
HAL Id: pastel-00874677
https://pastel.hal.science/pastel-00874677

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convection-diffusion models for distillation columns :
application to estimation and control of cryogenic air

separation processes
Stéphane Dudret

To cite this version:
Stéphane Dudret. Convection-diffusion models for distillation columns : application to estimation
and control of cryogenic air separation processes. General Mathematics [math.GM]. Ecole Nationale
Supérieure des Mines de Paris, 2013. English. �NNT : 2013ENMP0018�. �pastel-00874677�

https://pastel.hal.science/pastel-00874677
https://hal.archives-ouvertes.fr










Acknowledgments

I would like to thank my advisors Pierre Rouchon and Fouad Ammouri for their expertise
and support throughout this work. I am also grateful to Karine Beauchard for her fruitful
collaboration .

I express my gratitude to Yann Le Gorrec and Joachim Rudolph for accepting to be
my referees, as well as to Georges Bastin, Hugues Mounier and Athanasios Kontopoulos for
accepting to join the jury.

I am grateful to my successive managers at Air Liquide, Florence Dessertine, Vincent
Gourlaouen and Claude Weber, as well as Jonathan Macron, for their involvment in the
set-up and defense of this industrial research project. I am furthermore in debt to all my
former coworkers of the Process Control and Logistics team, and to my current colleagues in
Applied Mathematics, for their support and the friendly working environment. Special yet
non exclusive thanks go to Lionel for the drawings, Mehdi for the sandwich, and Amélie for
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Résumé

Cette thèse s’intéresse au problème de la modélisation dynamique des profils de composi-
tions le long d’une colonne de distillation. L’approche de modélisation retenue est orientée vers
des applications au contrôle du procédé, plutôt que vers la simulation intensive pour le design
des installations. La validation et la discussion autour du modèle sont menées tant du point
de vue théorique de l’automatique, que du point de vue expérimental, via des comparaisons
avec des données issues d’installations réelles.

Premièrement, nous proposons une introduction aux principes de base de la distillation
et au fonctionnement d’une unité de séparation des gaz de l’air (ASU en anglais). Nous
conduisons une étude bibliographique des techniques de modélisation et contrôle des colonnes
de distillation. Nous détaillons en particulier le modèle d’onde (dont la thèse est inspirée), dans
lequel la dynamique des profils de compositions est expliquée comme le glissement d’ondes de
compositions de forme fixée, piloté par le taux de reflux dans la colonne.

Deuxièmement, nous proposons un modèle à deux fluides simplifié, où la dynamique des
compositions résulte des effets couplés de transports convectifs à contre-courant dans les
phases liquide et vapeur le long de l’axe de la colonne, et d’un échange radial piloté par
des inhomogénéités de concentrations dans ces deux phases. Nous réduisons ce modèle en
une équation aux dérivées partielles (EDP) de convection-diffusion associée à des sorties sta-
tiques, en utilisant une technique de réduction variété centre. Cette réduction repose sur une
séparation d’échelles de temps. Le modèle réduit obtenu est adapté à un nombre quelconque
de constituants dans le mélange à distiller. Nous discutons ses propriétés, et en particulier
comment il permet de dépasser l’hypothèse de forme fixe dans le modèle d’onde, et traduit
la dépendance de l’efficacité du garnissage vis-à-vis des flux internes. Puis, considérant le
phénomène de convection seul, nous adaptons des résultats issus du domaine de la chromato-
graphie, pour construire des ensembles de constituants propagés de manière cohérente comme
des ondes de choc, suivant des règles simples.

Troisièmement, nous étudions le modèle EDP réduit du point de vue de l’automatique.
Nous prouvons l’existence, l’unicité et la stabilité locale d’une solution stationnaire. Nous pro-
posons des observateurs asymptotiques localement convergents pour les profils de composition,
qui s’accomodent d’une hydraulique instationnaire. Des simulations semblent indiquer que les
propriétés démontrées s’étendent globalement dans la pratique. En parallèle, nous construi-
sons un modèle linéarisé tangent de fonctions de transfert pour un segment de colonne, qui
relie les variations des flux et compositions d’alimentation aux variations des compositions en
sortie. Ce modèle de transfert est à base de gains statiques et de retards purs uniquement. Il
dépend explicitement de paramètres liés au design du procédé ou à son opération, qui peuvent
être mesurés ou estimés en ligne.

Quatrièmement, nous implantons numériquement le modèle EDP afin de reproduire le
comportement d’une colonne de séparation binaire réelle. Le modèle est d’abord comparé à



des simulations statiques de référence, puis à des scénarios réels de fonctionnement dyna-
mique. Dans les deux cas, le modèle est en bon accord avec les données de référence. Nous
étudions des explications partielles à certains écarts constatés entre les valeurs attendues des
paramètres du modèle et les valeurs finales adoptées empiriquement. Nous vérifions aussi
le comportement du modèle linéarisé tangent, qui s’avère capable de reproduire les petites
oscillations de compositions autour d’un point de fonctionnement.

Cinquièmement, nous étendons la validation du modèle EDP à la simulation d’une cas-
cade de deux colonnes séparant un mélange ternaire, couplées à une troisième traitée de façon
simplifiée. Une fois encore, cette configuration correspond à une réalité du terrain. Les com-
paraisons avec des données statiques de référence montrent un bon comportement du modèle.
Celui-ci est cependant très sensible aux erreurs d’estimation des flux internes de gaz et de
liquide, ce qui dégrade la qualité des simulations dynamiques. À l’aide des résultats obtenus
pour la propagation des ondes de choc de compositions, nous montrons que la forme des
profils de compositions est structurée par des ondes de vitesse nulle, qui restent immobiles au
milieu des sections de la colonne. De petites erreurs d’estimation sur les flux leur confèrent
une vitesse non-nulle, et leur glissement modifie significativement les profils reconstitués.



Abstract

This thesis addresses the problem of modeling the dynamics of continuous composition profiles
along a distillation column. The modeling approach is control-oriented, in opposition with
numerically intensive models used for designing the columns. Validation and discussion on
the model are both considered from a theoretical, control theory point of view, and from an
experimental viewpoint, using real plant data for comparisons.

First, we provide an introduction to the basics of distillation and the functioning of a cryo-
genic air separation unit (ASU). We propose a literature review regarding the techniques for
modeling and controlling distillation columns. We detail in particular the wave-model (from
which the thesis is inspired), where the dynamics of the composition profiles are explained as
the drift of composition waves of fixed shape, driven by the column’s internal reflux rate.

Second, we propose a simplified two-flows model in which the compositions dynamics result
from countercurrent convection in the liquid and gas phase along the column axis, together
with radial exchange driven by inhomogeneous concentrations in the liquid and gas phase. We
reduce this model into a non-linear, convection-diffusion partial differential equation (PDE)
with static outputs, using the Centre Manifold reduction technique. This technique relies on
a time-scale separation. The obtained reduced model is for any number of components in
the separated mixture. We discuss its properties, in particular how it relaxes the fixed shape
assumption of the wave-model and makes the packing efficiency dependent from the internal
flows. Then focusing on the convection phenomenon only, we adapt results from the field of
chromatography, to construct coherent sets of components which propagate as shockwaves
following simple rules.

Third, we investigate the reduced PDE model from the point of view of control theory. We
prove the existence, uniqueness and local stability of the stationary solution. We propose local
asymptotic observers for the composition profiles, which can cope with unsteady hydraulics.
Some simulations indicate that the demonstrated properties could be global in practice. In
parallel, we construct a tangent linearized transfer function model for a column segment,
which connects the variations of the inlet flows and compositions with the variations of the
outlet compositions. The transfer model consists of static gains and pure delays only. It
explicitly depends on process or design data, which can be measured or estimated on-site.

Fourth, we numerically implement the PDE model to reproduce the behavior of a real
plant binary separation column. The model is first checked and tuned using static reference
simulation cases, then compared against real dynamic operation scenarios. In both cases
the model is in good agreement with the reference data. We investigate partial explanations
for the discrepancies between the empirically tuned parameters and the expected values. We
also check the performances of the linear tangent model, which proves able to reproduce small
composition oscillations around a set-point.

Fifth, we extend the experimental validation of the PDE model to reproduce the behavior



of two cascaded columns with ternary mixture, coupled to a simplified third one. This cor-
responds again to a real plant configuration. Comparisons are made against static reference
cases with good agreement. Yet the PDE model turns out to be highly sensitive to estima-
tion errors on the internal liquid and gas flows, which decreases the accuracy of the dynamic
simulations. Applying the results obtained for the composition shock-waves, we find that
the composition profiles’ shape is structured by waves with null-speed, which stay balanced
between the column’s segments boundaries. Small estimation errors on the flows cause them
to drift and significantly impact the estimated profiles.
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Introduction (version française)

Cette colonne, je suis jamais retourné la
voir, même pas de l’extérieur [...] C’est
bête, et je le sais bien que c’est bête,
mais j’ai plus été capable de redevenir
comme avant.

Primo Levi
La clef à molette

On estime que les installations de séparation des gaz de l’air sont responsables d’environ
0.1 % de la consommation mondiale d’électricité. Ce chiffre illustre à lui seul l’importance,
pour la société opérant une telle installation, d’une bonne gestion de l’efficacité énergétique
de l’usine. Une part importante de l’effort de réduction de la consommation énergétique est
concentrée sur l’amélioration de l’intégration énergétique de l’installation et de son isolation
(pour diminuer l’énergie nécessaire à son maintien en froid), ainsi que sur la réduction des
pertes de charge dans les colonnes de distillation et les échangeurs thermiques (pour réduire la
charge de travail des compresseurs de l’unité). Cependant, des améliorations complémentaires
peuvent être apportées en optimisant la conduite du procédé de séparation. Avec cette dernière
approche, on cherche essentiellement à traiter les points suivants :

les marges de pureté : une Unité de Séparation des gaz de l’Air (ASU en anglais) pro-
duit des liquides et des gaz pratiquement purs. La société opérant l’unité garantit à ses
clients que le taux d’impuretés dans les produits n’excédera jamais un seuil donné. Le cas
échéant, les produits pollués sont mis à l’air et perdus, ainsi que l’énergie dépensée pour
la séparation. Si le point de fonctionnement de l’unité est trop proche du seuil contrac-
tuel, et la conduite du procédé peu précise, de petites perturbations peuvent mener à
des dépassements intempestifs de ce seuil. En conséquence, on choisit généralement un
point de fonctionnement qui éloigne l’unité du seuil critique, ce qui conduit à une sur-
purification inutile des produits. Ce gain en pureté est coûteux, puisqu’il requiert des
flux de gaz et de liquide plus importants dans les colonnes de distillation, et donc, une
charge de travail plus grande des compresseurs, pour la même quantité de produit en
sortie. Améliorer le rejet de perturbations peut participer à réduire les coûts associés.

la stabilisation : une ASU comporte une succession d’étapes de distillation, réalisées par des
colonnes en cascade. Schématiquement, chacune sépare un composant du mélange initial.
On récupère donc, pour chaque colonne, un produit purifié qui est vendu aux clients,
et un sous-produit, impur, qui alimente la colonne suivante. Une mauvaise stabilisation
de la colonne au début de la cascade, même si elle doit n’avoir aucune conséquence
sur son produit pur, peut se répercuter sur les colonnes suivantes à travers les sous-
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produits, et pénaliser leur fonctionnement. Un travail de purification supplémentaire et
coûteux peut devenir nécessaire à la fin de la cascade, qu’une meilleure stabilisation
des premières colonnes aurait pu éviter. L’amélioration de la conduite du procédé passe
donc aussi par la stabilisation de la qualité des sous-produits dès les premières colonnes,
avec une répercussion sur la performance énergétique de l’installation complète.

la flexibilité : la dérégulation des marchés de l’électricité est à la fois une opportunité et un
défi pour qui opère un parc d’ASU. Pour réduire le coût global de la production d’un gaz,
il est préférable d’en produire plus lorsque l’électricité est bon marché, et de réduire la
production quand les prix de l’énergie montent. Cependant, la loi du marché vaut aussi
pour les clients de l’ASU, lesquels vont adapter la conduite de leurs propres procédés. Le
besoin d’un client peut donc évoluer fortement au sein d’une même journée. Le raison-
nement devient plus complexe encore lorsque l’on envisage le fonctionnement coopératif
de plusieurs ASU par le biais de réseaux de distribution, et si l’on considère que le sto-
ckage de gaz ou de liquide obéit aussi à ses propres règles d’optimisation énergétique.
L’idée générale, c’est le changement du mode opératoire des ASU : d’un fonctionnement
stabilisé, on passe à une production constamment en régime transitoire. Or, pour ne pas
dépasser les seuils de pureté contractuels durant ces transitoires, il est tentant d’opérer
par de lentes variations d’un point de fonctionnement, et de rester autour d’un régime
quasi-stationnaire sécurisant. Cela génère des temps morts, pendant lesquels la produc-
tion peut ne pas être adaptée aux prix de l’énergie ou à la demande client, avec pour
conséquences possibles : des opportunité manquées d’économie d’énergie, une surpro-
duction, ou au contraire des demandes insatisfaites. Une conduite améliorée du procédé
devrait donc permettre des transitoires plus rapides, plus agressifs, tout en respectant
les seuils de pureté, en utilisant au mieux les capacités de l’usine qui découlent de son
design.

La question sous-jacente est celle des modèles de contrôle à utiliser dans les systèmes de
pilotage de l’unité de séparation. En simplifiant à l’extrême, nous pouvons distinguer deux
grandes catégories de modèles.

D’une part, les modèles linéaires de fonctions de transfert, à base de gains statiques, de
constantes de temps et de retards purs. Ces modèles sont souvent du type ‘bôıte noire’, ce qui
suppose leur calage sur site. De plus, leur précision est limitée à un petit voisinage du point
stationnaire utilisé pour ce calage, puisque la dynamique des colonnes de distillation et des
échangeurs thermiques est hautement non-linéaire. Or les ASU opèrent de moins en moins
fréquement en régime stationnaire. Ainsi, si les modèles bôıtes-noires sont réglés alors que
l’unité est en production, ce qui est régulièrement le cas puisqu’interrompre la production pour
le réglage a un coût immédiat, le résulat est l’indentification d’un point de fonctionnement
fantôme ; on obtient un modèle d’une sorte de dynamique moyenne, dont la justesse est sujette
à caution. De tels modèles sont bien entendu inadaptés au contrôle de grands transitoires. En
outre, la nature même de ces bôıtes noires rend délicat leur pré-réglage à partir de données
de design, lequel permettrait de réduire la charge de travail pour le réglage sur site, ou encore
l’estimation de leur pertinence.

D’autre part, nous trouvons des modèles de grande taille, où chaque sous-fonction ou
élément constitutif du procédé (compresseur, échangeur, plateau de distillation, condenseur...)
est représentée par des équations physiques détaillées. De tels modèles peuvent compter des
centaines ou des milliers de variables et de paramètres, ce qui complique leur réglage, et pose
la question de leur stabilité numérique, ainsi que celle des ressources de calcul et de mémoire
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nécessaires pour une utilisation temps-réel. De plus, ces modèles impliquant de nombreux sous-
systèmes, il devient difficile d’extraire l’information nécessaire, complète mais non superflue,
dont on a besoin pour le contrôle : ces modèles n’offrent pas nécessairement un aperçu clair
des variables, phénomènes et dynamiques à considérer.

L’interrogation qui sous-tend ce travail est donc la suivante : quel serait le prochain modèle
de contrôle pour une unité de séparation des gaz de l’air, ayant une complexité minimale, qui
pourrait être à la fois concis comme un modèle de fonctions de transfert, tout en allant au-
delà des seuls gains, constantes de temps et retards purs, et devrait éclairer les dynamiques
non-linéaires critiques qui sont parfois cachées dans les gros modèles physiques ?

Pour apporter des éléments de réponse, nous proposons l’approche suivante. Du point de
vue du contrôle, les éléments critiques dans une ASU sont les colonnes de distillation et les
échangeurs, puisque leurs dynamiques sont hautement non-linéaires, avec des retards impor-
tants, et que ces sous-ensembles sont peu instrumentés. Nous axons ce travail sur les colonnes,
qui sont au cœur du procédé. Notre objectif est de modéliser la dynamique de ces colonnes,
l’une après l’autre. Une colonne, prise seule, comporte plusieurs segments, qui diffèrent par
leur taille, les traffics internes de liquide et de gaz, et les compositions typiques en entrée et
en sortie. Le plus petit sous-système de notre étude sera donc un segment homogène de co-
lonne. Nous construisons pour un tel segment un modèle physique simple basé sur des bilans,
que nous réduirons afin d’obtenir un modèle concis qui montrera clairement les phénomènes
à l’œuvre dans la dynamique des colonnes. Nous construirons alors un modèle réduit d’une
première colonne en combinant plusieurs segments. En itérant, on peut obtenir ainsi un modèle
pour une cascade de colonnes. Dans cette étude, nous nous limiterons à deux colonnes en cas-
cade, connectées de manière simplifiée à une troisième. Du point de vue du procédé, ceci
permet d’étudier la séparation N2/O2, tout en tenant compte de manière simplifiée de la
première étape d’extraction d’argon. Nous validerons les modèles de colonnes grâce à des cas
de référence (des simulations) en régime stationnaire, et des données d’exploitation provenant
d’une ASU réelle. Le modèle que nous proposons est adapté à l’observation, sur le temps long,
de colonnes de distillation. Mais sur la base du même modèle, nous dériverons des fonctions de
tranfert qui pourraient s’intégrer dans des lois de stabilisation des colonnes. Nous proposerons
également une interprétation de la sensibilité de notre modèle (par rapport aux flux internes
de gaz et de liquide) en termes d’ondes de compositions. Notons pour finir que dans le cadre
de cette étude, nous ne nous préoccupons pas de la question du temps de calcul (quoique les
simulations avec nos modèles soient nettement plus rapides que le temps réel).

Plan du manuscrit

Le Chapitre 1 introduit le lecteur aux principes de base de la distillation et du fonctionne-
ment d’une Unité de Séparation des gaz de l’Air, ainsi qu’à l’état de l’art en modélisation
et contrôle des procédés de distillation.

Partant d’un modèle de cornue, nous montrons comment une succession d’étapes d’équi-
libre liquide-vapeur permet la séparation d’un mélange. Nous présentons ensuite les
technologies (plateaux de distillation et garnissages) qui réalisent ces étapes dans une co-
lonne de distillation, leurs avantages et inconvénients. Nous poursuivons avec le schéma
général d’une ASU, et donnons quelques détails sur ses principales fonctions : compres-
sion, purification, production de froid, échanges thermiques et distillation.

La deuxième partie du chapitre, qui est une revue de modèles de contrôle pour la distil-
lation, débute avec l’exploitation des unités en régime stabilisé, comme il était d’usage
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par le passé. Nous évoquons le choix des variables de contrôle, la robustesse du régime
stationnaire vis-à-vis de certaines perturbations. Nous familiarisons le lecteur avec les
modèles à plateaux, les non-linéarités du régime stationnaire et les problèmes de condi-
tionnement des modèles. Nous montrons ensuite comment la dynamique des colonnes
de distillations est traitée avec de tels modèles. Nous évoquons un modèle en particulier,
le modèle d’onde, qui exprime la dynamique des profils de composition dans la colonne
par le déplacement d’une onde de composition, de forme fixée, le long de la colonne.
Nous traitons également de quelques modèles et techniques de contrôle heuristiques, à
base de réseaux de neurones ou de logique floue par exemple. La section suivante est
dédiée au problème du temps de calcul et aux techniques permettant de réduire la charge
de calcul et de mémoire nécessaire aux stratégies de contrôle prédictives utilisant des
modèles complexes. Comme on l’a dit précédemment, les colonnes de distillation sont
couplées entre elles et aux échangeurs thermiques dans leur fonctionnement ; une section
traite des possibles problèmes de couplage causés par la forte intégration énergétique
du procédé. Les échangeurs thermiques en eux-mêmes sont hors du cadre de ce tra-
vail ; nous présentons cependant brièvement quelques modèles adaptés aux échangeurs
multiphasiques. Nous concluons cette revue de la littérature par quelques problèmes
ouverts, rappelons le cadre de notre travail et ses objectifs par rapport à cet état de
l’art, et donnons pour terminer les orientations de la recherche chez les grands acteurs
industriels de la séparation des gaz de l’air.

Le présent travail étant directement inspiré du modèle d’onde, la dernière section de ce
chapitre revient plus en détail sur ce dernier.

Le Chapitre 2 commence par l’écriture d’un modèle d’équations bilans pour un segment de
colonne de distillation, qui est ensuite réduit en un modèle non-linéaire de convection-
diffusion. Le chapitre se clôt par une adaptation d’un modèle de propagation d’ondes,
du cadre de la chromatographie vers celui de la distillation.

Nous décrivons la distillation comme le résultat d’un échange de matière entre une phase
liquide équivalente et une phase gazeuse équivalente, à travers une unique surface de
contact. Le flux d’échange de matière est imposé par une inhomogénéité de compositions
dans chacune des phases, lesquelles ne sont pas instantanément à l’équilibre thermody-
namique dans leur ensemble. L’échelle de ce flux d’échange est donnée par un terme en
1
ǫ , 0 < ǫ << 1 ; nous relions qualitativement ǫ à l’efficacité du garnissage.

Nous faisons une tentative pour réduire, en régime stationnaire, notre premier modèle,
en distingant deux échelles en espace, à connecter par la technique des développements
asymptotiques raccordés. Nous montrons comment le jeu entre des conditions aux limites
particulières et un profil de composition exponentiellement raide rend caduque cette
approche.

Nous nous tournons alors vers la réduction du système dynamique initiale en tirant
parti de deux échelles de temps distinctes, à l’aide de techniques de réduction variété
centre (nous donnons une introduction à ces techniques). Nous menons rigoureuse-
ment la réduction d’une version discrète du modèle d’équations bilans, dans le cas d’un
mélange binaire. Nous appliquons ensuite formellement la même technique de réduction
à la version du modèle de dimension infinie (toujours pour un mélange binaire). Ceci
est motivé par la similarité entre les structures des deux modèles (discret et continu)
réduits obtenus. Le modèle réduit comprend :

– une équation aux dérivées partielles (EDP) de convection-diffusion pour la dynamique
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d’une variable interne X, qui est assimilée à la composition moyenne d’une espèce sur
les phases liquide et gaz,

– des sorties statiques pour récupérer les compositions phase par phase à partir de la
variable interne X.

Nous discutons ce modèle, et notamment la dépendance du terme de diffusion en ǫ et en
les conditions opératoires de la colonne. Nous étendons ensuite ce modèle à un nombre
quelconque de composants.

Si l’on néglige la diffusion, notre modèle EDP se réduit à un modèle de convection pure.
La question naturelle est : quelles sont les quantités qui se progagent, et à quelle vitesse ?
Nous donnons des éléments de réponse en adaptant des résultats originellement obtenus
pour la chromatographie : nous rapprochons la circulation à contre-courant de gaz et
de liquide dans la colonne de la circulation d’un mélange analysé sur un lit (fixe) de
chromatographie. Nous montrons que pour un mélange à N + 1 composants, il existe
N2 invariants de Riemann qui permettent de construire N combinaisons de composants,
chacune convectée comme une seule entité. Dans ces ensembles, les compositions n’ont
pas de réalité physique (elles pourraient être négatives, par exemple). Nous donnons les
relations permettant d’obtenir ces ensembles à partir des compositions réelles, physiques,
dans la colonne, et vice-versa. Concernant les vitesses de propagation, nous donnons
une condition suffisante pour n’obtenir dans la colonne que des ondes de chocs, sans
interactions entre elles. On verra que cette condition est vérifiée dans les colonnes que
nous considérons en applications. Nous donnons les vitesses de choc correspondantes.

Le Chapitre 3 comprend l’analyse du modèle EDP du point de vue de la théorie des
systèmes dynamiques et du contrôle, ainsi que le développement d’un modèle linéarisé
tangent de fonctions de transfert pour un segment de colonne.

Nous considérons une configuration de colonne simplifiée, analogue à un segment unique.
Nous établissons un ensemble d’hypothèses portant sur les flux de liquide et de gaz, les
compositions d’alimentation et la relation d’équilibre thermodynamique, sous lesquelles
nous prouvons les résultats suivants : pourvu que les données initiales soient dans (0, 1),
la composition moyenne X reste dans le même intervalle pour tout temps positif ; pour
toute valeur positive du paramètre de diffusion ǫ, il existe une solution stationnaire
unique et monotone au système dynamique considéré ; la composition au sommet de la
colonne a, en régime stationnaire, une dépendance monotone en ǫ ; la solution station-
naire est localement exponentiellement stable. Ce dernier résultat est donné au moyen
d’une fonction de Lyapunov.

Partant du modèle EDP, nous proposons une famille d’observateurs asymptotiques avec
injection de sortie réglable. La même fonction de Lyapunov que précédemment nous
permet de prouver que ces observateurs sont localement exponentiellement convergents,
même si l’hydraulique de la colonne n’est pas en régime stationnaire.

Nos simulations semblent indiquer que ces propriétés locales peuvent, en pratique, être
considérées comme globales.

La deuxième partie du chapitre est dédiée à la dérivation d’un modèle linéaire tangent,
partant du modèle EDP. L’EDP linéarisée est réécrite comme une équation aux dérivées
ordinaires dans le domaine de Laplace. Les racines de l’équation homogène associée
s’expriment, l’une comme une série entière en ǫ, l’autre comme une série de Laurent en ǫ.
En manipulant ces racines sous forme symbolique, nous obtenons via un développement
asymptotique non-standard, l’expression des variations de compositions au sommet et
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en pied de colonne, comme des séries entières en ǫ, à des termes exponentiellement précis
près. En tronquant les expressions des racines, nous obtenons une approximation des
variations de composition des sorties en O(ǫ). Deux cas doivent être distingués, suivant
la direction de convection des compositions.

Le Chapitre 4 concerne l’implémentation numérique et le test des modèles EDP et linéaire
par rapport à des simulations de référence en régime stationnaire et des données issues
d’une ASU réelle. On se focalise sur la première colonne (la colonne Moyenne Pression)
de l’unité.

Nous rappelons d’abord le fonctionnement de cette colonne, puis présentons les schémas
numériques utilisés pour le modèle EDP (nous nous limitons ici à la séparation binaire
N2/O2 en négligeant l’argon). Nous tentons d’estimer a priori certains des paramètres
du modèle par des considérations élémentaires sur la géométrie du garnissage.

Nous comparons ensuite les estimations du modèle EDP avec des cas de référence en
régime stationnaire obtenus avec le logiciel Hysys . Les profils de composition simulés
sont en bon accord avec Hysys , et résistent à des simplifications du modèle, dans une
certaine mesure. On note cependant que les paramètres estimés empiriquement pour
obtenir ces résultats diffèrent significativement de leurs estimations a priori.

Le modèle EDP est ensuite testé à l’aide de données de fonctionnement (en régime dy-
namique) provenant de l’ASU. Plusieurs scénarios sont testés, que le lecteur pourra re-
trouver en Annexe C. Dans le corps du chapitre, nous nous concentrons sur un scénario
en particulier. Nous montrons qu’en boucle ouverte, notre modèle EDP reproduit de
manière satisfaisante les mesures de compositions sur l’unité, avec des paramètres di-
rectement repris des tests en régime stationnaire. Seule la vitesse de descente du liquide
doit être significativement modifiée pour synchroniser le modèle avec l’unité. La dyna-
mique des compositions est peu sensible aux changements sur les rétentions liquide et
vapeur, ce qui semble indiquer que c’est en fait l’hydraulique, plutôt que la dynamique
de séparation elle-même, qui prédomine dans l’unité de séparation.

Nous montrons qu’une simple adaptation en ligne du paramètre de diffusion ǫ permet
au modèle de rester cohérent avec les mesures sur plusieurs dizaines d’heures, et sur
plusieurs scénarios. Sur certains cependant, notre modèle est incapable de reproduire
les compositions mesurées, ce qui constitue une limite à son domaine de validité actuel.

Sur un scénario distinct et sur des intervalles de temps plus courts, nous testons aussi
le modèle de fonctions de transfert développé au Chapitre 3. Malgré un biais lentement
variable, ce modèle reproduit les oscillations de composition observées.

Le Chapitre 5 poursuit la validation expérimentale du modèle. La seconde colonne (la co-
lonne Basse Pression) est simulée en utilisant le modèle EDP (la première colonne est
simulée simultanément, et l’ensemble est couplé à une troisième colonne de manière
simplifiée). Les résultats sont comparés à des cas de référence statiques et des données
issues de l’unité réelle.

Comme dans le chapitre précédent, nous rappelons le fonctionnement de la colonne
Basse Pression. Nous la considérons d’abord comme une colonne de séparation d’un
mélange pseudobinaire. Cependant, cette colonne étant connectée à la première colonne
d’extraction d’argon, une seconde étape consiste à simuler la séparation du mélange
ternaire N2/O2/Ar. Nous présentons le schéma numérique utilisé pour ce mélange ter-
naire.
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Le modèle EDP binaire est comparé aux cas statiques Hysys . Les résultats indiquent le
profil de composition O2, qui comporte un grand front de changement de composition,
est très sensible aux erreurs d’estimation sur les flux de liquide et de gaz, et sur la
volatilité des composants. La comparaison du modèle ternaire avec Hysys mène aux
mêmes constatations.

Nous comparons ensuite le modèle EDP pour les colonnes couplées avec les données is-
sues de l’unité. Pour ces simulations, nous envisageons plusieurs modèles simplifiés pour
tenir compte du couplage avec la première colonne argon, sans avoir à la simuler elle
aussi. Trois mesures de composition O2 sont disponibles pour les comparaisons, au som-
met de la colonne Basse Pression (quelques pourcents d’oxygène), à son pied (presque
100 %) et au niveau de la connection avec la première colonne argon (environ 90%).
Nous nous concentrerons sur cette dernière, critique pour la bonne marche du procédé
argon. Notre modèle est en accord avec la composition O2 moyenne à cet endroit, et
reproduit certaines de ses variations. Mais la sensibilité du modèle aux petites variations
des flux internes de liquide et de gaz est telle que notre estimation diverge fréquemment
de la mesure.

Dans la dernière partie du chapitre, nous étudions cette sensibilité à l’aide du modèle
d’ondes de choc adapté au Chapitre 2. Nous montrons que dans la colonne Basse Pres-
sion, en régime stationnaire, certaines ondes de compositions sont immobiles. Elle se
maintiennent au milieu d’un segment de colonne, isolées des effets de bord. Un petit
changement sur les flux de liquide ou de gaz leur confère une vitesse non-nulle. L’onde
glisse alors dans le segment avant d’être stoppée par les effets de bord, ce qui change
significativement le profil de compositions correspondant.

Des Conclusions et perspectives closent le manuscrit.

L’Annexe A regroupe des schémas de l’ASU considérée et des colonnes étudiées.

L’Annexe B résume les notations utilisées dans nos modèles pour les différents flux de gaz
et de liquide.

L’Annexe C regroupe, sous une forme résumée, les comparaisons modèle-ASU sur 17 scénarios
de fonctionnement de la colonne Moyenne Pression.

L’Annexe D complète la première partie du Chapitre 5 avec des comparaisons supplémentaires
en régime stationnaire, entre le modèle EDP et des cas Hysys de référence, pour la co-
lonne Basse Pression.

L’Annexe E expose succinctement les performances des schémas numériques et de possibles
améliorations.

Publications et brevets

Ce travail a conduit à une communication [22] à l’American Control Conference (ACC)
2012 (conférence internationale avec actes et comité de lecture). Cette communication traite
de l’obtention d’un modèle dynamique réduit pour une colonne de distillation binaire, pour
lequel on donne des résultats de stabilité et d’observabilité, similaires à ceux présentés en
première section du Chapitre 3. La réduction est menée formellement dans [22] ; le Chapitre
2 justifie cette réduction en appliquant rigoureusement la technique correspondante à une
version discrète du sytème, et l’étend également à un nombre quelconque de composants.

7



Le modèle linéaire tangent présenté en deuxième section du Chapitre 3, et testé en fin
du Chapitre 4, a été soumis pour publication à l’Annual Conference on Decision and Control
(CDC) 2013.

En marge de ces publications, cette thèse a mené à trois demandes de brevets (enregistrés
mais non encore publiés) :

– FR-1254802 qui couvre l’intégration d’un modèle de convection-diffusion tel que déve-
loppé au Chapitre 2 dans un capteur logiciel, pour l’estimation et la prédiction des
profils de composition sur site,

– FR-1255974 qui couvre l’utilisation d’un tel modèle à des fins de détection de défaillances
de capteurs physiques,

– FR-1256782 qui couvre l’utilisation d’un tel modèle pour prévenir le désamorçage du
condenseur en tête de la première colonne d’argon, en détectant des tendances poten-
tiellement problématiques dans la dynamique des profils de compositions.
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Introduction

Air separations plants are responsible for about 0.1 % of the worldwide electricity consump-
tion. That goes to show the importance of the plants’ energy efficiency management for the
plant operating companies. A large fraction of the energy consumption reduction effort is
focused on the plant’s energy integration and insulation (to decrease the required cooling
power) and the pressure drops inside the distillation columns and heat exchangers (to de-
crease the compressors’ duty). Yet another, complementary energy optimization approach
focuses on enhanced process control. This approach essentially addresses the three following
issues:

Purity margins: an Air Separation Unit produces almost pure liquids and gases. The plant
operating company guarantees its customers that impurities will not exceed a certain
concentration in the products. Whenever the threshold is exceeded, the products are
vented and lost. If the plant set-point is too close to the threshold and the process
control too loose, small perturbations can yield untimely exceeding of the critical limit.
Consequently, the chosen set-point is often far below the contractual threshold and the
products are unnecessary over-purified. This additional purification is costly, since it
requires increased liquid and gas traffic inside the distillation columns, that is, addi-
tional compression power, for the same amount of final product. Enhanced disturbance
rejection shall help reducing these costs.

Stabilization: air separation plants are a chain of distillation steps, where columns operate
in a cascade manner. In broad outline, each of them separates a component of the initial
mixture. The results for each column are a pure product which is sold to the customers,
and by-products which feed the next column in the cascade. Loose stabilization of a
column at the beginning of the cascade, even if it has no consequence on its pure product,
can be passed to the next columns via the by-products, and dramatically impede their
functioning. Additional, costly purification duty will thus be necessary at the end of
the cascade, because of disturbances which could have been damped at its beginning.
Enhanced process control shall thus focus also on the stabilization of the by-products
composition in the first columns, to improve the energy efficiency of the global process.

Flexibility: deregulation of the electricity markets offers both new opportunities and chal-
lenges for the plant operating companies. To reduce the overall production cost of a
gas, it is preferable to produce more of it when the electricity is cheap, and to decrease
the production when prices increase. Yet the deregulation also plays for the plants’
customers, which adapt their own processes. Thus the customer demand can radically
vary during a day. The reasoning gets even more intricate when considering that air
separation plants can operate in a cooperative manner via pipeline networks, and that
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liquid and gas storage for buffering purpose also obeys its own energy optimization rules.
Yet the big picture is that ASU operation has switched from steady-state to frequent
large transients. In order not to exceed the purity thresholds during the transients, it is
tempting to slow down the set-point changes, so as to always operate near the steady-
state. Yet this leads to dead-times during which the production is possibly not adapted
to the energy prices and to the customers demands, which results in lost spares, wasted
products or unsatisfied orders. Enhanced process control shall then allow accelerated
transients, while respecting the purity limits, by pushing the plant to the edge of its
design.

The underlying question regards the control models to be embedded in the plants’ control
system. In a simplified manner, we can distinguish two main modeling approaches.

On the one hand, linear transfer function models consisting of static gains and time
constant for small order transfers, and pure delays. These models are often of black-box
type, which supposes tuning them on-site. In addition, they are accurate only in a small
vicinity of a steady-state, since distillation columns and heat-exchangers show highly non-
linear dynamics. And it just so happens that a distillation plant almost never operates at
steady state. If the black-box models are tuned during regular operation, which is often the
case since interrupting the production for testing purposes has an immediate cost, the result
is the identification of a ghostly, floating set-point; one obtains the model of a mean dynamics,
whose accuracy can be problematic. Such models are of course unadapted to large transients
control in particular. In addition, the black-box nature makes it difficult to estimate a priori
the model parameters from design data, in order to reduce the on-site tuning time or assess
their relevance.

One the other hand, we find large models where each step and device of the plant (be it
a compressor, an exchanger, a distillation tray, a condenser ...) are represented with first-
principles physics equations. Such models can count hundreds or thousands of parameters
and variables, which makes their tuning complicated, and sets the question of their numerical
stability as well as the required CPU resources for real-time applications. In addition, the
numerous sub-systems involved in these models make it hard to extract the right, necessary
and non-superfluous information for control; they offer no clear view of the critical variables,
physical effects and dynamics to be considered.

The question which subtends this work is then: what is the next control model of minimal
complexity for air separation plants, which should be concise as the transfer functions models,
yet go beyond the gain / time constant / pure delay framework, and give a clear view of the
critical non-linear dynamic phenomena which are somehow hidden in the large first principle
models?

We propose the following approach to make a start on providing answers to this question.
The very critical elements of a distillation plant regarding the control purposes are the distil-
lation columns and the heat-exchangers, for they show highly non-linear dynamics, important
delays, and are only little instrumented. We focus in this work on the distillation columns,
which are the core of the process. Our goal is to model the dynamics of the multiple chemical
species molar fraction profiles along the column. As said previously, the column operate in a
cascade manner. We will address the columns one after the other. A single column comprises
several subsections, which essentially differ by their size, the internal liquid and gas flows, and
the typical magnitude of their inlet and outlet compositions. The smallest sub-system in our
study will then be an homogeneous subsection. For such a subsection, we will build a simple
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first-principle physics model, which we will reduce to obtain a concise form clearly displaying
the critical phenomena which structure the dynamics of distillation. We will then build the
reduced model of the plant’s first column by combining several subsections. Ultimately, one
would so obtain the model of the whole cascade. Yet in this study, we will limit ourselves to
two cascaded columns, interacting in a simplified manner with a third one. From the process
point of view, this is addressing the N2/O2 separation process, with a glance at the first argon
extraction step. We will validate the columns models using static reference simulation cases,
and against real dynamic plant data (from an Air Liquide Air Separation Unit). The model
we propose is essentially adapted to the long-term observation of the distillations columns.
On this basis, we will derive a linearized transfer function model which could be part of a
stabilization strategy. We will also propose an interpretation of the sensitivity of our model
to the liquid and gas internal flows, in term of traveling composition waves. Note that in this
work, we do not focus on the computation time issue regarding our models (which yet run
faster that the real-time).

Organization of the manuscript

Chapter 1 introduces the reader to the basic principles of distillation, the functioning of an
Air Separation Unit, and with the state of the art regarding the modeling and control
of distillation processes.

Starting with the retort model, we show how a succession of biphasic equilibrium stages
separates a mixture. We then present the technologies (distillation trays and packing)
which realize this stages in a distillation column, their advantages and drawbacks. We
continue with the general scheme of an Air Separation unit, and give some insights
into the main functions: compression, purification, cold production, heat-exchange and
distillation.

The second part of the chapter, an overview on control models for distillation, be-
gins with the steady-state exploitation of the plants, which was the rule in the past.
We broach the choice of control variables, the robustness of the steady-state with re-
spect to some disturbances. We introduce the reader to the stage-by-stage models, the
non-linearities in the static gains and the conditioning issues. We then show how the
dynamics of distillations columns are addressed with linear models or tray models. We
cite a particular model, the wave-model, in which the composition profiles dynamics
are explained as the move of fixed-shape composition waves along the column. We also
deal with some heuristic modeling and control techniques, based on neuron networks
or fuzzy logic for instance. The next section is dedicated to the computation time
issue, and techniques to reduce the CPU and memory resources required for predic-
tive control strategies using large models. As mentioned earlier, distillations columns
and heat-exchangers operate in a coupled manner in the plant: a section addresses
the possible coupling issues resulting from the high energy-integration of the process.
Heat-exchangers are out of the scope of this work, yet we briefly present some model-
ing techniques applied to multiphasic exchanger. We conclude the literature review by
mentioning some pending issues, recalling the scope and goals of the thesis with respect
to the state of the art, and giving the research orientations of the major air separation
industrials.

Since our work is inspired by the wave-model, the last section of the chapter returns
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with more detail to its development.

Chapter 2 begins with the writing of a first-principles physics model for a distillation col-
umn subsection, which is then reduced into a non-linear convection-diffusion partial
differential equation model, and ends with adaption of a traveling composition waves
model from the field of chromatography to distillation.

We describe distillation as the result of a mass-exchange between an equivalent liq-
uid phase and an equivalent gas phase through a single contact interface. The mass-
exchange flow is driven by composition inhomogeneities in each phase, where the ther-
modynamic equilibrium is not instantly reached everywhere. This exchange flow is
scaled by a term in 1

ǫ , 0 < ǫ << 1, and we qualitatively connect ǫ with the packing
efficiency.

We present a tentative to reduce, in steady state, this first principle model using two
space scales and the matched asymptotic development technique. We show how the
interplay between specific boundary conditions and an exponentially stiff composition
profile impedes this reduction.

We then switch to a reduction of the dynamic system using two time scales, based
on the Centre Manifold reduction techniques, to which we introduce the reader. We
rigorously reduce a discrete version of the first-principles models using this technique,
in the case of a binary mixture separation. Then we formally apply the same reduction
to the infinite dimension version of the model, still with binary mixture, motivated by
the similarity of the reduced models structures. The resulting reduced model comprises:

• a dynamic convection-diffusion partial differential equation (PDE) for an internal
variable X, which corresponds to the lumped composition of a species over the
liquid and gas phase.

• static outputs to retrieve the actual composition in each phase from the internal
variable X.

We discuss this model, notably the dependence of the diffusion term in ǫ and in the
column’s operating conditions. We then extend the model to take any number of com-
ponents into account.

Neglecting the diffusion, our PDE model reduces to a pure convection model. The
arising questions are: which quantities are convected, and at which speeds ? We give
some answers by adapting results from the field of chromatography: we analogize the
counter-current circulation of gas and liquid with the circulation of an analyzed mixture
along a fixed chromatography bed. We show that for an N+1 components mixture, there
are N2 Riemann invariants which allows forming N multicomponent sets convected in
a coherent manner. In these bundles, the compositions are non-physical (they can be
negative, for instance). We give the equation to obtain the bundles composition from
the physical compositions, and vice-versa. Regarding the convection speeds, we give a
sufficient condition for the composition bundles to propagate as non-interacting shock-
waves. This condition will be fulfilled in the investigated distillation columns. We give
the corresponding shock-speeds.

Chapter 3 comprises the theoretical analyze of the PDE model from the point of view
of dynamic systems and control theory, and the development of a tangent linearized
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transfer functions model for a single subsection.

We consider a simplified column configuration, with only one subsection. We estab-
lish a set of hypotheses regarding the liquid and gas flows, the inlet compositions and
the thermodynamic equilibrium relation, under which we prove the following results:
provided that initial data is within (0, 1), the lumped composition remains within the
same interval for any positive time; for each value of the diffusion parameter ǫ, there
exists a unique, monotone stationary solution for the considered dynamic system; the
stationary composition at the top of the column has a monotone dependence on ǫ; the
stationary solution is locally exponentially stable. This last result is obtained by the
mean of a Lyapunov function.

Based on the PDE model, we propose a family of asymptotic observers with tunable
output injection. The same Lyapunov function allows us to prove that the observers are
locally exponentially convergent, even if the internal liquid and gas flows are unsteady.

Some simulations seem to indicate that the local nature of the enunciated properties
could in practice turn into a global one.

The second part of the chapter is dedicated to the derivation of a linear tangent model
from the PDE model. The linearized PDE model is rewritten as an ordinary differential
equation in the Laplace domain. The roots of the corresponding homogeneous equation
are a power series and a Laurent series in the diffusion parameter ǫ. Using symbolic
calculations to handle these roots, we obtain an expression of the top and bottom outlet
compositions variations, via non-standard asymptotic expansion, as a power series in ǫ,
up to exponentially small residuals. Truncating the expansions of the roots, we obtain
an approximation of the outlet composition variations in O(ǫ). Two cases have to be
distinguished, depending on the direction of the compositions convection.

Chapter 4 is dedicated to the implementation and test of the PDE and linear models against
reference steady-state simulations and real plant data regarding the first column (the
High Pressure column) of the plant.

We first recall the functioning of the High Pressure column, then present the numerical
schemes used to implement the PDE model (here we limit ourselves to the binary
N2/O2 separation, neglecting the argon concentration). We pre-estimate some of the
model parameters based on simple considerations on the packing geometry.

We then check the PDE model estimations against reference steady-state simulations
obtained with the Hysys software. The simulated molar fraction profiles are in sat-
isfying agreement with Hysys , and robust to the simplification of some parameters,
to a certain extent. Yet the results are obtained using empirical parameters which
significantly differ from the pre-estimated ones.

The PDE model is then tested against real dynamic data gathered from the Air Sepa-
ration Unit. Several scenarios are tested, which the reader can find in Appendix C. We
focus in the chapter on only one scenario. We show that, in open loop, the PDE model
satisfyingly reproduces the compositions measurements with parameters borrowed from
the steady state tests. Only the liquid theoretical speed had to be significantly changed
to synchronize the model with the plant. The compositions dynamics are only little sen-
sitive to changes on the hold-ups, which seems to indicate that the column’s hydraulics
dominate the distillation dynamics.
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We show that a simple on-line adaption of the diffusion parameter ǫ allows the model
to cope with the measurements over several dozens hours, on several scenarios. Yet on
some scenarios, our model in unable to reproduce the measured compositions, which
limits its range of validity for the moment.

On a different scenario and on shorter time intervals, we also test the transfer functions
model developed in Chapter 3. Up to a time-varying bias, it reproduces the composition
oscillations at the chosen location.

Chapter 5 continues the model testing: the second column (the Low Pressure column) is
simulated using the PDE model (simultaneously to the first one, and coupled with a
third one in a simplified manner), and the results are compared against static reference
cases and real plant data.

As for the previous chapter, we recall the functioning of the Low Pressure column. We
first consider it as a binary mixture separation column. Yet this column is connected to
the first argon extraction column, thus in a second step we will simulate the separation of
the ternary mixture N2/O2/Ar. We present the numerical scheme used for this ternary
mixture.

The binary PDE model is tested against Hysys steady-state cases. The results show
that the O2 molar fractions profile, which comprises a huge front, is highly sensitive to
estimation errors on the internal liquid and gas flows, and on the components volatility.
Similar results are obtained when comparing the ternary model against Hysys .

Then we test the PDE model of the coupled High Pressure and Low Pressure columns
against real plant data. For these simulations, we investigate simple models to handle
the coupling with the first argon column, without actually simulating it. Three O2

molar fraction measurements are available for comparisons: at the top of the High
Pressure column (some percents), at its bottom (almost 100%), and at the location of
the connection with the first argon column (about 90%). The latter is a critical measure
for the functioning of the argon process, so we focus on it. Our model is in agreement
with the mean O2 molar fraction at this location, and reproduces some of its oscillations.
Yet the sensitivity to small changes on the internal flows is such that our estimation
frequently diverges from the measurements.

In the last part of this chapter, we make use of the shock-waves model adapted in
Chapter 2 to investigate this sensitivity. We show that, in the Low Pressure column, in
steady-state, some composition shock-waves are motionless. They stand in the middle
of a subsection, far from end effects. A small change on the internal flows makes their
speed non-null, and causes them to drift along the subsection before the end effects stop
them, significantly changing the resulting molar fraction profiles.

Conclusion and perspectives regarding this work close the study.

Appendix A contains schemes of the Air Separation Unit, and flowcharts of the investigated
columns.

Appendix B summarizes the notations used to represent the numerous liquid and gas flows
involved in our models.

Appendix C summarizes the results of plant-model comparisons on 17 scenarios, regarding
the High Pressure column transient operation.
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Appendix D completes the first part of Chapter 5 with additional steady-state comparisons
between our non-linear model and a reference Hysys model of the Low Pressure column.

Appendix E gives some information regarding the computational performances of the nu-
merical schemes and how they could be improved.

Publications and patents

This work has led to a presentation [22] to the American Control Conference (ACC) 2012
(international conference with reviewing committee and proceedings). This communication
deals with the obtention of a reduced dynamic model for a binary mixture distillation column,
for which stability and observability results are given, similar to those presented in the first
section of Chapter 3. The reduction is made formally in [22]; Chapter 2 justifies this reduction
by rigorously applying the technique to a discrete version of the considered system, and also
extends it to multicomponent mixtures.

The tangent linear model presented in the second section of Chapter 3 and tested at the
end of Chapter 4 has been submitted for publication to the Annual Conference on Decision
and Control (CDC) 2013.

Apart from the publications, the thesis yielded three patent applications (not published
yet):

• FR-1254802 on embedding the convection-diffusion model developed in Chapter 2 in a
soft-sensor for on-site composition profiles estimation and prediction,

• FR-1255974 on using the same model for physical sensor failure detection purposes,

• FR-1256782 on using the same model to avoid the deactivation of the condenser at
the top of the first argon column, by detecting risky trends in the composition profiles
dynamics.
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Chapter 1

State of the art

On rencontre des procédés de distillation dans une large gamme d’applications, ce qui
conduit à une grande diversité dans la réalisation du procédé. Même en se restreignant à la
séparation des gaz de l’air, on trouve presque autant de designs différents qu’il y a d’ins-
tallations. Les mêmes lois physiques fondamentales sont cependant à l’œuvre, et les diverses
réalisations du procédé ont les mêmes sous-fonctions critiques en commun. Ce chapitre se
veut une introduction aux principes généraux et partagés des procédés de distillation.

La première section commence par la séparation d’un mélange par des équilibres di-
phasiques successifs. Nous présentons ensuite les techniques qui permettent de réaliser ces
équilibres diphasiques dans une colonne de distillation. Une telle colonne n’est qu’un maillon
de la châıne de séparation : la section se clôt par la présentation des autres sous-fonctions
critiques et de leurs interactions.

En lien avec l’aspect contrôle de cette étude, la section suivante est un aperçu des tech-
niques de modélisation pour le contrôle des unités de séparations, qu’elles soient éprouvées
ou en développement. Partant du problème initial de l’exploitation en régime stationnaire,
nous nous intéressons au besoin croissant de modèles et contrôleurs pour les régimes tran-
sitoires. De nombreux modèles sont de grande dimension, et leur utilisation en temps réel
pose le problème des ressources de calcul nécessaires. Nous examinons quelques solutions à
ce problème, testées sur site ou en simulation. Comme mentionné plus haut, une colonne de
distillation fait partie d’un ensemble plus complexe ; notre revue se termine par un examen
des couplages entre les divers sous-systèmes de l’unité de séparation, et en particulier les
échangeurs thermiques.

Après cette revue bibliographique, nous évoquons quelques points qui nous semblent ne pas
faire consensus dans la littérature. Nous présentons également les axes de recherche de grands
groupes industriels dans le domaine de la séparation de l’air, et rappelons le positionnement
de cette thèse par rapport à la littérature.

Nous concluons ce chapitre par une présentation plus détaillée d’un modèle de colonne de
distillation en particulier, dont cette étude est dérivée : le modèle d’onde de W. Marquardt
[74].

Distillation processes are encountered in a broad variety of applications, and thus present a
vast diversity in their implementation. Even regarding only air separation, there are almost as
many different implementations of the process as plants. Yet the same fundamental physics are
at work, and the many process realizations gather the same critical subfunctions. The present
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chapter then aims to provide the reader with basic perspective on the shared fundamentals
of distillation processes.

The first section begins with the separation of a mixture using successive steps of biphasic
equilibrium. Then we present the techniques to maintain and exploit these biphasic states
in a distillation column. Such a column is only a link in the separation chain: the section
then ends in presenting the other critical subsystems of an air separation plant, and how they
interact.

In-line with the control orientation of the thesis, the next section is an overview of well-
tried or in development modeling and control techniques for separation plants. Starting from
the initial steady-state exploitation issues, we pursue with the increasing need for dynamic
models and transient-oriented control systems. Many models are of large dimension, and the
need for faster-than-real-time computation rises the issue of CPU resources. We examine
some solutions which have been tested on-site or in simulations. As mentioned earlier, a
distillation column is part of a more complex system; our overview thus ends by examining
the interactions between the various plant’s subsystems, focusing in particular on the heat-
exchangers.

Following this state-of-the-art, we point out some concepts which do not seem to make
consensus in the literature. We also present some research axes of the major gas industries in
the field of air separation, and recall the positioning of this work with respect to the literature
review.

We conclude this chapter with a more detailed presentation of a distillation column model
in particular, from which our work is inspired: the wave-model of W. Marquardt [74].

1.1 Cryogenic air separation technology

In current cryogenic distillation plant design and control, several important concepts inherit
from classical1 separation technology history, which is therefore to be recalled for the sake of
comprehension. Yet air distillation rules are also dictated by some peculiarities of cryogenics,
which sometimes makes it difficult to transpose results and methods directly from classical
distillation processes. These particularities will also be enlightened in the following. Infor-
mation regarding the distillation principles and the columns technology can be found in [64],
[92] and [1]. Information regarding the general functioning of an air separation plant are from
[1] and [2].

1.1.1 Principles

Distillation is defined as an operation aiming to separate the components of a mixture by
taking advantage of their different volatilities, that is, their preferential accumulation in the
liquid or gas phase when the mixture is at biphasic thermodynamic equilibrium. The most
elementary distillation device is then provided by a retort as depicted in Fig. 1.1. When
heated, the exiting vapor will be enriched in the most volatile components of the mixture,
while the less volatile will be concentrated in the remaining liquid. This illustrates an unsteady
batch process: compositions of the gas and liquid will vary over time, and one ultimately
will have to refill the retort. A continuous process with constant product compositions is

1In a somehow circular manner, we will use the word ‘classical’ to refer to non-cryogenic operations - such
as oil separation processes, water-methanol pilot devices...
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obtained by continuously feeding the retort and continuously drawing gas and liquid out, as
on Fig. 1.2. Thermodynamic equilibrium and mass conservation principle impose the product
compositions. Thus at fixed operating pressure and temperature, further enrichment requires
cascading several elementary steps, or stages. In a staged process as depicted on Fig. 1.3, the
gas leaving stage n−1 and the liquid exiting stage n+1 serve as feed for stage n. Additionally,
gas from stage n−1 provides heating power to stage n, while liquid from stage n+1 provides
cooling power. A top condenser and a bottom vaporizer ensure constant countercurrent
circulation of liquid and gas - which yields to the denomination of reflux distillation. The
section of the process ensuring enrichment of the feed with the most volatile components is
called the rectification section; the other one is referred to as the stripping section.

