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Abstract :

As the value of the longitudinal momentum carried by partons in a ultra-relativistic hadron
becomes small, one observes a growth of their density. When the parton density becomes
close to a value of order 1/αs, it does not grow any longer, it saturates. These high density
e�ects seem to be well described by the Color Glass Condensate e�ective �eld theory. On the
experimental side, the LHC provides the best tool ever for reaching the saturated phase of
hadronic matter. For this reason saturation physics is a very active branch of QCD during
these past and coming years since saturation theories and experimental data can be compared.
I �rst deal with the phenomenology of the proton-lead collisions performed in winter 2013 at the
LHC and whose data are about to be available. I compute the di-gluon production cross-section
which provides the simplest observable for �nding quantitative evidences of saturation in the
kinematic range of the LHC. I also discuss the limit of the strongly correlated �nal state at
large transverse momenta and by the way, generalize parton distribution to dense regime. The
second main topic is the quantum evolution of the quark and gluon spectra in nucleus-nucleus
collisions having in mind the proof of its universal character. This result is already known for
gluons and here I detail the calculation carefully. For quarks universality has not been proved
yet but I derive an intermediate leading order to next-to leading order recursion relation which
is a crucial step for extracting the quantum evolution. Finally I brie�y present an independent
work in group theory. I detail a method I used for computing traces involving an arbitrary
number of group generators, a situation often encountered in QCD calculations.

Résumé :

Lorsque l'impulsion longitudinale des partons contenus dans un hadron ultra-relativiste dimi-
nue, on observe un accroissement de leur densité. Quand la densité approche une valeur d'ordre
1/αs, elle n'augmente plus, elle sature. Ces e�ets de haute densité semblent être correctement
décrits par la théorie e�ective du "Color Glass Condensate". Du point de vue expérimental,
le LHC est le meilleur outil jamais disponible pour atteindre la phase saturée de la matière
hadronique. Pour cette raison, la physique de la saturation est une branche très active de la
QCD dans les années passées et à venir car la théorie et les expériences peuvent être comparées.
En premier lieu, je discute de la phénoménologie des collisions proton-plomb qui ont eu lieu à
l'hiver 2013 et dont les données sont sur le point d'être disponibles. Je calcule la section e�cace
pour la production de deux gluons qui est l'observable la plus simple pour trouver des preuves
quantitatives de la saturation dans le régime cinématique du LHC. Je traite également la limite
des états �naux fortement corrélés à grandes impulsions transverses et, par la même occasion,
généralise la distribution de partons au régime dense. Le second sujet principal est l'évolution
quantique des spectres de gluons et de quarks dans les collisions noyau-noyau, ayant à l'esprit
son caractère universel. Ce résultat est déjà connu pour les gluons et je détaille ici le calcul
avec attention. Pour les quarks, l'universalité n'a toujours pas été prouvée mais je dérive une
formule de récursion intermédiaire entre l'ordre dominant et l'ordre sous-dominant qui consti-
tue une étape cruciale dans l'extraction de l'évolution quantique. En�n, je présente brievement
un travail indépendant de théorie des groupes. Je détaille une méthode personnelle permettant
de calculer des traces impliquant un nombre arbritraire de générateurs, une situation souvent
rencontrée dans les calculs de QCD.
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Introduction

So far we know four interactions in Nature : gravity, electromagnetism, strong and weak interactions.
All of them still have their mysteries and open problems. Gravity, is described at the classical level by
general relativity [1, 2, 3], a gauge theory invariant under the group of di�eomorphism or an SO(3, 1) gauge
theory in its vierbeins formulation. General relativity has predicted plenty of very accurate results which
agree strikingly with experiments. The most impressive one is the period decrease of the binary pulsar
PSR B1913+16 by gravitational radiation measured by Hulse and Taylor in 1974 [4] which shows a 1%
agreement with the post-newtonian developments of general relativity and, by the way, provides an indirect
evidence of gravitational waves. Although general relativity describes with a great accuracy astrophysical
and cosmological observational phenomena, it has a singular short distance behavior. Theoretical troubles
arise for instance in the r = 0 limit of the Schwarzschild solution for black holes or in the t = 0 limit of
cosmological solutions. These singularities motivate a quantum description of gravity for understanding
them. However, due to its inherent geometrical interpretation of space-time, gravity must be distinguished
from others interactions. Problems arise when one tries to quantize gravity : one �rst faces conceptual
problems when de�ning the Hilbert space since, the main di�erence with the others interactions is that
gravity is not the theory of particles moving in a given background but the dynamics of the background
itself. Due to this particular nature of gravity it is probable that it cannot be described at the quantum
level in the same way as the other interactions. The quantum theory of gravity may even not be a �eld
theory. Some alternative approaches have been proposed like loop quantum gravity or string theory. How-
ever we are quickly lost in the complexity of these theories and the predicted phenomenology, allowing to
check whether or not they seem to be correct, so far lies beyond the scope of accessible experiments. If one
tries however to apply quantum �eld theory techniques to gravity one faces to a technicality making the
calculations quickly very cumbersome : gravitational interactions are non renormalizable and one has to
consider the in�nite serie of interactions allowed by di�eomor�c invariance. Since high order interactions
do not play role at low loop level and/or in the computation of Green function with a small number of
legs, one can however proceed step by step for renormalizing the couplings one by one (see for instance
[5]). Anyway, either a crucial point has been missed with gravity or we have the right theories but in which
the quantum description of gravity is still not clear. Concerning electromagnetism, the situation is better.
It is described at the quantum level by the U(1) abelian gauge theory known as quantum electrodynamics
(QED) [6, 7, 8, 9, 10, 11, 12, 13]. The low energy sector of QED is nowadays under control. The radiative
corrections to the �ne structure constant are now known up to �ve loops [14] and the computed value
agrees with experiment with an accuracy of order 10−9, for sure, one of the best successes of theoretical
physics. The QED beta function is positive and its Landau pole is reached 10286 eV. Of course this energy
is much beyond accessible experiments and it is probable that QED is replaced by an unknown new physics
long before reaching this scale. In everyday life experiments, QED is perturbative and is nowadays well
understood. QED has even been uni�ed with the theory of weak interactions in the SU(2) × U(1) gauge
theory known as the Glashow-Weinberg-Salam (GWZ) model [15, 16, 17, 18, 19]. This very elegant and
simple model provides, through the Higgs mechanism [20, 21, 22], explanations to puzzling experimental
phenomena like maximal parity violation (there does not exist right handed neutrinos in Nature) and
electrically charged gauge bosons W±. The GWS model predicts new features which have been checked
experimentally : in addition of being charged, the gauge bosons have to be massive and, in addition, the
GWS model predicts the existence of a new neutral, massive gauge boson, the Z0. Both the massive
character and the Z0 have been observed at CERN in 1974 [23]. The corner stone of the GWS model is the
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Higgs boson which was the missing piece of the standard model until it has been �nally observed at the
LHC in 2012 [24, 25]. The coupling of weak interactions have a nice behavior : it has no Landau poles. At
low energy - i.e. energies lower than the W and Z bosons masses - the beta function is positive as in QED.
At higher energy, gauge bosons balance the growth of the coupling which then decreases at high energy.
Everything would be perfect with weak interactions if they do not show up CP violations �rst discovered
in 1964 in kaon decay [26]. CP violations still remain obscure for theoreticians.

The last type of interaction is the strong interaction, the one considered in this thesis. In its modern
formulation, the theory of strong interactions is known as quantum chromodynamics (QCD), the theory of
quarks and gluons. It turns out that matter made of quarks and gluons represents the main percentage of
identi�ed matter in our universe1. This is one reason - not the only one - why QCD is so important since it
governs the dynamics of most of the known matter. The quarks form so-called color multiplets and furnish
a fundamental representation of an SU(3) gauge symmetry whose vector bosons are the gluons, lying in
the adjoint representation of the gauge group. Just as weak interactions, the gauge group is non abelian
and gluons, represented by a vector �eld AA

µ (A,B,C... denoting the adjoint representation color index),
are described by the Yang-Mills lagrangian :

LY M = −1

4
FA

µνF
Aµν

where FA
µν is the �eld strength tensor

FA
µν = ∂µA

A
ν − ∂νA

A
µ + gfABCAB

µA
C
ν .

g is the coupling constant, fABC are the gauge group structure constant and we adopt the convention of
an implicit summation over repeated indices. The Yang-Mills lagrangian alone corresponds to a theory
containing only gluons. Quarks enter as Dirac �elds ψa (a, b, c... denoting the fundamental color indices)
minimally coupled to the gauge �eld via covariant derivatives2 : Dab

µ = δab∂µ − igAA
µ (TA)ab, where the

TA's are the gauge group generators in the fundamental representation. Since there can be several copies of
quark multiplets they will be denoted, in general with a �avor label f . Thus the lagrangian corresponding
to quarks reads (with all indices, except spinor ones, explicitly written, soon dropped out) :

Lquark =
∑

f

ψ̄a
f

(

i /D
ab − δabm

)

ψb
f .

The total lagrangian LY M +Lquark is the QCD lagrangian. Non abelian gauge invariance requires that all
�elds couple with the same coupling constant3 g. Up to now, the formalism applies for any simple gauge
group and we shall deal with SU(Nc) instead of SU(3), Nc being the number of colors. The �rst interesting
physical consequence of the QCD lagrangian is the behavior of the running coupling. At one loop level,
the beta function reads :

β(g) = − g3

3(4π)2
(11Nc − 2nf ) ,

where nf is the number of �avors. So far we know 6 types of quark �avors which make the beta function
negative in QCD (that is with Nc = 3). Such a beta function predicts the following behavior of the �ne
structure constant of strong interactions αs = g2/4π with the energy µ :

αs(µ) =
2π

(11− 2
3nf ) ln(µ/ΛQCD)

.

1Cosmological observations have shown that what we call "matter" actually represent 5% of the whole cosmological cocktail.
68% of the content of our universe is dark energy and 27%, dark matter.

2In many cases fundamental color indices can be understood to alleviate notations. Moreover we shall often write Aµ =
AA

µ T A.
3This is a fundamental di�erence between abelian and non abelian gauge theories. In abelian theories the gauge parameter

can be arbitrarily rescaled for every �elds and the coupling constant can be assigned any value, whereas in non abelian
theories it cannot and the coupling is quantized. It is still an open question why the electric charges in Nature are all integral
multiples of e/3, where e is the electron's charge. QED alone do not predict such quantization condition. It can be explained
for instance by assuming the existence of magnetic monopoles [27].
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Thus αs has a Landau pole at ΛQCD, experimentally measured to be approximately 200 MeV. On the one
hand, at energies larger than ΛQCD, the coupling decreases and tends to zero. This property is known
as the asymptotic freedom [28, 29] (see plot 1). At high energy, QCD is weakly coupled and perturbation
theory is allowed. On the other hand, at energies less than ΛQCD, we are in the non perturbative regime
and perturbation theory, which is the only available tool for analytical calculations, breaks down. The main
non perturbative property of QCD is the con�nement. It turns out that the range of strong interactions is
very short ∼ 10−15 m and, in addition, the physical spectrum only contains color singlet bound states like
mesons and baryons, called hadrons. Why gluons are con�ned, that is they cannot be observed directly.
Why quarks cannot be observed individually but combined in color singlets. How these bound states follow
from the QCD lagrangian. These are closely related and still unanswered questions awarded with a one
million dollars price for the one who will show these properties theoretically. These properties indeed seem
to follow from the QCD lagrangian according to lattice calculations.

Figure 1: Experimental evidence of the running coupling and asymptotic freedom. The coupling diverges
at ΛQCD ∼ 200 MeV.

The most powerful tool ever for exploring matter at very short scales, unreached so far, has been
switched on since 2008. This tool is the Large Hadron Collider (LHC) at the CERN in Geneva. Accessible
energies will be of order 10 TeV in the center of mass frame. Concerning its applications to QCD, energies
available at the LHC lie far beyond ΛQCD, that is, in the perturbative regime. Hence, having in mind
applications to LHC experiments, the calculations performed in this thesis use perturbative QCD. They
will also apply to physics occurring in the others large accelerators : the Hadron-Electron Ring Acceler-
ator (HERA), located at DESY in Hamburg and the Relativistic Heavy Ion Collider (RHIC), located at
the Brookhaven National Laboratory, where the center of mass energy is of order 100 GeV. In all these
accelerators, the QCD coupling constant is larger than the electro-weak ones. Thus the strong interactions
dominate all the processes involving hadronic matter, another reason for putting QCD on a pedestal.

Let us enter in more detail into the high energy behavior of hadronic matter. Historically, the �rst
attempts for building a theory of strong interactions was a theory whose fundamental particles were the
hadrons (mesons and baryons). In the early sixties experimental phenomena such as the Bjorken scaling
showed the composite nature of hadrons interpreted as bound states involving partons, that is, valence
quarks interacting via gluons. Connecting these results with the works of Yang and Mills have led to the
modern formulation of QCD. The asymptotic freedom property justi�es, at high energy, the parton model
proposed by Feynman [30] based free partons - quarks and gluons - within the hadron interacting weakly
and not coherently [31]. We shall see that, in this context, parton distributions naturally merge and count
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the number of partons carrying a given momentum value. Of course low energy partons enter into the
unknown non perturbative part of the wave function but given a low energy con�guration up to some
scale, it is possible to look at the variation of the distribution under a small change of the scale. This leads
to evolution equations and they are of two types : one is with the virtuality of the partons and leads to
the DGLAP renormalization group equation [32, 33, 34] and the other one is at given parton energy but
evolving the energy transferred by the parent hadron and leads at �rst to the BFKL evolution [35, 36, 37].
The DGLAP evolution knew a great success since it explained many phenomena like the Bjorken scaling
deviations while BFKL was ignored. The BFKL equation revived in the nineties when HERA data for deep
inelastic electron-proton scattering showed for the �rst time the structure of a high energy hadron. The
most striking phenomena was the rapid rise of the distribution with decreasing transferred energy. This is
the �rst evidence of high parton density, the main purpose of this report. Nowadays, saturation is better
understood. The raise of parton density must be �nite otherwise there would be troubles with unitarity. At
high density, recombinations between partons balance the growth of density and their number saturates to
a �xed value of order 1/αs per phase space element. In the high energy saturated regime, a large number
of partons form a sort of "soup" with many interactions among them. Although the coupling is weak the
large number of partons involves collective phenomena. Due to the very large number of particles, strongly
entangled with each others, usual Feynman diagram techniques become vain. The saturated regime seems
to be well described by the Color Glass Condensate (CGC) e�ective �eld theory whose validity is con�rmed
by its predictions for proton-proton and deuteron-gold collisions at RHIC. A natural continuation is the
prediction of CGC at the LHC, where, for the �rst time, saturated hadronic matter is fully expected. This
topic is treated in chapter 3. The other main interesting question risen up in this thesis is the universal
character of parton distributions : they are intrinsic properties of the hadrons, independent of the reaction
or observable considered. This will be checked in nucleus-nucleus collisions in chapter 4. This last case
shows a particular complexity due to the presence of two dense media.

How to read this thesis ?

How to handle this report and what is contained inside ? The main body includes the following chapters :

Chapter 1 sets the normalization conventions in light-cone quantized �eld theories. First it can be
helpful for the reader who is not familiar with light-cone quantum �eld theory and related miscellaneous
like the light-cone gauges. The derivation of quantum �eld theory in light-cone coordinates presents very
few di�erences with the quantization in Minkowski coordinates and we just point out some of the small
di�erences. For the reader used to this formalism this chapter can be skipped. It is also useful for the
reader interested in following precisely the calculations. Indeed all the normalization conventions of states,
�elds, creation and annihilation operators... are set here and are the ones used in the whole report.

Chapter 2 is an introduction to small x and saturation physics that will be the basic physical ground of
the following chapters. Of course it would have been too long to detail it in an exhaustive way and useless
since this topic is widely covered by textbooks. I rather tried to emphasize the physical insight and the
key ideas that lead to the concept of dense QCD matter. For clarity I preferred to not discuss notions that
will not be used in the following - like the dipole model for instance - although they are the cornerstone
for a more rigorous derivation. The small x evolution equations are motivated and explained from the
intuitive point of view but once again I preferred to state the results avoiding long derivations which can
be found in the already existing literature. To summarize, I tried to introduce tools and ideas necessary
for the following but not more than that. This section will use important results from appendices A and
B whose long and technical derivation obliged me to put them outside of the main line for clarity.
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Chapter 3 is the �rst one dealing with new results. Especially the di-gluon production cross-section
is the main result of our paper [38] with Edmond Iancu. Many physical ideas introduced in the previous
chapter are used in this one. I spent some pages to motivate why the di-gluon production has a special
importance in p-A collisions at the LHC for �nding quantitative evidences of saturation physics. To get
the formal background, I �rst deal with the simplest case : the single quark production. Indeed it shows
the emergence of color operators and playing with it enables us to introduce almost everything we will
need for the di-gluon production. Then when I discuss the di-gluon case, I will not have to set plenty of
de�nitions all along the discussion. Appendices C and D will be used in this chapter for cross-sections
and Feynman rules respectively. These appendices are the derivation of results which are intuitive in
the sense that the structure of the cross-sections and the Feynman rules can be more or less guessed by a
familiar reader who is more interested by an overall understanding rather than a careful check of prefactors.

Chapter 4 is more theoretical. It deals with the small x evolution in nucleus-nucleus collisions that
shows a universal character encoded into the factorization property. I fully detail calculations leading to the
LO to NLO recursion relations both for gluons and quarks. The former is the new result, mentioned in our
paper with Francois Gelis [39]. The starting point of this chapter will make use of the Schwinger-Keldysh
formalism treated in appendix E. There are also gauge �xing questions whose deep existence are justi�ed
in appendix F.

Chapter 5 deals with Lie algebra and is independent. I motivate the chapter with an example of calcu-
lation following from chapter 3 where it can �nd applications. However results exposed here are not used
anywhere else in the thesis. I deal with a method for computing traces containing an arbitrary number of
group generators, a situation sometimes encountered in QCD computations. This chapter is formal and
closer to mathematics but remains in the spirit of mathematics for physicists.

Appendices contain either too long or too technical calculations that would have broken the continuity
of the discussions in the main body or elements of unusual formalisms with which even experts in the
domain may not be used to.

Appendix A is the derivation and the justi�cation of the external �eld approximation in non abelian
gauge theories. Although it may be intuitive to consider classical Yang-Mills �elds in some situations, it
is a highly non trivial result assuming strong hypothesis. This approximation is well known in QED but
breaks down if transposed to the non abelian case. I will discuss the physical conditions allowing such an
approximation in the non abelian case and make the calculation explicitly.

Appendix B is the natural continuation of the previous one. In A, I justi�ed to which extend a �eld
radiated by sources can be treated at the classical level, here I deal with the interaction of quantum �elds
evolving in this classical background �eld in the eikonal approximation - justi�ed by the way. I show how
the color structure of the S-matrix in encoded into Wilson lines corresponding to particles colliding the
background �eld in the eikonal approximation.

Appendix C is a setup about the structure of cross-sections in p-A collisions. The presence of a back-
ground �eld associated to the target makes the ordinary relations between amplitude and cross-sections
break down. Here I write the corresponding relation in this speci�c case. Moreover I will discuss collinear-
factorization which leads to a simple contribution of the proton to the total cross-section.

Appendix D is a derivation of Feynman rules widely used in 3. Once one has understood the role played
by the Wilson lines in the eikonal approximation, the corresponding Feynman rules are rather intuitive.
However, here I make the derivation carefully with various phases and prefactors included.
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Appendix E details the Schwinger-Keldysh formalism, well known in condensed matter physics but
more rare in quantum �eld theory. It would have been too long to detail it in 4 but its results may seem
non obvious to the unfamiliar reader. I thus detail how it comes out in quantum �eld theory for comput-
ing inclusive observables. The Schwinger-Keldysh formalism leads to generalizations of path integrals and
Feynman rules, also detailed in this appendix.

Appendix F is the determination of the physical spectrum in light-cone gauge using the BRST sym-
metry. I discuss how the physical spectrum is given by the BRST cohomology. I show the well known
result that ghosts and anti-ghosts are absent from the physical spectrum and that the physical gauge �eld's
degrees of freedom are given by the transverse components only. I thought it was worthwhile to detail this
proof which uses beautiful mathematics which are unusual in QCD.



Chapter 1

Light-cone quantum �eld theory

The physical issues discussed in this thesis are related to high energy collisions of hadrons in accel-
erators. In the lab frame, the two hadrons have opposite velocities close to the speed of light1. In such
ultra-relativistic collisions it is easier to work with the so called light-cone coordinates rather than the
Minkowski ones. Moreover, the velocities of involved particles are so large that one can neglect their mass
and treat them as light-like representations of the Lorentz group. Although light-cone quantization breaks
Lorentz invariance, it provides, in most of cases, a very convenient choice for making practical calculations
applied to di-hadron collisions.

This preliminary section introduces the basic tools and conventions. It can be skipped by the reader
who is not interested in following calculations in details in the next chapters. The aim of this section
is to set a precise catalog of normalization conventions used in all this thesis since there are as many
conventions as there are authors. The reader can refer to this section at any time to check the prefactors
in various formulas. The �rst section introduces the light-cone coordinates system and some properties of
the four-momentum in this system. The second section is a catalog of the normalization conventions used
for states, creation and annihilation operators and �elds consistent with light-cone quantization (we mimic
the conventions used in [40]). The third section is devoted to the axial gauge which will be the gauge used
in most of the following when we deal with gluons.

1.1 Light-cone kinematics

As long as we are working in a frame in which particles travel with velocities close to the speed of light,
it is useful to work in light-cone coordinates rather than in the Minkowski ones. Let a be a 4-vector whose
Minkowski coordinates read (a0,a), we de�ne the light-cone coordinates as :

a± =
a0 ± a3

√
2

a⊥ = (a1, a1). (1.1)

In these coordinates, we conventionally order the components as follow : a = (a+, a−,a⊥). The scalar
product of two vectors a and b reads a · b = a+b− + a−b+ − a⊥ · b⊥. The light-cone components do not
require to make a distinction with the Minkowski ones, the are labeled with Greek indices µ, ν.... The
transverse components are denoted with a Latin index i, j... running over the values 1 and 2. Since we
never use explicitly spatial Minkowski coordinates there will be no confusion possible and i, j... indices
will always refer to transverse components in light-cone coordinates (in chapter 4 we shall go back to the
Minkowski coordinate system but we will not have to use these labels explicitly for denoting spatial com-
ponents).

1Note that the lab frame and the center of mass frame are distinct but similar in the sense that in both of them the speeds
of the two hadrons are comparable to the speed of light in the nowadays available accelerators.
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Let us focus on the four-momentum vector in light-cone coordinates. We consider a single free particle
of mass m. In light-cone coordinates, its momentum reads p = (p+, p−,p⊥), the mass-shell condition
p2 = m2 constrains p± to be p± = (p2

⊥+m2)/2p∓. Moreover p+ and p− have to be both positive. Indeed,
the mass-shell condition tells us that p+p− must be positive (or possibly zero in the massless case) and
therefore p+ and p− must have the same sign, but physically consistent Lorentz group representations
must have p0 = (p+ + p−)/

√
2 > 0 and then both p+ and p− are positive. The Lorentz invariant measure

becomes in light cone coordinates :
∫

dp+dp−d2p⊥θ(p
+ + p−)δ(p2 −m2)f(p) =

∫

p±>0

dp±d2p⊥
2p±

f(p)

∣

∣

∣

∣

p∓=
p2
⊥

+m2

2p±

. (1.2)

As long as we deal with right-moving (resp. left-moving) particles, the x+ (resp. x−) direction in space-
time plays the role of time. Therefore it is natural to refer p− (resp. p+) as the "energy" and ~p = (p+,p⊥)
(resp. ~p = (p−,p⊥)) as the "spatial" components of the momentum and one chooses the upper (resp.
lower) sign in the Lorentz invariant measure (1.2). Although this interpretation is convenient for dealing
with ultra-relativistic reactions, Lorentz invariance is broken since the range of accessible frames consistent
with these conventions is restricted to the ones that conserve the right-moving (resp. left-moving) character
of considered particles. Actually for the purposes considered here it is not really a problem since the frame
will be �xed once for all as we shall see. Now let us investigate the underlying quantum theory in the
light-cone coordinates language.

1.2 One-particle states and quantum �elds

In this section we are going to deal with right-moving �elds, the transposition to left-moving ones will
be obvious by just changing the plus components into minus ones and conversely. Of course this section
will not be a far-reached and complete rederivation of quantum �eld theory in light-cone coordinates which
does not show up particular di�culties and is rather straightforward. The consistency of conventions can
be checked by the reader following the procedure detailed in [41] of but with conventions of [40]. We rather
give a catalog of various conventions for the normalization of states and �elds that will be used in all the
following. The natural way is to describe a one-particle state by the quantum number ~p and some possible
discrete quantum numbers like spin, colors... generically denoted σ. These states are conventionally
normalized in the restricted Lorentz invariant manner explained above so that :

〈~q, σ̄| ~p, σ〉 = (2π)32p+δσσ̄δ
(3)(~p− ~q). (1.3)

The state | ~p, σ〉 is created from the vacuum (normalized to unity) by a creation operator a†~p,σ satisfying
the commutation (minus sign), if they are bosons, or anti-commutation (plus sign) relations if they are
fermions :

[

a~p,σ; a†~q,σ̄

]

∓
= (2π)3δσσ̄δ

(3)(~p− ~q)
[

a~p,σ; a~q,σ̄

]

∓
=

[

a†~p,σ; a†~q,σ̄

]

∓
= 0.

(1.4)

The normalization of one-particle states and (anti-)commutation relations uniquely �x (up to an irrelevant
phase set to one) the action of a creation operator on the vacuum as :

| ~p, σ〉 =
√

2p+a†~p,σ | 0〉 . (1.5)

The construction of multi-particle states from tensor product of one-particle states is straightforward. Let
us just mention a sign ambiguity for fermionic multi-particle states. The multi-particle state built from
the tensor product of n single-particle states has a phase �xed as follow :

| ~p1, σ1; ...; ~pn, σn〉 ≡
√

2p+
1 ...2p

+
n a
†
~p1,σ1

...a†~pn,σn
| 0〉 . (1.6)
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For creation and annihilation operators associated to fermions, their order matters. Our convention is so
that a creation operator acting on a state creates the particle labeled on the leftmost side of the ket.

The completeness relation with the correct normalization factors reads :

1 = |0 〉〈 0|+
∞

∑

n=1

1

n!

∑

σ1...σn

∫

d3p1

(2π)32p+
1

...
d3pn

(2π)32p+
n
|~p1, σ1; ...; ~pn, σn 〉〈 ~p1, σ1; ...; ~pn, σn| , (1.7)

where d3p stands for dp+d2p⊥. Written in the form (1.7), the completeness relation concerns only one
particle species. If the theory contains several kinds of particle, the full completeness relation is merely
given by the tensor product of completeness relations for each type of particles.

The natural question is now how to build �eld operators from the creation and annihilation operators
in order to get a consistent S-matrix theory ful�lling the very �rst physical requirements such as micro-
causality, cluster decomposition principle and (at least restricted) Lorentz invariance. There is actually a
very few di�erences with the procedure in Minkowski coordinates. Taking σ to be the spin s, and omitting
possible other quantum numbers like color charge to alleviate notations (such quantum numbers are carried
by the �eld operators and cration and annihilation operators), a general �eld operator is de�ned as :

φl(x) =
∑

s

∫

d3p

(2π)3
√

2p+

[

a~p,su
s
l (p)e

−ip·x + b†~p,sv
s
l (p)e

ip·x
]

. (1.8)

Note that just the integration measure is changed with respect to the Minkowski case. b†~p,s is the creation
operator for the antiparticle. us

l (p) and v
s
l (p) are the coe�cient functions for respectively the particle and

the anti-particle and furnish representations of the Lorentz group (not necessarily irreducible).

1.3 The axial gauge

When dealing with ultra-relativistic collisions in the framework of gauge theories, there is an often
convenient gauge known as the axial gauge. Since this is the gauge that will be used in almost all the
following it is not useless to discuss it in the very beginning for the reader not used to it. We �rst de�ne
the axial gauge condition in a generalized sense. We shall derive the equations of motion and the propagator
in this gauge. Then we focus on the subset of axial gauges of interest : the light-cone gauge. On the one
hand, in light-cone gauge most of the formulas from the general formulation simplify a lot but on the other
hand, this special case may cause trouble with singularities as the gauge-�xing parameter ξ goes to zero.
This section shows how to handle light-cone gauge in a rigorous way when such singularities occur. At the
end we sketch the proof of a very nice property of light-cone gauges : the ghosts decouple from the gauge
�eld.

1.3.1 De�nition and Green functions

In general an axial gauge is a constrain on some linear combination of Aµ components that formally
reads :

n ·A(x) = ρ(x) ; (1.9)

with n a constant vector and ρ a function of the coordinates. Such gauge �xing requires the following
additional term in the Yang-Mills lagrangian2 −1

4F
2 :

Lgf =
1

2ξ
(n ·AA(x))2 ; (1.10)

2To be precise, this additional term in the lagrangian holds for a gaussian-distributed set of gauge conditions of the form
(1.9) so that |

R

ρ| . ξ (see for instance [40] where se procedure is mimicked for the Lorenz gauge).
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with ξ a real gauge parameter. The free Green3 function ∆µν
0 (x−y) is given by the inverse of the quadratic

piece of the Yang-Mills lagrangian −1
4(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) plus the gauge �xing term Lgf . That

is, it satis�es the equation :

(gµσ∂
2
x − ∂xµ∂xσ +

nµnσ

ξ
)∆σν

0 (x− y) = iδν
µδ

(4)(x− y). (1.11)

Depending on the prescription, ∆µν
0 stands for the Feynman, retarded, advanced or anti-Feynman propa-

gator as well. Let us forget about the prescription which does not matter for present discussion, writing
the Fourier representation of the Green function as :

∆µν
0 (k) =

iΠµν(k)

k2
, (1.12)

where

Πµν(k) =
∑

pol.

ǫµ(k)ǫν∗(k). (1.13)

Equation (1.11) is satis�ed for Πµν given by the following expression :

Πµν(k) = −gµν +
nµkν + nνkµ

n.k
+
ξk2 − n2

(n.k)2
kµkν . (1.14)

This is the general case but one can go a bit further since we shall work only in particular axial gauges
satisfying the two further requirements :

• ξ = 0→ the gauge is �xed so that n ·A(x) = 0. Moreover the theory is then ghost free as it is shown
below.

• a light-like n vector → n2 = 0.

Such speci�c axial gauge is called the light-cone gauge. In light-cone gauge, the Πµν tensor becomes simpler
:

Πµν(k) = −gµν +
nµkν + nνkµ

n.k
, (1.15)

and satis�es the properties :

nµΠµν(k) = 0 ; (1.16)

and for on shell k :

kµΠµν(k) = 0. (1.17)

However there is at this point a small problem that needs to be mentioned. The propagator numerator
(1.15) is a projector and is no longer invertible. There seems to be an incompatibility with (1.11) which is
ill-de�ned as ξ → 0. Using (1.15) for the propagator numerator, one has :

(gµσ∂
2
x − ∂xµ∂xσ)∆σν

0 (x− y) = iδν
µδ

(4)(x− y)− i
∫

d4k

(2π)4
nµkν

n.k
e−ik·(x−y). (1.18)

As we will check explicitly in our applications, the extra term of the r.h.s actually plays no role in Lorentz
invariant quantities. The rigorous way to work in light-cone gauge is to work with a �nite ξ when it causes
trouble and to send it to zero at the end of the calculation hoping there will not be singularities anymore
- we always get rid of them in all the problems studied bellow.

3Its color structure being trivially δAB it is omitted by the replacement ∆µν
0 AB → δAB∆µν

0 .
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1.3.2 Ghosts

Here we emphasize a nice property of axial gauges n ·A = 0 : they are ghost free. The gauge condition
enters naturally in the path integral following the De Witt - Faddeev - Popov method whose detailed
calculation can be found for instance in [42]. The gauge condition is rewritten as an integral over two
independent Grassmann �elds ω and ω̄ known as ghosts and anti-ghosts respectively4. Ghosts are Lorentz
scalar �elds in the adjoint representation of the gauge group. The lagrangian density corresponding to
ghosts reads :

Lghosts = ω̄Anµ(δAB∂µ − gfABCAC
µ )ωB. (1.19)

The interaction term between ghosts and gauge �elds is proportional to n · A which is zero by the gauge
condition. For the axial gauge n · A = 0 the ghosts decouple from the theory and are completely absent
from calculations.

4Ghosts and anti-ghosts are di�erent �elds, unrelated by any complex conjugation or charge conjugation operation.
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Chapter 2

Perturbative QCD phase diagram and

saturation physics

In this thesis, the main purpose is the study of phenomena that have to do with saturation e�ects.
The saturated state of hadronic matter is a very active branch of QCD since it is right now accessible to
experiments occurring in accelerators. These last past years, the RHIC has shown evidences of this phase
of QCD matter while the LHC is about to explore it deeper. Saturation is a consequence of the raise of
parton density as the emitted partons are soft with respect to the parent ones.

The available tools for an experimental investigation of QCD matter in accelerators are two-body col-
lisions. These can be either protons or nuclei. For de�niteness, one of the two colliding hadrons is chosen
to travel along the positive z axis and is referred to as the projectile while the other one, traveling in the
negative z direction is referred to as the target. Due to the (very) large number of particles produced in
such high energy collisions, we shall consider only inclusive observables : the �nal state is summed over all
possible con�gurations of unobserved particles.

The goal of this chapter is to introduce all the needed framework. We shall motivate the saturation
phenomena from QCD and then detail the appropriate formalism to deal with it. First we will study the
particle content of a fast hadron, that is an uncolored QCD bound state composed of valence quarks, such
as a proton or a nucleus. We will see that the virtual �uctuations (called partons together with the valence
quarks) occurring in the hadron are described in terms of parton distribution functions which count the
number of partons present in some phase space region. Then we shall see that the probability of emission
of a parton diverges as the longitudinal momentum carried by the parton becomes small. The physical
consequence is that the parton density increases for small longitudinal momenta. When the number of
partons becomes very large one has to consider also recombination e�ects so that the number of partons
does not grow inde�nitely and converges to a �xed value to be precised. This is known as the saturation

phenomenon. Along the way we shall see the emergence of a new intrinsic energy scale : the saturation

scale. Once these things are understood we shall propose an alternative formalism that well describes the
saturated regime : the Color Glass Condensate (CGC), an e�ective theory following from QCD. We shall
study the physical motivations and write the associated evolution equations.

From now, in this chapter and in the following, all the masses will be neglected since the energy scales
considered are much larger than the masses of the colliding particles.

2.1 The parton picture

2.1.1 The hadronic content and deep inelastic scattering

Here we shall see the physical picture of a hadron and its content. For brevity, the hadron shall refer

13
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to a proton in this section but the considerations are valid for any other hadrons, and even for nuclei.
The full description of a proton lies in the scope of non perturbative QCD. A proton is a bound state
of QCD composed of three valence quarks including radiative corrections to all order in powers of the
interaction. Neglecting electromagnetic and weak interaction e�ects, the �uctuations are either gluons or
quark-antiquark pairs. In the rest frame of the proton, the typical life time of quantum �uctuations is
of the order of 1/ΛQCD and thus enter into the strong coupling regime. However the situation changes
when one chooses a frame in which the proton has a velocity close to the speed of light called the in�nite

momentum frame, conventionally taken along the positive z axis. The boost a�ects hadronic �uctuations
which live much longer by Lorentz time dilatation and their energies are increased by a boost factor large
enough to lie in the perturbative regime of QCD. At energies available in current accelerators, both the
projectile and the target acquire su�ciently large velocities to be seen in an in�nite momentum frame
from the lab. Thus in the lab frame hadronic �uctuations have a typical lifetime that is very long with
respect to the duration of the scattering process. Of course this assumption holds only for partons that
have energies much smaller than the total energy of the projectile-target system, denoted

√
s. When we

will discuss the partonic content of a hadron we shall see that most of the partons are very soft with
respect to

√
s but obviously partons' energies cannot be larger than

√
s by mere kinematic considerations.

To probe the parton content of a proton, the academic process considered is the deep inelastic scattering

(DIS) represented on �gure 2.1. In the DIS, the proton content is probed with the exchange of a virtual,
space-like photon of momentum q and virtuality Q2 = −q2 between the hadron and an electron, say. Any
other process involving other kind of particles exchanged would not bring new qualitative phenomena for
present considerations. The momentum P of the proton is chosen so that P = (P+, 0,0), with P+ very

q2 = −Q2

p

X P →

e−

Y

k

e−

Figure 2.1: Feynman diagram for the deep inelastic scattering process. The photon interacts with one of
the quarks within the proton.

large with respect to the proton mass. The observed quark carries, before it scatters o� the photon, a
momentum p with longitudinal component parametrized as p+ = xP+. x is called the Bjorken variable

and is the fraction of the longitudinal momentum carried by the quark. Provided p+ is much larger than
the transverse momentum of the quark1, the observed quark is initially almost on-shell and it makes sense
to consider it as an asymptotic initial state. The total cross-section for the Xe− → Y e− process is hence
easily written in terms of the cross-section corresponding to the sub-process qe− → qe−, where q denotes
the quark :

σ(Xe− → Y e−) =

∫ 1

0
dx q(x,Q2)σ(q(p = xP )e− → qe−). (2.1)

q(x,Q2) is called the integrated quark distribution and represents the average number of quarks with a
momentum fraction x within the proton. Such factorization of the cross-section is known as collinear

factorization. The integrated quark distribution depends on the virtuality scale Q2 since the virtuality of
the exchanged photon determines the probing resolution. In the next section we shall introduce analogously
the gluon distribution. The example of DIS enabled us to see the emergence of parton distribution functions.

1Theoretically, this can always be ful�lled by an appropriate choice of frame boosted enough. Practically, even though the
speed of colliding particles in accelerators is close to the speed of light, the boost is not arbitrary large and this assumption
holds only if the transverse momenta are not too large with respect to the longitudinal ones. We shall see in the next sections
that the transverse momentum of partons present in a hadron is bounded by the saturation scale. This assumption is for
instance ful�lled at the LHC where

√
s ∼ TeV while p⊥ ∼ GeV.
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The parton distribution functions play a central role since they encode the distribution of partons within
the proton. Especially, saturation is reached when the parton distribution takes a large value to be precised.

2.1.2 Parton distribution functions

Through the DIS process one has introduced the concept of quark distribution function. Similarly, one
can extend the concept of distribution functions to anti-quarks and to gluons as well. For instance one
can consider that the probed quark is actually a sea quark merging from a gluon splitting into a qq̄ pair
: a color dipole. We will not deal with details about the dipole scattering in the context of DIS to avoid
technical complications, spurious for the present purpose. The interested reader in the so-called dipole

factorization can �nd more details in [43]. Considerations made for quarks intuitively motivate as well the
concept of integrated gluon distribution function, denoted G(x,Q2), whose physical interpretation is the
average number of gluons in the hadron that carry a longitudinal momentum fraction x and a transverse
momentum bounded by the energy scale

√

Q2 ≪ p+. Thus its de�nition in terms of the number of gluons
per phase space volume element dN/dxd2k⊥ is straightforward :

G(x,Q2) =

∫

k2
⊥<Q2

d2k⊥
dNg

dxd2k⊥
. (2.2)

Instead of dealing with the x variables one sometimes rather uses the rapidity parametrization de�ned as
Y = − lnx. Generalizing the integrated distribution function one introduces the unintegrated distribution

function fY (k⊥) which is, up to a conventional 1/πk2
⊥ prefactor, the average number of gluons per unit of

phase space volume de�ned as :

xG(x,Q2) =

∫

k2
⊥<Q2

d2k⊥
dNg

dY d2k⊥
=

∫

k2
⊥<Q2

d2k⊥
πk2
⊥

fY (k⊥). (2.3)

By construction, the parton distribution functions take a single exchange into account. That is the probe
interacts with the hadron only via a single quark or gluon. For multiple scatterings involving possible
interactions between the exchanged particles it is possible in some cases to generalize the concept of unin-
tegrated parton distribution functions. We shall see such examples in sections 3.3.2 and 3.4.4. The physical
meaning of the parton distribution is promoted to an e�ective parton distribution that is the probability
that some given total momentum is transferred between the probe and the hadron.

Note that quark and gluon distributions are not independent. Of course, the quark distribution contains
the valence quarks. The other quarks can only come into qq̄ pairs from virtual gluons. They are called
sea quarks. If the density of gluons becomes large - and we shall see this actually happens as x becomes
small enough, sea quarks dominate the quark distribution. The precise relation between quark and gluon
distribution does not matter for further discussion here but it exists and easily follows from the previous
consideration. Furthermore, the creation of a qq̄ pair from a parent gluon requires an additional vertex
since a gluon can be directly emitted by a valence quark whereas a qq̄ pair requires at least an intermediate
gluon. Hence the quark distribution is suppressed by an additional power of αs with respect to the gluon
distribution.

