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m’aider à choisir mon sujet de thèse.
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Introduction

Le but de cette thèse est d’étudier les mécanismes permettant la nage à l’échelle microsco-
pique. Les domaines d’applications de ce travail concernent la biologie, à travers la compré-
hension du déplacement des bactéries, des spermatozöıdes, du plancton et d’autres micro-
organismes, et l’ingénierie puisque les résultats de cette thèse pourraient être exploités pour
la conception de micro-robots “nageurs”.

Les stratégies de déplacement des micro-organismes immergés dans un fluide diffèrent de
celles qui sont utilisées à l’échelle humaine. En effet, l’écoulement du fluide a lieu à faible
nombre de Reynolds. De plus, l’inertie d’un micro-nageur est négligeable et sa dynamique
est gouvernée principalement par l’effet des forces de viscosité. L’étude de la nage à échelle
microscopique se développe à partir des années 50 avec le travail de G. Taylor [84] qui pro-
pose un modèle d’auto-propulsion basé sur le mouvement sinusöıdal d’un flagelle. Il montre
qu’un fil infini immergé dans un fluide de Stokes qui suit des oscillations sinusöıdales se
déplace à une vitesse non nulle.

Contrairement à ce que l’intuition pourrait laisser supposer, le théorème de la coquille
Saint-Jacques, prouvé par E. M. Purcell en 1977 dans [70], mentionne que pour effectuer
un déplacement effectif dans un fluide de Stokes, il faut adopter un cycle de déformation
non réciproque. Le nom de ce résultat évoque le fait qu’une coquille Saint-Jacques effectue
exactement un mouvement réciproque au cours d’une brassée, i.e., un mouvement périodique
et symétrique en temps (cf Fig 1). E. M. Purcell propose alors deux types de stratégies qui
permettent le déplacement à cette échelle.

Figure 1 – Le mouvement d’une coquille Saint-Jacques.

La première stratégie consiste à imposer un mouvement de rotation à certaines extrémi-
tés du nageur dans le but de créer des forces de friction sur le fluide puis de produire une
propulsion (voir par exemple la Fig. 2 du nageur proposé par E. M. Purcell dans [70]). La
seconde stratégie est basée sur un cycle non réciproque de déformations du corps du nageur.
Le “Three links swimmer”, proposé par E. M. Purcell, constitue le premier exemple d’un tel
modèle de nageur. La preuve formelle du déplacement du Three links swimmer sera donnée
bien des années plus tard (voir par exemple [5], [15], [44]). Dans la suite de la thèse, nous
nous concentrerons sur des nageurs qui utilisent des déformations non réciproques pour se
mouvoir. Pour des exemples d’études de nageurs qui utilisent la première stratégie pour se
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2 Introduction

déplacer, nous renvoyons le lecteur aux travaux de Y. Or et M. Murray [68], [98] et ceux de
J. San Martin, T. Takahashi et M. Tucsnak [61].

Figure 2 – Nageur capable de se déplacer sans se déformer (voir [70]).

D’autres développements importants sur le sujet proviennent de connexions récentes entre
la théorie du contrôle et la nage à faible nombre de Reynolds. A échelle microscopique, la
dynamique d’un nageur est donnée par une équation différentielle ordinaire qui est linéaire
en la vitesse de ses déformations et sans dérive. En considérant que les vitesses de déforma-
tions sont des paramètres mâıtrisables, on peut alors s’intéresser à la contrôlabilité d’un tel
système, i.e., la possibilité pour le nageur d’atteindre un point donné connaissant sa position
initiale et le cycle de déformation qu’il effectue. Parmi les contributions qui considèrent la
nage comme un problème de contrôle, nous citons, par exemple, les travaux de A. Shapere
et F. Wilczek [79], J. San Martin, T. Takahashi et M. Tucsnak [61], J. Loheac et J. F. Scheid
[60], J. Loheac et A. Munnier [59], ainsi que F. Alouges, A. DeSimone et A. Lefevbre [8], F.
Alouges, A. DeSimone et L. Heltai [6], E. Lauga et S. Michelin [62].

La suite de cette introduction s’organise en quatre parties. La première partie est consacrée
au rappel des principes du couplage fluide-solide qui permettent de déduire la dynamique du
nageur. La deuxième partie introduit les principaux résultats de la théorie du contrôle qui
seront utilisés dans la thèse. La troisième partie décrit le contenu de cette thèse et présente
les principaux résultats obtenus. Enfin, une section de conclusion évoque les perspectives
qui émanent de ce travail.

1 Du couplage fluide-solide vers la dynamique du na-
geur

Dans cette partie, nous rappelons comment le mouvement d’un micro-nageur dans un fluide
peut-être gouverné par une équation différentielle ordinaire qui est linéaire en la vitesse de
déformation du nageur et sans dérive (voir par exemple [7], [8], [32], [59], [64]).

1.1 Description générique des nageurs

Le nageur est représenté par un domaine solide noté N . Il est décrit par le couple (ξ,p),

• où la variable notée ξ décrit la forme du nageur. Généralement, elle est représentée
par un k-uplet. Une brassée consiste en un changement de forme périodique (i.e., les
coordonnées de ξ sont des fonctions périodiques) ;

• la variable p ∈ R3
+ × SO(3) représente la position du nageur. Elle donne à la fois les

coordonnées d’un point fixé xc du nageur et son orientation dans l’espace.
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Remarquons que toutes ces variables dépendent implicitement du temps à travers le trans-
port et la déformation du nageur.

Enfin, nous appellons S ⊂ RM (pour un entier M ∈ N convenable) l’ensemble des états
admissibles (ξ,p). Généralement, l’ensemble des états admissibles contient des contraintes
géométriques, comme par exemple le non contact entre le nageur et les bords du domaine
fluide, où d’autres contraintes spécifiques au modèle du nageur. Dans tous les exemples qui
suivront, S sera supposé être une sous-variété lisse de RM .

1.2 Modélisation du fluide

Nous considérons que le nageur est totalement immergé. Il évolue dans le domaine fluide,
noté par O. La vitesse du fluide en chaque point du domaine F := O \N est notée u, et la
pression est notée p. Nous supposons que le fluide est gouverné par les équations de Stokes,
i.e., (u, p) est solution de l’équation,

−µ∆u +∇p = 0 , div u = 0 dans F , (1)

où µ est la viscosité du fluide. Nous ajoutons les conditions standards de non glissement sur
les bords, {

u = Ω× (x− xc) + v + ud sur ∂N ,
u = 0 sur ∂O.

(2)

En d’autres termes, nous imposons la continuité des vitesses à la fois sur le bord fixe du
domaine fluide et sur le bord déformable du nageur. Remarquons que le champ de vitesses
est composé de deux parties.

• Tout d’abord, la première partie correspond à un mouvement rigide inconnu, ayant
une vitesse angulaire Ω et une vitesse de translation v. On peut identifier le vecteur v
à la vitesse du point xc.

• Ensuite, la seconde partie associée à la vitesse ud est due à la déformation connue du
nageur.

En introduisant l’espace de Hilbert

V =
{

u ∈ D′(F ,R3) | ∇u ∈ L2(F), u(r)√
1 + |r|2

∈ L2(F)
}
, (3)

nous obtenons, pour toutes configurations du nageur N et vitesses (Ω,v,ud) ∈ H1/2(∂N ),
l’existence d’une unique solution (u, p) de l’équation (1) -(2) dans V × L2(F).

1.3 Equation du mouvement du nageur

Les précédentes relations décrivent les équilibres du fluide à chaque instant t. Pour obtenir
une équation qui décrit le modèle (c’est-à-dire qui gouverne le couplage “fluide-nageur” au
cours du temps), nous allons appliquer les lois de Newton sur le système. En négligeant
l’inertie, celles-ci s’expriment de la manière suivante :

∫
∂N

σ(u, p) ·n ds = 0 ,∫
∂N

σ(u, p) ·n× (x− xc) ds = 0 ,
(4)

où σ(u, p) = µ(∇u +∇tu)− pId est le tenseur de Cauchy.
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De plus, si nous introduisons une base orthonormale (e1, e2, e3) et en utilisant la linéarité
de l’équation de Stokes, u se décompose en plusieurs termes,

u =
3∑
i=1

Ωiui +
6∑
i=4

vi−3ui + ud.

On a noté ui et ud les solutions de l’équation de Stokes, avec une condition de Dirichlet
nulle au bord du fluide ∂O, et une condition de Dirichlet inhomogène aux extrémités du
nageur. Les données de Dirichlet sont ei × (x − xc) pour i = 1, 2, 3, ei−3 for i = 4, 5, 6, ud
pour la vitesse de déformation maitrisée par le nageur ud. Remarquons que la vitesse ud
peut s’exprimer comme une combinaison linéaire des vitesses de déformation du corps du
nageur (ξ̇i)ki=1,

ud =
k∑
i=1

udi ξ̇i. (5)

En identifiant (Ω,v)t avec ṗ, le système (4) se réduit à une équation différentielle ordinaire
que l’on peut écrire sous la forme :

M(ξ,p) ṗ + N(ξ,p) = 0 (6)

où la matrice M(ξ,p) est définie par,

Mi,j(ξ,p) :=


N∑
l=i

∫
∂Bl

((x− xc)× ei) ·σ(uj , pj) nt ds (1 ≤ i ≤ 3, 1 ≤ j ≤ 6) ,

N∑
i=i

∫
∂Bl

ei−3 ·σ(uj , pj) nt ds (4 ≤ i ≤ 6, 1 ≤ j ≤ 6) ,

et N(ξ,p) est le vecteur de R6 dont les composantes sont définies par

Ni(ξ,p) :=


N∑
l=1

∫
∂Bl

((x− xc)× ei) ·σ(ud, pd) nt ds (1 ≤ i ≤ 3) ,

N∑
l=1

∫
∂Bl

ei−3 ·σ(ud, pd) nt ds (4 ≤ i ≤ 6) .

La matrice M(ξ,p) est symétrique définie positive. En l’inversant, l’équation (6) se réécrit
comme l’équation qui gouverne l’état du nageur,

ṗ = −M−1(ξ,p)N(ξ,p) . (7)

En utilisant (5), nous déduisons qu’il existe k champs de vecteurs Fi, i = 1, . . . , k, définis
sur S, tels que l’équation (4.8) s’exprime

ṗ =
k∑
i=1

Fi(ξ,p)ξ̇i . (8)

2 Quelques résultats classiques de la théorie du contrôle
géométrique

Dans cette section, nous rappelons les principaux résultats de contrôlabilité utilisés dans
cette thèse.
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Soient F et G deux champs définis sur une variété lisse de dimension finieM. Le crochet de
Lie de F et G est le champ de vecteurs défini par [F,G](X) := (F ·∇) G(X)−(G ·∇) F(X),
pour tout point X ∈ M. Pour une famille de champs de vecteurs F sur M, Lie(F) repré-
sente l’algèbre de Lie générée par F . En d’autres termes, elle est définie comme la plus petite
algèbre qui contient l’ensembles des crochets de Lie et leurs itérés de la famille de champs
de vecteurs F . Finalement, pour tout point X ∈ M, LieX(F) représente l’espace de tous
les vecteurs tangents V(X) avec V dans Lie(F). Il s’en suit que LieX(F) est un sous espace
linéaire de TXM et donc il est de dimension finie.

Les crochets de Lie et l’algèbre de Lie jouent un rôle important en théorie du contrôle
de dimension finie. En effet, nous rappelons le théorème de Chow (voir [29] pour plus de
détails) :

Théorème 1 (Chow) Soit M une variété connexe non vide. Supposons que F = (Fi)mi=1
soit une famille de champs de vecteurs surM telle que Fi ∈ C∞(M, TM), ∀i ∈ {1, . . . ,m} .
Si l’algèbre de Lie vérifie

LieX(F) = TX(M) , ∀X ∈M ,

alors,pour tout (X0,X1) ∈M×M, et pour tout T > 0, il existe u ∈ L∞([0, T ];Rm) tel que
la solution du problème de Cauchy, Ẋ =

m∑
i=1

uiFi(X) ,

X(0) = X0 ,

(9)

soit définie sur [0, T ] et satisfasse X(T ) = X1.

Le théorème 1 est un résultat de contrôlabilité global. Nous rappelons aussi celui qui donne
la contrôlabilité locale pour des temps petits (voir [29], p. 135).

Théorème 2 Soient Ω un sous espace non vide de Rn et F = (Fi)mi=1, une famille de
champs de vecteurs, tel que Fi ∈ C∞(Ω,Rn), ∀i ∈ {1, . . . ,m} .
Soit Xe ∈M tel que

LieXe(F) = Rn .

Alors, pour tout ε > 0, il existe a nombre réel η > 0 tel que, pour tout (X0,X1) ∈
{X tel que ‖X−Xe‖ < η}2, il existe une fonction bornée et mesurable u : [0, ε] → Rn tel
que la solution du problème de Cauchy Ẋ =

m∑
i=1

uiFi(X) ,

X(0) = X0 ,

(10)

est définie sur [0, ε] et satisfait X(ε) = X1.

Lorsque les champs de vecteurs sont analytiques et la variétéM est analytique, le théorème
de Hermann-Nagano donne des résultats plus fins (voir par exemple [51]).

Théorème 3 (Hermann-Nagano) Soit M un variété lisse, et F une famille de champs
de vecteurs analytique sur M. Alors,

1. chaque orbite de F est une sous-variété analytique de M, et
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2. si N est une orbite de F , alors l’espace tangent de N au point X est donné par
LieX(F). En particulier, la dimension de LieX(F) est constante lorsque X varie sur
l’orbite N .

Dans notre contexte, la famille de champs de vecteurs est donnée par les fonctions F =
(Fi)1≤i≤k qui apparaissent dans la dynamique du nageur (8) et qui sont définies sur la variété
S. Enfin, les contrôles ui sont représentés par les vitesses de déformation du nageur ξ̇i.

3 Synthèse des principales contributions de la thèse

La thèse est composée de trois parties découpées en cinq chapitres indépendants avec chacun
leur propre notation.

La première partie de cette thèse présente un modèle de nageur appelé le “N -link swim-
mer”. Cette partie est composée de deux chapitres. Le premier chapitre présente le “N -link
swimmer”. Ce modèle a l’intérêt d’avoir une dynamique simple, permettant ainsi à notre
prototype d’être un outil facile à utiliser pour le design et l’optimisation de micro-machine
inspirée de la biologie. Le second chapitre étudie la contrôlabilité du “N -link swimmer”. Il
en résulte une analyse numérique des brassées associées à un déplacement optimal en temps.
La seconde partie traite de l’effet de la présence d’un bord sur la contrôlabilité de micro-
nageurs. Cette étude sera développée pour des nageurs particuliers constitués de plusieurs
boules reliés les unes aux autres par des bras. Tout d’abord, nous consacrons le chapitre 3 à
l’analyse des effets d’un bord lisse sur la contrôlabilité de ces nageurs. Ensuite, le chapitre 4
étend les résultats du chapitre précédent au cas d’un bord rugueux. Enfin, la partie 5 s’inté-
resse aux propriétés mathématiques qui caractérisent un déplacement optimal d’un nageur
ayant une dynamique sans dérive.

Nous développons maintenant une synthèse des principaux résultats obtenus pour chaque
chapitre de la thèse.

3.1 Partie 1 : Le N-link swimmer

Cette partie est consacrée à l’étude d’un modèle de nageur simplifié, appelé le “N -link swim-
mer”. Il est une généralisation à N tiges du “Three-link swimmer”, nageur introduit par
Purcell dans [70]. Nous proposons une étude approfondie de ses caractéristiques en terme
de mobilité dans le plan et de stratégie optimale de déplacement. Le chapitre 1 introduit
le modèle. Le chapitre 2 est consacré au problème de la contrôlabilité du nageur et de ses
déplacements optimaux.

Chapitre 1 : Self-propulsion of slender micro-swimmers by curvature control :
N-link swimmers

Les résultats de ce chapitre ont fait l’objet d’une publication écrite en collaboration avec
François Alouges, Antonio DeSimone et Marta Zoppello, à parâıtre dans la revue Interna-
tional Journal of Non-Linear Mechanics.

Le N -link swimmer est un modèle de nageur constitué de N tiges rigides liées les unes aux
autres. Il est supposé évoluer dans un plan. L’état du nageur est décrit par les coordonnées
de l’extrémité de la première tige, notée x1 et par son orientation, notée θ1. La forme du
nageur est représentée par le (N −1)–uplet (α2, · · · , αN ) qui décrit l’orientation relative des
tiges (voir figure 1.1).
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•
•

•

•
•

θ1

α2

x1

xN
αN

Figure 3 – Système de coordonnées du “N-link swimmer”.

Dans ce chapitre, nous utilisons l’approximation de la “Resisitive Force Theory” pour
obtenir les forces que le fluide exerce sur le nageur. Cette approximation de couplage hy-
drodynamique entre le fluide et le solide est introduite par J. Gray and J. Hancook en 1955
dans [49] pour approcher la dynamique d’un flagelle. La dynamique prédite en utilisant ce
couplage dépend beaucoup du ratio des coefficients de friction η et ξ. Leur valeur est un
paramètre clef qui a été le sujet de nombreuses études (voir [23], [26], [31], [50], [55], [78]).
Il a été observé ( [26], [49], [52], [73], [96]) que cette approche simple et concise permet une
bonne approximation de la dynamique d’un flagelle lorsque celui-ci est confiné entre deux
surfaces solides.

En notant ei (respectivement e⊥i ) le vecteur unitaire directeur d’une tige de longueur L
(respectivement le vecteur directeur perpendiculaire à la tige), la “Resistive Force Theory”
définie la densité des forces exercées par le fluide sur la tige par l’expression,

fi(s) := −ξ (vi(s) · ei) ei − η
(
vi(s) · e⊥i

)
e⊥i , (11)

où s ∈ [0, L], η et ξ sont respectivement des coefficients de friction.

En négligeant la force que les tiges exercent les unes sur les autres, nous obtenons une
expression de la dynamique du N -link swimmer de la forme,(

ẋ1
θ̇1

)
=

N∑
i=2

gi (θ1, α2, · · · , αN ) α̇i , (12)

où les N − 1 champs de vecteurs {gi}Ni=2 sur [0, 2π]N−1 sont explicites (voir chapitre 1).
Les angles entre les tiges permettent une représentation discrète de la courbure du nageur,
concentrée en chaque point de lien entre les tiges. Ainsi, l’équation du mouvement (12) donne
une unique trajectoire en réponse à une déformation donnée du nageur.

La simplicité des équations qui gouvernent la dynamique (12) permet de faire de notre
modèle un outil intéressant pour le design de micro-robots nageurs et l’optimisation de leur
performance. Le chapitre 1 contient une étude numérique qui teste les propriétés de préci-
sions et de robustesse de ce modèle à travers trois exemples représentatifs de la micro-nage :
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le Purcell’s swimmer, la récente étude quantitative du mouvement circulaire d’un sperma-
tozöıde contenu dans le papier de Fredrich [37] et le nageur de Taylor introduit dans [84].
Enfin, nous obtenons aussi une formule explicite du déplacement du Purcell’s swimmer in-
troduit par Purcell (voir [70]) pour des déformations de petites amplitudes.

Chapitre 2 : Controllability and Optimal Strokes for N-link Microswimmer

Les résultats de ce chapitre ont fait l’objet d’un proceeding écrit en collaboration avec
Pierre Martinon et Marta Zoppello, soumis à la conférence Decision and Control 2013
(IEEE).

Le chapitre 2 étudie la mobilité du “N -link swimmer”. En particulier, les questions traitées
sont les suivantes :

1. Le “N-link swimmer” est-il capable d’atteindre tous les points de l’espace dans lequel
il évolue (i.e., le plan) ?

2. Quelle est la meilleure stratégie pour atteindre le plus rapidement possible une position
donnée ?

La contrôlabilité du “N -link swimmer” est caractérisée par le résultat suivant :

Théorème 4 En considérant le “N -link swimmer” décrit plus haut avec N ≥ 3. Pour
presque toutes longueurs de tiges (Li)i=1,...,N , pour toutes configurations initiales (xi1, θi1,
αi2, · · · , αiN ) ∈ R2× [0, 2π]N , pour toutes configurations finales (xf1 , θ

f
1 , α

f
2 , · · · , α

f
N ) et pour

tout temps T > 0, il existe une déformation de forme du nageur (α2, · · · , αN ) ∈ W1,∞([0, T ])
qui verifie (α2, · · · , αN )(0) = (αi2, · · · , αiN ) et (α2, · · · , αN )(T ) = (αf2 , · · · , α

f
N ) et telle que si

le nageur démarre au point (xi1, θi1) avec la forme (αi2, · · · , αiN ), il atteint la position (xf1 , θ
f
1 )

avec la forme (αf2 , · · · , α
f
N ) au temps T en utilisant la déformation t 7→ (α2, · · · , αN )(t).

En d’autres termes, pour tout nageur composé de plus de trois tiges, il existe un cycle de dé-
formation qui lui permet d’atteindre la position désirée. La preuve de ce résultat repose sur
l’utilisation d’outils développés par la théorie du contrôle géométrique (théorème de Chow 1
et théorème de Nagano 3). Intuitivement, un nageur constitué de nombreux degrés de liberté
devrait être contrôlable. La résultat précédent permet de montrer que le “N -link swimmer”
est contrôlable dès lors que N ≥ 3.

Par conséquent, le problème de contrôle optimal qui consiste à trouver un cycle de dé-
formation de forme qui minimise le temps d’atteinte de la configurations désirée en partant
d’un point fixé est bien posé. L’existence de solutions est un corollaire du résultat de contrô-
labilité 4 et s’appuie sur le theorème de Filippov-Cesary (voir [85]).

Enfin, plusieurs stratégies optimales obtenues numériquement dans le cas N = 3 sont
comparées à la brassée introduite par Purcell. Ces développements numériques indiquent
que, pour certaines positions initiales et finales, les solutions au problème de contrôle optimal
sont périodiques et peuvent donc être assimilées à des brassées.

3.2 Partie 2 : Effets des bords sur la contrôlabilité d’un nageur

Dans cette partie, nous examinerons les effets de la présence d’un bord sur la mobilité de
micro-nageurs. En effet, le bord modifie la distribution de vitesse du fluide à l’intérieure du
domaine (voir par exemple [24], [20]). De nombreuses expériences biologiques ont montré
que la mobilité de micro-organismes est affectée dans un espace confiné (voir par exemple
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[74], [91], [92]). Ces observations conduisent à des investigations plus théoriques qui mettent
en évidence les conséquences de la présence du bord sur le déplacement de micro-nageurs.
Ainsi, les travaux de J. R. Blake et al. [38], [81], [82] modélisent les effets attractifs de la
présence de bord sur la dynamique de nageurs ayant un flagelle. D’autres approches plus
théorique, comme celle de A. P. Berke et P. Allison dans [17] (ils mettent en évidence des
effets attractifs lorsque le nageur est modélisé par un dipôle), et celle de Y. Or et M. Murray
dans [68], ils analysent la dynamique de nageurs près d’un mur plat, cependant les modèles
considérés se déplacent sans changer de forme i.e., qu’ils imposent un mouvement de rotation
sur leur extrémités. Dans cette partie, nous analysons l’influence du mur plat ou rugueux
sur la mobilité de micro-nageurs, en faisant usage de la théorie du contrôle pour développer
notre analyse. L’objectif est de comprendre si la présence d’un bord change la capacité de
déplacement d’un micro nageur. Nous commençons par étudier, dans le chapitre 3, les effets
de la présence d’un mur “lisse” (i.e., plat) sur la contrôlabilité de micro-nageurs. Puis, le
chapitre 4 propose d’élargir l’analyse précédente au cas où le bord est rugueux.

Chapitre 3 : Enhanced controllability of low Reynolds number swimmers in
the presence of a wall

Les résultats de ce chapitre ont fait l’objet d’une publication écrite en collaboration avec
François Alouges, publiée dans la revue Acta Applicandae Mathematicae (voir [11]).

Dans ce chapitre, le domaine fluide O est défini par le demi-espace {(x, y, z) ∈ R3 s.t. z ≥
0}. De plus, nous considérons deux nageurs particuliers constitués de plusieurs boules liées
par des bras très fins. Plus particulièrement, nous concentrons notre attention sur le “3-
sphere” et le “4-sphere swimmer” représentés (resp.) par la figure 4.2 et la figure 4. Le “3-
sphere swimmer” a été introduit par Najafi and Golestanian dans [66], Ce modèle de nageur
a ensuite été le sujet de nombreuses études, citons par exemples les travaux Golestanian et
Adjari [47], [48], et ceux de F. Alouges et A. DeSimone et al. [7], [8].

Soit un tétraèdre régulier (S1,S2,S3,S4) ayant pour centre O ∈ R3
+. Le “4-sphere swim-

mer” est constitué de quatre sphères reliées par des bras qui sont capables de se rétrécir ou

bien de se rallonger selon la direction
−→OSi (voir Fig. 4). Le nageur est décrit par la liste de

paramètres (ξ1, . . . , ξ4, c,R) ∈ S où S = (
√

3
2a,∞)4 × R3

+ × SO(3). La variable ξi denote

la longueur du bras i (i = 1, . . . , 4), c est la coordonnée du centre du nageur et R décrit
l’orientation du nageur.

where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c,α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4

e1,4

x1

x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i

6

ξ2
ξ1

ξ3

ξ4

Figure 4 – The Four-sphere swimmer.
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Le“3-sphere swimmer”est constitué de trois boules alignées (voir Fig 4.2). Il est représenté
par le vecteur (ξ1, ξ2, θ, φ,xc) ∈ R3× [0, 2π]2 où θ est l’angle entre le nageur et l’axe z, φ est
l’angle entre l’axe y et la projection de la direction du nageur dans le plan Oxy et xc est la
coordonnée du centre de la sphère milieu.

L’objectif est de comparer les résultats obtenus pour ces nageurs dans l’espace R3 tout
entier avec leur généralisation dans le cas où ils évoluent dans le demi-espace F . Dans le cas
de l’espace R3, il a été montré dans [7] que le “4-sphere swimmer” est contrôlable, tandis
que le “3-sphere swimmer” peut se déplacer dans une unique direction (celle qui définie son
orientation).

x

y

z

(xc, yc, zc)
ξ1

ξ2

φ

θ

Figure 5 – Coordinates of the 3-sphere swimmer

On considère que le nageur est constitué de N sphères de rayon a que l’on note Bl,
l = 1, . . . , N (N = 3 pour le “3-sphere swimmer” et N = 4 pour le “4-sphere swimmer”).
Par ailleurs, on note H1/2 (resp. H−1/2) l’espace fractionnaire de Sobolev classique (resp.
l’espace fonctionnel définie comme l’espace image par l’opérateur Trace de H1), pour une
définition plus détaillée de ces espaces voir [25].

Une étape préliminaire est de considérer l’opérateur Dirichlet-to-Neumann associé au pro-
blème de Stokes.

DN :
N∏
l=1

H1/2(∂Bl) 7→
N∏
l=1

H−1/2(∂Bl), (ul) 7→ (fl := σ(u, p)n|∂Bl
) ,

où (u, p) est solution du problème de Stokes

−∆u +∇p = 0, div u = 0 inF , u|∂O = 0, u|∂Bl
= ul.

Plus précisément, les champs de vecteurs utilisent l’opérateur DN restreint aux N -uplet
de champ vitesses rigides définis sur la frontière entre les boules et le fluide, i.e., ∂Bl,
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l = 1, . . . , N . Nous appelons R l’espace de dimension fini de tel N -uplets. Nous pouvons
remarquer que pour tout (ul)Nl=1 ∈ R

DN ((ul)) = T −1 ((ul))

où

T :
N∏
l=1

H−1/2(∂Bl) 7→
N∏
l=1

H1/2(∂Bl), (fl) 7→ (ul := u|∂Bl
)

et u est la solution du problème de Stokes suivant dans O :

−∆u +∇p =
N∑
l=1

1∂Bl
fl, div u = 0 dans O, u|∂O = 0.

Dans le cas d’un mur plat, l’opérateur T est explicite et s’exprime à l’aide de la formulation
intégrale suivante,

∀r ∈ ∂B, (T (f1, . . . , fN ))i(r) =
N∑
j=1

∫
∂B

K(xi + ar,xj + as)fj(s)ds. (13)

La fonction de Green K est exprimée comme une perturbation de la fonction de Green G
associée à l’espace R3. En d’autres termes, la fonction K s’écrit comme suit

K(r, r0) = G(r− r0) + K̃1(r, r0) . (14)

où K̃1 est donnée explicitement dans le chapitre 3. Notons que la fonction K̃1 a été intro-
duite par Blake dans les années 70 (voir [20]).

Une première conséquence de ces derniers developpements est l’obtention du résultat de
persistance de la contrôlabilité du “4-sphere swimmer” presque partout dans le demi-espace.
Le résultat s’énonce comme suit,

Théorème 5 Soit le “4-sphere swimmer”. Nous supposerons qu’il est auto-propulsé, qu’il est
immergé dans un fluide de Stokes, et qu’il évolue dans un demi-espace. Pour presque toute
configuration initiale (ξi,pi) ∈ S, pour presque toute configuration finale (ξf ,pf ) dans un
voisinage de (ξi,pi) ∈ S et pour tout temps T > 0, il existe une brassée ξ ∈ W1,∞([0, T ])
qui vérifie ξ(0) = ξi et ξ(T ) = ξf et telle que le nageur démarre en position pi avec la forme
ξi au temps intial et atteint la position pf avec la forme ξf au temps T par la déformation
t 7→ ξ(t).

Notons que la preuve de ce théorème utilise des arguments généraux qui peuvent proba-
blement être utilisés pour d’autre modèle de micro-nageurs.

La seconde partie de ce chapitre traite de la contrôlabilité du “3-sphere swimmer”. Remar-
quons que, due à la symétrie du système ”fluide-nageur”, celui-ci ne peut pas quitter le plan
dans lequel il démarre au temps t = 0. En d’autres termes, l’angle φ reste constant égal à
φ(0) pour tout t > 0.

Dans le cas du “3-sphere swimmer”, nous montrons que la présence d’un bord augmente
le nombre de directions dans lesquelles le nageur peut se déplacer. Plus précisément, nous
montrons que ce nageur peut atteindre localement toutes les directions du plan. Le théorème
que nous obtenons s’énonce comme suit,
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Théorème 6 Soit le “3-sphere swimmer”. Nous supposerons qu’il est auto-propulsé, qu’il est
immergé dans un fluide de Stokes et qu’il évolue dans un demi-espace. Pour presque toute
configuration initiale (ξi,pi) ∈ S, pour presque toute configuration finale (ξf ,pf ) dans un
voisinage de (ξi,pi) ∈ S et pour tout temps T > 0, il existe une brassée ξ ∈ W1,∞([0, T ])
qui vérifie ξ(0) = ξi et ξ(T ) = ξf et telle que le nageur démarre en position pi avec la forme
ξi au temps initial et atteint la position pf et la forme ξf au temps T par la déformation
t 7→ ξ(t).

La preuve de ce théorème est basée sur une analyse très précise de l’algèbre de Lie en-
gendrée par les champs de vecteurs de la dynamique du nageur. Cette étude est basée sur
un développement asymptotique des champs de vecteurs qui génèrent l’algèbre de Lie consi-
dérée. Finalement, le résultat de contrôlabilité est basé sur le théorème de Chow 1. Notons
que la régularité des champs de vecteurs est fondamentale dans la preuve de ce résultat.

Chapitre 4 : Rough wall effect on micro-swimmers

Les résultats de ce chapitre ont été écrits en collaboration avec David Gérard-Varet.

Ce chapitre est une généralisation du précèdent. Il concerne l’extension des Théorèmes 5
et 6 dans le cas où le mur présente une rugosité, représenté par la surface (x, y) 7→ εh(x, y).
Nous supposons que ‖h‖∞ = 1. Ainsi, la variable ε représente l’amplitude de la rugosité du
bord.

Le principe, qui guide cette étude, est de considérer le nouveau système “fluide-nageur”
comme une perturbation du système précèdent. Le système fluide-solide est représenté par
le problème de Stokes (1) où le domaine du fluide est donné par

O := {(x, y, z) tel que z > h(x, y)} .

La difficulté intervient, principalement, dans le fait que l’opérateur Dirichlet-to-Neumann
associé à ce problème n’est pas explicite, contrairement au cas du bord lisse traité précé-
demment. Ainsi, la régularité des champs de vecteurs constitue dans ce chapitre un résultat
délicat. Il s’énonce comme suit.

Théorème 7 Soit l’ensemble

A := {(ε, a, ξ,p) ∈ R× R∗+ × (R∗+)k × (R3 × SO(3)) tel que

Bi ∩Bj = ∅ ∀i 6= j, andBi ∩ ∂O = ∅ ∀i},

pour tout i = 1, . . . , k, le champ Fi(ξ, p) associé à la dynamique (8) du nageur pour le
domaine fluide F est une fonction analytique de (ε, a, ξ, p) sur A.

La preuve nécessite plusieurs étapes. Tout d’abord, un habile changement de variables
permet de se ramener à un problème elliptique à bord fixe ayant les paramètres qui inter-
viennent analytiquement en tant que coefficient. Ensuite, la régularité découle du théorème
des fonctions implicites ainsi que de la proposition suivant qui garantie l’existence de solu-
tions au problème de Stokes “généralisé”.

Proposition 8 Soit

V0 :=
{

U ∈ D′(F ,R3) | ∇U ∈ L2(F), U(r)√
1 + |r|2

∈ L2(F), U|∂Ō = 0.
}
.
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Soit (F,G, V1, ..., VN ) donné dans (V0)′×L2(F)×
∏
l

H1/2(Bl). Il existe une unique solution

(V,Q) in V0 × L2(F) de

−∆V +∇Q = F in F ,
div V = G in F ,

V = 0 at ∂O, V = Vl at ∂Bl, l = 1...N.

Cette proposition est l’extension du résultat de Bogovskii (voir [39]). Le théorème 5 dans
le cas d’un mur rugueux découle de la régularité des champs de vecteurs.

Ensuite, nous montrons que la présence de rugosité permet au “3-sphere swimmer” d’être
localement contrôlable. Il est important de remarquer que l’angle qui définit la rotation du
nageur autour de son axe n’est pas utile pour décrire la position du nageur. Il sera prouvé
dans ce chapitre qu’il n’intervient pas dans les termes principaux du développement asymp-
totique considéré par la suite pour prouver le théorème suivant énonçant la contrôlabilité du
“3-sphere swimmer”.

Théorème 9 Il existe une surface h(x, y) telle que le 3-sphere swimmer est localement
controlable presque partout (à rotation autour de son axe près).

Notons d’abord que la dynamique considérée pour obtenir ce résultat est celle du sous-
système qui gouvernent l’évolution des variables ξ1, ξ2, θ, φ et xc.

La preuves de ce résultat est basée sur le développement asymptotique des champs de
vecteurs Fi i = 1, .., k lorsque la rugosité ε et le rayon des boules a sont petits. Il s’agit
ensuite de calculer les premiers crochets de Lie de ces champs de vecteurs et d’expliciter
le développement asymptotique du déterminant de cinq d’entres eux. La contrôlabilité du
nageur en découle en utilisant le théorème de Chow 1.

3.3 Partie 3 : Problème de contrôle optimal

Les résultats de ce chapitre ont été écrit en collaboration avec Thomas Chambrion et
Alexandre Munnier.

L’objectif de ce travail est de fournir un cadre à l’étude de problèmes de contrôle optimal
associés aux déplacements de micro-nageurs. L’étude propose de développer la connexion,
déjà souligné dans le livre de R. Montgomery [63], entre la géométrie sous-Riemannienne et
les problèmes de contrôle optimal liés à la nage de micro-organismes. Plus précisément, nous
utilisons les structures géométriques, Riemannienne et sous-Riemannienne, sous-jacentes afin
de caractériser les stratégies optimales de déplacement pour les nageurs ayant une dyna-
mique sans dérive. Plus particulièrement, nos résultats s’appliquent à tous les nageurs qui
sont gouvernés par une dynamique linéaire en les vitesses de déformations de leur corps et
sans dérive. Ce type d’équation du mouvement est aussi obtenu lorsque le fluide est gouver-
née par l’équation d’Euler sans vorticité. Ce régime est utilisé pour modéliser le déplacement
de poisson ayant un corps très allongé (comme par exemple une anguille). Nous citons les
travaux de T. Chambrion et A. Munnier sur ce sujet [27], [28], [64], [65]. Nous signalons que
dans le cas d’un fluide parfait ayant une vorticité non nulle, la dynamique du nageur n’a
plus la forme considéré plus haut (linéaire en les vitesse de déformation de l’objet). Nous
referons au travaux de O. Glass et T. Horsin qui prouvent des résultats de contrôlabilité
un ensemble de particules (représenté par une courbe de Jordan) immergée dans un fluide
parfait en dimension deux et trois ([45], [46]).
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Afin de mieux comprendre les problèmes de contrôle optimal qui sont considérés dans ce
chapitre, nous présentons le contexte mathématique sous-jacent. Dans la suite, nous nous
intéressons à l’étude de brassée optimale i.e., le problème optimal a pour contrainte que le
nageur ait la même forme au début et à la fin de son mouvement. Nous allons associé au
nageur le 5-uplet S = (S,g,QS , s†,L), où :

• (S,g) est une variété connectée de dimension N (N ≥ 1) muni d’une structure Rie-
mannienne g. Chaque élément s de S correspond à une forme du nageur possible. La
déformation du nageur est représentée par une fonction à valeur dans [0, T ], l’intervalle
de temps considéré, s : [0, T ] 7→ s(t) ∈ S.

• La métrique g est utilisée pour quantifier le cout nécessaire à la déformation du nageur.
Le cout du changement de forme s : [0, T ] 7→ s(t) ∈ S est, par exemple, donné par la
longueur de la courbe paramétrée par la fonction s, i.e.∫ T

0

√
gs(t)(ṡ(t), ṡ(t))dt, (15a)

ou représenté par un cout “énergétique”,

1
2

∫ T

0
gs(t)(ṡ(t), ṡ(t))dt. (15b)

• L’application QS : TS → Rn est une forme linéaire analytique. Elle représente les
contraintes physiques imposées sur la déformation du nageur (comme, par exemple,
conservation du volume au cours de la déformation, ou bien, empêcher les mouvement
de translation du centre de masse). Pour être plus explicite,

Définition 10 Une déformation admissible est représentée par toute courbe absolu-
ment continue s : [0, T ]→ S, ayant une dérivée bornée et qui vérifie pour presque tout
temps,

QSs(t)ṡ(t) = 0. (16)

• La forme de référence s† est un point de S qui peut être la forme avec laquelle le nageur
commence sa brassée.

• Pour simplifier, nous supposons que la déformation du corps du nageur est axisymé-
trique. Par conséquent, elle provoque un déplacement du centre de masse du nageur
dans une unique direction. On dénote par le réel r la position du centre de masse du
nageur. Le mouvement dans cette direction est mesuré pare à la forme linéaire L sur
S. Plus précisément, pour toute courbe admissible s : [0, T ] → S, le déplacement du
nageur, qui résulte de cette déformation, est donné par la formule :∫ T

0
Ls(t)(ṡ(t))dt. (17)

Dans ce chapitre, l’équation du mouvement du nageur (8) est modifiée, on prend aussi
en compte la dynamique de ses variables de formes. En notant par ξ le vecteur (s, r), on
obtient l’existence d’une famille de champs de vecteurs, noté par X , et représentée par des
fonctions Zj (j = 1, . . . , p pour un certain p ∈ N) de M := S × R, tel que la dynamique de
la position du nageur et de sa forme soit gouvernée par :
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ξ̇(t) =
p∑
j=1

uj(t)Zj(ξ(t)) (t > 0), (18a)

ξ(0) = ξ† , (18b)

où ξ† = (s†, 0) est la configuration initiale du nageur où s† représente sa forme initiale et 0
est sa position initiale. Ensuite, nous introduisons les projections πS et πR par :

πS : M → S
(s, r) 7→ πS(ξ) = s et

πR : M → R
(s, r) 7→ πR(ξ) = r.

De plus, nous définissons l’ensemble des contrôles ‘admissibles” par :

Définition 11 Soient T > 0 et S = (S,g,QS , s†,L) un 5-uplet associé au nageur considéré
et soit une famille de champs de vecteur analytique X , nous appelons par UXS (T ) l’ensemble
de tous les contôles u = (uj)1≤j≤p ∈ L∞([0, T ],Rp) pour lesquels la solution de (18) est
définie sur [0, T ].

Pour chaque contrôle u ∈ UXS (T ), on appelle

t ∈ [0, T ] 7→ ξXS(t,u) ∈M,

la solution de (18) avec le contrôle u. Soit S = (S,g,QS , s†,L) un nageur contrôlable, soit
K un compact de S contenant s† et soit X une famille de champs de vecteurs telle que leur
projection sur S est base orthonormale de ker QS . Soient ξ‡ ∈ M et T ≥ 0, nous allons
définir les sous-espaces de UXS (T ) suivants :

UXS (ξ‡, T ) :=
{

u ∈ UXS (T ) : ξXS(T,u) = ξ‡
}

;

ÛXS (ξ‡, T ) :=
{

u ∈ UXS (ξ‡, T ) : ‖u(t)‖Rp = 1 ∀ t ∈ [0, T ]
}

;

UXS,K(T ) :=
{

u ∈ UXS (T ) : πSξXS(t,u) ∈ K ∀t ∈ [0, T ]
}

;

UXS,K(ξ‡, T ) :=
{

u ∈ UXS (ξ‡, T ) : πSξXS(t,u) ∈ K ∀t ∈ [0, T ]
}

;

ÛXS,K(ξ‡, T ) :=
{

u ∈ UXS,K(ξ‡, T ) : ‖u(t)‖Rp = 1 ∀ t ∈ [0, T ]
}
.

Les problèmes de contrôle optimal auxquels on s’intéresse sont formulés par les énoncés
suivants.

Problème 12 (Minimiser la longueur Riemannienne) Soient δ† ∈ R et T > 0, po-
sons ξ‡ = (s†, δ†) la position initiale du nageur et déterminons :

ΦXS,K(δ†, T ) = inf
{∫ T

0
‖u(t)‖Rpdt : u ∈ UXS,K(ξ‡, T )

}
. (19)

En modifiant le cout, nous nous considérons le problème lié au déplacement qui minimise
l’action (l’énergie).

Problème 13 (Minimiser l’action) Pour tout δ† ∈ R et T > 0, posons ξ‡ = (s†, δ†) et
déterminons :

ΘXS,K(δ†, T ) = inf
{

1
2

∫ T

0
‖u(t)‖2Rpdt : u ∈ UXS,K(ξ‡, T )

}
. (20)
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Nous énonçons maintenant le problème de temps optimal, étudié par exemple dans ce
contexte dans [60].

Problème 14 (Optimiser le temps) Pour tout δ† ∈ R, on appelle ξ‡ = (s†, δ†) et déter-
minons :

TXS,K(δ†) = inf{T : ÛXS,K(ξ‡, T ) 6= ∅}.

Enfin, les problèmes suivants se concentrent sur les stratégies qui permettent au nageur
de se déplacer le plus loin possible avec une contrainte sur sa brassée.