Let us see how successive stages allow the mixture separation, by a simplified use of
the McCabe and Thiele method. Consider a staged process as on Fig. 1.4, with N stages,
liquid production at the bottom and gas production at top. The mixed liquid-gas feed flow
is F , internal liquid and gas flows L and V are supposed constant along the column (Lewis
hypothesis). Let us note them with a subscript r in the rectifying section, s in the stripping
section. Consider the separation of a binary mixture, and choose the less volatile component.
Let xi (resp. yi) be its fraction in the liquid (resp. gas) leaving stage i. The mass balance in
the rectification section writes:

yi+1 =
Vprod

Vr
yprod +

Lr

Vr
xi,

and in the stripping section:

yi = −Lprod

Ls
xprod +

Ls

Vs
xi−1,

where yprod is the fraction of the chosen component in the gaseous product, and xprod its
fraction in the liquid product. On Fig. 1.5 we plot the corresponding lines (namely the
rectification line and the stripping line) together with the liquid-gas biphasic equilibrium
curve. Starting with the feed stage liquid fraction xf , we find the fraction yf−1 in the gas
leaving the stage below using the stripping curve. On the stage f − 1, we suppose that
the liquid and gas are at thermodynamic equilibrium, thus the equilibrium curve gives xf−1.
Iterating the procedure along the stripping section, one finds the liquid product fraction xprod,
and we indeed have xprod > xf . Proceeding the same way along the rectifying section (see
Fig. 1.6), one finds the chosen component fraction yprod < yf in the gaseous product.

1.1.2 Trays and packings

A stage is efficient if it is as close as possible to the biphasic thermodynamic equilibrium. This
supposes maximizing the biphasic mixture homogeneity and the liquid-gas contact surface
to enhance phase-to-phase exchanges. Technical solutions to achieve distillation then aim to
dissolve as much as possible a phase in the other one. Yet phases will hinder the circulation of
each other, causing the energy required to maintain the countercurrent circulation to increase.
Almost every distillation column addresses the mixing-circulation trade-off using one of the
following solutions: trays or packings.

Trays

A basic tray separation column is depicted on Fig. 1.7. A tray contains a certain amount of
liquid through which gas percolates before rising to the superior tray. The liquid leaves the
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Figure 1.3: Connected retort performing staged reflux distillation steps
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Figure 1.5: Equilibrium curve (solid black), stripping curve (blue) and rectification curve
(red). Starting from the feeding stage liquid fraction, one finds the composition of the liquid
product.
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Figure 1.6: Equilibrium curve (solid black), stripping curve (blue) and rectification curve
(red). Starting from the feeding stage, one finds the composition of the liquid and gas prod-
ucts.

tray by a draw and falls on the inferior tray. Trays are vertically staged in the column, so that
gravity moves the liquid for free. Energy is required to pressurize the gas at the bottom of
the column and overcome pressure drop at each tray. A convenient gas-liquid flow rate yields
to a foamy biphasic mixture. Too much gas will blow the liquid and decrease the exchange
efficiency. On the contrary, a weak gas flow would let the liquid drip through the pinholes,
decreasing the foam height as well as the tray efficiency. Variations of the basic tray design
(including caps, obturating pinholes ...) exists to widen the range of possible flow rates, yet
to the price of increased pressure drops. Trays as depicted on Fig. 1.7 are very sensitive to
defects of their planarity (or of the column verticality). Such defect would create preferential
regions for the liquid to accumulate, as well as preferential paths for the gas (see Fig. 1.8).
To minimize the impact of planarity defects, trays are subdivided into independent volumes
using a corrugated geometry termed ‘wave’ (see Fig. 1.9). Additionally, trays are associated
to distributors which ensure homogeneous spreading of the liquid (Fig. 1.10).

Packings

A packing (or structured packing) is a three-dimension structure which defines paths networks
for the liquid and gas, and interlocks the circulation channels to maximize the liquid-gas
interface. Contrary to tray columns, which are staged systems, packed columns are assimilable
to continuous bed processes. The packed section could indeed stretch uninterrupted over the
whole column (in practice, it is punctuated with distributors for the sake of robustness towards
verticality defects and other causes of inhomogeneous mixing). Depending on the mixture to
be separated, packings show various geometries. Random packings (see Fig. 1.11) consist in
small sub-structures easy to produce, with which the column is filled. This packings can be
made of various materials (plastics, ceramics, metals ...) which also make them suitable for
severe operating conditions. In 1977 a low-cost structured packing obtained by juxtaposing
corrugated metal sheets as on Fig. 1.12 was introduced. Such structured packings are now
widely used, in particular for cryogenic air separation. In these packings, liquid drips in
very thin film (about 10µm, similar to the sheets thickness) with direction between vertical
and the corrugations direction. Since the gas licks the liquid film instead of forcing its way
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Figure 1.8: A verticality defect of the column causes inhomogeneous distribution on the trays
and preferential paths for liquid and gas.
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Figure 1.10: Examples of possible liquid distibutors (courtesy of [92]).
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Figure 1.11: A sample of the various shapes taken by casual random packing elements

through, the pressure drops per unit length are dramatically reduced. Structured packings
are also promoted for their high mass-transfer efficiency, resulting from the large liquid-gas
contact surface. Another advantage is a reduced liquid hold-up compared to the trays, which
decreases the process inertia and makes it more flexible.

Other technical solutions

Foliated packings as discussed above do not create real three-dimension channels network,
especially for the liquid which is trapped between two sheets. An important part of the liquid
paths randomization is thus obtained thanks to distributors and by dividing the packed section
into subsections with crossed sheets planes (see Fig. 1.13). Some attempts have been made
to develop actual one-piece three-dimension structure, by cutting and folding of the original
metal sheet. But manufacturing such a lace is too complex and expensive for industrial
applications.

Contrary to the tray technology which tends to dissolve gas in liquid, it was proposed to
obtain a mixture of liquid droplets in gas thanks to pulverisers. Yet due to coalescence effect,
this solution requires so many successive pulverization steps to maintain the liquid dispersion,
that the process is not competitive in terms of energy efficiency.

1.1.3 ASU scheme

Distillation supposes providing a distillation column with raw material (in our case, air) and
with the heating/cooling power to maintain biphasic state. Since air liquefaction temperature
is about −190◦C at atmospheric pressure, a major Air Separation Unit (ASU) design rule is
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Figure 1.12: Packing as encountered in cryogenic air separation. Left: juxtaposed metallic
sheets with examples of liquid (blue) and gas (red) paths. Right: juxtaposed sheets form
staged cylindrical elements in the column.

Figure 1.13: Tomography imaging of the radial liquid volume fraction at four locations along
a distillation column with structured packing. The column vertical axis is perpendicular to
the plane of each figure. The colormap is saturated at 30%. A certain amount of liquid
is injected on a disk at the top of the column. The two left figures show that the liquid
spreads essentially in the direction of the packing sheets as it drips. Then it enters a section
where the packing orientation is rotated by 90◦, which changes the spreading preferential
direction (third figure from the left). After some alternations of the packing orientation, an
homogeneous spreading is obtained (right). Courtesy of [28].
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Figure 1.14: The five main functions of an air separation plant.

energy integration : fluids undergo many heat exchanges in order to keep as much frigories as
possible inside the cold sections of the process. Many designs have been implemented. Our
experimental studies involve a specific ASU design; we will then base our broad explanation
of ASU principles on this design.

Five main functions can be distinguished in any ASU: compression, purification, cold pro-
duction, heat exchange, separation (which we can subdivide into N2, O2 and Ar extraction).
Interdependence of these functions is depicted on Fig. 1.14.

Compression

Compression is the first link of the chain, and the most energy expensive. Power dedicated
to electric air compressors is typically between 1 and 55MW/h, with typical voltage between
5 and 14kV . Raw air pressure is increased for two purposes:

• reach the operating pressure of the first distillation column: all the entering air (between
10000 and 20000 Nm3/h for the ASU we focus on) is thus pressurized to about 6 bar.

• allow further expansions to produce cold: a supercharger pressurizes a fraction of the
6 bar air up to about 40 bar, to be expanded later. Similarly, the pressure difference
between column is exploited to create cold by fluid expansion.

After compression, air is cooled down to ambient temperature in water-chilled towers or
air-water heat-exchangers.

Purification

Front-end purification step is essentially intended to remove water and carbon dioxide from
raw air, since they would freeze inside the distillation columns and cause damage or ob-
struction. Air goes through a bottle filled with alumina and molecular sieves which adsorb
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unwanted components. As the sieve ultimately saturates, it has to be regenerated, that is,
vented with dry, unpolluted nitrogen (residual product of the separation step) at high tem-
perature (typically 100 to 300 ◦C). To maintain continuous air flow to the columns, two
purification bottles alternatively operate. Lead-lag control of air flow reduces the disturbance
caused by the bottle switches, which occurs about every 3 hours. Due to the heating required
for sieves regeneration, the front-end purification is the second most energy expensive step of
the process.

Heat exchange

The main heat-exchanger of an air separation unit draws the limit of the cold-box. After this
exchanger, the process is enclosed in an insulating casing to maintain cryogenic temperature.
Thermal protection measures include white, reflective painting of the casing, vacuum insula-
tion or insulating perlite layers (depending on the unit’s size), and inner venting of the casing
with cold nitrogen (residual product of the separation step).

The main heat-exchanger’s warm-end is about 30◦C, while the cold-end is about −190◦C.
Heat-exchange is achieved along a dozen meters of crossed, counter-current channels separated
by wavy aluminium sheets. Every fluid entering or exiting the cold-box flows through this
heat exchanger, in order to keep as much frigories as possible inside the casing. In the case
of our air separation unit, the main heat exchange also serves to increase part the plant
products’ pressure up to 40bar prior to the injection in a high-pressure distribution network.

A second heat-exchanger (said subcooler) is located between the High and Low Pressure
Columns and will be discussed below.

Cold production

In an ASU cold production is equivalent to liquid production. A liquid which is overcooled
with respect to the desired biphasic equilibrium serves as a cold source to balance the natural
heating of the plant by external sources (sun, atmospheric air, heat losses of the main heat-
exchanger at warm-end...). Liquid air is obtained thanks to a turbine-booster device. A
fraction of the 40 bar gaseous air is cooled in the main-heat exchanger, then expanded in a
turbine to the operating pressure of the High Pressure Column, where it serves as gas feed.
The mechanical power generated in the turbine is transferred to a booster compressor which
increases the pressure of the remaining fraction of the 40 bar gaseous air up to 55 bar. This
high-pressure air is cooled from 70◦C to cryogenic temperature (−175◦C) by cooling water
and the main heat-exchanger. When in the cold-box, it undergoes a flash to the operating
pressure of the High Pressure Column (6 bar) and is almost completely liquefied.

Air separation

Air separation takes place in a cascade of four packed distillation columns. The first two
columns, namely the High Pressure (HP) and Low Pressure (LP) column, work in a thermally
coupled way and are functionally equivalent to a single column with top-condenser and bottom
reboiler. Fig. 1.15 illustrates this equivalence. The single column would require cooling power
at the top and heating power at the bottom. Here, this equivalent column is split in two, and
the halves are arranged upside-down, the top half-column being operated at lower pressure
than the other one. Thus cold liquid at the bottom of the LP column provides ‘free’ cooling
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Figure 1.15: Functional equivalence between a single air separation column and two stacked
HP and LP columns.

power to condense gas at the top of the HP column. Inversely, gas at the top of the HP
column provides ‘free’ heating power for reboiling at the LP column’s bottom.

By equivalence with the single column, it becomes clear that the HP column produces
high-purity N2 (the most volatile air component) at top. The O2 molar fraction in the pure
N2 is typically maintained below 1 ppm. Nitrogen is extracted as a liquid, and can be partially
vaporized in the main heat-exchanger to supply the distribution network. The HP column
has a second draw located around the 2/3 of its height. The liquid drawn there is called the
lean liquid. Its O2 content is about 2%. Part of the lean liquid serves as cold fluid for Argon
condensation in the Argon process; the rest provides reflux at the top of the LP column.
All the remaining liquid accumulates at the bottom of the column, where its O2 content is
about 40%. It is withdrawn both to add liquid reflux to the LP column, and to serve for
condensation in the Argon process.

The LP column produces high-purity liquid O2 at its bottom. The O2 molar fraction there
is typically above 99.5%, with less than 100 ppm of Nitrogen. As mentioned earlier, liquids
drawn off the HP column provide the reflux. A fraction of the liquid obtained by flashing the
55 bar air provides an additional reflux. Due to the pressure difference, liquids pumped from
the HP to the LP column have to be pre-cooled to prevent excessive vaporization. This is
done through the second heat-exchanger, where the cooling power is provided by the residual
gas exciting at the top of LP column.

Argon volatility is between O2 and N2 volatility. Thus, at the top of LP column, where
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N2 molar fraction is high, Argon behaves as a heavy component and is rejected downwards.
Inversely, at the bottom of HP column, O2 content is high, Argon behaves as a volatile
component, and is rejected upwards. This results in an Argon molar fraction peak, called the
‘Argon bubble’, located at about 1/3 of the HP column’s height.

Gaseous Argon is drawn off the LP column thanks to a pipe placed in front of the bubble.
This gas feeds a Crude Argon (CA) column, at the top of which one extracts gas almost
devoid of oxygen (only some ppm remain). The bottom liquid of the CA column is sent back
to the LP column. As the relative volatility of argon with respect to oxygen in close to 1, the
separation occurring in the CA column is low and requires a large number of equivalent trays
(typically 4 times more than in the LP column). Consequently, the CA column is the highest
of the plant (almost 40m), and the associated liquid hold-ups also make it the slowest (with
typical 10h time constants).

The gas exiting the CA column at top is condensed to obtain the so-called Crude Argon
Liquid (CAL). CAL contains about 99.5% argon; the rest is nitrogen. CAL is then injected
into the Pure Argon (PA) column, which achieves the nitrogen-argon separation and furnishes
pure liquid Argon (LAR).

One could think that the argon process (CA and PA columns) should be fed with gas
drawn off at the very summit of the argon bubble in the LP column. Yet at this location,
the N2 content of the gas would be of about 1%, causing a high nitrogen concentration in
the CAL. This would in the end result in a heavy separation burden for the PA column.
As a consequence, one preferentially locates the argon draw pipe slightly below the bubble
maximum, where nitrogen concentration is about 10 times lower.

1.2 Control models for ASU: an overview

1.2.1 Steady-state exploitation

First analysis of distillation columns for control issues arose from the problem of maintaining
stable operation around a given set-point. It seems that consideration of the transitions from
a set-point to another one appears quite late in the literature. Papers presented in this part
essentially deal with results provided by small excursions of the plant around a given set-point.
Historically, stabilized operation was the first way gas industries operated their plants (plate
columns used at that time were anyway not suitable for fast and frequent load changes). The
main issues to address in that context are:

• Ensuring sufficient product purity;

• Finding proper structures and control to efficiently drive their units;

• Maximizing the profitability of the process despite disturbances or uncertainties on
the operating conditions. In this vision, the main dynamic concern is not the proper
control of trajectories in the operating conditions space, but rather to obtain interesting
stabilization properties or transitions between two operating points, using the simplest
feasible control strategy.

Control configurations

From a business point of view, in which economics are strongly related to steady-state oper-
ating steps, it is convenient to consider the distillation column as a reactive tank, with only
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Figure 1.16: Generic business vision of a distillation column. F , VT , LT and VB are vapor
and liquid flows, MD and MB are condensed liquid accumulations, B and D are drawn-off
product flows, QD is the top condenser duty, P is the inner column pressure, xB , yB and zF

are the concentrations of chemical elements of interest. Courtesy of [100].

little insight into the reaction process. The idea is to focus on the management of the various
flows entering or leaving the tank, to ensure profitability in stabilized operating. In [100],
Skogestad gives a generic depiction of such a model, which is reproduced on Fig. 1.16 In the
following, our notations refer to this figure.

Inner conditions (pressure and liquid levels) must be driven to acceptable values thanks
to low-level control loops before one begins to tune the product purity. At the beginning, the
trend was to manage each output separately, using single-loop controllers. The pressure P is
usually controlled using the exiting flow VT , while liquid levels are managed through various
combinations of remaining vapor and liquid flows. In the end, only two combinations of these
flows remain, which are assigned to the control of output concentrations xB and yD. This pair
of flow combinations is called the ‘control configuration’. For instance, if the dripping liquid
flow L and the ascending vapor flow V (see Figure 1) are the remaining flow, the term ‘L−V
configuration’ is used. The search for a systematic procedure to choose convenient control
configuration led to a massive use of the Relative Gain Array (RGA) tool which basically
gives information on how the control loops interact with each other. However, distillation
was found to be a strongly interactive process, with the consequence that no configuration
seemed to provide straightforward decoupling between all the process loops in steady-state.
The trend in the industry was to use the easy to implement L−V configuration, which however
has the drawback of maintaining interaction between the top and the bottom product purity.
This configuration is thus more suitable for one-point purity control (that is, tight control of
one product purity, while the remaining one is floating). It was also found [100] that L− V
configuration is not the most robust to process disturbances.

Later, with better insight into the dynamics of the process, it was found that the impor-
tance of the configuration choice was somehow overestimated, as Skogestad notices himself in
[102]:
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• First because out of the steady-state, the loops are increasingly uncoupled as frequency
increases, due to the propagation delays inside the column.

• Second because it appears that a proper control of the products purity is in practice
accomplished only when an additional, fast control loop is added (usually controlling a
temperature somewhere inside the column - the choice of its position will be discussed
later), which will impact the other control loops.

Self-optimizing techniques

For valuable operation of distillation plants, one has to find the tuning which maximizes
the profitability of the process, with respect to several constraints (arising either from the
design of the plant, like a maximal admissible flow in the pipes, or from contracts with the
customers, like a maximum concentration in the products). Robustness toward disturbances
is also taken into account in the tuning. In absence of accurate dynamic models of the process,
the optimization has to focus on steady-state exploitation (possibly including some equivalent
cost for set-point changes).

The calculation of the optimal tuning for every possible operating condition is compu-
tationally expensive, because of the non-linearities of the process and the complexity of the
related minimization problem. Plus, it would require very precise knowledge of inner condi-
tions to precisely take into account potential disturbing influences. Self-optimizing techniques
offer a mean to approach the steady-state optimum with reduced tuning complexity. By com-
puting off-line the optimal values of the controlled variables for the undisturbed steady-states
and slightly disturbed steady-states around them, it is found that many of the variables re-
main saturated. For these variables, a controller which maintains them to their constrained
value is sufficient. To fix the remaining degrees of freedom, one then looks for variables whose
optimal value vary little around the undisturbed steady-state ; that is, the loss of optimality
is reduced when the system is disturbed whereas the variable is still at its optimal value for
undisturbed steady-state. In [102][24], it is found that a temperature loop can be closed on
a constant value to achieve nearly-optimal operation around a set-point. On the contrary,
variables which show steady-state multiplicities are typically unsuitable for that use.

Stage-by-stage models

Though plant-wide vision may provide interesting optimization results, it has limited per-
formances, and is of course unsuitable for column design, because it gives no insight into
the physical phenomenon occurring inside the apparatus. Staged separation columns can be
designed according to variants of the famous McCabe & Thiele design method (historically
presented in 1925 in the paper ’Graphical Design of Fractionating Columns’, in Industrial and
Engineering Chemistry). Brief explanation of the method can be found in [40]. Essentially,
the distillation process is considered as a succession of thermodynamic flashes in stacked
distillation plates, with no transformation phenomenon between the plates. Inspired from
this static design method is the dynamic stage-by-stage model (also called equilibrium stage
model).

Stage-by-stage model equations are recalled in numerous papers of our literature, notably
[88] [61]. They are based on the mass and energy conservation equations around each plate,
together with simplified hydraulics to account for flow exchanges between the plates, and with
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the idea that the multi-phase equilibrium is always reached on the plates. Besides, implemen-
tations of the model often differ in their assumptions on the hydraulics. One usually integrates
an efficiency coefficient Eff (empirically determined) in the model, which accounts for non-
ideal phase concomitance on the plates: one states that the perfect multiphasic equilibrium
hypothesis concerns only Eff% of the flows passing through a plate, while the remaining
(1 − Eff)% ‘ignore’ this elementary step. This concept is illustrated in [88]. A drawback
of the stage-by-stage model is its large number of state variables. The whole column is rep-
resented as a vector of n ×m states, where n is the number of distillation plates, and m is
the number of variables (pressure, temperature, molar flows and molar hold-ups, concentra-
tions...) for each plate. Then each stage corresponds to a set of dynamic equations to be
solved. Time-scale aggregation technique [70] (see also [90]) proposes differentiating two time
scales in the process: the flash on each plate corresponds to a fast dynamics, compared with
the dynamics of a large set of plates, which is slow. Using singular perturbation arguments,
transient state are supposed to be instantaneous on each plate of the set (transforming the
associated ordinary differential equation into costless algebraic equations), whereas a virtual
stage inherits the mean transient behavior of the whole set. The trade-off between accuracy
and computational cost is managed by tuning the size of the sets of plates, or ‘compart-
ments’. As they rely on instantaneous dynamic assumptions, the so-called compartmental (or
aggregated) models and stage-by-stage models are strictly equivalent in steady-state anyway.
One of the advantages of this order-reduction method is that it avoids losing the physical
meaning of modeling (which is a drawback of the methods based on coordinates changes
and truncation). More detailed aggregated models for high-purity air separation, including
ternary mixture, energy balances and non-ideal liquid-vapor relation have been investigated
with support from Praxair recently [9][18]. See also [73] for an extension of [70] to a broader
variety of systems. Reduction of the number of variables via aggregation methods also have
application in design optimization for distillation systems, such as in [57].

Steady-states properties - Conditioning issues

Without even considering the issues related to accurate dynamic simulation of their behavior,
distillation columns show complex static input-output relations. First, given an operating set-
point, columns are reported to be highly directional. In the simplified static model where the
column is represented by a 2×2 gain matrix between the control flows (say L and V assuming
that the classical control configuration is adopted) and the output product purities, purities
are much less sensitive to inputs variations in the same direction (dL = dV ) than in the
opposite direction (dL = −dV ). In [103], Skogestad reports for example impressive condition
numbers between 30 and 7000 (at null frequency) for various example columns. Second,
the static relation between the purities and the operating conditions is strongly non-linear.
This non-linearity is related to several causes, among which the physical boundaries of the
concentrations (between 0 and 1), the non-linearity of the liquid-vapor equilibrium relation,
and the fluid mechanics. A (partial) palliative to this issue is to express the concentration
in log scale, which permits to attenuate the non-linear effects. Illustration of this coordinate
rescaling can be found in [103][101]. This method has to be related with the strong exponential
dependencies found in the explicit expression of the purities in steady-state given by the use
of wave model ([113]) which we will present in Section 1.2.2 and Section 1.4. Moreover, due to
these non-linearities, one set of operating conditions can correspond to multiple steady-states.
Such degenerations were first reported in 1979 (according to [63]) in the case of heterogeneous,
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azeotropic mixture separation. Further, other cases involving mixtures with particular liquid-
vapor equilibrium relations or reactive separation processes were reported. Some papers
show that the steady-state multiplicity may not only come from intrinsic mixture properties,
but also from improper feedback structure (e.g. in [63], Kienle et al. with an approximate
conversion of a volumetric flow into a molar flow). Other multiplicities are illustrated in [24].

Conclusion

Plant operation in stabilized conditions, using linear models valid around the reference set-
point, emphasizes the importance of non-linearities in the column behavior. This complexity
is handled through good practices (use of log scale, choice of control configuration etc.) and
by limiting the loss of optimality through proper selection of non-optimized variables (‘self-
optimizing method’). Models explicitly taking into account the inner physics are necessary in
this context for accuracy improvement. Stage-by-stage modeling paves the way for simulation
and control of large dynamic excursions, and gives also an insight into some issues connected
to the model complexity.

1.2.2 Dynamic modeling and control

Linear dynamic models

The basic context of the first linear dynamic models is still to consider the distillation column
as a 2x2 system once the control configuration has been chosen. At the beginning, the main
transient behavior was depicted using a first order model with one time constant. This ap-
proach remained close to the plant-wide approach previously discussed, and the time constant
accounted for the ’mixing-tank’ behavior of the column, with little consideration given to the
inner phenomena at work. Later, frequency RGA (Relative Gain Array) analysis showed that
the huge RGA values collapsed as the frequency increased; this phenomenon was not rendered
using only one time constant. In [103] Skogestad then suggested to add a second, shorter time
constant to render this influence of the internal flows dynamics, and to tune it to fit RGA
curves. Being able to investigate more precisely the initial response of the column, it was
found that the logarithmic scale change for purities had an interesting linearizing effect on
the first part of the transient step (though being less important as the system gets closer to
the steady-state).

This model then has an obvious drawback: it is valid only for a small set of operating
conditions centered on the set-point for which the transfer function has been fitted. This
has of course important repercussions on model-based control robustness. Yet attempts have
been made to extend the range of validity for controllers based on these kinds of model
structures. In [19], Christen et al. derive a linear model for both the minimal and the
maximal load of the distillation column. They then consider that the actual (uncertain)
behavior of the column is a barycenter of these two extreme cases, with uncertain weighings.
The framework of structured uncertainties allows taking this partial information into account
for the modeling of the actual column behavior, and applying robust controller synthesis
techniques (such as µ-synthesis or H∞-synthesis). 2x2 linear models with two time constants
coupled with structured uncertainties have been studied until recently to obtain robust closed-
loop performance [83].
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First-principles, continuous modeling

Stage-by-stage and compartmental models gave interesting static and dynamic results as far
as staged columns were effectively concerned. When packings began to replace copper trays
for certain scopes of application (notably air separation), the idea was to find equivalence
between the new process and the former models, to apply proved techniques. The link was
made stating that a given height of packed column had the same separation performance
as stacked trays. The ratio, called the HTU (Height of Transfer Unit) is often used in
manufacturer data as a measure of the performance of a particular packing design for a
particular separation process. The equivalence is convenient and allows satisfactory static
simulation of packed columns with staged models for classical distillation and even for high-
purity processes with fine enough tuning. Yet the equivalence leads to important dynamic
inaccuracies (as depicted in [61] for example), and is therefore not suitable for high-purity
separation simulation and control purposes. In packings, fluids are now subject to continuous
thermodynamic transformations along their path, instead of flowing from a located mixing
area (a tray) to another one. Stage-by-stage models are consequently not correctly structured
to represent the continuum, even if one unreasonably increases the number of trays. There
was then a need for a new modeling approach, to catch phenomena at a new level of detail.

Very accurate modeling at the scale of the droplets, involving extensive Computational
Fluid Dynamics (CFD), is hardly suitable for off-line simulation of large volumes, and certainly
unsuitable for control purposes. Its range of application is limited to the characterization
of packings properties by simulating some elementary meshes of the structure. A rougher
approach is called the ”hydrodynamic analogy” ([59][15][96]). The idea is to replace the
actual, extremely complex fluid paths with combinations of more ’academic’, geometrically
simple flow patterns (typically flat films). This method allows easier simulation of larger
volumes (at the scale of the whole column) than the previous one. But the dynamics of
these simple flows has to be accurately computed, requiring high calculation costs. Moreover,
numerical convergence of such detailed models is slow and hard to ensure. A simplifying
approach is then required for control purposes.

In the mid 80s, Marquardt [74] proposes a new, shortcut macroscopic model of the ideal
binary distillation process, which accounts for the non-linearity while being computationally
cheap enough to allow real-time control applications. The key idea is that matter is contin-
uously transferred from one phase to another, because the constant relative displacements
of the fluids maintain them in an unbalanced thermodynamic state. The unbalanced term
is given by the difference between the actual concentrations in the gaseous phase and the
concentrations at the equilibrium with concomitant liquid phase (which has the largest time
constant in the process). Note that the relations connecting the matter transfer flow and the
unbalance are dependant on the packings properties, and can be experimentally estimated,
such as in [23]. Through these unbalanced terms and using mass conservation principle, ma-
terial balances on the liquid and on the vapor around an infinitesimal slice of the column are
connected to each other. Integrating these balances along the whole column, one obtains a
continuous formulation of the concentration profile for the elements in the mixture, which
shows a marked front in steady state. Marquardt’s idea for model reduction is to assume
that the system dynamics is essentially caused by the propagation of this front, and not by
changes in its shape (see Fig. 1.17). Using mass conservation principle on the whole column,
he derives an approximation of the front speed; he can then simulate the distillation dynamics
by propagating the non-linear concentration wave. Marquardt’s work relies on several simpli-
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Figure 1.17: Illustration of Marquardt’s wave model results. Solid lines represent the concen-
tration profiles along the column (normalized abscissa from 0 to 1) as operating conditions
vary, according to the wave model. Dotted lines correspond to finite differences solution of
Marquardt basis equations. One can see how the wave model profile ‘slides’ without distor-
tion. Courtesy of [74].

fications of the process, such as constant pressure, molar flows and relative volatilities of the
components along the column. Relaxation of these hypotheses have been considered in later
works, energy balances have been taken into account, and the principles of the wave model
have also been extended to multi-component distillation [36][62].

Under the main hypothesis of the wave-model (constancy of the wave front shape), con-
centration control is now possible in a cascade manner, through wave-front position control.
The later is made through wave-speed control based on material balances. Yet this crucial
hypothesis has been questioned. Discrepancies between the wave-model predictions and the
detailed simulations (made with the engineering tool Aspen Custom Modeler or similar soft-
ware applications) have been pointed out and related to not-rendered front shape variations
when operating conditions vary [113][60]. Proper front rendering becomes then a key issue
in the context of product purity estimation and control. The most common answer to that
problem is to dynamically adjust the modeled profile shape thanks to online state estimation
techniques (typically using Extended Kalman Filters, [113][7][8]).

Additional measurements are required for front re-localization. Concentration measure-
ments are the first possibility. However, since concentration, temperature, pressure and mo-
lar flows fronts are correlated (because they correspond to the same area where large mass
transfers occur between phases), temperature measurements are a good alternative: they are
cheaper, almost not delayed, and more robust. As it is not possible to monitor the whole col-
umn to reconstruct the whole concentration profile, research efforts have aimed to find proper
sensor locations. They are most often determined by setting a large amount of potential loca-
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tions, constructing the sensitivity matrix between these candidate measures and the observed
variables through accurate simulations around a set-point. Then the candidate measurements
are ranked according to the information amount they provide, by applying Principal Compo-
nent Analysis techniques. Finally, the sets of location which remain high-ranked for various
set-points are selected. The ranking of the candidates can be modified to favor measurements
which are the less correlated with each other [7][8]. One can also cite [99] where the sensors
location problem is addressed with the mean of empirical observability gramians to deal with
the process non-linearities over its range of operation. As one can expect, selected measure-
ments are often located close to the front (where they provide important sensitivity at the
beginning of the transients, when the front moves) and at the column ends (where static
gain is exploited at best). Connection between temperatures, concentrations and locations
are often written through Taylor expansions around the front inflexion point, assuming that
partial derivatives can be approximated by constant coefficients or finite differences between
sensors-provided data [87]. One can also mention inferential formulas, whose coefficients are
determined by Partial Least Square based methods on collections of static data or time series
[87][58][77]. The inferential approach has the advantage of being computationally fast, as it
only requires the evaluation of a simple function of the measurements. Yet the structure of
this function (e.g. polynomial) is chosen to provide easy-to-fit coefficients rather than phys-
ical significance, with obvious drawbacks on its range of accuracy. The inflexion point of
the profile is the location where it is best approximated by a regular slope. Yet during load
changes, the front may move far enough from its initial position, so that the measurement
locations are too distant from the inflexion point to provide relevant information. In some
papers, a weighting function is then applied on these measures, to maximize the influence of
those which are close to the current inflexion point [97][33].

In fact, the reason for the inaccuracy of the constant front shape hypothesis is closely
connected to the simplified treatment of the boundary conditions in the wave-model. In Mar-
quardt’s model, the column ends are considered as infinitely distant from the concentration
front, and have thus no effect on it. In a real column, of finite length, at the top and the
bottom, partial recycling of the distillates creates a repelling effect on the concentration wave,
which prevents a sharp shock-wave to reach the column boundaries, and modifies the shape of
the concentration profile when the front moves. This effect is typically not taken into account
by the wave-model [36][9], and seems to have been only little addressed [62].

Wave-modeling is not yet the most widespread approach in classical distillation (possibly
because several distillation processes still use staged columns). It seems however much more
classical in processes involving reaction-diffusion or reaction-convection phenomena, such as
reactive distillation or on-bed chromatography, which are often referred by documents re-
lated to coherence or partial coherence theory (process description where sets of physical
variables travel as perennial waves, mentioned in justification of the wave-model approach),
as illustrated e.g. in [37][32]. Stage-by-stage models are then still widely used, for exam-
ple to address the issue of Input-Output Linearization (IOL) of the distillation columns. In
[54][53][55][52], input-output linearization techniques are illustrated with various complexity
of the staged model. These papers emphasize the advantages in using a shortcut state ob-
server with measurement feedback rather than a complex state estimator in open loop. The
need for such a feedback was expressed in an earlier paper [67], which also pointed out issues
regarding input saturations. Even though later works proposed palliative, constraints and
uncertainties handling (e.g. [66][11][10]), results of the IOL approach remain very poor as
far as output purity control is concerned. In fact, this method focuses on the column top
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and bottom stages, therefore losing the ’forward’ information provided by the consideration
of the whole profile. In [94], Seliger et al. establish a link between wave models and stage
models, in their analysis of the dynamics behavior of a plate column. They distinguish the
short-term and the long-term responses. The first one is explained to be mainly driven by
hydraulics and mass and energy balances along the column, as in the classical stage-by-stage
model. The long-term concerns only concentration changes, and is explained using a wave
framework. The paper notably illustrates the asymmetric dynamics of the column, which is
also predicted by wave models [36].

‘Intelligent’ modeling and control

In parallel with research on analytical, comprehensive models and control laws for distillation
operation, several attempts have been made in the field of black-box modeling to address the
issue of separation process control. Given their ability to approximate complex, non-linear
behaviors with simple structures, neural networks have been used as output composition pre-
dictors for column model predictive control [95], with notable inherent drawbacks connected
to their learning sets: it can be long and difficult to construct them with diversity and sig-
nificance enough. Other classifiers such as Support Vector Machines (SVM) have been tested
([50]) yet are only slightly better than the best linear models. To compensate for the lack
of confidence in neural networks outside their training area, it has been proposed [65] to
associate them with more robust (although less accurate) wide-range models; with a suitable
confidence estimator, a progressive switch is done between the neural network and the ro-
bust model, so that the most adapted to the current situation has the preeminence. On the
control side, intelligent techniques do not appear directly as control generators, but rather in
supervisory layers; one finds occurrence of fuzzy-logic layers performing on-line tuning of the
low-level PID controllers, reproducing the know-how of human plant operators [85].

A more interesting application of these intelligent techniques can be the automated startup
of the distillation plants. In that particular phase, several steps of relatively short duration
can be distinguished, wherein various physical phenomenon successively occur and drive the
process. As a consequence, a detailed white-box modeling of each step may be an unsuitable
approach, given that the accuracy requirements for the models may be less stringent than
for optimized plant operation. Plus, operating conditions are a priori less subject to change.
Thus, a black-box approach can be relevant, provided minimum comprehension of the system
to determine proper structure and objectives for each step, such as in [25].

Conclusion

Models containing a set of static gains, time constants and delays are not sufficient for dynamic
behavior simulation. Even if they were associated with robust controllers synthesis techniques,
the resulting system would hardly match high-purity accuracy requirements. Stage-by-stage
models have the decisive advantage of being close to the physics of the staged columns. Yet
it is proven that their accuracy is decreased as far as packed columns are concerned. Wave-
models result in a new continuous modeling of the distillation, which matches the rate-based
phenomena occurring in the packings. They allow a very concise modeling of the columns, but
still lack of accuracy because of neglected end-effects. Numerous methods exist to estimate the
concentration profiles without monitoring the whole column. They emphasize the usefulness
of reduced models with feedbacks. Alternative approaches exist, such as fuzzy logic or neural
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networks, but seems more suitable for low-purity processes or start-up steps.

1.2.3 The computation time issue

As illustrated by the previous paragraphs, the reduction of the computational effort required
both by the simulation and the computation of the optimal commands is an underlying issue
as soon as the modeling approach is non-explicit. Computational effort reduction can be made
through model reductions or simplifications, which are then closely related to the physics of
the actual process. Conversely, several general mathematical or algorithmic methods provide
interesting results when applied to distillation, and are therefore more frequently applied or
studied. As far as dynamics are concerned, the main problem is to reduce the computation
time, to perform reasonably fast simulation and ultimately to comply with process control
(and even predictive control) requirements. A possibility is to replace on-line computation
with off-line pre-calculation. To improve the computational performance of the aggregated
model, instead of computing the numerous algebraic equations on the fly, one can express
them as functions of the reflux rate and of the concentrations whose dynamics are explicitly
depicted by ODEs (Ordinary Differential Equations). Then, off-line, one maps the values of
these functions all over their (bounded) parameter space. On-line model computation is thus
reduced to approximation of ODEs solutions through look-up in these pre-calculated data.
Skogestad and Linhart present the method in [72]. On a test case, they announce 5 to 10
time faster computations, without optimized storage structure for pre-calculated data.

In the field of optimized operation, and particularly when predictive control is used, the
main objective is to reduce the on-line computational effort required for the minimization
problem, which generates the optimal control. Here the aim of the computation is then not
to simulate the system, but to generate this appropriate control (which however possibly ne-
cessitates simulating the system). Several possibilities exist to quicken the task. An approach
consists in roughly simplifying the control model, through local linearization for example.
Thus in [18], Chen et al. test a simplified linear model predictive controller (LMPC) versus a
non-linear model predictive controller (NMPC) on a column simulator. The LMPC causes no
computation time issue, but is too simplistic to reach the optimization problem constraints,
with notable over-purification as a result. The NMPC requires several computation-time re-
duction strategies to be implemented to converge fast enough (computation time is reduced
by 95%). But it manages the constraints better.

To obtain both accurate and fast predictions and control, the idea is then to preserve the
original model structure. One can improve the computations using the existing knowledge of
the system and using the available time differently. As previously, one can export most of the
computations off-line, using a mapping technique. The system is located in a multidimensional
space using appropriate coordinates (state variables, constraints of the problem...). This space
is split into several areas, on which a specific parametric control law is pre-defined (hence the
term ‘multi-parametric model predictive control’). The key is to define the pairs area, control
law so that the control laws remain optimal or quasi-optimal on their dedicated area (and, on
their dedicated area, at least as efficient as any other areas’s dedicated law). The possibility of
constructing these critical areas and the corresponding control laws depends on the properties
of the underlying global optimization problem [80]. Once the areas have been defined, solving
the optimization problem at each time-step is transformed into retrieving the area which
corresponds to the current coordinates of the system. The appropriate control to be applied
is then directly given as a function of these coordinates. As no optimization task is therefore
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performed on-line, the controller can ultimately be embedded in a simple electronic chip.
The technique and related issues are presented in [81][20]. In the latter, application of the
technique to a small air separation unit (similar to Air Liquide small nitrogen production units
called APSA - Advanced Product Supply Approach) is mentioned. On-chip controller uses
8 coordinates and 578 areas and specific control laws. The apparatus is driven closer to its
contractual limit, with energy savings estimated to be around 3%. Alternative techniques are
proposed to solve only some optimization problems over a relevant domain, and to interpolate
the solution of the actual problem from stored nearby data, such as in [41].

Another approach consists of an improved use of the interval between two sampling times,
which can be used to anticipate the incoming optimization problem. Classically, when a sam-
ple time t occurs, the controller computes and generates the optimal control (with a certain
computation lag), and then must wait for the following sampling instant t+1 to begin compu-
tation on a new optimization problem. The principle of the advanced step non-linear model
predictive control (asNMPC [46][111][110]) is to shift the computation sequence forward. At
instant t, the state of the system is known (estimated), as well as the generated control.
Consequently, one can compute the theoretical future state of the system at t + 1 (which will
occur only if the models are perfect, if no disturbance occurs, etc). Therefore, one knows the
theoretical optimization problem that would have to be solved at t + 1. One can solve this
problem (in a feedforward manner, because these ’background’ computations occur between
t and t + 1) and obtain the theoretical optimal control to be generated at t + 1. To deal
with model inaccuracies and disturbances, an additional background computation is made to
obtain the sensitivity matrix of the optimal solution with respect to local variations of the
optimization problem around its theoretical t+1 value. Then at instant t+1, the actual opti-
mization problem is known, as well as its variations with respect to the theoretical pre-solved
problem (which should be close enough to the actual problem, so that local considerations
remain acceptable). Adding the proper complement to the theoretical optimal command to
obtain the actual quasi-optimal command to be generated is then computationally cheap.
Once this command has been generated, the method can be iterated. In [46], the CPU time
requested for on-line computation steps is reduced by a factor of 100, while maintaining
quasi-identical performances in comparison with the original NMPC algorithm.

Of course, none of these methods is perfect, and each has its drawbacks:

• Multi-parametric approach supposes a convenient subjacent optimization problem.

• Mappings may be memory consuming, and require efficient look-up techniques overall.

• The asNMPC approach requires no off-line storage, but supposes that all the background
computations can be done during the sampling time.

They however remain promising, with the noticeable advantage that they do not denature
the physics-based structure of the underlying models.

1.2.4 Plant-wide issues

Couplings

Until now, the distillation column has been considered as a stand-alone device. In fact,
columns are in general part of a complex production plant, and consequently, interactions
between various components have to be considered. Their importance may grow with the

40



energy-integration of the process. The less energy is wasted, the more the process involves
recycles and thermal coupling between the columns outputs and inputs. Consequently, these
interactions are particularly important in the field of cryogenic distillation, which is a highly
energy-integrated process. Quite simultaneously with Skogestad contributions on control con-
figurations, [31] investigated the choice of a SISO (Single-Input-Single Output) control scheme
for a set of coupled distillations columns, and its impact on the whole plant controllability.
In [93], a study on several possible configurations for a sequence of (non-cryogenic) distilla-
tion columns shows that their controllability is decreased when operating at the minimum
energy consumption set point, which makes them less robust regarding disturbances. Ulti-
mately, choosing a non-optimal set-point (with respect to energy consumption in undisturbed
conditions) can improve the plant profit margin (in real disturbed operating conditions).
Considering the coupling effects in the whole plant through detailed simulations (using As-
pen Custom Modeler or similar software), or even through a shortcut plate-model approach
[115], obviously makes the choice of optimal values for inner variables more complex. Even
in steady-state, when a set-point change occurs, the new static optimum can be too far from
the previous one to allow classical Newton-based solvers to find it. Alternative techniques can
then be used, such as homotopy-based approach. This method will continuously transform
the optimization problem from a hypothetical simple one to the actual one, thus ’smoothing’
the shift of the optimum [114]. Couplings at the scale of the plant are also addressed for
optimal design purposes. In [116], non-linear interior point algorithm with barrier functions
is used to find a set of design parameters and static control references. The goal is to allow the
plant to satisfy several scenarios, which account for uncertainties in the process modeling and
exploitation. The results of the numerical experiments, involving 8000 to 675 000 variables (in
spite of rather simple modeling), illustrate well the long-range effects of the couplings: a +/-
20% uncertainty on the argon demand (that is, on the last step of the process) requires 26%
supplementary horsepower for the main air compressor (i.e. on the first step of the process).

Note that, starting from the original problem of plant controllability around an opti-
mized set-point, plant design and control strategies optimization increasingly tends to focus
on dynamic operation, in response to fast varying econometrics (energy cost and customer
demands, essentially). For instance, [16] investigates ASU optimization for fast set-point
changes, considering control inputs together with the possibility of assisting the plant with
additional storages. In [47], [48] and [49], economic objectives are directly integrated in the
process control problem, where electricity cost is assumed to obey a periodic pattern.

Heat-exchangers modeling

As the couplings in cryogenic distillation are essentially caused by thermal exchanges in the
plant heat-exchangers, it is reasonable to view them as critical devices to be modeled. The
aim is to ensure that the heat exchange network control prevents a destabilizing feedback
from happening, which would partially recycle output disturbances as input disturbances.
A lot of literature deals with detailed, computationally intensive numerical simulations (in
steady-state as well as in transient), and fast solvers and reduced models are quite common
for steady-state modeling ([5][12] for example). On the contrary, dynamic heat-exchangers
simulation for real-time applications seems less mature , though the need for reduced heat-
exchangers models and concerns regarding their relevance are expressed in various industrial
fields (see e.g. [98]). Spatial discretization of first-principles equations may be used [86], but
remains computationally costly. Solving the modeling problem in Laplace or frequency do-
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main can provide the explicit solution in time domain, but the drawback lies in the numerical
computation of the inverse transform [82]. Shortcut models provide costless expressions of
exchanger transient behavior. They derive from a globally acknowledged assumption of first
order transition from the initial steady-state temperature distribution to the final one. The
time constant however varies along the fluids propagation direction. Thus the model renders
the delay observed between temperature changes at the inlet and the outlet. This frame-
work is used in [109][3]. Experimental validation is quite satisfying, though it suggests that a
second-order model should be used to take fluid propagation effects into account. The first-
order model also has been used to apply Kalman filtering framework to the heat-exchanger
problem in [6]. Note that the shortcut approach is here only applied to 2-fluids exchangers.
Moreover, the authors associate each kind of disturbance with a transient response, but give
no clue on how to combine them together. Note also that an important issue is to take into
account single-phase to two-phase transitions (or vice versa) in the fluids. The latter issue is
addressed by the moving-boundary framework (see Pettit et al. papers: [108] for a general
model, and [79] for a resulting application on an evaporator). In this framework, each fluid
channel in the exchanger is divided into several successive zones (one zone for liquid phase,
one for concomitant liquid-vapor, and one for vapor phase). The locations of the bound-
aries between zones are handled as dynamic variables. In start-up or shut-downs operations,
phase boundaries will move off the exchanger. As for distillation columns start-up opera-
tion, switching models [71] may address transitions with these specific regimes. The resulting
models are of reduced order, but use mean values for the different zones, rather than real
space-dependant values. Notably, the model has a strong dependency in the slip velocity (the
ratio between gas and liquid velocities in a same channel), as shown in [75]. The framework
also makes the assumption that the exchange wall temperature is constant on a zone. This
may cause problematic discontinuities at the boundaries, as explained in [112]. Note that
in the presented papers, the authors seem to focus more on the management of a variable
number of zones (notably, as stressed above, in the case of phase boundary moving off the
exchanger) than on the modeling assumptions. In addition, they do not address the case of
heat exchange between several multi-phase fluids (which would increase the complexity of the
management of the zones).

Conclusion

The distillation columns are considered as the heart of the distillation plants. Though they will
not modify the phenomena occurring inside the columns, interactions with other components
have an impact on the benefits one can expect from the renewal of the control strategy.
Such couplings are notably thermal exchanges in the heat-exchangers of the cryogenic plants.
A commonly admitted framework exists for shortcut dynamic modeling of fluid-fluid heat
exchangers, but the issue of phase change is not addressed in this context. This issue is
addressed in the moving-boundary framework by tracking the interfaces between 1-phase and
2-phases regions in the exchanger channels.
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1.3 Pending issues and current research

Pending issues

Only few papers among those presented in the literature deal with what gas industry nowa-
days regards as high-purity distillation in cryogenic processes. Many of our examples show
impurities concentrations around or above 10−4 (100 ppm), whereas Air Liquide and competi-
tors usually use 1 ppm as order of magnitude for oxygen concentration in produced nitrogen.
Therefore, we have little information on how to deal with probably sharpened non-linear and
asymmetry phenomena or end-effects. Concerning end-effects, we can mention that the im-
portance of delays induced by the condensers and boilers has been pointed out in [36], but
seems never taken into account in shortcut modeling.

Beside, it seems difficult to derive general rules for modeling the thermodynamics and
the hydraulics of the columns. The only commonly admitted simplification is to neglect the
vapor hold-up for our applications (illustrations of the impact of this hypothesis can be found
in [88]). Another frequent assumption in the field of air separation is to consider that a
binary mixture (nitrogen-oxygen) is a good approximation of actual air as far as nitrogen
and oxygen production are considered. This approach has been questioned: regarding the
very low oxygen concentration atop the columns in high-purity processes, one could take
other gases into account, introducing at least a ternary mixture (nitrogen-oxygen-argon) [61].
Similarly, there is no clear consensus on the accuracy of the thermodynamic models: inner
enthalpy balance is not always taken into account, or may be simplified in a static balance
[88]. The components in the mixture may have similar or different heats of vaporization. The
equilibrium relation between the liquid and vapor phases is often considered either as driven
by the liquid (mass transfer occurs between the phases because the vapor tends to reach
the equilibrium state corresponding to the actual liquid state) or endogenous (mass transfer
occurs inside each phase because of non-homogeneous local concentration and a mass transfer
flow appears between the phases because they are constantly at the equilibrium wherever they
are in contact). Plus, these various approaches are combined either with the stage-model or
wave-model point of view.

Industrial involvement

Current industrial research seems to focus on computational issue and existing models im-
provement, without apparent novelty in the modeling approach. Air Liquide and Air Products
(among others) indirectly support theses at the U.S Process Science & Technology Center
(PSTC) in the field of cryogenic and non-cryogenic distillation. Investigated themes are data
sets selection for model parameters estimation, reduction of non-linear models consisting of
differential and algebraic equations (similar to stage-by-stage models), optimization of ASU
dynamic operation and control through reduced order non-linear models [34]. Air Products
also has publicly addressed the challenge of High Performance Process Control (HPPC) it its
2006 White Paper [107]. This firm has supported recent research on multi-parametric model-
based control [80][20] with London Imperial College. In comparison, Praxair has been widely
involved in compartmental model and wave-model studies ([61][9][18][113][74][60][7][8]) but
is not mentioned in our recent papers. Surprisingly, the most recent control related paper
[18] makes no use of the wave approach. This paper involves compartmented models and
rather classical non-linear predictive control. Praxair also seems to have shown interest in
fastened heat-exchanger simulation [12]. Others companies sometimes appear in recent pub-
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lications, such as Dow Chemical (credited with support in wave-model study in [36] through
its subsidiary Union Carbide Corporation, and involved with others in a funding consortium
in an asNMPC study [46]), Siemens AG in a dynamic study of air separation plants [94], and
Carrier Corporation in moving-boundary framework development [112].

1.3.1 Position of the thesis

This work is part of the research regarding a broader issue: air separation plants energy opti-
mization, by the mean of tighter composition stabilization systems, and increased flexibility
of the production. In this thesis, we address the dynamic modeling of the air distillation
columns, as the core of the separation process. As emphasized in the state of the art, heat
exchangers modeling would deserve a dedicated in-depth study, which is yet out of our scope.
Regarding the columns, we proceed by building the column’s network step-by-step: first the
modeling focuses on an uninterrupted column; the we address a real column configuration
with intermediary feeds and draws. Finally, we envisage several coupled columns. Our mod-
eling approach is an attempt to answer the question: what should be the minimal dynamic
model to obtain performances beyond those of linear gain/time constant/delay control model,
which are nowadays widely used on real plants?

Consequently, the first steps of the modeling are close to Marquardt’s approach [74], at
an intermediary scale between the too simple tank models and the numerically expensive
detailed tray models. We propose a refined description of the composition profiles dynamics
and of the column’s end-effects, which are counted amongst the drawbacks of the wave-model
when applied to high-purity separation. We proceed by reducing a first set of equation using
Centre Manifold reduction techniques; to our knowledge, these techniques have never been
applied to the distillation modeling problem. The wave-model sets the question of the drift
velocity of the composition waves, and of the interaction between the different components in
the separated mixture. We investigate this aspect of our problem in line with [37], [32] and
especially [84] which we closely follow, using coherent waves sets and Riemann invariants.

The reduced distillation dynamic model we obtain is observed from the point of view of
control theory: it essentially consists of a non-linear hyperbolic partial-differential equation,
to which a small diffusion term is added. For this mathematical object, we propose some
results regarding the uniqueness and the properties of its solution. Then, we investigate the
stability of the steady-state, by the mean of Lyapunov functions; the same tool is used to
prove the local observability of a binary mixture composition profile, with or without output
injection.

Our model performances are checked against steady state profiles obtained using the
Hysys model (essentially a tray model similar to those presented above) of a real Air Liquide
plant. Then, and contrary to many paper reviewed in the state of the art, we present the
results obtained with our model together with real plant data (from the same ASU). Thus we
challenge its performances and meaning within a context of realistic, noisy, or deteriorated
input data and uncertain parameters. Also, we briefly investigate the possibility to derive
linearized control models from the reduced PDE model.

Note that the numerical implementation of the model, though leading to faster than
real-time simulations, is not intended for on-site use and direct control application. Thus,
contrary to some of the presented papers which were focusing on dramatically reducing the
computation time, no particular attempt has been made here in this direction.
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1.4 Marquardt’s wave models

Our work being partially inspired by the wave model, we give here a more detailed introduction
than in the previous state of the art. This will also allow to draw parallels further in the text.

In the original Marqardt’s contribution [74], modeling starts with two partial-differential
equations arising from mass-balances over an infinitesimal slice of column, separately in the
gas and in the liquid phase:

∂x

∂t
− ∂x

∂z
= −B (y∗(x)− y) , (1.1)

ǫσ
∂y

∂t
+

1

A

∂y

∂z
= B (y∗(x)− y) .

Notations have been changed with respect to [74] for the sake of homogeneity with our notation
system. In the previous dimensionless system, t is the time and z is the space variable (t and
z have been scaled to absorb the hold-up coefficients). x (resp. y) is the molar fraction of the
component of interest in the liquid (resp. gas) phase of the studied binary mixture. ǫσ is the
ratio of the gas hold-up with respect to the liquid hold-up. A is the ratio of the liquid and gas
flows, that is, the reflux rate. y∗(x) indicates the thermodynamic equilibrium relation, and B
is a dimensionless transfer coefficient. One can here notice that the system is driven by the
liquid phase. Indeed, the state the gas must reach to stop the transfer flow B (y∗(x)− y) is
defined with respect to the liquid only, through y∗(x). In addition, the ratio ǫσ is thought to
be small.

With the idea that the distillation dynamics is mostly due to a sliding wave phenomenon,
the previous system is rewritten using a moving space coordinate ξ = z − z′ = z −

∫
wdt,

where w is the wave speed. With the assumption ǫσ = 0 (neglected gas hold-up), one has:

∂x

∂t
− (1 + w)

∂x

∂ξ
= −B (y∗(x)− y) , (1.2)

∂y

∂ξ
= AB (y∗(x)− y) .