Since parton distributions encode the parton content of hadrons, their computation would give direct
information about this. Of course the form of parton distributions a priori also di�ers depending on the
nature of the hadron concerned. Unfortunately parton distribution functions also encode non perturbative
physics. For instance, equation (2.1), splits the total DIS process into a hard (high energy process)
computable thanks to perturbation theory and soft phenomena including the hadron wave function that
lies in the scope of non perturbative QCD. Collinear factorization, is physically motivated by the separation
of time scales : soft processes are frozen during the characteristic time scales of the hard processes. Thus,
concerning the form of distribution functions, the best we can do is getting them from evolution equations,
that is their behavior by varying the value of Y and/or Q2. This is the aim of the following.
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2.2 The raise of parton density at small x

In this section we investigate the behavior of parton distribution functions with kinematics and es-
pecially their variation with the rapidity Y . First we roughly extract the physical behavior of parton
distributions from very simple considerations. For this purpose we �rst focus on the Bremsstrahlung pro-
cess : the emission of a gluon by a quark. It turns out that the probability for this elementary process
shows up a logarithmic divergence at small x. Hence, even though the coupling constant is small, the qqg
vertex comes together with a large logarithm in the Bjorken variable. Perturbation theory breaks down
and one has to resum all these large contributions. We shall see that the leading log contribution to soft
gluon emission cascades easily sums. On the physical side this divergence is interpreted as a growth of the
gluon distribution as x becomes small. Of course this growth cannot be in�nite otherwise the unitarity
bound would be violated. At large density the recombination e�ect also becomes important and tames
the growth. This naturally leads to the concept of saturation. Then we shall make a more quantitative
treatment of saturation. However, in order to avoid the introduction of new notions and to follow the
main line, we instead use a toy model and make correspondence with actual results. We shall think about
the creation and recombination of gluons in terms of a reaction-di�usion process. Although the toy model
does not govern the right physical quantities, precisely we deal with gluon occupation number whereas the
physical quantity to consider is the dipole amplitude, it is easier to understand and contains relevant the
physics. The reason is because the number of gluons is not and observable and it has to be de�ned in terms
of existing observables. We shall see that in the dilute regime the number of gluons has an unambiguous
interpretation as being proportional to the unintegrated gluon distribution but it becomes less clear in the
saturated regime. The main result will be the emergence of the saturation scale. From our toy model we
will even be able to sketch a crude analytical expression valid at high energy for the saturation scale.

2.2.1 Soft Bremsstrahlung

An easy �rst step for studying how the partonic content evolves with kinematics is to consider the
elementary process q → qg represented on �gure 2.22. The emission of a real gluon by a quark is called the

k+ = xp+ x≪ 1

p+

Figure 2.2: Soft Bremsstrahlung of a gluon by a parent quark.

Bremsstrahlung. We focus on the soft part of phase space, that is the energy of the emitted gluon is small
compared to the energy of the parent quark, x ≪ 1. A straightforward calculation (see [40] for instance)
shows that the di�erential probability for emitting such a gluon with momentum k behaves like :

dPbrem(k) ≃ αs(k
2
⊥)CR

π2

d2k⊥
k2
⊥

dx

x
, (2.4)

where CF = (N2
c − 1)/2Nc is the Casimir of the fundamental representation of the gauge group3 and αs =

g2/4π. This last expression (2.4) shows up two kinds of logarithmic divergences for the total probability :

• a collinear divergence as k⊥ goes to zero,

• a soft divergence as the longitudinal momentum or x goes to zero.

2Present considerations would have led to the same conclusion if the parent parton were a gluon.
3If the parent parton were a gluon, CR will be replaced by the adjoint representation Casimir CA = Nc.
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A naive perturbative expansion in powers of αs breaks down if one of these logarithms becomes large since
such a vertex contributes as ∼ αs ln(k2

⊥/m
2) ln(1/x) which is not necessarily small with respect to 1 even

though αs is small. The resummation of the collinear divergences is not considered here. The careful
procedure is well known since the 70's and the underlying evolution equation is the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equation [32, 33, 34]. The DGLAP equation is the Callan-Symanzik
equation for QCD, that is, it governs, at least in the leading log approximation, the behavior of the
distribution functions with the energy. Let us rather focus on the small x divergence to be seen in the next
section.

2.2.2 Gluon cascades : the BFKL evolution

The small x divergence suggests the necessity for summing all possible emissions since each successive
emission brings a factor αs ln(1/x) that is not necessarily small even though αs is. Let us consider the
case in which the radiated gluon emits in turn another gluon as shown on �gure 2.3. For small x, the

p+

k+
2 = x2k

+
1 x2 ≪ x1

k+
1 = x1p

+

Figure 2.3: Successive x-ordered emission of two gluons.

largest contribution comes from the region of phase space where the momentum fraction of the parent
quark carried by the second gluon is smaller than the one carried by the �rst one. We say that the gluons
are strongly ordered in the longitudinal direction. The total probability goes like :

α2
s

∫ 1

x

dx1

x1

∫ 1

x1

dx2

x2
=
αs

2
(ln

1

x
)2. (2.5)

The other regions of phase space bring sub-leading contributions like ln ln(1/x), this is why the strong
ordering assumption is know as the leading log approximation. The process of �gure 2.3 contributes as
much as the single emission 2.2, for αs ln(1/x) ∼ 1. Repeating the calculation for the successive emission
of n gluons ordered in the x variable contributes as 1

n!(αs ln(1/x))n. This cascade, represented on diagram
2.4, is known as a Balitsky-Fadin-Kuraev-Lipatov (BFKL) ladder. For small x, so that αs ln(1/x) ∼ 1

p+

k+
n−1 = xn−1k

+
n−2 xn−1 ≪ xn−2

k+
2 = x2k

+
1 x2 ≪ x1

k+
1 = x1p

+

k+
n = xnk

+
n−1 xn ≪ xn−1

Figure 2.4: Successive x-ordered emission of n gluons.

there is no perturbative expansion in the number of �nal gluons. The sum of all the ladders must be taken
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into account for small x and they exponentiate. The number of gluons carrying the fraction x is easily
obtained from the total probability and reads :

x
dNg

dx
∼ 1

xωαs
, (2.6)

with ω some positive constant of order one. From these very simple considerations, (2.6) shows up a fast
raise of gluon density as x becomes small. A more careful analysis within the dipole framework which
includes also sea quarks4 and transverse momentum sharing along the successive splittings, leads to an
evolution equation in the x - or more conveniently the rapidity Y - variable for the unintegrated gluon
distribution (2.3). This evolution equation is known as the BFKL equation [35, 36, 37] and reads :

∂fY (k⊥)

∂Y
= αsNc

∫

d2p⊥
π2

k2
⊥

p2
⊥(k⊥ − p⊥)2

[

fY (p⊥)− 1

2
fY (k⊥)

]

. (2.7)

The evolution with Y is not an evolution with the virtuality that is provided by the evolution is the
transverse momentum. Indeed the evolution can be understood as an evolution with the energy di�erence

between the produced partons and the parent ones but at a �xed energy of the produced one. In other
words the relevant parameter is the energy fraction rather than the energy itself. The BFKL equation is
linear since the ladders do not interact with each others. Solutions to BFKL equation con�rm the power
growth of the gluon distribution at small x or equivalently its exponential growth at large Y . This suggests
that the gluon density (and also the sea quark density) grows inde�nitely. It agrees with the sketchy
consideration (2.6) which shows up a power raise of the gluon number as x becomes small but also with
experimental data 2.5. If one considers only the BFKL ladders, one ends up with an in�nite growth of
the gluon density as x decreases. This is unsatisfactory from the physical side since such a growth would
cause trouble with the unitarity requirement. In the next section we shall see that considering only BFKL
branching processes is not enough as the density becomes high. Unitarity is restored by taking into ac-
count additional processes that are negligible as long as the system is dilute but become important at large
density. To see how these e�ects can be added to the evolution equation we shall �rst mimic the BFKL
resummation in a naive but intuitive and faithful way that will allow us to see what happens at large density.

For motivating the BFKL equation, let us take a point of view inspired by the reaction-di�usion tech-
niques of statistical physics. For this purpose it is convenient to introduce the occupation number n which
is the number of gluon per phase space volume element. We shall see why when we shall deal with satu-
ration. The gluonic phase space volume element is dk+d2k⊥/(2π)32k+ = dY d2k⊥/2(2π)3. Furthermore,
one has to consider two degrees of freedom for the helicity and N2

c − 1 for the color. More over there is an
impact parameter degree of freedom b⊥ : one has to consider the number of gluons per phase space element
in a given region of transverse space. If one assumes that the hadron is homogeneous, the density is the
same everywhere and one has to merely divide by S⊥ the transverse surface of the hadron5. Therefore the
occupation number reads6 :

nY (k⊥) ≡ 2(2π)3

2(N2
c − 1)S⊥

dNg

dY d2k⊥
. (2.8)

Using (2.3) the gluon occupation number also have a clear interpretation in term of the unintegrated gluon
distribution which reads :

nY (k⊥) ≡ 8π2

(N2
c − 1)S⊥

fY (k⊥)

k2
⊥

. (2.9)

4In the dipole framework qq̄ pairs and gluons are on the same pedestal since in the large Ns limit of an SU(Nc) gauge
theory, a single gluon, which is a particle in the adjoint representation and a qq̄ pair, which is composed of two particles
in the fundamental representation are equivalent. This directly follows from the fundamental and adjoint representation
properties of SU(Nc). We use similar properties in section 3.4.3 when we write adjoint representation matrices in terms of
the fundamental ones.

5It is reasonable to further assume axial symmetry so that S⊥ = πR2, with R, the radius of the hadron. This further
re�nement will be useless and we shall only deal with S⊥.

6Since the impact parameter dependence is assumed to be trivial it has been omitted.
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Figure 2.5: Parton distributions (which are matched to denstity) as functions of the Bjorken variable x
for a proton. uv and dv denote the valence quarks whose distribution is peaked in the vicinity of x = 1/3
since there are three valence quarks that typically carry 1/3 of the proton momentum. g denotes the
gluon distribution that shows up the expected raise at small x. S represent the sea quark density. Since
sea quarks cannot merge directly from a valence quark but come into qq̄ pairs from emitted gluons, their
density is suppressed by an additional power of αs compared to the gluons.

Let us consider the occupation number at some given rapidity Y and perform a step in rapidity from Y to
Y +dY (recall that increasing rapidity decreases x). What can happens in the rapidity slice is the splitting
of the last gluon into two gluons. This occurs with a probability proportional to n itself at rapidity Y .
However the transverse momentum of the parent gluon is shared between the two produced ones. For this
reason, the evolution equation is non-local in transverse momenta. Thus the evolution equation must take
the form :

∂nY (k⊥)

∂Y
= αs

∫

d2p⊥
π2

K(k⊥,p⊥)nY (p⊥), (2.10)

whereK is a positive de�nite kernel and the factor αs has been kept explicit since the splitting probability is
proportional to αs. The BFKL equation (2.7) governs the evolution of the unintegrated gluon distribution
which is, according to (2.9) proportional to the gluon occupation number. Thus the BFKL equation indeed
governs the occupation number and we can identify :

K(k⊥,p⊥) = Nc

[

1

(k⊥ − p⊥)2
− 1

2
δ(2)(k⊥ − p⊥)

∫

d2q⊥
k2
⊥

q2
⊥(k⊥ − q⊥)2

]

. (2.11)

We will justify soon that the validity range of the BFKL equation assumes the occupation number to be
small, i.e. it is valid in dilute hadrons. In the dense regime, the unintegrated gluon distribution loses its
physical interpretation as the gluon occupation number. A natural generalization is to de�ne it as the
Fourier transform of the dipole amplitude (see 3.3.2 for instance) which is the physical observable governed
by the evolution equations. This is why considerations on occupation number become sketchy at high
density since it is more a matter of de�nition rather than a real physical picture. The number of gluons
does not really make sense in the dense regime, the only requirement is to recover its canonical de�nition
(2.9) in the dilute regime.
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We expand the r.h.s of (2.10) in powers of k⊥. It has been proved that at high energy, i.e. for
transverse momenta that are large with respect to the non perturbative scale ΛQCD, the BFKL equation
is well approximated by its second order expansion in k⊥. Moreover the �rst order vanishes. This leads to
a di�usion equation which is the high energy limit of (2.10) :

∂nY (k⊥)

∂Y
≃ aαsnY (k⊥) + bαs

∂2nY (k⊥)

∂(lnk⊥
2)2

, (2.12)

where a and b are positive number of order unity. Written in this form it will be easy to motivate the
additional terms that restore unitarity and to see the emergence of saturation.

2.2.3 Toward saturation : the BK equation

Fortunately all possible mechanisms were not taken into account when we ressummed BFKL ladders
neglecting possible interactions among them. Indeed if the number of gluons becomes large it is possible
that some of them recombine together [44] as represented on �gure 2.6. If two gluons are very separated

Figure 2.6: Typical recombination of BFKL ladders leading to non-linear evolution.

in frequency, they have a very low probability to recombine, they are transparent to each other. It means
that for recombination to become important, occupation numbers of gluons in neighboring phase space
volume must be at least of order one. One sees the advantage of dealing with the occupation number :
they provide a quantitative criterion for the transition to saturation. We also understand that the linear
BFKL equation, which neglects the recombination e�ects, is valid if and only if the occupation number is
small. Obviously, the probability for two gluons to recombine is proportional to n2 since the recombination
process requires two initial gluons. Since these two gluons must be close in phase space, this contribution
is roughly local in n2. Concerning the αs counting one would naively say that it is also proportional to
a single power of αs coming from the vertex. However our toy model breaks down here : in the dipole
framework, it turns out that the recombination of two dipoles is only possible via a a double-gluon exchange
process at leading order which brings an α2

s contribution to the recombination rate (an early attempt of
BK equation has been provided by a more intuitive approach by Gribov, Levin and Riskin known as the
GLR equation [44, 45]). We conclude that the recombination e�ects enters as a negative term (since it
lowers the occupation numbers) to r.h.s of the di�usion equation (2.12) which becomes :

∂nY (k⊥)

∂Y
= aαsnY (k⊥) + bαs

∂2nY (k⊥)

∂(lnk⊥
2)2
− cα2

sn
2
Y (k⊥), (2.13)

where c is again a constant of order unity. The above equation is a toy model of the evolution equation
known as the Balitsky-Kovchegov (BK) equation [46, 47, 48], derived in the dipole framework. Before
discussing its physical content, let us emphasize its toy model character. We argued in the previous section
that, even though the BFKL governs the evolution of the dipole amplitude, it holds as well for the occupa-
tion number. This breaks down for the BK equation since in the dense regime where non-linear e�ects are



2.2. THE RAISE OF PARTON DENSITY AT SMALL X 21

important, the dipole amplitude cannot be expressed as the Fourier transform of the unintegrated gluon
distribution and by the way, the occupation number. Thus equation (2.13) does not govern the evolution
of the right physical quantity. However the physics we shall extract from this equation is - at least quali-
tatively - the same as the physics contained in the BK equation. Thus we shall continue to close our eyes
on this subtlety.

Let us �rst make a sketchy analysis of equation (2.13) to see the form of the solutions and the behavior
of the gluon density with rapidity. At small Y (or x close to 1) we have seen that the perturbative expansion
in powers of αs alone holds and the leading contribution to BFKL ladders is trivial : nothing is emitted.
This gives an initial condition for both the toy version of BFKL and BK equation : nY =0 = 0, which is a
�xed point of both (2.12) and (2.13). Of course if the parton density is strictly zero, it remains zero. It
actually acquire a small value thanks to the higher αs orders. The BFKL equation predicts an exponential
growth of the parton density in the rapidity variable at �xed transverse momentum. As long as n is small
the toy BK equation (2.13) reduces to (2.12) since the n2 term in the r.h.s is negligible. The point is
that (2.13) have another �xed point for n = a/cαs ∼ 1/αs. This point is �xed at large rapidity when the
density is large and recombination balances exactly the splitting processes. The parton density saturates

at a value of n ∼ 1/αs. Therefore the toy BK equation (2.13) has solutions that interpolate between n = 0
and n ∼ 1/αs as one evolves with the rapidity variable at �xed transverse momentum. We already see the
emergence of a saturation scale : at �xed transverse momentum, there is a value of rapidity at which the
system becomes dense and saturation e�ects become important. This is illustrated on �gure 2.7.

ln !

Y = ln 1/x

2
QCD

Saturation

= " Y

ln Q
2

Dilute system

DGLAP

JIMWLK

sln Q  (Y)
2

s

Figure 2.7: QCD phase diagram. From left to right, the evolution is the ordinary evolution with the energy
that is governed by the DGLAP equation and increases the resolution of the theory at short lengths. In
the vertical direction is shown the evolution with Y and the growth of parton density. In the dilute regime
it is governed by the BFKL linear equation but requires corrective terms as one approach large densities
that is contained in the BK equation. Above the saturation scale the system is saturated. This is described
by the CGC e�ective theory whose fundamental equation is the JIMWLK equation to be seen later. Qs is
the frontier scale between the dense and dilute regimes, to be discussed in more details.

2.2.4 The saturation momentum

A more quantitative description of saturation is provided by solving the BK equation. Once again let us
consider our toy version (2.13). It turns out that this is an already well known equation in reaction-di�usion
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theory and �uid mechanics. The reaction-di�usion BK equation is equivalent to the so called Fisher-
Kolmogorov-Petrovsky-Piscounov (FKPP) equation. It is known that the FKPP asymptotic solutions are
traveling waves represented on �gure 2.8 [49]. The waves progress as rapidity increases without deformation,
which means that the solution nY (k⊥) actually depend on the single variable lnk2

⊥ − λY , a non trivial
property known as the geometric scaling, con�rmed experimentally [50, 51] as shown on �gure 2.9. λ is a
positive constant interpreted as the "speed" of the wave front (in correspondence with reaction-di�usion
processes, Y plays the role of time and lnk2

⊥, of a spatial coordinate). Here enters a very far-reached
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Figure 2.8: Shape of the traveling wave solution to the toy BK equation (2.13). At �xed rapidity, the
occupation number varies from ∼ 1/αs to 0 over a short range interval of lnk2

⊥. This wave goes forward
along the lnk2

⊥ axis as Y increases without deformation.

concept of QCD : the geometric scaling property shows the emergence of a dynamically generated intrinsic
scale in QCD other than ΛQCD. Indeed, the single variable dependence of the occupation numbers - or the
dipole amplitude in the accurate approach - is denoted k2

⊥/Q
2
s(Y ) instead of lnk2

⊥−λY . By identi�cation
we have :

Q2
s(Y ) = Q2

0e
λY . (2.14)

Qs is called the saturation momentum. A more accurate analysis [52, 53] of the BK equation actually
shows deviations to geometric scaling taking the running coupling into account and equation (2.14) is in
fact an approximate expression valid for high energies, where the variation of the QCD coupling constant
is slow. Such analysis also leads to λ ≃ 4.9αs. We omit another parameter that a�ects the value of Qs :
Qs may depend on the nature of the hadron. Just from �rst QCD principles, gauge invariance does not
distinguish between protons and neutrons, thus it must depend only on the total number of nucleons A
in the considered nucleus. The number of gluons scales like A and so the occupation number, that is the
number of gluons per unit of transverse surface which scales roughly like A2/3 for a large nucleus, scales like
A1/3 and so does Qs. Therefore taking the nuclear size into account, equation (2.14) is modi�ed according
to :

Q2
s(Y,A) = Q2

0(A)eλY ∼ A1/3eλY . (2.15)

Traveling waves solutions enable us to determine the transverse momentum distribution of partons
within the hadron. At constant, large enough rapidity7 the occupation number interpolates between
nY (k2

⊥) ∼ 1/αs for k⊥ . Qs and nY (k2
⊥) → 0 for k⊥ & Qs with a sharp fall o� around the saturation

scale. It means that almost all the partons have k⊥ . Qs in the hadron. The saturation scale turns out to

7"Large enough" means that saturation is rerached, if the rapidity is small, the system is always dilute - at least in the
perturbative region.
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Figure 2.9: Experimental evidence of the geometric scaling. Experimental data for the DIS γ∗p cross-
section which is a function of the dipole amplitude �ts along a straight line in the (Y, τ ≡ lnk2

⊥) plane.
Recall the dipole amplitude is the physical quantity governed by the BK equation, the approach in terms
of the occupation number is only a toy model.

be the typical transverse momentum scale. While in the dilute regime partons may have all possible values
of transverse momentum with small occupation numbers, in the dense regime, the transverse momentum
is bounded by the saturation scale. This agrees with experiments as shown on �gure 2.10.

2.3 Dense media and color glass condensate

The BFKL equation well describes the growth of parton density in a dilute hadron but breaks down
once recombination becomes important. The BK equation takes recombination into account and describes
the transition to saturation. Both BFKL and BK equations govern the evolution of a color dipole which is a
simpli�ed limit - to be discussed - of an in�nite hierarchy of equations that couples higher rank correlation
functions known as the Balitsky-JIMWLK hierarchy. An alternative description of dense QCD matter is
provided by the Color Glass Condensate (CGC) e�ective �eld theory to be discussed in this section. The
aim is to give an intuitive motivation to the topic, to brie�y set the framework and to state some known
results, especially concerning the evolution at small x. More exhaustive approaches can be found in [54, 55].
First we shall see how a dense medium (or at least some of its degrees of freedom) is described by a classical
�eld. These considerations will motivate the CGC formalism and the underlying renormalization group
approach. We will discuss the evolution equations of the CGC and the possible simplifying assumptions. In
this section the projectile/target description of high energy collisions plays a central role. Indeed, although
the CGC provides intrinsically the description of a dense medium, saturation is measured with a probe
which gives access to physical observables.

2.3.1 The hardness hierarchy and separation of scales

As seen in the previous sections the softer are the hadronic modes and the more numerous they are. In
a frame where the hadron has a high energy, the valence quarks within the hadron are hard and radiate
gluons that are mainly soft with respect to them according to the soft divergence (2.4) of the gluon radiation
probability and thus, from section 2.2.3, have large occupation numbers of order 1/αs. They do in turn
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Figure 2.10: Experimental evidence of the intrinsic scale in both p-A (ALICE) and p-p (CMS) experiments.
The density of partons falls o� above values of transverse momenta of the order of the GeV.

radiate mostly softer and softer gluons according to the leading log contribution (2.6). This hierarchy in
the cascade process is a very important feature for motivating the CGC e�ective theory. A large density of
hard partons radiating softer ones is properly described at the classical level (see appendix A for the proof
of this assertion - it has been proved for quarks emitting gluons but holds for gluons emitting gluons as
well). From this consideration, the hardest partons, are described by a classical color source J Aµ(x). The
form of the current will be discussed in the next section and does not matter for the present considerations.
The point is that hard particles described by a classical �eld do have longitudinal momenta greater than
some arbitrary scale Λ. That is one considers successive emissions and recombinations at the classical level
up to this scale and the modes that are below this scale are ordinary quantum �elds. However they are
assumed to carry an energy greater than the non perturbative scale ΛQCD to allow perturbation theory.
For this reason they are called semi-hard rather than soft. This hierarchy is summarized on �gure 2.11.

2.3.2 Background �eld associated to the target

Here we shall discuss more speci�c properties of the current associated to the nuclear target. The
nucleus is conventionally taken to be a left-mover so that the associated classical current is single component
J A−(x). Moreover the calculation of appendix A shows that this current does not depend on the variable
x− 8. From the physical side this is rather easy to understand : in the lab frame the longitudinal momentum
of quantum �uctuations p− is small with respect to the total center of mass energy

√
s. Hence their life-time

is long with respect to the duration of the collision between the two hadrons : they can be considered as
static, i.e. x−-independent, at least over times scales that are of the order of the collision process between
the projectile and the target. In high energy collision, the lab and center of mass frame are more or less
the same : both the projectile and the target carry very large, opposite longitudinal momenta. It means

8An alternative way is to use covariant conservation. In the gauge A+ = 0, covariant conservation reads D ·J = ∂+J− = 0
which completes the proof.



2.3. DENSE MEDIA AND COLOR GLASS CONDENSATE 25

Figure 2.11: Illustration of the terminology. Hard gluons are soft compared with the sources but hard
with respect to the cuto� Λ. Classical sources are used to describe them. Those softer than Λ are called
semi-hard since they are harder than the non perturbative scale ΛQCD.

that there is a strong Lorentz length contraction in this frame especially concerning the target. Thus, the
source distribution is sharply peaked around x+ = 0. This allows to refer to the target as a shockwave.
These considerations enable us to parametrize the source as follows :

J A−(x+,x⊥) = gδǫ(x
+)ρA(x⊥), (2.16)

where δǫ is a representation of the delta function. In actual calculations we send ǫ to zero as long as
this limit is well de�ned and then δǫ is merely δ. ρA is some arbitrary function of transverse coordinates
only. A reasonable physical assumption is that its support is compact : the target extension is �nite in
the transverse plane. An equivalent description of classical source is the associated background �eld that
satis�es the classical equation of motion in presence of these classical source (see D.1 for details). In the
present case of a left-moving, static source, the corresponding background �eld9 is the single component
�eld AA−(x+,x⊥) as shown by equation (A.17) :

AA−(x+,x⊥) = gδǫ(x
+)

∫

d2y⊥
2π

ln |x⊥ − y⊥| ρA(y⊥). (2.17)

The non trivial coordinate dependence of the background �eld makes the system spatially inhomogeneous.
It is therefore inevitable to keep a trace of the coordinate dependence in the Feynman rules. In the dense
regime, the occupation number being of order 1/αs, the sources and, by the way, the associated classical
�eld are of order 1/g. Therefore the insertion of one background �eld in some interaction vertex exactly
cancels one power of g coming from the vertex (a more accurate analysis will be performed in section 4.2).
Thus, n background �eld legs plugged on a vertex of order gn is of order one and perturbation theory as
an expansion in the number of vertices breaks down if the background �eld is attached to these vertices.
One has then to resum all the diagrams with an arbitrary number of insertions of the classical �eld.
Fortunately the narrowness in the x+ space-time direction of the background �eld in the axial gauge makes
interactions of fast particles with the shockwave very simple. Particles coming from the projectile are not
necessarily described by a CGC even though they are hard. Indeed, the CGC gives a description of hard
modes contained in the dense medium, i.e. the target only (chapter 4 is devoted to the case where both the
projectile and the target are dense and thus described by a CGC). For typical momentum scales of particles
from the projectile that are assumed to be large with respect to the ones exchanged with the target, one can
use the eikonal approximation. The justi�cation of this approximation is carefully performed in appendix
B. From the physical point of view this means that the path of a hard particle is almost una�ected by the

9The gauge used for the proof is the Landau gauge ∂ · A = 0. At the classical level the Landau gauge turns out to be the
same as the axial gauge A+ = 0.
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soft gluons exchanged with the shockwave. For a shockwave in the eikonal approximation, it turns out that
the dependence of an observable in the background �eld only comes through Wilson lines (see appendix B
for a proof) :

Ωab(x⊥) = P exp

[

ig

∫

dx+A−A(x+,x⊥)(TA)ab

]

(2.18)

where P denotes the path ordering operator along the x+ direction. The Wilson line describes the interac-
tion of particles with the target and encodes their color precession. As we will see through examples and
as shown in general in appendix B, there is one Wilson line per particle traveling through the shockwave
in the amplitude corresponding to a given process and each of them are in the gauge group representation
of the corresponding �eld.

Let us say a little bit more about the hard modes described by the classical source. Their x−-
independence is a consequence of Lorentz time dilatation that freezes these modes over large time scales -
larger than the duration of the scattering process. Indeed the life time of quantum �uctuations is typically
τfluc. ∼ 1/p+ ∼ 1/x

√
s which is much greater, for small x than the collision time which lasts τcol. ∼ 1/

√
s.

The former mechanism of emission-recombination that generates a given source con�guration J A− at the
collision time fundamentally obeys the laws of quantum mechanics and is thus random. This is a very
important feature. It is impossible experimentally to constrain the source con�guration in a collision. Two
occurrences of the same collision, even with the same initial conditions will be performed a priori with
di�erent realizations of source's con�guration. A brute force computation of an observable, which is in
general a functional of the source distribution via the associated classical �eld A−, in a given con�guration
is therefore meaningless. To give a physical meaning to observables, one has to average over the range
of all possible source con�gurations. Obviously some con�gurations are more likely realizable than others
and do obey a probability distribution denoted W known as the CGC weight function. This probability
also depends on the cuto� Λ that separates the classical modes from the quantum ones. Instead of dealing
with a longitudinal momentum cuto� Λ, one rather introduces the corresponding value of xcut and the
associated rapidity Y = − lnxcut. One also prefers to work in the background �eld AA− representation of
sources instead of the - equivalent - source representation J A−. The probability distribution is denoted
WY [AA−]. Observables are averaged thanks to this distribution according to :

〈O〉Y =

∫

DAA−WY [AA−]O[AA−]. (2.19)

This last expression is one of the fundamental relations of the CGC framework. As long as �elds are
described by a CGC, one has to perform averages systematically. In order for the theory to be self-
consistent one has to be able to work out explicitly WY [AA−] or, at least, to derive an equation whose
solution is WY [AA−]. This can be performed thanks to a renormalization group approach to be discussed
in the next section.

2.3.3 The renormalization group approach

The aim of this section is not the rederivation of the evolution equation that will be stated. The
interested reader can �nd further details in the references quoted in the header 2.3. The idea of how to
�nd the evolution equation is the same as the classic Wilsonian approach for deriving the Callan-Symanzik
equations although the evolution in rapidity Y is not an evolution with the energy scale of the theory. The
cuto� Y that appears for instance in (2.19) is physically the separation between "hard" and "semi-hard"
modes, that is the scale so that for rapidities larger than Y the �elds are classical and bellow they are
quantum. But this cuto� is arbitrary10. In mathematical terms, in order to avoid double counting, the loop
integrals arising from the computation of observables in perturbation theory must be cut at longitudinal
momenta corresponding to the cuto� Y in the ultraviolet. The result is that these observables explicitly
contain logarithms of the longitudinal momentum cuto� that can be reabsorbed into a rede�nition of the

10Arbitrary within a range where the external �eld approximation is justi�ed and perturbation theory holds.
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CGC weight function. The Y independence of observables is guaranteed provided the CGC weight function
satis�es a renormalization group equation know as the Jalilian Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) equation [56, 57, 58, 59, 60, 61] which reads as follow :

∂WY

∂Y
[A−] = H

[

A−, δ

δA−
]

WY [A−]. (2.20)

H is a hermitian, second order functional di�erential operator known as the JIMWLK hamiltonian. Its
explicit form is :

H
[

A−, δ

δA−
]

=
1

2

∫

d2x⊥d2y⊥
δ

δAA−(0,x⊥)
ηAB(x⊥,y⊥)

δ

δAB−(0,y⊥)
. (2.21)

The integral kernel ηAB is a functional of the classical �eld through adjoint representation Wilson lines Ω̃
which reads :

ηAB(x⊥,y⊥) =
1

4π3

∫

d2z⊥
(x⊥ − z⊥) · (y⊥ − z⊥)

(x⊥ − z⊥)2(y⊥ − z⊥)2

[

Ω̃†(x⊥)− Ω̃†(z⊥)
]AC [

Ω̃(y⊥)− Ω̃(z⊥)
]CB

. (2.22)

The background �eld averaged observables (2.19) also satisfy an evolution equation. The equation that
governs the evolution of observables follows from plugging (2.20) into (2.19) and integrating the functional
integral by part using the hermiticity property of the JIMWLK hamiltonian. This leads, for an observable
O, to :

∂

∂Y
〈O〉Y = −〈HO〉Y . (2.23)

This equation is - a bit improperly - called the JIMWLK equation as well and will be the one that is
understood when we deal with the evolution of observables. The JIMWLK equation holds only for gauge
invariant observables.

2.3.4 Multipoles and B-JIMWLK hierarchy

Such gauge invariant quantities are provided by squared amplitudes and cross-sections summed over the
initial and �nal colors. This always leads to a dependence of observables on the background �eld through
terms of the form :

tr
[

ΩR1(x1,⊥)Ω†R1
(x2,⊥)ΩR1(x3,⊥)...Ω†R1

(x2n,⊥)
]

× tr
[

ΩR2(y1,⊥)Ω†R2
(y2,⊥)ΩR2(y3,⊥)...Ω†R2

(y2m,⊥)
]

× ...
(2.24)

where Ri is some representation of the gauge group depending on the nature of the �elds involved in the
reaction. A single trace operator of 2n Wilson lines is called a 2n-rank multipole. The CGC requires the
average of color operators of the form (2.24) over the classical �eld con�gurations. This leads to an in�nite
hierarchy of coupled di�erential equations known as the Balitsky-JIMWLK hierarchy. The simplest color
operator is the dipole amplitude corresponding to a qq̄ pair. From the CGC framework it is straightforward
to show that the qq̄ pair amplitude scattering a dense medium is proportional to :

S(x⊥,y⊥) =
1

Nc
tr

[

Ω(x⊥)Ω†(y⊥)
]

. (2.25)

where the Wilson lines are in the fundamental representation. The evolution equation for the averaged
dipole is given by :

∂

∂Y
〈S(x⊥,y⊥)〉Y = −αsNc

2π2

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

[〈S(x⊥,y⊥)〉Y − 〈S(x⊥,y⊥)S(z⊥,y⊥)〉Y ] .

(2.26)
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The point is that the< SS > term itself obeys another evolution equation whose r.h.s contains quadrupoles,
i.e. operators made of trace of four Wilson lines and so on... this dependence of evolution equations on each
other is the B-JIMWLK hierarchy. However one can simplify the equation in the limit of a large dense target
which contains a lot of partons, n for de�niteness. If, for instance, two dipoles from the projectile interact
with two di�erent partons from the target they do not talk to each other. The mathematical consequence
is that the average of the product factorizes into the product of the averages due to the independence of
the scatterings. The number of ways to plug the two dipoles on the same parton in the target goes like n
and on two di�erent partons, it goes like n(n − 1)/2 ∼ n2 for large n. Thus for a large target, that is as
n becomes large, one can neglect the entangled scatterings with respect to the independent ones (similar
arguments arise in another context in the end of appendix A). Thus for a large target, one has :

〈S(x⊥,y⊥)S(z⊥,y⊥)〉Y → 〈S(x⊥,y⊥)〉Y 〈S(z⊥,y⊥)〉Y . (2.27)

Plugging this property into (2.26) makes that equation (2.26) becomes closed. The large target limit of
(2.26) is nothing but the BK equation discussed in section 2.2.3.

2.3.5 Alternative simpli�ed approaches for computing CGC averages

The brute force computation of the background �eld expectation value of multipoles is practically
impossible, even numerically due to the in�nite B-JIMWLK hierarchy. We here mention the available
methods and approximations used for actual computation.

The gaussian approximation

To guess possible simpli�cations, let us focus on what is taken into account in the JIMWLK evolution.
The CGC provides the leading small x logs contribution of gluon cascades in the saturated regime. That is,
it is a non-linear generalization of the BFKL evolution in which the BFKL ladders can recombine together.
In the BFKL evolution the ladders freely propagate and do not interact with each other. In that case, the
evolution is said to be linear. The non-linearity of the JIMWLK evolution arises from the possible fusion
between ladders. Let us close our eyes for a moment on non-linearities considering only the free evolution
of ladders in the CGC framework. In that case, the distribution WY [A−] is gaussian, that is :

〈

AA1−(x+
1 ,x1,⊥)...AAn−(x+

n ,xn,⊥)
〉

Y
=























0 if n is odd

〈

AA1−(x+
1 ,x1,⊥)AA2−(x+

2 ,x2,⊥)
〉

Y
...

...×
〈

AAn−1−(x+
n−1,xn−1,⊥)AAn−(x+

n ,xn,⊥)
〉

Y
+perm. if n is even.

(2.28)

In the gaussian limit, the distribution is encoded into the 2-point function
〈

AA−(x+,x⊥)AB−(y+,y⊥)
〉

Y
only. Its structure is furthermore constrained by physical requirements : gauge invariance requires the
color structure to be trivial, i.e. proportional to δAB, causality requires locality in the x+ variable, i.e. the
2-point function is proportional to δ(x+ − y+) and homogeneity of the nucleus in the transverse direction
requires a dependence in the transverse coordinates only through x⊥ − y⊥. Thus, without any loss of
generality, the 2-point function can be parametrized as follows :

〈

AA−(x+,x⊥)AB−(y+,y⊥)
〉

Y
= δABδ(x+ − y+)γY (x+,x⊥ − y⊥). (2.29)

Although these considerations assume the evolution of ladders to be free, it has been shown [62, 63] that
it remains valid even in the presence of non-linear e�ects. A mean �eld approximation can be performed
identifying a ladder resulting from the recombination of two ladders as an e�ective single ladder. Under this
mean �eld approximation, the JIMWLK evolution remains gaussian even if one takes non-linear e�ects into
account. This only a�ects the form of the function γY in (2.29) compared to the BFKL gaussian evolution.
The gaussian approximation to JIMWLK has already shown a great success for the comparison of theory
vs. experiments [64, 65]. Moreover it is much easier to implement [66, 67, 68] and also leads to accurate
analytical results.
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Initial conditions, dilute regime and McLerran-Venugopalan model

From previous considerations the gaussian approximation is obviously valid in the dilute medium limit
in which non-linear e�ects can be omitted. In the dilute limit the background �eld is weak and one can
expand perturbatively the Wilson lines in powers of the background �eld in correlators. The �rst non
trivial order is the second order in powers of the background �eld where the 2-point function (2.29) can be
identi�ed. This low energy limit is known as the McLerran-Venugopalan (MV) model [69]. Furthermore,
the low energy limit can be taken as an initial condition for solving the JIMWLK equation since it is easy
to work out correlators at large x - or small Y - thanks to the MV model. From the physical point of
view the dilute limit takes only the dominant single scattering contribution into account. In this context
the concept of parton distribution makes sense and it is actually possible to relate the unintegrated gluon
distribution fY (p⊥), de�ned in (2.3), to the 2-point function (2.29) according to

fY (p⊥)

p2
⊥

=
(N2

c − 1)S⊥
(2π)2

p2
⊥

∫

dx+d2x⊥γY (x+,x⊥ − y⊥)e−ip⊥·(x⊥−y⊥). (2.30)

This result will be proved in section 3.3.2.
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Chapter 3

Di-hadron production in proton-nucleus

collisions at the LHC

For reasons to be explained bellow, an accurate, quantitative exploration of saturation is provided by
proton-nucleus collisions, i.e. a dilute projectile, colliding a dense target. The �rst data for particle produc-
tion in p-Pb collisions at the LHC have just become available [70, 71] and more data will be taken during
the run scheduled for 2013. A main feature of the LHC for our present purposes is to provide experimental
data at values of the Bjorken variable x smaller than ever. This enables the exploration of the saturated
regime of QCD whose natural framework is the CGC e�ective �eld theory. The precise boundary between
the dilute and saturated regimes is not yet �rmly established neither on the experimental nor on the theory
side. However, the phenomenological success of CGC-based predictions for various observables measured at
RHIC [72] suggest that the saturated regime has been - at least marginally - reached at RHIC. This makes
it encouraging to conjecture that this regime will be fully reached and well explored by the p-Pb collisions
at the LHC. In experiments, one of the easiest quantitative evidence of saturation is the measurement of
di-hadron correlations. Working out the di-gluon production inclusive cross-section will be the main aim
of this chapter having in mind the study of saturation at the LHC.

First we shall discuss what is expected from saturation and especially the decoherence e�ect between
produced particles. Next we shall emphasize the di-hadron kinematics and by the way, why di-hadron
production cross-sections in p-A collisions provide the simplest observable for a quantitative evidence of
saturation. We will also motivate the choice of di-gluon production rather than any other process at the
LHC. Then, as an appetizer we shall compute the single quark production cross-section. This is the simplest
calculation in the spirit of what we are doing. This will be a good exercise to see how things work. The last
section will be devoted to the computation of the di-gluon cross section and will be our main result that is
closely related to current LHC experiments. This will be computed in the general case analytically. Then
we shall push further analytic calculations by looking at the hard scattering limit where the transverse
momenta of �nal gluons are large with respect to Qs. This limit shows up a strongly correlated character
and enables us to de�ne new non-linear generalizations of gluon distributions. This chapter is based on
our work [38].

3.1 Final state decoherence

For a saturated target, a parton coming from the projectile will receive multiple scatterings when trav-
eling through the dense medium. The situation really di�ers from a single scattering where the projectile
interacts with the target via a single particle exchange that is computable by perturbation theory. In the
dense regime the multiple exchanges are very complicated and cannot be computed by Feynman diagrams
techniques. For instance CGC faces this problem by assuming that it is well described by a random classical
�eld whose multiple interactions lead - in the eikonal approximation - to the emergence of Wilson lines that
fully encode the scattering process. From the physical point of view, our lack of knowledge about multiple
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scatterings within the saturated medium makes impossible to claim the existence of momentum conserva-
tion law. In other words, information about the initial momentum of an incoming parton is lost as it scatters
the target o�. This is broadly what we call the decoherence e�ect, the main evidence of high density regime.

In our precise context, the term "decoherence" generally refers to the decorrelation between particles in
the �nal state. To understand what is meant let us consider some arbitrary high energy collision between
two dilute hadrons as represented on �gure 3.1. Such a reaction involves the exchange of a single soft

Figure 3.1: Typical process between two dilute
hadrons which produces two back-to-back jets.

Figure 3.2: Plot of the angular distribution - in
the transverse plane - between two �nal parti-
cles. It shows up two sharp peaks at ∆φ = 0
and ∆φ = π. This result comes from p-p exper-
iments performed at RHIC[73].

particle between the two hadrons. The produced particles are arranged in two beams, called jets, that
have opposite directions in the transverse plane and for this reason are called back-to-back. At high energy,
particles in each jet are almost collinear. This merely follows from the collinear divergence 2.4. Therefore
if one picks randomly any two particles in the �nal state, either they belong to the same jet and have a
very small angular separation or they belong to two di�erent jets and they have quasi opposite directions.
Then if one looks at the angular separation between �nal particles one �nds a distribution sharply peaked
around angular separations equal to 0 or π, as show on plot 3.2. In that dilute-dilute case we say that
particles are strongly correlated : given the momentum of one of the particles in the �nal state, there is a
large probability that the other ones have been emitted in the same direction or in the opposite one.

The situation is very di�erent if at least one of the two colliding hadrons is dense. Indeed, there is
no longer a single particle exchanged but many of them. Each of them can couple to various particles
within the jets : the angular distribution of particles in the jet is broadened. The transverse momentum
broadening is the main observational evidence of saturation as shown on �gure 3.3. The disappearance of
correlations between particles is what is referred to decoherence or decorrelation in this context. From now
let us focus on correlations between two hadrons.

3.2 Di-hadron kinematics

Inclusive di-hadron production cross-sections provide the simplest quantitative tool for studying satu-
ration e�ects. Before making kinematic considerations for justifying the choice of this observable, let us
motivate �rst the suitable experimental conditions provided by dilute-dense collisions for probing saturated
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Figure 3.3: Angular distribution between two �nal particles in d-Au collisions performed at RHIC [73].
Correlations, especially around ∆φ = π are widely suppressed compared to the p-p case. The ∆φ = 0 peak
remains in such an asymmetric collision since only one of the peaks is broadened. There is still a large
probability that two produced particles are close to each other.

