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1. Introduction 

1.1  Context and objectives  

The last decade has been characterized by the impressive explosion of image and video content 

available and shared over Internet. Since 2010, the amount of video content exchanged over Internet 

account for more than half of the total traffic in the United States [Wired 2010], overcoming web or 

peer-to-peer traffic. Such a phenomenon is closely related with the emergence of web2.0 technologies, 

which operated profound transformations in our manner to consume and share the video content.  

As a notable example, let us first mention the YouTube platform, which reports one hour of 

video data uploaded every second and 4 billion videos are viewed every day, resulting in 140 views for 

every person on Earth in 2011 [YouTube 2012c]. In parallel, the Flickr on-line repository reports 4.5 

million photos uploaded daily [Pingdom 2012]. This shows the growing importance of video/image 

content in the user’s everyday life: video and, more generally, visual content become today the new 

media to be considered.  

Moreover, a finer analysis brings us some interesting insights. Thus the most popular camera 

used in the case of the Flickr images is not a camera stricto sensus, but a smartphone (i.e., the 

iPhone4) [Flickr 2012]. We can thus expect that in the near future an increasing number of uploaded 

videos will be recorded by ubiquitous, mobile devices. Over the last decade, such mobile devices have 

been undergoing a booming prosperity. A broader variety of handheld devices with audio/video 

playback functionalities are available in the market at an affordable price for consumers. In addition, 

the huge steps forward made by third generation communication networks enable telecom operators to 

provide enhanced mobile multimedia services, with smoother streaming, reduced video uploading time 

and higher video quality/resolution. 

Such complex socio-economic and technological evolutions through important challenges, 

related to the capacity to store, search/retrieve and organize huge video/image data collections. A new 

approach for video content organization, taking into consideration a better understanding of the visual 

content is needed in order to overcome some of these issues. In addition, tools permitting a more 

comprehensive visualization of the video content, including advanced navigation facilities and adapted 

to the multiple terminals and operating systems available, would greatly help to improve the access to 

video content. Let us underline that the elaboration of advanced query and search strategies is today 

required in order to provide the user with a rapid and fine access to elements of interest that are present 

in the video content. Existing video description approaches are most often based on monolithic and 

global textual representations of the video, which do not take into account the complexity and the 

heterogeneity of the information usually present in the video content. Such simple strategies should be 

replaced by new paradigms, able to provide precise and accurate access to the elements/object of 

interest. Part-based visual representations and content-based retrieval methodologies become the key 

ingredients that can make it possible to achieve such a fine level access to the desired information.  

Several potential applications are directly concerned by such video indexing, search and 

navigation methodologies. Among them, let us mention:  



Chapter 1. Introduction 

 

12 

 

 Web-based video search engine. Most of the video search engines use textual annotations 

obtained usually from user tags or comments. Although there could be many cases demanding 

the use of visual cues from user for retrieving particular objects, currently no search engine 

allowing queries by visual content is available at the scale of the web. Such a tool would be 

notably useful as an alternative to the poorly organized tag-based querying process, currently 

employed by the majority of available image/vide search engines. 

 Object retrieval in video surveillance footage. Video surveillance repositories usually 

consist of enormous amounts of video footage. Finding the various instances an object of 

interest can become rapidly an almost impossible task. Methods allowing to select an object of 

interest and to retrieve automatically the video shots where the considered object appears 

would save time and improve the work efficiency in this field. 

 Logo/brand use evaluation and discovery. With the explosion of the amount of available 

video content and of communications channels, it becomes increasingly difficult to track and 

evaluate the effectiveness of a advertising campaign. Finding the occurrences of a logo or a 

brand throughout a video database could become essential tool for the evaluation of 

advertising campaigns or for measuring video popularity. In addition, a consumer could also 

use his mobile phone to identify and discover supplementary information about products of 

interest by just taking a picture or a short video of the item of interest.  

 Automatic tagging and annotation of video collections. Most of the professional video 

archives (such as those of video producers or those available at the national archiving 

organizations) rely on expert users to annotate and appropriately index the videos. Methods 

permitting to retrieve the occurrences of an object in a large archive would allow the 

annotation of the results by tag propagation. This will reduce the annotation burden, making 

the database more accessible for search/retrieve purposes, and facilitating the content re-use. 

The detection and recognition of objects of interest from video content is among one of the 

most difficult problems in the computer vision field, since it requires the use of some partial image 

representations that can enable efficient macthing strategies. Fast, accurate, scalable and robust object-

based visual search is a highly challenging issue, because of the following difficulties: 

 Variations in visual appearance. The appearance of an object can vary dramatically 

depending on a series of challenging imaging conditions. Changes in lighting, scale, pose and 

rotations can alter strongly the visual appearance of the object, thus increasing the difficulty of 

recognizing a query object. 

 Part based matching. Video sequences are usually dynamic and objects move and interact 

with other objects across different sequences. Objects can be occluded and only partially 

visible or can be deformed. 

 Computation time and scalability. Despite the huge amount of information included in 

videos, it is mandatory to ensure both retrieval accuracy and computational speed when 

increasing the size of the considered data set. 

 Issues related to video content specificity. Directly related with the previous set of 

challenges, one of the main difficulties in video content search is the representation of the 

video. Typically, a reduced set of key-frames is selected and used for the search. However 

many of them can be blurred or miss the object of interest occurring for a very short time in 
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the video clip. Identifying the set of most representative key-frames is a difficult challenge to 

tackle. 

The mentioned challenges and difficulties are illustrated in Figure 1.1, Figure 1.2 and 

Figure 1.3 on typical Flickr videos extracted from the TRECVID 2012 Instance Search Task 

corpus [Smeaton 2006].  

 

 

Figure 1.1. Multiple instances of the object “Eiffel tower” within different video clips. 

 

1.1  Contributions 

1.1.1 The DOOR framework 

The first part of this thesis tackles the issue of retrieving different instances of an object of interest 

within a given video document or within a video database. Within this context, objects are standalone 

visual entities with-well defined boundaries, shapes and colors/textures. Examples of typical objects 

include buildings, cars, electronic devices, animals, logos.... Let us underline that this work concerns 

the detection of different instances of the same object and not the retrieval of objects belonging to the 

same class of objects (e.g., different types of chairs, cars), as in the case of semantic image 

categorization approaches. 
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Figure 1.2. Multiple instances of the object “London Underground logo” within different video 

clips. 

 

Figure 1.3. Multiple instances of the object “Brooklyn bridge tower” within different video clips. 

 

The methodological framework proposed, so-called DOOR (Dynamic Object Oriented 

Retrieval) exploits a semi-global image representation obtained with the help of an over-segmentation 

of image frames. The advantage of region-based approaches comes from the possibility of directly 

exploiting the connectivity information (i.e. adjacency between regions), which can be highly useful in 
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the matching stage. An aggregation mechanism is considered in order to group a set of sub-regions 

into an object similar to the query, under a global similarity criterion.  

However, determining the optimum solution in such a situation proves to be an NP-Hard 

problem. We propose several optimization techniques for determining near-optimal solutions. The key 

ingredient of our approach is a dynamic region construction procedure, which makes it possible to 

regroup different individual regions into a candidate object. A global matching score, which measures 

the similarity of the candidate object to the given query, needs to be minimized. In order to determine 

the global optimum of the similarity function, three different types of optimization strategies are 

proposed, including greedy-based techniques, simulated annealing and Graph Cut methodologies. 

Different visual representations can be considered, including color, texture and interest points 

descriptors. Let us also underline that arbitrary segmentation methods can be considered, since our 

goal is to achieve independency with respect to the adopted segmentation procedure.  

The object retrieval framework allows the integration of other different visual descriptors and 

segmentation methods. In particular, a hybrid region representation, integrating interest point 

information is also proposed. The optimization in this case is performed with a spectral graph 

matching method.  

1.1.2 The OVIDIUS platform 

The second part of this work, introduces a novel on-line video browsing and retrieval platform, so-

called OVIDIUS (On-line VIDeo Indexing Universal System). In contrast with traditional and 

commercial video retrieval platforms, where video content is treated in a more or less monolithic 

manner (i.e., with global descriptions associated with the whole document), the proposed approach 

makes it possible to browse and access video content in a finer, per-segment basis. The hierarchical 

metadata structure exploits the MPEG-7 approach for structural description of video content. The 

MPEG-7 description schemes have been here enriched with both semantic and content-based 

metadata. OVIDIUS integrates the DOOR framework and allows fast video object retrieval.  

The developed approach shows all its pertinence within a multi-terminal context and in 

particular for video access from mobile devices.  

 

1.2  Structure of the manuscript 

The rest of the manuscript is organized as follows.  

Chapter 2 describes the state of the art in the field of object-based recognition methods. The 

main families of existing approaches are here identified and described, with principle, advantages and 

limitations.  

A first contribution, concerning a region-based visual representation obtained with the help of 

existing segmentation techniques is introduced in Chapter 3. The challenge here concerns the various 

optimization techniques that are required in order to match a visual object, defined as an image sub-

part with candidate images from a considered database. A global matching score, involving a color-

based quadratic error measure, which makes it possible to evaluate objects described by different 
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numbers of regions, is considered. Four different optimization strategies are here proposed. The first 

one concerns the greedy and relaxed-greedy methods, which aims at providing a rapid solution. In 

contrast, the second method introduced adopts a simulated annealing approach, aiming at optimizing 

the retrieval performances. A final optimization scheme proposed involves a Graph Cut technique, 

which requires re-visiting the energy functional involved.  

Chapter 4 tackles the issue of interest point representations. The various methods proposed in 

the literature, for both semantic categorization and object identifications, are here described. A detailed 

analysis of existing interest point detectors, interest point descriptors, and related classification 

methods is also proposed. Based on this analysis, a reference interest point technique is retained, 

which includes the most promising approaches at all of the various stages involved. This method is 

used as a baseline technique for our experiments, in order to compare the various approaches 

proposed. An additional contribution is proposed in this chapter, which concern a query extension 

mechanism. A multi-modal principle is here exploited: starting from a set of textual tags supposed to 

be available, a set of representative images, gathered from general public image repositories (e.g., 

Flickr) is determined. Such images are then exploited to perform visual queries in order to retrieve 

relevant video content.  

Chapter 5 introduces a novel, hybrid approach, which integrates both a region-based 

representation and a set of interest points. The search and retrieve functionalities are achieved with the 

help of a spectral graph matching techniques, under a global similarity measure, integrating both color 

and interest-points descriptors.  

Chapter 6 presents and analyzes the various experimental results obtained. Experiments have 

been carried out on four different datasets, including the Raymond cartoon corpus, and the TRECVID 

2010; 2011; and 2012 natural video datasets. The proposed methods are here evaluated under different 

experimental settings, with various color spaces and segmentation methods.  

In the second part of this thesis, we detail our contribution related to the web-based indexing 

platform.  

Chapter 7 proposes an overview of the state of the art. The existing systems are here described, 

including both desktop-dedicated and mobile platforms, with functionalities supported and related 

interaction capabilities.  

Chapter 8 introduces the OVIDIUS platform. The focus is here put on the modular, distributed 

architecture proposed, which makes it possible to deploy the system on various terminals, 

independently of the exploitation systems involved. The technological choices related to video players, 

communication protocols, interaction capabilities and supported functionalities are described in detail. 

Several use case scenarios are also introduced in this chapter.  

Finally, Chapter 9 concludes this manuscript and opens some perspectives of future work.  
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2. Object-based retrieval: state of the art  

 

Abstract: In this chapter we present a general review of the state of the art in object recognition 

and retrieval techniques. The techniques are classified into two major families, according to their unit 

of description considered for representing the object. The first one is based on interest points, while 

the second involves a segmented region-based representation. The main principles of the most 

representative techniques are described along with an analysis of their advantages and limitations. 

We conclude this chapter with a discussion about the main challenges in object instance retrieval and 

identify some directions of improvement. 

Keywords: object retrieval, region-based representation, interest point representation, multiple 

instance detection, object structure, geometric information. 

Résumé: Dans ce chapitre nous présentons une revue générale de l’état de l’art sur la 

reconnaissance des objets et sur les techniques de recherche et indexation. Les techniques sont 

classées en deux grandes familles en fonction de leur unité de description considérée pour la 

représentation de l’objet. La première est basée sur des points d’intérêt, tandis que la seconde 

implique une représentation basée sur des régions segmentées. Les principes de fonctionnement des 

techniques les plus représentatifs sont décrits avec une analyse de leurs avantages et leurs limites. 

Nous concluons ce chapitre par une discussion sur les principaux défis dans la recherche des 

instances d’objets et nous identifions quelques directions d’amélioration. 

Mots clés: recuperation d’objets, représentation basée sur regions, représentation basée sur points 

d’intérêt,structure de l’objet, informations sur la géométrie. 
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2.1 Introduction  

Video object retrieval is among the most challenging tasks in the field of computer vision and 

multimedia indexing. The fundamental problem to be addressed and solved is how to perform 

efficiently a partial matching between a visual object, defined as a sub-part of an image/video frame, 

and a given image. Within this context, the object modeling and description is a fundamental issue that 

needs to be considered appropriately. The video object retrieval methodologies borrow from both 

object recognition and image retrieval techniques.  

In the field of object recognition, we can identify two different types of methods, each with its 

specific objectives. They concern: (1) semantic category identification and (2) object instance 

detection.  

In the case of category identification methods, the objective is to determine automatically the 

semantic category/concept associated with different instances of objects present in an image/video 

scene. This process is illustrated in Figure 2.1, in the case of three semantic classes corresponding to 

cars, giraffes and chairs. Let us underline that, for a given category, different objects belonging to the 

given class can appear. In addition, a same object can be represented in various postures. For these 

reasons, the intra-class variability, in terms of visual appearances, can be highly important.  

Existing solutions are based on a learning process, and involve various visual features, with 

supervised or semi-supervised classifiers. Such an approach requires the availability of a ground truth 

dataset, i.e., as set of images for which the corresponding categories are known. Whatever the visual 

features/descriptors used for image representation and classification techniques involved, the quality 

of the considered ground truth is determinant for achieving successful category recognition. Notably, 

in order to deal with the issue of intra-class variability and to ensure good generalization capabilities, 

the ground truth should include, for each category considered, a rich variety of object instances, with 

different visual appearances.  

As an example, let us mention the ground truth used in the ImageCLEF visual concept 

detection task [IClef 2011, IClef 2011] and TRECVID semantic indexing task [Smeaton 2006]. In the 

ImageClef tasks the dataset is composed of 1 million Flickr images, namely the MIR Flickr collection 

[MIR 2012] and the ground truth consists of 25000 manually annotated images, for a set of 90 to 100 

concepts. For TRECVID’s Semantic Indexing Task the test dataset consists of 600 hours of content 

(approximately 200 hours for training) and the certain number of concepts is selected each year from a 

list of 500 concepts mostly derived from the LSCOM ontology [LSCOM 2006]. 
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Figure 2.1. Semantic category examples: car, giraffe, chair. 

In the last years an increasing number of solutions have provided a variety of interesting 

results for concept detection and object categorization in videos [Snoek 2008b]. For the TRECVID 

tasks, up to 500 concepts can be detected. Hauptmann et al. [Hauptmann 2007] estimate that a concept 

lexicon should be sized to at least 5000 items in order to obtain useful descriptions. 

However, a major drawback of the learning-based category recognition methods relates to the 

strong dependency of the results on the considered ground truth. In addition, many of the concepts 

employed are rather general (e.g., vegetation, outdoor) or vague (e.g., city life, euphoric). Even used in 

combination, such concepts can hardly describe a specific object, whose instances need to be 

retrieved. 

Let us now state the principle of the second family of approaches, which concerns the object 

instance detection. In contrast to the semantic concept detection, in this case, the objective is to 

identify various instances of a same object in different scenes and contexts. This principle is illustrated 

in Figure 2.2, where different instances corresponding to the Statue of Liberty, a van with specific 

painting or the swimmer Michael Phelps are presented. 

As illustrated in Figure 2.2, here again we encounter the problem of variability, a given object 

being presented in various postures, from different angles of view, and on different backgrounds. 

However, the main difference with respect to semantic identification approaches is that, in this case, 

the objective is to detect a given, unique object instead of classes of objects. Usually, the recognition is 

performed starting from a single view of the target object. The recognition process involves some 

partial matching techniques, which require adequate, semi-global feature representations.  
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Figure 2.2. Different object instances: Statue of Liberty, painted van, Michael Phelps. 

 

Concerning the image retrieval techniques, most of the pioneering recognition approaches 

[Lowe 1985, Nevatia 1977] were model-based. An object model, such as a 3D representation, is here 

considered in order to inject some strong a priori knowledge related to the object of interest. The task 

then consisted in developing some 2D/3D matching strategies, in order to perform localization and 

pose estimation from a single view. An outcome of such approaches concerns the various viewpoint 

independent representations of generic 3D shapes, as well as the formal, rule-based geometric 

reasoning methods that have been proposed.  

While model-based vision systems represent an important conceptual milestone in the field of 

object recognition, their applicability in practice is severely limited by their reliance on relatively 

weak and uninformative image features such as line and curve segments. In addition, they lack of 

flexibility when modeling non-parametric deformations. For these reasons, a different recognition 

paradigm emerged, namely the appearance-based recognition. Here, instead of using precise 3D 

geometric descriptions, a statistical model of the 2D object appearance is proposed, leveraging on 

discriminative image features. Early work on appearance-based object recognition has mostly involved 

global image descriptions. Thus, the majority of the early methods [Niblack 1993, Schiele 2000] are 

globally characterizing the entire image with the help of color or texture histograms. The main 

drawback of such methods is their lack of robustness to clutter and occlusion. For this reason, global 

recognition methods have been substituted over the last decade by part-based methods that seek to 

identify statistically or structurally significant object patches that can capture salient appearance 

information.  

Within this context, one of the first questions to be solved is the following: how can we define 

and describe in a consistent and reproducible manner the relevant parts of an image? Let us note that 

in the case of model-based approaches, a part is defined as a 3D geometric primitive. In contrast, 
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appearance-based approaches have adopted a much more flexible notion of an image part, which can 

be defined in various manners and involve different visual features.  

As a first example, let us mention the approach proposed in [Schneiderman 2004]. Here, 

authors define image parts in the wavelet transformed domain as groups of highly correlated wavelet 

coefficients. However, the majority of existing approaches operate directly in the initial image domain. 

They involve image fragments or segments obtained with the help of sampling procedures, [Ullman 

2001, Mahamud 2003,Yang 2007], corner-like interest points [Agarwal 2002] or scale-invariant 

salient regions [Fergus 2003].  

During the last decade, the field of object-based content retrieval has been considerably 

enriched. Consistent improvements have been brought in terms of object representation, detection and 

description of object parts or entities, descriptor clustering, image and object matching strategies, 

learning and classification. The most popular methods involve the Bag-of-Words representation [Sivic 

2003] and the discriminatively trained deformable part-based models [Felzenszwalb 2008]. Such 

methods have been mostly used for object category identification by employing supervised learning 

models and algorithms such as Support Vector Machines (SVM) [Boser 1992, Cortes 1995]. While 

impressively effective, such methods require the use of an off-line training phase, which is dependent 

of the considered training set and of the pre-defined categories. 

Recently, an increasing interest has been directed towards the object instance search with 

reduced positive example instances. This relatively recent topic of research has been considered in the 

TRECVID 2010 [Smeaton 2006] evaluation campaign, under the so-called Instance Search Task, 

launched for the first time in 2010 and continued since within the framework of TRECVID 2011 and 

2012 editions. 

Related work includes two major families of approaches depending on their unit of description 

considered for object representation. The first category of approaches considers representations based 

on sets of interest points, while and the second one relies on region-based representations. Let us begin 

the analysis of the state of the art with the interest point-based representations.  

 

2.2 Interest-point-based representations 

Interest points are among the most popular tools for object recognition and classification for both 

images and videos and are extensively used in a variety of computer vision applications, such as object 

tracking [Gabriel 2005], motion estimation [Torr 2000], image matching [Chum 2008b, Jégou 2008, 

Jégou 2010], scene classification [Snoek 2008], image understanding [Fergus 2007, Leibe 2008], 

stereoscopic correction [Matas 2002] and disparity field estimation [Wills 2006].  

Early approaches for object retrieval using interest points have been developed by Sivic and 

Zisserman in their Video Google system [Sivic 2003]. Inspired by text retrieval techniques, the bag-of-

words (BoW) representation is obtained by extracting and describing scale invariant patches from 

images, clustering them into “visual words”, quantizing them to the “visual words” and obtaining a 

histogram of occurrences of the visual words for each image. In this case, SIFT descriptors [Lowe 

2004] are extracted from video keyframes with the help of two types of overlapping image patches: 

Harris-affine [Mikolajczyk 2002] regions and so-called Maximally Stable Extreme Regions (MSER) 
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[Matas 2002]. The BoW is used for achieving fast and efficient retrieval of objects interactively 

selected by the user with the help of a bounding box. However, since the BoW is practically an order-

less collection of visual words and their relative frequencies of occurrence, all the spatial information 

describing the geometric relative position of the visual words in the images is discarded. 

The lack of spatial information represents the major drawback of bag-of-words inspired 

methods. Numerous researches have investigated various ways for improving this aspect. In a general 

manner, the objective is to improve the power of the representation by injecting some spatial 

localization information in the visual representation. In this respect, several approaches employ the 

RANdom SAmple Consensus (RANSAC) algorithm [Fischler 1981]. RANSAC is a robust method for 

model fitting to noisy data with outliers. The main idea is to randomly sample a minimal set of 

correspondences, and compute the aligning geometric transformation. Because of the associated 

computational complexity, RANSAC is typically applied in a post-search process, solely on a set of 

top retrieved results, which are re-ranked according to their spatial consistency. Different RANSAC 

improvements and variants have been proposed in the last years [Chum 2003, Chum 2005, Philbin 

2007, Raguram 2008, Ni 2009]. 

Another family of solutions introduces the spatial information directly in the BoW 

representation or in the matching process. Lazebnik et al. [Lazebnik 2006] proposed a spatial pyramid 

matching in order to encode and partition the image into sub-regions at different levels of detail, from 

coarse to fine. The image can be then represented with multiple local histograms concatenated in a 

single global image histogram, where each local histogram corresponds to an image sub-region. The 

local histograms are weighted in such a manner that matches identified in larger cells are penalized as 

they involve increasingly dissimilar features. Vedaldi et al. [Vedaldi 2009] propose the use of dense 

and sparse visual words at different levels of spatial organization. Wu et al. [Wu 2009] leverage on the 

high scale representation of the MSER regions to group Harris-affine regions. Harris-affine regions 

having the centroids inside the same MSER elliptical shape are grouped into clusters and a dedicated 

BoW vector is computed for each such cluster. In this manner, the BoW includes implicitly regions 

which are located in a relatively close neighborhood.  

Other solutions act in the local feature detection phase. Instead of using scale or affine 

invariant region detectors, such methods perform a dense sampling of the image with a regular grid 

(possibly defined over a range of scales) [Fei-Fei 2005, Jurie 2005, Tuytelaars 2007, Tola 2008]. In 

this manner, the neighborhood of the interest points can be defined on the grid. In addition, less 

textured image patches that would have been omitted by the local feature detectors can be now 

described. Let us note that in this case, the scale invariance can be ensured by performing the sampling 

at different scales. In other words, multiple grids need to be defined for each image. Such approaches 

prove to be particularly useful for stereo matching purposes [Tola 2008]. On the downside, dense 

sampling cannot reach the same level of repeatability as obtained with interest points, unless sampling 

is performed extremely dense. However, in this case the number of features becomes unacceptably 

large. The principle is illustrated in Figure 2.3. 
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Figure 2.3. Dense sampling. In the first column we illustrate the original image and the regions 

detected by the Hessian-affine detector. In the rest of the columns dense sampling examples with 

various grid settings are illustrated. Notice how, for coarse grids many textured regions are 

missed, while for fine grids every patch of the image is sampled. 

 

In order to combine the advantages of both schemes, Tuytelaars [Tuytelaars 2010] has recently 

introduced the so-called dense interest points method. Starting from densely sampled image patches, 

the author applies for each detected patch a local optimization of the position and scale within a 

bounded search area. The outcome of this process is a set of interest points defined on a semi-regular 

grid, densely covering the entire image as is the case of dense sampling, but with repeatability 

properties closer to those of standard interest points. Thus, the newly obtained interest points inherit 

from dense sampling the simple spatial relation between points. This principle is illustrated in Figure 

2.4.  

In a similar framework, Ferrari et al. [Ferrari 2006] propose a robust method for simultaneous 

object recognition and segmentation from two images. Starting from a set of initial matches, the 

method gradually explores the surrounding image areas; constructing in a recursive manner a set of 

additional matching regions. In this way, the object is covered with a set of matched regions. A final 

integration stage measures the consistency of configurations of groups of regions associated to 

different model views. While the method is robust to clutter, occlusion and viewpoint changes, its 

computational cost makes it prohibitive in an indexing, search and retrieval framework. 

In a different setting and aiming to identify recurring objects in large collections of tourist 

photographs, Philbin et al. [Philbin 2011] construct a matching graph, where each image represents a 

node. Images presenting a large number of matched visual words are inter-connected with a weighted 

edge. In this manner, images containing the same objects can be identified as connected components 

in the graph. Objects are discovered accurately with the help of a Latent Dirichlet Association 

algorithm [Blei 2002] performed on the graph. The method presents interesting performances on 

touristic landmarks image datasets. However, the construction of the image graph is expensive as each 

image from the dataset is queried over the entire dataset in order to identify its most similar images. In 

addition, whenever a new set of images is added to the dataset, the graph needs to be reconstructed and 

each image is queried again.  
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Figure 2.4. Dense interest points (middle) form a hybrid scheme between dense sampling on a 

regular grid (left) and interest point detection (right). 

 

Abandoning the BoW paradigm and starting from the method proposed in [Jiang 2007], Li et 

al. [Li 2010] group points of interest in graphs by using Delaunay triangulations. They introduce 

different geometric constraints with the goal of characterizing the geometric properties of the 

neighborhood of each node. Moreover, each node is represented as an affine combination of its 

neighboring nodes, whose weights can be determined with a least squares fitting method. The obtained 

graph model is then matched at different scenes using linear programming techniques, in order to 

determine the object of interest.  

Cho et al. [Cho 2009] also employ a graph matching technique. Here, the graph nodes 

represent pairs of points from the two images to be matched and the edges connect agreeing pairs. A 

hierarchical agglomerative clustering algorithm is employed to identify the strongest nodes in the 

graph (i.e., best matches) leveraging on both photometric and consistency of local features.  

Duchenne et al. [Duchenne 2009] use higher-order constraints instead of unary or pairwise 

ones between nodes, which result in a tensor representation capturing the affinity between tuples of 

features. The resulting energy function is optimized using the multi-dimensional power iteration 

method [Golub 1996], computing quickly the main eigenvector of the affinity matrix associated to the 

pairs of points from the two images. 

Such methods are highly powerful, being in particular robust to strong deformations of the 

objects. Their main limitation concerns the computational complexity, which makes them 

inappropriate for search and retrieval applications in large repositories. 

A different method, exploiting the Histogram of Oriented Gradients (HOG) [Dalal 2005] has 

been proposed in [Felzenszwalb 2008]. The object models consist of hierarchical structures of 

rectangular groups of HOGs, associated with a set of sliding windows, specified at different scales. 

The method achieved the top performances in the Pascal VOC challenge in the past years 

[Everingham 2010]. While providing extra spatial information and robustness to object deformations, 

a significant number of sliding windows verifications is required for retrieving object candidates. This 

has a strong impact on the computational time needed for the matching process. In addition, many 
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objects in practice cannot be fully covered by the considered bounding box representation, which leads 

to erroneous results.  

In a general manner, interest-point-based representations provide useful solutions for both 

instance object search and semantic categorization purposes. The main limitation to be overcome is 

related to the issue of spatial information, which is not straightforward to handle in pure interest point-

based representations. In addition the interest-point representation decrease dramatically in 

performance in the cases of texture-less objects when few interest points are detected and used for 

recognition.  

The second family of object retrieval approaches exploits a region-based representation, 

obtained with the help of image segmentation techniques.  

 

2.3 Region-based representations 

Inspired by the Bag-of-Words method, Gu et al. [Gu 2009] propose the so-called Bag-of-Regions 

technique. Here, a set of regions is obtained with the help of the hierarchical segmentation algorithm 

described in [Arbelaez 2009]. A set of weights, representing the probability of belonging to an object 

category and corresponding to multiple descriptors (contour shape, edge histogram, color histogram 

and textons) are assigned to each region.  

In [Chevalier 2007] authors construct region adjacency graphs of pre-segmented objects and 

retrieve similar objects with the help of a new graph matching method based on an improvement of the 

relaxation labeling technique [Hummel 1983]. 

Starting from the assumption that no segmentation method can be perfect, in terms of 

identified objects in a given scene, in [Pantofaru 2006, Pantofaru 2008] authors exploit multiple image 

segmentations with different parameters. The various segmentation results obtained are then combined 

and the resulting regions are described with both SIFT and color descriptors, with the help of the so-

called Region Context Features (RCF). RCFs rely on both segmented regions and local feature 

patches. For each segmented region, the visual words from its neighborhood are counted into a 

histogram of occurrences. The histograms of all regions are then clustered into a vocabulary of RCFs 

and the regions are assigned to their nearest RCF. 

In [Gorisse 2010], the individual video frames are divided into rectangular cells forming a 

grid. Different visual descriptors, such as HSV histogram, MPEG-7 Edge Histogram, wavelet 

histogram, are associated to each cell. The descriptors of each cell are clustered into visual 

vocabularies (i.e., one for each descriptor) similarly with the BoW framework [Sivic 2003]. The cells 

are then quantized and a BoW vector is generated for each frame. This approach is however restricted 

to rectangular queries. In [Vieux 2012], a Bag of Regions representation is computed from segmented 

regions and low level descriptors. Regions are generated with the efficient graph-based [Felzenszwalb 

2004] and TurboPixels [Levinshtein 2009] segmentation methods, and described with HSV color 

histograms and Local Binary Patterns [Ojala 2002]. Different vocabularies are built for every 

combination of regions and descriptors, while the results for all runs of the same query are then 

aggregated in a single ranked list. 
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Different state-of-the-art object retrieval techniques rely on an exhaustive search over the 

image to determine the optimal candidate object position within a sliding window. Thus, in [Sande 

2011], authors employ segmented regions to define possible object entities. This selective search 

reduces significantly the number of object locations to consider. The method starts from an over-

segmentation obtained with the graph-based segmentation method from [Felzenszwalb 2004]. A 

greedy algorithm is used in order to iteratively group the two most similar regions together and 

compute the similarities between the new regions and their neighbors (i.e., texture and size similarity). 

The process leads to the construction of a hierarchical structure of regions. Object locations can be 

then identified by considering all segments through the hierarchy. The newly defined object entities 

can be then described by popular object recognition techniques such as BoW with SIFT descriptors 

densely extracted from each pixel on a single scale.  

A similar and complementary approach has been proposed in [Malisiewicz 2007] where 

authors study the use of multiple segmentations as spatial support to accurately define objects from the 

ground truth of the Pascal challenge database [Pascal 2006], as an alternative to bounding boxes. 

A region-based method using graphs for discovering object instances from images of daily 

living has been proposed in [Kang 2011]. Regions obtained with two different segmentation methods 

(i.e., efficient graph based segmentation [Felzenszwalb 2004] and active segmentation with fixation 

[Mishra 2009]) are compared with the help of color histograms, SIFT and shape descriptors. They are 

then grouped in a graph of regions according to their similarity. The similarity between regions is 

adaptive with respect to the degree of texturing of the regions. Thus, textured regions are represented 

with quantized SIFT features, while for less textured regions a color-based representation is proposed. 

The pairs of regions are further verified in a shape similarity step. Regions belonging to the instances 

of the same objects are thus determined as connected components in a graph containing all the regions 

in the dataset and connecting the similar regions (Figure 2.5). Co-occurring segments are used for 

composing object models consisting of multiple object parts. 

Let us also mention the approach introduced in [Kim 2011]. Here, a different region-based 

representation is proposed. The image is represented as a dense map of (overlapping) regions. Starting 

from multiple overlapping segmentations [Arbelaez 2009], a distance transform is computed with 

respect to the boundary of each segment. Then, each segment is divided into a set of cells distributed 

over a regular grid. For each cell, an “element” is sampled at the location of maximal distance 

transform value within the cell. The radius of the element is set to the corresponding maximal distance 

value. The elements are then linked together under spatial (Euclidean distance) and similarity (contour 

strength [Maire 2008]) constraints. An element and its linked elements constitute a boundary 

preserving local region, which is described with Pyramids of Histograms of Oriented Gradients [Bosch 

2007]. The determined regions can then be matched individually according to this descriptor.  
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Figure 2.5. Graph of regions and discovery of regions belonging to the same object as connected 

components [Kang 2011]. 

 

Vijayanarasimhan and Grauman [Vijayanarasimhan 2011] build a region adjacency graph 

using superpixels and describe each region with SURF points [Bay 2008] and shape descriptors [Gu 

2009]. Objects or object parts are identified as connected subgraphs of the adjacency graph with an 

improved branch and bound scheme [Lampert 2008], which maximizes the score of a classifier. The 

similarity scores are computed by summing the responses of the classifier for each identified 

subgraph. Recently, Duchenne et al. [Duchenne 2011] proposed a different, graph of regions 

representation. Here, authors formulate the object recognition problem as a multi-label MRF 

optimization. A set of regions is extracted from a coarse grid and represented with the help of a graph 

structure. A MRF-like energy optimization is considered in order to take into account the similarity of 

pairs of regions. The energy functional involved is optimized with an extension [Ishikawa 2003] of the 

GraphCut technique [Boykov 2001], able to solve multi-labeling problems. As the graphs to be 

matched play asymmetric roles in this energy function, the similarity between two graphs is computed 

with a kernel defined over the energies between the two graphs. This kernel is then employed for 

training a support vector machine classifier to retrieve different object instances. The approach is 

mostly suitable for object retrieval in images containing solely a unique object. Another limitation is 

related to the scale invariance issues, which are treated in a more or less heuristic manner. 

One of the major advantages of the region-based approaches comes from the possibility of 

taking into account the spatial information in a natural way, by exploiting the adjacency relations 

between the considered regions. However, the challenge that needs to be solved is related to the 

optimization procedures involved, which need to exploit such information in an effective and 

computationally efficient manner.  
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2.4 Discussion 

The analysis of the state of the art shows that the task of retrieving different instances of the same 

object is still a challenging issue of research. Most of the existing approaches are currently focused on 

identifying generic categories of objects. The choice of descriptors and segmentations specific to each 

category is then performed during the off-line learning stage. While solving the issue of how to match 

two images or two object entities, such approaches transfer the problem to the off-line learning stage. 

However, the problem of retrieving different instances of specific objects becomes even more 

difficult, as distinctive ground truth sets need to be generated for each such object in order to train the 

classifier. 

Concerning the identification of the location of the object candidates, many approaches rely on 

an exhaustive sliding window search, making it increasingly difficult to retrieve new objects in an 

unsupervised manner. We have seen that segmented regions can provide good spatial support and that 

regions and group of regions can identify reliably objects or objects parts [Sande 2011], thus greatly 

reducing the number of sliding windows to consider. However, the number of possible object 

configurations to check is still elevated. 

Large scale search systems can be effectively developed with interest points by employing the 

BoW framework. The main difficulty is related with the lack of relative geometric information 

between interest points. RANSAC based approaches solve this problem partially, by identifying 

consistent groups of points from two matched images. However, such consistency verifications 

compute homographies only by using the coordinates of the matched points and usually identify 

correctly the consistent matches for limited viewpoint variations. The insertion of spatial information 

by dividing the image at different scales [Lazebnik 2006] is difficult to extend to large datasets and 

vocabularies (e.g., a spatial pyramid on 2 layers with 4 cells in the second layer extends the size of the 

BoW vector 5 times).  

Many researchers have concluded that the inclusion of spatial information has proven to be 

essential in improving the retrieval results for interest point approaches. The most performing 

approaches formulate the problem of interest point matching of two images or objects as a graph 

matching problem. Such methods show superior robustness to many object transformations and 

deformations. The price to pay is related to the expensive computational cost. For this reason, no such 

technique has been yet proposed for large scale search yet. However, many of the findings in this field 

could inspire a more light-weight object representation robust to multiple variations of object pose, 

scale and small deformations. 

An important drawback of the interest points approaches is that less textured images with a 

low number of interest points become practically non-retrievable by the search engine or non-

matchable by interest point graph matching techniques. Usually such problems are tackled with 

region-based representations relying on segmented regions and their color information. Most of the 

approaches do not define a consistent object model, but represent it as a pool of regions collected from 

different images where the object of interest occurs. The pertinence of each region for the object class 

is computed by a classifier which extracts useful information from a set of manually annotated images. 

The matching between images and objects is performed only at the level of individual regions and the 

matching of groups of regions it still in its early days [Vijayanarasimhan 2011]. 
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Only a few approaches [Chevalier 2007, Duchenne 2011, Vijayanarasimhan 2011] consider 

objects as consistent groups of regions; usually formalized as graph of regions over a grid or region 

adjacency graphs. Graph-based structures provide increased flexibility to different object poses, 

viewpoints, occlusions and deformations and leverage on multiple studies on combinatorial 

optimization to identify groups of relevant regions from each object. Yet, graph-matching is among 

the most computationally expensive approaches and new light weight variants should be proposed in 

order to use them for large scale search. 

Finally, recent researches have shown that the recall of retrieval methods can be improved by 

leveraging on the top retrieved results. The query can be enriched/expanded with the descriptors of the 

top results and a new query is issued in order to retrieve more positive results [Chum 2007]. In a 

similar manner the top results can be used to train a linear classifier which is then for finding new 

object instances [Arandjelovic 2012]. The drawback of such methods is that they rely on the results 

retrieved from a first query and if the top results are false the query expansion fails to improve the 

recall. An alternative mechanism that would ensure that the expanded query consists of positive object 

instances should be developed for improvements in recall.  

In our work, we propose an object retrieval framework relying on a region-based 

representation. Frames are represented as region adjacency graphs and objects are identified are sub-

graphs according to a global similarity criterion with the query object. We propose multiple 

optimization methods to identify the most relevant region configurations for an object given a query 

model. In addition, we propose a hybrid object representation relying on both interest points (i.e., 

affine co-variant regions) and segmented regions. For each representation we propose a matching 

technique and an optimization strategy. Our aim is to include pertinent relative geometric information 

of groups of regions in the object representations and to localize the object without the use of 

exhaustive sliding windows. 

Query expansion techniques improve significantly the recall of the search engines but are 

limited by the quality of the first retrieved results. We propose a technique that overcomes this 

limitation by leveraging on general public search engines for retrieving positive instances of query 

objects to be used for building a novel query. The most representative instances are chosen after a 

verification stage and a new query is generated with the description of these images. We show how a 

visual query can be generated by using textual descriptions of the object to be retrieved in a video 

repository.



 

 

 

 

3. Region-based representation 

 

Abstract: In this chapter, we propose a region-based representation for objects. Multiple 

segmentation methods (MeanShift, Superpixels, Efficient Graph Based Segmentation) that are suitable 

for such an approach are first briefly recalled. The segmented regions are described with the help of 

an extended version of the MPEG-7 dominant color descriptor, able to support an arbitrary number of 

colors. The segments adjacency information is also retained and stored with the help of an adjacency 

graph. The identification of groups of regions corresponding to an object instance that is similar with 

an object model is an NP-hard problem. We propose a global similarity score for measuring the 

correspondences between two groups of regions and employ it as an energy functional to be 

minimized over multiple region configurations. In order to identify the global minimum of the energy, 

we propose and describe four different strategies, namely Greedy, Relaxed Greedy, Simulated 

Annealing and GraphCut. 

Keywords: energy minimization, region based representation, Greedy, Simulated Annealing, 

GraphCut, MPEG-7 DCD, segmentation, MeanShift, SuperPixels, efficient graph based segmentation. 

Résumé: Dans ce chapitre nous proposons une représentation une représentation d’objet basée sur 

des régions segmentées. Plusieurs méthodes de segmentation (e.g., MeanShift, Superpixels, 

Segmentation Efficace Basée sur Graphes) qui se prêtent à une telle approche sont d’abord 

brièvement rappelés. Les régions sont décrites par une version étendue du descripteur MPEG-7 

Couleur Dominante, capable de supporter un nombre arbitraire de couleurs. L’information 

d’adjacence des segments est également exploitée et stocké à l’aide d’un graphe d’adjacence. 

L’identification des groupes de régions correspondant à une instance d’objet qui est semblable à un 

modèle d'objet est un problème NP-difficile. Nous proposons un score de similarité globale pour 

mesurer les correspondances entre deux groupes de régions et nous l’en utilisons comme une énergie 

fonctionnelle à minimiser par rapport aux multiples configurations des régions. Afin d'identifier le 

minimum global de l'énergie, nous proposons et décrivons quatre stratégies différentes, à savoir 

Greedy, Greedy Détendu, Recuit Simulé et GraphCut. 

Mots clés: minimization d’énergie, representation basée sur régions, Greedy, recuit simulé, 

GraphCut, MPEG-7 DCD, segmentation, MeanShift ; SuperPixels, segmentations basée sur graphe. 
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The principle of the proposed Dynamic Object-Oriented Retrieval (DOOR) approach consists of 

representing an image as a set of regions/segments, obtained with an arbitrary segmentation technique. 

As we cannot expect to dispose of an “ideal” segmentation technique, able to provide a precise region 

of support for each object present in a video scene, the goal here is to exploit an over-segmentation of 

each image into segments. The problem then can be formulated as follows: given a query object Q, 

represented as a set of regions homogeneous with respect to a given criterion, together with their 

adjacency information, and a candidate image I, also decomposed into a set of segments on the same 

basis, how can we determine the sub-set of regions in image I that optimally fits (with respect to a 

visual similarity measure) the query object Q?  

Within this framework, each set of segments under consideration is supposed to be described 

by some visual descriptors. In our case, we have adopted a color-based description, based on the 

MPEG-7 Dominant Color Descriptor (DCD) [MPEG 2002].  

Concerning the construction of the candidate object, the following strategy has been adopted. 

In a first stage, we perform a pre-filtering of each candidate image, which aims at eliminating 

individual regions with far-off colors, based on a color similarity criterion. Let us underline  that the 

objective of this stage is not to directly (and precisely) determine the candidate object, but to roughly 

restrict the number of candidate regions, by eliminating colors that are highly improbable to belong to 

the query object. Thus, a rather permissive threshold has to be used. The resulting regions are labeled 

into connected components. Each connected component is then considered as an initial candidate 

object to be matched with the query.  

Next, each candidate object is iteratively refined by successively removing and/or adding 

regions until the global matching distance is minimized. An overview of the proposed approach is 

illustrated in Figure 3.1. 

Let us note that an exhaustive search approach which would test all possible configurations is 

computationally intractable (non-polynomial complexity with respect to the number of regions). In 

order to obtain a method of reasonable complexity, we have considered the following four 

optimization approaches: 

 a recursive, greedy optimization strategy, 

 a relaxed greedy method, 

 a simulated annealing-based approach [Kirkpatrick 1983],  

 a Graph Cut method [Boykov 2004].  

