming
from one source. Uncertainty on sensor data should therefore be taken into account from
the beginning of the design of a monitoring system. A precise knowledge on ways to model
and handle different forms of uncertainty should help to better address the problems it
involves. This is not done in most actual studies about machining process monitoring, and
uncertainty on data and/or operating conditions has been treated in an implicit manner
by the estimation or classification algorithms, which have become more and more complex.
Monitoring performances did not increase as a function of this complexity, neither in term of
accuracy nor reliability, showing the limits of approaches that disregard the data uncertainty
related issues. Actually, this is a well-known fact for the data fusion community: even the
best fusion algorithm will not provide good results if its input data are of low quality or are
misinterpreted.
Hereafter are summarized points that requires particular attention, in our opinion, for the
implementation of a reliable drilling monitoring system in industrial production plants:

• Sensor integration

• Robust data processing techniques

• Uncertainty modeling and handling
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• Multisensor data fusion

Consequently, expected contributions of this work are:

• Development of sensor integration solutions dedicated to drilling monitoring applica-
tions

• Implementation of multisensor data fusion techniques for the monitoring of complex
industrial processes

• Development of a generic methodology for the implementation of multisensor moni-
toring systems

Organization of research concerning these item that have been done in this work is described
in the next section.

1.3 Manuscript organization

Chapter 2 will be divided in 2 major parts. With the goal in mind to develop a method-
ology to implement an industrial drilling monitoring system, we will naturally begin with
a state of the art concerning sensor-based drilling monitoring applications, with a focus on
multisensor based ones. It will allow assessing current trends and achievements, but also
identifying weaknesses to be tackled, in particular those refraining the implementation of
robust drilling monitoring systems in manufacturing plants.
Then, as multisensor data fusion is considered a promising tool, a state of the art on exist-
ing techniques which could help enhance drilling monitoring performance will be presented.
Challenges and open problems will also be identified.
In Chapter 3, the monitoring problem will be formalized, and its associated requirements
in terms of reliability, and challenges related to industrial implementation will be detailed
in order to clearly position the problem. Based upon those considerations, the chosen ap-
proach to implement a monitoring system will be presented, and a deployment methodology
for industrial implementation will be proposed.
Chapter 4, as a preamble to the development of a methodology aimed at the implemen-
tation of an industrial monitoring system, the central problem of singularity detection in
difficult contexts will be discussed, and an approach using data fusion will be proposed and
compared to existing ones.
Chapter 5 will be devoted to the presentation of technical and scientific contributions from
integration of sensors to the development of building blocks of a monitoring system, follow-
ing the implementation scheme presented in chapter 3.
Finally, conclusion and perspectives based upon the results obtained in this work will be
given in chapter 6.
As it encompasses several issues and research domains, this manuscript has, as possible, been
organized so that chapters can be read individually. Therefore, bibliographic references are
indexed at the end of each part, and some repetitions will occur.
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Chapter 2

State of the art

This section is dedicated to provide the reader a comprehensive view of the drilling moni-
toring practice via the description of works that have been realized in the field and related
techniques.
First, some concepts on popular techniques that are used to perform drilling monitoring
will be provided in order for the reader to be familiar with notions that will be introduced
in the second part, which will consist in the description of drilling monitoring applications
reported in the literature. After the achievements and challenging aspects of drilling mon-
itoring would have been emphasized by the literature review, and the need of sensor and
data fusion in particular, a third part will introduce techniques that are suitable to perform
fusion in the drilling monitoring context.

2.1 State of the art of drilling operations monitoring

2.1.1 Concepts on popular feature extraction, artificial learning
and decision making techniques used in drilling monitoring

Several techniques have been used for drilling monitoring applications. They include signal
processing techniques, estimation and classification algorithms and decision making strate-
gies. The most popular ones are introduced in this section. Only necessary material for
the understanding of works described in the following is provided, and is introduced from
a practical point of view. Therefore, this review of techniques is not exhaustive, and only
basic concepts will be introduced by the use of simple examples.
First, popular signal processing techniques aimed at feature extraction will be presented.
Feature extraction consist in picking-up useful information out of the mass of raw data given
by sensors. Then, fundamental concepts on learning machines used to model relationships
between complex phenomena to be monitored and features issued from sensor measurements
will be provided. Finally, as it has been widely used to represent states of drilling systems
that are difficult to quantify and fuse features, some information on fuzzy logic and fuzzy
systems will be introduced. As stated earlier, the goal of this introductory section is nei-
ther to be exhaustive concerning techniques used for drilling monitoring nor to rigorously
presents their mathematical and theoretical foundations, but to provide the reader necessary
material to understand works presented in the state of the art and some of our contributions.

2.1.1.1 Signal processing techniques for feature extraction

Time domain techniques. Time domain techniques are aimed at the extraction of fea-
tures that represent the signals in the time domain. Signals may have been filtered prior to
the feature extraction step in order to emphasize their most interesting characteristics. No
details about common filtering procedures will be provided. An introduction and algorithms
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for practical implementation can be found in [131].
Statistical descriptors of time series are often used as time domain features and can be in-
terpreted in a physical sense most of the time when applied to sensor signals. The four first
order statistical moments, namely the mean µx, variance σ2

x, skewness Sx and Kurtosis Kx

of a signal x are interesting and are described by equations 2.1, 2.2, 2.3 and 2.4 respectively.
Their discrete form is given here as nowadays, all signals to be processed are given in a
discrete form by data acquisition devices. In the following, x represents a N samples signal
in the form of a vector [x1, · · · , xi, · · · , xN ].

µx =
1

N

N∑
i=1

xi (2.1)

σ2
x =

1

N

N∑
i=1

(xi − µx)2 (2.2)

Sx =
1

N

N∑
i=1

(
xi − µx

σ

)3

(2.3)

Kx =
1

N

N∑
i=1

(
xi − µx

σ

)4

(2.4)

Figure 2.1 helps to understand their signification and potential uses. If the meaning of
the mean value of a signal is straightforward, signals that present the same mean µx and
possess different standard deviation σx are often encountered. This is the case for discrete
signals depicted in figures 2.1(a) and 2.1(b). The standard deviation of signal is similar to
another popular time domain feature: the signal Root Mean Squared (RMS) value. The
calculation of the RMS of a discrete signal can be done according equation 2.5, and gives
a representation of the energy content of the signal. For instance if the signal represents a
voltage level, its RMS value will provide the voltage that would produce the same power
dissipation as the original signal if applied to a resistor during the same time period. One
can remark that the RMS and standard deviation of a centered (i. e. which have a zero
mean) signal are equivalent.

RMSx =

√√√√ 1

N

N∑
i=1

x2
i (2.5)

The skewness Sx of a time series reflects the distribution if its sample around its mean value
µx. The signal depicted in Figure 2.1(c) has the same mean as the previous ones, but the
distribution of samples around the mean value is unbalanced, so the skewness is not zero
anymore. It is negative because of the strong influence (cubic) of the sample located far
below the mean compared to those located above.
This figure also showed that the Kurtosis value of the time signal increased. Indeed, Kurto-
sis Kx indicates the presence of isolated high amplitude peaks in the signals. However, if the
signal presents a larger standard deviation, like in figure 2.1(d), the Kurtosis will be lower
even if strong amplitude variations are present. This due to the influence of the standard
deviation σx in the calculation that gives Kurtosis its ability to emphasize the presence of
isolated peaks.
Properties of statistical moments are used to detect several phenomena. For instance, sys-
tems monitoring vibrations incoming from rotating machinery uses RMS to detect abnormal
vibration levels, skewness is used to detect imbalance, and Kurtosis to detect shocks. The
RMS value have been used in more than a half of works cited in this review and was applied
to signals issued from different sensors including current sensors, accelerometers, force and
torque sensors and AE sensors. In some studies the maximum and minimum values of the
signals have also been used as features.
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Figure 2.1 – Values taken by mean µx, standard deviation σx, skewness Sx and Kurtosis Kx

for different shapes of discrete signals

Frequency domain techniques. Frequency domain techniques have become popular for
drilling monitoring applications as drilling generates periodic patterns of forces and vibra-
tions. The Fourier transform (equation 2.6 for its discrete form, the discrete Fourier trans-
form (DFT)) and its inverse allow switching from the time to the frequency representation
of signals. As they are usually given in the time domain by sensors, they can be converted
in the frequency domain using the Fast Fourier Transform (FFT) algorithm which is based
on the DFT.

Xk =

N−1∑
i=0

xi exp

(
−j2π k

N
i

)
(2.6)

The representation of a frequency component Xk of frequency k of the signal in the frequency
domain is a complex number given by the inner product of the signal x and a complex si-
nusoidal wave exp(−j2π k

N i). Therefore, different frequency sinusoids form a new basis and
the signal is projected on its constituting vectors. The normalized squared modulus of the
vector X |X/N |2 gives the power distribution, or power spectral density (PSD) of the signal
as a function of its frequency components while their phase is given by its argument 〈X〉.
The PSD of a signal is often referred as its spectrum. Figure 2.2 shows this decomposition
and illustrates the ease of interpretation of stationary signals offered by the frequency do-
main. Frequency content of vibration and force signals often give useful information on both
the drilling process and the rotating machinery condition for instance. Many authors stated
that features extracted from the frequency domain are more useful for monitoring than those
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extracted from time domain representation of signals [103, 102, 9]. Another popular tech-
nique consists in isolating frequency bands of signals that correspond to the phenomena of
interest by using filters and apply it time domain techniques for example. As no location in
time is possible in the frequency domain, spectral analysis only allows monitoring stationary
process.

Time-frequency and time-scale domains techniques. Time-frequency and time-scale
domains techniques are used when some patterns have to be located precisely in sensors
signals both in time and frequency. Their short duration does not allow detecting their
presence neither using time or frequency domain global representations of the signal.
To overcome this limitation, Gabor [46] introduced a sliding window function g to the
Fourier transform and obtained a frequency representation localized in the time domain.
The so-called short time Fourier transform (STFT) is given in its discrete form in equation
2.7. As the use of windows modify the signal to be analyzed, several windows shapes have
been proposed offering different characteristics in terms of energy or frequency distortion of
signals content.

Xu,k =

N−1∑
i=0

xig(k − u) exp

(
−j2π k

N
i

)
(2.7)

This method presents two main limitations. As stated earlier, the Fourier transform is
to be used to analyze stationary signals, and it is not always the case for patterns to be
find for drilling monitoring purpose, even within short time durations. For instance, severe
tool chipping will produce a unique and sudden decrease in the thrust force signal. The
second drawback of STFT also arises from the Fourier transform properties. The location
of a phenomenon in time implies taking a smaller number of signal samples N into account
when performing the transform. As saw earlier, the frequency resolution of the obtained
signal representation in the frequency domain is inversely proportional to N (N/2+1 points
will cover the whole frequency range running from 0 to the Nyquist frequency). Therefore,
an increase in time resolution will result in an decrease in the frequency resolution and vice
versa, forbidding precise localization of patterns in both time and frequency. An example
of a STFT transform of a spindle motor phase current is given in figure 2.3.
Time-scale techniques, and wavelets introduced by Mallat in 1992 [94] in particular, provide
solutions to address the time-frequency techniques limitations. If the principle of using
inner products to project the signal into a new basis in order to obtain a more informative
representation has been kept, its constitutive vectors are no longer sinusoids which are
suited for stationary and theoretically infinite length signals. Instead, wavelets are used.
They are finite in time (or space), and their location information is embedded in the vectors
of the basis that is build upon, allowing to know where in the signal a pattern matched
with the wavelet. Several wavelet types exist, and wavelets often present an one-period
oscillating pattern which allow linking them with frequency components of the signals (figure
2.4 shows two classical wavelet families). All the frequency contents can be addressed by the
same wavelet family ψ by the use of a scaling factor s which allows dilating or contracting
the wavelet. The continuous wavelet transform is given in equation 2.8. The continuous
implementation is given here for sake of understandability as the discrete wavelet transform
(DWT) is performed according another scheme, even if following the same principle.

Xu,s =
1√
|s|

∫
x(t)Ψ

(
t− u
s

)
dt (2.8)

The aforementioned properties made wavelet a popular tool for pattern recognition, filtering
and noise removing applications in drilling monitoring applications, and in many other
domains.
Figure 2.5 allows to understand benefits of wavelets compared with the Short Time Fourier
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(a) Signal composed of 2 frequency component plus
Gaussian noise represented in the time domain
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Figure 2.2 – A signal composed of 2 frequency components plus Gaussian noise (a) represented
in the time domain, and its PSD (b) and phase (c) plots in the frequency domain. Although the
signal structure does not appear immediately in the time domain, it is clear from its frequency
domain representation: the 2 frequency components are easily identified on the PSD where the
normalized frequency stands for the ratio between the frequency components k and twice the
sampling frequency. The maximum detectable frequency is called the Nyquist frequency and is
half the sampling frequency. The relative phase shift between the two frequency components
at f1 and f2 can be deduced from the phase plot: | − 0.34− 0.45| = 0.79,' π/4. Other values
taken by the phase have no meaning because of the too low magnitude level of frequencies
components they correspond to.
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Figure 2.3 – Time (a) and time-frequency (b) representation of a signal: the STFT allows an
easier understanding of the signal

(a) (b)

Figure 2.4 – Examples of two wavelet families: the first and simplest one, the Haar wavelet
(a) and one of the most popular one, the Debauchies db2 wavelet (b)

Transform: a short duration signal (figures 2.5(a) and 2.5(b)) containing high frequency
transients is analyzed with both STFT (figures 2.5(c) and 2.5(d)) and DWT (figures 2.5(e)
and 2.5(f)). If the aforementioned resolution limitations of the STFT do not allow to
localize precisely the transients neither in time or frequency, the wavelet decomposition
allows it by finding the adapted decomposition level (when the wavelet scale correspond to
the transient one) which authorize an accurate time location. The wavelet decomposition
has been performed using the Haar wavelet.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5 – A short duration signal containing high frequency transients (a)(b), it short
time Fourier transform (c)(d), and its discrete wavelet transform decomposition at level 1
detail coefficient (e)(f)
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2.1.1.2 Learning machines

Learning machines have been widely used for tool condition monitoring in order to deter-
mine mappings between operating parameters that influence the cutting operation, features
extracted from sensors signals, and the process state. As this relationship has been shown to
be complex and non-linear, techniques allowing non-linear modeling or discrimination, like
multi-layered artificial neural networks (which have been used in 84% of papers involving
machine learning for machining system monitoring [1]), have grown popular within the last
30 years.

For a learning machine, learning is the process which consists in the estimation of its pa-
rameters in order to perform the task which it has been designed for in the best manner.

Supervised learning techniques. Supervised learning techniques are used when no re-
liable algebraic function exists to estimate the process state from cutting parameters and
features extracted from sensors signals. The task assigned to supervised learning machines
is to realize a statistical modeling, or a regression from a finite number of measurements and
their associated parameters. The fact that the variable(s) value (numerical or semantic) to
be estimated is known for this finite number of samples that is used to train the system is at
the origin of the name supervised learning. Supervised learning machine are used to perform
both classification and estimation.
For classification, the learning step consists in using the set of input values given with their
belonging class, the training set, in order to determine borders in the feature space that de-
limit the different classes that exist. Then, when a new data sample is given to the machine,
its class is determined following the region of the feature space it belongs to. An illustration
of a non-linear border between two classes in a two-dimensional feature space is depicted in
figure 2.6(a).
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Figure 2.6 – Illustrations of a non-linear separating border in a two dimensional feature set(a)
and of the typical shape of a supervised learning curve (b)

Concerning numerical variable(s) estimation applications, training set is used to set the
machine parameters w in order to obtain results close enough from the expected values as-
sociated with training inputs. This is usually done implementing an optimization procedure:
a cost or error function (for example the mean square error (MSE) given in equation 2.9)
based on the difference between the O (O = dim(d)) known output values di expected from
input feature vector xi and the learning machine output values yi is minimized regarding w.
The minimization is done iteratively until an acceptable error rate as been reached or the
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system converged. Each iteration involving all the N samples of the training set is called an
epoch. A typical learning curve is depicted in figure 2.6(b).

E =
1

N

N∑
i=1

O∑
o=1

(di,o − yi,o)2 (2.9)

The prediction performance, or generalization performance of learning machines is assessed
using a testing set of input samples that expected output values are know, but that were
not used to train the machine. Then, comparing obtained output values with expected
ones allows evaluating the goodness of the machine. As complex estimation or classification
problems often require a large number of training samples, sophisticated methods exist that
allow optimizing the use of available data to train and test learning machines. More details
and a discussion on the special case of drilling monitoring applications will be given in
section 3.4.
In drilling monitoring applications, back propagation neural networks (figure 2.8(a)) have
been the most popular supervised learning machine by far. In particular, they have been
used to detect or predict tool fracture [21], and to estimate tool wear [102, 92, 86, 3, 122,
126, 109, 113, 108, 112]. The learning principle is to iteratively compute the learning error
obtained from the training set of data and to minimize it using an optimization procedure
on the network parameters w, the synaptic weights. The learning is stopped when the
error reaches an acceptable level or when to much iterations, or epochs, have been done.
The ’back propagation’ name comes from a numerical method to calculate the gradient of
function that is often use in the optimization procedure employed to minimize the training
error. The synaptic weights updates from epoch e to e + 1 obtained using the gradient
method is achieved in the form given in equation 2.10 where η stands for the learning rate
which rules the speed and smoothness of the learning convergence.

we+1 = we − η(e)∇E (2.10)

Each hidden layer(s) neuron performs a weighted summation of its J inputs xj and process
it through an activation function f to determine the neuron output y, as described in equa-
tion 2.11 where w0 denotes a bias input. Usually, sigmoid functions are used as activation
functions because of their graceful balance between linear and non-linear behavior, and also
because they are differentiable [54].

y = f(w0 +

J−1∑
j=1

wjxj) (2.11)

Some important concerns are to be taken into account when using supervised learning tech-
niques. The first one is the coherence between the training set and the data that the machine
will have to deal with. In particular, the size of the training set and the coverage of the
feature space by the training samples are key points for an efficient learning. Illustrative
examples of good and poor coverage of the feature space are given in figure 2.7. Moreover,
one can remark that adding features implies exponential increase of the training samples
number to achieve the same coverage rate of the feature space. This phenomenon is known
as the curse of dimensionality and favors the use of feature spaces presenting low dimen-
sionality, and so underlines the importance of an efficient feature selection [121].
Over-fitting is also a serious problem. A model over-fits the training data when it describes
features that arise from noise or variance in the data, rather than the underlying distribution
from which the data were drawn. Over-fitting usually leads to loss of accuracy and poor
prediction performance [121].
These concerns will affect the generalization performance of the machine.
Concerning BPNN, the choices of the network architecture (network type, number of neu-
rons, number of hidden layers) and parameters (type of the activation function, learning
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Figure 2.7 – Illustrations of good (a) and poor (b) coverages of normalized 2-dimensional
features spaces

rate) have to be made carefully due to their respective influences on the overall prediction
performance.

Unsupervised & hybrid learning techniques. Unsupervised & hybrid learning tech-
niques are used to analyze data sets and discriminate them by looking for dissimilarities
that are unknown a priori. Aggregating data samples according to their similarity is called
clustering. As the learning machine finds the similarities in the data by itself, this learning
type is called unsupervised. Nevertheless, once the parameters of the machine are set, an
initialization phase using samples which output value are known is usually necessary for
the user to determine how the machine organized the data. One of the oldest clustering
algorithm is the K-means algorithm. It consists, for a given number k of classes to find
within the samples of a data set, in building clusters of data points that are similar. To do
so, clusters, that are defined by their position in the feature space, are updated iteratively
by averaging the position of the data point they are responsible for. Once the clusters posi-
tions have been updated, the clusters responsibilities Rk,i regarding each data point xi are
assessed according to their distance the points following equations 2.12 and 2.13, where f
makes R decreasing as the distance increases.

Rk,i = f(dist(k, xi)) (2.12)

kresp(xi) = min
k
Rk,i (2.13)

This iterative scheme is repeated until no changes occurs in the clusters position and data
points they are responsible for. Several upgrades have been proposed to this basic version
of the k-means algorithm, and it is also at the origin of the self-organizing procedure of
Radial Basis Function Networks (RBFN). Kohonen’s self-organizing maps (SOM) presents
similarities with the k-means techniques in its learning phase too. These types of networks
have been used for drilling monitoring applications in [49] for the latter, and [138, 108, 47] for
the former. Basically they synthesize information contained in the input data by underlying
dissimilarities. This allows detecting changing states as a function of the input data once
the network has been trained, or simply identify a change in the process.
It is interesting to note that in the case of RBFNs, parameters µj and σj of the networks
are not associated with the synaptic weights of the network, but within each neuron multi-
dimensional Gaussian activation function, as it can be seen in equation 2.14. This function
allows understanding how input data are discriminated by the network: the influence domain
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Figure 2.8 – Structures of a back propagation neural network (a) and of a radial basis function
network (b)
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of a neuron is local and determined by the parameters µ and σ of its Gaussian activation
function. To each neuron correspond a cluster, or a category of data.

y = exp(−
J∑
j=1

(xj − µj)2

2σ2
j

) (2.14)

RBFNs have only one hidden layer, and the output value is a weighted sum of hidden layer
neurons outputs. The output g(x,w) of a RBFN containing P neurons in its hidden layer
and where x and w are the input and the parameters vectors of the network respectively is
given by equation 2.15. The structure of a RBFN is depicted in figure 2.8(b).

g(x,w) =

P∑
p=1

(wp+1,i exp(−
J∑
j=1

(xj − µj,p)2

2σ2
i,p

)) (2.15)

Compared to supervised learning techniques, these methods should require less learning
effort in terms of size of the training database and computational effort. Moreover, they
sometimes adapt to new operating parameters under some conditions and are more flexible
regarding variability of process parameters.

2.1.1.3 Fuzzy logic & fuzzy systems.

Fuzzy logic, which has been introduced by Zadeh in 1965 [149], is an extension of boolean
logic based on fuzzy sets theory. Conversely to classical crisp sets to which an object can
only belong or not belong, fuzzy sets introduce the notion of membership degree. This flexi-
bility is appreciable when categorizing objects which evolve in a continuous manner or when
different categories are difficult to define precisely. Each fuzzy set is defined by a member-
ship function which allows determining the membership degree to a category of an object
described by a numerical variable regarding it. An illustrative example of membership as-
signment is given in figure 2.9(a) where the tool state is determined as a function of its flank
wear value. It would be difficult to define crisps partition between wear states because it
would signify that an infinitesimal increase of tool wear would make the drill pass from a
’sharp’ state to a ’worn’ state, or from ’worn’ to ’dull’. Trapezoidal membership functions
have been used for the example, but many functions can be used under certain conditions.
Rectangular membership functions are the special case of crisps sets.
Fuzzy systems are inference systems based on fuzzy logic. The input variables are first fuzzy-
fied using the procedure mentioned above. Once their membership to each fuzzy sets have
been determined, fuzzy rules are applied to define the membership to output fuzzy sets.
Fuzzy rules use ’and’ and ’or’ operators to associate inputs, and output states are defined
as a function of their combinations. Illustrative examples of fuzzy rules assessing the state
of drilling system using drill and spindle states as inputs are:

’if the spindle is unbalanced or the drill is dull then the drilling system is in critical
state’,

or

’if the spindle is well balanced and the drill is sharp then the drilling system is in good
state’

The membership degrees to output fuzzy sets (’critical’ and ’good’ in the example) is then
calculated from the membership degree of inputs using the fuzzy rules. Then, as crisp nu-
merical values are often preferred to membership degrees, a defuzzyfication can be performed
on the output variable(s). The fuzzy inference process is depicted in figure 2.9(b).
Several definitions of the fuzzy implication exist, leading to different ways to calculate the
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membership to output fuzzy set from input ones. In the same manner, several ’defuzzyfi-
cation’ methods exist. Outputs of fuzzy inference systems are often a non-linear functions
of their inputs. As membership functions are often based on linguistic variables, fuzzy logic
systems are easier to set-up than classical ones for which the tuning of thresholds to differ-
entiate between categories is often a complicated task. The membership functions and fuzzy
rules are defined by the user.
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Figure 2.9 – Illustrative example of fuzzy membership functions defining the drill states as a
function of its flank wear: if the flank wears equals 0.365, the tool is 35% sharp and 65% worn
(a), and illustration of a fuzzy inference process (b)
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2.1.2 Description of phenomena of interest in drilling and common
associated sensors and features

Monitoring systems consists in sensors, signal conditioners/amplifiers and a monitor that
uses a strategy to analyze the signals from the sensors and to provide reliable detection
of tool and process failures [62]. Following the industrial needs of monitoring in precision
drilling, main phenomena of interest will be described, and related studies presented, in-
cluding signal processing and decision making techniques used, if any.
Measuring techniques used for drilling operations monitoring have traditionally been catego-
rized into two approaches: direct and indirect. In the direct approach the actual quantity of
the variable (e.g. tool wear), is measured. Many direct methods can only be used as labora-
tory techniques due to the practical limitations caused by the difficulty to implement them
in industrial contexts, the harsh industrial environment and the loss of productivity their im-
plementation would cause. However, direct measurement has a high degree of accuracy and
has been employed extensively in research laboratories to support the investigations of fun-
damental measurable phenomena during machining processes. They also serve as reference
measure used during the design and implementation of monitoring systems. Through indi-
rect measurement approaches, auxiliary quantities such as the cutting force components, the
power consumption or the vibrations generated while drilling can be measured. The actual
quantity is subsequently deduced via empirically determined correlations. Indirect methods
are less accurate than direct ones but are also less complex and more suitable for practical
applications. Only indirect methods are part of the scope of this work as it is aimed at the
implementation of an online monitoring system suitable for industrial applications.
Differently from most reviews of drilling monitoring techniques where the type of measurand
is used to classify applications [135, 60, 30, 62, 104, 23], they will be classified here according
to the phenomena of interest evolution scheme (sudden or progressive), and therefore the
detection and/or estimation techniques they imply. As it hints the premises of the architec-
ture to be deployed, this classification is a first step through the design and implementation
of an industrial drilling monitoring system, by emphasizing the whole approach to be used
to monitor a phenomenon.
For each phenomenon and associated measurands, studies that investigated correlations be-
tween measurements and phenomenon will be presented first, followed by works aimed at the
estimation of the value taken by the monitored phenomenon as a function of measurements,
and lastly, studies going from measurement to decision making will be introduced.

2.1.2.1 Detection of sudden phenomena occurring untimely during drilling

Sudden phenomena occurring during drilling operations are at the origin of two principal
issues: workpiece alterations leading to over-toleranced parts and sudden tool failure, the
latter leading to the former one in most cases. Basically, monitoring of sudden phenom-
ena should be done after each drilling operation using a binary classification scheme: did
an undesired phenomenon occur or not? Sometimes, undesired phenomena occur that do
not significantly affect the process from the end-user point of view. Then the border be-
tween acceptable and unacceptable process condition is not set upon the occurrence of a
phenomenon, but on its level and the potential consequences it has on the process quality.
In this context, robust decision making strategies are needed.

Monitoring of sudden workpiece alterations

In aeronautical applications, increase of the use of Carbon Fiber Reinforced (CFR) mate-
rials, and CFR Plastics (CFRP) in particular, has raised sudden occurrence of workpiece
alterations occurring while drilling as a major concern. Indeed, the use of such laminated
materials favor the apparition of new issues concerning holes quality in the form of delam-
ination and hole surface alterations. Moreover, their frequent use in multi-material stacks
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configuration together with metallic parts, which often present antagonist behavior in term
of machinability, favor the use of cutting tools and parameters that are not fully adapted,
and, in some extent, favor the apparition of defects. The laminated structure of such layered
materials can be observed in figure 2.10.

Figure 2.10 – A CFRP sample: the layered structure is clearly visible

Delamination. Delamination consists in an inter-laminar disbounding that reduces dras-
tically assembly tolerance and bearing strength, but also has the potential for long term
performance deterioration under fatigue loads [58]. If it mainly appears at holes exit as
push-out delamination due to the application of a thrust force superior to the disbonding
force limit of the few remaining material layers, it can occur at the hole entrance in the form
of peel-up delamination [57], and also between workpiece internal plies (figure 2.11(b)). Hole
exit can also be affected by fiber arrachement and uncut fibers and (figure 2.11(a)) that are
considered drilling defects as they deteriorate the assembly properties.

(a) Delamination and uncut fibers
on hole exit of a CFRP workpiece

(b) Delamination between internal
plies of a CFRP workpiece

Figure 2.11 – Examples of CFRP workpieces alterations

A great amount of work has been done in order to estimate optimum cutting parameters
allowing avoidance of delamination while maximizing tool use and productivity (a recent
review of these methods can be found in [88]). Use of theoretical models and realization of
numerous experiments lead to the conclusion that excessive thrust force is one of the main
factor favoring delamination.
Only a few studies have addressed the problem of in-process detection of delamination during
drilling. All features that have been aimed at this purpose have been extracted from Acous-
tic Emission (AE) signals. The use of AE is well established in the field of non-destructive
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structure health assessment, but AE signals obtained in drilling presents several specificities
compared to other traditional measurements done for drilling monitoring purpose that imply
the use of different techniques that will be explained further.
Because of its ability to sense sudden energy releases in deforming material [82], AE has
been identified as a promising tool to detect delamination. However, studies showed that
isolating the different sources of AE in a drilling operation is considered a very difficult task
as the mechanism of generation of AE is not completely understood [118, 65] and analytical
techniques are not completely developed [22]. Moreover, as AE signals are heavily depending
on the machining process parameters [82, 59, 23, 136], using them for flexible monitoring
purposes is a complicated task, especially in industrial context where operational conditions
are often changing and external perturbations are expected. This issue, as well as some
original solutions proposed in our work will be presented in chapter 5, section 5.1.3.
Ravishankar and Murthy [119, 118] used reverse engineering methods to correlate AE signals
characteristics to the hole quality. They concluded that obtainment of a qualitative under-
standing about hole entrance and exit damage would demand rigorous statistical analysis,
but noticed that AE signal RMS increased with applied thrust force, which can be a hint
for monitoring delamination.
Jiaa [63] also examined the use of AE to detect delamination of composite laminates during
drilling. A special signal processing scheme which consisted in subtracting the signal ob-
tained after RMS computation using a 60 ms (’the medium AE energy signal’) windows to
the one obtained using a 10 ms window (’the fast AE energy signal’) has been implemented,
and the obtained ’residual’ signal, which was independent of operating conditions, was com-
pared to the ’medium’ one. If pikes of the former crossed the latter, then a delamination
occurred. Results alos showed a linear energy level increase in normalized AE ’residual sig-
nal as a function of the size of the entrance and exit hole delamination. Unfortunately, no
other studies have been done that could validate this method.
In 2007, a study [6] showed the existence of a correlation between hole exit shrinkage size
and AE signal RMS when drilling Glass-FRP (GFRP) laminates and clusters of holes have
been built according to their exit delamination state. Still, they were defined manually and
no on-line monitoring method has been implemented. Moreover, it has been emphasized
that AE signals were very sensitive to the drilling environment.
More recently, a wavelet-based method has been used on AE signals to investigate dam-
age mechanisms during drilling of composite materials [56]. 10 mm HSS drills were used
in GFRP at 2 cutting speeds and 2 feed rates. AE signals were recorded from a sensor
mounted on the workpiece at a 1MHz acquisition rate. Discrete wavelet transform was used
to decompose the signals in six levels, each one corresponding to a frequency band. The
energy percentage of the signal in each component was then compared with the total energy
of the signal. These percentage have been shown to be linked with thrust force, and so could
be used to monitor delamination.

Countersink waviness. Countersinks waviness is another manifestation that is not sys-
tematic. It illustrates the variability of drilling operations performed on large structures
when using complex drilling devices that exhibit different dynamic behavior as a function of
the configuration of the machining system. This workpiece alteration consists in countersink
surface finish that do not fit the required tolerance. No known reference (in our knowledge)
exists on this problem in the context of airframe assembly. Experimental investigations
made conjointly by Arts et Métiers Paristech and EADS IW showed that the waviness is
due mainly to a lateral chatter phenomenon, occurring especially at the end of the coun-
tersinking phase of the machining operation. The chatter is a machining process instability
that is generally explained by a regenerative effect in cut surface generation. Different levels
of countersink waviness are visible in figure 2.12.
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(a) A countersink where wavi-
ness is visible at the sur-
face

(b) A countersink waviness is
not visible

(c) A countersink where wavi-
ness is sligthly visible

(d) A countersink where wavi-
ness is clearly visible

Figure 2.12 – Different levels of countersink waviness manifestation

On-line detection of delamination is at early stage of research, and only few laboratories
applications have been performed. Further theoretical (signal processing) and technical
(sensor integration) developments are needed to clearly identify and isolate sources of
AE while drilling in order to be able to reliably detect delamination occurring in diverse
conditions. Moreover, thrust force measurements and a delamination prediction model
could be used simultaneously with AE signals in order to make more reliable statements
by fusing information.

Monitoring of drill failures

A drill failure is characterized by the fact that the tool geometry is significantly modified in a
very short period of time, conversely from wear-related progressive phenomenon. Two main
phenomena fall into this category: tool fracture and tool cutting edge chipping. While tool
fracture implies that at least one of the drill cutting edges separates from the rest of the tool
(figure 2.13(a)) and is always a critical issue, cutting edge chipping designates the separation
of part(s) of the cutting edge, which can be considered as an alteration (figures 2.13(b) and
2.13(c)) and that does not always implies harmful influence on the process quality from the
user point of view. However, it is often a forerunner of an advanced wear state of the tool
and influences the incoming of wear related phenomena. As tool failure is considered as a
stochastic process [60], it is of great interest to monitor its occurrence on-line.

Tool fracture. Tool fracture drastically modifies the on-going drilling operation, and
studies aimed at its detection have been performed using different measurands.

Spindle currents have been the most used signals to do so. Works of Liu, Lee and Tarng
[77, 134, 89] focused on the demodulation of the induction spindle motors current signals in
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(a) (b) (c)

Figure 2.13 – Fractured tool (a), important tool cutting edge chipping (b) and small tool
cutting edge chipping (c)

order to find tool fracture related features in it. Indeed, the occurrence of tool fracture while
drilling will cause an excessive cutting force acting on the drill. A large spindle motor torque
will then be generated in order to keep the spindle rotating at a constant speed against this
force, and since the spindle motor torque is approximately proportional to the spindle rotor
current, a large variation of the spindle motor current is then unavoidable [134]. Although
the rotor current is very difficult to estimate in such induction motors, the authors showed
that the stator current, whose phase components are easy to measure, can be seen as an
amplitude modulating signal. The modulated signal has been proven directly related to the
motor torque. Discrete wavelet transform [77, 134] and the combination of a bridge rectifier
and a low pass filter [89] have been used to perform this demodulation and obtain an image of
the motor torque. If tool fracture have clearly been identified in resulting signals, no on-line
monitoring procedure has been set-up. Tests have been performed using 12 mm diameter
drills in steel workpieces. Moreover, if tool fractures have been detected and identified in
this study, some other phenomena could produce the same effects on current signals.
In another study [143], the ability of wavelet transform to detect tool fracture transient
signatures that are barely visible in the spindle and feed motors signals has been shown over
various cutting conditions using small drills (< 5mm).
In [21], the spindle power signal has been used to classify the drilling operations into two
categories, ’normal’ and ’abnormal’, the latter corresponding to drill breakage or absence of
drill. A two-stage neural network has been used to do so that took the raw power signal
as an input instead of statistical features. Indeed, the first neural network stage was aimed
at feature extraction while the second one was devoted to classification of the drilling state.
Tests were performed drilling 12 mm holes in cast iron, and very good classification results
and low false alarm rates have been achieved in industrial conditions. The authors noticed
that failures type signals may sometimes be very different, leading to the impossibility for
the system to recognize it correctly. They propose a periodic re-training of the network in
order for him to learn new failure signal types when they happen, copying a human experi-
ence learning process.
Several merits of choosing spindle motor currents as sensors for monitoring tool fracture
in machining have been cited: spindle motor systems are already built in machine tools,
therefore, the cost of sensor investment is reduced and the mounting of the sensors does
not interfere with the operations of machine tools [89]. However, it has been stated that
in case of small drills, when drilling operation involving less power consumption due to the
workpiece material lowest resistance (e.g. CFRP), or when high power spindle are used,
spindle currents are not sensitive enough to tool fracture to allow detecting it in a reliable
manner [45, 73].
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Cutting forces and torque have also been investigated as means to detect tool fracture.
In [19], a new method based on eddy-currents has been proposed to measure torque and
predict tools failures. The stresses changes induced on the drill shank, that are mainly due
to torque while drilling, will impact its micro-magnetic properties at the surface. Those
changes have then been measured by the eddy current sensors and interpreted: significant
changes appears in the sensed signals when a drill fracture is going to happen.
In another study [100], Mori used thrust force signal and wavelet analysis to monitor small
diameter (2 mm) drillings in stainless steel. Contents of three frequency-bands of the signal
(’energy’, ’waviness’ and ’irregularity’ contents of the signal) were analyzed, which allowed
to classify the drill state as ’prefailure’ or ’normal’ using a linear discriminant analysis al-
gorithm on drillings representations in the so-defined three dimensional feature space. One
interesting point in this study is that more than characterizing signals content as a function
of the drill state, a clustering procedure has also been implemented that allow assessing
monitoring ability of the system, which is shown to be very dependent on the clustering
technique parameters choice.
Fu [44] also used wavelet transform within the matching pursuit approach to predict smalls
drills (2 mm diameter) breakage. Fractures are predicted when some typical patterns, namely
’screetching’ mode and ’sawtooth’ mode, are recognized within the thrust force signal, which
can directly lead to a classification of the tool state. The system has to be trained using
a signals database to select the most discriminant features between ’normal’ drilling mode
or ’prefailure’ modes. The method achieved a 100% good classification rate on a 88 drilling
test set after it has been trained on a 88 drillings training set.
Another wavelet-based approach using thrust force and a neural network has been success-
fully implemented in [133] to predict micro-drills fractures, however it is only suitable for
machining machines using stepper motors.
Most of these studies focused on metallic materials drilling that induce high power consump-
tion, but thrust force an torque can be far less reliable for fracture monitoring when drilling
less power-demanding materials and/or when small drills are used. Moreover, cutting forces
and torque sensors are often difficult to implement on drilling machines in industrial envi-
ronments [135, 45, 73]. More information about force and torque sensors integration will be
provided in section 5.1.2.

Vibrations have not been very popular for tool fracture detection, probably because of
its sensitiveness to noise wich is present in cutting process [60]. Methods to identify small
drills fracture have been presented in [35]. In the time domain, Kurtosis computed on sig-
nals coming from accelerometers sensing vibrations in both axial and radial directions of
the workpiece fixture has been shown to be a pertinent feature to indicate imminent tool
fracture, independently from cutting conditions. In the frequency domain, ratio of radial
and axial vibration signals cepstra respectively presented a peak at the rotation frequency
when the drill was broken. In this study, a pre-processing step on accelerations signals has
been done in order to not take into account influence of vibrations that are not linked with
the material removing, that may explain their successful results.
One of the main advantage of vibration monitoring lies in implementation of accelerometers
that can be done without any modification of the machine or workpiece fixture.

Acoustic emission has been used as a mean to overcome issues encountered when us-
ing current and force to monitor tool fracture when low drilling power is needed. In [73], AE
signal RMS has been shown to increase significantly after tool fracture, even if the sensor
was mounted on a steady part of the machine, far from the AE source. Another study
[71] conducted in industrial environment on a multi-spindle drilling machine also achieved
good results in tool fracture detection using AE. A frequency band contenting information
mainly due to drill breakage (175-250 KHz) was identified and used to avoid influence of
other drilling related phenomena. The maximum AE RMS level and the standard deviation
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Figure 2.14 – Influence of a cutting edge chipping (figure 2.13(b)) on hole diameters when
drilling Ti6Al4V

of AE RMS both present significant peaks when tool fracture occurs. However, the authors
noticed that sensors placement plays a important role in the obtained results. They were
placed on the workpiece fixture, and the contact pressure between the workpiece and this
fixture has been shown to be heavily impacting the AE signals.
If AE seems to be one of the most sensible measurand to tool fracture, classical problems
when using AE in drilling (sensibility to process parameters and external perturbations,
sensor integration, complexity of the signals) can make its use difficult.

Input impedance of the spindle motor has also been used to sense tool fracture in
micro-drilling, where spindle currents were not sensible enough to perform well [45]. It im-
plies sensing current and voltage furnished to the spindle motor by the power input. The
impedance of the motor computed at 50 Hz, which is the frequency of the power supply,
has been shown to be well correlated with torque measurements performed at the same
time. However, the study has been done on a simple DC motor type that is not often
encountered in industry, and the authors stated that much work would be need to obtain
the necessary analytical values for voltage and current when using more complex motors,
like the three-phases induction ones frequently encountered in industrial precision drilling
applications.

Tool cutting edge chipping. Tool cutting edge chippings can be harder to identify
because they do not systematically provoke high level perturbations during the drilling op-
eration. However, it has been shown that even for for small chippings, changes in cutting
forces distribution along the cutting edges could lead to significant impacts on the hole geom-
etry, which is usually the end-user main concern (see figure 2.14 for impact of tool chipping
on diameter for instance). Moreover, it is important in the context of this work as it has
been show to be a classical issue when drilling CFRP and titanium alloys stacks using Poly-
crystalline Diamond (PCD) drills [111]. Tool chipping can be provoked by bad off-process
manipulation of the tool as cutting edges are very sensitive to shocks (PCB coatings are
very fragile for instance). It can also follows chip removal of build-up edge due to adhesive
wear [16], or can be due to fatigue [30]. Although it is not a progressive phenomenon, and
so can be considered as an opposite event from tool wear [8], it has often been associated
with drill wear and has not been subject to many studies. However, their propensity to
accelerate tool wear make them very interesting features for wear monitoring.
In [8], it was stated that spindle power was sensitive enough to monitor tool chipping in
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drilling, but experiments where made on Inconel 718 with a 5.5 mm drill, inducing 10 N.m
torque and 1000N feed force, making chipping visible although a powerful spindle was used.

Thrust force can also indicate tool chippings in cases where high cutting forces are in-
volved. Figure 2.15(a) is an example of a cutting edge chipping signature obtained when
drilling Ti6Al4V using 10 mm drill using a high feed rate (0.11mm/rev and a 50m/min
cutting speed). Even small chippings as seen occurring between figures 2.15(b) and 2.15(c)
are recognizable in these conditions.
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(a) Thrust force recorded during two consecutive drillings: a
tool fracture occurred at the end of the 29th hole (∼
5.5s)and is clearly visible due to the high level of force
needed for the drilling

(b) picture of the drill cutting edges after
the 28th hole has been drilled

(c) picture of the drill cutting edges after
the 29th hole has been drilled and where
a chipping is visible on the upper corner
of the right cutting edge

Figure 2.15 – Illustration of a cutting edge chipping impacts on thrust force signal
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Several applications of drill failure monitoring have been implemented. Spindle current
sensors and accelerometers have been used due to their ease of integration, but showed
limitations. Depending on drilling conditions (material, drill diameter, spindle power)
spindle currents may not be sensitive enough to assess the presence of drill failures. As
for accelerometers, they have not been very popular for tool failure detection, probably
because of their sensitiveness to vibratory perturbations generated by the cutting pro-
cess that make reliable statements about the tool sate difficult to make. Thrust force
an torque have been successfully used in some cases, but have been shown to be less
reliable for fracture monitoring when drilling materials that do not require high cutting
power and/or when small drills are used. Moreover, cutting forces and torque sensors
are often difficult to implement on drilling machines in industrial environments. AE has
been shown to be sensible to tool fractures, but its sensitivity to process parameters and
external perturbations, problems linked with sensor integration, and the complexity of
the signals made its use difficult.

2.1.2.2 State estimation of progressive phenomena evolving hole after hole

A task of great importance in drilling monitoring is to follow evolution of critical variables
as the number of drilled holes increases. Indeed, as every cutting based material removing
operations, drilling induces tool wear due to the intimate contact and elevated temperatures
at interface between the tool and the workpiece that leads to changes of the tool geometry.
Then, holes can present geometrical properties that overcome allowed tolerances, so it is
important to monitor these changes to avoid the realization of over-toleranced holes. A
good accuracy when estimating those parameters is also required in order to reduce security
margins applied for cutting tools replacement that take into account variations in tools life
in a statistical manner [60]: due to the important number of drilling operations involved
in the aeronautical industry, the optimization of tool replacement strategy is an important
economical concern.
Although its impacts on hole geometry are the important variables to follow from an end-
user point view, many studies have been aimed at the estimation of drill wear. If only tool
wear is estimated, it implies that a correlation between its level and the hole geometrical
properties have to be known by the end-user for him to decide when to decide a drill is
worn and replace it. However, such a correlation can be very complex to explicit. Only few
studies have tackled the problem from an end-user point of view and have focused on the
estimation of geometrical properties of drilled holes from sensor signals.
Studies aimed at tool wear detection and estimation will first be introduced, classified ac-
cording to the type of sensor used, and the deepness the monitoring problem has been
tackled, from sensor detection ability, then wear estimation, to the implementation of a
decision making strategy for tool replacement.
Then, the few studies that treated the problem from sensor signal to the estimation of holes
geometrical parameters (diameter, burr height and hole surface quality) will be presented.

Tool wear estimation

Several mechanisms of interaction between the drill and the workpiece induce tool wear in
drilling. Kanai et al. classified drill wear forms in five categories [67] linked with the lo-
cation of the wear on the drill: flank wear, crater wear, corner wear, chisel edge wear and
margin wear. In most research conducted on drill condition monitoring, progressive flank
wear was the dominant failure mode and has been extensively investigated [3]. However,
several authors stated that drill life is strongly characterized by corner wear on the drill
[90, 35, 102]. Illustrations of both flank and corner wear popular measurements methods are
given in figure 2.16. Pictures of corner wear when drilling CFRP, and flank wear evolution
when drilling Ta6Al4V are visible in figures 2.17 and 2.20 respectively.
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Figure 2.16 – Illustrations a drill flank wear (a) and drill corner wear calculation methods
following [86] and [90]: Wflank = A+B+C+D

4
and Wcorner = A+B
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Spindle currents ability to sense tool wear has been assessed because they do not hinder
the machining process and are cost effective [23]. In [42], spindle currents measured on the
spindle driver have been filtered and processed using wavelet transform to be compressed
into a simpler form. Then skewness between consecutive pulses of the obtained signal has
been assessed using auto-correlation, and it has been shown that skewness increased signif-
icantly with tool wear. Experimental tests have been done drilling iron with large diameter
drills (53 mm), which prevented aforementioned incomes of current low detection ability of
current when using small drills.
In order to overcome problems encountered when using spindle currents during monitoring
drillings that present low power consumption in comparison with the naturally dissipated
by the spindle, an approach and a device have been presented in [4] which is based on
differential power consumption, so only the power required for actual drilling is analyzed.
Results showed wear detection ability when drilling CFRP with 12.7 mm drills using a 10
KW spindle. Only the ability of the system to sense tool wear has been demonstrated and
the system has been patented, but no monitoring procedure has been implemented.
Spindle currents have also been used to perform tool wear estimation in drilling using Back
Propagation Neural Networks (BPNN) in [113]. The operating conditions parameters have
been taken into account and have been used as inputs of the neural networks with spindle
current RMS. 12 different BPNN architectures have been implemented and assessed, and a
regression model has also been implemented for comparison purpose. The neural networks
and regression model have been trained on 35 different input patterns, and the estimation
performance of the models have been done on 8 different patterns. All neural networks
showed better performance than the regression model, probably due to their ability to map
non-linear relationship between tool wear, cutting conditions and spindle currents, and one
architecture in particular gave a 6% average prediction error. Although successful, this
example underlines some drawbacks of neural networks: firstly, there is no analytical pro-
cedure to define the best architecture, or even network type for a given estimation task.
Moreover, the networks ability to give accurate estimation heavily relies on the training
database quality and size [55], which implies a great amount of experiments to implement a
flexible system.
In [84], Li proposed an approach going from current sensors measurement to tool replace-
ment decision. Its approach also necessitates the creation a database containing current
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amplitudes as a function of cutting parameters and tool wear by performing experiments.
Three tool wear states (’small’,’severe’ and ’normal’) have been used to build sets of fuzzy
membership functions as a function of spindle current amplitude, each set corresponding to
a particular combination of operating conditions. When drilling, the amplitudes and fre-
quencies of spindle and feed currents signals are monitored, and the cutting conditions are
first determined using the relationship between currents frequency and spindle/feed speed
that have been investigated previously. The current amplitude was used as an input of the
appropriate set of tool wear membership functions to determine the tool wear state. The
decision making about tool replacement is then done according to a threshold on the mem-
bership level of the ’severe’ tool wear state, but should be set by the user as a function of
its needs.

Cutting forces and torque ability to monitor tool wear have been assessed in [9] and
[103] leading to the same conclusions: no correlation between force or torque and flank
wear appeared when using the time domain signals, but in the frequency domain, the power
spectrum densities (PSD) of drilling signals were more informative.
In [9], the normalized damping ratios (NDR) of the thrust force PSD at the spindle rotation
speed and of the torque PSD at twice this speed showed good correlation with flank wear,
independently from the drill diameter, tool material and feed rate. This phenomenon has
already been reported in turning operations.
In [103], the area under PSD from 0 Hz to 300 Hz was calculated and was well correlated
with flank wear whereas mean and variance of force and torque signals in the time domain
were not. Due to low signal-to-noise ratios (SNR), the PSDs used to perform correlations
were actually an average of several PSDs obtained when drilling with tool presenting similar
wear levels.
In [86], flank wear has been estimated when drilling copper alloy using force and torque
separately. Cutting models proposed by Subramanian [132] have been used to make tool
wear estimations. Thrust force allowed obtaining good predictions of flank wear over a wide
range of cutting conditions if the cutting parameters are known as the average prediction
error was about 10% of the measured value.
In [90], thrust force and torque have also been studied separately and used as inputs of
polynomial neural networks to predict corner wear. As polynomial neural networks are self-
organizing, the use of an algorithm to choose the best architecture on the basis of a tradeoff
between prediction accuracy and network complexity has been possible. The training and
test sets were only composed of 27 and 8 drillings respectively, and the average prediction
error was about 7%. Once again, thrust force showed better ability to monitor tool wear.
In [37], a state of wear was estimated instead of a tool wear value using a hidden Markov
models (HMM). The HMMs (one for the thrust force, the other one for the torque) were
trained using sharp drills, and then they allowed obtaining a probability of the drill being
sharp for each drilling. Results were encouraging, and the possibility to set a threshold
on this probability to replace worn tools was demonstrated. It has been mentioned as a
drawback by the authors that all experiments have been made in the same conditions.
In [147], two fuzzy logic and a neuro-fuzzy based decision systems have been implemented
in order to determine tool wear state over different cutting conditions. The aim was to com-
pare results obtained with a fuzzy system implemented using expert knowledge, and with a
neuro-fuzzy system that used neural networks learning abilities to define the fuzzy member-
ship functions of tool wear state as a function of statistical parameters (mean, maximum,
standard deviation and RMS) calculated on the thrust force signal. Results were good using
both systems, but it has been shown that as reliability of the neuro-fuzzy system decision
depended on the quality of the training set (mainly its coherence with testing data), so
expert knowledge should be used when available in order to avoid pitfalls due to bad neural
networks training.
Yang [146] assessed the use of both k-means algorithm and radial basis function neural
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network to discriminate tool wear states with torque signal. Wavelet packet decomposition
was used to separate different frequency bands of the signal in order to compute energy
contained in its frequency components corresponding to the spindle rotation speed and its
3 first harmonics. Indeed, they have been showed to increase as a function of tool wear.
26 drillings have been performed under different operating conditions on a CNC machine
using 8 mm diameter carbide drills in silicon aluminum alloy. 3 Wear states have been con-
sidered: ’slight wear’ (<0.1 mm), ’normal wear’ (>0.25 mm) and ’severe wear’ (>0.5mm).
The four aforementioned features have been used as inputs of a k-mean clustering algorithm
and of a RBFN where a k-mean procedure was used to set the neuron centers at the first
step of the learning procedure. 13 drillings have been used to train the network, and the
13 remaining to test the performance of both approaches. The k-means method allowed
a 69.23% good classification rate (it was used to differentiate only between ’severe wear’
and other states) whereas the RBFN reached 92.31%, which demonstrated the usefulness of
the training phase, following the author. However, in our opinion, this results have to be
considered with care because in both cases, only one sample has been misclassified, but the
error calculation for the k-mean procedure seems to have been performed considering the 3
classes.
Most of works presented in this review stated that using thrust force was more informative
than torque for monitoring tool wear. Approaches using cutting power consumption (force
and currents sensing), have emphasized that cutting parameters like feed or drill diameter
are heavily impacting the power consumption when drilling, and their respective influences
have often been taken into account as input variables to build wear estimators and make
predictions.
Another factor has been proved to be very important: the workpiece hardness. If the vari-
ation in thrust force, on account in changes in flank wear, is to be significant, the variation
in workpiece hardness has to be held within 5% of the mean hardness value in order to
be able to base the diagnosis of flank wear on the amplitude of thrust force and torque.
Hence, torque, force and related currents measurements for monitoring drill wear should be
attempted only after a very close tolerance has been obtained in the workpieces hardness
[132].