Problème 15 (Nager le plus loin possible avec une longueur Riemannienne bornée)
Pour tout l ≥ 0 and T ≥ 0, determine :

ΨXS,K(l, T ) = sup
{
πRξXS(T,u) : u ∈ UXS,K(T ), πSξXS(T,u) = s†,

and

∫ T

0
‖u(t)‖Rpdt ≤ l

}
. (21)

Problème 16 (Nager le plus loin possible avec une action bornée) Pour tout l ≥ 0
et T ≥ 0, déterminons :

ΛXS,K(l, T ) = sup
{
πRξXS(T,u) : u ∈ UXS,K(T ), πSξXS(T,u) = s†,

and
1
2

∫ T

0
‖u(t)‖2Rpdt ≤ l

}
. (22)

L’objectif de ce chapitre est d’analyser les aspects mathématiques de ces problèmes. Plus
particulièrement, nous démontrons :

1. l’existence de solutions à ces problèmes.

2. Nous montrons comment ces problèmes de contrôle optimal pour différents couts fonc-
tionnelles peuvent se déduire les uns des autres.

3. Nous nous intéressons aux propriétés quantitatives des solutions. En particulier, cer-
taines preuves de ces propriétés résultent de la structure de variété sous-Riemannienne
que l’on peut définir sur M muni de la distance, dite de Carnot-Caratheodory défini
par :

d(ξ†, ξ‡) = inf
{∫ T

0
‖u(s)‖Rpds, u ∈ UXS (T, ξ‡)

}
,

où (ξ†, ξ‡) sont deux points de M.

4. Nous observons que dans le cas où il y a deux degrés de liberté, la variété M possède
une structures géométrique particulière (elle est dite de contact). Ainsi, en utilisant
les résultats de l’étude de A. A. Agrachev [1], nous en déduisons des propriétés géo-
métriques supplémentaires pour les solutions des problèmes de contrôle optimal.

5. Enfin, toutes les propriétés seront discutées numériquement en utilisant un modèle de
nageur immergé dans un fluide parfait ayant une dynamique explicite (introduit par
T. Chambrion et A. Munnier dans [27]).
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4 Conclusions et perspectives

Cette section traite des conclusions et des perceptives de la thèse. Elle est divisée en quatre
parties. Les trois première sections traitent de la conclusion de la partie considérée et la
dernière partie donne des perspectives générales qui émanent de ce travail.

Partie 1 : N-link swimmer

Le N-link swimmer est un modèle de nageur simplifié. Son intérêt principal est qu’il possède
une dynamique explicite tout en ayant un comportement proche d’observations empiriques.
Les simulations numériques présentées dans le chapitre 2 suggèrent que les solutions du pro-
blème de contrôle optimal en temps sont des brassées, c’est à dire des solutions périodiques,
sans que cette contrainte soit imposée. Une étude en cours a pour but de montrer théorique-
ment qu’il existe des stratégies optimales de déplacement qui sont effectivement des brassées.

Dans un second temps, pour élargir notre étude numérique,

• nous souhaitons, tout d’abord, réaliser des tests pour des “N -link swimmer” constitués
de plus de trois tiges. Observera-t-on des comportements limites pour N grand ? L’ob-
tention de tel résultat permettrait une comparaison avec la nage de micro-organismes
constitués de filaments.

• Ensuite, nous voudrions aussi changer le coût fonctionnel à minimiser. En d’autres
termes, plutôt que de travailler sur les stratégies qui minimisent le temps d’atteinte
d’un point cible, nous souhaiterions obtenir des stratégies optimales de nage qui mini-
misent une énergie pour le système (à définir).

• Enfin, l’optimisation des longueurs des tiges du nageur est aussi une direction que nous
étudions. Quel profil de nageurs va-t-on obtenir ? Des nageurs ayant des longueurs de
tiges égales, toutes différentes, rangées par ordre croissant, etc... ?

Enfin, une dernière perspective de ce travail est de considérer que les tiges du nageur pos-
sèdent une charge magnétique et que la déformation du corps du nageur est due à un champ
magnétique qui se propage dans le fluide. Que se passe-t-il pour la contrôlabilité d’un tel
système de nageur ? Quel champ magnétique permettrait le déplacement désiré ? A ce jour,
des physiciens du laboratoire le Spintec à Grenoble, T. Dietsch et H. Joisten, travaillent en
collaboration avec F. Alouges, A. DeSimone et moi-même pour tenter de réaliser un micro
robot de ce type. Une étude théorique est en cours et plusieurs tests de tels micro-robots
ont déjà vu le jour.

Partie 2 : Effets du bord sur la contrôlabilité des micro-nageurs

Dans cette partie, nous étudions l’impact du bord sur la mobilité de nageurs constitués de
sphères reliées entres elles. Nous montrons que la présence du bord ne change pas la capa-
cité d’un nageur à se déplacer. Cependant, nous prouvons l’introduction d’un bord permet
à un nageur d’augmenter ses directions de déplacement. Intuitivement, la présence du bord
a pour effet de briser les symétries du système fluide-solide. La conclusion de cette étude
peut s’énoncer simplement : dans la nature, tous les micro-nageurs, aussi symétriques qu’ils
soient, sont contrôlables.

Nous souhaiterions poursuivre ces travaux dans deux voies distinctes.

• La première direction est de généraliser cette étude de contrôlabilité à des domaines
fluides bornés.
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• La seconde direction est de comparer les stratégies de nage optimales dans différents
cas : R3 tout entier, bord lisse et bord rugueux. Cette étude à la fois numérique et
théorique permettrait d’expliquer les observations des biologistes si elle montre qu’il
est “plus difficile” de s’éloigner du bord plutôt que de s’en rapprocher.

Partie 3 : Problèmes de contrôle optimal

Dans ce chapitre nous proposons un cadre d’étude au problème de contrôle optimal as-
socié au déplacement de nageur ayant une dynamique sans dérive. L’étude est appliquée à
un modèle de nageur ayant une dynamique explicite. Une des directions de recherche est
d’appliquer notre analyse à un nageur dont la dynamique est non explicite. C’est le cas par
exemple du “3-sphere swimmer”. En particulier, serait-il possible d’utiliser ici les développe-
ments asymptotiques de la partie II pour obtenir les caractérisations géométriques présentées
dans la partie III ?

Enfin, un terme de dérive apparait dans la dynamique du nageur lorsque des forces exté-
rieures sont considérées (par exemple dans le cas d’un champ magnétique exogène qui agit
sur le corps du nageur). Comment est-il possible d’étendre cette étude dans le cas où le
nageur est gouverné par une dynamique avec dérive ?

Perspectives générales

Les perspectives générales de cette thèse sont développées ci-dessous.

• Une piste de recherche est de modéliser le déplacement de nageurs encore plus petits
(de la taille d’un nanomètre). A cette échelle, l’agitation des molécules d’eau a un
effet notable sur le déplacement du nageur. L’action “aléatoire” des molécules d’eau
sur le corps du nageur peut-être formalisée par l’ajout d’un terme stochastique dans sa
dynamique. Comment obtenir l’équation du mouvement du nageur ? Comment est-il
possible d’étendre les résultats de contrôlabilité à ce cas ?

• Par ailleurs, de nombreux groupes de recherche travaillent sur la modélisation de la
nage lorsque le fluide n’est plus gouverné par les équation de Stokes mais par celles
d’Euler ou plus généralement celles de Navier-Stokes (qui ne sont plus linéaires). Nous
référons aux récentes études de S. Court [30] et de J. San Mart̀ın, J. F. Scheid, T.
Takahashi, et M. Tucsnak [75] qui montrent l’existence de solutions fortes globales en
temps pour le problème du couplage fluide-solide en utilisant les équation de Navier-
Stokes ainsi qu’aux travaux de G. P. Galdi et al. (voir par exemple [40] et [41]). Nous
mentionnons aussi les résultats de O. Glass et T. Horsin qui traitent de la contrôla-
bilité d’un ensemble de particules immergé dans un fluide parfait (voir [45],[46]). Plus
généralement, l’extension de résultats de contrôlabilité de solides immergés dans un
fluide qui est régi par une équation non linéaire (par exemple lorsque le fluide est par-
fait ou bien lorsqu’il est gouverné par les équations de Navier-Stokes) est l’enjeu de
nombreuses études en cours (voir par exemple la section conclusion de la thèse de J.
Lohéac [58]).

• Enfin, une autre voie de recherche concerne la modélisation du déplacement de po-
pulation de micro-organismes. Nous référons aux travaux P. Degond et al. [33], L. V.
Berlyand et al. [18] et [19] qui traitent de ce sujet en utilisant les outils de la théorie
cinétique. Une nouvelle approche, en cours d’étude avec F. Alouges, S. De Marco et
moi-même, est d’étudier l’évolution d’une densité de nageurs mais en faisant usage de
résultats empruntés au calcul de Malliavin. Dans notre travail, nous nous intéressons
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au cas d’une population de “3-sphere swimmer” qui nagent tous indépendamment les
uns des autres et dont les déformations sont gouvernées par une lois de probabilité
(voir par exemple [48] qui étudie l’évolution d’un “3-sphere swimmer”et d’un “2-sphere
swimmer” dans ce cas).
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Chapitre 1

Self-propulsion of slender
micro-swimmers by curvature

control : N-link swimmers

This work is done in collaboration with F. Alouges, A. DeSimone and M.
Zoppello. It will appear in International Journal of Non-linear Mechanics.
We discuss a reduced model to compute the motion of slender swimmers
which propel themselves by propagating a bending wave along their body.
Our approach is based on the use of Resistive Force Theory for the eval-
uation of the viscous forces and torques exerted by the surrounding fluid,
and on discretizing the kinematics of the swimmer by representing its
body through an articulated chain of N rigid links capable of planar de-
formations. The resulting system of ODEs governing the motion of the
swimmer is easy to assemble and to solve, making our reduced model a
valuable tool in the design and optimization of bio-inspired engineered mi-
crodevices. We test the accuracy and robustness of our approach on three
benchmark examples: Purcell’s 3-link swimmer, Taylor’s swimming sheet
and some recent quantitative observations of circular motion of a sperm
cell. An explicit formula for the displacement of Purcell’s 3-link swimmer
generated by a square stroke of small amplitude is also discussed.
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1.1 Introduction

The study of the swimming strategies of micro-organisms is attracting increasing attention
in the recent literature. This is both because of the intrinsic biological interest, and for the
possible implications these studies may have on the design of bio-inspired artificial replicas
reproducing the functionalities of biological systems. The reader is referred to the recent
reviews [38, 53] for an extensive list of references.

One of the pioneering works in the field is the one by Taylor [84], who established the
mathematical setting for the problem of biological self-propulsion powered by thin undulating
filaments. He called attention on the paradoxical nature of swimmers of microscopic size:
they move by exploiting (viscous) resistance to motion, since at small scales viscous forces
dominate over inertial ones. This is apparent by recalling the definition of Reynolds number
Re = LV

ν , a dimensionless measure of the relative importance of inertial versus viscous
forces, where L is the body size, V is the swimming speed, and ν is the kinematic viscosity
to the surrounding fluid (10−6(m2s−1)−1 for water at room temperature). Since for biological
swimmers V is typically of the order of one body length per second, Re ∼ 1 for organisms
of 1-mm size, and Re ∼ 10−6 << 1 when the size drops to 1 µm. It follows that for micron-
sized swimmers inertial effects are negligible: Taylor’s analysis focussed on a model swimmer
consisting of an infinite sheet propelling itself by propagating a sinusoidal traveling wave of
deformation, while surrounded by a fluid governed by Stokes equations (the zero-Re-limit of
Navier-Stokes equations).

Later, Purcell showed that, at low Reynolds numbers, reciprocal strokes inevitably produce
zero net displacements (a statement commonly referred to as the ‘scallop theorem’ [70]).
Moreover, he proposed a minimal device (the 3-link swimmer) able to ‘beat’ the scallop
theorem, namely, to exhibit net displacements by executing periodic, non-reciprocal strokes.

Another crucial development for our analysis is the recent emergence of the connection
between swimming and Control Theory, see, e.g., [63]. In fact, low Reynolds number swim-
ming can be considered as a control problem which is linear in the control, and without
drift [8]. Many recent works share this point of view, see for example [7, 11, 13, 28, 60].
One of the main difficulties in exploiting Control Theory in order to solve effectively motion
planning or optimal control problems is the complexity of the hydrodynamic forces exerted
by the fluid on the swimmer as a reaction to its shape changes. Resistive Force Theory [49]
provides a simple and concise way to compute a local approximation of such forces, and it
has been successfully used in several recent studies, see for example [15, 37]. In this paper,
we use this approach as well, in order to obtain the forces acting on the swimmer.

In addition, we simplify the kinematics of the swimmer by discretizing its body. This
is represented by a chain of N rigid links moving in a plane (N -link swimmer). Thus, its
motion is described by a system of ODEs that can be easily assembled and solved, hence
providing a valuable tool for the quantitative description of the motion of biological micro-
swimmers. The simplicity of the governing equations makes our model particularly appealing
as a tool for the design of engineered devices and for the optimization of their performance as
some design parameters are varied. We prove the accuracy and robustness of our approach
by checking it against three benchmark examples: Purcell’s 3-link swimmer, some recent
quantitative observations of circular motion of a sperm cell contained in [37], and Taylor’s
swimming sheet.

Thanks to the application of well known tools from Geometric Control Theory, we also
obtain an explicit formula for the displacement of Purcell’s 3-link swimmer generated by a
square stroke of small amplitude.
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1.2 Mathematical setting of the problem

In this section we describe the kinematics of theN -link swimmer, a generalization of Purcell’s
3-link swimmer. The angles between successive links provide a discrete representation of the
swimmer’s curvature, concentrated at the joints between successive links. We think of them
as freely prescribed shape parameters. We then write the equations of motion (balance of
total viscous force and torque) and solve for the time evolution of position and orientation
of the swimmer in response to a prescribed history of (concentrated) curvatures along the
swimmer’s body.

1.2.1 Kinematics of the N-link swimmer

We focus here on essentially one–dimensional swimmers moving in a plane. This two-
dimensional setting is suitable for the study of slender, essentially one-dimensional swimmers
exploring planar trajectories. While the general case is slightly more involved because of the
non-additivity of three–dimensional rotations, see e.g. [7], it can be handled with similar
techniques.

Our swimmer consists of N rigid links with joints at their ends (see Fig. 1.1), moving in
a plane (2d lab-frame) which is defined by the vectors (ex, ey). We set ez := ex × ey. The
i-th link is the segment with end points xi and xi+1. It has length Li > 0 and makes an
angle θi with the horizontal x-axis. The size of the sticks is chosen such that the length of
the swimmer is of order of µm. We define by xi := (xi, yi) (i = 1, · · · , N) the coordinates of
the first end of each link. Note that, for i ∈ {2 · · ·N}, the coordinates xi can be expressed
as a function of x1, θk and Lk, with k ∈ {1 · · · i− 1}:

xi := x1 +
i−1∑
k=1

Lk

(
cos(θk)
sin(θk)

)
. (1.1)

The swimmer is described by two sets of variables:

• the state variables which specify the position and the orientation of one selected link,
labeled as the i∗-th one;

• the shape variables which describe the relative orientations between successive links.
For each link with i > i∗, this is the angle relative to the preceding one, denoted by
αi = θi− θi−1, for i∗ < i ≤ N . For i < i∗ this is the the angle relative to the following
one, denoted by αi = θi+1 − θi, for 1 ≤ i < i∗.

For example, if the triplet (x1, θ1) describes the state of the swimmer then the vector
(α2 = θ2 − θ1, · · · , αN = θN − θN−1) represents the shape of the swimmer. This will be
the default choice in the rest of the paper, with the only exception of subsection 1.3.1, where
the central link is selected as the i∗-th one, in order to exploit the symmetries of the 3-link
swimmer.

1.2.2 Equations of motion

The equations which govern the dynamics of the swimmer form a system of three ODEs,
which is linear with respect to the rate of deformation, and without drift.

The dynamics of the swimmer follows from Newton laws, in which inertia is neglected.
These read {

F = 0 ,
ez ·Tx1 = 0 , (1.2)

where F is the total force exerted on the swimmer by the fluid and Tx1 is the corresponding
total torque computed with respect to the point x1.
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•
•

•

•
•

θ1

α1

x1

xN
αN

Figure 1.1: Coordinates for the N-link swimmer.

To couple the fluid and the swimmer, we use the local drag approximation of Resistive
Force Theory. We denote by s the arc length coordinate on the i-th link (0 ≤ s ≤ Li)
and by vi(s) the velocity of the corresponding point. We also introduce the unit vectors

ei =
(

cos(θi)
sin(θi)

)
and e⊥i =

(
− sin(θi)
cos(θi)

)
in the directions parallel and perpendicular to

the i-th link and write xi(s) = xi + sei. By differentiation, we obtain,

vi(s) = ẋi + sθ̇ie⊥i . (1.3)

The density of the force fi acting on the i-th segment is assumed to depend linearly on the
velocity. It is defined by

fi(s) := −ξ (vi(s) · ei) ei − η
(
vi(s) · e⊥i

)
e⊥i , (1.4)

where ξ and η are respectively the drag coefficients in the directions of ei and e⊥i measured
in N s m−2 . We thus obtain

F =
N∑
i=1

∫ Li

0
fi(s) ds ,

ez ·Tx1 = ez ·
N∑
i=1

∫ Li

0
(xi(s)− x1)× fi(s) ds .

(1.5)

Using (2.3) and (2.4) into (2.5), the total force and torque can be expressed as

F = −
N∑
i=1

Liξ(ẋi · ei) ei +
(
Liη(ẋi · e⊥i ) + L2

i

2 ηθ̇i

)
e⊥i , (1.6)

and

ez ·Tx1 = −
N∑
i=1

L2
i

2 η
(
ẋi · e⊥i

)
+ L3

i

3 ηθ̇i

+ (xi − x1)×
(
Liξ(ẋi · ei) ei +

(
Liη(ẋi · e⊥i ) + L2

i

2 ηθ̇i

)
e⊥i
)

· ez . (1.7)
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Moreover, differentiating (2.1) gives

ẋi = ẋ1 +
i−1∑
k=1

Lkθ̇ke⊥k , (1.8)

an expression linear in ẋ1 and (θ̇k)1≤k≤N . This entails that (2.6) and (2.7) are linear in ẋ1
and θ̇i for i ∈ [1 · · ·N ], and therefore system (2.2) reads

(
F

ez ·Tx1

)
= M (θ1, · · · , θN )


ẋ1
θ̇1
θ̇2
...

θ̇N

 =

0
0
0

 . (1.9)

Observing that for all i ∈ {2, · · · , N}, αi = θi − θi−1, equations (2.6) and (2.7) can be
expressed using the angles (αi)i=2,··· ,N instead of the variables (θi)2≤i≤N . To this end, we
introduce the matrix C defined by

C =



1 0 · · · · · · · · · · · · 0

0 1
. . .

. . .
. . .

. . .
...

0 0 1
. . .

. . .
...

0 0 −1
. . .

. . .
...

...
... 0

. . .
. . . 0

...
...

...
. . .

. . .
. . . 0

0 0 0 · · · 0 −1 1


(1.10)

and obtain

C


ẋ1
θ̇1
θ̇2
...

θ̇N

 =


ẋ1
θ̇1
α̇2
...
α̇N

 . (1.11)

Therefore, by setting

N(θ1, α2, · · · , αN ) := M (θ1, θ2(θ1, α2, · · · , αN ), · · · , θN (θ1, α2, · · · , αN )) C−1, (1.12)

system (1.9) can be rewritten in the equivalent form

N (θ1, α2, · · · , αN )


ẋ1
θ̇1
α̇2
...
α̇N

 =

0
0
0

 . (1.13)

We observe that the 3 × (N + 2) matrix N (θ1, α2, · · · , αN ) can be block-decomposed into
a 3 × 3 sub-matrix A (θ1, α2, · · · , αN ) and a 3 × (N − 1) sub-matrix B (θ1, α2, · · · , αN ),
according to

N = (A |B) . (1.14)
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The matrix A is the ‘grand-resistance-matrix’ of a rigid system evolving at frozen shape,
i.e., with α̇i ≡ 0, i = 2, . . . , N , see [24]. It is symmetric and negative definite [24], as it can
be easily verified, hence it is invertible. We can then recast the equations of motion of the
swimmer as an affine system without drift. Indeed, solving (1.13) for (ẋ1, θ̇1) leads to

(
ẋ1
θ̇1

)
= −A−1 (θ1, α2, · · · , αN ) B (θ1, α2, · · · , αN )

 α̇2
...
α̇N


that we rewrite in the form (

ẋ1
θ̇1

)
=

N∑
i=2

gi (θ1, α2, · · · , αN ) α̇i , (1.15)

where the N − 1 vector fields {gi}Ni=2, are the columns of the 3× (N − 1) matrix −A−1B.
The equation above links the displacement (both translation and rotation) of the swimmer

to its deformation. In other words, for a given history of shapes, prescribed through functions
t 7→ (α2, · · · , αN )(t), the motion of the swimmer is obtained by solving the system (1.15).
Typically, in what follows a stroke is given by a time-periodic shape change, i.e., the functions
t 7→ αi(t), i = 2, · · · , N are all periodic, with the same period.

In order to solve (1.15) numerically, we need to construct the vector fields gi explicitly.
To this end, we observe that F and Tx1 depend linearly on (ẋi)1≤i≤N and (θ̇i)1≤i≤N and
that these quantities depend in turn linearly on (ẋ1, θ̇1, · · · , θ̇N ) in view of (2.8). Therefore,
we can rewrite (2.6) and (2.7) as

F = P1



ẋ1
...

ẋN
−−
θ̇1
...

θ̇N


= P1Q


ẋ1
θ̇1
...

θ̇N

 , ez ·Tx1 = P2



ẋ1
...

ẋN
−−
θ̇1
...

θ̇N


= P2Q


ẋ1
θ̇1
...

θ̇N

 , (1.16)

where
P1 :=

(
−m1 · · · −mN | η

2L
2
1e⊥1 · · · η

2L
2
Ne⊥N

)
with mi := Li(ξei ⊗ ei + ηe⊥i ⊗ e⊥i ) for i = 1 · · ·N ,

P2 :=
(
· · · −(L2

i ηe⊥i + (xi − x1)×mi)T · · · | · · · ηL2
i (Li

3 + (xi−x1)×e⊥i · ez

2 ) · · ·
)
,

and, finally,

Q =



1 0 0 0 · · · 0
1 L1e⊥1 0 0 · · · 0
1 L1e⊥1 L2e⊥2 0 · · · 0
...

...
...

. . . · · · 0
1 L1e⊥1 L2e⊥2 · · · LN−1e⊥N−1 0
0
... Id
0


.

We thus have

M =
(

P1Q
P2q

)
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and can compute N = C−1M, where C−1 is explicitly given as

C−1 =



1 0 · · · · · · · · · · · · 0

0 1
. . .

. . .
. . .

. . .
...

0 0 1
. . .

. . .
...

0 0 1
. . .

. . .
...

...
... 1

. . .
. . . 0

...
...

...
. . .

. . .
. . . 0

0 0 1 · · · 1 1 1


. (1.17)

Matrices A and B are obtained from the columns of N as in (1.14) and, finally, the vectors
gi are simply the columns of −A−1B.

1.3 Applications

1.3.1 Purcell’s 3−link swimmer

•x2

α1

α3

θ2

ex

ey

Figure 1.2: Purcell’s 3-link swimmer.

We now focus on the case N = 3 (Purcell’s 3−link swimmer). To benefit from the
symmetry of the system, we use as state variables the coordinate x2 := (x2, y2) of the
middle point of the second segment, and the angle θ2 that it forms with the x-axis. With
the notation of the preceding sections, we call α1 = θ2 − θ1 and α3 = θ3 − θ2 the relative
angles to the central link of the left and right arms respectively, see Figure 2.2.

Purcell introduced this system in [70], where he predicted that it would exhibit net motion
as a consequence of a suitable non-reciprocal stroke (a square loop in the (α1, α3) plane).
He also argued by symmetry that, for a swimmer with first and third links of equal length,
this symmetric stroke would produce a net displacement along the direction of the central
link, but did not provide a formula to predict either the sign or the magnitude of this
displacement. In the following, we show the connection between Purcell’s proposed stroke
and Lie brackets, a classical tool of Geometric Control Theory. This enables us to obtain a
formula for the displacement induced by a Purcell-type stroke of infinitesimal amplitude. We
also compute numerically the motion resulting from a Purcell-type stroke of finite amplitude
and check it against the theoretical prediction.
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Setting X := (α1, α3, x2, y2, θ2)T
, and using (1.15), the equations of motion become

Ẋ = g1(θ2, α1, α3)α̇1 + g2(θ2, α1, α3)α̇3 . (1.18)

We refer the reader to Appendix A for the explicit calculation of the coefficients appear-
ing in (1.18). We remark that none of them depends on (x2, y2) as a consequence of the
translational invariance of the problem.

Displacement for square strokes of small amplitude

Proposition 1.3.1 Let ε > 0, and consider the square stroke defined by

(α̇1(t), α̇3(t)) = (1, 0) for t ∈ (0, ε),
(α̇1(t), α̇3(t)) = (0, 1) for t ∈ (ε, 2ε),
(α̇1(t), α̇3(t)) = (−1, 0) for t ∈ (2ε, 3ε),
(α̇1(t), α̇3(t)) = (0,−1) for t ∈ (3ε, 4ε).

(1.19)

Then, for small ε, the solution of (1.18) with initial condition X(0) is given by

X (4ε)−X (0) =


0
0

ε2δ +O(ε3)
O(ε3)
O(ε3)

 , (1.20)

where

δ =
L1L2L3

(
L2

1 + L1(L2 + L3) + L3(L2 + L3)
)

(η − ξ)
(L1 + L2 + L3)4ξ

(1.21)

Proof: The first two components in (1.20) vanish, as it is obvious from direct integration
of (1.19). Moreover, it is well known (see,e.g., [29]) and easy to check that the solution of
(1.18) for the square stroke given by (1.19) satisfies the expansion

X(4ε)−X(0) = ε2[g1,g2] +O(ε3)

where the Lie bracket [g1,g2] is defined by

[g1,g2](y) := (g1 ·∇) g2(y)− (g1 ·∇) g2(y) . (1.22)

The direct calculation of this Lie bracket1 shows that

[g1,g2](y)|y=(0,0,0) =


0
0
δ
0
0

 , (1.23)

2

The proposition above provides us with an explicit formula for the net displacement which,
in the symmetric case L1 = L3 = L, reads

∆x2 = ε2
L3L2(3L+ 2L2)

(2L+ L2)4

(
η − ξ
ξ

)
e2 +O(ε3) . (1.24)

1We have used for this step the symbolic computation software MAPLE and the formulas given in
Appendix A.
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Formula (1.24) above shows that the net displacement at leading order is along the axis
of the central link and vanishes when η = ξ. As already stated by Purcell, it can also be
shown that a square stroke (1.19) on such a symmetric swimmer does not produce any global
rotation or vertical displacement.

By integrating numerically the equations of motion for small angle excursion ε and small
times 4ε, we have obtained the state of the swimmer, t 7→ (x2(t), y2(t), θ2(t)). We have
verified that after the square stroke y2(4ε) and θ2(4ε) vanish, in accordance with the previous
remark, and that the net displacement along the x−axis is given by formula (1.24) (see Figure
1.3).
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Figure 1.3: Graphs of the displacement of the 3-link-swimmer in meters after one square
stroke, as a function of the angle amplitude ε in radians. Here L1 = L3 = 1µm, L2 = 2µm,
and η = 2ξN s m−2. The blue squares are obtained by numerical integration of the equations
of motion, while the red circles are obtained from the Lie bracket formula (1.24).

Displacement for square strokes of large amplitude

The preceding results only apply to infinitesimal strokes. For strokes of large amplitude, we
can integrate the equations of motion numerically and compare our results to known results
from the literature. To this aim, we use the same data as in [15], namely L1 = L3 = L = 1,
L2 = 2, ξ = 1 and η = 2, ∆θ = π

3 and the control angles given by

α1(t) =



−(∆θ
2 − t) if 0 ≤ t ≤ ∆θ

∆θ
2 if ∆θ ≤ t ≤ 2∆θ

−(t− 5∆θ
2 ) if 2∆θ ≤ t ≤ 3∆θ

−∆θ
2 if 3∆θ ≤ t ≤ 4∆θ

, α3(t) =



∆θ
2 if 0 ≤ t ≤ ∆θ

(3∆θ
2 − t) if ∆θ ≤ t ≤ 2∆θ

−∆θ
2 if 2∆θ ≤ t ≤ 3∆θ

(t− 7∆θ
2 ) if 3∆θ ≤ t ≤ 4∆θ

.
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This leads to a square stroke of amplitude
π

3 , as shown in Figure 1.4. Such a stroke produces

the displacement of the swimmer given in Figure 1.5, which matches exactly Figure 6 in [15].
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Figure 1.4: Control functions α1 (red) and α3 (blue) as functions of time (left), and their
phase portrait (right). The square loop on the right is traced clockwise.
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Figure 1.5: Graphs of x2(t) (blue), and y2(t) (red) as a function of time during the stroke
of Figure 1.4. A net horizontal backward displacement is observed when the square stroke
is traced clockwise, matching the results of [15].
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1.3.2 N−link swimmers

The full N−link swimmer can be used as a discrete model of a flexible tail whose shape is
controlled by curvature. We show how curvature control can be implemented in our model
in some concrete cases reproducing the motion of Taylor’s sheet [84] and the motion of a
sperm cell analyzed in [37].

Curvature approximation

Here, we show how to approximate the curvature of a beating tail with a discrete N link
swimmer. Let L > 0 be the total length of the flexible tail and let us denote by r(s, t) the
position at time t > 0 of the point of arc-length coordinate s ∈ [0, L] along the tail, in the
body frame of the swimmer (see Figure 1.6). We also define Ψ(s, t) as the angle between
the tangent vector to the tail at the point r(s, t) and the x−axis in the lab-frame. We recall
that the derivative of Ψ(s, t) with respect to s is the local curvature of the curve.

We divide the swimmer into N equal parts of size Li = L/N , and define the angles
(θi)1≤i≤N by averaging Ψ(s, t) on the interval [iL/N, (i+ 1)L/N ]

θi(t) = N

L

∫ iL
N

(i−1)L
N

Ψ(s, t) ds , i = 1 . . . N . (1.25)

Finally, we differentiate (1.25) with respect to time to get θ̇i, i = 1, · · · , N ,

θ̇i(t) = N

L

∫ iL
N

(i−1)L
N

∂Ψ(s, t)
∂t

ds , i = 1 . . . N . (1.26)
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Figure 1.6: A prescribed continuous wave (red curve) and its discrete approximation by the
N -link swimmer (blue curve), N = 15.

N-link approximation of Taylor’s swimming sheet

We now use our discretization method to compute the displacement and velocity of the so-
called Taylor sheet [84]. To that aim, we describe a sinusoidal wave propagating along the
tail in its frame by

r(s(x, t), t) = b sin(kx− σt) + b sin(σt) (1.27)

where the arclength s and x are linked by

s(x, t) =
∫ x

0

√
1 + b2k2(cos(ku− σt))2 du . (1.28)
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(Notice that r(0, t) = 0, which keeps the origin fixed in the swimmer’s frame.)

Figure 1.7: A sinusoidal wave (red) and its N−link approximation (blue) with N = 10

Using Resistive Force Theory, Gray and Hancock give in [49] the following formula for the
velocity of the sheet in the horizontal direction:

Vx = σkb2
(
ξ − η
η

)
, (1.29)

from which one can recover Taylor’s formula

Vx = −1
2kσb

2 (1.30)

by setting ξ = 1 and η = 2. The net displacement of the swimmer after a period T = 2π
σ is

therefore

∆x = VxT = σkb2
(
ξ − η
η

)
T . (1.31)

We have solved numerically the equations of motion choosing as parameters σ = 1 rad s−1,
k = 4 radµm−1, and N = 50 links to describe the swimmer, and drag coefficients ξ =
1N sµm−2 and η = 2 N sµm−2. The displacement in the parallel direction after one period
is plotted in Figure 1.8, together with the the one predicted by (1.31), for a wave amplitude
b = 0.001µm.
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Figure 1.8: Graphs of the displacement of Taylor’s sheet for b = 1 · 10−3 µm. The blue curve
is the one obtained by numerical integration of the equations of motion while the red one is
the one predicted by (1.31)
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Figure 1.9: Logarithmic plot of the x-displacement as a function of the amplitude b (blue
squares) compared with the one obtained from (1.31) (red dots).

The dependence of the displacements on the amplitude b is shown in Figure 1.9. The
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graph shows that formula (1.31) gives an accurate prediction for an amplitude of the wave
b smaller than 1 · 10−1.

N-link approximation of sperm cell swimmer

We now turn to the simulation of the motion of a sperm cell and compare to the one
reported in [37]. To that aim, we modify the first segment of the N−link swimmer to take
into account the presence of the head of the sperm cell, which possesses its own translational
and rotational viscous drag. Indeed, we call x1 the position of the center of the head and
θ1 the angle that the direction e1 of first segment (attached to the head) makes with the
horizontal axis. We assume that the viscous force and torque generated by a movement of
the head are given by

Fhead = −ξhead(ẋ1 · e1)e1 − ηhead(ẋ1 · e⊥1 )e⊥1 , (1.32)

and

Thead · ez = −ζheadθ̇1 . (1.33)

We also assume that the head length is Lhead = 10µm and we call again L the length of the
tail which is fixed to one of the extremities of the head segment. The wave profile along the
tail of the sperm cell was obtained from experimental data, keeping only the two first Fourier
modes as suggested in [72] and we use the method described in section 1.3.2 to approximate
the motion of the tail.

More precisely, we describe the wave shape shown in Fig. 1.10 by

r(s, t) = Lhead

2 e1(t) +
∫ s

0
cos(Ψ(u, t))e1(t) + sin(Ψ(u, t)e⊥1 (t)du . (1.34)

where

Ψ(s, t) = K0s+ 2A0s cos(ωt− 2πs
λ

) . (1.35)

In the preceding equations, K0 is the mean flagellar curvature while ω, λ and A0 are re-
spectively the frequency, the wave-length and the amplitude of the wave. Following [37],
in the numerical simulations below we use the following values for the wave parameters:
A0 = 15.2 · 103 rad m−1, K0 = 19.1 · 103 rad m−1, ω = 200 rad s−1 and λ = 71.6 · 10−6 m.

Apart from the first segment, the rest of the tail is discretized with N − 1 segments of
extremities (xi,xi+1) for i = 2, · · · , N . We discretize the beating wave using the method
described in section 1.3.2, and obtain the shapes shown in Figure 1.11 for one period (0 ≤
t ≤ 2π

ω ).
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Figure 1.10: The prescribed continuous wave (red curve) and its discrete approximation by
the N -link swimmer (blue curve), N = 15.

Figure 1.11: Flagellar beating during one period. The red curve represents the tail as
described by formula (1.34) while the blue links describe the tail according to our discrete
approximation.

With the notation above, the equations of motion become
F = Fhead +

N∑
i=1

∫ Li

0
fi(s) ds ,

Tx1 = Thead +
N∑
i=1

∫ Li

0
fi(s)× (xi(s)− x1) ds .

(1.36)

where Li = L/N is the length of each segment (xi,xi+1) for i = 2, · · · , N , while the first
segment, also of size L1 = L/N is given by (x1 + Lhead

2 e1,x2).
Thanks to the fact that the two previous formulas (1.36) are linear in θ̇1 and ẋ1, we get

the same compact expression of the equations of motion as in (1.15). More in detail, the
matrix P1 and P2 defined the system (1.16) are replaced by

Phead
1 :=

(
−ξheade1 ⊗ e1 + ηheade⊥1 ⊗ e⊥1 −m1 · · · −mN | η

2L
2
1e⊥1 · · · η

2L
2
Ne⊥N

)
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and

Phead
2 :=

(
−p1 · · · −pN | −ζhead + q1 q2 · · · qN

)
,

with mi := Li(ξei ⊗ ei + ηe⊥i ⊗ e⊥i ) for i = 1 · · ·N , and pi := (L2
i ηe⊥i + (xi − x1)×mi)T ,

qi := ηL2
i (Li

3 + (xi−x1)×e⊥i · ez

2 ), for i = 1 · · ·N .

We use the following values for the drag coefficients

• for the head, ξhead = 40.3 · 103 pN s m−1, ηhead = 46.1 · 103 pN s m−1, and ζhead =
0.84 · 10−6 pN s m

• for the links representing the tail, ξ = 0.38 · 109 pN s m−2, ηξ = 1.89.

Our results, summarized by the graphs in Figures 1.12 and 1.13 below, are in perfect agree-
ment with those of [37] (see Figure 3 for the trajectory and Figure 4 for the various speeds).
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Figure 1.12: Above translational speed of the swimmer head in the tangent and perpendic-
ular directions, and below rotational speed.
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Figure 1.13: Trajectory of the head of the sperm-cell during one period.

1.4 Conclusions and perspectives

In this paper, we have presented a discrete model of a slender swimmer which swims by
propagating bending waves along its body, and in which hydrodynamic interactions are
treated with the local drag approximation of Resistive Force Theory. The model is easy to
assemble and to solve, and surprisingly accurate, as shown by the comparison with some
benchmark examples such as the measured trajectories of sperm cells reported in [37]. The
ease of use of our model will be very valuable in the study of optimal design and stroke
optimization questions, which will be the subject of future work.

The approach described in this paper can be extended in a number of natural ways. To be-
gin with, we have restricted our attention to slender swimmers exploring planar trajectories.
The general three–dimensional case, while computationally more demanding, is conceptu-
ally straightforward, see [7, 32]. Furthermore, in several realistic situations, curvature is not
entirely controlled. For example, it may happen that the curvature actuation mechanism is
present or activated only in a portion of the filament (active part of the filament, say, the
part closer to the ‘head’), while the curvature of the remainder (passive part of the filament,
say at the tail end) is a-priori unknown and emerges from the balance of viscous forces from
the fluid against elastic restoring forces due its bending stiffness. Interesting examples of
this type are the octopus tentacles [95], or artificial systems such as the one discussed in
[69]. The extension of our model to scenarios of this kind is immediate, by representing the
bending stiffness of the passive part of the filament through angular springs reacting elas-
tically to angle differences between two successive links. Future work will also explore the
possibilities offered by active materials capable of large deformations, such as Liquid Crystal
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Elastomers actuated in bending [16, 35, 77], and of more classical concepts such as flexible
filaments made of magnetic particles and driven by oscillating magnetic fields [34, 36].
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1.5 Appendix A

The forces Fi, i = 1, 2, 3 acting on each segment of Purcell’s 3-link swimmer, introduced in
subsection 1.3.1 are given by

F1 = −ξL1(ẋ2 cos(θ2 + α1) + ẏ2 sin(θ2 + α1)− L2
2 sinα1θ̇2)e1

−η(−L1ẋ2 sin(θ2 + α1) + L1ẏ2 cos(θ2 + α1)− L1L2
2 cosα1θ̇2 − L2

1
2 (θ̇2 + α̇1))e⊥1 ,

F2 = −ξL2(ẋ2 cos θ2 + ẏ2 sin θ2)e2 − ηL2(−ẋ2 sin θ2 + ẏ2 cos θ2)e⊥2 ,
F3 = −ξL3(ẋ2 cos(θ2 + α3) + ẏ2 sin(θ2 + α3) + L2

2 sinα3θ̇2)e3

η(−L3ẋ2 sin(θ2 + α3) + L3ẏ2 cos(θ2 + α3) + L3L2
2 cosα3θ̇2 + L2

3
2 (θ̇2 + α̇3))e⊥3 ,

(1.37)
while the total torque, obtained by using formula (2.5), is given by

Tx2 · ez =ẋ2(ξL1L2

2 sinα1 cos(θ2 + α1)− ηL1L2

2 cosα1 sin(θ2 + α1)− ηL
2
1

2 sin(θ2 + α1)

− ξL3L2

2 sinα3 cos(θ2 + α3) + η
L3L2

2 cosα3 sin(θ2 + α3) + η
L2

3
2 sin(θ2 + α3))

ẏ2(ξL1L2

2 sinα1 sin(θ2 + α1) + η
L1L2

2 cosα1 cos(θ2 + α1) + η
L2

1
2 cos(θ2 + α1)

− ξL3L2

2 sinα3 sin(θ2 + α3)− ηL3L2

2 cosα3 cos(θ2 + α3)− ηL
2
3

2 cos(θ2 + α3))

θ̇2(−ξL1L
2
2

4 sin2 α1 − ηL1(L1

2 + L2

2 cosα1)2 + η
L3

1
12 − ξ

L3L
2
2

4 sin2 α3

− ηL1(L3

2 + L2

2 cosα3)2 + η
L3

3
12 )

+ α̇1(−η(L
3
1

3 + L2
1L2

4 cosα1)) + α̇3(−η(L
3
3

3 + L2
3L2

4 cosα3)) .
(1.38)

We now write the equations of motion of the system. Since we are neglecting inertia these
reduce to F = 0 and M = 0. These scalar equations can be seen as ODEs in the unknown
functions x2(t), y2(t) and θ2(t). Explicitly, they read as

Fx = ẋ2(−ξL1(cos(θ2 + α1))2 − ηL1(sin(θ2 + α1))2 − ξL2(cos(θ2))2 − ηL2(sin(θ2))2 −
− ξL3(cos(θ2 + α3))2 − ηL3(sin(θ2 + α3))2)

+ ẏ2(−ξL1 cos(θ2 + α1) sin(θ2 + α1) + ηL1 cos(θ2 + α1) sin(θ2 + α1)− ξL2 sin(θ2) cos(θ2) +
+ ηL2 cos(θ2) sin(θ2)− ξL3 sin(θ2 + α3) cos(θ2 + α3) + ηL3 sin(θ2 + α3) cos(θ2 + α3)) +

+ θ̇2(ξL1
L2

2 sin(α1) cos(θ2 + α1)− ηL1
L2

2 cos(α1) sin(θ2 + α1)− ηL1(L1

2 ) sin(θ2 + α1)

− ξL3
L2

2 sin(α3) cos(θ2 + α3) + ηL3
L2

2 cos(α3) sin(θ2 + α3) + ηL3(L3

2 ) sin(θ2 + α3)

+ α̇1(−ηL
2
1

2 sin(θ2 + α1)) + α̇3(ηL
2
3

2 sin(θ2 + α3)) = 0 .
(1.39)
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Fy = ẋ2(−ξL1 cos(θ2 + α1) sin(θ2 + α1) + ηL1 cos(θ2 + α1) sin(θ2 + α1)− ξL2 sin(θ2) cos(θ2) +
+ ηL2 cos(θ2) sin(θ2)− ξL3 sin(θ2 + α3) cos(θ2 + α3) + ηL3 sin(θ2 + α3) cos(θ2 + α3)) +

+ ẏ2(−ξL1(sin(θ2 + α1))2 − ηL1(cos(θ2 + α1))2 − ξL2(sin(θ2))2 − ηL2(cos(θ2))2 −
− ξL3(sin(θ2 + α3))2 − ηL3(cos(θ2 + α3))2) +

+ θ̇2(ξL1
L2

2 sin(α1) sin(θ2 + α1) + ηL1
L2

2 cos(α1) cos(θ2 + α1) + ηL1(L1

2 ) cos(θ2 + α1)

− ξL3
L2

2 sin(α3) sin(θ2 + α3)− ηL3
L2

2 cos(α3) cos(θ2 + α3)− ηL3(L3

2 ) cos(θ2 + α3))

+ α̇1(ηL
2
1

2 cos(θ2 + α1)) + α̇3(−ηL
2
3

2 cos(θ2 + α3)) = 0 .
(1.40)

Tx2 = ẋ2(ξL1
L2

2 sin(α1) cos(θ2 + α1)− ηL1
L2

2 cos(α1) sin(θ2 + α1)− ηL1(L1

2 ) sin(θ2 + α1)

− ξL3
L2

2 sin(α3) cos(θ2 + α3) + ηL3
L2

2 cos(α3) sin(θ2 + α3) + ηL3(L3

2 ) sin(θ2 + α3))

ẏ2(ξL1
L2

2 sin(α1) sin(θ2 + α1) + ηL1
L2

2 cos(α1) cos(θ2 + α1) + ηL1(L1

2 ) cos(θ2 + α1)

− ξL3
L2

2 sin(α3) sin(θ2 + α3)− ηL3
L2

2 cos(α3) cos(θ2 + α3)− ηL3(L3

2 ) cos(θ2 + α3)

θ̇2(−ξL1
(L2)2

4 (sin(α1))2 + η

3 ((L2

2 cos(α1))3 − (L2

2 cos(α1) + L1)3)

− η(L
3
2

12 )− ξL3
(L2)2

4 (sin(α3))2 − η

3 ((L2

2 cos(α3) + L3)3 − (L2

2 cos(α3))3))

+ α̇1(−η(L
3
1

3 + L2
1L2

4 cosα1)) + α̇3(−η(L
3
3

3 + L2
3L2

4 cosα3)) = 0 .
(1.41)

These equations lead to the system

A(θ2, α1, α3)

ẋ2
ẏ2
θ̇2

+ b1(θ2, α1, α3)α̇1 + b2(θ2, α1, α3)α̇3 = 0 , (1.42)

where

A =

a1 1 a1 2 a1 3
a1 2 a2 2 a2 3
a1 3 a2 3 a3 3

 (1.43)
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is a symmetric matrix with

a1 1 = −ξL1 cos(θ2 + α1) sin(θ2 + α1) + ηL1 cos(θ2 + α1) sin(θ2 + α1)− ξL2 sin(θ2) cos(θ2) +
+ ηL2 cos(θ2) sin(θ2)− ξL3 sin(θ2 + α3) cos(θ2 + α3) + ηL3 sin(θ2 + α3) cos(θ2 + α3) ,

a1 2 = −ξL1 cos(θ2 + α1) sin(θ2 + α1) + ηL1 cos(θ2 + α1) sin(θ2 + α1)− ξL2 sin(θ2) cos(θ2) +
+ ηL2 cos(θ2) sin(θ2)− ξL3 sin(θ2 + α3) cos(θ2 + α3) + ηL3 sin(θ2 + α3) cos(θ2 + α3) ,

a1 3 = (ξL1
L2

2 sin(α1) cos(θ2 + α1)− ηL1
L2

2 cos(α1) sin(θ2 + α1)− ηL1(L1

2 ) sin(θ2 + α1)

− ξL3
L2

2 sin(α3) cos(θ2 + α3) + ηL3
L2

2 cos(α3) sin(θ2 + α3) + ηL3(L3

2 ) sin(θ2 + α3) ,

a2 2 = −ξL1(sin(θ2 + α1))2 − ηL1(cos(θ2 + α1))2 − ξL2(sin(θ2))2 − ηL2(cos(θ2))2 −
− ξL3(sin(θ2 + α3))2 − ηL3(cos(θ2 + α3))2 ,

a2 3 = (ξL1
L2

2 sin(α1) sin(θ2 + α1) + ηL1
L2

2 cos(α1) cos(θ2 + α1) + ηL1(L1

2 ) cos(θ2 + α1)

− ξL3
L2

2 sin(α3) sin(θ2 + α3)− ηL3
L2

2 cos(α3) cos(θ2 + α3)− ηL3(L3

2 ) cos(θ2 + α3)) ,

a3 3 = (−ξL1
(L2)2

4 (sin(α1))2 + η

3 ((L2

2 cos(α1))3 − (L2

2 cos(α1) + L1)3)

− η(L
3
2

12 )− ξL3
(L2)2

4 (sin(α3))2 − η

3 ((L2

2 cos(α3) + L3)3 − (L2

2 cos(α3))3)) .