Our approach relies on a region-based image representation, obtained with the help of a 

segmentation method. The next section recalls the three segmentation methods adopted in our work, 

with principle and choices of the main parameters involved.  
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Figure 3.1. Overview of the DOOR approach: Step1: The user selects an object and the 

corresponding group of segmented regions is extracted; Step.2: Regions with colors highly 

different from the query are filtered out. Remaining regions are separated into connected 

components and each component is considered as a candidate object; Step 3: Different 

configurations of candidate objects are generated by adding and removing color segments; Step 

4: The object with the minimal distance from the query is selected and displayed in its bounding 

box. 

 

3.1 Adopted segmentation approaches  

A first segmentation approach is the well-known MeanShift approach.  

3.1.1 MeanShift segmentation 

The MeanShift segmentation technique [Comaniciu 2002] relies on a feature space analysis. The 

technique includes two basic steps: a mean shift filtering of the original image data (in the feature 

space) and a subsequent clustering of the filtered data points. 

The filtering step of the mean shift segmentation algorithm consists of analyzing the 

probability density function underlying the image data in feature space. The feature space consists of 

the (x, y) coordinates each pixel in the image and the (smoothed) pixel color in L*u*v* space (L*, u*, 

v*). The modes of the probability density function underlying the data in this feature space will 

correspond to the locations with highest data density, and data points close to these modes can be 

clustered together to form a segmentation. The mean shift filtering step consists of determining these 

modes through an iterative kernel density estimation of the gradient of the probability density 

function. Edge information is also considered, in order to better guide the clustering process. Among 

the various variants of the Meanshift algorithm, we have adopted the method integrated in the publicly 
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available EDISON system, described in [Christoudias 2002]. Let us note that the algorithm can be 

parallelized and implemented on GPU, boosting its computational efficiency. 

As we can observe, the regions generated by the Mean Shift segmentation accurately follow 

the edges of the image. The number of regions is not specified, but is instead determined by the 

bandwidth parameters involved and by the image content. Since our objective is to use the segmented 

regions as primitives for object construction, we require a relatively high number of segmented 

regions. Thus, the segmentation parameters (e.g., color range, spatial range, minimum region size) are 

adjusted in order to perform an over-segmentation of the images. This results in up to 200-300 regions 

per image, with an average of 160 regions per image (cf. Section 6.1.2).  

Figure 3.2 and Figure 3.3 illustrates some examples of MeanShift segmentation, for both 

synthetic (cartoon) and natural images.  

 

Figure 3.2. Cartoon video frames (left) and their MeanShift segmentations (right). A number of 

80-150 segmented regions provide in this case a “recognizable” image. The regions are displayed 

with their corresponding Dominant Color. 

 

 

Figure 3.3. Video frames (left) and their MeanShift segmentations (right). A number of 200-300 

segmented regions provides in this case a “recognizable” image. The regions are displayed with 

their corresponding Dominant Color. 
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In the segmented images the color of each region corresponds to the average value of the 

colors of all the pixels included in the considered region. We can observe that despite the inherent loss 

in accuracy, the image content can still be visually recognized from the segmented images, which 

offers good premises in terms of object recognition capabilities.  

Let us finally note that due to its advantageous properties, the MeanShift algorithm is a 

frequent choice in the field of object-based retrieval [Pantofaru 2006, Malisiewicz 2007, Yang 2007, 

Pantofaru 2008]. 

A second segmentation technique retained is presented in the following section.  

 

3.1.2 Efficient graph-based segmentation  

The efficient graph-based segmentation (EGBS), introduced by Felzenswalb and Huttenlocher in 

[Felzenszwalb 2004] uses a variation of a single linkage clustering [Comaniciu 1999] based on 

dilating points in a parameter space. The authors employ a minimum spanning tree of the data points 

(pixels) from which any edges with length greater than a given hard threshold are removed. The 

method eliminates the need for a hard threshold, which is here replaced with a data-dependent term. 

Thus, the merging of two components is performed with a variable threshold, unlike 

MeanShift where the pixels are assigned region labels under fixed thresholds. This adaptive 

thresholding mechanism allows two components to be merged effectively if the minimum edge 

connecting them does not have a length greater than the maximum edge in either of the components’ 

minimum spanning trees. The EGBS technique is thus adaptively sensitive to edges in areas of low 

variability, and less sensitive to them in areas of high variability. 

The efficient graph-based segmentation has been successfully employed in vision applications 

on object recognition [Pantofaru 2008, Kang 2011, Sande 2011, Vieux 2012] for its simplicity and for 

its segmentation pertinence to object entities, as in many cases objects are segmented into a single 

region. While a fixed number of regions per image cannot be set, we have tuned the algorithm to 

return an average of 170 regions with a maximum value of 1000 regions 

 

3.1.3 Superpixels  

Many vision applications benefit from representing an image as a collection of superpixels [Ren 2003, 

Malisiewicz 2007, Pantofaru 2008, Fulkerson 2009]. Intuitively, a superpixel is regarded as a 

perceptually meaningful atomic region of the image. Thus, a superpixel should contain pixels that are 

similar in a certain feature (e.g. color, texture…) and therefore are likely to belong to the same 

physical world object. Moreover, the size and shape of the superpixels of a given image should be 

highly similar.  

Let us mention that the “superpixel” denomination is often used for regions resulted from 

popular segmentation methods (e.g., normalized cuts [Shi ], MeanShift [Comaniciu 2002], graph 

based [Felzenszwalb 2004]) when such techniques are tuned such that they lead to an over 
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segmentation of the image. However, when running in superpixel mode, such methods do not follow 

the boundaries of the objects and the resulting superpixels have irregular shapes and sizes. These 

drawbacks have been approached by specialized superpixels segmentation algorithms such as 

normalized cuts superpixels [Ren 2003], TurboPixels [Levinshtein 2009], energy-based superpixels 

[Veksler 2010]. 

We have adopted the energy-based superpixels, recently introduced by Veksler et al. [Veksler 

2010] for their superior performances over Turbopixels in both boundary precision and computation 

time. The superpixels are obtained with a graph-cut optimization approach [Boykov 2001, Boykov 

2004, Kolmogorov 2004] which finds an optimum distribution of a collection of overlapping square 

patches covering the whole image. Each pixel is covered by several patches, and the task is to assign a 

pixel to one of them. If two neighboring pixels are assigned to the same patch, there is no penalty. If 

they belong to different patches, then there is a stitching penalty that is inversely proportional to the 

intensity difference between the pixels. Intuitively, patches are stitched in such a manner that the 

seams are encouraged to become aligned with the image edges. The principle is illustrated in Figure 

3.4, where three patches are considered (Figure 3.4a). In this example, there is a strong intensity 

gradient at the level of the lip boundary. Therefore, the cut between patches should be aligned with the 

lip boundaries (Figure 3.4b). This process of boundary regularization is due to the stitching energy 

function. A superpixel cannot be too large, i.e., not larger than the considered size of the patch. Small 

superpixels are also discouraged because they contribute with a higher cost to the stitching energy. 

An important advantage of the superpixels is their regularity in size and shape. This makes it 

possible to specify the approximate number of superpixels for each image. In our approach, 

superpixels can also be regarded as a quasi-regular grid that provides information about the 

positioning of the superpixels and groups of superpixels relative to each other and does not cross the 

object boundaries. In order to test the influence of the number of regions in the object retrieval 

process, we have considered three levels of granularity for the superpixels segmentation with an 

average number of 250, 500 and 750 superpixels. 

 

             

(a)Three patches.                  (b) Obtained superpixels.  

Figure 3.4. Patch stitching for superpixels. Left: three patches (orange, green, purple). Right: 

the resulting superpixels. 

Figure 3.5 illustrates the results of the three segmentation techniques retained for a same 

image. We can observe the high regularity of the regions obtained with the help of the Superpixels 

method.  
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Figure 3.5. Examples of segmentation results for the considered techniques. In the right column, 

the regions are displayed with their corresponding average color.  
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Whatever the segmentation technique, the resulting segmented image should be described 

appropriately in order to enable object-based retrieval. In our case, we have adopted a color-based 

representation, based on the MPEG-7 dominant color descriptor, presented in the following section.  

 

3.2 DCD description  

Each region (or segment) determined needs to be described individually in such a manner that its 

descriptors can be also integrated in the description of a group of regions. In our approach, each 

segment is described by a unique, homogeneous color, defined as the average value of the pixels of the 

given region. The set of colors, together with their percentage of occupation in the image (i.e., the 

associated color histogram) are regrouped into a visual representation, which is similar to the MPEG-7 

DCD [MPEG 2002].  

More precisely, let       
     

        
   be the set of NI colors obtained for image I, and 

      
     

        
   the associated color histogram vector. The visual image representation is 

defined as the couple (CI, HI). In contrast with the MPEG-7 DCD, which supports a maximal number 

of eight colors, in our case an arbitrary number of dominant colors is supported. Note that other 

descriptors such as color histograms, contour shape or local gradient descriptor for each region can be 

employed in this framework. 

The query is by definition an object of arbitrary shape and is processed in the same manner in 

order to derive its visual representation. Let us also note that more sophisticated DCD-based 

approaches, such as those introduced in [Yang 2008, Zin 2009], can also be considered.  

The advantage of the DCD representation comes from the fact that objects with arbitrary 

numbers of colors can be efficiently compared by using, for example, the Quadratic Form Distance 

Measure introduced in [Hafner 1995], which can be re-written for arbitrary length representations as 

described by the following equation: 

  
                

     
     

   
   

  

   

  

   

        
     

     
   

   

  

   

  

   

      
     

     
   

  

  

   

  

   

      (3-1) 

where       
     

        
   and       

     
        

   respectively denote the DCD histogram 

vectors of length   , and    respectively associated to the query (Q) and candidate (I) images. The 

function a, describe the similarity between two colors ci and cj and is defined as: 

            
         

    
   , (3-2) 

where d is the Euclidean distance between colors ci and cj and      is the maximum Euclidean 

distance between any 2 colors in the considered color space . 
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Let us note that each color region in a candidate image has a specific contribution to the global 

distance. Thus, the contribution of color   
  in an image I to the global distance between image I and 

query Q is expressed as:  

    
             

     
     

   
   

  

   

     
 
    

     
 
  
  

  

   

 (3-3) 

Let us emphasize the flexibility provided by this similarity measure. As groups of regions 

evolve and regions are added or removed, the contributions of each region to the similarity measure 

can be easily updated according to the current region configuration. 

The above-defined distance is used as a global criterion in the matching stage. Here, the 

objective is to determine, in each key-frame of the considered video sequence, candidate regions 

which are visually similar with the query.  

In order to capture the internal structure of the objects as clusters of neighbor regions, we 

employ a graph-based representation. The advantage of graph based representation lies in its 

flexibility, the integration of spatial information and in the possibility of defining relevant parts of the 

object as sub-graphs or connected components. 

Let us consider an undirected graph         with n vertices and m edges. Each vertex 

represents a segmented region, hence n is the number or regions in the given image. Vertices are inter-

connected with an edge if their corresponding regions are adjacent. In our case, the weights of the 

vertices are their corresponding dominant colors. For the edges, we have explored different weighting 

mechanisms, related to the neighborhood structure (i.e., Potts-like potential) or to the similarity of the 

two corresponding regions (cf. Section 5.2).  

An important characteristic of the graph is the possibility identifying and using sub-graphs and 

connected components. More precisely, the objective is to determine, for each candidate image, a sub-

graph that minimizes the dissimilarity measure defined in Equation (3-1).  

Within this framework, we have considered several optimization strategies. The first one, 

described in the next section, concerns a greedy region construction mechanism.  

 

3.3 Greedy region construction 

The algorithm starts from the initial set of regions obtained after the filtering stage. At each stage, we 

consider the current candidate object in image I and attempt to improve the current similarity measure 

between query and candidate objects. More precisely, we recursively eliminate the color segment 

which provides the highest contribution to the global distance (Equation (3-3)). We then check if the 

global distance is decreasing or not. If yes, we eliminate the corresponding region, update the color 

frequency vector HI, and re-iterate the algorithm on the new candidate object obtained. If not, the 

region is maintained and the algorithm successively tries to eliminate the following regions (sorted by 

decreasing order of their contribution to the global distance). 
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Let us note that each time an attempt to eliminate a segment is performed, the region 

connectivity needs to be re-calculated in order to determine the eventually newly created connected 

components. Each connected component is then treated separately.  

The algorithm stops when no improvement to the current global distance is obtained, whatever 

the region under investigation. We then return to the previously obtained best score configuration and 

stop the algorithm. 

The strategy of recursively eliminating the highest contributor to the global score increases the 

speed of the algorithm, by pruning the search space. However, there is a risk to remain blocked in a 

local minimum, because whenever the distance is increasing, the algorithm stops. For this reason we 

investigated a different approach, based on a modification of the current greedy scheme. 

 

3.4 Relaxed Greedy Scheme 

Here, the principle consists of relaxing the exit condition in the previously described greedy scheme, 

in order to allow the algorithm to test additional region configurations, which are not necessarily 

lowering the global score at the current step. Thus, we constrain the algorithm to stop generating 

configurations when the current distance becomes “considerably” higher than the previous one. We 

consider that if the current distance is δ % higher than the previous obtained one, the candidate object 

has a low probability of reaching a configuration with a better score. In this case, the algorithm should 

stop and return the current best distance. Otherwise, it should continue removing the regions with the 

highest contributions to the score as it could find another minimum after this “uphill” configuration. In 

our experiments, we have used values of δ between 5% and 20%, which provide a good trade-off 

between the number of generated configurations and the computational time.  

Let us note that the Relaxed Greedy (RG) scheme, although simple, becomes more useful in 

the case of images described by a relatively high number of segments since in this case the probability 

of getting stuck in a local minimum is significantly increasing. The main limitation of the greedy 

approaches is that they do not ensure the retrieval of an optimal solution. In order to achieve 

asymptotic optimality, we have adopted a simulated annealing matching strategy, described in the next 

section. 

 

3.5 Simulated Annealing Optimization 

The Simulated Annealing (SA) algorithm is a well-known stochastic optimization technique inspired 

from the behavior of condensed matter at low temperatures. The procedure employs methods that 

originated from statistical mechanics to find global minima of systems with large numbers of degrees 

of freedom. The correspondence between combinatorial optimization problems and the way natural 

systems search for the ground state (lowest energy state) was first realized by Kirkpatrick et al. 

[Kirkpatrick 1983] who applied Monte-Carlo methods in order to determine the solution of global 

optimization problems. Furthermore, authors generalized the Metropolis algorithm [Metropolis 1953] 
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by using an approach with successively decreasing temperatures. At each stage, the system is 

simulated by the Metropolis procedure until the system reaches equilibrium. 

The system starts with a high temperature T. Then, a cooling (or annealing) scheme is applied 

by slowly decreasing the temperature T according to some given procedure. At each temperature T, a 

series of random new states are generated and the states that improve the cost function are accepted. 

Instead of always rejecting states that do not improve the cost function, such states can be accepted 

with some finite probability depending both on the amount of energy increase and of the current 

temperature T. This process randomizes the iterative improvement phase and also allows occasional 

uphill moves (i.e., moves that do not improve the solution) in an attempt to reduce the probability of 

blocking the algorithm into a local minimum. As temperature T decreases, configurations that increase 

the cost function are more likely to be rejected. It has been demonstrated that the SA procedure is 

asymptotically optimal, i.e. leads to a solution that is arbitrary close to the global minimum [Lundy 

1986]. 

We employ the SA algorithm in order to take advantage of the higher number of possible 

region configurations and, thus, determine the global optimum score for all candidate regions. The 

energy E considered here is defined as the global matching score between the query and the candidate 

objects (Equation (3-1)). A binary state S = S(c) is associated to each color segment c indicating 

whether the segment is considered as part of the current object or not.  

During each step, the algorithm attempts to change the state of the current color segment, by 

investigating the variation of the global energy               when the state S is set to its 

complementary value S’. If this variation     , then the current state S is replaced by its 

complementary value   . If the energy variation    has a positive value indicating an augmentation of 

the energy, then a random variable α,       is generated. The current state S is replaced by   if 

the following condition is satisfied: 

           and              , (3-4) 

 

where T denotes the value of the temperature at the current state.  

A multiple number of iterations, denoted by nit, are performed for a given temperature. The 

temperature of the system is then iteratively lowered, according to a given freezing scheme (or 

annealing schedule). In our work, we have adopted the following temperature variation: 

          (3-5) 

 

where τ is the (constant) cooling rate with value between 0 and 1, and    is the temperature at the n
th
 

iteration. Let us note that as the temperature is decreased by   , the probability of accepting a large 

decrease decays exponentially towards zero. The algorithm starts at an initial temperature    and stops 

when a freezing temperature Tf   is reached. 

In addition, the connectivity information is used to guide the SA process. Thus, in order to 

ensure a smooth variation of the energy functional, a given segment is allowed to change state only if 
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this process does not modify the topology of the candidate object (i.e., it does not create holes or new, 

isolated connected components).  

Let us also observe that, in contrast with the greedy-based approaches (where the only 

operation supported is the removal a given segment), here a color segment can be both removed and 

added to the current candidate object.  

A particular attention has to be paid to the parameters involved in the considered freezing 

scheme. Keeping the same temperature for a long period of time will guarantee finding the best 

solutions since the SA algorithm is asymptotically optimal. This means that the longer the algorithm 

runs, the better is the quality of the solution obtained. However, from a practical point of view, this is 

not acceptable because of computational issues. Concerning the other parameter values, we consider 

the initial temperature T0 between 0.5 and 0.9 and the freezing temperature Tf in the range 10
-3

 – 10
-4

. 

Finally, the typical values of the cooling factor   are in the range from 0.9 to 0.99.  

The considered SA approach is illustrated in Figure 3.6. At step 1, we randomly select a 

segment from the current region configuration and add it or remove it from the current regions 

configuration depending on its previous state. At step 2, we check if the operation made to the current 

region changes the consistency of the current region configuration. If it generates two new connected 

components or creates a whole within the current region configuration, it will not be accepted and 

marked as processed and we return to step 1 to select another segment from the non-processed 

segments. If the region passes the consistency check, at step 3 we compute the color similarly between 

the query model and the current region configuration using Equation (3-1). This similarity represents 

the energy of the current object state E(S’) and we compare with the energy of the previous state E(S). 

If there is an improvement in the energy score from the previous step (i.e.,                ) 

we accept the current state and replace the previous state with it at step 5 and then return to step 1 to 

select another segment to add or to remove. If there is no improvement in the energy score (i.e., 

    ), we perform the test from Equation (3-4) to decide whether to accept the current state or not. 

If the test is passed, the current state is accepted and replaces the previous one at step 5. We return 

then to step 1. If the current state does not pass the test from step 4, the current state is rejected and the 

algorithm goes directly to step 1 to test another segment. When all segments from the current region 

configuration have been processed, the current iteration is completed. We then mark as non-processed 

all the segments and start a new iteration. We perform nit = 5-10 such iterations for each temperature. 

After nit iterations the temperature decreases as indicated in Equation (3-5). The temperature is then 

successively decreased until it reaches the freezing temperature Tf. 

The SA algorithm offers the advantage of generality, being able to optimize arbitrary energy 

functions. However, approaching the global optimum requires a very slow cooling rate (i.e., parameter 

  close to 1) and as a consequence, the optimization process becomes very slow and intractable in 

practice. For this reason, it is necessary to decrease the algorithm's temperature parameter faster than 

required by the theoretically optimal schedule. The price to pay is of course the sub-optimality of the 

resulting solution, since in this case the algorithm will converge to a local minimum: Greig et al. 

[Greig 1989] demonstrate that practical implementations of simulated annealing lead to results that are 

far from the global optimum. 
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Figure 3.6. Overview on the Simulated Annealing implementation. 

 

Moreover, all the above described optimization strategies integrate solely a minimal spatial 

information, related to the connectivity between adjacent regions. Spatial information could help in 

identifying pairs or groups of matched regions which co-occur in both query and test images. This 

information could be then used to privilege or penalize groups of regions in the region construction 

process. 

In order to overcome such limitations, the graph-cut optimization method, presented in the 

following section, adopts a different approach, which considers no longer individual state 

modifications, but operations associated to groups of regions, so-called moves.   

 

3.6 Graph-Cut Optimization 

Let us consider a set of sites   (which can be sets of pixels in an image, or sets of nodes in a 

graph representation) and a set of labels  . The objective is to determine a labeling function f (i.e. a 

mapping from   to  ) which minimizes a given energy function.  

The Graph-Cut optimization method has been developed within a Markovian framework and 

is thus dedicated to the minimization of Gibbs functionals, which can be expressed as described by the 

following equation: 

                                 , (3-6) 

where       is a neighborhood system supposed to be available.  
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The term        is a function derived from the observed data that measure the cost of 

assigning the label    to the site p (i.e., it measures how well the label    fits the site p given the 

observed data). It can also be referred to as the data term, or the unary term. The term             

measures the cost of assigning the labels   ,     to the adjacent sites p, q and is used to impose spatial 

smoothness. It is also referred to as the smoothness term or the pairwise term.  

Let us note that at the borders of objects, adjacent sites will often have different labels. In this 

case, it is important that the energy functional E does not add extra penalization to such labeling. This 

requires that the term Vp,q should be a non-convex function of         . Such an energy function is 

called discontinuity-preserving [Geman 1984, Kolmogorov 2004].  

Since functions like E are non-convex functions in a space with thousands of dimensions, their 

minimization is a highly challenging issue. They have been traditionally minimized with general-

purpose optimization techniques, such as simulated annealing [Kirkpatrick 1983], that can minimize 

arbitrary energy function. The Graph-Cut technique has been developed as an alternative to such high 

complexity methods. Let us recall the basic principle.  

 

3.6.1 Graph-Cut basics 

Let          be a graph which consists of a set of nodes   and a set of directed edges   that connect 

them. The set of nodes           contains two specific terminal nodes, so-called source s and 

sink t, as well as a set of non-terminal nodes  .  

Each graph edge is assigned a non-negative weight (or cost) denoted by       . A cost of a 

directed edge       may differ from the cost of the reverse edge      . An edge is called a t-link if it 

connects a non-terminal node in   with a terminal. An edge is called n-link if it connects two non-

terminal nodes. Let us denote by   the set of all n-links. The set of all graph edges   consists of n-

links in   and t-links               for non-terminal nodes    . Such a graph is illustrated in 

Figure 3.7, where t-links are shown in red (for the source node s) and blue (for the sink node t), while 

n-links are shown in yellow. 

An s/t cut C is by definition a partition of the graph nodes into two disjoint subsets   and   

such that the source node s is in   and the sink node t is in  . An example of of a cut is illustrated in 

Figure 3.7.  

To each cut C =       , we can associate by a binary labeling f defined from the set of the 

vertices         to {0,1}, with        for     and        for    .  

Thus, the minimization of the energy functional in Equation (3-6) can then be formulated as 

the determination of an optimal cut, as described in the following section.  
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Figure 3.7. Graph construction in Greig et. al. Edge construction reflected by thickness. A graph 

  (left) and a cut on   (right). 

 

3.6.2 The Min-Cut and Max-Flow problem 

To each cut, a cost measure is associated with. By definition, the cost of a cut C =       is the sum of 

costs of all boundary edges       such that      and     . If       is a boundary edge, then we 

say that cut C severs the edge      . Intuitively, the cost of the cut is the sum of costs of all edges that 

go from   to  : 

                                . (3-7) 

 

The minimum cut problem is to determine a cut that has the minimum cost among all the 

possible cuts. One fundamental result in combinatorial optimization states that the minimum s/t cut 

problem can be solved by finding a maximum flow from the source s to the sink t. Intuitively, this can 

be interpreted as follows. If we consider the source node as a source of water, the sink node as a tank 

and the graph edges as directed “pipes” with capacities equal to the edge weights, the maximum flow 

is the maximum amount of “water” that can be transported from the source to the tank. The theorem of 

Ford and Fulkerson [Ford 1962] states that a maximum flow from s to t corresponds to a set of edges 

in the graph partitioning the nodes into two disjoint parts       corresponding to a minimum cut. 

Thus, min-cut and max-flow problems are equivalent and the maximum flow value is equal to the cost 

of the minimum cut. 

There are many standard polynomial time algorithms for min-cut/max-flow [Cook 1998]. 

Such algorithms can be divided into two main groups: “push-relabel" methods [Goldberg 1988] and 

algorithms based on augmenting paths [Ford 1962]. In practice, the push-relabel algorithms perform 

better for general graphs. In the field of computer vision, more specialized algorithms are used, in 

particular the method of Boykov and Kolmogorov [Boykov 2004] and its more recent extensions 

[Kohli 2007, Goldberg 2011], described in  the next section. 
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3.6.3 Energy minimization using graph cuts 

In order to minimize E using graph cuts, a specialized graph is created such that the minimum 

cut on the graph also minimizes E (either globally or locally). The form of the graph depends on the 

exact form of Vp,q and on the number of labels. In certain restricted situations, it is possible to 

efficiently compute directly the global minimum. Thus, in the case of binary labeling Greig et. al. 

[Greig 1989] proposed a method to compute the global minimum of E. This is also possible for an 

arbitrary number of labels as long as the labels are consecutive integers and Vp,q is the L1 distance. The 

construction is due to [Ishikawa 1998] and is a modified version of [Roy 1998]. This construction has 

been further generalized to handle an arbitrary convex potentials Vp,q [Ishikawa 2003]. 

However, a convex Vp,q is not discontinuity preserving and optimizing an energy function with 

such a Vp,q leads to over-smoothing at the borders of objects. The ability to determine the global 

minimum efficiently, while theoretically of great value, does not overcome this drawback.  

Moreover, efficient global energy minimization algorithms even for the simplest 

discontinuity-preserving energy functions do not exist. Let us consider the following form for the 

pairwise potential: 

                      . (3-8) 

 

, where the indication function      is 1 if its argument is true and zero otherwise.  

This smoothness term corresponds to a Potts model [Potts 1952], and is discontinuity 

preserving. Yet, it is known that its minimization is a NP-hard problem [Boykov 2001]. 

However, graph cut algorithms have been developed that compute a local minimum in a 

strong sense [Boykov 2001]. Such methods minimize an energy function with non-binary variables by 

iteratively minimizing an energy function with binary variables. Boykov et al. [Boykov 2001] 

introduce two algorithms based on graph cuts that can find efficiently a global minimum with respect 

to two types of large moves, namely expansion moves and swap moves, which simultaneously change 

the label of multiple sites. This is in contrast with  popular optimization algorithms previously 

proposed, such as Iterated Conditional Modes (ICM) [Besag 1986] and Simulated Annealing [Geman 

1984], which allow only one site at a time to change its label. 

Any labeling f can be uniquely represented by a partition of image sites            where 

              is a subset of sites assigned with the label  . In the case of the swap moves, given a 

pair of labels    , a move from a labeling f or a partition   to a new labeling    or partition    is 

called     swap is        for any label      . More precisely, this means that the only 

difference between   and    is that some pixels that were labeled    in   are now labeled   in   , and 

some pixels that were labeled   in   are now labeled   in   . Let us note that a special case of a 

    swap is a move that gives the label   to a set of pixels previously labeled  . Figure 3.8 

illustrates examples of  - -swap moves. 
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  current labeling f         a  - -swap               another  - -swap             a  -  -swap 

Figure 3.8. Examples of swap moves with respect to the current labeling f is shown at left. A α-β-

swap move is made from binary choices: each fp involved can choose either α or β (illustration 

from [Delong 2011]). 

 

For the expansion moves, given a label  , a move from a partition   (or labeling f) to a new 

partition    (or labeling   ) is called an  -expansion if        and        for any label    . 

This means that an  -expansion move allows any set of image pixels to change their label to  . 

Examples of expansion moves are illustrated in Figure 3.9. 

Summarizing the two methods, for the swap moves, given an input labeling f (partition  ) and 

a pair of labels    , the objective is to determine a labeling    that minimizes E over all labelings 

within one     swap of f. In the case of the expansion moves, given an input labeling f (partition  ) 

and a label  , a labeling   minimizing E over all labeling within one  -expansion of f has to be 

determined.  

 

 

  Current labeling f         A  -expansion            Another  -expansion       A  -expansion 

Figure 3.9. Examples of expansion moves with respect to the current labeling f is shown at left. 

An  -expansion move is made from binary choices:   can either expand to pixel p, of leave    as 

it is (illustration from [Delong 2011]). 

 

In our work we have adopted the expansion move algorithm proposed in [Boykov 2004] 

which is one of the most effective algorithms for minimizing discontinuity-preserving energy. This 

algorithm can be used whenever Vp,q is a metric on the space of labels; which includes several 

important discontinuity preserving energy functions.  

The expansion move algorithm cycles through the labels   in a fixed or random order and 

determines the lowest energy  -expansion move from the current labeling. If this expansion move has 
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lower energy than the current labeling, then it becomes the current labeling. The algorithm terminates 

with a labeling that is a local minimum of the energy with respect to expansion moves. More 

precisely, there is no   –expansion move, for any label  , with lower energy. 

 

3.6.4 DOOR Graph-Cut integration 

Let us first note that the direct minimization of the global quadratic similarity measure defined in 

Equation (3-1) is not possible with the Graph Cut technique, since such a measure is not reducible to a 

Gibbs energy functional (Equation (3-6)) [Kolmogorov 2004, Freedman 2005]. Instead, we guide our 

Graph Cut process with a dedicated Gibbs energy, which is defined as described in the following.  

We formulate the problem of region based object recognition as a binary labeling graph cut 

problem. Similarly with the segmentation approaches, the values of the binary labels can be 

foreground and background [Boykov 2001b, Li 2004, Boykov 2006], indicating whether the 

considered segment is inside or outside the object of interest. The foreground label is assigned to the 

segments similar with the regions of the query object, while the background label is assigned to non-

similar regions from the current image.  

We have considered the graph-based representation described in Section 3.2. Thus, the set of 

nodes   represents the set of segments obtained with an arbitrary segmentation procedure. The 

adjacency relations between them are also supposed to be available.  

Let                       be the binary vector of labels associated with the set of 

segments  . For each segment p, the corresponding label can be either “foreground” (    ) or 

“background” (    ). In this manner, each vector f defines an object candidate, constructed from 

with the regions labeled as “foreground”. In order to obtain the vector f, we define a set of soft 

constraints on region and boundary properties of f with the help of the following cost function: 

                  (3-9) 

, where      is the regional, data or unary term and represents the likelihood energy, encoding the 

cost when the label of p is   : 

                . (3-10) 

The function      is the smoothness or pairwise term and represents the internal energy, specifying 

the cost when the labels of adjacent nodes p and q are   and     respectively: 

          
       

       
(3-11) 

with 

        
                   

               
   

(3-12) 
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The real, positive parameter   (   ) from Equation (3-9) weights the relative importance of 

the data term D(f) with respect to the boundary properties term V(f). Let us note that such an approach 

has been extensively used within the framework of interactive image segmentation. In such cases, the 

user marks the image with so-called scribbles indicating regions that belong to the foreground or 

objects of interest and regions that belong to the background [Boykov 2001b, Li 2004, Boykov 2006, 

Bai 2007]. The segmentation algorithm employs these scribbles as seeds for building regions and 

segmenting out the objects of interest. Such scribble information can be integrated naturally in the 

GraphCut optimization in the data term as source/foreground and sink/background nodes. The 

scribbles typically boost the segmentation accuracy and speed, and can be deployed in general public 

video editing tools (e.g., Adobe After Effects [Bai 2009, Adobe 2012b]).  

The principle is illustrated in Figure 3.10. Users draw on a given image a set of scribbles 

hinting the object of interest (foreground) with blue curved lines and the non-interesting regions 

(background) with green curved lines. The segmentation algorithm performs the segmentation starting 

from these user hints. The result is then displayed to the user and if the segmentation is not accurate, 

he can then add other helping scribbles to be considered for improving the segmentation results. 

 

 

Figure 3.10. Principle of scribble-based interactive segmentation. In the left column, images with 

user drawn scribbles (foreground - blue curves, background – green curves). The segmentation 

results are presented in the right column. 

It would be of great help to manage to introduce such a scheme within our object retrieval 

scheme in an automatic manner. This requires constructing automatically the scribbles, as described in 

the following section.  
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3.6.4.1 Pseudo scribble construction  

Since we dispose of a query model indicated by the user, we introduce a pseudo-scribble approach for 

enhancing the object detection. The regions that compose the query object are considered as 

foreground scribbles.  

For each candidate image under consideration, the corresponding set of regions is filtered, 

according to their color similarity with the query regions (cf. Section 3.3). Here; we adopt a relaxed 

threshold in order to avoid eliminating potentially useful regions that might present low similarity 

scores because of lightening variations or noise. The filtered-out regions are considered as background 

regions and are annotated as background pseudo-scribbles. The rest of the regions are considered as 

detected foreground regions.  

Let us note that in our case, and in contrast with traditional segmentation approaches, the 

foreground scribbles do not belong to the candidate image, but to the query model.  

This principle is illustrated in Figure 3.11, Figure 3.12 and Figure 3.13. Figure 3.11 illustrates 

the query model, which is interactively specified by the user. Its constitutive segments will define the 

set of foreground scribbles. 

 

 

Figure 3.11. Query object extraction from user selection. After the regions composing the query 

model have been extracted, all these regions become foreground pseudo-scribbles (dashed blue-

curve). 

 

 Figure 3.12 illustrates the case of a candidate image which is visually similar with the query 

frame (i.e., the pose of the character of interest is almost the same, the color tones of the background 

are highly similar).  

Despite the similarity, some mislabeled regions are here detected (e.g., pieces of furniture 

assigned to foreground, parts of face and shirt assigned to background).  
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Figure 3.12. Background pseudo-scribbles extraction from a frame similar with the query frame 

illustrated in Figure 3.12. Each image is firstly passed through color filtering that removes all 

regions with colors far-off from the ones in the query model. The filtered out colors become 

background pseudo-scribbles (dashed green line). 

 

In Figure 3.13 we illustrate a different case, where the object of interest is significantly 

different in the query and the candidate image.  

 

Figure 3.13. Background pseudo-scribbles extraction from a frame non-similar with the query 

frame illustrated in Figure 3.7. In this case we can notice that some of the filtered out regions are 

part of the queried object and they should be integrated back in the candidate object 

configuration. The color similarity of the border regions makes it possible to recover such 

regions and to reject other non-similar ones. 
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Here again, the filtered-out regions are labeled as background scribbles. We can notice that 

due to the light intensity variation, a part of the object of interest has been rejected by the color filter. 

In addition, a noisy region has been retained in the current object configuration. We also observe that 

these mislabeled regions are located at the boundary between the candidate object and the background. 

We should then foresee such cases and define them in the energy function considered (Equation 

 (3-9)). Regions at the boundary should be given the possibility to change state (i.e. 

foreground/background) according to their visual similarity and spatial relationship with other regions 

from both foreground and background. The definition of the energy functional considered is presented 

in the following section.  

 

3.6.4.2 Energy definition 

For the data term D(f), we consider as nodes the regions obtained from the image segmentation. For 

each node p, we have to define the weights of the t-links with the source (foreground)          and 

the sink (background)         . These weights are defined with the help of the color similarity 

between a given segment and the sets of foreground scribbles, within the query model, and the set of 

background regions from the considered candidate image.  

We first compute the minimum distance from its color C(p) to the foreground scribbles, as 

expressed by the following equation:  

  
                         

     
  

  , (3-13) 

where F is the number of foreground scribbles (i.e., the number of regions composing the query 

model).  

Similarly, we compute the minimum distance from the color C(p)of the segment p to the set of 

background regions: 

  
                         

     
  

, (3-14) 

, where B is the number of background regions.  

Then, the weights associated to the t-links for each node p are defined as follows: 

         
  
 

  
    

 
                     

  
 

  
    

 
    

(3-15) 

Concerning the pairwise energy term         we consider only the regions on the boundary 

between the foreground and background. Similarly with [Li 2004] we employ a pairwise potential 

     based on the color gradient along the object boundary, as described in the following equation:  

      
 

               
, (3-16) 
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                    is the color distance between the colors C(p) and C(q) of regions p and q. 

This distance can be chosen according to the choice of the color space (e.g., Euclidean for RGB, 

CIE76 or CIE94 for the CIE-L*a*b* color space).  

As mentioned in Section 3.6.4, the potential      is weighted with the term        which 

allows us to capture the gradient information only along the current object boundary. We notice that 

the more similar the colors of the two nodes, the higher      becomes, meaning that the less likely the 

edge is on the object boundary. In practice, the term         penalizes adjacent nodes which are 

assigned with different labels. 

The GraphCut object construction process is described in the following section. 

 

3.6.4.3 GraphCut-based object retrieval 

Starting from the initial segmentation obtained after the color filtering process, the various connected 

components of the detected foreground regions are considered as object candidates and optimized with 

the GraphCut algorithm.  

The corresponding graph considered includes the set of foreground regions, together with their 

neighboring background regions, as illustrated in Figure 3.14. The rest of the background regions 

(illustrated with black dots in Figure 3.14) are ignored at this stage. 

The minimum cut configuration is then determined as presented in Section 3.6.2. As discussed 

in the previous section, the foreground/background pseudo scribbles determined after the filtering 

stage can include some erroneous items. In order to deal with such cases, we propose to recursively 

apply the GraphCut algorithm, for a pre-defined number of steps. At each step, the result obtained 

from the previous one is considered as initialization of the foreground/background region 

specification. The regions adjacency graph and its corresponding weights are updated at each step.  

The foreground pseudo scribbles are fixed, as they correspond to the query model. Solely the 

background pseudo scribbles are updated.  

In our experiments, we have observed that in a majority of cases the configuration yielding the 

optimal similarity score is reached within the first 10-15 steps.  

The proposed workflow is illustrated in Figure 3.15 and Figure 3.16. In Figure 3.15 we present 

the case of a frame visually similar with the query frame (i.e., the object of interest displays a similar 

pose and background). Here, the best candidate has been identified at the fourth step (illustrated with a 

green bounding box). Let us emphasize that between consecutive steps, groups of regions are added or 

removed from the current candidate object configuration. This makes is possible to accurately retrieve 

the object of interest. In the final steps the algorithm switches between the same two states, meaning 

that no better configuration can be identified. 
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Figure 3.14. Structure of graph to be optimized with the GraphCut algorithm. The nodes are 

regions from typical segmentation methods (MeanShift - second row, SuperPixels - third row). 

The blue dots indicate the foreground regions for the current configuration and the black dots 

show the background regions. The yellow dots show the regions from the object boundary 

illustrated with a thick red curve, with the yellow dots inside the curve belonging to the current 

object configuration (foreground). The orange edges connect adjacent regions and are weighted 

with the pairwise energy term. The blue edges connect non-boundary non-boundary adjacent 

regions are weighted with zero. 

 

In Figure 3.16 we illustrate the case of a frame where the object of interest is in a different 

pose. The query object is the same one as in Figure 3.15 (i.e., man with blue shirt). Here, the character 

of interest is displayed in a zoomed view and the background is slightly different. Most of the 
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background segments are rejected in the first steps and further the configuration of the object of 

interest is refined by adding and removing regions. The best configuration is obtained at the fifth step.  

 

Figure 3.15. GraphCut based object retrieval: the case of a frame highly similar with the query. 

 

3.7 Conclusion 

In this chapter, we have introduced the region-based representation proposed. The principle consists of 

obtaining an over-segmentation of the image into a set of segments which are relatively homogeneous 

with respect to a colorimetric criterion. Within this framework, three different segmentation methods 

have been adopted, namely MeanShift, EGBS and SuperPixels. The resulting regions are described 

with the help of an extended version of the MPEG-7 dominant color descriptor, able to support an 
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arbitrary number of colors. The segments adjacency information is also retained and stored with the 

help of an adjacency graph.  

 

Figure 3.16. GraphCut based object retrieval in the case of a frame non-similar with the query 

frame. 

 

Due to the quadratic similarity measure, such descriptions can be matched for arbitrary 

numbers of dominant colors. However, optimizing the object’s configuration is a combinatorial 

optimization problem. This requires a search strategy, able to determine an optimal sub-graph, with 

respect to the considered similarity measure. We have employed the quadratic similarity measure as 

energy to be minimized over multiple region configurations corresponding to a relevant object 

instance of the query model. Four different search strategies have been proposed and described, 

namely Greedy, Relaxed Greedy, Simulated Annealing and GraphCut.  
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Abstract. The Bag-of-Words framework is among the most popular technique employed in 

multimedia content retrieval. In this section, we present an in-depth analysis of the rich literature 

dedicated to BoW approaches and describe the main techniques involved at each stage, with related 

advantages and limitations. Such techniques include interest point detectors, interest point 

descriptors/representations, classification schemes, matching approaches and geometry consistency 

checking/re-ranking methods. The analysis is performed from the perspective of large scale object 

retrieval applications, in order to adopt an optimized solution that can serve as reference for 

benchmarking purposes. Finally, we propose a query expansion technique that makes it possible to 

retrieve objects of interest in videos in a multi-modal manner, starting from a textual query performed 

upon existing image repositories. 

Keywords: Bag-of-Words, state of the art, local feature detectors, local feature descriptors, scalable 

clustering, descriptor quantization, query expansion. 

Résumé: La méthode Sac-de-Mots (Bag-of-Words) est l’une des techniques les plus populaires 

utilisés dans la recherche de contenu textuel et multimédia. Dans, cette section, nous présentons une 

analyse approfondie de la littérature riche consacrée à cette méthode et nous décrivons les principales 

techniques impliqués à chaque étape en illustrant leurs avantages et leurs limites. Ces techniques 

comprennent les détecteurs des points/régions d’intérêt et leur descripteurs et représentations, les 

systèmes de classification et les méthodes de calcul de similarité et de vérification de la cohérence 

géométrique. L’analyse est effectuée dans la perspective d’applications de recherche des objets à 

grande échelle afin d’adopter une solution optimale qui peut servir en tant que référence pour une 

analyse comparative. Enfin, nous proposons une technique d’expansion de requête qui permet de 

récupérer des objets d’intérêt dans des vidéos d’une manière multimodale, à partir d’une requête 

textuelle effectués sur des collections d’images grand publique. 

Mots clés: Sac-de-Mots, état de l’art, détecteurs de caractéristiques locales, descripteurs de 

caractéristiques locales, regroupement évolutif, quantification des descripteurs, extension de requête. 
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Recent work in object-based content retrieval has adopted the paradigms of textual-based retrieval 

systems, by creating an analogy between the so-called “visual words” and keywords. A visual word is 

a prototype visual descriptor, represented as a vector in a multidimensional space and obtained with 

the help of a clustering/vector quantization process. It captures the local characteristics of an image 

part, which is most often a salient region defined within the neighborhood of an interest point.  

This principle can be summarized as follows. For each image within a considered a set of 

training images, a set of salient regions/interest points is determined. Each item of interest detected is 

described with the help of a visual descriptor. The set of visual descriptors obtained for the whole 

training set is then clustered into a vocabulary of prototype vectors, which represents the visual words.  