(a) (b) (c)

Figure 2.17 – New tool designed for CFRP drillings (a), same tool after 130 12mm deep
drillings in CFRP (b), zoom on the corner wear zone (c)

Vibrations ability to sense tool wear has been assessed in [35] using 6 mm drills in cast
iron. Different types of wear were reported to provoke peaks at different frequencies in the
axial accelerometer signal spectrum: whereas a sharp drill did not significantly excite vi-
bration modes, flank and chisel wear provoked peaks at 3.9 KHz and 5.3 KHz, corner wear
was responsible of the apparition of a 3.2 KHz peak, margin wear at 4.5 KHz, and finally
very large build-up edge was reported to provoke a 4.8 KHz spike. The area under the
spectrum has been shown to be very well correlated with drill wear. The authors stated
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that if these features have to be used for monitoring purposes, spectra of several drilling ac-
celeration signals obtained with similar tool wear level should be averaged in order to avoid
false alarms due to build-up edge or inhomogeneities in workpiece material that possesses
harmful influence on the acceleration spectra.
In [10], an atypical framework to detect incipient drill wear has been introduced. Instead
of using only features extracted from the power spectra of the axial acceleration signal, the
bispectrum and second-order cumulant spectrum have also been used in order to empha-
size the presence of non-linear time series generated by faults in rotating machinery that
cannot be detected otherwise. A complete statistical study on classification results of drill
wear states (’new tool’ and ’slightly worn’) classification has been performed on epoxy-glass
composite material using drills going from 0.5 mm to 2.5 mm diameter, as used for printed
boards preparation operations. It showed that the integration of features extracted within
the introduced framework increased the probability of tool wear state good detection while
it reduced the probability of false alarms.
In [83], a fuzzy neural network (FNN) has been implemented to process the RMS of five
frequency bands of an axial acceleration signal. Five tool wear states based on flank wear
level, namely ’initial’, ’normal’, ’acceptable’, ’severe’, and ’failure’ have been defined and as-
sociated with a fuzzy membership function. Then the FNN output was on the form of a tool
wear state membership level to each class, allowing to set a threshold to tool replacement.
Results were mitigated going from 100% of severe wear state recognition to only 52% of
correct initial tool state identification. They have been computed on only 10 test drillings,
and the FNN has been trained using 20 drillings performed in different operating conditions
(drill diameter, cutting speed and feed rate).
More recently, Abu-Mahfouz [3] used a feed-forward back propagation neural network (BPNN)
to detect the presence of tool wear and classify its type using signal coming from an ac-
celerometer clamped on the workpiece fixture. The inputs of the network were the cutting
speed and feed rate, 16 averaged harmonics wavelet coefficient representing the acceleration
signal power spectrum density (PSD), another compressed representation of this PSD in
the form of its parametric definition given by the Burg model [96], and the mean, variance,
skewness and Kurtosis of the time domain signal acquired during drilling. The network
has been trained using 4 sets of cutting conditions, and its generalization ability has been
assessed using 2 different sets. It allowed obtaining 100% of wear detection rate, and 90%
good classification rate for the type of wear (chisel wear, crater wear, flank wear, edge wear
or corner wear). The network architecture has been chosen in an arbitrary manner.
Shah et al. also investigated the use of acceleration measurements to sense tool wear [125].
An accelerometer clamped on the workpiece was used to record vibrations generated while
drilling AISI4140 steel with 8 mm diameters drills under one operating conditions set. The
average, RMS and standard deviation values of the signal in the time domain have been
computed, but did not show good correlation with tool flank wear. The frequency domain
representation of the signals, and the spikes related with the spindle rotation frequency and
its harmonics increased with drill wear. A shift in the location of the dominant frequency
has been observed when a cutting edge failure due to wear occurred. However, authors
stated that vibration measurements were to noisy and lack linearity and stability to perform
efficient tool condition monitoring.
The use of accelerometers to sense tool wear, although they are easy to integrate in an
industrial environment, is quite limited to perform reliable wear monitoring in drilling due
to their sensibility to noise and process parameters.

Acoustic emission is considered an efficient way to perform tool wear monitoring [32].
In [38], correlations between AE signal measurement parameters and drill lip height have
been investigated when using robot to drill steel with 6.31 mm drills. AE sensors have first
been mounted in different locations on the drilling robot end effector as it would be more
practical for industrial use, but experiments did not show good results due to the presence
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of too much mechanical spurious noise. The sample rate was set to 4 MHz. A hit-based
system was used to measure key parameters (count rate, RMS, energy) of each AE hit, that
is each signal that crosses a threshold. The threshold was set according to the noise level
observable when the drill was rotating outside of the workpiece. When the sensors were
placed on the workpiece, good correlation has been observed between lip height and AE
energy, so variations of the former could be used to determine if the lip height is too large.
Energy has been shown to decrease as wear increased. The distance between the AE source
and the AE sensor has also be proven to have influence on the energy content of the AE
signal, as well as adjacent holes that have been drilled previously.
A study [139] focused on composite laminates drilling using 6.5 mm drills. 16 Wavelet pack-
ets corresponding to 16 frequency bands of the AE signal were extracted, and their energy
content has been shown to be correlated (non-linearly) with the tool flank wear. The energy
first increased rapidly during the running-in period of the high speed steel drill, then started
to decrease as wear increased.
In [74], the use of AE to monitor 10 mm drills wear when drilling steel and nodular gray
iron has been investigated. AE signals have been analyzed in the frequency domain via
energy contained in 4 KHz wide frequency bands between 180 KHz and 220 KHz. Tool
wear significantly influenced AE signal from this point of view, and different behaviors were
observed as a function of the workpiece material: energy increased with wear when drilling
steel whereas it decreased when drilling iron. Another difference with the previous presented
study is that neither the distance between the AE source and the sensor nor the presence of
previously drilled holes seemed to affect the AE signal in a significant manner.
Different drilling configurations, including tool geometry, rotation speed and feed rate were
used in [98] to drill carbon fiber/epoxy resin samples where an AE sensor was mounted, and
a characteristic acoustic signature appeared in the 150 KHz - 200 KHz frequency range that
was correlated with tool wear, independently from the drilling conditions.
AE signals served as a basis to estimate flank wear on drills with a BPNN in [112]. They
have been processed within a bandpass filter (500 HZ - 50 KHz) to avoid low frequency
vibrations influence and too high computation requirements due to high frequency measure-
ment and processing. The RMS of 4 wavelet packets computed from AE signals have been
assessed, and 2 showed non-linear relationship with tool wear. The RMS of the filtered
AE signal has also been calculated. Two neural networks have been designed, the first one
taking drill diameter, spindle rotation speed, feed rate and the AE signal RMS as inputs,
whereas the former input was replaced by the RMS of the 2 wavelet packets contents for
the second network. 75 Drilling tests were performed on mild steel with tool diameters of
8, 10 and 12 mm, at different cutting speeds and feed rates. 65 of these tests were used to
train the networks, and the 10 remaining were used to assess their respective performances.
The second one performed better and presented results with 12% maximum error rate on
flank wear estimation. Its better performances are credited to the ability of wavelet packet
processing to reduce influence of cutting condition on AE related extracted features. No
arguments have been given on the choice of the neural networks architecture.
An AE based boring monitoring method has been presented in [144]. An apparatus was de-
signed to implement AE sensor on the machine, near the cutting tool. A magnetic fluid was
use to transmit the AE signal from rotating machinery to the sensor mounted on a steady
part. This type of fluid has been shown to be one of the most efficient in AE transmission
in a previous study by the authors. Transmitting AE via fluid to allow sensor implemen-
tation on steady part of rotating machinery has also been presented in [59]. After showing
correlations between AE RMS and cutting speed and depth of cut, authors proposed to
compute RMS of wavelet packets representing the AE signal in order to reduce influence of
cutting conditions. 7 Of them have been shown to be linked with tool wear. A fuzzy c-means
classification algorithm has then been used to classify tool wear states into 4 categories: ’ini-
tial’, ’normal’, ’acceptable’ and ’severe’ which were defined using flank wear as a criterion.
Authors evoked a training phase of the algorithm, which is normally not necessary when
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using clustering methods, and which probably stands for clusters initialization here. 90%
of good classification rate was achieved. One could argue that if features are not sensitive
to cutting conditions and so only tool wear influence them, and if a drilling test database
is available, then classification method should have been used instead of a clustering one in
order to delimit zones corresponding to the different tool wear states in the feature space.
The important pros and cons of AE for drilling monitoring are underlined again is this re-
view: although AE seems to be very sensitive to tool wear, the mapping between signals
features and tool state is not yet completely established. Some contradictory results are
given [38, 74], and a lot of influence quantities affect AE signals, which therefore require
high level processing before being exploited. Moreover, no industrial satisfying solution has
been found in order to solve the problem of AE sensor integration on rotating machinery.
Some of these drawbacks will be addressed by innovative signal processing algorithms and
technical developments in section 5.1.3.

Temperature of the workpiece has been investigated as a mean to sense tool wear in
[125]. To do so, a thermocouple was set-up in the workpiece. If temperature increased with
tool wear, its used as a monitoring mean remains complicated for several reasons. Only
small temperature differences were observed when using a sharp and worn tool (+7◦C) due
to the use of coolant while drilling. Moreover, the response of workpiece temperature to
tool wear was sluggish due to the workpiece properties, and its thermal conductivity in par-
ticular. The location of the thermocouple in the workpiece regarding the drilled hole had a
great influence, and results were difficult to interpret.

Because they do not hinder the machining process and are cost effective, current sensors
ability to sense tool wear has been assessed with various strategies: from ad hoc feature
extraction techniques to hardware device that allowed to show correlations between
variations of electrical power consumption and tool wear, passing by learning machines
for estimation of tool wear value or state. If experimental results were encouraging, no
monitoring system has been implemented and assessed.
Using thrust force has been stated to be more informative than torque for monitoring
tool wear. Correlations between cutting force and tool wear are well established, and
learning machines (essentially BPNN) have also been used to perform wear estimations
with reasonable success. It has been emphasized that cutting parameters like feed or
drill diameter are heavily impacting the power consumption when drilling, and their
respective influences have often been taken into account as input variables to build wear
estimators and make predictions. Another factor has been proved to be very important:
the workpiece hardness. Hence, torque, force and related currents measurements for
monitoring drill wear should be attempted only after a very close tolerance has been
obtained in the workpieces hardness.
The use of accelerometers to sense tool wear has been limited due to their sensibility
to noise and process parameters. Complex signal processing and feature extraction
techniques have been assessed and gave mitigated results.
AE seems to be very sensitive to tool wear, but as the mapping between signals features
and tool state is not yet completely established, reliable estimations of tool wear have
been difficult to obtain.
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Hole surface quality

Quality of the drilled holes can be critical to the life of the riveted joints for which the holes
are used. Aspects of the hole such as waviness/roughness of its wall surface can cause high
stresses on the rivet, leading to its failure. On-line assessment of hole surface quality has
been the subject of a study in [114]. The objective was to monitor changes in the surface
profile due to evolution of drill wear in holes drilled in graphite epoxy laminate. To do so,
the ’dynamic’ part of thurst force and torque which the authors stated to be directly
linked the cutting action of the drill, and hence the hole quality, have been used. They are
putted in opposition with the ’static’ part of the signals, often expressed in the form of their
mean or maximum value, which can only provide a partial representation of the hole quality
because they are affected by factors that are not related to the actual cutting action, and
hence are unreliable when a close monitoring of the quality is required. A low frequency (less
than 1.6 HZ ) component was found in both the thrust signals and holes surface waviness
profile which corresponded to the rate at which the drill penetrates through the layers of the
laminated work material. This rate or ’lamination frequency’ is given by (lamination number
per material thickness unit / time taken by the drill to penetrate a thickness unit). Thrust
force signal and surface waviness profile have been filtered to conserve only the ’lamination
frequency’ contribution (which has been previously experimentally shown to be the main
contributor of hole surface waviness), and the standard deviation of the obtained signal was
shown to be very well correlated with the standard deviation of the hole surface waviness.
Such surface alteration on CFRP is visible in figure 2.18(a).
If no other attempts have been made in order to monitor the hole surface quality, it has
become a serious issue with the increase of the number on drilling that have to be performed
in composite laminates and metallic material stacks, (e.g. CFRP/Ti6Al4V). Indeed the chips
generated while drilling the metallic part of the stacks, and titanium in particular, if not
fragmented, can generate scratches once they are trapped between the drill flutes (figure
2.18(b)) and the hole surface while the drill is rotating. This can lead to extreme quality
problems and decreased process reliability: Titanium chips transported through the CFRP-
layer cause catastrophic erosion as well as delamination of the CFRP [16, 20]. Moreover,
the stacking sequence of CFRP laminates are at the origin of ’V’ patterns of holes surfaces
2.18(c), independently from process parameters.

Hole diameter

Monitoring the diameter of drilled holes is of major importance in industrial context because
it is one of the main dimensional requirement. We found only one study that was aimed at
finding direct correlations between sensors measurements and diameter. In [38], the objective
was to correlate diameter of holes drilled in steel using 6.31 mm drills with any acoustic
emission measurement parameter. The choice of AE was made because an oversized hole is
caused by unbalanced cutting conditions due to cutting lips wear that increases friction and
deformation of the hole and changes in the chips which can subsequently be monitored with
AE. A hit based measurement system was used that allowed measured the RMS, energy,
and count rate of each AE hit, that is each signal that crosses a threshold. AE sensors
have been mounted on the drilling robot end effector at first, but results were not significant
due to spurious mechanical noise. Then they have been placed directly on the workpiece,
and correlation between AE RMS and energy and maximum and average hole diameters
have been observed. Several negative conclusions have also been drawn: further research
is needed to use AE for hole diameter estimation because the AE signal generated by the
cutting process overrides the signal of the bit rubbing of the side of the hole. Moreover,
sensor placement and mounting conditions have been shown to be heavily impacting results.
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Figure 2.18 – Important hole surface waviness in CFRP in a CFRP/Ti6Al4V hole (a),
Ti6Al4V non-fragmented chip stuck in a drill flute after drilling a CFRP/Ti6Al4V stack that
could have caused scratches (b), surface reconstruction of a CFRP hole: a typical ’V’ pattern
depending on the CFRP stacking sequence [24] is visible (c)

Burrs height

Holes entrance and exit burrs height make part of the hole quality requirements in aero-
nautical manufacturing industry. Burrs mainly appears at hole exit when drilling metallic
materials, and it has been raised as a major concern with the increasing use of titanium
alloys. A definition of a burr is reported from Beier in [7]: a burr is a body created on a
workpiece surface during the manufacturing of a workpiece, which extends over the intended
and actual workpiece surface and has a slight volume in comparison with the workpiece, un-
desired, but to some extended, unavoidable. A classification of burrs in drilling has been
proposed in [70]: 3 types of ’uniform’ burrs (figure 2.19(a)) have been defined according to
their size and the presence or not of a cap (figure 2.19(b)). When burrs present irregular
shapes, their fall into the ’crown’ and ’transient crown’ categories.
The first study aimed at on-line burr height estimation by Peña and al. [101] assessed the
capability of both torque and thrust force signals issued from the machine drivers to serve
this purpose. On the 27 KW spindle they used, torque was the best signal to estimate exit
burrs height when drilling aeronautical aluminum alloys with 10 mm drills. Five features
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(a) (b)

Figure 2.19 – Uniform burr of type 2 on titanium hole exit (a) and caps on titanium holes
exits (b)

have been extracted from the wavelet-filtered torque signal that were not related to process
parameters. Burrs height varied from 45 µm to 170 µm, and finally, a classification scheme
aimed at the determination of over toleranced burrs considering aeronautical requirements
was set-up instead of an height estimator. It achieved 92% of good results on the 72 exper-
iments that were made. The technique has been patented in 2007.
A data-mining approach to select features related to burrs height has been presented in [41],
and it seems that the same data that has been used in the above mentioned study has been
used again. The results of classification has been improved up to 95%. The authors pro-
posed to apply their data-mining methodology to monitor other drilling related phenomena.
They also envisage to use a framework that allows taking uncertainty into account in further
works.

2.1.2.3 Overview on single sensor drilling monitoring applications

The classical scheme of research works in the field of drilling monitoring is to use one sensor
to monitor one phenomenon, and multisensor monitoring often means providing the best
sensor for each monitoring application [62]. If some studies achieved reasonable success
or encouraging correlations, they unfortunately often have been done considering only few
operating conditions states and lacked of extensive testing procedures, leading to a lack of
flexibility when implemented in industrial plants [60, 85, 8]. Other attempts gave poorer
results, especially concerning tool wear monitoring, because inadequate sensor information
and process models have been used which did not satisfactorily reflect the process complexity.
One reason is that the use of a single sensor signal in the development of a tool condition
monitoring system fails to recognize the complex and diverse nature of the cutting process
[30]. Jemielniak states that many of monitoring systems described in papers will never be
applied as they will be proven to be unreliable or not viable economically [62]. Moreover, the
problem of sensor dysfunction has not been tackled, and no experiments assessing impacts
of noise on signals have been performed.
Even if these studies gave essential information on the type of sensors and signal processing
techniques to be integrated has the fundamental building blocks of a monitoring system, it
is now generally acknowledged that reliable process condition monitoring based on a single
signal feature is not feasible [135]. Multisensor fusion coupled with the use of intelligent
information techniques should improve reliability and flexibility of tool condition monitoring
systems [85, 30, 23].
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2.1.3 Presentation of drilling monitoring approaches using multi-
sensor data fusion

Monitoring approaches using multisensor data fusion will be presented and analyzed. They
will be classified as a function of the type of phenomena to monitor, and then following the
data fusion and decision making techniques they use. Evolutions from the previous section
conclusions and remaining blocking points will be emphasized.

2.1.3.1 Detection of sudden phenomena occurring untimely during drilling

Detection of sudden tool failure

In order to improve reliability of catastrophic tool failures monitoring, multisensor fusion
approaches have been implemented to perform failure detection. Indeed, if many tool fail-
ures signatures have been determined in studies were only one sensor has been used, they
could be mistaken the expression other stochastic phenomena occurring during the drilling
operation. Thus, the use of multiple sensors to assess the occurrence of tool failure should
increase the confidence in decisions. All techniques that have been developed are based on
the detection of tool breakage signatures in time domain signals.
In [78], AE and thrust force sensors have been used together in a time sequenced manner to
detect tool fracture of 5 mm HSS drills when drilling 1045 steel. Authors noticed that just
before the fracture occurred, an AE burst was visible in the AE signal. Then, just after the
tool failure occurred, a sudden drop was visible in the thrust force signal before it came back
to a steady level. The AE signal provided by a sensor mounted on the workpiece and ranging
from 100 KHz to 1 MHz was therefore used to trigger the thrust force signal inspection in
order to detect the typical tool breakage pattern. Usage of both sensors ensured avoidance
from faulty detection of tool breakage and practical usage under a production environment
as well. The system has been experimented under one operating conditions set and worked
very well on-line. Several parameters, like thresholds levels for AE burst detection and thrust
force drop detection, AE burst duration, or the time interval required for the thrust force
signal inspection have to be determined from experiments, which compromise the flexibility
of such a system regarding changes in operating conditions.
An approach using thrust force an torque signals together was presented in [80]. The aim
of the work was to make monitoring more reliable and suitable for a wider range of cutting
conditions by associating thrust force and torque rather than choosing just one of them. If
authors mentioned the presence of obvious signal signature on both the signals when a tool
breakage occurred, they underlined the fact that if only one of them showed a sudden drop in
amplitude before to come back to a steady level, it would not indicate positively that a tool
breakage occurred because during tool breakdown, the signature exhibited by thrust force
may be mistaken for with other kind of failures. A ’multi signature extraction technique’
has been developed and the system has been implemented on a CNC machine to drill 8 mm
and 12 mm holes on medium carbon steel. Force and torque signals were processed using
a 10 Hz low-pass filter before the breakage signature detection begun. No thresholds had
to be set-up manually because they were automatically adjusted considering that the first
drillings were done with a good shape tool. This can be considered as an initialisation of the
monitoring system. A hardware device was designed and produced to guarantee real-time
and reliable monitoring. No results concerning experimental validation of the system were
given in the paper.
In these two studies, multiple sensors have been used to confirm their respective statements,
and so ensure reliability of monitoring. In [78], two different kind of measurand were used
for different purposes. AE was used to assess the possibility that a tool failure occurred in
crude way, which triggered a fine analysis of the thrust force signal to detect a tool failure
pattern. This sequential use of different sensors providing statements with increasing de-
tection ability, but also computational effort needed, benefited both to the system reliability
and to its industrial feasibility.
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2.1.3.2 State estimation of phenomena evolving hole after hole

Tool wear monitoring

As for the review concerning monosensor monitoring studies, the multisensor attempts to
monitor tool wear will be classified according to their goal. Studies emphasizing correlations
between features extracted from sensors and the drill wear state will first be introduced.
Works purposed to tool wear estimation will then be detailed, followed by attempts focus-
ing on classification of drill wear state. Finally, works that presented developments going
through decision making on tool replacement will be presented.

Figure 2.20 – Wear evolution on cutting edges of a 10 mm diameter drill used in Ti6Al4V

Correlation between tool wear and a feature issued from the fusion of two different sensor
data has recently been shown in [140]. The coherence function between thrust force and
torque spectra has been used to validate that both signals resulted from the same partic-
ular generating mechanism or source. Indeed, the authors stated that tool wear provoked
periodic perturbations that are visible on both thrust force and torque spectra, conversely
to other stochastic phenomena that manifest themselves in different manners on both. In
the studied case of drilling X4CrNiMo16 − 5 samples whit 2.2 mm HSS drills, the coher-
ence function presented a peak at 3500 HZ as wear increased. This frequency corresponded
to a natural vibration frequency of the drill. This method suffers of its lack of wear level
quantification and of its close relationship with the process parameters, the drill properties
in particular.

Estimation of tool wear necessitates the use of predictors able to provide a numerical
value as a function of input features. To do so, many studies have assessed neural networks
ability to fuse features extracted from different sensors signals. Studies involving supervised
learning, and back propagation neural networks in particular, will be evoked first. Then un-
supervised learning or hybrid learning approaches using radial basis function networks will
be detailed.

Back propagation neural networks have been the most popular type of networks to esti-
mate tool wear. In [102], a first attempt was made to estimate corner wear using features
extracted from thrust force, torque, and radial forces signals as inputs of a BPNN. One op-
erating conditions set was used to drill 9 mm holes in A151− 1045 steel. It was stated that
the time domain signals did not present any correlation with tool wear, so the area under
PSDs of the aforementioned signals spectra have been used. To avoid harmful stochastic
effects, several PSDs issued from drillings made with a tool presenting similar wear level
were averaged. A BPNN has been designed using results from previous works and a trial
and error scheme. It has been trained using 51 drillings, and its generalization capacity has
been assessed using 51 more. If good results have been obtained on the training data, the
generalization results were not acceptable, probably due to the presence of too much noise
in signals.
Influences of different architecture and parameters of BPNN have been assessed in another
study [87]. The proposed case study was copper alloy drilling using three different HSS drill
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diameters (5 mm, 7.5 mm and 10 mm) at different cutting s and feed rates (3 of each), and
with three flank wear levels (0.1 mm, 0.5 mm and 0.9 mm). The networks inputs were the
thrust force and torque average values, the drill diameter, cutting speed and feed rate. A
preliminary study was done. It showed that the training data sequence had no influence
on the learning performance, and also that using one or two hidden layers influenced only
the training time if the overall number of neurons was the same. Most of the BPNN en-
countered in the drilling monitoring literature possess only one hidden layer. It has then
been stated that all of the numerous assessed networks architectures worked quite well, even
if a 88% estimation error has been reached on drillings performed with a drill affected by
0.1 mm flank wear. Increasing the number of neurons did not systematically provided a
performance increase. Authors did not provide information on the size or structure of the
training or testing data sets, so it is difficult to evaluate the pertinence of the presented
results. Although a wide range of architectures and parameters of BPNN has been assessed,
no clear conclusions could be drawn regarding these aspects.
More recently, the same kind of study has been performed assessing the influence of the
number of neurons in the hidden layer of a BPNN [122]. Their number was varied from 1 to
20. The objective was to estimate flank wear on 8 mm HSS drills used within two different
cutting speed and feed conditions. 40 Holes have been drilled for each process parameters
set, and the machining time of the drill was used as an input in addition to the torque and
the thrust force average values and the process parameters. The results were close to the
measured flank wear value considering both operating conditions, but it is not clear if they
have been obtained using a dedicated testing set or samples from the training set, which
would not allow to assess the generalization performance of the networks. Two different
networks architectures performed best for each of the 2 process parameters sets: a 2 neu-
rons hidden layer gave the best results for one whereas a 10 neurons hidden layer allowed
obtaining the best results for the other.
A series of works by Panda, Pal and Chakraborty et al. [126, 109, 108] assessed influences of
different inputs on BPNN ability to estimate flank wear under different operating conditions.
In the first one [126], thrust force and torque were used as inputs of several BPNNs with
different architectures to predict flank wear over 3 drill diameters (5 mm, 7.5 mm and 10
mm), 6 different cutting speeds and 6 different feed rates. 49 Drillings were done in copper
alloy, 36 randomly chosen ones were used to train the networks and the 15 remaining to
test their prediction performance. The networks architectures and parameters were decided
by trial and error. The best network architecture gave wear predictions comprised in an ±
7.5% interval around the measured values which were comprised between 0.1 mm and 0.9
mm.
The same experimental scheme has been applied when drilling mild steel in [109], but the
chip thickness has been added as an input to the assessed networks. 52 drillings were done,
39 were used to train the network and the remaining ones to test it. Including the chip
thickness as an input make the flank wear estimations pass from a ± 7.5% interval to a
± 2.5% interval around the measured value. Moreover, less training effort was needed to
achieve this result, but another architecture was found to be the best.
In [108], the influence of adding the maximum amplitude of axial and radial vibrations in-
formation has been assessed. The chip thickness was not part of the inputs. Experiments
have been performed using 4 drill diameters (9 mm, 10 mm, 11 mm and 12 mm) in cast
iron under 3 different cutting speeds and 3 different feed rates. 64 Drillings have been done,
37 were used to train the networks, 17 to test them and 10 to validate the results. These 3
data sets were used as follow: the error on the testing set was monitored during the training
process. The testing error normally decreased during the initial phase of training, as did
the training error. When the network began to over fit the data, the error on the testing
set began to rise. When the testing error started increasing for a specified number of it-
erations, the training was stopped, and the synaptic weights at the minimum value of the
testing error were returned. These behaviors of learning and testing errors are illustrated
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in figure 2.21. The unseen data (validation set) were then fed to the trained network to
check the percentage variation of predicted flank wear in comparison to the actual wear.
This is the first study taking over-fitting into account, which is an important concern in
machine learning, especially when training sets are of limited size [121] like it is often the
case in drilling monitoring applications. The results showed that incorporation of vibration
information allowed to decrease the interval around the measured value from ± 7.03% to ±
6.25% when taking only axial vibrations into account and to ± 6.17% when including radial
vibrations information. The networks architectures and parameters were chosen following a
trial and error scheme based on criteria such as training and testing error rates, as well as
the learning computational effort that was needed.
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Figure 2.21 – Illustration of evolution of the prediction error on the training set (a) and the
prediction error on the testing set (b) during the training phase of a BPNN. Over-fitting starts
when the testing error starts increasing.

A modified version of BPNN, the adaptive-function slope back propagation neural network,
has been used in [92] to estimate 6.35 mm diameter HSS drills used in stainless steel. Neu-
rons activation functions of this type of networks present an adaptive slope which allow
additional degree of freedom. The number of features to be used as inputs has been deter-
mined as a function of the number of available training samples following equation 2.16, as
in [117], where N denotes the available training samples and F the number of features.

N = 2(F + 1) (2.16)

This has been done to avoid using a feature space presenting a high dimensionality that
could not be covered by available samples, forbidding a good mapping between the feature
space and the tool wear state. The problem caused by high dimensional feature spaces
in term of size of the training set needed for learning machines is known as the curse of
dimensionality [121]. 8 features were extracted from the torque and thrust force signals:
their average, maximum amplitude value, RMS value and areas under their PSD. Only one
operating condition was applied. 13 drilling experiments have been done, and 33 artificial
samples have been created from them by linear interpolation. These 46 data samples have
been used to train the network. Differently from classical BPNN, the slopes of the activation
functions are modified within the back propagation process taking place at the training set
of the network. Several network architectures have been assessed, and for each, a classical
BPNN and an adaptive-function slope BPNN have been implemented. The performance as-
sessment has been done using 14 drillings and 36 artificial data samples obtained from them.
Estimations showed a 7.73% mean and a 19% maximum errors compared with the measured
values of tool wear. Results showed that when processing drill wear data, modified artifi-
cial neural networks with adaptive activation-function slopes converged much faster than
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the conventional BPNN. It has also been noticed that increasing the number of neurons in
networks did not necessarily improve their prediction accuracy.

Radial basis function networks (RBFN), have also been used to perform drill wear esti-
mation. In [138], a RBFN has been implemented to estimate flank wear on 10 mm diameter
drills used in stainless steel. Influence of the use of TiN or TiCN coated depositions on the
drill has been assessed in addition to feed rate and spindle speed. Torque and thrust force
signals have been measured during drilling operations and their averages have been used as
input to the network together with the three aforementioned parameters. Experiments have
been performed under different operating conditions, and several networks architectures and
learning parameters have been assessed. 18 training data samples were used, and the best
network after the trial and error scheme used for choosing an architecture gave an average
absolute error of 0.4% on 9 verification samples.
In [108], RBFNs have also been implemented, and compared with BPNN. Maximum ampli-
tude of axial and radial vibrations, thrust force and torque have been used as inputs together
with feed rate, drill diameter and spindle speed. 64 drillings experiments have been done,
45 were used to train the network and 19 to test it. Different numbers of neurons in the
hidden layer have been assessed from 10 to 40, and learning rate and momentum were set
by a trial and error scheme. The error interval around the measured value was ± 8.12%,
that was less than the ± 6.17% reached by the BPNN. On the other hand, RBFN showed
lower training time.
More recently, another study investigated the use of RBFN, underlying the heavy influence
of network architecture [47]. Indeed, as it is the most important factor that governs the
network prediction performance, authors used an optimization procedure based on genetic
algorithm (GA) to determine the number of neurons in the network hidden layer. For com-
parison purpose, they also implemented a RBFN following a classical trial and error scheme
in order to determine the best architecture to be used. Another advantage of the method
they proposed was it encompassed the two-steps classical RBFN learning procedure, namely
the k-means clustering for unsupervised network organization and the supervised learning
phase for the synaptic weights optimization. Experiments were performed using 8 mm and
10 mm diameter HSS drills. 3 Different spindle speeds and feed rates were used. Maximum
and average values of thrust force and torque have been used in addition to drill diameter,
spindle speed and feed rates as inputs to the networks that were aimed at flank wear esti-
mation. Out of the 67 drillings that were done, 50 were used for training purpose. Both
GA-based and trial and error schemes found a 10 neurons hidden layer to provide the best
results in flank wear prediction. The mean square error was 1.57% for the GA-trained RBFN
and 2.02% for the one that used the classical learning procedure. The training time when
using the classical scheme was twice the time required by the GA-based technique, even if
the time spent for the trial and error procedure necessary for this approach to find the best
architecture was not taken into account.
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Numerical estimation of tool wear using sensor fusion mainly associated features issued
from thrust force and torque signals. Studies mostly focused on the architecture and
design parameters of estimators that have been used (mainly artificial neural networks)
and it seems that less attention has been paid to feature selection. However, no clear
conclusions can be drawn about neural networks architecture related concerns because
of the variety of case studies they have been used for, and of the quasi-systematic use
of trial and error schemes for their design. They often provided results really close
to wear measurements, even when performing under different operating parameters
that have often been used as inputs variables. Unfortunately, available experimental
data sets were often of limited size, and only little attention was paid to classical
issues encountered when using learning machines, like the curse of dimensionality or
over-fitting for instance. To our knowledge, no drill wear on-line estimation system is
commercially available nor has been implemented in industry to a large extent.

Discrimination of different tool wear states does not aim to provide a numerical
value representing the physical state of tool wear, but to indicate its state by selecting a
wear level category it belongs to, where the number and types of levels are an arbitrary
variable. The different categories, or classes, are often user-defined and possess a name
corresponding to the drill wear state which can be linked both to the wear level itself (an
interval of flank wear value for instance), or the risk to continue using the same drill in
function of the required quality of the workpiece. The section will be organized as follows:
first, approaches that did not involve learning will be described, then supervised tool wear
classification approaches will be presented, followed by unsupervised or hybrid methods
based on clustering algorithms.

In [5], a two-stages fuzzy inference system was used to discriminate tool wear states. thrust
force, vibrations and sound signals have been processed to extract their respective RMS,
standard deviation, minimum and maximum values. Once normalized, these values have
been used as inputs of the first stage of the fuzzy system and were ’fuzzyfied’ using Gaus-
sian membership functions representing three tool wear states: ’sharp’, ’workable’ and ’dull’.
The design of wear membership functions as a function of tool wear was done manually so
no learning was involved. A set of fuzzy rules allowed to determine, for each sensor and as
a function of the statistical parameters extracted from the signal it provided, the state of
tool wear within 9 states. The so obtained state was then defuzzified (i. e. a crisp value
representing the drill wear state was given as a function of its memberships) using a set
of Gaussian membership functions. In a second step, these crisp values have been used as
inputs of a second fuzzy inference system in order to perform sensors fusion. The same input
membership functions as in the first stage were used. A set of fuzzy rules allowed to obtain a
normalized output response in the form of a monotonously increasing function that showed
the status of the tool between 0 and 1 and that corresponded to degree of tool wear. As the
value increased, it meant the tool get more worn or about to break. The experimental part
of this work has not been detailed.

A decision level fusion approach (cf. 2.2.1.3) was used to identify drill wear states in [36].
Five local approaches have first been used separately to determine drill wear levels on 8 mm
diameter cobalt drills in steel workpieces. For the first one, torque and thrust force sig-
nals where used to train hidden Markov models (HMM) of drilling with sharp drills. Then,
each model generated a probability which quantitatively represented the similarity between
a signal and the ones used to build the model, and so assess if the tool is sharp or not.
The second approach also used HMMs, but this time a model was built for 5 different wear
states so that a probability could be provided for each of them. HMM makes part supervised
learning approaches as the expected output of the model is known during its training. The
third method used a phase plane representation of torque and force signal. Indeed, thrust
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force and torque levels recorded when using a sharp tool formed a cluster in the torque-
thrust plane that was contained within a reference rectangle. The percentage of data point
falling in this rectangle during a drilling operation allowed to assess the sharpness level of
the tool. The fourth method focused on corner wear by investigating the transient time in
torque signals. Indeed, as corner wear increased, it took more time for the cutting edges
to enter completely in the workpiece due to roundness appearing in their corners, so the
transient time in the torque signal (figure 2.22) increased. Finally the last approach used a
torque model and the force coefficient it provided to estimate tool wear level. These ’local’
approaches to estimate tool wear are also described in [37].
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Figure 2.22 – Illustration of the transient time in a torque signal recorded during the drilling
of a CFRP workpiece with a 6.35 mm diameter drill

Then a Decision Fusion Center Algorithm (DFCA) was used to merge statements ui from
the five wear quantification approaches in the form of a weighted average, as described in
equation 2.17, in order to obtain an global decision variable U . The weighting coefficient
wi must follow conditions expressed in equation 2.18. Local results obtained by each of
the five presented approached had to be adapted before being merged. This data align-
ment step consisted in a conversion of each local algorithm output value into a wear state,
’sharp’,’workable’ or ’dull’, which were associated with values 0, 0.5 and 1 respectively. De-
pending on the used approach, specific rules have been applied to determine the tool wear
states. Following the DFCA processing of these normalized values, a decision on tool re-
placement could be taken when U crossed a threshold, 0.8 for instance. 169 holes have been
drilled to test the performance of the method. If good correlation has been achieved between
the DFCA results and drill wear, authors stated that thresholds and weighting coefficients of
the method need to be tuned carefully, and that more experimental testing and a statistical
analysis would be required to assess the system performance. As it directly uses torque and
thrust force values to assess the tool wear state, the system can be set-up and used in only
one set of operating parameters at a time, feed rate in particular.

U =

n=5∑
i=1

wiui (2.17)

wi ≥ 0,

n∑
i=1

wi = 1 (2.18)
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An early attempt to classify tool wear states using sensor fusion and a supervised learning
procedure was presented in [93]. The objective of the study was to determine on-line if drills
were ’usable’ or ’worn out’ by using a two-categories linear classifier. Drillings were per-
formed using 6.35 mm diameters drills and only one operating condition was investigated.
Percentages of increase of axial acceleration and thrust force from the first drilled hole were
used as features to discriminate tools wear states. Despite its simplicity, the approach un-
derlined an advantage of sensor fusion: considering each feature alone, data samples of the
different classes overlapped. When using the two features together, it was possible to lin-
early separate the classes in the two-dimensional feature space. An illustrative example of
such a situation is depicted in figure 2.23. 10 Drillings were used to train the classifier by
minimizing a perceptron criterion function. Then 30 drillings were used to test the system,
and only one tool wear state was misclassified.
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Figure 2.23 – Illustrative example of a two-dimensional feature space allowing linear discrima-
tion between two classes whereas the variation ranges of features overlap in both dimensions

In [81], an hybrid method have been proposed to classify drill wear states into 4 classes:
’initial’,’small’,’normal’ and ’severe’ using torque and thrust force. A fuzzy c-means clus-
tering method have first been used on a training set of 48 drillings experiments performed
with 6.35 mm diameter HSS drills in one operating condition. This algorithm works in a
similar way that the k-means one evoked in section 2.1.1.2, but responsibilities of clusters
regarding data samples are assessed via fuzzy membership functions. It allowed determining
4 clusters centers and fuzzy membership functions associated with each aforementioned tool
wear state. Authors used these results to classify new drilling operations as a function of
their membership to each cluster. A test set composed of 64 consecutive drilling operations
was used and classification results were good. This method can only be used with the same
cutting parameters once it have been trained because the partition of the feature space is
fixed. Author also underlined the superiority of fuzzy membership functions over crisp val-
ues to model transient states between drill wear level classes.
Another interesting attempt to classify flank wear states was made in [49]. In order to differ-
entiate flank wear levels of [0 mm, 0.1 mm],[0.1 mm, 0.2 mm] and [>0.2 mm] when drilling
steel with 8 mm diameter drills, a self-organizing map (SOM) has been implemented. The
task of the network was to represent an empirical joint distribution (or an empirical model)
of N training vectors containing features extracted from sensor signals and associated tool
wear state by the mean of a smaller set of K � N of prototype vectors during a phase
called adaptation. A prototype vector describes the weights of a formal neuron in the net-
work. Then the recall step allow to classify a new vector containing only features by finding
its nearest prototype neighbor which tool wear state is followed to make a decision of the
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new drilling wear state. The 0 HZ - 200 HZ frequency band of the torque and thrust force
RMS-averaged spectra have been used to extract 30 features representing their respective
norm and structure. Two experiments were designed. The first one consisted in building
40 prototype vectors from 400 training vectors. 90 Tests vectors, 30 corresponding to each
of the three defined tool wear states were used, and a 13.3% maximum classification error
rate was observed for the third wear state class. A second experiment was made to assess
the ability of such a network to differentiate between only 2 states of tool wear. To do
so, 20 prototype, 30 training and 30 test vectors have been used. The worst result was
again, 13.3% misclassification rate, but authors proposed to average three consecutive esti-
mated wear states (obtained from three consecutive drillings), and then classification error
decreased to 0%. They also mentioned that for both the experiments, a nearest-neighbor
algorithm (which is used during the adaption step to organize the network architecture)
used alone provided worst results, demonstrating the interest of the adaptation phase to
define prototypes. The results and the need of numerous prototypes were justified by the
fact that the different classes were not well separable as flank wear evolution is continuous.
Moreover, it can be noticed than the tool wear value interval that classes are based upon
are narrower than those employed in other studies. Similarly to most other works, types of
neural networks architecture and functional parameters like the learning rate, adaptation
rule, number of prototypes or neurons, and size of the training set were set following a trial
and error scheme. It has been shown that the structure of the torque spectrum was not
correlated to drill wear. If the results were similar to those obtained with BPNN in term
of classification accuracy, authors emphasized that the training effort was much lower using
self-organizing maps, as already mentioned in [64].

Several techniques aimed at discriminating different tool wear states have been assessed.
One of the main difficulty that has been encountered lied in the categorization of sam-
ples issued of phenomenon evolving in a continuous manner. Crisp partitions of the
possible wear states space lead to ambiguity for samples located near the borders that
have been defined in the feature space. To overcome this issue, fuzzy approaches have
been implemented, and examples of both manually or learning-based implementation of
membership functions have been proposed with interesting results. Unfortunately, the
definition of membership functions regarding sensor extracted input values forbids flexi-
ble implementation of such systems. On the other hand, when the problem consisted in
differentiating between significantly different drill wear states, results were usually very
good, even when using simple methods. Results also showed that a supervised learning
step significantly improved performances of self-organizing approaches, and that this
kind of hybrid learning allows gain in training effort compared to supervised learning
ones for comparable performance levels.

Hole quality

On-line estimation of the hole surface roughness, roundness error and residual stress gen-
erated by reaming in EN4 steel using 20 mm drills has been investigated in [99]. AE, thrust
force, torque and vibrations signals have been used with a BPNN. Comparisons between the
estimation performances of the BPNN using multiple sensors data inputs and single sensor
data input have been done over 4 operating parameters sets. If AE signals used alone were
shown to provide results closely related to residual stress, force and torque alone were not
able to predict hole quality. The use of multiple sensors inputs gave encouraging results on
the 3 assessed criteria. Unfortunately, authors did not provide information about the neural
network architectures, the training and testing procedures that have been used, or the form
of input information given to the networks (raw data, statistical features, ...). This lack
of details about the used procedures does not allow to draw general conclusion from their
work.
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2.1.3.3 Overview on the drilling monitoring application using sensor fusion

The use of multiple sensors allowed, for many researchers, to better handle the drilling
process complexity, and doing so to obtain better performances in monitoring of complex
phenomena like tool wear.
Issues concerning flexibility of drilling monitoring systems are evoked in many studies, and
the use of supervised learning techniques taking process parameters into account as inputs
has been the preferred solution to address it. The limitations of these approaches are
linked with the amount of data needed for efficient learning and testing over wide ranges of
operating conditions.
Their accuracy have been shown to increase when more input features are included, showing
the interest of data fusion. On the other hand the data quantity required increase in an
exponential manner as a function of the feature space dimensionality.
None of the assessed methodologies has shown clearly better performance level than others.
Moreover, one can regret the absence of systematic benchmarks or public data sets aimed
at the evaluation of drilling monitoring systems performance level.
No attention has been paid to quality of input data, even if it is recognized as a building part
of the gap between lab and industrial applications of drilling monitoring systems [85, 106, 23].
An example of harmful influence of corrupted data on a multisensor based tool condition
monitoring system is given in [104]. In the same manner, many concepts linked data fusion,
and imperfect data modeling and handling in particular, have been neglected.

2.1.4 Overview and discussion

2.1.4.1 Challenges of sensor-based indirect drilling monitoring

Considering the state of the art presented above, three major issues have been identified
concerning the implementation of an industrial drilling monitoring system:

• Difficulties inherent to the drilling operation complexity: many phenomena of interest
have not been modeled as function of measurable variables and process parameters,
making monitoring difficult

• Difficulties linked with the generalization of results: most of the obtained results are
closely linked with the operating conditions they have been obtained in

• Difficulties linked with input data quality management: the harsh industrial working
environments possess harmful influence on sensor measurements

The great majority of works have been focused on the first point, probably because it is
the starting point of the implementation a monitoring system: it allows linking together the
phenomena of interest, its related features and determining the sensors to be integrated.
Moreover, it allows increasing knowledge about the drilling operation, and doing so im-
proving the ability to design monitoring systems able to detect undesired phenomena. The
multisensor approaches have mainly been used focusing on assistance in the determination
of relationships between complex processes and sensors data [23].
However, realizations and commercial availability of monitoring systems are fairly limited
and they often present narrow ranges of performance [85, 62, 23] and low reliability [30],
underlining the importance of the two other issues. Indeed, the former is a sine qua non
condition for emergence of efficient monitoring systems in high added-value structures manu-
facturing plants [106] to meet the production flexibility requirements. Concerning the latter,
management of input data quality is of major importance in information fusion based in-
ference systems as they will provide degraded results in case of incorrect information about
sensor performance is used. Moreover, no downstream processing within the monitoring
system can make up for upstream errors at the input data interpretation level [53].
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2.2 State of the art of data fusion techniques related to
monitoring applications

2.2.1 General introduction

2.2.1.1 Data fusion definitions

Data fusion has known an important growth in the last 40 years, resulting of advances in
many scientific disciplines and covering a wide range of applications.
This diversity in both involved skills and application fields makes the definition of data fusion
and multisensor data fusion a difficult task. From a chronological point of view, definition
of the expression data fusion has evolved from the designation of a process to a complete
field of research. The Joint Directors of Laboratory Data Fusion Working Group (JDL) has
first defined in 1987 data fusion as a process dealing with the association, correlation, and
combination of data and information from single and multiple sources to achieve refined
position and identity estimates, and complete and timely assessments of situations and
threats, and their significance. The process is characterized by continuous refinements of
its estimates and assessments, and the evaluation of the need for additional sources, or
modification of the process itself, to achieve improved results [66]. This military oriented
definition has been followed the next year by the first one that directly involved sensors as
the process by which data from a multitude of sensors is used to yield an optimal estimate
of a specified state vector pertaining to the observed system [120].
Then, objectives of the data fusion process in term of achieved performances compared
to processes using one information source have been emphasized in definitions [142, 2, 51,
52, 48] before Dasarathy defined the outline of a discipline in 2001: information fusion
encompasses the theory, techniques, and tools conceived and employed for exploiting the
synergy in the information acquired from multiple sources (sensor, databases, information
gathered by humans etc.) such that the resulting decision or action is in some sense better
(qualitatively and quantitatively, in terms of accuracy, robustness and etc.) than would be
possible, if these sources were used individually without such synergy exploitation [26]. As
a research field, data fusion borrows ideas from many disciplines such as signal processing,
information theory, statistical estimation and inference and artificial intelligence [69].
Recently, a review of existing definitions and the proposition of a new one have been done in
[17] where information fusion is considered as the study of efficient methods for automatically
or semi-automatically transforming information from different sources and different points in
time into a representation that provides effective support for human or automated decision
making.
The expression multisensor data fusion mostly designates a process involving sensors and
associated signal processing and data merging techniques, whereas information fusion refers
either to a similar process involving any type of information sources, or to a multidisciplinary
field of research. This convention will be followed in this work, and when the expression
information fusion will be used, its meaning will be explicated if needed.

2.2.1.2 Expected advantages & limitations of data fusion

Following the definitions given above, the general objective of data fusion is clear: con-
sidering a system using data fusion, its performance should be improved compared to the
same system using only one information source. The enhanced perception ability offered by
multiple information sources should results in improvements in detection ability, confidence,
reliability, reduction of data ambiguity and extension of spatial or temporal coverage for
instance [51].
Despite its numerous potential advantages, data fusion presents limitations that have been
detailed in [53] and that mainly fall into two categories: those linked with input data qual-
ity, and those linked with the fusion of data itself. Basically, the former states that without
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relevant input data, data fusion will lead to irrelevant results, and the latter emphasizes the
difficulties to implement efficient fusion procedures. If the last issue has been widely ad-
dressed by researchers by the development of generic or ad-hoc fusion algorithms presenting
diverse desirable properties, the former remains a blocking point on which much research
effort has to be done.

2.2.1.3 Fusion systems: from conceptual models to physical implementation

At the same period an effort has been made to define data fusion, functional models of
the fusion process have also been proposed. They are aimed at putting altogether inputs,
outputs, data flow and actions in a comprehensible manner in order to give an overview
of such a process. Being so general keep those models as conceptual representations, and
architectural issues in fusion systems design have then been studied with more attention.
The deepest level is then the physical implementation of fusion system where hardware
related issues have to be addressed.

Conceptual models of the data fusion process. Following the proposition of a def-
inition, the JDL also presented a conceptual model of the data fusion process [68]. This
model and its revised version [137] are by far the most popular. It allows distinguishing
inputs, in the form of different potential information sources, output as a user interface,
and the fusion process taking place between the former and latter which is divided in four
different levels. After an eventual pre-processing step of input data, attributes of objects of
interest are refined fusing different sources statements at level 1. Then, at the second level,
those estimates of objects attributes are used to assess the global state within the system
is. Being aware of this situation, impacts of planned actions are assessed on level 3, and
those actions are updated in level 4 as a function of those impacts. A limitation of this
sequential decomposition of the fusion process has been emphasized by its authors because
it is artificial due to potential interactions between the operations taking place within the
different levels, and the fact that they can take place at the same time.
Another approach has been proposed by Dasarathy [25] which focused on the processing
level of input and output data (raw data, features, objects) of a fusion process and its even-
tual sub-processes to classify then. Although it makes the choice of a fusion algorithm more
natural [137], no clues are given about the associated architecture to deploy.
Other conceptual models have been proposed, like for instance the Boyd control loop, the
Intelligence cycle or the Waterfall model, that do not present much interest to implement a
fusion system as they are comparable, but less detailed than the JDL model. A comparative
study of different models an the proposition of the Omnibus model, which is an attempt to
gather all the pre-cited ones, can be found in [14].
Despite they provide help in understanding data fusion related concepts, these models are
not useful for physical implementation of fusion systems [18]. As emphasized by Dasarathy’s
model, types of available and required data are often key characteristics in order to define
fusion algorithms which will be the building blocks of the system architecture.

Architectures of data fusion systems. The conceptual models described above can
help one to define the information sources, expected performance and different tasks that
are to be implemented, but a deeper dive into the fusion system is necessary to precise the
data flows, the different fusion techniques that are needed and their time-sequencing and
inter-dependencies. This step could lead to the creation of a software architecture.
By essence, each system architecture is ad hoc due to the specific goals a fusion system has
to address. However recurrent schemes have been explained. The most popular ones are
presented as a triplet of fusion levels [51] (in close relationship with the JDL levels mentioned
above): the data level fusion (figure 2.24(a)), the feature level fusion (figure 2.24(b)) and the
decision level fusion (figure 2.24(c)). As indicated by their names, the type of input data of
the fusion algorithm is at the origin of this classification, which also involve a classification
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of fusion techniques that can be used to process it. A fourth level, the temporal level fusion,
has been introduced to designate data integration over a period of time as a fusion process
[25].
Another popular classification of fusion schemes is obtained by distinguishing between cen-
tralized fusion, autonomous fusion and hybrid fusion [51]. It is close to the previous one, but
more linked with hardware: within a centralized fusion scheme sensors raw data are fused
directly to define a feature on which decision will be based upon, like within the data level
fusion, whereas within the autonomous scheme each sensor take a decision before they are
merged to obtain the final one, in the same manner as the decision level fusion. The above
mentioned feature level fusion is considered as an alternative approach to centralized fusion.
After the global fusion system architecture has been defined, including the processing level
of data flowing from input to decision, the best suited fusion algorithms can be selected for
each fusion task. A review of fusion techniques associated with each fusion level is given
by Kall in [51] for instance. A tentative of a formal classification of fusion techniques has
been done in [72] in order to compare their performance not on empirical success, but from
a formal point of view. However, the authors stated it is incomplete at the moment and
needs further research.
Once the data flows, fusion algorithms and fusion tasks interactions are explicated, or in
other words, the software architecture is defined, the physical implementation, taking into
account hardware concerns, have to be done.

Physical implementation of data fusion systems. Physical implementation of data
fusion systems supposes to take data processing requirements, temporal synchronization and
user interaction aspects into account. Obviously, these aspects are heavily dependent of the
choice of the fusion system architecture, which actually may have been defined keeping some
hardware constraints in mind. For instance, centralized fusion has the advantage that the
whole raw data is taken into account to make a decision, and no information is lost by using
feature representation of sensors signals. However, it can be very resource consuming in
terms of processing and bandwidth, contrarily to an autonomous scheme where raw data
are treated separately at the beginning of the process, and only decisions have to flow into
and be processed by the fusion system. Those considerations often lead to trade-offs, and
from a technical point of view the basic question to the system designer is ”where in the
processing flow should the fusion be performed?” [51]. Elements to be taken into account
to answer it are: the hardware resources availability, the performance level needed and the
existing fusion algorithms that could tackle the addressed problem.

This brief introduction to data fusion allowed to detail its objectives, advantages and
fundamental concepts, but also its limitations and difficulties encountered when imple-
menting a fusion system. If a great amount of work have been done both on fusion
systems conceptualization and fusion techniques, a key point impacting the system ar-
chitecture and heavily influencing its overall performance is the type of available data
and its quality.
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Figure 2.24 – Data level fusion architecture (a), Feature level fusion architecture (b), and
Decision level fusion architecture (c)
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2.2.2 Challenges in the implementation of multisensor data fusion
systems

As stated in the previous section, the implementation of a data fusion system aimed at
monitoring complex processes presents challenging aspects. Issues are essentially linked
with data to be fused, diversity of the sensor technologies, and nature of the application
environment [69]. All of these concerns impact input data. Issues and challenges of data
fusion will therefore be given from a data point of view.
A taxonomy of challenging problems of input data in data fusion has been proposed in [69],
based on works of Smets [130] and Dubois and Prade [33] and is presented in figure 2.25.
As it is very complete, this taxonomy will be followed to present data related problems.
However, as other interesting classifications of data-related issues have been done, they will
be introduced when needed. In particular, the aforementioned taxonomy can be related with
a taxonomy of uncertainty types presented in figure 2.26 in which correlation, disparateness
and granularity are not taken into account, and ’stochastic uncertainty’ stands for the former
’uncertainty’, and ’epistemic uncertainty’ for the former ’imprecision’.
Only concerns related to monitoring applications, in dark on the figure 2.25, will be discussed
in this section. Short descriptions of these data related issues will be provided with the goal
in mind to emphasize different aspects that a drilling monitoring system should face, before
the presentation of the mathematical frameworks that are suited to handle them, in the next
section. Therefore, no deep analysis is made concerning the roots of data uncertainty and
imperfection, and the interested reader can follow provided references.

Data-related Fusion Aspects

Imperfection Correlation Inconsistency

Uncertainty Imprecision

Vagueness Ambiguity

OutlierConflict

Figure 2.25 – Challenging problems of data fusion from an input data point of view following
[69]: darker issues will be discussed in this work as they concern multisensor monitoring
applications

Types of uncertainty

Stochastic
uncertainty

Epistemic
uncertainty

Inconsistency

Figure 2.26 – Taxonomy of types of uncertainty
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2.2.2.1 Data Imperfection

Uncertainty. Uncertainty on data arise when its confidence degree is not 1. In other
words, the provided value (numerical, semantic, ...) is not certain. When dealing with
sensors measurements for instance, the output value is not necessarily exactly the same as
the sensed phenomenon is. This can be due to the measurement noise, or the sensor lack
of accuracy. Generally, this type of uncertainty manifests itself in a stochastic manner, and
is thus called stochastic uncertainty. It is well represented by probability density functions
(PDFs) provided with the measurement. Figure 2.27 shows such a relationship between
data provided by a sensor ω̂ and the real value of the phenomenon ω represented by PDFs.

(a) (b)

Figure 2.27 – Certain (a) and uncertain (b) statements about the value of the variable ω
represented by probability density functions (discrete (a) and continuous (b))

Imprecision. Imprecision on data, which different manifestations can be grouped under
the names epistemic uncertainty, or lack of knowledge, designate the fact that the informa-
tion does not allow to make a precise statement. It is well represented by the use of sets, or
intervals.