Boundary conditions are given by x(1 − z′, t) = x1(t) (at top) and y(−z′, t) = y0(t) (at the
bottom). Dropping the time derivative (one reduces the dynamics to the movement along ξ
of a fixed-shape wave) one obtains:

y = A(1 + w)x− C1,

ξ =

∫
(1 + w)dx

B (C1 + y∗(x)−A(1 + w)x)
+ C2,

that is (if the integral is analytically solvable): ξ = F (x(ξ)). F(.) depends here on A, B, w,
the integration constants C1 and C2, and on the equilibrium relation y∗(x). In some cases
(quadratic equilibrium relation in [74]) the implicit relation can be solved, leading to a profile
x(ξ) given by:

x(ξ) = x−∞ +
x+∞ − x−∞

1 + eγ(x+∞−x−∞)(ξ(t)−ξ0)
, (1.3)

where γ (the main shape parameter) is connected to the maximum slope of the profile, and
ξ0 = ξ(t = 0). The profile is defined over the column physical boundaries: x+∞ stands for
the virtual value of x at the top of a virtually infinite column, and x−∞ is the virtual value of
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Figure 1.18: Top: material balance over the virtual infinite column is made of the contri-
butions at s = −∞ (Lx−∞ − V y∗(x−∞)) and at s = +∞ (V y∗(x+∞) − Lx+∞). Bottom:
alternatively, one can approximate the profile with a discontinuity whose speed is obtained
using the same contributions.

x at the bottom of such a column. The wave motion is given by: dz′

dt = w. At this moment,
the model ignores the physical boundaries of the column: whatever the position of the wave-
front with respect to the top or bottom end, the dynamics are unchanged. As a consequence,
the boundaries’ influence on the composition profile, which are recognized to be important,
especially for high-purity operation, are not rendered. Wavefront location and shape, as well
as the compositions at the infinite, are thus considered as time-varying state variables of the
system, to be estimated using available data, as mentioned in the state of the art. [8] notably
illustrates the importance of these estimations to recover the pinching end-effects.

When not considered as a purely estimated state-variable, the wave-speed w is generally
obtained through the material balance of the whole column (that is, the virtual infinite
column), or over the wave-front approximated by a discontinuity (see Fig. 1.18). One has

σ(x+∞ − x−∞)w = V (y∗(x+∞)− y∗(x−∞))− L (x+∞ − x−∞)

σw =
V (y∗(x+∞)− y∗(x−∞))

L (x+∞ − x−∞)
− L,

where σ accounts for the (constant) liquid and gas hold-ups. In [74], σ and L are absorbed
by the scaling of t and z, which yields the formula:

w =
y∗(x+∞)− y∗(x−∞)

A (x+∞ − x−∞)
− 1. (1.4)
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Chapter 2

Reduced dynamic model for packed
distillation columns

Le modèle d’onde de Marquardt, brièvement décrit au chapitre précédent, est structurellement
simple et adapté pour le contrôle, mais n’est pas assez complet pour être utilisé en distillation
à haute pureté. En suivant l’approche du modèle d’onde, nous proposons un modèle d’échange
non-linéaire, continu, entre le gaz et le liquide, qui ne suppose pas l’homogénéisation ins-
tantanée des compositions dans chaque phase à une hauteur de colonne donnée. En celà, le
modèle à deux fluides proposé ressemble aux modèle de taux de transfert tels que dans [91],
[14] ou [13], qui traitent cependant de colonnes à plateaux (ou modélisées ainsi). Notre modèle
utilise des coefficients de tranfert entre le liquide et le gaz, que nous relions qualitativement à
la notion d’efficacité de plateau.

Nous présentons ensuite une tentative de réduction du modèle pour une colonne de dis-
tillation binaire en régime stationnaire, par application d’une technique de développements
asymptotiques raccordés (DAR), brièvement présentée, à notre modèle à deux fluides. En sup-
posant une relation linéaire pour l’équilibre thermodynamique liquide-gaz (qui rend le modèle à
deux fluides linéaire), nous montrons que la méthode des DAR ne fonctionne pas, car elle re-
quiert le développement asymptotique de la solution (le profil de compositions) en un terme en
1
ǫ , 0 < ǫ << 1 (le coefficient d’échange liquide-gaz), en un point où elle est exponentiellement

raide (en e
1
ǫ ). Nous étendons qualitativement cette constatation au cas non-linéaire.

Dans le cadre des DAR, la perturbation singulière introduite dans le modèle à deux fluides
par le petit ǫ est traitée en établissant deux échelles de longueur. Alternativement, nous
considérons que le modèle représente un système dynamique à deux échelles de temps différentes.
La réduction d’un tel système renvoie aux techniques de perturbations singulières, et plus
précisément ici, à la réduction variété centre. Celle-ci est d’abord présentée, dans le cadre
des systèmes de dimension finie. L’intérêt de la technique de réduction est ici de préserver
le régime lent de la colonne (son bilan matière, indépendamment des variations de composi-
tions). Nous l’appliquons dans un premier temps rigoureusement à une version discrète du
modèle à deux fluides. L’application à la version continue n’est menée que formellement ;
nous observons cependant que la structure du modèle réduit obtenu est inchangée : il est
équivalent de réduire le modèle discret, ou de discrétiser après réduction du modèle continu.
Nous étendons les résultats à un nombre quelconque de constituants dans le mélange à séparer.
Jusqu’à ce point, ce chapitre constitue une extension aux parties modélisation et réduction de
[22], où nous n’avions traité la réduction que formellement.
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Le modèle dynamique réduit que nous obtenons consiste en :

– une équation aux dérivées partielles, 1-D, non-linéaire, de convection diffusion, pour
une variable assimilée à une composition moyenne, décrivant la dynamique du système
au voisinage de sa variété centre,

– des sorties statiques permettant d’exprimer les distributions de compositions réelles,
dans les phases liquide et vapeur, partant de la composition moyenne sur les deux phases.

Nous observons que le terme de convection, pris seul, renvoie au modèle d’onde, alors que le
terme de diffusion introduit des effets de bord répulsifs, et rend l’efficacité de la distillation
localement dépendante des flux de liquide et de gaz. Dans le langage du modèle d’onde, il cor-
respondrait à un facteur de forme variant dans le temps et l’espace. Cette caractéristique nou-
velle du modèle motive la proposition qui est faite dans les demandes de brevets FR-1254802,
FR-1255974 et FR-1256782, de l’utiliser au sein d’un capteur logiciel pour l’estimation et la
prédiction des profils de compositions dans une colonne de distillation industrielle.

Dans la dernière partie du chapitre, nous ne nous intéressons plus qu’au seul phénomène
de convection. En effet, le transport d’espèces chimiques dans un liquide et un gaz circulant à
contre-courant peut être rapproché de la chromatographie sur lit fixe, pour laquelle la propaga-
tion cohérente de certaines quantités (des paquets de constituants) a été largement étudiée. En
suivant de près [84], nous trouvons les invariants de Riemann de notre problème de convec-
tion, ainsi qu’un homéomorphisme entre l’espace des compositions réelles et un espace Ω
transformé, dans lequel l’évolution des ondes de compositions est régie par des règles simples.
Nous nous limitons au cas des ondes de choc. Ces ondes sont, comme nous le montrons, les
seules existantes dans les colonnes de distillation considérées dans cette étude.

Marquardt’s wave model, briefly described in the previous chapter, is structurally simple
and suited for control applications, yet not complete enough to be applied to real high-purity
separation processes. Following the wave model approach, we propose a non-linear continuous
liquid-gas exchange model, which yet does not suppose the instant homogenization of the
composition in a phase at a given height. In that, the proposed two-flows model resembles
the rate-based models such as in [91], [14] or [13], which are for tray columns though (or
packed columns modeled with successive non-equilibrium stages). Our model makes use of
liquid-gas transfer coefficients, which we qualitatively relate to the notion of tray efficiency.

We then present an attempt to obtain a reduced formulation of a binary distillation
column’s steady-state composition profile, by application of the Matched Asymptotic Devel-
opment (MAD) technique, briefly presented, to our two-flows model. The non-linearity in the
two flow model arises from the liquid-gas thermodynamic equilibrium relation. Supposing a
simplified linear equilibrium relation, we show that the MAD approach fails, since it requires
the asymptotic expansion of the solution (the composition profile) in the exchange coefficient

(1
ǫ , 0 < ǫ << 1), at a point of exponential stiffness (in e

1
ǫ ). We extend qualitatively this

explanation to the non-linear case.

Within the framework of MAD, the singular perturbation introduced by ǫ in the two-flows
model was handled by introducing two different space-scales. An alternative is to consider the
two-flows model as a dynamic system mixing two highly different time-scales. The reduction of
this system then connects with the singular perturbation reduction techniques. More precisely,
we address the problem using the Centre Manifold theory, to ensure that the system’s slow
dynamics (the column’s mass balance, regardless of the composition variations) is unmodified
by the reduction. We first introduce the reader to the Centre Manifold theory for finite
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dimension systems; then, we apply the reduction technique, in a rigorous manner, on a
discretized formulation of the two flow-model in the binary mixture case. The application to
the continuous model is done formally only, yet we observe that the structure of the resulting
reduced model is unchanged: it is equivalent to reduce the discrete two-flows model and to
discretize the reduced infinite dimension two-flows model. We also extend the results to any
number of components in the separated mixture. So far this chapter is an extension to the
modeling part of [22], where only the formal infinite dimension reduction was dealt with.

The reduced dynamic model we obtain consists of:

• a 1-D non-linear convection-diffusion partial differential equation for a lumped com-
position variable, describing the dynamics of the system in the vicinity of it’s centre
manifold,

• static outputs to express the actual composition distributions in gas and liquid phase,
out of the lumped composition variable.

We observe that the convection term alone connects with the wave-model, whereas the diffu-
sion term introduces repelling end-effects, and makes the distillation efficiency depend locally
on the liquid and gas flows. In the context of the wave-model, this would be a naturally time-
and space-depending shape parameter. This interesting and new property motivates us to
propose in the patent applications FR-1254802, FR-1255974 and FR-1256782 this new model
structure as the heart of a soft-sensor for composition profiles estimation and prediction inside
a distillation column.

In the last part of the chapter, we consider the convection phenomenon only. Indeed,
transport of chemical species in countercurrent liquid and gas flows can be analogized to
the fixed bed chromatography, for which the formation of coherent convected bundles of
components has been extensively studied. Closely following [84], we find Riemann invariants
for our convection problem, as well as an homeomorphism between the physical composition
space and a transformed Ω-space, where the evolution of composition waves is described by
simple rules. We limit ourselves to the case of shockwaves, since we can show that only that
type of wave exists in the distillation columns we consider in this study.

2.1 Two-flows model

In this section we consider a continuous, packed section of a distillation column. As depicted
on Fig. 2.1, we define the column’s vertical axis s orientated downwards. t will stand for the
time of the system. We address the complex intricate geometry of liquid and gas flows by
considering only one equivalent liquid flow L(s, t) > 0, and one equivalent gas flow V (s, t) > 0.
L(s, t) (resp. V (s, t)) is the sum of all elementary liquid (resp. gas) flows crossing the column’s
section S(s). L and V flows share a unique contact interface, which is an equivalent model for
the actual contact surface between elementary liquid and gas paths. An elementary column’s
slice holds a certain amount of liquid σL(s, t) > 0. We define similarly the gas hold-up
σV (s, t) > 0.

Let us consider the separation of mixture with components Ci, i = 1...N . Considering
that the column achieves perfect mixing, we assume that the components’ molar fractions
are independent from the considered packing channel. We will denote the molar fractions of
Ci, i = 1...N by 0 ≤ xi(s, t) ≤ 1 in the liquid, and by 0 ≤ yi(s, t) ≤ 1 in the gas. Since∑N+1

i=1 xi(s, t) =
∑N+1

i=1 yi(s, t) = 1, we can restrict the modeling to the reduced collection
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Figure 2.1: Scheme of the considered packed section.

C1, · · · , CN . For the sake of simplicity, we will order the components by increasing volatility,
so that CN+1 is the most volatile component of the mixture.

We define the relative volatility of the components with respect to component N + 1.
Thus

0 < αi(s, t) =

yi(s,t)
xi(s,t)

yN+1(s,t)
xN+1(s,t)

< 1, i = 1...N,

αN+1 = 1.

A superscript ‘∗’ will indicate molar fractions at the thermodynamic equilibrium of the mix-
ture. For i = 1...N we introduce the equilibrium applications

ki : [0, 1]N → [0, 1]
(x1, ..., xN ) 7→ ki(x1, ..., xN ).

(2.1)

to set y∗i = ki(x
∗
1, ..., x

∗
N ).

Unless otherwise stated, we will use

ki(x1, ..., xN ) =

∑N
i=1 αixi

1 +
∑N

i=1(αi − 1)xi

, i = 1...N, (2.2)

following in this many authors of the reviewed literature.
As depicted on Fig. 2.2, thanks to the use of equivalent flows, the molar fraction profiles

now only depends on two space coordinates: vertical position s and distance from the equiv-
alent contact interface. The contact interface is the locus of phase change, thus liquid and
gas are there at thermodynamic equilibrium. Farther from the interface, the thermodynamic
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Figure 2.2: An equivalent liquid phase and an equivalent gas phase are in contact through a
single liquid-gas equivalent interface. Here the column’s vertical axis would be perpendicular
to the plane of the figure. Non-instant diffusion in the liquid and the gas causes composition
inhomogeneities to appear in the direction perpendicular to the contact interface.

coupling between liquid and gas is expected to weaken, whereas the influence of upcoming gas
flows and descending liquid flows strengthens. This results in inhomogeneous molar fraction
distributions in the cross-interface direction. We simplify the geometry of the problem in this
direction using two layers in each phase, as illustrated in Fig. 2.3:

• a boundary layer close to the interface, where instant thermodynamic equilibrium is
maintained; there, y∗i = ki(x

∗
1, · · · , x∗

N ). This layer has null thickness and no inertia.

• a main layer where molar fractions xi or yi are free from thermodynamic coupling. This
layer accounts for the whole thickness and hold-up of the corresponding phase.

At a given altitude s, diffusion inside each phase generates molar flows from the boundary
layer to the main layer, which we write for i = 1...N :

ΦLi = ΛL(x∗
i − xi) in the liquid,

ΦVi = ΛV (y∗i − yi) in the gas.

where the dimension of ΛL,V is mol.m−1.s−1. These coefficients are the equivalents, for a
two-layers model, of the actual diffusion coefficients DL,V of the components in the liquid and
gas phase. More specifically, ΛL should be approximately DLσL

δLeL
where δL is a characteristic

diffusion length in the liquid (thickness of the boundary layer) and eL the thickness of a liquid
channel. Replacing L with V in the latter gives the approximation for DV . Here, we suppose
that the diffusion coefficient in a phase is the same for each species.

A mass balance in each phase’s main layer gives:

∂σLxi

∂t
= −∂Lxi

∂s
+ ΛL(x∗

i − xi), (2.3)

∂σV yi

∂t
=

∂V yi

∂s
+ ΛV (y∗i − yi), i = 1...N. (2.4)
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Figure 2.3: Only the axial dimension of the model is kept, by separating each equivalent
phase into two layers: a boundary layer with no inertia, at the thermodynamic equilibrium,
and another layer which accounts for all the hold-up, possibly not at the equilibrium. The
column’s vertical axis is perpendicular to the plane of the figure.

In addition, the mass conservation principle at the interface gives:

ΛL(x∗
i − xi) + ΛV (y∗i − yi) = 0.

For air separation application, we will consider that the latent heat of vaporization is the
same for the three handled components. For Ar and O2, this is almost true since ∆HAr ≈
0.94∆HN2 at pressure and temperature encountered in an ASU. Regarding N2 and O2, the
hypothesis is less accurate (∆HN2 ≈ 0.78∆HO2); we have to expect that a fraction of the
columns internal flow will not be taken into account by the model, since the enthalpy balance
is loosely handled. The effect on the ASU HP column should yet be limited, for the amplitude
of O2 and N2 molar fractions variations is limited.

This assumption dramatically simplifies the equations since the enthalpy balance has no
more to be handled. The differential-algebraic dynamic model consequently reads





σL
∂xi
∂t = −L∂xi

∂s + ΛL(x∗
i − xi),

σV
∂yi

∂t = V ∂yi

∂s + ΛV (y∗i − yi),
0 = ΛL(x∗

i − xi) + ΛV (y∗i − yi),
y∗i = ki(x

∗
1, · · · , x∗

N ),

(2.5)

for i = 1...N , with

∂σL

∂t
= −∂L

∂s
,

∂σV

∂t
=

∂V

∂s
.
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2.1.1 Transfer coefficients

Distillation efficiency is maximized with large components exchange flows between liquid and
gas. This means that a small deviation from the biphasic equilibrium shall generate huge
compensating flows across the interface. For a plate column, in the way of [88], one can
define eV , the tray efficiency regarding the gas, such that a fraction 1 − e of the gas is not
affected by the thermodynamic coupling when passing through a plate. A similar definition
holds for eL regarding the liquid. Thus in steady state, one has on plate n:

xout
n,i = (1− eL)xout

n−1,i + eLxn,i,

yout
n,i = (1− eV )yout

n+1,i + eV ki(xn,1, · · · , xn,N ) i = 1...N.

Rewriting the PDEs of (2.5) in a discrete manner and in steady state, assuming that a height
∆s corresponds to one tray, yields:

xout
n,i =

L

L + ∆sΛL
xout

n−1,i +
∆sΛL

L + ∆sΛL
x∗

n,i,

yout
n,i =

V

V + ∆sΛV
yout

n+1,i +
∆sΛV

V + ∆sΛV
ki(x

∗
n,1, · · · , x∗

n,N ) i = 1...N,

which leads to the identification

eL =
∆sΛL

L + ∆sΛL
, eV =

∆sΛV

V + ∆sΛV
. (2.6)

An efficient column corresponding to eL and eV close to 1, is it reasonable to consider large
ΛL, ΛV in our model. We thus let:

ΛL =
λL

ǫ
, ΛV =

λV

ǫ
, 0 < ǫ << 1.

Note that we make no assumption about the size of λL with respect to λV . Yet it would
seem plausible to consider λV > λL, even if gas channels are much larger than liquid channels,
since diffusion is far easier in the gas.

Note also that according to (2.6), ∆s
ǫ → +∞⇒ ∆sΛV

V → +∞⇒ eV → 1. The same holds
for eL. Consequently arbitrary small sections of packing achieve perfect separation in case of
vanishing ǫ. For such a limit case, s is not the proper length scale. This example introduces
the scaling ǫS = s we use in the next section.

2.2 Matched asymptotic developments with vanishing ǫ

We present here an attempt to distinguish the behavior of the steady-state solution of the two-
flows distillation model in the high- and low-purity regions of a column. Though unsuccessful,
it provides a motivation for further use of various scales to address the modeling problem.

2.2.1 Introduction

Matched asymptotic developments were introduced in the 50’s to approximate solutions to
differential equations perturbed by a small term. More precisely, the technique deals with
problems where different scales can be separated in the solution. Let us consider as a toy
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example the problem proposed by Friedrichs [29] and treated by Van Dyke ([105], to which
we refer the reader for more in-depth presentation) :

ǫ
d2f

ds2
+

df

ds
=

1

2
, f(0) = 0, f(1) = 1, (2.7)

where ǫ is a small positive parameter. The exact solution is:

f(s) =
1

2

(
1− e−

s
ǫ

1− e−
1
ǫ

+ s

)
.

It appears that, for s >> ǫ, the exponential term of the solution is in its flat region,
and the solution is little dependent in ǫ. On the contrary, when s is comparable to ǫ, f(s)
varies fast with s due to the stiffness of the exponential, and the solution is highly sensitive
to changes on ǫ. Thus one can distinguish two domains on the s-axis: for large s, the term in
ǫ in (2.7) is indeed negligible; for small s, its impact on the solution is of the same order of
magnitude that the remainders. Such problems with two successive domains arise for example
from the fields of fluid mechanics (boundary layer problems) or electromagnetism (distinction
between the near- and far-field depending on the distance to an emitter).

Let us first consider the large s domain (the outer domain); here we can rewrite (2.7) into:

df

ds
=

1

2
, f(0) = 0, f(1) = 1,

Obviously, one of the boundary conditions can not be satisfied. Since the simplification ǫ = 0
we have made on the singularly perturbed problem (2.7) is not valid for small s (or, otherwise
speaking, since the boundary condition at s = 0 is outside the outer domain), we choose the
so-called outer solution: f(s) = s+1

2 .

To investigate the behavior of the solution in the inner domain where s does not dominate
ǫ anymore, s is not properly scaled to allow using the approximation ǫ = 0. Let us rescale the
problem with s = aS; dropping the boundary condition which belongs to the outer domain,
we have:

ǫ
d2f̃

a2dS2
+

df̃

adS
=

1

2
, f̃(0) = 0. (2.8)

The gauge a is a function of ǫ, which is chosen such that going to the limit ǫ = 0 preserves as
much terms as possible in (2.8). Here we take a = ǫ and passing to the limit yields:

d2f̃

dS2
+

df̃

dS
= 0, f̃(0) = 0, (2.9)

thus the inner solution f̃ = A
(
1− e−S

)
. Constant A is undetermined for the moment.

The last step consists in connecting (matching) the inner and outer solution. The inner,
microscopic scale S = s

ǫ overlaps the outer, large scale s for S → +∞. Conversely, the outer
scale matches the magnitude of the inner scale when s→ 0. Thus (see Fig. 2.4) the matching
is made by choosing A such that:

lim
S→+∞

f̃(S) = A =
1

2
= lim

s→0
f(s).
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Figure 2.4: Top left: the natural scale s is suitable for slowly varying solution. The new scale
S allows catching faster variations. Top right: at the limit ǫ → 0, the two scales define an
inner and outer domains which match for s → 0, S → +∞. Bottom: Integration constants
in the inner and outer solutions are adjusted to match them at the limit of the two domains.

The result of the procedure is a composite solution (entirely written in the natural, outer
scale s):

fc(s) =
s + 1

2
+

1

2

(
1− e−

s
ǫ

)
− 1

2
,

in which the outer solution progressively replaces the inner one, as one leaves the inner domain
for the outer one.

2.2.2 Application

Application of the matched asymptotic development method to our problem is limited to the
steady state. Restricting ourselves to the separation of a binary mixture (N + 1 = 2) we
can drop the component related subscripts i in the equations. In addition, we use a linear
thermodynamic equilibrium relation y∗ = αx∗, 0 < α < 1. Thus (2.5) yields:





L∂x
∂s = λL

ǫ (x∗(s)− x(s)),

V ∂y
∂s = −λV

ǫ (y∗(s)− y(s)),
0 = λL(x∗(s)− x(s)) + λV (y∗(s)− y(s)),

y∗(s) = αx∗(s),

(2.10)

for s ∈ (0, h). Let x(0) = y(0) = x(0), x(h) = x(1) and y(h) = y(1).

Let us consider an asymptotic development of the stationary solution versus ǫ, up to an
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arbitrary order n ≥ 1. We set:

x(s) =
n∑

k=0

ǫkxk(s) + o(ǫn), y∗(s) =
n∑

k=0

ǫky∗k(s) + o(ǫn),

y(s) =
n∑

k=0

ǫkyk(s) + o(ǫn), y∗(s) =
n∑

k=0

ǫky∗k(s) + o(ǫn)

the outer solution, for s ∈ (0, h). (2.10) yields

xk(s) = x∗
k(s), yk(s) = y∗k(s),

∂xk

∂s
= 0,

∂yk

∂s
= 0

for k = 0...n. Using boundary conditions at s = h, one obtains:

x0(s) ≡ x∗
0(s) ≡ x(1), y0(s) = y∗0(s) ≡ y(1) = αx(1),

xk(s) ≡ x∗
k(s) ≡ 0, yk(s) = y∗k(s) ≡ 0, k = 1...n.

The outer solution x(s), y(s), x∗(s), y∗(s) is obtained using the natural scale s. For ǫ =
0, (2.10) yields

x(s) = x∗(s), y(s) = y∗(s),

∂x

∂s
= 0,

∂y

∂s
= 0,

for s ∈ (0, h). Thus x(s) ≡ x∗(s) ≡ x1 and y(s) ≡ y∗(s) ≡ y1 = αx1. As mentioned before,
s is too large a scale to catch the non-ideal efficiency of the column for vanishing ǫ; the
approximate solution corresponds to the thermodynamic equilibrium over the whole domain.

To obtain the inner solution, we introduce the small scale S such that ǫS = s. We set

x̃(S) =

n∑

k=0

x̃k(S), ỹ∗(S) =

n∑

k=0

ỹ∗k(S),

ỹ(S) =
n∑

k=0

ỹk(S), ỹ∗(S) =
n∑

k=0

ỹ∗k(S)

the inner solution for S ∈ (0,+∞). (2.10) yields

L
∂x̃k

∂S
= λL(x̃∗

k(S)− x̃k(S)),

V
∂ỹk

∂S
= −λV (ỹ∗k(S)− ỹk(S)),

0 = λL(x̃∗
k(S)− x̃k(S)) + λV (ỹ∗k(S)− ỹk(S)),

ỹ∗k(S) = αx̃∗
k(S),

for k = 0...n. Thus for any k one obtains

ỹk(S) ≡ rx̃k(S) + x̃k(0)(1 − r),

x̃∗
k(S) ≡ λL + rλV

λL + αλV
x̃k(S) +

λV (1− r)x̃k(0)

λL + αλV
,
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with the reflux rate r = L
V ∈ (0, 1), and eventually

∂x̃k

∂S
=

λLλV (r − α)

L(λL + λV α)
x̃k +

λLλV (1− r)

L(λL + λV α)
x̃k(0).

Case r > α : since x̃(S) shall not diverge for S → +∞, the only feasible solution corresponds
to x̃ ≡ 1−r

α−r x̃(0). Then x̃ ≡ 0 and x̃ ≡ x̃∗ ≡ ỹ ≡ ỹ∗ ≡ 0. Matching the inner and outer
solutions using lim

S→+∞
x̃(S) = lim

s→0
x(s) gives x(1) = y(1) = 0.

Case r = α : for any k x̃k(S) does not diverge for S → +∞ only if x̃k(0) = 0. Again, one
obtains x̃ ≡ x̃∗ ≡ ỹ ≡ ỹ∗ ≡ 0 and x(1) = y(1) = 0.

Case r < α : one has, for any k, lim
S→+∞

x̃k(S) = 1−r
α−r x̃k(0). Matching lim

S→+∞
x̃(S) with

lim
S→0

x(s) yields

x̃0(0) =
α− r

1− r
x(1), x̃k(0) = 0, k = 1...n.

One can check that ỹ, x̃∗ and ỹ∗ then automatically match with their outer equivalents.

Thus, according to the matched asymptotic development, regardless of the order k, the
compound solution xcomp(s) = x̃(s

ǫ )+x(s)− lim
s→0

x reduces to the inner solution x̃(s
ǫ ) and one

has {
xcomp ≡ 0, if r ≥ α;

xcomp(s) = x(1)

(
1− 1−α

1−r e
−θs

ǫ

)
, θ = λV λL(α−r)

L(λL+αλV ) if r < α.

But since xcomp(h) = x(1) = x(1)

(
1− 1−α

1−r e
−θh

ǫ

)
, the only solution matching the boundary

corresponds to xcomp ≡ 0, x(1) = 0.

2.2.3 Analysis

For the chosen binary linear example, we dispose of the explicit exact solution x(s, ǫ), which
is:

x(s, ǫ) =
1− 1−α

1−r e−
θs
ǫ

1− 1−α
1−r e−

θh
ǫ

x(1), s ∈ (0, h).

For the limit ǫ = 0, when r 6= α, x(s, ǫ) degenerates into a discontinuous solution:

x(0, 0) = 0, x(s, 0) = x(1), s ∈ (0, h), if r > α(i.e.)θ < 0,

x(0, 0) =
α− r

1− r
x(1), x(s, 0) = x1, s ∈ (0, h), if r < α(i.e.)θ > 0.

In addition, due to exponential dependence on 1/ǫ, all the derivatives ∂nx(s,ǫ)
∂ǫn , n > 0 vanish

for ǫ = 0, s ∈ (0, h). Consequently, any asymptotic development of the exact solution x(s, ǫ)
around ǫ = 0 reduces to the term of order 0. Because of the discontinuity of the later, the
asymptotic development is then accurate only if

x(0, 0) = 0 =
α−r
1−r x(1)

1− 1−α
1−r e−

θh
ǫ

, i.e. x(1) = 0 if r > α,

x(0, 0) =
α− r

1− r
x(1) =

α−r
1−r x(1)

1− 1−α
1−r e−

θh
ǫ

, i.e. x(1) = 0 if r < α.
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For r = α, i.e. θ = 0, x(s, ǫ) grows no more discontinuity when ǫ→ 0. All the derivatives
∂nx(s,ǫ)

∂ǫn , n > 0 vanish for ǫ = 0, thus any asymptotic development of x(s, ǫ) in ǫ reduces to
x(s, 0) ≡ x(1). The development is accurate only if

x(0, 0) = x(1) = x
α−r
1−r x(1)

1− 1−α
1−r e−

θh
ǫ

that is x(1) = 0 as previously.

2.2.4 Generalization

Consider now the binary stationary problem, where the equilibrium relation is now non-linear.
We have:





L∂x
∂s = λL

ǫ (x∗(s)− x(s)),

V ∂y
∂s = −λV

ǫ (y∗(s)− y(s)),
0 = λL(x∗(s)− x(s)) + λV (y∗(s)− y(s)),

y∗(s) = k(x∗(s)),

(2.11)

for s ∈ (0, h). We still have x(0) = y(0) = x(0), x(h) = x(1) and y(h) = y(1). To the limit
ǫ→ 0, (2.11) yields:

{
∂x
∂s = 0,

y(s) = k(x(s)) ∝ L
V y(s).

Since y(0) = x(0) = k(x(0)), one has x(0) = y(0) = 0 or 1. For x(1) 6= 0 or 1, a solution exists
only if one allows x(s) to be discontinuous. Then any x(s) which is a step from 0 or 1 to x(1)

satisfies to the limit problem. Additionally, the position s̃ of the discontinuity along s must
be stationary. Let w = ds

dt . Then a mass balance around the discontinuity yields:

w =
L(x(s̃+)− x(s̃−))− V (y(s̃+)− y(s̃−))

σL(x(s̃+)− x(s̃−)) + σV (y(s̃+)− y(s̃−))

=
L(x(s̃+)− x(s̃−))− V (k(x(s̃+))− k(x(s̃−)))

σL(x(s̃+)− x(s̃−)) + σV (y(s̃+)− y(s̃−))
.

Given L
V ≤ 1, w = 0 is achievable only with x(s̃−) ≤ x(s̃+). Thus allowed discontinuous

solutions x(s) are increasing steps from 0 to x(1), with arbitrary position of the jump.

For such piecewise constant solutions, standard matched asymptotic developments will
face the same problem as illustrated with the linear example. Non-standard asymptotic
approaches may provide results, yet it seems that defining two successive space scales, one for
the high-purity phenomena at one end of the column, and another for higher concentrations
in the rest of the column, is not the simplest reduction approach. Be it in steady-state or
above all in dynamics. In the next section, we then investigate a different approximation
technique. This technique is directly for the dynamic solution of (2.5), but we will show that
it also matches the stationary solution to the chosen order.
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2.3 Reduction

2.3.1 Introduction to the centre manifold theory

In the analysis of singularly perturbed dynamic systems, a difficulty arises from the various
timescales involved (say, a slow and a fast timescale). Rewriting the system in each timescale
yields slow and fast systems which are no more equivalent at the limit. Centre manifold theory
offers tools to approximate the dynamics of the original system as a regular perturbation of the
limit slow system, recovering information from the fast one. The fundamental set of theorems
is due to Fenichel (see [26] which is beyond the single case of singular perturbations, and [27]
which specifically addresses them). Introduction to the theory and its applications have been
given in [56] and [17], both of which we follow. We also refer the interested reader to [106].

Consider a dynamic system of the form

{
∂x1
∂t = f1(x1, x2, ǫ)

∂x2
∂t = ǫf2(x1, x2, ǫ)

(2.12)

where f1, f2 have ad hoc regularity, and ǫ is a real, small yet non-null parameter. Introducing
τ = ǫt, the system rewrites

{
ǫ∂x1

∂τ = f1(x1, x2, ǫ)
∂x2
∂τ = f2(x1, x2, ǫ).

(2.13)

As long as ǫ 6= 0, systems (2.12) and (2.13) are strictly equivalent. Yet their limit dynamic
behavior differ when ǫ→ 0. One has:

{
∂x0

1
∂t = f1(x

0
1(t), x

0
2, 0)

∂x0
2

∂t = 0

{
0 = f1(x

0
1(τ), x0

2(τ), 0)
∂x0

2
∂τ = f2(x

0
1(τ), x0

2(τ), 0)

Using t as the time variable, x0
2 becomes constant and uncoupled from the limit dynamic

behavior of x0
1(t). t is the appropriate time scale for the dynamics of x1. Yet the dynamics

of x2 are much slower (roughly, 1
ǫ times slower) and seem ultimately to be frozen for ǫ → 0.

τ = ǫt defines a slow time scale which is much more suited for x2 dynamics (to the expense
of x1 which seems instantaneous at the limit).

The limit dynamics using the fast and slow time scale provides each a simplified yet
restricted focus on the original system. With the fast time scale, the dynamics of the
slow variable x2 is lost, and the limit behavior shows artificial critical points for the sub-
set f1(x

0
1, x

0
2, 0) = 0. Using the slow time scale, one both retrieves the system dynamics on

this subset, and restricts the dynamics to this subset. Namely, one has no information on
how (2.12) reaches or leaves (a neighborhood of) that subset. The Singular Perturbation
theory provides tools to reconciliate the various time scales.

Let us first recall the definition of an invariant manifold. Consider the dynamic system

dx

dt
= f(x), x ∈ R

n. (2.14)

The associated flow Φ defines Φt(x0) as the state x(t) reached by (2.14) after time t (not
necessarly positive) with initial condition x0.
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Definition 2.1. A manifold M is locally invariant by (2.14) if ∃T > 0 such that ∀t ∈ (−T, T ),
∀x0 ∈M , Φt(x0) ∈M . If one can make T →∞, the manifold M is invariant by (2.14).

We shall now consider specific manifolds of (2.14), namely its stable, unstable and centre
manifolds. Suppose that the system admits an equilibrium point x∗. Let A = ∂f

∂x (x∗). One
can define

• E− the stable eigenspace of A, associated with eigenvalues whose real part is < 0;

• E+ the unstable eigenspace of A, associated with eigenvalues whose real part is > 0;

• E0 the centre eigenspace of A, associated with pure imaginary eigenvalues.

E+, E− and E0 are supplementary (E+ ⊕E− ⊕E0 = R
n) and invariant by dx

dt = Ax. If A is
hyperbolic, the centre eigenspace vanishes and we have the

Theorem 2.2 (from Hartman-Grobman theorem, see for instance [38], [39], [30]). There
exists W−

loc(x∗) and W+
loc(x∗), respectively locally invariant stable and unstable manifolds of f

at x∗, with dim W−
loc(x∗) = dim E− and dim W+

loc(x∗) = dim E+, respectively tangent to E−

and E+ at x∗, and having the same regularity as f .

In the non-hyperbolic case, the centre eigenspace gives rise to a centre manifold, as stated
by the

Theorem 2.3 (from Shoshitaishvili’s theorem in [4]). If f is Cr, it admits locally invariant
stable, unstable and centre manifolds noted W−

loc(x∗), W+
loc(x∗) and W 0

loc(x∗), which are Cr,
Cr and Cr−1 respectively, and tangent at x∗ to E−, E+ and E0 respectively. W−

loc(x∗) and
W+

loc(x∗) are uniquely defined, which is not necessarily the case for W 0
loc(x∗).

Furthermore, with x∗ = (x1∗, x2∗)
T the centre manifold can be, at least locally, represented

as a graph:
W 0

loc(x∗) = {(x1, x2) ∈ R
n : x2 = h(x1)} (2.15)

for |x1 − x1∗| small enough, with h(x1∗) = x2∗ and dh(x1)
dx1

(x1∗) = 0.
Let us go back to the singularly perturbed dynamic system (2.12). We now know that for

small excursions around the equilibrium, the trajectories of the system will stay close to its
centre manifold (assuming its existence). Yet its calculation is not straightforward for ǫ 6= 0.
We review here two ways of approximating it.

The first way is from [56]. Making ǫ→ 0 in (2.12) yields the limit system

∂x0
1

∂t
= f1(x

0
1(t), x

0
2, 0)

∂x0
2

∂t
= 0.

According to the previous theorems, the limit system admits a centre manifold W 0
0 (the

subscript 0 indicates value of ǫ for which it is obtained). W 0
0 is given by f1(x

0
1, x

0
2, 0) = 0,

that is x0
1 = h0(x2) for some function h0 around the equilibrium. To go on, we need an

additional theorem.

Theorem 2.4 (Fenichel’s Invariant Manifold first theorem). For ǫ > 0 sufficiently small, there
exists a manifold Mǫ that lies within O(ǫ) from W 0

0 and is diffeomorphic to W 0
0 . Moreover,

Mǫ is locally invariant by (2.12), has the same regularity as W 0
0 in x1, x2, and is C∞ in ǫ.
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As previously, the manifold Mǫ can be represented, at least locally, as a graph:

Mǫ = {(x1, x2) ∈ R
n : x1 = hǫ(x2)}

where hǫ has the same regularity in x2 than h0 and is C∞ in ǫ.
Using the smoothness of hǫ in ǫ, one can expand x1 = hǫ(x2) in ǫ:

x1 = h0(x2) + ǫh1(x2) + O(ǫ2),

where the zero-order term is immediately given by the fact that Mǫ is close to W 0
0 to O(ǫ), ac-

cording to theorem 2.4. The 1st order term will be calculated to guarantee the local invariance
of Mǫ in (2.12). Using the first equation of (2.12), one has

dx1

dt
= f1(h0(x2) + ǫh1(x2) + O(ǫ2), x2, ǫ)

= f1(h0(x2), x2, 0) + ǫ
∂f1

∂x1
(h0(x2)), x2, 0)h1(x2) + ǫ

∂f1

∂ǫ
(h0(x2)), x2, 0) + O(ǫ2)

= ǫ
∂f1

∂x1
(h0(x2)), x2, 0)h1(x2) + ǫ

∂f1

∂ǫ
(h0(x2)), x2, 0) + O(ǫ2)

since f1(h0(x2), x2, 0) = 0 by the definition of h0. On the other hand, the second equation
of (2.12) yields

dx1

dt
=

(
dh0

dx2
+ ǫ

dh1

dx2
+ O(ǫ2)

)
dx2

dt

=

(
ǫ
dh0

dx2
+ ǫ2 dh1

dx2
+ O(ǫ3)

)
f2(h0(x2) + ǫh2(x2) + O(ǫ2), x2, ǫ)

= ǫ
dh0

dx2
f2(h0(x2), x2, 0) + O(ǫ2).

Equalizing the terms of order 1 in ǫ leads to

h1 =

(
∂f1

∂x1

)−1(dh0

dx2
f2(h0(x2), x2, 0)−

∂f1

∂ǫ

)
(h0(x2), x2, 0).

The manifold Mǫ approximated by h0 + ǫh1 is called the slow manifold. The Second
Fenichel’s Invariant Manifold theorem ensures that Mǫ, as well as its approximation, permits
tracking the dynamics of (2.12) for small ǫ and small excursions around the equilibrium.

Theorem 2.5 (Fenichel’s Invariant Manifold second theorem). If ǫ > 0 is sufficiently small,
there exists manifolds W s(Mǫ) and W u(Mǫ) that lie within O(ǫ) of, and are diffeomorphic
to, the stable and unstable invariant manifolds of the limit system (W−(M0) and W+(M0)),
respectively. Moreover, they are each locally invariant by (2.12), have the same regularity in
x1, x2 than W−(M0) and W+(M0), and are C∞ in ǫ.

The following theorem justifies the terminologies ‘stable’ and ‘unstable’ for the perturbed
manifolds W s(Mǫ) and W u(Mǫ).

Theorem 2.6. Let Φt(x) the flow associated to (2.12). There exist Ks > 0, αs < 0 and a
neighborhood D of Mǫ such that if v ∈W s(Mǫ) and Φt(v) ∈ D with t > 0, then

d(Φt(v),Mǫ) ≤ Kse
αst,
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where d(., .) is the Euclidian distance.

Furthermore, there exists Ku > 0, αu > 0 such that if v ∈ W s(Mǫ) and Φt(v) ∈ D with
t < 0, then

d(Φt(v),Mǫ) ≤ Kueαut.

Thus, provided that the trajectories of (2.12) remain in the appropriate neighborhood of
Mǫ, they exponentially converge towards Mǫ, either forward or backward in time. This is
formulated by the

Lemma 2.7 (Shadow Lemma). For every initial conditions in the neighborhood of Mǫ, the in-
tegral curves fast converge towards Mǫ, without necessary entering in it, but are approximated
by trajectories remaining in Mǫ (the shadows1) to which they converge.

For small ǫ, small excursions around the equilibrium, it may then be sufficient to limit
the study of (2.12) to its restriction to the approximation of Mǫ.

A slightly different approach is proposed in [17]. Instead of perturbing the centre manifold
M0 of the limit system to approximate the dynamics of (2.12), this approach directly addresses
a centre manifold for (2.12). Around an equilibrium point x∗ = (x1∗, x2∗) the linearization
of (2.12) reads

dδx1

dt
= Dx1f1δx1 + Dx2f1δx2,

dδx2

dt
= ǫDx1f2δx1 + ǫDx2f2δx2.

If f1 and f2 are such that (
Dx1f1 Dx2f1

ǫDx1f2 ǫDx2f2

)

is hyperbolic at x∗, the conditions of theorem 2.3 are not fulfilled; there is no centre manifold.
The key point, which also re-introduces the vision of (2.12) as a perturbation of the limit
system for ǫ = 0, consists in extending the state space to include ǫ as a constant:

dx1

dt
= f1(x1, x2, ǫ),

dx2

dt
= ǫf2(x1, x2, ǫ),

dǫ

dt
= 0.

The equilibrium point around which we consider the system is extended as well: x∗ =
(x1∗, x2∗, 0). The linearization now writes

dδx1

dt
= Dx1f1δx1 + Dx2f1δx2 + Dǫf1δǫ,

dδx2

dt
= ǫDx1f2δx1 + ǫDx2f2δx2 + ǫDǫf2δǫ + f2(x1, x2, ǫ)δǫ

dδǫ

dt
= 0,

1not to be confounded with projections of the trajectories on Mǫ
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which turns at x∗ in

dδx1

dt
= Dx1f1δx1 + Dx2f1δx2 + Dǫf1δǫ,

dδx2

dt
= 0

dδǫ

dt
= 0.

The conditions of theorem 2.3 are now fulfilled; there exists a centre manifold Wǫ for the
extended system, which can be locally defined by

x1 = h(x2, ǫ)

for some function h. Yet this existence result does not define Wǫ. Its approximation is made
possible by use of the

Theorem 2.8. 2 For functions Ψ : R
k+1 → R

m which are C1 in a neighborhood of (x2∗, 0)
define

(MΨ)(x2, ǫ) = DΨ(x2, ǫ)f2(Ψ(x2, ǫ), x2, ǫ)− f1(Ψ(x2, ǫ), x2, ǫ).

Note that (Mh)(x2, ǫ) = 0.

Let now Ψ be a C1 mapping of a neighborhood of the (new) equilibrium x∗ in R
k+1 into R

m

with Ψ(x2∗, 0) = x1∗ and DΨ(x2∗, 0) = 0. Suppose that as (x2, ǫ) → (x2∗, 0), (MΨ)(x2, ǫ) =
O(|(x2 − x2∗, ǫ)|q) for some q > 1. Then as (x2, ǫ) → (x2∗, 0), |h(x2, ǫ) − Ψ((x2, ǫ))| =
O(|(x2 − x2∗, ǫ)|q).

It is thus possible to approximate the function h defining Wǫ locally around x∗ by a
function Ψ, which can be determined order by order, by choosing its component such that
(MΨ)(x2, ǫ) = O(|(x2 − x2∗, ǫ)|q) for increasing q > 1 up to the desired precision.

2.3.2 Application to the discrete distillation dynamics

The tools we presented in the previous section are for finite-dimension systems; our basis
distillation column model (2.5) is of infinite dimension. In a first time, we will handle it as if
it were discrete in space, to approximate the dynamics on the center manifold in a rigorous
manner. The calculation will be done for a binary mixture for the sake of readability, and
in the way of [56]. In the next sections, we will formally extend the results to the infinite-
dimension case, and to the M -components mixtures, M > 2.

Discretizing the original model (2.5) yields, for a binary mixture





σL
∂xp

∂t = −L
xp−xp−1

∆s + λL
ǫ (x∗

p − xp),

σV
∂yp

∂t = V
yp+1−yp

∆s + λV
ǫ (y∗p − yp),

0 = ΛL(x∗
p − xp) + ΛV (y∗p − yp),

y∗p = k(x∗
p),

(2.16)

2Note that this theorem also explains why the non-uniqueness of the centre manifold is not a problem in
practice: two centre manifolds become arbitrary close to each other when approaching the equilibrium point,
and each approximation of the first centre manifold is also an approximation of the second one, to the same
degree of precision.
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where ∆s > 0 is the space-step and the subscript 0 < p < P +1 indicates a variable evaluated
at s = p∆s. Multiplying the two ODEs by ǫ shows that the model is formulated as a slow
system:





ǫσL
∂xp

∂t = −ǫL
xp−xp−1

∆s + λL(x∗
p − xp),

ǫσV
∂yp

∂t = ǫV
yp+1−yp

∆s + λV (y∗p − yp),

0 = λL(x∗
p − xp) + λV (y∗p − yp),

y∗p = k(x∗
p),

(2.17)

The time scale separation is more appearing through the coordinate change3

Zp =
σLxp + σV yp

σ
, σ = σL + σV .

Physically, Zp corresponds to a lumped concentration at point p, in the sense that Zp does not
indicate if the component is mostly located in the gas or liquid phase. In (x,Z) coordinates
the system rewrites

ǫσL
∂xp

∂t
= −ǫL

xp − xp−1

∆s
+ λL(x∗

p − xp), (2.18)

σ
∂Zp

∂t
= −L

xp − xp−1

∆s
− V σL

σV

xp+1 − xp

∆s
+

V σ

σV

Zp+1 − Zp

∆s
, (2.19)

xp =

[
λLx∗

p + λV

(
y∗p −

σ

σV
Zp

)](
λL − λV

σL

σV

)−1

, (2.20)

y∗p = k(x∗
p), (2.21)

Now it is clear that the Zp are pure slow variables, whose dynamics are driven by liquid and
gas transport. This is coherent with the physical meaning of Zp, which ignores the notion of
phase. On the contrary, the xp are mixed slow-fast variables. The slow dynamics are driven by
transport in the liquid phase only, whereas the fast dynamics are dictated by phase-to-phase
exchanges.

The natural time of the system t is thus here a fast time scale. To obtain the system in
the fast formulation, let θ = t

ǫ to define a slow time scale. One obtains (we do not repeat the
algebraic equation anymore since they are not impacted):

{
σL

∂xp

∂θ = −ǫL
xp−xp−1

∆s + λL(x∗
p − xp),

σ
∂Zp

∂θ = −ǫ
[
L

xp−xp−1

∆s + V σL
σV

xp+1−xp

∆s − V σ
σV

Zp+1−Zp

∆s

]
,

(2.22)

The limit fast system for ǫ→ 0 is
{

σL
∂xp

∂θ = λL(x∗
p − xp),

σ
∂Zp

∂θ = 0,
(2.23)

The equilibrium point corresponds to the thermodynamic equilibrium of the whole column,
since it is defined by xp∗ = x∗

p∗ ∀p. Using equations (2.20) and (2.21) one has

σV k(xp∗) + σLxp∗ = σZp∗ ∀p. (2.24)

3Note that the centre manifold reduction is a geometric method, hence independent from the chosen co-
ordinates. The same calculations could be done with the natural coordinates (xp, yp), to the expense of the
readability.
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0 1

1

Zp,∗

xp,∗

h0,p(Zp) = xp,∗

x∗
p,∗ = xp,∗

Figure 2.5: Locus of the thermodynamic equilibriums of the fast limit system, which also
corresponds to its center manifold

For each p, we can, at least locally, define the continuum of equilibrium points as the graph

xp∗ = h0,p(Zp∗),

x∗
p∗ = h0,p(Zp∗),

with h0,p s.t. σV k(h0,p(Zp∗)) + σLh0,p(Zp∗) = σZp∗ as illustrated on Fig. 2.5.
Let x∗ = (x1∗, · · · , xP∗), Z∗ = (Z1∗, · · · , ZP∗). It turns out that the graphs of the h0,p

functions correspond (together) to the centre manifold W 0
0,(x∗,Z∗)

of the limit fast system4,

whatever the equilibrium (x∗, Z∗). Indeed, for any p, one has:

∂x∗
p

∂xp
(xp∗, Zp∗) = 1− λV σL

λLσV
− λV

λL

[
dk(x∗

p)

dx∗
p

∂x∗
p

∂xp
− σL

σV

dZp

dxp

]
(xp∗, Zp∗),

[
∂x∗

p

∂xp

(
1 +

λV

λL

dk(x∗
p)

dx∗
p

)]
(xp∗, Zp∗) = 1− λV σL

λLσV
+

λV

λL

σL

σV

dZp

dxp
(xp∗, Zp∗). (2.25)

If xp = h0,p(Zp), that is σV k(xp) + σLxp = σZp, then

dZp

dxp
(xp∗, Zp∗) =

σV

σ

dk(xp)

dxp
(xp∗, Zp∗) +

σL

σ

=
σV

σ

dk(x∗
p)

dx∗
p

(x∗
p∗, Zp∗) +

σL

σ
.

Reporting in (2.25) yields
[
∂x∗

p

∂xp

(
1 +

λV

λL

dk(x∗
p)

dx∗
p

)]
(xp∗, Zp∗) =

(
1 +

λV

λL

dk(x∗
p)

dx∗
p

)
(xp∗, Zp∗)

that is
∂x∗

p

∂xp
(xp∗, Zp∗) = 1.

4More precisely, they are a local approximation of a centre manifold (possibly not unique) of the limit fast
system, which can be made arbitrarily accurate by getting closer to the equilibrium point.
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Consequently, we have in system (2.23), for any p:
{

xp∗(h0,p(Zp), Zp)− h0,p(Zp) = 0 for Zp = Zp∗,
d

dZp
(xp∗(h0,p(Zp), Zp)− h0,p(Zp)) = 0 at Zp = Zp∗,

which matches the requirements of (2.15). Reporting σV k(xp) − σLxp = σZp in (2.20) one
also obtains

x∗
p +

λV

λL
k(x∗

p) = xp +
λV

λL
k(xp)

which yields the conclusion that, for any p, for any equilibrium (h0(Zp∗), Zp∗), one has

xp = h0,p(Zp),

x∗
p = h0,p(Zp),

on the centre manifold W 0
0,(x∗,Z∗).

The trajectories of the limit fast system (2.23) converge with constant Zp towards the
centre manifold, as illustrated on Fig. 2.6. Conversely, the trajectories of the slow limit
system

x∗
p =xp = h0,p(Zp),

σ
∂Zp

∂t
=− L

h0,p(Zp)− h0,p−1(Zp − 1)

∆s
− V σL

σV

h0,p+1(Zp+1)− h0,p(Zp)

∆s
+

V σ

σV

Zp+1 − Zp

∆s
,

(2.26)

slide on the centre manifold. To get rid of h0, which is here only implicitly defined, it is useful
to rewrite (2.26) in xp using σV k(xp)+σLxp = σZp on the centre manifold. One must though
keep in mind that Zp enslaves xp through xp = h0(Zp), and not the contrary. One obtains

(
σL + σV k′(xp)

) ∂xp

∂t
= −L

xp − xp−1

∆z
+ V

k(xp+1)− k(xp)

∆z
. (2.27)

The trajectories thus slide on the centre manifold converging, for any p, towards (h0(Zp,eq), Zp,eq)
with

h0(Zp,eq) = xp,eq such that Lxp,eq + V k(xp,eq) = Lxp−1 + V k(xp+1)

as illustrated on Fig. 2.7. Note that, for (xp−1, xp+1) ∈ [0, 1]2, xp,eq exists in [0, 1] since k is
continuous bijective from [0, 1] to [0, 1].

According to the theorem 2.4, the centre manifold W 0
0,(x∗,Z∗)

of the limit system (2.23)

lies within O(ǫ) of the slow manifold Mǫ of the original system (2.22), for ǫ small enough.
We will now perturb W 0

0,(x∗,Z∗) to obtain an approximation of Mǫ. Using the local graph

representation, this is equivalent to perturb all the h0,p(Zp) to obtain the hǫ,p(Zp) such that
xp = hǫ,p(Zp) on the slow manifold. Once again, not to deal with the implicitly defined
function h0 (and so will be hǫ), we will instead perturb the relation σV k(xp) + σLxp = σZp.
The previous reminder on the actual order of enslaving is still to be kept in mind.

Let, on the slow manifold and for any p:

xp(Zp) = X0,p(Zp) + ǫX1,p(Zp) + O(ǫ2). (2.28)

One has

σZp = σV k(X0,p(Zp)) + ǫσV k′(X0,p(Zp))X1,p(Zp) + σLX0,p(Zp) + ǫσLX1,p(Zp) + O(ǫ2).
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0 1

1

Zp

xp

h0,p(Zp) = xp

x∗
p = xp

xp(θ)

Figure 2.6: The fast limit system converge with constant Zp towards the center manifold

0 1

1

Zp

xp

xp(t)

xeq

Zeq

Figure 2.7: The slow limit system converges on the manifold of thermodynamic equilibrium
(defined for p) towards the dynamic equilibrium (impacted by p + 1, p− 1)
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The manifolds W 0
0,(x∗,Z∗)

and Mǫ being close up to O(ǫ), the terms X0,p(Zp) are immediately
given:

X0,p(Zp) = h0(Zp),

that is, X0,p(Zp) is s.t. σZp = σV k(X0,p(Zp)) + σLX0,p(Zp). The terms X1,p(Zp) will be
obtained by ensuring the local invariance of (2.28) by (2.22). One must have, for any p:

dxp

dθ
=

(
dX0,p

dθ
+ ǫ

dX1,p

dθ
+ O(ǫ2)

)

=
dxp

dZp

dZp

dθ
,

that is

ǫ

σL
L(xp − xp−1)−

λL

σL
(x∗

p − xp)∆s

= ǫ

(
1 + ǫdX1

dZp

)(
L(xp − xp−1) + V σL

σV
(xp+1 − xp)− V σ

σV
(Zp+1 − Zp)

)

(σL + k′(X0)σV )
+ O(ǫ2). (2.29)

Since for any p

x∗
p = xp

(
1− σLλV

σV λL

)
− λV

λL

(
k(x∗

p)−
σZp

σV

)

according to equations (2.20) and (2.21), the perturbation of the xp also affects the x∗
p, which

rewrite

x∗
p = X∗

0,p + ǫX∗
1,p + O(ǫ2)

with

X∗
0,p = X0,p, X∗

1,p

(
1 +

λV

λL
k′(X0,p)

)
= X1,p

(
1− σLλV

σV λL

)
.