Once the visual words available, the description of an arbitrary image becomes 

straightforward: first, the set of interest points/salient regions together with the corresponding 

descriptors are determined. Then, each descriptor is quantized to the closest prototype in the 

vocabulary. Finally, a histogram of the visual words determined in the image is created and used 

further for image representation/retrieval purposes. In practice, an object is represented as a subset of 

the local features associated with an image. This model has been popularized as the Bag-of-

Words/Bags-of-Visual Words/Bags-of-Features model. 

Despite the analogy between “visual words” and words in text documents, the trade-offs in 

ranking images and web pages are somewhat different. The query image contains significantly more 

words (usually a few hundred) than textual queries (usually less than 10). In addition, the spatial 

structure of an image is a highly important feature, while a textual query can only impose an ordering 

of the query words at most. Thus, the spatial relationships between different visual words of the query 

image can provide essential information for enhanced retrieval. Usually such information is discarded 

in the standard BoW models, but it is reinserted at the end of the search process, where the top 

retrieved results are refined and re-ranked according to their spatial consistency with the query model.  

The first BoW approaches in computer vision used textons [Julesz 1981] as visual words. The 

textons are defined as the centers of clusters obtained after clustering the responses of linear texture 

filters [Leung 2001]. This early framework has evolved and different local descriptors and clustering 

algorithms have been proposed. The most popular choice for local descriptors are the interest points 

[Sivic 2003, Sivic 2009], but other types of descriptors have been equally tested and proposed: dense 

sampled regions [Jurie 2005], segmented regions [Vieux 2012] or segmented regions and neighboring 

interest points [Pantofaru 2006].  

The BoW model is today among the most popular and effective object representation and retrieval 

frameworks, and notably largely exploited in the field of semantic image classification. The main steps 

of the BoW framework are the following: 

I. Offline pre-processing 

a. Detect interest points or blobs as affine covariant regions in each key-frame of a given 

video (or sets of videos). 

b. Extract interest point descriptors from the detected affine covariant regions. 

c. Sample evenly a subset of the descriptors from each frame and construct a visual 

vocabulary by clustering the sampled descriptors. 
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d. Map each region descriptor to its nearest cluster word or words from the visual 

vocabulary. 

e. Compute term frequency (tf) vectors. 

f. Build the inverted index structure. 

g. Compute tf-idf weighted vectors and perform L2-normalization 

II. Run-time querying 

a. Detect affine covariant regions from query and extract local descriptors. 

b. Map each query descriptor to the visual words from the vocabulary. 

c. Compute tf-idf  vector for query image and perform L2-normalization 

d. Use query visual words to compile a list of plausible frame candidates from the 

inverted index. 

e. Compute matching between the query histogram and the histograms corresponding to 

the key-frames from the list of candidates. 

f. Perform re-ranking of first N retrieved key-frames using geometric consistency 

verification. 

Let us now detail on the main components of this framework. 

 

4.1 Local Feature Detectors 

A huge amount of research work has been dedicated to the specification and automatic detection of 

salient visual features that can be effectively exploited within an image retrieval framework. Let us 

first review the most representative approaches of the state of the art; with main principles and 

associated properties.  

 

4.1.1 State of the art review 

Features describing the local appearance of the content are at the base of some of the most successful 

and popular object recognition systems. Such features typically describe the texture of a given image 

patch. Objects are then represented by the appearance of a collection of such local patches.  

The desired characteristics of such features are the following:  

 Repeatability, i.e., the propriety of local region of being re-detected in other image under 

different camera viewpoints, illumination conditions and noise,  

 Discriminative power, i.e., local features with different appearances can be discriminated in 

the descriptor space  

 Redundancy of the object description, which makes it possible to cope with missing or 

mismatched regions in the case of partial object occlusions.  

In the literature, several entities such as points, edge segments or small image patches are considered 

as local features. Additionally the local feature denomination is not unique in the literature and other 

term such as interest point, key point, patch or region can be encountered.  
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Local features have proved to be well-suited for a large variety of computer vision application 

such as wide baseline matching for stereo pairs [Tuytelaars 2000, Matas 2002], object retrieval in 

video content [Sivic 2003], image stitching in panoramas [Brown 2003], symmetry detection [Cho 

2009b], texture recognition [Lazebnik 2003], image retrieval [Sande 2010, Philbin 2007].  

Early work on the extraction of local features in natural images includes the interest operators 

of Moravec [Moravec 1977] and Harris [Harris 1988]. Garding and Lindeberg [Garding 1996] have 

shown how to design an affine blob detector using an affine adaptation process based on the second 

moment matrix. Lindeberg [Lindeberg 1998] extends a multi-scale blob detector based on maxima of 

the Laplacian in the framework of automatic scale selection. Here a “blob” is defined by a scale-space 

location where a normalized Laplacian measure attains a local maximum. In an informal manner, the 

spatial coordinates of the maximum become the coordinates of the center of the blob, and the scale at 

which the maximum is identified becomes its characteristic scale.  

Lowe proposed an efficient algorithm [Lowe 1999] for scale invariant interest point detection 

based on local maxima in the scale-space pyramid built with the approximation of Difference of 

Gaussian (DoG) filters. The input image is iteratively smoothed with a Gaussian kernel and sub-

sampled. The local maxima in the pyramid representation are extracted by comparing each point with 

its 8 neighbor from the same scale and with nine neighbors from the scales above and below, 

considering a 26 point neighborhood. This makes it possible to effectively compute the localization 

and the scale of the interest points. The DoG operator is actually an approximate of the Laplacian of 

Gaussians function with significantly better computational performances. The main drawback of the 

representation proposed by Lowe [Lowe 1999] is that local maxima can be detected also in the 

neighborhood of contours or straight edges, where the signal changes in only one direction. 

A Hessian fast detector is used by Bay et al. [Bay 2008] for the Speeded-Up Robust Features 

(SURF) scale-invariant feature detector. Here, the Hessian matrix is approximated by convolving the 

image with Haar wavelets, which are approximated, at their turn, by Gaussian second derivates. The 

locations and scales of the interest points are determined by maximizing the determinant of the scale 

normalized Hessian matrix. The SURF detection method has been reported to be more than five times 

faster than the DoG approach of Lowe [Lowe 1999].  

Mikolajczyk and Schmid [Mikolajczyk 2002] proposed an extension of the Harris detector 

[Harris 1988] that re-estimate the interest point’s position and scale by employing the trace and the 

determinant of the Hessian matrix  . The trace of the Hessian matrix   is equal to that of the LoG, 

but detecting simultaneously the maxima of the determinant penalizes points for which the second 

derivatives detect signal changes in only one direction. The method provides a scale invariant set of 

interest points, each described by its own scale. This scale is used for estimating an affine shape of a 

point neighborhood; ensuring the affine invariance. Such features are known in literature as affine 

invariant or affine covariant features as they are robust to viewpoint changes described by an affine 

transformation. In other, more recent approaches [Mikolajczyk 2004, Mikolajczyk 2005] for affine 

covariant feature detection, the Harris detector is replaced by a Hessian detector and the interest points 

are detected in a similar manner.  

The Maximally Stable Extremal Regions (MSER) [Matas 2002] detector uses a watershed 

segmentation that starts from local intensity extreme, identifies connected regions and grows them 
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over pixel intensity variations. The most stable regions over the intensity variations are considered as 

local features. A comprehensive review of local feature detectors can be found in [Tuytelaars 2008] 

and a comparison of their performance can be found in [Mikolajczyk 2005].  

Affine covariant regions can be exploited to cope with the geometric and photometric 

deformation of images. Typically such regions have an elliptical shape while other approaches such as 

DoG [Lowe 1999] use fixed, circular support regions. The advantage of elliptical shaped regions over 

circular ones is illustrated in Figure 4.1. The key principle of the affine covariant region detectors is 

that the shape of the region is automatically adapted to underlying image intensities in a single image 

in such a way that regions detected independently in each image correspond to the same 3D surface 

patch. The size and shape of such regions transform in a covariant manner with a 2D image 

transformation. In most of the cases, an affine transformation is a reasonably good local approximation 

to transformations arising from viewpoint changes of locally planar surfaces. In the case of video 

content, typically most of the objects and characters are in motion and suffer different transformations. 

In the context of video object retrieval, this specific issue of the video content is a major problem that 

needs to be addressed. Affine covariant regions are a more suitable solution to this problem comparing 

to its DoG correspondent. Therefore, in our work we adopt the affine covariant regions. 

Concerning the detector, the detailed study and comparison of affine covariant region 

detectors from [Mikolajczyk 2005] concludes that no detector outperformed the other ones in all 

experiments. Still, MSER and Hessian-Affine had consistently high scores. MSER perform well on 

images containing homogenous regions with distinctive boundaries but the number of detected regions 

is rather reduced comparing to Hessian-affine. Hessian-affine and Harris-affine provides more interest 

points/regions than other detectors, making them more suitable for identifying cluttered or occluded 

objects. As shown by Lindeberg [Lindeberg 1998], the Hessian operation has similar selection 

properties as the Laplace operator. Additionally, the Hessian operator allows simultaneous localization 

of scale-space maxima both in location and space [Perdoch 2009]. We have thus adopted the Hessian-

affine region detector, detailed in the following section.  
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Figure 4.1. Limitation of circular support regions under large viewpoint changes [Mikolajczyk 

2005]: (a) First viewpoint. (b)-(c) second viewpoint. The circular region in (b) does not cover the 

same object surface patch as the circular region in (a). What is needed is a deformation of the 

circular region in (b) by an anisotropic scaling to the ellipse shown in (c). Note that regions in (a) 

and (c) cover approximately the same surface patch on the book. (d)-(f) close-ups of (a)-(c) 

(illustration from [Mikolajczyk 2005]). 

 

4.1.2 Hessian-affine detector 

Interest points can be detected equally with the Harris detector or with a detector based on the Hessian 

matrix. For both cases, the scale-selection is based on the Laplacian and the elliptical region is 

determined with the second moment matrix of the intensity gradient.  

The interest points and their scales are computed and selected with the help of the Hessian 

matrix. The algorithm searches over a fixed number of predefined integration scales      , with  

          and k = 1.4 [Mikolajczyk 2004]. For each integration scale   , an appropriate local 

differentiation scale    is set with the help of a constant multiplicative factor s, as a function of the 

integration scale:       , where      .  

Given image I, the interest points p are detected in the Gaussian scale space with the Hessian 

matrix  . For each integration scale   , the Hessian matrix is defined as: 

           
      
      

   
                  

                  
   , (4-1) 

where      denotes the image intensity function and subscripts x and y indicate the partial derivatives 

with respect to the spatial coordinates.  

The derivatives are computed at the current integration scale and are thus the derivatives of an 

image smoothed by a Gaussian kernel      . 

                     . (4-2) 

The determinant and the trace of the Hessian matrix are computed as described in Equation 

(4-3) and (4-4).  

                
                        

           (4-3) 

                                         . (4-4) 

The trace of this matrix is often referred to as the Laplacian. At each scale, the interest points 

are identified as the points that are simultaneously local extreme of both the determinant and trace of 

the Hessian matrix (i.e. a local maximum of the determinant decides if it is a blob/interest point, a 

local maximum in the trace decides it this is its characteristic scale). The determinant of the Hessian 
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matrix penalizes very long structures for which the second order derivative in one particular direction 

is very small.  

Furthermore, the Hessian Affine detector uses the detected points and their characteristic scale 

in an iterative shape adaptation algorithm to compute the local affine transformation for each interest 

point (i.e. elliptical affine region). The second moment matrix is employed for estimating the affine 

shapes. This matrix is also called auto-correlation matrix and describes the gradient distribution in a 

local neighborhood of a point. The matrix must be adapted to scale changes to make it independent of 

the image resolution. The eigenvalues of the second moment matrix are used to measure the affine 

shape of the point neighborhood, by computing the transformation that projects the intensity pattern of 

this neighborhood to one with equal eigenvalues. The affine region is skewed or stretched to a 

normalized circular region where the second moment matrix is isotropic. A new location and scale are 

detected in the normalized region. If the eigenvalues of the second moment matrix for the new point 

are equal, the estimation is correct. Otherwise, a new affine shape is estimated with the second 

moment matrix and tested. 

The resulting shapes of the regions are adapted to the underlying intensity patterns and ensure 

in this manner that the same parts of different instances of the same region are covered despite the 

deformations caused by viewpoint changes or image rotations. 

The Hessian-affine elliptical patches are warped around the detected blobs into a circular 

patch of 41x41 pixels and rotated based on the dominant gradient orientation to compensate for the 

affine geometric deformations. The principle is illustrated in Figure 4.2 for two images containing 

instances of the Brooklyn Tower Bridge. 
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Figure 4.2. Detection and description of Hessian-affine regions. The same region from the two 

instances of the Brooklyn Tower Bridge are detected. Note the change in the elliptical shape for 

the two instances. The ellipses are than warped to a squared patch which is then normalized to a 

41x41 patch. 

Once the interest points together with their associated local regions determined, the next step 

concern the description/representation of such image structures, which is based on the specification of 

local feature descriptors.  

 

4.2 Local Feature Descriptors 

Most of the local descriptors exploit the underlying information driven by the detectors and integrate it 

in the final description. Other local descriptors are completely independent from the considered 

interest point detectors. A multitude of local feature descriptors have been proposed over the recent 

years. The choice of the descriptor is dependent of the considered application, as each technique 

provides different levels of robustness and distinctiveness. Fairly comprehensive reviews of the local 

region descriptors and experimental evaluations and comparisons can be found in [Mikolajczyk 2004, 

Sande 2010].  

Let us start our analysis with the most traditional and popular approaches which are today 

extensively used in a wide variety of applications.  
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4.2.1 Traditional approaches 

Let us first mention the popular SIFT (Scale Invariant Feature Transform) descriptor, introduced by 

Lowe in [Lowe 2004], which consists of a gradient orientation histogram obtained from DoG points. 

The principle is illustrated in Figure 4.3. In its most popular form, the SIFT descriptor is a 128-

histogram storing in each bin the magnitude of a local gradient in a certain direction, with every bin 

representing a direction. The SIFT descriptor is constructed from a 4x4 grid centered on the 

considered interest point. Each cell of the grid quantizes the gradient direction into 8 bins. A 

smoothing Gaussian function is added in order to emphasize the information in the close neighborhood 

of the interest points. In order to achieve the rotation invariance, all gradients within the patch are 

computed relative to a dominant gradient orientation, which is obtained as the highest peak in a 

histogram of all gradient orientations within the patch.  

The SIFT descriptor has been experimentally shown [Mikolajczyk 2004] to outperform other 

descriptors like steerable filters [Mikolajczyk 2001], complex filters [Schaffalitzky 2002], and cross-

correlation on raw pixel intensities, in the context of matching affine covariant regions. Such nice 

properties are due to its high dimensionality (when compared to filter banks representations) and to its 

tolerance to small localization errors, which often occur.  

The main drawback of SIFT is however its relatively high dimensionality which increases the 

computation time during the matching step. In order to overcome this problem, Ke and Sukthankar 

[Ke 2004] applied PCA on the gradient image resulting in a 36-dimensional descriptor called PCA-

SIFT. PCA-SIFT provides significantly faster matching, but is slower to compute and less distinctive 

than the original SIFT. Very recently, Jégou et al. [Jégou 2012] applied PCA on the SIFT descriptors 

to reduce them from 128 to 64 dimensions, with PCA rotation matrices learned from an independent 

dataset. While this method reduces the computational burden during the matching stage, in the case of 

the BoW-based object recognition, the performances are degraded. 

 

Figure 4.3. SIFT descriptor [Lowe 2004]. Image gradients within a patch (left) are accumulated 

into a coarse 4x4 spatial grid (right). In this example we show only a 2x2 grid. A histogram of 

gradient orientations is constructed in each grid cell. 8 orientation bins are used in each grid cell 

giving a descriptor with the dimension 128) 4x4x8 (illustration from [Lowe 2004]). 
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The Speeded-Up Robust Features (SURF) [Bay 2006, Bay 2008] have become one of the first 

alternatives to the SIFT descriptors. Its main advantage is the processing speed achieved by the use of 

the approximation of the Hessian matrix obtained by convolving the image with Haar wavelets, which 

at their turn are approximated by Gaussian second order derivatives. SURF makes an efficient use of 

integral images. The extraction of interest point locations and scales is performed simultaneously by 

maximizing the determinant of the scale-normalized Hessian matrix. The SURF representation is more 

compact than the SIFT descriptor and features a 64-dimensional descriptor. Similarly with SIFT, the 

SURF descriptor splits the support window into 4x4 square sub-regions. Experimental evaluation has 

demonstrated that the detection of SURF points is more than five times faster than SIFT’s DoG 

detector, while the descriptor computation is three times faster than SIFT’s. In the experiments of [Bay 

2006], the SURF descriptor yielded higher performances in terms of matching comparing to its SIFT 

counterpart. 

In recent years, the rapid technological advances of mobile devices, have lead to a variety of 

dedicated light-weight interest point descriptors, adapted to the computational capacities of such 

devices. Such descriptors are described in the following section.  

 

4.2.2 Light-weight approaches 

Typically, such descriptors take binary values. Among the most representative descriptors, let us 

mention the BRISK (Binary Robust Invariant Scalable Keypoints) [Leutenegger 2011], BRIEF 

(Binary Robust Independent Elementary Features) [Calonder 2010], ORB (Oriented FAST and 

Rotated BRIEF) [Rublee 2011], and FREAK (Fast REtinA Keypoint) [Alahi 2012] descriptors. Apart 

from their fast extraction procedures, such descriptors also offer very fast matching procedures with 

the help of distance measure adapted for binary values, such as the Hamming distance. This actually 

represents the biggest advantage of binary descriptors, as it replaces the more costly Euclidean 

distance.  

The BRIEF [Calonder 2010] and ORB [Rublee 2011], descriptors build on the FAST keypoint 

detector [Rosten 2006] and compute the descriptor quickly as binary strings extracted by comparing 

the intensities of pairs of point along the same lines. While resistant to noise and rotation invariant 

(only for the ORB descriptor) these descriptors are not scale invariant, which is a major drawback for 

object instance recognition.  

Similarly, Leutennegger et al. [Leutenegger 2011] build the BRISK descriptor bit-stream by 

considering a limited number of points in a specific sampling pattern, with each point scoring to 

multiple pairs. The pairs of points are divided in short-distance and long-distance subsets. The long-

distance subset is used to estimate the direction of the keypoint while the short-distance subset is used 

to build the binary descriptor after rotating the sampling pattern.  

Alahi et. el [Alahi 2012] propose the FREAK descriptor inspired by the retina of the human 

eye and compute a cascade of binary strings by comparing pairs of image intensities over a retinal 

sampling pattern. This makes it possible to sample points from a circular grid with a high density of 

points near the center and with exponential decrease, for selecting the most relevant Difference of 

Gaussians (Figure 4.4). The FREAK descriptor performs better than the rest of the binary interest 
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point descriptors in terms of both extraction/matching time and accuracy. Yet, its matching 

performances are significantly lower than those of the SIFT descriptor, in particular when the scale 

variations become significant (less than 0.5 or greater than 2.5).  

Meanwhile, within the context of large scale image and video search engines, several 

enhancements and enrichments of the SIFT descriptor have been studied. In particular, such 

extensions concern the inclusion of color information in the considered representations.  

 

Figure 4.4. Illustration of the FREAK sampling pattern similar to the retinal ganglion cells 

distribution with their corresponding receptive fields. Each circle represent a receptive field 

where the image is smoothed with is corresponding Gaussian kernel (illustration from [Alahi 

2012]). 

 

4.2.3 Color-based extensions 

Typically, local features and their descriptors are extracted by performing pixel intensity analysis. 

Researchers have explored the possibility of developing new SIFT-like descriptors employing the 

color information. In this respect, van de Sande et al. [Sande 2010] introduce the Opponent SIFT 

descriptor. OpponentSIFT describes all of the channels in the so-called opponent colors space with the 

help of SIFT descriptors. The opponent colors are defined as described in Equation (4-5):  

 

  
  
  

   

 

 
 
 
 

   

 
      

  
     

   

 
 
 
 

 (4-5) 

Here, the considered color channels describe the color information in the image, while being 

invariant to changes in light intensity. Let us mention that other color-based SIFT descriptor have been 

equally proposed (e.g. Hue-SIFT [Weijer 2006], HSV-SIFT [Bosch 2008], C-SIFT [Burghouts 2009], 

RGB-SIFT [Sande 2010]). The benchmarking on local descriptors on object and scene recognition 

presented in [Sande 2010] demonstrates that color information improves the original SIFT descriptor 
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with up to 8%. However, the study does not identify a descriptor that scores best in all the considered 

tasks. The choice of the descriptor still depends on the specificity of the task and of the available 

dataset. Authors recommend the use of OpponentSIFT when no prior knowledge about the data set is 

available and when the target object is also available.  

A very recent extension of the SIFT descriptor, so-called RootSIFT, has been proposed by 

Arandjelovic and Zisserman in [Arandjelovic 2012]. The RootSIFT descriptor is described in the 

following section.  

 

4.2.4 RootSIFT descriptor 

In [Arandjelovic 2012], authors introduce a new distance measure for the SIFT descriptors, embedded 

in a new descriptor called RootSIFT. SIFT was originally designed to be used with Euclidean distance, 

but since it can be viewed as histogram with 128 bins, authors propose  to measure the distance 

between SIFT descriptors with other, higher performance histogram measures such as the    or the 

Hellinger kernel. Given two n-dimensional vectors p and q with Euclidean norm, the Euclidean 

distance              between them is related to their similarity/kernel              as: 

            
          

       
       

                          (4-6) 

where      
       

    (p and q are L2-normalized) and                   .The Hellinger 

kernel for two L1 normalized histograms, p and q, is defined as: 

                       
 
     , (4-7) 

where      and     , with       
    and       

   . The Euclidean similarity is then replaced 

by the Hellinger kernel for the comparison of SIFT vectors as follows:  

1. L1 normalize the SIFT vector;  

2. Square root each element. This means that                  
 
   

               , and the resulting vectors are L2 normalized since                

      
   .  

Thus, the new RootSIFT descriptor is defined as an element-wise square root of the L1 normalized 

SIFT vectors.  

Arandjelovic and Zisserman [Arandjelovic 2012],  have shown that comparing RootSIFT 

descriptors using Euclidean distance is equivalent to using the Hellinger kernel to compare the original 

SIFT descriptors since the following relation holds: 

              
                     . (4-8) 

The performance improvements in terms of object retrieval on the Oxford Buildings 5k and 

105k [Philbin 2007] and Paris 6k [Philbin 2008] datasets brought by the RootSIFT descriptor 



Chapter 4. Bag-of-Words representation 

 

74 

 

comparing to SIFT are up to 7% in Mean Average Precision [Arandjelovic 2012], in all the 

experiments performed.  

An illustration of the performances of SIFT and RootSIFT matching between 2 images is 

illustrated in Figure 4.5. The query image and region are shown in the left of each pair and the 

matching result with the estimated corresponding region of interest is shown on the right. RootSIFT 

identifies more matches and the object localization is improved. 

As remarkable results, let us note that the RootSIFT without spatial re-ranking (cf. 

Section 4.4.4) outperformed SIFT with spatial re-ranking. Because of such highly promising 

recognition performances, we have adopted the RootSIFT descriptor in our work.  

Once the RootSIFT description is computed, the following stage concerns the vector 

quantization/clustering of the obtained descriptors.  

 

 

Figure 4.5. Comparison between SIFT and RootSIFT matching performances. On the left: SIFT 

with L2 distance - 10 matches. On the right: RooSIFT - 26 matches (illustration from 

[Arandjelovic 2012]). 

 

4.3 Clustering visual descriptors  

In order to reduce the number of considered features and optimize the search time, large scale image 

or video retrieval systems cluster the high-dimensional descriptors, keeping only a limited set of 

descriptors that form a vocabulary of visual words. Additionally, the role of the vocabulary is to 

establish potential correspondences between local image regions. By analogy with text retrieval the 

visual words are then used in a similar manner as text words and the standard text-retrieval methods 

are directly used in this vision case. Once the vocabulary is generated and all the regions from the 

dataset are labeled with their corresponding visual word, all regions having the same label are 

considered matched. A major advantage of this approach is the efficiency boosting. Different terms are 

used in literature for naming this structure: (visual) vocabulary, codebook, or dictionary. 

While enhancing the efficiency in the run-time phase, the clustering is typically the most time 

computationally demanding part of the offline phase. Clustering very large collections of high 

dimensional features (e.g., N = 245M descriptors of 128 dimensions for the TRECVID 2012 INS 

dataset) is a major challenge for any clustering algorithm. Even sub-sampling 10% of such dataset, 

would still require the clustering of 24M 128-dimensional descriptors. 
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Early systems used a flat k-means clustering [Sivic 2003] that was effective but impossible to 

scale to large vocabularies. A large amount of research has been targeting the scaling of the clustering 

algorithms. The biggest step towards this direction was made by Nister and Stewenius [Nister 2006] 

which introduced the vocabulary tree obtained from hierarchical k-means (HKM) clustering and 

brought significant improvements in the retrieval accuracy. Here; the problem of clustering a large 

pool of descriptors in multiple clusters is divided in smaller clustering problems organized in a tree 

hierarchy.  On the first level of the tree, all data points are clustered using k-means to a small number 

(e.g.   = 10) of cluster centers. On the next level, k-means with the same      is run again within 

each of the previously determined partitions independently and so on. The result consists of    

clusters at the     level of hierarchy. For example, using a branching factor of 10 with 6 levels will 

results in 10
6
 leaf nodes. This principle is illustrated in Figure 4.6.  

 

Figure 4.6. Building a vocabulary tree using HKM. The hierarchical quantization is defined at 

each level by k centers (here k = 3) and their Voronoi regions (illustration from [Nister 2006]). 

 

An advantage of the vocabulary tree approach is that it allows more complex assignments for 

the visual words labeling. For example, instead of assigning each data point to a single leaf node at the 

bottom of the tree, the points can be assigned to some intermediate nodes included in the path from the 

root to the leaf node. Thus, the effects of quantization errors can be diminished in the case when the 

data points lies close to the Voronoi region boundary for each cluster center. Due to its reduced 

complexity, the method can scale to very large numbers of cluster and feature points (i.e., more than 1 

million visual words). Very recently, Zu and Satoh [Zhu 2012] updated the hierarchical k-means 

algorithm to be used on even larger dataset (e.g., N=   x    descriptors). For each sub-tree of the 

vocabulary, they sample a fraction of the features for clustering, while propagating the rest down to 

the sub-tree. Since the propagation of the non-sampled descriptors to their corresponding sub-trees is 

faster than clustering, the computational burden is largely reduced. An advantage of the HKM and 

vocabulary tree is the hierarchical scoring. By considering a set of nodes from several levels in the 

similarity score, and by weighting the contribution of each level to the score with an entropy factor, 

the quantization error can be reduced. Similarly, the vocabulary tree can be used jointly with Pyramid 

Matching [Grauman 2005] which can compute a similarity score over multiple layers in the 

vocabulary tree as proposed in [Zhu 2012]. The number of levels to be taken in consideration for the 

scoring depends of the application and the on the size of the vocabulary. For object instance retrieval 

and large vocabularies (over 1 million), solely two levels are usually selected. 
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Philbin et al. [Philbin 2007] introduce the Approximate k-means method (AKM), which is a 

scalable version of the k-means algorithm. While in the exact k-means, most of the computation time 

is spent on retrieving nearest neighbors between feature points and cluster centers, the AKM optimizes 

this step with a so-called approximate nearest neighbor method. Authors employ a forest of several 

randomized k-d trees, as proposed in [Lepetit 2005, Muja 2009], which are built over the cluster 

centers at the beginning of each iteration in order to increase the processing speed. Unlike regular k-d 

trees [Friedman 1977], where each node splits the dataset using the dimension with the highest 

variance, in the case of randomized k-d trees the splitting dimension is chosen randomly from the set 

of dimensions with the highest variance. The union of such trees creates an overlapping partition of 

the feature space and helps to diminish the quantization effects, where features which fall close to a 

partition boundary are assigned to an incorrect nearest neighbor. 

Philbin demonstrates in [Philbin 2010] that AKM exactly minimizes the k-means cost 

function. In addition, for moderate values of K, the percentage of points assigned to different cluster 

centers differs from the exact version by less than 1%. Moreover, when compared to the HKM 

approach, as demonstrated experimentally in [Philbin 2007, Philbin 2010], the AKM method 

consistently outperform HKM on multiple experiments, even when using hierarchical scoring. 

In our work, we have adopted the AKM approach because of its nearly optimal performances. 

The AKM is easily parallelizable and its distributed memory computed can be achieved with the open 

source MPI library [MPI 2012]. For a dataset of N = 24 million descriptors, the clustering into K = 1 

million clusters on a 4 core machine took less than one day. A publicly available implementation of 

AKM is available from [Philbin 2012].  

Another issue to be addressed is the size of the vocabulary compared with the size of the 

dataset, as no clear recommendation exists. In general, the greater the size of the vocabulary, the better 

the object detection/recognition results obtained. Philbin [Philbin 2010] tested vocabulary sized to 2 

million visual words, while Nister and Stewenius [Nister 2006] reached 16 million points for a 

vocabulary size. For a dataset of 16 million points, Philbin obtained a peak in performance around 

500,000 to 1,000,000 clusters. Using more data for clustering seems to help, but the performance 

increase is less significant than for varying K. In his case the retrieval performance lowered as the 

vocabulary size passed 1 million prototype descriptors. Nister and Stewenius [Nister 2006] 

experimented with several vocabulary sizes and concluded that for a large range of vocabulary sized 

(up to 1 and 16 million leaf nodes) the retrieval performance increases with the number of leaf node. 

Authors recommend large vocabularies for improving retrieval provided that the weak weights are 

given to the inner nodes of the vocabulary tree, as the leaf nodes are much more powerful than the 

inner nodes. The issue is then posed as choosing between prioritizing the retrieval accuracy or the 

computational performance (which can vary dramatically when shifting from 1 million to 16 million). 

Selecting the size of the vocabulary is today still an open issue. In general, the size of the 

vocabulary can be tuned to the required applications: smaller vocabularies can capture intra-class 

variations for recognition of object categories, while larger vocabularies are more suitable for object 

instance recognition. In order to ensure an accurate recognition, within reasonable computational times 

we have limited the size of the vocabulary to 1 million nodes.  
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Let us note that the management of such large vocabularies represents a computational 

challenge. Usually the high dimensional vocabularies (1M visual words of 128 coefficients) are stored 

in binary files and data is fetched by reading the file by small chunks of data. In our implementation 

we employ the HDF5 (Hierarchical Data Format) file format [HDF5 2012] adapted for the 

organization of large amounts of numerical data. Practically, the data is stored as compressed table 

files and its elements can be accessed easier offering multiple other uses in the same time. HDF5 

displays a C++ API and the size on disk of a vocabulary containing 1 million RootSIFT descriptors is 

approximately 420 MB. 

 

4.4 Quantization and matching  

Once the vocabulary generated, the local features from all frames in the dataset are mapped onto the 

vocabulary and BoW representations are computed for each frame. Typically, each local feature is 

assigned to its best match from the vocabulary (i.e., the visual word yielding the highest similarity 

from all vocabulary matches). Two image features are considered identical if they are assigned to the 

same visual word, while two features assigned to different visual words are considered as completely 

different. These mappings of each point to the vocabulary are used to build a vector of visual word 

relative frequencies for each image.  

However, instead of directly using such a histogram-based representation, the components of 

the visual word vector are weighted in order to overcome biases related to the uneven number of 

visual words per image, or to the influence of frequently encountered visual words, with poor 

discriminative power. This weighting mechanism, described in the next section, adopts the well-

known tf-idf scheme, largely exploited within the framework of textual-based retrieval.  

 

4.4.1 The tf-idf matching scheme 

The standard weighting scheme for the BoW representation is adapted from text retrieval and is 

known as “term-frequency – inverse document frequency” (tf-idf) [Baeza 1999]. Given a vocabulary 

of K words, each image f is represented by a vector of weighted visual word frequencies: 

                   . (4-9) 

The ti components are defined as described in the following equation: 

            
   

  
   

 

  
  , 

(4-10) 

where     is the number of occurrences of the visual word   in image  ,    is the total number of 

words in the frame  ,    is the number of images containing word   and   is the number of documents 

in the whole database.  

The weighting is a product of two terms: the word/term frequency (tf) expressed as: 
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           (4-11) 

and of the inverse document frequency (idf) defined as: 

               (4-12) 

The role of the word frequency term is to assign a higher weight to the words occurring more often in 

a given image. Usually, the frequency term is normalized to the total number of interest points, in 

order to avoid biases in the case of images with higher numbers of interest points. The inverse 

document frequency term gives a lower weight to the words that appear highly frequently in all the 

images of the dataset and do not help in discriminating between different documents. 

The similarity between two images is then expressed with the help of a histogram similarity 

measure. The tf-idf BoW representations of the images to be compared are considered as histograms 

with equal number of bins (i.e., the size of the vocabulary). The most popular measures used to 

compare frames are the cosine measures (Equation (4-14) ) as well as the Lp distances (which are, 

most often, L1 and L2 distances) (Equation (4-13)). Thus, the similarity of two images in the data set 

described by tf-idf vectors p and q can be computed as follows: 
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(4-14) 

Note that when the vectors are normalized using the L2 norm, the terms     
 

  and     
 

  

from Equation (4-14) are actually the L2 norms of vectors p and q and are equal to 1. The L2 distance 

from Equation (4-13) can then be then rewritten as a function of the cosine distance as follows: 

                        (4-15) 

Therefore, if vectors p and q are pre-normalized with respect to the L2 norm, ranking in 

increasing order of          is equivalent to raking in decreasing order of dot products    . In 

practice, vectors p and q are very sparse, notably in the case where large vocabularies are used, and 

this dot product can be computed very quickly by only considering the non-zero from the vector with 

the lowest number of non-zeros term.  

Other variants of the typical tf-idf scheme and histogram matching, leveraging on popular text 

retrieval techniques have been also proposed in [Yang 2007b, Sivic 2009, Tirilly 2010]. Yang et al. 

[Yang 2007b] propose and test different normalization and weightings for the tf and idf terms, while 

Tirilly et al. [Tirilly 2010] perform an in-depth study of the probabilistic weighting models such as 

BM25 [Robertson 1977], which weights the tf term by considering that word occurrences are 
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distributed following two Poisson distributions and the idf term according to the probability ranking 

principle which states that results should be ranked according to their probabilities of relevance with 

the query. In the latter, different variants of the Lp histogram distances from Eq. (4-13) have been 

tested as well. Authors concluded that the choice of the technique depends on the dataset and its size, 

on the size of the vocabulary and on the use case.  

Sivic and Zisserman [Sivic 2009] propose for testing multiple weighting schemes (including 

different normalizations of the tf and tf-idf vectors) with corresponding similarity measures, such as 

L1, L2,  
  [Leung 2001], Kullback–Leibler (KL) divergence [Varma 200], Bhattacharyya distance 

[Aherne 1998]. Their experiments demonstrated that the standard tf-idf and Bhattacharyya ranking 

lead to the best scores, followed closely by the KL divergence. 

Since such studies show that no technique clearly overpasses the other ones, in our work we 

adopt the standard tf-idf weighting. We perform a L2 pre-normalization of the frame vectors in order to 

optimize the matching times. 

When computing the tf-idf vectors, each point is assigned to its best match from the 

vocabulary. In some cases, this hard assignment leads to errors because of variability in the feature 

descriptor. Even though SIFT like descriptors are invariant or robust to several image alterations, in 

some cases image noise, illumination changes or other non-affine changes of the images can strongly 

affect the descriptor value. As a result the same patch can be assigned to different visual words in 

different images.  

 

4.4.2 Hard versus soft assignment 

In order to overcome this drawback, several methods [Philbin 2008, Gemert 2010] propose to improve 

the quantization process with so-called soft assignments. The principle consists of considering for each 

point multiple matches from the vocabulary. In this case, the tf weights assigned depend of the 

corresponding similarity scores. A second approach consists of inserting in the representation 

additional information about the relative position of the points from the cluster center in the Voronoi 

cells [Jégou 2008]. Here, the position of the current point in the Voronoi cell with respect to its visual 

word correspondent is mapped onto a Hamming space and added to the BoW histogram as a binary 

signature.  

Such methods enrich the BoW representation and improve the search and retrieval 

performances. The price to pay is the significant increase in terms of storage requirements as the BoW 

vectors become denser. Additionally, the dense BoW vectors lead to higher matching times. However, 

recent experimental studies [Jégou 2010, Arandjelovic 2012] have shown that if solely the query 

descriptors are softly assigned the results can be significantly improved. In this case, the database 

images continue to be hard assigned and their storage requirements are unchanged.  

In our work, we have considered both hard and soft assignments of the query descriptors. For 

the soft assignment, for each query point descriptor we consider the first five nearest neighbors from 

the visual vocabulary. The bins corresponding to the five visual words are weighted with the similarity 

between the query descriptor an each visual word considered (i.e.,                as described in 
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Equation (4-6)). Hard quantization errors are thus overcome for most of the points as multiple 

correspondences from the vocabulary are considered for each point. The correspondences between 

each descriptor and the descriptors from the vocabulary are computed with the fast approximate 

nearest neighbors matching method (FLANN) proposed by Muja and Lowe [Lowe 2004].  

In order to speed up the retrieval process in the case of large databases, we have adopted an 

inverted index structure, described in the following section.  

 

4.4.3 Inverted index 

An inverted index file is a commonly used indexing structure borrowed from text retrieval 

applications, which is similar with a book index. The inverted index has an entry for each word in the 

corpus, followed by a list of all occurrences in the items (images/videos) of the considered dataset. For 

each word, the number of occurrences and the identifiers of the items where the word is occurring are 

stored. Depending on the computations required at run-time, the inverted index can be more complex 

and additionally store for each occurrence the position in the corresponding frame and the distance to 

the 15
th
 nearest neighbor in the image [Sivic 2009] (for fast spatial verification), the position and the 

coordinates of the elliptical shape of each point [Philbin 2010] (for fast geometric verification). Jégou 

et al. [Jégou 2007] employ a tree-based inverted index for fast search, while Nister and Stewenius 

[Nister 2006] build virtual inverted files for higher levels of the vocabulary in order to efficiently parse 

their vocabulary tree. 

The utility of the inverted index is emphasized the most at run-time, when the user selects a 

query region which contains a set of visual words. The query visual words are searched in the inverted 

index and are used to generate a list of plausible candidates, by selecting only images that contain at 

least an occurrence of one query visual word. In this manner, the number of images to be compared 

with is significantly reduced.  

A final issue involved in the matching process concerns the re-ranking of the top retrieved 

candidates, which exploits geometric/spatial localization information.   

 

4.4.4 Geometric consistency check and re-ranking 

The standard BoW representation discards all spatial information relative to the geometric relative 

position of the visual words in the images. In order to inject spatial information in the retrieval 

process, numerous approaches employ the RANdom SAmple Consensus (RANSAC) algorithm 

[Fischler 1981]. RANSAC is a robust method for model fitting to noisy data with outliers. The main 

idea is to randomly sample a minimal set of correspondences, and compute the aligning 

transformation.  

The data consists of "inliers", i.e., data whose distribution can be explained by some set of 

model parameters, and "outliers" which are data that do not fit the model. Transformations are scored 

by the agreement with the remaining correspondences. A correct transformation should have a large 

support from other correct correspondences, whereas an incorrect transformation would be consistent 
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with only a small number of correspondences. RANSAC is employed for checking the top results of a 

query and to re-rank them according to their spatial consistency with the query. Starting from a list of 

correspondences (at least four) between the two frames, the algorithm generates transformation 

hypotheses and then evaluates each hypothesis based on the number of “inliers” among all features 

among that hypothesis. In this way, the RANSAC algorithm estimates a transformation of the query 

image and each target image, based on how well its feature locations are predicted by the estimated 

transformation. In general, RANSAC manages to find mismatches provided that the initial list of 

inliers contains at least four good matches.  

The original RANSAC has been extended in [Chum 2005], which proposed the PROSAC 

(Progressive Sample Consensus) method that weights correspondences by employing an external 

measure of confidence, which is used as a priority for guiding the search process towards optimal 

solutions. This method has been further improved by integrating its sampling strategy into a real-time 

robust estimation framework called ARRSAC (Adaptive Real-Time Random Sample Consensus) 

[Raguram 2008]. Another RANSAC variant is GroupSAC [Ni 2009], which partitions points into 

groups based on similarity information. In LO-RANSAC [Chum 2003], a re-estimation step was 

introduced into RANSAC, which was shown to generate improved hypothesis with more support. In 

their large scale object retrieval framework, Philbin et al. [Philbin 2007] discard RANSAC as the 

estimation of a full 3D fundamental matrix or 2D projective homography between two images is too 

general and it runs very slowly. Instead they employ LO-RANSAC [Chum 2003]. The approximate 

model considered here is built iteratively from single pairs of correspondences verified through a class 

of transformations of the affine-invariant regions corresponding to the matched points. 

Another type of approaches encode the spatial information in the BoW representation or in the 

matching process. Lazebnik et al. [Lazebnik 2006] proposed a spatial pyramid matching in order to 

encode and partition the image into sub-regions at different levels of detail, from coarse to fine. The 

image can be then represented with multiple local histograms concatenated in a single global image 

histogram and each local histogram corresponds to an image sub-region. The local histograms are 

weighted in such a manner that matches identified in larger cells are penalized as they involve 

increasingly dissimilar features. The principle is similar with the pyramid matching kernel introduced 

by Grauman and Darrell [Grauman 2005]. Vedaldi et al. [Vedaldi 2009] propose the use of dense and 

sparse visual words at different levels of spatial organization. 

The approach proposed in [Philbin 2007] is the most suitable for our framework as it is fast, 

effective and can generate transformation hypotheses even with a single pair of corresponding 

features, which is of great use when searching for object instances and partial matching is quite often. 

The number of possible hypotheses to be considered is thus reduced significantly and the matching 

procedure is hence speeded-up. The randomness in the generation of the hypothesis specific to 

RANSAC is removed and the procedure becomes deterministic. For the evaluation of the consistency 

of single pairs of matched points (correspondences), we consider the elliptical representations of the 

local regions, which are transformed with the help of a 5 degrees of freedom transform introduced in 

[Philbin 2007], which takes into account for translation, anisotropic scaling and vertical-preserving 

shear.  
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A loose threshold on the inlier distance (an inlier is a spatially verified matched point) is also 

exploited. Such a loose threshold allows the matching of frames with significant perspective 

distortions. The transformation between the points of the single correspondences is used for generating 

a hypothesis and applied to the rest of the correspondences. The correspondences within the threshold 

are considered to be verified for this hypothesis and added to a list of verified inliers. The inliers from 

the list are then used to re-estimate a full affine homography with the least-squares method. In practice 

this step can be discarded as accurate results can be obtained also by simply counting the verified 

inliers for each hypothesis and selecting the one with the highest number of inliers. 