QCD matter. The question, why does one prefer p-A collisions arises from the following consideration :
the most accurate way to measure the physical e�ects of a saturated medium - the target - is to get rid
of possible saturation e�ects coming from the probe, i.e. the projectile. A dense projectile would bring
its intrinsic noise that would perturb the measurement. We come to the conclusion that the saturated
target must be probed with a dilute projectile. A naive guess for motivating the p-A collisions rather than
p-p or A-A ones follows from the intuitive picture that one has from hadrons : there are more valence
quarks in a nucleus than in a proton and therefore it is denser. In section 2.2.4, we have seen that the
saturation scale behaves like Qs ∼ A1/3. At some given small value of x, saturation is easier to reach as
the hadron considered has a larger number of valence quarks. However a large number of valence quarks
increases the double parton scattering (DPS) e�ect [74]. From the physical point of view, the DPS e�ect
is due to pair of partons created in the remote past. It can be shown that they must be included into the
initial proton wave function and are indistinguishable from a double emission process by two independent
sources. Obviously this e�ect is more important as the number of valence quarks increases. DPS e�ect
also brings an independent contribution to momentum broadening that has nothing to do with saturation.
In that sense it is undesirable. From these considerations, a good candidate for a dilute probe is a proton
whereas a large nucleus is a nice dense medium. This indeed re�nes the measurement of the intrinsic
nuclear saturation e�ects and justi�es in its own the choice of p-A collisions1. However, the hadronic
size is not the only parameter that dertermines to dilute or dense character of a hadron. Saturation also
depends on the region of phase space we are looking atn that is, on the kinematics. Let us sketch this
in the following elementary example : the exclusive di-hadron production via a single exchange between
the projectile and the target represented on �gure 3.4. These considerations are qualitatively una�ected
by multiple scatterings and more complicated sub-processes. By working out kinematic relations, it is not
di�cult to show that the values of x1 and x2 are completely �xed by the �nal state kinematics :

x1 =
k1,⊥√
s
ey1 +

k2,⊥√
s
ey2

x2 =
k1,⊥√
s
e−y1 +

k2,⊥√
s
e−y2 ,

(3.1)

where yi = 1
2 ln(k+

i /k
−
i ), i = 1, 2 are the respective rapidities of the �nal partons2 and

√
s is the total

1Or at least light-heavy hadrons collisions like the d-Au processes performed at RHIC. For technical reasons, RHIC cannot
use protons as projectiles.

2This de�nition for the rapidity di�ers from y = − ln x by an irrelevant constant.
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x2x1

P Q

k1 k2

Figure 3.4: A single scattering exclusive di-hadron production process.

center of mass energy. Beside the number of valence quarks, the saturation scale Qs also depends on x.
The dilute-dense kinematics requires that the projectile is probed at values of x1 ∼ 1 whereas for the
target x2 ≪ 1. Relations (3.1) shows that in order to be ful�lled one has to consider forward rapidities,
that is y1,2 > 0. Physically this means that the two measured �nal partons are right-movers. We come to
the conclusion that p-A collisions together with the measurement of forward rapidity regime are the best
experimental conditions for studying saturation physics.

One can even go further since some processes are dominant depending on the experimental conditions.
Nowadays one has essentially two available tools for the exploration of dense hadronic matter. The �rst
one is the RHIC. For technical reasons it does not perform p-A collisions but d-Au ones at energies of 200
GeV/nucleon. The rapidity range goes up to y ≃ 4. On the deuteron side one has typically x1 ∼ 10−1.
At this value of x1 the deuteron wave function is dominated by the valence quarks [75] and the leading
di-hadron production process is the radiation of a gluon by this quark as it scatters the gold nucleus o� :
qAu→ qgX. The explored values of x2 are expected to lie at the boundary of the saturated phase at such
energies. Therefore it was a priori di�cult to forecast whether saturation will be observed or not on the
experimental side and whether theories for saturation will agree with data or not on the theoretical side.
The disappearance of back-to-back correlations in di-hadron �nal states has been indeed experimentally
observed in d-Au (and even some kinematic regions of p-p) collisions at RHIC [76, 77]. On the contrary,
we expect that the e�ect of the medium will be tiny for gluons with transverse momenta large with respect
to Qs, in agreement e.g. with the results [71, 78]. Even though the validity range of CGC around the
transition to saturation is ill de�ned, CGC-based predictions seem to agree with data [72]. One has been
able to compute qualitatively [79, 80, 81, 82] and even quantitatively [83, 84] these decoherence e�ects in
agreement with experiments. The other accelerator that is expected to reach the fully saturated regime
is the LHC. The �rst p-Pb runs have been performed in winter 2012-2013 and some preliminary data is
available yet [70, 71]. Since the center of mass energy is

√
s = 5 TeV/nucleon, the lead nucleus is clearly in

the saturated phase. The rapidity range covered is a bit larger than at RHIC : y < 5 or 6. The proton is
probed in the regime x1 ∼ 10−2−10−3 where its wave function is dominated by gluons. Then the dominant
process is the splitting of a gluon into either a gluon pair or a qq̄ pair. We shall focus on the �rst one :
gPb→ ggX which has a richer color structure.

So far, our problem is motivated by physics. Our task is next two compute the cross-section for the
inclusive di-gluon production in order to make predictions for LHC runs in p-Pb collisions. Let us �rst
compute one of the simplest observable in the CGC framework : the single quark production inclusive
cross-section. This school case will allow us to introduce the formal devices that will be used for the
di-gluon production. Then we will not be lost into peripheral digressions and be able to follow a straight
guideline for this more complicated case.
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3.3 A pedestrian example of practical computation : single quark scat-
tering

3.3.1 Cross-section

To set the notations and see how calculations work, one considers the simplest example of a single quark
scattering o� the nucleus. This process is illustrated on �gure 3.5. The incoming quark is conveniently

a, s, p→ → q, r, b

Figure 3.5: Feynman diagram for the process qA → qA. The doted line represents the nucleus. One has
to keep in mind that the quark has been emitted in the remote past by the proton.

chosen as forward, that is its momentum p reads p = (p+, 0,p). The S-matrix element corresponding to
this process is very simple since it is nothing but the normalization condition (B.10) detailed in appendix
B for one particle states in presence of a background �eld :

〈~q, r, b| ~p, s, a〉A− = 2p+δrs2πδ(p+ − q+)

∫

d2x⊥Ωba(x⊥)e−i(q⊥−p⊥)·x⊥ . (3.2)

Ωba(x⊥) is the Wilson line (2.18) in the fundamental representation. The physical quantity accessible to
experimentalists is the cross-section. The way we relate cross-sections to S-matrix elements is explained in
appendix C. Although the initial state in (3.2) seems to be a one-particle state, the meaningful observable
is a cross-section rather than a decay rate. The initial nucleus does not appear in the initial quantum state
since it is described at the classical level but the physical process is indeed a two-body collision. Let us
de�ne as theM-matrix the coe�cient of 2πδ(p+ − q+) in formula (3.2). The di�erential cross-section for
the single quark scattering then reads in terms of theM-matrix element as follow :

dσ(q(p)→ q(q)) =
1

2p+
|M(q(p)→ q(q))|2 2πδ(p+ − q+)

d3q

(2π)32q+
. (3.3)

This is the cross-section for a process with de�nite colors and spins in the initial and �nal states, however,
it is easier if one deals with gauge and Lorentz invariant quantities. Then we have to sum over the �nal
state's color and spin and average over the initial state's color and spin. Moreover one has to average also
over the background �eld according to (2.19). The essential ingredient for computing the cross section is
then :

〈

|M(q(p)→ q(q))|2
〉

Y
=

1

2Nc

∑

r,s

∑

a,b

4(p+)2δrsδrs

∫

d2x⊥d2y⊥

〈

Ωba(x⊥)Ω†ab(y⊥)
〉

Y
e−iq⊥·(x⊥−y⊥)

=
4(p+)2

Nc

∫

d2x⊥d2y⊥

〈

tr
[

Ω(x⊥)Ω†(y⊥)
]〉

Y
e−iq⊥·(x⊥−y⊥).

(3.4)

In this last expression one sees the emergence of a quantity of special importance known as a color dipole,
denoted S, de�ned as :

S(x⊥,y⊥) =
1

Nc
tr

[

Ω(x⊥)Ω†(y⊥)
]

. (3.5)

In this very simple example we have seen how to perform the calculations and the emergence of trace color
operators of the form (2.24), the dipole.
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3.3.2 Dilute regime limit

Performing the dilute limit in (3.4) will enable us to generalize the unintegrated gluon distribution to
multiple scatterings. For this purpose, one has to match together two ways for getting the dilute limit. The
dilute limit assumes that there is only a single gluon exchanged between the incoming quark and the target.

The �rst way to compute the dilute limit follows from the general collinear factorization, already
encountered in 2.1.1 and justi�ed for high energy. The cross-section for the qA → qX process reads in
terms of the cross-section corresponding to the qg → q process with a gluon carrying a fraction x2 of the
target's longitudinal momentum Q− :

dσ(q(p)→ q(q)) =

∫ 1

0
dx2G(x2;Q

2)dσ(q(p)g(k = x2Q)→ q(q)). (3.6)

The frame is chosen so that the incoming quark has a zero transverse momentum and the momentum
k transferred by the exchanged gluon is k⊥ = q⊥. In the collinear factorization approximation, the
distribution of the gluon is sharply peaked around k⊥ = 0 in the transverse plane. Thus equation (2.3)
merely reads3 :

x2G(x2;Q
2)δ(2)(k⊥) =

1

πk2
⊥

fY (k⊥). (3.7)

Furthermore, in the eikonal approximation, the qg → q cross-section, averaged over initial spins and colors,
reads :

dσ(q(p)g(k)→ q(q))

dyd2q⊥
=
g2p+k−

4Ncq
2
⊥

2πδ(4)(p+ k − q). (3.8)

y being the rapidity of the �nal quark, y = 1
2 ln q+

q−
. Plugging this last expression into (3.6) and performing

the integration over x2 thanks to the delta function which �xes x2 = q−/Q− gives :

dσ(q(p)→ q(q))

dyd2q⊥
= x2G(x2;Q

2)
g2p+

4Ncq
2
⊥

2πδ(p+ − q+)δ(2)(q⊥) =
g2p+

2Ncq
4
⊥

fY (q⊥)δ(p+ − q+). (3.9)

Note that the last equality is a device since the unintegrated gluon distribution is a mere delta func-
tion in the collinear factorization approximation. Closing our eyes on that point, the last form of (3.9)
is known as k⊥-factorization. It is more general than collinear factorization since the gluon exchanged
with the target is o�-shell in k⊥-factorization. This special limit will enable us to write down a generalized
unintegrated gluon distribution in presence of non-linear e�ects read from the structure of the cross-section.

On the other hand, one can perform the brute force computation of the qA→ qX cross-section thanks
to (3.4) together with (3.3). It leads to :

dσ(q(p)→ q(q))

dyd2q⊥
=

p+

(2π)2
δ(p+ − q+)

∫

d2x⊥d2y⊥ 〈S(x⊥,y⊥)〉Y e−iq⊥·(x⊥−y⊥). (3.10)

The dilute limit (3.9) allows a natural de�nition of a generalized gluon distribution in presence of non-linear
e�ects. Indeed, we expect that the total cross-section takes the form (3.9) even in presence of non-linear
e�ects by replacing the unintegrated gluon distribution fY by the generalized object under consideration.
An obvious identi�cation with (3.10) leads to the gluon distribution associated to the fundamental dipole
fdip,F

Y , de�ned as :

fdip,F
Y (q⊥)

q2
⊥

≡ 2Nc

g2(2π)2
q2
⊥

∫

d2x⊥d2y⊥ 〈S(x⊥,y⊥)〉Y e−iq⊥·(x⊥−y⊥), (3.11)

3This relation between the integrated and unintegrated gluon distribution is a bit trivial. Actually we shall recover the
so-called k⊥-factorization result using the less general collinear factorization in which the gluon coming from the target is
on-shell.
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where q⊥ is now the total transverse momentum transferred by the target. It is not possible in general to
associate generalized gluon distributions to any trace operator, this makes sense only in particular cases.
The single quark scattering is one of them, we shall see another example for the g → gg process in section
3.4.4.

Furthermore, the dilute limit can be also performed directly in (3.10). This will lead to a de�nition
of the unintegrated gluon distribution as a background �eld correlator. By de�nition, the l.h.s of (3.11)
reduces to fY (q⊥) in the dilute limit. Concerning the r.h.s the single exchange assumption is an expansion
of trace operators up to second order in the background �eld since the cross-section receives a contribution
from both the amplitude and the complex conjugate amplitude. Therefore we will expand the Wilson lines
(2.18) as :

Ω(x⊥) = 1 + ig

∫

dx+A−(x+,x⊥)− g2

2

∫

dx+dy+P
{

A−(x+,x⊥)A−(y+,x⊥)
}

+O(A3). (3.12)

Plugging this expansion into the dipole de�nition (3.5), keeping only terms up to second order and then
performing the average (2.29)4 gives :

〈S(x⊥,y⊥)〉Y = 1 + g2CF

∫

dx+
(

γY (x+,x⊥ − y⊥)− γY (x+,0)
)

. (3.13)

where CF = (N2
c − 1)/2Nc is the fundamental representation Casimir. For brevity, let us de�ne

ΓY (x⊥ − y⊥) ≡
∫

dx+
(

γY (x+,0)− γY (x+,x⊥ − y⊥)
)

. (3.14)

By inserting the dipole expansion into the relation (3.11), one relate the unintegrated gluon distribution
to the Fourier transform of the background �eld two-point function integrated over x+. Actually, the
integrand in (3.11) only depends on the coordinate di�erence x⊥ − y⊥ leaving the integral of 1 over the
whole transverse plane. Of course the transverse plane has to be cut at the hadron's size. As long as the
transverse integrals contain oscillating exponentials, the integration range can be extended to in�nity but
in this last case, the remaining integral just brings a factor S⊥. Hence, the unintegrated gluon distribution
reads :

fY (q⊥)

q2
⊥

= −(N2
c − 1)S⊥
(2π)2

q2
⊥

∫

d2x⊥ΓY (x⊥)e−iq⊥·x⊥ .s (3.15)

This result proves the, so far stated, formula (2.30). Recalling that fY (q⊥)/q2
⊥ is the number of gluons

per phase space dY d2p⊥, it has an alternate de�nition as a number operator acting on the proton wave
function. The classical correspondence is a background �eld two-point function averaged over the sources
in the CGC framework. This justi�es the existence of such a relation between the unintegrated gluon
distribution and the background �eld two-point function.

3.4 Di-gluon decorrelation at the LHC

On the projectile side the relevant part of the proton wave function, which is purely gluonic and dilute,
is treated within the collinear factorization. According to appendix C.2, this yields the following expression
for the p-A cross-section :

dσ(pA→ ggX)

dy1dy2d2k1,⊥d2k2,⊥
=

1

256π5(p+)2
x1G(x1, Q

2)
〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
. (3.16)

4Even though we do not make the gaussian approximation, the two-point function (2.29) is the essential ingredient in
the dilute limit. Di�erences between gaussian and non-gaussian source distributions arise only from higher-point correlation
functions. Moreover 〈A−〉Y is always zero by charge conjugation symmetry.
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It is understood that x1 = p+/P+ with p+ = k+
1 + k+

2 (in agreement with plus momentum component
conservation). This is a special case of (C.6). The phase space volume element is written, for convenience,
in the rapidity representation yi = 1

2 ln(k+
i /k

−
i ) and then one has dyi = dk+

i /k
+
i .. To the accuracy of

interest, the factorization scale Q should be chosen of the order of a typical value of the �nal transverse
momenta, say, of the order of the saturation scale Qs(A, Y ) in the nuclear target. Thus the proton enters
trivially into the cross section through prefactors and one can focus only on the sub-process gA→ ggX.

3.4.1 The amplitude

The partonic process gA→ ggX involves the two diagrams illustrated in �gure 3.6. Using the Feynman

k1, B

p,A

k2, C

k1, B

p,A

k2, C

Figure 3.6: The two contributions to the gluon's splitting. The dotted line represents the shockwave. One
could wonder about a possible contribution arising from the splitting in the medium. It turns out that
such contributions always involve integrals of regular functions over the x+ source support, which cancel
as the source becomes in�nitely narrow in this direction.

rules detailed in appendix D, it is straightforward to write down the corresponding contributions to the
scattering amplitude :

iM (g(p,A)A→ g(k1, B)g(k2, C)) = −gfDBCǫµ(p)ǫν∗(k1)ǫ
ρ∗(k2)Γσνρ(k1 + k2, k1, k2)

× 2p+βµi(p⊥, p
+)

iβσi(k1,⊥ + k2,⊥, p
+)

(k1 + k2)2 + iǫ

∫

d2x⊥Ω̃DA(x⊥)e−ix⊥·(k1,⊥+k2,⊥−p⊥)

+ gfAEF ǫµ(p)ǫ∗ν(k1)ǫ
∗
ρ(k2)

∫

l+=k+

dl−d2l⊥
(2π)3

Γµσλ(p, l, p− l)

× 2k+
1 β

νi(k1,⊥, k
+
1 )
iβσi(l⊥, k

+
1 )

l2 + iǫ

∫

d2x⊥Ω̃BE(x⊥)e−ix⊥·(k1,⊥−l⊥)

× 2k+
2 β

ρj(k2,⊥, k
+
2 )
iβλj(p⊥ − l⊥, k

+
2 )

(p− l)2 + iǫ

∫

d2y⊥Ω̃CF (y⊥)e−iy⊥·(k2,⊥−p⊥+l⊥).

(3.17)

The transverse momentum p⊥of the initial gluon is momentarily kept generic, but it will be eventually
set to zero. The polarization indices have not been explicitly written in (3.17) to alleviate notations. The
gauge condition A+ = 0 together with the Ward identity k · ǫ(k) = 0 imply the constraints ǫ+ = 0 and
ǫ−(k) = kiǫi(k)/k+. Γµνρ(k, p, q) denotes the Lorentz piece of the three-gluon vertex - with the color
and g factor omitted: the momentum k is incoming, while p and q are outgoing (see D for the explicit
expression). The symbol βµi(p⊥, k

+) may be viewed as the `square-root' of the tensorial structure of the
gluon propagator in the background �eld. As discussed in detail in D, this propagator is conveniently
written as (in momentum space)5 :

∆µν
AB(k−,k⊥; q−,q⊥; k+) = βµi(k⊥, k

+)βνi(q⊥, k
+)GAB(k−,k⊥; q−,q⊥; k+) (3.18)

where GAB(k−,k⊥; q−,k⊥; k+) is the respective scalar propagator and

βµi(q⊥, k
+) = δµ− q

i

k+
+ δµi. (3.19)

5Since in this chapter we shall only deal with tree-level Green functions, we shall not introduce notations for distinguishing
between the exact propagator and the propagator dressed by the background �eld at tree level. In the next chapter we will
need to distinguish them but here we have preferred to alleviate the notations by avoiding proliferation of indices.
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As a guide to see how (3.17) has been derived, let us consider the second diagram shown on �gure 3.6.
Using (D.34), the upper �nal leg attached to the shock wave combined with the propagator running from
the branching vertex to the shock wave contributes as

−2k+
1 ǫ
∗
ν(k1)β

νi(k1,⊥, k
+
1 )
iβσi(l⊥, k

+
1 )

l2 + iǫ

∫

d2x⊥Ω̃BE(x⊥)e−ix⊥·(k1,⊥−l⊥). (3.20)

l is the momentum running between the vertex and the shock wave through the upper branch. Since the
plus component of the momentum remains una�ected by the shock wave, this �xes l+ = k+

1 . However,
the other components are not �xed and one has to integrate the whole diagram over l− and l⊥. There
is a similar expression for the lower �nal leg but the �nal momentum is k2 and the momentum between
the vertex and the shock wave is p− l by momentum conservation at the vertex. We have (p− l)+ = k+

2 .
Finally, the vertex brings a factor gfAEF Γµσλ(p, l, p − l) and the initial gluon introduces the polarization
vector ǫµ(p). The �rst diagram of �gure 3.6 is obtained in a similar way.

In equation (3.17), the integral over l− is performed using the residue theorem. The result is to set l
on-shell (i.e. l− = l2⊥/2k

+
1 ) and to replace i/l2 → 2π/2k+

1 . (The iǫ prescriptions play no role since none
of the denominators is vanishing.) As already mentioned, we chose the frame so that p = (p+, 0,0) and
we introduce the z parameter so that kµ

1 = (zp+, k−1 ,k1,⊥) and kµ
2 = ((1− z)p+, k−2 ,k2,⊥), with k1 and k2

on-shell. The value of z is related to the kinematic variables of the produced gluons via

z =
k1,⊥e

y1

k1,⊥ey1 + k2,⊥ey2
. (3.21)

Then the denominators in (3.17) can be rewritten as :

(k1 + k2)
2 =

1

z(1− z)((1− z)k1,⊥ − zk2,⊥)2

(p− l)2 = −1

z
l2⊥.

(3.22)

Moreover, we use equations (D.26) and (D.27) in order to replace the polarization 4-vectors by their
transverse components alone. (This is possible since, as alluded to above, the transverse components
are the only independent ones in the present set-up.) After performing these various manipulations, the
amplitude (3.17) becomes

iM (g(p, a)A→ g(k1, b)g(k2, c)) = gǫi(p)ǫj∗(k1)ǫ
k∗(k2)×

×
[

fDBC 2ip+z(1− z)
((1− z)k1,⊥ − zk2,⊥)2

βµi(k1,⊥ + k2,⊥, p
+)βνj(k1,⊥, k

+
1 )βρk(k2,⊥, k

+
2 )Γµνρ(k1 + k2, k1, k2)

×
∫

d2x⊥Ω̃DA(x⊥)e−ix⊥·(k1,⊥+k2,⊥−p⊥)

− fAEF

∫

d2l⊥
(2π)2

2ik+
2 z

l2⊥
βµi(p⊥, p

+)βνj(l⊥, k
+
1 )βρk(p⊥ − l⊥, k

+
2 )Γµνρ(p, l, p− l)

×
∫

d2x⊥d2y⊥Ω̃BE(x⊥)Ω̃CF (y⊥)e−ix⊥·(k1,⊥−l⊥)−iy⊥·(k2,⊥−p⊥+l⊥)

]

.

(3.23)

Now that we have a rather compact expression for the amplitude, the next goal is to compute the probability.

3.4.2 The splitting cross-section

Here we come to the main topic, namely, the computation of the cross-section for the partonic process
gA→ ggX. This is obtained according to (3.16) where

〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
≡ 1

2(N2
c − 1)

∑

pol.

∑

ABC

〈

∣

∣M
(

g(p,A)A→ g(k1, B)g(k2, C)
)∣

∣

2
〉

Y
. (3.24)
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For more clarity, the calculation of the r.h.s. of (3.24) will be split into two stages : �rst, the sum
over polarizations and next the sum and average over colors (including the CGC average over the target
background �eld).

Sum over polarizations : Lorentz structure

After taking the modulus squared of the amplitude in (3.23), the sum over polarizations is readily
performed by using

∑

pol.

ǫi(k)ǫj∗(k) = δij (3.25)

Notice that the r.h.s. of the above equation is independent of the momentum k carried by the polarization
vector. Hence, an expression like ǫi(p)βµi(k⊥, k

+), after being squared and summed over polarizations,
will give a result which depends only upon k, and not upon p. The computation of the modulus squared
of the vertex functions which appear in (3.23) - this leads to terms of the form

∑

ijk |βiµβjνβkρΓµνρ|2- is
quite lengthy but straightforward6. One eventually obtains (as compared to (3.23), we shall from now on
set p⊥ = 0) :

|M(g(p)A→ g(k1)g(k2))|2 =
16g2(p+)2z(1− z)

N2
c − 1

Pg←g(z)×

×
∑

ABC

∣

∣

∣

∣

fDBC (1− z)ki
1 − zki

2

((1− z)k1,⊥ − zk2,⊥)2

∫

d2x⊥Ω̃DA(x⊥)e−ix⊥·(k1,⊥+k2,⊥) −

− fAEF

∫

d2l⊥
(2π)2

li

l2⊥

∫

d2x⊥d2y⊥Ω̃BE(x⊥)Ω̃CF (y⊥)e−ix⊥·(k1,⊥−l⊥)−iy⊥·(k2,⊥+l⊥)

∣

∣

∣

∣

2

,

(3.26)

where Pg←g(z) is the DGLAP gluon-to-gluon splitting function :

Pg←g(z) ≡
z

1− z +
1− z
z

+ z(1− z). (3.27)

This result can be rewritten in a more suggestive form by using the following identities,

∫

d2l⊥
(2π)2

li

l2⊥
eil⊥·(x⊥−y⊥) =

i

2π

xi − yi

(x⊥ − y⊥)2

(1− z)ki
1 − zki

2

((1− z)k1,⊥ − zk2,⊥)2
=

i

2π

∫

d2y⊥
xi − yi

(x⊥ − y⊥)2
e−i((1−z)k1,⊥−zk2,⊥)·(x⊥−y⊥),

(3.28)

in which one recognizes the derivative ∂i
xG(x⊥−y⊥) of the two-dimensional Laplace propagator, G(x⊥) =

(1/4π) ln(x2
⊥). In the present context, this plays the role of the transverse splitting function, as we shall

6For the reader interested in fully following the calculation, we give the intermediate results. One has to compute essentially
three kinds of squares of vertices which correspond to the sum over the polarizations of the square of (3.23). From the explicit
form (3.19) of the βµi's one gets :

βµi(k1,⊥ + k2,⊥, p+)βµ′i(k1,⊥ + k2,⊥, p+)βνj(k1,⊥, k+
1 )βν′j(k1,⊥, k+

1 )βρk(k2,⊥, k+
2 )βρ′k(k2,⊥, k+

2 )×

× Γµνρ(k1 + k2, k1, k2)Γµ′ν′ρ′(k1 + k2, k1, k2) =
8((1− z)k1,⊥ − zk2,⊥)2

z(1− z)
Pg←g(z).

βµi(k1,⊥ + k2,⊥, p+)βµ′i(p⊥, p+)βνj(k1,⊥, k+
1 )βν′j(l⊥, k+

1 )βρk(k2,⊥, k+
2 )βρ′k(p⊥ − l⊥, k+

2 )×

× Γµνρ(k1 + k2, k1, k2)Γµ′ν′ρ′(p, l, p− l) =
8l⊥ · ((1− z)k1,⊥ − zk2,⊥)

z(1− z)
Pg←g(z)

βµi(p⊥, p+)βµ′i(p⊥, p+)βνj(l⊥, k+
1 )βν′j(l′⊥, k+

1 )βρk(p⊥ − l⊥, k+
2 )βρ′k(p⊥ − l

′
⊥, k+

2 )×

× Γµνρ(p, l, p− l)Γµ′ν′ρ′(p, l′, p− l′) =
8l⊥ · l′⊥
z(1− z)

Pg←g(z).
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shortly discuss. Namely, after using (3.28) and performing some changes in the integration variables, one
can recast (3.26) into the form

|M(g(p)A→ g(k1)g(k2))|2 =
4g2(p+)2z(1− z)
π2(N2

c − 1)
Pg←g(z)

×
∑

ABC

∣

∣

∣

∣

∫

d2x⊥d2y⊥
xi − yi

(x⊥ − y⊥)2
e−ik1,⊥·x⊥−ik2,⊥·y⊥

[

fDBCΩ̃DA(b⊥)− fAEF Ω̃BE(x⊥)Ω̃CF (y⊥)
]

∣

∣

∣

∣

2

(3.29)

which admits a transparent physical interpretation: x⊥ and y⊥ are the transverse coordinates of the two
�nal gluons, whereas b⊥ ≡ zx⊥+(1−z)y⊥, which is recognized as their barycenter in the transverse plane,
is the respective coordinate of the original gluon. The function

xi − yi

(x⊥ − y⊥)2
= (1− z) xi − bi

(x⊥ − b⊥)2
= −z yi − bi

(y⊥ − b⊥)2
(3.30)

is proportional to the amplitude for splitting a gluon at x⊥ (or at y⊥) from an original gluon at b⊥. The
�rst terms within the square brackets in (3.29) corresponds to the process where the original gluon interacts
with the shockwave prior to splitting. The second terms describes the other situation, where the splitting
occurs before the interaction, so the �nal gluons scatter o� the shockwave.

Sum over colors and average over the background �eld

It is now straightforward to explicitly perform the square in (3.29) and then formally average over the
background �eld. This yields

〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
=

4g2Nc

π2
(p+)2z(1− z)Pg←g(z)

×
∫

d2x⊥d2y⊥d2x̄⊥d2ȳ⊥
(x⊥ − y⊥) · (x̄⊥ − ȳ⊥)

(x⊥ − y⊥)2(x̄⊥ − ȳ⊥)2
e−ik1,⊥·(x⊥−x̄⊥)−ik2,⊥·(y⊥−ȳ⊥)

×
〈

S̃(2)(b⊥, b̄⊥)− S̃(3)(b⊥, x̄⊥, ȳ⊥)− S̃(3)(b̄⊥,x⊥,y⊥) + S̃(4)(x⊥,y⊥, x̄⊥, ȳ⊥)
〉

Y
,

(3.31)

which is our main new result in this chapter : the probability for gluon splitting induced by the interaction
with the nucleus (the corresponding cross-section is then easily obtained according to (3.16)).

In (3.31), b⊥ ≡ zx⊥ + (1− z)y⊥ and b̄⊥ ≡ zx̄⊥ + (1− z)ȳ⊥, where x⊥ and x̄⊥ denote the transverse
coordinates of the �rst produced gluon (the one with momentum k1,⊥) in the direct and respectively
complex conjugate amplitude, whereas y⊥ and ȳ⊥ similarly refer to the second produced gluon. The other
new notations appearing in (3.31) are de�ned as follows:

S̃(2)(b⊥, b̄⊥) =
1

Nc(N2
c − 1)

fDBCfD′BCΩ̃DA(b⊥)Ω̃D′A(b̄⊥) =
1

N2
c − 1

Tr
[

Ω̃(b⊥)Ω̃†(b̄⊥)
]

S̃(3)(b⊥, x̄⊥, ȳ⊥) =
1

Nc(N2
c − 1)

fDBCfAEF Ω̃DA(b⊥)Ω̃BE(x̄⊥)Ω̃CF (ȳ⊥)

S̃(4)(x⊥,y⊥, x̄⊥, ȳ⊥) =
1

Nc(N2
c − 1)

fAEF fAE′F ′Ω̃BE(x⊥)Ω̃CF (y⊥)Ω̃BE′(x̄⊥)Ω̃CF ′(ȳ⊥).

(3.32)

The normalization factors in (3.32) are chosen in such a way that the various functions S̃(k), with k = 2, 3, 4,
approach unity in limit of a vanishing background �eld. Using the identity fAEF Ω̃BEΩ̃CF = Ω̃DAf

DBC ,
it is easy to check that they all can be obtained from S̃(4) :

S̃(2)(b⊥, b̄⊥) = S̃(4)(b⊥,b⊥, b̄⊥, b̄⊥)

S̃(3)(b⊥, x̄⊥, ȳ⊥) = S̃(4)(b⊥,b⊥, x̄⊥, ȳ⊥).
(3.33)
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Physically, the functions S̃(k) represent S-matrices for the eikonal scattering between a system of k gluons
in an overall color singlet state and the background �eld. For instance, S̃(2) corresponds to a gluonic dipole
made with the original gluon in the amplitude times its hermitian conjugate in the complex conjugate
amplitude. Its contribution to (3.31) represents the probability for the process in which the splitting
occurs after the scattering. Similarly, S̃(4) (a gluonic quadrupole) describes the process where the splitting
occurs prior to the scattering, and the two pieces involving S̃(3) describe the interference between the two
possible time orderings. The identities (3.33) have a simple physical interpretation: if the two gluons
produced by the splitting are very close to each other, such that one can approximate x⊥ ≃ y⊥ ≃ b⊥, then
there is no di�erence (in so far as the scattering o� the shockwave is concerned) between this system of
two overlapping gluons and their parent gluon prior to its splitting. Not surprisingly, the general structure
of the probability for gluon splitting in (3.31) is very similar to that for the corresponding quark splitting
(qA→ qgX), as computed in [79]. The main di�erence refers, as expected, to the replacement of the quark
Wilson lines (in the fundamental representation of the color group) by adjoint Wilson lines for gluons.
Moreover, (3.31) generalizes previous results for gluon splitting [80, 81, 85] obtained in various limits and
that we shall later recover by taking the appropriate limits of (3.31).

Relation to multipoles in the fundamental representation

In order to compute the CGC expectation values of the gluonic multipole operators in (3.32), it is
convenient to �rst re-express them in terms of Wilson lines in the fundamental representation (this is
particularly useful in view of the large Nc limit, to be discussed next). This can be done by using several
group identities. The �rst one relates the structure constants - or equivalently, up to a phase, the adjoint
representation generators - to a trace of generators in an arbitrary representation R :

fABC = −2itr
(

[TA
R ;TB

R ]TC
R

)

. (3.34)

The tr symbol with small letters denotes the trace in an arbitrary representation. The second one relates
an arbitrary group matrix in some representation R to the adjoint representation matrix Ũ 7 :

UTA
RU

† = TB
R ŨBA = (Ũ †)ABT

B
R . (3.35)

The last required identity holds only for the fundamental representation F of SU(Nc) (the two previous
ones where valid for any semi-simple Lie groups) :

(TA
F )ab(T

A
F )cd =

1

2

(

δadδbc −
1

Nc
δabδcd

)

. (3.36)

The net result is that any adjoint Wilson line gets replaced by a pair of Wilson lines in the fundamental
representation. After straightforward manipulations, the function S̃(4) is eventually rewritten as follows

S̃(4)(x⊥,y⊥,u⊥,v⊥) =
N2

c

2(N2
c − 1)

[Q(x⊥,y⊥,v⊥,u⊥)S(u⊥,x⊥)S(y⊥,v⊥)

+Q(y⊥,x⊥,u⊥,v⊥)S(x⊥,u⊥)S(v⊥,y⊥)

− 1

N2
c

O(v⊥,x⊥,u⊥,v⊥,y⊥,u⊥,x⊥,y⊥)− 1

N2
c

O(v⊥,u⊥,x⊥,v⊥,y⊥,x⊥,u⊥,y⊥)

]

,

(3.37)

where the various terms in the r.h.s. are multipoles (i.e. single-trace operators) built with Wilson lines in
the fundamental representation (to be denoted by Ω and Ω†). Namely, we shall need the respective dipole,

7Previously, formula (3.33) follows from this identity with R taken to be the adjoint representation as well.
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quadrupole, hexapole, and octupole, de�ned as

S(x⊥,y⊥) =
1

Nc
tr

[

Ω(x⊥)Ω†(y⊥)
]

Q(x⊥,y⊥,u⊥,v⊥) =
1

Nc
tr

[

Ω(x⊥)Ω†(y⊥)Ω(u⊥)Ω†(v⊥)
]

H(x⊥,y⊥,u⊥,v⊥,w⊥, z⊥) =
1

Nc
tr

[

Ω(x⊥)Ω†(y⊥)Ω(u⊥)Ω†(v⊥)Ω(w⊥)Ω†(z⊥)
]

O(x⊥,y⊥,u⊥,v⊥,w⊥, z⊥, t⊥, s⊥) =
1

Nc
tr

[

Ω(x⊥)Ω†(y⊥)Ω(u⊥)Ω†(v⊥)Ω(w⊥)Ω†(z⊥)Ω(t⊥)Ω†(s⊥)
]

.

(3.38)

tr denotes here the trace in the fundamental representation. These are formally the operators which
describe the scattering between a quark-antiquark (qq̄) color dipole, a qq̄qq̄ color quadrupole, etc, o� the
background �eld. We shall generically refer to such single-trace operators as multipoles. The corresponding
expressions for S̃(2) and S̃(3) follow from (3.33) :

S̃(2)(x⊥,u⊥) =
N2

c

N2
c − 1

[

S(x⊥,u⊥)S(u⊥,x⊥)− 1

N2
c

]

S̃(3)(x⊥,u⊥,v⊥) =
N2

c

2(N2
c − 1)

[S(v⊥,u⊥)S(u⊥,x⊥)S(x⊥,v⊥) + S(u⊥,v⊥)S(x⊥,u⊥)S(v⊥,x⊥)−

− 1

N2
c

H(v⊥,x⊥,u⊥,v⊥,x⊥,u⊥)− 1

N2
c

H(v⊥,u⊥,x⊥,v⊥,u⊥,x⊥)

]

.

(3.39)

In principle, all such expectation values can be computed by numerically solving the JIMWLK equation
[66, 67, 68], with appropriate initial conditions (say, as provided by the McLerran-Venugopalan model
detailed in section 2.3.5) at low energies. Moreover, explicit analytic expressions can be obtained in the
Gaussian approximation to the JIMWLK evolution discussed in 2.3.5 (the ensuing expressions may be
viewed as extrapolations to high-energy of the respective formulas in the MV model [85]). In practice
though all these calculations become prohibitively cumbersome with increasing number of Wilson lines.
Important simpli�cations occurs in the large Nc limit to be discussed next.

3.4.3 The large Nc limit

The limit of a large number of colors (Nc ≫ 1) is interesting since it preserves the essential physical
e�ects, while allowing for important technical simpli�cations. Indeed, within equations (3.37) and (3.39),
all the multipole operators higher than the quadrupole are accompanied by an explicit factor of 1/N2

c and
hence they are suppressed8 as Nc → ∞. This reduction of the multipole functional space to dipoles and
quadrupoles, occurring at large Nc, has been recently argued [86] to be a general property, which holds for
any production process of the dilute-dense type (within the limits of the present, CGC-like, factorization).

Independently, we shall assume that the source is large in the sense discussed in section 2.3.4, that is
the interaction with the target is dominated by independent scatterings. In this case, averages of products
of multipoles factorize into products of averages of individual multipoles. (This is a generic property of
multi-trace expectation values.) For instance, the large Nc limit version of the gluonic dipole S-matrix, as
shown in the �rst line of (3.39), reads

〈

S̃(2)(x⊥,u⊥)
〉

Y
= 〈S(u⊥,x⊥)〉Y 〈S(x⊥,u⊥)〉Y (Nc →∞). (3.40)

In general, the dipole expectation value is not symmetric: whenever non-vanishing, the di�erence
〈S(u⊥,x⊥)− S(x⊥,u⊥)〉Y is purely imaginary and C-odd and describes the amplitude for odderon ex-
changes in the dipole-target scattering [87, 88]. However, if the initial condition for the dipole amplitude

8Notice that, according to (3.38), the multipoles are normalized such that they remain of O(1) as Nc →∞.
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at low energy is real, as is e.g. the case within the context of the MV model, then this property will
be preserved by the JIMWLK evolution up to arbitrarily high energy. A similar property holds for the
quadrupole S-matrix: if this is real at Y = Y0 (as is indeed the case within the MV model), then it remains
real for any Y > Y0 ; then the expectation values of the two quadrupoles which enter (3.37) are equal to
each other : 〈Q(x⊥,y⊥,v⊥,u⊥)〉Y = 〈Q(y⊥,x⊥,u⊥,v⊥)〉Y .

To summarize, at large Nc and for initial conditions provided by the MV model, the target expectation
values relevant for the 2-gluon production simplify to

〈

S̃(2)(x⊥,u⊥)
〉

Y
≃ 〈S(u⊥,x⊥)〉2Y

〈

S̃(3)(x⊥,u⊥,v⊥)
〉

Y
≃ 〈S(x⊥,u⊥)〉Y 〈S(u⊥,v⊥)〉Y 〈S(v⊥,x⊥)〉Y

〈

S̃(4)(x⊥,y⊥,u⊥,v⊥)
〉

Y
≃ 〈Q(x⊥,y⊥,v⊥,u⊥)〉Y 〈S(x⊥,u⊥)〉Y 〈S(y⊥,v⊥)〉Y .

(3.41)

This immediately yields the large-Nc version of the squared amplitude in (3.31) :

〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
=

4g2Nc

π2
(p+)2z(1− z)Pg←g(z)

×
∫

d2x⊥d2y⊥d2x̄⊥d2ȳ⊥
(x⊥ − y⊥) · (x̄⊥ − ȳ⊥)

(x⊥ − y⊥)2(x̄⊥ − ȳ⊥)2
e−ik1,⊥·(x⊥−x̄⊥)−ik2,⊥·(y⊥−ȳ⊥)

×
[

〈

S(b⊥, b̄⊥)
〉2

Y
〈S(b⊥, x̄⊥)〉Y 〈S(x̄⊥, ȳ⊥)〉Y 〈S(ȳ⊥,b⊥)〉Y

〈

S(b̄⊥,x⊥)
〉

Y
〈S(x⊥,y⊥)〉Y

〈

S(y⊥, b̄⊥)
〉

Y

+ 〈Q(x⊥,y⊥, ȳ⊥, x̄⊥)〉Y 〈S(x⊥, x̄⊥)〉Y 〈S(y⊥, ȳ⊥)〉Y ] ,

(3.42)

where the variables b⊥ and b̄⊥ have been de�ned after (3.31). As a check, one can easily verify that for a
very asymmetric splitting (z ≪ 1 or 1− z ≪ 1), our (3.42) reduces, as it should, to the respective result in
[80, 81].

Still at large Nc, the general Balitsky-JIMWLK hierarchy of coupled evolution equations for the multi-
pole expectation values boils down to a triangular hierarchy of equations, which can be solved one after the
other: the dipole S-matrix 〈S〉Y obeys the closed, non-linear, Balitsky-Kovchegov (BK) equation [46, 89],
while the quadrupole S-matrix 〈Q〉Y obeys an inhomogeneous equation in which the source term and the
coe�cients of the homogeneous terms depend upon 〈S〉Y . This last equation is still quite complicated,
but a good approximation to it - in the form of an analytic expression relating 〈Q〉Y to 〈S〉Y - can be
obtained within the Gaussian approximation to the JIMWLK evolution. In view of this, (3.42) is quite
explicit (at least, conceptually) and can be used as such for applications to phenomenology. To that aim,
one should combine a reasonable approximation to the dipole S-matrix (say, as given by the solution to
the BK equation with a running coupling [90, 91, 92]) with the expression for 〈Q〉Y valid in the Gaussian
approximation and at large Nc (as given e.g. in equation(4.26) of reference [62]). In practice, the main
technical complication that we foresee is the calculation of the Fourier transforms in (3.42), which may
require numerical techniques (see e.g. [83, 93, 94, 95] for some similar calculations).