Thus, in equation (2.29) one can replace λL(x∗
p − xp) by

−ǫλV

σL
σV

+ k′(X0,p)

1 + λV
λL

k′(X0,p)
X1,p.

Furthermore, since

L(xp − xp−1) + V
σL

σV
(xp+1 − xp)− V

σ

σV
(Zp+1 − Zp)

= L(X0,p − L(X0,p−1))− V (k(X0,p+1)− k(X0,p) + O(ǫ),

equation (2.29) reduces to the order 1 versus ǫ to:

L

σL
(X0,p −X0,p−1) +

λV

σV

σL + σV k′(X0,p)

1 + λV
λL

k′(X0,p)
X1,p∆s

=
L(X0,p − L(X0,p−1))− V (k(X0,p+1)− k(X0,p))

σL + k′(X0)σV
.
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Finally, one obtains

X1,p = −σV Jp

(
σV Lk′(X0,p)

X0,p −X0,p−1

∆s
+ σLV

k(X0,p+1)− k(X0,p)

∆s

)
, (2.30)

Jp =

1
λV

+
k′(X0,p)

λL

(σL + σV k′(X0,p))
2 . (2.31)

One can now express the dynamics (in O(ǫ2)) of the system on the slow manifold, with the
natural (slow) time scale t. Again, we write it using the xp to get rid of the implicit functions
hǫ,p. Yet to cope with the enslaving principe, xp should here be though of as coordinates,
say Ξp, built on Zp such that Ξp = hǫ,p(Zp) + O(ǫ2) rather than as actual molar fractions.
Rewriting (2.19) yields:

(
σL + σV k′(X0,p)

) dX0,p

dt
= −L

xp − xp−1

∆s
− V σL

σV

xp+1 − xp

∆s
+

V σ

σV

Zp+1 − Zp

∆s
+ O(ǫ2)

since Zp = σLX0,p + σV k(X0,p) + O(ǫ2) by construction. Replacing the xp and Zp one has:

(
σL + σV k′(X0,p)

) dX0,p

dt
∆s = V (k(X0,p)− k(X0,p+1))− L (X0,p −X0,p−1)

+ ǫ
[
V
(
k′(X0,p)X1,p − k′(X0,p+1X1,p+1

)
− L (X1,p −X1,p−1)

]
+ O(ǫ2).

One only needs O(ǫ) precision for the square bracketed term, thus one can use

ǫσV k′(X0, p)X1,p + ǫσLX1,p = O(ǫ2) (2.32)

(because of Zp = σLX0,p + σV k(X0,p) + O(ǫ2)) to get:

(
σL + σV k′(X0,p)

) dX0,p

dt
= V

k(X0,p)− k(X0,p+1)

∆s
− L

X0,p −X0,p−1

∆s

− ǫ

[
σLV

σV

X1,p+1 −X1,p

∆s
+ L

X1,p −X1,p−1

∆s

]
+ O(ǫ2),

in which we replace the X1,p using the formula (2.30). The dynamics on the slow manifold
reads for any p:

(
σL + σV k′(X0,p)

) dX0,p

dt
=

− L
X0,p −X0,p−1

∆s
+ V

k(X0,p)− k(X0,p+1)

∆s

+ ǫσLV Jp+1

(
σV Lk′(X0,p+1)

X0,p+1 −X0,p

∆s2 + σLV
k(X0,p+2)− k(X0,p+1)

∆s2

)

− ǫσLV Jp

(
σV Lk′(X0,p)

X0,p −X0,p−1

∆s2 + σLV
k(X0,p+1)− k(X0,p)

∆s2

)

+ ǫσV LJp

(
σV Lk′(X0,p)

X0,p −X0,p−1

∆s2 + σLV
k(X0,p+1)− k(X0,p)

∆s2

)

− ǫσV LJp−1

(
σV Lk′(X0,p−1)

X0,p−1 −X0,p−2

∆s2 + σLV
k(X0,p)− k(X0,p−1)

∆s2

)

+ O(ǫ2). (2.33)
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Back to the natural coordinates xp, yp, we have the approximations, for any p:

xp =X0,p − ǫσV Jp

(
σV Lk′(X0,p)

X0,p −X0,p−1

∆s
+ σLV

k(X0,p+1)− k(X0,p)

∆s

)
+ O(ǫ2),

(2.34)

yp =k(X0,p) + ǫσLJp

(
σV Lk′(X0,p)

X0,p −X0,p−1

∆s
+ σLV

k(X0,p+1)− k(X0,p)

∆s

)
+ O(ǫ2),

(2.35)

where each X0,p obeys the previous dynamics (2.33).

2.3.3 Reduced infinite-dimension distillation dynamics

We address now the centre manifold reduction of the continuous distillation column model.
This reduction will be conducted in a formal way only, using the rigorous discrete reduction
as a guideline. Again, we are here only interested in the binary mixture distillation model





σL
∂x
∂t = −L∂x

∂s + λL
ǫ (x∗ − x) ,

σV
∂y
∂t = V ∂y

∂s + λV
ǫ (y∗ − y) ,

0 = λL (x∗ − x) + λV (y∗ − y) ,
y∗ = k(x∗).

(2.36)

Let us define as previously the lumped variable

Z(s, t) =
σLx(s, t) + σV y(s, t)

σ
, σ = σL + σV . (2.37)

In order to manipulate the centre manifold through its local graph formulation, let X(s, t)
such that

Z(s, t) =
σLX(s, t) + σV k(X(s, t))

σ
. (2.38)

With the notation k′(X) = dk(X)
dX , one has:

∂Z

∂t
=

σL + σV k′(X)

σ

∂X

∂t
. (2.39)

We shall now write the state variables of the system as functions of X, regularly perturbed
by ǫ:

x = x0(X) + ǫx1(X) + O(ǫ2), x∗ = x∗
0(X) + ǫx∗

1(X) + O(ǫ2),

y = y0(X) + ǫy1(X) + O(ǫ2), y∗ = y∗0(X) + ǫy∗1(X) + O(ǫ2).

Limiting ourselves to the limit system, that is, to the case ǫ→ 0 in (2.36), yields:

x∗
0 ≡ x0, y∗0 ≡ y0, y∗0 ≡ k(x∗

0), Z = σLx0(X)+σV y0(X)
σ ,

then

x0(X) = X, (2.40)

y0(X) = k(X), (2.41)

∂X

∂t
=
−L + V k′(X)

σL + σV k′(X)

∂X

∂s
, (2.42)

70



the PDE being exactly the limit of (2.27) when ∆z → 0.

Reporting the expansions of x, x∗, y, y∗ with the known 0th-order terms in System (2.36)
yields:

σL
∂X

∂t
= −L

∂X

∂s
+ λL (x∗

1 − x1) + O(ǫ), (2.43)

σV k′(X)
∂X

∂t
= V k′(X)

∂X

∂s
+ λV (y∗1 − y1) + O(ǫ), (2.44)

0 = λL (x∗
1 − x1) + λV (y∗1 − y1) + O(ǫ), (2.45)

y∗1 = k′(X)x∗
1 + O(ǫ). (2.46)

Doing the same in (2.37) gives

Z =
σLX + ǫσLx1(X) + σV k(X) + ǫσV y1(X)

σ
+ O(ǫ2).

Confronting to (2.38) one obtains the infinite-dimension equivalent of (2.32):

ǫσLx1 ≡ −ǫσV y1 + O(ǫ2). (2.47)

The first-order terms in the expansions can now be determined to match the invariance
principle: x1 and x∗

1 are so that the trajectories of (2.40) and (2.43) are the same (up to
O(ǫ)); similarly, y1 and y∗1 are so that the trajectories of (2.40) and (2.44) are the same. One
must have:

k′(X)
σV L + σLV

σL + σV k′(X)

∂X

∂s
= λL (x∗

1 − x1) + O(ǫ), (2.48)

−k′(X)
σV L + σLV

σL + σV k′(X)

∂X

∂s
= λV (y∗1 − y1) + O(ǫ). (2.49)

According to (2.46),(2.45) and (2.47) one has:

λV (y∗1 − y1) = −λL (x∗
1 − x1) = λV

(
k′(X)x∗

1 +
σL

σV
x1

)
+ O(ǫ),

then multiplying (2.48) by λV
λL

k′(X) and subtracting (2.49) yields

x1 = −σV

k′(X)2

λL
+ k′(X)

λV

(σL + σV k′(X))2 (σLV + σV L)
∂X

∂s
+ O(ǫ), (2.50)

y1 = σL

k′(X)2

λL
+ k′(X)

λV

(σL + σV k′(X))2 (σLV + σV L)
∂X

∂s
+ O(ǫ). (2.51)

Note that the zero-order approximation of x1 is exactly the limit of (2.30) when ∆z → 0. For
the sake of concision let

G(X) =

k′(X)2

λL
+ k′(X)

λV

(σL + σV k′(X))2 (σLV + σV L)2 . (2.52)
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Injecting the known terms of the expansions in the first equation of System (2.36) leads to the
following convection-diffusion equation for the dynamics of X on the system’s slow manifold:

(
σL + σV k′(X)

) ∂X

∂t
=

∂

∂s

(
−LX + V k(X) + ǫG(X)

∂X

∂s

)
+ O(ǫ2). (2.53)

The actual molar fractions are given as static outputs:

x(s, t) = x0(X(s, t)) + ǫx1(X(s, t)) + O(ǫ2)

= X(s, t)− ǫσV
G(X(s, t))

σV L + σLV

∂X

∂s
(s, t) + O(ǫ2), (2.54)

y(s, t) = y0(X(s, t)) + ǫy1(X(s, t)) + O(ǫ2)

= k(X(s, t)) + ǫσL
G(X(s, t))

σV L + σLV

∂X

∂s
(s, t) + O(ǫ2), (2.55)

where X(s, t) obeys the dynamics described by (2.53).
Note that the infinite-dimension static outputs correspond exactly to the limit of the

discrete static outputs (2.34),(2.35) for ∆z → 0, as well as the PDE (2.53) which corresponds
to the limit when ∆z → 0 of the discrete dynamics on the slow manifold (2.33).

2.4 Discussion

Dynamic equation (2.53) reduces for our purpose to its terms in O(1) and O(ǫ):

(
σL + σV k′(X)

) ∂X

∂t
=

∂

∂s

(
−LX + V k(X) + ǫG(X)

∂X

∂s

)
, (2.56)

as well as the static outputs:

x(s, t) = x0(X(s, t)) + ǫx1(X(s, t)) + O(ǫ2)

= X(s, t)− ǫσV
G(X(s, t))

σV L + σLV

∂X

∂s
(s, t), (2.57)

y(s, t) = y0(X(s, t)) + ǫy1(X(s, t)) + O(ǫ2)

= k(X(s, t)) + ǫσL
G(X(s, t))

σV L + σLV

∂X

∂s
(s, t). (2.58)

Equation (2.56) is a parabolic convection-diffusion equation, which in the vanishing diffu-
sion limit (ǫ→ 0) reduces to the hyperbolic convection equation

(
σL + σV k′(X)

) ∂X

∂t
=

∂

∂s
(−LX + V k(X)) . (2.59)

Let us consider the case of a binary mixture {N2,O2}, with X the lumped oxygen molar
fraction, in a distillation column such as the HP column. At the top, gas and liquid are
almost devoid of oxygen, thus as soon as the reflux is large enough (L > V k′(X(z=0) ≈ V αO2),
the composition information travels downwards. Conversely, at the bottom, when the reflux
is not too large, (L < V k′(X(z=h)), the composition information travels upwards. With the
reflux between this margins, the composition wave speed changes sign inside the column, at
the location where L = V k′(X). The composition profile degenerates into a discontinuous
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profile. With the assumption σV << σL made in Marqardt’s wave model, the speed w of this
discontinuity is given by:

w =
−L + V k(X⊕)−k(X⊖)

X⊕−X⊖

σL

where ⊕ and ⊖ subscripts respectively indicate the downward and the upward side of the
discontinuity. In Marquardt’s model, x(z, t) identifies to X(z, t) and y(z, t) to k(X(z, t)),
thus the equation rewrites:

w =
−L + V y⊕−y⊖

x⊕−x⊖

σL

or, changing the timescale to absorb σL and the space-scale to absorb L:

w = −1 +
V

L

y⊕ − y⊖
x⊕ − x⊖

which matches (1.4).

The diffusion term in O(ǫ) prevents the apparition of the discontinuity. Notice that this
term is not introduced in the equation a priori, in order to get rid of the shock; it naturally
emerges from the original balance equations during the reduction procedure. This is a notable
difference with the wave-model, where a regular composition wave is set a priori, and its
motion treated as for a shock-wave a posteriori. Note also that this small, axial diffusion
term originates from a large, radial (in a cross-s direction) exchange term (in 1

ǫ in the original
balance equations).

We have seen in Section 2.1.1 subsection that a large 1
ǫ term in the coupling equation

between liquid and gas phase indicates an efficient packing. Then an efficient column should
produce stiff X(s, t) profiles, whereas this profiles should be smooth for an inefficient column.
And it just so happens that our diffusion term has an in-built dependence on X(s, t), the
internal flows L(s, t), V (s, t), and the hold-ups σL and σV . Thus we obtain a formulation of
a packing efficiency depending on operating conditions.

Once again, there is a difference with the original wave-model, where the smoothness of
the profile (and so the tray or packing efficiency) is tuned by the shape parameter γ. In our
model, the efficiency depends locally on the operating conditions; a global tuning is yet still
possible using ǫ.

One may be surprised to see that the holds-ups σL, σV intervene in the diffusion term
and in the O(ǫ) term of the static outputs. Indeed, according to the original balance equa-
tions (2.5), the hold-ups should not impact the steady-state. In steady-state, we have (it is
useful to reintroduce the O(ǫ2) residual term):

0 =
d

ds

(
−LX + V k(X) + ǫG(X)

dX

ds

)
+ O(ǫ2),

thus

0 =
d

ds

(
−Lx + V y + ǫG(X)

(
1− σLV

σLV + σV L
− σV L

σLV + σV L

)
dx

ds

)
+ O(ǫ2)

=
d

ds
(Lx + V y) + O(ǫ2),
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and:

y = k(x) + ǫ
σLG

σV L + σLV

dx

ds
+ ǫk′(x)

σV G

σV L + σLV

dx

ds
+ O(ǫ2).

Yet the considered steady-state is a perturbation, by ǫ, of the steady-state limited to the
order O(1), that is, the steady-state of the purely convective equation (2.59). One then has
−L + V k′(X) = O(ǫ) and consequently the previous equation rewrites:

y = k(x) + ǫ
G

σV L + σLV

(
σL +

L

V

)
dx

ds
+ O(ǫ2)

= k(x) + ǫ
G

V

dx

ds
+ O(ǫ2).

In addition, G has become independent from the hold-ups since, according to (2.52):

G(X) =

k′(X)2

λL
+ k′(X)

λV

(σL + σV k′(X))2 (σLV + σV L)2 =

k′(X)2

λL
+ k′(X)

λV

V 2
+ O(ǫ).

Consequently, the steady-state of the reduced dynamic system is indeed independent from
σL, σV up to the chosen reduction order.

One can also notice that the right-hand terms of (2.56), (2.57), (2.58) are invariant by the
changes on σL, σV which preserve the ratio σL

σV
.

2.5 Extension to non-binary mixtures

The methodology used in subsections 2.3.2, 2.3.3 easily extends to M -components mixtures,
M = N + 1 > 2. We briefly illustrate here the extension to the infinite-dimension problem.

First let us rewrite the original system (2.5) with vector notations. With:

x = (x1, . . . , xN )T , x∗ = (x∗
1, . . . , x

∗
N )T ,

y = (y1, . . . , yN )T , y∗ = (y∗1 , . . . , y
∗
N )T ,

the system reads:





σL
∂x
∂t = −L∂x

∂s + λL
ǫ (x∗ − x) ,

σV
∂y
∂t = V ∂y

∂s + λV
ǫ (y∗ − y) ,

0 = λL (x∗ − x) + λV (y∗ − y) ,
y∗ = K(x∗),

(2.60)

where K(x) = (k1(x1, . . . , xN ), . . . , kN (x1, . . . , xN ))T . Let us define the lumped compositions
vector

Z =
σLx + σV y

σ
, σ = σL + σV ,

and X(s, t) such that

Z =
σLX + σV K(X)

σ
.

With JK(X) the Jacobian matrix of application K at X, and IN the identity matrix of size
N ×N one has:

σ
∂Z

∂t
= (σLIN + σV JK(X))

∂X

∂t
.
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Setting as previously:

x = x0(X) + ǫx1(X) + O(ǫ2), x∗ = x∗
0(X) + ǫx∗

1(X) + O(ǫ2),

y = y0(X) + ǫy1(X) + O(ǫ2), y∗ = y∗
0(X) + ǫy∗

1(X) + O(ǫ2),

one obtains, to the order zero versus ǫ:

x∗
0 ≡ x0, y∗

0 ≡ y0, y∗
0 ≡ K(x∗

0), Z =
σLx0(X) + σV y0(X)

σ
,

then:

x0(X) = X, y0(X) = K(X),

∂X

∂t
= (σLIN + σV JK(X))−1 (−LIN + V JK(X))

∂X

∂s
.

The first-order terms of the expansions are then dictated by the invariance principle; one
must have:

(σLIN + σV JK(X))−1 (σV L + σLV ) JK(X) = λL (x∗
1 − x1) + O(ǫ),

− (σLIN + σV JK(X))−1 (σV L + σLV ) JK(X) = λV (y∗
1 − y1) + O(ǫ).

One also has

λV (y∗
1 − y1) = −λL (x∗

1 − x1) = λV

(
JK(X)x∗

1 +
σL

σV
x1

)
+ O(ǫ),

and since we only manipulate linear combinations of JK(X) and IN , the matrix commute
freely in the calculations, yielding:

x1 = −σV

JK(X)2

λL
+ JK(X)

λV

(σLIN + σV JK(X))2
(σLV + σV L)

∂X

∂s
+ O(ǫ), (2.61)

y1 = −σL

JK(X)2

λL
+ JK(X)

λV

(σLIN + σV JK(X))2
(σLV + σV L)

∂X

∂s
+ O(ǫ). (2.62)

Defining

G(X) =

(
JK(X)2

λL
+

JK(X)

λV

)
(σLIN + σV JK(X))−2 (σLV + σV L)2 , (2.63)

which this time is a matrix, we obtain the static outputs

x(s, t) = x0(X(s, t)) + ǫx1(X(s, t)) + O(ǫ2)

= X(s, t)− ǫσV
G(X(s, t))

σV L + σLV

∂X

∂s
(s, t) + O(ǫ2), (2.64)

y(s, t) = y0(X(s, t)) + ǫy1(X(s, t)) + O(ǫ2)

= K(X(s, t)) + ǫσL
G(X(s, t))

σV L + σLV

∂X

∂s
(s, t) + O(ǫ2), (2.65)
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where X(s, t) obeys the following dynamics:

(σLIN + σV JK(X))
∂X

∂t
=

∂

∂s

(
−LX + V K(X) + ǫG(X)

∂X

∂s

)
+ O(ǫ2). (2.66)

It is interesting to notice that the matrix G(X(s, t)) in the diffusion term is generally
non-antisymmetric, since JK(X) is non-antisymmetric itself. For example, for K(X) defined
according to (2.2):

∂ki

∂xj
= − αi(αj − 1)xi(

1 +
∑N

l=1(αl − 1)xl

)2 , i 6= j

=
αi

(
1 +

∑N
l=1, l 6=i(αl − 1)xl

)

(
1 +

∑N
l=1(αl − 1)xl

)2 , i = j.

Thus the diffusion term does not respect Onsager’s reciprocity relations, despite the fact that
it has been developed in the vicinity of the equilibrium y0 = K(x0).

2.6 Riemann invariants approach for non-binary mixture

Despite the importance of the diffusive effect on the molar fraction profile, thinking in terms of
wave-fronts may increase the comprehensibility of both the static and dynamic regimes of the
distillation column. As mentioned above, the intuitive notion of wave-front, which is a single
step in binary distillation, is lost for a larger number of components. In this section, we seek
to adapt the results of [84] from the field of multicomponent chromatography on fixed bed to
multicomponent distillation. Note that similar results, notably regarding (2.80) and (2.87)
can also be adapted from the work of Helfferich (see [43] and [42] for instance). In agreement
with the review [51], it seems that approaches similar to the one we present have only been
little used for distillation with more than 2 components. [32] mentions how N−1 composition
fronts will appear in an N components mixture reactive distillation, but does not calculate the
corresponding velocities. In [36] the author deals with ternary mixture distillation in a more
complex case than ours (including effects on the fluids distribution and temperature profiles)
using coherent waves and gives a formula for their velocities. Yet he does not provide relations
similar to (2.80) and (2.87) to calculate the intermediate composition between two consecutive
composition waves. On the contrary, results similar to the one we present can be found in
[76] and [104], which are for plate distillation columns. The latter in addition compares
the theoretical coherent waves compositions and speeds against experimental dynamic data
(whereas we will be limited to comparison with steady-state simulation cases); note that this
data were obtained using an experimental, non-cryogenic column with a ternary mixture of
methanol, 1-propanol, 1-pentanol.

Let us reduce the distillation dynamic model to the transport equation

σ
∂X

∂t
=

∂

∂s
(−LX + V K(X)) , (2.67)

where we take σ a constant scalar coefficient. This is a rough simplification, since σ should
depend on X according to the centre manifold reduction. Yet it has the advantage of dra-
matically simplifying the following calculations. Moreover, we will see that we have only to
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deal with piecewise constant molar fraction profiles, for which σ is actually constant on each
branch of the discontinuity.

According to the first step of the (finite dimension) centre manifold reduction, X =
(X1, . . . ,XN )T is here confounded with x = (x1, . . . , xN )T the actual molar fraction vector in
the liquid phase. Thus equation (2.67) can be seen as describing transport phenomena in the
liquid phase, impacted by interaction with the gas phase. The liquid phase plays here the role
of the solute phase in chromatography, whereas the gas phase behaves as the adsorbent. The
only differences are that the adsorbent is a fixed bed whereas the gas is moving, and that the
equilibrium relation between the two ‘beds’ is now defined by (2.2) instead of the Langmuir
isotherm.

Let us reformulate (2.67) as

σ
∂X

∂t
+

∂r(X)

∂s
= 0, r(X) = LX− V K(X) (2.68)

and suppose that we dispose of a coherent molar fractions profile X(z, t), that is, a profile
which propagates along the (unbounded) column with no deformation. Then ∀i = 1, .., N ,
Xi depends only on ω = t

σ − s and, using the initial data, Xi is mapped to any Xj by a
relation Xj = gi,j(Xi). Such a profile in the molar fractions space is called a Γ-curve, which
is parameterized with ω.

We define D the infinitesimal variation along the Γ-curve, that is, the variation between
the points of the curve corresponding to w and w + dw. Let ri = LXi − V ki(X). Along the
Γ-curve, one has:

Dri

DXi
=

N∑

j=1

∂ri

∂Xj

dXj

dXi

=

N∑

j=1

∂ri

∂Xj

dgj,i(Xj)

∂Xi

=
N∑

j=1

ri,j
dgj,i(Xj)

∂Xi
,

thus (2.68) rewrites

σ
∂Xi

∂t
+
Dri

DXi

∂Xi

∂z
= 0, ∀i ∈ [1, N ].

Let ν := Dri
σDXi

= σ
(

dz
σdt

)
ω
. ν (in m.s−1) corresponds to the propagation speed of our coherent

composition profile, and thus does not depend on i. This imposes

Dri

DXi
=
Drj

DXj
∀i, j ∈ [1, N ]. (2.69)
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Under this condition, we have

∂Xi

∂t
+ ν

∂Xi

∂Z
=

∂Xi

∂t
+
Dri

σDXi

∂Xi

∂z
= 0

= −ν
∂Xi

∂z
+
Dri

σDXi

∂Xi

∂z

= −σν
∂Xi

∂z
+

M∑

j=1

ri,j
dgi,j

dXi

∂Xi

∂z

= −σν
∂Xi

∂z
+

M∑

j=1

ri,j
∂Xj

∂z
= 0 ∀i, j ∈ [1, N ]. (2.70)

In the matrix form, the last equality rewrites as the following eigenvalues problem:

(∇cr− σνI)
dX

dw
= 0, (2.71)

where ∇c stands for the gradient operator with respect to the molar fractions.

The equilibrium relation we use has some similarity with the Langmuir isotherm used
in [84]. Similarly to the paper, let

Φi = (αi/µi)Xi = (αi − 1)Xi, D = 1 +
M∑

j=1

Φj, (2.72)

with µi = (αi)/(αi−1) for commodity. With the relations ri,j, the Φi and Xi can be expressed
as functions of D only, then:

ki =
µiΦi(D)

D
. (2.73)

Infinitesimal displacements along the Γ-curve can thus be expressed in terms of variations
with respect to D. One has with D = d

dD :

Dri

DXi
=

LdXi
dD − V dki

dD
dXi
dD

= L− V (αi − 1)
dki
dD
dΦi
dD

, i = 1...N,

thus equation (2.69) rewrites

αi
dki/dD

dΦi/dD
= αj

dkj/dD

dΦj/dD
, ∀i, j ∈ [1, N ].

Injecting (2.73) yields
αi

D
− αiΦi

D2 dΦi
dD

=
αj

D
− αjΦj

D2 dΦj

dD

, (2.74)

and differentiating once again with respect to D leads ∀i, j ∈ [1, N ] to:

2

(
αi

D2
− Φiαi

D3 dΦi
dD

)
−

αiΦi
d2Φi
dD2

D2
(

dΦi
dD

)2 = 2

(
αj

D2
− Φjαj

D3 dΦj

dD

)
−

αjΦj
d2Φj

dD2

D2
(

dΦj

dD

)2 .
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This equation is simplified using (2.74) into

d2Φi

dD2

1
αiΦi

(
dΦi
dD

)2 =

d2Φj

dD2

1
αjΦj

(
dΦj

dD

)2 ∀i, j ∈ [0, 1],

and thus one obtains:

∑N
j=1

d2Φj

dD2

∑N
j=1

1
αjΦj

(
dΦj

dD

)2 =
d2Φi
dD2

1
αiΦi

(
dΦi
dD

)2 ∀i ∈ [1, N ]. (2.75)

Yet given the definition of D in (2.72):

0 =
d2D

dD2
=

N∑

j=1

d2Φj

dD2
.

Consequently, any solution to (2.75) satisfies one of the following conditions:

1.
d2Φj

dD2 = 0 ∀j ∈ [1, N ],

2.
∑N

j=1 αjΦj

(
dΦj

dD

)2
.

The second condition would require that not all the Φj have the same sign. Since we have
chosen to order the components by increasing volatility, the unexpressed component CN+1 is
the most volatile, and one has

0 < α1 < α2 < ... < αN < 1,

which ensures that the sign of the Φj does not change. The solution must necessarily fulfill
the 1st condition, whose integration yields:

Φi −Φ0
i = Ji

(
D −D0

)
∀i ∈ [1, N ], (2.76)

where Φ0
i and D0 correspond to initial conditions and Ji is an integration constant to be now

determined.
Summing (2.76) over i gives

N∑

i=1

Φi −
N∑

i=1

Φ0
i = (D −D0)

N∑

i=1

Ji =

(
N∑

i=1

Φi −
N∑

i=1

Φ0
i

)
N∑

i=1

Ji,

thus
N∑

j=1

Ji = 1. (2.77)

One can now inject (2.76) in (2.74) to get

αi

D
− αiΦi

D2Ji
=

αj

D
− αjΦj

D2Jj
∀i, j ∈ [1, N ],
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Table 2.1: Sign of Riemann invariants J
(k)
i

J
(k)
i J1 J2 J3 · · · JN−2 JN−1 JN

J (1) + - - · · · - - -

J (2) + + - · · · - - -

J (3) + + + · · · - - -
...

...
...

...
. . .

...
...

...

J (N−2) + + + · · · + - -

J (N−1) + + + · · · + + -

J (N) + + + · · · + + +

that is, using (2.73)

(αi − 1)

(
µi

D
− ki

DJi

)
= (αj − 1)

(
µj

D
− kj

DJj

)
∀i, j ∈ [1, N ].

Let us define:

ω = (αi − 1)

(
µi −

ki

Ji

)
∀i ∈ [1, N ]. (2.78)

The summation over i of

Ji =
ki

µi − ω
αi−1

=
ki(αi − 1)

αi − ω
∀i ∈ [1, N ] (2.79)

yields an implicit equation to determine ω:

N∑

i=1

ki(αi − 1)

αi − ω
= 1. (2.80)

This equation has N real roots, which furthermore satisfy

0 < α1 ≤ ω(1) ≤ α2 ≤ ... ≤ αk ≤ ω(k) ≤ αk+1 ≤ ... ≤ αN ≤ ω(N) ≤ 1. (2.81)

Reasoning backwards, each possible ω gives rise to a set of integration constants Ji, i = 1...N ,
each being associated to a solution to our transport problem. For all i ∈ [1, N ], there are N
associated Riemann invariants Ji, which we note

J
(k)
i =

ki

µi −
ω(k)

αi−1

=
ki(αi − 1)

αi − ω(k)
∀i, k ∈ [1, N ]. (2.82)

We will name Γ(k) the Γ-curve corresponding to the set of invariants {J (k)
i }.

The ordering of the ω(k) gives a triangular structure to the sign of the J
(k)
i , as shown on

in Table 2.1. One can also notice that

0 < J
(1)
1 < J

(2)
1 < ... < J

(N−1)
1 < J

(N)
1 . (2.83)

Replacing ki with µiΦi/D in (2.78), one can define

Λ(k) := Dω(k) = αi

(
D − Φi

J
(k)
i

)
∀i, k ∈ [1, N ]. (2.84)
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Note that due to (2.81):

0 < Λ(1) ≤ Λ(1) ≤ ... ≤ Λ(N−1) ≤ Λ(N). (2.85)

Using (2.76), one has

Λ(k) = αi

(
D0 − Φ0

i

J
(k)
i

)
.

As {J (k)
i } is the family of integration constants defining Γ(k), it comes that Λ(k) is constant

along the corresponding Γ(k). Inversely, one can show that w(m) remains constant on any

Γ(k), k 6= m. Indeed, from (2.77) one has:

N∑

i=1

ki(αi − 1)

αi − ω(m)
=

N∑

i=1

J
(k)
i , ∀m 6= k.

Yet according to (2.82):

ki(αi − 1)

αi − ω(m)
=

αi − ω(k)

αi − ω(m)
J

(k)
i ,

and thus one obtains

(
ω(m) − ω(k)

) N∑

i=1

J
(k)
i

αi − ω(m)
= 0, ∀m 6= k. (2.86)

With equation (2.80) we dispose of a continuous mapping from the physical molar fractions
space Φ(N) to the Ω(N)-space where live the ω(k). The inverse mapping is given by:

Φi =

(
αi

ω(i)
− 1

) N∏

j=1,j 6=i

( αi
ω(j)
− 1

αi
αj
− 1

)
(2.87)

Suppose a Γk-curve; to each point of it is associated a characteristic speed νk. If

dνk

ds
< 0 (2.88)

then the characteristics overlap and the Γk-curve degenerates into a discontinuous profile, and
the composition wave into a shockwave. Since

dνk

ds
< 0⇔ dνk

dD

dD

ds
< 0
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Figure 2.8: A discontinuity traveling along the s-axis.

and

dνk

dD
=

1

σ

d

dD

( Dri

DXi

)
=

1

σ

d

dD

(
L− V (αi − 1)

dki
dD
dΦi
dD

)

= −V (αi − 1)

σ

d

dD

(
µi

D
− Φiµi

D2 dΦi
dD

)
(using ki =

µiΦi

D
)

= −V (αi − 1)

σ

d

dD

(
µi

D
− Φiµi

D2Jk
i

)

= −V αi

σ

d

dD

(
1

D
− Φi

D2Jk
i

)

= −V αi

σ

d

dD

(
Λk

D2

)
(according to (2.84))

=
2V αiΛk

σD3
(since Λk is constant along the Γ(k))

> 0 (according to (2.85)) ,

condition (2.88) is equivalent to:
dD

ds
< 0. (2.89)

As we will see in Chapter 5, this condition is fullfilled in both the High and Low Pressure
columns. Thus we restrict ourselves to the case where all existing wave are shockwaves. Let
us consider a discontinuous composition profile. As for the wave-model, the shock-speed νS

of the wavefront is now dictated by the mass conservation principle across the discontinuity.
Let the subscripts ⊖ and ⊕ respectively designate the upstream and the downstream sides of
the discontinuity (see Fig. 2.8).

One has:

νS =
L− V

ki,⊕−ki,⊖

Xi,⊕−Xi,⊖

σ
(2.90)

for i = 1...N , which notably implies:

ki,⊕ − ki,⊖

Xi,⊕ −Xi,⊖
=

kj,⊕ − kj,⊖

Xj,⊕ −Xj,⊖
∀i, k ∈ [1, N ].

Yet these conservation relations across the discontinuity do not indicate whether it is increas-
ing or decreasing. This information is retrieved using the previously found shock condition
(2.89): one must have D⊕ < D⊖. In addition, using (2.76) one has:

Φi,⊕ − Φi,⊖ = J
(k)
i (D⊕ −D⊖) ∀i ∈ [1, N ]. (2.91)
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Figure 2.9: Two discontinuities of different kind with their shock-speed.

Note that (2.90) is also

νS =
1

σ


L− V

(
µiΦi
D

)
⊕
−
(

µiΦi
D

)
⊖(

µi
αi

Φi

)
⊕
−
(

µi
αi

Φi

)
⊖




=
1

σ

(
L− V

αi

D⊕D⊖

D⊖Φi,⊕ −D⊕Φi,⊖

Φi,⊕ − Φi,⊖

)

=
1

σ

(
L− V

αi

D⊕D⊖

D⊖ (Φi,⊕ − Φi,⊖)− Φi,⊖ (D⊕ −D⊖)

Φi,⊕ − Φi,⊖

)

=
1

σ


L− V

αi

(
D⊖ − Φi,⊖

Jk
i

)

D⊕D⊖


 (using (2.91)),

thus according to (2.84):

νS =
1

σ

(
L− V

Λ(k)

D⊕D⊖

)
. (2.92)

Thanks to (2.91) we have in addition:

Λ(k) = αi

(
D⊖ −

Φi,⊖

Jk
i

)
= αi

(
D⊕ −

Φi,⊕

Jk
i

)

Λ(k) = w(k),⊕D⊕ = w(k),⊖D⊖. (2.93)

We now consider two coexisting shocks of different kind, namely k − 1 and k, as depicted
on Fig. 2.9. A subscript ⊙ will designate the region between the two discontinuities.

Comparing the two shock-speeds yields:

σ
(
νS
(k) − νS

(k−1)

)
= −V

(
Λ(k)

D⊖D⊙
−

Λ(k−1)

D⊙D⊕

)

= − V

D⊙

(
αi

(
1− Φi,⊖

D⊖J
(k)
i

)
− αj

(
1− Φj,⊕

D⊕J
(k−1)
j

))

for any i, j in [1, N ]. In particular, taking i = j = k yields:

σ
(
νS
(k) − νS

(k−1)

)
= −V αk

D⊙

(
Φk,⊕

D⊕J
(k−1)
k

− Φk,⊖

D⊖J
(k)
k

)
< 0

83



since according to Table 2.1, J
(k)
k > 0 and J

(k−1)
k < 0, and Φk < 0. This holding for any

k ∈ [1, N ], one can order the shock-speeds:

νS
(N) < νS

(N−1) < ... < νS
(2) < νS

(1) <
L

σ
. (2.94)

Note that no wave can travel faster than L
σ since for any k ∈ [1, N ]:

σνS
(k) = L− V

Λ(k)

D⊕D⊖
= L− V

ω(k),⊕

D⊖
< L

according to (2.81).
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2.7 Conclusion

We have presented at the beginning of this chapter a simple, 1-D, two-flows model for distil-
lation, with interfacial mass exchange. Contrary to the tray models, ours is continuous; as
Marquardt’s wave model, it is then naturally suited for packed columns. Contrary to many
models (including the original wave-model), we did not suppose that the thermodynamic
equilibrium is homogenously reached in each phase. The interfacial exchange flow is indeed
driven by compositions inhomogeneities. For the moment, our model does not take energy
balance into account. We have qualitatively shown how the interfacial exchange flow and the
packing efficiency were related.

We initially thought that, regarding a particular component in a mixture, a good reduction
approach was to separate the high-purity region of the column from the region with higher
concentrations. We thus attempted to check the validity of this approach in steady-state
using a standard matched asymptotic development technique (briefly introduced) to derive
simplified steady-state molar fraction profiles from the two-flows model. Using a simplified
binary linear case, we have shown that the technique fails due to the exponentially stiff nature
of the steady-state profile and the boundary conditions with recycle. This can be qualitatively
extended to the non-linear case with any number of components.

This failed attempt suggested not to use successive space-scales to reduce the original
system, whether in dynamics or steady-state. An alternative was then to address the two-
flows model as a mixed slow-fast system. For such systems, the Centre Manifold reduction
techniques appeared to be suitable, since it allows preserving the critical overall mass-balance
of the system. The Centre Manifold theory has been introduced within the finite-dimension
systems framework. It was then applied to our two-flows model as if it were of finite dimension
(that is, to a discretized two-flows model obtained using finite-differences in space). The same
technique has then been formally applied to the original continuous model; the structure of
the discrete and continuous reduced models are reassuringly similar.

The reduced continuous model we obtained is a non-linear convection-diffusion partial
differential equation for an internal variable (a lumped molar fraction over the liquid and gas
phase), together with static outputs to derive actual gas and liquid molar fractions from this
internal variable. Discussion on this model has shown how the axial diffusion effects arise
from the radial interfacial exchange term in the two-flows model; it is thus also related to the
distillation efficiency. Interestingly, the diffusion term in our reduced PDE model explicitly
depends on the liquid and gas traffic inside the packing, that is, on the operating conditions
of the column. We also proved that the PDE model stationary solution is, as the stationary
solution to the two-flows model, independent from the liquid and gas hold-ups (up to the
chosen reduction order), in spite of their appearance in the diffusion term.

We concluded the model reduction work by extending the PDE model structure to mix-
tures with any number of components.

In the PDE model, the diffusion term defines the shape of the molar-fractions profiles; yet,
most of the profiles dynamics are still driven by convective effects. For binary mixtures, the
profile can be, as in the wave-model, described as a sliding discontinuity. To obtain the same
kind of model for non-binary mixtures, we inspired ourselves from the field of chromatography
([84] in particular). Neglecting the diffusion effects, we found that the separation of a (N +1)
components mixture involves N2 Riemann invariants, which allows to address the separation
dynamics as the convection of N multi-components bundles. Compositions in this bundles
can be non-physical; we gave the equations to compute the bundles from the physical concen-
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trations, and vice-versa. Provided a sufficient condition which will be checked in Chapter 5,
the problem reduced to the convection of independent shock-waves. We closed the chapter
by computing the (ordered) speeds of these shockwaves.
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Chapter 3

Reduced dynamic model analysis

Au chapitre précédent, nous avons développé une équation-modèle non-linéaire aux dérivées
partielles pour représenter une section de colonne de distillation à garnissage. Nous allons à
présent examiner ce modèle du point de vue de l’automatique. Plus précisément, nous allons
considérer ce modèle EDP dans un cas simplifié, mais réaliste, de configuration de colonne :
un unique segment homogène, une injection et deux tirages, et un mélange binaire à séparer.
Nous montrerons que, pour des données initiales de compositions dans (0, 1), la solution du
problème de Cauchy associé reste dans (0, 1), et donc que la composition moyenne estimée
par notre modèle garde un sens physique. Nous prouverons ensuite que le système admet
une unique solution stationnaire. Nous étudierons la dépendance de cette solution en le petit
coefficient de diffusion ǫ. Nous construirons une fonction de Lyapunov pour démontrer la
stabilité locale exponentielle de cette solution.

Sur la base du modèle EDP, nous construirons une famille d’observateurs asymptotiques
pour la colonne considérée, avec injection de sortie ajustable. Comme précédemment, une
fonction de Lyapunov garantira la convergence asymptotique locale des observations vers le
profil de composition dans la colonne, y compris lorsque l’hydraulique est instationnaire.

Ces résultats sont valables sous des hypothèses raisonnables concernant les flux internes,
la composition d’alimentation et la relation d’équilibre thermodynamique retenue. La première
partie de ce chapitre est une extension des résultats donnés dans [22] et obtenus en collabora-
tion avec Karine Beauchard, avec notamment un traitement plus précis des sorties statiques
aux limites du domaine. En lien avec les demandes de brevet FR-1254802, FR-1255974 et
FR-1256782, les résultats présentés indiquent que notre modèle a naturellement de bonnes
propriétés pour une utilisation comme capteur logiciel.

Dans la seconde partie du chapitre, nous étudierons la réduction du modèle EDP en un
modèle de fonctions de transfert linéarisé tangent à entrées et sorties multiples. Un tel modèle
est destiné à reproduire les petites dynamiques d’une colonne de distillation autour d’un point
de fonctionnement quasi-stationnaire (la reconstruction de la dérive lente de cet état, de même
que des grands transitoires soudains, étant plutôt le rôle des observateurs évoqués plus haut).
En utilisant des sorties statiques simplifiées, nous considérons l’impact de perturbations des
flux liquide et vapeur, et des compositions d’alimentation, sur les compositions de sortie.
Nous obtenons nos fonctions de transfert dans deux cas différents : celui d’une convection
orientée vers le haut, ou vers le bas. Nous procédons comme suit : le système dynamique
linéarisé est réécrit dans le domaine de Laplace comme une équation différentielle ordinaire
avec conditions aux deux bouts. Les sorties sont obtenues de manière exacte en manipulant des
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représentations symboliques des racines de l’équation homogène associée. Ces racines sont,
pour l’une une série entière en ǫ, pour l’autre une série de Laurent en ǫ. En conséquence,
moyennant un développement asymptotique non-standard, les sorties s’expriment comme des
séries entières en ǫ, à des termes exponentiellement précis près. En tronquant les expres-
sions des racines, nous obtenons les fonctions de transfert recherchées, en O(ǫ) et O(ǫ2). Ces
transferts présentent, du point de vue de la conduite du procédé, l’intérêt d’être explicitement
paramétrés (via des gains et des retards) par des informations d’exploitation (flux de liquide et
de gaz, vitesse du liquide, rétentions, compositions mesurées...) et de design (les dimensions
de la colonne). Ils ouvrent donc possiblement une voie vers une forme de programmation
de gains dans le système de contrôle de l’unité, basée sur les mesures physiques existantes
augmentées de l’estimation en ligne de certaines valeurs critiques.

In the previous chapter, we have developed a non-linear partial-differential equation model
to represent a distillation column’s packed section. We will now examine this model from
the point of view of control systems theory. More precisely, we will consider the PDE model
embedded in a simplified yet realistic column configuration: one homogeneous section, one
inlet and two outlets, and in the case of binary mixture separation. We will show that provided
initial data within (0, 1), the solution of the associated Cauchy problem in time remains within
(0, 1), that is, the lumped molar fractions given by our model remain physical. We will then
prove that the considered system admits a unique stationary solution. We will also investigate
the dependence of this solution with respect to the diffusion coefficient ǫ. We will construct
a Lyapunov function, to show that the stationary solution is locally exponentially stable.

Based on the PDE model, we will construct a family of asymptotic observers for the
considered column, with tunable output injection. As previously, a Lyapunov function will
grant the local asymptotic convergence of the observer towards the actual composition profile,
even for time-varying internal flows.

These results hold under a set of reasonable assumptions on the internal reflux rate, the
inlet composition and the chosen thermodynamic relation. The first part of this chapter is an
extension to the results given in [22] and obtained in collaboration with Karine Beauchard,
notably with more precise handling of the static outputs at the boundaries of the column.
In connection with the patent applications FR-1254802, FR-1255974 and FR-1256782, the
presented results show that the investigated model has in-built good properties for soft-sensor
applications.

In the second part of this chapter, we investigate the reduction of the PDE model into a
tangent linearized multiple inputs, multiple outputs transfer function model. Such a model
is to reproduce the small dynamics of a distillation column around an almost steady-state
(the slow, long-term drift of this state, as well as large and sudden dynamics, shall be on
the contrary reconstructed using observers). Using simplified static outputs, we consider the
impact of perturbations of the liquid and gas flows, and of the top and bottom input com-
positions, on the top and bottom outlet compositions. The transfer functions are obtained
in two different cases: when the composition convection speed is orientated downwards, or
upwards. We proceed as follows: the linearized dynamic problem is rewritten is the Laplace
domain as an ordinary differential equation with two boundary conditions. The outputs are
obtained in an exact way using a symbolic representation of the roots of the corresponding
homogeneous differential equation. These roots express, one as a power series in ǫ, the other
as a Laurent series in ǫ. As a consequence, after non-standard asymptotic expansion, these
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Figure 3.1: The simple column configuration used for this section.

outputs express as power series in ǫ, up to exponentially precise residuals. Truncating the
expansion of the roots, we obtain the transfer functions in O(ǫ) and O(ǫ2). The obtained
transfers are interesting for process control in that their parameters (gains and delays) ex-
plicitly depend on process data (fluid flows, liquid speed, hold-ups, measured compositions)
and design data (column’s dimensions). Thus they possibly pave the way for gain scheduling
in the plant’s controller, based on the existing raw measurements plus actualized estimation
of some unmeasured critical parameters.

3.1 Stability and observability of the PDE model

The mathematical results will be investigated and given using a simplified column geometry1.
As depicted on Fig. 3.1 , we consider a single, continuous column with invariant section, fed
with gaseous inlet (typically air) at the bottom. Total condensation occurs at top. A fraction
of the resulting liquid is drawn off for production. Both the air feed and the top draw may
serve as control for the inner reflux rate. In addition, we consider here binary distillation only
(N2/O2 mixture for instance). Both the gas and the liquid are assumed to propagate with
infinite speed, resulting in constant L and V along the vertical s-axis.

1Note that such a geometry does not reduce to a toy-model. It is close to the functioning of small (about
10m high) nitrogen production unit type called APSA (Advanced Product Supply Approach).

89



The generic reduced dynamic model

(
σL + σV k′(X)

) ∂X

∂t
=

∂

∂s

(
−LX + V k(X) + ǫG(X)

∂X

∂s

)
(3.1)

derived from (2.53) is completed with top and bottom boundary conditions. The top boundary
conditions connect the input and output flows, respectively L(t)x(0, t) and V (t)y(0, t) at
top under the condition of the total condensation x(0, t) = y(0, t). Neglecting condenser’s
dynamics and intrinsic hold-up, it reads:

LX(t, 0) = Lk(X(t, 0)) + ǫG(X(t, 0))
∂X

∂s
(t, 0) + (L− V )ǫσLH(X(t, 0))

∂X

∂s
(t, 0), (3.2)

for t ∈ (0,+∞). Regarding the bottom boundary condition, we impose the input flow:

V yh = V k(X(t, h)) + ǫG(X(t, h))
∂X

∂s
(t, h) − ǫLσV H(X(t, 0))

∂X

∂s
(t, h), (3.3)

where yh would typically be the oxygen content in air, t ∈ (0,∞), and h > 0 is the column’s
packed height. For the sake of simplicity, we will note in the following f(X) = σL + σV k(X).
The system under study is then





f(X)∂X
∂t = ∂

∂s

(
−LX + V k(X) + ǫG(X)∂X

∂s

)

LX(t, 0) = Lk(X(t, 0)) + ǫG(X(t, 0))∂X
∂s (t, 0)

+(L− V )ǫσLH(X(t, 0))∂X
∂s (t, 0),

V yh = V k(X(t, h)) + ǫG(X(t, h))∂X
∂s (t, h)

−ǫLσV H(X(t, 0))∂X
∂s (t, h).

(3.4)

We will also make use of the formulation:



f(X)∂X
∂t = ∂

∂s

(
−LX + V k(X) + ǫG(X)∂X

∂s

)

LX(t, 0) = Lk(X(t, 0)) + ǫ(σL + σV )LH(X(t, 0))∂X
∂s (t, 0),

V yh = V k(X(t, h)) + ǫσLV H(X(t, h))∂X
∂s (t, h),

(3.5)

obtained using G(X) = (σV L + σLV )H(X).
The following set of assumptions is required for the results:

1. 0 < yh < 1, ǫ > 0

2. the thermodynamic equilibrium relation k : [0, 1] ← [0, 1] is a C1, strictly increasing
function on [0, 1], such that

k(0) = 0, 0 < k′(0) < 1, k(1) = 1, 1 < k′(1).

In addition, the function k is extended to the whole line by the following definition:

k(x) :=

{
k′(0)x if x < 0

1 + k′(1)(x − 1) if x > 1.
(3.6)

3. the input composition satisfies yh > k(yh). It is sufficient working with the heavy
component compositions to fulfill this condition.

4. the (possibly time-varying) inner flows L, V ∈ R
∗
+, and satisfy

k′(0)V < L, 0 < L < V, V yh < L (3.7)

Note that our usual k(x) = αx
1+(α−1)x matches assumption 1, but other thermodynamic

relations may also convene. Notably, assumption 1 does not a priori prevent the results from
being applied to azeotropic mixtures distillation.
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3.1.1 Maximum principle for strong solutions

The existence and uniqueness of strong solutions to the Cauchy problem associated to (3.1),
(3.2), (3.3) is a classical result (see [68]): if the initial condition is C2 versus s, then for t > 0,
the solution remains C2 versus s.

With the previously enumerated hypotheses 1 to 4, such solutions also remain inside (0, 1):

Proposition 1. Let k, L, V be as in the previous section. Let X0 ∈ C2([0, h], R) be such that
0 ≤ X0(s) < 1,∀s ∈ [0, h] and X be the solution of the system (3.4) associated to the initial
data X(0, s) = X0(s), s ∈ (0, h). Then, ∀(t, s) ∈ [0,+∞) × [0, h], 0 ≤ X(t, s) < 1.

Proof. The result is obtained by contradiction, applying the maximum principle to the func-
tion Yλ(t, s) := X(t, s)e−λt, λ > 0, and limit arguments for λ→ 0:
First step: Let us prove that, for every T > 0,

min
QT

(X) ≥ 0 (3.8)

where QT := (0, T )× (0, h). Let T > 0 and λ > 0. The function Yλ(t, z) := X(t, z)e−λt solves

f(X) (∂tYλ + λYλ) = [−L + V k′(X) + ǫG′(X)∂zX]∂zYλ

+ ǫG(X)∂2
z Yλ, (3.9)

on (0,+∞)× (0, h). Working by contradiction, we assume that minQT
(Yλ) < 0. Let (t∗, z∗) ∈

QT be such that Yλ(t∗, z∗) = minQT
(Yλ) < 0. Since Y (0, z) = X0(z) ≥ 0, necessarily

(t∗, z∗) ∈ (0, T ] × [0, h]. Let us assume that z∗ ∈ (0, h). Then, we have ∂tYλ(t∗, z∗) ≤ 0,
∂zYλ(t∗, z∗) = 0 and ∂2

zYλ(t∗, z∗) ≥ 0. Thus, as f(X) > 0 because of (3.6) and the assumption
k′(0) ∈ (0, 1), the equality (3.9) gives

0 > f(X(t∗, z∗)) (∂tYλ(t∗, z∗) + λYλ(t∗, z∗))

= ǫG(X(t∗, z∗))∂2
z Yλ(t∗, z∗) > 0,

which is a contradiction. Therefore, z∗ = 0 or h.
Let us assume that z∗ = 0. From the top boundary condition on X in (3.5), (3.6), and

the assumption k′(0) ∈ (0, 1), we get

ǫ (σL + σV ) LH (X(t∗, 0)) ∂zYλ(t∗, 0) = [1− k′(0)]LYλ(t∗, 0) < 0

thus ∂zYλ(t∗, 0) < 0 which is impossible. Therefore, z∗ = h.
From the bottom boundary condition on X, (3.6), and the assumption k′(0) ∈ (0, 1), we

get

ǫσLV H(X(t∗, h))∂zYλ(t∗, h) = V
(
yhe−λt∗ − k′(0)Yλ(t∗, h)

)
> 0,

thus ∂zYλ(t∗, h) > 0 which is impossible.
We have proved that, for every λ > 0, minQT

(Yλ) ≥ 0. Passing to the limit λ→ 0, we get
(3.8).

Second step: Let us prove that, for every T > 0,

max
QT

(X) < 1. (3.10)
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Let T > 0 and λ > 0. Working as in the first step, one may prove that maxQT
(Yλ)

is achieved on {(0, z); z ∈ [0, h]} ∪ {(t, 0); t ∈ [0, T ]} ∪ {(t, h); t ∈ [0, T ]}. Thus, passing to
the limit λ → 0, the same property holds for X. Working by contradiction, we assume
that maxQT

(X) ≥ 1. Let M ∈ (0, 1) be such that k(x) < x on [M, 1), yh < k(M) and
X0(z) < M,∀z ∈ [0, h] (see Fig. 3.2). By continuity, we have X(t, 0) < M and X(t, h) < M
for t small enough. Let T1 := sup{t ∈ (0, T );X(τ, 0) < M,X(τ, h) < M,∀τ ∈ (0, t)}.
Then T1 ∈ (0, T ), and X(T1, 0) = M or X(T1, h) = M (see Fig. 3.3). We know that
maxQT1

(X) is achieved on {(0, z); z ∈ [0, h]} ∪ {(t, 0); t ∈ [0, T1]} ∪ {(t, h); t ∈ [0, T ]}. Thus

maxQT1
(X) = X(T1, 0) or maxQT1

(X) = X(T1, h).

Let us assume that maxQT1
(X) = X(T1, 0) = M . The top boundary condition on X gives

ǫ (σL + σV )LH(X(T1, 0))∂zX(T1, 0) = V (M − k(M)) > 0

thus ∂zX(T1, 0) > 0, which is impossible. Thus maxQT1
(X) = X(T1, h) = M .