Ambiguity. Ambiguity stands when an imprecise statement is given with a confidence
degree of 1. For instance, intervals or sets of values represents ambiguous statements. More
knowledge is then needed to make a precise statement, indeed ambiguity denotes a lack
of knowledge. Examples of ambiguous and non-ambiguous statements are provided in the
following:

ω equals 1 is a non ambiguous statement

ω lies in {0.9, 1.1} is an ambiguous statement

Vagueness. Vagueness manifests itself by ill-defined statements. Compared with ambigu-
ous statements, not a crisp set or interval is provided, but instead a subjective description
is given. This is often the case of semantic variables used by human experts. Fuzzy sets or
possibility functions can be used to represent such imprecise statements. For instance, the
statement x is large given by two different experts is represented using a fuzzy membership
function in figure 2.28.
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Figure 2.28 – Vague statement ω is large represented by a fuzzy membership functions for
two different experts

2.2.2.2 Data correlation

As a function of the use made of correlated data, redundant information can have different
purposes. In the following, the term redundant will be used to designate both redundant and
quasi-redundant information. Quasi-redundant information has been defined by Frolik as
coming from sensors that are not placed to measure exactly the same parameters, however
these parameters may be very well correlated [43]. This is the case for many redundant
sensor systems implemented in practice, that are aimed at following the same phenomena
while not being impacted by the same perturbations.
When performing data fusion following data level (figure 2.24(a)) or feature level (figure
2.24(b)) fusion schemes, information from different sources are merged before the decision
step. In this case, no additional information is gained by adding sources if they are truly
redundant. However, noise reduction may be obtained by adding information that is pre-
sumably redundant if the data is independently and identically distributed (iid), but in this
case, they are not considered truly redundant anymore [50]. An illustration of this state-
ment is given in figure 2.29 that demonstrates how presumably redundant data can improve
classification (a feature level fusion process) whereas truly redundant cannot.

(a) (b)

Figure 2.29 – Two classes samples represented in two-dimensional features spaces where
features are truly redundant (a) and presumably redundant (b) respectively: as in the second
case stochastic perturbations on feature values are iid, a gain of information is obtained by
using the two features that allows performing a linear classification



2.2. DATA FUSION TECHNIQUES FOR MONITORING APPLICATIONS 65/244

As they imply a decision making from every information source, decision level fusion pro-
cesses involve sources that are not systematically of the same type, but which are redundant
in their ability to make a decision about a particular phenomena. Then the final decision
is made upon all individual sources statements. In this case, sources redundancy is often
aimed at overcoming sources failures which can be due to some inherent limitation of the
sensor and/or some ambiguity in the environment [75]. As not many sources possess self-
diagnostic features, the fusion strategy employed should be able to discard wrong sources
in order to achieve right decisions. The problem of conflicting data that are presumably
redundant raises another data related issue when performing fusion: inconsistency.

2.2.2.3 Data inconsistency

Data inconsistency is linked with fusion applications. It appears when different information
sources do not agree, or in other words are in conflict. This is mainly due to the presence
of spurious data which can be due to sources failure, either of short duration, nascent or
permanent. By nature, such failures mechanisms are difficult to model and predict because
they are not directly attributable to stochastic effects or other types of uncertainty men-
tioned above [75].
Data inconsistency only appears when redundant information sources are used. This usually
implies that a critical phenomena is being monitored, and robustness is needed, therefore
inconsistency handling is of major importance in high value added processes monitoring
applications that use data fusion. Most of the time it requires the assessment of sources reli-
ability to make a choice between their conflicting statements and perform the final decision.
If several techniques for sensor validation and identification of inconsistent data have been
proposed (a review is given in [75]), many of them are limiting because they are based on
sources failures modes that are known and specific to the considered applications, but no a
priori information is generally available concerning failures modes.
Two generic approaches using redundant sensors have been proposed in the literature using
a high level fusion procedure. They were based on sensor consensus because more credit
was given to those that corroborated the statement provided by the majority [76, 75].
Conflict management is an important concern in data fusion, and solution offered by differ-
ent frameworks to handle it will be detailed in the next section.

The classification of issues on data provided here is somewhat artificial in the sense
that some concepts detailed above overlap each other. In practice, sources may not
fall precisely into either stochastic or epistemic uncertainty for instance [105]. How-
ever, this brief review of challenges of multisensor fusion from a data point of view
allowed to identify issues that will have to be overcome and key points to take into
account when implementing a monitoring system for drilling operations. In particular,
data uncertainty and ambiguity have been identified as major concerns and necessitate
special attention. Moreover, use of fusion systems implies dealing with correlated and
inconsistent data which can be at the origin of diverse problems.
Following these statements, two mathematical frameworks providing tools to model and
handle such data, namely the probabilistic and evidential frameworks will be introduced,
and their respective advantages and limitations will be detailed in the next section.
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2.2.3 Presentation of data fusion frameworks suited for multisensor
on-line monitoring of drilling operations

The previous section allowed to identify which aspects of data imperfection have to be taken
into account, and which problems will rise of the use of fusion systems when performing
drilling monitoring. As input data are considered to come from sensors in our case, vagueness
will not be discussed anymore because they only provide crisp values.
Several mathematical frameworks have been developed and used to handle imperfect and
uncertain data and to perform data fusion. A review and useful references can be found in
[69]. In the following, two of them will be introduced because of their respective ability to
model and merge statements from sensors that are affected by aforementioned issues, and
also due to their popularity. Indeed, the probabilistic and evidential frameworks are the
most used to perform multisensor data fusion due to their properties. Special emphasize
will be made on their behavior facing issues mentioned in the previous section.
Following the classical conceptual decomposition of fusion processes depicted in figure 2.30,
tools offered by each framework to model data before the fusion step (data alignment) will
first be presented, then principal fusion algorithms and decision making strategies will be
detailed. Finally, a discussion will be carried on issues related to their use. Their respective
specificities will be evoked and illustrated with simple examples, and projection on potential
uses in monitoring applications will be given when possible.

Data modeling

Data combination

Decision making

Input data

Figure 2.30 – Classical decomposition of a fusion process: in a first step called data alignment,
data coming from each source are converted into common coordinate frame [141], they are then
merged in a second step, and finally a decision is made which is based upon the fused statement

2.2.3.1 Formalization of the fusion problem

In the remainder of this work, the fusion problem will be formalized as follows: Ω =
[ω1, . . . , ωN ], the set of exhaustive and mutually exclusive propositions ωn on states that
can be taken by the phenomenon of interest, is called the frame of discernment. S sources
provide degrees of belief that the true state of the phenomenon of interest lies in the propo-
sition A ∈ 2Ω, which is a subset of elements of Ω. 2Ω is called the power set and contains
all the subsets of Ω including Ω and the empty set ∅. Then, the S statements about the
state of the phenomenon of interest have to be merged to construct an unique distribution
of degrees of belief on elements of Ω in order to make a decision.
For the sake of simplicity, discrete propositions will be used in the following, but most of
the concepts that will be evoked also apply in continuous cases.
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2.2.3.2 The probabilistic framework

The probabilistic framework has been widely used to model, merge, and make decisions
based upon uncertain data. It possesses strong theoretical foundations and achieved many
success in numerous and diverse applications.
As an introduction to this section, a reminder is given about the meanings given to proba-
bilities. An interesting synthesis of their different meanings along history is proposed in [15].
Basically, two types of interpretations are in opposition: the frequentist one, which describes
the behavior of a random variable over long run experiments, and the subjective one which
allow one incorporating additional knowledge that can change the expected probability of an
event. The second category encompasses the first one because it allows incorporating such
information in order to build a degree of belief about an event. In this work probabilities
will represent the degree of belief, and frequentist information will also be incorporated.

Basic concepts on probability functions

A probability measure P (ωn), associated with every element of Ω, defines a real number
satisfying the following properties:

0 ≤ P (ωn) ≤ 1 (2.19)

P (Ω) = 1 (2.20)

P (ωi ∪ · · · ∪ ωj) = P (ωi) + · · ·+ P (ωj), i, j ∈ [1, . . . , N ] (2.21)

One can remark that each element ωn of Ω, or singleton, must have a degree of belief
expressed in the form of a probability P (ωn).

Bayesian inference. Bayesian inference [13] is a powerful tool to perform inference in
the probabilistic framework. Considering our monitoring context, the objective is, given
observations from sensors, to determine the state of the system and/or the drilling operation.
Bayes defined a rule that allows incorporating observation x, to define probabilities of the
a posteriori states of a system p(ωn|x) also given prior information. The rule is defined as
follow:

P (ωN |x) = kp(x|ωN )P (ωN ) (2.22)

where:
k is a normalizing factor that guarantees the result is a probability function
P (ωn) is the a priori probability that the system is in the state ωn
p(x|ωn) is the likelihood function and represents the probability that the observation is x,
knowing that the system lies in the state ωn.

Bayes rule allows manipulating probability functions, however it is not always possible to
obtain knowledge in this form. In particular, a lack of information sometimes exists on the
prior and likelihood probability functions, and users have to make hypothesis about them.
This is the main criticism done on the use of Bayesian inference: it requires a lot of prior
information on the system, and in case where not enough information is available, the user
have to make hypothesis.

Data modeling in the probabilistic framework

Information provided by a source on elements of Ω is given by probability distributions in
the discrete cases, or probability density functions in the continuous ones. Examples have
been given in figure 2.27.
Measurement uncertainty is usually expressed as a mean about the true value of the
phenomenon of interest with uncertainty associated with a variance that represents the dis-
persion that could reasonably be attributed to it [61]. This dispersion depends both on the
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measured quantity itself and the operational parameter of the sensor.
Sensor data modeling, which forms an important part of sensor fusion, deals with developing
an understanding of the nature of measurements provided by sensors, its limitations, and its
probabilistic understanding in terms of uncertainty. Probabilistic sensor models are partic-
ularly useful as they facilitate the determination of the statistical characteristics of the data
obtained. This probabilistic model captures the probability distribution of measurement by
the sensor ω̂ when the state of the measured quantity ω is known. These distributions are
sensor specific and can be determined experimentally using calibration procedure [76].
Stochastic uncertainty on measurements are well handled by tools offered by the probabilis-
tic framework to model data.
As for the second data related concern we focus on, ambiguity , the use of probability
function is not straightforward. Indeed, as stated earlier, each element of the frame of
discernment Ω have to possess a degree of belief. Therefore, even if a source provides an
ambiguous statement: a degree of belief that concerns a set A of propositions, it has to be
distributed over the corresponding singleton of A. Traditionally, the principle of maximum
entropy is used: in case of an ambiguous statement is provided over a set AΩ of singletons,
no information allows to assess superior degree of belief to one of them. Then, the degree of
belief given to A is distributed following the least informative manner on its singletons. The
least informative distribution, which is equivalent to the one showing the maximum entropy
level, is the uniform distribution which does not allow to choose between the singletons of
A. An example of a uniform distribution is depicted in figure 2.31(b). For example, this
principle is applied to define prior probability functions when performing Bayesian inference
when no sufficient information is available.
This manner of handling ambiguous data has been criticized due to the fact that allowing
a degree of belief to singletons is a creation of information that does not exist. However,
this principle is widely used. An illustration of counter intuitive results obtained when us-
ing probability distributions and the maximum entropy principle to model ambiguous data
is given in figure 2.31. In this particular case, the instability of probability distribution by
non-afine transformation leads to the creation of knowledge on phenomenon states ω despite
of the fact no knowledge is provided by available information x.
More generally, despite of strong oppositions in the Bayesian community, it is know generally
admitted that probabilities are not suited to model ambiguous data.

Data fusion and decision making in the probabilistic framework

Data combination. Combination of data coming from multiple sources to perform in-
ference is achieved following the Bayes rule incorporating knowledge and evidence from all
sources:

P (ωN |x1, . . . , xS) = kp(x1, . . . , xS |ωN )P (ωN ) (2.23)

where p(x1, . . . , xS |ωn) is the joint likelihood function of the first source providing evidence
x1, the second providing x2, ..., in case that the state of the sensed phenomenon is ωn.

When the need of robustness leads to the usage of multiple information sources, it is inter-
esting that these sources are independent. The concept of independence of the sources is not
so easily described in real world applications as its mathematical definition. For instance,
opinions of different people sharing overlapping experience could not be regarded as depen-
dent sources whereas different measurements by different observers on different equipment
would often be regarded as independent [27]. This concept has to be handled carefully.
If sources are considered independent, the joint likelihood function can be expressed as
follows:

p(x1, . . . , xS |ωN ) =

S∏
s=1

p(xs|ωN ) (2.24)
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w ϵ {-1,0,1} 

y =  w²

y ϵ {0,1} 

x

(a) A simple system where the input observation x is used to perform an inference on
the state of a variable w which is then transformed by a non-affine function

(b) As no a priori information is available on the re-
lationship between x and the possible states of
the system ω, the maximum entropy principle
is used to determine a probability distribution
on Ω
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Figure 2.31 – Probability distribution of y following the distribution of Ω depicted in figure
2.31(b) (c), and assuming no information is available on y as no information is available on Ω
(d): these paradoxical results illustrate the inability of probability distributions to represent
ambiguity by using the maximum entropy principle
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Then it comes for the Bayes rule:

P (ωN |x1, . . . , xS) = k

S∏
s=1

p(xs|ωN )P (ωN ) (2.25)

Decision making. Once the a posteriori probabilities of the different states of the original
phenomenon have been computed, it comes naturally to choose the most probable one, which
is called the maximum a posteriori decision rule:

ω̂ = max
n

P (ωn|x1, . . . , xS) (2.26)

Sometimes, however, the maximum likelihood decision rule is applied:

ω̂ = max
n

P (x1, . . . , xS |ωn) (2.27)

One can remark that if no prior information is available on ω and P (ωn) = 1/N according to
the maximum entropy principle, the maximum likelihood and maximum a posteriori decision
rules will provide the same results.

Challenges linked with the use of probabilistic techniques

If it has been widely used and obtained successful results in many fields of application,
challenging points remains when using the probabilistic framework to perform data fusion.
Indeed, due to its limited ability to model ambiguous information coupled with the fact that
Bayes rule necessitates a lot of knowledge, even if uncertain, the probabilistic approach can
present shortcomings when performing fusion in uncertain context where ambiguous data
are expected and little information about the system is available.

2.2.3.3 The evidential framework

Development of Evidence theory (or Dempster-Shafer theory, or theory of belief functions) is
based on the pioneer works of Dempster [27] on superior and inferior probabilities induced by
multivalued mappings, and the interpretation of Shafer [124] to model degrees of belief. The
framework they defined allows handling incoming information without having to distribute
degree of belief on every singletons of Ω. Later, Smets justified the use of belief functions and
associated conditioning and combination rules to model degree of belief in the Transferable
Belief Model (TBM) [129].

Basic concepts on belief functions

In this work, belief functions as defined in the transferable belief model are used to model
information sources beliefs. Some concepts are presented following [27, 124, 129] in order to
introduce main terms and formulas that are used in the remainder.
Considering an information source s, the basic belief assignment function ms is used to
allocate parts of an initial unitary amount of belief among the propositions of 2Ω. Thus,
considering a proposition A, ms(A) is a part of the sth information source’s belief that
supports A and is called a basic belief mass. Every A such that m(A) 6= 0 is called a focal
proposition or a focal element of the power set. Let ms : 2Ω → [0, 1] with:∑

A∈2Ω

ms(A) = 1 (2.28)

The difference with probability model is that masses can be allocated to any proposition of
2Ω instead of only elements of Ω. This multivalued mapping is particularly interesting to
represent imprecise information since due to this imprecision, it does not always pinpoint
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a unique proposition [91]. In the case when ms(Ω) = 1, which corresponds to a state of
total ambiguity on propositions of Ω, we speak about a vacuous belief function, whereas if
ms(A) = 1 with |A| = 1, which represents a certain statement about a singleton, a categorical
belief function is defined. From the basic beliefs assignment, other functions are derived that
provide meaningful quantities. The belief function Bels gives the quantity Bels(A) which
can be viewed as a measure of the sth information source’s belief in the proposition A.

Bels(A) =
∑
B⊆A

ms(B) (2.29)

The plausibility Pls(A) can be interpreted as the amount of belief that could potentially be
allocated to A in case of evidence that Ā is false and is given by the plausibility function.

Pls(A) =
∑

A∩B 6=∅

ms(B) (2.30)

Bel(A) and Pl(A) are the lower upper limits, respectively, of the belief level on proposition
A. Ā is the negation of hypothesis A. [Bel(A), P l(A)] is sometimes used to describe the
ignorance about A. If information is missing or unreliable, the difference between Bel(A)
and Pl(A) will increase. This is illustrated in figure 2.32.

Figure 2.32 – Relationship between Bel and Pl from [39]

The pignistic probability measure BetP (A)s [129] allows constructing a probability distri-
bution on Ω from the basic beliefs assignment, which is useful when decisions have to be
made on elements of Ω. The probability distribution is built following the insufficient reason
principle: if a probability distribution must be build on n elements in the case of a total lack
of information, then the probability 1/n is attributed to each element. BetP is a probability
measure, but the term pignistic is added to stress its decision making purpose.

BetPs(A) =
∑
A⊆B

ms(B)

|B|
(2.31)

where |B| denotes the cardinality of set B.
The commonality measure Qs(A) can be interpreted as the belief that is free to move to A
from propositions presenting a cardinal superior to |A|. It is commonly used to build an
ordering concerning the specificity of different belief functions [128].

Qs(A) =
∑
A⊇B

ms(B) (2.32)

All these representations are equivalent in the sense that each one can be derived from any
other [91]. So far, it can be noticed that the evidential framework presents more tools than
the probabilistic one to describe degrees of belief.

Data modeling in the evidential framework

Evidential framework offers more latitude than the probabilistic one to assign degrees of
belief.
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Considering the case of uncertain data, evidential framework proposes the same modeling
as the probabilistic one. Indeed, if basic belief are affected only to singletons of Ω (which is
called a Bayesian belief function), then a probability distribution is obtained. In this sense,
belief functions are considered as an extension of classical probabilities, which represent a
special case in the evidential framework.
As for the case of ambiguous data, the multi-valued mapping allows assigning degrees of
belief on subsets of 2Ω that avoid the artificial creation of knowledge by making hypothesis
on singletons when no information is available.
However one of the main difficulties lies in modeling the knowledge of the problem by
initializing the basic belief functions ms as well as possible [79]. On the other hand, the
absence of a strict procedure to convert available information into basic belief masses allows
adapting the data alignment step of a fusion process to fit the application requirements.
This represents however an additional stage in the implementation of an information fusion
system.
As stated earlier, sensors statements are often given in the form of a probability distribution,
therefore, works have been done to derive beliefs functions from these probabilities in order
to perform fusion in the evidential framework. Several approaches have been proposed [31].
The most popular one within the transferable belief model framework first uses the inverse
pignistic transform (IPT) to generate the set Biso(BetP ) of isopignistic belief functions
that would lead to the original probability distribution using the pignistic transform given
by equation 2.31 [129]. Then, the least commitment principle (LCP) is used to choose a
belief function into the set Biso(BetP ), following the principle that if there is no reason to
prefer a belief function from another, then the least specific (or least informative) is chosen
[128], in the same manner as the aforementioned maximum entropy principle. This implies
the existence of a measure of the specificity of belief functions. Several measures have been
proposed [34], and the commonality (see equation 2.32) is often used for this purpose. Such
constructed belief functions are consonant, which means that their focal elements are nested.
More explanations and an algorithm to derive the least committed basic belief distribution
can be found in [128].
Another method has been proposed by the author and its performances have been compared
with the aforementioned one and the probabilistic one in the context of singularity detection
in data sets. Developments and results will be detailed in chapter 4.

Data fusion and decision making in the evidential framework

Evidential approaches provide tools for information merging and decision making that allow
to implement several strategies leading to the choice of a proposition in the frame of discern-
ment Ω. The fusion and decision steps are distinct operations but the combination of their
respective influences has to be taken into account when setting-up a multiple information
sources fusion and decision making system. Information sources are considered indepen-
dent. Basic combination rules will first be exposed introducing the conflict management
problem, followed by a rapid presentation of basic decision making strategies. Finally, their
combinations influence will be detailed.

Combination rules. Dempster’s rule of combination [27, 124] is the first which has been
defined. Its usage requires that the propositions composing the frame of discernment are
exhaustive. Let m⊕ denotes the belief function resulting from the Dempster’s combination
of information sources belief functions:

m⊕(A) =
m∩(A)

1−m∩(∅)
∀A ∈ 2Ω, A 6= ∅ (2.33)
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where m∩ denotes the belief function issued from the conjunctive combination of the infor-
mation sources basic belief functions:

m∩(A) =
∑

B1∩···∩BS=A
B1,...,BS∈2Ω

S∏
ms(Bs) (2.34)

and m∩(∅) is the mass assigned to the empty set (i.e not assigned to a subset of 2Ω containing
propositions of the frame of discernment Ω) which can be interpreted as a measurement of
the conflict existing among the different information sources.m∩(∅) is given by:

m∩(∅) =
∑

B1,...,BS∈2Ω

B1∩···∩BS=∅

S∏
ms(Bs) (2.35)

One can remark that the Dempster’s combination rule is not defined in case of total con-
flict between sources (m∩(∅) = 1). The 1 − m∩(∅) normalization factor has the effect of
completely ignoring conflict [145], that can lead to counter intuitive results in case of com-
bination of highly conflicting information. This drawback has first been pointed out in a
classical medical diagnosis example [148] that showed the importance of taking into account
the conflict between sources. The main origin of conflict is unexpected information sources
behaviors: when abnormal measurements are provided by some sources, they are conflicting
with the ones behaving normally [79].
Another cause of conflict is the multiplication of information sources: if sources provides
exactly the same belief but this belief is not certain (the belief function is not categorical),
conflict will grow as a function of the number of sources due to the non-indempotence of the
conjunctive combination rule (CCR) [79, 97], which seems counter intuitive as all sources
share the same statement, even if not certain.
Many other rules of combination have then been introduced to manage the conflict problem
that are based on different interpretations and assumptions. Smets [127] assumes that all
information sources are reliable so conflict can only comes from a bad definition of the frame
of discernment. The empty set mass issued from the conjunctive combination of basic beliefs
is not used as a normalization factor and is interpreted as the belief that the truth lies in
one or more undefined propositions. The Smets rule of combination is defined by:

mSM (A) = m∩(A) (2.36)

Yager [145] kept the closed world assumption and justified the presence of conflict by the
non reliability of some sources. The empty set mass is added to the frame of discernment
mass, considering that non-reliable sources increase total ignorance. This scheme makes one
source dysfunction affecting accuracy of the whole combined results.

mY (A) = m∩(A) ∀A ∈ 2Ω, A 6= ∅, A 6= Ω (2.37)

mY (Ω) = m∩(Ω) +m∩(∅) (2.38)

mY (∅) = 0 (2.39)

One can remark similarities in results obtained using these three combination rules. The
combined masses obtained with the Smets and Yager rules are the same except for the empty
set and the frame of discernment. Using the Dempster rule, all propositions combined masses
are proportional to the masses obtained with other rules except for the empty set and the
frame of discernment.
A different approach can be made considering closed world assumption and non reliability
of information sources. Dubois and Prade’s disjunctive rule of combination (DRC) [34]
does not generate any conflict and does not reject any information provided by the sources,
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and its use is appropriate when conflict is due to poor reliability of some of the sources.
However it often provides more imprecise results than expected [123, 28]. More specifically,
considering consonant belief functions, if one source disagree with others about an eventual
singleton, no mass will be allocated to singletons during the combination, which can lead to
the impossibility to make decision over Ω in absence of additional evidence or knowledge.
The DRC is defined following:

m∪(A) =
∑

B1,...,BS∈2Ω

B1∪···∪BS=A

S∏
ms(Bs) (2.40)

These basic combination rules present drawbacks in the case of non-reliable sources. A lot of
rules presenting sophisticated conflict redistribution algorithms over the power set proposi-
tions have been proposed, however they often present higher computational complexity and
are adapted to precise use cases.

Decision making strategies. As said earlier, all representations of beliefs in the frame-
work of evidence theory are equivalent and the choice is purely based on convenience. Masses
are often a more natural and superior device for encoding evidence, whereas belief, plausi-
bility and pignistic probability measures are a more intuitive summary of the impact of the
evidence given by information sources on propositions [91] and help to make decisions.
Three basic strategies are generally considered to make a choice among the propositions
of Ω: the maximum belief, maximum plausibility and maximum pignistic probability. The
first one is often considered too pessimistic. Indeed equation 2.29 shows that no partial
ignorance is taken into account while computing the belief on a proposition, which means
that not all available information is considered when making the decision. Contrarily, the
maximum plausibility rule is considered too optimistic: taking into account belief that could
be given to a proposition to make a decision can be viewed as going further that what can be
concluded from available evidence. Finally, the maximum pignistic probability appears as a
good compromise by equal redistribution of partial ignorance over the concerned proposition
following the insufficient reason principle. Moreover, it gives a probability distribution over
Ω which makes decision making feeling more natural.

Influence of {Combination rule , Decision making strategy} couple. As evoked
in the section concerning combination rules, the use of conjunctive based combination rules
leads to the same ordering of singletons masses after combination. Following the definition
given by equation 2.29, the belief transformation conserve this ordering. Thus decisions
based on the maximum singletons beliefs will be identical for every combined masses com-
puted using simple conjunctive, Dempster or Yager rules. Concerning maximum plausibility
based choices, as all proposition beliefs except the frame of discernment are proportional,
whatever the used pre-cited combination rule, these propositions beliefs are proportional
too. In that case, considering the plausibility definition:

Pl(A) = 1−Bel(A) (2.41)

and that the frame of discernment Ω can’t be the complement of a proposition except
the empty set, the plausibilities will be proportional too, leading to the same choice when
selecting the most plausible singleton. In the same manner, considering the propositions
beliefs proportionality and the fact that the pignistic probability distributes equally the mass
of Ω over the singletons, the maximum pignistic probability based choice among singletons
will be the same using the conjunctive, Dempster or Yager combination rule.
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Challenges linked with the use of evidential techniques

Two mains challenges remains when using belief functions:

• the first one has already been evoked the construction of a mass distribution
over the power set 2Ω from the available information. This is not every time an issue,
and depending on the application case, latitude offered by evidence theory to assign
degrees of belief can be an advantage.

• the second issue is a practical one: when compared with probability theory, evidence
theory faces higher computational complexity due to the higher number of pos-
sible focal elements (2|Ω| instead of |Ω|, where |Ω| represents the cardinality of Ω) and
the conjunctive combination rule requirements. Several approximation algorithms have
been suggested to overcome this difficulty. A review and propositions such algorithms
can be found in [29, 12].

Brief review of monitoring applications using evidence theory

As evidence theory is recent, not many applications have been done concerning monitoring
applications. In particular, to the authors knowledge, no industrial monitoring application
using evidence theory exist. This section gives a brief review of research works in the field.
They have mainly concerned monitoring of engines, DC motors and chemical processes.
Evidence theory have often been used for monitoring application in order to merge classifiers
outputs. Most often, the frame of discernment is constituted by the different state/faults the
monitored process can take/suffer from. Several classifiers were fed with features extracted
from sensor data and provided a probability of the presence of each state/fault. These prob-
abilities were used as basic beliefs assignments, and the different beliefs functions were then
merged in order to obtain a final statement about the system state. This mass assignment
method do not take full advantage of the possibility to model ambiguity explicitly offered
by the evidential framework. Indeed, as classifiers provide probabilities on singletons of the
frame of discernment, Bayesian belief functions were created. This method has been used
in [95], [107] and [146]. Merged results offered better monitoring performance than single
classifiers in all cases. Bayesian belief functions have also been used in [11], [40], [110], [116]
and [115], where distances from features to values determined a priori that corresponded
different states of the monitored system have been used to build masses. Only in [107], a
basic belief assignment method has been implemented in a way such that ambiguity was
explicitly modeled by assigning masses to sets of propositions of the frame of discernment.
Results obtain by using this method to merge classifiers outputs on a railway track circuit
fault diagnosis application were better than those obtained by using Bayesian beliefs func-
tions.
Another interesting characteristic offered by evidence theory has been exploited for mon-
itoring applications: the concept of conflict between information sources. In [95], level of
conflict at the merging step has been used to detect unreliable sensors in a smart home
application. The minority of sensors which provoked conflict when merging statements were
considered faulty, assuming the majority of sensors worked well. In [116] and [115], the open
world assumption of the TBM was considered, meaning that faults that were not listed in
the frame of discernment could occur. Then, the conflict was used as a degree of confidence
in the diagnostic, and as the degree of belief an undefined fault occurred. The authors also
used the conflict level to discount belief functions in order to soften the sources statements
in case of large conflict, and also to eliminate the minority of sources providing inconsistent
information. The developed methodology has been assessed on monitoring of a DC motor
and of a gas-liquid separation process. The use of evidence theory to merge statements from
different sensors allowed to reduce the occurrence of false alarms and of missed alarms while
not reducing the sensivity to faults.
These applications showed promising results for monitoring applications, but only few used
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the whole potential framework offered by the evidential framework in terms of data modeling.
This underlines the difficulty of automatically building masses based upon data, without an
expert intervention.

Probabilistic framework is well adapted to handle data uncertainty, has strong theoretic
foundations and has been widely used. Evidential framework presents several advan-
tages to handle data imprecision, while conserving facilities offered by the probabilistic
framework. Unfortunately, the computational complexity of operations increases expo-
nentially as a function of the propositions number.
In both cases, special attention has to be given to information modeling and inconsis-
tency in fusion context. These frameworks have often been in opposition, and only few
numerical experiments allowed to assess their respective performance in general case
studies. Research are still needed in this area [51].

2.2.4 Overview on data fusion for monitoring applications

This brief introduction to data fusion allowed to detail its objectives, advantages and fun-
damental concepts, but also its limitations and issues that will be encountered during the
implementation of a monitoring system for drilling operations.
A classification of data-related issues has been provided that allowed identifying difficulties
that will have to be overcome and key points to take into account, namely data uncertainty
and ambiguity. Moreover, the use of fusion systems implies dealing with correlated and
inconsistent data which can be at the origin of diverse problems.
Possibilities offered by both probabilistic and evidential frameworks to address these prob-
lems have been assessed: probabilities have strong theoretic foundations and has been widely
used, whereas belief functions present several advantages to handle data imprecision, while
conserving ability to model data uncertainty. Unfortunately, the computational complexity
of operations increases exponentially as a function of the propositions number in this frame-
work. In both cases, special attention has to be given to inconsistency.
The choice of a framework will be based upon these considerations and the case studies
specificities. A important concern in monitoring application, singularity identification, has
been detailed in chapter 4 and performances of approaches developed in both frameworks
have been assessed.

2.3 Drilling monitoring and multisensor data fusion: gen-
eral overview

This chapter first allowed to review achieved works and remaining challenges concerning
sensor-based drilling monitoring. It showed that most effort has been focused on the han-
dling of the drilling process complexity, often by using multiple sensors. However, concerns
about generalization of obtained results and reliability facing industrial harsh environments
have often been neglected. As a consequence a lack of robustness of developed monitoring
systems have often been forbidden their industrial implementation.
In a second part, data fusion concepts and techniques that could help to overcome aforemen-
tioned issues, and so allow the industrial implementation of industrial monitoring systems,
have been presented. The importance of data related issues has been emphasized, and 2
mathematical frameworks suited to model and handle imperfect data have been presented.
The probabilistic and evidential frameworks pros and cons regarding issues linked with
drilling monitoring have been detailed, allowing the monitoring system designer to make
coherent choice between them.
Based upon these elements, the monitoring problem will be formalized, and issues related
to industrial drilling operations monitoring will be detailed in chapter 3. Solutions will be
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discussed, allowing to define guidelines that directed developments and contributions of this
work.



Bibliography

[1] J. Abellan-Nebot and F. Romero Subirón. A review of machining monitoring systems
based on artificial intelligence process models. The International Journal of Advanced
Manufacturing Technology, 47:237 – 257, 2010. 10.1007/s00170-009-2191-8.

[2] M. A. Abidi and R. C. Gonzalez. Data Fusion in Robotics and Machine Intelligence.
Academic Press, San Diego, CA, USA, 1992.

[3] I. Abu-Mahfouz. Drilling wear detection and classification using vibration signals and
artificial neural network. International Journal of Machine Tools and Manufacture,
43(7):707 – 720, 2003.

[4] F. A. Al-Sulaiman, M. A. Baseer, and A. K. Sheikh. Use of electrical power for online
monitoring of tool condition. Journal of Materials Processing Technology, 166(3):364
– 371, 2005.

[5] C. Aliustaoglu, H. Ertunc, and H. Ocak. Tool wear condition monitoring using a
sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal
Processing, 23(2):539 – 546, 2009.

[6] S. Arul, L. Vijayaraghavan, and S. K. Malhotra. Online monitoring of acoustic emission
for quality control in drilling of polymeric composites. Journal of Materials Processing
Technology, 185(1-3):184 – 190, 2007.

[7] J. C. Aurich, D. Dornfeld, P. J. Arrazola, V. Franke, L. Leitz, and S. Min. Burrs -
Analysis, control and removal. CIRP Annals - Manufacturing Technology, 58(2):519
– 542, 2009.

[8] D. Axinte and N. Gindy. Assessment of the effectiveness of a spindle power signal for
tool condition monitoring in machining processes. International Journal of Production
Research, 42(13):2679 – 2691, 2004.

[9] P. Bandyopadhyay, E. Molina Gonzalez, R. Huang, and S. M. Wu. A feasibility study of
on-line drill wear monitoring by DDS methodology. International Journal of Machine
Tool Design and Research, 26(3):245 – 257, 1986.

[10] R. W. Barker, G. Klutke, and M. J. Hinich. Monitoring rotating tool wear using
higher-order spectral features. Journal of Engineering for Industry, 115(1):23 – 29,
1993.

[11] O. Basir and X. Yuan. Engine fault diagnosis based on multi-sensor information fusion
using Dempster-Shafer evidence theory. Information Fusion, 8(4):379 – 386, 2007.

[12] M. Bauer. Approximation algorithms and decision making in the Dempster-Shafer the-
ory of evidence - An empirical study. International Journal of Approximate Reasoning,
17(2 - 3):217 – 237, 1997.

78



BIBLIOGRAPHY 79/244

[13] T. Bayes. An essay toward solving a problem in the doctrine of chances. Philosophical
Transactions, 53, 1763.

[14] M. Bedworth and J. O’Brien. The omnibus model: a new model of data fusion?
Aerospace and Electronic Systems Magazine, IEEE, 15(4):30 –36, apr 2000.

[15] I. Bloch. Uncertainty, imprecision and additivity in data fusion: An historical point
of view. Traitement du signal, 13(4):267 – 288, 1996.

[16] C. Bonnet. Comprehensive study of cutting phenomena for Titanium alloys Ti6Al4V
and CFRP stacks drilling in dry condition. PhD thesis, Arts et Métiers ParisTech,
Cluny, France, October 2010.

[17] H. Boström, S. F. Handler, M. Brohede, R. Johansson, A. Karlsson, M. Nilsson J. Van
Laereand L. Niklasson, A. Persson, and T. Ziemke. On the definition of information
fusion as a field of research. Technical report, Informatics research center, University
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Chapter 3

Monitoring problem
formalization, description of
requirements and challenges, &
proposed implementation
approach

From the description and the formalization of the industrial processes monitoring problem,
major challenges and requirements will be identified, and solutions will be reviewed and pro-
posed. Even if these items are presented in different subsections, they present strong links
which will also be detailed. They will then be used to build a methodology dedicated to
the implementation of sensor-based monitoring systems for industrial production processes.
Indeed, more than the monitoring system itself, its implementation also presents challenges
and open questions that will be discussed. A special emphasis will be put on the drilling
process, and specific examples will be provided, but statements and approaches may be gen-
eralized to other industrial manufacturing processes. This chapter will also allow precising
the main orientations of this work by underlying bottlenecks to overcome in order to develop
reliable drilling monitoring systems.

3.1 Description & mathematical formalization of the
monitoring problem

As mentioned in chapter 1 and following the definition given in [16], the typical machining
process monitoring system operates according to the following scheme: several process
variables that are influenced by the cutting tool state and the material removal process
conditions are sensed by the use of appropriate sensors. Signals detected by these sensors
are processed to generate features correlated with tool state and/or process conditions.
Features are then fed to and evaluated by cognitive decision making support systems for the
final diagnosis. This can be communicated to the human operator or fed to the machine tool
numerical controller in order to suggest or execute appropriate adaptive/corrective actions.
This generic sequence is summarized in figure 3.1 where the possibility to integrate prior
and/or external information (that is not issued from sensors measurements) has been added.
Expert knowledge about the sensors, features, estimators and decision making strategies to
use is also mentioned.
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From perception to decision

Sensors
Feature

extraction
procedures

Decision
making

strategies

Prior or
external

information
signals features

Estimators

estimates decisions

Figure 3.1 – Generic monitoring flowchart

The first tools, from sensors to features extraction procedures are ad hoc as a function of the
goal of the monitoring system. However sensors selection and integration and the selection
and extraction of relevant features are essential in the implementation of a monitoring system
and will be discussed in sections 3.4, 5.1 and 5.2.
The next steps, from features (in a wide sense) to decisions, can be expressed in a generic
manner for most monitoring applications. In order to have a standard basis for further
developments, and the implementation of building blocks of a drilling monitoring system in
particular, a mathematical formalization that encompasses these steps has been proposed
and detailed hereafter:

ŝ = f(fe1, . . . , fen, . . . , fefn) (3.1)

which literally means that the estimation ŝ of the state s of a process variable is given as a
function of fn features {fe1, . . . , fefn} by an estimator f . The estimated state can then be
compared to some criteria in order to make decisions. Moreover, concerning each specific
monitoring application, a domain of validity D can be defined in the space of operating con-
ditions that delimits the parameter ranges inside which the estimation reach an acceptable
quality level from the user point of view. Some precisions on the elements of this modeling,
and examples related to the drilling monitoring application, are provided in the following.
The state s and its estimate ŝ can take different forms as a function of the process variable
that is being monitored. It can be:

• binary values for binary classification of the process variable (e. g. tool is broken or
not broken)

• crisps values for classification of the process variable (e. g. hole diameter is under
tolerance or into the tolerance interval or over tolerance)

• values in fuzzy sets (e. g. tool wear state example given in section 2.1.1)

• values in < (e. g. flank wear level)

The features fen that estimations are based upon can also be of different natures. They
can be:

• real values extracted from sensor data (e. g. mean, energy of a frequency band of
interest)

• prior information related to the monitored process variable (e. g. cutting parameters)
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• other process variable estimates issued from previous monitoring tasks (e. g. state-
ment about the absence/presence of a tool cutting edge chipping can be used for the
estimation of the drill wear level)

Finally the type of the estimator f also depends on the task to accomplish. It can be:

• an analytical function in the case of a model of the monitored process variable behavior
exist (e. g. cutting power as a function of thrust force and torque)

• an optimization algorithm in the case of parameters estimation of a known model as
a function of the features (e. g. determination of tool wear increasing rate when an
evolution pattern is available)

• a classification algorithm in the case of discrimination between different possible states
known a priori

• a clustering algorithm in the case a detection of state evolution (e. g. tool cutting
edge chipping application presented in section 5.3.2)

• predictors to anticipate future states of the monitored process variable (e. g. Kalmann
filter)

• high level fusion algorithm to make a decision based on multiple sources statements
about the state of the process variable of interest

This generic modeling of the last steps of a monitoring procedure, from features to decision,
allows to encompass various kinds of data types and estimators, and can consequently be
used for different monitoring use cases that can represent either part or the totality of
a monitoring system. Indeed, several subsystems dedicated to specific monitoring tasks
are needed to perform monitoring of complex processes. An illustrative example of such
subsystems composing a global monitoring system is provided in figure 3.2.

Sensors
Feature

extraction
procedures

Prior or
external

information

ŝ1 to be chosen among the set of propositions {ω1,1,ω2,1}
ω1,1: Presence of a tool cutting edge chipping

ω1,2: Absence of a tool cutting edge chipping

ŝ2 to be chosen among R+ 

fe1,1

fe1,fn1

Monitoring
subsystem

3
ŝ3=f3{fe3,1,...,fe3,fn3}

fe3,fn3

Monitoring
subsystem

1
ŝ1=f1{fe1,1,...,fe1,fn1}

Monitoring
subsystem

2
ŝ2=f2{fe2,1,...,fe2,fn2}

fe2,1

fe3,1

fe2,fn2

ŝ3 to be chosen among

the fuzzy sets:
F3,1: New tool
F3,2: Acceptable tool
F3,3: Worn tool
F3,4: Tool failure

Tool cutting edge chipping monitoring

Tool flank wear level monitoring

Tool condition monitoring

Figure 3.2 – Illustration of a global tool condition monitoring system composed by several
monitoring subsystems
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3.2 Description of requirements and challenges linked
with monitoring of complex processes in harsh en-
vironments

As it has often been evoked here, monitoring complex processes in industrial environment is
a tricky task. Some of the challenges described hereafter are specific to drilling operations
while others are more general. The goal of this section is to detail the causes that made
previous attempts to implement drilling monitoring systems in aeronautical assembly plants
not always as successful as expected.

3.2.1 Variability of operating conditions related challenges

As stated in section 2.1, many studies on drilling monitoring have been done under steady
process conditions, in sensor-friendly lab environments, and issues about the variability of
operating conditions have not been tackled. Concerning industrial processes in a general
manner, two types of operating conditions changes can occur and will be discussed here:
mastered and unmastered. Considering the formalization proposed above, variations of
operating conditions are linked with domain of validity D of a monitoring system.

3.2.1.1 Mastered variations of operating conditions

Mastered variations of operating conditions mainly consist in changes in process parameters.
Indeed, due to the increasing need of flexibility in production plants, and of automated
manufacturing solutions in particular, manufacturing operations can have to be performed
in different conditions, requiring the use of different process parameters. Concerning drilling,
not only cutting speed and feed rate are concerned, but also the material to be drilled, the
lubrication type and quantity, the drill geometry, etc, are susceptible to change several times
a day as a function of the part of the airframe that is drilled for example, and a monitoring
system has to face these variations and remain reliable. If some of these changes can be, from
a monitoring point of view, tackled by the use of process parameters as features (numerous
studies presented in section 2.1 took cutting speed and feed rate as input parameters), others
can be difficult to quantify and to integrate this way. The monitoring system must then be
robust facing this latter category of changes of operating conditions.

3.2.1.2 Unmastered variations of operating conditions

If one can first think of influence quantities as ambient temperature for instance, more
impacting sources of operating conditions variations exist. Concerning drilling operations
for instance, the stiffness of the system formed by the drilling machine and the workpiece
plays an important role in the progress of drilling operations. When considering large
aeronautical substructures, like nose fuselage for instance, local variations of the workpiece
stiffness are unavoidable. In the same manner, some automated machines that are used
to perform drilling present different vibratory behaviors as a function of their positioning.
Such a configuration favoring the apparition of stiffness variations in the system formed by
the drilling machine and the part to be drilled is visible on figure 3.3. These kind variations
linked with the process to be monitored, that are difficult to reproduce when performing lab
experiments, contribute to the lack of robustness that manufacturing monitoring systems
suffer from when implemented in the shop floor. Indeed such process variables variations
are passed through sensors signals, then features, and so on until estimations and decisions
are made by the system which, in most cases, has not been designed to face such dispersive
behavior of its input parameters.
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Figure 3.3 – Example of drilling operations being performed by a robot on a large structure
presenting different local stiffness levels. Such robots also present different vibratory behaviors
as a function of their positioning

Many sources of operating conditions variability exist that lead to the same reliability
issues. For example, the transfer of a monitoring system from a machine to another
one, which behavior is fatally different, have to be possible considering flexible produc-
tion environments. Therefore, changes in operating conditions, either they come from
the need of flexibility or unmastered variations, require that an industrial monitoring
system be robust facing such changes, or, according to the proposed formalization, that
its domain of validity D be large enough to cover industrial needs of flexibility and
reliability.

3.2.2 Quality of data related challenges

Data passing from sensors to decision are the information vector within a monitoring sys-
tem. Therefore quality of data is an important point. Mainly input data are subjected to
quality related issues, and these imperfections are often propagated through the features
{fe1, . . . , fefn} defined in the proposed formalization, until they decrease the global perfor-
mance level of the monitoring system by affecting decision that are made.

3.2.2.1 Quality of input data

Quality of input data is of great importance for an industrial monitoring system: as input
data coming from sensors are at the basis of all the monitoring sequence, misinterpretations
at this level will propagate through all the different steps leading to inadequate decisions.
Imperfection on sensor data is therefore a major issue that should be taken into account
from the beginning of the design of a monitoring system. This is not done in most actual
studies about machining process monitoring, and it has been treated in an implicit manner
by the estimators, which have become more and more complex. Monitoring performances
did not increase as a function of this complexity, neither in term of accuracy nor reliability,
showing the limits of approaches that disregard the data imperfection related issues. Actu-
ally, this is a well-known fact: even the best algorithm will not provide good results if its
input data are of low quality or are misinterpreted. Different types of perturbations that
can affect input data are reported in figure 3.4.
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The most usual, and also the most discussed, is uncertainty due to stochastic perturbations.
Indeed, industrial plants are often hostile to sensor measurements due to the presence of
many high power machines generating electrical perturbations that affect sensors signals.
Ambiguity encompasses every phenomena that affect sensors detection ability and which
cannot be considered as ’normal’ stochastic perturbations. The border between these two
types of imperfection is somewhat artificial [13] because noise can affect sensors detection
ability in some extent. Causes of such lack of detection ability can be, but are not limited to:
sensor partial or complete breakdown, presence of an external element that avoid a normal
measurement, etc. Actually, many hostile elements to sensors exist in industrial plants that
can be at the origin of sensors dysfunctions, like chemicals, diverse dusts, moving parts.
Inconsistency arises when several sensors provide different statements about the same quan-
tity of interest, and is caused by of one a the two aforementioned data quality related issues:
due to perturbations on some of the input data, they are conflicting with reliable ones. This
type of situations raises the importance of efficient fusion algorithms.

From perception to decision

Sensors
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procedures

Decision
making

strategies

Prior or
external

information
Uncertainty
Ambiguity

Inconsistency

Uncertainty
Ambiguity
Vagueness

Estimators

Uncertainty
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Inconsistency

Figure 3.4 – Uncertainties on data through the monitoring sequence: some of them propagate
while others can be reduced by the use of appropriate estimators and/or fusion algorithms

3.2.2.2 Quality of features definition and extraction

Apart from cases when low level data fusion solutions are implemented reducing avoidance
of degraded or false information, perturbations on input data are directly passed through
features at the feature extraction step. In addition to features extracted from sensors signals,
information can be provided to the estimator: it consists in information that the user can
possess, like process parameters for instance, or every information that are not issued from
sensors. As depicted on figure 3.4, these inputs can suffer from uncertainty (e. g. a process
parameter, like spindle rotation speed, may present a probability distribution as a function
of the command), vagueness if one imagine the operator can make a choice over semantic
variables to qualify the state of a phenomena (e. g. drill wear level, see figure 2.9(a) for
an example of vague statements about it), or ambiguity if he is not able to choose between
different propositions. The state of the art on drilling monitoring applications, if it allowed
reporting many studies where process parameters had been used as input of estimators, did
not allow finding studies neither where the quality of this input data has been assessed,
nor where the possibility to integrate ambiguous or vague statements as input had been
explored.
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3.2.2.3 Estimations quality

The last stage before the decision making step, where issues related to data quality can man-
ifest themselves, is after estimation procedure. If it can seem obvious that uncertain, vague
or ambiguous features will provide poor estimates in terms of data quality, the estimation
step can also be viewed as an opportunity to reduce harmful effects linked with data quality
related issues, and possibilities offered in this sense will be detailed in a further section. The
type of data imperfection that estimates can suffer from mainly depends of the estimator
that has been used, and imperfect results can, to some extent, be acceptable. For instance,
a vague statement issued from a fuzzy inference system, or probability distribution issued
from the combination of uncertain features can be sufficient to make appropriate decisions.
However, for such results to be valid, it implies that estimators had received reliable data
as inputs, or possess the ability to deal with imperfect data.

Data quality, and especially input data, is of major importance for a monitoring system
to achieve good performance. However, some causes of data imperfection and/or incon-
sistency are not avoidable, and therefore the system have to be able, in some extent, to
deal with such data in order to become robust in an industrial environment. This can
be done either by avoiding the creation of low quality features or by using estimators f
able to deal with them. Solutions to address some of the aforementioned data quality
related concerns are discussed in section 3.3.

3.2.3 Process complexity and dispersive behavior related challenges

The last concern about the implementation of an industrial process monitoring system is
linked with the operations to be monitored. The particular case of drilling operation will be
evoked here, but most of the statements may be applied to other manufacturing processes.
As mentioned several times in section 1 and 2.1, drilling is a complex operation that shows
a dispersive behavior. If these two issues are linked, they will be dissociated because their
respective influences affect the monitoring system in different ways. Drilling process com-
plexity implies that the estimator f is able to deal with such complicatedness, and often also
imposes the use of high number of features. On the other hand, process dispersive behavior
is linked with the domain of validity D of the system as well as with the ability of the
estimator f to deal with data that are, to some extent, scattered.

3.2.3.1 Process complexity

As stated in chapter 1 and section 2.1, the complexity of the drilling process forbade the
development of mathematical models describing the evolution of process variables of interest
(state of the workpiece and of the production mean) as a function of measurable quantities.
Therefore, model based monitoring methods (also called quantitative monitoring approaches),
that lie on observations of process features in order to estimate its state are not applicable
in our case. Therefore, the use of external (or qualitative) monitoring methods is required:
they are based on knowledge on the system behavior provided by users and/or experiments.
All AI based monitoring methods fall into this category. One of the main challenging aspect
of the implementation of such method is knowledge modeling. Therefore, statements related
to the modeling of imperfect data presented in section 2.2.2 are to be taken into account
in order to integrate every available knowledge. Then, the absence of theoretical model
imposes to the monitoring system designer to perform the selection of relevant sensors and
features, efficient estimators and decision making strategies, in brief, to define all the needs
related to the whole monitoring procedure, from perception to decision. These tasks form
the implementation steps of a monitoring system based on external methods and will be
detailed in section 3.4.
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3.2.3.2 Process dispersive behavior

Several studies related the randomness inherent to cutting processes [16, 11], and drilling in
particular [15, 14, 12], to explain their dispersive behaviors. It may be more accurate to link,
to some extent, these behaviors with unmastered (and sometimes undetected) variations of
the process operating conditions that have been mentioned in section 3.2.1. Indeed, slightest
changes in the operating conditions can lead to very different results during a drilling op-
eration. For instance, a micro-chip trapped during the tool insertion in the tool holder can
generate imbalance of the cutting process that will lead to unexpected vibratory behavior.
This example is detailed in figure 3.5. In an airframe assembly plant, one can imagine many
perturbation of this kind. If occurrences of such problems can be reduced be the application
of strict procedures, they cannot be totally avoided, therefore a monitoring system must be
able to face, or at least to identify them as singular events that necessitates a particular
attention.

Complex processes, that often present dispersive behaviors, are challenging to be mon-
itored. Indeed, as they do not allow the use of model-based monitoring approaches,
monitoring strategies have to be build over knowledge of the process that is often dif-
ficult to model and to use in a reliable manner. Moreover, dispersive behaviors impose
that monitoring systems are robust facing situations that were not known at their design
phase.

(a) Magnitude plot of the axial acceleration sig-
nal acquired during drilling Ti6Al4V in the fre-
quency domain: only a pike at 2 times the spin-
dle rotation frequency is visible, which is the
expected behavior

(b) Magnitude plot of the axial acceleration sig-
nal acquired during drilling Ti6Al4V: the domi-
nant frequency is visible at the spindle rotation
speed, as well as a pike at 2 times this frequency
denoting an unbalanced drilling operation

Figure 3.5 – Illustration of the influence of slight process conditions changes in drilling.
Magnitude plots of axial accelerations signals obtained during drilling Ti6Al4V in the frequency
domain using the same process conditions (the drill has been replaced between them, but the
same model has been used) are shown. The disassembly of the drill and tool holder after
the second test series revealed the presence of a microchip stuck between two parts of the
tool holder (it probably slipped in in while the tool was being changed between the two test
series) that had probably provoked the imbalance visible on plot (b) and that leaded to the
fragmentation of titanium chips whereas they were long during the first test series
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3.2.4 Overview on challenges for monitoring in difficult environ-
ments

Several challenges have to be overcome in order for a process monitoring system to perform
in a way that allow satisfying industrial requirements. They can be summarized as follow:
the absence of mathematical models of the process impose the design of a dedicated system,
from the sensors needs to decision making strategies. Constraints on such a system are
numerous because of the associated requirements, both in terms of accuracy and robustness
due to the dispersive behavior of some processes, and also the difficult environment in which
such systems are implemented in. Indeed, the harsh industrial context is a source of data
imperfections that makes difficult to obtain reliable results.

3.3 Discussion on solutions to overcome challenges and
meet expected requirements

In order to overcome challenges and meet expectations detailed in the previous sections,
solutions exist that will be discussed hereafter.
Following the generally accepted statement that reliable process condition monitoring based
on a single signal feature is not feasible [5], the use of multiple sensors together with intel-
ligent information processing techniques has been described as one of the most promising
strategies to improve the reliability and flexibility of tool condition monitoring systems
[16, 11, 2]. Indeed, numerous studies (presented in section 2.1.3) using multiple sensors
and diverse data fusion techniques and strategies have been performed, and several bene-
fits should have followed the introduction of multisensor data fusion for drilling monitoring
applications:

• a better handling of the process complexity

• an improved robustness facing the harsh industrial environment

• a better reliability facing the process dispersions & operating conditions variations

As concluded at the end of section 2.1.3, mainly the first point has been addressed. The use
of multiple sensors providing information, that have most often been merged using neural
networks, allowed obtaining interesting results for tool wear estimation or tool wear states
discrimination in particular. This demonstrated one potential benefit of introducing sensor
fusion in manufacturing process monitoring systems for a better handling of the process
complexity . However, this has mainly been done under steady process conditions and in
sensor-friendly lab environments, and neither issues about the variability of the operating
conditions, process dispersion nor quality of data have been tackled.