3.4.4 The back-to-back correlation limit

Let us focus on the hard �nal gluons phase space region with k1,⊥, k2,⊥ ≫ Qs. From the phenomenolog-
ical considerations of section 3.2, the e�ects of multiple scattering may remain important if one is interested
in the details of the azimuthal distribution around its peak at ∆Φ = π. Since any gluon exchanged with
the target have a typical transverse momentum of order Qs (see section 2.2.4), it almost does not a�ect
k1,⊥ and k2,⊥ separately. However |k1,⊥+k2,⊥| is the total transverse momentum transferred by the target
and is of order Qs. Although the two �nal gluons are hard enough to be almost undeviated by multiple
scatterings with the target, there are deviations to the exact back-to-back distribution due to these multiple
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scatterings. The proper strategy in that sense, as originally proposed in reference [85], relies on the obser-
vation that the relative momentum P⊥ = (1− z)k1,⊥− zk2,⊥ refers to the hard splitting which creates the
gluon pair, while the total momentum K⊥ accounts for the transverse momentum broadening of the two
gluons via their (comparatively soft) interactions with the target. P⊥ controls the transverse separation
r⊥ = x⊥ − y⊥ between the o�spring gluons in the direct amplitude (and similarly r̄⊥ = x̄⊥ − ȳ⊥ in the
complex conjugate amplitude), whereas K⊥ controls the di�erence b⊥− b̄⊥ between the average positions
of the gluons in the direct and the c.c. amplitude, that is, their transverse �uctuations x⊥ − x̄⊥ and
y⊥ − ȳ⊥, which in turn encode the e�ects of the multiple scattering with the target. Accordingly, in this
`back-to-back correlation limit' where K⊥ ∼ Qs ≪ P⊥, the integral in (3.31) is controlled by con�gurations
where the transverse-size variables r⊥ and r̄⊥ are small as compared to the di�erence b⊥ − b̄⊥ between
the center-of-mass variables (and of course also small as compared to b⊥ and b̄⊥ themselves). This allows
for appropriate Taylor expansions of the various multipoles in (3.31). Speci�cally, using the new variables
b⊥, r⊥, b̄⊥, r̄⊥ and the respective conjugate momenta, the r.h.s. of (3.31) becomes :

〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
=

4g2Nc

π2
(p+)2z(1− z)Pg←g(z)

×
∫

d2b⊥d2r⊥d2b̄⊥d2r̄⊥
r⊥ · r̄⊥
r2
⊥r̄

2
⊥

e−iK⊥·(b⊥−b̄⊥)−iP⊥·(r⊥−r̄⊥)

×
〈

S̃(2)(b⊥, b̄⊥)− S̃(3)(b⊥, b̄⊥ + (1− z)r̄⊥, b̄⊥ − zr̄⊥)− S̃(3)(b̄⊥,b⊥ + (1− z)r⊥,b⊥ − zr⊥)

+S̃(4)(b⊥ + (1− z)r⊥,b⊥ − zr⊥, b̄⊥ + (1− z)r̄⊥, b̄⊥ − zr̄⊥)
〉

Y
.

(3.43)

We now expand the multipoles inside the integrand around b⊥ and b̄⊥. In view of the identities (3.33),
it should be quite clear that the leading non trivial result arises from expanding S̃(4) up to second order
in ri and r̄i and keeping only the `o�-diagonal' terms which are bilinear in rir̄j . (The `diagonal' terms
proportional to either rirj or r̄ir̄j cancel against similar terms arising from the expansion of the two
pieces involving S̃(3), and the same happens for the terms which are linear in ri or r̄i.) A straightforward
calculation gives

rir̄j
[

(1− z)∂i
x − z∂i

y

] [

(1− z)∂j
u − z∂j

v

]

〈

S̃(4)(x⊥,y⊥,u⊥,v⊥)
〉

Y

∣

∣

∣

b⊥b⊥b̄⊥b̄⊥

=
rir̄j

Nc(N2
c − 1)

Tr
〈 [

(1− z)∂iŨ(b⊥)TAŨ †(b⊥)− zŨ(b⊥)TA∂iŨ †(b⊥)
]

×
[

(1− z)Ũ(b̄⊥)TA∂jŨ †(b̄⊥)− z∂jŨ(b̄⊥)TAŨ †(b̄⊥)
] 〉

Y

=
rir̄j

Nc(N2
c − 1)

[

−2z(1− z)Tr
〈

∂iŨ(b⊥)TAŨ †(b⊥)∂jŨ(b̄⊥)TAŨ †(b̄⊥)
〉

Y

+ ((1− z)2 + z2)Tr
〈

∂iŨ(b⊥)TAŨ †(b⊥)Ũ(b̄⊥)TA∂jŨ †(b̄⊥)
〉

Y

]

,

(3.44)

where the second equality is obtained after using the identity ŨTAṼ † = −
(

Ṽ TAŨ †
)τ
, valid for generic

color matrices Ũ and Ṽ in the adjoint representation.

It is convenient to split the �nal expression in (3.44) into two pieces, one proportional to z(1 − z)
and another one that is independent of z. The z-independent piece cannot be further simpli�ed (it is
proportional to a second derivative of S̃(4), as visible on the �rst line of (3.44)). The piece proportional to
z(1 − z), on the other hand, can be written in a simpler form, namely as a second derivative of S̃(2), by
using the same trick as the one used to get the last equality in (3.44). After also performing the integrals
over r⊥ and r̄⊥ in (3.43), according to

∫

d2r⊥d2r̄⊥
rirkr̄kr̄j

r2
⊥r̄

2
⊥

e−iP⊥·(r⊥−r̄⊥) = π2∂
2 lnP2

⊥

∂P i∂P k

∂2 lnP2
⊥

∂P j∂P k
=

4π2

P4
⊥

δij , (3.45)



46 CHAPTER 3. DI-HADRON PRODUCTION IN PROTON-NUCLEUS COLLISIONS AT THE LHC

one �nally obtains
〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
= 16g2Nc

(p+)2z(1− z)
P4
⊥

Pg←g(z)

×
∫

d2b⊥d2b̄⊥e
−iK⊥·(b⊥−b̄⊥)

〈

∂i
x∂

i
uS̃

(4)(x⊥,b⊥,u⊥, b̄⊥)
∣

∣

∣

b⊥b⊥b̄⊥b̄⊥

− z(1− z)∂i
b∂

i
b̄S̃

(2)(b⊥, b̄⊥)
〉

Y
.

(3.46)

Incidentally, (3.45) con�rms that the transverse separations |r⊥| and |r̄⊥| in both the direct and the com-
plex conjugate amplitude are separately of order 1/P⊥, as anticipated.

(3.46) represents the complete result (under the present assumptions) for the production of a pair of
relatively hard gluons, with transverse momenta k1,⊥, k2,⊥ ≫ Qs(A, Y ). This generalizes the collinear
factorization by including the non-linear e�ects accompanying the hard branching process, which describe
the multiple scattering between the gluons involved in the branching and the nuclear target. As manifest on
(3.46), these non-linear e�ects control the magnitude K⊥ ≡ |k1,⊥+k2,⊥| of the total transverse momentum
of the pair: the target expectation values appearing in the integrand of (3.46) rapidly decay for transverse
separations |b⊥−b̄⊥| ≫ 1/Qs, which in turn implies that, typically, K⊥ . Qs. The bi-local color operators
built with the second derivatives of S̃(4) and S̃(2) which enter (3.46) can be viewed as generalizations
of the unintegrated gluon distribution fY (K⊥) in (2.3) to the non-linear regime. Their de�nitions are
unambiguous since one has to recover the dilute limit (3.15). The �rst one is associated with S̃(2) (the
`adjoint dipole gluon distribution'), namely

fdip,A
Y (K⊥)

K2
⊥

≡ N2
c − 1

g2(2π)2Nc

∫

d2b⊥d2b̄⊥e
−iK⊥·(b⊥−b̄⊥)

〈

∂i
b∂

i
b̄S̃

(2)(b⊥, b̄⊥)
〉

Y
, (3.47)

is well-known known in the literature, as it enters various inclusive and semi-inclusive processes involving a
dense target, like the total cross-section for deep inelastic scattering (DIS) and the single-inclusive parton
production in DIS and p-A collisions (see [85] for a recent overview). The `adjoint quadrupole gluon
distribution' associated with S̃(4), that is,

fquad,A
Y (K⊥)

K2
⊥

≡ N2
c − 1

g2(2π)2Nc

∫

d2b⊥d2b̄⊥e
−iK⊥·(b⊥−b̄⊥)

〈

∂i
x∂

i
uS̃

(4)(x⊥,b⊥,u⊥, b̄⊥)
∣

∣

∣

b⊥b⊥b̄⊥b̄⊥

〉

Y
, (3.48)

has not been introduced before to our knowledge, but its limit at large Nc has been studied in [85]. For the
physical interpretation of these objects, fdip

Y (K⊥) and fquad
Y (K⊥), one should however keep in mind that

they involve both `�nal-state' and `initial-state' interactions (that is, gluon-target interactions occurring
both before and after the branching process), which cannot be simultaneously gauged away by a proper
choice of the light-cone gauge for the target (A− = 0). Hence, these quantities do not really measure the
gluon occupation number9.

The large-Nc limit of (3.46) is also interesting, in particular, because it allows us to make contact with
the corresponding result in [85]. Namely, using the approximations (3.41) for the color multipoles which
appear in (3.46) one �nds after some algebra

〈

|M(g(p)A→ g(k1)g(k2))|2
〉

Y
= 16g2Nc

(p+)2z(1− z)
P4
⊥

Pg←g(z)

∫

d2b⊥d2b̄⊥e
−iK⊥·(b⊥−b̄⊥)

×
{

[(1− z)2 + z2]
〈

S(b⊥, b̄⊥)
〉

Y
∂i

b∂
i
b̄

〈

S(b⊥, b̄⊥)
〉

Y
− 2z(1− z)∂i

b

〈

S(b⊥, b̄⊥)
〉

Y
∂i

b

〈

S(b⊥, b̄⊥)
〉

Y
+

+
〈

S(b⊥, b̄⊥)
〉2

Y
∂i

x∂
i
u

〈

Q(x⊥,b⊥, b̄⊥,u⊥)
〉

Y

∣

∣

∣

b⊥,b⊥,b̄⊥,b̄⊥

}

,

(3.49)

9Interestingly though, as pointed out in [85], the large-Nc decomposition of fquad
Y (K⊥), cf. (3.41), involves a piece (the

last piece in (3.49) below) which is proportional to the Weizsäcker-Williams gluon distribution and hence represents the gluon
occupation number for a proper choice of the light-cone gauge.
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which is indeed equivalent to equation (105) in reference [85], as one can easily check.
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Chapter 4

Initial state factorization in nucleus-nucleus

collisions

In this section we shall study the factorization property of inclusive observables in A-A collisions. The
1-loop corrections to inclusive observables contain small x, logarithmic divergences as one performs the
four-momentum loop integral. These logarithms arise from the CGC cuto� separating the quantum and
classical description of �elds. In the p-A case we had a single strong classical source for which we know the
associated background �eld. In this case we know that the small x evolution is governed by the JIMWLK
equation. However the generalization to the A-A case is not obvious. In A-A collisions, we are in presence
of two strong classical sources for which it is impossible to solve the Yang-Mills equations in the whole
space-time analytically. Indeed, the non-linear character of the Yang Mills equations breaks the superposi-
tion principle. Thus the question is how is the small x evolution for observables governed in nucleus-nucleus
collisions ? is the JIMWLK equation still valid ? do we have to generalize it to more complicated back-
ground �elds ? Fortunately the JIMWLK equation is enough for this purpose. The structure of small x
divergences turns out to be inherent to the partonic content of the nucleus and does not depend on any
upcoming reaction or measured observables, we say they are universal. Since the two colliding nuclei are
initially not in causal contact, universality requires that the logarithms corresponding to the two nuclei'
wave functions factorize separately. We, hence, expect that the evolution is governed by two copies of the
JIMWLK hamiltonian corresponding to the two nuclei. This is what we are going to prove (or at least
argue) for particle spectra in A-A collisions.

The universal character of small x divergences is nowadays established in dilute dense collisions like
DIS. However, proving the factorization property in nucleus-nucleus collisions is much more technical and
it has to be done case by case.There is a powerful formalism developed by Gelis, Lappi and Venugopalan
[96, 97, 98] to deal with this problem of factorization for inclusive observables based on the Schwinger-
Keldysh formalism.

First we shall write the inclusive quark and gluon spectra as Green functions in the Schwinger-Keldysh
formalism. Then we shall see how perturbation theory works and analyze the diagrams that must be taken
into account at a given order in perturbation theory. For both gluons and quarks we will work out the
leading and next to leading order of perturbation theory. The key point will be the emergence of recursion
relations via di�erential operators perturbing the initial conditions. The new feature is that the proof of
this recursion relation for the quark spectrum as well [39]. At the end we shall discuss the small x evolution.
Although the quantum evolution has been proved to be governed by the JIMWLK equation in the case of
gluons, this still has to be proved for quarks.

4.1 Inclusive observables

Among the possible observables, one distinguishes two classes of them that have di�erent properties :
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• the exclusive observables which constrain the �nal state.

• the inclusive observables which do not constrain the �nal number of particles.

Exclusive observable may be for instance the cross-section for producing n gluons. As an example of inclu-
sive observable is the particle spectrum, i.e. the average number of particle in the �nal state. Here we shall
deal with inclusive observables and especially particle spectra. Let us emphasize a fundamental property
of inclusive observables : from the formal point of view the evolution in time of some in-state decomposes
onto the basis of out-states in a non trivial way. An exclusive observable only takes into account some
particular projection among this set of possible �nal states while inclusive observables do not. Physically
its means that inclusive observables can be expressed as the causal propagation of initial conditions.

In A-A collisions, observables are very di�cult to compute explicitly. As we shall see, even the leading
order gluon spectrum obeys the classical Yang-Mills equation of motion in presence of two strong sources
in A-A collisions which cannot be solved analytically. Thus the explicit computation of particle spectra is
in general not doable analytically. This is not our purpose, we want to �nd relations among them which
do not require their explicit computation.

4.1.1 The inclusive spectrum

In this section we shall set the framework in order to compute inclusive spectra from Feynman diagrams.

Primary de�nition

As far as we are concerned with nucleus-nucleus collisions we only consider as in-state the state
|AA; in >. Indeed we do not expect other incoming particles. Since the two nuclei are described as
external classical sources within the CGC framework they actually do not belong to the spectrum and
we refer to |AA > as the vacuum denoted |0 > in this chapter. The collision is assumed to be observed
in approximately the center of mass frame (if the two colliding nuclei are the same, the lab frame and
the center of mass frame are the same, otherwise they are not exactly the same but in both of them the
longitudinal momentum of the two colliding nuclei are very large). From this symmetric con�guration, we
do not expect produced particles to be especially forward or backward. For this reason we work here in
Minkowski coordinates and not in light-cone ones. According to the above considerations, we shall only
deal with amplitudes of the form :

〈p1; ...;pn; out| 0, in〉 (4.1)

where the pi's denote the spatial components of the momentum in Minkowski coordinates. For brevity, we
consider only one particle species and the discrete quantum numbers like spin... are dropped. From the
Minkowski analog to normalization condition (1.3) , it is easily seen that the matrix element (4.1) has a
length dimension n, the number of particles in the out state. Then the quantity :

dP (p1; ...;pn) = |〈p1; ...;pn; out| 0, in〉|2 d3p1

(2π)32p0
1

...
d3pn

(2π)32p0
n

(4.2)

is dimensionless and together with the Minkowski analog of the completeness relation (1.7)1 is interpreted
as the probability for vacuum to |p1; ...;pn; out > transition in the corresponding phase space element.
The average number of particles in the �nal state, is therefore given by :

N =

∞
∑

n=0

n

n!

∫

dP (p1; ...;pn). (4.3)

The physical quantity we are interested in is the average number of particles in some phase space volume
element. It is given by only a partial integration over the total phase space volume. The simplest one

1When performing the integration over the phase space, one has to add a combinatorial factor 1/n! to avoid multiple
counting.
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and the one we will consider from now on is the average number of particles in the phase space element
d3p/(2π)32p0, given by :

(2π)32p0 dN
d3p

= |〈p; out| 0, in〉|2 +

∞
∑

n=1

1

n!

∫

d3p1

(2π)32p0
1

...
d3pn

(2π)32p0
n

|〈p;p1; ...;pn; out| 0, in〉|2 . (4.4)

Written like this, there seem to be an in�nite set of Feynman diagrams to consider for computing the
spectrum. Fortunately there is a way out which takes into account the systematic resummation of all
the �nal states. For this purpose we will show that the problem is reduced to the computation of Green
functions in the Schwinger-Keldysh formalism. Note that N is the number of particles in the �nal state
and has nothing to do with the N encountered in the previous chapters which is the number of particles
in the hadronic wave function. This is why the spectrum is denoted N while N is the distribution.

LSZ reduction formulas and Schwinger-Keldysh Green functions

Our aim is to write the matrix elements in (4.4) as Green functions to be precised. To do so, the
essential step is the reduction formula. In this section we still not specify the type of �eld. We work with a
generic free �eld φ given by the Minkowski analogue to (1.8). The action of the free �eld takes the generic
form :

Sfree =

∫

d4xφ†(x)Dxφ(x) (4.5)

for a complex �eld, or

Sfree =
1

2

∫

d4xφ(x)Dxφ(x) (4.6)

for a real �eld. Dx denotes the quadratic integral kernel and is a �rst (half-integral spin) or second (integral
spin) order di�erential operator. For de�niteness, we assume that the particles that enter into the spectrum
are the particles destroyed by φ (in other words they are not anti-particles). The reduction formula reads :

〈p;p1; ...;pn; out| 0, in〉 = − i
√

Zφ

∫

d4xeip.xu†(p)Dx 〈p1; ...;pn; out |φ(x)| 0, in〉 , (4.7)

with φ(x) the corresponding �eld operator in Heisenberg picture and
√

Zφ the �eld renormalization factor.
Plugging the reduction formula into the spectrum (4.4) gives :

(2π)32p0 dN
d3p

=
1

Zφ

∫

d4xd4yeip·(x−y)u†(p)Dx

[

〈

0; in
∣

∣φ†(y)
∣

∣0, out
〉〈

0; out
∣

∣φ(x)
∣

∣0, in
〉

+

∞
∑

n=1

1

n!

∫

d3p1

(2π)32p0
1

...
d3pn

(2π)32p0
n

〈

0, in
∣

∣φ†(y)
∣

∣p1; ...;pn; out
〉〈

p1; ...;pn; out
∣

∣φ(x)
∣

∣0, in
〉

]←−
D†yu(p).

(4.8)

In appendix E we detail the methods to write such Green functions summed over out states as Green
functions in the Schwinger-Keldysh formalism. The Green functions in (4.8) are generated by adding to
the Lagrangian, integrated over the Keldysh contour, a source term, conventionally written :

∫

d4x
(

j+(x)φ+(x)− φ†−(x)j−(x)
)

(4.9)

where φ+ denotes the �elds living on the forward branch of the Keldysh contour and φ−, the �elds living on
the backward one2. Then the spectrum (4.8) reads as a functional derivative of Z, the generating partition

2Be careful with the φ†−(x)j−(x) term if φ is a fermionic �eld. Indeed a functional derivative acting from the left has to

go through φ†− and is a�ected by a minus sign if φ is a Grassmann �eld :

δ

δj−(y)

Z

d4xφ†−(x)j−(x) = ±φ†−(y).

The upper sign concerns bosons and the lower one, fermions.
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function (E.9) 3 :

(2π)32p0 dN
d3p

=
1

Zφ

∫

d4xd4yeip·(x−y)u†(p)Dx

[

1

Z[j+ = j− = 0]

δ2

δj+(x)δj−(y)
Z[j+, j−]

∣

∣

∣

∣

j±=0

]

←−
D†yu(p).

(4.10)

However we prefer to write such expression in terms of connected Green functions. For this purpose we
rather use the generating functional of connected Green functions W = −i lnZ :

(2π)32p0 dN
d3p

=
1

Zφ

∫

d4xd4yeip·(x−y)u†(p)Dx

[

i
δ2

δj+(x)δj−(y)
W[j+, j−]

∣

∣

∣

∣

j±=0

−

− δ

δj+(x)
W[j+, j−]

∣

∣

∣

∣

j±=0

δ

δj−(y)
W[j+, j−]

∣

∣

∣

∣

j±=0

]

←−
D†yu(p).

(4.11)

We recognize the one and two-point connected Green functions de�ned so that (see (E.14) for the 2-point
function) :

i
δ2

δj+(x)δj−(y)
W[j+, j−]

∣

∣

∣

∣

j±=0

= G+−(x, y) = ±
〈

0; in
∣

∣φ†(y)φ(x)
∣

∣0, in
〉

δ

δj+(x)
W[j+, j−]

∣

∣

∣

∣

j±=0

= φ+(x) =
〈

0; in
∣

∣φ(x)
∣

∣0, in
〉

δ

δj−(y)
W[j+, j−]

∣

∣

∣

∣

j±=0

= ∓φ†−(y) = ∓
〈

0; in
∣

∣φ†(y)
∣

∣0, in
〉

(4.12)

where the upper sign refers to bosons and the lower one to fermions. Plugging these into (4.11) gives our
fundamental formula to deal with particle spectra in A-A collision :

(2π)32p0 dN
d3p

= ± 1

Zφ

∫

d4xd4yeip·(x−y)u†(p)Dx

[

G+−(x, y) + φ+(x)φ†−(y)
]←−
D†yu(p). (4.13)

Written in this form it is possible to compute the spectrum with Feynman diagrams order by order in
perturbation theory. Indeed, the Green functions (4.12) are the exact Green functions of the interacting
theory including all possible radiative corrections. An intuitive picture of this formula is given on �gure
4.1. Note that we made the derivation for the simplest spectrum dN/d3p because this the one we will
be bothered with. However our derivation is straightforwardly applied to higher correlation spectra. The
analog of equation (4.13) for the average number of particles per phase space volume d3p1...d

3pn would
involve 2n integrals, n LSZ operators and n complex conjugate LSZ operators and up to 2n-point functions.
Coming back to spectrum (4.13), our aim is now to precise the perturbative expansion in the A-A problem.

4.2 Perturbation theory : power counting and loop expansion

The natural question that arises is how to handle expression (4.13) in the framework of perturbation
theory for A-A collisions. As we shall see, the explicit computation of even the lowest order of the spectrum
is, in general, a hard task. However it is possible in some cases, to �nd formal recursion relations between
the leading and next to leading order in perturbation theory. This is precisely our goal. For this purpose
one has to precise the structure of the theory. From section 2.2, the hadronic content is dominated by
small x partons and mostly gluons that have occupation numbers of order 1/αs. The strength of quark
sources is suppressed by one power of the coupling constant with respect to the gluon ones. Moreover
there is no analogue to the external �eld approximation for fermions but fortunately the quark distribution

3Beware of the order of derivatives if the φ �eld is fermionic. The convention given here makes all the derivatives act on
their right.
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→→
p

→→
p

Figure 4.1: The two contributions to the spectrum (4.13). Each of them must be understood as two space-
time copies, one for the amplitude and another one for the complex conjugate amplitude. The double
arrows represent the two colliding nuclei. The upper diagram is the one-point functions contribution where
a particle represented by a solid line is created from the sources both in the amplitude and the complex
conjugate amplitude. The lower diagram represents the G+− contribution, that is the propagator that
runs from the complex conjugate amplitude to the amplitude. The crosses refers to the fact that it is a cut
propagator, it carries an on-shell momentum in the in�nite past.

depends on the gluon's one and the whole quark content of the nucleus is properly described by quantum
�uctuations of gluons4. We saw in section 2.3 that the nuclei are considered as classical sources J or
equivalently, the associated classical �eld A. Since the occupation number which is of order 1/αs ∼ 1/g2

is given by a background �eld two-point function, the strength of the background �eld is ∼ 1/g. The
lagrangian is the Yang-Mills lagrangian LY M for the gluons corresponding to �eld A. The classical source
appears explicitly in the lagrangian through a J ·A term. Moreover one can consider various types of �elds
interacting through covariant derivatives with gluons. They represent the so called matter content of the
theory and the lagrangian, whose explicit form does not matter at this point, is Lmat. Then we write the
full lagrangian density as :

L = Lmat + LY M + J ·A. (4.14)

For the following discussion, we assume that all the non-gauge couplings like Yukawa or scalar self interac-
tions, are turned o�. Non abelian gauge invariance requires that all the gauge couplings are proportional
to some power of g which is assumed to be small. This is justi�ed on the physical side since high energy
collisions lie in the scope of perturbative QCD, that is in the kinematic regime where the coupling constant
g is small. If one plugs a source on one of these couplings it will bring a power of 1/g that will kill one
power of g in the corresponding coupling. This suggests that insertion of sources does not a�ect the power
counting. Therefore at a given order in perturbation theory, one has to resum an in�nite set of Feynman
diagrams with an arbitrary number of sources inserted. We are going to show this in a more rigorous way
also in order to show which topology of diagrams contributes at some given order in perturbation theory.
For de�niteness we consider some generic diagram with Nf external legs of type f , f denoting all possible
�elds of the theory. In addition, there are S gluon external sources inserted in this diagram. This diagram
has L loops, If internal lines of type f and Vi vertices of type i that is proportional to some power of g.
To each vertex of type i there are nif �elds of type f attached. It turns out that in all renormalizable

4This is true up to the valence quarks that are spectators and do not enter into consideration.
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theories of Yang-Mills �eld coupled to arbitrary �elds, interaction of type i has a coupling constant di-
mension

∑

f

nif − 2. To see this, one notices that the gauge �eld is coupled to only one type of �eld (that

can be the gauge �eld itself) in some given interaction. Interactions are either cubic and proportional to g
(spin 0, 1/2, 1, 3/2) or quartic and proportional to g2 (spin 0, 1). The proof of our statement is completed.
Obviously the order of the considered diagram, in the coupling constant, is :

g
−S+

P

i

(
P

f

nif−2)Vi

. (4.15)

The number of vertices of each type is an unsatisfactory parameter, in the sense it is di�cult to control
as we draw Feynman diagrams. Fortunately, it is not independent of other parameters that are easy to
handle like the number of loops or external legs. One of these relation is the consequence of the following
observation : for each type of �elds f , each internal propagator is attached to two di�erent vertices and
each vertex of type i carries nif legs that are either internal or external lines of type f . Then for each non
gluon �eld one has :

Nf + 2If =
∑

i

nifVi. (4.16)

Concerning gluons, one has to be careful since gluon internal propagators can be attached either to vertices
or to external sources. This is why one has to count sources as vertices with one gluon attached. So for
gluons the upper identity is a bit modi�ed according to5 :

Ng + 2Ig =
∑

i

nigVi + S. (4.17)

The second identity follows from a topological invariant, the Betti number which is one for a connected
graph6 :

L−
∑

f

If + S +
∑

i

Vi = 1. (4.18)

Plugging the topological equations above into (4.15) shows that the g power of the considered diagram is :

g
−S+

P

f

(Nf+2If )−S+2(L−
P

f

If+S−1)

= g
2L+

P

f

Nf−2

. (4.19)

As expected it does not depend on the number of sources, then at a given order the task is to resum
all possible insertions of sources. Moreover the contribution of Feynman diagrams becomes smaller as we
increase the number of loops and external legs.

Let us go back to the spectrum (4.13). According to power counting (4.19) one can expand the one
and two-point functions as :

φ±(x) =
∑

L

φ
(L)
± (x)

G+−(x, y) =
∑

L

G
(L)
+−(x, y) ;

(4.20)

where φ(L)
± is the L loop contribution to φ± and is proportional to g2L−1 and G(L)

+− is the L loop contribution
to G+− proportional to g2L. thanks to this expansion in powers of the coupling constant, one has a
perturbative expansion of the spectrum (4.13). As we shall see the perturbative expansion does not
actually start at the same order if one is considering matter or gauge �elds. Let us discuss this in detail.

5One could have had treated the sources S as vertices as well, each of them being proportional to 1/g and with nf = δgf .
6This is the equivalent of the Euler characteristic applied to graphs. It states that the number of loops minus the number

of edges plus the number of vertices equals the number of connected components.
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4.3 Quark and gluon spectra : computation of leading and next to lead-
ing order

In this section we shall write the LO and NLO gluon and quark spectra in terms of Green functions.
The starting point is formula (4.13) but now with speci�c notations and various indices restored. We
are interested in the unpolarized and uncolored spectra : the spins and colors will be summed. For the
spectrum (4.13) corresponding to gluons we denote φ± → AAµ

± which is real. The dressed two-point

function is denoted ∆µνAB
+− (x, y). We �x the gauge to be an axial one (the precise choice will be discussed

later in 4.5.2 and does not matter for present discussion). Then the di�erential operator D is given by
(1.18) to be : D → δAB(gµν� − ∂µ∂ν) which is not exactly the inverse propagator but the extra term in
(1.18) is suppressed when the index µ is contracted with u† → ǫ∗µ thanks to the gauge condition (1.16).
Moreover the momentum k carried by the �nal observed gluon is on-shell and then thanks to the on-shell
Ward identity (1.17) the ∂µ∂ν operator does not contribute as well. So we can make the replacement
D → � in (4.13) for the gluon spectrum in axial gauge. Gathering all these considerations leads to the
following expression for the gluon spectrum :

(2π)32k0 dNg

d3k
=

1

Zg

∫

d4xd4yeik·(x−y)ǫ∗µ(k)ǫν(k)�x�y

[

∆µνAA
+− (x, y) +AµA

+ (x)AνA
− (y)

]

. (4.21)

For quarks the one-point function is denoted ψa
± and the two-point function Sab

+−. The u's in (4.13) are
the u spinors and the quadratic kernel D is δabγ0(i/∂ −m) (in this chapter there is no technicalities arising
from keeping a non-zero mass for quarks, so it is kept). Plugging this into (4.13) gives the quark spectrum
:

(2π)32p0 dNq

d3p
=

1

Zq

∫

d4xd4yeip·(x−y)ū(p)
(

i
−→
/∂ x −m

)

[

Saa
+−(x, y) + ψa

+(x)ψ̄a
−(y)

]

(

i
←−
/∂ y +m

)

u(p).

(4.22)

We are interested in both of them although the gluon spectrum has already been computed in previous
works [96, 97, 98], the computation of the Green functions involved in it is an essential ingredient to the
quark spectrum as well. Let us see how the perturbative expansion works at the �rst two orders. First
we shall make general observations in order to see how the loop expansion occurs for both the gluon and
quark spectrum. Then we shall interpret the meaning of Green functions involved in the two �rst leading
orders of perturbation theory.

In formulas (4.21) and (4.22) we have closed our eyes on the gauge invariance problem. Obviously, the
l.h.s of (4.21) and (4.22) are not gauge invariant. Particle spectra actually make sense in a given gauge in
which their proper interpretation is to count the number of physical degrees of freedom. This is not true in
arbitrary gauge in which the forms (4.21) and (4.22) may distinguish redundant or unphysical states. We
postpone the discussion of gauge �xing to section 4.5.2. We shall see that there is indeed an axial gauge
in which (4.21) and (4.22) take this form. For the moment let us just assume this result.

4.3.1 The one-point function : generalities

Since the nuclear description only has gluonic external sources, the gauge �elds and matter �elds one-
point functions must be distinguished. We shall emphasize some general properties that tell us more about
the loop expansion of spectra (4.21) and (4.22).

Gauge �elds

Let us consider the leading order A(0)A
µ (x), the one-point function at tree level. By power counting

(4.19), it is of order g−1. Let us consider the simplest diagram shown on �gure 4.2. The di�erence with
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Aµ± ±

Figure 4.2: The elementary contribution to one point function. The star represents a classical external
source.

usual perturbation theory is that one has to sum over the plus or minus vertices according to the Schwinger-
Keldysh formalism Feynman rules detailed in E.3. By applying the Schwinger-Keldysh formalism Feynman
rules discussed in section E.3, diagram 4.2 is equal to

i

∫

d4y
[

∆µν
0±+(x− y)J A

ν (y)−∆µν
0±−(x− y)J A

ν (y)
]

, (4.23)

where ∆0 denotes the free propagator with the trivial color structure dropped out : ∆AB
0 → δAB∆0. The

important thing is that the external current J does not di�er on the forward and backward branch of the
Keldysh contour and therefore factorizes into the retarded and ±-independent quantity :

i

∫

d4y∆µν
0R(x− y)J A

ν (y). (4.24)

Since any tree diagram contributing to the one-point function is built from such ±-independent elementary
bricks, it is obvious that at the end one has A(0)

− (x) = A
(0)
+ (x). Furthermore loop corrections lead to the

same conclusion and then A−(x) = A+(x) at all orders of perturbation theory. From now, one omits the
sign index since it does not matter anymore. A(0)(x) satis�es the recursion relation represented on �gure
4.3. This recursion relation reads in terms of equations as :

A
(0)A
µ = Aµ± = Aµ± ± +

+ Aµ± ± + Aµ±
±

Figure 4.3: Recursion relation for A(0)A
µ at leading order.

A(0)µA(x) = i

∫

d4y∆µν
0R(x− y)

[

J A
ν (y)− δV

δAAν
[A(0)(y)]

]

. (4.25)

where V denotes the self gluon interaction :

V [A] ≡ gfABC(∂µA
A
ν )ABµACν +

g2

4
fABCfADEAB

µA
C
ν A

DµAEν (4.26)

The notation δV/δA is a symbolic notation for the vertex with one leg amputated. A problem arises from
derivatives in the interaction potential. Thus δV

δABν [A] is not a mere factor containing the vertex with one
leg amputated but a di�erential operator acting on the surrounding propagators. It should be understood
as

δV

δABν
[A] =

∂V

∂ABν
[A] +

∂V

∂(∂ρACν)
[A]∂ρ. (4.27)

At this formal point, this notation is not misleading but its precise meaning must be kept in mind. For
de�niteness let us suppose we work in generalized axial gauge with a �nite gauge �xing parameter ξ. In
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this gauge, the free retarded propagator is a Green function of the di�erential operator (gµλ� − ∂µ∂λ −
nµnλ/ξ)∆

λν
0R(x− y) = iδµ

ν δ(4)(x− y). Acting on equation (A.17) with the d'Alembert operator gives :

(gµλ�− ∂µ∂λ +
nµnλ

ξ
)A(0)Aλ(x) = −J A

µ (x) +
∂V

∂AAµ
[A(0)(x)]− ∂ν

∂V

∂∂νAAµ
[A(0)(x)] (4.28)

which is nothing but the classical Yang-Mills equation in generalized axial gauge. Hence, together with the
initial condition A(0)(x) = 0 for x0 = −∞, A(0) is the classical �eld.

Matter �elds

The situation for the matter �elds is very di�erent. Since there are no sources, the analogue of diagram
4.2 for matter one-point functions is zero. Actually it is easy to see that this assertion holds for any loop
corrections as long as we do not add interactions like φ3 or Yukawa couplings as it is supposed to be.
Therefore the matter one-point function is zero to all order of perturbation theory. The spectrum (4.13)
only receives contributions from the two-point function in case of matter �elds.

4.3.2 LO and NLO

In the light of these general considerations on the one-point functions one can now identify the starting
point of perturbation theory. For gluons the leading (LO) and next to leading orders (NLO) are given by :

(2π)32k0 dNg

d3k

∣

∣

∣

∣

LO

=

∫

d4xd4yeik·(x−y)ǫ∗µ(k)ǫν(k)�x�y

[

A(0)µA(x)A(0)νA(y)
]

∼ g−2

(2π)32k0 dNg

d3k

∣

∣

∣

∣

NLO

=

∫

d4xd4yeik·(x−y)ǫ∗µ(k)ǫν(k)�x�y

[

∆
(0)µνAA
+− (x, y) +A(1)µA(x)A(0)νA(y)

+A(0)µA(x)A(1)νA(y)
]

+ counterterm ∼ g0.

(4.29)

In the NLO spectrum, the counterterm comes from the expansion of the �eld renormalization factor Zg in
powers of g : Zg = 1+g2C+... where C is an in�nite constant. Its role is to cancel the UV divergences which
are not of concern here. From now it will be droped out also for quarks for the same reasons. The quark
spectrum is one order lower since as explained previously the one-point functions are zero. This is easily
understood by noticing that the quarks merge from gluons splitting into qq̄ pairs and the corresponding
amplitude and complex conjugate amplitude are both a�ected by a factor g with respect to the gluon case
in which gluons can directly be produced from the classical sources. Then for quarks the LO and NLO
spectrum contributions read :

(2π)32p0 dNq

d3p

∣

∣

∣

∣

LO

=

∫

d4xd4yeip·(x−y)ū(p)
(

i
−→
/∂ x −m

)

S
(0)aa
+− (x, y)

(

i
←−
/∂ y +m

)

u(p) ∼ g0

(2π)32p0 dNq

d3p

∣

∣

∣

∣

NLO

=

∫

d4xd4yeip·(x−y)ū(p)
(

i
−→
/∂ x −m

)

S
(1)aa
+− (x, y)

(

i
←−
/∂ y +m

)

u(p) ∼ g2.

(4.30)

The gluon spectrum

Here we will essentially recall known results concerning the gluon's Green functions at LO and NLO.
The LO spectrum has already been interpreted in term of the classical �eld A(0) in section 4.3.1. The pro-
cedure is similar for computing higher order corrections. According to the formula (4.29) the NLO gluon
spectrum is given by the tree level two-point function and the one loop correction to the one-point function.
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∆
(0)AB
µν+− = Aµ+ Bν− = Aµ+ Bν− + Aµ+ Bν−

±

+Aµ+ Bν−
±

Figure 4.4: Recursion relations for the tree level gluon propagator ∆
(0)AB
µν+− . The one point gluon functions

correspond to the lowest order A(0).

The two-point function at tree level Let us begin with the two-point function ∆
(0)AB
µν+− that satis�es

the diagrammatic recurrence shown on �gure 4.4. The diagrammatic recursion formally reads :

∆
(0)ABµν
+− (x, y) =δAB∆µν

0+−(x− y)− i
∫

d4z

{

∆µρ
0++(x− z) δ2V

δAAρδACσ
[A(0)(z)]∆

(0)CBσν
+− (z, y)

−∆µρ
0+−(x− z) δ2V

δAAρδACσ
[A(0)(z)]∆

(0)CBσν
−− (z, y)

}

.

(4.31)

Once again we use a rather formal notation which needs to be precised :

δ2V

δAA
ρ δA

C
σ

=
∂2V

∂AA
ρ ∂A

C
σ

+
←−
∂λ

∂2V

∂(∂λAA
ρ )∂AC

σ

+
∂2V

∂AA
ρ ∂(∂λAC

σ )

−→
∂λ. (4.32)

There could be in principle second derivatives with respect to ∂A but they are zero in our case since,
according to (4.26), the interaction has a linear dependence in the �rst derivatives of the gluon �eld.

Acting on x in (4.31) with the free inverse propagator, we get the equation of motion for ∆
(0)
+− :

(gµσ�x − ∂xµ∂xσ +
nµnσ

ξ
)∆

(0)ABσν
+− (x, y)

=

(

∂2V

∂AAµ∂ACσ
[A(0)(x)] +

∂2V

∂AAµ∂(∂λACσ)
[A(0)(x)]∂xλ

)

∆
(0)CBσν
+− (x, y)

− ∂xλ

(

∂2V

∂(∂λAAµ)∂ACσ
[A(0)(x)]∆

(0)CBσν
+− (x, y)

)

.

(4.33)

There is the same kind of relation, when the derivatives act on y. There is a particularly useful represen-
tation of this propagator allowed by the fact that the +− propagator is a cut propagator that carries an
on-shell momentum in the remote past :

∆
(0)ABµν
+− (x, y) ≡

∑

λ,C

∫

d3k

(2π)32k0
α

(λ)Aµ
kC (x)α

(λ)Bν∗
kC (y). (4.34)

k is the initial momentum of the gluon, λ its polarization and C its color. Since this propagator must
reduce to the free one for x0 and y0 approaching −∞, one has the initial condition :

lim
x0→−∞

α
(λ)A
kCµ (x) = δA

Cǫ
(λ)∗
µ (k)eik.x. (4.35)

The reason it is an ǫ∗ instead of an ǫ vector and the energy sign in the exponential are obtained by computing
∆0+−(x, y) =< 0|A(y)A(x)|0 > in the free theory with free �elds operators. ∆

(0)
+− is represented by the

convolution of two single �elds αk which each satis�es equation (4.33) (the polarization index is dropped
for brevity) :

(gµν�− ∂µ∂ν +
nµnν

ξ
)αAν

kC(x) =

(

∂2V

∂AAµ∂ABν
[A(0)(x)] +

∂2V

∂AAµ∂(∂λABν)
[A(0)(x)]∂λ

)

αBν
kC(x)

− ∂λ

(

∂2V

∂(∂λAAµ)∂ABν
[A(0)(x)]αBν

kC(x)

)

.

(4.36)
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This equation is the linearized Yang-Mills equation for a perturbation propagating in the background Yang-
Mills �eld A(0).