However, the bottom boundary condition on X yields

ǫσLV H(X(T1, h))∂zX(T1, h) = V (yh − k(M)) < 0

thus ∂zX(T1, h) < 0 which is impossible. We have proved (3.10).

3.1.2 Stationary solution

Proposition 2. For every ǫ > 0, with the hypotheses 1 to 4 enumerated at the beginning and L,
V constant, there exists a unique stationary solution Xǫ ∈ C∞([0, h], R) to the system (3.4).
Moreover, [0, h] ∋ s 7→ Xǫ(s) is strictly increasing and 0 < Xǫ(0) < Xǫ(h) < 1.

Proof. Let us rewrite system (3.4) in steady-state:
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



Cǫ = −LXǫ + V k(Xǫ) + ǫG(X ǫ)
dXǫ
ds ,

V yh = V k(Xǫ(h)) + ǫG(Xǫ(h))dXǫ
ds (h)

−ǫLσV H(Xǫ(h))dXǫ
ds (h),

LXǫ(0) = Lk(Xǫ(0)) + ǫG(X ǫ(0))
dXǫ
ds (0)

+(L− V )ǫσLH(Xǫ(0))
dXǫ
ds (0).

(3.11)

We will prove that for every ǫ > 0, there exists a unique Cǫ ∈ R such that the system (3.11)
has a solution Xǫ ∈ C∞([0, h], R). Additionally, for every ǫ > 0, we will have

• 0 < Cǫ < V −L
σL+σV

(σLyh + σV k(yh)),

• 0 < Xǫ(s) < Xǫ(h) = σLV +σV L
LσL

yh − σV
σL

k(Xǫ(h))− Cǫ
L ,

• dXǫ
ds (s) > 0,∀s ∈ [0, h].

Notice also that if Cǫ satisfies (3.11), then

yh =
σL

σLV + σV L

(
Cǫ + LXǫ(h)

)
+

σV

σLV + σV L
Lk(Xǫ(h)),

Xǫ(0) =
Cǫ (σL + σV )

(V − L)σL
− k(Xǫ(0))

σV

σL
.

Indeed, according to the boundary condition at s = h in (3.11):

V yh = Cǫ + LXǫ(h)− ǫLσV H(Xǫ(h))
dX ǫ

ds
(h)

= Cǫ + LXǫ(h)− LσV H(Xǫ(h)

G(Xǫ(h))

(
Cǫ + LXǫ(h)− V k(Xǫ(h))

)
,

and 1− LσV H(X)
G(X) = σLV H(X)

G(X) ∀X. The reasoning is the same at s = 0.

This being stated, the proof is now in four steps, based on a shooting method.
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First step: Let us define an auxiliary function φ. For every C ∈ R, there exists a unique
solution XC ∈ C1(R, R) of the Cauchy problem

{
C = −LXC + V k(XC) + ǫG(XC )dXC

ds ,

XC(0) = C(σL+σV )
(V −L)σL

− k(XC(0))σV
σL

.

Indeed, the ordinary equation may be written dXC
ds = F (XC) + C

ǫG(XC) , where F (X) :=
LX−V k(X)

ǫG(XC) . Thus the right hand side is a Lipschitz function of XC with an affine growth when

|XC | → +∞. We define the shooting function R ∋ C 7→ φ(C) = σL
σLV +σV L

(
C + LXC(h)

)
+

σV
σLV +σV LLk(XC(h)) ∈ R, which is C1 and satisfies φ(0) = 0 because X0 = 0 (uniqueness in
Cauchy-Lipschitz theorem).

Second step: Let us prove that φ is increasing. For every C ∈ R,

φ′(C) =
σL

σLV + σV L
(1 + LYC(h)) +

σV

σLV + σV L
Lk′(XC(h))YC(h)

where YC = ∂XC
∂C is solution of

{
dYC
ds = αC(s)YC + 1

ǫG(XC) ,

YC(0) = σL+σV
σL+σV k′(XC(0)) > 0,

and

αC := F ′(XC)− CG′(XC)

ǫG(XC )2
.

Thus

YC(h) =

[
YC(0) +

∫ h

0

e−
∫ s
0 αC(θ)dθ

ǫG(XC)
ds

]
e
∫ h
0

αC(θ)dθ > 0, (3.12)

and then φ′(C) > 0.
Third step: Let us prove that φ(C∗) > yh for

C∗ :=
V − L

σL + σV
(σLyh + σV k(yh)) > 0. (3.13)

This particular value is chosen for it implies XC∗
(0) = yh. We have

ǫG(XC∗
)
dXC∗

ds
= C∗ + LXC∗

− V k(XC∗
)

thus at s = 0:

ǫ
σL + σV

V − L
G(yh)

dXC∗

ds
= σLyh + σV k(yh) + L

σL + σV

V − L
yh −

σL + σV

V − L
k(yh)

=
σLV + σV L

V − L
(yh − k(yh)) > 0

thus XC∗
is increasing in a neighborhood of 0+. Let us assume the existence of s∗ ∈ [0, h]

such that
dXC∗

ds (s∗) = 0. Then

[L− V k′(XC∗
)]

dXC∗

ds = ǫG′(XC∗
)
(

dXC∗

ds

)2
+ ǫG(XC∗

)
d2XC∗

ds2
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with
dXC∗

ds (s∗) = 0. Thus (uniqueness in Cauchy-Lipschitz theorem)
dXC∗

ds ≡ 0, which contra-

dicts the increasing behavior of XC∗
in a neighborhood of 0+. Therefore,

dXC∗

ds (s∗) > 0,∀s ∈
[0, h] and φC∗ = XC∗

(h) > XC∗
(0) = yh.

Fourth step: Let us prove the existence and uniqueness of Xǫ. The function φ : [0, C∗]→
R is continuous, increasing and satisfies φ(0) = 0 and φ[C∗] > yh, thus (intermediate values
theorem) there exists a unique Cǫ ∈ R such that φ(Cǫ) = yh. Moreover, Cǫ ∈ (0, C∗). Then
Xǫ := XCǫ gives the answer.

In a second part, let us prove that Xǫ is increasing on [0, h]. Let us assume the existence

of s∗ ∈ [0, h] such that dXǫ
ds (s∗) = 0. Working as in the previous third step, one deduces that

Xǫ is constant. But this is impossible because Xǫ(0) = Xǫ(1) ⇒ Cǫ = C∗. We have proved
dXǫ
ds (s) 6= 0,∀s ∈ [0, h]. Necessarily, dXǫ

ds (s) > 0,∀s ∈ [0, h] and ∀s ∈ (0, h):

0 <
Cǫ (σL + σV )

(V − L) σL
+ k(Xǫ(0))

σV

σL
= Xǫ(0) < Xǫ(s),

Xǫ(s) < Xǫ(h) =
σLV + σV L

LσL
yh −

σV

σL
k(Xǫ(h)) − Cǫ

L
.

and 0 < Cǫ < C∗.

The shooting function defined in the previous proof is also a useful tool to study the
dependence of the stationary solution Xǫ in the parameter ǫ. We have the:

Proposition 3. With the same assumptions than for Proposition 2, the map ǫ 7→ Xǫ(0) is
strictly increasing, and the map ǫ 7→ Xǫ ∈ L2(0, h) is continuous.

Proof. First, let us prove that the map ǫ 7→ Xǫ(0) is increasing, or, equivalently that the map
ǫ 7→ Cǫ is increasing. Let 0 < ǫ1 < ǫ2 and let us prove that Cǫ1 < Cǫ2. Let φ1 be the shooting
function defined in the first step, associated to ǫ = ǫ1. Since φ1 is increasing, it is sufficient
to prove that φ1(Cǫ1) = yh < φ1(Cǫ2) i.e. that the solution X(z) of

{
Cǫ2 = −LX + V k(X) + ǫ1G(X)dX

dz ,

X(0) = C(σL+σV )
(V −L)σL

− k(XC(0))σV
σL

,

satisfies
LX(h)+Cǫ2

V > yh. Let:

γ(X) :=
Cǫ2 + LX − V k(X)

ǫ2G(X)
,

and Xǫ2 be the solution of the Cauchy problem:

{
Cǫ2 = −LXǫ2 + V k(Xǫ2) + ǫ2G(Xǫ2)

dXǫ2
dz ,

Xǫ2(0) = C(σL+σV )
(V −L)σL

− k(Xǫ2(0))
σV
σL

,

We have:

X ′ =
ǫ2

ǫ1
γ(X), X

′
ǫ2 = γ(Xǫ2), X(0) = Xǫ2(0).

95



Since X
′
ǫ2(0) > 0 and ǫ2 > ǫ1, we have X ′(0) > X

′
ǫ2(0), thus the set {z ∈ [0, h];X >

Xǫ2 on (0, z)} is non empty. Let

z∗ := sup{z ∈ [0, h];X > Xǫ2 on (0, z)}

and let us assume that z∗ < h. Then X(z∗) = Xǫ2(z
∗). Thus

X ′(z∗) =
ǫ2

ǫ1
g(X(z∗))

> γ(X(z∗)) = γ(Xǫ2(z
∗)) = X

′
ǫ2(z

∗)

because X
′
ǫ2(z

∗) > 0. This is impossible. Therefore z∗ = h, and X(h) > Xǫ2(h). As
LXǫ2 (h)+Cǫ2

V = yh, one has
LX(h)+Cǫ2

V > yh.
Now, let us prove that the map ǫ 7→ Xǫ ∈ L2(0, h) is continuous. We rename φǫ our

shooting function to emphasize its dependence on ǫ. Let ǫ∗ > 0. In order to prove that
ǫ 7→ Xǫ ∈ L2(0, h) is continuous at ǫ∗, it is sufficient to prove that ǫ 7→ Cǫ is continuous
at ǫ∗ (continuity of the solution of an ODE with respect to a parameter). Let (ǫn)n∈N be a
sequence of (ǫ∗/2, 3ǫ∗/2) such that ǫn → ǫ∗. We know that Cǫn ∈ (0, C∗) for every n ∈ N (C∗

has been defined in (3.13)). Let ϕ be an extraction and C ∈ [0, C∗] be such that Cǫϕ(n)
→ C

and let us prove that C = Cǫ∗ , or equivalently, that φǫ∗(C) = yh. As

φ′
ǫ(C) =

σL

σLV + σV L
(1 + LYC(h)) +

σV

σLV + σV L
Lk′(XC(h))YC (h),

the explicit formula (3.12) implies the existence of M > 0 such that

|φ′
ǫ(C)| ≤M,∀C ∈ [0, C∗],∀ǫ ∈ [ǫ∗/2, 3ǫ∗/2]

(continuous function of (ǫ, C) on a compact subset). Let η > 0. There exists n ∈ N such that
|Cǫϕ(n)

− C| < η/(2M) and |φǫϕ(n)
(C) − φǫ∗(C)| < η/2 (continuity of the solution of an ODE

with respect to a parameter). Then for such n,

|yh − φǫ∗(C)| ≤ |φϕ(ǫn)(Cϕ(ǫn))− φǫϕ(n)
(C)|+ |φǫϕ(n)

(C)− φǫ∗(C)|
< η + O(η2).

This inequality holds for any η > 0, thus φǫ∗(C) = yh.

3.1.3 Local asymptotic stability

In this section we prove that the unique stationary solution X of (3.4) is locally exponentially
stable by showing a strict Lyapunov function for the tangent linearized system with at least
exponential decay rate.

Let us define X := X + δX. Linearizing (3.5) around the stationary solution X one
obtains for t ∈ (0,+∞)





f(X)∂tδX = ∂s

[(
−L + g(X)

)
δX + ǫG(X)∂sδX

]
,

δX(t, 0) = Lk′(X(0))X
′
δX(t, 0) + ǫ σL+σV

σLV +σV LLG′(X(0))X
′
δX(t, 0)

+ǫ σL+σV
σLV +σV LLG(X(0))∂sδX(t, 0),

0 = g(X(h))δX(t, h) − ǫX
′
G′(X(h)) σV L

σLV +σV LδX(t, h)

+ǫσLV G(X(h))
σLV +σV L ∂sδX(t, h),

(3.14)
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where
g(X) := V k′(X) + ǫG′(X)X

′
, (3.15)

and with the notations X
′

= dX
ds , G′ = dG

dX . Introducing the new variable ξ = δX

X
′ , (3.14)

rewrites: 



f(X)X
′
∂tξ = ∂s

[
ǫG(X)X

′
∂sξ
]
,

ǫG(X(0))X
′
(0)∂sξ(t, 0) = σL+σV k′(X)

σL+σV
(V − L)X

′
(0)ξ(t, 0),

ǫG(X(h))X
′
(h)∂sξ(t, h) = −L

(
1 + σL

σV
k′(X)

)
X

′
(h)ξ(t, h).

(3.16)

We now have the:

Proposition 4. The function

V(ξ) :=

∫ h

0
f(X(s))X

′
(s)ξ(s)2ds (3.17)

is a strict Lyapunov function for (3.16): exists λǫ > 0 such that

dV/dt ≤ −λǫV.

Proof. Let

f∗ : = max
s∈[0,h]

f(X(s))X
′
(s) > 0, (3.18)

µ : = min
s∈[0,h]

G(X(s))X
′
(s) > 0. (3.19)

We have

1

2

dV
dt

=

∫ h

0
ξ(t, s)∂s

[
ǫG(X)X

′
∂sξ(t, s)

]
ds.

Integrating by part yields

1

2

dV
dt

=− L

(
1 +

σL

σV
k′(X)

)
X

′
(h)ξ(t, h)2

− σL + σV k′(X)

σL + σV
(V − L)X

′
(0)ξ(t, 0)2

− ǫ

∫ h

0
G(X)X

′
(∂sξ(t, s))

2ds. (3.20)

Thanks to the formula ξ(t, s) = ξ(t, h) +
∫ s
h ∂sξ(t, θ)dθ, one finds a constant P > 0 such that

∫ h

0
ξ(t, s)2ds ≤ P

(
ξ(t, h)2 +

∫ h

0
(∂sξ(t, s))

2 ds

)
. (3.21)

This inequality is proved by contradiction, similarly to the classical Poincaré inequality. In-
jecting (3.21) in (3.20) and taking

m := min

(
ǫµ ; L

(
1 +

σL

σV
k′(X(h))

)
X

′
(h)

)
> 0,

one obtains:
1

2

dV
dt
≤ −m

(
ξ(t, h)2 +

∫ h

0
(∂sξ(t, s))

2 ds

)
≤ − m

Pf∗
V.
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3.1.4 Asymptotic observers for unsteady composition profiles

The molar fraction yM(t) is supposed to be measured at the top of the column:

yM(t) := k(X(t, 0)) + ǫσL
G(X(t, 0))

σLV (t) + σV L(t)
∂sX(t, 0). (3.22)

Let L(t) = L + δL(t), V (t) = V + δV (t), such that L and V still satisfy (3.7). Let X the
stationary solution of (3.4) for L = L, V = V .

We consider the following 1-parameter family of observers:




f(X̂)∂tX̂ = ∂s

[
−LX̂ + V k(X̂) + ǫG(X̂)∂sX̂

]
,

LX̂(t, 0) = −(V − L)x̂(t, 0) + V k(X̂(t, 0)) + ǫG(X̂(t, 0))∂sX̂(t, 0),

x̂(t, 0) = (1− a)yM(t) + a
(
k(X̂(t, 0)) + ǫσLH(X̂(t, 0))∂sX̂(t, 0)

)
,

V yh = V k(X̂(t, h)) + ǫσLV H(X̂(t, h))∂X̂
∂s (t, h),

(3.23)

where a ∈ R a priori tunes the output injection.
Let X = X + δX, and X̂ = X + δX̂ . We will note δX̃ the observation error δX̂ − δX.
The partial differential equation is the same in (3.4) and (3.23), thus the linearized dy-

namics of the observer in the vicinity of X , L, V is:

f(X)∂tδX̃ = ∂s

[(
−L + g(X)

)
δX̃ + ǫG∂sδX̃

]

+ ∂s

[
−δL(t)X + ǫδL(t)X

′∂G

∂L (X,L,V )

]

+ ∂s

[
δV (t)k′(X) + ǫδV (t)X

′ ∂G

∂V (X,L,V )

]
, (3.24)

where G = G(X) estimated with L = L, V = V . Replacing δX̃ by δX in the previous equation
yields the linearized dynamics of the system. The linearized dynamics of the observation error
is:

f(X)∂tδX̃ = ∂s

[(
−L + g(X)

)
δX̃ + ǫG∂sδX̃

]
. (3.25)

The boundary condition of the observer at s = 0 rewrites:

LX̂(t, 0) =V k(̂(X)(t, 0)) + a(L− V )k(X̂(t, 0)) + (1− a)(L− V )k(X(t, 0))

+ aǫ(L− V )σLH(X̂(t, 0), L(t), V (t))∂sX̂(t, 0)

+ (1− a)ǫ(L− V )σLH(X(t, 0), L(t), V (t))∂sX(t, 0)

+ ǫG(X̂(t, 0), L(t), V (t))∂sX̂(t, 0).

Comparing with the boundary condition of the observed system under the formulation (3.5),
one sees that the terms in δL(t), δV (t) obtained by linearisation around X, L, V will be the
same. Thus the boundary condition for the observation error at s = 0 is:

LδX̃(t, 0) = k′(X(0))Q(a)δX̃(t, 0)

+ ǫ
G

σV L + σLV

(
σV L + σLQ(a)

)
∂sδX̃(t, 0)

+ ǫX
′
(0)

G
′
(0)

σV L + σLV

(
σV L + σLQ(a)

)
δX̃(t, 0), (3.26)
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where

G
′
:=

∂G(X,L, V

∂X

(
X,L, V

)
,

Q(a) := (1− a)V + aL.

Similarly, the terms in δL(t), δV (t) compensate in the linearization of the boundary
condition at s = h for the observation error, and one obtains:

0 = k′(X(h))δX̃(t, h) + ǫ
σLV G(h)

σLV + σV L
∂sδX̃(t, h) + ǫ

σLV G(h)

σLV + σV L
∂sX(h)δX̃(t, h). (3.27)

Replacing as in the local stability proof δX̃ by X
′
ξ in (3.25), (3.26) and (3.27), we obtain:





f(X)X
′
∂tξ = ∂s

[
ǫGX

′
∂sξ
]
,

ǫG(0)X
′
(0)∂sξ(t, 0) = aL

σV L+σLQ(a)

(
σL + k′(X(0)

) (
V − L

)
X

′
(0)ξ(t, 0),

ǫG(h)X
′
(h)∂sξ(t, h) = −L

(
1 + σV

σL
k′(X(h))

)
X

′
(h)ξ(t, h).

(3.28)

One can check that for a = 1 (no use of the measure yM(t), then the observer is a free copy
of the original system), the system (3.28) coincides with (3.16).

We can now demonstrate the following result:

Proposition 5. ∀a ∈
[
0, σLV +σV L

σL(V −L)

]
, the function V defined in (3.17) is a strict Lyapunov func-

tion of the observation error, with exponential decay rate.

Proof. Integrating dV
dt by parts yields

1

2

dV
dt

= −L

(
1 +

σV

σL
k′(X(h))

)
X

′
(h)ξ(t, h)2

− aL

σV L + σLQ(a)

(
σL + k′(X(0)

) (
V − L

)
X

′
(0)ξ(t, 0)2

− ǫ

∫ h

0
G(X)X

′
(∂sξ(t, s))

2 ds.

For any a ∈
[
0, σLV +σV L

σL(V −L)

]
, aL

σV L+σLQ(a) ≥ 0. Thus as previously

1

2

dV
dt
≤ −m

(
ξ(t, h)2 +

∫ h

0
(∂sξ(t, s))

2

)
,

where

m := min

(
ǫµ ; L

(
1 +

σV

σL
k′(X(h))

)
X

′
(h)

)
> 0.

As in Proposition 4, one finds a constant P > 0 such that

1

2

dV
dt
≤ − m

Pf∗
V.
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Time interval 0 to 1h 1 to 2h 2 to 3h 3 to 4h 4 to 5h

Reflux L/V 0.6 0.5 0.6 0.65 0.6

Table 3.1: Reflux step-changes during the simulation.

Consequently, ∀a ∈
[
0, σLV +σV L

σL(V −L)

]
, the estimation given by observer (3.23) exponentially

converges towards the actual time-varying profile X(t, s), provided that X(t, s) is close enough
to the stationary profile X(s) associated to (L, V ).

Tuning the parameter a allows making dV
dt more negative, thus fastening the convergence

of the observer. It should also allow tuning the observer’s robustness to measurement noise,
by weighting the internal model effects in the top boundary condition of (3.23).

3.1.5 Simulations

The purpose of the following simulations is to help qualifying the local nature of the previous
convergence properties. The simulations will also illustrate some aspects of the concentration
profiles dynamics. The results have been obtained with the following parameters: h = 8m,
σL = σV = 100Nm3/m, λL = 20Nm3.s−1.m−1, λV = 10λL, ǫ = 0.14, yh = 0.21. We use
the thermodynamic equilibrium relation (2.2) with N = 1 and α = 0.42; thus the simulated
binary mixture behaves as air in an APSA or HP column. The inlet air flow is kept constant
at 30Nm3/s. The column’s dynamics are simulated using a finite-difference scheme, with 0.1s
time-steps and 0.1m space-steps. The corresponding numerical scheme is similar to the one
detailed in the next chapter.

Open-loop convergence of the non-linear model

Figure 3.4 illustrates the uniqueness and stability properties of the stationary solution. The
reflux rate undergoes several step-changes, summarized in Table 3.1. Simulations show that
the same stationary solution is reached when the original value of the reflux rate is restored,
regardless of the previous excursions of the composition profile. Even if such a case is not in
the range of the previously given properties, one can check experimentally that a non-instant
liquid propagation does not change the uniqueness and stability results. For this test, the
liquid speed is 0.02m/s. One can observe the clear non-symmetrical response of the column
to the reflux increases and decreases. The asymmetry is reinforced by the non-instant liquid
propagation, which also induces inverse initial responses.

The molar fraction profiles corresponding to the different steady-states are depicted on
Fig. 3.5: during the transients, the composition front has traveled all along the column. On
the same figure we also plotted snapshots of the transients profiles (in the instant and non-
instant liquid propagation cases). This illustrates both the delay and the profile billowing
caused by the liquid propagation delay.

Observer convergence around a steady-state

The following simulations illustrate the convergence of observers with various tuning parame-
ters a when the observed system reaches a steady-state (corresponding to a reflux L/V = 0.6).
The observers were initialized with an O2 molar fraction of 0.4 everywhere in the column,
whereas the observed column’s initial profile is linearly increasing from 10−9 to 0.4. Results
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Figure 3.4: O2 lumped molar fractions at various locations in the column (Top: at top,
Center: at mid-length, Bottom: at the bottom). Solid black lines correspond to the instant
liquid propagation case. Grey lines are for the non-instant propagation case, where the liquid
speed is 0.02m/s.
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Figure 3.5: Snapshots of the O2 lumped molar fraction profiles at various instants of the
simulation. Solid red: stationary profile corresponding to L/V = 0.6. Dashed red: stationary
profile corresponding to L/V = 0.5. Dash-dotted red: stationary profile corresponding to
L/V = 0.65. Solid black: snapshot at t = 130min for the instant liquid propagation case.
Solid grey: snapshot at t = 130min for the non-instant liquid propagation case.
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Figure 3.6: Simulated and estimated O2 lumped molar fractions at various locations in the
column (Top: at top, Center: at mid-length, Bottom: at the bottom). Grey: simulated
column. Blue: observer with a = 0. Red: observer with a = 0.5. Black: observer with a = 1.

are depicted on Fig. 3.6. The convergence is slightly faster for large values of a (that is, when
the top measure is rejected). This is coherent with the integration by part in the proof of

Proposition 5, where aL
σV L+σLQ(a) increases with a. Figures 3.7 and 3.8 respectively depicts

the evolution of the relative estimation error at the top of the column, and of the L2 norm of

the profile estimation error || X̃−X

X̃
||L2

Observer convergence with a time-periodic L/V

We now consider the case of an unsteady reflux rate L/V which sinusoidally oscillates between
0.43 and 0.725 with a time-period of 1 hour. The inlet air flow is still kept constant at
30Nm3/s. The observers and the simulated column are initialized as previously. The observed
and estimated compositions are depicted on Fig. 3.9. The corresponding L2 norms of the
profile relative estimation errors are shown on Fig. 3.10. The convergence of the observers
takes here less than one oscillation, and is still faster for large a.

One can check that the convergence is still granted when the columns’s dynamics are much
slower, due to increased hold-ups. On Figures 3.11 and 3.12, we depict the results of the same
simulation with σL = 1000Nm3/m. Several oscillations are required for the estimated molar
fractions to match the simulated ones, and the global estimation error decreases much slower.

The same tests can be done with a finite liquid propagation speed (here 0.02m/s). The
results are depicted on Fig. 3.13 and 3.14 for σL = 100Nm3/m, and Fig. 3.15, 3.16 for
σL = 1000Nm3/m. Even if these tests are out of the range of the demonstrated convergence
property, it seems that a finite liquid speed does not impede the observer’s performances.
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Figure 3.7: Relative estimation error at the top of the column. Blue: with a = 0. Red: with
a = 0.5. Black: with a = 1.
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Figure 3.8: L2-norm of the profile relative estimation error over the whole column. Blue:
with a = 0. Red: with a = 0.5. Black: with a = 1.
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Figure 3.9: Simulated and estimated O2 lumped molar fractions at various locations in the
column (Top: at top, Center: at mid-length, Bottom: at the bottom) with σL = 100Nm3/m.
Grey: simulated column. Blue: observer with a = 0. Red: observer with a = 0.5. Black:
observer with a = 1.
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Figure 3.10: L2-norm of the profile relative estimation error over the whole column σL =
100Nm3/m. Blue: with a = 0. Red: with a = 0.5. Black: with a = 1.

These simulations show that the demonstrated stability and convergence properties are
experimentally obtained even in the case of large transients. It seems to be an indication that
these local properties could be turned in practice into global ones.
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Figure 3.11: Simulated and estimated O2 lumped molar fractions at various locations in the
column (Top: at top, Center: at mid-length, Bottom: at the bottom) with σL = 1000Nm3/m.
Grey: simulated column. Blue: observer with a = 0. Red: observer with a = 0.5. Black:
observer with a = 1.
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Figure 3.12: L2-norm of the profile relative estimation error over the whole column with
σL = 1000Nm3/m. Blue: with a = 0. Red: with a = 0.5. Black: with a = 1.
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Figure 3.13: Simulated and estimated O2 lumped molar fractions at various locations in the
column (Top: at top, Center: at mid-length, Bottom: at the bottom) with non-instant liquid
propagation and σL = 100Nm3/m. Grey: simulated column. Blue: observer with a = 0.
Red: observer with a = 0.5. Black: observer with a = 1.
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Figure 3.14: L2-norm of the profile relative estimation error over the whole column with
non-instant liquid propagation and σL = 100Nm3/m. Blue: with a = 0. Red: with a = 0.5.
Black: with a = 1.
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Figure 3.15: Simulated and estimated O2 lumped molar fractions at various locations in the
column (Top: at top, Center: at mid-length, Bottom: at the bottom) with non-instant liquid
propagation and σL = 1000Nm3/m. Grey: simulated column. Blue: observer with a = 0.
Red: observer with a = 0.5. Black: observer with a = 1.
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Figure 3.16: L2-norm of the profile relative estimation error over the whole column with
non-instant liquid propagation and σL = 1000Nm3/m. Blue: with a = 0. Red: with a = 0.5.
Black: with a = 1.
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Figure 3.17: Investigated transfers for an homogeneous subsection.

3.2 Linear tangent control model

From the PDE binary distillation model we aim to derive a Multiple Inputs - Multiple Out-
puts (MIMO) transfer function model for small dynamics in the vicinity of a steady-state
(see Fig. 3.17). We first consider an homogeneous column subsection, for which we will write
the transfer functions. The complete column transfer will be obtained by chaining the sub-
sections transfers by algebraic relations. On the considered subsection, we will use a linear
approximation of the application k(.): k(X) = αX, α ∈ [0, 1], and we will take G(X,L, V )
constant, as well as the hold-ups. We also simplify the static outputs by considering that
x(s, t) = X(s, t) and y(s, t) = Y (s, t) = αX(s, t).

Thus we consider the following dynamic system:





∂X
∂τ = −v(s, τ)∂X

∂s + ǫG∂2X
∂s2

Lx0(τ) = (v0(τ) + αV )X0(τ)− ǫG∂X
∂s (0, τ)

−V yh(τ) = (vh(τ)− L)Xh(τ)− ǫG∂X
∂s (h, τ)

(3.29)

In this system, x0(t), yh(t) are the feed compositions respectively at the top and the bottom
of the considered subsection and

v(s, τ) = L(s, τ)− αV (t) = L0(τ − s
µL

)− αV (t),

τ =
t

σL + σV
,

where µL = VL (σL + σV ) is the scaled liquid speed (we assume that the gas flow information
propagates instantly along the column). In a first time, we consider the case v(s, t) > 0.

Let X the stationary solution of (3.29) corresponding to L, V , x0, yh. For small variations
around X , system (3.29) rewrites in the Laplace domain:





pδX(s, p) = −v ∂δX
∂s (s, p)−X

′
δv(s, p) + ǫG∂2δX

∂s
Lδx0(p) = (δv0(p) + αδV (p))X0 + (v + αV )δX0(p)− x0δL0(p)

−ǫG∂δX
∂s (0, p)

−V δyh(p) = (δvh(p)− δL(h, p))Xh + (v − L)δXh(p) + yhδV (p)

−ǫG∂δX
∂s (h, p),

(3.30)

where p stands for the Laplace variable, X
′
= ∂sX and

δL(s, p) = δL0(p)e
−p s

µL ,

δv(s, p) = δL0(p)e
−p s

µL − αδV (p).
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Following the constants’ variation method, we make the following change of variables:

δX(s, p) = λ1(s, p)er1(p)s + λ2(s, p)er2(p)s,

∂sδX(s, p) = λ1(s, p)r1(p)er1(p)s + λ2(s, p)r2(p)er2(p)s,

where r1, r2 are the solutions of ǫGr2
(1,2) − vr(1,2) − p = 0. This yields:

∂sλ1e
r1s + ∂sλ2e

r2s = 0,

ǫG (∂sλ1r1e
r1s + ∂sλ2r2e

r2s) = X
′
δv.

Let

A =
Xh −X0

e
vh
ǫG − 1

, B = X0 −
Xh −X0

e
vh
ǫG − 1

such that X = Ae
vs
ǫG + B. We have:

∂sλ1 =
Avδv(s, σ)

ǫG (r1 − r2)
e(

v
ǫG

−r1)s =

Av

(
δL0e

−sp
µL − αδV

)

ǫG (r1 − r2)
e(

v
ǫG

−r1)s,

∂sλ2 =

−Av

(
δL0e

−sp
µL − αδV

)

ǫG (r1 − r2)
e(

v
ǫG

−r2)s

thus:

λ1(s, p) = C1(p)

+ Av
ǫ2G2(r1−r2)

(
e

(
v

ǫG
−r1−

sp
µL

)
s
−1

v
ǫG

−r1−
sp
µL

δL0 − αe(
v

ǫG
−r1)s

−1
v

ǫG
−r1

δV

)
,

λ1(s, p) = C2(p)

− Av
ǫ2G2(r1−r2)

(
e

(
v

ǫG
−r2−

sp
µL

)
s
−1

v
ǫG

−r2−
sp
µL

δL0 − αe(
v

ǫG
−r2)s

−1
v

ǫG
−r2

δV

)
,

where C1, C2 are integration constants to be determined with the boundary conditions
of (3.30).

We now have:

δX0(p) =C1(p) + C2(p), (3.31)

δXh(p) =C1(p)er1h + C2(p)er2h

+
Ave

vh
ǫG

ǫG(r1 − r2)


 e

−hp
µL − e(r1−

v
ǫG)h

v − ǫGr1 − ǫG p
µL

− e
−hp
µL − e(r2−

v
ǫG)h

v − ǫGr2 − ǫG p
µL


 δL0

− α
Ave

vh
ǫG

ǫG(r1 − r2)

(
1− e(r1−

v
ǫG)h

v − ǫGr1
− 1− e(r2−

v
ǫG)h

v − ǫGr2

)
δV. (3.32)

Let us now have a look on the roots r1, r2. We have:

r1 =
v

ǫG
+

p

v
− ǫG

p2

v3 + O(ǫ2), (3.33)

r2 =
−p

v
+ ǫG

p2

v3 + O(ǫ2).. (3.34)
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Thus in first approximation, all the right-hand terms in (3.32) but C2(p)er2h are of the size

e
vh
ǫG . Yet, since Xh = Ae

vh
ǫG + B is finite whatever ǫ, we have necessarily

A = Ãe
−vh
ǫG ,

where the constant Ã admits a classical asymptotic development in ǫ. Thus, in (3.32), only

C1(p)er1h remains of size e
vh
ǫG , which contradicts the fact that δXh should be finite whatever

ǫ. We have then to take:
C1(p) = C̃1(p)e

−vh
ǫG

to preserve the size of δXh.

As an immediate consequence, δX0 = C2 with a residual error in e
−vh
ǫG . C2 is straightfor-

ward from the boundary condition at s = 0 in (3.30):

Lδx0 =
(
X0 − x0

)
δL0 + C2

(
L0 − ǫGr2

)
+ O

(
e

−vh
ǫG

)
,

thus, injecting the approximation of r1:

δX0(p) =
δx0(p)−

(
X0 − x0

) δL0(p)

L

1 + ǫG
Lv

p
+ O(ǫ2). (3.35)

The obtained transfer function is a simple mixing equation combined with a first-order filter,
with time constant (in the actual time-scale t) ǫG

Lv
(σL + σV ), which is determined by the local

competition between the diffusive and convective effects.
We are now interested in finding C̃1 to determine δXh. Rewriting the symbolic equa-

tion (3.32) we have:

δXh(p) =C̃1(p)e(r1−
v

ǫG)h + C2(p)er2h

+
Ãv

ǫG(r1 − r2)


 e

−hp
µL − e(r1−

v
ǫG)h

v − ǫGr1 − ǫG p
µL

− e
−hp
µL − e(r2−

v
ǫG)h

v − ǫGr2 − ǫG p
µL


 δL0

− α
Ãv

ǫG(r1 − r2)

(
1− e(r1−

v
ǫG)h

v − ǫGr1
− 1− e(r2−

v
ǫG)h

v − ǫGr2

)
δV. (3.36)

Considering the exact expansions of the roots (3.33), (3.34), we see that:

C̃1 =
Ã

ǫ

+∞∑

i=0

βiǫ
i + Ãe−

vh
ǫG

+∞∑

i=0

γiǫ
i,

where the βi and γi are some constant or p-depending coefficients. Since Ã admits an asymp-
totic expansion in ǫ, it comes that the Laurent series

∑J
i=−1 C̃1,iǫ

i is an approximation of C̃1

for in O(ǫJ) for any J ≥ −1. Here we will limit ourselves to the two first terms C̃1,−1 and

C̃1,0. Considering only the terms in 1/ǫ in (3.36), we obtain:

C̃1,−1e
ph
v

ǫG
= Ãv


e

−hp
µL − e

hp
v

ǫGp

(
µL

v + µL

)
δL0 − α

1− e
hp
v

ǫGp
δV


 . (3.37)
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Now considering the terms of the next order in (3.36), one has:

δXh =
−p2h

v3 C̃1,−1e
ph
v + C̃1,0e

ph
v + C2e

−ph
v

+ Ãv (TδLδL0 − αTδV δV ) + O(ǫ), (3.38)

where:

TδL =

((
µL

v + µL

)2

+
2µL

v + µL

)
e

−ph
µL − e

ph
v

v2 − ph

v3

(
µL

v + µL

)
e

ph
v − e

−ph
µL

v2 ,

TδV =
3

v2

(
1− e

ph
v

)
− ph

v3 e
ph
v − 1

v2 .

In a symbolic, exact form, boundary condition at s = h in (3.30) reads:

0 =V δyh +
(
yh − αXh

)
δV

− C̃1

(
αV + ǫGr1

)
e(r1−

v
ǫG)h − C2

(
αV + ǫGr2

)

− αV Ãv

ǫG(r1 − r2)


 e

−hp
µL − e(r1−

v
ǫG)h

v − ǫGr1 − ǫG p
µL

− e
−hp
µL − e(r2−

v
ǫG)h

v − ǫGr2 − ǫG p
µL


 δL0

+ α
αV Ãv

ǫG(r1 − r2)

(
1− e(r1−

v
ǫG)h

v − ǫGr1
− 1− e(r2−

v
ǫG)h

v − ǫGr2

)
δV

− Ãv

r1 − r2


 e

−hp
µL − e(r1−

v
ǫG)h

v − ǫGr1 − ǫG p
µL

r1 −
e

−hp
µL − e(r2−

v
ǫG)h

v − ǫGr2 − ǫG p
µL

r2


 δL0

+ α
Ãv

r1 − r2

(
1− e(r1−

v
ǫG)h

v − ǫGr1
r1 −

1− e(r2−
v

ǫG)h

v − ǫGr2
r2

)
δV, (3.39)

which becomes, at the same order of magnitude than (3.38):

0 =V δyh +
(
yh − αXh

)
δV

+

(
C̃1,−1

(
p2h

v3 L− p

v

)
− LC̃1,0

)
e

ph
v − αV C2e

−ph
v

− αV Ãv (TδLδL0 − αTδV δV )

− Ãv2


TδL −

µL

v + µL


e

−ph
µL − e

ph
v

v2


+

e
−ph
µL

v2


 δL0

+ αÃv2

(
TδV −

1− e
ph
v

v2 +
1

v2

)
δV + O(ǫ),
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that is:

0 =V δyh +
(
yh − αXh

)
δV

+ L

(
C̃1,−1

p2h

v3 − C̃1,0

)
e

ph
v − αV C2e

−ph
v

− LÃv (TδLδL0 − αTδV δV )

− Ã

(
e

−ph
µL δL0 − αδV

)
+ O(ǫ).

Dividing by L and injecting in (3.38), one obtains:

δXh(p) =
V

L
δyh +

(
yh − αXh

) δV

L

+
v

L

(
δx0(p)−

(
X0 − x0

) δL0(p)

L

)
e

−ph
v

− Ãe
−ph
µL

δL0

L
+ αÃ

δV

L
+ O(ǫ), (3.40)

where C2 has been replaced with its O(1) approximation. We see that δXh splits into:

• an instant mixing equation (first line);

• a contribution from the composition variation δX0 which has reached the other side
with composition convection speed v

σL+σV
(second line);

• contributions from the perturbations of the flows as if the composition at s = 0 were
unchanged, which propagate with finite speed VL for the liquid, and infinite speed for
the gas (third line).

We shall now consider the case of a composition convection speed v orientated upwards
(that is, v(s, t) < 0). Applying the coordinate change z = h− s, (3.30) rewrites:





pδX(z, p) = v ∂δX
∂z (z, p) −X

′
δv(z, p) + ǫG∂2δX

∂z2 ,

Lδxh(p) = (δvh(p) + αδV (p))Xh

+(v + αV )δXh(p)− xhδLh(p)

+ǫG∂δX
∂z (h, p),

−V δy0(p) = (δv0(p)− δL(0, p))X0

+(v − L)δX0(p) + y0δV (p)

+ǫG∂δX
∂z (0, p),

which, for a negative v, corresponds to a fictional downwards system, with switched out-
lets and inlets with respect to the actual, previously discussed, downward case. For this
fictional downward system, one can approximate the downwards transfer functions as pre-
viously. Then, the actual upwards transfer functions are obtained by applying the inverse
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coordinate change s = h− z. This yields:

δXh(p) =
δyh(p) +

(
yh − αXh

) δV (p)

V

α
(
1− ǫG

vV α
p
) + O(ǫ2), (3.41)

δX0(p) =
Lδx0(p) + δL0(p)

(
x0 −X0

)

αV

− v

αV

(
δyh(p) +

(
yh − αXh

) δV (p)

V

α

)
e

hp
v

+ Ã
δL0(p)

αV
e
−

hp
µL − Ã

δV (p)

V
+ O(ǫ), (3.42)

where

Ã =
X0 −Xh

e−
vh
ǫG − 1

e−
vh
ǫG .

The structure of the transfers is the same as for the downwards case. At the high-purity
end (s = h), one obtains a mixing equation plus a small filtering effect. Its time constant is
determined by the relative influences of the diffusion and the entering gas flow. At s = 0,
compositions variations are the sum of: an instant mixing, a contribution from the traveling
composition wave with speed v

σL+σV
, and a contribution from the reflux rate change, which

establishes with delay due to the liquid’s finite speed.
Tables 3.2 and 3.3 summarize the obtained transfers in O(ǫ), respectively for the downward

and the upward convection case, between dimensionless inputs and outputs. These matrixes
will be used in the end of Chapter 4 to construct a model of the plant High Pressure column.

Note that, if we consider only variations of the liquid flow, one has for the downwards
convection case:

δX0

X0

= (α− 1)
δL0

L
,

supposing that the gas at the top is totally condensed, and (partially) recycled at inlet liquid
flow, which yields δx0 = αδX0. We find again the phenomenon pointed out in [103] for
instance, that the small dynamics expressed in logarithmic scale for the compositions, are
almost independent from the initial conditions. The dependence is hidden in X0, which is a
priori small and has an exponential dependence on the (steady-state) reflux. Thus one can
drastically modify X0 with only a small change on L.

As said, the obtained transfers consist in static gains and delays only. Thus at the con-
sidered order, we do not really leave the classical linear control models framework. It is
nevertheless possible that more exotic transfer terms appear at higher order, notably dis-
tributed delays which would account for how a perturbation originates at one end of the
columns, is convected and spreads at the same time, and in return affects both sides of the
column.
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Inputs\Outputs
δXh(p)

Xh

δX0(p)

X0

δL0(p)

L

v

L

(
x0−X0

Xh
e
−hp

v

)
−

1−X0
Xh

e
vh
ǫG−1

e

(
v

ǫG−
p

µL

)
h x0

X0
− 1

δV (p)

V

αV

L

(
yh

αXh
− 1 +

1−X0
Xh

e
vh
ǫG−1

e
vh
ǫG

)
0

δx0(p)
x0

v

L

x0

Xh
e
−hp
v

x0

X0
δyh(p)

yh

V

L

yh

Xh
0

Table 3.2: Dimensionless transfer matrix (in O(ǫ)) for a downwards composition convection
speed v = L− αV > 0.

Inputs\Outputs
δXh(p)

Xh

δX0(p)

X0

δL0(p)

L
0

L

αV

(
x0

X0
− 1 +

1−Xh
X0

e
vh
ǫG−1

e
vh
ǫG

)

δV (p)

V

yh

αXh
− 1

(
yh

αX0
− 1

)
ve
−hp

v

αV
−

1−Xh
X0

e
vh
ǫG−1

e
vh
ǫG

δx0(p)
x0

0
L

αV

x0

X0
δyh(p)

yh

yh

αXh

yh

αX0

v

αV
e
−hp

v

Table 3.3: Dimensionless transfer matrix (in O(ǫ)) for an upwards composition convection
speed v = αV − L > 0.
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3.3 Conclusion

In the first part of this chapter, a simplified column configuration has been considered to
examine our PDE model from the point of view of control theory. We have considered only the
case of binary mixture separation. A reasonable set of assumptions has been given, regarding
the internal reflux rate, the inlet composition and the chosen thermodynamic relation. Under
these assumptions, the following results have been demonstrated:

• provided that the initial data is within (0, 1), the lumped molar fraction X(s, t) remains
in the same interval ∀t > 0, ∀s ∈ [0, h].

• for any diffusion coefficient ǫ > 0, there exists a unique stationary composition profile,
which is locally exponentially stable.

• The stationary molar fraction at the top of the considered column monotonically in-
creases with the diffusion coefficient ǫ.

Based on the PDE model, we have proposed a family of asymptotic observers for the molar
fraction profiles, with tunable output injection. As for the stationary solution, we have
constructed a Lyapunov function to prove the local exponential convergence of the observers.
This convergence is obtained even with time-varying internal flows. Several simulations results
have been presented, which shows that the local nature of the previous propositions seems in
practice extensible to a global one. In addition, considering a finite liquid propagation speed,
rather than instant propagation as in the proofs, does not affect these results in simulation.

In the second part of the chapter, we have considered the reduction of the PDE model
into a MIMO linearized transfer function model. This model connects the perturbations of
the internal flows L and V , and of the inlet compositions yh and x0 to the variations of
the simplified outlet compositions Xh and Y0, around a steady-state. The outputs are first
expressed in an exact, symbolic manner, then are approximated using a truncated expansion
of the symbols. The obtained transfer functions are structured as power series in the diffusion
coefficient ǫ, after a non-standard asymptotic expansion.

The transfer functions have been given for two cases: when the composition convection
speed is downwards or upwards. They are, at the dominating order, composed of direct
transfers with delays arising from the composition convection on the one hand, and from the
liquid circulation on the other hand. In addition, at this order, no composition information
can travel counter the composition convection direction.
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Chapter 4

Application to HP column

Au Chapitre 2, nous avons présenté un modèle dynamique réduit pour une colonne de distil-
lation, fondé sur une équation aux dérivées partielles de convection diffusion. Nous avons dis-
cuté ce modèle du point de vue de l’automatique au Chapitre 3, dans le cas d’une configuration
de colonne idéalisée. Dans le présent chapitre, nous vérifions les performances du modèle en le
confrontant à des jeux de données et une configuration de colonne plus complexes. Cette étude
se concentre sur la colonne Moyenne Pression (MP) de l’ASU étudiée, que nous décrivons
brièvement. Nous présentons ensuite les schémas utilisés pour l’implantation numérique du
modèle EDP. En nous basant sur la géométrie de la colonne et les performances attendues
du garnissage, nous établissons des valeurs a priori pour certains paramètres du modèle. Le
modèle EDP est comparé à un modèle statique à plateaux Hysys de la colonne pour diverses
conditions de fonctionnement, ce qui nous permet de raffiner les valeurs des rétentions et
du coefficient de diffusion ǫ. Le modèle ainsi réglé est utilisé pour reproduire un scénario de
fonctionnement dynamique. Pour ce faire, des données réelles issues de l’ASU étudiée sont
utilisées tant comme entrées que comme références. Nous proposons une adaptation en ligne
du coefficient de diffusion, et illustrons les performances et limites du modèle sur un total de
680h de fonctionnement de l’unité.

Partant du modèle linéaire tangent du Chapitre 3, développé pour un segment homogène
de colonne, nous construisons un modèle de fonctions de transfert de la colonne MP. Nous
vérifions sa capacité à reproduire de petites oscillations de compositions sur des intervalles de
temps courts, en comparaison avec des données réelles en provenance de l’unité de séparation.

In Chapter 2 a reduced dynamic model based on convection-diffusion partial differential
equations has been presented. This model has been discussed from the point of view of
control theory in Chapter 3, based on a idealized column configuration. In this chapter,
we check the model performances against more complex configuration and data set. The
study is focused on the Air Separation Unit High Pressure (HP) column, which will be briefly
described. We then present the numerical scheme used for the PDE model implementation.
Based on the column geometry and the packing performances we set a priori values for the
model parameters. The PDE model is compared to a static Hysys plate model of the column
for various operating conditions, which helps us refining the value of the hold-ups and the
diffusion coefficient ǫ. The so tuned model is then used to reproduce a dynamic operation
scenario. For this test, real data recorded from the air separation plant are used as inputs and
targets. On-line adaption of the diffusion coefficient is proposed, and the model performances
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and limits are demonstrated over a total of 680 hours of operation.

Based on the linear tangent model written in Chapter 3 for one homogeneous packed
subsection, we build a transfer functions model of the HP column. We check its ability to
reproduce small composition oscillations over short time intervals, using real data from the
plant for the comparison.

4.1 Introduction to the HP column

The High Pressure column1 is for the production of high-purity nitrogen. It is about 20 m high,
with a packed height of about 15 m and an (almost) constant inner diameter of approximately
2.5 m. It consists of three homogeneous sections of packing - the type of packing is the same
in each section - and has a total condenser at top. We invite the reader to frequently refer
to Fig. A.2 where the tags of sensors and flows used in the following are plotted on the ASU
chart.

The HP column is fed by gaseous2 air. The gas rises up to the top, where a small fraction is
drawn to regulate the Argon process. The rest is condensed and falls as liquid on a distributing
plate, where the amount required for production is drawn. Oxygen concentration at top must
be maintained below 1 ppm to match the contractual requirements. It is typically much lower
in operation, as will be seen in the dynamic scenario presentation. The remaining liquid passes
through the first packing section down to a second distributor. There about 50% of the liquid
is taken out to serve as top reflux in the LP column. Oxygen concentration at this location is
about 2%, and Argon concentration should be round 0.5%. Between the second and the third
packing section, the remaining liquid mixes with a feed of liquid air, which helps increasing
reflux in the last section by compensating the liquid lost at the previous distributor. The
liquid air comes from a flash-pot, where a gas fraction has also been obtained. This gas
enters the column at the same location and mixes with the existing vapor flow. The internal
liquid flow arrives after the last packing section into the HP-column’s bottom, whose level
reference is function of the ASU entering air flow. The level is manipulated using the drained
flow, which is directed towards the LP column (as a reflux) and the Argon process. Thus
the bottom serves as a lead-lag buffer to temperate the transient impacts of ASU’s set-point
changes on the distillation in LP column.

In the HP column, maximum Argon molar fraction is barely above 1%. Since N2 is the
dominant component all along the column, both O2 and Ar behave as heavy components.
Consequently, they can be considered as only one lumped pseudo-component, whose ther-
mochemical properties are close to oxygen’s. Alternatively speaking, one can consider that
distillation in HP column involves no Argon. We will thus consider in a first time air as a
binary mixture in the column. The numerical scheme presented in the next section is for
such mixtures. Ternary mixture separation simulation will be dealt with in the next Chapter,
regarding the Low Pressure column simulation.

1designated in French as the Middle Pressure (MP) column
2yet according to some HYSYS simulation cases, a small fraction of liquid may exist in the feed - about

5%.
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4.2 Numerical scheme for pseudo-binary simulation

The numerical scheme is to simulate the dynamics of

(
σL + σV k′(X)

) ∂X

∂t
=

∂

∂s
(−LX + V k(X)) − ǫ

∂

∂s

(
G(X)

∂X

∂s

)
, (4.1)

x = X − ǫσV
G(X)

σV L + σLV

∂X

∂s
,

y = k(X) + ǫσL
G(X)

σV L + σLV

∂X

∂s
,

according to the centre manifold reduction in Chapter 2. We discretize the dynamics with
finite differences in time and space. Time-steps ∆t and space-steps ∆s will be constant. We
note Xi

k the value of X at time t = i∆t, at s = k∆s. The same convention is used for other
variables.

The finite differences approach has been chosen for this work.

4.2.1 Hydraulics

The liquid flow L(s, t) is considered to propagate according to

∂L

∂t
= −VL

∂L

∂s
, (4.2)

where VL stands for the liquid vertical speed.

Equation (4.2) is discretized with finite differences and implicit Euler scheme:

Li+1
k − Li

k

∆tL
= −VL

Li+1
k − Li+1

k−1

∆s
, (4.3)

the finite differences in space being backwards due to the direction of the liquid flow.

We consider that the gas flow V (s, t) establishes instantly over an homogeneous section.
Indeed, the gas flow homogenizes because of pressure waves, which travel much faster than
matter itself. Consequently, we use only a V (t) and we write: V i

k = V i.

The liquid hold-up σL is considered as a linear function of the liquid flow:

σL
i
k =

Li
k

µL
.

The gas hold-up σV
i
k is a function of the column’s inner pressure only, as will be explained

in Section 4.3.

4.2.2 General scheme for homogeneous sections

The non-linear transport term in (4.1) is linearized as follows:

∂

∂s
(V (t)k(X(s, t)) → V i

∆s

[(
k(X)

X

)i

k+1

Xi
k+1 −

(
k(X)

X

)i

k

Xi
k

]
.
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The scheme is upwards in space, since the non-linear term corresponds to components con-
vection by the rising gas. This approximation is used to obtain the following, classical finite
difference numerical scheme:

(σL
i
k + σV

i
kk

′(Xi
k))

Xi+1
k −Xi

k

∆t

=
1

∆s

[
Li

k−1X
i
k−1 − Li

kX
i
k +

(
V i k(X)

X

)i

k+1

Xi
k+1 −

(
V i k(X)

X

)i

k

Xi
k

]

+ ǫGk−1/k

Xi
k−1 −Xi

k

∆s2 + ǫGk/k+1

Xi
k+1 −Xi

k

∆s2 , (4.4)

where components transport by liquid is rendered by a backwards finite difference. The
varying diffusion term G(X(s, t)) is rendered by

Gk−1/k = 2
Gk−1Gk

Gk−1 + Gk
, Gk/k+1 = 2

GkGk+1

Gk + Gk+1
, (4.5)

as recommended in [78]. One easily checks that the scheme (4.4) is conservative, which is
an essential property for high-purity numerical simulations. Yet another critical point is to
maintain the Xi

k in (0, 1), as required by the physics. This is for the moment not granted
with the full explicit scheme (4.4). We can transform some terms in the scheme from explicit
to implicit:

(σL
i
k + σV

i
kk

′(Xi
k))

Xi+1
k −Xi

k

∆t

=
1

∆s

[
Li

k−1X
i
k−1 − Li

kX
i+1
k +

(
V

k(X)

X

)i

k+1

Xi
k+1 −

(
V

k(X)

X

)i

k

Xi+1
k

]

+ ǫGk−1/k

Xi
k−1 −Xi+1

k

∆s2 + ǫGk/k+1

Xi
k+1 −Xi+1

k

∆s2 ,

which profitably rewrites:
[

σL
i
k + σV

i
kk

′(Xi
k)

∆t
+

1

∆s

[
Li

k +

(
V

k(X)

X

)i

k

]
+ ǫ

Gk−1/k + Gk/k+1

∆s2

]
Xi+1

k

=
σk

∆t
Xi

k +
1

∆s

[(
k(X)

X

)i

k+1

+ ǫ
Gk/k+1

∆s2

]
Xi

k+1 +

[
Li

k−1

∆s
+ ǫ

Gk−1/k

∆s2

]
Xi

k−1. (4.6)

One observes that Xi+1
k is now a barycenter of initial data Xi

k−1, Xi
k, Xi

k+1, with strictly

positive weights. Thus one ensures Xi+1
k > 0. Additionally, if L is constant (Lk does not

depend on k), the sum of the weights is 1. Thus, in that case, Xi+1
k remains within the

envelope of Xi
k−1, Xi

k, Xi
k+1: if initial and boundary data are in (0, 1), so remains Xi+1

k for
any i > 0 and k. Since this is only true in steady state, we propose in the end of this section
an alternative. For the moment, consider that we work with scheme (4.6).