3.3.1 Robustness facing harsh industrial environments

This point is of great importance for an industrial monitoring system: basically, the use of
multiple sensors, or information sources, follows the absence of precise or sure enough data
coming from one source. Imperfections and inconsistency on sensors data should therefore
be taken into account from the beginning of the design of a monitoring system. To do so,
a precise knowledge on ways to model and handle different forms of data related quality
problems will help to better address the challenges they involve.
From a formal point of view, sensor data and features {fe1, . . . , fefn} that are extracted
from, dedicated to a monitoring task, will present contradictory values that will lead to
difficulties at the estimation step. The estimator f must then have a strategy to face such
cases.
Section 2.2 reviewed several multisensor data fusion concepts, frameworks and techniques
that can be suitable to tackle data quality related issues. First of all, the awareness of
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such issues is essential. If this statement can appear obvious and most recent review papers
concerning monitoring of machining operations mentioned it, this concern is barely visible
in attempts to develop monitoring systems for industrial machining processes. Coherent
and understandable modeling of data imperfections has been proposed following the litera-
ture that should allow orienting the choice of relevant solutions to implement. Frameworks
dedicated to the modeling and handling of such imperfect information have then been intro-
duced with a special emphasis on the probabilistic and evidential ones. Their use, combined
with relevant sensors integration and feature selection, should allow improving robustness
of monitoring system in harsh environments.
The multiplicity of information sources as a response to data quality related issues raises
the notion of information redundancy. Indeed, one potential advantage of using informa-
tion fusion is the capacity for the system to work in a degenerated mode, in case of some
information sources dysfunction for instance [7]. Unfortunately, following the developments
of section 2.2, this multiplicity is also a source of inconsistency. Indeed, the use of multiple
sources aimed at providing statements on the same phenomena in harmful environment leads
to the creation of conflicting statements that yet need to converge to a unique and reliable
decision. In case of data coming from sensors, this problematic has been discussed, and solu-
tions proposed, in [10] and [6] by the use of concepts issued from the probabilistic framework.
Such solutions should also be available for other steps of the monitoring sequence depicted
in figure 3.1, in order to be able, in particular, to merge redundant statements expressed
as features at the estimation step. An attempt in this sense using belief functions has been
proposed in chapter 4. The problem has been formalized as a singularity identification task,
because behind numerous operations needed to perform monitoring, from feature extraction
to decision making, the problem can be considered as choosing a particular (or singular)
value (no supposition is made of the type of value, it can be numerical, semantic, ...) among
others. Further details, as well as theoretical developments and comparison with existing
approaches by numerical experiments will be presented in chapter 4, and application on
diverse use cases will be detailed in sections 5.2 and 5.3.1.

3.3.2 Robustness facing process dispersions & operating conditions
variations

Processes dispersive behavior and operating conditions variations are grouped together in
terms of solutions to deal with in a robust manner. Anyway, what is perceived as disper-
sive behavior of the process may often be due to operating conditions variations that the
user is not aware of. They are two of the main reasons that explain the lack of reliability
of monitoring systems when implemented in industry, and affect both their flexibility and
reliability.
From a formal point of view, the problem can be described as follows: due to change(s) in
initial conditions, the features {fe1, . . . , fefn} used to monitor the process state will take
different values than expected, and the estimator f will not be able to provide reliable state-
ments. Expectations on features values come from the implementation of the monitoring
system, and the supervised learning phase of estimators in particular, if any. An illustrative
example of such a case in drill condition monitoring is given in figure 3.6.
As changes of features values due to variations of operating conditions are unavoidable, the
solution to this problem has to be found at the estimation step of the monitoring sequence.
The fact that estimators expect features to take values in regions of the feature space that
have been delimited and labeled a priori is a drawback for the implementation of a robust
and reliable monitoring system in cases where variations are expected. Concerning drilling,
section 2.1 showed that many studies have focused on the use of supervised learning tech-
niques, and neural networks in particular, to perform monitoring of various drilling linked
phenomema of interest. However, as it is the case for the example described in figure 3.6,
but also for many other monitoring purposes, the location of a data sample in the feature
space is not as important as the detection of unexpected variations of their locations that
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(a) Subdivision of the feature space after super-
vised learning of a linear classifier f has been
performed in order to discriminate between 2
states s1 and s2 of the process, corresponding
respectively to the use of a new and a worn tool

(b) The feature space subdivision issued from the
learning phase is kept to perform drilling mon-
itoring on a part with different stiffness behav-
ior, and using a drill inducing more thrust force
and less sensible to wear: some drillings are
misclassified because the a priori feature space
subdivision is not adapted to new operating
conditions

Figure 3.6 – Illustration of the robustness problem involved by estimators based on supervised
learning procedures: prior subdivision of the feature-based spaces may lead to misinterpreta-
tions in case where operating conditions are subject to variations

often reveals the presence of an abnormal behavior of the process. Then the presence of
one or more data samples (representing manufacturing operations) that present singular
locations compared with others should be considered for an eventual inspection and/or cor-
rective action(s). The solution proposed here is partly based on this statement: instead of
trying to characterize the process state by designing a feature-based space that subdivisions
corresponding to process states are determined a priori, it may be more robust to detect
when the process state image location evolve in an unexpected manner in the feature space.
If the parameters of estimators aiming at the detection of such changes have not to be set
up during a learning phase, and, consequently, are a solution to the problems linked with
the construction of a priori labeled feature-based spaces subdivisions that often need many
training data, they either necessitate an initialization phase to link regions, or more precisely
data samples clusters locations, to process states, or will only be able to monitor relative
changes without allowing the characterization of the process state.
Practically, the monitoring system designer should avoid estimators which parameters set-
ting is based on supervised learning procedures, and prefer the use of unsupervised learning
based ones, that are better to detect process conditions changes, together with an ini-
tialization phase. Such estimators should remain simple in order to necessitate only an
initialization phase, as short as possible, because it can be considered intrusive depending
on the process that is monitored. Concerning drilling of airframe subassemblies, each time
a new part is about to be drilled, several holes are performed in a sample and checked in
order to ensure they meet the quality requirements. This phase is called the prior quality
checking phase. These drillings (under the hypothesis holes meet the quality requirements)
that are representative of the process normal functioning state can serve as an initialization
phase, and therefore no additional operations are required that would make the monitoring
system intrusive. Such an initialization phase principle is depicted in figure 3.7.
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Figure 3.7 – Initialization phase of unsupervised learning algorithms integration through the
monitoring of airframe subassemblies drilling operations

3.3.3 Overview

Multisensor data fusion, but also related concepts as data imperfection modeling and merg-
ing of conflicting statements, are of great interest to meet challenges implied by the running
of process monitoring systems able to achieve the performance level required in the manu-
facturing industry. If the use of multiple information sources has been widely discussed and
assessed, the use of concepts related with information imperfections and detailed in section
2.2 has been, to the author knowledge, barely been mentioned by now. Possibilities offered
by these concepts and related techniques have been underlined, and their use will constitute
one of the original contributions of this work. Descriptions of the different applications they
have been used for drilling monitoring, and assessment of the performance improvements
they provided, will be given in chapters 4 and 5.

3.4 Proposed approach for the implementation of mon-
itoring systems for industrial production processes

In 2010, Abellan-Nebot and Subirón stated that in spite of the intensive research being
carried out in the field, there was still no clear methodology for developing machining mon-
itoring systems that allowed machining processes to be optimized, predicted or controlled.
Furthermore, many of the research studies presented in the literature seemed to be contradic-
tory [1]. Several steps are unavoidable during the design of a drilling monitoring system, and
the goal of this section is to detail their content, their mutual links, their requirements and
their challenging aspects in order to be able to implement a monitoring system that fits the
aforementioned requirements. From the proposition of a global methodology, main steps of
the implementation will be considered, leading to the determination of several contributions
of this work.

3.4.1 Global methodology for the implementation of a monitoring
system

A generic methodology, which is summarized in figure 3.8, has already been proposed in [1]
in order to develop intelligent monitoring systems for machining process, based upon ques-
tions that monitoring system designers should ask themselves during the design process.
If the general framework and objectives for the implementation of a monitoring system
for machining operations are shared, not exactly the same organization will be kept here.
Propositions to meet the different aforementioned challenges will sometimes be different due
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Figure 3.8 – Generic methodology to develop intelligent monitoring system for machining
process from [1]

to the original tracks we decided to follow in this work, and some practical considerations
too. This section will be organized according to the different steps necessary for the imple-
mentation of a monitoring system, and will allow introducing future parts of this work.
The different steps of the development of a monitoring system are, according to the author:
problem position, sensors integration, features selection, estimators selection, monitoring
system evaluation, and industrial implementation. This steps, depicted in figure 3.9 with
the eventual feedbacks, present strong mutual links, and sometimes overlap, but their sepa-
ration provides an interesting view of the different stages to plan for the implementation of
a monitoring system. They will be detailed in dedicated subsections.

3.4.2 Problem position

First of all, a good positioning of the monitoring problem to be addressed is mandatory. In
addition of the formalization proposed in section 3.1 that allows describing the estimation
problem in its wide sense, but which does not encompass sensors and signal processing
related concerns, a precise knowledge of the production process, working environment and
specific constraints is required.
All these information will be used in order to design experiments dedicated to the emphasis
of the phenomena of interest in order to collect the maximum amount of sensor data. The
constituted sensors signal data base will further serve to select the most relevant sensors and
features to use for the monitoring application. Therefore, as many sensors as possible have
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Figure 3.9 – Proposed approach for the implementation of industrial process monitoring
systems: eventual feedbacks are represented by gray arrows while data flow and expected
results at the end of each steps are given in green and blue respectively. The term optimal is
related to the performance level of the monitoring system

to be used in order to then assess their potential relevance. For many processes, sensors to
be implemented will be limited by integration constraints.
The design of such dedicated experiments is a complex task. As it is to be done in many
fields of applications, many references are available for one to find the most relevant strategy
regarding his specific needs and constraints. A complete introduction can be found in [3],
and another one discussing this aspects from a machining process monitoring point of view
is given in [1].

3.4.3 Sensor integration

Sensor integration encompasses, in this work, the choice of sensors to be used for monitoring
as well as their implementation on the device the monitoring system has to be installed on,
and associated techniques aimed at the extraction of features from signals they will pro-
vide. Many recent reviews provided synthesis on sensors that have been used for drilling
and/or machining operations together with popular features that are extracted from signals
[16, 1, 11, 8]. Section 2.1 also provides hints on sensors and associated feature extraction
techniques to be used for drilling monitoring applications.
The respective abilities of sensors to provide information correlated with some phenomena
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of interest have been widely investigated. From a practical point of view however, an im-
portant item has often been neglected: their implementation. One of the main reasons of
this negligence is that sensor implementation heavily depends on the machine they will be
mounted on, and is therefore an ad hoc problem. Still, this concern is very important be-
cause the ability of a sensor to provide informative features depends on its implementation.
Moreover, several major concerns have only been partially tackled yet, as, for instance, the
robust integration of force sensors on industrial rotating machining devices, or the influence
of different implementations possibilities to mount acoustic emission sensors. Reviews of
existing works and some contributions concerning both these issues will be discussed in sec-
tion 5.1.
Within the proposed global methodology, the choice of sensors and associated features is
performed in a systematic manner, rather than subjective choices that are based on litera-
ture or expert knowledge that could lead to the missing of informative data due, for instance,
to particularities or special configuration of the system.
If more details on the feature selection procedure will be provided in the next section, from
a sensors point of view, the principle is simple. During the sensor integration stage of the
implementation of a monitoring system, as many different sensors as possible should be
mounted on the machine to perform dedicated experiments in order, within the following
steps, to be able to isolate the most informative ones and select a combination that al-
lows reaching expected monitoring performance regarding the phenomena of interest. Other
sensors will be discarded for the installation of the monitoring system in the industrial
environment.

Realization
of dedicated
experiments

Exhaustive
set of

sensors

Optimal
set of

sensors

Sensors signals
database

Figure 3.10 – Principle of sensors selection by reduction of an as exhaustive as possible set
of sensors within the proposed monitoring system implementation scheme

3.4.4 Feature selection

The feature selection step consists in finding an optimal set of features {fe1, . . . , fefn}
among the N features extracted in a systematic from the sensors signals database that will
allow obtaining the best monitoring performances.
If the systematic approach for sensor selection may be heavily biased by the non-intrusion
constraint that the monitoring system has to satisfy, this is not the case for the features
selection step. Indeed, when a sensor signal is available, as many features as one can imagine
can be extracted from it. This is therefore a step where the use of systematical approaches
can significantly improve the performance compared with most of existing monitoring sys-
tems. Concerning the monitoring of machining operations, features have often been chosen
without argued reasons, or only based on literature review [16]. Extraction of features from
signal databases procedures are easy to implement (in an as exhaustive as possible manner),
thanks to nowadays data processing facilities (e. g. personal computers), and allows avoid-
ing the missing of relevant features regarding the phenomena of interest. Such an approach
has been employed in [9] for machining monitoring application, but many similar examples
exist in other fields of application.
Another important aspect of feature selection will be discussed in this work: as the quality
of data has been shown to be a major concern while performing monitoring due to the harsh
industrial environment, it is also the case when performing dedicated experiments implied in
the design of monitoring systems. As a consequence, all the data quality related challenges
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discussed in section 3.2 are to be considered when using the signals database dedicated to
sensors and features selection. In [9] for instance, it has been showed, for turning opera-
tions, that performing feature selection on data from different test campaigns (but similar in
terms of operating conditions), could lead to different sets of relevant feature concerning the
same phenomenon of interest. The dispersive behavior of the cutting process has also been
incriminated, showing that all challenges linked with online monitoring are also to be taken
into account offline when designing monitoring systems. Solutions to tackle these issues that
have been proposed in section 3.3 will also be investigated for the feature selection step.
Both the systematic approach and data quality related solution will be developed and as-
sessed in section 5.2. In particular, data fusion concepts and belief functions as implemented
in chapter 4 for the identification of singular elements in data sets, will be used to perform
feature selection and select the most relevant ones. The relevance of features will be consid-
ered as their singularity level, allowing to identify the most useful ones among the exhaustive
feature set. Additional challenges linked with the selection of features from data acquired
in difficult contexts, like the heterogeneity of data sets for instance, will also be discussed.
Comparison with classical approaches on a tool cutting edge chipping detection application
will allow assessing the performances obtained using these original methods developed to
overcome challenges that feature selection implies in our context.

3.4.5 Estimator choice

Due to the great variety of tasks that the estimator can have to perform in process mon-
itoring applications, many types of techniques can be used, as evoked in section 3.1, and
therefore no precise procedure can be applied for its choice. However, some relevant points
will be evoked in this section to provide guidelines in order to choose estimators that will
allow monitoring systems meeting requirements discussed in previous sections.
In drilling monitoring applications presented in section 2.1, mainly discrimination between
process states and estimation of numerical variables have been performed. Neural networks
using supervised learning procedures have been very popular, especially when the fusion
of multiple sensors had to be done. From the first attempts, the complexity of networks
(or other types of estimators) and associated elements (training sets, architecture parame-
ters,...) increased in order to overcome the difficulties linked with the expected flexibility of
a drilling monitoring system regarding process parameters. If acceptable results have often
been achieved in lab experiments, the fact that no such system is used in industry yet can be
interpreted as a sign they are not robust enough to meet industrial requirements in term of
reliability. Actually, from our point of view, estimators should, in order to be robust, remain
as simple as possible. Every challenges discussed in section 3.2 should be considered and
treated separately using, for instance, the formalization proposed in section 3.1. Addressing
the different challenges involved one by one, instead of in a general and rather implicit way
by the use of complex estimators, should allow a better understanding of eventual issues and
facilitate their treatment. For instance, concerning the example given in section 3.3, a sim-
ple clustering algorithm, selected following the principles that simplicity and unsupervised
learning improve robustness, would have easily made the discrimination between drilling
operations performed with new and worn tool in both the presented application cases.
Several items have been listed in [1] in order to serve as a basis to select an estimator (types
of estimators were limited to artificial intelligence techniques): number of experimental sam-
ples available, the stochastic nature of the process, the desired model accuracy, the explicit
or implicit nature of the model and the previous knowledge available. The first one, namely
the necessary amount of experimental data, is a major concern as manufacturing experi-
ments are expensive, and access to production facilities to perform tests is often reduced.
This is another advantage in favor of simple estimators that do not necessitates supervised
learning. Another aspect to take into account is the combination of the estimator with
selected features, emphasized on figure 3.9 by a feedback arrow. Indeed, given a monitoring
task, the optimal set of relevant features will not necessarily be the same using different



3.4. IMPLEMENTATION OF A MONITORING SYSTEM 103/244

estimators. Then, either a compromise have to be made between features and estimator,
or one is chosen and the other has to be adapted. This is the case, for instance, when
using wrappers feature selection approaches that use the estimation performance to perform
feature selection, implying that the choice of an estimator must has been done previously.
More details about this question will be provided in section 5.2 where feature selection is
discussed. Except for cases when an estimator perfectly match the monitoring task needs,
it is, to the author opinion, better to favor informative features because quality information
is mandatory for reliable estimations.

3.4.6 Monitoring system evaluation & industrial implementation

Once the monitoring problem has been defined, and sensors, features and estimators have
been selected, the complete skeleton of a monitoring system is available. It is called an offline
monitoring system in figure 3.9 because it is still not implemented in industrial environment
and still not working in real time at this point. Indeed, before an eventual industrial imple-
mentation, its performance must be assessed offline to fix eventual problems, if any, in order
to avoid time consuming and production-intrusive interventions after its installation.
The design and evaluation phases of a monitoring system can be placed in parallel with
the learning and generalization phases of learning machines evoked in section 2.1.1. Indeed,
both necessitate the use of a database in order to be designed, and their generalization per-
formance level have then to be assessed. Within the proposed approach for the design of a
monitoring system, a sensors signals database is needed to perform sensors integration and
feature selection. Then, the offline assessment of the developed monitoring system must be
done using different data sets in order to assess its robustness facing input data coming from
test campaigns the system has not been built upon, and to avoid a systematic optimistic
bias in the evaluation of its performance. As stated earlier, the amount of available experi-
mental data that are representative of the industrial production conditions is often limited.
In order to optimize their use, both for design and generalization performance assessment
phases, techniques traditionally used for machine learning can be adapted. The parallel be-
tween machine learning and implementation of monitoring systems in terms of experimental
data needs for learning/design and generalization performance assessment/monitoring sys-
tem evaluation is depicted in figure 3.11. Concerning the implementation of a monitoring
system, the data sets necessary for these two phases will be called, respectively, design set
and evaluation set.
Techniques allowing to use available data to design and evaluate the monitoring system will
be adapted from [4] where they have been explained for the machine learning case. As var-
ious kind of estimators are considered in this work, no generic formulation can be provided
to quantify the system performance level, which is actually often given in the form of an es-
timate of the error probability for the monitoring system. It can be the misclassification rate
for classifiers, root mean square error (RMSE) for numerical estimators, ... Classical error
measurements used for estimators performance assessment should be chosen as a function
of the given monitoring task.
Holdout method, the simplest one, consists in isolating a part of available data at the design
step in order to use it latter for the assessment of the system performance. It has 3 major
weaknesses:

• A big evaluation set is needed to obtain a precise estimate of the system performance
level

• It is thus a waste to isolate a big amount of data that could have been used within
the design process of the system and improve its performance

• This method often leads to an overestimation of the error probability of the system
(pessimistic bias)
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Figure 3.11 – Parallel in the need of experimental data for the implementation of a monitoring
system and of a learning machine

Cross validation methods consists in dividing the experimental data set in v subsets, to
perform the design phase using v− 1 sets and the evaluation phase with the remaining one.
This is repeated v times, each time using a different subset for the evaluation step. Then,
the estimated error probability is obtained be averaging the v ones that have been obtained.
The extreme version of this approach is to chose v equal to the number of data samples in
contained in the experimental data set. It is then called leave one out and allows obtaining
a Jackknife error. The Jackknife error is usually a good estimate as the v classifiers that
have been used to obtain it are close from the estimator to test (they only differ by one
sample of the experimental data set).
Bootstrap methods use a different approach: the whole data set is used at the design stage,
and a first estimate Ê of the error probability E is computed using the same whole data
set. This is called resubstitution. As stated earlier, this estimate suffers from an optimistic
bias because the design step was aimed at the reduction of this error using the same data
samples. The goal is then to estimate this bias in order to update Ê and obtain a more
accurate estimate. To do so, the data set is re-sampled M times by random drawing with
replacement from the experimental data samples, and the design and evaluation step are
performed, giving M error estimates Êm, and M error estimates êm given by the designed
systems evaluated with the original experimental data set. Then, the bias b is estimated by
averaging the M biases:

b =
1

M

M∑
m=1

(êm − Êm) (3.2)
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The the final estimate of the error probability is given by Ê + b. This method often leads
to optimistic estimates because it is based on successive resubstitutions (i. e. testing with
training data).

Of these different approaches, the cross validation seems to be the best suited to provide
accurate performance assessment for industrial drilling monitoring applications. However,
its implementation requires the design of an evaluation plan that industrial monitoring sys-
tems designers may be not used to, and also requires computation facilities. An approach
derived from it can also be considered if the available data collection results from different
test campaigns. Instead of dividing the sensors signal data set according to samples (drilling
operations in our case), this could be done according to test campaigns. Two advantages
of such an approach are that the computation needs should be drastically reduced, and if
the test campaigns present differences in terms of operating conditions, the results can be
representative of the robustness of the system facing implementation and use in different
operating conditions or environments. Unfortunately, such an approach has not been im-
plemented during this work, and its evaluation makes part of further research.

Depending on the performance achieved by the monitoring system and its matching with
defined requirements, either a feedback can be done to ameliorate weaknesses in case of the
system is not good enough, or the implementation in industry can take place. In the latter
case, even if offline evaluation gave expected performance, some verification tests have to
be performed in order to ensure that monitoring system will detect anomalies it has been
designed for in a reliable manner, but also will not be production-intrusive because of too
many false alarms.

3.5 Conclusion

This chapter provided a mathematical formalism to describe the monitoring problem, and
separated the design, evaluation and industrial installation stages of the implementation of
a process monitoring systems in industry. It allowed defining clearly the different tasks to
be done.
As the proposed implementation approach has been based upon industrial requirements,
and took into account the numerous challenges linked with monitoring in shop floors, it
should provide process monitoring systems designers the ability to overcome the reliability
and robustness issues encountered so far.
Several information fusion and artificial intelligence concepts have been used here as ways
to explicitly describe challenges that have usually been treated in implicit manners, as well
as solutions to overcome them and meet industrial requirements. This is in agreement with
the philosophy of this work to bring recent development from several research fields in order
to improve performance of drilling monitoring systems.
In particular, a method will be proposed in chapter 4 to perform singularity detection in
harsh environments using multisensor data fusion and belief functions. It will then serve as
a basis for the development of methodologies and building blocks necessary for the imple-
mentation of a drilling monitoring system that will be presented in chapter 5.
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Chapter 4

On singularity identification in
difficult contexts using data
fusion: methods and
contributions

4.1 Introduction

Monitoring of a system or a process implies detecting deviations from its normal functioning
mode. Identification of these singular states is done by looking for singular values taken
by the system characteristic features. Many examples of drilling monitoring applications
based on singularity detection have been given in section 2.1. Identifying singularities can
also help for other steps of the implementation of monitoring system: when looking for the
most informative features to use to monitor a particular phenomenon, as it will be done in
section 5.2 for instance. Actually, singularity detection is a very generic operation that is
performed, either explicitly or implicitly, in many fields of application, every time there is to
find an instance, a sample or a feature of a given data set that take a remarkable value. In
most cases, after some data processing, this problem comes to find the maximal (or minimal)
value of a data set.
Being aware of the importance of singularity detection and identification in monitoring appli-
cations, it becomes mandatory for the monitoring system designer to guarantee its accuracy.
Therefore, in difficult contexts as aeronautical assembly plants, robust methods have to be
implemented. Multisensor fusion appears as a natural solution to improve robustness, but
calls for a good modeling of uncertain and imperfect information, and raises the problem of
information inconsistency, as evoked in section 2.2.
This very important issue for monitoring is discussed in this chapter. The singularity identi-
fication problem will first be introduced and formalized. For the sake of generality, the case
of multi-dimensional data sets will be treated. Then, two existing approaches, designed in
the probabilistic and evidential frameworks respectively, will be briefly introduced before a
novel evidential approach will be proposed. Finally, performances of each of them will be
assessed with numerical experiments and results will be discussed.
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4.1.1 Singularity identification from general applications to drilling
monitoring: a brief introduction

Singularity detection in data sets is of major importance in many fields of application, like
medical diagnosis [9, 23], structural health monitoring and mechanical systems monitoring
[17, 18, 21], power plants and energy distribution systems monitoring [14, 1], or natural
diseases anticipation [6, 2]. These applications need automatic singularity detection systems
that are robust and able to achieve good performances levels even in critical cases involving
sources dysfunction or other perturbations.
As for monitoring drilling operations on aircrafts high added-value structural parts, we
already insisted on the importance of the quality of input data in order to reach good
performance level. Thus, the correct identification of singular data or system states, which
will serve as inputs in order to establish a decision, is primordial. As mentioned above,
singularity identification, which consists in finding elements within a set which are somewhat
different from others, can take place at many stages of drilling monitoring. Three illustrative
examples are given in figure 4.1.

4.1.2 Formalization of the singularity identification problem

4.1.2.1 General considerations

The singularity detection problem can be divided into two steps. The first one, for which
numbers of ad-hoc techniques depending on the application have been developed, consists
in finding some pattern of interest revealing the presence of a singularity in the observed
data. Popular methods have been developed for singularity detection in time series [15] and
images [8, 3], among others. Once this first step has been done, observations can be ordered
considering their matching level with the pattern of interest, or more often their dissimilarity
with the regular (non-singular) observations, which is usually easier as more knowledge on
regular elements is available. This dissimilarity level is classically expressed as a distance
between singular and regular observations in some specific parameter space, using a given
metric.
The second step, called singularity identification, consists in making a decision about which
observation is the singular one among the potential singular ones. This step is straight-
forward in many singularity detection problems as only one information source is used or
low-level fusion between information sources allowed to build a unique statement, and the
most dissimilar observation from regular ones is designated as the singular element. Consid-
ering applications taking place in difficult contexts where observed data are uncertain and
imperfect, and solutions have to be found in order to achieve acceptable performance level
in singularity detection.

4.1.2.2 Multisensor applications of singularity identification in difficult con-
texts

Data related issues

As evoked in section 2.2.2, in feature spaces possessing a metric, uncertainty about sensor
measurements is usually defined by associated parameters that characterize the dispersion of
the values that could reasonably be attributed to the original phenomenon being observed.
These parameters are usually defined as the standard deviations of a probability density
function which describes this dispersion. This expression of uncertainty associated with
measurements which is derived from the normalized expression of uncertainty in measure-
ments [10], and is often extended to any type of observations, assumes that the observation is
free of imperfection due to systematic effects, meaning that only stochastic effects are taken
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(a) Feed motor phase current signal acquired during
a countersinking operation

(b) The high frequency transients mark a shift in
the feed direction and their presence can be used
as a feature that indicates the end of the coun-
tersinking operation: the singularities identifica-
tion consists in finding the time location of the
data set maxima

(c) Consecutive drilling operations represented in
a two-dimensional feature space where singular
drillings have to be identified in order to moni-
tor the apparition of eventual defects: the data
samples presenting the maximal level regarding
features of interest have to be identified

(d) STFT transform of a spindle motor phase cur-
rent signal acquired during a drilling and coun-
tersinking operation: the most powerfull fre-
quency band indicates the spindle rotation speed
at each time segment
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(e) The most powerfull frequency band (that con-
tains the maximal energy level) can be used as a
feature to discriminate between the drilling and
countersinking phases

Figure 4.1 – Various examples of singularities that may be useful to identify when performing
drilling monitoring: each time, after data processing, singularity identification consists in
finding a maximal value among a set of data sample
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Figure 4.2 – The two stepped data alignment operation in the singularity detection problem

into account. However, uncertainties in sensor measurement are not only caused by device
impreciseness and noise, but also manifest themselves from the ambiguities and inconsisten-
cies present within the environment, and from inability to distinguish between them [12, 13].
This statement also rules for non-sensory data. Such cases occur when information sources
fail by lack of detection ability due to new situations they haven’t been designed for, or
physical failure in the case of sensors for instance.

Performing fusion with redundant information sources

Usage of multiple redundant information sources appears as the natural solution to avoid
issues due to information sources dysfunction. As evoked in chapter 3, one potential advan-
tage of using information fusion is the capacity for the system to work in a degenerated mode
[7], allowing trustful statements even in the case of one or more information sources behave
in an unexpected manner. Usage of multiple information sources leads to the apparition of
inconsistency, which is due to conflicting information coming from the different sources.
The use of several redundant sources also requests a fusion step in order to take a global
decision from available source statements. Information fusion can take place at three dif-
ferent levels described in section 2.2.1.1, namely the data level (figure 2.24(a)), the feature
level (figure 2.24(b)) and the decision level (figure 2.24(c)). Data level fusion can be applied
only when information sources data are commensurate, so the raw data can be directly
combined. It mainly applies for identical sensors and is therefore limited regarding potential
applications [5]. Feature level fusion involves the extraction of features from information
sources raw data. Usually, features extracted from different sources data are complementary
and allow increasing the accuracy of the system. This kind of fusion scheme is not suited
to merge redundant or quasi-redundant information. Finally, decision level fusion combines
information after each source has made a statement on the phenomenon of interest, the
singularity level of an input sample in our case.
Fusion of redundant or quasi-redundant data, and the need to deal with inconsistency it
provokes, has already been addressed in previous works. Frolik and Abdelrahman [4] made
an attempt based on sensors self-validation. This validation step took place for each sensor
before the fusion process, making inference from the sensor actual behavior and its expected
one using a fuzzy system. Then the data were fused taking into account the confidence
level of the sensors, and a result was provided together with a global confidence level. The
principle to assess a global confidence level was to compare sensors statements and to see if
they were coherent. Thus, confidence associated with the results was inversely proportional
to inconsistency.
Kumar et al. [11] also tried to asses the the quality of data provided by redundant sensors
before performing fusion. The probability that data given by a sensor was spurious was
computed based on both its likelihood and its distance with the other sensors data. This
probability was then integrated into a Bayesian fusion scheme, and if the fused result showed
higher information content (characterized by its entropy level), then it was used, whereas
if did not, the sensor which was considered the most reliable (sensor reliability was a prior
information) was used.
In another work [12], they used the same principle to build a sequential fusion scheme where
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sensor data were fused one by one, and each sensor that did not provide an information gain
was excluded from the fusion process.
These works present several common points. First, they favor consensus between informa-
tion sources: if a sensor does not follow the trend of its peers, it will be considered less
reliable. Then, they require prior information on sources behaviors: an expected behavior
in one case, and a confidence probability in the others. A major difference between them
is that in the first one, low level fusion is performed as the decision is taken on artificial
data build upon the fusion of sensors data, whereas in the other ones high level fusion is
performed: each sensor provides a statement in the form of a probability distribution before
the fusion of statements takes place. This allowed its use to fuse information from different
types of sensors in [12].

High level fusion schemes for fusion of redundant information

High level fusion procedures will be emphasized due to their ability to fuse statements di-
rectly, whatever the type of data or information source they are issued from, and also their
suitability for merging redundant or quasi-redundant data.
Voting techniques work quite well to detect information sources dysfunctions and eliminate
them [22]. However, when several information sources are used, inconsistency arises when
sources provide conflicting information, often leading to erroneous statements or to the im-
possibility to make a decision when using voting techniques. Moreover, these techniques do
not allow taking stochastic and epistemic uncertainty into account. Sophisticated voting
techniques exist, but they often include an information source reliability modeling step in
order to weight propositions.
Classical inference, if it allows modeling stochastic uncertainty on information sources be-
havior, it also presents drawbacks for multiple sources based singularity detection. Indeed,
as only two hypothesis can be assessed at a time, it implies to process each data sample
separately to assess its singularity. Moreover, classical inference is rather aimed at the eval-
uation of observed data likelihood as a function of hypothesis than assessing the hypothesis
as a function of the observed data.
Bayesian and evidential inference, which have been introduced in section 2.2.3, allow drawing
conclusions on hypothesis as a function of observed data, therefore they will be investigated
in the following.

4.1.2.3 Mathematical formalization of the singularity identification problem

Considering data distributed in multi-dimensional feature spaces, the singularity identifica-
tion problem consists in determining which observation is the most different from others.
Assuming the feature space has been built in order to emphasize the differences presented
by singular elements of the data set and that the number of singular elements is much lower
than the number of regular ones, the distance between an observation and a feature that
represents all the observed data (e. g. their mean) can be used as a measure of singularity.
The presented approaches should work whenever a distance is considered as a singularity
measure.

S information sources, each providing N observations, are considered. Each observation,
denoted xns where n and s represent respectively the observation and the source indexes, is a
vector [xn1 , ..., x

n
i , ..., x

n
Is

]Ts of size Is, Is representing the dimensionality of the feature space

associated with the sth source. Each component of a given observation can be expressed
as a function of the original observed phenomenon and random noise, considering that only
stochastic effects occur :

xni,s = yni,s + bni,s (4.1)
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where bni,s is drawn from a known probability density function pi,s of mean bi,s and standard

deviation σi,s associated with the ith dimension of the sth information source feature space,
and yni,s is the unknown real value taken by the observed phenomenon. The random noises bs
are considered independent regarding the observations. The singularity measure associated
with the nth instance of the original phenomenon is given by:

singns = dist(yns , Gs) (4.2)

where dist stands for any distance measure (e. g. Euclidian distance), and Gs for the feature
that represents all the real values taken by the observed phenomenon. In the following, Gs
will be defined as the average location of samples in the feature space.

Gs =
1

N

N∑
k=1

yks (4.3)

Hence, the original phenomenon elements can be ordered according to their singularity mea-
sure in a vector SG = [SG1, ..., SGN ]s such that SG1 denotes the observation presenting the
highest singularity measure sings, and SGN is the index of the closest original phenomenon
element to the mean. As no a priori information is available on the original phenomenon,
the singularity measure can be estimated using the distance derived from observations and
available information about stochastic effects:

ŝing
n

s = dist(xns − bs, Ĝs − bs) = dist(xns , Ĝs) (4.4)

Ĝs =
1

N

N∑
k=1

xks (4.5)

where bs stands for the Is-dimensional vector of the means of the noise probability density
functions associated with each dimension of the sth feature space. Ĝs is the feature that
represents all the observations. An illustration of the estimated singularity level is depicted
in figure 4.3.

Ĝ

x73

dist(x73,Ĝ)

Figure 4.3 – Illustration of the estimated singularity level of an observation using the Euclidian
distance

The frame of discernment Ω = [ω1, . . . , ωN ] contains the propositions ωn that the nth value
taken by the original phenomenon is the most singular one.
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4.2 Existing approaches for singularity detection and
description of a novel one

The probabilistic representation of sensor data and uncertainty make the use of the proba-
bilist framework straightforward. On the other hand one of the main difficulties in applying
the evidence theory lies in modeling the knowledge of the problem by initializing the basic
belief functions. The first presented evidential approach, which uses the inverse probabilistic
transform and the least commitment principle, is a classic one within the transferable belief
model framework where beliefs are derived from probabilities. In our approach, a strong
probabilistic background is held according to the fact that stochastic effects represent a
big part of observation uncertainty, but advantage will also be taken of the use of multiple
information sources. The belief construction step will be optimized considering the fusion
step, and most informative sources will be favored.

4.2.1 A probabilistic approach for singularity detection

Given an observation xns and the stochastic perturbations vector bs, the probability of yns
to be the most singular among the N original phenomenon states is defined by:

Ps(ωn) = P (singns > ..., singks , ...) k ∈ 1, ..., N, k 6= n (4.6)

which is calculated by integration of the joint probability density function of distances of
the original phenomenon instances to their mean. P (ωn) is the degree of belief given by the
source s to the nth observation, which is also the nth proposition of the frame of discernment,
ωn.

Ps(ωn) =

+∞∫
· · ·
∫

−∞

· · · · · ·
∫
· · ·
∫

singns>sing
1
s

· · · · · ·
∫
· · ·
∫

singns>sing
N
s

p(sing1
s , . . . , sing

N
s |x1

s, . . . ,x
N
s ,bs)

N∏
n=1

I∏
i=1

dni,s

As S independent information sources are considered, the final decision about the identifi-
cation of the singular element e is given by the maximum a posteriori decision rule applied
to the N probabilities obtained after merging the different sources beliefs:

e = max
n
{P (ω1), . . . , P (ωn), . . . , P (ωN )} (4.7)

P (ωn) =

∏S
s=1 Ps(ωn)∑N

n=1

∏S
s=1 Ps(ωn)

(4.8)

One can remark the potential complexity of the integration of the N × I dimensional joint
probability function when the dimensionality of the feature space or the number of data
increase.

4.2.2 An existing evidential approach for singularity detection

Several approaches allow deriving belief functions from probabilities. As stated in section
2.2.3, the most popular one within the transferable belief model framework first uses the
inverse pignistic transform (IPT) to generate the set Biso(BetP ) of isopignistic belief func-
tions that would lead to the original probability distribution using the pignistic transform
given by equation 2.31 [20].
Here, the probabilities are obtained using the method presented in section 4.2.1. Then, when
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no meta-knowledge is available concerning the information sources reliability, the least com-
mitment principle (LCP) is used to choose a belief function into the set Biso(BetP ), following
the principle that if there is no reason to prefer a belief function from another, then the least
specific (or least informative) is chosen [19].
The commonality measure (see equation 2.32) will be used to assess the specificity of belief
functions. More explanations and an algorithm to derive the least committed basic belief
distribution can be found in [19].

4.2.3 A novel evidential approach for singularity detection

Within our approach, beliefs are not derived from the probabilities obtained by equation
4.7, but their construction is guided by another philosophy which takes advantage of the
fact that multiple information sources are available. Stochastic effects are taken into ac-
count using their classical probabilistic representation, and will serve as a basis to quantify
uncertainty of an information source statement. The approach is designed to favor a rapid
allocation of masses to sets of propositions presenting a cardinal superior to 1 when stochas-
tic uncertainty grows up, which corresponds to a transformation from stochastic to epistemic
uncertainty. This belief modeling method is based on the fact that in some applications,
sources do not fall precisely into either stochastic or epistemic uncertainty [16], and more
precisely in our case, when too much noise affects observations making a statement difficult,
a lack of knowledge, or lack of ability detection, of the information source is considered.
Making belief functions less specific by allowing high masses to uncertain propositions al-
lows to favor specific information sources at the fusion step.
Multiple information sources based systems with all sources aimed at the detection of the
same phenomenon are built to prevent lack of detection ability of one or more sources. As
source failure are considered to be likely to occur, it seems more reasonable to give more
credit to an information source which presents good behavior than merging all information
sources statements by according them the same credit at the decision step. Thus, compared
to existing ones, the proposed data alignment approach is expected to show a sharper be-
havior regarding the specificity of belief functions as a function of the uncertainty level of
available information there are built upon. This construction method is detailed below.
First, observations indexes have to be ordered in a vector D = [D1, . . . , DN ]s such that
D1 denotes the observation presenting the highest possible estimated singularity level given

ŝings and the perturbation level that affects the sth source, and Dn is the index of the
closest observation to the mean. The potential focal elements will be ordered following the
same scheme and non-zero masses will eventually be allocated to the sets of observations
{ωD1

s }, {ωD1
s , ωD2

s }, . . . , {ωD1
s , . . . , ωDN

s }. The masses are calculated following:

m({ωD1
s , . . . , ωDk

s } =

max(singks )∫
· · ·
∫

max(singk+1
s )

p(singD1
s |xD1

s ,bs)
∏
I

di,s (4.9)

and considering the special case of the mass of the frame of discernment:

m({Ω}) =

max(sing
DN
s )∫

· · ·
∫

min(sing
D1
s )

p(singD1
s |xD1

s ,bs)
∏
I

di,s (4.10)

where max(singDk
s ) and min(singDk

s ) represents respectively the maximum and minimum
values that the singularity level singDk

s could take according to the observation xDk
s and

the noise bs. As when calculating the masses for every potential focal element the density
probability function p(singD1

s |xD1
s ) is integrated from its lower bound to its upper bound,

the sum of the masses will equals 1, with respect to equation 2.28. Each mass calculation
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necessitates an I dimensional integration.
The mass of a focal element is the probability that the singularity level given by its belonging
propositions are superior to the maximum possible singularity levels that can be achieved
by propositions that does not belong to it. In other words, if more than one instance
are possibly the most singular one on an interval of possible singularity values, they are
considered equally able to be the most singular one, whatever their probability is.
In the case that the random noises probability density functions pi,s are not bounded, it
is impossible to order observations according to their highest possible singularity levels (all
equals +∞), and equations 4.9 and 4.10 will always give 0 and 1 respectively. This case
leads to the creation of a vacuous belief function which is a drawback in a decision making
context because it cannot lead to a rational choice. In order to avoid this inconvenience we
propose, both to order propositions and calculates their masses, to define an upper limit
maxPcov (singDk

s ) from the unbounded pi,s supports using a Pcov coverage interval such that
P (singDk

s ≤ maxPcov (singDk
s )|xDk

s ) = Pcov. In this case, equations 4.9 and 4.10 become
respectively:

m({ωD1
s , . . . , ωDk

s } =

maxPcov (sing
Dks )∫

· · ·
∫

maxPcov (sing
Dk+1
s )

p(singD1
s |xD1

s ,bs)
∏
I

di,s (4.11)

m(Ω) =

maxPcov (sing
DN
s )∫

· · ·
∫

p(singD1
s |xD1

s ,bs)
∏
I

di,s (4.12)

and considering the new special case of the mass of the eventual singleton:

m(ωD1
s ) =

∫
· · ·
∫

max(sing
D2
s )

p(singD1
s |xD1

s ,bs)
∏
I

di,s (4.13)

The mass of a focal element is then the probability that singularity levels given by its be-
longing observations are superior to Pcov × 100% of the possible singularity levels presented
by propositions that do not belong to it. Such constructed belief functions are consonant,
as those obtained with the IPT-LCP approach.
An illustration the mass construction by this approach is presented in figure 4.4. It represents
a case where a singular element has to found out of 3 in a 2-dimensional feature space. Pertur-
bations are considered Gaussian according both features fe1 and fe2, and present different
perturbation levels according each. The common feature representing all the data samples
Ĝ has been set to the origin of the feature space. The integration limits maxPcov

(singDk)
are depicted, and allowed to order the 3 observations in a vector D = [D1, D2, D3]. The
volumes under the probability density function p(singD1 |xD1 ,b) between the limits given
by the surfaces maxPcov (singDk), k 6= 1 are represented on figure 4.4(b).

4.2.4 Differences in behavior of evidential approaches for data mod-
eling

In order to assess behaviors of the commonality of belief functions obtained using the pro-
posed and the IPT-LCP approach, a Monte Carlo simulation has been performed within
a two observations set {x1

s,x
2
s}, that leads to the creation of the frame of discernment

Ω = {ω1
s , ω

2
s} for different singularity identification difficulty levels. This numerical ex-

periment is aimed at showing how does each approach transfer decision power to other
information sources when difficulty of singularity detection arises on one of them.
We propose to define the singularity detection difficulty level ∆ by the ratio between σs, the
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fe1

fe2

Ĝ

m(Ω) m({wD1,wD2}) m(wD1)

D1

D2

D3

maxPcov (singD2)

maxPcov (singD3)

(a) 3 observations D1, D2 and D3 have been or-
dered according to their maximum possible dis-
tance from Ĝ considering Pcov and their associ-
ated perturbation level. The maxPcov (singD2 )
and maxPcov (singD3 ) value are used as inte-
gration limits to calculate the masses.

(b) The probability density function
p(singD1 |xD1 ,b) from which are integrated
the masses is represented. Surfaces that
delimits the integration zone for each mass
and given by the maxPcov (singDk ), k 6= 1
values are also depicted

Figure 4.4 – Illustration of the mass construction with the proposed approach

standard deviation of the noise on the available observations, and the difference between the
original phenomenon elements {y1

s,y
2
s} distances to the mean ySG1

s − ySG2
s .

∆ =
σs

ySG1
s − ySG2

s

(4.14)

Indeed, the singular proposition is harder to identify as other elements present close sin-
gularity measures, and identifying the singularity also becomes more difficult when noise
affects observations.
A centered Gaussian noise has been used as it is very common in real life applications. As
its probability density function support is not bounded, parameters Pcov = 0.99999 and
Pcov = 0.99865, corresponding to ]−∞, µ+ 5σ] and ]−∞, µ+ 3σ] coverage intervals respec-
tively, have been chosen to perform the proposed approach. Such high coverage intervals
allow to produce behaviors that are similar to cases where noises have bounded probability
density functions, being in agreement with the proposed approach philosophy. The com-
monality Q(ωD2

s ) of the proposition associated with the observation presenting the smallest
distance xD2

s , which is equivalent to the mass of the frame of discernment m(Ω) in this two
proposition case, can be interpreted as an influence level eventually given to more specific
information sources at the fusion step.
As expected, the proposed approach behaves sharper regarding the difficulty level of sin-
gularity identification when using a large coverage interval (figures 4.5(a) and 4.5(b)). It
shows very high commonality even at low difficulty levels. On the other hand, the IPT-
LCP approach gives statements that are not totally uncertain even when the Gaussian noise
standard deviation is 10 times higher than the difference between the real phenomenon sin-
gularity levels, that can lead to erroneous statements. In the case of a narrower coverage
interval (figures 4.5(c) and 4.5(d)), the proposed approach shows lower commonality level
for the element associated with ωD2

s as not as much original phenomenon instances possible
values are taken into account. The commonality level associated with the less probably
singular proposition is still higher than when using the IPT-LCP approach.
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Figure 4.5 – Behavior of the commonality associated with the observation presenting the
smallest distance to the mean as a function of the data alignment approach and the cover-
age interval used within the proposed approach. The largest 95% confidence interval on the
calculated means after the Monte Carlo simulation is ±0.003
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4.2.5 Data fusion and decision making using the evidential ap-
proaches

As stated in section 2.2, evidential approaches provide tools for information merging and
decision making that allow to implement several strategies leading to the choice of a propo-
sition in the frame of discernment Ω. The respective influences of both combination and
decision making strategy have to be taken into account. These influences will be discussed
with emphasis on the conflict management problem, and the potential results considering
the singularity identification problem will be detailed.

Combination rules As in the singularity identification application the open world as-
sumption is not justified because the most singular observation has to be chosen among the
available propositions, Yager’s combination rule, where the presence of conflict is justified
by the lack of reliability of some sources, appears a natural choice. The empty set mass is
added to the frame of discernment mass, considering that non-reliable sources increase total
ignorance.
On the other hand, the disjunctive rule of combination, that does not generate any conflict
and does not reject any information provided by the sources, is appropriate when conflict
is due to poor reliability of some of the sources. However it often provides more imprecise
results than expected. More specifically, considering consonant belief functions as it is the
case here, if one source disagree with others about the fact that an eventual singleton is
the singular element, no mass will be allocated to singletons during the combination, which
can lead to the impossibility to make decision over Ω in absence of additional evidence or
knowledge.
Both of these rules will be assessed within numerical experiments. The problem of sources
reliability when no meta-knowledge is available has always been addressed at the combina-
tion step. The proposed information modeling method, described in section 4.2.3, allows to
anticipate and attenuate issues due to sources reliability by giving importance to sources
that seems to be the most reliable at the fusion step when using conjunctive based com-
bination rules. The Yager’s combination rule appears to be adapted to combine evidence
coming from such data alignment strategy.

Decision making strategy In this work, we place ourselves in a decision making context
where decisions have to be made over the elements of Ω. Three basic strategies are generally
considered to make a choice among the propositions of Ω: the maximum belief, maximum
plausibility and maximum pignistic probability. The maximum pignistic probability appears
as a good compromise between the two former ones, as explained in section 2.2, by equal
redistribution of partial ignorance over the concerned proposition following the insufficient
reason principle. Moreover, it gives a probability distribution over Ω which makes decision
making feeling more natural. This approach will be used here.
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4.3 Performances assessment of the different approaches
and discussions

4.3.1 Numerical experiments goals and set-up

Numerical experiments have been performed in order to assess performance level of the
different singularity detection approaches presented above. Influences of three parameters
have been investigated:

• the type of dysfunction (when it exists) affecting the information(s) source(s)

• the difficulty to identify the singularity as defined in section 4.2.3

• the number of information sources

The problem was to identify the singular one-dimensional data point among 3. For each test
configuration dysfunction, difficulty of singularity identification, number of sources, a Monte-
Carlo simulation has been performed with 20000 random noise realizations. The singularity
identification rate has then been calculated for each approach, achieving a ±0.00395% con-
fidence interval around the computed results. In the case when no choice could be made,
when using the disjunctive combination rule in particular, an absence of choice was consid-
ered as an incorrect singularity identification. A Gaussian noise has been used as it is the
most encountered in real life situations. For the proposed approach calculations, its support
has been bounded using a ]−∞, µ+ 5σ] coverage interval.
The presentation of results is organized according to the information sources dysfunctions.
First, the case when no dysfunction happens is presented. In a second part, the case of an
information source providing observations affected by a different stochastic perturbations
level from others is treated in order to assess the different methods respective abilities to
handle differences of uncertainty level between sources statements. Finally the case of some
sources providing only noise, thus simulating sensor failure or the presence of irrelevant
feature, is described.

4.3.2 First application case: no information source dysfunction

In this case, only random effects were simulated that are considered to affect all information
sources simultaneously. Therefore, the difficulty level ∆ was the same for all sources. As per-
turbations were exclusively stochastic and all sources were equally reliable, the probabilistic
approach is optimal as its modeling scheme reflects exactly the perturbations, and total con-
sensus between sources is needed at the fusion step to achieve the best performance level.
Figure 4.6(a) shows that whatever the combination rule used, probabilistic and ITP-LCP
approaches gives better results than the proposed approach, and this difference of perfor-
mances increases as a function of the number of information sources that are used. The
decrease of the proposed approach performances regarding the number of sources is due to
its sharpest behavior in modeling information that leads to a lower consensus level between
sources at the combination step. As a consequence, the totality of relevant information is
not taken into account leading to lower correct detection rates.
Simulations also allowed showing that the disjunctive rule of combination provides very
quickly results that are too imprecise to make a choice, and that this phenomenon appears
faster as the number of sources increases. As explained in section 2.2.3.3, this is due to the
fact that if all sources do not agree about the choice of a favorite singleton, no decision is
possible. The rate of impossibility to choose a singleton has been drawn in figure 4.6(b) for
the 5 information sources case and shows the importance of this drawback of the DRC in
a decision making context when dealing with consonant belief functions. One can remark
that in the case of the Yager’s combination rule and the probabilistic approach, when the
singularity becomes very difficult to detect, correct identification rate tends to 0.33. This
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is due to the fact that even when information provided by the sources is totally irrelevant
due to the high level of stochastic perturbation, the singularity identification system has one
chance out of three to designate the singular observation.

0 1 2 3 4 5
Difficulty Level ∆

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
in

g
u
la

ri
ty

 I
d
en

ti
fi
ca

ti
on

 R
at

e 2 Information Sources

5 Information Sources

10 Information Sources

(a)

0 1 2 3 4 5
Difficulty Level ∆

0.0

0.2

0.4

0.6

0.8

1.0

S
in

g
u
la

ri
ty

 I
d
en

ti
fi
ca

ti
on

 R
at

e

Proposed Approach

IPT-LCP Approach

Probabilistic approach

No choice rate - ITP-LCP

(b)

Figure 4.6 – Performances in singularity identification of the different approaches when in-
formation sources are identically affected by stochastic perturbations using the Yager (a) and
the disjunctive (b) combination rules

4.3.3 Second application case: one information source provides ob-
servations affected by a different level of stochastic perturba-
tions

This case study simulated a situation where one information source, the Sth, was affected
by a different level of stochastic perturbations than others. Performance level of singularity
identification has been assessed for three different steady difficulty levels of singularity iden-
tification of this source: δS = 0.2, 0.5 and 1. Considering the first one, only the extreme
value that were expected to be reached by the Gaussian noise were susceptible to compro-
mise the Sth source statements. On the other hand, within the last case, the standard noise
magnitude reached the same level than the singularity measures, whereas the second case
was a compromise. Simulation results are depicted in figure 4.7.
For every level of singularity identification difficulty, the correct identification rates decrease
as a function of the number of information sources. Indeed, the consensus between sources
taking place at the combination step incorporates more wrong statements when the stochas-
tic perturbations levels make observations coming from the first S−1 sources irrelevant. The
use of the DRC, depicted in figures 4.7(b),4.7(d) and 4.7(f), leads to the same conclusions
as in the previous case study: results provided after the combination of evidence are too
imprecise to make a choice on a singleton. The proposed approach leads to the impossibility
to make a choice quicker than the IPT-LCP approach by favoring allocation of mass to
uncertain propositions at the data alignment step.
When using the Yager’s combination rule in case of a low difficulty level of singularity
identification on the steady source ∆S (figure 4.7(a)), the proposed approach shows better
correct identification rate compared to other methods as the number of information sources
increases. This is due to its ability to discard the less reliable sources at the merging step
thanks to its data alignment strategy. The probabilistic and IPT-LCP approaches give
slightly better results when 0.6 < σs/(sing

SG1 − singSG2) < 1 for 10 information sources:
in this interval, the S − 1 first sources provide information that are relevant, despite they
are affected by random effects and that are discarded by the proposed approach.
When the steady source difficulty level of singularity identification is 0.5 (figure 4.7(c)),
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the above described behaviors are emphasized. When the difficulty level on the first S − 1
sources is important, the proposed approach shows lower performance level when using 2
information sources whereas results are better when 5 or 10 of them are considered: as the
redundancy of sources can generate information inconsistency, it is better to favor the most
informative one to avoid unexpected behaviors. The difficulty level interval where classical
approaches perform better is extended to 0.4 < σs/(sing

SG1 − singSG2) < 1.2 because the
’relevance zone’ of information provided by the S − 1 first sources is broader relatively to
the difficulty level of singularity identification of the Sth source. The last case when the
singularity identification difficulty level of the Sth source equals 1 (figure 4.7(e)) is favorable
to classical approaches. Important differences are noticeable during the transient phases for
high number of sources because relevant information coming from the S − 1 first sources is
not taken into account within the proposed approach.
More generally, this case study allows to assess the combined influences of relevance of in-
formation provided by the different sources and consensus at fusion step, leading to the
conclusion that the explicit representation of ignorance (partial or total) as permitted in
the evidential framework is profitable in contexts where numerous redundant sources are
involved. However the transition from stochastic to epistemic uncertainty has to be well
modeled to take advantage of this possibility and achieve good performance levels in singu-
larity identification. It can also be noticed that the IPT-LCP approach always gives results
that are at least as good as those provided by the probabilistic approach, and often better.