The one-point function at one loop Now let us look at the one loop one-point function A(1). Its
diagrammatic recursion relation is shown on �gure 4.5. If the Yang-Mills �eld is coupled to fermion, there

A
(1)A
µ+ = Aµ+ = Aµ+ ± + Aµ+

±

+ Aµ+ ± + Aµ+ ±

Figure 4.5: Recursion relation for A(1)A
µ+ . The fermion loop has been omitted although it does not vanish,

we will not be interested in it.

is a missing gluon tadpole with a fermion loop in 4.5. Such diagram would cause some troubles for writing
LO to NLO recursion relations for reasons that will become clear later. However, what we are interested in,
is the region of phase space where the logarithms of 1/x are large and such fermion loop does not have such
divergences and we omit it. The last two diagrams of �gure 4.5 get a 1/2 symmetry factor. Moreover, the

sum over the ± vertex leads to two terms involving ∆
(0)
++(y, y) and ∆

(0)
−−(y, y) where the two end points are

the same. From de�nitions (E.14) there is no distinction between the four Schwinger-Keldysh propagators
if the two end points are taken to be the same. Therefore these two propagators can be chosen to be both
∆

(0)
+−(y, y) given by the representation (4.34). Thanks to these, the diagrammatic recurrence represented

on 4.5 formally reads :

A(1)A
µ (x) = −i

∫

d4y∆0Rµν(x− y)

×
[

δ2V

δAA
ν δA

B
σ

[A(0)(y)]A(1)B
σ (y) +

1

2

δ3V

δAA
ν δA

B
σ δA

C
ρ

[A(0)(y)]

∫

d3k

(2π)32k0
αB

kσ(y)αC∗
kρ (y)

]

.

(4.37)

The second order functional derivative of the interaction is given by (4.32). The third order derivative
term is more complicated and the notation has to be understood as follow :

∆0Rµν(x− y)
δ3V

δAA
ν δA

B
σ δA

C
ρ

αB
kσ(y)αC∗

kρ (y) = ∆0Rµν(x− y)
∂3V

∂AA
ν ∂A

B
σ ∂A

C
ρ

αB
kσ(y)αC∗

kρ (y)

+ ∂yλ∆0Rµν(x− y)
∂3V

∂(∂λAA
ν )∂AB

σ ∂A
C
ρ

αB
kσ(y)αC∗

kρ (y)

+ ∆0Rµν(x− y)
∂3V

∂AA
ν ∂(∂λAB

σ )∂AC
ρ

∂λα
B
kσ(y)αC∗

kρ (y)

+ ∆0Rµν(x− y)
∂3V

∂AA
ν ∂A

B
σ ∂(∂λAC

ρ )
αB

kσ(y)∂λα
C∗
kρ (y).

(4.38)
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In the last term of (4.37), the sums over the lower color index and polarization are understood. Acting on
the left with the inverse free propagators shows that A(1) satis�es the following equation of motion :

(gµν�− ∂µ∂ν +
nµnν

ξ
)A(1)Aν(x) =

(

∂2V

∂AAµ∂ABν
[A(0)(x)] +

∂2V

∂AAµ∂(∂λABν)
[A(0)(x)]∂λ

)

A(1)Bν(x)

− ∂λ

(

∂2V

∂(∂λAAµ)∂ABν
[A(0)(x)]A(1)Bν(x)

)

+
1

2

∫

d3k

(2π)32k0

[

∂3V

∂AA
ν ∂A

B
σ ∂A

C
ρ

[A(0)(x)]αB
kσ(x)αC∗

kρ (x)

+
∂3V

∂AA
ν ∂(∂λAB

σ )∂AC
ρ

[A(0)(x)]∂λα
B
kσ(x)αC∗

kρ (x)

+
∂3V

∂AA
ν ∂A

B
σ ∂(∂λAC

ρ )
[A(0)(x)]αB

kσ(x)∂λα
C∗
kρ (x)

− ∂λ

(

∂3V

∂(∂λAA
ν )∂AB

σ ∂A
C
ρ

[A(0)(x)]αB
kσ(x)αC∗

kρ (x)

)]

.

(4.39)

The quark spectrum

The LO and NLO quark spectrum (4.30) requires the computation of the two-point function at tree
level and at one loop. In the principle, the procedure does not di�er from the one for gluons.

S
(0)ab
+− = a+ b− = a+ b− + a+ b−

±

Figure 4.6: Recursion relation for the dressed quark propagator S(0)
+− at leading order.

The leading order two-point function Let us begin with the leading order two-point function S(0)
+−.

Diagrammatically it obeys the recursion relation of �gure 4.6. This relation formally reads :

S
(0)
+−(x, y) = S0+−(x− y) + ig

∫

d4z
{

S0++(x− z) /A(0)
(z)S

(0)
+−(z, y)− S0+−(x− z) /A(0)

(z)S
(0)
−−(z, y)

}

(4.40)
where the color indices have been dropped for brevity. S0 is the free propagator proportional to δab and it
has to be understood that Aµ is a Lie algebra valued quantity, namely Aµ → Aab

µ = AA
µT

A
ab. By applying

the free Dirac operator on the left of the previous equation, it is easily seen that the equations of motion
are :

(i/∂x −m)S
(0)
+−(x, y) = −g /A(0)

(x)S
(0)
+−(x, y), (4.41)

and the adjoint equation for the hermitian conjugate Dirac operator acting on the right on the y variable.
For the same reasons as the tree level gluon two-point function, we can choose the following representation
for this propagator (with color indices restored) :

S
(0)ab
+− (x, y) = −

∑

s,c

∫

d3p

(2π)32p0
bs,apc (x)b̄s,bpc (y). (4.42)

p is the on-shell momentum of the initial quark in the far past, s its spin and c its color leading to the
initial condition :

lim
x0→−∞

bs,apc (x) = δa
c v

s(p)eip.x. (4.43)
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As for gluons, this initial condition is obtained by the eplicit computation of S0+−(x, y) = − < 0|ψ̄(y)ψ(x)|0 >
in the free case. From the equation of motion (4.41), bapc satis�es (the spin index is dropped out) :

(i/∂ −m)bapc(x) = −g /A(0)ab
(x)bbpc(x). (4.44)

This classical equation of motion together with (4.43) enables us to interpret bp as the spinor describing
an anti-quark propagating in the background �eld A(0).

S
(1)ab
+− = a+ b−

±
+ a+ b−

±±

Figure 4.7: Recursion relation for the dressed quark propagator S(1)ab
+− at next to leading order. The double

fermion line symbolizes the leading order propagator.

The next to leading order two-point function S
(0)
+− has now a clear interpretation, let us focus on

its one-loop correction S(1)
+−. It receives two kinds of contributions. The �rst one is a one-loop correction

to a gluon one-point function, i.e A(1). At this level it can in principle include the quark tadpole as well.
The other contribution is a self-energy correction. Both these contributions are represented on 4.7. This
expansion reads :

S
(1)
+−(x, y) = ig

∑

ǫ=±1

ǫ

∫

d4zS
(0)
+ǫ (x, z) /A

(1)
(z)S

(0)
ǫ− (z, y)

+ (ig)2
∑

ǫ,η=±1

ǫη

∫

d4zd4tS
(0)
+ǫ (x, z)Σǫη(z, t)S

(0)
η−(t, y).

(4.45)

Σ is a shorthand for the self-energy whose full expression reads :

Σǫη(z, t) = TAγµS(0)
ǫη (z, t)TBγν∆(0)AB

µν ǫη (z, t). (4.46)

Performing the sums over the Keldysh contour indices in (4.45) and after some algebra thanks to propagator
identities (E.16) one can rearrange the terms in the following way :

S
(1)
+−(x, y) = ig

∫

d4z
[

S
(0)
R (x, z) /A

(1)
(z)S

(0)
+−(z, y) + S

(0)
+−(x, z) /A

(1)
(z)S

(0)
A (z, y)

]

+ (ig)2
∫

d4zd4t
[

S(0)
R (x, z)ΣR(z, t)S

(0)
+−(t, y)

+S
(0)
R (x, z)Σ+−(z, t)S

(0)
A (t, y) + S

(0)
+−(x, z)ΣA(z, t)S

(0)
A (t, y)

]

,

(4.47)

where ΣR ≡ Σ++ − Σ+− and ΣA ≡ Σ++ − Σ−+. This de�nition is inspired by identities (E.16) and is
not equivalent to the de�nition (4.46) where the propagators on the r.h.s are replaced by the retarded
or advanced ones respectively. Such de�nition (4.46) has been stated for the the ++,+−,−+ and −−
self-energies only. Rewriting the S(0)

+− in the r.h.s of (4.47) thanks to the representation (4.42) suggests the

following representation of S(1)
+− :

S(1)ab
+− (x, y) = −

∑

s,c

∫

d3p

(2π)32p0

[

δbs,apc (x)b̄s,bpc (y) + bs,apc (x)δb̄s,bpc (y) + δc[b
s,a
pc (x)b̄s,bpc (y)]

]

. (4.48)

with the obvious identi�cations :

δbs,apc (x) = ig

∫

d4yS
(0)ab
R (x, y) /A

(1)bd
(y)bs,dpc (y) + (ig)2

∫

d4yd4zS
(0)ab
R (x, y)Σbd

R (y, z)bs,dpc (z)

∑

s,c

∫

d3p

(2π)32p0
δc[b

s,a
pc (x)b̄s,bpc (y)] = −(ig)2

∫

d4zd4tS
(0)ac
R (x, z)Σcd

+−(z, t)S
(0)db
A (t, y).

(4.49)
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δbp is a �uctuation of bp occurring in the amplitude (and similarly for δb̄p in the complex conjugate am-
plitude) and δc[bp(x)b̄p(y)] is a connected �uctuation that cannot be split in this way. These terms are
represented on �gure 4.8 for a physical picture. Our aim is to see the equations of motion satis�ed by these
quantities.

Figure 4.8: The two types of contributions to the quark self-energy. The dashed line represent the separation
between the amplitude (on its right) and the complex conjugate amplitude (on its left). The nuclei are
not represented (they are implicitly contained in the dressing of propagators). The leftmost diagram is
a qg virtual �uctuation in the amplitude contributing to δbp (there is the same for δb̄p in the complex
conjugate amplitude. The remaining undrawn contributions are the tadpoles. The rightmost diagram is
the representation of the connected �uctuation term δc[bpb̄p]. Both the gluon and the quark within the
loop are real, that is, they are on-shell in the in�nite past. It is the only contribution to the connected
term.

Let us begin with the connected term. Plugging the representations (4.34) of ∆
(0)
+− and (4.42) of S(0)

+−

into the de�nition (4.46) of Σ+− gives (with sum over initial spins and colors understood) gives :

Σcd
+−(z, t) = −

∫

d3k

(2π)32k0

d3p

(2π)32p0 /α
ce
k

(z)bep(z)b̄fp(t)/α
fd∗
k (t). (4.50)

One has to be careful with the notation /α∗k. This is a shorthand for γµαA∗
kµT

A which is not the complex
conjugate of /αk

. Plugging this into the full expression (4.49) for the connected �uctuation allows the
following representation :

∑

s,c

∫

d3p

(2π)32p0
δc[b

s,a
pc (x)b̄s,bpc (y)] =

∑

s,c

∑

λ,C

∫

d3k

(2π)32k0

d3p

(2π)32p0
ξ
a(k+)
ps(λ),cC(x)ξ̄

b(k−)
ps(λ),cC(y), (4.51)

where we have de�ned :

ξ
a(k+)
ps(λ),cC(x) = ig

∫

d4y S
(0)ab
R (x, y)(/α

(λ)
kC(y))bdb

s,d
pc (y)

ξ̄
a(k−)
ps(λ),cC(x) = ig

∫

d4y b̄s,dpc (y)(/α
(λ)∗
kC (y))dbS

(0)ba
A (y, x).

(4.52)

The sign + or − refers to the energy sign of the gluon : + represents an outgoing gluon with positive
energy or an incoming one with a negative energy, − represents an outgoing gluon with negative energy
or an incoming one with positive energy. The notation with a bar is consistent in the sense that ξ̄(k−)

p is

the Dirac conjugate of ξ(k+)
p . ξ(k+)

p represents the retarded propagation of the initial quark bp which has
absorbed an initial gluon αk. It is represented by the diagram 4.9. For future convenience, it will be also
useful to de�ne the two following spinors that are related by Dirac conjugation :

ξ
a(k−)
ps(λ),cC(x) = ig

∫

d4y S
(0)ab
R (x, y)(/α

(λ)∗
kC (y))bdb

s,d
pc (y)

ξ̄
a(k+)
ps(λ),cC(x) = ig

∫

d4y b̄s,dpc (y)(/α
(λ)
kC(y))dbS

(0)ba
A (y, x).

(4.53)
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From (4.52), acting on ξ
(k+)
p (x) with the Dirac operator in presence of the background �eld A(0) whom

S
(0)
R (x, y) is a Green function one gets the following equation of motion :

(

δab(i/∂ −m) + g /A
(0)
ab (x)

)

ξ
b(k+)
p (x) = −g/αab

k
bbp(x). (4.54)

This equation of motion is the linearized Dirac equation describing the propagation of a fermionic �uctu-
ation in a perturbed background �eld.

p→

k →

Figure 4.9: Diagrammatic representation of ξ(k+)
p . The time axis runs from left to right.

The last missing piece for which we want to write an equation of motion is δbp. The derivation of the
equation of motion satis�ed by δbp easily follows by applying the Dirac operator in the background �eld
A(0) on its de�nition (4.49). This reads :

(

i/∂ −m+ g /A
(0)

(x)
)

δbp(x) = −g /A(1)
(x)bp(x)− ig2

∫

d4y ΣR(x, y)bp(y). (4.55)

Our work seems to be �nished. However the following step of our formalism to be seen in the next
section breaks down with this expression. The trouble arise from ΣR that can be split into a more physical
way as we shall see. The retarded self-energy can be seen as the sum of two contributions : a virtual
quark �uctuation carried by a causal gluon plus a virtual gluon �uctuation carried by a causal quark. The
problem is the same as the quark tadpole that has been omitted in the gluon one-point function correction
A(1). In order to be consistent one has to also forget about the quark �uctuation of the causal gluon as
well. Such contribution does not bring large logarithms of x and can be dropped if we focus on this region
of phase space. Let us rewrite ΣR in another form to see this. One way to rewrite ΣR is :

ΣR(x, y) = Σ++(x, y)− Σ+−(x, y)

= TAγµ
[

S
(0)
++(x, y)∆

(0)AB
µν ++(x, y)− S(0)

+−(x, y)∆
(0)AB
µν +−(x, y)

]

γνTB

= TAγµ
[(

S
(0)
R (x, y) + S

(0)
+−(x, y)

)

∆
(0)AB
µν ++(x, y) +

(

S
(0)
R (x, y)− S(0)

++(x, y)
)

∆
(0)AB
µν +−(x, y)

]

γνTB

= TAγµ
[

S
(0)
R (x, y)∆

(0)AB
µν ++(x, y) + S

(0)
+−(x, y)∆

(0)AB
µν R (x, y)

]

γνTB

= TAγµ
[

S
(0)
R (x, y)∆

(0)AB
µν −+(x, y) + S

(0)
+−(x, y)∆

(0)AB
µν R (x, y)

]

γνTB.

(4.56)

In the previous last step, we used the fact that multiplication by S(0)
R (x, y) enforces the two coordinates

x and y to be ordered in time. Thus ∆
(0)
++, which is the Feynman propagator, can be replaced by ∆

(0)
−+

since only the < A(x)A(y) > ordering survives to the multiplication with S(0)
R (x, y). One could also have

reversed the roles of gluons and quarks in the previous rewriting exercise which would give :

ΣR(x, y) = TAγµ
[

S
(0)
−+(x, y)∆

(0)AB
µν R (x, y) + S

(0)
R (x, y)∆

(0)AB
µν +−(x, y)

]

γνTB. (4.57)

By averaging these two forms (4.56) and (4.57) for ΣR, one gets :

ΣR(x, y) =
1

2
TAγµ

[(

S
(0)
−+(x, y) + S

(0)
+−(x, y)

)

∆
(0)AB
µν R (x, y)

+S
(1)
R (x, y)

(

∆
(0)AB
µν −+(x, y) + ∆

(0)AB
µν +−(x, y)

)]

γνTB.

(4.58)
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The �rst term is a fermion loop which merges onto the retarded gluon. This is the term we will not care
about anymore. The second term is the reverse situation : a gluon loop which merges onto the retarded
fermion propagator. This term will be the only one of interest. Using the representation (4.34) for the
gluon propagator it will be convenient for future purposes to write :

ΣR(x, y)→ 1

2
TAγµS

(0)
R (x, y)γνTB

∫

d3k

(2π)32k0

[

αA
kµ(x)αB∗

kν (y) + αA∗
kµ(x)αB

kν(y)
]

. (4.59)

All the LO and NLO Green functions have been written in terms of various �elds that satis�es identi�ed
equations of motion. Solving them can be a hard task but one can always write formal solutions in the
general case. This is what we discuss in the next section.

4.4 Recursion relations

From the various equations of motion of the previous section, one can write formal solutions known as
Green's formulas. The spirit of a Green's formula is to write the value of a �eld at some point in space-time
in terms of an initial condition, that is the value of the �eld (and possibly its derivatives) on some suitably
chosen boundary surface. We shall see that the NLO gluon and quark spectra are actually given by a
perturbation of the LO initial conditions. First we write the Green's formulas for the LO and NLO spectra
and then we look at the di�erences between the LO and NLO structure and try to establish some formal
relation among them. The LO to NLO recursion relations will immediately follow.

4.4.1 Formal solutions of Green functions

In this part we work out the general structure of gluons and quarks Green's formulas. Let us start
with gluonic equations of motion. We refer to elementary �elds, the �elds A(0), αk and A(1) that are
respectively solutions of di�erential equations (4.28), (4.36) and (4.39). These equations of motion can all
be summarized into the following form :

(gµν�− ∂µ∂ν +
nµnν

ξ
)AAν(x) = FA

µ [A(x), x]. (4.60)

A(x) denotes one of these elementary �elds and F is a local functional of the �eld A but also of possible
other �elds that bring another space-time position dependence not arising from the �eld A. Although it
does not matter at this level, we can notice that F depends only on gluonic �elds and not on quark �elds,
so that F = F [A(x)] only. This would have been the case if we had kept the quark loop in the gluon
tadpole A(1). The free Green function ∆0 corresponding to the above l.h.s operator satis�es :

(gµν�− ∂µ∂ν +
nµnν

ξ
)∆0νρ(x− y) = iδµ

ρ δ
(4)(x− y). (4.61)

The color structure of ∆0 is δAB and has been omitted : ∆AB
0 → δAB∆0. For the moment the procedure

does not require a given prescription for the Green function. It can be the retarded one but also advanced,
Feynman, anti-Feynman or any linear combination of them (with a unit sum of coe�cients). To derive the
corresponding Green's formula, one multiplies (4.60) on the left by the free Green function and multiply
on the right the adjoint of (4.61) with A. This order is conventional one could have made the converse.
This leads to the following system :

{

∆µρ
0 (x− y)(gρσ

−→
�y −

−−−−→
∂yρ∂yσ +

nρnσ

ξ )AAσ(y) = ∆µρ
0 (x− y)FAρ[A(y), y]

∆µρ
0 (x− y)(gρσ

←−
�y −

←−−−−
∂yρ∂yσ +

nρnσ

ξ )AAσ(y) = iδ(4)(x− y)AAµ(y).
(4.62)

Let us integrate the di�erence of the second equation minus the �rst one, times an overall −i factor, over
y on some simply connected, four-dimensional, space-time domain Ω. This gives :

AAµ(x) = −i
∫

Ω
d4y∆µρ

0 (x− y)
(

gρσ
←−
�y −

←−−−−
∂yρ∂yσ − gρσ

−→
�y +

−−−−→
∂yρ∂yσ

)

AAσ(y)

− i
∫

Ω
d4y∆µρ

0 (x− y)FAρ[A(y), y].

(4.63)
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The last term in the integrand is a bulk term whose role will be precised later. The �rst term is a total
derivative7. Writing the integral of the total derivative as a three-dimensional surface integral over ∂Ω, the
boundary of Ω, with a normal vector lµ and embedded with the measure d3σy gives :

AAµ(x) = − i
2

∮

∂Ω
d3σy

[

2∆µρ
0 (x− y)←−−→(l · ∂y)A

A
ρ (y)−∆µρ

0 (x− y)lρ
←→
∂yσA

Aσ(y)−∆µρ
0 (x− y)←→∂yρ(l ·AA(y))

]

− i
∫

Ω
d4y ∆µρ

0 (x− y)FAρ[A(y), y].

(4.64)

This is the required formula. Note that this expression is no longer singular as ξ → 0. Then one can
enforce the gauge constrain n ·A = 0 at this level without any problem.

Let us write the Green's formula for quarks. The general structure of equations (4.44), (4.54) and (4.55)

that respectively govern the dynamics of bp, ξ
(k±)
p and δbp, generically denoted by a spinor ψ which can

be any of them, reads as follow :

(

i/∂ −m
)

ψ(x) = G[ψ(x), x] (4.65)

where G[ψ(x), x] is again a local functional of the ψ �eld and possibly various other �elds. The Green's
formula is obtained in the same way as for gluons. The Green function S0 of the free Dirac operators

satis�es the equation S0(x − y)(i
←−
/∂ + m) = iδ(4)(x − y) and has a trivial color structure δab which is

understood. Following the same procedure as for gluons, one gets the system :







S0(x− y)
(

i
−→
/∂y −m

)

ψ(y) = S0(x− y)G[ψ(y), y]

S0(x− y)
(

i
←−
/∂y +m

)

ψ(y) = iδ(4)(x− y)ψ(y).
(4.66)

For quarks, one has to integrate the sum of these two equations over Ω times −i and this gives :

ψ(y) =

∫

Ω
d4y

[

S0(x− y)
(−→
/∂y +

←−
/∂y

)

ψ(y) + iS0(x− y)G[ψ(y), y]
]

. (4.67)

The total derivative is here obvious in the �rst term. This last expression is written as the following
boundary integral :

ψ(y) =

∮

∂Ω
d3σyS0(x− y)/lψ(y) + i

∫

Ω
d4y S0(x− y)G[ψ(y), y]. (4.68)

Solutions for gluonic and quark �elds (4.64) and (4.68) are general. To go further one has to �nd an
explicit form for the bulk term. We shall see the emergence of the recursion relations.

7For arbitrary functions f and g, one has

f(
−→
� −←−� )g = ∂µ(f

←→
∂µg)

and for two vector �elds A and B,

Aµ(
−−→
∂µ∂ν −

←−−
∂µ∂ν)Bν =

1

2

“

∂µ(Aµ←→∂ν Bν) + ∂ν(Aµ←→∂µBν)
”

.

The symbol
←→
∂ is the antisymmetric derivative de�ned as

←→
∂ =

−→
∂ −←−∂ .
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4.4.2 Boundary operators

For all gluon �elds A(0), αk and A(1) equation (4.64) shows us that the �eld at some point in space-
time depends linearly in the value of the �eld itself and its �rst derivatives on the surface ∂Ω that will be
referred to as the initial surface. Let us examine the structure of the functional F de�ned in (4.60) for
A(0), αk and A(1) respectively. Its explicit expression can be read directly from (4.28), (4.36) and (4.39)
respectively. Let us �nd the corresponding relation between (4.28) and (4.36) for instance. Equation (4.36)
for αk is the one obtained by perturbing A(0) in (4.28). It is natural to expect that a perturbation merges
from a perturbed initial condition on the boundary surface. The gluonic Green's formula (4.64) having
a dependence on the gluon �eld's components and �rst derivatives on the initial surface ∂Ω, specifying
the value of the perturbation and of its �rst derivatives on the initial surface will uniquely determine its
"future" evolution8. From these considerations we de�ne the shift operator acting on the initial condition
:

∮

∂Ω
d3σu

[

δA · TA
u

]

=

∮

∂Ω
d3σu

[

δAA
µ (u)

∂

∂A
(0)A
µ (u)

+ (∂νδA
A
µ (u))

∂

∂(∂νA
(0)A
µ (u))

]

. (4.69)

To see how this operator acts, let us write, thanks to the explicit form of the functional F in the r.h.s of
(4.28), the Green's formula (4.64) corresponding to A(0) :

A(0)Aµ(x) = − i
2

∮

∂Ω
d3σy

[

2∆µρ
0 (x− y)←−−→(l · ∂y)A

A
ρ (y)−∆µρ

0 (x− y)lρ
←→
∂yσA

Aσ(y)−∆µρ
0 (x− y)←→∂yρ(l ·AA(y))

]

− i
∫

Ω
d4y ∆µρ

0 (x− y)
[

−J A
ρ (x) +

∂V

∂AAρ
[A(0)(x)]− ∂ν

∂V

∂∂νAAρ
[A(0)(x)]

]

.

(4.70)

Acting on the initial condition - i.e. the boundary term - the shift operator merely replaces A(0) by δA
on the surface. Since the shift operator is a linear di�erential operator it perturbs the bulk term giving
exactly the r.h.s of (4.36) and by the way the bulk term of the Green's formula corresponding to αk but
with δA instead of αk. Its action on J is zero. Then one can identify δA and αk and one has :

α
(λ)A
kCµ (x) =

∮

∂Ω
d3σu

[

α
(λ)
kC · TA

u

]

A(0)A
µ (x). (4.71)

A(1) is obtained from A(0) in a similar way. The bulk term is read from (4.39). The �rst piece has the
same form as the r.h.s of (4.36). This ensures that A(1) will receive a contribution like (4.71) but with A(1)

instead of αk in the shift operator. To get the remaining piece of the A(1)'s bulk term from A(0) one has
to perform a double derivative. If one applies the shift operator (4.71) and its complex conjugate on A(0)

and sum over the initial momentum k, polarization λ and color C we get the required term. This double
derivative contribution does not a�ect the boundary term in (4.70) since this last one is linear in the �elds.
Gathering these two pieces together gives :

A(1)A
µ (x) =





∮

∂Ω
d3σu

[

A(1) · TA
u

]

+
1

2

∑

λ,C

∫

d3k

(2π)32k0

∮

∂Ω
d3σud3σv

[

α
(λ)
kC · TA

u

] [

α
(λ)∗
kC · TA

v

]



A(0)A
µ (x).

(4.72)
Relations (4.71) and (4.72) relate the LO and NLO elementary �elds and will be essential ingredients for
recursion relations.

8For the moment considerations are more general as long as we neither specify the prescription of the free Green functions
in Green's formulas nor the surface ∂Ω. At this level the terms "future" or "initial" are abusive but this is in view of the
upcoming causal interpretation.
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There are analogous relations for fermionic �elds bp, ξ
(k+)
p and δbp. Let us �rst look for the relation

between bp and ξ(k+)
p . Plugging (4.44) and (4.54) into the general fermionic Green's formula (4.68) gives :

bp(x) =

∮

∂Ω
d3σyS0(x− y)/lbp(y)− ig

∫

Ω
d4y S0(x− y) /A(0)

(y)bp(y)

ξ
(k+)
p (x) =

∮

∂Ω
d3σyS0(x− y)/lξ(k+)

p (y)− ig
∫

Ω
d4y S0(x− y)

[

/A
(0)

(y)ξ
(k+)
p (y) + /αk

(y)bp(y)
]

.

(4.73)

These two expressions suggest the de�nition of a shift operator that acts on the initial value of /lbp and
not on its derivatives9. This operator reads :

∮

∂Ω
d3σu

[

δψ · Tb
u

]

=
∑

s,c

∫

d3p

(2π)32p0

∮

∂Ω
d3σu

[

/lδψs
pc(u)

∂

∂/lbspc(u)
+ δψ̄s

pc(u)/l
∂

∂b̄spc(u)/l

]

. (4.74)

Note that we are not dealing with Grassmann numbers and the side on which the derivative acts on
some given functional of quark �elds does not matter. The perturbation δψ necessarily carries the same
quantum numbers as bp, that is a spatial momentum, a spin and a color. When this operator acts on the
�rst equation of (4.73), it replaces bp by δψ. The derivative with respect to b̄p does not contribute when
acting on bp and has been conventionally inserted in this operator. Thus, the shift operator ξ(k+) · Tb

u

acting on the �rst line of (4.73) almost gives the second line, except the last term in the r.h.s. To get the
additional bulk term of the second equation (4.73) one has to add the contribution of the operator (4.71)
that changes A(0) into αk. Of course this operator plays no role on the surface term. The relation between
bp and ξ(k+)

p then reads :

ξ
(k+)
p (x) =

∮

∂Ω
d3σu

[

αk · TA
u + ξ(k+) · Tb

u

]

bp(x). (4.75)

To complete the recursion relations between elementary �elds one has to �nd the one matching bp to
δbp. The �rst interaction term in equation (4.55) is similar to the one in (4.54) which ensures a contribution

of the same form as (4.75) but with bp replaced by δbp instead of ξ(k+)
p and A(0) by A(1) instead of αk.

But there is also a self-energy term whose �nal form is given by (4.59). Let us rewrite the self-energy term
in (4.55) in the form (4.59) and together with (4.52) and (4.53), one has :

−ig2

∫

d4y ΣR(x, y)bp(y) = −g
2

∫

d3k

(2π)32k0

[

/αk
ξ
(k−)
p (x) + /α∗kξ

(k+)
p (x)

]

. (4.76)

It is now straightforward to write this term as shift operators acting on LO �elds since such relations are
already known thanks to (4.71) and (4.75) :

ig

∫

d4y ΣR(x, y)bp(y) =
1

2

∫

d3k

(2π)32k0

∮

∂Ω
d3σud3σv

×
[

[

αk · TA
u

]

/A
(0)

(x)
[

α∗k · TA
v + ξ(k−) · Tb

v

]

bp(x) +
[

α∗k · TA
u

]

/A
(0)

(x)
[

αk · TA
v + ξ(k+) · Tb

v

]

bp(x)
]

(4.77)

but since A(0) does not depend on any spinor �eld in its initial condition, any shift operator with respect
to bp acting on A(0) gives zero and the above formula can be written as :

ig

∫

d4y ΣR(x, y)bp(y) =
1

2

∫

d3k

(2π)32k0

∮

∂Ω
d3σud3σv

×
[

αk · TA
u + ξ(k+) · Tb

u

] [

α∗k · TA
v + ξ(k−) · Tb

v

]

/A
(0)

(x)bp(x).

(4.78)

9As long as we do not specify the l vector there is no reason for /l to be invertible a priori. This is somewhat conventional
to derive with respect to /lbp rather than bp. It is more convenient since it explicitly reduces the number of initial degrees of
freedom if /l is not invertible
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−g /A(0)
(x)bp(x) is precisely what is in the bulk term of the Green's formula corresponding to bp according

to (4.73). Moreover, this double derivative operator gives zero when it acts on the boundary term in the
Green's formula for δbp. Now we have all the pieces we need to write δbp as a shift operator acting on LO
�elds. The self-energy term together with the term of the same form as (4.75) gives :

δbp(x) =

∮

∂Ω
d3σu

[

A(1) · TA
u + δb · Tb

u

]

bp(x)

+
1

2

∫

d3k

(2π)32k0

∮

∂Ω
d3σud3σv

[

αk · TA
u + ξ(k+) · Tb

u

] [

α∗k · TA
v + ξ(k−) · Tb

v

]

bp(x).

(4.79)

This is the last elementary piece missing.

Here is a good place to pause for a comment about fermionic �uctuations. We recall that two types of
diagrams have been omitted for obscure reasons up to now. These diagrams are the quark loop dressing
the gluon one-point function and the other one was the "half" of the self-energy that has been interpreted
as a quark �uctuation. The reason we got rid of them - justi�ed by the fact that they do not lead to
large logarithms in the region of phase space we want to look at - is because such contributions cannot be
written as shift operators acting on elementary �elds. Formally this is due to the vanishing character of
fermionic one-point functions or equivalently the absence of quark sources. The construction of a quark
tadpole would be similar to the gluonic case provided by the last term of (4.72). This would have required
that the gluon one-point function possibly emerges from two quark's classical sources which is forbidden
since they are zero. Indeed, in this case, the fermionic shift operator has to act on the initial condition of
A(0). Since A(0) does not depend on any fermionic quantity according to (4.28), such operator gives zero.
The quark �uctuation in the self-energy cannot be treated in this way for analogous reasons.

4.4.3 Physical picture of boundary operators

At this point manipulations may seem to be a bit formal. However they do have a very intuitive
physical picture that can be represented diagrammatically. Let us say for de�niteness that the initial
surface is a space-like surface of equal time, lying in the future of the sources and the volume Ω is the
future side of this surface. Moreover we choose the retarded prescription in Green's formulas so that this
equal time surface is actually the only one contributing to the boundary integrals. Spatial and future
in�nity are discarded by causality. The simplest case (4.71) is illustrated in detail on �gure 4.10. Let

J

∂Ω

x

J

∂Ω

x

J

∂Ω

x

↑ k

Figure 4.10: Illustration of formula (4.71). Diagram on the left represents some diagram entering into the
tree level one-point function A(0)(x). The central diagram is one of the results of the action of the operator
T

A. This operator di�erentiates A(0)(x) with respect to its initial value on the surface ∂Ω, that is it cuts
one leg at the surface in all possible ways. Diagram on the right is the result of the multiplication by αk

that is a dressed external leg coming from the in�nite past. To summarize, the shift operator cuts one leg
of an LO �eld in all possible ways on the initial surface and replace it by a new �eld at this point.

us deal with a more complicated case, formula (4.79) giving δbp as a functional of bp. bp is an initial
free spinor dressed by tree level sources and δbp is its one loop correction, respectively represented on
�gure 4.11. Let us see what is the meaning of each term in (4.79). We begin with the linear term
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J
↑ p

J
↑ p

J
↑ p

Figure 4.11: First diagram : a typical diagram contributing to bp. Last two diagrams : the two kinds
of contributions to δbp corresponding to the tadpole (middle diagram) and the self-energy (rightmost
diagram).

[

A(1) · TA
u + δb · Tb

u

]

bp(x). The �rst one replaces an A(0) by an A(1) on the surface, the second one a tree
level spinor bp by its one loop correction under the surface as represented on �gure 4.12. The quadratic

J

∂Ω

J

∂Ω

J

∂Ω

Figure 4.12: First diagram :
[

A(1) · TA
u

]

bp(x). A tree level gluon one-point function is replaced by its one
loop correction at the surface. Second and last diagram :

[

δb · Tb
u

]

bp(x). The loop corrections to the tree
level spinor bp is bellow the initial surface. They are of types : self-energy (second diagram) and tadpole
(last diagram).

term in (4.79)
[

αk · TA
u + ξ(k+) · Tb

u

] [

α∗k · TA
v + ξ(k−) · Tb

v

]

bp(x) has essentially two kinds of contributions.
[

αk · TA
u

] [

α∗k · TA
v

]

bp(x) cuts two gluon one-point functions on the initial surface and match them together
to close the loop as represented on �gure 4.13.

[

αk · TA
u

] [

ξ(k−) · Tb
v

]

bp(x) and its complex conjugate
correspond to a loop correction that crosses the surface as shown on 4.14.

[

ξ(k+) · Tb
u

] [

ξ(k−) · Tb
v

]

bp(x)
vanishes since the dependence of bp on its initial condition is linear.

4.4.4 Recursion relations

In the two previous sections we dealt only with elementary �elds, but these are primary ingredients of
more complicated combinations of them : Schwinger-Keldysh Green functions. Let us go back to the NLO
gluon spectrum (4.29). Thanks to (4.34), the NLO spectrum reads :

(2π)32k0 dNg

d3k

∣

∣

∣

∣

NLO

=

∫

d4xd4yeik·(x−y)ǫ∗µ(k)ǫν(k)�x�y

[∫

d3l

(2π)32l0
αAµ

l (x)αAν∗
l (y)

+A(1)µA(x)A(0)νA(y) +A(0)µA(x)A(1)νA(y)
]

.

(4.80)

Rewriting the functional relations (4.71) between αAµ
k and A(0) and (4.72) between A(1) and A(0) respec-

tively. One �nds that the NLO spectrum reduces to a shift operator acting on the LO spectrum (4.29).
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J

∂Ω

J

∂Ω

Figure 4.13:
[

αk · TA
u

] [

α∗k · TA
v

]

bp(x) gives two topologies of diagrams depending whether the two cut
one-point functions are attached to the quark at di�erent qg vertices (left diagram) or are two di�erent
branches of the same gluon one-point function (right diagram).

J

∂Ω

Figure 4.14: The
[

αk · TA
u

] [

ξ(k−) · Tb
v

]

bp(x) contribution. The fermion is cut on the initial surface and

replaced by a ξ(k+)
p vertex 4.9 whose gluon leg matches the cut gluon one-point function.

This is the recursion relation we were looking for and it reads :

(2π)32k0 dNg

d3k

∣

∣

∣

∣

NLO

=

[∮

∂Ω
d3σu

[

A(1) · TA
u

]

+
1

2

∫

d3l

(2π)32l0

∮

∂Ω
d3σud3σv

[

αl · TA
u

] [

α∗l · TA
v

]

]

(2π)32k0 dNg

d3k

∣

∣

∣

∣

LO

.

(4.81)

This formula is exact in a pure Yang-Mills theory but is up to a fermion loop in QCD.

A similar relation for the quark spectrum is straightforward. Let us summarize the role played by the
elementary �elds bp, ξ

(k+)
p and δbp in the LO and NLO spectrum (4.30). Let us write the LO spectrum by

plugging (4.42) into (4.30) :

(2π)32p0 dNq

d3p

∣

∣

∣

∣

LO

= −
∫

d4xd4yeip·(x−y)ū(p)
(

i
−→
/∂ x −m

)

∫

d3q

(2π)32q0
bq(x)b̄q(y)

(

i
←−
/∂ y +m

)

u(p). (4.82)

The NLO spectrum is obtained thanks to (4.48) together with (4.49) and (4.51) :

(2π)32p0 dNq

d3p

∣

∣

∣

∣

NLO

= −
∫

d4xd4yeip·(x−y)ū(p)
(

i
−→
/∂ x −m

)

×
∫

d3q

(2π)32q0
[

δbq(x)b̄q(y) + bq(x)δb̄q(y)

+

∫

d3k

(2π)32k0
ξ
(k+)
q (x)ξ̄

(k−)
q (y)

] (

i
←−
/∂ y +m

)

u(p).

(4.83)

Writing the ξ(k+)
p and δbp �elds as shift operators (4.75) and (4.79) respectively, everything �ts together
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as a second order di�erential operator acting on the LO spectrum (4.82) :

(2π)32p0 dNq

d3p

∣

∣

∣

∣

NLO

=

[∮

∂Ω
d3σu

[

A(1) · TA
u + δb · Tb

u

]

+
1

2

∫

d3k

(2π)32k0

∮

∂Ω
d3σud3σv

[

αk · TA
u + ξ(k+) · Tb

u

] [

α∗k · TA
v + ξ(k−) · Tb

v

]

]

(2π)32p0 dNq

d3p

∣

∣

∣

∣

LO

.

(4.84)

Recall that this formula does not take into account fermionic �uctuations that do not lead to large loga-
rithms of x and is therefore an approximate formula valid in the small x phase space region. The recursion
relations are the fundamental formulas for extracting the small x evolution. Formula (4.84) is a new relation
that appears for the �rst time in [39].

4.5 Small x logarithms and JIMWLK evolution

The small x logarithms are obtained from LO to NLO recursion relations by an explicit computation of
the coe�cients in front of the di�erential operators in (4.81) and (4.84) for gluons and quarks respectively.
In the gluonic case, this computation has been performed in [96]. The small x logarithms come from the
large l3 integration region over the initial momentum of the cut propagator and the one-loop tadpole A(1)

in (4.81). It turns out that the evolution is governed by two JIMWLK hamiltonians corresponding to the
two nuclei separately as expected from causality arguments. The full calculation is tricky and the interested
reader is sent to the previous references. Let us just mention some important steps of the calculation - the
choice of the initial surface and the gauge �xing - before discussing the evolution.

4.5.1 Choice of initial surface

In this section we deal with a crucial step for explicitly extracting logarithms from the general expres-
sions (4.81) and (4.84). This requires a suitable choice for the boundary surface ∂Ω that is motivated by
the topological distribution of classical sources. The collision between the two nuclei occurring at very high
energy in a frame not very di�erent from the center of mass frame, it is convenient to endow space-time
with the structure represented on �gure 4.15.

• region (0) corresponds to x± both negative. This region has no knowledge of the process and the
classical �eld is zero (or, at worth, pure gauge depending on the gauge used).

• regions (1) and (2) are causally disconnected from each other. In each of these regions, the back-
ground �eld is associated to the right-moving and left-moving source respectively. The classical �eld
corresponding to the left-moving source in given by (2.17) and the mirror case (plus and minus indices
interchanged) for the right-moving one.

• region (3) the background �eld is produced by the two sources together and the non-linear character
of the Yang-Mills equations allows only numerical solutions. Indeed, due to non-linear terms in the
Yang-Mills equation, the superposition principle breaks down : the �eld produced by several sources
does not reduce to the sum of the �elds created by these sources separately.

In order to get the small x behavior from recursion relations one has, in principle, to deal with all these
four regions. Fortunately, the JIMWLK evolution concerns the intrinsic nature of the hadron itself and has
nothing to do with some scattering process. Therefore thanks to a suitable gauge �xing, the small x logs
can be contained in the initial nucleus wave function and region (3) on �gure 4.15 does not bring such large
logarithms. The previous space-time decomposition suggests a natural guess for the initial surface. ∂Ω is
taken to be Σ1 ∪ Σ2 represented on �gure 4.16. The spatial and future in�nity does not contribute to the
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Figure 4.15: Light-cone decomposition for the A-A process : region (0) is the remote past, causally
disconnected from the collision process ; region (1) is the causal future of the right-moving nucleus only ;
region (2) is the causal future of the left-moving nucleus only and region (3) is the common future of the
two nuclei together.

boundary term in Green's formulas (4.64) and (4.68) if one chooses the retarded prescription for the free
Green function. This choice is natural since the JIMWLK evolution is encoded in the initial condition. An
initial surface embedded in region (0) would not have shown anything interesting : the JIMWLK evolution
occurs at a later time and can not be included in boundary operators. Moreover a later time surface would
not bring additional information but would lead to tedious or even not doable analytical calculations. The
choice Σ1 ∪ Σ2 of 4.16 contains all the JIMWLK behavior - provided an appropriate gauge �xing - and
enables simple calculations, since the �elds are known analitically in regions (1) and (2).

Figure 4.16: Initial surface Σ = Σ1 ∪ Σ2 conveniently chosen at an in�nitesimally later time after the
collision.

