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Abstract :

As the value of the longitudinal momentum carried by partons in a ultra-relativistic hadron
becomes small, one observes a growth of their density. When the parton density becomes
close to a value of order 1/ag, it does not grow any longer, it saturates. These high density
effects seem to be well described by the Color Glass Condensate effective field theory. On the
experimental side, the LHC provides the best tool ever for reaching the saturated phase of
hadronic matter. For this reason saturation physics is a very active branch of QCD during
these past and coming years since saturation theories and experimental data can be compared.
I first deal with the phenomenology of the proton-lead collisions performed in winter 2013 at the
LHC and whose data are about to be available. I compute the di-gluon production cross-section
which provides the simplest observable for finding quantitative evidences of saturation in the
kinematic range of the LIIC. I also discuss the limit of the strongly correlated final state at
large transverse momenta and by the way, generalize parton distribution to dense regime. The
second main topic is the quantum evolution of the quark and gluon spectra in nucleus-nucleus
collisions having in mind the proof of its universal character. This result is already known for
gluons and here I detail the calculation carefully. For quarks universality has not been proved
yet but I derive an intermediate leading order to next-to leading order recursion relation which
is a crucial step for extracting the quantum evolution. Finally I briefly present an independent
work in group theory. I detail a method I used for computing traces involving an arbitrary
number of group generators, a situation often encountered in QCD calculations.

Résumé :

Lorsque I'impulsion longitudinale des partons contenus dans un hadron ultra-relativiste dimi-
nue, on observe un accroissement de leur densité. Quand la densité approche une valeur d’ordre
1/ag, elle n”’augmente plus, elle sature. Ces effets de haute densité semblent étre correctement
décrits par la théorie effective du "Color Glass Condensate". Du point de vue expérimental,
le LHC est le meilleur outil jamais disponible pour atteindre la phase saturée de la matiére
hadronique. Pour cette raison, la physique de la saturation est une branche trés active de la
QCD dans les années passées et a venir car la théorie et les expériences peuvent étre comparées.
En premier lieu, je discute de la phénoménologie des collisions proton-plomb qui ont eu lieu a
I’hiver 2013 et dont les données sont sur le point d’étre disponibles. Je calcule la section efficace
pour la production de deux gluons qui est l'observable la plus simple pour trouver des preuves
quantitatives de la saturation dans le régime cinématique du LHC. Je traite également la limite
des états finaux fortement corrélés a grandes impulsions transverses et, par la méme occasion,
généralise la distribution de partons au régime dense. Le second sujet principal est I’évolution
quantique des spectres de gluons et de quarks dans les collisions noyau-noyau, ayant a l’esprit
son caractére universel. Ce résultat est déja connu pour les gluons et je détaille ici le calcul
avec attention. Pour les quarks, I'universalité n’a toujours pas été prouvée mais je dérive une
formule de récursion intermédiaire entre ’ordre dominant et ’ordre sous-dominant qui consti-
tue une étape cruciale dans I'extraction de ’évolution quantique. Enfin, je présente brievement
un travail indépendant de théorie des groupes. Je détaille une méthode personnelle permettant
de calculer des traces impliquant un nombre arbritraire de générateurs, une situation souvent
rencontrée dans les calculs de QCD.
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Introduction

So far we know four interactions in Nature : gravity, electromagnetism, strong and weak interactions.
All of them still have their mysteries and open problems. Gravity, is described at the classical level by
general relativity [1, 2, 3], a gauge theory invariant under the group of diffeomorphism or an SO(3,1) gauge
theory in its vierbeins formulation. General relativity has predicted plenty of very accurate results which
agree strikingly with experiments. The most impressive one is the period decrease of the binary pulsar
PSR B1913+16 by gravitational radiation measured by Hulse and Taylor in 1974 [4] which shows a 1%
agreement with the post-newtonian developments of general relativity and, by the way, provides an indirect
evidence of gravitational waves. Although general relativity describes with a great accuracy astrophysical
and cosmological observational phenomena, it has a singular short distance behavior. Theoretical troubles
arise for instance in the » = 0 limit of the Schwarzschild solution for black holes or in the ¢ = 0 limit of
cosmological solutions. These singularities motivate a quantum description of gravity for understanding
them. However, due to its inherent geometrical interpretation of space-time, gravity must be distinguished
from others interactions. Problems arise when one tries to quantize gravity : one first faces conceptual
problems when defining the Hilbert space since, the main difference with the others interactions is that
gravity is not the theory of particles moving in a given background but the dynamics of the background
itself. Due to this particular nature of gravity it is probable that it cannot be described at the quantum
level in the same way as the other interactions. The quantum theory of gravity may even not be a field
theory. Some alternative approaches have been proposed like loop quantum gravity or string theory. How-
ever we are quickly lost in the complexity of these theories and the predicted phenomenology, allowing to
check whether or not they seem to be correct, so far lies beyond the scope of accessible experiments. If one
tries however to apply quantum field theory techniques to gravity one faces to a technicality making the
calculations quickly very cumbersome : gravitational interactions are non renormalizable and one has to
consider the infinite serie of interactions allowed by diffeomorfic invariance. Since high order interactions
do not play role at low loop level and/or in the computation of Green function with a small number of
legs, one can however proceed step by step for renormalizing the couplings one by one (see for instance
[5]). Anyway, either a crucial point has been missed with gravity or we have the right theories but in which
the quantum description of gravity is still not clear. Concerning electromagnetism, the situation is better.
It is described at the quantum level by the U(1) abelian gauge theory known as quantum electrodynamics
(QED) [6, 7, 8, 9, 10, 11, 12, 13|. The low energy sector of QED is nowadays under control. The radiative
corrections to the fine structure constant are now known up to five loops [14] and the computed value
agrees with experiment with an accuracy of order 10~?, for sure, one of the best successes of theoretical
physics. The QED beta function is positive and its Landau pole is reached 10%%6 ¢V. Of course this energy
is much beyond accessible experiments and it is probable that QED is replaced by an unknown new physics
long before reaching this scale. In everyday life experiments, QED is perturbative and is nowadays well
understood. QED has even been unified with the theory of weak interactions in the SU(2) x U(1) gauge
theory known as the Glashow-Weinberg-Salam (GWZ) model [15, 16, 17, 18, 19]. This very elegant and
simple model provides, through the Higgs mechanism [20, 21, 22|, explanations to puzzling experimental
phenomena like maximal parity violation (there does not exist right handed neutrinos in Nature) and
electrically charged gauge bosons W*. The GWS model predicts new features which have been checked
experimentally : in addition of being charged, the gauge bosons have to be massive and, in addition, the
GWS model predicts the existence of a new neutral, massive gauge boson, the Z°. Both the massive
character and the Zy have been observed at CERN in 1974 |23]. The corner stone of the GWS model is the

1
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Higgs boson which was the missing piece of the standard model until it has been finally observed at the
LHC in 2012 [24, 25]. The coupling of weak interactions have a nice behavior : it has no Landau poles. At
low energy - i.e. energies lower than the W and Z bosons masses - the beta function is positive as in QED.
At higher energy, gauge bosons balance the growth of the coupling which then decreases at high energy.
Everything would be perfect with weak interactions if they do not show up C'P violations first discovered
in 1964 in kaon decay [26]. C'P violations still remain obscure for theoreticians.

The last type of interaction is the strong interaction, the one considered in this thesis. In its modern
formulation, the theory of strong interactions is known as quantum chromodynamics (QCD), the theory of
quarks and gluons. It turns out that matter made of quarks and gluons represents the main percentage of
identified matter in our universe!. This is one reason - not the only one - why QCD is so important since it
governs the dynamics of most of the known matter. The quarks form so-called color multiplets and furnish
a fundamental representation of an SU(3) gauge symmetry whose vector bosons are the gluons, lying in
the adjoint representation of the gauge group. Just as weak interactions, the gauge group is non abelian
and gluons, represented by a vector field A;‘ (A, B, C... denoting the adjoint representation color index),
are described by the Yang-Mills lagrangian :

1
Lyy = —Fu A

where F/ﬁ, is the field strength tensor

Fi, = 0,40 — 0,A + gf*PC AT AC.

g is the coupling constant, f4B¢ are the gauge group structure constant and we adopt the convention of
an implicit summation over repeated indices. The Yang-Mills lagrangian alone corresponds to a theory
containing only gluons. Quarks enter as Dirac fields ¥® (a, b, c... denoting the fundamental color indices)
minimally coupled to the gauge field via covariant derivatives? : Dbe = 5abc9u — igAﬁ(TA)ab, where the
T#’s are the gauge group generators in the fundamental representation. Since there can be several copies of
quark multiplets they will be denoted, in general with a flavor label f. Thus the lagrangian corresponding
to quarks reads (with all indices, except spinor ones, explicitly written, soon dropped out) :

Lauark = 3 0 (i0™ = 0m) v},
f

The total lagrangian Ly s + Lquark is the QCD lagrangian. Non abelian gauge invariance requires that all
fields couple with the same coupling constant® g. Up to now, the formalism applies for any simple gauge
group and we shall deal with SU(N,) instead of SU(3), N, being the number of colors. The first interesting
physical consequence of the QCD lagrangian is the behavior of the running coupling. At one loop level,

the beta function reads : 5

3l9) =~ gy (11Ne = 20).

where ny is the number of flavors. So far we know 6 types of quark flavors which make the beta function
negative in QCD (that is with N, = 3). Such a beta function predicts the following behavior of the fine
structure constant of strong interactions o, = g2/4m with the energy pu :

2T
(11— 3ns)In(u/Agen)

! Cosmological observations have shown that what we call "matter" actually represent 5% of the whole cosmological cocktail.
68% of the content of our universe is dark energy and 27%, dark matter.

’In many cases fundamental color indices can be understood to alleviate notations. Moreover we shall often write A, =
AnTA.

3This is a fundamental difference between abelian and non abelian gauge theories. In abelian theories the gauge parameter
can be arbitrarily rescaled for every fields and the coupling constant can be assigned any value, whereas in non abelian
theories it cannot and the coupling is quantized. It is still an open question why the electric charges in Nature are all integral
multiples of e/3, where e is the electron’s charge. QED alone do not predict such quantization condition. It can be explained
for instance by assuming the existence of magnetic monopoles [27].

as(p) =




Thus a, has a Landau pole at Agcp, experimentally measured to be approximately 200 MeV. On the one
hand, at energies larger than Agcp, the coupling decreases and tends to zero. This property is known
as the asymptotic freedom |28, 29| (see plot 1). At high energy, QCD is weakly coupled and perturbation
theory is allowed. On the other hand, at energies less than Agcp, we are in the non perturbative regime
and perturbation theory, which is the only available tool for analytical calculations, breaks down. The main
non perturbative property of QCD is the confinement. It turns out that the range of strong interactions is
very short ~ 10715 m and, in addition, the physical spectrum only contains color singlet bound states like
mesons and baryons, called hadrons. Why gluons are confined, that is they cannot be observed directly.
Why quarks cannot be observed individually but combined in color singlets. How these bound states follow
from the QCD lagrangian. These are closely related and still unanswered questions awarded with a one
million dollars price for the one who will show these properties theoretically. These properties indeed seem
to follow from the QCD lagrangian according to lattice calculations.

aa Deep Inelastic Scattering
e ¢'c Annihilatior
Hadron Collision

T8

0.1} LT,
=QCD oMz} =0.1189 +0.0010
1 10 . 100
Q [GeV]

Figure 1: Experimental evidence of the running coupling and asymptotic freedom. The coupling diverges
at AQCD ~ 200 MeV.

The most powerful tool ever for exploring matter at very short scales, unreached so far, has been
switched on since 2008. This tool is the Large Hadron Collider (LHC) at the CERN in Geneva. Accessible
energies will be of order 10 TeV in the center of mass frame. Concerning its applications to QCD, energies
available at the LHC lie far beyond Agcp, that is, in the perturbative regime. Hence, having in mind
applications to LHC experiments, the calculations performed in this thesis use perturbative QCD. They
will also apply to physics occurring in the others large accelerators : the Hadron-Electron Ring Acceler-
ator (HERA), located at DESY in Hamburg and the Relativistic Heavy Ton Collider (RHIC), located at
the Brookhaven National Laboratory, where the center of mass energy is of order 100 GeV. In all these
accelerators, the QCD coupling constant is larger than the electro-weak ones. Thus the strong interactions
dominate all the processes involving hadronic matter, another reason for putting QCD on a pedestal.

Let us enter in more detail into the high energy behavior of hadronic matter. Historically, the first
attempts for building a theory of strong interactions was a theory whose fundamental particles were the
hadrons (mesons and baryons). In the early sixties experimental phenomena such as the Bjorken scaling
showed the composite nature of hadrons interpreted as bound states involving partons, that is, valence
quarks interacting via gluons. Connecting these results with the works of Yang and Mills have led to the
modern formulation of QCD. The asymptotic freedom property justifies, at high energy, the parton model
proposed by Feynman [30] based free partons - quarks and gluons - within the hadron interacting weakly
and not coherently [31]. We shall see that, in this context, parton distributions naturally merge and count
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the number of partons carrying a given momentum value. Of course low energy partons enter into the
unknown non perturbative part of the wave function but given a low energy configuration up to some
scale, it is possible to look at the variation of the distribution under a small change of the scale. This leads
to evolution equations and they are of two types : one is with the virtuality of the partons and leads to
the DGLAP renormalization group equation [32, 33, 34] and the other one is at given parton energy but
evolving the energy transferred by the parent hadron and leads at first to the BFKL evolution [35, 36, 37].
The DGLAP evolution knew a great success since it explained many phenomena like the Bjorken scaling
deviations while BFKL was ignored. The BFKL equation revived in the nineties when HERA data for deep
inelastic electron-proton scattering showed for the first time the structure of a high energy hadron. The
most striking phenomena was the rapid rise of the distribution with decreasing transferred energy. This is
the first evidence of high parton density, the main purpose of this report. Nowadays, saturation is better
understood. The raise of parton density must be finite otherwise there would be troubles with unitarity. At
high density, recombinations between partons balance the growth of density and their number saturates to
a fixed value of order 1/a; per phase space element. In the high energy saturated regime, a large number
of partons form a sort of "soup" with many interactions among them. Although the coupling is weak the
large number of partons involves collective phenomena. Due to the very large number of particles, strongly
entangled with each others, usual Feynman diagram techniques become vain. The saturated regime seems
to be well described by the Color Glass Condensate (CGC) effective field theory whose validity is confirmed
by its predictions for proton-proton and deuteron-gold collisions at RHIC. A natural continuation is the
prediction of CGC at the LHC, where, for the first time, saturated hadronic matter is fully expected. This
topic is treated in chapter 3. The other main interesting question risen up in this thesis is the universal
character of parton distributions : they are intrinsic properties of the hadrons, independent of the reaction
or observable considered. This will be checked in nucleus-nucleus collisions in chapter 4. This last case
shows a particular complexity due to the presence of two dense media.

How to read this thesis ?

How to handle this report and what is contained inside ? The main body includes the following chapters :

Chapter 1 sets the normalization conventions in light-cone quantized field theories. First it can be
helpful for the reader who is not familiar with light-cone quantum field theory and related miscellaneous
like the light-cone gauges. The derivation of quantum field theory in light-cone coordinates presents very
few differences with the quantization in Minkowski coordinates and we just point out some of the small
differences. For the reader used to this formalism this chapter can be skipped. It is also useful for the
reader interested in following precisely the calculations. Indeed all the normalization conventions of states,
fields, creation and annihilation operators... are set here and are the ones used in the whole report.

Chapter 2 is an introduction to small  and saturation physics that will be the basic physical ground of
the following chapters. Of course it would have been too long to detail it in an exhaustive way and useless
since this topic is widely covered by textbooks. I rather tried to emphasize the physical insight and the
key ideas that lead to the concept of dense QCD matter. For clarity I preferred to not discuss notions that
will not be used in the following - like the dipole model for instance - although they are the cornerstone
for a more rigorous derivation. The small = evolution equations are motivated and explained from the
intuitive point of view but once again I preferred to state the results avoiding long derivations which can
be found in the already existing literature. To summarize, [ tried to introduce tools and ideas necessary
for the following but not more than that. This section will use important results from appendices A and
B whose long and technical derivation obliged me to put them outside of the main line for clarity.