4.3.4 Third application case: some sources only provide stochastic
perturbations

This case study was aimed at the evaluation of the different approaches behavior facing
sources dysfunction that are not identified: some faulty sources provides only noise but are
considered as reliable as others, which will lead to combination and decision making under
information inconsistency. Influence of the number of faulty sources has been evaluated.
The different approaches respective performance levels are a function of the need of consen-
sus between the sources: the probabilistic and IPT-LCP approaches gave the best results
when the number of involved faulty sources is low in comparison of the total number of
sources (figure 4.8(a)). When only one source is operational, the proposed data alignment
method provides better results until stochastic perturbations on the operational source make
it appear no more informative than others anymore (figure 4.8(b)).
It is important to note that not only the number of information sources impacts the different
approaches performance, but also the number of faulty sources relatively to the total number
of sources. This case study shows the different behaviors of the assessed approaches fac-
ing inconsistent information: the strong consensus held by the probabilistic and IPT-LCP
methodologies better preserves influences of all sources, allowing to obtain better results
when relevant information is issued from several sources. The sharper behavior of the
proposed approach emphasizes the influence of the most informative source, so relevant in-
formation can be ignored if coming from several sources which do not appear very specific.
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(c) ∆s = 0.5
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Figure 4.7 – Performances in singularity identification of the different approaches when one
information source presents a different stochastic perturbations level using the Yager (a,c,e)
and the disjunctive (b,d,f) combination rules
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Figure 4.8 – Performances in singularity identification of the different approaches using the
Yager’s combination rule when some information sources provide only stochastic perturbations

4.4 Conclusion

This chapter introduced the problem of singularity detection in difficult contexts using mul-
tiple information sources. It emphasized the importance of a good modeling of information
their imperfections that takes the number of sources and their expected behavior into ac-
count. Benefits offered by evidential frameworks to model epistemic uncertainty, or ambi-
guity, are proven in a context where multiple information sources are involved, even when
information uncertainty comes from stochastic phenomena. Hence, the question of the
transition from stochastic to epistemic uncertainty is shown to be of major importance in
information imperfection modeling, and needs further research.
The proposed data alignment approach is an example of solutions that evidential frame-
works can offer: their flexibility in information imperfection modeling allow one to adapt
this step in function of the application cases. In particular, the situation where one source is
providing more specific information than others is well apprehended. The need of consensus
between sources in function of their respective reliability appears as an interesting criterion
to make a choice between the different approaches presented which are complementary. The
probabilistic and IPT-LCP methods often show close results as they are derived from the
same information modeling, but the latter one performed at least equally, and often better
on the proposed application cases.
The proposed methodology will be used in the following to perform singularity identification
both within online monitoring tasks and for feature selection. These developments will be
exposed in chapter 5.
By assessing their performance level within the singularity detection context, this study also
provides clues about the inference accuracy of the Bayesian and evidential methods, leading
to the conclusion that in an information fusion context, when epistemic uncertainty occurs
and is identified, evidential approaches can achieve better performances.
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Chapter 5

Implementation of drilling
monitoring systems:
Application examples

This chapter is devoted to the presentation of scientific and technical realizations that are
directly related to the implementation of a drilling monitoring system. Contributions will
be presented following the steps given by the design methodology of a monitoring system
proposed in chapter 3. First, sensors integration will be evoked: a short description of sensors
used for drilling monitoring will be provided, and some developments will be detailed. Then,
a description of the feature selection problem will be given, and a methodology to address
it using data fusion will be presented and assessed. Finally, building blocks useful for the
implementation of a drilling monitoring system will be explained and evaluated in a third
part.

5.1 Sensors integration

As sensor integration is the first step of the design of a monitoring system and drives the
quality of all information used to perform estimations of the system state, special attention
has to be given to it.
A short description of sensors used for drilling monitoring will first be provided in order to
explain the pros and cons of each measurement and sensor types. Particular emphasis will be
done on integration issues. Some developments will then be detailed: following conclusions
of the state of the art on drilling monitoring applications, the practical implementation
and use of force and AE sensors, which have shown good abilities for drilling monitoring
purposes, will be discussed. Integration solutions will be provided for both of them, and a
feature extraction method developed in order to use AE signals in a robust manner will be
presented and assessed on experimental data.

5.1.1 Sensors for drilling monitoring

Several types of sensors have been used for drilling monitoring purpose. The state of the
art presented in section 2.1 gave an overview of the different applications they have been
used for. The goal of this section is to detail their different uses and integration possibilities,
pros and cons, and also to provide some results obtained during experimental works. Only
sensors allowing measurements related to the cutting process condition will be presented
here. For example, sensors used to determine the spindle position or speed do not make
part of this description.
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5.1.1.1 Spindle & feed motor currents/power

Spindle and feed motors power consumption, which is often measured by their input cur-
rents, served to extract features linked with tool condition in many studies. Indeed, the
electrical power consumption of motors is related, in some extent, to the mechanical power
needed for material removal during the drilling operation. However, this strategy presents
some issues related to the relationship between the input and output power levels of motors
that have been underlined in section 2.1 and resumed in [61]: the amount of spindle power
required for material removal may be a very small part of total power, and so be difficult to
sense. In our work for instance, phases currents of spindle and feed motors of both a robot
drilling end-effector and a machining center have been recorded during CFRP/Ti6AlV4
stacks drilling test campaigns (see appendixes A.4 and A.1, A.2, A.5 for further details on
tests campaigns) realized using the same cutting parameters. In the first case, as motors are
designed for drilling purposes only, interesting trends that could have been related to the
drill condition have been obtained (see figure 5.1), whereas on the machining center, which
possess more powerful drives and spindle, no changes were detectable.
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Figure 5.1 – Trends in spindle and feed motors phase currents RMS when drilling CFRP and
Ti6Al4V. A 8KW spindle was used

Other facts that limit the use of input power are that spindle motor power is proportional
to the resultant cutting force, which the least wear sensitive parameter; that unavoidable
temperature variations in motors influence their electrical consumption (they have been
characterized in several studies reported in [61]), and finally, that drive motors are highly
dependent on the axis lubrication state, transverse rate and axis condition. All these con-
straints make the use of current/power sensor difficult or ineffective in some cases.
The main advantage of this type of measurement is that it is not intrusive to the cutting
process. Sensors are usually placed in the electric board of the machine.
Another way to sense power consumption of motors became popular within last years: CNC
control panels now often allow accessing to internal signals in the numerical controllers such
as motor power and current. This method presents the advantage of not requiring any sen-
sor. Literature and experiments showed that signals obtained by this manner are sometimes
of poor quality and necessitates important processing steps to be exploitable.

5.1.1.2 Temperature

If temperature has been identified as an interesting feature to sense tool wear in experimental
studies, when drilling Ti6Al4V in particular, it has not been widely used for monitoring ap-
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plications due to the difficulty to integrate sensors. In the description of drilling monitoring
applications given in section 2.1, only one attempt to use temperature has been presented
[55], and results were mitigated due to the number of influence quantities that affected the
measurement done by a thermocouple placed in the workpiece.
When using thermocouples, two options are possible to mount them: in the workpiece or
in the drill. The former requires a pre-machining of the workpiece step to integrate the
sensor, and the second the use of a special tool equipped with an integrated sensor and
an apparatus allowing to transfer supply energy and sensed signals from a rotating part to
a static acquisition system. Both cases are impracticable in an industrial context and are
only lab solutions. Moreover they imply the use of heat transfer models within the tool or
workpiece to estimate the temperature at the interface between the tool and workpiece.
Another way to sense temperature is using contactless devices, like infrared thermometers
or thermal cameras. Obviously, due to the confinement of the drilling operation, it will not
allow sensing temperature at the interface between the tool and the workpiece, but a mea-
sure on the tool while exiting the material in repeatable conditions could provide relative
results that could be interesting. An experimental attempt has been made about this during
this work, but by the time (approximately 20s) the drill exited the Ti6Al4V workpiece and
was placed within the infrared thermometer spot which was placed at 30cm of the drilling
spot, its temperature decreased to only 1 or 2◦C above the ambient temperature, and those
variations were in the same range than the measurement noise of the sensor in the machin-
ing center. Moreover, the tool would have to be cleaned out from chips, lubricant and dust
before the measurement is done, and this cleaning step would fatally provokes changes in
the its temperature.

5.1.1.3 Vibrations

Vibrations have been used to monitor both tool wear and tool failure. Accelerometers,
sensors that are used to sense vibrations, possess the advantage to be easy to implement.
Indeed, they can be glued or clamped to the drilling device or workpiece. On the other
hand, vibrations signals are often noisy, difficult to interpret and very sensible to process
parameters. Moreover, the sensing ability of accelerometers concerning tool or workpiece
alteration heavily depends on the propensity of the part they are mounted on to vibrate.
In this work, miniature piezoelectric accelerometers have been placed on the spindle of a
drilling robot end-effector and of a machining center. Results confirmed aforementioned
issues: those obtained on robot where informative about the tool condition (see figure 5.2,
and also appendixes A.4 and A.1, A.2 for further details on concerned tests campaigns),
whereas nothing can be drawn from signals obtained on the machining center: due to its
high rigidity, no significant vibrations linked to the drilling operations were sensed.
Accelerometers represent therefore a good solution on structures that are not too rigid:
they should be able to sense vibrations linked to cutting phenomena, with no intrusive
integration. However, due to their sensibility to process parameters, features issued from
signals should be chosen with caution, especially regarding the spindle rotation speed, in
order to avoid misunderstandings. For instance, feature extraction algorithms that auto-
adapt to the spindle rotation speed are required if this variable may change.

5.1.1.4 Torque

Torque measurement, as well as force measurement, is difficult to integrate in industrial
environment [1, 61, 18, 37]. Two types of devices have mainly been used in labs: static
and rotating piezoelectric dynamometers that allow both static and dynamic measurements.
Unfortunately, these devices are not suited for harsh environments due to their sensitivity to
external perturbation, their difficult integration, and the costly and heavy material needed
to transform and amplify electrical charge provided by sensors into voltage.
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(a) Miniature accelerometers mounted on the spindle and
spindle housing of a robot end-effector
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ing drilling CFRP as a function of the number
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during drilling CFRP as a function of the num-
ber of drilled holes

Figure 5.2 – Evolution of axial and radial accelerations RMS level in selected bandwidth
when drilling CFRP with a robot. A trend is visible on the axial acceleration, while clusters
of points are visible on radial accelerations chart: some of them have been linked with the
position of holes on the workpiece, which present different vibrations behaviors as a function
of the drilling location, and the most remarkable, from holes 72 to 76, is linked with a drill
cutting edge chipping
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In [11], a method that used eddy currents to sense the stress changes induced on the drill
shank by drilling torque have been presented. The torque changes monitored this way
allowed to predict drill fracture in gray cast iron and tempered steel. The sensor had to be
placed at 0.5mm from the drill shank, which can be difficult to achieve without important
machine modifications in some cases.
In [5], the same kind of apparatus has been designed depending on the Villari effect : a
magnetic material produces a magnetic field which properties are a function the applied
strains. Coils systems have been implemented on an immobile part surrounding the tool
holder in order to detect the magnetic field changes provoked by cutting torque and forces
on a magnetic metallic part that was part of the tool holder in the force path. Results in
turning showed that this methods had the capacity to sense both static and dynamic forces
and torques changes while cutting.
If these two last integration solutions can appear difficult to integrate, they are some of the
less intrusive because of their contactless principle: no signal or power supply has to transit
by cable between static and rotating parts.

5.1.1.5 Partial overview

This rapid and, for the moment, incomplete overview of sensors used for drilling monitoring,
and the presentation of challenges and solutions linked to their integration allow to draw
the following conclusion: the more useful a sensor is for monitoring, the more difficult its
integration is. Indeed, accelerometers and current sensors are not intrusive, but are not
always informative depending on the type of machine used (robot, machining center) or the
process parameters (workpiece material, drill diameter, cutting conditions). On the other
hand, torque and temperature should provide useful information about the tool and/or
workpiece condition, but are difficult to integrate.
The same statement can be done for the 2 following measurements types: cutting force and
acoustic emission, which have been showed to be very effective for condition monitoring of
machining operations in the literature, but are difficult to integrate. Due to their potential
interest, a special emphasis has been done on integration and use of these two kinds of
sensors in the next sections.

5.1.2 Force sensors integration

5.1.2.1 Force sensors integration in drilling

As mentioned above, cutting forces are one of the best signal for feature extraction for
drilling monitoring purpose. Unfortunately, integration of force sensors if made difficult by
the fact they have to be placed in the cutting force path. This particularity encourages the
use of piezoelectric sensors due to their high stiffness that will not introduce flexibility in
the drilling system and that could be at the origin of harmful vibratory behaviors.
As for torque measurements, solutions available on the market are limited to static and
rotating dynamometers that do not fit industrial requirements. Some solutions have been
developed to integrate force measurements in a way such that industrial use would be al-
lowed.
In [14], two types of force sensor integration on a drilling device have been investigated: a
bearing sensor ring and a flange sensor ring equipped with piezoelectric elements have been
integrated into the force path, as depicted in figure 5.3(a). Results have been assessed during
an experiment where a rotating dynamometer and AE sensor have also been mounted on
the drilling device and the aluminum workpiece respectively for comparison purpose.
Evidence presented in the paper demonstrated that the integrated force sensors were capable
of sensing the process forces during small diameter drilling operations. The integration of
the sensors into the main force flux of the motor spindle provided other non-process related
forces that contained rich information about the process, spindle and machine condition.
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(a) A bearing sensor ring and a flange sen-
sor ring have been integrated on the force
path of a drilling device in [14]

(b) A bearing sensor ring and a flange sen-
sor ring have been integrated on the force
path of a milling device in [48]

Figure 5.3 – Proposed solutions to integrate force measurements to the machining device

The higher frequency content of the integrated sensor signals revealed a spindle signature
which forms the basis of spindle condition monitoring. This study also highlighted the
potential benefits that exist by using a design for process monitoring approach- namely em-
bedding sensing capability into the machine at the design stage. The authors emphasized a
number of issues that remained to be investigated, including the development of algorithms
for the in-situ characterization of the integrated sensors under different mass and accelera-
tion conditions, depending on the device they are mounted on. This type of integration has
also been proposed with success in [48] for milling applications (see figure 5.3(b).
One of the main problem linked with the use of piezoelectric devices remains the conversion
of the electric charges induced by cutting forces into voltage usable for data acquisition pur-
pose. The low level of electrical charge produced by the piezoelectrical effects when forces
are applied requires the use of costly and cumbersome charge amplifiers that do not suit
industrial environments. Moreover, the transfer of electrical charges from sensors to ampli-
fier must be made with specific cables that are fragile, expensive and not easy to integrate
within an industrial drilling device.
Piezoelectrical sensors that integrate miniature charge amplifier have been developed under
the IEPE (Integrated Electronic Piezo Electric) norm. This sensors require the use of special
conditioning hardware in order to provide power supply to the charge amplifier. If this tech-
nology allows using sensors without cumbersome cables and amplifiers, it presents a severe
drawback: it generally does not allow to measure direct current component of the signals,
i. e. it acts as a high-pass filter that cuts the signal part above 1Hz. Such systems, if they
are suitable for accelerations measurements where DC current does not present interest, are
therefore of limited use for force measurements in drilling monitoring applications (even if
the dynamic force signature of cutting operations remains interesting). This technological
limitation has two causes: the miniaturization of the charge amplifier has for consequence
that a resistor cannot be as high resistive as wished due to dimensional constraints, and
some charge is dissipated through it like in a first order dissipative system. However, IEPE
force sensors often present dissipation times that are largely superior to the time of drilling
operations, and then, only 1 or 2% of the charge should have been dissipated at the end of
drilling, allowing to obtain accurate results enough for tool condition monitoring. The main
cause of the impossibility to obtain DC component of force signal using IEPE sensor lies in
the acquisition hardware which often possesses a high-pass filter on input in order to avoid
influence of the power supply provided to the charge amplifier embedded in the sensor and
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that transit on the same wire.

5.1.2.2 Proposed solution

A solution as been proposed and assessed to avoid this harmful dissipative effect: the sensor
is normally wired to an IEPE acquisition card which provides it power supply, and also on a
classical voltage acquisition channel which do not possess high-pass filter on its input. The
signal acquired on this card is then the force response of the sensor, plus a steady offset
due to the DC component used to supply the charge amplifier. In that case, the only the
charge dissipation due to the embedded charge amplifier is visible on force signal. However,
as the time constant of this dissipative behavior, related to the sensor properties, is very
long regarding the average time of aeronautical drilling operations, this technique should
allow accurate enough measurements for drilling monitoring purposes.
The integration of such a sensor in the force path remains a challenge. By now, at the ex-
ception of fragile rotating dynamometers, force sensors have been placed in steady positions
in order to avoid the problem of signal (and eventually power supply in case of) transmis-
sion from a rotating device. Another solution has been proposed here: the use of a high
performance slip ring integrated on a tool holder in order to transmit sensor signals from
rotating parts. This device makes part of the AVIBUS project1. Experiments showed that
the maximum perturbing resistive effect over the rotation speed range used for aeronautical
drilling operations was 50mΩ. Considering the typical low current levels of sensor signals
(< 2mA), perturbations on acquired voltages can be neglected in most cases.
Both static and dynamic experiments have been performed to assess this method capabilities
for drilling monitoring. First, once the the sensor has been integrated into the developed
tool holder and wired through the slip ring, a static experiment has been performed to com-
pared obtained results with those obtained with a static dynamometer Kistler 9255A used
together with 5019A charge amplifier. It consisted in applying a steady axial 20N force on
the developed tool holder, which was fixed on the static dynamometer. A picture of the
tool holder and results of the experiment are depicted in figures 5.4(a) and 5.4(c) respec-
tively. The dissipative behavior of the proposed solution is clearly visible, but inverted due
to wiring. Its amplitude over 170s make this phenomenon acceptable for most aeronautical
drilling monitoring applications. The observed noise level is also acceptable. A comparative
experiment has been done while drilling a Ti6Al4V sample, and results provided by the
proposed integration solution were very close to those obtained with a static dynamometer
(figure 5.4(d)).

5.1.2.3 Overview on force sensor integration

An integration solution, the use of high performance slip rings to transfer signal from rotating
parts to static ones, showed encouraging abilities for drilling monitoring. More experiments
have to be carried in order to completely identify the device behavior and all the influence
quantities it can be affected by. If the force sensor integration concepts presented above
are encouraging, they are slow to transfer into machine shops because of the important
modifications that have to be made on drilling devices, and once they are integrated, the
spindle or structure have to be characterized in order to isolate process phenomena of interest
from machine and spindle dynamics [61, 14].

1 The goal of the AVIBUS project (Assistance Vibratoire au Perçage par Actionneurs Piézoélectriques)
is to develop active vibrating tool holders.
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(a) A special tool holder integrating a slip
ring allowing signal transmission from ro-
tating integrated sensors has been devel-
oped. This development makes part of
the AVIBUS project (www.avibus.fr)

(b) The same tool holder installed in a
machining center. This development
makes part of the AVIBUS project
(www.avibus.fr)
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Figure 5.4 – Proposed solution to integrate axial force measurements into a tool holder
equipped with a slip ring: if an harmful dissipative effect is visible with the proposed solu-
tion, its amplitude is compatible with force measurement during most aeronautical drilling
operations due to their short duration
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5.1.3 Acoustic emission sensors integration

5.1.3.1 Introduction

Acoustic emission (AE), which describes the technical discipline and measurement tech-
niques linked to the transient elastic waves resulting from local microdisplacements in a
material [60], has been widely used for machining processes monitoring during last years.
More specifically, it has been shown to be an effective way to detect cutting tool dysfunc-
tions like tool failure or cutting edge chipping [46, 35, 37] because of its ability to detect
sudden energy releases in deforming material. Moreover, due to its high frequency working
range which is normally not affected by machine vibrations or environmental noises [40], it
allows to sense tool wear [46, 49, 63, 45, 17], and to detect workpiece damages, in particular
delamination occurring when drilling composite materials [21, 6, 53, 52, 32]. Many drilling
monitoring applications using AE have been introduced in section 2.1.
However, applications of AE for drilling monitoring did not always provide results as good
as those obtained in other machining processes. Indeed, it has been observed that using AE
in drilling is more complex than in other processes such as turning or milling because the
chips trapped between the flute and the cylindrical wall of the hole is a significant addi-
tional source of AE [16]. Then, isolating the different sources of AE in a drilling operation
is considered a difficult task as the mechanism of generation of AE is not completely un-
derstood [41, 33] and analytical techniques are not completely developed [13]. Some works
have been aimed to link identifiable characteristics that distinguishes the different states of
drilling mechanism in AE signals [52, 53, 16]. In particular, advanced statistical pattern
recognition methods have been used to classify different cutting tool states from AE signals
[23]. However, as AE signals are heavily depending on the machining process parameters
[40, 25, 62], using them for monitoring remains a complicated task, especially in industrial
context where operational conditions are often changing.
The literature concerning the use of AE for machining and drilling monitoring shows that if
it is often presented as a promising tool, some theoretical and technical drawbacks are limit-
ing its usage, changing process parameters (including mastered and unmastered changes) in
particular, as concluded in section 2.1. Consequently, in order to exploit AE efficiently for
monitoring drilling operations in industrial conditions, 2 major issues must be addressed:

• efficient integration of AE sensors on drilling devices

• robust feature extraction of AE signals

In this section, experimental studies concerning the impact of influence quantities (coupling,
distance from sensors to the AE source, drilled material) on AE signals will be presented,
and results will serve as a basis to the design of an integration solution.
Then, a method will be proposed which allows extracting features in AE signals in a robust
manner facing process parameters changes. Moreover, it allows taking advantage of the
particularities of different states of the drilling operation. It has been developed taking into
account both observations coming from the AE literature and statistical characteristics of
AE signals, and has been applied on experimental data.

5.1.3.2 Issues related to AE sensors integration in drilling: experimental in-
vestigations

In order to achieve efficient integration of AE sensors, it is important to characterize impacts
of influence quantities related to the environment that affect AE signals. In particular,
respective influences of the couplant (substance providing an acoustic coupling between the
propagation medium and the transducer [60]) between AE sensor and the workpiece, the
distance between the AE sensor and the AE source, and the influence of the workpiece
material on transmission of AE will be investigated.
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Couplant

Two experimental studies will be presented that allow to demonstrate the influence of cou-
plant on AE signal transmission.
The first illustration of the importance of acoustic coupling between the AE source and
AE sensors has been given during a drilling test campaign (see appendix A.4). It consisted
in the drilling of CFRP/Ti6Al4V stacks with a robot. During the drilling of the Ti6Al4V
sample, micro-lubrication was set on. 2 AE sensors (Euro Physical Acoustics (EPA) S9220)
were mounted on the drilling end-effector with a silicone gel couplant, as depicted in figure
5.5(a). Therefore, several interfaces were present between the AE generated by the drilling
operation and the sensors. During this test campaign, the drill and tool holder were removed
from the robot end-effector every 5 drillings in order to take a picture of the tool cutting
edges, and the nose of the end-effector, the part which is in contact with the sample during
the drilling operation, was clean out of lubricant, CFRP dust and eventual titanium chips.
The bandwidth was ranging from 32KHz to 1.1MHz for both AE sensors due to the 40dB
preamplifiers that have been used (EPA IL40S-32-1100), and the energy of AE signals have
been computed, among other features. The evolution of the energy level recorded by the
2nd sensor during the drilling of the CFRP sample as a function of the number of drilled
holes is depicted in figure 5.5(b).

(a) Front part of the drilling end-effector: 2
AE sensors have been mounted using sili-
cone gel (red) which plays the roles of cou-
plant and sealant. The nose is the part
which is contact with the workpiece dur-
ing drilling operations.
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(b) Energy level of AE signal acquired by the 2nd

sensor during the drilling of the CFRP sample
as a function of the number of drilled holes: a
5 hole periodicity due to the absence of cutting
fluid at the interface between the workpiece and
the nose of the robot end-effector is visible

Figure 5.5 – Illustration of the influence of the presence of couplant at interfaces between the
AE source(s) and AE sensors

It appeared that the cutting fluid present at the interface between the nose of the end-effector
and the CFRP sample acted as couplant for the transmission of AE generated during the
drilling to the sensors mounted on the end-effector. The cleaning of the nose done each time
the tool holder was removed from the end-effector had the consequence to reduce the energy
of the AE transmitted to sensors during the drilling of the CFRP sample at the next hole.
This was due to the fact that no cutting fluid was present between the nose and the sample
until the micro-lubrication was set on during the drilling of the Ti6Al4V.
Another experiment was realized in order to emphasize the role of couplant. It consisted in
the realization of Hsu-Nielsen tests series, which consists in using a repeatable AE source in
the form of the brittle fracture of a pencil lead in similar conditions [60] (figure 5.6).
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Figure 5.6 – Principle of an Hsu-Nielsen test: breakage of a pencil lead in repeatable conditions
at the surface of a sample were AE sensors are mounted allow to characterize their response,
or here the quality of the transmission of AE

A reference AE sensor was mounted on a CFRP sample with the same silicone gel as used in
the experiment evoked above, while another sensor was keep in contact with the sample with
a 50N force, using either no couplant or cutting fluid as couplant. The test bed is visible in
figure 5.7(a). For each of the 2 configurations (no couplant, or cutting fluid as couplant) the
amplification of the energy and maximum amplitude values between the test and reference
sensors signals have been computed. Five tests have been realized for each configuration,
and the results have been averaged. They are depicted in figure 5.7(b). The presence of
cutting fluid as couplant allowed an amplification of energy and maximum amplitude levels
compared to when silicone gel was used, whereas when no couplant was present, the quality
of transmission of acoustic emission from the source to the sensor decreased. This series of
experiment confirms what has been observed during the drilling test campaign mentioned
above.

(a) Test bed used to compare the AE trans-
mission performance of different cou-
plants: a reference AE sensor mounted
on the sample is used in order to com-
pare signals acquired with another sensor
using a different type of couplant

(b) Amplification of energy and maximum ampli-
tude levels compared with the reference AE sig-
nal as a function of the couplant used at the in-
terface between the second sensor and the sam-
ple

Figure 5.7 – Test bed and results of an experiment dedicated to the characterization of AE
transmission performance of different couplants

Both the above mentioned experiments emphasized the critical role of coupling for a good
transmission of AE from its source to sensors. Therefore, it is an important point to take
into account for the integration of AE sensors into a drilling monitoring system. Results
also showed allows good transmission of AE.
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Influences of distance from sensor to AE source and workpiece material

Another factor that has a potential influence on the transmission of AE is the distance
between the AE source and the sensors. It has been evoked in [46] and [17] while drilling
CFRP and steel respectively. Another study concerning the drilling of carbon steel and
nodular gray iron concluded it had no influence [39]. In this section again, both drilling
and dedicated experiments that have been implemented in order to characterize influence of
distance between AE source(s) and sensors will be explained.
Two test campaigns have been performed on a machining center which consisted in drilling
CFRP/Ti6Al4V stacks. During the 1st one (see appendix A.1, sample 2), AE sensors (EPA
S9220 with an EPA IL40S-32-1100 preamplifier and Kistler 8152B211 with 5125B1 pream-
plifier) have been mounted on each sample of the stack, as depicted in figure 5.8(a). Holes
have been drilled in an order such that the distance from hole to AE sensors varied signifi-
cantly between consecutive holes in order to limit the influence of tool wear on AE signals
while emphasizing influence of distance. The RMS levels of AE signals calculated during
the drilling of CFRP and Ti6Al4V are depicted in figures 5.8(b) and 5.8(c) respectively as
a function of the number of drilled holes and of the distance from holes to sensor. Distance
between AE source(s) and sensor has an important influence on AE transmission in CFRP
workpieces. The high difference of RMS levels observed between consecutive drillings in this
sample clearly shows that more AE is transmitted when holes are close to the sensor. This
behavior is less emphasized in the Ti6Al4V sample, even if visible after 10 holes had been
drilled. It seems that distance between the AE source and sensor possesses less influence in
this material.
As for the second test campaign (described in appendix A.5, samples 1 and 2), two stacks
have been drilled with 2 AE sensors mounted as depicted in figure 5.9(a). The drillings
started at the upper right corner of the sample and were performed column after column to
reach the left part of the sample. The RMS levels obtained on the 2 sensors are compared
for 2 samples in figures 5.9(b) and 5.9(c). Here again, the influence of distance between AE
sources and sensor when drilling CFRP is clearly visible. Sensor 1, from which the distance
to AE source decreased as the number of drilled holes increased, presents a decreasing trend,
whereas an increasing trend is visible for signal energy on sensor 2 as its distance from the
AE source increased. Clusters of 8 holes, which corresponds to the numbers of drillings
realized in a column, are also visible, especially when the distance to the sensor decreased.

Another experiment has been realized in order to emphasize the influence of the distance
from AE source(s) to sensor. It consisted in the realization of Hsu-Nielsen tests series at
different distances from 2 sensors mounted on a sample, as showed in figure 5.10(a). 2 sen-
sors have been used in order to compare results and avoid unexpected harmful influences.
This test has been realized on a CFRP and on a Ti6Al4V samples. For each distance the
maximum amplitude generated by the breakage of 10 pencil leads have been observed and
the results have been averaged. They are depicted in figures 5.10(b) and 5.10(c).

This series of experiments confirms that distance from AE source to sensors attenuates the
AE signal in a CFRP workpiece: the observed maximum amplitudes of AE signal decreased
as this distance increased. Moreover, the difference of maximum amplitudes observed on the
2 sensors was in good correlation with the difference of distances from each sensor to the AE
source. Concerning the Ti6Al4V sample, distance from sensor to AE source did not show
great influence on the maximal amplitude observed within the AE signal. Moreover, the
difference of maximum amplitudes observed on each sensor does not show a good correlation
with the difference of distances they presented from the AE source.
These experiments allowed showing that distance from AE source(s) to AE sensor has an
influence on the acquired signal, which is stronger when CFRP workpieces are used. This
strong influence has to be taken into account for integration of acoustic emission sensor
within a monitoring system.
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(a) Test bed used to assess respective influences of distance from AE source(s) to sensors
and of the workpiece material on the AE transmission while drilling. Two different
types of AE sensors have been used
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(b) RMS level of AE signal acquired during the
drilling of the CFRP sample as a function the
number of drilled holes and of the distance from
hole to AE sensor
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(c) RMS level of AE signal acquired during the
drilling of the Ti6Al4V sample as a function the
number of drilled holes and of the distance from
hole to AE sensor

Figure 5.8 – Test bed and results of a drilling experiment showing influences of distance from
AE source(s) to sensors and of workpiece material on transmission of AE
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(a) Test bed used to assess respective influences of distance from AE
source(s) to sensors on the AE transmission while drilling CFRP
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(b) RMS level of AE signals acquired on the 2 sen-
sors during the drilling of the 1st CFRP sample
as a function the number of drilled holes
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(c) RMS level of AE signal acquired on the 2 sensors
during the drilling of the 2nd CFRP sample as
a function the number of drilled holes

Figure 5.9 – Test bed and results of a drilling experiment showing the influence of distance
from AE source(s) to sensors on transmission of AE while drilling CFRP. Although the same
AE source(s) are generated for each drilling, different trends are visible as a function of the
sensor due to the influence of their distance to the AE source(s) on AE transmission.
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AE sensors

: Pencil leads breakage locations

(a) Test bed used to assess influence of distance from AE
source(s) to sensors and of the workpiece material on
the AE transmission
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(b) Maximum amplitude means as a function of the
distance from AE source to sensors
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(c) Difference ∆a between the maximum amplitudes
means as a function of the difference ∆d between
the distances from sensors to AE source

Figure 5.10 – Test bed and results of a drilling experiment showing the influences of distance
from AE source to sensors and of workpiece material on transmission of AE
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5.1.3.3 Integration of AE sensors in drilling

The 2 main uses of AE in drilling are the monitoring of workpiece alterations and tool
condition. Concerning the first one, the best location for the sensor(s) to be mounted is on
the workpiece the closer to the drilling operation position. However, it is often impossible
to place sensors on aircrafts structural parts while they are assembled in production plants,
and the distance linked issue emphasized in the previous section would affect measurements.
As for their second use, the ideal position of AE sensor would be on the drill, or on a close
part, like the tool holder for instance. The problem here lies in the transmission of sensor
information and power supply from a rotating part to an immobile acquisition system.
Several solutions have been proposed in the literature in order to address these issues.
They will be presented, and a novel integration solution will be proposed following previous
observations. As comparative experiments have been performed in order to assess this new
system performances, results will be presented and discussed in a last part.

Presentation of existing approaches and devices

Several integration have been proposed for the integration of AE sensors on rotating ma-
chining devices. In [25], the coolant stream has been used as a medium for transmitting the
AE wave. The goal was to keep the distance between the sensor and the cutting point con-
stant. At first, the use of radio or optical methods to transmit the AE signal from rotating
to non-rotating parts has been evoked, but these techniques has been stated not econom-
ically viable. Either the reliability of the system would not be sufficient, or the necessary
expensive devices and the changes in the machine head would not make for practical usage
in the machine shops. As one of the practical solution to meet the requirements in terms of
the signal transmission, it has been proposed to use cutting fluid as a medium to transmit
the AE signal. The AE sensor was attached to the cutting fluid supply nozzle so that the
AE signal generated at the cutting point could be transmitted through the fluid and conse-
quently detected by the sensor. This apparatus has been used for milling applications and
is depicted in figure 5.11(a).
If it showed good ability in the detection of tool chipping, the author stated that AE sensor
was too sensitive to the process state, and consequently further improvements would be
necessary to make the monitoring system using this sensor a more reliable one. He also
argued that one of the promising ways to take full advantage of high sensitivity of the AE
sensor would be the fusion with other types of sensors.
An AE based boring monitoring method has been presented in [64] where an apparatus was
also designed to implement AE sensor on the drilling machine, near the cutting tool. A
magnetic fluid was use to transmit the AE signal from rotating machinery to the sensor
mounted on a steady part. This type of fluid has been shown to be one of the most efficient
in AE transmission in a previous study by the authors. The apparatus is depicted in figure
5.11(b). Following the authors, it presents several advantages: first it is able to obtain high
signal/noise ratios signals and secondly, the magneto fluid can be kept at a suitable place
in machining tool spindle without disturbing the cutting process. Thirdly, it can lengthen
the signal existing time to make the signal sampling and processing simple. The combined
use of this system with a wavelet based signal processing technique and a fuzzy classifier
allowed good tool wear state classification results over a wide range of cutting conditions.
Hutton and Hu also presented a system to integrate an AE sensor on a CNC machine [24].
The experimental set-up they used is depicted in figure 5.11(c) and was also liquid coupled.
The low end of the stub shaft shown was threaded directly into the tool holder and served
as the AE transmission path.
In [17], AE sensors have been mounted in different locations on a drilling robot end effector
as it would be more practical for industrial use than mounting the sensors on the workpiece,
but experiments did not show good results due to the presence of too much mechanical
spurious noise.
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(a) Apparatus for AE sensor integration pro-
posed in [25]

(b) Apparatus for AE sensor integration pro-
posed in [64]

(c) Apparatus for AE sensor integration
proposed in [24]

Figure 5.11 – Apparatus proposed for integration of AE sensor to sense tool condition on
rotating machinnery

However, results obtained after the experiment done where AE sensors were mounted on a
drilling robot end-effector described in section 5.1.3.2 showed that it was possible to see a
decreasing trend of AE energy as a function of the number of drilled holes, and consequently
tool wear, despite the interfaces present between the sensors and the AE source. Sensors
placement is visible on figure 5.5(a), and results obtained with both sensors (where effects
of the coupling problem described in section 5.1.3.2 have been catered for) are depicted in
figure 5.12.
Major differences appear between the two graphs. First, the energy level of the signal ac-
quired with the first sensor is nearly twice more important although the same acquisition
settings have been used. This is probably due to its closer location from the AE source. The
trend is more visible (i. e. data points are less dispersed) on results issued from the second
sensor, maybe because its distance from the AE source, and so the more interfaces, acted
as a filter. Another interesting phenomenon is visible: a change is present in the trends
after the 25th drilling. It correspond to a night break in the test campaign, however, no
process parameters have been modified in-between. This unexplained change underlines the
sensitivity of AE sensors to unmastered environmental changes.
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(a) Energy level of AE signals acquired with sensor 1
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(b) Energy level of AE signals acquired with sensor
2

Figure 5.12 – Energy of AE signals acquired by sensors mounted on a robot end-effector (see
figure 5.5(a)) during the drilling of a CFRP sample

Proposition and evaluation of a new integration solution

A solution has been proposed to allow AE sensor being in contact with the workpiece while
the distance between sensor and drilling operations remains constant. The principle is de-
picted on figure 5.13 and shows the axial compliance of the system allowing to maintain
the contact with the workpiece during the whole drilling operation. The use of a spring im-
plies that the contact pressure between the sensor and workpiece increases as the drill goes
deeper in the material. The system has been designed so this pressure lies in an interval that
has been shown to be adequate for AE measurements during lab Hsu-Nielsen experiments
performed on the test bed depicted in figure 5.7(a). The real apparatus is visible in figure
5.14(b).
In order to assess the performance of this new apparatus for integration of AE sensors, a
test campaign has been performed where the system has been implemented (see appendix
A.2, sample 1), and a 2nd AE sensor has been mounted on the workpiece. The drilled
sample was a CFRP/Ti6Al4V stack. As the used machining center did not allow center
micro-lubrication, an external system has been used with 2 consequences: external micro-
lubrication was set on during both the drillings of the CFRP and Ti6AlV4 samples, and the
formation of a mud made of cutting fluid and also CFRP dust at the surface of the CFRP
sample. This second point has been converted into an advantage as it has been shown dur-
ing previous experiments that this mix ensured acoustic coupling at the interfaces through
the AE waves path (see section 5.1.3.2). Therefore no additional coupling has been used
between the embedded AE sensor and CFRP sample, whereas the immobile AE sensor was
mounted and sealed on the sample with silicone gel. Pictures of the test bed are visible in
figure 5.14. The RMS levels of signals acquired by the embedded sensor are globally higher
than the ones obtained with the sensor mounted on the sample. This is particularly visible
when considering the highest frequency range of the signal (figure 5.15(e)) showing that the
transmission of AE waves trough the workpiece acts as a low-pass filtering operation.
As for results coming from sensor mounted on the sample, the influence of distance from
the drilling operation to the sensor is visible as energy-based clusters of drillings could be
defined as function of this distance on figures 5.15(b), 5.15(d) and 5.15(f). An increase of
energy can be seen on signals acquired with this sensor during the last 10 drillings that is
not visible with the embedded sensor. This is probably due to the decreasing distance from
AE source to the mounted sensor.
However, 4 of these drillings (58, 59, 60 and 61) presented higher energy level with the
embedded sensor (figures 5.15(a) and 5.15(c)). A close look to the pictures of tool cutting
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Spindle

Tool
holder

Spring

AE
sensor

Drill

Workpiece

(a) Schematic view of the proposed appara-
tus positioned as just before a drilling
starts

Spindle

Tool
holder

(b) Schematic view of the proposed apparatus
positioned when a drilling is being done

Figure 5.13 – Apparatus proposed for integration of AE sensor to sense tool and working
condition on rotating drilling devices. The real system is visible on figure 5.14

edges presented in figure 5.16 taken after these drillings had been performed and compared
to the previous and following ones (57 and 62) allows seeing important modifications of the
cutting edges shapes that may be responsible of the observed energy variations.
For the moment, no explanation is available concerning the energy dispersion observed be-
tween the first drillings with the embedded sensor (figures 5.15(a) and 5.15(c)). By now, we
have not been able to determine if it is due to issues related to the integration solution or
with some phenomenon that produced AE during the drilling operation.
Results obtained using an integration solution that allow avoiding influence of the distance
between sensor to AE source are mitigated: if the results were not correlated with distance
and showed higher sensitivity to some tool cutting edge alterations, they appeared more
sparse with no apparent reason. As the proposed solution exposes the embedded AE sen-
sor to external perturbations like the micro-lubrication flow, or the presence of unexpected
material between the sensor and the sample at the moment when both enter in contact, it
is impossible to argue that the observed energy variations are related to some phenomena
of interest that occurred during the drilling operation.
If those considerations should be taken into account when designing a more robust integra-
tion solution, promising results have been shown for a system allowing AE sensor placement
on the workpiece, close to the drilling operation location, even to sense tool condition linked
phenomena related to condition.
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(a) Test bed used to assess the performance of the proposed integration solu-
tion for AE sensor: AE sensors have been mounted on each sample of the
CFRP/Ti6Al4V stack

(b) The designed integration solu-
tion has been fixed to the spin-
dle. The external lubrication ap-
paratus is also visible

(c) The interface between the embedded AE sensor
and the CFRP sample was made of cutting fluid
and CFRP dust mud which stayed on the sensor
between drillings

(d) View of the test bed after 88 drillings have been performed: the sample is
covered by cutting fluid and CFRP dust mud. Only 68 out of the 88 drillings
have been performed with the AE sensor integration apparatus

Figure 5.14 – Test bed used to assess the performance of the proposed integration solution
for AE sensor
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(a) RMS levels of AE signals acquired while drilling
the CFRP sample
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(b) RMS level of AE signal acquired by the embed-
ded sensor as a function of the number of drilled
holes and its distance from the AE source

0 10 20 30 40 50 60 70
Hole index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
E
 R

M
S
 l
ev

el
 (
V
)

Sample AE sensor

Embedded AE sensor

(c) RMS levels of the 30KHz − 100KHz bandwidth
of AE signals acquired while drilling the CFRP
sample
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(d) RMS level of the 30KHz − 100KHz bandwidth
of AE signal acquired by the embedded sensor
as a function of the number of drilled holes and
its distance from the AE source
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(e) RMS levels of the 100KHz − 1100KHz band-
width of AE signals acquired while drilling the
CFRP sample
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(f) RMS level of the 100KHz − 1100KHz band-
width of AE signal acquired by the embedded
sensor as a function of the number of drilled holes
and its distance from the AE source

Figure 5.15 – Results obtained after a test campaign dedicated to an AE sensor integration
solution performance assessment
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(a) Drill cutting edges after the
57th has been drilled

(b) Drill cutting edges after the
58th has been drilled

(c) Drill cutting edges after the
59th has been drilled

(d) Drill cutting edges after the
60th has been drilled

(e) Drill cutting edges after the
61th has been drilled

(f) Drill cutting edges after the
62th has been drilled

Figure 5.16 – Results obtained after a test campaign dedicated to an AE sensor integration
solution performance assessment

5.1.3.4 Exploitation of AE signals for drilling monitoring: proposition of a
robust feature extraction method

Features of interest of AE signals for machining monitoring

Energy level. Energy level has usually been considered the best feature of AE signals to
indicates the drill condition [17, 37]. It has often been used on particular frequency bands
of AE signals in order to improve its performance [39, 63, 45]. However, it has been pointed
out that energy, often presented by the RMS value of the AE signals, should be used with
precaution and is not always adapted to detect sudden events like catastrophic tool failure
[29, 31].
Considering a zero mean signal, the RMS is equivalent to the standard deviation which is
the square root of the second order central moment of the signal. Third and fourth normal-
ized central moments, respectively skew and Kurtosis, have been shown to be promising
symptoms of catastrophic tool failure [31, 33] when applied on the instantaneous RMS value
of AE signals. These symptoms are related to the instability of the cutting process, and are
often used for monitoring rotating machinery, especially the Kurtosis which is widely used
on acceleration signals to detect shocks as it quantifies their peakedness.
As it is difficult to mount sensors on the rotating drill, as evoked in section 5.1.3.3, the place
where most useful information is collected is the workpiece. Unfortunately, it has been
shown that the AE signal is influenced by relative positions between the AE source and the
sensor, and also by adjacent holes when drilling. In order to reduce these harmful influences,
solutions have been developed and experienced with sensor mounted on the machine in a
way such that the distance from the sensor to the rotating tool remain constant. Position-



5.1. SENSORS INTEGRATION 151/244

ing sensors on the spindle assembly and on the nose of a robot drilling end-effector did not
provide good results because of mechanical spurious noise coming from additional interfaces
in [17], and allow obtain trends affected by spurious points due to absence of couplant in ex-
periments by the authors. More sophisticated systems have been developed showing better
results in milling and drilling but that are still sensitive to process parameters and should
be used in addition with other type of sensors for robust monitoring applications [25, 64].
The proposed integration solution also showed promising results, but is still an experimental
apparatus and further developments are needed to enhance its robustness and performances.
Up to date, the best results in term of machining process monitoring have been obtained
with AE sensors mounted on the workpiece, even if the harmful influence of varying distance
between the AE source and the sensor on signal energy has been established. Energy based
features extracted of AE signals are heavily dependent of process parameters like distance
from sensor to drill bit, but can also be affected by the presence of elements adding noise
to the signals like cutting fluid spray or carbon dust vacuum cleaner for instance. Consid-
ering these drawbacks which are difficult to overcome, AE energy based monitoring needs
additional efforts to isolate effects of different process parameters.

AE count rate. AE count rate, which is defined as the number of times the amplitude
of an AE signal has exceeded a threshold in a specified unit of time [60], has also been
investigated and linked to drill flank wear [26, 27] and cutting tool crater wear in turning
[62]. Although AE count rate and tool wear seemed well correlated, the data presented
significant scatter and many problems inhibited the usage of this relationship in process
monitoring. Indeed, it has been pointed out that such a system would have to be calibrated
for each specific machining condition and the selection of a threshold level for the AE count
rate would be somewhat arbitrary [22, 62].
These drawbacks do not allow drilling monitoring in industrial conditions. However, a simple
statistical comparison of AE signals obtained during drilling and noise (AE signal obtained
when the drilling system is operating outside of the CFRP sample) can make one think
that AE count rate is a relevant feature for drilling monitoring. Indeed, the distributions
of measured points composing the drilling phase signal and the noise phase signal present
differences showing that high amplitude pikes are more numerous in the signal during the
drilling phase, and so may be linked to some phenomena occurring during material cutting.
Such distributions are depicted in figure 5.17. Therefore, counting these pikes during the
drilling phase can be interesting in order to observe changes related to the drill or workpiece
condition.
In order to quantify the difference between the number of high amplitude pikes occurring
during the noise and drilling phases, the size of the C95 95% coverage interval of the nor-
malized signal distribution has been used. A larger C95 coverage interval means that the
distribution presents a bigger tail, and so contains more high amplitude pikes. It also allows
avoiding influence of extreme points that appears in the noise and are not visible during the
drilling operation. Table 5.1 contains the means of the C95 of each hole for different test
campaigns and shows that the drilling phase presents more high amplitude pikes than the
noise phase. Moreover, for campaign where 2 sensors have been used, one can remark that if
the distributions of noise affecting both sensors can be different, the C95 of the drilling phase
are very close, confirming the fact that drilling generates specific AE signal distributions.
In order to implement an AE count rate algorithm, a threshold needs to be set. Issues con-
cerning changes in process parameters compromise the relevance of a fixed threshold. For
instance, if the distance between the AE sensor and the drilled hole in CFRP vary during
a test campaign, and so energy levels of acquired signals present variations like evoked in
previous sections, using the same threshold to perform hits count on each hole will lead to
unusable results. Moreover, even in absence of energy variation from one hole to another,
fixing a threshold would remain a problem considering the case of industrial monitoring
because it would have to be calibrated for each specific machining condition, causing a lack
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(a) AE signal acquired while drilling a CFRP sample

(b) Amplitudes normalized distribution of the noise
content of the AE signal. A Gaussian distribu-
tion with the same parameters have been drawn
for comparison purpose

(c) Amplitudes normalized distribution of the
drilling content of the AE signal. A Gaussian
distribution with the same parameters have been
drawn for comparison purpose

Figure 5.17 – Difference of distributions of AE noise and drilling signals

of flexibility, and the selection of a threshold level for the AE count rate would also be
arbitrary. In order to overcome the difficulties involved by the set-up of a threshold, it is
interesting to have an adaptive and scalable threshold which allows attenuating effects of
changing process parameters.
However, a simple threshold presents another drawback: it does not allow performing count
rate on transient phases of AE signals. The complete process of drilling FRPs using twist
drills can be viewed from a different angle relating to four major stages (see figure 5.18(a))
following [53]. In the initial stage, contact of chisel edge is ensued when the top of the
workpiece is extruded to create an indentation. Spindle rotation invariably induces contact
frictional rubbing. Further traverse of the drill bit, engages the secondary cutting edges
(near the chisel edge) and the main cutting edges (lips) to generate cutting forces. This is
the stage when the actual drilling operation begins and larger volume of material removal
takes place. As the drill is further translated, it cuts and machine alternate layers until it
reaches the last few plies before the drill tool completely exits out. Obviously, at this point,
due to decrease in the thickness, the ’resisting stiffness’ of the laminate is reduced and ply
layers bend elastically under the influence of the applied compressive thrust force. If the
compressive thrust force (generating interlaminar stresses) is larger than the interlaminar
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Test Cam-
paign

Drillings Number Noise phase normal-
ized C95

Drilling phase normal-
ized C95

1 103 3.33 3.98
2 40 3.31 3.99
3 88 3.93 4.18
4 80 3.92 4.15
5 - Sensor 1 96 3.70 4.02
5 - Sensor 2 96 3.83 4.01
6 - Sensor 1 97 3.95 4.32
6 - Sensor 2 97 4.06 4.34
7 - Sensor 1 96 3.76 4.30
7 - Sensor 2 96 3.88 4.30

Table 5.1 – Means of normalized C95 of noise and drill phases acquired while drilling in CFRP
samples in different test campaigns

bond strength then a crack is initiated and propagates to result in a finite damage around
the hole. Cutting action is not effective during this course and this action is analogous to
piercing an arrow onto a target. This is a crucial stage and is named piercing action, because
this mechanism of sudden release of the drill bit to generate the hole decides the quality of
the exit side of the laminate. The last stage involves simply rotation of the drill bit within
the walls to induce peripheral friction. In order to facilitate the extraction of features of
interest, it is useful to isolate the different phenomena occurring during these stages.
The drill bit entry into the material is a phase when only contact friction and cutting occur,
therefore it is of particular interest for monitoring cutting edges wear, chipping or other
degradation mechanism. The drill entry stage has been reported to be one of the best mo-
ment for tool where monitoring in [50]. However, AE signal acquired during the drill entry
into the material is transient because of the increasing quantity of cut material (see figure
5.18(b)), and cannot be efficiently treated with a steady threshold. The idea developed here
is to build an adaptive and scalable threshold which follows the signal shape and allows
counting the events that are remarkable considering both the AE signal characteristics and
the goals of the monitoring operation.

(a) Four stages of a drilling composite lam-
inate operation following [53]

(b) Transient AE signal acquired during the entry of
the drill bit in a CFRP sample

Figure 5.18 – Different phases of AE drilling in composite laminates (a) and AE signal
acquired during the beginning of the 2nd phase (b)
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Building an adaptive and scalable threshold

The goal of a scalable threshold is to determine what is considered as a remarkable event at
each moment of the signal. AE signals acquired during drilling present Gaussian like distri-
butions, and the most extreme points seems to be linked with material cutting phenomena.
Thus, the threshold level can be set considering the occurrence probability Pevent of the
events that are wanted to be taken into account. Then, using a Gaussian law table, Pevent
is used to determine the number nσ with which to multiply the standard deviation σp of the
signal portion that is considered in order to set-up the threshold.
Using this scheme for each signal portion gives a set of P points, each one giving a threshold
level for a given signal portion. To be done, this requires to divide the signal in P different
time portions. The choice of such a portion duration is governed by two parameters: the
number P of points that will be used to build the threshold, which is also the number of
portions, and the total duration of the signal extract of interest Tsignal. They are linked
together by the following relationship:

Tp × P ≤ Tsignal (5.1)

where Tp stands for the portions duration. Both parameters present constraints to deal with:
the more number of portions P , the better the threshold will adapt itself to the signal shape,
but in the same time, the portions duration Tp must be long enough for their distribution
to be statistically representative of the signal information content and so give a coherent σp
value to determine the threshold level threp associated with the pth signal portion:

threp = nσ × σp (5.2)

Depending on the complexity of the shape that is wanted for the scalable threshold, a min-
imal number P of points can be required, then Tp can be chosen with respect to equation
5.1.
Considering drilling monitoring using AE signals, the scalable threshold needs to adapt it-
self to different kinds of shapes. The potential of the drill entry phase, during which the
signal energy is increasing, has been emphasized in a previous section, but the drilling phase
during which the energy level remains quite stable also contains useful information on the
drilling operation. Moreover, in case of blind holes, a decrease of the AE signal energy is
visible as the feed decreases because of the spindle translation movement deceleration, so
the threshold has to adapt too because the feed reduction has significant influence on AE
signals [33].
As the threshold needs to be defined for every moment of the signal, we propose to build
a parametric function that fits on the P previously determined points. A simple function
which adapts itself to all the above mentioned kind of shapes is the sigmoid function defined
by:

s(t) = d+
a

1 + eq(t−p)
(5.3)

The little number of parameters allows using a reduced set of points which is an advantage
for short duration signals like the drill bit entry or spindle translation movement decelerating
phases. As the problem is simple, fitting the function with the previously determined points
can be done using any non-linear optimization algorithm. For instance, the Levenberg-
Marquardt algorithm has been used in this work. Once the threshold is set in function
of the wanted remarkableness of pikes driven by the user defined parameter Pevent, an hit
count algorithm can be applied to perform AE count rate.
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(a) P points are builded as a function of the standard
deviations σp of the P time portions

(b) A sigmoid function is fitted on the P point in
order to obtain the auto-adaptive threshold

Figure 5.19 – Illustrations of the construction of auto-adaptive thresholds to perform hits
count on the drill entry phase of an AE signal using the proposed approach

Adaptive and scalable threshold set up

The threshold parameters have been set up with respect to 5.1 considering the worst appli-
cation case: the drill bit entry phase which presents a 0.05s duration because of the feed
and the drill shape that have been used. In order to perform a good curve fit with a sigmoid
function, a minimal number P of portions has been set to 10. A minimum portion duration
Tp has also been fixed to 0.002s in order to obtain a distribution of the points which is rep-
resentative of the AE drilling signal. Then, considering those constraints and a 0.01s margin
on the drill bit entry phase duration, 3 possible ( P , Tp ) parameters sets have been chosen
in the space of possible parameters values to be evaluated. The space of possible parameters
and the chosen parameters sets are presented in figure 5.20(a) and the parameters sets are
detailed in table 5.2.