4.5.2 Gauge �xing

The various space integrals in (4.84) are performed on the surface Σ represented on 4.16. This implies
that all the divergences are indeed contained in the causal past of the surface Σ. This point is a bit subtle
and makes the gauge �xing very important since the time at which the radiative corrections responsible
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of small x divergences occur di�ers from one gauge to another one. The condition for all the logarithms
to be included "before" Σ is ensured if the background �eld vanishes above the surface. We shall see that
one can �nd such a gauge choice. In region (0), the �eld is gauge equivalent to the zero �eld and nothing
interesting can happens in any gauge. The logarithms can only arise in the neighborhood of Σ. In regions
(1) and (2) of �gure 4.15, the background �eld is known. It is given by an A−2 in region (2) whose explicit
form is given by (2.17), in region (1) it is given by the mirror �eld - with plus and minus components
interchanged - A+

1 (we have introduced 1 and 2 indices to distinguish the two �elds generated by the
two nuclei). In region (3) the background �eld is analytically unknown but it has been argued [96] that
possible small x divergences are suppressed by fast oscillating exponentials. Thus the small x logarithms
are worked out from regions of space time where the �eld is known analytically. The covariant gauge
that gives the �elds A+

1 and A−2 in regions (1) and (2) respectively ful�lls the required property that the
classical �eld must lie below the initial surface. Furthermore it has a nice property that makes the explicit
computation of quantum �uctuations easier. Let us consider the �eld A+

1 associated to the right-moving
nucleus - these considerations are obviously transposed to the left-moving one and its respective �eld A−2
by reverting the plus and minus Lorentz components. As already mentioned, at the classical level, the
covariant gauge ∂ ·A1 and the gauge A−1 = 0 are equivalent10. Thus if one instead consider this last gauge
A−1 = 0, the gluon �eld does not couple to the classical current J +

1 associated to the right-moving nucleus.
In other words, it means that quantum corrections do not induce current precession. The current is simply
conserved to all orders instead of being covariantly conserved. This makes calculations simpler since the
�rst quantum corrections are solutions of the linearized homogeneous Yang-Mills equations which can be
solved analytically [96].

As pointed out at the beginning of section 4.3, the form (4.21) of the gluon spectrum is not gauge
invariant and we have the stronger constrain that we must �x the gauge so that this formula is interpreted
as a number of physical degrees of freedom. To examine this feature let us consider its LO version (4.29)
which will be enough to interpret the spectrum as a number of gluons. Let us consider region (1), the causal

future of source (1). In covariant gauge, the classical �eld A
(0)
1 = A1 is given by the mirror expression

(2.17), i.e. by a single component �eld A+
1 . We prefer to work in axial gauge and at the classical level

one can equivalently consider instead of the covariant gauge, the A−1 = 0 gauge. The contraction of the
classical �eld with the polarization vectors gives zero by gauge condition and thus (4.29) is zero. This situa-
tion is unsatisfactory. The gauge A−1 = 0 seems to forbid the interpretation of (4.21) as a number of gluons.

Let us guess the gauge Ã+
1 = 0 denoted with a tilde to make the di�erence with the A−1 = 0 gauge. It

is an easy exercise to show that, at the classical level, the suitable gauge transformation is provided by :

Ãµ
1 (x) = Ω(+∞, x−,x⊥)

(

Aµ
1 (x) +

i

g
∂µ

)

Ω†(+∞, x−,x⊥), (4.85)

where Ω(+∞, x−,x⊥) is the Wilson line built from the �eld Aµ
1 with �nite end points :

Ω(y−, x−,x⊥) ≡ P exp

[

ig

∫ y−

x−
dz−A+

1 (z−,x⊥)

]

. (4.86)

The Ω(x⊥) encountered so far is recovered by sending y− and x− to +∞ and −∞ respectively. Since A1

does not depend on the x+ coordinate - recall it is the mirror case of the �eld considered in previous sections
since it is produced by the projectile instead of the target, Ã1 does not depend on the x+ coordinate as
well. Moreover it is vanishing for x− > 0 and is pure gauge x− < 0 :

Ãµ
1 (x−,x⊥) =

i

g
θ(−x−)Ω(x⊥)∂µΩ†(x⊥) =

i

g
θ(−x−)δµiΩ(x⊥)∂iΩ†(x⊥). (4.87)

10As usual A1 denotes the total �eld, that is the classical �eld plus the quantum corrections.
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Just note that Ã+
1 = 0 does not �x the gauge uniquely and any x+ independent gauge transformation

performed on Ã1 preserves this condition. We have chosen the gauge transformation that cancels the back-
ground �eld above Σ1 as required. The situation seems to be much better. Indeed from appendix F we
learned that in light-cone gauge the physical degrees of freedom are given by the transverse components.
Ãµ

1 only has transverse components as expected. Therefore the gauge Ã+
1 = 0 seems to provide the proper

interpretation of (4.29) as a gluon number.

To interpret this from a more rigorous approach one has to see the discussion F.2.3 concerning respec-
tively the A+

1 and Ã−1 . As shown in F.2.3 these non-transverse degrees of freedom are redundant since they
are given in terms of the transverse components by a constrain equation. Moreover we have shown that the
longitudinal degrees of freedom are non physical if the momentum k of the gluon is collinear to the gauge
�xing vector. Since both A1 and Ã1 do not depend on x+, their Fourier decomposition is proportional to
δ(k−), that is the k− component of the momentum of the classical gluons within the nucleus is zero. In
the gauge A−1 = 0, k− = 0 precisely corresponds to this non physical situation where k is aligned along the
gauge �xing vector11 and therefore A+

1 does not correspond to physical degrees of freedom. This is why
we are in trouble in this gauge. On the contrary the condition k− = 0 ensures a non vanishing value of k+

which guarantees the physicality of the components of Ã1 in the gauge Ã+
1 = 0. Moreover at the classical

level the constrained component Ã−1 is zero avoiding possible redundant counting. Therefore the leading
order gluon spectrum (4.29) makes sense in the Ã+

1 = 0 gauge. Furthermore it holds at all order, even
though the constrained component Ã−1 is non zero, since the contraction of Ã1 with a polarization vector
gives −ǫi(k)Ãi

1. This ensures a right counting of physical gluons to all order in (4.21).

Thus all the calculations performed so far actually hold in the gauge A+
1 = 0 with the background �eld

vanishing above the Σ1 surface. On Σ1 the normal vector is given by l+ = −1 and l− = li = 012. In this
gauge and after some partial integrations (4.64) becomes :

ÃAµ(x) = i

∫

Σ1

dy+d2y⊥

[

2∆µi
0 (x− y)∂+

y Ã
Ai(y)−∆µ+

0 (x− y) ∂yσÃ
Aσ(y)− (∂yρ∆

µρ
0 (x− y))ÃA+(y))

]

+ bulk term.
(4.88)

the value of the �eld at some point depends only on four initial degrees of freedom Ã−1 , ∂
−Ãi

1 and ∂ · Ã1.

The proper interpretation of (4.22) as a number of quarks immediately follows. The counted gluons
being physical, so are the quarks created by them in the gauge A+

1 = 0.

4.5.3 Evolution

So far we have all the tools to perform the explicit computation of the recursion relations (4.81) and
(4.84). If one consider the Σ1 (resp. Σ2) piece of the initial surface, the coe�cients of di�erential operators
in (4.81) and (4.84) are the ones in the gauge Ã+

1 = 0 (resp. Ã−2 = 0). The LO quark and gluon spectra
are also functionals of the Ã1 and Ã2 �eld13. However, from the gauge transformation (4.85) all these
�elds and coe�cient functions are functional of the classical �eld A+

1 in the gauge A−1 = 0 and A−2 in the
gauge A+

2 = 0 arising through Wilson lines. Thus one can equivalently see the di�erential operators in
(4.81) and (4.84) as operators di�erentiating with respect to A+

1 for the right-moving source and to A−2
for the left-moving one. The recursion relation for gluons (4.81) turns out to be a sum of two JIMWLK

11Intermediate gluons produced by sources are not exactly on-shell. However we can assume that the momentum distribution
essentially contains modes with longitudinal momenta large with respect to the transverse components which are at most of
order Qs.

12If x ∈ Σ1, then x = (x+, 0,x⊥) and the normal vector is de�ned so that its scalar product with any vector in Σ1 is zero.
This is ful�lled if and only if l = (l+, 0,0⊥). The value l+ = −1 is required by the Gauss theorem and the orientation of the
boundary surface.

13Even the LO spectra are very complicated and one can not compute them explicitely analytically.
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hamitonians, (2.21) and its mirror version for the right-moving nucleus, in the leading log approximation
(see [96]) :

dNg

d3k

∣

∣

∣

∣

NLO

=

[

ln(x1)H
[

A+
1 ,

δ

δA+
1

]

+ ln(x2)H
[

A−2 ,
δ

δA−2

]]

dNg

d3k

∣

∣

∣

∣

LO

. (4.89)

x1 and x2 are the longitudinal momentum fraction cuto� for the right-moving and left-moving source
respectively that separate the classical and quantum partons of the nuclear wave function in the CGC
framework. Equation (4.89) shows the required factorization property of small x logs imposed by causality.
The full resummation of one-loop corrections exponentiates and since the two JIMWLK hamiltonians do
not talk to each other, it indeed factorizes.

The physical meaning of (4.89) is that the small x evolution is an initial state e�ect and can be put
into the hadron wave function. Since this evolution is an intrinsic property of the nucleus it has nothing to
do with the observed particles in the �nal state. We thus expect that relation (4.89) holds for the quark
spectrum as well. However this has not been worked out explicitly from (4.84) yet. However, from the
LO to NLO relation (4.84), we can guess how the calculation has to work. The current problem is only
computational but the way to do is more or less understood. The LO gluon spectrum is a functional of the
background �eld on the initial surface only whereas the LO quark spectrum is, in addition, a functional
of the dressed spinor bp and its complex conjugate. In (4.84) the terms which contain only T

A operators
automatically give the sum of two JIMWLK hamiltonians (4.89) since this piece is directly inherited from
the gluon case. However these operators act only on the explicit dependence of the quark spectrum upon
the background �eld. The missing piece might arise from the terms containing T

b operators in (4.84).
Actually the dependence of the quark spectrum on bp is an implicit dependence on the background �eld.
Indeed, the solution of the equation of motion (4.44) is of the form14 bp(x) ∼ Ω(x⊥)v(p)eip·x. Then one can
write T

b as a derivative with respect to the Wilson lines and therefore with respect to the background �eld.
To compute the JIMWLK evolution (4.89) from (4.84) for the quark spectrum one has to take into account
the explicit and implicit dependences of the spectrum on the background �eld in the sense given above. If
the dependences of T

b on the background �eld is made explicit, then the quark spectrum is a functional of
the background �eld only and the leading log relation (4.89) holds with the JIMWLK hamiltonians acting
on all the background �eld dependences : the initially explicit one and the one arising from the implicit
dependence via bp.

14The full solution is more subtle but the �ne details do not matter for the present discussion.
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Chapter 5

Traces computation

This chapter is somewhat out of the main scope. Cross-sections computed in p-A collisions often require
the computation of traces involving an arbitrary number of gauge group generators. In order to go further
in the calculation of some special limits of section 3, I tried �nd methods for explicitly working these traces
out. As an example for motivating this work, let us consider the quadrupole distribution (3.48) and let

us focus on the color operator ∂i
x∂

i
uS̃

(4)(x⊥,b⊥,u⊥, b̄⊥)
∣

∣

∣

b⊥b⊥b̄⊥b̄⊥

. For some purposes - like making the

comparison with the Weizsäcker-Williams distribution which is commonly written in a similar form - it
may be useful to rewrite it, together with ∂iA− = F i−, as the following adjoint representation trace :

∂i
x∂

i
uS̃

(4)(x⊥,b⊥,u⊥, b̄⊥)
∣

∣

∣

b⊥b⊥b̄⊥b̄⊥

=
(ig)2

Nc(N2
c − 1)

∫

dx+dy+Tr
[

Ω̃(+∞, x+,b⊥)F i−(x+,b⊥)

× Ω̃(x+,−∞,b⊥)TAΩ̃†(b⊥)Ω̃(+∞, y+, b̄⊥)F i−(y+, b̄⊥)Ω̃(y+,−∞, b̄⊥)TAΩ̃†(b̄⊥)
]

(5.1)

where Ω(x+, y+,x⊥) is the Wilson line built from the �eld A− with �nite end points :

Ω(x+, y+,x⊥) ≡ P exp

[

ig

∫ y+

x+

dz+A−(z+,x⊥)

]

(5.2)

(the Ω(x⊥) encountered so far is recovered by sending y+ and x+ to +∞ and −∞ respectively). We de�ne
F i−

(+)(x
+,b⊥), the parallel transported �eld strength at x+ = +∞ on the gauge bundle1, as

F i−
(+)(x

+,b⊥) ≡ Ω̃(+∞, x+,b⊥)F i−(x+,b⊥)Ω̃†(+∞, x+,b⊥). (5.3)

Thus after some algebra and together with (3.35), (5.1) can be written

∂i
x∂

i
uS̃

(4)(x⊥,b⊥,u⊥, b̄⊥)
∣

∣

∣

b⊥b⊥b̄⊥b̄⊥

=
(ig)2

Nc(N2
c − 1)

∫

dx+dy+FAi−
(+) (x+,b⊥)FBi−

(+) (y+, b̄⊥)

Ω̃CE(b⊥)Ω̃†ED(b̄⊥)Tr
[

TATCTBTD
]

.

(5.4)

To be completed, this calculation requires the computation of a trace of four adjoint representation gener-
ators Tr[TATCTBTD]. Through this example we have seen how traces of multiple generators arise.

1From the geometrical point of view, gauge theories are interpreted as the principal bundle that locally looks like M ×G
where M is a di�erential manifold referring to the space-time and G is the gauge group. This is easily understood since gauge
invariance is local and associate to each point in space-time a group matrix lying on the �ber G. In this context the gauge
�eld A is interpreted as the connection one-form and the Wilson lines encode the parallel transport on the principal bundle
along a curve drawn in the base space manifold. This is why Wilson lines naturally arise when one deals with gauge covariant
quantities. For more details about the geometrical meaning of gauge theories and how Wilson lines appears naturally in this
context, see for instance [99].
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This chapter is more formal, focusing on the mathematical aspect and trying to be as rigorous as
possible. These notes are self-taught in the sense that literature for this speci�c purpose is rather poor or
too formal. Then I tried to develop methods lying at the frontier between the mathematical and physical
languages, keeping in mind that the main goal is an explicit result for traces involving three or four
generators. These are explicitly computed in this chapter. I also show the general method that enables
us to go, in principle, further. For the back-to-back limit of the di-gluon decoherence problem one has to
compute such traces up to four generators, this is why I do not go further and this is, I think, the limit
for making everything by hand without help of some calculus software. The main idea is to decompose
products of generators into irreducible representations of the permutation group. This can be performed
in an easy systematic way by use of Young tableaux. In the �rst part we brie�y set the notations and
conventions. Then we de�ne the traces as invariant tensors and emphasize some basic properties. In the
third part we deal with the permutation group and match it to invariant tensors. We also introduce the
Young tableaux. On this basis, we next begin the computation of invariant tensors up to rank four with the
general methods inherited from the correspondence with the permutation group. In the following section
we take bene�ts from the cyclic symmetry of traces to simplify the procedure. At the end we compute
traces up to four generators thanks to this last powerful method. The used references are the following
textbooks : for generalities on Lie algebras and their representations [42, 100], the permutation group [101]
and an intuitive approach (for physicists) to Young tableaux [102].

5.1 Introduction and conventions

We shall deal only with simple Lie groups, denoted G for which the generators are chosen hermitian
and do obey the commutation relations :

[

TA;TB
]

= ifABCTC . (5.5)

Simplicity implies that the Killing form is δAB and the structure constants are real and completely anti-
symmetric. A,B,C... are the indices of the adjoint representation running from 1 to dG the group di-
mension. To set the notations we introduce the symmetrized and antisymmetrized products respectively
de�ned as :

T {A1TA2 ...TAn} =
1

n!
(TA1TA2 ...TAn + perm.)

T [A1TA2 ...TAn] =
1

n!
(TA1TA2 ...TAn ± perm.).

(5.6)

In the last line, the sign of the permutation depends on whether the permutation is even (+) or odd (−).

5.2 General properties of traces

5.2.1 Invariant tensors

Among the various invariant tensors it is possible to construct, we consider :

tr
[

TA1TA2 ...TAn
]

. (5.7)

The T 's are the group generators in some arbitrary representation R. The number n is called its rank.
Such tensor is invariant in the sense that it is unchanged under the action of an R representation matrix
of the group on the generators. That is for any matrix U in the representation R of G, one has :

tr
[

UTA1U−1UTA2U−1...UTAnU−1
]

= tr
[

TA1TA2 ...TAn
]

. (5.8)

But this property involves another one which is non trivial : invariant tensors are also invariant under the
action of the adjoint representation. Indeed, let U be in representation R and Ũ the corresponding adjoint
representation matrix, we have the relation :

UTAU−1 = TBŨBA. (5.9)
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Plugging this into (5.8) gives :

tr
[

TB1TB2 ...TBn
]

ŨB1A1ŨB2A2 ...ŨBnAn = tr
[

TA1TA2 ...TAn
]

. (5.10)

This last formula shows the invariance of trace tensors under the action of the adjoint representation.

5.2.2 Trace algebra

The arising question is in term of what we can write these traces ? Available tensors are δAB and fABC

but they are not su�cient. There is another class of tensors which cannot be expressed, in general, in
terms of δAB and fABC , these are the so called D-symbols de�ned as :

DA1A2...An = tr
[

T {A1TA2 ...TAn}
]

. (5.11)

From their de�nition, the D-symbols are totally symmetric. As we shall see, any invariant tensor of rank
n is in general a polynomial in δAB, fABC and the D-symbols with up to n indices. The numerical value
of the D-symbols depends on the representation.

5.3 The permutation group and its irreducible representations

In this section we �rst introduce the permutation group and its notations. Then we make the correspon-
dence with products of generators. Finally we introduce a very e�cient tool for �nding all the irreducible
representations of the permutation group : the Young tableaux.

5.3.1 The permutation group, properties and notations

An element σ of the permutation group of n elements, denoted Sn, assigns to the n elements of an
alphabet, say (A1, A2, ..., An), the corresponding set (σ(A1), σ(A2), ..., σ(An)) with the following constrains
:

• σ(Ak) must be an element Al of the alphabet.

• σ(Ak) 6= σ(Al) for all k 6= l.

In other words σ is a one to one application from the alphabet onto itself. σ realizes a permutation of the
elements of the alphabet. The group structure is therefore obvious : (i) the identity, denoted e, satis�es
e(Ak) = Ak for all k ; (ii) since it is bijective, σ has an inverse denoted σ−1 ; (iii) it is associative. The
dimension of Sn is n! . Indeed it corresponds to the number of ways of arranging the members of the
alphabet. For n > 2, Sn is non abelian. S1 and S2 are abelian. It is convenient to introduce a matrix
notation for σ ∈ Sn which is the following :

σ =

(

A1 A2 ... An

σ(A1) σ(A2) ... σ(An)

)

. (5.12)

Note that the order of the columns does not matter. The important thing is that in the same column, we
must have the assigned value by σ of the �rst row in the second one. The composition of two permutations
in matrix form is illustrated as follow. Let σ1, σ2 ∈ S4 de�ned by :

σ1 =

(

A B C D
B D C A

)

σ2 =

(

A B C D
A C B D

)

. (5.13)

Then :

σ2σ1 =

(

A B C D
A C B D

) (

A B C D
B D C A

)

=

(

A B C D
C D B A

)

. (5.14)
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To evaluate the composition, we start from a member of the alphabet in the upper row of the rightmost
matrix, we read the value it takes after the �rst permutation in the second row, we start from this read
value in the �rst row of the leftmost matrix and see the �nal value in the second row. For instance the �rst
column is obtained by A→ B → C. A more compact and really useful notation is the cyclic notation. A
cycle is obtained by starting from a member of the �rst row, we read the value given by the action of the
permutation in the second row. Let's take this former value in the �rst row and so on, until we come back
to the initial value. Ce cycle decomposition of σ1 and σ2 are respectively :

σ1 =

(

A B D
B D A

) (

C
C

)

σ2 =

(

B C
C B

) (

A
A

) (

D
D

)

. (5.15)

We can shrink the notation further. The identical pieces can be omitted. We only keep the non trivial
cycles. These cycles can be denoted without any ambiguity on one line as :

σ1 = (ABD) σ2 = (BC) (5.16)

It means that for σ1 A becomes B, which becomes D, which becomes A. And similarly for σ2. The order
of letters in the cycle matters but it is de�ned up to a cyclic permutation. For instance :

σ1 = (ABD) = (BDA) = (DAB) . (5.17)

As an other example, the cycle decomposition of σ2σ1 is :

σ2σ1 = (ACBD) . (5.18)

5.3.2 Relation between invariant tensors and permutation group

In order to write down Tr
[

TA1TA2 ...TAn
]

in terms of the various D-symbols, the structure constants
and the Killing form, one has to isolate the various symmetries of the trace. For this purpose we need
to decompose the product TA1TA2 ...TAn into a totally symmetric piece, a totally anti-symmetric piece
and other hybrid pieces which are symmetric and/or antisymmetric under the permutation of a subset
of indices2. One has to decompose the product TA1TA2 ...TAn into speci�c linear combinations of its
permutations. All the permutations span a n! dimensional space. But there are some linear combinations
of these permutations that have speci�c properties. For instance the totally symmetric piece in invariant
under the action of the whole permutation group. It furnishes a trivial representation of the permutation
group. In the same way, the totally antisymmetric piece furnishes a projective representation of the
permutation group : it is unchanged up to an overall sign depending on whether the permutation is even or
odd. As we shall see, there are some subsets of speci�c linear combinations of permutations that are stable
under the action of the permutation group. From a formal point of view, we say that TA1TA2 ...TAn and its
permutations furnish a reducible representation of the permutation group and what we are looking for is
the decomposition of TA1TA2 ...TAn into irreducible representations. We shall now build these irreducible
representations.

5.3.3 Decomposition into irreducible representations, the Young tableaux technique

As already mentioned the totally symmetrized and antisymmetrized tensors both furnish one dimen-
sional irreducible representations but for n > 2 there are other components that are more complicated and
with higher dimensions3. To �nd the irreducible representations of the permutation group, there is a very
e�cient tool known as the Young tableaux. It has been shown that the irreducible representations of the

2For n > 2 one can not decompose such a tensor only into a totally symmetric and a totally antisymmetric piece.
3From the formal point of view of n = 2, the reason of the simplicity is because S2 = e, (AB) obviously commute and

can be diagonalized simultaneously in the basis T AT B and T BT A. This is not possible to diagonalize simultaneously all the
elements of Sn for n > 2 since it is no longer abelian. This is the reason for the higher dimensional representations in the
case n > 2.
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permutation group are in one to one correspondence with the Young tableau. Here is the recipe : let us
consider the alphabet (A1, A2, ..., An). We take n1 elements of this alphabet, n2 elements of the remaining
members and so on until we have taken all the members. From this procedure, we get a partition of n :
n1 + n2 + ... = n. Assuming we have chosen n1 ≥ n2 ≥ ..., the corresponding Young tableau has a �rst
row of size n1, a second row of size n2 and so on. All the rows are conventionally aligned on the left and
are of decreasing length as we go down in the tableau. For example, the Young tableau corresponding to
n = 21, decomposed into 21 = 6 + 5 + 5 + 3 + 1 + 1, is :

(5.19)

The �rst row contains the arbitrarily chosen n1 members of the alphabet in each box, the second row, the
n2 other members and so on... Now the procedure is the following : draw all Young tableaux corresponding
to all the partitions of n. Symmetrize the tensor among the variables in each line. We therefore get a
tensor symmetric with respect to blocks of indices. Then, we have to antisymmetrize. Antisymmetrization
of two variables in the same line gives obviously zero because they have been symmetrized. Thus we can
antisymmetrize only with respect to variables in di�erent rows. Once we have chosen one variable in each
row, we can put them all in the �rst column because the tableau is symmetric under the interchange of
variables in the same row. We antisymmetrize with respect to the �rst column. And repeat the operation
on the Young tableau amputated of the �rst column. We do this in all possible ways, that is by choosing any
combination of variables in di�erent rows. A given Young tableau furnishes an irreducible representation
of the permutation groups. At this point we must mention several points :

• After antisymmetrization with respect to variables in di�erent rows the resulting tensor is, in general,
no longer symmetric with respect to the variables in the same row. The only exception concerns
variables present in a one dimensional columns that have therefore not been antisymmetrized.

• All the tensors we get at the end are, in general, not independent and some of them can be written
as linear combinations of other tensors within the same representation.

• We could as well antisymmetrize with respect to the columns at �rst and then symmetrize with
respect to the rows. It would just have given another (but equivalent) basis of the representation.

We will see explicit examples and uses in the next sections.

5.4 Explicit computation of traces

Here we come to a �rst attempt for traces computations using the correspondence with the permutation
group and Young tableaux.

5.4.1 tr
[

TATB
]

Let us begin by the simplest and well know case of two generators. It is obvious that TATB can be
written as :

TATB =
1

2
{TA;TB}+

1

2
[TA;TB]. (5.20)

As already mentioned the decomposition of S2 into irreducible representations is simple. But we shall see
how it works with Young tableaux. TATB is written as.

A ⊗ B = A B ⊕ A
B

(5.21)
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A B correspond to the one dimensional symmetric representation and A
B

to the one dimensional anti-

symmetric representation. Taking the trace, only the symmetric piece survives and we get :

tr
[

TATB
]

= tr
[

T {ATB}
]

= DAB. (5.22)

In the special case of DAB, we can go further and show that DAB = const.δAB. Here is the proof : DAB

is some group matrix in the adjoint representation. The generators in the adjoint representation are :
(

T̃B
)

AC
= ifABC . (5.23)

We consider the commutator of DAB with T̃A. This reads :

i

2
fBACtr

[

TCTD
]

− i

2
tr

[

TBTC
]

fCAD

=
1

2
tr

[[

TB;TA
]

TD − TB
[

TA;TD
]]

= 0.

(5.24)

In the last line we used the cyclic symmetry of the trace. We have shown that DAB commutes with all
the generators and therefore with all matrices of the group in the adjoint representation (this statement
corresponds to the special case n = 2 of (5.8)). Then, by the Schur lemma, DAB must be a multiple of the
identity that we conveniently write :

DAB = DδAB. (5.25)

5.4.2 tr
[

TATBTC
]

Here we come to non trivial decompositions. According to the general procedure, we write the symbolics
for TATBTC :

A ⊗ B ⊗ C =

(

A B ⊕ A
B

)

⊗ C

= A B C ⊕ A B
C

⊕ A C
B

⊕
A
B
C
.

(5.26)

Before going further, we can wonder why the tableau B C
A

does not appear in the Clebsch-Gordan decom-

position because the 2 + 1 partition of 3 must involve all the ways to take two indices to put in the �rst

line. As we mentioned the set of linear combinations of permutations obtained in the decomposition

does not necessarily form a basis of the irreducible representations. Actually the B C
A

representation is

redundant since it belongs to A B
C

⊕ A C
B

. This can be seen by a dimensionality argument. The dimension

of A ⊗ B ⊗ C is 3! = 6. The totally symmetric and antisymmetric representations (single row and single

column respectively) are one-dimensional. The dimension of A B
C

is two because we can antisymmetrize A

and C or B and C and similarly for A C
B

. Hence the dimension counting of the Clebsch-Gordan decompo-

sition is 6 = 1 + 2 + 2 + 1 forbidding the B C
A

representation. Now let us look for basis of each irreducible

representations. The basis of A B C and
A
B
C

are respectively T {ATBTC} and T [ATBTC]. Then we can

write :

TATBTC = T {ATBTC} + T [ATBTC] +
1

3

(

2TATBTC − TBTCTA − TCTATB
)

. (5.27)
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The basis of A B
C

is given by the two combinations (the permutations act on the indices) :

1

4

(

e− (AB)
e− (AC)

)

(e+AB)TATBTC (5.28)

and the basis of A C
B

, by :

1

4

(

e− (BC)
e− (BA)

)

(e+AC)TATBTC . (5.29)

We could write them more explicitly and �nd a linear combination of them to rewrite the rightmost term of

(5.27) because it lies in the A B
C

⊕ A C
B

representation according to the Clebsch-Gordan decomposition.

But there is a way out since it is easily seen that the rightmost term in (5.27) vanishes under the trace
because of cyclic symmetry. The required decomposition is then :

tr
[

TATBTC
]

= tr
[

T {ATBTC}
]

+ tr
[

T [ATBTC]
]

= DABC +
1

2
tr

[[

TA;TB
]

TC
]

by cyclicity

= DABC +
iD

2
fABC .

(5.30)

5.4.3 tr
[

TATBTCTD
]

, a naive computation

As we will see soon, the previous techniques become really tedious at this point. The Clebsch-Gordan
decomposition of TATBTCTD reads :

A ⊗ B ⊗ C ⊗ D =



 A B C ⊕ A B
C

⊕ A C
B

⊕
A
B
C



⊗ D

= A B C D ⊕ A B C
D

⊕ A B D
C

⊕ A C D
B

⊕ A B
C D

⊕ A C
B D

⊕

⊕
A B
C
D

⊕
A C
B
D

⊕
A D
B
C

⊕
A
B
C
D

(5.31)

This decomposition reads in dimensions of the representations :

4! = 24 = 1 + 3 + 3 + 3 + 2 + 2 + 3 + 3 + 3 + 1. (5.32)

There are two di�culties :

• the explicit expression for basis in each representation is a tedious work without a computer because
they involve a large number of terms.

• it is not really obvious to see the terms that will be killed by the trace. The totally antisymmetric
representation vanishes under the trace because for a given index con�guration, there are three others
obtained by cyclic permutation. One of them is even, the other two are odd and everything cancels
out. But there will be other pieces that will be killed by the trace. Some of them are subspaces of
irreducible representations that are di�cult to read directly from Young tableaux.

Actually, the computation of a trace involving n + 1 generators does not require much more energy than
the computation of a trace involving n generators with the techniques we used so far, provided we take
bene�ts from the cyclic symmetry of traces. This is treated in the next section.
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5.5 Cyclic symmetry, coset space and isomorphism

The method developed above applies to general tensor with no particular symmetries : it decomposes
a product of generators into irreducible representations of the permutation group and not necessarily its
trace. However, in the case of interest, the trace is invariant under cyclic permutations. This symmetry
lowers the dimension of the (a)symmetry under permutations.

5.5.1 The cyclic group

The cyclic group denoted Cn is the symmetry group of the n-sided oriented polygon. Its dimension
is n. A cyclic permutation, is a permutation which takes the alphabet (A1, ..., Ak, Ak+1, ..., An) and gives
(Ak+1, ..., An, A1, ..., Ak) for some k = 1, ..., n. As easily seen the composition of two cyclic permutations
is again a cyclic permutation and its group structure is therefore inherited from Sn. Cyclic permutations
form a subgroup of Sn. The dimension of the cyclic permutation group is n which corresponds to the
number of ways of choosing the number k. This group is isomorphic to Cn. Note this subgroup is not a
normal subgroup : a cyclic permutation does not commute, in general, with an arbitrary permutation of
Sn. This can be summarized as follow : there are σ ∈ Sn so that

σ−1Cnσ 6= Cn. (5.33)

This has important consequences to be seen in the following.

5.5.2 Trace symmetry

Since the trace involving n matrices is invariant under cyclic permutations. It is natural to identify per-
mutations that di�er only by a cyclic permutation. For σ, σ′ ∈ Sn, we introduce the equivalence relation4

: σ ∼ σ′ if there is c ∈ Cn so that σ = cσ′. For a given σ ∈ Sn we de�ne the right coset Cnσ. It is the set
of all the elements of Cn multiplied on the right by σ. σ ∼ σ′ obviously give the same coset : Cnσ = Cnσ

′.
According to the general properties of cosets, this equivalence relation gives a partition of the group and
each coset contain the same number of elements. Since the cyclic permutations do not a�ect the trace, all
members of the same coset lead to equivalent permutations of indices within the trace. The permutation
of indices within the trace is de�ned up to a cyclic permutation.

It would be tempting to identify the symmetry group of traces as the coset space Sn/Cn. However,
since Cn is not a normal subgroup, Sn/Cn cannot be endowed with a canonical group structure. Since
arbitrary permutations do not commute with cyclic ones, we have in general

Cnσ1Cnσ2 6= Cnσ1σ2 , (5.34)

for arbitrary σ1 and σ2 in Sn. In other words the composition of any two element of the cosets Cnσ1 and
Cnσ2 does not generally lies in the coset Cnσ1σ2. This is a problem since one would like to take bene�t
of a group structure for trace (a)symmetry. Fortunately there is a way to face this problem. Since all
the elements of the same coset are equivalent we acting on a trace, one can reduce the permutation group
Sn by picking up an element in each di�erent coset. This element is called a representative of the coset.
All elements within the same coset can be identi�ed to this representative. Which representative can we
choose ? because of the cyclic symmetry, given a permutation σ in Sn, there is a unique element in Cnσ
called σr(= cσ for some c in Cn) so that σr(An) = An. The (arbitrary) choice we make is to represent the
coset Cnσ by the element that leaves the last index unchanged. There exist such an element in each coset

4It is obviously re�exive, symmetric and transitive from the group structure of Cn.
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and it is unique5. In matrix form the chosen representative reads :

σr =

(

A1 ... An−1 An

σr(A1) ... σr(An−1) An

)

. (5.35)

Then we construct the coset algebra as follow : all elements of the coset Cnσ are identi�ed to the repre-
sentative σr in the sense given above. The composition of any two elements in di�erent cosets, say σ1 and
σ2, is de�ned as follow :

σ1σ2 → σr1σr2. (5.36)

The composition of two representatives σr1σr2 is obviously of the form (5.35). And is therefore candidate
to be a representative. A point still needs to be clari�ed : are all the possible permutations in the form
(5.35) in a coset of Sn ? We already know that there is a unique permutation of the form (5.35) in each
coset. Two di�erent permutations of the form (5.35) necessarily lie in two di�erent cosets because of their
uniqueness. The order of each coset is the order of Cn (the number of di�erent cyclic permutations), that
is n. Then there are n!/n = (n − 1)! di�erent cosets in Sn which precisely corresponds to the number of
permutations in the form (5.35).

Moreover, the associativity, the existence of the inverse and the identity are then automatically checked
from (5.35). Therefore the coset algebra (5.36) is isomorphic to Sn−1. To precise the terminology, the
isomorphism is between the representatives (in the sense given above) of Sn/Cn and Sn−1. There is no
canonical isomorphism between Sn/Cn and Sn−1 due to the fact that Cn is not a normal subgroup.

A more intuitive way to see all these things is the following : since the trace is invariant under a cyclic
permutation, for a given con�guration of the indices, one can always, by a cyclic permutation, carry the An

index at the rightmost place. Then two inequivalent permutations in the sense given earlier correspond to
two di�erent ways of arranging the n− 1 indices (A1, ..., An−1). The cyclic symmetry of the trace enables
us to consider the irreducible representations of Sn−1 instead of Sn for a trace involving n generators.

5.5.3 Totally symmetric and antisymmetric representations

Here we emphasize general properties of these representations. Because of the cyclic symmetry, we have
:

DA1...An = Tr
[

T {A1TA2 ...TAn−1TAn}
]

= Tr
[

T {A1TA2 ...TAn−1}TAn

]

(5.37)

and

Tr
[

T [A1TA2 ...TAn−1TAn]
]

=

{

Tr
[

T [A1TA2 ...TAn−1]TAn
]

if n odd
0 if n even.

(5.38)

5.6 Explicit computation of traces (continued)

Now we take advantage of the cyclic symmetry to compute the rank three and four tensors of sections
5.4.2 and 5.4.3, respectively, in an easier way as previously. The way to proceed automatically gets rid of
the irreducible representations of Sn that are killed by the trace.

5
Proof : Given σ ∈ Sn represented by :

σ =

„

A1 A2 ... An

σ(A1) σ(A2) ... σ(An)

«

≡
„

A1 A2 ... An

Aσ(1) Aσ(2) ... Aσ(n)

«

.

A cyclic permutation transforms Aσ(k) into Aσ(k)+l for all k and �xed l = 0, ..., n − 1 (we conventionally set An+m = Am).
The equivalence class of σ is given by all the cyclic permutations of σ, i.e. all possible l for which Aσ(k) → Aσ(k)+l for all k.
But the condition Aσ(n)+l = An �xes l to a unique value l = n − σ(n). Since σ(n) is between 1 and n, then l is between 0
and n− 1 as expected and guarantees the existence. The proof is completed.
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5.6.1 tr
[

TATBTC
]

almost for free

Using the cyclic symmetry, the previous techniques enable us to decompose only the A and B indices
into irreducible representations which is merely :

tr
[

TATBTC
]

=
1

2
tr

[

{TA;TB}TC
]

+
1

2
tr

[

[TA;TB]TC
]

= DABC +
iD

2
fABC .

(5.39)

In the last line, we have used (5.37) to get the third rank D-symbol. By this method, result (5.48) has
been recovered very easily. The advantage is that we do not have to worry about the components vanishing
under the trace. They are automatically canceled from the beginning.

As an example, we can show that the third rank, adjoint representation, D-symbols vanish for any
simple Lie group :

D̃ABC =
1

2
Tr

[{

T̃A; T̃B
}

T̃C
]

=
−i
2

(

fDAEfEBF + fDBEfEAF
)

fFCD

=
−i
2

(

fDAEfEBF fFCD + fFBEfEADfDCF
)

=
−i
2

(

fDAEfEBF fFCD − fEBF fDAEfFCD
)

= 0.

(5.40)

This can be easily seen from the fact that Tr
[

T̃AT̃BT̃C
]

is completely antisymmetric.

5.6.2 Jacobi-type identities

For higher rank invariant tensor computation, we will need to use simplifying formulas. One of them
is the ordinary Jacobi identity :

[

T̃A; T̃B
]

CD
= ifABET̃E

CD

⇔ fABEfCDE + fCAEfBDE + fBCEfADE = 0.
(5.41)

We can get another identity which is speci�c to trace algebra :

Tr
[

TA
{

TB;
[

TC ;TD
]}]

+ Tr
[

TC
{

TA;
[

TB;TD
]}]

+ Tr
[

TB
{

TC ;
[

TA;TD
]}]

= 0

⇔ DABEfCDE +DCAEfBDE +DBCEfADE = 0.
(5.42)

This will be useful to simplify mixed f −D-symbols terms.

5.6.3 tr
[

TATBTCTD
]

made easier

To compute this trace, we start from decomposition (5.27) :

Tr
[

TATBTCTD
]

= Tr

[(

T {ATBTC} + T [ATBTC] +
1

3

(

2TATBTC − TBTCTA − TCTATB
)

)

TD

]

.

(5.43)
Let us look at the di�erent terms one by one.

tr
[

T {ATBTC}TD
]

: This term corresponds to the totally symmetric component and equals
DABCD by (5.37).
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tr
[

T [ATBTC]TD
]

: This term corresponds to the totally antisymmetric component of S3, . This is

equal to :

tr
[

T [ATBTC]TD
]

=
1

6

(

tr
[

TA
[

TB;TC
]

TD
]

+ tr
[

TB
[

TC ;TA
]

TD
]

+ tr
[

TC
[

TA;TB
]

TD
])

=
1

6
tr

[

TA
[

TB;TC
]

TD
]

+ cycl.(ABC).

(5.44)

We note that :

tr
[

TA
[

TB;TC
]

TD
]

+ cycl.(ABC) =
1

2
tr

[{

TA;
[

TB;TC
]}

TD
]

+
1

2
tr

[[

TA;
[

TB;TC
]]

TD
]

+ cycl.(ABC).

(5.45)
The second term in the r.h.s, together with its cyclic permutations of (ABC), vanishes because it is the
Jacobi identity (5.41), leaving only the �rst one. Then tr

[

T [ATBTC]TD
]

equals :

tr
[

T [ATBTC]TD
]

=
1

6

(

ifBCEDADE + ifCAEDBDE + ifABEDCDE
)

=
i

6

(

DADEfBCE +DBDEfCAE +DCDEfABE
)

.

(5.46)

1
3tr

[(

2TATBTC − TBTCTA − TCTATB
)

TD
]

: This contribution is a linear superposition of the two

inequivalent representations. Instead of looking for an explicit decomposition into these two di�erent

representations, this term can easily be computed directly thanks to (5.48) :

1

3
tr

[(

2TATBTC − TBTCTA − TCTATB
)

TD
]

=
1

3

(

tr
[

TATB
[

TC ;TD
]]

+ tr
[

TBTC
[

TD;TA
]])

=
i

3

(

fCDE

(

DABE +
iD

2
fABE

)

+ fDAE

(

DBCE +
iD

2
fBCE

))

=
2i

6

(

fCDEDABE + fDAEDBCE
)

− D

6

(

fCDEfABE + fDAEfBCE
)

=
2i

6

(

DABEfCDE −DBCEfADE
)

− D

6

(

fABEfCDE − fBCEfADE
)

(5.47)

Let us stick all the pieces together. This gives :

tr
[

TATBTCTD
]

= DABCD +
i

6

(

DADEfBCE +DBDEfCAE +DCDEfABE+

+2DABEfCDE − 2DBCEfADE
)

+
D

6

(

fBCEfADE − fABEfCDE
)

= DABCD +
i

2

(

DADEfBCE −DBCEfADE
)

+
D

6

(

fBCEfADE − fABEfCDE
)

.

(5.48)

To get the last line, we have used the second Jacobi identity (5.42). Formula (5.48) is the full formula
for the trace involving four generators. Taking advantage of the trace symmetry has made the calculation
much simpler than in our �rst attempt above.

One can in principle work out higher rank tensors but this becomes cumbersome analytically. We

have been lucky to be able compute the term directly for the trace of four generators, however the

systematic procedure requires to �nd the two explicit representations of . With the simpli�cation

thanks to the trace symmetry trick, the trace of four generators has the same complexity as decomposing
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TATBTC into irreducible representations of the permutation group. Similarly for computing the trace
involving �ve generators, one has to �nd the explicit representations of the Clebsch-Gordan decomposition
(5.31) for a product of four generators which is greatly simpli�ed with a computer.