Chapter 3 is the first one dealing with new results. Especially the di-gluon production cross-section
is the main result of our paper [38] with Edmond Iancu. Many physical ideas introduced in the previous
chapter are used in this one. I spent some pages to motivate why the di-gluon production has a special
importance in p-A collisions at the LHC for finding quantitative evidences of saturation physics. To get
the formal background, I first deal with the simplest case : the single quark production. Indeed it shows
the emergence of color operators and playing with it enables us to introduce almost everything we will
need for the di-gluon production. Then when I discuss the di-gluon case, I will not have to set plenty of
definitions all along the discussion. Appendices C and D will be used in this chapter for cross-sections
and Feynman rules respectively. These appendices are the derivation of results which are intuitive in
the sense that the structure of the cross-sections and the Feynman rules can be more or less guessed by a
familiar reader who is more interested by an overall understanding rather than a careful check of prefactors.

Chapter 4 is more theoretical. It deals with the small z evolution in nucleus-nucleus collisions that
shows a universal character encoded into the factorization property. I fully detail calculations leading to the
LO to NLO recursion relations both for gluons and quarks. The former is the new result, mentioned in our
paper with Francois Gelis [39]. The starting point of this chapter will make use of the Schwinger-Keldysh
formalism treated in appendix E. There are also gauge fixing questions whose deep existence are justified
in appendix F.

Chapter 5 deals with Lie algebra and is independent. T motivate the chapter with an example of calcu-
lation following from chapter 3 where it can find applications. However results exposed here are not used
anywhere else in the thesis. I deal with a method for computing traces containing an arbitrary number of
group generators, a situation sometimes encountered in QCD computations. This chapter is formal and
closer to mathematics but remains in the spirit of mathematics for physicists.

Appendices contain either too long or too technical calculations that would have broken the continuity
of the discussions in the main body or elements of unusual formalisms with which even experts in the
domain may not be used to.

Appendix A is the derivation and the justification of the external field approximation in non abelian
gauge theories. Although it may be intuitive to consider classical Yang-Mills fields in some situations, it
is a highly non trivial result assuming strong hypothesis. This approximation is well known in QED but
breaks down if transposed to the non abelian case. I will discuss the physical conditions allowing such an
approximation in the non abelian case and make the calculation explicitly.

Appendix B is the natural continuation of the previous one. In A, I justified to which extend a field
radiated by sources can be treated at the classical level, here I deal with the interaction of quantum fields
evolving in this classical background field in the eikonal approximation - justified by the way. I show how
the color structure of the S-matrix in encoded into Wilson lines corresponding to particles colliding the
background field in the eikonal approximation.

Appendix C is a setup about the structure of cross-sections in p-A collisions. The presence of a back-
ground field associated to the target makes the ordinary relations between amplitude and cross-sections
break down. Here I write the corresponding relation in this specific case. Moreover I will discuss collinear-
factorization which leads to a simple contribution of the proton to the total cross-section.

Appendix D is a derivation of Feynman rules widely used in 3. Once one has understood the role played
by the Wilson lines in the eikonal approximation, the corresponding Feynman rules are rather intuitive.
However, here I make the derivation carefully with various phases and prefactors included.
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Appendix E details the Schwinger-Keldysh formalism, well known in condensed matter physics but
more rare in quantum field theory. It would have been too long to detail it in 4 but its results may seem
non obvious to the unfamiliar reader. I thus detail how it comes out in quantum field theory for comput-
ing inclusive observables. The Schwinger-Keldysh formalism leads to generalizations of path integrals and
Feynman rules, also detailed in this appendix.

Appendix F is the determination of the physical spectrum in light-cone gauge using the BRST sym-
metry. I discuss how the physical spectrum is given by the BRST cohomology. I show the well known
result that ghosts and anti-ghosts are absent from the physical spectrum and that the physical gauge field’s
degrees of freedom are given by the transverse components only. I thought it was worthwhile to detail this
proof which uses beautiful mathematics which are unusual in QCD.



Chapter 1

Light-cone quantum field theory

The physical issues discussed in this thesis are related to high energy collisions of hadrons in accel-
erators. In the lab frame, the two hadrons have opposite velocities close to the speed of light!. In such
ultra-relativistic collisions it is easier to work with the so called light-cone coordinates rather than the
Minkowski ones. Moreover, the velocities of involved particles are so large that one can neglect their mass
and treat them as light-like representations of the Lorentz group. Although light-cone quantization breaks
Lorentz invariance, it provides, in most of cases, a very convenient choice for making practical calculations
applied to di-hadron collisions.

This preliminary section introduces the basic tools and conventions. It can be skipped by the reader
who is not interested in following calculations in details in the next chapters. The aim of this section
is to set a precise catalog of normalization conventions used in all this thesis since there are as many
conventions as there are authors. The reader can refer to this section at any time to check the prefactors
in various formulas. The first section introduces the light-cone coordinates system and some properties of
the four-momentum in this system. The second section is a catalog of the normalization conventions used
for states, creation and annihilation operators and fields consistent with light-cone quantization (we mimic
the conventions used in [40]). The third section is devoted to the axial gauge which will be the gauge used
in most of the following when we deal with gluons.

1.1 Light-cone kinematics

As long as we are working in a frame in which particles travel with velocities close to the speed of light,
it is useful to work in light-cone coordinates rather than in the Minkowski ones. Let a be a 4-vector whose
Minkowski coordinates read (a’,a), we define the light-cone coordinates as :

iiaoiag

V2

In these coordinates, we conventionally order the components as follow : @ = (a*,a”,a;). The scalar
product of two vectors a@ and b reads a-b = a*h~ +a"b" —a, -b,. The light-cone components do not
require to make a distinction with the Minkowski ones, the are labeled with Greek indices p,v.... The
transverse components are denoted with a Latin index 4, j... running over the values 1 and 2. Since we
never use explicitly spatial Minkowski coordinates there will be no confusion possible and 4, j... indices
will always refer to transverse components in light-cone coordinates (in chapter 4 we shall go back to the
Minkowski coordinate system but we will not have to use these labels explicitly for denoting spatial com-
ponents).

a a; = (a',a'). (1.1)

!Note that the lab frame and the center of mass frame are distinct but similar in the sense that in both of them the speeds
of the two hadrons are comparable to the speed of light in the nowadays available accelerators.

7
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Let us focus on the four-momentum vector in light-cone coordinates. We consider a single free particle
of mass m. In light-cone coordinates, its momentum reads p = (p™,p~,p1), the mass-shell condition
p? = m? constrains p* to be p* = (p? +m?)/2pT. Moreover p* and p~ have to be both positive. Indeed,
the mass-shell condition tells us that p™p~ must be positive (or possibly zero in the massless case) and
therefore p* and p~ must have the same sign, but physically consistent Lorentz group representations
must have p° = (p* 4+ p~)/v/2 > 0 and then both p* and p~ are positive. The Lorentz invariant measure
becomes in light cone coordinates :

+ 12
[t ar ot 062 - i) = [P )

(1.2)
pi>0 2p pt=

Pi+m2 )

2p
As long as we deal with right-moving (resp. left-moving) particles, the z* (resp. ) direction in space-
time plays the role of time. Therefore it is natural to refer p~ (resp. p™) as the "energy" and p'= (p*,p.)
(resp. p = (p~,p.)) as the "spatial" components of the momentum and one chooses the upper (resp.
lower) sign in the Lorentz invariant measure (1.2). Although this interpretation is convenient for dealing
with ultra-relativistic reactions, Lorentz invariance is broken since the range of accessible frames consistent
with these conventions is restricted to the ones that conserve the right-moving (resp. left-moving) character
of considered particles. Actually for the purposes considered here it is not really a problem since the frame
will be fixed once for all as we shall see. Now let us investigate the underlying quantum theory in the
light-cone coordinates language.

1.2 One-particle states and quantum fields

In this section we are going to deal with right-moving fields, the transposition to left-moving ones will
be obvious by just changing the plus components into minus ones and conversely. Of course this section
will not be a far-reached and complete rederivation of quantum field theory in light-cone coordinates which
does not show up particular difficulties and is rather straightforward. The consistency of conventions can
be checked by the reader following the procedure detailed in [41] of but with conventions of [40]. We rather
give a catalog of various conventions for the normalization of states and fields that will be used in all the
following. The natural way is to describe a one-particle state by the quantum number p and some possible
discrete quantum numbers like spin, colors... generically denoted o. These states are conventionally
normalized in the restricted Lorentz invariant manner explained above so that :

(7,5|p,0) = (21)32p* 6,56®) (5 — @). (1.3)

The state |p,o) is created from the vacuum (normalized to unity) by a creation operator a;fig satisfying

the commutation (minus sign), if they are bosons, or anti-commutation (plus sign) relations if they are
fermions :

[a’ﬁo; a;‘,a:| + = (27T>35065(3) (P—9q

T T

(1.4)
4503 aq“,a—]q: = [%,UE aqj&} . 0.

The normalization of one-particle states and (anti-)commutation relations uniquely fix (up to an irrelevant
phase set to one) the action of a creation operator on the vacuum as :

|7.0) = /2pTal,, 10). (1.5)

The counstruction of multi-particle states from tensor product of one-particle states is straightforward. Let
us just mention a sign ambiguity for fermionic multi-particle states. The multi-particle state built from
the tensor product of n single-particle states has a phase fixed as follow :

| D1y 015 i Dy O ) = \/2p1+...2p7+la;;1701...a;g,man |0) . (1.6)
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For creation and annihilation operators associated to fermions, their order matters. Our convention is so
that a creation operator acting on a state creates the particle labeled on the leftmost side of the ket.

The completeness relation with the correct normalization factors reads :

d P1 dgpn
O“"Z Z / o 32p . 271')32p+ |p17017' 7p7L70n><p1a017' 7pn70—n’ (17)

‘o1...0n

where d3p stands for dptd?p,. Written in the form (1.7), the completeness relation concerns only one
particle species. If the theory contains several kinds of particle, the full completeness relation is merely
given by the tensor product of completeness relations for each type of particles.

The natural question is now how to build field operators from the creation and annihilation operators
in order to get a consistent S-matrix theory fulfilling the very first physical requirements such as micro-
causality, cluster decomposition principle and (at least restricted) Lorentz invariance. There is actually a
very few differences with the procedure in Minkowski coordinates. Taking o to be the spin s, and omitting
possible other quantum numbers like color charge to alleviate notations (such quantum numbers are carried
by the field operators and cration and annihilation operators), a general field operator is defined as :

dgp S —ip-x S P
=5 [ G [ ot ] (1)

Note that just the integration measure is changed with respect to the Minkowski case. b; is the creation
operator for the antiparticle. uj(p) and v} (p) are the coeflicient functions for respectively the particle and
the anti-particle and furnish representations of the Lorentz group (not necessarily irreducible).

1.3 The axial gauge

When dealing with ultra-relativistic collisions in the framework of gauge theories, there is an often
convenient gauge known as the azxial gauge. Since this is the gauge that will be used in almost all the
following it is not useless to discuss it in the very beginning for the reader not used to it. We first define
the axial gauge condition in a generalized sense. We shall derive the equations of motion and the propagator
in this gauge. Then we focus on the subset of axial gauges of interest : the light-cone gauge. On the one
hand, in light-cone gauge most of the formulas from the general formulation simplify a lot but on the other
hand, this special case may cause trouble with singularities as the gauge-fixing parameter £ goes to zero.
This section shows how to handle light-cone gauge in a rigorous way when such singularities occur. At the
end we sketch the proof of a very nice property of light-cone gauges : the ghosts decouple from the gauge
field.

1.3.1 Definition and Green functions

In general an axial gauge is a constrain on some linear combination of A, components that formally
reads :

n-A(x) = p(x) ; (1.9)
with n a constant vector and p a function of the coordinates. Such gauge fixing requires the following
additional term in the Yang-Mills lagrangian® —%F 2.

1
2€

2To be precise, this additional term in the lagrangian holds for a gaussian-distributed set of gauge conditions of the form
(1.9) so that | [ p| < & (see for instance [40] where se procedure is mimicked for the Lorenz gauge).

Lop = oz (n- A%x))* ; (1.10)
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with ¢ a real gauge parameter. The free Green? function A (z—y) is given by the inverse of the quadratic
piece of the Yang-Mills lagrangian —%(8“141, — 0,A,) (0" AY — 9V A*) plus the gauge fixing term Ly¢. That
is, it satisfies the equation :

NyuNe

§

(9002 — OppOrs + VA (= y) = i6:6 W (z — ). (1.11)

Depending on the prescription, Af” stands for the Feynman, retarded, advanced or anti-Feynman propa-
gator as well. Let us forget about the prescription which does not matter for present discussion, writing
the Fourier representation of the Green function as :

T (k)
= k;2 5

AP (k) (1.12)

where

T (k) = et (k)e™ (k). (1.13)

pol.

Equation (1.11) is satisfied for II*” given by the following expression :

ntkY + nvkH n 51{:2 —n2
n.k (n.k)?

I (k) = —g" + KR, (1.14)

This is the general case but one can go a bit further since we shall work only in particular axial gauges
satisfying the two further requirements :

e ¢ =0 — the gauge is fixed so that n- A(x) = 0. Moreover the theory is then ghost free as it is shown
below.

e a light-like n vector — n? = 0.
Such specific axial gauge is called the light-cone gauge. In light-cone gauge, the II,,,, tensor becomes simpler

nuky +nuky,

Hl/k:_u )
u() G + n.k

(1.15)

and satisfies the properties :

n#1l,, (k) =0 ; (1.16)
and for on shell & :

EFIL,,, (k) = 0. (1.17)

However there is at this point a small problem that needs to be mentioned. The propagator numerator
(1.15) is a projector and is no longer invertible. There seems to be an incompatibility with (1.11) which is
ill-defined as € — 0. Using (1.15) for the propagator numerator, one has :

4 v
'
(2m)* n.k

(G002 — 02 0uo) AGY (x — y) = ¢5;5<4> (x—y) —i / . (1.18)

As we will check explicitly in our applications, the extra term of the r.h.s actually plays no role in Lorentz
invariant quantities. The rigorous way to work in light-cone gauge is to work with a finite £ when it causes
trouble and to send it to zero at the end of the calculation hoping there will not be singularities anymore
- we always get rid of them in all the problems studied bellow.

®Tts color structure being trivially 647 it is omitted by the replacement A4”, , — §4B ALY,
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1.3.2 Ghosts

Here we emphasize a nice property of axial gauges n- A = 0 : they are ghost free. The gauge condition
enters naturally in the path integral following the De Witt - Faddeev - Popov method whose detailed
calculation can be found for instance in [42]. The gauge condition is rewritten as an integral over two
independent Grassmann fields w and @ known as ghosts and anti-ghosts respectively?. Ghosts are Lorentz
scalar fields in the adjoint representation of the gauge group. The lagrangian density corresponding to

ghosts reads :
Lonosts = @'n (6480, — gfAPCAT WP, (1.19)

The interaction term between ghosts and gauge fields is proportional to n - A which is zero by the gauge
condition. For the axial gauge n - A = 0 the ghosts decouple from the theory and are completely absent
from calculations.

“Ghosts and anti-ghosts are different fields, unrelated by any complex conjugation or charge conjugation operation.
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Chapter 2

Perturbative QQCD phase diagram and
saturation physics

In this thesis, the main purpose is the study of phenomena that have to do with saturation effects.
The saturated state of hadronic matter is a very active branch of QCD since it is right now accessible to
experiments occurring in accelerators. These last past years, the RHIC has shown evidences of this phase
of QCD matter while the LHC is about to explore it deeper. Saturation is a consequence of the raise of
parton density as the emitted partons are soft with respect to the parent ones.

The available tools for an experimental investigation of QCD matter in accelerators are two-body col-
lisions. These can be either protons or nuclei. For definiteness, one of the two colliding hadrons is chosen
to travel along the positive z axis and is referred to as the projectile while the other one, traveling in the
negative z direction is referred to as the target. Due to the (very) large number of particles produced in
such high energy collisions, we shall consider only inclusive observables : the final state is summed over all
possible configurations of unobserved particles.