Parameter set P Tp
PS1 10 0.0030
PS2 12 0.0025
PS3 15 0.0020

Table 5.2 – Assessed (P, Tp) parameters couples

The same parameters have been used to perform feature extraction on the signals issued
from the drill entry and the drilling phase in order to evaluate the method flexibility fac-
ing different signal shapes and characteristics. To assess the parameters influence, the 3
parameters sets have been used to perform AE count rate on a test campaign. The results
are depicted in figure 5.20(b) and show that the parameters sets PS2 and PS3 give much
closer results than PS1 is involved. In particular, high differences in hits count has been
achieved using PS1, which is due to the bad behavior of the optimization operation aim-
ing to fit the sigmoid function on the P calculated points with a reduced number of data
points. This phenomenon is visible for holes 50, 72, 78 and 98 on figure 5.20(b) obtained
after performing AE count rate with the three parameters sets on the drill entry phase of
103 holes realized during a CFRP/Ti6Al4V drilling test campaign. The similarity between
the results obtained using PS2 and PS3 shows that a 0.002s portion duration Tp is sufficient
to give a representative statistical description of the signal. In order to avoid instabilities of
the method due to optimization problems, PS3 is chosen as the parameter set to perform
feature extraction on the test campaigns data in the following.
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(b) Hit count has been performed on signals (drill
entry stage) acquired during a CFRP drilling
test campaign with the 3 selected parameters
couples in order to assess their performance

Figure 5.20 – Delimitation of the parameter space for T and Tp (a) and assessment of three
couples on real AE data (b)

Application on experimental data

In order to assess performances of the proposed feature extraction method, it has been
applied on data acquired during several tests campaigns. For all the results that will be
presented, the sensor was mounted on the sample and coupled and sealed with silicone
gel. The same acquisition set-up has been implemented and the AE signal bandwidth is
30KHz − 1100KHz First, a comparison of the hits count with the RMS extracted feature
will be provided to emphasize differences between both. Then, the influence of the param-
eter Pevent of the proposed approach will be characterized, and finally interest of isolating
different drilling phases to perform feature extraction on will be discussed.

Comparisons between energy based features and auto-adaptive hits count. Com-
parisons between energy based and hits count based features have been done on several data
sets. The first one consisted in a test campaign where 103 holes have been drilled in a
CFRP/Ti6Al4V stack (see appendix A.1, sample 1). AE sensors were placed on both the
samples, as depicted in figure 5.8(a). Feature extraction computed for the entry of the drill
in the CFRP and the drilling of Ti6Al4V are depicted in figure 5.21. The RMS level of AE
signals have been computed as the hits count performed with the scalable threshold with
parameter Pevent set to 0.99720 (3× σp) and 0.99999 (5× σp) respectively.
Considering the entry in CFRP, the proposed approach allows obtaining less dispersed re-
sults than RMS level. In particular, a 8 holes pattern linked to the distance from hole to
sensor is visible that cannot be seen when using the proposed method. As for results ob-
tained when drilling the titanium sample, trends are observed when using both the RMS
of the proposed approach. If it is not possible to statue about an eventual influence of the
distance from sensor to hole on the observed trends, it is important to remind this param-
eter possesses lower influence than in the CFRP. One can also observe that the first hole
produces the highest hits number, and that the trend are different in the CFRP and the
Ti6Al4V.
Data from another similar test campaign have also been used to perform feature extraction
with both approaches. The main difference was the fact that consecutive drillings were
performed at different distances from the sensor (see appendix A.1, sample 2). Results are
depicted in figure 5.22 for the CFRP sample drilling phase.
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(a) RMS level of AE signals acquired during the
entry in CFRP phase
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(b) Number of hits of AE signals acquired during
the entry in CFRP phase
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(c) RMS level of AE signals acquired during the
drilling of Ti6Al4V phase
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(d) Number of hits of AE signals acquired during
the drilling of Ti6Al4V phase

Figure 5.21 – Some feature extraction results obtained on data acquired during a
CFRP/Ti6Al4V drilling test campaign

Once again, the influence of distance from AE sensor to AE source is clearly visible on the
AE signal energy based feature, whereas the proposed approach provides results that seems
less affected by this parameter. However, some high variations are observed for holes 5, 18
and 29-34. Observation of drill pictures that have been taken after each hole barely allows
distinguishing alterations due to their poor quality. Pictures taken after hole 28 and 35
(figures 5.22(c) and 5.22(d)) show an important modification a cutting edge geometry that
could explain the important hits number variations that have been observed on these holes.
This ability of the proposed approach to sense tool sudden alteration will be discussed in
the following section.

Particularities of the proposed approach & influence of Pevent. Particularities of
the proposed approach, and the influence of Pevent in particular, have also been investigated.
As seen in the previous example, the method showed an ability to sense drill significant
alterations in several cases, especially when Pevent is set to high levels, whereas lower levels
allowed to obtain trend that seemed more linked with tool wear. Results presented in figure
5.23 illustrate this behavior: hits count have been performed with 2 different values of Pevent
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(a) RMS level of AE signals acquired during the
drilling of CFRP phase
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(b) Number of hits of AE signals acquired during
the drilling of CFRP phase

(c) Picture of the drill cut-
ting edge after 28 holes
have been drilled

(d) Picture of the drill cut-
ting edge after 35 holes
have been drilled

Figure 5.22 – Feature extraction results obtained on data acquired during a CFRP/Ti6Al4V
drilling test campaign ((a),(b)), and pictures of the drill cutting edge after 28 and 35 holes
have been drilled ((c),(d))

on the same AE signal acquired during the plain drilling phase in a CFRP sample. When
using a 0.9972 probability to set the threshold, a trend is visible as the number of drilled
holes increases, whereas for Pevent = 0.9999 only high amplitude points (holes number 56,
85 and 99) are remarkable. Using the pictures of the drill bit taken after each hole, those
high amplitude points reveal drill bit cutting edges alterations visible in figures 5.23(d) and
5.23(f). No picture has been taken after the 99th hole because of a camera problem. The
big chipping present on pictures taken after holes 84 and 85 have been provoked manually
between 2 holes so it does not appears in the results as a singular point. Another example of
the proposed approach ability to detect the occurrence of tool cutting edge chipping has been
given in another test campaign where 2 AE sensors were placed on the sample, as depicted
in figure 5.9(a) (see appendix A.5 for further information about the test campaign). An
alteration of both the drill cutting edges corners took place during the 4th drilling. It clearly
appears on feature value extracted on the two sensors. It is interesting to note that again,
previously to the alteration, the energy level has reached a very low level for the 3rd hole.
Results provided by the second sensor also show the 17th hole as a singular one. Pictures
5.25(g) and 5.25(h) shows that a cutting edge corner has been altered.
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(a) Number of hits of AE signals acquired dur-
ing the drilling of CFRP phase obtained with
Pevent = 0.9972
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(b) Number of hits of AE signals acquired dur-
ing the drilling of CFRP phase obtained with
Pevent = 0.9999

(c) Picture of the drill cutting
edge after 55 holes have
been drilled

(d) Picture of the drill cutting
edge after 56 holes have
been drilled

(e) Picture of the drill cutting
edge after 84 holes have
been drilled

(f) Picture of the drill cutting
edge after 85 holes have been
drilled

Figure 5.23 – Feature extraction results obtained with the proposed approach 2 different
values of Pevent on data acquired during a CFRP/Ti6Al4V drilling test campaign ((a),(b)), and
pictures of the drill cutting edge after 55, 56, 84 and 85 holes have been drilled ((c),(d),(e),(f))
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(a) RMS level of AE signals acquired on sensor 1
during the drilling of CFRP phase
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(b) Number of hits of AE signals acquired on sensor
1 during the drilling of CFRP phase obtained
with Pevent = 0.9999
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(c) RMS level of AE signals acquired on sensor 2
during the drilling of CFRP phase
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(d) Number of hits of AE signals acquired on sensor
2 during the drilling of CFRP phase obtained
with Pevent = 0.9999

Figure 5.24 – Feature extraction results obtained for 2 AE sensors mounted on a CFRP
sample during a drilling test campaign: holes number 4 and 17 are singular when looking at
hits count results, and hole number 3 when looking at AE RMS

Interest of the separation of the drilling phases. Figure 5.26 allows comparing results
of AE hits count using Pevent = 0.9999 and shows the interest of the separation of the
different phases of the drilling operation. Indeed, very different results are obtained between
the drill entry phase and the drilling phase. As explained sooner in this section, performing
AE count rate with Pevent = 0.9999 allows detecting sudden events linked with tool cutting
edges condition. Performing the same operation on the drill entry phase provided a trend.
The high amplitude pikes hiding the trend for the drilling phase are probably not visible
during the drill bit entry phase because the cutting edges alteration occurred during the
drilling phase which took place just after.
Another drilling stage, peripheral friction, has not been studied here but showed promising
results as depicted in figure 5.27. As during this stage only the rotation of the drill bit within
the walls induces the generation of AE, it could be interesting to use features extracted from
AE signal recorded during this stage to look for correlations with the hole geometry and
surface quality.
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(a) Picture of the drill cutting
edges after 3 holes have
been drilled

(b) Picture of the drill left cut-
ting edge after 3 holes have
been drilled

(c) Picture of the drill right cut-
ting edge after 3 holes have
been drilled

(d) Picture of the drill cutting
edges after 4 holes have
been drilled

(e) Picture of the drill left cut-
ting edge after 4 holes have
been drilled

(f) Picture of the drill right cut-
ting edge after 4 holes have
been drilled

(g) Picture of the drill right cut-
ting edge after 16 holes have
been drilled

(h) Picture of the drill right cut-
ting edge after 17 holes have
been drilled

Figure 5.25 – Pictures of the drill cutting edge after 3, 4, 16 and 17 holes have been drilled:
alteration appear on the corners of the drill lips when high hits count rates have been observed
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(a) Number of hits of AE signals acquired during
the drilling of CFRP phase
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(b) Number of hits of AE signals acquired during
the drill entry in CFRP phase

Figure 5.26 – Feature extraction results obtained with the proposed approach applied on the
drilling phase of a drilling operation on a CFRP sample (a), and the drill entry phase (b)
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(a) RMS level of AE signals acquired during the
peripheral friction phase in a CFRP sample
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(b) Number of hits of AE signals acquired during
the peripheral friction phase in a CFRP sample

Figure 5.27 – Feature extraction results obtained with studying the peripheral friction phase
of a drilling operation on a CFRP sample

5.1.3.5 Overview on AE sensors integration

A brief review on the use of acoustic emission in machining, and drilling in particular,
has been done and showed a lack of robust methods for monitoring applications. This
is essentially due to the classical approaches inability to handle perturbations induced by
changing process parameters, and to the difficulty to efficiently integrate AE sensors on
drilling devices.
Influences of some of these parameters (couplant, material and distance from AE source to
sensor) have been investigated experimentally showing their importance and underlining the
need to take them into account while deigning an integration solution.
An integration solution has been proposed in order to address some of the issues encountered
when using AE for drilling monitoring, keeping the distance between AE source and sensor
constant in particular. It has been assessed during drilling experiments and results are
not completely understood yet, so more effort is needed to exploit them and look for the
potential enhancements that could be given to the system in order to achieve an efficient
integration solution suited for industrial use.
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An auto-adaptive feature extraction method for AE signal has also been proposed that
allowed overcoming some of previously identified issues and taking advantage of the different
phases of the drilling operation. Experimental results showed the robustness of the method
facing some process parameters changes, and also its good detection ability both for sudden
events and progressive phenomena. In a future work, a better statistical description of AE
signals and a bigger database of signals acquired during test campaigns may lead to better
results in terms of detection ability.
As concluded in section 2.1, Acoustic emission appears as a very promising way to perform
drilling monitoring due to its high sensitivity. Works presented here are encouraging by
showing integration solutions and robust feature extraction algorithm exist and could be
used in industry soon. However, as mentioned by many authors, AE should be coupled with
other types of sensors to perform the best monitoring results.

5.1.4 Overview on sensors integration

Sensors integration, as evoked in chapter 3, is a key point for the implementation of an
efficient drilling monitoring system. Indeed, a good diagnostic is based on relevant features
that are extracted from informative sensor signals. Sensors integration is made difficult by
the constraints imposed by harmful industrial environments: measurement solutions have to
be robust and non-intrusive for the process, while, in the same time, providing informative
data. Unfortunately, most informative signals are issued from the most difficult to integrate
sensors. Indeed, if vibrations and currents are easy to observe, it is often difficult to use
them as reliable features for tool or workpiece condition monitoring, whereas force and AE
measurements are informative but sensors are difficult to integrate.
Solutions have been reviewed and proposed for these two sensor types, showing encouraging
results. A feature extraction procedure for AE signal has also been proposed which showed
more robustness to process parameters changes and better tool cutting edge failure detection
ability than the classical energy based ones.
These results confirm that sensors integration is an important step of the design of a mon-
itoring system. In particular, when industrial constraints exist, they need to be taken into
account from the beginning of the design of a monitoring solution.
Following the acquisition of informative sensor signals, feature that are relevant concerning
the process state have to be extracted in order to achieve good estimation performance. The
selection of such features is the scope of the next section.
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5.2 Feature selection

5.2.1 Introduction

A drilling monitoring system should allow estimating the process state by deriving it as
a function of critical variables, called features, that characterize the process condition. In
drilling monitoring applications, these features have usually been chosen as a function of
knowledge about correlations existing between the drilling process parameters and results
and sensor measurements. Those correlations have been extensively investigated via the-
oretical or experimental studies, and some of them have been presented in section 2.1.2.
A interesting overview of feature selection for machining monitoring applications has been
given in [61]. The example of turning applications was given, and it was stated (after [56])
that in only 15% over 138 monitoring applications papers, the features were chosen due
to their relationship with the phenomenon of interest. The most used correlation criterion
between features and monitored phenomenon is the Pearson correlation coefficient, (see
equation 5.12), which only takes into account linear relationships.
Nowadays, due to an increase in technology level and a decrease of prices of sensor and data
processing devices, it is easy to acquire a large amount of data related to different measur-
ands while drilling. From this data, many potential features can be extracted either using
general techniques like those explained in section 2.1, or more particular ones, adapted to one
type of sensor data or application. To give an idea of the number of potential features than
can be extracted from a multisensor system implemented on a drilling device, lets consider 4
sensor types: forces (3 axes) and torque, acceleration (3 axes), power consumption (spindle
and feed motors phase currents) and temperature. For all these measurements, the four first
statistical moments are computed, plus their maximum and minimum values. Except for
temperature, it is also interesting to analyze these measurements in the frequency domain
and to determine the values and frequency locations of the three higher frequency peaks, the
standard deviation and the Kurtosis of the frequency distributions. This provides a total
number of features of (3+1+3+2+1)×6+(3+1+3+2)×8 = 132. This number has then
to be multiplied by the number of frequency bands of interest, the number of phases of the
drilling operations of interest (entry of the drill, plain drilling, exit of the drill), etc... Thus,
the number of potential features can be too high (500+) for them to be investigated one by
one in order to find the ones that are correlated with the phenomenon of interest only by
human interpretation. For instance, using only AE and force sensor, Jemielniak and Arra-
zola extracted 144 features in [30]. Moreover, as mentioned earlier, when several features
are used, their combined use is to be taken into account as features that are useless alone
can be useful when used with others. Finally, as most of features extracted following this
exhaustive approach will be irrelevant regarding the the phenomenon of interest, a manual
feature relevance characterization procedure would be a waste of time. Therefore, solutions
have to be found to select relevant features in an efficient manner.
Process monitoring is not the only application dealing with high number of potential fea-
tures, and the problem of feature selection has been widely studied (see [57, 4, 30, 58, 19]
and [28] for tool condition monitoring applications). In its general form, it consists, given
an original set of features, in finding a subset such the estimation accuracy of the moni-
toring system is the highest possible. Feature selection techniques have been developed for
answering this need differ by their objectives, algorithms and complexity.
Considering difficult contexts and conditions detailed in section 3, feature selection can be
tricky due to the imperfection of available data collections: depending on the data acqui-
sition and the drilling system operating conditions, they can be heterogeneous, incomplete,
imprecise, contradictory, or erroneous. For instance, it has been showed in turning that
performing feature selection on data from different test campaigns could lead to different
relevant feature sets [30]. This is especially the case when implementing a monitoring sys-
tem in industrial environments: building data collections have often to be done in disparate
conditions, on different devices, with different sensors, and are not representative of the
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full operating conditions range of the process to be monitored. The main challenge for this
important task is therefore obtaining a ’robust’feature set.
Classical feature selection techniques lack of solutions to take data coming from different
collections into account, in particular when affected with imprecision and inconsistency. It
is our assertion that data fusion should provide solutions to process data collections alto-
gether in order to achieve coherent and more robust feature selection, even in such difficult
cases. This section is devoted to the feature selection task using data fusion techniques.

After a short description of the feature selection problem for complex systems monitor-
ing, a rapid review will allow finding which feature selection techniques are the best suited
for the implementation of an industrial monitoring system and to select one of them. Then,
considering difficulties linked with the harsh environment and drilling process complexity we
have to face, and also the experimental data acquisition procedure used when implement-
ing a monitoring system in an industrial production plant, a fusion approach for feature
selection will be proposed that uses developments about the identification of singularities
within data sets in difficult contexts presented in chapter 4. Classical approaches will also
be introduced as they are used for explaining differences and for comparison purpose. A real
case study, the detection of drill cutting edge chipping, will serve to illustrate the use of the
different proposed developments and assess their performance via numerical experiments,
using real-world experimental data.
Approaches aimed at feature creation or also called feature extraction in [1], that consist
in combining several features to obtain meta-features that are more informative, are not
discussed here. Although they are quite popular (principal and independent component
analysis (PCA & ICA) in particular) because of their ability to reduce the feature space
dimensionality, they lead to the creation of variables which do not posses physical meanings
anymore. The general criterion for reducing the dimension is the desire to preserve most
of the relevant information of the original data according to some optimality criteria. For
monitoring applications however, it is desired to pick a subset of the original features rather
then find a mapping that uses all of the original features. The benefits of finding this subset
of features are the reduction of the cost of computations of unnecessary features, and also
of unnecessary sensors [43].

5.2.2 Feature selection for complex systems monitoring

5.2.2.1 Problem description

Feature selection is one of the most important step in the design of a monitoring system.
As estimations of the production process state are based upon some features of interest,
a good selection of these features is essential. Indeed, a good feature set will improve
prediction performance, provide faster and more cost-effective estimations and a better un-
derstanding of the underlying process [20], whereas the use of irrelevant features will lead
to downgraded estimation performances and increase computation time. A reduced feature
set is often wished as it implies the use of fewer sensors and data processing, and because
it reduces risks of estimation performance degradation (curse of dimensionality evoked in
section 2.1.1.2). Moreover, for most learning machines, the more features are used, the more
training samples are needed [61], which is not always compatible with industrial implemen-
tation of monitoring systems. It has also been showed in [8] that a reduced set of 25 selected
features allowed to performed better than a set of 138 features for tool condition monitoring
in end milling.
When no exhaustive information is available about relevant features at the designing step of
a monitoring system, feature selection is usually performed following a basic feature selection
process (BFSP) depicted in figure 5.28. It consists in building an experiment dedicated to
emphasize the phenomena to be monitored and collect raw data from sensors. Sensors are
the same ones that will be used by the monitoring system. Large scale feature extraction is
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then performed on the acquired data, being as exhaustive as possible in order not to miss
useful features. Finally a feature relevance characterization procedure is applied in order to
allow selection of the best ones regarding the phenomena of interest. This BFSP procedure
has been applied in [4, 30, 19] and [28] for condition monitoring for instance. The design of
dedicated experiments, which is an important concern of the BFSP, has not been discussed
in this work. More information can be found in [1] for instance.
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Figure 5.28 – Basic feature selection process (BFSP)

When working with complex systems like industrial drilling devices used for aircrafts struc-
tural assembly, this BFSP presents some limitations because of its sensibility to experimental
conditions like process parameters, or influence quantities that affect sensor measurements.
The design of experiments is a complicated task for which various techniques exists, and
an overview of methods applied for machining monitoring applications can be found in [1].
Moreover, it is not suitable for dispersive systems showing significantly different behaviors
when only slight changes, sometimes barely detectable, occurred in the operating conditions.
In [19] for example, only one operating condition of the machining system has been investi-
gated, so findings about selected features should not be generalized, and in [42] testing the
monitoring system in variable operating conditions in order to assess the proposed feature
selection methodology sensibility and effectiveness will be part of future work. This lack
of robustness of this approach when quasi-exhaustive data about the monitored system are
not available, which is likely to occur when working with flexible systems implemented in
harsh environments and when experimentation is costly, as it is the case for machining, is
an important issue.
Tracks to overcome these drawbacks and select features that allow improving the robustness
and flexibility of monitoring systems exist. The first one consists in considering that avail-
able data are not perfect but tainted with uncertainty and imperfection coming from the
monitored system dispersive behavior, and/or acquisition problems like noise, sensors fail-
ure, sensor mounting issues, harmful influence quantities... Keeping in mind that collected
data may not exactly represent the monitored system behavior should prevent misleading
interpretations. Moreover, the presence of multiple data collections concerning the moni-
tored system, even if heterogeneous, incomplete or contradictory, should be considered as a
chance for robustness improvement, and not as a drawback in order to obtain ’easy to in-
terpret’ results. The processing of these different data collections in order to obtain a single
feature set is then an important issue, and data fusion becomes necessary to incorporate all
the data into the analysis [15].

5.2.2.2 A short introduction on feature relevance characterization

The feature relevance characterization step of the BFSP has been widely studied, and a
good introduction and useful references can be found in [20, 47, 36, 9]. The feature relevance
characterization process can take three main forms: filters, wrappers and embedded.
Using filters, features are selected, or weighted (selection/rejection can be considered as
special cases of weighting using binary weight values), according to their relevance regarding
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the phenomena of interest. The weighting is performed independently of the estimator that
will be used to perform monitoring. Feature weights are assigned following some relevance
criterion, mainly correlation with the phenomena of interest or information theoretic based
ones. If filters are often used because of their simplicity, scalability and good empirical
success [20], they present limitations: one common criticism of feature weighting is that it
leads to the selection of a redundant subset of features, and the same or better estimation
performance could be achieved with a smaller subset of complementary variables. Moreover,
dependencies between features are not taken into account, although variables that are useless
by themselves can sometimes be useful together [20]. As the filtering process takes place
before the estimator induction step, it can also be performed before applying any other
feature relevance characterization process algorithm to reduce the dimensionality of the
original feature space.
Wrapper approaches [36] use the estimator used within the monitoring system as a mean
to evaluate relevance of features during the relevance characterization process. This form of
feature relevance characterization guarantees coherence between the selected features and
the estimator used in the monitoring system. It also allows taking into account influence of
the use of several features simultaneously. However wrappers can be time consuming due
to the multiple evaluations of the estimation algorithm, and when facing a large number of
features, all feature combinations cannot be evaluated, requiring the use of heuristic search
methods within the original feature power set.
Lastly, embedded methods integrate the feature relevance characterization process as a
part of the estimator induction step. This form of feature relevance characterization implies
the use of particular estimators. Embedded methods are usually faster than wrappers [20].
Hybrid methods, that mainly use filters as a preprocessing step in order to reduce the
feature space dimensionality before using a wrapper or embedded approach have also been
developed. Examples of hybrid strategies implemented to face high number of features can
be found in [15] and [7] for instance.
For the sake of generality, a filter method will be used to perform feature weighting because
it can be applied before using any estimation algorithm, or as a preprocessing step before
implementing a wrapper or embedded feature relevance characterization method. Moreover,
sensor-based monitoring of industrial production processes often requires the use of a reduced
feature set. The choice of such a feature weighting algorithm is discussed in the next section.

5.2.3 Choice of a feature weighting algorithm

5.2.3.1 The IRELIEF algorithm

Several variations have been developed following the simplest filtering scheme which consists
in assessing the correlation between a feature and the phenomenon of interest. The FOCUS
algorithm [3] involves a greater degree of search among the feature space as it begins by
looking at each feature in isolation, then pairs, triplets, and so on, halting only when good
enough performance is achieved. As it addresses the problem of feature interactions and
feature redundancy, it has shown good robustness facing the presence of irrelevant features,
but its search procedure is likely to become intractable as a function of the number of fea-
tures in the original feature set to be analyzed.
The RELIEF algorithm [34], developed at first for classification and clustering applications,
uses a statistical based feature evaluation function: it collects all statistically relevant fea-
tures by assigning, one instance at a time, high weights to features showing strong separation
power between closest instances of different classes and keeping closest instances belonging
to the same class close in the feature space. The final ranking is obtained by averaging
those weights assessed for a statistically relevant number of instances. This algorithm com-
bines several advantages compared to other feature weighting techniques: first, it handles
the problem of features interaction by working within the whole feature space, so no time
consuming exploration of the feature space is needed. Then, it allows obtaining good results
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even when working with noisy data and/or in feature space containing a lot of irrelevant
features [47, 34], which is particularly interesting in our drilling monitoring application case
with the use of an large scale feature extraction procedure. However, RELIEF does not
help with redundant features: if a feature is relevant, it will be well ranked whenever it is
redundant with another one or not. Due to its simplicity and good empirical success, the
RELIEF algorithm has been widely used and extended to feature weighting for multiclass
classification/clustering and regression applications [38, 54]. An interesting analysis has
been performed in [59] that allowed identifying two weaknesses of the algorithm: relevance
evaluation is performed in the original feature space, but can be significantly different in the
resulting weighted feature space. Then, as features weights are averages of their separation
power over instances classes membership, the presence of outliers in the data set can lead
to severe misleads. In our application case where uncertain data exist, those drawbacks
can significantly affect the feature relevance characterization process results. Solutions have
been proposed to address them: first, instead of using only the closest instances to assess
the separation power of a feature, influences of several neighbors is taken into account via
the use of a kernel function, which allows reducing harmful influence of outliers. Then, the
last weighted feature space that has been calculated is used to evaluate features separation
power at each iteration, leading, under easy-to-achieve conditions, to the convergence of the
algorithm to an optimal weighted feature space. This last property gave its name to the
new algorithm: IRELIEF for Iterative RELIEF. It has shown superior performance than
the RELIEF algorithm in most cases [59].
Because of its clear theoretical foundations, good empirical success and robustness facing
some data imperfections and uncertainties, the IRELIEF algorithm (see [2] for a Python
version of the code) has been chosen to perform the feature relevance characterization step
in this work.

5.2.3.2 The IRELIEF algorithm: use and parameters settings

The IRELIEF algorithm takes as inputs all data samples in the form of a vector containing
their associated features and target class. For cutting edge chipping detection in drilling,
these input samples represent drillings given in the form of a vector of features that have
been extracted from raw data acquired during a test campaign, and an indicator of the
class the sample belongs to, that indicates if the cutting edge was chipped or not during the
drilling.
Then, the aforementioned iterative weighting of features as a function of their class separa-
tion power considering one data sample (and its neighbors via the use of a kernel function)
at a time. 2 criteria can be used to stop the iterative process: the convergence of the features
weights, which is achieved when no feature weight shows a difference higher than a limit
ε from the previous iteration, or the when a limit number of iterations limiter has been
reached. The convergence of the algorithm is mainly driven by a third parameter, the kernel
width KW . Indeed, if KW = 0, only one neighbor of the considered sample is taken into
account, as in the original RELIEF algorithm, and experiments showed that the algorithm
then rarely converges [59]. On the other hand, if KW →∞, convergence is reached in one
step because every samples are completely taken into account at the first iteration. The
choice of a kernel width value can appears as a tricky task, however, KW has been showed
to not be a critical parameter on features weights once convergence has been reached [59].
In this work, limiter and ε will be fixed to 10000 and 0.001 respectively. Then, the choice
of a kernel width KWs associated with each of the S available data collections will be
done using a try and error scheme. Indeed, several KWs values will be assessed, and one
of the first one allowing to achieve fast convergence will be chosen, as depicted in figure 5.29.
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Figure 5.29 – Typical behavior of the IRELIEF algorithm on cutting edge chipping detection
dedicated test campaigns: convergence is not achieved for low values of KWs, and becomes
very fast after it reached a certain value, 1.7 here (a). This value will be chosen to assess the
feature weights. After convergence has been reached, not many changes occurs in the ranking
of most relevant features as a function of KW (b)

5.2.4 Data fusion for feature selection

5.2.4.1 Basic fusion approach and related issues

Considering the existence of several data collections, data fusion is needed to perform feature
selection taking all available information into account. The basic idea is to perform the BFSP
using IRELIEF on every available data collection, and then merge the obtained weighted
feature sets to obtain a Generic Weighted Feature Set (GWFS), as depicted in figure 5.30.
As the feature relevance characterization step is identical for every available data collection,
weighted features sets are given in the same form to the fusion algorithm. This allows
avoiding the tricky data alignment task discussed in sections 2.2 and 4. For instance, feature
weights issued of each BFSP can be averaged in order to obtain the generic weighted feature
set. However, data collections do not always suit to such direct fusion. First, they may
not allow extracting exactly the same features due to the use of different sensors, or a
different drilling device. In that case, several strategies can be implemented depending on
the fusion algorithm used, following the principle that a feature which is not present in
every data collection should not be disadvantaged. Using feature weights for fusion without
any preprocessing can also lead to erroneous conclusions because of the different scaling
given by the feature relevance characterization algorithm as a function of the data collection
specificities. Finally, all data collections may not be considered equally informative: for
instance, if a large test campaign has been conducted in good conditions, using quality
sensors with high sampling rates and no problem occurred, it should be considered more
informative than another one that has provided little amount of noisy data, where acquisition
problems occurred, and conducted in conditions (operating conditions or machine dynamic
behavior for instance) that are different of the ones that are likely to be encountered by the
monitoring system.
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Figure 5.30 – Basic approach for feature selection based upon several data collections

In order to address these issues, it is possible to incorporate a data alignment step to
the BFSP before the fusion process occurs, as depicted in figure 5.31. The data alignment
step has several objectives:

• to give weights to features that are independent of the scaling resulting from the feature
relevance characterization step

• to perform a coherent feature weighing regarding the fusion method used at the next
step

• to let the monitoring system designer incorporate meta-knowledge concerning the qual-
ity of information provided by a data collection, if any

If the first objective is straightforward, the following ones are to be considered with particular
attention. The last one raises the question of uncertainty representation because of its close
relationship with the quality of information provided by data collections.
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Basic feature
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Weigthed features
set according to data set s Data
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Figure 5.31 – Basic feature selection process incorporating a data alignment step
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5.2.4.2 Uncertainty and imperfection sources and representations within the
global feature selection process

If the IRELIEF algorithm allows handling low level stochastic uncertainty on features values
and attenuating consequences of the presence of outliers in the data by the use of a kernel
function, epistemic uncertainty due to lack of knowledge, which comes from the inability
for a BFSP to draw conclusions about some features relevance, cannot be modeled at this
sub-level of the global feature selection process.
Origins of epistemic uncertainty in sensor-based monitoring are various: everything that
leads to the impossibility to prefer a feature instead of another one enters this category.
First of all, sensor failures lead to lack of knowledge, as no information is available to draw
conclusions. Then, everything that affects sensors detection ability, like mounting issues or
too low sample rates increases the level of epistemic uncertainty. Moreover, as stated earlier
in this work, uncertainty does not always fall precisely into either stochastic or epistemic
uncertainty: when so much stochastic perturbations, or noise, affect measurements making
statements based upon acquired data difficult, a lack of detection ability can be considered,
so stochastic perturbations induce epistemic uncertainty.
Lack of information or ambiguity on results provided by a BFSP should be compensated at
the fusion step by more accurate statements issued from the processing of other data collec-
tions, taking advantage of the data collections redundancy and complementarity. Thus, the
choice of an information modeling procedure that allows a good uncertainty representation
is critical to achieve good fusion performance.

Information modeling using the proposed evidential approach. Due to its ability
to handle both stochastic and epistemic uncertainty and its suitability to information fusion
contexts, evidence theory has been chosen to perform data modeling and merging at both
the data alignment and fusion steps. It has been used following works aimed at singularity
detection presented in chapter 4. In the feature selection context, the focused singularity
is feature relevance and the information sources are the data collections. This approach
proposes a data alignment procedure which has been designed to favor most informative
data collections statements about feature relevance at the fusion step. The modeling of in-
formation coming from each BFSP at the data alignment step allows representing epistemic
uncertainty explicitly, by the use of belief functions.
According to the notations used in chapter 4, the problem will be defined as follows: S
information sources, or data collections, provide Ns relevance levels, each one associated
with a feature. One can note that the total number of features Ns can vary from one data
collection to another as a function of extracted features. Each provided relevance level,
denoted xns and where n and s represent respectively the feature and the data collection
indexes, is a real number. As the IRELIEF algorithm provides relevance levels between 0
and 1, the singularity of a feature in term of its relevance is then not defined as the distance
from its relevance level to the mean of every features relevance levels, but to 0, conversely
to what has been done for singularity identification in chapter 4. Thus the singularity level
equals the original relevance level.

singns = rns (5.4)

where rns is the real, but unknown, relevance level of a feature. The uncertain relevance level
provided by the IRELIEF algorithm is defined as follows:

xns = rns + bns (5.5)

where bns is drawn from a known probability density function ps of mean bs and standard
deviation σs associated with the sth data collection.
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As no a priori information is available on the original relevance levels, they can be estimated
using the provided relevance levels:

ŝing
n

s = xns (5.6)

Hence, the features can be ordered according to their estimated relevance in a vector
D = [D1, ..., DN ]s such that D1 denotes the feature presenting the highest provided rel-

evance ŝings. The frame of discernment Ω is thus composed of N propositions wn arguing
that the nth feature is the most relevant one, with:

N = max
s
Ns (5.7)

Then, the estimated relevance levels, or singularity levels, are used to build belief functions
on the 2|Ω| elements of the power set following the method presented in chapter 4 using
equations 4.11, 4.12 and 4.13. As perturbation distribution are considered Gaussian, the
coverage interval Pcov needed for the masses calculation will be set to ] − ∞, µ + 5σ], in
accordance with the method philosophy to favor most informative information sources.
The parameter σs associated with each data collection represents the quality of information
issued from a BFSP. It influences transition from certain statements about feature relevance
to uncertain and ambiguous ones, then transferring more influence to more informative data
collections at the fusion step. In the following, this parameter has been set-up manually as
a function of the quality of the test campaign that generated each data collection in terms of
operating conditions, acquisition parameters, and the number of available instances for each
class. In a further attempt, a fuzzy system could be used due to its ability to transpose a
combination of qualitative statements about the quality of a data collection into a numerical
parameter suitable to be used by the algorithm as the σs parameter.

Classical approaches. In parallel with the evidence theory based approach, three simple
data alignment procedures have also be implemented for comparison purposes. The features
weights issued from the BFSPs have been respectively: conserved (equation 5.8), squared
(equation 5.9), and cubed (equation 5.10). Power elevation of the feature weights is aimed
at emphasizing the difference between highly relevant features and others, and doing so
advantaging the most informative features in another way, even if present in low number of
data collections. No epistemic uncertainty has been modeled explicitly.

ms(ωn) = xns (5.8)

ms(ωn) = xns
2 (5.9)

ms(ωn) = xns
3 (5.10)
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5.2.4.3 Fusion strategies

Issues evoked in the previous section emphasized the importance of the fusion algorithm.
Four different {informationmodeling, fusion algorithm} couples have been implemented.
For the three first ones, very simple data alignment (power elevation) strategies and fusion
algorithm (averaging, equation 5.11) were used.

m(ωn) =
1

S

S∑
s=1

ms(ωn) (5.11)

As explained in the previous section, the last couple has been designed in the evidential
framework. The fusion has been done according to the Yager combination rule (equation
2.37), giving a list of feature ranked according to their relevance. The evidential method
presents a severe drawback that is encountered in applications of evidence theory: the com-
plexity increases exponentially as a function of the number of features because calculations
are done for every element of the features power set. Thus, in order to reduce computation
time, a criterion, the relevance lower limit rels has been set-up for each data collection after
observation of the IRELIEF results to eliminate most irrelevant features.
A redundancy filter has also been set-up as redundant features decreases prediction perfor-
mance: it conserves only one of features showing a correlation coefficient superior to the
correlation lower limit limcorr. To assess the redundancy of 2 features f1 and f2 over S
test campaigns, the S correlation coefficients corrs (equation 5.12) are averaged to compute
a global correlation coefficient corrglobal, as described in equation 5.13, which is then com-
pared to the user defined limit limcorr.

corrs(f1, f2) =

d=Ds∑
d=1

(f1(d)− f1)(f2(d)− f2)√
1
Ds

(f1(d)− f1)2
√

1
Ds

(f2(d)− f2)2
(5.12)

where Ds represents the number of drillings, or data samples, associated with the sth test
campaign

corrglobal(f1, f2) =
1

S

S∑
s=1

corrs(f1, f2) (5.13)

The use of relevance and redundancy filters to pass from a big feature set to a reduced
one before further processing has already been mentioned in [4, 30, 7]. The global process
implemented in this work, from raw data to a global weighted feature set, is depicted for
each approach in figure 5.32.

5.2.5 Performance assessment on a real case study: drill cutting
edge chipping

In order to assess the performances of the feature selection approaches described above, data
issued from a real case study will be used. Monitoring of drill bits cutting edge chipping
has been investigated in industrial environment. Two drill bit cutting edge states have been
considered: chipped or good shape. During the test campaigns that have been used in this
work (see appendixes A.1 sample 1, A.2 sample 2, A.3, A.4, A.5 samples 1 and 2), multi-
material stacks (CFRP/Ti6Al4V & CFRP/Alu) have been drilled, but only the detection
of drill cutting edge chipping in CFRP has been considered here.
Using classification algorithms in order to discriminate drillings realized with good shape
drills from ones performed with chipped drills was not possible due to presence of data
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acquired in different operating conditions that would have implied changes in the feature
space topology, forbidding its separation in different regions before the monitoring processes
had begun. Therefore, a clustering algorithm has been used as an estimator: it was aimed
at finding two clusters of drillings within feature spaces obtained after the use of the above
described feature selection processes. If the selected features are relevant, then the cluster-
ing error rate E, computed following equation 5.14 should be low as they allowed a robust
discrimination between drillings realized with a good shape drill from those performed with
a chipped one.

E =
Number of misclustered samples

Total number of samples
(5.14)

An enhanced version of the K-means algorithm that take into account the supposed prob-
ability distributions of the drillings as a function of selected features (Gaussian), has been
used as a clustering algorithm. Its description can be found in [44], and further information
will be given in a further section concerning its implementation for cutting edge chipping
detection. The important thing here is that it is representative of the estimator that will
be used in the monitoring system. However, conversely to what will be implemented, the 2
initial clusters centers will be set randomly in the feature space for sake of generality of the
performance assessment of the different feature selection processes.
As features are ranked according to their relevance at the end of the feature selection process,
feature sets will be evaluated by adding one feature at a time: {f1}, {f1, f2}, . . . , {f1, . . . , fN}
so the ability of the feature selection approaches to rank features, that will allow to build
reduced feature sets by selecting only the top ranked features, will also be emphasized.

5.2.5.1 Description of the input data

6 Drilling test campaigns (data recorded during the drilling of the 1st and 2nd samples of the
test campaign described in appendix A.5 are considered as different tests campaigns here)
have been conducted in both industrial and lab conditions on 4 different drilling machines,
2 robots (robots 1 & 2) and two machining centers (MC 1 & 2). Data collections are
of limited size, not exactly the same sensors were used during each test campaign, and
operating conditions were not always identical neither. Further information about tests
campaigns used to build data collection are given in appendix) Moreover, due to the harsh
acquisition conditions, some measurements were affected by high noise levels and sometimes
sensors failures occurred. An overview of data collections properties is provided in table
5.3. It is also important to note that each of the different chipping (depicted in figure 5.33)
that occurred or was provoked is unique by its size, location and shape, so their respective
influences on sensor measurements, and therefore on extracted features, are unique too.
Between 6 and 11 sensors of five different types have been used for each campaign, and
between 350 and 556 features have been extracted from the raw data after the large scale
feature extraction step, depending on the number and location of mounted sensors during
the test campaign.
Although the available data collections can be considered difficult to deal with, due to
they heterogeneity, they are representative of real-life conditions where a tool condition
monitoring system is needed, and also justify the incorporation of uncertainty in information
modeling.

5.2.5.2 Numerical experiments design

As the objective of the monitoring system is to achieve the best clustering performance using
the smallest feature set, clustering has been performed on each data collection using an in-
creasing number of feature following their ranking (or weighting) after the feature selection
process described in figure 5.32 has been applied for each of the 4 described approaches.
The ability of each method to identify good features has been assessed by using the average
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Test Cam-
paign

Device Cutting
Speed

Feed Drillings
Number

With
Chipping

Data
Quality

Features
Numbers

1 MC 1 + + 103 33 ++ 556
2 MC 1 + + 80 17 + 526
3 robot 1 ++ ++ 9 6 +++ 389
4 robot 2 + + 137 5 + 350
5 MC 2 + + 96 26 ++ 419
6 MC 2 + + 97 27 ++ 419

Table 5.3 – Overview of data collections properties

clustering error rate computed over results of Monte-Carlo simulation in order to overcome
the bias involved by the random clusters initialization. 200 runs of the K-means algorithm
have been performed for each { data collection, Feature selection approach, size of the feature
set } triplet.

First series of experiments. The first series of experiments was aimed at understanding
the influence of integration of a significantly different data collection into the global feature
selection process, and also to compare behaviors of the different feature selection approaches
on a simple case. The 3 first data collections have been used to do so.
First, only the 2 first data collections have been used to obtain the 4 generic weighted feature
sets. The parameters settings that have been used are given in table 5.4. The kernel widths
KW1 and KW2 used within the IRELIEF algorithm have been determined following the
trial and error method explained in section 5.2.3.2. The rels parameters have been chosen so
that the total number of features N in the GWFS does not exceed 8. The lower correlation
coefficient limit limcorr has been set to 0.95 in order to exclude only features that were so
redundant that they cannot improve discrimination performance. σ1 and σ2, which represent
the quality of information provided by data collections 1 and 2 within the proposed approach
data alignment method, have been set to 0.015 and 0.030 respectively, stating that the first
test campaign is more informative than the second one. Several considerations have lead to
this setting: first, more holes have been drilled during the 1st test campaign, and there was
a higher proportion of drillings done with a tool presenting a chipped cutting edge. Then,
more sensors have been used, and so more features have been obtained than during the
2nd test campaign. Moreover, the conditions in which the experimental data were acquired
were not the same: due to different acquisition hardware and software material, the sampling
frequency has been reduced for the 2nd test campaigns (which limits the information content
of raw data), and crashes of the acquisition software occurred during the acquisition, leading
to lower quality data. The clustering performance obtained using features of the GWFS on

Test campaign s KWs rels limcorr σs
1 1.5 0.12 0.95 0.015
2 1.7 0.12 0.95 0.030

Table 5.4 – Parameters used in the feature selection process involving data collections 1 and
2

each of the 2 data collection has been assessed. Results are showed on figures 5.34(a) and
5.34(b) respectively. Concerning the first test campaign, all approaches gave comparable
results except the ’cubic’ one which did not behave of the same manner. One can note
that clustering performance tended to decrease as the feature number increased. This is due
to the fact that additional features did not provide useful information while increasing the
feature space dimensionality and noise. The second data collection shows better results:
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(a) Cutting edge chipping pro-
voked during the 1st test
campaign

(b) Cutting edge chipping pro-
voked during the 2nd test
campaign

(c) Cutting edge chipping pro-
voked during the 3rd test
campaign

(d) Cutting edge chipping that
appeared during the 4th test
campaign

(e) Cutting edge chipping pro-
voked during the 5th test
campaign

(f) Cutting edge chipping pro-
voked during the 6th test
campaign

Figure 5.33 – Tool cutting edge chippings that appeared or have been provoked during the 6
test campaigns used to assess feature selections approaches

lower error rates are achieved, even with low feature numbers. This is probably due to the
apparition of a more impacting tool cutting edge chipping (see figures 5.33(a) and 5.33(b)).
In particular, the proposed and simple averaging data alignment approaches outperformed
the 2 other ones when using a low number of features, showing a good ability for efficient
feature ranking in this case.
Not the same number of features has been used for different or data collections (7 for the
1st test campaign and 8 for the 2nd one): this is due to the fact that one feature have been
selected in the GWFS that does not exist within the 1st data collection.
In a second time, the 3rd data collection, which differs significantly from the two others
with respect to many points (see table 5.3), has then been fused with the two first ones in
the global feature selection process. The parameters settings that have been used are given
in table 5.5. The parameters related with the 2 first data collections remained the same.
Concerning the 3rd one, σ3 has been set to 0.015. Despite the low number of available data
samples (or drilled holes), four reasons motivated the choice of such a value:

• the chipping size and location are representative of those happening in industry

• the cutting conditions (increased cutting speed and feed) used during this test cam-
paign should emphasize perturbations due to a cutting edge chipping on a drill

• the data acquisition conditions were very good

• the test campaign has been realized in an industrial environment, on a robot that is
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Test campaign s KWs rels limcorr σs
1 1.5 0.12 0.95 0.015
2 1.7 0.12 0.95 0.03
3 3.0 0.12 0.95 0.015

Table 5.5 – Parameters used in the feature selection process involving data collections 1, 2
and 3

usually used to perform drillings on aircrafts structural parts, which is representative
of the systems on which the developed monitoring system should be implemented

Results are depicted in figures 5.34(c), 5.34(d) and 5.34(e). If they are quite similar for
the 2nd data collection (except for the data alignment approach using original relevance lev-
els for which performances decreased), they are better for the 1st one: the BFSP on the 3rd

data collection allowed selection of features that are relevant but that were not selected when
using only 2 data collections. Results are comparable using either the proposed approach or
classical ones as nearly every feature are involved to achieve them, although one can remark
that the proposed approach performance increases since 8 features are involved instead of
9 when using classical approaches, showing a better feature ranking ability. Considering
the 3rd data collection, good cutting edge chipping identification has been achieved, and
advantage is also given to the proposed approach confirming performance improvements can
be achieved by taking epistemic uncertainty into account in the feature selection process.
This case study also allowed to demonstrate that incorporating data from test campaigns
that are different in the feature selection process could allow performance improvements in
general.

Second series of experiments. The second series of experiments consisted in the fusion
of 4, and then 6 data collections in order to assess the influence of using an important num-
ber of heterogeneous test campaigns within the feature selection process.
First, data collections 1, 2, 3 and 4 have been used to create a GWFS. Parameters as de-
scribed in table 5.6 have been used. The lower relevance limits rels have been decreased
in order to allow the selection of more features than in the previous series of experiments.
They have been set-up manually as a function of the feature weights distributions after
performing the 4 BFSPs. One can remark the high value used for the parameter rel4: this
is due to the fact that a high number of features had a high weight after the BFSP4. σ1,
σ2 and σ3 have been conserved from the previous experiment, whereas σ4 has been set to
0.04 due to the little size of the chipping that occurred during the 4th test campaign, the
low number of drillings that have been done with a bad shape drill, and the low number of
features contained in the data collection.

Test campaign s KWs rels limcorr σs
1 1.5 0.105 0.95 0.015
2 1.7 0.105 0.95 0.03
3 3.0 0.115 0.95 0.015
4 1.5 0.190 0.95 0.04

Table 5.6 – Parameters used in the feature selection process involving data collections 1, 2, 3
and 4

As more features have been used than in the previous series of experiments, clustering perfor-
mance should be at least as good because all features that had weights superior to rels = 12
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(a) Clustering performance obtained on the 1st data
collection after feature selection was performed
using data collections 1 and 2
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(b) Clustering performance obtained on the 2nd

data collection after feature selection was per-
formed using data collections 1 and 2
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(c) Clustering performance obtained on the 1st data
collection after feature selection was performed
using data collections 1, 2 and 3
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(d) Clustering performance obtained on the 2nd

data collection after feature selection was per-
formed using data collections 1, 2 and 3
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(e) Clustering performance obtained on the 3rd data
collection after feature selection was performed
using data collections 1, 2 and 3

Figure 5.34 – Performances in discriminating between drillings realized with good shape and
chipped drills on different data collections using features sets issued from fusion of 2 similar
((a),(b)), and 2 similar and 1 different data collections ((c),(d), (e))
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(a) Clustering performance obtained on the 1st data
collection after feature selection was performed
using data collections 1 ,2, 3 and 4
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(b) Clustering performance obtained on the 2nd

data collection after feature selection was per-
formed using data collections 1 ,2, 3 and 4
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(c) Clustering performance obtained on the 3rd data
collection after feature selection was performed
using data collections 1 ,2, 3 and 4
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(d) Clustering performance obtained on the 4th

data collection after feature selection was per-
formed using data collections 1 ,2, 3 and 4

Figure 5.35 – Performances in discriminating between drillings realized with good shape and
chipped drills on different data collections using features sets issued from fusion of 2 similar
and 2 different data collections
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have been selected as rel1, rel2 and rel3 equaled 0.105, 0.105, and 0.115 respectively in
the second series of experiments. However, this was not the case for the 1st and 3rd data
collections (figures 5.35(a) and 5.35(c)), where performances decreased compared to the first
series of experiments (figures 5.34(c) and 5.34(e)). This paradoxical results are due to the
redundancy filtering step: following the process described in section 5.2.4.3, when redun-
dant features are detected only the one presenting the highest relevance level is conserved.
Therefore, some features that have been selected within the first series of experiments have
been ’replaced’ by presumably redundant ones in the second series of experiments. However,
it appears that even if the global correlation lower limit limcorr has been set to a high level
(0.95), the redundancy filtering as it has been implemented in this work can lead to a loss of
relevant information, emphasizing the critical role of redundant or quasi-redundant features
can have in discrimination and estimation problems.
The proposed data alignment and fusion approach performed better on data of the 2nd data
set and always allowed obtaining results that makes part of the best ones, whatever the
approach that have been used. In the same manner as in the previous series of experiments,
close results are often obtained when averaging original feature relevance and using the pro-
posed approach.
As for the 2nd data collection within the previous series of experiments, the ’cubic’ data
alignment approach gave bad results for the 2nd and the 4th data collection when few fea-
tures were used. It is also the case of the ’squared’ data alignment approach for the 2nd data
collection. This illustrates the limitations of the method consisting in emphasizing features
possessing high relevance level without taking the quality of information provided by the
data collections into account via an adapted uncertainty modeling. Good discrimination
performance has been achieved on data issued from the 4th test campaign for the 3 first
approaches.
In a second time, the 5th and 6th data collections have been added to the feature selection
process using parameters described in table 5.7. As these test campaigns have been realized
in the same conditions, the same parameters have been used for both of them. σ5 and σ6

have been set to 0.02 because the test campaigns have been realized in good conditions, and
a reasonable number of drillings have been realized, with a good proportion done with a bad
shape tool.

Test campaign s KWs rels limcorr σs
1 1.5 0.105 0.95 0.015
2 1.7 0.105 0.95 0.03
3 3.0 0.115 0.95 0.015
4 1.5 0.190 0.95 0.04
5 1.0 0.110 0.95 0.02
6 1.0 0.110 0.95 0.02

Table 5.7 – Parameters used in the feature selection process involving data collections 1, 2,
3, 4, 5 and 6

Clustering has then been performed on each of the 6 data collections using the so-obtained
GWFS, and results are depicted in figure 5.36. They are very similar whatever the data
alignment and approaches used. The ’cubic’ approach outperformed other ones when very
few features are used for the 5th and 6th collections. Globally, clustering error rates are
higher than those obtained when fusing only 4 data collections. The similarity of the results
whatever the used approach and the performance decrease can be explained by the fact that
integrating too much different types of data collection cannot help in improving accuracy of
estimations. However, the performance levels are still acceptable, so the obtained GWFS, if
they do not allow obtaining the best performances on special cases, are able to provide in-
teresting results on a wide range of drilling operation configurations, confirming the interest
of information fusion to perform feature selection.
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(a) Clustering performance obtained on the 1st data
collection after feature selection was performed
using data collections 1 ,2, 3, 4, 5 and 6
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(b) Clustering performance obtained on the 2nd

data collection after feature selection was per-
formed using data collections 1 ,2, 3, 4, 5 and
6
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(c) Clustering performance obtained on the 3rd data
collection after feature selection was performed
using data collections 1 ,2, 3, 4, 5 and 6
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(d) Clustering performance obtained on the 4th

data collection after feature selection was per-
formed using data collections 1 ,2, 3, 4, 5 and
6
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(e) Clustering performance obtained on the 5th data
collection after feature selection was performed
using data collections 1 ,2, 3, 4, 5 and 6
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(f) Clustering performance obtained on the 6th data
collection after feature selection was performed
using data collections 1 ,2, 3, 4, 5 and 6

Figure 5.36 – Performances in discriminating between drillings realized with good shape and
chipped drills on different data collections using features sets issued from fusion of 6 data
collections
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5.2.6 Overview on feature selection

Feature selection is a critical step in the implementation of an efficient drilling monitoring
system. Different basic approaches have been underlined, and feature weighting methods, or
filters, have been chosen due to their flexibility and ease of use. In particular, the IRELIEF
algorithm address many issues encountered for feature selection from experimental data sets,
as it is the case in this study.
Important points to consider when performing feature selection, namely feature redundancy,
feature interactions, and quality of data, have been emphasized, and their respective influ-
ences have been characterized on a real case study.
The need of a fusion approach to perform feature selection within the implementation of an
industrial monitoring system has been introduced, and several methods have been proposed
and implemented. In particular, an approach designed in the evidential framework follow-
ing principles detailed in chapter 4 allowed obtaining good results on a monitoring real case
study of tool chipping detection. Its superiority to classical methods in some cases is due to
its possibilities in terms of uncertain and imperfect data modeling.
It has also been shown that incorporating heterogeneous data collections into the feature
selection process could contribute to the improvement of the accuracy and the robustness
of a monitoring system.
Further works will focus on automatic quality assessment of data collection for the proposed
approach, and on the design of experiments dedicated to the assessment of the generalization
capabilities of feature sets build using the different approaches.
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5.3 Drilling monitoring applications

This section will describe the development some essential tasks, taking the form of building
blocks of a drilling monitoring system using concepts and approaches presented previously
in this manuscript.
The first one, the identification of the different drilling phases while performing stacks
drilling, will be shown to be an essential requirement for further monitoring operations.
The formalization and implementation scheme described in chapter 3 will be used to design
these monitoring subsystems. This section should remain open to be completed with differ-
ent specific monitoring applications, or building blocks, corresponding to the user needs.

5.3.1 Drilling operations phases identification

Drilling multi-materials stacks is a typical operation for airframe assembly. The 3 most
encountered materials are CFRP, aluminum alloys and titanium alloys, but magnesium
alloys can also be encountered. As detailed in section 1.2.1.2, parts of different materials
are pre-assembled, and the drilling operation has to be performed for all the layers at the
same time. Indeed, the drilling machine must keep its position until the hole has been
completely drilled in order to avoid defects due to machine repositioning. Drilling stacks
of materials that present antagonistic mechanical and thermal properties, like aeronautical
titanium alloys and CFRPs for instance, is very challenging. Several studies [10, 51, 12]
underlined the difficulties linked with such drilling operations, that have been detailed in
section 2.1. The best solution, in addition to the use of adapted cutting tools, has been
shown to be the adaptation of the cutting parameters as a function of the material. To do
so, when the machine reached the drilling position, the first layer of the stack is drilled. The
drilling operations is stopped while the machine position remains constant, and the cutting
parameters are adapted to the second layer material while the drill is not in contact with the
workpiece. Then, the drilling operation starts again, and so on as a function of the number
of layers in the stack. This process is depicted in figure 5.37.