The static outputs x and y are obtained as:

xi
k = Xi

k − ǫσL
i
k

G(Xi
k)

σV
i
kL

i
k + σL

i
kV

i

Xi
k −Xi

k−1

∆s
, (4.7)

yi
k = k(Xi

k) + ǫσV
i
k

G(Xi
k)

σV
i
kL

i
k + σL

i
kV

i

Xi
k+1 −Xi

k

∆s
. (4.8)
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Figure 4.1: Flow grid around a junction

Once again, the finite difference is backwards for xi
k since it is carried by the dripping liquid,

and upwards for yi
k since it is transported by the rising gas.

4.2.3 Matching conditions

We now consider the junction of two homogeneous sections, where may a priori take place
one or all of the followings:

• injection of a liquid flow Lin(t), with molar fraction xin(t),

• injection of a gas flow Vin(t), with molar fraction yin(t),

• withdrawal of a liquid flow Lout(t) with molar fraction xout(t) to be determined,

• withdrawal of a gas flow Vout(t) with molar fraction yout(t) to be determined.

Let j be the index at which the junction is located. We denote with a subscript ⊕ a variable
evaluated at j right below the junction (not at j + 1), and with a subscript ⊖ a variable
evaluated at j right above the junction (not at j − 1).

Regarding the hydraulics, we have

L⊕(t) = L⊖(t) + Lin(t)− Lout(t), V⊖(t) = V⊕(t) + Vin(t)− Vout(t).

We set Li
j = Li

⊖, and we have to rewrite (4.3) at j + 1:

L
i+(1/d)
j+1 − Li+1

j+1

∆tL
= −VL

L
i+(1/d)
j+1 − L

i+(1/d)
j − Li

in + Li
out

∆s
. (4.9)

For the gas, we set V i
j = V⊕ and thus V i

j−1 = V i
j + V i

in − V i
out. Fig. 4.1 shows how the space

grid catches the junction regarding the flows.

Regarding the molar fractions, we have to conserve the flow of component C1 through the
junction. This flow is Lx + V y. Given the expressions of x(s, t) and y(s, t) as static outputs
built upon X(s, t), one checks that we have in fact to conserve the flow of X(s, t), that is,
−LX + V k(X) + ǫG(X)∂X

∂s .
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The output gas molar fraction yout is calculated with X at j, but using the hydraulics of
the ⊕ side. Reversely, the output liquid molar fraction xout depends on X at j and of the
hydraulics at ⊖ side:

yi
out = k(Xi

j) + ǫσL
i
⊕

Gj−1/j

σL
i
⊕ + σV

i
⊕k′(X)

Xi
j+1 −Xi

j

∆s
,

xi
out = Xi

j − ǫσV
i
⊖

Gj/j+1

σL
i
⊖ + σV

i
⊖k′(X)

Xi
j −Xi

j−1

∆s
.

In addition, instead of (4.5), we take:

Gj−1/j = Gj−1, Gj/j+1 = Gj+1,

to circumvent the definition of a Gj . Note that the change must also affect the calculations
at j − 1 and j + 1 to ensure the conservativeness of the numerical scheme.

This being set, the scheme for X at the junction must ensure:

Li
⊖Xi

j + V i
⊕k(Xi

j) + Gj+1

Xi
j+1 −Xi

j

∆s
+ Li

inxi
in + V i

inyi
in

= Li
⊕Xi

j + V i
⊖ki(Xi

j) + Gj−1

Xi
j −Xi

j − 1

∆s
+ Li

outx
i
out + V i

outy
i
out.

Taking k(Xi
j) =

k(Xi−1
j )

Xi−1
j

Xi
j one obtains

Xi
j =

Li
inxi

in + V i
inyi

in + Xi
⊖

[
Li
⊖ +

Gj−1−Li
outσV

i
⊖
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]
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[
V i
⊕

k(Xi−1
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+
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outσL
i
⊕

H⊕
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]

Li
⊕ + Li

out +
k(Xi−1

j )

Xi−1
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(
V i
⊖ + V i

out

)
+

Gj+1+Gj−1−(V i
outσL

i
⊕

H⊕+Li
outσV

i
⊖

H⊖)
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(4.10)
where H⊖ and H⊖ are defined according to:

Hk =
Gk

σL
i
kV

i
k + σV

i
kL

i
k

.

4.2.4 Boundary conditions

HP top boundary condition

Part of the flow V y exiting the column at top (s = 0) is completely condensed and re-injected
as a liquid flow Lx. One neglects the condenser’s dynamics. Since x(0, t) = y(0, t) (total
condensation), the state (liquid or gas) of the drawn-out flow does not affect the balance
equation. We chose to write the drawn-out flow as if it were completely liquid, for it helps
preserving the positivity of the coefficients in the final, discrete formulation of the boundary
condition. One has, as schematized on Fig. 4.2,

L(0, t)X(0, t) + (V (0, t) − L(0, t))x(0, t) = V (0, t)k(X(0, t)) + ǫG(X(0, t))
∂X

∂s
(0, t),
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condenser top packed section0 s

Figure 4.2: Molar flows at the top boundary of HP column.

and thus:

V (0, t)X(0, t) = V (0, t)k(X(0, t)) + ǫG(X(0, t))
∂X

∂s
(0, t)

+ ǫH(X(0, t))σV (V (0, t) − L(0, t))
∂X

∂s
(0, t). (4.11)

Equation (4.11) is rendered in the numerical scheme by:

Xi
0 =

ǫ
(G0/1+H0/1σL(V i

0−Li
0))

∆s Xi
1

V i
0

(
1− k(Xi−1

0 )

Xi−1
0

)
+ ǫ

(G0/1+H0/1σL(V i
0−Li

0))
∆s

. (4.12)

Note that, if Xi−1
0 is small, as expected for O2, all the coefficients in the previous equation

are positive.

HP bottom boundary condition

The flow entering the HP column at the bottom (say, at s = h, k = κ) is the gas flow
V (h, t)yh, where yh is the molar fraction of component C1 in atmospheric air. Thus one has
as in Chapter 3:

V (h, t)yh = V (h, t)k(X(h, t)) + ǫ (G(X(h, t)) −H(X(h, t))σV L)
∂X

∂s
(h, t), (4.13)

which discretizes into:

Xi
κ =

V i
κyh + ǫ

Gκ−1/κ−Hκ−1/κσV Li
κ

∆s Xi
κ−1

V k(Xi−1
κ )

Xi−1
κ

+ ǫ
Gκ−1/κ−Hκ−1/κσV Li

κ

∆s

. (4.14)

and one takes Li
κxi

κ as the output flow.

4.2.5 Final regularization

As mentioned before, in transients, the Xi
k may grow beyond 1 with the chosen numerical

scheme (yet they can not be negative). For HP column this is not so much a problem, since
by choosing the pseudo-component Ar, O2 as C1, the maximum value of XC1 will be around
0.4. In the LP column, this is more a concern, because O2 and N2 molar fractions span over
(0,1).
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One can observe that all the previous equations of the numerical scheme could be written
as well for the unexpressed component C2 (to the expression of the function k(.)). One can
thus dispose of two separated solutions XC1 and XC2 , one for each component. Re-affecting:

XC1 ←− (1−XC1)XC1 + XC1(1−XC2),

XC2 ←− (1−XC1)(1 −XC1) + XC1XC2 ,

one obtains XC1 , XC2 in (0,1), which can be used as initial data for the next iteration. This
approach does not seem to degrade the conservativeness of the scheme according to our tests.

Another approach, which would not rise conservativeness issues, is to use a scheme based
on C1 for the part DC1 of the domain where C1 is in minority, and a scheme based on C2 for
the remaining DC2 ; the junction is made by matching the flow of XC1 leaving DC1 with the
flow of 1−XC2 entering DC2 , and vice-versa.

4.3 Parameters estimation using design data

In this section we will estimate some of the model parameters, to be used as ‘guess values’ for
the static and dynamic simulations. Namely, we are looking for the liquid flow propagation
speed VL (we assume the gas flow variations propagates instantly), and the hold-ups σL, σV .

Let S be the section of the column. The packing’s metal sheets occupy only 5% of
its volume; the sheets being placed vertically, let Sp = 0.05S the section occupied by the
packing. The liquid film’s thickness is about half of the sheet’s for usual reflux rates. The
liquid flowing on both sides of the packing sheets, we take SL = Sp = 0.05S as the section the
liquid flows through. We thus obtain a liquid superficial speed L

ρSL
where ρ ≃ 640Nm3/m3

in the operating conditions of the columns.
The liquid essentially flows following the packing’s corrugations with 45◦ inclination. We

only retain the liquid vertical speed

VL =
L√

2ρSL

(VL = 0.08 m/s with a typical liquid flow L = 20Nm3/s at the top of the HP column).
For the simulations, we will use a constant liquid speed VL in (4.2), assuming that the

liquid film thickness varies with L such that SL ∝ L. In the linear relation between the liquid
hold-up σL and L

σL =
L

µL
,

we thus expect µL = VL = 0.08m/s (yielding typically 250Nm3/m at the top of the HP
column).

Note that with a packing specific surface S ≃ 500m2/m3 and a liquid film thickness
e ≃ 10−4m, one can also estimate

σL = 2eSSρ ≃ 350Nm3/m

which corroborates the previous estimation.
The gas hold-up is given by the perfect gases law:

σV =
PHP

THP

Tstd

Pstd
Sv, (4.15)
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Figure 4.3: Liquid (blue) and gas (red) molar flow profiles in HP column for case A. Vertical
grey lines indicate the junctions between homogeneous packed sections.

where Tstd = 273K, Pstd = 105Pa, and typically THP = 90K, PHP = 5 × 105Pa. Thus one
expects σV ≃ 80Nm3.m−1 in the entire HP column.

4.4 Comparison with static simulation reference cases

We dispose of three static simulation cases from a Hysys model of the ASU:

Case A (Nominal Nordon) corresponds to nominal operation of the ASU.

Case B (63b) is a variation on the nominal case A, where the lean liquid draw has been
increased, with effects on the LP column.

Case C (MAX HPGAN) corresponds to the maximization of the high-pressure gaseous ni-
trogen production.

The HP column is simulated using a 40-plates model, with air as a ternary mixture. In first
approximation, the plate efficiency is constant; thus for each column section, the molar frac-
tion profiles from the Hysys model are mapped to our space-grid using linear interpolation.
The same is done for the relative volatility and the liquid and gas flows. To estimate the
hold-ups as discussed previously, we use a linearly increasing temperature profile to interpo-
late the boundary values given by Hysys. The pressure varies of only about 1% along the
column, thus we consider it as constant. Pressure and temperature values are summarized
in Table 4.1. For each case, σV is estimated according to (4.15) and the values of this table.
The space-step is 10cm. The value of ǫ is adapted to each case to match the top liquid molar
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Figure 4.4: Liquid (blue) and gas (red) molar flow profiles in HP column for case B. Vertical
grey lines indicate the junctions between homogeneous packed sections.
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Figure 4.5: Liquid (blue) and gas (red) molar flow profiles in HP column for case C. Vertical
grey lines indicate the junctions between homogeneous packed sections.
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Case Pressure (bar) Bottom temperature (K) Top temperature (K)

A 5.7 100 95

B 5.67 100 95.5

C 5.4 98.7 95

Table 4.1: Pressure and temperature values used to simulate the static cases with the PDE
model
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Figure 4.6: Comparison of the lumped component molar fraction profiles in HP column, case
A. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid: zero-order term of the
static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey lines indicate the
junctions between homogeneous packed sections.

fraction of the lumped component. We take σL = L
µL

, with the same µL for each case. The
best fits between Hysys and the PDE model are obtained with the following values:

µL = 0.4 m.s−1,

{
λL = 20 Nm3.s−1.m−1,
λV = 10λL,

ǫ =





0.226 for case A,
0.225 for case B,
0.246 for case C.

Figures 4.6, 4.7 and 4.8 illustrate the molar fraction profiles obtained with the PDE model for
the three cases. Figures 4.9, 4.10 and 4.11 display the same results in log-scale, to illustrate
the good match with the Hysys model also in the high-purity region. Figures 4.12, 4.13 and
4.14 display the liquid and gas hold-up profiles obtained for each case.

Note that the value µL = 0.4m/s is highly different from the expected 0.08m/s. Here in
the static simulations, the liquid speed plays no role; this result might indicate that only a
small amount of the liquid hold-up actually participates to the separation process. Note also
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Figure 4.7: Comparison of the lumped component molar fraction profiles in HP column, case
B. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid: zero-order term of the
static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey lines indicate the
junctions between homogeneous packed sections.
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Figure 4.8: Comparison of the lumped component molar fraction profiles in HP column, case
C. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid: zero-order term of the
static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey lines indicate the
junctions between homogeneous packed sections.
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Figure 4.9: Comparison of the lumped component molar fraction profiles (in log scale) in HP
column, case A. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid: zero-order
term of the static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey lines
indicate the junctions between homogeneous packed sections.
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Figure 4.10: Comparison of the lumped component molar fraction profiles (in log scale) in HP
column, case B. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid: zero-order
term of the static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey lines
indicate the junctions between homogeneous packed sections.
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Figure 4.11: Comparison of the lumped component molar fraction profiles (in log scale) in HP
column, case C. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid: zero-order
term of the static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey lines
indicate the junctions between homogeneous packed sections.
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Figure 4.12: Linear molar hold-ups obtained with the PDE model for case A. Blue: liq-
uid hold-up σL. Red: gas hold-up σV . Vertical grey lines indicate the junctions between
homogeneous packed sections.
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Figure 4.13: Linear molar hold-ups obtained with the PDE model for case B. Blue: liq-
uid hold-up σL. Red: gas hold-up σV . Vertical grey lines indicate the junctions between
homogeneous packed sections.
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Figure 4.14: Linear molar hold-ups obtained with the PDE model for case C. Blue: liq-
uid hold-up σL. Red: gas hold-up σV . Vertical grey lines indicate the junctions between
homogeneous packed sections.
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Figure 4.15: Comparison of the lumped component molar fraction profiles in HP column,
case A, with the theoretical value µL = 0.08m/s. Blue: liquid phase, red: gas phase. Circles:
Hysys values, solid: zero-order term of the static outputs, dashed: static-outputs up to order
1 in ǫ. Vertical grey lines indicate the junctions between homogeneous packed sections.

that the liquid hold-ups we obtain are comparable to the gas hold-up, which runs counter
the frequent assumption σV << σL. Another explanation could be drawn from Fig. 4.15
showing the obtained composition profiles with µL = 0.08m/s in case A. As one can see, the
Hysys /PDE-model mismatch is essentially located in the middle subsection, where reflux
rate is highly different from the top and bottom subsections. This might indicate that the
theoretical tray height varies depending on the considered subsection, contrary to our initial
assumption. ǫ (here 0.31) is the same for the whole column, so the only subsection-depending
parameter we can adjust in the PDE-model is σL, by tuning the value of µL. Hence the
observed discrepancy µL 6= VL = 0.08m/s. In the following, we keep µL = 0.4m/s.

Hysys simulations use a ternary mixture model, thus the volatility of the lumped pseudo-
component depends on a varying proportion of O2 and Ar. This information is lost when
straightly using a binary mixture as we do for the PDE model. Thus we have to check if,
without changing the hydraulic estimations, one still obtains a reasonable approximation of
the Hysys profiles with α constant along s. The resulting estimated profiles are depicted on
Figures 4.16, 4.17 and 4.18. The value taken for α is the mean of the Hysys relative volatility
over the bottom packed section. One obtains the illustrated results with

α =





0.395, case A
0.396, case B
0.392, case C

, ǫ =





0.289, case A
0.294, case B
0.353, case C
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Figure 4.16: Comparison of the lumped component molar fraction profiles in HP column
with constant α, case A. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid:
zero-order term of the static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey
lines indicate the junctions between homogeneous packed sections.

Note that at the bottom of the column, the oxygen/argon ratio is large and stable, thus the
volatility of the pseudo-component is close to the oxygen’s and less subject to variations than
at the top of the column.

The discrepancy between the Hysys and PDE models is limited for cases A and B, yet
more concerning in case C. This can be easily apprehended in terms of molar-fraction wave-
speeds. X being small over the top packed section, one can take k′(X) = α over this region.
Thus, neglecting the diffusion for the moment, the molar fractions profile would behave as a
traveling wave with speed

w0 =
−L + V α

σL + ασV
< 0.

The estimation α̃ we use is inferior to the α predicted by Hysys over the top packed section.
Thus we obtain in first approximation a speed

w̃ =
−L + V α

σL + ασV
− (α− α̃)

L + V σL
σV

σV

(
σL
σV

+ α
)2 = w0 −∆w, ∆w > 0.

The wave obtained with the PDE model is then more repelled from the top boundary than
in the Hysys model. This means that the PDE model predicts less undesirable oxygen at
the top of the column than Hysys . We have to compensate by increasing the diffusion, to
allow more O2 to reach the top of the column by diffusion, against the increased downwards
convection. This explains the increase of ǫ from 0.246 to 0.353 in case C, for instance. Yet the
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Figure 4.17: Comparison of the lumped component molar fraction profiles in HP column
with constant α, case B. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid:
zero-order term of the static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey
lines indicate the junctions between homogeneous packed sections.
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Figure 4.18: Comparison of the lumped component molar fraction profiles in HP column
with constant α, case C. Blue: liquid phase, red: gas phase. Circles: Hysys values, solid:
zero-order term of the static outputs, dashed: static-outputs up to order 1 in ǫ. Vertical grey
lines indicate the junctions between homogeneous packed sections.
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Figure 4.19: In case C, molar fractions in the bottom packed section are correctly estimated
with a constant α, if no change is made on ǫ. Blue: liquid phase, red: gas phase. Circles:
Hysys values, solid: zero-order term of the static outputs, dashed: static-outputs up to order
1 in ǫ. Vertical grey lines indicate the junctions between homogeneous packed sections.

variation of ǫ impacts also the bottom packed sections, where there is less ∆w to compensate.
Consequently, the oxygen molar fraction will unduly increase in these regions. In addition,
since case C has about 30% less liquid than other cases in the top packed section, ǫ has to
change more to compensate a bigger ∆w. Hence a greater discrepancy in case C in the bottom
packed section. Figure 4.19 shows that using the constant α with the value of ǫ previously
used for simulation with a s-dependent α allows retrieving a correct estimation of the molar
fractions over the bottom packed sections. Yet, at shown on Fig. 4.20, this is at the expense
of the accuracy over the high-purity domain.
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Figure 4.20: In case C, using a constant α, without changing ǫ yields overestimated purifi-
cation at the top of the HP column. Blue: liquid phase, red: gas phase. Circles: Hysys

values, solid: zero-order term of the static outputs, dashed: static-outputs up to order 1 in ǫ.
Vertical grey lines indicate the junctions between homogeneous packed sections.
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4.5 Dynamic operation scenario

The dynamic scenario we use is based on a 10 hours record of the air separation plant op-
eration, on July 4th 2011, from 10 AM to 10 PM. Figure 4.21 shows the input and output
flows of the HP column during the scenario. Gas and liquid flows from V03 (as well as
the corresponding molar fractions) are obtained by considering an isenthalpic flash (Joule-
Thomson expansion) of the incoming liquid air, whose composition, temperature and pressure
are known, down to the pressure of the HP column (shown on Fig. 4.22).

Since our model assumes equal heats of vaporization for all the components, the internal
re-vaporization of the liquid, which can be seen for example on the Hysys plots 4.3, 4.4, 4.5,
will not appear. To account for the increase of reflux rate due to this effect, we add to Vair at
the bottom of the column a fictive amount of gas ∆V . An equivalent quantity is subtracted to
the liquid at the bottom. We take ∆V = 0.07Vair , which is reasonable according to Hysys (in
case A, the gas flow increases of 7.6% of its value at the bottom because of re-vaporization; in
case B, the increase is of 7.4%, in case C, 6.3%). Figure 4.23 shows the internal flows obtained
this way. These internal flows are more similar to those obtained for cases A-B, rather than
case C. Consequently, when borrowing estimated parameters from the static cases, we will
take them from case A.

The column is equipped with a top O2 concentration analyzer whose span is 0-10 ppm.
The typical resolution of such an analyzer is about 0.1 ppm. This analyzer measures the O2

gas molar fraction at the level of the liquid nitrogen draw. Figure 4.24 shows the estimation
given by the analyzer.

The oxygen molar fraction not to be exceeded in operation is 1 ppm at the top of the
column. It can hardly be 6 × 10−9 as indicated by the analyzer’s signal, because this would
require about 2 m of supplementary packing according to Fig. 4.25. Then is is reasonable to
consider that the top oxygen molar fraction is only some 0.1 ppm below the 1 ppm threshold;
yet the molar fraction of the pseudo-component O2, Ar, estimated by the binary PDE-model,
should be round 1 ppm. It also means that the top analyzer is here of little use for parameter
estimation.

A second analyzer is located at the level of the lean liquid draw. It measures the O2 molar
fraction in the gas. The expected molar fraction is only a few percents, which is in the span
of the analyzer (0 to 100 %). Figure 4.26 shows the measured molar fraction.
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Figure 4.21: Input and output molar flows for the dynamic scenario. Solid red: air inlet flows
Vair, solid blue: Lean Liquid draw LLL

HP , dotted blue: liquid flow from V03 LV 03→, dashed

blue: liquid drawn on top for production Lprod
HP , dotted red: gas flow from V03 VV 03→.
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Figure 4.22: Internal pressure of HP column. This pressure is measured at the top of the
column, and is assumed to be constant along s since the pressure drop given by Hysys is
only of 5.5 mbar.
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Figure 4.23: Internal gas and liquid molar flows. Solid blue: liquid molar flow averaged over
the top section. Dashed blue: liquid molar flow averaged over the middle section. Dotted
blue: liquid molar flow averaged over the bottom section. Solid red: gas molar flow over the
top and middle section. Dotted red: gas molar flow over the bottom section.
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Figure 4.24: Estimation of top O2 molar fraction given by the corresponding analyzer.
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Figure 4.25: Semilog plot of the Oxygen (circles) and Argon (crosses) composition profiles
estimated by Hysys in the static case A. The space-scale is obtained on the basis of an
invariant theoretical tray height.
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Figure 4.26: Measure of O2 molar fraction in the gas phase, in front of the lean liquid draw.
The molar fraction is in %.

4.6 Dynamic simulation

We play the scenario using a 0.1m space-step and a 0.1s time-step. The following values are
directly borrowed from the simulation of the static case A:

µL = 0.4m/s, α = 0.395, ǫ = 0.289,

In other words, the value of ǫ is the one that preserves the top composition in the static
reference case, in spite of the constant α. We take VL = 0.08m/s for the liquid speed.
Figure 4.27 illustrates the molar fractions estimated by the model at top. The values are
close to the 1 ppm threshold, as expected. As shown on Figure 4.28, this estimation at the
Lean Liquid draw point coincides with the measurements in terms of magnitude, but with an
advance of about 15 min, as visible on the zoomed Fig. 4.29.

The time-shift can be corrected by decreasing the liquid speed to VL = 0.02m/s, as
shown on Fig. 4.30 and 4.31. Comparing these figures with the previous ones, it appears that
the change on VL slightly affects the shape and the amplitude of the estimated composition
variations, since it impacts the constructive or destructive interplay between the various feeds
and draws of the column. The same effects apply to the top estimated composition, as shown
on Fig. 4.32.

Since our reference signal at the Lean Liquid draw point is provided by an analyzer, one
could imagine that the observed 15 min time-shift is partially due to the transport delay of
the sample, from the column to the distant analyze bay. In that case, it is not the estimation
which is in advance, but the reference which is delayed. It is yet unlikely that this phenomenon
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Figure 4.27: Composition estimation at top of the HP column with ǫ = 0.289 . Blue: X.
Red: k(X). Dashed red: x = y. Grey: contractual threshold. Black: analyzer.
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Figure 4.28: Composition estimation at the lean liquid draw point with ǫ = 0.289. Blue: X.
Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.

is responsible for the whole delay. In addition, in [21], the liquid descent time is reported to
be round 500-700 s for an APSA T7 column (total height: 11m, packed height: 8m). This
yields VL ∈ [0.01, 0.016]m/s. And yet, this value is found using the liquid level transmitter
at the bottom of the column, which introduces no measurement delay. In addition, one shall
consider that the liquid flow / column diameter ratio of the APSA is similar to the HP column,
so that the scale of the plant plays a limited role. Moreover, both the APSA and the HP
column diameter are large enough to limit the impact of the rim on the hydraulics.

Both the APSA and the HP column include three liquid distributors, which could act as
liquid buffers, decreasing the liquid average speed over the whole column (the experimental
0.02 m/s) while the liquid speed inside the packing (the theoretical 0.08 m/s) remains large.
In [35] a distributor with dimensions and operating conditions similar to the HP column case
is reported to hold 0.06 m of liquid. Its diameter is 3.5m, its total height is 0.35 m and the
entering liquid flow is about 0.023m3/s (15Nm3/s). This yields a liquid dwell-time3

τL =
1

2

0.06 ∗ π ∗ 3.52

4

0.023
≃ 12.5s

which does not explain the observed time-shift. Sufficient buffering effects are only obtained
with unrealistic retention height of the order of 1m. Simulations including simplified distrib-
utors dynamics based on Torricelli’s relation and the numerical values from [35] yields to the
same conclusion.

3the factor 1/2 in the calculation arises from the corrugated geometry of the distributor: half of its section
holds liquid, while the remaining half is dedicated to gas circulation.
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Figure 4.29: Composition estimation at the lean liquid draw point with ǫ = 0.289 (zoom of
Fig. 4.28 between 3 and 5 h). Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black:
analyzer (almost zero).
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Figure 4.30: Composition estimation at the lean liquid draw point with ǫ = 0.289, VL =
0.02m/s. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.

Let us add that a certain dispersion regarding the liquid velocity also exists in the liter-
ature. For instance, [94] models a packed column with 19 equivalent trays (the equivalent
tray height is 0.3 m). A liquid flow variation at the top of the column is fully transmitted to
the bottom in about 75 s, which yields a liquid speed round 0.076 m/s. On the contrary, [46]
and [47] use a tray hydraulic equation Li = kdMi, where Li stands for the liquid flow on
tray i, Mi is the corresponding hold-up, and kd = 0.5min−1 is tuned from empirical data.
Considering a classical equivalent tray height of 0.3 m, one obtains a liquid speed round
0.01m/s.

In the following, we will use the empirically satisfying value VL = 0.02 m/s. Note yet that
a larger liquid speed, as long as it does not excessively distort the composition estimation, may
permit to use the PDE-model as a concentration predictor with a significant time advance,
which could be of some use for feed-forward control strategies. To the limit, one could envisage
instant liquid propagation as illustrated on Fig. 4.33, 4.34.

As for the static simulations, using a smaller ǫ (0.226 according to static case A) dramati-
cally decreases the estimated top composition, whereas the estimation at the lean liquid level
draw is little impacted. The corresponding simulations are depicted on Fig. 4.35 and 4.36.

As mentioned earlier, we use a linear relation between the liquid hold-up and the liquid
flow: σL = L

µL
. Until now, the simulations have been done with µL = 0.4m/s, empirically

determined with the static simulations. This yields to a typical value σL = 50Nm3/m at
the top of the column. Using µL = 0.08m/s (the theoretical liquid velocity) yields σL =
250Nm3/m, which is in accordance with the packing capacity estimation. Finally, taking
µL = 0.02m/s (the empirically selected liquid velocity) gives a huge σL = 1000Nm3/m.
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Figure 4.31: Composition estimation at the lean liquid draw point with ǫ = 0.289, VL =
0.02m/s, (zoom of Fig. 4.30 between 3 and 5 h). Blue: X. Dashed blue: x. Red: k(X).
Dashed red: y. Black: analyzer.
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Figure 4.32: Composition estimation at the top of HP column with ǫ = 0.289, VL = 0.02m/s.
Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer (almost zero).
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Figure 4.33: Composition estimation at top of the HP column with ǫ = 0.289 and instant
liquid propagation. Blue: X. Red: k(X). Dashed red: x = y. Grey: contractual threshold.
Black: analyzer (almost zero).
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Figure 4.34: Composition estimation at the lean liquid draw point with ǫ = 0.289 and instant
liquid propagation. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.

Figures 4.37, 4.38, 4.39 and 4.40 illustrate the simulation results with these two last values of
µL. As one can see, taking µL = 0.4m/s or 0.08m/s has almost no impact on the composition
estimation at the Lean Liquid draw point. On the contrary, µL = 0.02m/s significantly
dampens the composition variations at the same point, which leads us to reject this value.
At the top of the column, taking µL = 0.08m/s instead of 0.4m/s causes a large decrease
of the estimated O2 molar fraction. This makes the simulation more coherent with the top
analyzer measures, which yet have to be considered with caution, as said previously. Favoring
the static simulation, we will keep using µL = 0.4m/s. Again, the results might suggest that
the amount of liquid effectively participating to the separation dynamics is different from the
total quantity held by the packing.

By the way, the estimated compositions are particularly little sensitive to the changes
on σL, σV which preserve the σL/σV ratio - provided that the total hold-up σL + σV is
small enough. Figure 4.41 illustrates the impact of a +/- 50 % variation of the distributed
values used for σL, σV (simultaneously) on the estimated O2 compositions at the lean liquid
draw point. Figures 4.42 depicts the impact of the same variations over the whole composition
profiles. Not that the result holds when only one subsection is affected, as depicted on Fig. 4.43
and 4.44, where the changes concern the central subsection only.

This result has to be connected to the discussion in Section 2.4: for such a variation which
preserves the σL/σV ratio, the steady-state solution for X as well as the corresponding static
outputs x and y are unchanged (up to O(ǫ2)). It seems that the system operates in quasi-static
regime as far as the separation dynamics are concerned. That is, at any instant t, the compo-
sition profiles are close to the steady-state profiles corresponding to (fictional) still-standing
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Figure 4.35: Composition estimation at top of the HP column with ǫ = 0.226, VL = 0.02m/s.
Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer (almost zero).
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Figure 4.36: Composition estimation at the lean liquid draw point with ǫ = 0.226, VL =
0.02m/s. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.

liquid and gas distributions L(s) = L(s, t), V (s) = V (s, t). The compositions dynamics are
thus essentially dictated by the hydraulics. In connection with this, Fig. 4.45(top) shows
that with nominal values for the hold-ups, liquid speed mainly dominates the compositions
convection speed (we recall that the gas speed is assumed infinite). The same figure (bottom)
shows the detectable damping of the estimated composition variation at the Lean Liquid draw
point, due to a large variation of σL and σV , which causes the compositions convection speed
to approximate or dominate the liquid speed.

Figure 4.46 displays the envelope of variation of the estimated liquid and gas composition
profiles during the 10h scenario4. The superimposition of the Hysys static profiles confirms
what was stated at the beginning of the section: the column operates within a region bounded
by the static cases A and B. For these cases, the values of ǫ were close one to each other, thus
a steady ǫ is sufficient for the dynamic scenario.

For scenarios exploring a broader variety of operating conditions, an adaptive ǫ is of some
use. See for instance Fig. 4.47, where the scenario is played on a longer time period (40h
instead of 10). Note that after 13h the estimated composition in the gas starts diverging
from the analyzer’s measures (yet the oscillations are still synchronized and their amplitude
remains satisfying).

The diffusion parameter ǫ can be slowly adapted to resorb these divergences. In the

4By the way, one clearly sees that the profiles estimated by our model does not behave as wave-model
profiles : the envelope is obtained by a combination of translations and billowing, rather than translations
only, of the original profile
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Figure 4.37: Composition estimation at the lean liquid draw point with ǫ = 0.289, VL =
0.02m/s, and µL = 0.08m/s. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black:
analyzer.
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Figure 4.38: Composition estimation at top of the HP column with ǫ = 0.289, VL = 0.02m/s,
and µL = 0.08m/s. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.
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Figure 4.39: Composition estimation at the lean liquid draw point with ǫ = 0.289, VL =
0.02m/s, and µL = 0.02m/s. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black:
analyzer.
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Figure 4.40: Composition estimation at top of the HP column with ǫ = 0.289, VL = 0.02m/s,
and µL = 0.02m/s. Blue: X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.
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Figure 4.41: Relative variation of the estimated compositions at the top of the column (top)
and at the lean liquid draw point (bottom) when σL, σV vary with respect to their nom-
inal values (obtained using µL = 0.4m/s). Simulation with ǫ = 0.289. The black beam
corresponds to a - 50 % variation of the hold-ups; the grey beam corresponds to a + 50 %
variation.
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Figure 4.42: Relative variation of the estimated compositions profiles when σL, σV vary
with respect to their nominal values. Simulation with ǫ = 0.289 fixed, snapshot taken at
t = 10h. The highest beam corresponds to a + 50 % variation of the hold-ups; the lowest
beam corresponds to a - 50 % variation. Solid blue: X, solid red: k(X), dashed blue: x,
dashed red: y.
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Figure 4.43: Relative variation of the estimated compositions at the top of the column (top)
and at the lean liquid draw point (bottom) when σL, σV vary with respect to their nominal
values in the central subsection. Simulation with ǫ = 0.289. The black beam corresponds to
a - 50 % variation of the hold-ups; the grey beam corresponds to a + 50 % variation.
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Figure 4.44: Relative variation of the estimated compositions profiles when σL, σV vary with
respect to their nominal values in the central subsection. Simulation with ǫ = 0.289 fixed,
snapshot taken at t = 10h.The highest beam corresponds to a + 50 % variation of the hold-
ups; the lowest beam corresponds to a - 50 % variation. Solid blue: X, solid red: k(X),
dashed blue: x, dashed red: y.
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Figure 4.45: Top: Comparison of the liquid and composition convection velocity for various
hold-ups, at t = 10h. Solid: σL and σV at their nominal values. Dash-dotted: σL and σV

at 1.5 times their nominal values. Dotted: σL and σV at 10 times their nominal values. The
grey band bounds are −VL, +VL. Bottom: Damped composition variations obtained with σL

and σV at 10 times their nominal values. Blue: X. Dashed blue: x. Red: k(X). Dashed red:
y. Black: analyzer.
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Figure 4.46: Envelope of variations of the liquid (pale blue) and gas (pale red) oxygen molar
fraction profiles during the dynamic scenario with ǫ = 0.289. Static Hysys profiles for cases
A (solid), B (dashed), C (dash-dotted) are superimposed. Vertical gray lines indicate the
junctions between packed sections.
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Figure 4.47: Composition estimation at the lean liquid draw point with ǫ = 0.289 for the
40h scenario. Only the gas compositions are displayed. Red: k(X). Dashed red: y. Black:
analyzer.

following, we dynamicly adapt ǫ using:

dǫ

dt
=

1

Ti

ŷO2(t)− yO2
(t)

yO2
(t)

, (4.16)

where ŷO2(t) is the estimation given by the model at the lean liquid draw point and yO2
(t) is

given by the analyzer. The time constant is set at Ti = 1h, which is fast enough to correct the
estimations, as shown on Fig. 4.48, while remaining coherent with the timescale of the plant
operating conditions. Figure 4.49 shows the adaptive diffusion parameter; one can observe
that ǫ is also continuously struggling to compensate for small time-shifts between the measure
and the estimation (hence the variations in the 0 - 10h interval, whereas we have seen that
a constant ǫ was satisfying there). A better handling of the time-shifts between the various
inputs of the model, and a time-varying liquid speed may help reducing this effect. As shown
on Fig. 4.50, the variations of ǫ are at the expense of large transients in the top composition
estimation.

Figure 4.51 displays the envelope of variation of the estimated liquid and gas composition
profiles during the 40h scenario with adaptive ǫ. The envelope is effectively broader than
in the non-adaptive 10h scenario; the closed-loop estimation ensures robustness towards a
broader range of operating conditions.

This robustness can be checked on a number of dynamic scenarios, but also proves limited
for some others. For the sake of brevity, the figures and statistics related to these multiple
scenarios are moved in Appendix C. It turns out that three main clusters can be distinguished
in the scenario pool (see Table 4.2). The first one corresponds to a high level of production,
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Figure 4.48: Composition estimation at the lean liquid draw point with adaptive epsilon.
Only the gas compositions are displayed. Red: k(X). Dashed red: y. Black: analyzer.
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Figure 4.49: Adaptive diffusion parameter during the 40h scenario.
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Figure 4.50: Composition estimation at the top of the column with adaptive epsilon. Blue:
X. Dashed blue: x. Red: k(X). Dashed red: y. Black: analyzer.
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Figure 4.51: Envelope of variations of the liquid (pale blue) and gas (pale red) oxygen molar
fraction profiles during the 40h dynamic scenario with adaptive ǫ. Static Hysys profiles for
cases A (solid), B (dashed), C (dash-dotted) are superimposed. Vertical gray lines indicate
the junctions between packed sections.
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Cluster Scenarios

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

2 12, 13, 14, 17

3 15, 16

Table 4.2: Classifications of the dynamic scenarios in three clusters

with operating conditions comparable to the static cases A and B. For this cluster, the model
shows satisfying results, similar to those discussed in this chapter. The second cluster corre-
sponds to a reduced operation mode, where the plant was operated at low production level
with one air compressor only. For this cluster, the model is unable to render the composition
measured at the Lean Liquid draw point, in spite of a dramatically decreased ǫ. It yet still
renders the composition oscillations, in a synchronized, though damped, manner. The third
cluster is between the previous ones: the unit is operated with two compressors as in cluster
1, yet with lower production rates. For this cluster, the estimations may be satisfying, but
are at the price of a small ǫ parameter, and ultimately some divergences will appear as in the
cluster 2.

An overestimation by 10% has been reported for the measurements given by one of the
plant’s flowmeters. The presented simulations take the correction into account; yet it seems
legitimate to investigate the sensitivity of the HP column simulation to changes of the same
magnitude on the input and output flows. All the more that the flowmeters installation is
reported to be an issue on the investigated plant (the straight pipe section on the upward
side of some flowmeters is not long enough, which can make the measured flow turbulent and
deteriorate the result). We choose one of the problematic scenarios in the 3rd cluster as an
example. Indeed, we obtain for this scenario a reflux rate of about 0.25 in subsection 2, which
seems too little. And one clearly sees on the envelopes plotted on Fig. C.15 or C.16 that
the simulated profiles seems pushed too strongly against the junction between subsections
2 and 3. One tries to compensate by decreasing ǫ, making the profile very stiff, whereas
changing the composition wave speed in subsection 2 seems more reasonable. We focus on
the lean liquid draw flow, since it seems to have the more impact on the composition profile.
In the case of scenario 15, it turns out that one can not recover the expected composition
at the lean liquid draw point with less than a 40% diminution of the lean liquid flow (with
this correction, we obtain a reasonable 0.4 reflux rate in subsection 2). Results with this
correction are depicted on Fig. 4.52 (composition at the lean liquid draw location), 4.53
(adaptive parameter ǫ) and 4.54 (envelopes of variation of the profiles). Consequently, the
decreased model performances for cluster 2 or 3 can hardly be explained by flow measurement
biases only. For the moment, we have no satisfying alternative explanation to propose.

4.7 Transfer functions model

We have developed in Chapter 3 a linear tangent model connecting the composition variations
at both ends of an homogeneous packed section to the variations of the inlet compositions and
flows. We have seen that we have to distinguish the cases where the composition convection
speed is upwards or downwards.

Based on this model, we aim to build a complete representation of the HP column, in
order to reproduce the small oscillations of the Lean Liquid composition around an almost
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Figure 4.52: Composition estimation at the lean liquid draw point during the 40h scenario
n◦15 with adaptive epsilon and 40% decrease of the lean liquid draw. Red: k(X). Dashed
red: y. Blue: X. Dashed blue: x Black: analyzer.
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Figure 4.53: Adaptive diffusion parameter during the 40h scenario n◦15 with 40% decrease
of the lean liquid draw

177



Position on s-axis (m)

M
o

la
r 

fr
a

c
ti
o

n
s

0 2 4 6 8 10 12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position on the column axis (normalized abscissa)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

Figure 4.54: Envelope of variations of the liquid (pale blue) and gas (pale red) oxygen molar
fraction profiles during the 40h dynamic scenario n◦15 with adaptive ǫ and 40% decrease of
the lean liquid draw. Static Hysys profiles for cases A (solid), B (dashed), C (dash-dotted)
are superimposed. Vertical gray lines indicate the junctions between packed sections.

178



stabilized set-point. Contrary to the simulations using the PDE model which addressed long
time intervals, we focus here on shorter time periods, of the duration of a couple of oscillations.

The model is built following the chart given on Fig. 4.55. The top and bottom subsections
are simulated using the downwards speed case, whereas the central subsection 2 uses an
upwards speed block. The composition variation at the bottom inlet of subsection 3 is 0,
since it is fed with atmospheric air of constant composition.

The ‘liquid mixing block’ and ‘gas mixing block’ respectively embed the following equa-
tions:

δx0,3 =

(
LV 03→ + δLV 03→

)
xV 03→(p)

LV 03→ + δLV 03→ + L2 + δL1e(θ1+θ2)p

+

(
L2 + δL1e

(θ1+θ2)p
)
(xh,2 + δxh,2)

LV 03→ + δLV 03→ + L2 + δL1e(θ1+θ2)p
− x0,3,

δyh,2 =

(
V 3 + δVair

) (
yh,3 + δyh,3

)

V 3 + δVair + V V 03→ + δVV 03→

+

(
V V 03→ + δVV 03→

)
yV 03→(p)

V 3 + δVair + V V 03→ + δVV 03→

− yh,2,

where the bars indicate the set-point values and the δ the variations. The molar fractions
yV 03→(p) and xV 03→(p) in the flows exiting the flashpot V03 are obtained as for the PDE
model by simulating a isenthalpic flash in the pot.

Delays θ1 and θ2 correspond to the liquid propagation in subsections 1 and 2:

θ1 =
h1

VL,1 (σL,1 + σV,1)
, θ2 =

h2

VL,2 (σL,2 + σV,2)
.

The HP column transfer functions model is tested on a different scenario than the PDE
model, to be closer to a stabilized functioning. We use the scenario n◦3 of our pool (see
Appendix C). The whole scenario can be simulated using the linear model yet this is not its
purpose. In addition, the HP column transfer model is implemented using buffer initialized
with zeros; it thus yields irrelevant results for the first instants of the scenario. Moreover, we
intend to compare the linear model to the PDE model, which has its own initialization time.
Consequently, in the following, the first hours of the scenario are not displayed, to get rid of
the initializations.

The numerical values we used for the linear model parameters are summarized in Table 4.3
and 4.4. Values in Table 4.4 correspond to input/output flows and input compositions at the
beginning of the scenario. The value of ǫ and VL are directly taken from the PDE model
settings. Other values in Table 4.3 are directly taken from the simulation results of the PDE
model at the steady-state defined by Table 4.4. In particular, L is obtained as the mean of
L(s) over each section in the PDE model, after stabilization. We follow the same procedure
for V , σL and σV . G is calculated as the mean, over each section, of the s-dependent term
Gk−1/k in the PDE model, defined by (4.5).

Figure 4.56 shows variations of the input and output flows of the HP column over 10 hours
of the scenario (from 2h to 12h), with respect to their initial value. In a first time, the PDE
model is used with ǫ fixed (ǫ = 0.226).

We are interested in the oscillations of the Lean Liquid composition, which we retrieve
with our model as the small variation α1δxh,1. Short-term comparison with the measured
composition is shown on Fig. 4.57. The linear model reproduces well the first oscillation (from
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Parameter Unit Section 1 Section 2 Section 3

α N/A 0.4 0.45 0.5

ǫ N/A 0.226 0.226 0.226

G Nm3s−1/m 16.37 9.30 16.37

VL m/s 0.02 0.02 0.02

σL + σV Nm3/m 150 120 130

X0 N/A 10−7 0.037 0.244

Xh N/A 0.037 0.244 0.4

x0 N/A 7.10−8 0.031 0.243

yh N/A 0.0195 0.1154 0.21

L Nm3/s 25.5 12.5 17.5

V Nm3/s 29 29 27.5

Table 4.3: Section depending parameters for the transfer functions model.

Parameter Unit Value

V air Nm3/s 25.73

V V 03→ Nm3/s 1.77

LV 03→ Nm3/s 5.24

L
prod
HP Nm3/s 4.06

L
LL
HP Nm3/s 13.15

xV 03→ N/A 0.22

yV 03→ N/A 0.10

Table 4.4: Global parameters for the transfer functions model.

2h to 3.5h), and the shorter bumps (for instance, between 4h and 4.5h) are reproduced in a
synchronized yet amplified manner with respect to the PDE model. Since the linear model is
synchronized with the PDE model, it has the same time-advance with respect to the measure.
As for the PDE model, tuning the liquid speed allows modifying this time-shift; yet it also
affects the interplay between the liquid and gas inputs and outputs, and can dramatically
change the pattern of the simulated oscillations. There is a natural filtering effect on the
measured compositions, which is not present in our linear model, since at the chosen order
(order 0 in ǫ), it only comprises delayed direct transfers.

On the long term (see Fig. 4.59), a slow varying bias appears between the measure and the
models. As for the PDE model, this bias can be reduced by adapting the diffusion parameter
ǫ. Figure 4.60 shows the results when ǫ is injected as a time-varying parameter in the linear
transfer model of the HP column. Its value is estimated in real time by the PDE model,
which runs in parallel, using (4.16).

One can check that the simulated composition at the top of the column (α1 (x0,1 + δx0,1))
is reasonable regarding its mean value (see Fig. 4.58). More interesting, the linearized tangent
model approximately reproduces the oscillations estimated by the non-linear PDE model, yet
with dramatically reduced amplitude and a large time-advance of about 30 minutes. The
latter is problematic, since in the transfers between the inputs and the composition variation
at top, there is no delay, and thus, no way to synchronize the estimations.

Using the transfer functions obtained for the subsections in the upward and downward
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Figure 4.56: Variations of the inlet/outlet flows and input compositions of the HP column
during the 10 hours scenario (from 2h to 12h), with respect to their initial value. Top:
variations of the inlet flows (solid red: air inlet flows Vair, dotted red: gas flow from V03
VV 03→, dotted blue: liquid flow from V03 LV 03→). Center: variations of the outlet flows

(solid blue: Lean Liquid draw LLL
HP , dashed blue: liquid drawn on top for production Lprod

HP ).
Bottom: variations of O2 molar fraction in the flows leaving the flashdrum V03 (red: in gas,
blue: in liquid).
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Figure 4.57: Simulated and measured composition in gas at the Lean Liquid draw location.
Blue: according to the PDE model with ǫ = 0.226. Red: according to the transfer functions
model. Black: measured.

Figure 4.58: Simulated composition atop the column. Blue: according to the PDE model
with ǫ = 0.226. Red: according to the transfer functions model. Two composition scales are
used to emphasize the similarities between the two estimations.
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Figure 4.59: Simulated and measured composition in gas at the Lean Liquid draw location.
Blue: according to the PDE model with ǫ = 0.226. Red: according to the transfer functions
model. Black: measured.
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Figure 4.60: Simulated and measured composition in gas at the Lean Liquid draw location.
Blue: according to the PDE model with adaptive ǫ. Red: according to the transfer functions
model using ǫ from the PDE model as a time-varying parameter. Black: measured.
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cases in Chapter 3 one can obtain the plain expression of the transfers between the inputs
and outputs on Fig. 4.55. For instance, the variation of the oxygen molar fraction in the lean
liquid draw reads:

δXh,1 =
[
Ka + Kbe

−∆1p + Kce
−∆2p + Kde

−θ1p + Kee
−(θ1+θ2)p + Kfe−(θ1+θ2+∆2)p

]
δVair

+
[
Kg + Khe−∆1p + Kie

−∆2p + Kde
−θ1p + Kee

−(θ1+θ2)p + Kje
−(θ1+θ2+∆2)p

]
δVV 03→

+
[
Kke

−∆1p + Kde
−θ1p + Kee

−(θ1+θ2)p + Kle
−(θ1+θ2+∆2)p

]
δLprod

HP

+
[
Kd + Kee

−θ2p + Kme−(θ2+∆2)p
]
δLLL

HP

+
[
Kne−∆2p

]
δLV 03→

+
[
Koe

−∆2p
]
δxV 03→

+
[
Kpe

−∆2p
]
δyV 03→, (4.17)

where the gains Ka, . . . ,Kp depend on the ASU set-point. As said above, the delays θ1

and θ2 respectively correspond to the dwell-time of the liquid in subsections 1 and 2. Delays
∆1 = h1

v1
and ∆2 = h2

v2
correspond to the propagation time of a composition wave, respectively

in subsection 1 and 2.

Let us analyze the first line of (4.17). A small variation occurs on the bottom inlet air
flow, which instantly changes the gas distribution of the whole column. According to Table
3.2, this triggers an immediate liquid composition variation at the bottom of subsection 1,
hence the gain Ka. Also, this triggers a composition change at the top of the column, then a
composition-change wave which travels downwards subsection 1 until it reaches the lean liquid
draw location, hence the gain Kb and the delay ∆1. In subsection 2 the composition speed is
upwards, so this composition wave travels no further. The gas flow change also modifies the
liquid flow in the top condenser, so a liquid flow-change wave also travels down subsection
1, hence the gain Kd and the delay θ1. This hydraulic wave continues in subsection 2 and
reaches its bottom with a delay θ1 + θ2. At this moment, a new reflux profile has established
in subsection 2, which cause a change of the lean liquid composition, hence the gain Ke. Due
to the direction of the composition wave in subsection 3, the hydraulic wave, which continues
propagating downwards, has no more direct influence on the lean liquid composition. Yet,
interacting with the mixing inlet flows from V03, it changes the composition of the gas
leaving subsection 3 to subsection 2. Thus, a composition wave is triggered at the bottom
of subsection 2, which travels upwards until it reaches the lean liquid draw point with total
delay θ1 + θ2 + ∆2 (hence the gain Kf ). Note that as soon as the inlet air flow has been
perturbed, the mixing with gas from V03 has also been directly impacted. This has triggered
an earlier upwards composition-change wave in subsection 2, which has already reached the
lean liquid draw location, and is responsible for the gain Kc and the delay ∆2.

The other input-output transfers can be interpreted the same way. Conversely, given any
distillation column flowchart, one can assess the structure of the transfers by simply analyzing
from Table 3.2 and Table 3.3 how the subsections respond to each other, and how hydraulic
and composition traveling waves are triggered.

185



4.8 Conclusion

The PDE model developed in Chapter 2 has been tested against reference static simulation
cases and real dynamic plant data regarding the High Pressure column. In steady-state, our
model showed good agreement with the static simulations, for various operating conditions
and over a wide span of compositions. Simplifying the model parameters, notably making the
volatilities constant along the column axis, introduced some mismatches. Tuning the diffusion
parameter ǫ allowed to restore the PDE model accuracy over the chosen section of the column.
Tentative to estimate the hold-ups from simple considerations regarding the packing specific
surface and the liquid speed yield unsatisfying results. The PDE model accuracy versus the
static simulations was increased using a smaller liquid hold-up (comparable or inferior to the
gas hold-up), which corresponds to an increased liquid speed. We had then to artificially
uncouple the value of the liquid speed used for the hold-up calculation (µL) from the value
used in the dynamic simulations (VL) for the flow propagation. This discrepancy between
the theoretical and empirically satisfying parameters could indicate that not all the hold-up
participates to the separation, or be a mirage originating from non-constant packing efficiency.

Following the validation of the model on the steady-state cases, we presented a dynamic
scenario made of real data gathered from the industrial plant. We simulated the dynamics
of the HP column using the PDE model in open-loop, and parameters directly borrowed
from the static cases. We obtained satisfying reproduction of the Lean Liquid O2 molar
fraction, which oscillates around 2%, but the estimation was in advance with respect to the
measure. The delay has been resorbed using a slower liquid speed VL (the hold-ups were
unchanged). The empirical value of 0.02m/s is about 5 times smaller than expected. The
discrepancy is only partially explained by the neglected distributors dynamics and the delay
induced by the measurement chain. In parallel, the estimated O2 molar fraction at the top
of the column, where it is supposed to be inferior to 1 ppm, was relevant. It was yet not
possible to firmly validate the model at this location, since the corresponding O2 analyzer on
the plan operates out of its range. We have also shown that the dynamic simulation results
were almost unsensitive to changes on the hold-ups preserving the liquid/gas hold-up ratio.
This similarity with the steady-state may indicate that on the investigated packed column,
the hydraulics largely dominates the local separation dynamics.

We have proposed a basic on-line adaption for the diffusion coefficient epsilon, based on
the estimation error at the Lean Liquid draw location. This on-line tuning allows the PDE
model to satisfyingly estimate the molar fractions at this location over a 40h time period.

The PDE model has then been tested on 17 scenarios, which represent 680 hours of
operations, including functioning with only one of the two air compressors (results are given
in Appendix C). When only one compressor is operating, the PDE model is unable to estimate
the composition of the Lean Liquid. 11 scenarios are satisfying, whereas the remaining ones
are at the limit (Lean Liquid molar fraction intermittently correctly estimated, and with
dubious values for the diffusion parameter ǫ). It seems that the model performances decrease
comes with lowered liquid and gas flows in the column; yet we were not able to propose a
corrective approach.

In Chapter 3, we proposed a transfer functions model for an homogeneous packed subsec-
tion. Based on this block, we built a transfer functions model for the HP column. The goal
was to reproduce the small oscillations of the Lean Liquid composition around an almost sta-
bilized steady-state. The transfer model has been tested against real plant data. Oscillations
are rendered with a small time-varying bias, without further tuning of the model.
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Chapter 5

Application to LP column

Nous poursuivons dans ce chapitre la validation expérimentale du modèle EDP en l’appliquant
à la simulation de la colonne Basse Pression de l’unité de séparation. Le fonctionnement de
cette colonne est brièvement rappelé, et le schéma numérique pour la séparation d’un mélange
binaire présenté au Chapitre 4 est complété avec les conditions aux limites adéquates. La co-
lonne Basse Pression étant aussi le premier élément du procédé de séparation de l’argon, elle
doit être considérée comme le siège d’une distillation ternaire. Aussi le schéma numérique est-
il adapté pour traiter plus de deux composants. Les résultats obtenus avec le modèle EDP (pour
des mélanges binaires ou ternaires) sont d’abord comparés avec les cas statiques de référence
obtenus avec un modèle Hysys à plateaux. La sensibilité de ces résultats par rapport aux
paramètres et données d’entrée est évaluée. Le modèle est particulièrement sensible aux dis-
tributions internes de gaz et de liquide. Nous comparons ensuite le modèle EDP aux données
réelles issues de l’ASU étudiée. Pour ce faire, nous simulons de concert les colonnes MP
et BP en régime dynamique, des modèles simplifiés étant proposés pour inclure un couplage
avec la première colonne argon K10. Les résultats sont satisfaisants pour la teneur en O2 au
sommet de la colonne Basse Pression. Comme attendu, un ventre d’argon apparâıt durant les
simulations. Du fait des grandes incertitudes sur la distribution du liquide, cette structure, de
même que le principal front d’oxygène, n’est cependant pas stable sur le long terme en boucle
ouverte. La simulation en boucle ouverte des compositions au niveau de la jonction K10-BP
s’en trouve donc dégradée. La dernière section du chapitre utilise les équations relatives aux
invariants de Riemann développées à la Section 2.6 en adaptant la théorie de la chromato-
graphie. En nous limitant au phénomène de convection dans notre modèle, nous obtenons
la carte des vitesses des fronts d’ondes de choc dans la colonne BP. Nous proposons alors
une interprétation de la grande sensibilité observée pour les profils de compositions, à l’aide
d’ondes de choc de vitesse nulle. Nous menons une comparaison avec la colonne Moyenne
Pression, où le comportement des profils s’avère différent.

