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Context and Motivation

When? Where? and How? These are three fundamental questions that orientate

the work of scientists when dealing with the fracture phenomenon. From a technological

point of view, understanding how materials break has been a fundamental problem for

centuries. Some of the �rst recorded scientists tackling these questions were Leonardo

Da Vinci [Vinci (1940)] and Galileo Galilei [Galilei (1958)]. Indeed, Da Vinci's notebooks

provides an interesting description of tension tests achieved on metal wires (see �gure 1).

By attaching and slowly �lling a sand bag to the end of the wires, Da Vinci measured their

strength to failure. He observed that wires with the same cross-section yet longer lengths

failed before their counterparts with shorter lengths. This may appear counterintuitive: A

simple analysis based on continuum mechanics shows that wires with same section carry

the same stress, irrespectively of their length. Hence, assuming that strength is a material

property, one could think that the stress at failure would not depend on the wire's length.

Nevertheless, continuum mechanics considers homogeneous materials. This is not close

to the reality, especially for the metal wires forged at the Renaissance! Actually, disorder

has a profound impact on the material's strength, since fracture typically originates from

the weakest spots like preexisting microcracks or voids. The longer the wire, the easier

it is to �nd a weak spot, and hence, the smaller is the strength. Da Vinci's notebook

reports the �rst experimental veri�cation of size e�ect in fracture. The di�culty then is

to develop a framework being able to address these statistical aspects.

Single crack problem: Continuum fracture theory

For brittle solids broken under tension, Linear Elastic Fracture Mechanics (LEFM) tackles

the di�culty by reducing the problem to a destabilization and subsequent growth of

1



CONTEXT AND MOTIVATION

Figure 1: Da Vinci's set-up used to test the strength of metal wire. One end of the cable
(in blue) is attached to the roof in A while a basket (D) hangs to the other end
in B. Sand is poured from the basket C. See text for more details.

a dominant pre-existing crack. Then, strength statistics and its size dependence are

captured by the weakest-link Weibull theory [Weibull (1939)].

A single crack running in a linear elastic solid under tensile loading can be addressed

within the elastodynamics framework. As �rst noted by Orowan [Orowan (1955)] and

Irwin [Irwin (1957)], the stress �eld σij is singular in the vicinity of the crack tip (see

�gure 2). To �rst order, the following is true:

σij(r, θ) ≈
KI√
2πr

fij(θ, v), (1)

where (r, θ) are the polar coordinates in a frame (~ex, ~ey centered at the crack tip, v is

the speed of the tip, fij(θ, v) is a dimensionless universal function indicating the angular

variation of the stress �eld and its variations with v, and KI , static stress intensity factor,

is the relevant parameter to quantify the macroscopic forcing applying on the crack.

It depends on the external loading and specimen geometry only. It is proportional to

the externally applied forces, and its dependency with respect to the geometry can be

computed (e.g. via �nite elements methods) in virtually any situations, irrespectively of

its complexity.

2



Figure 2: Stress at the crack tip for an ideal material where σI stands for σxx.

This situation of simple tensile loading can be generalized to situations with more

complex loadings. Due to the linearity of elastodynamics, these latter loadings can always

be decomposed into three independent loading modes:

• Mode I (prying) mode (�gure 3-B): This corresponds to the splitting of a crack

under tensile stresses.

• Mode II(shearing) mode (see �gure 3-B): This corresponds to a shear parallel to the

direction of crack propagation.

• Mode III (tearing) mode (see �gure 3-C): This corresponds to a shear parallel to

the crack front.

For these three cases, the stress �eld takes a singular form similar to that written in

equation 1 with prefactors KI , KII and KIII to be associated with the tensile, shearing

and tearing modes, respectively.

The next step is to describe how a crack responds to a given loading. Here, the theory

makes use of the singular form of the stress �eld, which implies arbitrary large stress

values as one zooms in on the crack tip. This is physically impossible, so this means that

the material stops to be linear elastic around the crack tip. This small zone where linear

elasticity stops to be relevant is called the Fracture Process Zone (FPZ) and encompass all

3



CONTEXT AND MOTIVATION

Figure 3: Di�erent modes of fracture and associated illustration taken from the everyday
life.

the damage and failure mechanisms. According to the Gri�th's theory [Gri�th (1920)],

the onset of fracture is reached when the amount of elastic energy released by the solid

as the crack propagates by a unit length is equal to the energy dissipated within the FPZ

during this unity propagation. The form taken by the stress �eld at the crack tip (see

equation 1) relates the mechanical energy release G at the onset of crack propagation (i.e.

for v = 0) to the stress intensity factors. In plane stress, one writes:

G =
1

E

(
K2

I +K2
II + (1− ν2)K2

III

)
(2)

Where ν and E are the shear and Young modulus of the material, respectively. The energy

dissipated within the FZP as the crack propagates to create two new fracture surfaces of

unit area is called the fracture energy, Γ, and is considered as a material constant. The

Gri�th criterion for crack destabilization then is:

G > Γ (3)

Once the crack starts to grow, its velocity is governed by the balance between the

4



mechanical energy �owing into the FPZ and the dissipation rate Γ · v, where v the crack

tip's speed. For mode I cracks running at speed v, the equation of motion is [Freund

(1990)]:

(

1− v

cR

)
K2

I

E
= Γ (4)

where cR refers to the Rayleigh wave speed in the material. In this Ph.D., slow crack are

of interest. To �rst order in v/cR. The equation of motion reduces to:

1

µ
v = G− Γ, (5)

with µ = cR/Γ.

To complete the theory, the model requires a criterion to know the crack tip's propa-

gate direction. In homogeneous isotropic solids, the local symmetry principle [Gol'dstein

and Salganik (1974)] states that the direction of propagation must locally maintain pure

tension (see [Lazarus (2011)] for a careful review on this point). This implies that the

direction of propagation is chosen such that:

KII = 0 (6)

Shortcomings in the continuum theory: Experimental

illustrations

The LEFM theory presented above provides a coherent framework to describe crack desta-

bilization and further propagation in brittle solids. Still, numerous observations contradict

these predictions. In particular, the equations of motion (equation 5) and of trajectory

(equation 6) predict a rather regular, continuous, motion along a smooth trajectory for a

slowly loaded and initially smooth crack. This is not always the case.

Several experimental observations reveal that fracture can display complex large-

scale �uctuations characterized by scale invariant features [Mishnaevsky (1997); Bonamy

5



CONTEXT AND MOTIVATION

Figure 4: Heterogeneities at the crack tip: non-idealized material.

(2009)]. First, fracture surfaces are found to exhibit roughness the sizes of which are much

larger than the typical microstructure scale. These morphologies are characterized by self-

a�ne morphological features [Mandelbrot et al. (1984); Bouchaud et al. (1990); Måløy

et al. (1992); Mandelbrot (2006); Bouchaud (1997); Bonamy and Bouchaud (2011); Pon-

son (2007)]: Topographical pro�les h(r) of post-mortem fracture surfaces are statistically

invariant through the transformation (r, h) → (λr, λh), where ζ refers to the roughness ex-

ponent. Moreover, the fracturing dynamics can exhibit jerky scale-free dynamics. These

intermittent dynamics are evidenced indirectly from the acoustic emission (AE) analysis

, which accompany crack growth [Santucci et al. (2004); Salminen et al. (2006); Koivisto

et al. (2007); Ramos et al. (2013); Astrom et al. (2006)] or directly in peeling experiments

along heterogeneous interfaces [Måløy et al. (2006); Grob et al. (2009)]. Also, they exist in

fracture phenomena at the geophysics scale, such as earthquakes and eruptive events and

give rise to several empirical laws widely used in the mitigation and assessment of related

hazard, e.g. the Richter-Gutenberg [Gutenberg and Richter (1944)] law, the Omori law

[Omori (1894b)], the Voight law [Voight (1988)], the Utsu law [Utsu (1971)], etc.

Possible solutions: Statistical physics approaches

In essence, the above observations cannot be accounted for within homogeneous LEFM

framework. Still, the observation of scale-invariant statistics and the fact that the associ-

ated exponents are to fair extent universal suggest that some tools issued from statistical

physics may be relevant [Herrmann and Roux (1990); Alava et al. (2006); Bonamy (2009)].

6



Fiber bundle models (FBM) (see [Pradhan et al. (2010)] for review) and random fuse mod-

els (RFM) (see [Alava et al. (2006)] for review) were e.g. able to reproduce qualitatively,

with a minimal set of ingredients, the scale-free microfracturing dynamics [Hansen and

Hemmer (1994); Zapperi et al. (1997a)] and self-a�ne morphological features [Hansen

et al. (1991); Zapperi et al. (2005)] of cracks.

The goal of these discrete approaches is not to describe quantitatively solid fracture.

They prefer to reproduce qualitatively the scale free statistics keeping only the two main

ingredients characterizing material failure: (i) the microstructure randomness and (ii) the

long-range coupling due to the redistribution of elastic �elds. As a result, they are di�cult

to conciliate with LEFM framework.

Another approach pioneered by Gao and Rice [Gao and Rice (1989)] takes into ac-

count explicitly, within the elastostatics framework, the local distortions of the crack front

induced by the material's inhomogeneities. In this context, [Schmittbuhl et al. (1995); Ra-

manathan et al. (1997)] the fracture problem maps to the depinning problem of an elastic

line driven in a random potential. This theory succeeds in reproducing the experimentally

observed crackling dynamics [Bonamy et al. (2008)] and self-a�ne morphological features

of crack roughness [Bonamy et al. (2006); Dalmas et al. (2008)]. It can also be used to

predict the statistics and size e�ect of e�ective toughness [Roux et al. (2003); Patinet

et al. (2013)]. Nevertheless, most of the predictions remains qualitative, limited to the

reproduction of the scaling laws/scale-free statistics and (eventually) of the associated

exponents. They lack experimental data for con�rmation.

Goal of the Ph.D. work

The goal of my Ph.D. is to �ll this gap. The �rst part of this manuscript presents an

original fracture experiment that permits to test the pinning-depinning theory. It details

methods for making a single crack grow in an arti�cial rock of controlled microstructure

(see �gure 4) loaded in tension. These experiments captured/measured the time evolution

of crack speed, stored and released energy, and acoustic emission with enough accuracy

to characterize quantitatively their �uctuations. Part I chapter 2 details some surprising

�nds; the statistical analysis of AE events displays similarities to seismic activity accom-

panying earthquakes. The extent at which the time-evolution of speed and stored energy

7



CONTEXT AND MOTIVATION

Figure 5: Picture of a broken specimen of our homemade arti�cial rock (illustration of
the work discussed in the �rst part of the manuscript).

Figure 6: Top view of a crack front simulated numerically (illustration of the work dis-
cussed in the second part of the manuscript).

is compatible with depinning-like scenario is presented in Part 1 chapter 3.

Still, intermittent, jerky dynamics is not always observed in fracturing solids (even

in presence of heterogeneities), and very often, the LEFM approach gives a correct pre-

diction of the crack growth. To explain this apparent paradox, the second part of this

manuscript aids in bridging the gap between the depinning approach and LEFM (see �g-

ure 6). Numerical simulations which invoke the equation of motion unravel the conditions

(in term of loading rate, specimen geometry, microstructural disorder, material constants)

that select continuum-like or crackling dynamics (chapter 2 of part I). Chapter 3 of part

II addresses how loading, specimen, and microstructure conditions govern the dynamics

in the crackling phase, in which LEFM is not relevant.
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Experimental aspects
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Introduction

Contrary to what is predicted by LEFM, crack growth in heterogeneous brittle material

sometimes displays jerky dynamics with seemingly random discrete jumps over several

length scales. Many fracture experiments reproduce these crackling dynamics via a wide

variety of experimental fracture setups (see [Bonamy (2009)] for a review of them). Each

time clustering in energy of events, in space and/or in time, is evidenced invoking seismic-

like power-laws.

First, since these scale-free distributions are observed universally on Earth indepen-

dent of the considered area and the time of observation, it is theorized that subjecting

laboratory rock specimens to loadings similar to the ones undergone by the Earth's crust

should reproduce similar statistical features. In this context, time series of acoustic emis-

sion were recorded in various rocks loaded under uniaxial compression up to shear fracture

[Mogi (1967); Scholz (1968a,b); Hirata (1987); Davidsen et al. (2007); Baro et al. (2013)].

These loads produce a complex mixing between fracture, damage and friction and manage

to reproduce fairly well the statistics observed by Earthquakes. Nevertheless, due to the

phenomenon complexity, it is not possible to catch the physics that rule these statistics.

The signature of crackling dynamics is also evidenced via AE which accompanies frac-

ture in simpler situations. Experiments in mode I failure for many brittle materials (rocks

[Davidsen et al. (2007)], wood and �berglass [Garcimartin et al. (1997); Guarino et al.

(1998)], polymeric foams [Deschanel et al. (2006, 2009)] and paper [Salminen et al. (2002);

Santucci et al. (2004, 2007); Ramos et al. (2013)]) have shown to evidence power-law dis-

tributions of energy and silent time between two successive events to what is observed

by earthquakes. However, it should be emphasized that the relation between AE energy

and released elastic energy remains largely unknown [Minozzi et al. (2003)]. Moreover,

power-law exponents vary with the material [Bonamy (2009)] so they do not appear to

be universal. It is also worth noting that most of the AE fracture experiments are non-

stationary: usually, one starts with an unbroken specimen and loads it to catastrophic

failure. In these test, the recorded AE re�ects more the micro-fracturing processes preced-

ing the initiation of the macroscopic crack than the growth of the latter. This hierarchy

between preceding smaller events and a single main event (i.e. crack) is intrinsically dif-

ferent from the case of the earthquakes so both phenomenon can be directly compared

from a statistically point of view.
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Recently stable crack growth geometries have been used to make the crack front prop-

agate through brittle heterogeneous materials. First, [Salminen et al. (2006); Koivisto

et al. (2007)] experimentally investigated the AE statistics in the steady regime of crack

propagation of paper peeling. The distribution of AE energy and silent time between

events follows a power-law, but the hierarchical organisation between macroscopic events

and smaller ones, is not ruled by the same statistic as the one observed for earthquakes. A

similar interfacial crack propagation experiment has been set-up by [Måløy and Schmit-

tbuhl (2001); Måløy et al. (2006)] in polymethylmethacrylate (PMMA). They investigate

experimentally the dynamics of crack propagation in a simpler con�guration, namely the

one of planar crack propagating along a weak heterogeneous interface between two sealed

heterogeneous transparent PMMA plates. Using a fast camera, they directly observed

crack propagation and de�ned quakes as jump of the crack front (see [Grob et al. (2009)]

for more details). The statistical analysis of these quakes [Grob et al. (2009); Tallakstad

et al. (2011, 2013)] in terms of surface, duration, time of occurrence and epicenter position

were found to be the same in both experimental quakes and real seismicity. Neverthe-

less no quantitative access to relevant quantities in mechanics (like variation of energy in

the system) or acoustics has been studied and the e�ect of the microstructural texture

remains unclear since it is not possible to impose and tune the characteristic size.

Finally, few experiments exists where one breaks materials with a well-de�ned struc-

ture at the nanoscale and still observes crackling dynamics. These experiments are cleav-

age tests performed on pure crystals such as mica [Marchenko et al. (2006)] and sapphire

[Astrom et al. (2006)] and reveal power-law statistics for both the distribution of released

energy and silent time between two successive nanofractures. In the case of sapphire, the

structure is controlled, but the loading conditions are very complex. Thus, no link is done

between the relevant quantities in fracture mechanics such that energy release rate and

the statistics predicted by the pinning model

Hence, the goal of my thesis is to bridge the main gaps left by the previous experi-

mental works (i.e. to understand the continuity between the complexity of the earthquake

physics and the relative simplicity of the pinning model). Therefore, the model fracture

experiments invoked herein remain simple enough to be mapped using the theoretical

pinning model; but they are rich enough to reproduce the complex statistical features

observed by earthquakes. The key objectives of my thesis are:

• Make a 3D crack front propagate in a 3D isotropic material.
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• Reduce the fracture to a simple pure mode I propagation mechanism.

• Ensure the propagation is dynamically and geometrically stable.

• Tune the loading rate over several orders of magnitude.

• Fix the microstructure size around a characteristic value and be able to vary it from

one sample to another.

• Measure at the same time AE and elastic energies.

• Have quantitative access to the relevant mechanics (energy E, crack speed v) and

fracture mechanics (energy release rate G, fracture energy Γ) quantities.

• Ensure the structural integrity of the fracture surfaces for post-mortem analysis (i.e.

do not destroy the sample during fracture experiments!).

This document details experimental procedures and results obtained. The �rst chapter

describes the experiment, from the preparation of the samples to the computations and

�ltering of the mechanical and acoustic quantities. Then in the second chapter is dedicated

to the analyse of AE with the tools made for earthquake studies to show the statistical

richness of fracture in opening mode. The experiment permits access to the elastostatic

observables, thus the statistics of their variations are examined in chapter 3.
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Chapter 1

Material and method

Introduction

In this chapter, I present the experimental setup that was developed during my PhD,

along with the motivation behind its underlined design. The overall goal is to better

understand how crackling dynamics form in fracture situations. In this context, we have

seen in the introduction that the dynamics observed in some model fracture experiments

share statistical similarities with the seismicity associated with Earthquakes.

Below, I detail how to carry out mode I (opening mode) stable fracture propagation

in model experiment. These experiments employ tunable heterogeneous brittle materials

to recording AE and elastostatic observables in a synchronized manner. The process

is explained from sample fabrication to data post processing. Section 1.1 presents the

wedge-splitting fracture experiment and its speci�cations. Then, section 1.2 details the

protocol used to fabricate samples. The last section divulges post-processing methods of

experimental outputs.

1.1 Fracture set-up: Wedge splitting geometry

The �rst step is to design a fracture test that permits the growth of slow, stable cracks in

pure mode I at various velocities in a controlled manner. The wedge splitting geometry

ful�ls these requirements [Bruhwiler and Wittmann (1990); Karihaloo and Xiao (2001);

Scheibert et al. (2010); Guerra et al. (2012)]. For example, the geometry is perfectly
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CHAPTER 1. MATERIAL AND METHOD

adapted since the stress intensity factor decreases with crack length. The setup is depicted

in �gure 1.1. The specimens are �rst machined to obtain parallelepipeds of dimensions

L×H ×W , with L = 14± 0.4 cm, H = 12± 0.4 cm, and W depending on the material:

W ≈ 1.5 cm for arti�cial rocks obtained at high sintering pressure, and W ≈ 2 cm for

those obtained at low sintering pressure (see next section). Subsequently, a notch is milled

by: (i) cutting a 4.2× 3×W cm3 rectangle from the middle of one of the 125× 15 mm2

faces; (ii) in the middle of the rectangle a thick groove, 10 mm-long 2 mm, is introduced

via a diamond saw ; and (iii) �nally a seed crack (∼ 0.5 mm long) is formed with a razor

blade, a seed crack at the tip of the groove (see appendix B for more details about the

sample geometry).

The sample is then loaded by pushing a steel wedge (semi-angle of 15◦) into the notch.

At a given time, the seed crack destabilizes and starts to grow. Henceforth, the reference

frame will coincide with typical conventions in fracture mechanics: (1) ~ex parallel to

the direction of crack propagation (L-direction); (2) ~ey parallel to the tension loading

(H-direction); and (3) ~ez parallel to the mean crack front (W -direction).

Special attention is given to limit parasitic dissipation sinks (friction or plastic defor-

mation) in the system which can exist outside of the FPZ (i.e. dissipation zone located

at the crack tip). In this context, the wedge does not push directly into the specimen,

but throughout two steel blocks equipped with rollers placed on both sides of notch (see

�gure 1.1). The opposite side of the specimen lays on a pivot of radius of 3.2 cm. This

permits (i) to spread the loading force over a large contact area and prevent any plastic

deformation of PMMA at the loading contacts; and (ii) to suppress friction in the system.

As a result, the region in the vicinity of the crack tip is assumed to be the sole dissipation

source for mechanical energy in the system.

The motion u(t) of the wedge is controlled by a stepper motor (Oriental motor EMP400

Series) allowing incremental displacements from 160 nm to 1.6 nm. In each of the subse-

quent fracture experiments, the wedge speed (V = du/ dt) was set to a constant V during

a single test. To modify the crack front dynamics between experiments, the wedge's speed

varies from 1.6 to 1600 nm/s. During the tests, the force, f(t), applied to the specimen

is measured in real-time (acquisition rate of 50 kHz, accuracy of 1 N) via a S-type Vishay

load cell connected to the bottom of the sample (see �gure 1.1). A camera images the crack

propagation at the specimen surface (30 frames per second with a pixel size of 130 µm).

Finally, eight acoustic transducers are strategically located on the specimen (four on each
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1.2. MATERIAL OF STUDY

side). They record the acoustic waves generated by the failure ( MHz acquisition rate and

aJ accuracy) and subsequently pinpoint their emission sources.

A Labview R© interface controls the wedge's motion u(t) and records the applied force,

f(t), and the specimen's image in a synchronized fashion. On the other hand, the AE

is recorded via a dedicated computer. The computers are synchronized at the start of

an experiment via a BNC cable and Labview's R© interface package. More details on the

experimental aspects are provided in appendix B.

Figure 1.1: Schematic view (A) and picture (B) of the instrumented wedge splitting de-
vice. The reference frame is de�ned so that ~ex is parallel to the direction of
crack propagation , ~ey is parallel to the tension loading, and ~ez is parallel to
the mean crack front. See text for details.

1.2 Material of study: Arti�cial rock made of sintered

polystyrene beads

The next step is to �nd the proper material to study. Many experiments reporting in-

termittent and crackling involve rocks [Mogi (1967); Scholz (1968a,b); Hirata (1987);

Davidsen et al. (2007); Baro et al. (2013)]. Hence, rocks appear as promising candidates.

Nevertheless, the use of natural rocks su�ers from two drawbacks:
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CHAPTER 1. MATERIAL AND METHOD

Figure 1.2: Photo of fabricated sample (left) and optical microscope image of the top of
the fabricated sample (right) views of the fracture surface of a broken sample
(Sa2: d = 500 µm, V = 160 nm/s, no porosity).

• They exhibit a complicated polydisperse microstructure, with grain sizes ranging

from the µm to the cm and varying porosity, so it is di�cult to control their

texture and ensure its reproducibility;

• They are sti� materials (Young modulus close to 100 GPa), which makes the exper-

iments sensitive to slight misalignments and inaccuracies in the machining of the

experimental setup and of the specimens.

To solve these problems, we chose to mimic the way nature makes rocks (by sintering sand

grains at high pressure and high temperature) by replacing the sand grains with a more

handy material: polystyrene beads. As a result, arti�cial polymer rock of reproducible

and tunable microstructural texture (modulated by controlling the bead size and the

sintering parameters) are obtained. An added advantage to the polystyrene beads is they

are signi�cantly softer than rock (Young modulus of 2.7 GPa). Hence, the specimens are

much more tolerant to unavoidable misalignments and inaccuracies in the setup and/or

specimen machining.

The various stages involved in the sintering process are sketched in �gure 1.4-A and

detailed in appendix A. First, polymer beads are poured into a rigid metallic mold. The

beads are monodisperse and made of polystyrene (see �gure 1.3). Second, the �lled mold

is placed in an oven and heated to 90% of the bead's glassy temperature. When this

temperature is reached, prescribed pressure is reached by compressing the polymer beads

and the mold between the two jaws of an Instron machine. The system is maintained

under these conditions of temperature and pressure for 45 min (�gure 1.4-B). The pressure

is then relaxed, and the temperature is increased to anneal the specimen (�gure 1.4-C).

Finally, the sample is cooled down and extracted from the mold (�gure 1.4-D). The
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1.2. MATERIAL OF STUDY

Figure 1.3: Picture of monodisperse 500 µm beads of polystyrene.

temperature and pressure evolutions during the sintering process are detailed in �gure

1.5. Over the fracture experiments, the microstructure size is modulated by varying the

bead diameter from 20 µm to 500 µm, and the specimen porosity is changed by modifying

the sintering pressure from 60 kPa to 5.2 MPa.

Figure 1.4: Sketch of the various stages involved in the sintering process. See text for
details.

The resulting specimens are found to exhibit a tunable, reproducible, and fairly ho-

mogeneous microstructural texture. More importantly, the fracture of such materials is

found to be intergranular, not transgranular. Indeed, as can be seen from the images of

the fracture surfaces presented in �gure 1.2 (top view on the right), the crack has propa-

gated between the grains to break the sample, not through them. The table 1.1 gathers

the sintering conditions, bead size, density, porosity, and elastic modulus for the various
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Temperature 500 µm beads 230 µm beads beads 50− 80 µm beads 20 µm beads
T1 80◦C 80◦C 70◦C 60◦C
T2 105◦C 105◦C 105◦C 90◦C
T3 115◦C 115◦C 115◦C 100◦C
T4 120◦C 120◦C 120◦C 105◦C
T5 130◦C 130◦C 130◦C 110◦C

Force F0 (N) 1 · 103 1 · 104 2 · 104 4 · 104 8 · 104
Pressure (MPa) 0.06 0.6 1.3 2.6 5.2

Figure 1.5: Evolution of the temperature, force and pressure during the sintering protocol.
See text for details.
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Bead size, d F0 Material density Material porosity Young modulus Sample name
(µm) (t) (kg/m3) (%) (GPa)
500 8 1046 0 2.4 Sa1, Sa2, Sa3
500 4 1052 0 2.2
500 2 1052 0 2.1
500 1 1014 3 2.2
500 0.1 802 24
230 8 1045 0 2.2 Sb1
230 4 1052 0 2.2 Sb2
230 2 1045 0 Sb3
230 1 1030 2 2 Sb4
230 0.1 772 27 0.8 Sb5

80-50 8 1040 0 2.1 Sc1
80-50 4 1044 0 2.3 Sc2
80-50 2 1039 0 2.5 Sc3
80-50 1 1047 0 2.5 Sc4
80-50 0.1 744 30 0.1 Sc5
20 8 1019 0 2.3 Sd1
20 0.1 927 12 1.7 Sd5

Table 1.1: Material properties of the various specimens broken during this PhD. Samples
written in blue bold will be studied in detail herein.

specimens synthesized and broken during my PhD. The porosity was deduced from the

ratio between the density of the beads and that of the specimens. The Young modulus

was obtained via dynamic mechanical analysis (DMA) for specimen Sa1 (see appendix

A). For the other specimens, it was deduced from the ratio between their sti�ness prior

to crack onset and that of Sa1.

During my PhD work, I have focused on the samples with the smallest (∼ 0%) porosi-

ties. Porosity, indeed, introduces a second characteristic length scale in the microstructure

(in addition to that of the bead diameter) and yields an acoustic attenuation that made

the characterization of the acoustic events inaccurate. Moreover, crackling dynamics is

marked in the specimens with large microstructure length-scales. Thus, most of the sta-

tistical analysis presented in the two following chapters will involve the material entitled

Sa1 (bold line in table 1.1) that was obtained from 500 µm beads sintered at a pressure

of 5.2 MPa.
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1.3 Data post-processing and recorded signals

As outputs for each experiment, we get the wedge position u(t), the applied force f(t),

images of the crack propagation at the specimen surface, and the acoustic signals detected

at the eight transducers. We need to process and �lter these data to compute the relevant

fracture mechanics quantities and characterize them. The data processing is detailed in

the following subsections

1.3.1 Acoustic measurement

The AE is collected at 8 di�erent locations via 8 piezoacoustic transducers. The signals

are preampli�ed, band �ltered, and sent to a powerful PCI-2 acquisition system from Euro

Physical Acoustics working at 40× 106 samples per second. For one transducer, acoustic

event i starts at time ti when the recorded signal U(i) (in volt) crosses a prescribed

threshold (40 dB), and �nishes when the signal's oscillation decreases below the threshold.

Each event is mainly characterized by two quantities: Time of occurrence and event

energy. The former is to be associated to ti. The latter can be de�ned either as the

integral U2(t) over the duration of the event (absolute energy) [Garcimartin et al. (1997);

Koivisto et al. (2007); Baro et al. (2013)], or as the maximum square amplitude U2(t) for

the event duration [Mogi (1967); Davidsen et al. (2007); Mallick (2010)]. As shown in

�gure 1.6-B both de�nitions are fairly consistent since they yield proportional quantities,

except for the smallest amplitudes. We chose here to follow [Mogi (1967); Davidsen et al.

(2007); Mallick (2010)] and de�ne the AE energy as the maximum square amplitude

U2(t) since, as we will see in the next chapter, the actual duration of an event cannot be

attributed to a microfracture event, but rather to the attenuation of the acoustic waves

after few re�ections within the whole specimen. Note that such a de�nition is also closer

to that proposed by Richter in seismology i.