The vector b1 (resp. b2) is the vector of total force and torque due to a rotation of the
left (resp. right) arm α̇1 = 1 (resp. α̇3 = 1) while the other coordinates are kept constant.
These vectors are given by

b1 =


−ηL

2
1

2 sin(θ2 + α1)

η
L2

1
2 cos(θ2 + α1)

−η(L1(L
2
1

3 + L2L1
4 cosα1)

 , b2 =


η
L2

3
2 sin(θ2 + α3)

−ηL
2
3

2 cos(θ2 + α3)

−ηL3(L
2
3

3 + L2L3
4 cosα3)

 . (1.44)

Thanks to the invertibility of the matrix A we obtain the system (1.18), with

g1(θ2, α1, α3) =

 1
0

−A−1(θ2, α1, α3)b1(θ2, α1, α3)

 (1.45)

and

g2(θ2, α1, α3) =

 0
1

−A−1(θ2, α1, α3)b2(θ2, α1, α3)

 . (1.46)



Chapitre 2

Controllability and Optimal
Strokes for N-link

Microswimmer

In this paper we focus on the N -link swimmer, a generalization of the
classical Purcell swimmer [70] that was introduced in [5]. We use the sim-
plification of the Resistive Force Theory to derive the equation of motion
for the swimmer in a fluid with a low Reynolds number, see for instance
[49]. We prove that the swimmer is controllable in the whole plane when it
is composed by more than 3 sticks and for almost every set of stick lengths.
As a direct result, we show that there exists an optimal swimming strategy
which leads to minimize the time to reach a desired configuration. Nu-
merical experiments on the case of N = 3 (Purcell swimmer) suggest that
the optimal strategy is periodic, i.e. composed of a sequence of identical
strokes. Our results indicate that this candidate for an optimal stroke
indeed gives abetter speed than the classical Purcell stroke.

43
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2.1 Introduction

2.1.1 Locomotion at low Reynolds Number

Swimming at a micro scale is a subject of growing interest. A better understanding of the
swimmer motion can lead to many useful applications in several fields such as medicine
or micro and nano technology. The world of low Reynolds Number is inhabited by the
majority of the micro organisms, for this reason the study of their swimming strategy is
attracting increasing attention in the recent literature (see for instance [53] for an extensive
list of references). One of the pioneering works is probably the one by Taylor in 1951 (see
[84]) who introduces a model of swimmer as an infinite sheet in the form of a sinusoidal
traveling wave. In this paper, Taylor presents a mathematical setting for the problem of
self-propulsion of this thin undulating filament. Later in 1977, Purcell proved in [70] that
the swimming strategies must change the shape of the swimmer in a non-reciprocal way,
in order to permit a displacement through the fluid. In the same paper, he introduced a
3-link swimmer model, known as the ”Purcell swimmer”, along with a stroke that allows it
to move. More recently, several works have studied in more detail the physical characteristic
of the Purcell swimmer as a toy model, see for instance [83], [15], [5], [69]. Another crucial
development for our analysis is the recent emergence of the connection between swimming
and Control Theory (see for instance [63], [8], [11], [28], [60], [?]). One of the difficulties is
the study of the swimmer-fluid coupling which leads to derive the dynamics of the swimmer.
At a micro scale, the non local hydrodynamic forces exerted by the fluid on the swimmer
can be approximated with local drag forces depending linearly on the velocity of each point
(see [49], [37]). This technique called Resistive Force Theory provides a simplified dynamics
of the micro swimmer, that gives results in good agreement with those obtained by the full
hydrodynamic, see [5], [37]. We use here the same approach than [5] to derive the dynamics
of the N -link swimmer.

2.1.2 Contribution

In this paper, we present a controllability result for the N -link swimmer, and a new optimal
stroke for displacement in minimum time. First, we prove by geometric control techniques
that for N ≥ 3 sticks, the N -link swimmer is capable to reach any configuration in the
plane. More precisely, we show that for almost any swimmer (i.e. for almost every set
of stick lengths) and for any initial configuration, the swimmer can reach any shape and
position. The global controllability result proved here shows the existence of a suitable shape
deformation which steers the swimmer to the desired final state. As a direct consequence,
we show that the optimal swimming problem, that is to minimize the time to reach a given
configuration, is well posed. Therefore, there exists an optimal strategy which leads to
the final position and configuration in minimum time. Finally, we perform some numerical
simulations for the Purcell swimmer (N = 3), without any assumptions on the structure
of the optimal strategy. Our results suggest that the optimal swimming motion is indeed
periodic, and we show that the stroke we obtain gives a better speed than the Purcell one.

2.2 Setting of the problem

In this section, we recall the N -link swimmer introduced in [5], and present its dynamics as
a system of three ODEs. The system is linear with respect to the rate of deformation, and
has no drift.



2.2. Setting of the problem 45

2.2.1 The N-link swimmer

The swimmer consists of N ∈ N rigid links with joints at their ends, see Fig. 2.1. Movement
is expressed in the laboratory-frame, defined by the vectors (ex, ey). We set ez := ex × ey.
The i-th link is the segment with end points xi and xi+1. We note its length Li > 0 and θi its
angle with the horizontal x-axis. We define by xi := (xi, yi) (i = 1, · · · , N) the coordinates
of the first end of each link. Note that, for i ∈ {2 · · ·N}, the coordinates xi can be expressed
as a function of x1, θk and Lk, with k ∈ {1 · · · i− 1}:

xi := x1 +
i−1∑
k=1

Lk

(
cos(θk)
sin(θk)

)
. (2.1)

The swimmer is described by two sets of variables:

• the state variables which specify the position and the orientation of the first link,
associated with the triplet (x1 = (x1, y1), θ1).

• the shape variables which describe the relative orientations between successive links.
For each link with i ∈ [2, · · · , N ], we note αi = θi − θi−1 the angle relative to the
preceding one. In the following, the vector (α2, . . . , αN ) represents the shape of the
swimmer.

•
•

•

•
•

θ1

α1

x1

xN
αN

Figure 2.1: Coordinates for the N-link swimmer.

2.2.2 Dynamics

The dynamics for this swimmer was already described in [5]. We recall in this section the
main steps to obtain the equations of motion.

The dynamics of the swimmer stems from Newton laws, in which inertia is neglected.
These read {

F = 0 ,
ez ·Tx1 = 0 , (2.2)

where F is the total force exerted on the swimmer by the fluid and Tx1 is the corresponding
total torque computed with respect to the point x1.



46 Chapitre 2. Controllability and optimal strokes for N-link swimmer

To couple the fluid and the swimmer, we use the local drag approximation of Resistive
Force Theory. We denote by s the arc length coordinate on the i-th link (0 ≤ s ≤ Li) and
by vi(s) the velocity of the corresponding point. We also introduce the unit vectors in the
directions parallel and perpendicular to the i-th link

ei =
(

cos(θi)
sin(θi)

)
and e⊥i =

(
− sin(θi)
cos(θi)

)
and write xi(s) = xi + sei. By differentiation, we obtain,

vi(s) = ẋi + sθ̇ie⊥i . (2.3)

The density of the force fi acting on the i-th segment is assumed to depend linearly on the
velocity. It is defined by

fi(s) := −ξ (vi(s) · ei) ei − η
(
vi(s) · e⊥i

)
e⊥i , (2.4)

where ξ and η are respectively the drag coefficients in the directions of ei and e⊥i . We thus
obtain 

F =
N∑
i=1

∫ Li

0
fi(s) ds ,

ez ·Tx1 = ez ·
N∑
i=1

∫ Li

0
(xi(s)− x1)× fi(s) ds .

(2.5)

Using (2.3) and (2.4) into (2.5), the total force F can be expressed as

−
N∑
i=1

Liξ(ẋi · ei) ei +
(
Liη(ẋi · e⊥i ) + L2

i

2 ηθ̇i

)
e⊥i , (2.6)

and and torque ez ·Tx1 as

−
N∑
i=1

Liη
(
ẋi · e⊥i

)
(xi − x1) × e⊥i +

Liξ (ẋi · ei) (xi − x1) × ei +
L2

i

2 ηθ̇i (xi − x1) × e⊥i +
L2

i

2 η
(
ẋi · e⊥i

)
+ L3

i

3 η θ̇i .

(2.7)

Moreover, differentiating (2.1) gives

ẋi = ẋ1 +
i−1∑
k=1

Lkθ̇ke⊥k , (2.8)

which is linear in ẋ1 and (θ̇k)1≤k≤N .

The angles (α̇k)2≤k≤N are a linear combinaison of (θ̇k)2≤k≤N , thus formulas (2.6) and
(2.7) are linear in ẋ1, θ̇1 and (α̇k)2≤k≤N .
Writing the system 2.5 in a matricial form we obtain

A (θ1, α2, · · · , αN ) ·

x1
y1
θ1

−B (θ1, α2, · · · , αN ) ·

α2
...
αN

 = 0 (2.9)
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where the matrix A (θ1, α2, · · · , αN ) is known as ”Grand Resistance Matrix”, and B (θ1, α2, · · · , αN )
is the linear map associated to the coefficients describing the shape of the swimmer [5].

By inverting A, we get the existence of the family of vector fields {g̃i (θ1, α2, · · · , αN )}i=1,··· ,N−1

defined on [0, 2π]N by g̃i := A−1B. Then the dynamics of the swimmer reads
α̇2
...
α̇N
ẋ1
θ̇1

 =
N−1∑
i=1

(
bi

g̃i (θ1, α2, · · · , αN )

)
α̇i+1 . (2.10)

where bi is the i−th vector of the canonical basis of RN−1.

2.3 Controllability

This Section is devoted to the controllability result of the N -link swimmer. Namely, we prove
that there exist control functions which allow the swimmer to move everywhere in the plane.

Theorem 2.3.1 Consider the N -link swimmer described in Section 2.2 evolving in the space
R2. Then for almost every lengths of the sticks (Li)i=1,··· ,N and for any initial configuration

(xi1, θi1, αi2, · · · , αiN ) ∈ R2 × [0, 2π]N , any final configuration (xf1 , θ
f
1 , α

f
2 , · · · , α

f
N ) and any

final time T > 0, there exists a shape function (α2, · · · , αN ) ∈ W1,∞([0, T ]), satisfying

(α2, · · · , αN )(0) = (αi2, · · · , αiN ) and (α2, · · · , αN )(T ) = (αf2 , · · · , α
f
N ) and such that if the

self-propelled swimmer starts in position (xi1, θi1) with the shape (αi2, · · · , αiN ) at time t = 0,

it ends at position (xf1 , θ
f
1 ) and shape (αf2 , · · · , α

f
N ) at time t = T by changing its shape

along (α2, · · · , αN )(t).

Proof: The proof of the theorem is divided into three steps. First, we deal with the
analyticity of the dynamics vector fields. Then, we prove the controllability of the Purcell
3-link swimmer, exploiting the Chow theorem and the Orbit theorem. Finally, we generalize
the result to the N -link swimmer. We start by recalling some classical results used in the
proof.

2.3.1 Classical results in geometric control

Theorem 2.3.2 (Chow (see [29])) Let m,n ∈ N and let (fi)i=1,n be C∞ vector fields on
Rn. Consider the control system, of state trajectory q,

q̇ =
m∑
i=1

uifi(q), (2.11)

with input function u = (ui)i=1,m ∈ L∞ ([0,+∞[,BRn(0, r)) for some r > 0.
Let O an open and connected set of Rn and assume that

Lieq (f1, ...fm) = Rn q ∈ O .

Then the system (2.11) is controllable, i.e., for every q0, q1 in O and for every T > 0
exists u ∈ L∞((0, T ),BRn(0, r)) such that q(0) = q0 and q(T ) = q1 and q(t) ∈ O for every
t ∈ [0, T ].
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If the vector fields are analytic, we can apply the Orbit Theorem to extend the dimension
property of the Lie algebra defined by the dynamics vector fields on the whole orbit.

Theorem 2.3.3 (Orbit (see [51]) LetM be an analytic manifold, and F a family of analytic
vector fields on M. Then

a) each orbit of F is an analytic submanifold of M, and

b) if N is an orbit of F , then the tangent space of N at x is given by Liex(F). In
particular the dimension of Liex(F) is constant as x varies on N .

In our case, the manifold in which the state and the shape of the swimmer evolve is defined
by M := [0, 2π]N−1 ×R2 × [0, 2π] The vector fields of the dynamics are denoted by

gi (θ1, α2, · · · , αN ) :=
(

bi
g̃i (θ1, α2, · · · , αN )

)
.

We say that the Lie algebra of the family of vector fields {gi}i=1,··· ,N−1 is fully generated
at the point q = (α2, · · · , αN , x1, y1, θ1) ∈M if the tangent space of the manifold, TqM, is
equal to the Lie algebra Lie((gi))i=1,··· ,N−1)(q).

2.3.2 Regularity

The first step is to prove that the vector fields of the motion equation of the swimmer are
analytic on M.

As a direct consequence of (2.6) and (2.7), the linear maps A and B belong to the
set of matrices whose entries are analytic functions on [0, 2π]N . The family of vector
(g̃i(θ1, α2, · · · , αN ))i=1,··· ,N−1 is obtained by the multiplication of A−1 by B. Since the

coefficients of A−1 are obtained by multiplication and division of those of A, and because
the determinant of A is never null, the entries of inverse matrix A−1 remain analytic func-
tions on [0, 2π]N . Thus, the family of vector fields (g̃i)i=1,··· ,N are analytic on [0, 2π]N .

2.3.3 Controllability of the Purcell Swimmer (N=3)

Now we prove the controllability of the Purcell’s swimmer. By replacing N = 3 in (5.10),
the Purcell’s dynamics reads

α̇2
α̇3
ẋ1
ẏ1
θ̇1

 = g1(θ1, α2, α3)α̇2 + g2(θ1, α2, α3)α̇3 . (2.12)

We now express the Lie algebra of the vector fields g1 and g2 for any θ1 ∈ [0, 2π] at
the point (α2, α3) = (0, 0), for a swimmer whose sticks have the length L1 = L3 = L and
L2 = 2L where L > 0.



2.3. Controllability 49

The two vectors g1(θ1, 0, 0) and g2(θ1, 0, 0) are

g1(θ1, 0, 0) =



1
0

9L sin(θ1)
64

− 9L cos(θ1)
64

27
32


, g2(θ1, 0, 0) =



0
1

− 7L sin(θ1)
64

7L cos(θ1)
64

− 5
32


.

Then, the iterated Lie brackets are equals to

[g1,g2](θ1, 0, 0) =



0
0

7L(η−ξ) cos(θ1)
128ξ

7L(η−ξ) sin(θ1)
128ξ

0


,

[g1, [g1,g2]](θ1, 0, 0) =



0
0

−L(126η2+31ξη−76ξ2) sin(θ1)
4096ηξ

L(126η2+31ξη−76ξ2) cos(θ1)
4096ηξ

− 3(9η2−4ξη+4ξ2)
2048ηξ


,

[g2, [g1,g2]](θ1, 0, 0) =



0
0

L(36η2−103ξη+148ξ2) sin(θ1)
4096ηξ

−L(36η2−103ξη+148ξ2) cos(θ1)
4096ηξ

3(9η2−4ξη+4ξ2)
2048ηξ


.

The determinant of the matrix whose columns are the previous vector fields is equal to∣∣∣(g1 g2 [g1,g2] [g1, [g1,g2]] [g2, [g1,g2]]
)

(θ1, 0, 0)
∣∣∣

= 21L2(η−ξ)2(45η+112ξ)(9η2−4ηξ+4ξ2)
536870912η2ξ3 .

(2.13)

Since the two drag coefficients ξ and η, are supposed positive, this determinant is never
null exept for isotropic coefficients (ξ = η). If we assume the drag coefficients to be equal,
physically means that the sticks are subjected to the same drag force in both paralel and or-
thogonal dirctions, so they would not be sticks but spheres. Thus tthis case is not physically
acceptable.

Thus for any θ1 ∈ [0, 2π], the Lie algebra of the vector fields g1 and g2 is fully gen-
erated at the point (θ1, α2, α3) = (θ1, 0, 0). Remark that any point (α2, α3,x1, θ1) ∈
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[0, 2π]2×R2× [0, 2π] belongs to the orbit of the point (0, 0,x1, θ1). Since the vector fields are
analytic, Orbit Theorem 2.3.3 guarantees that the Lie algebra of g1 and g2 is fully generated
everywhere in the manifold [0, 2π]2 ×R2 × [0, 2π].

To conclude, by Chow Theorem 2.3.2 we get the controllability of the Purcell’s swimmer
whose sticks have same length.

2.3.4 Controllability of the N-link swimmer

The third step is to generalize the previous controllability result to the N-link swimmer.

The dynamics of this swimmer is described by the ODE (5.10). By construction, the
family of vector fields gi generates the tangent space of the manifolds [0, 2π]N−1,

Span(g1, · · · ,gN−1) = RN−1 . (2.14)

The two vector fields g1 and g2 are related to the Purcell’s one defined in (2.12): we add
N − 2 rows of zeroes, take sticks of null length Li = 0 for 4 ≤ i ≤ N − 1, while keeping the
three sticks L1 = L3 = L and L2 = 2L unchanged.

In this case, for any (x1, θ1) ∈ R2 × [0, 2π] Subsection 2.3.3 shows that the vectors
g1(θ1, 0, · · · 0), g2(θ1, 0, · · · 0) and their iterated Lie brackets [g1,g2](θ1, 0, · · · 0), [g1, [g1,g2]](θ1, 0, · · · 0),
and [g2, [g1,g2]](θ1, 0, · · · 0) are linearly independent.

Therefore, the Lie algebra of the family (gi)i=1,··· ,N−1 at the point (θ1, 0, · · · , 0) is equal
to the tangent space T(0,··· ,0,x1,θ1)M.

Then, by analyticity of the vector fields gi, Orbit Theorem 2.3.3 states that the Lie algebra
is fully generated everywhere for a swimmer whose the length of sticks verify L1 = L3 = L,
L2 = 2L and Li = 0, for 4 ≤ i ≤ N − 1.

Notice that the vector fields of the motion equation depend analytically also on the sticks
length Li, i = 1, · · · , N . We define byD(0,··· ,0), the function which associates to theN−uplet
of the stick lengths the determinant of the vectors g1(0, · · · , 0), · · · ,gN−1(0, · · · , 0) and their
iterated Lie brakets at (0, · · · , 0).

Since the dependance on Li of vector fields gi is analytic, we get the analyticity of the
function D(0,··· ,0). Thus for any L > 0, the value of D(0,··· ,0) at the point (L, 2L,L, 0 · · · 0)
is not null. Then, by analyticity it remains non null almost everywhere in RN . Therefore,
we obtain that the Lie algebra of a full rank for almost every swimmer.

Finally, by using Chow Theorem 2.3.2, we get the controllability stated in the Theorem
2.3.1.

2.4 Minimum time optimal problem for the N-link swim-
mer

This Section describes the minimum time optimal control problem for the N -link swimmer.
The problem is defined in 2.4.1, and is well defined, from the controllability result proven
in 2.3. Then in 2.4.2 we present the optimization strategy we used to find a solution to this
optimal control problem.
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2.4.1 Optimal Time Control Problem Statement

For any time t > 0, let us denote the state of the swimmer by z(t) := (α2, · · · , αN ,x1, θ1)(t)T ,

the control function by u(t) := (α̇2, · · · , α̇N )(t) and the dynamics by f(z(t),u(t)) =
∑N−1
i=1 gi(z(t)) α̇i+1(t).

In the following we assume that the swimmer starts at the initial configuration zi and we
set a final state zf . We want to find an optimal swimming strategy which minimizes the
time to reach the final configuration, i.e.,

(OCP )


inf T ,
ż(t) = f(z(t),u(t)) , ∀t ∈ [0, T ] ,
u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, T ] ,
z(0) = zi ,
z(T ) = zf .

By applying Filippov-Cesary Theorem (as stated in [85]), there exist a minimal time such
that the constraints are satisfied, and the optimal problem reads

(OCP )


min T ,
ż(t) = f(z(t),u(t)) , ∀t ∈ [0, T ] ,
u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, T ] ,
z(0) = zi ,
z(T ) = zf .

(2.15)

2.4.2 Optimization Strategy

In order to solve this optimal control problem, we use a so-called direct approach. The direct
approach transforms the infinite dimensional optimal control problem (OCP ) into a finite
dimensional optimization problem (NLP ). This is done by a discretization in time applied
to the state and control variables, as well as the dynamics equation. These methods are
usually less precise than indirect methods based on Pontryagin’s Maximum Principle, but
more robust with respect to the initialization. Also, they are more straightforward to apply,
hence they are widely used in industrial applications.

Summary of the time discretization:

t ∈ [0, T ] → {t0 = 0, . . . , tN = T}
z( · ), u( · ) → X = {z0, . . . , zN , u0, . . . , uN−1, T}
Criterion → min T
Dynamics → (ex : Euler) zi+i = zi + hf(zi, ui)
Adm. Cont. → −1 ≤ ui ≤ 1
Bnd. Cond. → Φ(z0, zN ) = 0

We therefore obtain a nonlinear programming problem on the discretized state and control
variables

(NLP )
{

min F (z) = T
LB ≤ C(z) ≤ UB

All tests were run using the software Bocop2 ([21]). The discretized nonlinear opti-
mization problem is solved by the well-known solver Ipopt [86] with Mumps [12], while
the derivatives are computed by sparse automatic differentiation with Adol-C [87] and
ColPack [42]. In the numerical experiments, we used a Midpoint (implicit 2nd order)
discretization with 1000 time steps. Execution times on a Xeon 3.2GHz CPU were a few
minutes.

2http://bocop.org
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2.5 Numerical simulation for the Purcell’s swimmer (N=
3)

In this Section, we present the numerical simulations associated with the problem (2.15)
in the case of N = 3 sticks (Purcell’s swimmer). We observe that while we did not make
any assumptions on the structure of the optimal trajectory, the solution given by the direct
solver Bocop shows a periodic structure. We extract a stroke from these solutions, and check
that we obtain a better displacement better than the one of Purcell ([70], [15]).

In the rest of the paper, we reformulate the system in order to match the state variables
used in the literature for the Purcell swimmer [15]. Following [15], we take the sticks lengths
L1 = L3 = 1 and L2 = 2. From now on, the state of the swimmer (see Fig 2.2) is described
by

• the position (x2, y2) of the center of the second stick, and θ2 := θ1 − α2 the angle
between the x-axis and the second stick

• the shape of the swimmer, defined by the two angles β1 := −α2 and β3 := α3.

•x2β1

β3

θ2

ex

ey

Figure 2.2: Purcell’s 3-link swimmer.

The time derivative of the new variables which describe the swimmer are linear in the
previous ones, 

β̇1
β̇3
ẋ2
θ̇2

 = M (θ2, β1)


α̇2
α̇3
ẋ1
θ̇1

 ,

where the matrix M (θ2, β1) is defined by,

M (θ2, β1) =


−1 0 0 0 0
0 1 0 0 0

sin(θ2) + cos(β1) 0 1 0 − sin(θ2)
− cos(β1)− cos(θ2) 0 0 1 cos(θ2)

−1 0 0 0 1

 .

As a result, the dynamics (5.10) reads in this case
β̇1
β̇3
ẋ2
θ̇2

 = f̃1 (θ2, β2, β3) β̇1 + f̃2 (θ2, β2, β3) β̇3 (2.16)
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where for i = 1, 2

f̃i (θ2, β1, β3) = M (θ2, β1, ) g̃i (θ1, α2, α3) . (2.17)

Since the variables which describe the swimmer are the image of the previous one by a
one-to-one mapping, it is clear that the controllability result proved in Section 2.3.3 holds
for the ODE (2.16).

2.5.1 The classical Purcell stroke

The stroke presented by Purcell in [70] is used in the rest to compare the optimal strategy
given by our numerical results. Let us denote by ∆θ, the angular excursion of β1 and β3.
It means that during the stroke β1 and β3 belong to the interval [−∆θ

2 ,
∆θ
2 ]. Calling T the

interval of time in which the swimmer performs the stroke, the Purcell stroke is defined by
the following periodic cycle of deformation,

β1(t) =



4∆θ
T

t− ∆θ
2 if 0 ≤ t ≤ T

4
∆θ
2 if T

4 ≤ t ≤
T
2

−4∆θ
T

t+ 5∆θ
2 if T

2 ≤ t ≤
3T
4

−∆θ
2 if 3T

4 ≤ t ≤ T

,

and

β3(t) =



∆θ
2 if 0 ≤ t ≤ T

4

−4∆θ
T

t+ 3∆θ
2 if T

4 ≤ t ≤
T
2

−∆θ
2 if T

2 ≤ t ≤
3T
4

4∆θ
T

t− 7∆θ
2 if 3T

4 ≤ t ≤ T

.

In the following, we call the “classical” Purcell stroke the one corresponding to ∆θ = π
3

and T = 4∆θ. The time period T is chosen for satisfying the constraints on the speed of
deformation fixed by the optimal problem (2.15) (i.e., β̇i(t) ∈ [−1, 1], i = 1, 3, for all time
t ∈ [0, T ]).

2.5.2 Comparison of the optimal stroke with the classical Purcell
stroke

For the comparison, we take the initial position x2 = (0, 0) and θ2 = 0 and the final position
x2 = (−0.25, 0) and θ2 = 0. We also constrain the angles β1(t) and β3(t) to vary between
−π6 and π

6 for all time t > 0. Solving the minimum time problem with the direct method
gives us a periodic solution from which we extract a candidate for the time optimal stroke.
We describe this stroke in more details, and show its displacement versus the Purcell one.

Solving the optimal problem (2.15) we observe that the solution is periodic, as show the
graphs on Fig. 2.3 for the angles functions β1, β3 and the x-displacement.
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Figure 2.3: Angles and x-displacement for a whole periodic trajectory.

From the plots above it is evident that the optimal controls have a periodic structure
and perform more than one period in the optimal interval of time. In order to compare
the results for the displacement with the Purcell’s ones, we need to select only one period
(i.e. one stroke). We show on Fig. 2.4 the angles functions β1 and β3, as well as the phase
portrait for both the classical Purcell stroke and our selected optimal stroke. Notice that
for satisfying the constraints on the speed of deformation u ∈ [−1, 1], the time performed
by the swimmer to do the Purcell Stroke is greater than the time to do the optimal one.
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Figure 2.4: Angles and phase portrait - Purcell stroke and optimal stroke.

We show now the shape changes in the (X,Y) plane for the Purcell and optimal stroke.
Figure 2.5 shows the Purcell swimmer in four different times during the classical Purcell
stroke, and Fig. 2.6 shows the swimmer performing the selected optimal stroke.
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Figure 2.5: Shape changes for the Purcell’s stroke.
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Figure 2.6: Shape changes for the optimal stroke.

We draw on Fig. 2.7 the x−displacement of the swimmer when it uses the classical
Purcell stroke represented by the red curve and the optimal stroke depicted by the bleu
curve. The interval of time [0, 15.3252] is the one given by the numeric simulation, it leads
the swimmer to reach x2 = (−0.25 , 0) with the optimal strategy, instead by the Purcell
strategy the swimmer reaches only (≈ −0.18, 0). We observe that our optimal stroke allows
the swimmer to move further in the x-direction. More precisely, the optimal stroke leads
a x−displacement close to one given by the Purcell stroke. But, the cycle of deformation
of the optimal stroke is performed in less time than the Purcell one. So, for a time fixed,
the optimal stroke steers the swimmer to have a greater x−displacement. In Fig. 2.7, we
discern that almost 3.5 Purcell strokes are performed during the time [0, 15.3252], whereas
there are six optimal strokes in the same time.

Remark 2.5.1 We see that the gap between the two curves grows with time, which confirms
that the optimal stroke is better, regardless of the small difference in the initial shape of the
swimmer.

Notice that the final displacement after one Purcell strokes matches the results of [15].
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Figure 2.7: x and y displacement for one Purcell and one optimal stroke.
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We study now for both strokes the x-displacement for a stroke with respect to the angular
excursion, as shown on Fig. 2.8. In both cases, we see that a larger interval of angular
excursion gives a greater displacement. Here again, it is obvious that the strokes given by
our optimization strategy produce a greater speed (x-displacement over stroke period) than
the Purcell one for any range of angular excursion.
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Figure 2.8: x displacement, noted ∆x, over the time period to perform a stroke, denoted by
T , wrt angular excursion, Purcell (in red) and optimal stroke (in bleu).

2.6 Conclusions

In this paper we study the N -link swimmer, and use the Resistive Force Theory to derive
its dynamics, as was done in [5]. In this context, we prove that for N greater than 3 and
for almost any N -uplet of sticks lengths, the swimmer is globally controllable in the whole
plane. Then, we focus on finding a swimming strategy that leads the N -link swimmer from
an fixed initial position to a given final position, in minimum time. As a consequence of
the controllability result, we show that there exists a shape change function which allows
to reach the final state in a minimal time. We formulate this optimal control problem and
solve it with a direct approach (Bocop) for the case N = 3 (Purcell swimmer). Without
any assumption on the structure of the trajectory, we obtain a periodic solution, from which
we identify an optimal stroke. Comparing this optimal stroke with the Purcell one confirms
that it is better, actually giving a greater displacement speed. More precisely, the difference
is due to the fact that optimal stroke is executed in less time than the Purcell one.

Current and still ongoing works include solving the optimal control problem for more com-
plex displacements (along the y axis, rotations) and/or for different cost functions (such as
energy-type). Also, noticing that the N -link swimmer was introduced in [5] in the perspec-
tive of approximating the motion of several living micro-organisms, an interesting extension
of this model is to generalize the simulations to greater values of N . Of course, comparing
the candidate for the optimal motion strategy with the one used by real micro-organisms
could be a more tricky issue. On the other hand, another interesting direction is to study
formally the existence of the periodic solution for the optimal problem.
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Chapitre 3

Enhanced controllability of low
Reynolds number swimmers in

the presence of a wall

This work is done in collaboration with F. Alouges. It was published in
Acta Applicandae Mathematicae (see [11]). Swimming, i.e., being able
to advance in the absence of external forces by performing cyclic shape
changes, is particularly demanding at low Reynolds numbers which is the
regime of interest for micro-organisms and micro-robots. We focus on self-
propelled stokesian robots composed of assemblies of balls and we prove
that the presence of a wall has an effect on their motility. To rest on what
has been done in [7] for such systems swimming on R3, we demonstrate
that a controllable swimmer remains controllable in a half space whereas
the reachable set of a non fully controllable one is increased by the presence
of a wall.
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3.1 Introduction

Swimming at low Reynolds number is now a well established topic of research which probably
dates back to the pioneering work of Taylor [84] who explains how a micro-organism can
swim without inertia. Later on, Purcell [70] formalized the so-called “scallop theorem”
which states that, due to the reversibility of the viscous flow, a reciprocal deformation of
the body cannot lead to a displacement of the swimmer. However, this obstruction can be
circumvented using many swimming strategies [70]. Swimmers can be distinguished with
respect to their ability to change their shape or to impose rotational motions of some parts
of their body in order to create viscous friction forces on the fluid, and produce by reaction,
the propulsion.

Many applications are concerned by this problem as for example, the conception of medical
micro devices. The book by J.P. Sauvage [76] presents a lot of engine models adapted for
tiny devices while the design and fabrication of such engines have been recently investigated
by e.g. B. Watson, J. Friend, and L. Yeo [88]. As an example, let us quote the toroidal
swimmer, first introduced by Purcell [70] and which has been subsequently improved by
A.M Leshansky and O. Kenneth [57], Y. Or and M. Murray [68], A. Najafi and R. Zargar
[67] among others.

The strategy for swimming consists in a cyclic deformation of body with a non-reciprocal
motion. The first swimmer prototype belonging to this class is the three link swimmer also
designed by Purcell [70]. More recently, R. Golestanian and A. Ajdari [47] introduced the
Three-sphere swimmer which is geometrically simpler and allows for exact calculations of
motion and speed [8], or even explicit in some asymptotic regimes [47]. Numerical approaches
may also be used as in [6].

In the continuation of [8], F. Alouges, A. DeSimone, L. Heltai, A. Lefebvre, and B. Merlet
[7] showed that the trajectory of the Three-sphere swimmer is governed by a differential
equation whose control functions correspond to the rate of changing shape. The swimming
capability of the device now is recast in terms of a control problem to which classical results
apply [10].

Of particular importance for applications is the issue of the influence of any boundary
on the effective swimming capabilities of micro-devices or real micro-swimmers. Indeed,
boundaries clearly affect the hydrodynamics (see [24]) and may have an influence on the
swimmer’s capabilities. In that direction, a biological study of Rothschild [74] claimed for
instance that spermatozoids tend to accumulate on walls. More recently, H. Winet, G. S.
Bernstein, and J. Head [91] proved this related boundary effect for the sperm of humans
which evolves in a narrow channel. Swimming in a geometrically confined environment has
then become a subject of major interest, in particular to model this attraction phenomenon
(see [81], [38],[17]). D. J Smith, E. A. Gaffney and J. R. Blake [82] have described the motion
of a stylized bacterium propelled by a single flagellum and they show that the attraction by
the wall is effective. Later, H. Shum, E.A Gaffney, and J. Smith [80] investigated to which
extent this attraction effect is impacted by a change in swimmer’s morphology.

On a more theoretical side, other approaches provide results that show an attraction effect
by the wall. A. P. Berke and P. Allison [17], modelling the swimmer with a simple dipole,
put in evidence an attraction due to the presence of the wall. Y. Or and M. Murray [68]
derived the swimmer dynamics near a wall for three various swimmers, but with unvarying
shapes.

The case of a changing shape swimmer has been studied by R. Zargar and A. Najafi [97],
where the dynamics of the Three-sphere swimmer in the presence of a wall is given. However,
some fundamental symmetry are not satisfied in their swimmer’s motion equation.

The aim of this paper is to attack the same problem, namely, the influence of a plane
wall on the swimmer’s capabilities of motion, by means of control theory. Several recent
works present a controllability results for a self-propelled micro-swimmers in a space without
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boundary, as example, let us quote the review paper [9] or the paper by J. Lohéac, J. F.
Scheid and M. Tucsnak [60] and the study of J. Lohéac and A. Munnier [59] made of the
spherical swimmer in the whole space (see also [28] for the same kind of results in a perfect
fluid). Furthermore, F. Alouges, A. DeSimone, L. Heltai, A. Lefebvre, and B. Merlet [7]
treated with the controllability on R3 for the Three-sphere swimmer and others specific
swimmers. The question that we want to address now is whether the presence of the plane
wall modifies the controllability results. We here prove two results in that direction. Namely,
considering the fully controllable Four sphere swimmer proposed in [7], we show that in the
half space, the swimmer remains fully controllable, while a Three-sphere swimmer enriches
its reachable set, at least generically which seems at first sight contradictory with earlier
results. Indeed, although previous works show an attraction from the boundary, the set of
reachable points could be of higher dimension. In other words, if the dynamics is somehow
more constrained due to the presence of the wall, the set of points that the swimmer may
reach could be larger than what it was without the wall.

The paper is organized as follows. In Section 3.2, we describe the two model swimmers to
which our analytical and numerical tools are later applied. Section 3.2.3 presents the main
controllability results associated with the introduced swimmers. In Section 3.3, we show
that swimming is indeed an affine control problem without drift by using a similar approach
than [10, 7].

The controllability result is proved in Section 3.4 for the Four-sphere swimmer and in
Section 3.5 for the Three-sphere swimmer. Concluding remarks are given in Section 3.6.

3.2 Notation and main results

We carry on the study of specific swimmers that were considered in [7] in R3. In order
to fix notation, the wall is modeled by the plane W = {(x, y, z) ∈ R3 s. t. y = 0}, and
the swimmers, which consist of N spheres (Bi)i=1..N of radii a connected by thin jacks, are
assumed to move in the half space R3

+ = {(x, y, z) ∈ R3 s. t. y > 0}. As in [7] , the viscous
resistance associated with the jacks is neglected and the fluid is thus assumed to fill the
whole set R3

+ \ ∪Ni=1Bi. The state of the swimmer is described by two sets of variables :

• the shape variables, denoted by ξ (here in RN−1 or RN ), which define the lengths of
the jacks. A stroke consists in changing the lengths of these jacks in a periodic manner;

• the position variables, denoted by p ∈ R3
+ × SO(3), which define swimmer’s position

and orientation in the half-space.

In what follows, we call S ⊂ RM for a suitable M ∈ N the set of admissible states (ξ,p)
that we assume to be a connected nonempty smooth submanifold of RM . We thereafter focus
on two swimmers that have been considered in the literature, the Three-sphere swimmer (see
[66], [8], [7]) and the Four sphere swimmer (see [7]). It turns out that this latter is easier to
understand than the former, and we therefore start with it.

3.2.1 The Four-sphere swimmer

We consider a regular tetrahedron (S1,S2,S3,S4) with center O ∈ R3
+. The swimmer

consists of four balls linked by four arms of fixed directions ~OSi which are able to elongate
and shrink (in a referential associated to the swimmer). The four ball cluster is completely

described by the list of parameters (ξ,p) = (ξ1, . . . , ξ4, c,R) ∈ S = (
√

3
2a,∞)4 × R3

+ ×
SO(3). It is known (see [7]) that the Four sphere swimmer is controllable in R3. This
means that it is able to move to any point and with any orientation under the constraint
of being self-propelled, and when the surrounding flow is dominated by the viscosity. This
swimmer is depicted in Fig. 4.1.
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where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c,α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.
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Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i

6

ξ2
ξ1

ξ3

ξ4

Figure 3.1: The Four-sphere swimmer.

3.2.2 The Three-sphere swimmer

This swimmer is composed of three aligned spheres as shown in Fig. 3.2. We assume that
at t = 0 the swimmer starts in the vertical half-plane H = {(x, y, 0) ∈ R3 s.t. y ≥ 0}, it
is clear from the symmetry of the problem that the swimmer stays in H for all time, for
whatever deformation of its arms it may carry out. We characterize swimmer’s position and
orientation in H by the coordinates (c, θ) ∈ R2× [0, 2π], where c ∈ H is the position of one
of the three spheres, and θ is the angle between the swimmer and the x−axis. Therefore,
in that case, the swimmer is completely described by the vector (ξ,p) = (ξ1, ξ2, c, θ) ∈ S =
(2a,∞)2×H × [0, 2π) ⊂ (2a,∞)2×R2×R/2πZ. In the three dimensional space R3 (when
there is no boundary), it is obvious by symmetry that the angle θ cannot change in time,
and thus this swimmer is not fully controllable. One of the main contributions of this paper
is to understand the modifications of this behavior due to the presence of the plane wall.

x1

x2

x3

a θ
ξ1

ξ2

Figure 3.2: The Three-sphere swimmer.
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3.2.3 Main results

Consider any of the swimmers described above, and assume it is self-propelled in a three
dimensional half space viscous flow modeled by Stokes equations. In this paper, we establish
that both swimmers are locally fully controllable almost everywhere in S. By this we mean
the precise following statements.