This chapter pursues the experimental qualification of the PDE model by applying it to
the simulation of the Air Separation Unit Low Pressure Column. The functioning of this
column is briefly explained, and the binary-mixture numerical scheme presented in Chapter 4
is extended with the corresponding boundary conditions. Because the Low Pressure Column
is also the first step of the argon extraction process, it shall be considered as the site of a
ternary-mixture distillation. Thus the numerical scheme is adapted to cope with more than
two components. The PDE model results (for binary and ternary mixutres) are first checked
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against static simulation cases obtained with the reference Hysys tray model. The sensitivity
of the PDE model results to the model parameters and input data is evaluated. The model
is found to be particularly sensitive to the liquid and gas flow distribution. The PDE model
is then compared with real data from the ASU. For this, both the HP and the LP column
are dynamically simulated, and simplified models are proposed to include the coupling with
the first argon column K10. The results are satisfying regarding the O2 content at the top
of the LP column. A belly-shaped argon composition profile emerges as expected during the
simulations. Yet due to the large uncertainties regarding the liquid distribution, this structure,
as well as the main O2 composition front, is not stable over long open-loop simulations, which
impedes the open-loop simulation of the compositions at the location of the K10-LP column
connection. The last section of the chapter makes use of the Riemann invariants equations
developed in Section 2.6 by adapting the chromatography theory. Focusing on the convection
phenomenon in our model, one obtains a map of the composition wave-fronts’s speed in the
whole LP column. We then propose an interpretation of the observed high sensitivity of the
composition profile in terms of shock-waves with null or non-null speeds. A comparison is
made with the HP column, where the profiles behave differently.

5.1 Introduction to the LP column

The Low Pressure1 (LP) column is dedicated to the production of high-purity oxygen. The
first step of the argon extraction process also takes place in this structure. The column is
about 30 m high, the total packed height being about 20 m. It is subdivided into 5 packed
subsections2, whose diameter is 3 m, except for subsection n4 (counting from the top) which
is narrower (about 2.5 m diameter). The type of the packing is the same as in the LP column,
and is the same in each subsection. At the bottom of the column, a partial boiler recycles
heat from the total condensation at the top of LP column. As in the previous chapter, we
invite the reader to refer to Fig. A.3 where the tags of sensors and flows used in the following
are plotted on the ASU chart.

The LP column is fed with liquid from the HP column via subsections 1, 2 and 3. A small
amount (around 1%) of the Lean Liquid entering subsection 1 can vaporize and leave with
the rest of the gas flow through the top vent. Liquid flows to enter in subsections 2 and 3
(respectively liquid air from the LP column flash-pot, and oxygen rich liquid from the bottom
of LP column) first pass through flash-pots; thus the column is actually fed with a liquid-gas
mixture, with significant gas/liquid ratio (about 0.15). At the bottom of subsection 4, the
liquid flow is completed with the bottom liquid of the first argon column. The liquid then
accumulates at the bottom of the HP column, where it partially re-evaporates, depending on
the heat-flow obtained by the total condensation at the top of LP column. In parallel, liquid
is drawn off the bath and constitutes the oxygen production of the plant. The evaporated
fraction of the bath rises up to the bottom of subsection 4, where a large amount is deflected
to serve as gas feed at the bottom of the first argon column. In this argon column, the gas
is totally liquefied by the top condenser; thus an almost equivalent amount of gas is obtained
by vaporization of the cooling liquid (coming from the bottom of the HP column). This gas
is sent back to the LP column at the top of subsection 4 to complete the gas flow.

1So designated because it operates only slightly above atmospheric pressure, contrary to the HP column.
2Strictly speaking, there are 6 packed blocks separated by distributors; yet blocks 5 and 6 (counting from

the top) are part of the same functional subsection.
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Contrary to the HP column where oxygen and argon could be thought as a single pseudo-
component, a significant oxygen/argon separation occurs in the LP column. At the bottom of
the column, the oxygen molar fraction is almost 100%, and argon behaves similarly to nitrogen
as a light component. At the top of the column, the dominating component is nitrogen (more
than 95%), and argon behaves as a heavy component, similarly to oxygen. As a result, in the
middle of the column, there exists a region of maximum argon concentration (up to 15-20%)
known as the “bubble” or “belly”. For this column, the ternary dynamic modeling is then
really useful. Indeed, the goal of the process control is to simultaneously maintain a high
argon molar fraction (above 10%) and a low nitrogen molar fraction (typically below 0.1 %)
in the gas feeding the first argon column, while ensuring the purity of the liquid oxygen bath
at the bottom of the LP column.

5.2 Numerical schemes

5.2.1 Numerical scheme for pseudo-binary simulation

The numerical scheme for pseudo-binary simulation of the LP column is similar to the one
used for the HP column. The only differences lay in the boundary conditions.

LP top boundary condition

The top boundary includes a feed with a liquid/gas mixture and the venting of the entire
incoming gas flow. Following the notations of the previous chapter, one has:

Lin(t)xin(t) + Vin(t)yin(t) + V⊕(t)k(X⊕(t)) + ǫG(X(0, t))
∂X

∂s
(0, t)

= L(0, t)X(0, t) + V (0, t)y(0, t).

Discretizing the equation yields:

Xi
0 =

Li
inxi

in + V i
inyi

in + V i
1k(Xi

1) + ǫ
∆z

(
G0/1 − V i

0σL
i
0H0/1

)
Xi

1

Li
0 + V i

0
k(X)i−1

0

Xi−1
0

+ ǫ
∆z

(
G0/1 − V i

0σL
i
0H0/1

) .

Note that according to (4.10), this boundary condition is similar to a matching condition
where V i

⊖ = 0, i.e all the gas is “drawn off” by the vent.

LP bottom boundary condition

The LP column bottom model combines the boundary condition for the distillation equation
(interface between the column and the liquid bath) and the mixing dynamics of the bath.
The corresponding dynamic system reads:

σB
dxb

dt
= L(h, t)x(h, t) − (Lprod(t) + VB(t))xB(t),

L⊖(t)X⊖(t) + VB(t)xB(t) = L(h, t)x(h, t) + V (h, t)k(X(h, t))

+ ǫG(X(h, t))
∂X

∂z
(h, t),
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where σB stands for the amount of liquid stored in the bath, with pseudo-component molar
fraction xB , and VB is the gas flow evaporated from the bath. Lprod is the liquid flow drawn
off the bath for production purposes. We assume that σB is constant since the liquid level is
tightly controlled to a constant value3 by adjusting the production flow Lprod. The system
reads in discrete form:

xi
B =

σB
∆t x

i−1
B + Li

hXi
h − ǫσV

i
hHh−1/h

Xi
h−Xi

h−1

∆s
σB
∆t + V i

B + Li
prod

,

Xi
h =

V i
Bxi

B +
(
Li

h−1 + ǫ
∆s

(
Gh−1/h − σV

i
hLi

hHh−1/h

))
Xi

h−1

Li
h + V i

h
k(Xi−1

h )

Xi−1
h

+ ǫ
∆s

(
Gh−1/h − σV

i
hLi

hHh−1/h

) .

5.2.2 Numerical scheme for ternary simulation

For the ternary simulation, the numerical scheme is intended to provide Xt
k :=

(
Xt

O2,k,X
t
Ar,k

)T

for any k ∈ [0,H] based on Xt−1
k . Following the same linearization procedure than in Chap-

ter 4, the matrix equation (2.66) rewrites in discrete form:

(σL
i
kI2 + σV

i
kJK(Xi

k))
Xi+1

k −Xi
k

∆t
=

Li
k−1X

i
k−1 − Li

kX
i
k
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+
V i

k+1
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


kO2
(Xi
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Xi
O2,k+1

0

0
kAr(Xi

k+1)

Xi
Ar,k+1


Xi
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k

∆s




kO2
(Xi

k)

Xi
O2,k

0

0
kAr(Xi
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Xi
Ar,k


Xi

k

+ ǫGk−1/k

Xi
k−1 −Xi

k

∆s2
+ ǫGk/k+1

Xi
k+1 −Xi

k

∆s2
(5.1)

where I2 is the 2 × 2 identity matrix. We recall that JK(Xi
k) stands for the Jacobian

matrix of application K (the thermodynamic equilibrium relation) at Xi
k. As previously, we

have:

Gk−1/k = 2 (Gk−1Gk) (Gk−1 + Gk)
−1 ,

Gk/k+1 = 2 (GkGk+1) (Gk + Gk+1)
−1 ,

where

Gk =
(
σL

i
kV

i
k + σV

i
kL

i
k

)2
(

JK(Xi
k)

2

λL
+

JK(Xi
k)

λV

)(
σL

i
kI2 + σV

i
kJK(Xi

k)
)−2

,

for any k ∈ [0,H] according to (2.63). We obtain the numerical scheme by rewriting (5.1) in

3to keep the reboiler submerged and prevent the deposit of dry hydrocarbons which could catch fire in this
oxygen-rich environment.
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Case Pressure (bar) Bottom temperature (K) Top temperature (K)

A 1.4 93.2 79.8

B 1.391 93.2 79.6

C 1.346 92.8 82.2

Table 5.1: Pressure and temperature values used to simulate the static cases with the PDE
model

an implicit form:



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i
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(5.2)

The compositions xi
k and yi

k are given by the static outputs:

xi
k = Xi

k − ǫσV
i
kHk

Xi
k+1 −Xi

k

∆s
,
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k = K(Xi
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where
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(
σL

i
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i
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)(JK(Xi
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+
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.

5.3 Comparison with static simulation reference cases

As for the HP column, we dispose of the Hysys simulations of the Low Pressure column in the
static cases A, B and C. For the sake of clarity only the figures regarding case A are included
in this chapter; for case B and C, we invite the reader to refer to Appendix D. The column
is modeled in Hysys using 60 equivalent trays. The flow and composition profiles obtained
in Hysys are mapped to our space grid using a linear interpolation over each subsection.
The pressure variation along the column is about 6.5% of its value at the top, thus it will be
neglected in each case. We use a linearly varying temperature profile which interpolates the
top and bottom temperatures to estimate the gas hold-ups. For each case, σV is estimated
using (4.15) and the values of Table 5.1. The liquid hold-ups are estimated using σL = L

µL
,

µL being the same for each case.

5.3.1 Pseudo-binary mixture model

Figure 5.1 illustrates the liquid and gas distribution profiles for case A (for case B and C
see Fig. D.1 and Fig. D.2), together with the pseudo-binary composition profiles estimated
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by Hysys . As one can see, the LP column profiles are characterized by a huge O2,Ar
composition front in subsections 3, 4 (counting from the top). The difficulty of the PDE
model fitting lays in the rendering of this front, which turns out to be highly sensitive to our
model’s parameters.

Using the s-depending relative volatility profile obtain with Hysys , good fits between
the tray model and the PDE model are provided by the following numerical values:

µL = 0.6 m.s−1,

{
λL = 20 Nm3.s−1.m−1,
λV = 10λL,

ǫ =





0.22 for case A,
0.23 for case B,
0.23 for case C.

The same remarks can be made about µL = 0.6m/s than in the previous chapter. Once
again, this value shall be regarded as an empirical correlation between the liquid flow and
the hold-ups. One can though notice that the ratio of the µL in the two columns is 0.6

0.4 = 1.5

which is close the section rate 1.552

1.3252 ≈ 1.37. Thus µL is not completely devoid of geometric
meaning. Note also that the values of ǫ found for the HP column, though not directly
transposable here, are reasonable guess values before a finer tuning. Figure 5.2, and Fig. D.3,
D.4 in appendix, illustrate the corresponding estimated profiles, respectively for case A, B
and C. The main wave-fronts are properly positioned, yet the PDE model misses the strong
curvature of the profiles in subsection 4. Also, the PDE model predicts a reasonably low
nitrogen molar fraction at the bottom of the column (around 10−7), which is yet almost 10
orders of magnitude larger than the Hysys estimation. Figure 5.3 illustrates the phenomenon
for case A. One can though stay cautious regarding such minuscule concentrations.

Regardless of the diffusion, catching the composition fronts with the PDE model is a
problem of composition waves’ speed tuning. As discussed in Chapter 2 or Chapter 5, the
composition waves’ speed depends (in steady state) on the flows L, V and the relative volatility
α. L and V being fixed, we will replace the Hysys volatility profile by a constant α, which
we will use as the wave-speed tuning parameter to render the main composition front. We
obtain good performances with the following values:

ǫ =





0.175 for case A,
0.175 for case B,
0.175 for case C

, α =





0.2763 for case A,
0.2763 for case B,
0.26175 for case C,

the rest being unchanged. Figure 5.4, and Fig. D.5, D.6 in appendix, illustrate the corre-
sponding results. Figure 5.5 displays the Hysys relative volatility profiles versus the chosen
constant α for each case. No particular rule for the choice of α seems to emerge, besides
the fact that the s-varying profile reaches the chosen constant value in region of the main
composition front.

As mentioned above, the main wavefront position is highly sensitive to the numerical
values of the model parameters, in particular the constant α. Figure 5.6 shows for example
the influence of a +1% variation of α in case A. A side-effect is that playing on α allows
recovering the profile in subsection 3, to the expense of section 4, or vice-versa. The influence
of ǫ exists but is less remarkable, as depicted on Fig. 5.7 for a +5% variation. The diffusion
parameter ǫ playing no role in the composition wave convection speed, it affects the curvature
of the estimated profile before the position of the wavefronts.

The main wavefront is also highly sensitive to the model’s input data, as demonstrated
for example on Fig. 5.8 (−1% variation of the gas/liquid ratio in the feed between subsections
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Figure 5.1: Top: Hysys estimations of the liquid (blue) and gas (red) composition profiles
in case A. Bottom: internal liquid (blue) and gas (red) flows in case A.
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Figure 5.2: Comparison of the Hysys and the pseudobinary PDE model composition estima-
tions in case A with a s-varying relative volatility. Blue circles: Hysys estimation in liquid.
Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped com-
position X. Red solid line: k(X). Blue dotted line: PDE model estimated composition in
liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y).
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Figure 5.3: Comparison of the Hysys and the pseudobinary PDE model nitrogen composition
estimations in case A with a s-varying relative volatility, in log scale. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition 1 − X. Red solid line: 1 − k(X). Blue dotted line: PDE model
estimated composition in liquid (static output 1−x). Red dotted line: PDE model estimated
composition in gas (static output 1− y).
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Figure 5.4: Comparison of the Hysys and the pseudobinary PDE model composition estima-
tions in case A with a constant relative volatility. Blue circles: Hysys estimation in liquid.
Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped com-
position X. Red solid line: k(X). Blue dotted line: PDE model estimated composition in
liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y).
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Figure 5.5: Comparison of the Hysys profile (solid) and the optimal constant value (dash-
dotted) for the relative volatility of the pseudocomponent {O2,Ar} versus N2. Top left: case
A. Top right: case B. Bottom: case C.
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Figure 5.6: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with +1% perturbation on the optimal value of α. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y).
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Figure 5.7: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with +5% perturbation on the optimal value of ǫ. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y).
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Figure 5.8: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with +1% perturbation on the original gas/liquid molar ratio (0.181) in
the feed between subsections 2 and 3 (feed from the V04 flashpot). Original molar fractions
are 0.2454 in the liquid feed, 0.1631 in the gas feed. Blue circles: Hysys estimation in liq-
uid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped
composition X. Red solid line: k(X). Blue dotted line: PDE model estimated composition
in liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y).

2 and 3), and Fig. 5.9 (+1% variation of the O2,Ar molar fraction in the feed between
subsections 2 and 3). As we will see in the dynamic simulation part, this sensitivity is an
effective issue for the real-life problem, where the column’s inputs are poorly known. In
the last part of this chapter, we give an interpretation of this sensitivity in terms of wave
speeds, even for the ternary mixture problem. Illustrations of the effects of perturbations
with opposite sign are in Appendix D: Fig. D.7 to Fig. D.10.

5.3.2 Ternary mixture model

With the dedicated numerical scheme, the distillation of the ternary mixture {N2,O2,Ar}
can be simulated in steady state in the LP column. The model’s parameters set is extended
with the O2/N2 and the Ar/N2 relative volatilities (namely αO2 and αAr). Figure 5.10, and
Fig. D.11, D.12 in appendix, illustrate the results we obtain using the s-depending profiles
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Figure 5.9: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with +1% perturbation on the original {O2,Ar} pseudocomponent molar
fraction in the feed between subsection 2 and 3 (feed from the V04 flashpot). Original molar
fractions are 0.2454 in the liquid feed, 0.1631 in the gas feed. Red circles: Hysys composition
estimation in gas. Blue solid line: PDE model lumped composition X. Red solid line: k(X).
Blue dotted line: PDE model estimated composition in liquid (static output x). Red dotted
line: PDE model estimated composition in gas (static output y).
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Figure 5.10: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case A with the s-dependent relative volatilities estimated using Hysys . The
monotone profiles corresponds to oxygen, the belly-shaped ones to argon. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y).

for αO2 and αAr given by Hysys and the following parameters:

µL = 0.6 m.s−1,

{
λL = 20 Nm3.s−1.m−1,
λV = 10λL,

ǫ =





0.269 for case A,
0.403 for case B,
0.211 for case C.

One see how, in subsection 6, the steady pseudocomponent {O2,Ar} composition is ob-
tained by a slow exchange of O2 and Ar with almost constant nitrogen content. Conversely,
in subsections 3 and 4, the main {O2,Ar} composition front in the binary mixture case shows
here as the sum of a large O2 composition front plus a small Ar contribution. The results
can be improved by applying a multiplication factor m to the Hysys αO2(s) and αAr(s), as
shown on Fig. 5.11, and Fig. D.13, D.14 in appendix. We have used the following multipliers:

m =





0.94 for case A,
0.80 for case B,
0.99 for case C,

the other parameters being unchanged. This illustrates the high sensitivity of the ternary-
mixture model to the relative volatilities of the components.
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Figure 5.11: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case A with the s-dependent relative volatilities estimated using Hysys times
a multiplicative factor m = 0.94. The monotone profiles corresponds to oxygen, the belly-
shaped ones to argon. Blue circles: Hysys estimation in liquid. Red circles: Hysys compo-
sition estimation in gas. Blue solid line: PDE model lumped composition X. Red solid line:
k(X). Blue dotted line: PDE model estimated composition in liquid (static output x). Red
dotted line: PDE model estimated composition in gas (static output y).
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Figure 5.12: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case A with +1% perturbation on the original gas/liquid molar ratio (0.181)
in the feed between subsections 2 and 3 (feed from the V04 flashpot). Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y). Impact of a −1% perturbation of the gas/liquid ratio is depicted on
Fig. D.15.

A high sensitivity to the liquid and gas flow distributions is still observed (see e.g.
Fig. 5.12). We have seen in the binary mixture case that these sensitivities summarize as
the sensitivity to the composition wave convection speed. Here in the ternary mixture case, a
direct interpretation in term of wave-speed is not possible in the physical composition space.
Yet we will see in the end of the chapter how we can retrieve this interpretation by the mean
of the Riemann invariants equations developed in Section 2.6.

With the simplifying use of constant relative volatilities, one can still obtain reasonable
approximations of the Hysys profiles. The results depicted on Fig. 5.13, and Fig. D.16, D.17
in appendix, have been obtained with

µL = 0.6 m.s−1, λL = 20 Nm3.s−1.m−1, λV = 10λL,

ǫ = 0.269, α02 = 0.2384, αAr = 0.3586 for case A,

ǫ = 0.3829, α02 = 0.2007, αAr = 0.3019 for case B,

ǫ = 0.211, α02 = 0.2509, αAr = 0.3774 for case C.
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Figure 5.13: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with constant αO2 and αAr. The monotone profiles corresponds to oxygen,
the belly-shaped ones to argon. Blue circles: Hysys estimation in liquid. Red circles: Hysys

composition estimation in gas. Blue solid line: PDE model lumped composition X. Red solid
line: k(X). Blue dotted line: PDE model estimated composition in liquid (static output x).
Red dotted line: PDE model estimated composition in gas (static output y).
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5.4 Dynamic operation scenario

The dynamic test scenario is the same as for the HP column (10 hours record of the air
separation plant operation, on July 4th 2011, from 10 AM to 8 PM). Figure 5.14 shows the
input and output flows of the LP column during the scenario. Regarding the V04 and V02
flashpots, only the incoming mixed liquid/gas flow is known. Since the temperature of the
mixture is unknown, we assume that the liquid/gas flow ratio at the output of each flashpot
is the same as in the Hysys static case A. Thus we take:

LV 04→ = 0.857Q→V 04, VV 04→ = (1− 0.857)Q→V 04,

LV 02→ = 0.877Q→V 02, VV 02→ = (1− 0.877)Q→V 02

For the same reason, we determine the relation between the condensed gas flow at the top of
the HP column and the reboiled liquid at the bottom of the LP column based on the same
static case. The same relation is established between the gas arriving at the top of the argon
column K10 and the reboiled condensation liquid which feeds the LP column. We take:

V reboiled
LP = 0.71V condensed

HP , V reboiled
K10 = 1.19V condensed

K10 .

Similarly to the HP column, we add a correction on the liquid and gas internal flows to
account for the internal revaporization. The vaporized flow Qrevap

LP is estimated to be 10% of
the reboiled flow at the bottom of the LP column V reboiled

LP . Thus we artificially add a Qrevap
LP

flow to VV 02→, while we create a fictional liquid draw off Qrevap
LP at the same location. We

add and withdraw the flows at the location of an existing injection, so as not to create a
supplementary discontinuity in the liquid and gas distribution profiles.

The revaporization also occurs in the argon column K10. According to Hysys , we
consider that 5.5% of the flow condensed at the top of K10 is vaporized during its descent.
Given the height of the K10 column, and assuming that the liquid has a 0.02m/s velocity, we
consider a descent delay θK10 = 0.5h. Thus we take:

LK10→LP (t) = 0.945
(
V condensed

K10 (t− θK10 − Lprod
K10(t− θK10)

)
,

VLP→K10 = 0.945V condensed
K10 + 0.055Lprod

K10 .

The LP column is equipped with an O2 analyzer at top, operating in the 0-10% range.
Figure 5.15 shows the measured concentration in the gas during the scenario. The O2 concen-
tration is also measured in gas right above the bottom liquid bath (see Fig. 5.16) and in front
of the LP-K10 connection (see Fig. 5.17). These analyzers operate in the 0-100% range. A
pressure transmitter gives the pressure in the residuary gas exiting the LP column at top; we
will use this measure (see Fig. 5.19) as the estimated internal pressure. We will also consider
a constant temperature along the column’s s-axis, based on the measurement in the residuary
gas (Fig. 5.18).
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Figure 5.14: Input and output molar flows of the LP column. Solid blue: top reflux liquid
LLL

HP . Dotted blue: LV 04→. Dotted red: VV 04→. Dash-dotted blue: LV 02→. Dashed red:
V reboiled

K10 . Dash-dotted red: VV 02→. Squared blue: LK10→LP . Squared red: VLP→K10. Solid
red: V reboiled

LP .
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Figure 5.15: Analyzed O2 molar fraction in the gas at the top of the LP column.
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Figure 5.16: Analyzed O2 molar fraction in the gas, over the liquid bath at the bottom of the
LP column.
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Figure 5.17: Analyzed O2 molar fraction in the gas at the location of the connection between
the LP and K10 columns.
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Figure 5.18: Absolute pressure in the residuary gas exiting the LP column at top.
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Figure 5.19: Temperature of the residuary gas. We dispose here of the long term trend
only, since the corresponding sensor sampling parameters have not been modified prior to the
acquisition.

5.5 Dynamic simulation

We have to simulate the HP columns dynamics to determine some of the LP column inputs.
Both columns are simulated using the ternary mixture model, with ∆t = 0.1s, ∆z = 0.1m,
and constant relative volatilities:

αO2 = 0.4, αAr = 0.5 for the HP column,

αO2 = 0.251, αAr = 0.377 for the LP column.

Regarding the liquid speed and hold-ups, we use VL = 0.02m/s for both columns, µL =
0.4m/s for the HP column, and µL = 0.6m/s for the LP column. Regarding the diffusion, we
use the dynamic adaptation of ǫ proposed in the previous chapter for the HP column; for the
LP column, we take ǫ = 0.211 constant, inspired by the static test case C. The liquid amount
at the LP column bottom is fixed at Qb = 9000Nm3. The liquid amount at the bottom of
the HP column (about 10 times smaller) is neglected here.

We focus here essentially on the simulation of the compositions in the vicinity of the argon
belly.

5.5.1 Well-source argon column model

In a first time, we consider an extremely simplistic model for the argon column K10: the
column behaves as a source of liquid with constant O2 and Ar molar fraction (respectively
0.936 and 0.064), regardless of its theoretical material balance. The proposed molar fractions
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Figure 5.20: O2 (top bundle) and argon (bottom bundle) molar fractions at the location of
the LP-K10 columns connection, with Qrevap

LP = 0.1V reboil
LP . Blue: XO2 and XAr. Dotted blue:

xO2 and xAr. Red: kO2(X) and kAr(X). Dotted red: yO2 and yAr. Black: O2 measure in gas.

are directly borrowed from the Hysys static case A. This first approach does not introduce
possibly destabilizing feedback from the column K10 to the LP column. The obvious drawback
is the introduction of a favorable bias in the test, since the idealized liquid injection drives,
by mixing, the simulated profiles towards the desired ones, at least in the vicinity of the LP
column - K10 column connection.

Figure 5.20 shows the obtained O2 molar fractions at the location of the K10-LP columns
connection. These results are not satisfying, since the main O2 composition front is too much
repelled downwards, by a too large reflux rate.

Choosing the internal revaporized flow as the adjustment variable, we obtain satisfying
results (see Fig. 5.21) regarding the compositions at the location of the K10-LP connection
with

Qrevap
LP = 0.22V reboiled

LP .

This is a huge correction of the theoretical revaporized flow. We suppose that a portion
of this correction actually compensates the estimation errors on the liquid/gas ratio in the
flashpots V02, V04, which can significantly impact the liquid flows in the lower subsections
of the column.

In the following, we keep the empirical Qrevap
LP = 0.22V reboiled

LP .

Figure 5.22 is a zoom on the O2 composition at the location of the connection with K10.
One can observe that the simulated composition are in advance of 30-45 min with respect to
the measure. This suggests possibly lower (empirical) liquid speed in the column, since, as we
will see, the time advance is smaller at the top. The amplitude of the composition oscillations
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Figure 5.21: O2 (top bundle) and argon (bottom bundle) molar fractions at the location of
the LP-K10 columns connection, with Qrevap

LP = 0.22V reboil
LP . Blue: XO2 and XAr. Dotted blue:

xO2 and xAr. Red: kO2(X) and kAr(X). Dotted red: yO2 and yAr. Black: O2 measure in gas.

is globally in good agreement with the analyzer. At t = 4.5h, 7h and 8h, one observes large
and fast decreasing dynamics. This has to be connected with Fig. 5.23, where the main O2

front position shows unstable (and so is the location of the argon belly). We suppose that
some non modeled flow dynamics compensate these drifts, such as variations of the liquid/gas
ratio in the flashpots. The liquid bath at the bottom of the argon column may also play a
damping role. Also, the circulation of the flows between the HP and the LP columns cause
the various inputs of the LP column to be time-shifted. These shifts, not taken into account
here, could lead to constructive or destructive interplay between the input flows, as pointed
out in the HP column.

The simulation results at the bottom of the column are shown on Fig. 5.24. Higher
concentrations could be obtained with a smaller ǫ, but this would be at the expense of the
results at the LP-K10 connection location.
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Figure 5.22: O2 molar fractions at the location of the LP-K10 columns connection, with
Qrevap

LP = 0.22V reboil
LP . Blue: XO2 . Dotted blue: xO2 . Red: kO2(X). Dotted red: yO2. Black:

O2 measure in gas.
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Figure 5.23: Snapshots of the molar fraction profiles during the 10h scenario. Each graph
plots XO2 (pale blue) and XAr (dark blue) versus the normalized column abscissa. Snapshots
are taken between 30min and 10h, with 30min interval, and are ordered from left to right,
and from top to bottom.
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Figure 5.24: O2 molar fractions at the bottom of LP column, with Qrevap
LP = 0.22V reboil

LP . Blue:
XO2 . Dotted blue: xO2. Red: kO2(X). Dotted red: yO2. Black: O2 measure in gas.
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Figure 5.25: O2 molar fractions at the top of LP column, with Qrevap
LP = 0.22V reboil

LP . Blue:
XO2 . Dotted blue: xO2. Red: kO2(X). Dotted red: yO2. Black: O2 measure in gas.

Results at the top of the columns are plotted on Fig. 5.25. The composition oscillations
correspond with the measures, with which they are almost synchronized. The composition
transport time between the HP and LP column may be responsible for the residual time-
shift. The offset between the measured and the simulated gas composition is little sensitive
to changes on ǫ (the column’s top end induces repelling effect) or on the liquid or gas flows
(provided that the changes are small enough not to move the main O2 front up to the top
of the column). We suppose that the O2 composition in the HP column, in the drawn lean
liquid, is too high (despite the good results obtained for the gas) - an error on the σL/σV

ratio could explain this. The top of the LP column, where the mixing mechanism seems to
dominate the separation, is thus fed with too much oxygen, which yields the observed result.

5.5.2 Equilibrium-based argon column model

The next step in the simulation of the LP column dynamics is to introduce the feedback from
the argon column K10. A simplistic manner consists in stating that the liquid flowing from
K10 to the LP column is at the equilibrium with the gas injected in K10. To account for the
slow argon column dynamics, we take:

dxK10→LP

dt
=

1

Ti,K10

(
k−1 (yLP→K10(t))− xK10→LP (t)

)
,

where xK10→LP is the vector of O2 and argon molar fractions in the liquid flowing from K10
to the LP column, and yLP→K10 is the vector of O2 and argon molar fractions in the gas
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Figure 5.26: O2 (top bundle) and argon (bottom bundle) molar fractions at the location of the
LP-K10 columns connection. Blue: XO2 and XAr. Dotted blue: xO2 and xAr. Red: kO2(X)
and kAr(X). Dotted red: yO2 and yAr. Black: O2 measure in gas.

injected from the LP column to K10. The volatilities used in the inverse equilibrium relation
k−1 are the same as in the LP column, since it is almost at the same pressure that K10. In a
first time, we take Ti,K10 = 3h (it corresponds to the time constant used in the linear argon
column models running on the plant control system).

The performances of the model at the top and the bottom of the LP column are unchanged.
Results at the location of the K10-LP connection are shown on Fig. 5.26 (oxygen and argon)
and Fig. 5.27 (oxygen only). The argon content is still smaller than expected (it should
be around 10-12 % according to the process documentation). Regarding the oxygen, the
amplitude of the oscillations are still satisfying. Without the stabilizing influence of the well-
source argon column model, the sudden changes of composition at t = 4.5h and 8h are much
larger than previously. The offset between the measured and the simulated O2 composition
seems to increase with time. This is confirmed by a longer simulation (40h, on the same
scenario), as shown on Fig. 5.28, which leads us to the next argon column model.
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Figure 5.27: O2 molar fractions at the top of LP column. Blue: XO2 . Dotted blue: xO2. Red:
kO2(X). Dotted red: yO2. Black: O2 measure in gas.
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Figure 5.28: O2 (top bundle) and argon (bottom bundle) molar fractions at the location of
the LP-K10 columns connection for the 40h scenario. Blue: XO2 and XAr. Dotted blue: xO2

and xAr. Red: kO2(X) and kAr(X). Dotted red: yO2 and yAr. Black: O2 measure in gas.
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5.5.3 Mass balance-based argon column model

The equilibrium based model does not respect the mass-balance of the argon column K10 in
steady-state. To check whether the previously detected increasing offset is due to the equilib-
rium model, or to the change of the input and output flows on the long term (see Fig. 5.29),
we propose here another simplified model for K10. In this model, the composition of the
liquid re-injected in the LP column is determined by the mass balance of each component
over the whole column K10. At the top of K10, both the N2 and O2 content are analyzed.
Yet the N2 analyzer is of no use (it indicates negative compositions). The O2 is of some ppm
and is negligible in the balance. In addition, we suppose that the argon content at the top of
the argon column is stable. Inspired by Hysys models of K10, we set it to 0.995. We take:

Ti,K10
dxK10→LP

dt
=

VLP→K10(t)yLP→K10(t)− Lprod
K10(t)

[
0

0.995

]

LK10→LP (t)
− xK10→LP (t),

where VLP→K10 is the gas flow from the LP column to K10, and Lprod
K10 the liquid flow extracted

at the top of K10. We take Ti,K10 = 3h as previously.
The results at the top of the column are unchanged for the beginning of the scenario, and

we can check on Fig. 5.30 that they hold on the long term. Regarding the compositions at
the K10-LP connection location, Fig. 5.31 shows that the O2 content keeps decreasing with
time. Yet the change of argon column model has inverted the trend for the argon content.
The main O2 wavefront keeps drifting in direction of the bottom (see Fig. 5.32), with little
impact on the bottom O2 composition at the end of the scenario, as depicted on Fig. 5.33.

It is sometimes reported that the argon column has time constant larger than 3h (up to
8h). We check the influence of Ti,K10 on the simulation, by taking Ti,K10 = 8h. Results
regarding the compositions at the K10-LP connection are shown on Fig. 5.34: the increased
argon column inertia tempers the O2 composition decrease, yet is not sufficient to stop it.

It seems thus that our current modeling of the internal flows is insufficient to stabilize
the main O2 composition front and the argon belly. In addition, the drift of the main front
towards the bottom may induce a depleting of the argon column, which amplifies the drift
by feedback. We could envisage to enrich the model with dynamic adaption of Qrevap

LP , the
liquid/gas ratio in the flashpots, the gain of the condenser/reboileur between the LP and HP
column, or the relative volatilities. Yet the delays caused on one hand by the slow liquid
speed, and on the second hand by the wave-fronts own speeds, coupled with the highly non-
linear gain between the stiff main front position and the composition at a given location, have
made our simple attempts (slow PI, Smith’s predictor) unsuccessful.
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Figure 5.29: Input and output molar flows of the LP column over the 40h of the long scenario.
Solid blue: top reflux liquid. Dotted blue: LV 04→. Dotted red: VV 04→. Dash-dotted blue:
LV 02→. Dashed red: V reboiled

K10 . Dash-dotted red: VV 02→. Squared blue: LK10→LP . Squared
red: VLP→K10. Solid red: V reboiled

LP .
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Figure 5.30: O2 molar fractions at the top of LP column for the 40h scenario. Blue: XO2 .
Dotted blue: xO2. Red: kO2(X). Dotted red: yO2. Black: O2 measure in gas.
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Figure 5.31: O2 (top bundle) and argon (bottom bundle) molar fractions at the location of
the LP-K10 columns connection for the 40h scenario. Blue: XO2 and XAr. Dotted blue: xO2

and xAr. Red: kO2(X) and kAr(X). Dotted red: yO2 and yAr. Black: O2 measure in gas.
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Figure 5.32: Snapshots of the molar fraction profiles during the 40h scenario. Each graph
plots XO2 (pale blue) and XAr (dark blue) versus the normalized column abscissa. Snapshots
are taken between 2 and 40h, with 2h interval, and are ordered from left to right, and from
top to bottom.
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Figure 5.33: O2 molar fractions at the bottom of LP column for the 40h scenario. Blue: XO2 .
Dotted blue: xO2. Red: kO2(X). Dotted red: yO2. Black: O2 measure in gas.
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Figure 5.34: O2 (top bundle) and argon (bottom bundle) molar fractions at the location of
the LP-K10 columns connection for the 40h scenario with an 8h time constant for the argon
column model. Blue: XO2 and XAr. Dotted blue: xO2 and xAr. Red: kO2(X) and kAr(X).
Dotted red: yO2 and yAr. Black: O2 measure in gas.
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5.6 Wavefronts sensitivity analysis

In this section, we study the high sensitivity of the simulated LP column composition profiles
as a problem of wave-speeds. For the binary mixture case, we have seen that our (scalar)
PDE model is reduced to a purely convective model if the diffusion coefficient ǫ is set to 0.
In the linear case, the traveling wave reduces to a shock-wave; its velocity can be calculated
by a mass balance across the shock, as illustrated by Marquardt’s wave-model. For more
than 2 components in the mixture, the coupling introduced by the application K implies
that traveling quantities are necessarily bundles of several components. We have given in
Section 2.6 the equations to determine these quantities in the non-linear case by the use of a
non-physical space.

These equations are valid only if all the traveling waves are shock-wave, that is if

dD

ds
< 0,

where D is defined by (2.72). Figures 5.35 to 5.37 show that this condition is fulfilled by all
the Hysys static cases.

Now let us consider one of the column’s subsection. Neglecting the diffusion, we replace the
Hysys profile by a discontinuity (ensuring the matching at the boundaries of the subsection)
as illustrated on Fig. 5.38(top). This is done for argon and oxygen, both in liquid and gas
phase. According to the results of Section 2.6, the discontinuity will split into two shock-waves
(1) and (2), as depicted on Fig. 5.38(bottom). Various configurations for the fronts’ speeds
are possible, yet the speeds are ordered according to (2.94).

Starting from the bottom of the subsection, the first encountered wave-front induces a
switch from the initial composition state to an unknown, intermediary one. Due to the
speeds’ ordering, this front is necessarily front (1). Then, front (2) causes the composition to
switch from the intermediary state to the input one.

Using the relation (2.80), one can compute the image of the initial and input composition
states in the non-physical Ω-space. Let {winit

(1) , winit
(2) } (resp. {winput

(1) , winput
(2) }) the coordinates

of the image of the initial state (resp. input state). Let {winter
(1) , winter

(2) } the (unknown)
coordinates of the intermediary state.

Front (1) is by definition associated to the Γ-curve Γ(1). The results of Section 2.6 indicates
that the w(2) remain constant across shock (1). Thus:

winter
(2) = winit

(2) .

Front (2) is associated to Γ(2), thus:

winter
(1) = winput

(1) ,

and one disposes of the coordinates of the intermediary state in the Ω-space. Figure 5.39
illustrates this procedure for the first LP column subsection in static case A.

Using (2.87), the compositions forming the intermediary state are deduced from winter
(1) ,

winter
(2) . One disposes now of the decomposition of the shocks over the two manipulated

components O2 and argon. Figure 5.40 displays the obtained shock-waves for the first LP
column subsection in static case A. As indicated by Table 2.1, shock (1) is associated to an
increase of both O2 and argon composition; on the contrary, shock (2) corresponds to an
increase of O2 composition but a decrease of the argon content.
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Figure 5.35: Top: D along the LP column for the Hysys static case A. Bottom: dD
ds along

the LP column for the same case. Vertical lines indicate the subsections separations.
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Figure 5.36: Top: D along the LP column for the Hysys static case B. Bottom: dD
ds along

the LP column for the same case. Vertical lines indicate the subsections separations.
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Figure 5.37: Top: D along the LP column for the Hysys static case C. Bottom: dD
ds along

the LP column for the same case. Vertical lines indicate the subsections separations.
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Figure 5.39: Transition from the initial state to the intermediary state, then to the input
state, in the Ω-space. The trajectories maintain all the w(k) but one constant. LP column
subsection 1, Hysys case A.

The procedure can be repeated for each subsection, leading to a map of the O2 and
argon composition fronts along the whole column. One obtains Figures 5.41, 5.42 and 5.43,
respectively for the Hysys cases A, B and C.

We dispose of the shock velocities too, which are also depicted on the previous figures.
Table 5.2 summarizes these velocities. One observes that some fronts have almost null velocity,
especially in the central subsections, that is, where the profile proves particularly sensitive to
estimation errors on L, V , α. Note that these speeds have been obtained by considering the
mean hold-ups σL and σV over each subsection. Yet even considering the same hold-up for
all the subsections still results in significantly lower shock speeds in the central subsection
(see Table 5.3).

Subsection 1 2 3 4 5

Case A
shock 1
shock 2

−0.0501
−0.0700

0.0363
0.0236

0.0009
−0.0233

0.1409
0.0169

0.0636
−0.2471

Case B
shock 1
shock 2

−0.0606
−0.0800

0.0137
−0.0014

−0.0118
−0.0556

0.1431
0.0089

0.0640
−0.2467

Case C
shock 1
shock 2

−0.2523
−0.2736

−0.0724
−0.0885

0.0254
−0.0046

0.1309
0.0212

0.0616
−0.2367

Table 5.2: Wave-fronts speeds (in m/s) in the LP column using mean hold-ups over each
subsection.
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Figure 5.40: Transition from the initial state to the intermediary state, then to the input
state, in the physical composition space. Arrows length is proportional to the shocks’ speed.
Note that the shocks’ orientation is such that D is decreasing along s. LP column subsection
1, Hysys case A.

Subsection 1 2 3 4 5

Case A
shock 1
shock 2

−0.1343
−0.1875

0.1152
0.0751

0.0032
−0.0799

0.3659
0.0439

0.2572
−1

Case B
shock 1
shock 2

−0.1599
−0.2114

0.0429
−0.0045

−0.0401
−0.1880

0.3703
0.0231

0.2593
−1

Case C
shock 1
shock 2

−0.5677
−0.6157

−0.2088
−0.2553

0.0930
−0.0170

0.3613
0.0584

0.2603
−1

Table 5.3: Normalized wave-fronts speeds in the LP column using constant hold-ups along
the column.
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Figure 5.41: In gray, the piecewise continuous O2 (top) and argon (bottom) composition
profiles in the liquid, produced by the successive shockwaves for case A. Hysys steady state
profile is superimposed in blue. The length of the red and green markers is proportional to
the corresponding shockwave speed. A red marker indicates a positive speed, a green marker
a negative one.
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Figure 5.42: In gray, the piecewise continuous O2 (top) and argon (bottom) composition
profiles in the liquid, produced by the successive shockwaves for case B. Hysys steady state
profile is superimposed in blue. The length of the red and green markers is proportional to
the corresponding shockwave speed. A red marker indicates a positive speed, a green marker
a negative one.
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Figure 5.43: In gray, the piecewise continuous O2 (top) and argon (bottom) composition
profiles in the liquid, produced by the successive shockwaves for case C. Hysys steady state
profile is superimposed in blue. The length of the red and green markers is proportional to
the corresponding shockwave speed. A red marker indicates a positive speed, a green marker
a negative one.
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We thus interpret the composition profiles sensitivity as follows: when a wavefront has a
significantly non-null speed, it is moved towards the vicinity of a subsection boundary, where
it is stopped by the interplay between the diffusion and the boundary. Small changes on L, V
or α do not change the shock’s velocity enough to prevent it from being pushed against the
boundary, and thus little impact the resulting composition profile. On the contrary, a shock
which velocity is almost null in steady-state stands far from the subsections boundaries. It
behaves as an ideal Marquardt’s model wave, free from the repelling end-effects. A small
change on L, V or α causes this shock to drift in the direction of a boundary, and it can
travel on a significant portion of the subsection before the end-effects stop it. Hence the high
sensitivity of the resulting profile to small changes on L, V or α around the values that stop
the shock’s drift. Besides, as noticed, the diffusion coefficient ǫ will have little impact on such
floating wave-front. Il will impact the regularization of the shock, thus the curvature of the
profile, but its influence on the shock’s localization will be negligible if far enough from the
boundaries.

Now regarding the belly-shaped structures which constitute the LP column argon profile,
it seems plausible that they emerge from the regularization, by the diffusion terms, of the
almost still-standing creneled profile obtained by considering only the shocks. We already
pointed out that the crenels result from the changing sign of the Riemann invariants for the
shocks of type (1) and (2) (see Table 2.1).

Note that the situation is quite different in the HP column. Figures 5.44 to 5.46 illustrate
the results of a similar analysis applied to the HP column Hysys static cases A, B and C.
We were in the previous chapter focusing on the rendering of the composition at the junction
between subsections 1 and 2. For the cases A and B (which, as we have seen, are close to the
discussed simulation scenario), the wave speeds in these subsections are significantly non-null
and oriented towards the junction. This makes the composition at this location less sensitive
to errors on the wave-speeds, and more impacted by the diffusion; hence the opportunity
to use ǫ as an on-line tuning parameter. Case C is different since we obtain again floating
waves in subsection 2. Note that case C is characterized, amongst other particularities, by
smaller liquid and gas flows; and so are the scenarios in the cluster corresponding to the
functioning with one compressor only. This suggests that floating waves regime can emerge
during certain operation scenarios of the HP column. For such cases, ǫ would then not be
suitable for the online adaption anymore, and the simulations would become highly sensitive
to the uncertainties on the flow estimations.

The wave-fronts analysis in the LP column suggests sensing and control strategies to
stabilize the argon belly composition. Let us restrict ourselves to subsections 3 and 4 where
the belly is essentially located. In subsection 3, shock (1) (the bottom shock) exchanges
argon with oxygen, whereas shock (2) (the top shock) exchanges argon and oxygen with
nitrogen, which is undesirable in the feed to the K10 column. Thus the control strategy in
this subsection should be to maintain shock (1) balanced with null speed, and a priori close
to the bottom of the subsection, so that one benefits from the argon composition increase.
Automatically, shock (2) will have an upward, non-null speed which will prevent undesirable
nitrogen front to reach the LP-K10 junction. Conversely, in subsection 4, one should maintain
shock 2 balanced and close to the top of the subsection (then, with a small non-null upwards
speed to counterbalance the end-effects), such that one rejects the last traces of nitrogen out.
In parallel, shock (1) should have a non-null downwards speed, such that it enlarges the argon
lobe and prevents oxygen from replacing argon in the feed to K10.

Now regarding the estimation of the composition fronts and their speed, applying the
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Figure 5.44: In gray, the piecewise continuous O2 (top) and argon (bottom) composition
profiles in the liquid, produced by the successive shockwaves for case A, in the HP column.
Hysys steady state profile is superimposed in blue. The length of the red and green markers
is proportional to the corresponding shockwave speed. A red marker indicates a positive
speed, a green marker a negative one.
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Figure 5.45: In gray, the piecewise continuous O2 (top) and argon (bottom) composition
profiles in the liquid, produced by the successive shockwaves for case B, in the HP column.
Hysys steady state profile is superimposed in blue. The length of the red and green markers
is proportional to the corresponding shockwave speed. A red marker indicates a positive
speed, a green marker a negative one.
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Figure 5.46: In gray, the piecewise continuous O2 (top) and argon (bottom) composition
profiles in the liquid, produced by the successive shockwaves for case C, in the HP column.
Hysys steady state profile is superimposed in blue. The length of the red and green markers
is proportional to the corresponding shockwave speed. A red marker indicates a positive
speed, a green marker a negative one.
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wave-front analysis in subsections 3 and 4 of a real column would require three pairs of
analyzers at the junctions between subsection 2-3, 3-4 and 4-5, so that one can compute the
intermediary compositions, and consequently the shock speeds.

Yet note that if shock (1) is balanced in subsection 3, then shock (2) is automatically
moving upwards, and if shock (2) is balanced in subsection 4, then the corresponding shock
(1) is automatically moving downwards. Thus a restricted control strategy could limit itself to
maintain shock (1) balanced in subsection 3 and shock (2) balanced in subsection 4. Roughly,
we are now interested in detecting the drift of a composition front which can be seen as a
binary exchange front: the molar fraction variation across the shock is necessarily in the
same direction for two components among N2, O2 and Ar. Let us then consider them as
only one single pseudocomponent for that shock. The key is then to detect the drift of this
pseudobinary front, so now only one analyzer is required per shock. To see the front ‘pass’,
the analyzer may now have to be located inside the subsection, where the front is supposed
to stay balanced, rather than at the boundaries. The question of the one species whose
concentration should be measured remains. An O2 analyzer, as installed on the plant, seems
problematic, since it would be unable to differentiate a 1-type shock from a 2-type shock:
indeed, the sign of the O2 composition variation is the same for all shocks. The same problem
exists with nitrogen. Yet an argon analyzer seems well suited: one can tell a 1-type shock
from a 2-type shock depending on the sign of the measured composition variation.

Of course such a strategy is purely reactive: the predictive capability of the configuration
with enough pairs of analyzers to estimate the fronts’ speed is lost. One can imagine to replace
some of the required analyzers with soft-sensors embedding the full convection-diffusion model
and adjusting their prediction based on the remaining physical measurements. We have seen
yet that, due to the huge sensitivity of the system and of its model to flow estimation errors,
this is hardly achievable in the LP column using only the existing analyzers.

5.7 Conclusion

In the continuity of the previous chapter, we have tested our PDE model versus steady-state
Hysys simulation cases of the Low Pressure column, for the pseudo-binary mixture case.
We have seen that the O2 molar fractions profile is characterized by a large front located in
the central subsections of the column. We have focused ourselves on the rendering of this
front. The results we obtained show that the location of the front is highly sensitive to small
perturbations on the internal flows L and V , and on the relative volatility α.

The LP column is a crucial first link in the argon separation process, for an argon belly
appears in the column. In the belly, the argon molar fraction is about 10%, yet the nitrogen
molar fraction can vary rapidly from 0.1% to several percents if the column is not stabilized.
To ensure suitable composition of the mixture extracted from the belly to feed the first
argon column, a ternary mixture model of the LP column would be useful. This motivated
our tests with the ternary mixture PDE model versus the Hysys steady-state cases. We
obtained satisfying representation of the bottom lobe of the argon belly, together with the
main oxygen composition front. Yet the high sensitivity of the results to perturbations on L,
V and α still exists.

The LP column model has been coupled with the HP column model to simulate its dy-
namics, versus real plant data from the air separation unit. To include the feedback effect of
the first argon column K10, we have tested three simple models: a well-source model, where
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the K10 column injects a mixture with ideal composition into the LP column, regardless of
the argon belly composition; an equilibrium model, where the re-injected mixture composi-
tion is at the thermodynamic equilibrium with the inlet mixture of K10; and a model where
the composition of the mixture injected from K10 to the LP column is determined by an
approximate mass-balance over the K10 column. The main results are the followings:

• at the top of the LP column, the simulated O2 molar fractions are well synchronized
with the measurements and in agreement with them, apart from an offset which we
supposed caused by an excessive estimated O2 molar fraction in the lean liquid drawn
off the (simulated) HP column;

• the oxygen concentration is much lower than expected in the liquid bath at the bottom of
the LP column; this could be corrected with a significant change on the model’s diffusion
coefficient, but at the expense of the results at the LP-K10 connection location;

• in the argon bubble, at the LP-K10 connection location, the estimated oxygen molar
fraction is globally in agreement with the measurements regarding the mean value, and
the amplitude and shape of the oscillations. There is a significant time-shift between the
estimation and the measure, which we suppose caused by an overestimated liquid speed
in the LP column. We observe sudden O2 molar fraction decreases, due to downwards
excursions of the main oxygen front, possibly amplified by a destabilizing feedback of
the K10 column. We have seen that the main oxygen front was sensitive to errors on
L and V . It just so happens that the internal flows of the column are only poorly
estimated in our model, notably due to a lack of measurements on the real plant. Here
we can only suppose that better knowledge of the L and V flows would enhance the
results. Enhancing the modeling of L and V implies taking into account the internal
revaporizations caused by the differences in the components’ heat of vaporization. One
can also have to add the revaporization due to unperfect thermal insulation of the
column (it is shown in [14], [13] on a warm column that estimated compositions can be
highly sensitive to the estimation of the thermal losses).

Let us point out that our model gives access to the argon molar fractions in the LP columns,
which are unmeasured on-site, especially in the bubble. Yet this information is degraded by
the same phenomena that affect the main O2 wavefront.

In an attempt to clarify the high sensitivity of the main oxygen front, and consequently
of the argon bubble, we applied the result of Section 2.6 to the LP column. We have shown
how, in the idealized case where there would be no diffusion, the Hysys static profiles would
split into a collection of shockwaves. It turned out that the speed of the shockwave associated
to the sensitive fronts were almost null. We thus interpreted the high sensitivity of the fronts
to small perturbations on L, V , α in the way of the classical wave-model: these perturbations
turn a null wave-speed into a small but non-null speed, which causes the wave to drift over
long distances into the considered subsection before it is repelled by diffusive phenomena in
the vicinity of a boundary.

We noted a different situation in the HP column, where waves have generally significantly
non-null speed in the vicinity of the lean liquid draw location. Consequently the diffusion has
a predominant effect on the profile, which is ‘pushed’ against the boundaries: this justifies
a posteriori that the diffusion parameter ǫ was a good candidate for the HP column model
tuning.
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Conclusion et perspectives (version
française)

L’optimisation énergétique des procédés de séparation des gaz de l’air passe en partie par
l’amélioration de leur contrôle. Des lois de contrôle améliorées devraient assurer une stabili-
sation plus fine des colonnes de distillation, un meilleur rejet des perturbations, et accélérer
les changements de points de fonctionnement. De tels contrôleurs devraient être fondés sur
des modèles de contrôle adaptés, valables pour tout point de fonctionnement et capables de
décrire les dynamiques non-linéaires critiques du procédé avec le niveau de détail adéquat.

Ces considérations ont motivé la présente étude, qui s’inscrit dans la recherche de tels
modèles. Nous avons restreint son cadre aux colonnes de distillations uniquement. Partant
d’un élément minimal, un segment homogène de colonne, dans lequel nous avons tenté de
modéliser les profils de compositions, nous avons cherché à construire, par étapes successives,
un modèle de contrôle pour une châıne de colonnes. Dans quelle mesure avons nous atteint
cet objectif ?