The next step is to �lter the events collected at each transducer. A single "physical"

microfailure event, indeed, will or will not be detected at the various transducers, depend-

ing on its intensity as it reaches them. As a result, a raw observation of the collected

AE events is counted several (from one to eight) times for each true microfailure event.

iThe �rst (and most popular) magnitude scale M to quantify the earthquake energy is the one intro-
duced by Richter [Richter (1935)] that relates M to the logarithm of the maximum amplitude measured
on a Wood-Anderson torsion seismometer at a given distance from the earthquake epicenter.
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Figure 1.6: A: Energy of acoustic events as a function of time during a typical fracture
experiment (sample Sa1: d = 500 µm, V = 16 nm/s, no porosity). B:
Comparison between maximum squared amplitude (max(U2)) and absolute
energy (

∫
U2(t)dt). The axes are logarithmic. The dashed gray line with a

slope of 1 is given to guide the eye

We then adopted the following procedure to �lter the signals: (i) all the collected events

are plotted in a time-energy diagram (�gure 1.7); (ii) the points are clustered in groups

separated by less than 1 ms (black ellipses in �gure 1.7); (iii) all clusters with less than

3 members and more than 8 members are withdrawn (This represent less than 2% of the

total); and �nally (iv) we only keep the most intense event in each of the remaining clus-

ters, which is assumed to coincide with transducer closest to the emission point (sensor 8

in the given example).

Figure 1.7: Filtering procedure to map a single AE event with each true microfailure
event. All the collected events are plotted in a time-energy diagram (di�er-
ent symbols correspond to di�erent sensors). Each cluster (black ellipse) is
assumed to correspond to a single true event. In each cluster, only the AE
event with the highest energy is kept (�lled circle).
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The acoustic system can also pinpoint the source of some eventsii. A �rst observation

of AE location resulting from the system show that few events are localized far from the

crack front or even outside the sample (see �gure 1.9-A). This is mainly due to the poor

location accuracy of events with the lowest energy. We chose to remove these events from

our AE catalog. To do so, we begin by removing the events located far (∼ 5mm) from the

crack path � This latter being measured in the (y, z) plane as the Tikhonov regularization

of the position of all events. The resulting acoustic image is presented in �gure 1.8. Then

another �ltering in time is performed: We consider a sliding group of events (5% of the

total number of events) sorted by time and for each time step, we remove the 2% the

furthest from the center of mass of the group. Finally a last �ltering is space is performed

following a similar process: We consider a sliding group of events (5% of the total number

of events) sorted by crack length and for each time step, we remove the 2% the furthest

from the mean time occurrence in the group. These sequence of �lters typically remove

between 10% to 20% of the events. In the considered example, the �nal result is presented

in 3D in �gure 1.9-B. A movie showing the 3D acoustic imaging obtained from a typical

fracture experiments is given in Figure 1.11.

Figure 1.8: Filtering and selection of the localized acoustic events (see text for details on
the procedure). All events are projected on the (y, z) plane. These data are
recorded while breaking sample Sa1: d = 500 µm, V = 16 nm/s, no porosity.

Finally, a last correction can be done to the acoustic data taking into account the

energy attenuation of the wave front when propagating from the crack tip to the acoustic

sensor. In this context, we aligned the eight transducers. A pulse was emitted by the �rst

one, and received by the seven others. The measured attenuation was found to be around

iiOnly the AE with the highest energy can be spatially localized by the acoustic software: The number
of localized events is always much smaller than (typically one third of) the total number of collected
events
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Figure 1.9: A: All localized acoustic events. B: Acoustic events well localised. The blue to
green colors stand for the time at which the events take place. These data are
recorded while breaking sample Sa1: d = 500 µm, V = 16 nm/s, no porosity.

0.1 dB/cm/
√
MHz . Then, knowing the position of each sensor and the location of the

considered event, one can correct the attenuation.

1.3.2 Instantaneous crack velocity, stored energy and energy re-

lease rate

The next step is to have access to the quantities relevant for continuum fracture mechanics,

namely the crack length (c(t)) and the elastic energy release rate (G(t)), together with

their evolution in time. As we have seen in section 1.2, direct outputs from each fracture

experiment include: (i) the variations in the applying force f(t) (�gure 1.10); (ii) the

wedge position u(t) (�gure 1.10); and (iii) a rough measurement of the crack length using

the camera ccam(t) (�gure 1.11). Processing these outputs signals gives c(t) and G(t) with

enough accuracy to characterize their �uctuations!

First, the elastic energy, E(t), stored in the system is directly computed from the

applied force and wedge displacement (�gure 1.12):

E(t) =
1

2
f(t) · u(t) (1.1)

Then, before measuring G(t), we need to measure c(t) precisely. The idea is to relate

this quantity to f(t) (measured with high accuracy) rather than measuring it directly on

the images (less accurate). Let us assume that we have a rough approximation ccam(t) of
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Figure 1.10: A: Evolution of the applied force on the system and of the position of the
wedge as a function of the time. B: Force applied on the system as a function
of wedge displacement. Those data are recorded when sample Sa1 (d =
500 µm, V = 16 nm/s, no porosity) is breaking.

Figure 1.11: Movie of the crack propagation for sample Sa1 (d = 500 µm, V =
16 nm/s, no porosity). Scan the �ash-code with a mobile phone or click
http://youtu.be/S46a7tso_Oc with a computer.
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Figure 1.12: Evolution of the elastic energy stored in the system when the sample Sa1
(d = 500 µm, V = 16 nm/s, no porosity) is breaking. Each step is a breaking
event.

the crack length using the camera pictures. As presented in �gure 1.13-A, this permits

to plot the sample sti�ness k(t) =
f(t)

u(t)
as a function of ccam. This curve is noisy. Still,

in a linear elastic material, it should only depend on the specimen geometry and the

noise has no physical meaning. Hence, we apply a Tikhonov regularization to smooth

the curve. Then, one can use this smoothed curve to infer the crack length c(t) from

the values f(t) and u(t): c(t) = c(f(t)/u(t)) (�gure 1.13-B). The level of noise on the

crack length measured this way is signi�cantly smaller than ccam(t) and the accuracy of

the curve much better. Finally, simply di�erentiating this quantity, the crack tip speed

v(t) is derived and presented in �gure 1.14-A. In this last �gure, we see that without this

post-processing technique we have far less measurement than with the simple camera.

Moreover, to illustrate the considerable denoising e�ect of this technique, a homogeneous

PMMA sample is studied via the same technique in �gure 1.14-B. Going back to the case

of model rock, we can deduce that the physical noise due to crackling phenomenon is no

longer lost in noise measurements.

The next step is to estimate the rate time evolution of energy release rate. We begin

by looking at the energy balance of the system at time t0 in the quasistatic regime [Lawn

(1993)]:
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Figure 1.13: A: Sti�ness of the sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity)
as a function of the crack length, c. The dashed red line is the smoothed
curve. B: Crack length as a function of time when the crack propagates for
the sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity) measured from the
pictures (ccam(t)) and the smoothed k(c) curve (c(t)).

Figure 1.14: A: Crack tip speed as a function of time when the crack propagates for the
sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). B: As a complement
and to illustrate the gain in term of noise, B shows crack tip speed as a func-
tion of the crack length when the crack propagates in homogeneous PMMA.
For both graphs, speed is measure from the pictures (ccam(t)) and from the
smoothed sti�ness vs. length curve.
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∫ t0

0

f(t) · du
dt

dt

︸ ︷︷ ︸

energy brought to the system

− W ·
∫ t0

0

G(t) · dc
dt
dt

︸ ︷︷ ︸

energy lost at the crack tip

=
1

2
k(t0) · u2(t0)

︸ ︷︷ ︸

E=energy stored in the system

(1.2)

Where W is the thickness of the sample. Then we derive this relation with respect to

time:

f(t0) ·
du

dt
(t0)−W ·G(t0) ·

dc

dt
(t0) =

1

2

∂k

∂c
· dc
dt
(t0) · u2(t0) + u(t0) · k(t0) ·

du

dt
(t0) (1.3)

Finally, noting that f = k · u we can simplify and get (see �gure 1.15):

G(t) = − 1

2W

∂k

∂c
u2(t) (1.4)

Figure 1.15: A: Energy release rate as a function of time when the crack propagates for the
sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). B: As a complement
and to illustrate the gain in term of noise, B shows the energy release rate as a
function of the crack length when the crack propagates within homogeneous
PMMA. Measures are done from the pictures (ccam(t)) and the smoothed
k(c) curve.

This way to compute the energy release rateG has been compared with a more classical

method based on the Digital Image Correlation (DIC) [Sutton et al. (1983); Chu et al.

(1985); Hild and Roux (2006)] to check our experimental results and validate the method.

A sample with bead size 500 µm and sintering pressure 5.2 MPa is textured with droplets

of paint and broken with the loading speed V = 16 nm/s (similar to Sa1). It is �lmed
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through a lens without distortion while breakingiii. Then, following the method described

in Roux and Hild (2006), the global translation, global rotation, T-stress and both Stress

Intensity Factor (SIF) in mode I and mode II are �tted on a given series of functions.

Then the energy release rate G is directly deduced from the SIFs (see equation 2). The

results in terms of SIFs are given in �gure 1.16-B and the energy release rate is plotted

with the one measured from equation 1.4 for sample Sa1 in �gure 1.16. Both methods

are in a good agreement.

Figure 1.16: A: Energy release rate as a function of the crack length measured from DIC
and from u, f and c, when the crack propagates for samples with d = 500 µm,
V = 16 nm/s and no porosity. B: SIF in mode I and mode II for the same
sample measured via DIC. The vertical black lines give the error.

Note that, using our method, the camera is not used to directly measure the crack

length, but to obtain the curve k vs. c. Since AE are emitted in the vicinity of the growing

crack tip, we can also use the acoustic localization to derive this curve (see �gure 1.17:A).

The time evolution of the crack length as deduced in this case coincide with that derived

from ccam(t) (see �gure 1.17:A). This method can be also applied without any (direct or

acoustic-based) measurement of crack length, e.g. by computing the kvs.c curve via �nite

element simulations.

So �nally we get the evolution of both acoustic and mechanical variables, elastody-

namic and elastostatic variables in a synchronized manner as presented in �gure 1.18.

iiiThe wedge splitting set-up developed at CEA has recently been duplicated at FAST laboratory.
This second version has been equipped with a DIC set-up (high resolution camera, telemetric lens and
CorreliQ4 software). We borrowed this set-up to measure KI(c), KII(c) and subsequently G(c).
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Figure 1.17: A: Decreasing of the system sti�ness when the crack propagates for the
sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity) measured using the
camera or from the localisation of AE. B: Resulting time evolution for the
crack length, in the sample Sa1, for each of the two kvs.c curves.

Figure 1.18: Movie showing the synchronized evolution of the mechanical and acoustic
parameters when sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity) is
breaking (http://youtu.be/tSpvZiImq14). See text for details on each curve
evolution.
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1.3.3 Topography measurement

Finally we examine the morphology of the post-mortem fracture surfaces. We used a

stylus pro�lometer (KLA�Tencor R© D�120) with a tip radius of 2.5 µm to take various

1D pro�les a few centimeters long parallel and perpendicular to the direction of crack

propagation. Figure 1.19 presents two surface pro�les for di�erent material porosities.

Figure 1.19: Surface pro�le lines in the direction of propagation of the crack front for a
230 µm beads sample sintered at: A, 5.2 MPa and B, 60 kPa.
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1.4 Conclusion

In this chapter, I have presented our sample fabrication and mechanical device. First, the

choice to break the sample with the wedge splitting geometry permits the propagation of

a 3D crack front in mode I fracture. This crack front has two added advantages; it is both

dynamic and geometrically stable. Secondly, the sample material is a model rock fabri-

cated from sintered monodisperse polymer beads. This system �xes, and subsequently

tunes, the characteristic length scales of material's macrostructure.

Consequently, and to our advantage, there is not just one big event that breaks the

sample all at once, but a step by step propagation. The analyses of the statistics of

these steps seen from an acoustic and mechanical view point will occupy the main part of

the following chapters. Indeed, post-processing data yields an accurate and synchronized

evolution of the acoustical and mechanical observables relevant for fracture.

Main messages of the chapter
⋄ A tunable isotropic model rock made from sintered monodisperse polymer beads.

⋄ A wedge splitting geometry is invoked to propagate a 3D crack front in a stable

manner in mode I for di�erent loading rates.

⋄ An original post-processing technique to compute accurately the crack tip speed

and the energy release rate

⋄ Accurate and synchronized experimental measurement of AE energy and of the

relevant quantities of fracture mechanics.
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Chapter 2

Acoustic emission and seismicity during

crack growth

Introduction

In real life, the crackling dynamics phenomenon that which most people are familiar

with is the seismic activity, because it stands out as a huge destructive power. Unforeseen

abrupt events in earthquakes or volcanos obey a rich variety of famous robust scaling

laws studied for more than a century: Richter-Gutenberg [Gutenberg and Richter (1944)],

Omori [Omori (1894b)], Utsu [Utsu (1971)], Voight [Voight (1988)], etc.. Most of these

laws are also observed in compressive fracture experiments [Davidsen et al. (2007); Baro

et al. (2013)], that is why the seismic problem is thought to combine friction and collective

nucleation and coalescence of microcracks. This suggest that our single crack propagation

experiment will fail to capture the rich statistics of earthquake dynamics.

From a purely physical point of view, there is no argument as to why comparing earth-

quake activity to the activity of a single fracture propagating in a non-homogeneous brittle

material in opening mode (i.e. mode I) is feasible. In the �rst case, the jerky dynamics

are mainly generated by material damage and friction [Dieterich (1994); Richter (1958);

Nataf and Sommeria (2000)]. In the experiments presented herein, mode I propagation

excludes friction, and the grain size is much bigger than the fracture process zone exclud-

ing damage at the crack tip. Thus, the nature of both phenomenon is di�erent. However,

simple single crack fracture experiments [Måløy and Schmittbuhl (2001); Salminen et al.

(2002); Koivisto et al. (2007)] revealing crackling do display an intermittent dynamics.
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This is recorded via the acoustic sensors in our experiment and seems to be reminiscent

of what is observed for earthquakes. Both �gures 2.1 and 2.2 present the evolution of the

acoustic energy of fracture and Californian (CA) earthquakes events, respectively, as well

as their position. Both evolutions look similar! So, does this model experiment contain

the requested ingredients to observe the same statistical richness as seismic activity?

To answer this question, we will post-process experimental mode I fracture data hence-

forth just like geophysicists do for earthquakes. To compare these two dynamics, when

possible, statistical results are compared to results catalogued for all CA earthquakes (i.e.

including San Andreas, San Jacinto, Santa Monica and Pinto Mountain faults but not

limited to these fault lines) over the last twelve years (from 2000 to 2012). The catalogue

is available on Southern California Earthquake Data Center's (SCEDC) website iv.

Figure 2.1: Acoustic location of breaking events in the fracture plane and acoustic energy
evolution when sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity) is break-
ing. The radius of the circles and their color corresponds with the logarithm
of the event energy: the bigger the circle, the higher is the energy. Scan the
�ash-code with a mobile phone or click http://youtu.be/8jmuUZmEo9s with
a computer.

In the �rst part of this chapter, sections 2.1 - 2.8 present classical tools used by seismol-

ogist and compare and contrast the AE of the sample Sa1 (loading speed 16 nm/s, bead

diameter 500 µm and sintering pressure 5.2 MPa) and CA earthquakes. Subsequently,

in section 2.9 we examine the generalization of these scaling laws to samples loaded at

di�erent rates and fabricated with alternative bead sizes.

ivSCEDC website: http://www.data.scec.org/
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Figure 2.2: Movie showing the location of CA earthquakes in 2012, synchronized with the
graph of their energy. The radius of the circles and their color correspond
to the logarithm of the event energy: the larger the circle, the higher is the
energy (http://youtu.be/ESWU3yIZUVw).

2.1 Distribution in energy of acoustic events: Richter-

Gutenberg law in tensile fracture

One of the most well-known laws in the �eld of seismology is the so-called Richter-

Gutenberg law [Gutenberg and Richter (1944, 1954); Richter (1958); Bullen (1985); Nataf

and Sommeria (2000)]. This law states that the energy, E, of earthquakes v is power-law

distributed:

P (E) ∼ E−β (2.1)

where the exponent β is found to depend on the zone of observation and the considered

period vi. It typically varies between 1.3 and 1.9 [Wiemer and Katsumata (1999); Main

vThe earthquake energy is more commonly quanti�ed by the magnitude M . Di�erent magnitude
scales were proposed in the past. The �rst and most popular one is that introduced by Richter [Richter
(1935, 1958); Bullen (1985)], which relates M to the logarithm of the maximum amplitude measured on a
Wood-Anderson torsion seismometer at a given distance from the earthquake epicenter. Such a de�nition
combines two advantages: (i) M is relatively easy to measure; and (ii) it is directly useful in the damage
hazard mitigation of engineering structures. Magnitude and radiated seismic energy of earthquakes E
are usually related via the Kanomori empirical relation [Kanomori (1977)]: log10(E) = 1.5 · M + 11.8,
with E expressed in Joule.

viHistorically, the Richter-Gutenberg law states that the relative numberN(M)/Ntotal of earthquakes of
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(1996)].

Figure 2.3: A: Probability density function of the energy for AE events going along with
the breaking of sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). B:
Probability density function of the energy for the earthquakes having occurred
in California over a period ranging from 2000 to 2012. In both cases, the axes
are logarithmic. In both cases, one observes the Gutenberg-Richter power-law
extending over nearly six orders of magnitude. The �tted exponent are found
to be β = 0.94 ± 0.05 for nominally brittle fracture, and β̄ = 1.63 ± 0.03 for
earthquakes.

To confront this �rst seismology law, �gure 2.3-A depicts the distribution in energy of

the AE events. As a complement, �gure 2.3-B shows the distribution of the earthquake

energy in California over a period ranging from 2000 to 2012. The energy of the AE

events going along with the tensile failure of our arti�cial rocks is found to be power-law

distributed over many orders of magnitude (six in �gure 2.3). The associated exponent is

found to be independent of the loading rate, but signi�cantly depend on the microstruc-

ture.

This power-law distributed of the energy for AE events has been reported in numerous

fracture experiments (see introduction of this part). It is usually thought to re�ect scale-

free dynamics for the underlying microfailure events [Garcimartin et al. (1997); Alava

et al. (2006); Deschanel et al. (2009)]. This conjecture is supported by observations on

the crack growth in 2D sheets of papers [Santucci et al. (2004); Stojanova et al. (2013)]

or along heterogeneous interfaces [Måløy et al. (2006); Tallakstad et al. (2011); Lengline

et al. (2012)]. In these cases, intermittent dynamics consists of discrete jumps the size of

which is power-law distributed. It is also compatible with some models of heterogeneous

fracture that map the onset of crack propagation with a depinning transition ([Bonamy

magnitude larger than M goes as N(M)/Ntotal ≈ 10−bM . The exponent b is related to β via b = 1.5·β−1.

38



2.2. AFTERSHOCK SEQUENCES IN TENSILE FRACTURE: OMORI LAW

et al. (2008); Bonamy (2009)] and the second part of this manuscript). Still, relations

between AE events (elastodynamics quantities) and front jumps (quasi-static motion)

remain largely unknown. In particular, the exponents associated with the distributions

in size of the front jumps are found to be universal, while those associated with the AE

depend on the considered material and the loading conditions. Chapter 3 discuss this

point extensively.

2.2 Aftershock sequences in tensile fracture: Omori law

To unravel further analogies with seismology, we characterize the clustering in time of the

AE events. In this context, seismologists are very interested in the so-called aftershocks

(AS) series that follow big earthquakes [Reasenberg and Jones (1989)]. AS are extremely

important as they can lead to catastrophic failure of buildings and structures which were

already damaged during the main shock (MS). In 1894, Omori [Omori (1894b,a); Utsu

et al. (1995)] showed that in many cases, the AS rate is inversely proportional to time from

mainshock. Later, this empirical law was slightly re�ned [Je�reys (1938); Utsu (1957)]

to:

rAS(tAS − tMS) = (tAS − tMS + t0)
−pA (2.2)

where rAS is the time density of AS, tAS and tMS are times corresponding to the AS and

MS, respectively, pA is the exponent characteristic of the algebraic decay, and t0 is the

typical silent time after a MS. The constants t0 and pA are not universal, but depend on

both the spatial location and the period considered for the analysis.

Omori's law has proven to be very robust. It is central in the implementation of

probabilistic forecasting models for seismic hazard [Ogata (1988)]. Still, its origin remains

widely debated. Very recently, a similar AS law has been reported at the lab's scale in

model experiments of compressive fracture [Baro et al. (2013)]. This yields the following

question: Is Omori's law valid in tensile fracture experiments reported herein.

The �rst step in this context is to identify MS-AS sequences from the AE signal. At

�rst glance, this is not a trivial task. To bypass the problem, we adopt the procedure

proposed in [Baro et al. (2013)] and chose to consider as the MS {tMS, EMS} all the
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events with energies falling into a prescribed energy interval: EMS ∈ [Emin, Emax]. The

AS sequence {tAS, EAS} associated to each of these MS contains the series of AE events

following this MS, and �nishes when an AE event's energy is larger than that of the MS

is encountered.

The second step is to plot the AS rate as a function of the time from the MS. This

is arrived at by �rst grouping MS occurrences with similar energies. The relative times

(tAS − tMS) between the MS in the energy group and the last event of the AS series are

binned into intervals uniformly distributed in a logarithmic scale. The variation of the

AS rate as a function of time from the MS is plotted in �gure 2.4-A, for a typical fracture

experiment performed in 500 µm sintered polystyrene beads. In this �gure, the di�erent

symbols correspond to di�erent energies for the MS. The Omori algebraic decrease is clear

for up to 6 decades. Here, the �tted exponent pA is found to be pA = 1.18 ± 0.07. It is

found to be independent of the loading rate, but dependent on the material.

Figure 2.4: A: Time evolution of the AS rate for various MS energies. The analyzed
AE signal is that obtained in the breaking of specimen Sa1 (d = 500 µm,
V = 16 nm/s, no porosity). B: Same analysis performed for the earthquakes
having occurred in California over a period ranging from 2000 to 2012. In
both cases, the axes are logarithmic. In both cases, one observes the Omori
power-law extending over six orders of magnitude. The �tted exponent are
found to be pA = 1.18±0.07 for nominally brittle fracture, and p̄A = 0.56±0.1
for earthquakes.

As a complement, we performed a similar analysis for the earthquakes having occurred

in California from 2000 to 2012. A similar Omori behavior is observed, with an exponent

p̄A = 0.56± 0.1. The energy of the considered MS is found to have a direct e�ect on the

cut-o�s of the law, which is not the case in our tensile fracture experiments. We will came

back on this point later, in section 2.4.
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2.3 Foreshock sequences in tensile fracture: Voight law

We also analyzed the foreshock (FS) sequences preceding the MS. Note that such FS

sequences are usually very small for earthquakes [Bullen (1985); Utsu et al. (1995)], and

major seismic events often occur without detectable warning. But in volcanology, the

�nal eruption (lasting ∼ 1 − 10 days) is usually characterized by accelerating rates of

seismicity [Kilburn (2003)]. To describe this precursor to an eruption, Voight [Voight

(1988, 1991)] proposed that the rate of volcano observables (N : the deformation rate or

the seismicity rate) goes as a power-law with the acceleration of this observablevii. By

identifying the rate rFS of AE events with such observables, one then expects [Bell et al.

(2011); Collombet et al. (2003)]:

rFS(tMS − tFS) ∼ (tMS − tFS + t0)
−pF (2.3)

which is similar to the Omori law for AS.

Thus, FS sequences preceding each MS are identi�ed in the very same manner as AS

in section 2.2 (after having inversed time). Subsequently, the time evolution of FS rate

is computed. Figure 2.5 shows the resulting curves for fracture experiments on 500 µm

sintered polystyrene beads and di�erent MS energies. The fracture data �ts very well

Voight law (equation 2.3) with an exponent pF = 1.22± 0.07.

In terms of FS, our experimental data share statistical similarities with volcanic erup-

tion (rather than earthquakes). This is consistent with the fact that volcanic eruption

are seen as the slow extensions of faults. These continue to grow until they connect a

pre-existing array of sub-vertical fractures. This phenomenon so opens a new pathway in

which magma can reach Earth's surface [Kilburn (2003); McGuire and Kilburn (1997)].

So the situation approaches the model experiments (without being the same).

Figure 2.6 contains the time evolution of AS and FS rate for three di�erent MS energies.

AS and FS curves are found to superimpose fairly well. This translates to a time symmetry

for the AE events in fracture experiments: MSs are preceded by FS sequences and followed

by AF sequences that share the same time organization. This symmetry, to the very best

of our knowledge, is novel! It is neither observed for earthquakes nor for volcanic activity

viiCalling N the observable, one gets:
dN

dt
∼ N δ [Collombet et al. (2003)], with δ =

pF
pF − 1
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Figure 2.5: Time density of FS preceding a MS (Voight law). The analysed AE signal is
that obtained in the breaking of specimen Sa1 (d = 500 µm, V = 16 nm/s, no
porosity). The axes are logarithmic and one observes the Voight power-law
extending over six orders of magnitude. The �tted exponent is found to be
pF = 1.22± 0.07.

Figure 2.6: Time density of FS and AS around a MS (Voight and Omori laws) when the
sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity) is breaking. The axes
are logarithmic and one observes the Voight law superimposing Omori law
over six orders of magnitude.
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nor compression fracture experiments. The main di�erence between our experiments of

tensile fracture and the others situations is the following: In our experiments, the AE

activity goes along with the propagation of a single crack (at least at the macroscale).

This situation is expected to be rather invariant with respect to translation along time.

The other situations involved the nucleation, growth and coalescence of many cracks.

The crack density is expected to evolve a lot during the fracturing process, and these

situations cannot be expected to remain stationary. We conjecture that the symmetry

breaking between FS and AS sequences arise from this non-stationarity.

2.4 Aftershock rate vs. mainshock energy: Productiv-

ity law

The next question asked by geophysicists is: How many AS (/FS) are triggered (/were

proceeding) by a MS of given energy E? The answer to this question is given by the

productivity law, which states that the rate of AS, RAS(E), scale as a power-law with the

MS energy, E, [Utsu (1971); Helmstetter (2003)]:

RAS(E) ∼ EγA (2.4)

This equation can now be applied to fracture experiments herein. Figure 2.7 presents the

results for the AE signal accompanying the breaking of specimen Sa1. As a complement,

RAS(E) for the earthquakes in CA is presented in Figure 2.7-B. Equation 2.4 is ful�lled

fairly well in both cases. For the specimen Sa1 experiment and CA earthquakes, the

exponent γA = 0.2 ± 0.1 and γ̄A = 0.005 ± 0.001 respectively. It is noteworthy that the

exponent for CA earthquakes is extremely small.

Similarly thecurve for the FS sequences is �tted by:

RFS(E) ∼ EγF (2.5)

In the case of fracture, the result is presented in �gure 2.8. The �tted exponent is also

γF = 0.2 ± 0.1, so it is a a secondary and novel proof of the symmetry between FS and

AS in the case of stable fracture propagation.
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Figure 2.7: A: Rate of AS triggered by a MS of given energy (productivity law) when the
sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity) is breaking. B: Rate of
AS triggered by a MS of given energy for the earthquakes having occurred in
California over a period ranging from 2000 to 2012. In both cases, the axes are
logarithmic. In the cases of fracture one observes the productivity power-law
extending over nearly �ve orders of magnitude while in the case of earthquake,
it is observed over more than eight orders. The �tted exponent are found to
be γA = 0.2 ± 0.1 for nominally brittle fracture, and γ̄A = 0.005 ± 0.001 for
earthquakes.

Figure 2.8: Rate of FS triggered by a MS of given energy (productivity law). The ana-
lyzed AE signal is obtained from the breaking of specimen Sa1 (d = 500 µm,
V = 16 nm/s, no porosity). The axes are logarithmic and one observes the
productivity power-law for FS extending over nearly �ve orders of magni-
tude. The �tted exponent is found to be very close to the one �nd for AS:
γF = 0.2± 0.1.
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2.5 Distribution in size of the aftershocks: Utsu law

Another interesting information about the AS is the statistical repartition of their energy.

This information is given by the Utsu law [Utsu (1971)] which states that the probability

to observe an AS of energy EAS depends on that of the associated MS, and is given by:

P

(
EAS

EMS

)

∼
(
EAS

EMS

)−bA

(2.6)

Figure 2.9: A: Utsu law of AS for the sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity).
B: Utsu law for the earthquakes occurring in California from 2000 to 2012.
In both cases, the axes are logarithmic. In the cases of fracture one observes
the Utsu power-law extending over �ve orders of magnitude while in the case
of earthquake, it is observed over eight orders. The �tted exponent are found
to be bA = 0.95± 0.04 for nominally brittle fracture, and b̄A = 1.65± 0.09 for
earthquakes.