The elliptical regions are constrained to be oriented “up” as it is a good assumption for videos 

to be filmed in without significant rotations in the viewpoint. The transform is computed from a single 

correspondence of two elliptical regions    and    from the test image and query region. The region 

centroids are used to compute the translation, while the affine 2 x 2 sub-matrix     is computed as 

      
     (Figure 4.7), where    and    project the ellipses to a unit circle such that the 

orientation of the unit vector in the y direction (i.e. “up”) is maintained. The transformation considered 

in this case is modeled with the following functional matrix: 

    
    
    
   

  (4-16) 

This geometric consistency check technique is used in the following manner. After the first 

part of the search stage, where the distances between the BoW representations of the query frame and 

the image candidates have been computed, a ranked list of frames containing plausible instances of the 

queried object is generated.  

The geometric consistency check and re-ranking is performed on the top N frames. First, we 

perform a matching between the interest points of the query frame and the test frame. In order to avoid 

the inconvenience of the quantization errors, we perform the matching directly between the raw 

descriptors of the image. The frame matching is speeded-up with the fast approximate nearest 

neighbors algorithm (FLANN) proposed in [Muja 2009]. The non-discriminative matches are filtered 

out with the ratio test proposed by Lowe [Lowe 2004]. Once the list of candidate matches computed, 

we check them iteratively by employing the 5 degrees of freedom transform. This transformation is 

considered as a hypothesis (as in RANSAC) and applied to all matched points from one frame, 

projecting them into the other frame. The points whose projections are localized close to their 

corresponding points are considered as inliers and added to the list of verified matches. The 

configuration yielding the highest number of inliers is returned and the N considered frames are re-

ranked in decreasing order of the number of verified inliers.  
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Figure 4.7. Computing       
     by projecting ellipses    and    to a unit circle and 

preserving the “up” orientation 

 

The BoW has been proven to be a very effective solution for large scale image retrieval, with 

successful results of datasets reaching even 100 million images [Jégou 2012]. Its effectiveness has 

determined scientists to apply the BoW framework to video content. 

 

4.5 Video framework: shot based BoW representation 

When considering the issue of object search and retrieval in video databases, a set of specific 

questions need to be addressed and solved: how to divide the video content into basic units? How 

many video frames need to be considered? What is the optimal video resolution to use? How to avoid 

blurry and noisy frames, such as those corresponding to gradual transition effects? How to size the 

descriptor according to the length of the videos and the size of the dataset?  

In the last 2 years, such problems have been addressed within the TRECVID evaluation 

campaign [Smeaton 2006], namely in the Instance Search Task. This task brings in the spotlight the 

challenge of retrieving different instances of the same object in a large scale dataset (up to 75,000 

video clips) starting from a couple of query images. While there have been some encouraging results 

in the task [Zhu 2012], the problem remains open. 

The problem of blurry and noisy frames has been tackled by Sivic and Zissermann [Sivic 

2003] where frames are sampled densely from the video and the information of the detected regions is 

aggregated over a sequence of frames. The regions are tracked over consecutive frames and any region 

which does not survive for more than three frames is rejected. The estimate of the descriptor for each 

region is then computed by averaging the descriptors throughout the sequence. Such methods are 

computationally expensive and the dense sampling of the frames adds up significantly to the number 

of BoW vectors to compare. The principle is illustrated in Figure 4.8. The descriptors from each 

sampled frame are here quantized. 
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Figure 4.8. Frame-based BoW quantization.  

 

The most popular choice for the selection of the representative frames for a given video is 

based on a shot boundary detector, as recommended in [Snoek 2008b]. Here, videos are segmented 

automatically in video shots by comparing consecutive video frames with the help of color-based 

descriptors. Each video shot determined can be then represented by a key-frame, which is typically the 

central frame of the shot. While the problem of noisy frames is not solved in this case, the reduction of 

dimensionality given by such methods has made them the most popular video representation 

techniques in the TRECVID tasks [Smeaton 2006]. 

Recently, Zhu et al. [Zhu 2012] proposed a very dense sampling of the video frames (3 frames 

per second) and a BoW vector computation for each video shot. This approach has recorded the best 

scores for the TRECVID Instance Search Task of 2011. The high number of sampled frames per video 

overcomes the noisy frames drawback, as the chances of fetching inlier, noise-free frames are 

increasing. Yet, the computational cost of the method is significant, since such a high number of 

sample video frames is not always necessary, as in the case of shots with poor motion activity.  

We propose an approach which is similar with [Zhu 2012]. Given a video shot, we perform a 

uniform sampling of 1 frame per second. The sampled frames are refined by rejecting the near-
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duplicate frames. This is highly useful for static video sequence, where successive frames are very 

similar and do not bring additional information. The near-duplicate frames can be computed quickly 

with global descriptors such as MPEG-7 ColorStructure descriptor [MPEG 2003] and color histograms 

[Bursuc 2011] or with more advanced techniques employed for shot boundary detectors [Tapu 2011].  

The video dimensionality is thus drastically reduced. The regions and descriptors detected in 

the sampled frames are then quantized together into a single BoW vector, associated to the entire 

video shot. This step reduces significantly the number of BoW vectors to be considers and hence 

boosts the computational speed in the search stage. For the TRECVID INS 2012 dataset the number of 

BoW vectors was thus reduced from 683,433 (the total number of extracted frames) to 74,958 (the 

total number of video shots). The principle is illustrated in Figure 4.9. The descriptors from all video 

frames are projected into a pool of descriptors along with the rest of the descriptors and a single BoW 

vector is computed after the quantization. Note that in this case, three views of the same object (i.e., 

Golden Gate Bridge) are integrated in the same representation. This provides additional robustness to 

viewpoint changes.  

 

Figure 4.9. Shot based BoW quantization. 
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In order to improve the accuracy of the retrieval process, a variety of methods adopt the query 

expansion paradigm, specific to the domain of text retrieval [Chum 2007]. In the following section, we 

introduce a novel query extension technique.  

 

4.6 Query expansion 

The underlying principle of query expansion methods can be stated as follows. An initial user-selected 

query is formulated, returning an initial list of results. Then, the first ranked documents are selected 

from this list and used to construct a new, richer query, which contains additional terms, relevant to 

the intended query. The enriched query is then re-issued and the results returned to the user. If 

properly used (i.e., if noisy inliers and false positives are not added to the new query), the technique 

can boost the recall of the retrieval, and as a collateral effect, its precision.  

In [Chum 2007] the query expansion paradigm has been for the first time exploited within the 

context of object-based image retrieval. Here, the query is enriched with geometrically verified points 

from the top ranked results obtained by performing a RANSAC consistency check [Fischler 1981, 

Sivic 2003]. A set of new BoW vectors are generated from the verified matches and the new query 

vector is obtained by averaging the initial query vector with the verified BOW vectors. A new 

enriched query, embedding information that might have been missed in the initial query (e.g., different 

object pose), is then presented to the system. The obtained results display a significantly higher recall 

rate. Up to 50 top results are considered during the expansion and the technique can be iterated several 

times.  

An improved version of this method has been recently proposed in [Chum 2011]. Here, the 

geometric verification and the re-ranking build a statistical model of the query object. In addition, the 

relevant spatial context is learned in order to further improve the retrieval performance.  

Arandjelovic and Zisserman [Arandjelovic 2012] introduce another improvement of the query 

expansion from [Chum 2007], so-called discriminative query expansion. Once the expanded BoW 

vectors computed, they are used as positive training data to train a linear SVM classifier [Boser 1992, 

Cortes 1995]. Images with low tf-idf similarity scores are used as negative examples in the learning 

process. The weights learned by the classifier from the small training dataset are then used to re-query 

the database and to rank images according to their distance from the decision boundary.  

The main drawback of such methods is related to their dependency on the quality of the first 

query considered and of the first retrieved results. If no good matches are found in the first result set, 

the query can be altered and the recall rate will be degraded.  

We propose a novel approach for query expansion that does not rely on the first retrieved 

results, but instead leverages on the vast amount of manually annotated content from image portals 

and search engines such as Flickr [Flickr 2012] and Google Images [Google 2012c]. Relevant content 

can be retrieved with text-based queries and the retrieval results and data from these portals can be 

accessed automatically through their APIs. In our approach, we employ such data in order to enrich 
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the existing query object or to generate a set of visual queries starting from a textual description of the 

query object.  

Our approach is based on the assumption that an elementary textual description is available for 

each query and is inspired by a use-case considered in the TRECVID 2012 Instance Search Task. 

Here, a collection of queries consisting of multiple example frames containing the object of interest is 

provided. In addition, each query includes a simple textual description of the object to be retrieved 

(e.g., “Brooklyn bridge tower”, “Hagia Sophia interior”). We propose to leverage on these textual 

descriptions (which contains keywords commonly used for a textual search) in order to retrieve 

additional content that can be exploited for enriching the given queries. Let us note that, in a more 

general case, the given visual queries can be completely discarded and a visual query can be 

constructed solely from a set of textual descriptions. Let us also underline the multimodal character of 

this query technique: text descriptions are used for retrieving images, which are used at their turn for 

retrieving video content.  

The approach consists of the following successive steps, also illustrated in Figure 4.10: 

1. Issue a text based query on a web image search engine and download the first Ndownload 

results.  

2. Extract local features from the retrieved images and perform a one-to-one, exhaustive 

interest point matching, together with the geometric consistency verification between all 

images. Build then a query graph using the retrieved images as nodes. The graph edges are 

used here to connect images consistently matched. Identify different instances of the query 

object as connected components in the graph. 

3. Determine the most representative image from each connected component,   

4. Build query descriptors using the representative images together with their best matches, 

5. Aggregate query descriptors, and formulate queries on the video dataset in order to 

retrieve relevant videos. 
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Figure 4.10. Multi-modal query expansion work flow. 

The various steps involved are described in details in the following sections.  

 

4.6.1 Text based queries on web search engines 

Most of the general public image search engines provide public APIs which allow automatic querying 

and download of results. In our case, we employed the Flickr API which is the most popular choice for 

many datasets [Philbin 2007, Philbin 2008, Jégou 2008, Kalogerakis 2009, Kang 2011]. 
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Concerning the settings related to the search parameters, we have experimented with both tag-

based search (the query keywords are matched to the tags given by the owner of the image) and text-

based search (the query keywords are matched with the words from the textual description/title of the 

image given by the owner). In addition, for the tag-based search we have tested different constraints 

on the number of query keywords to be matched (to match all keywords or to match a part of the 

keywords). We have noticed that the tag-based search provides less relevant results and it is more 

suitable for class or category recognition datasets. For example, a search for the keywords “Brooklyn”, 

“bridge”, “tower” on the tags, returns few instances of the Brooklyn bridge tower and the rest of the 

results consist of different high buildings and towers and photos from the Brooklyn neighborhood. 

Such results can be useful for building a dataset for different concepts or classes (e.g., bridge, tower, 

New York, Brooklyn neighborhood), but less useful in our object instance retrieval framework. For 

this reasons, we have retained the text-based search performed on the image titles.  

Figure 4.11 illustrates the results of a query performed on Flickr for retrieving the Eiffel 

tower. Notice that different instances of the object of interest are retrieved. Such results contribute to 

building a rich model of the Eiffel Tower visual query.  

Concerning the number of images Ndownload to consider and download from the result list, we 

experiment with values between 25 and 100. Such aspects are discussed in details in the Experiments 

and Results section (Chapter 6).  

In the same time, a certain number of outliers are also retrieved due to annotations error. Such 

outliers are filtered out in the following step. 

 

4.6.2 Construction of the query graph 

We first detect the local features and extract their descriptors by employing the Hessian-affine 

covariant region detector [Perdoch 2009] and the RootSIFT descriptor [Arandjelovic 2012]. All 

images from this set are matched one by one among themselves using the RootSIFT descriptor and 

Lowe’s ratio test [Lowe 2004] for selecting the reliable matches. The matched points are checked for 

geometric consistency as described in Section 4.4.4. We consider that two images contain the same 

object if they have at least      geometrically verified interest points successfully matched. 

The role of this exhaustive matching procedure of all retrieved images is twofold. First, it 

makes it possible to reject the false positive images that have been retrieved (Figure 4.11). Usually 

such false positives are quite different from the rest of the true positive matches and they will be 

cleared out when matched with the rest of true positives. Second, as we can observe in Figure 4.11, the 

web search has retrieved different instances of the object of interest which are less likely to be 

matched using interest point matching. In this case, the role of the one to one matching is to identify 

groups of similar instances of the same object (e.g., Eiffel Tower seen from distance, Eiffel Tower 

photographed from one of it pillars.) in order to construct multiple query examples and descriptors. 

 



Chapter 4. Bag-of-Words representation 

 

90 

 

 

 

Figure 4.11. Flickr search results for "Eiffel tower". Notice that different instances of the Eiffel 

tower are retrieved along with a number of false positives highlighted with a red rectangle. 

 

In order to identify the different instances of the query object, we employ the matching results 

from the previous step and construct a query graph similarly with the image graph introduced in 

[Philbin 2011]. The nodes of this graph are images and the edges connect images which have at least 

     geometrically verified matches. Note that unlike [Philbin 2011], which constructed a large scale 

image graph over an entire dataset, our query graph is built only over the candidate query images. 

Thus, such a graph is more lightweight and can be constructed and exploited efficiently.  

An example of such a graph is illustrated in Figure 4.12. The graph is computed from the first 

50 images returned by Flickr’s search engine. Note how the false positives from Figure 4.11 have been 

discarded, as such images have been identified as isolated nodes, with no edge to any other images in 

the data set. In addition, the number of images to be considered has been significantly reduced (half of 

the initial number of retrieved images).  

In Figure 4.12 we can notice that images containing similar instances of the object of interest 

are strongly inter-connected. In addition, the clusters of inter-connected regions can be easily 

identified as connected components in the query graph.  

In the case of the query graph in Figure 4.12 we can extract 6 connected components, each 

consisting of images with similar instances of the Eiffel tower (e.g., tower viewed from distance, pillar 

view, night view,… ). The less representative instances are either completely rejected in the matching 

sequence or compose small connected components with poor interconnectivity. 

In the following stage, the goal is to identify the most representative instances of a given 

object in an unsupervised manner.  
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4.6.3 Identification of representative images from each connected 

component 

While the number of images to consider for building a query visual descriptor has been reduced in the 

matching stage, the number of images is still high. In order to further reduce this number, we select 

only the most representative images for an object for each connected component determined.  

 

 

Figure 4.12. Query graph obtained for "Eiffel tower". Each node has marked its degree in a 

circle. The colors of the circle indicate the connected component which the current node is a part 

of. The iconic images of from each component are highlighted with a green bounding box. 

The images from each connected component are ranked according to the number of matched 

images (i.e., edges in the graph). This measure corresponds to the degree (or valence) of each node 

within the graph. For images having the same degree, the ranking order is made according to the total 

number of geometrically verified matches. This is the case of the purple, green and orange 

components in Figure 4.12, where several images have the same degree and the iconic image is 

selected by comparing the number of spatially verified matches cumulated over the all the matchings 

of the images. Thus, the retained representative image is the one yielding the highest number of 

verified matches.  
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In Figure 4.12 the iconic images are highlighted with a green bounding box. We can notice 

that the iconic images contain the most common views for the given object of interest. In addition, in 

order to avoid less representative images, we constrain them to have at least two verified matched 

images. The iconic images obtained for our example are illustrated Figure 4.13. 

 

 

Figure 4.13. Iconic images for the “Eiffel tower”.  

 

Once the iconic images identified, we proceed with the computation of their visual descriptors. 

4.6.4 Visual descriptor construction from representative images  

At this stage, the problem is similar with the query expansion framework defined [Chum 2007]. We 

dispose of a collection of geometrically verified and representative images that can be used for 

generating a new expanded query. In [Chum 2007], a BoW vector is computed for each representative 

image individually. The obtained vectors are then averaged to obtain a single BoW representation for 

the whole set of queries.  

In our case, we propose instead to exploit the information from the images that have been 

matched with the representative images obtained. 

The proposed approach is inspired by the covalent bonding process [Campbell 2006] from 

chemistry. A chemical bond is an attraction between atoms that allows the formation of molecular 

structures that contain multiple atoms. The bond is caused by the electrostatic force of attraction 

between opposite charges, either between electrons and nuclei or as the results of a dipole attraction. A 

covalent bond is a strong chemical bond that involves the sharing of pairs of electrons between atoms. 

For many molecules, the sharing of electrons allows each atom to acquire a stable electronic 

configuration. The covalence measure takes important values in the case of atoms with similar electro-

negativities. Atoms share uncoupled electrons to create new pairs with the uncoupled electrons of 

other atoms in order to reach a stable molecular configuration consisting of multiple atoms (Figure 

4.14). An atom can simultaneously share different electrons with multiple atoms [Campbell 2006]. 
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Figure 4.14. Two Hidrogen atoms and an Oxygen atom (left) share electrons in a covalent bond 

in order to reach a stable H20 molecule (right). 

 

In our case, in analogy with this bonding process, atoms represent images and electrons are 

local features from each image. Two images have a covalent bonding if they have at least      

geometrically verified matches. A representative image represents a stable molecule, with most of its 

electrons shared with other similar atoms. The molecule with the highest number of bonded atoms and 

shared electrons is the most representative one for a given element (i.e., object). We can now define 

each molecule through its electrons and its shared electrons. A representative image can be thus 

described by its own features and by the features that have been matched with other similar images. 

The matched features complement the existing features and are used to enrich the current image. 

Practically, for each matched feature, when computing the BoW vectors, we assign a weight 

proportional to the number of verified matches. For example, for a feature that has been matched three 

times, its non-normalized tf weight is updated from 1 to 4. We will refer to this new descriptor as 

centered representative query descriptor. Alternatively, the representative image descriptor can be 

computed by considering the descriptors from the images matched with the representative image. 

These descriptors are collected in a pool of descriptors and quantized in a single BoW vector. We refer 

to this representation as the distributed representative query descriptor. 

In Figure 4.15, we illustrate the feature matching between a representative image and its 

similar images from the same connected component of the query graph. Figure 4.16.c illustrates the 

weighted centered representative image. The thickness of the elliptical shapes is proportional with the 

number of verified matches of the respective region. Complementary, the distributed representative 

image descriptor is composed from the point descriptors from all the images matched with the 

representative image. This weighting mechanism enriches the query descriptors and emphasizes the 

most representative features of the current object, increasing the chances of retrieving it accurately.  

The final step of our technique concerns the aggregation of the various query descriptors 

associated with the set of representative images.  
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Figure 4.15. Representative image and its geometrically verified matches. 

 

                   a)                                                    b)                                                    c) 

Figure 4.16. Enriched representative image with geometrically verified regions weighted 

proportionally with the number of matches from Figure 4.15. a) Original image, b) Detected 

Hessian-affine regions, c) Verified regions and their weights (the ellipse thickness is proportional 

with the weighting).   
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4.6.5 Aggregation of the query descriptors and retrieval process 

In order to formulate queries, the set of enriched representative images can be considered either as 

individual queries, or be composed into a single query.  

The advantage of composing a single query descriptor is related to the computational cost of 

the retrieval process, which is considerably reduced, notably in cases where the number of 

representative images is relatively important (higher than 10). On the downside, in this case, the 

queries are individual images which are globally less similar with each other than a set of video frames 

from a given video shot, where the final BoW vectors is very similar with the individual BoW vectors 

of the frames. When composing a single query from multiple images, relevant information that is 

found in only one of the images will be weighted lower in the final BoW vector. This is the case of 

patches that are visible only for certain poses or view points of the object of interest. On the other 

hand, the grouping process assigns higher weights to features that appear in multiple images and 

which are thus more representative for the query object. For these reasons, we decided to build a 

single query descriptor out of all enriched representative images using the procedure proposed in 

Section 4.5 for video shot BoW descriptors. Features from all iconic images are projected in the same 

pool of features and a BoW vector is computed by quantizing each feature as if they belong to the 

same image. 

Alternatively, when the number of iconic images is more reduced (i.e., less than 10) individual 

BoW vectors can be computed for each representative image and used for querying the video dataset. 

In this case, we obtain a number of query results equal to the number of representative images. Such 

results need then to be aggregated into a single ranked list.  

In order to achieve this purpose, we employ the best score selection ranking for all runs as 

proposed in [Bursuc 2011]. For each video, the best score from all runs is selected and all videos are 

then re-ranked according to their best score. This principle is illustrated in Figure 4.17. Here, we 

consider three representative images for querying (column 1) and their corresponding lists of results 

(columns 2-5) ranked in decreasing order of similarity to the query. For each video frame, we check its 

scores in each of the three runs and consider the optimal one (i.e., the one yielding the highest 

similarity score). In Figure 4.17, for the video highlighted with the blue bounding box, the best score 

has been obtained in the first run, marked with a green bounding box. The aggregated list of results is 

obtained by re-ranking the videos in decreasing order of similarity according to their aggregated 

similarity scores.  

The experimental evaluation of the proposed query expansion technique is presented and 

discussed in details in Chapter 6, for different sizes of the representative image dataset and for various 

query descriptors. 
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Figure 4.17. Best score selection ranking. Three queries are issued on the same dataset(column 

1) and the results are returned in decreasing order of similarity (columns 2-5). The results are 

aggregated by choosing the best score from all runs.  

 

4.7 Conclusion  

In this chapter, we have tackled the issue of Bag-of-Words (BoW), interest points-based 

representations for object detection and retrieval in video sequences in large video repositories.  

First, we have presented an in-depth analysis of the rich literature dedicated to this issue, 

including both interest point detection methods, associated visual representations, clustering 

procedures and matching strategies/similarity measures. The most representative methods are here 

detailed with principle, advantages and limitations from the perspective of large scale object retrieval. 

For each block of the BoW framework we specify a set of recommendations for its implementation as 

various choices can be made of each such block. 

The analysis of the state of the art led us to retain a Hessian-affine interest point detector. 

Concerning the visual descriptors, we have adopted the recently proposed RootSIFT representation, 

which offer the most promising performances in terms of object retrieval rates. For the clustering 
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stage, we have considered the Approximated k-means method (AKM), a scalable version of the k-

means algorithm approach, which offers a good trade-off between accuracy of representation and 

computational complexity.  

We have then proposed a meaningful and effective video representation for reducing the size 

of the descriptor set by computing BoW vectors on the shot level. Finally, we proposed a query 

definition and expansion technique that makes it possible to retrieve in a multi-modal manner objects 

of interest in videos, starting from a textual query performed upon existing images repositories.  





 

 

 

 

5 Hybrid object representation 

 

Abstract. In this chapter, we introduce a novel hybrid representation technique which integrates 

the advantages of segmented region-based representations and interest-point-based approaches. The 

proposed technique makes it possible to extend the adjacency information naturally included in the 

region-based representations to the interest points. In this case, the segmented regions are used as 

spatial support for identifying adjacent interest points which are then used to construct an interest 

point-based image graph. The matching between the query model and a candidate image is then 

formulated as a graph matching problem, which is solved with the help of a greedy spectral matching 

technique. Such an approach makes it possible to integrate not only the unary (individual) similarity 

between nodes in the graph, but also the pairwise similarity associated with pairs of matched interest 

points. Finally, we propose a merged similarity measure, integrating both interest point and color 

similarities and exploit it for object-based retrieval purposes.  

Keywords: graph matching, object representation, interest point adjacency, pairwise constraints. 

Résumé: Dans ce chapitre, nous présentons une nouvelle technique de représentation hybride 

d’objets qui comprend également les avantages des représentations basée sur régions segmentées et 

des approches utilisant des points d’intérêt. La technique proposée permet d’étendre l’information 

d’adjacence inclus naturellement dans les représentations basées sur régions vers les points d’intérêt. 

Dans ce cas, les régions segmentées sont utilisés comme support spatial pour identifier les points 

d’intérêt adjacents qui sont ensuite utilisés pour construire un graph de points pour représenter une 

image. La correspondance entre le modèle de requête et une image candidate est alors formulée 

comme un problème d’appariement de graphes, qui est résolu à l’aide d’une technique glouton 

d’appariement spectral. Une telle approche permet d’intégrer non seulement la similitude entre nœud 

unaires (individuels) dans le graphe, mais aussi la similitude deux à deux associées à des point 

d’intérêt appariés. Enfin, nous proposons une mesure de similarité fusionnée, qui intègre à la fois la 

similitude des points d’intérêts et la similitude de couleurs et nous l’en exploitons pour la recherche 

des objets. 

Mots clés: appariement de graphes, représentation d’objet, contiguïté des points d’intérêt, contraintes 

par paires. 
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In the case of interest points, the BoW framework discards completely the spatial information related 

to the relative position of the considered points in the image. This information is used solely in the re-

ranking stage with the help of a RANSAC estimation of image transformations. However, the 

specificity of the internal structure of the object is still neglected in the re-ranking stage. 

Grouping interest points into meaningful and consistent entities is a challenging problem. 

Existing methods identify pairs of interest points in candidate images according to pairs of interest 

points in a query image. Empirical thresholds are here used for the distances between pairs of points 

[Leordeanu 2005] or for quantizing the deformations of the elliptical regions associated to such point 

pairs [Cho 2009, Cho 2012]. Such thresholds can be determined with the help of a learning stage 

where the analysis of the positive samples emphasizes specific distances and structures [Leordeanu 

2005]. Another solution is to partition the image with a regular grid and to express the spatial 

proximity between the pairs of points by using the grids as units of measure [Duchenne 2011]. The 

spatial relationship between features can also be determined by employing a Delaunay triangulation 

for generating a graph of interest points connected by edges [Li 2010, Li 2011].  

In our work, we propose a hybrid representation which jointly exploits the Hessian-affine 

interest point detector (cf. Section 4.1.2) and the region-based representation introduced in Chapter 3. 

The Hessian-affine interest point detector makes it possible to take advantage of the elliptical 

regions associated to the detected interest points. Such ellipses define a support region for each interest 

point considered. This support region is superposed over the available region-based representation. 

Thus, for each interest point, we determine the set of image segments which are intersecting with its 

representative ellipse. This set is called the set of support segments associated to the considered 

interest point.  

The set of support segments naturally gathers the connectivity information of the considered 

segments and makes it possible to transpose the adjacency relationships to the set of interest points. 

Thus, two interest points are declared to be neighbors if they share at least one segment in the 

corresponding sets of support segments. Some groups of neighbor interest points are illustrated in 

Figure 5.1.  

 

Figure 5.1. Groups of neighboring regions. The yellow ellipses represent the neighbor ellipses of 

the red ellipse. Segments for Superpixels segmentations with 250 segments per image are here 

considered. 
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The proposed principle is illustrated in Figure 5.2. Three different segmentation procedures 

have been here considered MeanShift (with 160 segments) and Superpixels (with 250 and 500 

segments). Let us note that each interest point and its neighbors can compose meaningful clusters of 

points representing objects or parts of objects. In addition, whatever the segmentation method 

employed, the resulting clusters are highly similar.  

Let us also note that the ellipses of some affine covariant regions detected at higher scales can 

cover large surfaces in the image. This can lead to a loss of distinctiveness at the level of the 

corresponding set of support segments, as such a set can cover the majority of segments, and can 

affect the proposed adjacency construction strategy.  
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Figure 5.2. Interest points’ adjacency with segmented regions spatial support. Results with 3 

types of segmentations (MeanShift 160, Superpixels 250, Superpixels 500) are illustrated. In the 

first row of each group pairs of adjacent interest points are displayed along with their 

underlying segmented regions. In the second row of each group we illustrate all adjacent points 

(marked with yellow ellipses) of a single interest point (marked with red ellipse). Note how an 

interest point and its adjacents define a meaningful cluster in the frame. 

 

In order to overcome this drawback, we integrate a scale test for the regions that have been 

found to be connected. Intuitively, the neighborhood of two affine covariant regions with significantly 

different scales should not be allowed as they do not provide relevant spatial information. We compute 

the surface areas of both elliptical regions and compute their ratio. If this ratio between the smaller and 

larger region is found to be below a threshold  , the connection between the two regions is discarded. 

For parameter    we recommend values ranging from 0.3 to 0.75. This thresholding mechanisms 

permits to connect solely regions with similar scales. Note that other measures (e.g. scale of detected 

affine covariant region) can be used for this purpose. The improvements brought by this scale 

thresholding are illustrated in Figure 5.3. Interest points with similar scale sizes are now grouped 

together and each point and its immediate neighbors define more meaningful entities (e.g., head, leg, 

arm). 

The connectivity information of the interest points can be employed to define an interest point 

adjacency graph for the whole image, as illustrated in Figure 5.4 and Figure 5.5. In Figure 5.4 we 

illustrated the influence of the threshold   on the configuration of the adjacency graph built over a 

Superpixels 250 segmentation. For values higher than 0.5, the graph becomes more sparse leaving 

multiple interest points outside the graph structure. These are usually isolated and low scale points that 

cannot be considered adjacent to other regions because of the more restrictive scale test. Higher values 

of the threshold generate less complex graphs but provide a reduced number of pairs of points that can 

be exploited in a graph matching context. We are interested in identifying representative pairs of 

interest points and higher number of edges in the graph would facilitates this. In our experiment a 

threshold of       provided the best balance between accuracy and computational time. 
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Figure 5.3. Interest points and their adjacent points after the scale thresholding with      . 

 

 

Figure 5.4. Interest point adjacency graph obtained for Superpixels 250 segmentations with 

different values of the threshold  . For higher values of   the graph becomes more sparse and 

some points. The position of the interest points is indicated with yellow circles and two adjacent 

points are connected with a blue edge. As the number of regions per frame decreases, the graph 

becomes more sparse. 
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In Figure 5.5 we illustrate the graphs constructed from different segmentations with      . 

We can notice that the point adjacency graphs are quite dense and their density is inversely 

proportional with the number of regions per frame, with the MeanShift segmentations generating the 

highest density graphs. In cases of poorly textured images with few interest points and large uniform 

regions, the MeanShift graphs are more advantageous. Here, large segments allow the distant and 

sparse interest points to be considered adjacent. In addition, a meaningful graph can be constructed 

from the image.  

Once the interest point adjacency graph constructed, the considered image is represented as a 

two layer graph with the point adjacency graph on the first level and segment adjacency graph on the 

second level. The connection between the two levels is achieved through the nodes of the interest 

point graph, which represent the parents of the regions covered by its elliptical representation. 

Once the graph-based representations constructed for both query model and candidate image, 

the object retrieval/detection is formulated as a sub-graph matching problem and solved with the help 

of a spectral graph matching technique, as described in the following section.  

 

 

Figure 5.5. Interest point adjacency graph obtained for 3 segmentations with      . 

 

5.1 Spectral graph matching optimization 

Graph matching is a powerful and robust technique widely used in computer vision, pattern 

recognition and machine learning. The objective of graph matching techniques is to determine a 

mapping between the nodes of the two graphs to be compared which preserves the relationships of the 

nodes as much as possible. In object recognition, a model and a test image are represented as graphs 

using salient visual features. The graph matching technique determines the object by determining the 

optimal fit sub-graphs, which are minimizing the distances between associated visual features. 

The main limitation of graph matching methods is related to the computational complexity, 

since determining an exact solution is proved to be a NP-hard problem [Karp 1972, Garey 1979]. In 

order to overcome such a strong limitation, recent researches have proposed various approximations. 

Yet, the computational costs in terms of time and memory are still limiting the sizes of the graphs to 

be matched. For this reason, most of the graph matching methods deal with problems where a sparse 

set of discriminative features can be selected or pre-defined.  
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Berg et al. [Berg 2005] modeled the problem as a quadratic integer programming model, 

where affine terms and quadratic terms of the objective function represent node-to-node and edge-to-

edge similarities between the two graphs, respectively. The model was relaxed into a continuous 

domain, solved, and mapped back onto the original solution space. Leordeanu and Hebert [Leordeanu 

2005] proposed a spectral method working on a matrix where the diagonal elements represent one-to-

one assignment costs, and other elements represent pairwise agreements between potential 

correspondences. The correspondences are then obtained by mapping the principal eigenvector of the 

matrix to the discrete solution space using a greedy algorithm. In order to automatically set the 

weights of the terms belonging to the affinity matrix, several learning methods that optimize the 

weights in both supervised [Caetano 2009] and unsupervised [Leordeanu 2009] manners have been 

proposed.  

Cour et al. [Cour 2006] propose a spectral relaxation method for the graph matching problem 

that incorporates one-to-one or one-to-many mapping constraints, and present a normalization 

procedure for existing graph matching scoring functions that can dramatically improve the matching 

accuracy.  

Cho et. al. [Cho 2009] formulate the graph matching problem as an unsupervised multi-class 

clustering problem on a set of candidate feature correspondences. Starting from a set of relaxed 

matches between the graph nodes, a hierarchical agglomerative clustering is employed for determining 

multiple object-level clusters of correspondences in an unsupervised manner. Object-based image 

matching is then performed by taking into consideration both how well the descriptors of the features 

match and how well their pairwise geometric constraints are satisfied within each cluster.  

Finally, let us mention the approach introduced in [Duchenne 2011], where authors introduce 

a graph matching algorithm using a grid-based representation of the images, which is significantly 

robust to object deformations.  

In our work, we have retained the spectral graph matching technique proposed by Leordeanu 

and Hebert [Leordeanu 2005]. This method can identify consistent correspondences between two sets 

of features by taking into consideration both how well the descriptors of these features match and how 

well their pairwise constraints are fulfilled. Our objective is to identify pairs of correspondences that 

can provide additional and useful information about the internal structure of an object.  

Let us first recall the basic principle of the spectral graph matching method.  

 

5.1.1 Spectral Graph Matching 

In a general form, the graph matching problem can be formulated as follows. . Let us consider 

two attributed graphs to be compared,                describing the query model and    

            describing the candidate image. The number of nodes in graph    (resp.   ) is denoted 

by NP (resp. NQ). The set of attributes    includes a collection of feature vectors   
  associated with 

each node       as well as a set of features    
  associated with each edge         . The   

  

attributes describe the appearance of node i and the attributes    
  describe a pairwise affinity between 

the nodes i and j. The attributes                     are defined in a similar manner. For each pair of 
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nodes i     and       a score function              
   

  
 
  is defined, which measures the 

agreement or similarity between the attributes   
  and  

  
 

 describing the nodes i and   . Similarly, for 

each pair of edges         and            a pairwise affinity function 

             
   

  
 
    

   
    
 

  is defined, which measures the relationship/agreement between the 

unary attributes described by   
  and  

  
 

, and the pairwise agreements defined by    
  and      

 
.  

The set of affinity functions can be regrouped in a matrix M of size N
 
= NP ×NQ, where the 

         values are stored on the diagonal of M. The graph matching problem can be formulated as an 

integer quadratic program which consists of determining the indicator vector    that respects a set of 

specific mapping constraints (e.g., one- to-one, many-to-one) while maximizing the following 

quadratic score function: 

            
    . (5-1) 

Here,          , is an indicator vector such that        if node i is matched to the node    

from the other graph and zero otherwise. Typically, one-to-one constraints are imposed on   such that 

one feature from an image can be matched to at most one feature from the other image. 

Let also observe that the matrix M can be interpreted as a weighted adjacency matrix of a 

super-graph structure, which includes as nodes the union of    and   . Its spectral properties can be 

used to avoid the combinatorial explosion of the correspondence problem when matching two sets of 

features.  

The requirements for the formulation of the M matrix are that the unary          and pairwise 

          scores to be non-negative and to increase with the quality of the match. When the two pairs of 

features put in correspondence by two potential assignments agree in terms of their pairwise geometry, 

there will be an agreement link (positive edge) formed between the two assignments. Otherwise, there 

will be no link between the two assignments (edge of zero weight). These scores can capture any type 

of deformations/changes/errors at the levels of both appearance as well as geometric relationships.  

Let us also observe that the match matrix M has a very specific structure: a strong block with 

large values formed by the correct assignments, and mostly zero values everywhere else. Such block 

structures can be effectively tackled with the help of a spectral analysis, carried out in terms of 

eigenvectors and associated eigenvalues. Thus, if we drop the binary condition on vector X and search 

for a solution in the space of unitary real vectors, the solution to Equation (5-1) is straightforward: the 

vector    can be simply determined as the unitary eigenvector of highest eigenvalue (also called 

principal eigenvector). A binarization procedure can then be applied in order to determine the 

principal eigenvector and to provide an approximate solution to the matching problem.  

This principle, exploited by Leordeanu and Hebert in [Leordeanu 2005], is described in the 

following section.  
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5.1.2 Greedy spectral optimization 

Leordeanu and Hebert [Leordeanu 2005] propose a greedy algorithm for determining the solution to 

the correspondence problem. The eigenvector value corresponding to a particular correspondence 

       is interpreted as a confidence measure associated to the hypothesis that        represents a 

correct assignment. The algorithm starts with the extraction of the principal eigenvector of M and then 

accepts as correct the correspondence        for which the eigenvector value     
  is maximal. The 

match         is actually the correspondence with the highest confidence of being correct. Next, all the 

other correspondences that are in conflict with        with respect to the one-to-one mapping constraint 

are rejected. The next correct correspondence accepted is the one with the second highest chance of 

being correct that has not yet been rejected and that is not in conflict with the one already accepted. 

New highest confidence correspondences that are not in conflict with the previous accepted ones are 

accepted iteratively until all correspondences are either accepted or rejected. Finally, the set of 

candidate correspondences is split into two sets: the set of correct assignments   and the set of 

rejected assignments R. The two sets have the property that every correspondence from R will be in 

conflict with some assignments from    of higher confidence. Therefore, no element from R can be 

included in    without having to remove from    an element of higher confidence. 

Let us note that the proposed greedy spectral optimization procedure has been proved to be 

several orders of magnitude faster than linear programming approximation to the quadratic problem.  

The following section describes how the adopted spectral graph matching approach is 

exploited of object retrieval purposes, by considering the proposed hybrid representation.  

 

5.2 Object Retrieval with Spectral Matching 

The above-presented Spectral Matching technique can integrate spatial information of region 

configurations through its pairwise affinity terms. Such information could be of great help in 

validating pertinent object candidates and rejecting outlier regions. Let us note that the hybrid graph 

improves the original Spectral matching technique with the meaningful adjacency of the interest points 

based on their common region spatial support and on the scale similarity. Most of the graph matching 

approaches do not consider such aspects when identifying pairs of correspondences. 

Yet, the construction of the affinity matrix M and the computation of its eigenvectors can 

easily become a computational burden when the number of interest points increases (e.g., more than a 

few hundred). In such cases, a pre-processing stage becomes necessary, in order to filter out points 

that highly improbable candidates for matching. 

To obtain initial candidate feature matches we use the Hessian-Affine feature detector and the 

RootSIFT descriptor. Using the Euclidean distance for matching the RootSIFT descriptor (cf. 

Section 4.2.4), we identify all the possible candidate matches yielding a score under a relaxed 

threshold           . Multiple correspondences for each interest point are here allowed. In 

addition, we restrict the maximum number of interest points put into correspondence to 1000. The 
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pairwise terms are then determined using the adjacency relation construction presented in 

Section 5.1.1.  

Concerning the similarity of the pairwise correspondences, we measure the agreement of the 

two pairs of matches by jointly analyzing their visual, geometric and spatial similarities. More 

precisely, the pairwise term for a pair of correspondences         and           , where feature   

matches feature    and feature j matches feature   , is defined as follows: 

                        
                       

            

            
           

    . 

(5-2) 

where         
       is the geometric dissimilarity between the two feature correspondences as 

introduced in [Cho 2009],             
       describes the Euclidean distances between the center of 

the features (i.e., interest points) and         
   and         

   refer to the distances between the 

corresponding RootSIFT descriptors of features   and    and, respectively of features   and      

For the geometrical distance, we use the elliptical representations of the interest points 

described by              , where    denotes the center of  ,     denotes the center of    and      is the 

homography from   to   [Mikolajczyk 2004]. Similarly, features   and    can be described by 

             . The geometrical distance is then defined as: 

        
        

 

 
         

               
           . (5-3) 

where 

        
                     

         
      

  
  . (5-4) 

and 

        
                     

         
        

   . (5-5) 

with       denoting the Euclidean norm.  

The geometric distance considered corresponds to a projection error, when matching two interest 

points and it should be small if the transformations      and      are similar to each other. When 

computing the homographies between the elliptical shapes, we introduce an “upness” constraint for the 

orientation of the ellipses (i.e., we assume that both frames have the same orientation). Philbin et al. 

[Philbin 2007] illustrated that this is often a good assumption for photos on the web as they are rarely 

uploaded in the wrong orientation. We extend this assumption to video content since wrong oriented 

video clips are seldom. Let us note that the distance         
       allows for translation, anisotropic 

scaling and vertical-preserving shear and provides a robust measure for taking into account the 

deformation of the corresponding Hessian-affine regions. An illustration of this geometrical distance 

measure is presented in Figure 5.6. The distance is here normalized to the length of the diagonal of the 

largest image. 
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(a) 

 

(b) 

 

(c) 

Figure 5.6. Affine features matching and mutual projection error. For two matches      ) and 

(      (a)) the mutual projection error of (      with respect to      ) is computed are the sum of 

the length of the red arrow based on the homography transformation      (b)) and the length of 

the red arrow based on the homography transformation  
   
  

 (c) 

 

The role of the spatial distance            
       is to privilege pairs of regions which are 

situated at similar distances. The inclusion of this distance aims at retrieving very similar instances of 

the queried object in the top results. On the contrary, objects with strong deformations and changes in 

the relative position of the interest points to each other are penalized by this term. The spatial distance 

is computed as follows: 

           
                             

 , (5-6) 
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where   ,    ,   and     are the position coordinates of features      ,   and   . The terms            

and           
 are normalized to the diagonal of their corresponding images. For similar objects a 

large spatial difference due to a scale change, is compensated by the geometrical distance. 

The specification of the distance in Equation (5-2) makes it possible to complete the 

construction of the affinity matrix associated with the query and candidate image graphs (cf. Section 

5.1.1). The optimal indicator vector X* (cf. Equation (5-1)) is then determined with the help of the 

greedy spectral matching approach presented in Section 0. The indicator vector specifies a candidate 

object   that optimally matches (with respect to the considered greedy spectral technique), a sub-

graph    of the query model. Let us underline that, in contrast with the previously considered 

approaches such as region-based and BoW, the method allows to match not the entire query model, 

but solely a sub-part of it, which optimally fits a sub-set of the candidate image.  

In order to enable object-based retrieval and similarity ranking, an adequate similarity measure 

needs then to be associated to the obtained candidate object. In our case, we have adopted a fusioned 

similarity measure which includes both interest points matching cost and color similarity.  

The interest point matching measure takes advantage of the eigenvector decomposition of the 

affinity matrix M (cf. Section 5.2). The values of the principal eigenvector represent the 

confidence/strength of each match as it was computed from the affinity matrix containing the 

similarities between corresponding points and pairs of corresponding points. Once the best 

correspondences have been identified with the greedy algorithm proposed by Leordeanu and Hebert 

[Leordeanu 2005], the confidences of these correspondences can be summed in order to have a global 

measure of the similarity between the query object and the current image containing a candidate object 

instances. We will refer to this measure as spectral score and denote it as          
     . Notice that 

it value grows with the number of matches and their quality, hence it is a pertinent evaluation measure 

of the similarity of two images. 