The first layer
is drilled with

adapted
parameters

The feed is interrupted
and inversed to adapt
parameters to the new

layer material

The second layer
is drilled with

adapted
parameters

Figure 5.37 – Typical sequence of a multimaterial stack drilling

From the monitoring system designer point of view, such interrupts of the drilling operations
due to the presence of different material layers are very important to be detected in a
reliable manner. As the material properties and cutting parameters are different from one
layer to another, the sensors signals, and consequently the features that will be extracted
from, will present different properties. The identification of time intervals corresponding to
countersinking operations, if any, is also concerned. In the same manner, depending on the
triggering set-up of the monitoring system, maybe not the whole signals contain information
related to the cutting operation. Then, their interesting part must be isolated before the
feature extraction procedures take place in order not to incorporate irrelevant data that will
decrease the quality of information provided by features.
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The identification of the different phases of drilling operations is therefore a concern of major
importance in order to perform online monitoring. A method will be presented that take
full advantage of multisensor techniques: its robustness will be guaranteed by redundancy
and data imperfection handling at the basis of the system, and its accuracy by the use
of complementary sensors to detect different phenomena of interest. In order to preserve
the generality, precise guidelines and different options that could be used will be described
instead of a detailed description of what has been implemented during this work. Results
obtained will be provided as illustrative examples. The system robustness and reliability
have been assessed both by simulations and by experiments carried on a drilling robot and
a machining center.

5.3.1.1 Problem position

The drilling phase identification problem consists in finding singularities in sensors signal
that denote the entry of the drill (or its countersinking stage) in the workpiece, its exit, or
the change of parameters occurring at interface between material layers. Thrust force has
been the favorite signal to detect such events.
Figure 5.38 shows that thrust force signal, after a basic filtering operation, allows easy iden-
tification of the different phases in the drilling of a CFRP/Ti6Al4V stack. The use of a
simple threshold should be sufficient to determine the time intervals corresponding to these
phases, allowing then to perform feature extraction on other signals considering these time
limits. However, this signal is issued from a lab experiment with a rotating dynamometer
(Kistler ). It has been showed that force sensors integration is difficult (see section 5.1), and
that widely spread solutions to perform force measurements in industrial environments do
not exist.
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Figure 5.38 – Different phases of the drilling of a CFRP/Ti6AlV4 stack are visible on the
thrust force signal. A moving average filter has been applied
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Sensors integration. As drilling phases identification is a basic need in order to imple-
ment a monitoring system, different solutions than force sensors have been investigated,
with a preference for non-intrusive and easy-to-integrate sensors. As the phenomena of in-
terest are simple in this case, no systematic procedure will be applied for sensor selection.
Available sensing options to detect drilling or countersinking beginning and ending, and
that covers as many application cases as possible will be briefly discussed hereafter. Using
sensors to detect the entry of the drill present the advantage, compared with estimations
based on the CAD design of the process, to obtain a value free of deviation due to differences
between the real and theoretical workpiece and drilling machine positions.
The drill entry in the material is visible in several sensors signals. In particular, sensors
sensible to the cutting operation like AE sensors or accelerometers are very sensitive to the
beginning of drilling operations. In order to facilitate the detection of the drill entry in the
material, some preprocessing on the raw signals may be needed. Examples of moving RMS
performed on AE and acceleration signals are given in figure 5.39. In a lower extent, feed
currents, spindle currents, and information given directly by the drilling machine numerical
command may be used to detect the entry of the drill. However, as stated earlier, their de-
tection ability is limited to drilling operations where the needed cutting power is sufficient
to be visible on these signals. This may not be the case for small diameters drilling in CFRP
for instance.
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(a) RMS of the CFRP drilling phase of an AE signal.
The AE sensor was mounted on a drilling robot
end-effector, as depicted in figure 5.5(a)
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(b) RMS of the CFRP drilling phase of a spindle
axial acceleration signal. The accelerometer was
mounted on a drilling robot end-effector, as de-
picted in figure 5.2(a)

Figure 5.39 – Examples of preprocessed signals allowing to determine the time of the drill
entry in the workpiece: the RMS level of acceleration and AE signals present a strong increase
around 0.2s that is simple to detect. Signals are provided by sensors that do not present high
integration constraints

Feed interrupts while drilling are important to be detected in order to identify moments at
which the drilling of a layer ends, or the ending of countersinking operation. As it can be
seen on figures 5.39(a) and 5.39(b), the feed interruption is difficult to detect accurately
using signals from sensors sensible to the cutting operation. Signals related to the feed con-
trol itself are much more informative in this case: a change in the feed direction, which is
often done before changing the process parameters, is visible on feed motor phases currents
and in several control signals usually available in the machine numerical controller. Such a
signal issued from the controller of a machining center corresponding to the inversion of the
feed direction at the end of countersinking operation is depicted in figure 5.40(a) together.
A wavelet processed version of the same signal (figure 5.40(b)) allows easy identification of
the feed inversion moment.
In this case again, sensors, if any, are not intrusive. Moreover, if current sensors are used,
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as feed motors possess 3 phases, three sensors can be installed, opening the way to the
implementation of a fusion system for robustness improvement.

(a) Feed motor current image during a feed inver-
sion obtained from the numerical controller of a
machining center

(b) The same signal processed with wavelet analysis
allows easy identification of the feed inversion
moment by the presence of high pikes

Figure 5.40 – Example of a signal allowing, after a processing step, to determine the moment
when an inversion of the feed direction occurred

The drill exit of the material is more difficult to detect accurately without using thrust
force sensors. Indeed, due to the conical profile of the drill tip, the sensed quantities tends
to decrease slowly, which makes difficult a precise identification of the beginning or ending
time of the drill tip exit of the workpiece. This is not the case when using thrust force
because most of the thrust force is generated at the end of the drill tip, and not by the
cutting edges. Therefore, an abrupt decrease of thrust force is visible once the drill tip end
exits the material. In this study, as the workpieces thicknesses were known, the end of the
drilling operation has been deduced as a function of the process parameters and of the time
at which the drill entered in the material (the second layer). This is not the case for every
parts to be assembled for airframe assembly: thickness variations can appear, especially
when using CFRP, that may not allow the use of such an estimation procedure depending
on the accuracy needed in the estimation.
We focused on the use of non-intrusive and easy-to-integrate sensors in order for this building
block of a drilling monitoring system to be implementable in the widest range of application
cases. It has been shown that it is possible to detect the beginning of drilling operations as
well as feed direction inversions in signals with such sensors.

Feature selection & feature extraction. As for sensor selection, the simplicity of this
use case in terms of phenomena of interest to be detected would make the use of a systematic
feature selection procedure as described in section 5.2 irrelevant. Sensors signals presented
above showed that the features to look for in order to identify the moments of occurrence
of considered phenomena (drill entry and feed inversion) are only the values taken by the
signal, or a processed version, at this moment. Consequently, based on the values of the
signal at each moment, which compose the feature set, the estimator will have to determine
which one corresponds to the occurrence of the phenomenon of interest, and then link it
with its corresponding time of occurrence.
The feature extraction steps consists in signal preprocessing, if needed, to transform the
signal in a form corresponding to the estimator needs.
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Choice of estimators. Concerning the drill entry and feed inversions, and given the
examples proposed above, at least two basic possibilities can be envisaged to find the singular
feature value corresponding to the time of occurrence of the phenomenon of interested. The
first one consists in setting-up a threshold and look for the first feature value that crosses
it. Several variants of the implementation can be imagined following the user needs, like,
for example, auto adaptive thresholds as the one presented in section 5.1.3.3. The second
category of solutions is the use of an algorithm that detects abrupt changes in trends. Many
algorithms have been developed to do so, and one should chose the most adapted to the kind
of signal he is dealing with. As for the first case, once the singular feature value (the first one
above the threshold) has been identified, the estimator has to map it with its corresponding
occurrence time in the signal. Concerning the second category of solution, the estimator
will directly provide the time of the first abrupt change in the signal trend.
As for the estimation of the time when the drill exits the workpiece, no sensor signal is needed
directly: once the drill entry time in the last layer has been estimated, and knowing the feed
rate and workpiece thickness, the exit time can be estimated analytically. This method may
be affected by differences between theoretical and real feed rate, if any, however, feed rate
feedback systems allow very high accuracy.
The schematic view of these monitoring subsystems functioning charts are given in figures
5.41(a), 5.41(b) and 5.41(c). In the case when no fusion is involved, no decision making
strategy has to be implemented.

Data imperfection related concerns: discussion and solutions. As detailed in chap-
ter 3, data can suffer from imperfection, especially if such monitoring systems are imple-
mented in industrial environments. Concerning the simpler drill exit detection monitoring
system, if imperfections on data, which are mainly expected to take the form of uncertainty,
are quantified at the input level, it should be possible to quantify uncertainty at the output.
Of course this should be done only the monitoring application requires it. Concerning the
detection of the drill entry and feed inversion, more types of data imperfections are likely to
manifest themselves due to the use of sensor data, as described in sections 2.2.2 and 3.2.2. In
particular, ambiguity due to sensor failure may make the monitoring system designer decide
to build a multisensor system. Then, a fusion procedure must be implemented to merge
results, deal with inconsistency and make decisions. Many solutions are possible (from
low level to high level fusion procedures), and the methodology presented in chapter 4 is
transportable to such application cases. An example of its implementation will be provided
hereafter.

5.3.1.2 Discussion on robustness of the approach

As mentioned earlier, the robustness of the drilling phases identification is primordial to per-
form efficient monitoring. Solutions to deal with data imperfections brought by the harsh
shop floor environment have been proposed in the previous section. However, as it has been
stated in chapter 3, a good positioning of problems allowing its decomposition in several
simpler ones is often the best way to ensure robustness.
Considering the drilling phases identification problem, one can notice that in the case of
CFRP/Ti6Al4V stacks, the duration of the countersinking operation or of the CFRP layer
drilling are very low in comparison with the total drilling operation (∼ 5% in the example
given in figure 5.38). The main consequence is that the research of the singular values over
the (preprocessed) signal is done, in its majority, on signal portions that are susceptible to
contain only perturbing information. Therefore, following the philosophy exposed in chap-
ter 3, it should be better to avoid potential effects of such perturbations upstream, before
the singular value identification procedure takes place, than downstream by using complex
decision making strategies in order to annihilate harmful effects.
To implement such a methodology, a previous step that consists in a crude, but robust, iden-
tification of the drilling operation phases has been implemented. This large scale operation
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(a) Proposition of a monitoring sequence dedicated to the detection of drill entry in the workpiece
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Figure 5.41 – Monitoring systems dedicated to the identification of the different phases of
drilling operations performed in multi materials stacks. Gray parts are optional and concern
the implementation of multisensor fusion procedures
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is performed before the tasks aimed at the accurate identification of moments of interest
(low scale) described above.
The implementation of this previous step in the case of CFRP/Ti6Al4V stacks drilling is
detailed hereafter. It uses the fusion methodology described in chapter 4. The performance
that this methodology allows in drilling phases identification will be compared on experi-
mental data with those obtained when not using the multi-scale approach.

5.3.1.3 Proposition of a multi-scale fusion approach

Description of the crude drilling phase identification process. To perform crude
identification of the different drilling phases, advantage will be taken of the cutting parame-
ters changes occurring between the drilling of the different material layers. In particular, the
spindle rotation frequency will serve as an indicator in order to determine the time intervals
within which the CFRP or Ti6Al4V layers have been drilled. Spindle motor phase currents
frequency are correlated with the spindle rotation frequency, therefore, non-intrusive current
sensors can be used to perform this task. The typical evolution of the frequency a spindle
motor phase current during a CFRP/Ti6Al4V stack drilling operation is depicted in figure
5.42(a).

(a) Typical evolution of the frequency of a spin-
dle motor phase current signal during a
CFRP/Ti6Al4V stacks drilling operation
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Figure 5.42 – Typical behavior of a spindle motor phase current signal during the drilling
of CFRP/Ti6Al4V stack in time and frequency domains: it allows identifying crudely the
different drilling phases

This plot allows differentiating 2 times intervals: the CFRP layer was drilled when the
spindle was rotating faster, while the Ti6Al4V one was drilled during it was rotating slower.
The goal of this first step is to determine the transition time between this two spindle ro-
tation speeds. Then, the finer research for the CFRP drilling beginning and ending times,
and for the titanium drilling beginning time could be performed in these restricted time
intervals, limiting the amount of irrelevant information. One can remark that an error in
the determination of these time intervals would be catastrophic for the low scale following
tasks. Authors are fully aware that other sensors or information from the numerical con-
troller could have been used to perform this task. A solution is proposed here that could
be replaced by others. Moreover, the detection of the spindle rotation frequency variation
does not ensure a correct detection of drilling phases if the process has been ill-defined.
To determine the transition time, singular frequency bands, the ones containing the more
energy, are identified, for each time stamp, within the energy distribution of the spindle
phase current signal in the frequency domain, providing the data points depicted in figure
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5.42(b). Then, in a comparable manner to what has been done in section 5.1.3.3 to define
a threshold, a sigmoid function (see equation 5.3) is fitted on these points using a classical
non-linear optimization algorithm. The parameter p in equation 5.3, which correspond to
the inflexion point of the sigmoid, is then the estimated transition time. Knowing this time
and adding prior knowledge about the drilling operation cycle allow the monitoring system
designer to drastically reduce time time intervals within which pattern of interest have to
be identified in signals.
In order for this step to be as robust as possible, and taking advantage of the fact that
3 spindle phase current signals are available, a fusion scheme will be implemented. It is
important that the sigmoid function fitting step goes well in order to obtain a good estimate
of the transition time. As every other procedure mentioned in this work, good performance
is achievable only if good quality input data is provided to the optimization algorithm. To
ensure the quality of input data samples that serve for the optimization step, and therefore
ensure reliability of the transition time estimation, the data samples will be determined by
a fusion procedure.

Description of the fusion problem and procedure. In order to simplify the prob-
lem of determining, for each time stamp, a singular frequency band, the resolution of the
frequency scale can be downgraded: this will limit the number of propositions the fusion
system will have to deal with. In this example, 3 frequency bands (low, medium and high),
as depicted on figure 5.43(a), are sufficient: one encompasses the samples corresponding to
high speed rotation of the spindle, the other one to low speed, and so on.
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(a) Artificial down sampling of the frequency resolu-
tion for monitoring purposes: 3 frequency bands
are defined (low, medium and high)
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signal perturbation level assessment for each
time stamp can be based upon

Figure 5.43 – Definition of the 3 frequency bands corresponding to the power set propositions
ωlow, ωmedium, and ωhigh for the localization of the most energetic frequency band (a), and
illustration of a frequency band where no relevant information is expected that can be used to
calculate the parameter σ for each time stamp (b)

The fusion problem can be formalized as follows: each of the 3 phase current signals is
decomposed in Ts time stamps. Then, degrees of belief concerning the belonging of the
most energetic frequency component are given to the 3 propositions that compose the frame
of discernment Ω = {ωlow, ωmedium, ωhigh}, and its combinations that composes the power
set 2|Ω|, for each of the T time stamps. In this case study, the mass allocation and fusion
approaches proposed by the author in chapter 4 have been be used to do so. Indeed, this
application case present redundant, or quasi-redundant data that are to be fused in a context
where sensor failures are likely to occur, and such failure may stay undetected for a while
as current sensors are located in the electrical closet of the drilling machine.
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As given by equation 5.15, the singularity level of each proposition is the maximum ener-
getic content of a frequency band that is encompassed by the frequency space subdivision
the proposition corresponds to. As it was the case for the feature selection problem, the
estimated singularity level of a proposition will not be assessed using its distance to the
mean, but to 0. Indeed, the energetic content of frequency bands are positive, and we are
looking for the maximum one.

ŝing
s

n = max
f

(Ef ) n ∈ {low,medium, high} (5.15)

Where Ef represents the energy content of the f th frequency band encompassed by the nth

proposition.
In order to build masses using the proposed approach, a probability distribution ps of the
expected perturbations on observed values and parameter σs have to be set for each source s.
The probability distribution will be chosen Gaussian, as it is often the case for sensor mea-
surements performed in harsh environments. The parameters σs, which is a mean to assess
sources informative power, will be updated at each time stamp in order to guarantee that it
will adapt itself in case of a sensor failure occurs during the monitoring process. It will be
given by the standard deviation of a small frequency band where no relevant information is
expected (as depicted in figure 5.43(b)), and will therefore represent the perturbation level
the signal is affected by. The coverage interval Pcov needed for the masses calculation will
be set to ]−∞, µ+5σ], in accordance with the method philosophy to favor most informative
information sources. Masses are then calculated following equations 4.11, 4.12 and 4.13.
Once s mass distributions over the power set 2|Ω| are available, the fusion is performed
according the Yager combination rule and the estimated frequency zone given by the propo-
sition that presents the highest pignistic probability is used to build the estimated (and
downgraded in term of resolution) evolution of frequency of the spindle motor phase current
during the whole drilling operation. Then, the optimization procedure takes place using
these data samples in order to determine the transition time.

5.3.1.4 Performance assessment of the global drilling phase identification sys-
tem

After the transition time has been determined, the aforementioned procedure for the de-
tection of the different events of interest can take place. The global monitoring system
dedicated to drilling phase identification is depicted in next figure.
Performances of the system have been assessed in two different configurations, offline and
online, that allowed evaluating the robustness facing perturbations in signals and sensors
failures. The first experiment consisted in a comparison of the multi-scale proposed ap-
proach with another one that do not uses crude identification of the different drilling phases
before looking for a feed inversion pattern in feed current signals. The same pattern recogni-
tion techniques was used on the full length signal. The two methods have been implemented
and tested on data from a test campaign that consisted in 138 CFRP/Ti6Al4V drilling op-
erations. The multi-scale method allowed 100% good determination of the time at which the
feed direction had been inverted whereas the simple one gave 96.5% of good determination
of this time, underlining the robustness improvement achieved with the multi-scale method.
The multi-scale system has also been implemented online on a machining center. The ex-
periments consisted in the identification of the CFRP and titanium drilling phases within
signals acquired during drilling CFRP/Ti6Al4V stacks in order to perform feature extraction
on. The system worked well in normal configuration. Then, in order to assess its robustness
against sensor breakdown, one, and then 2 out of the 3 implemented spindle phase current
sensors have been unplugged. The system performed well also, even with only one plugged
sensor remaining and the two other signals used being only ambient perturbations on the
acquisition device.
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The correct identification of the different phases of drilling operations is crucial in order
to perform efficient monitoring. Solutions have been proposed following the methodol-
ogy proposed in chapter 3: problems have been formalized and decomposed into simpler
ones, and data fusion techniques have been used to overcome robustness challenges. The
efficiency of the proposed approach has been assessed, both offline and online. There-
fore, these developments can serve as a basis for the implementation of further building
blocks of an industrial drilling monitoring system.

5.3.2 Tool cutting edge chipping detection

The detection of tool cutting edge chipping is an important concern for drilling monitoring
applications. As evoked in section 2.1.2.1, chipping can provoke modifications of geometrical
properties of drilled holes (see figure 2.14 concerning diameter for instance). Moreover,
micro-chippings that do not necessarily significantly affect the hole properties are often
forerunners of an advanced wear state of the drill, and should therefore be taken into account
when sensing tool wear.
As the selection of relevant sensors and features have been discussed in details in sections
3.4 and 5.2, they will not be detailed for this application case. However, the use of prior, or
expert knowledge as features, and the potential improvements they can bring to monitoring
systems will be illustrated. Challenges and solutions linked with the choice of an estimator
for this type of monitoring tasks will be emphasized. Experimental results will serve to
illustrate the exposed opinions. A fusion based approach will also be proposed to improve
robustness of the detection of cutting edge chipping.

Problem position

In order to take maximum advantage of the detection of tool cutting edge chippings, it
should be done just after the drilling operation during which it occurred - or before which
it has been caused by an external element. Then, the appropriate corrective actions, if
needed, could to be applied before more holes that may not respect quality requirements are
drilled on the workpiece. The problem is then, given relevant features, to be able to make
a statement about the fact a hole has just been drilled with a drill that presented a cutting
edge chipping.
The task of a dedicated monitoring system is therefore to discriminate between two types of
drilling operations. In order to determine relevant features to achieve it, the systematic sen-
sors selection and feature selection procedures described in sections 5.1 and 5.2 respectively
have been applied.

ŝ to be chosen among the set of propositions {ω1,ω2}
ω1: Presence of a tool cutting edge chipping

ω2: Absence of a tool cutting edge chipping
Estimator

ŝ=f{fe1,...,fefn}

Sensors
Feature

extraction
procedures

{fe1,...,fefn}Signals

Prior
information

Figure 5.44 – Schematic view of a monitoring system dedicated to the detection of tool
cutting edge chippings
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Choice of an estimator

One of the main concerns involved in the choice of estimators able to discriminate between
different process states has been present in section 3.3.2 and illustrated in figure 3.6: they
must be robust facing both variations of the process operating conditions and its dispersive
behavior. Therefore, unsupervised discrimination algorithms have been elected as an appro-
priate solution, used together with an initialization phase, as depicted in figure 3.7.
Concerning the detection of tool chippings, as only one type of data samples are expected
in the feature space (representing drilling operations realized with a good shape drill), the
problem is in fact to assess the presence of 2 significantly different types of data samples
encompassing different types of drilling operations according to selected features. This will
allow assessing if there has been a deviation from the normal functioning state of the system
characterized during the initialization phase. This procedure, that is repeated each time a
new drilling operation is performed, is depicted in figure 5.45.

Initialization
Characterization of
the process normal
functioning behavior

Clustering

Decision

Corrective
Action

Creation of two
clusters of drilling 
operations in the
feature space 

Assessment of
the difference
between the two 
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Figure 5.45 – Sequence dedicated to the assessment of the presence of 2 clusters encompassing
different types of drilling operations in the feature space: the presence of a significantly different
cluster indicates a deviation of the process state from its normal functioning state characterized
at the initialization step

Such an implementation scheme necessitates that the estimator f posseses a decision ability
in addition to its clustering one. Then, the estimate ŝ of the process state can take values
in a set of 2 propositions {ω1, ω2} corresponding respectively to the presence or absence of
a cutting edge chipping on the drill. A schematic view of this monitoring system is depicted
in figure 5.44.

Choice of a clustering algorithm. As for the choice of a particular clustering algorithm,
several particularities of the detection of drill cutting edge chipping problem are to be taken
into account:

• Normally, only one significant cluster - drilling operations performed with a good shape
drill- will exist, or the second one will be small - it should not contain more than one
sample, equivalent to one drilling operation performed with a chipped tool
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• As a different physical phenomena may be involved, samples (representing drilling
operations) distributions according to features are likely to be disparate

• Knowledge about the expected relative positions of samples in the feature space as a
function of the state of the tool may be available (e. g. vibration level may increase
with a chipped tool)

The two first points will determine the choice of a clustering method. Many clustering al-
gorithms are based on the distance between data samples. Here, the shape and size of
clusters seems to play a more important role. In order to take it into account, the hypothe-
sis will be made that data samples are distributed following a Gaussian function regarding
features. Then, instead of being responsible for the closer data samples, as it is the case for
the K-means clustering algorithm presented in section 2.1.1, a cluster will be responsible of
samples that are the most likely to belong to him, regarding its distribution.
The likelihood function p(sample|θc, Hc) of a data sample to belong to the cth cluster
can only be computed if the cluster distribution parameters θc = (µc,σc) are known.
µc = [µ1, . . . , µfn]c and σc = [σ1, . . . , σfn]c are respectively the means and standard de-
viations of the Gaussian distributions according each of the fn features that compose the
feature space. These parameters will be estimated and updated in a iterative manner in the
same way that in a classical k-means clustering procedure. This is actually an optimization
procedure on the C sets of parameters θc (2 in our case): clusters belonging samples and
shapes are updated until the likelihoods functions reach a maximum.
However, such a maximum where the algorithm will converge at is often local. One reason
lies in the initialization of the algorithm: clusters parameters have to be set-up before the
first iteration. Then, the algorithm may converge to different maxima as a function of its
starting point. This is where expert knowledge concerning the relative positions of samples
belonging to different clusters in the feature space can be used. It will favor the fact that
the algorithm will converge to the maxima of interest in our case. An example of results
of a clustering procedure applied in order to discriminate between drilling operations that
have been performed with good shape and chipped tool is provided for both cases when no
expert knowledge has been used (figure 5.46(a)) and when it has been (figure 5.46(b)). In
the first case, the algorithm did not converge to the expected clusters, whereas in the second
case it did. The integrated knowledge and data that have been used for this example are
the same as described hereafter.
A quantitative comparison between results obtained with and without of the use of prior
knowledge on features behavior as a function of the tool cutting edges state is provided in
figures 5.46(c) and 5.46(d). Experimental data from a CFRP/Ti6Al4V (see appendix A.1)
stack drilling test campaign where a cutting edge chipping has been provoked after 70 holes
have been used to assess the performance of the aforementioned clustering algorithm in dis-
criminating between drilling operations performed with a good shape and chipped tool. The
algorithm has been implemented following [44] where it is referred by ’Soft K-Means V3’.
Axial vibration signal in CFRP and thrust force signal in titanium have been used to ex-
tract one feature from each. Two cases have been compared: concerning the first one, no
prior knowledge on feature behaviors have been used and clusters means µc have been ini-
tialized randomly. As for the second case, expert knowledge has been integrated : previous
experiments showed that when drilling with a chipped tool, axial vibration level increase in
the CFRP, and thrust force level increase in titanium. Then, if a chipping occurs, samples
(corresponding to drilling operations) will tend to be located in the upper right corner of the
feature space (high force level, high vibration level). Therefore, the initial clusters means
have been set according to this statement: one is located in the bottom left corner of the
feature space to be responsible of samples representing drilling operations performed with a
good shape drill, and the other one in upper right one to be responsible of drilling operations
performed with a chipped drill, if any.
Results shows that the performance are better, both in terms of discrimination and compu-
tational needs, when prior knowledge is used. Moreover it allows a reliable detection (100%
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detection rate) of tool cutting edge chipping since the first drilling operation that has been
performed with.

(a) Example of clusters obtained without integrat-
ing prior knowledge: 3 drilling operations are
misclassified

(b) Clusters obtained when prior knowledge has
been integrated: drilling operations performed
with good shape and chipped tool are correctly
discriminated
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(c) Clustering error rate as a function of the number
of drilling operations performed with a chipped
tool. A Monte-Carlo simulation has been per-
formed to estimate the average clustering error
rate when using random clusters initialization
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(d) Number of iterations needed by the cluster-
ing algorithm to converge as a function of the
number of drilling operations performed with
a chipped tool. A Monte-Carlo simulation has
been performed to estimate the average number
of iterations required when using random clus-
ters initialization

Figure 5.46 – Example of the reliability and computational gains in monitoring of tool cutting
edge chipping by incorporating prior knowledge on features behaviors

Choice of a decision criterion. As depicted in figure 5.45, after the cluster parame-
ters have been estimated by the clustering algorithm, a decision has to be made about the
fact that clusters encompasses significantly different samples or not. To do so, the Eu-
clidian distance between the clusters means µc in the feature space has been used. Other
measures exist to assess the separation of clusters. It is given by equation 5.16, and in-
corporates a normalization by the data samples standard deviation σsamples that is aimed
at compensating reduction of data performed before each new drilling features are available
prior to perform clustering. The distance is updated each time a new hole h has been drilled.
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∆(h) =

√√√√ fn∑
n=1

((µn1 (h)− µn2 (h))× σnsamples(h))2 (5.16)

Evolutions of this criteria and of its variations d∆/dh over a series of drilling operations dur-
ing which a chipping occurred are depicted in figure 5.47. The results show that a threshold
crossing or trend change detection algorithm can easily be implemented in order to detect
the occurrence of cutting edge chipping. In the following, a threshold crossing detection
algorithm will be implemented on ∆. As no clue is available a priori about the distance
between clusters if a chipping occurs, an auto-adaptive threshold will be used. Its value, for
the hole index h is based on variations observed on previous values of ∆, so if a significant
increase occurs it will be detected. To do so, the standard deviation σ∆,dn of values taken
by ∆ after the dn previous drilling operations will serve as a basis to define the threshold
value Th corresponding to the hth drilling.

σ∆,dn(h) =
1

dn

h−1∑
i=h−dn

(∆(i)− µdn(i))2 (5.17)

µdn(h) =
1

dn

h−1∑
i=h−dn

∆(i) (5.18)

Th = c× σ∆,dn(h) (5.19)

where c is a constant. In the following, dn will be set to 5 as its is the number of drilling
operations used to initialize the monitoring system, and c will equals 5 (the two values are
not related). This constant is a lever for the monitoring system user to set the amplitude of
changes linked with the manifestations of eventual chippings he wants the system to detect.
In brief, a low threshold setting will allow the system to detect small chippings, whereas a
high threshold will make it detect only important alterations of the cutting edges. A too
low threshold setting may lead to the apparitions of false alarms only due to the natural
dispersion of the drilling process that have been evoked before.

On the use of features and decision level fusion solutions

Given several relevant features regarding some phenomenon of interest, one may wonder
about the best use to make of them. Indeed, some issues concerning high-dimensional fea-
ture spaces have been evoked in section 2.1.1, and it has been shown in section 5.2 that
increasing the number of features did not always increased the clustering performance for
tool cutting edge chipping detection. On the other hand, considering the difficulties to
achieve reliable drilling monitoring in industrial environment, taking all available informa-
tion into account seems essential.
In order to face this dilemma, the philosophy developed all along this work will be applied:
several monitoring subsystems using different low-dimensional feature spaces will be im-
plemented, and their statements will then be fused, instead of using a global feature set
encompassing all relevant features.
Experimental data issued from another CFRP/Ti6Al4V stacks drilling test campaign (see
appendix A.2) where a tool cutting edge chipping has been provoked after 64 holes will be
used. Developments presented above will be used to asses the presence of a cutting edge
chipping. 3 features (the most relevant according to the IRELIEF algorithm) will be used:
1 extracted from the axial acceleration signal obtained while drilling Ti6Al4V, and the 2
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1

(a) Clusters obtained after clustering has been per-
formed on the 70 first drilling operations

(b) Clusters obtained after clustering has been per-
formed on the 71 first drilling operations
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(c) Clusters obtained after clustering has been per-
formed on the 72 first drilling operations

(d) Clusters obtained after clustering has been per-
formed on the 73 first drilling operations
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(e) Evolution of the distance between clusters as
a function of the number of drilling operations
that have been performed: a change is clearly
visible between the 70th and the 71th holes

(f) Tool cutting edge chipping pro-
voked between the 70th and 71th

drilling operations

Figure 5.47 – Behavior of the clustering algorithm when a cutting edge chipping occurs: the
distance between clusters increases suddenly because of the features sensitivity to the cutting
edge chipping. Smaller distance variations are also visible after hole 31 and the big chipping
that correspond to manifestations of smaller alterations of the cutting edges
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other ones issued from AE signals obtained while drilling CFRP with the feature extraction
method proposed in section 5.1.3.4, using two different parameters settings.
The ability of 4 monitoring systems using these features to detect the cutting edge chipping
after the 65th hole has been drilled will be assessed. The 1st one will be the implementation
of the method described above using the 3 features at the same time. The 2nd and 3th ones
will be implemented with two couples of features (each couple composed by features issued
from the 2 material layers drilling phases), and finally, the last one will use both the 2nd

and 3th as quasi-redundant information sources, and their statements will be fused using
the approach proposed in chapter 4.
No expert knowledge will be integrated, so the clusters initial parameters (positions) will be
set randomly. Therefore, Monte-Carlo simulations will be performed in order to estimate
the detection ability of each monitoring system. The average distances ∆ obtained over the
series of drilling operations together with the corresponding average threshold value T65 for
the 65th drilling operations are depicted or the 3 first monitoring systems in figure 5.48.
Results shows that the distance changes are comparable whatever the monitoring system
that has been used. The global evolution of ∆ is comparable also. The implementation of
the 4th monitoring system will be described hereafter, and the results obtained with the 4
of them will then be compared.

Implementation of a decision fusion approach. In order to combine statements from
the 2nd and 3rd monitoring systems, a decision fusion strategy will be implemented in the
evidential framework following the approach proposed in chapter 4. The use of this ap-
proach is justified here as monitoring systems are quasi-redundant, thus favoring the most
informative one considering the quality of provided statements seems to be a logical way to
ensure robustness.
The frame of discernment is composed by 2 propositions ω1 and ω2 representing respectively
the presence or the absence of a cutting edge chipping. As the approach using basic beliefs
assignment strategy produces consonant belief functions, mass will be affected to only one of
these singletons and their union eventually. The singleton will be chosen as a function of the
fact that ∆65 is superior or not to the threshold value T65. This allows defining the propo-
sitions ordering needed to apply the proposed approach. If ∆64 ≥ T64, then Ds = [ω1, ω2],
else Ds = [ω2, ω1]. Then difference between these values will be used to as the estimated
singularity level:

ŝings(ω
D1) = abs(∆65 − T65) (5.20)

ŝings(ω
D2) = 0 (5.21)

where s represents the information source index, and can here take values in {1, 2} as 2
monitoring subsystems are used. As perturbation distribution will be considered Gaussian,
the parameters σs, necessary for this approach, that allow assessing the quality of informa-
tion provided by the source, will naturally be set as the standard deviation σ∆,dn used to
calculate the threshold for each source. The coverage interval Pcov needed for the masses
calculation will be set to ] − ∞, µ + 5σ], in accordance with the approach philosophy to
represent ambiguity explicitly, and thus favor most informative information sources.
Masses are then calculated following equations 4.11, 4.12 and 4.13. Yager combination rule
will be used to perform the fusion of the 2 subsystems statements, and the proposition that
presents the highest pignistic probability will be used as the estimate ŝ of the tool state.
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(a) Average evolution of ∆ and average value of T65
obtained with the 1st monitoring system which
uses features 1, 2 and 3
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(b) Average evolution of ∆ and average value of T65
obtained with the 2nd monitoring system which
uses features 1 and 2
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(c) Average evolution of ∆ and average value of T65
obtained with the 3rd monitoring system which
uses features 1 and 3

(d) Tool cutting edge chipping pro-
voked after the 64th hole has been
drilled

Figure 5.48 – Average evolutions of the criterion used to assess the presence of a tool cutting
edge chipping as a function of the number of holes that have been drilled for 3 monitoring
systems using different feature sets. A cutting edge chipping has been provoked after the 64th

hole has been drilled

Results. The average performance in detecting the cutting edge chipping after the 65th

associated and the 95% confidence intervals are given in table 5.8. One of the systems using
only 2 features performed better than the one using the 3 altogether. This illustrates the fact
that using more features, even if relevant, does not systematically increase all performance
criteria. The 4th system, which integrated the 2nd and 3rd within a global high level fusion
strategy significantly outperformed others. This underlines the benefits that can be expected
in terms of reliability of monitoring systems by the use of multisensor fusion strategies
together with data imperfection modeling approaches. Authors want to attract the reader
attention on the fact that the results are not optimized in terms of detection performance,
due to the absence of integration of prior knowledge in particular. This experiments were
aimed at emphasizing some points about the use of features and the potential advantages
of using data fusion and related concepts to perform monitoring.
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Monitoring system Average correct detection rate 95% confidence interval
1: Using features 1, 2 & 3 0.708 [0.668, 0.748]
2: Using features 1 & 2 0.786 [0.750, 0.822]
3: Using features 1 & 3 0.626 [0.584, 0.668]

4: Fusion of monit. sys. 2 & 3 0.902 [0.876, 0.928]

Table 5.8 – Performance of different monitoring systems in detecting a cutting edge chipping
after one drilling has been performed with

The detection of tool cutting edge chipping is important, both to avoid workpiece degra-
dations and to assist the drill wear level estimation. Following developments provided
in chapter 3, an unsupervised approach has been proposed that applies on any instru-
mented drilling device without setting parameters, requiring only a short initialization
phase. This is an important point regarding the need of flexibility existing in produc-
tion plants. The influence of integration of expert knowledge has been underlined as it
allowed increasing performances of a monitoring system to discriminate between drilling
operations performed with a chipped tool from other realized before the chipping has
been provoked. A short discussion on the usage of relevant features has also been
provided, and an experimental study allowed showing that a system able to take full
advantage of redundancy between features and estimators by appropriate data modeling
and merging techniques outperformed classical ones. To do so, the singularity detection
approach developed in the evidential framework and proposed in chapter 4 have been
used, and showed its good ability to deal with such applications cases.

5.3.3 Overview on drilling monitoring applications

The development of building blocks of a drilling monitoring system using concepts and ap-
proaches presented previously in this manuscript have been presented in this section.
The first one, the identification of the different drilling phases while performing stacks
drilling, has been shown to be an essential requirement for further monitoring operations. A
multi-scale and multisensor fusion approach has been proposed and used for identification
of the different phases when drilling multi-material stacks. It has been shown to be robust
facing both perturbations and sensors failures, and has been implemented successfully on
an machining center.
Then, a methodology aimed at the detection of tool cutting edge chippings has been pro-
posed. It answers challenges link with flexibility of operating conditions by the use of an
unsupervised learning strategy. This example allowed to underline the importance of expert
knowledge integration in monitoring systems, and also of a good usage of features and im-
perfect information modeling and merging techniques.
The formalization and implementation scheme described in chapter 3 has been used to de-
sign these monitoring systems. Moreover, the approach proposed in chapter 4 for singularity
detection in difficult contexts has also been used successfully in both cases, demonstrating
its performance and versatility. More generally, one of the main line of this work, which
consist in keeping problems as simple as possible and tackle bottlenecks explicitly upstream
in the monitoring sequence has been demonstrated to allow reliable monitoring in industrial
conditions.
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5.4 Conclusion

This chapter presented several developments and contributions related to the implemen-
tation of drilling monitoring systems. Keys challenges have been addressed following the
methodology and philosophy proposed in chapter 3.
First, two major sensor integration concerns have been evoked: as they have been elected
as two of the most sensitive quantities to cutting related phenomena, solution have been
proposed for the integration of AE and force sensors and their functioning have been char-
acterized.
Then, the feature selection problem, which is crucial for efficient monitoring but that have
often been neglected in past studies, has been tackled. The use of fusion approaches in-
cluding explicit data imperfection modeling has been shown to improve the performance of
feature selection, especially for processes and contexts making monitoring difficult, as it is
the case for industrial drilling operations.
Finally, the development of two monitoring systems have been described. The identification
of drilling phases, which is a necessary step before any other monitoring task, has been
addressed, and multisensor and multi-scale fusion strategies allowed providing the required
robustness. A method aimed at the detection of tool cutting edge chippings has also been
presented, and following remarks made in chapter 3, it has been shown that reliable mon-
itoring was possible using unsupervised learning methods. It also allowed underlining the
importance of integrating expert knowledge in the design of a monitoring system, and the
improvements that could be achieved by using data fusion and imperfect data modeling
related aspects.
Approaches and philosophy for the development of drilling monitoring systems exposed in
this work has been proven to be successful on application cases in this chapter. Many other
applications are possible and make part of future works.
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Chapter 6

Conclusion & perspectives

6.1 Review of the work

Chapter 1 exposed both the potential benefits for airframe assembly operations that could
be achieved by the use of drilling monitoring systems, and the challenges involved by the
implementation of such systems in industry. It is clear that online process monitoring can
bring improvements for the quality of drilling operations and for the cutting tools consump-
tion, however many difficulties have to be overcome in order to do it in a reliable manner in
airframe assembly plants.

Chapter 2, in its first part, reviewed attempts that have been made in order to moni-
tor several aspects of the drilling process. These contributions brought essential information
about sensors and features to be used for monitoring. In the last thirty years, the use of
several sensors has been chosen as a key solution in order to handle the complex behavior of
the drilling process. However, most of the proposed methodologies did not migrate from the
labs to the shop floor; not always because they did not achieve sufficient performance levels
in terms of accuracy, but mainly because of a lack of reliability and robustness when trans-
ferred to industrial plants. Two principal causes have been identified for these issues. The
first one concerns the flexibility that is needed in production plants: operating conditions of
the drilling process may change by many aspects, some controlled, others not. An efficient
monitoring system must adapt itself to these variations, but this was difficult to accom-
plish because most monitoring methodologies were based on supervised learning techniques.
The second challenging aspect that has barely been addressed is the hostile environment of
production plants. The integration of sensors is difficult, and the harsh conditions perturb
measurements. Thus, data is made imperfect due to harmful effects ranging from electrical
noise to sensor breakdown.
The second part of the chapter was dedicated to the presentation of concepts and techniques
that can contribute to better handling of the data variations and imperfections. Multisensor
data fusion has already been widely used for monitoring purposes, mostly by the use of neu-
ral networks, but the possibilities offered by some frameworks to model and handle imperfect
data have not been fully explored. In particular, the probabilistic and evidential frameworks
allow one modeling uncertain & uncertain & ambiguous information respectively, as well as
merge them with different level of performance. They may be used to address the reliability
issues that traditional drilling monitoring systems encountered when facing conditions and
data that are different from those they have been designed and set up with.

Chapter 3, after formalizing the process monitoring problem, provided a review of the
requirements for monitoring systems to be efficient in industrial contexts. Obviously, re-
liability is mandatory. Also, flexibility is essential. These two constraints are required to
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overcome many challenges in terms of robustness. It has been stated that unsupervised
learning techniques, used together with algorithms dedicated to the detection of singulari-
ties, may be more robust than classical methods, which mainly consisted in the design of
steady mappings between the feature space and the process state. Given these statements,
a methodology dedicated to the implementation of process monitoring systems in industrial
plants has been proposed. It is decomposed in six steps, namely: problem position, sensor
integration, feature selection, estimator choice, offline evaluation, and finally, in-situ imple-
mentation. These steps have been described and, for some of them, experimented in further
parts of the work.

Chapter 4 presented solutions to address a class of problems that, considering what has
been stated before, is essential for the design of efficient process monitoring systems, i. e.
the robust detection of singularities using multiple information sources. The attention has
been focused on the modeling of data imperfections and the way to merge statements up-
coming from several sources under such constraints. Existing methods that take advantage
of possibilities offered by the probabilistic and evidential frameworks have been presented.
A novel one that has been designed in order to merge statements of redundant sources in
difficult contexts has also been proposed. These approaches have been compared by the
use of numerical experiments that are representative of situations that are likely to oc-
cur in industrial process monitoring applications. Evidential methods have been shown to
be generally superior to the probabilistic one for real world situations due to their ability
to represent ambiguity explicitly. The proposed one will be used in several application cases.

Chapter 5 related some contributions at technological and methodological levels for some
of the six steps described in Chapter 3.
As a contribution on a technological level, the integration of two kinds of sensors (thrust
force and AE) that have been considered relevant for tool and workpiece state monitoring,
has been evoked and solutions have been proposed based upon experimental works.
Most of our contributions concerned the methodological level. First, a feature selection
procedure that could be used for the implementation of a monitoring system in industrial
plants has been presented. The constraints linked with the flexibility of operating condi-
tions, the difficulty to acquire representative sensor data on production means, and the harsh
environment that can affect measurements have been taken into account. A general fusion
methodology allowing to use heterogeneous experimental data sets have been proposed, and
the data modeling and fusion method proposed in Chapter 4 has been applied. It showed
superior performance to classical methodologies for fusion of experimental data dedicated
to feature selection due to its ability to model data imperfection.
A first implementation of a drilling monitoring system has then been presented. Its task
was to identify the different phases of aeronautical drilling operations, which is mandatory
in order to extract informative features and perform efficient monitoring. A multi-scale and
multisensor fusion approach has been proposed that allowed improving the robustness of
the identification of different drilling operation phases. Here again, the singularity detection
approach proposed in Chapter 4 have been used to fuse statements issued from redundant
spindle phase current sensors.
Finally, an application dedicated to the detection of cutting edge chippings has been de-
scribed. It allowed testing several of the guidelines that have been proposed in chapter 3 for
the implementation of robust industrial monitoring systems. A systematic feature selection
process has been applied, an unsupervised learning algorithm has been used together with
an initialization phase, expert knowledge has been integrated, and the fusion (using the
approach proposed in Chapter 4) of the statements coming from several simple subsystems
has been shown to provide better results than the use of a global system, given the same
features and information.
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From the description of the industrial context of the work to application examples, passing
through state-of-the-art and theoretical considerations and developments, efforts have been
focused on the robustness of drilling monitoring systems in industry. Paradoxically, this pre-
cise industrial need brought most of the scientific challenges of this work. After analyzing
the reasons why no reliable drilling monitoring system has been implemented in industry
yet, solutions have been proposed and assessed. Results are encouraging.

6.2 Main strengths & weaknesses of the work

Considering the objective of this work - the development of a methodology allowing to im-
plement industry-suited process monitoring systems - its main strength is, to my opinion,
that fundamental practical considerations have been taken into account. For example, the
basic building block of a drilling monitoring system is the robust identification of the drilling
operations phase. The first development proposed in chapter 5 tackled this issue. In the
same manner, the advised use of unsupervised learning algorithms implies an initialization
phase. This has been discussed, and a methodology has been proposed that is in agreement
with industrial production schemes. The difficulty to acquire good quality data from indus-
trial processes has not been ignored either, that is, a method has been proposed that allows
the use of heterogeneous and imperfect experimental data sets to perform feature selection,
and some technological developments were proposed concerning sensor integration.
With the same concern for relevance regarding industrial contexts, a vast amount of experi-
mental data has been acquired and used to assess the developed methodologies. These data
came from the use of different drilling devices, cutting tools and operating conditions that
allowed reducing - or at least being aware of - the bias existing when assessing monitoring
systems using only one type of data. This is especially true and important due to the afore-
mentioned flexibility and harsh environment constraints.
However, being aware of limitations in the generalization of results is not sufficient, and
the evaluation of monitoring systems performance is a difficult task. Taking the example
of methods used for the assessment of generalization performance of learning machines is,
to my opinion, one of the possible ways to better evaluate real performance of monitoring
systems before their integration in production plants. If solutions have been evoked for the
feature selection process, they have not been applied here.
Also absent of this work is a monitoring system dedicated to the estimation of a continuous-
evolving numerical variable, like tool wear size or hole diameters for instance. One can argue
that such application cases, that are usually considered difficult, have not been discussed
here. However, the monitoring cases which have been tackled (drilling phases identifica-
tion and detection of tool cutting edge chipping) have integrated robustness and reliability
constraints, that were lacking in most studies, raising important scientific challenges. The-
ses challenges have addressed proposed methodologies based on extensive state-of-the-art
analysis.

6.3 From the lab to the shop floor

Guidelines of this work, both scientific and industrial, have been drawn from the challenges
related to the industrial implementation of process monitoring systems. Indeed, in many
previous studies, the fact that these considerations have not been sufficient, led to a lack of
robustness of the proposed methodologies when implemented on the shop floor. At every
step of this work, developments have been done with the goal of industrial implementation in
mind. For example, sensor failure modes, initialization of unsupervised learning algorithms,
or sensor integration solutions were designed in close relationship with the end-users of the
monitoring systems in development. This has been possible due to the collaboration with
AEROLIA teams who provided essential information about their processes.
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For the moment, building blocks designed for the identification of drilling phases and for the
detection of tool cutting edge chipping have been implemented online on a machining center
dedicated to experimental works and characterization of cutting tools. Work is in progress
for their integration on production lines. If technical obstacles linked with integration of
these systems are being overcome step by step, then human factors are also of great impor-
tance. Production people have to be convinced of the interest of online monitoring, and are
waiting on the shell systems, as there is no time available for trial and error developments
schemes on airframe assembly production lines. The level of maturity of complex process
monitoring solutions that left the labs was often below what was expected in production
plants. This contributed to the gap that exists in the domain between academic and in-
dustrial communities, the latter becoming skeptical regarding promises of the former. A
better knowledge of industrial requirements, as well as better lucidity about the real per-
formance of the systems they developed are key points for researchers to introduce their
drilling monitoring systems on the shop floor.

6.4 Perspectives

Improvements are possible at every step of the implementation of monitoring systems.
Concerning sensors integration, two trends have to be investigated. The first one is to po-
sition sensors closer to the process zone, as it has been done in this work for force and AE
sensors. However, much effort must be made at the design step of machines to integrate
sensors. Concerning drilling, and machining in general, the development of instrumented
spindles and tool holders is therefore a major road to improvement. The second trend is
to use information issued from the numerical controllers of machines directly. This avoids
having to buy additional sensors and is not intrusive. However, sensing possibilities of such
solutions is often more limited.
As for feature extraction and selection, if many works only made use of a few classical
features, others presented sophisticated techniques for their extraction. The sensing, acqui-
sition, and computational facilities available today allows the implementation of large scale
extraction and selection procedures, as explained in section 5.2. This may be a promising
way to investigate data issued from integrated sensors, and therefore bring new monitoring
possibilities.
In this work, a bridge has linked monitoring systems and performance assessment procedures
used in the machine learning field. This is a first step for better predicting the performance
of monitoring systems once implemented in industry. A interesting progress vector could
be, following the machine learning community again, the creation of shared signal databases
dedicated to the evaluation of process monitoring systems. Concerning the strategic field
of airframe assembly operations, the sharing of such data appears in contradiction to the
confidentiality constraints of the production processes. However, academic researchers could
make generic experiments on their equipment and share data and systematic measurements.
These results would be at the disposal of the community as a basis to allow assessment of
the performance of the monitoring solutions they develop in an objective way. Still, obstacles
remain; the complexity of the drilling process makes it difficult to perform operations that
emphasize one phenomenon of interest at a time. Signals will always be depending on the
experimental set ups...
Concerning the use of sophisticated data modeling and fusion techniques for industrial ap-
plications, research could be done following three directions. The first one consists of the
spreading of recent approaches, like evidence theory for instance. This would be made pos-
sible by the building of software libraries usable by non-specialists. Secondly, much research
is needed on the specific requirements of process monitoring applications in terms of data
fusion. Indeed, it would be interesting to specify the needs of robustness, redundancy, and
accuracy at each point of such systems in order to identify the best suited fusion solution.
This implies the third axis: strengths and weaknesses of different fusion techniques have to
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be assessed on generic case studies, as done in Chapter 4 for instance, in order for one to be
able to select the most suited to its problem.
After the definition of robust methodologies for process monitoring, another interesting
aspect is the implementation of robust embedded hardware and software. These points re-
quire both skills in product design, real-time software design, and a good knowledge of
the monitored process. Concerning this work for instance, only on-purpose software has
been developed for experimental needs, and real effort is needed to implement a robust,
time-deterministic, and embedded monitoring software. These points have not often been
addressed in research oriented literature, but are of major importance for industrial imple-
mentation.
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Description of test campaign
number 1

A.1 General description

This test campaign has been performed on a machining center and was dedicated to the
characterization of tool wear and tool cutting edge chipping in sensors signals (sample 1),
and the influence of distance from drilling operation to sensors mounted on the sample on
signals (sample 2). A tool cutting edge chipping has been provoked manually during the test
campaign. Operating conditions were based on industrial ones. For confidentiality reasons,
no information about the cutting tool or cutting parameters can be given here. A picture
of the drill cutting edge was taken after each drilling operation with a camera placed inside
the machining center.

Figure A.1 – Test bed used for test campaign number 1

Drilling device Stack type Number of
samples

Drilled holes Lubrication

Huron KX 12 CFRP/Ti6Al4V 2 103 + 40 External
micro-
lubrication

Table A.1 – General parameters of test campaign number 1
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Sensor(s)
type

Model Mounting Conditioner Sampling
rate

Remarks

3+1 axis dy-
namometer

Kistler 9272 Under sam-
ple fixture

Kistler
5070A

20 KHz -

2 radial
accelerome-
ters

Dytran
3225F1

On the spin-
dle

- 20 KHz -

1 axial ac-
celerometer

PCB
353B01

On the
Ti6Al4V
sample

- 20 KHz -

Acoustic
emission
sensor

EPA S9220 on the
CFRP
sample

EPA IL40S-
32-1100

2 MHz Bandwith:
32-1100
KHz

Acoustic
emission
sensor

Kistler
8152B211

on the
Ti6Al4V
sample

Kistler
5125B1

2 MHz -

6 current
sensors

LEM 867-
601

Spindle (3)
and feed (3)
phases

- 20 KHz -

Table A.2 – Sensors used for test campaign number 1



Description of test campaign
number 2

A.2 General description

This test campaign has been performed on a machining center and was dedicated to the
characterization of tool wear and tool cutting edge chipping in sensors signals, and the
testing of an apparatus to embed an AE sensor (sample 1). A tool cutting edge chipping
has been provoked manually during the drilling of the 2nd sample. Operating conditions
were based on industrial ones. For confidentiality reasons, no information about the cutting
tool or cutting parameters can be given here. A picture of the drill cutting edge was taken
after each drilling operation with an industrial camera placed inside the machining center.

Figure A.2 – Test bed used for test campaign number 2

Drilling device Stack type Number of
samples

Drilled holes Lubrication

Huron KX 12 CFRP/Ti6Al4V 2 88 + 80 External
micro-
lubrication

Table A.3 – General parameters of test campaign number 2
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Sensor(s)
type

Model Mounting Conditioner Sampling
rate

Remarks

3 axis dy-
namometer

Kistler
9257B

Under sam-
ple fixture

Kistler
5070A

4 KHz -

Rotating
dynamome-
ter

Kistler
9125A

As the tool
holder

Kistler 5237 4 KHz -

2 radial
accelerome-
ters

Dytran
3225F1

On the spin-
dle

- 10 KHz -

1 axial ac-
celerometer

PCB
353B01

On the
Ti6Al4V
sample

- 10 KHz -

Acoustic
emission
sensor

EPA S9220 On the
CFRP
sample

EPA IL40S-
32-1100

1 MHz Bandwith:
32-1100
KHz

Acoustic
emission
sensor

Kistler
8152B211

On the
Ti6Al4V
sample

Kistler
5125B1

1 MHz -

3 current
sensors

LEM 867-
601

Spindle (2)
and feed (1)
phases

- 20 KHz -

Acoustic
emission
sensor

EPA S9220 on a dedi-
cated appa-
ratus

EPA IL40S-
32-1100

1 MHz Sample 1,
hole 1 to
68 only,
see figure
5.14(b)

Acoustic
Emission

EPA S9220 on the
CFRP
sample

EPA IL40S-
32-1100

1 MHz Sample 2
only

Table A.4 – Sensors used for test campaign number 2



Description of test campaign
number 3

A.3 General description

This test campaign has been performed with a robot equipped with a drilling end-effector
and was dedicated to the characterization of drilling operations made with a chipped tool. A
tool cutting edge chipping has been provoked manually during the test campaign. Operating
conditions were based on industrial ones. For confidentiality reasons, no information about
the cutting tool or cutting parameters can be given here.