As presented in �gure 2.9, the data from fracture experiments herein and those for

the CA earthquakes �t very well with this law. The measured exponents are found to be

bA = 0.95 ± 0.04 for the fracture case, and b̄A = 1.65 ± 0.09 for the earthquakes. Note

the similarities between these exponents and the Richter-Gutenberg's ones (see section

2.1 and �gure 2.3). This means that the statistics of the AS energy are the same as that

of any event. The lower cuto� in the curve P (EAS/EMS) translates the �nite sensitivity

of the energy measurement. Finally to check the time symmetry between AS and FS, we

computed Utsu law for FS viii. The �tted exponent is found to be bF = 0.97± 0.04 which

reinforces the idea of a symmetry between FS and AS sequences.

viiiP (EFS/EMS) ∼ (EFS/EMS)
−bF
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Figure 2.10: Utsu law of FS for the sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity).
The axes are logarithmic and one observes the Utsu power-law extending
over �ve orders of magnitude. The �tted exponent is found to be very close
to the one found with AS: bF = 0.97± 0.04.

2.6 Statistical distribution of silent periods: Waiting

time law

We have also computed the distribution of the waiting or inter-event time ∆T between

two successive AE events (without seeking to distinguish FS and AS from MS). Similar

analysis has indeed been performed on earthquakes [Bak et al. (2002); Corral (2004)] and

in experiments of compressive failure [Baro et al. (2013)]. The power-law distribution is:

P (∆T ) ∼ ∆T−π (2.7)

Note that the Omori law for AS and/or FS naturally implies such a distribution for

the waiting time (the reciprocal is not true [Baro et al. (2013)]).

As shown �rst by [Bak et al. (2002)] and then by [Corral (2004)], it is important to

build this law to take into account space, time and energy variability. In experiments

herein, the space and time variability may be neglected since the sources of AE events

are located along the propagating crack front and the front loading is roughly stationary

over most of the fracture experiment. To take into account the energy variability, the

distribution PEth
(∆T ) for wait time is computed by maintaining only the energy events

larger than a prescribed value Eth. Sample Sa1 results are presented in �gure 2.11.

The data obeys the expected power-law distribution, as for Earthquakes (plotted as a

complement on the left in the same �gure). The measured exponent is π = 1.31±0.03 for
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the fracture experiments, and π̄ = 0.94 ± 0.07 for earthquakesix. Moreover, just like for

the Omori's law the energy threshold Eth has a direct e�ect on the position of the higher

cut-o� in the case of earthquakes, whereas it seems to only a�ect the lower cut-o� in the

case of fracture.

Figure 2.11: A: Probability density function of the inter-event time when the analyzed AE
signal obtained when breaking specimen Sa1 (d = 500 µm, V = 16 nm/s,
no porosity). B: Probability density function of the inter-event time for the
earthquakes occurring in California over a period ranging from 2000 to 2012.
In both cases, the axes are logarithmic and one observes the waiting time
power-law extending over �ve orders of magnitude. The �tted exponent are
found to be π = 1.31±0.03 for nominally brittle fracture, and π̄ = 0.94±0.07
for earthquakes.

2.7 Intensity of the biggest aftershock: Båth law

A last empirical law sometimes mentioned in seismology (but more controversial [Helm-

stetter and Sornette (2003)] is the Båth law [Bath (1965)]). This law relates the en-

ergy of the largest AS with that of the MS. It states that the ratio between the two,

max(EAS)/EMS is roughly constant, close to 60 [Helmstetter (2003)]x. Computing this

ratio using both earthquakes and fracture data, ratio spreads over a wide range. Conse-

quently, it is not pertinent to compute a mean value. Now let us turning to the probability

density function of these ratios which are computed forNb MS-AS sequences for prescribed

MS energy.

ixThis result is in agreement with [Bak et al. (2002); Baro et al. (2013)]. In [Bak et al. (2002)] a re�ned
study is proposed for earthquakes, taking into account the space and time variability

xIn terms of magnitudes, the di�erence between the MS magnitude and the largest AS is 1.2.
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Figure 2.12: A: Probability density function of max(EAS)/EMS for the sample Sa1 (d =
500 µm, V = 16 nm/s, no porosity). B: The same analysis for the CA
earthquakes . In both cases, the axes are logarithmic and one observes the
Båth power-law extending over more than four orders of magnitude. The
�tted exponent are found to be f = 1.05±0.05 for nominally brittle fracture,
and f̄ = 0.35± 0.04 for earthquakes.

As can be seen in �gure 2.12, max(EAS)/EMS is found to be power-law distributed:

P

(
max(EAS)

EMS

)

∼
(
max(EAS)

EMS

)−f

(2.8)

With f = 1.05 ± 0.05 for tensile fracture and f̄ = 0.35 ± 0.04 for CA earthquakes. It is

interesting to note, sequences involving a MS with a high energy (above 10 V2), the lower

cut-o� of the power law reaches the higher one and a mean value is approximately 10−2.

This is on the order of the value 60 expected by Båth's law.

2.8 Intensity, duration and frequency of an acoustic

event: Duration law

One of the last statistics, one cannot leave this section before examining the duration of

AE events. Figure 2.13 shows a typical distribution for this duration. One observes a

power-law scaling (exponent close to 0.5) between two cut-o�s. Special attention should

be paid to interpret this quantity and, in particular, its relation with the duration of

true fracturing events (analyses in the chapter 3) is di�cult to establish. Indeed, the

typical frequency of the signals collected at the various transducers is ∼ 200 kHz. The
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speed of sound in our arti�cial rocks is ∼ 2000 m/s. From the value of this speed and

the measured frequency, one can construct a typical length scale ∼ 1 cm for the AE

events. This corresponds to the thickness (the smallest typical length) of the sample,

and is much larger than the typical size (diameter of the sintered beads) expected for the

microfailure events. Hence, the duration of the AE events measured at the transducers

cannot be identi�ed with the underlying microfailure events. These trigger the mechanical

resonance of the whole sample and the duration of the AE events are thought to be the

time it takes for this resonance to be dissipated. It is a function of the energy of the

event, of the attenuation coe�cients, of the system geometry, etc.

Figure 2.13: Probability density function of the duration of the acoustic events measured
via acoustic sensors for sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity).
The axes are logarithmic. One can �t a power-law exponent with value 0.5.

2.9 E�ect of loading rate and microstructure: On the

selection of cuto�s and exponents

In the previous sections (2.1-2.8), the AE energy measured during the propagation of a

single crack in mode I obeys the same laws as earthquakes with just di�erent universal

exponents. This means that the model experiment displays the same statistical richness

than the complex phenomenon of geophysical seismicity. In this section, we test the

di�erent scalings performed to renormalize those laws. Herein, we will vary the inputs of

the statistical problem (wedge speed V and bead size d) and deduce the variations on the

power-law cut-o�s as the function of the loading rate and the size of the microstructure.

Hence, in the following subsection we present fracture experiments for:
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• �xed bead size (500 µm) and varying loading speed (16 nm/s � Sa1, 160 nm/s �

Sa2, 1600 nm/s � Sa3)

• �xed loading speed (16 nm/s) and varying bead size (20 µm � Sd1, 50 − 80 µm �

Sc1, 230 µm � Sb1, 500 µm � Sa1).

2.9.1 Richter-Gutenberg law

First, the Richter-Gutenberg law (see section 2.1) is plotted as the probability density

function versus the AE energy for di�erent loading rates. Figure 2.14 shows that for

the three loading speeds spanned over two orders of magnitude, the statistical regime

remains exactly the same: curves superimpose. As we will see in the second part of

this manuscript, this is expected from the pinning-depinning model. Moreover, the event

intensity clustering is not tuned by the loading rate. In this case, loading rate has no

e�ect on the upper cut-o�.

Figure 2.14: Probability density function of the AE for di�erent loading speeds (samples
Sa1, Sa2 and Sa3). The axes are logarithmic and all Richter-Gutenberg
power-laws collapse over �ve orders of magnitude. The dashed line with
slope β = 0.9 is given to guide the eye.

Then, to study the e�ect of the bead size diameter, d, on the clustering in energy,

�gure 2.15 depicts the Richter-Guttenberg law for di�erent bead sizes. It is reasonable to

�t a power-law just for the two experiment with the biggest bead sizes (500 and 230 µm).

This parameter clearly has an e�ect on the regime of propagation of the crack front. This

point will be con�rmed theoretically in chapter 3: when the bead size is big enough, the

crack growths is in the crackling regime.
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Figure 2.15: Probability density function of the energy of the acoustic events for di�erent
bead size (samples Sa1, Sb1, Sc1 and Sd1, loading speed 16 nm/s without
porosity). The dashed line with slope β = 0.9 is given to guide the eye.

2.9.2 Productivity law

Just like in the previously subsection, the productivity law (see section 2.4) is computed

for each wedge speed. As presented in �gure 2.16, curves are parallel. This means that

the scaling behavior does not depend on the loading rate, the global rate of an AE is

a function of the wedge speed. This point was already noted by [Baro et al. (2013)] in

compressing rocks.

2.9.3 Omori and Voight laws

First, it is worth noting that one claims [Dieterich (1994); Huang et al. (1998); Scholz

(1998)] that the clustering as evidenced by Omori's law, comes from a dependence on

the history of the sequence: stressing history, evolution of the matter properties/disorder,

underlying fractal structure, or variation of the friction coe�cient. Nevertheless, in our

single crack propagation case, in opening mode none of these phenomenons intervene.

Pinning-depinning model predicts a Poissonian distribution which is also not evidenced.

Hence, the origin of this clustering remains an open question.

Returning to section 2.2 and more specially to the variation of the prefactor of Omori

law as a function of the energy bin (see �gure 2.4), the upward shift of the curves is directly

given by the productivity law (see section 2.4): rate of AS triggered by an earthquake for
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Figure 2.16: Productivity laws for the acoustic energy for di�erent loading speeds (sam-
ples Sa1, Sa2 and Sa3, bead size 500 µm without porosity). The axes are
logarithmic and all productivity power-laws are parallel over four orders of
magnitude. The dashed line with slope γA = 0.2 is given to guide the eye.
The prefactor of the power-laws give the global rate of events.

a given energy. Thus, [Baro et al. (2013)] suggests a rescaling of the Omori law's vertical

axis E−γ. Figure 2.17 depicts these results and the collapse is excellent.

Figure 2.17: Renormalized Omori law for the sample Sa1 (d = 500 µm, V = 16 nm/s, no
porosity) with γ = 0.2. The axes are logarithmic and all curves collapse over
more than �ve orders of magnitude. The dashed line has a slope of pA = 1.18
and gives to guide the eye.

Since the exponent of the productivity law does not vary with the loading rate (see

section 2.9.2), it is possible to test the renormalization by �xing γ = 0.2 and collapse the
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Omori laws for di�erent wedge speeds. Nevertheless, �gure 2.16 shows that the productiv-

ity depends on the loading rate via the global rate of event. Thus, to renormalize Omori

law for di�erent experiments, it is necessary to take RS into account, the mean number

of events per unit time: the vertical axis is renormalized by
E−γ

RS

and the horizontal axis

by RS. As presented in �gure 2.18-D, it is remarkable to see that this collapse still works

with di�erent loading speeds.

Then, to check the time symmetry does not vary with the wedge speed, Omori

and Voight laws (see section 2.2 and 2.3) are plotted in �gures 2.18-A/B/C for V =

16/160/1600nm·s−1 respectively. In all cases, the Omori law is equivalent to the Voight's

so time symmetry is preserved and as presented in table 2.1 the exponents stay similar.

Figure 2.18: Omori and Voight laws for di�erent loading speeds: A: 16 nm·s−1 � Sa1, B:
160 nm·s−1 � Sa2, C: 1600 nm·s−1 � Sa3. D: Collapse of the Omori laws
using the productivity law (γ = 0.2) and the global rate of events RS. In all
graphs the axes are logarithmic.

2.9.4 Utsu law

Then, Utsu law for AS (see section 2.5) is drawn for each loading rate for one signi�-

cant energy bin. Here again, as presented in �gure 2.19 all curves collapse without any
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rescaling. Hence, the loading rate has no e�ect on the amplitude ratio between MS and

their AS. This result is reminiscent to the fact that Richter-Gutenberg law also remains

unchanged by loading rate variations.

Figure 2.19: Utsu laws for the acoustic energy for di�erent loading speeds (samples Sa1,
Sa2 and Sa3, bead size 500 µm without porosity). The axes are logarithmic
and all Utsu power-laws collapse over more than four orders of magnitude.
The dashed line with slope bA = 0.95 is given to guide the eye.

2.9.5 Waiting time law

[Baro et al. (2013)] proposes a way to unify the waiting time law in energy, space and

time for real earthquakes, i.e. Epidemic-Type Aftershock Sequences (ETAS) model, and

rock compression experiments. Nevertheless it seems this scaling is based on the renor-

malization by the mean seismic activity rate (〈∆T 〉) and is only valid when π ≈ 1. Below

is a generalization of formula with good results for π greater than 1 (π ∈]0, 2[). Following
the method explained in [Patinet et al. (2011)], the power-law P (∆T ) is rewritten with

a cut-o� ∆T0 whose shape is given by the function f(x). This function decreases faster

than x1−π when x goes to in�nity:

P (∆T ) = ∆T−π · f( ∆T

∆T0

) (2.9)

Then, computing the main seismic activity rate one gets:
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〈∆T 〉 =
∫ +∞

0

∆T · P (∆T )d∆T (2.10)

Plugging 2.9 into 2.10, one gets:

〈∆T 〉 =
∫ +∞

0

∆T 1−π · f( ∆T

∆T0

)d∆T (2.11)

Then recasting the variables (u =
∆T

∆T0

), one gets:

〈∆T 〉 = ∆T 2−π
0

∫ +∞

0

u1−π · f(u)du
︸ ︷︷ ︸

constant

(2.12)

Finally, the following relation is reached: ∆T0 ∼ 〈∆T 〉
1

2− π . This implies that plotting

x = 〈∆T 〉
1

π − 2 ·∆T and y = 〈∆T 〉
π

2− π ·P (∆T ) all curves should collapse whatever the

value of Eth. This scaling is verifed in �gure 2.20 for sample Sa1 and for CA earthquakes.

Comparing with �gure 2.11, this renormalization collapses both upper and lower cut-o�s

in the case of fracture but just the upper one in the case of earthquake. In this last case,

the gamma distribution mimics what is reported by [Bak et al. (2002); Corral (2004);

Davidsen et al. (2006)] and debated by [Touati et al. (2009)]xi.

Then, the waiting law is analyzed as a function of the loading speed. In �gure 2.21-

A the exponent remains unchanged with V . But the loading rate has an e�ect on the

upper cut-o�: the higher the loading speed the lower the cut-o�. The rescaling presented

in �gure 2.20 is also cross-checked with those curves in �gure 2.21. It demonstrations

a good collapse of the curves for di�erent energy thresholds and di�erent loading rates

which enhances the e�ciency of this scaling. Moreover, has observed with a simpler

renormalization by [Baro et al. (2013)] on compression rock experiments, on ETAS model

and on Californian earthquakes and by [Santucci et al. (2007)] on paper tearing, the

renormalized curve presents a dogleg shape with a �rst power-law whose exponent is π

xiBased on the so called Epidemic-Type Aftershock Sequences (ETAS) model [Touati et al. (2009)]
claims that the gamma distribution found by [Bak et al. (2002); Corral (2004); Davidsen et al. (2006)]
is an artifact of their measurements. In our case ETAS model does not suit since it does not take into
account the foreshock sequences.
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Figure 2.20: A: Renormalized curves for the waiting time probability density function for
the sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). Lower and upper
cut-o�s as well as power-laws collapse on the same curve over six orders
of magnitude. B: Renormalized waiting time laws for the CA earthquakes
between 2000 and 2012. Both power-law and upper cut-o�s collapse on a
same curve. In both cases, the axes are logarithmic and dashed lines are
given to guide the eyes.

and a second one with an exponent of value close to 2. The exponent of the right part

of the law (red dashed line in �gure 2.21-B) is highly reminiscent to what is observed in

paper by [Santucci et al. (2007)]. This �rst implies that long silent periods do not follow

the same statistical regime as small ones. Secondly, long silent regimes do not require 3D

e�ects to be explained as 2D paper experiments observe them also.

Figure 2.21: A: Probability density function of the time between acoustic events for dif-
ferent loading speeds (samples Sa1, Sa2 and Sa3, bead size 500 µm without
porosity). The dashed line with slope π = 1.31 is a guide for the eye. B: Col-
lapse of these curves. All the waiting time power-laws, for di�erent loading
speed and di�erent energy thresholds collapse on a single curve that exhibit
two power-law regimes: exponent π = 1.31 and 2. In both cases, the axes
are logarithmic.
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Experiments with di�erent bead sizes obtain similar results for waiting time law. Fig-

ure 2.22-A illustrates Omori law for the experiments with di�erent bead size. Only ex-

periments with bead size 500 and 230 µm follow a power-law. It is even clearer looking at

the rescaling presented in �gure 2.22-B. These two experiments give curves that properly

collapse on the dogleg shaped curve. Richter-Gutenberg law (section 2.9.1) is in agree-

ment with this point. Moreover, it will be con�rmed theoretically in the second part of

this manuscript (second chapter).

Figure 2.22: A: Probability density function of the time between acoustic events for dif-
ferent bead size (samples Sa1, Sb1, Sc1 and Sd1 ) loaded at the same speed
(16 nm/s). B: Attempt to collapse them. The curves obtained with the
smaller bead sizes do not follow a power-law and do not collapse onto the
other curves. For both �gures, the axes are logarithmic.

2.9.6 Comparison of the exponents

For sake of simplicity, not all the statistical laws are drawn for each loading rate. Hence,

to present results and compare and contrast all exponents, table 2.1 gives the exponent

of the di�erent power-laws for the di�erent loading speeds. Most of the exponents are

not modi�ed by the loading rate, but there is a higher uncertainty for the exponents with

high value V . This originates from the fact that the loading speed has an e�ect on the

propagation regime of the crack tip: in crackling or not (see the second chapter of the

second part of this manuscript for more details).

From similarities of the exponent in table 2.1 and from the physical closeness, one can

deduce that Omori, Voight and waiting time exponents are the same (pA = pF = π) just

like Richter-Gutenberg exponent is the same as Utsu exponent (β = bA = bF ).
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Exponents for acoustics V = 16nm·s−1 V = 160nm·s−1 V = 1600nm·s−1

Richter-Gutenberg law: β 0.94± 0.05 0.91± 0.04 0.91± 0.05
Waiting time law: π 1.31± 0.03 1.5± 0.06 1.55± 0.08

Omori law: pA 1.18± 0.07 1.4± 0.1 1.35± 0.09
Voight law: pF 1.22± 0.07 1.4± 0.1 1.5± 0.1

Productivity law: γA 0.2± 0.1 0.2± 0.1 0.2± 0.1
Utsu law: bA 0.95± 0.04 0.91± 0.03 0.99± 0.06
Båth law: f 1.05± 0.05 1.05± 0.06 1.09± 0.07

Table 2.1: Measured acoustic exponents of the di�erent power-laws for di�erent loading
speeds.

bead size ( µm) event density ( ev/cm)
500 730
230 3460
80-50 230
20 940

Table 2.2: Density of acoustic events as a function of the bead size.

2.9.7 Spacial density of events

From a quantitative point of view, It is now interesting to study the link between the

material and its ability to produce AE. To study this aspect, one measures the cumulative

number of acoustic events received by the acoustic sensors when the crack propagate in

the same material (beads of 500 µm and sintering pressure of 5.2 MPa, samples Sa) for

di�erent loading speeds (16 nm/s � Sa1, 160 nm/s � Sa2 and 1600 nm/s � Sa3). Figure

2.23 initially depicts transient regime after which the number of acoustic events per unit

time remain constant (730 ev.·cm−1). This is independent of the loading speed V and

local speed v. This highly non-trivial result, in established regimes, could measure the

crack propagation just by counting the number of acoustic events. Moreover, since the

mean crack speed is not the same in those three di�erent experiments, this means that

the rate of events varies with the loading rate as it was suggested by the scaling in RS of

the Omori law.

The number of events per unit time seems to be a material constant. Table 2.2 presents

results on this quantity for di�erent samples varying only the bead size (loading speed is

16 nm·s−1 and sintering pressure 5.2 MPa). Unfortunately, this parameter does not seem

to vary simply monotonically with the bead size.
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Figure 2.23: Variation in the number of AE as a function of the crack length for a same
material but three di�erent loading speeds (samples Sa1, Sa2 and Sa3, bead
size 500 µm without porosity). After a transient regime, curves run parallel.
The dashed line with slope 720 ev/cm provides a guide for eyes.

2.10 Conclusion

In this chapter, we have demonstrated that the model experiment (whose mechanism is

much simpler than earthquake) displays the same statistical richness as the seismic se-

quences: the Richter-Gutenber, Omori, Voight, productivity, Utsu, Båth and waiting time

laws are �tted with universal exponents. More particularly, the unpredicted clustering in

time is evidenced with Omori and waiting time laws. The FS-MS-AS sequences are sta-

tistically totally symmetric! This is contrary to what is seen for the earthquakes. Besides,

the productivity law succeeds in renormalizing the Omori law whatever the loading rate

and a generalization of the usual waiting time law renormalization evidence a 2D long

silent regime.

Finally one notes that this waiting time law has been wildly observed numerically in

the case of friction earthquake models [Scholz (1998); Dieterich (1994)], damage model

[Zapperi et al. (1997b)] and Epidemic-Type Aftershock Sequences (ETAS) model [Touati

et al. (2009)]; and experimentally in the case of damage [Baro et al. (2013); Davidsen

et al. (2006)] and interfacial fracture [Grob et al. (2009); Koivisto et al. (2007)]. However

for those di�erent cases the loading conditions, the time dependency and the fundamental

physics of the phenomenon are much more complex than in the simple mode I fracture

experiments where the law is still valid.
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Main messages of the chapter
⋄ The statistics of breaking events when a crack is propagating in mode I in a 3D

isotropic heterogeneous brittle material are as rich as the ones of seismic events:

usual earthquake laws are �tted.

⋄ The FS-MS-AS sequence is observed for breaking events with a symmetry between

FS and AS.

⋄ As long as the propagation stays in the crackling regime, the exponents do not

vary with the loading rate nor the microtexture of the material.

⋄ Nevertheless the cut-o� and prefactors of the Omori and waiting time law scale

with the rate of events and energy.

⋄ Spatial density of acoustic events is a constant of the material.
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Chapter 3

Intermittency and energy release

�uctuation during crack growth

Introduction

Contrary to earthquakes and peeling, tearing and rock compression experiments,

model fracture experiments herein have synchronized access to the elastodynamics data

(AE) and to the elastostatics observables (elastic energy E and crack speed v). The model

herein is simple; yet it has paradoxical statistical richness. This leads to link between the

complexity of the earthquake mechanism probed by AE and the relevant quantities in

fracture mechanics involved in pinning-depinning model. Now the task is to observe

and characterize crackling from LEFM quantities for the model experiments herein (i.e.

nominally brittle 3D solid) and compare results with what is observed in 2D peeling ex-

periments [Grob et al. (2009); Tallakstad et al. (2011, 2013)]. A comparison of the AE

statics is also of interest to verify that the di�erence in nature of both phenomenon cause

a di�erence in the power-law exponents.

In this chapter, �rst we establish that only one mechanical parameter is free in this

fracture problem. So we will study its statistical variations via its probability density

function and its power spectrum. Then, with a threshold-based method, we extract its

statistical information and analyses it via geophysicist and pinning-depinning model tools.
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3.1 Relation between crack velocity and stored elastic

energy

LEFM framework relates the growth velocity v of cracks to the variations of elastic energy

E in the solid. Figure 1.18 presents the typical time evolution of these two quantities for

sample Sa1 (see table 1.5 for sample details). The crackling dynamics translate in the

random large impulses observed in v(t), and in the stair-like aspect of the curve E(t). As

expected within LEFM, these two quantities are related. Figure 3.1 presents the variations

of radiated power, P = dE/ dt, as a function of v for di�erent fracture experiments. To

�rst order, both quantities are proportional:

v(t) ∼ P(t) (3.1)

This proportionality is observed in all our experiments, irrespectively of the specimen

microstructure (porosity and diameter of the sintered beads) and of the loading rate

(speed of the splitting wedge). It can be interpreted as follow: The radiated power P is

equal to the energy release rate G times the crack speed, vxii. Then, by considering a

nominally brittle fracture with a small crack speed compared to the Rayleigh speed, G

should be equal to the fracture toughness Γ. Within LEFM framework, Γ is a material

constant and, hence, v ∼ P . The slope of the curve P vs. v is the fracture toughness.

Section 3.5 shows that this assumption (i.e. constant energy release rate in the middle of

the sample to suppress transient regimes) is a reasonable approximation.

This proportionality relationship between v and P(t) implies that crackling dynam-

ics are fully described by characterizing either v or P(t). Section 1.3.2 shows that the

computation of v(t) is indirect and calls for a smoothening of the curve k vs. c (k being

the specimen thickness, see section 1.3.2). On the other hand, E(t), and hence P(t), is

directly obtained from force, f(t), measurements and the splitting wedge's displacement,

u(t). Logically P(t) is better to use than v(t) to characterize the dynamics. Henceforth,

the focus will be on P(t) and its variations.

xiiP = − dE/dt = − dE/dc× dc/ dt = G× v
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Figure 3.1: Radiated power P(t) as a function of crack speed v(t) for two di�erent exper-
iments (Sa1 and Sa2), the control parameters of which are indicated in the
legend: A: linear scales, B: logarithmic scales. In B, the black dashed line
with slope 1 is a guide for the eyes.

3.2 Power spectrum of P(t)

The �rst statistical study of the signal P(t) is done via its Power Spectrum (PS). This

section presents this PS PSP(ν) to analyses its statistical variation. To �rst approxima-

tion, P(t) is (roughly) statistically invariant along time translation. Hence, the power

spectrum provides directly a rapid, unbiased, and condensed information on its statistical

variation. A typical example of such PSP(ν) is presented in �gure 3.2. One points out

a power-law scaling extending over several orders of magnitudes, reminiscent of crackling

dynamics [Sethna et al. (2001); Travesset et al. (2002); Kuntz and Sethna (2000)]:

PSP(ν) ∼ ν1/a, (3.2)

Where notations come from Barkhausen noise and Random Field Ising Modelxiii and the

power-law exponent is 1/a. The �tted value is 1/a = 0.8 ± 0.1. This is signi�cantly

di�erent from the one observed for Barkhausen noise or Ising model (exponent = 1.77,

[Travesset et al. (2002))]. This indicates that the fracture problem studied here does not

belong to the same universality class.

Figure 3.3-A presents the in�uence of the loading parameters and computed PSP(ν)

for fracture experiments performed with di�erent splitting wedge speeds V (samples:

xiiiThe sciences of crackling has indeed been pioneered in these �elds.
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Figure 3.2: Power spectrum of elastic energy derivative signal (P) and its mean curve in
logarithmic scale. The blue dashed line represents the �tted power-law. This
is computed for sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity).

V = 16 nm/s � Sa1 V = 160 nm/s � Sa2 V = 1600 nm/s � Sa3
PS exponent: 1/a 0.8± 0.1 0.8± 0.1 0.6± 0.15

Table 3.1: Measured exponents for di�erent loading speeds

16 nm/s � Sa1, 160 nm/s � Sa2 and 1600 nm/s � Sa3). All the curves exhibit a power-law

scaling with similar exponents (see table 3.1). On the other hand, the prefactors increase

with wedge speed. The the kick up at high frequencies is due to the so-called 50 Hz

electrical noise. In other words, the lower the prefactor, the higher the increasing part of

the curve is because the regimes intersect for at lower frequencies. By dividing PSP(ν)

by V 1.5, one obtains a fairly good collapse of the three curves. Thus, the power-spectrum

prefactor scales with the wedge speed. This observation is close to what can be accounted

by a statistical model mapping the crack problem with the depinning problem of a 1D

elastic manifold (see the last chapter of the following part of this manuscript for more

details).

Likewise, PSP(ν) is computed in experiments on samples made of sintered beads with

di�erent diameters (20 µm � Sd1, 50− 80 µm � Sc1, 230 µm � Sb1, 500 µm � Sa1). The

wedge speed was kept constant (V = 16 nm/s) in all these experiments. Figure 3.4-A

contains results. These results again depict the e�ect of the 50 Hz electrical noise for the

high frequency part of the curves. The PS exponent for The smallest bead size (20 µm)

implies only white noise (see table 3.2 for exponents) which is consistent with what we
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Figure 3.3: A: Power spectrum of radiated power PSP for di�erent wedge speeds V . B:
Collapse obtained by making PSP → PSP/V

1.5. The arti�cial rock broken
here is made of sintered beads with d = 500 µm and without porosity (Sa1,
Sa2 and Sa3). In both case, the axes are logarithmic.