Appendix A

The external �eld approximation in non

abelian gauge theories

Here we shall deal with the external �eld approximation in ultra-relativistic collisions. We shall empha-
size the conditions for fast particles that radiates soft gauge bosons to be considered as a classical source
or equivalently, an external classical gauge �eld A added to the action. Especially we will point out the
di�erence between the abelian and the non abelian case for the domain of validity of this approximation.
Because of the color algebra of non abelian gauge theories, the external �eld approximation really di�ers
from the abelian case : in the abelian case, one can approximate any single fast particle radiating soft
photons by a classical source whereas in the non abelian case one cannot and one must consider a very
large number of hard sources in order to justify the external �eld approximation as we shall see.

A.1 Soft gauge bosons radiation by an ultra-relativistic charged particle

To �x the conventions, the reaction we are going to consider is αA → βB represented on diagram
A.1. α and β are any asymptotic multi-particle states with total momenta Pα = (P+

α , 0,0), and Pβ =

...

α,Pα β,Pβ

B,QB ,r,b A,QA
, s, a

Figure A.1: Typical process considered where a heavy charged particle represented with an arrow interacts
with another system through soft gauge bosons exchanges.

(P+
β , P

−
β ,Pβ,⊥) respectively. A and B are respectively the in and out state of a fast one-particle state

considered as a fermion for de�niteness, but the procedure can be mimicked for arbitrary spin (we shall
use the eikonal vertex approximation, detailed in section B.1 that has the same structure for any kind of
�eld). The frame is chosen so that the A state carries a momentum pointing for de�niteness in the minus
direction of light cone coordinates : QA = nµQ− with nµ = (0, 1,0). We shall focus on the piece of phase
space where the gauge bosons exchanged between the fast fermion and the other particles involved in the
process are soft. The soft gauge boson radiation condition reads QB ≃ QA, that is the radiated bosons
have components of their momenta that are very small compared to the energy of the fast fermion. Since
we consider ultra-relativistic reactions, masses are neglected. It will be convenient to introduce the Green
function GA1...An

βα,µ1...µn
(l1, ..., ln) which is represented on �gure A.2. With this notation, the S-matrix element1

1The total four-momentum delta function will play a crucial role since in the derivation of external �eld approximation,
this is why we do not consider theM-matrix.
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↑ l1 ↑ l2 ↑ ln

α,Pα β,Pβ

A1,µ1 A2,µ2
An,µn

Figure A.2: Diagrammatic representation of GA1...An

βα,µ1...µn
(l1, ..., ln)

corresponding to diagram A.1 reads :

(ig)n(2π)4δ(4)(QA + Pα −QB − Pβ)

∫

d4l1
(2π)4

...
d4ln
(2π)4

(2π)4δ(4)(QA − l1 − ...− ln −QB)

× GA1...An

βα,µ1...µn
(l1, ..., ln)

iΠµ1ν1(l1)

l21 + iǫ
...
iΠµnνn(ln)

l2n + iǫ

∑

σ∈Sn

(TAσ(1) ...TAσ(n))ba

× ur(QB)γνσ(1)

i( /QA − /lσ(2) − ...− /lσ(n))

(QA − lσ(2) − ...− lσ(n))2 + iǫ
...

i( /QA − /lσ(n))

(QA − lσ(n))2 + iǫ
γνσ(n)

us(QA).

(A.1)

Now we consider the piece of the integral over the li's so that they are soft : li ≪ QA. In the numerators of
the propagators one can neglect the li's with respect to QA and since QB ≃ QA, the numerator sandwiched
between the u's spinors gives a factor 2QAνσ(1)

...2QAνσ(n)
which is fully symmetric in its Lorentz indices.

Moreover, one can expand the denominators in powers of li's recalling that Q2
A = 0. Therefore the upper

expression becomes :

2ignδrs(2π)4δ(4)(QA + Pα −QB − Pβ)QAν1 ...QAνn

∫

d4l1
(2π)4

...
d4ln
(2π)4

(2π)4δ(4)(QA − l1 − ...− ln −QB)

× GA1...An

βα,µ1...µn
(l1, ..., ln)

iΠµ1ν1(l1)

l21 + iǫ
...
iΠµnνn(ln)

l2n + iǫ

×
∑

σ∈Sn

(TAσ(1) ...TAσ(n))ba
1

QA · (lσ(2) + ...+ lσ(n))− iǫ
...

1

QA · lσ(n) − iǫ
+ hard emissions

= 2ignδrs(2π)4δ(4)(QA + Pα −QB − Pβ)Q−Anν1 ...nνn

∫

d4l1
(2π)4

...
d4ln
(2π)4

(2π)4δ(4)(QA − l1 − ...− ln −QB)

× GA1...An

βα,µ1...µn
(l1, ..., ln)

iΠµ1ν1(l1)

l21 + iǫ
...
iΠµnνn(ln)

l2n + iǫ

×
∑

σ∈Sn

(TAσ(1) ...TAσ(n))ba
1

(lσ(2) + ...+ lσ(n))+ − iǫ
...

1

l+σ(n) − iǫ
+ hard emissions.

(A.2)

Practically instead of considering the fermion with a de�nite momentum, one rather consider a wave
function :

| QA, s, a 〉 → | ΦQ 〉 ≡
∑

s,a

∫

dQ−Ad2QA,⊥

(2π)3
√

2Q−A

χsa
Q (QA) | QA, s, a 〉 ; (A.3)

where χQ is a sharply peaked function around Qµ = nµQ− and the normalization condition reads :

〈ΦQ | ΦQ〉 = 1 =
∑

s,a

∫

dQ−Ad2QA,⊥

(2π)3
∣

∣χsa
Q (QA)

∣

∣

2
. (A.4)

Therefore, one has to integrate (A.2) over Q−A,QA,⊥ and Q−B,QB,⊥ and to sum over initial and �nal

fermion's spins and colors with respective weights χsa
Q (QA)/(2π)3

√

2Q−A and χr∗
Q (QB)/(2π)3

√

2Q−B. Al-

though (A.2) has been derived for a fermion that strictly points in the minus direction, it remains valid even
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though the fermion state is integrated over some narrow transverse momenta range because the sharpness
condition of χQ around Q enables us to replace QA and QB by Q in the integrand except within the
delta functions. The soft emission requirement means that l+i ≪ P+

α,β and l−i ≪ Q−A,B and then the delta
functions can be approximated by :

δ(Q−A −Q−B − P−β )δ(Q−A − l−1 − ...− l−n −Q−B) ≃ δ(P−β − l−1 − ...− l−n )δ(Q−A −Q−B)

δ(P+
α −Q+

B − P+
β )δ(Q+

A − l+1 − ...− l+n −Q+
B) ≃ δ(P+

α − P+
β )δ(l+1 + ...+ l+n )

δ(2)(QA,⊥ −QB,⊥ −Pβ,⊥)δ(2)(QA,⊥ − l1,⊥ − ...− ln,⊥ −QB,⊥) = δ(2)(QA,⊥ −QB,⊥ −Pβ,⊥)

× δ(2)(Pβ,⊥ − l1,⊥ − ...− ln,⊥).

(A.5)

Plugging this together with (A.3) into (A.2) gives :

ignnν1 ...nνn

∫

d4l1
(2π)4

...
d4ln
(2π)4

(2π)4δ(4)(Pα + l1 + ...+ ln − Pβ)2πδ(l+1 + ...+ l+n )GA1...An

βα,µ1...µn
(l1, ..., ln)

× iΠµ1ν1(l1)

l21 + iǫ
...
iΠµnνn(ln)

l2n + iǫ

∑

s,a,b

∫

dQ−Ad2QA,⊥

(2π)3
χsa

Q (QA)χsb∗
Q (Q−A,QA,⊥ −Pβ,⊥)

×
∑

σ∈Sn

(TAσ(1) ...TAσ(n))ba
1

(lσ(2) + ...+ lσ(n))+ − iǫ
...

1

l+σ(n) − iǫ
+ hard emissions.

(A.6)

Before going further, let us pause on the abelian case in which no technicalities arise from the TA's. We
shall see that actually this color structure makes the straightforward generalization to the non abelian case
impossible.

A.2 The abelian case

In the abelian case, we perform, in formula (A.6), the substitution : gTA → e where e is the electric
charge of the fast fermion. The Green function G no longer carries color indices. Furthermore we make
the additional assumption that the transverse momentum transferred by the fast fermion via the gauge
bosons is arbitrary small : Pβ,⊥ is neglected with respect to QA,⊥. In this case one recognizes in (A.6) the
normalization condition (A.4). Moreover we use the following key identity showing the importance of the
delta function δ(l+1 + ...+ l+n ) :

2iπδ(l+1 + ...+ l+n )
∑

σ∈Sn

1

(lσ(2) + ...+ lσ(n))+ − iǫ
...

1

l+σ(n) − iǫ
= (2iπ)nδ(l+1 )...δ(l+n ). (A.7)

Plugging this into the abelian analog to (A.6) gives :

(ie)nnν1 ...nνn

∫

d4l1
(2π)4

...
d4ln
(2π)4

(2π)4δ(4)(Pα + l1 + ...+ ln − Pβ)(2π)nδ(l+1 )...δ(l+n )

× Gβα,µ1...µn(l1, ..., ln)
iΠµ1ν1(l1)

l21 + iǫ
...
iΠµnνn(ln)

l2n + iǫ
+ hard emissions.

(A.8)

The inspection of (A.8) shows us that only the plus component of the momentum is conserved in the α→ β
sub-process. This last formula is the same as if one has introduced a new Feynman rule which corresponds
to each boson exchanged between the fast fermion and the α → β sub-process : −2iπeδ(l+)Πµ+(l)/l2⊥,
represented on �gure A.3. In Feynman rules, one has to integrate over all undetermined momenta trans-
ferred by the external source keeping in mind that it does not transfer plus components. The best way to
interpret this new Feynman rule is to work in Lorenz (also called Landau or covariant) gauge : ∂µA

µ = 0
in which the gauge �eld propagator numerator reads :

Πµν(l) = −gµν +
lµlν

l2
. (A.9)
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↑ l

µ

→
↑ l

µ

= 2iπeδ(l+) iΠµ+(l)
−l2⊥

Figure A.3: Feynman rule for soft photons.

Since the momentum exchanged has l+ = 0, Πµ+(l) = −nµ. If we denote Aµ(x) the Fourier transform of
the Feynman rule A.3, its only non vanishing component is :

A−(x) = −2πe

∫

d4l

(2π)4
δ(l+)

e−il.x

l2⊥
= eδ(x+)∆−1

⊥ (|x⊥|). (A.10)

In other words, Aµ(x) is a classical �eld in the sense that it satis�es the classical equations of motion :

�Aµ(x) = −J µ(x) ; (A.11)

where J µ(x) = enµδ(x+)δ(2)(x⊥) is a point like source localized in the x+ = 0 plane traveling in the
backward direction. The fast fermion that radiates soft bosons has the same e�ect as if one had added a
classical source to the lagrangian or equivalently the corresponding classical �eld in all the vertices of the
theory in all possible fashions.

A.3 The non abelian case for a single emission with extended sources

The trick (A.7) used in the abelian case breaks down in the non abelian case in formula (A.6) since
each permutation on the momenta within the propagators is accompanied by a speci�c permutation of
the generators which does not factorize. One expects that the external �eld approximation is no longer
valid in the non abelian case, however such an approximation can be made in the special case of a single
boson exchanged as represented on �gure A.4. Despite this restriction which represents the leading order

α,Pα β,Pβ

B,QB ,r,b A,QA
, s, a

Figure A.4:

in perturbation theory, one can remove the assumption made in the abelian case that Pβ,⊥ is neglected
with respect to QA,⊥ and work with more general wave functions. We consider formula (A.6) for n = 1 :

ignν

∫

d4l

(2π)4
(2π)4δ(4)(Pα + l − Pβ)2πδ(l+)GA

βα,µ(l)
iΠµν(l)

l2 + iǫ

×
∑

s,a,b

∫

dQ−Ad2QA,⊥

(2π)3
χsa

Q (QA)χsb∗
Q (Q−A,QA,⊥ −Pβ,⊥)(TA)ba + hard emission.

(A.12)

It is convenient to introduce the Fourier transform of χQ over the transverse components :

χsa
Q (QA) ≡

∫

d2x⊥Ψsa(Q−A,x⊥)e−iQA⊥.x⊥ . (A.13)
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With this transformation, the second line of (A.12) becomes

∑

s,a,b

∫

d2x⊥e
−iPβ,⊥.x⊥

∫

dQ−A
2π

Ψsb∗(Q−A,x⊥))(TA)baΨ
sa(Q−A,x⊥)) ≡

∫

d2x⊥e
−iPβ,⊥.x⊥ρA(x⊥). (A.14)

ρA(x⊥) is a classical color charge distribution in the transverse plane. Plugging this into (A.12) and
noticing that l is �xed by kinematics, the hard emission piece can be omitted provided Pα and Pβ are
"almost the sames". This leads to :

−gnµ2πδ(P+
α − P+

β )GA
βα,µ(Pβ − Pα)

1

P 2
β,⊥

∫

d2x⊥e
−iPβ,⊥.x⊥ρA(x⊥)

= GA
βα,µ(Pβ − Pα)

∫

d4xgnµδ(x+)
[

D ∗ ρA
]

(x⊥)ei(Pβ−Pα).x.

(A.15)

Where D is the two-dimensional Laplace operator's Green function :

D(x⊥) = −
∫

d2k⊥
(2π)2

eik⊥ · x⊥
x2
⊥

=
1

2π
ln |x⊥|. (A.16)

Similarly to the abelian case, we de�ne AAµ(x) to be :

AAµ(x) ≡ gnµδ(x+)
[

D ∗ ρA
]

(x⊥). (A.17)

Which is a solution of the classical Yang-Mills equations with an extended (in the transverse plane) classical
source :

J Aµ(x) = gnµδ(x+)ρA(x⊥). (A.18)

In Lorenz gauge AAµ(x) indeed satis�es ∆⊥AAµ = J Aµ. This is consistent with the classical picture of an
ultra-relativistic nucleus [103]. Unlike the abelian case, the insertion of a classical �eld in the Feynman rules
breaks down. The above calculation cannot be generalized as we consider two or more bosons exchanged
with the fast fermion because of intermediate propagators. In the non abelian case the external �eld
approximation cannot be performed for a single source. The way out is to consider a very large number of
them.

A.4 Dense media : the external �eld approximation and non abelian
gauge theories reconciled

The derivation of the external �eld approximation can be extended in the non abelian case if instead
of a single fermion one consider a very large number of them :

| Φ 〉 →
∑

s1...sn

∑

a1...an

∫

dQ−A,1d
2QA,1,⊥

(2π)3
√

2Q−A,1

...
dQ−A,nd2QA,n,⊥

(2π)3
√

2Q−A,n

χs1...sn
a1,...,an

(QA) | QA,1, s1, a1; ...;QA,n, sn, an 〉 with n→∞.

(A.19)
χ is still sharply peaked around large values of momenta pointing in the minus direction and is completely
antisymmetric under the interchange of pairs of (QA,i, si, ai) by Pauli's principle. When the number
of particles is very large the most probable double exchange comes from two di�erent sources just by
combinatorial arguments2. These interactions with di�erent fermions are independent single exchanges
with color structure not talking to each others. One can therefore add the classical �eld (A.17) in all the
vertices of the lagrangian. Doing this one omits double, triple... boson exchanges with the same source and
just consider diagrams with several bosons coming from di�erent fermions as represented on A.5. This is
why in QCD a large number of particles radiating soft gluons can be described by a classical source. The
large number condition is necessary and is the fundamental di�erence with the abelian case.

2The number of ways to attach two bosons to the same fermion goes like n while to two di�erent fermions, it goes like
n(n− 1)/2 ∼ n2 as n is large.
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α,Pα β,Pβ α,Pα β,Pβ

Figure A.5: On the left, a diagram contributing to the non abelian external �eld approximation and on
the right a diagram not contributing.



Appendix B

Eikonal propagation of particles in a

background �eld

One would like to derive the Feynman rule for a hard particle propagating "freely" in a classical
background �eld whose deep existence has been justi�ed in the previous section A. The "free" assumptions
means that the particles do not interact with a �eld other than the background �eld. This is justi�ed since
the background �eld, in covariant or A+ = 0 gauge, is very narrow in the direction of the propagation of
the particle and thus contributions to the amplitude from processes occurring inside the background �eld
vanish in the limit where the background �eld becomes in�nitely narrow. The motivation follows from
the observation that a �eld generated by a dense medium has a strength of order 1/g which imposes a
ressummation to all orders. Such evolution of a state is represented on �gure B.1. Here we assume α and
β to be one-particle states of arbitrary spin and furnishing arbitrary, non trivial, representations of the
gauge group. We shall work in the eikonal approximation, that is, the particle is undeviated as it travels
through the background �eld. The eikonal approximation is in accordance with the softness of the gauge
bosons exchanged : the momentum of the incoming particle is almost unchanged by the interaction with
the background �eld. We take the initial momentum of the incoming particle to be p = (p+, 0,0) with p+

very large with respect to all the exchanged momenta - actually p may even be o�-shell without changing
the following calculations. Before deriving the corresponding evolution operator, one has to examine the

↑ l1 ↑ l2 ↑ ln

α,p β,q

Figure B.1: Multiple scattering between a one-particle state and a background �eld.

structure of the eikonal vertex for di�erent types of �elds. We will actually �nd that this structure is
general and depends only on the gauge representation of the corresponding �eld but not on its spin.

B.1 Structure of the eikonal vertex

In this section we study the structure of the vertices in the eikonal approximation for every usual kind
of �elds.

B.1.1 Dirac fermions

Let us start with the Dirac fermions whose interaction with the background �eld is described by the
interaction lagrangian gψ̄ /Aψ. The vertex reads igTA

R γ
µ. The eikonal approximation is equivalent to the

95
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statement that the incoming and outgoing momenta of the fermion are almost the same. Thus for q ≃ p :

ur(q)igTA
R γ

µus(p) ≃ igδrs2pµTA
R . (B.1)

µ = + is the only relevant component since it is plugged on a A−. This identity has been used in A where
we used fermions because their Feynman rule is very simple. However we shall see that one has the same
rule for scalars and vector �elds with more complicated interactions.

B.1.2 Gauge �elds

A more subtle case concerns the gauge �elds which have cubic and quartic interaction vertices. In the
gauge A+ = 0, it is easily seen that the quartic vertex is zero when any two �elds are replaced by the
classical �eld Aµ = δµ−A−. Thus we are only left with the cubic vertex. For de�niteness the background
�eld A− caries the momentum l and the color index A. The Feynman rule for the 3-gluon vertex then
reads :

ǫ(λ)µ(p)ǫ∗(λ′)ν(q)igT̃
A

[

gµ+(2l − q)ν + gµν(p+ q)+ − gν+(2l + p)µ
]

. (B.2)

The background �eld being x− independent, one has p+ = q+ by momentum conservation. Moreover
ǫ+ = 0 by gauge condition. Thus only the central term survives :

δλλ′2igT̃
Ap+. (B.3)

Eikonal assumption makes no distinction between fermions and gauge �elds concerning the structure of
the vertex.

B.1.3 Vectors and scalars

Similarly, massive vectors and scalars - in some representation R of the gauge group, may have inter-
actions quadratic in the background �eld proportional to AµAµ = 0. Thus, like in the case of gauge �elds
one has to consider only the cubic vertex1, linear in the background �eld. The interaction of two vectors
with a gauge �eld reads :

ǫ(λ)ν(p)ǫ
∗
(λ′)ρ(q)igT

A
R (p+ q)+ ≃ δλλ′2igT

A
R p

+. (B.4)

The epsilon vectors are replaced by one in the case of scalars.

B.2 Eikonal evolution

The eikonal vertex having always the same structure one can write a general form for the S-matrix
corresponding to process B.1 that do not take the spin of the particle under consideration into account.
The diagram B.1 with n insertions of the background �eld reads :

(ig)nδrs2pµ1 ...2pµn

∫

d4l1
(2π)4

...
d4ln
(2π)4

(2π)4δ(4)(p+ l1 + ...+ ln − q)
i

(p+ l1 + ...+ ln−1)2 + iǫ
...

i

(p+ l1)2 + iǫ

×
∫

d4x1...d
4xne

il1·x1+...+iln·xnθ(x+
n − x+

n−1)...θ(x
+
2 − x+

1 )TAn

R ...TAn

R AAnµn(xn)...AA1µ1(x1).

(B.5)

From now we denote AATA
R ≡ A, the representation label will be implicit for brevity. Moreover pµAµ =

p+A− and the explicit solution (A.17) for A− shows us that it does not depend on x− and the corresponding

1For massive vector �elds, V µ, there is an interaction of the form ∼ V †µAµAνVν which is non zero. Actually the vector
case is not very interesting since the only charged massive vectors in the standard model follows from gauge �elds in a
spontaneously broken symmetry and do not have such interactions with other gauge �elds. Since it will not be considered,
we will close our eyes on this term.
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integrals can be easily performed. The integrals over the x−i bring n delta functions 2πδ(l+i ). On the other
components of l, one performs the change of variables km = l1 + ... + lm for all m = 1, ..., n. The
denominators are expanded as (p+ km)2 = 2p+k−m − k2

m,⊥. The S-matrix then becomes :

(ig)nδrs2πδ(p+ − q+)2p+

∫

dk−1 d
2k1,⊥

(2π)3
...
dk−n d

2kn,⊥

(2π)3
2πδ(k−n − q−)(2π)2δ(2)(kn,⊥ − q⊥)

× i

k+
n−1 − k2

n−1,⊥/2p
+ + iǫ

...
i

k+
1 − k2

1,⊥/2p
+ + iǫ

∫

dx+
1 d

2x1,⊥...dx
+
n d

2xn,⊥θ(x
+
n − x+

n−1)...θ(x
+
2 − x+

1 )

× eik−1 (x1−x2)++...+ik−n x+
n e−ik1,⊥·(x1,⊥−x2,⊥)−...−ikn,⊥·xn,⊥A−(x+

n ,xn,⊥)...A−(x+
1 ,x1,⊥).

(B.6)

The integral over kn is trivial because of the delta function. The integrals over the others k−m are performed
thanks to the residue theorem. This gives the θ constraint we already have and replaces all the k−m by
k2

m,⊥/2p
+ in the exponentials. After these manipulations, one is left only with gaussian integrals over k2

m,⊥

:

∫

d2km,⊥

(2π)2
exp

[

i
k2

m,⊥

2p+
(xm − xm+1)

+ − ikm,⊥ · (xm,⊥ − xm+1,⊥)

]

=
p+

2iπ(xm+1 − xm)+
exp

[

i
p+

2

(xm,⊥ − xm+1,⊥)2

(xm+1 − xm)+)

]

−→ δ(2)(xm,⊥ − xm+1,⊥) for p+ →∞.
(B.7)

Plugging this into (B.6) gives :

(ig)nδrs2πδ(p+ − q+)2p+

∫

d2x⊥

∫

dx+
1 ...dx

+
n θ(x

+
n − x+

n−1)...θ(x
+
2 − x+

1 )

× eiq−x+
n−iq⊥·xn,⊥A−(x+

n ,x⊥)...A−(x+
1 ,x,⊥).

(B.8)

Since the support of A− is very narrow in the plus direction and q− is assumed to be very small, one can
set eiq

−x+
n ≃ 1. The θ constraints can be summarized by introducing the path ordering operator along the

plus coordinate direction (beware of the combinatorial factor 1/n! that includes all the ways to relabel the
coordinates) :

(ig)n

n!
δrs2πδ(p+ − q+)2p+

∫

d2x⊥

∫

dx+
1 ...dx

+
n e
−iq⊥·x⊥P

{

A−(x+
n ,x⊥)...A−(x+

1 ,x,⊥)
}

. (B.9)

thanks to this result, the sum of all the diagrams of the form B.1 with an arbitrary number of insertions of
external �elds gives us the S-operator for the eikonal propagation of a single-particle state in a background
�eld (with explicit representation restored) :

〈~q, s, b|~p, r, a〉A− = δrs2πδ(p+ − q+)2p+

∫

d2x⊥e
−iq⊥·x⊥P exp

{∫

dx+AA−(x+,x⊥)TA
R

}

ba

. (B.10)

The notation with an index A− on Heisenberg state denotes that the evolution operator is given only
by the interaction with the background �eld which is the leading one in perturbation theory. This last
formula reduces to the ordinary normalization for Heisenberg states in the vacuum2 : 〈q, s, b|p, r, a〉 =
δrsδab2p

+2πδ(p+ − q+)(2π)2δ(2)(p⊥ − q⊥).

2Recalling that p⊥ has been chosen to be zero.
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Appendix C

p-A collisions cross-sections

The aim of this technical section is to set the conventions used for S-matrix and cross-section in p-A
collisions, used in chapter 3. The nuclear target being described by a CGC, one faces to the problem
of explicit space-time dependence of Feynman rules that violates momentum conservation. So in a �rst
part, we shall see how it is consistent to build a cross-section from the S-matrix for a system that is
no longer spatially homogeneous. Furthermore, in chapter 3, partons emitted in the remote past by the
proton were considered as initial states. Radiated partons promoted as initial states enter into the collinear
factorization assumption discussed in section 2.1.1. In a second part we shall detail how the proton can
be added in a very simple way in the total p-A cross section from the cross-section corresponding to the
sub-process involving an initial gluon. The deep justi�cation of collinear factorization has already been
discussed in chapter 2 and will be considered as an assumption. The aim of this section is just to get
properly normalized expressions for cross-sections.

C.1 The target : S-matrix and cross-section in presence of a background
�eld

The presence of the background �eld makes the system explicitly position-dependent which forbids mo-
mentum conservation laws since the system is no more invariant under space-time translations. Thus the
S-matrix cannot be proportional to a four momentum delta function as in the usual case of homogeneous
systems considered in textbooks on quantum �eld theory. Formulas given in the literature for decay rates,
cross-sections... makes this momentum conservation explicit. The question is then how such formulas are
changed when we consider inhomogeneous systems. We shall only look for the formula that relates the
cross-section to the S-matrix but generalizations to decay rates and more than two-particle initial states is
straightforward.

We consider the process in which an arbitrary (possibly multi-particle) state α composed of right-
moving particles1 scatters o� the left-moving nucleus A to produce a right-moving �nal state β and the
nucleus with possibly other left-moving particles together denoted X. The �nal unobserved state together
with the nucleus, X, and is eventually summed over. This is why one deals with inclusive cross-sections.
The nucleus is described by a classical �eld A− whose explicit form is given by (A.17). Then we adopt the
following notation for the S-matrix, labeled with a background �eld index :

S(Aα→ Xβ)→ SA−(α→ β) = 〈β; out|α; in〉A− . (C.1)

The "in" and "out" labels refer to interactions between quantum �elds themselves and not with the

1In the case of a multi-particle state, the right-moving condition means that all the particles have a positive momentum
component along the z axis. This does not mean anyway that all their transverse momenta vanish which is not possible, in
general, for a system of particles, by any choice of frame.
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background �eld2. They are dropped if one considers "free" �elds interacting just with the background
�eld (all other types of interactions are turned o�). First let us see the structure of the S-matrix. The
point is to take advantage of the non-dependence of A− in the x− light-cone coordinate. This remnant
of translational invariance leads to the conservation of the plus component of the total four-momentum.
Then on can parametrize the S-matrix as follow :

SA−(α→ β) = 2iπδ(P+
α − P+

β )M(α→ β), (C.2)

where Pα and Pβ are the total four-momenta of the states α and β respectively. One wants to interpret
the S-matrix as a probability. For this purpose we shall focus on the case of a two-body collision, that is a
single particle scattering o� the nucleus. It is ful�lled if α is a one-particle state, labeled by the quantum
number ~p = (p+,p⊥)3. Instead of considering an initial state of de�nite momentum, one rather considers
a superposition of states |φ~p > sharply peaked around a given value of ~p, normalized to unity, as already
encountered in (A.3). The �nal state β is conveniently decomposed as the n-particle state |~q1, ..., ~qn >. It
is a rather easy exercise to show that

dP (~p→ ~q1, ..., ~qn) =
∣

∣

〈

~q1, ..., ~qn; out|φ~p; in
〉

A−

∣

∣

2 d3q1

(2π)32q+1
...

d3qn

(2π)32q+n
(C.3)

is dimensionless and together with the completeness relation (1.7) is a nice candidate for being interpreted
as a di�erential probability. How to go from probability to cross-section is found in the literature (see for
instance [40]). Actually the procedure does not di�er from the one for homogeneous systems (the trick
used by introducing a wave function in the initial state regulates one of the two delta functions arising
from the square modulus when one integrates over the impact parameter) and the result is very similar.
The cross-section reads in term of theM-matrix de�ned in (C.2) as :

dσ(~p→ ~q1, ..., ~qn) =
1

2p+
2πδ(p+ − q+1 − ...− q+n ) |M(~p→ ~q1, ..., ~qn)|2 d3q1

(2π)32q+1
...

d3qn

(2π)32q+n
. (C.4)

Although the form of formula (C.4) is rather obvious from what we already know in the homogeneous case,
the absence or presence of four-momentum conservations delta functions changes the dimension of what we
de�ned to be the amplitudeM. Here the cross-section (C.4) has the dimension of a surface, as expected.

C.2 The projectile : collinear factorization

While we are dealing with cross-sections in p-A collisions, here is a good place to talk about collinear
factorization. Collinear factorization is an approximation that consist in neglecting the - small - virtuality
of a parton emitted by the incoming proton. This is justi�ed in the in�nite momentum frame where
the parton can be considered as on-shell with a very good approximation. Let us denote by k the four-
momentum of the emitted parton. Under the assumption of a soft emission one can roughly neglect its
transverse components and its virtuality is therefore zero. Denoting P = (P+, 0,0) the four-momentum
of the proton, the radiated parton has a single non vanishing component k+ = x1P

+. Since it is on-shell,
it makes sense to consider the former as an asymptotic state and therefore to deal with a cross-section
corresponding to the collision between the parton and the nucleus. The situation is then the same as
the one encountered in 2.1.1 : the total cross-section for the pA collision is the sum of cross-sections for
the parton-nucleus sub-process with an initial parton of momentum k weighted by the number of partons
carrying the corresponding momentum fraction x1. This is precisely in this context that we introduced
the integrated parton distributions. Let us say for de�niteness that the parton of interest is a gluon, the

2Comparing to the notation in (B.10), all the interactions are turned on. The ones with the background �eld are resummed
to all orders while the ones between quantum �elds only are treated perturbatively.

3For brevity we consider that the state just carries the spatial momentum quantum number, generalization with various
other discrete quantum numbers is trivial.
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weight function is the integrated gluon distribution G de�ned in (2.3). The relation alluded to above reads
in this case :

dσ(p→ β) =

∫

dx1G(x1, Q
2)dσ(g(k = x1P )→ β). (C.5)

One can even go a step further since the cross-section is proportional to a plus-component momentum
conservation delta function as shown in (C.4). Thus the integral over x1 can be performed and this gives :

dσ(p→ ~q1, ..., ~qn) =
π

(p+)2
x1G(x1, Q

2) |M(g(k)→ ~q1, ..., ~qn)|2 d3q1

(2π)32q+1
...

d3qn

(2π)32q+n
(C.6)

with x1 �xed at the value x1 = (q+1 + ... + q+n )/P+ and as in the previous section β has been detailed as
|~q1, ..., ~qn >.

So far we got the framework for dealing both with the nucleus and the proton however there is a �aw in
the justi�cation of collinear factorization. Considering the parton emitted by the proton as an initial state
implicitly assumes it has been emitted in the remote past, a non obvious situation. There is a very simple
way out as one deals with di-hadron correlations : an on-shell massless parton cannot split into two (or
more) on-shell massless hadrons unless it receives kicks from the target. By this simple kinematic argument
the existence of the process is ensured if and only if hadrons collide the nucleus and have therefore been
emitted before the collision between to proton and the nucleus. Conversely, a parton emitted by the proton
after the collision cannot split.
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Appendix D

Yang-Mills action and propagator in a

background �eld and Feynman rules

In this appendix, we detail the framework and derive Feynman rules for a Yang-Mills theory in presence
of a shockwave widely used in section 3. The total �eld A is the sum of the background �eld A and
the quantum �eld α. In a �rst part, we write the action that concerns the physical degrees of freedom
α propagating in the background �eld A in the general case. Then we �nd an explicit form for the
corresponding propagator and emphasize some of its properties for our speci�c case, that is a single A−-
component background �eld generated by a source left-moving close to the x+ = 0 plane. At the end we
derive the momentum space Feynman rules for the shockwave. The background �eld is a non trivial function
of coordinates and it would be, in principle, not really easy to work in momentum space representation.
However, we shall see that the coordinate dependence of the shockwave is mere enough to enable the use
of momentum space Feynman rules.

D.1 The Yang Mills action in a background �eld

This section concerns the general case of a Yang-Mills �eld coupled to classical sources. Although it has
naturally emerged from section A that all possible insertions of a background �eld in all the interactions
is related to the existence of a classical current, it is actually a general property that external classical
sources can always be reabsorbed is this way in the theory. We are going to show that one can get rid of
the explicit dependence of the action SY M [A] +

∫

J ·A in the current if one sees the theory as a quantum
gauge �eld α interacting with the classical �eld A produced by the sources. The additional term

∫

J · A
in the action can be rewritten thanks to the equations of motion :

J = − δSY M [A]

δA

∣

∣

∣

∣

A

. (D.1)

A is by de�nition a classical �eld, i.e. it satis�es the Euler-Lagrange equations. For convenience we write
the total gauge �eld A as A+α, α being the quantum �eld. Plugging, instead of J , the right hand side of
the equations of motion (D.1) into the action S[A = A+α] = SY M [A] +

∫

J ·A, denoted from now SA[α],
gives1

SA[α] = SY M [A+ α] +

∫

(A+ α) · J

= SY M [A]−
∫

A · δSY M [A]

δA

∣

∣

∣

∣

A

+
∑

n≥2

∫

αn

n!
·
(

δ

δA

)n

SY M [A]

∣

∣

∣

∣

A

(D.2)

1The notation
R

a · δSY M [A]
δA

is a shorthand for functional di�erentiation with respect to A and all its derivatives. The
action does not contain derivatives of higher rank than one so the notation means that one A (resp. its �rst derivative) is
replaced by a (resp. the �rst derivative of a) in each monomial in all possible fashions.
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This action depends only on A and α, the external source disappeared. It describes the interaction of the
quantum �eld α with the background �eld A as expected. The �rst two terms in the last line of (D.2)
depend only on A. They correspond to vacuum bubbles that do not contribute to connected amplitudes.
For this reason, they can be omitted. Up to these two terms SA[α] reads :

SA[α] =
1

2

∫

d4xd4yαAµ(x)(∆−1)AB
µν (x, y)αBν(y) +

∫

d4xLint(x), (D.3)

where ∆−1 is the background �eld inverse propagator :

(∆−1)AB
µν (x, y) = δ(4)(x− y)

[

gµνD2
x −Dx,µDx,ν − 2igFµν(x)

]

AB
, (D.4)

with D the covariant derivative with respect to the background �eld and F is the background �eld strength.
Lint is the piece that contains the interactions between three or four α �elds. We do not write them
explicitly, we just say that it contains the ordinary three and four gluon vertices between α's but also a
three α's vertex which arises from the four gluons vertex with the insertion of one A.

D.2 Gluon propagator in a background �eld

Here we shall write the explicit propagator in the particular case of interest where the only non vanishing
component of the background �eld is A−.

D.2.1 Equations of motion and relation to the scalar propagator

The dressed propagator is the Green function of the kernel (D.4) that satis�es the classical2 equations
of motion :

[

δµ
λD2

x −Dµ
xDx,λ − 2igFµ

λ(x)
]

AC
∆λν

CB(x, y) = iδABgµνδ(4)(x− y). (D.5)

As in chapter 3, ∆µν denotes the tree-level propagator, dressed with the background �eld. Since the
only non vanishing component of the background �eld is the − one, then the covariant derivative is
merely Dµ = (∂+, ∂− − igA−,−∇⊥) and the only non vanishing components of the �eld strength are
F i− = −F−i = ∂iA−. Using the fact that the background �eld does not depend on x−, one can perform
a Fourier transform over the minus coordinates :

∆µν
AB(x, y) =

∫

dk+

2π
∆µν

AB(~x, ~y; k+)e−ik+(x−−y−). (D.6)

Here ~x denotes (x+,x⊥), the "spatial" components.

Taking µ = − and ν = i in (D.5) and the corresponding adjoint equation gives :

∆−i
AB(~x, ~y; k+) =

i

k+
∂j

x∆ji
AB(~x, ~y; k+)

∆i−
AB(~x, ~y; k+) = − i

k+
∂j

y∆
ij
AB(~x, ~y; k+) ;

(D.7)

and taking µ = ν = − gives in (D.5) :

∆−−AB(~x, ~y; k+) =
i

k+
∂i

x∆i−
AB(~x, ~y; k+)

=
1

(k+)2
∂i

x∂
j
y∆

ij
AB(~x, ~y; k+).

(D.8)

2Here, the term "classical" should be understood as the con�guration of α which extremizes the action SA[α] in presence
of a given background �eld A.
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All the components of the dressed propagator are written as di�erential operators acting on ∆ij , to be
determined.

To say more about ∆ij , one has to take µν = ij in (D.5) and use (D.7). We �nd that :

[

−2ik+D− −∆⊥
]

AC
∆ij

CB(~x, ~y; k+) = −iδABδijδ(3)(~x− ~y). (D.9)

This equation must be compared with the equation of motion of a charged massless scalar �eld (G denotes
its propagator) in the adjoint representation of the gauge group3 :

D2
ACG

CB(~x, ~y; k+) =
[

−2ik+(∂− − igA−)−∆⊥
]

AC
GCB(~x, ~y; k+) = −iδABδ(3)(~x− ~y). (D.10)

Equations (D.9) and (D.10) are the same, up to a trivial δij factor, with the same boundary conditions.
Hence one necessarily has ∆ij = δijG.

At the end, all components of the gluon's propagator are expressed in terms of a single scalar function
as :

∆ij
AB(~x, ~y; k+) = δijGAB(~x, ~y; k+)

∆−i
AB(~x, ~y; k+) =

i

k+
∂i

xG
AB(~x, ~y; k+)

∆i−
AB(~x, ~y; k+) = − i

k+
∂i

yG
AB(~x, ~y; k+)

∆−−AB(~x, ~y; k+) =
1

(k+)2
∂i

x∂
i
yG

AB(~x, ~y; k+).

(D.11)

The task reduces to �nd the scalar propagator, the gluon's one will be trivially given thanks to (D.11).

D.2.2 Prescription and explicit form

Here shall work out the solution of equation (D.10). For this purpose, it is helpful to consider the fol-
lowing feature : in k+ space, the Feynman prescription iǫ and the retarded prescription - strictly speaking,
the x+ ordered one - ik+ǫ are the same as long as k+ is positive as it is going to be the case in all our
calculations4. Thus the Feynman propagator is non vanishing only if the endpoint lies in the forward light
cone of the starting point. In other words its support is causal.

To solve equation (D.10) one has to take the following considerations into account. We can show that
the x+ dependence of the background �eld A− is the same as the x+ dependence of the source, whatever it
is [103]. The left-moving nucleus being localized close to the x+ = 0 plane by Lorentz contraction the A−'s
x+-dependence is something that looks like a delta function. In order to have well de�ned calculations,
we rather use a representation of the delta function δη(x

+) which is a narrow function whose support
is between x+ = 0 and x+ = η. Actually, no contributions to physical processes arise from the region
0 < x+ < η as η becomes in�nitesimally small5. Therefore, we are interested in three cases concerning the
scalar propagator : x+ and y+ both negative, both greater than η and x+ > η and y+ < 0 - the converse
being zero by the causality argument discussed above.

The �rst two cases are rather trivial, since equation (D.10) for the scalar propagator reduces to the free
one. The same argument holds for the gluon's propagator, which reduces to the free propagator ∆0. Then

3Such a �eld is necessarily complex since it is charged.
4The nuclei being a left-mover, we consider only processes in which the particles that interact with the background �eld

are right-movers.
5The contribution of this region to amplitudes always involves integrations of regular functions over this range which vanish

as η goes to zero.
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for x+ and y+ both negative or both greater than η :

∆µν
AB(~x, ~y; k+) = δAB∆µν

0 (~x− ~y; k+) = iδAB

∫

dk−d2k⊥
(2π)3

Πµν(k)

k2 + iǫ
e−ik−(x+−y+)+ik⊥·(x⊥−y⊥), (D.12)

where

Πµν(k) = −gµν +
kµnν + kνnµ

k+
, (D.13)

and nµ = δµ− is the gauge �xing vector. It is easy to check that (D.11) is ful�lled in this trivial case.

The last case, x+ > η and y+ < 0, is more interesting. The �rst step requires a convolution formula
among propagators. Let us start from the equations of motion (in real space and with a general background
�eld) :

G(x, z)
−→
D2

zG(z, y) = −iG(x, z)δ(4)(z − y)

G(x, z)
←−
D†2zG(z, y) = −iG(z, y)δ(4)(x− z).