Theorem 3.2.1 Consider the Four-sphere swimmer described in Section 3.2.2, and assume
it is self-propelled in a three dimensional viscous flow modeled by Stokes equations in the half
space R3

+. Then for almost any initial configuration (ξi,pi) ∈ S, any final configuration

(ξf ,pf ) in a suitable neighborhood of (ξi,pi) and any final time T > 0, there exists a stroke
ξ ∈ W1,∞([0, T ]), satisfying ξ(0) = ξi and ξ(T ) = ξf and such that if the self-propelled
swimmer starts in position pi with the shape ξi at time t = 0, it ends at position pf and
shape ξf at time t = T by changing its shape along ξ(t).

Theorem 3.2.2 Consider the Three-sphere swimmer described in Section 3.2.1, and assume
it is self-propelled in a three dimensional viscous flow modeled by Stokes equations in the half
space R3

+. Then for almost any initial configuration (ξi,pi) ∈ S such that pi ∈ H, any final

configuration (ξf ,pf ) in a suitable neighborhood of (ξi,pi) with pf ∈ H and any final time
T > 0, there exists a stroke ξ ∈ W1,∞([0, T ]), satisfying ξ(0) = ξi and ξ(T ) = ξf and such
that if the self-propelled swimmer starts in position pi with the shape ξi at time t = 0, it
ends at position pf and shape ξf at time t = T by changing its shape along ξ(t) and staying
in H for all time t ∈ [0, T ].

Remark 3.2.3 The sense of “almost every initial configuration” can be further precised as
everywhere outside a (possibly empty) analytic manifold of codimension 1.

The proof of the controllability of the Four-sphere swimmer is given in Section 3.4 whereas
Section 3.5 is devoted to demonstrate Theorem 3.2.2.

3.3 Mathematical setting of the problem

As for their 3D counterparts, the equation of motion of both swimmers take the form of an
affine control problem without drift. In this section, we detail the derivation of this system.

3.3.1 Modelization of the fluid

The flow takes place at low Reynolds number and we assume that inertia of both the swimmer
and the fluid is negligible. As a consequence, denoting by Ω = ∪Ni=1Bi the space occupied
by the swimmer, the flow in R3

+ \ Ω satisfies the (static) Stokes equation
−µ∆u +∇p = 0 in R3

+ \ Ω,
div u = 0 in R3

+ \ Ω,
−σn = f on ∂Ω,
u = 0 on ∂R3

+,
u→ 0 at ∞.

(3.1)

Here, we have denoted by σ = µ(∇u +∇tu)− pId the Cauchy stress tensor, n is the unit
normal to ∂Ω pointing outward to the swimmer. We also set

V =
{

u ∈ D′(R3
+ \ Ω,R3) | ∇u ∈ L2(R3

+ \ Ω), u(r)√
1 + |r|2

∈ L2(R3
+ \ Ω)

}
.
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It is well known that V is a Hilbert space when endowed with the norm (and the associated
scalar product)

‖u‖2V :=
∫

R3
+\Ω
|∇u|2 .

We also assume that f ∈ H−1/2(∂Ω) in order to obtain a unique solution (u, p) to the
problem (3.1) in V ×L2(R3

+ \Ω) which can be expressed in terms of the associated Green’s
function (obtained by the method of “images”, see [20]) as

u(r) =
∫
∂Ω

K(r, s)f(s)ds, (3.2)

where the matricial Green function K = (Kij)i,j=1,2,3 is given by

K(r, r0) = G(r− r0) + K1(r, r0) + K2(r, r0) + K3(r, r0) , (3.3)

the four functions G, K1, K2 and K3 being respectively the Stokeslet

G(r) = 1
8πµ

(
Id
|r| + r⊗ r

|r|3

)
(3.4)

and the three “images”

K1(r, r0) = − 1
8πµ

(
Id
|r′| + r′ ⊗ r′

|r′|3

)
, (3.5)

K2,ij(r, r0) = 1
4πµy

2
0 (1− δj2)

(
δij
|r′|3 −

3r′ir′j
|r′|5

)
, (3.6)

K3,ij(r, r0) = − 1
4πµy0 (1− 2δj2)

(
r′2
|r′|3 δij −

r′j
|r′|3 δi2 + r′i

|r′|3 δj2 −
3r′ir′jr′2
|r′|5

)
. (3.7)

Here r0 = (x0, y0, z0) and r′ = r− r̃0, where r̃0 = (x0,−y0, z0) stands for the “image” of r0,
that is to say, the point symmetric to r0 with respect to the wall.

Let B be the sphere of radius 1 centered at the origin. We identify the boundary of the
domain occupied by the swimmer, ∂Ω, with (∂B)N and we represent by fi ∈ H−1/2(∂B)
the distribution of force on the sphere Bi. Correspondingly, ui ∈ H1/2(∂B) stands for the
velocity distribution on the sphere Bi (and of the fluid due to non-slip contact).

Following [7], we denote by T(ξ,p) the Neumann-to-Dirichlet map

T(ξ,p) : H−1/2 → H1/2

(f1, . . . , fN ) 7→ (u1, . . . ,uN ) (3.8)

where we have denoted by H±1/2 the space (H±1/2(∂B))N . It is well known that the map
T(ξ,p) is a one to one mapping onto while its inverse is continuous.

Using (3.2), we can express ui (i = 1, · · · , N) by

∀r ∈ ∂B, ui(r) =
N∑
j=1

∫
∂B

K(xi + ar,xj + as)fj(s)ds

:=
N∑
j=1
〈fj ,K(xi + ar,xj + a · )〉∂B ,

(3.9)

where 〈 · , · 〉∂B stands for the duality
(
H−1/2(∂B), H1/2(∂B)

)
.
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Proposition 3.3.1 The mapping (ξ,p) 7→ T(ξ,p) is analytic from S into L(H−1/2,H1/2).

Furthermore, T(ξ,p) is an isomorphism for every (ξ,p) ∈ S, and the mapping (ξ,p) 7→ T −1
(ξ,p)

is also analytic.

Proof. The proof is identical to the one given in [7], replacing the the Stokeslet by the
Green kernel K which is also analytic outside its singularity.

Remark 3.3.2 As the direct consequence, the mapping T(ξ,p) and its inverse depend ana-
lytically on a.

3.3.2 Equation of motion

In this section, we use the self-propulsion assumption in order to express the dynamics of
the swimmer as an affine control system without drift.

This equation of motion is by now classical in this context (see [7], [8], [32], [59] or [64]).
Let us recall the principle of its derivation.

We define the map Φi which give the position of the current point of the i-th sphere of
the swimmer in the state (ξ,p) ∈ S

Φi : ∂Bi × S → R3 . (3.10)

The non-slip boundary condition of the fluid on ∂Bi imposes that the velocity of the fluid
is given by

d

dt
Φi(r, ξ,p) =

(
ξ̇ ·∇ξ

)
Φi(r, ξ,p) + (ṗ ·∇p) Φi(r, ξ,p) . (3.11)

When inertia is negligible, self-propulsion of the swimmer implies that the total viscous
force and torque exerted by the surrounding fluid on the swimmer vanish i.e.,

N∑
i=1

∫
∂B

T −1
(p,ξ)

(
d

dt
Φ1(r, ξ,p), · · · , d

dt
ΦN (r, ξ,p)

)
dxt = 0 ,

N∑
i=1

∫
∂Ωt

xt × T −1
(p,ξ)

(
d

dt
Φ1(r, ξ,p), · · · , d

dt
ΦN (r, ξ,p)

)
dxt = 0 .

(3.12)

By using (3.11) and the linearity of the Dirichlet-to-Neumann map, the system (3.12) is a
set of linear equations which link ṗ and ξ̇. The coefficients corresponding to the swimmer’s
position ṗ consist in an invertible linear map, known as a grand-resistance-matrice (see [59]
or [24]).

By inverting it, this permit us to solve ṗ uniquely and linearly in terms of ξ̇,

ṗ =
N∑
i=1

Wi(ξ,p)ξ̇i . (3.13)

Finally, by considering the vector fields Fi(ξ,p) :=
(

ei
Wi(ξ,p)

)
defined on the tangent

bundle of S, (here ei is the i-th vector of the canonical basis of RN ), we get the differential
system which governs both state and shape of the swimmer,

d

dt

(
ξ
p

)
=

N∑
i=1

Fi(ξ,p)ξ̇i . (3.14)
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3.3.3 Classical results in geometric control

Let us recall some results which are used to study the controllability of such systems of ODE
(see for instance [51]).

Let F and G be two vector fields defined on a smooth finite dimensional manifold M.
The Lie bracket of F and G is the vector field defined at any point X ∈M by [F,G](X) :=
(F ·∇)G(X) − (G ·∇)F (X). For a family of vector fields F on M, Lie(F) denotes the
Lie algebra generated by F . Namely, this is the smallest algebra - defined by the Lie
bracket operation - which contains F (therefore F ⊂ Lie(F) and for any two vectorfields
F ∈ Lie(F) and G ∈ Lie(F), the Lie bracket [F,G] ∈ Lie(F)). Eventually, for any point
X ∈M, LieX(F) denotes the set of all tangent vectors V (X) with V in Lie(F). It follows
that LieX(F) is a linear subspace of TXM and is hence finite-dimensional.

Lie brackets and Lie algebras play a prominent role in finite dimensional control theory.
Indeed, we recall Chow’s theorem:

Theorem 3.3.3 (Chow [29]) Let M be a connected nonempty manifold. Let us assume
that F = (Fi)mi=1, a family of vector fields on M, is such that Fi ∈ C∞(M, TM) ,∀i ∈
{1, · · · ,m} .
Let us also assume that

LieX(F) = TX(M) , ∀X ∈M .

Then, for every (X0, X1) ∈ M×M, and for every T > 0, there exists u ∈ L∞([0, T ]; Rm)
such that the solution of the Cauchy problem, Ẋ =

m∑
i=1

uiFi(X) ,

X(0) = X0 ,

(3.15)

is defined on [0, T ] and satisfies X(T ) = X1.

The theorem 3.3.3 is a global controllability result, we also recall the one which gives a
small-time local controllability.

Theorem 3.3.4 ([29], p. 135) Let Ω be an nonempty open subset of Rn, and let F =
(Fi)mi=1, a family of vectorfields, such that Fi ∈ C∞(Ω,Rn) ,∀i ∈ {1, · · · ,m} .
Let Xe such that

LieXe
(F) = Rn .

Then, for every ε > 0, there exists a real number η > 0 such that, for every (X0, X1) ∈
{X s. t. ‖X −Xe‖ < η}2, there exists a bounded measurable function u : [0, ε] → Rn such
that the solution of the Cauchy problem Ẋ =

m∑
i=1

uiFi(X) ,

X(0) = X0 ,

(3.16)

is defined on [0, ε] and satisfies X(ε) = X1.

When the vector fields are furthermore analytic (and the manifold M is also analytic)
one also has the Hermann-Nagano Theorem of which we will make an important use in the
theoretical study of the controllability for our model swimmers.

Theorem 3.3.5 (Hermann-Nagano [51]) Let M be an analytic manifold, and F a fam-
ily of analytic vectorfields on M. Then
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1. each orbit of F is an analytic submanifold of M, and

2. if N is an orbit of F , then the tangent space of N at X is given by LieX(F). In
particular, the dimension of LieX(F) is constant as X varies over N .

In our context, the family of vector fields is given by F = (Fi)1≤i≤k which are defined
on the manifold M = S, and the controls ui are given by the rate of shape changes ξ̇i. In
view of the preceding theorems, the controllability question of our model swimmers raised
by Theorems 3.2.1 and 3.2.2 relies on the dimension of the Lie algebra generated by the
vectorfields (Fi)1≤i≤k which define the dynamics of the swimmer. In particular they are
direct consequences of the following Lemma.

Lemma 3.3.6 For almost every point (in the sense of remark 3.2.3) (ξ,p) ∈ S, the Lie
algebra generated by the vectorfields (Fi)1≤i≤k at (ξ,p) is equal to T(ξ,p)S.

The proof of this lemma is developed until the rest of the paper. Several tools are used
in order to characterize this dimension among which we mainly use asymptotic behavior
and symbolic computations. As we shall see, although the theory is clear, the explicit
computation (or at least asymptotic expressions) is by no means obvious and requires a lot
of care. In particular, before using symbolic calculations, a rigorous proof of the expansion,
together with a careful control of the remainders in the expressions allowed us to go further.

3.4 The Four-sphere swimmer

In this section, we give the proof of the controllability result stated in Theorem 3.2.1.
Proof. The argument of the proof is based on the fact that K given by (4.13) satisfies

K(r, r′) = G(r− r′) +O

(
1
y

)
, (3.17)

where r = (x, y, z) and r′ = (x′, y′, z′) are two points of R3
+, and G is the Green function of

the Stokes problem in the whole space R3, namely the Stokeslet, defined by (4.14).
As a consequence, we obtain that the Neumann to Dirichlet map given by (3.8) satisfies

for a swimmer of shape ξ at position p = (px, py, pz,R) ∈ R3
+ × SO3

T(ξ,p) = T 0
ξ +O

(
1
py

)
, (3.18)

where T 0
ξ is the Neumann-to-Dirichlet map associated to the Green function G .

The system (3.12) now reads
∫
∂Ωt

((
T 0

ξ

)−1 + O

(
1
py

))(
d

dt
Φ1(r, ξ,p), · · · , d

dt
ΦN (r, ξ,p)

)
dxt = 0 ,∫

∂Ωt

xt ×
((
T 0

ξ

)−1 +O

(
1
py

))(
d

dt
Φ1(r, ξ,p), · · · , d

dt
ΦN (r, ξ,p)

)
dxt = 0 .

Consequently, the ODE (3.14) becomes

d

dt

(
ξ
p

)
=

4∑
i=1

(
F0
i (ξ) +O

(
1
py

))
ξ̇i , (3.19)

where (F0
i )i=1,··· ,4 are the vector fields obtained in the case of the whole space R3.



68 Chapitre 3. Plane wall effect

In other words, we obtain the convergence

F(ξ,p) = F0(ξ) +O

(
1
py

)
as py → +∞ (3.20)

and also for all its derivatives to any order.
It has been proved in [7] that dim Lieξ(F0) = 10 at all admissible shape ξ, showing the

global controllability in the whole space of the underlying swimmer. We thus obtain that
for py sufficiently large

dim Lie(ξ,p)(F) = 10 , (3.21)

and therefore due to the analyticity of the vector fields (Fi)i=1,··· ,4, (3.21) holds in a dense
subset of S. This shows that the system satisfies the full rank condition almost everywhere
in S and proves Lemma 3.3.6 in this context, and thus Theorem 3.2.1 by a simple application
of Chow’s theorem.

The preceding proof can be generalized to any swimmer for which the Lie algebra satisfies
the full rank condition in R3. We now turn to an example for which this is not the case,
namely the Three-sphere swimmer of Najafi Golestanian [66]. Indeed, when there is no
boundary, this swimmer is constrained to move along its axis of symmetry. The purpose of
the next section is to understand to which extent this is still the case when there is a flat
boundary.

3.5 The Three-sphere swimmer

This section details the proof of Theorem 3.2.2 which is much more involved. It is organized
in several subsections, and each of them focus on a particular step. In Section 3.5.1, we recall
the expression of the equation of motion of the Three-sphere swimmer. Section 3.5.2 deals
with the special symmetries which need to be verified by the vector fields of the motion
equation. From this symmetry properties, we deduce the reachable set of the particular case
where the swimmer is perpendicular to the wall. In Section 3.5.3, we give an expansion of the
Neumann-To-Dirichlet map associated to the Three-sphere swimmer and its inverse, in the
case where the radius of the sphere a is small enough and the lengths of the arms sufficiently
large. In Section 4.5.2, we deduce from this previous approximation an expansion of the
motion equation, for a small. Finally, the Section 3.5.5 presents some formal calculations of
the vectorfields of the motion equation and their Lie brackets which lead to the dimension
of its Lie algebra almost everywhere.

3.5.1 Equation of motion for the Three-sphere swimmer

From Section 3.2.2, we know that the swimmer’s position is parameterized by the vector
(x, y, θ) where (x, y) is the coordinate of the center of B2 as depicted in Fig. 3.2 and θ is
the angle between the swimmer and the x−axis. We recall that ξ := (ξ1, ξ2) stands for the
lengths of both arms of the swimmer.

The motion equation (3.14) thus reads,

d

dt


ξ1
ξ2
x
y
θ

 = F1(ξ, x, y, θ)ξ̇1 + F2(ξ, x, y, θ)ξ̇2 . (3.22)

Notice that, from translational invariance of the problem, both F1 and F2 actually do not
depend on x.
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In what follows, we denote by

d(ξ,y,θ) = dim Lie(ξ,y,θ)(F1,F2)

the dimension of the Lie algebra Lie(ξ,y,θ)(F1,F2) ⊂ R5 at (ξ, y, θ). It is clear, since F1 and
F2 are independent one to another and never vanish, that

2 6 d(ξ,y,θ) 6 5 . (3.23)

3.5.2 Symmetry properties of the vector fields

Proposition 3.5.1 Let S be the 5× 5 matrix defined by

S =


0 1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

 .

Then one has for all ξ = (ξ1, ξ2, x, y, θ) ∈ S

F1(ξ1, ξ2, y, θ) = SF2(ξ2, ξ1, y, 2π − θ) (3.24)

and similarly for the Lie bracket

[F1,F2](ξ1, ξ2, y, θ) = S[F2,F1](ξ2, ξ1, y, 2π − θ) . (3.25)

Proof. Although the plane breaks the 3D axisymmetry along the swimmer’s axis, we
can still make use of the symmetry with respect to the vertical plane that passes through
the center of the first sphere B2. A swimmer with position (x, y, θ) and shape (ξ1, ξ2) is
transformed by this symmetry to one at position (x, y, 2π − θ) and shape (ξ2, ξ1) (see Fig.
3.3). Making use of the fact that corresponding solutions to Stokes equations are symmetric
one to another, we easily get the proposition.

Eventually, one deduces the Lie bracket symmetries by applying the former symmetries
on the vectorfields themselves. An easy recurrence shows that the same identities hold for
any Lie bracket of any order of the vectorfields F1 and F2. In particular one has for instance

[F1, [F1,F2]](ξ1, ξ2, y, θ) = S[F2, [F2,F1]](ξ2, ξ1, y, 2π − θ) . (3.26)

As a direct consequence of proposition 3.5.1, we deduce that the fourth coordinate of the
Lie bracket [F1,F2] vanishes at (ξ, ξ, y, 0) and at (ξ, ξ, y, π).

Proposition 3.5.2 Let T be the 5× 5 matrix defined by

T =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

 .

Then one has for all ξ = (ξ1, ξ2, x, y, θ) ∈ S, and i = 1, 2

Fi(ξ1, ξ2, y, θ) = TFi(ξ1, ξ2, y, π − θ) (3.27)

and similarly for the Lie bracket

[F1,F2](ξ1, ξ2, y, θ) = T[F1,F2](ξ1, ξ2, y, π − θ) . (3.28)
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x1

x2

x3

x̃3

x̃1

wall

θ

−θ

Figure 3.3: The plane symmetry which links the situation at (ξ1, ξ2, x, y, θ) with those at
(ξ2, ξ1, x, y, 2π−θ). In both cases, solutions to Stokes flow are also symmetric one to another.

Proof. The two identities readily come from the symmetry which transforms a swimmer
with position (x, y, θ) and a shape (ξ1, ξ2) to one at position (x, y, π−θ) with the same shape
(see Fig. 3.4).

Eventually, one deduces the Lie bracket symmetries by applying the former symmetries
on the vectorfields themselves. An easy recurrence shows that the same identities hold for
any Lie bracket of any order of the vectorfields F1 and F2.

As a result, in the case where θ = ±π2 , we get the dimension of the Lie algebra of the
vector field F1 and F2.

Corollary 3.5.3 The dimension of the Lie algebra Lie(ξ1,ξ2,y,π/2)(F1,F2) is less than or
equal to 3.

Proof. We deduce from the preceding proposition that for i = 1, 2 and j = 3, 5,
Fji (ξ1, ξ2, y,±π/2) = 0. This simply means that a swimmer starting in the vertical po-
sition cannot change its angle θ and its abscissa x by changing the size of its arms. As a
matter of fact, the same holds true for any Lie bracket of F1 and F2 at any order, and we
can deduce from this that

d(ξ1,ξ2,y,π/2) ≤ 3 ,

since any vector of the Lie algebra Lie(ξ1,ξ2,y,π/2)(F1,F2) has a vanishing third and fifth
component.

Moreover, by using the argument introduced in Section 3.4, we get, for almost every y,
that the dimension of the Lie algebra is almost equal to the one without boundary (see [7]).

Remark 3.5.4 By using Hermann-Nagano Theorem (see [51]), in the case where the swim-
mer is perpendicular to the wall, the set of states where the dimension of the Lie algebra
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x1

x2

x3

x̃1

x̃3

wall

θ

π − θ

Figure 3.4: The plane symmetry which links the situation at (ξ1, ξ2, x, y, θ) with those at
(ξ1, ξ2, x, y, π−θ). In both cases, solutions to Stokes flow are also symmetric one to another.

generated by F1 and F2 is equal to two is an union of analytic submanifold of S of dimension
two.

Furthermore, the proof of the corollary 3.5.3 can be applied to all generic positions then,
it implies that the dimension of the Lie algebra is at least equal to 3, almost everywhere,
i.e.,

3 6 d(ξ1,ξ2,y,θ) 6 5 .

3.5.3 Approximation for small spheres and large distances

For the general case (θ 6= π/2), the preceding computation is not sufficient to conclude.
In order to proceed, we make an expansion of the vectorfields and their Lie brackets with
respect to a (the radius of the balls) near 0.

This part is devoted to the proof of the expansion of the Neumann to Dirichlet map
(4.29) together with its inverse (4.30) at large arms’ lengths. Let us first define for all
(i, j) ∈ {1, 2, 3}2, the linear map Ti,j as

Ti,j : H−1/2(∂B) → H1/2(∂B)

fj 7→
∫
∂B

K(xi + a · ,xj + as) fj(s) ds .

We recall that the Green kernel K writes (following (4.13)) as

K(r, r′) = G(r− r′) + K1(r, r′) + K2(r, r′) + K3(r, r′) ,
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where G is the Stokeslet (see (4.14)) and each kernel is given by the corresponding counter-
part in (4.13). Eventually, we call T 0 the Neumann to Dirichlet map associated to G

T 0 : H−1/2(∂B) → H1/2(∂B)

f 7→
∫
∂B

G(a( · − s)) f(s) ds .

Proposition 3.5.5 Let (i, j) ∈ {1, 2, 3}2. We have the following expansions, valid for a�
1:

• if i 6= j then
Ti,j = K(xi,xj)〈fj , Id〉∂B + R1 (3.29)

where ||R1||L(H−1/2,H1/2) = O (a) ,

• otherwise

Ti,i = T 0 +
3∑
k=1

Kk(xi,xi)〈fi, Id〉∂B + R2 (3.30)

where ||R2||L(H−1/2,H1/2) = O (a) .

Proof. Let (i, j) ∈ {1, 2, 3}2 be such that i 6= j, and fj ∈ H−1/2(∂B). We define

∀r ∈ ∂B , ui(r) := (Ti,jfj)(r) =
∫
∂B

K(xi + ar,xj + as)fj(s)ds , (3.31)

and

vi(r) = ui(r)−K(xi,xj)
∫
∂B

fj(s) ds =
∫
∂B

(K(xi + ar,xj + as)−K(xi,xj)) fj(s)ds .

Our aim is to estimate the H1/2(∂B) norm of vi. But3

‖vi‖H1/2(∂B) ≤ ‖vi‖H1(B),

and since K(x,y) is a smooth function in the neighborhood of x = xi and y = xj , one has
∀r, s ∈ B

|K(xi + ar,xj + as)−K(xi,xj)| = O (a) , (3.32)

and for the gradients in both r and s

|∇rK(xi + ar,xj + as)| = O (a) ,
|∇sK(xi + ar,xj + as)| = O (a) ,
|∇r∇sK(xi + ar,xj + as)| = O

(
a2) .

Therefore, we obtain ∀r ∈ B

|vi(r)| ≤ ‖K(xi + ar,xj + a · )−K(xi,xj)‖
H

1
2
‖fj‖

H−
1
2

≤ O (a) ‖fj‖
H−

1
2
,

and similarly

|∇rvi(r)| ≤ ‖∇r (K(xi + ar,xj + a · )) ‖
H

1
2
‖fj‖

H−
1
2

≤ O (a) ‖fj‖
H−

1
2
.

3Here and in the sequel, we use the definition for the H1/2(∂B) norm:

‖v‖H1/2(∂B) = min
w∈H1(B,R3), w=v on ∂B

‖w‖H1(B) .
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This enables us to estimate the H
1
2 norm of vi on ∂B

‖vi‖
H

1
2 (B)

≤ ‖vi‖H1(B)

=
(
‖vi‖2L2(B) + ‖∇vi‖2L2(B)

) 1
2

≤ O (a) ‖fj‖
H−

1
2
,

which proves (4.24).

In order to prove (4.25), we use the decomposition (4.13) where none of the kernels
(Ki)i=1,2,3 is singular. Therefore ∀r ∈ ∂B

ui(r) := (Ti,ifi)(r) =
∫
∂B

K(xi + ar,xi + as)fi(s)ds

=
∫
∂B

G(a(r− s))fi(s)ds +
∫
∂B

(K1 + K2 + K3)(xi + ar,xi + as)fi(s)ds

= T 0fi +
∫
∂B

(K1 + K2 + K3)(xi + ar,xi + as)fi(s)ds .

We finish as before, having remarked that for l = 1, 2, 3

Kl(xi + ar,xi + as) = Kl(xi,xi) +O (a) . (3.33)

Proposition 3.5.6 For every f ∈ H−1/2, and x = (ξ,p) ∈ S

(Txf)i (r) = T 0fi +
3∑
l=1

Kl(xi,xi)〈fi, Id〉∂B +
∑
j 6=i

K(xi,xj)〈fj , Id〉∂B +Ri(f), (3.34)

with ‖Ri‖L(H−1/2,H1/2) = O (a), and i = 1, 2, 3.

Proof.

For all i ∈ {1, 2, 3}, and all r ∈ ∂B

(Txf)i (r) :=
∫
∂B

K(xi + ar,xi + as) fi(s)ds +
∑
i6=j

∫
∂B

K(xi + ar,xj + as) fj(s)ds

= Ti,ifi +
∑
j 6=i
Ti,jfj

and the result follows from the application of (4.24) and (4.25) of Proposition 4.4.2.

Proposition 3.5.7 In the regime a� 1, one has for every u ∈ H1/2, and x = (ξ,p) ∈ S(
T −1

x u
)
i

= (T 0)−1
(

ui −
∑3
k=1 Kk(xi,xi)〈(T 0)−1ui, Id〉∂B

)
−

(T 0)−1

∑
j 6=i

K(xi,xj)〈(T 0)−1uj , Id〉∂B

+ R̃i(u)
(3.35)

with ‖R̃i‖L(H1/2,H−1/2) = O
(
a3), and i = 1, 2, 3.
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Proof. We recall that

T 0 : H− 1
2 (∂B) → H

1
2 (∂B)

f 7→
∫
∂B

G(a( · − s))f(s) ds ,

and define for l = 1, 2, 3 the operators

Sl : H− 1
2 (∂B) → H

1
2 (∂B)

f 7→
∫
∂B

Kl(xi,xi)f(s) ds ,

and eventually

Si,j : H− 1
2 (∂B) → H

1
2 (∂B)

f 7→
∫
∂B

K(xi,xj)f(s) ds .

(Notice that for all f ∈ H− 1
2 (∂B), Slf and Si,jf are in fact constant maps.)

That these operators are continuous operators from H−
1
2 (∂B) into H

1
2 (∂B) is classical.

We hereafter are only interested into the estimation of their norms, and more precisely the
way they depend on a, δ and y in the limit a → 0. Notice that since the kernel G is
homogeneous of degree -1, one has

‖T 0‖L(H−1/2,H1/2) = O

(
1
a

)
and

∥∥∥(T 0)−1
∥∥∥
L(H1/2,H−1/2)

= O (a) . (3.36)

As far as Sl is concerned, we get that (since |Kl(xi,xi)| = O (1))

‖Sl‖L(H−1/2,H1/2) = O (1) , (3.37)

and similarly
‖Si,j‖L(H−1/2,H1/2) = O (1) . (3.38)

When a→ 0 this enables us to invert (4.29) leading to (4.30).

3.5.4 Asymptotic expansion of the motion equation

We now use the fact that the spheres are non-deformable and may only move following a
rigid body motion. In other words, the velocity of each point r of the i−sphere expresses as
a sum of a translation and a rotation as

ui(r) = uTi
+ uRi

(r) , (3.39)

where uTi
is constant on ∂B while uRi

(r) = ωi × ar for a suitable angular velocity ωi
(remember that all quantities are expressed on the unit sphere ∂B). This is of particular
importance for the computation of the total force and the total torque, which, due to self-
propulsion, should vanish. This implies∑

i

∫
∂B

fi =
∑
i

∫
∂B

(
T −1

x u
)
i

= 0 . (3.40)

Plugging (4.39) in (4.40) and using (4.30) leads to∑
i

∫
∂B

(T 0)−1

(
uT i + uRi −

3∑
k=1

Kk(xi,xi)〈(T 0)−1(uT i + uRi), Id〉∂B

)
−

(T 0)−1

∑
j 6=i

K(xi,xj)〈(T̄ 0)−1(uT j + uRj), Id〉∂B

 = O
(
a3) ||u|| .

(3.41)
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It is well known that both translations and rotations are eigenfunctions of the Dirichlet
to Neumann map of the three dimensional Stokes operator outside a sphere. Namely(

T 0)−1 uT i = λTuT i and
(
T 0)−1 uRi = λRuRi .

It is well-known that λT = 3µa
2 leading in particular to the celebrated Stokes formula∫

∂B

(
T 0)−1 uTi

ds = 6πµauTi

while λR = 3µa. We also remark that due to
∫
∂B

uRi
ds = 0 , we have∫

∂B

(
T 0)−1 uRids = 0 .

We therefore obtain

6πµa
∑
i

uT i − 6πµa
3∑
k=1

Kk(xi,xi)uT i − 6πµa
∑
j 6=i

K(xi,xj)uT j

 = O
(
a3) ||u|| .

(3.42)
We now compute the torque with respect to the center x2 of the first ball B2. Self-

propulsion of the swimmer implies that this torque vanishes:

0 =
∫
∂B

(x1−x2+ar)×f1(r)+
∫
∂B

ar×f2(r)+
∫
∂B

(x3−x2+ar)×f3(r) = I1+I2+I3 , (3.43)

where, calling eθ =

 cos θ
sin θ

0

 the direction of the swimmer, the quantities I1, I2 and I3

are respectively given below.

I1 =
∫
∂B

(x1 − x2 + ar)× f1(r) =
∫
∂B

(ξ1eθ + ar)× (Tx)−1u1

=
∫
∂B

(−ξ1eθ + ar)× (T 0)−1

(
uT 1 + uR1 − 6πµa

3∑
l=1

Kl(x1,x1)uT 1

−6πµa
∑
j 6=2

K(x1,xj)uT j +O
(
a2) ||u||


= −6πµaξ1eθ ×

uT 1 − 6πµa
3∑
l=1

Kl(x1,x1)uT 1 − 6πµa
∑
j 6=1

K(x1,xj)uT j

+O
(
a3) ||u|| .

Similarly, we get,

I2 = a

∫
∂B

r× f2(r) = a

∫
∂B

r× (Tx)−1u2

= a

∫
∂B

r× (T 0)−1

(
uT 2 + uR2 − 6πµa

3∑
l=1

Kl(x2,x2)uT 2

−6πµa
∑
j 6=2

K(x2,xj)uT j +O
(
a2) ||u||


= a

∫
∂B

r× (T 0)−1 (uR1) +O
(
a4) ||u|| .
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But since
(
T 0)−1 uR1 = λRuR1 = λRω1 × ar, we have

a

∫
∂B

r× (T 0)−1 (uR2) = a2λR

∫
∂B

r× (ω1 × r) dr

= 8π
3 µa3ω1 .

This leads to

I2 = 8π
3 µa3ω1 +O

(
a4) ||u|| .

Correspondingly,

I3 =
∫
∂B

(x3 − x2 + ar)× f3(r)

= 6πµaξ2eθ ×

uT 3 − 6πµa
3∑
l=1

Kl(x3,x3)uT 3 − 6πµa
∑
j 6=3

K(x3,xj)uT j

+O
(
a3) ||u|| .

Denoting by A the matrix

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 (3.44)

where for i = 1, 2, 3

Aii = Id− 6πµa
3∑
l=1

Kl(xi,xi) (3.45)

and for i, j = 1, 2, 3 with i 6= j

Aij = −6πµaK(xi,xj) (3.46)

and S the matrix

S =
(

Id Id Id
−ξ1eθ× 0 +ξ2eθ×

)
,

we can rewrite the self-propulsion assumption (4.43), (4.44) as (notice that angular velocities
being involved of higher order disappear)

SA

 uT1

uT2

uT3

 = O
(
a2) ||u||. (3.47)

We end up by expressing uT1 ,uT2 ,uT3 and ω1, ω2, ω3 in terms of ẋ, ẏ, θ̇, ξ̇1 and ξ̇2. But,
since uTi

is the velocity of the center of the ball Bi, one has

uT1 =

 ẋ− ξ̇1 cos(θ) + θ̇ξ1 sin(θ)
ẏ − ξ̇1 sin(θ)− θ̇ξ1 cos(θ)

0

 , uT2 =

 ẋ
ẏ
0

 ,

and

uT3 =

 ẋ+ ξ̇2 cos(θ)− θ̇ξ2 sin(θ)
ẏ + ξ̇2 sin(θ) + θ̇ξ2 cos(θ)

0

 .
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Similarly

ω1 = ω2 = ω3 =

 0
0
θ̇

 .

We rewrite these formulas as uT1

uT2

uT3

 = T

 ẋ
ẏ

θ̇

+ Uξ̇ (3.48)

with

T =

 Id −ξ1e⊥θ
Id 0
Id ξ2e⊥θ

 ,

where e⊥θ =

 − sin θ
cos θ

0

 and

U =

 −eθ 0
0 0
0 eθ

 .

Plugging (3.48) into (4.48) leads to the motion equation

(SA + R)

T

 ẋ
ẏ

θ̇

+ Uξ̇

 = 0 (3.49)

where the residual matrix has a norm which is estimated as

||R|| = O
(
a2) .

3.5.5 Dimension of Lie algebra under the small spheres hypothesis

Rewriting from (4.45), (4.46) and (4.47) A = Id + aA1, we can expand in power series
of a the solution of (3.49). This enables us to write an expansion (still in a) of the two
vectorfields F1 and F2. To this end, we have used the software MAPLE to symbolically
compute those expressions and the Lie brackets [F1,F2], [F1, [F1,F2]], and [F2, [F1,F2]].
Writing the vectorfields in components as

F1(ξ1, ξ2, y, θ) :=


1
0

F3
1 +O

(
a2)

F4
1 +O

(
a2)

F5
1 +O

(
a2)

 ,F2(ξ1, ξ2, y, θ) :=


0
1

F3
2 +O

(
a2)

F4
2 +O

(
a2)

F5
2 +O

(
a2)

 , (3.50)

we find, after having furthermore expanded the abovementioned components in power series

of
1
y

,
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F3
1 = 1

3 cos(θ) + a

6 cos(θ)K3
1 (ξ1, ξ2, θ) + 3a

16y2 (sin(θ) cos(θ) (ξ2 + 2ξ1))

+ a

384y3

(
cos(θ)K3

2 (ξ1, ξ2, θ)
)

+ a

512y4

(
sin(θ) cos(θ)K3

3 (ξ1, ξ2, θ)
)

+O

(
a

y5

)
,

F3
2 = −1

3 cos(θ)− a

6 cos(θ)K3
1 (ξ2, ξ1,−θ) + 3a

16y2 (sin(θ) cos(θ) (2ξ2 + ξ1))

− a

384y3

(
cos(θ)K3

2 (ξ2, ξ1,−θ)
)

+ a

512y4

(
sin(θ) cos(θ)K3

3 (ξ2, ξ1,−θ)
)

+O

(
a

y5

)
,

F4
1 = 1

3 sin(θ) + a

6 sin(θ)K4
1 (ξ1, ξ2, θ)−

3a
32y2K

4
2 (ξ1, ξ2, θ)

+ a

192y3 sin(θ)K4
3 (ξ1, ξ2, θ)−

a

y4K
4
4 (ξ1, ξ2, θ) +O

(
a

y5

)
,

F4
2 = −1

3 sin(θ)− a

6 sin(θ)K4
1 (ξ2, ξ1,−θ)−

3a
32y2K

4
2 (ξ2, ξ1, θ)

− a

192y3 sin(θ)K4
3 (ξ2, ξ1,−θ)−

a

y4K
4
4 (ξ2, ξ1,−θ) +O

(
a

y5

)
,

F5
1 = 3a

64y3 sin(θ) cos(θ)K5
1 (ξ1, ξ2, θ)−

9a
512y4 cos(θ)K5

2 (ξ1, ξ2, θ) +O

(
a

y5

)
,

F5
2 = 3a

64y3 sin(θ) cos(θ)K5
1 (ξ2, ξ1,−θ) + 9a

512y4 cos(θ)K5
2 (ξ2, ξ1,−θ) +O

(
a

y5

)
.

In those expressions the remaining functions are respectively given by

K3
1 (ξ, θ) =

(
ξ2
2ξ

2
1 − ξ3

2ξ1 − ξ4
2 + 2ξ3

1ξ2 + 2ξ4
1
)

(ξ2
2 + ξ1ξ2 + ξ2

1) ξ1ξ2 (ξ1 + ξ2) ,

K3
2 (ξ, θ) = −210ξ2

1 cos(θ)2 + 12 cos(θ)4ξ2
1 + 184ξ2

1 + 24 cos(θ)2ξ1ξ2

−32ξ1ξ2 − 6 cos(θ)4ξ1ξ2 − 92ξ2
2 + 105ξ2

2 cos(θ)2 − 6 cos(θ)4ξ2
2 ,

K3
3 (ξ, θ) = 1

(ξ2
2 + ξ1ξ2 + ξ2

1)

(
12 cos(θ)4ξ5

2 + 24ξ5
1 cos(θ)4 − 168ξ5

2 cos(θ)2 − 336ξ5
1 cos(θ)2

+112ξ5
2 + 72ξ1ξ4

2 − 176ξ2
1ξ

3
2 − 136ξ3

1ξ
2
2 + 224ξ5

1 − 156ξ3
1ξ

2
2 cos(θ)2

−24ξ2
1ξ

3
2 cos(θ)2 − 240ξ4

1ξ2 cos(θ)2 + 48ξ4
1ξ2 − 156ξ1ξ4

2 cos(θ)2

−24 cos(θ)4ξ2
1ξ

3
2 + 9 cos(θ)4ξ1ξ

4
2 − 21ξ3

1 cos(θ)4ξ2
2

)
,

K4
1 (ξ, θ) =

(
ξ2
2ξ

2
1 − ξ3

2ξ1 − ξ4
2 + 2ξ3

1ξ2 + 2ξ4
1
)

(ξ2
2 + ξ1ξ2 + ξ2

1) ξ1ξ2 (ξ1 + ξ2) ,

K4
2 (ξ, θ) = 6 cos(θ)2ξ1 + 3 cos(θ)2ξ2 − 4ξ1 − 2ξ2 ,
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K4
3 (ξ, θ) = −132ξ2

1 cos(θ)2 + 6 cos(θ)4ξ2
1 + 56ξ2

1 + 12 cos(θ)2ξ1ξ2

−16ξ1ξ2 − 3 cos(θ)4ξ1ξ2 − 28ξ2
2 + 66ξ2

2 cos(θ)2 − 3 cos(θ)4ξ2
2 ,

K4
4 (ξ, θ) = 1

(512ξ2
2 + 512ξ1ξ2 + 512ξ2

1)

(
− 210 cos(θ)4ξ5

2 − 420ξ5
1 cos(θ)4 + 232ξ5

2 cos(θ)2

+24 cos(θ)6ξ5
1 − 64ξ5

2 + 12 cos(θ)6ξ5
2 − 96ξ1ξ4

2 − 64ξ2
1ξ

3
2

−128ξ5
1 + 104ξ3

1ξ
2
2 cos(θ)2 − 56ξ2

1ξ
3
2 cos(θ)2

−96ξ4
1ξ2 + 216ξ1ξ4

2 cos(θ)2 − 66 cos(θ)4ξ2
1ξ

3
2

−318ξ4
1 cos(θ)4ξ2 − 240ξ3

1 cos(θ)4ξ2
2 − 24 cos(θ)6ξ2

1ξ
3
2

−21 cos(θ)6ξ3
1ξ

2
2 + 464ξ5

1 cos(θ)2 − 128ξ3
1ξ

2
2

+264ξ4
1ξ2 cos(θ)2 − 204 cos(θ)4ξ1ξ

4
2 + 9 cos(θ)6ξ1ξ

4
2

)
,

K5
1 (ξ, θ) = −8ξ1 − 4ξ2 + 2 cos(θ)2ξ1 + cos(θ)2ξ2 ,

K5
2 (ξ, θ) = 1

(ξ2
2 + ξ1ξ2 + ξ2

1)

(
20 cos(θ)2ξ4

2 − 40 cos(θ)2ξ4
1 − 4 cos(θ)4ξ4

2 + 8ξ4
1 cos(θ)4

−40ξ3
2ξ1 − 8ξ2

2ξ
2
1 + 32ξ3

1ξ2 − 16ξ4
2 + 32ξ3

2 cos(θ)2ξ1 − 7 cos(θ)4ξ3
2ξ1

+ cos(θ)4ξ2
1ξ

2
2 − 40 cos(θ)2ξ3

1ξ2 + 8ξ3
1 cos(θ)4ξ2 + 32ξ4

1 − 8ξ2
2ξ

2
1 cos(θ)2

)
.