�nd in the second chapter of the second part of this manuscript. In this following chapter

one will see that the pinning-depinning model predicts a scaling of the vertical axis by

1/dxiv. In the experimental case, the result presented in �gure 3.4-B shows a good collapse

of the curves dividing the vertical axis by d3.

Figure 3.4: A: Power spectrum of the power curves for di�erent bead sizes (samples Sa1,
Sb1, Sc1 and Sd3, wedge speed 16 nm/s, no porosity). B: Collapse obtained
by making PSP → PSP/d

3. In both case, the axes are logarithmic.

xivThe parameter d of the experimental part is equivalent to 1/N in the pinning-depinning model
presented in the �rst chapter of the second part of this manuscript, because the width W of the sample
is �xed (for 0% porosity)
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d = 20 µm � Sd1 d = 80-50 µm � Sc1 d = 230 µm � Sb1 d = 500 µm � Sa1
PS exponent: 1/a 0 (white noise) 1.0± 0.15 1.1± 0.12 0.78± 0.4

Table 3.2: Measured exponents for di�erent bead sizes

3.3 Distribution of radiated power as a function of time

resolution

Another synthetic way to analyze the statistics of an intermittent signal is to compute the

probability density function of its values sampled regularly [Planet et al. (2009); Tallakstad

et al. (2013)]. Herein, the signal is the radiated power Pi and the sampling rate is 10 ms.

Pi are the values of the signal denoised with a �rst order butterworth �lterxv of cut-o�

frequency 1/tcut. Figure 3.5-A presents the results for di�erent cut-o�s. According to

�ber-bundle model with speed signal [Gjerden (2013)], this probability density function

should follow a power-law with an exponent close to 2.5:

P (P) = P−η (3.3)

Experimental data herein does not follow this scaling relation. For low power values, the

probability density exhibits a plateau and a bump. Nevertheless, plotting the data with

linear axes as presented in �gure 3.5-B, the mean part of P statistical behavior follows a

Gaussian curve. As emphasize in section 3.2, this Gaussian behavior is due to the 50 Hz

electrical noise.

Hence, �gure 3.6-A contains the same data with logarithmic axes and add the Gaussian

curve �tted in linear scale (see 3.5-B for tcut = 0.1 s). It turns out that the plateau and

the bump part of the curve match perfectly with the �tted Gaussian. Deconvoluating

the signal gives �gure 3.6-B. The resulting �gure exhibits two di�erent scaling regimes,

one with exponent η = 1.6 ± 0.1 for low power values and another with η = 2.7 ± 0.2

reminiscent to what is observed numerically and experimentally by [Gjerden (2013)] and

[Tallakstad et al. (2013)], respectively. However, Tallakstad et al. [Tallakstad et al.

xvThe gain G of the �rst order Butterworth low pass �lter is given by: G =
1

√

1 +

(
ν

νc

)2

with νc the

cut-o� frequency
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Figure 3.5: A: Probability density function of P(ti) = Pi in logarithmic scale for P �ltered
at di�erent cut-o�. This is computed from sample Sa1 (d = 500 µm, V =
16 nm/s, no porosity). B: Same graph with linear axes for P �ltered at
tcut = 0.1 s. The plain curve represent a Gaussian �t of the data.

(2013)] �t this probability density function with an alpha stable Levy distribution which

is not possible here. Finally, as presented in �gure 3.6-B-inset, the maximum value of

the denoised signal scale with the value of the �lter cut-o� as P ∼ t−0.5
cut which gives the

variation of the upper cut-o� of P (P).

Figure 3.6: A: Probability density function of Pi in logarithmic scale for P �ltered at
di�erent cut-o�. This is computed from sample Sa1 (d = 500 µm, V =
16 nm/s, no porosity). The plain curves are the Gaussian �tted in linear
scale (see �gure 3.5-B). B: Same graphs where the parts dominated by the
Gaussian regime are removed. The probability density function exhibits two
di�erent regime with a crossover around 0.2 mW. B-inset: Maximum value
of the denoised power signal as a function of the �lter cut-o�. All axes are in
logarithmic scale.
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3.4 Crackling analysis and avalanche statistics

The observations of power-law scaling in the power spectrum, together with that of the

scale free features in the power distribution, are strong arguments in favor of crackling

dynamics. In this context, the pulses observed in the P(t) signals result from the depinning

avalanches of the crack front [Bonamy et al. (2008); Bonamy (2009)]. The idea is then

to isolate these pulses and to study their statistics to get information on the underlying

depinning avalanches.

3.4.1 Avalanches identi�cation: Standard threshold-based method

In crackling problems, the standard way to characterize a jerky signal like P(t) is to

introduce a prescribed threshold (expressed as a fraction of the maximum value) and to

identify the pulses with the zones where the signal goes above this threshold. Nevertheless,

as presented in �gure 3.7-A, the curve P(t) is too noisy to apply directly this method.

Noise needs to be �ltered �rst. This is done via a Butterworth low-pass �lter (�rst order)

with a cut-o� frequency of 1 Hz corresponding to the upper cut-o� of the PSP(ν) power

spectrum (see section 3.2). This �lter selection is advantageous because it does not to

change the gain below the cut-o� (see �gure 3.7-B) in the frequency domain. However,

in the time domain, the maximum power amplitude scales as t−0.5
cut (�gure 3.6-B-inset).

Figure 3.7: A: Raw radiated power signal of sample Sa1 (d = 500 µm, V = 16 nm/s,
no porosity). B: Denoised power signal. The �lter is a 1 Hz Butterworth
low-pass �lter. As expected from �gure 3.6-B-inset the �ltering decreases the
amplitude of the signal.

In the analyses presented hereafter, the threshold is 1% of the maximum value of
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P(t). Other thresholds have been tried. They give similar results in term of scaling. As

presented in the sketch depicted in �gure 3.8, for each breaking event i, one extracts the

following quantities:

• The event time Ti, i.e. �rst time at which P(t) goes above the threshold);

• The event duration Di;

• The maximum speed of the event Pmax-i;

• The energy released in the system during the event; Ei;

• The event size Si, i.e. the area swept by the crack front during the event, given by

the crack advance during the event times the sample thickness;

• The event position ci, i.e; the position of the crack front at time Ti;

• The depinning energy release rate Gd-i, i.e. the energy release rate at the event's

initiation;

• The pinning energy release rate Gp-i, i.e. the energy release rate at the event's death.

One can then characterize the statistics of these quantities and analyze their interrelation.

It is worth mentioning that quantity of events is signi�cantly less than the quantity of

AE. Hence, the obtained distributions are noisier.

Figure 3.8: The �gure depicts a schematic of the radiated power signal and presentation
of the threshold-based method to extract breaking events. See text for detail
about the notations.
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3.4.2 Avalanche statistics

AE-like analysis

This section carries out the same statistical analysis as that proposed in chapter 2. This

will shed light on the type of information that can be extracted from AE signals.

Energy distribution ◮ Figure 3.9 presents the distribution in energy of the events.

The power-law exponent β = 1.4 ± 0.15 properly �ts the data. This exponent is signif-

icantly larger than the one measured on the AE data (see section 2.1). This translates

to a fundamental di�erence between AE and "true" depinning events. The former are

elastodynamic quantities while the latter are elastostatic ones. They are not the same

objects.

Figure 3.9: Probability density function in logarithmic scale of the energy for events ex-
tracted with the threshold-based method applied on the radiated power signal
of the sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). One observes the
Richter-Gutenberg power-law extending over more than two orders of magni-
tude, and the �tted exponent is found to be β = 1.4± 0.15.

Distribution of waiting time ◮ Then, as done in section 2.6, one studies the statistics

of the time ∆T separating two consecutive events, as detected in the radiated power

signal. Figure 3.10 shows that the probability density function of these waiting times,

measured for di�erent energy thresholds, obeys the equation 2.7. The associated exponent

is π = 1.3±0.15. This is close to the one measured from AE events. Thus, time clustering

seems to be of the same nature. This suggests that AE events result from the depinning

of avalanches. Hence, they can be quantitatively located in time.
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Figure 3.10: Probability density function of the inter-event time in logarithmic scale for
the events extracted with the threshold-based method on the radiated power
signal for sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). One observes
the waiting time power-law extending over three orders of magnitude and the
�tted exponent is π = 1.3± 0.15.

Triggering rate for aftershocks ◮ Procedures described in section 2.2 detail how to

isolate FS-MS-AS sequences. Figure 3.11 shows the variations for the rate of AS as a

function of time from MS, for di�erent values of MS energy. As for AE events, this ful�lls

the Omori law. The �tted exponent is p
A
= 1.3± 0.1. This corresponds closely with the

AE exponent.

Figure 3.11: Rate of events after a MS in logarithmic scale for the events extracted with
the threshold-based method on the radiated power signal for sample Sa1
(d = 500 µm, V = 16 nm/s, no porosity). One observes the Omori power-law
extending over more than three orders of magnitude and the �tted exponent
is p

A
= 1.3± 0.1.
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Voight law ◮ The rate of foreshocks has also been computed as function of time (�gure

3.12). A Voight law is observed. The exponent �tted from equation 2.3 is p
F
= 1.3± 0.1,

i.e. very close to that for aftershocks. As for AE events, foreshock-mainshock-aftershock

sequences remain statistically invariant along time reversal.

Figure 3.12: Rate of events preceding a MS in logarithmic scale for the events extracted
with the threshold-based method on the radiated power signal for sample Sa1
(d = 500 µm, V = 16 nm/s, no porosity). One observes the Voight power-law
extending over more than three orders of magnitude, and the �tted exponent
is very close to the one of Omori law: p

F
= 1.3± 0.1.

Aftershock triggering rate vs. mainshock energy ◮ Examining the variations of

the aftershock rate (prefactor of the curves presented in �gure 3.11) as a function of

mainshock energy permits the recovery of the productivity law (equation 2.4 presented in

section 2.4). Due to a of lack of data, the exponent is �tted by collapsing the curves of

Omori law (see �gure 3.13) just like the method presented in [Baro et al. (2013)]. This

exponent is two times larger than that obtained for AE (γ
A

= 0.5 ± 0.1). Moreover,

time symmetry is also observed for this law, and the exponent characterizing the FS

productivity is γ
F
= 0.5± 0.1.

Utsu law ◮ Finally, Utsu law presented in section 2.5 is also confronted against the

events issued from the signal P(t). Fitting equation 2.6 for both AS and FS gives power-

law exponents: bA = 1 ± 0.15 and bF = 1 ± 0.15. Again, time reversal symmetry is

observed. Moreover, bA is not equal to the Richter-Gutenberg exponent β as was veri�ed

with acoustic data.
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Figure 3.13: Renormalized Omori law in logarithmic scale for the events extracted with
the threshold-based method on the radiated power signal for sample Sa1
(d = 500 µm, V = 16 nm/s, no porosity), with γ

A
= 0.5. The collapse of the

curves over more than four orders of magnitude is obtained from productivity
law (γ

A
= 0.5). A dashed line with slope p

A
= 1.3 guides the eyes.

Figure 3.14: Utsu law in logarithmic scale for AS of the events extracted with the
threshold-based method on the radiated power signal for sample Sa1 (d =
500 µm, V = 16 nm/s, no porosity). A dashed line with slope bA = 1 guides
the eyes.
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Figure 3.15: Utsu law in logarithmic scale for event FS extracted with the threshold-
based method on the radiated power signal for sample Sa1 (d = 500 µm,
V = 16 nm/s, no porosity).The dashed line with slope bA = 1 is given as a
guide for the eyes.

Pinning-depinning-like analysis

One now turns to the analysis of the size and duration associated of each burst. The statis-

tics of these two quantities are the ones commonly predicted in the pinning-depinning

models [Bonamy et al. (2008); Bonamy (2009)]. This is what is done in this section,

keeping in mind that (as shown in section 3.1), the instantaneous released power is pro-

portional to the crack speed.

Distribution of avalanche size ◮ As we will see in the �rst chapter of the second part

of this manuscript, the pinning-depinning model does not give way energy dissipated in

the system during an avalanche Ei. Nevertheless, as explained in section 3.1, P ∼ v and

the decrease Ei of elastic energy during an event i is proportional to increment of crack

length. After having multiplied this last quantity by the sample width W , the avalanche

size Si which is the surface swept by the crack front during the event is obtained. This

quantity is found to be a power-law distributed (�gure 3.16). The associated exponent is

β
S
= 1.4 ± 0.15, i.e. the same as the one found for energy β. This value is just slightly

larger than the value β = 1.3 predicted by the depinning approach [Bonamy et al. (2008);

Bonamy (2009)].

Distribution of avalanche duration ◮ The distribution of duration is presented in

�gure 3.17. It follows the power law:
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Figure 3.16: Probability density function of the size of an avalanche for the events ex-
tracted from power signal with the threshold-based method for sample Sa1
(d = 500 µm, V = 16 nm/s, no porosity). The graph is presented in loga-
rithmic scale and one observes the Richter-Gutenberg power-law extending
over more than two orders of magnitude. The �tted exponent is very close
to the one found with energy instead of surface: β = 1.4± 0.15.

P (D) ∼ D−κ (3.4)

With �tted exponent κ = 1.8 ± 0.1. This value is signi�cantly larger than the value

β = 1.5 predicted by the depinning approach [Bonamy et al. (2008); Bonamy (2009)].

Scaling between energy and duration ◮ Figure 3.18 compares the event duration to

their energy. The quantities are plotted by averaging the couples (E,D) of each event

along the energy axis. From pinning-depinning approach, the scaling relation follows:

D ∼ E−a (3.5)

The exponent �tted on the �rst decades is a = 0.7 ± 0.1. From pinning-depinning

model it is expected that this a corresponds with the exponent of the PS. Nevertheless,

we measured
1

a
= 0.8 in section 3.2 for PS, this result signi�cantly di�ers from that

computed here.

Energy release rate at pinning and depinning events ◮ Another interesting quan-

tity is the value of the energy release rate at the burst initiation (depinning value Gd) and

75



CHAPTER 3. INTERMITTENCY AND ENERGY RELEASE FLUCTUATION

Figure 3.17: Probability density function of event durations for the events extracted from
power signal with the threshold-based method for sample Sa1 (d = 500 µm,
V = 16 nm/s, no porosity). The graph is presented in logarithmic scale and
a power-law extends over nearly two orders of magnitude with exponent:
κ = 1.8± 0.1.

Figure 3.18: Energy vs. duration law in logarithmic scale for the events extracted from
power signal with the threshold-based method for sample Sa1 (d = 500 µm,
V = 16 nm/s, no porosity). Each point stands for the average position of
several events in the (E,D) plan, logarithmically spread along the x-axis.
The �tted exponent is found to be a = 0.7± 0.1.
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at the burst death (pinning value Gp). These two quantities, indeed, inform one on the

landscape of e�ective toughness felt by the front as it propagates, which has been theo-

retically investigated [Roux et al. (2003); Roux and Hild (2008); Patinet et al. (2013)].

A precise distribution function for these quantities is out of reach, due to the lack of

statistics. Still, their cumulative distributions are plotted in �gure 3.19-A. The two distri-

butions are fairly narrow (15% around the mean value). To �rst order, they share similar

shapes but with Gd > Gp for all events (see �gure 3.19-B). We will come back to this

point in section 3.4.2.

Figure 3.19: A: Cumulative number of energy release rate at the pinning and depinning
transition for the events extracted from power thresholding. B: Comparison
of both quantities.The data come from the experiment on sample Sa1 (d =
500 µm, V = 16 nm/s, no porosity).

Statistics of maxima ◮ Finally, �gure 3.20 plots the probability density function for

the maximal value Pmax-i of instantaneous radiated power (proportional to the maximal

value of front velocity) reached in the events. This follows the power-law:

P (Pmax) = P−m
max (3.6)

With m = 2.4± 0.2. This value is not far from the one expected theoretically (exponent

= 2) within the mean-�eld theory of the interface depinning transition [Leblanc et al.

(2013)].
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Figure 3.20: Probability density function in logarithmic scale of the maximal power during
each events extracted from the threshold-based method for sample Sa1 (d =
500 µm, V = 16 nm/s, no porosity). A power law is observed over more
than one order of magnitude with exponent: m = 2.4± 0.2.

Avalanche shape

In pinning-depinning models (see the �rst chapter of the second part of this manuscript)

it is also of interest to characterize the average shape of the pulses and its variation with

the size. The procedure to de�ne this shape follows reference [Papanikolaou et al. (2011)]:

• (i)D0 is the avalanche duration and all the pulses i such thatDi ∈ [D0−δD;D0+δD]

are collected.

• (ii) The pulse shape P(t) at this prescribed value D0 is computed by averaging

Pi(t− Ti) over all the collected pulse (Ti is the start time of pulse i).

Figure 3.21 presents the normalized pulse shape P/Pmax vs. t/D0 for increasing values

D0. For small D0, the pulses are roughly symmetric. Depinning models [Papanikolaou

et al. (2011); Sethna et al. (2001); Leblanc et al. (2013)] predicts a symmetric shape. But

as D0 increases, the symmetry is lost, and the acceleration phase increases faster than

the deceleration phase. This asymmetry in time is of high interest, and as we will see

in the last chapter of the second part of this manuscript, it cannot be captured by the

pinning-depinning models for crack growth. Its origin remains unsolved. It may result

from the viscoelastic nature of the polymer rocks studied here, or be generic in brittle

heterogeneous fracture. Answer this question represents an important challenge for future
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research!

Figure 3.21: Average avalanche shapes for di�erent event duration extracted from the
threshold-based method. The shapes are measured from data of the experi-
ment with sample Sa1 (d = 500 µm, V = 16 nm/s, no porosity). A vertical
dashed line is drawn at x = 0.5 to guide the eyes.

3.5 Fracture energy and toughness

This section presents results on the energy release rate G (see equation 1.4) as a function

of the crack length in di�erent fracture experiments. Figure 3.22 presents G(c) for sintered

beads of diameters 500 µm, 230 µm, 80 − 50 µm and 20 µm loaded at V = 16 nm/s,

160 nm/s and 1600 nm/s. Table 3.3 recaps these experimental parameters and presents

the mean value of the energy release rate as computed in the steady part of the curves

(i.e. over crack length ranging from 2 to the 9 cm.

After propagating a few (necessary to reach the steady state), the energy release rate

varies slowly around a mean value with a small amplitude as expected in section 3.1.

Then assuming that the whole propagation occurs in the quasistatic regime, one can link

G to the fracture toughness of the material Γ. Hence, examining the mean values (given

in table 3.3), Γ increases with the crack speed. This point come from the fact that we use

an amorphous polymer, polystyrene. In such a material, damage processes at the fracture

process zone scale mainly occurs via crazing, and the resulting fracture energy is known

to increase with crack speed [Doll (1983); Scheibert et al. (2010)]. Moreover, the material
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Figure 3.22: Energy release rate as a function of the crack length for model rocks with
di�erent bead size and di�erent loading speed (samples Sa1, Sa2, Sa3, Sb1,
Sc1 and Sd1; see table 3.3), see text for details.

Sample Bead size (µm) Sintering pressure (MPa) Loading speed (nm/s) G (J/m2)
Sa1 500 5.2 16 110 ± 15
Sa2 500 5.2 160 100 ± 10
Sa3 500 5.2 1600 210 ± 15
Sb1 230 5.2 16 46 ± 3
Sc1 80-50 5.2 16 140 ± 10
Sd1 20 5.2 16 18 ± 5

Table 3.3: Mean energy release rate for di�erent experiments.

toughness decreases when the bead size decreases except for sample Sc1. This may come

from the fact that the bead material is not the same, or that the bead mixing (80 and

50 µm beads) induces a toughening e�ect.

3.6 Fractography

To complete the study, one examines at the post-mortem fracture surfaces. This char-

acterization is of interest because their morphology provides keys to unlocking the 3D

aspects of crack growth (which, by essence, cannot be access in peeling and interfacial

crack propagation experiments). Table 3.4 details the samples which are scanned and

analyzed in this section. In this context, topographical pro�les are acquired parallel and

perpendicular to the direction of crack propagation (see �gure 1.19 for height pro�les).
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This study has been carried out in tight collaboration with Tristan Camboniexvi.

Starting from the pioneering work of Mandelbrot et al. [Mandelbrot et al. (1984)],

many experiments have revealed that fracture surfaces exhibit self-a�ne morphological

scaling features [Bouchaud et al. (1990); Måløy et al. (1992); Bouchaud (1997)] [Ponson

(2007); Bonamy and Bouchaud (2011)]. Recently, it was suggested [Bonamy et al. (2006)]

that two distinct scaling regimes can coexist: A small-scale regime characterized by a

roughness exponent ζ ≈ 0.8 [Mandelbrot et al. (1984); Bouchaud et al. (1990); Måløy

et al. (1992); Ponson (2007)] and a large scale regime, with a smaller exponent ζ ≈ 0.4

[Bonamy et al. (2006); Ponson et al. (2006)] or logarithmic roughness [Ramanathan et al.

(1997); Dalmas et al. (2008)]. The crossover between the two regimes scales with either

the size of the fracture process zone [Bonamy et al. (2006)] or with the microstructure

scale [Dalmas et al. (2008)].

The self-a�nity of the pro�les can be e.g. revealed by plotting the Fourier spectrum

(see �gure 3.23-A). This spectrum is then found to decay as a power-law and the associated

exponent is given by 1 + 2ζ. The height-height also depicts the correlation function σ∆h

for considered pro�les h(r). We recall here the de�nition of this function:

σ∆h = 〈(h(r +∆r)− h(r))2〉1/2r (3.7)

Where the average 〈〉r is taken over all the abscissas r. For a self-a�ne pro�le, one expects:

σ∆h ∼ ∆rζ (3.8)

The samples scanned are presented in table 3.4. Samples made from beads sizes

greater than 230 µm are neglected, since the resulting fracture surfaces are too rough

for the pro�lometer (maximum amplitude of 800 µm). Moreover, one only considers

materials with no or low porosity (sintering pressure higher than 0.6 MPa), so that the

microstructure length-scale is fully set by the bead diameter during sintering. Then, for all

these samples, one sketches σ∆h vs. ∆r for h(r) parallel (�gure 3.24-A) and perpendicular

(�gure 3.25-B) to the direction of crack propagation. All the curves exhibit a �rst regime

with a roughness exponent ζ1 = 0.9 ± 0.1. This is not too far from the universal value

ζ ∼ 0.8 widely reported in di�erent materials [Bouchaud et al. (1990); Måløy et al.

xviFluides, Automatique et Systèmes Thermiques laboratory at University of Paris-Sud in Orsay, France
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Figure 3.23: A: Fourier spectrum of the height pro�le extracted on the fracture surface
of sample Sb1 (230 µm, 5.2 MPa) in the direction of crack propagation of
the crack (blue) and perpendicularly to the direction (red). B: Height-height
correlation functions of these pro�les. The results presented in logarithmic
scale are averaged on 3 pro�les. The dashed lines (slope provided in �gure)
guide the eyes.

(1992); Ponson (2007)]. At large scales, a second regime is also observed, with a smaller

exponent ζ2 = 0.3 ± 0.15. This last exponent resides between the ζ ∼ 0.4 observed

at large scales on rocks and ceramics [Ponson et al. (2006, 2007)] and the logarithmic

roughness (ζ ∼ 0) observed in nanostructured, partially demixed, vitroceramics [Dalmas

et al. (2008)]. The crossover between these two regimes is found to be close to the bead

size. Hence, σ∆h vs. ∆r curves have been renormalized with an optimized bead size dopt

�tted to optimize the collapse. The results and the values of dopt are presented in �gure

3.24-A and 3.25-B, for both directions. We observe a fairly good collapse of the curves.

The di�erences between dopt and d can be explained by the fact that when sintering

the material, the beads are compressed and deformed so there characteristic length can

decrease.
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Figure 3.24: A: Height-height correlation function of pro�les measured in the direction of
propagation of the crack. B: Height-height correlation function curves renor-
malized with the optimised bead size dopt. All the axes are in logarithmic
scale. The dashed line whose slope is a guide for the eyes.

Figure 3.25: A: Height-height correlation function of pro�les measured in the direction
perpendicular to the direction of propagation of the crack. B: Height-heigh
correlation function curves renormalized with the optimized bead size dopt.
All the axes are in logarithmic scale. The dashed line whose slope is a guide
for the eyes.
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Sample name Bead size (µm) Sintering pressure p0 (MPa)
Sb1 230 5.2
Sb2 230 2.6
Sb3 230 1.3
Sb4 230 0.6
Sc1 80-50 5.2
Sc2 80-50 2.6
Sc3 80-50 1.3
Sc4 80-50 0.6
Sd1 20 5.2
Sd2 20 2.6

Table 3.4: This table lists samples used in the study of fracture surfaces. All these samples
have been broken with a loading speed V = 16 m/s.

3.7 Conclusion

This chapter studies the evolution and statistical variations of the fracture mechanics

observables. The goal is to link the statistical richness of the AE with apparent physical

simplicity of the pinning-depinning model. First, we showed that there is just one inde-

pendent quantity in this problem! This originates from the fact that the crack speed is

directly proportional to the power radiated by the system when breaking. Hence, we have

chosen to study the statistical variation of the system through the evolution of P(t). For

a direct measurement of the statistical behavior of the system we performed a Fourier

spectrum analysis and drown the probability density function of this un�ltered signal.

Both studies reveal a power-law behavior expected theoretically. Then for a more com-

plete statistical analysis of the radiated power signal, we extracted avalanches from the

denoised signal via a classical threshold-based method. The statistics of these avalanches

have been studied in terms of energy, size, duration and inter-event time via statistical

earthquake analysis and pinning-depinning tools. Clustering in size, energy and time

have been evidenced just like for AE. Nevertheless the power-law exponents are di�erent

which means the phenomenon are not physically identical. From this detection of break-

ing events, we also evidenced an asymmetry in time of the avalanche shape which is not

predicted by any theoretical model. The measurement of the energy release rate linked

to the fracture energy in steady state regime permitted to con�rms that the toughness of

the material increases with the crack speed and decreases with the bead size. Finally, a

study of the fracture surface evidences that for small scales the roughness regime is closed
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to the universal one classically observed and after a cross-over scaling linked to the bead

size, a long scale regime appears with a lower roughness exponent.

Main messages of the chapter
⋄ Crack tip velocity and radiated power are equivalent quantities.

⋄ Power spectrum and probability density function of the radiated power obey a

power-law.

⋄ Fracture mechanic quantities follow seismic laws with di�erent exponents than

AE.

⋄ P signal obeys the main pinning-depinning statistical scaling laws.

⋄ Asymmetry in time of the average avalanche shape.

⋄ Toughening e�ect with the increasing of the crack speed and with decreasing of

the bead size.

⋄ Di�erent small and long scale regimes on the fracture surface roughness.
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Part II

Numerical/Theoretical aspects
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Introduction

In engineering and more often in physics, the problem of fracture is generally addressed

in terms of stability and direction of propagation. This is due to the fact, that fracture is

a multiscale problem and the subsequent matching of macroscopic loading and complex

microscopic fracture mechanism is not trivial. Thus, its study is reduced to two simple

questions treated with the LEFM [Gri�th and Waltamn (1924); Lawn (1993)]:

• Will the crack propagate?

• Where will it go?

Hence, the crack's response is idealized as a deterministic response of the applied solicita-

tions. This is an over simpli�cation of the problem as emphasized in the introduction of

this manuscript and as evidenced by the experimental part and for many other material

[Garcimartin et al. (1997); Deschanel et al. (2006); Salminen et al. (2002); Santucci et al.

(2004); Koivisto et al. (2007); Måløy and Schmittbuhl (2001)]. In some of these exam-

ples, crack propagation is far from being a continuous answer to the loading excitation:

the breaking system responds to a slowly varying external loading trough jerky dynamics,

with discrete pulses or avalanches spanning a variety of temporal and spatial length scales.

Thus, in the �rst part of this manuscript, loading a polymeric material in the wedge-

splitting geometry at a constant rate reveals a jerky failure of the sample: the crack speed,

or equivalently the radiated power of the system, varies with crackling dynamics (see

�gure 1.14-A). This kind of behavior occurs in many other systems including ferromagnets

[Papanikolaou et al. (2011)], plastically deformed metals [Richeton et al. (2005)], fault

seismicity [Rundle et al. (2003)], liquid spreading [Planet et al. (2009)], and fracturing

solids [Bonamy (2009); Rosti et al. (2009)]. Each time, system observables unveil universal

power-laws just like the ones evidenced experimentally in the �rst part of this manuscript.

There are theoretical explanations to this universality: (i) proximity to an underlying

critical point [Sethna et al. (2001)], and (ii) the self-organized criticality (SOC) [Bak

et al. (1987, 1988)]. Nevertheless, fracturing homogeneous PMMA (see �gure 1.14-B)

reveals a smooth dynamic process like what is observed in [Scheibert et al. (2010); Guerra

et al. (2012); Ponson (2009)]. Similarly, it seems that when the bead size decreases

(or equivalently, when the crack speed increases) the crackling dynamics is less and less

obvious. The objective in this part is to characterize both behaviors and identify the
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physical parameters that control the failure dynamics: loading rate, geometry, material

properties, microstructural texture...