The color similarity measure, denoted by          
       is the quadratic color measure 

introduced in Section 3.2, Equation (3-1), and applied to the optimal sub-graph configurations 

determined by the spectral matching technique.  

Finally, the fusioned similarity score is defined as: 

 

           
                    

                 
     . , (5-7) 

where parameter   weights the importance of the color similarity measure and     and     represent 

the sub-group of regions from image P and Q corresponding to the points that have been matched by 

the spectral matching technique.  

Let us mention that, depending on the use case, other descriptors can be embedded in this 

score as weighting factors (e.g., ratio of query interest points that have been matched, ratio of query 

regions that have been matched). 
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Figure 5.7 illustrates the spectral graph matching object retrieval mechanism. In Figure 5.7a 

we illustrate the query model on the left and a candidate image on the right, which contains an 

instance of the object of interest. Their corresponding superpixels segmentation is shown in Figure 

5.7b. In this case the superpixels are tuned to yield approx. 250 segments per image. Figure 5.7c 

illustrates the Hessian affine covariant regions detected in the video frames. The initial matches 

obtained with the relaxed threshold are presented at Figure 5.7d. Figure 5.7e displays the pairs of 

matches from the two frames. Here, corresponding point pairs are connected with an edge illustrated 

with the same color. Figure 5.7f shows the optimal correspondences obtained with the spectral graph 

matching technique, while Figure 5.7g illustrates the corresponding regions.  

The color similarity term in           is obtained by performing the quadratic color distance 

between the regions emphasized in both frames. Let us mention that the percentages of the regions 

from both query and test image are updated before the score computation according to the current 

region configuration.  
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Figure 5.7. Workflow for object retrieval using Spectral Matching. 

 

5.3 Conclusion and perspectives 

In this chapter, we have introduced a novel hybrid representation technique which includes both 

region-based representations and interest-point approaches. The proposed technique makes it possible 

to extend the adjacency information naturally included in the region-based representations to the 

interest points.  
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The matching between a query model and image candidate is formulated as a graph matching 

problem, which is solved with the help of a greedy spectral matching technique. Such an approach 

makes it possible to integrate not only the unary similarity between nodes in the graph, but also the 

pairwise similarity associated with pairs of matched interest points. A merged similarity measure, 

integrating both interest point and color similarities has been proposed and exploited for object-based 

retrieval objectives.  

This framework can be further extended by identifying the most representative clusters of 

interest points and their neighbor points for a given image. A graph can be constructed from the 

interest points and their neighbors. The most influential/representative vertices can be then identified 

by employing algorithms such as the Google Page Rank algorithm [Page 1999]. These clusters would 

represent meaningful objects or parts of objects that could be considered as object candidates for 

object recognition algorithms. Alternatively; separate BoW representations can be computed for each 

such influential node along with its neighbors resulting in multiple BoW vectors per frame similarly 

with [Wu 2009]; each representing, at least partially, an object.  



 

 

 

 

6. Experimental results 

 

Abstract. In this chapter we evaluate the performances of the proposed methods. In this respect we 

employ four different datasets corresponding to different use cases (e.g., search in cartoon datasets, 

search in moderate size datasets using a single object query, search in large scale databases using 

multiple object queries for the same object). We evaluate the influence of the segmentation methods 

and of the color space on the region-based representation. We then analyze and compare the 

performances of all the proposed methods. Concerning the large scale search, we test the influence of 

the resolution of the videos to the search results and compare the performances of the frame and shot 

descriptors in the context of a query with multiple example instances. Finally, we describe different 

settings for the query expansion and evaluate their performances on the Flickr dataset.  

Keywords: evaluation, experiments, TRECVID, MAP, Bag-of-Words, query expansion. 

Résumé: Dans ce chapitre, nous évaluons les performances des méthodes proposés. A cet égard, 

nous comptons quatre corpus différents, correspondant aux différents cas d’utilisations (e.g., 

recherche dans des collections de dessins animés, recherche dans de collections de vidéos de taille 

modérée en utilisant une seule requête pour l’objet, recherche dans des bases de données à grande 

échelle en utilisant plusieurs requêtes pour le même objet). Nous évaluons l’influence des méthodes de 

segmentation et de l’espace colorimétrique sur les performances de la représentation basées sur 

régions. En ce qui concerne la recherche à grande échelle en utilisant plusieurs requêtes, nous testons 

l’influence de la résolution des vidéos sur les résultats de la recherche et nous comparons les 

performances obtenus avec les descripteurs des plans et des trames dans le contexte d’une requête 

avec plusieurs exemples des instances. Enfin, nous décrivons des configurations différentes pour 

l’expansion des requêtes et nous évaluons leurs performances sur le corpus Flickr. 

Mots clés: evaluation, experiences, TRECVID, MAP, Sac-de-Mots, extension de requête. 
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In order to experimentally validate the various approaches proposed, we have considered different test 

data sets, which are described in the following section.  

 

6.1 Test datasets 

6.1.1 Raymond dataset 

The Raymond corpus has been established by the “2minutes” company [2minutes 2012] company 

within the framework of the HD3D
2
 French research project. The corpus consists of 13 cartoon videos, 

each with the duration of about 7 minutes. This corpus has been proposed in order to test and develop 

different use cases for content editors and producers that usually deal with this type of content. 

Such videos have of course the particularity of presenting relatively flat colors, which facilitates 

the segmentation task. However, they present an impressive number of characters displaying the same 

palette of colors. Moreover these characters are often located in crowded scenes (up to 20 characters in 

certain scenes), which is quite a challenge for object detection purposes. The videos have been first 

segmented in shots and for each shot, a representative key-frame has been determined with the help of 

the methods recently proposed in [Tapu 2011]. We thus constructed a database of 1630 video shots 

with 1630 corresponding key-frames. We have retained 12 query objects (Figure 6.2), interactively 

selected by different users. The queries correspond to different characters or objects present in the 

videos, with different postures.  

 

 

Figure 6.1. Samples from the Raymond dataset. 
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Figure 6.2. The query objects considered from the Raymond corpus for our evaluation. 

 

The rest of the data sets retained include natural videos and have been considered during the last three 

years within the framework of TRECVID campaigns.  

 

6.1.2 TRECVID 2010 Sound and Vision dataset 

The Sound and Vision dataset has been extensively used in the TRECVID evaluation campaigns 

between 2007 and 2010 [Smeaton 2006]. The dataset consists of videos from news magazines, science 

news, news reports, documentaries, educational programming, and archival video. This dataset 

contains recurring people (e.g., presenters, magazine hosts, characters in comic skits), objects and 

locations (Figure 6.3). This dataset has been proposed for testing for the pilot edition of the Instance 

Search Task within TRECVID 2010. All videos are provided by the Netherlands Institute for Sound 

and Vision from the Dutch multimedia archives. 

The length of the videos ranges between 20 and 120 minutes. The videos are compressed at a 

relatively reduced resolution 384 x 288 in MPEG-1.  

In this respect, we have used 34 videos from the Sound and Vision dataset summing up to 

approximately 15 hours of video content. A total number of 5580 key-frames corresponding to the 

same number of shots has been obtained with the method described in [Tapu 2011]. In order to 

objectively evaluate the performances of our algorithms, we have retained 12 query images (Figure 

6.4), interactively selected by different users. The queries correspond to different characters present in 

the videos, with different postures. The query specification is not precise, the user being requested to 

select approximately the desired objects of interest.  
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Figure 6.3. Samples from Sound and Vision TRECVID 2010 dataset. 

 

Let us underline the difficulty of the considered database, where a same object can appear in 

various conditions, with variations in lightning conditions (indoor/outdoor scenes), pose and partial 

appearances (Figure 6.5). We have then established a ground truth set of relevant key-frames, by 

exhaustively selecting the set of all key-frames where the query object appears.  

 

 

Figure 6.4. The query objects considered in the Sound and Vision ground truth data set and 

retained for our evaluation. 
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Figure 6.5. Various appearances of a same object in the Sound and Vision dataset. 

 

6.1.3 TRECVID 2011 BBC Rushes dataset 

The BBC Rushes dataset has been proposed for testing for the second edition of the INS task of 

TRECVID 2011. Rushes are the raw material from which programs/films are made in the editing 

room. The rushes from this dataset include those for several dramatic series as well as for travel 

programming and contain recurring objects, people and locations.  

For this dataset, the videos have been divided in short clips with lengths between 1 and 30 

seconds. This results in 10491 short video clips (Figure 6.6). In order to simulate differences that 

might occur if a clip came from a different camera or was taken under different lighting conditions, 

different transformations, including change of gamma, contrast, brightness, hue or aspect ratio (Figure 

6.7) have been considered. Thus, each of the above mentioned clips is applied such transformations 

and the final dataset consists of 20982 video clips. In Figure 6.7 we can notice that these transforms 

affect significantly the quality of the video and enforce extreme conditions for feature detectors and 

descriptors. 

 

 

Figure 6.6. Samples from BBC Rushes 2011 dataset. 
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The encoding parameters are similar with the Sound and Vision dataset: resolution of 352 x 

288 and MPEG-1 compression. 

A number 25 search topics have been proposed for this dataset: 17 objects, 6 persons and 2 

location entities (Figure 6.8). Each search topic is provided with 2 to 5 example images containing 

instances of the object of interest and a binary mask illustrating its position in the image. The average 

number of positive topics is around 73 video clips.  

 

 

Figure 6.7. Example of content transformation in the BBC Rushes dataset for increased 

difficulty. 

 

6.1.4 TRECVID 2012 Flickr dataset 

The Flickr dataset has been introduced in 2012 for the INS task in TRECVID. The dataset consists of 

74958 short video clips downloaded from Flickr and summing up to 188 hours of content. Unlike the 

previous datasets, this dataset contains general public videos with most of the content generated by 

non-professional users. The variety of content is high and many different types of clips can be 

retrieved in the dataset (e.g., sports events indoor or outdoor, concerts, travel videos, family events, 

pets, personal blogs, news magazines, advertisements …). Figure 6.9 illustrates samples of the content 

of this dataset. A challenging aspect of this dataset is the multitude of devices used for recording, 

which results in a multitude of video quality levels and different video resolutions (52 different 

resolutions). The videos are encoded in webM format [WebM 2012]. 
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Figure 6.8. Queries and example images for the BBC Rushes dataset. The query objects are 

emphasized in each image. 

 

 

Figure 6.9. Samples from Flickr Trecvid 2012 dataset. 
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Another key property of this dataset is represented by the queries. In this case, the queries are 

popular objects, landmarks and persons that are usually the subject of search for a large number of 

users. The queries proposed for this dataset within the INS task are illustrated in Figure 6.10 and their 

textual descriptions are displayed in Table 6-1. Each query topic features up to 9 example images with 

different instances of the respective topic, to be used to construct a visual representation of the topic 

and query the dataset. The main challenges to address for this dataset are how to extract discriminative 

descriptors from the relatively small dimension of the query objects (e.g., Mercedes logo- 9048, 

Sears/Willis Tower - 9055) and how to construct a robust query model from example images 

containing very different instances of the same object (e.g., Pantheon interior – 9056, Prague castle – 

9063). 

 

Table 6-1. Textual descriptors for topics proposed for the Flickr dataset.  

Topic Textual description Topic Textual description 

9048 Mercedes star 9059 Baldachin in Saint Peter’s Basilica 

9049 Brooklyn bridge tower 9060 Stephen Colbert 

9050 Eiffel tower 9061 Pepsi logo - circle 

9051 Golden Gate Bridge 9062 One World Trade Center building 

9052 London Underground logo 9063 Prague castle 

9053 Coca-cola logo - letters 9064 Empire State Building 

9054 Stonehenge 9065 Hagia Sophia interior 

9055 Sears/Willis Tower 9066 Hoover Dam exterior 

9056 Pantheon interior 9067 MacDonald’s arches 

9057 Leshan Giant Buddha 9068 PUMA logo animal 

9058 US Capitol Exterior   
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Figure 6.10. Queries and example images for the Flickr dataset. The query objects are 

emphasized in each image. 
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6.2 Evaluation measures  

A first evaluation measure, largely adopted by TRECVID and PascalVOC campaigns is the average 

precision, recalled in the next section.  

6.2.1 Average precision 

The average precision is a metric for estimating the accuracy of ranked query results, which is 

commonly used in both information retrieval [Baeza 1999] and computer vision, especially in the 

TRECVID tasks [Smeaton 2006].The average precision takes into consideration both precision 

(recording the fraction of retrieved videos which are relevant to the query) and recall (which records 

the fraction of relevant videos which are successfully retrieved). The average precision is a single-

valued measure that is proportional to the area under the precision-recall curve. This value is the 

average of the precision over all shots judged relevant. Let                 be the ranked list of top 

k retrieved items from test set T for an arbitrary query. At any given rank k,        represents the 

number of relevant shots in the top k retrieved results, where G is the set of all relevant shots for the 

considered query. The average precision, AP, is then defined as: 

       
 

   
 

      

 

   

   

      (6-1) 

where         if      and zero otherwise.     is the number of answers in the returned ranked 

list. When performing experiments over multiple queries, the average precisions of individual queries 

can be aggregated for an overall evaluation of the performance. This aggregation is called mean 

average precision (MAP). MAP is obtained by computing the mean of the average precisions of the 

considered queries. Let us mention that in general MAP depends on the dataset and the queries used 

and scores of different datasets are difficult to compare.  

The AP metric has been successfully employed in information retrieval and computer vision. Yet its 

global measure does not accurately cover some cases where one might want to measure the precision 

in the first ranked results. In addition, when the size of the searchable dataset is reduced (e.g., a film 

with a few hundred shots at most) the AP might get biased as it measures the precision over the whole 

list of results, which is in this case quite short. This would introduce a false boost in precision, as some 

results might be considered among the first results, only because of the small sized of the list. In order 

to overcome such limitations, we have adopted a precision@ k score.  

 

6.2.2 Precision@ k 

For such cases we propose the Precision@ k measure as performance criteria. Given the set of relevant 

shots G for an object and the list of retrieved results T, the Precision@ k for a given rank k measures 

the percentage of relevant shots retrieved within the top k results from the list T. We compute the 

Precision@ k for two values of k, for            and for               . We will refer to the 

former as First Tier (FT) and for the latter as Second Tier (ST) or Bull Eye (BE). These criteria 
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measure the accuracy of the first retrieved results, where the user usually looks in. If the relevant 

content is not displayed among the first results, the user usually refines his textual query or issues a 

new query-by-example starting from one of the retrieved results. Let us not that for reduced sizes of G 

(e.g., 5 instances), this measure is rather severe as it only looks in the first     results. 

 

6.3 Compared evaluation  

We perform a first set of experiments on the Raymond dataset in order to evaluate and compare the 

proposed optimization techniques related to the region-based representation introduced in Section 3.  

 

6.3.1 Raymond cartoon dataset 

In the case of such cartoon images, which are rather flat, the number of segments for each frame is 

rather reduced with an average of 77 color regions per frame, obtained with the MeanShift 

segmentation technique (cf. Section 3.1.1).  

We test the methods in the RGB color space and consider the Euclidean distance as similarity 

measure between region colors. We test three of the proposed methods: Greedy, Relaxed Greedy with 

a tolerance of 5%, 10% and 20% and the Simulated Annealing implementation with different values of 

the parameters T0 (0.5 - 0.9), Tfin (10
-5

-10
-4

) and nit.(5-10) leading to 66-109 temperature changes. For 

each considered query and method, we have performed 2 sets of runs. Firstly, we have launched the 

query only inside the video of the query object in order to test a typical use case for a regular user. 

This process is called intra-video search. Further on we have launched the query in the whole dataset 

in order to test the scalability of the proposed methods (inter-video search). Experiments have been 

run on a PC with Intel Xeon CPU W3530 at 2.80 GHz and 12 Gb RAM. Computational times are 

display in Table 6-2. Let us not that these times correspond to a raw implementation of the algorithms 

with no parallelization or significant memory access optimizations. 

Table 6-2. Computational times for RGB color space on Raymond dataset. 

 

Next, we have computed the Precision@ k scores (First Tier and Second Tier) for each query. 

The results are summarized in Table 6-3. The average FT score obtained when performing queries 

inside a given video with the greedy algorithm is of 77%. Concerning the SA method, we obtained a 

slightly better recognition rate of 79%. 

Run Greedy Relaxed Greedy 

(δ=10%) 

SA 

(T0 = 0.5, nit=5 

Tfin = 10
-3

) 

Intra-Video time 1.5s 1.7s 20s 

Inter-Video time 20s 22s 175s 
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In order to investigate the scalability issues, we have also performed the queries within the 

entire data set of 1630 key-frames. In this case, the performances naturally degrade with detection 

rates of 61% for the greedy approach and of 71% for the SA technique. By providing a more global 

solution, the SA approach shows a more scalable behavior. However, the price to pay is the time of 

response to the queries: about 160-180 seconds for the SA approach, with respect to less than 20 

seconds for the greedy algorithm.  

Table 6-3. Experimental results on Raymond dataset. 

Run Intra video search Inter video search 

FT ST FT ST 

Greedy 77.8 87.1 61 69.1 

Relaxed Greedy (δ=10%) 78.8 88.5 71 71.5 

SA 83.5 90.1 73.2 80.0 

 

We also noticed that there are some differences between the two methods in the order of 

similarity of the retrieved frames, with the SA better returning nearly identical objects (Figure 6.11). 

Moreover, when performing a finer analysis, we observe that the SA method improves the 

value of the score for the frames containing objects similar with the query. In order to quantify this 

refinement we have measured the distances obtained between a query object and the image out of 

which it has been selected. In average, the SA distances prove to be 20.28% inferior to those provided 

by the greedy algorithm. This result proves the SA method obtains more global optima, which offers 

interesting perspectives in terms of scalability, in the case where larger datasets have to be considered. 

In order to validate our methods in more realistic conditions we have extended our 

experiments on natural videos from the TRECVID INS datasets. We structure our experiments 

according to two instance search use cases. The first concerns the cases where the user disposes of a 

single object instance and wishes to retrieve other instance of the same object. This is typically the 

case of most query-by-example searchers, where the user wants to exploit the visual information from 

a frame or part of a frame to retrieve similar content. In the second use case the user disposes of a 

couple of frames containing different instances of the same object and wants to retrieve other ones 

resembling the small ground truth that he has. At limit, this problem can be posed as a classification 

technique with very limited ground truth sets. This case is covered by the TRECVID INS task. 
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Figure 6.11. First retrieved results with both the greedy region construction (upper row) and the 

SA (lower row) methods. The order is improved with the SA method and the obtained global 

scores are lower. 

 

We will start with the case of the single queries that we have tested on videos from the Sound 

and Vision dataset. 

 

6.3.2 Single queries 

6.3.2.1 Experimental setup 

In our experiments we consider the 34 videos from the Sound and Vision dataset of natural videos 

used for the TRECVID 2010 Instance Search Task. We have divided the 15 hours of video content 

scenes and video shots, resulting in 5580 shots, each represented by a key-frame. 

In order to test the influence of the choice of color space over the results, we have tested our 

methods in the RGB, HSV and CIE-L*a*b* color spaces. For the RGB color space we have 

considered the Euclidean distance as a similarity measure between region colors, while for HSV color 

we used the cylindrical color similarity introduced in [Smith 1996]. For the CIE-L*a*b* color space 

we have retained the two distance similarity measures so-called CIE76 and CIE94 [Brainard 2003].  

In order to test the applicability of our framework to different segmentation methods, we have 

considered the MeanShift method [Comaniciu 2002], the SuperPixels proposed by Veksler et. al 

[Veksler 2010] and the efficient graph-based segmentation algorithm of Felzenszwalb and 

Huttenlocher [Felzenszwalb 2004]. SuperPixels decompose the frames in regions of similar sizes and 

all frames present equivalent numbers of superpixels. The efficient graph-based segmentation of 

[Felzenszwalb 2004] is fast and has been found well-suited for generating an over-segmentation for 

object recognition [Pantofaru 2008, Kang 2011, Sande 2011]. We tuned the segmentation algorithms 

in order to obtain recognizable object entities. MeanShift yield an average of 160 regions/frame, with 

the number of regions varying between 1 and 350 regions. For the SuperPixels technique, we 

considered three different versions, corresponding to average numbers of 250, 500, respectively 750 

segments/frame. The efficient graph-based segmentation was tuned to generate an average of 292 

region/frame (i.e., for image with surface areas near 384 x 288 the parameter setting is: sigma = 0.5, K 

= 200, min = 20 [Felzenszwalb 2007]), but it displayed a strong variation in the number of regions per 
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image (between 30 and 1030 regions/frame). The average number of regions per frame obtained for 

this segmentation is approximately 300. We will refer to these segmentation methods as MeanShift 

160, SuperPixels 250, SuperPixels 500, SuperPixels 750, and EGBS 300. Figure 6.12 illustrates 

typical segmentation results using the considered segmentation techniques. 

The 12 query images described Section 6.1.2 have been considered for both intra and inter-

video search scenarios.  

In a first experiment we tested the influence of the chosen color space over the results. 

 

                     a)                                b)                                c)                                d)                                e) 

Figure 6.12. Frame segmentations using different segmentations algorithms: a)MeanShift 160; 

b) SuperPixels 250; c) SuperPixels 500; d) SuperPixels 750; e) EGBS 300. 

 

6.3.2.2 Color space influence 

The obtained results are summarized in Table 6-4. The analysis of the results shows that the CIE76 

runs offers the highest performances for both intra and inter video search in both cases, while HSV has 

the weakest performance. The improvement in the case of the greedy methods is more significant: 

+12% on both FT and ST for the greedy method and +24% and +23% for FT and ST, respectively, 

comparing to the HSV scores. The basic greedy method is much faster, yet the associated retrieval 

performances are much inferior, with FT and ST scores of 51.7% and 69.1%, respectively for the RGB 

run. This drawback is partially eliminated by the relaxed greedy scheme, which achieves higher 

retrieval scores (FT = 55% and ST = 77%) while offering interesting performances in terms of 

computational complexity. Let us note that the influence of parameter δ is quite reduced, similar 

results (±2% in FT scores) being obtained for values of δ between 5% and 20%. For our next 

experiments we will consider δ = 10% for the Relaxed Greedy runs. 

The analysis of the results in the case of inter-video querying shows that the CIE76 runs still 

perform best, while HSV has again the weakest performance. In the first case the CIE94 and RGB 



Chapter 6. Experimental results 

 

130 

 

performances were similar, but in this situation the performance of CIE 94 is considerably lower. We 

have thus retained for further analysis in our experiments solely the RGB and L*a*b* CIE76/94 color 

spaces and distance measures.  

Table 6-4. Experimental results for Greedy and Relaxed Greedy 10% using MeanShift160 when 

performing intra and inter-video querying on Sound and Vision dataset. 

Run Intra video search Inter video search 

FT ST FT ST 

Greedy  

RGB 51.7 69.1 19.9 28.6 

HSV 39.5 58.8 13.4 16 

L*a*b* CIE94 49.1 67.4 12.0 19.8 

L*a*b* CIE76 63.6 80.8 29.0 33.4 

Relaxed Greedy 

(δ=10%) 

 

RGB 55.0 77.2 32.7 35.2 

HSV 48.9 68.3 15.2 22.1 

L*a*b* CIE94 59.3 76.4 16.6 26.4 

L*a*b* CIE76 65.4 85.3 32. 7 44.4 

 

6.3.2.3 Influence of the segmentation method 

Next, we have investigated the influence of the segmentation methods considered on the retrieval 

results. We want to test the applicability of the DOOR method to other popular segmentation methods 

such as Superpixels or the Efficient Graph-based segmentation (EGBS). The results obtained for the 

Greedy runs are presented in Table 6-5. Due to the high number of regions and their small contribution 

to the global energy, for the SuperPixels750 dataset, we chose a δ of 5% for the Relaxed Greedy run. 

We can notice that globally there are no significant variations in terms of retrieval 

performances, whatever the segmentation technique considered. In the case where the number of 

segments is increased (e.g. above 750 regions) the performance is starting to fade slightly. In such 

cases, the color information provided by the high number of small regions in object configurations 

loses distinctiveness. Performance in these situations could be fixed, by adding more spatial 

information and clustering groups of small neighbor regions and add/remove them at once during the 

dynamic region construction. 
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Table 6-5. Experimental results for Greedy and Relaxed Greedy on different segmentation 

methods performing  intra- and inter- video search. 

Segmentation method Run Intra video search Inter video search 

FT ST FT ST 

SuperPixels 250 Greedy  

RGB 58.0 73.4 16.0 25.2 

L*a*b* CIE76 61.3 78.0 20.0 28.6 

Relaxed Greedy 10  

RGB 59.7 84.3 29.2 35.2 

L*a*b* CIE76 63.8 84.9 32.7 44.4 

SuperPixels 500 Greedy  

RGB 50.3 71.8 14.6 23.4 

L*a*b* CIE76 64.5 79.1 19.3 26.3 

Relaxed Greedy 10  

RGB 58.9 75.6 24.0 34.0 

L*a*b* CIE76 62.8 83.8 31.2 45.4 

SuperPixels 750 Greedy  

RGB 50.9 67.5 14.2 23.0 

L*a*b* CIE76 64.5 79.1 19.0 24.9 

Relaxed Greedy 05  

RGB 58.4 81.3 18.6 25.4 

L*a*b* CIE76 67.7 85.5 30.2 40.6 

EGBS 300 Greedy  

RGB 50.9 67.5 18.4 24.3 

L*a*b* CIE76 64.5 79.1 20.1 30.6 

Relaxed Greedy 10  

RGB 54.1 73.6 22.4 30.9 

L*a*b* CIE76 62.2 78.1 25.6 35.3 

 

Another issue that we have considered for experimentation concerns the influence of context on the 

retrieval performances.  

6.3.2.4 Influence of context 

The current framework employs an interactive query definition system which enables irregularly 

shaped objects or region entities to be drawn by the user and issued as query. In the previous 

experiments we have considered only the region configuration inside the contour designed by the user. 

Yet, in some cases the context information can provide significant information to be used for 
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identifying instances of the same object. In the same time the context information can be noisy and 

influence negatively the search results. 

In order to test the eventual extensions of the framework that would take advantage of the 

context information, we enlarge the objects defined by the user. In this respect we allow the regions 

that have been cut by the scribble of the user, to be added to the query configuration. In this way, the 

visual information within the immediate neighborhood of the object is considered for the search.  

In the same time, objects that might have been improperly defined by the user can be partially 

restored in this case. The principle is illustrated in the Figure 6.13. The man in the query has not been 

fully selected and some parts are left outside the selection. After the extension of the query, the query 

object is more complete and some background information has been included in the same time. The 

superpixels segmentation are more appropriate for this technique as the pixels have similar size the 

amount of noisy regions that can be considered is reduced. This can be noticed more easily in the case 

of the MS160 segmentation from Figure 6.14. The sizes of the regions vary and bigger noisy regions 

can be added to the object. In order to overcome such inconvenient, the regions are added up to a limit 

defined by an expanded bounding box computed around the query object. We set this limit to a 

bounding box 15% larger than the original bounding box. 

The new queries are tested on the Sound and Vision dataset with the Relaxed Greedy 10 

method and the results are presented in Table 6-6. The performance on the MeanShift is lower due to 

the varying size of the regions. In most of the cases, the extension outside the user scribbles leads to 

large noisy regions added to the object configuration, affecting the results. The SuperPixels 250 

display better results when searching in the same video, while the inter-video results are worse. The 

expansion advantages instances of the object from the same video as it can be found in a similar 

background throughout the video or under the same light conditions. In the case of the SuperPixels 

500, the gain can be noticed when searching among different videos. Due to the fineness of the 

SuperPixels500 regions, the expansions bring a fair amount of extra information, while no noise is 

added. 

 

Figure 6.13. Query extension on SuperPixels 250. Regions under the scribble are added as a 

whole to the query object. 

 

Figure 6.14. Query extension on MeanShift 160. Regions under the scribble are added as a whole 

to the query object. In order to avoid noisy large regions, the neighborhood is limited to 15% of 

the surface area of the bounding box around the object. 
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Table 6-6. Evaluation of extended queries using Relaxed Greedy 10. 

Segmentation method Relaxed Greedy 10 Intra video search Inter video search 

FT ST FT ST 

MeanShift 160 Extended Query 

Bounding Box 

 

RGB 56.1 72.3 26.9 33.4 

L*a*b* CIE76 55.2 75.8 27 34.2 

SuperPixels 250 Extended Query  

RGB 54.9 81.3 22.1 32.1 

L*a*b* CIE76 68.5 85.6 30.7 42.5 

SuperPixels 500 Extended Query  

RGB 60.8 80.7 27.4 32.8 

L*a*b* CIE76 66.4 85.8 33.5 46.2 

6.3.2.5 Simulated Annealing optimization 

We test the SA method on the same dataset with on a range of different parameters. The SA 

optimization also presents a stable behavior, with quasi equivalent results for different values of the 

parameters T0, Tfin and nit. Here, we illustrate the results for the following parameter settings: starting 

temperature       , freezing temperature           and number of iterations to perform for each 

temperature      .  

Table 6-7 summarizes the results of the SA method using the MeanShift 160 segmentation. 

Overall, the SA-based method yields better retrieval performances than the Greedy methods, with FT 

and ST scores of 70% and 88%, respectively for CIE76. The gap between results on different color 

spaces is less significant for the SA runs, the algorithm approaching the optimal solution whatever the 

considered color space (also for CIE 94, not displayed here). When looking at the results on the whole 

dataset queries, the decrease in performance is less dramatic for the SA. This shows that the robustness 

of the SA approach is preserved even for larger datasets. Overall, the improvements of the SA 

methods are stronger, excepting the CIE76 runs where the Relaxed Greedy scores are still close to SA 

ones. 

Table 6-7. Experimental results for Simulated Annealing using MS160 segmentation when 

performing  intra- and inter- video search. 

Segmentation method Run Intra video search Inter video search 

FT ST FT ST 

MeanShift 160 SA  

RGB 66.0 84.1 43.3 47.0 

L*a*b* CIE76 70.2 88.4 45.0 52.2 
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Table 6-8 presents the results for the SA runs obtained with the SuperPixels 250 and EGBS-

300 segmentation methods. The performance of the former is rather similar with the one using 

MeanShift as region generator. We notice that the results for the EGBS-300 are significantly lower. 

Due to the large variation of number of regions available in a frame, from 30 to 1030, the SA approach 

could not reach in this case its optimum. For such particular cases, the SA method should be tuned to 

perform a higher number of iterations and temperature shifts. 

In Figure 6.15 we illustrate some results of the SA method using MeanShift segments in the 

Lab color space when performing intra video querying. 

Table 6-8. Experimental results for Simulated Annealing using Superpixels 250 and EGBS-300 

segmentation when performing intra- video search. 

 

 

 

Let us now present the results obtained for the GraphCut optimization method.  

 

 

Figure 6.15. Results for SA method on MeanShift 160 when performing intra-video queries. 

Segmentation method Run Intra video search 

FT ST 

SuperPixels 250 SA  

RGB 69.5 85.6 

L*a*b* CIE76 72.4 86.8 

EGBS 300 SA  

RGB 56.1 70.1 

L*a*b* CIE76 60.6 73.7 
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6.3.2.6 GraphCut optimization 

Here, we have considered the MeanShift 160 and SuperPixels 250 segmentation methods; which have 

provided so far a fair balance between performance and computational cost and the RGB and L*a*b* 

color spaces. The results are presented in Table 6-9. 

The results are clearly superior to the Greedy-based and methods and fairly close to the SA 

ones (even outperforming it for some queries). Moreover, in the case of the Lab color space, the 

GraphCut achieves almost the same results as the SA technique.  

Table 6-9. Experimental results for the GraphCut-based approach using MeanShift 160 and 

SuperPixelsP250 segmentations when performing intra- video search. 

Segmentation method GraphCut Intra video search Inter video search 

FT ST FT ST 

MeanShift 160 RGB 61.6 83.1 32.3 44.9 

L*a*b* CIE76 68.2 89.8 41.6 50.8 

SuperPixels 250 RGB 64.3 82.9 39.8 46.0 

L*a*b* CIE76 66.6 86.5 40.9 49.0 

 

6.3.2.7 Computational complexity 

The computational times for the Greedy-based, SA and GraphCut methods are presented in Table 

6-10. Here, thy experiments have been carried out in the RGB color space and with the MeanShift-160 

segmentation method.  

Table 6-10. Computational times for RGB color space on Sound and Vision dataset. 

 

In terms of computational complexity, the GraphCut method is slightly slower than the Greedy 

methods, depending on the number of regions in the image: in average, the GraphCut is about 25% 

slower than the Greedy methods. However, when compared to the SA method, the GraphCut 

technique is of an order of magnitude faster. 

This shows the interest of the GraphCut approach, which offers nearly optimal performances 

at a reduced computational cost.   

Run Greedy Relaxed 

Greedy 

(δ=10%) 

SA 

(T0 = 0.5, nit=5 

Tfin = 10
-3

) 

GraphCut 

Intra-Video time 6s 10s 816s 15s 

Inter-Video time 133s 212s 19388s 257s 
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Let us now analyze the performances of the spectral matching approach introduced in 

Section 5.2.  

 

6.3.2.8 Spectral Matching 

We have first applied to spectral matching optimization approach to the region-based representation. 

Here, we have used an experimental setting similar to the one proposed in [Leordeanu 2005] for 

interest point matching. The matching of the regions is performed by color distance and an 

experimentally determined threshold is used to filter out the non-similar colors. For the pairwise score, 

we have considered the Euclidean distance between the position coordinates of the regions from the 

same pair. The pairwise score is the computed as the difference of such distances. Only adjacent 

regions are considered for computing a pair of assignments. In this manner the number of possible 

pairwise terms is significantly reduced. In addition, in order to reduce the number of regions to be 

considered for generating the affinity matrix, we employ the color pre-filtering to discard regions 

visually different from the query regions. We then identify the connected components and perform the 

Spectral Matching on each such connected component. 

We use as similarity scores:  

(1) the sum of the values collected from the principal eigenvector (the         from Section 5.2,), 

as proposed by [Leordeanu 2005], and  

(2) the quadratic color distance (Chapter 3, Equation (3-1)).  

The obtained results are presented in Table 6-11.  

Let us note that the quadratic color distance provides significantly better results. However, the 

obtained scores are lower (of 40%) than the GraphCut related performances, while the computational 

time is one order of magnitude higher than GraphCut.  

The main problem here is the low discriminative characteristic of the color distances between 

the regions. Thus, rather dissimilar regions are considered when constructing the affinity matrix. On 

one hand, this leads to an increase of the number of elements to be processed. On the other hand, most 

of the regions are dissimilar and the algorithm fails from identifying correct correspondences. 

Reducing the threshold for the individual matching, makes it possible to reduce the computational 

costs, but does not improve the retrieval performances. 

We have then extended our experiments to the hybrid object representation, which makes it 

possible to integrate both color and RootSIFT interest point descriptors.  

Concerning the construction of the affinity matrix, we have considered different values of the 

weighting factors related to the visual, spatial and geometric components (Chapter 5.2, 

Equation (5-2)), with   between 0.2 and 0.5, for   between 0.5 and 0.7 and for    between 0.3 and 0.5. 

The results are quite stable for the different configurations considered. In the following, we will 

present the results obtained with parameters      ,      ,      . 
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Table 6-11. Experimental results for the region-based Spectral Matching using MeanShift 160 

and SuperPixels 250 segmentations when performing intra- video search. 

Segmentation method Spectral Matching 

Regions 

Intra video search Inter video search 

FT ST FT ST 

MeanShift 160 Quadratic color distance 61.0 72.8 33.5 38.8 

Spectral Matching score 18.01 33.86 1.17 2.71 

SuperPixels 250 Quadratic color distance 52.2 67.9 18.4 26.9 

Spectral Matching score 12.94 24.3 0.65 0.01 

 

While the evaluation of the global similarity of two images has different solutions in literature, 

the evaluation of the similarity of two object instances is still a challenging problem. We propose for 

testing five similarity measure computed from the object entities identified by the Spectral Matching 

(SM). First, we employ as similarity measure the sum of the cumulated eigenvalues for generating the 

final object configuration with the greedy Spectral Matching [Leordeanu 2005]. This term 

encapsulates the similarities between the correspondences and the pairs of correspondences from the 

different images that have been selected for the final object configuration. We will refer to this 

measure as        . 

Second, we employ the quadratic color distance employed for the MPEG-7 DCD 

representation. We use it to compute intermediate color similarities during the SM process as the most 

powerful correspondences are identified and added to the region configuration. We compute the color 

similarity between the different region configurations; both in the query and test image, and retain the 

best score. We will refer to this score as          
      .  

Further we propose the following three similarity measures, leveraging on the first two 

measures: 

                          
                (6-2) 

                      
           

              
 (6-3) 

                         
         

           

              
 (6-4) 

where             is the number of points that have been matched by SM and                is the 

number of interest points in the query object.  

             leverages on both color information from region color similarity and intensity 

information of interest points. We use the sub-unitary color similarity score as a weight for        , 

giving it a confidence measure if it scores high on both spectral matching and color similarity or 

penalizing a cluster of matched interest points with low color similarity. 
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             and              compute the ratio of matched points from the query object 

and weight it with         and respectively with          
      . 

The results are summarized in Table 6-12. Overall, the performances are lower than the ones 

of GraphCut and the search time 2-3 times longer (the algorithm was parallelized on 4 threads). Let us 

not that in this case the affinity matrices were computed at query time. In a large scale framework, the 

matrices can be computed offline for each pair of images and at query time the data corresponding to 

the points involved can be read directly and hence improve significantly the search time. Most of the 

positive results are missed due to very low number of interest points for some frames. This makes it 

difficult to construct meaningful groups of interest points; even though the segmented regions were 

used as spatial support.  

Let us note that the best performances for the SM have been obtained by two of the fusioned 

scores, namely              and              which integrate the color information. This 

illustrates that the color information can successfully compensate the lack of intensity information 

from less textured images. 

Table 6-12. Experimental results for Spectral Matching on hybrid object representation, using 

MeanShift 160, SuperPixels 250 and SuperPixels 500 segmentations. 

Segmentation method Spectral Matching Intra video search Inter video search 

FT ST FT ST 

MeanShift 160 SM Score 51.0 63.4 28.2 30.6 

Quadratic Score 42.6 62.6 19.6 24.0 

Fusion Score 1 50.1 64.2 28.6 33.8 

Fusion Score 2 48.9 63.7 27.1 30.8 

Fusion Score 3 47.7 63.6 25.7 31.6 

SuperPixels 250 SM Score 51.3 62.0 28.3 32.2 

Quadratic Score 45.4 59.9 24.9 29.7 

Fusion Score 1 53.8 66.0 30.8 33.3 

Fusion Score 2 48.1 63.7 28.8 31.4 

Fusion Score 3 52.0 64.6 30.2 33.7 

SuperPixels 500 SM Score 51.2 64.9 27.5 30.9 

Quadratic Score 44.7 59.4 23.5 28.3 

Fusion Score 1 52.1 65.2 29.9 32.5 

Fusion Score 2 49.4 64.5 28.9 31.0 

Fusion Score 3 52.9 66.7 29.2 34.2 
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6.3.2.9 Methods benchmarking 

Finally we evaluate the methods proposed in this work by comparing its results with a state-of-the-art 

approach for object retrieval in videos. We employ the popular Bag of Words technique which has 

been successfully used in many efficient video retrieval systems [Sivic 2003, Snoek 2008, Zhu 2012]. 

From the set of 5580 key-frames we detect Hessian-affine regions [Perdoch 2009] and 

describe them with RootSIFT descriptor [Arandjelovic 2012]. We obtain approximately 2 million 

descriptors and cluster them in different vocabularies using approximate k-means [Philbin 2007]. We 

evenly sample 10% of the descriptors and build two lightweight visual vocabularies of 10,000 and 

20,000 visual words. We build two other visual vocabularies using all descriptors from the dataset and 

obtain a vocabulary of size 50,000 and one of 200,000. After the matching sequence the top 50 results 

are passed through the geometric consistency check and re-ranked according to the number of verified 

matches. The performances of the BoW approach (FT, ST and AP) are presented in Table 6-13, in 

comparison with our proposed methods. 

For an easier evaluation of the performances we compute the average precision score which is 

typically used for evaluating BoW performances. The results illustrate the difficulty of the dataset. Out 

of all methods the top scorers are obtained by the SA and GraphCut methods, with equivalent 

performances. The Relaxed Greedy 10 method is ranked on the third position. Out of the interest 

point–based runs, we notice that the SM with              achieves the best results, outperforming 

the BoW.  

Table 6-13. Benchmark to BoW. 

Segmentation method Run Inter video search 

FT ST MAP 

MeanShift 160 Relaxed Greedy 10 32. 7 44.4 0.3461 

SA CIE76 45.0 52.2 0.4348 

GraphCut CIE76 41.6 50.8 0.4299 

SM Fusion Score 1  28.6 33.8 0.2964 

SuperPixels 250 Relaxed Greedy 10 32.7 44.4 0.3678 

GraphCut CIE76 40.9 49.0 0.4090 

SM Fusion Score 1  30.8 33.3 0.3078 

SuperPixels 500 Relaxed Greedy 10 31.2 45.4 0.3382 

SM Fusion Score 1  30.8 33.3 0.3003 

Hessian-affine RootSIFT BOW 10k 21.0 24.8 0.2209 

BOW 20k 19.8 23.9 0.2102 

BOW 50k 23.6 24.6 0.2352 

BOW 200k 23.7 26.3 0.2456 

 

All BoW runs display low scores. This might be due to the fact that most of the considered 

queries are poor in texture and hence in corners to be detected and described. In addition the variation 
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in the appearance and pose of the queried objects is strong making it difficult for the interest point 

descriptors to capture accurately the objects. This corpus is rather difficult for the BoW approach and 

emphasizes the situations were region-based approaches can be more suitable. Nevertheless the hybrid 

region representation displayed better performances, showing its usefulness in such type of datasets. 

 

6.3.2.10 Discussion 

In this section we have tested the performances of the DOOR methods on natural videos.  

We have seen that when dealing with color descriptors on such type of video content, the Lab 

color space and the CIE 76 color distance measure return the best results. Experiments performed over 

multiple segmentations displayed similar performances, leading us to conclude that our framework can 

be generalized to other segmentation methods. 

We have evaluated and compared the performance of all methods proposed for identifying the 

configuration of regions (i.e., sub-graph of the region adjacency graph) yielding the highest similarity 

score. The SA and GraphCut optimization methods provided the best results, followed by the Relaxed 

Greedy 10 method. The comparison with the BoW technique has illustrated that our region based 

representation is competitive on difficult medium sized datasets. The hybrid object representation and 

the Spectral Matching technique have provided less competitive results, but outperformed the BoW 

runs. 

While the computational times of the SA method make it prohibitive for any object retrieval 

engine, the Graph Cut and the Relaxed Greedy could be employed for such tasks on medium sized 

dataset provided that they are optimized (i.e., better memory utilization, parallelization). The main 

drawback of the proposed DOOR methods is the computational cost, unlike the BoW which returns 

results in less than 1 second. This shows that, in the case of inter-video search and retrieval from large 

databases, the most suitable use case of our methods is a re-ranking phase, applied after a high speed 

retrieval method such as BoW. 