The goal of this chapter is to introduce all the needed framework. We shall motivate the saturation
phenomena from QCD and then detail the appropriate formalism to deal with it. First we will study the
particle content of a fast hadron, that is an uncolored QCD bound state composed of valence quarks, such
as a proton or a nucleus. We will see that the virtual fluctuations (called partons together with the valence
quarks) occurring in the hadron are described in terms of parton distribution functions which count the
number of partons present in some phase space region. Then we shall see that the probability of emission
of a parton diverges as the longitudinal momentum carried by the parton becomes small. The physical
consequence is that the parton density increases for small longitudinal momenta. When the number of
partons becomes very large one has to consider also recombination effects so that the number of partons
does not grow indefinitely and converges to a fixed value to be precised. This is known as the saturation
phenomenon. Along the way we shall see the emergence of a new intrinsic energy scale : the saturation
scale. Once these things are understood we shall propose an alternative formalism that well describes the
saturated regime : the Color Glass Condensate (CGC), an effective theory following from QCD. We shall
study the physical motivations and write the associated evolution equations.

From now, in this chapter and in the following, all the masses will be neglected since the energy scales
considered are much larger than the masses of the colliding particles.

2.1 The parton picture

2.1.1 The hadronic content and deep inelastic scattering

Here we shall see the physical picture of a hadron and its content. For brevity, the hadron shall refer

13
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to a proton in this section but the considerations are valid for any other hadrons, and even for nuclei.
The full description of a proton lies in the scope of non perturbative QCD. A proton is a bound state
of QCD composed of three valence quarks including radiative corrections to all order in powers of the
interaction. Neglecting electromagnetic and weak interaction effects, the fluctuations are either gluons or
quark-antiquark pairs. In the rest frame of the proton, the typical life time of quantum fluctuations is
of the order of 1/Agcp and thus enter into the strong coupling regime. However the situation changes
when one chooses a frame in which the proton has a velocity close to the speed of light called the infinite
momentum frame, conventionally taken along the positive z axis. The boost affects hadronic fluctuations
which live much longer by Lorentz time dilatation and their energies are increased by a boost factor large
enough to lie in the perturbative regime of QCD. At energies available in current accelerators, both the
projectile and the target acquire sufficiently large velocities to be seen in an infinite momentum frame
from the lab. Thus in the lab frame hadronic fluctuations have a typical lifetime that is very long with
respect to the duration of the scattering process. Of course this assumption holds only for partons that
have energies much smaller than the total energy of the projectile-target system, denoted /s. When we
will discuss the partonic content of a hadron we shall see that most of the partons are very soft with
respect to /s but obviously partons’ energies cannot be larger than /s by mere kinematic considerations.
To probe the parton content of a proton, the academic process considered is the deep inelastic scattering
(DIS) represented on figure 2.1. In the DIS, the proton content is probed with the exchange of a virtual,
space-like photon of momentum ¢ and virtuality Q? = —¢? between the hadron and an electron, say. Any
other process involving other kind of particles exchanged would not bring new qualitative phenomena for
present considerations. The momentum P of the proton is chosen so that P = (P*,0,0), with P* very

X P— Y

Figure 2.1: Feynman diagram for the deep inelastic scattering process. The photon interacts with one of
the quarks within the proton.

large with respect to the proton mass. The observed quark carries, before it scatters off the photon, a
momentum p with longitudinal component parametrized as p™ = zPT. x is called the Bjorken variable
and is the fraction of the longitudinal momentum carried by the quark. Provided p™ is much larger than
the transverse momentum of the quark', the observed quark is initially almost on-shell and it makes sense
to consider it as an asymptotic initial state. The total cross-section for the Xe™ — Ye™ process is hence
easily written in terms of the cross-section corresponding to the sub-process ge~ — ge™, where ¢ denotes
the quark :

1
o(Xe  —-Ye )= /0 dz q(z,Q*)o(q(p = zP)e™ — qe™). (2.1)

q(x,Q?) is called the integrated quark distribution and represents the average number of quarks with a
momentum fraction x within the proton. Such factorization of the cross-section is known as collinear
factorization. The integrated quark distribution depends on the virtuality scale Q? since the virtuality of
the exchanged photon determines the probing resolution. In the next section we shall introduce analogously
the gluon distribution. The example of DIS enabled us to see the emergence of parton distribution functions.

!Theoretically, this can always be fulfilled by an appropriate choice of frame boosted enough. Practically, even though the
speed of colliding particles in accelerators is close to the speed of light, the boost is not arbitrary large and this assumption
holds only if the transverse momenta are not too large with respect to the longitudinal ones. We shall see in the next sections
that the transverse momentum of partons present in a hadron is bounded by the saturation scale. This assumption is for
instance fulfilled at the LHC where /s ~ TeV while p; ~ GeV.
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The parton distribution functions play a central role since they encode the distribution of partons within
the proton. Especially, saturation is reached when the parton distribution takes a large value to be precised.

2.1.2 Parton distribution functions

Through the DIS process one has introduced the concept of quark distribution function. Similarly, one
can extend the concept of distribution functions to anti-quarks and to gluons as well. For instance one
can consider that the probed quark is actually a sea quark merging from a gluon splitting into a g pair
: a color dipole. We will not deal with details about the dipole scattering in the context of DIS to avoid
technical complications, spurious for the present purpose. The interested reader in the so-called dipole
factorization can find more details in [43]. Considerations made for quarks intuitively motivate as well the
concept of integrated gluon distribution function, denoted G(x,Q?), whose physical interpretation is the
average number of gluons in the hadron that carry a longitudinal momentum fraction x and a transverse
momentum bounded by the energy scale \/@ < p*. Thus its definition in terms of the number of gluons
per phase space volume element dN/dxd?k, is straightforward :

G(:U,QQ):/ d%k, AN (2.2)

w@oqe o dadZhy

Instead of dealing with the x variables one sometimes rather uses the rapidity parametrization defined as
Y = —Inx. Generalizing the integrated distribution function one introduces the unintegrated distribution
function fy (k) which is, up to a conventional 1/7k? prefactor, the average number of gluons per unit of
phase space volume defined as :

dN, d%k,
2G(z, Q? :/ d%k g:/ k). 2.3
( Q ) K2 <2 LdeQkL K2 <Q? Wki fY( J_) ( )

By construction, the parton distribution functions take a single exchange into account. That is the probe
interacts with the hadron only via a single quark or gluon. For multiple scatterings involving possible
interactions between the exchanged particles it is possible in some cases to generalize the concept of unin-
tegrated parton distribution functions. We shall see such examples in sections 3.3.2 and 3.4.4. The physical
meaning of the parton distribution is promoted to an effective parton distribution that is the probability
that some given total momentumn is transferred between the probe and the hadron.

Note that quark and gluon distributions are not independent. Of course, the quark distribution contains
the valence quarks. The other quarks can only come into ¢g pairs from virtual gluons. They are called
sea quarks. If the density of gluons becomes large - and we shall see this actually happens as x becomes
small enough, sea quarks dominate the quark distribution. The precise relation between quark and gluon
distribution does not matter for further discussion here but it exists and easily follows from the previous
consideration. Furthermore, the creation of a ¢q pair from a parent gluon requires an additional vertex
since a gluon can be directly emitted by a valence quark whereas a qq pair requires at least an intermediate
gluon. Hence the quark distribution is suppressed by an additional power of a with respect to the gluon
distribution.

Since parton distributions encode the parton content of hadrons, their computation would give direct
information about this. Of course the form of parton distributions a priori also differs depending on the
nature of the hadron concerned. Unfortunately parton distribution functions also encode non perturbative
physics. For instance, equation (2.1), splits the total DIS process into a hard (high energy process)
computable thanks to perturbation theory and soft phenomena including the hadron wave function that
lies in the scope of non perturbative QCD. Collinear factorization, is physically motivated by the separation
of time scales : soft processes are frozen during the characteristic time scales of the hard processes. Thus,
concerning the form of distribution functions, the best we can do is getting them from evolution equations,
that is their behavior by varying the value of Y and/or Q2. This is the aim of the following.
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2.2 The raise of parton density at small z

In this section we investigate the behavior of parton distribution functions with kinematics and es-
pecially their variation with the rapidity Y. First we roughly extract the physical behavior of parton
distributions from very simple considerations. For this purpose we first focus on the Bremsstrahlung pro-
cess : the emission of a gluon by a quark. It turns out that the probability for this elementary process
shows up a logarithmic divergence at small x. Hence, even though the coupling constant is small, the gqg
vertex comes together with a large logarithm in the Bjorken variable. Perturbation theory breaks down
and one has to resum all these large contributions. We shall see that the leading log contribution to soft
gluon emission cascades easily sums. On the physical side this divergence is interpreted as a growth of the
gluon distribution as z becomes small. Of course this growth cannot be infinite otherwise the unitarity
bound would be violated. At large density the recombination effect also becomes important and tames
the growth. This naturally leads to the concept of saturation. Then we shall make a more quantitative
treatment of saturation. However, in order to avoid the introduction of new notions and to follow the
main line, we instead use a toy model and make correspondence with actual results. We shall think about
the creation and recombination of gluons in terms of a reaction-diffusion process. Although the toy model
does not govern the right physical quantities, precisely we deal with gluon occupation number whereas the
physical quantity to consider is the dipole amplitude, it is easier to understand and contains relevant the
physics. The reason is because the number of gluons is not and observable and it has to be defined in terms
of existing observables. We shall see that in the dilute regime the number of gluons has an unambiguous
interpretation as being proportional to the unintegrated gluon distribution but it becomes less clear in the
saturated regime. The main result will be the emergence of the saturation scale. From our toy model we
will even be able to sketch a crude analytical expression valid at high energy for the saturation scale.

2.2.1 Soft Bremsstrahlung

An easy first step for studying how the partonic content evolves with kinematics is to consider the
elementary process ¢ — qg represented on figure 2.22. The emission of a real gluon by a quark is called the
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Figure 2.2: Soft Bremsstrahlung of a gluon by a parent quark.

Bremsstrahlung. We focus on the soft part of phase space, that is the energy of the emitted gluon is small
compared to the energy of the parent quark, x < 1. A straightforward calculation (see [40] for instance)
shows that the differential probability for emitting such a gluon with momentum k behaves like :

as(k?)Cr Ak, do

d rem k =~ 9
Phrem (k) 2 k? z

(2.4)

where Cr = (N2 —1)/2N, is the Casimir of the fundamental representation of the gauge group? and o =
g% /4m. This last expression (2.4) shows up two kinds of logarithmic divergences for the total probability :

e a collinear divergence as k| goes to zero,

e a soft divergence as the longitudinal momentum or x goes to zero.

2Present considerations would have led to the same conclusion if the parent parton were a gluon.
3If the parent parton were a gluon, Cr will be replaced by the adjoint representation Casimir Ca = N..
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A naive perturbative expansion in powers of o breaks down if one of these logarithms becomes large since
such a vertex contributes as ~ a;In(k% /m?)In(1/z) which is not necessarily small with respect to 1 even
though «; is small. The resummation of the collinear divergences is not considered here. The careful
procedure is well known since the 70’s and the underlying evolution equation is the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equation [32, 33, 34]. The DGLAP equation is the Callan-Symanzik
equation for QCD, that is, it governs, at least in the leading log approximation, the behavior of the
distribution functions with the energy. Let us rather focus on the small z divergence to be seen in the next
section.

2.2.2 Gluon cascades : the BFKL evolution

The small x divergence suggests the necessity for summing all possible emissions since each successive
emission brings a factor a,ln(1/x) that is not necessarily small even though ay is. Let us consider the
case in which the radiated gluon emits in turn another gluon as shown on figure 2.3. For small z, the

p-i-
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ki = a1pT

k‘; = $2/€f To K I
Figure 2.3: Successive xz-ordered emission of two gluons.

largest contribution comes from the region of phase space where the momentum fraction of the parent
quark carried by the second gluon is smaller than the one carried by the first one. We say that the gluons
are strongly ordered in the longitudinal direction. The total probability goes like :

d:vl dxg g 1.,
= —(In—)*. 2.
/ i (1) (25)

The other regions of phase space bring sub-leading contributions like Inln(1/xz), this is why the strong
ordering assumption is know as the leading log approxzimation. The process of figure 2.3 contributes as
much as the single emission 2.2, for agIn(1/x) ~ 1. Repeating the calculation for the successive emission
of n gluons ordered in the z variable contributes as (as In(1/2))™. This cascade, represented on diagram
2.4, is known as a Balitsky-Fadin-Kuraev-Lipatov (BFKL) ladder. For small z, so that asln(1/x) ~ 1

p+

'
k‘f =zpt

ky = zoki m < 19

+
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kTJLr = -rnk;l__l Ty K Tp—1
Figure 2.4: Successive x-ordered emission of n gluons.

there is no perturbative expansion in the number of final gluons. The sum of all the ladders must be taken
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into account for small z and they exponentiate. The number of gluons carrying the fraction z is easily
obtained from the total probability and reads :

dN 1

dm :L‘“’O‘S

7 (2.6)

with w some positive constant of order one. From these very simple considerations, (2.6) shows up a fast
raise of gluon density as x becomes small. A more careful analysis within the dipole framework which
includes also sea quarks® and transverse momentum sharing along the successive splittings, leads to an
evolution equation in the x - or more conveniently the rapidity Y - variable for the unintegrated gluon
distribution (2.3). This evolution equation is known as the BFKL equation [35, 36, 37] and reads :

Ofy(ky)
oY

d?p. k2 1
oo [ T (o) — )| @)
The evolution with Y is not an evolution with the virtuality that is provided by the evolution is the
transverse momentum. Indeed the evolution can be understood as an evolution with the energy difference
between the produced partons and the parent ones but at a fixed energy of the produced one. In other
words the relevant parameter is the energy fraction rather than the energy itself. The BFKL equation is
linear since the ladders do not interact with each others. Solutions to BFKL equation confirm the power
growth of the gluon distribution at small x or equivalently its exponential growth at large Y. This suggests
that the gluon density (and also the sea quark density) grows indefinitely. It agrees with the sketchy
consideration (2.6) which shows up a power raise of the gluon number as x becomes small but also with
experimental data 2.5. If one considers only the BFKL ladders, one ends up with an infinite growth of
the gluon density as x decreases. This is unsatisfactory from the physical side since such a growth would
cause trouble with the unitarity requirement. In the next section we shall see that considering only BFKL
branching processes is not enough as the density becomes high. Unitarity is restored by taking into ac-
count additional processes that are negligible as long as the system is dilute but become important at large
density. To see how these effects can be added to the evolution equation we shall first mimic the BFKL
resummation in a naive but intuitive and faithful way that will allow us to see what happens at large density.

For motivating the BFKL equation, let us take a point of view inspired by the reaction-diffusion tech-
niques of statistical physics. For this purpose it is convenient to introduce the occupation number n which
is the number of gluon per phase space volume element. We shall see why when we shall deal with satu-
ration. The gluonic phase space volume element is dkTd?k, /(27)32k* = dY d%k, /2(27)3. Furthermore,
one has to consider two degrees of freedom for the helicity and N2 — 1 for the color. More over there is an
impact parameter degree of freedom b : one has to consider the number of gluons per phase space element
in a given region of transverse space. If one assumes that the hadron is homogeneous, the density is the
same everywhere and one has to merely divide by S| the transverse surface of the hadron®. Therefore the
occupation number reads®

2(2m)3 dN,
2(N2 —1)S, dYd?k,

Using (2.3) the gluon occupation number also have a clear interpretation in term of the unintegrated gluon
distribution which reads : )
8w fy (kJ_)

(N2-1)S. K}

y(ky) = (2.8)

nY(kJ_) =

(2.9)

“In the dipole framework ¢ pairs and gluons are on the same pedestal since in the large N, limit of an SU(N.) gauge
theory, a single gluon, which is a particle in the adjoint representation and a ¢g pair, which is composed of two particles
in the fundamental representation are equivalent. This directly follows from the fundamental and adjoint representation
properties of SU(N.). We use similar properties in section 3.4.3 when we write adjoint representation matrices in terms of
the fundamental ones.

5Tt is reasonable to further assume axial symmetry so that S, = wR?, with R, the radius of the hadron. This further
refinement will be useless and we shall only deal with S .