Ferromagnetic systems invoking Barkhausen noise (BN) experience a similar transition

[Travesset et al. (2002)]. Nevertheless, ferromagnetic systems focus on the transition from

single isolated events to overlapping events without going through the disappearance of

crackling dynamics [White and Dahmen (2003)]. Jerky dynamics are always observed!

These systems only vary the driving rate. Herein, we would like to take this a step

further and identify the ingredients necessary to observe SOC [Dickman et al. (2000)]

characterized by crackling noise [Sethna et al. (2001)] in fracture problems.

Characterizing the transition between a continuously propagating crack front and a

self-organized jerky one requires numerical systems which overlap both aspects. The

pinning-depinning approach pioneered by [Gao and Rice (1989)] is the appropriate tool

to reconciliate both fracture dynamics. Invoking LEFM principles at the local scale,

this model succeeds in reproducing crackling dynamics at the macroscale [Bonamy et al.

(2008)].

In the crackling regime, crackling pulses, evidenced by various methods, result from

the depinning of avalanches. Single non-overlapping avalanches exhibit universal scale-

free distributions. The scaling relations are characterized by a variety of critical expo-

nents, which can be estimated using renormalization groups (RG) or numerical [Rosso

and Krauth (2002); Duemmer and Krauth (2007)] methods. These scale-free features

are widely reported for numerical calculations [Tanguy et al. (1998); Alava et al. (2006);

Bonamy et al. (2008); Laurson et al. (2010)]. On the other hand, no clear link exists

between (i) the cut-o�s and prefactors of the power-laws characterizing these free-scale

statistics and (ii) the tunable input parameters of the fracture experiments (namely: load-

ing rate, system size, etc.). This part of my thesis will aim at resolving this inconsistency.

This numerical/theoretical part begins with a detailed reconstruction of the equation

of motion of a crack front stably driven in a heterogeneous isotopic brittle material.

Then, just two input parameters are evidenced to command the crackling or continuum-

like dynamics of the system (see chapter 2). Finally, chapter 3 investigates the statistical

failure as a function of the loading rate, the sample geometry, and the microstructure

length scale.
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Chapter 1

Brittle failure in heterogeneous solids:

the pinning-depinning approach

Introduction

The experiments reported in part I of this manuscript show that crack growth in pres-

ence of microstructural disorder can exhibit crackling dynamics. This is incompatible

with continuum fracture mechanics. This Chapter shows how to extend continuum frac-

ture mechanics to explicitly and in a self-consistent manner account for the presence of

microstructural disorder.

In this context, the approach taken herein was pioneered by [Gao and Rice (1989)]

and later extended by [Schmittbuhl et al. (1995); Ramanathan et al. (1997); Charles et al.

(2004); Vandembroucq et al. (2004); Ponson and Bonamy (2010)]. The idea is to map the

crack's propagation to an elasticxvii manifold driven in a random potential. This chapter

reveals that the elastic line model for crack growth can be rigorously derived within

elasticity theory by considering a random �eld of fracture energy. The study herein is

limited to the case of perfectly brittle linear elastic materials with weakly heterogeneous

local properties, in the quasi-static limit.

Section 1.1 reveals the equation of motion for the elastic line. The resulting equation is

xviiThe term "elastic" here is to be taken in its statistical physics meaning rather that within its
continuum mechanics meaning. An elastic manifold is characterized by an energy cost per unit
length/area/volume (depending on its dimension) which tends to smooth deform under the action of
disorder.
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CHAPTER 1. BRITTLE FAILURE IN HETEROGENEOUS SOLIDS

parameterized by a variety of parameters that encode the material properties, microstruc-

tural texture, sample geometry and loading rate. All these parameters are expressed in

term of experimentally measurable quantities. Dimensional analysis allows then reducing

the number of independent parameters. The boundary conditions and sample speci�ca-

tions are �nally given (section 1.2) to specify the numerical resolution.

1.1 Derivation of the equation of propagation

1.1.1 Ideal homogeneous brittle material: Conventional fracture

mechanics

Since Gri�th's pioneering works [Gri�th (1920)] lead to a coherent theoretical framework

(namely the linear elastic fracture mechanics, LEFM). LEFM describes the destabiliza-

tion and further propagation of brittle cracks in homogeneous linear elastic media (see

introductory chapter of the manuscript). Within LEFM framework, crack velocity, v, (if

small enough) is proportional to the excess energy released locally:

1

µ
v = G− Γ, (1.1)

Where G is the energy release rate, Γ is the fracture energy, and µ is the e�ective mobility

of the crack front. To �rst order in v/cR with cr the Rayleigh wave speed, µ = cR/Γ.

As Γ is constant, equation 1.1 predicts that initially straight crack fronts are translated

without deformation. Additionally, since G is a linear function of the external loading,

equation 1.1 predicts regular dynamics for the front. Thus, LEFM cannot account for

the crackling dynamics studied experimentally in part I. Nevertheless, the mechanical

loading provides forces to the system at the macroscopic scale, yet dissipation processes

(due to plasticity, cavitation, chemical reactions...) remain con�ned to a tiny zone at the

crack tip (speci�cally the fracture process zone, FPZ). This separation in length scales,

intrinsic to fracture mechanics, makes the failure properties observed at the continuum

length scale extremely sensitive to the microstructural disorder of the material [Bonamy

(2009)]. This macroscale sensitivity to microscale is the mechanism responsible for the

large scale �uctuations and crackling observed in the crack dynamics. It is then necessary
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1.1. DERIVATION OF THE EQUATION OF PROPAGATION

to include explicitly material disorder in this equation.

1.1.2 Microstructural disorder and front distortion

The simplest way to capture the presence of material inhomogeneities at the microstruc-

tural scale is to introduce spatial �uctuations in the fracture energy. This will yields

distortions in the crack front: The crack front will preferentially propagate along the zone

of lower fracture energy. These crack front distortions will yield mixed mode loading (see

introductory chapter of the manuscript for more details about this point) and limit the

amount of prying forces at the crack tip. Herein the dynamics and path of cracks is a

balance between these two.

Figure 1.1-A depicts how the problem is parameterized. The front is described by its

in-plane (f(z, t)) and out-of-plane (h(x = f(z, t), z)) deviations. As a result, a point on

the front is de�ned by its coordinates (x = f(z, t), y = h(f, z), z). Herein (as in part I),

the coordinated system follows the standard frame of fracture mechanics:

• ~ex parallel to the mean direction of crack propagation.

• ~ey parallel to the mean direction of tension loading.

• ~ez parallel to the mean direction of the crack front (along specimen thickness W ).

Even in the presence of material inhomogeneities, a perfectly brittle material obeys

equation 1.1 for the local speed at each point on the crack front. Hence, the complexity

of the problem arrives in expressing G and Γ.

To capture the presence of material inhomogeneities, the fracture energy will now

contain a spatially distributed component:

Γ(x, y, z) = Γ + γ(x, y, z) (1.2)

Where Γ = 〈Γ(x, y, z)〉x,y,z (operator 〈•〉x,y,z means averaging over space) is the mean

value of fracture energy and γ is a random �eld. This random term is characterized

by the probability density function (p(γ)) and the spatial correlation (C(~r) = 〈γ(~r0 +
~r)γ(~r0)〉r0). Henceforth, several assumptions are made: (i) a Gaussian distribution p
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CHAPTER 1. BRITTLE FAILURE IN HETEROGENEOUS SOLIDS

Figure 1.1: Schematic view of a perfectly brittle single crack growing in a heterogeneous
material. A: 3D view of the crack. B: 2D projection on the mean crack plane.

with standard deviation γ̃; and (ii) an isotropic correlation function C which decreases

linearly with |r| over a distance ℓ beyond which C = 0. ℓ de�nes a correlation length

for the disorder landscape. This simply means that, the fracture energy between two

points of the specimen separated by a distance larger than ℓ are uncorrelated. (Note

that according to [Vandembroucq et al. (2004)] scaling properties are expected to remain

una�ected by changing the shapes of p(γ) and C(|r|)). Thus, the microstructural disorder

is fully characterized by γ̃ and ℓ. This simply means that fracture energy in two points

of the specimen separated by a distance larger than ℓ are uncorrelated.

The second step is to relate G to frontal distortions {f} and {g}. It turns out that

to the �rst order, G(z, t) depends on the in-plane component f onlyxviii [Ball and Lar-

ralde (1995); Movchan et al. (1998)]. This reduces the 3D problem (see �gure 1.1-A)

to the simpler 2D situation after a projection on the (~ex~ez) − plane (see �gure 1.1-B).

In this 2D equivalent problem, the fracture energy depends on two space variables only:

Γ(x, y, z) −→ Γ(f(z, t), z). One can then use Rice's analysis [Rice (1985); Lazarus (2011)]

to relate the local G(z, t) to in-plane front distortions f(z, t):

xviiiThe out-of-plane distortions h play on the mode II and mode III components which, in a tensile
experiments, are of second order in G
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1.1. DERIVATION OF THE EQUATION OF PROPAGATION

G(z, t) = G0(f(t), t) +
Γ

π
×

∫

front

f(ζ, t)− f(z, t)

(ζ − z)2
dζ (1.3)

Where the integral is de�ned in the principal value meaning. The quantity G0 is the

energy release rate for a straight crack at f(t) = 〈f(z, t)〉z (where the operator 〈•〉z
means averaging over z coordinate only) everything else remains the same. G0(f(t), t)

here depends explicitly on the crack length and the time. This dependency translates the

relations between energy release rate and both the specimen geometry (that evolves when

the crack length changes) and external loading (that can evolve with time).

Substituting equations 1.2 and 1.3 in equation 1.1 results in an equation of motion for

the crack front as follows:

1

µ

∂f(z, t)

∂t
= G0(f(t), t)− Γ +

Γ

π
×

∫

front

f(ζ, t)− f(z, t)

(ζ − z)2
dζ − γ(f(z, t), z) (1.4)

This gives the general equation for a crack in an in�nite material with su�ciently weak

heterogeneities. Futhermore, Rice's formula (equation 1.3), derived for a slightly per-

turbed crack, remains valid for the e�ect of a larger perturbation (for more details see

[Adda-Bedia et al. (2006)]). This approach is expected to be valid as long as (i) the slope

∂f/∂z ≪ 1; and (ii) ∂f/∂t ≪ cR. In particular, f does not need to be small with respect

to a characteristic geometrical dimension.

Variants of equation 1.4 with a constant force F = G0(f(t), t) − Γ have been exten-

sively studied in the past to model crack propagation in solids [Schmittbuhl et al. (1995);

Ramanathan et al. (1997)]. They are also used to describe other diverse systems such

as interfaces in disordered magnets [Bertotti et al. (1994); Durin and Zapperi (2000)] or

contact lines of liquid menisci on rough substrates [Ertas and Kardar (1994); Rolley et al.

(1998)]. A key feature for the crack front is the depinning transition. In other words, the

crack front remains stationary (i.e. pinned by the heterogeneities) for F less than a well-

de�ned threshold value Fp, and it starts to move with a �nite speed when F > Fp. This

depinning transition at Fp [Ertas and Kardar (1994)] belongs to the critical phenomena

realm. This realm is characterized by universal scale-invariant features and scaling laws.

In particular, at Fp, the interface moves through scale-free avalanches reminiscent of the
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CHAPTER 1. BRITTLE FAILURE IN HETEROGENEOUS SOLIDS

crackling dynamics observed in the part I.

1.1.3 Stable growth, external forcing and resulting equation of

motion

To go further into the analysis, the equation of motion requires more continuum mechanics

and the driving force F = G0(f(t), t)−Γ needs to be modelled more accurately. For stable

crack growth conditions, the crack is loaded by imposing an external displacement that

grows with time t. For sake of simplicity, the displacement rate is assumed to be a constant

henceforth (as e.g. for the experiments discussed in part I of this manuscript). In parallel,

the prying force is expected to decrease with crack length, f , since the specimen sti�ness

decreases with f . Without loss of generality, we consider the crack immobile at t = 0 and

the x-axis origin is at the crack tip (f(t = 0) = 0). Then one gets: G(f = 0, t = 0) = Γ.

Considering the subsequent variations of f small enough with respect to the initial crack

length, one can write:

F (f, t) = Ġ0 · t−G′

0 · f (1.5)

Where Ġ0 = ∂G/∂t (driving rate) and G′
0 = −∂G/∂f (unloading factor) are positive

constants set by the imposed displacement rate and the specimen/loading geometry, re-

spectively.

As a result, the driving force of the crack is an e�ective quadratic potential. Moreover,

it moves at the velocity vm = G′
0/Ġ0. After a short transient regime, the velocity of

the mean crack position is also vm. Gathering equations 1.5 and 1.4 via relation F =

G0(f(t), t)− Γ, one gets:

1

µ

∂f(z, t)

∂t
= Ġ0 · t−G′

0 · f +
Γ

π
×

∫

front

f(ζ, t)− f(z, t)

(ζ − z)2
dζ − γ(f(z, t), z) (1.6)

This equation describes the motion of a brittle crack slowly driven in a brittle hetero-

geneous material. As �rst established in [Bonamy et al. (2008)], this equation predicts

crackling dynamics for Ġ0 → 0 and G′
0 → 0. Section 1.2 presents the precise conditions
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yielding crackling.

1.2 Numerical aspects

Equation 1.6 requires numerical schemes to be solved. According to equation 1.6 seven

parameters select the crack front dynamics: µ, Γ, Ġ0, G′
0, γ̃, ℓ and the system size W

(specimen thickness along z axis as shown in �gure 1.1). Yet, the spatial distribution of

inhomogeneities require only two parameters: The disorder contrast γ̃ and the disorder

length scale ℓ [Vandembroucq et al. (2004)]. The introduction of dimensionless time (t →
t/(ℓ/µΓ)) and length ({x, z, f} → {x/ℓ, z/ℓ, f/ℓ}) reduces the number of independent

parameters. One gets:

∂f

∂t
= ct− kf +

1

π
×

∫

front

f(ζ, t)− f(z, t)

(ζ − z)2
dζ + η(z, x = f(z, t)) (1.7)

Where c = Ġ0ℓ/µΓ
2
is the dimensionless driving rate, k = G′

0ℓ/Γ is the dimensionless

unloading factor, and η is the Gaussian random term with standard deviation σ = γ̃/Γ

and an unit spatial correlation length. As a result, 4 independent parameters de�ne the

front dynamics: c, k, σ, and the scale ratio N = W/ℓ.

Subsequent chapters will explore, the front dynamics described by equation 1.7 and its

variations with respect to {c, k, σ,N}. Each set of parameters has an associated N ×p ·N
random Gaussian map η(z, x), with zero average and σ variance. At time t = 0, the

crack front position is a straight line located at x = 0: f(z, t = 0) = 0 ∀z ∈ [0, N ]. The

space-time evolution of f(z, t) is then solved using a fourth order Runge-Kutta scheme.

Periodic boundary conditions are chosen along z: f(z = 0, t) = f(z = N, t) ∀t ∈ IR. This

speeds up the computation time as the integral term in equation 1.7 can be solved in the

Fourier domain.

Herein, c ranges from 10−6 to 10−4. The minimum value maintains a reasonable

computation time (less than 40 days on a 2 GHz CPU). Its maximal value keeps a su�cient

scale separation between the depinned front velocity and the loading rate. The other

parameters k, σ, and N were respectively varied from 10−8 to 1, 10−1 to 4, and 32 to

2048. This permits a wide exploration of phase diagram.
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1.3 Conclusion

In this chapter (following pioneer works [Gao and Rice (1989); Schmittbuhl et al. (1995);

Ramanathan et al. (1997); Bonamy et al. (2008)]), we developed the equation of motion

for a line propagating in a random potential. This line propagation model maps to the

�rst order a crack front's propagation when driven in a heterogeneous material. The

inputs of the problem reduce to 4 independent parameters. Moreover, these parameters

are computed from mechanical measurements. This model reproduces crackling dynamics

observed in the experimental part of this manuscript. Moreover, it provides access to the

local propagation of the front which is unavailable via current experimental techniques.

This access gives way to more accurate statistical analysis.

These numerical tools are wildly explored in the following chapters. Chapter 2 uses

them to characterize when crackling dynamics are observed and when continuous propaga-

tion is observed. Then, a more speci�c analysis examining the variation of the statistical

answer in crackling regime vs. the input parameters is studied.

Finally, it is worth mentioning that equations similar to the equation of motion of a

crack (1.7) are involved in many physical situations where elastic systems are embedded

in a material containing random impurities, such as vortex lines, magnetic domain walls,

or charge density waves. As a result, this kind of equations has been largely studied both

from a numerical point of view [Rosso and Krauth (2002); Duemmer and Krauth (2007)]

and using an approximated analytical approach based on renormalization group theory

[Ertas and Kardar (1994); Chauve et al. (2001)]. Hence, subsequent results can be applied

to di�erent physical view points and lead to di�erent interpretations.

Main messages of the chapter
⋄ An equation of motion for a crack front slowly driven within a random heteroge-

neous brittle material.

⋄ Just 4 independent parameters are required to describe the inputs of the problem.
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Chapter 2

Brittle failure: Continuum-like or

crackling?

Introduction

Chapter 1 presents how to derive a description for brittle crack growth taking into

account explicitly the microstructural disorder. In this framework, the crack front is

modeled with a long-range elastic spring [Gao and Rice (1989); Schmittbuhl et al. (1995);

Ramanathan et al. (1997)] propagating in a 2D random potential. The onset for crack

destabilization can be mapped to a depinnning transition [Ertas and Kardar (1994);

Roux et al. (2003); Ponson (2009); Bonamy (2009)]. Stable crack geometries yield a

self-adjustment in the driving force around its depinning value [Bonamy et al. (2008)].

Under some conditions, this can exhibit crackling dynamics similar to experimental re-

sults observed in part I herein and reported in some interfacial experiments [Måløy et al.

(2006); Bonamy et al. (2008)]. Still, many situations involving a variety of disordered

brittle solids (structural glasses, brittle polymers, ceramics, etc.) with stable crack growth

do not exhibit crackling. Rather they experience continuous dynamics compatible with

LEFM predictions (see e.g. the velocity pro�les presented in chapter 1 for homogeneous

PMMA broken using our experimental device).

Here, we broach the question of the when, where and why crackling versus continuum-

like dynamics are observed in heterogeneous brittle failure. In this context, we solve

the elastic line model given by equation 1.7, and looked at the dynamics selected as a

function of its parameters {c, k, σ,N}. One will see that either continuum-like or crackling
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CHAPTER 2. BRITTLE FAILURE: CONTINUUM-LIKE OR CRACKLING?

dynamics are observed. A transition line is found to separate the two regimes and de�nes

a phase diagram within a space de�ned by two reduced variables.

2.1 Di�erent types of fracture dynamics

To begin, when simulating crack propagation with the equation of motion 1.6 (in all cases),

the front is pinned until the external loading reaches a critical force Fp called depinning

force. Then, two kinds of behavior can be observed while the front goes through the

N×p ·N random map looking at the mean speed signal v(t) = 〈v(z, t)〉z. In the �rst case,

it keeps going without stopping: after a transient regime, the v(t) signal �uctuates over

the mean value c/k expected from LEFM (i.e. with η = γ ≡ 0), without going back to 0.

This case is shown in �gure 2.1-A1, for a low value of k. In the second case (after a very

short transient regime), the mean signal of the speeds becomes very jerky and exhibits

crackling dynamics with distinct pulses separated by silent periods where the whole front

is trapped in a pinning position. This regime characterized by avalanche dynamics and

universal scale-free behaviors was observed by [Ertas and Kardar (1994); Bonamy (2009);

Ponson and Bonamy (2010)]. Such a v(t) signal is shown in �gure 2.1-A3 for a high k

value. The signal presented in �gure 2.1-A2 is a transitional regime between both regimes.

Figure 2.1: Qualitative transition from crackling to LEFM-like dynamic regime seen from
the point of view of the mean speed v(t). Several mean speed curves for
di�erent k values are presented: A1: in the LEFM-like regime � A3: in the
crackling regime � A2: the transition between both.

The signal v(t) is the one accessible (and of interest) in experiment. Still the qualitative

characterization of both LEFM-like and crackling regimes can also be seen at the local
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scale from the crack front position frozen at di�erent time. For LEFM-like dynamics, two

fronts are perfectly distinct (i.e. independent of the time interval between the 2 fronts)

as presented in �gure 2.2-A. On the contrary, in the crackling regime, it is possible to

�nd a time interval between two frozen fronts such that the fronts are partially or totally

overlapping. In this last case, presented in �gure 2.2-B, the area swept by the non-

overlapping part of the curve represents a breaking event also called an avalanche. It

is also worth mentioning that even if those �gures (2.2) are reminiscent to the pinning-

depinning transition [Roux et al. (2003)], this case is not valid since the mechanical loading

is not the same: the front is driven in stable conditions, the loading force (see equation

1.5) varies around Fp.

Figure 2.2: A: Crack front frozen at di�erent times on the random map in the LEFM-like
regime and movie of the evolution. B: Crack front frozen at di�erent times
on the random map in the crackling regime and movie of the evolution. Scan
the �ash-code for movies depicting the di�erent senarii or go to the Youtube
sites for the movies: LEFM-like regime http://youtu.be/Fut-JKJYCUs and
crackling regime http://youtu.be/v8NdKVgyW7I.

Finally to merge both local and global points of view, �gure 2.3 in the continuum and

crackling regimes presents the evolution of local front speed in space (z-coordinate) as well

as its mean value over a short time. For LEFM-like dynamics, the speed vanishes for any

point of the front at any time. On the contrary for crackling dynamics, the crack speed

is nearly zero everywhere with the exception of several small places for short durations,

the avalanches or pulses. Thus classifying these two regimes gives way to detecting the

transitions between them:
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Figure 2.3: A: Evolution of the local and global speed in LEFM-like regime:
http://youtu.be/RWhLu4-8Wbo B: Evolution of the local and global speeds
in crackling regime: http://youtu.be/V4JJtZYcnSw.

• The transition from a global point of view: "the mean crack speed never vanishes"

(∀t → v(t) > 0) vs. "the mean crack speed sometimes vanishes" (∀t0, ∃t > t0 →
v(t) = 0)

• The transition from a local point of view: "none of the front points are pinned"

(∀t, ∀z → v(z, t) > 0) vs. "at some instances in time, one or more crack front points

are pinned" (∀t0, ∃t > t0, ∃z → v(z, t) = 0).

Invoking these rules, the transitions are tested for di�erent loading conditions herein and

by [White and Dahmen (2003)].

Strictly speaking the transitions are not exactly the same. De�ning the transition

from crackling to LEFM-like regime as the moment when avalanches begin to overlap

one each other gives two di�erent scenarii. The �rst transition constitutes an overlapping

in time only. The second is an overlapping both in time and space of the avalanches.

Nevertheless, the study of the di�erences between these transitions is beyond the scope

of this thesis project. Hence, this study will focus on the �rst transition. On a side

note, work is currently underway to map these transitions with a percolation transition

problem.

Next it is important to discriminate in a quantitative way the transition between both

regimes (i.e. crackling and LEFM-like) and build a phase diagram. The phase diagram
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should distinguishes each point via the 4 parameters (see section 1.2). The quantitative

criterions originate from the de�nitions above. Figure 2.4 depicts the minimum value vmin

of mean crack speed after the transient regime as a function of k for 15 simulations for c,

σ and N . A sharp variation in this curve occurs at kc, i.e. a critical value of the unloading

factor. As presented in �gure 2.1-A1, LEFM-like regime comes about when k < kc. In

this region vmin > 0, thus the mean crack speed never vanishes. For k > kc, the crackling

regime transpires (see �gure 2.1-A3). Hence vmin = 0, and the mean crack speed always

goes back to zero. Using vmin(c, k, σ,N) is a convenient and quantitative way to know in

which regime the propagation takes place.

Figure 2.4: Evolution of the minimum mean speed when k increases and evidences of the
transition. The points A1, A2 and A3 correspond to the mean speed signal
presented in �gure 2.1.

2.2 Identi�cation of the phase diagram for the dynamic

Now invoking the vmin measurement, one can de�ne the crackling/continuum-like regimes

in the {c, k, σ,N} space diagram. In this context, {σ,N} remains constant, and the tran-

sition value for the unloading factor kc as a function of the loading rate c is calculated.

For each series of parameters, several simulations were performed with independent ran-

dom disorder maps η(z, x) (from ∼ 40 simulations for N = 64 to ∼ 3 simulations for

N = 1024). Averaging over these simulations gives the transition value kc, and the error

bars correspond to a 95% con�dent interval (�gure 2.5).
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CHAPTER 2. BRITTLE FAILURE: CONTINUUM-LIKE OR CRACKLING?

Figure 2.5: Depicts how kc varies with c for di�erent input values of {σ,N}. The dashed
grey line with slope 1 is given to guide the eye. Axes are in logarithmic scale.

Figure 2.5 shows di�erent kcvs.c curves obtained for di�erent sets of {σ,N}. For the

larger N (N = 1024), kc is roughly proportional to c, with a prefactor A that depends on

N and σ. For smaller N , the curves can be decomposed into two pieces: A plateau kc Sat

for small c and a kc ∝ c for large c.

As the crack propagates throughout the disordered landscape, the pro�le ηeff (x) (i.e.

e�ective pinning force) gives clues to the form of the kc vs. c:

ηeff (x) =

〈∫

front

f(ζ, t)− f(z, t)

(ζ − z)2
dζ + η(z, x = f(z, t))

〉

z

(2.1)

Figure 2.6 depicts a typical pro�le. The value kcsat observed for c → 0 is set by the relative

positions of the maximum (S1 = {x1, η1}) and the next-to-maximum (S2 = {x2, η2}) peaks
over the travelled distance (kc Sat = (η1 − η2)/(x2 − x1)). Indeed, if k is less than kc, the

front (once depinned from S1) will continue to propagate with a driving force always larger

than ηeff (x). On the contrary, if k is greater than kc, the front (once depinned from S1)

will (at least) be pinned again by the S2 peak and the velocity v(t) will vanish for at least

one point. The linear variation of {ηeff} with σ yields kcsat ∝ σ.

For �nite c, the front earns an extra driving force during its depinning jump (duration

τ12) from S1 to S2 yielding kc = kc Sat + Ac with A = τ12/(x2 − x1). Thus, one expects

kc ≈ kc Sat for c ≪ kc Sat/A and kc ≈ Ac for c ≫ kc Sat/A. In this scenario, the jerky

dynamics observed for c ≪ kc Sat/A are dominated by a single large avalanche (from S1
to S2). Truly steady self-sustained crackling dynamics transpire for only c ≫ kc Sat/A.

The simple argument above demonstrates that kc Sat is directly proportional to σ. One
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2.2. IDENTIFICATION OF THE PHASE DIAGRAM FOR THE DYNAMIC

Figure 2.6: Sketch of the variation of the e�ective pinning force applying on the front
as it quasistatically propagates throughout the disordered landscape (see e.g.
[Tanguy et al. (1998)] for implementation of such a propagation algorithm).
Points S1 = {x1, η1} and S2 = {x2, η2} locate the maximum and subsequent
next-to-maximum peaks over the travelling distance.

now has to infer its variations with N . In this context, �gure 2.7 plots kc Sat/σ vs. N

for di�erent value of σ. It turns out that this obeys a power law with exponent α3 =

1.65± 0.05. Hence, kc Sat ∼ σN−α3 .

Figure 2.7: Value of the plateau of �gure 2.5 kc Sat as a function of the system size N for
di�erent heterogeneity amplitudes σ. Exponent α3 = 1.65 ± 0.05 is �tted on
this curve and given with the grey dashed line. Axes are in log-log scale.

The �nal step is to unravel the dependencies of the proportionality constant A with

respect to σ and N . The raw plot presented in �gure 2.8-A shows that A decreases with

both σ and N . To quantify the scaling,the exponent α2 yields a good collapse of the

curves A/N vs. σ (see �gure 2.8-B). This later is obtained for α2 = 0.38± 0.05, and the

resulting curve is found to decrease as σ−α1 with a �tted value α1 = 1.15± 0.05.

In summary, the various kc vs. c curves presented in �gure 2.5 reduce to 2 regions:

• A c-independent plateau kc Sat for small c, small N , and large σ.

• A linear increasing kc with c (slope A) for large c, large N , and small σ.
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Figure 2.8: A: Proportionality constant A for the regime c ≫ 1 of �gure 2.5, as a function
of σ for di�erent values of N . B: Collapse obtained by making A → A/Nα2

with α2 = 0.38. The grey dashed line indicates a power-law of exponent
α1 = 1.15. The axes are logarithmic.