As one can see, the use of a software for symbolic computation seems unavoidable. Sub-
sequently, we get the expansion of the Lie bracket [F1,F2](ξ1, ξ2, y, θ)

[F1,F2](ξ, y, θ) :=


0
0

[F1,F2]3 +O
(
a2)

[F1,F2]4 +O
(
a2)

[F1,F2]5 +O
(
a2)

 , (3.51)

where the components are given by the following expressions

[F1,F2]3 = −a3 cos(θ) (ξ4
1 + 2ξ3

1ξ2 + ξ2
2ξ

2
1 + 2ξ3

2ξ1 + ξ4
2)

(ξ1 + ξ2)2ξ2
2ξ

2
1

− 27 a
512 y4 a cos(θ) sin(θ)

ξ1ξ2
(
cos(θ)4 − 4 cos(θ)2 + 8

) (
−ξ2

2 + ξ2
1
)

(ξ2
2 + ξ1ξ2 + ξ2

1)

+O
(
a

y5

)
,

[F1,F2]4 = −a3 sin(θ)
(
ξ4
1 + 2ξ3

1ξ2 + ξ2
2ξ

2
1 + 2ξ3

2ξ1 + ξ4
2
)

(ξ1 + ξ2)2
ξ2
2ξ

2
1

+ 27 a
512 y4 cos(θ)2 ξ1ξ2

(
cos(θ)4 − 4 cos(θ)2 + 8

) (
−ξ2

2 + ξ2
1
)

(ξ2
2 + ξ1ξ2 + ξ2

1)

+O
(
a

y5

)
,

[F1,F2]5 = 81 a
512 y4 cos(θ)

ξ1ξ2 (ξ1 + ξ2)
(
cos(θ)4 − 4 cos(θ)2 + 8

)
(ξ2

2 + ξ1ξ2 + ξ2
1) +O

(
a

y5

)
.

Notice that since the two first coordinates of F1 and F2 are constant, the corresponding first
coordinates of the Lie bracket vanish. Similarly, the asymptotic expansion for the second
order Lie bracket [F1, [F1,F2]] (ξ, y, θ) reads
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[F1, [F1,F2]] (ξ, y, θ) :=


0
0

[F1, [F1,F2]]3 +O
(
a2)

[F1, [F1,F2]]4 +O
(
a2)

[F1, [F1,F2]]5 +O
(
a2)

 , (3.52)

where

[F1, [F1,F2]]3 = −2 a
3 cos(θ)

ξ2
(
3ξ2

1 + 3ξ1ξ2 + ξ2
2
)

ξ3
1(ξ1 + ξ2)3

+ 27 a
512 y4 cos(θ) sin(θ)L3(ξ, θ) +O

(
a

y5

)
,

[F1, [F1,F2]]4 = −2 a
3 sin(θ)

ξ2
(
3ξ2

1 + 3ξ1ξ2 + ξ2
2
)

ξ3
1 (ξ1 + ξ2)3

− 27 a
512 y4 cos(θ)2L3(ξ, θ) +O

(
a

y5

)
,

[F1, [F1,F2]]5 = − 81 a
512 y4 cos(θ)L4(ξ, θ) +O

(
a

y5

)
.

There, L3 and L4 are respectively given by

L3(ξ, θ) =
ξ3
2
(
8− 4 cos(θ)2 + cos(θ)4) (2ξ2

1 − ξ1ξ2 − ξ2
2
)

(ξ2
2 + ξ1ξ2 + ξ2

1)2 ,

L4(ξ, θ) =
ξ3
2
(
8− 4 cos(θ)2 + cos(θ)4) (2ξ1 + ξ2)

(ξ2
2 + ξ1ξ2 + ξ2

1)2 .

Eventually, the expansion of the vector field [F2, [F1,F2]] is given by

[F2, [F1,F2]] (ξ1, ξ2, y, θ) :=


0
0

[F2, [F1,F2]]3 +O
(
a2)

[F2, [F1,F2]]4 +O
(
a2)

[F2, [F1,F2]]5 +O
(
a2)

 , (3.53)

where

[F2, [F1,F2]]3 = −2
3a cos(θ)

ξ1
(
ξ2
1 + 3ξ1ξ2 + 3ξ2

2
)

(ξ3
2 (ξ1 + ξ2)3)

− 27 a
512 y4 a cos(θ) sin(θ)L3(ξ2, ξ1,−θ) +O

(
a

y5

)
,

[F2, [F1,F2]]4 = 2 a
3 sin(θ)

ξ1
(
ξ2
1 + 3ξ1ξ2 + 3ξ2

2
)

(ξ3
2 (ξ1 + ξ2)3

− 27 a
512 y4 cos(θ)2L3(ξ2, ξ1,−θ) +O

(
a

y5

)
,

[F2, [F1,F2]]5 = − 81 a
512 y4 cos(θ)L4(ξ2, ξ1,−θ) +O

(
a

y5

)
.

Having an expansion of det (F1,F2, [F1,F2], [F1, [F1,F2]] , [F2, [F1,F2]]) which does not van-
ish implies the local controllability of our model swimmer. It can be readily checked that
we have
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det (F1,F2, [F1,F2], [F1, [F1,F2]] , [F2, [F1,F2]]) =

=

∣∣∣∣∣∣
[F1,F2]3 [F1, [F1,F2]]3 [F2, [F1,F2]]3
[F1,F2]4 [F1, [F1,F2]]4 [F2, [F1,F2]]4
[F1,F2]5 [F1, [F1,F2]]5 [F2, [F1,F2]]5

∣∣∣∣∣∣
= 81 a3(ξ1 − ξ2)

131072 y9 sin θ(cos θ)2R(ξ, θ) + O

(
1
y10

)
, (3.54)

with,

R(ξ, θ) =
(
6ξ6

1 + 27ξ5
1ξ2 + 50ξ4

1ξ
2
2 + 55ξ3

1ξ
3
2 + 50ξ2

1ξ
4
2 + 27ξ1ξ5

2 + 6ξ6
2
)

(ξ1 + ξ2) (ξ2
2 + ξ1ξ2 + ξ2

1)2
ξ1ξ2

×
(
64− 64 cos(θ)2 + 32 cos(θ)4 − 8 cos(θ)6 + cos(θ)8) .

It is easily seen that R never vanishes. Therefore, the previous determinant has a non-

vanishing first coefficient (in
1
y9 ) which does not vanish for ξ1 6= ξ2 and θ /∈ {0, π2 , π,

3π
2 }.

Since it is an analytic function of (ξ1, ξ2, y, θ) we deduce that it does not vanish except at
most on a negligible set. This is sufficient to conclude that

d(ξ1,ξ2,y,θ) = 5

almost everywhere and the local controllability of the Three-sphere swimmer around such
points.

Remark 3.5.8 Quite strikingly, when ξ1 = ξ2 the first term of the expansion vanishes and
one has to go one step further. We find in that case

det (F1,F2, [F1,F2], [F1, [F1,F2]] , [F2, [F1,F2]]) (ξ, ξ, y, θ) = T (ξ, y, θ) 1
y10 + O

(
1
y11

)
,

where

T (ξ, y, θ) = − 945
524288a

3 sin(θ)2 cos(θ)2ξ
(
cos(θ)4 + 8− 4 cos(θ)2)2 .

This coefficient does not vanish unless θ /∈ {0, π2 , π,
3π
2 }.

We already know from symmetry that when θ = π
2 or θ = 3π

2 , one has d(ξ1,ξ2,y,θ) ≤ 3.
Therefore, it remains to understand the case θ = 0 (or π by symmetry). The preceding
computation does not allow us to conclude about the dimension of the Lie algebra at such
points. Indeed, the 2 first coefficients of the expansion of the determinant vanish, and
it might well be the case at all orders. Nevertheless, in that case, we can expand the
subdeterminant

∆ =
∣∣∣∣ [F1,F2]3 [F1, [F1,F2]]3

[F1,F2]5 [F1, [F1,F2]]5

∣∣∣∣
in order to obtain informations. Indeed, one gets

∆ = 45
512 y4 a

2 (ξ1 − ξ2) ξ1R′(ξ) +O

(
1
y5

)
,

with,

R′(ξ) = 2ξ5
2 + 11ξ1ξ4

2 + 16ξ2
1ξ

3
2 + 19ξ3

1ξ
2
2 + 12ξ4

1ξ2 + 3ξ5
1

(ξ1 + ξ2)2
ξ2
2 (ξ2

2 + ξ2
1 + ξ1ξ2)2 .
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As a direct consequence, we get that the dimension of the Lie algebra, d(ξ,y,0) ≥ 4, for
almost every (ξ, y) ∈ (R+)3.

This finishes the proof of Lemma 3.3.6 and thus of Theorem 3.2.2.

Remark 3.5.9 As usual, it is possible to pass from local to global controllability on each
of the connected components where the determinant given by (3.54) does not vanish. More
precisely, let A :=

{
(ξ,p) s. t. d(ξ,p) ≤ 4

}
, we define by S(ξ,p) the connected component of

the subset S \A which contains (ξ,p). Applying Chow’s Theorem 3.3.3 on S(ξ,p), gives that

for every initial configuration (ξi,pi), any final configuration (ξf ,pf ) in S(ξ,p), and any

final time T > 0, there exists a stroke ξ ∈ W1,∞([0, T ]), satisfying ξ(0) = ξi and ξ(T ) = ξf

and such that the self-propelled swimmer starting in position pi with the shape ξi at time
t = 0, ends at position pf and shape ξf at time t = T by changing its shape along ξ(t) and
staying in S(ξ,p) for all time t ∈ [0, T ]. In other words, S(ξ,p) is exactly equal to the orbit of
the point (ξ,p).

3.6 Conclusion

The aim of the present paper was to examine how the controllability of low Reynolds number
artificial swimmers is affected by the presence of a plane boundary on the fluid. The systems
are those classically studied in the literature (see [7] for instance) but are usually not confined.
This is the first in-depth control study of how the presence of the plane wall affects the
reachable set of a peculiar micro-swimmer.

Firstly, Theorem 3.2.1 shows that the controllability on the whole space implies the con-
trollability in the half space. Although the proof is applied on the Four-sphere swimmer,
it is based on general arguments which can be appropriate for any finite dimensional linear
control systems.

Secondly, the Theorem 3.2.2 deals with the controllability of the Three-sphere swimmer in
the presence of the plane wall. We prove that, at least for this example, the hydrodynamics
perturbation due to the wall surprisingly makes the swimmer more controllable. This result
is not in contradiction with the several scientific studies which show that the wall seems to
attract the swimmer (see [74], [91], [81], [38], [17]). Although, the Theorem 3.2.2 leads to
the fact that the wall contributes to increase the swimmer’s reachable set, we can conjecture
that some of them are easier to reach than others.

The quantitative approach to this question together with the complete understanding of
the situation in view of controllability of the underlying systems is far beyond reach and thus
still under progress as is, in another direction, the consideration of more complex situations
like, e.g. rough or non planar wall. This is the purpose of ongoing work.



Chapitre 4

Rough wall effect on
micro-swimmers

Abstract : We study the effect of a rough wall on the controllability of micro-swimmers
made of several balls linked by thin jacks: the so-called 3-sphere and 4-sphere swimmers.
Our work completes the previous work [11] dedicated to the effect of a flat wall. We show
that a controllable swimmer (the 4-sphere swimmer) is not impacted by the roughness. On
the contrary, we show that the roughness changes the dynamics of the 3-sphere swimmer,
so that it can reach any direction almost everywhere.

83
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4.1 Introduction

Micro-swimming is a subject of growing interest, notably for its biological and medical im-
plications: one can mention the understanding of reproduction processes, the description of
infection mechanisms, or the conception of micro-propellers for drug delivery in the body.
As regards its mathematical modeling and analysis, the studies by Taylor [84], Lighthill [54]
and Purcell [70] have been pioneering contributions to a constantly increasing field: we refer
to the recent work of T. Powers and E. Lauga [53] for an extensive bibliography.

Among the many aspects of micro-swimming, the influence of the environment on swim-
mers dynamics has been recognized by many biological studies (see for instance [17], [68],
[81], [82], [74], [91], [92]). One important factor in this dynamics is the presence of confining
walls. For example, experiments have shown that some microorganisms, like E. Coli, are
attracted to surfaces.

The focus of this paper is the effect of wall roughness on micro-swimming. Such effect has
been already recognized in the context of microfluidics, in connection with superhydropho-
bic surfaces ([94]). Moreover, recent studies have highlighted the role of roughness in the
dynamics of passive spherical particles in a Stokes flow: we refer for instance to the study
of S. H. Rad and A. Najafi [71] or to the one of D. Gérard-Varet and M. Hillairet [43].

We want here to study the impact of a rough wall on the displacement of micro-swimmers,
at low Reynolds number. Our point of view will be theoretical, more precisely based on con-
trol theory. Connection between swimming at low Reynolds number and control theory has
been emphasized over the last years (see [63], [27], [60], [59]). We shall ponder here on the
recent studies [7] and [11], dedicated to the controllability analysis of particular Stokesian
robots, in the whole space and in the presence of a plane wall respectively. We shall here
incorporate roughness at the wall, and focus on two classical models of swimmers: the 3-
sphere swimmer (see [47],[8], [7], [11]) and the 4-sphere swimmer (see [7], [11]). First, we will
show that the controllability of the 4-sphere swimmer (already true near a flat wall) persists
with roughness. Then, we will prove that the rough wall leads the 3-sphere swimmer to
reach any space direction. The underlying mechanism is the symmetry-breaking generated
by the roughness.

The paper is divided into three parts. In Section 4.2, we introduce the mathematical
model for the fluid-swimmer coupling, and we derive from there an ODE for the swimmer
dynamics. In Section 4.3, we show that the force field in this ODE is analytic with respect
to the roughness amplitude and swimmer size and position. Combining this property with
the results of [11] yields the controllability of the 4-sphere swimmer ”almost everywhere”.
Section 4.4 provides an asymptotic expansion of the Dirichlet-to-Neumann operator, with
respect to the roughness amplitude and swimmer’s size. This operator is naturally involved
in the expansion of the force fields. Eventually, we use this expansion and make it truly
explicit in Section 4.5, in the special case of the 3-sphere swimmer. This allows us to show
its controllability.

4.2 Mathematical setting

In this part, we present our mathematical model for the swimming problem.
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4.2.1 Swimmers

We carry on the study of specific swimmers that were considered in [7] in R3 and in [11] in an
half plane. These swimmers consist of N spheres ∪Nl=1Bl of radii a connected by k thin jacks
which are supposed free of viscous resistance. The position of the swimmer is described by
a variable p ∈ R3

+×SO(3), which gives both the coordinates of one point over the swimmer
and the swimmer’s orientation. Moreover, the shape variable is denoted by a k-tuple ξ: its
ith component ξi gives the length of ith arm, that can stretch or elongate through time.
Nevertheless, the directions of the arms are only modified by global rotation of the swimmer.
Let us stress that all the variables above depend implicitly on time, through the transport
and deformation of the swimmer. Finally, we call S ⊂ RM (for a suitable M ∈ N) the set
of admissible states (ξ,p). Typically, this admissible set encodes geometrical constraints,
like a no-contact condition between the swimmer and the confining wall, or the fact that the
balls can not touch each other. We assume that S is a connected smooth submanifold of RM .

Many results of our paper apply to the general class of swimmers just described. Never-
theless, we will pay a special attention to two examples:

• The 4-sphere swimmer. We consider a regular tetrahedron (S1,S2,S3,S4) with center
O ∈ R3

+. The 4-sphere swimmer consists of four balls linked by four arms of fixed

directions ~OSi which are able to elongate and shrink (in a referential associated to
the swimmer). The four ball cluster is completely described by the list of parameters

(ξ,p) = (ξ1, . . . , ξ4,xc,R) ∈ S = (
√

3
2a,∞)4 × R3

+ × SO(3). It is known that the

4-sphere swimmer is controllable in R3 and remains controllable in presence of a plane
wall (see [7], [11]). This means that it is able to move to any point and with any
orientation under the constraint of being self-propelled, when the surrounding flow is
dominated by viscosity (Stokes flow). This swimmer is depicted in Fig. 4.1.

where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c,α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4

e1,4

x1

x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i

6

ξ2
ξ1

ξ3

ξ4

Figure 4.1: The Four-sphere swimmer.

• The 3-sphere swimmer (see [66], [8],[7] and [11]). It is composed of three aligned
spheres, linked by two arms, see Fig. 3.2. The dynamics of the swimmer is described
through the lengths of the two arms ξ1, ξ2, the coordinates of the center of the middle
ball: xc = (xc, yc, zc), and some matrix R ∈ SO(3) describing the orientation of the
swimmer. Thus,

(ξ,p) = (ξ1, ξ2,xc,R) ∈ S = (2a,∞)2 × R3 × SO(3).

As regards the position and elongation of the swimmer, the angle of the rotation R
around the symmetry axis of the 3-sphere is irrelevant. As a matter of fact, we will
not show controllability for this angle: our result, Theorem 4.2.4, yields controllability
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of the swimmer up to rotation around its axis. Still, the associated angular velocity is
not zero, and will appear in the dynamics.

x

y

z

(xc, yc, zc)
ξ1

ξ2

φ

θ

Figure 4.2: Coordinates of the 3-sphere swimmer

4.2.2 Fluid flow

We consider a fluid confined by a rough boundary. This boundary is modelled by a surface
with equation z = εh(x, y), for some Lipschitz positive function h. Here, ε > 0 denotes
the amplitude of the roughness, that is ‖h‖∞ = 1. The swimmer evolves in the half-space
O = {(x, y, z) ∈ R3 s. t. z > εh(x, y)}. The fluid domain is then F := O \ ∪Nl=1Bl, and
again it depends implicitly on time. Finally, we assume that the flow is governed there by
the Stokes equation. Thus, the velocity uS and the pressure pS of the fluid satisfy:

−µ∆uS +∇pS = 0 , div uS = 0 in F , (4.1)

where µ is the viscosity of the fluid. We complement the Stokes equation (4.1) by standard
no-slip boundary conditions, that read:{

uS = Ω× (x− xc) + v + ud at ∪Nl=1∂Bl,
uS = 0 at ∂O.

(4.2)

In other words, we impose the continuity of the velocity both at the fixed wall and at the
boundary of the moving swimmer. Note that the velocity field of the swimmer is made of
two parts:

• one corresponding to an (unknown) rigid movement, with angular velocity Ω and linear
velocity v. If xc is the point over the swimmer encoded in p, the velocity v is its speed.
The vector (Ω,v)t can be identified with ṗ (everything will be made explicit in due
course).

• one corresponding to the (known) deformation of the jacks, with associated velocity
ud, depending on ξ̇.

Introducing the Hilbert space

V =
{

u ∈ D′(F ,R3) | ∇u ∈ L2(F), u(r)√
1 + |r|2

∈ L2(F)
}
, (4.3)
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we get (for any configuration of the swimmer ∪Bl and velocities (Ω,v,ud)) a unique solution
(uS , pS) of (4.1) -(4.2) in V × L2(F).

4.2.3 Dynamics

Of course, the previous relations describe the equilibrium of the fluid flow at any given
instant t. To close the model (that is the fluid-swimmer coupling), we still need to specify
the dynamics of the swimmer, based on Newton’s laws. The description is by now classical
(see for instance [7], [59]), and can be expressed by an affine control system without drift.
Let us recall the principle of derivation. Neglecting inertia, Newton’s laws become

N∑
l=1

∫
∂Bl

σ(uS , pS) ·n ds = 0 ,

N∑
l=1

∫
∂Bl

σ(uS , pS) ·n× (x− xc) ds = 0 ,
(4.4)

where σ(u, p) = µ(∇u +∇tu)− pId is the Cauchy tensor.

Moreover, if we introduce an orthonormal basis (e1, e2, e3) and use linearity, uS decom-
poses into

uS =
3∑
i=1

Ωiui +
6∑
i=4

vi−3ui + ud. (4.5)

Here, the ui’s and ud are solutions of the Stokes equation, with zero Dirichlet condition at the
wall, and inhomogeneous Dirichlet conditions at the ball. The Dirichlet data is ei× (x−xc)
for i = 1, 2, 3, ei−3 for i = 4, 5, 6, ud for ud. Note also that the speed ud can be expressed
as a linear combination of (ξ̇i)ki=1:

ud =
k∑
i=1

udi ξ̇i. (4.6)

Identifying (Ω,v)t with ṗ (everything will be made explicit in due course), the system (4.4)
reduces to the following ODE:

M(ξ,p) ṗ + N(ξ,p) = 0 (4.7)

where the matrix M(ξ,p) is defined by,

Mi,j(ξ,p) :=


N∑
l=i

∫
∂Bl

((x− xc)× ei) ·σ(uj , pj) n ds (1 ≤ i ≤ 3, 1 ≤ j ≤ 6) ,

N∑
i=i

∫
∂Bl

ei−3 ·σ(uj , pj) n ds (4 ≤ i ≤ 6, 1 ≤ j ≤ 6) ,

and N(ξ,p) is the vector of R6 whose entries are,

Ni(ξ,p) :=


N∑
l=1

∫
∂Bl

((x− xc)× ei) ·σ(ud, pd) n ds (1 ≤ i ≤ 3) ,

N∑
l=1

∫
∂Bl

ei−3 ·σ(ud, pd) n ds (4 ≤ i ≤ 6) .
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The matrix M(ξ,p) is checked to be symmetric and negative definite. By inverting it in
(4.7), we end up with the following relation for the swimmer’s dynamics:

ṗ = −M−1(ξ,p)N(ξ,p) . (4.8)

By using (4.6), we deduce that there are vector fields Fi, i = 1..k, such that the equation
(4.8) reads

ṗ =
k∑
i=1

Fi(ξ,p)ξ̇i . (4.9)

4.2.4 Main results

Before turning to our mathematical analysis, we synthetize here our main results.

The controllability properties of the swimmers will follow from a careful study of the
properties of the Fi’s in (4.9). As a first consequence of this study, we will obtain the
analyticity of these vector fields with respect to all parameters: the typical height of the
roughness ε, the radius of the balls a, the vector of arms lengths ξ and the position of the
swimmer p. More precisely, defining

A := {(ε, a, ξ,p) ∈ R× R∗+ × (R∗+)k × (R3 × SO(3)) such that

Bi ∩Bj = ∅ ∀i 6= j, andBi ∩ ∂O = ∅ ∀i},

we have the following

Theorem 4.2.1 For all i = 1 . . . k, the field Fi(ξ, p) (which depends also implicitly on ε
and a) is an analytic function of (ε, a, ξ, p) over A.

Then, as a consequence of Theorem 4.2.1, we will prove that the roughness does not change
the controllability of the 4-sphere swimmer. We restrict here to local controllability ”almost
everywhere”: this terminology refers to the following

Definition 4.2.2 (”almost everywhere”) We say that a property holds for almost every
(ε, a, ξ,p) in A if it holds for all (ε, a, ξ,p) outside the zero set of a (non-trivial) analytic
function over A.

We have

Theorem 4.2.3 The 4-sphere swimmer is controllable almost everywhere, in the following
sense: for almost every (ε, a, ξi,pi), with (ξi,pi) ∈ S, one has local controllability from the
initial configuration (ξi,pi). This means that for any final configuration (ξf ,pf ) in a suitable
neighborhood of (ξi,pi) and any final time T > 0, there exists a stroke ξ ∈ W1,∞([0, T ]),
satisfying ξ(0) = ξi and ξ(T ) = ξf and such that if the self-propelled swimmer starts in
position pi with the shape ξi at time t = 0, it ends at position pf and shape ξf at time
t = T by changing its shape along ξ(t).

In the last Section 4.5, we shall address the controllability of the 3-sphere swimmer. In
the case of a flat boundary, as shown in [11], symmetries constrain the swimmer to move in a
plane. Also, it does not rotate around its own axis. As we will see, the roughness at the wall
breaks (in general) such symmetries, allowing for local controllability almost everywhere.
Let us point here a subtlety regarding our controllability result. To express the dynamics of
the swimmer through the equation (4.9), we have included in variable p (more precisely in
its SO(3) component) an angle describing rotation of the 3-sphere around its own axis. We
are not able to show controllability for this angle: we only show controllability for the other
components of p. Of course, this is not a problem with regards to the effective movement of
the swimmer: this angle is indeed irrelevant with regards to the swimmer’s orientation and
position. The analysis of Section 4.5 leads to the
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Theorem 4.2.4 There exists a surface h ∈ C∞c (R2) such that the 3-sphere swimmer is
locally controllable almost everywhere (up to rotation around its axis).

Refined statements will be provided in Section 4.5. This controllability result requires a
careful asymptotic asymptotic expansion of the force fields Fi. This expansion is related
to an expansion of a Dirichlet-to-Neumann map, performed in section 4.4. Eventually, the
dimension of the Lie algebra generated by the force fields is computed numerically, and the
controllability result follows from application of Chow’s theorem.

4.3 Analyticity of the dynamics

4.3.1 Regularity

This paragraph is devoted to the proof of Theorem 4.2.1. Let Y = (ε, a, ξ,p) ∈ A. We
must prove analyticity of the Fi’s with respect to Y = (ε, a, ξ,p), in a neighborhood of Y.
It will follow from the analyticity of M and N defined after (4.7). Their definitions involve
functionals of the type

I :=
N∑
l=1

∫
∂Bl

( 1
x )⊗ σ(u, p)nds

where (u, p) satisfies the Stokes equation in F , with Dirichlet conditions of the type:

u = 0 at ∂O, u = ul at ∂Bl, l = 1, . . . , N

for some family of rigid fields ul’s taken in the ”elementary set” {ei × x, ei, i = 1...3}.

We denote by xl, resp. xl the center of the ball Bl, resp. the center of the ball Bl
corresponding to Y. We introduce the diffeomorphisms

ϕl(x) := a

a
(x− xl) + xl.

Then, we have∫
∂Bl

( 1
x )⊗ σ(u, p)nds =

(a
a

)2 ∫
∂Bl

( 1
ϕl(x)

)
⊗ σ(u ◦ ϕl, p ◦ ϕl)nds.

Hence, in order to prove Theorem 4.2.1, it is enough to show that for all l = 1...N , for
δ, η > 0 small enough:

B(Y, δ) 7→ H1 (F ∩B(xl, a+ η))× L2 (F ∩B(xl, a+ η)) , Y 7→ (u ◦ ϕl, p ◦ ϕl)

is analytic. Indeed, Y 7→ σ(u ◦ ϕl, p ◦ ϕl) will be analytic with values in H−1/2(∂Bl), and
the surface integral will be analytic as well.

Therefore, we define the change of variable

ϕ(x) = x +
∑
l

χ(x− xl) (ϕl(x)− x) + (ε− ε)χh(x)(0, 0, h(x1, x2))

with χ, χh ∈ C∞c (R3), χ = 1 near B(0, a), χh = 1 near x3 = h(x1, x2). For χ and χh with
small enough supports, and for Y ∈ B(Y, δ), δ > 0 small enough, it is easily seen that ϕ
is a smooth diffeomorphism, which depends analytically on Y, and such that ϕ(F) = F .
Moreover, one has ϕ = ϕl in a small enough δ′-neighborhood of Bl. Introducing U := u ◦ϕ
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and P := p ◦ ϕ, it remains to prove the following

Claim: Y 7→ U is analytic from B(Ȳ, δ) to V0, where

V0 :=
{

U ∈ D′(F ,R3) | ∇U ∈ L2(F), U(r)√
1 + |r|2

∈ L2(F), U|∂Ō = 0.
}
.

To prove this claim, one first needs to write down the system satisfied by U, P . A simple
computation yields 

− div (A∇U) +B∇P = 0 in F ,
div (BtU) = 0 in F ,

U = 0 at ∂O, U = Ul at ∂Bl,
(4.10)

where

A = A(x) := |det∇φ(x)|(∇φ−1)t(∇φ−1)(φ(x)),
B = B(x) := |det∇φ(x)|(∇φ−1)(φ(x)), Ul := ul ◦ ϕl.

Note that A,B,Ul depend analytically on the parameter Y. We now consider the mapping

L : B(Y, δ)× V0 × L2(F) 7→
(
V0
)′ × L2(F)×

∏
l

H1/2(∂Bl),

(Y,V, Q) 7→
(
− div (A∇V) +B∇Q, div (BtV),

(
V|∂Bl

−Ul

)N
l=1

)
.

L is clearly well-defined, and it is analytic in (Y,V): we refer to [89] for the definition of
analytic functions over Banach spaces. Moreover, U = UY and P = PY satisfy

L(Y,U, P ) = 0

By the analytic version of the implicit function theorem, see again [89], U and P will be
analytic in Y near Y if

∂L
∂(V, Q) |(Y,U,P ) is an isomorphism from V0 × L2(F) to

(
V0
)′ × L2(F)×

∏
l

H1/2(∂Bl).

In other words, analyticity of U and P follows from the existence and uniqueness in V0 ×
L2(F) of a solution (V, Q) for the Stokes system

−∆V +∇Q = F in F ,
div V = G in F ,

V = 0 at ∂O, V = Vl at ∂Bl, l = 1...N

where F ∈
(
V0
)′

, G ∈ L2(F) and Vl ∈ H1/2(∂Bl) are prescribed data. Such well-posedness
is proved in the appendix. This ends the proof of Theorem 4.2.1.

4.3.2 Application to the 4-sphere swimmer

From the analyticity shown above and the results of [11], we can deduce Theorem 4.2.3.
First, by (4.9), we can write the swimmer’s dynamics as

˙( ξ
p
)

=
4∑
i=1

Gi

((
ξ
p
))
ui
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where (ui := ξ̇i)4
i=1 is the family of controls, and Gi :=

( ei
Fi

)
((e1, ..., e4) is the canonical

basis of R4). By the analyticity of the Gi’s and Chow’s theorem, it is then enough to prove
that for some (ε, a, ξ,p) ∈ R+ × R∗+ × S,

dimLie(ξ,p)(G1, ...,G10) = 10.

We write
∂αGi(ξ,p) = ∂αG0

i (ξ,p) + O(ε), ∀α ∈ N7,

where the G0
i ’s are force fields corresponding to the flat case h = 0. In particular, for ε

small enough
dimLie(ξ,p)(G1, ...,G10) ≥ dimLie(ξ,p)(G0

1, ...,G0
10).

But from [11] we know that for almost every (a, ξ,p)

dimLie(ξ,p)(G0
1, ...,G0

10) = 10.

This concludes the proof.

4.4 Asymptotic expansion of the Dirichlet-to-Neumann

We now turn to the controllability properties of the 3-sphere swimmer. As before, the key
point is to determine the dimension of the Lie algebra generated by the force fields Fi.
Therefore, we need to derive an asymptotic expansion of the Fi’s, in a and ε.

A preliminary step is to derive an asymptotic expansion of the so-called Dirichlet-to-
Neumann map of the Stokes operator. Indeed, the force fields Fi involve this map: that is,
the definition of the coefficients Mij and Ni involves

DN :
N∏
l=1

H1/2(∂Bl) 7→
N∏
l=1

H−1/2(∂Bl), (ul) 7→ (fl := σ(u, p)n|∂Bl
) ,

where (u, p) is the solution of the Stokes equation

−∆u +∇p = 0, div u = 0 in F , u|∂O = 0, u|∂Bl
= ul.

More precisely, it involves DN in restriction to N -uplets of rigid vector fields over Bl,
l = 1...N . We denote by R the (finite-dimensional) space of such N -uplets.

Even restricted to R, this operator is not very explicit: to derive directly an expansion in
terms of the parameters of the swimmer and wall is not easy. Hence, we follow the same
path as in [7, 11]: we write that for all (ul)Nl=1 ∈ R,

DN ((ul)) = T−1 ((ul))

where

T :
N∏
l=1

H−1/2(∂Bl) 7→
N∏
l=1

H1/2(∂Bl), (fl) 7→ (ul := u|∂Bl
)

and u is the solution of the following Stokes system in O:

−∆u +∇p =
N∑
l=1

1∂Bl
fl, div u = 0 in O, u|∂O = 0.
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Equivalently, this last system can be written:

−∆u +∇p = 0, div u = 0 in O \ ∪l∂Bl, [u]|∂Bl
= 0, [σ(u, p)n]|∂Bl

= fl,

where [ ]|∂Bl
denotes the jump across ∂Bl. Let us remind that O = {z > εh(x, y)} is

the domain without the balls. In particular, the operator T (associated to a transmission
condition) is not the Neumann-to-Dirichlet operator. The latter one would correspond to
the Stokes problem

−∆u +∇p = 0, div u = 0 in O \ ∪lBl, σ(u, p)n|∂Bl
= fl,

associated to a Neumann type condition. However, in restriction to the space R, the op-
erators DN and T−1 coincide, due to the fact that a rigid vector field is a solution of the
Stokes equation, with zero pressure and zero stress tensor.

The advantage of T over the Neumann-to-Dirichlet operator is its more explicit represen-
tation. Indeed, one has for all i = 1...N

T (f)i(x) =
n∑
l=1

∫
∂Bl

Kε(x,y)fl(y)dy, x ∈ ∂Bi,

where the kernel Kε is simply the Green function associated to the Stokes equation in O:
in other words, (Kε,qε) is the solution of the problem:

−µ∆xKε(x,x0) +∇xqε(x) = δx0(x) I, x inO,
divx Kε(x,x0) = 0, x inO,

Kε(x,x0) = 0 x on ∂O,
(4.11)

where I stands for the identity matrix. This will make easier the derivation of an asymptotic
expansion, through an expansion of T . Still, there is one little technical difficulty: the domain
of definition and range of T , that are

∏
lH
±1/2(∂Bl) depend on the parameter a (and also

on (p, ξ)). Let us denote B := B(0, 1) the unit ball, and H
±1/2
N :=

(
H±1/2(∂B)

)N
. We

introduce

φ :
N∏
l=1

H1/2(∂Bl)→ H
1/2
N , u = (ul) 7→ U = (Ul : r 7→ ul(xl + ar)),

as well as the adjoint map

φ∗ : H−1/2
N →

N∏
l=1

H−1/2(∂Bl), F = (Fl) 7→ f = (fl),

defined through the duality relation: < φ∗(F),u > = < F, φ(u) >. Finally, we set T :=
φ ◦ T ◦ φ∗ : H−1/2

N 7→ H
1/2
N . We shall use T rather than T to compute the expansion of the

force field in section 4.5.2. Note that T depends implicitly on ε, a and on (p, ξ). In what
follows, we will always consider configurations in which the swimmer stays away from the
rough wall:

dist(Bl, ∂O) ≥ δ > 0, ∀l = 1...N, (4.12)

for some given δ.
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4.4.1 Expansion for small ε

Under the constraint (4.12), we prove

Proposition 4.4.1

T := T 0 + εT 1 + O(ε2) in L(H−1/2
N , H

1/2
N )

where T 0 and T 1 are defined in (4.20) and (4.21)-(4.22) respectively.

Proof. For f = (fl) ∈ H−1/2
N , we can write

T (f)i(r) =
∑
j

∫
∂B

Kε(xi + ar, xj + as)fj(s)ds

(with a classical and slightly abusive notation: the integral should be understood as a duality
bracket). Thus, the whole point is to expand the kernel Kε defined in (4.11). Of course, the
first term should be K0, that is the Green function in the flat case. This Green function can
be computed in terms of the Stokeslet by the method of images (see [20]): one has

K0(r, r0) = G(r− r0) + K1(r, r0) + K2(r, r0) + K3(r, r0) , (4.13)

the four functions G, K1, K2 and K3 being respectively the Stokeslet

G(r) = 1
8πµ

(
Id
|r| + r⊗ r

|r|3

)
(4.14)

and the three “images”

K1(r, r0) = − 1
8πµ

(
Id
|r′| + r′ ⊗ r′

|r′|3

)
, (4.15)

K2,ij(r, r0) = 1
4πµz

2
0 (1− 2δj3)

(
δij
|r′|3 −

3r′ir′j
|r′|5

)
, (4.16)

K3,ij(r, r0) = − 1
4πµz0 (1− 2δj3)

(
r′3
|r′|3 δij −

r′j
|r′|3 δi3 + r′i

|r′|3 δj3 −
3r′ir′jr′3
|r′|5

)
. (4.17)

Here r0 = (x0, y0, z0) and r′ = r− r̃0, where r̃0 = (x0, y0,−z0) stands for the “image” of r0,
that is to say, the point symmetric to r0 with respect to the flat wall.

We now consider uε(x,x0) = Kε(x,x0)−K0(x,x0), for x0 ∈ ∪lBl. As a function of x, it
satisfies the Stokes equation in O:

−∆uε( · ,x0) +∇p( · ,x0) = 0, div uε( · ,x0) = 0 inO

with Dirichlet condition

uε( · ,x0) = −K0( · ,x0), at ∂O.

We can then expand the boundary data: for x = (x, y, εh(x, y)) ∈ O

−K0(x,x0) = −
n∑
k=1

εk
h(x, y)k

k! ∂kzK0(x, y, 0,x0) + O(εn+1).

More precisely, under the constraint (4.12), one has

‖ −K0( · , x0) +
n∑
k=1

εk
(

x 7→ h(x, y)k

k! ∂kzK0(x, y, 0,x0)
)
‖Hs(∂O) ≤ Cδ,s ε

n+1, ∀ s.
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We deduce from this inequality that

‖∇
(
uε( · ,x0)−

n∑
k=1

εkuk( · ,x0)
)
‖L2(O) ≤ Cεn+1 (4.18)

where uk is the solution of

−∆uk( · ,x0) +∇p( · ,x0) = 0, div uk( · ,x0) = 0 in O,

uk(x,x0) = −h(x, y)k

k! ∂kzK0(x, y, 0,x0), x ∈ ∂O.

The existence of the uk’s and the estimate (4.18) are obtained by classical arguments (see
the appendix for the more difficult case of a rough half-space minus the balls). In particular,
we have

‖∇
(
uε( · ,x0)− εu1( · ,x0)

)
‖L2(O) ≤ Cε2. (4.19)

The last step consists in replacing u1 by the solution K1 of

−∆K1( · ,x0) +∇p( · ,x0) = 0, div K1( · ,x0) = 0, z > 0,
K1(x, y, 0,x0) = −h(x, y)∂zK0(x, y, 0,x0), (x, y) ∈ R2,

that is replacing the rough half-space by the flat half-space. We claim that

||∇(u1( · ,x0)−K1( · ,x0))‖L2(O∩{z>0}) = O(ε2).

With no loss of generality, we can assume that h > 0 (meaning that the flat wall is below
the rough wall). Otherwise, we can make an intermediate comparison with the solution K̃1

of the same Stokes problem in {z > −ε(sup |h| + 1)}. Now, an easy but important remark
is that

‖K1( · ,x0)‖Hs({0<z<Z}) ≤ Cs,Z , ∀s ∈ N, ∀Z > 0.
This comes from Poincaré inequality and standard elliptic regularity results. Hence,

K1(x,x0) = −h(x, y)∂zK0(x, y, 0,x0) + O(ε) in Hs(∂O).

By a simple estimate on u1 −K1, we deduce the claim.

Back to the definition of uε, we obtain thanks to standard elliptic regularity in variable
x: for all α ∈ N3,

|∂αx
(
Kε(x,x0)−K0(x,x0)− εK1(x,x0)

)
| = O(ε2),

uniformly in x,x0 ∈ ∪lBl. The same reasoning as above can then be applied to the fields
uεβ = ∂βx0(Kε −K0), for all β ∈ N3. Hence,

|∂αx∂βx0

(
Kε(x,x0)−K0(x,x0)− εK1(x,x0)

)
| = O(ε2),

uniformly in x,x0 ∈ ∪lBl. The theorem follows straightforwardly, considering

T 0(f)i(r) :=
∑
j

∫
∂B

K0(xi + ar, xj + as)fj(s)ds (4.20)

and

T 1(f)i(r) :=
∑
j

∫
∂B

K1(xi + ar, xj + as)fj(s)ds. (4.21)

Expressing K1(x,x0) with a Poisson kernel yields

K1(x,x0) := −
∫
∂R3

+

h(s) ∂

∂z

(
s 7→ K0(s,x)

) ∂

∂z

(
s 7→ K0(s,x0)

)
ds . (4.22)
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4.4.2 Expansion for small a

We go one step further in the asymptotics of T , by considering the regime of small radius
a. The expression of T involves the maps

Ti,j : H−1/2(∂B) → H1/2(∂B)
fj 7→

∫
∂B

K(xi + a · ,xj + as) fj(s) ds , (4.23)

with the Green kernel K given by Proposition 4.4.1:

K(r, r′) := G(r− r′) + K1(r, r′) + K2(r, r′) + K3(r, r′) + K4(r, r′).

We recall that K1,K2 and K3 are defined in (4.13), whereas K4 is defined by (see (4.22)):

K4(r, r′) := −ε
∫
∂R3

+

h(s) ∂

∂z

(
s 7→ K0(s, r)

) ∂

∂z

(
s 7→ K0(s, r′)

)
ds .

Eventually, we call T G the Neumann to Dirichlet map associated to G

T G : H−1/2(∂B) → H1/2(∂B)

f 7→
∫
∂B

G(a( · − s)) f(s) ds .

Proposition 4.4.2 Let (i, j) ∈ {1, · · · , N}2. We have the following expansions, valid for
a� 1:

• if i 6= j then
Ti,j = K(xi,xj)〈 · , Id〉∂B + R1 (4.24)

where ||R1||L(H−1/2,H1/2) = O (a) ,

• otherwise

Ti,i = T G +
4∑
k=1

Kk(xi,xi)〈 · , Id〉∂B + R2 (4.25)

where ||R2||L(H−1/2,H1/2) = O (a) .

Proof: Let (i, j) ∈ {1, · · · , N}2 be such that i 6= j. For all fj ∈ H−1/2(∂B), we write

(Ti,j −K(xi,xj)〈 · , Id〉) (fj)(r) =
∫
∂B

(K(xi + ar,xj + as)−K(xi,xj)) fj(s)ds . (4.26)

The point is that, as i 6= j, the kernel K is smooth in a neighborhood of Bi ×Bj . Hence,

|K(xi + ar,xj + as)−K(xi,xj)| = O (a) , |∇K(xi + ar,xj + as)−K(xi,xj)| = O (a)
(4.27)

uniformly for r, s ∈ B. Estimate (4.24) follows straightforwardly.

The proof of (4.25) is similar: we have for all fi ∈ H−1/2(∂B)

(
Ti,i − T G −K(xi,xj)〈 · , Id〉

)
(fi)(r) =

∫
∂B

4∑
k=1

(Kk(xi + ar,xi + as)−Kk(xi,xi)) fi(s)ds ,

(4.28)
where none of the Kk’s is singular near Bi ×Bi. 2



96 Chapitre 4. Rough wall effect

As a simple consequence of the previous propositions, we have

Proposition 4.4.3 For every f ∈ H−1/2
N , for all (x, ξ) ∈ S,

(T f)i (r) = T Gfi +
4∑
l=1

Kl(xi,xi)〈fi, Id〉∂B +
∑
j 6=i

K(xi,xj)〈fj , Id〉∂B +Ri(f), (4.29)

with ‖Ri‖L(H−1/2
N

,H
1/2
N

) = O
(
a+ ε2), and i = 1...N .

Proof: By Proposition 4.4.1: for all i = 1...N , and all r ∈ ∂B

(T f)i (r) :=
∫
∂B

K(xi + ar,xi + as) fi(s)ds +
∑
i 6=j

∫
∂B

K(xi + ar,xj + as) fj(s)ds +Rε(f)

= Ti,ifi +
∑
j 6=i
Ti,jfj +Rε(f), ‖Rε‖L(H−1/2

N
,H

1/2
N

) = O(ε2)

and the result follows from the application of (4.24) and (4.25) of Proposition 4.4.2. 2

Proposition 4.4.4 For every u ∈ H1/2
N , for all (p, ξ) ∈ S, one has

(
T −1u

)
i

= (T G)−1

(
ui −

4∑
k=1

Kk(xi,xi)〈(T G)−1ui, Id〉∂B

)
−

(T G)−1

∑
j 6=i

K(xi,xj)〈(T G)−1uj , Id〉∂B

+ R̃i(u)
(4.30)

with ‖R̃i‖L(H1/2
N

,H
−1/2
N

) = O
(
a3 + a2ε2), i = 1...N .