6Since the impact parameter dependence is assumed to be trivial it has been omitted.
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Figure 2.5: Parton distributions (which are matched to denstity) as functions of the Bjorken variable z
for a proton. u, and d, denote the valence quarks whose distribution is peaked in the vicinity of x = 1/3
since there are three valence quarks that typically carry 1/3 of the proton momentum. ¢ denotes the
gluon distribution that shows up the expected raise at small z. S represent the sea quark density. Since
sea quarks cannot merge directly from a valence quark but come into ¢q pairs from emitted gluons, their
density is suppressed by an additional power of as compared to the gluons.

Let us consider the occupation number at some given rapidity Y and perform a step in rapidity from Y to
Y +dY (recall that increasing rapidity decreases x). What can happens in the rapidity slice is the splitting
of the last gluon into two gluons. This occurs with a probability proportional to n itself at rapidity Y.
However the transverse momentum of the parent gluon is shared between the two produced ones. For this
reason, the evolution equation is non-local in transverse momenta. Thus the evolution equation must take

the form : 5 )
ny (k d
) = [T RO p o), (2.10)

where K is a positive definite kernel and the factor o has been kept explicit since the splitting probability is
proportional to as. The BFKL equation (2.7) governs the evolution of the unintegrated gluon distribution
which is, according to (2.9) proportional to the gluon occupation number. Thus the BFKL equation indeed
governs the occupation number and we can identify :

1 1 Kk?
5 — 55(2)(1& - pJ_)/dZQJ_ o (2.11)

K(kj_,pj_):Nc|:(kJ__pL> m

We will justify soon that the validity range of the BFKL equation assumes the occupation number to be
small, i.e. it is valid in dilute hadrons. In the dense regime, the unintegrated gluon distribution loses its
physical interpretation as the gluon occupation number. A natural generalization is to define it as the
Fourier transform of the dipole amplitude (see 3.3.2 for instance) which is the physical observable governed
by the evolution equations. This is why considerations on occupation number become sketchy at high
density since it is more a matter of definition rather than a real physical picture. The number of gluons
does not really make sense in the dense regime, the only requirement is to recover its canonical definition
(2.9) in the dilute regime.
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We expand the r.h.s of (2.10) in powers of k. It has been proved that at high energy, i.e. for
transverse momenta that are large with respect to the non perturbative scale Agcp, the BFKL equation
is well approximated by its second order expansion in k ;. Moreover the first order vanishes. This leads to
a diffusion equation which is the high energy limit of (2.10) :

aQle(kJ_)

8ny(kl)
d(nk %2’

o (2.12)

~ aasny (k) + bas

where a and b are positive number of order unity. Written in this form it will be easy to motivate the
additional terms that restore unitarity and to see the emergence of saturation.
2.2.3 Toward saturation : the BK equation

Fortunately all possible mechanisms were not taken into account when we ressummed BFKL ladders
neglecting possible interactions among them. Indeed if the number of gluons becomes large it is possible
that some of them recombine together [44] as represented on figure 2.6. If two gluons are very separated

L

Figure 2.6: Typical recombination of BFKL ladders leading to non-linear evolution.

in frequency, they have a very low probability to recombine, they are transparent to each other. It means
that for recombination to become important, occupation numbers of gluons in neighboring phase space
volume must be at least of order one. One sees the advantage of dealing with the occupation number :
they provide a quantitative criterion for the transition to saturation. We also understand that the linear
BFKL equation, which neglects the recombination effects, is valid if and only if the occupation number is
small. Obviously, the probability for two gluons to recombine is proportional to n? since the recombination
process requires two initial gluons. Since these two gluons must be close in phase space, this contribution
is roughly local in n?. Concerning the oy, counting one would naively say that it is also proportional to
a single power of o, coming from the vertex. However our toy model breaks down here : in the dipole
framework, it turns out that the recombination of two dipoles is only possible via a a double-gluon exchange
process at leading order which brings an a2 contribution to the recombination rate (an early attempt of
BK equation has been provided by a more intuitive approach by Gribov, Levin and Riskin known as the
GLR equation [44, 45]). We conclude that the recombination effects enters as a negative term (since it
lowers the occupation numbers) to r.h.s of the diffusion equation (2.12) which becomes :

32"Y(kL) 2 2

8ny(kj_)
ShYARL) Ik, ?)? —cazny(ky), (2.13)

= s k s
5y aagny (ki) + bo

where c is again a constant of order unity. The above equation is a toy model of the evolution equation
known as the Balitsky-Kovchegov (BK) equation [46, 47, 48], derived in the dipole framework. Before
discussing its physical content, let us emphasize its toy model character. We argued in the previous section
that, even though the BFKL governs the evolution of the dipole amplitude, it holds as well for the occupa-
tion number. This breaks down for the BK equation since in the dense regime where non-linear effects are
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important, the dipole amplitude cannot be expressed as the Fourier transform of the unintegrated gluon
distribution and by the way, the occupation number. Thus equation (2.13) does not govern the evolution
of the right physical quantity. However the physics we shall extract from this equation is - at least quali-
tatively - the same as the physics contained in the BK equation. Thus we shall continue to close our eyes
on this subtlety.

Let us first make a sketchy analysis of equation (2.13) to see the form of the solutions and the behavior
of the gluon density with rapidity. At small Y (or x close to 1) we have seen that the perturbative expansion
in powers of a alone holds and the leading contribution to BFKL ladders is trivial : nothing is emitted.
This gives an initial condition for both the toy version of BFKL and BK equation : ny—¢ = 0, which is a
fixed point of both (2.12) and (2.13). Of course if the parton density is strictly zero, it remains zero. It
actually acquire a small value thanks to the higher as orders. The BFKL equation predicts an exponential
growth of the parton density in the rapidity variable at fixed transverse momentum. As long as n is small
the toy BK equation (2.13) reduces to (2.12) since the n? term in the r.h.s is negligible. The point is
that (2.13) have another fixed point for n = a/cas ~ 1/a,. This point is fixed at large rapidity when the
density is large and recombination balances exactly the splitting processes. The parton density saturates
at a value of n ~ 1/a;. Therefore the toy BK equation (2.13) has solutions that interpolate between n = 0
and n ~ 1/as as one evolves with the rapidity variable at fixed transverse momentum. We already see the
emergence of a saturation scale : at fixed transverse momentum, there is a value of rapidity at which the
system becomes dense and saturation effects become important. This is illustrated on figure 2.7.

Y =In 1/x}

Saturation
In Q% (Y)= AY

,/ @ Dilute system

JIMWLK

> >
In Ag.p In Q2

Figure 2.7: QCD phase diagram. From left to right, the evolution is the ordinary evolution with the energy
that is governed by the DGLAP equation and increases the resolution of the theory at short lengths. In
the vertical direction is shown the evolution with Y and the growth of parton density. In the dilute regime
it is governed by the BFKL linear equation but requires corrective terms as one approach large densities
that is contained in the BK equation. Above the saturation scale the system is saturated. This is described
by the CGC effective theory whose fundamental equation is the JIMWLK equation to be seen later. Qg is
the frontier scale between the dense and dilute regimes, to be discussed in more details.

2.2.4 The saturation momentum

A more quantitative description of saturation is provided by solving the BK equation. Once again let us
consider our toy version (2.13). It turns out that this is an already well known equation in reaction-diffusion
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theory and fluid mechanics. The reaction-diffusion BK equation is equivalent to the so called Fisher-
Kolmogorov-Petrovsky-Piscounov (FKPP) equation. It is known that the FKPP asymptotic solutions are
traveling waves represented on figure 2.8 [49]. The waves progress as rapidity increases without deformation,
which means that the solution ny (k) actually depend on the single variable Ink? — AY, a non trivial
property known as the geometric scaling, confirmed experimentally [50, 51| as shown on figure 2.9. \is a
positive constant interpreted as the "speed" of the wave front (in correspondence with reaction-diffusion
processes, Y plays the role of time and In ki, of a spatial coordinate). Here enters a very far-reached
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Figure 2.8: Shape of the traveling wave solution to the toy BK equation (2.13). At fixed rapidity, the
occupation number varies from ~ 1/a; to 0 over a short range interval of Ink? . This wave goes forward
along the In ki axis as Y increases without deformation.

concept of QCD : the geometric scaling property shows the emergence of a dynamically generated intrinsic
scale in QCD other than Agcp. Indeed, the single variable dependence of the occupation numbers - or the
dipole amplitude in the accurate approach - is denoted k2 /Q?(Y) instead of Ink? — AY. By identification
we have :

QY) = Qe (2.14)

Qs is called the saturation momentum. A more accurate analysis [52, 53| of the BK equation actually
shows deviations to geometric scaling taking the running coupling into account and equation (2.14) is in
fact an approximate expression valid for high energies, where the variation of the QCD coupling constant
is slow. Such analysis also leads to A >~ 4.9a5. We omit another parameter that affects the value of Q) :
Qs may depend on the nature of the hadron. Just from first QCD principles, gauge invariance does not
distinguish between protons and neutrons, thus it must depend only on the total number of nucleons A
in the considered nucleus. The number of gluons scales like A and so the occupation number, that is the
number of gluons per unit of transverse surface which scales roughly like A2/3 for a large nucleus, scales like
AY3 and so does Q. Therefore taking the nuclear size into account, equation (2.14) is modified according
to :

QA(Y, A) = Q3(A)eM ~ A3 (2.15)

Traveling waves solutions enable us to determine the transverse momentum distribution of partons
within the hadron. At constant, large enough rapidity” the occupation number interpolates between
ny(ki) ~ 1/ag for k; < Qs and ny(ki) — 0 for k; 2 Qs with a sharp fall off around the saturation
scale. It means that almost all the partons have k; < Qs in the hadron. The saturation scale turns out to

""Large enough" means that saturation is rerached, if the rapidity is small, the system is always dilute - at least in the
perturbative region.
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Figure 2.9: Experimental evidence of the geometric scaling. FExperimental data for the DIS ~*p cross-
section which is a function of the dipole amplitude fits along a straight line in the (Y, 7 = In ki) plane.
Recall the dipole amplitude is the physical quantity governed by the BK equation, the approach in terms
of the occupation number is only a toy model.

be the typical transverse momentum scale. While in the dilute regime partons may have all possible values
of transverse momentum with small occupation numbers, in the dense regime, the transverse momentum
is bounded by the saturation scale. This agrees with experiments as shown on figure 2.10.

2.3 Dense media and color glass condensate

The BFKL equation well describes the growth of parton density in a dilute hadron but breaks down
once recombination becomes important. The BK equation takes recombination into account and describes
the transition to saturation. Both BFKL and BK equations govern the evolution of a color dipole which is a
simplified limit - to be discussed - of an infinite hierarchy of equations that couples higher rank correlation
functions known as the Balitsky-JIMWLK hierarchy. An alternative description of dense QCD matter is
provided by the Color Glass Condensate (CGC) effective field theory to be discussed in this section. The
aim is to give an intuitive motivation to the topic, to briefly set the framework and to state some known
results, especially concerning the evolution at small z. More exhaustive approaches can be found in [54, 55].
First we shall see how a dense medium (or at least some of its degrees of freedom) is described by a classical
field. These considerations will motivate the CGC formalism and the underlying renormalization group
approach. We will discuss the evolution equations of the CGC and the possible simplifying assumptions. In
this section the projectile/target description of high energy collisions plays a central role. Indeed, although
the CGC provides intrinsically the description of a dense medium, saturation is measured with a probe
which gives access to physical observables.

2.3.1 The hardness hierarchy and separation of scales

As seen in the previous sections the softer are the hadronic modes and the more numerous they are. In
a frame where the hadron has a high energy, the valence quarks within the hadron are hard and radiate
gluons that are mainly soft with respect to them according to the soft divergence (2.4) of the gluon radiation
probability and thus, from section 2.2.3, have large occupation numbers of order 1/as. They do in turn
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Figure 2.10: Experimental evidence of the intrinsic scale in both p-A (ALICE) and p-p (CMS) experiments.
The density of partons falls off above values of transverse momenta of the order of the GeV.

radiate mostly softer and softer gluons according to the leading log contribution (2.6). This hierarchy in
the cascade process is a very important feature for motivating the CGC effective theory. A large density of
hard partons radiating softer ones is properly described at the classical level (see appendix A for the proof
of this assertion - it has been proved for quarks emitting gluons but holds for gluons emitting gluons as
well). From this consideration, the hardest partons, are described by a classical color source J4#(z). The
form of the current will be discussed in the next section and does not matter for the present considerations.
The point is that hard particles described by a classical field do have longitudinal momenta greater than
some arbitrary scale A. That is one considers successive emissions and recombinations at the classical level
up to this scale and the modes that are below this scale are ordinary quantum fields. However they are
assumed to carry an energy greater than the non perturbative scale Agcp to allow perturbation theory.
For this reason they are called semi-hard rather than soft. This hierarchy is summarized on figure 2.11.

2.3.2 Background field associated to the target

Here we shall discuss more specific properties of the current associated to the nuclear target. The
nucleus is conventionally taken to be a left-mover so that the associated classical current is single component
TA- (). Moreover the calculation of appendix A shows that this current does not depend on the variable
x~ 8. From the physical side this is rather easy to understand : in the lab frame the longitudinal momentum
of quantum fluctuations p~ is small with respect to the total center of mass energy +/s. Hence their life-time
is long with respect to the duration of the collision between the two hadrons : they can be considered as
static, i.e. x~-independent, at least over times scales that are of the order of the collision process between
the projectile and the target. In high energy collision, the lab and center of mass frame are more or less
the same : both the projectile and the target carry very large, opposite longitudinal momenta. It means

8 An alternative way is to use covariant conservation. In the gauge AT = 0, covariant conservation reads D-J =977~ =0
which completes the proof.
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Figure 2.11: Illustration of the terminology. Hard gluons are soft compared with the sources but hard
with respect to the cutoff A. Classical sources are used to describe them. Those softer than A are called
semi-hard since they are harder than the non perturbative scale Agcp.

that there is a strong Lorentz length contraction in this frame especially concerning the target. Thus, the
source distribution is sharply peaked around z* = 0. This allows to refer to the target as a shockwave.
These considerations enable us to parametrize the source as follows :

T4 (@, x1) = gde(a)p? (x1), (2.16)

where J. is a representation of the delta function. In actual calculations we send € to zero as long as
this limit is well defined and then &, is merely §. p? is some arbitrary function of transverse coordinates
only. A reasonable physical assumption is that its support is compact : the target extension is finite in
the transverse plane. An equivalent description of classical source is the associated background field that
satisfies the classical equation of motion in presence of these classical source (see D.1 for details). In the
present case of a left-moving, static source, the corresponding background field® is the single component
field A4~ (21, %) as shown by equation (A.17) :

d2
At ) = o) [ s~y ). 2.17)

The non trivial coordinate dependence of the background field makes the system spatially inhomogeneous.
It is therefore inevitable to keep a trace of the coordinate dependence in the Feynman rules. In the dense
regime, the occupation number being of order 1/ay, the sources and, by the way, the associated classical
field are of order 1/g. Therefore the insertion of one background field in some interaction vertex exactly
cancels one power of g coming from the vertex (a more accurate analysis will be performed in section 4.2).
Thus, n background field legs plugged on a vertex of order g” is of order one and perturbation theory as
an expansion in the number of vertices breaks down if the background field is attached to these vertices.
One has then to resum all the diagrams with an arbitrary number of insertions of the classical field.
Fortunately the narrowness in the 2™ space-time direction of the background field in the axial gauge makes
interactions of fast particles with the shockwave very simple. Particles coming from the projectile are not
necessarily described by a CGC even though they are hard. Indeed, the CGC gives a description of hard
modes contained in the dense medium, i.e. the target only (chapter 4 is devoted to the case where both the
projectile and the target are dense and thus described by a CGC). For typical momentum scales of particles
from the projectile that are assumed to be large with respect to the ones exchanged with the target, one can
use the eikonal approximation. The justification of this approximation is carefully performed in appendix
B. From the physical point of view this means that the path of a hard particle is almost unaffected by the

®The gauge used for the proof is the Landau gauge 9 - A = 0. At the classical level the Landau gauge turns out to be the
same as the axial gauge AT = 0.
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soft gluons exchanged with the shockwave. For a shockwave in the eikonal approximation, it turns out that
the dependence of an observable in the background field only comes through Wilson lines (see appendix B
for a proof) :

Qup(x1) = Pexp [z'g [ art At 0@ (2.18)

where P denotes the path ordering operator along the z+ direction. The Wilson line describes the interac-
tion of particles with the target and encodes their color precession. As we will see through examples and
as shown in general in appendix B, there is one Wilson line per particle traveling through the shockwave
in the amplitude corresponding to a given process and each of them are in the gauge group representation
of the corresponding field.