Dans la revue bibliographique du Chapitre 1, nous avons sélectionné un modèle en partic-
ulier : le modèle d’onde. Dans celui-ci, les profils de compositions au sein d’une colonne sont
modélisés par une onde de forme fixée, qui glisse le long de la colonne. À l’inverse des grands
modèles à plateaux, ce modèle est concis et montre clairement le phénomène qui engendre
les délais et asymétries caractéristiques de la dynamique des colonnes. Il est aussi supérieur
aux modèles linéaires, calés sur un point de fonctionnement, en ceci qu’il explore, par na-
ture, toutes les positions possibles du front d’onde de composition. Comparé aux modèles
bôıtes-noires, il est générateur de sens, car fondé sur une modélisation physique. Ce modèle
a toutefois des inconvénients : les effets de bord y sont problématiques, en particulier à haute
pureté, et l’hypothèse selon laquelle la forme de l’onde est fixée est irréaliste.

Suivant le raisonnement qui a abouti au modèle d’onde, nous avons proposé au Chapitre 2
un modèle d’équations bilans à deux fluides pour un segment homogène de colonne de distil-
lation. En supposant que l’équilibre thermodynamique n’était pas nécessairement atteint
partout dans les phases liquide et gazeuse, nous avons obtenu une expression d’un flux
d’échange de matière entre les deux phases, imposé par les inhomogénéités de composition.
L’ordre de grandeur de ce flux, par rapport à la convection sur l’axe de la colonne, est donné
par un terme en 1

ǫ , 0 < ǫ << 1.

Nous avons réduit ce modèle à deux fluides en utilisant une technique de réduction variété
centre. Le résultat a été, pour un mélange à N ≥ 2 composants :

• une équation non-linéaire aux dérivées partielles, de convection-diffusion, pour la dy-
namique d’une variable interne X, qui est assimilée à une composition moyenne sur les
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deux phases, liquide et vapeur,

• associée à des sorties statiques permettant de retrouver les compositions réelles dans
chaque phase, à partir de la variable interne X.

Dans ce modèle, le terme de convection rappelle le modèle d’onde. De plus, nous obtenons
un terme de diffusion dépendant de ǫ et des flux de liquide et de vapeur en chaque point de la
colonne. Puisque nous pouvons relier le terme de diffusion à l’efficacité du garnissage et à la
forme du profil de composition, ce que nous obtenons est en fait une forme de modèle d’onde
dans lequel l’hypothèse de forme d’onde fixée est levée; la forme du profil dépend à présent
des conditions d’opération de la colonne. En outre, ce terme de diffusion joue aussi un rôle
dans les effets de bord, qui constituent une deuxième voie par laquelle il influe sur la forme
des profils de composition.

Au Chapitre 4, nous avons vu que notre modèle EDP reproduit de manière satisfaisante
des profils de composition binaires statiques dans la colonne Moyenne Pression. Nous avons
également validé la dynamique du modèle, en boucle ouverte, sur la base de données issues
d’une ASU réelle. Pour obtenir ces résultats, il a fallu déterminer empiriquement les valeurs
de certains paramètres du modèle; elles diffèrent significativement des valeurs attendues (en
particulier pour la vitesse de descente du liquide, laquelle affecte également les rétentions).
Nous n’avons pu expliquer que partiellement ces écarts par des dynamiques négligées. Un
point important est que de bonnes performances dans les comparaisons en régime dynamique
ont été obtenues avec des valeurs de paramètres directement tirées des tests statiques. Afin
d’améliorer l’accord entre le modèle et la mesure, nous avons montré qu’une simple adaptation
lente du paramètre de diffusion ǫ était suffisante. Le modèle a cependant montré ses limites
sur certains scénarios de test, pour lesquels nous n’avons pas pu supprimer un biais important
entre les mesures et les prédictions du modèle. Cette baisse de performances semble être liée
à des traffics liquide et vapeur réduits dans la colonne.

Au Chapitre 5, nous avons poursuivi les tests du modèle, en considérant cette fois la
colonne Basse Pression (et en simulant nécessairement la colonne Moyenne Pression dans
le même temps). Le couplage avec la première colonne d’argon a été pris en compte de
façon simplifiée. Nous avons considéré tant le cas d’un mélange binaire (N2/O2) que celui
d’un mélange ternaire (N2/O2/Ar). En comparant les résultats du modèle avec des profils
statiques de référence, nous avons trouvé un bon accord, quoique moins satisfaisant que pour
la colonne Moyenne Pression. Nous avons observé une grande sensibilité des profils simulés
aux changements sur les flux internes de liquide et de gaz, et sur la volatilité des composants.
Nous avons ensuite comparé les résultats du modèle à des données dynamiques issues de l’unité
réelle, en nous focalisant sur l’estimation des compositions dans le ventre d’argon, c’est-à-dire
au niveau de la jonction entre la colonne Basse Pression et la première colonne d’argon.
La stabilisation de la composition du mélange à ce niveau est en effet critique pour la bonne
marche du procédé d’extraction d’argon. Notre modèle reproduit assez bien la valeur moyenne
de la composition O2 mesurée à cet endroit, ainsi que certaines de ses variations. Mais du
fait de la grande sensibilité constatée précédemment, et comme les flux à l’intérieur de la
colonne sont mal connus, nous avons observé des divergences importantes entre l’estimation
et la mesure. Notons que notre modèle EDP donne accès à la fraction molaire d’argon à
cet endroit critique, concentration qui n’est nulle part mesurée. Ceci dit, les problèmes de
sensibilité valent aussi pour l’estimation d’argon, et celle-ci est donc difficilement utilisable
pour le contrôle à l’heure actuelle.
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Concernant ce problème de sensibilité, nous voyons que le modèle EDP écrit au Chapitre 2
se réduit à un modèle de convection pure si l’on néglige la diffusion. Nous nous sommes
intéressés à savoir quelles sont les quantités convectées, et de quelle manière. En adaptant
des résultats issus du domaine de la chromatographie, nous montrons que pour un mélange
à N + 1 constituants, N2 invariants de Riemann permettent de former N ensembles de
constituants, dont les compositions sont propagées de façon cohérente. Nous donnons les
relations permettant de lier ces ensembles aux compositions ‘physiques’, mesurables, dans
la colonne, et vice-versa. Nous montrons que sous une condition suffisante, on peut décrire
la propagation de ces ensembles par la propagation d’ondes de choc, et nous donnons leur
vitesse. Au Chaptire 5, nous avons vérifié que la condition en question était bien remplie, tant
dans la colonne Basse Pression que dans la colonne Moyenne Pression. Nous avons calculé
les vitesses de convection dans la colonne Basse Pression et vu qu’en régime stationnaire,
elles étaient nulles pour certaines ondes de choc. Les ondes en questions restent immobiles
au milieu d’un segment de colonne. Une petite erreur d’estimation des flux de liquide ou
de gaz suffit à leur donner une vitesse non-nulle, et à les faire glisser le long du segment,
avant qu’elles ne soient ralenties puis stoppées par les effets de bord. Ce glissement modifie
significativement les profils de composition, et explique la sensibilité constatée aux petites
perturbations.

Même si cela est moins vrai pour la colonne Basse Pression, nous avons constaté que
notre modèle EDP fait un observateur raisonnable pour la colonne Haute Pression. Au
Chapitre 3, nous nous sommes efforcés de montrer que ce modèle a naturellement de bonnes
propriétés. Sur une configuration de colonne simplifiée, et sous des hypothèses raisonnables,
nous avons prouvé plusieurs de ces propriétés. Nous avons montré que les compositions
moyennes X restent bien dans l’intervalle physique (0, 1). Nous avons démontré l’existence
et l’unicité d’une solution stationnaire pour tout ǫ > 0, et la dépendance monotone de cette
solution en ǫ. Nous avons construit une fonction de Lyapunov pour prouver la stabilité
locale exponentielle de la solution stationnaire. Nous avons aussi, sur la base de cette même
fonction de Lyapunov, proposé une famille d’observateurs asymptotiques pour les profils de
composition, et montré leur convergence locale exponentielle. Ces résultats sont pour des
mélanges binaires uniquement. Les simulations tendent à montrer que, même si les preuves
n’ont qu’une valeur locale, les propriétés seraient globales dans la pratique. Nous avons
développé en parallèle, toujours au Chapitre 3, un modèlé linéarisé tangent de fonctions de
transfert pour un segment de colonne. Il connecte les variations de compositions en sortie, au
sommet et en bas du segment, aux variations des compositions et des flux d’alimentation. Dans
le domaine de Laplace, le modèle EDP linéarisé se réduit à une équation aux dérivées partielles
ordinaires. Les racines de l’équation homogène associée ont une structure particulière : l’une
est une série entière en ǫ, l’autre une série de Laurent en ǫ. Nous les manipulons sous forme
symbolique pour écrire, via un développement asymptotique non-standard, les variations des
sorties comme des séries entières en ǫ. En tronquant les expressions des racines, nous obtenons
une structure de transferts en O(ǫ). Ces transferts se composent de gains et de retards purs, qui
trouvent leur origine dans la convection des compositions, et l’hydraulique non-instantanée.
On notera que ces transferts dépendent explicitement du profil stationnaire considéré, que l’on
peut imaginer estimer à l’aide du modèle EDP. À la fin du Chapitre 4, nous avons utilisé cette
structure pour construire un modèle de transfert de la colonne Moyenne Pression, et simuler
les oscillations de la composition du Liquide Pauvre au voisinage d’un régime stationnaire.
La comparaison avec les données réelles montre que notre modèle de transfert porte une part
de l’information nécessaire.
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Nous disposons donc pour la colonne Moyenne Pression d’un modèle de convection-diffusion
aux performances satisfaisantes, au moins sous certaines conditions relatives aux débits in-
ternes de liquide et de gaz. La confiance dans les performances du modèle est renforcée par les
propriétés démontrées au Chapitre 3. Les modèles convectifs-diffusifs, ou les modèles d’onde
enrichis, semblent donc une bonne base pour des développements ultérieurs. Ceci est cohérent
avec le fait que notre modèle EDP permet de dériver un modèle linéarisé, qui préserve une par-
tie de l’information pour les petites dynamiques. D’un point de vue industriel, notre modèle
EDP pourrait être implanté sur site, comme capteur logiciel estimant les compositions dans la
colonne Moyenne Pression. Un tel déploiement impliquerait aussi les opérateurs de l’installa-
tion dans la recherche de bonnes pratiques d’utilisation de cette information pour le contrôle.
En outre, disposer de cet outil et d’une présence sur le site de production permettrait de
savoir plus rapidement et plus précisément ce qui s’y passe, à quel capteur faire confiance,
quels signaux sont critiques et quels autres sont entachés d’artefacts... cette dimension est
absente de l’étude, qui a été menée à distance.

La structure du modèle est inchangée pour la colonne Basse Pression ; de même, sa per-
tinence, a priori. Nous avons vu que les performances sont diminuées parce que les débits
internes sont mal estimés, du fait : des revaporisations internes, des fractions liquide/gaz
mal connues dans les pots de flash, et d’une modélisation rustique des bilans énergétiques
dans les condenseurs et réchauffeurs. Améliorer ces performances requerrait d’intégrer des
bilans énergétiques détaillés au modèle, et de coupler les modèles de colonnes à des modèles
d’échangeurs thermiques. Concernant ces derniers, nous avons donné quelques pistes dans la
revue bibliographique. Pour ce qui est des colonnes, nous avons envisagé de modéliser le cou-
plage entre l’énergie et les compositions à la manière de [89], qui traite du flash adiabatique.
Le modèle en question utilise explicitement des potentiels chimiques pour définir l’équilibre
thermodynamique, et mène à un système de gradient qui dérive d’un potentiel (la production
d’entropie, qui sert aussi de fonction de Lyapunov) et à la stabilité du flash pour un nombre
quelconque de composants. Ce résultat ne peut cependant pas être étendu à une succession
de flashs, puisque l’équilibre global ne correspond plus à un minimum de la production d’en-
tropie, laquelle ne peut donc plus être une fonction de Lyapunov pour le système. Il serait
intéressant de voir ce que cette approche peut amener comme résultats de stabilité dans le
cas de notre système de dimension infinie. On peut aussi imaginer de récupérer une fonction
de Lyapunov thermodynamique dans ce contexte, en utilisant la fonction de disponibilité
thermodynamique à la manière de [44], [45].

Les différences de chaleur latente entre les principaux constituants de l’air n’est pas nulle,
mais on pourrait tirer parti du fait qu’elles sont petites. Elles pourraient être prises comme
petits paramètres, pour lesquels on mènerait des dévelopements asymptotiques standards
pour simplifier le modèle.

Il n’est cependant pas garanti que de tels modèles enrichis, et couplés avec des modèles
dynamiques d’échangeurs thermiques, soient suffisamment stables et précis pour atteindre
l’objectif de modélisation des compositions dans la colonne Basse Pression. C’est peu probable
en boucle ouverte, et adapter le modèle en ligne pourrait nécessiter des capteurs additionnels
(rappelons que certains échangeurs ne sont pas du tout instrumentés). De la même façon, il
n’est pas certain que l’on puisse développer des estimateurs satisfaisants pour les débits dans
la colonne Basse Pression en couplant les débitmètres et analyseurs existants et le modèle
EDP. La recommandation la moins audacieuse pour améliorer la stabilisation de la colonne
Basse Pression et améliorer l’efficacité du procédé argon serait donc d’équiper la colonne de
capteurs additionnels : on peut penser à des capteurs de températures qui permettraient de
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voir passer le front d’oxygène principal, et/ou des analyseurs d’argon au niveau du ventre.
Au passage, la colonne d’argon a été prise en compte de façon très simplifiée dans cette

étude, essentiellement parce que la simuler elle aussi par le biais d’un modèle EDP mène à
des temps de calcul pénalisants. Il n’y a a priori pas de raison de se priver d’un modèle de
convection-diffusion pour cette colonne. Des tests rapides comparés aux simulations Hysys

en régime stationnaire montrent une reproduction raisonnable des profils ternaires ; la petite
remontée de la concentration d’azote au sommet de la colonne est notamment bien reproduite
(voir Fig. 5.47 and 5.48). Nous avons cependant observé que le principal front d’échange
oxygène-argon tend à dériver lentement dans la colonne, ce qui rend son positionnement
précis délicat, même en régime stationnaire. On retrouve ici le problème des ondes à vitesse
nulle. Ceci dit, les modèles de convection-diffusion ne sont peut-être pas les plus adaptés
pour cette première colonne d’argon. En effet, elle sépare un mélange essentiellement binaire,
et l’unique front de composition est situé assez loin des extrémités de la colonne. On peut
penser qu’un modèle d’onde classique, à la manière de Marquard, puisse donner des résultats
intéressants.

Ceci nous ramène au modèle de contrôle linéarisé développé au Chapitre 3 et testé sur la
colonne Moyenne Pression au Chapitre 4. Nous avons vu que suivant la direction de convec-
tion des compositions (vers le haut ou le bas), il nous fallait utiliser différents transferts. Mais
dans la colonne Basse Pression se trouve le front d’oxygène principal, qui semble osciller len-
tement au milieu d’un segment, et pour lequel la vitesse de convection n’est donc orientée ni
clairement vers le haut, ni clairement vers le bas. Nous pourrions imaginer ici une autre appli-
cation au modèle d’onde classique : les segments extérieurs, en haut et en bas, de la colonne
Basse Pression, seraient modélisés par des fonctions de tranfert, alors que leur connection
serait représentée par un modèle d’onde pour le front principal. Une autre approche possible
utiliserait des modèles de transfert similaire, mais appliqués à des segments fictifs de longueur
variable. On utiliserait alors un transfert ‘vers le bas’ au-dessus du point d’inflexion du front
principal d’oxygène, et un transfert ‘vers le haut’ en dessous. Ceci pose toutefois le problème
de points d’injection et de tirage, qui feraient partie ou non d’un segment fictif en fonction
de sa longueur.

Toujours à propos des applications au contrôle, on peut voir comment une stratégie de
contrôle des grands transitoires pour la colonne Basse Pression se dessine, qui utiliserait tout
à la fois le modèle de convection-diffusion, le modèle d’ondes de choc et le modèle de transferts
(à supposer que les mesures soient en nombre suffisant pour garantir leur pertinence). Partant
d’un point de fonctionnement initial, l’état initial est estimé avec le modèle EDP. Le modèle
d’ondes de choc permet de calculer les changements de débits à appliquer pour démarrer le
mouvement de certains fronts à vitesse contrôlée, ou pour maintenir certains fronts en place. Le
modèle EDP suit en permanence la transition, de sorte que l’information est disponible pour
que le modèle d’ondes de choc calcule les débits correspondants au point de fonctionnement
final. La stabilisation autour de ce point est finalement assurée par le modèle de transferts.

En dehors de la conduite du procédé, on peut imaginer une utilité très différente à
ce travail. La conception et le dimensionnement des colonnes obéissent en général à des
considérations sur les régimes stationnaires. Les aspects transitoires sont pris en compte au ni-
veau de l’hydraulique, par exemple pour ajuster le volume de capacités tampons. Des modèles
de convection-diffusion ou assimilés, qui soient numériquement stables, concis, assez rapides
et précis, pourraient constituer un outil permettant de tester un design préliminaire face à
certains scénarios dynamiques (comme une panne de compresseur, un profil de demande client
spécifique...). Après réglage du modèle sur un cas stationnaire simulé, il pourrait être possible
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de se prononcer sur les futures performances de la colonne et de les garantir, ou encore de
tester de petites perturbations du design.

On remarquera pour finir que de tels modèles, avec des capacités temps-réel, une bonne
stabilité numérique et des bornes garanties, pourraient aussi trouver leur usage dans la simu-
lation d’unités de séparation de l’air pour la formation des opérateurs.
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Conclusion and perspectives

Our revels now are ended [...]

Shakespeare
The Tempest, Act IV, Scene 1

Energy optimization of air separation processes can be partially achieved by enhanced
control strategies. Improved controllers shall ensure tighter stabilization of the distillation’s
columns, disturbance rejection, and accelerate set-point changes. Such control systems shall
rely on adapted control models, independent from the set-point and catching the critical
non-linear dynamics of the process with the right level of detail.

This has motivated the present study, which is part of the search for such models. We
restricted its scope to the distillation columns only. Starting from an atomic element, an
homogeneous packed section, in which we tried to model the compositions distributions, we
aimed to build in successive steps a control model for a whole chain of columns. To which
extent have we made progress ?

In the literature review of Chapter 1, we selected a model among others: the wave model.
In this model, molar fraction profiles inside a distillation column are modeled as a sliding wave
with a priori fixed shape. Contrary to the large stage-by-stage models, this model is concise
and expresses in a clear manner the phenomena which engender delays and asymmetries in
the columns dynamics. It is also superior to linear, set-point dependent models in that, by
nature, it explores all the possible positions of the wave-front. Compared to the black-box
models, since it relies on physic-based modeling, it creates sense. Yet this model has some
drawbacks: end-effects are problematic, especially in a high-purity context, and the fixed
shape assumption is unrealistic.

Inspired by the reasoning which yielded the wave model, we proposed in Chapter 2 a first-
principles, two-flows model for a distillation column homogeneous subsection. Supposing
that the thermodynamical equilibrium was not necessarily reached everywhere in the liquid
and gas phase, we obtained an expression of the liquid-gas mass exchange flow, driven by
concentration inhomogeneities. A term in 1

ǫ , 0 < ǫ << 1, scales the mass-exchange flow with
respect to the axial convection flows.

We reduced this two-flows model using a Centre Manifold reduction technique. The result
was, for a mixture with N ≥ 2 components:

• a dynamic non-linear convection-diffusion partial differential equation for an internal
variable X (of dimension N − 1) which represents the lumped molar fraction over the
liquid and gas phase,
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• static outputs to retrieve the actual molar fraction of each component in the liquid and
gas phase from the internal variable.

In this model, the convection term resembles to the wave-model. In addition, we found that
the diffusion term depends on ǫ and, at each location in the column, on the internal liquid
and gas flow. Since we can connect the diffusion term with the packing efficiency and the
shape of the molar fraction profile, what we have obtained is a kind of wave model where
the wave shape is no more fixed a priori, but depends on the column’s operating conditions.
Furthermore, the diffusion term plays a role in the column’s end-effects, and also affects the
profile’s shape and movement this way.

In Chapter 4, we have seen that our PDE model was able to satisfyingly reproduce ref-
erence static binary mixture profiles of the HP column. We have also validated the model
dynamic behavior in open loop against real plant data. To obtain these results, we had to
use empirical model parameters values which significantly differ from the expected ones (es-
pecially regarding the liquid propagation speed, which also affects the hold-ups). We only
partially explained the discrepancy by neglected dynamics. An interesting point is that good
dynamic model performances were obtained by borrowing most of the model parameters di-
rectly from the steady-state tests. To enhance the plant-model agreement, we showed that
a simple, slow on-line adaption of the diffusion coefficient ǫ was sufficient. The model has
yet shown its limits on some tests scenarios, where we were unable to get rid of a large bias
between the measures and the model predictions. The performance decrease seems to come
with reduced liquid and gas traffics inside the column.

In Chapter 5, we went on with the model testing. This time we considered the Low
Pressure column, and therefore had to simulate simultaneously the LP and the HP column.
The interaction with the first argon column was handled in a simplified manner. We con-
sidered both binary (N2/O2) and ternary (N2/O2/Ar) mixture separation. Comparing the
model against steady-state reference profiles, we obtained relevant estimated composition
profiles (yet with larger errors than with the HP column). We observed that the simulated
profiles were highly sensitive to small changes on the internal liquid and gas flows, and on
the components volatility. We then tested the model against real dynamic data, focusing
on the estimation of the composition in the argon belly, that is, at the location of the con-
nection between the LP column and the first argon column. Indeed, the stabilization of the
mixture composition at this location is important for the efficiency of the argon extraction
process. We showed that our model successfully rendered the mean value of the measured
O2 molar fraction at this location, and also captured some of the composition oscillations.
Yet, due to the previously observed high sensitivity, and since the columns internal flows
were poorly known, we observed significant divergences between the estimated composition
and the measure. Note that our PDE model gives access to the argon molar fraction at the
critical location, whereas argon concentration is nowhere measured in the real column. Yet
the argon molar fraction estimation is impeded by the same sensitivity issue, and thus hardly
usable for control purposes as is.

Regarding this sensitivity issue, we can observe that the PDE model developed in Chap-
ter 2 reduces to a convection model if we neglect the diffusion. We interested ourselves in
finding which quantities are convected, and in which manner. Adapting results from the field
of chromatography, we showed that, for an N+1 components mixture, N2 Riemann invariants
allow to form N multicomponent sets, which propagate in a coherent manner. We gave the
equations to form these sets from the actual compositions in the column, and vice-versa. We
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showed that under a sufficient condition, these sets propagate as non-interacting shock-waves,
and gave the corresponding convection speeds. In Chapter 5, we checked that this condition
was fulfilled in both the LP and the HP column. Computing the convection speeds in the LP
column, we found that in steady state, some waves have null speed and stand in the middle
of a subsection. A small estimation error on the internal flows or on the volatilities makes
these speeds non-zero, which causes the shock wave to drift along the subsection, until it is
repelled and stopped by a boundary. This significantly modifies the composition profiles, and
is an explanation for their sensitivity to the mentioned perturbations.

Even if this is less true regarding the LP column, we have experimentally seen that our
PDE model makes a reasonable observer for the HP column. In Chapter 3, we endeavored
to show that the model has built-in good properties. On a simplified column configuration,
and under a reasonable set of hypotheses, we have proved several of these properties. We
proved that the estimated lumped molar fractions stays within the physical interval (0, 1).
We proved the existence and uniqueness of a stationary solution for any ǫ > 0, and the
monotone dependence of the top stationary composition on ǫ. We built a Lyapunov function
to prove the local exponential stability of this stationary solution. We also proposed a family
of tunable molar fraction profiles observers, which we proved locally exponentially convergent
using the same Lyapunov function, even with unsteady internal flows. These results are for
the binary mixture separation only. Simulations indicates that, even if the proofs are local,
the properties seem to hold globally.

In parallel, we developed, still in Chapter 3, a linearized transfer functions model for
a single packed subsection. This model connects the top and bottom outlet compositions
variations with the variations of the top and bottom inlet flows and compositions variations.
Written in the Laplace domain, the linearized PDE model reduces to an ordinary differential
equation. The roots of the corresponding homogeneous equation have a particular structure:
one is a power series in ǫ, the other one is a Laurent series in ǫ. Manipulating these roots via
symbolic calculations, we obtained through non-standard asymptotic expansion the outputs
as power series in ǫ. Truncating the roots expansion, we obtained the transfer structure in
O(ǫ). The obtained transfers are composed of direct transfers plus delays, which originate
from the composition convection and from the non-instant liquid propagation. Note that
the obtained transfers explicitly depend on the considered steady-state profile, which we can
imagine to estimate using the convection-diffusion model. In the end of Chapter 4, we used
this transfer structure to build the transfer model of the HP column, and simulated the
compositions oscillations of the Lean Liquid around a quasi-stationary state. Comparing the
results against real plant data indicates that our transfer model indeed embeds a part of the
necessary information.

We thus dispose for the HP column of a convection-diffusion model whose performances
are satisfying, at least under certain conditions regarding the internal flows. Confidence in
the model is reinforced by the properties demonstrated in Chapter 3. This indicates that
such convection-diffusion models, or enriched wave-models, are a relevant basis for further
developments. This is in coherence with the fact that our PDE model allowed to derive
a linearized model, which still preserves some information regarding the small composition
dynamics. From an industrial point of view, our PDE model could be implemented on-site,
to serve as a soft-sensor estimating the molar fraction profiles inside the HP column. This
would also involve the plant operators in finding relevant ways to use this information for
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control. In addition, working on-site would allow to know quicker and more precisely what
is going on on the plant, which sensors to trust, which signals are critical and which ones are
artifacts... this is a dimension which was absent of this work, since all the study has been
conducted in a distant manner.

Regarding the LP column, the model structure is unchanged, and so is its relevance a
priori. We have seen that the performances are decreased because of poor estimation of
the internal flows. These flows are poorly known because the internal revaporizations, the
liquid/gas fractions in the flashpots, and the energy duties of the condensers and boilers
have been modeled in a rough manner. Going further in this direction would require to
integrate detailed energy balances into our model, and to couple the column models with
heat-exchangers models. For the heat-exchangers, we have given some clues in the literature
review. As regards the distillation columns, we envisaged to model the coupled energy and
composition problem in the manner of [89], which is for the adiabatic flash. The model
makes explicit use of chemical potentials to define the thermodynamical equilibrium and
yields to a gradient system deriving from a potential (the entropy production, which also
serves as Lyapunov function), which leads to the stability of the flash for any number of
components. Yet the result as is can not be extended to staged flashes since the overall
entropy production is non minimum at the global equilibrium, and therefore can not be a
Lyapunov function. It would be interesting to investigate the stability results that could arise
from such a model applied to our infinite dimension system. In addition, one could imagine
to recover a thermodynamical Lyapunov function in that context using the thermodynamical
availability function in the manner of [44], [45].

One could in addition take advantage of the non-null yet small differences of latent heat
of vaporization between the main air components. These differences could be taken as small
parameters, and the model could be simplified by classical asymptotic expansion in these
parameters.

It is yet unclear whether such enriched models, coupled with heat-exchanger dynamics
models, will be stable and accurate enough to achieve the modeling of the composition profiles
inside the LP column or not. It is improbable in open loop, and tuning the models using plant
measurement could require additional sensors (for instance, on some heat exchangers that are
currently not monitored). Similarly, it is unclear whether internal liquid flows estimation
strategies can be elaborated for the LP column or not, coupling the available flow-meters and
analyzers and the current PDE model. The safer recommendation to improve the stabilization
of the LP column and increase the efficiency of the argon process would then be to equip the
column with additional sensors: for instance, temperature sensors which should allow to
detect the main oxygen front pass by, and/or argon composition analyzer in the belly.

By the way, the first argon column has been handled in a very simplified manner in this
work. This was essentially because simulating it using our PDE model led to penalizing
computation times. Yet there is a priori no other reason for not using convection-diffusion
models for this column. Quick tests against Hysys steady-state cases showed reasonable
rendering of the ternary profile, where the small nitrogen concentration increase at the top of
the column was notably reproduced (see Fig. 5.47 and 5.48). We observed though that the
main oxygen - argon exchange front tends to drift very slowly along the column, which made
its precise positioning uneasy even in steady state. We find here the null-speed wave issue
again. This being said, convection diffusion models might not be the most suited for the first
argon column. Indeed it essentially separates a binary mixture, and the unique composition
front is apparently located quite far from the boundaries. We can imagine that a classical
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Figure 5.47: Example of a static comparison between the PDE model and and Hysys simula-
tion of the first argon column. Hysys estimated liquid oxygen (red x) and argon (red circles)
molar fractions, and the profiles predicted by the PDE model (black).

wave-model, in the manner of Marquardt’s, could yield interesting results.

This brings us back to the linearized control model developed in Chapter 3 and tested for
the HP column in chapter 4. We have seen that we have to use different transfer function,
depending on the direction of the compositions convection (upwards or downwards). Yet in the
Low Pressure column, we have the case of the main oxygen front, which is apparently slowly
oscillating in the middle of a subsection, and for which the convection speed is neither clearly
downwards, nor clearly upwards. Here we could imagine another application of the classical
wave-model: the very top and bottom subsections of the LP columns could be modeled using
our transfer functions; their connection would be made using a wave-model representation of
the main front. Another approach would be to develop similar transfer models, yet applied to
fictional subsections of varying length. One would then use ‘downwards’ transfers above the
oxygen front inflexion point, and ‘upwards’ transfers below, constantly adapting the fictional
subsections length with the current location of the front. These approach yet raises the issue
of the column’s feeds and draws, which could be part or not of a fictional subsection depending
on its length.

Still regarding control applications, one can see how a transients control strategy for the
LP column can take shape, with coupled use of the convection-diffusion model, the shock-wave
model and the linearized model for large transients control purposes (provided notably that
enough measurements are available for them to be reliable). Starting from the initial set-point,
the initial state is estimated using the PDE model. The shock-wave models allows computing
the flow changes required to move some composition fronts with controlled speed, or to
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Figure 5.48: Example of a static comparison between the PDE model and and Hysys simu-
lation of the first argon column. Zoom at the top of the column. The PDE model (in black)
renders the increase of the nitrogen molar fraction predicted by Hysys in the liquid (red
squares).
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maintain other fronts unmoving. The PDE model tracks the transients, so that information
is available for the shockwave model to compute the final flows for the targeted set-point.
The corresponding final state is estimated using the PDE model, and final stabilization is
ensured using the linearized model in the vicinity of this state.

Regardless of control application, a completely different application for this work has
been imagined. The design and dimensioning of columns generally follow steady-state rules.
Transients aspects are taken into account regarding the hydraulics, to adjust some buffer
capacities for instance. Yet the dynamics are only loosely investigated regarding the compo-
sitions. Convection-diffusion models or similar ones, which are numerically stable, concise,
quite fast and accurate, could become a tool to test a preliminary design against some dy-
namic scenarios (e.g. compressor failure, specific time-varying customer demand...). After
tuning of the model on steady-state cases, one could thus assess and grant the future column’s
performances, or investigate incremental design changes.

Note also that such models with real-time capabilities, numerical stability and granted
boundedness could find interesting application in air separation plants simulators dedicated
to operators training.
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Appendix A

Columns schemes
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LIN : Liquid Nitrogen

LOX: Liquid Oxygen

LAR: Argon Rich Liquid

CAL: Crude Argon Liquid

Liquid flow

Gaz flow

Vaporizing

LOX + LIN

Figure A.1: Simplified flowchart of the ASU under study. Red arrows indicate gas flows, blue
arrows are for liquid flows.
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Figure A.2: Flowchart and available composition analyzers on the High Pressure column.
Red arrows indicate gas flows, blue arrows are for liquid flows.
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Figure A.3: Flowchart and available composition analyzers on the Low Pressure column. Red
arrows indicate gas flows, blue arrows are for liquid flows.
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Appendix B

Nomenclature of the tags

B.1 Tags of the HP column

Vair Air flow at the liquefaction point, which enters the HP column at its bottom.

L→V 03 High pressure liquid air entering the flashpot V03.

LV 03→ Liquid flow from the flashpot V03, entering the HP column between subsections 2
and 3.

VV 03→ Gas flow from the flashpot V03, entering the HP column between subsections 2 and
3.

LLL
HP Lean Liquid flow; the Lean Liquid is drawn off the HP column between subsections 1

and 2, and serves at top reflux flow for the LP column.

Lprod
HP Almost pure nitrogen liquid flow drawn off the HP column at its top; serves for the

liquid and gas nitrogen production.

L→V 02 Oxygen rich liquid flowing from the HP column’s bottom to the LP column’s flashpot
V02.

V condensed
HP Gas flow arriving at the top of the HP column to be condensed.

B.2 Tags of the LP column

LLL
HP Lean Liquid flow; the Lean Liquid is drawn off the HP column between subsections 1

and 2, and serves at top reflux flow for the LP column.

L→V 02 Oxygen rich liquid flowing from the HP column’s bottom to the LP column’s flashpot
V02.

L→V 04 Liquid flow from the HP column’s flashpot V03, entering the LP column’s flashpot
V04 (a part of this flow is tapped to serve for the Argon process).

LV 02→ Liquid flow from the flashpot V02, enters the LP column between subsections 1 and
2.
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VV 02→ Gas flow from the flashpot V02, enters the LP column between subsections 1 and 2.

LV 04→ Liquid flow from the flashpot V04, enters the LP column between subsections 1 and
2.

VV 04→ Gas flow from the flashpot V04, enters the LP column between subsections 1 and 2.

V waste
HP Residuary gas exiting the LP column at its top.

V reboiled
K10 Gas vaporized in the argon column K10 top condenser, enters the LP column between

subsections 3 and 4.

LK10→LP Liquid flow from the argon column K10 bottom, enters the LP column between
subsection 4 and 5, at the argon belly location.

VLP→K10 Gas taken out from the LP column at the argon belly location, feeds the argon
column K10 at its bottom.

V reboiled
LP Gas reboiled out of the LP column’s bottom liquid bath.

Lprod
LP Almost pure oxygen liquid, drawn off LP column’s bottom; serves for liquid and gas

oxygen production.

B.3 Tags of the first argon column K10

V reboiled
K10 Gas vaporized in the argon column K10 top condenser, enters the LP column between

subsections 3 and 4.

V condensed
K10 Gas arriving at the top of K10 to be condensed

Lprod
K10 Almost nitrogen free liquid taken out at the top of K10 to feed the second argon column

K11.

LK10→LP Liquid flow from the argon column K10 bottom, enters the LP column between
subsection 4 and 5, at the argon belly location.

VLP→K10 Gas taken out from the LP column at the argon belly location, feeds the argon
column K10 at its bottom.
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Appendix C

HP column additional dynamic
simulations

The following pages present in a condensed manner the results of the HP column simulation
using 17 40h scenarios gathered from the air separation plant. The figures are all presented
in the following way:

Top, left Internal liquid and gas molar flows (Nm3/s). Solid red: gas in subsection 1 and 2.
Dotted red: gas in subsection 3. Solid blue: liquid in subsection 1. Dotted blue: liquid
in subsection 2. Dashed blue: liquid in subsection 3.

Center, left Internal column pressure (bara).

Bottom, left Envelopes of variation of the simulated gas (pale red) and liquid (pale blue)
oxygen composition profiles. Hysys static profiles are superimposed (Solid: case A.
Dashed: case B. Dash-dotted: case C).

Top, right Estimated and measured gas oxygen content at the lean liquid draw. Black:
measure in gas. Solid red: k(X). Dotted red: actual simulated composition (the static
output y).

Center, right Diffusion coefficient ǫ with on-line adaption.

Bottom, right Estimated compositions at the top of the column. Blue: the lumped O2

composition X. Red: k(X). Dotted red and blue: the actual simulated compositions
in the liquid (blue) and gas (red), i.e. the static outputs x and y.

Simulations are made with ∆t=0.1s, ∆s = 0.1m, αO2 = 0.395, µL = 0.6m/s, λL =
20mol.m−1.s−1, λV = 10λL. The diffusion parameter ǫ is adapted according to 4.16, with
time constant Ti = 1h. The liquid speed is 0.02m/s.

Table C gives the day and hour of beginning of each scenario, as well as the cluster it
belongs to.
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Scenario Day Starting hour Cluster

1 June 27th, 2011 10h 1
2 July 4th, 2011 10h 1
3 July 11th, 2011 10h 1
4 July 18th, 2011 10h 1
5 July 25th, 2011 10h 1
6 August 1st, 2011 10h 1
7 August 8th, 2011 10h 1
8 August 15th, 2011 10h 1
9 September 5th, 2011 10h 1
10 September 12th, 2011 10h 1
11 October 3rd, 2011 10h 1
12 October 10th, 2011 10h 2
13 October 17th, 2011 10h 2
14 October 24th, 2011 10h 2
15 November 1st, 2011 10h 3
16 November 29th, 2011 10h 3
17 May 28th, 2012 10h 2

262



Time (h)

ε

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (h)

M
o
la

r 
fr

a
c
ti
o
n

s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (h)

M
o
la

r 
fr

a
c
ti
o
n

s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
× 10

-6

Time (h)

M
o
la

r 
fl
o
w

 (
N

m
3
/s

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

5

10

15

20

25

30

Time (h)

In
te

rn
a

l 
H

P
 c

o
lu

m
n

 p
re

s
s
u
re

 (
b

a
ra

)

0 1 2 3 4 5 6 7 8 9 10

5.24

5.26

5.28

5.3

5.32

5.34

5.36

5.38

Position on s-axis (normalized abscissa)

M
o

la
r 

fr
a

c
ti
o

n
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure C.1: Scenario n◦1
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Figure C.2: Scenario n◦2
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Figure C.3: Scenario n◦3
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Figure C.4: Scenario n◦4

266



Time (h)

ε

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (h)

M
o

la
r 

fr
a

c
ti
o

n
s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (h)

M
o

la
r 

fr
a

c
ti
o

n
s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
× 10

-6

Time (h)

M
o

la
r 

fl
o

w
 (

N
m

3
/s

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

5

10

15

20

25

30

Time (h)

In
te

rn
a

l 
H

P
 c

o
lu

m
n

 p
re

s
s
u

re
 (

b
a

ra
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

Position on s-axis (normalized abscissa)

M
o

la
r 

fr
a

c
ti
o

n
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure C.5: Scenario n◦5
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Figure C.6: Scenario n◦6
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Figure C.7: Scenario n◦7
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Figure C.8: Scenario n◦8

270



Time (h)

ε

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (h)

M
o

la
r 

fr
a

c
ti
o

n
s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (h)

M
o

la
r 

fr
a

c
ti
o

n
s

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
× 10

-6

Time (h)

M
o

la
r 

fl
o

w
 (

N
m

3
/s

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

5

10

15

20

25

30

Time (h)

In
te

rn
a

l 
H

P
 c

o
lu

m
n

 p
re

s
s
u

re
 (

b
a

ra
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

5.2

5.25

5.3

5.35

5.4

5.45

Position on s-axis (normalized abscissa)

M
o

la
r 

fr
a

c
ti
o

n
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure C.9: Scenario n◦9
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Figure C.10: Scenario n◦10
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Figure C.11: Scenario n◦11
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Figure C.12: Scenario n◦12
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Figure C.13: Scenario n◦13
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Figure C.14: Scenario n◦14
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Figure C.15: Scenario n◦15
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Figure C.16: Scenario n◦16
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Figure C.17: Scenario n◦17
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Appendix D

LP column additional static
simulations

This appendix contains additional static simulations results which have been taken out from
Chapter 5 for the sake of brevity. These results regard static Hysys simulation cases B and
C, and sensitivity analysis of the steady-state solutions given by the PDE model.
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Figure D.1: Top: Hysys estimations of the liquid (blue) and gas (red) composition profiles
in case B. Bottom: internal liquid (blue) and gas (red) flows in case B. Confer Fig. 5.1.
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Figure D.2: Top: Hysys estimations of the liquid (blue) and gas (red) composition profiles
in case C. Bottom: internal liquid (blue) and gas (red) flows in case C. Confer Fig. 5.1.
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Figure D.3: Comparison of the Hysys and the pseudobinary PDE model composition estima-
tions in case B with a s-varying relative volatility. Blue circles: Hysys estimation in liquid.
Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped com-
position X. Red solid line: k(X). Blue dotted line: PDE model estimated composition in
liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y). Confer Fig. 5.2.
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Figure D.4: Comparison of the Hysys and the pseudobinary PDE model composition estima-
tions in case C with a s-varying relative volatility. Blue circles: Hysys estimation in liquid.
Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped com-
position X. Red solid line: k(X). Blue dotted line: PDE model estimated composition in
liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y). Confer Fig. 5.2.
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Figure D.5: Comparison of the Hysys and the pseudobinary PDE model composition estima-
tions in case B with a constant relative volatility. Blue circles: Hysys estimation in liquid.
Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped com-
position X. Red solid line: k(X). Blue dotted line: PDE model estimated composition in
liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y). Confer Fig. 5.4.
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Figure D.6: Comparison of the Hysys and the pseudobinary PDE model composition estima-
tions in case C with a constant relative volatility. Blue circles: Hysys estimation in liquid.
Red circles: Hysys composition estimation in gas. Blue solid line: PDE model lumped com-
position X. Red solid line: k(X). Blue dotted line: PDE model estimated composition in
liquid (static output x). Red dotted line: PDE model estimated composition in gas (static
output y). Confer Fig. 5.4.
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Figure D.7: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with −1% perturbation on the optimal value of α. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y). Confer Fig. 5.6.
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Figure D.8: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with −5% perturbation on the optimal value of ǫ. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y). Confer Fig. 5.7.

289



0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position on the column axis (normalized abscissa)

M
ol

ar
 fr

ac
tio

ns

Figure D.9: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with −1% perturbation on the original gas/liquid molar ratio (0.181) in the
feed between subsections 2 and 3 (feed from the V04 flashpot). Original molar fractions are
0.2454 in the liquid feed, 0.1631 in the gas feed. Red circles: Hysys composition estimation
in gas. Blue solid line: PDE model lumped composition X. Red solid line: k(X). Blue dotted
line: PDE model estimated composition in liquid (static output x). Red dotted line: PDE
model estimated composition in gas (static output y). Confer Fig. 5.8.
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Figure D.10: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case A with −1% perturbation on the original {O2,Ar} pseudocomponent molar
fraction in the feed between subsection 2 and 3 (feed from the V04 flashpot). Blue circles:
Hysys estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid
line: PDE model lumped composition X. Red solid line: k(X). Blue dotted line: PDE
model estimated composition in liquid (static output x). Red dotted line: PDE model esti-
mated composition in gas (static output y). Confer Fig. 5.9.
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Figure D.11: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case B with the s-dependent relative volatilities estimated using Hysys . The
monotone profiles corresponds to oxygen, the belly-shaped ones to argon. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y). Confer Fig. 5.10.

292



0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position on the column axis (normalized abscissa)

M
ol

ar
 fr

ac
tio

ns

Figure D.12: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case C with the s-dependent relative volatilities estimated using Hysys . The
monotone profiles corresponds to oxygen, the belly-shaped ones to argon. Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y). Confer Fig. 5.10.
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Figure D.13: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case B with the s-dependent relative volatilities estimated using Hysys times a
multiplicative factor m = 0.8. The monotone profiles corresponds to oxygen, the belly-shaped
ones to argon. Blue circles: Hysys estimation in liquid. Red circles: Hysys composition
estimation in gas. Blue solid line: PDE model lumped composition X. Red solid line: k(X).
Blue dotted line: PDE model estimated composition in liquid (static output x). Red dotted
line: PDE model estimated composition in gas (static output y). Confer Fig. 5.11.
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Figure D.14: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case C with the s-dependent relative volatilities estimated using Hysys times
a multiplicative factor m = 0.99. The monotone profiles corresponds to oxygen, the belly-
shaped ones to argon. Blue circles: Hysys estimation in liquid. Red circles: Hysys compo-
sition estimation in gas. Blue solid line: PDE model lumped composition X. Red solid line:
k(X). Blue dotted line: PDE model estimated composition in liquid (static output x). Red
dotted line: PDE model estimated composition in gas (static output y). Confer Fig. 5.11.
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Figure D.15: Comparison of the Hysys and the pseudobinary PDE model composition es-
timations in case A with −1% perturbation on the original gas/liquid molar ratio (0.181)
in the feed between subsections 2 and 3 (feed from the V04 flashpot). Blue circles: Hysys

estimation in liquid. Red circles: Hysys composition estimation in gas. Blue solid line: PDE
model lumped composition X. Red solid line: k(X). Blue dotted line: PDE model estimated
composition in liquid (static output x). Red dotted line: PDE model estimated composition
in gas (static output y). Confer Fig. 5.12.
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Figure D.16: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case B with constant αO2 and αAr. The monotone profiles corresponds to oxygen,
the belly-shaped ones to argon. Blue circles: Hysys estimation in liquid. Red circles: Hysys

composition estimation in gas. Blue solid line: PDE model lumped composition X. Red solid
line: k(X). Blue dotted line: PDE model estimated composition in liquid (static output x).
Red dotted line: PDE model estimated composition in gas (static output y). Confer Fig. 5.13.
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Figure D.17: Comparison of the Hysys and the pseudobinary PDE model composition esti-
mations in case C with constant αO2 and αAr. The monotone profiles corresponds to oxygen,
the belly-shaped ones to argon. Blue circles: Hysys estimation in liquid. Red circles: Hysys

composition estimation in gas. Blue solid line: PDE model lumped composition X. Red solid
line: k(X). Blue dotted line: PDE model estimated composition in liquid (static output x).
Red dotted line: PDE model estimated composition in gas (static output y). Confer Fig. 5.13.
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Appendix E

Performances of the numerical
schemes

E.1 Finite-differences scheme

The choice of a finite-differences approach, both in time and space, for the numerical simula-
tion of the columns dynamics, is mainly for the sake of the model development convenience,
rather than for computational performances. The models discretization issue is out of the
primary scope of this work, and the finite-differences schemes allow agile implementation of
the successive versions of our models. In addition, we have seen that turning the classical
finite-differences scheme into a partially implicit scheme allows ensuring the positiveness of
the results in some cases.

However, more advanced numerical techniques are certainly worth being considered. Since
the distillation model comes down to conservation equations (and all the more that the scheme
conservativeness is essential at high-purity), devoted methods such as Finite Elements Method
(FEM) or Finite Volumes Method (FVM) are natural candidates for the numerical approx-
imation in space (finite-difference still being used for the time domain). Note thought that,
the problem being 1-D in space, FEM and FVM capability of handling complex domain
geometries and meshes would not be used.

Regarding the time domain, the numerical scheme could advantageously benefit from the
time-scale separation in the model. For instance, diffusion dynamics along the column being
slower than convection, one could envisage to split the convection-diffusion operator in the
numerical scheme. The numerical solution update from time T to time T + ∆t would then
consist in convecting the initial data during ∆t

2 , then applying the diffusion once and for all
(i.e. for the whole ∆t), and eventually completing the convection for the remaining ∆t

2 , in the
manner of [69]. A positive side-effect is that the diffusion operator, from which part of the
numerical complexity arises for ternary mixtures, would have to be less frequently updated
than the simple convection term.
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E.2 Performances regarding the simulation of the binary HP
column

Using the proposed numerical scheme to simulate the distillation dynamics of a binary mixture
in the HP column requires about 10s of computation for 1h of the system time (hardware
and software are described in E.4). Reduction of this computation time could be achieved in
various manners, amongst which: better handling of arguments and results passing between
invoked scripts and functions, specific algorithm for solving the main tridiagonal system (such
as TDMA algorithm), more parsimonious writing and reading of the distributed parameters
vectors (some of which are partially rewritten during instantiation)...

E.3 Performances regarding the simulation of the ternary HP
and LP columns

Using the proposed numerical scheme to simulate the distillation dynamics of a ternary mix-
ture in the coupled HP and LP columns requires about 100s of computation for 1h of the
system time (hardware and software are described in E.4). This makes the numerical model
as is hardly suitable for real-time control or optimization purposes, if they are to require
iterative simulation during the same time step.

Apart from the fact that two columns are now simulated, this increase of the computation
time can be explained notably by the fact that, to keep composition estimations between 0
and 1 (especially in the LP column), the distillation dynamics are now computed twice: once
with N2 as the unexpressed component, and once with O2 as the unexpressed component, as
said in subsection 4.2.5. In addition to the coding improvement proposed for the HP column,
the second approach proposed in the latter should quicken computation.

E.4 Hardware and software

Simulation software: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MATLAB R2007a
Operating System: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Microsoft Windows XP SP3
Computer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dell Latitude E6500
CPU: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intel Core2 Duo CPU (only one core is used)
CPU frequency: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.06 GHz
RAM: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.48 Go
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Matemática Mexicana, 5:220–241, 1960.

[40] Tore Haug-Warberg. Mccabe-thiele diagrams for binary distillation. Dept. of Chemical
Engineering, Norwegian University of Science and Technology, August 2005.

[41] John D. Hedengren and Thomas F. Edgar. Approximate nonlinear model predictive
control with in situ adaptive tabulation. Computers and Chemical Engineering, 32:706–
7014, 2008.

[42] Friedrich G. Helfferich. Non-linear waves in chromatography III. Mutlicomponent Lang-
muir and Langmuir-like systems. Journal of Chromatography A, 768:169–205, 1997.

[43] Friedrich G. Helfferich and Roger D. Whitley. Non-linear waves in chromatography II.
Wave interference and coherence in multicomponent systems. Journal of Chromatogra-
phy A, 734:7–47, 1996.

303



[44] H. Hoang, F. Couenne, C. Jallut, and Y. Le Gorrec. The Port Hamiltonian approach to
modelling and control of continuous stirred tank reactors. Journal of Process Control,
21(10):1449–1458, 2011.

[45] H. Hoang, F. Couenne, C. Jallut, and Y. Le Gorrec. Lyapunov-based control of non
isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal
of Process Control, 22:412–422, 2012.

[46] R. Huang, V. M. Zavala, and L. T. Biegler. Advanced step nonlinear model predictive
control for air separation units. Journal of Process Control, 19(4):678–685, 2009.

[47] Rui Huang. Nonlinear Model Predictive Control and Dynamic Real Time Optimization
for Large-scale Processes. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
December 2010.

[48] Rui Huang, Lorenz T. Biegler, and Eranda Harinath. Robust stability of economi-
cally oriented infinite horizon NMPC that include cyclic processes. Journal of Process
Control, 22:51–59, 2012.

[49] Rui Huang, Eranda Harinath, and Lorenz T. Biegler. Lyapunov stability of economically
oriented NMPC for cyclic processes. Journal of Process Control, 21:501–509, 2011.

[50] B. Huyck, K. De Brabanter, F. Logist, J. De Brabanter, J. Van Impe, and B. De Moor.
Identification of a pilot scale distillation column: a kernel based approach. IFAC Pro-
ceedings Volumes, 18(Part 1):471–476, 2011.

[51] Yng-Long Hwang. Wave propagation in mass-transfer processes: from chromatography
to distillation. Industrial and Engineering Chemistry Research, 34:2849–2864, 1995.

[52] A. K. Jana, S. Ganguly, and A. N. Samanta. Nonlinear control of a multicomponent
distillation process coupled with a binary distillation model as an EKF predictor. ISA
transactions, 45(4):575–588, 2006.

[53] A. K. Jana, A. Nath Samanta, and S. Ganguly. Observer-based control algorithms for
a distillation column. Chemical Engineering Science, 61(12):4071–4085, 2006.

[54] A. K. Jana and A. N. Samanta. A hybrid feedback linearizing-kalman filtering control
algorithm for a distillation column. ISA transactions, 45(1):87–98, 2006.

[55] A. K. Jana, A. N. Samanta, and S. Ganguly. Nonlinear model-based control algorithm
for a distillation column using software sensor. ISA transactions, 44(2):259–271, 2005.

[56] Christopher K. R. T. Jones. Geometric singular perturbation theory. Dynamical systems
(Montecatini Terme, 1994) Lecture Notes in Math., Springer, 1609:44–118, 1995.

[57] Ravindra S. Kamath, Ignacio E. Grossmann, and Lorenz T. Biegler. Aggregate mod-
els based on improved group methods for simulation and optimization of distillation
systems. Computers and Chemical Engineering, 34:1312–1319, 2010.

[58] M. Kano, N. Showchaiya, S. Hasebe, and I. Hashimoto. Inferential control of distilla-
tion compositions: Selection of model and control configuration. Control Engineering
Practice, 11(8):927–933, 2003.

304



[59] E. Y. Kenig. Complementary modelling of fluid separation processes. Chemical Engi-
neering Research and Design, 86(9):1059–1072, 2008.

[60] S. Khowinij, S. Bian, M. A. Henson, P. Belanger, and L. Megan. Reduced order modeling
of high purity distillation columns for nonlinear model predictive control. In Proceedings
of the American Control Conference, volume 5, pages 4237–4242, 2004.

[61] S. Khowinij, M. A. Henson, P. Belanger, and L. Megan. Dynamic compartmental
modeling of nitrogen purification columns. Separation and Purification Technology,
46(1-2):95–109, 2005.

[62] A. Kienle. Low-order dynamic models for ideal multicomponent distillation processes
using nonlinear wave propagation theory. Chemical Engineering Science, 55(10):1817–
1828, 2000.

[63] A. Kienle, M. Groebel, and E. D. Gilles. Multiple steady states in binary distillation-
theoretical and experimental results. Chemical Engineering Science, 50(17):2691–2703,
1995.

[64] Kirk-Othmer. Separation Technology, volume 1. Wiley, second edition, 2008.

[65] C. C. Klimasauskas. Hybrid modeling for robust nonlinear multivariable control. ISA
transactions, 37(4):291–297, 1998.

[66] A. Kumar Jana, A. Nath Samanta, and S. Ganguly. Globally linearized control system
design of a constrained multivariable distillation column. Journal of Process Control,
15(2):169–181, 2005.

[67] T. Kurooka, Y. Yamashita, H. Nishitani, Y. Hashimoto, M. Yoshida, and M. Numata.
Dynamic simulation and nonlinear control system design of a heterogeneous azeotropic
distillation column. Computers and Chemical Engineering, 24(2-7):887–892, 2000.

[68] O.A. Ladyzhenskaia, V.A. Solonnikov, and N.N. Ural’ceva. Linear and quasilinear
equations of parabolic type, volume 23 of Translations of Mathematical Monographs.
American Mathematical Society, 1968.

[69] C. Le Bris and P. Rouchon. Low-rank numerical approximations for high-dimensional
Lindblad equations. Phys. Rev. A, 87(2):022125, 2013.
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