Then by making the following variable changes kc → k∗
c = kc/kc Sat and c → c∗ =

A · c/kc Sat, all curves collapse. Both A and kc Sat go as a power-law with N and σ:

A ≈ σ−α1Nα2 with α1 = 1.15 ± 0.05 and α2 = 0.38 ± 0.05, and kc Sat ≈ σ · N−α3 with

α3 = 1.65± 0.05. These relations collapse all curves on a single master curve, plotted in

�gure 2.9:

k∗

c = f(c∗) with f(c∗) ≈
{

k∗
c sat if c∗ ≪ k∗

c sat

c∗ if c∗ ≫ k∗
c sat

(2.2)

by making c∗ = /c×Nα2+α3/σ1+α1 and k∗
c = kc×Nα3/σ. The plateau value k∗

c sat decreases

with p. This curve separates LEFM-like and crackling dynamics.

Recall that the jerky dynamics observed for c ≪ kc Sat/A is dominated by a single

large avalanche (mainly driven by the positions of the maximum and next-to-maximum

peaks in the ηeff (x) pro�les, see �gure 2.6), while a true steady self-sustained crackling

dynamics can only be observed for c ≫ kc Sat/A.

Figure 2.9 and equation 2.2 reveal that large disorder (contrast γ̃ or length-scale ℓ),

large unloading factor G′
0, small specimen size L and small driving rate Ġ0 yield crackling

dynamics, and the opposite yields a LEFM-like dynamics. These tendencies can now be

discussed. A continuum description is naturally expected to be relevant as disorder is

weak. Also, a larger specimen size with respect to disorder scale allows coarse-graining;

hence, a continuum description for large sample is more relevant than for small specimen
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Figure 2.9: Main image depicts the phase diagram of the crack dynamics. Inset: variation
of kc as a function of c for di�erent N and σ. Each point results from averaging
over many simulations and errorbars correspond to a 95% con�dence interval.
Main panel: Collapse obtained with α1 = 1.15, α2 = 0.38 and α3 = 1.65.
Straight line indicates proportionality.

sizes. A small unloading factor yields larger avalanches and a large driving rate decreases

the silent time between two avalanche nucleation. These two e�ects favor avalanche over-

lapping and favor continuum dynamics by averaging the avalanches. The phase diagram

unraveled here is compatible with this intuition. It allows its rationalization. This can

inform technological relevant fracture processes, e.g. implementation in future rational-

ized design methodologies to prevent (or to limit) inopportune crackling (and induced

indetermination) in cutting-edge technologies like nano-technologies where the relative

microstructural size is very high.

Finally to link this theoretical study to experiments presented in the previous part,

one can check, at least qualitatively, that when the loading speed of the system increases

(sample Sa3: d = 500 µm, V = 1600 nm·s−1, no porosity) or similarly when the bead

size decreases (sample Sd1: d = 20 µm, V = 16 nm·s−1, no porosity), the crack dynamics

pass from crackling to LEFM-like.
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2.3 Nature of separation line between continuum and

crackling regime: Simple crossover or true transi-

tion?

Finally, this chapter concludes with a study on how the dynamics change as the crack

goes from the LEFM-like regime to the crackling one. Hence, the keys to unlock this are

in the evolution of the signal v(t) within the steady regimes as it progresses from the �rst

regime to the second one. One way to characterize its �uctuations is to compute its power

spectrum (PS). Such an analysis has two advantages with respect to the standard statis-

tical analysis (see following chapter and part I of the manuscript for further discussion) of

pulse size and duration developed to analyze crackling signals [Travesset et al. (2002)]: (i)

It allows a full exploration of the phase diagram (both crackling and LEFM-like); (ii) in

the crackling part, it does not call for any additional criteria (threshold setting) to �lter

single pulses in presence of overlapping avalanches.

Figure 2.10 presents the evolution of PSv(ν) for increasing k and constant other pa-

rameters. Below kc, all curves overlap except at the lowest frequencies. This is precisely

what is requested in a classical mechanics description (i.e. the continuum-level scale con-

trols the parameter k and should a�ect the system at large scales only). Conversely,

above kc, the PS curves are clearly distinct, showing that all scales are a�ected by k.

One points out that power-law behavior is characteristic of a crackling dynamics [Kuntz

and Sethna (2000); Travesset et al. (2002); Durin and Zapperi (2005)]. The power-law

exponent 1/a is independent of k, whereas the prefactor decreases with k (see section

3.1 for further analysis). The dramatic change observed as k crosses kc is a signature

that the LEFM-crackling transition line is a true transition and not simply a crossover

phenomenon.

The precise nature of this transition has not been uncovered. On-going work with

Alberto Rossoxix and Alexander Dobrinevskixx aims at �lling this gap. The idea is to

look at the space-time distribution of the avalanches during the propagation. In such a

space-time diagram, the unloading factor k controls the typical size of avalanches: the

larger is k, the smaller are the avalanches. On the other hand, the driving rate c plays

xixLaboratoire Physique Theorique et Modeles Statistiques (LPTMS), University of Paris Sud in Orsay,
France

xxLaboratoire de Physique Théorique (LPT), École Normale Supérieure in Paris, France
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Figure 2.10: Qualitative transition from crackling to LEFM-like dynamic regime seen from
the point of view of the mean speed Fourier spectrum.

on the density of avalanches: the larger is c, the smaller is the time distance between

two neighbouring avalanches. Hence, one expects interplay between c and k to control

the overlap between avalanches and, for some conditions, an in�nite avalanche percolates

throughout the space-time diagram. In this scenario, the LEFM-like cracking transition

may be mapped to a percolation driven problem. This may lead to a way to explain the

values of the critical exponents αi at play in setting the phase diagram (�gure 2.9).
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2.4 Conclusion

In this chapter, we used statistical models developed in chapter 1 to see how a brittle crack

selects its propagation dynamics in presence of microstructural disorder. Two di�erent

regimes are evidenced: LEFM-like and crackling dynamics. Large disorder (contrast or

length-scale), large unloading factor, small specimen size and small driving rate favor

crackling while the opposite favor continuum-like dynamics. A detailed parametric study

of the equation of motion (equation 1.7 in chapter 1) gives way to rationalize the phase

diagram. This latter is found to be fully controlled by two reduced variables (see �gure

2.9). The separation line between LEFM-like and crackling regimes is a true transition,

not a simple crossover. Indeed, the dynamics dramatically change as the system crosses

the separation line.

This result sheds light on experimental conditions required to observe crackling in

brittle fracture. As such, it can inform technological relevant fracture processes, e.g. in

the future development of rationalized design methodologies to prevent (or to limit) in-

opportune crackling (and induced indetermination) in cutting-edge technologies. Beyond

solid failure, this analysis directly extends to a number of others systems described by

the same long-range string model, such as contact line dynamics in wetting problems [Er-

tas and Kardar (1994)] and domain walls dynamics in ferromagnets [Durin and Zapperi

(2000)] (�eld sweep rate and demagnetization factor then playing the role of c and k). As

such, it may be relevant in other �elds that face similar problematic, e.g. nano�uidic or

nanomagnetism technologies.

In the next chapter, we will focus on the dynamics in the crackling regime, and see

how they depend on the parameter series {c, k, σ,N}.

Main messages of the chapter
⋄ A physical transition is uncovered between the regimes where the crack propagates

with free-scale statistic and a regime where it growth continuously.

⋄ A two dimensionless parameters phase diagram to control if the crack growth in

LEFM-like or crakling regime.

⋄ The phase diagram is in accordance with experimental results.
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Chapter 3

Dynamic selection in the crackling

phase

Introduction

Chapter 2 revealed that an elastic line approach derived from LEFM can reproduce

crackling dynamics under certain parametrical conditions. This section characterizes the

crackling dynamics. Publications over the last twenty years contain a multitude of theo-

retical and numerical works [Tanguy et al. (1998); Durin and Zapperi (2000); Rosso et al.

(2009)] [Papanikolaou et al. (2011); Dobrinevski et al. (2012)]. Avalanching dynamics

are extracted from space-space activity maps [Måløy et al. (2006); Bonamy et al. (2008);

Laurson et al. (2010)], space-time activity maps [Tanguy et al. (1998)], bursts exhibited by

spatially-averaged front velocity �ltered out via threshold based methods [Leblanc et al.

(2013)], or directly studied from the Fourier spectrum of this spatially averaged velocity

[Lopez et al. (2010); Travesset et al. (2002)].

Analyses herein unravel universal scale-free statistics of avalanches and determine the

associated exponents. Nevertheless, few of them deal with the relations between the non-

universal parameters of these scaling laws (cut-o�s, prefactors,etc.) and the non-universal

parameters at play in the equation of motion. Furthermore, most of them focused on

the adiabatic limit, i.e. a vanishing driving rate (c → 0 in equation 1.7). Herein we

examine the e�ects of these input parameters (c, k, N and σ in equation 1.7) on the

exponents, prefactors and cut-o�s associated to the crackling statistics. Moreover, since

the computation and the comparison of the exponents can lead to inaccurate conclusion
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[Clauset et al. (2007)], as emphasized by [Papanikolaou et al. (2011)], for the statistical

study of each dynamical observable, we focus on the scaling phenomena.

This chapter details each way to extract the statistical information from jerky dynam-

ics of fracture simulations in the crackling steady state regime. Then for each observable

(avalanche duration, surface, etc.), we analyze how the statistical distribution (exponents,

prefactors and cut-o�s) varies as a function of the input parameters of the system.

Simulations herein concern thirty independent numerical simulations with varying

parameters sets c, k, N and σ (see position in the phase diagram in �gure 3.1). Each

simulation lasted 30 days on a 2 GHz CPU (∼ 107 time steps). Special attention is given

to vary the parameters one-by-one (see table 3.1 and �gure 3.1).

Figure 3.1: Location of the simulations in the phase diagram evidenced in the previous
chapter (�gure 2.9). The parameters of the simulations correspond with the
ones given in table 3.1. The straight lines correspond to 1D cuts obtained by
varying one parameter only, while keeping the others constant: D1 (N varies),
D2 (σ varies), D3 (k varies), D4 (c varies).

3.1 Fourier spectrum

3.1.1 Signal analysis

Recalling section 3.2 for experimental signals, a good way to obtain global statistical

information of a signal invariant with respect to time translation is to compute its power
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Simulation number N c k σ N
1 10−5 10−3 1 128
2 10−5 10−3 1 256
3 10−5 10−3 1 1024
4 10−4 5.5 · 10−3 1 1024
5 10−4 3 · 10−3 1 1024
6 10−4 1 · 10−2 1 1024
7 10−4 2 · 10−2 1 1024
8 10−4 5 · 10−2 1 1024
9 10−4 1 · 10−1 1 1024
10 10−4 2 · 10−1 1 1024
11 2 · 10−4 1 · 10−2 1 1024
12 5 · 10−5 1 · 10−2 1 1024
13 2 · 10−5 1 · 10−2 1 1024
14 1 · 10−5 1 · 10−2 1 1024
15 5 · 10−6 1 · 10−2 1 1024
16 2 · 10−6 1 · 10−2 1 1024
17 1 · 10−6 1 · 10−2 1 1024
18 5 · 10−5 2 · 10−1 1 1024
19 3 · 10−5 3 · 10−1 1 1024
20 1 · 10−5 3 · 10−2 1 1024
21 3 · 10−6 3 · 10−2 1 1024
22 1 · 10−5 1 · 10−3 0.3 1024
23 1 · 10−5 1 · 10−3 0.5 1024
24 1 · 10−5 1 · 10−3 0.75 1024
25 1 · 10−5 1 · 10−3 1.5 1024
26 1 · 10−5 1 · 10−3 2 1024
27 1 · 10−5 1 · 10−3 2.5 1024
28 1 · 10−5 1 · 10−3 3 1024
29 1 · 10−5 1 · 10−3 4 1024
30 1 · 10−5 1 · 10−3 2 2048

Table 3.1: Parameters invoked for numerical simulations. The di�erent colors stand for
the di�erent lines in the phase diagram (see �gure 3.1): D1 in blue (N varies),
D2 in red (σ varies), D3 in green (k varies) and D4 in magenta (c varies).
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spectrum PS. Hence, the PSxxi (PSv(ν)) concerns the spatially-averaged velocity front

(v(t)), equation 1.7 describes the frontal motion. Even if it condenses the information,

such a curve accurately describes the statistics of propagation, yet the information is

limited. Figure 3.2 is a typical spectrum and gives way to the following information:

• The Fourier spectrum amplitude of the plateau at low frequency.

• The pre-factor and exponent (1/a) of the power-law.

• The lower (νmin) and upper (νmax) frequency cut-o�s of this power-law.

Figure 3.2: The image depicts the Fourier spectrum of a mean speed signal in the crackling
regime. νmin and νmax represent the lower and upper cut-o�s of the power-law
respectively.

3.1.2 E�ects of the loading rate c

First, we analyze the variation of the PS of the crack's mean speed PSv(ν) as a function

of the loading rate c. Figure 3.3-A presents these PS. They follow a power-law with

exponent 1/a = 1.55± 0.1 (�tted on simulation N 6) between two cut-o�s. These cut-o�s

do not vary with c, but the prefactor of the power-law increases with the loading speed.

To be more precise, �gure 3.3-B shows that the prefactor is almost proportional to the

loading rate since the exponent of the scaling between c and the prefactor is 0.9± 0.1.

xxiComputing the squared value of the signal's Fast Fourier Transform (FFT) and renormalizing it with
the Parseval identity gives the Fourier spectrum.
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Figure 3.3: A: Fourier spectrum of the crack front's mean speed for di�erent loading
rates (k = 1 · 10−2, σ = 1, N = 1024). For the simulation N 6 one observes a
power-law extending over more than two orders of magnitude, and the �tted
exponent is 1/a = 1.55 ± 0.1. B: Relation between the prefactor of the PS
power-law and the loading rate. One observes a scaling relation between these
two quantities over more than two orders of magnitude. The �tted exponent
is 0.9± 0.1. In both cases the axes are logarithmic.

3.1.3 E�ects of the unloading factor k

Then, PSv(ν) is studied as a function of the unloading factor, k. One continues to

observe a power-law scaling between PSv and ν (Figure 3.4-A), with an exponent of

1/a = 1.55 ± 0.1. Here, the prefactor decreases as the unloading factor increases. To

be more precise, �gure 3.4-B shows that the prefactor is almost inversely proportional

to the unloading factor since the exponent of the scaling between k and the prefactor is

−0.95 ± 0.1. Moreover, the lower cut-o� increases with k while the upper cut-o� stays

constant. Figure 3.4-C shows that this lower cut-o� scale with k: νmin ∼ k∆, with

∆ = 0.35± 0.2.

3.1.4 E�ects of the disorder σ

PSv(ν) is also studied as a function of the disorder amplitude σ. Figure 3.5-A demon-

strations that the prefactor of the power-law increases with σ. As shown in �gure 3.5-B,

this increase takes the form of a power-law of exponent 2λ = 1.5 ± 0.2. Finally, the

lower cut-o� is independent of σ, while the upper one goes as νmax ∼ σ2λ with the same

exponent as previously λ = 0.75± 0.1.
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Figure 3.4: A: Fourier spectrum of the fracture's mean speed for di�erent unloading fac-
tors (c = 1 · 10−4, σ = 1, N = 1024). For the simulation N 4 one observes
a power-law extending over nearly three orders of magnitude, and the �tted
exponent is 1/a = 1.55 ± 0.1. B: Relation between the prefactor of the PS
power-law and the unloading factor. One observes a scaling relation between
these two quantities for more than two orders of magnitude. The �tted expo-
nent is −0.95±0.1. C: Relation between the lower cut-o� of the PS power-law
and the unloading factor. One observes a scaling relation between these two
quantities over more than one order of magnitude. The �tted exponent is
∆ = 0.35± 0.2. In all cases the axes are logarithmic.
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Figure 3.5: A: Fourier spectrum of the fracture mean speed for di�erent heterogeneity
amplitudes (c = 1 · 10−5, k = 1 · 10−3, N = 1024). For the simulation N 29
one observes a power-law extending over three orders of magnitude, and the
�tted exponent is 1/a = 1.55 ± 0.1. B: Relation between the prefactor of
the PS power-law and the unloading factor. One observes a scaling relation
between these two quantities over more than one order of magnitude. The
�tted exponent is 2λ = 1.5± 0.2. C: Figure depicts the relationship between
the upper cut-o� of the PS power-law and the heterogeneity amplitude. One
observes a scaling relation between these two quantities over more than one
order of magnitude. The �tted exponent is 2λ = 1.5 ± 0.2. In all cases the
axes are logarithmic.
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3.1.5 E�ects of the size N and discussions

Last but not least, PSv(ν) dependence on the system size, N , is studied. As presented in

�gure 3.6-A, changing N does not alter the power-law scaling between PSv and ν nor the

value of the exponent 1/a = 1.55 ± 0.1. Hence, neither νmin nor νmax vary with N , but

the prefactor of the power-law decreases as the system size increases. To be more precise,

�gure 3.6-B shows that the prefactor is almost inversely proportional to the system size.

The scaling exponent between N and the prefactor is −0.95± 0.2.

Figure 3.6: A: Fourier spectrum of the fracture's mean speed for di�erent system sizes
(c = 1 · 10−5 k = 1 · 10−3, σ = 1). For the simulation N 1 one observes a
power-law extending over more than two orders of magnitude, and the �tted
exponent is 1/a = 1.55 ± 0.1. B: Relation between the prefactor of the PS
power-law and the loading rate. One observes a scaling relation between
these two quantities over one order of magnitude. The �tted exponent is
−0.95± 0.25. In both cases the axes are logarithmic.

To summarize, the power spectrum of the mean crack speed is a power-law; the pref-

actor of which scale with c, k, σ and N as:

PSv ≈
σ2λ

N

c

k
ν−1/a. (3.1)

Its lower cut-o� only varies with k, while the upper one depends on σ only:

νmax ∼ σ2λ, νmin ∼ k∆. (3.2)

Fitting exponents are: λ = 0.75± 0.1 and ∆ = 0.35± 0.15.
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To illustrate the accuracy of the rescaling presented in equation 3.1, �gure 3.7-A plots

all the PSv(ν) for all the simulations. Figure 3.7-B shows the rescaling. All the power

laws collapse on a single straight line.

Figure 3.7: A: Fourier spectrum of the fracture's mean speed for all the simulations. B:
Renormalization of the power spectrum using equation 3.1. In both �gures
the axes are logarithmic.

These scaling and the meaning of the exponents are now discuss (and partially in-

terpret). The crackling pulses evidenced in the v(t) signal results from the depinning

of avalanches. Single non-overlapping avalanches exhibit universal scale-free distribu-

tions. They also display scaling relations characterized by a variety of critical exponents,

which can be estimated via renormalization groups (RG) or numerical methods [Rosso

and Krauth (2002); Duemmer and Krauth (2007)]. These scale-free features only hold for

length-scales larger than the Larkin length [Larkin (1979)], L, which scales as L ≈ 1/σ2

for the model herein. Then νmax ≈ 1/Lλ ≈ σ2λ is expected, where λ = 0.770(5) [Duemmer

and Krauth (2007)] refers to the dynamic exponent. This value agrees with the measure-

ments herein. For the adiabatic limit (c → 0), there is a one-to-one relation between the

v(t) pulses and the single depinning avalanches. Then, the PS exponent aad in equation

3.1 ('ad' index stands for 'adiabatic limit') de�nes [Kuntz and Sethna (2000)] the scaling

(D ∝ Saad) between avalanche size (S) and duration (D): aad = λ/(1 + ζ) [Bonamy

(2009)], where ζ = 0.385(5) [Rosso and Krauth (2002); Duemmer and Krauth (2007)]

refers to the roughness exponent. As a result, one expects 1/aad = 1.80(2). The exponent

∆ad in equation 3.2 de�nes the scaling between the upper cut-o� in time for scale-free

features and the unloading factor k. Reference [Bonamy (2009)] gives ∆ad = λ/2 yielding

119



CHAPTER 3. DYNAMIC SELECTION IN THE CRACKLING PHASE

∆ad = 0.385(5). This is very close to the one found herein. Nevertheless, aad (=0.55) is

signi�cantly di�erent from the value of a (=.65) measured here.

It should also be noted that by yielding some overlap between avalanches, a �nite

driving rate c alters [White and Dahmen (2003)] the PS shape.

3.2 Statistics of pulse v(t): threshold-based method

3.2.1 Extraction of the statistics

We will now analysis the pulses of v(t), as was achieved on the experimental signals P(t)

in the �rst part (chapter 3) of this manuscript. Classically, these pulses are dug out

from the v(t) signal by introducing a threshold value vth expressed as a percentage of

the maximum mean speed. Their statistics are subsequently characterized. Herein, the

threshold tests invoke 3 di�erent percentages of the maximum mean speeds: 5%, 10% and

20%. In each simulation, a set of parameters identify each threshold and breaking events

(cartoon in �gure 3.8). The parameters are (cartoon in �gure 3.8):

• The time at which the event occur (beginning of the event: Ti).

• The event's duration (Di).

• The maximum mean speed during the event (Vmax-i).

• The size of the event (the area swept by the crack front during the event, which is

nothing but the area below the v(t) curve: Si).

• The mean position of the event (mean position of the crack front at time Ti: Hi).

• The depinning force of the front (force applied on the elastic line at the beginning

of the event: Fd-i).

• The pinning force of the front (force applied on the elastic line at the end of the

event: Fp-i).
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Figure 3.8: Sketch depicting a schematic view of the mean speed signal and the threshold-
based method used to extract statistics. See text for details.

3.2.2 Statistical analysis of the avalanche sizes S

E�ects of the loading rate c ◮ Statistical analysis of the avalanche sizes, S, begins by

looking at the variation of the probability density function P (S) of S as a function of the

loading rate, c. Figure 3.9-A exposes that the prefactor and exponent β̃ = 1.3±0.1 (�tted

on simulation N 6) are independent of c. This exponent is di�erent from that measured

experimentally in the �rst part (section 3.4.2) of the manuscript. On the other hand, it

is very close to the universal value β = 1.280 ± 0.010 [Bonamy (2009)] expected at the

depinning transition of a long-range elastic line propagating in a 2D uncorrelated random

potential. This would mean that the experimental case corresponds with tha short-range

kernel case.

The upper cut-o� increases as c increases (see �gure 3.9-B-inset). This may appear sur-

prising since the correlation length (and hence the avalanche size) is expected to increase

(diverge algebraically) as the system approaches the transition (i.e. when c decreases).

Theories behind this counterintuitive observation hypothesize an avalanche overlapping

e�ect: The avalanche density increases as c increases and favors avalanche overlapping.

By coalescence, small avalanches yield larger ones. Figure 3.9-B invokes the average value

of 〈S〉 (see section 2.9.5 of part I) to collapse the P (S) curves on a single power-law. The

fairly good collapse proofs that beyond the value of the exponent β the scaling function's

form does not depend on c.
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Figure 3.9: A: Probability density function of the avalanche size detected via threshold
based method as a function of the loading rate, c (here, k = 1 · 10−2, σ = 1,
N = 1024). For the simulation N 6 one observes a power-law extending over
more than two orders of magnitude, and the �tted exponent is β̃ = 1.3± 0.1.
B: Collapse of the curves using the mean size value. Inset: Evolution of
the upper cut-o� measured via the mean avalanche size as a function of the
loading rate. In all cases the axes are logarithmic.

E�ects of the unloading factor, k ◮ This section analyzes the probability density

function P (S) dependence on the unloading factor, k. Figure 3.10-A shows that the

prefactor and exponent β̃ = 1.3 ± 0.1 (�tted on the simulation N 4) remain independent

of k. On the other hand, the upper cut-o� decreases as the unloading factor increases

following a scaling relation with exponent 1.1 ± 0.15 as presented in �gure 3.10-B-inset.

This means the avalanche relevance decreases as the system's sti�ness increases, which is

consistent with the mechanical view point. Figure 3.10-B illustrates the collapse of P (S)

curves for di�erent k onto a single master curve employing 〈S〉.

E�ects of the disorder σ ◮ Finally, how the probability density function P (S) varies

with the heterogeneity amplitude σ is examined. Figure 3.9-A establishes that the pref-

actor and exponent β̃ = 1.3 ± 0.1 (�tted on the simulation N 29) remain independent of

σ. Nevertheless, the lower cut-o� decreases with the heterogeneity amplitude while the

upper one remains constant. This means that the smaller σ, the smaller the avalanches

are. Here again, and looking at �gure 2.6 in the previous chapter, this seems consistent.
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Figure 3.10: A: Probability density function of the avalanche size detected via threshold
based method as a function of k (here, c = 1 · 10−4, σ = 1, N = 1024).
For the simulation N 4 one observes a power-law extending over nearly three
orders of magnitude. The �tted exponent is β̃ = 1.3 ± 0.1. B: Collapse of
the curves using the mean size value. Inset: Evolution of the upper cut-o�
measured via the mean avalanche size as a function of the unloading factor.
This relation turns out to be a power-law with exponent −1.1± 0.15. In all
cases the axes are logarithmic.

Figure 3.11: Probability density function of the avalanche size detected via the threshold
based method as a function of the heterogeneity amplitude (c = 1 · 10−5,
k = 1 · 10−3, N = 1024). For the simulation N 29 one observes a power-
law extending over three orders of magnitude. The �tted exponent is β̃ =
1.3± 0.1. The axes are logarithmic.
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3.2.3 Statistical analysis of the avalanche durations D

E�ects of the loading rate, c ◮ Another quantity classically analyzed in crackling

dynamics is the duration of an avalanche, D. Here the variation of the probability density

function, P (D), as a function of c is examined. Figure 3.12-A reveals that the prefac-

tor and exponent κ̃ = 1.5 ± 0.1 (�tted on the simulation N 6) remain independent of c.

This exponent di�ers from experimental measurements in part I (section 3.4.2) of this

manuscript. On the other hand, it is very close to the universal value κ = 1.50 ± 0.01

[Bonamy (2009)] expected at the depinning transition of a long-range elastic line propa-

gating in a 2D uncorrelated random potential.

The upper cut-o� increases with c (see �gure 3.12-B-inset). Once again, this may

appear counterintuitive: The correlation length (and hence the avalanche duration) is

expected to increase as the system gets closer to the transition (i.e. when c decreases). As

before, hypotheses behind this counterintuitive observation postulate an avalanche over-

lapping e�ect. Thus, all the P (D) curves collapse various c by making D → D/〈D〉1/2−κ

and P (D) → P (D)× 〈D〉κ/2−κ (see �gure 3.12-B).

Figure 3.12: A: Probability density function of the avalanche duration detected via thresh-
old based methods as a function of the loading rate (k = 1 · 10−2, σ = 1,
N = 1024). For simulation N 6, the power-law extends over more than two
orders of magnitude. The �tted exponent is κ̃ = 1.5 ± 0.1. B: Collapse of
the curves using the mean size value. Inset: Evolution of the upper cut-o�
measured via the mean avalanche duration as a function of the loading rate.
In all cases the axes are logarithmic.

E�ects of the unloading factor, k ◮ The variation of P (D) as a function of the

unloading factor, k, is examined. The exponent remains the same κ̃ = 1.5 ± 0.1, irre-
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spectively of k (�gure 3.13-A). The prefactor also remains constant. However, the upper

cut-o� decreases as k increases in a seemingly scaling relation with exponent 1.1±0.3 (see

3.13-B-inset). This means on average, the avalanches duration reduces as the system's

sti�ness increases, which sounds consistent from a mechanical view point.

Figure 3.13-B invokes the same scaling as previously to collapse the P (D) curves on

a single power-law. A fairly good collapse of the upper cut-o� proofs that it is the only

thing that varies with the unloading factor.

Figure 3.13: A: Probability density function of the avalanche duration detected via the
threshold based method as a function of the unloading factor (c = 1 · 10−4,
σ = 1, N = 1024). For the simulation N 4 one observes a power-law ex-
tending over more than two orders of magnitude, and the �tted exponent is
κ̃ = 1.5 ± 0.1. B: Collapse of the curves using the mean size value. Inset:
Evolution of the upper cut-o� measured via the mean avalanche size as a
function of the unloading factor. This relation turns out to be a power-law
with exponent −1.1± 0.15. In all cases the axes are logarithmic.

E�ects of the disorder σ ◮ Finally, how P (D) evolves as the heterogeneity amplitude

σ increases is examined. Figure 3.14-A reveals the exponent κ̃ = 1.5 ± 0.1 (�tted on

the simulation N 29) remains constant for all σ. Nevertheless, the lower cut-o� and the

prefactor increase as the heterogeneity amplitude decreases. This means that on average,

the duration of the avalanches increases when σ decreases. Once again this make sense

by looking at �gure 2.6.