Let us say a little bit more about the hard modes described by the classical source. Their x™-
independence is a consequence of Lorentz time dilatation that freezes these modes over large time scales -
larger than the duration of the scattering process. Indeed the life time of quantum fluctuations is typically
Tue. ~ 1/pT ~ 1/z+/s which is much greater, for small z than the collision time which lasts Tco1, ~ 1/4/5.
The former mechanism of emission-recombination that generates a given source configuration J4~ at the
collision time fundamentally obeys the laws of quantum mechanics and is thus random. This is a very
important feature. It is impossible experimentally to constrain the source configuration in a collision. Two
occurrences of the same collision, even with the same initial conditions will be performed a priori with
different realizations of source’s configuration. A brute force computation of an observable, which is in
general a functional of the source distribution via the associated classical field A™, in a given configuration
is therefore meaningless. To give a physical meaning to observables, one has to average over the range
of all possible source configurations. Obviously some configurations are more likely realizable than others
and do obey a probability distribution denoted W known as the CGC weight function. This probability
also depends on the cutoff A that separates the classical modes from the quantum ones. Instead of dealing
with a longitudinal momentum cutoff A, one rather introduces the corresponding value of z¢y and the
associated rapidity Y = —Inxey. One also prefers to work in the background field A4~ representation of
sources instead of the - equivalent - source representation J4~. The probability distribution is denoted
Wy [A4~]. Observables are averaged thanks to this distribution according to :

(), = / DA Wy [AAO[AA]. (2.19)

This last expression is one of the fundamental relations of the CGC framework. As long as fields are
described by a CGC, one has to perform averages systematically. In order for the theory to be self-
consistent one has to be able to work out explicitly Wy [AA*] or, at least, to derive an equation whose
solution is Wy [A4~]. This can be performed thanks to a renormalization group approach to be discussed
in the next section.

2.3.3 The renormalization group approach

The aim of this section is not the rederivation of the evolution equation that will be stated. The
interested reader can find further details in the references quoted in the header 2.3. The idea of how to
find the evolution equation is the same as the classic Wilsonian approach for deriving the Callan-Symanzik
equations although the evolution in rapidity Y is not an evolution with the energy scale of the theory. The
cutoff Y that appears for instance in (2.19) is physically the separation between "hard" and "semi-hard"
modes, that is the scale so that for rapidities larger than Y the fields are classical and bellow they are
quantum. But this cutoff is arbitrary'?. In mathematical terms, in order to avoid double counting, the loop
integrals arising from the computation of observables in perturbation theory must be cut at longitudinal
momenta corresponding to the cutoff Y in the ultraviolet. The result is that these observables explicitly
contain logarithms of the longitudinal momentum cutoff that can be reabsorbed into a redefinition of the

10 Arbitrary within a range where the external field approximation is justified and perturbation theory holds.
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CGC weight function. The Y independence of observables is guaranteed provided the CGC weight function
satisfies a renormalization group equation know as the Jalilian Marian-lancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) equation [56, 57, 58, 59, 60, 61| which reads as follow :
oWy 0
—[A7] = T, — ~]. 2.20
A = A, S i) (2.20)
‘H is a hermitian, second order functional differential operator known as the JIMWLK hamiltonian. Its
explicit form is :

SIS Ny (BT 0 AB 0
H {A ’6,4—] = 2/d xz.d yLéAA_(ijL)n (XJ_,YJ_)&AB_(O?yL). (2.21)

The integral kernel n*8 is a functional of the classical field through adjoint representation Wilson lines €
which reads :

! (1 —21)- (vi—21) [ T E e PO Lot
nPesyn) = o [ e I (i) - )] [ -G (222

The background field averaged observables (2.19) also satisfy an evolution equation. The equation that
governs the evolution of observables follows from plugging (2.20) into (2.19) and integrating the functional
integral by part using the hermiticity property of the JIMWLK hamiltonian. This leads, for an observable
O, to :

0

Yy

This equation is - a bit improperly - called the JIMWLK equation as well and will be the one that is

understood when we deal with the evolution of observables. The JIMWLK equation holds only for gauge
invariant observables.

(O)y == (HO)y . (2.23)

2.3.4 Multipoles and B-JIMWLK hierarchy

Such gauge invariant quantities are provided by squared amplitudes and cross-sections summed over the
initial and final colors. This always leads to a dependence of observables on the background field through
terms of the form :

tr [, (x1,1)2%, (52,10, (3,1 2, (%20, 1)
(2.24)

x|y (v1,0)9%, (72,1 (375,0) -, (V2 1) | % .

where R; is some representation of the gauge group depending on the nature of the fields involved in the
reaction. A single trace operator of 2n Wilson lines is called a 2n-rank multipole. The CGC requires the
average of color operators of the form (2.24) over the classical field configurations. This leads to an infinite
hierarchy of coupled differential equations known as the Balitsky-JIMWLK hierarchy. The simplest color
operator is the dipole amplitude corresponding to a ¢q pair. From the CGC framework it is straightforward
to show that the ¢¢ pair amplitude scattering a dense medium is proportional to :

Seeuyi) = -t (260910 (2.25)

where the Wilson lines are in the fundamental representation. The evolution equation for the averaged
dipole is given by :

0 asNe (XJ_ - YJ_)Q
2 18(xy, S 2

[(SxLy))y — (S y)S(zLy))y]
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The point is that the < 5SS > term itself obeys another evolution equation whose r.h.s contains quadrupoles,
i.e. operators made of trace of four Wilson lines and so on... this dependence of evolution equations on each
other is the B-JIMWLK hierarchy. However one can simplify the equation in the limit of a large dense target
which contains a lot of partons, n for definiteness. If, for instance, two dipoles from the projectile interact
with two different partons from the target they do not talk to each other. The mathematical consequence
is that the average of the product factorizes into the product of the averages due to the independence of
the scatterings. The number of ways to plug the two dipoles on the same parton in the target goes like n
and on two different partons, it goes like n(n — 1)/2 ~ n? for large n. Thus for a large target, that is as
n becomes large, one can neglect the entangled scatterings with respect to the independent ones (similar
arguments arise in another context in the end of appendix A). Thus for a large target, one has :

(SxL,y)SzLyl))y — (SELy))y (SEZLyl))y- (2.27)

Plugging this property into (2.26) makes that equation (2.26) becomes closed. The large target limit of
(2.26) is nothing but the BK equation discussed in section 2.2.3.

2.3.5 Alternative simplified approaches for computing CGC averages

The brute force computation of the background field expectation value of multipoles is practically
impossible, even numerically due to the infinite B-JIMWLK hierarchy. We here mention the available
methods and approximations used for actual computation.

The gaussian approximation

To guess possible simplifications, let us focus on what is taken into account in the JIMWLK evolution.
The CGC provides the leading small x logs contribution of gluon cascades in the saturated regime. That is,
it is a non-linear generalization of the BFKL evolution in which the BFKL ladders can recombine together.
In the BFKL evolution the ladders freely propagate and do not interact with each other. In that case, the
evolution is said to be linear. The non-linearity of the JIMWLK evolution arises from the possible fusion
between ladders. Let us close our eyes for a moment on non-linearities considering only the free evolution
of ladders in the CGC framework. In that case, the distribution Wy [A™] is gaussian, that is :

0 if nis odd

<AA1_(9CT,x1,¢)...AA”_(x:§,xn,L)>y = <AA1_($1+,X1,L)AA2_(552+7X2,L)>Y (2.28)
e X <.AA"717(-1'»:_1; anl,J_)AAni(x;{? Xn,l)>Y
+perm. if n is even.

In the gaussian limit, the distribution is encoded into the 2-point function (A4~ (2T, x1) AP (¥, y1))y
only. Its structure is furthermore constrained by physical requirements : gauge invariance requires the
color structure to be trivial, i.e. proportional to 647, causality requires locality in the z* variable, i.e. the
2-point function is proportional to 6(z* — y*) and homogeneity of the nucleus in the transverse direction
requires a dependence in the transverse coordinates only through x; —y;. Thus, without any loss of
generality, the 2-point function can be parametrized as follows :

<AA_ (zt,x VAP~ (y*, YL)>Y = 64B5(at —y )y (et xL —y1). (2.29)

Although these considerations assume the evolution of ladders to be free, it has been shown [62, 63] that
it remains valid even in the presence of non-linear effects. A mean field approximation can be performed
identifying a ladder resulting from the recombination of two ladders as an effective single ladder. Under this
mean field approximation, the JIMWLK evolution remains gaussian even if one takes non-linear effects into
account. This only affects the form of the function vy in (2.29) compared to the BFKL gaussian evolution.
The gaussian approximation to JIMWLK has already shown a great success for the comparison of theory
vs. experiments |64, 65]. Moreover it is much easier to implement [66, 67, 68] and also leads to accurate
analytical results.
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Initial conditions, dilute regime and McLerran-Venugopalan model

From previous considerations the gaussian approximation is obviously valid in the dilute medium limit
in which non-linear effects can be omitted. In the dilute limit the background field is weak and one can
expand perturbatively the Wilson lines in powers of the background field in correlators. The first non
trivial order is the second order in powers of the background field where the 2-point function (2.29) can be
identified. This low energy limit is known as the McLerran-Venugopalan (MV) model [69]. Furthermore,
the low energy limit can be taken as an initial condition for solving the JIMWLK equation since it is easy
to work out correlators at large x - or small Y - thanks to the MV model. From the physical point of
view the dilute limit takes only the dominant single scattering contribution into account. In this context
the concept of parton distribution makes sense and it is actually possible to relate the unintegrated gluon
distribution fy (p. ), defined in (2.3), to the 2-point function (2.29) according to

N2 -1)S o ik
fYIgI;U = (QW)Q) Lpi/daﬁdza:wy(a:*,xi —y1)e Py, (2.30)
4

This result will be proved in section 3.3.2.
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Chapter 3

Di-hadron production in proton-nucleus
collisions at the LHC

For reasons to be explained bellow, an accurate, quantitative exploration of saturation is provided by
proton-nucleus collisions, i.e. a dilute projectile, colliding a dense target. The first data for particle produc-
tion in p-Pb collisions at the LHC have just become available |70, 71] and more data will be taken during
the run scheduled for 2013. A main feature of the LHC for our present purposes is to provide experimental
data at values of the Bjorken variable z smaller than ever. This enables the exploration of the saturated
regime of QCD whose natural framework is the CGC effective field theory. The precise boundary between
the dilute and saturated regimes is not yet firmly established neither on the experimental nor on the theory
side. However, the phenomenological success of CGC-based predictions for various observables measured at
RHIC [72] suggest that the saturated regime has been - at least marginally - reached at RHIC. This makes
it encouraging to conjecture that this regime will be fully reached and well explored by the p-Pb collisions
at the LHC. In experiments, one of the easiest quantitative evidence of saturation is the measurement of
di-hadron correlations. Working out the di-gluon production inclusive cross-section will be the main aim
of this chapter having in mind the study of saturation at the LHC.

First we shall discuss what is expected from saturation and especially the decoherence effect between
produced particles. Next we shall emphasize the di-hadron kinematics and by the way, why di-hadron
production cross-sections in p-A collisions provide the simplest observable for a quantitative evidence of
saturation. We will also motivate the choice of di-gluon production rather than any other process at the
LHC. Then, as an appetizer we shall compute the single quark production cross-section. This is the simplest
calculation in the spirit of what we are doing. This will be a good exercise to see how things work. The last
section will be devoted to the computation of the di-gluon cross section and will be our main result that is
closely related to current LHC experiments. This will be computed in the general case analytically. Then
we shall push further analytic calculations by looking at the hard scattering limit where the transverse
momenta of final gluons are large with respect to Q5. This limit shows up a strongly correlated character
and enables us to define new non-linear generalizations of gluon distributions. This chapter is based on
our work [38].

3.1 Final state decoherence

For a saturated target, a parton coming from the projectile will receive multiple scatterings when trav-
eling through the dense medium. The situation really differs from a single scattering where the projectile
interacts with the target via a single particle exchange that is computable by perturbation theory. In the
dense regime the multiple exchanges are very complicated and cannot be computed by Feynman diagrams
techniques. For instance CGC faces this problem by assuming that it is well described by a random classical
field whose multiple interactions lead - in the eikonal approximation - to the emergence of Wilson lines that
fully encode the scattering process. From the physical point of view, our lack of knowledge about multiple
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scatterings within the saturated medium makes impossible to claim the existence of momentum conserva-
tion law. In other words, information about the initial momentum of an incoming parton is lost as it scatters
the target off. This is broadly what we call the decoherence effect, the main evidence of high density regime.

In our precise context, the term "decoherence" generally refers to the decorrelation between particles in
the final state. To understand what is meant let us consider some arbitrary high energy collision between
two dilute hadrons as represented on figure 3.1. Such a reaction involves the exchange of a single soft
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Figure 3.2: Plot of the angular distribution - in

the transverse plane - between two final parti-

cles. It shows up two sharp peaks at A¢p = 0
Figure 3.1: Typical process between two dilute and A¢ = m. This result comes from p-p exper-
hadrons which produces two back-to-back jets. iments performed at RHIC[73].

particle between the two hadrons. The produced particles are arranged in two beams, called jets, that
have opposite directions in the transverse plane and for this reason are called back-to-back. At high energy,
particles in each jet are almost collinear. This merely follows from the collinear divergence 2.4. Therefore
if one picks randomly any two particles in the final state, either they belong to the same jet and have a
very small angular separation or they belong to two different jets and they have quasi opposite directions.
Then if one looks at the angular separation between final particles one finds a distribution sharply peaked
around angular separations equal to 0 or 7, as show on plot 3.2. In that dilute-dilute case we say that
particles are strongly correlated : given the momentum of one of the particles in the final state, there is a
large probability that the other ones have been emitted in the same direction or in the opposite one.

The situation is very different if at least one of the two colliding hadrons is dense. Indeed, there is
no longer a single particle exchanged but many of them. Each of them can couple to various particles
within the jets : the angular distribution of particles in the jet is broadened. The transverse momentum
broadening is the main observational evidence of saturation as shown on figure 3.3. The disappearance of
correlations between particles is what is referred to decoherence or decorrelation in this context. From now
let us focus on correlations between two hadrous.

3.2 Di-hadron kinematics

Inclusive di-hadron production cross-sections provide the simplest quantitative tool for studying satu-
ration effects. Before making kinematic considerations for justifying the choice of this observable, let us
motivate first the suitable experimental conditions provided by dilute-dense collisions for probing saturated
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Figure 3.3: Angular distribution between two final particles in d-Au collisions performed at RHIC [73].
Correlations, especially around A¢ = 7 are widely suppressed compared to the p-p case. The A¢p = 0 peak
remains in such an asymmetric collision since only one of the peaks is broadened. There is still a large
probability that two produced particles are close to each other.