Drilling device Stack type Number of
samples

Drilled holes Lubrification

Robot 1 CFRP/Alu 1 9 No

Table A.5 – General parameters of test campaign number 3
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Sensor type Model Mounting Conditioner Sampling
rate

Remarks

3 axis dy-
namometer

Kistler
9255B

Under sam-
ple

Kistler
5070A

25 KHz -

Microphone PCB
130E20

On the end-
effector

- 25 KHz -

3 axis ac-
celerometer

Dytran
3023A

On the spin-
dle

- 25 KHz -

Table A.6 – Sensors used for test campaign number 3



Description of test campaign
number 4

A.4 General description

This test campaign has been performed on a robot equipped with a drilling end-effector and
was dedicated to the characterization of tool wear influence on sensors signals. Operating
conditions were based on industrial ones. For confidentiality reasons, no information about
the cutting tool or cutting parameters can be given here. A picture of the drill cutting edge
has been taken after each series of 5 holes.

Figure A.3 – Test bed used for test campaign number 4

Drilling device Stack type Number of
samples

Drilled holes Lubrication

Robot 2 CFRP/Ti6Al4V 1 138 External
micro-
lubrication
during
Ti6Al4V only

Table A.7 – General parameters of test campaign number 4
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Sensor(s)
type

Model Mounting Conditioner Sampling
rate

Remarks

2 radial
accelerome-
ters

Dytran
3225F1

On the spin-
dle

- 20 KHz see figure
5.2(a)

2 axial
accelerome-
ters

Dytran
3225F1

On the
spindle
and spindle
housing

- 20 KHz see figure
5.2(a)

2 acoustic
emission
sensors

EPA S9220 On the end-
effector nose

EPA IL40S-
32-1100

2 MHz Bandwith:
32-1100
KHz, see
figure 5.5(a)

3 current
sensors

LEM 867-
601

Spindle (2)
and feed (1)
phases

- 20 KHz -

Table A.8 – Sensors used for test campaign number 4



Description of test campaign
number 5

A.5 General description

This test campaign has been performed on a machining center was and dedicated to the
characterization of tool wear and tool cutting edge chipping in sensors signals. A tool
cutting edge chipping has been provoked manually during the drilling of the 1st and 2nd

samples. Operating conditions were based on industrial ones. For confidentiality reasons,
no information about the cutting tool or cutting parameters can be given here. A picture
of the drill cutting edge was taken after each drilling operation with an industrial camera
placed inside the machining center.

Drilling device Stack type Number of
samples

Drilled holes Lubrication

Huron KX 10 CFRP/Ti6Al4V 3 96 + 97 + 96 Internal micro-
lubrication
during
Ti6Al4V
drilling only

Table A.9 – General parameters of test campaign number 5
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Figure A.4 – Test bed used for test campaign number 5

Sensor(s)
type

Model Mounting Conditioner Sampling
rate

Remarks

Rotating
dynamome-
ter

Kistler
9125A

Tool holder Kistler 5237 20 KHz -

1 tri-axial
accelerome-
ter

Dytran
3023A

On the
CFRP
sample

- 20 KHz See figure
5.9(a)

Acoustic
Emission

EPA S9220 on the
CFRP
sample

IL40S-32-
1100

2 MHz Bandwith:
32-1100
KHz, See
figure 5.9(a)

Acoustic
Emission

EPA S9220 on the
CFRP
sample

IL40S-32-
1100

2 MHz Bandwith:
32-1100
KHz, See
figure 5.9(a)

3 current
sensors

LEM 867-
601

Spindle
phases

- 20 KHz -

Table A.10 – Sensors used for test campaign number 5
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226



Introduction

B.1 Introduction générale

L’objectif principal de tout procédé de production industrielle est que les produits finis sa-
tisfassent aux critères de qualité requis. D’autres objectifs existent, tel qu’une production
optimisée ou encore respectueuse de l’environnement par exemple. En vue d’atteindre le
premier objectif, trois stratégies, qui ne sont pas mutuellement exclusives, sont applicables :

• la prédiction précise des variables d’intérêt en sortie du procédé

• le contrôle systématique de la qualité des produits finis

• la surveillance en ligne du procédé

Concernant les situations impliquant haute qualité des produits issus de procédés de fabri-
cation complexes, et où la productivité est un critère important, une modélisation précise
du procédé ainsi qu’une stratégie de surveillance en ligne peuvent être utilisées de concert
en vue d’atteindre les performances souhaitées.

Les opérations de perçage de précision nécessaires à l’assemblage de structures aéronautiques
seront abordées au cours de cette étude. Leur nombre étant trop important pour envisager
des contrôles systématiques de leur qualité, et le fait qu’aucun modèle robuste et prenant en
compte les nombreux paramètres influents n’existe, la surveillance en ligne est la solution
privilégiée pour améliorer la productivité de ces opérations. L’objectif de ce travail est de
dessiner les lignes directrices du processus d’implémentation d’un système de surveillance
des opérations de perçage aéronautiques.

B.2 Contexte et objectifs de l’étude

B.2.1 Problématiques industrielles

La difficulté majeure concernant les perçages de structures aéronautiques réside dans le res-
pect de normes de qualité présentées ci-après :

• Le diamètre de l’alésage dh doit être compris dans un intervalle de tolérance dépendant
du matériau percé

• Le diamètre de fraisure dc, l’angle αc la profondeur hc doivent être compris dans des
intervalles de tolérance garantissant un désafleurement acceptable entre la tête du rivet
et la structure (voir figure B.1(b)). Le désafleurement maximum autorisé dépend de
la localisation sur la structure avion et des incidences aérodynamiques induites.
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• La normalité αh de l’alésage par rapport à la surface de la pièce percée doit être com-
prise dans un intervalle de tolérance.

αh

αc hc

dh

dc

(a) Spécifications dimensionnelles concernant les
alésages et fraisures (une configuration typique
de perçage d’empilage de plusieurs matériaux est
représentée)

(b) Un rivet (bleu) inséré dans
un alésage avec fraisure : un
désaflaurement est visible entre
la tête du rivet et la surface de
la pièce

Figure B.1 – Spécifications dimensionnelles concernant les perçages/fraisurages aéronautiques
(a) et image d’un rivet inséré dans un alésage avec fraisure (b)

Les alésages sont aussi sujets à des critères de qualité :

• L’état de surface (Ra) doit être inférieur à un certain niveau dans l’alésage et la fraisure

• La hauteur des bavures d’entrée et de sortie est limitée

• La surface des délaminages (matériaux composites) est limitée

• La présence de fibres non coupées (matériaux composites) est proscrite

• Les changements de propriétés mécaniques des matériaux dus à la chaleur dégagée
pendant le perçage sont limités

Ces spécifications, nombreuses et contraignantes, font des opérations de perçage une étape
stratégique des procédés d’assemblages aéronautiques.

B.2.1.1 Axes de développement pour la productivité des opérations de perçage
aéronautique

Les opérations de perçage représentent un levier stratégique en vue d’optimiser la producti-
vité des procédés d’assemblage aéronautique. Trois axes principaux sont à considérer :

• Diminution des non-qualités

– Diminution du nombre de pièces rebutées

– Diminution des interventions manuelles non planifiées dues aux non-qualités

– Diminution du nombre de contrôles qualité
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• Optimisation de l’utilisation des ressources

– Rationalisation de l’usage des consommables

– Application d’une maintenance ciblée

• Augmentation du degré d’automatisation

Concernant le premier axe, des forets et des équipements de haute qualité sont utilisés, et
les procédés sont définis avec attention afin de réduire les occurrences de non-qualité. Ce-
pendant, des défauts sont toujours possibles, particulièrement en perçage étant donnée la
variabilité du procédé. De coûteuses procédures de contrôle sont généralement utilisées en
vue de s’assurer du niveau de qualité. Par conséquent, des estimations en ligne de la qualité
du procédé, ainsi que la détection d’éventuels défauts pourraient réduire les coûts liés aux
opérations de contrôle et aux non-qualités de manière significative.
Le consommable présentant le plus d’importance pour les opérations de perçage aéronau-
tiques sont les forets. Leur stratégie de remplacement est basée sur des estimations statis-
tiques de leur durée de vie, qui présente souvent une dispersion significative. Cela conduit
à l’utilisation de marges de sécurité importantes, mais cette approche se révèle être parti-
culièrement coûteuse depuis l’introduction massive de nouveaux matériaux pour les struc-
tures aéronautiques. Les alliages de titane et les matériaux composites en particulier présen-
tent des propriétés qui réduisent considérablement la durée de vie des outils de part l’usure
accélérée dont ils sont responsables. Par conséquent, la stratégie de remplacement des outils
coupants devrait être basée sur des estimées en temps réel de l’état d’usure des outils cou-
pants en vue de réduire les coûts et d’aller vers une production plus efficace.
Le dernier axe, l’automatisation, est un courant ancien dans l’industrie manufacturière.
Pourtant, en raison de la qualité requise et de la taille des structures, la plupart des
alésages réalisés pour l’assemblage de structures aéronautiques le sont par des opérateurs
très expérimentés et à l’aide de machines portatives. Des gains de productivité pourraient
être réalisés grâce à l’usage de procédés plus automatisés.

B.2.1.2 De l’interêt de moyens de surveillance en ligne pour les opérations
d’assemblage aéronautiques

Considérant les deux premiers axes de développement cités ci-dessus, les trois stratégies pro-
posées pour atteindre la qualité requise en sortie de procédé pourraient théoriquement être
appliquées. Cependant, le contrôle systématique des alésages s’avérerait être trop coûteux,
et aucun modèle suffisamment évolué des opérations de perçage n’existe qui permette de
prévoir les propriétés relatives à la qualité des perçages réalisés. Par conséquent, l’unique
solution est l’implémentation de systèmes de surveillance en ligne.
Si de tels systèmes n’existent pas aujourd’hui dans l’industrie, la littérature recèle de tenta-
tive encourageantes, et le développement rapide des technologies de capteurs, d’acquisition
de données et de stratégies d’aide au diagnostic et à la décision laisse entrevoir des possibilités
intéressantes quant-au développement de systèmes robustes de surveillance des opérations
de perçage.

B.2.1.3 Besoins liés à l’implémentation de systèmes de surveillance en ligne
dans l’industrie aéronautique

Pour être exploitable industriellement, un système de surveillance en ligne des opérations de
perçage doit satisfaire à plusieurs conditions. En premier lieu, les informations qu’il fournit
doivent être assez précises pour être utiles, et ce malgré l’absence de modèles théoriques. Il
doit aussi être robuste face aux dispersions liées au procédé de perçage et aux perturbations
dues à l’environnement industriel, souvent hostile. Enfin, il ne doit pas être intrusif : le pro-
cessus de production suivi ne doit en aucun cas être perturbé par le système de surveillance.
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Bien que facile à identifier, ces besoins impliquent des efforts importants en terme d’intégra-
tion de capteurs, de traitement du signal, d’extraction d’indicateurs et de développement
d’algorithmes d’estimation et de prise de décision. Les problématiques scientifiques qui en
découlent sont décrites dans la section suivante.

B.2.2 Problématiques scientifiques

Depuis plus de 30 ans et l’avènement de nouvelles technologies de capteurs et de traitement
de données, de nombreuses études ont été réalisées concernant la surveillance des opérations
de perçage. Beaucoup d’approches utilisant un seul capteur ont d’abord été présentées. Si
certaines ont permis d’obtenir des résultats intéressants, elles ont souvent été évaluées en
considérant des paramètres opératoires stables, ce qui a conduit à un manque de flexibilité
des systèmes développés. D’autres tentatives ont donné des résultats plus mitigés, notam-
ment en ce qui concerne l’estimation de l’usure outil de part le fait que les capteurs utilisés ne
permettaient pas de rendre compte de la complexité du procédé de perçage. Par conséquent,
peu des méthodologies développées lors de ces travaux sont susceptibles d’être implémentées
dans l’industrie. En outre, les challenges liés à l’environnement hostile aux mesures des sites
de production a été éludé quasi-systématiquement.
Afin de pouvoir être introduit de manière efficace dans les usines d’assemblage de structures
aéronautiques, un système de surveillance est soumis à des contraintes impliquant des chal-
lenges scientifiques et techniques. Leurs origines peuvent être résumées comme suit :

• Inaccessibilité des phénomènes d’intérêt

• Complexité des phénomènes d’intérêt

– Comportements dispersifs des machines et des structures usinées

– Absence de modèle performant

• Variabilité des paramètres du procédé

– Différentes conditions opératoires peuvent être rencontrées

– Différents comportements sont à prévoir en fonction du système usinant et des
structures concernées

• Hostilité de l’environnement industriel aux mesures

Bien qu’elles soient spécifiques, ces causes soulèvent une problématique plus générale. Les
étapes de mesure, de traitement des données, d’estimation et de prise de décision nécessaire
à l’établissement d’un diagnostic doivent être effectuées sous incertitude. Ce constat est à
la base du positionnement scientifique de ce travail : contrairement à la majorité des études
concernant la surveillance des opérations de perçage, l’incertitude concernant les conditions
opératoires, l’état des capteurs, et la qualité des données vont ici être prises en compte dès les
premières étapes de conception d’un système de surveillance des opérations de perçage. Par
conséquent, de nouvelles contraintes, mais aussi de nouvelles possibilités, vont apparâıtre,
qui confèrent à ce travail son caractère original.

Des solutions existent pour répondre aux besoins explicités précédemment. Les études
réalisées auparavant ont donné des informations essentielles sur les types de capteurs et de
techniques de traitement du signal à implémenter afin de développer un système de sur-
veillance des opérations de perçage. Pourtant il est aujourd’hui généralement admis qu’un
seul type de capteurs ne permet pas de réaliser une surveillance en ligne robuste. L’utilisa-
tion de systèmes multi-capteurs combinés avec des techniques de traitement de l’information
dites intelligentes devrait augmenter la robustesse et la flexibilité des système de surveillance
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de procédés. De nombreuses études ont déjà montré que l’utilisation de plusieurs capteurs
permettait une meilleure appréhension des phénomènes complexes dont le perçage est le
siège. Cependant, ces travaux ont principalement été réalisés sous des conditions opératoires
stables et dans les environnements protégés des laboratoires. Les contraintes relatives à la
variabilité des conditions opératoires et de la qualité des données mesurées n’ont pas été
prises en compte.
Pourtant, ces aspects revêtent une importance majeure : l’utilisation de plusieurs capteurs
répond à une absence de données assez fiables ou précises provenant d’une seule source
d’information. L’incertitude sur les données provenant des capteurs devrait donc être prise
en compte dès le début de la conception d’un système de surveillance multi-capteurs. Une
connaissance précise des moyens de modéliser et de manipuler les différents formes d’incer-
titude doit aider à mieux répondre aux problématiques qu’elles impliquent. Actuellement,
ces aspects ne sont pas pris en compte dans la grande majorité des études concernant la sur-
veillance des opérations de perçage, et l’incertitude sur les données a été traitée de manière
implicite au niveau des estimateurs utilisés. Pourtant, leur importance est capitale : les
meilleurs estimateurs ne donneront pas de bons résultats en présence de données erronées
ou mal interprétées.
Les points requérant une attention particulière, de notre point de vue, pour l’implémentation
d’un système de surveillance en environnement industriel sont :

• L’intégration des capteurs

• Les techniques de traitement de l’information

• La modélisation des incertitudes sur les données

• La fusion multi-capteurs

Par conséquent, les contributions escomptées de cette étude sont :

• Le développement de solution d’intégration de capteurs pour la surveillance des opé-
rations de perçage

• L’implémentation de techniques de fusion de données pour la surveillance de procédés
industriels complexes

• Le développement d’une méthodologie générique pour l’implémentation de système de
surveillance multi-capteurs



Synthèse de l’état de l’art

B.3 Principaux défis pour l’implémentation de systèmes
de surveillance en ligne des opérations de perçage

L’état de l’art concernant la surveillance indirecte des opérations de perçage a permis d’iden-
tifier trois défis principaux relatifs à l’implémentation industrielle de tels systèmes :

• Les difficultés inhérentes à la complexité du procédé de perçage : la majorité des
phénomènes d’intérêt n’ont pas été modélisés en fonction de variables mesurables,
rendant la surveillance difficile

• Les difficultés liées à la généralisation des résultats : la majorité des résultats obtenus
jusqu’à présent sont étroitement liés aux conditions opératoires dans lesquelles ils ont
été obtenus

• Les difficultés liées à la qualité des données disponibles : l’environnement difficile des
ateliers de production rend les mesures issues des capteurs imparfaites

La majorité des travaux ont été axés sur le premier aspect, probablement de part le fait qu’il
est le point de départ à l’implémentation d’un système de surveillance. Il permet d’établir
les liens entre les phénomènes d’intérêt, les indicateurs associés et les capteurs à utiliser.
En outre, ces études ont permis d’améliorer la connaissance du procédé de perçage, et par
conséquent les capacités à concevoir des systèmes de surveillance performants. Les approches
multi-capteurs ont principalement été utilisées en ce sens, en vue d’aider l’appréhension de
phénomènes complexes.
Pourtant, les exemples de mise en oeuvre et de mise sur le marché de systèmes de surveillance
sont rares, et présentent souvent des plages de fonctionnement limitées et une faible robus-
tesse, soulignant l’importance des deux autres aspects. En effet, le second est une condition
sine qua none pour l’émergence de systèmes de surveillance dans les usines d’assemblage
aéronautique pour répondre aux besoins de flexibilité des processus de production. Concer-
nant le troisième aspect, la gestion de la qualité des données d’entrée revêt une grande
importance : un système de surveillance dont les diagnostics sont basés sur des inférences
issues d’informations dégradées ou mal interprétées ne peut fournir de bons résultats.

B.4 Fusion de données pour la surveillance : synthèse

La seconde partie de l’état de l’art concernant la fusion de données a permis de détailler
ses objectifs, avantages, et concepts fondamentaux, mais aussi ses limites, ainsi que les
problématiques a surmonter pour l’implémentation d’un système de surveillance des opéra-
tions de perçage.
Une classification des problèmes liés aux données d’entrée a permis d’identifier les difficultés
qui seront rencontrées, ainsi que les principales problématiques à prendre en compte : l’incer-
titude et l’ambigüıté des données. En outre, l’utilisation de sources d’information multiples
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implique de manipuler des données corrélées ou/et contradictoires, ce qui peut être à l’ori-
gine de nombreux problèmes.
Les possibilités offertes par les formalismes probabiliste et évidentialiste pour répondre à ces
problématiques ont été évaluées : les fondations théoriques des probabilités sont établies et
elles ont été largement utilisées par le passé, tandis que les fonctions de croyance présentent
une meilleure capacité à traiter les données imprécises, tout en conservant la possibilité de
modéliser l’incertitude. Malheureusement, la complexité calculatoire augmente de manière
exponentielle avec le nombre de propositions à traiter dans ce formalisme. Dans les deux cas,
une attention particulière doit être portée quant-à la manipulation et la fusion de données
contradictoires.
Pour chaque problème rencontré, le choix d’un formalisme sera basé sur ces considérations
et sur les spécificités du cas d’étude. Un aspect important des applications de surveillances,
l’identification de singularités, a été détaillé au chapitre 4, et des approches développées dans
les deux formalismes ont été comparées.

B.5 Surveillance des opérations de perçage et fusion de
données : synthèse générale

L’état de l’art a d’abord permis de détailler les travaux réalisés et les défis restant à relever
concernant la surveillance des opérations de perçage. La plus grande partie des efforts a
été concentrée sur la gestion de la complexité du procédé de perçage, souvent en utilisant
plusieurs capteurs. Les aspects concernant la généralisation des résultats obtenus ainsi que
la robustesse face aux environnements industriels ont souvent été négligés. Par conséquent,
le manque de robustesse de systèmes de surveillance développés a souvent rendu impossible
leur implémentation industrielle.
Dans une seconde partie, les concepts et techniques associés à la fusion de données pou-
vant aider à la résolution des problèmes identifiés ont été présentés. L’importance des
problématiques liées à la qualité des données a été soulignée, et deux formalismes mathé-
matiques adaptés à la manipulation et à la fusion de données imparfaites ont été présentés.
Les points forts et points faibles des formalismes probabilistes et évidentialistes concernant
les problématiques associées à la surveillance des opérations de perçage ont été détaillés afin
de permettre au concepteur d’un système de surveillance de choisir le plus adapté.



Formalisation du problème de
surveillance, description des
besoins et des défis, et
proposition d’une approche
d’implémentation

A partir de la description et de la formalisation du problème de la surveillance de procédés
industriels, les principaux défis et besoins seront identifiés, et des solutions seront proposées
et/ou passées en revue. Bien que ces différents aspects soient présentés dans des sous-sections
distinctes, ils présentent des liens importants, qui seront détaillés eux aussi. Ces constats se-
ront ensuite utilisés pour construire une méthodologie dédiée à l’implémentation de système
de surveillance de procédés de production industriels. En effet, plus que le système de sur-
veillance, son implémentation pose de nombreuses questions et défis qui seront discutés.
Une attention particulière sera portée sur le procédé de perçage, mais les constats et ap-
proches proposées pourront être généralisés à d’autres procédés de production. Ce chapitre
permettra aussi de dessiner les orientations principales de ce travail en soulignant les ver-
rous scientifiques et technologiques à lever pour développer des systèmes de surveillance de
perçage performants.

B.6 Description du problème de surveillance

Comme évoqué au chapitre 1, un système de surveillance de procédé d’usinage opère selon
le schéma suivant : des variables liés au procédé sont influencées par l’état de l’outil coupant
et les conditions de l’opération d’enlèvement de matière sont mesurées à l’aide de capteurs.
Les signaux recueillis par ces capteurs sont traités afin de générer des indicateurs corrélés
avec l’état de l’outil et/ou du procédé. Ces indicateurs sont ensuite utilisés par des systèmes
destinés à estimer l’état du procédé. Cette estimation de l’état peut ensuite être commu-
niquée à un opérateur, ou directement utilisée pour adapter les paramètres opératoires du
procédé. Cette séquence générique est illustrée par la figure B.2.

B.7 Description des besoins et défis liés à la surveillance
de procédés complexes en environnement difficile

La surveillance de procédés complexes en environnement industriel est une tâche difficile.
Certains des aspects décrits ci-après sont génériques, tandis que d’autres sont spécifiques
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Figure B.2 – Séquence générique d’un processus de surveillance

aux opérations de perçage.

B.7.1 Défis liés à la variabilité des conditions opératoires

Comme évoqué dans la section 2.1, de nombreuses études concernant la surveillance des
opérations de perçage ont été réalisées dans des conditions opératoires stables, dans des
environnements propices à la réalisation de mesures, et les aspects liés à variabilité des
conditions opératoires n’ont que rarement été abordés. De nombreuses sources de variabilité
existent conduisant à des problèmes de robustesse des systèmes de surveillance. Par exemple,
le transfert d’un tel système d’une unité de production à une autre, dont le comportement et
l’environnement sont fatalement différents, doit être possible étant données les contraintes
de flexibilité auxquelles sont soumis les processus de production. Par conséquent, des chan-
gements dans les conditions opératoires, qu’ils soient dus à un besoin de flexibilité ou à des
grandeurs d’influences non mâıtrisées, nécessitent qu’un système de surveillance soit robuste
face à de tels changements.

B.7.2 Défis liés à la qualité des données

Les données transitant des capteurs jusqu’aux décisions portent l’information au long des
différentes étapes du processus de surveillance. Par conséquent, la qualité de ces données est
un point important. Les données d’entrée sont les plus sujettes à des problèmes de qualité,
et les imperfections qu’elles comportent sont souvent propagées par les indicateurs jusqu’à
ce qu’elles dégradent le niveau de performance global du système de surveillance en affectant
les décisions qui sont prises.
La qualité des données, et particulièrement des données d’entrée, revêt donc une importance
capitale pour qu’un système de performance donne de bonnes performances. Malheureuse-
ment certaines imperfections sur les données d’entrée sont inévitables, et, par conséquent, le
système doit être capable de fonctionner malgré tout afin d’être robuste dans un environne-
ment industriel. Ceci peut être fait en évitant la création d’indicateurs de mauvaise qualité,
ou en concevant des estimateurs capable de les traiter.
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B.7.3 Défis liés à la complexité des procédés et aux comportements
dispersifs

Le dernier défi à relever pour l’implémentation de systèmes de surveillance de procédés
complexes est directement lié aux opérations à surveiller. Le cas particulier du perçage sera
évoqué ici, mais les constats seront souvent applicables à bon nombre de procédés de fabri-
cation. Comme évoqué à plusieurs reprises, le perçage est un procédé complexe montrant
un comportement dispersif. Si ces deux caractéristiques sont liées, elles seront traitées ici de
manière séparée du fait que leur influences respectives affectera un système de surveillance
de différentes manières.
La complexité du procédé implique que les estimateurs soient aptes à appréhender une telle
complexité, ce qui passe généralement par l’utilisation simultanée de plusieurs indicateurs
et l’utilisation d’algorithmes complexes. D’autre part, le caractère dispersif du procédé im-
plique que le domaine de fonctionnement des systèmes de surveillance soit étendu, et que
l’estimateur soit capable de gérer, dans une certaine mesure, des données d’entrée dispersées.
Les procédés complexes et présentant un caractère dispersif sont donc difficiles à surveiller.
En effet, comme ils interdisent l’utilisation d’approches basées sur des modèles, les stratégies
de surveillances doivent être construites à partir de la connaissance du procédé, qui est sou-
vent difficile à modéliser et à utiliser de manière robuste. En outre, les comportements
dispersifs imposent aux systèmes de surveillance d’être en mesure de traiter des situations
inconnues lors de leur conception.

B.8 Solutions pour des systèmes de surveillance robus-
tes

En vue de relever les défis et d’atteindre les objectifs détaillés dans les sections précédentes,
des solutions existent qui vont être discutées ici.
Suivant le constat généralement admis que la surveillance robuste de procédés complexes
n’est pas réalisable à l’aide d’un seul capteur, l’usage de plusieurs sources d’informations
couplées à des systèmes de traitement des données adaptés a été élevé au rang de solutions
prometteuse en vue d’améliorer la précision et la robustesse des systèmes de surveillance.
En effet, de nombreuses études où il a été fait usage de plusieurs capteurs et de diverses
techniques de fusion de données ont été réalisées, où les bénéfices attendus étaient :

• une meilleure appréhension de la complexité du procédé

• une robustesse accrue face à des environnements difficiles

• une robustesse accrue face au caractère dispersif du procédé et aux variations de condi-
tions opératoires

Essentiellement, le premier point a été réalisé. L’usage de plusieurs capteurs, dont les me-
sures et indicateurs ont le plus souvent été fusionnés grâce à l’usage de réseaux de neurones,
a permis d’obtenir des résultats très intéressants, en particulier pour l’estimation de l’état
d’usure de l’outil. Cela a permis de démontrer un des bénéfices potentiels de l’usage de fusion
multi-capteur pour la surveillance de procédés industriels. Cependant, cela a été fait, le plus
souvent, sous des conditions opératoires contrôlées et dans des environnements favorables
à la mesure. Ni la problématique de la variabilité des conditions opératoires, ni celle de la
qualité des données d’entrée n’ont été abordées.
Pourtant, la fusion multi-capteurs, mais aussi les concepts associés comme la modélisation
des données imparfaites ou la fusion de données contradictoires présentent un grand intérêt
pour atteindre les performances requises pour une introduction dans l’industrie. Les pos-
sibilités offertes par ces concepts ont été soulignées, et leur utilisation constitue une des
contribution originale de ce travail.
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B.9 Approche proposée pour l’implémentation de sys-
tèmes de surveillance de procédés de production
industriels complexes

En 2010, Abellan-Nebot and Subirón ont constaté qu’en dépit des recherches intensives
menées sur le sujet, aucune méthodologie claire de développement de système de surveillance
d’opérations d’usinage n’existait, et qu’en outre, certaines études précédentes sur le sujet
étaient contradictoires. Plusieurs étapes sont indispensables à la conception d’un système de
surveillance de procédé. Le but de cette section est d’en détailler le contenu, les liens qu’elles
entretiennent, les besoins et les défis qu’elles impliquent afin de pouvoir implémenter un
système de surveillance répondant aux besoins de l’industrie. A partir de la proposition d’une
méthodologie globale, les principales étapes de l’implémentation seront abordées, amenant
à la détermination de plusieurs contributions de ce travail.

B.9.1 Méthodologie globale pour l’implémentation de systèmes de
surveillance

Les différentes étapes de développement d’un système de surveillance sont, selon l’auteur :
la position du problème, l’intégration des capteurs, la sélection d’indicateurs, la sélection
d’estimateurs, l’évaluation du système, et enfin son implémentation industrielle. Ces étapes,
reprises dans la figure B.3 avec d’éventuels retours, présentent de nombreux liens, et parfois
se superposent, mais leur séparation donne une vision intéressante des étapes à mettre
en ?uvre pour l’implémentation d’un système de surveillance.

B.10 Conclusion

Ce chapitre a permis de séparer la conception, l’évaluation et l’installation industrielle d’un
système de surveillance de procédé, et de définir clairement les actions à effectuer.
L’approche d’implémentation proposée étant basée sur les besoins industriels et tenant
compte des nombreux défis liés à la surveillance dans les ateliers de production, elle de-
vrait permettre aux concepteurs de systèmes de surveillance de dépasser les problèmes de
robustesse rencontrés jusqu’à présent.
Plusieurs concepts liés à la fusion d’information et à l’intelligence artificielle ont été utilisés
comme des moyens de description de problématiques qui ont été traitées de manière impli-
cite jusqu’à présent, tout comme les solutions pour y répondre. Cela est en accord avec la
philosophie de ce travail consistant à importer des développements de différents domaines
de recherche pour améliorer les performances des systèmes de surveillance.
En particulier, une méthode sera proposée au chapitre 4 pour détecter des événements
singuliers dans des environnements difficiles utilisant la fusion de données et les fonctions
de croyance. Elle servira ensuite pour le développement de méthodologies et de briques
nécessaires à l’implémentation de systèmes de surveillance au chapitre 5.
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Figure B.3 – Approche proposée pour l’implémentation de systèmes de surveillance de
procédés industriels. Les retours éventuels sont représentés par des flèches grises grises tandis
que les données transitant et les résultats escomptés sont donnés en vert et bleu respectivement.
Le terme optimal est à considérer en fonction des performances du système de monitoring



Identification de singularités en
contexte difficile

La surveillance d’un système ou d’un procédé implique la détection de déviations par rapport
à son fonctionnement normal. Ces états anormaux sont détectables par les valeurs singulières
prises par certains indicateurs caractéristiques de l’état du procédé. De nombreux exemples
d’application de surveillance de perçage basés sur la détection de singularité ont été données
en section 2.1. L’identification de singularités peut aussi s’avérer utile à d’autres étapes de
l’implémentation d’un système de surveillance, comme lors de la recherche des indicateurs
les plus performants par exemple. L’identification de singularités est en réalité une tâche
très générique qui est réalisée, tant de manière implicite qu’explicite, dans de nombreux cas
d’application impliquant la recherche d’un élément prenant une valeur remarquable. Dans la
plupart des cas, après que les données aient été traitées, il s’agit d’un problème de recherche
d’extremum dans un jeu de données.
Etant donnée l’importance de l’identification de singularités dans les applications de sur-
veillance, le bon déroulement de ces opérations est indispensable. Par conséquent, dans
les contextes difficiles tels que les sites d’assemblage aéronautique, des méthodes robustes
doivent être implémentées. La fusion multi-capteurs apparâıt comme la solution naturelle
pour garantir la robustesse, mais nécessite des efforts en termes de modélisation et de fusion
des données imparfaites, comme évoqué en section 2.2.
Ce point capital pour la surveillance a été discuté dans ce chapitre. Le problème d’identi-
fication de singularités a été introduit, puis deux approches existantes ont été présentées,
ainsi qu’une nouvelle, et toutes ont été évaluées par le biais de simulations représentatives
de cas de figures industriels.

B.11 Considérations générales

Le problème d’identification de singularités peut être divisé en deux étapes. La première
consiste à trouver une forme d’intérêt trahissant la présence d’une singularité dans les
données observées. Une fois que ceci a été fait, les observations peuvent être classées en
fonction de leur similarité avec la forme recherchée, ou de leur dissimilarité avec les obser-
vations régulières (non-singulières). Souvent, cette dissimilarité est exprimée sous la forme
d’une distance.
La seconde étape consiste à prendre une décision visant à désigner l’élément singulier. Cette
étape est évidente dans beaucoup de problèmes d’identification de singularité où une seule
source d’information est utilisée : l’élément le plus singulier parmi le jeu de données est
désigné. En revanche, considérant les applications dans des contextes difficiles ou les données
observées sont imparfaites, des solutions doivent être trouvées afin d’identifier les singula-
rités de manière robuste.
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B.12 Problèmes relatifs à la qualité des données

Comme évoqué en section 2.2.2, dans les espaces descriptifs possédant une métrique, les in-
certitudes de mesure ou d’estimation sont usuellement représentées à l’aide de fonctions de
probabilité caractérisant la dispersion des valeurs pouvant être raisonnablement attribuées
au phénomène original connaissant la mesure/l’estimation. Cette modélisation assume que
les observations ne sont pas entachées de perturbations systématiques, mais seulement de na-
ture stochastiques. Pourtant, les imperfections sur les mesures capteurs ne sont pas seulement
stochastiques mais peuvent aussi se manifester en termes d’ambigüıtés et de contradictions
dues à l’environnement. Ces cas se présentent quand une ou plusieurs sources d’information
sont en défaut à cause d’une inhabilité, partielle ou totale, à évaluer la grandeur d’intérêt.
Ces assertions valent aussi pour les informations provenant d’autres sources que les capteurs.

B.13 Approches existantes pour l’identification de sin-
gularités, et proposition d’une nouvelle méthode

La représentation probabiliste des données incertaines issues de capteurs rend l’utilisation
du formalisme bayésien directe. Concernant la théorie de l’évidence en revanche, une des
difficultés majeures réside dans la modélisation des données lors de la création de fonctions de
croyance. Une première approche sera présentée utilisant la transformée pignistique inverse
et le principe de moindre engagement pour affecter des masses à partir des fonctions de
probabilité. Ensuite, l’approche proposée, qui conserve un fort lien avec les probabilités,
tirera avantage de la présence de plusieurs sources d’information. La construction des masses
sera optimisée pour que lors de l’étape de fusion, les sources les plus informatives soient
favorisées.

B.14 Conclusion

Ce chapitre a permis d’introduire le problème de l’identification de singularité dans des
contextes difficiles à l’aide de sources d’informations multiples. L’importance d’une modé-
lisation juste des informations et de leur imperfections, ainsi que du nombre de sources et
de leur comportement attendu ont été soulignées. Les bénéfices tirés de l’utilisation de la
théorie de l’évidence et de sa capacité à modéliser explicitement l’incertitude épistémique a
été prouvée dans des contextes où plusieurs sources sont utilisées.
L’approche de modélisation des données proposée est un exemple de solutions que peut offrir
la théorie de l’évidence : la flexibilité en terme de modélisation des données imparfaites
permet de s’adapter à chaque cas d’application. Le cas particulier dans lequel une source
fournit des informations plus spécifiques a été particulièrement bien appréhendé. Le besoin
de consensus entre les sources semble être un critère intéressant en vue de faire un choix
parmi les approches présentées qui sont complémentaires.
La méthodologie proposée sera utilisée par la suite pour des tâches de surveillance et de
sélection d’indicateurs.
L’évaluation des performances des modélisations bayésiennes et évidentialistes dans le con-
texte de l’identification de singularités a aussi permis d’évaluer, dans une certaine mesure,
les performances générales de ces deux formalismes.



Implémentation de
sous-systèmes de surveillance de
perçage

Ce chapitre est dédié à la présentation de réalisations scientifiques et techniques directement
associées à l’implémentation d’un système de surveillance de perçage.

B.15 Intégration des capteurs

Comme souligné au chapitre 3, l’intégration des capteurs est un point crucial en vue d’im-
plémenter un système de surveillance. En effet, un diagnostic correct ne peut-être basé que
sur des indicateurs pertinents, eux-mêmes issus de signaux informatifs. L’intégration de cap-
teurs est rendue difficile de part les contraintes imposées par l’environnement difficile des
usines de production industrielle : les solutions de mesures doivent être à la fois robustes
et non-intrusives, et en sus, permettre de recueillir des données informatives. Malheureuse-
ment, les signaux les plus informatifs sont issus des capteurs les plus difficiles à intégrer. Si
les vibrations de broche et les puissances consommées sont faciles a observer, ces données
sont souvent insuffisantes pour effectuer de la surveillance. En revanche, les mesures de force
et d’EA sont informatifs, mais les capteurs associés sont difficiles à intégrer.
Les solutions d’intégration existantes concernant ces deux types de capteurs ont été passées
en revue, et de nouvelles ont été proposées qui ont donné des résultats encourageants. Une
méthode d’extraction d’indicateurs à partir des signaux d’émission acoustique a aussi été pro-
posée qui s’est montrée plus robuste face à des changements de paramètres que les méthodes
utilisées classiquement.
Ces résultats confirment que l’intégration des capteurs est une étape importante lors de la
conception d’un système de surveillance. En particulier, quand des contraintes relatives à la
production industrielle existent, elles doivent être prises en compte dès le début de la phase
de conception.

B.15.1 Sélection des indicateurs

La sélection des indicateurs qui vont permettre d’assurer le suivi du déroulement du procédé
est une étape critique de l’implémentation d’un système de surveillance. Différentes ap-
proches ont été introduites, et les méthodes de pondérations des indicateurs ont été sélec-
tionnées de part leur flexibilité et facilité d’utilisation. En particulier, l’algorithme IRELIEF
répond à de nombreuses problématiques relatives à la sélection d’indicateurs à partir de
bases de données expérimentales, comme c’est le cas dans cette étude.
Les aspects dont la prise en compte est importante lors de la sélection d’indicateurs tels que
la redondance des indicateurs, les interactions liées à l’usage simultané de plusieurs d’entre
eux, mais aussi la qualité des données expérimentales disponibles ont été soulignés, et leur
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influences respectives ont été caractérisées à l’aide d’un cas d’étude réel.
Le besoins d’approches basées sur la fusion de données pour l’implémentation d’un système
de surveillance de procédés industriels a été explicité, et plusieurs ont été proposées et
implémentées. En particulier, une approche développée à l’aide du formalisme évidentialiste
et utilisant la méthodologie de construction des masses proposée au chapitre 4 a permis
d’obtenir de bons résultats sur un cas d’étude concernant la détection d’ébréchures d’arrêtes
des outils coupants. Elle s’est montrée supérieure aux méthodes classiques grâce aux possi-
bilités étendues pour la modélisation de données imparfaites.
Il a aussi été démontré que l’intégration de jeux de données hétérogènes au processus de
sélection des indicateurs pouvait contribuer à l’amélioration de la précision et de la robus-
tesse d’un système de surveillance.

B.16 Applications à la surveillance des opérations de
perçage

Le développement de sous-systèmes dédiés à la surveillance des opérations de perçage uti-
lisant les approches et les concepts présentés dans ce travail ont été présentés dans cette
section.
Le premier d’entre eux, dédié à l’identification des différentes phases des opérations de
perçage d’empilages multi-matériaux, est très important car c’est un préalable à l’implé-
mentation d’autres sous-systèmes. Une approche de fusion multi-capteurs et multi-échelles
a été présentée qui permet l’identification des différentes phases de perçage. Elle s’est montrée
robuste et a été implémentée sur un centre d’usinage.
Ensuite, une méthodologie dédiée à la détection des écaillages survenant sur les arrêtes des
outils coupants a été proposée. Elle répond aux contraintes relatives à la flexibilité des condi-
tions opératoires grâce à l’utilisation de techniques d’apprentissage non supervisées. Cette
application a aussi permis de souligner l’importance de l’intégration des connaissance expert
dans le processus de conception d’un système de surveillance, du bon usage des indicateurs
et de la juste modélisation des informations imparfaites.
Les formalismes et séquence d’implémentation proposées au chapitre 3 ont été utilisés afin de
concevoir ces sous-systèmes. En outre, l’approche proposée au chapitre 4 pour la détection
de singularités dans les contextes difficiles a été utilisée avec succès dans les deux cas,
démontrant sa pertinence et sa versatilité. Plus généralement, une des lignes directrice de
ce travail, qui consiste à décomposer les problèmes de la manière la plus simple possible en
vue de traiter les problèmes en amont de la conception d’un système de surveillance s’est
montrée efficace.



Conclusion et perspectives

B.17 Synthèse des travaux

Au chapitre 1, les bénéfices potentiels pour les opérations d’assemblages aéronautiques
découlant de l’usage de système de surveillance, mais aussi les défis liés à l’implémentation
de tels systèmes ont été présentés. S’il apparâıt clairement que la surveillance en ligne peut
être à l’origine d’une qualité accrue des produits, ainsi que d’une meilleure utilisation des
outils coupants, de nombreuses difficultés doivent être dépassées.
Le chapitre 2, dans une première partie, a permis de présenter les tentatives de surveillance
de différents aspects liés aux opérations de perçage. Ces contributions ont donné des informa-
tions essentielles sur les capteurs et indicateurs pouvant être utilisés pour la surveillance des
opérations de perçage. L’usage simultané de plusieurs capteur a été identifié comme une so-
lution clé en vue d’appréhender la complexité du procédé de perçage. Cependant, la plupart
des méthodologies développées n’ont pas quitté les laboratoires pour les ateliers, non pas du
fait d’une incapacité à estimer l’état du système, mais surtout à cause d’un manque de robus-
tesse. Deux des principales causes de ce problème ont été identifiées. La première concerne
la flexibilité nécessaire dans les usines de production : les conditions opératoires peuvent
varier, parfois de manière non contrôlée. Un système de surveillance doit, dans une certaine
mesure, pouvoir s’adapter à de telles variations. Cela n’a pas été le cas à cause du large
usage de techniques d’apprentissage supervisées dans le développement des méthodologies
de surveillance. Le second point bloquant, qui n’a quasiment jamais été abordé dans la
littérature, est l’environnement hostile des usines de production. L’intégration de capteurs
y est difficile, et les conditions font que les mesures sont perturbées, les perturbations allant
du bruit de mesure à la panne capteur, ce qui rend les données imparfaites.
La seconde partie du chapitre a été dédiée à la présentation de concepts et de techniques
pouvant contribuer à une meilleure appréhension des variations et imperfections affectant les
données. Si la fusion multi-capteurs a déjà été largement utilisée à des fins de surveillance,
les possibilités offertes par certains formalismes en termes de modélisation et de fusion
des données incertaines. En particulier, les formalismes probabilistes et évidentialistes per-
mettent la fusion d’informations incertaines, et incertaines et ambiguës respectivement. Ils
pourraient s’avérer utiles pour répondre aux problèmes de robustesse rencontrés jusque’alors
par les systèmes de surveillance de perçage quand les conditions opératoires ou les données
d’entrées présentent des différences par rapport à celles utilisées pour leur développement.
Le chapitre 3 a permis de formaliser le problème de surveillance de procédé. Ensuite, les
besoins associés à l’implémentation d’un système de surveillance performant en contexte in-
dustriel ont été passés en revue. La robustesse et la flexibilité sont des critères essentiels, mais
impliquent que de nombreux défis soient relevés. Il a été montré que l’usage de techniques
non-supervisées associées à des algorithmes détectant des événements singuliers pouvaient
être plus robuste que les méthodes présentées auparavant consistant essentiellement à définir
une relation fixe entre les valeurs prises par certains indicateurs et l’état du procédé. Une
méthodologie dédiée à l’implémentation de système de surveillance de procédés industriels
a été proposée. Elle est composée de six étapes : position du problème, intégration de cap-
teurs, sélection d’indicateurs, choix des estimateurs, évaluation hors ligne, implémentation
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en ligne. Ces étapes ont été décrites et, pour certaines d’entre elles, mises en application
dans la suite des travaux.
Le chapitre 4 a été dédié à la présentation de solutions à une classe de problèmes qui,
en considérant les constats précédents, est essentiel pour la conception de systèmes de sur-
veillance robustes : la détection de singularités en utilisant plusieurs sources d’information.
L’attention a été portée sur la modélisation de données imparfaites et les moyens de les com-
biner lorsqu’elles proviennent de sources multiples. Des méthodes existantes tirant parti des
possibilités offertes par les formalismes probabilistes et évidentialistes ont été décrites. Une
nouvelle approche dédiée à la fusion d’information provenant de sources redondantes dans
les contextes difficiles a aussi été présentée. Toutes ces méthodes ont été comparées par le
biais de simulations représentatives de situations susceptibles d’être rencontrées en contexte
industriel. Les méthodes évidentialistes ont, de manière générale, montré de meilleures per-
formances du fait de la capacité à représenter l’ambigüıté de manière explicite. La méthode
proposée sera utilisée pour plusieurs applications.
Le chapitre 5 a montré la mise en oeuvre de plusieurs étapes nécessaires à l’implémentation
du système de surveillance de procédé industriel décrites dans le chapitre 3.
L’intégration de deux types de capteurs jugés particulièrement informatifs pour la sur-
veillance de l’état du foret et de la pièce, les capteurs de force et d’EA, a été discutée
et des solutions basées sur des travaux expérimentaux ont été proposées et testées.
Ensuite, une procédure de sélection d’indicateurs dédiée à l’implémentation de systèmes de
surveillance dans les environnements de production a été présentée. Les contraintes liées à
la flexibilité des conditions opératoires, à la difficulté d’obtenir des données représentatives
des procédés de fabrications, et à l’environnement difficile pouvant affecter les mesures ont
été prises en compte. Une méthodologie basée sur la fusion d’informations et autorisant
l’utilisation de données hétérogènes a été proposée. La méthode de modélisation et fusion
de données imparfaites pour l’identification de singularités présentée au chapitre 4 a été
utilisée, entre autres, pour ce faire. Elle a démontré une meilleure habilité que les méthodes
classiques pour identifier les indicateurs les plus pertinents grâce à une meilleure prise en
compte de l’imperfection des données.
L’implémentation d’un premier système de surveillance a ensuite été présenté. Son objectif
était l’identification des différentes phases composant une opération de perçage aéronautique,
ce qui est obligatoire en vue d’extraire par la suite des indicateurs pertinents et assurer une
surveillance de qualité. Une approche de fusion multi-capteurs et multi-échelle a été proposée
qui a permis d’améliorer la robustesse de l’identification des différentes phases de perçage.
Là encore, la méthode d’identification de singularités proposée au chapitre 4 a été utilisée
afin de combiner les informations issues de capteurs de courants positionnées sur les trois
phases du moteur de broche.
Enfin, une application dédiée à la détection d’écaillages survenant sur les arrêtes de coupe
du foret a été décrite. Elle a permis de mettre en oeuvre plusieurs concepts proposés au cha-
pitre 3 pour l’implémentation de systèmes de surveillance de procédés industriels robustes.
Un processus systématique de sélection des indicateurs a été mis en oeuvre, un algorithme
à apprentissage non-supervisé a été utilisé de concert avec une phase d’utilisation, de la
connaissance expert a été intégrée, et la fusion (utilisant l’approche proposée au chapitre
4) de constats établis par plusieurs sous-systèmes simples a permis l’obtention de meilleurs
résultats que par l’utilisation d’un système complexe, étant donné les mêmes informations.
Depuis la description du contexte industriel jusqu’à la mise en oeuvre d’exemples applica-
tifs, en passant par un état de l’art et des développements plus théoriques, les efforts ont
été concentrés sur la robustesse des systèmes de surveillance. Paradoxalement, ce besoin très
industriel a été à l’origine des défis scientifiques les plus importants de ce travail. Suite à
l’analyse des raisons pour lesquelles aucun système robuste de surveillance des opérations
de perçage n’a été implémenté jusqu’à présent, des solutions ont été proposées et évaluées.
Les résultats obtenus sont encourageants.
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B.18 Perspectives

Des améliorations sont possibles à chaque étape de l’implémentation des systèmes de sur-
veillance de procédés industriels.
Concernant l’intégration de capteurs, deux tendances se dégagent. La première consiste
à positionner les capteurs au plus près de la zone de coupe. Les efforts sont à fournir à
l’étape de conception des machines pour intégrer les capteurs. Pour le perçage, et plus
généralement l’usinage, le développement de porte-outils et de broches instrumentées est un
vecteur d’amélioration important. La seconde tendance consiste à utiliser les informations
issues des commandes numériques des machines. En effet, aucun capteur supplémentaire
n’est requis, et c’est une solution non-intrusive. Cependant, ces informations ne sont pas
toujours assez informative pour assurer à elles seules une surveillance performante.
Pour les techniques de sélection et d’extraction d’indicateurs, si beaucoup de travaux se
sont limités à l’usage d’approches classiques, d’autres ont proposé des techniques plus so-
phistiquées. Les possibilités actuelles de mesure, d’acquisition et de traitement des données
autorisent la mise en oeuvre de procédures de sélection et d’extraction à grande échelle. Cela
représente une voie de développement intéressante, particulièrement si de nouvelles solutions
sont proposées pour l’intégration de capteurs amenant de nouvelles informations.
Au cours de cette étude, un parallèle a été établi entre les systèmes de surveillance et les
procédures d’évaluation de performances techniques d’apprentissage. Cela constitue un pre-
mier pas vers une meilleure prédiction des performances des systèmes de surveillance avant
leur déploiement industriel. Une seconde étape consisterait, toujours à l’image de la commu-
nauté des machines à apprentissage, en la création de bases de données de signaux dédiés à
l’évaluation des système de surveillance. Concernant le domaine stratégique de l’assemblage
de structures aéronautiques cependant, le partage de telles données est en contradiction avec
les contraintes de confidentialité concernant les procédés de production. On pourrait donc
imaginer que les chercheurs académiques réalisent des expériences génériques en utilisant
leur équipements et partagent les données afin que la communauté dispose d’une base de
données permettant l’évaluation objective des performances des systèmes de surveillance
développés. Cependant, de nombreux obstacles restent à franchir : la complexité du procédé
de perçage rend difficile la réalisation d’expériences mettant en avant un seul phénomène
d’intérêt, les signaux seront dépendant des conditions expérimentales...
Concernant l’utilisation de techniques avancées de modélisation et de fusion de données pour
des applications industrielles, des recherches doivent suivre trois directions. En premier lieu,
il est nécessaire que les développements les plus récents, comme la théorie de l’évidence,
soient diffusés par le biais de librairies utilisables par des non-spécialistes. Dans le même
temps, des recherches poussées sont nécessaires afin d’identifier les besoins spécifiques, à
chaque étape de l’implémentation de systèmes de surveillance, en termes de robustesse,
précision, flexibilité... Cela permettrait d’identifier les meilleures solutions à utiliser en fonc-
tion de chaque cas. Cela implique le dernier axe de recherche : les points forts et points
faibles des différentes techniques de fusion doivent être évaluées au travers de cas d’études
génériques, comme cela a été fait au chapitre 4 par exemple.
Enfin, suite à la définition de méthodologies robustes, un autre aspect concerne leur implé-
mentation : la définition de solutions logicielles et matérielles adaptées. Si ce point n’est pas
un axe de recherche et n’a donc que très peu été abordé dans la littérature, il n’en demeure
pas moins un aspect important pour l’implémentation de système de surveillance de procédé
dans l’industrie.
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Multisensor monitoring of aeronautical drilling/countersinking operations

ABSTRACT : Airframe assembly process needs many drilling and countersinking operations. The 
two main challenges concerning the drilling process are that the holes must fit in the required 
tolerances in order to ensure the assembly quality, and that the use of drills must be optimal in 
order to reduce production costs. These two objectives require the implementation of a reliable 
online monitoring system. A vast amount of work has been done in the field of drilling monitoring. 
Unfortunately, many methodologies described in these studies are unlikely to leave the labs as 
they were often considered difficult to implement, unreliable or not viable economically. The use 
of multisensor systems integrated with intelligent information processing techniques improved 
reliability and flexibility of tool condition monitoring systems. However, they have mainly been 
implemented under steady process conditions and in sensor-friendly lab environments, and 
neither issues about the variability of the operating conditions, nor quality of input data have been 
tackled. The work presented here is aimed at demonstrating the potential improvements that 
could be achieved in robust monitoring of drilling operations by using multisensor fusion and 
associated recent theoretical developments about uncertainty modeling and handling. The 
monitoring problem will be formalized, and its associated requirements in terms of accuracy and 
reliability, as well as issues related to industrial implementation will be detailed in order to position 
the problem. An approach to implement an industrial monitoring system will be proposed that 
covers the following steps: sensor integration, feature extraction, estimator choice, and monitoring 
system evaluation. The proposed methodology could be applied to a broader scope of 
applications, including most complex manufacturing automated operations.

Keywords : Multisensor data fusion, online monitoring, drilling process, evidence theory, 
acoustic emission, airframe assembly.

Surveillance multi-capteurs des opérations de perçage/fraisurage 
aéronautiques

RÉSUMÉ : L'assemblage de structures aéronautiques nécessite de nombreuses opérations de 
perçage et de fraisurage. Les deux problématiques principales concernant ces opérations sont 
que les alésages réalisés correspondent aux standards de qualité exigés, et que les outils 
coupants soient utilisés de manière optimale afin de  réduire les coûts. Ces deux objectifs 
nécessitent l'implémentation d'une solution de surveillance en ligne des opérations de perçage. 
De nombreuses études ont été réalisées à ce sujet. Pourtant, une grande partie des 
méthodologies développées ont peu de chance de quitter les laboratoires au profit des sites de 
production industrielle en raison de leur difficulté d'implémentation et de leur manque de 
robustesse. L'utilisation de plusieurs capteurs, couplés à  des techniques avancées de traitement 
de l'information a permis une meilleure appréhension de la complexité du procédé de perçage et 
une augmentation de  la  flexibilité des systèmes de surveillance. Cependant, la majorité des 
études ont été réalisées en laboratoire et dans conditions favorables, et les problématiques 
relatives à  la flexibilité des conditions opératoires, ou encore à la qualité des données issues des 
capteurs n'ont pas été abordées. Cette étude a pour but de démontrer les améliorations 
potentielles que peuvent apporter les développements récents concernant la modélisation et la 
fusion de connaissances imparfaites pour la surveillance robuste des opérations de perçage. Une 
approche sera proposée pour l’implémentation industrielle de systèmes de surveillance de 
procédés. La méthodologie proposée doit pouvoir être transposée à un champ d'application plus 
large incluant la plupart des procédés de fabrication automatisés.

Mots clés : fusion multi-capteurs, surveillance en ligne, perçage, théorie de l’évidence, émission 
acoustique, assemblage de structures aéronautiques.