The increasing lower cut-o�, σ, is reminiscent of the Fourier spectrum's upper cut-o�

in section 3.1. Hence, these curves collapse via a renormalization of the x and z axes

by the Larkin time: T = 1/σ2λ, with λ = 0.75 ± 0.1. Figure 3.11-B presents the result
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of this renormalization. This gives a fairly good collapse (more particularly of the lower

cut-o�s).

Figure 3.14: A: Probability density function of the avalanche duration detected via the
threshold based method as a function of the heterogeneity amplitude (c =
1 · 10−5, k = 1 · 10−3, N = 1024). Simulation N 29 reveals a power-law
extending over more than two orders of magnitude. The �tted exponent is
κ̃ = 1.5± 0.1. B: Collapse of the curves using the Larkin time: 2λ = 1.5. In
both cases the axes are logarithmic.

3.2.4 Analysis of the avalanche shape

Then to emphasize the peculiarity of the shape asymmetry observed for experimental data

in section 3.4.2 of the previous part (�gure 3.21), �gure 3.15 plots the mean avalanche

shape for di�erent characteristic durations. Recalling the protocol to arrive at this average

shape, the �rst step de�nes D of interest for the avalanche duration. Then, all the pulses

(i), such that Di ∈ [D − δD,D + δD], are collected. Subsequently, the pulse shape v(t)

at D is computed by averaging vi(t− Ti) over all the collected pulse (Ti is the initiation

time of each pulse). Figure 3.15 presents the normalized pulse shape v/vmax as a function

of t/D for increasing D. As emphasized by [Papanikolaou et al. (2011); Sethna et al.

(2001); Leblanc et al. (2013)] the avalanche shape is perfectly symmetric in time, and its

width increases with D. This symmetry is not observed for large D in the experiments

presented in section 3.4.2 of the �rst part of this manuscript. Thus, the long-range elastic

line model proposed herein to describe heterogeneous fracture still misses some features

of the model experiment.

126



3.3. STATISTICS OF PULSE V (Z, T ): SPACE-TIME ACTIVITY MAP

Figure 3.15: Average avalanche shapes for di�erent durations, D, of events extracted via
the threshold-based method. The shapes are measured from simulation N 1:
c = 1 · 10−5, k = 1 · 10−3, σ = 1 and N = 128.

3.3 Statistics of pulse v(z, t): space-time activity map

3.3.1 Extraction of the statistics

Figure 2.3 shows the local speed v(z, t) of the crack front (accessible only from simula-

tions). Extraction of breaking events occurs directly from this local information and not

from global quantities like the spatially averaged front speed. Tanguy et al. [Tanguy et al.

(1998)] pioneered this method to extract breaking event. To do so, the time-space activ-

ity map (time, z-space, v(z, t)) is used to isolate non connected time-space areas where

the local speed v(z, t) is above the background numerical noise. One notes, avoiding any

side e�ects requires periodic boundary conditions when isolating avalanches. Figure 3.16

presents the map. In this example, the space-time activity map would detect a single

event, while analyzing the v(t) signal gives two events.

Figure 3.17 presents a a cartoon on how to analyze events in the (time, z-space, v(z, t))

map as well as in the (x-space,z-space) plan. Thus, each event detected in the time-space

activity map yields (Note this is repeated for every simulations):

• The time at which the event occur (beginning of the event: Ti).

• The event duration (Di).
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Figure 3.16: The image depicts an isolated avalanche in the time-space map. This 3D
graph presents the speed pro�le of each point of the crack front as a function
of the time. The blue line on the right hand side is the spatially averaged
speed v(t). In this simple case, because the avalanche is isolated in space
and time, both have the same shape.

• The maximum local speed during the event (vmax-i).

• The size of the event (the area of the cluster in the X-Y space: Si).

• The X-Y position of the event (This corresponds to the �rst point of the cluster

where the local speed exceeds a threshold): (Xbegin-i,Zbegin-i)).

• The depth of the cluster (Lxi).

• The height of the cluster (Lzi).

• The front depinning force (force applied on the elastic line at the beginning of the

event: Fd-i).

• The front pinning force (force applied on the elastic line at the end of the event:

Fp-i).

Figure 3.17 is a schematic view of these di�erent quantities. A single avalanche appears

on both the (t-time,z-space) and (x-space,z-space) maps. It shows that this method is the

most complete one to detect events since it localizes events via three degree of freedom,
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two in space and one in time. Thus, the threshold based analysis of v(t) is similar to the

way one detects events from the variations of the elast(ostat)ic energy in the experiments

presented in chapter 3 of the �rst part of this manuscript. Yet, the method may be closer

to the events detected from the AE analysis (Part I chapter 2 presents methods used for

acoustical detection of events). To illustrate the type of results given by this method,

�gure 3.18 presents a zoom of the (t-time,z-space) and (x-space,z-space) maps. Figure

3.19 presents similar maps for a longer simulation, without giving the exact avalanche

shape but the area. Clustering in space and time appears clearly in these maps.

Figure 3.17: Schematic representation of an avalanche in the (t-time,z-space) plane (left)
and counterpart representation in the (x-space,z-space) plane (right). See
text for details.

Figure 3.18: Zooming in on a small part of simulation N 2 (c = 1 · 10−5, k = 1 · 10−3,
σ = 1 and N = 256) reveals: avalanches detected in the time-space plane
(left) and the space-space plane (right). A single color characterizes each,
which is the same for the space-space map and the time-space one.

Now, it is interesting to compare both local and global methods to detect avalanches:

the one based on the threshold of the signal v(t) (see section 3.2.1); and the one where

events are directly extracted from v(z, t). For a given short crack propagation simulation
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Figure 3.19: A: Positions of the avalanches detected in the time-space activity map and
presented in the (t-time,z-space) plane. B: Positions of the avalanches
detected in the time-space activity map and presented in the (x-space,z-
space) plane. In both cases, the circles' radius represents the area swept
out by an avalanche (S) and is in log scale. The color also changes
with respect to this size. A movie showing the time evolution of these
maps is also presented: Scan the �ash-code with a mobile phone or click
http://youtu.be/dcsPalGLAw4.

in the crackling regime, one extracts the avalanches via both methods. Results in terms of

occurrence times and avalanche surfaces are summed-up in �gure 3.20. This comparison

shows that the two methods yield signi�cantly di�erent results. As expected, the detection

from the time-space activity card gives the most accurate results whereas the threshold

method causes many events to overlap. In this sense, the �rst method compares to AE

used in the experimental part of this manuscript. The second one equivalent to the

threshold-based method applied on the radiated power signal. These two methods are

not directly comparable since they give di�erent results from a statistical point of view

(see the following section and [Laurson et al. (2010)] for more information).

In the rest of this section, (for sake of brevity and simplicity) the focus is on the

statistical variation of S as measured via the space-time activity map method. This

shows the accuracy of the method and the fact that it does not give the same statistical

information as the one used previously.

3.3.2 Statistical analysis of the avalanche sizes S

E�ects of the loading rate, c ◮ First of all, one is interested in the probability density

function of the avalanche size P (S) measured on the space-time activity map, and its
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Figure 3.20: Simulated mean crack speed signal v(t) and comparison in terms of occur-
rence time and avalanche size of detected events. Events are detected via
the threshold based method and time-space activity card. For each method,
the centers of the circles give the position of the events; and their areas cor-
respond to the surface swept out during the avalanche. vth is the threshold
used for the �rst method.

variation as a function of the loading rate c. Figure 3.21-A shows that the prefactor and

exponent β̂ = 1.5 ± 0.1 (�tted on the simulation N 16) do not depend on c. The values

measured here di�er values obtained from the v(t) analysis. This di�erence between
˜beta measured from spatially averaged signals and β̂ measured from space-time/space-

space activity maps has already been observed [Bonamy et al. (2008); Laurson et al.

(2010)]. Simulation results herein and by [Bonamy et al. (2008); Laurson et al. (2010)]

do correspond. It is also interesting to note that it coincides with the one observed

experimentally in peeling experiments [Måløy et al. (2006)].

In �gure 3.21-B-inset, the upper cut-o� decreases with c. This behavior is the contrary

to what is observed when the avalanches are extracted from the spatially averaged velocity.

This suggests that the overlapping e�ect is less pronounced when one looks at the time-

space/space-space activity map. Figure 3.21-B uses the scaling explained in the section

2.9.5 to collapse all P (S) curves onto a single master curve. The very good collapse

proofs that just the upper cut-o� varies with the loading speed, emphasizing the fact

that the exponent remain constant. Then, using the relation S0 ∼ 〈S〉1/(2−β) computed

in section 2.9.5, one gets a scaling between the upper cut-o� S0 and the loading rate with

an exponent equal to 1± 0.2. In other words, S0 ∼ 1/c (see �gure 3.21-B-inset).

E�ects of the unloading factor, k ◮ Now, the variations of P (S) as a function of k are

examined. The exponent and prefactor remain unchanged (�gure 3.22-A). The upper cut-

o� increases with k. Once again this opposes observations for avalanches de�ned using the

131



CHAPTER 3. DYNAMIC SELECTION IN THE CRACKLING PHASE

Figure 3.21: A: Probability density function of the avalanche size as detected in the space-
time activity maps. Its varies as a function of the loading rate (k = 1 · 10−2,
σ = 1, N = 1024). For the simulation N 16 one observes a power-law
extending over nearly three orders of magnitude. The �tted exponent is
β̂ = 1.5± 0.1. B: Collapse of the curves using the average value 〈S〉. Inset:
Scaling of the upper cut-o� S0 (proportional to 〈S〉1/(2−β)) as a function of
c. The straight dashed line with slope −1 is given as a guide for the eyes. In
all cases the axes are logarithmic.

spatially averaged signal v(t). As before, all curves collapse by making S → S/〈S〉1/(2−β)

(�gure 3.22-B:Main). Like in the previous section, the upper cut-o� value S0 is plotted

as a function of k. Figure 3.22-B-inset shows that S0 scales as a power-law with k, with

an exponent close to 1.2 (±0.2): S0 ∼ k1.2.

E�ects of the disorder, σ ◮ To �nish this section, how P (S) evolves with the het-

erogeneity amplitude σ is studied. Figure 3.23-A shows that the prefactor and exponent

β̂ = 1.5± 0.1 (�tted on the simulation N 29) remain independent of σ. Nevertheless, the

upper cut-o� increases with σ while the lower one remains constant. This means smaller

avalanches yield smaller σ. This is reminiscent of v(t) analysis. Invoking this method to

measure the avalanche size, the upper cut-o� moves while the lower one is �xed contrary

to what is observed with the other method.

Figure 3.23-B uses the same method invoked when k or c vary to collapse the upper

cut-o�s of the P (S) power-law. One obtains a very good collapse of the upper cut-o�

which is a proof that it is the only thing that varies with the heterogeneity amplitude.

Moreover, like in the previous section, �gure 3.23-B-inset plots the upper cut-o� value S0

measured from the mean avalanche size as a function of σ. As presented in this �gure, S0
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Figure 3.22: A: Probability density function of the avalanche size detected via the space-
time activity card method as a function of the unloading factor (c = 1 ·10−4,
σ = 1, N = 1024). Simulation N 8 evidences a power-law extending over
two orders of magnitude. The �tted exponent is β̂ = 1.5± 0.1. B: Collapse
of the curves using the average value 〈S〉. Inset: Scaling between the upper
cut-o� S0 and k. A straight dashed line with slope 1.2 is given to guide the
eyes. In all cases the axes are logarithmic.

scales with σ with an exponent close to 1.7 (±0.1): S0 ∼ σ1.7.

Figure 3.23: A: Probability density function of the avalanche size detected on the space-
time activity map, as a function of the heterogeneity amplitude σ (c =
1 · 10−5, k = 1 · 10−3, N = 1024). For the simulation N 29 one observes a
power-law extending over three orders of magnitude. The �tted exponent is
β̂ = 1.5± 0.1. B: Collapse of the curves using the average value 〈S〉. Inset:
Scaling between the upper cut-o� S0 and σ. A straight dashed line with
slope 1.7 guides the eyes. In all cases the axes are logarithmic.
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3.4 Statistics of pulse v(z, x): space-space activity map

3.4.1 Extraction of the statistics

The last common way to extract the avalanche statistics from crackling signals is the one

pioneered by [Måløy et al. (2006)]. It consists of building waiting-time or spatial activity

maps W (x, z) which represents the time spent by the crack front at each location (x, z) in

the observation zone. Figure 3.24-A depicts a typical example of a spatial activity map.

Figure 3.24: A: Gray scale image of the activity card for numerical simulation N 2 (c =
1 · 10−5, k = 1 · 10−3, σ = 1 and N = 256). B: Spatial clustering measured
from this activity card for di�erent value of clip. Colors mark separated
avalanches.

The �rst step in this method is to identify a cartograph (V(x, z)) of the local velocities
where V(x, z) = 1/W (x, z). At the same time, a threshold value (Vth) is de�ned via

a clip value, C: Vth = C · 〈V(x, z)〉x,z. Clusters extracted from this map are isolated

islands and reside above Vth. Clustering is done by taking into account the periodic
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boundary conditions and 3 di�erent clip values: C = 0.05, 0.1 and 0.2. Figure 3.24-B

shows clustering for the di�erent clip values. Hence, repeating techniques used in the

time-space activity card; cluster events for each simulation and clip value in the activity

map provide the following information:

• The event duration (Di).

• The cluster size (the area of the cluster: Si).

• The cluster depth (Lxi).

• The cluster height(Lzi).

The rest of this section focuses on the statistical variation of the avalanche dimensions

as a function of the di�erent input parameters of the system. The clip value is �xed to

C = 0.1.

3.4.2 Statistical analysis of the avalanche sizes S

E�ects of the loading rate, c ◮ As before, the probability density function dependence

on avalanche size and c is studied. Figure 3.25-A shows that the prefactor and exponent

β̌ = 1.5 ± 0.1 (�tted on simulation N 14) remain constant whatever c. This exponent

corresponds to the one obtained from the space-time activity map. The upper cut-o�

decreases with c (see �gure 3.25-B-inset). In other words, it seems obvious that the

statistics of the avalanches extracted from the space-space activity map coincides with

those from the time-space map (see previous section). Finally, one can collapse all P (S)

curves by making S → s/〈S〉1/(2−β).

E�ects of the unloading factor, k ◮ The variations of P (S) with k are the same

as that observed in the previous section. The prefactor and exponent (β̌ = 1.5 ± 0.1)

are independent of k, yet the upper cut-o� decreases with k following a scaling law with

exponent 1.6± 0.2 (�gure 3.26-B inset).

E�ects of the disorder σ ◮ Finally, one looks at how P (S) depends on σ. Figure

3.27-A illustrates that the prefactor and exponent β̌ = 1.5 ± 0.1 (�tted on simulation

N 25) remain constant whatever σ. Nevertheless, the upper cut-o� increases with the

heterogeneity amplitude while the lower one remains constant. This means on average for
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Figure 3.25: A: Probability density function of the avalanche size detected via the activity
map as a function of c (k = 1·10−2, σ = 1, N = 1024). Simulation N 14 gives
a power-law extending over more than two orders of magnitude. The �tted
exponent is β̌ = 1.5± 0.1. B: Collapse of the curves using the average value
〈S〉. Inset: Evolution of the upper cut-o� measured via the mean avalanche
size as a function of the loading rate. In all cases the axes are logarithmic.

Figure 3.26: A: Probability density function of the avalanche size detected via the activity
map method as a function of k (c = 1 · 10−4, σ = 1, N = 1024). Simulation
N 9 yields a power-law extending over nearly three orders of magnitude. The
�tted exponent is β̌ = 1.5± 0.1. B: Collapse of the curves using the average
value 〈S〉. Inset: Evolution of the upper cut-o� measured via the mean
avalanche size as a function of the unloading factor. This relation turns
out to be a power-law with exponent 1.6 ± 0.2. In all cases the axes are
logarithmic.
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small σ yield small avalanches, which is reminiscent of the other two methods. However,

with this way to measure the avalanche size, just like the one using the space time activity

map, the upper cut-o� moves while the lower one remains �xed.

Figure 3.27: A: Probability density function of the avalanche size detected via the activity
card method as a function of the heterogeneity amplitude (c = 1 · 10−5,
k = 1 · 10−3, N = 1024). Simulation N 25 yields a power-law extending over
three orders of magnitude and the �tted exponent is found to be β̌ = 1.5±0.1.
B: Collapse of the curves using the average value 〈S〉. In both cases the axes
are logarithmic.

3.4.3 Statistical analysis of the avalanche width Lx measured

along the direction of crack propagation

E�ects of the loading rate, c ◮ Now the spatial avalanche shape is examined. This

is obtained by �rst computing P (Lx) of the avalanche width (Lx) along x for avalanches

extracted from the space-space activity map, and secondly, examining its variations as a

function of c. Figure 3.28-A shows that the prefactor and exponent τ̌x = 2.4±0.25 (�tted

on the simulation N 13) remain independent of the loading conditions. The upper cut-o�

decreases as c increases, which is consistent with the observed decrease of avalanche size

S with respect to c.

Collapsing the curves requires the scaling explained in the section 2.9.5. Still, this

method has to be adapted. Indeed, since τ̌x > 2 causes the integral 〈Lx〉 =
∫

∞

0
LxP (Lx) dLx

to diverge as Lx → ∞, the second moment 〈Lx2〉 =
∫
∞

0
Lx2P (Lx) dLx is invoked

which is properly de�ned. It relates to the upper cut-o� value via Lx0 ∼ 〈Lx2〉1/(3−τx).
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Renormalization occurs by multiplying the abscissa by 〈Lx2〉1/(τx−3) and the ordinate by

〈Lx2〉τx/(3−τx). Figure 3.28-B presents the results. The fairly good collapse proofs that just

the upper cut-o� varies with the loading speed, emphasizing the fact that the exponent

remains constant.

Figure 3.28: A: Probability density function of the avalanche depth detected via the ac-
tivity card as a function of the loading rate (k = 1 · 10−2, σ = 1, N = 1024).
Simulation N 13 one observes a power-law extending over two orders of mag-
nitude. The �tted exponent is τ̌x = 2.4 ± 0.25. B: Collapse of the curves
using the second moment of the avalanche depth. In both cases the axes are
logarithmic.

E�ects of the unloading factor, k ◮ Then, one analyzes the variations of P (Lx) as

a function of k. Figure 3.29-A shows that the prefactor and exponent τ̌x = 2.4 ± 0.25

(�tted on simulation N 8) remains independent of k. The upper cut-o� decreases with k.

All curves collapse by normalizing Lx by 〈Lx2〉1/(τx−3) (�gure 3.29-B).

E�ects of the disorder, σ ◮ Now, one turns to the e�ect of σ on P (Lx). Figure

3.30-A shows that the prefactor and exponent τ̌x = 2.4 ± 0.25 (�tted on the simulation

N 25) remain constant whatever σ. Nevertheless, the upper cut-o� increases with the

heterogeneity amplitude while the lower one remains constant. This means on average

smaller σ implies a smaller depth. Figure 3.30-B uses the second moment method to

collapse all the P (Lx) curves.
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Figure 3.29: A: Probability density function of the avalanche depth detected via the activ-
ity card as a function of the unloading factor (c = 1 ·10−4, σ = 1, N = 1024).
For the simulation N 8 one observes a power-law extending over more than
one order of magnitude. The �tted exponent is τ̌x = 2.4± 0.25. B: Collapse
of the curves using the second moment of the avalanche depth. In both cases
the axes are logarithmic.

Figure 3.30: A: Probability density function of the avalanche depth detected via the activ-
ity card as a function of the heterogeneity amplitude (c = 1·10−5, k = 1·10−3,
N = 1024). Simulation N 25 yields a power-law extending over nearly two
orders of magnitude. The �tted exponent is τ̌x = 2.4± 0.25. B: Collapse of
the curves using the second moment of the avalanche depth. In both cases
the axes are logarithmic.
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3.4.4 Statistical analysis of the avalanche height Lz

E�ects of the loading rate, c ◮ Next, one analyzes the statistics of the avalanche

dimensions in terms of size perpendicular to the direction of propagation (z axis). For

varying values of c, the activity map provides an estimate of the probability density func-

tion of the avalanche height P (Lz). Figure 3.31-A gives way to a prefactor and exponent

τ̌z = 1.9± 0.15 (�tted on the simulation N 14) which are independent of c. Nevertheless,

the upper cut-o� decreases when c increases, which is consistent with observations relating

to S.

Using the �rst moment scaling explained in the section 2.9.5 of the �rst part, curves

collapse since τ̌z < 2. Figure 3.31-B depicts the excellent collapse. Moreover this proofs

that just the upper cut-o� varies with the loading speed, emphasizing the fact that the

exponent remain constant.

Figure 3.31: A: Probability density function of the avalanche depth detected via the ac-
tivity map as a function of the loading rate (k = 1 · 10−2, σ = 1, N = 1024).
Simulation N 14 reveals a power-law extending over two orders of magni-
tude. The �tted exponent is τ̌z = 1.9 ± 0.15. B: Collapse of the curves
using the second moment of the avalanche depth. In both cases the axes are
logarithmic.

E�ects of the unloading factor, k ◮ Then, the activity map unmasks P (Lz) depen-

dence on k. Figure 3.32-A reveals that the prefactor and exponent τ̌z = 1.9± 0.15 (�tted

on the simulation N 9) remain constant with varying k. However, the upper cut-o� de-

creases with the unloading factor. This means that on average, the smaller k the thinner

the avalanches.

140



3.4. STATISTICS OF PULSE V (Z,X): SPACE-SPACE ACTIVITY MAP

Figure 3.29-B calls upon the �rst moment scaling, previously used to collapse the

P (Lz) curves on a single power-law. the upper cut-o� collapses proving P (Lz) only

depends on k.

Figure 3.32: A: Probability density function of the avalanche depth detected via the activ-
ity map as a function of the unloading factor (c = 1 ·10−4, σ = 1, N = 1024).
Simulation N 9 uncovers a power-law extending over nearly two orders of
magnitude. The �tted exponent is found to be τ̌z = 1.9± 0.15. B: Collapse
of the curves using the second moment of the avalanche depth. In both cases
the axes are logarithmic.

3.4.5 Analysis of the 3D avalanche shapes

Next the mean avalanche shape needs to be studied, which is extracted from the speed map

V(x, z) (see subsection 3.4.1). One of the �rst things to verify is if the symmetry in time of

the avalanche shape as evidenced in section 3.2.4 is also evidenced in the x and z directions.

To compute this average shape, one �rst notes that V(x, z) = 1/W (x, z) is the local normal

velocity around (x, z). Next, an avalanche size (S) of interest is identi�ed. Then, all the

avalanches i such that Si ∈ [S − δS, S + δS] are collected. The coordinates of these

avalanches i correspond to Xi min (respectively Zi min) the smaller avalanche coordinate

in the X direction and Xi max (respectively Zi max) the highest avalanche coordinate in

the X direction. Hence Lxi = Xi max − Xi min and Lzi = Zi max − Zi min. Then the

avalanche mean shape at S is computed by averaging V(x − Xi, z − Zi) over all the

collected pulse; where Xi (respectively Zi) is equal to Xi max + Xi min/2 (respectively

Zi max + Zi min/2). Finally �gure 3.33 presents the normalized pulse shape V/Vmax as a

function of (x/Lx, z/Lz) for two values S.
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We see that in both directions x and z, for small and big avalanches, the mean shapes

are symmetric. Nevertheless as we could expect from the two previous section, because

their probability density function are not the same, the shape in the x direction is not the

same as the one in the z direction. Moreover, just like the 1D shape in time (see �gure

3.15), when the avalanche surface S increases (or equivalently the duration D), the shape

is broader.

Figure 3.33: A: Average avalanche shapes for S = 10 in the x-z plane. B: Top view. C:
Average avalanche shapes for S = 50 in the X-Z plane. D: Top view. The
shapes are measured from simulations N 2: c = 1 · 10−5, k = 1 · 10−3, σ = 1
and N = 256. See text for details.
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3.5 Fore/Main/After-shock organization of avalanches

3.5.1 Exploration of the time clustering

As already mentioned in part I chapter 2 of this manuscript, a model that maps crack

growth with a depinning elastic line model, a priori, is not expected to yield time clustering

for the avalanches. Indeed, for a front driven at constant force just above the depinning

threshold, the probability density function of the waiting time between events P (∆T )

is expected to be Poissonian. Still, the model fracture simulations developed in the �rst

chapter of this numerical part (see equation 1.7) is not exactly equivalent to this situation.

Indeed, the driving force goes as ct − kf (i.e. it is not constant); hence, it includes a

feedback term that keep it close to the depinning value Fp. How does this a�ect P (∆T )?

To answer this question, one computes P (∆T ) for di�erent values of the equation

parameters. The avalanches extracted come from the spatially averaged signal v(t) using

the threshold based method: threshold value vth equals 10% of the maximum. The top

10% largest avalanches in size are examined, all remaining avalanches are ignored. Then

using these avalanches the time probability density function is calculated between these

fracture events.

Figure 3.34-A presents di�erent P (∆T ) curves obtained for di�erent loading rates,

c. In the case of high c vales (simulations N 6,11,12), a power-law exists between two

cut-o�s: a lower one independent of c and an upper one increasing with c. In other words,

increasing c increases the power-law range. For extremely high c, in the phase diagram

(see �gure 3.1 and 2.9) approaches the single burst regime. Figure 3.34-A reveals for

simulation N 16 and 17 the appearance of a peaked component in the distribution for the

longest waiting times.

Figure 3.34-B plots P (∆T ) for di�erent unloading factors k. For small value of k

(simulation N 4 for instance), it is possible to observe a power-law between a �xed lower

cut-o� and an upper cut-o� which decreases when k increases. When k becomes too large,

the two cut-o�s become too close with respect to one another and the power-law is lost

(see simulations N 8,9 or 10 for instance).

As a �rst (preliminary) conclusion, it seems that equation 1.7 (derived to describe

crack grow) can reproduce time clustering provided several conditions:
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Figure 3.34: A: Probability density function of the time between avalanches computed
from the threshold-based method for di�erent loading rates (k = 1·10−2, σ =
1, N = 1024). B: Probability density function of the time between avalanches
computed from threshold-based method for di�erent unloading factors (c =
1 · 10−4, σ = 1, N = 1024). In both cases the axes are logarithmic.

• (i) The simulation should stay in the crackling regime.

• (ii) k should not be too high otherwise the upper cut-o� comes too close to the lower

one and the power-law vanishes.

• (iii) c should not be too high for the same reasons.

• (iv) c must not be too small otherwise the simulation is too close to the single burst

regime and the statistics are Poissonian.

In summary, the best place to observe time clustering, in the phase diagram (�gure 2.9),

is close to the transition line between the self-sustained steady state crackling zone and

the LEFM-like one, but not too close!

Thus, it seems that along the straight line, D2, of the phase diagram (see �gure 3.1),

there is a good chance to observe time clustering. That is why �gure 3.35-A plots P (∆T )

for various disorder amplitudes, σ. For all these simulations, a power-law extending over

at least 1.5 orders of magnitude exists. It is noted that for simulations close to the single

burst regime area of the phase diagram (simulation N 29 for instance) the Poissionian

regime begins to appear near the upper cut-o�. Also, the lower cut-o� increases when σ

decreases. Once again, herein the hypothesis is that this is due to a variation in the Larkin

time. Figure 3.35-B presents the results of a curve collapse invoking ∆T → ∆T × σ2λ.

As presented in �gure 3.35-B, the collapse is excellent, which con�rms the hypothesis.
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Figure 3.35: A: Probability density function of the time between avalanches computed
from threshold-based method for di�erent heterogeneity amplitudes (c =
1 · 10−5, k = 1 · 10−3, N = 1024). Simulation N 29, the power-law extends
over two orders of magnitude. The �tted exponent is π̃ = 1.7 ± 0.15. B:
Collapse of the curves using the Larkin time. In both cases the axes are
logarithmic.

3.5.2 Waiting time laws

Now, one considers a single point in the phase diagram domain where time clustering is

observable (simulation N 3) and perform a complete analyze of P (∆T ) and its dependence

on an event size threshold, Sth, (in the spirit of what has been done in section 2.6 of the

experimental part). Figure 3.36-A, plots the probability density function of the waiting

time ∆T between two consecutive avalanches the size of which is greater than Sth. The

expected power-law distribution is obtained; and the measured exponent is π̃ = 1.7±0.15.

This exponent di�ers from those measured experimentally in chapters 2 and 3. To collapse

these laws onto a single curve, the scaling presented by [Baro et al. (2013)] is invoked which

consists in dividing the horizontal axis by the mean waiting time 〈∆T 〉 and multiplying

the vertical axis by the same quantity. This provides a fairly good collapse of the lower

and upper cut-o�s.