QCD matter. The question, why does one prefer p-A collisions arises from the following consideration :
the most accurate way to measure the physical effects of a saturated medium - the target - is to get rid
of possible saturation effects coming from the probe, i.e. the projectile. A dense projectile would bring
its intrinsic noise that would perturb the measurement. We come to the conclusion that the saturated
target must be probed with a dilute projectile. A naive guess for motivating the p-A collisions rather than
p-p or A-A ones follows from the intuitive picture that one has from hadrons : there are more valence
quarks in a nucleus than in a proton and therefore it is denser. In section 2.2.4, we have seen that the
saturation scale behaves like Q, ~ AY3. At some given small value of x, saturation is easier to reach as
the hadron considered has a larger number of valence quarks. However a large number of valence quarks
increases the double parton scattering (DPS) effect [74]. From the physical point of view, the DPS effect
is due to pair of partons created in the remote past. It can be shown that they must be included into the
initial proton wave function and are indistinguishable from a double emission process by two independent
sources. Obviously this effect is more important as the number of valence quarks increases. DPS effect
also brings an independent contribution to momentum broadening that has nothing to do with saturation.
In that sense it is undesirable. From these considerations, a good candidate for a dilute probe is a proton
whereas a large nucleus is a nice dense medium. This indeed refines the measurement of the intrinsic
nuclear saturation effects and justifies in its own the choice of p-A collisions!. However, the hadronic
size is not the only parameter that dertermines to dilute or dense character of a hadron. Saturation also
depends on the region of phase space we are looking atn that is, on the kinematics. Let us sketch this
in the following elementary example : the exclusive di-hadron production via a single exchange between
the projectile and the target represented on figure 3.4. These considerations are qualitatively unaffected
by multiple scatterings and more complicated sub-processes. By working out kinematic relations, it is not
difficult to show that the values of x1 and xo are completely fixed by the final state kinematics :

ki1 ko 1
— i Y > Y2
xl \/g € \/g € (3 1)
k1,1 - ko, 1 e

Vs Voo

where y; = %ln(k:;r/k:i_), i = 1,2 are the respective rapidities of the final partons® and /s is the total

T =

1Or at least light-heavy hadrons collisions like the d-Au processes performed at RHIC. For technical reasons, RHIC cannot
use protons as projectiles.
2This definition for the rapidity differs from y = —Inz by an irrelevant constant.
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Figure 3.4: A single scattering exclusive di-hadron production process.

center of mass energy. Beside the number of valence quarks, the saturation scale Qs also depends on z.
The dilute-dense kinematics requires that the projectile is probed at values of x; ~ 1 whereas for the
target xo < 1. Relations (3.1) shows that in order to be fulfilled one has to consider forward rapidities,
that is y; 2 > 0. Physically this means that the two measured final partons are right-movers. We come to
the conclusion that p-A collisions together with the measurement of forward rapidity regime are the best
experimental conditions for studying saturation physics.

One can even go further since some processes are dominant depending on the experimental conditions.
Nowadays one has essentially two available tools for the exploration of dense hadronic matter. The first
one is the RHIC. For technical reasons it does not perform p-A collisions but d-Au ones at energies of 200
GeV /nucleon. The rapidity range goes up to y ~ 4. On the deuteron side one has typically z; ~ 107!
At this value of z; the deuteron wave function is dominated by the valence quarks [75] and the leading
di-hadron production process is the radiation of a gluon by this quark as it scatters the gold nucleus off :
qAu — qgX. The explored values of xo are expected to lie at the boundary of the saturated phase at such
energies. Therefore it was a priori difficult to forecast whether saturation will be observed or not on the
experimental side and whether theories for saturation will agree with data or not on the theoretical side.
The disappearance of back-to-back correlations in di-hadron final states has been indeed experimentally
observed in d-Au (and even some kinematic regions of p-p) collisions at RHIC |76, 77|. On the contrary,
we expect that the effect of the medium will be tiny for gluons with transverse momenta large with respect
to Qs, in agreement e.g. with the results [71, 78]. Even though the validity range of CGC around the
transition to saturation is ill defined, CGC-based predictions seem to agree with data [72]. One has been
able to compute qualitatively [79, 80, 81, 82| and even quantitatively [83, 84| these decoherence effects in
agreement with experiments. The other accelerator that is expected to reach the fully saturated regime
is the LHC. The first p-Pb runs have been performed in winter 2012-2013 and some preliminary data is
available yet [70, 71]. Since the center of mass energy is /s = 5 TeV /nucleon, the lead nucleus is clearly in
the saturated phase. The rapidity range covered is a bit larger than at RHIC : y < 5 or 6. The proton is
probed in the regime x1 ~ 1072 — 1073 where its wave function is dominated by gluons. Then the dominant
process is the splitting of a gluon into either a gluon pair or a gg pair. We shall focus on the first one :
gPb — ggX which has a richer color structure.

So far, our problem is motivated by physics. Our task is next two compute the cross-section for the
inclusive di-gluon production in order to make predictions for LHC runs in p-Pb collisions. Let us first
compute one of the simplest observable in the CGC framework : the single quark production inclusive
cross-section. This school case will allow us to introduce the formal devices that will be used for the
di-gluon production. Then we will not be lost into peripheral digressions and be able to follow a straight
guideline for this more complicated case.
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3.3 A pedestrian example of practical computation : single quark scat-
tering

3.3.1 Cross-section

To set the notations and see how calculations work, one considers the simplest example of a single quark
scattering off the nucleus. This process is illustrated on figure 3.5. The incoming quark is conveniently

a,s,p — _>Q7r7b

......I......

Figure 3.5: Feynman diagram for the process ¢gA — ¢qA. The doted line represents the nucleus. One has
to keep in mind that the quark has been emitted in the remote past by the proton.

chosen as forward, that is its momentum p reads p = (p*,0,p). The S-matrix element corresponding to
this process is very simple since it is nothing but the normalization condition (B.10) detailed in appendix
B for one particle states in presence of a background field :

(q,r,b| P, s,a) 4~ =2pT™2n6(pT — ) /dzxLQba(XL)e_i(qi_pl)'xl. (3.2)

Qpe(x1) is the Wilson line (2.18) in the fundamental representation. The physical quantity accessible to
experimentalists is the cross-section. The way we relate cross-sections to S-matrix elements is explained in
appendix C. Although the initial state in (3.2) seems to be a one-particle state, the meaningful observable
is a cross-section rather than a decay rate. The initial nucleus does not appear in the initial quantum state
since it is described at the classical level but the physical process is indeed a two-body collision. Let us
define as the M-matrix the coefficient of 2md(p* — ¢™) in formula (3.2). The differential cross-section for
the single quark scattering then reads in terms of the M-matrix element as follow :

1
=5

d3q

e (3.3)

do(q(p) — q(q)) IM(q(p) = a(@))]*276(p" — qT)

This is the cross-section for a process with definite colors and spins in the initial and final states, however,
it is easier if one deals with gauge and Lorentz invariant quantities. Then we have to sum over the final
state’s color and spin and average over the initial state’s color and spin. Moreover one has to average also
over the background field according to (2.19). The essential ingredient for computing the cross section is
then :

(IM(atp) = a(@)P) = 2]1\, » 4(p+)26r‘*5”/d2md2m (a1 )0fy(y1) ) e Ceys)
e (3.4)

_ A(pt)? /deLdzyL <tr {Q(XL)QT(}’L)} >Y eidL(x1-y1)

Ne

In this last expression one sees the emergence of a quantity of special importance known as a color dipole,
denoted S, defined as :

Seesy1) = -t (26910 (35

In this very simple example we have seen how to perform the calculations and the emergence of trace color
operators of the form (2.24), the dipole.
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3.3.2 Dilute regime limit

Performing the dilute limit in (3.4) will enable us to generalize the unintegrated gluon distribution to
multiple scatterings. For this purpose, one has to match together two ways for getting the dilute limit. The
dilute limit assumes that there is only a single gluon exchanged between the incoming quark and the target.

The first way to compute the dilute limit follows from the general collinear factorization, already
encountered in 2.1.1 and justified for high energy. The cross-section for the gA — ¢X process reads in
terms of the cross-section corresponding to the gg — ¢ process with a gluon carrying a fraction zs of the
target’s longitudinal momentum @~ :

1
do(q(p) — q(q)) = /0 dzoG (23 Q*)da(q(p)g(k = 22Q) — q(q))- (3.6)

The frame is chosen so that the incoming quark has a zero transverse momentum and the momentum
k transferred by the exchanged gluon is k; = q. In the collinear factorization approximation, the
distribution of the gluon is sharply peaked around k; = 0 in the transverse plane. Thus equation (2.3)
merely reads? :

1
22G(22;Q*)6P (k1) = — 5 fr (kL) (3.7)
k9

Furthermore, in the eikonal approximation, the gqg — ¢ cross-section, averaged over initial spins and colors,

o (W)oh) = ala) _ g"

do(g(p)g(k) —ale)) _ 9P k™, ‘4

- 276W (p + k — q). 3.8
dyd2q, 4N.q? w0 (p+k—q) (3.8)

y being the rapidity of the final quark, y = % In Z—i. Plugging this last expression into (3.6) and performing
the integration over zg thanks to the delta function which fixes zo = ¢7/Q ™ gives :

do(q(p) — q(q))
dyd?q,

92p+ 2.+

= 226l @) Lm0 a0 @) = 5L e @i —ah) (39

Note that the last equality is a device since the unintegrated gluon distribution is a mere delta func-
tion in the collinear factorization approximation. Closing our eyes on that point, the last form of (3.9)
is known as k| -factorization. It is more general than collinear factorization since the gluon exchanged
with the target is off-shell in k| -factorization. This special limit will enable us to write down a generalized
unintegrated gluon distribution in presence of non-linear effects read from the structure of the cross-section.

On the other hand, one can perform the brute force computation of the gA — ¢X cross-section thanks
to (3.4) together with (3.3). It leads to :

+

da(q(gz)d;q)f(q» N (5%)25(P+ - q+)/d2@ld2yL (S(x1,y1))y e fas ey, (3.10)

The dilute limit (3.9) allows a natural definition of a generalized gluon distribution in presence of non-linear
effects. Indeed, we expect that the total cross-section takes the form (3.9) even in presence of non-linear
effects by replacing the unintegrated gluon distribution fy by the generalized object under consideration.
An obvious identification with (3.10) leads to the gluon distribution associated to the fundamental dipole
f;ilp’F, defined as :

VP (qu) = 2N qi /d2de2yL (S(x1,y1))y e oL Gxi=yL) (3.11)
qi g2(2ﬂ_)2 n ’ Y )

3This relation between the integrated and unintegrated gluon distribution is a bit trivial. Actually we shall recover the
so-called k| -factorization result using the less general collinear factorization in which the gluon coming from the target is
on-shell.
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where q is now the total transverse momentum transferred by the target. It is not possible in general to
associate generalized gluon distributions to any trace operator, this makes sense only in particular cases.
The single quark scattering is one of them, we shall see another example for the ¢ — gg process in section
3.4.4.

Furthermore, the dilute limit can be also performed directly in (3.10). This will lead to a definition
of the unintegrated gluon distribution as a background field correlator. By definition, the 1.h.s of (3.11)
reduces to fy(qy) in the dilute limit. Concerning the r.h.s the single exchange assumption is an expansion
of trace operators up to second order in the background field since the cross-section receives a contribution
from both the amplitude and the complex conjugate amplitude. Therefore we will expand the Wilson lines
(2.18) as :

Q( ):1+'/d+A—+ _92/ +dq.T — (T — (T 3
x| ig [ dx (x7,x1) 5 datdy*P{A (=", x1)A (y",x1)} + O(A%). (3.12)

Plugging this expansion into the dipole definition (3.5), keeping only terms up to second order and then
performing the average (2.29)* gives :

(SxL,yl))y =1 +920F/dl‘+ (W@, xL —y1) = (z,0)). (3.13)
where Cp = (N2 — 1)/2N, is the fundamental representation Casimir. For brevity, let us define

Dy(x. —yi) = / dot (1 (#F,0) — (et xs —y1)). (3.14)

By inserting the dipole expansion into the relation (3.11), one relate the unintegrated gluon distribution
to the Fourier transform of the background field two-point function integrated over z™. Actually, the
integrand in (3.11) only depends on the coordinate difference x; — y, leaving the integral of 1 over the
whole transverse plane. Of course the transverse plane has to be cut at the hadron’s size. As long as the
transverse integrals contain oscillating exponentials, the integration range can be extended to infinity but
in this last case, the remaining integral just brings a factor S| . Hence, the unintegrated gluon distribution

reads :

2 _ 1 .
fycg;jm B _(NC<27r)2) Lt JESNCRE (3.15)
This result proves the, so far stated, formula (2.30). Recalling that fy(q.)/q? is the number of gluons
per phase space dY'd?p |, it has an alternate definition as a number operator acting on the proton wave
function. The classical correspondence is a background field two-point function averaged over the sources
in the CGC framework. This justifies the existence of such a relation between the unintegrated gluon
distribution and the background field two-point function.

3.4 Di-gluon decorrelation at the LHC

On the projectile side the relevant part of the proton wave function, which is purely gluonic and dilute,
is treated within the collinear factorization. According to appendix C.2, this yields the following expression
for the p-A cross-section :

do(pA — ggX) B 1
dyrdysd?ky  d2ko | 25670 (pT)

521G (21, Q%) (IM(g(p)A — g(k1)g(k2))[*)y - (3.16)

*Even though we do not make the gaussian approximation, the two-point function (2.29) is the essential ingredient in
the dilute limit. Differences between gaussian and non-gaussian source distributions arise only from higher-point correlation
functions. Moreover (A~ )y is always zero by charge conjugation symmetry.
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It is understood that x1 = p™/P* with p™ = k{” + k3 (in agreement with plus momentum component
conservation). This is a special case of (C.6). The phase space volume element is written, for convenience,
in the rapidity representation y; = %ln(kj/k:;) and then one has dy; = dk;"/k;.. To the accuracy of
interest, the factorization scale @) should be chosen of the order of a typical value of the final transverse
momenta, say, of the order of the saturation scale Qs(A,Y) in the nuclear target. Thus the proton enters
trivially into the cross section through prefactors and one can focus only on the sub-process gA — ggX.

3.4.1 The amplitude

The partonic process gA — ggX involves the two diagrams illustrated in figure 3.6. Using the Feynman

ki, B ki, B

p7A p,A

oooo0ogoooo
000900 OCO

kQ,C k270

Figure 3.6: The two contributions to the gluon’s splitting. The dotted line represents the shockwave. One
could wonder about a possible contribution arising from the splitting n the medium. It turns out that
such contributions always involve integrals of regular functions over the 2™ source support, which cancel
as the source becomes infinitely narrow in this direction.

rules detailed in appendix D, it is straightforward to write down the corresponding contributions to the
scattering amplitude :

iM(g(p, A)A — g(k1, B)g(ks, C)) = —gf PP (p)e” (k1) e’ (ko) Toup(k1 + ko, k1, ko)

+ i7" (k1,1 + ko, 1,p")
(k1 + k2)? + ie

di—d?l
ABF e (p)es (k1)es(k e Tuoa(p Lp — 1
o W) ) h) [ TG T o=

Z/BUZ(IL,]{}T) / 2 A —’L'XJ_'(kl J_—IJ_)

Pt ic d*z, Qpp(xy)e

iBM(pL— 11, k)
(p—1)% +ie

X 2p+/8“i(pLap /d2l’LQDA(Xl)e_ixl'(kl,L+k21L_PL)

x 2k B3 (k11 , k)

X 2k 07 (ko 1, k3 ) /dzyLQCF(yL)e_iYL'(kQ,L—PL-HL)‘

(3.17)

The transverse momentum p of the initial gluon is momentarily kept generic, but it will be eventually
set to zero. The polarization indices have not been explicitly written in (3.17) to alleviate notations. The
gauge condition AT = 0 together with the Ward identity % - e(k) = 0 imply the constraints €™ = 0 and
e (k) = k'€ (k)/kT. Tup(k,p,q) denotes the Lorentz piece of the three-gluon vertex - with the color
and g factor omitted: the momentum k is incoming, while p and ¢ are outgoing (see D for the explicit
expression). The symbol 3% (p,, k") may be viewed as the ‘square-root’ of the tensorial structure of the
gluon propagator in the background field. As discussed in detail in D, this propagator is conveniently
written as (in momentum space) :

ALk kg quskt) = 8k, k)87 (a, kM) Gap(k™ k157, kT) (3.18)
where Gap(k~,k1;q7,ky; k™) is the respective scalar propagator and
BR(qu, kT) = 5#*;"7 + o, (3.19)

5Since in this chapter we shall only deal with tree-level Green functions, we shall not introduce notations for distinguishing
between the exact propagator and the propagator dressed by the background field at tree level. In the next chapter we will
need to distinguish them but here we have preferred to alleviate the notations by avoiding proliferation of indices.
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As a guide to see how (3.17) has been derived, let us consider the second diagram shown on figure 3.6.
Using (D.34), the upper final leg attached to the shock wave combined with the propagator running from
the branching vertex to the shock wave contributes as

iB7 (1, k)

_2kT€;(k1)Byi(kl,l>kf) 12 + je

/deJ_QBE(XJ_)C_Z-XL(kLL_lL). (3.20)
[ is the momentum running between the vertex and the shock wave through the upper branch. Since the
plus component of the momentum remains unaffected by the shock wave, this fixes [T = kf . However,
the other components are not fixed and one has to integrate the whole diagram over [~ and 1;. There
is a similar expression for the lower final leg but the final momentum is ko and the momentum between
the vertex and the shock wave is p — [ by momentum conservation at the vertex. We have (p — )" = k;
Finally, the vertex brings a factor gf4FF I'yox(p,l,p — 1) and the initial gluon introduces the polarization
vector e(p). The first diagram of figure 3.6 is obtained in a similar way.