Proof: We recall that

T G : H− 1
2 (∂B)→ H

1
2 (∂B), f 7→

∫
∂B

G(a( · − s))f(s) ds ,

and define for l = 1, . . . , 4 the operators

Sl : H− 1
2 (∂B)→ H

1
2 (∂B), f 7→

∫
∂B

Kl(xi,xi)f(s) ds ,

and eventually

Si,j : H− 1
2 (∂B)→ H

1
2 (∂B), f 7→

∫
∂B

K(xi,xj)f(s) ds .

Notice that for all f ∈ H− 1
2 (∂B), Slf and Si,jf are constant applications.

That these operators are continuous operators from H−
1
2 (∂B) into H

1
2 (∂B) is classical.

We are only interested in estimating their norms, and more precisely in the way they depend
on a in the limit a → 0. Notice that since the kernel G is homogeneous of degree -1, one
has

‖T G‖L(H−1/2,H1/2) = O

(
1
a

)
and

∥∥∥(T G)−1
∥∥∥
L(H1/2,H−1/2)

= O (a) . (4.31)
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As far as Sl is concerned, we get that (since |Kl(xi,xi)| = O (1))

‖Sl‖L(H−1/2,H1/2) = O (1) , (4.32)

and similarly

‖Si,j‖L(H−1/2,H1/2) = O (1) . (4.33)

When a→ 0 this enables us to invert (4.29) leading to (4.30). 2

4.5 Controllability of the Three-sphere swimmer

We deal in this section with the controllability of the 3-sphere swimmer, namely Theorem
4.2.4.

4.5.1 Preliminary remarks on the 3-sphere dynamics

We must first come back to equation (4.7) (4.9), in the particular case of the 3-sphere
swimmer. Remember that the writing in this equation was slightly abusive: we had denoted
by ṗ the vector ( Ω

v ) associated to the rigid movement of the swimmer, see (4.5). In our case,

Ω =
(

Ω1
Ω2
Ω3

)
and v = ẋc =

(
v1
v2
v3

)
are respectively the angular velocity and the linear velocity

of the middle sphere, decomposed in an arbitrary orthonormal basis (ei). Moreover, it is
natural to take for e1 the unit vector of the 3-sphere axis. Let θ be the angle between the
swimmer’s axis and ez, while φ is the angle between the y-axis and the projection of the
swimmer in Oxy plane (see figure 4.2). Then, the unit vector of the 3-sphere axis reads (in

the canonical basis) e1 =

 cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

. It is completed into an orthonormal basis by

defining

e2 =

 cos(φ) cos(θ)
sin(φ) cos(θ)
− sin(θ)

 , e3 =

 − sin(φ)
cos(φ)

0

 .

Hence, a rigorous writing of (4.7) or (4.9) is

M ( Ω
v ) + N = 0, or ( Ω

v ) = −M−1N. (4.34)

A crucial remark is that M and N do not depend on the whole of p. The angle θ1 of
rotation around the swimmer’s axis is not involved, as it is irrelevant to the swimmer’s
position, orientation or elongation. In particular, keeping only the five bottom lines of the
last system, we end up with a closed relation of the type(

θ̇2
θ̇3
ẋc

)
=

2∑
i=1

F̃i
((

θ2
θ3
xc

))
ξ̇i (4.35)

where θ2 and θ3 are the rotation angles around e2 and e3 respectively. Then, by the analytic-
ity of the F̃i’s and Chow’s theorem, it remains to prove that there exists some (ε, a, θ2, θ3,xc)
such that

dimLie(θ2,θ3,xc)

(( 1
0

F̃1

)
,
( 0

1
F̃2

))
= 7.
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Actually, we shall not work directly with angles θ2, θ3. We find it more convenient to work

with the angles θ, φ introduced above (see Figure ??). From the relation
d

dt
e1 = Ω× e1, we

infer that
Ω2 = − sin θφ̇, Ω3 = θ̇.

Note that in the special case sin θ = 0, the angle φ coincides with the useless angle θ1.
Moreover, the mapping (θ2, θ3)→ (θ, φ) is not a diffeomorphism in the vicinity of θ ≡ 0[π].
Thus, we shall restrict to orientations of the swimmer for which

| sin θ| ≥ δ > 0. (4.36)

We shall establish the maximality of the Lie algebra at points satisfying this condition.

Before entering the computation of this Lie algebra, we state a technical lemma, that will
somehow allow us to neglect the rotation around the swimmer’s axis. As mentioned before,
we assume inequality (4.36). We have

Lemma 4.5.1 There exists a constant C which does not depend on a and ε such that

|Ω1| ≤ C
(
|θ̇|+ |φ̇|+ |ẋc|+ |ξ̇|

)
.

Proof: We go back to the first identity in (4.34). The first line gives

M1,1 Ω1 = −N1ξ̇ + M1,2 sin(θ)φ̇−M1,3 θ̇ −M1,4 v1 −M1,5 v2 −M1,6 v3 . (4.37)

We recall that, in the definitions of M and N, we denoted by ui and ud some solutions of
the Stokes equation, with zero Dirichlet condition at the wall, and inhomogeneous Dirichlet
conditions at the ball. The Dirichlet data is ei × (x− xc) for i = 1, 2, 3, ei−3 for i = 4, 5, 6,
and ud for ud. In the case of the 3-sphere swimmer, ud is −ξ̇1e1 on the sphere ∂B1, 0 on
the middle sphere and ξ̇2e2 on the sphere ∂B3.

Let us first examine

M1,1 =
3∑
l=1

∫
∂B

(xl − xc + ar)× e1 · T −1(e1 × ar, e1 × ar, e1 × ar)dσ

= 3
∫
∂B

ar× e1 · T −1(e1 × ar, e1 × ar, e1 × ar)dσ

(4.38)

using that (xl − xc)× e1 = 0. We then use the expansion (4.30). We recall the well-known

fact that the rotation are eigenfunctions of
(
T G
)−1

, with associated eigenvalue 3µa. In
particular,(

T G
)−1 (e1 × ar) = 3µae1 × ar, and 〈

(
T G
)−1 (e1 × ar), Id〉∂B = 0.

We find then easily that M1,1 = −3µa3 + O(a5 + ε2a3).

Then, we examine

N1 =
3∑
l=1

∫
∂B

(xl − xc + ar)× e1 · T −1(−ξ̇1 e1, 0, ξ̇2 e2) dσ.

Again, we can expand T −1 using (4.30). This time, we use that translations are eigenfunc-

tions of
(
T G
)−1

with associated eigenvalue 3
2µa. Thus,(

T G
)−1 (e1) = 3

2µa e1.
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It follows that the first terms in the expansion vanish, and we find

N1 = O((a4 + a3ε2) |ξ̇|)

The remaining terms M1,j , j = 2, ..., 4 can be handled with similar arguments. The lemma
follows straightforwardly.

2

4.5.2 Asymptotics of the 3-sphere dynamics

We shall now provide an accurate description of the 3-sphere dynamics: broadly speaking,
the point is to obtain an explicit expansion of the Fi’s in (4.35) (with angles θ2, θ3 replaced
by θ, φ, see remark above). We remind that the dynamics (that is the 6x6 system in (4.34))
is governed by self-propulsion: it corresponds to

• The sum of the forces on the swimmer being zero.

• The sum of the torques on the swimmer being zero.

Forces. By the definition of the swimmer, each sphere obeys a rigid body motion. More
precisely, the velocity of each point r of the lth sphere expresses as a sum of a translation
and a rotation as

uSl (r) = uTl
+ uRl

(r) , (4.39)

where uTl
is constant on ∂B while uRl

(r) = Ω × ar (remember that all quantities are
expressed on the unit sphere ∂B). The vanishing of the total force, due to self-propulsion,
reads ∑

l

∫
∂B

fl =
∑
l

∫
∂B

(
T −1 (uS1 ,uS2 ,uS3 ))l = 0 . (4.40)

Plugging (4.39) in (4.40) and using (4.30) leads to

∑
l

∫
∂B

(T G)−1

(
uT l + uRl −

4∑
k=1

Kk(xl,xl)〈(T G)−1(uT l + uRl), Id〉∂B

)
−

(T G)−1

∑
j 6=i

K(xi,xj)〈(T G)−1(uT l + uRl), Id〉∂B

 =
(
O
(
a3)+O

(
a2ε2

))
||u|| . (4.41)

where ‖u‖ = ‖(uSi )‖ is any norm on the n-uplets of rigid vector fields over the ball. Here,

‖u‖ = O(|θ̇|+ |φ̇|+ |ẋc|+ |Ω1|) = O(|θ̇|+ |φ̇|+ |ẋc|) (4.42)

where the last equality comes from Lemma 4.5.1. As mentioned earlier, it is well known
that both translations and rotations are eigenfunctions of the Dirichlet to Neumann map of
the three dimensional Stokes operator outside a sphere. Namely(

T G
)−1 uT l = λTuT l and

(
T G
)−1 uRl = λRuRl .

It is also well-known that λT = 3µa
2 , λR = 3µa, leading in particular to the celebrated Stokes

formula ∫
∂B

(
T G
)−1 uTl

ds = 6πµauTl
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We also remark that due to
∫
∂B

uRl
ds = 0 , we have

∫
∂B

(
T G
)−1 uRl

ds = 0 . We therefore
obtain

6πµa
∑
l

uT l − 6πµa
4∑
k=1

Kk(xl,xl)uT l − 6πµa
∑
j 6=i

K(xl,xj)uT j


=
(
O
(
a3)+O

(
a2ε2

))
||u|| . (4.43)

Torques. We now compute the torque with respect to the center xc of the middle ball B2.
Self-propulsion of the swimmer implies that this torque vanishes:

0 =
∫
∂B

(x1−x2+ar)×f1(r)+
∫
∂B

ar×f2(r)+
∫
∂B

(x3−x2+ar)×f3(r) = I1+I2+I3 , (4.44)

with the quantities I1, I2 and I3 given below.

I1 =
∫
∂B

(x1 − x2 + ar)× f1(r) =
∫
∂B

(ξ1e1
ξ + ar)×

(
T −1 (uS1 ,uS2 ,uS3 ))1

=
∫
∂B

(−ξ1e1 + ar)× (T G)−1

(
uT 1 + uR1 − 6πµa

4∑
k=1

Kk(x1,x1)uT 1

−6πµa
∑
j 6=1

K(x1,xj)uT j +O
(
a2 + aε2) ||u||


= −6πµaξ1e1

ξ ×

uT 1 − 6πµa
4∑
k=1

Kk(x1,x1)uT 1 − 6πµa
∑
j 6=1

K(x1,xj)uT j


+
(
O
(
a3)+O

(
a2ε2

))
||u|| .

Similarly, we get,

I2 = a

∫
∂B

r× f2(r) = a

∫
∂B

r×
(
T −1 (uS1 ,uS2 ,uS3 ))2

= a

∫
∂B

r× (T G)−1

(
uT 2 + uR2 − 6πµa

4∑
k=1

Kk(x2,x2)uT 2

−6πµa
∑
j 6=2

K(x2,xj)uT j +O
(
a2 + aε2) ||u||


= O

(
a3 + a3ε2

)
||u|| .

Finally,

I3 =
∫
∂B

(x3 − x2 + ar)× f3(r)

= 6πµaξ2e1 ×

uT 3 − 6πµa
4∑
k=1

Kk(x3,x3)uT 3 − 6πµa
∑
j 6=3

K(x3,xj)uT j


+
(
O
(
a3)+O

(
a2ε2

))
||u|| .
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Denoting by A the matrix

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 (4.45)

where for i = 1, 2, 3

Aii = Id− 6πµa
4∑
l=1

Kl(xi,xi) (4.46)

and for i, j = 1, 2, 3 with i 6= j

Aij = −6πµaK(xi,xj) (4.47)

and S the matrix

S =
(

Id Id Id
−ξ1e1× 0 +ξ2e1×

)
,

we can rewrite the self-propulsion assumption (4.43), (4.44) as

SA

 uT1

uT2

uT3

 =
(
O
(
a2)+O

(
aε2
))
||u||. (4.48)

Terms involving the uRl
’s are included in the r.h.s.

We now express uT1 ,uT2 and uT3 in terms of ẋc, θ̇, φ̇ and ξ̇. Since uT2 is the velocity of
the center of the ball B2, one has

uT2 = ẋc =

 ẋ
ẏ
ż

 in the canonical basis of R3.

Then, by using d
dte1 = θ̇ e2 + sin(θ)φ̇ e3 , we get

uT1 = uT2 − ξ1
(
θ̇e2 + sin(θ)φ̇ e3

)
− ξ̇1e1 , uT3 = uT2 + ξ2

(
θ̇e2 + sin(θ)φ̇ e3

)
+ ξ̇2e1 .

In matrix form, all this reads Then, the speed uTi
(i = 1, 2, 3) is expressed as

 uT1

uT2

uT3

 = T


Ω1
θ̇

φ̇
ẋ
ẏ
ż

+ U ξ̇ . (4.49)

with

T =


0 −ξ1e2 −ξ1 sin(θ)e3 Id
...

0
0
0

0
0
0

Id

0 +ξ2e2 +ξ2 sin(θ)e3 Id

 , and U =


0 0
−e1 0

0
...

... 0
0 e1

 .

Combining with (4.48), the motion equation (4.34) becomes

(SA + R1)

T


Ω1
θ̇

φ̇
ẋ
ẏ
ż

+ (U + R2) ξ̇

 = 0 (4.50)



102 Chapitre 4. Rough wall effect

where the residual matrices R1,R2 satisfy

|R1|+ |R2| =
(
O
(
a2)+O(aε2)

)
using (4.42). Finally, we only keep the five bottom lines of this system. It yields the following
5x5 system

(
S̃A + R̃

)
T̃


θ̇

φ̇
ẋ
ẏ
ż

+ Ũ ξ̇

 = 0 , (4.51)

where

S̃ := (Si,j)2≤i≤6,1≤j≤9 , T̃ :=


−ξ1e2 −ξ1 sin(θ)e3 Id

0
0
0

0
0
0

Id

+ξ2e2 +ξ2 sin(θ)e3 Id

 , Ũ :=


−e1 0

0
...

... 0
0 e1

 ,

and where the residual matrices still satisfy |R̃1|+ |R̃2| = O
(
a2)+O(aε2). We leave to the

reader to check that S̃AT̃ = S̃T̃ +O(a) is invertible, with |(S̃AT̃)−1| = O(1) uniformly in
a and ε. Then, we can write system (4.51) as θ̇

φ̇
ẋ
ẏ
ż

 = −(S̃AT̃)−1S̃AŨξ̇ + R̃ξ̇ (4.52)

with |R̃| = O(a2 + ε2a).

4.5.3 Reachable set

We are now ready to prove Theorem 4.2.4. We drop the tilda in the ODE (4.52) and express
it as

Ẋ = F1(X)ξ̇1 + F2(X)ξ̇2, X :=


ξ1
ξ2
θ
φ
x
y
z

 . (4.53)

To expand the Fi’s, we decompose the matrix A into three matrices: A := Id + A1 + A2

where

A1
ii = −6πµa

3∑
k=1

Kk(xi,xi) ∀ i A1
ij = −6πµa

(
G(xi,xj) +

3∑
k=1

Kk(xi,xj)
)
∀ i 6= j

and where
A2
i,j = −6πµaK4(xi,xj) ∀ i, j.

Thanks to (4.51), we get an expansion of the form Fi := F0
i + F1

i + F2
i + Ri where F0

i , F1
i

and F2
i are respectively the zero order term, the term of order a and the term of order εa.

The remainder is Ri =
(
O
(
a2)+O(aε2)

)
. These vector fields are given by

F0
i =

(
ei

−(ST)−1(SU)ei

)
,

F1
i =

( ei

((ST)−1SA1T(ST)−1SU−(ST)−1SA1U)ei

)
,

F2
i =

( ei

((ST)−1SA2T(ST)−1SU−(ST)−1SA2U)ei

)
.
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where e1 = ( 1
0 ) and e2 = ( 0

1 ).

Now, we want to find some (ε, a,X) in R+ × R∗+ × S for which the determinant

det(X) :=
∣∣∣∣F1,F2, [F1,F2], [F1, [F1,F2]], [F2, [F1,F2]],

[F1, [F1, [F1,F2]]], [F2, [F2, [F1,F2]]]
∣∣∣∣(X) 6= 0. (4.54)

As the l.h.s. defines an analytic function of X, it will be non-zero almost everywhere. Thus,
the Lie algebra generated by F1 and F2 will be maximal (of dimension 7) at almost every
X, and local controllability will follow from Chow’s theorem, see [51].
For all G ∈ Lie(F1,F2), let us denote G0, G1 and G2 the zero order term, the term of order
a and the term of order aε in the expansion of the vector field G respectively. Thus,

G = G0 + G1 + G2 +O
(
a2)+O(aε2) .

For instance the expansion of the first Lie bracket reads

[F1,F2] = [F1,F2]0 + [F1,F2]1 + [F1,F2]2 +O
(
a2)+O(aε2) .

with

[F1,F2]0 = [F0
1,F0

2] , [F1,F2]1 = [F1
1,F0

2] + [F0
1,F1

2] , [F1,F2]2 = [F2
1,F0

2] + [F0
1,F2

2].

Note that for all G ∈ Lie(F1,F2), G0 +G1 is a ”flat wall” expansion, first order in a. Mean-
while, G2 is the first term which takes into account the roughness.

Without including this extra term, the three-sphere swimmer would not be controllable
(see [11]), meaning that the determinant would vanish. We have notably

Lemma 4.5.2 For all G ∈ Lie(F1,F2) \ {F1,F2}, G0 = 0.

Proof: A simple calculation yields

F0
1(X) =



1
0
0
0

1
3 cos(φ) sin(θ)
1
3 sin(φ) sin(θ)

1
3 cos(θ)


, F0

2(X) =



0
1
0
0

− 1
3 cos(φ) sin(θ)
− 1

3 sin(φ) sin(θ)
− 1

3 cos(θ)


.

It implies that [F0
1,F0

2] is zero. The lemma is proved. 2

As regards the O(a) term, we have

Lemma 4.5.3 Let Lie(F1,F2)1 :=
{

G1 s. t.G ∈ Lie(F1,F2)
}

. For all X ∈ S, the dimen-

sion of the subspace Lie(F1,F2)1(X) is less than 5.

Proof: As said above, for all G ∈ Lie(F1,F2), the sum G0 + G1 is a O(a) expansion of the
”flat wall field”, corresponding to the case h = 0. But in such flat case, symmetries constrain
the swimmer within a plane. Thus, the associated manifold has at most dimension 5 (ξ1, ξ2,
two coordinates for the center of the middle ball, one angle). This implies the result. 2
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Remark 4.5.4 Since without roughness the swimmer evolves in a plane, it follows that the
angle φ cannot change with time. Consequently, for all F(X) ∈ Lie(F1,F2)1(X) the fourth
component of the vector F(X) is zero.

Remark 4.5.5 The lemma also 4.5.3 applies to the vector fields which does not take into
account the roughness i.e., the ones which appear in the expansion without ε.

From this, we will get that the non-zero leading term in the expansion of det has power
a5ε2. Theorem 4.2.4 follows directly from

Proposition 4.5.6 In the regime 1 � ε � a, one can find a surface h ∈ C∞c (R2) and a
non-trivial analytic function A on S such that for all X ∈ S

det(X) = a5 ε2A(X) +O(a6ε2 + a5ε3) .

Proof: For all vector G, we denote (G)jj′ := (Gk)j≤k≤j′ . Since Fi, i = 1, 2, is of the type
ei
∗
...
∗

, we get easily that

det(X) = |Z1,Z2,Z3,Z4,Z5|

where 
Z1 := ([F1,F2])7

3 ,
Z2 := ([F1, [F1,F2]])7

3 ,
Z3 := ([F2, [F1,F2]])7

3 ,
Z4 := ([F1, [F1, [F1,F2]]])7

3 ,
Z5 := ([F2, [F2, [F1,F2]]])7

3 .

(4.55)

From Lemma 4.5.2, Z0
i = 0 for all i = 1...5. Moreover, by Lemma 4.5.3, any determinant of

the type ∣∣Z1
k1
,Z1

k2
,Z1

k3
, ∗
∣∣ , ki ∈ {1, ..., 5} is zero.

Expanding the function det by 5-linearity, we obtain

det(X) = a5 ε2A(X) +O(a6ε2 + a5ε3) ,

where the function A(X) is defined as follows. Let

I :=
{

k ∈ {1, ..., 5}5 with k1 < k2 and k3 < k4 < k5 distinct of k1 and k2
}
.

We set
A(X) :=

∑
k∈I

±
∣∣Z2
k1
, Z2

k2
, Z1

k3
, Z1

k3
, Z1

k4
, Z1

k5

∣∣ ,
where the ± is the signature of the permutation i→ ki.

It remains to prove that there exists X0 ∈ S such that A(X0) is non-zero. By calling Kint
4

the function (s, r, r′) 7→ ∂
∂z

(
s 7→ K0(s, r)

)
∂
∂z

(
s 7→ K0(s, r′)

)
, we have (see (4.22))

K4(r, r′) = −ε
∫
∂R3

+

h(s1, s2) Kint
4 (s, r, r′) ds .

We then define the 3x3 block matrix A2
int(s) through

(A2
int(s))ij = −6πµaKint

4 (s,xi,xj), i, j = 1...3.
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By using the linearity of the integral, the vector fields F2
i , i = 1, 2 read

F2
i =

(
−ε
∫
∂R3

+

h(s)
(
F2
i,int(s)

)
ds
)
,

where,

F2
i,int(s) = −

(
−(ST)−1SA2

int(s)T(ST)−1SU + (ST)−1SA2
int(s)U

)
ei . (4.56)

Then, denoting
Z2

1,int(s) := [F2
1,int(s),F0

2] + [F0
1,F2

2,int(s)]

leads to

Z2
1 = −ε

∫
∂R3

+

h(s1, s2) Z2
1,int(s) ds . (4.57)

We can go on with this process and find explicitly functions Z2
i,int(s) for i = 2, . . . , 5 such

that

∀i ∈ {2, . . . , 5} , Z2
i = −ε

∫
∂R3

+

h(s1, s2)
(
Z2
i,int(s)

)
ds .

Finally,

A(X) = −ε2
∫
∂R3

+

∫
∂R3

+

h(s1, s2)h(s′1, s′2)∑
I
±
∣∣Z2
k1,int(s1, s2) Z2

k2,int(s
′
1, s
′
2) Z1

k3
Z1
k4

Z1
k5

(X)
∣∣ ds ds′. (4.58)

We call detint the function (X, s, s′) 7→
∑
I ±

∣∣∣Z2
k1,int

(s) Z2
k2,int

(s′) Z1
k3

Z1
k4

Z1
k5

(X)
∣∣∣. Clearly,

for Theorem 4.5.6 to hold, it is enough that there exists X0 ∈ S and (s, s′) ∈ (∂R3
+)2 such

that detint(X0, s, s′) is not zero for some (s, s′) ∈ R4. Indeed, we can then adjust the func-
tion h to make the integral non-zero. The calculation of detint can be carried out using
Maple. More precisely, one can derive an equivalent as z goes to infinity, and check that
detint(X0, · , · ) 6= 0 for X0 =

(
1, 2, π3 ,

π
3 , 1, 2, z

)
for z large enough. This concludes the

proof.

4.6 Conclusions and perspectives

The aim of this present paper was to examine how the controllability of low Reynolds num-
ber artificial swimmers is affected by the presence of a rough wall on a fluid. This study
generalizes the one made by F. Alouges and L. Giraldi in [11] which deals with the effect of
a plane wall on the controllability of this particular swimmers.

Firstly, we show Theorem 4.2.1. It deals with the regularity of the dynamics of the swim-
mers. Indeed, we prove that the equation of motion of such particular swimmers are analytic
with respect to the parameters defining the swimmer (radius of the ball, position and length
of the arms) and the typical height of roughness of the wall. Then, we deduce Theorem
4.2.3 which claims that the 4-sphere swimmer remains controllable with the presence of
roughness. The proof is based on general arguments which could be used for other models
of micro-swimmer.

Secondly, Theorem 4.2.4 examines the controllability of the Three-sphere swimmer in the
presence of a rough wall. More precisely, we show that there exists a roughness such that the
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swimmer can locally reach any direction. We recall that the previous studies made on the
3-sphere swimmer allow to show that it can reach only one direction (see [7] when it evolves
in a whole space and three directions with the presence of a plane wall (see [11]). In our case,
the roughness leads to break the symmetry of the system ”fluids-swimmer”. As a result, it
allows the swimmer to reach any direction. The proof is an in-depth study which associates
several tools both in hydrodynamics and control theory. The general ”idea” emphasizes here
is the fact that in the real life all the micro-organism, regardless how symmetric it is, can
move in any direction.

The quantitative approach to this question together with the complete understanding in a
view of controllability of underlying systems is far beyond reach and thus still under progress
as in a another direction, the consideration of an confined environment, e.g. when the fluid
is bounded. Future work will also explore which are the directions easier to reach than the
others by varying the rough wall.

4.7 Appendix: A well-posedness result for the Stokes
system

We show here the well-posedness of the inhomogeneous Stokes system involved in the proof
of Theorem 4.2.1. We refer to this proof for notations, and shall drop here all bars for
brevity. What we want to show is

Proposition 4.7.1 Let (F,G, V1, ..., VN ) given in (V0)′×L2(F)×
∏
l

H1/2(Bl). There exists

a unique solution (V,Q) in V0 × L2(F) of

−∆V +∇Q = F in F ,
div V = G in F ,

V = 0 at ∂O, V = Vl at ∂Bl, l = 1...N.

Proof of the Proposition. In the ”standard” case where G = 0 and all Vl’s are zero, the
result follows from a direct variational argument. Thus the whole point is to find a W ∈ V0
satisfying

div W = G in F , V = 0 at ∂O, V = Vl at ∂Bl, l = 1...N. (4.59)

Indeed, setting V ′ := V −W , one comes back to the standard case with F+∆W replacing F .

To build such W , a key ingredient is

Lemma 4.7.2 Given G ∈ L2(O), there exists a field W ∈ L2
loc(O),∇W ∈ L2(O) such that

div W = G, W |∂O = 0 ‖∇W‖L2 ≤ C ‖G‖L2 .

Note that this lemma is only about the domain O, that is without the balls. Let us postpone
its proof, and show how it implies the existence of a W satisfying (4.59).

• First step: we lift the boundary data Vl. One can find W ∈ H1(F) compactly sup-
ported near the balls, such that W = Vl at ∂Bl. Up to replace W by W −W and G
by G− div W , we can assume Vl = 0 for all l.

• Second step (assuming now Vl = 0 for all l): we extend G by 0 in the balls and apply
the Lemma: it provides a W̃ satisfying div W̃ = G, W̃ |∂O = 0. However, the
boundary data at the balls is non-zero: W̃ |∂Bl

6= 0.
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• Third step: we correct this non-zero boundary data. We observe that∫
∂Bl

W̃ ·nds = 0 =
∫
Bl

div W̃ = 0,

as G was extended by zero inside the balls. Thanks to this ”compatibility” condition,
we can use a standard result of Bogovskii, see [, Exercice III.3.5, p176]: for all l, there
exists a field Wl defined over the annulus {a < |x− xl| < a+ η}, satisfying

div Wl = 0, Wl|∂Bl
= −W̃ |∂Bl

, Wl|{|x−xl|=a+η} = 0.

We take η small enough so that the annuli do not intersect. Then, we extend the Wl’s
by 0 outside the annuli and set W := W̃ +

∑
Wl. This new field W satisfies (4.59), as

expected.

Proof of the Lemma. In the case where h = cst, that is for a flat half-space, the result
is classical: cf [, Corollary 4.3.1, p261]. In particular, if the support of G is included in
{x3 > sup |h|}, the problem is solved: one can take the solution W of

div W = G for x3 > sup |h|, W |{x3=sup |h|} = 0

and extend it by zero below {x3 = sup |h|}.

For general G, we can decompose G = G 1{x3>sup |h|} + G 1{x3<sup |h|}, and handle the
first part as previously. In other words, it remains to consider the case where G is compactly
supported in x3. From there, we proceed in three steps:

• Step 1. Let R such that G = 0 for x3 ≥ R. We introduce W 1 := ∇ψ 1{x3<R} where ψ
satisfies

∆ψ = G for εh < x3 < R, ∂nψ|∂O = 0, ψ|x3=R = 0.
This Poisson equation has a unique solution in H2({εh < x3 < R}): note that Poincaré
inequality applies thanks to the Dirichlet condition at x3 = R. Hence, W 1 satisfies
div W 1 = G in the strip {εh < x3 < R}, and also trivially in the half-space {x3 > R}.

However, two problems remain: the normal component of W 1 jumps at x3 = R, and
it has non-zero boundary data at {x3 = εh}.

• Step 2. Correction of the jump at x3 = R. We just introduce the field W 2 :=
W̃ 1{x3>R}, where W̃ satisfies

div W̃ = 0 for x3 > R, W̃ |{x3=R} = ∇Ψ|x3=R,

‖∇W̃‖L2 ≤ C‖∇ψ‖H1/2({x3=R}) (≤ C ‖G‖L2).

The existence of such W̃ is classical, see [39, Theorem IV.3.3].

• Step 3. Correction of the boundary data. Thanks to the Neumann condition on ψ,
we have W 1 ·n|∂O = 0. We introduce some partition of unity (χk = χk(x1, x2))k∈Z2

associated to a covering of R2 by rectangles Rk. More precisely, we assume that the
lengths of Rk are uniformly bounded in k, and that the C1 norms of χk are uniformly
bounded in k (we leave the construction of examples to the reader). Thanks to the
tangency condition on W 1, we can apply the Bogovskii’s result seen above on slices
Sk := {(x1, x2) ∈ Rk, εh(x1, x2) < x3 < R}, k ∈ Z2. Hence, there exists some
Wk ∈ H1(Sk) such that

div Wk = 0 in Sk, Wk = −χkW 1 at ∂Sk ∩ ∂O,
Wk = 0 at ∂Sk \ O,
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and ‖∇Wk‖L2 ≤ C ‖χkW 1‖H1/2(∂O). Extending all Wk’s by 0 outside Sk, and setting

W 3 :=
∑
k∈Z2 Wk, we find that

div W 3 = 0 in O, W 3|∂O = −W 1|∂O,
||∇W 3‖L2(O) ≤ C‖W 1‖H1/2(∂O) (≤ C‖W 1‖H1(O)).

Finally, W = W 1 + W 2 + W 3 fulfills all requirements, which concludes the proof of the
lemma.
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Chapitre 5

Optimal strokes for driftless
swimmers : a geometrical

approach

This work is done in collaboration with T. Chambrion and A. Munnier.
The aim of this study is to provide a general framework to examine op-
timal controllability of driftless swimmer. We focus on the analyze on
the optimal strokes i.e., periodic shape changes. More precisely, we prove
the existence of optimal strokes, minimizing or maximizing various cost
functionals (related to the energy of the system, the efficiency, the time).
Then, we demonstrate some properties of the optimal strokes. In partic-
ular, we show how the optimal controls corresponding to different cost
functionals can actually be deduced one from the others. Finally, we ana-
lyze the regularity and the monotony of the value functions. We prove that
the cost increases along with the covered distance. Numerical simulations
are presented on a particular swimmer which has an explicit dynamics.
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5.1 Introduction

Understanding the mechanics of swimming has been an issue in Mathematical Physics for
a long time. Aside from improving the academic understanding of locomotion in fluid, this
interest growth from the observation that fish and aquatic mammals evolved swimming
capabilities far superior to those achieved by human technology and consequently provide
an attractive model for the design of biomimetic robots.

Significant contributions to this matter are due to Taylor [84], J. Lighthill [54], E.M.
Purcell [70] and T. Y. Wu [93].

Among the many models available in the literature, let us focus on those for which the
Reynolds number of the fluid is either very low or very high. The main interest of these cases
lies in the fact that the dynamics governing the fluid-swimmer system are simple enough to
allow theoretical results to be proved. Theses two cases are usually referred to as “driftless
models”. The first one for which the fluid is assumed to be very viscous is called “resistive
model”. It is relevant for microswimmers (like microorganisms) and consists in neglecting
the inertial effects in the modeling. The second one, called “reactive model”, is obtained
by neglecting rather the viscous forces and is supposed to be relevant for swimmers with
elongated bodies (like eels). Surprisingly, the dynamics are very close for both cases and
their study fall under the same general abstract framework.

The well-posedness of the system of equations for these models was established for instance
in [32], [22] and [59] in a Stokesian flow and in [27] in a perfect fluid. The controllability is
addressed in [27] and [59] where the authors prove the generic controllability of 3D driftless
swimmers in a perfect and Stokesian flow respectively. An earlier result was established in
[8] and next improved in [11], in which 3D three or four- sphere mechanisms are shown to
be controllable.

To our knowledge, still few theoretical studies have been conducted about optimal swim-
ming (although more numerical approach of the problem are many). In [60], J. Loheac et
al. are interested in optimizing the swimming of a 3D slightly deformable sphere in order to
minimize its displacement time. In [7], the authors describe an algorithm allowing optimizing
the strokes for a three-sphere swimmer, based on the theory of calculus of variations.

5.1.1 Contribution

The aim of this work is to provide a general framework to study optimal controllability of
driftless swimmers. In particular, every aforementioned paper falls within this framework.
After recalling minimal hypotheses ensuring the controllability of the system under consid-
eration, we shall focus on the study of optimal strokes i.e. periodic shape changes. More
precisely, we will be interested in the following points:

• Existence of optimal strokes, minimizing or maximizing various cost functionals (re-
lated to the energy of the system, the efficiency, the time). As in [60], contraints on the
state of the system are taken into account (for instance, the deformations are required
to be not too large).

• Qualitative properties of the optimal strokes (or, differently stated, of the correspond-
ing optimal controls). In particular, we will show how the optimal controls correspond-
ing to different cost functionals can actually be deduced one from the others.

• Regularity and monotony of the value functions (does the cost increases along with
the covered distance?).

Most of the proofs rely on the following arguments:

• The analyticity of the system;
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• The Riemannian and sub-Riemannian underlying structure.

For pedagogical purposes, the results will be applied to the toy model introduced in [27]
and [65]. The main interest of this model, dealing with a swimmer in a 2D potential flow, is
that the governing equations, although not trivial, can be made fully explicit by means of
complex calculus.

5.1.2 Abstract Framework and Notation

We introduce in this subsection the general framework of our study. In the sequel, we call
swimmer any 5-uple S = (S,g,QS , s†,L), where:

• (S,g) is a N -dimensional (N ≥ 1), connected, analytic manifold endowed with an
analytic Riemannian structure g. Every element s of S stands for a possible shape of
the swimmer. The shape changes of the swimmer over a time interval [0, T ] will be
described by a function s : [0, T ] 7→ s(t) ∈ S.

• The metric g will be used to measure the cost required to achieve this shape change.
The cost of a shape change s : [0, T ] 7→ s(t) ∈ S could be, for instance, the length of
the curve parameterized by the function s, i.e.∫ T

0

√
gs(t)(ṡ(t), ṡ(t))dt, (5.1a)

or something more energy-like, usually called the action:

1
2

∫ T

0
gs(t)(ṡ(t), ṡ(t))dt. (5.1b)

• The reference shape s† is a point of S which could be thought of as the natural shape
of the swimmer, when it is at rest for instance. It will be the starting point for every
shape change we will consider.

• The mapping QS : TS → Rn is an analytic vector valued 1-form. It accounts for the
physical constraints that every shape change has to satisfy to physically make sense.
Let us be more specific:

Definition 5.1.1 An admissible shape change is any absolutely continuous curve s :
[0, T ] → S, with essentially bounded first derivative, and which satisfies for almost
every time,

QSs(t)ṡ(t) = 0. (5.2)

This last identity means that for a given shape (i.e. a given element of S), not every
direction on S is admissible. For instance, by self-deforming, the swimmer will not be
allowed to modify the position of its center of mass.

Among admissible shape changes, we will mostly focus on strokes:

Definition 5.1.2 An admissible shape change s : [0, T ] 7→ S will be termed a stroke if
s(0) = s(T ).

• We are only interested in the motion of the swimmer in one given direction. The
displacement in this direction is measured thanks to the analytic differential 1-form L
on S. When undergoing the admissible shape change s : [0, T ]→ S, the displacement
of the swimmer is given by: ∫ T

0
Ls(t)(ṡ(t))dt. (5.3)
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Most of our results will rest on the following elementary but fundamental observation:

Remark 5.1.3 The constraint (5.2) as well as the quantities (5.1a) and (5.3) are time repa-
rameterization invariant. They depend only on the oriented curve Γ ⊂ S, a parameterization
of which being s : [0, T ]→ S.

The famous Scallop Theorem (see for instance [70]) can be seen as a straightforward
consequence of this remark. Indeed, it states that if the shape change is nothing more than
a parameterization back and forth of a curve on S, then the resulting displacement is null.

5.1.3 Outline and Main Achievements

In Section 5.2, we show that two important cases of locomotion in a fluid (namely the
locomotion of a single swimmer in an infinite extent of fluid at infinite and zero Reynolds
number) fit within the framework of Section 5.1.2. In Section 5.3, we establish minimal
hypotheses (based on the computation of Lie brackets) ensuring the controllability of the
system. Section 5.4 is dedicated to the study of optimal strokes. After stating 5 classical
optimization problems, we show that every one admits minimizers or maximizers. We prove
that most of these problems are actually equivalent (for instance, it is completely equivalent
to minimize the time, as in [60] and to minimize the efficiency as in [8]). Then we focus
on two values functions: the first one associates to every covered distance the minimal cost
necessary to achieve this displacement and the other associates to every given cost, the
maximum distance that can be covered with no greater cost. Among others properties, we
prove the continuity and study the monotony of these functions. In Section 5.5, we restrict
our study to the case where the shape manifold S is 2 dimensional. We show that the stroke
optimization problem turns into an isoperimetric problem on the shape manifold. The sub-
Riemannian structure becomes a contact sub-Riemannian structure and applying results
from [1], we give a precise description of all the “small” optimal strokes. Some numerics
applications on the example of swimmer in a potential flow are displayed in the last section.

5.2 Modeling

In this Section we aim to establish the dynamics governing the motion of low and high
Reynolds numbers swimmers and show that they fall within the abstract framework intro-
duced in Section 5.1.2.

Our purpose it to highlight that, although the properties of the fluid are different in both
cases, the equations of motion turn out to have the exact same general form. The modeling
is carried out in 3D, the 2D case being similar.

We assume that the swimmer is alone in the fluid and that the fluid-swimmer system fills
the whole space. The buoyant force is not taken into account.

We consider a Galilean fixed frame (E1,E2,E3) and an attached coordinate system Rf :=
(O,E1,E2,E3) where O is a fixed point of R3. InRf , coordinates will be written with capital
letters (as X := (X1, X2, X3)). Since we are interested in seeking optimal strokes, we will
consider only shape changes that make the center of mass of the swimmer remains on the
X1-axis. Thus, the swimmer is compelled to swim along a straight line.

Kinematics

We denote by r the center of mass of the swimmer (lying on the X1-axis) and we consider
the coordinate system Rm := (r,E1,E2,E3), attached to the swimmer.

We assume that every possible shape of the swimmer, when described in Rm, can be char-
acterized by a so-called shape variable s belonging to some connected analytic hypersurface
S of RN+1 (for some integer N ≥ 1).
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Thus, we denote by Am(s) the domain of R3 occupied by the swimmer, in the coordinate
system Rm, and hence Af (s) = r +Am(s) is the same domain expressed in Rf . For every
s ∈ S, the setAm(s) is the image of the unit ball B by a C1 diffeomorphism χ(s, · ) depending
on the parameter s. Knowing every diffeomorphism χ(s, · ) for every shape variable s, the
shape changes over a time interval [0, T ] can be merely described by means of a (shape)
function:

t ∈ [0, T ] 7→ s(t) ∈ S.

The Eulerian velocity W at any point X ∈ Af (s) of the swimmer is the sum of the rigid
velocity ṙ := ṙE1 (ṙ ∈ R) and the velocity of deformation

Wd(s, ṡ, X) := ∇sχ
(
s, χ(s, (X − r))−1) · ṡ.

Thus, we get:
W = ṙ + Wd in Af (s).

In the coordinate system Rm, this equality turns out to be:

w = ṙ + wd in Am(s),

where, for every x ∈ Am(s) we have set w(x) := W(x+r) and wd(s, ṡ, x) := Wd(s, ṡ, x+r).

Dynamics

In Rm, the density %(s, · ) of the body can be deduced from a given constant density %0 > 0,
defined in B, according to the conservation of mass principle:

%(s, χ(s, x)) = %0

|det∇xχ(s, x)| , x ∈ B.

The volume of the swimmer is Vol(s) =
∫
B
|det∇xχ(s, x)|dx and its mass m = %0Vol(B).

Although prescribed, the deformations should be interpretable as produced by some in-
ternal forces. It means that in the absence of fluid, the swimmer is not able to modify its
linear momentum, which reads:∫

Am(s)
%(s, x)wd(s, ṡ, x)dx = %0

∫
B

∇sχ(s, x) · ṡ dx = 0. (5.4)

We introduce the 3×N matrix:

QS(s) := %0

∫
B

∇sχ(s, x)dx, (5.5)

and we rewrite (5.2) as:
QS(s)ṡ = 0. (5.6)

This equation has to be understood as a constraint on the shape variable and is referred to
as the self-propulsion hypothesis.

The fluid obeys, in the whole generality, to the Navier-Stokes equations for incompressible
fluid:

%f
D

Dt
U(t,X)−∇X ·Tf (U, P )(t,X) = 0 t > 0, X ∈ Ff (s(t)); (5.7a)

∇X ·U(t,X) = 0 t > 0, X ∈ Ff (s(t)); (5.7b)

where

1. For every s ∈ S, Ff (s) := R3 \ Af (s) is the domain of the fluid;
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2. %f > 0 is the fluid’s density;

3. U(t,X) is the Eulerian velocity of the fluid at the time t > 0 and the point X ∈
Ff (s(t));

4. D/Dt := ∂/∂t+ (U(t,X) ·∇X) is the convective derivative;

5. Tf (U, P )(t,X) := µ(∇XU(t,X) + ∇XUT (t,X)) − P (t,X)Id is the stress tensor, µ
the dynamic viscosity and P the pressure.

The rigid displacement of the body is governed by Newton’s laws for the linear momentum:

mr̈(t) = −
∫
∂Af (s)

E1 ·Tf (U, P )(t,X)n dσX , (t > 0),

where n is the unit normal vector to ∂Af (s) directed towards the interior of Af (s).
These equations have to be supplemented with boundary conditions on ∂Af (s), which can

be either
U ·n = W ·n on ∂Af (s),

known as slip or Navier boundary conditions or

U = W on ∂Af (s),

referred to as no-slip boundary conditions. Eventually, for the system to be well-posed,
initial data are needed:

U(0) = U0, r(0) = r0 and ṙ(0) = ṙ0.