3.5.3 Omori law

According to [Baro et al. (2013)], the Omori law implies a power-law distribution for

∆T , but the contrary is not true. So, since the numerical simulations exhibit a power-

law statistics, Omori law needs to be veri�ed. Hence, Figure 3.37-A, for the data from

simulation N 3, depicts the Omori law for di�erent size bins. The power-law extends
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Figure 3.36: A: Probability density function of the waiting time between two consecutive
avalanches whose size is higher than Sth for simulation N 3 (c = 1 · 10−5,
k = 1 · 10−3, sigma = 1 and N = 1024). Avalanches are detected via
threshold based method. The waiting time power-law extends over two orders
of magnitude. The �tted exponent is π̃ = 1.7±0.15. B: Collapse of the curve
via the mean time scaling. In both cases the axes are logarithmic.

over two orders of magnitude with exponent p̃A = 1.5 ± 0.15. Moreover, �gure 3.37-B

shows a collapse of this law using the productivity law (γ̃ = 0.8 ± 0.1) as explained in

the experimental part of this manuscript (subsection 2.9.3): all curves collapse over three

orders of magnitude.

Figure 3.37: A: Omori and Voight laws for simulation N 3 (c = 1 · 10−5, k = 1 · 10−3,
sigma = 1 and N = 1024). Avalanches are detected via threshold based
method. One observes the waiting time power-law extending over two orders
of magnitude. The �tted exponent is p̃A = 1.5±0.15. B: Renormalized Omori
law with γ = 0.2. In both cases the axes are logarithmic.

To verify the time symmetry between AS and FS observed in our fracture experiment

is still observable in these numerical simulations, we compute the Voight law presented
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in the �rst part of this manuscript (see section 2.3). This law is equivalent to the Omori

law for the FS. Figure 3.37-A presents both Omori and Voigth law. The curves collapse

except for small relative time. This means that contrary to the experimental case, both

laws are not perfectly equivalent: t0 the typical silent time after a MS for Omori law and

before for Voight law is not the same, it is smaller for Voight law.

Finally, it is worth recalling that [Dieterich (1994); Huang et al. (1998); Scholz (1998)]

claim the clustering evidenced by Omori law, would come from a history dependent se-

quence. Moreover, pinning-depinning model predicts a Poissonian distribution for the

Omori or waiting time laws, yet line propagation model herein di�ers from the pinning-

depinning model by the fact that the loading permits a steady state propagation of the

crack front. The dependency of the e�ective driving force vs. time and front position (driv-

ing force given by ct− kf in equation 1.7) can be the ingredient that recovers Omori-like

clustering in the front dynamics.

3.6 Conclusion

This chapter characterizes the crackling dynamics produced by equation 1.7 (PS of the

spatially averaged front velocity v(t), burst statistics and clustering in v(t), statistics of

the avalanches identi�ed in the space-time and space-space activity maps). As presented

in table 3.2, this analysis tested the various scale-free and scaling features expected close

to the depinning transition. Is also showed which extent the scaling laws empirically

observed in seismology (and in our experiments, see chapter 2) can be reproduced in a

theoretical framework.

The use of thirty simulations judiciously located along di�erent places in the phase

diagram (�gure 3.1) uncovered the role of the various parameters (loading rate, unloading

factor, disorder amplitude) on the selection of these dynamics.

More importantly under certain conditions, it is possible to observe clustering in time

for this line propagation model. It is thought that this time dynamics is ruled by the

feed-back loop involved in the driving force ct− kf applying on the propagating front as

this term can introduce additional time scales in the problem (see [Papanikolaou et al.

(2012)] for recent developments in this direction).
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Space activity map: Space-time activity map: Threshold-based method:
scaling laws D, T , S, Lx, Lz D, T , S, Lx, Lz, H, D, T , S, Lx, H, Vmax,

Vmax, Fp, Fd, (Xbegin,Zbegin) Fp, Fd, Xbegin

Richter-Gutenberg: P (S) x x x

Waiting-time: P (∆T ) x x

Duration: P (D) x x x

Avalanche depth: P (Lx) x x x
Avalanche heigth: P (Lz) x x
Maximum speed: P (Vmax) x x
Omori: rAS(TAS − TMS) x x

Voight: rFS(TMS − TFS) x x

Utsu: P (SA-FS/SMS) x x
Productivity: RA-FS(SMS) x x
Båth: P (max(SAS)/SMS) x x

Lx vs. Lz x x
D vs. Vmax x x
D vs. S x x x
Lx vs. S x x x
Lz vs. S x x
Fp vs. Fd x x

Depinning-pinning force: Fp-d x x
Avalanche shape x x x

Space density of events x x x
Time density of events x x

Table 3.2: Statistical laws studied for each extraction method. In bold and blue we give
the laws that are presented in this manuscript.
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Main messages of the chapter
⋄ Four methods to extract statistical data from simulations: (i) Fourier spectrum,

(ii) Threshold based method, (iii) spatial activity card, and (iv) space-time activity

card.

⋄ The main pinning-depinning statistical laws as a function of the di�erent loading

paramters and rescaling of these laws are analyzed.

⋄ Time-clustering invoking Omori and waiting time laws in the simulations are

observed.
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Conclusion

This manuscript concentrates on the statistical aspects associated with the propagation of

a brittle crack within a heterogeneous solid. A two-step approach addresses this problem:

(i) an experimental approach in Part I, and (ii) theoretical and numerical investigation of

the phenomenon in Part II.

The model experiment (see Part I) designed during my Ph.D. consists in making a

single crack grow in arti�cial rocks made of sintered polymer beads. The crack is bro-

ken in opening mode via a wedge splitting geometry. During the breaking process, the

acoustic emissions (AE), stored and released mechanical energy and crack speed are mon-

itored in real time and in a synchronized manner. Analyzing acoustic data in the same

manner as geophysicists process seismic signals reveals that most of the empirical laws

de�ning earthquake dynamics are relevant in our simple experiments. For example, AE

events accompanying a single crack's propagation self-organizes in time. These break into

foreshock-mainshock-aftershock (FS-MS-AS) sequences and obey the Richter-Gutenberg,

the Omori, the Voight, the waiting time, and the Utsu laws just like in seismic problems.

This observation was unexpected. In particular, the depinning line models yield a Pois-

sonian statistics for the fracturing events of which is incompatible with FS-MS-AS-like

clustering, yet it seems to be relevant in describing brittle heterogeneous fracture. Note

however that FS-MS-AS sequences of a single crack propagating, herein, are symmetric

in time. Earthquakes (more AS than FS) and volcanic eruptions (more FS than AS) do

not experience this symmetry. The asymmetry of these two geophysical situations is then

conjectured to result from the non-stationarity of the underlying fracturing process.

Model experiments herein revealed the time evolution of the relevant observables in

fracture mechanics (stored mechanical energy and crack speed). These observables per-

mitted the initial veri�cation that the spatially-averaged crack speed and the power (time

derivative of energy) released in the solid are proportional. A depinning line model derived
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from continuum fracture mechanics expects this. Thus, the statistics of the power dy-

namics is characterized. Sudden bursts (i.e. avalanches) make up these dynamics. They

are power-law distributed in size and duration, as expected in depinning line models.

Conversely, the avalanche shapes are asymmetric at large scales, which is incompatible

with the predictions of depinning line models. Also, these avalanches organize in time to

form FS-MS-AS sequences, as the AE events. Finally, the fracture surfaces' roughness is

analyzed as well as their evolution with respect to the microstructure scale and the crack

velocity.

Part II of this manuscript addresses the problem of brittle heterogeneous fracture

theoretically and numerically. These simulations invoke elastic line models in random

potential and depinning transition. Invoking this framework, a novel equation of motion

for a propagating crack comes about. Paying special attention during the development

of these equations gives way to relating quantitatively the parameters of this equation to

quantities that can be measured/controlled experimentally. The four main parameters

are the loading rate (time derivative of energy release), the unloading factor (derivative

of energy release as a function of crack length), the disorder amplitude, and the relative

system size (specimen thickness over microstructure length-scale). Depending on these

parameters, either continuum-line or crackling dynamics can be observed. The phase

diagram associated with these two regimes is ruled by only two independent dimensionless

parameters.

Finally, a numerical exploration of the equation of motion relates the statistics char-

acterizing the crackling dynamics to the input parameters of the model. Microfractur-

ing event detection uses two di�erent procedures for di�erent length scales: (i) At the

continuum-level: The method invokes the threshold tests of the spatially-average speed

signal (like in the model experiments) or (ii) at the local scale: directly from time-space

or activity map of the crack growth. Each time, the distributions in size, dimensions and

durations of the avalanches are computed and found to be power-law distributed with

universal exponents between non-universal cut-o�s. The scaling between these latter and

the loading rate, unloading factor and disorder amplitude are uncovered. Some speci�c

values of the input parameters exhibit avalanche events which organize to form FS-MS-

AS events with Omori-like clustering as observed experimentally. Note that the scaling

exponents observed in these numerical explorations of a depinning line model of crack

growth are not the same as those observed experimentally for arti�cial rocks.
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Via this work, I illustrated experimentally and theoretically the richness of the dynam-

ics followed by a simple propagating crack growing in a disordered solid. Experimentally

and theoretically the framework provided by continuum fracture mechanics provides a

suitable model to address this problem. As such, brittle heterogeneous fracture prob-

lems may be a prototype system to study the complexity in other systems (more di�cult

to access). Relevant systems need to be driven by similar competitions between ran-

dom localized dissipative events and overall large-scale coupling via elastic-like redistri-

bution. Applicable systems range from biology [Ito et al. (2000); Huss and Holme (2007);

Smith et al. (2003)] to bibliometry [Redner (1998)] via sociology of violence [Turcotte

and Roberts (1998); Small and Singer (1982)] or network technology [Newman (2005);

Willinger and Paxson (1998)] (see [Clauset et al. (2007)] for a revue).
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Appendix A

Polymer bead sintering protocol

In this appendix, we present the sintering protocol to make the constitutive material of our

samples. A detail method to get the material is necessary in order to have reproducible

experiments. This material is considered as a model rock because the process for the

Nature to make rocks is the one we mimic to prepare our samples: a granular material

undergoes high temperature and pressure conditions and when brought back to room

environment it becomes a solid. In our case, to be in a more easily accessible temperature

and pressure sintering domains, we do not use mineral materials but a polymer powder.

In this way we can vary most of the material parameters of the rock such that the size of

the microstructure (varying the bead size), the toughness (varying the sintering duration

temperature) and the porosity (varying the pressure, but keeping it low).

A.1 Material

For our experiments, we have used �ve di�erent kinds of monodisperse polystyrene bead

powders: Microbeads R© Dynoseeds R© TS 500, 230, 140, 80-50 and 20. The number at

the end of the name stands for the size of the beads in µm. We precise that for the

80-50 powder, it is an equimassic mix of 80 and 50 µm beads. Moreover, the material

properties of the polystyrene constitutive of the beads are di�erent for each bead size. For

example, the molecular weight vary and so the the glassy temperature does. These beads

are all sold by Microbeads R© AS - Vestvollveien 3A - P.O. Box 256 2019 Skedsmokorset -

Norway. (see �gure A.1)
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To apply controlled pressure and temperature, we used an Instron R© machine and its

oven as presented in �gure A.2.

The mold has been done in our lab in bulk cast iron. Its geometry is roughly presented

in �gure A.3.

Figure A.1: Picture of Microbeads R© Dynoseeds R© TS 500

A.2 Protocol

Here is given the detailed protocol we used to sinter our samples. In �gure A.4 is presented

a schematic view of this protocol.

1. Preliminaries for mold and bead powder:

• Clean each pieces of the iron mold with a clean piece of rag and spray Te�on R©lubricant

over the whole inner surfaces.

• Screw together the di�erent pieces of the mold paying attention there is a

su�cient play to insert the free top piece.

• Fill in the mold with 250 g of beads of the chosen size and gently press inserting

the top piece to make the free surface of the beads �at. Remove this top part.

2. Thermo-mechanical sintering:

• Adapt the oven on the Instron R© machine and install the appropriate force

sensor (in our case we used the 100kN sensor)
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Figure A.2: Instron R© machine and its oven

Figure A.3: Cast iron mold used to sinter samples
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• Put both part of the mold and beads in the hot oven at T4. During this

operation take care that the free surface of the powder keeps �at.

• Slip the probe of a thermocouple in the middle of the bead powder (few mil-

limeters below the free surface, far from the sides). This will permit to follow

the evolution of the bead temperature during the heating up step. This corre-

sponds with the 'heating' step presented in �gure A.4.

• When the temperature inside the powder reaches T2 (after approximatively 1

hour, depending on the bead size), remove the temperature probe, turn the

oven temperature down to T3 and engage the top part of the mold inside the

bottom one.

• Via the Instron R© machine, apply a linearly increasing force on the system

to reach the nominal force F0 after 8 minutes. Then keep this force constant

during 45 minutes. This corresponds with the 'loading' step presented in �gure

A.4.

• Unload slowly the system to free the mold while turning the oven temperature

up to T5.

• Paying attention that the oven temperature does not go below T1, unscrew

the di�erent parts of the mold without taking it to pieces: sample must be

free to expand but all its faces must be in contact with the mold to avoid

thermal-shock when opening the oven. This corresponds with the 'releasing'

step presented in �gure A.4.

• When the mold is loosened, wait some time for the temperature to reach T5 and

let the sample anneal during 20 minutes. This corresponds with the 'annealing'

step presented in �gure A.4.

• Paying attention that the oven temperature does not go below T1, remove the

di�erent parts of the mold. This step is not easy because the sample could

be stick on some pieces of the mold. Nevertheless it is important to remove

them without damaging the sample. It corresponds with the 'removing' step

presented in �gure A.4.

• Finally, let the temperature of the oven rising up to T5 and wait 10 minutes.

Then turn the oven o� and let the temperature slowly decrease to the room

temperature, this could take 5 to 6 hours. This corresponds with the 'cooling'

step presented in �gure A.4.
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Figure A.4: Protocol to sintered sample material

Temperature 500 µm beads 230 µm beads 140 µm beads 50− 80 µm beads 20 µm beads
T1 80◦ 80◦ 70◦ 70◦ 60◦

T2 105◦ 105◦ 100◦ 105◦ 90◦

T3 115◦ 115◦ 110◦ 115◦ 100◦

T4 120◦ 120◦ 115◦ 120◦ 105◦

T5 130◦ 130◦ 120◦ 130◦ 110◦

Table A.1: Temperatures of the sintering protocol for the di�erent sort of bead used

A.3 Parameters

Because of the variation of the material properties when varying the bead size, it is neces-

sary to adapt the sintering temperatures. We sump-up here in table A.1 the temperatures

we used.

To tune the intergranular toughness and porosity of the material, we varied the force

(F0 in �gure A.4) applied by the Instron R© machine on the mold. We give in table A.2

the di�erent forces we applied and the the corresponding pressure inside the material.
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Force F0 (N) 1 · 103 1 · 104 2 · 104 4 · 104 8 · 104
Pressure (MPa) 0.06 0.6 1.3 2.6 5.2

Table A.2: Forces and pressures of the sintering protocol

N o F0 (t) Bead size (µm) Volume (mm3) Weight (g) Density (kg/m3) Name
46 0.1 20 18.27 16.948 927.7
18 2 500 18.24 19.184 1052
23 1 50-80 18.00 18.836 1047
47 0.1 230 22.01 16.573 753.1
36 8 20 17.64 17.981 1019 Sd1
21 2 230 18.30 19.132 1045
17 0.1 230 21.97 16.968 772.3
19 4 50-80 17.19 17.943 1044
24 1 500 17.52 17.768 1014
39 0.1 500 22.02 17.663 802.0
43 8 230 17.07 17.831 1045 Sb1
48 8 50-80 17.05 17.651 1040 Sc1
20 2 50-80 18.47 19.181 1039
16 1 230 17.73 18.253 1030
33 8 500 17.67 18.481 1046 Sa1
13 4 230 16.58 17.440 1052
15 4 500 17.07 17.958 1052

0.1 50-80 23.92 17.808 744.5

Table A.3: Density of some samples for di�erent forces and pressures of the sintering
protocol

A.4 Material Density

It seems interesting and important to characterize the material got from this protocol

to measure its density for di�erent sintering parameters. This as been done for di�erent

bead sizes and di�erent sintering forces (F0) measuring precisely the volume and the mass

of some samples. The results are reported in table A.3 and plotted in �gure A.5.

A.5 Mechanical properties of the material

Similarly, it is important to characterize the mechanical properties of the sound material

to interpret the results we get when the sample is breaking. Since, we mainly analyzed
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Figure A.5: Density of the sintered material as a function of the sintering force (F0) for
di�erent bead sizes
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results from samples sintered at high pressure (F0 = 8t) and big bead size (d = 500 µm)

and since the analyze is very time consuming, we focus on the material of sample Sa1. To

characterize the static and dynamic properties of this material, we performed Dynamical

Mechanical Thermal Analysis (DMTA) at the Surface des Verres et Interfaces lab (SVI)xxii

on a 2mm thin plate of matter. The analyze frequency has been varied from 0.1Hz to

10Hz at the room temperature. The results are presented in �gure A.6. We see that the

Young modulus E is almost constant for this frequency range and that the loss modulus

varies less than 20%. Hence, since the temperature is �xed in our experiments (18◦C) we

can consider that the material keeps the same properties during the failure.

Figure A.6: Variation of the storage (A) and loss (B) moduli as a function of the excitation
frequency for the material of sample Sa1. The variation of the phase angle
is given in C. The circles and barres stand for the average, minimum and
maximum values of 4 tests

xxiiin Unité Mixte de Recherche with Centre National de la Recherche Scienti�que (CNRS) & Saint-
Gobain
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Appendix B

Model rock breaking experiment

In this appendix, we present the experimental protocol to break our model rock samples

in opening mode recording mechanical and acoustic variables on a synchronized time.

Details on the way to drive an experiment are given from the sample preparation to the

software monitoring. We give a lot of details for each step to get reproducible as well as

comparable results.

B.1 Sample preparation: geometry and acoustic sensor

location

When the model rock material is get from the sinter process described in Appendix A,

its shape is close to the sample geometry but not exactly. To be sure that there is no

friction or plastic deformation of the material where it is in contact with the rest of the

system (wedges and pivot), it is important that all edges remain plane and parallel to

their opposite counterpart. This is done cutting edges with a classical milling machine.

A diamond disk grinder is also used to add a 8 mm pre-crack (2 mm wide). Hence, the

dimensions are not the same for all specimens, but for each of them, edges are accurately

oriented as shown in �gure B.1.

To process the acoustic signal (energy attenuation) and extract the location of the

events it is necessary to know the position of the acoustic sensors. So, not to measure the

position of the sensor a posteriori we have chosen to locate them at the same place on all
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Figure B.1: Model rock sample geometry and acoustic sensor locations (blue crosses):
exact dimensions are given in black whereas approximative ones are in a grey
cloud

specimens as shown in �gure B.1 (blue crosses).

B.2 Crack initiation: pre-crack breaking

The goal of the experiment is to make the crack propagating in quasi-static steady-state

regime. So it is necessary not to store a big amount of energy in the system before the

crack initiation. To do so, the pre-crack must be as sharp as possible. The one done with

the disk grinder has a 1 mm radius of curvature so it does not suit. To reduce it, this

pre-crack is propagated pushing a cutter blade with a soft hammer in the bottom of the

former crack. This new pre-crack is now approximatively 1.5 cm long and sharp.

B.3 Sample putting on the breaking device

The next step is to put the sample on the breaking device. First, both jaws are put down

on the sample paying attention that the space between their edges and the sample faces
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are the same for both sides. It is possible to use cardboard wedges to make it sure. This

is done to ensure the loading is symmetric. Then, the sample with the jaws are installed

in the breaking device on the pivot. The pivot is risen up until the jaws are in contact

with the wedge by screwing the nut down the sensor force. The nut must be screw to

slightly load the whole system (few N measured with the force cell). At the end of this

step it is import to check that the bottom of the specimen is perfectly horizontal.

B.4 Acoustic sensor setting-up

All the eight acoustic sensors must be connected to their 40 dB hardware �lters which

are connected to the AE computer in-puts. Each of them are clipped or clamped at

the location given in �gure B.1 adding acoustic gel between the sensor and the sample.

Similarly, a coaxial cable must be plugged from an output of the mechanical data computer

to the acoustic computer to send a synchronization signal.

B.5 Mechanical and acoustic software preparation

First the recording of the acoustic emission is prepared. The �le are saved with a name fol-

lowing this format: 'EA_vWWWnms_dXXX_Yt_nZZ.txt', where WWW is the wedge

speed in nm/s, XXX is the bead size in µm, Y is the sintering force in 104 N and ZZ is

the number of the sample. The position of the sensor on the sample are given in �gure

B.1. To check that all the sensors are properly connected to the sample and to measure

the speed of sound in the material, one by one, a pulse is send from each sensor and

recorded by the others. Hence, if a sensor is not properly connected, it will detected a

weaker signal than the others. From the delay between emission and reception, the speed

of the sound (for the transverse wave) in the material. This speed is given by the AE

software to compute the position of the events. On the other hand, the monitoring of

the motor and the recording of the mechanical are prepared on the other computer. The

wedge engine has to be switched on before the LabV iew R© code Fract4.exe is executed.

The periods of force and picture acquisition are given in the tab 'Experiment Settings' as

shown in �gure B.2.

In the same tab, the force cell and the corresponding calibration are chosen as given
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Figure B.2: Choice of the periods of force and picture acquisition

in �gure B.3.

Figure B.3: Choice of the force cell

Then, the �les in which mechanical data and pictures are saved in streaming as well

as the pre�x of the picture and text �les are given as shown in �gure B.4. These

names are build following this rule '/meca/dat_XXXX' for the mechanical data and

'/image/img_XXXX' for the pictures ('XXXX' is given automatically by the software).

Figure B.4: Saving �les

Playing with lighting (from the rear of the sample is better to detect the crack) and

camera settings, the quality of the image on the right side of the 'Experiment Settings' tab

is adjusted. Then pressing button 1 ('Take Reference Picture'), a new windows appear to

select the Region Of Interest (see �gure B.5). This region is the only one that the camera

will send to the computer during the experiment. It permits to reach an higher frequency.

Now both acoustic emission and mechanics management software's are ready to go.

The �rst one must be started pressing 'OK' few seconds before the second one, pressing

button 2 ('Time Start'). This permits to detect the time mark sent via coaxial cable to

the acoustic emission computer. This time mark is used during the post processing to

synchronize data. From this point, the acoustic emission is recorded. We note that it is

possible to send other time marks to the acoustic emission computer to mark some special

events.
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Figure B.5: Selection of the Region Of Interest

B.6 Monitoring the fracture

Few adjustments are still necessary before breaking the sample. First in the tab 'Image',

the quality of sample picture is tunable thank to a panel as the one presented in �gure

B.6: di�erent �lters can be applied.

Figure B.6: Picture tuning

Then, in the tab 'Engine', to control the engine, the step angle (SA), the speed (V), the

initial speed (VS) and the direction (H) must be given before pressing 'Send Command'

to activate the wedge. These command parameters can be changed at any time later.

Pressing 'Save Images' and 'Save Force' in tab 'Image' and 'Force' respectively permits

to save the data.

Finally, when the sample is broken, pressing 'Stop Experiment' stop the engine and

shut the LabV iew R© program down. Similarly, the acoustic emission software can be shut

down.
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B.7 Output �les

Both mechanical and acoustic software outputs are text �le and png pictures. Here is a

list of these data:

1. Mechanical data:

• dat_force.dat: Force measured by the force cell (unit: N).

• dat_time_force.dat: Time from the 'time start' when force is saved (unit: s).

• dat_position.dat: Position of the wedge given by the engine control (unit: m).

• dat_time_postion.dat: Time from the 'time start' when wedge position is

saved (unit: s).

• dat_time_picture.dat: Time from the 'time start' when each picture is saved

(unit: s).

• dat_engine_marks_events.txt: History of the commands sent to the engine

and time marks (time in ms and commands).

• XXXXXX.png: Pictures of the sample at theXXXXXX th time of dat_time_picture.dat.

2. Acoustic data:

• EA_vXXXnms_dXXX_Xt_nXX.txt: Matrix with the data attached with

each events (time, energy, amplitude...).

• Localisation.txt: Matrix with the data attached with the event which have

been localised (time, position, energy...)

B.8 Table of broken samples

Table B.1 gives the input parameters of each experiments performed during our study.
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Sample Wedge speed Bead size Sintering force Sample
Number (nm/s) (µm) (104 ·N) Name

13 16 230 4
15 16 500 4
16 16 230 1
17 16 230 0.1
18 16 500 2
19 16 80-50 4
20 16 80-50 2
21 16 230 2
22 16 80-50 0.1
23 16 80-50 23
24 16 500 1
25 16 500 0.1
26 1600 500 8 Sa3
30 1.6 500 8
32 160 500 8 Sa2
33 16 500 8 Sa1
35 4 20 4
36 16 20 8 Sd1
41 16 20 4
43 16 230 8 Sb1
44 16 20 8
46 16 20 0.1
47 16 230 0.1
48 16 80-50 8 Sc1

Table B.1: Inputs of the experiments
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Résumé

Prévoir où, quand et comment les matériaux cassent est une problématique qui occupe

scienti�ques et ingénieurs depuis des siècles. Ce problème est rendu complexe par le fait

que la concentration des contraintes en pointe de �ssure lie intimement le comportement

observé à l'échelle macroscopique aux inhomogénéités de microstructure à des échelles

très �nes. Ceci induit une dynamique de �ssuration erratique, composée d'événements

d'endommagement rapides et imprévisibles séparés de périodes calmes (e.g. dynamique

des tremblements de terre le long des failles). Par essence, ces aspects statistiques ne peu-

vent pas être traités avec l'approche de la mécanique des milieux continus traditionnels.

Dans un premier temps, nous tentons d'appréhender ce problème au travers d'une expéri-

ence modèle qui consiste à faire propager une �ssure dans une roche arti�cielle dont nous

contrôlons la microstructure. La vitesse de chargement du système de fracture est réglable

sur une large gamme de valeurs. La vitesse de �ssuration et l'énergie mécanique sont en-

registrées en temps réel. En parallèle, l'émission acoustique associée aux événements de

fracture ainsi que leur localisation sont mesurées via des capteurs piézoélectriques, puis

analysées comme cela est communément fait en sismologie. Ces expériences nous perme-

ttent de caractériser quantitativement la dynamique intermittente de la �ssuration. Elles

montrent qu'un certain nombre des lois empiriques observées en géophysique sur la sis-

micité (loi de Richter-Gutenberg, d'Omori, de Voight, d'Utsu...) se retrouvent dans notre

système modèle. Dans un deuxième temps, nous adressons ce problème théoriquement et

numériquement, en identi�ant le phénomène de fracture dans les matériaux hétérogènes

avec celui de la propagation d'une ligne élastique sur un potentiel aléatoire 2D. Ceci per-

met de déterminer quantitativement, en termes de vitesse de chargement, de tailles des

hétérogénéités, de propriétés du matériau, et de géométrie de structure, quand la dy-

namique de �ssuration est régulière et compatible avec l'approche ingénieur des milieux

continus, et quand elle devient erratique et nécessite une approche statistique. Dans ce

dernier cas, nous caractérisons la statistique de de cette dynamique et relions celle-ci aux

paramètres de l'expérience.

Mots-clés: fracture, matériau hétérogène, clustering, crakling, sismologie, transition de



phase et phénomènes critiques

Abstract

The problem of the solid fracture has occupied scientists and engineers for centuries.

This phenomenon is classically addressed within the framework of continuum mechan-

ics. Still, stress enhancement at crack tips makes the failure behavior observed at the

continuum-level scale extremely dependent on the presence of microstructure inhomo-

geneities down to very small scales. This yields statistical aspects which, by essence, can-

not be addressed using the conventional engineering continuum approaches. I addressed

this problem from two di�erent points.

First, I designed an experimental setup that allows growing well-controlled tensile

cracks in brittle heterogeneous solids of tunable microstructure, over a wide range of

loading speed. The crack dynamics and the evolution of stored and released mechanical

energy are monitored in real time. In parallel, the acoustic emission going along with crack

growth is recorded via a series of acoustic transducers, and analyzed in a way similar to

that develop by geophysicists to process seismic signals. The experiments allowed me to

characterize quantitatively the crackling dynamics of cracks, also to evidence intriguing

statistical similarities between the seismicity associated with this simple situation of a

single running crack under tension and the much more complex situation of multicracking

in compressive fracture and in earthquakes.

In parallel, I addressed the problem numerically. The simulations invoke a recent sta-

tistical model mapping heterogeneous fracture with the depinning transition of an elastic

manifold in a random potential. The numerical exploration of the parameter space allowed

me to unravel when (i.e. which loading conditions, microstructure material parameters,

material constants...) regular dynamics compatible with continuum approaches are ex-

pected to be observed, and when crackling dynamics calling for statistical approaches are

observed. In this latter case, we have characterized quantitatively the dynamics statistic

and its variations as a function of the input parameters.

Keywords: fracture, heterogeneous material, clustering, crackling, seismology, phase
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