An advantage of our DOOR methods is the short indexation time. The indexation consists in 

decomposing the video into shots and over segmenting the key-frames. Practically, videos can be 

indexed as they are uploaded to a storage server. In a BoW framework, whenever a new video is added 

to a collection, the vocabulary of the entire dataset needs to be updated with the descriptors for the 

current video or a new dedicated vocabulary is generated for the video. This process takes longer 

(approximately 1 hour) than the segmentation of the frame. This feature of the DOOR methods can be 

very handy for general public applications where users are interested in annotating quickly their 

videos. 

 

6.3.3 Multiple queries 

In the second part of our experiments we tackle the issue of retrieving instances of an object starting 

from a small set of two to nine images containing the object of interest. Since this is also the use case 
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of the TRECVID Instance Search Task we employ the BBC Rushes dataset used in INS TRECVID 

2011 and the Flickr video dataset from INS TRECVID 2012. 

 

6.3.3.1 BBC Rushes 

Here, we have considered a limited number of key-frames per shot (up to 4). We have then over-

segmented each such keyframes in order to obtain a semi-global image representation with the 

MeanShift 160 method (Figure 6.16).  

 

 

Figure 6.16. Video frames (left) and their segmentations (right). An average of 160 segmented 

regions provides in this case a “recognizable” image. 

 

Experimental setup 

The workflow of the offline processing of the videos is illustrated in Figure 6.17. 

 

 

Figure 6.17. Offline processing flow. 

 

Most of the clips from the BBC Rushes dataset consisted of sequences containing usually one 

or two shots. We have extracted from these clips up to 4 keyframes at equal intervals of time. 

Furthermore, we have filtered out the near-duplicate frames by using a color histogram distance 
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computed between all the frames extracted from a video clip. A total of 34614 distinct key-frames 

were retained and then segmented. The videos have been resized to 352×288 pixels, which 

corresponds to the resolution of a majority of movies among the video clips in the data set. We have 

left unchanged the frames with lower resolutions and modified the segmentation parameters to 

generate a proper number of color regions. 

We have then performed searches using the Relaxed Greedy 10 scheme and the results from 

different examples of the same query topic were ranked according to their best score among all runs. 

In order to test the influence of the number of key-frames considered for search we have 

performed another run on the unfiltered key-frames (approx. 72k) and on set obtained with a shot 

boundary detector tuned to detect light changes in the scenes (approx. 120k) [Tapu 2011]. The average 

computational time for the 34k dataset is 29 minutes and for the 72k dataset is 50 minutes. We have 

also tested the SA algorithm on the 72k dataset in order to compare its performances with the Greedy-

based method. The results are presented in Figure 6.18. 

 

 

Figure 6.18. Experimental results on BBC Rushes dataset using Relaxed Greedy 10 and SA. 

 

Results 

We can notice that the performance increases with the number of considered frames and that overall 

the SA outperforms the Relaxed Greedy runs. The best performances are obtained for queries 

corresponding to location/background items. In this case the query image is larger and this feeds more 

region information in our methods. We notice that for some queries (e.g., 9024, 9028, 9037, 9041) the 
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Relaxed Greedy outperforms by little the SA runs. This is a hint that in some cases the SA does not 

reach the global optimum, as suggested in [Boykov 2001]. 

Recently, Zhu et al. [Zhu 2012] have performed extensive experiments on this dataset and 

concluded that the dataset is a background oriented one. In fact when comparing the results of a query 

using only the content under the binary mask (i.e. foreground) with the results of a query using only 

the content outside the binary mask (i.e. background), the latter provided a higher performance. In our 

experiments we have considered only the information under the binary mask. An improvement in the 

performance could be then made by considering the contextual information of the queries.  

 

6.3.3.2 Flickr dataset 

We extend our experiments on the Flickr dataset which contains mainly general public videos. 

 

Experimental setup 

We have seen in the previous experiments that the number of considered key-frames is a significant 

factor for improving performance. In this respect, for this dataset we consider a higher number of 

frames per video and evenly sample 1 frame per second. This results in approx. 683,000 frames to 

process. In order to lower the computational cost we resize these frames to a surface area near the one 

of 384 x 288 resolutions. We then extract the Hessian-affine regions and the RootSIFT descriptors. 

We finally obtain 245,575,000 regions and their descriptors. We sample 10% of the descriptors and 

cluster them in a vocabulary of 1 million visual words using the approximate k-means [Philbin 2007]. 

In order to test the influence of the frame resolutions to the search we compute a different vocabulary 

from the descriptors extracted from the original frames. Thus we extract 482,440,000 regions and 

descriptors, sample 5% of them and obtain a vocabulary of 1 million visual words. 

We propose for testing two quantization strategies: frame-based and video shot-based (cf. 

Section 4.4 and 4.5). For the former, the frames are quantized individually resulting in 683,000 BoW 

vectors. For the latter, descriptors from the frames of the same shots are grouped and the quantization 

is performed at the shot level, resulting in 74958 BoW vectors. This reduces significantly the 

computational cost at query time. 

Concerning the contextual information, we use the binary mask provided within the 

TRECVID 2012 INS task. When the number of interest points is less than 20, we compute a bounding 

box around the object defined by the binary mask and expand it gradually until at least 20 interest 

points are considered. This makes the current object “searchable” by leveraging on its contextual 

information, but not including the whole image content in the search, which might be noisy. 

 

Influence of video resolution 

First we compare the influence of the resolution of the indexed videos in the search performances. For 

all runs we consider the original sized queries in order to capture as much information as possible 
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from the query images. We propose for testing the shot based BoW description and we summarize the 

results in Figure 6.19. 

 

 

Figure 6.19. Overview of results on Flickr dataset using original and resized videos. 

We can notice that the results for both methods are comparable, with a slight higher 

performance for the resized videos (approximately 0.01 in MAP). In addition the context information 

brought by the bounding box increases the performances of both approaches with 0.005-0.01 in MAP. 

The MAP for all runs is illustrated in Table 6-14. The lower results for the original sized videos might 

be caused by the increased number of descriptors in each video clip. Thus many noisy descriptors 

from the BoW representation could deteriorate the score. In the following experiments we will employ 

the resized dataset which yielded higher performances. 

We have also compared the performances of the shot based BoW with the frame based BoW 

on the Flickr dataset. In the case of the frame based BoW, we launch a query for each query example 

image and then aggregate the results into a single list by selecting the best score for each video among 

all queries. The MAP of the frame based run is 0.0352, which is significantly lower than the MAP of 

the shot based BoW, 0.0975. This drop in performance is due to the multiple aggregations required for 

compiling the results from multiple queries. Firstly from each video shot we select the frame yielding 

the best score for a query, then for each video we select again a best score among all runs. These steps 
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can discard positive candidates that yield a weaker similarity score with one of the queries. In addition, 

since some topics display rather different instances of the same object, the top results and the 

similarity scores for the different queries might be different. A top score for one of the queries can be a 

weak score for another one, so this can cause results that are relevant for the other query to be 

discarded. Following we will be using the shot based BoW descriptors. 

Table 6-14. MAP on Flickr dataset using original and resized videos. 

Dataset type Run MAP 

Original videos Object mask 0.0774 

Object bounding box 0.0879 

Resized videos Object mask 0.0947 

Object bounding box 0.0975 

TV12 Median 0.0795 

 

Computational complexity 

One of the main advantages of the BoW method concern it’s speed during the live querying stage. In 

our experiments a typical query in the Flickr dataset performed among the BoW vectors (74958) took 

3 minutes at most on a single machine on 8 paralellized threads. The time depends on the number of 

descriptors in the query and on their distinctiveness (i.e., the number of videos where the descriptors 

have been retrieved through the inverted index) and it can drop to 20 second for a query with few 

interest points.  

However during the off-line phase, the computational times are significantly higher. On the 

same machine, the detection of the Hessian affine regions and the extraction of their descriptors take 

up to a couple of days for 683,000 key-frames and the random sampling of 10% of the descriptors and 

their clustering takes up to one day and a half. The quantization of the video clips into BoW vectors 

can take up to 2 days.  

 

Query expansion evaluation 

We now proceed to the evaluation of the query expansion algorithm proposed in Section 4.6. We have 

downloaded from Flickr 3 sets of images of sizes Ndownload = 25, 50, 75 using the textual information 

provided by the producers for each query. Let us note that since we have used the exact textual 

information provided (Table 6-1), some queries could not be retrieved in more than a couple of 

instances (e.g., “Puma logo animal”) making the topic not-searchable in the dataset as not enough 

visual information is available.  

For each query, we determine a query graph and identify the representative images as 

connected components in this graph. Concerning the required minimum number of geometrically 

verified matched interest points (Nmin) for two images to be connected with an edge in the query 

graph, we have experimented with values between 5 and 20 points. The performance was slightly 
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better for Nmin between 5 and 10. For the experiments presented below we considered Nmin = 5. Some 

examples of representative images determined are illustrated in Figure 6.20.  

 

Figure 6.20. Representative images identified for different queries. 

 

In order to describe the representative images and their matches, we test two complementary 

methods: centered and distributed representative queries. For the former we have considered solely the 

descriptors from the representative image that have been matched. In this way, points that have been 

matched multiple times will have their descriptors added for quantization multiple times. For the 

distributed representation, we consider the descriptors from the images that have been matched with 

the iconic image. In this manner more diverse descriptors will be considered in the query.  

The images that we have downloaded from Flickr are visually different from the video frames. 

In order to see if there is any improvement brought by the TRECVID query images, we introduce 

them in the query graph generation. 

The results of our experiments are summarized in Table 6-15. For each representative image, 

we issue a separate query and then the results for representative images associated to the same topic 

are aggregated in a single ranked list, by selecting the best score for each video among all runs. In 

Figure 6.21, we illustrate some results for different iconic queries belonging to the same topic (i.e., 

“Eiffel tower” - 9050). We can notice that object instances similar with the one in the representative 

image are retrieved. These results are then aggregated in a single list for the topic. 

We can notice that the best results are obtained for the collections of 50 images. For smaller 

collections; the number of identified collections is too low. In such cases, if no representative image 

has been identified, we choose the pair of images with the highest number of matches and construct an 

iconic descriptor from the matched descriptors from both images. The performance is still below the 

collections of size Ndownload  = 50. For large collections, the increased number of representative images 

and descriptors become noisy and degrade the performance. 
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a) 

 

b) 

 

c) 

Figure 6.21. Results for different iconic queries (left column) belonging to the “Eiffel tower” 

topic – 9050. Each image corresponds to the first frame extracted from the retrieved shot. The 

lower section illustrates the aggregated list from a set of 6 queries. 

 

The influence of introducing the TRECVID 2012 queries within the query collection is 

positive, the retrieval performance in terms of MAP score being very slightly improved (with up to 

0.01). Let us note that we have here used the query images only for building the matching graph and 

not for issuing queries in the dataset. 
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Table 6-15. Experimental results on query expansion. 

Query expansion method Number of Flickr 

images 

Using Trecvid2012 

queries 

MAP 

Centered representative 

query  

25 No 0.0430 

Yes 0.0510 

50 No 0.0684 

Yes 0.0768 

100 No 0.0479 

Yes 0.0522 

Distributed representative 

query 

25 No 0.0449 

Yes 0.0660 

50 No 0.0712 

Yes 0.0756 

100 No 0.0552 

Yes 0.0601 

We have seen in Section 4.5 that grouping the frames of the same video shot provides a 

significant computational boost by reducing the number of BoW descriptors. In a similar manner, we 

have grouped the representative images in a single BoW representation. The advantage is that in this 

case we issue solely a single query. The results obtained are presented in Table 6-16. We can notice an 

improvement in the retrieval MAP scores for all the considered runs. Furthermore, the positive 

influence of the original queries is increased in this case. In Figure 6.22, we illustrate some visual 

examples of the results obtained for two distributed iconic query topics. 

We compare the query expansion runs with a classical BoW run, relying on the original 

images and their masks. Using the regions under the masks we construct a topic BoW descriptor for 

multiple queries and use it for search in the database. The results are presented in Figure 6.23. 

 

 

a) 
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b) 

Figure 6.22. Results for different iconic query topics: a) “Pantheon interior” – 9056; b) “Golden 

Gate Bridge” - 9050. Each image corresponds to the first frame extracted from the retrieved 

shot. 

 

Figure 6.23. Overview of query expansion results on Flickr dataset. 
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We notice that the query expansion results are similar with the ones leveraging on the original 

queries and their binary masks. In many cases, even the expanded queries that do not use the original 

queries provide very good results, outperforming the median MAP value for the TRECVID2012 runs 

(which is of 0.08). The results are encouraging as they show that simple textual queries make it 

possible to determine relevant images that can serve then to retrieve relevant video content.  

Table 6-16. Experimental results on query expansion with queries grouped in topics. 

Query expansion method Number of Flickr images Using Trecvid2012 queries MAP 

Centered representative topic  50 No 0.0702 

Yes 0.0819 

Distributed representative  topic 50 No 0.0712 

Yes 0.0893 

 

Finally, we test our method in a more standard query expansion manner [Chum 2007] and use 

the representative image descriptors to enrich the original query descriptors. The new queries and their 

corresponding descriptors are then searched within the dataset. Similarly with our previous 

experiments, we test the influence of adding the query images in the construction of the query graph. 

The results are summarized in Figure 6.24. We notice that for all runs the improvement of the results 

with up to 0.03 in MAP. The distributed iconic topic with the original query images in the query graph 

featured the best performance of 0.1295 MAP. Let us note that overall the MAP scores are similar 

(less than 0.01 difference) among all considered runs. 

 

Figure 6.24. Overview of standard query expansion results on Flickr dataset. 
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Soft assignment influence 

In the following; we have tested the influence of the soft assignment of the query descriptors on the 

retrieval results. We have followed the procedure proposed in Section 4.4.2 and considered for 

quantization the first five visual words correspondences for each query point descriptor. The results 

are illustrated in Figure 6.25. Overall the MAP is lower for the original queries (- 0.015) and better for 

the query expansion runs (+ 0.007 for the centered queries and unchanged for the distributed queries). 

The centered queries benefit from the soft assignments since they have interest points from only one 

image and they are less diverse. The mapping to multiple visual words can be regarded in this case as 

an additional query expansion with multiple visual words assigned to the query image. In addition, 

since the query expansion images are obtained from a different dataset than the one used for the 

construction of the vocabulary, descriptors can be miss-quantized often and in such cases the soft-

assignments become handy. 

 

Figure 6.25. Results for hard and soft assignment based runs on Flickr dataset. 

 

Query expansion generalization 

Finally we have tested the generalization of our query expansion method to other popular image 

search engines on the web, such as Google Images [Google 2012c] and Bing Images [Bing 2012]. 

Such search engines are very popular for image content search retrieve and leverage on powerful 

image retrieval algorithms, user annotations and relevance feedback. The first results are in most of 
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the cases relevant and usually contain diverse content (e.g., different poses of the object of interest, 

different styles – photo, painting, line drawing …). In the same time this can be a drawback as 

representative instances of an object are more difficult to identify. In order to overcome this drawback 

and to collect a more relevant initial set of image to build the query graph, we have selected the top 10, 

15 and 20 results from the same textual query on Bing, Flickr and Google, leading to sets of 30, 45 

and 60 images. In this manner, the most representative instances of the object of interest can be 

identified among the results from the different search engines and aggregated in a mixed expanded 

query descriptor. Let us note, that some images retrieved by Bing or Google have expired links or 

cannot be accessed for download. We discard such images from our set and select the next images 

available for download from the list of results. 

In this set of experiments, for each topic we have computed a BoW descriptor over all the 

respresentative images of the topic and its corresponding descriptors. Let us note that original query 

images have not been included in the construction of the query graph. The results for the runs using 45 

images are summarized in Figure 6.26.  

We can notice that the results are slightly lower than the ones of the query expansion 

generated only from the Flickr images (approx. 0.07 MAP for our expansion and 0.10 MAP for the 

standard expansion). This lack of improvement in the results is due to the increased variety of images 

retrieved by the web search engines. This reduces the number of representative images and matched 

points leading to a weaker expanded query. The advantage of this approach is the increased speed, as 

the download of the images is parallelized on the three engines and the number of images to download 

from each engine is reduced (i.e., 15). 

6.3.3.3 Discussion 

In this section we have evaluated the performances of our BoW setting on the Flickr dataset. We have 

seen that videos of relatively reduced sized allow the retrieval of different object instances even in 

large scale datasets. In addition the effectiveness of a shot based descriptor for video search coupled 

with a query descriptor obtained from multiple query descriptors; has been proven. This setting has 

provided results superior to the classical frame-based BoW video object retrieval. 

Concerning our query expansion algorithm, we have seen that good performances can be 

obtained even by using only textual queries to generate a visual query to search. The main drawback 

relates to the formulation of the textual query in order to retrieve plausible images containing the 

object of interest. In our examples we have considered the textual descriptions provided in the 

evaluation campaign and this affected a certain queries. For example, the Pantheon topic 9056 had the 

textual descriptor “Pantheon interior”. The Flickr search returned images of the Pantheon from Rome, 

but also many images of the Pantheon from Paris; affecting negatively the results. A more specific 

textual query such as “Pantheon Rome interior” would have provided a strong base for a visual query 

about the Pantheon. 
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Figure 6.26. Results for query expansion using images from multiple search engines. 

The perspectives of improvement for the query expansion algorithm concern the use of fewer 

images for building the query descriptors. For 50 Flickr images, the download takes 60 -120 seconds 

and the generation of the query graph takes approximately 120 seconds. A possible extension could to 

consider fewer images (e.g., 15-20) and to identify multiple pairs of matched images and to feed them 

to an ad-hoc SVM classifier [Boser 1992, Cortes 1995], similarly with [Arandjelovic 2012], which 

would then rank the frames of the dataset according to the learned weights.  

Another issue to address is the pertinence of the images retrieved by the search engines. Since 

most of them use textual annotations given by users, many images could be mislabeled and thus not 

relevant for our query. A possible solution would be to launch the textual query over multiple image 

search engines (e.g., Flickr, Google Images, Bing Images) and to retrieve only the top results which 

are usually positive. However, these engines usually retrieve very diverse content in the top results, 

making it difficult to retrieve representative images. In such cases, the condition of representative 

image (i.e., at least two matched images) can be relaxed and consider pairs of matched images. Yet in 

this manner we would rely very much on the pertninence of ther results retrieved by the search 

engines. Other mechanisms for validating pairs of images and points need to be addressed in future 

work. 
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PART II. OVIDIUS: A Web-Based Video Indexing and 

Retrieval Platform 





 

 

 

7. State of the art on video browsing and retrieval 

platforms 

 

Abstract: This chapter proposes a comprehensive review of the state of the art in video browsing 

and retrieval systems and platforms. A multitude of video systems for both personal and professional 

use have been elaborated recently. Various parameters and factors need to be considered when 

designing a video browsing and retrieval system, including the richness of the video data; the devices 

that use the system, the design and ergonomics of the user interface, the navigation and search 

functionalities. We study these parameters across multiple systems and platforms that have been 

proposed in the last years and summarize their main functionalities. Both desktop-dedicated systems 

and mobile platforms are here described. Four families of approaches are identified, according to 

targeted functionality: Known-Item Search systems, video discovery and consumption systems, video 

archive and content organization systems and research prototypes for video navigation and discovery. 

Finally, a set of criteria that need to be taken into account when elaborating video browsing and 

retrieval platforms is proposed. 

Keywords: video databases, multimedia indexing platforms, web systems, video navigation and 

browsing, search and retrieval. 

Résumé: Ce chapitre propose une revue complète de l’état de l’art dans les systèmes et plates-

formes de navigation et recherche de contenu vidéo. Une multitude de systèmes vidéo pour utilisation 

personnelle et professionnelle ont été élaboré récemment. Des différents paramètres et facteurs 

doivent être considérés lors de la conception d’un système de navigation et recherche de vidéo, 

notamment la richesse des données vidéo, les dispositifs qui sont utilisés pour accéder au système, le 

design et l'ergonomie de l'interface utilisateur, les fonctionnalités de navigation et de recherche. Nous 

étudions ces paramètres sur plusieurs systèmes et plates-formes qui ont été proposées dans les 

dernières années et nous résumons leurs principales fonctionnalités. Systèmes dédiés aux ordinateurs 

de bureau et plates-formes mobiles sont décrites ici. Quatre familles d'approches sont identifiées, 

selon la fonctionnalité ciblée: des systèmes de recherche d'éléments connus, des systèmes pour la 

découverte et la consommation des vidéos, des systèmes pour des archives vidéo et pour l'organisation 

du contenu et de prototypes de recherche pour navigation et découverte de vidéo. Un ensemble de 

critères qui doivent être pris en compte lors de l'élaboration des plates-formes pour la navigation et la 

recherche des vidéos est proposé. 

Mots clés: bases de donnnés vidéo, plates-formes d’indexation multimédia, sysèmes web, navigation 

de vidéos, recherche et récupération. 
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Multimedia search engines, and notably image and video search engines, represent the fruit of joint 

efforts and advancements in many different research areas such as temporal decomposition and 

chaptering, audio-visual feature extraction and description, machine learning, as well as visualization, 

navigation, interaction and user interface ergonomics and design. Existing popular video search 

engines (e.g., YouTube [YouTube 2012], VideoSurf [VideoSurf 2011], Blinkx [Blinkx 2012], Vimeo 

[Vimeo 2012], DailyMotion [DailyMotion 2012]) are based on lexicons of semantic concepts and 

perform keyword-based queries. Such systems usually involve simple web interfaces that present the 

results of a query as a ranked list of preview icons. Additionally, such systems offer little interaction 

and flexibility, as they do not allow the users to perform complex queries based on the visual content 

and as search options are limited to the tags and keywords assigned by the users. 

Several surveys in the field have been recently conducted in order to gather a set of necessary 

user requirements that a video search engine should fulfill [VidiVideo 2012, IM3I 2012]. Such surveys 

collected opinions and feedback from both scientists and video archive professionals. The analysis first 

showed that there is a strong need of a web-based indexing system, remotely accessible from both 

fixed and mobile devices over Internet. This would be necessary for increasing the accessibility and 

interoperability of the archives in both intra and inter-organization scenarios. A second strong 

requirement revealed by the user requirement analysis concerns the possibility to formulate complex, 

composite queries and to expand them with the help of ontology reasoning mechanisms [Wang 2004].  

With the explosion of available multimedia content and content-producing devices, consumers 

gather impressive amounts of images and videos in their personal collections. Functionalities that were 

until now demanded mostly by professional producers, are becoming equally necessary for consumers, 

as there are very few available tools for organizing their archives in a structured manner. As a 

consequence, the multimedia search engines should be adapted to the needs of the general public user, 

offer ergonomic and user-friendly interaction mechanisms.  

In this chapter, we propose a critical review of the existing technologies and approaches. 

Our work draws upon research in several areas concerning multimedia content management: 

content-based image and video retrieval, multimedia content management, user feedback management 

and distributed content sharing. With the ever increasing amount of available multimedia content, 

researchers have been undergoing tremendous work on developing navigation and retrieval systems 

and identifying different use cases to leverage on this data. 

Systems and interfaces suitable for video content navigation have been studied since the early 

years of video retrieval [Manske 1998]. The last years have seen significant advancements of the web 

technologies, correlated with the emergence of the Web 2.0, which pointed a milestone in the field 

multimedia content distribution and consumption. Since 2006, we have evolved from pioneer web 

image search systems such as PARAgrab [Joshi 2006]; exploiting visual features and textual meta-data 

for search, to general public applications for content-based multimedia retrieval such as Google 

Goggles [Google 2012c]. 

The various systems proposed in the literature are dedicated to either PC/desktop systems or 

to mobile terminals, since the associated capabilities in terms of storage/bandwidth and memory 

capacity represent strong constraints that have to be appropriately taken into account when elaborating 

a video search engine. Within this framework, let us first analyze the desktop-dedicated systems. 
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7.1 Desktop-dedicated systems 

In this case, we identify three main families of existing navigation and retrieval systems that are 

categorized according to their main functionality:  

1. “Known-Item-Search” systems,  

2. Video discovery and consumption,  

3. Video archive organization and annotation,  

4. Experimental systems for new ways of navigation and discovery of the video content.  

Each family of approaches, together with representative methods and systems, is described in detail in 

the following sections.  

 

7.1.1 Known-Item Search systems 

A first category of systems is represented by the so-called “Known-Item Search” (KIS) paradigm. The 

KIS task models the situation in which a user have knowledge of a video already seen, believes it is 

contained in a collection, but does not know where to look. To begin the search process, the user 

formulates a text-only description, expressed with the help of a few related keywords. Alternatively, 

whenever the user retrieves an element similar with the content of the target video, the user can 

perform a query-by-example in order to retrieve other instances of the content/objects from the current 

shot. Such systems usually target professional users offering a variety of tools for quick navigation of 

a database and search. Competitions and benchmarking campaigns such as TRECVID [Smeaton 

2006], VideOlympics [Snoek 2008] or Video Browser Showdown [Schoeffmann 2012b] offer the 

occasion of testing such prototype platforms in a competition-like environment, under strong time 

constraints. Although such platforms currently address highly advanced use-cases, they provide an 

insight to the future visual search and navigation technologies. 

First, let us mention the hierarchical video retrieval system developed in the Fudan University 

[Sun 2008], which uses an adaptive multi-modal fusion method and enables the user to browse the 

results hierarchically across different levels of temporal granularity. The main browsing space is 

mapped onto a sphere and offers 3 degrees of freedom: the X axis, representing the temporal degree of 

freedom, the Y axis, where results are ranked by the degrees of confidence; and the Z axis which 

provides zooming in/out mechanisms for browsing across different levels of search granularity. The 

interface and its navigation features have proven to be more effective in an interactive TV 

implementation using a remote control. 

In [Vrochidis 2008], the MKLab interactive retrieval system brings back in the spotlight the 

traditional MPEG-7 descriptors. The system takes advantage of the MPEG-7 visual descriptors 

capturing different aspects of human perception such as colour and texture in order to provide a 

content-based similarity search. This search system is built in a web environment (php, JavaScript and 

a mySQL database) providing a graphical user interface for performing retrieval tasks over the 

internet. Retrieval results are presented ordered by rank in descending order with links to the 

temporally neighbouring shots of each one. The interface mimics the functionality of the shopping cart 

encountered in electronic commerce sites. 
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The LIGVID System for Video Retrieval [Ayache 2010] features two types of interfaces with 

different degrees of complexities, corresponding to expert and novice users. This web-based system 

displays the video shots on a classical 2D grid view, with an adjustable number of lines and columns. 

The search mechanism considers a temporal similarity, which introduces in the result list positive 

shots in the neighbourhood of the positive samples. The content retrieval process is enhanced by 

considering a large collection of concept names to use for queries. 

A different approach of video search engine with an emphasis on the interactivity aspects of 

the application is proposed in [Zhe 2009]. Here, the VisionGo platform brings a very fast navigation 

system along with an increased interactivity, while taking full advantage of the users’ a priori 

knowledge. A user can simply draw a mouse stroke across the object to obtain its bounding box and 

the subsequent visual search process is performed based on this object region. 

Other approaches put the stress on the video browsing aspects and design the user interface 

accordingly, aiming to provide to the user a quick overview of a video or of a collection of videos. The 

VideoMap application [Cao 2009]
 
displays the similarity relationships among the whole video 

collection using a map-based interface.  

The AAU video browser [Fabro 2012] features a parallel and a tree-like browsing interface for 

navigating in a hierarchical and non-sequential manner through the content of single videos or within 

small video collection. No video structuring or segmentation is here required, since authors adopt a 

simple strategy: each video is uniformly divided into n segments of equal length. The user can 

navigate hierarchically in the video, each time dividing the current video segment in other n subparts. 

The MediaMill group brings a series of innovative contributions to the field. In [Rooij 2007] 

the concept of “thread” for navigation through various video shots is introduced. A thread is defined as 

a linked sequence of camera shots represented as iconic images from various videos in some specified 

order. Threads are the basis for navigation in this system. They have been given different utilities, 

according to the type of navigation that they are offering: query result thread, visual thread (based on 

visual similarity), semantic thread (based on semantic similarity), time thread (based on the time-line), 

textual thread (based on similarity of textual annotations). Several thread-based browsers have been 

proposed, each of them aiming to cover different use-cases: the RotorBrowser, the CrossBrowser 

[Snoek 2007] and the combination of the previous two, so-called the ForkBrowser [Rooij 2009].  

The RotorBrowser starts from an initial query result and the user can select a so-called focal 

shot S that is displayed in the center of the screen. The RotorBrowser provides then several navigation 

paths according to that focal shot S by displaying all the video threads that contain S in a star 

formation (Figure 7.1). The CrossBrowser is a lightweight version of the RotorBrowser suitable for 

non-professional users. The simplified CrossBrowser interface solely provides horizontal and vertical 

navigation. The time thread is visualized in the horizontal direction while the visually similar shots of 

S are displayed in the vertical one (Figure 7.1).  
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Figure 7.1. Screen captures of the CrossBrowser (left) and RotorBrowser (right) interfaces for 

multi thread visualization and navigation [Snoek 2007] 

 

Such tools have been further extended in the ForkBrowser system, similar with the 

RotorBrowser, but displaying fewer threads related the timeline, visual similarity and navigation 

history. All systems have achieved top results during the TRECVID 2006-2008 evaluation campaigns 

[Smeaton 2006]. 

Figure 7.2 illustrates the user interfaces of the mentioned Known Item Search video navigation 

and retrieval systems and Table 7-1 presents a synthetic overview on their functionalities. 

 
 

Fudan University system [Sun 2008], MKLab system [Vrochidis 2008] 
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LIGVID System for Video Retrieval [Ayache 2010] VisionGo [Zhe 2009] 

 
 

VideoMap [Cao 2009] AAU video browser [Fabro 2012] 

 

 

 

 ForkBrowser [Rooij 2009]  

Figure 7.2. Overview of the interfaces of Known Item Search systems. 
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Table 7-1. Overview of the features of Known Item Search systems. 

System Web access Navigation Querying Content description Main features 

Fudan University - 

Hierarchical Video 

Retrieval [Sun 2008] 

No Yes Yes 

- video decomposed into shots 

- Gabor, Gray Level Co-occurrence Matrix, MPEG-

7 descriptors (Edge Histogram, Color Layout, 

Scalable Color) trained using SVM 

- textual description from audio transcript 

- hierarchical video browsing scheme 

- visual similarity search, transcription based search 

MKLab system 

[Vrochidis 2008] 
Yes Yes Yes 

- videos decomposed into shots 

- MPEG-7 visual descriptors (color, texture) 

- interactive video retrieval using MPEG-7 

descriptors 

- 2D grid web interface mimics functionality of 

shopping cart encountered in e-commerce sites 

LIG Multi-Criteria 

System [Ayache 2010] 
Yes Yes Yes 

- videos decomposed into shots 

- textual description from audio transcript, phonetic 

string, similarity to example images, semantic 

categories, and relevance 

feedback strategies 

- video retrieval system embedding multiple 

descriptors and search methods 

- two types of interfaces with different degrees of 

complexities 

- 2D grid view of video shots 

VisionGo [Zhe 2009] No Yes Yes 

- videos decomposed into shots 

- supervised learning of concepts using BoW and 

SVM 

- learning from users’ relevance feedback 

- fast navigation system leveraging user feedback for 

search 

-keystroke based navigation 

-visualization of groups of 3 shots 

Fork Browser [Rooij 

2009] 
No Yes Yes 

- videos decomposed into shots 

- supervised learning of concepts using BoW and 

SVM 

- visual similarity using BoW 

- multiple thread-based video navigation 

- number of threads adjustable to the type of user 

-fast keystroke based navigation 

The AAU video 

browser [Fabro 2012] 
No Yes No - videos decomposed in slices of equal lengths 

- visualization of multiple keyframes and hierarchical 

navigation among equal length video slices 
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7.1.2 Video discovery and consumption systems 

This family of approaches concerns video platforms dedicated to the general public. The ergonomics 

of the associated user interfaces is usually subject of thorough studies of user needs, behavior and 

feedback. This typically results in user-friendly interfaces and interaction mechanisms. The queries are 

most often performed with the help of textual tags. In addition, the associated search engine is able to 

integrate different features such as textual query, popularity, novelty of the content, and user viewing 

history, in order to rapidly provide relevant content.  

In what concerns the video visualization and representation, the documents are usually 

represented by a thumbnail extracted randomly from the video along with the title given by the author. 

Eventually, existing tags, such as those manually inserted by the user can also be displayed. Such 

platforms accurately reflect the current needs of the users, their knowledge and preferences in terms of 

navigation, search and video content. 

Among existing video consumption platforms, let us first mention the famous YouTube 

platform [YouTube 2012], which became the second most popular search engine on the web (after 

Google). YouTube features today the largest repository of videos on the web and the highest growth 

rate with 72 hours of video uploaded every minute [YouTube 2012c]. Youtube’s search functionalities 

are mostly based on textual tagging combined with complex user behavior and feedback analysis.  

In its first versions, the videos are treated as global, monolithic documents and their 

corresponding spatial-temporal structure is not all taken into account. However, very recently (in 

2012), the platform integrated an innovative intra-video navigation functionality which has been 

proposed to the general public [YouTube 2012b]. In this case, a simple mouse roll-over on the video 

progress bar instantly displays the thumbnail of the key-frame corresponding to the selected 

timestamp. Moreover, a secondary progress bar makes it possible to zoom-in on the temporal 

neighborhood of the selected time stamp. (Figure 7.3). This shows the interest of getting access, within 

a given video, to finer elements of information corresponding to specific actions and events. However, 

for the time being, the YouTube solution only allows user-guided, manual browsing and does not 

provide any tool for intra-video search and retrieval. 

Similarly to YouTube, VideoSurf [VideoSurf 2011], another main stream video platform, 

allows users to navigate through a video using a thread of uniformly sampled frames from the video. 

The same display style is used for the search function giving the possibility to visually navigate 

through the search results in order to find specific scenes, people or events and decide whether the 

videos contain shots of interest or not.  

Let us mention that there are numerous other video search engines such as DailyMotion 

[DailyMotion 2012], Truveo [Truveo 2012], Blinkx [Blinkx 2012], Trooker [Trooker 2012] that offer 

similar services. 

Finally, let us mention the Voxalead News [Law-To 2009] platform. Here, the user can search 

for news videos by specifying free text keywords or by selecting from a list of pre-defined keywords, 

corresponding to a basic ontology (including elements such as location, name of person, institution…). 

The application then displays a set of preview thumbnails for the news video, their date, a short 

description and their source. The user has also the possibility to navigate inside the video at the precise 



Chapter 7. State of the art on video browsing and retrieval platforms 

 

166 

 

moment where a certain keyword is mentioned. This feature is achieved with the help of a speech-to-

text, technology which interprets the audio track in order to provide rich textual annotations that are 

synchronized with the video content.  

 

Figure 7.3. Advanced fine video preview and navigation using the video player time bar on 

YouTube [YouTube 2012]. A sliding window on the time bar grants finer access to the video 

segment underneath it. The second time bar is displayed above the main bar and mouse-over 

moves display key-frames from selected video time stamps. 

 

7.1.3 Video archive organization and annotation 

Recent years have been marked by massive campaigns of digitization of video and audio archives 

around the world. Some of the national archives with the richest multimedia archives in Europe, such 

as BBC (British Broadcast Corporation) [BBC 2012], INA (Institut National d l’Audiovisuel) [INA 

2012] or Beeld en Geluid (Netherlands Institute for Sound and Vision) [SoundVision 2012], which are 

disposing of enormous amounts of non-digitized multimedia content, have been undergoing 

campaigns for digitization and re-usage of their video archives. The digitization process includes a 

transcription of the audio channel, providing a good basis for content retrieval by keywords. Yet, 

retrieval of video content using solely textual queries in such vast collections of content can get very 

difficult due to textual ambiguities, repetitive words or audio transcription errors. Dedicated tools for 

visualization, annotation and search of such archives have been developed in order to complement the 

audio transcriptions. 

Within this context, let us first mention the approach introduced in Bailer et al. [Bailer 2012]. 

Authors propose a web-based video browsing tool displaying video key-frames on a light table and 

illustrating clusters of similar key-frames with the help colored highlighters. Several features are 
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considered for measuring the similarity between key-frames, including camera motion parameters, 

visual activity descriptors, global color descriptions and object trajectories. They are represented with 

the help of the MPEG-7 standard [MPEG 2002, MPEG 2003] and stored in a SQLite database [SQLite 

2012].  

Other post-production platforms such as Lignes de temps [IRI 2009] address the annotation 

aspects in more detail, introducing tools for manual annotation of particular video segments. The user 

has the possibility to browse the videos, select/display video segments of interest, and to perform 

collaborative annotation. 

MediaTable [Rooij 2010] is a complex system designed for large multimedia collections and 

featuring three main functionalities. Notably, MediaTable makes it possible to provide an insight into 

a multimedia collection, to categorize the collection into several clusters, and to perform efficient 

video searches. Users can easily explore a multimedia collection through a table-based interface 

(Figure 7.4). In addition, a grid and a point cloud viewer can be employed for the exploration of the 

archive. Popular semantic concept detection algorithms are here employed for video search purposes. 

Content of interest can be stored temporarily in so-called “bucket-lists” that allow the user to view, 

tag, and mark video items as relevant/non-relevant. 

Bertini et al. [Bertini 2011] introduced MediaPick, a web-based system featuring an interface 

adapted for large surface multi-touch devices. Users have the possibility to explore ontology graphs 

and perform queries-by-concept in a large video repository starting from elements of these graphs. In 

addition, they can visualize, organize and annotate the videos in a personalized manner. Let us also 

note that the authors propose a PC counterpart, more suitable for multi-user usage. The search engine 

exploits a bag-of-words implementation based on interest point descriptors for automatic semantic 

annotation, and MPEG-7 visual and audio descriptors for the queries-by-example. 

Recently, TexMix [Bréhinier 2012] has tackled the issue of search and retrieval of large 

collection of broadcast news videos. They exploit speech transcription, natural language processing 

and image retrieval techniques. The HMTL5 implementation increases the interactivity of the interface 

allowing the user to navigate through keywords search or through time maps. Several hyperlinks are 

automatically created either between various reports related to a given subject or to the Web, in order 

to find out additional information about a given story, person or fact. Two TexMix features are of 

particular interest. The first one concerns the generation of a dynamic summary, based on keyword 

extraction, which gives the possibility to catch up news quickly on a specific topic. The second one is 

the geo-tagging capability, which makes it possible to look up for news related to specific locations. 

A synthesis of the above-cited video archiving approaches is presented in Figure 7.5 and in 

Table 7-2. 

 



Chapter 7. State of the art on video browsing and retrieval platforms 

 

168 

 

 

Figure 7.4. The MediaTable interface [Rooij 2010]. The table interface takes up most of the 

figure, with the overview pane to the far right and the bucket list on the bottom. The series of 

filled cells indicate each detected concept’s presence or absence in each video fragment. The 

colors in the table and in the overview indicate in which buckets each fragment is currently 

categorized. 

Let us note that, so far, most of the existing systems have been focusing on professional, 

expert users, with a specific goal of organization and reuse of video content. Yet, as the multimedia 

archives are gradually becoming available to the general public, as in the case of the vast European 

television heritage [EUscreen 2012], the next years will require significant advancements in the field. 

Thus, advanced tools for navigation and retrieval of such multi-lingual content should become 

affordable to the general public. 

Identifying the important socio-economic challenges associated with such evolutions, several 

research prototypes have been recently proposed in the literature. They are described in the following 

section. 
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JoanneumVideo Browsing Tool [Bailer 2012] Lignes de temps [IRI 2009] 

  

MediaPick [Bertini 2011] MediaTable [Rooij 2010] 

 

TexMix [Bréhinier 2012] 

Figure 7.5. Overview of the interfaces of systems for video archive organization and annotation. 
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Table 7-2. Overview of systems for video archive organization and annotation. 

System Web access Navigation Querying Content description Main features 

JoanneumVideo 

Browsing Tool 

[Bailer 2012] 

Yes Yes Yes 

- MPEG-7 descriptors: camera motion estimation, 

visual activity estimation, global color features, 

object trajectories 

- video browsing on a light table 

- clusters of similar keyframes illustrated with colored 

highlighters 

Lignes de temps [IRI 

2009] 
No Yes No 

- manual annotations and slicing of the video in 

chunks 

- collaborative annotation 

- parallel visualization of multiple threads of annotations 

MediaTable [Rooij 

2010] 
No Yes Yes 

- Popular semantic concept detection algorithms 

(Bag of Words  + Support Vector Machine 

classification) 

- 3 types of interface(table, grid, point cloud) 

- automatic organization of videos on rows, grids, clouds 

according to queries 

- “bucket-list” for storing videos temporarily for further 

annotation, relevance evaluation, viewing  

MediaPick [Bertini 

2011]  
Yes Yes Yes 

- Bag of Words for automatic semantic annotation 

- MPEG-7 descriptors and audio descriptors for 

queries-by-example 

- web based implementation for large surface multi-touch 

devices and desktops 

- ontology-graphs for concept visualization and querying 

- video organization and annotation can be performed by 

the users 

TexMix [Bréhinier 

2012] 
Yes Yes Yes 

- keywords and concepts extracted from the audio 

transcript and EPG 

- Bag of Words from interest points descriptors 

- geographical information for each video 

- interactive user interface using HTML5 specification 

- navigation through keywords, maps and links between 

videos 

- dynamic summary generated from keywords 

- geo-tagging used for finding news related to a location 
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7.1.4 Research prototypes for video navigation and discovery 

Many researchers have experimented with more innovative designs of the video search systems and of 

the associated user interfaces, envisioning new ways of discovery and exploration of video content.  

In [Schoeffmann 2012a], thumbnail images representing video shots are projected onto a 3D 

ring for the purpose of enhancing the browsing in a large dataset. The images are organized in a ring 

structure based on their dominant colors, represented in the HSV color space. Groups of similar 

images, with respect to their color representation, are then presented in the same color-sequence.  

In [Schoeffmann 2011], multiple 3D projection rings/carousels are used for hierarchical 

browsing of video content. Key-frames are linearly sampled from videos and displayed on the 

carousel. A click on a given key-frame generates another carousel displaying the first hierarchy level. 

Further levels of detail can be accessed similarly until frame level granularity is reached (Figure 7.6).  

Halvorsen et al. [Halvorsen 2010] propose a web-based video search system, with video 

streaming delivery, for searching videos included in PowerPoint presentations, using the associated 

metadata. However, the specificity of the considered application limits its applicability to a large video 

indexing framework.  

 

Figure 7.6. Hierarchical video browsing using 3D projection carousels [Schoeffmann 2011]. 

 

Jansen et al.
 
 [Jansen 2008] introduce the concept of VideoTrees, which offer a hierarchical 

tree-like temporal presentation of a video through associated key-frames. The key-frames are placed 

adjacently to their parents and siblings such that no edge lines are required to show the affiliation of a 

node. With each depth level, the level of detail increases as well. A user may navigate from a semantic 

root segment to one of the subjacent scenes, then to one of the subjacent shot groups, and finally to 

one of the subjacent shots. The current selected node in the tree is always centered, showing the 

context (i.e., a few adjacent nodes) in the surrounding area.  