(D.14)

Integrating over z i times the second equation minus the �rst one over a volume Ω that contains x but not
y gives :

G(x, y) = −i
∫

Ω
d4zG(x, z)

[←→
� z − 2ig(∂.A(z))− 2ig(

←−
∂ µ

zAµ(z) +Aµ(z)
−→
∂ µ

z )
]

G(z, y)

= −i
∫

Ω
d4z∂µ

[

G(x, z)
[←→
∂µ

z − 2igAµ(z)
]

G(z, y)
]

= i

∮

∂Ω
d3σµ

zG(x, z)

[←−
D†µz −

−→Dµz

]

G(z, y),

where the last line has been obtained thanks to the Gauss theorem. We take the volume Ω to be the
half-space z+ > η. Since the propagators are retarded, only the surface z+ = η will contribute to the
boundary term. The corresponding oriented surface vector is d3σµ

z = −δµ−dz−d2z⊥. Moreover for the
considered, x−-independent background �eld, we can plug the Fourier representation (D.6) for the scalar
propagator in the previous equation. This leads to :

GAB(~x, ~y; k+) = 2k+

∫

z+=η
d2z⊥G

AC(~x, ~z; k+)GCB(~z, ~y; k+). (D.15)

In this formula the propagator running from ~z to ~x can be replaced by the free one G0 since there is no
background �eld in this region. The problem reduces to �nd GCB(~z, ~y; k+). This is done by writing the
identity :

GCB(~z, ~y; k+) =

∫ η

0
du+∂−GCB(u+, z⊥, ~y; k

+) + δCBG0(0, z⊥, ~y; k
+). (D.16)

The second term in the r.h.s. has been replaced by the free propagator since the endpoints lie in the region
in which the background �eld is zero. The integrand in the r.h.s is computed thanks to the equation of
motion (D.10). In the region u+ ∈ [0; η], the variation of the background �eld is very sharp and thus the
∂− derivative is large and is of the order of the - strong - background �eld. Therefore one can neglect the
transverse derivatives which are negligible with respect to what happens in the u+ direction. Moreover
u+ > 0 and y+ < 0 by assumption, so the delta function does not contribute. One can replace ∂− by igA−
in the integral :

GCB(~z, ~y; k+) = ig

∫ η

0
du+A−CD(u+, z⊥)GDB(u+, z⊥, ~y; k

+) + δCBG0(0, z⊥, ~y; k
+). (D.17)

Then we recursively plug the full r.h.s. in place of GDB(u+, z⊥, ~y; k
+). This will bring a path ordered

product of A− along the plus direction which exponentiates at the end giving the Wilson line (2.18) times
the free propagator G0 :

GCB(~z, ~y; k+) = ΩCB(z⊥)G0(0, z⊥, ~y; k
+) = ΩCB(z⊥)G0(~z − ~y; k+) +O(η). (D.18)
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Plugging this expression into the convolution formula (D.15) leads to :

GAB(~x, ~y; k+) = 2k+

∫

z+=0
d2z⊥G0(~x− ~z; k+)Ω̃AB(z⊥)G0(~z − ~y; k+). (D.19)

Note that the initial surface has been moved to z+ = 0. This generates irrelevant η order terms which
cancel as η → 0. This expression is intuitive in the sense that the scalar freely propagates until the surface
z+ = 0, then the e�ect of the shockwave is a convolution in the transverse plane with a Wilson line which
encodes the color precession due to the shockwave and at the end the scalar propagates freely again above
the surface z+ = 0. Formula (D.19) is the required expression for the dressed propagator in the least trivial
case x+ > η and y+ < 0.

To write down the gluon's propagator, one can summarize relations (D.11) into the following shorthand
notation :

∆µν
AB(~x, ~y; k+) = Oµν

x⊥,y⊥,k+G
AB(~x, ~y; k+) ; (D.20)

where Oµν
x⊥,y⊥,k+ is the di�erential operator :

Oµν
x⊥,y⊥,k+ =

(

δµ− i

k+
∂i

x + δµi

) (

−δν− i

k+
∂i

y + δνi

)

. (D.21)

The best way is to write the free scalar propagators in (D.20) in Fourier space6 :

∆µν
AB(~x, ~y; k+) = 2k+Oµν

x⊥,y⊥,k+

∫

p+=q+=k+

dp−d2p⊥
(2π)3

dq−d2q⊥
(2π)3

G0(p)G0(q)e
−i~p·~x+i~q·~y

×
∫

d2z⊥Ω̃AB(z⊥)e−iz⊥·(p⊥−q⊥)

= 2k+

∫

p+=q+=k+

dp−d2p⊥
(2π)3

dq−d2q⊥
(2π)3

iβµi(p⊥, k
+)

p2 + iǫ

iβνi(q⊥, k
+)

q2 + iǫ
e−i~p·~x+i~q·~y

×
∫

d2z⊥Ω̃AB(z⊥)e−iz⊥·(p⊥−q⊥) ;

(D.22)

where we have introduced the following parametrization for the Fourier space representation of the operator
Oµν

x⊥,y⊥,k+ :

Oµν
p⊥,q⊥,k+ =

(

δµ− p
i

k+
+ δµi

) (

δν− q
i

k+
+ δνi

)

≡ βµi(p⊥, k
+)βνi(q⊥, k

+), (D.23)

with

βµi(p⊥, k
+) = δµ− p

i

k+
+ δµi. (D.24)

In some sense β play the role of generalized polarization vectors in the case where the incoming and
outgoing momenta are no the same.

D.2.3 Identities involving the βµi's

As a consistency condition, when the momentum is conserved through the shockwave, we get :

βµi(k⊥, k
+)βνi(k⊥, k

+) = Πµν(k). (D.25)

6We denote ~p = (p−,p⊥), the conjugate variable to ~x.
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That is the expression of the fact that we recover the free case (D.12) when the Wilson line reduces to the
identity in (D.22) - up to a momentum conservation delta function.
Moreover, by the gauge condition ǫ− = ǫ+ = 0 and the Ward identity k.ǫ(k) = 0, one has :

ǫµ(k)βµi(k⊥, k
+) = −ǫi(k) (D.26)

and
βµi(k⊥, k

+)ǫi(k) = ǫµ(k). (D.27)

These identities are useful since they enable us to deal with Lorentz or transverse indices indi�erently.

D.3 Momentum space Feynman rules

Although we are considering inhomogeneous systems - the shockwave being space-time dependent -
it is possible and even easier to use momentum space Feynman rules. Among the Feynman rules, one
recovers the usual ones for non abelian gauge theories and as usual, integrations are performed over all
undetermined momenta.

To set the notation, we will denote as follows the Lorentz piece of the 3-gluons vertex7 :

Γµνρ(k, p, q) ≡ gµν(k + p)ρ + gνρ(q − p)µ − gµρ(k + q)ν . (D.28)

For convenience k has been chosen to be incoming and p and q outgoing.

The only technicalities arise from the shockwave that lead to speci�c rules to be detailed in the following.

D.3.1 The dressed gluon's propagator

According to (D.22) the Feynman rule corresponding to �gure D.1, that is the propagator of a gluon
which comes into the shockwave with momentum q and which exits with momentum p, reads :

2k+ iβ
µi(p⊥, k

+)

p2 + iǫ

iβνi(q⊥, k
+)

q2 + iǫ

∫

d2z⊥Ω̃AB(z⊥)e−iz⊥·(p⊥−q⊥). (D.29)

k+ is the + component of both p and q that is conserved through the diagram.

q → → p

Figure D.1: Gluon coming into the shockwave with momentum q and exiting with momentum p.

D.3.2 External legs attached to the shockwave

An interesting - and subtle - question is : what is the rule corresponding to an external leg directly
attached to the shockwave ? In words, reduction formulas tell us that the most external free propagators
in green functions are removed and replaced by polarization vectors ǫµ or ǫµ ∗ depending on whether the
gluons are initial ones or �nal ones respectively. It would be tempting to say that, for instance, an initial
gluon involved in some arbitrary process shown on �gure D.2, will bring a contribution :

2k+ǫµ(k)βµi(k⊥, k
+)

∫

p+≡k+

dp−d2p⊥
(2π)3

iβνi(p⊥, k
+)

p2 + iǫ

∫

d2z⊥Ω̃AB(z⊥)e−iz⊥·(p⊥−k⊥) ×MB
ν (p) ; (D.30)
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k → → p

Figure D.2: Arbitrary process involving an initial gluon that goes through the shockwave at �rst.

where MB
ν (p) is the Green function corresponding to the rest of the process represented by the bubble on

�gure D.2, whatever it is8. But this formula has a wrong sign as we shall see.
To derive the Feynman rule corresponding to the process shown on �gure D.2, one has to consider the

reduction formula9 :

−i
∫

d4xd4ye−ik.xǫµ(k)�x∆BA
νµ (y, x)MBν(y), (D.31)

where MAν(y) is the Fourier transform of MAν(k) with an incoming momentum k, that is10 :

MAν(y) =

∫

d4k

(2π)4
MAν(k)eik.y. (D.32)

Using (D.22) it is straightforward to write the reduction formula (D.31) :

−i
∫

d4xd4ye−ik.xǫµ(k)�x∆BA
νµ (y, x)MBν(y)

= −2k+ǫµ(k)βµi(k⊥, k
+)

∫

p+≡k+

dp−d2p⊥
(2π)3

iβνi(p⊥, k
+)

p2 + iǫ

∫

d2z⊥Ω̃BA(z⊥)e−iz⊥·(p⊥−k⊥)MA
ν (p).

(D.33)

Indeed, this formula di�ers from (D.30) by a sign.

We now have the Feynman rules for external legs attached directly to the shockwave, which correspond
respectively to the two �gures represented on D.3 :

− 2k+ǫµ(k)βµi(k⊥, k
+)
iβνi(p⊥, k

+)

p2 + iǫ

∫

d2z⊥Ω̃BA(z⊥)e−iz⊥·(p⊥−k⊥)

− 2k+ǫ∗µ(k)βµi(k⊥, k
+)
iβνi(p⊥, k

+)

p2 + iǫ

∫

d2z⊥Ω̃AB(z⊥)e−iz⊥·(k⊥−p⊥),

(D.34)

where p+ = k+.

A,k → →B,ν,p B,ν,p → →A,k

Figure D.3: Feynman diagrams corresponding respectively to the two formulas (D.34).

7The 4-gluons vertex is not used here, this is why it is omitted but the standard Feynman rule holds.
8It may even contain other external legs.
9To check the prefactor −i one can consider the free case where it reduces to the ordinary rule ǫµ(k)MAµ(k). For sure it

has to be taken as a mnemonic rather than a rigorous proof.
10Beware of the unconventional sign in the exponential due to the fact that the momentum is incoming rather than outgoing.
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Appendix E

Schwinger-Keldysh formalism

In this section we shall see how inclusive observables can be reinterpreted in the Schwinger-Keldysh
formalism. This formalism is generally encountered in �nite temperature quantum �eld theory but here
it �nds another application at zero temperature. Here, it is actually a way to compute in - in Green
functions, the sum over �nal states beeing interpreted as disconnected vacuum bubbles in this formalism.
In the �rst part we study how general Green functions with �nal state summed can be written as in-in
amplitudes with a generalized S-operator, the Schwinger-Keldysh evolution operator. Inclusive spectra
encountered in section 4.1.1 are special cases of such Green functions. Then we shall deal with the path
integral formulation. At the end we detail Feynman rules since propagators and vertices have more general
de�nitions in this formalism than in the context of "ordinary" quantum �eld theory.

E.1 Schwinger-Keldysh S-operator

As seen in section 4.1.1 the inclusive spectrum is rewritten thanks to a reduction formula as a correlator
between two �eld operators, one in the conjugate and another one in complex conjugate amplitude with a
sum over �nal states. It is rather straightforward, to show that more general spectra dN per multi-particle
phase space element d3p1...d

3pk can be written in a similar form as equation (4.7) with a time-ordered
product of k �elds in the amplitude and an antitime-ordered product of k hermitian conjugate �elds in the
complex conjugate amplitude. We shall see that it can be rewritten in the Schwinger-Keldysh formalism.
Particle spectra are speci�c cases of the more general Green function :

∑

γ

〈

β; in
∣

∣T̄ {A1(x1)...Ap(xp)}
∣

∣ γ; out
〉

〈γ; out |T {B1(y1)...Bq(yq)}|α; in〉 . (E.1)

T and T̄ respectively denote the time and antitime ordered product, the Ai's and Bj 's are operators
built from �elds in the Heisenberg picture and the sum over γ is a generic notation for summing over all
the possible multi-particle states properly normalized so that

∑

γ |γ >< γ| = 1. If we consider inclusive
spectra, p = q and the operators are single �eld operators in (E.1). After some algebra (the detailed
calculation can be found in the general references [41, 40]), the Green function (E.1) can be written in
terms of interaction picture operators ai's and bj 's between Heisenberg states :

∑

γ

〈

β

∣

∣

∣

∣

T̄
{

a1(x1)...ap(xp) exp

(

+i

∫ +∞

−∞
dtV (t)

)}∣

∣

∣

∣

γ

〉

×
〈

γ

∣

∣

∣

∣

T
{

b1(y1)...bq(yq) exp

(

−i
∫ +∞

−∞
dtV (t)

)}∣

∣

∣

∣

α

〉

;

(E.2)

where V is the interaction Hamiltonian written in terms of interaction picture �eld operators. The sum
over γ is trivial because of the completeness relations. Then the operators are ordered in the following
way. The ones coming from the amplitude are time ordered on the right and the ones from the complex
conjugate amplitude are on the left and antitime-ordered. Then everything works like if the integration
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contour of the interaction starts from −∞ to +∞ and then comes back to −∞. This integration contour is
the so called Keldysh contour denoted K, represented on �gure E.1. The ai's and bj 's are ordered along this

Figure E.1: Graphic representation of the Keldysh contour. The two branches are shifted with respect to
the time axis for clarity but the contour lies on the real axis.

contour. We say they are path-ordered and we denote K the corresponding operator that orders operators
along the Keldysh contour. With these new notations, (E.2) becomes :

〈

β
∣

∣

∣
K

{

a1(x1)...ap(xp)b1(y1)...bq(yq)e
−i

R

K
dtV (t)

}∣

∣

∣
α
〉

, (E.3)

or between states in the interaction picture :

〈β; in |K {A1(x1)...Ap(xp)B1(y1)...Bq(yq)}|α; in〉 . (E.4)

We now have a precise meaning for the in - in Green functions. The S-operator for such amplitude is a
non trivial way to rewrite 1. Indeed if all the operators Ai's and Bj 's are set to unity, we �nd the scalar
product between two in-states which is trivial since they are orthonormal. It is equivalent to the operator
equation :

K
{

e−i
R

K
dtV (t)

}

= 1 (E.5)

But then how can we generate Green functions ? This is given by a generalized Schwinger action principle.
The Green functions are generated by adding a term to the interaction :

V (t)→ Vǫ(t) = V (t) +

∫

d3x ǫi(t,x)ai(t,x) (E.6)

and then by taking functional derivatives with respect to ǫ and sending it to zero. As long as ǫ is non
zero, the S operator with V replaced by Vǫ does not satisfy (E.5). This is the right way to deal with
this S operator that seems somewhat trivial at �rst sight. We now have an operator formulation of the
Schwinger-Keldysh evolution, we will now look at the corresponding path integral formulation.

E.2 Path integral formulation and connected amplitudes

We start from formula (E.4) in the special case where α and β are taken to be the vacuum. There is
no di�erence with the usual path integral formulation of quantum �eld theory whose rederivation would
be useless since it can be found in any general references like [41, 40]. The path integral corresponding to
an evolution along the Keldysh contour, requires two sets of �elds φ+ and φ−, φ denoting generically the
whole �eld content of the theory and being respectively the �elds living on the forward and backward time
branch of the Keldysh contour. In some sense the Schwinger-Keldysh path integral is the squared modulus
of the ordinary path integral. In the path integral formulation, the vacuum in - vacuum in Green function
(E.1) reads :

〈0; in |K {A1(x1)...Ap(xp)B1(y1)...Bp(yq)}| 0; in〉 =
1

Z

∫

Dφ−Dφ+A1[φ−(x1)]...Ap[φ−(xp)]×

×B1[φ+(y1)]...Bp[φ+(yq)]e
i

R +∞
−∞

dtL[φ+,t]−i
R +∞
−∞

dtL[φ−,t]

(E.7)
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where L is the lagrangian and Z is the partition function corresponding to the Schwinger-Keldysh path
integral :

Z =

∫

Dφ−Dφ+e
i

R +∞
−∞

dtL[φ+,t]−i
R +∞
−∞

dtL[φ−,t]. (E.8)

The factor 1/Z in (E.7) ensures the proper normalization of the Green functions. Following the general
functional methods, the Green function (E.7) can be obtained from the generating functional Z[j+, j−]
de�ned as :

Z[j+, j−] =

∫

Dφ−Dφ+ exp

(

i

∫ +∞

−∞
dt

[

L[φ+, t] +

∫

d3xji
+(t,x)Bi[φ+(t,x)]

]

− i

∫ +∞

−∞
dt

[

L[φ−, t] +

∫

d3xjj
−(t,x)Aj [φ−(t,x)]

])

.

(E.9)

The partition function is given by Z = Z[j+ = j− = 0] and the Green function (E.7), by the functional
derivative :

〈0; in |K {A1(x1)...Ap(xp)B1(y1)...Bq(yq)}| 0; in〉 =
ip−q

Z

δp+q

δj1−(x1)...δj
p
−(xp)δj1+(y1)...δj

q
+(yq)

Z[j+, j−]

∣

∣

∣

∣

j±=0

.

(E.10)

Beware of the order of derivatives when one deals with Grassmann �elds. The convention given here makes
the derivatives act from the left to the right. The Green function (E.7) is a vacuum-vacuum amplitude
which is not necessarily connected. Since any amplitude always factorizes into product of connected Green
functions, it is more convenient to work with the generating functional for connected amplitudes only,
denoted W[j+, j−]. Its relation to Z[j+, j−] is the following :

eiW[j+,j−] = Z[j+, j−]. (E.11)

So far, we do have an expression for general inclusive Green functions - that is with the �nal state summed
- as a path integral with time integrated over the Keldysh contour. Naively it can be seen as an ordinary
path integral corresponding to the amplitude and a complex conjugate one corresponding to the complex
conjugate amplitude but it does not factorize into two independent path integrals. The product of two
path integrals would be interpreted as the modulus squared of a vacuum in - vacuum out amplitude which
is di�erent from summing over all possible �nal states which leads to non trivial boundary conditions at
t = +∞, φ+(+∞,x) = φ−(+∞,x), that forbids the factorization of the Schwinger-Keldysh path integral
into two ordinary path integrals. The Schwinger-Keldysh path integral form of particle spectra encountered
in section 4.1.1 is obtained from (E.7) by taking the Ai's to be single �eld operators and the Bi's their
complex conjugate.

E.3 Feynman rules

In this section we detail the new features brought by the Schwinger-Keldysh formalism which is a
generalization of the well known Feynman rules. When one draws Feynman diagrams in coordinate space,
the integration in time is performed along the whole Keldysh contour instead of the ordinary time axis.
This leads to more complicated Feynman rules depending on whether the coordinates under consideration
lie on the forward or backward branch. Obviously ordinary Feynman rules are recovered if we consider
only �eld operators on the forward time branch.

E.3.1 Propagator

In the Schwinger-Keldysh formalism, the exact propagator is de�ned to be :

Gkl(x, y) =
〈

0; in
∣

∣

∣
K

{

φk(x)φl†(y)
}∣

∣

∣
0; in

〉

. (E.12)
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The ordering depends on which branch of the Keldysh contour the points x and y are evaluated or equiv-
alently if the �elds are plus or minus �elds. There are four con�gurations :

Gkl(x, y) ≡















Gkl
++(x, y) if x0 and y0 are on the forward branch

Gkl
−+(x, y) if x0 is on the backward branch and y0 on the forward one

Gkl
+−(x, y) if x0 is on the forward branch and y0 on the backward one

Gkl
−−(x, y) if x0 and y0 are on the backward branch

(E.13)

where

Gkl
++(x, y) =

〈

0; in
∣

∣

∣T
{

φk(x)φl†(y)
}∣

∣

∣ 0; in
〉

= θ(x0 − y0)
〈

0; in
∣

∣

∣φk(x)φl†(y)
∣

∣

∣ 0; in
〉

± θ(y0 − x0)
〈

0; in
∣

∣

∣φl†(y)φk(x)
∣

∣

∣ 0; in
〉

Gkl
−+(x, y) =

〈

0; in
∣

∣

∣φk(x)φl†(y)
∣

∣

∣ 0; in
〉

Gkl
+−(x, y) = ±

〈

0; in
∣

∣

∣
φl†(y)φk(x)

∣

∣

∣
0; in

〉

Gkl
−−(x, y) = ±

〈

0; in
∣

∣

∣T̄
{

φk(x)φl†(y)
}∣

∣

∣ 0; in
〉

= ±θ(x0 − y0)
〈

0; in
∣

∣

∣φl†(y)φk(x)
∣

∣

∣ 0; in
〉

+ θ(y0 − x0)
〈

0; in
∣

∣

∣φk(x)φl†(y)
∣

∣

∣ 0; in
〉

.

(E.14)

The upper and lower signs are for bosons and fermions respectively. The four kinds of propagators are not
all independent. As it can be checked directly from (E.14), they are related by the identity :

Gkl
++(x− y) +Gkl

−−(x− y) = Gkl
−+(x− y) +Gkl

+−(x− y). (E.15)

The retarded and advanced propagators are given by :

Gkl
R (x− y) = Gkl

++(x− y)−Gkl
+−(x− y) = Gkl

−+(x− y)−Gkl
−−(x− y)

= θ(x0 − y0)

〈

0; in

∣

∣

∣

∣

[

φk(x);φl†(y)
]

∓

∣

∣

∣

∣

0; in

〉

Gkl
A (x− y) = Gkl

++(x− y)−Gkl
−+(x− y) = Gkl

+−(x− y)−Gkl
−−(x− y)

= −θ(y0 − x0)

〈

0; in

∣

∣

∣

∣

[

φk(x);φl†(y)
]

∓

∣

∣

∣

∣

0; in

〉

.

(E.16)

[ ]− denotes the commutator and [ ]+ the anti-commutator depending whether the �eld φ is bosonic or
fermionic respectively. These are generic notations for the exact propagators. Analogous straightforward
de�nitions hold for free, 1-loop, background �eld dressed and so on... propagators just by choosing the
corresponding in vacuum and evolution operator.

E.3.2 Vertices

From the very �rst physical requirements, vertex operators must be local and real in coordinate space.
Since one integrates in coordinate space over the whole Keldysh contour, one has to sum over the minus and
plus �elds if one attaches a line to a vertex. From (E.7), the vertices evaluated on the forward branch are
given by ordinary Feynman rules whereas they take a minus sign when the are evaluated on the backward
branch. Obviously this holds in momentum space as well. To illustrate, let us consider the tree level 4-point
vertex of the neutral scalar φ4 theory. One has to sum over the plus and minus branch of the Keldysh
contour which gives two diagrams with opposite Feynman rules shown on �gure E.2.
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±

= ∓iλ

Figure E.2: Feynman rule for the φ4 vertex in the Schwinger-Keldysh formalism.
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Appendix F

Physical spectrum of non abelian gauge

theories in light-cone gauge

In this appendix we shall look at the physical spectrum of light-cone quantized non abelian gauge
theories. We recover the well known result that ghost and anti-ghosts are absent from the physical spectrum
but the main result is that the physical degrees of freedom of the gauge �eld are its transverse components.
We will see that the light-cone gauge condition n · A = 0 with nµ = δµ± is physical, in the sense that
physical amplitudes only contain the independent, unconstrained degrees of freedom, that is the transverse
components of the gauge �eld. The key point for this proof is the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry [104, 105, 106, 107]. In a �rst part we introduce this symmetry and use it to �nd a physical
criterion for the existence of states in the spectrum or not. This point is one of the most beautiful
correspondence between physics and mathematics, since the BRST symmetry is closely related to the
cohomology theory. It can be used for showing very general (and crucial) properties of non abelian gauge
theories like unitarity and renormalizability. Here we will not look at these but just, in a second part, see
which states are present or absent from the spectrum.

F.1 BRST symmetry

The BRST symmetry is a residual symmetry of the lagrangian once the gauge is �xed. Considerations
of this section hold for any gauge �xing but for de�niteness, we shall work in axial gauge. We consider
L the Yang-Mills lagrangian coupled to matter �elds, generically denoted ψ, with the gauge �xing term
(1.10) and the ghost term (1.19). For the moment we shall work with a �nite gauge parameter ξ. The trick
is to rewrite the gauge �xing term thanks to a gaussian transformation in the path integral :

exp

[

i

2ξ

∫

d4x(n ·A(x))2
]

= N

∫

DB exp

[

i

∫

d4x

(

ξ

2
B2(x) + n ·AA(x)BA(x)

)]

. (F.1)

The B �eld is an adjoint representation auxiliary �eld - i.e. it satis�es algebraic equations of motions
- known as the Nakanishi-Lautrup �eld. The constant N is an inconsequential in�nite normalization
constant that disappears from connected amplitudes by a proper regularization scheme. After the gaussian
transformation, the full lagrangian reads :

Ltot = L[A,ψ] +
ξ

2
B2 +BAn ·AA + ω̄n ·Dω. (F.2)

Note that written in this form, there is no problem in taking the ξ = 0 limit. In this case, the integration
over B will give the constraint δ(n.A) as expected. Let us now look at the symmetry of the lagrangian
(F.2). It turns out that this symmetry, known as the BRST symmetry, enables us to do some formal
developments with a strong physical meaning.
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F.1.1 BRST invariance and physicality condition

The lagrangian (F.2) is invariant under the continuous, hermitian transformation of in�nitesimal Grass-
mann parameter θ (i.e. θ anti-commutes with fermions, ghosts and anti-ghosts but commutes with bosons
and auxiliary �elds) :

δθψ
a = igθωA(TA)abψ

b

δθA
A
µ = θDAB

µ ωB

δθω̄
A = −θBA

δθω
A = −θg

2
fABCωBωC

δθB
A = 0.

(F.3)

These transformations are known as the BRST transformations. It is an easy exercise to check the invariance
directly. However we can note that the invariance of L is obvious since the transformation of ψ and A
is nothing but an in�nitesimal gauge transformation of parameter gθω under which L is invariant by
construction. The remarkable property of the BRST transformation is that it is nilpotent, that is δθδθ′ = 0.
To see the consequences of the nilpotency property, we introduce the BRST generator Q whose action on
the �elds is de�ned so that δθφ ≡ iθ[Q;φ]∓, where φ denotes indi�erently the matter, gauge, auxiliary,
ghost and anti-ghost �elds and the ∓ sign denotes a commutation relation if φ is a c-number �eld and an
anti-commutation relation if φ is Grassmann. From (F.3), φ and δθφ have the same statistics and since
the θ parameter and ghosts are Grassmann and therefore φ and [Q;φ]∓ have opposite statistics. The
nilpotency condition reads in terms of Q as :

δθδθ′φ = 0 = iθ[Q; iθ′[Q;φ]∓]∓ = −θθ′[Q; [Q;φ]∓]± = −θθ′[Q2;φ]. (F.4)

This is ful�lled in operator form, either if Q2 is proportional to unity or if it is zero. If we de�ne the ghost

number to be +1 for a ghost and −1 for an anti-ghost, the generator Q carries a +1 ghost number by (F.3)
and cannot be proportional to the unit operator. In other words the action of Q2, if non zero, "creates"
two additional ghosts and cannot be proportional to the identity. Thus in operator form we have :

Q2 = 0. (F.5)

We shall see in a moment the implication of the nilpotency condition. But �rst one has to look at the
action of Q on states. The point is that, thanks to (F.3) the lagrangian (F.2) can be written in the form1 :

Ltot = L[A,ψ]− i
{

Q;
ξ

2
ω̄ABA + ω̄An ·AA

}

≡ L[A,ψ] + i {Q;F} , (F.6)

where the brackets denote the anti-commutator. It turns out that whatever is the gauge �xing, the
lagrangian can always be written in this form with a di�erent function F - precisely n ·A is replaced by the
gauge �xing function in general and the BRST action on the gauge �xing function gives the same ghost

1The action of the BRST operator on a functional composed of several �elds is made by a commutator if the functional is
bosonic and an anti-commutator if the functional is fermionic. Here is the proof : the starting point is to consider the product
of two �elds φ1 and φ2 and then the recursion is obvious for functionals of higher order in the �elds. We associate them
respective phases ǫ1 and ǫ2 with ǫi = +1 if φi is a boson and ǫi = −1 if φi is a fermion, i = 1, 2. The BRST transformation
of φ1φ2 reads :

δθ(φ1φ2) = δθ(φ1)φ2 + φ1δθ(φ2)

= iθ [(Qφ1 − ǫ1φ1Q) φ2 + ǫ1φ1 (Qφ2 − ǫ2φ2Q)]

= iθ [Qφ1φ2 − ǫ1ǫ2φ1φ2Q] .

The sign of the bracket depends on ǫ1ǫ2, that is, of the total statistics of the product φ1φ2 and the proof is completed.
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lagrangian as the one obtained by the Fadeev-Popov method in the corresponding gauge. Therefore an
in�nitesimal gauge transformation will induce a variation i[Q; δF ] in the gauge �xed lagrangian. Let us
consider two arbitrary states |α > and |β >. Of course, they satisfy the gauge invariant normalization
condition < α|β >= δαβ . Thus the variation δ < α|β > under a gauge transformation must be zero but
this implies :

0 = δ 〈α |β〉 = −
∫

d4x 〈α |{Q; δF(x)}|β〉 . (F.7)

In order for this condition to be ful�lled for an arbitrary in�nitesimal gauge transformation, one must have
:

Q |α〉 = Q |β〉 = 0. (F.8)

Therefore the action of the BRST generator on a state must be zero. This condition is known as the
physicality condition. Such states which are in the kernel of Q are called BRST-closed.

LetH be the total Hilbert space spanned with states containing arbitrary numbers of particles associated
with matter, gauge, auxiliary, ghost and anti-ghost �elds. The physicality condition (F.8) together with
the nilpotency condition (F.5) shares the Hilbert space into three pieces :

• some states may not satisfy the physicality condition, i.e. Q|α >6= 0. Such states |α > do not enter
in the spectrum of the theory.

• among the physical states that are BRST-closed, some of them can be BRST-exact, that is, there is
|β >∈ H so that |α >= Q|β >.

• the last class of states are those that are BRST-closed but not exact. That is they satisfy the
physicality condition (F.8) but cannot be written as |α >= Q|β >.

Q being an application of H into itself, we have just seen that the physical Hilbert space is made of states
in the kernel of Q. Let us consider an arbitrary physical state |α > not necessarily BRST-exact and a
state |β > which is BRST-exact, that is it can be written |β >= Q|γ >. By the physicality condition, the
scalar product between |α > and |β > is zero : < α|β >=< α|Q|γ >= 0. Therefore distinguishing, in the
spectrum, two states that only di�er by a BRST-exact state is redundant. This introduces an equivalence
relation ∼ among physical states :

|α〉 ∼ |β〉 if there is |γ〉 ∈ H so that |α〉 = |β〉+Q |γ〉 . (F.9)

Two physical states are said equivalent if they di�er by a BRST-exact state. As argued the BRST-exact
contribution will not contribute to matrix element and equivalent states lead to the same matrix element.
Such structure is known in mathematics as a cohomology and equivalent states are said cohomologous. This
allows some formal developments to see the structure of the physical Hilbert space.

F.1.2 BRST cohomology

From previous considerations, the physical Hilbert space is composed of the elements of Ker Q modulo
elements of the image QH. This quotient space is known as the BRST cohomology ring H∗ :

Ker Q/QH ≡ H∗. (F.10)

It will be convenient for the following to decompose the total Hilbert space H into Hilbert spaces at �xed
ghost number Hp with p ∈ Z. Hp is the vector space spanned by the states containing n ghosts and m
anti-ghosts - and all other possible particles - so that n−m = p. Thus the total Hilbert space reads :

H =
⊕

p∈Z

Hp. (F.11)
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The BRST generator Q increases the ghost number of one unit since its action on any �eld or functional of
�elds generates an additional ghost �eld. Thus the BRST operator makes the following hierarchy between
the Hp's known as the cochain complex :

...
Q−→ H−1

Q−→ H0
Q−→ H1

Q−→ ... (F.12)

The p-th BRST homology group, denoted Hp, is the analog of the BRST cohomology ring but at �xed
ghost number : it is the kernel of Q in Hp, denoted Kerp Q, modulo an element of the image of Hp−1 by
Q

Hp = Kerp Q/QHp−1. (F.13)

The physical Hilbert space, given by the BRST cohomology ring H∗, thus reads in terms of the BRST
cohomology groups as :

H∗ =
⊕

p∈Z

Hp. (F.14)

The physical spectrum will be obtained by explicitly writing a basis for H∗. The decomposition into
cohomology groups at �xed ghost numbers is convenient since we shall see that the physical Hilbert space
is given by H0 only.

F.2 Physical spectrum

After these formal developments around the BRST cohomology let us compute the cohomology groups
explicitly. For this purpose one has to see the action of the BRST operator Q on various states. Since we
are interested in this action on asymptotic states it is su�cient to consider the zero coupling limit of the
BRST transformations (F.3) and the corresponding �elds are free �elds. The zero coupling limit of (F.3)
reads :

[Q;ψ]∓ = {Q;ω} = [Q;B] = 0

[Q;Aµ] = −i∂µω

{Q; ω̄} = iB.

(F.15)

Moreover, denoting generically by φi any of these �eld, with i denoting possible Lorentz, color... indices,
we expand these �elds into normal modes :

φi(x) =

∫

d3k

(2π)32k0

[

ϕike
−ik·x + ϕ∗ike

ik·x
]

. (F.16)

To maintain Lorentz invariance, ϕik and ϕ∗ik must be interpreted as annihilation and creation operators
respectively2 :

ϕik |0〉 = 0

ϕ∗ik |0〉 = |ϕ∗ik〉 .
(F.17)

The way to �nd the basis for the cohomology groups is to take a physical state |α > which is BRST-closed
but not BRST-exact3 and to add a quanta ϕ∗ik. The resulting state may be not physical, that is not
BRST-closed. It it is BRST-closed, it may be BRST-exact and thus homologous to zero. In both of these
cases it does not enter into the physical spectrum.

2For complex matter �elds ϕ∗ik is actually ϕ∗c,ik, the creation operator for an anti-particle. We shall see that there is no
trouble with this subtlety for the discussion to come for these kinds of �elds.

3There exists at least one such state, the BRST-invariant vacuum. Thus the existence does not cause trouble.
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F.2.1 The matter content

Let us begin by the simplest case : states with particles associated to matter �elds. The normal mode
expansion of a matter �eld is written :

ψi(x) =

∫

d3k

(2π)32k0

[

ψike
−ik·x + ψ∗c,ike

ik·x
]

. (F.18)

From the BRST transformations (F.15), we have, by equating the exponential coe�cients :

[Q;ψik]∓ =
[

Q;ψ∗c,ik
]

∓
= 0. (F.19)

Obviously if we had considered ψ∗i (x) or, just took the complex conjugate of the previous (anti-)commutation
relations, would have led to the (anti-)commuting character of ψ∗ik with Q. Let us take a physical (i.e.
BRST-closed) state |α > and add a matter quanta ψ∗ik. The BRST action on this state is :

Qψ∗ik |α〉 = [Q;ψ∗ik]∓ |α〉 = 0. (F.20)

Thus the state with an additional matter particle satis�es the physicality condition. From the transfor-
mations (F.15) one cannot get such state by the action of Q on another state since there is no BRST
transformation that create a matter �eld. Therefore ψ∗ik|α > is not closed and appears in the spectrum.
States containing only matter particles are all inequivalent and therefore the whole matter Hilbert space
Hmat spanned by all the matter states is physical :

Hmat ⊂ H∗. (F.21)

This is a well known result that gauge invariance does not constrain the matter spectrum.

F.2.2 Anti-ghosts and auxiliary �elds

Let us look at a more interesting case by considering the closed system of equations in (F.15) involving
the auxiliary �elds and the anti-ghosts. Expanding these to �elds in normal modes

B(x) =

∫

d3k

(2π)32k0

[

bke
−ik·x + b∗ke

ik·x
]

ω̄(x) =

∫

d3k

(2π)32k0

[

ω̄ke
−ik·x + ω̄∗ke

ik·x
]

(F.22)

together with (F.15) leads to4 :

[Q; b∗k] = 0

{Q; ω̄∗k} = ib∗k.
(F.23)

It follows that a physical state |α > with an additional anti-ghost quanta ω̄∗k satis�es :

Qω̄∗k |α〉 = {Q; ω̄∗k} |α〉 = ib∗k |α〉 . (F.24)

On the one hand b∗k|α > is non zero and thus ω̄∗k|α > does not satis�es the physicality condition. This
means that anti-ghost are absent from the physical spectrum. On the other hand b∗k|α > is BRST-exact
and therefore cohomologous to zero. Auxiliary �elds are also absent from the physical spectrum.

The fact that there is no anti-ghost in the physical spectrum has an important consequence on the
cohomology groups of negative ghosts numbers. For negative p, all the states in Hp contain at least −p
anti-ghosts (possibly more for states containing ghosts as well). Since Qω̄∗k|α >6= 0, it means that the
kernel of Hp is empty and so is the corresponding cohomology group :

Hp = {∅} ∀p < 0. (F.25)

4Relations among the annihilation operators are not interesting for our purpose and are not written.
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F.2.3 Ghosts and gauge �elds

We now come to the main aim : the determination of physical gauge �eld's degrees of freedom in axial
gauge. For general vector �elds, the time component leads to negative norm states. Actually it is not
really a problem since it is not a physical degree of freedom but it is given by a constrain in terms of the
physical ones. For massless vector �eld, gauge invariance enables to constrain one of the three remaining
degrees of freedom. There are two degrees of freedom only and we shall see that they are given by the
transverse components in light-cone gauge. From now on, the gauge �xing parameter ξ is sent to zero so
that the gauge condition n · A = 0 is strict. Let us expand the ghost and gauge �eld in normal modes as
previously :

ω(x) =

∫

d3k

(2π)32k0

[

ωke
−ik·x + ω∗ke

ik·x
]

Aµ(x) =

∫

d3k

(2π)32k0

[

akµe
−ik·x + a∗kµe

ik·x
]

.

(F.26)

(F.15) leads to the following relations among creation operators :
[

Q; aµ∗
k

]

= kµω∗k

{Q;ω∗k} = 0.
(F.27)

By the second equation a ghost quanta added to a physical state |α > satis�es the physicality condition
Qω∗k|α >= 0. The question is whether this state is BRST-exact or not. Let us �rst contract the �rst of
these equations with nµ projected on |α >. By the gauge condition n · a∗k = 0 we have :

0 = (n · k)ω∗k |α〉 . (F.28)

Therefore, as long as n · k 6= 0, the state ω∗k|α > is zero. Let us now contract the �rst equation (F.27) with
kµ and project it on |α >. Since the states are labeled by the spatial components of an on-shell momentum
one has k2 = 0 and thus :

Q (k · a∗k) |α〉 = k2ω∗k |α〉 = 0. (F.29)

k·a∗k|α > satis�es the physicality condition. However recall that a∗k is proportional to the polarization vector
ǫ∗µ(k). From, for instance, (1.17), the polarization vector satis�es the on-shell Ward identity k · ǫ∗(k) as the
light-cone gauge is strictly enforced (ξ = 0). Hence k · a∗k|α > satis�es the physicality condition because
it is zero and equation (F.29) brings no useful information for the cohomologies. The last contraction we
can perform on the �rst equation (F.27) is a contraction with ǫµ(k). This gives :

Q (ǫ(k) · a∗k) |α〉 = (k · ǫ(k))ω∗k |α〉 = 0. (F.30)

Moreover, for a gauge �xing vector nµ = δµ±, we have (with explicit polarization λ = ±1 written) :

Q
(

ǫ(λ)(k) · a∗k
)

|α〉 = −Q
(

ǫi(λ)(k)a
i∗
k

)

|α〉 = 0. (F.31)

Since the ǫi(λ)'s with λ = ±1 form a basis of the transverse plane, this is ful�lled if and only if

Qai∗
k |α〉 = 0. (F.32)

The ai∗
k |α > are the two independent states satisfying the physicality condition. a∓∗k |α > is zero by gauge

condition and a±∗k |α > is given by a constrain and actually disappears from physical amplitudes due to
contractions with polarization vectors.

We have seen that the physical gluon degrees of freedom are given by their transverse components and
that the ghosts states are zero for n · k 6= 0. We are a little bit in trouble with the states having n · k = 0
since there is no incompatibility with this condition and the Ward identity. Indeed, both these conditions
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are ful�lled if kµ is proportional to nµ for light-like nµ. There is a way out by noticing that the form
nµ = δµ± is not Lorentz invariant. This implicitly means that the Lorentz frame is �xed when one imposes
the gauge condition A∓ = 0. One can always choose a frame in which all the free particles composing the
system are seen with a non vanishing k∓ component. Thus making such choice of frame and then imposing
the gauge condition ensures that n · k never vanishes. These arguments will be useful when we deal with
light-cone quantized systems where the particles all move forward or backward. The choice nµ = δµ± is
then canonical for determining a physical gauge. However, there is a more rigorous derivation : n · k = 0
means that k∓ = 0 and since k is on-shell, it has just a single non vanishing component k±. Taking µ = ±
in the �rst equation (F.27) leads to Qa±∗k |α >= k±ω∗k|α > which is a priori non-zero5. Thus a±∗k |α >
is non physical6 and ω∗k|α > is BRST-exact and cohomologous to zero and the proof is completed. The
physical spectrum contains no ghosts. By the same considerations made above when we have proved the
absence of anti-ghosts in the spectrum, we conclude that :

Hp = {∅} ∀p > 0. (F.33)

Hence the physical spectrum is given by the cohomology group at ghost number 0 :

H∗ = H0. (F.34)

If we summarize everything, we have seen that there are neither ghosts nor anti-ghosts nor auxiliary
�elds in the physical spectrum. The whole matter spectrum Hmat is physical. The physical spectrum of
gauge �elds is the subset H⊥gf of the total gauge �eld Hilbert space spanned only by the physical degrees of
freedom, that are, the transverse components. The BRST cohomology groups have therefore been explicitly
endowed with a basis :

Hp =

{ Hmat ⊗H⊥gf if p = 0

{∅} if p 6= 0.
(F.35)

5Even if it is zero this component of the gauge �eld disappears from physical amplitudes when contracted with a polarization
vector.

6Moreover the Ward identity is trivially veri�ed for such k and we have, by the way, the proof that a±∗k |α > is non physical
in this case which could not have been proved from (F.29) since k∓a±∗k = 0.
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