As mentioned in the introduction, we focus on two limit problems connecting to the value
of the Reynolds number Re := %ŪL/µ (Ū is the mean fluid velocity and L is a characteristic
linear dimension). The first case Re� 1 concerns low Reynolds swimmers like bacteria (or
more generally so-called micro swimmers whose size is about 1µm). For the second Re� 1,
we will restrain our study to irrotational flows and so it is relevant for large animals swimming
quite slowly, a case where vorticity can be neglected.

5.2.1 Low Reynolds number swimmers

For micro-swimmers, scientists agree that inertia (for both the fluid and the body) can be
neglected in the dynamics. It means that in the modeling, we can set %0 = %f = 0. In this
case, the Navier-Stokes equations reduce to the steady Stokes equations

−∇X ·Tf (U, P )(t,X) = 0 t > 0, X ∈ Ff (s(t));
∇X ·U(t,X) = 0 t > 0, X ∈ Ff (s(t));

supplemented with no-slip boundary conditions

U = W on ∂Af (s).

Introducing, for all x ∈ Fm(s) := R3 \ Am(s),

u(t, x) := U(t, x+ r(t)) and p(t, x) := P (t, x+ r(t)),

the equations keep the same form when expressed in the coordinate system Rm, namely,
with evident notation:

−∇x ·Tm(u, p)(t, x) = 0 t > 0, x ∈ Fm(s(t)); (5.8a)

∇x ·u(t, x) = 0 t > 0, x ∈ Fm(s(t)); (5.8b)

u(t, x) = w(t, x) t > 0, x ∈ ∂Am(s(t)). (5.8c)

From a mathematical point of view, the advantage is two folds:
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1. The equations are now linear;

2. The fluid has no more proper degree of freedom. Indeed, the fluid equations simplify
from an initial and boundary value problem into merely a boundary value problem.
In particular, no more initial data is required.

Newton’s law for linear momentum reads:∫
∂Am(s)

E1 ·Tm(u, p)(t, x)ndσ = 0.

The solution (u, p) being linear with respect to the boundary data w it can be decomposed
as follows:

u(t, x) = ṙ(t)ur(s(t), x) +
N∑
j=1

ṡju
j
d(s(t), x);

p(t, x) = ṙ(t)pr(s(t), x) +
N∑
j=1

ṡjp
j
d(s(t), x); (t > 0, x ∈ Fm(s)),

where we are written s = (s1, . . . , sN ) in a local chart of S and ṡ = (ṡ1, . . . , ṡN ) in the basis
(∂s1 , . . . , ∂sN

) of the tangent space TsS. It entails that the stress tensor:

Tm(u, p) := µ(∇xu +∇xuT )− p Id,

can also be decomposed as:

Tm(u, p) = ṙTm(ur, pr) +
N∑
j=1

ṡjTm(ujd, p
j
d).

The elementary solutions (ur, pr) and (ud, pjd) satisfy the Stokes system (5.8a-5.8b) with the
boundary conditions:

ur(t, x) = E1 t > 0, x ∈ ∂Am(s(t));
ujd(t, x) = wd(s(t), ∂sj , x) t > 0, x ∈ ∂Am(s(t)), j = 1, . . . , N.

Notice that the elementary solutions (ur, pr) and (ujd, p
j
d) (j = 1, . . . , N) depend on the time

through the shape variable s only. We next introduce the scalar:

Mr(s) :=
∫
∂A(s)

E1 · (Tm(ur, pr)) ndσ,

and the row vector N(s) whose entries are:

Nj(s) =
∫
∂A(s)

E1 ·
(
Tm(ujd, p

j
d)
)

ndσ.

We can rewrite Newton’s laws as

ṙMr(s) + N(s)ṡ = 0.

Upon an integration by parts, we get the equivalent definition Mr(s):

Mr(s) := µ

∫
Fm(s)

D(ur) : D(ur)dx, (5.9a)
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where D(ur) := (∇xu + ∇xuT ). We deduce that Mr(s) is always positive. The same
arguments for N(s) lead to the identity:

Nj(s) = µ

∫
Fm(s)

D(ur) : D(ujd)dx. (5.9b)

Later on, we will also need the matrix:

Md(s) =
(
µ

∫
Fm(s)

D(uid) : D(ujd)dx
)

1≤i≤N
1≤j≤N

. (5.9c)

We eventually obtain the Euler-Lagrange equation governing the rigid displacement with
respect to the shape changes:

ṙ = Lsṡ t > 0, (5.10)

where we have set set, for every s ∈ S:

Ls = −Mr(s)−1N(s).

Considering the expressions (5.9) and (5.10), we deduce:

Proposition 5.2.1 The dynamics of a micro-swimmer is independent of the viscosity of
the fluid. Or, in other words, the same shape changes produce the same rigid displacement,
whatever the viscosity of the fluid is.

Proof. Let (u, p) be an elementary solution (as defined in the modeling above) to the Stokes
equations corresponding to a viscosity µ > 0, then (u, (µ̃/µ)p) is the solution corresponding
to the viscosity µ̃ > 0. Since the Euler-Lagrange equation depends only on the Eulerian
velocities u, the proof is completed. In the sequel, we will set µ = 1.

The self-propelled constraint (5.2) does not make sense any longer for low Reynolds num-
ber swimmers because %0 = 0. However, since we still do not want the swimmer to be able
to translate itself just by self-deforming, we require the shape function to satisfy (5.2) in
which we define the matrix QS(s) by:

QS(s) :=
∫

Σ
∇sχ(s, x) dx, (5.11)

where Σ = ∂B.

5.2.2 High Reynolds number swimmers

Assume now that the inertia is preponderant with respect to the viscous force (it is the case
when Re� 1). The Navier-Stokes equations (5.7) simplify into the Euler equations:

%f
D

Dt
U(t,X)−∇X ·Tf (U, P )(t,X) = 0 t > 0, X ∈ Ff (s(t)); (5.12a)

∇X ·U(t,X) = 0 t > 0, X ∈ Ff (s(t)); (5.12b)

U(t,X) ·n−W(t,X) ·n = 0 t > 0, X ∈ ∂Af (s(t)). (5.12c)

where the stress tensor reads:

Tf (U, P )(t,X) = −P (t,X)Id t > 0, X ∈ Ff (s(t)).

Like in the preceding Subsection, we will assume that According to Kelvin’s circulation
theorem, if the flow is irrotational at some moment (i.e. ∇ ×U = 0) then, it has always



5.2. Modeling 119

been and will always remain irrotational. Hence, we can suppose that ∇ × U = 0 for all
times and then, according to the Helmholtz decomposition, that there exists for all time
t > 0 a potential scalar function Φ(t, · ) defined in Ff (s), such that

U(t,X) = ∇XΦ(t,X) t > 0, X ∈ Ff (s(t)).

The divergence-free condition leads to

∆XΦ(t,X) = 0 t > 0, X ∈ Ff (s(t)),

and the boundary condition reads:

∂nΦ(t,X) = W(t,X) ·n t > 0, X ∈ ∂Af (s(t)).

The function ϕ(t, · ) defined by:

ϕ(t, x) := Φ(t, x− r) t > 0, x ∈ Fm(s(t)),

is harmonic in Fm(s(t)) and satisfies the boundary condition:

∂nϕ(t, x) = w(t, x) ·n t > 0, x ∈ ∂Am(s(t)).

The potential ϕ is linear in w, so it can be decomposed into

ϕ(t, x) = ṙϕr(t, x) +
N∑
j=1

ṡjϕd(t, x) t > 0, x ∈ Fm(s(t)),

where at every moment the elementary potentials ϕr(t, · ) and ϕd(t, · ) are harmonics in
Fm(s(t)) and satisfy the boundary conditions:

∂nϕr(t, x) = E1 ·n,
∂nϕd(t, x) = wd(s(t), ∂sj , x) t > 0, x ∈ ∂Am(s(t)).

This process is usually referred to as Kirchhoff’s law. At this point, we do not invoke New-
ton’s laws to derive the Euler-Lagrange equation but rather use the formalism of Analytic
Mechanics. Both approaches (Newton’s laws of Classical Mechanics and the Least Action
principle of Analytic Mechanics) are equivalent, as proved in [64], but the latter is simpler
and shorter.

In the absence of buoyant force, the Lagrangian function L of the body-fluid system
coincides with the kinetic energy:

L = m
1
2 |ṙ|

2 + 1
2

∫
Am(s)

%(s, x)|wd(t, x)|2dx+ 1
2

∫
Fm(s)

%f |u(t, x)|2dx.

In this sum, one can identify, from the left to the right: the kinetic energy of the body
connecting to the rigid motion, the kinetic energy resulting from the deformations and the
kinetic energy of the fluid. We can next compute that, upon a change of variables:∫

Am(s)
%(s, x)|wd(t, x)|2dx = %0

∫
B

|∇sχ(s, x) · ṡ|2 dx,

and ∫
Fm(s)

%f |u(t, x)|2dx = %f

∫
Fm(s)

|∇ϕ(t, x)|2dx.
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It leads us to introduce the scalar:

Mr(s) = m+ %f

∫
Fm(s)

|∇ϕr(s, x)|2dx, (5.13a)

the row vector N(s) whose entries are:

Nj(s) = %f

∫
Fm(s)

∇ϕr(s, x) ·∇ϕjd(s, x)dx, j = 1, . . . , N, (5.13b)

and the matrix Md(s):

Md(s) = %0

∫
B

∇sχ(s, x)⊗∇sχ(s, x) dx

+ %f

(∫
Fm(s)

∇ϕid(s, x) ·∇ϕjd(s, x)dx
)

1≤i≤N
1≤j≤N

.

Observe the similarity between relations (5.9) and (5.13). We can rewrite the Lagrangian
function as:

L(ṙ, s, ṡ) = 1
2M

r(s)|ṙ|2 + ṙN(s)ṡ + ṡ ·Md(s)ṡ.

Invoking now the Least Action principle, we claim that the Euler-Lagrange equation is:

d

dt

∂L

∂ṙ
(ṙ, s, ṡ)− ∂L

∂r
(ṙ, s, ṡ) = 0,

which reduces to, since L does not depend on r:

d

dt
(Mr(s)ṙ + N(s)ṡ)) = 0.

Assuming that the impulse Mr(s)ṙ+ N(s)ṡ is zero at the initial time, we get eventually for
the dynamics the exact same expression as (5.10):

ṙ = Lsṡ t > 0,

where, for every s ∈ S:
Ls = −Mr(s)−1N(s). (5.14)

It is easy to verify that the dynamics does not depend on %0 and %f independently but only
on the relative density %0/%f , which is assumed to be equal to 1 in the sequel.

5.2.3 Examples of cost functionals

For low Reynolds number swimmers, a classical notion of swimming efficiency (see [56] and
[8]) is defined as the inverse of the ratio between the average power expended by the swimmer
during a stroke starting and ending at the shape s† and the power that an external force
would spend to translate the system rigidly at the same average speed:

Eff−1 :=
1
T

∫ T
0

(∫
∂Am(s) F(s, ṡ, ṙ, x) ·u(s, ṡ, ṙ, x)dσx

)
dt

v̄ ·
∫
∂Am(s) F(s†,0, v̄, x)dσx

,

where

F(s, ṡ, ṙ, x) :=

ṙTm(ur, pr)(s, x) +
N∑
j=1

ṡjTm(udj , p
j
d)(s, x)

n



5.2. Modeling 121

is the force in the normal direction exerted by the fluid at the point x of the surface of the
swimmer, with shape s, shape change rate ṡ and rigid velocity ṙ. In the same way:

u(s, ṡ, x) := ṙE1 +
N∑
j=1

ṡjwd(s, ∂sj , x),

is the velocity of the swimmer. Eventually v̄ is the average speed:

v̄ :=
(

1
T

∫ T

0
ṙdt
)

E1.

With the notation (5.9), the efficiency can be rewritten as:

Eff−1 :=
1
T

∫ T
0
(
Mr(s)|ṙ|2 + ṙN(s)ṡ + ṡ ·Md(s)ṡ

)
dt

|v̄|2Mr(s†) . (5.15)

It can easily be verified that:

Mr(s)|ṙ|2 + ṙN(s)ṡ + ṡ ·Md(s)ṡ =
∫
Fm(s)

D(u, p) : D(u, p)dx > 0,

where (u, p) is the solution to the Stokes system (5.8).
For high Reynolds number swimmers, we can choose the same expression (5.15) for the

efficiency, in which we use the definitions (5.13). In this case, the efficiency is the inverse of
the ratio between the mean energy expended by the swimmer divided by the energy required
to translate rigidly the swimmer at the same average speed.

Taking into account the dynamics and replacing ṙ by −Mr(s)−1N(s)ṡ in (5.15), it leads
us to consider on TsS the following scalar product:

gs(ṡ1, ṡ2) = ṡ1 ·
(
Md(s)− N(s)⊗N(s)

Mr(s)

)
ṡ2, (ṡ1, ṡ2 ∈ TsS). (5.16)

According to the abstract framework introduced in Section 5.1.2, the cost of an admissible
shape change s : [0, T ] 7→ S will be:

1
2

∫ T

0
gs(t)(ṡ(t), ṡ(t))dt. (5.17)

5.2.4 Regularity results

In Section 5.1.2, the manifold S and the differential forms are all of them assumed to be
analytic. The following Lemma ensures that, under a simple hypothesis, this regularity is
ensured for swimmers in a perfect fluid and Stokesian swimmers.

We denote by M(N1, N2) the Euclidian space of the N1 ×N2 matrices and we claim:

Lemma 5.2.2 Assume that the map s ∈ S 7→ χ(s, · ) ∈ C1(B̄,R3) is analytic (we refer to
[90] for the definitions and the properties of analytic functions valued in Banach spaces),
then for both cases (low and high Reynolds number swimmers) the maps s ∈ S 7→ QS(s) ∈
M(3, N), s ∈ S 7→ Mr(s) ∈ R, s ∈ S 7→ N(s) ∈ RN and s ∈ S 7→ Md(s) ∈ M(N,N) are
analytic.

The proofs can be found in [28] for swimmers in a perfect fluid and in [59] for Stokesian
swimmers.
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(a) µ = 0.52 (b) µ = 0.45 (c) µ = 0.3

Figure 5.1: Examples of manifolds Sµ for different values of µ. For small values of µ, Sµ
turns out to be merely the surface of the ellipsoid since it is entirely included in the unit
ball.

5.2.5 An example of swimmer in a potential flow

All along the paper, we will illustrate our purpose by applying our approach to a concrete
example. We have chosen to deal with a simplified version of a 2D swimmer in a perfect
fluid introduced in [27] and improved in [65].

Shape changes

Recall that in 2D, at every time, Am(s) is the image of the unit disk D by a diffeomorphism
χ(s, · ) depending on the parameter s, and whose form (with complex notation) is:

χ(s, z) = z + s1z̄ + s2z̄
2 + s3z̄

3, (z ∈ C, s = (s1, s2, s3) ∈ R3). (5.18)

We define the following norm in R3:

‖s‖S = sup
z∈∂D

|s1 + 2s2z + 3s3z
2|, (s ∈ R3).

and we claim (see [27] for details):

Lemma 5.2.3 1. The mapping χ(s, · ) is a C∞ diffeormorphism from the the unit ball
D onto its image Am(s) if and only if ‖s‖S < 1.

2. The measure of the area of Am(s) is π(1− s2
1 + 2s2

2 + 3s2
3).

Since we want both conditions (i) the mapping χ(s, · ) is a diffeomorphism and (ii) the area
of Am(s, · ) is of constant (and nonzero) measure, to be fulfilled, we introduce for every
0 < µ < 1 the set (see Fig. 5.1 ):

Sµ = {s ∈ R3 : ‖s‖S < 1 and s2
1 + 2s2

2 + 3s2
3 = µ2}.

For any 0 < µ < 1, Sµ is a 2D analytic submanifold of R3. It consists in the parts the
ellipsoid surface s2

1 + 2s2
2 + 3s2

3 = µ2 lying inside the unit ball ‖s‖S < 1.
To simplify, we will consider in the following that µ is small enough. In this case, the

ellipsoid s2
1 + 2s2

2 + 3s2
3 ≤ µ2 is included in the unit ball ‖s‖S < 1, and hence Sµ reduces

merely to the surface of the ellipsoid.
As a conclusion, once µ (and therefore the measure of the swimmer) has be chosen and

fixed, the shape changes over a time interval [0, T ] are described by means of a function:

t ∈ [0, T ] 7→ s(t) ∈ Sµ.
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Figure 5.2: Some points on the ellipsoid Sµ (µ = 0.3) and the corresponding shapes of the
swimmer.

By direct computations, one verifies that the self-propelled constraints (5.2), ensuring that
the swimmer can not modified its linear momentum by self-deforming, are automatically
satisfied in this simplified case.

In Fig. 5.2, we have pictured some points of the the ellipsoid and the corresponding shapes
for the swimmer.

Using the conformal mapping

φ(s, z) := z + s1

z
+ s2

z2 + s3

z3 , (z ∈ C \ D̄, s = (s1, s2, s3) ∈ Sµ),

which maps the exterior of the unit disk onto the fluid domain Fm(s), we can compute
explicitly the elementary kirchhoff’s potentials ϕr(s, · ) and ϕd(s, · ) (again, we refer to
[27] or [65] for the details). We finally get the following expressions for the mass matrices
introduced in (5.13):

Mr(s) = 2− 2s1 (5.19a)

N(s) = [−3s2 + 2s2s1 + 3s2s3 −s1 − 4s3 + s12 + 3s1s3 −2s2 + 3s2s1] (5.19b)

Md(s) =
[

4s2
2 − 3s3 + 9

2 s3
2 + 1 2s1s2 + 6s2s3 4s2

2 − 1
2 s1 + 3

2 s1s3
2s1s2 + 6s2s3 s1

2 + 6s1s3 + 9s3
2 + 2

3 2s1s2 + 6s2s3
4s2

2 − 1
2 s1 + 3

2 s1s3 2s1s2 + 6s2s3 4s2
2 + 1

2 s1
2 + 1

2

]
(5.19c)

The 1-form L defined in (5.14) as well as the scalar product g defined in (5.16) and the cost
functional (5.17) can now be explicitly computed. Instead of writing out their (complicated)
expressions, we compute rather the Ricci-curvature induced by g on the ellipsoid. The result
is displayed on Fig 5.3.
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Figure 5.3: The Ricci curvature corresponding to the Riemannian metric g defined in (5.16),
on the ellipsoid.
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5.3 Controllability

5.3.1 General results

Let us consider an abstract swimmer S = (S,g,QS , s†,L) as described in Section 5.1.2,
denote, for every s ∈ S:

ker QS = ∆Ss ⊂ TsS.

Assume that the dimension of ∆Ss is not always zero (otherwise, it would mean that there is
no shape change satisfying the self-propelled constraints (5.2)). For every s ∈ S, we denote
by {X1(s), . . . ,Xp(s)} (p > 0) a spanning set of ∆Ss where the vector fields s ∈ S 7→ Xj(s) ∈
TsS (1 ≤ j ≤ p) are assumed to be analytic. We denote X := {Xj , j = 1, . . . , p} ⊂ X(S)
and we shall call X an analytic spanning family of the distribution ∆S . Notice that is
general, the spanning family X cannot be required to be a basis of ∆Ss at every point s of S
because the analytic vector fields Xj cannot be prevented from vanishing at some point of
the manifold (see for instance the example in Subsection 5.3.2).

Proposition 5.3.1 Any absolutely continuous function with essentially bounded derivatives
s : [0, T ] → S is an admissible shape change if and only if it is solution (in the sense of
Carathéodory) of a Cauchy problem

ṡ(t) =
p∑
j=1

uj(t)Xj(s(t)) (t > 0), (5.20a)

s(0) = s†, (5.20b)

for some u = (u1, . . . , up) ∈ L∞([0, T ],Rp).

Proof. The proof is elementary: For every admissible shape change, the function u =
(u1, . . . , up) ∈ L∞([0, T ],Rp) gives the coordinates of ṡ in the spanning family X (s).

System (5.20) allows associating with every measurable function u ∈ L∞([0, T ],Rp) an
admissible shape change, at least for times small enough.

We defineM as being the analytic (N+1)-dimensional manifold S×R. Then, we introduce
the projectors πS and πR by:

πS : M → S
(s, r) 7→ πS(ξ) = s and

πR : M → R
(s, r) 7→ πR(ξ) = r.

On M, we define the analytic vectors fields:

Zj(ξ) :=
(

Xj(πSξ)
LsXj(πSξ)

)
, (j = 1, . . . , p), (5.21)

we denote Z := {Yj , j = 1, . . . , p} ⊂ X(M) and we define the distribution

∆Mξ = spanZ(ξ), ξ ∈M.

System (5.20) and the dynamics (5.10) can now be gathered as a unique dynamical system
on M:

ξ̇(t) =
p∑
j=1

uj(t)Zj(ξ(t)) (t > 0), (5.22a)

ξ(0) = ξ† (5.22b)

where ξ† = (s†, 0).
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Remark 5.3.2 The choice of the initial condition (s†, 0) (and not (s†, r0) for some r0 6= 0)
is physically irrelevant, since the vector fields Zj (1 ≤ j ≤ p), and hence the dynamics
(5.22), do not depend upon the R component of the variable ξ.

Definition 5.3.3 For every positive time T , every swimmer S = (S,g,QS , s†,L) and every
analytic spanning family X of ∆S , we denote by UXS (T ) the set of all the controls u =
(uj)1≤j≤p ∈ L∞([0, T ],Rp) for which the solution of (5.20) (and hence of (5.22)) is defined
on [0, T ].

For any given control u ∈ UXS (T ), we denote

t ∈ [0, T ] 7→ ξXS(t,u) ∈M,

the solution to (5.22) with control u.

Remark 5.3.4 According to this notation, we have:

πRξXS(T,u) =
∫ T

0
LπSξX

S
(t,u)

d
dtπSξXS(t,u)dt.

One hypothesis required in order to ensure that the swimmer is controllable is that X is
bracket generating on S. Observe that this condition does not depend on the particular
choice of the spanning family X but only on the distribution ∆S and hence on the vector
valued 1-form QS . It can be easily verified that if X and X ′ are two smooth spanning
families of ∆S , then for every s ∈ S:

LiesX = LiesX ′ = Lies∆S .

Taking into account this obversation, we define:

Hypothesis 5.3.5 The swimmer S = (S,g,QS , s†,L) is such that

1. The distribution ∆S is bracket generating on S, i.e.

dim Lies∆S = dimS, ∀ s ∈ S;

2. There exists ξ ∈M such that dim Lieξ∆M = dimM.

Lemma 5.3.6 Hypothesis 5.3.5 leads to:

dim Lieξ∆M = dimM, ∀ ξ ∈M.

Proof. Let ξ∗ = (s∗, 0) be such that dim Lieξ∗∆M = dimM. As already mentioned, the
choice of 0 for the R component of ξ∗ is irrelevant regarding the Lie algebra Lieξ∗∆M =
Lieξ∗Z since, for every j = 1, . . . , p, Zj(ξ) = Zj(πSξ). Consider now any ξ = (s, r) ∈ M
and denote O(ξ) the orbit of Z through ξ. Since ∆S is bracket generating on S, Rashevsky-
Chow Theorem ensures that for any T > 0, there exists a control u ∈ L∞([0, T ],Rp) such
that the solution to the EDO (5.20) with Cauchy data s is equal to s∗ at the final time T .
Using this control in EDO (5.22) with Cauchy data ξ = (s, r), we deduce that the solution

reaches a point ξ̃
∗ = (s∗, r∗) at the time T for some r∗ ∈ R (ξ and ξ̃

∗
are both in O(ξ)). But

since πS ξ̃
∗ = πSξ∗, we have the equality dim Lieξ̃

∗Z = dim Lieξ∗Z = dimM. According to
the Orbit Theorem, the dimension of the Lie algebra of Z is constant on O(ξ) and hence we
have also dim LieξZ = dimM. The proof is now complete.

Assuming only, in the second point of Hypothesis 5.3.5, that the equality holds for one
point of M may seem a somehow useless mathematical refinement. Quite the reverse, the
explicit computation of Lieξ∆M in concrete cases is often very involved and can still be
hardly carry out for one particular ξ (see for instance []).
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Definition 5.3.7 A swimmer satisfying Hypothesis 5.3.5 will be called controllable.

This definition is justified by the following Theorem:

Theorem 5.3.8 Let S be a swimmer satisfying Hypothesis 5.3.5. Then, for every T > 0,
every analytic spanning family X of ∆S , every ξ‡ in M and every open, connected set O ⊂
M containing ξ† and ξ‡, there exists a control u ∈ L∞([0, T ],Rp) such that ξXS(T,u) = ξ‡

and ξXS(t,u) ∈ O for every t ∈ [0, T ].
Proof. This is a straightforward consequence of the analytic Orbit theorem.

Notice that this theorem applies for the models (high and low Reynolds numbers swim-
mers) introduced in Section 5.2. For these models, controllability is ensured as soon as
Hypothesis 5.3.5 is fulfilled.

Let us enter more into details for the example presented in Subsection 5.2.5.

5.3.2 Swimmer in a potential flow

In this case, as already mentioned before, we have QS = 0 (the self-propelled constraints
are always fulfilled) and hence ∆S = TSµ. We define the following vector fields which are,
for every s ∈ Sµ, an analytic spanning set of TsSµ:

X1(s) :=

3s3(1− s1)
0

s1(s1 − 1)

 , X2(s) :=

2s2(1− s1)
s1(s1 − 1)

0

 , X3(s) :=

 0
3s3(1− s1)
2s2(s1 − 1)

 .
Notice that, for all s ∈ S, 2s2X1(s)− 3s3X2(s)− s1X3(s) = 0. From this family of vectors,
we build the vectors Zj (j = 1, 2, 3) according to the definition (5.21) and the expressions
(5.19). We get:

Z1(ξ) :=


3s3(1− s1)

0
s1(s1 − 1)

9
2s2s3 − 3s1s2s3 − 9

2s2s
2
3 − s1s2 + 3

2s
2
1s2



Z2(ξ) :=


2s2(1− s1)
s1(s1 − 1)

0
3s2

2 − 2s1s
2
2 − 3s2

2s3 − 1
2s

2
1 − 2s1s3 + 1

2s
3
1 + 3

2s
2
1s3



Z3(ξ) :=


0

3s3(1− s1)
2s2(s1 − 1)

3
2s1s3 + 6s3

3 − 3
2s

2
1s3 − 9

2s1s
2
3 − 2s2

2 + 3s1s
2
2

 .
Obviously, we have again that 2s2Z1(ξ) − 3s3Z2(ξ) − s1Z3(ξ) = 0 for all ξ = (s, r) ∈ M.
By direct calculation, one can check that for all ξ ∈M:

[Z1(ξ),Z2(ξ)] =
0

3s3(2s1 − 1)(s1 − 1)
−2s2(2s1 − 1)(s1 − 1)

− 3
2s1s3 − 3s2

1s
2
2 + 3

2s
3
1s3 + 9

2s
2
1s

2
3 − 21

2 s1s
2
3 − s2

1 + 6s2
3 + s3

1 + 5s1s
2
2 − 2s2

2

 .
For ξ† := (µ, 0, 0, 0) ∈M, we have:

[Z1(ξ†),Z2(ξ†), [Z1(ξ†),Z2(ξ†)]] = µ(µ− 1)


0 0 0
0 1 0
1 0 0
0 1

2µ
2 µ2

 ,
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and hence dim Lieξ†{Zj , j = 1, 2, 3} = 3. According to Theorem 5.3.8, we deduce that our
example of swimmer in a perfect fluid is controllable.

5.4 Seeking of Optimal Strokes

In this section, we address the main problems that we are interested in. A controllable
swimmer S being given, and a cost being chosen (among those presented in (5.1)), what is
the best possible stroke? By best, it is understood that the swimmer is wished to swim as
far as possible with a corresponding cost as low as possible.

To be rigorously stated, the question has to be split into several closely related but not
always equivalent problems:

1. What is the stroke minimizing the cost among those allowing traveling a given, fixed
distance?

2. What is the stroke maximizing the travelled distance among those whose cost is not
greater than a given fixed bound?

In case the cost is not important, we can also be interested in seeking the stroke maximizing
the mean swimming velocity.

We shall conduct a detailed study on every one of these problems, focusing on the existence
of optimal strokes and deriving their main properties.

5.4.1 Statement of optimal problems

To begin with, let us restrict slightly the scope of our study by introducing a new hypothesis
that the swimmer has to satisfy:

Hypothesis 5.4.1 The swimmer S = (S,g,QS , s†,L) is such that there exists an analytic
basis X = {Xj , j = 1, . . . , p} of the distribution ∆S .

Definition 5.4.2 A swimmer S satisfying Hypothesis 5.4.1 will be termed trivialized.

Applying a Gram-Schmidt process, we can assume that for every s ∈ S, the family {Xj(s), j =
1, . . . , p} in Hypothesis 5.4.1 is an orthonormal basis (for the Riemannian scalar product g
of S) of ∆Ss . As already mentioned before, it is in general not possible to extract from
any smooth spanning family of ∆S a smooth basis on the whole manifold S (see also the
computations in Subsection 5.3.2). Nevertheless, any swimmer can be locally trivialized:

Proposition 5.4.3 Let S = (S,g,QS , s†,L) be a swimmer. Then, there exists an open
connected subset S ′ (for the topology of S) containing s† such that S′ = (S ′,g,QS , s†,L) is
a trivialized swimmer.

Notice in particular that any open subset of an analytic manifold is still an analytic manifold.
Let S = (S,g,QS , s†,L) be a trivialized, controllable swimmer, K be a compact of S

containing s† and X be an orthonormal basis of ∆S . For every ξ‡ in M and T ≥ 0, we
define

UXS (ξ‡, T ) :=
{

u ∈ UXS (T ) : ξXS(T,u) = ξ‡
}

;

ÛXS (ξ‡, T ) :=
{

u ∈ UXS (ξ‡, T ) : ‖u(t)‖Rp = 1 ∀ t ∈ [0, T ]
}

;

UXS,K(T ) :=
{

u ∈ UXS (T ) : πSξXS(t,u) ∈ K ∀t ∈ [0, T ]
}

;

UXS,K(ξ‡, T ) :=
{

u ∈ UXS (ξ‡, T ) : πSξXS(t,u) ∈ K ∀t ∈ [0, T ]
}

;

ÛXS,K(ξ‡, T ) :=
{

u ∈ UXS,K(ξ‡, T ) : ‖u(t)‖Rp = 1 ∀ t ∈ [0, T ]
}
.
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The following Lemma

Lemma 5.4.4 If there exist an orthonormal basis X of ∆S and T > 0 such that the set
UXS,K(T, ξ‡) is empty, then it is empty for every orthonormal basis X of ∆S and every T > 0.

Proof. Assume that for some X and T > 0, the set UXS,K(T, ξ‡) is nonempty and denote
by u one of its elements. Then, for any T ′ > 0, define:

α =
‖u‖L1([0,T ],Rp)

T ′
; (5.23a)

φ(t) = 1
α

∫ t

0
‖u(s)‖Rpds, t ∈ [0, T ]; (5.23b)

ũ(t) = α
u(φ−1(t))
‖u(φ−1(t))‖Rp

, t ∈ [0, T ′]. (5.23c)

It can be easily verified that ũ ∈ UXS,K(T ′, ξ‡). Notice that t ∈ [0, T ′] 7→ ξXS(t, ũ) ∈ M
is nothing but a time reparameterization of the curve, also parameterized by t ∈ [0, T ] 7→
ξXS(t,u) ∈ M. Saying that UXS,K(T, ξ‡) is nonempty means that there exist an allowable

curve onM, whose projection on S is contained in K and which links ξ† to ξ‡. The existence
of such a curve depends neither on X nor on T .

In every one of the problems stated below, we make the convention that the infimum of
an empty set is equal to +∞ while the supremum is equal to −∞.

Problem 5.4.5 (Minimizing the Riemannian length) For any δ† ∈ R and T > 0, set
ξ‡ = (s†, δ†) and determine:

ΦXS,K(δ†, T ) = inf
{∫ T

0
‖u(t)‖Rpdt : u ∈ UXS,K(ξ‡, T )

}
. (5.24)

Notice that, since X is assumed to be orthonormal, we have also:∫ T

0
‖u(t)‖Rpdt =

∫ T

0

√
g(πSξXS(t,u), πSξXS(t,u))dt,

which is the length of the curve Γ ⊂ K parameterized by t ∈ [0, T ] 7→ πSξXS(t,u) ∈ S. The
lengths of the curves on S do not depend on the parameterization, so Problem 5.4.5 is time
parameterization invariant.

Modifying the cost leads to:

Problem 5.4.6 (Minimizing the action) For any δ† ∈ R and T > 0, set ξ‡ = (s†, δ†)
and determine:

ΘXS,K(δ†, T ) = inf
{

1
2

∫ T

0
‖u(t)‖2Rpdt : u ∈ UXS,K(ξ‡, T )

}
. (5.25)

Remark that, unlike the cost in (5.24), the cost in (5.25) is not time parameterization
independent.

Before stating results about these problems, let us introduce a last related optimal prob-
lem, studied for instance in []:

Problem 5.4.7 (Optimizing the time) For any δ† ∈ R, denote ξ‡ = (s†, δ†) and deter-
mine:

TXS,K(δ†) = inf{T : ÛXS,K(ξ‡, T ) 6= ∅}.
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Problem 5.4.8 (Maximizing traveling distance with bounded Riemannian lenght)
For any l ≥ 0 and T ≥ 0, determine:

ΨXS,K(l, T ) = sup
{
πRξXS(T,u) : u ∈ UXS,K(T ), πSξXS(T,u) = s†,

and

∫ T

0
‖u(t)‖Rpdt ≤ l

}
. (5.26)

Problem 5.4.9 (Maximizing traveling distance with bounded action) For any l ≥
0 and T ≥ 0, determine:

ΛXS,K(l, T ) = sup
{
πRξXS(T,u) : u ∈ UXS,K(T ), πSξXS(T,u) = s†,

and
1
2

∫ T

0
‖u(t)‖2Rpdt ≤ l

}
. (5.27)

Using the control u = 0 in the last two problems, we deduce that ΨXS,K(l, T ) ≥ 0 and

ΛXS,K(l, T ) ≥ 0.

5.4.2 Firsts Properties of the Optimal Strokes

In this Subsection, we will derive properties of the optimal strokes resting on the Riemannian
structure of S. Then, in the following Subsection, we will introduce an make use of the sub-
Riemannian structure of M.

To begin with, let us focus on the firsts three problems:

Theorem 5.4.10 Let S = (S,g,QS , s†,L) be a controllable, trivialized swimmer, and K be
a compact of S containing s†. Then

1. For every δ† ∈ R, the quantities ΦXS,K(δ†, T ), ΘXS,K(δ†, T ), and TXS,K(δ†) are either all
of them infinite or all of them finite, for every T ≥ 0 and every orthonormal basis X
of ∆S .

2. If s† ∈ K̊ then ΦXS,K(δ†, T ), ΘXS,K(δ†, T ), and TXS,K(δ†) are all of them finite, for every

T ≥ 0, every orthonormal basis X of ∆S and every δ† ∈ R.

3. If ΦXS,K(δ†, T ), ΘXS,K(δ†, T ), and TXS,K(δ†) are finite, then there exist minimizers or
maximizers to every Problem 5.4.5, 5.4.6 and 5.4.7.

4. For every T ≥ 0 and every δ† ∈ R, ΦXS,K(δ†, T ), ΘXS,K(δ†, T ) and TXS,K(δ†) do not
depend on X . So from now on, we drop X in the notation.

5. ΦS,K(δ†, T ) does not depend on T . So from now on, we drop T in the notation.

6. The following identities hold for every δ† ∈ R, and every T > 0:

ΦS,K(δ†) = TS,K(δ†) (5.28a)

ΘS,K(δ†, T ) = (1/2)(TS,K(δ†))2/T (5.28b)

7. Any minimizer u ∈ UXS,K(ξ‡, T ) to Problem 5.4.6:

(a) is such that ‖u(t)‖Rp is constant at every moment;

(b) is also a minimizer to Problem 5.4.5;
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(c) is proportional to a minimizer of Problem 5.4.7.

Proof.

1. Let δ† be given. According to Lemma 5.4.4, if UXS,K(T, ξ‡) is empty for some T > 0,

then it is empty for every T > 0 and therefore every quantity ΦXS,K(δ†, T ), ΘXS,K(δ†, T ),
and TXS,K(δ†) is infinite. Reciprocally, if for some T > 0 there exists u ∈ UXS,K(T, ξ‡),
then, for every T > 0, the set UXS,K(T, ξ‡) is nonempty as well and ΦXS,K(δ†, T )
and ΘXS,K(δ†, T ) are both finite. Moreover, from the control u, we can build ũ ∈
ÛXS,K(‖u‖L1([0,T ],Rp), ξ

‡) by setting α = 1 in (5.23). We deduce that TXS,K(δ†) is finite
and the first assertion of the Theorem is proved.

2. Denote O1 the connected component of K̊ containing s† and for every δ† ∈ R, take
O = O1×]− |δ†| − 1, |δ†|+ 1[ in Theorem 5.3.8. The Theorem ensures that for every
T > 0 and every orthonormal basis X of ∆S , the set UXS,K(ξ‡, T ) is nonempty.

3. We prove now all the remaining points of the Theorem. Let X (an orthonormal
basis of ∆S), T > 0 and δ† ∈ R be given. For any control u ∈ UXS,K(ξ‡, T ), denote

ũ ∈ UXS,K(ξ‡, T ) the control defined in (5.23) with T ′ = T . One can easily verify that:∫ T

0
‖u(s)‖Rpds =

∫ T

0
‖ũ(s)‖Rpds (5.29)

and

∫ T

0
‖u(s)‖2Rpds ≥ 1

T

(∫ T

0
‖u(s)‖Rpds

)2

(5.30)

=
∫ T

0
‖ũ(s)‖2Rpds,

with equality in (5.30) if and only if ‖u(s)‖Rp is constant, i.e. u = ũ. So, replacing u
by ũ does not modify the cost functional of Problem 5.4.5 and does not increase the
cost functional of Problem 5.4.6. Moreover, since

∫ T

0
‖ũ(s)‖2Rpds = 1

T

(∫ T

0
‖ũ(s)‖Rpds

)2

, (5.31)

if (un)n is a minimizing sequence for either Problem 5.4.5 or Problem 5.4.6, then (ũn)n
is a minimizing sequence for both Problem 5.4.5 and Problem 5.4.6. By construction,
the sequence (ũn)n is bounded in L∞([0, T ],Rp). Hence, up to a subsequence extrac-
tion, we can assume that (ũn)n weakly converges, for instance, in L2([0, T ],Rp) toward
u∗. In particular, the following inequality holds:∫ T

0
‖u∗(s)‖2Rpds ≤ lim inf

n→+∞

∫ T

0
‖ũn(s)‖2Rpds. (5.32)

Let us verify that u∗ ∈ UXS,K(ξ‡, T ).

The functions t ∈ [0, T ] 7→ ξXS(t, ũn) ∈ M are equi-Lipschitz continuous on [0, T ],
because the vector fields Zi are analytic on the compact K and hence bounded. Ac-
cording to Ascoli Theorem, we can assume that, up to a subsequence extraction, the
sequence (t 7→ ξXS(t, ũn))n converges uniformly on [0, T ] toward a Lipschitz continuous
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function t ∈ [0, T ] 7→ ξ∗ ∈ M. Furthermore, the curve t ∈ [0, T ] 7→ πSξ∗ ∈ S is ab-
solutely continuous, with bounded derivative and thus is an admissible shape change
(with support in K). For every t ∈ [0, T ] and every n ∈ N, we have:

ξXS(t, ũn) = ξ† +
p∑
i=1

∫ t

0
ũni (s)Zi(ξXS(s, ũn))ds. (5.33)

Since ũni ⇀ u∗i in L2([0, T ],R) and Zi(ξXS( · , ũn)) → Zi(ξ∗) uniformly on [0, T ] (and
hence also in L2([0, T ], TM)), passing to the limit as n→ +∞ in (5.33) leads to:

ξ∗(t) = ξ† +
p∑
i=1

∫ t

0
u∗i (s)Zi(ξ

∗(s))ds, t ∈ [0, T ].

We have now proved that u∗ is indeed a minimizer to Problems 5.4.6. Moreover, since
equality in (5.30) holds if and only if ‖u∗(t)‖Rp is constant for every t ∈ [0, T ], we infer
that u∗ = ũ∗. This equality leads to the following estimates:

∫ T

0
‖u∗(s)‖Rpds =

√
T

(∫ T

0
‖u∗(s)‖2Rpds

)1/2

≤ lim inf
n→+∞

√
T

(∫ T

0
‖ũn(s)‖2Rpds

)1/2

= lim inf
n→+∞

∫ T

0
‖ũn(s)‖Rpds,

and u∗ is also a minimizer to Problem 5.4.5. Using this control in (5.31), we obtain
the equality:

ΘXS,K(δ†, T ) = 1
2T (ΦXS,K(δ†, T ))2. (5.34)

Eventually, as already mentioned earlier, for every T > 0 and from any control u ∈
UXS,K(ξ‡, T ), we can build ũ ∈ ÛXS,K(‖u‖L1([0,T ],Rp), ξ

‡) by setting α = 1 in (5.23). The
identity (5.29) becomes: ∫ T

0
‖u(s)‖Rpds =

∫ ‖u‖L1([0,T ],Rp)

0
ds,

whence we deduce that
TXS,K(δ†) = ΦXS,K(δ†, T ).

This equality tells us that ΦXS,K(δ†, T ) does not depend on T . We conclude the proof

of the theorem by observing again that ΦXS,K(δ†, T ) is the length of the curve on S
parameterized by t ∈ [0, T ] 7→ πSξXS,K(t,u∗) ∈ S and that this length does not depend
on X .

We address now Problems 5.4.8 and 5.4.9:

Theorem 5.4.11 Let S = (S,g,QS , s†,L) be a controllable, trivialized swimmer, and K be
a compact of S containing s†. Then

1. Problems 5.4.8 and 5.4.9 admit maximizers for every T ≥ 0, every orthonormal basis
X of ∆S and every l ≥ 0.

2. Any maximizer u ∈ UXS,K(ξ‡, T ) to Problem 5.4.9
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(a) is such that ‖u(t)‖Rp is constant at every moment;

(b) is proportional to a maximizer of Problem 5.4.8.

3. ΨXS,K(l, T ) and ΛXS,K(l, T ) do not depend on X so we drop it in the notation.

4. ΨXS,K(l, T ) does not depend on T so we drop it in the notation.