In equation (3.17), the integral over [~ is performed using the residue theorem. The result is to set [
on-shell (i.e. I~ =12 /2k{) and to replace i/I> — 27/2k{". (The ie prescriptions play no role since none
of the denominators is vanishing.) As already mentioned, we chose the frame so that p = (p*,0,0) and
we introduce the z parameter so that k)" = (zp™, k., k1 1) and k5 = ((1 — 2)p™, k5 , ko 1), with k1 and ko
on-shell. The value of z is related to the kinematic variables of the produced gluons via

kleeyl

= e (3.21)
Then the denominators in (3.17) can be rewritten as :
1
(k1 + ko)? = m((l — 2)ky, 1 — zkg, 1)
(3.22)

1
(p—1)7= —gli-

Moreover, we use equations (D.26) and (D.27) in order to replace the polarization 4-vectors by their
transverse components alone. (This is possible since, as alluded to above, the transverse components
are the only independent ones in the present set-up.) After performing these various manipulations, the
amplitude (3.17) becomes

iM (g(p,a)A — g(k1,0)g(kz, ) = g’ (D)€" (k1) ™ (k2) x

2ipTz(1 — 2) , ,
DBC i +\ v +\ apk +
X [f (1= 2k 1 — 2k 1)? B (ki1 + ko 1,p7) 3% (ki,1, k)87 (Ko, 1, kg )T pwp(k1 + ko, k1, k2)

% /deJ_QDA<XJ_)€iXJ_'(kl,J_+k2,J_pJ_)

d%l, 2ikfz Vi
— fAEF/ (271')2 132 /BM (pJ_vp+)/8 J(lla k'f—)lgpk(pJ_ - lJ_7 k;_)rﬂllp(pv l7p - l)

y /deLdeLQBE(XL)QCF(yL)eiXJ_'(kl,J_IJ_)iyj_'(kZJ_pJ_JFlJ_)
(3.23)

Now that we have a rather compact expression for the amplitude, the next goal is to compute the probability.

3.4.2 The splitting cross-section

Here we come to the main topic, namely, the computation of the cross-section for the partonic process
gA — ggX. This is obtained according to (3.16) where

(M)A = gl)g(k)IP ) = Q(NQ_UZ > (M (g, A = glkr, B)g(ko, O)F) . (324)
¢ pol. ABC'
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For more clarity, the calculation of the r.h.s. of (3.24) will be split into two stages : first, the sum

over polarizations and next the sum and average over colors (including the CGC average over the target
background field).

Sum over polarizations : Lorentz structure

After taking the modulus squared of the amplitude in (3.23), the sum over polarizations is readily
performed by using
> (k) (k) = 6 (3.25)
pol.
Notice that the r.h.s. of the above equation is independent of the momentum k carried by the polarization
vector. Hence, an expression like €'(p)3*i(k, k™), after being squared and summed over polarizations,
will give a result which depends only upon k, and not upon p. The computation of the modulus squared
of the vertex functions which appear in (3.23) - this leads to terms of the form _, ., |33V BRPT )| 2- s
quite lengthy but straightforward®. One eventually obtains (as compared to (3.23), we shall from now on
set pp =0) :

M)A glgle))f = @)= p ),

N2 -1
ppc (1—2)k — 2k} / 2 & —ixy-(kp ko 1)
E d ) 1o(ki,i+ke 1)
" ABC ! (1= 2)ki, 1 — zks 1) #1fipalxiJe (3:26)

a2, I - N i e )iy 2
_fAEF/(Qﬂ;li/dzxj_dQ?JJ_QBE(XJ_)QCF(YL)G Lok, L) =iy (e +)|

where Py 4(2) is the DGLAP gluon-to-gluon splitting function :

z +1—
1—2z z

Pyg(2) =

“ 4 z2(1—2). (3.27)

This result can be rewritten in a more suggestive form by using the following identities,
/ AU iy _ =y
(2m)2 13 2m (x1 —y1)?

(L—2)kf —zky A2y, Y i~ ) (kL)
(1= 2k —2ky )2 277 CTRANE

(3.28)

in which one recognizes the derivative .G (x; —y, ) of the two-dimensional Laplace propagator, G(x ) =
(1/4m)In(x?). In the present context, this plays the role of the transverse splitting function, as we shall

For the reader interested in fully following the calculation, we give the intermediate results. One has to compute essentially
three kinds of squares of vertices which correspond to the sum over the polarizations of the square of (3.23). From the explicit
form (3.19) of the 5*"’s one gets :

ﬁm(km_ + k2,1_7p+)ﬁ”li(k1,1_ + kz,J_,p+)BVj(k1,J_7 kf)ﬁ”’j (kl,J_y kf—)ﬁpk(kzl, k;)ﬁplk(kz,L7 Ic;')x
8((1 — Z)klyj_ — ZkQ’J_)Q

X Ty (kr + k2, k1, ko) Dy oo (ki + ko, 1, ko) = T Pyg(2).
B (k11 + koo, pT)B" Y Yk 1, k)BT (L, kD) B koot , k)B” F (Do — 10, ki
1,1 +k2,1,p pLp)B (ke kD)B T (L, kD) B (o, 1, k3 )B” F (P — 11, k3 ) x
8L - ((1—2)ki 1 — 2k
X Ty s + K, Kt )T (o — 1) = S (=2t Z2ko) p -y

2(1 — 2)
B (p,p ) B (L p™)BY (e, k)BT (U, kD) B (o — 1u, k)8 F (oL — 10 k) x

81, -1
X F#Vp(pv lvp - Z)FM'V’;)’ (p7 l/ap - l,) (f_ J‘) Pg‘*g(z)
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shortly discuss. Namely, after using (3.28) and performing some changes in the integration variables, one
can recast (3.26) into the form

2(,\25(1 — »
Miap) — alriga = 20 s

<D

ABC

2

:[;i — . x| —i ) ~ ~ ~
/d2de2yL(XJ__;JL)2€ Zkl,L 0 zkg.’L Y1 fDBCQDA(bL) _ fAEFQBE(XL)QCF(yL>:|

(3.29)

which admits a transparent physical interpretation: x, and y, are the transverse coordinates of the two
final gluons, whereas b; = zx, +(1—2)y_, which is recognized as their barycenter in the transverse plane,
is the respective coordinate of the original gluon. The function
2 — 2 — b i _pi

LY (-2 e - (3.30)
(x1—y1) (x1—bl) (yL—by)
is proportional to the amplitude for splitting a gluon at x; (or at y ) from an original gluon at b, . The
first terms within the square brackets in (3.29) corresponds to the process where the original gluon interacts
with the shockwave prior to splitting. The second terms describes the other situation, where the splitting
occurs before the interaction, so the final gluons scatter off the shockwave.

Sum over colors and average over the background field

It is now straightforward to explicitly perform the square in (3.29) and then formally average over the
background field. This yields

49> N,
(M)A — gl)gk)) | = L35 (p*)2(1 = 2) Py (2)
y / o 42y, 42, 2y, DL YD) R = V1) it w1y -3 ) (3.31)
(x1 -y )?(xL—y1)?

X <‘§(2) (bJ_a BJ_) - S(B) (bJ_v X, yJ_) - 5(3) (BJ_v X1, YJ_) + 5(4) (XJ_v Y1,X1, yJ_)>Y )
which is our main new result in this chapter : the probability for gluon splitting induced by the interaction
with the nucleus (the corresponding cross-section is then easily obtained according to (3.16)).

In (3.31), by =2x, + (1 —2)y, and by = 2%, + (1 — 2)¥ 1, where x; and X, denote the transverse
coordinates of the first produced gluon (the one with momentum k; ;) in the direct and respectively
complex conjugate amplitude, whereas y| and y | similarly refer to the second produced gluon. The other
new notations appearing in (3.31) are defined as follows:

"B~ ~ _ 1
DBC ¢D'BC / _
N.(NZ = 1)f f7 7 Qpa(b)Qpa(by) NZ -1

]\[(]\[12_1)fDBCfAEFQDA(bJ_>QBE(XJ_)QCF(YJ_) (3.32)

SO, . b,) = Tr[Q(b.)Qf (b )]

S®(b,,%,,5,) =

~ 1 1~
4 fAEFfAEFQ

SW(x1,y1, %1, ¥1) = N.NZ =) BE(x1)Qor(y L) (X1)Q0r (F1)-

The normalization factors in (3.32) are chosen in such a way that the various functions S (’f), with k = 2,3,4,
approach unity in limit of a vanishing background field. Using the identity fAEFQeeQcr = QpafPBC,
it is easy to check that they all can be obtained from S :

S@m,,b)=5%b,,by,bi,b))

- - 3.33
5(3)(b1_7)_<J_7}_’J_) :S(4)(bJ_7bJ_7)_(J_7yJ_)~ ( )
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Physically, the functions S*) represent S-matrices for the eikonal scattering between a system of £ gluons
in an overall color singlet state and the background field. For instance, S@) corresponds to a gluonic dipole
made with the original gluon in the amplitude times its hermitian conjugate in the complex conjugate
amplitude. TIts contribution to (3.31) represents the probability for the process in which the splitting
occurs after the scattering. Similarly, S (a gluonic quadrupole) describes the process where the splitting
occurs prior to the scattering, and the two pieces involving S®) describe the interference between the two
possible time orderings. The identities (3.33) have a simple physical interpretation: if the two gluons
produced by the splitting are very close to each other, such that one can approximate x; ~y, ~ b, then
there is no difference (in so far as the scattering off the shockwave is concerned) between this system of
two overlapping gluons and their parent gluon prior to its splitting. Not surprisingly, the general structure
of the probability for gluon splitting in (3.31) is very similar to that for the corresponding quark splitting
(qA — qgX), as computed in [79]. The main difference refers, as expected, to the replacement of the quark
Wilson lines (in the fundamental representation of the color group) by adjoint Wilson lines for gluons.
Moreover, (3.31) generalizes previous results for gluon splitting [80, 81, 85| obtained in various limits and
that we shall later recover by taking the appropriate limits of (3.31).

Relation to multipoles in the fundamental representation

In order to compute the CGC expectation values of the gluonic multipole operators in (3.32), it is
convenient to first re-express them in terms of Wilson lines in the fundamental representation (this is
particularly useful in view of the large N, limit, to be discussed next). This can be done by using several
group identities. The first one relates the structure constants - or equivalently, up to a phase, the adjoint
representation generators - to a trace of generators in an arbitrary representation R :

fABC = —2itr ([TF; TETR) - (3.34)

The tr symbol with small letters denotes the trace in an arbitrary representation. The second one relates
an arbitrary group matrix in some representation R to the adjoint representation matrix U 7 :

UTAUY = TBUA = (U 4pTE. (3.35)

The last required identity holds only for the fundamental representation F' of SU(N,) (the two previous
ones where valid for any semi-simple Lie groups) :

1 1

(TH)ab(T)ed = = | aadbe — ~—Oavdea ) - (3.36)
2 N,

The net result is that any adjoint Wilson line gets replaced by a pair of Wilson lines in the fundamental

representation. After straightforward manipulations, the function S™® is eventually rewritten as follows

- N2

SH(xy,yi,u,v)) = S [Q(x1,yi,vi,u)S(ur,x,)S(y,vy)

2(NZ — 1)
+Q(yL,x1,u,v)S(x,u)S(vy,y1)

1
- m O(VLXL,ULVLYLuLaXLYL) - m

& Cc

O(Vi,ul,X,vI,yi,X,ul,y1)|,

(3.37)

where the various terms in the r.h.s. are multipoles (i.e. single-trace operators) built with Wilson lines in
the fundamental representation (to be denoted by Q and QF). Namely, we shall need the respective dipole,

"Previously, formula (3.33) follows from this identity with R taken to be the adjoint representation as well.
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quadrupole, hexapole, and octupole, defined as
Sy 1) = —tr [9(x )2 (y1)
X1,yL —Ncr[ X | YL]
1
Q(xL,yi,ul,v)= N [Q(XL)QT(YJ_)Q(U-J_)QT(VJ_)}
1
H(x|,yi,u,vi,wi,z|)= N [Q(XL)QT(YL)Q(UL)QT(VL)Q(WL)QT(ZL)

O(xi,yi,ui,vi,wi,z,t,s))= Nitr [Q(XL)QT(YL)Q(UUQT(VL)Q(WL)QT(ZL)Q(M)QT(SL)] :
(3.38)

tr denotes here the trace in the fundamental representation. These are formally the operators which
describe the scattering between a quark-antiquark (gg) color dipole, a gGqg color quadrupole, etc, off the
background field. We shall generically refer to such single-trace operators as multipoles. The corresponding
expressions for S and S©® follow from (3.33) :

- N? 1
5(2)(XJ_,UJ_):N62(il S(XJ_,U.J_)S(UJ_,XJ_)—NiCQ
~(3 NZ2
S )(Xl,uL,vl):Wc_l) [S(vi,up)S(uy,x1)S(xy,ve)+ Sy, vi)S(x,u)S(vy,x1)— (3.39)
1

— 5 H(Vi,x1,u, v, x,up) — %H(VL,ULXL,VL,HL,XL) :
C

In principle, all such expectation values can be computed by numerically solving the JIMWLK equation
[66, 67, 68], with appropriate initial conditions (say, as provided by the McLerran-Venugopalan model
detailed in section 2.3.5) at low energies. Moreover, explicit analytic expressions can be obtained in the
Gaussian approximation to the JIMWLK evolution discussed in 2.3.5 (the ensuing expressions may be
viewed as extrapolations to high-energy of the respective formulas in the MV model [85]). In practice
though all these calculations become prohibitively cumbersome with increasing number of Wilson lines.
Important simplifications occurs in the large N, limit to be discussed next.

3.4.3 The large N, limit

The limit of a large number of colors (N, > 1) is interesting since it preserves the essential physical
effects, while allowing for important technical simplifications. Indeed, within equations (3.37) and (3.39),
all the multipole operators higher than the quadrupole are accompanied by an explicit factor of 1/N? and
hence they are suppressed® as N, — oo. This reduction of the multipole functional space to dipoles and
quadrupoles, occurring at large N, has been recently argued [86] to be a general property, which holds for
any production process of the dilute-dense type (within the limits of the present, CGC-like, factorization).

Independently, we shall assume that the source is large in the sense discussed in section 2.3.4, that is
the interaction with the target is dominated by independent scatterings. In this case, averages of products
of multipoles factorize into products of averages of individual multipoles. (This is a generic property of
multi-trace expectation values.) For instance, the large N, limit version of the gluonic dipole S-matrix, as
shown in the first line of (3.39), reads

(SP(x1,u1))y = (S(ur,x1))y (Sxiur))y  (Ne— o0). (3.40)

In general, the dipole expectation value is not symmetric: whenever non-vanishing, the difference
(S(ur,x1)— S(x1,ur))y is purely imaginary and C-odd and describes the amplitude for odderon ex-
changes in the dipole-target scattering [87, 88|. However, if the initial condition for the dipole amplitude

¥Notice that, according to (3.38), the multipoles are normalized such that they remain of O(1) as N, — oo.
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at low energy is real, as is e.g. the case within the context of the MV model, then this property will
be preserved by the JIMWLK evolution up to arbitrarily high energy. A similar property holds for the
quadrupole S-matrix: if this is real at Y = Y| (as is indeed the case within the MV model), then it remains
real for any Y > Yj ; then the expectation values of the two quadrupoles which enter (3.37) are equal to
each other : <Q(XL, yYi,Vl, uL)>Y = <Q(yl, X ,uy, Vl)>y.

To summarize, at large N, and for initial conditions provided by the MV model, the target expectation
values relevant for the 2-gluon production simplify to

<g(2)(XJ_7 uJ_)>Y ~ <S(UJ_, XJ_))QY
(S (x 1,01, vi))y ~ (S(xiu))y (S(ur,vi))y (S(vi,x1))y (3.41)
(SW(xy,y,ur,vie))y 2 QLY v u))y (S(xi,up))y (S(yL,vi))y

This immediately yields the large- N, version of the squared amplitude in (3.31) :

~ 4¢°N,
y w2

(M)A = g)g(R2))P) (r*)?2(1 = 2) Py (2)

> /d2xJ_d2yJ_d2«TJ_d2 ( X1 — yJ—) i (il — yl) e—ikl’l_-(xi_—fq_)—ikgyj_~(yJ_—)_fJ_)
T(xL -y (xL - yL)?