A dynamic hierarchical browsing tool for single camera videos is also proposed in 

[Girgensohn 2011]. The hierarchical structure is here obtained with the help of key-frame clustering 

methods, based on both temporal closeness and visual similarities, in order to enforce a well-balanced 
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tree structure. The balanced structure of the tree makes it possible to reach any key-frame of the video 

after equal number of steps so-called short-paths. The short-paths allow the users to efficiently reach 

the most promising clusters and to visualize their representative key-frames. The interface facilitates 

the quick browsing of the structure of the video for retrieving images or short clips of interest.  

The above-mentioned approaches with associated features are summarized in Table 7-3. 

Table 7-3. Overview on prototypes for video navigation and discovery. 

System Navigation entity Main Features 

3D thumbnail ring 

[Schoeffmann 2012a] 

- 3-dimensional ring of keyframes 

clustered by colors 

-frames are organized  by HSV dominant 

color similarity 

Hierarchical video browsing 

[Schoeffmann 2011] 

- multiple 3-dimensional carousels 

of keyframes 

- hierarchical video decomposition in 

slices of equal lengths until frame 

granularity is reached 

- a new carousel is used for every level 

VideoTrees  [Jansen 2008] 

- hierarchical tree-like temporal 

presentation of a video through 

keyframes 

- keyframes are placed adjacently to their 

parents and siblings and no edge lines are 

required to show the affiliation of a node 

- the current node in the tree is always 

centered and shows just his adjacent nodes  

Adaptive clustering and 

visualization [Girgensohn 

2011] 

- balanced tree structure of videos 

for quick navigation 

- balanced tree structure decomposition 

using temporal and visual proximity 

- tree structure adapted to task (image 

search or video shot search) 

vESP[Halvorsen 2010] - Web based grid interface 
- Search engine for videos obtained from 

PowerPoint presentations 

 

Let us now present the video browsing and search engines dedicated to mobile usages.  

 

7.2 Mobile platforms 

Currently we are witnessing a proliferation of powerful mobile phones, so-called “smartphones”, 

capable of fast connections and high-fidelity multimedia rendering. According to the consultancy 

company Nielsen, the amount of smartphone subscribers in the United States has augmented from 

14% at the end of 2008 to 29% at the beginning of 2010. The same study predicts that by the end of 

2011 in the U.S. there will be more smartphones than feature phones [Nielsen 2011]. 

Meanwhile, average mobile users seem to take more advantage of the new features provided 

by the phone, such as the faster internet connection. Thus, the use of Wi-Fi increases 10 times from 

5% for feature phone owners to 50% for smartphone users [Nielsen 2011]. A recent study made by 
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Nielsen illustrates that in the U.S. active mobile video users grew by 57% from the fourth quarter of 

2008 to the fourth quarter of 2009, from 11.2 million to 17.6 million [Nielsen 2010]. This means that 

mobile subscribers are also developing a growing appetite for online video content. 

When considering video-related applications, the functionalities of such devices are however 

constrained by their size and by the computational/memory capacities. Existing studies have put an 

emphasis on the consumer’s behavior, aiming to build user-driven interfaces and applications [Wang 

2007]. Within this context, an important technological challenge concerns the issue of 

accessing/retrieving video content from mobile devices. The critical point relates to the high 

complexity of video content, in terms of amount of heterogeneous information included. In order to 

tackle the issue of complexity, appropriated presentation and search engines, as well as novel 

interaction modalities need to be developed. In addition, in a mobile framework, it is of outmost 

interest to ensure a personalized access to segments of interest, defined as parts of an audio-visual 

document. User should have the possibility of rapidly browsing the content and identify/access solely 

the segments of interest in order to limit the bandwidth and storage capacity required. 

Due to the high level of complexity of designing a video navigation and retrieval system on 

mobile terminals, most of the early developments have been focusing rather on image-based 

approaches. Within this context, let us first mention the Multimodal Automatic Mobile Indexing 

(MAMI) system [Anguera 2008], which allows users to annotate and search for digital photos via 

speech input combined with time, date and location information.  

Jesus et al. use geographical queries to retrieve personal pictures from various locations of 

interest [Jesus 2007]. Zhu et al. integrate the above-mentioned features in their user-centric system, 

called iScope [Zhu 2009]. The iScope system uses multi-modality clustering of both content and 

context information for efficient image management and search. In addition, online learning 

techniques are exploited for predicting images of interest, while supporting distributed content-based 

search among networked devices.  

Kim et al. use CBIR techniques for visual-content recommendation [Kim 2004] while Yeh et 

al. exploit mobile images for content-based object search [Yeh 2005]. The CLOVER system [Kim 

2005] searches for sketches or photos of leaf images on a server starting from a mobile phone. Photo-

to-Search performs queries directly on the web using images acquired with a mobile device [Jia 2006]. 

Recently, a handful of mobile image recognition systems have conquered the smartphone 

world as applications for instant object recognition from pictures taken by the user and uploaded to a 

dedicated web server. The server processes the image descriptors and launches a query on a search 

server and the results are then send back to user. Let us mention the pioneer application PlinkArt 

[PlinkArt 2010] that is able to recognize works of art from museums starting from pictures acquired 

with a mobile phone . Recognition of film posters, product catalogs, printed ads, billboards or product 

packaging can be performed with the help of systems such as such as pixlinQ [PixlinQ 2012], 

Kooaba [Kooaba 2012], Moodstocks [Moodstocks 2012] or Google Goggles [Google 2012c]. Google 

Goggles can additionally recognize logos and landmarks by making use of the GPS functionalities of 

the phones. Such systems provide API’s for advertisers, publishers and consumers for indexing their 

own content and make it retrievable by visual queries through different mobile applications. 
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Let us now present and discuss the mobile visual content retrieval systems that specifically 

address the issue of video content navigation and retrieval on handheld devices.  

The issue of incompatibility between video resolution and certain mobile phones is addressed 

by the researchers from Zhejiang University [Liu 2009]. The user feedback is here used in order to 

update the metadata for video clips, including the acceptable resolution. In addition, redundant 

versions with lower resolution are generated for video clips by estimating their popularities. 

The Multimedia Content Creation Platform (MMCP) [Jarvinen 2009] takes full advantage of 

the context information provided by the mobile device each time a new picture or video is created and 

added immediately as a metadata (date, time, location, etc.). The platform can be used both for 

generating new contact and retrieve content as well. 

The system proposed in [Chen 2008] allows users to retrieve video content starting from a 

mobile photo uploaded by the user. The search engine in the background returns videos containing key 

frames that are similar with the uploaded picture. An automatic key frame extractor and the Contrast 

Context Histogram (CCH) are here used as descriptors. 

Let us also mention the innovative approach proposed by Miller et al. Their mobile media 

content browser, so-called MiniDiver, has been developed and installed on an iPhone device. 

MiniDiver [Miller 2009] is based on four user interfaces serving mobile context sensitive video. After 

selecting the desired video or program via a simple interface, the user can visualize the content from 

one or two camera perspectives simultaneously. The MiniDiving user history is saved and can also be 

retrieved. Some semantic search mechanisms are provided for improving the navigation experience. In 

the case of live broadcasts, users can get highlighted a certain number of moving objects (e.g., hockey 

players). They can select the favorite camera angles, in a multi-camera setting. 

The emergence of tablet PCs, featuring powerful hardware configuration and larger screens 

than typical smartphones, has opened the path for a new generation of mobile video navigation and 

retrieval systems. Let us mention the recent advancements of Scott et al. [Scott 2012] who introduced 

the Clipboard system for visual search and browsing on both tablet and PC. The cross-platform 

deployment is ensured by the HTML5 implementation of the platform ensuring access from a large 

variety of handheld devices, while the search process is performed by selecting concepts from a set 

pre-defined dataset. Queries-by-example can be also performed by simply selecting a key-frame. The 

videos are decomposed into scenes and shots. MPEG-7 visual and audio descriptors are used for 

representing content. The search engine relies on several approaches, including a Bag-Of-Words 

model, a SVM framework for concept-based search, the fusion of MPEG-7 descriptors and Automatic 

Speech Recognition (ASR) transcripts of video-shots.  

The various systems presented in this section, with associated features and functionalities are 

summarized in Table 7-4.  
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Table 7-4. Overview of mobile multimedia navigation and retrieval systems. 

System Image/Video Device Web access Navigation Querying Main Features 

MAMI [Anguera 2008]. image mobile phone no yes yes 

- annotation and search for photos on the phone 

- audio tags, MPEG7 descriptors combined with time, date 

and location information are fusioned for search 

Geographic Image Retrieval 

[Jesus 2007]. 
image PDA yes yes yes 

- image retrieval using geographic queries 

- geographical coordinates, maps and images can be used 

as queries to retrieve images related to a touristic landmark 

iScope [Zhu 2009]. image smartphone yes yes yes 

- visual descriptors (color histogram, wavelets, region 

colors, SIFT ) are fusioned with GPS and time information 

for image clustering and retrieval 

pixlinQ [PixlinQ 2012], 

kooaba [Kooaba 2012], 

Moodstocks [Moodstocks 

2012], Google Goggles 

[Google 2012c] 

image/video 
smartphone/ta

blet 
yes no yes 

- fast recognition of works of art, film posters, commercial 

products, ads, book covers, logos, landmarks  

- GPS information of the device is considered in the search 

- typically function as APIs for various commercial 

applications 

Zhejiang University system 

[Liu 2009] 
video mobile phone yes yes yes 

- system capable to recommend to users videos adapted to 

their resolutions and bandwidth 

Multimedia Content 

Creation Platform [Jarvinen 

2009] 

image/video mobile phone yes yes yes 
- web-based platform for managing user-generated content 

- content can be retrieved from context information  

Mobile Device Video 

Retrieval [Chen 2008] 

 

video mobile phone yes no yes 

- images taken by the user are uploaded and queried on a 

video database using the Contrast Context Histogram 

-the query image is matched with video keyframes  

MiniDiver [Miller 2009] video smartphone yes yes no 

- context sensitive video browser environment 

- provides mechanisms to select multiple camera views, 

navigate hyperlinked video, save and retrieve navigation 

history 

Clipboard [Scott 2012] video tablet yes yes yes 

- HTML5 implementation available to multiple handheld 

devices 

- BoW and SVM are used for concept-based search 

- MPEG-7 descriptors and AST transcripts are used for 

visual similarity search 
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7.3 Discussion 

The analysis of the state of the art shows that multiple bottlenecks need to be addressed and solved in 

order to come out with a video indexing platform able to jointly meet different user requirements, 

different levels of expertise of the users and various use cases, while fully exploiting the intrinsic 

spatial-temporal structure of a video document. Typical user requirements that need to be addressed 

are the fast navigation/browsing of the video content, intuitive and efficient querying techniques, fast 

retrieval of relevant content displayed in a format allowing quick identification of the targeted content, 

ease of access from various types of terminals and operating systems (OSs). Complex and professional 

services additionally require elaborated and multi-modal video descriptions, combining multiple types 

of descriptors (audio, visual, textual, semantic). 

Concerning the mobile systems, the majority of the current approaches address the issue of 

image retrieval, as the deployment of a video browsing and retrieval platform on an enormous variety 

of terminals is still a highly challenging issue. Until recently, most of the mobile systems were 

implemented as native applications, with different specifications for each smartphone, OS and 

hardware configurations. The recent advancements brought by the HTML5 standard have opened new 

paths for developing such systems as web applications, taking advantage of the new features provided 

by the mobile web browsers. So far, the existing pioneer approaches offer interesting preliminary 

solutions to the issue of mobile video access. However, most of them are basically mobile versions of 

their desktop-based counterpart and hence, do not take into account the specificity of mobile devices, 

environments and usages/services. In addition, they massively focus on textual queries, while an 

efficient search process should consider rich and multimodal queries, combining text, image, audio 

and video features. 

Another drawback of existing systems comes from the fact that videos are often considered in 

a monolithic manner, without taking into account the intrinsic spatial-temporal structure of the video 

content. However a common video document may include a huge amount of heterogeneous 

information that needs to be identified, described and accessed independently.  

Thus, elaborating dedicated tools for query formulation, metadata driven 

visualization/navigation and ergonomic user interaction in both fixed and mobile environments is still 

a challenge that needs to be addressed and solved.  

The above-mentioned problems are addressed by the proposed OVIDIUS system. We begin by 

defining the required design criteria on which we will built upon. Rooij et al. [Rooij 2008]
 
identified 

six criteria for designing video search engine interfaces: 

1. The interface should always indicate to the user where he/she can go; 

2. The interface should not overwhelm the user; 

3. The interface should avoid switching between different interfaces. Also, the faster the 

user is able to select; 

4. The interface must use a clear mapping between navigation and visualization; 

5. The interface must be able to browse within a shot; 

6. The interface must support queries demanding explicit motion. 
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Out of these criteria we retain and adapt three of them (i.e. 1, 2 and 4) as being highly 

important for a video search engine interface. In addition, we propose four other criteria that we 

consider essential for a video browsing and retrieval system. The retained design criteria are explained 

here below. 

Criterion 1: The interface should always indicate the possible directions for browsing 

videos/databases. 

When using an intra-video navigation system users can easily get lost inside the video. In such 

cases, for each new operation the user have to restart their navigation or search. In order to avoid this, 

the interface should provide information about the current position of the user inside the video or the 

search results and it should also display directions for further navigation or for returning at an earlier 

point of choice. 

Criterion 2: The interface should not overwhelm the user. 

Contrary to the first criterion, an interface could display extra directions and information 

overloading the displayed space and overwhelming the user’s attention span. If an interface is too rich 

in information, the user requires more time to adapt to it, to use it and to process the available visual 

information before a decision is possible. 

Criterion 3: The system should provide a balance between the visualization, navigation and 

search features 

When searching for a certain piece of content, users can skim through results and typically 

take a closer look at some of the results in order to check whether the respective result is the targeted 

one or not. The interface should allow the visualization of the results and the possibility to return to 

the navigation of the results. In addition, the search should not occlude the navigation and 

visualization functionalities. Search could be done in parallel while the user can still navigate in video 

portions of interest. 

Criterion 4: The user should be able to browse within the video hierarchically. 

Videos are rich containers of information and a global description of its content is difficult to 

obtain. For an easier understanding and faster navigation of the video, a hierarchical structure of the 

video needs to be elaborated. A three-level tree decomposition of the video in scenes, shots and key-

frames can be suitable for different use cases. The grouping of the shots in meaningful scenes is also 

an issue to be addressed for a better navigation and search experience. 

Criterion 5: The query formulation should be performed in a user-friendly and intuitive 

manner. 

Most users are accustomed to performing textual queries whenever they are looking for 

information (e.g. documents, images, videos ...). Such a search mechanism has to be integrated in the 

system in an easy to spot place. A list of choices in terms of keywords to be used for search can be 

provided in order to guide the user in his search. For video search engines, visual queries can prove 

more effective than its textual counterparts. Yet, in the majority of cases this is a new concept for the 
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user. Therefore, a visual search mechanism should both serve as a search tool and as a tool for training 

the user in using visual queries. It should be seamlessly integrated in the platform and easy to use. 

Criterion 6: The system should be remotely accessible. 

Both personal and industrial video archives can expand quickly and require massive amounts 

of storage space. In such cases, users typically store their content on a personal server or on cloud-

based service allowing simultaneous multiple user access. A video navigation and search system 

should be then remotely accessible granting access to online video repositories to any Internet 

connected device. 

Criterion 7: The interface should be plugin-free and available to multiple terminals and 

operating systems 

Currently we are witnessing the existence of a myriad of computers, devices, operating 

systems with different screen sizes, functionalities, web browsers and operating systems versions. 

Developing applications adapted to the specificity of each device requires the elaboration of different 

versions, each one dedicated to a certain device. An obvious alternative is to develop a web based 

system that can be accessed from a multitude of devices. Yet, many popular web technologies (e.g. 

Flash) require the installation of a web browser plugin for content rendering. Such plugins are 

becoming unavailable to many portable devices. In order to ensure the availability to a higher number 

of terminals, the interface should be implemented with standard open web technologies (e.g., HTML5, 

JavaScript) compatible with most of the Internet connected devices. 

Such criteria have been taken into account in the design of the OVIDIUS platform, described 

in the following chapter.  

 

  



 

 

 

 

8. The OVIDIUS platform 

 

Abstract: In this chapter we introduce a novel on-line video browsing and retrieval platform, so-

called OVIDIUS (On-line VIDeo Indexing Universal System). In contrast with traditional and 

commercial video retrieval platforms, where video content is treated in a more or less monolithic 

manner (i.e., with global descriptions associated with the whole document), the proposed approach 

makes it possible to browse and access video content in a finer, per-segment basis. The hierarchical 

metadata structure exploits the MPEG-7 approach for structural description of video content. The 

MPEG-7 description schemes have been here enriched with both textual/semantic and content-based 

metadata. The platform is accessible on the web from various, both desktop and hand-held devices. 

Moreover, the system exploits a modular and distributed architecture that makes it possible to 

distribute the workload on various servers, with heterogeneous operating systems. The various 

communication protocols adopted are also presented in this chapter. Finally, OVIDIUS integrates the 

DOOR method and allows fast video object retrieval.  

Keywords: multimedia platforms, browsing and retrieval, video, web services, MPEG-7, HTML5, 

multi-terminal access.  

Résumé: Dans ce chapitre, nous introduisons une nouvelle plate-forme en ligne pour la navigation 

et la recherche de vidéo, dits OVIDIUS (On-line VIDeo Indexing Universal System). Contrairement 

aux plates-formes traditionnelles et commerciales de recherche de vidéo, où le contenu vidéo est traité 

d'une manière plus ou moins monolithique (c'est à dire, avec des descriptions globales associées à 

l'ensemble du document), l'approche proposée permet de naviguer et d'accéder au contenu vidéo dans 

une manière  plus fin, par-segment. La structure hiérarchique des métadonnées exploite l’approche de 

la norme MPEG-7 pour la description structurelle du contenu vidéo. Les schémas de description 

MPEG-7 ont été ici enrichie de métadonnées textuelle/sémantique et basées sur le contenu. La plate-

forme est accessible sur le web depuis différents appareils, fixes et portables. En outre, le système 

exploite une architecture modulaire et distribuée qui permet de répartir la charge de travail sur des 

serveurs différents, avec des systèmes d'exploitation hétérogènes. Les protocoles différents de 

communications adoptées sont également présentés dans ce chapitre. Enfin, OVIDIUS intègre la 

méthode DOOR et permet la recherche rapide des objets vidéo. 

Mots clés: plates-formes multimédias, navigation et recherche, vidéo, services Web, MPEG-7, 

HTML5, accès multi-terminal. 
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The proposed OVIDIUS (On-line VIDeo Indexing Universal System) platform aims at solving the 

limitations of existing systems, by ensuring all the interaction and navigation capabilities needed to 

access video content at a fine level of granularity, from both fixed and mobile devices.  

The main contributions proposed and integrated in the OVIDIUS system are the following:  

 Modular and distributed architecture, achieved with the help of web services, which makes it 

possible to easily upgrade the system in order to keep pace with inherent future technological 

advances,  

 Fine granularity access to video content, based on the MPEG-7 structural approach for video 

content description [MPEG 2003] 

 Core interoperability achieved with open MPEG-7 standard technologies, 

 Enrichment of MPEG-7 structural description schemes with semantic and content-based 

descriptors,  

 Advanced interaction functionalities integrating browsing, search, hierarchical navigation 

and visualization capabilities on an HTML5 plug-in free interface, 

 3 different types interfaces for different types of use (lightweight, professional, mobile)  

 Support of both textual, content-based and hybrid queries, 

 Compatibility with a vast variety of terminals and operating systems.  

 

8.1 OVIDIUS platform: system overview 

Figure 8.1 illustrates the distributed architecture adopted in the OVIDIUS platform. It includes a 

content management module (i.e., storage and editing of content and metadata), a metadata extraction 

engine, a MPEG-7 search engine and a web interface which can be remotely accessed from mobile and 

fixed environments. 

All the components of the system can be distributed on various servers. We consider an 

Apache web server for the frontend [Apache 2012a], while for the background processing we employ 

Apache Tomcat servers [Apache 2012b]. The communication between servers and modules is 

achieved through HTTP requests and Java Servlets, while the data is transferred as XML files. Such a 

modular approach facilitates the future extensions of the platform as well as the replacement of 

individual components (e.g., video players, search engine, type of content descriptors, etc.).  

An in-depth diagram of the employed technologies together with the associated 

communication protocols between the various modules of the system is presented in Figure 8.2.  
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Figure 8.1. Overview of the architecture of the OVIDIUS platform. 

 

For the client-side, our implementation relies on the HTML5 specification [HTML5 2012a]. 

The visual effects and the interactivity functionalities are enhanced with JavaScript functions. In 

addition we employ that jQuery JavaScript library [jQuery 2012] for the management of page events 

and AJAX (Asynchronous JavaScript and XML) methods [AJAX 2012] enabling the exchange of 

XML files between the client and the server and quick updates of sections of the web page. This 

makes it possible to quickly update individual sections of the web page, according to the user input. 

The communication with the web server is performed through HTTP requests and responses and with 

AJAX based HTTP POST commands. 

For the server-side, we have considered an Apache web server [Apache 2012a], which 

handles all the communication with the client. The Apache server relies on php functions. In addition, 

we insert some supplementary servers in the architecture of the system with specific roles. The 

workload is thus distributed on several machines and the architecture can be further extended with 

other servers with new functionalities. This frontend Apache server is connected to a Java Apache 

Tomcat server [Apache 2012b] (MPEG-7 search engine server from Figure 8.2) implementing Java 

Servlets. The MPEG-7 server manages the video metadata (video IDs, EPG information; video 

structure, time stamps, keywords, visual descriptors) in XML format. As it stores the video metadata, 

the MPEG-7 server is also employed as a search engine. The communication between the frontend 

server and the MPEG-7 server enables the quick navigation in the video and the update of the 

displayed video content and information according to the user’s input and decisions. Once the user 

performs an action requiring the display of additional content, the Apache servers sends to the MPEG-

7 server a HTTP request containing the parameters given by the user’s action. The MPEG-7 server 

processes this request and returns the result in XML format. The Apache server parses the XML in php 

and displays the required content on the web page. Note that the AJAX method from the web interface 

can also trigger requests and communications between the Apache and the MPEG-7 server. This is 

typically a HTTP POST request and the result is displayed by updating a specified section of the web 

page, without reloading or manually refreshing the whole page. 
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Figure 8.2. Technologies and communication protocols employed for the modules and the 

communication between them. 

 

The Apache frontend server communicates with a Content storage server (which is also an 

Apache web server). The main purpose of this server is to store the videos from the dataset and their 

associated keyframes. In addition, the content storage server supports the metadata extraction function. 

Whenever a new piece of content is added to the dataset, the processing of the content and the 

description extraction are performed on this server with C/C++ programs. Once extracted, the 

metadata is then uploaded to the MPEG-7 server through cURL commands [CURL 2012]. The content 

storage server also handles the processing of the object retrieval methods presented in Section 3. The 

search application is a C++ program and it’s launched with an HTTP request sent to its CGI interface 

[CGI 2012]. This request is performed by the Apache server and the results are returned in XML 

format and displayed to the user. The content storage server communicates with the terminal as well, 

sending key-frames and streaming the video content to the client. 

The following sections describe the functionalities of each of the components considered.  

 

8.1.1 MPEG-7 structural video content description 

The ISO/WG11/MPEG-7 standard [MPEG 2001], is a multimedia content description standard, 

emerged in the early 2000 years. MPEG-7 is formally called Multimedia Content Description 

Interface. Unlike the previous MPEG standards (MPEG-1/2/4), which deal with the issue of 
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multimedia//video content encoding, MPEG-7 provides a complementary functionality, related to 

image/audio/video metadata representation. Thus, the scope of MPEG-7 concerns the standardization 

of multimedia content descriptions.  

MPEG-7 can be used independently of the other MPEG standards and is also independent of 

the representation used to store the content. In a general manner, the objectives of the MPEG-7 

standard are the following: 

 Provide fast and efficient searching, filtering and content identification technologies; 

 Describe main issues about the content (low-level audio and visual characteristics, structure, 

semantics, models, collections….); 

 Support a wide range of applications, 

 Describe the relationships between objects included in a scene, 

 Ensure independence between the description and the information itself. 

 

In order to achieve such objectives, a number of different tools have been developed. They 

include a set of descriptors (the elements), description schemes (the structures), a Description 

Definition Language (DDL) (for extending the predefined set of tools) and a number of Systems tools 

[Pereira 2002]. 

Such tools are recalled here-below: 

 Descriptors (D):  

o A descriptor is a representation of a feature, where a feature is a distinctive audio or 

visual characteristic of the data (e.g., color, texture, motion, 2D/3D shape…)  

o A descriptor allows an evaluation of the corresponding feature via the descriptor 

value. It is possible to have several descriptors representing a single feature, in order 

to address different relevant requirements/functionalities. 

 .Description Schemes (DS):  

o A description scheme specifies the structure and semantics of the relationships 

between its components, which may be both descriptors (D) and description schemes 

(DS). 

o A description scheme provides a solution to model and describe multimedia content in 

terms of structure and semantics. 

 Description Definition Language (DDL): 

o The DDL is a language that allows the creation of new description schemes (DS) and, 

possibly, descriptors (D).In the case of MPEG-7, an XML Schema approach has been 

adopted  

 System tools: 

o Tools related to the binarization, synchronization, transport and storage of 

descriptions, as well as to the management and protection of intellectual property. 



Chapter 8. The OVIDIUS platform 

 

185 

 

MPEG-7 fulfills a key function in the forthcoming evolutionary steps of multimedia. As much 

as MPEG-1, MPEG2 and MPEG-4 provided the tools through which the current abundance of 

audiovisual content could happen, MPEG-7 provides the means to navigate through this wealth of 

content. The strong point of MPEG-7 is its generality. Today we are facing the age in which content 

companies are by no means constrained by their own traditional delivery mechanisms, while content 

consumers are no longer tied to a single source of content. This generality of MPEG-7 is a value that is 

in line with past MPEG standards: the objective is to provide a generic solution that is technically 

agnostic of the environment [MPEG 2001]. 

Even without MPEG-7, there are many ways to describe multimedia content in use today in 

various digital asset management systems. Such systems, however, generally suffer from several 

interoperability issues and creating/adopting a standard is the only way to address them. The main 

results of the MPEG-7 standard are the increased interoperability, the prospect to offer lower cost 

products through the creation of a sizable market with new, standard-based services and a rapidly 

growing user base.  

In our work, we have considered the MPEG-7 structural approach for video description 

[MPEG 2003], which is based on an abstract class of Segment. An MPEG-7 Segment represents an 

arbitrary part of a video and includes generic descriptors (e.g., textual annotations, keywords, temporal 

localization elements for specifying the starting and the ending time stamps of a segment, spatial-

temporal locators for specifying arbitrary-shaped objects of interest….).  

Starting from this abstract structure, which cannot be directly instantiated, a set of media-

specific segments is derived by applying an inheritance mechanism. In our developments, we have 

considered the following MPEG-7 segments: AudioVisualSegment DS, AudioSegment DS, Video DS, 

StillRegionDS, and MovingRegionDS.  

Each segment can include dedicated, both textual and content-based descriptors, adapted to 

each segment type. Examples are color features for still region/video segment, audio features for audio 

segments, motion parameters for moving regions…. Let us underline that the MPEG-7 visual 

descriptors [MPEG 2002] can play here an important role for query by example purposes.  

A second MPEG-7 mechanism exploited is the Segment Decompostion DS, which allows the 

partition of a segment into sub-segments. In combination with a recursive decomposition mechanism 

(which may be temporal, spatial-temporal or spatial), such an approach makes it possible to create a 

hierarchical and multi-granular video content description, represented as a tree of segments and 

adapted to both navigation/browsing and search functionalities. Although arbitrary numbers of levels 

are supported, the most widely used video structure utilizes a three-level hierarchy made of scenes, 

shots, and key-frames/objects of interest (Figure 8.3).  

The adopted MPEG-7 language for specifying all these descriptors and descriptions schemes is 

XML Schema. This choice facilitates the parsing and interpretation of the descriptions, since various 

XML utilities are available and can be directly used (e.g., Xerces parser). The XML files are notably 

well-suited as an exchange data format between the different modules of our system through HTTP 

requests. XML files can be easily formatted to the MPEG-7 specification, making it possible to 

communicate with other systems and modules on the web, exchanging metadata, descriptors, queries 

and results. 
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Let us note that, recently, several lightweight data-interchange formats have emerged on the 

web as alternatives to XML, which has been criticized for being large and less suitable for quick 

transfer of small files. Among the most popular such formats is JSON [JSON 2012], which is often 

used for serializing and transmitting structured data over a network connection. Native JSON support 

is included in most of the general public browsers. JSON is designed for human-readable data 

interchange and discards the closing tags typically included in XML files. When data is encoded in 

XML, the result is typically larger than an equivalent encoding in JSON. Yet, if the XML data is 

compressed using a standard algorithm such as gzip [GZIP 2012] the gains obtained with the JSON 

approach become negligible. Moreover, the adoption of the JSON format would require a conversion 

module to the MPEG-7 format on each server. For these reasons we have adopted the classical MPEG-

7 XML format for data exchange between the various OVIDIUS modules.  

OVIDIUS can exploit arbitrary extraction methods and utilities, provided that the 

representation of the description is compliant with the MPEG-7 specification. In our work, we have 

adopted the video temporal and spatial-temporal segmentation/structuring framework recently 

proposed in [Tapu 2011], which makes it possible to automatically extract scenes, shots, key-frames 

and objects of interest (Figure 8.3).  

Concerning the visual descriptors, we have adopted an updated version of the MPEG-7 

reference software, exploited in [Zaharia 2010]. In this way, the totality of MPEG-7 visual 

descriptors is supported by the system. In addition, we have also considered other descriptors, outside 

MPEG-7 and corresponding to various video analyzers that can be integrated (e.g., the TextureLEP 

descriptor [Cheng 2003]). The only constraint in this case is to specify for each descriptor a XML-

based representation.  

Disposing of metadata is a first and essential step in the indexing process. However, 

appropriate video visualization and interaction capabilities need to be elaborated in order to efficiently 

exploit such a description. The OVIDIUS user interface integrates all the necessary interaction, 

navigation and search capabilities, as described in the following sections. 
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Figure 8.3. Hierarchical decomposition of a video (L0) in scenes (L1), shots (L2) and keyframes(L3). Level L3’ concerns the regions from the key-

frames, which are the entities used for video similarity in this case. 
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8.1.2 Video players 

With the exponential increase of multimedia content available today on the Internet, a large variety of 

video coding formats have emerged and are today extensively used by various multimedia 

applications.  

The explosion of such formats makes it possible to visualize a large variety of content from 

fixed or mobile terminals. However, the richness of the video formats available today is in the same 

time a drawback from the point of view of the application developer. Obviously, it is non-realistic to 

implement specific encoders for all these formats which, in addition, are constantly evolving. Which 

are the “good” formats to choose and implement? How to ensure the maintenance of applications by 

taking into account the rapid evolutions of such formats? How to ensure interoperability with other 

formats? These are fundamental questions that have to be considered when designing a multimedia 

system.  

From the renderer’s perspective, it is almost impossible to find nowadays a “one-fits-all” 

solution. There is large spectrum of reliable players available, but it is quite difficult to find a unique 

one able to perfectly fit any media format around. 

This is why many stakeholder portals content providers (e.g., YouTube [YouTube 2012], 

Facebook [Facebook 2012], DailyMotion [DailyMotion 2012] …), allow users to post digital 

content and to transcode it all into a single format (H.264), in order to guaranty the correct rendering 

of all the media clips proposed by their services. In most of the cases the video player of choice is the 

Adobe FlashPlayer [Adobe 2012], which is largely the most popular video player on the web. 

However, the Adobe FlashPlayer requires the users to download a browser plug-in in order to 

visualize the video content. 

Recently, with the considerable advancements of HTML5 format [HTML5 2012a], the 

introduction of the so-called video element [HTML5 2012b] in the HTML5 syntax, along with its 

improved rendering and interactivity features, Internet browsers can now render videos natively 

without the necessity of downloading or updating a video player plugin.  

Yet, despite the significant progress of the HTML5 technologies and the perspectives that it 

unfolds, currently there is no codec supported by all the major web browser developers (Table 8-1). 

The two most popular formats on the web are the H.264, supported by Apple and Microsoft, and 

WebM [WebM 2012] using the VP8 codec owned by Google.  

Most of the general public video platforms (e.g., YouTube [YouTube 2012], DailyMotion 

[DailyMotion 2012], Vimeo [Vimeo 2012]) have started to transcode their videos in such formats 

making a part of their content available for the HTML5 native player. The incompatibilities between 

the browsers and the video formats are solved in the HTML code which automatically verifies these 

compatibilities and provides the right content with the help of a fallback function (Figure 8.4).  
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Table 8-1. Supported video formats by popular web browsers and mobile operating systems 

Web 

Browser 

Chrome Firefox 
Internet 

Explorer 
Safari Opera Android iOS 

      
 

Version 21 15 9 5 12 4 5 

H.264 Yes No Yes Yes No Yes Yes 

WebM Yes Yes No No Yes Yes No 

Ogg/Theora Yes Yes No No Yes Yes No 

 

<video width="640" height="480"> 

<!-- if Chrome/Safari --> 

<source src="video.mp4" type="video/mp4"> 

<!-- if Firefox/Opera --> 

<source src="video.webm" type="video/webm"> 

<!-- if the browser doesn’t understand the <video> element, then reference 

a Flash file and open the Flash player --> 

<embed src="video.flv" type="application/x-shockwave-flash" width="640" 

height="480" allowfullscreen="true" allowscriptaccesss="always"></embed> 

</video> 

Figure 8.4. HTML.5 syntax for fallback to different video formats 

 

The OVIDIUS platform features a scene/shot/keyframe-based navigation in videos in order to 

provide a fine granularity access to specific items of interest. Therefore, the considered players should 

offer an enhanced configurability and notably advanced features for random access to video segments: 

a video should be accessed and visualized in a precise and reliable manner at given time 

instants/intervals specified by the description. However, such a random access to arbitrary time 

instants and intervals is not yet fully supported by existing video players. Our experiments 

demonstrated that the Flash Player and the HTML5 video player ensure a most reliable random access. 

The VLC player could allow it only for a limited category of video formats, namely MPEG-1 and 

MPEG-2, but fails for other formats.   
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A highly interesting feature of the HTML5 player is that it allows fast seeking to not-yet 

downloaded parts of the video, within a streaming scenario. This can be achieved with HTTP 1.1 Byte 

Range requests [HTTP 2012], supported by most common web browsers. This is the standard way in 

which web browsers receive HTML5 media resources from the web servers. In this case, the browser 

first retrieves the initial byte ranges of a media resource, which specify the audio and video decoding 

pipelines that enable to play the content. The audio and video data in a media resource are then 

provided in a multiplexed stream. If the browser asks for a byte range on the resource, it will retrieve 

both, the audio and video data that belongs to the same time range together. It can thus progressively 

download byte ranges and at the same time decode and start playing back the audio-visual content 

already received. If the network is fast enough to feed the decoding pipeline quicker than the decoder 

and the graphics engine can play back the video in real time, this will give a smooth playback 

impression to users. In this manner, the video is rendered as it is downloaded and there is no need to 

wait for the whole video to be completely downloaded before playing it. When the user seeks to a 

certain time stamp and the seek time is not yet buffered, the browser will stop the download and 

request a byte range that starts at the user-specified time stamp. This feature becomes very useful in 

the context of mobile devices, where the available bandwidth is a typical issue to be dealt with. In this 

case, the amount of video data to be streamed is significantly reduced and the quick access to video 

segments of interest is ensured. The seeking operation is done automatically in javascript according to 

the selections made by the user. 

The OVIDIUS platform should allow an intuitive and interactive querying mechanism. In this 

respect, the HTML5 video player can offer advanced interactivity features. Notably, the user can 

specify/draw selections of arbitrary shapes on the video content [Pfeiffer 2010]. This can be achieved 

by projecting each video frame on the canvas element which can then support several transformations 

(e.g., color changes, division of content on a grid with each cell representing another frame…) and 

editing tools (e.g., drawing shapes). We leverage on these functionalities and provide an interactive 

querying technique which gives to the user the possibility of selecting a region of interest directly on 

the video (Figure 8.17). 

An analysis of the functionalities of the existing video players is presented in Table 8-2. 

The criteria that we have mentioned in Section 7.3 are satisfied in the highest measure by the 

HMTL5 video player that offers an open, plug-in free, quick and user-friendly solution for the 

OVIDIUS requirements.  

As a drawback, let us mention the non-uniformity of the supported video formats, with respect 

to the various browsers considered. In order to achieve a stable solution, adapted for a large majority 

of browsers, we have considered the H.264 and WebM video formats. 

In addition, let us note that recent advancements in the field make it possible to connect the 

HTML5 video player with other portals. Thus, it becomes possible to share the specific shots from the 

video on the web thanks to the W3C Media Fragments framework [W3C 2012]. The Popcorn.js 

HTML5 media framework [PopcornJS 2012] is a JavaScript library dedicated to HTML5 media 

which allows synchronization of the video other types of content (e.g., text, hyperlinks, Google Maps 

places, SlideShare slides, Twitter queries, Wikipedia content) displayed on the same web pages at 
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specified video moments. Keywords or clickable subtitles can be displayed while watching a video, 

while known objects can be indicated on the video during its rendering.  

Table 8-2. Analysis of functionalities of web browser video players 

Video Player 

Adobe Flash 

[JWPlayer 2012] 

VideoLan [VLC 

2012a] 

HTML5 [HTML5 

2012b] 

   

Supported video formats 
H.264, Sorenson 

H.263, On2 VP6 

Most of the video 

formats 

H.264, WebM, 

Ogg/Theora 

Seeking Yes Partially Yes 

Interactivity features  Yes No Yes 

Proprietary Yes No No 

Browser support Most of the browsers Most of the browsers Most of the browsers 

Plugin Required Yes Yes No 

 

More recently, the Dynamic Adaptive Streaming over HTTP (DASH) standard from MPEG 

has been integrated into the web using the HTML5 video element as a java-script and WebM-based 

library for Google Chrome [Rainer 2012]. The video data is the most bandwidth resource consumer of 

a video platform. Such an extension would increase the accessibility capabilities of the OVIDIUS 

platform, by adapting it to the available bandwidth fluctuations of the user’s connection.  

Such perspectives show that HTML5 offers an interesting solution, with respect to the future 

extensions in terms of functionalities that can be considered. For all these reasons, we have privileged 

the HTML5 approach in our developments.  

A video search engine requires appropriate user-friendly interfaces, able to specify queries and 

to present the search results to the user in a pertinent manner. Such aspects are discussed in the 

following section. 
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8.1.3 OVIDIUS user interface 

The OVIDIUS platform interface attempts to offer a good balance between navigation, visualization 

and search features in an accessible web-based environment as mentioned in Section 7.3. In order to 

ensure a large interoperability, the interface has been developed by using HTML5, JavaScript and php 

technologies. While several animations and transitions effects have been used to ensure a smooth user 

experience, no plugins are required and the platform can be accessed from most of the popular web 

browsers. Due to its construction, OVIDIUS can be accessed from multiple types of terminals 

(desktop, mobile). The single requirement is a JavaScript-compliant Internet browser. 

Let us note that the interface server (Figure 8.1) automatically detects the operating system of 

the user terminal and adapts accordingly (i.e., if the user terminal is a mobile phone, the user is 

directed to a small screen adapted interface).  

Depending on the usage of the OVIDIUS platform and the type of terminal from which it is 

accessed we propose three different designs of interfaces: 

 OVIDIUS explorer: recommended for quick visualization of the content of a video and including 

navigation and querying functionalities,  

 OVIDIUS finder: recommended for Known Item Search cases, for quick retrieval of specific 

objects/segments of interest inside a video,  

 OVIDIUS mobiler: recommended for handheld devices for navigation and querying of a video 

adjusted for small screens.  

The various interfaces proposed are detailed in the following sections.  

 

8.1.3.1 OVIDIUS explorer 

The OVIDIUS explorer is recommended for the use-case of average users looking for a video to 

watch. The interface proposed various tools for navigation and quick visualization/browsing of the 

video that help the user in getting quickly a general idea of the content of a video.  

The interface features two menus:  

 a home portal for exploration of all the media existing in the database (Figure 8.5), and  

 a navigation menu, which makes it possible to explore and visualize a given video selected by the 

user (Figure 8.7).  

 

In this case, users can easily visualize iconic representations of the available media along with 

their title, summary and associated keywords. A simple query by keywords is proposed in order to 

find the most relevant content. For a better understanding of the functioning of the OVIDIUS platform 

on different servers, we illustrate the timeline of events performed, whenever a user accesses the home 

screen of the platform (Figure 8.6). 

Let us further detail the navigation menu proposed. The OVIDIUS GUI makes it possible to 

obtain a visual and interactive representation of the MPEG-7 descriptive structure and integrates the 

following components:  
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 video player,  

 selector of the segment type (VideoSegment, AudioSegment, AudioVisualSegment, 

StillRegionDS – cf. Section 8.1.1),   

 selector of the hierarchical level of each segment,  

 threads of iconic representations of segments, which are dynamically derived from the media 

without any content duplication,  

 navigation/browsing buttons,   

 summary and keyword visualization elements,  

 selection of a timeline scrollbar for instant access to scenes from different parts of the video. 

 

This menu aims at offering a complete user experience when searching and accessing media. 

While watching the video, the user can simultaneously view a summary of the content along with the 

corresponding keywords describing the video content. 

 

Figure 8.5. Exploring a video database with OVIDIUS explorer 

 

The lower part of the interface is dedicated to the structured visualization of each video 

document. In particular, this zone is a visual illustration of the structural MPEG-7 description 

associated with a video document as a thread of iconic representations of the segments. Scenes, shots, 

and still regions can be here browsed and accessed in a hierarchical manner, as MPEG-7 segments. As 

illustrated in Figure 8.8, this thread of iconic images provides information about the visual content of 

each segment (preview image), as well as information regarding the classification and hierarchy 

(identifier, time stamp, order, type). With a simple click, users can access the specified segment and 

visualize it along with the keywords that describe it. A color code is used in order to inform the user 
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about the current hierarchical level of access. Video scenes are represented on a thread with a green 

background, shots with a light blue background and key-frames with a dark blue background. 

 

Figure 8.6. Timeline of events triggered when displaying OVIDIUS home screen. 

The displayed keywords describe the content of the video segments depending on current 

level of segmentation. For the scenes, the keywords capture information related to the events 

occurring in that segment obtained from the soundtrack of the video, while for shots and single frames 

these keywords describe the physical information extracted from the content (e.g., indoor, outdoor, 

person, vegetation …).  

Users can navigate “horizontally” on the timeline of the video with a random access to any 

section of the video by a single click. If, instead, the user would like to go deeper in the hierarchical 

tree of the media, he can navigate through the “children” segments of a selected segment, with the 

possibility of reaching the finest level of granularity, which in our case is represented by a StillRegion 

(single frame). 