5. The following identity holds for every T > 0 and l ≥ 0:

ΛS,K((1/2)l2/T, T ) = ΨS,K(l). (5.35)

Proof. To prove the existence of maximizers to Problems 5.4.8 and 5.4.9, we follow the
lines of the proof of Theorem 5.4.10: Let X , l ≥ 0 and T ≥ 0 be given and consider first
a maximizing sequence (un)n to Problem 5.4.9. Then notice that the renormalized and
reparameterized control (ũn)n is actually not only a maximizing sequence to Problem 5.4.9
but also to Problem 5.4.8 with l′ =

√
lT . Then, up to subsequences extractions and invoking

Ascoli Theorem and the weak convergence in L2([0, T ],Rp) of (ũn)n, we proves the existence
of a common maximizer u∗ = ũ∗ to Problems 5.4.9 (with l) and 5.4.8 (with l′ =

√
lT ). Using

the control u∗, we also get the equality (5.35).
Once more, the time reparameterization invariance of Problem 5.4.8 leads to infer that

ΨXS,K does not depend neither on X nor T . Eventually, identity (5.35) ensures that ΛXS,K(l, T )
does not depend on X .

5.4.3 Further Properties of the Optimal Strokes

In order to prove further properties on Problems 5.4.5-5.4.9, we need to introduce the Sub-
Riemannian structure on M.

Let a trivialized swimmer S = (S,g,QS , s†,L) and X := {Xj , j = 1, . . . , p} an orthonor-
mal basis of ∆Ss be given. From the analytic vectors fields Xj on S, we build the analytic
vector fields Zj (j = 1, . . . , p) on M = S × R as described in (5.21). Then, we define

Z = {Zj ,æ = 1, . . . , p},

and the distribution on M:

∆Mξ := spanZ(ξ) ⊂ TξM, ξ ∈M.

We denote by Z(ξ) the matrix whose column vectors are the Zj(ξ) and we introduce the
Euclidean bundle U :=M×Rp endowed with the Euclidean norm of Rp and the morphism
of vector bundles

f : (ξ,u) ∈ U 7→ (ξ,Z(ξ)u) ∈ TM.

Following [4, Definition 3.1], we claim that the manifoldM endowed with the triple (M,U, f)
is an analytic sub-Riemannian manifold. According to Definition 3.6 from the same booklet,
we define the admissible curves as being the Lipschitz curves ξ : [0, T ] 7→ M for which there
exists a control function u ∈ L∞([0, T ],Rp) such that, for a.e. t ∈ [0, T ]:

ξ̇ = Z(ξ)u.

Notice that it is exactly the dynamics (5.22) that we are dealing with. The sub-Riemannian
manifold can be equipped with the so-called Carnot-Caratheodory distance (see [4, Definition
3.13]) denoted by d( · , · ). In particular, the following identity holds for any δ† ∈ R and
ξ = (s†, δ†):

d(ξ†, ξ‡) = inf
{∫ T

0
‖u(s)‖Rpds, u ∈ UXS (T, ξ‡)

}
.

Be aware that actually, neither X nor T matters in this definition.
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Theorem 5.4.12 Let S = (S,g,QS , s†,L) be a controllable, trivialized swimmer, and K be
a compact of S such that s† ∈ K̊. Then:

1. For every l > 0, we have ΨS,K(l) > 0. For every l > 0 and T > 0, we have
ΛS,K(l, T ) > 0.

2. The functions
l ∈ R+ 7→ ΨS,K(l) ∈ R+ (5.36a)

is increasing and right continuous.

3. For every T > 0, the function

l ∈ R+ 7→ ΛS,K(l, T ) ∈ R+ (5.36b)

is increasing and right continuous.

4. For every maximizer to Problems 5.4.8 or 5.4.9, the constraints are saturated.

5. The function
δ ∈ R 7→ ΦS,K(δ) ∈ R (5.36c)

is even and uniformly continuous.

6. For every T > 0, the function

δ ∈ R 7→ ΘS,K(δ, T ) ∈ R (5.36d)

is even and uniformly continuous.

7. For every l ≥ 0 and every T ≥ 0:

ΦS,K(ΨS,K(l)) = l (5.37a)

ΘS,K(ΛS,K(l, T ), T ) = l. (5.37b)

Regarding the last point of the theorem, notice that, for every δ† ∈ R+, we have ΨS,K(ΦS,K(δ†)) ≥
δ† but it may happen that ΨS,K(ΦS,K(δ†)) > δ† for some δ†. Indeed, according to the defi-
nition of ΨS,K(ΦS,K(δ†)), we have:

ΨS,K(ΦS,K(δ†)) = max
{
πRξXS(T,u) : u ∈ UXS,K(T ), πSξXS(T,u) = s†,∫ T

0
‖u(s)‖Rpds ≤ ΦS,K(δ†)

}
. (5.38)

Proof.

1. For any a ≥ 0 and ξ ∈ M, denote by BM(ξ, a) the sub-Riemannian ball, of radius a
and centered at ξ. According to [4, Theorem 3.8], the Carnot-Caratheodory distance
induces the manifold topology on M. We deduce that, for every l > 0, the set
B(ξ†, l) ∩ (K̊ × R) is open an nonempty (it contains s†) and hence

({s} × R) ∩B(ξ†, l) ∩ (K̊ × R)

contains an open set {s†}×]− ε, ε[ for some ε > 0. We infer that, for every l > 0, we
have ΨS,K(l) > ε > 0. We use the relation (5.35) to deduce that, for every l > 0 and
T > 0, we also have ΛS,K(l, T ) > 0.
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2. The function (5.36a) is clearly nondecreasing. Moreover, for every l, l′ ≥ 0, we have:

ΨS,K(l + l′) ≥ ΨS,K(l) + ΨS,K(l′). (5.39)

Indeed, recall that every minimizer to Problem 5.4.8 is time parameterization invariant
and consider the curves Γ ⊂ S of length l and Γ′ ⊂ S of length l′ corresponding to the
maximizers of Problem 5.4.8 for l and l′ respectively. Then denote Γ′′ = Γ ∪ Γ′. This
curve is admissible, closed, of length l + l′ and produces a displacement no greater
than ΨS,K(l+ l′). Inequality (5.39) together with the first point of the Theorem yield
the increasing property of function (5.36a).

In order to prove the right continuity, let l ∈ R+ be given and consider a decreas-
ing sequence (ln)n converging to l. For every ln (n ∈ N), denote by un the min-
imizer to Problem 5.4.8 such that ‖un(t)‖Rp is constant for every t ∈ [0, T ]. The
sequence (un)n is bounded in L2([0, T ],Rp) and the sequence (ξXS( · ,un))n is bounded
in C0([0, T ],M), therefore there exists a subsequence (lnk

)k such that (ΨS,K(lnk
))k

converges to lim sup ΨS,K(ln) while (unk
)k weakly converges in L2([0, T ],Rp) to u∗

and (ξXS( · ,unk
))k uniformly converges to ξ∗.

On the one hand, arguing as for (5.33), we deduce that ξ∗ = ξXS( · ,u∗) and then that

ΨS,K(lnk
)→ πRξXS(T,u∗) as k → +∞

with ‖u∗‖L1([0,T ],Rp) ≤ lim inf ln = l. Therefore we obtain that:

lim sup ΨS,K(ln) ≤ ΨS,K(l).

On the other hand, since ΨS,K is increasing and l ≤ ln for every n, we deduce that

ΨS,K(l) ≤ ΨS,K(ln),

and the conclusion arises by taking the limit inf in both sides of the inequality.

3. The proof of this point is a straightforward consequence of the preceding point and
relation (5.35).

4. The same reasoning as for the second point proves that the constraints are saturated
in Problems 5.4.8 or 5.4.9 for the maximizers. Indeed, if the constraints were not
saturated, then it would be possible to add to the optimal curve on S a small loop
that would produce an extra displacement (according to the first point).

5. For ε small enough, we have BM(ξ†, ε) ⊂ K̊ (because the sub-Riemannian topology
cöıncides with the manifold topology). In this case, for every δ† ∈ π−1

R BM(ξ†, ε), we
have:

ΦS,K(δ†) = d(ξ†, ξ‡).

According to [4, Theorem 3.18], the Carnot-Caratheodory distance is continuous for
the manifold topology, so we deduce that the function (5.36c) is continuous in a neigh-
borhood of 0. It is even because, for every δ and every minimizer u on [0, T ], the
control t 7→ u(T − t) is a minimizer with the same Riemannian length, associated to
−δ.
Observe now that for every δ†, h ∈ R:

ΦS,K(δ† + h) ≤ ΦS,K(δ†) + ΦS,K(h),

whence we infer that:

ΦS,K(δ† + h)− ΦS,K(δ†) ≤ ΦS,K(h).
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Writing that
ΦS,K(δ†) ≤ ΦS,K(δ† + h) + ΦS,K(−h),

and since the function is even, we finally get:

|ΦS,K(δ† + h)− ΦS,K(δ†)| ≤ ΦS,K(h),

which, with the continuity in 0, proves that the function is uniformly continuous on
R.

6. The proof of this point is a straightforward consequence of the preceding point and
relation (5.28).

7. For every l ≥ 0, we clearly have ΦS,K(ΨS,K(l)) ≤ l. The inequality ΦS,K(ΨS,K(l)) < l
for some l ≥ 0 and the existence of minimizers to Problem 5.4.5 would contradict the
fact that the constraint is saturated for every maximizer of Problem 5.4.8.

The function (5.36a) has no reason to be monotone in the general case. Let us define:

Hypothesis 5.4.13 The swimmer S = (S,g,QS , s†,L) is such that QS = 0 (there is no
self-propelled constraints).

Every swimmer satisfying (5.4.13) is called unconstrained . For unconstrained swimmers,
every absolutely continuous curve on S, with essentially bounded first derivative, is an
admissible shape change. Under Hypothesis 5.4.13, we can state:

Theorem 5.4.14 Let S = (S,g,QS , s†,L) be a controllable, trivialized, unconstrained
swimmer, and K be a compact of S such that s† ∈ K̊. Then there exists ε > 0 such that the
function (5.36a) is increasing on ]− ε, ε[.

Proof. Denote by BS(s†, r) the Riemannian ball on S, where the radius r is given by
Lemma 5.7.1. Let ε > 0 be small enough such that BM(ξ†, ε) ⊂ K̊ (it is always possible be-
cause the sub-Riemannian topology cöıncides with the manifold topology) and πSB

M(ξ†, ε) ⊂
BS(s†, r).

Assume now that there exist 0 < δ0 < δ1 < ε such that

ΦS,K(δ1) ≤ ΦS,K(δ0). (5.40)

Denote ξ1 = (s†, δ1) and for some X = {Xj , j = 1, . . . , p} (an orthonormal basis of ∆S) and
T > 0, denote by u1 ∈ UXS,K(ξ1, T ) a control minimizing Problem 5.4.5. Introduce as well

γ1 = πSξ( · ,u1) and Γ1 the curve on S parameterized by γ1. The following identity holds:

ΦS,K(δ1) =
∫ T

0
‖u1(t)‖Rpdt = `(Γ1).

According to Lemma 5.7.1 with x0 = s† and γ = γ1, there exists a continuous function
ψ : [0, 1] × [0, T ] → S such that, for every s ∈ [0, 1], ψ(s, · ) is absolutely continuous
with essentially bounded first derivative, ψ(1, · ) = γ1 and ψ(0, · ) = s†. Denoting by
us = (usj)1≤j≤p ∈ UXS,K(T ) the control such that

usj(t) = gψ(s,t)(∂tψ(s, t),Xj(ψ(s, t)), t ∈ [0, T ],

and by Γs the curve parameterized by t ∈ [0, T ] 7→ ψ(s, t) = πSξ(t,us) (s ∈ [0, 1]), we have,
for every s ∈ [0, 1]:

ΦS,K(Ξ(s)) ≤
∫ T

0
‖us(t)‖Rpdt = `(Γs).
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where we have set:
Ξ : s ∈ [0, 1] 7→ πRξXS(T,us) ∈ R.

The function Ξ is continuous and such that Ξ(1) = δ1 and Ξ(0) = 0, so there exists s∗ ∈]0, 1[
such that Ξ(s∗) = δ0. Since, according to Lemma 5.7.1, the function s ∈ [0, 1] 7→ `(Γs) is
increasing, we get:

ΦS,K(δ0) ≤ `(Γs∗) < `(Γ1) = ΦS,K(δ1),

which is in contradiction with (5.40). The proof is now completed.

5.5 The case N = 2
This section is devoted to the study of optimal strokes for controllable, trivialized, uncon-
strained swimmers, when the dimension N of the manifold S is equal to 2.

5.5.1 Optimal Strokes and Isoperimetric Inequalities

In this subsection, we wish to give a hint of how the optimal stroke problem can be inter-
pretable as an isoperimetric problem on the manifold S.

Recall that a stroke is a closed (oriented) admissible curve Γ. Let s : [0, T ] 7→ S be a
parameterization of a Γ. The travelled distance resulting from this stroke is:∫ T

0
Ls(t)ṡ(t)dt =

∫
Γ
L.

Denoting by Ω the area enclosed by Γ, Stokes formula tells us that:∫
Γ
L =

∫
Ω

dL.

Notice that these formula are metric independent but require S to be orientable. The 2−form
dL defined on the 2 dimensional manifold S can be seen as a signed measure on S. On the
other hand, an example of cost functional considered in this paper is just the Riemannian
length of Γ.

So, roughly speaking, seeking optimal strokes consists in minimizing the Riemannian
length of Γ while maximizing the measure of the area Ω for the signed measure dL.

In the case of the swimmer in the potential flow, we have drawn on Fig 5.4 the density
function of the measure dL. Notice in particular that, considering small strokes (and hence
small closed curves), not only matter the shape of the curve but the position on the ellipsoid
is also preponderant.

This approach of optimal stroke problems as isoperimetric problems would be worth some
further investigation.

5.5.2 Pontryagin’s maximum principle

Let us begin with recalling some notation. We consider a trivialized, unconstrained, con-
trollable swimmer S = (S,g,QS , s†,L) (with QS = 0 since it is unconstrained) and
X = {X1,X2} an analytic orthonormal basis of ∆S = TS. Then we define the analytic
vector fiels Z = {Z1,Z2} on M, according to formula (5.21).

To pursue, we need to strengthened Hypothesis 5.3.5 as follows.

Hypothesis 5.5.1 For every ξ ∈M, we have:

dim span{Z1(ξ),Z2(ξ), [Z1,Z2](ξ)} = 3. (5.41)
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Figure 5.4: Density fonction of the signed measure defined by dL on the ellipsoid. A stroke
being a closed curve on the ellipsoid, the resulting travelled distance is obtained by measuring
the area of the enclosed surface for the measure dL. See also Fig 5.5 and 5.9.
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As already pointed out, this Hypothesis does not depend on the choice of Z and hence is
independent of the choice of the orthonormal basis X . Actually, (5.41) can be rewritten as:

dim span
{

∆Mξ , [∆Mξ ,∆Mξ ]
}

= 3.

Recall that according to Lemma 5.3.6, Hypothesis 5.3.5 leads to:

dim Lieξ∆M = dimM, ∀ ξ ∈M.

In Hypothesis 5.5.1, Lieξ∆M is required to be spanned by the Lie brackets of order no
greater than 1.

In Theorem 5.4.10, it has been proved that Problems 5.4.5-5.4.7 are equivalent. Let us
restate a version of this problem in the simplified 2 dimensional case we are considering in
this Section:

Problem 5.5.2 For any given ξ0, ξ1 in M, find T ≥ 0 and a measurable bounded function
t ∈ [0, T ] 7→ (u1(t), u2(t)) ∈ R2 which minimizes the cost

1
2

∫ T

0

(
u1(t)2 + u2(t)2) dt,

such that there exists an absolutely continuous curve t ∈ [0, T ] 7→ ξ(t) ∈M satisfying

ξ̇(t) = u1(t)Z1(ξ) + u2(t)Z2(ξ) for almost every t in [0, T ], (5.42a)

ξ(0) = ξ0, ξ(T ) = ξ1. (5.42b)

and,
u1(t)2 + u2(t)2 = 1 ∀t ∈ [0, T ]. (5.42c)

In order to apply Pontryagin’s maximum principle (see [2]) to this problem, we denote by
T ∗M the cotangent bundle of M and we introduce the Hamiltonian (see [85] Chap.7.1)

H : R×M× T ∗M× R× R2 → R(
t, ξ,p, p0, (u1, u2)

)
7→ H

(
t, ξ,p, p0, (u1, u2)

) (5.43a)

defined by:

H (t, ξ,p, p0,U) = 〈p, u1(t)Z1(ξ) + u2(t)Z2(ξ)〉
− p0

(
u2

1(t) + u2
2(t)

)
(5.43b)

where 〈 · , · 〉 stands for the duality product T ∗M× TM. For every ξ in M, the quantity
u1(t)Z1(ξ) + u2(t)Z2(ξ) belongs to the tangent space TξM, p is in the cotangent space
T ∗ξM and p0, called the cost dual variable, is a time independent real constant.

In this setting and under Hypothesis 5.5.1, the Pontryagin’s maximum principle reads (see
for instance Theorem 3.28 of [4])

Proposition 5.5.3 If (u1( · ), u2( · )) ∈ L∞([0, T ],R2) is a solution to Problem 5.5.2 asso-
ciated with curve t ∈ [0, T ] 7→ ξ(t) ∈M, then, there exists a non trivial

p : t ∈ [0, T ] 7→ p(t) ∈ T ∗M

solution of the system

ξ̇ = u1(t)Z1(ξ) + u2(t)Z2(ξ), (5.44a)

ṗ = −u1(t)〈p, DξZ1(ξ)〉 − u2(t)〈p, DξZ2(ξ)〉. (5.44b)

Moreover, for all t ∈ [0, T ],

ui(t) = 〈p(t) , Zi(ξ(t))〉 for i = 1, 2.
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Definition 5.5.4 The exponential map (from ξ0), denoted by εξ0 , is the mapping which
associates to every p0 ∈ T∗M, the solution of System (5.44) with the initial condition
ξ(0) = ξ0 and p(0) = p0. Such a trajectory is called an extremal.

We call γp0 the curve on the manifolds M of the solution εξ0 .

Remark 5.5.5 The general statement of the Maximum Principle, as it can be found for
instance in [2], is more intricate and involves so-called abnormal extremals. The study of
such extremals is usually far from obvious, from both a theoretical and a numerical point
of view. In our case, the distribution is 1-step generating, see Eq. (5.41). Hence, the Goh
condition (see Chap. 10.2 of [14]) ensures that all optimal trajectories in M can be lifted in
T ∗M as normal extremals.

An obvious consequence of Proposition 5.5.3 is

Lemma 5.5.6 For every solution of (5.44) (ξ( · ),p( · )) : [0, T ] → T ∗M, there exists a
continuous function θ : [0, T ]→ R such that,

〈p( · ),Z1(ξ( · ))〉 = cos(θ( · )),
〈p( · ),Z2(ξ( · ))〉 = sin(θ( · )).

5.5.3 Contact sub-Riemannian structure

A Riemannian manifold is endowed with a definite 2-form that induces a natural identifi-
cation between the tangent space and its dual. In general, such an identification cannot be
directly generalized to any sub-Riemannian structure, since the definite 2-form that defines
the metric is not defined on the whole tangent space, but only on a strict subspace. In our
case, from the metric g on S, we can define the definite 2-form gM on ∆M by setting:

gMξ (ζ1, ζ2) = gπSξ(πSζ1, πSζ1), ξ ∈M, ζ1, ζ2 ∈ ∆Mξ .

In the particular case of so-called contact structures (see definition below), it is possible
to define a natural identification between the tangent and the co-tangent spaces. We follow
here the procedure exposed by Agrachev in [1], adapted to our special example (for which
dimM = 3).

Definition 5.5.7 A contact structure in M is a smooth distribution of 2-planes ∆̃ : ξ ∈
M 7→ ∆̃ξ ∈ TξM that is non-integrable at every point, i.e., ∆̃ξ + [∆̃ξ, ∆̃ξ] = TξM for every
ξ in M.

This is precisely Hypothesis 5.5.1 and therefore:

Proposition 5.5.8 The distribution ∆M is a contact structure.

For every ξ in M, {Z1(ξ),Z2(ξ)} is a basis of ∆Mξ . The definite 2-form gM induces a

natural identification between ∆Mξ and (∆Mξ )∗. Hence the co-vectors Z1(ξ)∗ and Z2(ξ)∗

form a basis of (∆Mξ )∗. It remains to complete these bases of ∆Mξ and (∆Mξ )∗ by choosing
a third vector. It can be done in a canonical way using Stokes fields (see Section 2.1 of [1]).

Lemma 5.5.9 There exists a unique 1-form ω on M such that, for every ξ0 in M:

1. ω|∆M
ξ0

vanished ,

2. dω|∆M
ξ0
×∆M

ξ0
is equal to the volume form gMξ0

on the oriented Euclidean space ∆Mξ0
.
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Proof. The proof of [1] is constructive. Locally, up to a restriction of a local chart,
M = R3.

For every ξ, the vectors Z1(ξ) and Z2(ξ) span a 2-dimensional subspace of TξM. Since
T ∗ξM is a 3-dimensional vector space, there exists a non-trivial linear form ω̃ξ which vanishes

on Z1(ξ) and Z2(ξ), and hence on ∆Mξ . Moreover, for any other linear form ω̂ξ that vanishes

on ∆Mξ , there exists some real number fξ such that ω̂ξ = f(ξ)ω̃ξ.

Expressing everything in coordinates, one can see that the coordinates of ω̃ can be chosen
to depend rationally on the coordinates of Z1 and Z2, hence we can assume that ω̃ is smooth
on M.

Any other smooth 1-form ω̂ that vanishes on ∆M has the form ω̂ = fω̃ with f :M→ R a
smooth function. The problem now is to prove that there exists one, and only one, function
f such that fω̃ satisfies the second condition of Lemma 5.5.9.

A straightforward computation in coordinates gives, for any smooth function f ,

d(fω̃)|∆M×∆M = fd(ω̃)|∆M×∆M ,

what proves the uniqueness of the 1-form ω (if any) satisfying the conditions of Lemma 5.5.9.

As a consequence of Hypothsesis 5.5.1, the 2-form dω̃(Z1,Z2) does not vanish (this can be
seen with a direct but tedious computation in coordinates by expressing det(Z1,Z2, [Z1,Z2])
in terms of dω̃(Z1,Z2)). Lemma 5.5.9 follows by defining the 1-form ωξ = 1

dω̃ξ(Z1(ξ),Z2(ξ)) ω̃ξ.

From non on, we denote with ω the 1-form defined in Lemma 5.5.9. Our aim is now to
define a vector field e “dual” to ω in TM.

Lemma 5.5.10 There exists a unique analytic vector field, called the Stokes field and de-
noted by e : ξ ∈M 7→ eξ ∈ TξM which satisfies, for every ξ in M:

1. ωξ(eξ) = 1,

2. dωξ(eξ,Zi(ξ)) = 0, for i = 1, 2.

Proof. For every ξ in M, since the three linear forms ωξ, dωξ( · ,Zi(ξ)), i = 1, 2, are
independent, there exists an unique vector e which is solution of the linear system given by
the two conditions.

From now on, with a slight abuse of notations, we will denote Z∗i := dω( · ,Zi). This
emphasizes the duality between the bases (Z1(ξ),Z2(ξ), eξ) and (Z∗1(ξ),Z∗2(ξ), ωξ) of TξM
and T∗ξM.

Remark 5.5.11 An important point in the construction of the bases (Z1(ξ),Z2(ξ), eξ) and
(Z∗1(ξ),Z∗2(ξ), ωξ) is that the construction depends only on gM and ∆M, up to a rotation in
the 2-plane ∆Mξ . In other words, the contact structure inM is enough to induce an intrinsic
isomorphism from the tangent to the cotangent space of M, as if M were a Riemannian
(not only a sub-Riemannian) manifold.

A direct consequence of the construction done in Lemmas 5.5.9 and 5.5.10 is the possibility
to express uniquely any co-vector p in T ∗ξM in the basis (Z∗1(ξ),Z∗2(ξ), ωξ):

p = cos(θ)Z∗1 + sin(θ)Z∗2 + νω.

As a direct consequence, any initial condition p0 of the Hamiltonian system 5.44 is defined
by a couple (θ, ν) ∈ R/2πR× R.
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5.5.4 Local structure of small geodesics

In this Subsection, we use the adapted bases (Z1(ξ),Z2(ξ), eξ) and (Z∗1(ξ),Z∗2(ξ), ωξ) of
TξM and T∗ξM in order to describe the geometric behaviour of the geodesics around a
point ξ0 of M.

Asymptotic lengths for geodesics

Fix ξ0 ∈M and consider the exponential map εξ0 starting from ξ0.

Definition 5.5.12 A point ξ 6= ξ0 is said conjugate to ξ0, if ξ is a critical value for εξ0 .
The conjugate locus is the set which contains all the points to ξ0,

Conj(ξ0) := {ξ s. t. ξ 6= ξ0 and ξ conjugate to ξ0} . (5.45)

Definition 5.5.13 Fix ξ0 ∈M, we define the distance,

Cp0 := sup
{
t > 0 , γ(t) = πM

(
εξ0(p0)

)
, d(ξ0, γ(t)) = t

}
(5.46)

The point γp0(Cp0) is a cut point of ξ0 along γ.
The cut locus is the set which contains all the cut points of x0 along all the curve γ,

Cut(ξ0) :=
⋃
λ

{ξ s. t. ξ 6= ξ0 and ξ cut point of x0 along γλ} . (5.47)

For every point ξ0 in M, the geodesics from ξ0 can lose their optimal property at the
set of points defined by the union of the cut locus and the conjugate locus. It is important
to know when the geodesics issued from a point ξ0 cut one of these sets. This question is
difficult in general and there is no global answer. However, a precise description of short
geodesics can be given in our particular setting (see [2]).

Definition 5.5.14 We call constants of the structure the coefficients, denoted by the family
(cij)j=1,2,3

i=1,2 associate with the decomposition of the two-form dZ∗i into the basis (ω ∧ Z∗1, ω ∧ Z∗2,Z∗1 ∧ Z∗2).
More precisely, for i=1,2, dZ∗i reads,

dZ∗i = ci01 ω ∧ Z∗1 + ci02 ω ∧ Z∗2 + ci3 Z∗1 ∧ Z∗2 (5.48)

As the 1-forms Z∗i , notice that the constants of structure depend also on the point ξ
where they are computed. We will introduce the two invariants maps which describe the
local geometry around a point of the cut locus and the conjugate locus.

Definition 5.5.15 We call χ the function from M to R defined by

χ :=
√
− (c101c

2
02 − c102c

2
01) .

Proposition 5.5.16 For x0 = ( 1
16
√

3
√

2, 1
4 ,

1
2 ) the value of

χx0 := 15803633355047100398207710857772250331514532656054272
3070472626751170117064260382892590591961941813016409

Proof. This value are calculated by using Maple.

Proposition 5.5.17 The set {ξ ∈M|χ(ξ) = 0} is closed with measure zero in M.

Proof. Since the mapping ξ ∈M 7→ Zi(x) is analytic, the function ξ 7→ χ(ξ) is analytic as
well. The result follows from the connectedness of M and the computation of Proposition
5.5.16.

The fact that χx0 6= 0 gives a asymptotic estimates of the first cut and conjugate lengths
by applying the Theorems 3.2 and 4.2 of [2]:



5.6. Swimmer in a potential flow: Numerics 143

Proposition 5.5.18 For ξ in M such that χξ 6= 0, for every p0 = (θ, ν) ∈ TξM∗, the first
conjugate length is,

l1(θ, ν) = 2π
|ν|

+Oν→∞

(
1
|ν|3

)
, (5.49)

and the first cut length is,

l∗(θ, ν) = 2π
|ν|

+Oν→∞

(
1
|ν|3

)
. (5.50)

Remark 5.5.19 Theorems 3.2 and 4.2 in [1] provide also the local geometric behaviour of
the cut and conjugate locus. For every p0 = (θ, ν),

Conjx0(θ, ν) = x0 ± π
ν2 ex0 ±

2πχx
ν3

(
cos(θ)3Z1(x0)− sin(θ)3Z2(x0)

)
+Oν→∞

( 1
ν4

)
Cutx0(θ, ν) = x0 ± π

ν2 ex0 ±
2πχx cos(θ)

ν3 Z1(x0) +Oν→∞
( 1
ν4

)
.

(5.51)

5.6 Swimmer in a potential flow: Numerics

There are basically two methods to compute the optimal strokes corresponding to Prob-
lems 5.4.5-5.4.9 for the example of swimmer in a potential flow presented in Subsection (5.2.5).

The first one consists in integrating Pontryagin’s maximum principle (5.44) over a time
interval [0, T ], specifying some initial data (ξ0,p0). Since we are mostly interested in the
ending point ξ(T ), we can implement a so-called shooting method. For instance, seeking
strokes, we want the S component of the ending point πSξ(T ) to be the same as the S
component of the initial point πSξ0. Let ξ0 be given and for every p0 denote by t ∈ [0, T ] 7→
ξ(t,p0) the solution to (5.44) with Cauchy data (ξ0,p0). We seek p0 as a solution to the
equation F (p) = 0 where F is for instance defined (in a chart) by:

p 7→ ‖πSξ(T,p)− πSξ0‖R2 .

Notice however that not every solution to Pontryagin’s maximum principle is an optimal
curve. So, rather than determining optimal strokes, we integrate (5.44) a large number of
times in order to draw sub-Riemannian wavefronts. Sub-Riemannian wavefronts are precisely
the surfaces constituted by the ending points of all the extremal starting at a given point
and having the same fixed sub-Riemannian length.
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Table 5.1: The sub-Riemannian wavefront of length 0.1 computed by integrating Pontrya-
gin’s maximum principle (5.44) with initial data satisfying ξ0 = (s0, 0), s0 = (0.3, 0, 0). The
picture is draw in a chart, using spherical coordinates.
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Table 5.2: The sub-Riemannian wavefront of length 0.2 computed by integrating Pontrya-
gin’s maximum principle (5.44) with initial data satisfying ξ0 = (s0, 0), s0 = (0.3, 0, 0). The
picture is drawn in a chart, using spherical coordinates.

The second method consists in approximating any curve on S by means of cubic splines. In
the following examples, we use a basis of 20 cubic splines (actually, two bases since, working
in spherical coordinates, we need 20 cubic splines for the polar angle and others 20 for the
azimuth angle). So, we dispose of 40 parameters controlling the splines and the optimal
problems under consideration turn into finite dimensional optimal problems. To every set of
parameters, we can associate a travelled distance and a cost. To solve our optimal problems,
we use the optimal toolbox of Matlab. The main difficulty is to manage the change of chart.
Indeed, starting with the classical spherical coordinates, a curve cannot pass through the
south or north pole of the ellipsoid. So we have to switch the axes, in such a way that the
north pole becomes a regular point in spherical coordinates.

First example: optimizing the cost

We consider a closed curve on the ellipsoid and compute the corresponding covered distance
by the swimmer. Then, we try to minimize the cost among all the closed curves for which the
travelled distance is the same. Notice that it is not exactly what is stated in Problem 5.4.5,
because here there is no fixed starting point. The resulting curves on the ellipsoid are
pictured on Fig 5.5, while the corresponding sequences of shapes are pictured on Fig 5.6
(initial guess) and 5.7 (optimized swimmer).

Second example: The distance-cost function

Let us draw now the graph of the function defined (5.36c). Considering a shape at rest for
the swimmer, we compute for every δ ∈ R+, the optimal stroke (i.e. minimizing the cost)
allowing the swimmer to cover the distance δ. We choose as shape at rest, the converging
point of all the curves on Fig 5.9. On the same picture, we drawn all the curves corresponding
to the optimal strokes for different values of δ. A sequence of shapes corresponding to the
longest curve is given in Fig 5.10. Finally, the graph of the distance-cost function is given
in Fig 5.8.
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Figure 5.5: The initial closed curve is the equator of the ellipsoid (the dashed line). The
optimized curve (the continuous line) is supposed to have the minimum cost for the same
travelled distance. The colors are the same of in Fig 5.4.
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Figure 5.6: Sequence of 20 time equidistributed shapes for the initial guess.
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Figure 5.7: Sequence of 20 time equidistributed shapes after optimization.



5.6. Swimmer in a potential flow: Numerics 151

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 5.8: For every targeted distance (in abscissa) we compute the corresponding optimal
cost (in ordinate). The curve is pseudo-periodic because, above a certain distance, the best
stroke is made of two optimal smaller loops.
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Figure 5.9: Every closed curve corresponds to an optimal stroke (minimizing the cost for a
given distance).
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Figure 5.10: Sequence of 20 shapes time equi distributed corresponding to the longest curve
on Fig 5.9.
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5.7 Appendix A: Riemannian Geometry

Let (M, g) be a Riemannian manifold. We denote `(Γ) the length of any rectifiable curve
Γ ⊂M and for every x ∈M and r > 0, we denote by B(x, r) the Riemannian ball centered
at x and of radius r. The following Lemma ensures the existence of a small monotone retract
at any point of M .

Lemma 5.7.1 Let x0 be a point of M . Then there exists r > 0 such that, for every path
γ : [0, T ] 7→M absolutely continuous with essentially bounded first derivative, such that:

1. γ(t) ∈ B(x0, r) for every t ∈ [0, T ];

2. γ(0) = γ(T ) = x0;

there exists a continuous function ψ : [0, 1]× [0, T ] 7→M satisfying:

1. For every s ∈ [0, 1], t ∈ [0, T ] 7→ ψ(s, t) is continuous with essentially bounded first
derivative.

2. ψ(1, · ) = γ;

3. ψ(0, · ) = x0;

4. The function s ∈ [0, 1] 7→ `(Γs) (where Γs is the curve parameterized by t ∈ [0, T ] 7→
ψ(s, t)) is increasing.

Proof. Let inj(x0) be the injectivity radius at x0 and denote V := B(x0, r), for 0 < r <
inj(x0) (the constant r will be fixed later on). Let γ be a path included in V and satisfying
the hypotheses of the lemma. Then define:

ζ : t ∈ [0, T ] 7→ ζ(t) := exp−1
x0

(γ(t)) ∈ Tx0M.

This function has the same regularity as γ and ζ(0) = ζ(T ) = 0. Define now, for every
(s, t) ∈ [0, 1]× [0, T ]:

ψ(s, t) = expx0(sζ(t)).
This function has the required regularity and satisfies the equalities ψ(1, · ) = γ and ψ(0, · ) =
x0. So it remains only to prove that for r small enough, the length of Γs is increasing in s.

In the exponential map the metric g have the following Cartan local development:

gij(x) = δji −
1
3
∑
k,l

Riklj(0)xkxl +O(‖x‖3E), (5.52)

where δji is the Kronecker symbol, Rijkl are the coefficients of the Riemann curvature tensor
and ‖x‖E stands for the Euclidean norm. The quantity we are interested in estimating is:

`(Γs) =
∫ T

0
‖∂tψ(s, t)‖g(ψ(s,t)) dt, (5.53)

and in the local chart, according to (5.52), we have:

‖∂tψ(s, t)‖2g(ψ(s,t)) = s2‖ζ̇(t)‖2E

− s4

1
3
∑
i,j

∑
k,l

Riklj(0)ζk(t)ζl(t)ζ̇i(t)ζ̇j(t)


+ s3 (‖ζ̇(t)‖2EO(‖ζ(t)‖3E)

)
.

So for r small enough, ζ(t) is uniformly small and for every t ∈ [0, T ], the function s ∈
[0, 1] 7→ ‖∂tψ(s, t)‖2g(ψ(s,t)) is increasing. We draw the same conclusion for the quantity

(5.53) and proof is completed.
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5.8 Appendix B: A brief Survey of the Orbit Theorem

In this Appendix, we aim to recall the statement of the Orbit Theorem. The material
presented below is now considered as a classical part of geometric control theory.

Throughout this section, M is a real analytic manifold, and G a set of analytic vector
fields on M . We do not assume in general that the fields from G are complete.

5.8.1 Attainable sets

Let f be an element of G and q∗ be an element of M . The Cauchy problem

q̇ = f(q), q(0) = q∗, (5.54)

admits a solution defined on the open interval I(f, q∗) containing 0. For any real t in
I(f, q∗) we denote the value of the solution of (5.54) at time t by etf (q∗). We denote by
I(f, q∗)+ = I(f, q∗)∩ ]0,+∞[ the positive elements of I(f, q∗).

For any element q0 in M and any positive real number T , we define the attainable set at
time T of G from q0 by the set Aq0(T ) of all points of M that can be attained with G using
piecewise constants controls in time T

Aq0(T ) =
{
etpfp ◦ etp−1fp−1 ◦ · · · ◦ et1f1(q0) : p ∈ N, fi ∈ G,

ti ∈ I(fi, eti−1fi−1 ◦ · · · ◦ et1f1(q0))+, t1 + · · ·+ tp = T
}
,

the times ti and the fields fi being chosen in such a way that every written quantity exists.
We define also the orbit of G trough q0 by the set Oq0 of all points of M that can be attained
with G using piecewise constant controls, at any positive or negative time

Oq0(T ) =
{
etpfp ◦ etp−1fp−1 ◦ · · · ◦ et1f1(q0) : p ∈ N, fi ∈ G,

ti ∈ I(fi, eti−1fi−1 ◦ · · · et1f1(q0))
}
.

Of course, if G is a cone, that is if λf ∈ G for any positive λ as soon as f belongs to G,
the set Aq0(T ) does not depend on the positive T but only on q0. If G is assumed to be
symmetric, that is if −f belongs to G as soon as f belongs to G, then the orbit of G trough
a point q0 is the union of all attainable sets at positive time of G from q0.

5.8.2 Lie algebra of vector fields

If f1 and f2 are two vector fields on M and q is a point of M , the Lie bracket [f1, f2](q) of
f1 and f2 at a point q is the derivative at t = 0 of the curve t 7→ γ(

√
t) where γ is defined

by γ(t) := e−tf2e−tf1etf2etf1(q) for t small enough. The Lie bracket of f1 and f2 at a point
q is an element of the tangent space TqM of M at the point q. The Lie bracket is bilinear
and skew-symmetric in f1 and f2, and measures the non-commutativity of the fields f1 and
f2 (see [3, Prop 2.6]).

Proposition 5.8.1 For any f1, f2 in G, we have the equivalence:

et1f1et2f2 = et2f2et1f1 ⇔ [f1, f2] = 0

for all times t1 and t2 (if any) for which the expressions written in the left hand side of the
above equivalence make sense.

Lie brackets of vectors fields are easy to compute with the following formulas (see [3, Prop
1.3] and [3, Exercise 2.2]).
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Proposition 5.8.2 For any f1, f2 in G, for any q in M ,

[f1, f2](q) = df2

dq
f1(q)− df1

dq
f2(q).

Further, we have the useful property:

Proposition 5.8.3 Let f1 and f2 be two smooth vector fields on M , and let a, b : M → R
be two smooth functions. Then

[aX, bY ] = ab[X,Y ] +
(
db

dq
X

)
Y −

(
da

dq
Y

)
X.

From the Lie brackets, we can define the Lie algebra:

Definition 5.8.4 The Lie algebra of G is the linear span of all Lie brackets, of any length,
of the elements of G

Lie G = span
{

[f1, [. . . [fk−1, fk] . . .]], k ∈ N, fi ∈ G
}
,

which is a subset of all the vector fields on M .

We denote by LieqG :=
{
g(q), g ∈ Lie G

}
the evaluation LieqG of the Lie algebra generated

by G at a point q of M .

5.8.3 The Orbit Theorem

The Orbit Theorem describes the differential structure of the orbit trough a point (see for
instance [3, Th 5.1] for a proof).

Theorem 5.8.5 (Orbit Theorem) For any q and q0 in M :

1. O(q0) is a connected immersed submanifold of M .

2. If q ∈ O(q0), then TqO(q0) = LieqG.

Remark 5.8.6 The conclusion (1) of the Orbit Theorem holds true even if M and G are
only assumed to be smooth (and not analytic). The conclusion (2) is false in general when
G is only assumed to be smooth.

The Orbit Theorem has many consequences, among them the following useful properties
(see [3, Th 5.2] for a proof and further discussion).

Theorem 5.8.7 (Rashevsky-Chow) If LieqG = TqM for every q in M , then the orbit of
G through q is equal to M .

Proposition 5.8.8 If G is a symmetric cone such that LieqG = TqM for every q in M ,
then the attainable set at any positive time of any point of M is equal to M .
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Résumé

Cette thèse de mathématiques appliquées traite de la modélisation des déplacements de
nageurs microscopiques. Nous étudions principalement les problèmes de contrôlabilité et
d’optimalité associés à la mobilité d’un micro-nageur.

Dans une première partie, nous présentons un modèle de nageur simplifié, appelé le “N -
link swimmer”. Ensuite, nous étudions sa contrôlabilité ainsi que l’existence de stratégies
lui permettant d’atteindre un point donné le plus vite possible. Dans une deuxième par-
tie, nous analysons les effets de la présence d’un bord sur la mobilité d’un micro-nageur.
Nous montrons qu’un nageur qui est contrôlable lorsqu’il évolue dans l’espace non borné,
reste ”presque partout” localement contrôlable lorsqu’il nage dans un domaine délimité par
un mur plat ou rugueux. Au contraire, nous prouvons qu’un nageur qui n’est pas capable
d’atteindre toutes les directions lorsqu’il se déplace dans un domaine sans bord peut élargir
ses directions accessibles en présence d’un mur (plat ou rugueux). Enfin, la dernière par-
tie de la thèse fournit un cadre à l’étude de problèmes de contrôle optimal associés aux
déplacements de nageurs ayant une dynamique sans dérive. Tout d’abord, nous étudions
les propriétés mathématiques de plusieurs problèmes de contrôle optimal ayant des coûts
fonctionnels différents (existence puis comportement). Ensuite, nous considérons les nageurs
ayant deux degrés de liberté. Pour ces modèles particuliers de nageurs, nous présentons un
cadre permettant d’en déduire des propriétés géométriques locales pour les solutions de cer-
tains problèmes de contrôle optimal. Tout au long de ce dernier chapitre, des simulations
numériques, réalisées sur un exemple de nageur ayant une dynamique explicite, illustrent les
résultats théoriques.

Mots-clés: Locomotion à faible nombre de Reynolds ; Interaction fluide-structure ; Contrôle
optimal géométrique ; Modèles de robots microscopiques

Abstract

This thesis is devoted to the mathematical study of the swimming at low Reynolds number.
The controllability and the optimal problems associated with the displacement of micro-
swimmers are the main points developed in this work.

In the first part, we study the controllability and the optimal control problem in time
associated with a reduced model of swimmers, called the “N -link swimmer”. In the second
part, we study the boundary effect on the controllability of particular micro-swimmers made
by several balls linked each others by thin jacks. Firstly, we analyze the effect of a plane
wall on the mobility of these swimmers. Then, we generalize these results where the wall
is rough. We demonstrate that a controllable swimmer remains controllable in a half space
delimited by a wall (plane or rough) whereas the reachable set of a non controllable one is
increased by the presence of a wall. The last part is devoted to provide a general framework
to study optimal controllability of driftless swimmers. We focus on the study of optimal
strokes i.e. periodic shape changes. More precisely, we are interested in the existence of
optimal strokes, minimizing or maximizing various cost functionals, qualitative properties
of the optimal strokes, regularity and monotony of the value functions.

Keywords: Swimming at low Reynolds number ; Fluid-structure interaction ; Geometric
optimal control theory ; Natural and artificial micro-swimmers
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