X [<5 by,b1)) <S(b¢,>_<¢)>y (S(XL,¥1))y (S(¥L,b1))y (3.42)

(S(bL,x1))y (S(x1,y1))y (S(yL,b1))y
QXL YL, Y LX)y (S(x1L,X0)y (S(YL, ¥ )yl

where the variables b| and b have been defined after (3.31). As a check, one can easily verify that for a
very asymmetric splitting (z < 1 or 1 — z < 1), our (3.42) reduces, as it should, to the respective result in
[80, 81].

Still at large N, the general Balitsky-JIMWLK hierarchy of coupled evolution equations for the multi-
pole expectation values boils down to a triangular hierarchy of equations, which can be solved one after the
other: the dipole S-matrix (S), obeys the closed, non-linear, Balitsky-Kovchegov (BK) equation (46, 89],
while the quadrupole S-matrix (@), obeys an inhomogeneous equation in which the source term and the
coefficients of the homogeneous terms depend upon (S),. This last equation is still quite complicated,
but a good approximation to it - in the form of an analytic expression relating (@), to (S), - can be
obtained within the Gaussian approximation to the JIMWLK evolution. In view of this, (3.42) is quite
explicit (at least, conceptually) and can be used as such for applications to phenomenology. To that aim,
one should combine a reasonable approximation to the dipole S-matrix (say, as given by the solution to
the BK equation with a running coupling [90, 91, 92|) with the expression for (@), valid in the Gaussian
approximation and at large N, (as given e.g. in equation(4.26) of reference [62]). In practice, the main
technical complication that we foresee is the calculation of the Fourier transforms in (3.42), which may
require numerical techniques (see e.g. [83, 93, 94, 95| for some similar calculations).

3.4.4 The back-to-back correlation limit

Let us focus on the hard final gluons phase space region with k1 |, ks | > @,. From the phenomenolog-
ical considerations of section 3.2, the effects of multiple scattering may remain important if one is interested
in the details of the azimuthal distribution around its peak at A® = 7. Since any gluon exchanged with
the target have a typical transverse momentum of order Qs (see section 2.2.4); it almost does not affect
ki 1 and kg | separately. However |kj | +ko || is the total transverse momentum transferred by the target
and is of order Q);. Although the two final gluons are hard enough to be almost undeviated by multiple
scatterings with the target, there are deviations to the exact back-to-back distribution due to these multiple
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scatterings. The proper strategy in that sense, as originally proposed in reference [85], relies on the obser-
vation that the relative momentum P = (1 —z)k; | —zko | refers to the hard splitting which creates the
gluon pair, while the total momentum K accounts for the transverse momentum broadening of the two
gluons via their (comparatively soft) interactions with the target. P controls the transverse separation
r; = x, — Yy, between the offspring gluons in the direct amplitude (and similarly ¥} = X; — ¥, in the
complex conjugate amplitude), whereas K| controls the difference b, — b between the average positions
of the gluons in the direct and the c.c. amplitude, that is, their transverse fluctuations x; — x, and
Y1 — ¥1, which in turn encode the effects of the multiple scattering with the target. Accordingly, in this
‘back-to-back correlation limit” where K| ~ Qs < Py, the integral in (3.31) is controlled by configurations
where the transverse-size variables r| and ¥ are small as compared to the difference b, — b between
the center-of-mass variables (and of course also small as compared to b and b themselves). This allows
for appropriate Taylor expansions of the various multipoles in (3.31). Specifically, using the new variables
b,,r;,b,,r, and the respective conjugate momenta, the r.h.s. of (3.31) becomes :

2
(MGIIA = giglF), = L 21— 2)Ppey(2)

X/d2de27ﬁLd2de2_ rJ— EJ- —ZKL (bL_bL) iPL'(rL_FL)

rir}
><<S bJ_,bJ_ 5(3)(bJ_,BJ_+(1—Z)f'J_,BJ_—ZFJ_)_g(?))(BJ_,bJ_“F(l_Z)rJ_,bJ_—ZI'J_)
+S

(4)(bl+(1—Z)I‘L,bL—ZI'L,bL—F(l—Z)I'l,bL—ZI'L)>Y
(3.43)

We now expand the multipoles inside the integrand around b, and b, . In view of the identities (3.33),
it should be quite clear that the leading non trivial result arises from expanding S™ up to second order
in 7' and 7 and keeping only the ‘off-diagonal’ terms which are bilinear in 7'7#/. (The ‘diagonal’ terms
proportional to either rir/ or 77/ cancel against similar terms arising from the expansion of the two
pieces involving S®). and the same happens for the terms which are linear in 7 or 7.) A straightforward
calculation gives

Pt [(1= )% = 20} [(1 = 2)0) — 203] (W (xr,y 1 ui,vi) )

.. Yib,b b, b,
— Nc(;;—l) Tr< {(1 — Z)ai[j(bl)TAUT(bJ_) _ Zﬁ(bL)TAaiﬁT(bJ_)}
X [(1 - Z)U(BL)TAajUT(BL) - z@jU(BL)TAUT(BL)} >Y (3.44)
= N(;?—l) [—2,2(1 — Z)Tr<aiU(bJ_)TAUT(bJ_)ajU(Bl)TAUT(BJ_) >Y

+((1=2)2422)Tr <8iU(bL)TAﬁT(bL)U(BL)TA(?jﬁT(BL)>Y} 7

where the second equality is obtained after using the identity UTAVT = —(VT ATjT)T, valid for generic
color matrices U and V in the adjoint representation.

It is convenient to split the final expression in (3.44) into two pieces, one proportional to z(1 — z)
and another one that is independent of z. The z-independent piece cannot be further simplified (it is
proportional to a second derivative of S (4), as visible on the first line of (3.44)). The piece proportional to
z(1 — z), on the other hand, can be written in a simpler form, namely as a second derivative of S@ by
using the same trick as the one used to get the last equality in (3.44). After also performing the integrals
over r; and r in (3.43), according to

dQTLdQ Mefipj_-(m_fﬁ_) _ 77282 IDPi 82 lIlI‘)2 _ 4i(5”
rir} 9P 9Pk aPIgDh Pl

(3.45)
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one finally obtains

+ 22 — 2
(WA= ), = 100N =r, ()

X /deJ_d?bJ_eiKJ‘.(bJ‘bL)<8;aiS(4)(XJ_,bJ_,U.J_,bJ_) _ —Z(l —Z)aé8%§(2)(bJ_,BJ_)>
b, b,b,b, Y
(3.46)

Incidentally, (3.45) confirms that the transverse separations |r | and |r | in both the direct and the com-
plex conjugate amplitude are separately of order 1/P,, as anticipated.

(3.46) represents the complete result (under the present assumptions) for the production of a pair of
relatively hard gluons, with transverse momenta ki |,kp | > Qs(A,Y). This generalizes the collinear
factorization by including the non-linear effects accompanying the hard branching process, which describe
the multiple scattering between the gluons involved in the branching and the nuclear target. As manifest on
(3.46), these non-linear effects control the magnitude K| = |k; | +ks || of the total transverse momentum
of the pair: the target expectation values appearing in the integrand of (3.46) rapidly decay for transverse
separations b —b | > 1/Qs, which in turn implies that, typically, K| < Qs. The bi-local color operators
built with the second derivatives of S® and S which enter (3.46) can be viewed as generalizations
of the unintegrated gluon distribution fy (K ) in (2.3) to the non-linear regime. Their definitions are
unambiguous since one has to recover the dilute limit (3.15). The first one is associated with S (the
‘adjoint dipole gluon distribution’), namely

dip,A 2

Y KéKL) _ ]Ef N /deLdeLe—zKL (b — bl)<81815(2)(bbbﬂ>ya (3.47)
is well-known known in the literature, as it enters various inclusive and semi-inclusive processes involving a
dense target, like the total cross-section for deep inelastic scattering (DIS) and the single-inclusive parton
production in DIS and p-A collisions (see [85] for a recent overview). The ‘adjoint quadrupole gluon
distribution’ associated with 5'(4), that is,

)ciuad,A (KL) B N
K? g%(2m

has not been introduced before to our knowledge but its limit at large N, has been studied in [85]. For the
physical interpretation of these objects, fy (K,) and fquad (K ), one should however keep in mind that
they involve both ‘final-state’ and ‘initial-state’ interactions (that is, gluon-target interactions occurring
both before and after the branching process), which cannot be simultaneously gauged away by a proper

choice of the light-cone gauge for the target (A~ = 0). Hence, these quantities do not really measure the
gluon occupation number?.

(3.48)

)

2 —
N /d b d%p, e KL <brbﬁ<a%a’s( )(x,,by,u;,by)

bJ_bJ_BJ_BJ_>Y

The large- N, limit of (3.46) is also interesting, in particular, because it allows us to make contact with
the corresponding result in [85]. Namely, using the approximations (3.41) for the color multipoles which
appear in (3.46) one finds after some algebra

2,(1_ 5 o _
(a2 = gl P),, = 106 NI HE = () [yt b
X {[(1 - 2)2 + 22} <S(biaBL)>Y 8})6% <S(bL, Bl)>Y — 22(1 — Z)a;) <S(bL7BL)>Y 6}) <S(bL, BL)>Y +

+(S(by, 5¢)>§/ 9.0, (Q(xL, b, b, ui))y

by,bi,by,by }7
(3.49)

®Interestingly though, as pointed out in [85], the large-N. decomposition of f3"**(K ), cf. (3.41), involves a piece (the
last piece in (3.49) below) which is proportional to the Weizsicker-Williams gluon distribution and hence represents the gluon
occupation number for a proper choice of the light-cone gauge.
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which is indeed equivalent to equation (105) in reference [85], as one can easily check.
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Chapter 4

Initial state factorization in nucleus-nucleus
collisions

In this section we shall study the factorization property of inclusive observables in A-A collisions. The
1-loop corrections to inclusive observables contain small z, logarithmic divergences as one performs the
four-momentum loop integral. These logarithms arise from the CGC cutoff separating the quantum and
classical description of fields. In the p-A case we had a single strong classical source for which we know the
associated background field. In this case we know that the small = evolution is governed by the JIMWLK
equation. However the generalization to the A-A case is not obvious. In A-A collisions, we are in presence
of two strong classical sources for which it is impossible to solve the Yang-Mills equations in the whole
space-time analytically. Indeed, the non-linear character of the Yang Mills equations breaks the superposi-
tion principle. Thus the question is how is the small x evolution for observables governed in nucleus-nucleus
collisions 7 is the JIMWLK equation still valid 7 do we have to generalize it to more complicated back-
ground fields 7 Fortunately the JIMWLK equation is enough for this purpose. The structure of small x
divergences turns out to be inherent to the partonic content of the nucleus and does not depend on any
upcoming reaction or measured observables, we say they are universal. Since the two colliding nuclei are
initially not in causal contact, universality requires that the logarithms corresponding to the two nuclei’
wave functions factorize separately. We, hence, expect that the evolution is governed by two copies of the
JIMWLK hamiltonian corresponding to the two nuclei. This is what we are going to prove (or at least
argue) for particle spectra in A-A collisions.

The universal character of small x divergences is nowadays established in dilute dense collisions like
DIS. However, proving the factorization property in nucleus-nucleus collisions is much more technical and
it has to be done case by case.There is a powerful formalism developed by Gelis, Lappi and Venugopalan
[96, 97, 98| to deal with this problem of factorization for inclusive observables based on the Schwinger-
Keldysh formalism.

First we shall write the inclusive quark and gluon spectra as Green functions in the Schwinger-Keldysh
formalism. Then we shall see how perturbation theory works and analyze the diagrams that must be taken
into account at a given order in perturbation theory. For both gluons and quarks we will work out the
leading and next to leading order of perturbation theory. The key point will be the emergence of recursion
relations via differential operators perturbing the initial conditions. The new feature is that the proof of
this recursion relation for the quark spectrum as well [39]. At the end we shall discuss the small = evolution.
Although the quantum evolution has been proved to be governed by the JIMWLK equation in the case of
gluons, this still has to be proved for quarks.

4.1 Inclusive observables

Among the possible observables, one distinguishes two classes of them that have different properties :
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e the exclusive observables which constrain the final state.
e the inclusive observables which do not constrain the final number of particles.

Exclusive observable may be for instance the cross-section for producing n gluons. As an example of inclu-
sive observable is the particle spectrum, i.e. the average number of particle in the final state. Here we shall
deal with inclusive observables and especially particle spectra. Let us emphasize a fundamental property
of inclusive observables : from the formal point of view the evolution in time of some in-state decomposes
onto the basis of out-states in a non trivial way. An exclusive observable only takes into account some
particular projection among this set of possible final states while inclusive observables do not. Physically
its means that inclusive observables can be expressed as the causal propagation of initial conditions.

In A-A collisions, observables are very difficult to compute explicitly. As we shall see, even the leading
order gluon spectrum obeys the classical Yang-Mills equation of motion in presence of two strong sources
in A-A collisions which cannot be solved analytically. Thus the explicit computation of particle spectra is
in general not doable analytically. This is not our purpose, we want to find relations among them which
do not require their explicit computation.

4.1.1 The inclusive spectrum

In this section we shall set the framework in order to compute inclusive spectra from Feynman diagrams.

Primary definition

As far as we are concerned with nucleus-nucleus collisions we only consider as in-state the state
|AA;in >. Indeed we do not expect other incoming particles. Since the two nuclei are described as
external classical sources within the CGC framework they actually do not belong to the spectrum and
we refer to |AA > as the vacuum denoted |0 > in this chapter. The collision is assumed to be observed
in approximately the center of mass frame (if the two colliding nuclei are the same, the lab frame and
the center of mass frame are the same, otherwise they are not exactly the same but in both of them the
longitudinal momentum of the two colliding nuclei are very large). From this symmetric configuration, we
do not expect produced particles to be especially forward or backward. For this reason we work here in
Minkowski coordinates and not in light-cone ones. According to the above considerations, we shall only
deal with amplitudes of the form :

(P15 -5 Pnj out] 0,in) (4.1)

where the p;’s denote the spatial components of the momentum in Minkowski coordinates. For brevity, we
consider only one particle species and the discrete quantum numbers like spin... are dropped. From the
Minkowski analog to normalization condition (1.3) , it is easily seen that the matrix element (4.1) has a
length dimension n, the number of particles in the out state. Then the quantity :

d3p1 dgpn

AP(p1;..;Pn) = |(P1; ...; Pn; out| 0, in)|? a0 @n o (4.2)
1 n

is dimensionless and together with the Minkowski analog of the completeness relation (1.7)! is interpreted
as the probability for vacuum to |pi;...;pn;out > transition in the corresponding phase space element.
The average number of particles in the final state, is therefore given by :

N = E%Z, /dP(pl; i Pn)- (4.3)

The physical quantity we are interested in is the average number of particles in some phase space volume
element. It is given by only a partial integration over the total phase space volume. The simplest one

"When performing the integration over the phase space, one has to add a combinatorial factor 1/n! to avoid multiple
counting.
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and the one we will consider from now on is the average number of particles in the phase space element
d3p/(27)32p°, given by :

0 dN d*py d’p
(2m)'2p" G = |(:out]0.im)| +Zn, | Gayiagg - tamyrasy Bprtipasout 0Lin) P (1)

Written like this, there seem to be an infinite set of Feynman diagrams to consider for computing the
spectrum. Fortunately there is a way out which takes into account the systematic resummation of all
the final states. For this purpose we will show that the problem is reduced to the computation of Green
functions in the Schwinger-Keldysh formalism. Note that A is the number of particles in the final state
and has nothing to do with the N encountered in the previous chapters which is the number of particles
in the hadronic wave function. This is why the spectrum is denoted N while N is the distribution.

LSZ reduction formulas and Schwinger-Keldysh Green functions

Our aim is to write the matrix elements in (4.4) as Green functions to be precised. To do so, the
essential step is the reduction formula. In this section we still not specify the type