The navigation experience through the hierarchical structure of the video segments is 

improved with the usage of a hierarchy panel displaying the path of segment identifiers followed by 

the user, with the implementation of the background color code for each level of segmentation and 

with a customized timeline scrollbar for instant access to scenes from different parts of the video. 
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Figure 8.7. OVIDIUS explorer media navigation and retrieval interface 

 

 

Figure 8.8. Iconic navigation panel for video shots 

The timeline of the events running in the background during the video navigation is illustrated 

in Figure 8.9. 
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Figure 8.9. Timeline of events triggered when navigating in a video on the OVIDIUS platform. 
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8.1.3.2 OVIDIUS finder 

The OVIDIUS finder (Figure 8.10) is adapted for the Known Item Search task, where the main 

objective is to retrieve one or more specific shots/elements of interest inside a video. In this respect, 

OVIDIUS finder emphasizes and enhances the navigation functionalities. 

OVIDIUS finder is derived from the OVIDIUS explorer and features the same home screen. 

In addition, it allows the parallel visualization of the threads of iconic representations corresponding to 

the different hierarchical levels of the structure of the video. While visualizing the video, the user can 

simultaneously skim through neighboring scenes and shots. The user can also add other navigation 

rows/threads of iconic representations from a different hierarchical level of the considered 

segmentation. One thread contains the scene previews, while the other one displays the previews of 

the shots corresponding to the current scene. Users can switch between different segments horizontally 

(on the same hierarchical level) and vertically (between different hierarchical levels). Whenever a new 

scene is selected, the shots thread is updated instantly with the shot previews corresponding to the 

selected scene. Whenever a user launches an object-based query, the search is performed in the 

background on the server and the user can continue his navigation while the query is processed. The 

query results are then displayed on a new (third) thread in decreasing order of similarity. When the 

user has finished skimming through the search results he can either launch a new query from the video 

or from one of the results or continue the navigation on the other threads. The search thread can be 

closed if the user does not employ it anymore.  

These functionalities are illustrated in Figure 8.10. Notice the three horizontal threads and 

their dedicated color codes. They enable the user to get a quick overview on the video and its content, 

without overwhelming the user and overcharging the interface. The simultaneous visualization of 

different hierarchical levels allows to user to get an increased amount of information and to take quick 

decisions in for further navigation and browsing. 

In order to speed-up the navigation in the video, the navigation of the threads can be done by 

using keystrokes. Skimming through neighboring shots or scenes can be performed with simple 

keystrokes, each thread having its own dedicated keys for the various actions considered. The 

functionality is illustrated in Figure 8.11. In this case the keyboard based navigation is significantly 

faster than the mouse based navigation, as each thread has its dedicated keys and their navigation can 

be made in parallel. The navigation involving only the mouse would have required the user to press 

the navigation arrows from the interface for each thread separately. 
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Figure 8.10. OVIDIUS finder interface.  

 

Figure 8.11. Operating the navigation on OVIDIUS finder GUI with the keyboard. Left-Right 

horizontal navigation can be performed on each thread. Each thread has its dedicated keys 

marked with the corresponding color code. A key press displays on the thread the next or the 

previous sequence of scenes/shots/keyframes. The spacebar is employed for launching a query 

by example search, once an object of interest has been specified. 
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8.1.3.3 OVIDIUS mobiler 

The OVIDIUS mobiler (Figure 8.12) interface is adjusted for video navigation and querying from 

handheld devices (e.g., smartphones) which usually have small screens and where the interaction is 

mainly performed by taping. As mentioned in Section 7.2, the development of a mobile video 

navigation and retrieval interface able to preserve and visualize the fine structure and information of 

the video, is still an open issue of research. 

The OVIDIUS mobiler is derived from the OVIDIUS explorer. It preserves the main 

functionalities of its desktop counterpart for navigation (hierarchical navigation and color codes for 

hierarchical levels, threads of iconic images displaying the preview image, video summary, identifier, 

time stamps, order, type…) and querying. The various sections of the interface are here re-arranged in 

order to fit in the constraints imposed by the small touch screen of the handheld devices and their 

corresponding interaction tools (e.g., taping, touch scrolling…).  

The interface layout is set to a portrait mode, allowing navigation by vertical scrolling. 

Different levels of visualization can be achieved by zooming in and out, which is typical for most of 

the currently existing mobile interfaces.  

Some parts of the sections (summary, keywords, video player, StillRegion) can be minimized, 

by taping on their header, in order to leave more space for the other sections of the interface (Figure 

8.12). These sections can be restored at any moment by taping again on their header. Different 

instances and functionalities of OVIDIUS mobiler deployed on an iPhone device are illustrated in 

Figure 8.12  

A specific feature has been added, envisioning time and bandwidth efficiency and 

compatibility issues. The HTML5 video player is still a rather recent technology and its video player it 

is still not as popular as it is on the desktops, although latest versions of both Android and IOS 

endorse it. For devices not yet supporting the HTML5 video element, we employ the FFMPEG library 

[FFMPEG 2012] that makes it possible to automatically cut a segment from the video at the user’s 

request. Whenever a user wants to access a certain video segment, this video segment will be 

automatically cut from the media and sent to user. In this way, the user will receive the exact 

requested video segment and optimize the required bandwidth. 

Most of the main video systems and portals (e.g., YouTube, Vimeo, DailyMotion...) make 

their content available to the smartphones through applications (so-called apps) that need to be 

downloaded and installed on the smartphone. The access to the servers and the exchange of data is 

performed by the app. The apps fully benefit from the hardware performances of the devices, but 

different versions need to be developed for each type of mobile operating systems and, in some cases, 

even for each type of device. In contrast with them, the OVIDIUS system is available directly from 

the browser, whatever the OS or the type of device. Let us also mention that the OVIDIUS mobiler is 

based on a pure HTML5 and lightweight JavaScript implementation and does not use complex 

operations or animations that are characteristic to native app. Thus, the user experience is not affected 

by its web-based implementation and the platform is guaranteed to be accessible from a multitude of 

devices. 
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                                       a)                                            b)    

Figure 8.12. Components and different instances of the OVIDIUS mobiler interface: (a) 

browsing through scenes of a video; (b) browsing through results of a query by ColorStructure 

descriptor at the still regions level.  

 

8.1.3.4 Search functionalities 

The search engine is a core element of any video navigation and retrieval platform. In the field of 

visual search, the queries can be formulated in various manners, including both textual and content-

based (i.e., queries by example). In addition, there is no generic search method that can fulfill all user 

requirements. Often, the techniques and descriptors need to be adapted to the query. OVIDIUS 
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integrates multiple search functionalities. In the same time, we have paid a specific attention to not 

overwhelming the user in terms of required interaction and parameters to be set. 

Three different types of querying functionalities with corresponding search strategies are 

proposed: 

 Query-by-keywords,  

 Query-by-image,  

 Query-by-region.  

The user has the possibility of launching a query either in the whole video dataset or just in the 

current video, depending on his use case and intentions. Let us also note that for all the descriptors 

considered, dedicated XML schema representations have been elaborated and used to enrich the 

MPEG-7 schema definition. 

The proposed querying functionalities are detailed in the next sections. 

 

8.1.3.5 Query-by-keywords 

Ever since web search engines such as Google [Google 2012a] emerged to the general public usage, 

textual queries have become the mean of choice for retrieving any type of content (documents, 

images, videos) on the web, in document archives or computers. Users are today accustomed to find 

and use such functionalities on any system. The OVIDIUS platform features text based search 

functionalities adapted for each hierarchical level of the video tree (cf. Section 8.1.1). 

In order to illustrate the textual functionalities supported, we have considered corpus from the 

Médi@TIC project [Mediatic 2010], consisting of 16 television documentaries and 45 radio shows. 

The EPG information (title, synopsis) and the keywords globally describing the content have been 

provided by the authors. Other textual metadata have been derived from the text analysis of the 

transcriptions segments, represented as keywords and associated with their corresponding MPEG-7 

segments. The speech-to-text tools and the textual analysis have been provided within the framework 

of the Médi@TIC project by CEA-LIST. Details about the corresponding technologies can be found 

in [Delezoide 2008]. Our work consisted in integrating the textual metadata within the corresponding 

MPEG-7 segments. A semantic description of the visual content of the considered keyframes was also 

provided. Here, for each concept considered, (e.g., indoor, outdoor, person, day, night, vegetation …), 

a score representing its probability of occurrence has been indicated. The set of concepts retained is 

the one used for the ImageClef CVDT evaluation [IClef 2008]. The probability of occurrence has been 

determined with the help of Fast Shared Boosting [Le Borgne 2010] in a first stage, followed by joint 

classification Bayesian model [Delezoide 2008].  

A bag of words approach, combined with a tf-idf weighting mechanism [Salton 1988, Sparck 

2000] (cf. Section 4.4.1) have been employed for performing queries. The cosine correlation measure 

has been adopted as similarity measure. The tf-idf scheme offers a simple yet efficient algorithm for 

matching textual queries with concepts included in the description.  

The queries can be performed at any hierarchical level within a given video. The search 

process can be applied either globally, at the level of the entire video database (inter-video search), or 
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locally, within the current video (intra-video search), depending on the user’s purposes and of the 

considered application.  

For each video segment and at each hierarchical level, OVIDIUS displays the list of available 

keywords. The user can select a sub-set of them through checkboxes (Figure 8.14) and launch a query. 

Let us also note that a free-text keyword specification is also supported, the user having the 

possibility to introduce a set of personalized tags. In all cases, the search is performed based on the 

existing keywords of each MPEG-7 segment. Such keywords are naturally included in the description 

at the segment level. In the case of global queries, performed at the level of the root video segment, 

the keywords considered are the words included in the title and synopsis.  

 

             

Figure 8.13. Keywords panel. Left: keywords extracted from the audio transcript of a video 

scene are illustrated. User can select with a checkbox the words he wants to use for querying. 

Right: Keywords describing concepts detected in a key-frame. Concepts can be selected and 

used for composing a new query. 

Figure 8.14 illustrates the results of a textual query. The search is performed at the level of 

granularity of the query. For example, a query launched at the scene level will retrieve video scenes, 

while a query at the shot level will retrieve shots. For better structuring and visualization of results we 

employ the same color code. In addition, we represent results from other videos on a dedicated thread 

with orange background. The results from other videos are grouped per video and only a 

representative frame of the video is illustrated. The retrieved video segments can be then accessed by 

clicking on this representative frame. 

The limitations of keyword-based search are well-known: availability of reliable annotations, 

linguistic barriers, subjectivity, ambiguity…The second type of search paradigm considered and 

integrated within OVIDIUS concerns content-based representations and query-by-example 

approaches.  
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Figure 8.14. Results displayed after a query by keywords selected in Figure 8.13 (athlète, 

compétition, jeune) within the scenes of the current video content (upper row) and within all the 

other contents available in the data base (lower row) 

 

8.1.3.6 Query-by-example 

Query-by-example is increasing in popularity among users of various visual search systems (e.g., 

Google Images [Google 2012c], TinEye [TinEye 2012], kooaba [Kooaba 2012]). In this case, the 

principle consists of considering exclusively the low-level visual descriptors associated with the 

content ant to exploit their corresponding similarity measures. Let us underline that such an approach 

is completely agnostic of the semantics of the content and exploits solely the perceptual 

characteristics. 

Concerning the visual descriptors considered, OVIDIUS can exploit arbitrary MPEG-7 visual 

descriptors since one of the extraction engine adopted is based on the MPEG-7 reference software. In 

the current query-by-image context, we have considered solely the color and texture descriptors that 

can be associated with a global still image.  

Figure 8.15 presents an example of a query performed with the help of the MPEG-7 

ColorStructure descriptor. As it can be noted, the Color Structure descriptor is highly effective in 

retrieving instances of the same person and of the same environment. 
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Figure 8.15. Search results based on MPEG-7 ColorStructure descriptor queries by example 

(first image of each row is the query image). 

 

Let us also note that other descriptors, outside MPEG-7, can be easily integrated within 

OVIDIUS. In order to achieve this goal, the following steps need to be accomplished:  

 Update of the MPEG-7 Schema with the syntax and semantics of the new descriptor to be 

integrated,  

 Activation of the communication protocol between and server engine with respect to the new 

descriptor,   

 Update of the existing MPEG-7 description associated with the considered videos in the database,  

 Integration of the corresponding similarity measure at the level of the search engine server.  

In order to validate such an approach, we have considered the TextureLEP descriptor [Cheng 2003], 

exploited within the framework of the Médi@TIC project and developed by partners from CEA-LIST.  

The adopted XML specification of the TextureLEP descriptor is presented in Figure 8.16:  

A third query paradigm concerns the object-based retrieval, presented in the following section. 
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  <!-- ################################################ --> 

  <!-- Definition of TextureLEP datatype                --> 

  <!-- ################################################ --> 

  <complexType name="TextureLEPType"> 

    <complexContent mixed="false"> 

      <extension base="mpeg7:DSType"> 

        <sequence> 

          <element name="LEP"> 

            <simpleType> 

              <list itemType="integer" /> 

            </simpleType> 

          </element> 

        </sequence> 

        <attribute name="length" type="integer" /> 

      </extension> 

    </complexContent> 

  </complexType> 

Figure 8.16. XML specification of the TextureLEP descriptor. 

 

8.1.3.7 Query-by-region 

In this case, only a part of an image representing a pattern, an object or a group of objects is 

considered as a query for retrieving other videos containing different instances of the entity of interest. 

Here, OVIDIUS integrates the DOOR framework introduced in part 1 of this manuscript in order to 

provide the video object instance retrieval functionality in an on-line environment.  

The main advantage of the object-based approach is that the user can directly access specific 

shots of the video containing the object of interest. Usually, a text based query on a general public 

video platform (e.g., YouTube, DailyMotion, Vimeo) retrieves a collection of videos according to the 

user specification. Yet, no information about the localization of the object in the video is provided and 

users have to skim through the video in order to retrieve the item or object of interest. In our approach, 

this step is discarded as the results of a query-by-region search lead to the exact shot/moment in the 

video where the item of interest has been encountered. 

In order to support the object-based retrieval functionality, the only functional constraint that 

needs to be satisfied concerns the interactivity issues. Thus, the user should be allowed to interactively 

specify a region of interest, in order to formulate a query of arbitrary shape. The adopted solution is 

based on a HTML5 drawing/selection tool, which gives to the user the possibility to select and define 

interactively a region or object of interest in the video. The user selection is then used as query and 

represents the input data of the DOOR method. 
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Figure 8.17 illustrates a typical query-by-region case. The user selects with a red marker the 

object of interest (i.e., man with orange jacket) and launches a query in the video. The user selection is 

then displayed on the right. The representative key-frames of the relevant video shots determined are 

displayed in decreasing order of similarity to the query on a dedicated thread. The object candidates 

retrieved are represented with red bounding boxes on the preview frames along with their similarity 

score.  

 

Figure 8.17. The DOOR method used for an object-based query using with the OVIDIUS 

platform. 

 

This completes the description of the three different search functionalities supported by 

OVIDIUS. In order to provide some hints on how the OVIDIUS platform can be used in practice, we 

have developed several use-cases, presented in the following section.  

 

8.2 OVIDIUS use-cases 

In order to better emphasize the possible applications of the OVIDIUS platform let us outline three use 

case scenarios. The first use-case concerns the mobility framework and is addressed with the help of 

OVIDIUS mobiler (cf. Section 8.1.3.3). This use-case has been presented in [Bursuc 2010].  
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8.2.1 Mobile video retrieval and consumption 

A person using a smartphone connected to a 3G/4G or wireless network is on his way home with a 

train. He wants to watch a small documentary or take advantage of the time spent on travelling in 

order to find a movie to watch when getting home. The user can start his search by typing some 

keywords describing the desired content. OVIDIUS mobiler (Figure 8.12; Figure 8.18) matches then 

these keywords with the ones from the EPG of the videos in the database and returns a collection of 

related videos. 

At this stage, the user can visualize for each video a representative image, the title and a short 

summary added by the creators of the content. After selecting one of these videos, OVIDIUS displays 

the intra- video navigation interface. The user can now navigate through the video horizontally and 

view the scenes along with a representative iconic image and descriptive keywords. Also a vertical in-

depth navigation is possible, by accessing the hierarchical structure of the scenes. Shots can be 

visualized in a similar manner. With a few clicks the user has general idea over the considered video 

content. 

 

Figure 8.18. Screen captures of the OVIDIUS mobiler on an iPhone smartphone  

 

Moreover, if he would like to group similar scenes and shots or to find similar content within 

the other videos in the database, he can choose a sample scene and request a search by a set of 

keywords of its choice. The user can then access the results (i.e., scenes/shots retrieved and presented 

in decreasing order of similarity with the query) in order to verify whether they are pertinent or not.  

The advantage of the OVIDIUS approach is that solely short scenes/shots of interest are 

returned and the user can rapidly check their content. Time and bandwidth are saved in this manner. 

Nevertheless, if the user prefers some specific shots in the video (e.g., war scenes or a certain 

anchor person in a news bulletin) he can use the visual search. Thanks to the MPEG-7 ColorStructure 

descriptor similar shots are made available to the user after a query by example. In this case, 

supplementary navigation inside the video is no longer necessary, the system being able to directly 
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locate the desired elements of interest. This proves to be very effective in a mobile context when 

different hardware and connection constraints make complex operations were difficult. 

A second use-case scenario concerns the know item search paradigm.  

 

8.2.2 Known Item Search in videos 

When a user needs to find and access a specific video segment in a video, having just a general idea of 

the content of the segment, he can employ OVIDIUS finder. This is a standard scenario for Known 

Item Search tasks and competitions [Schoeffmann 2012b]. 

 Given a short video sequence to find in a current video, the user can start browsing the scenes 

and shots looking for the query video or for objects or textures similar with the ones in the query (e.g., 

the T-shirts of the children in the example presented in Figure 8.19). Let us note that the navigation by 

keystrokes significantly speeds up the visualization of the video.  

Once such a frame is found, the user can select the area of interest and ask the system to 

retrieve it. Alternatively, when the user wants to use all the information in the current frame for 

querying, he can perform a query-by-image using the MPEG-7 ColorStructure descriptor (cf. 

Section 8.1.3.4). When the query processing ends, key-frames from different moments of the video, 

containing similar patterns or objects can be accessed instantly or can be used as additional queries to 

narrow the area of search.  

This functionality has been validated in the Video Browser Showdown competition 

[Schoeffmann 2012b, Bursuc 2012] with good results (4
th
 position out of 12 participants). The 

scenario for the Video Browser Showdown was in the KIS task spirit. Given a short video clip 

presented on a shared screen that is visible to all participants, after the video clip has stopped playing 

the participants have used their own equipment to perform an interactive search in the specified video 

file to retrieve the sequence of video shots that have been just displayed. The performance of the 

participating systems has been evaluated in terms of successful answers and average search time. The 

participants were allowed to perform any content analysis that supported interactive browsing in the 

video (e.g., through novel content visualization, content clustering, or advanced seeker-bars etc.). The 

search process was supposed to be interactive without any text queries allowed. The systems have 

been evaluated in an expert run, where the developers of the systems acted as searchers, and in novice 

run, where the searchers were volunteers from the audience. 

This scenario mimicked a real-life use case when users disposing of a collection of non-

indexed video content, wish to retrieve a specific video sequence quickly, without the need to watch 

all the videos. 
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Figure 8.19. OVIDIUS finder use for the Known Item Search task 

 

The final use-case considered concerns rather professional environments and is about semi-automatic 

video annotation.  

 

8.2.3 Semi-automatic video annotation 

Professional content editors, producers and documentalists dispose of large repositories of content that 

need to be indexed and organized. In most of the cases, this process is done manually by the editors 

themselves. Elaborating tools able to at least partially automate this process would be of outmost 

interest  

However, because of the fine description that is usually required (e.g. character name, 

description, context…), a complete automatic annotation of the content is a highly difficult challenge. 

Existing methods involve a learning mechanism and the development of a ground truth dataset every 

time a new element of content is created and added to the repository. 

An alternative solution would be to leverage on both the experience of professional and the 

effectiveness of an object-based retrieval approach such as the one proposed by the DOOR 

framework. Editors can perform visual queries in the dataset for retrieving different instances of user-

specified objects. As most of the first results are positive (cf. Section 6.3), the editor can apply the 
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same tags to all of the first results, thus propagating the annotations to the corresponding video shots. 

The tags are written directly to the MPEG-7 XML Schema, weighted with the tf-idf method and 

become available for other users accessing the server. Textual queries can be then performed based on 

these tags for retrieving the same video shots for further re-use. 

This functionality is illustrated in Figure 8.20. The OVIDIUS explorer can be updated to 

display an additional thread of results for a better visualization of the retrieved video shots. We can 

observe that the character selected by the user has been retrieved in various instances in all the first 8 

results. The user can now associate the same tags (e.g., boy, character’s name, dark hair, blue glasses, 

red shirt) to all of these shots. From now on, such shots can be retrieved by using one or more of the 

associated tags.  

 

 

Figure 8.20. The results of a query on a cartoon dataset using the DOOR method on the 

OVIDIUS platform. The retrieved results are displayed on 2 threads and ordered in decreasing 

similarity with the query. 

Figure 8.21 presents some examples of different queries and retrieval results, in the case of a 

cartoon dataset, specified within the framework of the HD3D-IIO project [HD3D 2011]. 

In the same spirit of automatic content annotation, we propose an additional functionality of 

the OVIDIUS platform, which concerns the automatic hierarchical decomposition of the videos in 

scenes, shots and key-frames. In this respect, we employ the video temporal and spatial-temporal 

segmentation/structuring framework proposed in [Tapu 2011]. We allow the users to upload their 

content and have it decomposed spatial-temporally for enhanced navigation. Figure 8.22 illustrates the 
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video uploading functionality. The user’s video collection is shown on the home screen in the upper 

part, while the lower part contains a section for videos to be uploaded. The user can simply drag and 

drop a video from his PC in the dedicated page section and have his content uploaded to the Content 

storage server, transcoded and further processed. 

 

Figure 8.21. Results for different cartoon character queries. 

 

Once the upload effected, the video is transcoded and the user is redirected to the OVIDIUS 

explorer navigation screen (Figure 8.23). Here the user can view his video online, while it is being 

processed. The evolution of the video decomposition sequence is illustrated in orange thread from 

Figure 8.23, where frames from the shots that have been just detected are displayed. The 

decomposition method takes less than the duration of the video (less than half of the duration of the 

video) and the displayed frames are ahead of the video player. After the processing has been 

concluded, the user can navigate in his video using the freshly computed structure and annotate it with 

tags as described above. 
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Figure 8.22. Video uploading on OVIDIUS. Users can simply drag and drop their content in a 

dedicate section on the web page. Once the video is dropped the user can press the upload green 

button and have their content decomposed in a hierarchical structure. 
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Figure 8.23. Online video hierarchical the composition. While the uploaded can be watched on 

the platform it is structured in scenes, shots and key-frames. The shots which have been just 

computed are illustrated in the orange thread. The video structuring technique is faster than the 

video rendering and the content is processed in less than half of its duration. 
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8.3 Conclusion and perspectives  

This chapter introduced the OVIDIUS (On-Line VIDeo Indexing Universal System) platform for video 

content navigation and retrieval from both desktop and mobile in a web environment. We showed the 

advantages of a web system with a modular architecture relative to scalability and maintenance 

aspects.  

The feasibility and the benefits of the HTML5 implementation considered have been also 

discussed. The MPEG-7 description schemes have been here successfully employed. They ensure the 

compatibility the different modules considered in the system. In addition, they provide a basis for 

facilitating the upgrades of the system.  

The DOOR framework described in Part I of this manuscript has been seamlessly integrated in 

the OVIDIUS platform ensuring the selection and retrieval of user-defined video objects in an on-line 

database.  

Three different user interfaces (OVIDIUS explorer, finder and mobiler), in order to cover 

different use cases of interest. A set of use case scenarios has also been presented.  

The perspectives concern the development of a tablet adapted interface which would allow 

touch and drag interactions and display additional content on the screen. Additional functionalities can 

be integrated in the video player in order to display on the video bounding boxes of recognized object 

entities, as the video plays. Moreover, such functionality will then enhance the interactivity of the 

video and users could simply click on object to search it or to have displayed additional information 

on it. In a setting similar with the one of the PopcornJS [PopcornJS 2012] framework, information 

specific to each sequence can be displayed in dedicated sections of the interface and updated as the 

video plays. Such information could concern the concept keywords, the audio transcript, the objects 

and characters in the video sequence. 

Concerning the annotation functionalities, different drawing tools can be integrated in order to 

allow the user to accurately annotate regions of the frames, similarly with LabelMe [Russell 200] and 

LabelMe video [Yuen 2009] framework, yet in an open HTML5 implementation. In addition, a 

relevance feedback tool can be integrated in order to let the user update or modify the automatic 

labelling of the video. 
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9. Conclusion and perspectives 

 

9.1 Conclusion 

In this thesis we have tackled the issue of retrieving different instances of an object of interest within a 

video collection. We have approached the issue from two different perspectives. The first one 

concerned the representation of an object and the search mechanism that could exploit these 

representations in order to retrieve relevant object instances in video content. The second one 

concerned the support offered for video retrieval, namely the video navigation and retrieval interface 

and its underlying architecture. 

In the first part of our thesis we approach the issue of visual object search and retrieval. After 

an analysis of the state of the art we identify the existing challenges in object instances retrieval and 

propose a methodological framework so-called DOOR (Dynamic Object Oriented Retrieval) 

exploiting a semi-global image representation obtained with the help of an over segmentation of the 

frames. The advantage of region-based approaches comes from the possibility of directly exploiting 

the connectivity information (i.e., adjacency between regions), which can be highly useful in the 

matching stage. In order to overcome the challenges related with the identification of sub-graphs as 

object entities, we proposed four optimization strategies: Greedy, Relaxed Greedy, Simulated 

Annealing and GraphCut.  

In the following, we have considered the interest point representations and proposed a 

comprehensive study and analysis of existing methods, detailing the existing interest point detectors, 

interest point descriptors, and related clustering approaches. Based on this analysis, we have retained a 

reference interest point technique that has been used as baseline in our experiments for benchmarking 

purposes. Moreover, we have enriched the Bag of Words representation with a query definition and 

expansion mechanism based on a multi-modal, text-image-video principle.  

Finally, we have introduced a novel hybrid representation which integrates both a region 

based approach and a set of interest points. The similarity between two images is achieved with the 

help of a spectral matching technique integrating both colorimetric and interest points descriptors. 

The proposed methods have been evaluated and compared experimentally on four different 

datasets under different experimental settings with various color spaces and segmentation methods. 

In the second part of the thesis we have introduced an online video browsing and retrieval 

platform (OVIDIUS – On-Line VIDeo Indexing Universal System).  

First we have reviewed the numerous video navigation and retrieval platforms developed in 

the last years and elaborated a set of criteria for designing an effective system. Then, we have 

introduced the proposed OVIDIUS platform. The major advantage of the proposed system concerns 

its modular architecture which makes it possible to deploy the system on various terminals (both fixed 

and mobile), independently of the exploitation systems involved. The choice of the technologies 

employed for each composing module of the platform has been argued in comparison with other 
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technological options. Finally different scenarios and use cases for the OVIDIUS platform have been 

presented. 

 

9.2 Perspectives 

The perspectives of future work are numerous. 

 

9.2.1 Region-based representation 

Future work for the region based representation concerns the enrichment of the segment descriptors. 

The dominant color representation is sensible to multiple intensity variations that typically occur 

during videos and other local descriptors can be considered to overcome such drawbacks. A 

straightforward solution would be to extract one SIFT-like descriptor from each segmented region. In 

this case the Superpixels segmentation would be more suitable due to their similarly sized regions, 

whose size will can define the scale of the extracted feature. Alternatively more complex mid-level 

descriptors can be computed over the superpixels segments. For example the features proposed by 

Boureau et al. [Boureau 2010] and based on sparse coding and max pooling can be employed. In this 

case, the image is divided into overlapping regions of 32 × 32 pixels and four 128-dimensional SIFT 

descriptors are extracted and concatenated into a 512-dimensional vector. The vector is then 

decomposed as a sparse linear combination of atoms of a learned dictionary. The vectors of the 

coefficients of this sparse decomposition are used as local sparse features, which are then summarized 

over larger image regions by taking, for each dimension of the vector of coefficients, the maximum 

value over the region. Such descriptors can be assigned to segmented regions. Alternatively these 

descriptors can be extracted from regular Superpixels instead of 32x32 pixels regions. The advantage 

of such a representation is that descriptors can be computed over user defined regular image divisions 

or grids. 

For segments with variable sizes (e.g., MeanShif, EGBS) a descriptor similarly with the one 

proposed in [Kim 2011] can be employed. First a gPb edge map is computed over the image [Gu 

2009] and a PHOG descriptor [Bosch 2007] can be then computed over the area defined by the 

boundaries of each segmented region. This descriptor can represent the outline of the shape and 

partially its inner texture. Alternatively, HOG descriptors [Dalal 2005] can be computed from the 

image surface defined by the segments, leading to HOG descriptors of similar sizes. 

Adding new region descriptors in our object representation would enforce the replacement of 

the global energy function. The identification of a correspondence measure between two sub-graphs is 

a challenging problem. Duchenne et al. [Duchenne 2011] have shown that the energy obtained from 

their complex GraphCut optimization can be used to define a kernel describing the similarity between 

the two images and then further used to train a classifier from all image matchings. While outside of 

the scope of this work, a similar kernel could be computed from an optimization on our region based 

representation to be further used to train classifiers. 
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In order to measure the deformations and displacements of corresponding pairs of regions 

from the two images, a regular grid can be defined over the superpixels representations. Since the 

superpixels have similar sizes, they can be fitted in a cell covering the majority of its surface. The 

displacements of the regions can be then quantified by analyzing the changes in the position on this 

grid. In [Duchenne 2011] such displacements have been integrated in the energy function by 

employing a variant of a multi-label MRF optimization technique [Ishikawa 2003] adapted to two-

dimensional labels. 

Concerning the perspectives for an extension to large scale search for our region based 

representation we foresee the development of a Bag-Of-Regions framework. Segmented regions can 

be described by one of the descriptors mentioned above and quantized in a visual vocabulary. Recent 

advances in clustering techniques for large datasets [Shindler 2011] make it possible to generate a 

vocabulary for descriptors with an increased number of dimensions (above 128). Let us note that a 

Bag-of-Regions can be computed also by considering only the dominant color for each region and 

quantize regions according to the color distances. Recently, Wengert et al. [Wengert 2011] have 

shown that a Bag-of-Colors obtained from the mean colors of the cells of rectangular grid image 

division can provide competitive performances with interest point based BoW. The advantage of our 

proposed Bag-of-Regions would be that the color information is extracted from meaningful image 

entities and the region adjacency can be exploited in the re-ranking stage. 

 

9.2.2 BoW representation 

The short term perspectives for the query expansion algorithm using the BoW representation concern 

the integration of images from multiple search engines (e.g., Google Images, Bing) in a more complex 

manner for identifying examples of instances of the object of interest to be used for generating a visual 

query. In order to ensure that there are enough inliers in the expanded query, the condition for 

representative images to have at least two matched images can be relaxed. However, other 

mechanisms for validating the query descriptors need to be further developed. Another extension of 

this method would enrich the multimodal aspect by adding an audio block in the context of mobile 

terminals. Most of the major smartphone operating systems [Android 2012, IOS 2012] feature 

advanced speech to text technologies. They can be employed by the users to launch queries by voice, 

which are then transcripted to text, which is used to launch queries over search engines and fetch 

images, which are then used to generate a visual query and then the relevant videos are retrieved. 

Another aspect to study is the use of an ad-hoc classifier trained on the images and descriptors 

identified in the query graph. In this manner a linear SVM classifier could be computed from the 

images of the query graph used as positive examples and some random images used as negative 

examples for each query. The advantages of such a classifier would be that more geometrical 

constraints can be introduced in the learning stage. The search can be then performed similarly with 

the simple BoW search by employing an inverted index and leaving the classifier to decide the 

relevancy of each of the considered images. 

An important aspect to be further studied for the BoW representation is the size of the 

vocabulary and hence, the size of the BoW vectors. The largest vocabulary size that it is usually 
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considered for large scale object retrieval is around 1M [Nister 2006, Philbin 2007, Zhu 2012], while 

the majority of the approaches settle to 200k sized datasets [Jégou 2010]. Recently Jégou et al. [Jégou 

2012] have proposed a different representation of the images using the VLAD (Vector of Locally 

Aggregated Descriptors) descriptors based on Fisher kernels [Jaakola 1998] with a significantly lower 

number of dimensions for the image representation vectors (down to 128 dimensions). The Fisher 

kernels can transform an incoming variable-size set of independent samples into a fixed-size vector 

representation. This makes it possible to search within large scale datasets of 100 million images in 

less than one second. This solution offers interesting perspectives for more compact frame 

representations. However different aspects specific to object retrieval such as geometric consistency 

check or quantification of groups of interest points (i.e., visual phrases [Sadeghi 2011]) need to be 

considered. 

There are multiple perspectives for the adaptation of the BoW framework for video clip 

representation. As we have seen in Section 6.3.3 the shot based BoW representation reduced 

significantly the dimensionality of the dataset and improved the performances for multiple queries 

video search. However, many of the key-frames that we have considered were blurry or had different 

artifacts due to the fixed sampling. The perspectives concern the identification of the noisy frames and 

the extraction of clear ones. In the case of the H.264 [H264 2012] compression such frames could be 

identified as the I frames which usually show an increased stability. Another possibility would be to 

analyze the evolution of the affine covariant regions [Sivic 2003] or to perform the geometric 

verification of the regions (cf. Section 4.4.4) over consecutive images and keep only the most stable 

ones. The maximum number of key-frames a shot based representation needs also to be studied. 

Another aspect that hasn’t been solved yet is the generalization of the visual vocabularies. In 

most of the cases, vocabularies obtained from a dataset do not generalize well for other datasets. An 

alternative would be to optimize the matching algorithms and nearest neighbor metrics with machine 

learning approaches and then perform the search in the descriptor space without any clustering. Such 

aspects and questions need to be further studied for improving the performances of object instance 

retrieval methods. 

 

9.2.3 Hybrid representation 

The hybrid region representation needs to be further studied on different datasets with more various 

content and objects to be retrieved.  

Concerning the matching strategies for the hybrid graphs the Spectral Graph Matching can be 

improved by performing the matching in an iterative manner, by using for example the Integer 

Quadratic Programming method in the discrete domain [Leordeanu 2009b]. Different affine 

constraints can be further introduced into the spectral decomposition with respect to the unary 

matching constraints [Cour 2006]. Moreover, the identification of the most promising pairs of points 

can be also performed by employing probabilistic voting techniques over multiple iterations, in order 

to test different sub-graph configurations [Cho 2012].  
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Other developments concern the extension of the graph matching problem to higher order, 

hyper-graph matching [Duchenne 2009, Lee 2011], which makes it possible to integrate constraints 

relative to tuples of matching points in the matching score. 

Let us also note that the computational cost of this method can be reduced significantly by 

pre-computing the affinity matrices offline. Currently; this stage is the most expensive part of our 

algorithm and can be easily transferred to the offline stage. At query time, only the affinity matrix data 

concerning the interest points involved (i.e., the points under the query mask and all the points from 

the test image) can be read from the memory, leaving only the principal vector to be computed at 

query time. 

The adjacency of the interest points can be employed for identifying important regions of the 

video frames corresponding to objects or object parts. In this respect, the connectivity information of 

the graph structure can be employed to identify the most influential nodes on this graph (i.e., the nodes 

corresponding to the most inter-connected sub-graphs) similarly with the Google PageRank algorithm 

[Page 1999] which identifies the most relevant documents from a collection of inter-connected web 

pages. The identified influential nodes and their adjacent nodes can be then considered separately as 

object entities. Such object entities can be further used to define possible object configurations, 

locations and sizes [Sande 2011] or can be described by a dedicated BoW vector inside the image. 

Images can be then represented by multiple BoW vectors, each describing a meaningful region 

configuration. This makes it possible to employ the BoW representation at the object level and to 

match solely relevant object entities in order to obtain more accurate retrieval results. 

 

9.2.4 OVIDIUS 

On the short term the perspectives for the OVIDIUS platform concern the development of a tablet 

adapted interface which would allow touch and drag interactions and display additional content on the 

screen. 

Concerning the navigation functionalities, a mechanism that would allow the user to define his 

own threads according to his criteria of choice (navigation history, color similarity, concept similarity) 

can be developed. The number of such threads can be chosen by the user. Depending on the size of the 

screen and the device of the user and its orientation, the orientation of the threads can be selected (e.g., 

vertical threads for tablets in portrait mode and small screens, horizontal for wide screens and tablets 

in landscape mode). 

Additional functionalities enhanced by the advancements of the HTML5 technical 

specifications can be integrated in the video player in order to display on the video bounding boxes of 

recognized object entities, as the video plays. Moreover, such functionality will then enhance the 

interactivity of the video and users could simply click on the object in order to launch a query or to 

display additional information about it. Let us note that hyperlinks leading to other videos or content 

on the web can be also integrated in the video content and associated to different objects in the video. 

In a setting similar with the one of the PopcornJS [PopcornJS 2012] framework, information specific 

to each sequence can be displayed in dedicated sections of the interface and updated as the video 
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plays. Such information could concern the concept keywords, the audio transcript, the objects and 

characters in the video sequence. 

Another perspective concerns the enhanced access of the OVIDIUS platform. The 

functionalities that we have presented are based on HTTP requests and responses, so they can be 

compiled and used in an OVIDIUS API. Different interfaces and systems can be further proposed and 

developed with the navigation and search information provided by the OVIDIUS API. 
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Object based visual content indexing and retrieval 

 

 

Abstract: The issue of content-based video objects retrieval is growing in difficulty and becomes a 

mandatory feature for video search engines.The present thesis advances a user defined video object 

retrieval framework and brings two major contributions. The first contribution is a methodological 

framework for user selected video object instances retrieval, entitled DOOR (Dynamic Object 

Oriented Retrieval), while the second one concerns the support offered for video retrieval, namely the 

video navigation and retrieval system and interface and its underlying architecture. Under the DOOR 

framework, the objects comport a hybrid representation obtained by over-segmenting the frames, 

constructing region adjacency graphs and aggregating interest points. The identification of object 

instances across multiple videos is formulated as an energy optimization problem approximating an 

NP-hard problem. Object candidates are sub-graphs that yield an optimum energy towards the user 

defined query. Four optimization strategies are proposed: Greedy, Relaxed Greedy, Simulated 

Annealing and GraphCut. This object representation is further improved by the aggregation of interest 

points into a hybrid representation, where the similarity metric relies on a spectral matching technique 

integrating multiple types of descriptors. The DOOR framework is extended to large scale video 

archives through the use of Bag-of-Words representation enriched with a query definition and 

expansion mechanism based on a multi-modal, text-image-video principle. The proposed techniques 

are evaluated on multiple TRECVID video datasets prooving their effectiveness.The second 

contribution is related to the user support for video retrieval - video navigation, video retrieval, 

graphical interface - and consists in the OVIDIUS (On-line VIDeo Indexing Universal System) on-line 

video browsing and retrieval platform, integrating the DOOR framework. The OVIDIUS platform 

features hierarchical video navigation functionalities that exploit the MPEG-7 approach for structural 

description of video content. The major advantage of the proposed system concerns its modular 

architecture which makes it possible to deploy the system on various terminals (both fixed and 

mobile), independently of the exploitation systems involved. The choice of the technologies employed 

for each composing module of the platform is argued in comparison with other technological options.  

 

Keywords: multimedia indexing, object retrieval, object representation, energy minimization, 

Greedy, Simulated Annealing, GraphCut, MPEG-7, Bag-of-Words, query expansion, graph 

matching, multi-modal search, TRECVID, multimedia indexing platform, video browsing, search 

and retrieval, HTML5, multi-terminal access. 

 

 

 

 

 



 

 

 

 

 

 

 

Indexation et recherche de contenus par objet visuel 

 

 

Résumé: La question de recherche des objets vidéo basés sur le contenu lui-même, est de plus en plus 

difficile et devient un élément obligatoire pour les moteurs de recherche vidéo. Cette thèse présente un 

cadre pour la recherche des objets vidéo définis par l'utilisateur et apporte deux grandes contributions. 

La première contribution, intitulée DOOR (Dynamic Object Oriented Retrieval), est un cadre 

méthodologique pour la recherche et récupération des instances d'objets vidéo sélectionnés par un 

utilisateur, tandis que la seconde contribution concerne le support offert pour la recherche des vidéos, 

à savoir la navigation dans les vidéo, le système de récupération de vidéos et l'interface avec son 

architecture sous-jacente.Dans le cadre DOOR, l’objet comporte une représentation hybride obtenues 

par une sur-segmentation des images, consolidé avec la construction des graphs d’adjacence et avec 

l’agrégation des points d'intérêt. L'identification des instances d'objets à travers plusieurs vidéos est 

formulée comme un problème d’optimisation de l'énergie qui peut approximer un tache NP-difficile. 

Les objets candidats sont des sous-graphes qui rendent une énergie optimale vers la requête définie par 

l'utilisateur. Quatre stratégies d'optimisation sont proposées: Greedy, Greedy relâché, recuit simulé et 

GraphCut. La représentation de l'objet est encore améliorée par l'agrégation des points d'intérêt dans la 

représentation hybride, où la mesure de similarité repose sur une technique spectrale intégrant 

plusieurs types des descripteurs. Le cadre DOOR est capable de s’adapter à des archives vidéo a 

grande échelle grâce à l'utilisation de représentation sac-de-mots, enrichi avec un algorithme de 

définition et d’expansion de la requête basée sur une approche multimodale, texte, image et vidéo. Les 

techniques proposées sont évaluées sur plusieurs corpora de test TRECVID et qui prouvent leur 

efficacité.La deuxième contribution, OVIDIUS (On-line VIDeo Indexing Universal System) est une 

plate-forme en ligne pour la navigation et récupération des vidéos, intégrant le cadre DOOR. Les 

contributions de cette plat-forme portent sur le support assuré aux utilisateurs pour la recherche vidéo - 

navigation et récupération des vidéos, interface graphique. La plate-forme OVIDIUS dispose des 

fonctionnalités de navigation hiérarchique qui exploite la norme MPEG-7 pour la description 

structurelle du contenu vidéo. L'avantage majeur de l'architecture propose c’est sa structure modulaire 

qui permet de déployer le système sur terminaux différents (fixes et mobiles), indépendamment des 

systèmes d'exploitation impliqués. Le choix des technologies employées pour chacun des modules 

composant de la plate-forme est argumentée par rapport aux d'autres options technologiques.  

 

Mots clés: indexation multimédia, recuperation d’objets, représentation d’objet, minimization 

d’énergie, Greedy, recuit simulé, GraphCut, MPEG-7, Sac-de-Mots, extension de requête, 

appariement de graphes, recherche multi-modale, TRECVID, plates-formes d’indexation 

multimédia, navigation de vidéos, recherche et récupération, HTML5, accès multi-terminal. 

 

 

 


